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viii

SIMGELER VE KISALTMALAR

Bu ¢alismada kullanilmis simgeler agiklamalari ile birlikte asagida sunulmustur.

Simgeler

a a a
%H'IH'

o(L)

o4(L)
oss(L)
R;(L)
nM,s)

Ll (0, 0; (Cn)

L,(0,00; C")

Aciklamalar

Kompleks sayilar kiimesi

{z € C. £Imz > 0}

{ze C: £Imz = 0}

Reel sayilar kiimesi

L operatoriiniin spektrumu

L operatoriiniin diskret (nokta) spektrumu

L operatoriiniin spektral tekilliklerinin kiimesi
L operatoriiniin resolvent operatorii

M kiimesinin s komsulugunun Lebesgue 6l¢iisii
(0, 00)’da tanimli integrallenebilir vektor degerli
fonksiyonlarin Hilbert uzay1

(0, )’da taniml1 karesi integrallenebilir vektor

degerli fonksiyonlarin Hilbert uzay:



1.GIRIS

Fonksiyonel analiz ve teoritik fizigin birgok problemi, diferensiyel operatorlerin 6zdeger
ve Ozfonksiyonlarmin bulunmasi ve diferensiyel operatdriin tanim kiimesinde yer alan
keyfi bir fonksiyonun, operatoriin 6zfonksiyonlari cinsinden bir seriye(veya integral)
acilmasini gerekli kilmistir. Bu nedenle diferensiyel operatdrlerin spektral analizi bir¢ok

calismanin temel konusu olmustur.

Kuantum fiziginde, bir diferensiyel operatdriin tanim kiimesinde yer alan keyfi bir
fonksiyonun, operatdriin 6zfonksiyonlari cinsinden acilimi 6nemli bir problem olmustur.
Bu konuda dikkat ¢ekici ilk gelisme Naimark (1960) tarafindan non-selfadjoint

diferensiyel operatorlerin spektral analizinin incelenmesiyle elde edilmistir.

q- kompleks degerli bir fonksiyon olmak iizere, L, (0, ) uzayinda

L) =—-y"+qx)y,x €[0,)

diferensiyel ifadesi ve y(0) = 0 sinir kosulu yardimiyla tiretilen non-selfadjont operatorii
Lo ile gosterelim. Naimark L, operatoriiniin spektrumunun siirekli spektrum, ayrik
spektrum (6zdegerler) ve spektral tekilliklerden olustugunu goéstermistir. Ayrica q

fonksiyonunun

oo

] exp(ex)|q(x)|dx < oo, £>0
0

kosulunu gerceklemesi durumunda, L, operatdriiniin 6zdeger ve spektral tekilliklerinin
sonlu sayida oldugunu ispatlamistir. Spektral tekilliklerin L, operatoriiniin spektral
analizindeki rolii detayl bir bicimde Lyance (1967) tarafindan incelenmistir.

Krall (1965), ly(y) diferensiyel ifadesi ve integral smir kosulu yardimi ile L, (0, o)
uzayinda ftretilen non-selfadjoint L, operatoriiniin spektral teorisini incelemis, L;‘in
adjoint operatoriinii elde etmis ve L, operatdriiniin 6zfonksiyonlar1 cinsinden spektral

acilimini incelemistir.

Bairamov (1997, 1999) calismalarinda Naimark ve Krall’in sonuglarini Quadratik
Schrodinger operatorleri demetine genellestirmistir. Ayrica Bairamov (1999, 2001, 2005)
caligmalarinda ise spektral tekilligi olan non-selfadjoint fark operatorlerinin spektral

analizi detayl bir bicimde incelenmistir.



Q (x) non-selfadjoint matris degerli bir fonksiyon olmak iizere

L, =-Y"+QMXx)Y

diferensiyel ifadesi g6z oniinde bulundurulsun. L, (0, c0; C"*) ile (0, o) kiimesinde tanimli
n X 1 vektdr degerli fonksiyonlarm Hilbert uzay: gosterilsin. L(0, o0; C*) uzaymda [,

diferensiyel ifadesi ve

[oe]

aY'(0) — BY(0) + f AxX)Y(x)dx =0
0

sinir kosulu yardimiyla tanimlanan operator L olsun. Bu tezde L operatoriiniin Jost

fonksiyonunun asimptotigi, L’nin 6zdegerleri ve spektral tekillikleri incelenmistir.



2. TEMEL TANIM VE TEOREMLER

Bu boliimde, spektral analizin bazi temel tanimlar1 ve teoremleri verilecektir.

2.1. Tanim

X # {0} kompleks normlu bir uzay T:D(T) c X — X lineer bir operatér olsun. A € C
olmak iizere R;(T) = (T — AI)~! operatoriine T nin resolvent operatdrii ya da kisaca

resolventi denir [12].

2.2. Tanim

R, (T) operatdrii mevcut, sinirl ve tanim ciimlesi X uzayinda yogun ise, A € C sayisina T
operatdriinlin regiiler degeri denir. T operatoriiniin regiiler degerlerinden olusan kiimeye

ise T nin resolvent kiimesi denir [12].

2.3. Tanim

R, (T) mevcut olmayacak sekildeki A kompleks sayisina T operatoriiniin 6zdegeri ve biitiin
0zdegerlerin kiimesine de T operatoriiniin diskret spektrumu ya da nokta spektrumu adi
verilir [12].

2.4. Tanim

R, (T) mevcut, sinirs1z ve R, (T) operatoriinlin tanim kiimesi X uzayinda yogun olacak
sekildeki A kompleks sayilarinin olusturdugu kiimeye T operatoriiniin stirekli spektrumu
denir [12].

2.5. Tanim

Bir T operatoriiniin resolventinin ¢ekirdeginin kutup noktasi olup, siirekli spektrumda

bulunan ve T operatdriiniin 6zdegeri olmayan A kompleks sayisina T operatoriiniin spektral

tekilligi ad1 verilir [13].



2.1. Teorem

Ozdes olarak sifir olmayan bir analitik fonksiyonun, analitiklik bolgesinin i¢indeki sifirlari

(eger varsa) ayriktir [10].
2.2. Teorem

Ozdes olarak sifir olmayan bir analitik fonksiyonun, analitiklik bolgesinin icindeki

stfirlarinin limit noktalar1 (eger varsa) analitiklik bolgesinin sinirindadir [10].
2.3. Teorem

Ozdes olarak sifir olmayan bir analitik fonksiyonun, sonsuz katli sifirlar1 (eger varsa)

analitiklik bolgesinin sinirindadir [10].
2.4. Teorem

Acik st diizlemde 6zdes olarak sifir olmayan, analitik bir fonksiyonun reel eksendeki

sifirlarinin Lebesgue 6l¢iisti sifirdir [10].
2.5. Teorem

f fonksiyonu C, kiimesinde her mertebeden tiireve sahip bir fonksiyon ve
U(E={x € R: f"(x) =0,vn € N}) =0

olsun.

If(n)(z)|<A4,,,z€ C, ,n=0,1,2,...

esitsizligi saglanacak sekilde An sayilart mevcut ve

T(s) =y %

olmak {izere

h

flogT(s)du(E, §) = —0

0

olsun.



Ayrica en az bir N pozitif reel sayis1 i¢in

_N [oe)
lo l

[ @y ey, A,
1+ x2 1+ x2

) N

ise f fonksiyonu kapali {ist diizlemde 6zdes olarak sifirdir [9].






3.GENEL SINIR KOSULLU MATRIS KATSAYILI STURM-
LiOUVILLE OPERATORLERININ SPEKTRAL ANALIZI

Bu bolimde genel smir kosullu matris katsayili Sturm-Liouville denklem sistemi
tanimlanacak ve bu sistemin bazi 6zel ¢oziimleri incelenecektir.

A spektral parametre, 0 < x < oo araliginda tanimhi ve siirekli Q self-adjoint olmayan
matris degerli potansiyel fonksiyonu

Q(x) = [qjx ()] k=1

bi¢iminde olmak iizere,
yi" + A%y = Z Qi (X) Vi (j=12,..,n) (3.1

diferensiyel denklem sistemi ele alinacaktir.

(3.1) denklem sisteminin ¢oziimii

—Y" +Q(x)Y = A%Y (3.2)
diferensiyel denklemini saglayan n X n tipinde karesel bir Y =Y(x,1) matrisi ile
gosterilebilir.

(3.2) ifadesinin her matris ¢oziimiiniin siitunlar1 (3.1) denklem sisteminin ¢dziimleridir.

Dolayisiyla (3.1) denklem sistemi yerine (3.2) diferensiyel denklemi kullanilacak ve

o)

f *[1Q()lldx < oo (3.3)

0

kosulunun saglandig1 kabul edilecektir.
Simdi, matris katsayili Sturm-Liouville denklem sisteminin baz1 6zel ¢oziimleri

incelenecektir.
3.1. Teorem

(3.2) denkleminin S(0,4) =0 ve S'(0, A) =1 baslangi¢ deger kosullarin1 saglayan

¢Ozimi

S(x,2) = —1 +fQ(t)5(t A)M (3.4)

integral denkleminin bir ¢6ziimii olup bu ifadenin tersi de dogrudur [1].



fspat

S$(0,4) =0ve S'(0,4) = I baslangi¢ deger kosullarinin saglandig: asikardir. (3.4) integral

denkleminin saglanmasi halinde (3.2) denklemi de saglanir. Ger¢ekten

S'(x,A) = cosAxI + f Q(t)S(t, A) cosA(x — t)dt

S"(x,A) = —AsinAxI — j Q(t)S(t, D) AsinA(x — t)dt + Q(t)S(t, 1)

bulunur. Bu esitlikler, (3.2) denkleminde g6z oniine alinirsa

/1x
A

—AsinAxI — f Q(t)S(t, D AsinA(x — t)dt + /12

+A2 f Q(O)S(t, 1) ﬂdt + Q(x)S(x, 1) = Q(x)S(x, 1)

elde edilir.

Simdi, (3.2) denkleminin S(0,4) = 0 ve §'(0,1) = I baslangi¢ deger kosullarini saglayan
¢oziimiiniin (3.4) integral denklemini sagladigi gosterilecektir. Bunun igin,

(3.2) denklemine ait homojen denklem

—Y" +2%Y =

olmak iizere, bu denklemin temel ¢oziimleri cosAxI ve sinAxI oldugu i¢in ¢oziim

S(x,1) = cycoslxI + c,sindxI

seklinde yazilir. O halde (3.2) denkleminin genel ¢oziimii

S(x,A) = c;(x)cosAx] + c,(x)sinAx] (3.5)
seklinde olmalidir. (3.5) denkleminin x degiskenine gore tiirevi alinirsa

S'(x,A) = cy(x)cosAxI + cy(x)sinAx] — Acy(x)sinAx] + Ac,(x)cosAxI

bulunur. Parametrelerin degisimi yontemi geregince

c1(x)cosAxI + c;(x)sinAxl = 0 (3.6)
alimirsa

S'(x,A) = — Acy(x)sinAxI + Ac,(x)cosAxl

bulunur. Elde edilen bu denklemde tekrar x degiskenine gore tiirev alinirsa

S"(x, ) = —Acj(x)sinAxI + Acy(x)cosAxI — A%ci(x)cosAx] — A*c,(x)sinAx]
bulunur. Bu esitlik (3.2) denkleminde yerine yazilirsa

—Acj(x)sinAxI + Acy(x)cosAxI — A%cy(x)cosAx] — A2c,(x)sinAx]



+22¢; (x)cosAxI + A2c,(x)sinAxI = Q(x)S(x, A)

elde edilir. Buradan gerekli diizenlemeler yapilirsa,

—Aci (x)sinAxI + Acy(x)cosAxl = Q(x)S(x, A) (3.7)
olarak bulunur.

(3.6) denklemi (—sinAx) ile (3.7) denklemi de (AcosAx) ile garpilip, bu iki esitlik taraf
tarafa toplanirsa

Aci(x)sin?AxI + Acj(x)cos?AxI = Q(x)S(x, A)sindx

olup

—Q(x)S(x, )sindx
A

ct(x)I =

olarak bulunur.

B1 = ¢1(0)
seklinde tanimlanirsa son esitlikten

X

[ e tax =100 - g1
0

_ f —Q(t)S(;, A)sinAt A

0

olup

c()I = Byl —

] Q (t)S(t;l)sinAt it 3.8)
0

olarak bulunur.
Benzer sekilde (3.6) denklemi (AsinAx) ile (3.7) denklemi de (cosAx) ile ¢arpilip bu iki

esitlik taraf tarafa toplanip diizenlemeler yapildiginda

c, () = ay,l +

f Q (t)S(t;Lﬂ.)COS/lt it (3.9)
0

olarak bulunur.

(3.8) ve (3.9) ifadeleri (3.5) denkleminde yerine yazilirsa

. xQ(t)S(t, A)sinAt
S(x,A) = BicosAxl + B,sinAx]l — cosAx f 1 dt
0

+ sinAx

f Q (t)S(t;LA)cosAt it
0
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(t)S(t, A)jin/l(x —t) it

X
= PyicosAxl + BysinAx] + f ¢

olarak bulunur.

Elde edilen bu esitlikte S(0,1) = 0 baslangi¢ deger kosulu goz oniine alinirsa
S(0,A)=pI=0=> B, =0

bulunur. Buradan f; yerine yazilirsa

[ 0(O)S(t, DsinA(x — t) W

S(x,A) = BysinAxI + 1

seklinde yazilir. Bu denklemin x degiskenine gore tiirev alinirsa
S'(x,A) = PyAcosAxI + f Q(t)S(t,A)cosA(x — t)dt
0

olarak bulunur.

Bu esitlikte S'(0, 4) = I baslangi¢ deger kosulu g6z oniine alinirsa

1
Al =1= B, ==
A
bulunur. Buradan f3, yerine yazilirsa

S(x,A) = —1+ jQ(t)S( A)wdt

¢oziimii elde edilir [1].
3.2. Teorem

A € C, olmak iizere, (3.2) denkleminin (3.3) kosulu altinda
lim Y(x,)e 4 =] (3.10)

X—>00

esitligini saglayan F sinirli matris ¢éziimii

sinA(x —t
F(x,2) = e[ + j Q(t)F(t, A)¥dt (3.11)
seklindedir [1].

fspat

(3.2) denklemine ait homojen denklem
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-Y"+ 2*Y =0

oldugundan bu denklemin genel ¢6zlimii

Y(x,A) = cie™I + cye ]

bi¢imindedir. Buradan, (3.2) denkleminin genel ¢6ziimii

Y, A) = c;(x)e™* I + c,(x)e ] (3.12)
bi¢imindedir. Bu ¢6ziimii bulmak igin (3.12) denkleminde x degiskenine gore tiirev
alinirsa

Y'(x, 1) = c,(x)e™™I + ¢,/ (x)e ] + idcy (x)e™*] — idc, (x)e ¥

bulunur. Parametrelerin degisimi yontemi geregince

c;(X)e™I + c,'(x)e =0

olarak alinirsa

Y'(x, 1) = ide;(x)e ] — idcy(x)e ]

olarak bulunur. Elde edilen bu denklemde tekrar x degiskenine gore tiirev alinirsa

Y"(x, 1) = idc;(x)e™] —idch(x)e ] — A2c,(x)e™ ] — A2cy(x)e ¥

olarak bulunur. Bulunan bu esitlik (3.2) denkleminde yerine yazilirsa

idc;(x)e™* I —idcy(x)e M — A2c;(x)e™] — A2cy(x)e™ ] + 2% (x)e ]

— 22c,(x)e ] = jAc)(x)e™*] — idcy(x)e ™ = Q(x)Y (x, 1)

bulunur. Ayrica

ci(x)e™ I + cy(x)e ¥ =0

oldugu dikkate alinirsa,

Q)Y (x, 1) p-idx
2id
Q)Y (x, 1) pilx
2id
denklemleri elde edilir. ¢; ve c, fonksiyonlarini bulmak igin [x, o) araliginda integral

ct(x)I =

0l = —

alinir ve

951_)72) c1(x) = Py
lim ¢;(x) = B,
olarak ifade edilirse

[ QYL A)

20 ¢

c() = pyl -

X
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c,(X) = Bl + J.W it ¢

seklinde bulunur. Elde edilen c; ve c, fonksiyonlar1 (3.12) denkleminde yerine yazilirsa

f@(tmm gy _ [ QOYED
200 ©

LA(t—x)dt
2iA

Y(x, 1) = B eI + Bre ¥ +
X

iA(t-x) _ p—iA(t-x)

= B[ + Bre X[ + f QOY (5 2) . dt

2iA

sinA(t — x)

= BeMI + Be ] + fQ(t)Y(t,/l)fdt
X

seklinde bulunur. Bulunan bu esitligin her iki tarafi e =*** ile ¢arpilip (3.10) kosulu goz

Ontne alinirsa

1 =1 ve f, = 0 olarak bulunur. g, ve 3, yerine yazilirsa

F(x, 1) = e[ + fQ(t)F(t A)M dt  ImA>0

elde edilir [1].

3.3. Teorem

a(x) = j||Q(s)||ds,a1<x> - JSIIQ(S)II ds

olsun. Bu durumda (3.2) denkleminin

F(x,1) = e™] + jK(x, t)etdt , ImA>0
X
esitligini saglayan F(x, t) ¢6ziimii vardir. Ayrica K matris degerli fonksiyonu

x+t

2 t+s—x
K(x,t) = fQ(s)ds + f f Q(s) K(s,a) dads
x“ X t+x—s
1 o t+s—x
+ o j j 0(s)K (s, a)dads (0<x <t)

2

integral denklemini saglar ve
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1 x +t
IK(x, )]l < Ee%(’c)a( > ) (3.13)
esitsizligi gergeklenir [1].
fspat
F(s,2) = e¥] + f K(s,u) e**du (3.14)

X

seklinde yazilip (3.11) g6z 6niinde bulundurularak

. r sinA(s — x . r .
F(x,A) = e + ]%Q(s){e‘“l+ jK(s,u)e”l”du}ds
X X
yani
r . oosin)L Ss—Xx )
fK(x,t)e”“dtz I%Q(s)e‘“ds
X X
r r sinA(s — x .
+] Q(s) dsj —(A )K(s,u)em‘du
X S
=L+
seklinde yazilabilir.
, iA(s— —iA(s—
sinA(s — x) pils _ giA(s—x) _ p=il(s—Xx) pils
A 2iA
eiA(ZS—x) _ eizlx
- 2iA
25—Xx
= %f eMdt
X
ve
, iA(s— —iA(s—
sinA(s — x) it _ elA(s—x) _ o—iA(s—x) S
A 2iA

e iA(s—x+u) _ e —iA(x—s+u)

204

S—x+u

1 .
—_— lltdt
2 f ¢

x—s+u
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esitlikleri kullanilarak

] = %f fzs_xQ(s)emdtds

S—x+u

J2 = %ff - :Lu Q(s)K(s,w)e*tdtduds

bulunur. Bu integrallerin integrasyon siras1 degistirilirse
L Q(s)eMdsdt
2) Jxrt
X 2

ve

t+s—x

J2 = %ffzs_ f Q(s)K(s,w)e*tdudtds

t+s—x

+ % f f f Q(s)K (s, wye™ dudtds
e 25—x

t+x—s
t+s—x

% jo j j Q($)K (s, we* dudsdt

© x4+t t+s—x

+%]]2 j Q(s)K(s,u)e*dudsdt

X t+x-—s

olarak bulunur. J; ve J, (3.15) denkleminde yerine yazilirsa

oo [ee]

jl((x, et dt = %f fQ(s)ds)ei’“dt

x+t

X
2

o t+s—x

+%xf IJ Q(s)K(s,u)duds |e**dt

X+t
2

x+t
o 2 t+s—x

+%f f f Q(s)K (s, u)duds |e*tdt

X x t+x-s

bulunur. Bu esitlik i¢in Fourier doniisiimii uygulanirsa
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x+t

oo[ oo 2 t+s—x
|K
(x,t) — = | Q(s)ds — = Q(s)K(s,u)duds
o=z feos=s] |
1 oo t+s—x
-3 J. f Q(S)K(s,u)dudsiei“dtz 0
olur. Buradan
xT-H: t+s—x
K(x,t) = Q(s)ds + Q(s)K(s,u)duds
I
© t+s—x
+ = j f Q(s)K(s,u)duds (3.16)

x+t

2
olarak bulunur. (3.16) denkleminin ¢6ziimlenebilir oldugunu gostermek igin ardigik

yaklagimlar yontemi kullanilirsa, x > 0 i¢in a4 azalan oldugu i¢in

@ () < @ (0) = ]tno(t)n dt < o
0

seklinde yazilabilir.

Kyo(x,t) = f Q(s)ds

x+t
2

x+t

oo t+s—x "2 t+s—x
K, (x,t) = = j j Q(S)Kp—1(s,u)duds + f J Q(S)Ky—1(s,u)duds
x_” s x t+x-s

2

ve

Z(x,t):= z K, (x,t)
m=0

olarak ifade edilsin.

Z ile tanimlanan seri mutlak ve diizgiin yakinsaktir. Gergekten,

IKo(x, )| < jIIQ(s)IIds— la( _ZH)

x+t
2
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x+t
2 t+s—x

1K, Cx, Ol g%f f ||Q(s)||a(s+

x t+x-s

u
)duds

o t+s—x

f | e

x+t S

) duds

::4A1 *'AAZ

olarak tanimlansin. Bu durumda 0 < x < t < oo i¢in

X+t

2 t+s—x

=3[ [ tewia(®

x t+x-s

)duds

X+t
t+s—x

%f_ (=5 [ neeluas

t+x—s

- ia(t;") j Hfs_xnms)nduds

x t+x-s

X+t
2

_ %a(”)j (2s — 2011Q(s)llds

X

X+t

2

) [ steids

X

_]_<t+x
“\

ve

oo t+s—x

f | teie(?

x+t S

) duds

t+s—x

%jw ) j 10()llduds

IA

1
- j @)~ x)ds

2

1 x+t oox+1:
< 3a(57) [ () neas
xtt
2
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[oe]

< 3¢(5) [ - loias
< za(*2) fwsno(@nds

x+t

2

olarak bulunur. Bu durumda
IKi(x, )| < A1+ A,

x+t

< %a(";t)f S1Q(s)ds + %a(%”)xfsuo(s)nds
< —a(x;t)f sQ(s)llds

X

%a (x o t) aq(x)

2 1!
bulunur.
m = 1 i¢in

1 /x+tya™(x)
< — .
| K Cx, O < 2“( ) o)l (3.17)
oldugu kabul edilirse
@@ = [ slee)llds = da ) = ~x1QCo)ldx
X
olacagi icin
x_+t
oo t+s—x 2 t+s—x
Kpii(x, t) = j j Q(s)K,,(s,u)duds + f J Q(s)K,,(s,u)duds
x_” s x t+x—s
2
X+t

o t+s—x 2 t+s—x

K GO < = f | 10 K50 lduds + f | 10K ) lduds
x+t s x t+x-—s
o t+s—x

I/\

f f leil3 S;u)az:lgf)duds

X+t
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x+t

* %xf t:f_:”Q(S)II%a (s er u) az:;gf) duds

olup esitsizligin sag tarafindaki terimler sirasiyla N; ve N, olarak ifade edilirse

o t+s—x

s+ s\ a;™(s)
N, < i flwwm a(52) s duds
B m(s)
- fno@ma@>( (e = 5)ds
1 x+t a;™(s)
< sq _[HQ(SNI - x) s
1 r m
Szaczw)LWXﬂMs—ﬂaag?ﬁ
! )
ve
1Tt+s_x s+t+x—s alm(s)dd
wosg [ le@ie(FEEE) T duds

x+t

1 x+t a;"(s
+ Zf IIQ(s)IIa(T) (25 - 2 TS ds

x+t

< a x+tj\wwm@—x)(§)
s%ax+tfnm9m D

olarak bulunur. O halde

1 (o)
a0l < 5 (S5 [ 0@l (s)sds
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a

1 +t

< a5 im | alm(S)SIIQ(S)IIdSI
1 x +t\a; ™ (x)

2m!“< 2 )(m+1)!

bulunur. Buradan, tiimevarim yontemi geregince her m € N igin (3.17) esitsizligi

saglanir. Ayrica a azalan oldugu icin
a;™(0)
(m)!

1
1K Ce, DIl < 5 (0) (3.18)

gerceklenir. Ayrica

o m
al (0) — ea1(0)
(m)!

m=0

oldugu i¢gin ve (3.18) gergeklendigi igin karsilastirma testi geregince

nZO K, (x, )

serisi mutlak yakinsaktir. Ayrica (3.18) esitsizligi her x = 0 i¢in saglandigindan ayni seri

Weierstrass M- testi geregince diizgiin yakinsaktir.

= 1 o+t a,™(x)
< D llKn 0l < ) (=)=
m=0 = |

Diger taraftan

;0 K, (x,t)

m=0
® m
:1a<x+t)za1 (x) - la(x+t)ea1(x)
2 2 m! -2 2
m=0

1
< Ea(O)e"‘l(O)

olarak bulunur.

K(x,t):= Z K, (x, t)
m=0

olmak tizere,

1 x+t 1 x+t
KGOl < sa (5 en® < a(5) e
2 2 2
x+t r
—ca(*7) =c [ewnas

x+t

2

esitsizligi saglanir [1].
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3.4. Teorem

K fonksiyonunun x ve t degiskenine gore kismi tiirevleri mevcut olup ¢ > 0 olmak iizere

1 x+t x+t
K 0l < 5 [@G)|[ + cat=)
ve

1 x+t x+t
Ik DIl < 7|l + cal—)

esitsizlikleri gergeklenir [1].

fspat
t+s—x

A(s,x, t): = J K(s,u)du
t+x—s
t+s—x

B(s,x,t):= f K(s,u)du

olarak tanimlansin. (3.16) goz 6niinde bulundurularak

X+t

K(x,t) = j Q(s)ds + J Q(s)A(s, x, t)ds

1 (o]
= ] Q(s)B(s,x,t)ds (0<x<?)

x+t

2

bulunur. Buradan

N

K, (x,t) = ——Q(j) %(x-zi_t>A(x-2|_t,x,t>—%Q(x)A(x,x,t)

X+t

; %j A5 x 0ds ~70(50) (5L x.0)

2 2

o)

1
E f Q(s)B,(s,x,t)ds (3.19)

x+t

2

olarak bulunur.



3t—-x
2
(x+t t)— J‘ K<x+t )
2 rxy - 2 )u u
x+t
2
3t—x
2
B(X-l—t )_ K(X-l—t )d
2 » X, > ,ujau

ve
A.(s,x,t) = —K(s,t+s—x) —K(s,t+x—5)
Ay (s,x,t) = —K(s,t+s—x)

A(x,x,t) =0
oldugundan (3.19) goz oniine alinarak
s
1 x+t x +t x + t
K, (x,t) = 2 > ) f du
x+t
xtt xtt

1 1
_E,f Q(S)K(s,t+s—x)ds—5f Q(s)K(s,t + x — s)ds

x+t x+t

du— - f Q(s)K(s,t +s—x)ds

x+t

2

» |

olur. Buradan
x+t

x+t

1 2
K, (x, t)———Q( _Ef Q(s)K(s,t + x — s)ds

1 [ee]
_Ef Q(s)K(s,t +s—x)ds

seklinde bulunur. Benzer islemlerle

3t—x

x+t
du

1
Kot = —30Co 0 + —Q(—)]

x+t

x+t x+t

+%j Q(s)K(s,t+s—x)ds — %f Q(s)K(s,t +x —s)ds

21
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_lQ(x-I_t)f K(x-zl_t,u)du+%j-oQ(S)K(S,t+S—x)dS

x+t x+t

2 2

f Q(s)K(s,t +s—x)ds

1
—EJ Q(s)K(s,t + x — s)ds

olarak bulunur. (3.13) esitsizligi dikkate alinirsa

x+t

(x+t

1
1K, Co ol = ||~ 0 .- j Q(S)K(s,t + x — 5)ds

4

1 (00]
_Ef Q(s)K(s,t +s—x)ds

1||Q (" + t) ” + %f 10()K (s, t + x — s)||ds

<
4

2

10 ;
+ §]||Q(S)K(S,t+5—x)|| s

x+t

Gl < gllo(S59) [ + 3 f loE)lle®a (*2=) as

/\

1 ( 2s+t—x
+ 709 [lo@lle (Z5—) ds
4 2
X

+t)d
> S

X+t

) 5 e
+ %fmncz(s)ua(m%) ds

<t o freons

2
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Cy x+t

+ 2a qu(s)uds

=l (x”>||+fa(x2t)

bulunur. Benzer sekilde

1K G 0l < 4||Q<x )| + ca

buunur. Ayrica

co

fllK(x, Dllde < cf a(xTH) dt < Cfa(%) dt (3.20)

X

= ZCf a(s)ds < o
0
ve

o)

fIIKx(x,t)IIdt <> f”Q( ||dt+cf ( ;rt)dt

X

[0e]

%jIIQ(u)IIdu+ZCj a(u)du < oo

0

oldugundan x > 0 i¢in

K(x,.) € Li(x,0) & f||1<(x, )] < oo

Ky(x,.) € Ly(x,00) & f 1K, (e, O] < oo

olarak yazilabilir. Boylece ispat tamamlanmis olur [1].
C, iizerinde |e'*|, |1| ya gore azalan oldugu i¢in
|K(x, || < IK(x, )l

esitsizligi gergeklenir. O halde (3.20) geregince

oo

f K(x,t)etdt

P

< flIK(x,t)Hdt < 00

olur.
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Ayrica

f K(x, t) e*dt

X

fonksiyonu A ya gore C, lizerinde analitiktir.

[o2] [o2]

0 . .

a fK(x,t)el“dt = fitK(x,t)e”“dt
X X

esitligini gostermek igin,

ImA > 0 iken te ™4 < 1 oldugu g6z oniine alinirsa

fitK(x,t)e"’“dt < ftllK(x,t)lle‘”m’ldt < jIIK(x,t)IIdt < o0
X X X

bulunur. Boylelikle F ¢6ziimii A ya gore C,. tizerinde analitik bir fonksiyon olur. Ayrica F
¢oziimii R iizerinde A ya gore siireklidir. e, C iizerinde A ya gore siirekli oldugu i¢in ayn1

zamanda R iizerinde de siireklidir. F ¢6ziimiiniin siirekliligini gostermek icin
f K(x,t) etdt

X

integralinin stirekliligini gostermek yeterli olacaktir.

f K(x,t) etdt

X

integrali C, lizerinde diizgiin yakinsak oldugu i¢in A, € R keyfi olmak iizere

- it gp — - iat — idgt
lllgllof K(x,t)e"*dt = f K(x,t) /111_310(6 )dt = f K(x,t) et*otdt
X X X

bulunur [1].
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4. OZDEGERLER VE SPEKTRAL TEKILLIKLER

4.1. Jost Fonksiyonunun Asimptotigi

Bu boliimde L operatdriine karsilik gelen Jost fonksiyonunun asimptotigi incelenecektir. L
operatori ile ilgili olarak

“Y" +Q(X)Y = A2Y (4.1)

aY'(0) — BY(0) + f A(xX)Y(x)dx =0 (4.2)
0

sinir deger problemi goz Onilinde bulundurulsun. Burada A- kompleks degerli n X n

seklinde bir matris, a,f € C,|a|+|B] #0 ve A € L,(0,00;C") N L,(0, c0; C*) kosulu

saglanir. Ayrica,

o)

f Q@) lldx < o (4.3)

0

kosulunun ger¢eklendigi varsayilsin.

F(x,2) = e +fK(x,t)ei’“dt
X

Jost ¢oziimiiniin (4.2)’de dikkate alinmasi ile elde edilen

[0e]

N = aF'(0,1) — BF(0, 1) + j A(X)F (x, )dx (4.4)
0

fonksiyonuna L operatoriiniin Jost fonksiyonu denir.
4.1.1. Teorem

(4.3) kosulu altinda

NQA) = aiAl +0(1),42 € C,,|A| »
asimptotik esitligi saglanir.

fspat

Jost fonksiyonunun asimptotigini elde etmek i¢in
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o]

F(x,1) = e™] + fK(x,t)ert
X

Jost fonksiyonunu,

av'(0) — Y (0) + f AGOY (X)dx = 0

sinir kosulunda yerine yazmak gerekmektedir.

F'(x, 1) = ire™] — K(x,x)e™ + fo(x, t) eittdt
X

elde edilir. Buradan

F'(0,1) = iAl — K(0,0) + ij(O, t) ettdt
0
elde edilir.

0

aF'(0,1) = aill —aK(0,0) + j K,(0,t) etdt
0

BF(0) = BI +/3j K(0,t) e*tdt
0

olarak bulunur. Jost fonksiyonu sinir kosulunda yerine yazildiginda

[ee] [ee]

aidl — aK(0,0) + a ] K.(0,t) e*tdt — Bl — B f K(0,t) e*dt
0

0
+ fA(x)eilxdx+f f[((x,t) edtdx = 0
0 0 x

bulunur. Buradan,

o8] 0

aF'(0) — BF(0) + j A(X)F(x)dx = aill — aK(0,0) + a f K, (0,t) ettat
0 0

o)

—ﬁl—ﬁf K(0, t)ei“dt+fA(x)ei’1xdx+f f K(x,t)e*dtdx = 0
0 0 0 x

bulunur.

Burada

ffl((x,t)emdtdx
0 x
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integralinin integrasyon sirasi degistirilirse

o oo t
ffl{(x, teMtdtdx = f fK(x, t)eMdxdt
0 x 0 0

esitligi elde edilir. Buradan,

t

F(t) = aK,(0,t) — BK(0,t) + A(t) +fK(x, t)dx

seklinde tanimlanirsa

(0]

NQ) = aill —aK(0,0) — BI + f F(t)etdt
0
elde edilir.

oo

j A(x)e*dx
0

Fourier doniisiimiiniin yakinsak olmasi i¢in A(x) € L (0, oo; C™) olmasi gerekir.
Dolayisiyla A(x) i¢in A(x) € L(0,00; C*) N L, (0, 00; C*) kosulunu koymak gerekir.

F(t) fonksiyonunun tiim terimleri L;(0,00;C") wuzaymmin elemani oldugundan
N = aill — aK(0,0) — Bl +0(1), 1 € C,, |1 = oo

yazilabilir. Hatta «, 8 ve K(0,0) sabit oldugundan

N(A) = aill +0(1), |a|+|B8] #0, [A] » (4.5)
elde edilir. Boylece ispat tamamlanir.

(4.5) esitliginden

detN(A) = (ail)™+0(1)

olarak yazilir. Sonug olarak

Burada |A] = o icin detN(A) = 0 olamaz. O halde || - o i¢in detN(A) nin tersi

yoktur. Sadece reel eksenin sinirli bir alt araliginda detN (1) = 0 olur.



28

4.2. L’nin Diskret Spektrumu

L operatoriiniin 6zdegerlerinin ve spektral tekilliklerinin kiimesi sirasiyla

o4(L)={p:u=2%1 € C,,detN(1) = 0} (4.6)
ve
oss(L) = {u:pu=2%21 € R\ {0}, detN(1) = 0} 4.7)

seklinde tanimlanir.

4.2.1. Tanim

C, iizerinde tanimli detN (1) fonksiyonunun bir sifiriin katina, L operatdriiniin bu sifira
karsilik gelen 6zdegerinin veya spektral tekilliginin kat1 denir.

L operatoriiniin  6zdegerlerini ve spektral tekilliklerini inceleyebilmek igin detN(A)
fonksiyonunun C,. daki sifirlarin1 belirlemek gerekir.

M, = {A:1€ Cy,detN(A) =0}

ve

M, = {A:1€ R, detN(4) =0}

seklinde tanimlanirsa, (4.6) ve (4.7) yardimiyla

og(L) = {pu:pu=21 € M} (4.8)
ve

0ss(L) = {p:pp=2%21 € Mp}\ {0} (4.9)
yazilir.

4.2.1. Teorem

M, kiimesi siirlt olup en ¢ok sayilabilir sayida elemana sahiptir. Ayrica bu kiimenin limit

noktalar1 (eger varsa) reel eksenin sinirli bir alt araligindadir.
fSpat
N (), C, da analitik ve reel eksende siirekli oldugundan detN (A1) da C, da analitik ve reel

cksende siireklidir. Teorem 4.1.1 de gosterildigi gibi |A| — oo igin

detN (1) = (i)™ + 0(1) (4.10)
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yazilir. Buradan, A € C, igin |A| yeterince biiyiik se¢ilmesi halinde detN (1) # 0 olur. O
halde M, ve M, kiimeleri sinirlidir. Teorem 2.1 geregince detN (1) fonksiyonunun C, daki
sifirlarinin kiimesi ayriktir. O halde M; kiimesi en ¢ok sayilabilir sayida eleman igerir.
Ayrica Teorem 2.2 ifadesi geregince M; kiimesinin (eger varsa) limit noktalar1 reel eksenin

sinirli bir alt araligindadir.

4.2.2. Teorem

M, kiimesi kompakttir ve u Lebesgue 6l¢iisii olmak tizere u(M,) = 0 dir.
fspat

Teorem 4.2.1 in ispatinda M, kiimesinin sinirlt oldugu gosterilmisti. O halde M, kiimesinin
kompakt bir kiime oldugunu gdstermek i¢in M, kiimesinin kapali oldugunu gostermek
yeterlidir.

Ao € M, olsun.OhaldeVn € Nigin, € M, ve

lim A4, = 4,

n—-oo

olacak sekilde bir (4,) dizisi vardir.

Bu durumda detN (1), C, iizerinde siirekli oldugu i¢in

detN(Ao) = detN (1lim 1,) = lim detN(4,) = 0
n—-o0o n—>00

yani 1, € M, elde edilir. O halde M, kiimesi kapalidir. Boylece M, kiimesi kapali ve
sinirlt oldugu icin kompakt bir kiimedir.

Ayrica

detN(A), C, tlizerinde analitik ve detN (A1) # 0 oldugundan Teorem 2.4 geregince

u(M,) = 0 elde edilir.

Teorem 4.2.1 ve Teorem 4.2.2” den hemen asagidaki teoremler elde edilir.
4.2.3. Teorem

04(L), smirhdir. Tim 6zdegerlerin kat1 sonludur ve ozdegerlerin limit noktalar1 (Eger

varsa) [0, co) kiimesinin sinirli bir alt araligindadir.
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4.2.4. Teorem

0gs(L) smirhdir. u(og(L)) = 0 dir. (Eger varsa) limit noktalari (0,0) un smnirl bir alt

araligindadir.
4.2.5. Teorem

& > 0 olmak tlizere

j exp(et) [[[Q(DI + [[A(®)[[]dt < o (4.11)
0

kosulu altinda L operatoriintin sonlu sayida 6zdeger ve spektral tekillikleri vardir ve

bunlarin kat1 da sonludur.
fspat

Teorem 3.4°e gore

[00]

K Ol < j 10(s)1l ds

x+t

2
saglanir. Bu esitsizlik g6z oniine alinip,
N(A) = aill — aK(0,0) — BI + J F(t)e*tdt
0

ve

t
F(t) = aK,(0,t) — BK(0,t) + A(t) + fA(x)K(x, t)

0
esitlikleri kullanilarak N (1) fonksiyonunun analitiklik bolgesi genisletilecektir.
f aK,(0,t)etdt

0

<a f 1K, (0, )l ||| de
0

S
0

t
e~ImAt gt + cf ||0(§)
0



[0e]

1f _et et
- e 44
4

0

[00]

1f et et
- e 4e4
4

(o]
+cf
0

1j' —tG+ma) gy Cff “imat g g

IA

t
Q(E)He—lmztdt_f- cf f”Q(S)”e—Im)ltdsdt
o t
2

IA

t
Q (E) || e~ Imit ¢

ES &S

2ez[|Q(s)ll e dsdt

N | e+ 8

I/\

IA

%'[ e—t(iﬂm/’l)dt_'_ Cj e—t(ZHm/lt)dt
g 0

bulunur.

o)

f BK (0, t)e*tdt

0

<p f 1K (0, O)llf|e||de
0

t
<[
0

IA

[ [neiemeasar
0ot

IA
a

| [ eSS nenemasa
0 ¢t

IA
o
OR’ 8

[ee]
fe —ImAt dsdt
t
2

IA
a

bulunur.

1K )| < ce(=55)
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esitsizligini kullanarak,

ffA(x)K(x,t)ei’“dtdx
0 x

< f f ACONIK (x, Ol [|e | dedx
0 x

oo ©o _(x_+t)
<c f f A(x)e Ua e ImAtqtdx
0 x

bulunur.

o)

f A(t)etqt

0

integrali Fourier dontisimii olup, A(t) fonksiyonu L, (0, c0; C") uzaymdandir. O halde bu
integrallerin yakinsak olmasi i¢in §+1m/1t > 0 gerekir. Dolayisiyla ImA > — Z icin
detN (4) fonksiyonu analitik olacagindan reel eksen analitiklik bdlgesinin igerisinde yer
alir. Dolayisiyla Teorem 2.2 geregince detN (1) fonksiyonunun C, daki sifirlarmin limit
noktalar1 reel eksen iizerinde bulunamaz. Ayrica Teorem 4.2.1 ve Teorem 4.2.2 geregince
M; ve M, kiimeleri sinirlhidir. detN(A) # 0 olup M; ve M, kiimelerinin limit noktalar

analitiklik bolgesinin igerisinde oldugundan M; ve M, kiimeleri sonludurlar. detN(A)

fonksiyonu ImA > — Z icin analitik devama sahip olup Teorem 2.3 geregince detN(A)

fonksiyonunun C, daki sifirlarinin kat1 sonludur. O halde o,4(L) Ve gg(L) kiimeleri sonlu

saylda elemana sahip olup elemanlarinin katlar1 da sonludur.
4.2.6. Teorem

e > 0 olmak tlizere

sup ){eXp(sx/?) eI+ 1A® I} < oo (4.12)

kosulu altinda detN (1) fonksiyonunun C, da analitik olup reel eksende her mertebeden
tireve sahiptir. Fakat detN (1) fonksiyonu reel eksenden alt yar1 diizleme analitik devama

sahip degildir.



fspat

Teorem 3.4°e gore

K, 0l < C f 1Q(s)ll ds

x+t

2

saglanir. Bu esitsizlik gz ontine alinip,

N(A) = aiAl —aK(0,0) — BI + f F(t)etdt
0
ve
F(E) = ak,(0,t) — BK(0, ) + A(E) + j ACOK(x, )
0

esitlikleri kullanilarak N (1) fonksiyonunun analitiklik bolgesi incelenecektir.

[00]

] aK, (0, t)e*dt
0

< o [ W00l s
0

< _ al —-ImAt || _ || —ImAt
< 4[ ”Q(Z)”e dt + cf 0(2) e dt
0 0

[o9] o 0o

1
- —&Vt eVt
4[ e e

IA

0 0ot
2

[0e]

1 t
< Zf e~ EVteet Q(E) e Imitge
0
+cf f e~ eV5esVs||0(s) || e ™M dsdt
ot
2
<

1 o0
Zf e~sVide + cf e"m’“f e Vs dsdt
0

0 0

bulunur.

Benzer sekilde,

f,BK(O,t)eiAtdt < ﬁf”K(O,t)II”eW”dt
0 0

Q(%)||e"m“dt+ cf fIIQ(s)IIe"m’“dsdt
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IA IA
a a
o — g ©°—g

IA
a

bulunur.

oo

] A(t)eMdt
0

integrali Fourier doniistimii olup L, (0, c0; C*) uzaymdandir. Dolayisiyla bu integral iist

yar1 diizlemde yakinsaktir. Son olarak

(o]

O]!A(X)K(x, t)eMdtdx < JA(x)! K(x,t) et dtdx

0
olup A(x) ve K(x,t), L,(0,00;C") uzaymdan olup L,(0,c0;C") uzayindan olan iki
fonksiyonun ¢arpimi L, (0, co; C*) uzayindan oldugu i¢in

jjA(x)K(x,t)emdtdx
0 x

Fourier doniisiimii olup L, (0, co; C") uzaymdandir.

Bu integraller {ist yar1 diizlemde analitiktir. Fakat ImAt = 0 oldugu zaman

ffe‘“/gdsdt
0 0

integrali yakinsak degildir. Dolayisiyla reel eksende analitiklik yoktur.
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Sonug olarak, detN (1) fonksiyonunun C, da analitik olup reel eksende her mertebeden
tiireve sahiptir. Fakat detN (1) fonksiyonu reel eksenden alt yar1 diizleme analitik devama
sahip degildir. Boylece ispat tamamlanmis olur.

Simdi M3 = M;’

Ve

_d"
M, = {/1:/16 (C+,WdetN(/1)=0,Vn € N}

seklinde M; ve M, kiimeleri tanimlansin. Burada M3 kiimesi M; kiimesinin yigilma
noktalarindan olusan kiimedir. M, kiimesi de detN (1) nin sonsuz katlh sifirlarindan olusan

kiimedir.
4.2.7. Teorem

M;, M,, M5 ve M, kiimeleri i¢in asagida verilen bagintilar saglanir.
l)Ml n M4_: @,M3 CMz,M4CM2,M3 CM4
) uMz) = p(M,) =0

fspat

i) C, lizerinde detN(A) analitik oldugundan bu bolgede sonsuz kath sifira sahip olamaz.
Dolayisiyla My N M, = @

detN (1), C, iizerinde siirekli oldugu i¢in M3 © M, saglanir.

M, ve M, kiimelerinin tanimindan analitik fonksiyonlarin sonsuz kath sifirlari, reel
eksende oldugu i¢in M, € M, dir. Ayrica M3 € M, dir. Yani analitik fonksiyonlarin sifir
noktalarinin limit noktalari, sonsuz katli sifirlarinin alt kiimesidir.

ii) M3 € M, ve M, € M, ve Teorem 4.2.2 den u(M,) = 0 oldugu dikkate alinirsa

u(Ms) = u(M,) = 0 bulunur.

4.2.8. Teorem

|detN®W )| < 4,, n=0,1,2,..., Im1 =0

esitsizligini saglayan
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sabitleri vardir.

fspat

o

f (it)"F(t)e*tdt

0

[0e]

< j e F @)t

0

n

d
W detN()l)’ =

olup

&t

IF(OI < ce ™+

esitsizligi kullanilarak

(o]
n

d L, -5l
WdetN()l)’ < cf the +dt= A,

0
elde edilir.

4.2.9. Teorem

(4.13) ile tanimlanan A,, sabitleri, B ve b birer sabit olmak iizere
A, < Bb™"n!n"

esitsizligini gercekler.

fspat

[ e
A, = cjt"e 4 dt n=012,..,
0

eVt
3 = U
degisken degistirmesi yapilirsa
16u? 32u
t = oz t= e—zdu

olur. Bu ifadeler (4.13) de yerine yazilirsa

(4.13)



co

_g\/— 24n+5 p 2
A, = CJ. the T+ dt = fuzn“e_”du =c——

82n+2

£2n+2
0 0

esitligi elde edilir.

I'(n+ 1) =nl(n)

oldugu dikkate alinirsa
261+7

bon: =

82n+2

olmak lzere

4n+5

A, = Cn+12r(2n—-1)..3.2.T(1)

2n+2
4n+5
C iz 2n + 1)!
4an+5
sz 2n+1)2n+1)..2n+1)
4an+5
S C gz (@n+t 1)@n+)

4n+5

e G 2)@n+2)

en+7
— 2n+2
—c€2n—+2(n+1)(" )

= chy"(n + 1)?+2)
elde edilir.
. 1
vVn EN1<;1n(1+;) <e e*>=14+n n"<e™n!
esitsizlikleri saglandigi igin
A, < cby(n + 1)@n+2)
< chy"e*™(n+ 1)*"

n+1

= cby"\( n)"

1
=cb,"(1+ —)Z"nzn
< Cb neZnnZn
—-Cb n n 2n
< cb,"e™n!n™
= Bb™"n!n"

elde edilir.

4n+5

I(2n + 2)
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4.2.10. Teorem

x:(l(l)lzo){exp(&/f) [lRMII+ 1AM} < o

kosulu altinda M, bostur.
fspat

Yeterince biiyiik T > 0 icin |In|detN(2)|| < o olup

=T

j In|detN(1)| i
1+ 22

ve

¢ In|detN ()|

f 1+ 22 X

T

integralleri mutlak yakinsaktir.

sup ){eXp(S\/f) [lRMII + 1AM} < o

x€(0,00

kosulu altinda

&Vt
A, = cj t"e 4 dt n=012,..
0
olmak Uzere
A, s" g -
G(s) = inf :: < Be(-e7'b7is™H
n

ifadesini elde etmek igin,
A, < Bb™*n!n"

esitsizligi kullanilarak

A,s™
— = inf
n! n

(Bb”n! nhs™

G(s) = inf 0 ) =inf(Bb™"n"s™)

bulunur.

f(x) = b*s*x* ile tanimli fonksiyon (—oo, o) iizerinde minimum degerini

xo = b~1s71e~1 noktasinda alir. Bu x, degeri (4.15) esitsizliginde yazilirsa
. Ansn “1o=1,-1,, 4 _1 _ —1o-1,-1 —1o—1,-1

G(S) — lnf < Bbb sTe (b 1g-1p 1)(b s™e )S(b sTe™)
n nl

— Bbb‘ls'le‘1 (b—ls—le—1)(b‘ls'le‘l)s(b‘ls'le'l)

(4.14)

(4.15)
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— Be(-e7'b7s™H)
elde edilir. Teorem 4.2.8 den
|[detN® )| < 4,, n=0,1,2,.., ImA =20,|A|<T (4.16)
elde edilmisti.
u(M,, s), M, kiimesinin s komsulugunun Lebesgue 6l¢iisti olmak tizere (4.14), (4.16) ve
detN (1) fonksiyonu iist diizlemde 6zdes olarak sifir olmadigi i¢in Teorem 2.5 kullanilirsa

t > 0 olmak iizere M, kiimesi
t

fInG(s)du(M4,s) > —o0
0

bulunur.
In(G(s)) < Ine(-b7's7e™!) = _p-1g-1p-1
oldugu i¢in

t

t
1
f (M) < - f InG(5)du(Ms, s) < oo
0 0

olur.

t
1

f —ds
s

0

integrali 1raksak oldugu i¢in

t

1

[ S dutiys) <o

0

olmasi i¢in u(M,,s) =0 olmasi gerekir. u(M,,s) =0 esitligi de M, = @ olmasi

durumunda saglanir.

4.2.11. Teorem

sup ){EXP(E\/E) [RMII+ 4D} < o

x€(0,00
kosulu altinda L operatoriiniin sonlu sayida 6zdeger ve spektral tekilligi olup 6zdeger ve

spektral tekilliklerinin kat1 da sonludur.
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fspat

Teorem 4.2.7 de M3 c M, oldugu gosterilmisti. Ayrica Teorem 4.2.10 da M, = @ oldugu
gosterildi. Dolayistyla M5 kiimesi bostur. O halde sinirli olan M; kiimesi y1gilma noktasina
sahip olmadigi i¢in sonludur. Dolayisiyla detN (4) fonksiyonu kapali iist yar1 diizlemde

sonlu sayida sifira sahiptir. M, = @ oldugundan dolay1 bu sifirlarinin katlar1 da sonludur.
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6. SONUC VE ONERILER

Bu tezde genel smir kosullu matris katsayili Sturm-Liouville operatoriiniin diskret
spektrumunun sonlulugu detayli bir bigcimde Ogrenilmistir. Fakat potansiyel matris
fonksiyonu ve smir kosulundaki matris fonksiyonunun azalma hizina baglh olarak
Ozdegerlerin ve spektral tekilliklerin yapisi incelenmemistir. Savunmadan sonra bu

problemin 6grenilmesi 6nem arz etmektedir.
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