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SİMGELER VE KISALTMALAR 

 

Bu çalışmada kullanılmış simgeler açıklamaları ile birlikte aşağıda sunulmuştur.  

 

Simgeler     Açıklamalar  

 

ℂ     Kompleks sayılar kümesi 

ℂ±     {𝑧 ∈  ℂ: ± 𝐼𝑚𝑧 > 0} 

ℂ̅±     {𝑧 ∈ ℂ: ± 𝐼𝑚𝑧 ≥ 0} 

ℝ     Reel sayılar kümesi 

𝝈(𝑳)     L operatörünün spektrumu 

𝝈𝒅(𝑳) L operatörünün diskret (nokta) spektrumu 

𝝈𝒔𝒔(𝑳) L operatörünün spektral tekilliklerinin kümesi 

𝑹𝝀(𝑳) L operatörünün resolvent operatörü 

𝝁(𝑴, 𝒔) M kümesinin s komşuluğunun Lebesgue ölçüsü 

𝑳𝟏(𝟎,∞; ℂ𝒏) (0,∞)’da tanımlı integrallenebilir vektör değerli 

fonksiyonların Hilbert uzayı 

𝑳𝟐(𝟎,∞; ℂ𝒏) (0,∞)’da tanımlı karesi integrallenebilir vektör 

değerli fonksiyonların Hilbert uzayı 
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1.GİRİŞ 

 

Fonksiyonel analiz ve teoritik fiziğin birçok problemi, diferensiyel operatörlerin özdeğer 

ve özfonksiyonlarının bulunması ve diferensiyel operatörün tanım kümesinde yer alan 

keyfi bir fonksiyonun, operatörün özfonksiyonları cinsinden bir seriye(veya integral) 

açılmasını gerekli kılmıştır. Bu nedenle diferensiyel operatörlerin spektral analizi birçok 

çalışmanın temel konusu olmuştur. 

 

Kuantum fiziğinde, bir diferensiyel operatörün tanım kümesinde yer alan keyfi bir 

fonksiyonun, operatörün özfonksiyonları cinsinden açılımı önemli bir problem olmuştur. 

Bu konuda dikkat çekici ilk gelişme Naimark (1960) tarafından non-selfadjoint 

diferensiyel operatörlerin spektral analizinin incelenmesiyle elde edilmiştir. 

 

𝑞- kompleks değerli bir fonksiyon olmak üzere, 𝐿2(0,∞) uzayında 

𝑙𝑜(𝑦) = −𝑦′′ + 𝑞(𝑥)𝑦, 𝑥 ∈ [0,∞)   

diferensiyel ifadesi ve 𝑦(0) = 0 sınır koşulu yardımıyla üretilen non-selfadjont operatörü 

𝐿0 ile gösterelim. Naimark 𝐿0 operatörünün spektrumunun sürekli spektrum, ayrık 

spektrum (özdeğerler) ve spektral tekilliklerden oluştuğunu göstermiştir. Ayrıca 𝑞 

fonksiyonunun  

∫ exp (𝜀𝑥)|𝑞(𝑥)|

∞

0

𝑑𝑥 < ∞,     𝜀 > 0 

koşulunu gerçeklemesi durumunda, 𝐿0 operatörünün özdeğer ve spektral tekilliklerinin 

sonlu sayıda olduğunu ispatlamıştır. Spektral tekilliklerin 𝐿0 operatörünün spektral 

analizindeki rolü detaylı bir biçimde Lyance (1967) tarafından incelenmiştir. 

Krall (1965), 𝑙0(𝑦) diferensiyel ifadesi ve integral sınır koşulu yardımı ile 𝐿2(0,∞) 

uzayında üretilen non-selfadjoint 𝐿1 operatörünün spektral teorisini incelemiş, 𝐿1‘in 

adjoint operatörünü elde etmiş ve 𝐿1 operatörünün özfonksiyonları cinsinden spektral 

açılımını incelemiştir. 

 

Bairamov (1997, 1999) çalışmalarında Naimark ve Krall’ın sonuçlarını Quadratik 

Schrödinger operatörleri demetine genelleştirmiştir. Ayrıca Bairamov (1999, 2001, 2005) 

çalışmalarında ise spektral tekilliği olan non-selfadjoint fark operatörlerinin spektral 

analizi detaylı bir biçimde incelenmiştir. 
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𝑄(𝑥) non-selfadjoint matris değerli bir fonksiyon olmak üzere 

𝑙𝑦 ≔ −𝑌′′ + 𝑄(𝑥)𝑌 

diferensiyel ifadesi göz önünde bulundurulsun. 𝐿2(0,∞; ℂ𝑛) ile (0,∞) kümesinde tanımlı 

𝑛 × 1 vektör değerli fonksiyonların Hilbert uzayı gösterilsin. 𝐿2(0,∞; ℂ𝑛) uzayında 𝑙𝑦 

diferensiyel ifadesi ve 

𝛼𝑌′(0) − 𝛽𝑌(0) + ∫ 𝐴(𝑥)𝑌(𝑥)𝑑𝑥 = 0

∞

0

 

sınır koşulu yardımıyla tanımlanan operatör 𝐿 olsun. Bu tezde 𝐿 operatörünün Jost 

fonksiyonunun asimptotiği, 𝐿’nin özdeğerleri ve spektral tekillikleri incelenmiştir.  
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2. TEMEL TANIM VE TEOREMLER 

 

Bu bölümde, spektral analizin bazı temel tanımları ve teoremleri verilecektir. 

 

2.1. Tanım 

 

𝑋 ≠ {0} kompleks normlu bir uzay 𝑇:𝐷(𝑇) ⊂ 𝑋 → 𝑋 lineer bir operatör olsun. 𝜆 ∈ ℂ 

olmak üzere 𝑅𝜆(𝑇) = (𝑇 − 𝜆𝐼)−1 operatörüne 𝑇 nin resolvent operatörü ya da kısaca 

resolventi denir [12]. 

  

2.2. Tanım  

 

𝑅𝜆(𝑇) operatörü mevcut, sınırlı ve tanım cümlesi 𝑋 uzayında yoğun ise, 𝜆 ∈ ℂ sayısına 𝑇 

operatörünün regüler değeri denir. 𝑇 operatörünün regüler değerlerinden oluşan kümeye 

ise 𝑇 nin resolvent kümesi denir [12]. 

  

2.3. Tanım 

 

𝑅𝜆(𝑇) mevcut olmayacak şekildeki 𝜆 kompleks sayısına 𝑇 operatörünün özdeğeri ve bütün 

özdeğerlerin kümesine de 𝑇 operatörünün diskret spektrumu ya da nokta spektrumu adı 

verilir [12]. 

 

2.4. Tanım 

 

𝑅𝜆(𝑇) mevcut, sınırsız ve 𝑅𝜆(𝑇) operatörünün tanım kümesi 𝑋 uzayında yoğun olacak 

şekildeki 𝜆 kompleks sayılarının oluşturduğu kümeye T operatörünün sürekli spektrumu 

denir [12]. 

 

2.5. Tanım 

 

Bir 𝑇 operatörünün resolventinin çekirdeğinin kutup noktası olup, sürekli spektrumda 

bulunan ve 𝑇 operatörünün özdeğeri olmayan 𝜆 kompleks sayısına 𝑇 operatörünün spektral 

tekilliği adı verilir [13]. 
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2.1. Teorem 

 

Özdeş olarak sıfır olmayan bir analitik fonksiyonun, analitiklik bölgesinin içindeki sıfırları 

(eğer varsa) ayrıktır [10]. 

 

2.2. Teorem 

 

Özdeş olarak sıfır olmayan bir analitik fonksiyonun, analitiklik bölgesinin içindeki 

sıfırlarının limit noktaları (eğer varsa) analitiklik bölgesinin sınırındadır [10]. 

 

2.3. Teorem 

 

Özdeş olarak sıfır olmayan bir analitik fonksiyonun, sonsuz katlı sıfırları (eğer varsa) 

analitiklik bölgesinin sınırındadır [10]. 

 

2.4. Teorem 

 

Açık üst düzlemde özdeş olarak sıfır olmayan, analitik bir fonksiyonun reel eksendeki 

sıfırlarının Lebesgue ölçüsü sıfırdır [10]. 

 

2.5. Teorem 

 

f fonksiyonu ℂ̅+ kümesinde her mertebeden türeve sahip bir fonksiyon ve                  

𝜇( 𝐸 = {𝑥 ∈  ℝ ∶ 𝑓𝑛(𝑥) = 0, ∀ 𝑛 ∈  ℕ}) = 0 

olsun.  

|𝑓(n)(z)| ≤ 𝐴𝑛 , 𝑧 ∈  ℂ̅+  , 𝑛 = 0, 1, 2, … 

eşitsizliği sağlanacak şekilde 𝐴n sayıları mevcut ve  

𝑇(𝑠) = 𝑛
𝑖𝑛𝑓 𝐴𝑛𝑠𝑛

𝑛!
 

olmak üzere 

∫ 𝑙𝑜𝑔𝑇(𝑠)𝑑𝜇(𝐸, 𝑠) = −∞

ℎ

0

 

olsun.  
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Ayrıca en az bir N pozitif reel sayısı için  

∫
𝑙𝑜𝑔|𝑓(𝑥)|

1 + 𝑥2
𝑑𝑥 < ∞  , ∫

𝑙𝑜𝑔|𝑓(𝑥)|

1 + 𝑥2
𝑑𝑥 < ∞

∞

𝑁

   

−𝑁

−∞

 

ise f fonksiyonu kapalı üst düzlemde özdeş olarak sıfırdır [9]. 
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3.GENEL SINIR KOŞULLU MATRİS KATSAYILI STURM-

LİOUVİLLE OPERATÖRLERİNİN SPEKTRAL ANALİZİ 

 

Bu bölümde genel sınır koşullu matris katsayılı Sturm-Liouville denklem sistemi 

tanımlanacak ve bu sistemin bazı özel çözümleri incelenecektir.  

𝜆 spektral parametre,  0 ≤ 𝑥 < ∞ aralığında tanımlı ve sürekli 𝑄 self-adjoint olmayan 

matris değerli potansiyel fonksiyonu 

𝑄(𝑥) = [𝑞𝑗𝑘(𝑥)]𝑗,𝑘=1
𝑛  

biçiminde olmak üzere, 

𝑦𝑗
′′ + 𝜆2𝑦𝑗 = ∑ 𝑞𝑗𝑘(𝑥)𝑦𝑘

𝑛

𝑘=1

               ( 𝑗 = 1, 2, … , 𝑛 )                                                           (3.1) 

diferensiyel denklem sistemi ele alınacaktır.  

(3.1) denklem sisteminin çözümü 

−𝑌′′ + 𝑄(𝑥)𝑌 = 𝜆2𝑌                                                                                                                    (3.2) 

diferensiyel denklemini sağlayan 𝑛 × 𝑛 tipinde karesel bir 𝑌 = 𝑌(𝑥, 𝜆) matrisi ile 

gösterilebilir. 

(3.2) ifadesinin her matris çözümünün sütunları (3.1) denklem sisteminin çözümleridir. 

Dolayısıyla (3.1) denklem sistemi yerine (3.2) diferensiyel denklemi kullanılacak ve 

∫ 𝑥‖𝑄(𝑥)‖𝑑𝑥 < ∞

∞

0

                                                                                                                      (3.3) 

koşulunun sağlandığı kabul edilecektir.  

Şimdi, matris katsayılı Sturm-Liouville denklem sisteminin bazı özel çözümleri 

incelenecektir. 

 

3.1. Teorem 

 

(3.2) denkleminin 𝑆(0, 𝜆) = 0 ve 𝑆′(0, 𝜆) = 𝐼 başlangıç değer koşullarını sağlayan 

çözümü 

𝑆(𝑥, 𝜆) =  
𝑠𝑖𝑛𝜆𝑥

𝜆
𝐼 + ∫𝑄(𝑡)𝑆(𝑡, 𝜆

𝑥

0

)
𝑠𝑖𝑛𝜆(𝑥 − 𝑡)

𝜆
𝑑𝑡                                                               (3.4) 

integral denkleminin bir çözümü olup bu ifadenin tersi de doğrudur [1]. 
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İspat 

 

𝑆(0, 𝜆) = 0 ve  𝑆′(0, 𝜆) = 𝐼 başlangıç değer koşullarının sağlandığı aşikardır. (3.4) integral 

denkleminin sağlanması halinde (3.2) denklemi de sağlanır. Gerçekten 

𝑆′(𝑥, 𝜆) = 𝑐𝑜𝑠𝜆𝑥𝐼 + ∫ 𝑄(𝑡)𝑆(𝑡, 𝜆)

𝑥

0

𝑐𝑜𝑠𝜆(𝑥 − 𝑡)𝑑𝑡 

𝑆′′(𝑥, 𝜆) = −𝜆𝑠𝑖𝑛𝜆𝑥𝐼 − ∫𝑄(𝑡)𝑆(𝑡, 𝜆

𝑥

0

)𝜆𝑠𝑖𝑛𝜆(𝑥 − 𝑡)𝑑𝑡 + 𝑄(𝑡)𝑆(𝑡, 𝜆) 

bulunur. Bu eşitlikler, (3.2) denkleminde göz önüne alınırsa  

−𝜆𝑠𝑖𝑛𝜆𝑥𝐼 − ∫𝑄(𝑡)𝑆(𝑡, 𝜆

𝑥

0

)𝜆𝑠𝑖𝑛𝜆(𝑥 − 𝑡)𝑑𝑡 + 𝜆2
𝑠𝑖𝑛𝜆𝑥

𝜆
𝐼 

+𝜆2 ∫𝑄(𝑡)𝑆(𝑡, 𝜆

𝑥

0

)
𝑠𝑖𝑛𝜆(𝑥 − 𝑡)

𝜆
𝑑𝑡 +  𝑄(𝑥)𝑆(𝑥, 𝜆) =  𝑄(𝑥)𝑆(𝑥, 𝜆) 

elde edilir. 

Şimdi, (3.2) denkleminin 𝑆(0, 𝜆) =  0 ve 𝑆′(0, 𝜆) = 𝐼 başlangıç değer koşullarını sağlayan 

çözümünün (3.4) integral denklemini sağladığı gösterilecektir. Bunun için, 

(3.2) denklemine ait homojen denklem  

−𝑌′′ + 𝜆2𝑌 = 0 

olmak üzere, bu denklemin temel çözümleri 𝑐𝑜𝑠𝜆𝑥𝐼 ve 𝑠𝑖𝑛𝜆𝑥𝐼 olduğu için çözüm  

𝑆̃(𝑥, 𝜆) =  𝑐1𝑐𝑜𝑠𝜆𝑥𝐼 + 𝑐2𝑠𝑖𝑛𝜆𝑥𝐼 

şeklinde yazılır. O halde (3.2) denkleminin genel çözümü  

𝑆(𝑥, 𝜆) =  𝑐1(𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 + 𝑐2(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼                                                                                   (3.5)                                                                           

şeklinde olmalıdır. (3.5) denkleminin 𝑥 değişkenine göre türevi alınırsa 

𝑆′(𝑥, 𝜆) = 𝑐1
′(𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 + 𝑐2

′ (𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 −  𝜆𝑐1(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 +  𝜆𝑐2(𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 

bulunur. Parametrelerin değişimi yöntemi gereğince 

𝑐1
′(𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 + 𝑐2

′ (𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 = 0                                                                                               (3.6)                                                                                    

alınırsa 

𝑆′(𝑥, 𝜆) = − 𝜆𝑐1(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 +  𝜆𝑐2(𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 

bulunur. Elde edilen bu denklemde tekrar 𝑥 değişkenine göre türev alınırsa 

𝑆′′(𝑥, 𝜆) =  −𝜆𝑐1
′(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 +  𝜆𝑐2

′ (𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 − 𝜆2𝑐1(𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 − 𝜆2𝑐2(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 

bulunur. Bu eşitlik (3.2) denkleminde yerine yazılırsa  

−𝜆𝑐1
′(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 +  𝜆𝑐2

′ (𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 − 𝜆2𝑐1(𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 − 𝜆2𝑐2(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 



9 

 

 

+𝜆2𝑐1(𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 + 𝜆2𝑐2(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 = 𝑄(𝑥)𝑆(𝑥, 𝜆) 

elde edilir. Buradan gerekli düzenlemeler yapılırsa, 

−𝜆𝑐1
′(𝑥)𝑠𝑖𝑛𝜆𝑥𝐼 +  𝜆𝑐2

′ (𝑥)𝑐𝑜𝑠𝜆𝑥𝐼 = 𝑄(𝑥)𝑆(𝑥, 𝜆)                                                                 (3.7) 

olarak bulunur.  

(3.6) denklemi (−𝑠𝑖𝑛𝜆𝑥) ile (3.7) denklemi de (𝜆𝑐𝑜𝑠𝜆𝑥) ile çarpılıp, bu iki eşitlik taraf 

tarafa toplanırsa 

𝜆𝑐1
′(𝑥)𝑠𝑖𝑛2𝜆𝑥𝐼 +  𝜆𝑐1

′(𝑥)𝑐𝑜𝑠2𝜆𝑥𝐼 = 𝑄(𝑥)𝑆(𝑥, 𝜆)𝑠𝑖𝑛𝜆𝑥 

olup 

𝑐1
′(𝑥)𝐼 =  

−𝑄(𝑥)𝑆(𝑥, 𝜆)𝑠𝑖𝑛𝜆𝑥

𝜆
 

olarak bulunur.  

𝛽1 = 𝑐1(0) 

şeklinde tanımlanırsa son eşitlikten 

∫𝑐1
′(𝑥)

𝑥

0

𝐼𝑑𝑥 = [𝑐1(𝑥) − 𝛽1]𝐼 

                       =  ∫
−𝑄(𝑡)𝑆(𝑡, 𝜆)𝑠𝑖𝑛𝜆𝑡

𝜆
𝑑𝑡

𝑥

0

 

olup 

𝑐1(𝑥)𝐼 =  𝛽1𝐼 − ∫
𝑄(𝑡)𝑆(𝑡, 𝜆)𝑠𝑖𝑛𝜆𝑡

𝜆
𝑑𝑡

𝑥

0

                                                                                  (3.8) 

olarak bulunur.  

Benzer şekilde (3.6) denklemi (𝜆𝑠𝑖𝑛𝜆𝑥) ile (3.7) denklemi de (𝑐𝑜𝑠𝜆𝑥) ile çarpılıp bu iki 

eşitlik taraf tarafa toplanıp düzenlemeler yapıldığında  

𝑐2(𝑥)𝐼 =  𝛼2𝐼 + ∫
𝑄(𝑡)𝑆(𝑡, 𝜆)𝑐𝑜𝑠𝜆𝑡

𝜆
𝑑𝑡

𝑥

0

                                                                                 (3.9) 

olarak bulunur. 

(3.8) ve (3.9) ifadeleri (3.5) denkleminde yerine yazılırsa 

𝑆(𝑥, 𝜆) =  𝛽1𝑐𝑜𝑠𝜆𝑥𝐼 + 𝛽2𝑠𝑖𝑛𝜆𝑥𝐼 − 𝑐𝑜𝑠𝜆𝑥 ∫
𝑄(𝑡)𝑆(𝑡, 𝜆)𝑠𝑖𝑛𝜆𝑡

𝜆
𝑑𝑡

𝑥

0

 

                   + 𝑠𝑖𝑛𝜆𝑥 ∫
𝑄(𝑡)𝑆(𝑡, 𝜆)𝑐𝑜𝑠𝜆𝑡

𝜆
𝑑𝑡

𝑥

0
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             =  𝛽1𝑐𝑜𝑠𝜆𝑥𝐼 + 𝛽2𝑠𝑖𝑛𝜆𝑥𝐼 + ∫
𝑄(𝑡)𝑆(𝑡, 𝜆)𝑠𝑖𝑛𝜆(𝑥 − 𝑡)

𝜆
𝑑𝑡

𝑥

0

 

olarak bulunur. 

Elde edilen bu eşitlikte 𝑆(0, 𝜆) = 0 başlangıç değer koşulu göz önüne alınırsa 

𝑆(0, 𝜆) =  𝛽1𝐼 = 0 ⇒ 𝛽1 = 0 

bulunur. Buradan 𝛽1 yerine yazılırsa 

𝑆(𝑥, 𝜆) =  𝛽2𝑠𝑖𝑛𝜆𝑥𝐼 + ∫
𝑄(𝑡)𝑆(𝑡, 𝜆)𝑠𝑖𝑛𝜆(𝑥 − 𝑡)

𝜆
𝑑𝑡

𝑥

0

 

şeklinde yazılır. Bu denklemin 𝑥 değişkenine göre türev alınırsa 

𝑆′(𝑥, 𝜆) =   𝛽2𝜆𝑐𝑜𝑠𝜆𝑥𝐼 + ∫𝑄(𝑡)𝑆(𝑡, 𝜆)𝑐𝑜𝑠𝜆(𝑥 − 𝑡)𝑑𝑡

𝑥

0

 

olarak bulunur.  

Bu eşitlikte 𝑆′(0, 𝜆) = 𝐼 başlangıç değer koşulu göz önüne alınırsa  

𝛽2𝜆𝐼 = 𝐼 ⇒  𝛽2 = 
1

𝜆
 

bulunur. Buradan 𝛽2 yerine yazılırsa 

𝑆(𝑥, 𝜆) =  
𝑠𝑖𝑛𝜆𝑥

𝜆
𝐼 + ∫ 𝑄(𝑡)𝑆(𝑡, 𝜆

𝑥

0

)
𝑠𝑖𝑛𝜆(𝑥 − 𝑡)

𝜆
𝑑𝑡 

çözümü elde edilir [1]. 

 

3.2. Teorem 

 

𝜆 ∈ ℂ̅+ olmak üzere, (3.2) denkleminin (3.3) koşulu altında 

lim
𝑥→∞

𝑌(𝑥, 𝜆)𝑒−𝑖𝜆𝑥 = 𝐼                                                                                                                  (3.10) 

eşitliğini sağlayan F sınırlı matris çözümü 

𝐹(𝑥, 𝜆) =  𝑒𝑖𝜆𝑥𝐼 + ∫ 𝑄(𝑡)𝐹(𝑡, 𝜆

∞

𝑥

)
𝑠𝑖𝑛𝜆(𝑥 − 𝑡)

𝜆
𝑑𝑡                                                              (3.11) 

şeklindedir [1]. 

 

İspat 

 

(3.2) denklemine ait homojen denklem 
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−𝑌′′ + 𝜆2𝑌 = 0 

olduğundan bu denklemin genel çözümü 

Ỹ(𝑥, λ) =  𝑐1𝑒
𝑖𝜆𝑥𝐼 + 𝑐2𝑒

−𝑖𝜆𝑥𝐼 

biçimindedir. Buradan, (3.2) denkleminin genel çözümü 

Y(𝑥, λ) =  𝑐1(𝑥)𝑒𝑖𝜆𝑥𝐼 + 𝑐2(𝑥)𝑒−𝑖𝜆𝑥𝐼                                                                                     (3.12) 

biçimindedir. Bu çözümü bulmak için (3.12) denkleminde 𝑥 değişkenine göre türev 

alınırsa  

Y′(𝑥, 𝜆) =  𝑐1
′(𝑥)𝑒𝑖𝜆𝑥𝐼 + 𝑐2′(𝑥)𝑒−𝑖𝜆𝑥𝐼 + 𝑖𝜆𝑐1(𝑥)𝑒𝑖𝜆𝑥𝐼 − 𝑖𝜆𝑐2(𝑥)𝑒−𝑖𝜆𝑥𝐼 

 bulunur. Parametrelerin değişimi yöntemi gereğince 

𝑐1
′(𝑥)𝑒𝑖𝜆𝑥𝐼 + 𝑐2′(𝑥)𝑒−𝑖𝜆𝑥𝐼 = 0 

olarak alınırsa 

Y′(𝑥, 𝜆) =  𝑖𝜆𝑐1(𝑥)𝑒𝑖𝜆𝑥𝐼 − 𝑖𝜆𝑐2(𝑥)𝑒−𝑖𝜆𝑥𝐼 

olarak bulunur. Elde edilen bu denklemde tekrar 𝑥 değişkenine göre türev alınırsa 

𝑌′′(𝑥, 𝜆) = 𝑖𝜆𝑐1
′(𝑥)𝑒𝑖𝜆𝑥𝐼 − 𝑖𝜆𝑐2

′ (𝑥)𝑒−𝑖𝜆𝑥𝐼 − 𝜆2𝑐1(𝑥)𝑒𝑖𝜆𝑥𝐼 − 𝜆2𝑐2(𝑥)𝑒−𝑖𝜆𝑥𝐼 

olarak bulunur. Bulunan bu eşitlik (3.2) denkleminde yerine yazılırsa 

𝑖𝜆𝑐1
′(𝑥)𝑒𝑖𝜆𝑥𝐼 − 𝑖𝜆𝑐2

′ (𝑥)𝑒−𝑖𝜆𝑥𝐼 − 𝜆2𝑐1(𝑥)𝑒𝑖𝜆𝑥𝐼 − 𝜆2𝑐2(𝑥)𝑒−𝑖𝜆𝑥𝐼 + 𝜆2𝑐1(𝑥)𝑒𝑖𝜆𝑥𝐼 

− 𝜆2𝑐2(𝑥)𝑒−𝑖𝜆𝑥𝐼 = 𝑖𝜆𝑐1
′(𝑥)𝑒𝑖𝜆𝑥𝐼 − 𝑖𝜆𝑐2

′ (𝑥)𝑒−𝑖𝜆𝑥𝐼 = 𝑄(𝑥)𝑌(𝑥, 𝜆) 

bulunur. Ayrıca 

𝑐1
′(𝑥)𝑒𝑖𝜆𝑥𝐼 + 𝑐2

′ (𝑥)𝑒−𝑖𝜆𝑥𝐼 = 0  

olduğu dikkate alınırsa, 

𝑐1
′(𝑥)𝐼 =  

𝑄(𝑥)𝑌(𝑥, 𝜆)

2𝑖𝜆
𝑒−𝑖𝜆𝑥 

𝑐2
′ (𝑥)𝐼 =  −

𝑄(𝑥)𝑌(𝑥, 𝜆)

2𝑖𝜆
𝑒𝑖𝜆𝑥 

denklemleri elde edilir. 𝑐1 ve 𝑐2 fonksiyonlarını bulmak için [𝑥,∞) aralığında integral 

alınır ve  

𝑙𝑖𝑚
𝑥→∞

 𝑐1(𝑥) = 𝛽1  

𝑙𝑖𝑚
𝑥→∞

 𝑐2(𝑥) = 𝛽2 

olarak ifade edilirse 

𝑐1(𝑥)𝐼 =   𝛽1𝐼 − ∫
𝑄(𝑡)𝑌(𝑡, 𝜆)

2𝑖𝜆
𝑒−𝑖𝜆𝑡𝑑𝑡

∞

𝑥
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𝑐2(𝑥)𝐼 =   𝛽2𝐼 + ∫
𝑄(𝑡)𝑌(𝑡, 𝜆)

2𝑖𝜆
𝑒𝑖𝜆𝑡𝑑𝑡

∞

𝑥

 

şeklinde bulunur. Elde edilen 𝑐1 ve 𝑐2 fonksiyonları (3.12) denkleminde yerine yazılırsa 

𝑌(𝑥, 𝜆) = 𝛽1𝑒
𝑖𝜆𝑥𝐼 + 𝛽2𝑒

−𝑖𝜆𝑥𝐼 + ∫
𝑄(𝑡)𝑌(𝑡, 𝜆)

2𝑖𝜆
𝑒𝑖𝜆(𝑡−𝑥)𝑑𝑡

∞

𝑥

− ∫
𝑄(𝑡)𝑌(𝑡, 𝜆)

2𝑖𝜆
𝑒−𝑖𝜆(𝑡−𝑥)𝑑𝑡

∞

𝑥

 

                =  𝛽1𝑒
𝑖𝜆𝑥𝐼 + 𝛽2𝑒

−𝑖𝜆𝑥𝐼 + ∫ 𝑄(𝑡)𝑌(𝑡, 𝜆)
𝑒𝑖𝜆(𝑡−𝑥) − 𝑒−𝑖𝜆(𝑡−𝑥)

2𝑖𝜆
𝑑𝑡

∞

𝑥

 

                =  𝛽1𝑒
𝑖𝜆𝑥𝐼 + 𝛽2𝑒

−𝑖𝜆𝑥𝐼 + ∫ 𝑄(𝑡)𝑌(𝑡, 𝜆)
𝑠𝑖𝑛𝜆(𝑡 − 𝑥)

𝜆
𝑑𝑡

∞

𝑥

 

şeklinde bulunur. Bulunan bu eşitliğin her iki tarafı 𝑒−𝑖𝜆𝑥 ile çarpılıp (3.10) koşulu göz 

önüne alınırsa  

𝛽1 = 1  ve 𝛽2 = 0 olarak bulunur. 𝛽1 ve 𝛽2 yerine yazılırsa 

𝐹(𝑥, 𝜆) =  𝑒𝑖𝜆𝑥𝐼 + ∫ 𝑄(𝑡)𝐹(𝑡, 𝜆

∞

𝑥

)
𝑠𝑖𝑛𝜆(𝑥 − 𝑡)

𝜆
𝑑𝑡         𝐼𝑚𝜆 ≥ 0 

elde edilir [1]. 

 

3.3. Teorem 

 

𝛼(𝑥) =  ∫‖𝑄(𝑠)‖

∞

𝑥

𝑑𝑠 , 𝛼1(𝑥) =  ∫ 𝑠‖𝑄(𝑠)‖

∞

𝑥

𝑑𝑠 

olsun. Bu durumda (3.2) denkleminin 

𝐹(𝑥, 𝜆) =  𝑒𝑖𝜆𝑥𝐼 + ∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡   ,    𝐼𝑚𝜆 ≥ 0 

eşitliğini sağlayan 𝐹(𝑥, 𝑡) çözümü vardır. Ayrıca K matris değerli fonksiyonu 

𝐾(𝑥, 𝑡) =  
1

2
∫ 𝑄(𝑠)𝑑𝑠 + 

1

2

∞

𝑥+𝑡

2

∫ ∫ 𝑄(𝑠) 𝐾(𝑠, 𝑎) 𝑑𝑎𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

                   + 
1

2
∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑎)𝑑𝑎𝑑𝑠

𝑡+𝑠−𝑥

𝑠

                   ( 0 < 𝑥 ≤ 𝑡)

∞

𝑥+𝑡

2

 

integral denklemini sağlar ve 
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‖𝐾(𝑥, 𝑡)‖ ≤
1

2
𝑒𝛼1(𝑥)𝛼 ( 

𝑥 +  𝑡 

2
 )                                                                                           (3.13) 

eşitsizliği gerçeklenir [1]. 

 

İspat 

 

𝐹(𝑠, 𝜆) =  𝑒𝑖𝜆𝑠𝐼 + ∫ 𝐾(𝑠, 𝑢)

∞

𝑥

𝑒𝑖𝜆𝑢𝑑𝑢                                                                                     (3.14) 

şeklinde yazılıp (3.11) göz önünde bulundurularak 

𝐹(𝑥, 𝜆) =  𝑒𝑖𝜆𝑥𝐼 + ∫
𝑠𝑖𝑛𝜆(𝑠 − 𝑥)

𝜆

∞

𝑥

𝑄(𝑠){𝑒𝑖𝜆𝑠𝐼 + ∫ 𝐾(𝑠, 𝑢)

∞

𝑥

𝑒𝑖𝜆𝑢𝑑𝑢}𝑑𝑠 

yani 

∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

𝑥

= ∫
𝑠𝑖𝑛𝜆(𝑠 − 𝑥)

𝜆

∞

𝑥

𝑄(𝑠)𝑒𝑖𝜆𝑠𝑑𝑠 

                                    +∫ 𝑄(𝑠)

∞

𝑥

𝑑𝑠 ∫
𝑠𝑖𝑛𝜆(𝑠 − 𝑥)

𝜆
𝐾(𝑠, 𝑢)𝑒𝑖𝜆𝑢𝑑𝑢

∞

𝑠

                                              

                               = 𝐽1  + 𝐽2 

şeklinde yazılabilir. 

𝑠𝑖𝑛𝜆(𝑠 − 𝑥)

𝜆
𝑒𝑖𝜆𝑠 = 

𝑒𝑖𝜆(𝑠−𝑥) − 𝑒−𝑖𝜆(𝑠−𝑥)

2𝑖𝜆
𝑒𝑖𝜆𝑠 

                               =  
𝑒𝑖𝜆(2𝑠−𝑥) − 𝑒𝑖𝜆𝑥

2𝑖𝜆
 

                               =  
1

2
∫ 𝑒𝑖𝜆𝑡𝑑𝑡

2𝑠−𝑥

𝑥

 

ve  

𝑠𝑖𝑛𝜆(𝑠 − 𝑥)

𝜆
𝑒𝑖𝜆𝑢 = 

𝑒𝑖𝜆(𝑠−𝑥) − 𝑒−𝑖𝜆(𝑠−𝑥)

2𝑖𝜆
𝑒𝑖𝜆𝑢 

                      

                                =  
𝑒𝑖𝜆(𝑠−𝑥+𝑢) − 𝑒−𝑖𝜆(𝑥−𝑠+𝑢)

2𝑖𝜆
 

                      

                                =
1

2
∫ 𝑒𝑖𝜆𝑡𝑑𝑡

𝑠−𝑥+𝑢

𝑥−𝑠+𝑢
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eşitlikleri kullanılarak 

𝐽1 = 
1

2
∫ ∫ 𝑄(𝑠)𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑠

2𝑠−𝑥

𝑥

∞

𝑥

 

𝐽2 = 
1

2
∫ ∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑢𝑑𝑠

𝑠−𝑥+𝑢

𝑥−𝑠+𝑢

∞

𝑠

∞

𝑥

 

bulunur. Bu integrallerin integrasyon sırası değiştirilirse 

𝐽1 = 
1

2
∫ ∫  𝑄(𝑠)𝑒𝑖𝜆𝑡𝑑𝑠𝑑𝑡

∞

𝑥+𝑡

2

∞

𝑥

 

ve 

𝐽2 = 
1

2
∫ ∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑒𝑖𝜆𝑡𝑑𝑢𝑑𝑡𝑑𝑠

𝑡+𝑠−𝑥

𝑠

2𝑠−𝑥

𝑥

∞

𝑥

 

          + 
1

2
∫ ∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑒𝑖𝜆𝑡𝑑𝑢𝑑𝑡𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

∞

2𝑠−𝑥

∞

𝑥

 

    =  
1

2
∫ ∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑒𝑖𝜆𝑡𝑑𝑢𝑑𝑠𝑑𝑡

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

∞

𝑥

 

         +
1

2
∫ ∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑒𝑖𝜆𝑡𝑑𝑢𝑑𝑠𝑑𝑡

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

∞

𝑥

 

olarak bulunur. 𝐽1 ve 𝐽2 (3.15) denkleminde yerine yazılırsa 

∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡

∞

𝑥

𝑑𝑡 =  
1

2
∫ ( ∫ 𝑄(𝑠)𝑑𝑠)𝑒𝑖𝜆𝑡𝑑𝑡

∞

𝑥+𝑡

2

)

∞

𝑥

 

                                     +
1

2
∫ ( ∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡  

                                     +
1

2
∫

(

 ∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥
)

 

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡 

bulunur. Bu eşitlik için Fourier dönüşümü uygulanırsa 
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∫

[
 
 
 

𝐾(𝑥, 𝑡) − 
1

2
∫ 𝑄(𝑠)𝑑𝑠 − 

1

2
∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

∞

𝑥+𝑡

2

∞

𝑥

− 
1

2
∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2 ]
 
 
 

𝑒𝑖𝜆𝑡 𝑑𝑡 = 0   

olur. Buradan 

𝐾(𝑥, 𝑡) =  
1

2
∫ 𝑄(𝑠)𝑑𝑠 + 

1

2
∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

∞

𝑥+𝑡

2

 

                   + 
1

2
∫ ∫ 𝑄(𝑠)𝐾(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

                                                                                (3.16) 

olarak bulunur. (3.16) denkleminin çözümlenebilir olduğunu göstermek için ardışık 

yaklaşımlar yöntemi kullanılırsa, 𝑥 ≥ 0 için 𝛼1 azalan olduğu için 

𝛼1 (𝑥)  ≤  𝛼1 (0) =  ∫ 𝑡‖𝑄(𝑡)‖

∞

0

𝑑𝑡 <  ∞ 

şeklinde yazılabilir. 

𝐾0(𝑥, 𝑡) =  
1

2
∫ 𝑄(𝑠)𝑑𝑠

∞

𝑥+𝑡

2

 

𝐾𝑚(𝑥, 𝑡) =  
1

2
∫ ∫ 𝑄(𝑠)𝐾𝑚−1(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑠

+ 
1

2
∫ ∫ 𝑄(𝑠)𝐾𝑚−1(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

∞

𝑥+𝑡

2

 

ve 

𝑍(𝑥, 𝑡): =  ∑ 𝐾𝑚(𝑥, 𝑡)

∞

𝑚=0

 

olarak ifade edilsin. 

𝑍 ile tanımlanan seri mutlak ve düzgün yakınsaktır. Gerçekten, 

‖𝐾0(𝑥, 𝑡)‖  ≤  
1

2
∫‖𝑄(𝑠)‖𝑑𝑠

∞

𝑥+𝑡

2

= 
1

2
𝛼 (

𝑥 + 𝑡

2
) 
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‖𝐾1(𝑥, 𝑡)‖  ≤  
1

4
∫ ∫ ‖𝑄(𝑠)‖𝛼 (

𝑠 + 𝑢

2
)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

                           +
1

4
∫ ∫ ‖𝑄(𝑠)‖𝛼 (

𝑠 + 𝑢

2
)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

 

                     =  𝐴1 + 𝐴2 

olarak tanımlansın. Bu durumda 0 ≤ 𝑥 ≤ 𝑡 < ∞ için 

𝐴1 = 
1

4
∫ ∫ ‖𝑄(𝑠)‖𝛼 (

𝑠 + 𝑢

2
)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

       ≤  
1

4
∫ 𝛼 (

𝑠 + 𝑡 + 𝑥 − 𝑠

2
) ∫ ‖𝑄(𝑠)‖𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

       =  
1

4
𝛼 (

𝑡 + 𝑥

2
)∫ ∫ ‖𝑄(𝑠)‖𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

       =  
1

4
𝛼 (

𝑡 + 𝑥

2
)∫ (2𝑠 − 2𝑥)‖𝑄(𝑠)‖𝑑𝑠

𝑥+𝑡

2

𝑥

 

       =  
1

2
𝛼 (

𝑡 + 𝑥

2
)∫ 𝑠‖𝑄(𝑠)‖𝑑𝑠

𝑥+𝑡

2

𝑥

 

ve 

𝐴2 = 
1

4
∫ ∫ ‖𝑄(𝑠)‖𝛼 (

𝑠 + 𝑢

2
)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

 

     ≤   
1

4
∫ 𝛼 (

𝑠 + 𝑠

2
) ∫ ‖𝑄(𝑠)‖𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

 

     =   
1

4
∫ 𝛼(𝑠)‖𝑄(𝑠)‖(𝑡 − 𝑥)𝑑𝑠

∞

𝑥+𝑡

2

 

     ≤  
1

4
𝛼 (

𝑥 + 𝑡

2
) ∫ (

𝑥 + 𝑡

2
− 𝑥)

∞

𝑥+𝑡

2

‖𝑄(𝑠)‖𝑑𝑠 
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     ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
) ∫(𝑠 − 𝑥)

∞

𝑥+𝑡

2

‖𝑄(𝑠)‖𝑑𝑠 

     ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
) ∫ 𝑠

∞

𝑥+𝑡

2

‖𝑄(𝑠)‖𝑑𝑠 

olarak bulunur. Bu durumda 

‖𝐾1(𝑥, 𝑡)‖  ≤  𝐴1 + 𝐴2 

                      ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
)∫ 𝑠

𝑥+𝑡

2

𝑥

‖𝑄(𝑠)‖𝑑𝑠 + 
1

2
𝛼 (

𝑥 + 𝑡

2
) ∫ 𝑠

∞

𝑥+𝑡

2

‖𝑄(𝑠)‖𝑑𝑠 

                      ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
)∫ 𝑠

𝑥+𝑡

2

𝑥

‖𝑄(𝑠)‖𝑑𝑠 

                      =  
1

2
𝛼 (

𝑥 + 𝑡

2
)
𝛼1(𝑥)

1!
 

bulunur.  

𝑚 ≥ 1 için 

‖𝐾𝑚(𝑥, 𝑡)‖  ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
)
𝛼1

𝑚(𝑥)

(𝑚)!
                                                                                        (3.17) 

olduğu kabul edilirse 

𝛼1(𝑥) =  ∫ 𝑠‖𝑄(𝑠)‖

∞

𝑥

𝑑𝑠 ⇒ 𝑑𝛼1(𝑥) =  −𝑥‖𝑄(𝑥)‖𝑑𝑥  

olacağı için 

𝐾𝑚+1(𝑥, 𝑡) =  
1

2
∫ ∫ 𝑄(𝑠)𝐾𝑚(𝑠, 𝑢)𝑑𝑢𝑑𝑠 + 

1

2
∫ ∫ 𝑄(𝑠)𝐾𝑚(𝑠, 𝑢)𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

 

‖𝐾𝑚+1(𝑥, 𝑡)‖  ≤  
1

2
∫ ∫ ‖𝑄(𝑠)𝐾𝑚(𝑠, 𝑢)‖𝑑𝑢𝑑𝑠 + 

1

2
∫ ∫ ‖𝑄(𝑠)𝐾𝑚(𝑠, 𝑢)‖𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

 

                           ≤  
1

2
∫ ∫ ‖𝑄(𝑠)‖

1

2
𝛼 (

𝑠 + 𝑢

2
)
𝛼1

𝑚(𝑠)

(𝑚)!
𝑑𝑢𝑑𝑠

 

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2
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                                + 
1

2
∫ ∫ ‖𝑄(𝑠)‖

1

2
𝛼 (

𝑠 + 𝑢

2
)
𝛼1

𝑚(𝑠)

(𝑚)!
𝑑𝑢𝑑𝑠

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

olup eşitsizliğin sağ tarafındaki terimler sırasıyla 𝑁1 ve 𝑁2 olarak ifade edilirse 

𝑁1  ≤  
1

4
∫ ∫ ‖𝑄(𝑠)‖𝛼 (

𝑠 + 𝑠

2
)
𝛼1

𝑚(𝑠)

(𝑚)!
𝑑𝑢𝑑𝑠

 

𝑡+𝑠−𝑥

𝑠

∞

𝑥+𝑡

2

 

      =  
1

4
∫‖𝑄(𝑠)‖𝛼(𝑠)

𝛼1
𝑚(𝑠)

(𝑚)!
(𝑡 − 𝑠)𝑑𝑠

∞

𝑥+𝑡

2

 

      ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
) ∫‖𝑄(𝑠)‖ (

𝑥 + 𝑡

2
− 𝑥)

𝛼1
𝑚(𝑠)

(𝑚)!
𝑑𝑠

∞

𝑥+𝑡

2

 

      ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
) ∫‖𝑄(𝑠)‖(𝑠 − 𝑥)

𝛼1
𝑚(𝑠)

(𝑚)!
𝑑𝑠

∞

𝑥+𝑡

2

 

      ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
) ∫‖𝑄(𝑠)‖𝑠

𝛼1
𝑚(𝑠)

(𝑚)!
𝑑𝑠

∞

𝑥+𝑡

2

 

ve 

𝑁2  ≤  
1

4
∫ ∫ ‖𝑄(𝑠)‖𝛼 (

𝑠 + 𝑡 + 𝑥 − 𝑠

2
)
𝛼1

𝑚(𝑠)

(𝑚)!
𝑑𝑢𝑑𝑠

 

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

𝑥+𝑡

2

𝑥

 

            + 
1

4
∫ ‖𝑄(𝑠)‖𝛼 (

𝑥 + 𝑡

2
) (2𝑠 − 2𝑥)

𝛼1
𝑚(𝑠)

(𝑚)!
𝑑𝑠

𝑥+𝑡

2

𝑥

 

       ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
)∫ ‖𝑄(𝑠)‖(𝑠 − 𝑥)

𝛼1
𝑚(𝑠)

(𝑚)!
𝑑𝑠

𝑥+𝑡

2

𝑥

 

       ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
)∫ ‖𝑄(𝑠)‖𝑠

𝛼1
𝑚(𝑠)

(𝑚)!
𝑑𝑠

𝑥+𝑡

2

𝑥

 

olarak bulunur. O halde 

‖𝐾𝑚+1(𝑥, 𝑡)‖  ≤  
1

2𝑚!
𝛼 (

𝑥 + 𝑡

2
)∫‖𝑄(𝑠)‖𝛼1

𝑚(𝑠)𝑠𝑑𝑠

∞

𝑥
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                          ≤  
1

2𝑚!
𝛼 (

𝑥 + 𝑡

2
) [ lim

𝑎→∞
∫ 𝛼1

𝑚(𝑠)𝑠‖𝑄(𝑠)‖𝑑𝑠

𝑎

𝑥

] 

                          =  
1

2𝑚!
𝛼 (

𝑥 + 𝑡

2
)
𝛼1

𝑚+1(𝑥)

(𝑚 + 1)!
 

bulunur. Buradan, tümevarım yöntemi gereğince her 𝑚 ∈  ℕ için (3.17) eşitsizliği 

sağlanır. Ayrıca 𝛼 azalan olduğu için 

‖𝐾𝑚(𝑥, 𝑡)‖  ≤  
1

2
𝛼(0)

𝛼1
𝑚(0)

(𝑚)!
                                                                                                 (3.18) 

gerçeklenir. Ayrıca 

∑
𝛼1

𝑚(0)

(𝑚)!
=  𝑒𝛼1(0)

∞

𝑚=0

 

olduğu için ve (3.18) gerçeklendiği için karşılaştırma testi gereğince 

∑ 𝐾𝑚(𝑥, 𝑡)

∞

𝑚=0

 

serisi mutlak yakınsaktır. Ayrıca (3.18) eşitsizliği her 𝑥 ≥ 0 için sağlandığından aynı seri 

Weierstrass M- testi gereğince düzgün yakınsaktır. 

Diğer taraftan 

‖∑ 𝐾𝑚(𝑥, 𝑡)

∞

𝑚=0

‖  ≤  ∑‖𝐾𝑚(𝑥, 𝑡)‖  ≤  ∑
1

2
𝛼 (

𝑥 + 𝑡

2
)
𝛼1

𝑚(𝑥)

𝑚!

∞

𝑚=0

∞

𝑚=0

 

                               =
1

2
𝛼 (

𝑥 + 𝑡

2
) ∑

𝛼1
𝑚(𝑥)

𝑚!
 

∞

𝑚=0

≤ 
1

2
𝛼 (

𝑥 + 𝑡

2
) 𝑒𝛼1(𝑥) 

                               ≤  
1

2
𝛼(0)𝑒𝛼1(0) 

olarak bulunur. 

𝐾(𝑥, 𝑡): = ∑ 𝐾𝑚(𝑥, 𝑡)

∞

𝑚=0

 

olmak üzere, 

‖𝐾(𝑥, 𝑡)‖  ≤  
1

2
𝛼 (

𝑥 + 𝑡

2
) 𝑒𝛼1(𝑥)  ≤  

1

2
𝛼 (

𝑥 + 𝑡

2
) 𝑒𝛼1(0) 

                    = 𝐶𝛼 (
𝑥 + 𝑡

2
) = 𝐶 ∫‖𝑄(𝑠)‖

∞

𝑥+𝑡

2

𝑑𝑠     

eşitsizliği sağlanır [1]. 
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3.4. Teorem 

 

𝐾 fonksiyonunun 𝑥 ve 𝑡 değişkenine göre kısmi türevleri mevcut olup 𝑐 > 0 olmak üzere 

‖𝐾𝑥(𝑥, 𝑡)‖  ≤  
1

4
‖𝑄(

𝑥 + 𝑡

2
)‖ +  𝑐𝛼(

𝑥 + 𝑡

2
) 

ve 

‖𝐾𝑡(𝑥, 𝑡)‖  ≤  
1

4
‖𝑄(

𝑥 + 𝑡

2
)‖ +  𝑐𝛼(

𝑥 + 𝑡

2
) 

eşitsizlikleri gerçeklenir [1]. 

 

İspat 

 

𝐴(𝑠, 𝑥, 𝑡): =  ∫ 𝐾(𝑠, 𝑢)𝑑𝑢

𝑡+𝑠−𝑥

𝑡+𝑥−𝑠

 

𝐵(𝑠, 𝑥, 𝑡): =  ∫ 𝐾(𝑠, 𝑢)𝑑𝑢

𝑡+𝑠−𝑥

𝑠

 

olarak tanımlansın. (3.16) göz önünde bulundurularak 

𝐾(𝑥, 𝑡) =  
1

2
∫ 𝑄(𝑠)𝑑𝑠 + 

1

2
∫ 𝑄(𝑠)𝐴(𝑠, 𝑥, 𝑡)𝑑𝑠

𝑥+𝑡

2

𝑥

∞

𝑥+𝑡

2

 

                   + 
1

2
∫ 𝑄(𝑠)𝐵(𝑠, 𝑥, 𝑡)𝑑𝑠           ( 0 < 𝑥 ≤ 𝑡)

∞

𝑥+𝑡

2

 

bulunur. Buradan 

𝐾𝑥(𝑥, 𝑡) =  −
1

4
𝑄(

𝑥 + 𝑡

2
) + 

1

4
𝑄 (

𝑥 + 𝑡

2
)𝐴 (

𝑥 + 𝑡

2
, 𝑥, 𝑡) −

1

2
𝑄(𝑥)𝐴(𝑥, 𝑥, 𝑡) 

                     + 
1

2
∫ 𝑄(𝑠)𝐴𝑥(𝑠, 𝑥, 𝑡)𝑑𝑠 −

1

4
𝑄 (

𝑥 + 𝑡

2
)𝐵 (

𝑥 + 𝑡

2
, 𝑥, 𝑡)

𝑥+𝑡

2

𝑥

 

+ 
1

2
∫ 𝑄(𝑠)𝐵𝑥(𝑠, 𝑥, 𝑡)𝑑𝑠

∞

𝑥+𝑡

2

                                                                                     (3.19) 

olarak bulunur. 
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𝐴 (
𝑥 + 𝑡

2
, 𝑥, 𝑡) =  ∫ 𝐾 (

𝑥 + 𝑡

2
, 𝑢) 𝑑𝑢

3𝑡−𝑥

2

𝑥+𝑡

2

 

𝐵 (
𝑥 + 𝑡

2
, 𝑥, 𝑡) =  ∫ 𝐾 (

𝑥 + 𝑡

2
, 𝑢) 𝑑𝑢

3𝑡−𝑥

2

𝑥+𝑡

2

 

ve 

𝐴𝑥(𝑠, 𝑥, 𝑡) =  −𝐾(𝑠, 𝑡 + 𝑠 − 𝑥) − 𝐾(𝑠, 𝑡 + 𝑥 − 𝑠) 

𝐴𝑥(𝑠, 𝑥, 𝑡) =  −𝐾(𝑠, 𝑡 + 𝑠 − 𝑥) 

𝐴(𝑥, 𝑥, 𝑡) = 0 

olduğundan (3.19) göz önüne alınarak 

𝐾𝑥(𝑥, 𝑡) = −
1

4
𝑄(

𝑥 + 𝑡

2
) + 

1

4
𝑄(

𝑥 + 𝑡

2
) ∫ 𝐾 (

𝑥 + 𝑡

2
, 𝑢)

3𝑡−𝑥

2

𝑥+𝑡

2

𝑑𝑢 

                    −
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑠 − 𝑥)𝑑𝑠

𝑥+𝑡

2

𝑥

− 
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑥 − 𝑠)𝑑𝑠

𝑥+𝑡

2

𝑥

 

                    −
1

4
𝑄 (

𝑥 + 𝑡

2
) ∫ 𝐾 (

𝑥 + 𝑡

2
, 𝑢) 𝑑𝑢

3𝑡−𝑥

2

𝑥+𝑡

2

− 
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑠 − 𝑥)𝑑𝑠

∞

𝑥+𝑡

2

 

olur. Buradan 

𝐾𝑥(𝑥, 𝑡) = −
1

4
𝑄 (

𝑥 + 𝑡

2
) − 

1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑥 − 𝑠)𝑑𝑠

𝑥+𝑡

2

𝑥

 

                −
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑠 − 𝑥)𝑑𝑠

∞

𝑥

 

şeklinde bulunur. Benzer işlemlerle 

𝐾𝑡(𝑥, 𝑡) =  −
1

4
𝑄(

𝑥 + 𝑡

2
) + 

1

4
𝑄(

𝑥 + 𝑡

2
) ∫ 𝐾 (

𝑥 + 𝑡

2
, 𝑢)

3𝑡−𝑥

2

𝑥+𝑡

2

𝑑𝑢 

                     +
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑠 − 𝑥)𝑑𝑠

𝑥+𝑡

2

𝑥

− 
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑥 − 𝑠)𝑑𝑠

𝑥+𝑡

2

𝑥
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                     −
1

4
𝑄 (

𝑥 + 𝑡

2
) ∫ 𝐾 (

𝑥 + 𝑡

2
, 𝑢) 𝑑𝑢

3𝑡−𝑥

2

𝑥+𝑡

2

+ 
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑠 − 𝑥)𝑑𝑠

∞

𝑥+𝑡

2

 

               = −
1

4
𝑄 (

𝑥 + 𝑡

2
) + 

1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑠 − 𝑥)𝑑𝑠

∞

𝑥

 

                   −
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑥 − 𝑠)𝑑𝑠

𝑥+𝑡

2

𝑥

 

olarak bulunur. (3.13) eşitsizliği dikkate alınırsa 

‖𝐾𝑥(𝑥, 𝑡)‖ =  ‖‖−
1

4
𝑄 (

𝑥 + 𝑡

2
) − 

1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑥 − 𝑠)𝑑𝑠

𝑥+𝑡

2

𝑥

−
1

2
∫ 𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑠 − 𝑥)𝑑𝑠

∞

𝑥

‖‖ 

                     ≤  
1

4
‖𝑄 (

𝑥 + 𝑡

2
) ‖ + 

1

2
∫ ‖𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑥 − 𝑠)‖𝑑𝑠

𝑥+𝑡

2

𝑥

 

                          + 
1

2
∫‖𝑄(𝑠)𝐾(𝑠, 𝑡 + 𝑠 − 𝑥)‖𝑑𝑠

∞

𝑥

 

‖𝐾𝑥(𝑥, 𝑡)‖  ≤  
1

4
‖𝑄 (

𝑥 + 𝑡

2
) ‖ + 

1

2
∫ ‖𝑄(𝑠)‖𝑒𝛼1(𝑥)𝛼 (

𝑥 + 𝑡

2
) 𝑑𝑠

𝑥+𝑡

2

𝑥

 

                           + 
1

4
𝑒𝛼1(𝑥) ∫‖𝑄(𝑠)‖𝛼 (

2𝑠 + 𝑡 − 𝑥

2
)𝑑𝑠

∞

𝑥

 

                     ≤  
1

4
‖𝑄 (

𝑥 + 𝑡

2
) ‖ + 

𝐶1

2
∫ ‖𝑄(𝑠)‖𝛼 (

𝑥 + 𝑡

2
) 𝑑𝑠

𝑥+𝑡

2

𝑥

 

                          + 
𝐶1

2
∫‖𝑄(𝑠)‖𝛼 (

2𝑠 + 𝑡 − 𝑥

2
)𝑑𝑠

∞

𝑥

 

                     ≤  
1

4
‖𝑄 (

𝑥 + 𝑡

2
) ‖ + 

𝐶1

2
𝛼 (

𝑥 + 𝑡

2
) ∫‖𝑄(𝑠)‖𝑑𝑠

∞

0
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                          + 
𝐶1

2
𝛼 (

𝑥 + 𝑡

2
)∫‖𝑄(𝑠)‖𝑑𝑠

∞

0

 

                     =  
1

4
‖𝑄 (

𝑥 + 𝑡

2
) ‖  +  𝐶𝛼 (

𝑥 + 𝑡

2
) 

bulunur. Benzer şekilde 

‖𝐾𝑡(𝑥, 𝑡)‖  ≤  
1

4
‖𝑄 (

𝑥 + 𝑡

2
) ‖  +  𝐶𝛼 (

𝑥 + 𝑡

2
)∫‖𝑄(𝑠)‖𝑑𝑠

∞

0

 

buunur. Ayrıca 

∫‖𝐾(𝑥, 𝑡)‖𝑑𝑡 ≤ 𝑐 ∫ 𝛼 (
𝑥 + 𝑡

2
) 𝑑𝑡 ≤ 𝐶 ∫ 𝛼 (

𝑡

2
) 𝑑𝑡

∞

𝑥

                                                        (3.20)

∞

𝑥

∞

𝑥

 

                             = 2𝐶 ∫ 𝛼(𝑠)𝑑𝑠 <  ∞

∞

0

               

ve 

∫‖𝐾𝑥(𝑥, 𝑡)‖𝑑𝑡 ≤
1

4
∫ ‖𝑄(

𝑥 + 𝑡

2
)‖𝑑𝑡 + 𝑐 ∫ 𝛼 (

𝑥 + 𝑡

2
) 𝑑𝑡

∞

𝑥

∞

𝑥

∞

𝑥

 

                              ≤
1

2
∫‖𝑄(𝑢)‖𝑑𝑢 + 2𝑐 ∫ 𝛼(𝑢)𝑑𝑢 <  ∞

∞

0

∞

0

 

olduğundan 𝑥 ≥ 0 için 

𝐾(𝑥, . ) ∈ 𝐿1(𝑥,∞) ⇔ ∫‖𝐾(𝑥, 𝑡)‖  < ∞

∞

𝑥

 

𝐾𝑥(𝑥, . ) ∈ 𝐿1(𝑥,∞) ⇔ ∫‖𝐾𝑥(𝑥, 𝑡)‖  < ∞

∞

𝑥

 

olarak yazılabilir. Böylece ispat tamamlanmış olur [1]. 

ℂ+ üzerinde |𝑒𝑖𝜆𝑡|, |𝜆| ya göre azalan olduğu için 

‖𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡‖  ≤  ‖𝐾(𝑥, 𝑡)‖ 

eşitsizliği gerçeklenir. O halde (3.20) gereğince 

|∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

𝑥

|  ≤  ∫‖𝐾(𝑥, 𝑡)‖𝑑𝑡 < ∞

∞

𝑥

 

olur.  
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Ayrıca  

∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡 

fonksiyonu 𝜆 ya göre ℂ+ üzerinde analitiktir. 

𝜕

𝜕𝜆
(∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

𝑥

) =  ∫ 𝑖𝑡𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

𝑥

 

eşitliğini göstermek için, 

𝐼𝑚𝜆 > 0 iken 𝑡𝑒−𝑡𝐼𝑚𝜆 < 1 olduğu göz önüne alınırsa  

|∫ 𝑖𝑡𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

𝑥

|  ≤  ∫ 𝑡‖𝐾(𝑥, 𝑡)‖𝑒−𝑡𝐼𝑚𝜆𝑑𝑡 ≤ 

∞

𝑥

∫‖𝐾(𝑥, 𝑡)‖𝑑𝑡 < ∞

∞

𝑥

 

bulunur. Böylelikle 𝐹 çözümü 𝜆 ya göre ℂ+ üzerinde analitik bir fonksiyon olur. Ayrıca 𝐹 

çözümü ℝ üzerinde 𝜆 ya göre süreklidir. 𝑒𝑖𝜆𝑡, ℂ üzerinde 𝜆 ya göre sürekli olduğu için aynı 

zamanda ℝ üzerinde de süreklidir. 𝐹 çözümünün sürekliliğini göstermek için 

∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡 

integralinin sürekliliğini göstermek yeterli olacaktır. 

∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡 

integrali ℂ+ üzerinde düzgün yakınsak olduğu için 𝜆0 ∈ ℝ keyfi olmak üzere 

lim
𝜆→𝜆0

∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡 =  ∫ 𝐾(𝑥, 𝑡)

∞

𝑥

lim
𝜆→𝜆0

(𝑒𝑖𝜆𝑡) 𝑑𝑡 = ∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆0𝑡𝑑𝑡 

bulunur [1]. 
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4. ÖZDEĞERLER VE SPEKTRAL TEKİLLİKLER 

 

4.1. Jost Fonksiyonunun Asimptotiği 

 

Bu bölümde 𝐿 operatörüne karşılık gelen Jost fonksiyonunun asimptotiği incelenecektir. 𝐿 

operatörü ile ilgili olarak  

 – 𝑌′′ + 𝑄(𝑋)𝑌 = 𝜆2𝑌                                                                                                                   (4.1)    

𝛼𝑌′(0) − 𝛽𝑌(0) + ∫ 𝐴(𝑥)𝑌(𝑥)𝑑𝑥

∞

0

= 0                                                                                  (4.2) 

sınır değer problemi göz önünde bulundurulsun. Burada 𝐴- kompleks değerli 𝑛 × 𝑛 

şeklinde bir matris,  𝛼, 𝛽 ∈  ℂ , |𝛼| + |𝛽| ≠ 0 ve 𝐴 ∈  𝐿1(0,∞; ℂ𝑛) ∩ 𝐿2(0,∞; ℂ𝑛) koşulu 

sağlanır. Ayrıca, 

∫ 𝑥‖𝑄(𝑥)‖𝑑𝑥 <  ∞

∞

0

                                                                                                                    (4.3) 

koşulunun gerçeklendiği varsayılsın.  

𝐹(𝑥, 𝜆) = 𝑒𝑖𝜆𝑥𝐼 + ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

𝑥

 

Jost çözümünün (4.2)’de dikkate alınması ile elde edilen 

𝑁(𝜆) =  𝛼𝐹′(0, 𝜆) − 𝛽𝐹(0, 𝜆) + ∫ 𝐴(𝑥)𝐹(𝑥, 𝜆)𝑑𝑥                                                              (4.4)

∞

0

 

fonksiyonuna 𝐿 operatörünün Jost fonksiyonu denir. 

 

4.1.1. Teorem 

 

(4.3) koşulu altında  

𝑁(𝜆) =  𝛼𝑖𝜆𝐼 + 𝑂(1) , 𝜆 ∈  ℂ̅+ , |𝜆| → ∞ 

asimptotik eşitliği sağlanır. 

 

İspat 

 

Jost fonksiyonunun asimptotiğini elde etmek için  
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𝐹(𝑥, 𝜆) =  𝑒𝑖𝜆𝑥𝐼 + ∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡 

Jost fonksiyonunu,  

𝛼𝑌′(0) − 𝛽𝑌(0) + ∫ 𝐴(𝑥)𝑌(𝑥)𝑑𝑥

∞

0

= 0 

sınır koşulunda yerine yazmak gerekmektedir.  

𝐹′(𝑥, 𝜆) =  𝑖𝜆𝑒𝑖𝜆𝑥𝐼 − 𝐾(𝑥, 𝑥)𝑒𝑖𝜆𝑥 + ∫ 𝐾𝑥(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡 

elde edilir. Buradan 

𝐹′(0, 𝜆) =  𝑖𝜆𝐼 − 𝐾(0,0) + ∫ 𝐾𝑥(0, 𝑡)

∞

0

𝑒𝑖𝜆𝑡𝑑𝑡 

elde edilir. 

𝛼𝐹′(0, 𝜆) =  𝛼𝑖𝜆𝐼 − 𝛼𝐾(0,0) + 𝛼 ∫ 𝐾𝑥(0, 𝑡)

∞

0

𝑒𝑖𝜆𝑡𝑑𝑡 

𝛽𝐹(0) =  𝛽𝐼 + 𝛽 ∫ 𝐾(0, 𝑡)

∞

0

𝑒𝑖𝜆𝑡𝑑𝑡 

olarak bulunur. Jost fonksiyonu sınır koşulunda yerine yazıldığında 

𝛼𝑖𝜆𝐼 − 𝛼𝐾(0,0) + 𝛼 ∫ 𝐾𝑥(0, 𝑡)

∞

0

𝑒𝑖𝜆𝑡𝑑𝑡 − 𝛽𝐼 − 𝛽 ∫ 𝐾(0, 𝑡)

∞

0

𝑒𝑖𝜆𝑡𝑑𝑡 

+ ∫ 𝐴(𝑥)𝑒𝑖𝜆𝑥𝑑𝑥 + ∫ ∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑥 = 0

∞

0

∞

0

 

bulunur. Buradan, 

𝛼𝐹′(0) − 𝛽𝐹(0) + ∫ 𝐴(𝑥)𝐹(𝑥)𝑑𝑥

∞

0

= 𝛼𝑖𝜆𝐼 − 𝛼𝐾(0,0) + 𝛼 ∫ 𝐾𝑥(0, 𝑡)

∞

0

𝑒𝑖𝜆𝑡𝑑𝑡  

−𝛽𝐼 − 𝛽 ∫ 𝐾(0, 𝑡)

∞

0

𝑒𝑖𝜆𝑡𝑑𝑡 + ∫ 𝐴(𝑥)𝑒𝑖𝜆𝑥𝑑𝑥 + ∫ ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑥 = 0

∞

𝑥

∞

0

∞

0

 

bulunur.  

Burada 

∫ ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑥

∞

𝑥

∞

0
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integralinin integrasyon sırası değiştirilirse 

∫ ∫ 𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑥

∞

𝑥

∞

0

= ∫ ∫𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑥𝑑𝑡

𝑡

0

∞

0

 

eşitliği elde edilir. Buradan, 

𝐹(𝑡) =  𝛼𝐾𝑥(0, 𝑡) − 𝛽𝐾(0, 𝑡) + 𝐴(𝑡) + ∫𝐾(𝑥, 𝑡)

𝑡

0

𝑑𝑥 

şeklinde tanımlanırsa 

𝑁(𝜆) =  𝛼𝑖𝜆𝐼 − 𝛼𝐾(0,0) − 𝛽𝐼 + ∫ 𝐹(𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

 

elde edilir. 

∫ 𝐴(𝑥)𝑒𝑖𝜆𝑥𝑑𝑥

∞

0

 

Fourier dönüşümünün yakınsak olması için 𝐴(𝑥) ∈  𝐿1(0,∞; ℂ𝑛) olması gerekir. 

Dolayısıyla 𝐴(𝑥) için 𝐴(𝑥) ∈  𝐿1(0,∞; ℂ𝑛) ∩ 𝐿2(0,∞; ℂ𝑛) koşulunu koymak gerekir.  

𝐹(𝑡) fonksiyonunun tüm terimleri 𝐿1(0,∞; ℂ𝑛) uzayının elemanı olduğundan  

𝑁(𝜆) =  𝛼𝑖𝜆𝐼 − 𝛼𝐾(0,0) − 𝛽𝐼 + 𝑂(1) ,   𝜆 ∈  ℂ̅+ ,    |𝜆| → ∞ 

yazılabilir. Hatta  𝛼, 𝛽 ve 𝐾(0,0) sabit olduğundan 

𝑁(𝜆) =  𝛼𝑖𝜆𝐼 + 𝑂(1),   |𝛼| + |𝛽|  ≠ 0 , |𝜆| → ∞                                                                  (4.5)   

elde edilir. Böylece ispat tamamlanır. 

(4.5) eşitliğinden  

𝑑𝑒𝑡𝑁(𝜆) =  (𝛼𝑖𝜆)𝑛+ 𝑂(1) 

olarak yazılır. Sonuç olarak 

Burada |𝜆| → ∞ için 𝑑𝑒𝑡𝑁(𝜆) = 0 olamaz. O halde |𝜆| → ∞ için 𝑑𝑒𝑡𝑁(𝜆) nın tersi 

yoktur. Sadece reel eksenin sınırlı bir alt aralığında 𝑑𝑒𝑡𝑁(𝜆) = 0 olur. 
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4.2. L’nin Diskret Spektrumu 

 

L operatörünün özdeğerlerinin ve spektral tekilliklerinin kümesi sırasıyla 

𝜎𝑑(𝐿) =  { 𝜇 ∶ 𝜇 = 𝜆2, 𝜆 ∈  ℂ+, 𝑑𝑒𝑡𝑁(𝜆) = 0}                                                                       (4.6) 

ve 

𝜎𝑠𝑠(𝐿) =  { 𝜇 ∶ 𝜇 = 𝜆2, 𝜆 ∈  ℝ ∖ {0}, 𝑑𝑒𝑡𝑁(𝜆) = 0}                                                             (4.7) 

şeklinde tanımlanır. 

 

4.2.1. Tanım 

 

ℂ̅+ üzerinde tanımlı 𝑑𝑒𝑡𝑁(𝜆) fonksiyonunun bir sıfırının katına, 𝐿 operatörünün bu sıfıra 

karşılık gelen özdeğerinin veya spektral tekilliğinin katı denir.  

𝐿 operatörünün özdeğerlerini ve spektral tekilliklerini inceleyebilmek için 𝑑𝑒𝑡𝑁(𝜆) 

fonksiyonunun ℂ̅+ daki sıfırlarını belirlemek gerekir.     

𝑀1 = {𝜆: 𝜆 ∈  ℂ+, 𝑑𝑒𝑡𝑁(𝜆) = 0 } 

ve 

𝑀2 = {𝜆: 𝜆 ∈  ℝ, 𝑑𝑒𝑡𝑁(𝜆) = 0 } 

şeklinde tanımlanırsa, (4.6) ve (4.7) yardımıyla 

𝜎𝑑(𝐿) =  { 𝜇 ∶ 𝜇 = 𝜆2, 𝜆 ∈  𝑀1}                                                                                                 (4.8) 

ve 

𝜎𝑠𝑠(𝐿) =  { 𝜇 ∶ 𝜇 = 𝜆2, 𝜆 ∈  𝑀2} ∖ {0}                                                                                     (4.9) 

yazılır. 

 

4.2.1. Teorem 

 

𝑀1 kümesi sınırlı olup en çok sayılabilir sayıda elemana sahiptir. Ayrıca bu kümenin limit 

noktaları (eğer varsa) reel eksenin sınırlı bir alt aralığındadır. 

 

İspat 

 

𝑁(𝜆), ℂ+ da analitik ve reel eksende sürekli olduğundan 𝑑𝑒𝑡𝑁(𝜆) da ℂ+ da analitik ve reel 

eksende süreklidir. Teorem 4.1.1 de gösterildiği gibi |𝜆| → ∞ için 

 𝑑𝑒𝑡𝑁(𝜆) = (𝛼𝑖𝜆)𝑛 +  𝑂(1)                                                                                                      (4.10) 
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yazılır. Buradan, 𝜆 ∈  ℂ̅+ için |𝜆| yeterince büyük seçilmesi halinde 𝑑𝑒𝑡𝑁(𝜆) ≠ 0 olur. O 

halde 𝑀1 ve 𝑀2 kümeleri sınırlıdır. Teorem 2.1 gereğince 𝑑𝑒𝑡𝑁(𝜆) fonksiyonunun ℂ+ daki 

sıfırlarının kümesi ayrıktır. O halde 𝑀1 kümesi en çok sayılabilir sayıda eleman içerir. 

Ayrıca Teorem 2.2 ifadesi gereğince 𝑀1 kümesinin (eğer varsa) limit noktaları reel eksenin 

sınırlı bir alt aralığındadır. 

 

4.2.2. Teorem 

 

𝑀2 kümesi kompakttır ve 𝜇 Lebesgue ölçüsü olmak üzere 𝜇(𝑀2) = 0 dır. 

 

İspat 

 

Teorem 4.2.1 in ispatında 𝑀2 kümesinin sınırlı olduğu gösterilmişti. O halde 𝑀2 kümesinin 

kompakt bir küme olduğunu göstermek için 𝑀2 kümesinin kapalı olduğunu göstermek 

yeterlidir. 

𝜆0  ∈  𝑀̅2 olsun. O halde ∀ 𝑛 ∈  ℕ için 𝜆𝑛 ∈  𝑀2 ve   

lim
𝑛→∞

𝜆𝑛 = 𝜆0 

olacak şekilde bir (𝜆𝑛) dizisi vardır. 

Bu durumda 𝑑𝑒𝑡𝑁(𝜆), ℂ̅+ üzerinde sürekli olduğu için 

𝑑𝑒𝑡𝑁(𝜆0) = 𝑑𝑒𝑡𝑁 ( lim
𝑛→∞

𝜆𝑛) =  lim
𝑛→∞

𝑑𝑒𝑡𝑁(𝜆𝑛) =  0 

yani 𝜆0  ∈  𝑀2 elde edilir. O halde 𝑀2 kümesi kapalıdır. Böylece 𝑀2 kümesi kapalı ve 

sınırlı olduğu için kompakt bir kümedir. 

Ayrıca   

𝑑𝑒𝑡𝑁(𝜆), ℂ+ üzerinde  analitik ve 𝑑𝑒𝑡𝑁(𝜆) ≠ 0 olduğundan Teorem 2.4 gereğince 

𝜇(𝑀2) = 0 elde edilir. 

Teorem 4.2.1 ve Teorem 4.2.2’ den hemen aşağıdaki teoremler elde edilir. 

 

4.2.3. Teorem 

 

𝜎𝑑(𝐿), sınırlıdır. Tüm özdeğerlerin katı sonludur ve özdeğerlerin limit noktaları (Eğer 

varsa) [0,∞) kümesinin sınırlı bir alt aralığındadır. 
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4.2.4. Teorem 

 

𝜎𝑠𝑠(𝐿) sınırlıdır. 𝜇(𝜎𝑠𝑠(𝐿)) = 0 dır. (Eğer varsa) limit noktaları (0,∞) un sınırlı bir alt 

aralığındadır. 

 

4.2.5. Teorem 

 

𝜀 > 0 olmak üzere  

∫ exp(𝜀𝑡) [‖𝑄(𝑡)‖

∞

0

+ ‖𝐴(𝑡)‖]𝑑𝑡 < ∞                                                                                   (4.11) 

koşulu altında 𝐿 operatörünün sonlu sayıda özdeğer ve spektral tekillikleri vardır ve 

bunların katı da sonludur. 

 

İspat 

 

Teorem 3.4’e göre 

‖𝐾(𝑥, 𝑡)‖ ≤ 𝐶 ∫‖𝑄(𝑠)‖

∞

𝑥+𝑡

2

𝑑𝑠 

sağlanır. Bu eşitsizlik göz önüne alınıp, 

𝑁(𝜆) =  𝛼𝑖𝜆𝐼 − 𝛼𝐾(0,0) − 𝛽𝐼 + ∫ 𝐹(𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

 

ve 

𝐹(𝑡) =  𝛼𝐾𝑥(0, 𝑡) − 𝛽𝐾(0, 𝑡) + 𝐴(𝑡) + ∫𝐴(𝑥)𝐾(𝑥, 𝑡)

𝑡

0

 

eşitlikleri kullanılarak 𝑁(𝜆) fonksiyonunun analitiklik bölgesi genişletilecektir. 

‖∫ 𝛼𝐾𝑥(0, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

‖ ≤ 𝛼 ∫‖𝐾𝑥(0, 𝑡)‖‖𝑒𝑖𝜆𝑡‖𝑑𝑡

∞

0

 

        ≤  
1

4
∫ ‖𝑄(

𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡

∞

0

𝑑𝑡 +  𝑐 ∫ ‖𝜎(
𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

 



31 

 

 

                            ≤  
1

4
∫ 𝑒−

𝜀𝑡

4 𝑒
𝜀𝑡

4 ‖𝑄(
𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

+  𝑐 ∫ ∫‖𝑄(𝑠)‖

∞

𝑡

2

𝑒−𝐼𝑚𝜆𝑡𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  
1

4
∫ 𝑒−

𝜀𝑡

4 𝑒
𝜀𝑡

4 ‖𝑄(
𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

 

                                            + 𝑐 ∫ ∫ 𝑒−
𝜖𝑠

2 𝑒
𝜀𝑠

2 ‖𝑄(𝑠)‖

∞

𝑡

2

𝑒−𝐼𝑚𝜆𝑡𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  
1

4
∫ 𝑒−𝑡(

𝜀

4
+𝐼𝑚𝜆)𝑑𝑡

∞

0

+  𝑐 ∫ ∫ 𝑒−
𝜖𝑠

2
−𝐼𝑚𝜆𝑡

∞

𝑡

2

𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  
1

4
∫ 𝑒−𝑡(

𝜀

4
+𝐼𝑚𝜆)𝑑𝑡

∞

0

+  𝑐 ∫ 𝑒−𝑡(
𝜀

4
+𝐼𝑚𝜆𝑡)𝑑𝑡

∞

0

 

bulunur.  

‖∫ 𝛽𝐾(0, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

‖  ≤  𝛽 ∫‖𝐾(0, 𝑡)‖‖𝑒𝑖𝜆𝑡‖𝑑𝑡

∞

0

 

                                       ≤ 𝑐 ∫ ‖𝜎(
𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

 

                                       ≤  𝑐 ∫ ∫‖𝑄(𝑠)‖

∞

𝑡

2

𝑒−𝐼𝑚𝜆𝑡𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  𝑐 ∫ ∫ 𝑒−
𝜖𝑠

2 𝑒
𝜀𝑠

2 ‖𝑄(𝑠)‖

∞

𝑡

2

𝑒−𝐼𝑚𝜆𝑡𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  𝑐 ∫ ∫ 𝑒−
𝜖𝑠

2
−𝐼𝑚𝜆𝑡

∞

𝑡

2

𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  𝑐 ∫ 𝑒−
𝜀𝑡

4 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

 

                                       ≤ 𝑐 ∫ 𝑒−𝑡(
𝜀

4
+𝐼𝑚𝜆𝑡)𝑑𝑡

∞

0

 

bulunur.  

‖𝐾(𝑥, 𝑡)‖  ≤ 𝑐𝑒(−𝜀
𝑥+𝑡

4
)
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eşitsizliğini kullanarak, 

‖∫ ∫ 𝐴(𝑥)𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑥

∞

𝑥

∞

0

‖ ≤  ∫ ∫‖𝐴(𝑥)‖‖𝐾(𝑥, 𝑡)‖

∞

𝑥

∞

0

‖𝑒𝑖𝜆𝑡‖𝑑𝑡𝑑𝑥 

        ≤ 𝑐 ∫ ∫ 𝐴(𝑥)𝑒−(
𝑥+𝑡

4
)𝑒−𝐼𝑚𝜆𝑡𝑑𝑡𝑑𝑥

∞

𝑥

∞

0

 

                ≤ 𝑐 ∫ 𝐴(𝑥)𝑒−
𝜀𝑥

4 {∫ 𝑒−𝑡(
𝜀

4
+𝐼𝑚𝜆)𝑑𝑡

∞

𝑥

} 𝑑𝑥

∞

0

 

bulunur.  

∫ 𝐴(𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

 

integrali Fourier dönüşümü olup, 𝐴(𝑡) fonksiyonu  𝐿1(0,∞; ℂ𝑛) uzayındandır. O halde bu 

integrallerin yakınsak olması için 
𝜀

4
+ 𝐼𝑚𝜆𝑡 > 0 gerekir. Dolayısıyla 𝐼𝑚𝜆 > − 

𝜀

4
 için 

𝑑𝑒𝑡𝑁(𝜆) fonksiyonu analitik olacağından reel eksen analitiklik bölgesinin içerisinde yer 

alır. Dolayısıyla Teorem 2.2 gereğince 𝑑𝑒𝑡𝑁(𝜆) fonksiyonunun ℂ+ daki sıfırlarının limit 

noktaları reel eksen üzerinde bulunamaz. Ayrıca Teorem 4.2.1 ve Teorem 4.2.2 gereğince 

𝑀1 ve 𝑀2 kümeleri sınırlıdır. 𝑑𝑒𝑡𝑁(𝜆) ≠ 0 olup 𝑀1 ve 𝑀2 kümelerinin limit noktaları 

analitiklik bölgesinin içerisinde olduğundan 𝑀1 ve 𝑀2 kümeleri sonludurlar. 𝑑𝑒𝑡𝑁(𝜆) 

fonksiyonu 𝐼𝑚𝜆 > − 
𝜀

4
 için analitik devama sahip olup Teorem 2.3 gereğince 𝑑𝑒𝑡𝑁(𝜆) 

fonksiyonunun ℂ̅+ daki sıfırlarının katı sonludur. O halde 𝜎𝑑(𝐿) ve 𝜎𝑠𝑠(𝐿) kümeleri sonlu 

sayıda elemana sahip olup elemanlarının katları da sonludur. 

 

4.2.6. Teorem 

 

𝜀 > 0 olmak üzere  

sup
𝑥∈(0,∞)

{exp(𝜀√𝑡) [‖𝑄(𝑡)‖ + ‖𝐴(𝑡)‖]} < ∞                                                                         (4.12) 

koşulu altında 𝑑𝑒𝑡𝑁(𝜆) fonksiyonunun ℂ̅+ da analitik olup reel eksende her mertebeden 

türeve sahiptir. Fakat 𝑑𝑒𝑡𝑁(𝜆) fonksiyonu reel eksenden alt yarı düzleme analitik devama 

sahip değildir. 
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İspat 

 

Teorem 3.4’e göre 

‖𝐾(𝑥, 𝑡)‖ ≤ 𝐶 ∫‖𝑄(𝑠)‖

∞

𝑥+𝑡

2

𝑑𝑠 

sağlanır. Bu eşitsizlik göz önüne alınıp, 

𝑁(𝜆) =  𝛼𝑖𝜆𝐼 − 𝛼𝐾(0,0) − 𝛽𝐼 + ∫ 𝐹(𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

 

ve 

𝐹(𝑡) =  𝛼𝐾𝑥(0, 𝑡) − 𝛽𝐾(0, 𝑡) + 𝐴(𝑡) + ∫𝐴(𝑥)𝐾(𝑥, 𝑡)

𝑡

0

 

eşitlikleri kullanılarak 𝑁(𝜆) fonksiyonunun analitiklik bölgesi incelenecektir. 

‖∫ 𝛼𝐾𝑥(0, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

‖ ≤ 𝛼 ∫‖𝐾𝑥(0, 𝑡)‖‖𝑒𝑖𝜆𝑡‖𝑑𝑡

∞

0

 

        ≤  
1

4
∫ ‖𝑄(

𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡

∞

0

𝑑𝑡 +  𝑐 ∫ ‖𝜎(
𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

 

                                   ≤  
1

4
∫ 𝑒−𝜀√𝑡𝑒𝜀√𝑡 ‖𝑄(

𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

+  𝑐 ∫ ∫‖𝑄(𝑠)‖

∞

𝑡

2

𝑒−𝐼𝑚𝜆𝑡𝑑𝑠𝑑𝑡

∞

0

 

                                        ≤  
1

4
∫ 𝑒−𝜀√𝑡𝑒𝜀√𝑡 ‖𝑄(

𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

 

                                             + 𝑐 ∫ ∫ 𝑒−𝜀√𝑠𝑒𝜀√𝑠‖𝑄(𝑠)‖

∞

𝑡

2

𝑒−𝐼𝑚𝜆𝑡𝑑𝑠𝑑𝑡

∞

0

 

                                        ≤  
1

4
∫ 𝑒−𝜀√𝑡𝑑𝑡

∞

0

+  𝑐 ∫ 𝑒−𝐼𝑚𝜆𝑡 ∫ 𝑒−√𝑠

∞

0

𝑑𝑠𝑑𝑡

∞

0

 

bulunur.  

Benzer şekilde, 

‖∫ 𝛽𝐾(0, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

‖ ≤  𝛽 ∫‖𝐾(0, 𝑡)‖‖𝑒𝑖𝜆𝑡‖𝑑𝑡

∞

0
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                                       ≤ 𝑐 ∫ ‖𝜎(
𝑡

2
)‖ 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

 

                                       ≤  𝑐 ∫ ∫‖𝑄(𝑠)‖

∞

𝑡

2

𝑒−𝐼𝑚𝜆𝑡𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  𝑐 ∫ ∫ 𝑒−𝜀√𝑡𝑒𝜀√𝑡‖𝑄(𝑠)‖

∞

𝑡

2

𝑒−𝐼𝑚𝜆𝑡𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  𝑐 ∫ ∫ 𝑒−𝜀√𝑡−𝐼𝑚𝜆𝑡

∞

𝑡

2

𝑑𝑠𝑑𝑡

∞

0

 

                                       ≤  𝑐 ∫ 𝑒−
𝜀𝑡

4 𝑒−𝐼𝑚𝜆𝑡𝑑𝑡

∞

0

 

                                       = 𝑐 ∫ 𝑒−𝐼𝑚𝜆𝑡 ∫ 𝑒−√𝑠

∞

0

𝑑𝑠𝑑𝑡

∞

0

 

bulunur.  

∫ 𝐴(𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

 

integrali Fourier dönüşümü olup 𝐿1(0,∞; ℂ𝑛) uzayındandır. Dolayısıyla bu integral üst 

yarı düzlemde yakınsaktır. Son olarak 

∫ ∫ 𝐴(𝑥)𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑥

∞

𝑥

∞

0

≤ ∫ 𝐴(𝑥)∫ 𝐾(𝑥, 𝑡)

∞

𝑥

𝑒𝑖𝜆𝑡

∞

0

𝑑𝑡𝑑𝑥 

olup 𝐴(𝑥) ve 𝐾(𝑥, 𝑡), 𝐿2(0,∞; ℂ𝑛) uzayından olup 𝐿2(0,∞; ℂ𝑛) uzayından olan iki 

fonksiyonun çarpımı 𝐿1(0,∞; ℂ𝑛) uzayından olduğu için 

∫ ∫ 𝐴(𝑥)𝐾(𝑥, 𝑡)𝑒𝑖𝜆𝑡𝑑𝑡𝑑𝑥

∞

𝑥

∞

0

 

Fourier dönüşümü olup 𝐿1(0,∞; ℂ𝑛) uzayındandır.  

Bu integraller üst yarı düzlemde analitiktir. Fakat 𝐼𝑚𝜆𝑡 = 0 olduğu zaman  

∫ ∫ 𝑒−√𝑠

∞

0

𝑑𝑠𝑑𝑡

∞

0

 

integrali yakınsak değildir. Dolayısıyla reel eksende analitiklik yoktur. 
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Sonuç olarak, 𝑑𝑒𝑡𝑁(𝜆) fonksiyonunun ℂ̅+ da analitik olup reel eksende her mertebeden 

türeve sahiptir. Fakat 𝑑𝑒𝑡𝑁(𝜆) fonksiyonu reel eksenden alt yarı düzleme analitik devama 

sahip değildir. Böylece ispat tamamlanmış olur. 

Şimdi 𝑀3 = 𝑀1′ 

ve 

𝑀4 = {𝜆: 𝜆 ∈  ℂ̅+,
𝑑𝑛

𝑑𝜆𝑛
𝑑𝑒𝑡𝑁(𝜆) = 0, ∀ 𝑛 ∈  ℕ} 

şeklinde 𝑀3 ve 𝑀4 kümeleri tanımlansın. Burada 𝑀3 kümesi 𝑀1 kümesinin yığılma 

noktalarından oluşan kümedir. 𝑀4 kümesi de 𝑑𝑒𝑡𝑁(𝜆) nın sonsuz katlı sıfırlarından oluşan 

kümedir. 

 

4.2.7. Teorem 

 

𝑀1,  𝑀2, 𝑀3 ve 𝑀4 kümeleri için aşağıda verilen bağıntılar sağlanır. 

𝑖) 𝑀1  ∩  𝑀4 =  ∅ , 𝑀3 ⊂ 𝑀2 , 𝑀4 ⊂ 𝑀2 , 𝑀3 ⊂ 𝑀4 

𝑖𝑖) 𝜇(𝑀3) = 𝜇(𝑀4) = 0 

 

İspat 

 

𝑖) ℂ+ üzerinde 𝑑𝑒𝑡𝑁(𝜆) analitik olduğundan bu bölgede sonsuz katlı sıfıra sahip olamaz. 

Dolayısıyla 𝑀1  ∩  𝑀4 =  ∅   

𝑑𝑒𝑡𝑁(𝜆), ℂ̅+ üzerinde sürekli olduğu için 𝑀3 ⊂ 𝑀2 sağlanır. 

𝑀2 ve 𝑀4 kümelerinin tanımından analitik fonksiyonların sonsuz katlı sıfırları, reel 

eksende olduğu için 𝑀4 ⊂ 𝑀2 dir. Ayrıca 𝑀3 ⊂ 𝑀4 dir. Yani analitik fonksiyonların sıfır 

noktalarının limit noktaları, sonsuz katlı sıfırlarının alt kümesidir. 

𝑖𝑖) 𝑀3 ⊂ 𝑀2 ve 𝑀4 ⊂ 𝑀2 ve Teorem 4.2.2 den 𝜇(𝑀2) = 0 olduğu dikkate alınırsa 

𝜇(𝑀3) = 𝜇(𝑀4) = 0 bulunur. 

 

4.2.8. Teorem 

 

|𝑑𝑒𝑡𝑁(𝑛)(𝜆)| ≤  𝐴𝑛 ,   𝑛 = 0, 1, 2, … ,   𝐼𝑚𝜆 ≥ 0 

eşitsizliğini sağlayan  
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𝐴𝑛 =  𝑐 ∫ 𝑡𝑛𝑒−
𝜀√𝑡

4 𝑑𝑡

∞

0

           𝑛 = 0, 1, 2, …,                                                                             (4.13) 

sabitleri vardır. 

 

İspat 

 

|
𝑑𝑛

𝑑𝜆𝑛
𝑑𝑒𝑡𝑁(𝜆)| =  |∫(𝑖𝑡)𝑛𝐹(𝑡)𝑒𝑖𝜆𝑡𝑑𝑡

∞

0

| ≤  ∫ 𝑡𝑛‖𝐹(𝑡)‖𝑑𝑡

∞

0

 

olup 

‖𝐹(𝑡)‖  ≤  𝑐𝑒−
𝜀√𝑡

4  

eşitsizliği kullanılarak 

|
𝑑𝑛

𝑑𝜆𝑛
𝑑𝑒𝑡𝑁(𝜆)| ≤ 𝑐 ∫ 𝑡𝑛𝑒−

𝜀√𝑡

4 𝑑𝑡

∞

0

= 𝐴𝑛 

elde edilir. 

 

4.2.9. Teorem 

 

(4.13) ile tanımlanan 𝐴𝑛 sabitleri, 𝐵 ve 𝑏 birer sabit olmak üzere 

𝐴𝑛 ≤ 𝐵𝑏𝑛𝑛! 𝑛𝑛 

eşitsizliğini gerçekler. 

 

İspat 

 

𝐴𝑛 =  𝑐 ∫ 𝑡𝑛𝑒−
𝜀√𝑡

4 𝑑𝑡

∞

0

           𝑛 = 0, 1, 2, …, 

𝜀√𝑡

4
= 𝑢 

değişken değiştirmesi yapılırsa 

𝑡 =  
16𝑢2

𝜀2
 , 𝑑𝑡 =

32𝑢

𝜀2
𝑑𝑢 

olur. Bu ifadeler (4.13) de yerine yazılırsa 
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𝐴𝑛 =  𝑐 ∫ 𝑡𝑛𝑒−
𝜀√𝑡

4 𝑑𝑡

∞

0

= 𝑐
24𝑛+5

𝜀2𝑛+2
∫ 𝑢2𝑛+1𝑒−𝑢𝑑𝑢 = 𝑐

24𝑛+5

𝜀2𝑛+2
Γ(2𝑛 + 2)

∞

0

 

eşitliği elde edilir. 

Γ(𝑛 + 1) = 𝑛Γ(𝑛) 

olduğu dikkate alınırsa 

𝑏0
𝑛: =

26𝑛+7

𝜀2𝑛+2
 

olmak üzere 

𝐴𝑛 =  𝑐
24𝑛+5

𝜀2𝑛+2
(2𝑛 + 1)(2𝑛)(2𝑛 − 1)…3.2. Γ(1) 

      = 𝑐
24𝑛+5

𝜀2𝑛+2
(2𝑛 + 1)! 

      ≤ 𝑐
24𝑛+5

𝜀2𝑛+2
(2𝑛 + 1)(2𝑛 + 1)… (2𝑛 + 1) 

      ≤ 𝑐
24𝑛+5

𝜀2𝑛+2
(2𝑛 + 1)(2𝑛+1) 

      ≤ 𝑐
24𝑛+5

𝜀2𝑛+2
(2𝑛 + 2)(2𝑛+2) 

     = 𝑐
26𝑛+7

𝜀2𝑛+2
(𝑛 + 1)(2𝑛+2) 

     = 𝑐𝑏0
𝑛(𝑛 + 1)(2𝑛+2) 

elde edilir. 

∀ 𝑛 ∈ ℕ için (1 +
1

𝑛
) ≤ 𝑒,   𝑒𝑛 ≥ 1 + 𝑛, 𝑛𝑛 ≤ 𝑒𝑛𝑛! 

eşitsizlikleri sağlandığı için 

𝐴𝑛 ≤ 𝑐𝑏0
𝑛(𝑛 + 1)(2𝑛+2) 

      ≤ 𝑐𝑏0
𝑛𝑒2𝑛(𝑛 + 1)2𝑛 

      = 𝑐𝑏1
𝑛(

𝑛 + 1

𝑛
𝑛)2𝑛 

      = 𝑐𝑏1
𝑛(1 +

1

𝑛
)2𝑛𝑛2𝑛 

      ≤ 𝑐𝑏1
𝑛𝑒2𝑛𝑛2𝑛 

      = 𝑐𝑏2
𝑛𝑛𝑛𝑛2𝑛 

      ≤ 𝑐𝑏2
𝑛𝑒𝑛𝑛! 𝑛𝑛 

      = 𝐵𝑏𝑛𝑛! 𝑛𝑛 

elde edilir. 
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4.2.10. Teorem 

 

sup
𝑥∈(0,∞)

{exp(𝜀√𝑡) [‖𝑄(𝑡)‖ + ‖𝐴(𝑡)‖]} < ∞ 

koşulu altında 𝑀4 boştur. 

 

İspat 

 

Yeterince büyük 𝑇 > 0 için |𝐼𝑛|𝑑𝑒𝑡𝑁(𝜆)|| < ∞ olup 

∫
𝐼𝑛|𝑑𝑒𝑡𝑁(𝜆)|

1 + 𝜆2
𝑑𝜆

−𝑇

−∞

 

ve  

∫
𝐼𝑛|𝑑𝑒𝑡𝑁(𝜆)|

1 + 𝜆2
𝑑𝜆

∞

𝑇

                                                                                                                       (4.14) 

integralleri mutlak yakınsaktır. 

sup
𝑥∈(0,∞)

{exp(𝜀√𝑡) [‖𝑄(𝑡)‖ + ‖𝐴(𝑡)‖]} < ∞  

koşulu altında 

𝐴𝑛 =  𝑐 ∫ 𝑡𝑛𝑒−
𝜀√𝑡

4 𝑑𝑡

∞

0

           𝑛 = 0, 1, 2, …, 

olmak üzere 

𝐺(𝑠) = 𝑖𝑛𝑓
𝑛

𝐴𝑛𝑠𝑛

𝑛!
≤ 𝐵𝑒(−𝑒−1𝑏−1𝑠−1) 

ifadesini elde etmek için, 

𝐴𝑛 ≤ 𝐵𝑏𝑛𝑛! 𝑛𝑛 

eşitsizliği kullanılarak 

𝐺(𝑠) = 𝑖𝑛𝑓
𝑛

𝐴𝑛𝑠𝑛

𝑛!
≤ 𝑖𝑛𝑓

𝑛
(
𝐵𝑏𝑛𝑛! 𝑛𝑛𝑠𝑛

𝑛!
) = 𝑖𝑛𝑓

𝑛
(𝐵𝑏𝑛𝑛𝑛𝑠𝑛)                                               (4.15) 

bulunur. 

𝑓(𝑥) = 𝑏𝑥𝑠𝑥𝑥𝑥 ile tanımlı fonksiyon (−∞,∞) üzerinde minimum değerini  

𝑥0 = 𝑏−1𝑠−1𝑒−1 noktasında alır. Bu 𝑥0 değeri (4.15) eşitsizliğinde yazılırsa 

𝐺(𝑠) = 𝑖𝑛𝑓
𝑛

𝐴𝑛𝑠𝑛

𝑛!
≤ 𝐵𝑏𝑏−1𝑠−1𝑒−1

(𝑏−1𝑠−1𝑒−1)(𝑏−1𝑠−1𝑒−1)𝑠(𝑏−1𝑠−1𝑒−1) 

          = 𝐵𝑏𝑏−1𝑠−1𝑒−1
(𝑏−1𝑠−1𝑒−1)(𝑏−1𝑠−1𝑒−1)𝑠(𝑏−1𝑠−1𝑒−1) 
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          = 𝐵𝑒(−𝑒−1𝑏−1𝑠−1) 

elde edilir. Teorem 4.2.8 den 

|𝑑𝑒𝑡𝑁(𝑛)(𝜆)| ≤  𝐴𝑛 ,   𝑛 = 0, 1, 2, … ,   𝐼𝑚𝜆 ≥ 0, |𝜆| < 𝑇                                                  (4.16) 

elde edilmişti. 

𝜇(𝑀4, 𝑠), 𝑀4 kümesinin 𝑠 komşuluğunun Lebesgue ölçüsü olmak üzere (4.14), (4.16) ve 

𝑑𝑒𝑡𝑁(𝜆) fonksiyonu üst düzlemde özdeş olarak sıfır olmadığı için Teorem 2.5 kullanılırsa 

𝑡 > 0 olmak üzere 𝑀4 kümesi 

∫𝐼𝑛𝐺(𝑠)𝑑𝜇(𝑀4, 𝑠)

𝑡

0

 > −∞ 

bulunur.   

𝐼𝑛(𝐺(𝑠)) ≤ 𝐼𝑛𝑒(−𝑏−1𝑠−1𝑒−1) = −𝑏−1𝑠−1𝑒−1 

olduğu için 

∫
1

𝑏𝑒𝑠
𝑑𝜇(𝑀4, 𝑠) ≤ − ∫𝐼𝑛𝐺(𝑠)𝑑𝜇(𝑀4, 𝑠)

𝑡

0

𝑡

0

< ∞ 

olur. 

∫
1

𝑠
𝑑𝑠

𝑡

0

 

integrali ıraksak olduğu için 

∫
1

𝑠
𝑑𝜇(𝑀4, 𝑠) < ∞

𝑡

0

 

olması için 𝜇(𝑀4, 𝑠) = 0 olması gerekir. 𝜇(𝑀4, 𝑠) = 0 eşitliği de 𝑀4 = ∅ olması 

durumunda sağlanır. 

 

4.2.11. Teorem 

 

sup
𝑥∈(0,∞)

{exp(𝜀√𝑡) [‖𝑄(𝑡)‖ + ‖𝐴(𝑡)‖]} < ∞  

koşulu altında L operatörünün sonlu sayıda özdeğer ve spektral tekilliği olup özdeğer ve 

spektral tekilliklerinin katı da sonludur. 

 

 

 



40 

 

İspat 

 

Teorem 4.2.7 de 𝑀3 ⊂ 𝑀4 olduğu gösterilmişti. Ayrıca Teorem 4.2.10 da 𝑀4 = ∅ olduğu 

gösterildi. Dolayısıyla 𝑀3 kümesi boştur. O halde sınırlı olan 𝑀1 kümesi yığılma noktasına 

sahip olmadığı için sonludur. Dolayısıyla 𝑑𝑒𝑡𝑁(𝜆) fonksiyonu kapalı üst yarı düzlemde 

sonlu sayıda sıfıra sahiptir. 𝑀4 = ∅ olduğundan dolayı bu sıfırlarının katları da sonludur. 
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6. SONUÇ VE ÖNERİLER 

Bu tezde genel sınır koşullu matris katsayılı Sturm-Liouville operatörünün diskret 

spektrumunun sonluluğu detaylı bir biçimde öğrenilmiştir. Fakat potansiyel matris 

fonksiyonu ve sınır koşulundaki matris fonksiyonunun azalma hızına bağlı olarak 

özdeğerlerin ve spektral tekilliklerin yapısı incelenmemiştir. Savunmadan sonra bu 

problemin öğrenilmesi önem arz etmektedir.  
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