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ABSTRACT

ANALYSIS OF THE FREQUENCY DISTRIBUTIONS OF QUERY TERMS

ON DOCUMENT COLLECTIONS & PER-QUERY SELECTION OF BEST

TERM-WEIGHTING MODEL

Ahmet ARSLAN

Department of Computer Engineering

Anadolu University, Graduate School of Science, August, 2016

Supervisor: Assoc. Prof. Dr. Bekir Taner DİNÇER

Many term-weighting models have been proposed for information retrieval

but the e↵ectiveness of each term-weighting model varies across queries (i.e., in-

formation needs of users). Thus, using a single term-weighting model to process

all kinds of queries may not be appropriate for fulfilling every information need

of users. Instead of using a single term weighting model, it is an empirical fact

that using di↵erent term weighting models for di↵erent queries could provide an

increase in information retrieval e↵ectiveness by an order of magnitude. However,

for any given query, automatically selecting the term-weighting model that could

provide the highest achievable retrieval e↵ectiveness in the current state-of-the-art

of information retrieval technology is still an open and challenging research prob-

lem. This issue is, in general, referred to as selective term weighting or selective

weighting function or selective retrieval model in the field of selective information

retrieval. In this PhD dissertation, we will investigate a novel statistical/proba-

bilistic approach to the selective term weighting problem, based on the frequency

distributions of query terms on document collections.

A term-weighting model that works well for one query, may not work well for

another. We are not capable of determining or justifying in advance the best term-

weighting model to use with a given query. We know little of the characteristics

of queries and document collections that a↵ect the e↵ectiveness of term-weighting

models. This PhD dissertation aims to shed some light on this mystery by analyzing

the frequency distributions of query terms on document collections.

All the results presented in this dissertation are fully repeatable and repro-

ducible with data and code available online.

Keywords: Chi-Square Goodness-of-Fit Test, Index Term Weighting, Frequency

Distribution, Robustness of Retrieval E↵ectiveness, Selective Infor-

mation Retrieval.
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ÖZET

BELGE DERLEMLERİNDE SORGU TERİMLERİNİN FREKANS

DAĞILIMLARININ ANALİZİ VE SORGUYA GÖRE EN UYGUN TERİM

AĞIRLIKLANDIRMA MODELİNİN SEÇİMİ

Ahmet ARSLAN

Bilgisayar Mühendisliği Anabilim Dalı

Anadolu Üniversitesi, Fen Bilimleri Enstitüsü, Ağustos, 2016

Danışman: Doç. Dr. Bekir Taner DİNÇER

Bilgi erişimi için bir çok terim ağırlıklandırma modeli geliştirilmiştir. Fakat

her terim ağırlıklandırma modelinin başarımı bazı sorgularda yüksek bazı sorgu-

larda da düşüktür — başarımın gürbüzlüğü problemi. Diğer taraftan bir terim

ağırlıklandırma modelinin başarımının düşük olduğu bir sorgu için diğer terim

ağırlıklandırma modellerinin başarımı da düşük olmak zorunda değildir: herhangi

bir sorgu için tatminkar düzeyde başarım sağlayacak bir terim ağırlıklandırma mod-

elini mevcut teknolojiler içinde bulmak mümkün olabilir. Yani sisteme gelen her

sorguyu tek bir terim ağırlıklandırma modeli ile cevaplamak, kullanıcıların bilgi

ihtiyaçlarını en tatminkar şekilde karşılamak için uygun olmayabilir. Tüm sorgu-

lar için tekil bir terim ağırlıklandırma modeli kullanmak yerine, her bir ayrı sorgu

için uygun bir terim ağırlıklandırma modeli kullanıldığında bilgi erişim başarımının

mertebe kertesinde artış olduğu deneysel bir gerçektir. Ancak, verilen herhangi bir

sorgu için en iyi başarımı sağlayacak olan modelin, bugünkü bilinen en gelişkin

modeller arasından otomatik olarak seçiminin yapılması işi halen çözülememiş zor

bir araştırma konusudur. Bu uğraş, seçkili bilgi erişimi çalışma alanında, genel

olarak, seçkili terim ağırlıklandırma ya da seçkili ağırlıklandırma fonksiyonu olarak

adlandırılır. Bu doktora tezinde, seçkili terim ağırlıklandırma uğraşı için sorgu

terimlerinin derlemler üzerindeki frekans dağılımlarına dayanan özgün bir istatis-

tik/olasılık esasında yaklaşım incelenmiştir.

Bir sorguda iyi çalışan terim ağırlıklandırma modeli başka bir sorguda iyi

çalışmayabilmektedir. Verilen herhangi bir sorgunun en iyi çalışacağı terim ağırlık-

landırma modelini önceden belirleyemiyoruz. Terim ağırlıklandırma modellerinin

başarımı üzerine etki eden sorgu ve derlem karakteristikleri hakkında çok az bil-

giye sahibiz. Bu doktora tezinde, söz konusu gizeme bir nebze olsun ışık tutmak

amaçlanmaktadır.

Bu tezde sunulan bütün deney sonuçlarını tekrarlamak ve yeniden üretmek

için gerekli olan veri ve kod çevrimiçi olarak mevcuttur.

Anahtar Sözcükler: Ki-Kare Testi, İndeks Terim Ağırlıklandırma, Frekans Dağılımı,

Bilgi Erişimde Başarım Gürbüzlüğü Problemi, Seçkili Bilgi

Erişim.
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1. INTRODUCTION

Knowledge is of two kinds. We know a

subject ourselves, or we know where we

can find information upon it.

–Samuel Johnson, 1775

1.1. Introduction

With the continuos and rapid growth of the Internet, digital information that is

available on the World Wide Web have become enormous. Moreover, the amount

of new information being produced is increasing exponentially. It is estimated that

a week’s worth of the New York Times contains more information than a person

was likely to come across in a lifetime in the 18th century (Wurman, 2000).

There were the times when the philosophers had been used to attain profi-

ciency in multiple and diverse subjects; including politics, physics, biology, religion

and mathematics. By contrast, today it is not even possible to know all subjects

as individuals. In this context, to know how to find information about a subject

is way more important than knowing a subject as individuals. That makes ad-

vanced search tools the only meaningful way to access to the surging volume of

available information. Categorical browsing is simply not possible due to the vir-

tually unlimited size. Search engine tools have already become part of daily routine

for everyone, not just professionals such as academicians, librarians and lawyers.

There are 3.5 billion searches per day on Google, whose mission is to organize the

world’s information and make it universally accessible and useful (Sullivan, 2015).

We live today in the information age, that is access to and the control of

information is the defining characteristic of the current era in human civilization.

Categorical browsing is abandoned in favor of search for accessing information and

that is why search is key to the information age.
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1.2. Motivations

Although many term-weighting models have been proposed for information re-

trieval (IR), most of the current approaches tend to systematically use a single

term-weighting model to satisfy every information need of users. Such a term

weighting model is usually determined by comparing the average e↵ectiveness of

the existing models over a given set of queries. A term-weighting model may show a

good performance on average, but as it can be seen in Figure 1.1, it is an empirical

fact that every term-weighting model shows a large variation in performance across

queries. This suggests that by using a single term-weighting model, some particu-

lar queries can be satisfied with extremely high performance, while the others are

poorly performed. The basic premise for selective term-weighting is that there is

no single term-weighting model that performs the best on all queries. Our main

motivations for the present PhD dissertation are as follows:

• Term-weighting models are usually systematically applied to all queries.

• Usually a single term-weighting model that is the most e↵ective on the average

is preferred and deployed in a search system.

• Arithmetic mean (average) of traditional e↵ectiveness measures are domi-

nated by the better-performing queries.

• Information needs of users are diverse.

• Every term weighting model may be successful on di↵erent queries.

• Even if a single term-weighting succeeds good on the average, it performs

very poorly for some queries.

• A single term weighting model is not suitable to satisfy all information needs.

• In the context of information retrieval evaluation, it is important to take

into account the per-query performance of term weighting models as well as

average performance.
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Figure 1.1. The variance in e↵ectiveness (NDCG@100) among eigth models

• Many retrieval systems su↵er from high variance in performance across queries:

The Problem of Robustness in IR E↵ectiveness.

• High variance in retrieval e↵ectiveness across queries is undesirable, since

users might disappointed by a significant failure of the system.

• End users tend to remember their bad search experiences when interacting

with an information search system.

• A disappointed end user may abandon the search system regardless of the

system’s average performance.

• Therefore, a robust retrieval system, which does not disappoint its users often

by minimizing the risk of significant failures, is indeed desirable.

1.3. Research Questions and Hypotheses

The statement of this dissertation is that the most e↵ective term-weighting model

can be accurately predicted from a number of candidate term-weighting models

for each given query. This is investigated in the context of a framework, called

Selective TermWeighting (STW), where the success probability of a term-weighting

model for a given query is estimated based on the queries it performed the best

and the worst on the already seen test queries. In the selective term weighting

framework, the queries that the term-weighting model performed both the best
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and the worst are identified from the test query set. The distance of a given test

query to the identified query set is computed for each model and model with the

highest probability is selected for the given query.

This dissertation analyze frequency distribution of terms on document col-

lections in the context of IR. This work develops a framework to selectively apply

an appropriate term weighting model on a per query basis. The prediction of a

model among the candidate model set is based on the goodness of fit frequency

distribution of query terms. In particular, this dissertation addresses the following

research questions:

[R1] For a given query, can the most e↵ective term-weighting model be predicted

among the current state-of-the-art models based on the frequency distribu-

tions of the queries’ terms?

[R2] Can a more e↵ective or robust system be built by per-query application a

model predicted among current state-of-the-art technologies than a system

in which a single/individual model is uniformly applied to all queries?

Given these research questions, a number of hypotheses can be formally stated and

tested.

[H1] For a given query, the most e↵ective term-weighting model can be predicted

with reasonable accuracy, by analyzing the frequency distributions of query

terms on document collections.

[H2] Di↵erent queries benefit di↵erently from each term-weighting model and the

retrieval e↵ectiveness and robustness can be significantly enhanced if an ap-

propriate term weighting model is used for each individual query.

1.4. Contributions

The main contributions of this dissertation are the introduction of the STW frame-

work and the proposed use of chi-square goodness-of-fit test on frequency distribu-
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tions of query terms for identifying similar queries. In addition, this dissertation

draws insights from a large set of experiments, involving three di↵erent standard

corpora, two di↵erent search tasks, two di↵erent document representations and two

di↵erent e↵ectiveness measures calculated at various cuto↵ levels. This illustrates

the generalizability of the STW framework.

Furthermore, we thoroughly evaluate the accuracy, e↵ectiveness and robust-

ness of the STW framework on two di↵erent retrieval tracks, namely Web Track

and Million Query Track. In particular, a Web collection that contains over a

half billion English documents and about one thousand queries are used in this

evaluation.

This study makes some important contributions to the body of existing work

in both selective IR and robust IR. This dissertation presents experiments of the

selective term-weighting for robust retrieval based on frequency distributions of

query terms. This is the first examination of the frequency distributions of query

terms on document collections in text-based IR. This has not been done before.

As a by-product, a new family of query features can be driven from the frequency

distribution of query terms for to use in IR research area.

This work presents a unique evaluation methodology for selective retrieval

approaches when there exist multiple candidates to choose from. Three aspects

of such evaluation: accuracy, e↵ectiveness and robustness are considered at the

same time. Two natural baselines that any selective retrieval approach should

outperform at the minimum are derived and described.

The present dissertation also reveals the organic connection between the se-

lective IR and the robust IR that focused on avoiding significant failures caused

by the poorly-performing queries. This connection has much to do with the true

understanding/definition of a significant failure, and an appreciation of it helps to

gain insight into the selective retrieval approach.

Indeed, significant failure is a vague concept. When does a retrieval system
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fail significantly? Can an e↵ectiveness score of 0.2 or 0.6 be considered a failure

for a particular query? Whether a system performs poorly or not can only be

meaningfully identified when it is relatively compared to the other systems. For

example, a system serves a query with the e↵ectiveness measures of 0.6 and all

the other systems attain e↵ectiveness score greater than 0.7. Since the model in

question is the least e↵ective, we can call the score of 0.6 a significant failure. On

the other hand, a system can be the most e↵ective with a score of 0.2 when the

other systems return zero relevant documents. Obviously e↵ectiveness score of 0.2

is not a significant failure in this case.

These examples clearly demonstrate that significant failure must be defined in

a relative manner. There must be other systems to compare with. The magnitude

of an e↵ectiveness score alone is not enough to define it. This is where selective

retrieval approaches come into play. The interesting relationship between the se-

lective retrieval approaches and the problem of robustness in retrieval e↵ectiveness

is that the selective approaches are natural solutions to the robustness problem.

1.5. Outline of the Dissertation

The remainder of this dissertation is organized as follows:

Chapter 2: Information Retrieval This chapter discusses relevant background

material in IR. The main stages and models in IR are discussed, as well as the eval-

uation and the e↵ectiveness measures in general. Term-weighting is shown to be a

crucial aspect in IR. Furthermore, the problem of robustness in IR e↵ectiveness is

explained.

Chapter 3: Related Work: Selective Information Retrieval This chapter

describes the previous selective retrieval approaches proposed in the literature, as

well as briefly surveys the existing studies on the query performance prediction.
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Chapter 4: Our Approach: Selective Term Weighting This chapter de-

scribes the proposed selective term-weighting approach based on frequency distri-

butions of query terms.

Chapter 5: Experimental Methodology This chapter provides the details of

the experimental setup.

Chapter 6: Experimental Results and Analysis This chapter presents the

experimental results and our interpretations of them.

Chapter 7: Concluding Remarks This chapter discuses concluding remarks

and some interesting future directions for further research.
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2. INFORMATION RETRIEVAL

2.1. Introduction

Information Retrieval (IR) is finding material (usually documents) of an unstruc-

tured nature (usually text) that satisfies an information need (query) from within

large collections (usually stored on computers) (Manning et al., 2008). The ulti-

mate goal is to satisfy user’s information need. To do so, the IR system returns

documents that might contain the desired information. The documents that sat-

isfy user’s information needs are called relevant documents. An ideal IR system is

expected to return only relevant documents.

An IR system typically compromises of four processes: (i) indexing, (ii) query

formulation, (iii) matching, and (iv) re-ranking. Figure 2.1 shows the process

flowchart diagram.

Information Need

Query

Documents

Indexing

Inverted Index

Matching

Result List

Query Formulation

Feedback
Learning 
to Rank

Re-ranked 
Result List

Figure 2.1. Information Retrieval Process
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2.2. Indexing

Linear scanning of documents (e.g., ‘grep’) would be terribly slow. To speed-up

matching process, an o↵-line process is necessary where documents are saved into

an inverted index. Common stages employed by IR systems to derive the index

representations are described in the following subsections.

2.2.1. Tokenization

This is where free form text is break into words or tokens. For some systems, as

simple as splitting on white spaces will su�ce for the task. However, some other

systems may need more sophisticated tokenizers (e.g., recognizes e-mail addresses

and keeps them as one token). Yet, it could be more troublesome for languages

that do not use white space for word boundaries (e.g., Chinese, Japanese, Thai).

These languages have to employ word segmentation for the tokenization task.

2.2.2. Stop words removal

Some of the words do not constitute in the meaning, but used for grammatical

necessities. These extremely frequent words (e.g., “the,” “for,” “of” ) called

function words or stop words. Not indexing these words is called stop word removal.

This will reduce the index size, but it has some drawbacks. For instance, it would

not be possible to retrieve any documents for the query “to be or not to be.” And

returned documents would make no sense for certain two-term queries such as “the

current,” “the wall,” “the who,” and “the sun.”

2.2.3. Stemming

Stemming removes (inflectional) su�xes to reduce words to a common base form.

For instance, the words “addicted,” “addicting,” “addiction,” “addictions,” “addictive,”

and “addicts” can be reduced to their stem: addict. Many stemming algorithms

are proposed for to use in IR, probably the most commonly used one is the Porter

stemmer (Porter, 1997). KStemming (Krovetz, 1993) is another widely used stem-

mer for English, which is a less aggressive alternative to the Porter stemmer.
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2.3. Query Formulation

There is a distinction between an information need and actual query submitted to

the IR system. For example the information need “What folk remedies are there

for soothing a sore throat?” can be formulated into the query “folk remedies sore

throat.” Some search systems guide their users in their query formulations by

means of providing feedback; e.g., “related searches” or “did you mean?” features

of commercial search engines.

2.4. Matching

The document representation and the query are compared to produce a result list,

in which documents are ranked in decreasing order of relevance. The relevance of a

document representation to a given query can be estimated by various IR models.

The following subsections will describe models IR.

2.4.1. The Boolean model

The Boolean model is one of the oldest IR models. The model employs the oper-

ators of George Boole’s mathematical logic (AND, OR, NOT) to combine query

terms.

This model lacks ranking mechanism. Documents are either retrieved or not,

but the documents in the result set are not ranked. Therefore, all document are

assumed equally important.

2.4.2. The vector space model

Salton and McGill (1986) considered the document representations and the query

as vectors defined in a high dimensional Euclidean space. Each term represented

by a separate dimension, thus dimension of the space is equals to total number of

unique terms (denoted by N) in the index. Equation 2.1 is the cosine of the angle

✓ between the two vectors
�→
d and �→q , which is used to estimate relevance.
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score(�→d ,�→q ) = cos(✓) = �→
d ⋅�→q
��→d � × ��→q � =

∑N

i=1 di × qi�∑N

i=1(di)2 ×�∑N

i=1(qi)2 (2.1)

It should be noted that cos(0°) = 1 and cos(90°) = 0. In the vector space

model, the values of the vector components are not defined. The problem of as-

signing appropriate weights to the vector components is known as term weighting.

Probably the most famous term weighting is the tf ⋅ idf weights, which is a com-

bination of within-document term frequency tf and inverse document frequency

idf .

weight(t,D) = tf(t,D) × log2 N

df(t) (2.2)

Many modern weighting algorithms are based on the concepts in tf ⋅ idf
weighting.

2.4.3. The 2-Possion model and best match weighting

The probabilistic retrieval model ranks the documents in the collections in order

of decreasing probability of relevance P (R�D), that is the probability of relevance

R given the document D. Robertson (1997) turned the idea of ranking by the

probability of relevance into the Probability Ranking Principle (PRP).

The general form of the PRP is given in Equation 2.3, which was proposed

by Robertson and Jones (1976) and named as the RSJ model.

S(Q,D) = logP (R�D) = �
t∈Q∩D

P (D
t

= 1�R) ⋅ P (D
t

= 0�R̄)
p(D

t

= 0�R) ⋅ P (D
t

= 1�R̄) (2.3)

Here, R is a random variable who takes the values {R, R̄}, where R = relevant

and R̄ = non-relevant. P (R) denotes probability of relevance, while P (R̄) denotes
probability of non-relevance. D

t

is another random variable who takes the values

{0, 1}, where D
t

= 0 means the document D does not contain the term t and D
t

= 1
means the document D contains the term t. So, P (D

t

= 1�R) is the probability
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that the document D contains the term t given relevance. Robertson and Walker

(1994) assumed a 2-Poisson model for these distributions and developed the famous

Okapi BM25 term-weighting model, which is still one of the best performing term-

weighting algorithms.

The BM25 model scores a document-query pair using the following formula:

score(D,Q) = �
t∈Q∩D

IDF (t). tf
t,D

⋅ (k1 + 1)
tf

t,D

+ k1 ⋅ (1 − b + b ⋅ �D�
avgdl

) (2.4)

where k1 and b are free parameters that control the term frequency saturation and

the document length normalization respectively. Since BM25 contains two free

parameters (k1 and b) in fact it represents a number (or family) of term-weighting

schemes in each case. A specific term-weighting scheme is only recovered by setting

the free parameters to specific values.

2.4.4. Language models

Language models (LM) have been successfully used in the automatic speech recog-

nition systems. In particular, the LM is used to choose the most probable text

from the candidate texts generated by the acoustic model. For example, candidate

texts would be “male infertility” and “mail infertility” and then, the LM would

choose the correct one, which is “male infertility.” Because “male infertility” has

much higher probability to occur in the English language.

Application of language models to IR (Ponte and Croft, 1998; Hiemstra, 2000;

La↵erty and Zhai, 2001) is a more recent innovation, which is actually borrowed

from the automatic speech recognition domain. In LM approach to IR, every

document has its own LM. Then the probability of the query being generated by

that document LM is calculated for each document. In case of a unigram model,

this is the multiplication of probabilities of individual terms, as given by Equation

2.5. Then this probability is used to rank documents for a given query.
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P (t ∈ Q�D) =�
t∈Q

P (t
i

�D) where P (t�D) = tf
t,D�D� (2.5)

However, Equation 2.5 assigns zero probability to a document that does not

contain all of the query terms (t ∈ Q). To avoid a zero probability, usually a method

called smoothing is employed, in which some non-zero probability is assigned to

any term that does not occur in the document being scored. Zhai and La↵erty

(2004) studied smoothing methods for LM applied to IR, such as Jelinek-Mercer,

Dirichlet prior and Absolute discount. The Dirichlet prior for smoothing is known

to be the most e↵ective (Croft et al., 2009).

2.4.5. Divergence from randomness

Amati and Van Rijsbergen (2002) introduced the Divergence From Randomness

(DFR) framework, where it is assumed that the important terms of a document

are the terms whose frequencies diverge from the frequency suggested by a basic

randomness model, such as Poisson, Hyper-Geometric, Bose-Einstein etc. The

probabilistic modular framework deploys more than 50 term-weighting models.

One of the most popular DFR models is PL2, which is particularly e↵ective at

high precision tasks. PL2 assumes a Poisson distribution for the normalized term

frequency (tfn) distributions and employs Normalization2 (given in Equation 2.6)

to within-document term frequency (tf
t,D

).

tfn = tf
t,D

⋅ log2(1 + c ⋅ avdl�D� ) (2.6)

where c is a free parameter and avdl is the average document length in the collec-

tion. The PL2 model scores a document-query pair using the following formula:

PL2(D,Q) = �
t∈Q∩D

1

tfn + 1�tfn⋅log2 tfn� +(�−tfn)⋅log2 e+0.5⋅log2(2⇡ ⋅tfn)� (2.7)
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where � is the variance and mean of a Poisson distribution. � is given by within-

collection term frequency divided by the total number of documents in the collec-

tion.

2.4.6. Information-based models

Clinchant and Gaussier (2009, 2010, 2011) introduced the family of information-

based models for ad hoc IR. These models draw their inspiration from a long-

standing hypothesis in IR, namely the fact that the di↵erence in the behaviors of a

word at the document and collection levels brings information on the significance

of the word for the document.

The most successful instantiation of the model is called LGD, which assumes

a log-logistic distribution for the normalized term frequency (tfn) distributions.

LGD(D,Q) = �
t∈Q∩D

− log( �
t

�
t

+ tfn) where tfn = tf
t,D

⋅ log2(1 + c ⋅ avdl�D� ) (2.8)

Note that LGD employs the same term frequency normalization (Normaliza-

tion2 given in Equation 2.6) as PL2. Thus LGD and PL2 share the same free-

parameter c in common.

2.4.7. Divergence from independence

Kocabaş, Dinçer and Karaoğlan (2014) introduced an out-of-the-box automatic

term weighting method which is based on measuring the degree of divergence from

independence (DFI) of terms from documents in terms of their frequency of occur-

rence. DFI is the non−parametric counterpart of DFR and it has a well-establish

underling statistical theory.

DFI calculates an expected term frequency of a term t in a given document

D. The document collection is considered as one big document C whose document

length �C � is the total number of terms in the entire collection. The term t is
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observed tf(t,C) times in the artificial document whose length is �C �. Using rates

and ratios, an expected term frequency e is calculated by the Equation 2.9.

tf(t,C)�C � = e�D� (2.9)

where tf(t,C) is the within-collection term frequency of the term t. Then the

expected term frequency e is compared with the actual observed within-document

term frequency tf(t,D). If tf(t,D) ≤ e then DFI returns zero score. Elsewhere there

are three basic measures of DFI, each of which arises from di↵erent bases:

• DFIB = log2 � tf(t,D)−e
e

+ 1� based on saturated model of independence

• DFIC = log2 � (tf(t,D)−e)2
e

+ 1� based on normalized chi-squared distance from

independence

• DFIZ = log2 � tf(t,D)−e√
e

+ 1� based on standardization

In brief, the DFIZ is good at tasks that require high recall whereas DFIC is

good at tasks that require high precision.

2.5. Re-ranking

Re-ranking is a process that is employed after the matching process. In matching

process, a standard term-weighting model (BM25, PL2, LGD, etc) returns a list

of documents for a given query. Re-ranking the top-K documents (sample) in

the list returned by the reference term-weighting model using machine learning

techniques is called Learning to Rank (Liu, 2009). Learning to rank involves the

deployment of various features extracted for a sample of documents into e↵ective

learned models, which is then used to re-rank (Macdonald et al., 2013b). Quite

a number of features combined within an e↵ective learned model: including both

query independent document features (incoming links, URL depth, etc) and query

dependent features which are the weights/scores assigned to fields of documents
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Table 2.1. IR Evaluation Forums

Forum Name Reference
TREC Text Retrieval Conference trec.nist.gov
CLEF Conference and Labs of the Evaluation Forum www.clef-initiative.eu
FIRE Forum for IR Evaluation fire.irsi.res.in
NTCIR NII Testbeds and Community for ntcir.nii.ac.jp

for Information Access Research
INEX Initiative for the Evaluation of XML Retrieval INEX has come to an end
ROMIP Russian IR Evaluation Seminar www.romip.ru

(title, body, anchor text, etc) by multiple term-weighting models (BM25, tf ⋅ idf ,
etc) for query terms (Macdonald et al., 2013a).

Learning to rank has been gaining considerable attention in the IR commu-

nity, given there is an increasing amount of research has been devoted to develop

and compare learning to rank methods (Tax et al., 2015).

2.6. Evaluation in Information Retrieval

The evaluation of IR systems is the process of assessing how well a system satisfies

the information needs of its users (Voorhees, 2002). IR Evaluation Forums create

test collections and provide standardized evaluation of IR systems. The major six

forums are listed in Table 2.1. Probably the most famous one is the Text REtrieval

Conference (TREC), which is co-sponsored by the National Institute of Standards

and Technology (NIST) and United States Department of Defense.

To comparatively evaluate IR systems, primarily, the traditional TREC-

style (also referred to as Cranfield paradigm) evaluation methodology is adopted

(Voorhees and Harman, 2005). The evaluation methodology requires a document

collection, a set of information needs (called topics or queries), and a set of rele-

vance judgments (right answers) indicating which documents are relevant to which

topics (Voorhees, 2007). An example of an information need (topic) and excerpt

from query relevance judgments of the example topic are given in Listing 2.1 and

Listing 2.2 respectively.
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Listing 2.1. Example of an Information Need

<topic number=‘‘300” type=‘‘single”>

<query>how to find the mean</query>

<description>

Find a page that explains how to compute the mean of a set of numbers.

</description>

</topic>

Listing 2.2. Excerpt from Query Relevance Judgments

300 0 clueweb12−1810wb−14−05198 0

300 0 clueweb12−1811wb−49−13206 2

300 0 clueweb12−1811wb−95−05256 1

300 0 clueweb12−1812wb−00−27455 1

The query relevance judgments (qrels1) file consists of four columns: TOPIC#,

ITERATION, DOCUMENT# and RELEVANCY.

1. TOPIC# is the topic number

2. ITERATION is the feedback iteration (almost always zero and not used)

3. DOCUMENT# is the o�cial document identifier

4. RELEVANCY is an integer code where less than one indicates non-relevant

and greater than zero indicates relevant.

Relevance labels, which can be either binary (1=relevant or 0=non-relevant)

or graded (2=highly relevant; 1=relevant; 0=non-relevant; -2=spam/junk), are

assigned to each query-document pair by the human assessors therefore it is a

time and labor expensive task. For this reason, TREC employs a process called

pooling in which the human assessors judge only the documents that are the union

of the set of top-k (usually 100) retrieved documents for each topic by the TREC

participants.

1http://trec.nist.gov/data/qrels eng
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TREC participants return a ranking of the documents in the collection in

order of decreasing probability of relevance for each information need. The top-N

(usually 1000) documents for each query in the topic set are saved into a submission

file, which produce an experimental run. An excerpt from a submission file, which

consists of six columns per line, is given in Listing 2.3.

Listing 2.3. Example of TREC submission file format

300 Q0 clueweb12−1712wb−85−10084 1 4.704471 BM25k1.8b0.2 KStem

300 Q0 clueweb12−0102wb−39−28701 2 4.627909 BM25k1.8b0.2 KStem

300 Q0 clueweb12−0307wb−58−22743 3 4.454082 BM25k1.8b0.2 KStem

300 Q0 clueweb12−0109wb−82−21760 4 4.447290 BM25k1.8b0.2 KStem

300 Q0 clueweb12−0307wb−28−01469 5 4.389167 BM25k1.8b0.2 KStem

1. column is the topic number.

2. column is unused and should always be “Q0.”

3. column is the o�cial document identifier of the retrieved document.

4. column is the rank of the document that is retrieved.

5. column is the relevancy score of the document.

6. column is called the “run tag” that corresponds to a unique identifier for the

retrieval method used.

2.6.1. Evaluation measures of retrieval e↵ectiveness

To quantify retrieval e↵ectiveness, several evaluation measures have been proposed.

Precision and recall were the two simple set-based measures developed early on.

Precision is the fraction of retrieved documents that are relevant while recall is the

fraction of relevant documents that are retrieved.

precision = # retrieved documents that are relevant

# retrieved documents
(2.10)
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Table 2.2. Contingency Table

Relevant Non-relevant
Retrieved true positive false positive
Not retrieved false negative true negative

recall = # retrieved documents that are relevant

# relevant documents in the entire collection
(2.11)

Precision and recall can also be defined/expressed in terms of true positives

(tp), true negatives (tn), false positives (fp), and false negatives (fn); which are

borrowed from the classification domain. Table 2.2 is called the contingency table

whose cells are the four possible combinations. Precision and recall definition in

terms of combinations of the contingency table’s cells are as follows:

precision = tp

tp + fp recall = tp

tp + fn (2.12)

Precision decreases as the number of retrieved documents increases. Recall

increases as the number of retrieved documents increases. Note that, recall com-

putation requires the total number of relevant documents in the entire collection,

which is impossible to know for very large data bases.

The F -measure combines scores for precision and recall by employing the

harmonic mean into a single measure to allow the comparison of IR systems.

F
measure

= 2 ⋅ precision ⋅ recall
precision + recall (2.13)

Precision and recall are set-based measures because they do not consider

ordering of documents that are retrieved. For example consider two result lists

R = {0,0,1,1,1} and S = {1,1,1,0,0} where 0 indicates a non-relevant document,

1 indicates a relevant document. Since they both return five documents, three of

which are relevant, their precision will be the same value of 3
5 . In other words, set-

based measures cannot distinguish/di↵erentiate R and S. By contrast, following
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Table 2.3. Six Shades of Relevance

Grade 4 3 2 1 0 -2
Abbr. Nav Key HRel Rel Non Junk

rank-based measures would favor the result list S that returns relevant documents

higher in the ranked list.

Mean Average Precision (MAP): Precision at a fixed rank k (P@k) is the

fraction of relevant documents among top-k results, for example Precision at rank

20 (P@20). Average precision (AP) is the average of the precision scores calculated

after each relevant document is retrieved, using zero as the precision for relevant

documents that are not retrieved (Buckley and Voorhees, 2000).

AP (q) = 1�R
q

� �
r∈R

q

P@rank(r), (2.14)

where R
q

represents the documents that are relevant to the query q. For the

previous example, AP of S will be AP
S

= �11 + 2
2 + 3

3�÷ 3, which is greater than the

AP value of R will be AP
R

= �13 + 2
4 + 3

5� ÷ 3.
AP(q) is usually computed using a raking truncated at 1000. When AP is

averaged over the whole query set (q ∈ Q), MAP is obtained. MAP is a standard

metric for binary relevance assessments. More recently, six-point grading scale

has been used to judge document-query pairs at NIST. Detailed descriptions of six

di↵erent relevance grades, which presented on Table 2.3, can be found in the TREC

2014 Web Track overview report (Collins-Thompson et al., 2015). Unlike the binary

e↵ectiveness measure MAP, which treats relevance grades 1/2/3/4 as relevant and

grades 0/-2 as non-relevant, following two retrieval e↵ectiveness measures are based

on graded relevance judgments.

Normalized Discounted Cumulative Gain (NDCG@k) : It is a widely used

measure that can handle graded relevance judgments as defined by Järvelin and
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Kekäläinen (2002). DCG at rank k is computed as:

DCG@k = k�
i=1

2gi − 1
log2(1 + i) , (2.15)

where g
i

is the relevance grade of the document at rank i. NDCG is the normalized

version of Eq. 2.15 and is calculated as DCG@k

idealDCG@k

.

Expected Reciprocal Rank (ERR@k): It discounts the documents that are

shown below very relevant documents, and is defined as the expected reciprocal

length of time that a user will spend to find a relevant document. The computation

of ERR@k as defined by Chapelle, Metlzer, Zhang and Grinspan (2009) is follows:

ERR@k = k�
i=1

R(g
i

)
i

i−1�
j=1
(1 −R(g

j

)), (2.16)

where R(g) = 2g−1
16 and g1, g2, . . . , gk are the relevance grades associated with the

top k documents.

MAP and NDCG reflect the overall performance (top-k documents) of the

systems, while ERR is precision biased. ERR@20 and NDCG@20 can leverage

graded relevance judgment presented on Table 2.3 (except that a value of -2 is

treated as 0) and are the two standard retrieval e↵ectiveness metrics used at recent

TREC Web Tracks (Collins-Thompson et al., 2015).

2.6.2. Evaluation scripts for measure calculation

Another important component supplied by the TREC organizers is the standard

evaluation tools to calculate the e↵ectiveness of a retrieval run. This is important

for setting a standard in retrieval e↵ectiveness measure calculation. Without being

extensive, the most mainstream evaluation tools are as follows:

trec eval2 is the very first evaluation script published by the TREC or-

ganizers for evaluating an ad hoc retrieval run, given the submission/result file

2http://trec.nist.gov/trec_eval/
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and a standard set of judged results (qrels). The tool reports a wide range of

e↵ectiveness measures over the run.

gdeval.pl is the evaluation tool for calculating NDCG@k and ERR@k mea-

sures, which can be downloaded from trec-web-20143 GitHub repository.

statAP MQ eval v4.pl4 is the evaluation script used in the Million Query

(MQ)5 tracks of TREC, in which query relevance judgments are published as five-

column prels file format instead of the traditional four-column qrels file for-

mat. The five columns of the prels file format are as follows: TOPIC#, DOC-

UMENT#, ALGORITHM# and INCLUSION PROBABILITY. The script com-

putes NDCG@{10,30,50,100} and Statistical Average Precision (statAP) as defined

by Carterette, Pavlu, Kanoulas, Aslam and Allan (2008).

Many researchers have been using these tools and viewed them as an o�-

cial/reliable implementation of the various retrieval e↵ectiveness measures proposed

in the literature.

2.6.3. Summing up

The described test collection-based evaluation and experimentation methodology

(Sanderson, 2010) permit researchers to easily compare IR systems based on their

retrieval e↵ectiveness. Fang et al. (2004, 2011) have proposed an alternative eval-

uation methodology to analytically and experimentally diagnose the weaknesses

or strengths of IR models. Their major contribution is the retrieval heuristic con-

straints, which are defined independently of relevance judgments, so that we can

study and compare IR models analytically without requiring experimentation.

The present dissertation follow the TREC evaluation standards, as many re-

searches do. Standard benchmark datasets and query sets are keys for establishing

research to be reliable, reproducible and extensible for the future. But there are

known limitations of the TREC-style evaluation, which are out of the scope of the

3http://github.com/trec-web/trec-web-2014
4http://ir.cis.udel.edu/million/statAP_MQ_eval_v4.pl
5http://trec.nist.gov/data/million.query.html
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present dissertation.

• Query set is too few to make generalizable inferences.

• Due to the pooling concept, reusability of the datasets and query relevance

judgements are questioned (Buckley et al., 2006).

• Does the sample query set really represent the population?

• Does the document set really represent the Web?

2.7. The Problem of Robustness in Retrieval E↵ectiveness

The robustness problem of IR is caused by a large/radical fluctuation of/in a sys-

tem’s retrieval e↵ectiveness across ad hoc queries posed by the users, as measured

by the quality of returned documents. Even if a retrieval system succeeds very

well on average, to the quality of returned documents for certain queries is poor

(significant failure of the system). These poorly-performing queries may lead to

user dissatisfaction since people tend to remember their bad experiences. In other

words, the system’s average performance does not help a user who is disappointed

by a significant failure of the system. Thus, a robust system that avoids significant

failures, as well as performs very well on the average, is desirable.

The robustness problem has been recognized by the IR community (Carmel

and Yom-Tov, 2010, Chapter 1) and led to a new research direction that focuses on

the poorly-performing queries and examines/explores new evaluation measures that

are not dominated by the better-performing topics. We will give brief information

about a workshop and TREC tracks dedicated on the robustness.

2.7.1. The reliable information access workshop

The Reliable Information Access (RIA)6 Workshop was held in the summer of

2003 (Harman and Buckley, 2004). It was the first attempt to rigorously analyze

6https://ir.nist.gov/ria
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individual query failures and understand the reasons for performance variability

between queries and systems. The goal of the RIA workshop was to learn how

to customize IR systems for optimal performance on any queries. The workshop

brought together seven di↵erent IR systems and assigned them to common IR

tasks. By performing extensive topic failure analysis, nine failure categories were

identified.

A surprising result was the finding that the majority of failures could be fixed

with traditional IR techniques such as better relevance feedback mechanism and

better query analysis. Harman and Buckley (2009) argued that “it may be more

important for research to discover what current techniques should be applied to

which topics, rather than to come up with new techniques.”

It is observed that some retrieval approaches work well on one topic but

poorly on a second, while other approaches may work poorly on the first topic,

but succeed on the second. Buckley (2009) stated that: “if one could determine

in advance which approach would work well, then a dual approach could strongly

improve performance. Unfortunately, no one knows how to choose good approaches

on a per-query basis.”

The findings and conclusions drawn from the RIA workshop by Harman and

Buckley (2004, 2009), have driven a new research direction in the IR field on se-

lectively applying retrieval approaches on a per-query basis. This research area is

later on termed as selective information retrieval.

2.7.2. The TREC 2003-2005 robust retrieval track

The fluctuation in retrieval e↵ectiveness across queries and systems led to the

TREC robust retrieval tracks in the years 2003-2005, which explored methods for

improving the consistency of retrieval technology by focusing on poorly performing

topics (Voorhees, 2005). Systems were challenged by 50 old TREC topics found to

be di�cult for most systems over the years. A topic is considered di�cult in this

context when the median of the AP scores of all participants for that topic is below
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a given threshold (i.e., half of the systems are scored lower than the threshold),

but there exists at least one high outlier score.

Since traditional measures are dominated by the better-performing topics,

the track has also investigated appropriate evaluation measures that emphasize

a system’s least e↵ective topics. A variant of the traditional MAP measure that

uses a geometric mean (which gives appropriate emphasis to poorly performing

topics) to average individual topic results is developed during the lines of robust

retrieval tracks. Participants tried approaches to decrease the variance in retrieval

e↵ectiveness across the topic set by increasing retrieval e↵ectiveness for poorly-

performing topics. The most promising approach is found to be exploiting external

collections other than the target collection such as the Web.

2.7.3. The TREC 2013-2014 risk-sensitive retrieval task

In 2013, the TREC forum introduced a new risk-sensitive retrieval task (Collins-

Thompson et al., 2014) which rewards algorithms that achieve improvements in

terms of their average e↵ectiveness across topics (good performance on average),

but that also maintain good robustness. Robustness of a system is defined as min-

imizing the risk of significant failure relative to a given baseline but also achieving

good average e↵ectiveness over all topics at the same time.

The goal of the risk-sensitive task is two-fold:

1. “to encourage research on algorithms that go beyond just optimizing average

e↵ectiveness in order to e↵ectively optimize both e↵ectiveness and robustness,

and achieve e↵ective tradeo↵s between these two competing goals”

2. “to explore e↵ective risk-aware evaluation criteria for such systems”

The risk-sensitive retrieval task is motivated by the empirical fact that the re-

trieval strategies usually improve the e↵ectiveness for specific queries while degrad-

ing it for others compared with a baseline system that does not use such strategies.
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Two risk-aware evaluation criteria: URisk (Wang et al., 2012) and TRisk (Dinçer

et al., 2014) were evolved for the task.

The risk-sensitive retrieval task is closely related to the goals of the earlier

robust retrieval tracks, thus it can be thought of as a next step in obtaining good

retrieval robustness by means of learning to rank techniques.

2.8. Summary

In this chapter, we have presented an overview of IR in general, from indexing to

matching documents and evaluation, and reviewed several models of IR such as

BM25, DFI, LGD, Language Modeling, tf ⋅ idf as well DFR framework. Finally,

we call attention to the problem of robustness in IR e↵ectiveness and list TREC

tracks and a workshop dedicated on it.
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3. RELATED WORK

3.1. Introduction

The previous chapter presented the general background and preliminaries on In-

formation Retrieval (IR). In this chapter, we review the two lines of research that

provide the necessary context for the present dissertation: (i) Query Performance

Prediction (QPP) and (ii) Selective Information Retrieval (SIR). Although the

present dissertation is not directly related to QPP, we include a brief review of

QPP because certain selective retrieval approaches are based on it.

3.2. Query Performance Prediction

Estimating the e↵ectiveness of a search performed in response to a query in the ab-

sence of relevance judgments is the goal of query-performance prediction methods.

Estimating the query di�culty is an important field of study since it enables IR

systems to identify di�cult queries in order to handle them properly. Thus, search

engines will reduce the variance in performance, resulting in better retrieval robust-

ness. In this section, we describe the query performance prediction (also referred

to as query di�culty estimation) problem and the most successful approaches for

this problem in the literature. Following QPP studies’ summarizations are based

heavily on the book written by Carmel and Yom-Tov (2010). QPP methods can

be studied in two categories : pre-retrieval and post-retrieval.

3.2.1. Pre-retrieval predictors

Pre-retrieval predictors estimate the performance of a query before the retrieval

takes place, thus, independent of the result list. By contrast, they are collection

dependent and analyze the distribution of the query term frequencies within the

collection. The inverse document frequency (IDF) and the inverse collection term

frequency (ICTF) are frequently used term statistics. The IDFavg and the ICTFavg

predictors measure the average of the IDF and ICTF values of the query terms.
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The assumption is that queries with high average value, i.e., queries composed of

infrequent terms, are easier to satisfy.

He and Ounis (2004a) study a set of predictors of query performance, which

can be generated prior to the retrieval process. The linear and non-parametric cor-

relations of the predictors with query performance are thoroughly assessed on the

TREC disk4 and disk5 (minus CR) collections. Their research revealed that some

of the proposed predictors have significant correlation with query performance,

showing that these predictors can be useful to infer query performance in practical

applications.

Zhao, Scholer and Tsegay (2008) propose a new family of pre-retrieval predic-

tors based on information at both the collection and document level. The collection

query similarity predictor measures the vector-space based query similarity to the

collection, while considering the collection as a one large document composed of

concatenation of all the documents. The VAR(t) predictor measures the variance

of the term weights over the documents containing it in the collection. The weight

of a term that occurs in a document is determined by the specific term-weighting

model. If the variance of the term weight distribution is low, then the retrieval

system will be less able to di↵erentiate between highly relevant and less relevant

documents, and the query is tend to be more di�cult.

Hau↵, Hiemstra and de Jong (2008), in their survey, categorize and assess 22

pre-retrieval predictors on three di↵erent TREC test collections.

3.2.2. Post-retrieval predictors

Post-retrieval predictors require the computation of result list and relevance scores

for the query, which is time-consuming. However, these methods are more suitable

for identifying inconsistency, incoherency, and other characteristics that reflect low

quality.

The pioneering work of Cronen-Townsend, Zhou and Croft (2002) gave rise

to query di�culty estimation research. They develop a method for predicting
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query performance by computing the relative entropy between a query language

model and the corresponding collection language model. The resulting clarity score

measure was the very first query performance predictor. After 10 years, Hummel,

Shtok, Raiber, Kurland and Carmel (2012) presented novel interpretation of clarity

score and showed that it actually quantifies diversity property of the result list.

Their study, along with empirical evaluation, explained the low prediction quality

of clarity score for large-scale Web collections.

Yom-Tov, Fine, Carmel and Darlow (2005) won SIGIR’05 best paper award

with their “Learning to estimate query di�culty” titled work. They tried to identify

di�cult queries that return poor results, and list several useful use-case scenarios

for detection. Estimation is based on the agreement between the top results of the

full query and the top results of its sub-queries.

Zhou and Croft (2007) proposed Query Feedback for measuring the robustness

of the result list to small modifications of the query. If small changes to the query

result in large changes to the search results, then the query is considered di�cult.

The Weighted Information Gain (Zhou and Croft, 2007) measures the diver-

gence between the mean retrieval score of top-ranked documents and that of the

entire corpus. The Normalized Query Commitment (Shtok et al., 2012) measures

the normalized standard deviation of the top scores.

3.3. Selective Information Retrieval

Classical/traditional (non-selective) IR approaches apply a particular technique

uniformly to all queries. In contrast, selective retrieval approaches deal with ap-

plying di↵erent retrieval techniques for di↵erent queries. Various selective retrieval

approaches have previously been proposed in the literature. In this section, com-

prehensive survey of existing selective retrieval approaches is given in chronological

order. Following SIR studies’ summarisations are based heavily on the contents

(abstract, introduction, and conclusion) of the cited original works.
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3.3.1. Query type classification

Query type classification classifies a query into one of a set of target types (e.g. in-

formational, navigational, or transactional), and then selectively applies a retrieval

model trained for the predicted type. For instance, Kang and Kim (2003) showed

that di↵erent query types can benefit from the application of di↵erent retrieval

approaches.

3.3.2. Selective weighting function

He and Ounis (2003) tested selective weighting function approach to improving

the e↵ectiveness of poorly-performing quires at Robust Track of TREC. He and

Ounis (2003, 2004b) were the first to selectively apply a term-weighting model on

a per-query basis and they referred to the problem/task as the model selection .

The DFR framework o↵ers over the 50 di↵erent term-weighting models, but

the framework does not have a strategy to single out one that would yield the best

retrieval e↵ectiveness for a given query. He and Ounis (2003, 2004b) proposed a

query-based pre-retrieval approach that automatically selects the best-performing

retrieval model among 11 DFR models. They cluster the queries according to their

statistics and associate the best-performing term-weighting model to each cluster.

Their selective approach, which is detailed on Chapter 5.4.2, does improve the

poorly-performing queries compared to a baseline where a unique retrieval model

is applied indi↵erently to all queries.

3.3.3. Selective query expansion

Automatic query expansion (AQE) works only for easy queries, i.e., when the search

engine is able to rank high the relevant documents. If this is not the case, AQE will

add irrelevant terms, causing a decrease in performance. Thus, it is not beneficial

to use AQE for every query. Instead, it is advantageous to have a switch that will

estimate when AQE will improve retrieval, and when it would be detrimental to it.

Amati, Carpineto and Romano (2004) set a threshold on the predicted di�culty,
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beyond which queries would be expanded. In this approach, only “easy” queries,

i.e., those with highly predicted performance, are expanded. In contrast, a classifier

was trained in (Yom-Tov et al., 2005) to identify queries for which pseudo relevance

feedback might be beneficial, based on a training set where queries were assessed

as to the increase or decrease in performance caused by expansion.

3.3.4. Selective document representation

Plachouras et al. (2004, 2006) investigated the e↵ectiveness of a decision mechanism

for the selective combination of evidence in the context of topic distillation task,

which is defined as finding useful entry points to sites that are relevant to the

query topics. They used three di↵erent sources of evidence: textual content of

documents, anchor text, and the length of the URL. They concluded that, the

selective combination of evidence on a per-query basis can increase the retrieval

e↵ectiveness, compared to the uniform combination of evidence (irrespectively of

the queries) for Web IR, and more specifically, for topic distillation.

3.3.5. Selective Web information retrieval

Plachouras (2006), in his PhD thesis, proposed a method to selectively apply an

appropriate retrieval approach for a given query, which is based on a Bayesian de-

cision mechanism. Features such as the link patterns in the retrieved document set

and the occurrence of query terms in the documents were used to determine the ap-

plicability of the retrieval approaches. This method was shown to be e↵ective when

there were only two candidate retrieval approaches. However, the retrieval perfor-

mance obtained using this method only improved slightly and actually decreased

when more than two candidate retrieval approaches were used.

3.3.6. Selective personalization

Personalization only improves the results for some queries, and can actually harm

other queries. Teevan, Dumais and Liebling (2008) characterized queries by using

a variety of features of the query, the results returned for the query, and people’s

interaction history with the query. Using these features they learned Bayesian
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dependency networks to identify queries that can benefit from personalization.

3.3.7. Selective search engine

Any given Web search engine may provide higher quality results than others for

certain queries. Therefore, it is in users’ best interest to utilize multiple search

engines. White, Richardson, Bilenko and Heath (2008) propose and evaluate a

framework that maximizes users’ search e↵ectiveness by directing them to the en-

gine that yields the best results for the current query. Di↵erent from previous

work on meta-search, they facilitate simultaneous use of individual engines. They

describe a machine learning approach (maximum-margin averaged perceptron) to

supporting switching between search engines (Google, Yahoo!, and Live Search)

and demonstrate its viability at tolerable interruption levels.

3.3.8. Query dependent ranking

Geng, Liu, Qin, Arnold, Li and Shum (2008) proposed a query-dependent ranking

approach. They use soft classification that identifies similar queries from a training

set. This is di↵erent than hard classification which classifies a query into a pre-

defined target class. In their approach, a k -nearest neighbor classifier was used to

identify training queries similar to an unseen query. A retrieval model was then

learnt based on the identified queries and applied to the unseen query.

3.3.9. Selective query-independent features

Peng and Ounis (2009) investigate a novel approach that applies the most appro-

priate query-independent feature on a per-query basis. The approach is based on

an estimate of the divergence between the retrieved document scores’ distributions

prior to, and after the integration of a query-independent feature. Experimental

results demonstrate that the selective application of a query-independent feature

on a per-query basis is very e↵ective and robust.
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3.3.10. Selective collection enrichment

Peng, He and Ounis (2009a) proposed a decision mechanism to decide whether or

not to apply collection enrichment (CE) on a per query basis. A query performance

predictor was used in decision. The approach is based on the predicted performance

score of a given query on the local and external resources. In particular, the

decision mechanism applies collection enrichment if and only if the predicted query

performance score obtained on the external resource is higher than a threshold, as

well as the predicted query performance score obtained using the local resource.

Peng, Macdonald, He and Ounis (2009b) we apply the divergence-based ap-

proach for selectively applying CE by examining the divergence between relevance

score distributions prior to, and after the application of CE. To achieve this, they

learn the distribution of divergence scores, which are estimated between two dif-

ferent lists of ranked documents obtained with and without the application of CE,

using training data.

3.3.11. Selective diversification

Santos, Macdonald and Ounis (2010) use a large pool of query features to choose

between a more lenient or more aggressive diversification strategy on a per query

basis. Thorough experiments using the TREC ClueWeb09 collection show that

proposed selective approach can significantly outperform a uniform diversification

for both classical and state-of-the-art diversification approaches.

3.3.12. Selective ranking function

Peng (2010), in his PhD thesis, proposed the “Learning to Select” framework that

selectively applies an appropriate ranking function on a per-query basis, regardless

of the given query’s type and the number of candidate ranking functions.

Peng, Macdonald and Ounis (2010) choose a ranking function from a large

pool of candidate functions, based on their performance on neighboring training

queries to an unseen query. The approach employs a query feature to identify
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similar training queries for an unseen query. A k -nearest neighbor classifier was

used to identify training query set and best ranking function which performs the

best on this identified set is then chosen for the unseen query.

Balasubramanian and Allan (2010) proposed the “Ranker Selection” frame-

work that predicts the di↵erence between the e↵ectiveness of two rankers in terms of

average precision. The experiments conducted on LETOR 3.0 dataset using three

rankers (RankBoost, Regression, and Frank) show that, for selecting between two

rankers, a simple regression model that directly predicts di↵erences in e↵ectiveness,

can achieve substantial improvements over the best individual ranker.

3.3.13. Query dependent loss function

Bian, Liu, Qin and Zha (2010) propose to incorporate query di↵erence into ranking

by introducing query dependent loss functions. They compare query-dependent loss

function to query-dependent ranking function. According to their study, query-

dependent loss function outperforms.

3.3.14. Selective pruning

Tonellotto, Macdonald and Ounis (2013) propose a novel selective framework that

determines the appropriate amount of pruning aggressiveness on a per-query basis,

thereby increasing overall e�ciency without significantly reducing overall e↵ective-

ness. In their work, the authors aim to ensure e↵ective and e�cient retrieval, by

selecting which queries should be pruned more aggressively.
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4. THE SELECTIVE TERM WEIGHTING FRAMEWORK

4.1. Introduction

The previous chapter presented previously proposed selective retrieval approaches.

In this section we introduce our selective term-weighting framework that selectively

applies an appropriate term-weighting model from a set of candidate/representative

term-weighting models based on frequency distributions of query terms.

A central concept of this framework is that the best term-weighting model,

which would yield highest e↵ectiveness, for a given unseen test query can be es-

timated based on the frequency distributions of the query’s terms. In particular,

we propose a novel query similarity, which takes into account the frequency dis-

tribution of queries’ terms. This new query similarity is based on the chi-square

goodness of fit test, which is used to quantify the extent to which two observed

frequency distributions are similar to each other.

Our proposed approach does not require the result lists nor their associated

relevancy scores returned by the test query. Since it automatically selects a term-

weighting model before the actual search takes place, it is a pre-retrieval strategy.

The remainder of this chapter is organized as follows. Section 4.2 explains

the concept of term frequency distribution in the context of IR and text document

collections, as well as the proposed term and query similarity functions based on

the chi-square goodness of fit test. Section 4.3 details the selection mechanism for

selectively applying an appropriate term-weighting on a per-query basis. Section

4.4 tabulates the candidate term-weighting models. Section 4.5 discusses/highlights

a limitation of the frequentist approach to IR. Section 4.6 compares the selective

term-weighting framework with the existing selective retrieval approaches. Finally,

a summary of this chapter is presented in Section 4.7.
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4.2. Term Frequency Distribution

Frequency is how often something occurs. In context of IR and text document

collections, term frequency (denoted by tf
t,d

) is defined as the number of occurrences

of term t in document d. This definition is referred to as raw term frequency or

within-document term frequency in this dissertation.

By counting frequencies we can make a frequency distribution table. Basically

we count the documents that contain the term t one time, two times, three times,

and so on. According to the frequentist approach, raw term frequency is not

comparable across documents because documents have varying lengths. Therefore,

in this dissertation we only work with relative term frequency, which is calculated

as raw term frequency divided by length of the document. Note that: 0 < relative
term frequency ≤ 1

Dividing the within-document term frequency by the document length has

following advantages: (i) it is equivalent to the probability that term t is chosen

from the document d at random. (ii) in Language Modeling, it is also referred to

as Maximum Likelihood Estimate (MLE) of the probability of term t under the

term distribution for document d. (iii) relative frequencies of distinct terms in a

document sum up to one. (iv) given that: 0 < relative term frequency ≤ 1, it is easy
to create binned grouped relative term frequency distribution table of the term.

In contrast to raw term frequency, relative term frequency values are not

integer. They are less than or equal to one and have many di↵erent/distinct values.

Therefore, they are not suitable for creating a frequency distribution table. We have

applied the following binning approach to tackle the problem.

4.2.1. Grouped relative term frequency distribution

We partition the interval (0-1] into 1000 bins of equal length and put relative term

frequency values into these 1000 bins. Table 4.1 shows the bin intervals and the

corresponding frequencies for the term atari. Such distribution tables are useful for
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Figure 4.1. Grouped Relative Term Frequency Distribution Plot

Table 4.1. The Bin Intervals

Bin No Bin Interval Frequency
1 (0.000 - 0.001) 228785
2 [0.001 - 0.002) 183551
3 [0.002 - 0.003) 99254
4 [0.003 - 0.004) 63628
5 [0.004 - 0.005) 42223
6 [0.005 - 0.006) 28372
. . . . . . . . .
1000 [0.999 - 1.000] 0

comparing distribution of query terms visually. In Figure 4.1, distribution graphs

of four terms (and, family, for, wedding) are compared. It can be observed that

shapes of the distributions are quite di↵erent. Notice that family and wedding

are content bearing words, while for and and are function words.

4.2.2. Goodness of fit tests

Goodness of Fit (GOF) tests measure how much an observed frequency distribu-

tion di↵ers from a theoretical distribution, such as Poisson, Hyper-Geometric, and

Log-Logistic. Pearson’s chi-square statistic, which is of the nonparametric type

(Conover, 1999), is defined as follows:
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Where O
i

are observed counts, E
i

are corresponding expected count and n is the

number of classes for which counts/frequencies are being analyzed.

�2 can be used to measure the discrepancy or similarity between two observed

frequency distributions. Let R
i

be the number of documents in bin i for the first

term, S
i

the number of documents in the same bin i for the second term. Then the

chi-square statistic is

�2 = n�
i=1
(R

i

− S
i

)2
R

i

+ S
i

(4.2)

4.2.3. Term similarity based on frequency distributions

Once grouped relative term frequency distribution/table of a term is obtained,

it is straightforward to quantify its similarity to another term by using �2 GOF

statistics given by the Equation 4.2. Table 4.2 presents grouped relative term

frequency distribution table of di↵erent words/terms. Di↵erent from the Table 4.1,

this time we include the zeroth bin, which is the number of documents that do not

contain the term. By doing so, we take into account the IDF e↵ect of the term, and

all rows sum up to the same value: total number of documents in the collection.

This also satisfies the unequal number of data points requirement in �2 calculation.

Notice that Equation 4.2 apply to the case where the total number of data points

(document frequency) is the same in the two binned sets. (e.g. ∑n

i=1Ri

= ∑n

i=1 Si

)

Since di↵erent terms may have di↵erent document frequency (DF) values/ranges,

without inclusion of the zeroth bin, we would not directly use the Equation 4.2 for

terms having di↵erent DF values/ranges.

Although �2 was originally designed to quantify how much an observed fre-

quency distribution is representative of a theoretical distribution it can also be used
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Table 4.2. Grouped Relative Term Frequency Distribution Table

XXXXXXXXXXXXTerm
Bin No

0 1 2 3 4 5 6 7

warren 499902875 1698022 1045982 461024 247844 150566 90134 58673
yahoo 483767215 4847226 5968976 3125663 1678247 1034722 677554 473663

diversity 498264010 2263737 1415938 716437 403022 239535 149181 98598
euclid 503552774 118475 75725 45912 28992 18409 12270 8443
fish 489620024 4607778 3526704 1829877 1040154 690274 460965 329652
poker 497452573 1336556 1346682 758706 508246 356959 238320 167325
the 60222095 1156860 4264509 6727695 8351399 9374867 10152057 10202091

to measure the similarity between two observed (grouped relative term) frequency

distributions, where there are no expected values but two observed values. Let R
i

be the number of documents in bin i for the first term R, S
i

the number of docu-

ments in the same bin i for the second term S. Then the term similarity based on

the chi-square statistic is

�2 = n�
i=0
(R

i

− S
i

)2
R

i

+ S
i

(4.3)

where n is the number of bins which is 1000 in the present dissertation. It should be

noted that we have borrowed the Equation 4.2 from the book by Press, Teukolsky,

Vetterling and Flannery (2007).

We further divide each bin value entry of the table by the total number

of documents in the collection to make these distribution values collection inde-

pendent. This normalization/standardization does not a↵ect relative order of �2

values of terms that belong to the same collection (within-collection), but it is

useful/necessary for cross-collection experiments (test and train queries’ term fre-

quency distributions come/extracted from di↵erent collections).

The order of terms in �2 is not important, i.e., it is symmetric/commutative:

�2(lymphoma, paralegal) = �2(paralegal, lymphoma). The commutative property

of �2 makes the calculation e�cient cacheable in an actual real-world IR system.

High values of �2 implies a poor fit between terms, while zero value represents a

perfect fit. Therefore, similarity of the same two terms is always zero. For example:

�2(yahoo, yahoo) = 0.
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Figure 4.2. Multidimensional Scaling Analysis of ClueWeb09 Query Terms

We take a matrix of �2 similarities between query terms from the ClueWeb09

dataset. Multidimensional scaling (MDS) analysis of this matrix is depicted on

Figure 4.2, which visualizes the level of �2 similarity of individual query terms

by reproducing the similarities based on two dimensions. As a result of the MDS

analysis, we obtain a two-dimensional representation of the �2 similarities of the

terms. Total 411 distinct query terms, some of whose text are made visible, are

depicted in the Figure 4.2. As can be seen, the term the, is at the upper right

corner, is the most radical/distant term. The rarest term michworks, observed

only in 249 documents, falls in the upper left corner.

4.2.4. Query similarity based on frequency distributions

It should be noted that previously described grouped frequencies are calculated for

a single term. However, in practice, a query Q = {t1, t2, . . . , tn} can comprised of

multiple terms. Therefore the Equation 4.3 cannot be directly used for a query

to query similarity. As a remedy to the problem we propose two approaches: (i)

Average and (ii) Cartesian.

Average query similarity It is worthwhile to note that, some of the learning

to rank (LETOR) features are based on terms. To obtained a query feature from
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Table 4.3. Query Frequency Distribution

XXXXXXXXXXXXTerm
Bin No

0 1 2 3 4 5 6 7

obama 492284836 2573539 3164159 1807392 1048292 681580 466128 337461
family 430734219 16443075 18223427 11111546 7213982 4699781 3273734 2261226
tree 482831202 6754088 5385276 2719087 1564855 1005215 690448 479980

Average 468616752 8590234 8924287 5212675 3275710 2128859 1476770 1026222

Table 4.4. Initial Cartesian Table: filled with all pairs of �2(x,y)

air travel information
internet 0.163 0.012 0.001
phone 0.006 0.220 0.145
service 0.148 0.014 0.002

multiple term features, an aggregation strategy is necessary. For example, the final

value of IDF in LETOR 3.0 dataset is the sum of the IDF of each query term:

idf(Q) = ∑
t∈Q idf(t). In a similar fashion, to aggregate multiple binned frequency

distributions, we simply take average of the frequencies of bin i.

Table 4.3 demonstrates the procedure for the query obama family tree. At the

last row, three term frequencies are averaged for each bin. Thus, we obtain a pseudo

frequency distribution for a query, as if it is a single term. This transformation

allows us to calculate chi-square statics of two queries, where queries were treated

as terms.

Cartesian query similarity In this novel approach, we do not aggregate fre-

quency distributions of di↵erent terms of a query into one. Instead, we employ

cartesian product of query terms. We consider all possible pairs of terms, which

are member of two queries.

LetX = {x1, x2, . . . , xn

} be the first query comprised of n terms, Y = {y1, y2, . . . , yn}
be the second query comprised of n terms. A cartesian product table X × Y =
{�2(x, y)�x ∈ X ∧ y ∈ Y } is constructed from all pairs of (x,y) where y ∈ Y and

x ∈X. Table 4.4 presents such table constructed for X = {internet, phone, service}
and Y = {air, travel, information}.

Next we find the minimum element (strongest matching pair) in the table,
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Table 4.5. Remaining Cartesian Table: after the first pair’s match

air travel
phone 0.006 0.220
service 0.148 0.014

which is �2(internet,information)=0.001, to determine the first pair. Once a pair

is determined (a term in X finds its significant other in Y ), we remove the whole

column and row that form the pair from the table and repeat the process until

the table is empty. Table 4.5 shows the remaining entries after the removal of

the first couple. The smallest entry among the remaining entries forms the second

couple, which is �2(phone,air)=0.006. Thus, our third and last couple becomes

�2(service,travel)=0.014. Finally we use the normalized Euclidean distance of all

three couples as a resulting query similarity.

sim(X,Y ) =
√
0.0012 + 0.0062 + 0.0142

3
= 0.005 (4.4)

In this similarity algorithm, every term finds its unique couple. That why we

name this similarity as CoupleSimilarity. However, this similarity requires that

the queries to be compared must have equal lengths. Next we describe how we

handle unequal query lengths.

When the lengths of the queries are equal, we apply CoupleSimilarity. Else-

where, we label the queries as Q
long

and Q
short

according to their query lengths:

number of terms in a query. We generate Q
short

combination of Q
long

and call

CoupleSimilarity for each piece, which has the same length as Q
short

. For ex-

ample for X = {internet, phone, service} and Y = {disneyland, hotel} we obtain

�Qlong

Q

short

� = �32� = 3 pieces for the long query X: [internet, phone] [internet, service]

[phone, service]. We invoke CoupleSimilarity for each piece using Q
short

:

• CoupleSimilarity(disneyland hotel, internet phone)

• CoupleSimilarity(disneyland hotel, internet service)
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Figure 4.3. Multidimensional Scaling Analysis of ClueWeb09 Queries

• CoupleSimilarity(disneyland hotel, phone service)

To obtain the final similarity score, we take the average of the minimum and

the maximum of the list: similarity = max(list)+min(list)
2 .

We take a matrix of CartesianSimilarity scores between queries from the

ClueWeb09 dataset. MDS analysis of this matrix is depicted on Figure 4.3, which

visualizes the level of CartesianSimilarity of individual queries by reproducing the

similarities based on two dimensions. As a result of the MDS analysis, we obtain

a two-dimensional representation of the CartesianSimilarity scores of the queries.

There are total 188 queries, some of whose text are visible, depicted in the Figure

4.3. As can be seen, the queries having common term (e.g., the, of, a) are grouped

at the upper right corner. By their very nature, one-term queries are usually

comprised of specific terms, since there is only one term in them. One-term queries

are positioned at the upper left corner, with the exception of the query maps, which

is neither specific nor common. The queries di↵er only in one term are also very

close to each other in the Figure 4.3.

Both AverageSimilarity and CartesianSimilarity satisfy following properties:

• Commutative: sim(X,Y ) = sim(Y ,X)

• sim(X,X) = 0
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• sim(X,Y ) ≥ 0

4.3. Selection Mechanism

Based on the query similarity implementations introduced in the previous section,

our term-weighting model selection mechanism can be summarized as follows:

• Initially, on a training collection, we have a set queries Q = {q1, q2, q3, . . . , qn}
and a set of candidate term-weighting models M = {BM25, DFIC, DFRee,

DLH13, DPH, DirichletLM, LGD, PL2}

• For each term-weighting model m
i

∈ M , we create a winner list, whose el-

ements are the queries that the model m
i

attained the highest e↵ectiveness

score.

• For each term-weighting model m
i

∈M , we create a loser list, whose elements

are the queries that the model m
i

attained the lowest e↵ectiveness score.

• For a given unseen test query q
t

, we calculate a similarity distance to every

term-weighting model m
i

∈ M . The distance is the average of the sums of

a query similarities between the test query q
t

and winner list of the term-

weighting model m
i

∈M .

• For a given unseen test query q
t

, we calculate a dissimilarity distance to

every term-weighting model m
i

∈ M . The distance is the average of the

sums of a query similarities between the test query q
t

and loser list of the

term-weighting model m
i

∈M .

• We select the model m
i

∈M whose winner list is the closest to the test query

q
t

and whose loser list is farthest away from the test query q
t

.

It is worthwhile to note that winner/loser list depends on the target e↵ec-

tiveness metric (e.g. NDCG@100, MAP, etc) that we want to optimize. In other
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words, winner/loser list of a term-weighting model can change metric to metric. We

choose to optimize NDCG@100 and MAP, because they both asses overall result

quality.

The selective term-weighting algorithm, written in pseudo-code, can also be

found in Algorithm 1 in which previously described query similarity is denoted by

similarity(q
t

, q
j

).

4.4. Candidate Term-Weighting Models

In the present dissertation, eight term-weighting models are used to choose from.

Each term-weighting model assumes a distribution for term frequencies on doc-

ument collections. The models and distribution assumed by them are listed in

Table 4.6. Note that DFIC is nonparametric, which means it does not make any

assumptions about the underlying term frequency distribution.

4.5. Frequentist Approach to Information Retrieval

The fundamental assumption of the frequentist approach to IR is that the more a

document contains a term t, the more the document treats the term t. This suggest

that observed frequency (distribution) of a term t should be di↵erent on relevant

documents than that of non-relevant documents. However, relevancy cannot be

explained solely by term frequency. There exists other factors such as spam, docu-

ment quality (PageRank, HitRank), recency, etc. The extend that this assumption

is valid varies across queries; some queries satisfy it well while other queries sat-

isfy this assumption more loosely. It is easy to show an counter example where

this assumption does not hold. Figure 4.4 shows relative term frequency distribu-

tion of the query fybromyalgia over query relevance judgments. The x-axis shows

relevance grades (4, 2, 1, 0, -2), in which grades 1/2/3/4 are treated as relevant

and grades 0/-2 as non-relevant. As can be observed from the figure relevant and

non-relevant documents cannot be distinguished. In other words, the query term

fybromyalgia tends to have same distribution over relevant and non-relevant docu-
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for m
i

∈M do
create winner list for m

i

;
create loser list for m

i

;
end
Let q

t

be the unseen test query;
for m

i

∈M do
acc ← 0;
c ← 0;
for q

j

∈ winner list of m
i

do
if q

t

≠ q
j

then
acc ← acc + similarity(q

t

, q
j

);
c ← c+ 1;

end
end
m

i

.similarity ← acc / c;
acc ← 0;
c ← 0;
for q

j

∈ loser list of m
i

do
if q

t

≠ q
j

then
acc ← acc + similarity(q

t

, q
j

);
c ← c+ 1;

end
end
m

i

.dissimilarity ← acc / c;
end
return argmax

m

i

∈M f(m
i

) = {m
i

�m
i

.dissimilarity�m
i

.similarity};
Algorithm 1: The selective term-weighting framework

Table 4.6. Participant weighting models and their underlying distributions

No Model Distribution Reference
1 BM25 Poisson Distribution Robertson and Zaragoza (2009)
2 Dirichlet Binomial/Multinomial Distribution Zhai and La↵erty (2004)
3 DFIC Chi-Squared Distance Kocabaş, Dinçer and Karaoğlan (2014)
4 DFRee Hypergeometric Distribution Amati (2009)
5 DLH13 Hypergeometric Distribution Amati (2006)
6 DPH Hypergeometric Distribution Amati (2006)
7 LGD Log-Logistic Distribution Clinchant and Gaussier (2010, 2011)
8 PL2 Poisson Distribution Amati and Van Rijsbergen (2002)
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Figure 4.4. Distribution of fybromyalgia over Relevance Judgments.

ments. This example clearly demonstrates that the frequentist approach to IR has

its limits. However, to some extend, this assumption holds, especially in controlled

datasets, because, if not all, most of the term-weighting models are built upon this.

4.6. Discussion

The proposed selective term-weighting framework is di↵erent from the previously

proposed selective retrieval approaches (Chapter 3) in several aspects. First, most

of the studies employ k-NN algorithm and report results for the best k value. It

is not clear what and how to set k in a real-world application. By contrast, our

proposed approach is parameter-free.

The other major di↵erence is that we leverage the information carried by the

queries that the retrieval strategy performed the worst in our selection mechanism.

To the best of our knowledge, existing studies consider only the queries that the

retrieval strategy performed the best. Actually, the ultimate task in selective IR is

not a plain classification task, but is a ranking task: retrieval strategies are ranked

for a given query. Thus, an ideal training procedure should take into account the

per-query relative rankings of the retrieval strategies and the magnitude of the

e↵ectiveness scores that create the di↵erences/ranks.
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4.7. Summary

In this chapter, we describe the concept of term frequency distribution from IR

perspective. We drive term and query similarity methods based of the goodness

of fit between frequency distributions of query terms. We illustrate workings of

our query similarity function on an example. We explain how a term-weighting

model can be selected from the candidate set for a given query using the similarity

methods. We call attention to limitations of the frequentist approach to IR.
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5. EXPERIMENTAL METHODOLOGY

5.1. Introduction

The previous chapter presented a novel selective term-weighting approach/frame-

work for selectively applying an appropriate term-weighting model for a given

query. This chapter describes the methodology we adopted for the experimen-

tal evaluation of the proposed selective term-weighting approach/framework. We

describe the datasets, the corresponding query sets, spam filtering strategy, the

evaluation measures used for the analysis, the baseline retrieval models, and the

retrieval engine.

5.2. Datasets

For the empirical analysis, we used a large number of standard/representative

TREC Web collections of varied sizes and contents. In particular, we used newly

released ClueWeb{09|12} corpora as suggested by Metzler and Kurland (2012).

5.2.1. ClueWeb09-A

The ClueWeb09A full collection consists of roughly 1 billion Web pages, com-

prising approximately 25TB of uncompressed data (5TB compressed) in multiple

languages. The dataset was crawled from the Web during January and February

2009. In our experiments, we use English subset of ClueWeb09, which consists of

all the English pages (over 500 million) in the dataset.

For ClueWeb09 dataset, a total of 200 information needs with relevance judg-

ments are released during TREC Web Tracks (WT) which ran from 2009 to 2012.

However, we excluded three topics: 20 from Web Track 2009, 95 and 100 from Web

Track 2010. Because, for topic 20, none of the participating runs had returned

any relevant document. Relevance judgements do not exists for topics 95 and 100.

Thus, there remains 197 valid topics for ClueWeb09 dataset.
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5.2.2. ClueWeb09-B

ClueWeb09B corpus, which is “Category B” portion of ClueWeb09A, comprises the

first 50 million English-language pages of the full dataset, including the entirety

of the English-language Wikipedia. ClueWeb09B and ClueWeb09A use the same

topic set. Further information on the ClueWeb09 collection may be found on the

Lemur project website1.

5.2.3. Million query 2009

TREC 2009 Million Query (MQ09) Track2 investigates whether it is better to

evaluate using many shallow judgments or fewer thorough judgments and whether

small sets of judgments are reusable.

The MQ09 collection contains 561 queries, first 50 of which were taken from

Web Track 2009 (WT09). Rest of the queries has shallow relevance judgements.

Query relevance judgments of MQ09 is published as five-column prels file instead

of four-column qrels file. Therefore, statAP MQ eval v4.pl3 evaluation script is

used for MQ09 evaluation. To stay as close to NIST data as possible, we report the

statistical average precision (statAP), which was one of the o�cial metrics for the

million query track (Carterette et al., 2009). Note that, MQ09 uses ClueWeb09B

as the document collection.

5.2.4. ClueWeb12-B13

The ClueWeb12 full dataset consists of 733,019,372 English Web pages, collected

between February 10, 2012 and May 10, 2012. ClueWeb12 is a companion or

successor to the ClueWeb09 Web dataset. For ClueWeb12 dataset, a total of 100

information needs with relevance judgments are released for Web Track 2013 and

2014.

ClueWeb12-B13 dataset is created by taking every 14th document (WARC

1http://lemurproject.org/clueweb09
2http://ir.cis.udel.edu/million/data.html
3http://ir.cis.udel.edu/million/statAP_MQ_eval_v4.pl

50

http://lemurproject.org/clueweb09
http://ir.cis.udel.edu/million/data.html
http://ir.cis.udel.edu/million/statAP_MQ_eval_v4.pl


Table 5.1. Statistics of the TREC Datasets (as indexed by Apache Lucene)

Collection # Tokens # Documents Avg. Length
CW09B (NoAnchor) 39,227,244,424 50,220,154 781.1
CW09B (AnchorText) 51,928,477,704 50,220,293 1034.0
CW09A (NoAnchor) 331,995,474,761 503,892,054 658.9
CW09A (AnchorText) 366,636,877,415 503,896,369 727.6
CW12B (NoAnchor) 37,254,681,357 52,238,715 713.2
CW12B (AnchorText) 37,919,236,268 52,244,050 725.8

response record), from each of the files of the full dataset. Therefore, it is a rep-

resentative or uniform 7% sample of the full dataset. Further information on the

ClueWeb12 collection may be found on the Lemur project website4.

5.2.5. Summary

After we strip Hyper Text Markup Language (HTML) tags using jsoup5 library

(version 1.8.3), we consider HTML documents as a whole and index entire doc-

ument. We do not employ di↵erent document representations (URL, title, body,

keywords, description, etc.). However, we have built an additional index in which

anchor texts from in-links are treated as part of the documents. Therefore, we

have built two indexes with the following tags: AnchorText and NoAnchor, in

which documents are indexed with and without anchor text respectively.

Table 5.1 reports the total number of indexed documents/tokens and the

average document length for each dataset. HTML tag stripping procedure pro-

duced/yielded an empty string for some documents, which are skipped during in-

dexing. That’s why the number of documents are slightly di↵erent for AnchorText

and NoAnchor indexes of a dataset. This implies that AnchorText index contains

a few documents that are composed of anchor texts only. Statistics reported in

Table 5.1 depend on both the tokenization and HTML cleaning/parsing strategies.

For example, Kulkarni and Callan (2015) reported average document length of 918

for the CW09B dataset, which is larger than that is reported in this dissertation.

4http://lemurproject.org/clueweb12
5http://jsoup.org
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Listing 5.1. Example of Information Needs (Queries)

137: rock and gem shows
138: jax chemical company
139: rocky mountain news
140: east ridge high school
301: International Organized Crime

Table 5.2. Statistics of Query Sets

# Average Average # Average # #
Track Queries Query Relevant Documents Non-Relevant Relevance

Length per Query Documents per Query Levels
MQ09 561 2.6 15.2 (± 25.7) 37.9 (± 48.1) 3
WT09 49 2.1 139.7 (± 78.8) 332.9 (± 79.9) 3
WT10 48 2.0 108.9 (± 70.7) 417.8 (± 132.1) 5
WT11 50 3.4 63.0 (± 63.5) 323.6 (± 101.3) 5
WT12 50 2.3 70.3 (± 55.2) 249.8 (± 87.1) 6
WT13 50 3.3 82.7 (± 64.8) 205.8 (± 100.2) 6
WT14 50 3.3 113.1 (± 74.8) 174.6 (± 81.3) 6

5.3. Topics - Queries

In our experiments, we discard the topics that have no relevant documents in the

judgment set: we only work with valid topics. Exact number of topics used in this

dissertation is 1,107 and the statistics for these queries and their corresponding

relevance judgements are provided in Table 5.2. All the collections have graded

relevance assessment at minimum of three-point scale. We used the initial release

of topics which included only the query/title field, as shown in the Listing 5.1.

5.4. Baselines

In this section, we present two di↵erent baseline families.

5.4.1. State-of-the-art term-weighting models

We have compared the e↵ectiveness of the proposed selective term-weighting scheme

with eight state-of-the-art retrieval models.

• BM25: representative of the classical probabilistic model.

• Dirichlet: representative of the language model family.
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• PL2: representative of the divergence from randomness framework.

• DPH: representative of hyper-geometric models of IR.

• DLH13: representative of hyper-geometric models of IR.

• DFRee: representative of parameter-free models of IR.

• DFIC: representative of nonparametric models of IR.

• LGD: representative of information based models of IR.

We choose Dirichlet (Zhai and La↵erty, 2004) smoothing from language mod-

els, because it is known to be the most e↵ective among the language models (Croft

et al., 2009). Hence, our set of baselines contains members from all state-of-the-art

retrieval families.

5.4.2. State-of-the-art selective term-weighting

To the best of our knowledge, He and Ounis (2003, 2004b) were the first to carry

out research on selective term-weighting among several selective retrieval ap-

proaches. They defined the problem as follows:

Many term-weighting models have been proposed for information re-

trieval. For a given collection and a given query, it is an interest-

ing and challenging problem to automatically select the best term-

weighting model, which would provide the best retrieval e↵ectiveness.

This problem is referred to as the model selection problem.

Indeed, the term model is a very generic word. In the field of machine learn-

ing, the term model is used to describe what is obtained after training phase of

a learning algorithm. However, in the context of the present dissertation, model

means term-weighting scheme or weighting function. It is not a model that is

learnt, however, but rather it is a static function/formula of term and corpus
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statistics (e.g. tf ⋅ idf). Therefore, it must not be confused with the model that is

trained/learned/estimated by machine learning (learning to rank) techniques.

He and Ounis (2004b) proposed a query-based pre-retrieval approach which

automatically selects the best-performing retrieval model before the retrieval pro-

cess takes place. Thus, they motivated their research as a pre-retrieval remedy to

the poorly performing queries.

As noted by He and Ounis, there were previously proposed approaches (Jin

et al., 2001; Manmatha et al., 2001; Si and Callan, 2002) on the model selection

problem. However, these approaches are post-retrieval approaches, which requires

analysis of the result list and relevance scores. In other words, post-retrieval ap-

proaches cannot select the optimal model prior to the retrieval process. For this

reason, post-retrieval approaches are out of the scope of the present dissertation.

Analyzing and merging the result lists returned by di↵erent (heterogeneous) search

engines/systems into a single, coherent ranked list is covered by a research area

known as Distributed Information Retrieval (Callan, 2000) or Federated Search

(Shokouhi and Si, 2011).

He and Ounis cluster the queries according to their intrinsic features and

associate the best-performing term-weighting model to each cluster. They used

11 di↵erent DFR term-weighting models to choose from. Their results show that

query-based model selection approach does improve the poorly-performing queries

compared to a baseline where a unique retrieval model is applied indi↵erently to

all queries.

Queries as feature vectors He and Ounis (2003, 2004b) proposed following

three factors for the feature vector of query:

1. The query length (ql) is the number of unique terms in the query.

2. The relative informative amount carried in each query term (�) is defined as

the quotient of the minimum IDF divided by the maximum IDF among the
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query terms:

� = IDF
min

IDF
max

, (5.1)

where IDF (t) = log( N

df(t))
3. The clarity/ambiguity of a query (!) is measures as:

! = − log(nQ

�N)
logN

, (5.2)

where n
Q

is the number of documents containing at least one of the query

terms and N is the number of documents in the collection.

He and Ounis (2003, 2004b) represent each query by the feature vector qf

given as: �→
qf = (⇢ ⋅ ql,�,!), (5.3)

where ⇢ is a parameter that was set to 0.2 by He and Ounis. He and Ounis

(2004b) adopt the CURE algorithm (Guha et al., 1998) to cluster the feature vectors

in the above three-dimensional space. Initially, each vector is an independent

cluster. If there are n vectors to be processed, algorithm starts with n clusters.

The similarity between two clusters is measured by the cosine similarity of the

two closest vectors (having the highest cosine similarity), where the two vectors

come from each cluster respectively. Then, we merge the closest pair of clusters

(according to the cosine similarity measure) as a single cluster. The merging process

is repeated until it results in k clusters. Hence, the number k of clusters is the

halting criterion of the algorithm.

The model selection mechanism A set of training queries are clustered ac-

cording to their features. For each cluster, the best-performing model is identified

in terms of the e↵ectiveness measures. Then an unseen query is served with the

best-performing model associated with the closest cluster to the query. In our ex-
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periments, we adopted the approach proposed by He and Ounis (2003, 2004b) and

used its results as a selective term-weighting baseline.

5.5. E↵ectiveness Measures and Evaluation Tools

A set of standard IR e↵ectiveness metrics, NDCG@100 and MAP@1000, was used

to measure retrieval e↵ectiveness at various cut-o↵ levels in the present dissertation.

NDCG@k can leverage graded relevance, while MAP is a standard metric for binary

relevance assessments.

We used gdeval.pl (version 1.3) TREC evaluation tool (downloaded from

trec-web-20146 GitHub repository) to calculate NDCG@k values reported in this

dissertation. In order to measure the MAP (based on a maximum of 1000 retrieved

documents), we used the trec eval7 utility (version 9.0), which is the standard

tool used by the TREC community.

Another important detail is that we have always used query relevance judge-

ments published for full datasets (Category A) in our experiments. In other words,

to make reported e↵ectiveness values comparable to other/existing studies, we eval-

uate result lists obtained from category B subset using query relevance judgements

obtained from full dataset (Category A).

5.6. Optimization of the Free Parameters

All the baseline models (except DFIC, DLH13, DPH, DFRee) contain one or more

free parameters. It is very important to tune these parameters properly because

they a↵ect the e↵ectiveness to a statistically significant degree. For the sake of re-

liable and fair comparison, we use best parameters values that attained the highest

evaluation metric for each dataset.

For BM25, we borrowed the intervals from Lv and Zhai (2012): b from 0.1

to 0.9 in increments of 0.1 and k1 from 0.2 to 3.0 in increments of 0.2. Table 5.3

6http://github.com/trec-web/trec-web-2014
7http://trec.nist.gov/trec_eval/trec_eval_latest.tar.gz
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Table 5.3. Free parameter values

Model Parameter & Set of Values
BM25 k1 ∈ {0.2,0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8,2.0,2.2,2.4,2.6,2.8,3.0}
BM25 b ∈ {0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9}

PL2, LGD c ∈ {0.25,0.5,0.8,1,2,3,5,8,10,12,14,16,18,20,22,24,26,28,30}
Dirichlet µ ∈ {10,50,100,200,500,800,1000,1500,2000,3000,4000,5000,6000,7000,8000,9000,10000}

Table 5.4. Trained free-parameter values of NoAnchor index

BM25 LGD PL2 Dirichlet

CW09A NDCG100 k1=1.0 b=0.4 c=2.0 c=3.0 µ=500
CW09A MAP k1=1.2 b=0.3 c=2.0 c=8.0 µ=500

CW09B NDCG100 k1=1.2 b=0.2 c=18.0 c=18.0 µ=2000
CW09B MAP k1=2.0 b=0.2 c=8.0 c=12.0 µ=1500

CW12B NDCG100 k1=1.8 b=0.2 c=5.0 c=10.0 µ=2000
CW12B MAP k1=1.4 b=0.2 c=5.0 c=5.0 µ=1500

MQ09 NDCG100 k1=1.6 b=0.5 c=2.0 c=3.0 µ=500
MQ09 statMAP k1=1.4 b=0.3 c=5.0 c=8.0 µ=800

shows parameter ranges used during parameter tuning for di↵erent free-parameters

of retrieval models.

Trained free-parameter values are given in Table 5.4 for KStem index of

datasets. It is worthwhile to note that optimum value of a model’s free-parameter

varies by dataset and by e↵ectiveness measure.

5.7. Spam Filtering

Cormack, Smucker and Clarke (2011) carried out the first systematic study of spam

in the English ClueWeb09 (category A) dataset and presented the first quantitative

results of the impact of spam filtering on IR e↵ectiveness. They reported that a

substantial fraction of ClueWeb09 are spam and the use of spam filtering signif-

icantly improves retrieval e↵ectiveness for most of the systems that participated

Table 5.5. Spam threshold t% values that maximized the mean e↵ectiveness of eight
term-weighting models

ClueWeb09A ClueWeb09B MillionQuery09
NoAnchor Anchor NoAnchor Anchor NoAnchor Anchor

NDCG@100 55 55 15 10 10 10
MAP 50 20 15 10 10 0
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Listing 5.2. Excerpt from ClueWeb09 spam Fusion scores

36 clueweb09−en0000−00−00000
41 clueweb09−en0000−00−00001
44 clueweb09−en0000−00−00002
60 clueweb09−en0000−00−00003
61 clueweb09−en0000−00−00004

in the TREC 2009 Web Track. Cormack et al. generated following four di↵erent

rankings of the spamminess of English documents in the ClueWeb09 dataset and

made them publicly available to other researchers in the two-column format shown

in Listing 5.2. The second column is the o�cial document identifier, whereas the

first column is percentile score that indicates the percentage of the documents in

the corpus that are “spammier.” That is, the spammiest 10% of the documents

have percentile score >10.

• UK2006: A set of labels trained against a small set of Web pages containing

746 spam pages and 7,474 non-spam pages.

• Britney: Derived from results returned for popular queries given to commer-

cial search engines.

• Group X: Manually labelled from results for queries from the 2009 TREC

Ad-hoc task.

• Fusion: A combination of the other three methods.

In our experimentations, we employed the fusion spam scores to exclude the

spammiest t% ∈ {0,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,90} pages
from the result lists of the term-weighting models. To make sure there remains at

least 1000 documents after the percolation process, initially we fetch 10 × 1000 =
10,000 documents per query. If no documents are left for a query, we return

the single document with the ID of “clueweb09-en0000-00-00000” at rank one,

which represents zero documents for the ClueWeb09 dataset. Doing so maintains

consistent evaluation results (averages over the same number of queries) and does
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not break evaluation tools. Figure 5.1 shows NDCG@100 as a function of t%

for each of the term-weighting models on the ClueWeb09A dataset. We use the

spam threshold t% setting that maximizes the mean retrieval e↵ectiveness of eight

term-weighting models. That is, t=55% in the Figure 5.1.

The same methodology is repeated for the ClueWeb12-B13 dataset. However,

unlike the ClueWeb09, the mean retrieval e↵ectiveness of eight term-weighting mod-

els degraded with the spam filtering performed for the ClueWeb12-B13 dataset. In

others words, mean e↵ectiveness of eight models is maximized at t=0% (e.g. no

spam filtering), which holds true for all e↵ectiveness measures. This is expected

because during crawling of ClueWeb12, a blacklist8 was used to avoid sites that

are reported to distribute pornography, malware, and other material that would

not be useful in a dataset intended to support a broad range of research on infor-

mation retrieval and natural language understanding (Callan, 2012). By contrast,

ClueWeb09 intended to provide the real Web to researchers by means of unfiltered

content (Callan et al., 2009).

As can be seen from Table 5.5, best spam threshold t% setting varies by

dataset and by e↵ectiveness measure.

5.8. Apache Lucene

Apache Lucene (Bia lecki et al., 2012) is used as a retrieval engine in our experi-

ments. We adopted several term-weighting model implementations from Terrier9

(version 4.0) retrieval platform to Lucene10 (version 5.4.0).

Preprocessing We keep the preprocessing of documents and queries minimum:

we used KStemming (Krovetz, 1993), which is less aggressive than Porter’s, in our

experiments. Following the rationale of Fang et al. (2011), we do not perform stop

word removal because stop words are essential for certain queries such as: “to be or

8http://urlblacklist.com
9http://terrier.org

10http://lucene.apache.org
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Figure 5.1. E↵ect of spam filtering on the e↵ectiveness of eight term-weighting models.
E↵ectiveness is shown as NDCG at 100 documents returned (NDCG@100)
as a function of the fraction of the ClueWeb09A corpus that is labeled
spam.

not to be,” “the current,” “the wall,” “the who,” and “the sun.” Yet, a truly robust

retrieval model should be able to cope with stop words automatically. Thus, our

resulting preprocessing pipeline filters ClassicTokenizer with ClassicFilter,

LowerCaseFilter and KStemFilter.

In the Lucene ecosystem, text analysis comprises a process where plain text

is converted into a stream of tokens by tokenization, lowercasing, ASCII-folding,

stemming, synonym expansion, stop word removal, etc. An analyzer, which encap-

sulates text analysis, comprise three parts: (i) zero or more char filters, (ii) a single

tokenizer, and (iii) zero or more token filters. For each part, Apache Lucene pro-

vides a selection with several built-in implementations. For instance, KStemFilter

can be used to reduce words to their stems.

The text analysis components can be chained together to create complex

analysis pipes, which apply a series of transformations to each token. However,

the order of the components is of crucial importance. For example, all of the

terms must already be in lowercase for the KStemFilter (which is responsible for
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Figure 5.2. Sample Text Analysis

stemming) to work correctly. In other words, the input must be lowercased by an

upstream component such as LowerCaseFilter or LowerCaseTokenizer.

Figure 5.2 visualizes every analysis step performed on the sample text “What

is the country’s biggest coal-producing state?” using our preprocessing pipeline. It

should be noted that the sample text is first parsed with the ClassicTokenizer (CT)

and then each token passes through ClassicFilter (CF), LowerCaseFilter (LCF),

and finally KStemFilter (KSF).

5.9. Conclusions

Reproducibility has recently attracted attention from the IR community.

• The Reproducible IR Research Track at ECIR 2015 (Hanbury et al., 2016)

& ECIR 2016 (Ferro et al., 2016)

• The Workshop on Reproducibility, Inexplicability, and Generalizability of

Results (RIGOR) at SIGIR 2015 (Arguello et al., 2015, 2016)

• The Open-Source IR Reproducibility Challenge (Lin et al., 2016)

• The Open Runs initiative introduced in TREC 2015 (Voorhees et al., 2016)

Above dedicated tracks and workshops are the evidences. This new line of

research focuses on the repeatability, reproducibility, and generalizability of previ-

ously published methods and results.

• Repeatability: repeating a previous result under the original conditions (e.g.,

same dataset and system configuration)
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• Reproducibility: reproducing a previous result under di↵erent, but compara-

ble conditions (e.g., di↵erent, but comparable dataset)

• Generalizability: applying an existing, empirically validated technique to a

di↵erent IR task/domain than the original

Following the trend, this chapter provided every detail of our experimental

setup necessary to successfully repeat and reproduce the experiments, using Apache

Lucene (https://lucene.apache.org).

To further promote open-source sharing, repeatability and reproducibility, we

will publish our source code on GitHub, in the public repository (https://github.

com/iorixxx), so that others could download and compare using the same code

used in the present dissertation.
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6. EXPERIMENTAL RESULTS AND ANALYSIS

6.1. Introduction

The previous chapter presented the methodology we adopted for the experimental

evaluation of the proposed selective term-weighting approach/framework. This

chapter presents the experimental evaluation results of the proposed selective term-

weighting method.

6.2. Evaluation Criteria

We have evaluated our selective-term weighting approach in three aspects: mean

retrieval e↵ectiveness, classification accuracy, and robustness.

6.2.1. Mean retrieval e↵ectiveness

We used two retrieval e↵ectiveness metrics: NDCG@100 and MAP, averaged over

the query set. NDCG is a widely used metric in academic research especially

when graded levels of relevance labels are available. For example, NDCG is usually

preferred to optimize in listwise learning to rank approaches (Valizadegan et al.,

2009). MAP is the standard metric for binary relevance judgments.

6.2.2. Classification accuracy

The accuracy of a system is measured by the proportion (%) of queries that the

selective-term weighting approach correctly predicted the best model that attained

highest e↵ectiveness score. During accuracy evaluation we used two modes: strict

mode and relaxed by an one Standard Error (SE). SE given by the Equation 6.1 is

equals to the standard deviation (i.e., square root of the variance) divided by the

square root of the sample size.

SE =
�

variance

n
=
�

�2

n
= �√

n
(6.1)
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Table 6.1. Six sample queries: weighting models are sorted by NDCG

ID SE First Second Third Fourth Fifth Sixth Seventh Eighth
173 0.0278 +PL2(0.31775) +DFIC(0.31767) BM25(0.27738) Dirichlet(0.23286) LGD(0.23152) DLH13(0.16217) DPH(0.15722) -DFRee(0.10403)
129 0.0687 +DPH(0.84343) DFRee(0.72639) DLH13(0.61386) BM25(0.52483) LGD(0.43028) Dirichlet(0.3887) PL2(0.36981) -DFIC(0.27477)
143 0.0737 +DPH(0.72493) +DFRee(0.68348) LGD(0.60148) DLH13(0.54746) PL2(0.50847) Dirichlet(0.47869) BM25(0.39058) -DFIC(0.05896)
140 0.0768 +DFRee(0.464) +DPH(0.46114) +DLH13(0.38788) BM25(0.31229) -Dirichlet(0.04122) -DFIC(0.0) -LGD(0.0) -PL2(0.0)
112 0.0877 +BM25(1.0) +DFRee(1.0) +DPH(1.0) DLH13(0.63093) Dirichlet(0.63093) -LGD(0.5) -PL2(0.5) -DFIC(0.43068)
19 0.1176 +Dirichlet(0.72836) +LGD(0.72614) +DLH13(0.7122) DFIC(0.48384) DFRee(0.14187) PL2(0.1177) -BM25(0.0) -DPH(0.0)

where � is the sample standard deviation and n is the size (number of term-

weighting models) of the sample. Table is the query × model table, which presents

NDCG@100 values and their associated SE values. Term-weighting models are

sorted by their NDCG@100 scores, which are shown inside the parenthesis. Best

model(s) that lie within one SE range are marked with plus (+) symbol. These

are the best models according to the relaxed mode. For example, relaxed mode

considers PL2 and DFIC as the most e↵ective for the query 173. By contrast, the

most e↵ective is the PL2 according to the strict mode. Strict mode accepts only

one best model (winner) for a query unless there is a tie. In case of a tie, as in

the query 112, there can also be multiple winners for the strict mode. Note that

relaxed mode implicitly handles ties.

Although we report both modes, we use the relaxed mode for the evaluation of

the selective approach, since the models that are in the range “within one standard

error of the maximum” can be considered best.

6.2.3. Robustness

An evaluation methodology that focuses on poorly performing (ine↵ective) topics

is needed to support research on “Robustness in Retrieval Performance,” which

aims at obtaining more consistent retrieval performance across topics (Voorhees,

2004). Using arithmetic mean of traditional evaluation measures is not an appro-

priate methodology for robustness because it emphasizes e↵ective topics: poorly

performing topics’ scores are by definition small, and they are therefore dominated

by the e↵ective topics’ scores in retrieval evaluation. Reliably measuring the ro-

bustness of a system, i.e. its worst-case e↵ectiveness, is important but inherently

di�cult. To address this, various robust and risk-sensitive measures haven been
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proposed. For instance, in the TREC Robust tracks, geometric mean average preci-

sion (Robertson, 2006; Ravana and Mo↵at, 2008) was used to measure the extend

to which a system is successful on all queries. More recently, the risk-sensitive

evaluation has been introduced, in which robustness of a system is measured by

considering per-query losses and wins against a particular given baseline system.

In this line of research, U
Risk

(Wang et al., 2012) and T
Risk

(Dinçer et al., 2014)

measures have been proposed. However, since they only consider a single baseline,

they are more appropriate for before-and-after experiments. Before is the bare

system, which is used as a baseline. After is the system that is obtained by ap-

plying some retrieval technique such as stemming, query expansion, diversification,

personalization etc.

Dinçer et al. (2016) proposed the new Z
Risk

robustness measures that takes

into account multiple baseline systems when measuring risk, and a derivative mea-

sure called GeoRisk that enhances Z
Risk

by taking into account the overall magni-

tude of e↵ectiveness. In the present dissertation, due to the existence of multiple

baseline term-weighting models, GeoRisk is most naturally applicable to measure

robustness. For this reason, we use the GeoRisk measure for the robustness criteria.

6.3. Statistical Significance Testing

We conducted two di↵erent statistical hypothesis tests of two kinds: parametric

and nonparametric. The nonparametric methods require few or no assumptions

about the populations from which data are obtained (Hollander and Wolfe, 1999).

A paired t-test (Kreyszig, 1970) is representative of parametric testing, while the

Wilcoxon signed-rank test (Gibbons and Chakraborti, 2010) is a nonparametric

statistical hypothesis test. Both of the tests are employed at a 95% confidence

level (p <0.05) to determine statistically significant e↵ectiveness di↵erences. It is

important to conduct both parametric and nonparametric significance tests and

check whether they agree or disagree on the significance result. If both tests agree

on the significance, we can be more confident that the di↵erence of the two systems
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Table 6.2. Selective term-weighting result for ClueWeb{09A|12B} dataset (Anchor)
over 285 queries. Retrieval e↵ectiveness is measured by NDCG100. The
models that are not statistically di↵erent (p < 0.05) from the selective ap-
proach (SEL) are marked with: † symbol according to the paired t-test andℵ symbol according to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.19559 0 0.31501 0ℵ†SEL 28.42 47.72 1 0.16885 1 0.29082 1

LGD (c=5.0) 13.68 31.58 4 0.15701 2 0.28007 2
BM25 (k1=1.4 b=0.2) 28.77 43.16 2 0.15662 3 0.27953 3

PL2 (c=12.0) 12.63 34.74 3 0.15543 4 0.27908 4
RMLE 17.16 30.76 5 0.14863 5 0.27238 5

Dirichlet (µ=800) 6.32 20.35 9 0.14697 6 0.27084 6
DPH 19.65 30.18 6 0.14668 7 0.27053 7
RND 13.35 26.37 7 0.14512 8 0.26911 8
DFIC 8.07 22.46 8 0.13647 10 0.26164 9
DFRee 10.88 18.95 10 0.13747 9 0.26149 10
DLH13 6.32 8.77 11 0.12448 11 0.24830 11

that are compared is not caused by the chance fluctuation.

6.4. Query Set Partition Procedure

To split the available query set into the training and test sample we employed

the leave-one-out procedure/strategy, which is the most classical exhaustive cross-

validation procedure (Arlot and Celisse, 2010). Each query is successively “left

out” at a time from the query set and used for testing. The training sample is used

for training the algorithm, and the remaining test query, which plays the role of

yet-unseen data, is used for evaluating the performance of the algorithm. Given

only a limited amount of query is available, omitting each query in turn and using

the remaining subset for training purposes is a maximal use of the query set at

hand because only one query is omitted at each step. Moreover, the procedure is

deterministic since no sampling is involved.

6.5. Web Track Results

In this section, we combine ClueWeb09A and ClueWeb12-B13 datasets in order

to represent the six Web tracks ran through 2009 to 2014. This resulted in total
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Table 6.3. Selective term-weighting result for ClueWeb{09A|12B} dataset (Anchor)
over 290 queries. Retrieval e↵ectiveness is measured by MAP. The mod-
els that are not statistically di↵erent (p < 0.05) from the selective approach
(SEL) are marked with: † symbol according to the paired t-test and ℵ symbol
according to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank MAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.10559 0 0.23111 0ℵ†SEL 34.83 48.97 1 0.09260 1 0.21518 1

BM25 (k1=1.2 b=0.3) 31.72 43.10 2 0.08573 2 0.20685 2
PL2 (c=8.0) 15.52 34.83 3 0.08205 3 0.20295 3
LGD (c=3.0) 9.66 24.48 6 0.08183 4 0.20241 4

RMLE 18.55 29.67 4 0.07890 6 0.19854 5
DPH 16.90 24.14 7 0.07902 5 0.19819 6
RND 13.28 23.32 8 0.07576 7 0.19449 7

Dirichlet (µ=500) 4.14 14.14 9 0.07464 8 0.19318 8
DFRee 9.66 14.14 10 0.07337 9 0.19059 9
DFIC 14.48 25.17 5 0.06810 10 0.18535 10
DLH13 3.79 5.86 11 0.06191 11 0.17515 11

Table 6.4. Selective term-weighting result for Million Query 2009 dataset (Anchor) over
528 queries. Retrieval e↵ectiveness is measured by NDCG100. The models
that are not statistically di↵erent (p < 0.05) from the selective approach
(SEL) are marked with: † symbol according to the paired t-test and ℵ symbol
according to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.44984 0 0.48053 0ℵ†SEL 26.70 40.53 1 0.37157 1 0.43123 1ℵDPH 29.36 40.34 2 0.35848 2 0.42552 2
DFRee 16.67 29.92 5 0.35795 3 0.42319 3

BM25 (k1=1.6 b=0.5) 27.46 38.45 3 0.35718 4 0.42216 4
RMLE 19.80 30.55 4 0.34451 5 0.41495 5

LGD (c=1.0) 6.63 17.42 9 0.33958 6 0.41126 6
RND 14.19 24.52 6 0.33403 7 0.40798 7
DLH13 10.04 20.27 8 0.32922 8 0.40360 8

PL2 (c=8.0) 11.55 20.64 7 0.32339 9 0.40036 9
Dirichlet (µ=200) 4.55 14.58 10 0.32166 10 0.39945 10

DFIC 7.01 13.83 11 0.28339 11 0.37505 11
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Table 6.5. Selective term-weighting result for Million Query 2009 dataset (Anchor) over
542 queries. Retrieval e↵ectiveness is measured by statMAP. The models
that are not statistically di↵erent (p < 0.05) from the selective approach
(SEL) are marked with: † symbol according to the paired t-test and ℵ symbol
according to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank statMAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.31299 0 0.39840 0ℵ†SEL 30.26 39.67 1 0.23770 1 0.34481 1ℵ†DPH 22.88 32.29 3 0.22954 2 0.33863 2

†DFRee 18.08 26.01 5 0.22890 3 0.33806 3
BM25 (k1=1.6 b=0.4) 30.63 38.93 2 0.22531 4 0.33583 4

RMLE 19.30 26.79 4 0.21563 5 0.32820 5
LGD (c=2.0) 9.96 16.79 8 0.20587 6 0.32091 6

RND 13.88 20.31 6 0.20343 7 0.31861 7
PL2 (c=10.0) 11.99 19.00 7 0.19604 8 0.31272 8

DLH13 9.23 12.92 9 0.19469 9 0.31154 9
Dirichlet (µ=500) 5.17 9.23 10 0.18918 10 0.30685 10

DFIC 3.51 7.38 11 0.15884 11 0.28107 11

Table 6.6. Selective term-weighting result for ClueWeb09A dataset (Anchor) over 194
queries. Retrieval e↵ectiveness is measured by NDCG100. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL) are
marked with: † symbol according to the paired t-test and ℵ symbol according
to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.22693 0 0.34006 0ℵ†SEL 23.71 43.81 1 0.19449 1 0.31206 1

LGD (c=5.0) 11.34 34.02 4 0.18081 2 0.30062 2
PL2 (c=14.0) 15.46 38.66 2 0.17806 3 0.29884 3

BM25 (k1=1.0 b=0.3) 20.10 35.57 3 0.17739 4 0.29711 4
RMLE 15.47 29.24 6 0.16873 5 0.29008 5

Dirichlet (µ=800) 6.19 21.13 10 0.16800 6 0.28958 6
DPH 22.16 29.90 5 0.16765 7 0.28894 7
RND 13.26 26.98 7 0.16664 8 0.28831 8
DFIC 9.28 23.71 8 0.15652 10 0.28039 9
DFRee 13.40 21.65 9 0.15767 9 0.27985 10
DLH13 7.73 11.34 11 0.14599 11 0.26889 11
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Table 6.7. Selective term-weighting result for ClueWeb09A dataset (Anchor) over 197
queries. Retrieval e↵ectiveness is measured by MAP. The models that are not
statistically di↵erent (p < 0.05) from the selective approach (SEL) are marked
with: † symbol according to the paired t-test and ℵ symbol according to the
Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank MAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.13422 0 0.26089 0ℵ†SEL 34.52 50.76 1 0.11852 1 0.24351 1

BM25 (k1=1.0 b=0.3) 31.98 43.65 2 0.10962 2 0.23389 2
LGD (c=3.0) 9.64 27.92 6 0.10366 3 0.22797 3
PL2 (c=5.0) 6.60 29.44 4 0.10084 4 0.22474 4

RMLE 19.32 30.52 3 0.09909 6 0.22245 5
DPH 16.24 25.89 7 0.09976 5 0.22225 6
RND 12.95 24.61 8 0.09608 7 0.21899 7

Dirichlet (µ=500) 2.54 14.72 10 0.09445 8 0.21739 8
DFRee 11.17 17.26 9 0.09324 9 0.21452 9
DFIC 19.80 28.93 5 0.08613 10 0.20887 10
DLH13 4.57 7.61 11 0.07981 11 0.19893 11

Table 6.8. Selective term-weighting result for ClueWeb09B dataset (Anchor) over 192
queries. Retrieval e↵ectiveness is measured by NDCG100. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL) are
marked with: † symbol according to the paired t-test and ℵ symbol according
to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.23860 0 0.34793 0ℵ†SEL 23.96 44.27 1 0.20157 1 0.31710 1

BM25 (k1=1.6 b=0.3) 23.44 41.67 2 0.19033 2 0.30781 2
LGD (c=5.0) 8.85 28.13 5 0.18679 3 0.30553 3
PL2 (c=30.0) 9.38 25.52 7 0.17990 4 0.29982 4

DPH 27.60 34.38 3 0.17843 6 0.29916 5
RMLE 17.52 30.40 4 0.17887 5 0.29888 6
RND 12.80 26.38 6 0.17522 7 0.29577 7

Dirichlet (µ=800) 7.81 19.79 9 0.17250 8 0.29327 8
DFRee 13.02 23.96 8 0.17189 9 0.29288 9
DLH13 7.29 17.19 11 0.16215 10 0.28421 10
DFIC 4.17 19.79 10 0.16069 11 0.28328 11
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Table 6.9. Selective term-weighting result for ClueWeb09B dataset (Anchor) over 192
queries. Retrieval e↵ectiveness is measured by MAP. The models that are not
statistically di↵erent (p < 0.05) from the selective approach (SEL) are marked
with: † symbol according to the paired t-test and ℵ symbol according to the
Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank MAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.13046 0 0.25663 0ℵ†SEL 41.67 52.60 1 0.11338 1 0.23800 1

†BM25 (k1=1.8 b=0.2) 40.63 51.04 2 0.10765 2 0.23182 2
LGD (c=5.0) 9.38 26.04 6 0.10119 3 0.22499 3

RMLE 23.89 34.08 3 0.09841 4 0.22169 4
PL2 (c=12.0) 5.73 27.08 5 0.09548 5 0.21834 5

DPH 21.88 28.65 4 0.09397 6 0.21667 6
RND 12.77 24.05 7 0.09261 7 0.21508 7

Dirichlet (µ=500) 4.69 16.15 10 0.09045 8 0.21249 8
DFRee 11.46 17.19 8 0.08988 9 0.21166 9
DFIC 4.69 17.19 9 0.08290 10 0.20374 10
DLH13 4.17 9.90 11 0.08099 11 0.20106 11

Table 6.10. Selective term-weighting result for ClueWeb12-B13 dataset (Anchor) over
91 queries. Retrieval e↵ectiveness is measured by NDCG100. The models
that are not statistically di↵erent (p < 0.05) from the selective approach
(SEL) are marked with: † symbol according to the paired t-test and ℵ
symbol according to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.12660 0 0.25252 0

†PL2 (c=10.0) 9.89 30.77 6 0.10856 1 0.23310 1ℵ†SEL 35.16 47.25 1 0.10817 2 0.23286 2ℵ†LGD (c=8.0) 13.19 32.97 3 0.10674 3 0.23089 3
†Dirichlet (µ=2000) 16.48 32.97 4 0.10553 4 0.22985 4

†BM25 (k1=1.6 b=0.2) 35.16 42.86 2 0.10451 5 0.22858 5
RMLE 19.95 32.85 5 0.10301 6 0.22692 6
†DPH 16.48 29.67 7 0.10197 7 0.22578 7
RND 13.40 25.81 8 0.09922 8 0.22260 8
DFRee 6.59 16.48 9 0.09441 9 0.21684 9
DFIC 6.59 15.38 10 0.09374 10 0.21639 10
DLH13 2.20 4.40 11 0.07862 11 0.19761 11
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Table 6.11. Selective term-weighting result for ClueWeb12-B13 dataset (Anchor) over
93 queries. Retrieval e↵ectiveness is measured by MAP. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL)
are marked with: † symbol according to the paired t-test and ℵ symbol
according to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank MAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.04461 0 0.14997 0ℵ†PL2 (c=8.0) 10.75 23.66 6 0.03655 1 0.13521 1ℵ†LGD (c=5.0) 19.35 24.73 5 0.03634 2 0.13473 2

†BM25 (k1=1.2 b=0.2) 38.71 47.31 2 0.03547 3 0.13320 3ℵ†SEL 37.63 48.39 1 0.03540 4 0.13310 4ℵ†Dirichlet (µ=1500) 11.83 25.81 4 0.03529 5 0.13290 5ℵ†DPH 15.05 22.58 7 0.03509 6 0.13244 6ℵ†RMLE 22.05 30.45 3 0.03486 7 0.13200 7ℵ†RND 13.80 21.19 8 0.03303 8 0.12843 8
DFRee 4.30 9.68 10 0.03130 9 0.12486 9
DFIC 8.60 12.90 9 0.02990 10 0.12221 10
DLH13 2.15 3.23 11 0.02399 11 0.10919 11

297 queries, 12 of which are yielded zero score of NDCG@100 for all eight term-

weighting models. There is no clear winner for these topics therefore they are not

useful for selective term-weighting experiments. Table 6.2 presents the results for

the remaining 285 queries.

Oracle represents an oracle experiment in which an oracle selects the most

e↵ective model for the query. Thus, the oracle experiment provides an upper-bound

on selective term weighting e↵ectiveness.

SEL represents our selective approach, which selects the most e↵ective models

with the accuracy of 48%.

Näıve Random, RND, which is shown at the ninth row, selects a model at

random among eight models. Theoretical classification accuracy of such random

selection would be 1
8 = 12.5%. Its accuracy is reported as 13.30% for � = 0 on the

Table 6.2. The accuracy is slightly greater than 12.5% because some queries have

more than one best model due to a tie in the highest NDCG score. Random selec-

tion is the most obvious and natural baseline that any selective retrieval approach

must beat at the bare minimum.
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Figure 6.1. ClueWeb{09A|12B} (Anchor): Selective term-weighting SEL is compared
with the BM25 term-weighting, which is applied uniformly to all 285 queries,
in terms of their NDCG@100 di↵erences. Right side of the figure shows the
queries that SEL performed better than BM25.

Second baseline would be the case where randomized selection is performed

in a way that takes into account the training data. Random selection based on

Maximum Likelihood Estimate RMLE, which is shown at the sixth row, selects a

model at random by means of favoring the models that were the most e↵ective at

the training data. Its accuracy is reported as 17.11% and 30.84% for � = 0 and

� = 1 respectively on the Table 6.2.

As expected, RMLE attains better results than the näıve RND. Both randomized

selection algorithms are executed/repeated for 1000 times and then average metrics

are reported.

The best single term-weighting model, which is applied uniformly to all

queries, is the third baseline. However, the best single model can be of two kinds:

according to the accuracy and according to the mean retrieval e↵ectiveness. They

are the BM25 model with the accuracy of 43.16% and the LGD model with mean

e↵ectiveness of 0.15701 on Table 6.2. Our selective term-weighting approach SEL

brings improvements on both e↵ectiveness (0.16885 - 0.15662 = 0.01223) and ac-

curacy (47.72% - 43.16% = 4.56%) over the BM25 model. Figure 6.1 is the risk

graph that shows the di↵erence (between SEL and BM25) in NDCG@100 for 285
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queries in the ClueWeb{09A|12B} query set. The query set is sorted by the dif-

ference in NDCG@100 magnitudes, which is depicted in the vertical axis. The

queries for which the selective approach performed better than BM25 are shown at

the right hand side. The queries for which the selective approach performed worse

than BM25 are shown at the left hand side. Middle of the figure shows the queries

in which both selective and BM25 term-weighting attained the same e↵ectiveness

score (e.g., di↵erence is zero).

The improvement that the selective term-weighting approach brings over the

BM25 and LGD models is statistically significant according to both the t-test and

the Wilcoxon signed rank test. The Wilcoxon signed rank test ignores the mag-

nitudes shown in bars of Figure 6.1, instead it counts the number of queries that

caused the (negative or positive) di↵erence. For example, the right most query

(caused the largest gain over BM25) and the 250th query contribute equally to

the Wilcoxon signed rank test. By contrast, the t-test considers the magnitudes,

in which contribution of the aforementioned two queries are proportional to their

magnitudes.

The selective term-weighting approach performed significantly better than

the BM25 model for the sample of 285 queries: p = 0.0003743 for the t-test, p =
0.00000538 for the Wilcoxon signed rank test.

A population can be thought of a complete set of queries (usually infinite in

size and unknown in distribution) whereas sample is the subset (i.e., 285 queries in

the present experiment) of the query population. The reported p-value is defined

as the probability of re-observing a di↵erence in the mean retrieval e↵ectiveness

of two systems on a new query sample chosen/drawn from the query population,

that is equal to or “more extreme” than what was actually observed on the sample

in use, when the two systems have equal population means. Thus, low value of p-

value implies statistical significance: the observed di↵erence is not encountered by

chance. Usually an upper threshold ↵ of 5% (0.05) or 1% (0.01) is used to compere
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with the p-value. It is worthwhile to note that both hypothesis tests (p = 0.0003743
and p = 0.00000538) reject the null the hypothesis (H0) which claims that BM25

and SEL have the same retrieval e↵ectiveness mean over the population.

In case of the best single term-weighting, which is the LGD model, that at-

tained the highest mean e↵ectiveness, our selective term-weighting approach SEL

brings improvements on both e↵ectiveness (0.16885 - 0.15701 = 0.01184) and ac-

curacy (47.72% - 31.58% = 16.14%) over the LGD model. The improvements are

statistically significant according to: p = 0.00009015 for the t-test, p = 0.00000433
for the Wilcoxon signed rank test. Figure 6.2 is the risk graph between SEL and

LGD for 285 queries in the ClueWeb{09A|12B} query set.

Table 6.2 is already sorted the by GeoRisk measure that quantifies retrieval

robustness. As expected, the hypothetical oracle run is at the first seat. Other

than oracle, our selective term-weighting is the most robust system. Moreover,

the selective term-weighting is statistically di↵erent from the all models listed in

Table 6.2 according to both the t-test and the Wilcoxon signed rank test. Thus,

the selective term-weighting is the most accurate, e↵ective and robust among all

models.

Note that we don’t report p-values of all hypothesis tests that we conducted

for the sake of the flow of the dissertation. Instead we mark the models in which

hypothesis tests fail to reject the null hypothesis. We use † symbol for the paired t-

test and ℵ symbol for the Wilcoxon signed-rank test. The absence of these symbols

on a table means that the selective approach is statistically di↵erent from all the

models. If a model is marked with both symbols, it means that it would have the

same retrieval e↵ectiveness mean over the population with the selective approach

(i.e., there is no significant di↵erence between them).

Table 6.3 presents selective term-weighting experiments where MAP is used

as the target e↵ectiveness measure that is optimized. We don’t repeat risk graphs

and p-values of individual hypothesis tests. Inline with the NDCG@100 results, our
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Figure 6.2. ClueWeb{09A|12B} (Anchor): Selective term-weighting SEL is compared
with the LGD term-weighting, which is applied uniformly to all 285 queries,
in terms of their NDCG@100 di↵erences. Right side of the figure shows the
queries that SEL performed better than LGD.

selective approach was significantly better than the all models when e↵ectiveness

is measured by the MAP metric.

6.6. Million Query Results

In this section, we present the results of the Million Query 2009 track, which has

561 valid queries. Again, we discard the queries that the all eight term-weighting

models attained the same e↵ectiveness. Table 6.4 presents the results where e↵ec-

tiveness was measured by NDCG@100. Although our selective approach attained

the highest scores for all three criteria (accuracy, mean e↵ectiveness, robustness),

hypothesis tests didn’t agree on the statistical di↵erence from the DPH model only.

According to the t-test (p = 0.02468486) the di↵erence is significant while accord-

ing to the Wilcoxon signed rank test (p = 0.07326688) it is not. It is worthwhile

to present and examine the per-query risk graph (Figure 6.3) of SEL and DPH

in order to understand the principle di↵erence between Wilcoxon and Student’s

t-test and why/when they do not agree. The graph is almost symmetric about the

y-axis: positive gains (wins) are roughly equal to the negative losses. However, as

can be seen on the right-most of the graph, selective approach caused large gains

(in magnitude) for a few queries. The mean e↵ectiveness di↵erence between SEL
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Figure 6.3. Million Query 2009 (Anchor): Selective term-weighting SEL is compared
with the best single term-weighting DPH in terms of their NDCG@100 di↵er-
ences. Right side of the figure shows the queries that the selective approach
performed better than DPH.

and DPH (0.37157 - 0.35848 = 0.01309) is mostly caused by these queries. Since t-

test considers magnitudes, the di↵erence was significant according to it. Wilcoxon

rather considers the number of hurt and improved queries, and the di↵erence was

not significant according to it. Thus, Wilcoxon considers retrieval robustness to

some extend. This formed a perfect example to demonstrate that Wilcoxon and

Student’s t-test are di↵erent in nature.

Table 6.5 presents the Million Query result in which e↵ectiveness is measured

by the statMAP measure. Inline with the NDCG@100 results, SEL approach was

not statistically di↵erent than DFRee (t-test’s p
t

=0.18737933Wilcoxon’s p
w

=0.00483313)

and DPH (t-test’s p
t

=0.15644347 Wilcoxon’s p
w

=0.24048373). The per-query risk

graph (Figure 6.4) of SEL and DFRee demonstrates the other edge case: signifi-

cant according to Wilcoxon, but not significant according to Student’s t-test. This

graph is symmetric at the right and left edges. However, at the middle range, SEL

approach caused gains (small in magnitude) for the queries roughly between 350

and 400. The disagreement was primarily influenced by these 50 queries.

76



Number of Queries
0 50 100 150 200 250 300 350 400 450 500

st
a
tA

P
 (

S
E

L
 -

 D
F

R
e
e
)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 6.4. Million Query 2009 (Anchor): Selective term-weighting SEL is compared
with the DFRee model in terms of their statAP di↵erences. Right side of
the figure shows the queries that the selective approach performed better
than DFRee.

6.7. Within-Collection Experiments Results

In this section we present results of selective term-weighting experiments conducted

on individual datasets.

6.7.1. ClueWeb09-A

The results of the ClueWeb09 full dataset are presented on Table 6.6 and Table

6.7 for the NDCG@100 and MAP respectively. Again the SEL approach attains

the highest scores for all three criteria (accuracy mean e↵ectiveness, robustness),

and significantly di↵erent from all the models. Thus, SEL performed significantly

better than all the models for both NDCG@100 and MAP measures. Since we did

not encounter a disagreement between two hypothesis tests, we do not give p-values

nor risk graphs.

6.7.2. ClueWeb09-B

The results of the category B subset of the ClueWeb09 dataset are presented on

Table 6.8 and Table 6.9 for the NDCG@100 and MAP respectively. Again the SEL

approach attains the highest scores for all three criteria (accuracy mean e↵ective-
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ness, robustness). However for the MAP metric, hypothesis tests disagree on the

BM25 model (p
t−test=0.10958176 and p

wilcoxon

=0.03362139). Thus, SEL performed

significantly better than all the models for NDCG@100; while its MAP di↵erence

from BM25 was not statistically significant according to the Student’s t-test.

6.7.3. ClueWeb12-B13

The results of the category B subset of the ClueWeb12 dataset are presented on

Table 6.10 and Table 6.11 for the NDCG@100 and MAP respectively. For this

dataset the SEL approach is not significantly di↵erent than most of the models

(BM25, DPH, Dirichlet, LGD, PL2). There can be two reasons for this: (i) The

number of queries (≈ 90) are too few (ii) mean e↵ectiveness scores of the models

are small in magnitude due to the category B subset. On the other hand, SEL

approach took the first seat in the accuracy rank.

6.7.4. Summary

In this section we sum-up within-collection experiments conducted for NDCG and

MAP measures. Classification accuracy (� = 1) attained in each collection and in

each e↵ectiveness measure are depicted on Figure 6.5. The interaction plot includes

three models: our selective approach (SEL), the best single model (SGL) and the

MLE random selection (RMLE). It can be clearly seen that our selection mechanism

is far away from being random. Moreover, our selective term-weighting (SEL)

systematically outperforms the best single term-weighting (SGL) for all datasets

and measures. Recall that, the di↵erences are statistically significant for most of

the datasets and measures.

6.8. Cross-Collection Experiments Results

In this section we investigate the transferability of term frequency distribution data

extracted from one corpus to other corpora or subsets of the same corpus.

For instance, such transferability issue has arisen during the TREC Web

track 2013 when the new ClueWeb12 dataset was introduced for the first time.
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Figure 6.5. Classification Accuracy Interaction Plot of within-collection experiments:
SEL represents the selective term-weighting, SGL represents the best single
term-weighting, RMLE is the random selection based on MLE.

Since there were no training data available for the ClueWeb12 dataset, participants

had to use features extracted from the ClueWeb09 dataset for training purposes.

Arguello et al. (2016) stated that “the science of determining similarity between

collections and therefore predicting which system components will work well on a

new collection is in its infancy.”

To empirically investigate these questions we apply a full-factorial experi-

mental design whose factors and levels are given on Table 6.12. We assume that

we don’t have any relevance information about the test dataset: we use relevance

judgments of training data (which model is the most e↵ective at which query). The

frequency distributions of the test queries are extracted from the test dataset while

the frequency distributions of the training queries are extracted from the training
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Table 6.12. Factors and corresponding levels considered in cross-collection experiments.

Factor Level Code

Train

Million Query 2009 MQ09
ClueWeb09 Category A CW09A
ClueWeb09 Category B CW09B
ClueWeb12 Category B CW12B

Test

Million Query 2009 MQ09
ClueWeb09 Category A CW09A
ClueWeb09 Category B CW09B
ClueWeb12 Category B CW12B

E↵ectiveness
Mean Average Precision MAP

Discounted Cumulative Gain NDCG

dataset.

Classification accuracy (� = 1) attained by the SEL model in each collec-

tion and in each e↵ectiveness measure are depicted on Figure 6.6. Empirical re-

sults suggest that ClueWeb09 full dataset forms the best candidate for training.

ClueWeb12-B13 dataset is also a good candidate. Given that ClueWeb12-B13

is random sample of the full dataset, and ClueWeb09A is full dataset itself, fre-

quency distributions extracted from uncontrolled datasets are more useful for se-

lective term-weighting based on term frequency distributions. Recall that category

B subset of the ClueWeb09 is selected in a deterministic way (i,e first 50 million

pages plus entire English Wikipedia), therefore CW09B is not as representative as

CW12B of the full datasets. Once you buy the ClueWeb09 full dataset, you can

deterministically extract the category B subset. You cannot do the same with the

ClueWeb12 full dataset.

6.9. The Role of Anchor Text

Anchor Text is the visible, clickable text in a hyperlink that can be tough of the

edges in a graph whose nodes are the Web pages. The HTML excerpt in Listing

6.1 is an example of an anchor text, in which href attribute specifies the URL of

the page the link goes to. Once the HTML is rendered, say by a Web browser, one

can see only the clickable anchor text: “Visit our HTML tutorial.”
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Figure 6.6. Classification Accuracy Interaction Plot of cross-collection experiments.

Listing 6.1. Example of an Anchor Text

<a href=‘‘http://www.w3schools.com/html’’>Visit our HTML tutorial</a>

Anh and Mo↵at (2010) investigated the role of Anchor Text in ClueWeb09

retrieval and found that the use of an anchor text significantly increase the retrieval

e↵ectiveness.

In previous sections, as in common practice, we index anchor texts from

incoming links as parts of the documents. So one point of di↵erence from the body

of the document is that it is not written by the author of the document, but by the

author of the source. Another point is that anchor text forms a repeatable field,

which means there can be any number (zero or more) of incoming links (anchor

texts) for a given document (Robertson et al., 2004).

In general, the number of incoming links are considered as the indicator of

quality/authority of the page. Robertson et al. (2004) warned against the swamp

e↵ect: large number of anchor texts may swamp the remainder of the document.

In this section, we investigate the role of anchor text on term frequency

distributions and therefore selective term-weighting. We present selective term-
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Figure 6.7. ClueWeb{09A|12B} (NoAnchor): Selective term-weighting SEL is compared
with the BM25 term-weighting, which is applied uniformly to all 285 queries,
in terms of their NDCG@100 di↵erences. Right side of the figure shows the
queries that SEL performed better than BM25.

weighting results when anchor text is not used.

6.9.1. Web track results

The results of the six Web tracks ran through 2009 to 2014 are presented on Table 1

and Table 2 for the NDCG@100 and MAP respectively. Figure 6.7 is the risk graph

between SEL and BM25 for 281 queries for NDCG@100 measure. Although SEL

is statistically better than the all models for the NDCG@100, it is not statistically

di↵erent from PL2 (p
t

=0.32297339 p
w

=0.79850608) for the MAP metric.

6.9.2. Million query results

The results of the Million Query 2009 track are presented on Table 3 and Table

4 for the NDCG@100 and statMAP respectively. Figure 6.8 is the risk graph

between SEL and BM25 for 522 queries for NDCG@100 measure. Although SEL

is statistically better than the all models for the NDCG@100, it is not statistically

di↵erent from DFRee, DPH, LGD and PL2 for the MAP metric.
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Figure 6.8. Million Query 2009 (NoAnchor): Selective term-weighting SEL is compared
with the BM25 term-weighting, which is applied uniformly to all 522 queries,
in terms of their NDCG@100 di↵erences. Right side of the figure shows the
queries that SEL performed better than BM25.

6.9.3. ClueWeb09-A results

The results of the four Web tracks ran through 2009 to 2012 are presented on

Table 5 and Table 6 for the NDCG@100 and MAP respectively. The best perform-

ing models are DFIC and PL2 for NDCG@100 and MAP measures respectively.

But they are not statistically di↵erent than the selective-term weighting: DFIC

(p
t

=0.27964832 p
w

=0.58921883), PL2 (p
t

=0.48017690 p
w

=0.92429297).

6.9.4. ClueWeb09-B results

The results of the four Web tracks ran through 2009 to 2012 are presented on Table

7 and Table 8 for the NDCG@100 and MAP respectively. For this dataset, selective

term-weighting failed to create a significant di↵erence from DFIC, PL2, and LGD.

6.9.5. ClueWeb12-B13 results

The results of the two Web tracks ran through 2013 to 2014 are presented on

Table 9 and Table 10 for the NDCG@100 and MAP respectively. For this dataset,

selective term-weighting failed to create a significant di↵erence from most of the

models.
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Figure 6.9. Classification Accuracy Interaction Plot of within-collection experiments:
SEL represents the selective term-weighting and SGL represents the best
single term-weighting.

6.9.6. Summary

Consistently, when anchor text is not used, selective term-weighting failed to cre-

ate a significant di↵erence from some of the single term-weighting models that

uniformly applied to all queries. Experimental results clearly show that selective

approach benefits from the anchor text. Anchor text 100% supports the funda-

mental assumption of the frequentist approach to IR: the more occurrence of a

word implies the more document treats the subject. Besides term frequency, every

increase in frequency of a term in anchor text means an additional incoming link,

which means some other page in the Web endorsed the target page with the same

keyword. Thus, term frequency in anchor text also qualifies the document quality.

The benefit gained from the inclusion of the anchor text can be observed

more clearly on Figure 6.9 and Figure 6.10 for within-collection experiments and

cross-collection experiments respectively.
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Figure 6.10. Classification Accuracy Interaction Plot of cross-collection experiments
for selective term-weighting approach SEL.

6.9.7. Overall evaluation

To summarize the overall performance of the proposed selective term-weighting

(SEL) approach in Accuracy, E↵ectiveness, Robustness (AER) criteria at once, we

tabulate the ranks of the approach on Table 6.13. Each table entry contains a

triple (rank@A rank@E rank@R) that represents the ranks at AER.

It can be clearly seen that the SEL approach is at first seat most of the time

and is “always” at first seat for the “accuracy” criterion. SEL performed better

on NDCG@100 measure and when the Anchor Text is included in the document

representation. Indeed, NDCG is a more appropriate measure for the Web search

case in which there exists “six shades of relevance.” Anchor Text is specific to Web

retrieval by representing the number of incoming links. Moreover, for a web page,

the content of its incoming anchor text may be better than the content of itself in

objectively describing the page.

Among the datasets, SEL performed worst on ClueWeb12-B13 dataset. This

is due to too few queries (≈ 90) and too few relevant documents and small e↵ec-
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Table 6.13. Overall Summary Table: shows the ranks of selective term-weighting at
three criteria: accuracy, e↵ectiveness, robustness.

CW{09A|12B} MQ09 CW09A CW09B CW12B

Anchor
NDCG 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2
MAP 1 1 1 1 1 1 1 1 1 1 1 1 1 4 4

NoAnchor
NDCG 1 1 1 1 1 1 1 2 2 1 2 1 1 2 2
MAP 1 2 2 1 1 1 1 2 2 1 3 3 1 1 1

tiveness measures (we used category A relevance judgments to evaluate category

B runs).

To summarize the results the hypothesis tests conducted to decide whether

observed mean retrieval e↵ectiveness (rank@E) di↵erences are statistically signifi-

cant, we tabulate the models that are not statistically di↵erent from the selective

approach on Table 6.14. † symbol represents the paired t-test while ℵ symbol rep-

resents the Wilcoxon signed-rank test. Empty cells correspond to the case where

SEL approach performed statistically better than all in e↵ectiveness criteria. Note

that hypothesis tests are used for mean e↵ectiveness which is one the three crite-

ria. Accuracy criterion can be tought of pure robustness: higher value means less

significant failure. E↵ectiveness criterion is pure retrieval e↵ectiveness.

Wilcoxon can be though as significance test for accuracy, while paired t-test

is the tool for detecting significant di↵erence in e↵ectiveness. GeoRisk is blended

version of both e↵ectiveness and robustness: higher value implies both robust and

e↵ective system. There is no significance test for GeoRisk tough.

If we interpret the Table 6.14 on this perspective, for example, although SEL

is always at first seat (1 1 1) on the MQ09 Anchor dataset, its accuracy is not

significantly from DPH for NDCG@100. Similarly, although SEL is always at first

seat (1 1 1) on the CW09B Anchor dataset, its e↵ectiveness is not significantly

di↵erent from BM25 for MAP measure.

Summary of the Tables 6.14 and 6.13 reveals the fact that SEL is the least

risky system: It never performs significantly worse besides it usually performs

significantly better. Indeed, this is the ideal behavior of a truly robust system.

86



Table 6.14. The models that are not statistically di↵erent from the selective model

CW{09A|12B} MQ09 CW09A CW09B CW12B

Anchor
NDCG ℵDPH †PL2,ℵ†LGD,†Dirichlet,†BM25,†DPH
MAP ℵ†DPH,†DFRee †BM25 ℵ†PL2,ℵ†LGD,†BM25,ℵ†Dirichlet,ℵ†DPH,ℵ†RMLE,ℵ†RND

NoAnchor
NDCG ℵ†DFIC,†DPH,†BM25,†PL2 †LGD,†PL2,†DFIC ℵ†PL2,ℵ†Dirichlet,ℵ†LGD,†RMLE,†BM25,ℵ†DPH
MAP ℵ†PL2,†DFIC ℵ†DPH,ℵ†PL2,†DFRee,†LGD ℵ†PL2,†DFIC ℵ†PL2,ℵ†LGD,†DFIC,†BM25,†Dirichlet †PL2,ℵ†LGD,ℵ†Dirichlet,†BM25,†DPH,†RMLE

6.10. Similarity? Dissimilarity? or Both?

In Chapter 4, we based our selection mechanism on both similarity and dissimilarity

as given by Equation 6.4. However, selection could be done using either similarity

or dissimilarity alone as given by Equations 6.5 and 6.6 respectively. In this section,

we compere these three methods: selection based on WIN, ODDS, and LOSS.

Inspired by the Probability Ranking Principle (Robertson, 1997), which sug-

gests ranking the documents by the log-odds ratio of their probabilities of being gen-

erated by the relevant class against the non-relevant class, selective term-weighting

can be formulated as ranking models m
i

∈M by increasing probability of perform-

ing the best P (best �m
i

, q) for a given query q.

P (best �m,q)∝
q

P (best �m,q)
P (best �m,q) =

P (m � best, q)P (best � q)
P (m � best, q)P (best � q) (6.2)

P (best �m,q)∝
q

P (m � best, q)
P (m � best, q) =

P (m � best, q)
P (m � worst, q) (6.3)

In Equation 6.2, we simply replace the probability by an odds-ratio and per-

form Bayesian inversions on both numerator and denominator. In Equation 6.3,

we drop the second component which is independent of the model, therefore does

not a↵ect the ranking of the models. And we replace probability of not performing

best P (best) with probability of performing worst P (worst).
We estimate P (m

i

� best, q) = 1
m

i

.similarity by comparing the query q with the

queries that the model m
i

performed best in the training queries (winner list of

m
i

). We estimate P (m
i

� worst, q) =m
i

.dissimilarity by comparing the query q

with the queries that the model m
i

performed worst in the training queries (loser
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Figure 6.11. Classification Accuracy Interaction Plot of selective term-weighting ex-
periments based on WIN, ODDS, and LOSS.

list of m
i

). Thus, P (best �m
i

, q)∝
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Figure 6.11 shows interaction plot for the three probability estimators. It can

be seen that ODDS, which uses two sources of information, consistently outper-

forms to other two. In other words, ranking models by the odds of being the most
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e↵ective (best) against the least e↵ective (worst) for a given query optimizes the

accuracy of selective term-weighting. This interesting finding suggests that: the

queries that a model fails (i.e., performs worst) carry/signal important source of

evidence (information) for selective term-weighting based on frequency distribution

of query terms.

6.11. Comparison with the Model Selection (MS) Method

In this section we compare our method with the very first selective term-weighting

study by He and Ounis (2003, 2004b), whose detailed explanation is given in Section

5.4.2. The model selection method has one free-parameter named k, as in the

original work, we use the range of values from 2 to 10. Here k is the number

of clusters. Figure 6.12 shows comparison interaction plot including the factor of

k ∈ {2,3,4,5,6,7,8,9,10}. As can be observed from the figure our selective method

(SEL) is systematically better than the MS proposed by He and Ounis (2003,

2004b) except for the ClueWeb12-B13 dataset.

To test whether mean retrieval e↵ectiveness di↵erences between SEL and MS

(k=7) are statistically significant, we present the results of the hypothesis tests

on Table 6.15. In our comparisons, we used k = 7 because it is reported as the

best threshold setting (He and Ounis, 2004b). In which, ↑ indicates that mean

e↵ectiveness of SEL is greater than MS and ↓ indicates that mean e↵ectiveness

of SEL is less than MS. If the SEL and MS are statistically di↵erent (p < 0.05)

then † symbol (paired t-test) and/or ℵ symbol (Wilcoxon signed-rank test) are

inserted. In terms of mean retrieval e↵ectiveness, MS is significantly (Wilcoxon

signed-rank test) better than SEL for the ClueWeb12-B13. On the other hand, SEL

is significantly (Wilcoxon signed-rank test) better than MS for the ClueWeb09A

and ClueWeb09B datasets when anchor text is used. For the Million Query 2009,

SEL and MS are not statistically di↵erent from each other.
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Figure 6.12. Comparison with the Model Selection

6.12. Conclusions

In this chapter, we tested our STW framework on the ClueWeb{09|12} corpora

and their corresponding TREC tasks. In particular, we compared it with two ran-

dom selection mechanisms as well as eight state-of-the-art term-weighting models,

namely BM25, DFIC, DLH13, DPH, DFRee, PL2, LGD and the Language Model-

ing method with Dirichlet prior smoothing. The experimental results showed that,

Table 6.15. The Statistical Significance Tests: MS (k=7) versus SEL

MQ09 CW09A CW09B CW12B

Anchor
NDCG@100 ↑ ↑ℵ ↑ℵ ↓ℵ

MAP ↑ ↑ℵ† ↑ℵ ↓ℵ
NoAnchor

NDCG@100 ↑ ↓† ↓ℵ ↓ℵ
MAP ↓ ↑ℵ ↓ ↓ℵ
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our selective term-weighting approach does improve the average e↵ectiveness com-

pared with a baseline where a single term-weighting model is applied uniformly to

all queries.

Our experimental results showed that the retrieval performance obtained by

using our proposed STW framework could constantly outperform random selections

and eight state-of-the-art models in the NDCG and MAP measures on di↵erent

datasets. In addition, improvements were statistically significant in most cases.

Moreover, we investigated the robustness of our framework as measured by

the GeoRisk. Our experimental results showed that the STW framework is a truly

robust system, which avoids significant per-query failures and also maintains a

good average e↵ectiveness at the same time. We showed that more robust and

more e↵ective system can be built by leveraging existing term-weighting models in

a selective manner, without inventing a new one. The STW framework reached to

a level of robustness that any single term-weighting cannot posses alone.

Furthermore, we showed that the queries that a system fails is as important as

the queries that a system succeeds in a selective IR application. We also empirically

validated that the anchor text 100% obeys the fundamental assumption of the

frequentist approach to IR.

Finally, we compared our selective term-weighting method with a previous

study by He and Ounis (2004b), in which experimental results show that our ap-

proach performs better for the ClueWeb09 dataset.
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7. CONCLUDING REMARKS

7.1. Contributions and Conclusions

There has been a great deal of research dedicated to develop term-weighting models

for information retrieval (IR). However, IR research has shown that there is not a

single term-weighting model that would answer the best on any query. Rather, per-

query performance fluctuation among the term-weighting models has been shown.

This is called robustness problem of IR. This dissertation has investigated the

selective application of an appropriate term-weighting model on a per-query basis

to alleviate the problem of robustness in retrieval e↵ectiveness. The objective

of this dissertation is to characterize queries based on frequency distributions of

their terms on document collections and try to predict which term-weighting model

would be most e↵ective for each query. Thus, when an unseen query is submitted

by the user, our approach will decide which term-weighting model should process

it. This section discusses the contributions and conclusions of this dissertation.

7.1.1. Contributions

The main contributions of this dissertation are the introduction of the STW frame-

work and the proposed use of chi-square goodness-of-fit test on frequency distribu-

tions of query terms for identifying similar queries. In addition, this dissertation

draws insights from a large set of experiments, involving three di↵erent standard

corpora, two di↵erent search tasks, two di↵erent document representations and two

di↵erent e↵ectiveness measures calculated at various cuto↵ levels. This illustrates

the generalizability of the STW framework.

Furthermore, we thoroughly evaluate the accuracy, e↵ectiveness and robust-

ness of the STW framework on two di↵erent retrieval tracks, namely Web Track

and Million Query Track. In particular, a Web collection that contains over a

half billion English documents and about one thousand queries are used in this
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evaluation.

This study makes some important contributions to the body of existing work

in both selective IR and robust IR. This dissertation presents experiments of the

selective term-weighting for robust retrieval based on frequency distributions of

query terms. This is the first examination of the frequency distributions of query

terms on document collections in text-based IR. This has not been done before.

As a by-product, a new family of query features can be driven from the frequency

distribution of query terms for to use in IR research area.

This work presents a unique evaluation methodology for selective retrieval

approaches when there exist multiple candidates to choose from. Three aspects

of such evaluation: accuracy, e↵ectiveness and robustness are considered at the

same time. Two natural baselines that any selective retrieval approach should

outperform at the minimum are derived and described.

The present dissertation also reveals the organic connection between the se-

lective IR and the robust IR that focused on avoiding significant failures caused

by the poorly-performing queries. This connection has much to do with the true

understanding/definition of a significant failure, and an appreciation of it helps

to gain insight into the selective retrieval approach. Indeed, significant failure is a

vague concept. When does a retrieval system fail significantly? Can an e↵ectiveness

score of 0.2 or 0.6 be considered a failure for a particular query?

Whether a system performs poorly or not can only be meaningfully identified

when it is relatively compared to the other systems. For example, a system serves

a query with the NDCG score of 0.6 and all the other systems attain NDCG score

greater than 0.7. Since the model in question is the least e↵ective, we can call

NDCG score of 0.6 a significant failure. On the other hand, a system can be the

most e↵ective with an NDCG score of 0.2 when the other systems return zero

relevant documents. Obviously NDCG score of 0.2 is not a significant failure in

this case.
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These examples clearly demonstrate that significant failure must be defined in

a relative manner. There must be other systems to compare with. The magnitude

of an e↵ectiveness score alone is not enough to define it. This is where selective

retrieval approaches come into play. The interesting relationship between the se-

lective retrieval approaches and the problem of robustness in retrieval e↵ectiveness

is that the selective approaches are natural solutions to the robustness problem.

7.1.2. Conclusions

This section discusses the achievements and the conclusions of this study. We

tested our selective term weighting (STW) framework on the ClueWeb{09|12} cor-

pora and their corresponding TREC tasks. In particular, we compared it with

two random selection mechanisms as well as eight state-of-the-art term-weighting

models, namely BM25, DFIC, DLH13, DPH, DFRee, PL2, LGD and the Language

Modeling method with Dirichlet prior smoothing. The experimental results showed

that, our selective term-weighting approach does improve the average e↵ectiveness

compared with a baseline where a single term-weighting model is applied uniformly

to all queries.

Our experimental results showed that the retrieval performance obtained by

using our proposed STW framework could constantly outperform random selections

and eight state-of-the-art models in the NDCG and MAP measures on di↵erent

datasets. In addition, improvements were statistically significant in most cases.

Moreover, we investigated the robustness of our framework as measured by

the GeoRisk. Our experimental results showed that the STW framework is a truly

robust system, which avoids significant per-query failures and also maintains a

good average e↵ectiveness at the same time. We showed that more robust and

more e↵ective system can be built by leveraging existing term-weighting models in

a selective manner, without inventing a new one. The STW framework reached to

a level of robustness that any single term-weighting cannot posses alone.

Furthermore, we showed that the queries that a system fails is as important
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as the queries that a system succeeds in a selective IR application. We also empir-

ically validated that the anchor text 100% obeys the fundamental assumption of

the frequentist approach to IR. Finally, we compared our selective term-weighting

method with a previous study by He and Ounis (2004b), in which experimental

results show that our approach performs better for the ClueWeb09 dataset.

7.2. Directions for Future Research

This section discusses several directions for future work related to, or stemming

from this dissertation.

Query features based on term frequency distributions The most common

term statistics currently used in the IR literature are as follows:

• Document frequency: How many documents contain the term?

• Within-collection term frequency: How many times the term is observed in

the entire collection?

• Number of documents: How many documents do exist in the entire collection?

• Number of terms: How many terms do exist in the entire collection?

These statistics has been leveraged in IDF and ICTF to quantify term speci-

ficity. IDF is the logarithmically scaled inverse fraction of the documents that con-

tain the word and the total number of documents. ICTF simply uses “the number

of terms” instead of the number of documents, thus ICTF is the “# terms” counter

part of the IDF. Basically they both are based on the mean of the frequency distri-

bution of the term in the collection. However, there are three more statistics that

can describe a frequency distribution of a term. The four central moments used in

mathematics and statistics are as follows:

• Mean is the first raw moment.
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• Variance measures how far a set of numbers are spread out from their mean.

• Skewness is the measure of the lopsidedness of the distribution.

• Kurtosis is the measure of the heaviness of the tail of the distribution.

McDonell, Zobel and Billerbeck (2016) argue that the term frequency dis-

tribution is pertinent to informativeness and the most informative terms tend to

be those whose within-document frequency has high variance across a document

collection. The authors propose use of relative standard deviation as a measure of

term specificity.

To the best of our knowledge, unlike the mean and variance (McDonell et al.,

2016), skewness and kurtosis have not ben utilized yet in the IR literature. The

computation of these features is more costly than IDF and ICTF, but they can

obviously be included/used to describe terms in various IR tasks, such as query

classification and learning to rank. This new family of features based on term

frequency distribution are waiting to be exploited by the IR community.
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Table 1. Selective term-weighting result for ClueWeb{09A|12B} dataset (NoAnchor)
over 281 queries. Retrieval e↵ectiveness is measured by NDCG100. The mod-
els that are not statistically di↵erent (p < 0.05) from the selective approach
(SEL) are marked with: † symbol according to the paired t-test and ℵ symbol
according to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.21186 0 0.32909 0ℵ†SEL 32.74 47.33 1 0.17363 1 0.29536 1

PL2 (c=8.0) 17.79 33.45 3 0.16737 2 0.28888 2
BM25 (k1=1.6 b=0.2) 30.96 43.77 2 0.16511 3 0.28780 3

DFIC 12.81 27.76 5 0.16169 4 0.28406 4
RMLE 18.31 29.87 4 0.15637 5 0.27946 5
DPH 17.79 26.69 6 0.15477 6 0.27845 6

LGD (c=2.0) 7.12 19.93 8 0.14993 7 0.27292 7
RND 13.21 23.41 7 0.14905 8 0.27252 8

Dirichlet (µ=500) 8.54 18.51 9 0.14697 9 0.27006 9
DFRee 6.41 11.03 10 0.13311 10 0.25706 10
DLH13 5.69 7.47 11 0.11380 11 0.23755 11

Table 2. Selective term-weighting result for ClueWeb{09A|12B} dataset (NoAnchor)
over 287 queries. Retrieval e↵ectiveness is measured by MAP. The models
that are not statistically di↵erent (p < 0.05) from the selective approach (SEL)
are marked with: † symbol according to the paired t-test and ℵ symbol ac-
cording to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank MAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.11572 0 0.24249 0ℵ†PL2 (c=8.0) 19.86 37.98 3 0.09581 1 0.21886 1ℵ†SEL 32.06 42.86 1 0.09381 2 0.21689 2
†DFIC 16.72 29.27 5 0.09003 3 0.21222 3

BM25 (k1=1.2 b=0.3) 31.01 40.07 2 0.08901 4 0.21093 4
LGD (c=3.0) 6.97 17.07 8 0.08768 5 0.20908 5

RMLE 19.00 29.29 4 0.08727 6 0.20878 6
DPH 15.68 23.00 6 0.08593 7 0.20719 7
RND 13.35 21.89 7 0.08242 8 0.20276 8

Dirichlet (µ=500) 6.97 12.89 9 0.08090 9 0.20065 9
DFRee 5.57 9.76 10 0.07297 10 0.19051 10
DLH13 4.18 5.23 11 0.05678 11 0.16790 11
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Table 3. Selective term-weighting result for Million Query 2009 dataset (NoAnchor) over
522 queries. Retrieval e↵ectiveness is measured by NDCG100. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL) are
marked with: † symbol according to the paired t-test and ℵ symbol according
to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.47048 0 0.49008 0ℵ†SEL 27.39 41.76 1 0.40295 1 0.44966 1
DPH 20.88 33.33 3 0.39285 2 0.44235 2

PL2 (c=3.0) 8.62 21.65 8 0.38445 3 0.43790 3
BM25 (k1=1.6 b=0.5) 26.25 37.74 2 0.38112 4 0.43629 4

LGD (c=2.0) 7.47 20.31 9 0.37789 5 0.43396 5
RMLE 17.20 27.95 4 0.37714 6 0.43379 6
RND 13.98 24.74 6 0.37518 7 0.43252 7
DFRee 12.84 22.22 7 0.37503 8 0.43199 8
DFIC 18.39 27.78 5 0.37127 10 0.43184 9

Dirichlet (µ=500) 5.75 17.62 10 0.37408 9 0.43155 10
DLH13 11.11 17.05 11 0.34443 11 0.41347 11

Table 4. Selective term-weighting result for Million Query 2009 dataset (NoAnchor) over
533 queries. Retrieval e↵ectiveness is measured by statMAP. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL) are
marked with: † symbol according to the paired t-test and ℵ symbol according
to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank statMAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.34308 0 0.41788 0ℵ†SEL 30.02 35.08 1 0.25077 1 0.35416 1ℵ†DPH 17.07 24.39 3 0.24969 2 0.35241 2ℵ†PL2 (c=8.0) 10.13 21.76 5 0.24520 3 0.34984 3

†DFRee 13.32 20.26 7 0.23861 4 0.34484 4
†LGD (c=5.0) 11.44 19.51 8 0.23813 5 0.34472 5

RMLE 16.68 23.06 4 0.23562 6 0.34292 6
BM25 (k1=1.4 b=0.3) 28.33 32.83 2 0.23465 8 0.34278 7

RND 14.35 21.16 6 0.23510 7 0.34248 8
Dirichlet (µ=800) 10.51 15.76 11 0.23326 9 0.34102 9

DFIC 10.51 17.64 9 0.23258 10 0.34033 10
DLH13 13.51 17.26 10 0.20930 11 0.32346 11
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Table 5. Selective term-weighting result for ClueWeb09A dataset (NoAnchor) over 188
queries. Retrieval e↵ectiveness is measured by NDCG100. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL) are
marked with: † symbol according to the paired t-test and ℵ symbol according
to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.24615 0 0.35650 0ℵ†DFIC 23.94 40.43 2 0.19688 1 0.31498 1ℵ†SEL 28.72 40.96 1 0.18836 2 0.30807 2
†DPH 18.62 30.32 4 0.18221 4 0.30214 3

†BM25 (k1=1.0 b=0.4) 24.47 36.70 3 0.18291 3 0.30194 4
†PL2 (c=3.0) 7.45 25.53 6 0.18064 5 0.29909 5

RMLE 17.51 29.94 5 0.17897 6 0.29891 6
LGD (c=2.0) 4.26 20.21 9 0.17489 7 0.29451 7

RND 12.52 24.42 7 0.17228 9 0.29276 8
Dirichlet (µ=500) 6.38 21.28 8 0.17272 8 0.29254 9

DFRee 7.45 11.17 10 0.15380 10 0.27571 10
DLH13 7.45 9.57 11 0.13285 11 0.25628 11

Table 6. Selective term-weighting result for ClueWeb09A dataset (NoAnchor) over 194
queries. Retrieval e↵ectiveness is measured by MAP. The models that are not

statistically di↵erent (p < 0.05) from the selective approach (SEL) are marked
with: † symbol according to the paired t-test and ℵ symbol according to the
Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank MAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.15043 0 0.27715 0ℵ†PL2 (c=8.0) 18.56 42.27 2 0.12483 1 0.24983 1ℵ†SEL 32.99 43.81 1 0.12284 2 0.24800 2
†DFIC 19.07 33.51 4 0.11963 3 0.24527 3

BM25 (k1=1.2 b=0.3) 28.35 37.63 3 0.11604 4 0.24088 4
RMLE 18.18 29.92 5 0.11279 5 0.23739 5
DPH 16.49 24.23 6 0.11110 6 0.23545 6

LGD (c=2.0) 5.67 13.40 9 0.10724 7 0.23093 7
RND 13.20 23.07 7 0.10624 8 0.23016 8

Dirichlet (µ=500) 5.15 13.92 8 0.10476 9 0.22809 9
DFRee 7.22 12.37 10 0.09358 10 0.21544 10
DLH13 5.15 6.70 11 0.07322 11 0.19045 11
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Table 7. Selective term-weighting result for ClueWeb09B dataset (NoAnchor) over 190
queries. Retrieval e↵ectiveness is measured by NDCG100. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL) are
marked with: † symbol according to the paired t-test and ℵ symbol according
to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.27600 0 0.37522 0ℵ†SEL 24.74 42.63 1 0.23193 2 0.34010 1

†LGD (c=18.0) 7.89 38.42 3 0.23197 1 0.33992 2
†PL2 (c=18.0) 11.58 38.42 4 0.23167 3 0.33938 3

BM25 (k1=1.2 b=0.2) 24.21 38.95 2 0.22311 4 0.33288 4
†DFIC 11.05 26.84 9 0.22114 5 0.33116 5

Dirichlet (µ=2000) 8.95 31.05 7 0.21675 6 0.32803 6
RMLE 15.87 31.95 6 0.21011 7 0.32387 7
RND 13.19 30.22 8 0.20834 8 0.32241 8
DPH 22.11 32.63 5 0.20312 9 0.31987 9
DFRee 8.95 21.05 10 0.18058 10 0.30103 10
DLH13 10.00 14.21 11 0.15711 11 0.28109 11

Table 8. Selective term-weighting result for ClueWeb09B dataset (NoAnchor) over 192
queries. Retrieval e↵ectiveness is measured by MAP. The models that are not

statistically di↵erent (p < 0.05) from the selective approach (SEL) are marked
with: † symbol according to the paired t-test and ℵ symbol according to the
Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank MAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.15265 0 0.27825 0ℵ†PL2 (c=12.0) 11.46 34.90 3 0.12975 1 0.25421 1ℵ†LGD (c=8.0) 6.25 29.69 5 0.12642 2 0.25107 2ℵ†SEL 30.21 41.15 1 0.12462 3 0.24960 3
†DFIC 14.06 26.56 7 0.12378 4 0.24837 4

†BM25 (k1=2.0 b=0.2) 27.60 38.02 2 0.12174 5 0.24631 5
†Dirichlet (µ=1500) 9.38 26.04 9 0.11967 6 0.24410 6

RMLE 16.48 29.44 6 0.11645 7 0.24108 7
RND 12.89 26.44 8 0.11389 8 0.23845 8
DPH 18.23 31.77 4 0.11218 9 0.23703 9
DFRee 10.42 15.63 10 0.09889 10 0.22253 10
DLH13 6.25 9.38 11 0.07986 11 0.20004 11
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Table 9. Selective term-weighting result for ClueWeb12-B13 dataset (NoAnchor) over
91 queries. Retrieval e↵ectiveness is measured by NDCG100. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL) are
marked with: † symbol according to the paired t-test and ℵ symbol according
to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank NDCG100 Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.12453 0 0.25053 0ℵ†PL2 (c=10.0) 16.48 29.67 5 0.10483 1 0.22898 1ℵ†SEL 34.07 43.96 1 0.10381 2 0.22823 2ℵ†Dirichlet (µ=2000) 15.38 36.26 3 0.10367 4 0.22792 3ℵ†LGD (c=5.0) 16.48 27.47 6 0.10377 3 0.22763 4

†RMLE 19.46 31.12 4 0.10024 5 0.22385 5
†BM25 (k1=1.8 b=0.2) 29.67 42.86 2 0.09977 6 0.22338 6ℵ†DPH 20.88 26.37 7 0.09928 7 0.22274 7

RND 13.80 23.74 8 0.09594 8 0.21886 8
DFRee 5.49 10.99 10 0.09108 9 0.21287 9
DFIC 4.40 13.19 9 0.09033 10 0.21239 10
DLH13 2.20 4.40 11 0.07474 11 0.19263 11

Table 10. Selective term-weighting result for ClueWeb12-B13 dataset (NoAnchor) over
93 queries. Retrieval e↵ectiveness is measured by MAP. The models that
are not statistically di↵erent (p < 0.05) from the selective approach (SEL) are
marked with: † symbol according to the paired t-test and ℵ symbol according
to the Wilcoxon signed-rank test.

Accuracy % E↵ectiveness Robustness
Model � = 0 � = 1 Rank MAP Rank GeoRisk Rank
Oracle 100.00 100.00 0 0.04415 0 0.14909 0ℵ†SEL 37.63 46.24 1 0.03551 1 0.13335 1

†PL2 (c=5.0) 13.98 26.88 6 0.03529 2 0.13277 2ℵ†LGD (c=5.0) 19.35 33.33 4 0.03486 3 0.13205 3ℵ†Dirichlet (µ=1500) 15.05 34.41 3 0.03432 4 0.13109 4
†BM25 (k1=1.4 b=0.2) 38.71 44.09 2 0.03341 5 0.12930 5

†DPH 13.98 18.28 8 0.03341 6 0.12919 6
†RMLE 22.45 31.45 5 0.03333 7 0.12910 7
RND 14.22 22.29 7 0.03147 8 0.12537 8
DFRee 3.23 6.45 10 0.02998 9 0.12213 9
DFIC 8.60 12.90 9 0.02827 10 0.11884 10
DLH13 2.15 3.23 11 0.02249 11 0.10575 11
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RÉSUMÉ
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