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ÖZET 

 Bu çalışmada 16 bit adres ve veri yollarına sahip, saklayıcı-bellek mimarisinde 

tasarlanmış bir işlemci sunulmaktadır. Tasarlanan işlemciye, 64Kx16’ ya kadar dışarıdan bellek 

ilave edilebilmektedir. İlave edilecek belleğin, program ve veri için ortak olarak kullanılması 

düşünülmüştür, yani işlemci Von Neumann mimarisinde tasarlanmıştır. İşlemci tasarımında 

Verilog donanım tanımlama dili kullanılmıştır ve tasarım kapı seviyesinde tanımlanmıştır. 

İşlemci son haliyle 35 komut ile alışılmış tüm işlemleri yapabilmektedir. Bu komutların 

dağılımı şöyledir: 17 ALU, 10 kontrol, 5 saklayıcı işlemleri, 1 yükle-yaz ve 2 diğer. Tasarlanan 

işlemci, 2 adet 16-bitlik giriş/çıkış iskeleleri ve yönlendiricileri ile donatılmıştır. Bu 

iskelelerdeki her bit birbirinden bağımsız olarak giriş veya çıkış olarak ayarlanabilmektedir. 

İşlemci 4 ayrı kaynaktan gelecek kesmelere vektörlü olarak cevap verebilmektedir. Kesmeler 

sağlanan kontrol saklayıcılarıyla programlanabilmektedir. Gerçeklenen 16x16’ lık yığın 

saklayıcıları sayesinde 16 defa iç-içe (nested) alt programa dallanmak mümkündür. Alt 

programa dallanmalarda sadece geri dönüş adresi saklanmaktadır. Tasarlanan işlemci ve 

işlemciye adres ve veri yolları üzerinden bağlanan grafik işlem birimi, klavye kontrolcüsü ve 

zamanlayıcı gibi çevresel donanımlar Xilinx Spartan 3E Starter Kit üzerinde fiziksel olarak 

gerçeklemiştir. FPGA içerisinde fiziksel olarak gerçeklenen sisteme, hazırlanan derleyici 

kullanılarak yazılan test programları yüklenmiş ve koşturulmuştur. 

Anahtar Kelimeler: Bilgisayar Mimarisi, FPGA, Mikroişlemci, Programlanabilir Lojik. 
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SUMMARY 

 In this thesis, a processor core which is designed in register - memory architecture is 

presented. Designed processor core has 16 bits address and data buses. 64Kx16 bits of memory 

can be connected externally which is used for both instruction and data memories. So the 

processor core is designed in Von Neumann architecture. Verilog HDL is used while designing 

the processor and the design is described at gate level. The processor core can execute all 

familiar processor operations by using 35 instructions. The distribution of these instructions is 

as follows: 17 ALU, 10 control, 5 register operations, 1 load-store and 2 other. Designed 

processor core has 2 16-bits input - output ports and data direction registers. All of the bits in 

these ports can be configured as inputs or outputs independently. The processor core can 

respond interrupts from 4 different resources by using pre-defined interrupt vectors. These 

interrupts can be programmed via interrupt control registers. Owing to implemented 16x16 

stack registers, it is possible to branch 16 nested subroutines. Only return address is stored while 

branching to subroutines. Designed processor core and the peripheral hardware like graphical 

processing unit, keyboard controller and timer which are connected to processor core through 

address and data buses, are physically implemented on Xilinx Spartan 3E Starter Kit. The test 

software which is programmed using by designed compiler is loaded into the system and 

executed successfully. 

Keywords: Computer Architecture, FPGA, Microprocessor, Programmable Logic. 
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1. GİRİŞ 

 Sürekli gelişen ve karmaşıklığı artan elektronik sistemler içinde mikroişlemcilerin 

önemli bir yeri vardır.  Günümüzde mikroişlemciler ve mikrodenetleyiciler hemen hemen her 

alanda karşımıza çıkmaktadırlar.  Mikroişlemciler genellikle masaüstü bilgisayarlar ve sunucu 

tabanlı makineler gibi yoğun ve hızlı işlem gücü gerektiren alanlarda kullanılır ve harici hafıza 

ve giriş çıkış birimleri ile birlikte çalışırlar. Mikrodenetleyiciler ise gömülü sitemlerde, kontrol 

uygulamalarında karşımıza çıkmaktadırlar ve hafıza ve giriş çıkış birimleri genellikle 

kullandıkları işlemci çekirdeği ile aynı yonga içerisinde bulunur.  Gömülü sitemlerde gerçek 

zamanlı çalışma, zamanlamanın kritik olduğu uygulamalarda çok önemlidir. Bazı 

uygulamalarda işlemcinin işlemesi gereken her komutun kaç saat darbesi süreceğinin ve bir 

kesme sinyali algılandığında kesme vektörüne kaç saat darbesi sonra ulaşılacağının kesin olarak 

bilinmesi gerekebilir. Zamanlama açısından kritik kod parçaları makine dilinde yazılacağından 

gerçek zamanlı bir işlemcinin makine dilinde kolayca programlanabilir olması gereklidir. 

 Mikroişlemci tasarımındaki çalışmalar transistörün bulunduğu 1948 yılından günümüze 

kadar devam etmektedir. 1971 yılında Intel’ in ilk işlemcisi 4004 sadece 740 kHz’ de 

çalışabilirken bugün masaüstü bilgisayarlarda kullandığımız mikroişlemciler 3 GHz’ in 

üzerindeki hızlarda çalışabilmektedirler [3]. Mikroişlemcilerdeki gelişme sadece saat 

frekanslarında değil, mimari yapılarında gerçekleşmiştir. İlk tasarımlara göre çok karmaşık 

yapıda olan günümüz işlemcileri, cache (tampon) bellek, pipeline, floating point unit (kayar 

noktalı işlem birimi), memory management unit (hafıza yönetim birimi), prefetch (önceden 

komut çekme), branch prediction gibi birimler içermektedirler. 

 Elektronik sistemlerin yapılarındaki giderek artan karmaşıklık nedeniyle kağıt kalem 

kullanılan geleneksel devre tasarım yöntemleri, yerini tanımlama ve sentezleme yöntemlerine 

bırakmıştır [5].  Bu yeni yöntemler, VHDL (Very High Speed Integrated Circuit Hardware 

Description Language) ve Verilog HDL gibi donanım tanımlama dillerinin geliştirilmesi ile 

ortaya çıkmıştır.  Programlanabilir lojik sistemlerin kapasitesindeki ve maksimum saat 

frekansındaki artış donanım tanımlama dillerinin gelişmesiyle paralel olmuştur [3].  1990’ 

lardan sonra FPGA (Field Programable Gate Array)’ ler hızlı tasarım süreçleri nedeniyle ASIC 

(Application Specific Integrated Circuit)’ lerin yerini almaya başladılar [4]. Günümüzde FPGA 

mimarisini kullanan sistemlerin tasarımında farklı yöntemler izlenebilmektedir fakat en çok 

tercih edilen yöntem, donanım tanımlama dilleridir.  FPGA’ ler yapılan tasarımın, Verilog yada 

VHDL gibi bir yüksek seviye donanım tanımlama dili aracılığıyla, yonga üretiminde kullanılan 
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teknoloji ile ilgilenmeden RTL (Register Transfer Level) seviyesinde geliştirilmesine imkan 

verir. 

 FPGA bilgisayar mimarisi eğitimi için de ideal bir ortamdır [7]. FPGA içerisinde 

gerçeklenen gömülü sitemlerde kullanılan işlemci çekirdeğinin yanına istenilen çevresel 

donanımlar eklenebilir. Böylece tasarımda esneklik sağlanır. FPGA’ in tekrar programlanabilme 

özelliği, gömülü sistemdeki donanımın istenildiğinde güncellenmesine imkan verir.  FPGA 

içerisindeki gerçeklenen gömülü sisteme ait işlemcide tasarımcının tanımladığı özel komutlar 

bulunabilir, bazı komutlar co-processor (yardımcı işlemci) yardımıyla işlenebilir. Önde gelen 

FPGA üreticileri XILINX ve ALTERA’ nın FPGA içerisinde gerçeklenen ve ihtiyaca göre bazı 

özellikler eklenip çıkartılabilen mikroişlemci çekirdekleri vardır. XILINX FPGA’ lerde küçük 

uygulamalar için 8-bit Picoblaze, daha kapsamlı uygulamalar için pipeline, floating point ve 

memory management unit gibi gelişmiş özellikleri bulunan 32-bit Microblaze kullanılabilir.  

ALTERA FPGA’ lerde ise 32-bit NIOS-II kullanılabilmektedir. FPGA tabanlı birkaç 

mikroişlemci çalışması literatürde verilmiştir [3, 2, 9]. 

 Bu çalışmada, eğitim amaçlı gerçek zamanlı uygulamalarda kullanılabilecek 16-Bit veri 

ve adres yolu genişliğine sahip olan, bellek-saklayıcı mimarisini kullanan ve tamsayılarla işlem 

yapabilen bir gömülü sistem tasarlanıp gerçeklenmiştir. Gömülü sistemde 32 adet 16 bitlik 

saklayıcıları içeren bir saklayıcı dizisi ve A (akümülatör) saklayıcısı bulunmaktadır. Bu 

saklayıcı dizisinde bulunan saklayıcıların 14’ü sistem tarafından veya giriş/çıkış birimleri 

tarafından kontrol saklayıcısı olarak kullanılmakta olup, 18 adet saklayıcı ana bellekten daha 

hızlı erişilmek üzere kullanıcıya bırakılmıştır. Sistem Von Neumann mimarisinde olup veri ve 

program belleği olarak 64 K-Word dahili (sentezleme aşamasında) veya harici bellek ilave 

edilebilmektedir. Sistem her biri bit bazında giriş veya çıkış olarak yönlendirilebilen 2 adet 16-

Bitlik giriş çıkış iskelesi ile donatılmıştır;  ayrıca, dört farklı harici kaynaktan gelebilecek 

kesmeler için “vektörlü kesmeyi” desteklemektedir. Sistemde 16 Word derinliğinde bir yığın 

gerçeklenmiş olup, alt programlara ve kesme servis rutinlerine dallanmalarda geri dönüş adresi 

bu yığına atılmaktadır. İşlemci çarpma ve bölme komutları dahil 35 komut ile ihtiyaç duyulan 

tüm işlemleri etkin bir şekilde gerçekleyebilmektedir. Komutlar yapısına göre ivedi, doğrudan, 

doğal, dolaylı ve sıralı adresleme modlarını kullanabilmektedir. Komutların icra süreleri: 2 

(doğal), 3 (ivedi) 4 (doğrudan), 5 (sıralı, dolaylı) saat darbesi sürmekte; çarpma ve bölme 

işlemleri ilave olarak 16 saat darbesi daha almaktadır.  

 Gömülü sistem modüler olarak kapı seviyesinde tasarlanmış olup, her bir modül son 

sisteme dahil edilmeden önce davranışsal eşleniği ile kapsamlı bir teste tabi tutulmuştur. 

Tasarlanan modüller ve tüm sistem Verilog-HDL ile kodlanmış olup derleyici ve editör olarak 
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XILINX ISE 10.1 ortamı kullanılmıştır. Modüllerin tasarım ve test aşamasından sonra, tüm 

işlemci simülasyon yoluyla test edilmiş ve üzerinde örnek program koşturulmuştur. 

Simülasyonda MODELSIM SE Verilog kullanılmış olup kesme girişlerini test etmek için 

XILINX ISE programındaki Test Bench Waveform yardımı ile farklı kesme girişlerine farklı 

anlarda kesme sinyali uygulanmıştır. Tüm test ve simülasyon aşamaları geçildikten sonra, 

gömülü sistem Xilinx HW-SPAR3E-SK geliştirme kartı üzerinde gerçeklenmiştir. 
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2. BİLGİSAYAR SİSTEMLERİ 

 Bilgiyi giriş olarak alan, bunu belli bir kurala göre işleyen ve sonucu çıktı olarak veren 

sistemlere basit olarak bilgisayar denir. Makine olarak tanımlanan bilgisayar, veriyi belli bir 

düzen dahilinde işler. Buradaki veri, işlenecek bilgidir. Verinin işleniş düzenini veya kuralları 

donanımın dışında komutlar (program) koyar. Sayısal değerler belli bir formatta sisteme 

yerleştirilmek zorundadır. Sistemdeki herhangi bir fiziksel veya mantıksal parametre ikilik 

sayılarla ifade edilmektedir. Bilgisayar sistemleri iki temel öğeden oluşmaktadır. Bunlar yazılım 

ve donanımdır. Her ikisi de birbirinin tamamlayıcıdır, birisi olmazsa diğeri de olmaz. Sistem 

öncelikli olarak tasarlanırken önce sistemi meydana getirecek elemanlar, yani donanım parçaları 

göz önüne alınır. Daha sonra yazılım bu yapıya bakılarak yazılır. Yazılım, donanımın hangi 

yönteme göre nasıl çalışacağını gösteren bir sanal uygulamadır. Donanım ise yazılıma göre 

belirli zamanlarda devreye girerek fonksiyonlarını yerine getirmekle görevlidir. 

 Bilgisayarı oluşturan bir sistemdeki temel elemanlar; mikroişlemci (CPU), bellek ve 

giriş/çıkış (G/Ç) birimleridir. Mikroişlemcinin işleyeceği komutlar ve veriler geçici veya kalıcı 

belleklerde tutulmaktadır. Bilgiyi oluşturan komut ve veriler bellekte karmaşık veya farklı 

alanlarda tutulabilir. Bilginin işlenmesi sırasında ortaya çıkabilecek ara değerler, en sonunda 

sonuçlar bellekte bir yerde depolanmak zorundadır.  

 Bilgisayarın bilgiyi işlemedeki ana karar vericisi sistemin kalbi sayılan mikroişlemcidir. 

CPU tarafından gerçekleştirilen iki temel işlem vardır. Birincisi, komutların yorumlanarak 

doğru bir sırada gerçekleşmesini sağlayan kontrol işlevi, diğeri; toplama, çıkarma ve benzeri 

özel matematik ve mantık işlemlerinin gerçekleştirilmesini sağlayan icra işlevidir. 

  Ayrıca sistemin veri giriş çıkışı yapabilmesi için giriş/çıkış birimine gerek vardır. G/Ç 

birimi, makine ile kullanıcı (veya programcı) arasında bilginin makine dilinden insanın 

anlayacağı dile çevrilmesinde veya tersi işlemde iletişim (aracı) sağlar. 

 Sistemin öne çıkan diğer elemanları iletişim yollarıdır. Adres yolu, veri yolu ve kontrol 

yolu olarak üçe ayrılan iletişim yolları, bilgisayar sistemindeki birimler arasında bilginin 

taşınmasından sorumludur. Adres yoluna bellekten getirilerek çalıştırılmak istenen komut adresi 

veya komutun işlenmesiyle bellekten getirilecek verinin adresi konulur. Sonuç olarak, her 

bilgisayar aşağıdaki elemanlara sahip olmalıdır: 

1. Programın yorumlanması ve çalıştırılmasını gerçekleştiren bir mikroişlemci. 

2. Bir dizi komutlardan oluşan program ve verilerin sürekli veya geçici depolandığı 

bellek. 
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3. Bilgisayarın dış dünya ile bağlantısını sağlayan giriş/çıkış birimi. 

4. CPU ve bellek aracındaki bilgi aktarımını ve işlemcinin dış dünya ile iletişimini 

sağlayan iletişim yolları. 

 Bilgisayar sistemi tarif edilirken iki temel esastan bahsedilebilir. Bilgisayar 

organizasyonu ve bilgisayar mimarisi. Bilgisayar mimarisi, bir programın mantıksal çalışmasına 

doğrudan etki eden özelliklerdir. Bilgisayar organizasyonu, operasyonel birimler ve bunların 

yapısal özelliklerini veren bağlantıları ifade eden yaklaşımdır; Daha çok yazılım ve donanım 

arasındaki bağdaştırmayla ilgilidir. Mimari özelliklere komut kümesi, değişik şekillerdeki veri 

tiplerini temsil etmesi için kullanılan bit sayısı, G/Ç mekanizması ve bellek adresleme 

tekniklerinin dahil olduğu bir bilgisayar tasarımı girmektedir. Bilgisayar mimarisi, komut 

kümesinin, donanım elemanlarının ve sistem organizasyonun dahil olduğu bir bilgisayarın 

tasarımıdır. Mimari iki farklı yaklaşımla tanımlanmaktadır Komut kümesi mimarisi (ISA) ve 

donanım sistem mimarisi (HSA). ISA, bir bilgisayarın hesaplama karakteristiklerini belirleyen 

komut kümesinin tasarımıdır. HSA, ise CPU, depolama ve G/Ç sistemlerinin dahil olduğu alt 

sistem ve bunların bağlantı şeklidir. 

2.1. Komut Kümesi Mimarisi 

 İlk bilgisayar sistemleri için programcı kodlarını makinenin doğrudan özel donanımına 

göre yazmaktaydı. Bu nedenle bir makine için yazılan program aynı firma tarafından üretilse 

bile diğer bir makinede çalışmamaktaydı. Programcı tarafından yazılan kodlar donanımı açma 

anahtarı olarak düşünülebilirler. Her zaman yeni bir makine üretildiğinde yazılım geliştiriciler 

bu makine için yeni baştan başlamak zorunda kalmaktaydılar. Bundan dolayı bilgisayar sistem 

tasarımcıları iki önemli sorunla karşılaştılar. 

1. Bilgisayar sistemleri ile ilgili işlevselliğin sergilenmesi. 

2. Bir dizi komutlardan oluşan program ve verilerin sürekli veya geçici depolandığı 

bellek. 

3. Yazılımın sistemler arasındaki geçişini kolaylaştırması. 

1960 yıllarında IBM firması bu sorunların üstesinden gelmek için, adına komut kümesi 

mimarisi (ISA) ve mikrokod motoru denilen bir yöntem geliştirmiştir 

 Mikrokod kullanılarak ISA sisteminin yürütülmesinin başlıca sakıncası, başlangıçta 

komutların doğrudan çalıştıran sisteme göre yavaş olmasıdır. Daha çok komut demek daha fazla 

mikrokod, çekirdek büyüklüğü ve güç demektir. 



6 
 

 ISA mimarisinin yaşanan aksaklıklarından dolayı daha sonraları, komutların doğrudan 

donanım elemanları tarafından yorumlanarak sistemin denetlendiği diğer bir mimari yaklaşımı 

da donanımsal çalışma modelidir. Komutların anlaşılır standartta bir boyuta getirilerek 

çalıştırıldığı sisteme RISC modeli denilmektedir. Böylece küçük, hızlı ve çok hafifleyen komut 

kümesiyle, iri hacimli mikrokoda nazaran donanım üzerinde doğrudan hakimiyet kolayca 

sağlanabilmiştir. RISC tasarımcıları komutların doğrudan icra edildiği eski modele dönerken, 

ISA kavramı dokunulmadan korunmuştur. Intel, AMD gibi büyük firmalar hala x86 mimarisine 

dayalı işlemcilerini ISA yaklaşımıyla üretmektedirler. Günümüzde üst düzey entegrasyon ve 

yarı iletken üretim teknolojilerinin elde edilmesiyle çok daha karmaşık olan donanım temelli 

sistemler oluşturmak mümkün olmakladır. 

2.1.1. CISC mimarisi 

 CISC mimarisinin karakteristik iki özelliğinden birisi, değişken uzunluktaki komutlar, 

diğeri ise karmaşık komutlardır. Değişken ve karmaşık uzunluktaki komutlar bellek tasarrufu 

sağlar. Karmaşık komutlar İki ya da daha fazla komutu tek bir komut haline getirdikleri için 

hem bellek alanından hem de programda yer alması gereken komut sayısından tasarruf sağlar 

[8]. Karmaşık komut karmaşık mimariyi de beraberinde getirir. Mimarideki karmaşıklığın 

artması, işlemci performansında istenmeyen durumların ortaya çıkmasına sebep olur. Ancak 

programların yüklenmesinde ve çalıştırılmasındaki düşük bellek kullanımı bu sorunu ortadan 

kaldırabilir. 

 

Şekil 2.1 CISC Mimarisi 
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 Tipik bir CISC komut seti, değişken komut formatı kullanan 120‐350 arasında komut 

içerir. Bir düzineden fazla adresleme modu ile iyi bir bellek yönetimi sağlar. CISC mimarisi çok 

kademeli işleme modeline dayanmaktadır. İlk kademe, yüksek düzeyli dilin yazıldığı yerdir. 

Sonraki kademeyi makine dili oluşturur ki, yüksek düzeyli dilin derlenmesi sonucu bir dizi 

komutlar makine diline çevrilir. Bir sonraki kademede makine diline çevrilen komutların 

kodları çözülerek, mikroişlemcinin donanım birimlerini kontrol edebilen en basit işlenebilir 

kodlara dönüştürülür. En alt kademede ise işlenebilir kodları olan donanım aracılığıyla gerekli 

görevler yerine getirilir. 

CISC Mimarisinin Avantajları: 

- Mikroprogramlama, yürütülmesi kolaydır ve sistemdeki kontrol biriminden daha 

ucuzdur. 

- Yeni komutlar ve mikrokod ROM’a eklemenin kolaylığı tasarımcılara CISC 

makinalarını geriye doğru uyumlu yapmalarına izin verir. Yeni bir bilgisayar aynı 

programları ilk bilgisayarlar gibi çalıştırabilir. 

- Verilen görevi yürütmek için daha az komut kullanır. 

- Mikroprogram komut kümeleri, derleyici karmaşık olmak zorunda değildir. 

CISC Mimarisinin Dezavantajları: 

- İşlemci ailesinin ilk kuşakları genelde her yeni versiyon tarafından kabullenilmiştir, 

böylece komut kodu ve yonga donanımı bilgisayarların her kuşağıyla birlikte daha 

karmaşık hale gelmiştir. 

- Mümkün olduğu kadar çok komut, mümkün olan en az zaman kaybıyla belleğe 

depolanabiliyor ve komutlar neredeyse her uzunlukta olabiliyor. Bunun anlamı farklı 

komutlar farklı miktarda saat çevrimi tutacaktır. 

- Çoğu özel güçlü komutlar geçerliliklerini doğrulamak için yeteri kadar sık 

kullanılmıyor. 

- Komutlar genellikle bayrak (durum) kodunu komuta bir yan etki olarak etkinleştirir. Bu 

ise ek saat darbeleri yani bekleme demektir. Aynı zamanda, sıradaki komutlar işlem 

yapmadan önce bayrak bitlerinin mevcut durumunu bilmek durumundadır. Bu da yine 

ek saat darbesi demektir. 

 
2.1.2. RISC mimarisi 

 RISC mimarisi, CISC mimarili işlemcilerin kötü yanlarına piyasanın tepkisi ve ona bir 

alternatif olarak, işlemci mimari tasarımlarında söz sahibi olan IBM, Apple ve Motorola gibi 
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firmalarca sistematik bir şekilde geliştirilmiştir. 1970’ lerin ortalarında yarı iletken 

teknolojisindeki gelişmeler, ana bellek ve işlemci yongaları arasındaki hız farkını azaltmaya 

başladı. Bellek hızı arttığından ve yüksek seviyeli diller simgesel dilin yerini aldığından, CISC’ 

in başlıca üstünlükleri geçersizleşmeye başladı. Bilgisayar tasarımcıları sadece donanımı 

hızlandırmaktan çok bilgisayar performansını iyileştirmek için başka yollar denemeye 

başladılar. Aşağıda günümüz bilgisayarlarında kullanılan, RISC tabanlı fakat mikrokod desteği 

de sağlayan bir işlemcinin blok şeması görülmektedir. 

 

Şekil 2.2 RISC Mimarisi 

 IBM, RISC mimarisini tanımlayan ilk şirket olarak kabul edilir. RISC' in felsefesi üç 

temel prensibe dayanır: 

- Bütün komutlar eşit sayıda çevrimde çalıştırılmalıdır. 

- ALU işlemlerinin tamamı saklayıcılarda yapılamalıdır. 

- Belleğe sadece "load" ve "store" komutlarıyla erişilmelidir: Komut alınıp getirilir ve 

bellek gözden geçirilir. RISC işlemcisiyle, belleğe yerleşmiş veri bir kaydediciye 

yüklenir, kaydedici gözden geçirilir ve kaydedicinin içeriği ana belleğe yazılır. 

- Bütün icra birimleri mikrokod kullanmadan donanımdan çalıştırılmalıdır: Mikrokod 

kullanımı, dizi ve benzeri verileri yüklemek için çok sayıda çevrim demektir. 

 Günümüzün RISC yapısına sahip ticari mikroişlemcilerinde genel olarak iki tarz 

görülür. Bunlar Berkeley modeli ve Stanford modelidir. RISC mimarisi aynı anda birden çok 
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komutun birden fazla birimde işlendiği iş‐hattı (pipelining) tekniği ve süperskalar yapılarının 

kullanımıyla yüksek bir performans sağlamıştır.  

RISC Mimarisinin Avantajları: 

 RISC tasarımı olan bir işlemciyi kullanmak, bir CISC tasarımını kullanmaya göre pek 

çok avantaj sağlar: 

- Hız: Azaltılmış komut kümesi pipeline ve superskalar tasarıma izin verdiğinden RISC 

işlemciler genellikle karşılaştırabilir yarı iletken teknolojisi ve aynı saat oranları 

kullanılan CISC işlemcilerinin performansının 2 katından daha yüksek performans 

gösterirler. 

- Basit Donanım: RISC işlemcinin komut kümesi çok basit olduğundun çok az yonga 

uzayı kullanırlar. 

- Kısa Tasarım Zamanı: RISC işlemciler CISC işlemcilere göre daha basit olduğundan 

daha çabuk tasarlanabilirler ve diğer teknolojik gelişmelerin avantajlarını CISC 

tasarımlarına göre daha çabuk kabul edebilirler.  

RISC Mimarisinin Dezavantajları: 

 CISC tasarım stratejisinden RISC tasarım stratejisine yapılan geçiş kendi problemlerini 

de beraberinde getirmiştir. Donanım mühendisleri kodları CISC işlemcisinden RISC işlemcisine 

aktarırken geriye uyumluluğu göz önünde bulundurmak zorundadırlar. 

2.1.3. EPIC mimarisi: 

 RISC mimarisinin altında yatan iki ana tasarım amacı vardır. Birincisi; derleyicinin 

kullanmadığı veya kullanamadığı komutlar ve adresleme modlarından kurtulmak. İkincisi; Öyle 

bir çekirdek yaratılmalı ki ileride superölçekli mimariyi oluşturacak iş‐hattını kolaylaştırsın. 

Komutların aynı anda farklı birimlerde farklı şekilde çalıştırıldığı ortamlar Süperölçekli mimari 

olarak adlandırılır. RISC mimarisinde kullanılan bu süperölçekli yapının tasarlanmasında iki 

önemli sorun ortaya çıkmaktadır. Birincisi; Komut kümesinde bulunan komutlardan 

hangilerinin paralel çalıştırılabileceğine karar verilmesi. İkincisi; Paralel çalıştırılabilecek yeterli 

komutların bulunabilmesi. Bu problemlerin üstesinden gelmek için Intel ve benzer işlemci 

firmaları yonga alanlarının büyük bir kısmını harcamaktadırlar. EPIC mimarisi işte bu 

sorunların üstesinden gelmek için tasarlanmıştır. 

2.2. Donanım Sistem Mimarisi 

 Bilgisayarın, yüklenen tüm görevleri çok kısa zamanda yerine getirmesinde yatan ana 

unsur mimarisidir. Mimari, komutların ve verinin bellek ile kaydediciler arasında taşınmasında 
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kullanılan iletişim yollarının düzeni, kaydedici sayısı ve büyüklükleri gibi tasarım kararlarının 

dahil olduğu, işlemci yeteneklerinin nihai sonucunu gösteren bir yapıdır. Bilgisayar mimarisinin 

tasarımı iki yaklaşım üzerinde yoğunlaşmıştır. Bunlar, Von Neumann ve Harvard mimarileridir. 

2.2.1. Von Neumann mimarisi 

 Bilgisayarlarda ilk kullanılan ve adını mimariye yön veren ünlü matematikçi John von 

Neumann' dan alan bir tasarım yaklaşımıdır. Bazen Princeton mimarisi de denilen bu mimari 

yapıya sahip ilk bilgisayarlarda, transistör yerine lamba (vakum tüp) kullanılmaktaydı. 

 

Şekil 2.3 Von Neumann Mimarisi 

 Von Neumann' ın fikrinden yol çıkılarak J. P. Eckert ve J. Mauchly tarafından 1946 

yılında ilki geliştirilen bilgisayar beş birimden olunmaktadır. Bunlar; Aritmetik ve mantık 

birimi, kontrol birimi, bellek, giriş‐çıkış birimi ve bu birimler arasında iletişimi sağlayan 

yollardır. 

 Von Neumann mimarisinde, veri ve komutlar bellekten tek bir yoldan mikroişlemciye 

getirilerek işlenmektedir. Program ve veri aynı bellekte bulunduğundan, komut ve veri gerekli 

olduğunda aynı iletişim yolu kullanılmaktadır. Bu durumda, komut için bir fetch saykılı, sonra 

veri için diğer bir fetch saykılı gerekmektedir. 

Von Neumann mimarisine sahip bir bilgisayar aşağıda sıralı adımları gerçekleştirir: 

1. Program sayıcısının gösterdiği adresten (bellekten) komutu algetir. 

2. Program sayıcısının içeriğini bir artır. 



11 
 

3. Getirilen komutun kodunu kontrol birimini kullanarak çöz. Kontrol birimi, 

bilgisayarın  geri kalan birimlerine sinyal göndererek bazı operasyonlar yapmasını 

sağlar. 

4. 1. adıma geri dönülür. 

 Von Neumann mimarisinde, veri bellekten alınıp işledikten sonra tekrar belleğe 

gönderilmesinde çok zaman harcanır. Bu işlemler bilgisayarı yavaşlattığından, bilgisayar 

tasarımcılarının tabiriyle bir darboğaz oluşturmaktadır. Bundan başka, veri ve komutlar aynı 

bellek biriminde depolandığından, yanlışlıkla komut diye veri alanından kod getirilmesi 

sıkıntılara sebep olmaktadır. Bu mimari yaklaşıma sahip olan bilgisayarlar günümüzde, verilerin 

işlenmesinde, bilginin derlenmesinde ve sayısal problemlerde olduğu kadar endüstriyel 

denetimlerde başarılı bir şekilde kullanılmaktadır. 

 Bellek erişiminde, hızlı belleklerden sayılan ön‐bellek (cache) sistemlerinin 

kullanılmasıyla büyük bant genişliği ve düşük gecikme elde edilerek Von Neumann mimarisinin 

darboğazı aşılabilir. 

2.2.2. Harvard mimarisi 

 Harvard mimarili bilgisayar sistemlerinde, Von Neumann mimarisinden farklı olarak 

veri ve komutlar ayrı belleklerde tutulmakladır. Buna göre, veri ve komut aktarımında iletişim 

yolları da bir birinden bağımsız yapıdadır. Komutla birlikte veri aynı saat darbesinde farklı 

iletişim yolundan ilgili belleklerden alınıp işlemciye getirilebilir. Getirilen komut işlenip ilgili 

verisi veri belleğinden alınırken sıradaki komut, komut belleğinden alınıp getirilebilir. Bu önden 

alıp getirme işlemi, dallanma haricinde hızı iki katına çıkarabilmekledir. 
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Şekil 2.4 Harvard Mimarisi 

 Harvard mimarisi günümüzde daha çok sayısal sinyal işlemcilerinde (DSP) 

kullanılmaktadır. Bu sistemlerde adres uzayı, komutların bulunduğu program belleği ve çeşitli 

gruplara bölünmüş veri bellekleri olmak üzere üç alana bölünebilir. Mikroişlemci her bir komut 

çevriminde tüm belleğe erişebilir. Günümüz bilgisayarlarında, bellekle tek yoldan iletişim ve 

komutla verinin aynı bellekle bulunması problemi ön‐bellek sistemleri ile çözülmüştür. 

Ön‐bellekler, komut ve veri olmak üzere ikiye ayrılmış ve işlemcinin içerisine yerleştirilmiştir. 

İşletim sistemi tarafından ön‐belleğin kapasitesine göre ana bellekten veriler ön‐belleklere 

alınır. Önbellek denetleyicisi tarafından komut ve veriler ayrıştırılarak ilgili birimlere 

yerleştirilir. Mikroişlemci tarafından, komut ön‐belleğinden, data veri önbelleğinden alınarak 

işlenir. Bu işlem, hızlı önbelleklerin ve birbirinden ayrı komut ve veri ön‐belleklerin 

kullanılması bilgisayarın performansını artırmaktadır. Ön‐bellek miktarı ne kadar fazla olursa o 

kadar iyi olmaktadır, fakat maliyeti çok yüksektir.  
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3. PROGRAMLANABİLİR LOJİK TEKNOLOJİLERİ 

 Günümüzde çok geniş ölçekli tümdevre (VLSI) tasarımı için farklı seçenekler vardır. 

Bunların içerisinde yer alan programlanabilir lojik elemanlar (PLDs) en çok kullanılan 

yapılardır. PLD kısaca kullanıcı tarafından programlanabilen tümdevreler için kullanılan genel 

bir kavramdır. Üretilmesi planlanan ürün miktarı ve fiyat göz önüne alındığında eğer 

performans gereksinimleri de karşılanıyorsa programlanabilir elemanların kullanılması tasarım 

sürecini kısaltmaktadır. Klasik tasarım sürecinde tasarım tamamlandıktan sonra ürünün ortaya 

çıkması aylar sürmektedir. Tasarımda herhangi bir yanlışın fark edilmesi durumunda ise üretim 

için harcanan maliyet ve süre tekrar ödenir. Bu maliyet ve sürenin kısaltılması için Maske 

Programlamalı Kapı Dizileri (MPGA) kullanılmıştır ancak bu teknolojiyle tasarım devreyi 

gerçekleştirilecek firma tarafından oluşturulur. Gerçekleştirilmesi istenen lojik devreye bağlı 

olarak metal tabaka üretici firma tarafından son aşamada oluşturulmaktadır. Ancak bu yöntem 

de tasarım esnekliğini tamamen kullanıcıya bırakmamaktadır. Kullanıcı tarafından 

programlanabilen yapılar üzerine çalışmalar 1970lerde programlanabilir salt okunur bellekler 

(PROM) ile başlamıştır. Sahada programlanabilir PROM’ un, silinebilir programlanabilir salt 

okunur bellek (EPROM) ve elektriksel olarak silinebilir ve programlanabilir salt oku bellek 

(EEPROM) olarak iki tipi geliştirilmiştir. EEPROM defalarca silinebilme ve programlanabilme 

avantajına sahiptir.  

 PLD alanındaki gelişmeler sonucunda bu teknoloji kendi içinde birçok gruba ayrılmıştır 

ve farklı amaçlarla kullanılabilecek yapılar ortaya çıkmıştır. Bu elemanlar temelde lojik 

devreleri gerçeklemek amacıyla kullanılmaktadır. PLD’ ler karmaşıklığına göre basit ve yüksek 

kapasiteli olmak üzere iki ana gruba ayrılmaktadır. Yüksek kapasiteli olanlar gerçeklediği 

fonksiyonların karmaşıklığına göre de FPGA ve CPLD şeklinde alt gruplara ayrılır. 
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Şekil 3.1 PLD’ lerin sınıflandırılması 

 Basit PLD’ ler Programlanabilir Lojik Dizi (PLA) ve Programlanabilir Dizi Lojiği 

(PAL) olmak üzere ikiye ayrılırlar. PLA’ lar PROM’ ların hız ve sınırlı sayıda I/O sorununa bir 

çözüm olarak üretilmişlerdir. Bir PLA; AND ve OR matrisi olarak iki matristen oluşur. AND 

matrisi fonksiyonun oluşturulmuş olan çarpım terimleri için kullanılır. OR matrisi ile çarpım 

terimleri OR işlemine tabi tutularak fonksiyonun gerçekleştirilmesi sağlanır. Bu yapıda her iki 

matris de programlanabilmektedir. Bir diğer PLD yapısı ise PLA’ ya benzer yapıda olan fakat 

OR matrisi sabit olan PAL yapısıdır. Girişler ve çıkışlara MUX, XOR gibi basit lojik devreler 

eklenmiştir. En önemli farkı flip floplar (FF) gibi saat darbesine ihtiyaç duyan elemanların 

gerçekleştirilebilmesidir. Böylece FF’ ların çokça kullanıldığı durum makineleri gibi sistemlerin 

gerçekleştirilebilmesine büyük kolaylık sağlamışlardır. PAL’ lar aynı zamanda son derece hızlı 

çalışabilirler. Günümüzde sıkça kullanılan PLD’ ler AMD ve ALTERA şirketleri tarafından 

üretilmektedir. PLD’ lerin en büyük dezavantajı bir fonksiyonu çarpımlar toplamı biçiminden 

gerçekleştirdiklerinden yüksek çarpım terimleri içeren fonksiyonları gerçekleyememeleridir. 

PLD’ lerin performansını iyileştirmek, kullanılan silisyum alanını azaltmak ve güvenilirliği 

artırmak amacıyla karmaşık PLD’ ler (Complex PLD: CPLD) üretilmiştir. Genel bir CPLD’ nin 

içerisinde lojik bloklar bulunur ve bu bloklar küçük PLD yapılarında (Küçük PAL adacıkları) 

olup birbirleri ile programlanabilir ara bağlantı matrisi kullanarak haberleşirler. Bu şekilde 

silisyum alanı etkin bir biçimde kullanılmakta ve PLD’lere oranla daha fazla fonksiyon CPLD’ 

lerle gerçeklenebilmektedir. CPLD’ler, basit PLD’ler ile günümüzde kullanılan en karmaşık 
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yapı olan FPGA’ ler arasında geçiş döneminde yer almaktadır yani FPGA mimarisinin temelini 

CPLD’ler oluşturmaktadır.  

 CPLD’ ler fonksiyon blokları, I/O blokları ve bağlantı matrisleri içerirler. Üreticinin 

sunduğu EPROM, EEPROM ya da Flash/EPROM gibi teknolojilere bağlı olarak 

programlanabilirler. Tipik bir fonksiyon bloğu şekilde görülmektedir. 

 
Şekil 3.2 CPLD Mimarisi 

 CPLD’ lerden sonra 1985’te Xilinx firması sahada programlanabilir kapı dizilerini 

(FPGA) piyasaya sürmüştür. (Daha sonra ACTEL, ALTERA (ilk CPLD yapısının sahibi), 

PLESSEY, QUICKLOGIC gibi şirketler kendi FPGA yapılarını sunmuşlardır.) FPGA’ ler, 

programlanabilir lojik bloklar ve ara bağlantılardan oluşur. Kullanıcının tasarladığı lojik 

devreye göre, tümdevre üreticisi tarafından sağlanan bir yazılım sayesinde lojik bloklar ve 

aralarındaki bağlantılar programlanır. Tasarım sırasında kullanıcıya sağladığı esneklik, düşük 

maliyet ve hızlı ilk üretme özelliği ile FPGA’ ler sayısal tasarım ortamlarının vazgeçilmez 

yapıları haline gelmiştir. 

3.1. FPGA Mimarisi ve Özellikleri 

 FPGA’ ler ara bağlantıları çeşitli şekillerde gerçekleştirilen lojik bloklardan 

oluşmaktadır. Ara bağlantılar kullanıcı tarafından programlanabilmektedir. FPGA mimarileri, 

bağlantı kanallarının yapısına göre dört ana gruba ayrılır:  

- Simetrik dizi (Symmetrical Array) 
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- Sıra tabanlı (Row-Based Array) 

- Hiyerarşik PLD (Hierarchical PLD) 

- Kapı denizi (Sea of Gate) mimarisi  

 

Şekil 3.3 FPGA sınıfları 

 Tüm bu FPGA’ lerde ara bağlantılar ve bunların nasıl programlanacağı farklıdır. Halen 

kullanılmakta olan dört programlama teknolojisi bulunmaktadır. Bunlar:  

- Statik Rastgele Erişimli Bellek (SRAM) Teknolojisi 

- Anti-sigorta (Anti-Fuse) Teknolojisi 

- EPROM Teknolojisi 

- EEPROM Teknolojisi  

Uygulamaya bağlı olarak bir FPGA teknolojisi tercih edilir. 

FPGA üç tane önemli düzenlenebilir elemana sahiptir : 

- Düzenlenebilir Lojik Bloklar (Configurable Logic Blocks: CLB) 

- I/O blokları (Input/ Output Blocks: IOB)  
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- Ara bağlantılar 

 

 

Şekil 3.4 Genel FPGA mimarisi 

 CLB’ ler kullanıcı lojiğini oluşturan fonksiyonel elemanlardır. Her FPGA çok sayıda bu 

programlanabilir lojik bloklardan oluşmaktadır. Entegredeki her lojik blok farklı bir fonksiyonu 

gerçekleştirmek için uygun SRAM programlama hücreleri vasıtasıyla yapılandırılabilir. IOB’ 

ler FPGA’ nın bacakları ile iç işaretler arasında ara yüz oluşturur. Programlanabilir ara bağlantı 

birimleri ise CLB ve IOB’ lerin giriş ve çıkışlarını birleştirmek için uygun hatlar üzerinden 

yolları belirler. İstenilen düzenleme, lojik fonksiyonların ve ara bağlantıların nasıl 

gerçekleneceğini belirleyen iç statik bellek hücrelerinin programlanmasıyla sağlanır.  

3.1.1. CLB yapısı 

 CLB’ ler, çok karışık veya NAND kapısı kadar basit olabilir. CLB’ lerin mimarisi iki 

ana gruba ayrılır; 

- Doğruluk tablosu (Look-Up Table: LUT) tabanlı  

- Çoğullayıcı (Multiplexer: MUX) tabanlı  
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Bazılarında ise ardışıl devrelerin de gerçeklenebilmesi amacıyla flip flop’lar kullanılmıştır.  

 

3.1.1.1. LUT tabanlı yapı 

 Doğruluk tablosu tabanlı yapının temel bloğu Look-Up Table (LUT) adı verilen ve m 

değişkenli her Boole fonksiyonunu gerçekleyebilen devredir. m, günümüzde 3 ile 6 arasında 

olan sabit bir sayıdır. Genelde bu blok, m tane adres ve 1 tane veri yolu olan SRAM ile 

gerçekleştirilir ve m-LUT olarak adlandırılır. LUT tabanlı yapıda her CLB, bir ya da daha fazla 

LUT ile FF gibi diğer lojik elemanlardan oluşur. İstenen devrenin gerçekleştirilebilmesi için 

CLB’ler ara bağlantılar ile birbirlerine bağlanarak daha karmaşık yapılar oluşturulabilir.  

 Aşağıda LUT tabanlı bir FPGA için lojik birim verilmiştir. FF’ u besleyen MUX, LUT’ 

dan gelen çıkışı ya da lojik bloğa ayrı bir girişi kabul etmek için yapılandırılabilir. LUT da 

herhangi 3 girişli lojik fonksiyonu gerçekleştirmek için yapılandırılabilir. 

 

Şekil 3.5 LUT tabanlı bir FPGA’ in birim elemanı [12] 

 Bir grup giriş sinyali LUT’ a bir indeks olarak kullanılır. Bu tablonun içeriği, öyle 

ayarlanır ki her giriş kombinasyonu tarafından gösterilen hücre istenilen değeri içerir. Örneğin 

y=(a. b) + c’ fonksiyonu 3 girişli LUT’ a uygun değerleri yükleyerek yapılabilir. Bu örnek için 

LUT’ un SRAM hücrelerinden (Anti-Fuse, EEPROM ya da FLASH hücreleri de olabilir, ileride 

bahsedilecektir) yapıldığını varsayarsak, genelde kullanılan teknik, şekilde görülen transmisyon 

kapıları kaskatını kullanarak istenilen SRAM hücresini seçmek için girişleri kullanmaktır. 

Aslında SRAM hücreleri de konfigürasyon amacı ile birbirine bağlıdır. Ancak, bu bağlantılar 

şekilden daha basit bir gösterim olması için atılmıştır. 
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.  

Şekil 3.6-1 LUT’ un yapılandırılması [12] 

 

 

Şekil 3.6-2 LUT’ un yapılandırılması [12] 

 Eğer transmisyon kapısı aktif (enable) yapılırsa, girişteki sinyali çıkışa aktarır. Eğer 

kapı pasif yapılırsa (disabled), çıkışı sürdüğü hattan elektriksel olarak ayrılır. Transmisyon 

kapısının sembolü küçük bir daire ile gösterilir. Bu daire, bu kapıların kontrol girişlerinde lojik 
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0 ile aktif edildiği anlamına gelir. Bu dairelerin olmadığı semboller de bu kapıların lojik 1 ile 

aktif edildiğini gösterir. Bu temelde, çeşitli SRAM hücrelerinin içeriğinin seçilmesi için nasıl 

farklı kombinasyonların kullanılabileceğini görmek kolaydır. 

 “n” girişli LUT ile ilgili en önemli özellik herhangi olası n girişli kombinasyonel lojiği 

gerçekleyebilmesidir. Daha fazla giriş eklemek daha karmaşık fonksiyonların gösterilmesini 

sağlar. Ancak, her bir giriş eklediğinizde, SRAM hücrelerinin sayısını iki katına çıkarırsınız.  İlk 

FPGA’ ler 3 girişli LUT tabanlıydı. Şu anki ortak görüş 4 girişli LUT’ların uygun değer olduğu 

yönündedir, fakat yüksek kapasiteli FPGA’ lerde 6 girişli LUT’lara rastlamak mümkündür. 

Geçmişte, bazı entegreler 3 ve 4 girişli LUT’ların karışımı gibi farklı boyutlardaki LUT’ların 

karışımını kullanarak yapılmışlardı. Çünkü, bu en uygun entegre kullanımını vaat etmişti. 

Ancak, tasarım mühendislerinin elinde olan ana araçlardan biri lojik sentezidir. Benzerlik ve 

düzenlilik bir sentez aracının en çok sevdiği şeydir. Bu nedenle, şu anda gerçekten başarılı 

yapıların tamamı sadece 4 girişli LUT’ ların kullanımı temelindedir. Bu, gelecekte tasarım 

yazılımları karmaşıklaşmaya devam ettikçe karışık boyutlu LUT yapılarının tekrar ortaya 

çıkmayacağı anlamına gelmemektedir. 

 Xilinx’in FPGA’ inin temel yapı taşına lojik hücre (lojik Cell: LC) denir. Bir LC, 4 

girişli LUT (16x1 RAM ya da 16 bitlik Shift Register gibi davranabilen), bir MUX ve bir 

Register’ dan oluşmaktadır. Şekildeki gösterim kabaca basitleştirilmiş bir gösterimdir. Register 

şekildeki gibi FF ya da Latch olarak yapılandırılabilir. Saat işaretinin polaritesi  (çıkan kenar 

tetiklemeli ya da düşen kenar tetiklemeli mi) ya da saat enable ve set/ reset sinyalleri (aktif High 

ya da aktif Low) yapılandırılabilir. LUT, MUX ve Register’ a ek olarak LC, aynı zamanda 

aritmetik operasyonlarda kullanmak için bazı özel hızlı elde lojiği gibi diğer elemanları da 

içerir. 

 

Şekil 3.7 LC Yapısı ve Dilim (Slice) Yapısı [12] 
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 Hiyerarşide bir düzey yukarı çıkarsak, iki LC birbirine bağlanarak bir Slice adını alır. 

Xilinx’ in konfigüre edilebilir lojik blok (Configurable Logic Block: CLB) olarak isimlendirdiği 

yapı Altera’ da lojik dizi bloğudur (Logic Array Block, LAB). Örneğin CLB’ leri ele alırsak, 

bazı Xilinx FPGA’lerinin her CLB’ sinde iki Slice bulunurken, diğerlerinde dört Slice bulunur. 

Günümüzde bir CLB programlanabilir ara bağlantılar denizindeki programlanabilir lojik adası 

olarak görülmektedir. Aynı zamanda, CLB’ nin içerisinde bazı hızlı programlanabilir ara 

bağlantılar vardır. Bu ara-bağlantı komşu Slice’ ları birbirine bağlamak için kullanılmıştır.  

 LCàSlice (iki LC’li)àCLB (iki veya dört Slice’ lı) şeklindeki lojik blok hiyerarşisi 

ara-bağlantılardaki eşdeğer hiyerarşi tarafından tamamlanmaktadır. Bir Slice’ daki LC’ ler 

arasında hızlı ara-bağlantı vardır.  CLB ’lerdeki Slice’ lar arasında biraz daha yavaş ara-bağlantı 

ve bunu takip eden CLB’ ler arasında ise ondan biraz daha yavaş ara-bağlantı vardır. Bu fikrin 

amacı, ara-bağlantılardan kaynaklanan aşırı gecikmelerin önlenerek her şeyin birbirine kolayca 

bağlanabilmesini sağlamaktır. 

 

Şekil 3.8 Örnek bir CLB yapısı [12] 

 Bir Xilinx/Virtex CLB’ si, Sekil 8’de gösterildiği gibi, dört adet LC ve gerekli bağlantı 

devresinden oluşur. İki LC ve gerekli bağlantı devresinden oluşan yapıya ise Slice adı 

verildiğini daha önceden söylemiştik. FPGA üzerinde gerçeklenen devrelerin kapladığı alan 

genellikle Slice sayısı cinsinden ifade edilir. Her lojik hücreye ait olan LUT’ un, MUX’ un ve 

Register’ ın kendi veri giriş ve çıkışları olmasına karşın Slice’ ın lojik hücrelerde de yaygın olan 

bir saat, saat enable ve set/reset i vardır. 
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Şekil 3.9 Xilinx-VirtexE CLB’ si [12] 

 Bir LUT, 4 değişkenli herhangi bir fonksiyonu gerçekleyebilir. Bu gerçekleme tablo 

seklinde olduğu için, dört değişkenli ya da daha az değişkene sahip tüm fonksiyonlar FPGA 

üzerinde aynı karmaşıklığa, dolayısıyla aynı kapı gecikmesine sahiptir. 4 den daha fazla 

değişkene sahip fonksiyonlar ise, örnekte gösterileceği gibi, dört değişkenli bloklara 

parçalandıktan sonra LUT’ lar üzerinde gerçeklenir. 

 

 

Şekil 3.10 Xilinx/Virtex Ailesine ait bir Slice’ ın iç yapısı [12] 

Örnek : y = x3 • x2 • x1’ • x0 fonksiyonu tek bir LUT ile gerçeklenirken  
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y = (x5’ • x4 • x3 • x2 • x1’• x0) + (x6’ • x5’ • x3 • x1’ • x0) fonksiyonu aşağıdaki şekilde 

parçalanarak 2 LUT ile gerçeklenebilir. 

y = (x5’ • x4 • x3 • x2 • x1’• x0) + (x6’ • x5’ • x3 • x1’ • x0)  = x4 • x2 • (x5’ • x3• x1’• x0 ) + x6’ • (x5’ • 

x3 • x1’ • x0) 

a= (x5’ • x3• x1’• x0 ) alınırsa; (LUT 1 de gerçeklenir)  

= (x4 • x2 • a ) + (x6’ • a) => a • (x6’ • x4 • x2) (LUT 2 de gerçeklenir) 

 

Şekil 3.11  y= (x5’ • x4 • x3 • x2 • x1’• x0) + (x6’ • x5’ • x3 • x1’ • x0) fonksiyonu 

 FPGA mimarisinde kullanılan LUT’ lar, Boole fonksiyonlarının gerçeklenmesinin yanı 

sıra, 16x1 bitlik bir RAM olarak da kullanılabilmektedir. Aynı Slice içerisindeki iki LUT 

birlikte kullanılarak 32x1 bitlik RAM ya da 16x1 bitlik iki portlu RAM gerçeklenebilir. 

Bunların yanı sıra, bir LUT, 16-bitlik silme (reset) özelliği olmayan Shift Register olarak da 

kullanılabilir. Slice içerisindeki F5 MUX’ u, iki LC’ in çıkısını birleştirerek bir Slice içerisinde; 

5-değişkenli herhangi bir Boole fonksiyonun, 4 girişli bir MUX’ un ya da 9-değişkenliye kadar 

bazı fonksiyonların gerçeklenmesini sağlar. Benzer şekilde F6 çoklayıcısı, aynı CLB 

içerisindeki iki Slice’ ın F5 çoklayıcısı çıkışlarını birleştirerek bir CLB içerisinde; 6-değişkenli 

herhangi bir Boole fonksiyonunun, 8 girişli bir çoklayıcının ya da 19-değişkenliye kadar bazı 

fonksiyonların gerçeklenmesini sağlar. 

3.1.1.2. MUX tabanlı yapı 

 Çoğullayıcı tabanlı yapıda ise CLB’ ler MUX’ ların çeşitli düzenlemelerinden ve 

olabildiğince az AND ve OR gibi lojik kapılardan oluşur. Ardışıl devrelerin gerçeklenebilmesi 

amacıyla MUX tabanlı FPGA’ lerin içinde tutucu (Latch) ve flip flop gibi elemanlar 

kullanılabilmektedir. 
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Şekil 3.12 MUX tabanlı CLB yapısı 

 Bir zamanlar, MUX tabanlı yapılarla en iyi sonucun alındığı söylenirdi. Ancak bu 

sonuçların nasıl daha iyi olduğu açıklanmazdı. Aynı zamanda, MUX tabanlı yapıların kontrol 

lojiğini gerçeklemede (eğer bu giriş “true” ve bu giriş “false” ise şu çıkışı “true” yap gibi…) 

avantajı olduğu da söylenir. Buna karşın, bu yapıların bazıları yüksek hızlı elde lojik zincirlerini 

sağlamazlar.  

 MUX tabanlı yapılara örnek olarak ACTEL firmasının ürettiği FPGA’ ler verilebilir. Bu 

FPGA’ ler de LUT tabanlı yapılar gibi yatay olarak dizilmiş lojik modüllerden (Logic Module: 

LM) ve bu modül dizilerinin arasında bulunan bağlantı yollarından oluşmaktadırlar. ACTEL 

firmasının 42MX ailesine ait bir FPGA’ i incelenirse bu yapı 3 farklı tipte lojik modül 

içermektedir; bunlar kombinezonsal modül (C-module), ardışıl modül (S- module) ve kod 

çözücü modül (D module). Kombinezonsal modül ile Boole fonksiyonları, ardışıl modül ile bir 

ardışıl devre gerçeklenebilir. Kod çözücü modül ile 7 girişli kod çözme işlemi 

gerçekleştirilebilir. Ayrıca ACTEL FPGA’ leri içerisinde SRAM modülleri de dağıtık bir 

şekilde bulunmaktadır.  
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Şekil 3.13 C tipi, S tipi ve D tipi modüller [15] 

3.1.2. IOB yapısı 

 Giriş/Çıkış blokları, kılıf bacaklarıyla tasarım için kullanılan birimler (CLB, Blok 

RAM) arasında bağlantı kurar. FPGA’ lerin giriş çıkış blokları; giriş, çıkış veya giriş-çıkış 

olarak kurgulanabilir. Sekiz “Kenar Kümesi (Bank)” halinde yerleştirilen giriş çıkış blokları, 

kümeler halinde, farklı işaretleşme standartlarını destekleyecek şekilde kurgulanabilir. Şekilde 

Virtex-E yongasının giriş çıkış bloklarının yerleşimi ve bir giriş çıkış bloğunun ayrıntılı seması 

gösterilmiştir. 



26 
 

 

Şekil 3.14 Virtex Giriş/Çıkış Bloğu ve Kenar Kümelerinin yerleşimi [12] 

3.1.3. CLB’ ler arası bağlantılar 

 Giriş/ Çıkış bloklarıyla tasarım blokları ve tasarım bloklarıyla yine tasarım blokları 

arasındaki bağlantılar, bağlantı elemanları ile sağlanır. FPGA içerisindeki bağlantı elemanları, 

CLB’ ler arasına satırlar ve sütunlar halinde yerleştirilmiş bağlantı hatları ve bu hatların kesişim 

noktalarına yerleştirilmiş bağlantı matrislerinden oluşur. Şekilde bir FPGA yongası içerisindeki 

bağlantı elemanları gösterilmiştir. 

 

Şekil 3.15 FPGA  Bağlantı Elemanı [12] 

3.2. FPGA’ lerin Programlama Teknolojileri 

 Günümüzde FPGA’ lerin üretim safhasında kullanılan başlıca iki çeşit programlama 

teknolojisi bulunmaktadır: SRAM ve Anti-Fuse. Her iki teknolojinin birbirlerine göre avantaj ve 
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dezavantajları bulunmaktadır. Bunlar dışında Altera firması tarafından MAX ailesi FPGA’ lerde 

kullanılan EEPROM teknolojisi bulunmaktadır.  Bu tip FPGA’ lerin da tekrar 

programlanabilmeleri için devreden sökülerek ultraviyole ışınlarına tutulması gerekmektedir. 

Günümüzde en çok kullanılan programlama teknolojileri SRAM ve anti-sigorta 

programlamadır.  

3.2.1. SRAM teknolojisi 

Bir SRAM hücresi 6 adet transistörden oluşmaktadır. Sırt sırta pozitif geri beslemeli bağlanmış 

iki evirici ve bunların çıkışında yer alan iki adet geçiş transistöründen oluşur. Bu eviriciler veri 

tutucu olarak iş yaparken geçiş transistörleri ise seçme işlemi için kullanılırlar.  

 

 

Şekil 3.16 SRAM yapısı [12] 

 SRAM hücreleri tarafından kontrol edilen geçiş transistörleri, iletim kapıları ve MUX’ 

lar yapılabilmektedir. Geçiş transistörleri kullanan uygulamalarda RAM hücresi transistörün 

iletimde ya da kesimde olmasını sağlar. MUX’ lu yapılarda ise RAM hücresi MUX’ un girişinin 

hangi çıkışa bağlanacağını kontrol eder. 
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Şekil 3.17 SRAM hücrelerinin kullanımı [12] 

FPGA’ lerin çoğu SRAM konfigürasyon hücresi tabanlıdır. Bu da tekrar tekrar konfigüre 

edilebilir anlamına gelir. 

 Bu teknolojinin üstünlüğü, devrenin tekrar düzenlenmesinin hızlı olmasıdır. 

Programlama işlemi, yalnızca SRAM üzerinde saklanan verilerin değiştirilmesi ile mümkün 

olduğundan tasarımlar tamamlandıktan hemen sonra FPGA’ leri programlamak ve test etmek 

mümkündür. Böylece, tasarım sırasında oluşacak yeni ihtiyaçları ve standart değişikliklerini 

karşılamak, hataları tespit etmek ve düzeltmek, fabrikasyon zamanı ve fazla maliyet getirmeden 

mümkün olmaktadır. Ayrıca, sisteme ilk enerji verildiğinde, FPGA başlangıçta kendi kendine 

test ya da kart/sistem testini gerçekleştirmek için programlanabilir. Ek olarak, SRAM hücreleri 

tamamen CMOS teknolojisi kullanılarak üretilirler, böylece, bu malzemeleri üretmek için özel 

işlemlere gerek kalmaz 

En önemli zayıf yanı ise RAM hücrelerinin gerektirdiği tümdevre alanıdır. Ayrıca uçucudurlar, 

yani devrenin gücü kesildiği anda programlanmış hücrelerdeki veriler kaybolur. Devreye her 

güç uygulandığında SRAM hücrelerinin tekrar programlanması gerekmektedir. Bu, ya özel 

harici bir hafıza entegresi (bu ekstra maliyet demektir) ya da bir mikroişlemci gerektirir. 



29 
 

 SRAM-tabanlı entegrelerdeki diğer bir unsur tasarımlardaki IP (Intellectual Property)’ 

nin korunmasının zor olmasıdır. Çünkü, entegreyi programlamak için kullanılan konfigürasyon 

dosyasının harici bir hafızada saklanır. Şu an, konfigürasyon dosyasının içeriğini okuyacak ve 

ilgili şematik ya da netlist gösterimini üretecek uygun ticari bir araç bulunmamaktadır. 

Dünyada, “tasarım IP”’sinin ele geçirilmesi konusunda uzmanlaşan art niyetli mühendislik 

şirketleri de bulunmaktadır. Aynı zamanda, paranın içerde kalması için hükümetlerinin IP 

hırsızlığına göz yumduğu ülkeler de var.  

 Hazır şekilde bulunan teknolojiyi kullanarak bir devre bordu alıp bir tester’ a koyup 

hızlı bir şekilde bütün netlisti açmak oldukça kolaydır. Bu netlist daha sonra kartı çoğaltmak 

için kullanılabilir. Şu aşamada kalan tek iş boot PROM (ya da EPROM, EEPROM vb.)’undan 

FPGA konfigürasyon dosyanızı kopyalamaktır ve böylece, bütün tasarımın bir kopyasına sahip 

olmuş olurlar. İşin iyi bir yanı, bugünün bazı SRAM-tabanlı FPGA’ lerin “bitstream 

encryption” (bit akışı şifrelemesi)’ ni desteklemeleridir. Bu durumda, son konfigurasyon datası 

harici hafızaya yüklenmeden önce şifrelenir. Bazı ilgili lojikle birlikte, bu anahtar gelen 

şifrelenmiş konfigürasyon bit akışının şifresinin yükleme sırasında çözülmesini sağlar. 

Şifrelenmiş bit akışını yükleme FPGA’ in geri okuma yeteneğini otomatik olarak kaldırır. Bu, 

geliştirme sırasında şifrelenmemiş konfigürasyon datasının kullanacağınız ve daha sonra, üretim 

aşamasında geçtiğinizde şifrelenmiş datayı kullanacağınız anlamına geliyor. Bu tasarının asıl 

dezavantajı, sistemden enerji kesildiğinde FPGA’ in şifre anahtarı kaydedicisindeki içeriğin 

korunması için devre kartı üzerinde bir yedekleme bataryasının gerekli olmasıdır. Bu bataryanın 

ömrü yıllarca ya da on yıllarca sürecektir, çünkü entegredeki sadece bir kaydediciyi 

besleyecektir, ancak, boyutu, ağırlığı, karmaşıklığı ve kartın fiyatını artıracaktır. 

3.2.2. Anti-Sigorta (Antifuse) teknolojisi 

 Bir anti-sigorta yüksek empedans konumunda iken (100M-Ohm ile 1G-Ohm (Via 

teknolojisi ile) arası değerler) programlama gerilimi uygulanarak düşük empedans 

(sigortalanmış) (100-Ohm lar mertebesi) durumlarına programlanabilir. RAM teknolojisinden 

daha düşük maliyeti olmasına karşılık bir kere programlanabilen tümdevrelerdir. Dolayısıyla ilk 

örnek üretim için pahalı bir çözüm olmaktadırlar. 
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Şekil 3.18 Anti-Fuse teknolojisiyle programlama [15] 

 Programlanırken sistemde bulunan SRAM-tabanlı entegrelerin aksine, Anti-Fuse tabanlı 

entegreler özel bir programlayıcı kullanarak offline olarak programlanır. Anti-Fuse tabanlı 

FPGA’lerin çeşitli avantajları vardır. Bu entegreler nonvolatile’ dır (yani enerji kesildiğinde bile 

konfigürasyon datası kalır). Bu da sisteme enerji verilir verilmez çalışmaya hazır halde oldukları 

anlamına gelir. Bunu yanında, bu entegreler konfigürasyon datasını saklamak için harici bir 

hafızaya ihtiyaç duymazlar. Bu da ek malzeme ve kart üzerindeki yerden tasarruf edilmesini 

sağlar. 

 Bu entegrelerin ara-bağlantı yapıları “rad hard” (Radiation Hardening)’ dır. (Rad hard 

yöntemleri: fiziksel (kaplama, özel wafer maddesi (SiO, Safir),DRAM), lojik (ECC, 3-

redundant element, watchdog)) Bu, bu entegrelerin radyasyonun etkilerine karşı oldukça 

bağışıklığı olduğu anlamına gelir. Bu, özellikle askeri ve uzay uygulamalarını ilgilendiren bir 

özelliktir. Çünkü, SRAM-tabanlı malzemelerdeki konfigürasyon hücresinin durumu eğer o 

hücre radyasyonla karşılaşırsa (ki uzayda çok fazla radyasyon mevcuttur) bozulur. Anti-Fuse bir 

kez programlandığında, bu şekilde alt üst olmaz. 

 Bu entegrelerdeki flip-flopların radyasyona karşı hassas olduğuna dikkat etmek gerekir. 

Bu durumda, radyasyonu yoğun olan ortamlarda yongaların flip-floplarının  “triple redundancy 

design” tarafından korunması gerekir. Bu şu anlama gelir: her kaydedicinin üç kopyası yapılır 

ve herhangi bir aksaklık durumunda bu üç kaydedicinin içeriklerinin çoğunluğuna bakarak karar 

verilir. Örneğin iki kaydedici “0” ve bir kaydedici “1” içeriyorsa, içeriğin “0” olduğuna karar 

verilir ya da tam tersi yapılır.  

 Ancak, Anti-Fuse tabanlı FPGA’lerin en önemli avantajı belki de konfigürasyon 

datasının içlerinde derine gömülmesidir. Programlayıcının bu datayı okuması olasıdır, çünkü bu, 
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aslında programlayıcı bu şekilde çalışır. Her Anti-Fuse işletilirken, programlayıcı o elemanın 

tamamen programlanıp programlanmadığını belirlemek için test etmeye devam eder. Daha 

sonra diğer anti-Fuse’ e geçer. Dahası, programlayıcı konfigürasyonun başarılı bir şekilde 

çalışıp çalışmadığını otomatik olarak doğrulamak için kullanılabilir (50 milyon programlanabilir 

elementten bahsedildiğinde bunu yapmaya değer). Bunu yapmak için, programlayıcının anti-

Fuse’ lerin gerçek durumlarını okuma ve konfigürasyon dosyasında tanımlanan durumlarla 

karşılaştırabilmesi gerekir. Buna rağmen, entegre bir kez programlandığında, programlama 

datasının daha sonra okunmasını önlemek amacıyla özel bir güvenlik anti-Fuse ’u koyulabilir. 

Üstleri kaldırılsa bile programlanmış ve programlanmamış anti-Fuse’ ler aynı görünür. Bütün 

anti-Fuse’ lerin iç metal tabakalara gömülmesinden dolayı art niyetli mühendislerin tasarımı ele 

geçirmeleri imkansız hale gelir. Anti-Fuse teknolojisi asıl üretim işlemi tamamlandıktan sonra 

yaklaşık üç ek proses adımının kullanımını gerektirir. Anti-Fuse tabanlı entegrelerin asıl 

dezavantajı OTP (bir kez programlanabilir) olmalarıdır. Bu da bu entegrelerin geliştirme ve ilk 

örnek hazırlamada tercih edilmemelerine neden olur. 

3.2.3. EEPROM/FLASH teknolojisi 

 EEPROM ya da FLASH-tabanlı FPGA’ ler SRAM-tabanlı FPGA’ lere benzerdir. 

Konfigürasyon hücreleri uzun bir Shift Register zinciri şeklinde bağlanmıştır. Bu entegreler 

programlayıcı kullanılarak offline olarak konfigüre edilebilir. Alternatif olarak, bazı sürümleri 

in-system (sistem içi) programlanabilir (ISP)’ dir, ancak, programlama süreleri SRAM-tabanlı 

entegrelere göre üç kat daha uzundur. Bir kez programlandığında içerdikleri data kalıcıdır.  

3.2.4. Hybrid FLASH-SRAM teknolojisi 

 FPGA’ lerde, bazı üreticiler programlama teknolojilerinin gizemli birleşimlerini 

önerirler. Örneğin, her konfigürasyon elemanının FLASH (ya da EEPROM) hücresi ile SRAM 

hücresinin birleşiminden oluşturulduğu bir entegreyi ele alın. Bu durumda, FLASH elemanları 

tekrar programlanabilir. Bu durumda, sisteme enerji verildiğinde, FLASH hücrelerinin içeriği 

ilgili SRAM hücrelerine paralel şekilde kopyalanır. Bu teknik, antifuse entegreler gibi kalıcılık 

kazandırır. Bu da enerjinin sisteme verilmesiyle entegrenin hemen hazır durumda olması 

demektir. Ancak antifuse-tabanlı entegreden farklı olarak, daha sonra entegreyi tekrar konfigüre 

etmek için SRAM hücreleri kullanılabilir. Alternatif olarak, entegre FLASH hücrelerini 

kullanarak ya sistemdeyken ya da offline olarak programlayıcıyla tekrar konfigüre edilebilir. 

3.2.5. SRAM ve Anti-Sigorta teknolojilerinin karşılaştırılması 

 Anti-sigorta teknolojisinde programlama bağlantılarının dirençleri 100Ω mertebelerinde 

iken SRAM teknolojisinde programlama bağlantıları 1kΩ mertebelerindedir. Dolayısıyla, anti-
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sigorta FPGA’ ler daha yüksek performans göstermektedirler. Ayrıca, anti-sigorta FPGA’ lerin 

lojik hücre yapıları SRAM teknolojisine göre daha az silisyum alanı gerektirir. Ancak, anti-

sigorta FPGA’ ler sadece bir kez programlanabilmektedirler. SRAM FPGA’ ler ise bir EPROM 

veya dış ortama bağlantıyı sağlayabilen bir konektör yardımıyla sistem içerisinde 

programlanabilmektedirler. Ürünün çalıştığı ortamda güncellenebilmesi SRAM FPGA’ lerin 

seçilmesindeki en önemli etkendir. Tablo 1’de ticari amaçlı kullanılan bazı FPGA’ ler ve Tablo 

2’de FPGA programlama teknolojilerine ait karşılaştırmalar verilmiştir. 

Çizelge 3.1 Bazı ticari FPGA’ ler 

Üretici Mimari Lojik Blok Tipi Programlama Teknolojisi 

Actel Satır Bazlı Çoğullayıcı Bazlı Anti-Sigorta 

Altera Hiyerarşik PLD Doğruluk Tablosu Statik RAM 

QuickLogic Simetrik Dizi Çoğullayıcı Bazlı Anti-Sigorta 

Xilinx Simetrik Dizi Doğruluk Tablosu Statik RAM 

Çizelge 3.2 FPGA’ lerin programlanma teknolojileri 

Programlama 

Teknolojisi 

Uçuculuk Tekrar 

Programlanabilme 

Silisyum 

Alanı 

R (Ω) C (ff) 

Statik RAM Evet Devre Üzerinde Büyük 1-2 K 10-20 

PLICE Anti-Sigorta Hayır Yok Küçük 300-500 3-5 

EPROM Hayır Devre Dışında Küçük 2-4 K 10-20 

EEPROM Hayır Devre Üzerinde 2*EPROM 2-4 K 10-20 

3.3. FPGA İçerisinde Yer Alan Özel Ara yüzler ve Bloklar 

3.3.1. Dağıtık RAM’ ler ve shift registerlar  

 Önceden de belirtildiği gibi, her 4 girişli LUT 16x1 RAM olarak kullanılabilir. Daha 

önceden verilen CLB yapısı için dört Slice konfigürasyonunu düşünerek, bir CLB’ deki bütün 

LUT’lar birlikte Tek-port 16 x 8 bit RAM, 32 x 4 bit RAM, 64 x 2 bit RAM, 128 x 1 bit RAM 

ya da Çift-port 16 x 4 bit RAM,32 x 2 bit RAM, 64 x 1 bit RAM gerçeklemek için konfigüre 

edilebilir. 

 Alternatif olarak, her 4 bitlik LUT 16 bitlik Shift Register olarak kullanılabilir. Bu 

durumda, slice içersindeki lojik hücreler arasında ve Slice’ ların kendi aralarında ayrılmış özel 



33 
 

bağlantılar vardır. Bu, sıradan bir LUT’ un çıkışını (16 bitlik Register içersinde seçilen bitin 

içeriğini görüntülemek için kullanılabilir) kullanmadan bir Shift Registerin son bitini diğer Shift 

Register ın ilk bitine bağlanmasını sağlar. Bu da tek bir CLB içersindeki LUT’ların 128 bite 

kadar çıkan bir Shift Register ı gerçeklemek için birlikte konfigüre edilmelerini sağlar.   

3.3.2. Hızlı elde zincirleri 

 Modern FPGA’ lerin hızlı carry zincirlerini gerçeklemek için gerekli olan özel lojik ve 

ara-bağlantıları içermeleri kilit bir özelliktir. Önceki kısımda verilen CLB’ ler bağlamında, her 

LC özel carry lojik içerir. Bu, her slice’ daki iki LC arasında, her CLB’ deki slice’lar arasında 

ve CLB’ lerin kendi aralarında ayrılmış ara-bağlantılar vasıtasıyla tamamlanır. Bu özel carry 

lojik ve ayrılmış bağlantılar, sayıcılar ve aritmetik fonksiyonlar (toplayıcılar gibi) gibi lojik 

fonksiyonların performansını artırır. Hızlı carry zincirlerinin olması DSP gibi uygulamalar için 

kullanılan FPGA’ lerde kolaylık sağlar. 

3.3.3. Gömülü RAM’ler 

 Birçok uygulama hafıza kullanımına ihtiyaç duyar. Bu nedenle, FPGA’ ler şimdi, e-

RAM ya da Blok RAM olarak adlandırılan oldukça büyük gömülü RAM’ ler içerir. 

Malzemenin yapısına bağlı olarak, bu RAM blokları entegrenin çevresine yerleştirilebilir, çipin 

yüzeyine dağıtılabilir ya da kolonlar halinde yerleştirilebilir. Entegresine bağlı olarak, böyle bir 

RAM birkaç binden onlarca binlik bite kadar data alabilir. Dahası, bir entegre, onlarcadan  

yüzlerceye kadar bu RAM bloklarından içerebilir. Böylece, birkaç yüz bin bitten birkaç milyon 

bite kadar toplam saklama kapasitesi sağlarlar. Her bir RAM bloğu bağımsız olarak 

kullanılabilir ya da çoklu bloklar daha büyük blokları oluşturmak için birlikte bağlanabilirler. 

Bu bloklar farklı amaçlar için kullanılabilirler. Örneğin, standart tek ya da çift-port RAM 

oluşturmak için, FIFO (first-in first-out) fonksiyonları vb… 
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Şekil 3.19 Gömülü RAM yapısı [12] 

3.3.4. Gömülü çarpıcılar, toplayıcılar, MAC’ lar 

 Çarpıcılar gibi bazı fonksiyonlar eğer çok sayıda programlanabilir lojik bloğu birlikte 

bağlayarak gerçeklenirse niteliği gereği yavaş olurlar. Bu fonksiyonlar birçok uygulamada 

gerekli oldukları için birçok FPGA’ in özel fiziksel olarak bağlı çarpıcı (multiplier) blokları 

vardır. Bunlar tipik olarak gömülü RAM bloklara yakın mesafede yerleştirilmişlerdir. Çünkü bu 

fonksiyonlar genellikle birbirleriyle bağlantılı olarak kullanılırlar. Benzer şekilde, bazı FPGA’ 

lerin ayrılmış toplayıcı blokları vardır. DSP tipi uygulamalarda çok yaygın olarak kullanılan bir 

işlem de multiply-and-accumulate (MAC) (çarp-ve-biriktir) şeklinde adlandırılır. Bu fonksiyon 

adından da anlaşılacağı gibi iki sayıyı birbiriyle çarpar ve sonucu bir akümülatörde saklanan 

toplama ekler. Eğer çalıştığınız FPGA sadece gömülü çarpıcıları destekliyorsa, bu fonksiyonu 

gerçeklemek için çarpıcıyla bir grup programlanabilir lojik bloktan oluşan bir toplayıcıyı 

birbirine bağlamak zorundasınız. Sonuç ise bazı ilgili flip-floplarda, bir blok RAM’ de ya da bir 

grup dağıtılmış RAM’ de saklanır. Eğer FPGA’ lerin gömülü toplayıcıları da olsa her şey daha 

kolay olurdu. Bazı FPGA’ ler MAC’ ları gömülü fonksiyonlar olarak sağlarlar.  
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3.3.5. Diğerleri 

 Günümüzde FPGA firmaları büyük rekabet içerisindedirler. Bu yarışta ön plana çıkmak 

için firmalar FPGA’ lerinin özelliklerini her gün arttırmaktadır. Bunlar; içerdiği lojik kapı ve 

bellek kapasitesi, maksimum çalışma frekansı, güç tüketimi, ısınma, çevresel bileşenler için 

sahip olduğu ara yüzler, işaret uyumluluğu, PCB tasarımı sırasındaki kolaylıklar, konfigüre 

edilebilme kolaylığı, güvenlik gibi özelliklerdir.  

 Xilinx FPGA’ ler içerisinde DCM (Digital Clock Manager) adı verilen bir yapı saat 

işaretinin yonga içerisindeki dağıtımını ve saat işaretine özel birçok ihtiyacı karşılamaktadır. 

Bunlar saat işaretindeki zayıflama, kayma, frekans sentezleme, faz kaydırma, farklı saat 

işaretleri üretme gibi özelliklerdir.  

 Xilinx firmasının FPGA dünyasına kattığı önemli özelliklerden birisi de PowerPC 

tabanlı işlemcileri FPGA içerisine çekirdek şeklinde gömülebilmesidir. Şuanda 550MHz ile en 

hızlı Xilinx FPGA ailesi olan Virtex5 içerisine PowerPC 440 işlemcisi “hard core” olarak 

gömülebilmektedir. Aynı şekilde 450 MHz de çalışabilen Virtex 4 Pro ailesi ile de aynı FPGA 

içerisine 2 adet PowerPC 405 işlemci çekirdeği yerleştirilebilmektedir. Bu işlemcilerin FPGA 

içerisinde bulunmasıyla birlikte Co-Design adı verilen yapılar oluşturulabilmektedir. Böylece 

ağır aritmetik işlemler donanım tabanlı gerçeklenirken durum makinesi gerektiren protokol 

işleri işlemci üzerinde koşan yazılımla gerçeklenebilir.   

3.4. FPGA’ lerın Programlanması 

ü Devrenin sözle tanımı yapılır.  

ü Şematik veya HDL kullanılarak tasarım 

ü Devreye ait standart bağlantı listesi (Netlist)  

ü Fonksiyonel benzetim (Functional Simulation) 

ü Lojik sentezleme 

ü Kullanılacak FPGA seçimi 

ü Sentezleme işleminde varsa, devreye ait lojik kısıtlamalar (I /O, zamanlama, 

yerleştirme, saat frekansı, kritik yollar,..) kullanıcı kısıtlama dosyası (user constraints 

file, Xilinx) 

ü Lojik sentezleyici ile istenilen fonksiyonların gerekli lojik indirgemeleri (logic 

optimization) 
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ü Elde edilen lojik fonksiyonlar FPGA içerisindeki lojik bloklarla eşleştirilmesi işlemi 

(technology mapping) kapı seviyesinde bir bağlantı listesi oluşur.  

ü Teknoloji haritalaması sırasında, kullanıcı kısıtlama dosyası da kullanılarak zamanlama 

gereksinimi karşılanmak amacıyla gerekirse daha fazla lojik eleman kullanımı.  

ü Sentezleme sonrasında, yerleştirme ve yollandırma (placement and routing) (Bu 

adımda, devre fonksiyonları ile eşleştirilmiş lojik bloklar FPGA içerisinde uygun 

yerlere yerleştirilir ve bu bloklar arasındaki bağlantılar oluşturulur. Lojik yolların daha 

kısa olması amacıyla birbirleriyle ilişkili CLB’ ler yakın yerleştirilir. Yollandırmada ise 

bağlantılar uygun şekilde seçilir. Örneğin, tasarımın birçok alanında bir işarete ihtiyaç 

varsa en küçük gecikmeyi sağlamak amacıyla uzun bir yol kullanılır. 

ü Bu aşamadan sonra kapı seviyesinde benzetimin gerçekleştirilmesi uygun olacaktır. 

Çünkü artık bütün CLB’ lere (LUT veya çoğullayıcılar ve flip flop’ lara) ve yollandırma 

bağlantılarına ait gecikmeler gerçeğe çok yakın olarak elde edilmiştir. Bu gecikmeler de 

eklenerek devrenin benzetimi yapıldığında, zamanlama ve hız açısından kritik yollar 

saptanabilir. Yerleştirme ve yollandırma sonrası benzetimlerde istenilen sonuçlar elde 

edildikten sonra FPGA’ nın programlanması aşamasında kullanılacak bit dizisi, 

üreticinin sağladığı yazılımla elde edilir. FPGA’ nın uygun donanım kullanılarak 

programlanmasıyla tasarım tamamlanır. 
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Şekil 3.20 Tasarım Akışı 

Sözle Tanım 

Şematik / HDL 

Derleme 

Fonksiyonel Benzetim 

Tasarım  
Doğru mu? 

Lojik Sentezleme 

Yerleştirme & Yollandırma 

Kapı Seviyesinde Benzetim 

Tasarım 
Doğru mu? 

FPGA Programlanması 

Evet 

Evet 

Hayır 

Hayır 
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4. İŞLEMCİ TASARIMI 

 Bu tez çalışmasında Von Neumann mimarisinde tasarlanmış olan işlemcinin blok 

diyagramı aşağıdaki şekilde görülmektedir. Tasarlanan işlemci her hangi bir konfigürasyonda 

64kx16 ’ya kadar bellek elemanını (RAM, ROM, EEPROM…) doğrudan adresleyebilmektedir. 

İşlemcide, kullanılacak RAM haricinde, işlemci içerisindeki 32 adet 16 bitlik saklayıcıları 

içeren ve RAM’ den daha hızlı işlem yapılabilen bir saklayıcı dizisi (register array) 

bulunmaktadır. A (akümülatör) saklayıcısı ise saklayıcı dizisinden ayrı olarak, karalama 

yapmak için tasarıma eklenmiştir. Aşağıda işlemciye ait blok diyagramı ve modüllere ait 

açıklamalar görülmektedir. 

 

Şekil 4.1 Tasarlanan işlemcinin blok görünümü. 
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4.1. Tasarlanan İşlemcinin Donanımsal Bileşenleri 

 Yukarıdaki blok diyagramda görülen lojik devrelere ait kısa açıklamalar aşağıda 

verilmiştir. 

A1 Çoğullayıcı (A1 MUX):  

 Adres hattının, program belleğindeki bir sonraki komutu okumak için program sayacı 

(program counter) tarafından veya işlenen komutun parametresi olan veri okuma – yazma 

işlemleri için gerekli adresleri içeren ilgili saklayıcılar tarafından kullanılmasını sağlayan 

çoğullayıcıdır. 

A2 Çoğullayıcı (A2 MUX): 

  Doğrudan adresleme ve dolaylı (indirect) adresleme arasında geçişi sağlayan 

çoğullayıcıdır. 

Bellek Veri Saklayıcısı (RAMDATA REGISTER): 

  RAM’ den okunan verinin yapılacak işlemde kullanılmak üzere kaydedildiği 

saklayıcıdır. 

Sabit İşlenen Saklayıcısı (LITERAL REGISTER): 

  Programdan okunan sabit işlenen değerinin kaydedildiği saklayıcıdır. 

Bellek Adres Saklayıcısı (RAMADDR REGISTER): 

  Programdan okunan RAM adresinin kaydedildiği saklayıcıdır. 

Komut Saklayıcısı (OPCODE REGISTER):  

 Bellekten okunan komutun kaydedildiği saklayıcıdır. 

X ve Y Çoğullayıcıları (X-MUX ve Y-MUX):  

 ALU girişlerine herhangi bir veri saklayıcısı içindeki bilginin getirilmesini sağlayan 

çoğullayıcılardır. 

Akümülatör (A REGISTER): 

  Hızlıca işlem yapmak için, karalama olarak kullanılabilecek saklayıcıdır. 

Aritmetik Lojik Birim (ALU):  

 Aritmetik lojik işlemlerin yapıldığı birimdir.  Bir işlem sonucunun oluştuğu her komut 

ALU’ dan geçer. ALU’ nun hangi fonksiyonu yerine getireceğine kontrol lojiği karar verir. 
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4.1.1. Kontrol lojiği tasarımı 

 İşlemcinin, komutları yorumlayıp, istenilen şekilde gerçekleştirmesini sağlayan lojik 

devredir. Kontrol lojiğine ait durum akış diyagramı Şekil 2’de görülmektedir. Basit komutların 

işlenebilmesi için kontrol lojiğinde beş adet durum bulunmaktadır. Bunlara ek olarak çarpma ve 

bölme işlemlerinin yapıldığı durum dmd, kesme durumu ve halt komutu işlendiğinde, 

işlemcinin kesme gelinceye kadar bekleyeceği durum tasarıma eklenmiştir. İşlemci, ilk çalışma 

anından ya da reset’ ten sonra ilk saat darbesinin yükselen kenarı ile birlikte D0 durumuna gelir. 

Bu durumda saat darbesinin alçalan kenarı ile işlenecek komut kaydedilir ve program sayıcı bir 

arttırılır. Bu durumdan sonra saat darbesinin yükselen kenarı ile gidilecek durum, işlenmekte 

olan komutun, işlemde kullanacağı ilk verinin tipine bağlıdır. Bu veri A saklayıcısı, saklayıcı 

dizisindeki (register array) bir saklayıcı, RAM’ deki bir saklayıcı veya programdan okunan 

sabit bir veri olabilir. Bu veri A saklayıcısından veya saklayıcı dizisinden okunacaksa, veriye 

ulaşmak için saat darbesi gerekmediğinden, başka bir duruma geçilmez. Veri RAM den 

okunacaksa, önce programda belirtilen RAM adresini okumak için D1 durumuna, sonra okunan 

adresteki veriyi okumak için D2 durumuna geçilir. Programdan sabit değer okumak için ise D3 

durumuna geçilir. Bu aşamadan sonra işlenmekte olan komut bir kontrol komutu (control) veya 

tek saklayıcı verisi ile gerçekleştirilen (BxF) bir komut ise doğrudan D4 durumuna geçilir. Eğer 

komut iki saklayıcı verisini gerektiren bir komut ise D0 durumundan sonraki işlem ikinci 

değişken için aynen tekrarlanır. Komutta kullanılacak bütün veriler işlemci içerisindeki ilgili 

saklayıcılara kaydedildikten sonra, işlem sonucunu istenilen saklayıcıya kaydetmek için D4 

durumuna geçilir. D4 durumundan sonra eğer kesme geldiyse kesme durumuna geçilir ve ilgili 

kesme vektörü program sayıcıya kaydedilir. Kesme yoksa ve işlenen komut halt komutuysa, 

işlemci halt durumuna gelir ve kesme gelinceye kadar bekler. Bu işlemler bittikten sonra bir 

sonraki komutu okumak için D0 durumuna geri dönülür. FPGA ile gerçeklenecek işlemcinin 

maksimum saat frekansını arttırmak ve işlemcinin FPGA içerisinde kapladığı alanı azaltmak 

için, çarpma ve bölme komutları, dmd durumuna girilerek, normal komut icra süresinden 16 

saat darbesi fazla harcanarak icra edilmektedir. Dallanma komutları programdaki bir etiketin 

adresine bağlı olarak değil de işlenmekte olan komut ile etiket adresi arasındaki farka göre 

çalışmaktadır.. Böylece program parçaları bellekte yer değiştirseler bile tekrar derlenmeden 

çalışabilmeleri sağlanmıştır.  
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Şekil 4.2 Kontrol lojiği durum akış diyagramı 
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4.1.2. Saklayıcı dizisi 

 İşlemci içerisindeki saklayıcı dizisi, işlemcinin çalışması ve konfigürasyonu için 

gereken kontrol, giriş/çıkış saklayıcıları ve verileri geçici olarak tutmak için kullanıcıya 

bırakılan saklayıcıları içerir. Aşağıdaki tablo kontrol saklayıcılarını göstermektedir. 

Çizelge 4.1: Saklayıcı Dizisi 

ADRES ADI 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 
00 PC                 

01 STATUS           A<B A>B A=B V C Z 

02 INDEX                 

03 PORTA                 

04 PORTB                 

05 INOUTA                 

06 INOUTB                 

07 MULHBIT                 

08 DIVREM                 

09 INTCON IM IE I3E I2E I1E I0E I3M I2M I1M I0M       

0A I0VECTOR                 

0B I1VECTOR                 

0C I2VECTOR                 

0D I3VECTOR                 

0E - 1F REG(x) Kullanıcıya ayrılmış saklayıcılar 

Program Sayacı (Program Counter (PC)): 

  Program hafızasındaki işlenecek komutun adresini tutan ve program hafızasından veri 

okunduğunda içindeki değer bir artan saklayıcıdır. Dallanma komutlarında program sayacı 

işlenmek istenen alt programın başlangıç adresinin değerini almaktadır ve komut işlendiği 

andaki değeri yığına kaydedilmektedir. Alt programdan geri dönerken program sayacına 

yığındaki değer geri yüklenmektedir. 

Durum Saklayıcısı (Status):  

 Yapılan işlemlerle ilgili bayrakların bulunduğu saklayıcıdır. Sıfır bitinden başlayarak 

sırasıyla Z, C, V, A=B, A>B ve A<B bayrakları bu saklayıcının içindedir. 

 

 



43 
 

Sıralama Saklayıcısı (Index): 

  Dolaylı adresleme modunda erişilmek istenen RAM adresinin kaydedildiği 

saklayıcıdır. 0xFFFF fiziksel adresi ile işlem yapıldığında bu saklayıcının içerisindeki değer 

işlem yapılacak ram adresi olarak kullanılır. 

İskele Saklayıcıları (Porta & Portb):  

  A ve B iskelelerine erişmek için kullanılan saklayıcılar.  

Yönlendirme Saklayıcıları (Inouta & Inoutb):  

 A ve B iskelelerindeki her bir bitin bir birinden ayrı olarak giriş veya çıkış olarak 

ayarlanmasını sağlayan saklayıcılardır. İskelelerdeki her bir bit için 0 değeri çıkış, 1 değeri giriş 

anlamındadır. 

Çarpma Ve Bölme Saklayıcıları (Mulhbıt & Dıvrem): 

  Bir çarpma işlemi yapıldığında yüksek değerli bitlerin ve bir bölme işlemi yapıldığında 

bölme işlemindeki kalan değerinin kaydedildiği saklayıcılardır. 

Kesme Kontrol Saklayıcısı (Intcon):  

 Kesmelerle ilgili konfigürasyonu yapmayı sağlayan saklayıcıdır. İşlemcide önem 

sırasına göre int0, int1, int2 ve int3 olmak üzere dört adet kesme girişi vardır. Bu saklayıcının 

15. Biti kesme maskesidir ve program bir kesmeye girdiğinde kendiliğinden lojik – 1 olur. 

Böylece işlemcinin, bir kesmeye ait komutlar icra edilirken başka bir kesmeye girmesi 

engellenir. Kesme programı bitiğinde yine kendiliğinden sıfırlanır ve kesme programı 

içerisindeyken bir başka kesme geldiyse işlemci gelen kesmeye ait program parçasına dallanır. 

Yani bu bit, kesmeleri tamamen engellemez, sadece geçici olarak devre dışı bırakır. Bu bit 

sıfırlandığı anda, sıfırlanmadan önce bir kesme gelmişse program o kesmenin vektörüne 

dallanır. Bu bit ayrıca programcı tarafından da kesmeleri bekletmek amacı ile kullanılabilir. 

INTCON saklayıcısın 14. Biti kesmelere izin verme bitidir ve kesmeleri kabul etmek için bu 

bitin lojik – 1 olması gereklidir. 13 – 10 bitleri her bir kesmeye ait izin verme bitleridir. 9 – 6 

bitleri ise her bir kesmenin yükselen kenarda mı yoksa alçalan kenarda mı kabul edileceğini 

belirleyen bitlerdir. Bu bitler lojik – 0 ise kesme yükselen kenarda, lojik – 1 ise alçalan kenarda 

kabul edilir. 

Kesme Vektörleri:  

 Her bir kesmeye ait kesme vektörlerinin kaydedildiği saklayıcılardır. Bir kesme sinyali 

algılandığında, program ilgili kesmeye ait vektöre dallanacaktır. 
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Yığın (Stack):  

 İşlemcide, saklayıcı dizisinin içinde fakat diziyi oluşturan saklayıcılardan ayrı olarak 

tasarlanmış 16 adet yığın saklayıcısı bulunur. Böylece işlemci program akışı bozulmadan 16 

adet alt programa dallanabilmektedir. Alt programa dallanmalarda sadece geri dönüş adresi 

saklanmaktadır. 

4.2. Komutlar 

 Aşağıdaki tabloda XX ve YY, ALU’ nun iki girişindeki iki çoğullayıcıların seçme 

bitlerini temsil ederler. Bu bitler aşağıdaki durumlarda olabilirler:  

00 = A saklayıcısı seçilir  

01 = Saklayıcı dizisinden REGAD adresi ile gösterilen saklayıcı seçilir.  

10 = RAM’ den gelen veri seçilir.  

11 = ROM’dan okunan sabit veri seçilir.  

 H biti 0 olduğunda işlem sonucu, XX ile seçilen saklayıcıya, 1 olduğunda YY ile 

seçilen saklayıcıya kaydedilir. Böylece bütün saklayıcılara erişilebilir. Örnek olarak, ADD ve 

ADDI komutlarının yaptıkları işlemler, sadece ADD komutu ile yapılabilir. İşlemcide, ayrıca 

dolaylı adresleme modu da vardır. Dolaylı adreslemede, erişilmek istenen RAM adresi saklayıcı 

dizisinin 0x02 adresine yazılır. Daha sonra programda RAM’ in H’FFFF adresi ile işlem 

yapılmak istendiğinde saklayıcı dizisinin H’02 adresine yazılmış olan adres ile işlem yapılır. 

Komutların bellekte kapladığı alan komutun hangi veri tipini kullandığına bağlıdır. RAM adresi 

ve program belleğinden okunan sabit değerler, komuttan sonraki adreslere, önce XX ile seçilen 

sonra YY ile seçilen olmak üzere yazılırlar. A saklayıcısı ve saklayıcı dizisi arasındaki işlemler 

1 word, sabit değer veya RAM kullanan komutlar 2 word, aynı anda hem sabit değer hem de 

RAM kullanan komutlar bellekte 3 word yer kaplayacaklardır.  

Çizelge 4.2 Komutun RAM’ de dizilişi 

Komut ADR Komut kelimesi 

Ram Adresi ADR + 1 Varsa kullanılan RAM adresi 

Sabit Değer ADR + 2 Varsa RAM’deki sabit değer 
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Çizelge 4.3 İşlemciye ait komut kümesi 

KOMUT FORMAT ÖRNEK İŞLEM 

ADD Addition 00000-XX-YY-H-0-
REGAD ADD   X, Y, H H = X + Y 

SUB Subtraction 10000-XX-YY-H-0-
REGAD SUB   X, Y, H H = X - Y 

INC Increase 00001-XX-YY-H-0-
REGAD INC   X, Y, H H = X + 1 

DEC Decrease 10001-XX-YY-H-0-
REGAD DEC   X, Y, H H = X – 1 

MULU 
Multiplication 

(unsigned) 
00010-XX-YY-H-0-

REGAD 
MULU   X, Y, 

H H = X x Y 

MUL Multiplication 10010-XX-YY-H-0-
REGAD MUL   X, Y, H H = X x Y 

DIVU 
Division 

(unsigned) 
00011-XX-YY-H-0-

REGAD DIVU  X, Y, H H = X / Y 

DIV Division 10011-XX-YY-H-0-
REGAD DIV   X, Y, H H = X / Y 

CLR Clear All Bits 00100-XX-00-0-0-
REGAD CLR   X X = 16’b0 

SET Set All Bits 10100-XX-00-0-0-
REGAD SET   X X = 16’b1 

BCF Clear Sellected Bit 00101-XX-FBIT-
REGAD BCF   X, b X[b] = 0 

BSF Set Sellected Bit 10101-XX-FBIT-
REGAD BSF   X, b X[b] = 1 

AND Logic – AND 00110-XX-YY-H-0-
REGAD AND   X, Y, H H = X & Y 

OR Logic – OR 10110-XX-YY-H-0-
REGAD OR    X, Y, H H = X | Y 

XOR Logic – EXOR 00111-XX-YY-H-0-
REGAD XOR   X, Y, H H = X ⨁ Y 

XNOR Logic – EXNOR 10111-XX-YY-H-0-
REGAD 

XNOR  X, Y, 
H H = X ⨂ Y 

NOT Logic – NOT 01000-XX-YY-H-0-
REGAD NOT   X, Y, H Y = X’ 

SLL Shift Logical Left 01001-XX-YY-H-0-
REGAD SLL   X, Y, H Y = X << 0 

SLR Shift Logical Right 01010-XX-YY-H-0-
REGAD SLR   X, Y, H Y = 0 >> X 

SAL Shift Arithmetic Left 01011-XX-YY-H-0-
REGAD SAL   X, Y, H Y = X << Carry 

SAR Shift Arithmetic Right 01100-XX-YY-H-0-
REGAD SAR   X, Y, H Y = Carry >> X 

SWP Swap 01101-XX-00-0-0-
REGAD SWP   X, Y, H H = {X[7:0], 

X[15:8] 
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CMP Compare Data 01110-XX-YY-000-
REGAD CMP   X, Y Flags = X – Y 

MOV Move Data 01111-XX-YY-1-0-
REGAD MOV   X, Y Y <= X 

BTJEZ Bit Test, Jump If Equal to Zero 11000-XX-FBIT-
REGAD BTJEZ X, b Jump If X[b] = 0 

BTJES Bit Test, Jump If Equal to Set 11001-XX-FBIT-
REGAD BTJES X, b Jump If X[b] = 1 

BEQ Branch Equal to Zero 11010–11–00–0000000 BEQ   LABEL 
If Zero = 1 

PC <= LABEL 

BNE Branch Not Equal to Zero 11010-11-01-0000000 BNE   LABEL 
If Zero = 0 

PC <= LABEL 

BRA Branch Always 11010-11-10-0000000 BRA   LABEL PC <= LABEL 

BAL Branch and Link 11010-11-11-0000000 BAL   LABEL 
PC <- LABEL, 

PC => Stack 

RETURN Return From Subroutine 11011-00-00-0000000 RETURN PC <= Stack 

RETLA Return and Load REG_A 11011-11-00-0000000 RETLA 
PC <= Stack, 

REG_A <= 
Literal 

RETI Return From Interrupt 11100-00-00-0000000 RETI 
PC <= Stack, 

INT_MASK <= 
0 

HALT System Halt 11101-00-00-0000000 HALT Halt Operation 

NOP No Operation 11110-00-00-0000000 NOP No Operation 

 

 A saklayıcısı ve saklayıcı dizisi arasındaki bütün işlemler 2 saat darbesi ile yapılır. 

Yapılacak işlem, sabit değer kullanacaksa 3 saat darbesi, RAM kullanacaksa 4 saat darbesi, 

ikisini birden kullanacaksa 5 saat darbesi ile yapılır. Çarpma ve bölme komutları normal komut 

icra süresinden 16 saat darbesi fazla sürede icra edilir. 

4.3. Grafik İşlem Birimi 

 FPGA içerisinde gerçeklenen, işlemciye adres ve veri yolları üzerinden bağlanabilen ve 

VGA ara yüzü üzerinden herhangi bir monitöre bağlanabilmeyi sağlan bir grafik işlem birimi 

tasarlanmıştır. Tasarlanan grafik işlem birimi, 640 x 480 piksel çözünürlükte, 50 Hz ekran 

tarama frekansında ve 8 renk ile işlem yapmaktadır. 8 Renk ile çalışmak için piksel başına 3 bit 

yeterli olmaktadır. İşlemci, grafik işlem birimine aşağıda belirtilen saklayıcıları kullanarak 

ekrana yazı yazma, nokta boyama, dörtgen çizme, çizgi çizme ve üçgen çizme gibi işleri 

yaptırabilmektedir. Üçgen çizme işlemi yapılabildiğinden monitör üzerinde 3 boyutlu şekiller 
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oluşturmak mümkün olmaktadır. Grafik işlem birimi, işlemciden aldığı komutları kullanarak 

VGA ara yüzü üzerinden monitörü sürekli tarayan bir durum makinesi ile paylaştığı bir RAM’ e 

ekranda gösterilecek piksellere ait renk bilgilerini yazmaktadır. Grafik arabiriminin blok şeması 

aşağıda görülmektedir. 

 

 

Şekil 4.3 Grafik işlem birimine ait blok diyagramı 

Gerçeklenen grafik işlem birimine ait saklayıcı tablosu aşağıdaki gibidir: 

Çizelge 4.4  Grafik işlem birimine ait saklayıcı tablosu 

ADRES ADI 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 

00 Cmd W CMD Size B Bcolor Fcolor 

01 Char_Code  ASCII karakter kodu 

02 Vaddr/P1V Koordinat 

03 Haddr/P1H Koordinat 

04 Vstep/P2V Koordinat 

05 Hstep/P2H Koordinat 

06 P3V Koordinat 

07 P3H Koordinat 

 

 Cmd saklayıcısı grafik işlem birimine gönderilecek komutun yazıldığı saklayıcıdır. Bu 

saklayıcıya bir yazma işlemi yapıldığında W bayrağı 1 olur. Grafik işlem birimi yazılan komutu 

yorumlayıp yapılması istenen işi bitirdiğinde bu bayrağı sıfırlar. Bu saklayıcı içersinde bulunan 
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Size bitleri, eğer yazı yazma komutu işlenecekse yazının boyunu ayarlamaya yarar. B biti 

yazının arka plan renginin olup olmayacağını, Bcolor bitleri arka plan rengini, Fcolor bitleri ise 

grafik işlem birimi tarafından yapılan herhangi bir işte hangi rengin kullanılacağını belirtir.  

CMD bitlerinin alabileceği değerler ve anlamları aşağıdaki gibidir: 

 0x00 :  Ekrana yazı yazma. 

 0x01 :  Nokta boyama. 

 0x02 :  Dörtgen çizme. 

 0x03 :  Çizgi çizme. 

 0x04 :  Üçgen çizme. 

 

Ekrana Yazı Yazma: 

 Char_Code saklayıcısında ASCII kodu belirtilen karakter,  Vaddr ve Haddr 

koordinatıyla belirtilen piksel den başlayarak B biti 1 ise Bcolor rengindeki arka palan üzerine 

fcolor renginde yazılır. Size bitleri ile yazı boyu ayarlanabilir. 

Nokta Boyama: 

 Vaddr ve Haddr koordinatıyla belirtilen piksel fcolor rengine boyanır. 

Dörtgen Çizme: 

 Vaddr ve Haddr koordinatıyla belirtilen piksel’ den başlanarak, dikeyde Vstep, yatayda 

Hstep kadar piksel ileri gidilerek Fcolor renginde bir dörtgen çizilir. 

Çizgi Çizme: 

 Vaddr ve Haddr koordinatıyla belirtilen piksel’ den başlanarak, dikeyde Vstep, yatayda 

Hstep kadar pixel ileri gidilerek Fcolor renginde bir Çizgi çizilir. 

Üçgen Çizme: 

 “P1V, P1H”, “P2V, P2H”, “P3V, P3H” koordinatlarıyla belirtilen noktalar arasına 

Fcolor renginde bir üçgen çizilir. 

4.4. Derleyici 

 İşlemcinin kolay programlanabilmesi ve geliştirme sürecini hızlandırmak amacıyla C# 

dili kullanılarak bir derleyici programı hazırlanmıştır. Derleyici programı, aşağıdaki tabloda 

derleyici programının kabul ettiği şekilde yazılışları bulunan işlemci komutlarını makine 

kodlarına çevirir. 
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Çizelge 4.5 Derleyici notasyonundaki komut listesi 

ARİTMETİK LOJİK KOMUTLAR 

No Komut Açıklama 

1 ADD A, B, h Toplama:  A ile B’yi toplayıp sonucu h=0 ise A’ya, değilse B’ye yazar.   

2 SUB A, B, h Çıkarma:  A’yı B’den çıkarıp sonucu h=0 ise A’ya, değilse B’ye yazar.   

3 INC A, B, h Arttır: A’nın içeriğini 1 arttırır sonucu h=0 ise A’ya, değilse B’ye yazar.   

4 DEC A, B, h Azalt: A’nın içeriğini 1 azaltır sonucu h=0 ise A’ya, değilse B’ye yazar.   

5 MULU A, B, h Çarp: A ile B’yi işaretsiz çarpıp sonucun alt bitlerini h=0 ise A’ya, 
değilse B’ye yazar.   

6 MUL A, B, h Çarp: A ile B’yi işaretli çarpıp sonucun alt bitlerini h=0 ise A’ya, 
değilse B’ye yazar.   

7 DIVU A, B, h Böl: A’yı B’ye işaretsiz bölüp sonucu h=0 ise A’ya, değilse B’ye yazar  

8 DIV A, B, h Böl: A’yı B’ye işaretli bölüp sonucu h=0 ise A’ya, değilse B’ye yazar.   

9 AND A, B, h And: A ile B’ye lojik “ve” işlemi uygulayıp sonucu h=0 ise A’ya, 
değilse B’ye yazar. 

10 OR A, B, h Or: A ile B’ye lojik “veya” işlemi uygulayıp sonucu h=0 ise A’ya, 
değilse B’ye yazar. 

11 XOR A, B, h Xor: A ile B’ye “xor” işlemi uygulayıp sonucu h=0 ise A’ya, değilse 
B’ye yazar. 

12 XNOR A, B, h Xnor: A ile B’ye “xnor” işlemi uygulayıp sonucu h=0 ise A’ya, değilse 
B’ye yazar. 

13 NOT A, B, h Not: A’nın tersini h=0 i ise A’ya, değilse B’ye yazar. 

14 SLL A, B, h Sola kaydır: A’yı lojik olarak sola kaydırıp sonucu h=0 ise A’ya, 
değilse B’ye yazar. 

15 SLR A, B, h Sağa kaydır: A’yı lojik olarak sağa kaydırıp sonucu h=0 ise A’ya, 
değilse B’ye yazar. 

16 SAL A, B, h Sola kaydır: A’yı aritmetik olarak sola kaydırıp sonucu h=0 ise A’ya, 
değilse B’ye yazar. 

17 SAR A, B, h Sağa kaydır: A’yı aritmetik olarak sağa kaydırıp h=0 ise A’ya, değilse 
B’ye yazar. 

PROGRAM AKIŞI KONTROL KOMUTLARI 

18 BTJEZ A, Bit 0 ise atla: A’nın işaret edilen biti 0 ise bir sonraki komutu işlemeden 
atlar. 

19 BTJES A, Bit 1 ise atla: A’nın işaret edilen biti 1 ise bir sonraki komutu işlemeden 
atlar. 

20 BEQ Etiket 0 ise dallan: Z bayrağı 1 ise etikete dallanır. 

21 BNE Etiket 0 değilse dallan: Z bayrağı 0 ise etikete dallanır. 

22 BRA Etiket Her zaman dallan: Etikete dallanır. 
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23 BAL Etiket Dallan ve sayacı kaydet: Dallanır ve bir sonraki komut adresini yığına 
kaydeder. 

24 RETURN Dön: Alt programdan ana programa döner. 

25 RETLA Sabit Dön ve akümülatörü yükle: Alt programdan döner ve akümülatöre sabit 
yükler. 

26 RETI Kesmeden dön: Kesme programından ana programa döner. 

27 HALT Bekle: kesmeleri beklemek üzere bekleme konumuna girer. 

SAKLAYICI İŞLEMLERİ KOMUTLARI 

28 CLR A Temizle: A’nın bütün bitlerini sıfırlar. 

29 SET A Doldur: A’nın bütün bitlerini 1 yapar. 

30 BCF A, Bit Bit sıfırla: A’nın işaret edilen bitini sıfırlar. 

31 BSF A, Bit Bit doldur: A’nın işaret edilen bitini 1 yapar. 

32 SWP A, B, h Değiştir: A’nın alt bitleri ile üst bitlerini değiştirip h=0 ise A’ya, değilse 
B’ye yazar. 

YÜKLE-YAZ KOMUTLARI 

33 MOV A, B Taşı: A’nın içeriğini B’ye kaydeder. 

DİĞER KOMUTLARI 

34 CMP A, B Karşılaştır: A ile B’yi karşılaştırıp sonuca göre bayrakları düzenler. 

35 NOP Boş işlem: Hiçbir işlem yapmaz. 

 

 Derleyicide yukarıda verilen komut açıklamalarındaki h biti yerine R (right) veya L 

(left) yazılarak işlem sonucun, sağdaki veya soldaki saklayıcıya kaydedilmesi sağlanabilir. Bir 

komutun program belleğinde kaplayabileceği en fazla adres alanı 3 word olduğundan, BTJEZ 

ve BTJES komutları yukarı da açıklanan koşullar sağlandığında okunacak komutun adresini 3 

ileri götürmektedirler. Bu nedenle, bu komutlardan sonra yazılan komut, program hafızasında 3 

word’den daha az yer kaplıyorsa, 3’e tamamlamak için komuttan sonra NOP komutları 

eklenmelidir. INC, DEC, NOT, SLL, SLR, SAL, SAR, SWP komutlarının işlenmesi için tek 

saklayıcı içeriği yeterlidir fakat işlem sonucu kaynak saklayıcıdan farklı bir saklayıcıya 

kaydedilebilmektedir. Bu nedenle, derleyicide yazım kolaylığı için bu komutlarla birlikte tek 

saklayıcı kullanılırsa h biti 0, iki saklayıcı kullanılırsa h biti 1 yapılmaktadır ve derleyici bu 

komutlar ile birlikte R veya L yazılmasına izin vermemektedir. 
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4.5. Fiziksel Olarak Gerçekleştirilen Uygulamalar 

 Tasarlanan işlemci ve grafik işlem birimi kullanılarak Spartan 3E Starter Kit üzerinde 2 

adet uygulama gerçekleştirilmiştir. FPGA içerisinde işlemciyle birlikte kullanılmak üzere, 

çevresel donanımlar tasarlanıp oluşturulan bilgisayar sistemine eklenmiştir. Bu sistemde FPGA 

içerisinde bulunan BlockRam’ler kullanılarak işlemcinin kullanacağı hafıza birimi ihtiyacı 

karşılanmıştır. Dışarıdan alınan 50 MHz’ lik saat darbesi çip içersinde 25 MHz’ e indirilerek 

bütün modüllere saat darbesi dağıtılmıştır. Gerçeklenen uygulamalarda belirli zaman 

aralıklarında kesme üretmek için programlanabilir bir zamanlayıcı (timer) tasarıma eklenmiştir. 

Bilgisayar sistemine dışarıdan veri girişini sağlamak için bir klavye kontrol devresi de 

eklenmiştir. PS/2 ara yüzünü kullanan bütün klavyeler böylece tasarlanan siteme 

bağlanabilmektedir. Ayrıca 3 boyutlu küp uygulamasında trigonometrik işlemleri 

gerçekleştirebilmek için sinüs ve kosinüs tabloları işlemci tarafından direkt olarak 

adreslenebilecekleri şekilde oluşturulan sisteme bağlanmıştır. Tüm bu oluşturulan modüller 

sentezlenip FPGA içerisine yüklenmeye hazır hale getirilmişlerdir. Bütün tasarım çip içerisinde 

25 MHz’ de çalışmaktadır. Xilinx’ in standart ayarları kullanıldığında tüm tasarım FPGA 

içerisinde % 75 yer kaplamaktadır. Aşağıda Tasarımın çip içerisindeki yerleşimini gösteren 

tablo görünmektedir. 

 

Şekil 4.4 Tasarımın FPGA içerisindeki yerleşimi 
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4.5.1. Yılan oyunu 

 İşlemci üzerinde makine dilinde yazılan bir yılan oyunu denemesi başarıyla 

çalıştırılmıştır. Oyunun kontrollerini sağlamak için yine Verilog HDL kullanılarak bir klavye 

kontrolcüsü de FPGA içerisinde gerçeklenmiştir. Oyuna ait ekran görüntüsü aşağıda 

görülmektedir. 

 

Şekil 4.5 Yılan oyununa ait ekran görüntüsü 
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4.5.2. 3 boyutlu küp uygulaması 

 İşlemci ve tasarlanan grafik işlem birimi kullanılarak, yoğun matematiksel işlemler 

gerektiren 3 boyutlu küp uygulaması makine dilinde hazırlanıp FPGA içerisinde gerçeklenen 

bilgisayar sistemine yüklenmiştir. Ekranda oluşturulan küp 3 eksen etrafında bir birinden 

bağımsız olarak döndürülebilmektedir. 

 

Şekil 4.6 3 Boyutlu küp uygulamasına ait ekran görüntüsü 
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5. SONUÇLAR 

 Sonuç olarak, bu çalışmada makine dilinde dahi kolayca programlanabilen gerçek 

zamanlı işlemler için kullanılabilecek güçlü bir mikroişlemci elde edilmiştir. Tasarlanan 

mikroişlemci sentezlenerek FPGA’ ye yüklenme hazır hale getirilmiştir. Bu işlemci, FPGA gibi 

programlanabilir lojik devre elemanları ile kullanılarak yapılan tasarımlarda, hali hazırda Xilinx 

ve Altera gibi firmaların sağladıkları ve Soft Processor Core olarak bilinen işlemcilere alternatif 

olarak kullanılabileceği gibi, tasarıma eklenecek çeşitli çevresel donanımlar ve hafıza 

birimleriyle birlikte ASIC olarak da gerçeklenebilir. Aşağıdaki tabloda, mevcut işlemcilerin 

komut icra süreleri değerlendirilerek yapılan bir karşılaştırma verilmiştir.  

Çizelge 4.6 İcra süresi karşılaştırması 

 Komut icra süresi (Saat Darbesi) 

Adresleme 
Modu 

Tasarlanan 
İşlemci 

8051 6800 PIC16F 

Saklayıcılar arası 2 12 2 - 3 4 

Direkt RAM 4 12 6 4 

İvedi - Saklayıcı 3 12 2 - 3 4 

İvedi - RAM 5 24 YOK YOK 

Sıralı 4 12 6 4 

İvedi - Sıralı 5 24 YOK YOK 

Dallanma 3 24 4 4  - 8 

Çarpma / Bölme  + 16 48 YOK YOK 

 

 Tasarım fiziksel olarak gerçeklendiği Spartan 3E FPGA yerine daha ileri teknolojileri 

kullanan bir FPGA seçilerek tasarımın daha yüksek saat frekanslarında koşması sağlanabilir. 

Ayrıca eğer tasarım ASIC olarak gerçeklenirse çalışma frekansı yine yükselecektir. 
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