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ABSTRACT

BOUNDARY VALUE PROBLEMS FOR THE LAPLACE EQUATION
USING INTEGRAL EQUATION APPROACH

The main goal of this thesis is to solve numerically the exterior and interior Robin
boundary value problems via a boundary integral equation method, which has an advan-
tage of decreasing the computational dimension of the problem. Representing the solution
by a layer potential, we reduce the differential problem in a bounded and an unbounded
domain to the Fredholm integral equation of the second kind over the boundary. In the
case of exterior problem in two dimension, the fundamental solution to the Laplace equa-
tion is logarithmic, and hence additional condition or modification has to be applied that
keeps the solution bounded in the unbounded domain. Instead of using a classical single-
layer potential and enforcing a condition on the unknown density we propose a modified
single layer potential approach. After investigating uniqueness and existence of solution
to the obtained integral equations of second kind, we solve the equations numerically by
the Nystrom method. For the numerical integration of integral operators with continuous
kernels the trigonometric quadratures on an equidistant mesh is used. For the numerical
integration of weakly singular kernels we first splitt off the logarithmic singularity and
apply a special quadrature rule for the improper integrals. The feasibility of the proposed
methods, covergence order (super-algebraic for smooth data) is illustrated by numerical

examples.

v



OZET

INTEGRAL DENKLEMI YAKLASIMI KULLANILARAK LAPLACE
DENKLEMI ICIN SINIR DEGER PROBLEMLERI

Bu tezin temel amaci; i¢ ve dig Robin sinir deger problemlemlerinin, problemin
hesaplama boyutunu azaltmasi avantajina sahip bir yontem olan sinir integral denklem
yotemi ile sayisal olarak coziilmesidir. Coziimiin tek katmanli potansiyel ile goster-
ilmesiyle; sinirli ve sinirli olmayan bolgedeki tiirevlenebilir problem, siir iizerinde ik-
inci tiir Fredholm integral denklemine indirgenmistir. Iki boyuttaki dis problem duru-
munda Laplace denklemin temel ¢6ziimii logaritmiktir, ve bundan dolayi sinirli olmayan
bolgedeki ¢oziimii sinirli tutmak igin ek bir sart ya da modifikasyon uygulanmalidir.
Klasik tek katmanl potansiyel kullanip, bilinmeyen yogunluk iizerinde bir sart uygula-
mak yerine; modifiye edilmis tek katmanli potansiyel yaklasiminin kullanilmas: tercih
edilmistir. Elde edilen ikinci tiir integral denklemlerinin ¢6ziimiiniin varlik ve tekligi in-
celendikten sonra, denklemler sayisal olarak Nystrom yontemi ile ¢oziilmiistiir. Stirekli
kernela sahip olan integral operatorlerin sayisal integrasyonu i¢in esit araliklt mesler iiz-
erinde trigonometrik quadrature kullanilmistir. Zayif tekilligi olan kernellerin sayisal in-
tegrasyonu icin, ilk olarak logaritmik tekilligi ayirilmis ve improper integraller i¢in 6zel
quadrature kurali uygulanmistir. Onerilen metodlarin yapilabilirligi, yakinsama mertebesi

sayisal orneklerle agiklanmisgtir.
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CHAPTER 1

INTRODUCTION

Laplace equation with Robin condition arises in many mathematical and physical
phenomena such as physical geodesy, electrostatic, gravitational potential, mathematical
physics, fluid mechanics and so on. The Robin boundary conditions model the situation
when the boundary absorbs some part of the energy, heat, mass, which is transmitted. It
is well-known that the problem has a unique solution [4]. Integral equations are of central
importance to elliptic partial differential problems to show existence of the solution. Ivar
Fredholm has proved existence of solution to elliptic differential equation with Dirichlet
boundary conditions by using single-layer potential with the aid of Fredholm alternative
theorem in the late 1800s. In the thesis of Keeler [7], the classical single-layer potential is
used to obtain integral equation which is solved numerically via Nystrom method based
on hybrid Gauss-trapezoidal quadrature. The drawback of using the single-layer poten-
tial for the two dimensional exterior problem is its unboundedness at infinity. Hence,
the additional condition has to be imposed on the unknown density. In this thesis we
propose alternative solution methods to Laplace equation in bounded and unbounded do-
mains with Robin boundary conditions. In the case of the exterior Robin problem, we
introduce a modified single-layer potential, inspired by [10], where the modification was
considered for investigating an inverse boundary value problem. This representation uses
for inverse problems [10]. Introducing appropriate representation which is bounded in
unbounded domain for the solution of the exterior problem, we show that the obtained in-
tegral equation has a unique solution. We solve numerically the boundary corresponding
boundary integral equations of the second kind via Nystrém method based on trigonomet-
ric quadrature and a special quadrature with logarithmic weight function. Convergence of
the proposed method is verified by the numerical examples.

In Chapter 2 we describe basic concepts and potential theory. Representation of
the solution of the Laplace equation as an integral is important tool to obtain boundary
integral equations. Here classical single- layer potential and double-layer potential are
given and also their properties such as jump relation are defined.

In Chapter 3 we give the problem statement. We investigate a solution to the
Laplace equation which is bounded in D and R* \ D and additionally the solution should

satisfy the given Robin boundary conditions. In canonical domains such as circle, rectan-



gle etc, the solution of Laplace equation with boundary conditions can be found analyt-
ically by separation of variables [14] but our domains are not canonical domains in this
study.

Chapter 4 provides integral equation approach for the solution of the problems.
Here we introduce modified single-layer potential which is bounded at infinity and satis-
fies the Laplace equation. From the boundary condition we derive an integral equation.
The corresponding integral operators will be proved to be compact and injective. With the
help of Riesz theorem we show uniqueness and existence of the solution of the integral
equations we obtain. Since in the proof of the unique solvability of the integral equation
corresponding to the interior Robin problem we need additional assumptions on the do-
main, we give some information about logarithmic capacity of the domain. More details
about logarithmic capacity are given in [13]

In Chapter 5 we describe Nystrom method for approximate solutions of boundary
integral equations. Nystrom method is established on quadrature rules. Special quadrature
method will be given for singular operators. This chapter includes treating of the weakly
singular kernel of the integral operator via splitting off the logarithmic singularity in a
special form. Since the trigonometric monomials with this logarithm weight function can
be integrated exactly [9, Theorem 8.23], the method is high-order accurate for this type
singularity on smooth curve.

In Chapter 6 we present numerical examples which illustrate that the method con-
verges super-algebraically for exterior, interior problems with simply and multiply con-

nected domains.



CHAPTER 2

BASIC CONCEPTS AND POTENTIAL THEORY

In this chapter some basic definitions and some fundamental theorems are given.
To study boundary value problem for the Laplace equation we briefly provide general

overview of potential theory and finally Green’s formula and identities are given in this
chapter.

2.1. Basic Definitions
I represents boundary of domain D c R? here. It is defined

I :={z(t) = (z1(1), (1)), t € [0,2x]}, z(¢) : [0,27] — R? and |7 (1)|# 0, V1 € [0, 2n],

if z(f) = (z1(2), 22(1)) is two times continuously differentiable, that is I is of class C.

Definition 2.1 Let X, Y be linear spaces. A mapping < -,- >: X XY — C is called a

bilinear form if

< a1+, Y > =a < ¢, > tay < Py, >,

<GB+ P > =1 <P Y1 > AP <P >
forall¢1,¢2,¢ S X,lﬂ],l,[lz,l// S Y, andal,ag,ﬁ],ﬁz e C.
Definition 2.2 The bilinear form is called nondegenerate if for every ¢ € X with ¢ # 0

there exists Y € Y such that < ¢,y >+ 0; and for every ¥ € Y with  # 0 there exists
¢ € X such that < ¢, ># 0.

Definition 2.3 Two normed spaces X and Y equipped with a nondegenerate bilinear form

<> X XY — C are called dual system and denoted by < X, Y >.



Definition 2.4 Let < X,Y; > and < X,,Y, > be two dual systems. Then two operators

K :X) — X5, K" : Y, = Y are called adjoint (with respect to these dual systems) if
< K¢, >=< ¢, K"y >, 2.1

forall p € X\, € Y>.

Definition 2.5 (Compact Operator) Let X, Y be normed space, A be linear operator and
define A : X — Y . If for each bounded sequence s, in X the sequence Ay, has a

convergent subsequence in Y, A is called compact operator.

Definition 2.6 (Integral Operator) Let I' ¢ R?  be nonempty domain. The linear

integral operator with continuous kernel k : I’ X I' — R is defined by

K: CT) — CI)
(K)(x) : = fr k(x, (y)ds(y), x €T, y € C(I') (2.2)

Definition 2.7 A function g which is defined on D c R? is called Holder continuous with
a € (0,1]if

|g(x) - g(y)| < c|x - y|af0r all x,y € D, (2.3)

where ¢ > 0 is constant independent of x and y. Holder spaces are denoted by C**(D).

Definition 2.8 (Weakly Singular) The kernel k(x,y) in (2.2) is defined and continuous
for all x,y € D c R", x # y, if there exist positive constants M independent of x,y and

a € (0, m] such that
|k(X,)’)|S Mlx_yla_ma-x’y € D’-x ;ty’ (24)

then k is called weakly singular.

Theorem 2.1 [f the kernel of K is continuous or weakly singular, then in the dual system



< CT),CT) >, the operators are defined by

K: CcI)— CcO), (2.5)

K : = fr k(e WO)s(), x € T,
K : cl) —cD,

K9 : = fr Ky, OWO)ds(y), x € T

are adjoint to each other [9, Theorem 4.7].

Theorem 2.2 The integral operator in (2.2) with a weakly singular kernel or continuous

kernel is compact operator.

The proof is given in [9, p.28].

Theorem 2.3 (Riesz Theorem) Let B : X — X be a compact linear operator on a
normed space X. Then I — B is injective if and only if it is surjective. If [ — B is injective
(and therefore also bijective), the inverse operator (I — B)™' : X — X is bounded [9,
Theorem 3.4].

Corollary 2.1 Kernel of K — I = {0} if and only if K — I is one-to-one.

2.2. Harmonic Functions

Potential theory alludes to Laplace equation in many fields such as physics, en-
gineering, statics etc. In this chapter we will introduce some properties about Laplace
equation and physical interpretation which are associated with Laplace equation and also
we will give a overview briefly about some appropriate theories which we will use later.
In this work D represents bounded domain.

We start with harmonic functions which are very important for solution of partial
differential problems and boundary integral equations. Let @ be continuously differen-
tiable real-valued function and defined on domain D c IR™. We call ® harmonic function

in D if it satisfies Laplace equation

A® =0in D. (2.6)



Harmonic functions play a crucial role in many parts of science and engineering. They

describe
e Gravitational field

Electrostatic

Velocity potentials

Time independent temperature distributions

Brownian motion

Chemical concentration

2.3. Fundamental Solution

The function

1 1

—In x,ye]Rz,m:2,
2 |x =y
O(x,y) = {1 (2.7)
— X,y € R3, m =3,
4r|x -yl

where x # y, is called the fundamental solution of Laplace’s equation for all x,y € R™.
Here we have given the fundamental solution for two and three dimension. For any m

dimension it can be written

AD(x,y) =6(x—y), x,yeR", (2.8)

where § is Dirac delta distribution .

Lemma 2.1 Asymptotic behavior of fundamental solution of V®(x,y) = 6(x —y) is

(2.9



Proof We have this formula by using fundamental solution when m = 2,3. For m = 2

the fundamental solution is unbounded when |x|— oco. The proof also given in [9, p. 83] O

2.4. Properties of Single-Layer Potential

We introduce classical boundary integral representation of the solution of the
Laplace equation as a harmonic function in whole space except boundary I'. In this thesis
we will use the single-layer potential to solve interior Robin problem under some condi-
tions. u is a harmonic function which can be represented as a integral and this allows us

to represent solution of Laplace equation as integral. It is defined as the following

u(x) = ftﬁ(y)d)(x, ds@y), x e R"\T, ¢y € CT). (2.10)
r

It is called a single-layer potential .

Theorem 2.4 Let T be of class C*> and € C(). Then the single layer potential u is

continuous through R". On the boundary I we have

u(x) = ‘frw(y)(l)(x,y)ds(y), xel, 2.11)

where the integral exists as an improper integral.

The proof is given in [9, Theorem 6.15].

Theorem 2.5 Let T be class of C* and y is continuous on T'. Then we have

ouy 0D(x,y) _1
5 (x) = frlﬁ(y) ) ds(y) ¥ F¥(),x e, (2.12)

0
where —aui (x) := hlimo v(x) - grad u(x = hv(x)), and the integral (2.12) exists as an im-
VvV —+

proper integral.

Proof This shows normal derivative of a single-layer potential has jump relation on the

boundary I'. The proof is given in [9, Theorem 6.19]. i



2.5. Properties of Double-Layer Potential

Double layer-potential also represents solution to Laplace equation in D and IR* \
D. It is defined as

oD
u(x)-fz//(w a(f)y) sO). x e R"\ T, y € C(D). 2.13)

Theorem 2.6 Let I' of class C*> with ¢ € C('). Then Double layer-potential can be

continuously extended up to the boundary as follows

oD 1
u(x), = fw( ) 6(26 )y)d 0) % S¥(@.x €T, (2.14)

where
vi(x) := lim v(x £ hv(x))
h—+0

and the integral exists as an improper integral.

Proof This theorem depicts double-layer potential is discontinuous and it has jump

relation on the boundary I'. Also the proof is given in [9, Theorem 6.18]. O

Theorem 2.7 LetT of class C*> withy € C('). Then double-layer potential v has property

hlil}rlo v(x) - {grad v(x + hv(x)) — grad v(x — hv(x))} = 0 for all x € T. (2.15)

Proof It is taken exterior limit and interior of limit of the normal derivative of the

double layer potential. The proof is given in detail in [9, Theorem 6.20]. O

Theorem 2.8 If w,u € C*(D) N C'(D), then Green’s identities

8
f uhwdx + f (erad u) - (grad w)dx = f w2 ds, (2.16)
D D r Ov



and

f(qu wAu)dx = f(u— - W?)ds 2.17)

Proof If the divergence theorem is applied for u grad w, then equation (2.16) is obtained

and by switching u and w, the equality (2.17) can be established [4, Theorem 1. 26]. O

2.6. Green’s Formula

Theorem 2.9 Let D be bounded domain of class C', v denote the outer unit normal vector
to the boundary T, u be twice continuously differentiable and u be harmonic in D. Then u

can be represented

OD(x,
u(x):f(a Ey; (x,y) — u(y) av(x@)y))ds(y), xeD. (2.18)

Proof The proofis givenin [9, Theorem 6.5]. Green’s formula is combination of single-
layer and double-layer potential. It is used for direct method to derive integral equation
on the boundary. We will use it to derive boundary integral equation for the interior Robin

problem. O

Lemma 2.2 Let D be bounded domain of class C', v denotes the outer unit normal vector

to the boundary 1. If w is harmonic in D, then

f |grad w|’ dx = f w—ds (2.19)

Proof This assertion comes from (2.16) with w = u [4, p. 10]. |

ou
Lemma 2.3 We assume that u and 3 satisfy the asymptotic relations at infinity. Namely
v



1 _
u= 0(—) and — = 0(—2) as r — oo, If u is harmonic in € R? \ D, then
r

0
f |grad u|2 dx = — fu—uds. (2.20)

Proof We take a disk S which contains strictly domain D and has sufficiently large

radius R. If we apply Lemma 2.2 in Sz N (IR* \ D), then we have

0 0
f |grad u|2 dx = — fu—uds +f uZds. (2.21)
SRNR?\D) r ov asg OV

By assumption, the integral

0
f wZds -0 (2.22)
AS g aV
when R — co. Thus the desired result is obtained [4, p. 10]. O

10



CHAPTER 3

PROBLEM STATEMENT

In this chapter we will investigate existence of solution to the exterior and the
interior problem theoretically and also we will explain what our problems are in this
thesis. It is well known that if we have canonical shape, we can find analytic solution
via separation of variable method. But if we do not have canonical shape, we can not
find analytic solution to partial differential problems. Hence, we need to find solution that
approximates exact solution. Before solving the problem analytically or numerically, we
need to show that interior and the exterior problem have unique solution. In the following
we have explanation of the problems in this thesis. Let D be bounded domain in IR* with

smooth boundary I" and v is an outward unit normal to I

3.1. Exterior Robin Problem

Given function f € C(T'), 4 € C(I'), A > 0, we will find solution
u € C3(R*\ D) n C'(IR?* \ D) of the Laplace Equation

Au=0 inR>*\D (3.1)

which satisfies the impedance boundary conditions

M _du=f onT. (3.2)
ov

where v is an outward unit normal to I'. Moreover the solution should satisfy the asymp-

totic behavior at infinity, i.e

u=0(1) when|x|— co. 3.3)

11



Figure 3.1. Exterior problems

3.2. Interior Robin Problem

Given function f € C(IN), A € C(I'), A > 0, we will find solution u € C>(D)NC (")

of the Laplace equation

Au=0 1D, (3.4)

which satisfies the impedance boundary conditions

Ou

+Adu=f onl, 3.5
ov

where v is an outward unit normal to I'.

3.3. Existence and Uniqueness

Existence of the solution to elliptic partial differential problems are equivalent to
the existence of the solution to integral equation. They have relationship with each other
reciprocally. Existence of the solution of the exterior and interior problems by using
Fredholm alternative theorem can be shown. The following theorems are given to show

existence and uniqueness of the elliptic partial differential problems.

12



Theorem 3.1 Each of exterior boundary value problem and interior boundary value

problem has at most one solution.

Proof Let u be the difference of any two solutions of the interior Robin boundary value

problem. Then

?(x) + (Au)(x) =0, wherexe€I'and 4 > 0. (3.6)
\%

0
This can be written 0—”(x) — —(Au)(x). From Lemma 2.2
)4

f|grad u|2 + f/luzds =0,xeTl. 3.7)
D r

By reason of the fact that A is positive, from the equation (3.7) it follows that u(x) = 0, x €
I'. In what follows, similar arguments can be done for the exterior Robin boundary value
problem by using the Lemma 2.3. This shows it is unique [4, p. 13]. The existence is

given in the Chapter 4. O

13



CHAPTER 4

INTEGRAL EQUATION METHOD

In this chapter we will find boundary integral equation equivalent to the interior
and exterior Robin problems. Thanks to this we will solve the problem on the boundary
instead of the domain. Moreover, we introduce boundary representation of u as modified
single-layer potential u(x), x € IR*\ D which satisfies Laplace equation and that is bounded
at infinity. The reason why we introduce modified single-layer potential is that it satisfies
asymptotic behavior at infinity but single-layer potential does not. Finally, we will prove

the uniqueness and the existence of the solution to the boundary integral equation.

4.1. Integral Equation Method For The Exterior Problem

There are some modified forms of single-layer potential in [4]. Here we will give
simpler representation of solution to Laplace equation for the exterior Robin problem. In
order to identify the solution to the exterior Robin problem, we will propose a solution

u(x), x € R* \ D as modified single layer potential.

Theorem 4.1 Let D c R? with smooth boundary T and (0,0) € D then

u(x) = fr YD (x, y)ds(y) + fr (1 - ®(x, 0 (ds(y), xeR*\D 4.1)

satisfies Laplace equation and asymptotic behavior at infinity, i.e u = O(1) when

|x| — o0.

Proof We prove that modified single layer potential satisfies
e Laplace equation
e Asymptotic behavior at infinity

By the fact that the function (4.1) is composed of a single layer potential and constant

function, the function (4.1) satisfies Laplace equation. Secondly, by substituting funda-

14



mental solution into the representation (4.1), we get

u(x) = o f §O)In ——ds0) - f w()In —ds<y>+ f VO)dse), x € R\ D(4.2)

The equation (4.2) can be written as

u(x) = i fw(y) In el ds(y) + f:ﬁ(y)ds(y), x e R*\ D. 4.3)
2r Jr lx =yl r

Since x € R? \ D, there exists y* € I' such that

1
lux)| < ‘2— In f Y(y)ds(y) + f w<y>ds(y)‘. (4.4)
T r r

lx =yl
From property of integral

1

Ly, Me f w(y>ds<y>‘+
2 |x =y Jr

| - f ()| ds(y) + f ()| ds).
Y[ Jr r

Then when |x| — oo, is bounded, i.e |u(x)|< ¢. We have shown that when

x — oo, the modified single-layer potential satisfies asymptotic behavior. O

Theorem 4.2 Let D ¢ R? be bounded and closed domain with A, f € C(). If y € C(I)

is solution to

P5L0))
f % (x Y )d () - 24(%) f WOIDCE, Y)ds(y) — Y0 4.5)

2 [

9 s ) = 24(x) f (1 = ©(x,0)y(y)ds(y) = 2f(x), x € T.

Then

u(x) = fr Y(D(x, y)ds(y) + fr (1 = O(x, 0)y(ds(y), x € R*\ D (4.6)

15



is solution to the exterior problem

Au =0inR*\ D, 4.7)

% —Adu =f onT, 4.8)
ov

u(x)| = O(1) when |x| — oo. (4.9)

Proof From Theorem 4.1, u satisfies Laplace equation and asymptotic behavior at in-
finity. The remaining part is to show u satisfies the Robin boundary condition (4.8). Using

the jump relation from Theorem 2.5, we obtain

ID(x, y)
ov(x)

0o
—a” (x) — AX)u(x) = fmy)
v r

1 0D(x, 0
CE f bS5 dsr) - 00 f (1 = B(x, )W ()ds(), x €T,
r v(x) r

ds(y) = A(x) fr YD, y)ds(y) (4.10)

O

By assumption ¢ is the solution to the (4.5), therefore u satisfies the (4.8). We have
the Fredholm integral equation of second kind in the (4.10) which can be represented in

abstract form. We introduce operators

00(x,
(KD =2 [0 EDds0). $)@ =2 [UeIpdsm). @11)
I ov(x) r
0D(x, 0
(HY) () =2 f w222 p 0 T =2 f (1 = D(x, 0)W(AsO),
r av(x) r
0D(x,
(Ku) (x) := f w22 G (S ) = f AW)D(x, Y)ds(y).
r 31’(}’) r

Linearity for these operators (4.11) are obvious with these notations. Boundary integral

equation (4.10) can be represented by

(K' = AS =Dy — (H + ATy = 2f 4.12)

which is boundary integral equation of Fredholm of second kind.
Theorem 4.3 The operators I — K and I — K’ have trivial nullspaces [9, Theorem 6.21].

Theorem 4.4 (K’ — AS — D)W — Ay = 0 has only a trivial solution.

16



Proof Now we analyze the integral operators (4.12) to check the injectivity which is
one of conditions to have unique solution for integral equation. Let ¢ be solution to the

homogeneous integral equation.
(K'=AS - Dy —(H+ AT = 0. (4.13)

We demonstrate that = 0 to prove injectivity. We recall the definition of the function u,

0 _
(4.6). From the equation (4.13), we obtain that a_u — Au = 0in R?\ D. From the Theorem
%

3.1 exterior Robin problem has unique solution. It follows that # = 0, and therefore

L f Y(y)In il ds(y) + f Yy(y)ds(y) =0, x e R*\ D. 4.14)
21 Jr lx — yl r

When x — oo, because of asymptotic behavior of modified single-layer potential the
(4.14) we obtain

f w()ds(y) = 0. (4.15)
r

0
By using the equation (4.6) and (4.15) with 6—u|F = 0, eventually we have
v
(K" =Dy =0. (4.16)

From the Theorem 4.3, the homogeneous integral equation (4.16) has trivial nullspaces.

Namely ¢ = 0, thus the integral operator in (4.12) is injective . O

What we have done until now is not enough to have unique solution for Fredholm integral
equation of second kind (4.5). For this reason, also the integral operators in the (4.5) must
be compact so we describe parametrized form of integral operators to show compactness.

Assume that I has a C>-smooth and 27-periodic representation

[:={z(0) = (21(0), (1), [Z(@®I>0 for te[0,2n]}.
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We introduce the parametrized operators

K’ : Czﬂ — Cz,r

5 _ o (7T 00(0), 2(7)) ,
(K"§)(1) = 2 fo Ww(Z(T))IZ (Dldr, 1 €[0.27]

S ICz,T — CQ,T

27
Sy =2 fo O(z(1), 2O ()2 (Dld, t € [0.27]

H:C2ﬂ- —> Czﬂ

5 _ . [T 90(1),0) ,
(Hy)(1) = 2 fo W&(Z(T))IZ (Dldr, 1 € [0.27]

T : C27r — C27r

21

(Ty)(1) =2 , (1 = ©z(1), Y () (D)ld, t € [0.27]

[0, =7 0] _ 20
2 (0) 20

where v(z(1)) =

which is unit normal directed outside of the do-

main D. Having described the parametrization of our integral operators and given ap-

propriate theory, now we turn to show compactness of integral operators in the equation

(4.12) for exterior Robin problem.
Operator K’
The kernel of the operator K’ is given by

_ 500z, 2(7)
k(t,7) = 2—6V(Z( ) Z'(D).

By taking derivative of fundamental solution with respect to z(¢), we have

(z(1) — (7))

grad,, O(z(2),z(7)) = 120 = 2DF

and by substituting expression (4.18) and v in the kernel (4.17), we obtain

00,z ,, ., |
2W|Z ™ = 2|IZ@|v(z(t)) gradz(t) O(z(1), 2(7)),
1O @@) - z(1)

r 2 i —op”

4.17)

(4.18)

4.19)
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By taylor expansion of function z around the point ¢, we have

1
21) = 2(t) = (1= D (0) + (t — 7)? f (1 =" (t + At — 1))dA. (4.20)
0

Substituting the expression (4.20) into the expression (4.19) and taking limit as r — 7, we

get

127@-Z@OF

2r |Z(D)? 21
Eventually we have proven that
LZO1 @0 -z20) :
,00@0.2@) _ | x Ol 0~ aop Ok R (4.22)
M) | 120 Eor N |
21 2P o

It follows that the kernel (4.17) is continuous and hence by the Theorem 2.2 the operator
K’ is compact.

Operator S

Operator S is defined as

27
Sy = ! f 1ﬂ(;)¢(Z(T))IZ'(7)IdT, t € [0, 2n]. (4.23)
7 Jo |2(2) — z(7)|

It can be found M > 0,0 < @ < 1 such that

M

< < Mt — 7). (4.24)
|z(2) — z(T)|' @

‘ln !
|z(2) — z(7)|

From Theorem 2.2, the kernel is weakly singular, and therefore the operator S is compact.
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Operator H
Recalling the definition of the operator A

. 2% Hd(z(1), 0
(Hy)(1) =2 f Mw(z(r))lz’(r)l, (4.25)

o Ovz(D)

it is clear that the kernel of A is continuous sincce (0, 0) € D. For this reason, the operator
H is compact by Theorem 2.2.

Operator T

By the same reason as operator H, the operator 7 is compact. We have shown that the
linear boundary integral operators in (4.12) are compact and the homogenous equation
has only a trivial solution, so Riesz theorem can be applied. According to Riesz theorem

and Theorem 4.3, the boundary integral equation (4.5) has solution and it is unique.

4.2. Integral Equation Method for Interior Problem

We have two methods to obtain boundary integral equation for interior Robin
boundary value problem. One way is to use single-layer potential as representation of
solution of the Laplace equation under some conditions. This method is called indirect
method. Another method is direct method which is based on Green’s formula. By using
two ways, we obtain Fredholm integral equation of second kind. In order to have unique

solution, we need to put some restrictions on domain D.

Theorem 4.5 In two dimensions suppose there exists xo € D such that|x — xo| # 1 for all

x € I'. Then the single layer operator S : C(I') — C(I') is injective.
Proof The proof is given [9, Theorem 7.38]. O

We can give a counter example when the assumptions of the theorem are not fulfilled.
Consider a unit circleand A =1, ¢ = ﬂ, where ||['|| represents the length of the curve.
Then by using polar coordinates, the operator

21

Sy = f O(x, YW()ds(y) = —”1?” RInRd=—In1=0. (4.26)
r 0

Instead of using the assumption in Theorem 4.5 one can show the injectivity of a single

layer potential operator by introducing the concept of logarithmic capacity.
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Theorem 4.6 There is a unique nonzero € C%*(I') and a unique constant w such that

fr Ox, YWOIS) = o, fr Y)ds() = 1, @27)

where T is class of C* and a € (0, 1).

Proof For details we refer to [4, p. 21]. O

Definition 4.1 The numbers 2nw and e~ > are called Robins’s constant and logarithmic

capacity of T.

Theorem 4.7 If the logarithmic capacity of T is I, then the single layer operator S

coincides with (K’ + EI ). In all other cases, this space consists of zero alone.

Proof We will not give the proof. The proof is given in [4, p. 22]. O

4.2.1. Using Singe-Layer Potential

Here we will use indirect method which is based on single-layer potential to derive
our Fredholm integral equation of second kind. By substituting the single-layer (2.10)

instead of u in boundary condition (3.5) and using the Theorem 2.5, we get

0D(x,y)

2 f W(y)ﬂdS(y) + ¢Y(x) + 24(x) f Y(NO(x, y)ds(y) =2f(x), xel'. (4.28)
r ov(x) r

Recalling the operators (4.11), the boundary integral equation (4.28) can be written as
(K" + AS + Dy = 2f. (4.29)

Theorem 4.8 Assume that K : C(I') — C(I), S : CI') — C(') and f,A € C('), there
exists xo € D such that|x — xo| # 1 such that for all x € I. Then (K" + AS + )y = 2f has

at most one solution.

Proof We assume that (K’ + AS + Iy = 0, and define

u(x) = fr OCx, YW ()s(). 430)

21



By using representation (4.30) and (K’ + AS + I) ¥ = 0, we obtain
u
— +Au=0. (4.31)

From the uniqueness of the interior Robin problem, # = 0 in D, by analycity u|r = 0, and
hence ASy = 0. From the Theorem 4.5, we conclude that 4 = 0. More the detail about

this approach is given in [9]. O

We define A(¢) = A(z(1)), f(t) = f(z(0)).

Theorem 4.9 Assume there exists xy € D, |x — xo| # 1, Vx € I'. Then
(K"+A5 +I)=2f 4.32)

has a unique solution.

Proof We have shown that the operators K’ and S are compact so from the Theorem

2.3 and the Theorem 4.5, the integral equation (4.32) has unique solution. O

4.2.2. Using Green’s Formula

Here we use direct method which is based on Green’s representation formula to
. . . . Oou )
obtain integral equation of second kind. We substitute PV —Au + f into formula (2.18)
14

and then we have

oD(x,y)
ov(y)

+ ff(y)(l)(x, vds(y), x € D. (4.33)
r

u(x) = - fr AUGIDCx, Y)ds(y) fr u(y) ds(y)

Introducing ¥ = ulr and g(x) = fr JO)D(x,y)ds(y), we derive a boundary integral

equation

(K+S,+ Dy =g. (4.34)
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Theorem 4.10 Suppose that K : CI') — CI), S : CT") — C(T) and f, 1 € C(I'), and

there exists xy € D such that |x — xo| # 1 such that for all x € I'. Then

(K+S,+Dhv=¢g

has a unique solution where ulr=  and g(x) = fr fO)D(x,y)ds(y), x €T.

Proof Lety € C(I') be solution to (I + K + S )y = 0. We define

:Y)
)

u(x) = f - (MNO(x, y)ds(y) - f (y)

By using (I + K + S )¢ = 0 and (4.36), we obtain

a—+/lu—00nl"
ov

From the equation (4.37) and the representation (4.33), we find that

ou
er lﬁ and a— = —/hﬂ

Then by Lemma 2.2, we have

fu—ds— f{ﬁ Ads = f|Vu| dx.

ds(y) in D.

(4.35)

(4.36)

(4.37)

(4.38)

(4.39)

This yields ¥ = 0 since 4 > 0 . Thus the operator (I + K + §,) is injective. Compactness

is known for operator S , and K. From the Theorem 2.3, it follows that (4.35) has solution

which is unique

O

This work also can be extended to another types of assumption on the domain D by

considering the Holder space C*?. This is given in detail in [4].
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CHAPTER 5

NUMERICAL SOLUTION TO INTEGRAL
EQUATIONS

In this chapter we focus on Nystrom method for the numerical solution of integral
equations. Besides we give the error estimate for Nystrom method based on the quadra-
ture rules for 2r-periodic functions. Then we focus on treating singularity by splitting the
kernel into two parts. We have two types of kernels which are 2n-periodic. For contin-
uous kernel, the integrals are calculated by trapezoidal rule which is high-order accurate
method for 27 periodic functions. For the singular kernel, we use the way of splitting
off the singularity and calculating the resulting singular part by a special quadrature rule
introduced by R. Kress and K. Atkinson. Although there are some high -order accurate
methods for calculating integrals with weakly singular kernel [2, 6], the method based
on splitting off the singularity is superior since it is based on the exact integration. The

general overview of these methods can be found in [5].

5.1. Quadrature Rule

For given weights w; and quadrature nodes yy, for k € {1,2,...n},

oW) = Y(y)dy (5.1

0

is approximated by quadrature formula

0.(¥) = " win. (5.2)
k=1

To guarantee the convergence Q, () — Q(¥), we have theorem below.

Theorem 5.1 (Steklov) Assume Q,(1) — Q(1) as n — oo and quadrature weights are
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all positive. Then the quadrature rules (Q,) converge if and only if Q,(¥) — Q), as
n — oo, for all Y in some dense subset M c C(G), G c R".

Proof The proof is given in [9, p. 222]. O

The classical quadrature rules are inappropriate for improper integral, and there-
fore we introduce some special quadrature formulas for improper integral whose integrand

is 2 periodic functions with logarithmic singularity.

27 _
(AY)(@) = % f In (4 sinz(tTT)) k(t, T (T)dr, t € [0,27],0 € C[0,27],  (5.3)
0

where k € C([0, 27] X [0, 27]).
We assume that n is the number of quadrature nodes. By substituting trigonometric in-
terpolation polynomial instead of 27 periodic continuous function ¥ and using Lagrange

basis for interpolation, we obtain

2n—1

A(@) = > RP@k( 1)), (5.4)

=0

. . : L :
with the equidistant points ¢; = n and the weights
n

n—1
1 1 1
(n)
RJ. (1) = —Z{;n—icosm(t—tj)+ﬂcosn(t—tj)}, (5.5
for j =0,...,2n—1. The special quadrature rule converges uniformly for all trigonometric

polynomials. The proof is given in [9, p. 208].

5.2. Treatment of Singularity

The operator S has singularity so it needs to be treated. That is why we split

the kernel of operator S into two parts. To do this, one needs to simplify kernel of the

1 ~
operator. We add and subtract 2—|z’(7)|ln (4 sin ) to the kernel of operator §.
Vs
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Then we have

+ i|Z/(T)|ln (4 sin’ « ; T)) . (5.6)

L >|1n(;)2
2 Nk —z@l) T 2a

By the Taylor expansion (4.20), the kernel of the operator S can be written as

PG(0), 2(D) - 2/ (D)lIn (4 sin? m) (5.7)
2 2
where
1 2ol 4 sin® %T i
—lzZ()n|———=1|, T t,
P((0)), (7)) = 21” 'Z“l) 0P (5.8)
2R (T)lln(lz’(T)Iz) : =1.

We have obtained two distinct parts of the kernels of the operator. One of them is contin-
uous and another one is discontinuous part. We have treated singularity in the kernel of
operator and constructed some simple kernels and consequently the resulting kernel can

be integrated by quadrature formula (5.4) for improper integral.

5.3. Error Estimate for 27-Periodic Functions

We will give a error estimate of numerical integration for periodic analytic func-
tions. This estimate demonstrates that for periodic analytic functions quadrature rules
converge exponentially. Also we provide error estimate for continuously differentiable

functions.

Theorem 5.2 Let g : R — R be analytic and 2n-periodic . Then the error

1T 1 3% (in
Ri(@) = 5- fo g(x)dx—%;g(;), (5.9)
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for composite trapezoidal rule can be estimated by
[Rr(g)| < Ce™, (5.10)

where C and s are positive constants depending on g.

Proof The proof is given in [9, p. 201]. O

Theorem 5.3 Assume g : R — R is m-times continuously differentiable and 2r-periodic

function. The error for the trapezoidal rule

1 1 in
Rr(g) = 7 fo g(x)dx — % ; g(;), (5.11)

can be estimated as follows
C
|Rr ()] < — g™, - (5.12)

Proof The proof is given in [9]. The main idea of the proof in the following. O

Let f : [a,b] — R be m-times continuously differentiable for m > 2 and recall

definition of the trapezoidal sum with & = b%”,

1 1
Ty(f) == h [Ef()co) + )+ 4 fr) + f(xrz)§:|’ for f € Cla, D]. (5.13)

By Euler-Maclaurin expansion

b & boh .
f fodx =Ty = D =[O0 - o0 @) (5.14)
a = 2!
miy,m ¢ 5 (X4 (m)
H-1)"h f Bu () 1o,
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where [% denotes the largest integer smaller than or equal to %

sin 2rtkx
(2 k)2m 1

cos 2rkx

Ban(x) = 2(-1)"" ”Z P

and By, (x) = 2(~ 1)<m)z (5.15)

denotes the periodic extension of the Bernoulli polynomial. When we have 2r-periodic

continuous functions f, the trapezoidal rule coincides with the rectangular rule
27 n
2n 2k
Fx)dx ~ = Zf(—) (5.16)
0 n = n

The equality 5.14 illustrates why the trapezoidal rule for periodic functions is superior to

any other quadrature rule by (5.14). For more details we refer to [8].

5.4. Nystrom Method

Assume that a quadrature rule is convergent. We consider the Fredholm equation

of second kind
21
Y(x) = f k(x, Y)w(y)dy + g(x) represented ¢ = Ky + g, y € [0, 2n]. (5.17)
0
Approximating operator K via the quadrature rule, we have
N
lﬁn(x) = Z Wkk(xa yk)wn(yk) + g(x) represented by lﬁn = Kn‘/’n + 8, (518)

which is known as Nystrom interpolation. By virtue of the fact that the density function in
the quadrature node points satisfies semi-discretized expression (5.18), the linear system

of equations

N
Y0 = > Wik yOw() + () (5.19)

k=1
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are obtained. Generally the matrix (5.19) gives us some useful information about stability

which is related to condition number. These are some advantages of Nystrom method. In

the following we will give error analysis of Nystrom method.

5.5. Error and Convergence of Nystrom Method

Convergence of Nystrom method depends on the quadrature formula we choose.

In order to show complete error analysis of Nystrom method, we give the following the-

orem.

Theorem 5.4 Assume that X is a Banach space and S, T are bounded operators from X

to X. Let S be compact. Also assume I — T : X — X is bijective which shows (I — T)™!

exists as a bounded operator from X to X. Assume that

1
T -=-8)S|| < 77—
=8

Then (I — §)~! exists and is bounded from X to X, accompanying

L+ =S|
L=l =y[|7 = $)Hs|

-5y <

If(/-T)u=gand (I -S)v =g, then

llu =il < || = $)7 || 1ITu - Svi.
Proof The proof is given in detail in [3, Theorem 12.4.3].

(5.20)

(5.21)

(5.22)

O

Theorem 5.4 yields the following convergence result for the Nystrom method.

Theorem 5.5 Let k(x,y) be continuous for all x,y € [0,2nr]. Assume quadrature rule is

convergent for all continuous functions on [0,2r]. Moreover, assume that the integral

equation (5.17) is uniquely solvable for given g € C([0,2n]). Then for all sufficiently

large n, say n > N, the approximate inverses (I — K,,)™" exist and are uniformly bounded,

1+ || = &Y 1K
=fa= & - KK,

Iz - &)71]| <

<Cy, n>N,

(5.23)
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with a appropriate constant Cy, < oo . For the integral equations (I — K)v = g and

(I - K,)v, = g we have

v = vall., < llz = K7 {lck = Ko, < €& [CK = Koy, - (5.24)
Proof We substitute S = K and T = K, in Theorem 5.4. Then we get the desired result
about the convergence of the Nystrom method. From the inequality (5.24), |[¥ — ¢,|| is
bounded by
21 n
& = K|, = max. fo k(e Y)W ()dy - Zl Wik, )Y () (5.25)
It can be written
(I = K)W — ) = (K — K. (5.26)
From (5.26), it is obtained
K = Ky, < 1T = Kl ||y = | - (5.27)
Also from (5.26), it can be obtained
= vl < llor = &7 | [k = K], (5.28)

This depicts ||(K - K,,)w”oo and ||¢ -y,
The proof is given in details in [3, Theorem 12.4.4]. O

., converge to 0 as n — 0 with the same speed.

30



CHAPTER 6

NUMERICAL EXAMPLES

Having given the formulation of the integral equations and information about
some of the suitable theory, we now turn to numerical implementation which yields nu-

merical approximations of the solutions to the exterior and interior boundary problem.

6.1. Numerical Examples For the Exterior Problem

First, we present the exact solution, then we demonstrate the table of convergence
for the solution to the exterior Robin problem and finally, numerical solution is illustrated

by the total field for a monopole and dipole. Our domains which we will use are

r, := {(4 cost +sin2¢, 4sint + 2sin®t +7), ¢ € [0, 27r]}
I, :={(Qcost—sin3¢t2sint —sin3¢), t € [0, 27]}

which are smooth and regular. By taking 4 = 0 in the condition (3.2), the Robin condition
reduces to the Neumann condition. It is well known that exterior Neumann problem has
unique solution but interior Neumann is not uniquely solvable. To implement the method,
we have started with the exterior Neumann condition and then extended the code to the
impedance conditions. Here we will give the numerical results for the exterior Robin
problem for

A(x) = =2 sin(|x]) + 4.5.

Example 6.1.

Au =0 inRR*\ D, 6.1)

f = (9_14 —Au onT, (6.2)
ov

Sfx) = & ((D(XI’;)V(;)(D (1) A(x) (D(xy, x) — D((x2, %)),  x€eT,x;, x, € D6.3)

u =0(1) when |x| = co. (6.4)
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The exact solution ug(x) = ®(x — x1|) — ®(x — x,|) with x; = (0,0), x, = (0.1,1) € D

and x € IR?\ D satisfies equations above. Besides, uz is bounded at infinity while the

fundamental solution (2.7) is not bounded in two dimension.

_|_
+ -

0.1

0.08

0.06
10.04
10.02

1-0.02

1-0.04

-0.06

-0.08

-01

Figure 6.1. Approximate solution

As illustrated in Fig. 6.1, there are two fixed points inside domain because of

form of the exact solution. Fig. 6.1 demonstrates the solution in exterior of domain. Now

we present the table of convergence for the exterior Robin problem. For convergence of

the exterior Robin problem, we consider modified single layer potential as approximate

solution.

Table 6.1. Convergence of exterior Robin problem for one domain

n  Cond. Number Error at (4,5) Error at (-4,-2)

8 90.04 0.001104075430519 0.000230184056030
16 114.70 0.000099629624383  0.000042541648225
32 131.20 0.000000440955601 0.000000051071255
64 138.28 0.000000000018878  0.000000000003923

128 142.73 0.000000000000000  0.000000000000000

This table exhibits the error estimate at the point (4,5) and (-4,-2) respectively. As

illustrated in the Table (6.1), correct digits almost double so it converges super-algebraically

and condition number is uniformly bounded due to the Nystrom method and the opera-

tors in the equation (4.29). Additionally in the Table 6.1 the convergence agrees with the
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Theorem 5.3. This demonstrates the method converges for exterior Robin boundary value
problem. We consider a case of a monopole, that is we put one source ® at the point x*.
Example 6.2.

Mathematically, we consider the solution to the exterior Robin problem with the function

o0D(x*, x)

f<x):‘(T<x>

— Ax)D(x*, x)), xeTl, x* e R*\ D, (6.5)
where x* = (2, 3). The total field is defined as following

ul(x) =00, x)+ulx), x*, xe R*\D, (6.6)

where u(x) is approximate solution.

/ \
al 0.6
31 0.5
2 L
0.4
1 L
10.3
(0] 3 w
1t ’ 10.2
-2t 0.1
_3 - 0
_4 L
-0.1
_5 L 1
-5 0 5

Figure 6.2. Equipotential lines of total field for a monopole for one domain

In Fig. 6.2 the total field is illustrated for a monopole for one domain. This figure

can be interpreted as total field for a unit charge.
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Example 6.3.
We have two sources x7 = (=3,-2) and x3 = (2, 3) for the exterior problem. Total field

u’ and f are defined in the following
u' (x) = O(xF, x) — DX, x) + u(x), x7, x5, (6.7)

where x € IR* \ D, u(x) is approximate solution.

0 ((D(xl*, x) — O(x3, x))

fx) = - e = A (O(xF, ) — D43, 1)) | (6.8)
where x € I
4 L
0.6
3 L
10.4
2 L
1t 10.2
or 10
_1 -
-0.2
_2 -
-3t -0.4
—4r -0.6
_5 1
-5 0 5

Figure 6.3. Equipotential lines of total field for a dipole for one domain

Fig. 6.3 demonstrates the total field for a dipole for the exterior Robin problem
with one domain. This figure can be interpreted as total field for one positive and one

negative charge unit charges.
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Example 6.4.
In this example we take into consideration the exterior Robin problem for a doubly con-
nected domain. We have one point source x* = (2,3) and so we construct u” and f with

one source point in the following.

ul (x) = O(x*, x) + u(x), x*,x € R*\ D, (6.9)
fx) = - (M — AP, x)), xel,x* e R\ D. (6.10)
ov(x)

AN

14} // \\

0.6
12+ \

10l 0.5
8t 10.4
6r 10.3
4t

10.2
2 -
0.1
0 L
2t 0
-4t \ -0.1

-10

Figure 6.4. Equipotential lines of total field for a monopole

In Fig. 6.4 u” for a monopole with multiply connected domain is illustrated. Also

this shows total field for a unit charge for multiply connected domains.
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Example 6.5.
In this example we consider the exterior Robin problem. We have two source points
x} = (=3,-2), x; = (2,3) for multiply connected domain also u’ and f are constructed

as follows

u’ (x) = O(xT, x) — D(xF, x) + u(x), (6.11)
where x7, xJ,x € IR*\ D and u(x) is approximate solution.

0 ((D(x{‘, x) — O(x3, x))

fx) = D - A0 (D(x}, %) - (x5, ), (6.12)
where x € I, x¥, x3 € R*\ D.
14+
12+ 0.6
10} 10.4
8 L
10.2
6 L
4t 0
2r 0.2
0 L
-0.4
-2 .*.
-4 -0.6

Figure 6.5. Equiptential lines of the total field for a dipole

Fig. 6.5 illustrates equipotential lines of the total field for a dipole with multiply
connected domains. This can be interpreted as total field for positive and negative unit

charges for multiply connected domains.
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6.2. Numerical Examples For the Interior Problem

In this section we present some numerical examples for interior Robin problem
with A(x) = —cos(x]) + 4.5. The numerical approach of interior Robin problem is based

on single-layer potential from section 4.8. Our domains are defined as

I, := {(4cost+ sin2t,4sint + 2sin’ 1 + 7, t €0, 27r]}
I :={(2cost—sin3¢t2sint —sin 3¢, t € [0, 2]}

Example 6.1. For convergence test we have

Au=0in D, (6.13)
o u=fonT, (6.14)
flx) = M)(a#:’x) + AX)P(x*, x) x e[, x* e R?\ D, (6.15)

ug = ®(x*,x), x* € R*\ D,x € D. (6.16)

The exact solution u is defined by 6.16 with x* = (5,5) € R\ D.

Figure 6.6. Domain for convergence test for the interior problem
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Table 6.2. Convergence of interior Robin problem for one domain

n  Cond. Number Error at (0,0) Error at (-1,1)

8 20.27 0.000266178205197 0.005788897607039
16 25.82 0.000009527392591 0.000727624242802
32 27.67 0.000000004951059 0.000016070916386
64 29.36 0.000000000000525  0.000000006042646

128 30.73 0.000000000000000  0.000000000000120
256 31.39 0.000000000000000 0.000000000000000

As illustrated in Table 6.2, the error decreases and it converges super-algebraically.
Also this convergence agrees with the Theorem 5.3. This shows this numerical method
converges for interior Robin problem. We consider the approximate solution to the inte-

rior Robin problem in this example.

Figure 6.7. Approximate solution for interior Robin boundary value problem
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The solution is illustrated for interior Robin problem in the Fig. 6.7
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Example 6.2.
In this example we focus on the interior Robin problem for total field for a simply con-

nected domain and f is defined by

0D(x*, x)

5 + AX)P(x*,x)|, xe,x* € D, (6.17)
%

Jx) =-

where x* = (0, 0). The total field is given by

ul(x) = ®d(*, x)+ulx) x*,xeD. (6.18)
0.6
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Figure 6.8. Equipotential lines of total field for a monopole

As illustrated in the Fig. 6.8, we plot total field for a monopole. We have one

source in the Fig. 6.8. This can be interpreted as total field for unit charge.
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Example 6.3.
We have two source x} = (0, 0), x; = (0.1, 1) in this example. u’ and f are defined in the

following way

9 (0(x}, x) — (x5, x))
ov(x)

[ = - + Ax) (O, ) — (a3, 0)) | (6.19)

where x € I', xT, xJ € D.
u'(x) = O(xF, x) — O(xF, x) + u(x), (6.20)

where u(x) is approximate solution and x, x}, x; € D.
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Figure 6.9. Equipotential lines of total field for a dipole

Fig. 6.9 illustrates equipotential lines of total field for a dipole in a simply con-
nected domain. This figure can be interpreted as total field for one positive and one

negative unit charges.
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CHAPTER 7

CONCLUSION

In this thesis integral representations of solutions to the planar Robin boundary
value problems for the Laplacian are considered which lead to the Fredholm integral
equations of second kind. The uniqueness and existence of the solutions to the boundary
integral equations are investigated. For the exterior Robin boundary value problem a
special modification of the single layer potential was introduced. This representation has
an advantage of avoiding an additional condition on the unknown solution of the integral
equation. The constructed integral equation were solved numerically by Nystrom method
which is based on quadrature methods. Some of the integral operators have singular
kernels so the singularity is treated by splitting weakly singular kernel into two parts.
For calculation of singular parts we have used special quadrature rule which is extremely
accurate for the weakly singular kernel. The provided numerical examples demonstrate
convergence and high accuracy for the solutions of the exterior and interior problems for
simply and multiply connected domains. As expected by the theory and validated by
the numerical results, the proposed numerical approaches converge super-algebraic for
smooth data. As a result, integral equation method has been demonstrated to be effective
for the exterior and the interior problem Robin boundary value problem for the Laplace
equation.

Our study can be extended to three dimensions but the main drawback of three di-
mensions includes many calculations, [1]. We solved the problems for smooth boundaries,
but the Robin boundary value problems can be also solved for domains with piecewise
smooth boundary, [11]. Additionally, this study can be applied to inverse problems, [12].
Future work includes solution method of the Robin boundary value problem in the half

plane by using Green’s function, [14].
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