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ABSTRACT

Conversational agents become more realistic as they utilize affective non-verbal

communication, such as the use of gestures, in human computer interaction. Syn-

thesis and animation of gestures to accompany affective verbal communication can

help to create more naturalistic conversational agents. In human-to-human commu-

nication, speech signal carries rich emotional cues, which are further emphasized by

affect-expressive gestures. Speech-driven gesture synthesis can map emotional cues of

the speech signal into affect-expressive gestures by modeling complex variability and

timing relationships of the joint articulation of speech and gesture. In this thesis, we

first introduce a framework for joint analysis of speech prosody and human body ges-

tures towards automatic synthesis and realistic animation of beat gestures from speech

prosody and rhythm. Later, we investigate the use of continuous affect attributes,

which are activation, valence and dominance, in speech-driven affective synthesis and

animation of gestures. We present a statistical framework for multimodal analysis

of gesture, speech and affect based on the hidden semi-Markov models, where ges-

tures are representing the states, and speech-prosody and continuous affect attributes

are representing the observations of the model. Different structures of the statis-

tical model are evaluated for synthesis and animation of affect-expressive gestures

given speech and affect attributes. Evaluations are performed over two multimodal

datasets in speaker-dependent and independent settings. Among different statisti-

cal structures, the conditional structure, which models observation distributions as

prosody given affect, achieved the best performance with objective evaluations for the

gesture synthesis and with subjective evaluations for the gesture animation.
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ÖZETÇE

Konuşabilen insansı sanal arayüzler, jestler gibi duygu yüklü sözsüz iletişimi kul-

landıkça insan bilgisayar etkileşiminde daha gercekçi hale gelirler. Duygu yüklü sözlü

iletişime eşlik eden jestlerin sentez ve canlandırması, daha doğal görünen konuşabilen

arayüzleri yaratmakta yardımcı olur. İnsan insana iletişimde zengin duygu bilgisi

içeren konuşma sinyali, duygu ifade eden jestler ile daha da vurgulanır. Konuşma

sürümlü jest sentezi, konuşma sinyalindeki duygu içeriğini konuşma ve jest karmaşık

çeşitliliğini ve zamanlama ilişkisini modelleyerek duygu yüklü jestlere aktarır. Bu

tezde, önce konuşma bürünü ve ritimi sürümlü vurgu jestleri otomatik sentezi ve

gerçekçi canlandırması için konuşma bürünü ile jestlerin ortak modellemesini sunuy-

oruz. Daha sonra, aktivasyon, değerlik, ve baskınlık ile ifade edilen sürekli duygu

özniteliklerini kullanarak konuşma sürümlü duygu yüklü jest sentezi ve canlandırmasını

araştırıyoruz. Jestlerin durum ve konuşma bürünü ile duygu özniteliklerinin gözlem

olarak ifade edildiği saklı yarı-Markov modelleri kullanarak jest, konuşma ve duygu

sinyallerinin çok kipli analizini sunuyoruz. Konuşma ve duygu öznitelikleri sürümlü

duygu ifadeli jest sentezi ve canlandırması için farklı istatiksel modeller değerlendirildi.

Konuşmacıya bağlı ve konuşmacıdan bağımsız olarak düzenlenen sistemler çok kipli

iki veri tabanı üzerinde denendi. Farklı istatiksel yapılar içinde, gözlem dağılımını

duyguya bağlı bürün olarak modelleyen koşullu yapı, jest sentezi nesnel değerlendirme-

lerinde ve jest canlandırması öznel değerlendirmelerinde en iyi başarımı elde etti.
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Chapter 1

INTRODUCTION

1.1 Context and Motivation

Verbal and non-verbal behaviors are the two important aspects of human communi-

cation. While speech is the source of verbal communication, gestures as a channel for

non-verbal communication, help to emphasize, complement, or clarify the intended

thoughts, attitudes, and emotions. In this regard, computer generated gesture anima-

tions represent an elementary source of visual content for a wide variety of applications

such as, movies and video games, and broader domains as human-computer interac-

tion. The increasing role of computers in human life brings a demand for higher

quality and more realistic animations and the main target for this demand is the rep-

resentation of conversational agents (CAs). Although CA animations have reached

a photorealistic level, representation of CAs is a challenging task when motion is

involved.

Creating believable CAs engage multiple research directions ranging from motion

control to cognitive aspects, where one important aspect is synthesis of gestures ac-

companying speech. Various types of systems have been proposed towards this goal

and the main components considered include the following: source input signal (text,

audio, video, motion capture), output signal (modality, visual quality, naturallness,

expressiveness), visual representation (3D, image) and method used to achieve desired

output. The most popular techniques for gesture synthesis use text or speech signal

as input. Text-to-speech systems input text information to determine accompanying

gesture types and their timings. Speech-driven animation systems use audio speech



2 Chapter 1: Introduction

signal as input and generate target behaviors based on features extracted from the

input signal. Naturalistic speech carries emotional cues. Therefore, in order to create

believable gestures animations for CAs, emotional content of speech should be also

taken into account. Generation of expressive gestures using speech-driven systems is

limited to the basic catagorical emotions. Overcoming this limitation represents one

of our main motivations.

1.2 Goal and Contributions

This thesis presents an affective speech-driven gesture synthesis and animation frame-

work for the expression of affective gestures in conversational agents. We are inter-

ested in fully automatic speaker-independent systems.

1.2.1 Goal

Our goal is to automatically generate expressive arm gestures accompanying affective

speech.

For this purpose, we propose a system that inputs (1) speech audio data and (2)

its affective attributes.

While expressive gesture generation remains as the main focus of thesis, compar-

ison of methods with objective measures and subjective tests for perceptual experi-

ments were also carried out.

1.2.2 Contributions

The main contributions presented within this work:

• We present a data-driven, learning-based computational model for affective

speech-driven arm-gesture synthesis and animation.

• We propose the Hidden Semi-Markov Model based gesture model that we use

to capture the relationship between gestures, affect and speech prosody.
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• We present the unit selection based animation generation system.

• We investigate four models for integrating affect attributes into this general

framework so as to generate novel gesture performances from affective speech:

prosody-only, affect-only, joint affect and prosody, prosody conditioned on af-

fect.

• We perform extensive experimental comparison of the four approaches using

subjective and objective tests.

1.3 Thesis Organization

The remainder of this dissertation is organized as follows:

Chapter 2, Literature Review: presents notable work related to: (1) conver-

sational agents, (2) visual text-to-speech, (3) speech-driven animations, (4) theories

of emotion, (5) emotion and gestures. We overview the methods and systems related

to these subjects and focus on affect expressiveness in each section.

Chapter 3, Hidden Semi-Markov Model Based Gesture Synthesis and

Animation: presents the general framework with components multimodal analysis,

gesture synthesis and animation generation. Multimodal datasets, which are used in

the experiments, are also introduced.

Chapter 4, Speech Rhythm in Gesture Animation: presents speaker-

dependent and independent framework using speech rhythm information during the

animation generation process. We also present objective and subjective evaluation

methods for the synthesis and animation results.

Chapter 5, Affective Synthesis and Animation of Arm Gestures from

Speech Prosody: presents contribution of affect attributes in speech-driven synthe-

sis and animation of gestures by using the following modeling strategies: (1) prosody-

only, (2) affect-only, (3) joint affect and prosody, (4) prosody conditioned on affect.

We also present objective and subjective evaluation methods for the synthesis and

animation results.
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Chapter 6, Conclusions: presents a summary and comments on the contribu-

tions.

1.4 Publications

Part of the work carried during this thesis was presented in the following publications:

1. Multimodal Analysis of Speech Prosody and Upper Body Gestures

Using Hidden Semi-Markov Models, poster presentation, Elif Bozkurt,

Shahriar Asta, Serkan Özkul, Yücel Yemez, and Engin Erzin, proceedings In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP)

2013 [Bozkurt et al., 2013].

2. Affect-Expressive Hand Gestures Synthesis and Animation, poster pre-

sentation, Elif Bozkurt, Engin Erzin, and Yücel Yemez, proceedings Interna-

tional Conference on Multimedia and Expo (ICME) 2015 [Bozkurt et al., 2015a].

3. Multimodal Analysis of Speech and Arm Motion for Prosody-Driven

Synthesis of Beat Gestures, Elif Bozkurt, Yücel Yemez, and Engin Erzin,

submitted, Speech Communication, 2015 [Bozkurt et al., 2015b].

4. The JESTKOD Database: An Affective Multimodal Database of Dyadic

Interactions, Elif Bozkurt, Hossein Khaki, Sinan Keçeci, B. Berker Türker,

Yücel Yemez, and Engin Erzin, accepted for publication, Language Resources

and Evaluation (LREV), 2016 [Bozkurt et al., 2016a].

5. Affective Synthesis and Animation of Arm Gestures from Speech

Prosody, Elif Bozkurt, Yücel Yemez, and Engin Erzin, to be submitted [Bozkurt

et al., 2016b].



Chapter 2

LITERATURE REVIEW

This chapter presents a review of existing methods related to non-verbal behavior

synthesis, more specifically, gesture synthesis for conversational agents. We will de-

scribe state of the art related to this topic, while maintaining a focus on the relation

to affect expressiveness.

2.1 Conversational Agents

Conversational agents (CAs), which are used in various number of applications in-

cluding e-learning, entertainment applications, and also as virtual psychotherapists,

virtual presenters, characters in games, have been named under many terms such as

virtual humans, avatars, virtual actors etc. We will use the term converstional agent

to define the three-dimensional human representation in computer graphics intended

to interact with humans.

Interacting with CAs is challenging since every human is an expert at observing

details in human motion, facial expression and physical appearance. In addition, this

familarity is also a reason for the dilemma in accepting synthesized human behavior

and appearance, which known as the concept of uncanny valley [Mori, 1970]. Ac-

cording to Thalmann et al., achieving believability of CAs depends on three factors:

appearance that is how realistic face and body shapes, skin textures, hair are; motion

that is how gestures, facial expressions realistic, smooth, and flexible are; behavior

that is how interactive, expressive the agent is [Magnenat-Thalmann and Thalmann,

2005]. These aspects are interdependent and equally important, and decades of re-

search have brought great improvement. For example, photorealistic digital results are

obtained by using scanning technologies such as the USC ICT’s Light Stage [Debevec,
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2012]. Real-time performance based facial animation has been carried to enable users

control the facial expression of an agent in real-time [Weise et al., 2011].

Different techniques were introduced for representation of CAs, which made it

difficult to collaborate and compare research methods. Therefore, standards have

been defined such as FACS (Facial Action Coding System) and MPEG-4 [Ekman

and Rosenberg, 1997, Ostermann, 1998]. FACS is a description of movements of

facial muscles and jaw, tongue composed of 44 action units (AUs). Facial poses

are represented as blendshapes and these blendshapes are interpolated during the

animation. MPEG-4 is an object-based multimedia compression standard using facial

animation parameters that combine AUs.

Creating believable behaviors for CAs remains as a difficult task. Human com-

municative skills include speech, coverbal gestures, eye gaze, and facial expressions.

CAs can potentially display these non-verbal behaviors. Another fundamental aspect

of believable behavior generation is perception and expression of emotion. Expres-

sive behaviors are synthesized by visual text-to-speech or speech-driven methods. A

review of visual text-to-speech and speech-driven animation systems are presented in

sections 2.2 and 2.3, respectively.

2.2 Visual Text-to-Speech

Text-to-speech (TTS) synthesis generates speech from input text. Likewise, visual

text-to-speech implies an additional text-driven animation module that targets to gen-

erate and animate body gestures from a tagged text input [Cassell et al., 1994,Cassell

et al., 2001,Noma et al., 2000,Reithinger et al., 2006,Pelachaud, 2005, Stone et al.,

2004, Neff et al., 2008, Kopp and Wachsmuth, 2004]. Text-driven systems use rule-

based approaches to synthesize motion animation, where a set of rules are defined to

simulate the desired behavior. Rules are mostly defined according to observations of

visual cues and prosody. Generally, a few animation frames are predicted using the

predefined rules, while the rest of the frames are obtained by interpolation. One of

the rule-based systems was introduced by [Cassell et al., 1994], which automatically
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generates and animates conversations of multiple agents accompanyed by speech, fa-

cial expressions and hand gestures. Arm, wrist and hand motions are coordinated to

create meaningful gestures. Gestures and speech are synchronized at the phoneme,

word, and sentence levels. In this system, the mapping from text to gestures is con-

tained in a set of rules derived from nonverbal conversational behavior research, and

gestures also collected in a pre-defined gesture dictionary. The Behavior Expression

Animation Toolkit (BEAT) [Cassell et al., 2001] can be thought of as a more com-

plex version of the gesture generation system proposed in [Cassell et al., 1994], which

uses linguistic and contextual information contained in the speech text to control

movements of the hands, arms and face, and intonation of the voice. Another exam-

ple to text-driven methods is the Virtual Human Presenter of [Noma et al., 2000],

which generates gestures using keyword triggered rules. More recent works such as

VirtualHuman [Reithinger et al., 2006] and multimodal expressive CAs [Pelachaud,

2005] aim to develop interactive virtual characters with personality profiles and full-

body gesture animation by taking into account characters’ affective states. A common

behavior specification framework was proposed for conversational agent behavior gen-

eration [Heylen et al., 2008], which is used by Greta [Niewiadomski et al., 2009]. Greta

is capable of both verbal and non-verbal communication.

In contrast to the rule-based methods mentioned above, two related methods

[Stone et al., 2004] and [Neff et al., 2008] follow a data-driven approach to generate

gesticulation of a particular speaker from speech text. [Stone et al., 2004] use motion

graphs to rearrange pre-recorded audio and motion segments, whereas [Neff et al.,

2008] develop a probabilistic framework to learn an abstract statistical model for the

gesticulation of a speaker from annotated audiovisual data.

Expressive gesture synthesis is a relatively new research area with a major focus on

categorical representation of basic emotions. In the current literature, expressiveness

of gestures are generally specified by using parameters [Hartmann et al., 2006], [Hart-

mann et al., 2005], [Pelachaud, 2009], [Niewiadomski et al., 2009], [Mancini et al.,

2011], or by selecting appropriate gesture types [Noot and Ruttkay, 2005,Becker et al.,
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2004,Becker et al., 2007,Gratch and Marsella, 2001] depending on the emotional state

as defined in an input markup text file.

Text-based expressive animation systems generally specify the dynamics of move-

ment based on a set of expressivity parameters for categorical emotions, defined in

a markup language. For example, EMOTE is a 3D character animation system that

takes an already existing neutral key pose animation and adds some impression of

emotions into torso and arm movements [Chi et al., 2000]. However, EMOTE is

for modifying but not for generating gestures, where the goal is designing affective

expressions by high-level descriptors such as effort and shape transformations. Be-

sides, modifying the expressivity of a gesture may alter the intended meaning in

non-verbal communication. Greta on the other hand, is a conversational agent (CA)

that communicates through her face and gestures while talking to the user via text-to-

speech [Hartmann et al., 2006,Hartmann et al., 2005,Pelachaud, 2009,Niewiadomski

et al., 2009,Mancini et al., 2011]. Based on the communicative functions contained

in a markup input text, the gesture system chooses a matching prototype gesture

to be executed. Baseline expressivity parameters, such as overall activation, spatial

extent, temporal extent, fluidity, repetition and power, are defined for gestures, as

well as for facial expressions, and the baseline is dynamically modified based on a set

of hand-crafted rules depending on the communicative intentions (such as, wide vs.

narrow gestures, and smooth vs. jerky movements). One of the comprehensive studies

in creating expressive CAs is the SEMAINE system that employs Sensitive Artificial

Listeners (SAL) scenario for studying emotional and non-verbal behavior [Schroder

et al., 2012]. In this system a behavior lexicon associates communicative functions

with the corresponding multimodal signals that a CA can produce.

Categorical emotion states do not only change movement quality, but also the type

of movements in text-driven gesture animations. Several gesture synthesis studies

have modeled the influence of emotional state on gesture selection. Gestyle is a

markup language, which indicates parts of text where the CA must accompany with

a gesture [Noot and Ruttkay, 2005]. Emotional states, which are defined as entries in
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a style dictionary, are used for designing speech and non-verbal modalities. Several

dictionaries can be used together such as, gender, culture, and profession. Max is a

CA that uses a direct mapping between emotional states, mood, boredom level and

behaviors to modulate gestures, facial expression and speech in time [Becker et al.,

2004,Becker et al., 2007]. For example, yawning behavior is triggered for high levels

of boredom. Additionally, high arousal emotional state leads to faster speech and

associated gestures. Gratch and Marcella investigate impact of the emotional modes

on the physical expressions through suitable choice of gestures by using the emotional

state of a CA to drive the finite state machine that determines behaviors [Gratch and

Marsella, 2001]. Action tendencies and type of non-verbal behaviors are linked to the

emotional state.

2.3 Speech-driven Animations

In addition to text-driven approaches, speech-driven non-verbal behavior synthe-

sis systems have been proposed, which utilize prosody features as input. Acoustic

prosody, which refers to speech characteristics that do not portray vowels and con-

sonants but longer units of speech like the syllables, reflects various features like the

speaker’s identity, emotional state, gender, or age. Prosody features can be used to

determine how people are saying rather than what people are saying. Such set of

features include: pitch, energy, rhythm, speech rate, pauses etc. These features are

called as suprasegmental since these features are above the level of phoneme.

Prosody is crucial for spoken interaction and has been employed for non-verbal

behavior synthesis purposes. An extensive study of prosody functions such as turn-

taking, emotion and attitude are provided in [Xu, 2011]. Relation of prosody with

eyebrow movements [Ding et al., 2013], head movements [Sargin et al., 2008, Busso

et al., 2007], facial expresions [Busso and Narayanan, 2007,Mariooryad and Busso,

2012, Graf et al., 2002, Hong et al., 2002, Albrecht et al., 2002, Chuang and Bre-

gler, 2005], and gestures [Levine et al., 2010,Baena et al., 2013,Chiu and Marsella,

2014,Bozkurt et al., 2013] have been investigated. Ding et al. investigated statistical
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Markovian systems that take into account speech features as contextual information

towards synthesis of eyebrow motion [Ding et al., 2013]. Granstrom and House in-

vestigated audio-visual prosody for creating a CA capable of displaying realistic head

and eyebrow movements [Granström and House, 2006]. They tested the perceptual

sensitivity of prominence and feedback to the timing of both eyebrow and head move-

ment in relation to the syllable. The experimental results indicated that combined

head and eyebrow movements are quite useful cues to prominence when synchronized

with the stressed vowel. Busso and Narayanan investigate interrelation between facial

expressions and prosody [Busso and Narayanan, 2007]. Their study reveals that the

lower face region provides the highest activeness and correlation rates between the

two modalities. The authors also show that the emotional content influences the rela-

tionship between facial expressions and speech, where a small set of prosodic features

are used for emotion-dependent structures in the audio-visual mapping. They also

mention that facial gestures and speech features are coupled at different time scales.

For example, while lips are locally tightly coupled with the speech, the eyebrow and

head motion are coupled at the sentence level. Sargin et al. introduced a two-stage

framework for joint analysis of head gestures and speech prosody patterns towards

synthesis of head gestures from speech prosody [Sargin et al., 2008]. [Busso et al.,

2007] present an approach to synthesize emotional head motion sequences driven by

prosodic features, that builds hidden Markov models for emotion categories to model

the temporal dynamics of emotional head motion sequences. Mariooryad and Busso

explored joint models of speech and facial expressions to preserve the coupling between

the modalities. Various coupling models for head, eyebrow motions and speech are

proposed and speech-driven facial animations are generated [Mariooryad and Busso,

2012]. The authors emphasize the interconnection of prosodic features and facial

expressions based on the perceptual evaluations on the animation results, which are

generated by using the joint models. Graf et al. show that head movements and facial

expressions are well synchronized with main prosodic events such as pitch accents,

phrase boundaries [Graf et al., 2002]. Albrect at al. use prosodic features for facial
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expression generation from speech [Albrecht et al., 2002]. [Chuang and Bregler, 2005]

describe a method for creating expressive facial animation based on a statistical model

learned from video for factoring the expression and lip speech. They also integrate

head motion synthesis to their face animation scheme by first building a database of

examples which relate audio pitch to motion and then matching new audio streams

against segments in this database.

Speech-driven gesture animation has been studied in the recent literature mostly

without specific emphasis on affect-expressive models. In [Levine et al., 2010], Levine

et al. have introduced gesture controllers, availing a modular methodology to drive

beat-like gestures with live speech via customized gesture repertoires. They have

a two-stage model, where in the first stage prosodic speech features are related to

gestures, and then the gestures are related to motion features in the second stage.

Gesture controllers infer hidden states from speech using a conditional random field

that analyzes acoustic features in the input and select the optimal gesture kinematics

based on the inferred states. Later, Baena et al. present a single stage model that

links speech prosody to beat gestures based on manually annotated body motion and

speech signals [Baena et al., 2013]. They employ motion graphs to generate appro-

priate gestures with varying emphasis for a given speech input to model aggressive

and neutral performances. Chiu and Marsella employ a two step approach for speech-

driven gesture animation [Chiu and Marsella, 2014]. They use conditional random

fields (CRF) for mapping speech to gesture annotations. Then, Gaussian process la-

tent variable models (GPLVMs), which represent gestures in a low-dimensional space,

are used for motion synthesis. Finally, an interpolation algorithm models coarticula-

tion of gestures.

Some recent studies utilize semantics in addition to prosody for non-verbal be-

havior synthesis. Marsella et al. consider agitation level and word stress of sentence

audio to drive their rule-based character animation system that generates gestures

including facial expressions, hand motion, head movements, eye saccades, blinks and

gazes [Marsella et al., 2013]. Although their method produces promising results, it
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requires significant setup of appropriate gesture motions for the gesture database.

Sadoughi and Busso propose a hybrid system for head and hand gesture synthesis,

combining the speech-driven and the rule-based system components [Sadoughi and

Busso, 2015]. They detect similar gestures and study their relation with the semantic

functions in the message. Then, a speech-driven system retrieves gesture samples for

synthesizing behaviors constrained by the target gesture.

2.4 Theories of Emotion

In the psychology literature, three approaches have been introduced for modelling af-

fect: categorical, dimensional and appraisal-based approaches [Grandjean et al., 2008].

The categorical approach mostly assumes a small number of universal emotion classes

such as, anger, disgust, fear, happiness, sadness, and surprise [Ekman and Friesen,

1975]. However, this approach is limited since, humans have the ability to perceive and

express more complicated affective states like depression [Russell, 1980]. On the other

hand, dimensional approaches represent affect on a continous scale, which is useful for

explaining non-categorical, complex affective states and also affective state transitions

during human interactions. Dimensional approaches mostly concentrate on represen-

tation of affect in the two dimensional space as in activation and valence domains.

Additionally, some researchers also include the third dimension as the dominance do-

main into their analysis. In these models, affect is described along the active-passive,

positive-negative and dominant-submissive dimensions [Mehrabian, 1996]. A detailed

overview on the continuous repsentation of affect can be found in [Gunes et al., 2011].

The third approach claims that emotions are elicited by continuous subjective evalu-

ations (appraisals) of the outside world [Scherer et al., 2001]. However, it is still an

open research area how to use the appraisal based affect approach for automatic mea-

surement of affect, since it is challenging to evaluate such a complicated, multi-partite

signal.
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2.5 Emotion and Gestures

Neuroscientific and psychological studies reveal that body movement and its expres-

sivity constitute an important modality of emotion communication [Tracy and Robins,

2007,De Gelder, 2006]. For example, fear brings to contract the body to be as small as

possible, surprise brings to turn towards the object capturing our attention, joy may

bring to openness and upward acceleration of the forearms [Boone and Cunningham,

1998]. Wallbott collected video recordings in which actors portrayed emotions within

defined scenarios and observed discriminative features of emotions both in static de-

scriptors of the body posture and in the body movement quality [Wallbott, 1998].

More specifically, Kipp and Martin investigated the relationship between basic ges-

tural forms (handedness, hand shape and motion direction) and emotion, where the

authors report that handedness is closely correlated with emotion categories [Kipp

and Martin, 2009]. Similarly, Dael et al. also suggested that emotional attributes

are associated with specific spatio-temporal characteristics perceived in arm gesture

movements [Dael et al., 2013]. Within this view, processing of non-verbal signals for

conversational agents can be translated into valuable information conveying affective

messages. Karg et al. present an extensive survey on body movements for affective

expression in [Karg et al., 2013].



Chapter 3

HIDDEN SEMI-MARKOV MODEL BASED GESTURE

SYNTHESIS AND ANIMATION

3.1 Introduction

Gesticulation is an essential component of human communication. Speech and ges-

tures form a composite communicative signal that boosts the naturalness and affec-

tiveness of the communication. Although virtual environment designs in the human-

computer interaction (HCI) field are increasingly adopting and emphasizing the human-

centered aspect, a natural, affective and believable gesticulation is often missing in

the virtual character animations. In this context, automatic synthesis of gesticulation

in synchrony with speech, which incorporates nonverbal communication components

into virtual character animation, can help improving the plausibility of animations

and can find a wide range of applications in human-centered HCI, video gaming and

film industries. We develop a multimodal system for speech-driven synthesis and an-

imation of arm gestures using a statistical framework for joint analysis of speech and

gesticulation.

Gesture and speech co-exist in time with a tight synchrony; they are planned

and shaped by the cognitive state and produced together. In one of the pioneering

studies on gesture and speech relationship, [Kendon, 1980] proposed a widely accepted

hierarchical model for gesture in terms of phases, phrases and units. In this model,

the core gestural element is defined as gesture phase. Gesture phases can be active

or passive. An active gesture phase can be a stroke (a short and dynamic peak

movement) with a retraction or a preparation (in which arm goes to the start position

of the stroke phase). Passive gesture phases are movements like hold and rest, in
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which arm stays motionless. Combinations of phases constitute gesture phrases, and

then combinations of phrases form gesture units. In this hierarchical model, semantic

expressiveness increases with the level of hierarchy. In other words, gesture units are

semantically more expressive than gesture phrases, and gesture phrases include more

semantic content than gesture phases.

Synchrony between gestural and phonological structures has previously been stud-

ied by various researchers [Wagner et al., 2014]. [Kendon, 1980] points out the syn-

chrony between strokes and stressed syllables. Later [McNeill, 1992] proposes the

widely accepted phonological synchrony rule: the stroke of the gesture precedes or

ends at, but does not follow, the phonological peak syllable of speech. [Valbonesi

et al., 2002] investigate the nature of temporal relationship between speech and ges-

tures. In a recent study, [Loehr, 2012] presents a detailed investigation of temporal

and structural synchrony between intonation and gesture. His findings verify the

alignment of pitch accents with gestural strokes; furthermore, he presents evidences

of the synchrony between gesture phrases and intermediate intonation phrases.

There are four widely referred types of gestures, which were proposed by [McNeill,

1992]: iconics, metaphorics, deictics and beats. Iconic gestures illustrate images

of objects or actions, metaphoric gestures represent abstract ideas, deictic gestures

relatively locate entities in physical space, and beat gestures are simple repetitive

movements to emphasize speech. In a later study, based on the Tuite’s proposal [Tuite,

1993] that in every gesture there is a rhythmical beat-like pulse to carry significance

beyond its immediate setting, [McNeill, 2006] suggests taking metaphoricity, iconicity,

deixis, and emphasis as dimensions of gesture rather than types of gesture.

Although there seems to exist strong correlation between gestures and speech,

there are several challenges and difficulties involved in modeling this relationship.

The first challenge is due to the diversity of gestures related to speech semantic

content. Iconic, metaphoric and deictic gestures belong to this category which are

mainly related to semantic content. We exclude modeling these gestures and rather

focus on modeling beat gestures in relation to speech prosody . There are yet two
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main challenges in achieving this goal. The first is due to the difficulty in mapping

local prosody information to relatively longer duration semantic gestures, e.g., gesture

phrases. The second challenge is actually a temporal alignment problem: prosodic

cues and corresponding gestures do not always co-occur at exactly the same time

instant, and there may indeed be a lagged correlation in between.

3.2 System Overview

The general block diagram of our speech-driven gesture synthesis and animation sys-

tem is given in Figure 3.1. The system consists of three main tasks: analysis, syn-

thesis, and animation. Within the analysis task we have two stages: (i) feature

extraction and clustering of gesture phrases and prosodic units, and (ii) their mul-

timodal analysis. Section 3.3 presents the first stage of the analysis task, where we

perform feature extraction and unimodal clustering on speech and body motion data.

The audio stream is processed to extract prosodic features of the speech, whereas the

body motion data is expressed in terms of 3D joint angles. The gesture and audio

feature streams are then segmented via temporal clustering into recurrent patterns,

i.e, into gesture phrases and prosodic units, respectively. Section 3.4 describes the

second stage of the analysis task, where we use hidden semi-Markov models (HSMM)

to model the dependencies between speech prosody and gestures in a multimodal

framework. Sections 3.5 and 3.6 mainly address the synthesis and animation tasks,

respectively. In Section 3.5, we describe how an optimal sequence of gestures with

durations is synthesized for a given speech input by using the Viterbi algorithm over

HSMM. In Section 3.6, the synthesized gesture sequences with duration information

are mapped into body motion sequences by using a multiple objective unit selection

algorithm to generate animations.

3.3 Feature Extraction and Unimodal Clustering

We employ semi-supervised and unsupervised temporal clustering schemes to deter-

mine boundaries and categories of gesture phrases for speaker-dependent and inde-
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Figure 3.1: The block diagram of the general framework for the speech-driven gesture
synthesis and animation system.

pendent scenarios, respectively. We use an unsupervised scheme to cluster speech

into prosodic units.

3.3.1 Prosody Clustering

Characteristics of the prosody at the acoustic level, including intonation, rhythm, and

intensity patterns, carry important temporal and structural synchrony with gesture

phrases [Loehr, 2012]. Prosody has a marked effect on suprasegmental features such

as pitch, energy, and timing in the vicinity of an prosodic event [Ananthakrishnan

and Narayanan, 2008]. As we target to extract prosodic units through unsupervised

clustering we choose to use pitch and energy related acoustic features to model the

speech prosody. Note that here we define a prosodic unit as a speech segment with

a recurrent prosodic pattern. We choose to include speech intensity, pitch, and con-

fidence to pitch into the prosody feature vector. Prosody features are extracted over

50 ms analysis windows with 25 ms frame shifts. Speech intensity is defined as the
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logarithm of the average signal energy in the analysis window,

Ik = log(
1

W

W∑

i=1

sk[i]
2), (3.1)

where sk is the speech signal in the kth window, and W is the window size.

Pitch is extracted using the YIN fundamental frequency estimator, which is a

robust pitch frequency estimator based on the well-known auto-correlation method

[de Cheveigne and Kawahara, 2002]. Pitch feature, νk, is defined as logarithm of

the fundamental frequency at the kth frame. The YIN estimator defines a difference

function based on the auto-correlation function,

ek(τ) =
W∑

i=1

(sk[i]− sk[i+ τ ])2. (3.2)

We define the confidence to pitch feature based on the normalized difference function

as,

ck = 1−
ek(τ

∗)
1
τ∗

∑τ∗

i=1 ek(i)
, (3.3)

where τ ∗ is the pitch lag corresponding to the fundamental frequency.

Since the prosody feature values are speaker and utterance dependent, we apply

a mean and variance normalization to the prosody features. We compute the mean

and variance of prosody features for each speech utterance, and perform mean and

variance normalization to get the normalized prosody features Īk, ν̄k, and c̄k. Then

the normalized intensity, pitch, confidence to pitch features and the first temporal

derivative of these three parameters are used to define the prosody feature vector at

frame k,

f
p
k = [Īk, ν̄k, c̄k, ∆Īk, ∆ν̄k, ∆c̄k], (3.4)

where ∆ defines the first order derivative for the corresponding features.

We employ unsupervised temporal clustering using the parallel HMM architec-

ture in [Sargin et al., 2008] to extract prosody clusters. The prosody feature stream

F p = {f p
1,f

p
2, ...,f

p
T} is used to train a parallel branch HMM structure, Λp, which
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clusters the prosody feature stream and captures recurrent prosodic units through un-

supervised learning. The HMM structure Λp is composed of Mp parallel left-to-right

HMMs, {λp1, λ
p
2, ..., λ

p
Mp

}, where each λpm is composed of Np states. The HMM based

unsupervised clustering process segments the prosody feature stream into prosodic

units. We denote the lth prosodic unit in the stream by εpl and the associated

class label of the lth unit by ℓpl , which is one of the Mp available prosody classes

{p1, p2, ..., pMp
}. A frame level label sequence is then defined for the prosodic unit

sequence,

ξk = ℓpl for k = kl, kl + 1, . . . , kl+1 − 1, (3.5)

where ξk is the prosody label of the kth speech frame and [kl, kl+1) spans the lth

prosodic unit. These frame level prosody labels will eventually serve as the observa-

tions of the HSMM structure that we will describe in Section 3.4.

3.3.2 Gesture Clustering

We model gestures, specifically beat type arm gestures, at gesture phrase level to

correlate with and emphasize speech prosody. For analysis of gestures, we employ

joint angles from four body parts: left arm, left forearm, right arm, and right forearm

as shown in Figure 3.2. We define the joint angle vector for the ith joint at frame k

as θik = [φik
x , φ

ik
y , φ

ik
z ], where φ

ik
x , φ

ik
y , φ

ik
z are the Euler angles respectively in the x, y,

z directions, representing the orientation of the ith joint at frame k in degrees. Then,

we define the gesture feature vector at frame k, fJi
k , to include the joint angles from

the ith body part and their first order derivatives,

fJi
k = [θik,∆θ

i
k], for i = 1, 2, 3, 4, (3.6)

where ∆θik denotes the first order derivative of the joint angle vector θ
i
k. The resulting

gesture feature for the four joints at time frame k is defined as,

f
g
k = [fJ1

k , ...,f
J4
k ]. (3.7)
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Figure 3.2: The black circles correspond to the joints used for gesture representation
as left forearm, left arm, right arm, and right forearm, respectively.

Semi-supervised Gesture Clustering

Temporal clustering of the gesture feature sequence is necessary for analysis of re-

curring beat gesture phrases. In the speaker-dependent case, we implement a semi-

supervised clustering method using the parallel branch HMM structure, Λg, over the

gesture feature stream F g = {f g
1,f

g
2, ...,f

g
T}, with duration of T frames. The HMM

structure Λg initially is set to have two parallel branch HMMs, {λg1, λ
g
2}, where each λ

g
m

is composed of Ng = 10 states corresponding to the minimum gesture phrase duration

of 10 frames (1
3
seconds assuming 30 video frames/sec). The number of branches is

iteratively increased toMg in a semi-supervised manner using the following procedure:

(i) Initially set Λg to have two branches to model the rest position of arms and

all the other remaining arm movements. Manually label examples of the rest

event (as many as necessary to train an HMM structure) from gesture stream

by inspecting the video.

(ii) Perform the Baum-Welch training of the Λg.

(iii) Perform Viterbi decoding to get temporal clusters.

(iv) Visually inspect and correct clusters as needed. Repeat steps (ii) and (iii) until

convergence.
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(v) If a new gesture phrase, which is recurrent in the data and not covered by the

Λg, exists, go to step (vi), otherwise stop.

(vi) Manually label several examples of the new gesture phrase. Add a branch to

the Λg for the new gesture phrase with initial training. Go to step (ii).

The proposed semi-supervised clustering process segments the gesture feature stream

into gesture phrases, εgl , with label ℓgl as one of the Mg available gesture classes

{g1, g2, ..., gMg
}. All gesture phrases εgi from gesture class gi are grouped together to

build a gesture pool Gi = {εgi1, ..., εgij, ..., εgiN
G
i }, where εgij is the jth gesture phrase

in the pool, and NG
i is the number of gesture phrases in the gesture pool Gi.

Unsupervised Gesture Clustering

Unsupervised gesture clustering is applied for the speaker-independent setting, where

a large scale multimodal dataset has been used for this purpose. Unlike the clus-

tering results of the semi-supervised approach in Section 3.3.2, the resulting gesture

patterns of unsupervised clustering are not explicitly compatible with the gesture

phrase definition presented in [Kendon, 1980]. However, there is reported evidence

that these patterns are meaningful for explaining the nature of gestures ( [Yang et al.,

2014], [Yang and Narayanan, 2016]). For simplicity, we will use the same notation

with the gesture phrases in Section 3.3.2, as εgi for the gesture patterns resulting from

gesture class gi.

Similar to the prosody clustering process in Section 3.3.1, we apply the unsuper-

vised clustering method based on parallel-HMMs [Sargin et al., 2008] to the gesture

feature sequence F g = {f g
1,f

g
2, ...,f

g
T}, with duration of T frames. We segment and

cluster gesture sequences into gesture patterns with duration information. The HMM

structure Λg is set to have Mg parallel branch HMMs, {λg1, ..., λ
g
Mg

}, where each λgm is

composed of Ng = 10 states corresponding to the minimum gesture pattern duration

of 10 frames (1
3
seconds assuming 30 video frames/sec) considering the works by [Yang

et al., 2014] and [Bozkurt et al., 2015a]. We also create a gesture pool Gi for each
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gesture class gi.

3.4 Multimodal Analysis of Gestures and Prosody

In this section we construct a multimodal analysis framework to model the relation-

ship between beat gestures and speech prosody at the gesture phrase level. In general,

prosodic units are much shorter than gesture phrases in duration, and the stroke of a

gesture phrase precedes or ends at, but does not follow, the phonological peak syllable

of speech as [McNeill, 1992] stated. A gesture phrase sequence, when accompanied

by a sequence of prosodic units, forms a Markov random process. One useful math-

ematical model for multimodal analysis of gesture phrases and prosodic units can be

constructed by taking gesture phrases as the states of a Markov chain and prosodic

units as the observations of this Markov process. Hence, state transitions correspond

to articulation of consecutive gesture phrases, and gesture phrases can be located in

time according to the McNeill’s phonological rule by observing prosodic units.

Synthesizing a gesture phrase sequence using the conventional Markov chain model

given prosodic unit observations would however have a shortfall in modeling gesture

phrase durations in time. A useful mathematical model to overcome this shortfall is

to introduce a statistical state duration model so that one can better control gesture

phrase durations in the synthesis process. Combination of these two useful mathe-

matical models, i.e., Markov chain and state duration, yields the hidden semi-Markov

model (HSMM) framework [Yu, 2010] that we use for multimodal analysis of gesture

phrases and prosodic units. HSMM is an extension of HMM, which allows the under-

lying process to be a semi-Markov chain with states having variable durations. This

is to say that the underlying process is Markovian at certain jump instants [Barbu

and Limnios, 2008]. Figure 3.3 shows how such an HSMM structure functions, where

gesture phrase labels and frame-level prosody labels are depicted as states and obser-

vations, respectively. Gesture transitions define state transitions, whereas prosodic

unit distributions per gesture class define the observation emission distributions. The

state duration distributions are estimated over the gesture phrase duration informa-
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tion. Note that the observations of the HSMM structure are frame-level prosody

labels defined in (3.5). This is essential since in this way, hidden state durations,

hence gesture durations, can be represented in terms of fixed length speech frames.

Figure 3.3: In the hidden semi-Markov model, prosodic units are labeled as ℓpi , frame-
level prosody labels (ξt) correspond to observations and gesture phrases (εgk) corre-
spond to states (gm).

An HSMM representing frame-level prosody labels as observations with Mg fully

connected states is modeled by Λgp = (A,B,D,Π). The states of Λgp represent

gesture classes, and the model parameters A, B, D, Π respectively stand for state

transition probability, observation emission distribution, state duration distribution,

and initial state distribution matrices.

TheMg×Mg state transition matrix A is defined by entries aij, each representing

the state transition probability from gesture class gi to gj,

A : {aij = P (ℓgl = gj|ℓ
g
l−1 = gi)} i, j = 1, ...,Mg, (3.8)

where ℓgl represents the gesture label of the lth gesture phrase in the sequence. The

observation emission distribution B is modeled by discrete probability mass functions

for each gesture gi,

B : {bi(pj) = P (pj|ℓ
g
l = gi)} i = 1, ...,Mg, j = 1, ...,Mp, (3.9)

where bi(pj) is the probability of observing prosodic unit pj at gesture class gi. The

state duration distribution D is formed in terms of state dependent duration proba-
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bility mass functions,

D : {di(n)} i = 1, ...,Mg, n = 1, ...,
Dmax

δ
, (3.10)

where di(n) is the probability of a gesture phrase from gesture class gi lasting nδ sec,

Dmax is the maximum duration among all gesture phrases, and δ is the histogram bin

size for the underlying probability mass function. In our experiments, we take the

maximum duration as Dmax = 10 s, and the histogram bin size as the speech frame

duration δ = 25 ms. The initial state probability vector Π is defined by entries πi,

each representing the probability of starting with gesture class gi as the first gesture

phrase,

Π : {πi = P (ℓg1 = gi)} i = 1, ...,Mg. (3.11)

The Λgp model is extracted by estimating the statistical parameters of the model

over a training data. Statistical parameter estimations are given as:

πi = P (ℓg1 = gi) =̂
C(1, i, j)∑
j′ C(1, i, j

′)
, (3.12)

aij = P (ℓgl = gj|ℓ
g
l−1 = gi) =̂

∑
l C(l, i, j)∑

l

∑
j′ C(l, i, j

′)
, (3.13)

bi(pj) = P (pj|ℓ
g
l = gi) =̂

O(i, j)∑
j′ O(i, j

′)
, (3.14)

di(n) =̂
H(i, nδ ≤ t < (n+ 1)δ)∑
n′ H(i, n′δ ≤ t < (n′ + 1)δ)

, (3.15)

where C(l, i, j) is the number of times gi appears as the label of the lth gesture phrase

and gj as the label of (l + 1)st gesture phrase, O(i, j) is the frame count of prosodic

unit pj at gesture class gi, and H(i, nδ ≤ t < (n + 1)δ) is the number of occurrences

of gesture class gi with duration t in [nδ, (n+ 1)δ) interval.

3.5 Gesture Synthesis

Gesture synthesis is defined as decoding an optimal state sequence, ℓ̂
g
, over the HSMM

Λgp given a sequence of frame level prosodic unit labels, {ξ1, ξ2, . . . , ξT} (see (3.5)).
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Note that the decoded optimal state sequence delivers a synthesized label sequence

for gesture phrases, ℓ̂
g
, and a sequence of associated durations, κ, where the HSMM

framework secures to have realistic gesture phrase durations. In HMM framework,

where the underlying process is Markov, given an observation sequence, the Viterbi

algorithm is employed to decode the most likely state sequence. In HSMM framework

however, states have variable durations and a sequence of observations are emitted

at a single state. This requires us to define a forward likelihood function, which

incorporates state duration model,

ψt(j) = max
τ

max
i

{ψt−τ (i) + log(aijdj(τ)
t∏

k=t−τ+1

bj(ξk))}, (3.16)

where ψt(j) is the accumulated logarithmic likelihood at time frame t in state gj after

observing prosody labels {ξ1, ξ2, . . . , ξt}. Based on the forward likelihood function

ψt(j), we define the following modified Viterbi decoding algorithm to extract the

optimal state sequence:

i. Initialize

ψ1(i) = log(πibi(ξ1)) i = 1, 2, . . . ,Mg

ii. Recursion: Repeat for t = 2, 3, . . . , T

T ′ = min(Dmax, t)/δ

Repeat for j = 1, 2, . . . ,Mg

Ψij
tτ = ψt−τ (i) + log(aijdj(τ)

∏t

k=t−τ+1 bj(ξk))

for i = 1, . . . ,Mg, τ = 1, . . . , T ′

ψt(j) = maxτ∈[1,T ′] maxi∈[1,Mg ]{Ψ
ij
tτ}

ϕt(j) = argmaxi∈[1,Mg ]maxτ∈[1,T ′]{Ψ
ij
tτ}

νt(j) = argmaxτ∈[1,T ′]maxi∈[1,Mg ]{Ψ
ij
tτ}

iii. Backtrace the optimal gesture phrase sequence

ℓ̂gL = argmaxj ψT (j)

κL = νT (ℓ̂
g
L)
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l = L− 1; t = T

While t > 0

ℓ̂gl = ϕt(ℓ̂
g
l+1)

κl = νt−κl+1
(ℓ̂gl )

t = t− κl+1; l = l − 1

The extracted optimal state sequence defines the optimal gesture label sequence ℓ̂
g
=

{ℓ̂g1, . . . , ℓ̂
g
L} and the associated gesture phrase durations κ = {κ1, . . . , κL}.

3.6 Gesture Animation

Animation of the synthesized gesture label sequence consists of three main tasks: Ex-

traction of gesture phrase sequence with unit selection, smoothing gesture-to-gesture

transitions, and finally graphical animation of the gesture phrase sequence.

The first task is to generate a synthesized sequence of gesture phrases, ε̂g, given the

synthesized gesture phrase label sequence ℓ̂
g
along with the corresponding duration

sequence κ. This task is performed using unit selection over a pool of gesture phrases

which are extracted during the gesture analysis in Section 3.3.2. The next task is to

smooth joint angle discontinuities over a temporal window at gesture phrase bound-

aries, that is, at the boundary of each two consecutive synthesized gesture phrases ε̂gl

and ε̂gl+1, to extract a smoothed gesture sequence ε̃g. The smoothed gesture phrase

sequence ε̃g is finally used to animate beat gestures of a virtual character in synchrony

with the input speech.

We employ a unit selection algorithm to generate the synthesized sequence of

gesture phrases, ε̂g, based on the gesture pool Gi = {εgi1, εgi2, . . . , εgiN
G
i }, which is

constructed in Section 3.3.2 for each gesture phrase class gi. The unit selection process

is demonstrated in Figure 3.4 as the formation of an optimal gesture phrase sequence

from the templates available in the gesture pools.

We minimize a mixture of penalty scores for duration mismatch and joint angle

continuity mismatch during the unit selection process. The duration, joint angle
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continuity mismatch penalties of a gesture phrase template εgij for a synthesized

gesture phrase with label ℓ̂gl are respectively defined as,

Dω(ε
gij|ℓ̂gl = gi) = ||ωe(ε̂

g
l−1)− ωb(ε

gij)||, (3.17)

Dκ(ε
gij|ℓ̂gl = gi) = ||κl − κ(εgij)||, and (3.18)

(3.19)

where κl is the duration of the synthesized gesture phrase with label ℓ̂gl , κ(ε
gij) is the

duration of the gesture phrase template εgij in gesture pool Gi, ωe(ε̂
g
l−1) is the ending

joint angle vector of the previously synthesized gesture phrase ε̂gl−1, and ωb(ε
gij) is the

beginning joint angle vector of the gesture phrase template εgij. The joint penalty

score is defined as a mixture of three penalty scores for duration and joint angle:

D(εgij|ℓ̂gl = gi) = αDω(ε
gij|ℓ̂gl = gi) +

(1− α)Dκ(ε
gij|ℓ̂gl = gi)]

(3.20)

where Dω, Dκ are min-max normalized penalty functions, and α and (1-α) are the

mixture weights which we set experimentally over a validation set, as will be explained

in Section 4.5.2.

The optimal path minimizing the above penalty score can be extracted by using

the following Viterbi algorithm:

i. Initialization

V1(j) = D(εgij|ℓ̂g1 = gi), for j = 1, 2, ..., NG
i

ii. Recursion: Repeat for l = 2, 3, ..., L,

Let ℓ̂gl−1 = gi′ , for j = 1, 2, ..., NG
i

Vl(j) = minj′=1,...,NG
i′
{Vl−1(n) +D(εgij

′

|ℓ̂gl = gi},

Ql(j) = argminj′=1,...,NG
i′
{Vl−1(n) +D(εgij

′

|ℓ̂gl = gi},

iii. Backtrace the optimal path
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qL = argminj{VL(j)},

ql = Ql+1(ql+1) for l = L− 1, L− 2, ..., 1,

iv. Construct the synthesized sequence of gesture phrases

ε̂gl = εℓ̂
g
l
ql for l = 1, 2, . . . , L.

The selected gesture phrases are resampled so as to fit the synthesized duration if

necessary. Next, we smooth joint angle discontinuities at gesture boundaries over a

temporal window. This is achieved by applying an exponential smoothing function on

each pair of consecutive synthesized gesture phrases ε̂gl and ε̂
g
l+1. Then, the smoothed

gesture motion sequence ε̃g is used to animate a virtual character based on the four

skeleton joints mentioned in Section 3.3.2. The other joints of the body (e.g. spine,

lower-body joints) are assumed to have no motion. For graphical animation, we use

the MotionBuilder 3D Character Animation Software [Mot, 2012].

Figure 3.4: Unit selection based gesture animation generation: an optimal sequence
of gesture phrases is formed from the gesture phrase templates available in the gesture
pool for each gesture class.

3.7 Multimodal Datasets

sec:dataset) We use two datasets, one for speaker-dependent setting and the other for

speaker-independent setting, respectively.

3.7.1 Dataset for Speaker-Dependent Setting

The multimodal MVGL-MUB dataset that we use to train our speaker-dependent,

speech driven animation system consists of five recordings of a male native speaker
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with a total duration of approximately 20 minutes, all in Turkish [Bozkurt et al.,

2013]. We collect multiview video of the speaker using four synchronized cameras.

The speaker wears a black suit with 15 color markers and a microphone placed close

to mouth and synchronized with the cameras. We estimate the 3D positions of the

body joints based on the markers’ 2D positions tracked on each camera’s image plane

using color information [Ofli et al., 2008]. The resulting set of 3D points for joints’

positions is then converted to a set of Euler angles extracted for each joint in its

local frame using inverse kinematics. The motion capture data is recorded at 30

frames per second, and the audio signal is captured in PCM 44.1 kHz 16-bit stereo

recording format. Five recording sessions are organized, where the speaker talks in

standing pose under five different scenarios: i) telling a recollection of a past memory,

ii) telling a fairy tale, iii) talking about a short documentary after watching it, iv)

discussing on a spontaneous topic with a second participant, and v) commenting on

series of photographs. During the recording sessions, the speaker does not receive any

instructions on how to gesture or express himself.

Since gestures are in general person specific, the gesture phrases are determined

by using the semi-supervised training scheme described in Section 3.3.2. We have

identified the number of distinct gesture phrases as Mg = 7 for the given partici-

pant. A brief description of these gesture classes is provided in Table 3.1, whereas

their distribution per recording is summarized in Table 3.2. In our experiments, we

have spared the fourth recording as the validation set, and performed a leave-one-out

training procedure such that one recording out of four is used for testing and the re-

maining three are used for training in four turns. The models resulting from training

are used for synthesizing and animating gestures over the test recordings. Then, we

perform subjective evaluations to assess naturalness and audio-visual synchrony of

the animation results of the test recordings.
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Table 3.1: Gesture phrases identified via semi-supervised clustering

Gesture Description

g1 Symmetric: Both arms move symmetrically

g2 Rest: No motion

g3 Left: Only left arm moves

g4 Asymmetric: Both arms move asymmetrically

g5 Contact: Hands touch to each other

g6 Open: Stretching arms backwards

g7 Right: Only right arm moves

Table 3.2: Gesture phrase distributions per recording

Rec. Gesture Phrase Counts Total Dur.

ID g1 g2 g3 g4 g5 g6 g7 Count(s)

(i) 52 64 9 22 1 0 19 167 239

(ii) 20 40 1 8 0 17 6 92 167

(iii) 22 49 1 23 10 21 40 166 265

(iv) 53 60 15 20 4 18 20 190 347

(v) 2 45 1 0 0 0 0 48 155

Total149 258 27 73 15 56 85 663 1173
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3.7.2 Dataset for Speaker-Independent Setting

In the speaker-independent animation system, we use the multimodal USC CreativeIT

dataset that contains a variety of dyadic theatrical improvisations for studying expres-

sive behaviors and natural human interaction [Metallinou et al., 2010], [Metallinou

et al., 2015]. In this dataset the interactive performances are designed either as impro-

visations of scenes from theatrical plays or as theatrical exercises where actors repeat

sentences in a manner that conveys specific intent such as, accepting or rejecting

behavior towards the other.

The dataset contains vocal and body-language behavior information of the actors

obtained through close-up microphones, Motion Capture (MoCap) and HD cameras.

The MoCap data is provided as 3D coordinates of 45 marker positions in (x,y,z)

directions at 60 fps and speech recordings at 48 kHz for each of the 16 (9 female)

distinct actors. We use the MotionBuilder software [Mot, 2012] for converting 3D joint

positions to Euler angle rotations of the arm and forearm in the (x,y,z) directions at

30 fps. We perform speaker-independent evaluations in a leave-one-pair-out manner

using data from one actor-pair as the test set in turn, and the remaining data from

the other pairs as the training data.

3.8 Summary

This chapter described a new multimodal analysis framework for modeling the re-

lationship between intonational and gesture phrases using the hidden semi-Markov

models (HSMMs). The proposed method effectively associates longer duration ges-

ture phrases to shorter duration prosody clusters, while maintaining realistic gesture

phrase duration statistics that leads to animations perceived as realistic.

Section 3.3 presented feature extraction and clustering steps for prosody and

gesture motion features from audio-visual data. In Section 3.4, we presented joint

modeling of intonational and gesture phrases using the hidden semi-Markov models.

Section 3.5 presented gesture synthesis from a novel audio recording. The output

of this step is synthesized gesture sequence with id and duration information. In
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Section 3.6, we presented a unit selection based gesture animation algorithm, which

inputs systhesis step output components.



Chapter 4

SPEECH RHYTHM IN GESTURE ANIMATION

4.1 Introduction

In a natural speaking style, beat gestures are articulated in synchrony with prosody

and rhythm to emphasize the underlying speech [McNeill, 1992,Valbonesi et al., 2002,

Loehr, 2012]. In this chapter, we construct a multimodal analysis framework to

model the relationship between beat gestures, speech prosody and rhythm. Studies in

diverse research areas suggest that human audio-visual communication is significantly

rhythmic in nature, for example, in the way how spoken syllables and words are

grouped together in time as in speech rhythm [Bolt, 1980, Ladd, 1996, Liberman,

1975] or how they are accompanied by body movements as in beat gestures [Tuite,

1993,Bos et al., 1994].

In practice it is difficult to interpret the notion of rhythm for speech. A large

variety of measures have been proposed to characterize speech rhythm, which are

mainly based on the durational characteristics of consonantal and vocalic intervals;

for example, the percentage over which speech is vocalic [Ramus et al., 1999], the

average durational difference between consecutive consonantal or vocalic intervals

in an utterance, which defined as the Pairwise Variability Index [Grabe and Low,

2002]. Speech rhythm studies using these measures usually focus on the taxonomy

of languages as stress-timed and syllable-timed languages [Ramus et al., 1999,Grabe

and Low, 2002,Gibbon and Gut, 2001,Loukina et al., 2011].

In addition to the time-domain representations that we have discussed above, there

exist also frequency domain representations of speech rhythm. Dynamic information

extracted both at local and global level from frequency domain representation of

speech rhythm has been used for assessment of emotion [Ringeval et al., 2012]. In
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this chapter, we compile a dictionary of speech rhythm representations per gesture

category to define a relational model between rhythmic similarities of speech and

gesture modalities. We use the low-frequency Fourier analysis of speech rhythm as

introduced by [Tilsen and Johnson, 2008] to investigate the relationship between

speech rhythmicity and vowel, consonant deletions on the Buckeye corpus.

4.2 System Overview

The general block diagram of our speech-driven gesture synthesis and animation sys-

tem using speech rhythm information is given in Figure 4.1. The system consists of

three main tasks: analysis, synthesis, and animation. Within the analysis task we

have two stages: (i) feature extraction and clustering of gesture phrases and prosodic

units, and (ii) their multimodal analysis. First stage of the analysis task is executed

as defined in Section 3.3, where we perform feature extraction and unimodal clus-

tering on speech and body motion data. The audio stream is processed to extract

prosodic features of the speech, whereas the body motion data is expressed in terms of

3D joint angles. The gesture and audio feature streams are then segmented via tem-

poral clustering into recurrent patterns, i.e, into gesture phrases and prosodic units,

respectively. In Section 4.3, in addition to prosodic features, we also describe extrac-

tion of speech rhythm features for the duration of each gesture phrase, which are to

be used later in the animation generation stage. The second stage of the analysis

task, where we use hidden semi-Markov models (HSMM) to model the dependencies

between speech prosody and gestures in a multimodal framework is executed as de-

fined in Section 3.4. We synthesize the optimal sequence of gestures with durations

for a given speech input by using the Viterbi algorithm over HSMM as detailed in

Section 3.5. In Section 4.4, the synthesized gesture sequences with duration infor-

mation are mapped into body motion sequences by using a multiple objective unit

selection algorithm to generate animations. In Section 4.5, we present the results of

speaker-dependent and independent experiments conducted for objective and subjec-

tive evaluations of the proposed system.
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Figure 4.1: The block diagram of the general framework for the speech-driven gesture
synthesis and animation system.

4.3 Speech Rhythm Feature Extraction

A multimodal system that combines speech and gesture modalities requires an explicit

understanding of how these modalities co-occur and how they are jointly perceived.

Generally, there is an underlying periodic pattern of pulses in speech (sometimes

reinforced by coupled periodic motions of hands), and prominent events in the speech

are approximately aligned in time with these pulses [Port, 2003]. In other words,

the rhythmic production of speech, marked by pitch accents and stressed syllables,

influences the temporal pattern of coinciding gestures [Iverson and Thelen, 1999].

Therefore, the rhythmic harmony of speech and accompanying gestures is important

when synthesizing natural-looking virtual character animations.

Speech is a rhythmic and temporally structured source where the acoustic signal

is transmitted as syllables in which most of the energy fluctuations occur in the range

between 3 to 20 Hz [Greenberg, 1999,Greenberg and Arai, 2004]. When we refer to

the term rhythm, we do not mean that these energy terms are perfectly periodic,

but rather that there are regulations on syllable duration and energy patterns within

and across prosodic phrases, which are important for intelligibility and naturalness

of the spoken speech [Ladd, 1996, Liberman, 1975]. For example, from a phonetic

point of view, we cannot fully define speech as sequences of phonemes, syllables or
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words. When we listen to speech, we hear that segments or syllables are shortened or

lengthened in accordance with an underlying pattern. However, characterization of

speech rhythm is not an easy task itself and most of the methods rely on measurements

of segmental durations to describe the temporal patterns of speech [Ramus et al.,

1999,Grabe and Low, 2002,Gibbon and Gut, 2001,Loukina et al., 2011].

On the other hand, frequency domain representation of the speech rhythm, which

characterizes how the energy of speech is distributed in the frequency domain, can

be as useful in our framework. In this study we analyze speech rhythm using Fourier

analysis of the amplitude envelope of bandpass filtered speech rather than computing

rhythm with time domain measurements of interval durations. The frequency domain

approach pays much less attention to where intervals begin and end, and more atten-

tion to the acoustic contents of those intervals by analyzing the power spectrum of

the amplitude envelope of speech [Tilsen and Johnson, 2008].

We used the speech rhythm features as defined in [Tilsen and Johnson, 2008] in

our multimodal framework. The input speech signal sij, which corresponds to εgij

(the jth gesture phrase in the gesture pool Gi), is filtered with a passband of 700 -

1300 Hz to capture mostly vocalic energy and filter out glottal energy and obstruent

noise. Then, envelope of the band-pass filtered signal is low-pass filtered and down-

sampled. Then, the normalized spectral energy distribution of this down-sampled

signal over d = 8 bands is defined as the speech rhythm feature vector as,

r(i, j) =
1∑
n en

[e1, e2, ..., ed],

for i = 1, 2, ...,Mg; j = 1, 2, ..., NG
i ,

(4.1)

where en is the spectral energy for the nth band and r(i, j) is the speech rhythm

feature vector corresponding to jth gesture phrase of ith gesture class, εgij, andMg is

the number of gesture classes. Further details of the speech rhythm feature extraction

can be found in [Tilsen and Johnson, 2008].

The collection of speech rhythm feature vectors, r(i, j), are compiled as a dic-

tionary of speech rhythm representations per gesture class and expressed as Ri =

{r(i, 1), ..., r(i, NG
i )}. In other words, the speech rhythm dictionary Ri is linked with
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the gesture pool Gi defined in Section 3.3.2, where each gesture phrase has a coin-

ciding speech rhythm representation. In the animation generation step, Ri is used

to reduce rhythmic mismatches between the input speech and the gesture phrases

selected from the gesture pool Gi.

Although rhythm could be seen as a timing aspect of speech prosody along with

intonation and stress, it represents phrase-level timing characteristics. Hence rather

than including it in the short-term prosody feature representation, we rather use it as

a similarity factor while creating gesture animations as will be described in Section 4.4.

4.4 Gesture Animation

Animation of the synthesized gesture label sequence consists of three main tasks: Ex-

traction of gesture phrase sequence with unit selection, smoothing gesture-to-gesture

transitions, and finally graphical animation of the gesture phrase sequence.

The first task is to generate a synthesized sequence of gesture phrases, ε̂g, given the

synthesized gesture phrase label sequence ℓ̂
g
along with the corresponding duration

sequence κ and the input speech rhythm information. This task is performed using

unit selection over a pool of gesture phrases which are extracted during the gesture

analysis in Section 3.3.2. The next task is to smooth joint angle discontinuities over a

temporal window at gesture phrase boundaries, that is, at the boundary of each two

consecutive synthesized gesture phrases ε̂gl and ε̂gl+1, to extract a smoothed gesture

sequence ε̃g. The smoothed gesture phrase sequence ε̃g is finally used to animate beat

gestures of a virtual character in synchrony with the input speech.

We employ a unit selection algorithm to generate the synthesized sequence of

gesture phrases, ε̂g, based on the gesture pool Gi = {εgi1, εgi2, . . . , εgiN
G
i }, which is

constructed in Section 3.3.2 for each gesture phrase class gi. The unit selection process

is demonstrated in Figure 3.4 as the formation of an optimal gesture phrase sequence

from the templates available in the gesture pools.

We minimize a mixture of penalty scores for duration mismatch, joint angle con-

tinuity mismatch and speech rhythm mismatch during the unit selection process.
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Speech rhythm similarity of gestures is used to avoid rhythmic mismatches between

the input speech and the synthesized gesture motions during animations. We use the

rhythm dictionary Ri for gesture class gi, constructed as described in Section 4.3. The

duration, joint angle continuity and speech rhythm mismatch penalties of a gesture

phrase template εgij for a synthesized gesture phrase with label ℓ̂gl are respectively

defined as,

Dω(ε
gij|ℓ̂gl = gi) = ||ωe(ε̂

g
l−1)− ωb(ε

gij)||, (4.2)

Dκ(ε
gij|ℓ̂gl = gi) = ||κl − κ(εgij)||, and (4.3)

Dr(ε
gij|ℓ̂gl = gi) = ||rl − r(i, j)||, (4.4)

where κl is the duration of the synthesized gesture phrase with label ℓ̂gl , κ(ε
gij) is the

duration of the gesture phrase template εgij in gesture pool Gi, ωe(ε̂
g
l−1) is the ending

joint angle vector of the previously synthesized gesture phrase ε̂gl−1, and ωb(ε
gij) is the

beginning joint angle vector of the gesture phrase template εgij, rl is the input speech

rhythm feature for the lth phrase ε̂gl and r(i, j) is the speech rhythm feature of the

gesture phrase template εgij. The joint penalty score is defined as a mixture of three

penalty scores for duration, joint angle and rhythm:

D(εgij|ℓ̂gl = gi) = βαDω(ε
gij|ℓ̂gl = gi) +

β(1− α)Dκ(ε
gij|ℓ̂gl = gi)] +

(1− β)Dr(ε
gij|ℓ̂gl = gi), (4.5)

where Dω, Dκ and Dr are min-max normalized penalty functions, and α and β are

the mixture weights which we set experimentally over a validation set, as will be

explained in Section 4.5.2.

The selected gesture phrases are resampled so as to fit the synthesized duration if

necessary. Next, we smooth joint angle discontinuities at gesture boundaries over a

temporal window. This is achieved by applying an exponential smoothing function on

each pair of consecutive synthesized gesture phrases ε̂gl and ε̂
g
l+1. Then, the smoothed

gesture motion sequence ε̃g is used to animate a virtual character based on the four
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skeleton joints mentioned in Section 3.3.2. The other joints of the body (e.g. spine,

lower-body joints) are assumed to have no motion.

4.5 Experimental Results

We use two datasets for synthesizing and animating prosody-driven arm gestures

in speaker-dependent and independent settings. Prior to subjective and objective

evaluations, we fine-tune the parameters of our speech-driven gesture synthesis scheme

based on objective metrics. These parameters are the number of prosody clusters and

the penalty score weight parameters used in the unit selection algorithm for animation

generation. Finally we present subjective and objective evaluations of the proposed

framework.

4.5.1 The Number of Prosody Clusters

One of our primary goals in this work is to synthesize gesture sequences with realistic

gesture durations. Hence, one possible objective evaluation of our HSMM based ges-

ture synthesis is to consider the similarity between the original and the synthesized

gesture duration statistics. To this effect, we perform the prosody clustering pro-

cess under different parameter settings, and for each setting we synthesize a different

gesture sequence. We then estimate the duration distribution of each synthesized se-

quence as in (5.3). Next, we compute the symmetric Kullbeck-Leibler (KL) divergence

between the original duration distribution di(k) and the synthesized distribution d̂i(k)

over the validation set to measure the duration similarity of the synthesized gesture

sequence with the original one, where smaller KL divergence values indicate more

consistent duration distributions.

We perform unsupervised prosody clustering using parallel-branch HMM struc-

tures, as described in Section 3.3.1, with branch numbers ranging from 10 to 18 and

state numbers per branch ranging from 3 to 5 for the speaker-dependent setting.

An over-segmented prosody stream with larger number of branches would produce

redundant and similar clusters while under-segmentation with less branches would
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have to merge distinct clusters. The range of values for setting number of states on

the other hand is selected considering the minimum duration of temporal prosody

clusters. Table 4.1 presents the symmetric KL divergence scores on the validation

set for various parameter settings. We observe that with small number of branches,

Mp < 14, the KL divergence has minimum values at Np = 4 number of states per

branch. As the number of branches gets larger, Mp ≥ 14, the optimal KL divergence

values are attained at Np = 3 number of states per branch. We use the Mp = 16 and

Np = 3 as the optimal setting with a KL divergence value of 1.0498 for subjective

evaluation of our gesture synthesis system, which is presented in Section 4.5.3.

Moreover, we perform unsupervised prosody clustering on the CreativeIT dataset

for the speaker-independent evaluations. We select number of states per branch as

3 and vary the number of branches ranging from 10 to 32. Table 4.2 presents the

symmetric KL divergence scores of the original and synthesized gesture duration dis-

tributions for the speaker-independent setting in a leave-one-actor pair-out manner.

As in Table 4.1, usingMp = 16 prosody clusters gives the optimal KL-divergence value

as 7.5270. This value is higher than the value obtained in the speaker-dependent set-

ting, which is expected since the speaker-independent system has higher variability.

Table 4.1: The symmetric KL divergence of the original and synthesized gesture
duration distributions for various prosody clustering settings in the speaker-dependent
system

Np Mp

10 12 14 16 18

3 2.1251 1.1501 1.3333 1.0498 1.3544

4 1.1052 1.0698 1.6390 1.5562 1.8460

5 1.5551 1.9665 1.5705 1.7472 1.4214

In addition, for the optimal symmetric KL-divergence settings, we compare his-

tograms of gesture phrase and pattern durations with prosodic unit durations (mea-

sured in number of frames with 30 fps) in Figure 4.2, for speaker-dependent (top)

and independent (bottom) settings, respectively. In the figures, the discrepancy in
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Table 4.2: The symmetric KL divergence of the original and synthesized gesture du-
ration distributions for various prosody clustering settings in the speaker-independent
system

Np Mp

10 16 24 32

3 7.8959 7.5270 7.7871 7.9978

duration distributions for the two modalities is clear. The observation that gesture

phrases and patterns have longer durations compared to prosodic units is inline with

our choice of using HSMMs for joint modeling of the two modalities.
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Figure 4.2: Duration histograms of prosodic units (blue) and gesture phrases or pat-
terns (red).

On the other hand, the KL-divergence value for the baseline synthesis method

is calculated as 1.8376 and 7.8365 for speaker-dependent and independent settings,

respectively. A higher KL-divergence in this case is expected since, unlike the HSMM-
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based synthesis, statistical duration information is simply ignored with the baseline

synthesis as well as any gesture transition statistics and prosody-gesture correlations.

4.5.2 The Penalty Score Weight Parameters

The proposed gesture animation system employs unit-selection to minimize a mixture

of three different penalty scores while mapping synthesized gesture sequences into

motion sequences. These scores are the duration difference penalty, the joint angle

continuity and the speech rhythm similarity as defined in Section 4.4. Hence prior to

the gesture motion smoothing step in Section 4.4, the penalty score weights α and β

in (4.5) are to be set experimentally. We consider two scoring functions to set α and

β values. The first function is based on a windowed cross-lagged correlation (WCLC)

score [Boker et al., 2002]. The second function evaluates smoothness of the animation

through a jerkiness score as defined by [Hogan and Sternad, 2009].

Correlation is a commonly used tool to evaluate synchrony in interacting time-

series coordination [Delaherche et al., 2012]. Canonical correlation analysis (CCA)

is a statistical analysis technique for measuring the linear relationship between two

multi-dimensional variables. CCA seeks a pair of basis vectors, ux and uy, one for

each multi-dimensional variable, x and y, such that the correlations between the

projections of these variables onto basis vectors are mutually maximized. We define

a CCA based correlation coefficient,

ρcca(x,y) = corr(uTxx, u
T
y y) (4.6)

where ux and uy are the canonical basis vectors maximizing correlation of the first

pair of canonical variables and ()T is matrix transpose.

We use CCA to correlate kinetic energy of the synthesized gesture sequences (Es)

to kinetic energy of the original gesture sequences (Eo) and to the speech prosody

(F p). We define the kinetic energy per joint as the square of joint angles’ angular

velocity,

eik =

[∑2
j=1[θ

i
k+j − θi

k−j]j

2
∑2

j=1 j
2

]2

(4.7)
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where θi
k is the joint angle vector in radians for the ith joint at frame k. The resulting

kinetic energy sequence is defined as E = {e1, e2, . . . , eT}, where ek = [e1k, . . . e
4
k] is

the four dimensional kinetic energy vector at frame k.

The correlation coefficient between kinetic energy of the synthesized (Es) and

original (Eo) gesture sequences is defined at frame k with time lag τ as,

ρk,τ (E
s,Eo) =




ρcca(Es

k,E
o
k+τ ), if −τmax < τ ≤ 0

ρcca(Es
k−τ ,E

o
k), if τmax > τ > 0,

(4.8)

where Ek = {ek, ek+1, . . . , ek−1+W} is the kinetic energy vectors over a time window

of size W starting at time frame k and τmax is the maximum time lag. By selecting

the windows with lag value τ ranging from -τmax to +τmax, we guarantee a mirror

symmetry such that the resulting set of correlations will contain the same values

when the two series are swapped as for ρk,τ (E
o,Es). Then the maximum correlation

coefficient between Es and Eo is calculated as,

ρ∗(Es,Eo) = E{max
τ

ρk,τ (E
s,Eo)}, (4.9)

where E is the expectation over time windows of the highest correlation coefficients

over the time lags. Note that a similar correlation coefficient can be extracted between

kinetic energy of the synthesized gesture sequences (Es) and the speech prosody (F p)

as ρ∗(Es,F p).

Then the WCLC-based score function given the penalty score weights α and β of

unit-selection is defined as,

SWCLC(α, β) =
ρ∗(Es,Eo|α, β) + ρ∗(Es,F p|α, β)

2
, (4.10)

where the maximum correlation coefficients can also be computed for the given penalty

score weights α and β in interval [0, 1]. We target to set α and β values to maximize

the WCLC-based score, which will help us to measure and preserve correlations of

the synthesized arm motion behaviors to the original motion and speech prosody

behaviors in our animations. In our experiments, we use an analysis window size W

as 6 sec and a maximum lag value τmax as 1 sec. The WCLC-based score function is
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extracted on the validation set for each training set in turn and then the average is

used for the speaker-dependent setting, whereas for the speaker-independent setting

leave-one-actor pair-out method is employed.

Our experience from subjective tests shows that humans’ sensitivity to errors in

gesture animation is highly correlated with its smoothness. Hence, noticeable artifacts

introduced by motion editing, such as sudden jumps of the joints, should be avoided

for a natural looking animation. We adopt the jerkiness measure, which is defined

as the derivative of joints’ acceleration in [Hogan and Sternad, 2009], to measure the

smoothness of a gesture motion sequence. For the ith joint at frame k, given the joint

angle vector θi
k, the jerkiness is calculated as

J i
k =

θi
k+1 − 3θi

k + 3θi
k−1 − θi

k−2

∆3

for k = 1, . . . , K; i = 1, . . . , 4,

(4.11)

where K is the total number of frames, and ∆ = tk − tk−1 is the frame duration of

the animation. The overall jerkiness of the synthesized animation is then computed

as:

J =

√√√√√√
K∑

k=1

4∑
i=1

(J i
k)

2

4

K3

v2a
(4.12)

where va is the average angular velocity and calculated over the whole sequence and

all arm joint angles. We measure the overall jerkiness value J on the validation set

for each training set in turn and then take the average (J̄) for the speaker-dependent

setting whereas, for the speaker-independent case we employ leave-one-actor pair-out

method.

In order to set optimal values for the α and β parameters, we evaluate the WCLC-

based correlation score function SWCLC and the average jerkiness value J̄ as a func-

tion of the α and β parameters. Figure 4.3 plots these two evaluation metrics in both

speaker-dependent and independent settings. In the WCLC-based score function

higher correlations values, which are plotted in whiter colors, are preferred. However,

in the average jerkiness metric, lower jerkiness values, which are plotted in darker
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colors, are preferred. Note that, speaker-dependent and independent settings have

similar tendencies. Lower values of the β parameter, which weights the rhythm dif-

ference penalty more, are not preferred by the WCLC-based score function in both

settings. Similarly, lower values of α and higher values of β are preferred by the jerk-

iness metric in both settings. For the speaker-dependent setting, we set two possible

parameter settings at (0.2, 0.5) and (0.2, 0.9) values of the (α, β). Note that these

two points have lower jerkiness and higher correlation score values. Similarly, a single

parameter point (α, β) is set for the speaker-independent setting at (0.3, 0.9).

4.5.3 Subjective Evaluations

Gestures can accompany speech in various different ways. Objective evaluations are

incapable of qualifying such variabilities, whereas subjective tests can evaluate real-

ism and naturalness of the animation by reflecting human perception. We conduct

subjective tests using the animations of speaker-dependent setting, where each par-

ticipant is shown side-by-side animation pairs and asked to perform A/B comparisons

so as to evaluate the naturalness of gesture animations on a scale of (−2,−1, 0, 1, 2).

The values in this scale represent A much better, A better, no preference, B better

and B much better, respectively. Animation clips in the test are designed to be long

enough to allow participants to be able to evaluate transitions between gestures. Each

comparison consists of a pair of animation clips of 40 to 80 second duration generated

for a given utterance by using two of the following three methods: the HSMM-based

synthesis, the baseline synthesis, and the motion-capture synthesis. The proposed

HSMM based synthesis is subjectively evaluated in pairwise comparisons with base-

line and motion-capture synthesis results. Our baseline gesture synthesis method

creates an animation from a sequence of random gestures via gesture phrase selec-

tion based solely on joint angle continuity, hence discarding any gesture duration and

transition statistics as well as prosody-gesture correlations. The motion-capture syn-

thesis on the other hand uses the captured true motion in the animations; that is the

speaker’s gestures are directly copied to the animation. In the subjective evaluations,
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the HSMM-based synthesis method employs the unit selection penalty score weight

parameters (α, β) with values (0.2, 0.5) and (0.2, 0.9), which are fine-tuned via objec-

tive evaluations over the validation set as described in sections 4.5.1 and 4.5.2. The

first setup, in which β = 0.5, emphasizes rhythm penalty score more compared to the

latter one. So, the influence of using rhythm is also evaluated in the subjective tests.

Table 4.3: Results of the subjective A/B pair comparison test

A/B Pair Average p-value <

Preference

Motion-capture / Baseline -0.613 0.0001

Rhythm emphasized in HSMM-based (α = 0.2, β = 0.5)

Motion-capture / HSMM-based -0.017 0.9186

Baseline / HSMM-based 0.343 0.0152

Rhythm less influencial in HSMM-based (α = 0.2, β = 0.9)

Motion-capture / HSMM-based -0.574 0.0016

Baseline / HSMM-based 0.242 0.1210

In the subjective tests, each of the 26 participants is shown 22 pairs of animation

clips in random order from a pool of 66 animation clips. The clip pool consists of

12 samples for each of the five pairs presented in Table 4.3. Each test includes 4

samples for each pairwise comparison, plus a pair of identical clips, which is used to

ensure the participants’ engagement in the test. The left-right display order of the

animation pairs in clips and sequence order of clips are set randomly. All partici-

pants are native Turkish speakers of ages in the range 22-40 (16 female, 10 male).

Table 4.3 presents the average preference scores and their statistical significances in

the subjective evaluations. The preference score for each pair of the five cases is

calculated as the average of participants’ evaluation scores. A negative average pref-

erence score implies the method on the left side is preferred over the one on the right

side and vice versa. A paired two-tailed t-test is used to evaluate the significance of

test takers’ preferences. We observe in Table 4.3 that while motion-capture synthesis

is significantly favored over the baseline, it is not significantly discriminated from
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the proposed HSMM-based synthesis when rhythm is emphasized (β = 0.5) in the

animation generation step. Additionally, HSMM-based synthesis results, emphasiz-

ing rhythm, are assessed to be significantly more realistic and natural than baseline

synthesis results with a p-value less than 0.0152. On the other hand, HSMM-based

synthesis results are assessed to be less natural when rhythm is less influential (β =

0.9) in the animation generation step.

4.5.4 Objective Evaluations

In the proposed framework, we target to jointly model beat gestures, which are used

to emphasize speech, and speech prosody. The HSMM-based synthesis and animation

framework targets to match prosodic units and gestures. Gesture phrase labels and

durations are extracted from the HSMM model, then the unit selection based anima-

tion system sets the sequence of the synthesized gestures from a large dictionary of

gestures by applying the three penalty scores for duration, joint angle continuity and

rhythm. Rather than matching the original joint angle sequence in the synthesis, the

model tries to match prosody, which is emphasis on speech, and beat gestures, which

emphasize motion of arms. Considering that the same source, i.e., the speech prosody,

is driving the motion of arms for both the original gestures and the synthesized ges-

tures, the kinetic energy difference between the original and synthesized gestures can

be defined as a pose-invariant objective metric for animation of beat gestures from

speech-prosody.

This pose-invariant objective metric is defined as the root mean square error

(RMSE) between the kinetic energies of the original and synthesized joints:

RMSE =

√
1
4

∑K

k=1 ||e
o
k − es

k||
2

K
, (4.13)

where K is the total extent of the data and the eo
k and es

k are respectively 4D ki-

netic energy vectors of the original and synthesized gesture sequences as defined in

(4.7). The dataset used in the speaker-independent setting is dyadic, where speakers

frequently take turns and mostly hold floor for a short time duration. In the RMSE
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evaluations, we set a test dataset (TSTIND) by segmenting audio recordings into se-

mantically meaningful utterances when the speaker holds the floor. For the speaker-

dependent setting, the audio segments in the subjective test, which we refer them as

TSTDEP, are used for the objective RMSE evaluations. The total duration of the

TSTDEP and TSTIND evaluation sets are 458 and 444 seconds for speaker-dependent

and independent settings, respectively. The RMSE scores of the HSMM-based rhythm

emphasized synthesis and the baseline synthesis over the speaker-dependent and inde-

pendent settings are presented in Table 4.4. Note that, RMSE scores of the HSMM-

based synthesis is lower in both settings. While the RMSE scores are lower for the

speaker-dependent setting, the scores and the score difference between the baseline

and HSMM-based synthesis are larger for the speaker-independent setting. This is

mainly due to the fact that the gesture animation pool for the speaker-dependent set

is smaller, on the other hand the gesture pool in the CreativeIT dataset is larger with

more speaker and gesture variability.

Table 4.4: Objective evaluations based on the RMSE between the kinetic energies of
the original and synthesized joint angles over the speaker-dependent (TSTDEP) and
speaker-independent (TSTIND) datasets

HSMM-based Baseline

TSTDEP 0.25 0.27

TSTIND 0.67 0.86

Another objective measure that we use to assess the quality of the resulting an-

imations quantifies how good the proposed model to transfer speech prosody into

beat gesture is. This goodness measure can be computed by correlating the speech

prosody to the kinetic energy of the joints. Recall that, we defined the CCA based

correlation coefficient ρk,τ (·, ·) at time frame k with time lag τ in (4.8) that correlates

two streams of information. Using this CCA-based correlation coefficient, we define
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the following three correlation metrics as

γpo = ρk,0(F
p,Eo), (4.14)

γps = ρk,0(F
p,Es), (4.15)

γpb = ρk,0(F
p,Eb), (4.16)

where they define the correlation between the speech prosody and the kinetic energy,

respectively for the original mocap (γpo), for the HSMM-based synthesized (γps), and

for the baseline synthesized (γpb) joint angles.

Table 4.5 presents mean, standard deviation and percent of outliers, i.e., the per-

centage of correlation values that are greater than 0.2, for the three correlation met-

rics. Note that, statistics in this table are extracted over all the contents of the

CreativeIT and MVGL-MUB datasets. The mean correlation values for the original

mocap joint angles are not high for both datasets, where they are 0.24 and 0.07 for

the CreativeIT and MVGL-MUB datasets, respectively. Based on these reference

correlation values for the original mocap joint angles, the proposed HSMM-based

synthesis yields higher mean correlation values than the baseline synthesis system.

The main reason of the low mean correlation values is the sparsity of temporal win-

dows, in which speech prosody and kinetic energy of the joint angles are strongly

correlated. Although strongly correlated instances are sparse, subjective evaluations

suggest that these highly correlated instances have an important role on the percep-

tion of naturalness in animations. Hence, we also compute the percentage of windows

with relatively higher correlation values as outliers. The correlation threshold value is

set as 0.2, which is a value close to the mean plus standard deviation for the synthe-

sized joint angles. Note that, the percent of the outliers for the γpo in the CreativeIT

dataset is 60.6%, which is a relatively high percentage and this is probably due to the

affective theatrical improvisations of the dataset. The proposed HSMM-based syn-

thesis has 19.5% and 12.8% outliers respectively in the CreativeIT and MVGL-MUB

datasets. Note that, the outliers of the HSMM-based synthesis are twice as high as

the baseline synthesis. This is again a valuable objective evidence for the quality
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improvement of the proposed HSMM-based animation system.

Table 4.5: Objective evaluations based on the correlations between the speech prosody
and the kinetic energy of the original mocap (γpo), the HSMM-based synthesized (γps),
and the baseline synthesized (γpb) joint angles. The last row presents percentage of
correlation values that are greater than 0.2.

CreativeIT MVGL-MUB

γpo γps γpb γpo γps γpb

Mean 0.24 0.10 0.04 0.07 0.08 0.06

Std 0.21 0.13 0.13 0.14 0.14 0.11

> 0.2 (%) 60.6 19.5 8.3 13.6 12.8 7.5

4.6 Summary

We presented a framework for speech prosody and rhythm driven synthesis and an-

imation of beat gesture sequences. The main challenge in a gesture synthesis and

animation system is modeling the relationship between speech and gesture modalities

in a meaningful way and using this model to create new speech-synchronous ani-

mations. Our system employs hidden semi-Markov models (HSMMs) to explore the

multimodal relationship and to synthesize speech-driven gesture sequences as detailed

in Section 3.5. Then, gesture animations are generated from the synthesized gesture

sequences using the unit selection algorithm as described in Section 4.4. We evaluated

our framework in speaker-dependent and independent settings in Section 4.5. Build-

ing blocks of the speaker-dependent animations are the gesture phrases, which are

extracted from motion capture data using semi-supervised segmentation as presented

in Section 3.3.2. Gesture phrases are expressive enough to generate plausible motion

sequences from an available motion capture dataset. They also remain intact during

animation generation and significantly contribute to consistency and naturalness of

the resulting animations. The speaker-independent animation system employs unsu-

pervised clustering to segment the motion capture data, where the building blocks

of the speaker-independent animations are defined as gesture patterns as detailed in
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Section 3.3.2.

The proposed system first segments speech prosody and motion capture data by

clustering them into prosodic units and gestures (phrases or patterns), respectively.

In the multimodal analysis of gestures and prosodic units, gestures are defined as

the states of a Markov chain and prosodic units are taken as the observations of this

Markov process as presented in Section 3.4. Hence, state transitions model articu-

lation of consecutive gestures. Alignment of gestures and prosodic units is captured

by the HSMM. The proposed HSMM-based synthesis method effectively associates

longer duration gestures to shorter duration prosody clusters while maintaining the

realistic gesture duration and transition statistics as detailed in Section 3.5. Hence,

our multimodal HSMM-based framework provides an effective solution for modeling

the relationship between gestures and prosodic units, both at the temporal level and

on a multimodal basis.

We use a unit selection method to map synthesized gesture sequences with dura-

tion information into motion sequences as presented in Section 4.4. The gestures from

all gesture clusters are gathered in a gesture pool and the unit selection algorithm

picks a sequence of optimal gesture realizations while minimizing a multiple objective

cost. One limitation of our current framework is hence the representativeness and

quality of the available gesture pool. We assume that gesture phrase samples in the

gesture pool are statistically comparable to the ones used in the multimodal analysis

step in terms of gesture category, duration distribution, and rhythm similarity.

We use objective and subjective evaluation methods to set the system parameters

and to assess animation quality in two datasets. Our objective parameter setting

results on the datasets are coherent for speaker-dependent and independent settings as

presented in Section 4.5.2. Subjective evaluations indicate that the proposed system,

when rhythm is emphasized in the animation, is significantly better than the baseline

synthesis, and statistically similar to the animations created by using the original

motion capture data as presented in Section 4.5.3. Furthermore, the RMSE between

the kinetic energies of the original and the synthesized joints are reported, and we show
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that the proposed HSMM-based synthesis yields lower RMSE scores than the baseline

synthesis in Section 4.5.4. We also present the correlation of the speech prosody

and the kinetic energy of joint angles as a valuable objective score. In subjective

evaluations, we observe that strongly correlated instances of prosody and kinetic

energy have an important role on the perception of naturalness in animations. We

show that the proposed HSMM-based synthesis has twice as high strongly correlated

instances than the baseline synthesis.
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(a) Speaker-dependent SWCLC (b) Speaker-dependent J̄

(c) Speaker-independent SWCLC (d) Speaker-independent J̄

Figure 4.3: The WCLC-based score function SWCLC(α, β) and the average jerkiness
J̄ plotted as a function of α and β values.



Chapter 5

AFFECTIVE SYNTHESIS AND ANIMATION OF ARM

GESTURES FROM SPEECH PROSODY

5.1 Introduction

Non-verbal behavior provides information on the emotional state and personality of

interlocutors, and is an integral part of human-to-human communication [Mehra-

bian, 1972, Liu et al., 2016]. Humans express non-verbal behaviors through body

movements, gestures, head movements, eyebrow movements, facial expressions and

gaze [Kopp et al., 2006]. Likewise, conversational agents (CA) can potentially dis-

play non-verbal behavior as in human-to-human communication and make human-

computer interaction (HCI) easier and more fulfilling by enhancing believability and

realism and by increasing the sense of empathy and attachment to synthetic charac-

ters [Vinayagamoorthy et al., 2006,Vinciarelli et al., 2012]. For example, an empathic

CA can encourage and persuade students while using e-learning systems [Gwo-Dong

et al., 2012]. Moreover, CAs with naturalistic behaviors can be used in mobile in-

terfaces [Kang et al., 2015], intelligent tutoring systems [Rickel and Johnson, 2000],

entertainment [Rehm and Wissner, 2005], and also as virtual interpreters [Baledas-

sarri and Cerezo, 2012]. Such CA based interactions are desired to have automated

generation of non-verbal behaviors rather than hand-crafted animations tuned to spe-

cific scenarios. In this paper we focus on automatic synthesis of gestures from affective

speech as means of non-verbal communication.

Gestures are performed mainly by hands, arms and head to convey non-verbal

cues in affective human communication, and arm-gesticulation is one of the most

frequently used non-verbal behavior in human communication [Wagner et al., 2014,
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McNeill, 1992]. Existing methods for synthesizing gestures in CAs can mainly be

grouped as text-driven [Gratch and Marsella, 2001, Stone et al., 2004,Becker et al.,

2004, Hartmann et al., 2006, Hartmann et al., 2005, Becker et al., 2007, Neff et al.,

2008,Pelachaud, 2009,Niewiadomski et al., 2009,Mancini et al., 2011,Schroder et al.,

2012, Noot and Ruttkay, 2005] and audio speech-driven [Levine et al., 2010, Baena

et al., 2013,Marsella et al., 2013,Bozkurt et al., 2013,Chiu and Marsella, 2014,Bozkurt

et al., 2015a,Bozkurt et al., 2015b,Sadoughi and Busso, 2015]. Some of these studies

also consider affect expressiveness of gestures in emotional categories [Gratch and

Marsella, 2001,Becker et al., 2004,Hartmann et al., 2006,Hartmann et al., 2005,Becker

et al., 2007,Pelachaud, 2009,Niewiadomski et al., 2009,Mancini et al., 2011,Schroder

et al., 2012,Noot and Ruttkay, 2005,Marsella et al., 2013,Baena et al., 2013]. However,

categorical emotion models would fail to accurately describe non-basic states like

thinking, embarrassment and depression. On the other hand, dimensional approaches

represent affect on a continuous scale, which is useful for explaining non-categorical,

complex affective states and also affective state transitions [Gunes et al., 2011].

Currently, linguistic features are predominant for automatic synthesis of affect

expressive gestures in CAs. Existing methods aim to retain the observed correlations

and alignments between speech and gestures while maintaining the predominant role

of linguistic choices [Gunes et al., 2011]. For example, when a text-to-speech system

drives the CA, based on the lexical content, affective expression of the CA is usu-

ally guided by selecting a desired affective state and a movement type described in a

markup language, and then by adding expressiveness to the movement via modula-

tion [Hartmann et al., 2006], [Hartmann et al., 2005], [Pelachaud, 2009], [Niewiadom-

ski et al., 2009], [Mancini et al., 2011], [Noot and Ruttkay, 2005]. However, targeting

gestures based only on the lexical content may fail to capture the large variability

of gestures and its dependency on speech. Modeling cross-modal aspects (e.g., joint

modeling, causal modeling, modality alignment) of speech, gestures and affect is re-

quired for creating CAs which are capable of expressing non-verbal communication.

On the other hand, speech-driven gesture synthesis approaches are useful in creat-
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ing realistic gestures given the rich information conveyed in speech such as emotional

cues and prosodic patterns, which are essential for modeling the variability and timing

of the gestures [Wagner et al., 2014]. Although there are studies analyzing gestures in

relation to affect attributes [Kleinsmith and Bianchi-Berthouze, 2013], speech-driven

gesture synthesis methods mostly consider neutral speech [Levine et al., 2010,Bozkurt

et al., 2013,Chiu and Marsella, 2014,Sadoughi and Busso, 2015], or agitation [Marsella

et al., 2013] and intensity [Baena et al., 2013] levels of speech. In the current litera-

ture, use of speech and gesture to enhance affective expressiveness of CAs remains as

an open problem.

In this chapter, we present a data-driven, learning-based computational model

for affective speech-driven arm-gesture synthesis and animation. We jointly ana-

lyze gestures with continuous affect attributes (i.e., activation (A), valence (V) and

dominance (D)) and speech prosody using hidden semi-Markov models. Our compu-

tational model is based on the framework that we previously developed in our earlier

works [Bozkurt et al., 2013,Bozkurt et al., 2015b] for speech prosody-driven gesture

synthesis and animation. The main objective of our current work is to investigate

ways of integrating affect attributes into this general framework so as to generate

novel gesture performances from affective speech. To the best of our knowledge,

this is the first study that uses continuous description of affect in combination with

speech to drive a gesture synthesis and animation framework (along with [Bozkurt

et al., 2015a] that is a preliminary version of this current work). We present a fully

automatic speaker-independent system which takes speech as input and generates

synchronous animations of expressive arm gestures. We conduct experiments on the

USC CreativeIT dataset [Metallinou et al., 2010,Metallinou et al., 2015], which con-

tains synchronous speech and motion capture data recorded from improvised dyadic

interactions, and perform objective and subjective evaluations to assess the contribu-

tion of incorporating affect into gesture synthesis. Our findings suggest that modeling

gesture observations with a conditional distribution of prosody given affect sustains

the best performance in objective and subjective evaluations compared to several
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Figure 5.1: Block diagram of the general framework for the proposed speech-driven
affective gesture animation system.

other strategies that we consider to incorporate affect into our framework.

5.2 System Overview

The general framework for our speech-driven gesture synthesis system is given in

Figure 5.1, which consists of three main functional phases for analysis, synthesis and

animation. In the analysis phase, we perform unsupervised clustering over 3D arm

motion data in order to construct a dictionary of gestures. Then, we train a hidden

semi-Markov model using speech prosody and affect attributes as observations over

the gesture classes. In the synthesis phase, the HSMM is used as a generative model

to synthesize a gesture sequence given prosody and affect observations, where each

gesture is expressed with a gesture class id and duration information. Finally in the

animation phase, we find an optimal sequence of arm motion from the synthesized

gesture sequence by using a unit selection algorithm. The unit selection algorithm

performs a multi-objective cost minimization task on a pool of recorded gestures so as

to construct an optimal motion sequence over the synthesized gestures with duration

information.
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5.2.1 Gesture Clustering

We represent gestures in motion capture data by the joint angles of arms and fore-

arms, which are significant for distinguishing affective states [Yang et al., 2014].

Accordingly, we define the joint angle vector for the ith joint at frame k as θik =

[φx
ik, φ

y
ik, φ

z
ik], where φ

x
ik, φ

y
ik, φ

z
ik are the Euler angles respectively in the x, y, z direc-

tions, representing the orientation of the ith joint at frame k. Then, we define the

gesture feature vector at frame k, fJi
k , to include the joint angles from the ith body

part and their first order derivatives,

fJi
k = [θik,∆θ

i
k], for i = 1, 2, 3, 4, (5.1)

where ∆θik denotes the first order derivative of the joint angle vector θ
i
k. The resulting

gesture feature for the four joints of arms and fore-arms at time frame k is defined as,

f
g
k = [fJ1

k , ...,f
J4
k ]′, (5.2)

where [ ]′ representing the transpose operator.

We choose to represent arm movements in a finite discrete gesture space, where

the movements are mapped to a sequence of gesture segments and each gesture seg-

ment belongs to a gesture class. We perform temporal clustering of gesture feature

sequences to define recurring gesture segments, which are referred as gesture classes

in this study. Gesture clustering aims to group similar gestures based on their joint

angles and velocities, which can be interpreted as describing gestures with objective

features like handedness, arm orientation or motion direction. For this purpose, we

employ unsupervised clustering of gestures based on the parallel-branch HMM model

as defined in [Sargin et al., 2008]. In this model, a parallel-branch HMM structure is

defined over the gesture feature stream F g = {f g
1,f

g
2, ...,f

g
T}, where T is the length

of feature sequence. The HMM structure initially is set to have Mg parallel branches,

where each branch represents a gesture class. Each branch is a left-to-right HMM,

which is composed of Ng = 10 states corresponding to the minimum gesture segment

duration of 10 frames (1
3
seconds assuming 30 video frames/sec). At the end of the



Chapter 5: Affective Synthesis and Animation of Arm Gestures from Speech Prosody 59

clustering process, the gesture feature stream is divided into gesture segments, where

the lth segment in the sequence is denoted by εgl , and labeled with ℓgl as one of the

Mg available gesture classes {g1, g2, ..., gMg
}.

5.2.2 Features Driving the Synthesis

We use prosody and affect attributes to drive the gesture synthesis. Prosody char-

acteristics at the acoustic level, including intonation, rhythm, and intensity pat-

terns, carry important temporal and structural synchrony with gestures [Loehr, 2012].

Acoustic features such as pitch and speech intensity can be used to model the un-

derlying intonation of speech. We choose to include speech intensity, pitch, and

confidence-to-pitch into the prosody feature vector as in [Bozkurt et al., 2015a]. Since

the prosody feature values are speaker and utterance dependent, we apply mean and

variance normalization to the prosody features to get the normalized prosody features.

Then the normalized intensity, pitch, confidence-to-pitch features and their first-order

temporal derivatives are used to define the 6D prosody feature vector as f p.

Prosody conveys intonation which is important for modeling the variability and

complexity of timings of gestures [Wagner et al., 2014]. However, using only prosody

to drive the synthesis may not capture whole extent of the affective information. For

this purpose, we explore the use of continuous affect attributes of speech data, which

are activation (A), valence (V), and dominance (D) for affect-expressive gesture syn-

thesis and animation. The continuous affect attributes, AVD, are extracted through

manual ratings of audio-visual recordings by expert raters. It is common to extract a

ground truth annotation of AVD by averaging the ratings of the expert raters. Since

this study is a proof of concept to identify the role of affect in speech-driven gesture

animation, we primarily choose to use the ground truth annotations of the affect

attributes. We represent the 3D affect feature by fa.

On the other hand, ground truth annotation of affect attributes is hard to extract

for an automated speech-driven gesture animation system. Hence, we also investigate

the performance of our speech-driven gesture animation system with the affect at-
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tributes estimated from speech as well. We estimate affect attributes from the speech

prosody and use these estimated attributes in the gesture synthesis step. We use

support vector regression (SVR) models with a Gaussian kernel to estimate the ac-

tivation, valence, dominance attributes of affect from prosody features. We use the

ground truth AVD annotations to train these SVR models [Chang and Lin, 2011].

We estimate each affect attribute separately, since SVR performs non-linear regres-

sion from a multi-dimensional input to a uni-dimensional output. We represent the

estimated affect attributes by f â.

5.2.3 HSMM Modeling

The hidden semi-Markov model (HSMM) replaces self-transition probabilities in the

regular hidden Markov model by state duration distributions [Yu, 2010]. We construct

an HSMM model to relate gesture, prosody and affect modalities. In our framework,

we take gestures as the states of a Markov chain, where prosody and affect features are

the observations. Hence, state transitions correspond to articulation of consecutive

gestures. Introducing a state duration model allows us to better control gesture

segment durations as well as timing of the gestures in the synthesis process.

An HSMM representing continuous observations with Mg fully connected states

is modeled as Λ = (A,B,D,Π). The states of Λ represent gesture classes, and the

model parameters A, B, D, Π are respectively state transition probability, observa-

tion emission distribution, state duration distribution, and initial state distribution

matrices. The Mg × Mg state transition matrix A is defined by entries aij, each

representing the state transition probability from gesture gi to gj.

The state duration distribution D is formed in terms of state dependent duration

probability mass functions,

D : {di(n)} i = 1, ...,Mg, n = 1, ...,
Dmax

δ
, (5.3)

where di(n) is the probability of a gesture segment from gesture class gi lasting nδ sec.

Here, Dmax is the maximum duration among all gesture segments, and δ is the his-

togram bin size for the underlying probability mass function. In our experiments,
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we take the maximum duration as Dmax = 5 sec, and the histogram bin size as the

speech frame duration δ = 25 msec.

5.2.4 Gesture Synthesis

Gesture synthesis is defined as decoding an optimal state sequence, ℓ̂
g
, over the HSMM

Λ given a sequence of feature vectors, {f 1,f 2, . . . ,fT}. Note that the decoded optimal

state sequence delivers synthesized sequence of gesture segments and their durations,

where the HSMM framework secures to have realistic gesture segment durations. Un-

like the HMM, in the HSMM framework, state duration distributions are employed

in the decoding process. This requires to define a forward likelihood function incor-

porating the state duration model for the Viterbi decoding algorithm,

ψt(j)=max
κ,i

{
ψt−κ(i)+log

(
aijdj(κ)

t∏

k=t−κ+1

bj(fk)

)}
, (5.4)

where ψt(j) is the accumulated logarithmic likelihood at time frame t in state gj af-

ter observing {f 1,f 2, . . . ,f t}. Note that the maximization in (5.4) finds an optimal

duration κ∗ and the previous state i∗, and ties the accumulated likelihood ψt−κ∗(i∗)

to ψt(j). Based on the likelihood function ψt(j), we use the modified Viterbi de-

coding algorithm to extract the optimal state sequence, that is the optimal gesture

segment sequence ℓ̂
g
= {ℓ̂g1, . . . , ℓ̂

g
L}, and the associated gesture segment durations

κ = {κ1, . . . , κL}, where L is the number of gesture segments in the synthesized

sequence.

5.2.5 Gesture Animation

Animation of the synthesized gesture sequence consists of three main tasks: generation

of gesture motion sequences, smoothing gesture transitions and graphical animation of

gestures. The first task is to generate a synthesized sequence of gesture segments, ε̂g,

given the synthesized gesture segment label ℓ̂
g
and duration κ sequences. This task is

performed using unit selection over the gesture segments, which are extracted during

the gesture analysis in Section 5.2.1. We apply a dynamic programming algorithm to
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minimize a joint distortion function, R, which penalizes gesture transition distortion,

duration difference and mismatch of affect attributes. The joint distortion function

R is defined for each gesture label ℓ̂l of the synthesized state sequence as

R(εgin |ℓ̂l = gi) = Rω(ε
gi
n |ℓ̂l = gi) +

Rτ (ε
gi
n |ℓ̂l = gi)] +

Ra(ε
gi
n |ℓ̂l = gi), (5.5)

where Rω, Rτ and Ra are the min-max normalized distortion functions. The distor-

tion function Rω is the normalized mean squared difference between the joint angles

of the animated gesture segments at the transition from state ℓ̂l−1 to state ℓ̂l. The

distortion function Rτ is the normalized absolute-valued difference between the dura-

tions of the candidate gesture segment εgin and the synthesized duration κ̂l. Similarly,

the distortion function Ra is the normalized mean squared difference between the (an-

notated) affect features of the gesture segment εgin and the (annotated or estimated)

affect features of the input speech (each of the attributes A, V and D is averaged

over the temporal window of the synthesized gesture segment). The unit selection

algorithm performs minimization of the following cost function:

ϕl(ε
ℓ̂l
n )=min

j

{
ϕl−1(ε

ℓ̂l−1

j )+R(εgin |ℓ̂l=gi)

}
, (5.6)

where ϕl(ε
ℓ̂l
n ) gives the minimum accumulated distortion at the l-th label ℓ̂l of the

gesture state sequence when the n-th segment is selected from the corresponding ges-

ture subset, after observing gestures labeled as {ℓ̂1, ℓ̂2, . . . , ℓ̂l}. The gesture segments

selected from the pool are further resampled to fit the synthesized duration κ̂.

The second task is to smooth joint angle discontinuities over a temporal window

at gesture unit boundaries. This is achieved by applying an exponential smoothing

function on the synthesized gesture motion sequence. Finally, the smoothed gesture

motion sequence is animated using the MotionBuilder 3D Character Animation Soft-

ware1.
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5.3 Affect-Expressive Gesture Modeling

In this paper, we investigate the use of continuous affect attributes in speech-driven

affective synthesis and animation of arm-gestures. As we defined in Section 5.2.2, the

observations of the HSMM structure are affect attributes and prosody features. In

this section, we define four distinct structures to model emission distributions of the

observations. Figure 5.2 presents these four structures, where the features are assumed

to be generated from the gesture state sequence ℓg after unsupervised segmentation as

defined in Section 5.2.1. Figures 5.2(a) and 5.2(b) present baseline models, which use

prosody-only and affect-only features as observations, respectively. We consider joint

distribution of affect and prosody as shown in Figure 5.2(c). The fourth structure in

Figure 5.2(d) uses conditional observation distributions of prosody given affect, which

defines a non-homogeneous emission model. Note that for all the four structures in

Figure 5.2, state transition and duration probabilities are calculated based on the

gesture state sequences in the training data, and they only differ by their emission

distributions.
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Figure 5.2: Different emission models for the HSMM: (a) unimodal prosody (Λp), (b)
unimodal affect (Λa), (c) joint affect and prosody (Λap), and (d) prosody given affect
(Λp|a).
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5.3.1 Unimodal Structures

We consider two baseline structures, Λp and Λa, with unimodal emission distributions

as given in Figure 5.2(a) and 5.2(b), where the first one using only prosody features,

f p, and the second one using only affect features, fa, as observations. We call them

as unimodal structures and define their observation distributions using the Gaussian

mixture model (GMM) density functions, as

bj(f)=
K∑

k=1

ωjkN (f ;µjk,Σjk), for j=1,...,Mg, (5.7)

where the observation f can be defined as fa or f p, bj(f) is the observation proba-

bility distribution for state j, N (: µ,Σ) is the Gaussian density function with mean

µ and diagonal covariance matrix Σ, K is the number of mixtures, Mg is the number

of gesture classes, and ωjk is the weight of the k-th Gaussian component, such that

they sum up to 1 over all the components (
∑K

k=1 ωjk = 1).

5.3.2 Joint Structure

Feature level data fusion is one main information combining scheme for closely cou-

pled and synchronized modalities. In this study, feature level fusion of the prosody

and the continuous affect attributes is defined in the joint structure Λap as given in

Figure 5.2(c) with the joint emission models. The concatenated 9D feature set is

denoted as

fAP =


f

a

f p


 . (5.8)

The joint emission model is defined using the GMM density function as

bj(f
AP ) =

K∑

k=1

αjkN (fAP ;µ
(AP )
jk ,Σ

(AP )
jk ), (5.9)

where j runs over the states of the HSMM and αjk values are the mixture weights over

K components. The mean vector and the covariance matrix are respectively defined
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as

µ
(AP )
jk =


µ

(a)
jk

µ
(p)
jk


 , Σ

(AP )
jk =


Σ

(aa)
jk Σ

(ap)
jk

Σ
(pa)
jk Σ

(pp)
jk


 , (5.10)

where µ
(a)
jk and µ

(p)
jk are the unimodal mean vectors, Σ

(aa)
jk and Σ

(pp)
jk are the unimodal

full-covariance matrices, and the Σ
(ap)
jk is the cross-covariance matrix.

5.3.3 Conditional Structure

We can consider affect as the cause of modifications on the prosody of speech and

gesticulation of body motion. Such a causal relationship can be modeled through

conditional emission probability function of the prosody given affect observations. The

conditional structure Λp|a in Figure 5.2(d) defines this causal relationship. We model

the conditional dependency using a GMM based mapping, which estimates an optimal

statistical mapping from a set of observed continuous random variables to a target

continuous variable. This method was originally introduced for the articulatory-to-

acoustic mapping [Toda et al., 2008] and has been applied to a large range of problems,

including emotional state tracking [Metallinou et al., 2013]. In this study, our interest

is modeling conditional distribution rather than the mapping problem. We model the

conditional probability distribution of prosody, f p, given affect, fa, as

bj(f
p
i |f

a
i ) =

K∑

k=1

P (k|fa
i , j)bj(f

p
i |f

a
i , k), (5.11)

where indexes i, j and k are respectively running over the frames, states and mixture

components. In (5.11) P (k|fa
i , j) is the occupancy probability of the kth mixture at

state j and it is defined as

P (k|fa
i , j) =

αjkN (fa
i ;µ

(a)
jk ,Σ

(a)
jk )∑K

n=1 αjnN (fa
i ;µ

(a)
jn ,Σ

(a)
jn )

. (5.12)

The conditional distribution is also defined as a Gaussian,

bj(f
p
i |f

a
i , k) = N (f p

i ;X
(p)
jki,Y

(p)
jk ), (5.13)
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where the mean vector X
(p)
jki and covariance matrix Y

(p)
jk are defined as

X
(p)
jki = µ

(p)
jk +Σ

(pa)
jk Σ

(aa)−1

jk (fa
i − µ

(a)
jk ), (5.14)

Y
(p)
jk = Σ

(pp)
jk −Σ

(pa)
jk Σ

(aa)−1

jk Σ
(ap)
jk . (5.15)

As we point out earlier, this study is a proof of concept to identify the role of affect

in speech-driven gesture animation. Hence, the ground truth annotations of the affect

attributes are set as the primary affect features. However, for an automated speech-

driven gesture animation system, we also investigate performance of the estimated

affect attributes, as well. The estimated AVD attributes are used to drive the affect-

expressive gesture animation system with the conditional structure, which is denoted

as Λp|â in our experimental evaluations.

5.4 Experimental Results

We use the multimodal USC CreativeIT dataset that contains a variety of dyadic

theatrical improvisations for studying expressive behaviors and natural human inter-

action [Metallinou et al., 2010], [Metallinou et al., 2015]. The interactions performed

by the pairs of actors are either improvisations of scenes from theatrical plays or the-

atrical exercises where actors each repeat a short sentence to express the interaction

goals that emphasize specific emotions.

The dataset contains vocal and body-language behavior information of the ac-

tors obtained through close-up microphones, motion capture and HD cameras. Each

recording is annotated with dimensional emotional attributes (activation, valence,

dominance), where multiple annotaters annotate the videos and average of the at-

tributes over the annotators are defined as the ground truth annotations. There are

eight pairs of speakers in the dataset and we perform speaker-independent evaluations

in a leave-one-pair-out manner using data from one actor pair as the test set in turn,

and the remaining data from the other pairs as the training data. At each turn, we

use all data from training set actors (theatrical play and theatrical exercise record-

ings), and for test purposes we synthesize gestures only for theatrical play recordings
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since each actor expresses more consecutive gestures in these recordings due to longer

duration interactions.

5.4.1 Gesture Clustering Evaluations

Gesture segments, which are the building block of our animation system and out-

put of the gesture clustering step, are useful for representing meaningful arm motion

behaviors [Yang et al., 2014,Yang and Narayanan, 2016]. Gesture clustering, which

segments motion data and constructs gesture classes, is crucial for the quality of our

animations. Each gesture class should ideally represent a distinct temporal motion

pattern and variety of affective gesture forms should be preserved. We apply unsuper-

vised clustering over the gesture sequences using parallel-branch HMMs as described

in Section 5.2.1, where we investigate an optimal value for the number of gesture

classes, Mg. We consider correlation of motion features in each gesture class with

the corresponding affect features for setting the value of Mg. While we aim for a

Mg value as low as possible considering computational costs, we like to maximize the

correlation between motion and affect features within gesture classes as much as pos-

sible that is measured using the normalized Canonical Correlation Analysis (CCA).

All the gesture segments, which belong to gesture class gi, are concatenated and the

corresponding rotation angle information is represented as a feature vector sequence

F gi . Similarly, the corresponding affect feature sequence for gesture gi and for affect

attribute a, which can be A, V, or D, is constructed as F ai . Then, the CCA score

between motion and affect features can be computed and represented as ρccai (F gi ,F ai)

for gesture class gi and for affect attribute a. Then, we can define a weighted global

correlation score over all the gesture classes as

ρ̄am =
m∑

i=1

ωiρ
cca
i (F gi ,F ai) (5.16)

where m is the total number of gesture classes varying in the range [10,90], and ωi is

the weight of each gesture class gi. The weight values are computed as the ratio of

gesture class gi’s duration to the total duration of gestures, ωi = Ti/(
∑

j Tj), where
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Figure 5.3: The weighted global correlation scores between motion features and affect
attributes as a function of number of gesture classes: (A) Activation, (V) Valence,
and (D) Dominance.

Ti is the total duration of gesture class gi.

The weighted global correlation scores, ρ̄am, for each affect attribute, a, as a func-

tion of number of gesture classes, m, from 10 to 90 are given in Figure 5.3. Note

that the weighted global correlation score rapidly increases with the first four number

of gesture classes from 10 to 40. Then, the increase slows down for higher number

of classes. Additionally, number of classes higher than 50 greatly increases the com-

putational cost for our gesture synthesis approach. We observe that lower number

of classes fail to preserve motion and affect correlation, whereas higher number of

classes introduce a considerable amount of computational cost to the gesture syn-

thesis. Hence, we set the number of gesture classes as Mg = 40, which maintains

acceptable correlation values for activation, valence and dominance attributes, which

are computed respectively as 0.48, 0.48, and 0.52.

5.4.2 Correlation-based Evaluations

In this study we investigate several approaches for incorporating affective information

in a gesture synthesis-animation system as shown in Table 5.1 and objectively evaluate
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each approach. We design six scenerios (S) where affect fused with prosody (fap),

prosody only (f p) and affect only (fa) features drive the gesture synthesis and affect

may/not (α = 1/α = 0) contribute to unit selection based animation generation step.

In other words, we consider two options: affect attributes can be directly included as

an input feature to the synthesis system (S1, S2, S5, S6) and/or they can be influential

during the selection of the gesture samples in the animation generation part after the

synthesis step (S1, S3, S5). We set coefficient values managing the contribution of cost

scores in Section 5.2.5 as β1 = 0.30, β2 = β3 = 0.35 and perform speaker-independent

evaluations in a leave-one-pair-out manner using data from one actor-pair as the test

set in turn, and the remaining data from the other pairs as the training data.

Table 5.1: Experimental set-up for evaluating the contribution of affect in gesture
synthesis and animation.

Affect Contribution in

Animation Generation

α = 1 α = 0

Features for fap S1 S2

Gesture f p S3 S4

Synthesis fa S5 S6

We employ CCA and kinetic energy differences for evaluating the animation re-

sults. First, we compare synthesized and the original gesture sequence trajectories

based on first order-canonical correlation means and standard deviations for differ-

ent scenarios as shown in Table 5.2. We observe that feature sets including affect

attributes as the driving factor in the synthesis step (S1,S2,S5, and S6) yield higher

first-order canonical correlation mean values compared to the ones that do not include

(S3, S4). Moreover, including affect information in the animation step as an adjusting

factor also yields higher correlations (S1,S3) compared to ones that do not (S2, S4)

except the scenerios where affect is the only factor driving the synthesis process (S5
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vs. S6). This small decay may be due to forcing the candidate gesture selection in a

smaller pool in S5 than in S6.

Table 5.2: Average first-order canonical correlation mean and (std) values for synthe-
sized and original gesture sequences

S1 S2 S3 S4 S5 S6

mean 0.566 0.516 0.495 0.461 0.614 0.627

std 0.111 0.119 0.104 0.095 0.040 0.080

Secondly, we calculate the CCA values for the synthesized gesture trajectories and

affect attributes A, V, and D in Table 5.3. Similar to results in the previous table,

system driven by affect features perform better compared to other systems. Moreover,

using affect information in both gesture synthesis and animation generation steps gives

better results. Valence (V) has the lowest correlation value compared to activation

(A) and dominance (D) domains for systems including prosody as the driving factor

for synthesis and highest for the system driven by only affect. This result can be

interpreted as gestures in our database convey valence better than prosody.

Table 5.3: CCA for synthesized gesture sequences and affect attributes over the whole
sequence

S1 S2 S3 S4 S5 S6

A 0.520 0.449 0.354 0.292 0.585 0.545

V 0.482 0.456 0.329 0.287 0.593 0.558

D 0.516 0.483 0.308 0.299 0.588 0.541

Lastly, we compare kinetic energy (KE) differences of the synthesized sequences

with the original ones. We compute kinetic energy as the sum of angular velocity

values’ squares per joint. Then, we calculate frame-level energy differences between

the original and the synthesized sequences and normalize the total value by dividing

with the length of the sequence. In parallel to results in Tables 5.2 and 5.3 affect only
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Figure 5.4: Normalized kinetic energy difference of synthesized and the original ges-
ture sequences for the six scenarios.

driven synthesis systems have less KE difference in Figure 5.4. Moreover, employing

affect information either during the synthesis or animation process decreases the KE

difference.

5.4.3 Objective Evaluations

In the proposed HSMM-based affect expressive gesture synthesis system, we both

target to model gesture durations and relationship between gesture and prosody in

a realistic manner. To this extent, we first evaluate the fit between the original and

the synthesized gesture duration statistics. Recall that the state dependent dura-

tion probability mass functions, di(n), are defined in (5.3), which are statistics of

the original gesture durations. Similarly, duration probability mass functions for the

synthesized gestures can be computed and represented as d̂i(n) for each gesture gi.

Then, the symmetric Kullbeck-Leibler divergence (KLD) between these two duration

probability mass functions can measure the fit between the original and the synthe-

sized gesture duration statistics. A mean KLD distance is defined over all gesture

classes for the duration statistics as

KLDd =

Mg∑

i=1

ωiKLD(di(n), d̂i(n)), (5.17)

where KLD(di(n), d̂i(n)) is the symmetric KLD distance for duration statistics of

gesture class gi and ωi is the weight of each gesture class gi as used in (5.16).

Table 5.4 presents the mean KLD distance values of duration statistics for the
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proposed HSMM structures in Section 5.3. The conditional structure with the ground-

truth affect annotations, Λp|a, attains the smallest mean KLD distance. Also note that

the conditional structure with the estimated AVD attributes, Λp|â, performs close to

the Λp|a structure and attains the second smallest mean KLD distance. These two

observations suggest that conditional emission probability model performs better that

the unimodal and joint structure models.

Table 5.4: Mean KLD distances of duration statistics for the proposed HSMM struc-
tures

KLDd

Λp Λa Λap Λp|a Λp|â

0.147 0.188 0.162 0.139 0.140

The second objective evaluation investigates the relationship between gesture

classes and speech prosody. Note that the main functionality of the HSMM structure

is to model joint articulation of speech prosody and arm gestures. Hence, we con-

struct joint probability distributions of gesture classes and speech prosody over the

original and synthesized recordings and compute the mean symmetric KLD distances

between these two distributions.

In our framework gesture classes are discrete, whereas, the prosody representation

is continuous. In order to compute joint probability mass function, we first extract

a discrete representation for the prosody features. This is performed by quantizing

prosody features into Q clusters using the k-means clustering algorithm. The joint

probability mass function of gesture and prosody is extracted as

P (gi, pj) =
C(i, j)∑

i′

∑
j′ C(i

′, j′)
(5.18)

where C(i, j) is the total count of frames with gesture class gi and prosody cluster pj.

Then, the KLD distance for gesture-prosody relationship is defined as

KLDgp = KLD(P (g, p), P (ĝ, p)), (5.19)
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where P (g, p) and P (ĝ, p) are the joint probability mass functions respectively for the

original and synthesized gesture sequences.

Table 5.5 presents the KLD distances of gesture-prosody relationship for the pro-

posed HSMM structures in Section 5.3. Again, the conditional structures, Λp|a and

Λp|â, attain consistently the smallest KLD distances over all prosody quantization

levels.

Table 5.5: KLD distances of gesture-prosody relationship for the proposed HSMM
structures over different prosody quantization levels

KLDgp

Q Λp Λa Λap Λp|a Λp|â

16 3.42 3.86 3.29 2.95 2.83

32 3.13 3.53 3.01 2.72 2.59

64 2.83 3.18 2.73 2.48 2.36

5.4.4 Subjective Evaluation

Gestures can accompany speech in various different ways. Objective evaluations are

incapable of qualifying such variabilities, whereas subjective tests can evaluate real-

ism and naturalness of the animation by reflecting human perception. We use mean

opinion score (MOS) tests to subjectively evaluate the four synthesis methods men-

tioned in Section 5.3 in addition to the original motion sequence. We segment audio

recordings based on speaker turns in the dialogs and ensure only a single speaker

speaks at a time. The total number of test audio segments is 29 with an average

duration of 15s. The test contains 27 clips per test session, where the test takers

assess how expressive and coherent arm gestures are with speech. We include two

training clips at the beginning of the test, one of which is a high quality sample and

the other is a low quality in terms of consistency with speech. Each scenario has

five samples in every test session and all clips, except the training clips are shown
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in random order. A five-point assessment is adopted (1: Bad, 2: Poor, 3: Fair, 4:

Good, and 5: Very Good). Then, 25 test takers were asked to judge whether the

animation was expressive and natural. We did not perform simultaneous side-by-side

presentations (A/B test) of the synthesized gesture animations, since the test takers

would have shifted their gaze from one to the other while the utterance was played.

Our previous experience with the A/B tests show that the test takers may focus on

segments of animations, while missing the impression animations would have given

throughout the video.

Table 5.6 shows distribution and mean of test scores per scenario, where test takers

give relatively high scores to the synthesized gesture animations generated by models

using prosody features conditioned on the affect features, Λp|a, compared to those

of generated with unimodal or jointly modeled prosody, affect features. On average,

33 % of the original motion sequence animations and 21 % of Λp|a models synthesized

animations are given the highest score. Moreover, among the three scenarios, which

synthesize gesture animations from speech, the proposed conditional model, Λp|a,

performs the best with a mean opinion score (MOS) of 3.752. The MOS test score

for the animations generated using original motion sequence is 3.928. The lowest test

scores belong to animations based on the Λa models. We deduce this low performance

may be related to failure of affect attributes in modeling timing of the gestures, since

gesture sequences evolve more rapidly than affect attributes in time.

We use Analysis of Variance (ANOVA) tests to analyze subjective test results

given in Table 5.6. The test reveals that subjective test scores are significantly dif-

ferent for the five methods (F[4,620]=29.48, p = 1.1102e-16). Finally, post-hoc tests

with Tukey-Kramer method was used for multiple comparisons between scenarios to

assess which methods exhibit statistically significant differences between one another

as shown in Table 5.7. The test scores based on the proposed Λp|a models are not

significantly different from the original motion sequence scenario scores, and signifi-

cantly different from other models’ scores. Additionally, scores based on models, Λp

and Λap are not significantly different from each other.
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Table 5.6: Mean opinion score (MOS) subjective test results (Scores, 5=Very good,
1=Bad).

Distribution of scores

per method

Method 5 4 3 2 1 MOS

Original 0.33 0.39 0.18 0.1 0.0 3.928

Λp|a 0.21 0.45 0.24 0.1 0.0 3.752

Λp 0.13 0.33 0.30 0.17 0.07 3.304

Λap 0.08 0.26 0.34 0.20 0.12 2.968

Λa 0.01 0.26 0.30 0.30 0.13 2.736

Table 5.7: p-values for the ANOVA (* The mean difference is significant at p=0.01
level)

Λap Λp Λa Original

Λp|a 0.001(*) 0.006(*) 0.001(*) 0.646

Λap 0.080 0.397 0.001(*)

Λp 0.001(*) 0.001(*)

Λa 0.001(*)

5.5 Summary

We proposed a framework for affective speech driven arm gesture synthesis and an-

imation. The proposed system is speaker-independent and fully-automatic, which

inputs speech with its affective attributes and outputs speech-synchronous anima-

tions of expressive arm gestures. Our framework is composed of analysis, synthesis

and animation stages. In the analysis stage, we first segment and cluster gesture

sequences into meaningfull patterns using the parallel branch HMM structures (Sec-

tion 5.2.1) and model unimodal affect, unimodal prosody, joint prosody and affect,

and prosody conditioned on affect features for each gesture class (Section 5.3). We
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analyze the relationship between gestures, speech and affect attributes (i.e. acti-

vation, valence, dominance) using the hidden semi-Markov models. The synthesis

stage in Section 5.2.4, uses these models and inputs speech prosody and its affective

attributes to synthesize gestures with id and duration information. Then in the an-

imation stage, which is detailed in Section 5.2.5, gesture animations are generated

from the synthesized gesture sequences using the unit selection method.

We evaluate our system in a leave-one-pair speaker-out manner on the USC Cre-

ativeIT dataset, which contains speech and motion-capture data recorded during

goal-driven improvised dyadic interactions. These recordings are annotated in the

activation, valence, and dominance domains. However, it is costly to manually an-

notate new input speech data for synthesizing novel gestures. Therefore, we also

estimate values of affect attributes in our framework using the Support Vector Re-

gressors. One of the challenges for synthesizing expressive gestures from affective

speech include possible differences in the distribution of affect information for train-

ing and test data. Since we employ a speaker-independent setting, the distributions

of affect for training and test sets may differ. Unless vast amount of affective multi-

modal data is available, joint models of prosody and affect attributes may fail to cover

whole emotion space. Therefore, we use conditional models of prosody given affect

in our framework. Then, in Section 5.4.3, we objectively evaluate gesture synthesis

results using models for prosody-only, affect-only, joint prosody and affect, prosody

conditioned on affect and prosody conditioned on estimated affect, on the basis of

their duration distribution similarity to the original duration distributions, and on

the basis of joint gesture-prosody class distributions. We use normalized Kullbeck

- Leibler divergence scores to measure the similarity of synthesized and the original

distributions. Models using prosody conditioned on affect and prosody conditioned on

estimated affect yield the best synthesis results in the objective evaluations. On the

other hand, we observe synthesis results based on affect only-driven models achieve

the highest KL-divergence scores in both of the objective assessments. We infer this

shortcoming may be related to failure of affect attributes in modeling the timing of
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gestures with respect to speech; gesture sequences evolve more rapidly than affect

attributes in time and synchrony between prosody and gestures is lost for this set up.

This result also indicates the importance of accurate timing and alignment of gestures

and speech for the believability gesture animations in CAs.

Subjective evaluations, in Section 5.4.4, indicate that conditional modeling of

prosody given the affect attributes in an HSMM based gesture synthesis and anima-

tion framework can generate good quality animations. 21 % of the animations were

assessed to have very high quality in terms of their expressiveness and their coherence

with the accompanying speech and 45 % of them as good quality in the mean opin-

ion score tests. Moreover, the same setting was not significantly different from the

original motion sequence according to the ANOVA test results. Besides, affect-driven

animations were mostly rated at average quality. We believe animation quality in our

framework mostly depends on the synthesis results. Reliable synthesis results yield

to high quality animations, whereas animations generated from imprecise synthesis

results fail to achieve required expressivity in arm gestures.
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CONCLUSIONS

6.1 Summary

This section presents a summary of results and contributions presented in this the-

sis. As mentioned in the introduction chapter, we present an affective speech-driven

gesture synthesis and animation framework.

Chapter 3 presents speech-driven gesture synthesis and animation framework com-

ponents including: feature extraction and clustering, multimodal analysis of gestures

and prosody, gesture synthesis and animation. We use two multimodal datasets

for speaker-dependent and independent applications, respectively. We use gesture

phrases and gesture segments as the building block of speaker-dependent and inde-

pendent animation systems, respectively. In our framework, all analysis, synthesis and

animation generation steps revolve around the gesture phrase (segment) patterns.

Chapter 4 presents a gesture animation process using speech rhythm information.

Speech rhythm features extraction steps and contribution of using rhythm information

to animation results are explained. We also propose objective evaluation methods and

perform subjective tests to assess the quality of the animations. Both objective and

subjective tests show that animations using rhythm information are more realistic.

Chapter 5 presents affect attributes as a driving factor for the gesture synthesis

process in addition to prosody features. We investigate the contribution of using

affect information in four different models: prosody-only, affect-only, joint affect and

prosody and prosody conditioned on affect. We objectively evaluate the synthesis

results of the four methods, and models using prosody-conditioned on affect have the

most contribution to the synthesis results. Even if, we use estimated values of affect

attributes, we get better performance with the models using prosody conditioned
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on affect compared to other three methods. Subjective test results also reveal that

conditional modeling yields more realistic animations, which are coherent with the

accompanying speech.

As mentioned in the introductory chapter, this manuscript contains

• an affective speech-driven gesture synthesis and animation framework

• investigation of ways of including affect information in a general gesture syn-

thesis framework

• objective and subjective evaluations to assess contributions of including affect

into the system
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BEAT. In Proceedings of the 28th annual conference on Computer graphics and in-

teractive techniques - SIGGRAPH ’01, SIGGRAPH’01, pages 477–486, New York,

New York, USA. ACM Press.

[Chang and Lin, 2011] Chang, C. and Lin, C. (2011). Libsvm: A library for sup-

port vector machines. ACM Tran. on Intelligent Systems and Technology (TIST),

2(3):27.



Bibliography 83

[Chi et al., 2000] Chi, D., Costa, M., Zhao, L., and Badler, N. (2000). The emote

model for effort and shape. In Proceedings of the 27th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH ’00, pages 173–182,

New York, NY, USA. ACM Press/Addison-Wesley Publishing Co.

[Chiu and Marsella, 2014] Chiu, C. C. and Marsella, S. (2014). Gesture generation

with low-dimensional embeddings. In Proceedings of the 2014 international confer-

ence on Autonomous agents and multi-agent systems, pages 781–788. International

Foundation for Autonomous Agents and Multiagent Systems.

[Chuang and Bregler, 2005] Chuang, E. and Bregler, C. (2005). Mood swings: Ex-

pressive speech animation. ACM Trans. Graph., 24(2):331–347.

[Dael et al., 2013] Dael, N., Goudbeek, M., and Scherer, K. (2013). Perceived gesture

dynamics in nonverbal expression of emotion. Perception, 42(6):642–657.

[de Cheveigne and Kawahara, 2002] de Cheveigne, A. and Kawahara, H. (2002).

YIN, a fundamental frequency estimator for speech and music. The Journal of

the Acoustical Society of America, 111(4):1917.

[De Gelder, 2006] De Gelder, B. (2006). Towards the neurobiology of emotional body

language. Nature Reviews Neuroscience, 7(3):242–249.

[Debevec, 2012] Debevec, P. (2012). The light stages and their applications to pho-

toreal digital actors. SIGGRAPH Asia Technical Briefs, 2.

[Delaherche et al., 2012] Delaherche, E., Chetouani, M., Mahdhaoui, A., Saint-

Georges, C., Viaux, S., and Cohen, D. (2012). Interpersonal synchrony: A survey

of evaluation methods across disciplines. Affective Computing, IEEE Transactions

on, 3(3):349–365.



Bibliography 84

[Ding et al., 2013] Ding, Y., Radenen, M., Artieres, T., and Pelachaud, C. (2013).

Speech-driven eyebrow motion synthesis with contextual markovian models. In

ICASSP, pages 3756–3760.

[Ekman and Friesen, 1975] Ekman, P. and Friesen, W. (1975). Unmasking the Face:

A Guide to Recognizing Emotions from Facial Clues. Spectrum books. Prentice-

Hall.

[Ekman and Rosenberg, 1997] Ekman, P. and Rosenberg, E. L. (1997). What the

face reveals: Basic and applied studies of spontaneous expression using the Facial

Action Coding System (FACS). Oxford University Press, USA.

[Gibbon and Gut, 2001] Gibbon, D. and Gut, U. (2001). Measuring speech rhythm.

In Eurospeech, pages 95–98.

[Grabe and Low, 2002] Grabe, E. and Low, E. L. (2002). Duration variability in

speech and the rhythm class hypothesis. Laboratory Phonology, 7.

[Graf et al., 2002] Graf, H. P., Cosatto, E., Strom, V., and Huang, F. J. (2002).

Visual prosody: Facial movements accompanying speech. In Automatic Face and

Gesture Recognition, 2002. Proceedings. Fifth IEEE International Conference on,

pages 396–401. IEEE.

[Grandjean et al., 2008] Grandjean, D., Sander, D., and Scherer, K. R. (2008). Con-

scious emotional experience emerges as a function of multilevel, appraisal-driven

response synchronization. Consciousness and cognition, 17(2):484–495.

[Granström and House, 2006] Granström, B. and House, D. (2006). Measuring and

modeling audiovisual prosody for animated agents. In Proc. of Speech Prosody.

Citeseer.



Bibliography 85

[Gratch and Marsella, 2001] Gratch, J. and Marsella, S. (2001). Tears and fears:

Modeling emotions and emotional behaviors in synthetic agents. In Proceedings of

the fifth international conference on Autonomous agents, pages 278–285. ACM.

[Greenberg, 1999] Greenberg, S. (1999). Speaking in shorthand: a syllable-centric

perspective for understanding pronunciation variation. Speech Communication,

29(2-4):159–176.

[Greenberg and Arai, 2004] Greenberg, S. and Arai, T. (2004). What are the essential

cues for understanding spoken language? IEICE Trans. Inf. Syst., E87:1059–1070.

[Gunes et al., 2011] Gunes, H., Schuller, B., Pantic, M., and Cowie, R. (2011). Emo-

tion representation, analysis and synthesis in continuous space: A survey. In Au-

tomatic Face & Gesture Recognition and Workshops (FG 2011), 2011 IEEE Inter-

national Conference on, pages 827–834. IEEE.

[Gwo-Dong et al., 2012] Gwo-Dong, C., Lee, J.-H., Chin-Yeh, W., Po-Yao, C., Liang-

Yi, L., and Tzung-Yi, L. (2012). An empathic avatar in a computer-aided learning

program to encourage and persuade learners. Journal of Educational Technology

& Society, 15(2):62.

[Hartmann et al., 2005] Hartmann, B., Mancini, M., and Pelachaud, C. (2005). To-

wards affective agent action: Modelling expressive eca gestures. In International

conference on Intelligent User Interfaces-Workshop on Affective Interaction, San

Diego, CA.

[Hartmann et al., 2006] Hartmann, B., Mancini, M., and Pelachaud, C. (2006). Im-

plementing expressive gesture synthesis for embodied conversational agents. In

Proceedings of the 6th International Conference on Gesture in Human-Computer

Interaction and Simulation, GW’05, pages 188–199, Berlin, Heidelberg. Springer-

Verlag.



Bibliography 86

[Heylen et al., 2008] Heylen, D., Kopp, S., Marsella, S. C., Pelachaud, C., and
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