

SAKLAYICI – BELLEK MİMARİSİNDE, 16 – BİTLİK,

GÖMÜLÜ SİSTEM (MİKROİŞLEMCİ) TASARIMI VE SENTEZLENMESİ

İsmail GÜDENLER

Yüksek Lisans Tezi

Elektrik – Elektronik Mühendisliği Anabilim Dalı

Temmuz - 2010

SAKLAYICI – BELLEK MİMARİSİNDE, 16 – BİTLİK,

GÖMÜLÜ SİSTEM (MİKROİŞLEMCİ)

TASARIMI VE SENTEZLENMESİ

İsmail GÜDENLER

Dumlupınar Üniversitesi

Fen Bilimleri Enstitüsü

Lisansüstü Yönetmeliği Uyarınca

Elektrik – Elektronik Mühendisliği Anabilim Dalında

YÜKSEK LİSANS TEZİ

Olarak Hazırlanmıştır.

Danışman: Yrd. Doç. Dr. Ahmet ÖZMEN
Yardımcı Danışman: Doç. Dr. Ahmet ALTUNCU

Temmuz - 2010

iii

KABUL ve ONAY SAYFASI

 İsmail GÜDENLER’ in YÜKSEK LİSANS tezi olarak hazırladığı SAKLAYICI –

BELLEK MİMARİSİNDE, 16 – BİTLİK, GÖMÜLÜ SİSTEM (MİKROİŞLEMCİ)

TASARIMI VE SENTEZLENMESİ başlıklı bu çalışma, jürimizce lisansüstü yönetmeliğin ilgili

maddeleri uyarınca değerlendirilerek kabul edilmiştir.

 /......../.........

 (Sınav tarihi)

Üye : ………………………..

Üye : ………………………..

Üye : ………………………..

Fen Bilimleri Enstitüsün Yönetim Kurulu'nun /...../..... gün ve sayılı

kararıyla onaylanmıştır.

 Prof. Dr. Atalay KÜÇÜKBURSA

 Fen Bilimleri Enstitüsü Müdürü

iv

SAKLAYICI – BELLEK MİMARİSİNDE, 16 – BİTLİK, GÖMÜLÜ SİSTEM

(MİKROİŞLEMCİ) TASARIMI VE SENTEZLENMESİ

İsmail GÜDENLER

Elektrik - Elektronik Mühendisliği, Yüksek Lisans Tezi, 2010

Tez Danışmanı: Yrd. Doç. Dr. Ahmet ÖZMEN

Yardımcı Danışman: Doç. Dr. Ahmet ALTUNCU

ÖZET

 Bu çalışmada 16 bit adres ve veri yollarına sahip, saklayıcı-bellek mimarisinde

tasarlanmış bir işlemci sunulmaktadır. Tasarlanan işlemciye, 64Kx16’ ya kadar dışarıdan bellek

ilave edilebilmektedir. İlave edilecek belleğin, program ve veri için ortak olarak kullanılması

düşünülmüştür, yani işlemci Von Neumann mimarisinde tasarlanmıştır. İşlemci tasarımında

Verilog donanım tanımlama dili kullanılmıştır ve tasarım kapı seviyesinde tanımlanmıştır.

İşlemci son haliyle 35 komut ile alışılmış tüm işlemleri yapabilmektedir. Bu komutların

dağılımı şöyledir: 17 ALU, 10 kontrol, 5 saklayıcı işlemleri, 1 yükle-yaz ve 2 diğer. Tasarlanan

işlemci, 2 adet 16-bitlik giriş/çıkış iskeleleri ve yönlendiricileri ile donatılmıştır. Bu

iskelelerdeki her bit birbirinden bağımsız olarak giriş veya çıkış olarak ayarlanabilmektedir.

İşlemci 4 ayrı kaynaktan gelecek kesmelere vektörlü olarak cevap verebilmektedir. Kesmeler

sağlanan kontrol saklayıcılarıyla programlanabilmektedir. Gerçeklenen 16x16’ lık yığın

saklayıcıları sayesinde 16 defa iç-içe (nested) alt programa dallanmak mümkündür. Alt

programa dallanmalarda sadece geri dönüş adresi saklanmaktadır. Tasarlanan işlemci ve

işlemciye adres ve veri yolları üzerinden bağlanan grafik işlem birimi, klavye kontrolcüsü ve

zamanlayıcı gibi çevresel donanımlar Xilinx Spartan 3E Starter Kit üzerinde fiziksel olarak

gerçeklemiştir. FPGA içerisinde fiziksel olarak gerçeklenen sisteme, hazırlanan derleyici

kullanılarak yazılan test programları yüklenmiş ve koşturulmuştur.

Anahtar Kelimeler: Bilgisayar Mimarisi, FPGA, Mikroişlemci, Programlanabilir Lojik.

v

DESIGN AND SYNTHESIS OF A 16 – BIT EMBEDDED SYSTEM

(MICROPROCESSOR) IN REGISTER – MEMORY ARCHITECTURE

İsmail GÜDENLER

Electrical and Electronics Engineering, M. S. Thesis, 2010

Thesis Supervisor: Yrd. Doç. Dr. Ahmet ÖZMEN

Co-Supervisor: Doç. Dr. Ahmet ALTUNCU

SUMMARY

 In this thesis, a processor core which is designed in register - memory architecture is

presented. Designed processor core has 16 bits address and data buses. 64Kx16 bits of memory

can be connected externally which is used for both instruction and data memories. So the

processor core is designed in Von Neumann architecture. Verilog HDL is used while designing

the processor and the design is described at gate level. The processor core can execute all

familiar processor operations by using 35 instructions. The distribution of these instructions is

as follows: 17 ALU, 10 control, 5 register operations, 1 load-store and 2 other. Designed

processor core has 2 16-bits input - output ports and data direction registers. All of the bits in

these ports can be configured as inputs or outputs independently. The processor core can

respond interrupts from 4 different resources by using pre-defined interrupt vectors. These

interrupts can be programmed via interrupt control registers. Owing to implemented 16x16

stack registers, it is possible to branch 16 nested subroutines. Only return address is stored while

branching to subroutines. Designed processor core and the peripheral hardware like graphical

processing unit, keyboard controller and timer which are connected to processor core through

address and data buses, are physically implemented on Xilinx Spartan 3E Starter Kit. The test

software which is programmed using by designed compiler is loaded into the system and

executed successfully.

Keywords: Computer Architecture, FPGA, Microprocessor, Programmable Logic.

vi

TEŞEKKÜR

 Bu tez çalışması boyunca eşsiz yardım ve katkılarını esirgemeyen, yol gösteren değerli

danışman hocalarım Yrd. Doç. Dr. Ahmet ÖZMEN‘ e ve Doç. Dr. Ahmet ALTUNCU’ ya

teşekkürü bir borç bilirim.

 Ayrıca derleyici programı ve donanımsal tasarım sürecindeki yardımlarından dolayı

değerli dostum Ercan Doğan’ a, yüksek lisans öğrenimim boyunca maddi manevi desteğinden

dolayı TÜBİTAK BİLİM İNSANI DESTEKLEME DAİRE BAŞKANLIĞI (BİDEB)’ na,

sağladıkları donanımsal ve yazılımsal desteklerden dolayı Çizgi Elektronik ailesine teşekkür

ederim.

 Son olarak varlıklarını hep yanımda hissettiğim, hayatım boyunca desteklerini benden

esirgemeyen aileme teşekkürlerimi sunarım.

İÇİNDEKİLER

 Sayfa

ÖZET ... iv

SUMMARY .. v

TEŞEKKÜR ……………………………………………………………………………….. vi

ŞEKİLLER DİZİNİ ... ix

ÇİZELGELER DİZİNİ ... x

SİMGELER VE KISALTMALAR DİZİNİ .. xi

1. GİRİŞ ………………………………………………………………………….......... 1

2. BİLGİSAYAR SİSTEMLERİ ……………………………………………………… 4

2.1. Komut Kümesi Mimarisi …………………………………………………….. 5

2.1.1. CISC mimarisi ………………………………………………….……... 6
2.1.2. RISC mimarisi …………………………………………………….…... 7
2.1.3. EPIC mimarisi …………………………………………………….…... 9

2.2. Donanım Sistem Mimarisi …………………………………………………… 9

2.2.1. Von Neumann mimarisi ………………………………………………. 10
2.2.2. Harvard mimarisi ……………………………………………………... 11

3. PROGRAMLANABİLİR LOJİK TEKNOLOJİLERİ ……………………………... 13

3.1. FPGA Mimarisi ve Özellikleri ………………………………………………. 15

3.1.1. CLB yapısı ……………………………………………………………. 17
3.1.1.1. LUT tabanlı yapı ………………………………………..……. 18
3.1.1.2. MUX tabanlı yapı ………………………………………..…… 23

3.1.2. IOB yapısı ………………………………………………………….…. 25
3.1.3. CLB ler arası bağlantılar ……………………………………………… 26

3.2. FPGA’ lerın Programlama Teknolojileri …………………………………….. 26

3.2.1. SRAM teknolojisi ………………………………………………….….. 27
3.2.2. Anti-Sigorta (Antifuse) teknolojisi …………………………….……... 29
3.2.3. EEPROM/FLASH teknolojisi ………………………………………... 31
3.2.4. Hybrid FLASH-SRAM teknolojisi ………………………………….... 31
3.2.5. SRAM ve Anti-Sigorta teknolojilerinin karşılaştırılması …………..… 31

3.3. FPGA İçerisinde Yer Alan Özel Ara yüzler ve Bloklar ……………………... 32

3.3.1. Dağıtık RAM’ ler ve shift registerlar ………………………………..... 32
3.3.2. Hızlı elde zincirleri ……………………………………………..……... 33

İÇİNDEKİLER (Devam)

 Sayfa

3.3.3. Gömülü RAM ’ler …………………………………………………….. 33
3.3.4. Gömülü çarpıcılar, toplayıcılar, MAC’ lar …...……………………..… 34
3.3.5. Diğerleri ………………………………………………………………. 35

3.4. FPGA’ lerin Programlanması ………………………………...……………… 35

4. İŞLEMCİ TASARIMI ……………………………………………………………… 38

4.1. Tasarlanan İşlemcinin Donanımsal Bileşenleri ……………………………… 39

4.1.1. Kontrol lojiği tasarımı ………………………………………………… 40
4.1.2. Saklayıcı dizisi ………………………………………………………... 42

4.2. Komutlar …………………………………………………………………….. 44

4.3. Grafik İşlem Birimi ………………………………………………………….. 46

4.4. Derleyici ……………………………………………………………………... 48

4.5. Fiziksel Olarak Gerçekleştirilen Uygulamalar ………………………………. 51

4.5.1. Yılan oyunu ………………………………………………………….... 52
4.5.2. 3 boyutlu küp uygulaması …………………………………..………… 53

5. SONUÇLAR …………………………………………………………………………… 54

KAYNAKLAR DİZİNİ …………………………………………………………………… 55

ix

ŞEKİLLER DİZİNİ

Şekil Sayfa

2.1 CISC Mimarisi…………………………………………………………………….. 6

2.2 RISC Mimarisi…………………………………………………………………….. 8

2.3 Von Neumann Mimarisi…………………………………………………………... 10

2.4 Harvard Mimarisi………………………………………………………………….. 12

3.1 PLD’ lerin sınıflandırılması…...…………………………………………………... 14

3.2 CPLD Mimarisi……………………………………………………………………. 15

3.3 FPGA sınıfları……………………………………………………………………... 16

3.4 Genel FPGA mimarisi…………………………………………………………….. 17

3.5 LUT tabanlı bir FPGA’ in birim elemanı……………...……………….................. 18

3.6 LUT’ un yapılandırılması…………………………………………………………. 19

3.7 LC Yapısı ve Dilim (Slice) Yapısı………………………………………………… 20

3.8 Örnek bir CLB yapısı……………………………………………………………… 21

3.9 Xilinx-VirtexE CLB’ si...…………………………………………………………. 22

3.10 Xilinx/Virtex Ailesine ait bir Slice’ ın iç yapısı………………………………….. 22

3.11 y= (x5’ • x4 • x3 • x2 • x1’• x0) + (x6’ • x5’ • x3 • x1’ • x0) fonksiyonu……………… 23

3.12 MUX tabanlı CLB yapısı………………………………………………………….. 24

3.13 C tipi, S tipi ve D tipi modüller…………………………………………………… 25

3.14 Virtex Giriş/Çıkış Bloğu ve Kenar Kümelerinin yerleşimi……………………….. 26

3.15 FPGA Bağlantı Elemanı………………………………………………………….. 26

3.16 SRAM yapısı………………………………………………………………………. 27

3.17 SRAM hücrelerinin kullanımı…………………………………………………….. 28

3.18 Anti-Fuse teknolojisiyle programlama……………………………………………. 30

3.19 Gömülü RAM yapısı………………………………………………………………. 34

3.20 Tasarım Akışı……………………………………………………………………… 37

4.1 Tasarlanan işlemcinin blok görünümü…………………………………………….. 38

4.2 Kontrol lojiği durum akış diyagramı……………………………………………… 41

4.3 Grafik işlem birimine ait blok diyagramı…………………………………………. 47

4.4 Tasarımın FPGA içerisindeki yerleşimi…………………………………………... 51

4.5 Yılan oyununa ait ekran görüntüsü………………………………………………... 52

4.6 3 Boyutlu küp uygulamasına ait ekran görüntüsü………………………………… 53

x

ÇİZELGELER DİZİNİ

Çizelge Sayfa

3.1 Bazı ticari FPGA’ ler………………..………………………………………….. 32

3.2 FPGA’ lerin programlanma teknolojileri……………………………………….. 32

4.1 Saklayıcı Dizisi………………………………………………………………….. 42

4.2 Komutun RAM’ de dizilişi ……………………………………………………... 44

4.3 İşlemciye ait komut kümesi……………………………………………………... 45

4.4 Grafik işlem birimine ait saklayıcı tablosu……………………………………… 47

4.5 Derleyici notasyonundaki komut listesi………………………………………… 49

4.6 İcra süresi karşılaştırması …………………………….………………………… 54

xi

SİMGELER ve KISALTMALAR DİZİNİ

Kısaltmalar Açıklama

CPU Central Processing Unit (Merkezi İşlem Birimi)

ALU Aritmetic Logic Unit (Aritmetik Mantık Birimi)

ISA Instruction Set Architecture (Komut Kümesi Mimarisi)

HSA Hardware System Architecture (Donanım Sistem Mimarisi)

CISC Complex İnstruction Set Computer (Karmaşık Komut Setli Bilgisayar)

RISC Reduced İnstruction Set Computer
(İndirgenmiş Komut Setli Bilgisayar)

EPIC Explicitly Parallel İnstruction Computer
(Açık Paralel Komutlu Bilgisayar)

RAM Random Access Memory (Rastgele Erişimli Bellek)

ROM Read Only Memory (Salt Okunur Bellek)

HDL Hardware Description Language (Donanım Tanımlama Dili)

VHDL Very High Speed Integrated Circuit Hardware Description Language
(Çok Hızlı Tümdevre Donanım Tanımlama Dili)

RTL Register Transfer Level (Saklayıcı Transfer Seviyesi)

VLSI Very Large Scale Integration (Çok Büyük Ölçekli Entegrasyon)

PLD Programmable Logic Device (Programlanabilir Lojik Devre)

PLA Programmable Logic Array (Programlanabilir Lojik Dizi)

PAL Programmable Array Logic (Programlanabilir Dizi Lojiği)

CPLD Complex Programmable Logic Device
(Karmaşık Programlanabilir Lojik Devre)

FPGA Field Programmable Gate Array
(Sahada Programlanabilir Kapı Dizisi)

MPGA Mask Programmable Gate Array
(Maske Programlamalı Kapı Dizisi)

ASIC Application Spesific Integrated Circuit (Uygulamaya Özel Entegre)

PROM Programmable Read Only Memory
(Programlanabilir Salt Okunur Bellek)

EPROM Erasable Programmable Read Only Memory
(Silinebilir Programlanabilir Salt Okunur Bellek)

EEPROM Electronically Erasable Programmable Read Only Memory
(Elektrikle Silinebilir Programlanabilir Salt Okunur Bellek)

SRAM Static Random Access Memory (Statik Rastgele Erişimli Bellek)

xii

SİMGELER ve KISALTMALAR DİZİNİ (Devam)

Kısaltmalar Açıklama

CLB Configurable Logic Blocks (Düzenlenebilir Lojik Bloklar)

LC Logic Cell (Lojik Hücre)

LUT Look-Up Table (Doğruluk tablosu)

MUX Multiplexer (Çoğullayıcı)

FF Flip – Flop

LAB Logic Array Block (LAB)

LM Logic Module (Lojik Modül)

IOB Input/ Output Blocks (Giriş/Çıkış Blokları)

FIFO First In First Out (İlk Giren İlk Çıkar)

MAC Multiply and Accumulate (Çarp ve Biriktir)

DCM Digital Clock Manager (Dijital Saat Yöneticisi)

ISP In System Programmable (Sistem İçi Programlanabilir)

PCB Printed Circuit Board (Baskılı Devre Kartı)

VGA Video Graphics Array (Video Grafik Dizisi)

ASCII American Standard Code For İnformation Interchange

1

1. GİRİŞ

 Sürekli gelişen ve karmaşıklığı artan elektronik sistemler içinde mikroişlemcilerin

önemli bir yeri vardır. Günümüzde mikroişlemciler ve mikrodenetleyiciler hemen hemen her

alanda karşımıza çıkmaktadırlar. Mikroişlemciler genellikle masaüstü bilgisayarlar ve sunucu

tabanlı makineler gibi yoğun ve hızlı işlem gücü gerektiren alanlarda kullanılır ve harici hafıza

ve giriş çıkış birimleri ile birlikte çalışırlar. Mikrodenetleyiciler ise gömülü sitemlerde, kontrol

uygulamalarında karşımıza çıkmaktadırlar ve hafıza ve giriş çıkış birimleri genellikle

kullandıkları işlemci çekirdeği ile aynı yonga içerisinde bulunur. Gömülü sitemlerde gerçek

zamanlı çalışma, zamanlamanın kritik olduğu uygulamalarda çok önemlidir. Bazı

uygulamalarda işlemcinin işlemesi gereken her komutun kaç saat darbesi süreceğinin ve bir

kesme sinyali algılandığında kesme vektörüne kaç saat darbesi sonra ulaşılacağının kesin olarak

bilinmesi gerekebilir. Zamanlama açısından kritik kod parçaları makine dilinde yazılacağından

gerçek zamanlı bir işlemcinin makine dilinde kolayca programlanabilir olması gereklidir.

 Mikroişlemci tasarımındaki çalışmalar transistörün bulunduğu 1948 yılından günümüze

kadar devam etmektedir. 1971 yılında Intel’ in ilk işlemcisi 4004 sadece 740 kHz’ de

çalışabilirken bugün masaüstü bilgisayarlarda kullandığımız mikroişlemciler 3 GHz’ in

üzerindeki hızlarda çalışabilmektedirler [3]. Mikroişlemcilerdeki gelişme sadece saat

frekanslarında değil, mimari yapılarında gerçekleşmiştir. İlk tasarımlara göre çok karmaşık

yapıda olan günümüz işlemcileri, cache (tampon) bellek, pipeline, floating point unit (kayar

noktalı işlem birimi), memory management unit (hafıza yönetim birimi), prefetch (önceden

komut çekme), branch prediction gibi birimler içermektedirler.

 Elektronik sistemlerin yapılarındaki giderek artan karmaşıklık nedeniyle kağıt kalem

kullanılan geleneksel devre tasarım yöntemleri, yerini tanımlama ve sentezleme yöntemlerine

bırakmıştır [5]. Bu yeni yöntemler, VHDL (Very High Speed Integrated Circuit Hardware

Description Language) ve Verilog HDL gibi donanım tanımlama dillerinin geliştirilmesi ile

ortaya çıkmıştır. Programlanabilir lojik sistemlerin kapasitesindeki ve maksimum saat

frekansındaki artış donanım tanımlama dillerinin gelişmesiyle paralel olmuştur [3]. 1990’

lardan sonra FPGA (Field Programable Gate Array)’ ler hızlı tasarım süreçleri nedeniyle ASIC

(Application Specific Integrated Circuit)’ lerin yerini almaya başladılar [4]. Günümüzde FPGA

mimarisini kullanan sistemlerin tasarımında farklı yöntemler izlenebilmektedir fakat en çok

tercih edilen yöntem, donanım tanımlama dilleridir. FPGA’ ler yapılan tasarımın, Verilog yada

VHDL gibi bir yüksek seviye donanım tanımlama dili aracılığıyla, yonga üretiminde kullanılan

2

teknoloji ile ilgilenmeden RTL (Register Transfer Level) seviyesinde geliştirilmesine imkan

verir.

 FPGA bilgisayar mimarisi eğitimi için de ideal bir ortamdır [7]. FPGA içerisinde

gerçeklenen gömülü sitemlerde kullanılan işlemci çekirdeğinin yanına istenilen çevresel

donanımlar eklenebilir. Böylece tasarımda esneklik sağlanır. FPGA’ in tekrar programlanabilme

özelliği, gömülü sistemdeki donanımın istenildiğinde güncellenmesine imkan verir. FPGA

içerisindeki gerçeklenen gömülü sisteme ait işlemcide tasarımcının tanımladığı özel komutlar

bulunabilir, bazı komutlar co-processor (yardımcı işlemci) yardımıyla işlenebilir. Önde gelen

FPGA üreticileri XILINX ve ALTERA’ nın FPGA içerisinde gerçeklenen ve ihtiyaca göre bazı

özellikler eklenip çıkartılabilen mikroişlemci çekirdekleri vardır. XILINX FPGA’ lerde küçük

uygulamalar için 8-bit Picoblaze, daha kapsamlı uygulamalar için pipeline, floating point ve

memory management unit gibi gelişmiş özellikleri bulunan 32-bit Microblaze kullanılabilir.

ALTERA FPGA’ lerde ise 32-bit NIOS-II kullanılabilmektedir. FPGA tabanlı birkaç

mikroişlemci çalışması literatürde verilmiştir [3, 2, 9].

 Bu çalışmada, eğitim amaçlı gerçek zamanlı uygulamalarda kullanılabilecek 16-Bit veri

ve adres yolu genişliğine sahip olan, bellek-saklayıcı mimarisini kullanan ve tamsayılarla işlem

yapabilen bir gömülü sistem tasarlanıp gerçeklenmiştir. Gömülü sistemde 32 adet 16 bitlik

saklayıcıları içeren bir saklayıcı dizisi ve A (akümülatör) saklayıcısı bulunmaktadır. Bu

saklayıcı dizisinde bulunan saklayıcıların 14’ü sistem tarafından veya giriş/çıkış birimleri

tarafından kontrol saklayıcısı olarak kullanılmakta olup, 18 adet saklayıcı ana bellekten daha

hızlı erişilmek üzere kullanıcıya bırakılmıştır. Sistem Von Neumann mimarisinde olup veri ve

program belleği olarak 64 K-Word dahili (sentezleme aşamasında) veya harici bellek ilave

edilebilmektedir. Sistem her biri bit bazında giriş veya çıkış olarak yönlendirilebilen 2 adet 16-

Bitlik giriş çıkış iskelesi ile donatılmıştır; ayrıca, dört farklı harici kaynaktan gelebilecek

kesmeler için “vektörlü kesmeyi” desteklemektedir. Sistemde 16 Word derinliğinde bir yığın

gerçeklenmiş olup, alt programlara ve kesme servis rutinlerine dallanmalarda geri dönüş adresi

bu yığına atılmaktadır. İşlemci çarpma ve bölme komutları dahil 35 komut ile ihtiyaç duyulan

tüm işlemleri etkin bir şekilde gerçekleyebilmektedir. Komutlar yapısına göre ivedi, doğrudan,

doğal, dolaylı ve sıralı adresleme modlarını kullanabilmektedir. Komutların icra süreleri: 2

(doğal), 3 (ivedi) 4 (doğrudan), 5 (sıralı, dolaylı) saat darbesi sürmekte; çarpma ve bölme

işlemleri ilave olarak 16 saat darbesi daha almaktadır.

 Gömülü sistem modüler olarak kapı seviyesinde tasarlanmış olup, her bir modül son

sisteme dahil edilmeden önce davranışsal eşleniği ile kapsamlı bir teste tabi tutulmuştur.

Tasarlanan modüller ve tüm sistem Verilog-HDL ile kodlanmış olup derleyici ve editör olarak

3

XILINX ISE 10.1 ortamı kullanılmıştır. Modüllerin tasarım ve test aşamasından sonra, tüm

işlemci simülasyon yoluyla test edilmiş ve üzerinde örnek program koşturulmuştur.

Simülasyonda MODELSIM SE Verilog kullanılmış olup kesme girişlerini test etmek için

XILINX ISE programındaki Test Bench Waveform yardımı ile farklı kesme girişlerine farklı

anlarda kesme sinyali uygulanmıştır. Tüm test ve simülasyon aşamaları geçildikten sonra,

gömülü sistem Xilinx HW-SPAR3E-SK geliştirme kartı üzerinde gerçeklenmiştir.

4

2. BİLGİSAYAR SİSTEMLERİ

 Bilgiyi giriş olarak alan, bunu belli bir kurala göre işleyen ve sonucu çıktı olarak veren

sistemlere basit olarak bilgisayar denir. Makine olarak tanımlanan bilgisayar, veriyi belli bir

düzen dahilinde işler. Buradaki veri, işlenecek bilgidir. Verinin işleniş düzenini veya kuralları

donanımın dışında komutlar (program) koyar. Sayısal değerler belli bir formatta sisteme

yerleştirilmek zorundadır. Sistemdeki herhangi bir fiziksel veya mantıksal parametre ikilik

sayılarla ifade edilmektedir. Bilgisayar sistemleri iki temel öğeden oluşmaktadır. Bunlar yazılım

ve donanımdır. Her ikisi de birbirinin tamamlayıcıdır, birisi olmazsa diğeri de olmaz. Sistem

öncelikli olarak tasarlanırken önce sistemi meydana getirecek elemanlar, yani donanım parçaları

göz önüne alınır. Daha sonra yazılım bu yapıya bakılarak yazılır. Yazılım, donanımın hangi

yönteme göre nasıl çalışacağını gösteren bir sanal uygulamadır. Donanım ise yazılıma göre

belirli zamanlarda devreye girerek fonksiyonlarını yerine getirmekle görevlidir.

 Bilgisayarı oluşturan bir sistemdeki temel elemanlar; mikroişlemci (CPU), bellek ve

giriş/çıkış (G/Ç) birimleridir. Mikroişlemcinin işleyeceği komutlar ve veriler geçici veya kalıcı

belleklerde tutulmaktadır. Bilgiyi oluşturan komut ve veriler bellekte karmaşık veya farklı

alanlarda tutulabilir. Bilginin işlenmesi sırasında ortaya çıkabilecek ara değerler, en sonunda

sonuçlar bellekte bir yerde depolanmak zorundadır.

 Bilgisayarın bilgiyi işlemedeki ana karar vericisi sistemin kalbi sayılan mikroişlemcidir.

CPU tarafından gerçekleştirilen iki temel işlem vardır. Birincisi, komutların yorumlanarak

doğru bir sırada gerçekleşmesini sağlayan kontrol işlevi, diğeri; toplama, çıkarma ve benzeri

özel matematik ve mantık işlemlerinin gerçekleştirilmesini sağlayan icra işlevidir.

 Ayrıca sistemin veri giriş çıkışı yapabilmesi için giriş/çıkış birimine gerek vardır. G/Ç

birimi, makine ile kullanıcı (veya programcı) arasında bilginin makine dilinden insanın

anlayacağı dile çevrilmesinde veya tersi işlemde iletişim (aracı) sağlar.

 Sistemin öne çıkan diğer elemanları iletişim yollarıdır. Adres yolu, veri yolu ve kontrol

yolu olarak üçe ayrılan iletişim yolları, bilgisayar sistemindeki birimler arasında bilginin

taşınmasından sorumludur. Adres yoluna bellekten getirilerek çalıştırılmak istenen komut adresi

veya komutun işlenmesiyle bellekten getirilecek verinin adresi konulur. Sonuç olarak, her

bilgisayar aşağıdaki elemanlara sahip olmalıdır:

1. Programın yorumlanması ve çalıştırılmasını gerçekleştiren bir mikroişlemci.

2. Bir dizi komutlardan oluşan program ve verilerin sürekli veya geçici depolandığı

bellek.

5

3. Bilgisayarın dış dünya ile bağlantısını sağlayan giriş/çıkış birimi.

4. CPU ve bellek aracındaki bilgi aktarımını ve işlemcinin dış dünya ile iletişimini

sağlayan iletişim yolları.

 Bilgisayar sistemi tarif edilirken iki temel esastan bahsedilebilir. Bilgisayar

organizasyonu ve bilgisayar mimarisi. Bilgisayar mimarisi, bir programın mantıksal çalışmasına

doğrudan etki eden özelliklerdir. Bilgisayar organizasyonu, operasyonel birimler ve bunların

yapısal özelliklerini veren bağlantıları ifade eden yaklaşımdır; Daha çok yazılım ve donanım

arasındaki bağdaştırmayla ilgilidir. Mimari özelliklere komut kümesi, değişik şekillerdeki veri

tiplerini temsil etmesi için kullanılan bit sayısı, G/Ç mekanizması ve bellek adresleme

tekniklerinin dahil olduğu bir bilgisayar tasarımı girmektedir. Bilgisayar mimarisi, komut

kümesinin, donanım elemanlarının ve sistem organizasyonun dahil olduğu bir bilgisayarın

tasarımıdır. Mimari iki farklı yaklaşımla tanımlanmaktadır Komut kümesi mimarisi (ISA) ve

donanım sistem mimarisi (HSA). ISA, bir bilgisayarın hesaplama karakteristiklerini belirleyen

komut kümesinin tasarımıdır. HSA, ise CPU, depolama ve G/Ç sistemlerinin dahil olduğu alt

sistem ve bunların bağlantı şeklidir.

2.1. Komut Kümesi Mimarisi

 İlk bilgisayar sistemleri için programcı kodlarını makinenin doğrudan özel donanımına

göre yazmaktaydı. Bu nedenle bir makine için yazılan program aynı firma tarafından üretilse

bile diğer bir makinede çalışmamaktaydı. Programcı tarafından yazılan kodlar donanımı açma

anahtarı olarak düşünülebilirler. Her zaman yeni bir makine üretildiğinde yazılım geliştiriciler

bu makine için yeni baştan başlamak zorunda kalmaktaydılar. Bundan dolayı bilgisayar sistem

tasarımcıları iki önemli sorunla karşılaştılar.

1. Bilgisayar sistemleri ile ilgili işlevselliğin sergilenmesi.

2. Bir dizi komutlardan oluşan program ve verilerin sürekli veya geçici depolandığı

bellek.

3. Yazılımın sistemler arasındaki geçişini kolaylaştırması.

1960 yıllarında IBM firması bu sorunların üstesinden gelmek için, adına komut kümesi

mimarisi (ISA) ve mikrokod motoru denilen bir yöntem geliştirmiştir

 Mikrokod kullanılarak ISA sisteminin yürütülmesinin başlıca sakıncası, başlangıçta

komutların doğrudan çalıştıran sisteme göre yavaş olmasıdır. Daha çok komut demek daha fazla

mikrokod, çekirdek büyüklüğü ve güç demektir.

6

 ISA mimarisinin yaşanan aksaklıklarından dolayı daha sonraları, komutların doğrudan

donanım elemanları tarafından yorumlanarak sistemin denetlendiği diğer bir mimari yaklaşımı

da donanımsal çalışma modelidir. Komutların anlaşılır standartta bir boyuta getirilerek

çalıştırıldığı sisteme RISC modeli denilmektedir. Böylece küçük, hızlı ve çok hafifleyen komut

kümesiyle, iri hacimli mikrokoda nazaran donanım üzerinde doğrudan hakimiyet kolayca

sağlanabilmiştir. RISC tasarımcıları komutların doğrudan icra edildiği eski modele dönerken,

ISA kavramı dokunulmadan korunmuştur. Intel, AMD gibi büyük firmalar hala x86 mimarisine

dayalı işlemcilerini ISA yaklaşımıyla üretmektedirler. Günümüzde üst düzey entegrasyon ve

yarı iletken üretim teknolojilerinin elde edilmesiyle çok daha karmaşık olan donanım temelli

sistemler oluşturmak mümkün olmakladır.

2.1.1. CISC mimarisi

 CISC mimarisinin karakteristik iki özelliğinden birisi, değişken uzunluktaki komutlar,

diğeri ise karmaşık komutlardır. Değişken ve karmaşık uzunluktaki komutlar bellek tasarrufu

sağlar. Karmaşık komutlar İki ya da daha fazla komutu tek bir komut haline getirdikleri için

hem bellek alanından hem de programda yer alması gereken komut sayısından tasarruf sağlar

[8]. Karmaşık komut karmaşık mimariyi de beraberinde getirir. Mimarideki karmaşıklığın

artması, işlemci performansında istenmeyen durumların ortaya çıkmasına sebep olur. Ancak

programların yüklenmesinde ve çalıştırılmasındaki düşük bellek kullanımı bu sorunu ortadan

kaldırabilir.

Şekil 2.1 CISC Mimarisi

7

 Tipik bir CISC komut seti, değişken komut formatı kullanan 120‐350 arasında komut

içerir. Bir düzineden fazla adresleme modu ile iyi bir bellek yönetimi sağlar. CISC mimarisi çok

kademeli işleme modeline dayanmaktadır. İlk kademe, yüksek düzeyli dilin yazıldığı yerdir.

Sonraki kademeyi makine dili oluşturur ki, yüksek düzeyli dilin derlenmesi sonucu bir dizi

komutlar makine diline çevrilir. Bir sonraki kademede makine diline çevrilen komutların

kodları çözülerek, mikroişlemcinin donanım birimlerini kontrol edebilen en basit işlenebilir

kodlara dönüştürülür. En alt kademede ise işlenebilir kodları olan donanım aracılığıyla gerekli

görevler yerine getirilir.

CISC Mimarisinin Avantajları:

- Mikroprogramlama, yürütülmesi kolaydır ve sistemdeki kontrol biriminden daha

ucuzdur.

- Yeni komutlar ve mikrokod ROM’a eklemenin kolaylığı tasarımcılara CISC

makinalarını geriye doğru uyumlu yapmalarına izin verir. Yeni bir bilgisayar aynı

programları ilk bilgisayarlar gibi çalıştırabilir.

- Verilen görevi yürütmek için daha az komut kullanır.

- Mikroprogram komut kümeleri, derleyici karmaşık olmak zorunda değildir.

CISC Mimarisinin Dezavantajları:

- İşlemci ailesinin ilk kuşakları genelde her yeni versiyon tarafından kabullenilmiştir,

böylece komut kodu ve yonga donanımı bilgisayarların her kuşağıyla birlikte daha

karmaşık hale gelmiştir.

- Mümkün olduğu kadar çok komut, mümkün olan en az zaman kaybıyla belleğe

depolanabiliyor ve komutlar neredeyse her uzunlukta olabiliyor. Bunun anlamı farklı

komutlar farklı miktarda saat çevrimi tutacaktır.

- Çoğu özel güçlü komutlar geçerliliklerini doğrulamak için yeteri kadar sık

kullanılmıyor.

- Komutlar genellikle bayrak (durum) kodunu komuta bir yan etki olarak etkinleştirir. Bu

ise ek saat darbeleri yani bekleme demektir. Aynı zamanda, sıradaki komutlar işlem

yapmadan önce bayrak bitlerinin mevcut durumunu bilmek durumundadır. Bu da yine

ek saat darbesi demektir.

2.1.2. RISC mimarisi

 RISC mimarisi, CISC mimarili işlemcilerin kötü yanlarına piyasanın tepkisi ve ona bir

alternatif olarak, işlemci mimari tasarımlarında söz sahibi olan IBM, Apple ve Motorola gibi

8

firmalarca sistematik bir şekilde geliştirilmiştir. 1970’ lerin ortalarında yarı iletken

teknolojisindeki gelişmeler, ana bellek ve işlemci yongaları arasındaki hız farkını azaltmaya

başladı. Bellek hızı arttığından ve yüksek seviyeli diller simgesel dilin yerini aldığından, CISC’

in başlıca üstünlükleri geçersizleşmeye başladı. Bilgisayar tasarımcıları sadece donanımı

hızlandırmaktan çok bilgisayar performansını iyileştirmek için başka yollar denemeye

başladılar. Aşağıda günümüz bilgisayarlarında kullanılan, RISC tabanlı fakat mikrokod desteği

de sağlayan bir işlemcinin blok şeması görülmektedir.

Şekil 2.2 RISC Mimarisi

 IBM, RISC mimarisini tanımlayan ilk şirket olarak kabul edilir. RISC' in felsefesi üç

temel prensibe dayanır:

- Bütün komutlar eşit sayıda çevrimde çalıştırılmalıdır.

- ALU işlemlerinin tamamı saklayıcılarda yapılamalıdır.

- Belleğe sadece "load" ve "store" komutlarıyla erişilmelidir: Komut alınıp getirilir ve

bellek gözden geçirilir. RISC işlemcisiyle, belleğe yerleşmiş veri bir kaydediciye

yüklenir, kaydedici gözden geçirilir ve kaydedicinin içeriği ana belleğe yazılır.

- Bütün icra birimleri mikrokod kullanmadan donanımdan çalıştırılmalıdır: Mikrokod

kullanımı, dizi ve benzeri verileri yüklemek için çok sayıda çevrim demektir.

 Günümüzün RISC yapısına sahip ticari mikroişlemcilerinde genel olarak iki tarz

görülür. Bunlar Berkeley modeli ve Stanford modelidir. RISC mimarisi aynı anda birden çok

9

komutun birden fazla birimde işlendiği iş‐hattı (pipelining) tekniği ve süperskalar yapılarının

kullanımıyla yüksek bir performans sağlamıştır.

RISC Mimarisinin Avantajları:

 RISC tasarımı olan bir işlemciyi kullanmak, bir CISC tasarımını kullanmaya göre pek

çok avantaj sağlar:

- Hız: Azaltılmış komut kümesi pipeline ve superskalar tasarıma izin verdiğinden RISC

işlemciler genellikle karşılaştırabilir yarı iletken teknolojisi ve aynı saat oranları

kullanılan CISC işlemcilerinin performansının 2 katından daha yüksek performans

gösterirler.

- Basit Donanım: RISC işlemcinin komut kümesi çok basit olduğundun çok az yonga

uzayı kullanırlar.

- Kısa Tasarım Zamanı: RISC işlemciler CISC işlemcilere göre daha basit olduğundan

daha çabuk tasarlanabilirler ve diğer teknolojik gelişmelerin avantajlarını CISC

tasarımlarına göre daha çabuk kabul edebilirler.

RISC Mimarisinin Dezavantajları:

 CISC tasarım stratejisinden RISC tasarım stratejisine yapılan geçiş kendi problemlerini

de beraberinde getirmiştir. Donanım mühendisleri kodları CISC işlemcisinden RISC işlemcisine

aktarırken geriye uyumluluğu göz önünde bulundurmak zorundadırlar.

2.1.3. EPIC mimarisi:

 RISC mimarisinin altında yatan iki ana tasarım amacı vardır. Birincisi; derleyicinin

kullanmadığı veya kullanamadığı komutlar ve adresleme modlarından kurtulmak. İkincisi; Öyle

bir çekirdek yaratılmalı ki ileride superölçekli mimariyi oluşturacak iş‐hattını kolaylaştırsın.

Komutların aynı anda farklı birimlerde farklı şekilde çalıştırıldığı ortamlar Süperölçekli mimari

olarak adlandırılır. RISC mimarisinde kullanılan bu süperölçekli yapının tasarlanmasında iki

önemli sorun ortaya çıkmaktadır. Birincisi; Komut kümesinde bulunan komutlardan

hangilerinin paralel çalıştırılabileceğine karar verilmesi. İkincisi; Paralel çalıştırılabilecek yeterli

komutların bulunabilmesi. Bu problemlerin üstesinden gelmek için Intel ve benzer işlemci

firmaları yonga alanlarının büyük bir kısmını harcamaktadırlar. EPIC mimarisi işte bu

sorunların üstesinden gelmek için tasarlanmıştır.

2.2. Donanım Sistem Mimarisi

 Bilgisayarın, yüklenen tüm görevleri çok kısa zamanda yerine getirmesinde yatan ana

unsur mimarisidir. Mimari, komutların ve verinin bellek ile kaydediciler arasında taşınmasında

10

kullanılan iletişim yollarının düzeni, kaydedici sayısı ve büyüklükleri gibi tasarım kararlarının

dahil olduğu, işlemci yeteneklerinin nihai sonucunu gösteren bir yapıdır. Bilgisayar mimarisinin

tasarımı iki yaklaşım üzerinde yoğunlaşmıştır. Bunlar, Von Neumann ve Harvard mimarileridir.

2.2.1. Von Neumann mimarisi

 Bilgisayarlarda ilk kullanılan ve adını mimariye yön veren ünlü matematikçi John von

Neumann' dan alan bir tasarım yaklaşımıdır. Bazen Princeton mimarisi de denilen bu mimari

yapıya sahip ilk bilgisayarlarda, transistör yerine lamba (vakum tüp) kullanılmaktaydı.

Şekil 2.3 Von Neumann Mimarisi

 Von Neumann' ın fikrinden yol çıkılarak J. P. Eckert ve J. Mauchly tarafından 1946

yılında ilki geliştirilen bilgisayar beş birimden olunmaktadır. Bunlar; Aritmetik ve mantık

birimi, kontrol birimi, bellek, giriş‐çıkış birimi ve bu birimler arasında iletişimi sağlayan

yollardır.

 Von Neumann mimarisinde, veri ve komutlar bellekten tek bir yoldan mikroişlemciye

getirilerek işlenmektedir. Program ve veri aynı bellekte bulunduğundan, komut ve veri gerekli

olduğunda aynı iletişim yolu kullanılmaktadır. Bu durumda, komut için bir fetch saykılı, sonra

veri için diğer bir fetch saykılı gerekmektedir.

Von Neumann mimarisine sahip bir bilgisayar aşağıda sıralı adımları gerçekleştirir:

1. Program sayıcısının gösterdiği adresten (bellekten) komutu algetir.

2. Program sayıcısının içeriğini bir artır.

11

3. Getirilen komutun kodunu kontrol birimini kullanarak çöz. Kontrol birimi,

bilgisayarın geri kalan birimlerine sinyal göndererek bazı operasyonlar yapmasını

sağlar.

4. 1. adıma geri dönülür.

 Von Neumann mimarisinde, veri bellekten alınıp işledikten sonra tekrar belleğe

gönderilmesinde çok zaman harcanır. Bu işlemler bilgisayarı yavaşlattığından, bilgisayar

tasarımcılarının tabiriyle bir darboğaz oluşturmaktadır. Bundan başka, veri ve komutlar aynı

bellek biriminde depolandığından, yanlışlıkla komut diye veri alanından kod getirilmesi

sıkıntılara sebep olmaktadır. Bu mimari yaklaşıma sahip olan bilgisayarlar günümüzde, verilerin

işlenmesinde, bilginin derlenmesinde ve sayısal problemlerde olduğu kadar endüstriyel

denetimlerde başarılı bir şekilde kullanılmaktadır.

 Bellek erişiminde, hızlı belleklerden sayılan ön‐bellek (cache) sistemlerinin

kullanılmasıyla büyük bant genişliği ve düşük gecikme elde edilerek Von Neumann mimarisinin

darboğazı aşılabilir.

2.2.2. Harvard mimarisi

 Harvard mimarili bilgisayar sistemlerinde, Von Neumann mimarisinden farklı olarak

veri ve komutlar ayrı belleklerde tutulmakladır. Buna göre, veri ve komut aktarımında iletişim

yolları da bir birinden bağımsız yapıdadır. Komutla birlikte veri aynı saat darbesinde farklı

iletişim yolundan ilgili belleklerden alınıp işlemciye getirilebilir. Getirilen komut işlenip ilgili

verisi veri belleğinden alınırken sıradaki komut, komut belleğinden alınıp getirilebilir. Bu önden

alıp getirme işlemi, dallanma haricinde hızı iki katına çıkarabilmekledir.

12

Şekil 2.4 Harvard Mimarisi

 Harvard mimarisi günümüzde daha çok sayısal sinyal işlemcilerinde (DSP)

kullanılmaktadır. Bu sistemlerde adres uzayı, komutların bulunduğu program belleği ve çeşitli

gruplara bölünmüş veri bellekleri olmak üzere üç alana bölünebilir. Mikroişlemci her bir komut

çevriminde tüm belleğe erişebilir. Günümüz bilgisayarlarında, bellekle tek yoldan iletişim ve

komutla verinin aynı bellekle bulunması problemi ön‐bellek sistemleri ile çözülmüştür.

Ön‐bellekler, komut ve veri olmak üzere ikiye ayrılmış ve işlemcinin içerisine yerleştirilmiştir.

İşletim sistemi tarafından ön‐belleğin kapasitesine göre ana bellekten veriler ön‐belleklere

alınır. Önbellek denetleyicisi tarafından komut ve veriler ayrıştırılarak ilgili birimlere

yerleştirilir. Mikroişlemci tarafından, komut ön‐belleğinden, data veri önbelleğinden alınarak

işlenir. Bu işlem, hızlı önbelleklerin ve birbirinden ayrı komut ve veri ön‐belleklerin

kullanılması bilgisayarın performansını artırmaktadır. Ön‐bellek miktarı ne kadar fazla olursa o

kadar iyi olmaktadır, fakat maliyeti çok yüksektir.

13

3. PROGRAMLANABİLİR LOJİK TEKNOLOJİLERİ

 Günümüzde çok geniş ölçekli tümdevre (VLSI) tasarımı için farklı seçenekler vardır.

Bunların içerisinde yer alan programlanabilir lojik elemanlar (PLDs) en çok kullanılan

yapılardır. PLD kısaca kullanıcı tarafından programlanabilen tümdevreler için kullanılan genel

bir kavramdır. Üretilmesi planlanan ürün miktarı ve fiyat göz önüne alındığında eğer

performans gereksinimleri de karşılanıyorsa programlanabilir elemanların kullanılması tasarım

sürecini kısaltmaktadır. Klasik tasarım sürecinde tasarım tamamlandıktan sonra ürünün ortaya

çıkması aylar sürmektedir. Tasarımda herhangi bir yanlışın fark edilmesi durumunda ise üretim

için harcanan maliyet ve süre tekrar ödenir. Bu maliyet ve sürenin kısaltılması için Maske

Programlamalı Kapı Dizileri (MPGA) kullanılmıştır ancak bu teknolojiyle tasarım devreyi

gerçekleştirilecek firma tarafından oluşturulur. Gerçekleştirilmesi istenen lojik devreye bağlı

olarak metal tabaka üretici firma tarafından son aşamada oluşturulmaktadır. Ancak bu yöntem

de tasarım esnekliğini tamamen kullanıcıya bırakmamaktadır. Kullanıcı tarafından

programlanabilen yapılar üzerine çalışmalar 1970lerde programlanabilir salt okunur bellekler

(PROM) ile başlamıştır. Sahada programlanabilir PROM’ un, silinebilir programlanabilir salt

okunur bellek (EPROM) ve elektriksel olarak silinebilir ve programlanabilir salt oku bellek

(EEPROM) olarak iki tipi geliştirilmiştir. EEPROM defalarca silinebilme ve programlanabilme

avantajına sahiptir.

 PLD alanındaki gelişmeler sonucunda bu teknoloji kendi içinde birçok gruba ayrılmıştır

ve farklı amaçlarla kullanılabilecek yapılar ortaya çıkmıştır. Bu elemanlar temelde lojik

devreleri gerçeklemek amacıyla kullanılmaktadır. PLD’ ler karmaşıklığına göre basit ve yüksek

kapasiteli olmak üzere iki ana gruba ayrılmaktadır. Yüksek kapasiteli olanlar gerçeklediği

fonksiyonların karmaşıklığına göre de FPGA ve CPLD şeklinde alt gruplara ayrılır.

14

Şekil 3.1 PLD’ lerin sınıflandırılması

 Basit PLD’ ler Programlanabilir Lojik Dizi (PLA) ve Programlanabilir Dizi Lojiği

(PAL) olmak üzere ikiye ayrılırlar. PLA’ lar PROM’ ların hız ve sınırlı sayıda I/O sorununa bir

çözüm olarak üretilmişlerdir. Bir PLA; AND ve OR matrisi olarak iki matristen oluşur. AND

matrisi fonksiyonun oluşturulmuş olan çarpım terimleri için kullanılır. OR matrisi ile çarpım

terimleri OR işlemine tabi tutularak fonksiyonun gerçekleştirilmesi sağlanır. Bu yapıda her iki

matris de programlanabilmektedir. Bir diğer PLD yapısı ise PLA’ ya benzer yapıda olan fakat

OR matrisi sabit olan PAL yapısıdır. Girişler ve çıkışlara MUX, XOR gibi basit lojik devreler

eklenmiştir. En önemli farkı flip floplar (FF) gibi saat darbesine ihtiyaç duyan elemanların

gerçekleştirilebilmesidir. Böylece FF’ ların çokça kullanıldığı durum makineleri gibi sistemlerin

gerçekleştirilebilmesine büyük kolaylık sağlamışlardır. PAL’ lar aynı zamanda son derece hızlı

çalışabilirler. Günümüzde sıkça kullanılan PLD’ ler AMD ve ALTERA şirketleri tarafından

üretilmektedir. PLD’ lerin en büyük dezavantajı bir fonksiyonu çarpımlar toplamı biçiminden

gerçekleştirdiklerinden yüksek çarpım terimleri içeren fonksiyonları gerçekleyememeleridir.

PLD’ lerin performansını iyileştirmek, kullanılan silisyum alanını azaltmak ve güvenilirliği

artırmak amacıyla karmaşık PLD’ ler (Complex PLD: CPLD) üretilmiştir. Genel bir CPLD’ nin

içerisinde lojik bloklar bulunur ve bu bloklar küçük PLD yapılarında (Küçük PAL adacıkları)

olup birbirleri ile programlanabilir ara bağlantı matrisi kullanarak haberleşirler. Bu şekilde

silisyum alanı etkin bir biçimde kullanılmakta ve PLD’lere oranla daha fazla fonksiyon CPLD’

lerle gerçeklenebilmektedir. CPLD’ler, basit PLD’ler ile günümüzde kullanılan en karmaşık

15

yapı olan FPGA’ ler arasında geçiş döneminde yer almaktadır yani FPGA mimarisinin temelini

CPLD’ler oluşturmaktadır.

 CPLD’ ler fonksiyon blokları, I/O blokları ve bağlantı matrisleri içerirler. Üreticinin

sunduğu EPROM, EEPROM ya da Flash/EPROM gibi teknolojilere bağlı olarak

programlanabilirler. Tipik bir fonksiyon bloğu şekilde görülmektedir.

Şekil 3.2 CPLD Mimarisi

 CPLD’ lerden sonra 1985’te Xilinx firması sahada programlanabilir kapı dizilerini

(FPGA) piyasaya sürmüştür. (Daha sonra ACTEL, ALTERA (ilk CPLD yapısının sahibi),

PLESSEY, QUICKLOGIC gibi şirketler kendi FPGA yapılarını sunmuşlardır.) FPGA’ ler,

programlanabilir lojik bloklar ve ara bağlantılardan oluşur. Kullanıcının tasarladığı lojik

devreye göre, tümdevre üreticisi tarafından sağlanan bir yazılım sayesinde lojik bloklar ve

aralarındaki bağlantılar programlanır. Tasarım sırasında kullanıcıya sağladığı esneklik, düşük

maliyet ve hızlı ilk üretme özelliği ile FPGA’ ler sayısal tasarım ortamlarının vazgeçilmez

yapıları haline gelmiştir.

3.1. FPGA Mimarisi ve Özellikleri

 FPGA’ ler ara bağlantıları çeşitli şekillerde gerçekleştirilen lojik bloklardan

oluşmaktadır. Ara bağlantılar kullanıcı tarafından programlanabilmektedir. FPGA mimarileri,

bağlantı kanallarının yapısına göre dört ana gruba ayrılır:

- Simetrik dizi (Symmetrical Array)

16

- Sıra tabanlı (Row-Based Array)

- Hiyerarşik PLD (Hierarchical PLD)

- Kapı denizi (Sea of Gate) mimarisi

Şekil 3.3 FPGA sınıfları

 Tüm bu FPGA’ lerde ara bağlantılar ve bunların nasıl programlanacağı farklıdır. Halen

kullanılmakta olan dört programlama teknolojisi bulunmaktadır. Bunlar:

- Statik Rastgele Erişimli Bellek (SRAM) Teknolojisi

- Anti-sigorta (Anti-Fuse) Teknolojisi

- EPROM Teknolojisi

- EEPROM Teknolojisi

Uygulamaya bağlı olarak bir FPGA teknolojisi tercih edilir.

FPGA üç tane önemli düzenlenebilir elemana sahiptir :

- Düzenlenebilir Lojik Bloklar (Configurable Logic Blocks: CLB)

- I/O blokları (Input/ Output Blocks: IOB)

17

- Ara bağlantılar

Şekil 3.4 Genel FPGA mimarisi

 CLB’ ler kullanıcı lojiğini oluşturan fonksiyonel elemanlardır. Her FPGA çok sayıda bu

programlanabilir lojik bloklardan oluşmaktadır. Entegredeki her lojik blok farklı bir fonksiyonu

gerçekleştirmek için uygun SRAM programlama hücreleri vasıtasıyla yapılandırılabilir. IOB’

ler FPGA’ nın bacakları ile iç işaretler arasında ara yüz oluşturur. Programlanabilir ara bağlantı

birimleri ise CLB ve IOB’ lerin giriş ve çıkışlarını birleştirmek için uygun hatlar üzerinden

yolları belirler. İstenilen düzenleme, lojik fonksiyonların ve ara bağlantıların nasıl

gerçekleneceğini belirleyen iç statik bellek hücrelerinin programlanmasıyla sağlanır.

3.1.1. CLB yapısı

 CLB’ ler, çok karışık veya NAND kapısı kadar basit olabilir. CLB’ lerin mimarisi iki

ana gruba ayrılır;

- Doğruluk tablosu (Look-Up Table: LUT) tabanlı

- Çoğullayıcı (Multiplexer: MUX) tabanlı

18

Bazılarında ise ardışıl devrelerin de gerçeklenebilmesi amacıyla flip flop’lar kullanılmıştır.

3.1.1.1. LUT tabanlı yapı

 Doğruluk tablosu tabanlı yapının temel bloğu Look-Up Table (LUT) adı verilen ve m

değişkenli her Boole fonksiyonunu gerçekleyebilen devredir. m, günümüzde 3 ile 6 arasında

olan sabit bir sayıdır. Genelde bu blok, m tane adres ve 1 tane veri yolu olan SRAM ile

gerçekleştirilir ve m-LUT olarak adlandırılır. LUT tabanlı yapıda her CLB, bir ya da daha fazla

LUT ile FF gibi diğer lojik elemanlardan oluşur. İstenen devrenin gerçekleştirilebilmesi için

CLB’ler ara bağlantılar ile birbirlerine bağlanarak daha karmaşık yapılar oluşturulabilir.

 Aşağıda LUT tabanlı bir FPGA için lojik birim verilmiştir. FF’ u besleyen MUX, LUT’

dan gelen çıkışı ya da lojik bloğa ayrı bir girişi kabul etmek için yapılandırılabilir. LUT da

herhangi 3 girişli lojik fonksiyonu gerçekleştirmek için yapılandırılabilir.

Şekil 3.5 LUT tabanlı bir FPGA’ in birim elemanı [12]

 Bir grup giriş sinyali LUT’ a bir indeks olarak kullanılır. Bu tablonun içeriği, öyle

ayarlanır ki her giriş kombinasyonu tarafından gösterilen hücre istenilen değeri içerir. Örneğin

y=(a. b) + c’ fonksiyonu 3 girişli LUT’ a uygun değerleri yükleyerek yapılabilir. Bu örnek için

LUT’ un SRAM hücrelerinden (Anti-Fuse, EEPROM ya da FLASH hücreleri de olabilir, ileride

bahsedilecektir) yapıldığını varsayarsak, genelde kullanılan teknik, şekilde görülen transmisyon

kapıları kaskatını kullanarak istenilen SRAM hücresini seçmek için girişleri kullanmaktır.

Aslında SRAM hücreleri de konfigürasyon amacı ile birbirine bağlıdır. Ancak, bu bağlantılar

şekilden daha basit bir gösterim olması için atılmıştır.

19

.

Şekil 3.6-1 LUT’ un yapılandırılması [12]

Şekil 3.6-2 LUT’ un yapılandırılması [12]

 Eğer transmisyon kapısı aktif (enable) yapılırsa, girişteki sinyali çıkışa aktarır. Eğer

kapı pasif yapılırsa (disabled), çıkışı sürdüğü hattan elektriksel olarak ayrılır. Transmisyon

kapısının sembolü küçük bir daire ile gösterilir. Bu daire, bu kapıların kontrol girişlerinde lojik

20

0 ile aktif edildiği anlamına gelir. Bu dairelerin olmadığı semboller de bu kapıların lojik 1 ile

aktif edildiğini gösterir. Bu temelde, çeşitli SRAM hücrelerinin içeriğinin seçilmesi için nasıl

farklı kombinasyonların kullanılabileceğini görmek kolaydır.

 “n” girişli LUT ile ilgili en önemli özellik herhangi olası n girişli kombinasyonel lojiği

gerçekleyebilmesidir. Daha fazla giriş eklemek daha karmaşık fonksiyonların gösterilmesini

sağlar. Ancak, her bir giriş eklediğinizde, SRAM hücrelerinin sayısını iki katına çıkarırsınız. İlk

FPGA’ ler 3 girişli LUT tabanlıydı. Şu anki ortak görüş 4 girişli LUT’ların uygun değer olduğu

yönündedir, fakat yüksek kapasiteli FPGA’ lerde 6 girişli LUT’lara rastlamak mümkündür.

Geçmişte, bazı entegreler 3 ve 4 girişli LUT’ların karışımı gibi farklı boyutlardaki LUT’ların

karışımını kullanarak yapılmışlardı. Çünkü, bu en uygun entegre kullanımını vaat etmişti.

Ancak, tasarım mühendislerinin elinde olan ana araçlardan biri lojik sentezidir. Benzerlik ve

düzenlilik bir sentez aracının en çok sevdiği şeydir. Bu nedenle, şu anda gerçekten başarılı

yapıların tamamı sadece 4 girişli LUT’ ların kullanımı temelindedir. Bu, gelecekte tasarım

yazılımları karmaşıklaşmaya devam ettikçe karışık boyutlu LUT yapılarının tekrar ortaya

çıkmayacağı anlamına gelmemektedir.

 Xilinx’in FPGA’ inin temel yapı taşına lojik hücre (lojik Cell: LC) denir. Bir LC, 4

girişli LUT (16x1 RAM ya da 16 bitlik Shift Register gibi davranabilen), bir MUX ve bir

Register’ dan oluşmaktadır. Şekildeki gösterim kabaca basitleştirilmiş bir gösterimdir. Register

şekildeki gibi FF ya da Latch olarak yapılandırılabilir. Saat işaretinin polaritesi (çıkan kenar

tetiklemeli ya da düşen kenar tetiklemeli mi) ya da saat enable ve set/ reset sinyalleri (aktif High

ya da aktif Low) yapılandırılabilir. LUT, MUX ve Register’ a ek olarak LC, aynı zamanda

aritmetik operasyonlarda kullanmak için bazı özel hızlı elde lojiği gibi diğer elemanları da

içerir.

Şekil 3.7 LC Yapısı ve Dilim (Slice) Yapısı [12]

21

 Hiyerarşide bir düzey yukarı çıkarsak, iki LC birbirine bağlanarak bir Slice adını alır.

Xilinx’ in konfigüre edilebilir lojik blok (Configurable Logic Block: CLB) olarak isimlendirdiği

yapı Altera’ da lojik dizi bloğudur (Logic Array Block, LAB). Örneğin CLB’ leri ele alırsak,

bazı Xilinx FPGA’lerinin her CLB’ sinde iki Slice bulunurken, diğerlerinde dört Slice bulunur.

Günümüzde bir CLB programlanabilir ara bağlantılar denizindeki programlanabilir lojik adası

olarak görülmektedir. Aynı zamanda, CLB’ nin içerisinde bazı hızlı programlanabilir ara

bağlantılar vardır. Bu ara-bağlantı komşu Slice’ ları birbirine bağlamak için kullanılmıştır.

 LCàSlice (iki LC’li)àCLB (iki veya dört Slice’ lı) şeklindeki lojik blok hiyerarşisi

ara-bağlantılardaki eşdeğer hiyerarşi tarafından tamamlanmaktadır. Bir Slice’ daki LC’ ler

arasında hızlı ara-bağlantı vardır. CLB ’lerdeki Slice’ lar arasında biraz daha yavaş ara-bağlantı

ve bunu takip eden CLB’ ler arasında ise ondan biraz daha yavaş ara-bağlantı vardır. Bu fikrin

amacı, ara-bağlantılardan kaynaklanan aşırı gecikmelerin önlenerek her şeyin birbirine kolayca

bağlanabilmesini sağlamaktır.

Şekil 3.8 Örnek bir CLB yapısı [12]

 Bir Xilinx/Virtex CLB’ si, Sekil 8’de gösterildiği gibi, dört adet LC ve gerekli bağlantı

devresinden oluşur. İki LC ve gerekli bağlantı devresinden oluşan yapıya ise Slice adı

verildiğini daha önceden söylemiştik. FPGA üzerinde gerçeklenen devrelerin kapladığı alan

genellikle Slice sayısı cinsinden ifade edilir. Her lojik hücreye ait olan LUT’ un, MUX’ un ve

Register’ ın kendi veri giriş ve çıkışları olmasına karşın Slice’ ın lojik hücrelerde de yaygın olan

bir saat, saat enable ve set/reset i vardır.

22

Şekil 3.9 Xilinx-VirtexE CLB’ si [12]

 Bir LUT, 4 değişkenli herhangi bir fonksiyonu gerçekleyebilir. Bu gerçekleme tablo

seklinde olduğu için, dört değişkenli ya da daha az değişkene sahip tüm fonksiyonlar FPGA

üzerinde aynı karmaşıklığa, dolayısıyla aynı kapı gecikmesine sahiptir. 4 den daha fazla

değişkene sahip fonksiyonlar ise, örnekte gösterileceği gibi, dört değişkenli bloklara

parçalandıktan sonra LUT’ lar üzerinde gerçeklenir.

Şekil 3.10 Xilinx/Virtex Ailesine ait bir Slice’ ın iç yapısı [12]

Örnek : y = x3 • x2 • x1’ • x0 fonksiyonu tek bir LUT ile gerçeklenirken

23

y = (x5’ • x4 • x3 • x2 • x1’• x0) + (x6’ • x5’ • x3 • x1’ • x0) fonksiyonu aşağıdaki şekilde

parçalanarak 2 LUT ile gerçeklenebilir.

y = (x5’ • x4 • x3 • x2 • x1’• x0) + (x6’ • x5’ • x3 • x1’ • x0) = x4 • x2 • (x5’ • x3• x1’• x0) + x6’ • (x5’ •

x3 • x1’ • x0)

a= (x5’ • x3• x1’• x0) alınırsa; (LUT 1 de gerçeklenir)

= (x4 • x2 • a) + (x6’ • a) => a • (x6’ • x4 • x2) (LUT 2 de gerçeklenir)

Şekil 3.11 y= (x5’ • x4 • x3 • x2 • x1’• x0) + (x6’ • x5’ • x3 • x1’ • x0) fonksiyonu

 FPGA mimarisinde kullanılan LUT’ lar, Boole fonksiyonlarının gerçeklenmesinin yanı

sıra, 16x1 bitlik bir RAM olarak da kullanılabilmektedir. Aynı Slice içerisindeki iki LUT

birlikte kullanılarak 32x1 bitlik RAM ya da 16x1 bitlik iki portlu RAM gerçeklenebilir.

Bunların yanı sıra, bir LUT, 16-bitlik silme (reset) özelliği olmayan Shift Register olarak da

kullanılabilir. Slice içerisindeki F5 MUX’ u, iki LC’ in çıkısını birleştirerek bir Slice içerisinde;

5-değişkenli herhangi bir Boole fonksiyonun, 4 girişli bir MUX’ un ya da 9-değişkenliye kadar

bazı fonksiyonların gerçeklenmesini sağlar. Benzer şekilde F6 çoklayıcısı, aynı CLB

içerisindeki iki Slice’ ın F5 çoklayıcısı çıkışlarını birleştirerek bir CLB içerisinde; 6-değişkenli

herhangi bir Boole fonksiyonunun, 8 girişli bir çoklayıcının ya da 19-değişkenliye kadar bazı

fonksiyonların gerçeklenmesini sağlar.

3.1.1.2. MUX tabanlı yapı

 Çoğullayıcı tabanlı yapıda ise CLB’ ler MUX’ ların çeşitli düzenlemelerinden ve

olabildiğince az AND ve OR gibi lojik kapılardan oluşur. Ardışıl devrelerin gerçeklenebilmesi

amacıyla MUX tabanlı FPGA’ lerin içinde tutucu (Latch) ve flip flop gibi elemanlar

kullanılabilmektedir.

24

Şekil 3.12 MUX tabanlı CLB yapısı

 Bir zamanlar, MUX tabanlı yapılarla en iyi sonucun alındığı söylenirdi. Ancak bu

sonuçların nasıl daha iyi olduğu açıklanmazdı. Aynı zamanda, MUX tabanlı yapıların kontrol

lojiğini gerçeklemede (eğer bu giriş “true” ve bu giriş “false” ise şu çıkışı “true” yap gibi…)

avantajı olduğu da söylenir. Buna karşın, bu yapıların bazıları yüksek hızlı elde lojik zincirlerini

sağlamazlar.

 MUX tabanlı yapılara örnek olarak ACTEL firmasının ürettiği FPGA’ ler verilebilir. Bu

FPGA’ ler de LUT tabanlı yapılar gibi yatay olarak dizilmiş lojik modüllerden (Logic Module:

LM) ve bu modül dizilerinin arasında bulunan bağlantı yollarından oluşmaktadırlar. ACTEL

firmasının 42MX ailesine ait bir FPGA’ i incelenirse bu yapı 3 farklı tipte lojik modül

içermektedir; bunlar kombinezonsal modül (C-module), ardışıl modül (S- module) ve kod

çözücü modül (D module). Kombinezonsal modül ile Boole fonksiyonları, ardışıl modül ile bir

ardışıl devre gerçeklenebilir. Kod çözücü modül ile 7 girişli kod çözme işlemi

gerçekleştirilebilir. Ayrıca ACTEL FPGA’ leri içerisinde SRAM modülleri de dağıtık bir

şekilde bulunmaktadır.

25

Şekil 3.13 C tipi, S tipi ve D tipi modüller [15]

3.1.2. IOB yapısı

 Giriş/Çıkış blokları, kılıf bacaklarıyla tasarım için kullanılan birimler (CLB, Blok

RAM) arasında bağlantı kurar. FPGA’ lerin giriş çıkış blokları; giriş, çıkış veya giriş-çıkış

olarak kurgulanabilir. Sekiz “Kenar Kümesi (Bank)” halinde yerleştirilen giriş çıkış blokları,

kümeler halinde, farklı işaretleşme standartlarını destekleyecek şekilde kurgulanabilir. Şekilde

Virtex-E yongasının giriş çıkış bloklarının yerleşimi ve bir giriş çıkış bloğunun ayrıntılı seması

gösterilmiştir.

26

Şekil 3.14 Virtex Giriş/Çıkış Bloğu ve Kenar Kümelerinin yerleşimi [12]

3.1.3. CLB’ ler arası bağlantılar

 Giriş/ Çıkış bloklarıyla tasarım blokları ve tasarım bloklarıyla yine tasarım blokları

arasındaki bağlantılar, bağlantı elemanları ile sağlanır. FPGA içerisindeki bağlantı elemanları,

CLB’ ler arasına satırlar ve sütunlar halinde yerleştirilmiş bağlantı hatları ve bu hatların kesişim

noktalarına yerleştirilmiş bağlantı matrislerinden oluşur. Şekilde bir FPGA yongası içerisindeki

bağlantı elemanları gösterilmiştir.

Şekil 3.15 FPGA Bağlantı Elemanı [12]

3.2. FPGA’ lerin Programlama Teknolojileri

 Günümüzde FPGA’ lerin üretim safhasında kullanılan başlıca iki çeşit programlama

teknolojisi bulunmaktadır: SRAM ve Anti-Fuse. Her iki teknolojinin birbirlerine göre avantaj ve

27

dezavantajları bulunmaktadır. Bunlar dışında Altera firması tarafından MAX ailesi FPGA’ lerde

kullanılan EEPROM teknolojisi bulunmaktadır. Bu tip FPGA’ lerin da tekrar

programlanabilmeleri için devreden sökülerek ultraviyole ışınlarına tutulması gerekmektedir.

Günümüzde en çok kullanılan programlama teknolojileri SRAM ve anti-sigorta

programlamadır.

3.2.1. SRAM teknolojisi

Bir SRAM hücresi 6 adet transistörden oluşmaktadır. Sırt sırta pozitif geri beslemeli bağlanmış

iki evirici ve bunların çıkışında yer alan iki adet geçiş transistöründen oluşur. Bu eviriciler veri

tutucu olarak iş yaparken geçiş transistörleri ise seçme işlemi için kullanılırlar.

Şekil 3.16 SRAM yapısı [12]

 SRAM hücreleri tarafından kontrol edilen geçiş transistörleri, iletim kapıları ve MUX’

lar yapılabilmektedir. Geçiş transistörleri kullanan uygulamalarda RAM hücresi transistörün

iletimde ya da kesimde olmasını sağlar. MUX’ lu yapılarda ise RAM hücresi MUX’ un girişinin

hangi çıkışa bağlanacağını kontrol eder.

28

Şekil 3.17 SRAM hücrelerinin kullanımı [12]

FPGA’ lerin çoğu SRAM konfigürasyon hücresi tabanlıdır. Bu da tekrar tekrar konfigüre

edilebilir anlamına gelir.

 Bu teknolojinin üstünlüğü, devrenin tekrar düzenlenmesinin hızlı olmasıdır.

Programlama işlemi, yalnızca SRAM üzerinde saklanan verilerin değiştirilmesi ile mümkün

olduğundan tasarımlar tamamlandıktan hemen sonra FPGA’ leri programlamak ve test etmek

mümkündür. Böylece, tasarım sırasında oluşacak yeni ihtiyaçları ve standart değişikliklerini

karşılamak, hataları tespit etmek ve düzeltmek, fabrikasyon zamanı ve fazla maliyet getirmeden

mümkün olmaktadır. Ayrıca, sisteme ilk enerji verildiğinde, FPGA başlangıçta kendi kendine

test ya da kart/sistem testini gerçekleştirmek için programlanabilir. Ek olarak, SRAM hücreleri

tamamen CMOS teknolojisi kullanılarak üretilirler, böylece, bu malzemeleri üretmek için özel

işlemlere gerek kalmaz

En önemli zayıf yanı ise RAM hücrelerinin gerektirdiği tümdevre alanıdır. Ayrıca uçucudurlar,

yani devrenin gücü kesildiği anda programlanmış hücrelerdeki veriler kaybolur. Devreye her

güç uygulandığında SRAM hücrelerinin tekrar programlanması gerekmektedir. Bu, ya özel

harici bir hafıza entegresi (bu ekstra maliyet demektir) ya da bir mikroişlemci gerektirir.

29

 SRAM-tabanlı entegrelerdeki diğer bir unsur tasarımlardaki IP (Intellectual Property)’

nin korunmasının zor olmasıdır. Çünkü, entegreyi programlamak için kullanılan konfigürasyon

dosyasının harici bir hafızada saklanır. Şu an, konfigürasyon dosyasının içeriğini okuyacak ve

ilgili şematik ya da netlist gösterimini üretecek uygun ticari bir araç bulunmamaktadır.

Dünyada, “tasarım IP”’sinin ele geçirilmesi konusunda uzmanlaşan art niyetli mühendislik

şirketleri de bulunmaktadır. Aynı zamanda, paranın içerde kalması için hükümetlerinin IP

hırsızlığına göz yumduğu ülkeler de var.

 Hazır şekilde bulunan teknolojiyi kullanarak bir devre bordu alıp bir tester’ a koyup

hızlı bir şekilde bütün netlisti açmak oldukça kolaydır. Bu netlist daha sonra kartı çoğaltmak

için kullanılabilir. Şu aşamada kalan tek iş boot PROM (ya da EPROM, EEPROM vb.)’undan

FPGA konfigürasyon dosyanızı kopyalamaktır ve böylece, bütün tasarımın bir kopyasına sahip

olmuş olurlar. İşin iyi bir yanı, bugünün bazı SRAM-tabanlı FPGA’ lerin “bitstream

encryption” (bit akışı şifrelemesi)’ ni desteklemeleridir. Bu durumda, son konfigurasyon datası

harici hafızaya yüklenmeden önce şifrelenir. Bazı ilgili lojikle birlikte, bu anahtar gelen

şifrelenmiş konfigürasyon bit akışının şifresinin yükleme sırasında çözülmesini sağlar.

Şifrelenmiş bit akışını yükleme FPGA’ in geri okuma yeteneğini otomatik olarak kaldırır. Bu,

geliştirme sırasında şifrelenmemiş konfigürasyon datasının kullanacağınız ve daha sonra, üretim

aşamasında geçtiğinizde şifrelenmiş datayı kullanacağınız anlamına geliyor. Bu tasarının asıl

dezavantajı, sistemden enerji kesildiğinde FPGA’ in şifre anahtarı kaydedicisindeki içeriğin

korunması için devre kartı üzerinde bir yedekleme bataryasının gerekli olmasıdır. Bu bataryanın

ömrü yıllarca ya da on yıllarca sürecektir, çünkü entegredeki sadece bir kaydediciyi

besleyecektir, ancak, boyutu, ağırlığı, karmaşıklığı ve kartın fiyatını artıracaktır.

3.2.2. Anti-Sigorta (Antifuse) teknolojisi

 Bir anti-sigorta yüksek empedans konumunda iken (100M-Ohm ile 1G-Ohm (Via

teknolojisi ile) arası değerler) programlama gerilimi uygulanarak düşük empedans

(sigortalanmış) (100-Ohm lar mertebesi) durumlarına programlanabilir. RAM teknolojisinden

daha düşük maliyeti olmasına karşılık bir kere programlanabilen tümdevrelerdir. Dolayısıyla ilk

örnek üretim için pahalı bir çözüm olmaktadırlar.

30

Şekil 3.18 Anti-Fuse teknolojisiyle programlama [15]

 Programlanırken sistemde bulunan SRAM-tabanlı entegrelerin aksine, Anti-Fuse tabanlı

entegreler özel bir programlayıcı kullanarak offline olarak programlanır. Anti-Fuse tabanlı

FPGA’lerin çeşitli avantajları vardır. Bu entegreler nonvolatile’ dır (yani enerji kesildiğinde bile

konfigürasyon datası kalır). Bu da sisteme enerji verilir verilmez çalışmaya hazır halde oldukları

anlamına gelir. Bunu yanında, bu entegreler konfigürasyon datasını saklamak için harici bir

hafızaya ihtiyaç duymazlar. Bu da ek malzeme ve kart üzerindeki yerden tasarruf edilmesini

sağlar.

 Bu entegrelerin ara-bağlantı yapıları “rad hard” (Radiation Hardening)’ dır. (Rad hard

yöntemleri: fiziksel (kaplama, özel wafer maddesi (SiO, Safir),DRAM), lojik (ECC, 3-

redundant element, watchdog)) Bu, bu entegrelerin radyasyonun etkilerine karşı oldukça

bağışıklığı olduğu anlamına gelir. Bu, özellikle askeri ve uzay uygulamalarını ilgilendiren bir

özelliktir. Çünkü, SRAM-tabanlı malzemelerdeki konfigürasyon hücresinin durumu eğer o

hücre radyasyonla karşılaşırsa (ki uzayda çok fazla radyasyon mevcuttur) bozulur. Anti-Fuse bir

kez programlandığında, bu şekilde alt üst olmaz.

 Bu entegrelerdeki flip-flopların radyasyona karşı hassas olduğuna dikkat etmek gerekir.

Bu durumda, radyasyonu yoğun olan ortamlarda yongaların flip-floplarının “triple redundancy

design” tarafından korunması gerekir. Bu şu anlama gelir: her kaydedicinin üç kopyası yapılır

ve herhangi bir aksaklık durumunda bu üç kaydedicinin içeriklerinin çoğunluğuna bakarak karar

verilir. Örneğin iki kaydedici “0” ve bir kaydedici “1” içeriyorsa, içeriğin “0” olduğuna karar

verilir ya da tam tersi yapılır.

 Ancak, Anti-Fuse tabanlı FPGA’lerin en önemli avantajı belki de konfigürasyon

datasının içlerinde derine gömülmesidir. Programlayıcının bu datayı okuması olasıdır, çünkü bu,

31

aslında programlayıcı bu şekilde çalışır. Her Anti-Fuse işletilirken, programlayıcı o elemanın

tamamen programlanıp programlanmadığını belirlemek için test etmeye devam eder. Daha

sonra diğer anti-Fuse’ e geçer. Dahası, programlayıcı konfigürasyonun başarılı bir şekilde

çalışıp çalışmadığını otomatik olarak doğrulamak için kullanılabilir (50 milyon programlanabilir

elementten bahsedildiğinde bunu yapmaya değer). Bunu yapmak için, programlayıcının anti-

Fuse’ lerin gerçek durumlarını okuma ve konfigürasyon dosyasında tanımlanan durumlarla

karşılaştırabilmesi gerekir. Buna rağmen, entegre bir kez programlandığında, programlama

datasının daha sonra okunmasını önlemek amacıyla özel bir güvenlik anti-Fuse ’u koyulabilir.

Üstleri kaldırılsa bile programlanmış ve programlanmamış anti-Fuse’ ler aynı görünür. Bütün

anti-Fuse’ lerin iç metal tabakalara gömülmesinden dolayı art niyetli mühendislerin tasarımı ele

geçirmeleri imkansız hale gelir. Anti-Fuse teknolojisi asıl üretim işlemi tamamlandıktan sonra

yaklaşık üç ek proses adımının kullanımını gerektirir. Anti-Fuse tabanlı entegrelerin asıl

dezavantajı OTP (bir kez programlanabilir) olmalarıdır. Bu da bu entegrelerin geliştirme ve ilk

örnek hazırlamada tercih edilmemelerine neden olur.

3.2.3. EEPROM/FLASH teknolojisi

 EEPROM ya da FLASH-tabanlı FPGA’ ler SRAM-tabanlı FPGA’ lere benzerdir.

Konfigürasyon hücreleri uzun bir Shift Register zinciri şeklinde bağlanmıştır. Bu entegreler

programlayıcı kullanılarak offline olarak konfigüre edilebilir. Alternatif olarak, bazı sürümleri

in-system (sistem içi) programlanabilir (ISP)’ dir, ancak, programlama süreleri SRAM-tabanlı

entegrelere göre üç kat daha uzundur. Bir kez programlandığında içerdikleri data kalıcıdır.

3.2.4. Hybrid FLASH-SRAM teknolojisi

 FPGA’ lerde, bazı üreticiler programlama teknolojilerinin gizemli birleşimlerini

önerirler. Örneğin, her konfigürasyon elemanının FLASH (ya da EEPROM) hücresi ile SRAM

hücresinin birleşiminden oluşturulduğu bir entegreyi ele alın. Bu durumda, FLASH elemanları

tekrar programlanabilir. Bu durumda, sisteme enerji verildiğinde, FLASH hücrelerinin içeriği

ilgili SRAM hücrelerine paralel şekilde kopyalanır. Bu teknik, antifuse entegreler gibi kalıcılık

kazandırır. Bu da enerjinin sisteme verilmesiyle entegrenin hemen hazır durumda olması

demektir. Ancak antifuse-tabanlı entegreden farklı olarak, daha sonra entegreyi tekrar konfigüre

etmek için SRAM hücreleri kullanılabilir. Alternatif olarak, entegre FLASH hücrelerini

kullanarak ya sistemdeyken ya da offline olarak programlayıcıyla tekrar konfigüre edilebilir.

3.2.5. SRAM ve Anti-Sigorta teknolojilerinin karşılaştırılması

 Anti-sigorta teknolojisinde programlama bağlantılarının dirençleri 100Ω mertebelerinde

iken SRAM teknolojisinde programlama bağlantıları 1kΩ mertebelerindedir. Dolayısıyla, anti-

32

sigorta FPGA’ ler daha yüksek performans göstermektedirler. Ayrıca, anti-sigorta FPGA’ lerin

lojik hücre yapıları SRAM teknolojisine göre daha az silisyum alanı gerektirir. Ancak, anti-

sigorta FPGA’ ler sadece bir kez programlanabilmektedirler. SRAM FPGA’ ler ise bir EPROM

veya dış ortama bağlantıyı sağlayabilen bir konektör yardımıyla sistem içerisinde

programlanabilmektedirler. Ürünün çalıştığı ortamda güncellenebilmesi SRAM FPGA’ lerin

seçilmesindeki en önemli etkendir. Tablo 1’de ticari amaçlı kullanılan bazı FPGA’ ler ve Tablo

2’de FPGA programlama teknolojilerine ait karşılaştırmalar verilmiştir.

Çizelge 3.1 Bazı ticari FPGA’ ler

Üretici Mimari Lojik Blok Tipi Programlama Teknolojisi

Actel Satır Bazlı Çoğullayıcı Bazlı Anti-Sigorta

Altera Hiyerarşik PLD Doğruluk Tablosu Statik RAM

QuickLogic Simetrik Dizi Çoğullayıcı Bazlı Anti-Sigorta

Xilinx Simetrik Dizi Doğruluk Tablosu Statik RAM

Çizelge 3.2 FPGA’ lerin programlanma teknolojileri

Programlama

Teknolojisi

Uçuculuk Tekrar

Programlanabilme

Silisyum

Alanı

R (Ω) C (ff)

Statik RAM Evet Devre Üzerinde Büyük 1-2 K 10-20

PLICE Anti-Sigorta Hayır Yok Küçük 300-500 3-5

EPROM Hayır Devre Dışında Küçük 2-4 K 10-20

EEPROM Hayır Devre Üzerinde 2*EPROM 2-4 K 10-20

3.3. FPGA İçerisinde Yer Alan Özel Ara yüzler ve Bloklar

3.3.1. Dağıtık RAM’ ler ve shift registerlar

 Önceden de belirtildiği gibi, her 4 girişli LUT 16x1 RAM olarak kullanılabilir. Daha

önceden verilen CLB yapısı için dört Slice konfigürasyonunu düşünerek, bir CLB’ deki bütün

LUT’lar birlikte Tek-port 16 x 8 bit RAM, 32 x 4 bit RAM, 64 x 2 bit RAM, 128 x 1 bit RAM

ya da Çift-port 16 x 4 bit RAM,32 x 2 bit RAM, 64 x 1 bit RAM gerçeklemek için konfigüre

edilebilir.

 Alternatif olarak, her 4 bitlik LUT 16 bitlik Shift Register olarak kullanılabilir. Bu

durumda, slice içersindeki lojik hücreler arasında ve Slice’ ların kendi aralarında ayrılmış özel

33

bağlantılar vardır. Bu, sıradan bir LUT’ un çıkışını (16 bitlik Register içersinde seçilen bitin

içeriğini görüntülemek için kullanılabilir) kullanmadan bir Shift Registerin son bitini diğer Shift

Register ın ilk bitine bağlanmasını sağlar. Bu da tek bir CLB içersindeki LUT’ların 128 bite

kadar çıkan bir Shift Register ı gerçeklemek için birlikte konfigüre edilmelerini sağlar.

3.3.2. Hızlı elde zincirleri

 Modern FPGA’ lerin hızlı carry zincirlerini gerçeklemek için gerekli olan özel lojik ve

ara-bağlantıları içermeleri kilit bir özelliktir. Önceki kısımda verilen CLB’ ler bağlamında, her

LC özel carry lojik içerir. Bu, her slice’ daki iki LC arasında, her CLB’ deki slice’lar arasında

ve CLB’ lerin kendi aralarında ayrılmış ara-bağlantılar vasıtasıyla tamamlanır. Bu özel carry

lojik ve ayrılmış bağlantılar, sayıcılar ve aritmetik fonksiyonlar (toplayıcılar gibi) gibi lojik

fonksiyonların performansını artırır. Hızlı carry zincirlerinin olması DSP gibi uygulamalar için

kullanılan FPGA’ lerde kolaylık sağlar.

3.3.3. Gömülü RAM’ler

 Birçok uygulama hafıza kullanımına ihtiyaç duyar. Bu nedenle, FPGA’ ler şimdi, e-

RAM ya da Blok RAM olarak adlandırılan oldukça büyük gömülü RAM’ ler içerir.

Malzemenin yapısına bağlı olarak, bu RAM blokları entegrenin çevresine yerleştirilebilir, çipin

yüzeyine dağıtılabilir ya da kolonlar halinde yerleştirilebilir. Entegresine bağlı olarak, böyle bir

RAM birkaç binden onlarca binlik bite kadar data alabilir. Dahası, bir entegre, onlarcadan

yüzlerceye kadar bu RAM bloklarından içerebilir. Böylece, birkaç yüz bin bitten birkaç milyon

bite kadar toplam saklama kapasitesi sağlarlar. Her bir RAM bloğu bağımsız olarak

kullanılabilir ya da çoklu bloklar daha büyük blokları oluşturmak için birlikte bağlanabilirler.

Bu bloklar farklı amaçlar için kullanılabilirler. Örneğin, standart tek ya da çift-port RAM

oluşturmak için, FIFO (first-in first-out) fonksiyonları vb…

34

Şekil 3.19 Gömülü RAM yapısı [12]

3.3.4. Gömülü çarpıcılar, toplayıcılar, MAC’ lar

 Çarpıcılar gibi bazı fonksiyonlar eğer çok sayıda programlanabilir lojik bloğu birlikte

bağlayarak gerçeklenirse niteliği gereği yavaş olurlar. Bu fonksiyonlar birçok uygulamada

gerekli oldukları için birçok FPGA’ in özel fiziksel olarak bağlı çarpıcı (multiplier) blokları

vardır. Bunlar tipik olarak gömülü RAM bloklara yakın mesafede yerleştirilmişlerdir. Çünkü bu

fonksiyonlar genellikle birbirleriyle bağlantılı olarak kullanılırlar. Benzer şekilde, bazı FPGA’

lerin ayrılmış toplayıcı blokları vardır. DSP tipi uygulamalarda çok yaygın olarak kullanılan bir

işlem de multiply-and-accumulate (MAC) (çarp-ve-biriktir) şeklinde adlandırılır. Bu fonksiyon

adından da anlaşılacağı gibi iki sayıyı birbiriyle çarpar ve sonucu bir akümülatörde saklanan

toplama ekler. Eğer çalıştığınız FPGA sadece gömülü çarpıcıları destekliyorsa, bu fonksiyonu

gerçeklemek için çarpıcıyla bir grup programlanabilir lojik bloktan oluşan bir toplayıcıyı

birbirine bağlamak zorundasınız. Sonuç ise bazı ilgili flip-floplarda, bir blok RAM’ de ya da bir

grup dağıtılmış RAM’ de saklanır. Eğer FPGA’ lerin gömülü toplayıcıları da olsa her şey daha

kolay olurdu. Bazı FPGA’ ler MAC’ ları gömülü fonksiyonlar olarak sağlarlar.

35

3.3.5. Diğerleri

 Günümüzde FPGA firmaları büyük rekabet içerisindedirler. Bu yarışta ön plana çıkmak

için firmalar FPGA’ lerinin özelliklerini her gün arttırmaktadır. Bunlar; içerdiği lojik kapı ve

bellek kapasitesi, maksimum çalışma frekansı, güç tüketimi, ısınma, çevresel bileşenler için

sahip olduğu ara yüzler, işaret uyumluluğu, PCB tasarımı sırasındaki kolaylıklar, konfigüre

edilebilme kolaylığı, güvenlik gibi özelliklerdir.

 Xilinx FPGA’ ler içerisinde DCM (Digital Clock Manager) adı verilen bir yapı saat

işaretinin yonga içerisindeki dağıtımını ve saat işaretine özel birçok ihtiyacı karşılamaktadır.

Bunlar saat işaretindeki zayıflama, kayma, frekans sentezleme, faz kaydırma, farklı saat

işaretleri üretme gibi özelliklerdir.

 Xilinx firmasının FPGA dünyasına kattığı önemli özelliklerden birisi de PowerPC

tabanlı işlemcileri FPGA içerisine çekirdek şeklinde gömülebilmesidir. Şuanda 550MHz ile en

hızlı Xilinx FPGA ailesi olan Virtex5 içerisine PowerPC 440 işlemcisi “hard core” olarak

gömülebilmektedir. Aynı şekilde 450 MHz de çalışabilen Virtex 4 Pro ailesi ile de aynı FPGA

içerisine 2 adet PowerPC 405 işlemci çekirdeği yerleştirilebilmektedir. Bu işlemcilerin FPGA

içerisinde bulunmasıyla birlikte Co-Design adı verilen yapılar oluşturulabilmektedir. Böylece

ağır aritmetik işlemler donanım tabanlı gerçeklenirken durum makinesi gerektiren protokol

işleri işlemci üzerinde koşan yazılımla gerçeklenebilir.

3.4. FPGA’ lerın Programlanması

ü Devrenin sözle tanımı yapılır.

ü Şematik veya HDL kullanılarak tasarım

ü Devreye ait standart bağlantı listesi (Netlist)

ü Fonksiyonel benzetim (Functional Simulation)

ü Lojik sentezleme

ü Kullanılacak FPGA seçimi

ü Sentezleme işleminde varsa, devreye ait lojik kısıtlamalar (I /O, zamanlama,

yerleştirme, saat frekansı, kritik yollar,..) kullanıcı kısıtlama dosyası (user constraints

file, Xilinx)

ü Lojik sentezleyici ile istenilen fonksiyonların gerekli lojik indirgemeleri (logic

optimization)

36

ü Elde edilen lojik fonksiyonlar FPGA içerisindeki lojik bloklarla eşleştirilmesi işlemi

(technology mapping) kapı seviyesinde bir bağlantı listesi oluşur.

ü Teknoloji haritalaması sırasında, kullanıcı kısıtlama dosyası da kullanılarak zamanlama

gereksinimi karşılanmak amacıyla gerekirse daha fazla lojik eleman kullanımı.

ü Sentezleme sonrasında, yerleştirme ve yollandırma (placement and routing) (Bu

adımda, devre fonksiyonları ile eşleştirilmiş lojik bloklar FPGA içerisinde uygun

yerlere yerleştirilir ve bu bloklar arasındaki bağlantılar oluşturulur. Lojik yolların daha

kısa olması amacıyla birbirleriyle ilişkili CLB’ ler yakın yerleştirilir. Yollandırmada ise

bağlantılar uygun şekilde seçilir. Örneğin, tasarımın birçok alanında bir işarete ihtiyaç

varsa en küçük gecikmeyi sağlamak amacıyla uzun bir yol kullanılır.

ü Bu aşamadan sonra kapı seviyesinde benzetimin gerçekleştirilmesi uygun olacaktır.

Çünkü artık bütün CLB’ lere (LUT veya çoğullayıcılar ve flip flop’ lara) ve yollandırma

bağlantılarına ait gecikmeler gerçeğe çok yakın olarak elde edilmiştir. Bu gecikmeler de

eklenerek devrenin benzetimi yapıldığında, zamanlama ve hız açısından kritik yollar

saptanabilir. Yerleştirme ve yollandırma sonrası benzetimlerde istenilen sonuçlar elde

edildikten sonra FPGA’ nın programlanması aşamasında kullanılacak bit dizisi,

üreticinin sağladığı yazılımla elde edilir. FPGA’ nın uygun donanım kullanılarak

programlanmasıyla tasarım tamamlanır.

37

Şekil 3.20 Tasarım Akışı

Sözle Tanım

Şematik / HDL

Derleme

Fonksiyonel Benzetim

Tasarım
Doğru mu?

Lojik Sentezleme

Yerleştirme & Yollandırma

Kapı Seviyesinde Benzetim

Tasarım
Doğru mu?

FPGA Programlanması

Evet

Evet

Hayır

Hayır

38

4. İŞLEMCİ TASARIMI

 Bu tez çalışmasında Von Neumann mimarisinde tasarlanmış olan işlemcinin blok

diyagramı aşağıdaki şekilde görülmektedir. Tasarlanan işlemci her hangi bir konfigürasyonda

64kx16 ’ya kadar bellek elemanını (RAM, ROM, EEPROM…) doğrudan adresleyebilmektedir.

İşlemcide, kullanılacak RAM haricinde, işlemci içerisindeki 32 adet 16 bitlik saklayıcıları

içeren ve RAM’ den daha hızlı işlem yapılabilen bir saklayıcı dizisi (register array)

bulunmaktadır. A (akümülatör) saklayıcısı ise saklayıcı dizisinden ayrı olarak, karalama

yapmak için tasarıma eklenmiştir. Aşağıda işlemciye ait blok diyagramı ve modüllere ait

açıklamalar görülmektedir.

Şekil 4.1 Tasarlanan işlemcinin blok görünümü.

39

4.1. Tasarlanan İşlemcinin Donanımsal Bileşenleri

 Yukarıdaki blok diyagramda görülen lojik devrelere ait kısa açıklamalar aşağıda

verilmiştir.

A1 Çoğullayıcı (A1 MUX):

 Adres hattının, program belleğindeki bir sonraki komutu okumak için program sayacı

(program counter) tarafından veya işlenen komutun parametresi olan veri okuma – yazma

işlemleri için gerekli adresleri içeren ilgili saklayıcılar tarafından kullanılmasını sağlayan

çoğullayıcıdır.

A2 Çoğullayıcı (A2 MUX):

 Doğrudan adresleme ve dolaylı (indirect) adresleme arasında geçişi sağlayan

çoğullayıcıdır.

Bellek Veri Saklayıcısı (RAMDATA REGISTER):

 RAM’ den okunan verinin yapılacak işlemde kullanılmak üzere kaydedildiği

saklayıcıdır.

Sabit İşlenen Saklayıcısı (LITERAL REGISTER):

 Programdan okunan sabit işlenen değerinin kaydedildiği saklayıcıdır.

Bellek Adres Saklayıcısı (RAMADDR REGISTER):

 Programdan okunan RAM adresinin kaydedildiği saklayıcıdır.

Komut Saklayıcısı (OPCODE REGISTER):

 Bellekten okunan komutun kaydedildiği saklayıcıdır.

X ve Y Çoğullayıcıları (X-MUX ve Y-MUX):

 ALU girişlerine herhangi bir veri saklayıcısı içindeki bilginin getirilmesini sağlayan

çoğullayıcılardır.

Akümülatör (A REGISTER):

 Hızlıca işlem yapmak için, karalama olarak kullanılabilecek saklayıcıdır.

Aritmetik Lojik Birim (ALU):

 Aritmetik lojik işlemlerin yapıldığı birimdir. Bir işlem sonucunun oluştuğu her komut

ALU’ dan geçer. ALU’ nun hangi fonksiyonu yerine getireceğine kontrol lojiği karar verir.

40

4.1.1. Kontrol lojiği tasarımı

 İşlemcinin, komutları yorumlayıp, istenilen şekilde gerçekleştirmesini sağlayan lojik

devredir. Kontrol lojiğine ait durum akış diyagramı Şekil 2’de görülmektedir. Basit komutların

işlenebilmesi için kontrol lojiğinde beş adet durum bulunmaktadır. Bunlara ek olarak çarpma ve

bölme işlemlerinin yapıldığı durum dmd, kesme durumu ve halt komutu işlendiğinde,

işlemcinin kesme gelinceye kadar bekleyeceği durum tasarıma eklenmiştir. İşlemci, ilk çalışma

anından ya da reset’ ten sonra ilk saat darbesinin yükselen kenarı ile birlikte D0 durumuna gelir.

Bu durumda saat darbesinin alçalan kenarı ile işlenecek komut kaydedilir ve program sayıcı bir

arttırılır. Bu durumdan sonra saat darbesinin yükselen kenarı ile gidilecek durum, işlenmekte

olan komutun, işlemde kullanacağı ilk verinin tipine bağlıdır. Bu veri A saklayıcısı, saklayıcı

dizisindeki (register array) bir saklayıcı, RAM’ deki bir saklayıcı veya programdan okunan

sabit bir veri olabilir. Bu veri A saklayıcısından veya saklayıcı dizisinden okunacaksa, veriye

ulaşmak için saat darbesi gerekmediğinden, başka bir duruma geçilmez. Veri RAM den

okunacaksa, önce programda belirtilen RAM adresini okumak için D1 durumuna, sonra okunan

adresteki veriyi okumak için D2 durumuna geçilir. Programdan sabit değer okumak için ise D3

durumuna geçilir. Bu aşamadan sonra işlenmekte olan komut bir kontrol komutu (control) veya

tek saklayıcı verisi ile gerçekleştirilen (BxF) bir komut ise doğrudan D4 durumuna geçilir. Eğer

komut iki saklayıcı verisini gerektiren bir komut ise D0 durumundan sonraki işlem ikinci

değişken için aynen tekrarlanır. Komutta kullanılacak bütün veriler işlemci içerisindeki ilgili

saklayıcılara kaydedildikten sonra, işlem sonucunu istenilen saklayıcıya kaydetmek için D4

durumuna geçilir. D4 durumundan sonra eğer kesme geldiyse kesme durumuna geçilir ve ilgili

kesme vektörü program sayıcıya kaydedilir. Kesme yoksa ve işlenen komut halt komutuysa,

işlemci halt durumuna gelir ve kesme gelinceye kadar bekler. Bu işlemler bittikten sonra bir

sonraki komutu okumak için D0 durumuna geri dönülür. FPGA ile gerçeklenecek işlemcinin

maksimum saat frekansını arttırmak ve işlemcinin FPGA içerisinde kapladığı alanı azaltmak

için, çarpma ve bölme komutları, dmd durumuna girilerek, normal komut icra süresinden 16

saat darbesi fazla harcanarak icra edilmektedir. Dallanma komutları programdaki bir etiketin

adresine bağlı olarak değil de işlenmekte olan komut ile etiket adresi arasındaki farka göre

çalışmaktadır.. Böylece program parçaları bellekte yer değiştirseler bile tekrar derlenmeden

çalışabilmeleri sağlanmıştır.

41

Şekil 4.2 Kontrol lojiği durum akış diyagramı

42

4.1.2. Saklayıcı dizisi

 İşlemci içerisindeki saklayıcı dizisi, işlemcinin çalışması ve konfigürasyonu için

gereken kontrol, giriş/çıkış saklayıcıları ve verileri geçici olarak tutmak için kullanıcıya

bırakılan saklayıcıları içerir. Aşağıdaki tablo kontrol saklayıcılarını göstermektedir.

Çizelge 4.1: Saklayıcı Dizisi

ADRES ADI 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
00 PC

01 STATUS A<B A>B A=B V C Z

02 INDEX

03 PORTA

04 PORTB

05 INOUTA

06 INOUTB

07 MULHBIT

08 DIVREM

09 INTCON IM IE I3E I2E I1E I0E I3M I2M I1M I0M

0A I0VECTOR

0B I1VECTOR

0C I2VECTOR

0D I3VECTOR

0E - 1F REG(x) Kullanıcıya ayrılmış saklayıcılar

Program Sayacı (Program Counter (PC)):

 Program hafızasındaki işlenecek komutun adresini tutan ve program hafızasından veri

okunduğunda içindeki değer bir artan saklayıcıdır. Dallanma komutlarında program sayacı

işlenmek istenen alt programın başlangıç adresinin değerini almaktadır ve komut işlendiği

andaki değeri yığına kaydedilmektedir. Alt programdan geri dönerken program sayacına

yığındaki değer geri yüklenmektedir.

Durum Saklayıcısı (Status):

 Yapılan işlemlerle ilgili bayrakların bulunduğu saklayıcıdır. Sıfır bitinden başlayarak

sırasıyla Z, C, V, A=B, A>B ve A<B bayrakları bu saklayıcının içindedir.

43

Sıralama Saklayıcısı (Index):

 Dolaylı adresleme modunda erişilmek istenen RAM adresinin kaydedildiği

saklayıcıdır. 0xFFFF fiziksel adresi ile işlem yapıldığında bu saklayıcının içerisindeki değer

işlem yapılacak ram adresi olarak kullanılır.

İskele Saklayıcıları (Porta & Portb):

 A ve B iskelelerine erişmek için kullanılan saklayıcılar.

Yönlendirme Saklayıcıları (Inouta & Inoutb):

 A ve B iskelelerindeki her bir bitin bir birinden ayrı olarak giriş veya çıkış olarak

ayarlanmasını sağlayan saklayıcılardır. İskelelerdeki her bir bit için 0 değeri çıkış, 1 değeri giriş

anlamındadır.

Çarpma Ve Bölme Saklayıcıları (Mulhbıt & Dıvrem):

 Bir çarpma işlemi yapıldığında yüksek değerli bitlerin ve bir bölme işlemi yapıldığında

bölme işlemindeki kalan değerinin kaydedildiği saklayıcılardır.

Kesme Kontrol Saklayıcısı (Intcon):

 Kesmelerle ilgili konfigürasyonu yapmayı sağlayan saklayıcıdır. İşlemcide önem

sırasına göre int0, int1, int2 ve int3 olmak üzere dört adet kesme girişi vardır. Bu saklayıcının

15. Biti kesme maskesidir ve program bir kesmeye girdiğinde kendiliğinden lojik – 1 olur.

Böylece işlemcinin, bir kesmeye ait komutlar icra edilirken başka bir kesmeye girmesi

engellenir. Kesme programı bitiğinde yine kendiliğinden sıfırlanır ve kesme programı

içerisindeyken bir başka kesme geldiyse işlemci gelen kesmeye ait program parçasına dallanır.

Yani bu bit, kesmeleri tamamen engellemez, sadece geçici olarak devre dışı bırakır. Bu bit

sıfırlandığı anda, sıfırlanmadan önce bir kesme gelmişse program o kesmenin vektörüne

dallanır. Bu bit ayrıca programcı tarafından da kesmeleri bekletmek amacı ile kullanılabilir.

INTCON saklayıcısın 14. Biti kesmelere izin verme bitidir ve kesmeleri kabul etmek için bu

bitin lojik – 1 olması gereklidir. 13 – 10 bitleri her bir kesmeye ait izin verme bitleridir. 9 – 6

bitleri ise her bir kesmenin yükselen kenarda mı yoksa alçalan kenarda mı kabul edileceğini

belirleyen bitlerdir. Bu bitler lojik – 0 ise kesme yükselen kenarda, lojik – 1 ise alçalan kenarda

kabul edilir.

Kesme Vektörleri:

 Her bir kesmeye ait kesme vektörlerinin kaydedildiği saklayıcılardır. Bir kesme sinyali

algılandığında, program ilgili kesmeye ait vektöre dallanacaktır.

44

Yığın (Stack):

 İşlemcide, saklayıcı dizisinin içinde fakat diziyi oluşturan saklayıcılardan ayrı olarak

tasarlanmış 16 adet yığın saklayıcısı bulunur. Böylece işlemci program akışı bozulmadan 16

adet alt programa dallanabilmektedir. Alt programa dallanmalarda sadece geri dönüş adresi

saklanmaktadır.

4.2. Komutlar

 Aşağıdaki tabloda XX ve YY, ALU’ nun iki girişindeki iki çoğullayıcıların seçme

bitlerini temsil ederler. Bu bitler aşağıdaki durumlarda olabilirler:

00 = A saklayıcısı seçilir

01 = Saklayıcı dizisinden REGAD adresi ile gösterilen saklayıcı seçilir.

10 = RAM’ den gelen veri seçilir.

11 = ROM’dan okunan sabit veri seçilir.

 H biti 0 olduğunda işlem sonucu, XX ile seçilen saklayıcıya, 1 olduğunda YY ile

seçilen saklayıcıya kaydedilir. Böylece bütün saklayıcılara erişilebilir. Örnek olarak, ADD ve

ADDI komutlarının yaptıkları işlemler, sadece ADD komutu ile yapılabilir. İşlemcide, ayrıca

dolaylı adresleme modu da vardır. Dolaylı adreslemede, erişilmek istenen RAM adresi saklayıcı

dizisinin 0x02 adresine yazılır. Daha sonra programda RAM’ in H’FFFF adresi ile işlem

yapılmak istendiğinde saklayıcı dizisinin H’02 adresine yazılmış olan adres ile işlem yapılır.

Komutların bellekte kapladığı alan komutun hangi veri tipini kullandığına bağlıdır. RAM adresi

ve program belleğinden okunan sabit değerler, komuttan sonraki adreslere, önce XX ile seçilen

sonra YY ile seçilen olmak üzere yazılırlar. A saklayıcısı ve saklayıcı dizisi arasındaki işlemler

1 word, sabit değer veya RAM kullanan komutlar 2 word, aynı anda hem sabit değer hem de

RAM kullanan komutlar bellekte 3 word yer kaplayacaklardır.

Çizelge 4.2 Komutun RAM’ de dizilişi

Komut ADR Komut kelimesi

Ram Adresi ADR + 1 Varsa kullanılan RAM adresi

Sabit Değer ADR + 2 Varsa RAM’deki sabit değer

45

Çizelge 4.3 İşlemciye ait komut kümesi

KOMUT FORMAT ÖRNEK İŞLEM

ADD Addition 00000-XX-YY-H-0-
REGAD ADD X, Y, H H = X + Y

SUB Subtraction 10000-XX-YY-H-0-
REGAD SUB X, Y, H H = X - Y

INC Increase 00001-XX-YY-H-0-
REGAD INC X, Y, H H = X + 1

DEC Decrease 10001-XX-YY-H-0-
REGAD DEC X, Y, H H = X – 1

MULU
Multiplication

(unsigned)
00010-XX-YY-H-0-

REGAD
MULU X, Y,

H H = X x Y

MUL Multiplication 10010-XX-YY-H-0-
REGAD MUL X, Y, H H = X x Y

DIVU
Division

(unsigned)
00011-XX-YY-H-0-

REGAD DIVU X, Y, H H = X / Y

DIV Division 10011-XX-YY-H-0-
REGAD DIV X, Y, H H = X / Y

CLR Clear All Bits 00100-XX-00-0-0-
REGAD CLR X X = 16’b0

SET Set All Bits 10100-XX-00-0-0-
REGAD SET X X = 16’b1

BCF Clear Sellected Bit 00101-XX-FBIT-
REGAD BCF X, b X[b] = 0

BSF Set Sellected Bit 10101-XX-FBIT-
REGAD BSF X, b X[b] = 1

AND Logic – AND 00110-XX-YY-H-0-
REGAD AND X, Y, H H = X & Y

OR Logic – OR 10110-XX-YY-H-0-
REGAD OR X, Y, H H = X | Y

XOR Logic – EXOR 00111-XX-YY-H-0-
REGAD XOR X, Y, H H = X ⨁ Y

XNOR Logic – EXNOR 10111-XX-YY-H-0-
REGAD

XNOR X, Y,
H H = X ⨂ Y

NOT Logic – NOT 01000-XX-YY-H-0-
REGAD NOT X, Y, H Y = X’

SLL Shift Logical Left 01001-XX-YY-H-0-
REGAD SLL X, Y, H Y = X << 0

SLR Shift Logical Right 01010-XX-YY-H-0-
REGAD SLR X, Y, H Y = 0 >> X

SAL Shift Arithmetic Left 01011-XX-YY-H-0-
REGAD SAL X, Y, H Y = X << Carry

SAR Shift Arithmetic Right 01100-XX-YY-H-0-
REGAD SAR X, Y, H Y = Carry >> X

SWP Swap 01101-XX-00-0-0-
REGAD SWP X, Y, H H = {X[7:0],

X[15:8]

46

CMP Compare Data 01110-XX-YY-000-
REGAD CMP X, Y Flags = X – Y

MOV Move Data 01111-XX-YY-1-0-
REGAD MOV X, Y Y <= X

BTJEZ Bit Test, Jump If Equal to Zero 11000-XX-FBIT-
REGAD BTJEZ X, b Jump If X[b] = 0

BTJES Bit Test, Jump If Equal to Set 11001-XX-FBIT-
REGAD BTJES X, b Jump If X[b] = 1

BEQ Branch Equal to Zero 11010–11–00–0000000 BEQ LABEL
If Zero = 1

PC <= LABEL

BNE Branch Not Equal to Zero 11010-11-01-0000000 BNE LABEL
If Zero = 0

PC <= LABEL

BRA Branch Always 11010-11-10-0000000 BRA LABEL PC <= LABEL

BAL Branch and Link 11010-11-11-0000000 BAL LABEL
PC <- LABEL,

PC => Stack

RETURN Return From Subroutine 11011-00-00-0000000 RETURN PC <= Stack

RETLA Return and Load REG_A 11011-11-00-0000000 RETLA
PC <= Stack,

REG_A <=
Literal

RETI Return From Interrupt 11100-00-00-0000000 RETI
PC <= Stack,

INT_MASK <=
0

HALT System Halt 11101-00-00-0000000 HALT Halt Operation

NOP No Operation 11110-00-00-0000000 NOP No Operation

 A saklayıcısı ve saklayıcı dizisi arasındaki bütün işlemler 2 saat darbesi ile yapılır.

Yapılacak işlem, sabit değer kullanacaksa 3 saat darbesi, RAM kullanacaksa 4 saat darbesi,

ikisini birden kullanacaksa 5 saat darbesi ile yapılır. Çarpma ve bölme komutları normal komut

icra süresinden 16 saat darbesi fazla sürede icra edilir.

4.3. Grafik İşlem Birimi

 FPGA içerisinde gerçeklenen, işlemciye adres ve veri yolları üzerinden bağlanabilen ve

VGA ara yüzü üzerinden herhangi bir monitöre bağlanabilmeyi sağlan bir grafik işlem birimi

tasarlanmıştır. Tasarlanan grafik işlem birimi, 640 x 480 piksel çözünürlükte, 50 Hz ekran

tarama frekansında ve 8 renk ile işlem yapmaktadır. 8 Renk ile çalışmak için piksel başına 3 bit

yeterli olmaktadır. İşlemci, grafik işlem birimine aşağıda belirtilen saklayıcıları kullanarak

ekrana yazı yazma, nokta boyama, dörtgen çizme, çizgi çizme ve üçgen çizme gibi işleri

yaptırabilmektedir. Üçgen çizme işlemi yapılabildiğinden monitör üzerinde 3 boyutlu şekiller

47

oluşturmak mümkün olmaktadır. Grafik işlem birimi, işlemciden aldığı komutları kullanarak

VGA ara yüzü üzerinden monitörü sürekli tarayan bir durum makinesi ile paylaştığı bir RAM’ e

ekranda gösterilecek piksellere ait renk bilgilerini yazmaktadır. Grafik arabiriminin blok şeması

aşağıda görülmektedir.

Şekil 4.3 Grafik işlem birimine ait blok diyagramı

Gerçeklenen grafik işlem birimine ait saklayıcı tablosu aşağıdaki gibidir:

Çizelge 4.4 Grafik işlem birimine ait saklayıcı tablosu

ADRES ADI 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

00 Cmd W CMD Size B Bcolor Fcolor

01 Char_Code ASCII karakter kodu

02 Vaddr/P1V Koordinat

03 Haddr/P1H Koordinat

04 Vstep/P2V Koordinat

05 Hstep/P2H Koordinat

06 P3V Koordinat

07 P3H Koordinat

 Cmd saklayıcısı grafik işlem birimine gönderilecek komutun yazıldığı saklayıcıdır. Bu

saklayıcıya bir yazma işlemi yapıldığında W bayrağı 1 olur. Grafik işlem birimi yazılan komutu

yorumlayıp yapılması istenen işi bitirdiğinde bu bayrağı sıfırlar. Bu saklayıcı içersinde bulunan

48

Size bitleri, eğer yazı yazma komutu işlenecekse yazının boyunu ayarlamaya yarar. B biti

yazının arka plan renginin olup olmayacağını, Bcolor bitleri arka plan rengini, Fcolor bitleri ise

grafik işlem birimi tarafından yapılan herhangi bir işte hangi rengin kullanılacağını belirtir.

CMD bitlerinin alabileceği değerler ve anlamları aşağıdaki gibidir:

 0x00 : Ekrana yazı yazma.

 0x01 : Nokta boyama.

 0x02 : Dörtgen çizme.

 0x03 : Çizgi çizme.

 0x04 : Üçgen çizme.

Ekrana Yazı Yazma:

 Char_Code saklayıcısında ASCII kodu belirtilen karakter, Vaddr ve Haddr

koordinatıyla belirtilen piksel den başlayarak B biti 1 ise Bcolor rengindeki arka palan üzerine

fcolor renginde yazılır. Size bitleri ile yazı boyu ayarlanabilir.

Nokta Boyama:

 Vaddr ve Haddr koordinatıyla belirtilen piksel fcolor rengine boyanır.

Dörtgen Çizme:

 Vaddr ve Haddr koordinatıyla belirtilen piksel’ den başlanarak, dikeyde Vstep, yatayda

Hstep kadar piksel ileri gidilerek Fcolor renginde bir dörtgen çizilir.

Çizgi Çizme:

 Vaddr ve Haddr koordinatıyla belirtilen piksel’ den başlanarak, dikeyde Vstep, yatayda

Hstep kadar pixel ileri gidilerek Fcolor renginde bir Çizgi çizilir.

Üçgen Çizme:

 “P1V, P1H”, “P2V, P2H”, “P3V, P3H” koordinatlarıyla belirtilen noktalar arasına

Fcolor renginde bir üçgen çizilir.

4.4. Derleyici

 İşlemcinin kolay programlanabilmesi ve geliştirme sürecini hızlandırmak amacıyla C#

dili kullanılarak bir derleyici programı hazırlanmıştır. Derleyici programı, aşağıdaki tabloda

derleyici programının kabul ettiği şekilde yazılışları bulunan işlemci komutlarını makine

kodlarına çevirir.

49

Çizelge 4.5 Derleyici notasyonundaki komut listesi

ARİTMETİK LOJİK KOMUTLAR

No Komut Açıklama

1 ADD A, B, h Toplama: A ile B’yi toplayıp sonucu h=0 ise A’ya, değilse B’ye yazar.

2 SUB A, B, h Çıkarma: A’yı B’den çıkarıp sonucu h=0 ise A’ya, değilse B’ye yazar.

3 INC A, B, h Arttır: A’nın içeriğini 1 arttırır sonucu h=0 ise A’ya, değilse B’ye yazar.

4 DEC A, B, h Azalt: A’nın içeriğini 1 azaltır sonucu h=0 ise A’ya, değilse B’ye yazar.

5 MULU A, B, h Çarp: A ile B’yi işaretsiz çarpıp sonucun alt bitlerini h=0 ise A’ya,
değilse B’ye yazar.

6 MUL A, B, h Çarp: A ile B’yi işaretli çarpıp sonucun alt bitlerini h=0 ise A’ya,
değilse B’ye yazar.

7 DIVU A, B, h Böl: A’yı B’ye işaretsiz bölüp sonucu h=0 ise A’ya, değilse B’ye yazar

8 DIV A, B, h Böl: A’yı B’ye işaretli bölüp sonucu h=0 ise A’ya, değilse B’ye yazar.

9 AND A, B, h And: A ile B’ye lojik “ve” işlemi uygulayıp sonucu h=0 ise A’ya,
değilse B’ye yazar.

10 OR A, B, h Or: A ile B’ye lojik “veya” işlemi uygulayıp sonucu h=0 ise A’ya,
değilse B’ye yazar.

11 XOR A, B, h Xor: A ile B’ye “xor” işlemi uygulayıp sonucu h=0 ise A’ya, değilse
B’ye yazar.

12 XNOR A, B, h Xnor: A ile B’ye “xnor” işlemi uygulayıp sonucu h=0 ise A’ya, değilse
B’ye yazar.

13 NOT A, B, h Not: A’nın tersini h=0 i ise A’ya, değilse B’ye yazar.

14 SLL A, B, h Sola kaydır: A’yı lojik olarak sola kaydırıp sonucu h=0 ise A’ya,
değilse B’ye yazar.

15 SLR A, B, h Sağa kaydır: A’yı lojik olarak sağa kaydırıp sonucu h=0 ise A’ya,
değilse B’ye yazar.

16 SAL A, B, h Sola kaydır: A’yı aritmetik olarak sola kaydırıp sonucu h=0 ise A’ya,
değilse B’ye yazar.

17 SAR A, B, h Sağa kaydır: A’yı aritmetik olarak sağa kaydırıp h=0 ise A’ya, değilse
B’ye yazar.

PROGRAM AKIŞI KONTROL KOMUTLARI

18 BTJEZ A, Bit 0 ise atla: A’nın işaret edilen biti 0 ise bir sonraki komutu işlemeden
atlar.

19 BTJES A, Bit 1 ise atla: A’nın işaret edilen biti 1 ise bir sonraki komutu işlemeden
atlar.

20 BEQ Etiket 0 ise dallan: Z bayrağı 1 ise etikete dallanır.

21 BNE Etiket 0 değilse dallan: Z bayrağı 0 ise etikete dallanır.

22 BRA Etiket Her zaman dallan: Etikete dallanır.

50

23 BAL Etiket Dallan ve sayacı kaydet: Dallanır ve bir sonraki komut adresini yığına
kaydeder.

24 RETURN Dön: Alt programdan ana programa döner.

25 RETLA Sabit Dön ve akümülatörü yükle: Alt programdan döner ve akümülatöre sabit
yükler.

26 RETI Kesmeden dön: Kesme programından ana programa döner.

27 HALT Bekle: kesmeleri beklemek üzere bekleme konumuna girer.

SAKLAYICI İŞLEMLERİ KOMUTLARI

28 CLR A Temizle: A’nın bütün bitlerini sıfırlar.

29 SET A Doldur: A’nın bütün bitlerini 1 yapar.

30 BCF A, Bit Bit sıfırla: A’nın işaret edilen bitini sıfırlar.

31 BSF A, Bit Bit doldur: A’nın işaret edilen bitini 1 yapar.

32 SWP A, B, h Değiştir: A’nın alt bitleri ile üst bitlerini değiştirip h=0 ise A’ya, değilse
B’ye yazar.

YÜKLE-YAZ KOMUTLARI

33 MOV A, B Taşı: A’nın içeriğini B’ye kaydeder.

DİĞER KOMUTLARI

34 CMP A, B Karşılaştır: A ile B’yi karşılaştırıp sonuca göre bayrakları düzenler.

35 NOP Boş işlem: Hiçbir işlem yapmaz.

 Derleyicide yukarıda verilen komut açıklamalarındaki h biti yerine R (right) veya L

(left) yazılarak işlem sonucun, sağdaki veya soldaki saklayıcıya kaydedilmesi sağlanabilir. Bir

komutun program belleğinde kaplayabileceği en fazla adres alanı 3 word olduğundan, BTJEZ

ve BTJES komutları yukarı da açıklanan koşullar sağlandığında okunacak komutun adresini 3

ileri götürmektedirler. Bu nedenle, bu komutlardan sonra yazılan komut, program hafızasında 3

word’den daha az yer kaplıyorsa, 3’e tamamlamak için komuttan sonra NOP komutları

eklenmelidir. INC, DEC, NOT, SLL, SLR, SAL, SAR, SWP komutlarının işlenmesi için tek

saklayıcı içeriği yeterlidir fakat işlem sonucu kaynak saklayıcıdan farklı bir saklayıcıya

kaydedilebilmektedir. Bu nedenle, derleyicide yazım kolaylığı için bu komutlarla birlikte tek

saklayıcı kullanılırsa h biti 0, iki saklayıcı kullanılırsa h biti 1 yapılmaktadır ve derleyici bu

komutlar ile birlikte R veya L yazılmasına izin vermemektedir.

51

4.5. Fiziksel Olarak Gerçekleştirilen Uygulamalar

 Tasarlanan işlemci ve grafik işlem birimi kullanılarak Spartan 3E Starter Kit üzerinde 2

adet uygulama gerçekleştirilmiştir. FPGA içerisinde işlemciyle birlikte kullanılmak üzere,

çevresel donanımlar tasarlanıp oluşturulan bilgisayar sistemine eklenmiştir. Bu sistemde FPGA

içerisinde bulunan BlockRam’ler kullanılarak işlemcinin kullanacağı hafıza birimi ihtiyacı

karşılanmıştır. Dışarıdan alınan 50 MHz’ lik saat darbesi çip içersinde 25 MHz’ e indirilerek

bütün modüllere saat darbesi dağıtılmıştır. Gerçeklenen uygulamalarda belirli zaman

aralıklarında kesme üretmek için programlanabilir bir zamanlayıcı (timer) tasarıma eklenmiştir.

Bilgisayar sistemine dışarıdan veri girişini sağlamak için bir klavye kontrol devresi de

eklenmiştir. PS/2 ara yüzünü kullanan bütün klavyeler böylece tasarlanan siteme

bağlanabilmektedir. Ayrıca 3 boyutlu küp uygulamasında trigonometrik işlemleri

gerçekleştirebilmek için sinüs ve kosinüs tabloları işlemci tarafından direkt olarak

adreslenebilecekleri şekilde oluşturulan sisteme bağlanmıştır. Tüm bu oluşturulan modüller

sentezlenip FPGA içerisine yüklenmeye hazır hale getirilmişlerdir. Bütün tasarım çip içerisinde

25 MHz’ de çalışmaktadır. Xilinx’ in standart ayarları kullanıldığında tüm tasarım FPGA

içerisinde % 75 yer kaplamaktadır. Aşağıda Tasarımın çip içerisindeki yerleşimini gösteren

tablo görünmektedir.

Şekil 4.4 Tasarımın FPGA içerisindeki yerleşimi

52

4.5.1. Yılan oyunu

 İşlemci üzerinde makine dilinde yazılan bir yılan oyunu denemesi başarıyla

çalıştırılmıştır. Oyunun kontrollerini sağlamak için yine Verilog HDL kullanılarak bir klavye

kontrolcüsü de FPGA içerisinde gerçeklenmiştir. Oyuna ait ekran görüntüsü aşağıda

görülmektedir.

Şekil 4.5 Yılan oyununa ait ekran görüntüsü

53

4.5.2. 3 boyutlu küp uygulaması

 İşlemci ve tasarlanan grafik işlem birimi kullanılarak, yoğun matematiksel işlemler

gerektiren 3 boyutlu küp uygulaması makine dilinde hazırlanıp FPGA içerisinde gerçeklenen

bilgisayar sistemine yüklenmiştir. Ekranda oluşturulan küp 3 eksen etrafında bir birinden

bağımsız olarak döndürülebilmektedir.

Şekil 4.6 3 Boyutlu küp uygulamasına ait ekran görüntüsü

54

5. SONUÇLAR

 Sonuç olarak, bu çalışmada makine dilinde dahi kolayca programlanabilen gerçek

zamanlı işlemler için kullanılabilecek güçlü bir mikroişlemci elde edilmiştir. Tasarlanan

mikroişlemci sentezlenerek FPGA’ ye yüklenme hazır hale getirilmiştir. Bu işlemci, FPGA gibi

programlanabilir lojik devre elemanları ile kullanılarak yapılan tasarımlarda, hali hazırda Xilinx

ve Altera gibi firmaların sağladıkları ve Soft Processor Core olarak bilinen işlemcilere alternatif

olarak kullanılabileceği gibi, tasarıma eklenecek çeşitli çevresel donanımlar ve hafıza

birimleriyle birlikte ASIC olarak da gerçeklenebilir. Aşağıdaki tabloda, mevcut işlemcilerin

komut icra süreleri değerlendirilerek yapılan bir karşılaştırma verilmiştir.

Çizelge 4.6 İcra süresi karşılaştırması

 Komut icra süresi (Saat Darbesi)

Adresleme
Modu

Tasarlanan
İşlemci

8051 6800 PIC16F

Saklayıcılar arası 2 12 2 - 3 4

Direkt RAM 4 12 6 4

İvedi - Saklayıcı 3 12 2 - 3 4

İvedi - RAM 5 24 YOK YOK

Sıralı 4 12 6 4

İvedi - Sıralı 5 24 YOK YOK

Dallanma 3 24 4 4 - 8

Çarpma / Bölme + 16 48 YOK YOK

 Tasarım fiziksel olarak gerçeklendiği Spartan 3E FPGA yerine daha ileri teknolojileri

kullanan bir FPGA seçilerek tasarımın daha yüksek saat frekanslarında koşması sağlanabilir.

Ayrıca eğer tasarım ASIC olarak gerçeklenirse çalışma frekansı yine yükselecektir.

55

KAYNAKLAR DİZİNİ

[1] Palnitkar S., 1996, Verilog HDL A Guide to Digital Design and Synthesis, SunSoft Press

[2] Janiszewski, I., Baraniecki, R., Siekierska, K., 1999, A Reusable Microcontroller Core’s
Design, IEEE, VHDL International Users Forum Fall Workshop (VIUF ’99), pp. 14-21.

[3] ALAER, E., TANGEL, A., YAKUT, M. 2008, MIB-16 FPGA Based Design and
Implementation of a 16-Bit Microprocessor for Educational Use, WSEAS
TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION, pp. 326-330.

[4] Herman, H. S., Srihari, C., Matthew, M., 2000, Pipeline Reconfigurable FPGAs”, Journal
of VLSI Signal Processing Systems, pp. 24, 129-146.

[5] Bezarra, E. A., Gough, M.P., 1999, A Guide to Migrating from Microprocessor to FPGA
Coping the Support Tool Limitations, ELSEVIER Microprocessor and Microsystems 23,
pp. 561-572.

[6] Mano, M. M., 1996, Computer System Architecture, Prentice Hall

[7] Gray, J., 2000, Hands-on computer architecture: teaching processor and integrated systems
design with FPGAs, Workshop On Computer Architecture Education, Article No.: 17

[8] Shaout, A., Eldos, T., 2003, On the Classification of Computer Architecture, International
Journal of Science and Technology

[9] Lee, W. F., Shakaff, A.Y.M., 2007, Implementation of 128/256 Bit Data Bus
Microprocessor Core on FPGA, ICGST-PDCS Journal, Volume 7

[10] Mano, M. M., Kime C. R., 2004, Logic and Computer Design Fundamentals, Prentice Hall

[11] Wilson G. R., 2002, Embeded Systems and Computer Architecture, Newnes

[12] http://www.xilinx.com/support/education-home.htm

[13] http://www.altera.com/education/edu-index.html

[14] http://www.opencores.org

[15] http://www.actel.com

