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ARTIMSAL NEGATIF OLMAYAN MATRIS AYRISTIRMA iLE GOZETLEME
TURU VIDEOLARDA ARKA PLAN MODELLEME

OZET

Gozetleme tiirii videolarin kullanildigi uygulamalarmin hemen hepsinde video arka
planin basar1 ile modellenmesi bir gerekliliktir. Olusturulacak arka plan modeli, video
icerigindeki degisimlere gore uyarlanabilmeli ve temsil basarimi her durumda yiiksek
olmalidir. Bunun yaninda bagarili bir arka plan modeli, video sahnelerinde var
olabilecek yogun 1siklilik degisimleri ya da yiiksek frekans bilesenlerine sahip duruk
olmayan arka plan gibi zor durumlara karsi giirbiiz olmalidir. Ancak bu o6zellikleri
barindiran bir arka plan modeline sahip olundugu zaman videoda 6n plan arka plan

ayristirilmasi saglikli bir seklide yapilabilir ve amaglanan uygulamalar ger¢eklenebilir.

Bu ¢alismada, dinamik arka plan modelleme probleminde artimli negatif olmayan matris
ayristirma (ANOMA) metodunun kullanimi incelenmistir,. ANOMA’nin gozetleme
videolarinda yeni gelen cercevelerin mevcut gosterime katilimini kontrol ederek arka
plant basariyla modelleyebildigi gosterilmistir. Bunun yani sira ANOMA, cevrimigi
yapist ile teknik yazinda var olan negatif olmayan matris ayristirma (NOMA) tekniginin
toplu isleme yapisina alternatif, diisiik islemsel karmasiklikli bir icerik modelleme

metodudur.

Performans degerlendirmesi i¢cin PETS2001 veri tabanindan alinan gozetleme
videolariyla yapilan test sonuglari NOMA, ANOMA ve bu tiir uygulamalar ig¢in
onerilmis bilinen bir teknik olan artiml1 temel bilesen analizi (ATBA) icin karsilagtirmali
olarak raporlanmigtir. ANOMA’nin bu uygulamada basar1 ile kullanilabilecegi
goriilmiis, ozellikle 1s1klilik degisimlerine karsi diger iki yonteme gore daha glirbiiz

oldugu gozlenmistir.
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BACKGROUND MODELING IN VIDEO SURVEILLANCE VIA
INCREMENTAL NONNEGATIVE MATRIZ FACTORIZATION

SUMMARY

Modeling the video background effectively is a necessity for most of the video
surveillance applications. The background model should be adaptive to the dynamic
content changes of the video sequences and should represent the video background
successfully regardless the content of the video. Furthermore, a successful background
model should be robust against intense illumination changes or non static backgrounds
which contain high frequency components. Background-foreground separation and then
the intended application can be achieved only if the obtained background model satisfies

these conditions.

In this work, the use of incremental non-negative matrix factorization method in
dynamic background modeling problem is examined. The proposed factorization method
is derived from non-negative matrix factorization, and models the dynamic content of
the video by controlling contribution of the subsequent observations to the existing
model adaptively. Unlike the batch nature of non-negative matrix factorization, INMF is
an on-line content representation scheme which is capable of extracting moving

foreground objects.

Test results are reported in order to compare background modeling performances of
INMF, NMF and Incremental Principal Components Analysis, which is a well-known
technique. It is concluded that INMF outperforms both NMF and IPCA and its
robustness to illumination changes makes it a powerful representation tool in video

surveillance applications.
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1. GIiRiS

Videolarda arkaplan modelleme problemi, giiniimiizde bir¢ok uygulama icin dnemli
bir bilesen olarak ortaya ¢ikmaktadir [1-7]. Basarili bir arkaplan modeli sayesinde
sabit bir kamera ile c¢ekilmis video sahnelerindeki hareketli onplan nesnelerinin
ayristirtlmast miimkiin olmakta, bu sayede de sahnenin 6nemli bilesenleri daha

detayl1 ve verimli iglenebilmektedir.

Olusturulacak arkaplan modelinin videonun degisken igerigine gore giincellenebilir
olmasi énemlidir. Ornegin bir park yeri gdzetleme kamerasiyla kaydedilen videoda
park halinde oldugu icin arkaplana dahil olan bir tasit harekete gecince kisa bir siire
icinde arkaplan modelinden ¢ikarilabilmelidir. Buna ek olarak hareketli bir cisim
durdugunda arkaplan modeline eklenebilmelidir. Arkaplan modelleri ayrica

nesnelerin sahneye girig ve ¢ikiglarina gore de giincellenebilir olmalidir.

Arkaplan modelleme tekniklerinin basarimlarindaki onemli bir etken islemsel
verimlilikleridir. Bu problemde kullanilacak tekniklerin hizli ve verimli olmasi son
derece Onemlidir. Gergek zamanli ve ¢evrimigi olarak gerceklenecek arkaplan

modelleme teknikleri bircok uygulama i¢in 6nemli avantajlar getirir.

Arkaplan modelleme isleminde basa ¢ikilmasi gereken ¢esitli problemler vardir. Bu
problemlerin en Onemlilerinden birisi 1s1iklilik degisimine kars1 giirbiizliigiin
saglanmasidir. Ozellikle acik havada yapilan video ¢ekimlerinde 1s1klilik degisimleri
onemli bir sorundur. Giinesin parlakligina ya da bulutluluga gore arkaplanin renk
bilesiminde degisiklikler meydana gelmektedir. Bu degisimler, o6zellikle
modellemede renk ya da gri diizey bilgisinin kullanildigi yontemlerde 6nemli
sorunlar teskil etmektedir [4-5]. Gri diizeylerindeki 1siklilik degisimlerinden
kaynaklanan sapmalar olusturulan arkaplan modelinin tutarliligini etkiler. Bu yilizden
kullanilacak yontem arkaplan modelini igerik degisimlerini yansitacak sekilde
giincellerken, 1s1iklilik degigsimlerine karsit dayanakli olmalidir. Isiklilik degisimleri
arkaplan modeline dogrudan etki edebildigi gibi neden oldugu golgeler araciligi ile



de problemi giiclestirebilmektedir. Golgeler de kaynaklandiklar1 nesnelerle birlikte
hareket edecekleri i¢in hatali olarak 6nplan nesnesi olarak etiketlenebilirler. Boyle

durumlarda golgeleri yok etmek i¢in ¢esitli yontemler kullanilmaktadir [3-5].

Arkaplan modellemede ortaya ¢ikabilecek bir baska sorun ise duruk (statik) olmayan
yiiksek frekans bilesenli arkaplandir. Buna 6rnek olarak riizgar esintisiyle hareket
eden yapraklar, akan ya da dalgalanan su ya da sahnede yer alan bir televizyonun
degisen ekrami verilebilir. Bu tiir durumlar da 1siklilik degisimlerinin yaptig1 gibi
piksel gri diizeyi degerlerinde oynamalara yol acip arkaplan modelinde tutarsizliklara

neden olurlar.

Kamera hareketleri ve bu hareketlerden kaynaklanan bulaniklik ya da giiriiltiiler de
arkaplan modelleme isleminin problemleri arasindadir. Ayrica 6nplan nesnelerinin
degisen boyutlar1 (6megin kameraya yaklasan cismin biiylimesi), nesnelerin
birbirleriyle ortiismeleri, diizenli olmayan hizlar1 veya arkaplan cisimlerinin yer
degistirmesi (bir ¢antanin bir yerden alinip baska bir yere koyulmasi) gibi etkenler de

istesinden gelinmesi gereken problemler arasinda sayilabilir.

Arkaplan modelleme ve Onplan nesnelerinin ayristirilmasi i¢in birgok ydntem One
strtilmistiir. Arkaplani o an islenen video gercevesinden (video frame) onceki n tane
gergevenin ortalamasi veya ortanca degeri olarak segen yontemler [6, 7] bu konudaki
basit tekniklere 6rnek olarak verilebilirler. Bu yontemler hizli olmalarina ragmen,

nx cerceveboyutu olan bellek gereksinimleri yiiksektir. Bu yontemlerde arkaplan

onplan ayrigtirilmasi igin ise her bir ¢er¢evenin arkaplan modelinden farki bir esik
degeri ile karsilastirilir ve esik degerinden biiyiik bir farkin gozlendigi pikseller
onplan bilegenleri olarak belirlenir. Bu yontemlerde arkaplanin giincellenmesi n
parametresine Onemli derecede baglidir. Aynt zamanda son gelen Orneklere bir
agirlik verilmemesi gerek giincellenebilirlik agisindan gerek 1siklilik gibi degisimlere
dayaniklilik ac¢isindan sistemin giivenilirligini zayiflatmaktadir. Bu nedenle arkaplan
modellenmesinde (1.1) giincelleme denklemi ile ifade edilebilecek kayan ortalama

hesaplamaya dayali1 yontemler de kullanilmaktadir [7].

B, =(1-a)B +aF, (1.1)



Denklem (1.1)’de B,, i. video gergevesi i¢in bulunmus arkaplani gosterirken F; ise i.

video cercevesini temsil etmektedir. o agirliklandirma sabiti olup genelde kiigiik bir

deger alir. Bu giincelleme sekli ile bellek gereksinimi de azalmaktadir.

Bir bagka arkaplan modelleme yontemi ise imge piksel gri diizeylerinin bir Gauss
dagilimi ile modellenmesidir [8]. Bu sekilde, 6nceki daha basit yontemlerin aksine
cok kipli (multimodal) arkaplan modellemesi yapilabilmektedir. Cok kipli arkaplanin
daha iyi modellenebilmesi i¢in her pikselin K Gauss dagiliminin karisimi seklinde
modellenmesi de dnerilmistir (K genelde 3 ile 5 arsinda kiiciik bir say1 olmak iizere)
[9-13]. Piksellerin arkaplan modeline uyup uymama kontrolii dagilimlarin siirekli
giincellenen degisinti (variance) degerlerine ve agirlik katsayilaria gore yapilir. Bir
piksel i¢in her bir K Gauss dagilimina ait olma olasiligini1 gosteren K tane agirlik
katsayist vardir. Bu agirlik katsayilardan her birinin temsil ettigi dagilimin degisinti
degerine oraninin biiyiik olmasi s6z konusu pikselin o dagilimla modellenen arkaplan
modeline dahil oldugunu isaretler. Giincellenen Gauss dagilimlari sayesinde bu
yontemle hizli olmayan 1s1klilik degisimlerine karst dayanikli ve ¢ok kipli arkaplan
modelleme yapilabilmektedir. Yine de arkaplan yiiksek frekanshi hizli degisimlere
sahipse (hareketli yapraklar, bilgisayar monitorii, golge degisimleri) sdz konusu
modelin basarimi diismektedir [14]. Bunun temel nedeni piksel gri diizeyleri i¢in

yapilan Gauss dagilimi varsayiminin bu durumlarda gegerli olmamasidir.

Her bir pikselin son n video gergevesinde aldigir degerlerin bir olasilik yogunluk
islevine oturtulmast (kernel density estimation) ile de arkaplan modellemesi
yapilabilir [14]. Genelde Gauss kerneli uygulanmis son n ¢ergevedeki piksel
degerlerinin olusturdugu histogram ile elde edilen olasilik yogunluk islevine gore bir
pikselin o an islenen video gercevesi i¢in aldigi degerin arkaplana dahil olma
olasiligimin 6nceden belirlenmis bir esik degerinden biiyiilk olmasi durumunda sz
konusu pikselin arkaplana dahil oldugu varsayilir. Bu yontemin bir 6nceki paragrafta
anlatilan Gauss karigtmi modeli (GKM) kullanan yontemlere gore avantaji
parametrik olmamasidir. Buna ragmen Onceki # tane video cergevesinin saklanmasi
ve kullanilmasi bellek gereksinimi arttirmakta ve her adimda kernel degerlerinin
hesaplanmasi da islem yiikiinii arttirmaktadir. Yine de bu islemsel yiik, kodlama

tablosu kullanimiyla (LUT, lookup table) azaltilabilir [14].



Arkaplanin modellemesinde piksel degerlerinin oturtuldugu normal dagilimlarinin
uyarlamali olarak giincellenmesi sahnede var olabilecek hizli arkaplan degisimlerine
yeterince ¢abuk yanit veremeyebilir. Bu yiizden uyarlamali bir model olusturma
asamasinda Gauss dagilimi kullaniminin yani sira Kalman filtre kullanim1 da soz

konusudur [15-16].

Temel bilesen analizi (TBA) [17] ile elde edilen 6zvektorler yardimi ile de arkaplan
modellemesi ger¢eklenebilir. [18] numarali kaynakta raporlanan calismada,
videodaki arkaplani modellemek i¢in video dizisinden N tane 6rnek gerceve alarak
olusturulan ranki N olan matristen faydalanarak arkaplanin basanyla
modellenebilecegi anlatilmaktadir. Buna gore oncelikle alinan N adet gerceve ile
olusturulan matrisin ortak degisinti matrisi (covariance matrix) bulunur. Bu
matristen elde edilen N tane 6zdegerden en biiyitk M<N 6zdegere karsilik gelen M
tane 6zvektor secilir. Her bir video cercevesinin bu 6zvektorlerin gerdigi uzaya iz
disiiriilmesi sonucunda s6z konusu ¢ergeve i¢in arkaplan bulunmus olur. Orijinal
cerceve ile iz diisiimiinden geri ¢atilmis (reconstructed) imgenin farkinin alinmasi ile
onplan nesneleri arkaplandan ayristirilabilir. Bu yontem, uzaym boyutunu &nemli
Olctide kiiciiltmeyi miimkiin kilmaktadir. Bunun yani swra s6z konusu teknigin
calismasindaki temel mantik, hareketli onplan nesnelerinin alman N adet 6rnek
cercevede ayni yerde bulunmadiginin kabul edilmesidir. Makalede bu ydntemin
Gauss karisimi modeli (GKM) tekniklerine gore daha basarili ve hizli oldugu iddia
edilmektedir. Bunun yaninda bu teknikle ilgili olas1 bir sorun hareketli bir cismin
durarak arkaplana eklendigi ya da bir arkaplan nesnesinin Onplan nesnesine

doniistiigii durumlarda gozlenebilir.

Temel bilesen analizinin kullanildig1 [18] numarali kaynaktaki caligmada arkaplan
modelinin giincellenmesi olas1 bir sorun olarak géze carpmaktadir. Temel bilesen
analizi gibi yontemlerde farkli 6rneklerin islenmesinde tiim taban kiimesinin (basis
sef) yeniden olusturulmasi gerekebilir. Boyle bir isleme alternatif olarak [19,20]
numarali kaynaklarda raporlanan ¢aligmada temel bilesen analizinin artimsal olarak
gerceklenip arkaplanin bu sekilde giincellenebildigi bir yontem sunulmaktadir. Bu
yontemde her gelen oOrnekten faydalanarak denklem (1.1)’dekine benzer bir
agirliklandirma kullanimiyla ortalama deger, 6zdegerler ve 6zvektorler giincellenir.
Bu sekilde yeni gelen c¢ergevelerin etkisi arkaplan modeline yansitilmig olur.

TBA’nin artimsal uygulanmasinin arkaplan modelleme konusunda 1giklilik
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degisimleri gibi kosullara kars1 dayanikliligini arttirmak igin giirbiiz temel bilesen

analizi yontemi Onerilmistir [19,20].

Yukarida bahsedilen istatistiksel ¢aligmalarin yani sira gesitli renk uzayr (RGB,
HSV, YUV) bilgilerinden faydalanarak olusturulan arkaplan modelleme ve arkaplan
cikarma teknikleri de mevcuttur [5,21-25]. [22] numarali kaynak makalede HSV
bilesenlerinden ¢ikarilacak renklilik (chromaticity) ve parlaklik (brightness)
bilesenlerinin 1s1klilik degisimlerine karsi dayanikliligi arttirabilecegi ve YUV ile
RGB uzaylarina gére bu konuda daha avantajli oldugu raporlanmaktadir. Buna
karsilik 6nplan arkaplan ayristirmasi sonucunda elde edilen sonuglarda giiriiltii olarak
nitelendirilecek bloklarin ortaya ¢iktig1 rapor edilmistir [26]. Sonug olarak her bir
renk uzaymin belli noktalarda avantajlar1 ve bunlara karsilik bazi dezavantajlar

oldugu sonucuna varilabilir.

Bu tez caligmasinda negatif olmayan matris ayristirma yontemi (NOMA) [27-41] ve
bu yontemden gelistirilen artimsal negatif olmayan matris ayristirma (ANOMA) [42-
44] teknigi ile gizetleme videolarinda arkaplan modelleme ger¢eklenmistir.
Gelistirilen negatif olmayan matris ayrigtirma hem islemsel yiik bakimindan avantaj
saglamakta, hem de arkaplan modelinin yeni gelen Omeklere gore
giincellenebilmesini miimkiin kilmaktadir. ANOMA nin arkaplan modellemesindeki
kullaniminda piksel degerleri ya da bunlarin dagilimlar1 hakkinda herhangi bir kabul
yapilmamaktadir. ANOMA’daki tek kisit islenecek verinin negatif degerlere sahip

olmamasidir ve bu da video verisinin dogasina tamamiyla uygundur.

Bu calismada ayrica NOMA’nin ve ANOMA’nin topaklandirma islevleri ve bu
islevlerin ANOMA nin arkaplan modelleme uygulamasindaki kullanimina nasil bir
katki yapacagi irdelenmistir. NOMA’nin bulanik k-ortalamali  (k-means)
topaklandirmasina denk oldugunun gosterildigi [40] calismasindan yola ¢ikarak
ANOMA’nim da benzer bir 6zelliginin oldugu gosterilebilir. ANOMA nin arkaplani
tiim video ¢ercevelerinden edinilen ortak bilgi (icerik) ile modelledigi diisiiniiliirse,
topaklandirma o6zelliginin bu problemde etkin bir islevi oldugu da sdylenebilir.
Hareketli dnplan nesnelerine ait pikseller video boyunca ayni yerde kalmadiklari i¢in
elde edilecek arkaplan modelinde kendilerine yer bulamayacaklardir. Buna karsin
arkaplandaki piksel degerlerinin fazla degismemesi, bir anlamda video ¢ercevelerden

cikarilan ortak bilgiyle olusturulan arkaplan modelinin bu piksel degerlerine sahip



olmasini saglar. Bu sebeple topaklandirma islevine sahip ANOMA teknigi, basarili

bir arkaplan modeli olusturma yetisine sahiptir.

ANOMA’nin performansint 6lgmek amaciyla PETS veritabanindan alinmig
gozetleme tiirli videolarda testler gergeklestirildi. Kargilastirma amaciyla
ANOMA’nin yam1 sira NOMA ve ATBA yontemlerinin de kullanildigi testler
sonucunda s6z konusu uygulama icin ANOMA’ nin etkin bir yontem oldugu ve

1s1klilik degisimlerine karsi diger iki yonteme gore daha giirbiiz oldugu goriildii.



2. NEGATIiF OLMAYAN MATRIS AYRISTIRMA

Cok boyutlu verilerdeki fazlalik bilgiden kurtularak 6nemli bilesenleri ortaya
¢ikarmak icerik analiz yontemlerindeki temel adimlardan birisidir. Temel bilesen
analizi (TBA) [17] basta olmak {izere bir¢cok ayrisim (decomposition) yontemi
islenen veri boyutunu kiigiilterek ve onemli bilgi bilesenlerini agiga ¢ikararak bu
islevi yerine getirmeyi amaclar. Bu yontemlere ek olarak, dongiilii (iferative) bir
sekilde matris c¢arpanlarina ayirma iglemi gerceklestirerek verinin O6zniteliklerini
(features) ¢ikarmayi amaglayan negatif olmayan matris ayristirma (NOMA) [27-40]
da ¢ok boyutlu veriler iizerinde kullanilmak {iizere Onerilen yeni tekniklerden
birisidir. Negatif olmayan matris ayristirma, orijinal veri matrisini iki tane carpan
matrisine ayirarak boyut azaltir ve yararli gosterimler (representation) olusturur.
NOMA sonucunda elde edilen carpan matrislerin orijinal veri igerisindeki gizli ve
onemli bilesenleri barindirmalar beklenir. Diger bircok yontemin aksine, NOMA’da
bu ¢arpan matrisler iizerinde negatif olmama kosulu vardir ve bu kosul neden oldugu
toplanabilirlik ilkesi sebebiyle sezgisel ve parga tabanli (parts based) gosterimlerin

olusturulmasina olanak saglar.

Negatif olmayan matris ayrigtirma problemine ¢6ziim getiren ilk ¢aligsmalar [45,46]
numarali kaynaklarda mevcut olsa da, NOMA {iniinii daha ¢cok Lee ve Seung’un
1999 yilinda yayimladiklar1 calisma ile kazanmistir [27]. S6z konusu makalede
NOMA i¢in dongiisel ve ¢arpimsal giincelleme kurallart 6nerilmis ve NOMA’ nin
basarili bir makine 6grenmesi (machine learning) teknigi oldugu gosterilmistir.
Daha sonralar1 NOMA arastirmasindaki egilim elde edilen carpanlarin seyreklik
(sparseness) ozelliklerini arttirarak olusturulacak gdsterimlerin parca tabanli olma
olasiligini arttirmak olmustur [29-33]. Bunun i¢in NOMA’nin klasik maliyet
fonksiyonuna ek terimler eklenerek eniyileme siirecindeki kisitlamalar arttirilmis,

bunun neticesinde seyrekligi daha yiiksek ¢arpanlar olusturulmaya galigilmistir.

NOMA i¢in oOnerilen yontemler genelde dongiiseldir ve bu yiizden algoritma
yakinsakligi 6nemli bir konudur. Yakinsama hizinin arttirllmasi icin farkli

izdligiirilmiis gradyan inisi (projected gradient descent) yontemleri sunulmustur



[36]. Dongiisel ve carpimsal giincellemeli tekniklere alternatif olarak Newton tiirii

sayisal yontemler de 6nerilmistir [35].

Boyut kiigiiltme ve sezgisel gdsterimler olusturma yetileri nedeniyle NOMA c¢esitli
uygulama alanlarinda kullanilmistir. Bunlara 6rnek olarak yiiz tanima [36], cesitli
biyomedikal uygulamalar [30], nota tanima [37], biyoinformatik [38], kaynak (ses)
ayristirma [31] ve gorintii kiyim1 (image hashing) [39] verilebilir. NOMA’ nin bu
alanlarda kullaniminda tercih nedenlerinin en Onemlilerinden birisi, kullanilan
verilerin dogasina uyumlu olmasidir. Bu tiir uygulamalarda genelde negatif olmayan
elemanlardan olusan veriler s6z konusudur, bu da NOMA’ ’nin ¢alistirilmasini son
derece elverigli kilar. Toplanabilir ve sezgisel gosterimler olusturma yetisinin
yaninda, seyreklik de NOMA’nin degisik uygulamalarda fayda saglayabilecek
Ozelliklerinden biridir. Buna ek olarak, NOMA’nin bulanik k-ortalamali
topaklandirma teknigine denk oldugu ve topaklandirmada basarili sonuglar verdigi de

gosterilmistir [40].

Degisik uygulamalarin ihtiyaglarini karsilamak i¢in NOMA’ nin degisik versiyonlari
da Onerilmistir [40-41]. Bunlara 6rnek olarak negatif degerlere sahip verilerde (s6z
gelimi ses uygulamalarinda) kullanilmak iizere veri ve karisim matrislerindeki
negatif olmama kosulunu ortadan kaldiran yari-NOMA (semi-NMF) [41] ve Ozellikle
Obekleme uygulamalarinda kullanilmak {izere ortaya atilmis olan ve karisim matrisi
stitunlarinin veri matrisi siitunlar1 tarafindan gerilen bir uzayda yer almasini saglayan
konveks-NOMA [41] verilebilir. Bunlarin yaninda ¢ekirdek-NOMA (kernel-NMF),
tcli carpan ayiwrma (fri-factorization) ve simetrik NOMA gibi farkli tiirler de
mevcuttur [40].

2.1. Negatif Olmayan Matris Ayristirma icin Matematiksel Tamimlar

Kullanilacak veri #n boyutlu m tane goézlemden olussun ve 7z x m boyutlu bir matriste
tutulsun. Vj;, V matrisinin i. satir (i=1,..,n) ve j. siitundaki (j=1,..,m) elemanini

gostermek {izere, veri matrisi V, nxm boyutlu olarak tanimlanir. Denklem (2.1)’de

gosterildigi gibi, negatif olmayan matris ayristirma (NOMA) ile V € R™™ matrisi
iki adet carpan matrisine belli bir yaklasiklik ile ayristirilir [28]. Bu matrislerden ilki

W e R™" ile gosterilen karigtirma matrisi (mixing matrix) iken diger ¢arpan matrisi

ise HeR™ ile temsil edilen kodlama matrisidir (encoding matrix) [28]. r ise



NOMA algoritmasinin degiskeni olup ayristirma ranki ya da kisaca rank olarak
adlandirilir. Rank degerinin secimi ¢arpan matrislerine ayirma islemindeki boyut
kiigiiltme miktarini belirler. NOMA belli bir hata karsiliginda belli bir yaklasiklik ile
ayristirma yaptigi i¢in kiigiik rank secimi ile artan boyut kiicliltme miktar1 geri catma
hatasin1 (reconstruction error) arttirir. Dolayisiyla rank kiigiildiikkce carpanlara

ayirma islemi sirasindaki bilgi kaybi artar.
V~WH (2.1)

V matrisinin her bir siitunu farkli bir gézleme denk diisiip H matrisinde kendisini

ifade eden bir tane goOsterim vektoriine sahiptir. V=[v, v, v;..v ] ve
H=T[h, h, hy...h ] seklinde ifade edilebilen bu matrisler igin v, ve h siras1 ile V

ve H matrislerinin c¢’inci (c=1,...,m) siitunlarin1 gostermektedir. Aymi sekilde

karistirma matrisi ise W =[w; w, ... w_] seklinde gosterilebilir. Denklem (2.2) ile, H

matrisinin bir siitunundaki katsayilardan faydalanarak, V’de bulunan ayni indisli

gozlemin W matrisinin stitunlarinin kullanimiyla nasil olusturuldugu gosterilmistir.

v.=Wh_, c=12,..m (2.2)

c c

NOMA yonteminin uygulanmasinda genelde denklem (2.3) ile verilen ortalama
karesel geri catma hatas1 maliyet fonksiyonu olarak secilip enkiigiiltiiliir. Literatiirde
degisik maliyet fonksiyonlar1 tanimlanip kullaniliyor olsa da [30,32] denklem (2.3)
ile verilmis olan karesel hata, basitligi ve etkinligi nedeniyle, bir¢ok arastirmaci

tarafindan tercih edilmektedir [27-30].

lnm

1 2
F=—=|[V-WH[P=-35((V),~(WH), | 2.3)
2 2553 Y Y
Denklem (2.3)’deki karesel hata fonksiyonu, W ve H matrislerine gore ayri ayri
konvekstir [28]. Bu nedenle, (2.3) maliyet fonksiyonunun gradyan inisi (gradient
descent) yontemi ile eniyilenmesi sonucunda, H ve W matrislerinin elemanlar i¢in

doniisiimlii ve carpimsal (alternating multiplicative) giincelleme kurallar1 bulunur

[28].



H matrisinin elemanlari i¢in gradyan inisi yontemi kullanilarak bulunan giincelleme

bagntist (2.4)’te gosterildigi gibi formiile edilir. Burada j=1,...m, a= 1,...r olup n,,

eniyileme adim boyunu (step size) gostermektedir.

(H), «(H), -, —_ 2.4)

o(H),

(2.4)’teki kismi tiirev (2.5) esitligindeki gibi ayrintilandirilabilir.

afff)qf ) a(fm,- FEE() -,
= 352(V), VM), g B ) - ()

=—(W'V) +(W'WH) 2.5)
aj aj

(2.5)’de verilen kismi tiirev esitligi, adim boyunun (2.6) esitligindeki gibi sec¢ilmesi
kosulu ile, (2.4)’te kullanildiginda, H matrisinin elemanlar1 i¢in (2.7)’de verilen

giincelleme kurali elde edilir.

(H)a]’

j

(2.6)

(H), < (H) M 2.7)
o o (WTWH)a '

j

Benzer sekilde, W matrisinin elemanlar igin giincelleme kural1 elde etmek amaciyla
gradyan inisi eniyileme yontemi kullanilabilir. i=1,...n, ve a=1,...r igin A adim
boyunu gostermek iizere, gradyan inisi teknigine gére W matrisinin elemanlari icin

(2.8)’de gortilen giincelleme kurali elde edilir.

2.8)
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(2.8)’deki kismi tiirevin sonucu soyledir:

W], =W, LS, -]
_ [%éz((v)y_ ~(WH), | T sv N ;l((v),g ~(WH), |

m

= —Z((V)v N (WH>i/)<H)af

j=1

=—(VH") +(WHH") 2.9)
(2.9)’da verilen tiirev esitligi, adim boyu (2.10)’daki gibi secilmek kosulu ile,
denklem (2.8)’e yerlestirilirse, W matrisinin elemanlart i¢in de diintisimli ve
carpimsal giincelleme kurallar1 elde edilir. i=1,...n, a=1,...r olmak {izere s6z konusu

giincelleme formiilii (2.11)’de verilmektedir.

PR (2.10)
“ (WHHT)m

(VHT)M
(W), < (W), (wHH']_ @2.11)

Genel olarak gradyan inisi yonteminde segilecek adim boyutunun 6nemi biiyliktiir.
Kiiciik secilen adim boyu eniyilemede yakinsamayi yavaslatirken, adim boyunun
gereginden biiylik secilmesi iraksamaya neden olabilir. Ancak, (2.6) ve (2.10)’da
verilen adim boylarinin segilmesi durumunda maliyet fonksiyonunun dongiisel
olarak giincelleme sirasinda hi¢ artmayacagi, Lee ve Seung tarafindan ispatlamistir
[28]. Adim boylarinin bu sekilde secilmesinin bir baska Onemli noktasi ise
giincelleme dongiileri sirasinda adim boylariin otomatik olarak degismeleridir. Yani
herhangi bir kontrol ya da atama yapmaya gerek kalmadan adaptif olarak belirlenen

adim boylart NOMA algoritmasinda kullanilmaktadir.

(2.7) ve (2.11)’deki giincelleme kurallar1 doniisiimlii olarak uygulanir. Burada

doniigiimliiliikten kasit, giincelleme isleminin her bir dongiisiinde 6énce H matrisinin
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elemanlarinin giincellenmesi, daha sonra da elde edilen H matrisinin kullanimiyla W

matrisinin giincellenmesi ve her dongiide bu islemin yinelenmesidir.

NOMA ile ilgili diger bir nokta ise baslangi¢ kosullarmin belirlenmesidir. NOMA
algoritmalarinda W ve H matrisinin giincellenmesinden 6nce baglangic kosullarinin
belirlenmesi ¢ok kritik olmamakla birlikte, eniyileme siirecinde mutlak minimuma
erismenin garanti olmamas:t nedeniyle, farkli ilk kosullar farkli sonuglar
verebilmektedir. Genelde ilk kosul olarak W ve H matris elemanlarina negatif
olmayan rasgele sayilar atanir. Sonugta ilk kosullar ne olursa olsun yakinsaklik
durumunda KKT (Karush-Kuhn-Tucker) kosullarinin incelenmesiyle yerel

minimuma ulagilacagi goriilebilir. Detaylar Ek-A’da verilmistir.

2.2. Negatif Olmayan Matris Ayristirma ile Arkaplan Modelleme

Literatiirde gozetleme tiirii videolarda arkaplan modelleme probleminde negatif
olmayan matris ayristirma (NOMA) teknigini kullanan bir ¢aligma (bu tez yazarinin
bildigi kadariyla) yoktur. Sadece [42,43] ¢alismalarinda s6z konusu problem igin
kullandigimiz artimsal negatif olmayan matris ayristirma yontemiyle karsilastirma
yapmak amaciyla NOMA tarafimizca kullanilmistir. Aslinda NOMA’nin bu
uygulama igin elverigli bir yontem oldugunu tahmin etmek zor degildir. Keza
NOMA ile kiyaslayabilecegimiz temel bilesen analizi (TBA) daha once bu
problemde basari ile uygulanmigtir [18-20].

[18] calismasinda gozetleme videolarinda arkaplanin  video c¢ergevelerinin
kullanimiyla olusturulacak veri matrisinin ortak degisinti (covariance) matrisinden
elde edilecek birka¢ 6zvektorle modellenebilecegi anlatilmaktadir. Buna gore video
dizisinden alinacak o6rnek c¢ercevelere TBA uygulanmasiyla elde edilecek
ozvektorler, islenen videodaki statik kisimlari kapsayan arkaplani modellemeyi
saglayacak bilgi bilesenlerini igerir. Bu sayede, hem boyut kiiciiltme
gerceklestirilmis olurken, hem de TBA ile hesaplanan 6zvektorlerin kullanimiyla,
geri catilan her bir video g¢ercevesinin orijinalinden farkinin bulunmasiyla arkaplan

onplan ayristirilmasi yapilabilir.

NOMA da video arkaplan modellemesinde TBA’ya benzer sekilde kullanilabilir.
S6zgelimi N adet gerceve barindiran bir videodan secgilecek m tane 6rnek {izerine

NOMA uygulanmasi ile (1)’e gore  siitunlu bir karistirma matrisi elde edilir. Veri
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matrisi V’nin her bir stitununun bir 6rnege denk se¢ildigi durumda, karistirma matrisi
W’nun her bir siitunu islevsel olarak TBA’daki bir 6z vektore denk diiser. Tabii bu
stitun vektorleri i¢in TBA’daki 6zvektorlerin aksine diklik (orthogonality) veya
lineer bagimsizlik garantisi verilemeyecegi icin diisiik boyutlu bir uzay germe her
zaman s0z konusu degildir. Bu yiizden bir ¢calismada bu karisim vektorleri ‘verinin
yap1 bloklart’ (building blocks) olarak nitelendirilmistir [29]. Buradaki amag, veri
kiimesindeki her bir gozlemin bu karisim vektorlerinin lineer birlesimleri ile
olusturulabileceginin altin1 ¢izmektir. Bunu miimkiin kilan sey ise veri kiimesindeki

bilgilerin bu karisim vektorlerinde tutulmasidir.

Sonug itibariyla, m 6rnek {izerinde calistirilmis NOMA algoritmasi ile elde edilen r
adet kanigim vektorii boyut kiicliltme sagladigi kadar bir bilgi kaybmna da neden
olacaktir. Video sahnesindeki hareketli cisimler her bir ¢ergevede farkli konumlarda
olacaklar i¢in diisiik boyutlu bir karigim matrisinde yapacaklar katki/katilim az
olacak, karisim vektorleri videodaki bu bilesenler ile ilgili bilgileri tutamayacaktir.
Buna karsilik videoda arkaplan olarak niteleyebilecegimiz duruk (static) kisimlarin
gosterime  katilmi  ¢ok olacak ve karnsim  vektorleri bu  bilesenleri
betimleyebilecektir. Bu yiizden NOMA ile elde edilen karigim vektorlerinin,
videonun arkaplaninin olasilik dagilim fonksiyonunu igin basarili bir model
olusturabilecegi sonucuna varilabilir. Ayni ¢ikarim Onplan nesneleri igin
yapilamayacagi icin NOMA sonrasi geri catilmis ¢ercevelerde onplan bilesenleri

bulunmayacak, bu da arkaplan 6nplan ayristirmasini kolaylastiracaktir.

2.3. Negatif Olmayan Matris Ayrnistirma ile Arkaplan Modellemedeki

Kisitlamalar

Boliim 2.2°de NOMA’nin arkaplan modelleme probleminde nasil kullanilabilecegi
anlatildi. NOMA dogas1 geregi bu problem igin elverisli goziikse de NOMA’ nin
gozlem vektorlerinden olusan veri iizerinde toplu halde (batch mode) uygulanmasi
belli kisitlamalar ve problemler dogurmaktadir. Bu kisitlamalar NOMA nin 6zellikle

¢evrimici uygulamalarda kullanilmasini zorlastirmaktadir.

Oncelikle &rneklerin toplu islenmesi modelin video icerigindeki degisimlere
uyarlanabilir (adaptive) olma 0&zelligini kisitlamaktadir. Bu iddianin daha iyi
anlasilmasi i¢in iki durum o6rnek olarak verilebilir. Birinci durum, videonun biiyiik

bir boliimiinde hareketsiz halde duran bir nesnenin videonun nispeten daha kisa bir
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boliimiinde hareketlenip 6nplana dahil olmasidir. Bu durumda &rneklerin ¢ogunda
sabit bir konumda bulunan cisim karisim vektorlerine ve dolayisiyla arkaplan
modeline bu sekilde dahil olacaktir. Video cerceveleri bu karisim matrisi ile geri
catildigi zaman ise, cismin hareketli oldugu bolimlerde o cisim onplanda
goriinmesinin yaninda arkaplandaki konumunda da goriinecektir. NOMA nin toplu
islemesinin neden olabilecegi bu duruma verilebilecek bir diger 6rnek ise, videonun
ilk kisimlarinda hareket halinde olan bir nesnenin sonraki kisimlarda sabitlenip
arkaplana dahil oldugu durumdur. Sonugta bahsi gegen nesne, videonun biiyiik bir
boliimiinde arkaplanin bir pargasi oldugundan karigim matrisinde arkaplan modeline
dahil olacak, bu da hareketli oldugu video bdliimlerinde bile arkaplanda da

goziikmesine yol agacaktir.

NOMA’nin veri kiimesinden alinan 6rnekleri toplu sekilde islemesi, 6zellikle igerik
degisimlerinin yasandigi uzun videolarda, ¢ok avantajli bir uygulama degildir.
Videolarin dinamik igerigi, iistteki paragrafta verilen 6rneklerden de anlasilacagi
sekilde, arkaplan modelinin videoda bulunan degisikliklere uyarlanabilmesi i¢in
NOMA nin bir defadan ¢ok uygulanmas: gerekliligini dogurur. Ozellikle ¢evrimigi
uygulamalar1 diislindiiglimiizde, eger yeni gelen Orneklerle birlikte NOMA
tekrarlanirsa islemsel yiik 6nemli bir sorun haline gelir. Carpimsal giincelleme
kurallarindaki matris ¢arpimlart dolayisiyla NOMA’nin islemsel karmasikligi
O(nmr) mertebesindedir. Burada n bir 6rnegin boyutu, » rank, m ise 6rnek sayisidir.
Buradan her yeni gelen Ornekle birlikte NOMA’nin getirecegi islemsel yiikiin
artacagl goriiliir. Ayn1 zamanda sabit bir » degeri i¢in NOMA algoritmasina giren
omek sayis1 arttikca geri catma basarimi diisecektir. Bu sartlarda, duruma gore,

islemsel yiikiin daha da artmasi pahasina rankin arttirilmasi da gerekebilir.

NOMA’nin bellek gereksinimi de o6zellikle ¢evrimi¢i uygulamalarda bir bagka
problem olarak gbéze carpmaktadir. (2.7) ve (2.11)’de goriildiigii gibi giincelleme
islemlerinde V, W ve H matrisleri kullanilmaktadir ve bu da tiim orneklerin
saklanmasi1 gerekliligini dogurur. Bu yiizden NOMA’nin tekrar gergeklenebilmesi
icin tim Orneklere karsilik gelen V ve H siitunlarinin saklanmasi gereksinimi

NOMAy1 bu tiir biiylik boyutlu uygulamalara oldukga elverissiz yapar.

Hareketli bir igerige sahip uzun bir videoya NOMA’nin toplu (batch) halde
uygulanmasi arkaplan modelleme problemi i¢in ¢ok etkin bir ¢6ziim

getiremeyeceginden NOMA nin bir sekilde ¢evrim i¢i uygulanmasi diisiiniilebilir.
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Her gelen yeni drnekle birlikte NOMA tekrar gerceklenebilir. Burada islemsel yiikiin
azaltilma gerekliligi ile birlikte {istesinden gelinmesi gereken bir diger nokta ise en
son gelen orneklerin etkilerini arkaplan modeline hizla katabilmektir. Teorik olarak
her bir 6rnegin NOMA yonteminde yaptigi katki denktir. Fakat dinamik arkaplan
modelleme gibi problemlerde bir 6l¢lide belleksizlik 6zelligi aranmaktadir. Burada
belleksizlikten kasit, sistemin belli bir noktadan sonra eski orneklerin etkisini
arkaplan modelinden ¢ikarabilmesidir. Ideal durumda, olusturulacak arkaplan
modelinin video icerigindeki dinamik degisimlere amnda yanit verebilmesi istenir.
Ormnegin hareketli bir nesne hareketini sonlandirdigr anda arkaplan modeline
yerlestirilebilmelidir. Benzer sekilde sabit bir arkaplan parcasi harekete gegtigi anda
arkaplan modelinden cikarilip 6nplan nesnesi olarak etiketlenebilmedir. Arkaplan
modelinde yapilmasi gereken bu tiir uyarlamalar, ancak yeni gézlemlerin etkilerinin
var olan modele etkin bir bigcimde eklenebilmesi ile yapilabilir. Klasik NOMA
uygulamalarinda ise her bir drnegin etkisi esit oldugundan olusturulan modelde bu

tiir uyarlamalarin hizli sekilde yapilmasi giigtiir.

NOMA’nin ¢evrimi¢i uygulamalarinda eski Omneklerin etkilerinin zamanla
azaltilmasi i¢in, her yeni gelen Ornekte eski bir Ornegin, lizerinde NOMA
gerceklestirilecek veri matrisinden ¢ikarilmasi akla gelen ilk ¢6ziim Onerilerinden
birisidir. Ne var ki bu yontemin, video igeriginde yasanan degisimin hizina goére
performansi degisebilir. Ayn1 zamanda en giincel gozlemlere bir agirlik verilmedigi
stirece modelin icerik degisimlerine gore hizlica uyarlanma sorununun ¢ozimii

zordur.

Bu boliimde anlatilmig olan NOMA’nin dinamik igerige sahip biiylik boyutlu veri
kiimelerine uygulanmasindaki zorluklar ve kisitlamalar nedeniyle NOMA tekniginin
klasik uygulanis big¢imiyle arkaplan modelleme problemine ¢ok uygun olmadigi
sonucuna varilabilir. Ayni zamanda arkaplan modelleme probleminde bir¢ok

avantaji olan ¢evrimici ger¢ekleme NOMA ile miimkiin gozitkmemektedir.
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3. ARTIMSAL NEGATIF OLMAYAN MATRIS AYRISTIRMA

Boliim 2.3’te bahsedilen kisitlamalar1 agmak i¢in artimsal negatif olmayan matris
ayristirma (ANOMA) teknigini 6nerdik [42]. ANOMA, agirlikli maliyet fonksiyonu
sayesinde igerik degisimlerini olusturdugu ¢arpanlarina hizli bir sekilde yansitirken
islemsel yiikii ve bellek gereksinimini 6nemli Olglide azaltmaktadir. Bu nedenle
arkaplan modelleme problemine dogasi geregi cok uygun olup, bu uygulamaya

¢evrimici bir ¢dziim sunmaktadir [42-44].

ANOMA teknigindeki amag, islemsel yiikii fazla arttirmadan en giincel 6rneklerin
etkisini de katarak W ve H carpan matrislerini giincellemektir. Her yeni 6rnek
gelisiyle birlikte V ve H matrislerine birer siitun eklenir ve karigtm matrisi W bu

oreklere gore giincellenir.

3.1. ANOMA icin Maliyet Fonksiyonunun Olusturulmasi

k adet Ornegin islenmesi sonucu elde edilmis c¢arpan matrisler Wy ve Hy ile
gosterilsin. Buna gore, n bir video ¢er¢evesindeki piksel sayisin1 vermek iizere, bu &

ornek icin NOMA sonucu elde edilmis maliyet fonksiyonu (3.1)’de verildigi gibidir.

n k
F AV -WH F=23 3 ((V), ~(WiH,), | G.)

i=1 j=l1

Vi1 ile gosterilen k+1’inci 6rnegin islenmesi i¢in maliyet fonksiyonu (3.2) verildigi

sekilde yazilir. Burada hata fonksiyonu Wy and Hy4+; matrisleri cinsinden yazilir.

n k+l

1 2
Fk+1 =V _Wk+1Hk+1 ”2:522((\])11 _(Wk+1Hk+1 ),]) (3.2)

i=1 j=1

Bu maliyet fonksiyonunun eniyilenme siirecinde (2.7) ve (2.11) ile verilen klasik
NOMA giincelleme kurallar1 da kullanilabilir. Fakat her yeni gelen 6rnek i¢in boyle

bir islem getirecegi islemsel yiik bakimindan oldukga verimsiz olacaktir.
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Bolim 2.2°de Wy matrisinin siitunlarinin NOMA uygulanan veriyi betimlemedeki
onemi anlatilmisti. (2.2)’de ifade edildigi gibi hy+1 kodlama vektoriindeki katsayilar
vkr1 Omeginin geri catilmasinda karisim vektorlerinin (Wy4; matrisinin siitunlar)
nasil kullanilacagimi veya bir baska deyisle her bir karisim vektoriiniin £+17’inci
gozlem igindeki katilimini belirler. Sonug olarak her bir gézlemin, dolayisiyla da tim
veri kiimesinin ifade edilmesinde Wy+; matrisinin 6nemi biiyliktlir. Ayrica, her yeni
gelen 6rnegin veri kiimesinin boyutunu arttirmasi ile birlikte 6rneklerin karisim
matrisi tizerindeki bireysel etkileri azalmaktadir. Bu sebeple, 6zellikle video gibi
orneklerin zamansal olarak iligkisinin yliksek oldugu veriler i¢in, yeni gelen 6rnekler
Wi+ matrisinin dnceki ornekleri temsil etmekteki bagarmini ¢ok etkilemeyecekleri
icin ANOMA yonteminde onceki Orneklere karsilik gelen kodlama vektorlerinin
giincellenmesine gerek yoktur. Hy+1 matrisinin ilk & siitununun Hy matrisine yaklasik
olarak esit olacagi kabulii altinda, W matrisine ek olarak Hy+; matrisinin sadece son
stitununu giincellemek yeterli olacaktir. Bu yiizden gézlem sayisi k+1°e ¢iktiginda
toplam geri ¢catma hatasi Fy.; (3.3)’te ifade edildigi gibi olur. Burada hy; son 6rege
karsilik gelen kodlama vektorii olup, toplam hata fonksiyonu goriildiigii izere biri
son Ornegin geri ¢atma hatasimi temsil eden iki tane bilesenin toplami bigciminde

gosterilmistir.

n_ k+l 2

Fro= %ZZ((V)U _(Wk+1Hk+l ),])

1 ’:1 ’:l ) (3.3)

= EZ Z((V)Zj — (Wi Hy ),] )2 +%Z((Vk+l ),- ~(Wisihye ),»)2

i=1 j=1 i=1
(3.3)’de verilen toplam hata, ilk k& 6rnege ait kodlama vektdrlerinin giincellenmemesi
sebebiyle (3.2) ile gosterilen NOMA sonucu elde edilecek geri catma hatasina
yapilan bir yaklasikliktir. Sonugta bu yaklasiklikla birlikte, toplam geri ¢catma hatasi

(3.4)’de yazildigr sekilde birisi ilk £ 6rnege denk gelen, digeri ise son Ornekten

kaynaklanan 2 tane hata bileseninin toplami halinde ifade edilir.
Fa 2+ fia 3.4)

(3.4)’te verilen maliyet fonksiyonunda her bir 6rnegin katilimi aynidir. Teorik olarak
omekler bagimsiz olursa bu durumda bir sorun yoktur. Fakat video isleme

uygulamalarinda oldugu gibi ardisik 6rneklerin ilintisinin ve benzerliginin yiiksek
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oldugu durumlarda ayristirma sonucu elde edilen carpanlar veya gosterimler {izerinde
baz1 6rnek gruplarinin etkisi daha biiyiik olabilir. Bu da dzellikle dnceden islenen
omek sayisinin fazla oldugu durumlarda yeni oOrneklerle birlikte gelen icerik
degisimlerinin ¢arpan matrislerine veya olusturulacak gosterimlere yansitilmasini
zorlagtirir. Bu engeli agsmak i¢in her bir 6rnegin maliyet fonksiyonuna dolayisiyla da
eniyileme siirecine yaptigi katilim kontrol edilebilir. Ger¢ekten de c¢evrimici ¢ogu
uygulamada dinamik igerik degisimlerini saglikli bir sekilde modelleyebilmek icin
son gelen Orneklerin katilimlar1 arttirmak istenir. Ornek olarak boliim 2.3’te
anlatildig1 gibi, gozetleme tiirii videolarda olusturulacak arkaplan modelinin dinamik
icerik degisimlerine karsi uyarlanabilir olmasini arttirmak icin son gelen video

cercevelerinin maliyet fonksiyonundaki agirliklart arttirilmalidir [43,44].

Her bir 6rnegin elde edilecek gosterimlere yapacagi katkiyr kontrol edebilmek ve

olusturulacak ANOMA modeline istenilen seviyede belleksizlik o6zelligi

kazandirmak icin (3.5)’te gosterildigi gibi Fj+; maliyet fonksiyonuna So(a) ve
S, (a) agirliklandirma fonksiyonlar1 eklenmistir. Bunlar a sabitinin fonksiyonlaridir
ve a degeri yapilacak uygulamaya gore genellikle deneysel olarak secilir. So(a) ile
eski drneklerden gelen hatanin katilimi kontrol edilirken S, (a) son gelen Ornegin

etkisini belirler.
1 <& 2
Fra =5,@)F, + S ()7 2 ((Vier), = (Wi ), (3.5)
i=1

(3.5)’te verilen ifadeye gore her yeni gelen ve iglenen 6rnek igin eski 6rneklerden

kaynaklanan hata terimleri stirekli S, (a) ile carpilirken yeni gelen gozlemin neden

o

oldugu hata bileseni ise S, (a) ile agirhiklandirilacaktir. Bu agirliklandirma diizeni

sonucunda (3.5)’te verilen maliyet fonksiyonu (3.6)’da gosterilen sekilde de

yazilabilir.

|k " 2 Sj(a):SfH_z’ (a), j<2r
Fo.=—> 8 (a V). —(W. H.). ], _ (3.6)
o 2; i )g(( ) (W kl)”) S].(a)=Sé‘”"(a)Sf(a),zr<jgk+1
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(3.6)’da S, (a) j indisli 6rnegin agirliklandirma katsayisim gostermektedir. Burada,
her gelen Ornekle birlikte eski terimlerin So(a)ile carpilmasinin agirliklandirma

katsayilarinda So(a) ‘nin {stel serisini olusturdugu gézden kagirilmamasi gereken

bir noktadir.

S,(a) fonksiyonunun 1’den kiigiik olmasi kabulii altnda S (a) veya

Sk (a) ile agirliklandirilan eski orneklerden kaynaklanan hata terimlerinin

fonksiyondaki katilimlarinin giderek diisecegi ve islenen 6rnek sayisi & biiylidiikge
sifira yakinsayacagi goriiliir. Bu durum, onerilen artimsal ¢arpan matrislerine ayirma

isleminin sisteme istenilen diizeyde belleksizlik 6zelligini asilayabilecegi anlamina

gelir. Bu agirliklandirma diizeninde S, (a) eski 6rneklerin sonme miktarini belirler.

3.2 ANOMA ic¢in Giincelleme Kurallarinin Cikarilmasi

ANOMA i¢in agirliklandirilmis hata fonksiyonu belirlendigine gore, giincelleme
kurallarinin ¢ikarilmast i¢in bu (3.6)’daki maliyet fonksiyonunu eniyilemek i¢in
gradyan inisi (gradient descent) yontemi kullanilabilir. Islenecek her yeni gelen
omek icin kodlama matrisine eklenecek yeni siitunla birlikte karistm matrisi
giincellenecektir. a=1,...,r olmak {lizere k+/’inci Orek alindigi zaman, hy
vektorliiniin - giincelleme kurali gradyan inisi yontemine gore (3.7)’deki gibi

verilebilir.

OF,

h h — g, ——H— 3.7
( k+1 )a < ( k+1 )a Hq a(hk+1 )a ( )
(3.7) formiiliindeki kismi tiirev su sekilde alinir:

61:;( | 1 &t 0 n [ r )2
— == S (a)—/—— v.) — W.., ) (h
a(thrl)a 2; j( )a(thrl)a ; ( J)i k=1( k+1)1k( J)k
1 n
:5'2"Sk+1 (Q)Z((Vkﬂ ),~ ~(Wiihy, ),~ )(Wk+l ),-a
i1
:Sk+1 (a)|:(wl{+lvk+1 )a _(Wl{+lwk+1hk+1 )a:| (38)
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(3.8) ile wverilen kismi tiirevle birlikte (3.9)’daki adim boyunun (3.7)’ye
yerlestirilmesiyle (3.10)’daki glincelleme kurali elde edilir.

h
/,la _ ( Tk+1 )a (39)
S; (a)(wk+lwk+1hk+1 )a
(WkT+1Vk+1)
(hyrr), < (s, ‘ (3.10)
* ! (WkT+1Wk+1hk+1 )a

Benzer sekilde, i=1,2,...n ve a=1,2,...r degerleri i¢cin gradyan inisi yontemi ile Wy

matrisinin ia indisli elemanimin giincellenmesi su (3.11) ile verilen ¢ergeve iginde

yapilir.
OF,
W) W) —A —F— 3.11
( k+1 )la < ( k+1 )za ia a(wk+1 )ia ( )

Oncelikle (3.11)’deki kismi tiirevi su sekilde hesaplayalim:

5((‘32{:1) B ffa(WkJ,1 ). {%jzjsf (a)zn:((v)y — (Wi Higy )l.j )2}

ia i=1

- %ljﬁi S; (a):(\VT)m[lan‘,((V)U ~ (Wit Hi ),j )2}
= %Zjiisj (a)((V)i]_ ~(WiaHiy), )(Hk+1 )
=§S.f(a)(—(V)g(Hk+1 )y (i), (Wisi i), | (3.12)

Wy matrisinin - elemanlarmin  glincellenmesinde  kullanilacak gradyan inisi
eniyileme tekniginde adim boyu olarak (3.13) ile verilen 4, degeri se¢ilebilir. S6z
konusu adim boyunun secilmesi durumunda maliyet fonksiyonunun dongiisel

giincelleme adimlarn sirasinda artmayacaginin ispati Lee ve Seung’un ispatina benzer

sekilde Ek-B’de yapilmistir.
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A = (W), (3.13)

2.5 (@) (Wi Hiy ),-j (H1€+1)

J=1

Ja

(3.12) ve (3.13)’de verilen esitliklerin (3.11)’de kullanilmasiyla Wy matrisinin
elemanlan igin ¢arpimsal giincelleme kurallar1 elde edilmis olur. Bu giincelleme
formiiltiniin verildigi (3.14)’te h; vektorii Hy+; matrisinin j’inci slitununu, v vektorii
ise j’inci 6rnegi temsil ederken i=1,...n, a= 1...r degerleri gecerlidir. Video verisinin
0zelligi goz oniine alindiginda bir 6nceki gergevenin igslenmesi sonucunda elde edilen
Wy matrisi Wiy matrisinin giincelleme stirecinde ilk kosul olarak kullanilabilir.
Ardisik gercevelerin ilintisinin ve benzerliginin yiiksek olmasi bu sekilde yapilacak

bir glincellemedeki yakinsama hizin arttiracaktir.

k+1
ZSJ (“)(thjT )m
(Wit )i (Wi ) T2 (3.14)
ZSJ (a) (Wk+1hk+1hl€+1 )

I=

ia

k+I’inci cergeve icin ANOMA’nin uygulanmasinda Hy.; matrisinin ilk £ siitunu
giincellenmeyip degismeyeceginden (3.14)’teki ifade (3.15) ile verilen sekilde

yazilabilir.

(So (Ol)VkHl{ +Sf (a)Vk+1hl€+1 )m (3.15)

(Wk 1)ia < (Wk 1)ia
' ' (So (@) Wi HHy + S, (@) Wk+1hk+1h£+l)

ia

(3.14) ve (3.15) ile verilen ifadeler aym isi yapiyor olsalar da Wy matrisinin
giincelleme siirecinde (3.15)’in kullanilmasi islemsel yiik ve bellek kullanimi
bakimdan oOnemli avantajlar saglar. V ve Hyy matrislerinin ilk £ stitunlar
degismedigine gore (3.14)’teki gibi s6z konusu siitun vektorlerinin ayr1 ayri ¢arpilip
teket teker agirliklandirilmasi yerine (3.15)°teki gibi toplu bir kullanimdan
faydalanilabilir. Her ¢ergeve i¢in sonlandirilan giincelleme isleminden sonra (3.16)
ve (3.17)’de gosterilen sekilde hesaplanan matris carpimlart bu bigimleriyle saklanip

kullanilir.

VieiHiey =8, (@) ViHi +S (@) Vi hic (3.16)
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Hy Hi, =S, (o) H Hy + Sy (@) hyihi (3.17)

Bu sekildeki gergeklenecek giincelleme kurallari iki 6nemli avantaji beraberinde
getirir. Tk kazanim bellek kullanimi ile ilgilidir. Her yeni gelen &rnekle beraber

boyutu artan Vi ve Hy matrislerinin kullanilmasi yerine bunlarin ¢arpimlarindan elde
edilen ve boyutu degismeyen VkHi ve HkHl{ matrislerinin kullanilmasi gerekli

bellek miktarinin sabit kalmasin1 saglar. NOMA nin klasik uygulanmasinda ise tim
orneklerin saklanma ihtiyaci, artan Ornek sayisiyla beraber bellek kullanimini da
arttirtp  ilerleyen asamalarda algoritmayr uygulanabilir olmaktan ¢ikarir.
ANOMA’nmm sahip oldugu ikinci 6nemli avantaj ise gilincelleme kurallarindaki
matris ¢arpimlarinin neden oldugu islemsel yiikii azaltmasidir. Her yeni gelen 6rek
icin (3.14)’teki vektdr carpimlarimi teker teker gergeklemek yerine (3.16) ve
(3.17)’deki  carpimlar tek seferde hesaplanabilir. Ornegin  her adimda

k+l1
ZSi(a)VihiT vektorel  toplami  yinelemek  yerine aymi isleve  sahip
i=1

S, () V,Hy +S, () Vi, toplam tek seferde yapilabilir. Her gelen drnek igin
V. H matris ¢arpimmin S, («) ile agirliklandiriimast (3.6)’daki hedeflene iistel

agirliklandirma etkisini olusturacaktir.

O NOMA : : : : : : :
+ ANOMA | | | | | | |
| L | | L | |

Bir dongu suresi

islenen drnek sayisi

Sekil 3.1 : NOMA ve ANOMA yontemleri icin bir giincelleme dongiisiiniin gergeklenme
zamaninin ornek sayisina bagl olarak degisimi
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(3.16) ve (3.17)’deki matris ¢arpimi hesaplari, aym islevi O(mmr) miktarinda bir
islemsel karmasiklikla yerine getiren (3.14)’teki vektor ¢arpimlarina karmasikligi
O(nr) olan bir alternatiftir. Dolayistyla (3.15)’teki giincelleme formiiliiniin
kullanilmasiyla ANOMA’nin islemsel karmasikligt O(nr’) olur. Bir ANOMA
dongiisliniin islemsel karmasikliginin veri kiimesindeki 6rnek sayisim gosteren

m’den bagimsiz olmasi énemli bir noktadir.

Sekil 3.1’de, NOMA ve ANOMA yontemleri arasinda neden olduklar islemsel yiik
bakimindan bir karsilastirma yapilmaktadir. Islenen 6rnek sayisi artttkca, NOMA
sirasinda gergeklenen bir giincelleme dongiisiiniin siiresi dogrusal olarak artarken
ANOMA’da bu siire sabit kalmaktadir. Yani ANOMA giincelleme islemlerinin

ornek sayisindan bagimsiz oldugu bu sonugla da goriilmiis olur.

3.3. Agirhklandirma Fonksiyonunun Secimi

Bu bolimde ANOMA maliyet fonksiyonunun agirliklandirma diizeni ve bu
agirliklandirma modelinin  belleksizlik (memorylessness) ve uyarlanabilirlik

(adaptability) ozellikleri iizerindeki etkileri incelenecektir. Bolim 3.1°de sunulan
So(a) ve S f(a) agirliklandirma fonksiyonlart V, W ve H matrislerinin
elemanlarindan bagimsiz olmalidir. Bu fonksiyonlar maliyet fonksiyonuna islenecek
orneklerin eniyileme siirecine katilimlarimi kontrol etmek amaciyla eklenmis olup,
negatif olamam zorunluluklan disinda baska ek bir kisitlamaya sahip degillerdir.
Negatif olmama kisitlamasi ise ANOMA’nin dogasinin bir pargast olan
toplanabilirlik ilkesinin (additivity) korunumu i¢in gereklidir.

Gozetleme tiirii videolarda arkaplan modelleme problemi géz oOniine alindiginda-

S, (a)ve S f(a) agirliklandirma fonksiyonlari, yeni 6rneklerin maliyet fonksiyonu

iizerinde etkisini arttiracak bunun yaninda eski orneklerin katiliminmi ise zamanla

azaltacak sekilde secilmelidir. o [0,1] araliginda olmak {izere So(a)ve S f(a)

fonksiyon ikilisi i¢in uygun bir se¢im sirasiyla (1- o) ve a olacaktir. Basta [21] olmak
iizere bircok benzer c¢alismada ayni mantiga sahip agirliklandirma sistemi

kullanilmuistir.

Bolim 3.1°de anlatildigr gibi, bu agirliklandirma isleminin yeni gelen ve islenen

orneklerle birlikte arka arkaya tekrarlanmasi (3.18)’de gorildigi gibi
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agirliklandirma katsayilarinda S, (a) =1-a fonksiyonunun gii¢ serisini olugturacaktir.

(3.18)’de fo,+« ile (2r+k) indisli 6rnekten kaynaklanan hata terimi ifade edilmektedir.

Fyy=(1-a) B +a(l-a)™ f,+a(1-a) ™ fyn +tafy., (3.18)

S, (a) 1’den kii¢iik bir deger olarak secildigi i¢in maliyet fonksiyonunun igerisinde

eski Orneklerin agirliklar zamanla azalacaktir ve yeni Orneklerin agirliklar1 daha

fazla olacaktir.

(3.18)’de verilen agirliklandirilmis maliyet fonksiyonunun bir sonucu dinamik igerik
degisimlerine  kars1  modelin  uyarlanabilir  olmasidir.  Agirliklandirma
fonksiyonlarinin (1- o) ve o olarak belirlenmesindeki asil sebep bu olsa da, elde
edilen tek kazanim bu degildir. NOMA yonteminin klasik uygulamasinda rankin
islemsel yiike etkisi ile ¢arpanlara ayirma isleminin geri ¢catma performans basarimi
iizerindeki etkisi arasinda bir odiinleme (tradeoff) vardir. Rankin biiytimesi geri
catma basarimini arttirirken islemsel verimliligin azalmasina neden olur. Oysa
ANOMA’nin agirliklandirilmis modeli ile rank nu ¢arpanlara ayirma iglemi igin
onemli bir degisken olmaktan ¢ikar. Bunun nedeni, 6nceki 6rneklerin katiliminin
giderek zayiflamasinin bir pencereleme etkisi olugturmasidir. Bu yiizden o ana kadar
kullanilmis 6rnek sayisi ¢ok yiiksek olsa bile, problemdeki gercek veri boyutu
belleksizlik ozelligi sayesinde degismeyecek, kiiciik rank secimleri bile yiiksek

basarimli geri ¢atma performansi doguracaktir.

o degerinin belirlenmesi uygulamadan uygulamaya degismekle birlikte, arkaplan

modellemesi probleminde genelde kiigiik degerler almaktadir [42-44].

3.4. Artimsal Temel Bilesen Analizi

ANOMA’nin gozetleme videolarinda arkaplan modelleme konusunda bagarimini
Olcerken karsilastirmayr miimkiin kilmak icin benzer bir algoritma olan ve [19]’da
Onerilen artimsal temel bilesen analizi (ATBA) yontemi de gerceklenmistir.
ATBA’daki temel mantik, yeni gelen her bir Ornek igin mevcut 6zdeger ve
Ozvektorleri yeni 6rnek ile birlikte kullanarak islem yiikii bakimindan verimli bir

sekilde 6zdeger ve 6zvektorleri glincellemektir.
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n boyutlu yeni 6rnek x’, ortalamasi sifira c¢ekilmis hali ise x ile gosterilsin. Bu

durumda, wile ortalama gosterilmek iizere ANOMA’daki agirliklandirma islemine

benzer bir sekilde dnce veri kiimesinin ortalamasi (3.19)’deki gibi giincellenir [19].

P =ap+(l-a)x'=p+(l-a)x (3.19)

{ui}ve {xli}ile sirastyla bir 6nceki adimdaki 6zvektor ve 6zdegerler gosterilmek

tizere, r+1 adet 6zvektor (3.20a) ve (3.20b) ile gosterilen bi¢imde olusturulur.

Buradaki » ATBA algoritmasinda kullanilan rank degeridir.

yi =Jadu,, i=12,..,r (3.20a)

171

Vi =4/(1—a)x (3.20b)

Yeni gelen Ornegin islenmesi ile birlikte bu siire¢ »+1 adet vektoriin 6zdeger
problemi olarak diisiiniilebilir. Bu durumda A veri matrisi denklem (3.21)’de

gosterildigi gibi tanimlanir.

A= [Y1 Y2 Y3eeeen yr+1] (3.21)

Ortak degisinti matrisi en biiyiik » 6zdegere karsilik gelen 6zvektoriin kullanimiyla

yaklagik olarak ifade edilebilir. U_., C matrisinin 6zvektorlerini siitunlarinda

nr?

barindiran matris, A, ise C matrisinin 6zdegerlerini igeren bir kdsegen matris

olmak iizere, C ortak degisinti matrisi denklem (3.22) ile hesaplanabilir.

C~U, A, U. (3.22)

rr nr
Yeni 6rnegin etkisinin katilmasiyla ortak degisinti matrisi su sekilde giincellenir:
C" = aC+(1-a)xx’

~aU_ A U’ +(1—a)xxT

rr - nr

= Zr: aluu; + (1- a)xxT (3.23)

i=1
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(3.20a), (3.20b) ve (3.21) denklemlerinin kullanimiyla denklem (3.23), denklem
(3.24)’daki esitlik ile ifade edilebilir.

Cyem' — AAT (324)

Bu noktada nxn’lik C**" matrisi yerine boyutu (r+1)x(r+1)olan ve esitlik (3.25)

ile gosterilen B matris (3.26) denkleminde gosterilen bicimde Ozdeger ve

Ozvektorlerine ayrilir.
B=ATA (3.25)
By = NI i =1,2, 0, L, (3.26)

(3.26) denkleminin iki tarafi da A matrisi ile carpilirsa, (3.25)’deki ifadenin de
kullanimiyla esitlik (3.27) elde edilir.

AATAViyem' :ilyem’Aviyeni (327)

Denklem (3.28) ile tanimlanan vektor ile (3.27) denklemi kullanilarak (3.29)’daki
ifade elde edilir.

uiyem’ — Aviyeni (328)
Cyem'uiyeni — ilj'/eniuiyeni (3 29)

Denklem (3.29) de goriilen esitlik, yeni 6rnegin gelisiyle elde edilen ortak degisinti
matrisi i¢in, 6zdeger probleminin denkleminden baska bir sey degildir. Sonugta yeni
Ozvektorler esitlik (3.28) ile hesaplanmais olur.

Bir onceki adimda giincellenen 6zvektorleri igeren Uy, matrisi kullanimiyla yeni
gelen Ornek olan x vektord, (3.30) esitligi kullanilarak diisiik boyutlu uzaya

izdistriiliir:
h=U! x (3.30)

Eger islenen ornekler gozetleme tiirii bir videodan alinan g¢erceveler ise (3.30) ile

elde edilen katsayr vektorii ile Uy, vektoriiniin carpilmasi mevcut cerceve igin
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arkaplani olusturur. Istenildigi takdirde buradan geri catma hatas1 (3.31a)
denkleminden faydalanarak hesaplanir. Onplan nesnelerinin ayrilmas ile (3.31b)’de

gosterilen bicimde basit bir ¢ikarma ile gergeklenebilir.

[x—U,h| (3.31a)

|x—U,.hl (3.31b)
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4. NOMA ve TOPAKLANDIRMA

Arkaplan modelleme ile arkaplan 6nplan ayristirma islemi ikili bir siniflandirma
problemi olarak da diisiiniilebilir. Nihayetinde her bir piksel dnplan ya da arkaplan
pikseli olarak etiketlenecektir. Bu yilizden [40] calismasinda NOMA ile
topaklandirma arasinda kurulan iliski, NOMA’dan tiiretilmis olan ANOMA
tekniginin bu problemdeki basarisim1 aciklamakta kullanilabilir. Boliim 1°de
TBA’'nin bu uygulama i¢in kullaniminin agiklanmasina benzer bir mantikla
ANOMA’nin arkaplani tiim video g¢ergevelerinden edinilen ortak bilgi (igerik) ile
modelledigi disiiniilebilir. Bu noktada ANOMAnin topaklandirma 6zelliginin etkin
bir islevi oldugu soOylenebilir. Hareketli onplan nesnelerine ait pikseller video
boyunca ayni yerde kalmadiklart i¢in elde edilecek arkaplan modelinde kendilerine
yer bulamayacaklardir. Buna karsin arkaplandaki piksel degerlerinin degismemesi,
bir anlamda video c¢ercevelerden c¢ikarilan ortak bilgiyle olusturulan arkaplan

modelinin bu piksel degerlerine sahip olmasini saglar.

4.1. NOMA’nin Topaklandirma Islevi

[40] c¢aligmasinda NOMA’nin bulanik k-ortalamali (k-means) topaklandirma
yontemine denk oldugu gosterilmistir. Buradaki dayanak, her iki yontemin de ayni
maliyet fonksiyonunu eniyilemesidir. K-ortalamali topaklandirma yonteminin

maliyet fonksiyonu denklem (4.1)’deki gibi yazilabilir.

m K
FKfmeans = Zzhki "Vi —Wk"2 (4 1)
k=1

i=1
Denklem (4.1)’de v; vektorii ile i. 6rnek gosterilirken, wi k. 6bek merkezini gosteren
vektordiir ve Ay; da i. 0megin k. 6bege ait olup olmadigimi gosteren belirtectir. Yani
eger i. Ornek k. dbege aitse /;; 1 degerini, aksi durumda ise 0 degerini alir. H matrisi
bu belirte¢ degerlerinin temsil ettikleri 6bekte bulunan eleman sayisina boliinmesiyle

elde edilen degerlerden olusan bir matris olursa, her bir 6rnek sadece bir tane Sbege
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dahil olabileceginden H matrisinin her bir siitununda sadece bir tane sifirdan farkli

deger yer alir. Bu durumda denklem (4.2)’deki esitlik gecerlidir.
HH™ =1 4.2)

K-ortalamali topaklandirma algoritmasinda her bir 6bek merkezi, kendisine ait
oldugu belirlenen 6rneklerin ortalamasinin alinmasiyla bulunur. Bu durumda 6bek

merkezlerini iceren W matrisi denklem (4.3)’teki gibi hesaplanabilir.
W =VH’ (4.3)

Bu durumda (4.2) ve (4.3) esitliklerinin kullanimiyla denklem (4.1) ile verilen
maliyet fonksiyonu su sekilde ifade edilebilir.

2
F JHH =1L

K—means

- HV ~VH'H

= Tr [VTV —2V'VH'H + HTHVTVHTH]
- Tr[VTV —2H'VIVH + HHTHVTVHT]
=Tr [VTV - HTVTVH] (4.4)

[40] calismasinda, dikgen (orthogonal) NOMA ’nin maliyet fonksiyonunun denklem
(4.4) ile aym1 olmasindan yola ¢ikarak NOMA ile k-ortalamali topaklandirma
yontemlerinin birbirlerine denk olduklari 6ne stiriilmektedir. Dikgen NOMA’nin

maliyet fonksiyonu su sekilde yazilabilir:

F= min |[V-WH|’, HH" =1. (4.5)
W>0,H>0

(4.5) denklemi su sekilde de yazilabilir:
F=|V-WH| =7r[ V'V -2W'VH" + W' W] (4.6)

Denklem (4.6) ile verilen fonksiyonun W’ya gore tiirevini alimip 0’a esitlenirse
denklem (4.7) elde edilir.

OF __ T _
AW =-2VH +2W=0 4.7
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Buradan cekilen W =VH’ ifadesi (4.6) denklemine yerlestirilirse denklem (4.8)’e

ulagilir.
F=Tr [VTV - HTVTVH] (4.8)

(4.8) ile (4.4) denklemlerinin ayn1 olmasindan yola ¢ikarak NOMAnin k-ortalamali
topaklandirma yontemine denk oldugu sonucuna varilir. Bunun yaninda diklik

kosulunun esnetildigi durum bulanik (fuzzy) k-ortalamali topaklandirmasina denktir.

Sekil 4.1 : Kullanilan 3 ayr1 video sahnesinden iiger 6rnek video gercevesi

NOMA’nin topaklandirma islevini gorebilmek icin 3 degisik video sahnesinden
(smifindan) alimmig 10’ar c¢er¢eveden olusan bir veri matrisine =3 olmak flizere
NOMA’y1 uygulayalim. Alinan video gercevelerinden bazi 6rnekler Sekil 4.1°de
gosterilmektedir. NOMA sonucunda elde edilen W matrisinin her bir siitunu ise
Sekil 4.2°de verilmistir ve goriilmistiir ki gercekten de bu siitunlar (Sekil 4.2 i¢in bu
situnlar Once 2 boyuta geri dondiiriilmiis sonra da s6z konusu imgeler

olusturulmustur) 6bek merkezleri olarak nitelendirilebilir.
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Sekil 4.2 : Elde edilen topak merkezleri

Hangi 6rnegin hangi smifa ait oldugu ise kodlama matrisi H’nin incelenmesiyle
anlasilir. Kodlama matrisinin Sekil 4.1°de verilen ¢ercevelere karsilik gelen siitunlart

sirastyla soyledir:

0.109 0.107 0.107 0.648 0.649 0.648 0.080 0.075 0.079
H=|0.090 0.088 0.105 0.140 0.139 0.138 0.585 0.595 0.589
0.646 0.656 0.631 0.117 0.116 0.117 0.035 0.034 0.039

H matrisinin ilk 3 siitunundan, bu siitunlara karsilik gelen 6rneklerin (Sekil 4.1 ilk
satir) 3 numarali sinifa ait olduklar1 sonucuna varilabilir. Gergektende Sekil 4.2 nin
3. situnu ile Sekil 4.1’in ilk satirindaki gergeveler birbirlerine oldukga
benzemektedir. Ayn1 mantikla sonraki 3 6rnegin ilk topaga, son 3 ornegin ise 2.

sinifa ait oldugu goriiliir.

Sekil 4.3: NOMA (+=3) sonucu elde edilen H matrisinin her bir siitunu 3 boyutlu uzayda bir noktaya
denk gelir. Kirmizilar ilk sinifa, yesiller ikinci sinifa, maviler ii¢lincii sinifa denk gelen
elemanlardir.
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H matrisinin topaklandirma konusundaki islevini daha iyi anlayabilmek icin Sekil
43¢ de bakilabilir. 3 degisik video sahnesinden alinmig yaklagik 600 video
cercevesine r=3 se¢imi altinda NOMA uygulandiginda elde edilen H matrisinin 3
boyutlu uzayda ¢izdirilmesi sonucunda olusturulan Sekil 4.3, H matrisi araciligi ile
topaklandirmanin nasil yapildigim gostermektedir. Gercekten de NOMA araciligi ile

boyutu kiiciiltiilen video verisine ait rnekler net bir sekilde 3 sinifa ayrilmaktadir.

4.2. ANOMA’nin Topaklandirma islevi

ANOMA’nin eniyileme siireci de NOMA’ninkinden farkli degildir; sonugta
ANOMA  NOMA’da birkag yaklagiklik  yapilmasiyla tiiretilmistir.
Agirliklandiriimamis ANOMA maliyet fonksiyonu denklem (4.9)’da verilmistir.

F, = F + fo = Vi, =W H [+ v = Wby [ (4.9)
Denklem (4.9), iz operatdrii kullanimiyla asagidaki gibi de yazilabilir.
Fy =Tr (Vi Vi —2WH Vi + W HYE W

Tr(vievi —2Why vl + Wb bW, ) (4.10)
H matrisine diklik kosulu getirilirse yine, denklem (4.11) elde edilir.
Fy =Tr (Vi Vit —2WHi Vi )+ Tr (W W +viovi —2Weh vy ) (4.11)

Denklem (4.11)’in Wy’ya gore tiirevi alinip 0’a esitlenirse denklem (4.12) denklemi

yazilir.

OF ow, = -2V, H[, +2W, —2v,h{ =0 (4.12)

Buna gore Wy asagidaki gibi ifade edilir.
W, =V, Hy, +v.hi =V, H (4.13)
(4.13) esitliginin denklem (4.11)’in i¢inde kullanilmasiyla (4.14) denklemine ulagilir.

F=Tr[ V{V, ~H{ V[V, H, | (4.14)
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Denklem (4.14)’in NOMA’nin maliyet fonksiyonu olan denklem (4.8)’e ve k-
ortalamali topaklandirma teknigininki olan denklem (4.4)’e¢ es olmasindan dolayi
ANOMA’nin da ayni isleve sahip oldugu sonucuna varilabilir. Tabii diklik kosulu

normalde uygulanmadigindan bulanik bir topaklandirma s6z konusudur.

Sekil 4.4: ilk satirda islenen video dizisine ait iki sahneden birer 6rnek cerceve verilmistir.
Ikinci satirda ise ANOMA sonunda bu video cercevelerinin geri gatilmig imgeleri
verilmistir.

ANOMA ’nin topaklandirma iglevine bir 6rnek vermek amaciyla Sekil 4.4°te iki tane
ormek cercevesi verilen ve her biri 80’ar tane cerceveye sahip 2 adet sahne igeren
video dizisi ANOMA ile islensin. Her adimda elde edilen taban imgesi ¢iftlerinden 4
tanesi Sekil 4.5’te gosterilmektedir. Ik 80 gerceve sadece ilk sahneye ait oldugundan
elde edilen taban imgeleri Sekil 4.5’in ilk iki siitunundan goriildiigii tizere sadece ilk
sahneye ait bilgi icermektedir. Bunun yaninda 81. gerceve ile birlikte ikinci sahnenin
siirece dahil olmasmin etkisi taban imgelerine yansimistir (siitun 3, Sekil 4.5).
Siirecin sonunda ise taban imgeleri yaklagik olarak iki sinifin 6bek merkezlerine

yakinsamistir (siitun 4, Sekil 4.5).

4.3. Topaklandirma Islevinin Arkaplan Modellemedeki Kullanim

Sekil 4.6’nin incelenmesiyle topaklandirma konusunu goézetleme tiirii videolarda
arkaplan modelleme problemine baglanabilir. Sekil 4.6’nin ilk iki satirinda 50’ser
cerceve atlanarak almmis 4 6rnek verilmistir. ilk cercevede durma pozisyonunda
olan 2 araba da diger ¢ercevelerde geriye dogru hareket etmektedir. Son ¢ergevenin
ANOMA'’ya dahil edilmesiyle elde edilen taban (basis) imgeleri (karisim matrisi

W’nun siitunlar1) Sekil 4.6’in son satirinda verilmistir. ikinci ¢ercevede kirmiz1 kare
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icine almmus araba birinci, mavi kare icine alinmis olan ise ikinci araba olsun. Ilk
taban imgesinde (satir 3, siitun 1) kirmizi1 kare igine alinan bélgede birinci arabanin
sabit hareketsiz duran hali, yani arkaplana dahil oldugu zamanki konumu
goriilmektedir. Ikinci taban imgesinin (satir 3, siitun 2) ayn1 bdlgesinde (yine kirmizi
icine alinan alan) ise bu sefer beyaz bir golge mevcuttur. Bu ise birinci arabanin
hareket edip o bolgeden (denk olarak arkaplan modelinden) ¢iktigint temsil
etmektedir. Sonucta olusturulan arkaplan modeli, bu 2 taban imgesinin degisik
birlesimleri ile olusturulur. Birinci arabanin sabit oldugu video cergeveleri icin ilk
taban imgesinin agirlig fazlayken, ayni arabanin hareketli oldugu boélgelerde ikinci
taban imgesinin katilimi daha biiyiik olacaktir. Ayni mantik mavi kare i¢ine alinmis
ikinci araba i¢in de olusturulabilir. Bu tasitin son geldigi konum ikinci taban
imgesinde mavi kare igine alinmustir. Ik taban imgesinin ayni bolgesinde ise beyaz

bir golge vardir. Bu ise ikinci arabanin arkaplana dahilken bu bolgede bulunmadigina

dair bir igarettir.

Fig. 4.5: Artimsal olarak elde edilmis taban imgeleri. ilk satir birinci taban imgelerini
(Wy’nm ilk siitunu), ikinci satir ise ikinci taban imgelerini (W, nin ikinci siitunu)
gostermektedir. i1k siitun 12. érnegin, ikinci siitun 63. drnegin, iigiincii siitun 84.
ornegin, son siitun ise 160.6rnegin islenmesinin sonunda elde edilmistir.
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Sekil 4. 6 : Ilk 2 satirda video dizisinden alimus orijinal video cergeveleri, son satirda ise bu
video dizisinin ANOMA (1=2) ile islenmesi sonucu elde edilen taban imgeleri
verilmistir
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5. DENEYSEL SONUCLAR

Artimsal negatif olmayan matris ayrisirmanin (ANOMA) arkaplan modelleme
problemindeki performansini 6lgmek i¢in PETS denektasi veritabanindan [47]
alinmis gozetleme tiirli videolar iizerinde testler yapilmistir. Benzer yontemlerle
karsilagtirma yapmay1 miimkiin kilmak i¢in ayn1 video dizileri iizerinde NOMA ve

artimsal temel bilesen analizi (ATBA) [19,20] yontemleri de kullanilmistir.

Deneylerde kullanilan PETS videolar sabit bir kamera ile agik havada kaydedilmis
sahnelerden olugmaktadir. Cesitli yiiksek frekansli bilesenlere sahip duruk (static)
olmayan arkaplana sahip ve zaman zaman siddetli 1s1klilik degisimlerinin yasandigi
bu video dizileri video arkaplan modelleme probleminde kullanilacak bir yontemin
giirblizliglinl (robustness) degerlendirmek igin iyi bir deney seti olusturmaktadir.
Arkaplanin 6zelliklerinin yaninda bu video orneklerindeki Onplan nesnelerinin
degisik boyutlarda olup farkli hareketler iginde bulunmalar1 da deneylerin kalitesini
arttirict niteliklerdir. Bu da kullanacagimiz yontemin videonun dinamik igerigini

modellemede nasil bir basarim sagladigini gormemize yardimci olacaktir.

ANOMA gerceklenmesinde denklem (3.5) ile verilen maliyet fonksiyonu
enkiiciiltiilmeye calisildig1 icin, faktdrlere ayirma basarimini 6lgmenin bir yolu her
bir 6rnek icin elde edilecek geri ¢atma hatasini incelemektir. Bu yiizden deneysel
sonuglar  degerlendirilirken  olusturulacak modellerin  veya  gosterimlerin
performanslari, her video cergevesi i¢in hesaplanacak geri ¢atma hatasi cinsinden
karsilastirilacaktir. Yani, asagida denklem (5.1) ile verilen gerigarim hata
fonksiyonunun diisiik ¢ikmasi, s6z konusu Ornek (k’inci g¢ergeve) icin faktorlere
ayirma isleminin basarili oldugunu gosterecektir. Esitligin sag tarafindaki toplam »n

sayisina boliinerek her bir video ¢ercevesi i¢in piksel basina diisen geri catma hatasi

bulunmaktadir.
1 n 2
fi =5, 2w, = (W) (5.1)
i=1
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5.1. ANOMA’nin Arkaplan Goésterimleri Olusturma Basarimi

Bu boliimde, ANOMA’nin duragan igerikli veriyi modelleme yetenegi sadece
arkaplan igeren goézetleme tiirii video pargalarindan alinmig gerceveler {izerinde
yapilan testlerle incelenmektedir. Bu ylizden PETS2001 veritabanindaki
‘dataset] caml’ isimli gézetleme tiirii video dizisinin ilk 100 ¢ercevesi kullanilarak
V veri matrisi olusturulmustur. Her bir video ¢ergevesinden elde edilen (144x192)
boyutundaki dc imgesi [48] bir gézlem olarak kabul edilmis ve imge siitunlar alt alta
dizilerek tek boyutlu hale getirilmis ve V matrisinin bir siitununda tutulmustur. Bu
yiizden veri matrisi V ((144x192)x100) boyutlu bir matris olmaktadir. Buradaki tiim
video cergeveleri arkaplan cerceveleri oldugu i¢in videonun bu boliimiindeki igerigin

duragan oldugu kabul edilebilir.

Karsilastirma amac ile uygulayacagimiz klasik NOMA uygulamasi ayni 100 video
gergevesi iizerine toptan uygulanacaktir. Bu durumda £’inci gergeveye ait geri ¢atma

hatas1 denklem (5.2) ile hesaplanir.

fi =5 2((V),~(wh), ) 52
Sekil 5.1 de her bir video ¢ergevesi igin rankin » =2 olarak alindigi durumda 4
degisik test ile elde edilmis geri catma hatalarinin degisimi gosterilmektedir. islenen
100 arkaplan g¢ercevesinin tiimii birbirlerine benzer oldugu i¢in agirliklandirilmamis
ANOMA ve klasik NOMA ile elde edilen geri ¢atma hatalar1 oldukca kiiciiktiir
(Sekil 5.1°deki mavi ve kirmizi ¢izgiler). Gri diizey degerlerinin kullanilmasindan
dolay1 bir piksel igin geri gatma hatasmm en biiyiik degerinin 255%2 oldugu
disiiniildigiinde, 0.5 civarindaki geri ¢atma hatalarmin gergekten de c¢ok kiigiik
kaldig1 sonucu g¢ikarilabilir. Bu sonuglar hem ANOMA’nin hem de NOMA’nin
duragan sahneyi modelleyerek basarili bir arkaplan ilklendirmesi (initialization)
yapabildigini gostermektedir. Bu testte faktorizasyon giincellemede belirlenen durma
kosullart NOMA i¢in dongiiniin 250 defa tekrarlanmasi sonucunda saglanirken

ANOMA icin ¢erceve bagina 13 dongii ile saglanmistir.
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Sekil 5.1 : Her bir ¢ergeve i¢in elde edilen geri ¢atma hatasmin degisimi.

Sekil 5.1 de aym1 zamanda ¢ergeve agirliklandirma katsayilarinin geri ¢atma basarimi

tizerindeki etkisi de gozlenebilmektedir. Boliim 3.3’te arkaplan modelleme problemi

igin denklem (3.5)’te sunulan S, (er)ve S, (a) fonksiyonlarimin uygun bir segiminin

(1-a) ve «a ikilisi oldugu belirtilmisti. Agirliklandirma icin boyle bir tercih
yapildiginda, her ne kadar iki durum i¢in de yeterli ve makul sonuglar elde ediliyor
olsa da, 0=0.3 kosulunda elde edilen geri ¢atma hatas1 beklendigi iizere 0=0.2
durumununkine gore daha kiigiiktiir. Bunun nedeni ise o degerinin biiylimesi ile son
gozlenen cergevenin, matris faktorlerine ayirma iglemine yapacag etkinin artmasidir.
Burada vurgulanmasi gereken nokta, NOMA’nin aksine ANOMA’ ’nin her bir yeni

gozlemin katilimini kontrol ederek daha basarili bir eniyileme gergeklestirebildigidir.

5.2. ANOMA ile Arkaplan Modelinin Dinamik Icerik Degisimlerine Gore

Giincellenmesi

Gozetleme tirli video uygulamalarinda ilk adim oncelikle bir arkaplan modeli
olusturmaktir. Eger sahnede hareketli bir 6nplan nesnesi varsa, drnegin bir nesne

sahneye girerse ya da basta arkaplanda hareketsiz duran bir nesne hareket etmeye
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baslarsa video cercevelerinde arkaplan modelinden sapmalar gozlenir. Ote yandan
hareketli bir nesne durarak arkaplanin bir parcasi haline gelebilir. Boyle bir durumda
ise duran cisim arkaplana dahil edilebilmelidir. Arkaplan modelleme probleminde
kullanilacak gili¢li bir ¢evrimi¢i yontem, olusturdugu modeli dinamik igerik
degisimleri olarak adlandirilan bu tiir degisikliklere kars1 giincelleyebilmelidir.
Onplan nesneleri ile ilgili bu tiir degisimler mevcut modele gére yerel (local)
sapmalar olarak nitelendirilebilir. Bunun nedeni bu tiir bir degisimin bir video
cercevesinin tiim imgeciklerinde degil, sadece belli bir boliimiinde yasanmasidir. Bu
yiizden dinamik igerik gosterim (dynamic content representation) basarimi, 6nplan
nesneleri iceren gozlemlerin arkaplan modeline iz diisiiriilmesi ve daha sonra elde
edilen sapmalarin 6l¢iilmesi ile degerlendirilebilir. Burada bir anlamda Wy matrisinin
dikgen uzaymin kullanilmasi ile yapilan izdiisiim sonucu ile dnplan ayristirilmasi
yapilmaktadir. Yani belli bir yaklasiklikla k. video ¢ergevesi (vk) i¢in Onplan

nesnelerinin soyle elde edildigi sdylenebilir:
(1- W W, ) v, (5.3)

Sekil 5.2(a) ve 5.2(b), PETS2000 veri tabanindan ANOMA’nin ¢evrimigi arkaplan
modelleme performansini incelemek i¢in seg¢ilmis bir video test dizisinden alinmis
iki video cercevesini gdstermektedir. ik gergevede (Sekil 5.2(a)) iki tane hareketli
nesne mevcuttur: bir araba park ederken bir adam yiiriimektedir. ikinci video
cercevesinde (Sekil 5.2(b)) ise ilk ¢ercevede park etmeye calisan araba hareketsizdir.
Bunun yaninda birisi o arabadan ¢ikan adam digeri de sahneye yeni giren bir araba
olmak iizere iki yeni onplan nesnesi yer almaktadir. Sekil 5.2(c) ve 5.2(d), Sekil
5.2(a) ve 5.2(b) deki video ¢ergeveler igin, gézlenen video cercevesi ile geri ¢atilmis
arkaplan arasindaki farkin alinmasiyla olusturulmus fark imgelerini (difference
image, residue image) gostermektedir. Fark imgelerinden de goriilebilecegi gibi,
ANOMA dinamik arkaplani bagar1 ile modelleyebildigi i¢in 6nplan nesneleri fark
imgelerinde kolaylikla fark edilebilmektedir. Aynm1 zamanda Sekil 5.2(a)’daki
hareketli arabanin durdugu zaman arkaplan modeline eklenmis olmasi, dolayisiyla

Sekil 5.2(d) de goriinmemesi de ANOMA’nin dinamik arkaplan modelleme

basarisin1 gostermektedir. Yapilan test i¢in agirliklandirma fonksiyonlar1 S, (a) =0.8
ve S, (a) =0.2olarak secilmis olup, duran arabanin arkaplana eklenebilmesi 7

cercevelik bir zaman diliminde (24 ¢ergeve/sn 6rnekleme hizinda) gergeklesmistir.
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Sekil 5.2 : (a) 614. cergeve. (b) 837. ¢cerceve. (¢) 614 nolu gergeve igin olusturulan fark
resmi, ve (d) 837 numarali ¢ergeve igin olusturulan fark resmi

Degisik yontemlerin basarimini incelemek amaciyla, bir dnceki teste ek olarak
PETS2001 veritabanindan alinan bir baska video dizisi {izerinde de aynmi deney
gerceklestirilmistir. Sekil 5.3 (a)-(d)’de test videosundan bazi &rnek ¢erceveler
gosterilirken, Sekil 5.4°te bu videodan alinan 700 g¢ercevelik boliim igin geri ¢atma
hatasinin ~ degisimi  verilmektedir. Bu testle ii¢ fakli aynstirma yontemi
karsilagtirtlmigtir. Bunlar: artimsal negatif olmayan matris ayrigtirma (ANOMA),
negatif olmayan matris ayristirma (NOMA) ve [19,20] calismalarinda sunulmus olan

artimsal temel bilesen analizi (ATBA) yontemleridir.

Test videosunda 800 ve 980 numarali video gerceveler arasindaki bdliimde herhangi
bir onplan nesnesi bulunmadigindan bu bolgelerdeki geri ¢atma hatasinin kiigiik
oldugu Sekil 5.4’te goriilmektedir. Bolim 5.1°deki testten farkli olarak, bu duragan
kisimlarda NOMA ile elde edilen geri ¢catma hatasinin diger iki yonteme gore biiyiik
kalmasidir. Bu durum NOMA’nin tiim ¢erceveleri toplu islemesinden
kaynaklanmaktadir. Daha ayrintili agiklarsak, Boliim 2.2°de anlatildig: sekilde, video
dizisinden alinacak az sayida (bu test icin Ornegin 50) ornek c¢ercevelerden
olusturulan veri matrisi tizerinde NOMA uygulanir ve bu sekilde arkaplan modeli
olusturulur. Ancak, alinan bu &rnekler tim videoyu betimleyecegi icin videonun
ilerleyen kisimlarinda yer alacak olasi arkaplan degisimleri ilk kisimlardaki geri

¢atma hatasiin artmasina neden olmaktadir.
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Sekil 5. 3 : Islenen video dizisinden secilmis 4 adet drnek cergeve: sirasiyla (a) 1050, (b)
1120, (c) 1140 ve (d) 1433 numarali ¢ergeveler. (e) 1050, (f) 1120, (g) 1140, (h)
1433 numaral g¢ergeveler i¢in ANOMA islemi sonunda ayristirilmis Snplan
nesnelerinin goriildiigi fark imgeleri.
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Sekil 5. 4 : Ug degisik yontem ile elde edilen geri catma hatalarmin cerceve numarasina
bagl degisimi: S,=0.8 and S=0.2 katsayili ANOMA, NOMA, ve ATBA.

Ayni test videosunda 980 numarali ¢cergeveden itibaren sahneye bir arabanin girdigi
ve 1120 numarali ¢ergeveye kadar hareket ettigi Sekil 5.4°teki geri ¢atma hatasinin
degisiminden anlagilabilir. Bu arabanin bir 6nplan nesnesi olarak basari ile saptandigi
Sekil 5.3 (e)’de de goriilmektedir. Bir dnplan nesnesinin varlig1 arkaplan modelinden
sapmalan arttiracagl icin bu araliktaki cergevelerde hata artmaktadir. Burada bir
baska Onemli nokta ise 1120 numarali c¢erceveden sonra hareketli arabanin
durmasiyla birlikte arkaplana dahil edilmesi ve dolayisiyla geri catma hatasinin
diismesidir. Sekil 5.3 (f)’ye dikkat edilirse araba 1120. c¢ergeve i¢in elde edilen fark
imgesinde 5.3 (e)’deki 1050. cercevenin fark imgesindeki halinden daha az
belirgindir. Bu durum arabanin arkaplan modeline eklenmeye basladigina dair bir
gostergedir. Nitekim yine Sekil 5.3(g)’de goriilecegi lizere, durduktan bir siire sonra
araba tamamiyla arkaplana dahil olur. Bu siire¢ Sekil 5.4’te hatanin sifira inmesiyle
de anlagilabilir. Bu da duran nesnenin arkaplana dahil edilmesiyle birlikte

arkaplandan sapmalarin azalip zamanla yok oldugunun isaretidir.
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Sekil 5. 5 : Sirasiyla (a) 1050, (b) 1120, (c) 1140, (d) 1433 numarali gergeveler icin ATBA
islemi sonunda ayrigtirilmis Onplan nesnelerinin goriildiigii fark imgeleri
verilirken, ayni video dizisi i¢in klasik NOMA uygulanmasi sonucu (e) 1050, (f)
1120, (g) 1140, (h) 1433 numarali gergeveler igin fark imgeleri NOMA igin de

verilmistir.
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Daha sonra ortaya ¢ikan onplan nesneleri (bkz Sekil 5.3(h)) hatanin tekrar artmasina
neden olur. Bu siire¢ boyunca videonun igerigine gore ANOMA sonucu elde edilen
geri catma hatasi siirekli degisir. Fakat ANOMA 'nin aksine arkaplani degisen icerige
gore giincelleyebilme bakimindan NOMA’nin ¢ok bagarili sonuglar irettigini

sOyleyemeyiz (Sekil 5.4’teki siyah egri ve Sekil 5.5 (e)-(h)).

Sekil 5.4°lin elde edildigi test sonucunda ANOMA’ nin, NOMA’nin aksine, matris
faktorleri degisen igerige gore giincelleyebildigi ve olusturdugu modele belleksizlik
ozelligi katabildigi soylenebilir. Ayrica ANOMA’nin ve ATBA’nin bu konudaki
performanslarinin olduk¢a yakin oldugu gozden kagirilmamasi gereken bir sonugtur.
Gergekten de iki yontem sonucunda dort farkli ¢ergeve igin elde edilen fark imgeleri

birbirlerine ¢ok benzemektedir (Sekil 5.3 (e)-(h) ve Sekil 5.4 (a)-(d)). Her iki yontem

icin de So(a)ve Sf(a) agirliklandirma katsayilar1 sirasiyla 0.8 ve 0.2 olarak

belirlenmistir. Bolim 3.3’te anlatildigi gibi, So(a)=0.8 secimi eski Orneklerin

etkisinin {istel olarak azalmasini saglayarak modele belleksizlik 6zelligi kazandirir.

5.3. Isiklihk Degisimlerine Karsi Giirbiizliik

Arkaplan modelleme basarimin1 daha iyi analiz edebilmek i¢in ANOMA’nin
basarimi yogun 1siklilik degisimlerinin yasandigi video dizileri iizerinde de teste
dildi. Isikliligin yogun bir bicimde degistigi video boliimlerinde piksellerin ¢gogunun
degerleri 6nemli miktarda artar, bu da ortalama siddeti (intensity) degistirir. Bu tiir
etkilere sahip 1s1iklilik degisimleri, orijinal veri iizerinde neden olduklar1 6nemli

sapmalar nedeniyle zor problemlerdir.

Bu boliimdeki test icin PETS2001 veri setinden 1siklilik degisiminin yogun olarak
yasandig1 bir bolge secilmistir. a=0.05 olmak iizere (I- o) ve a olarak secilmis
agirhiklandirma katsayilart igin ANOMA ve ATBA arasinda bir karsilastirma
yapilmustir. Igeriginde yogun 1siklilik degisiminden baska bir sey olmayan duragan
bir sahne {izerinde bu iki yontemin uygulanmasi sonucu elde edilen geri ¢atma
hatalarinin degisimi Sekil 5.6’te cizdirilmistir. Sekil 5.6’ten bu tiir genel (global)
sapmalara karst ANOMA’nin ATBA’ya gore daha giirbiiz oldugu sdylenebilir. Bu
yargl, ayni diziden alinmis Sekil 5.7(a) ve 5.7(b)’da verilen orijinal ¢ergeveler igin
elde edilen ve Sekil 5.7(c) ve 5.7(d) ile gosterilen fark imgeleri tarafindan da

desteklenmektedir. Sahnede herhangi bir Onplan nesnesi olmadigi icin fark
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imgelerinin bos olmasi gerekmektedir. Fakat video siiresince gozlenen isiklilik
degisimleri piksel degerlerini 6nemli miktarda degistirdigi icin sahnenin parlak
kisimlarinda bulunan pikseller fark imgelerinde fark edilmektedirler. Her ne kadar iki
yontem igin de elde edilen imgeler 1siklilik kaynakli bozulmalara maruz kalmig
olsalar da, bu bozulmalarin miktar1 ATBA’ya géore ANOMA’da daha azdir (bkz
Sekil 5.7(d)). Bunun nedeni, ATBA’da yapilan 6rneklerin Gauss dagilimli olma
kabuliinlin ANOMA modelinde bulunmamasidir. Bu yiizden ANOMA gdzlemlerin
ortalama miktarmi1 6nemli 6l¢iide degistiren 1s1klilik degisimlerine karst ATBA’ya

gore nispeten daha giirbiizdiir.
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Sekil 5.6 : ATBA ve ANOMA ile elde edilen geri ¢catma hatalarinin ger¢eve numarasinda
gore degisimi.

Sekil 5.7 : (a) Orijinal gergeve 2635. (b) Orijinal ¢ergeve 2874. 2874 numarali ¢ergeve igin
elde edilen sapmalar: (c) ATBA ile elde edilen (d) ANOMA ile elde edilen.
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Bu boliimde gosterilen sonuglara ek olarak daha uzun video dizilerinde yapilan
deneylerde de benzer sonuglar elde edilmistir. Farkli kosullarda degisik hizlarda ve
biiyiikliiklerde Onplan nesnelerine sahip videolarda hareketli cisimlerin bu tiir
ozelliklerinden bagimsiz olarak arkaplanda basarili bir sekilde ayristirildiklar
gbzlenmistir. Sonugta bu boliimde yapilan testlerle ANOMA’nin bu uygulamada

kullanilmasinin basarili sonuglar verecegi goriilmiistiir.
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6. SONUCLAR VE TARTISMA

Bu caligmada biiyiik boyutlu veri kiimelerinin ¢evrimigi islenmesi i¢in dnerdigimiz
artimsal negatif olmayan matris ayristirma (ANOMA) yontemi gozetleme tiirii
videolarda arkaplan modelleme problemine uygulanmistir [42-44]. Gelistirilen
cevrimi¢i ve artimsal negatif olmayan matris ayristirma hem islemsel yiik
bakimindan avantaj saglamakta, hem de arkaplan modelinin yeni islenen 6rneklere
gore  gilincellenebilmesini  miimkiin ~ kilmaktadir., =~ ANOMA’nin  arkaplan
modellemesindeki kullaniminda piksel degerleri ya da bunlarin dagilimlar1 hakkinda
herhangi bir kabul yapilmamaktadir. ANOMA’daki tek kisit islenecek verinin negatif

degerlere sahip olmamasidir ve bu da video verisinin dogasina tamamiyla uygundur.

NOMA yonteminin matematiksel altyapis1 Boliim 2’de anlatildiktan sonra [42]
calismasinda Onerdigimiz ANOMA yoOnteminin maliyet fonksiyonunun ve
giincelleme kurallarinin ¢ikarimlart Boliim 3’te verilmigti. ANOMA yontemi igin
One siirdiigimiiz glincelleme kurallarinin yakinsakligini gostermek i¢in yaptigimiz
ispat ise Ek-B’dedir. Ek-A’da [41] c¢aligmasinda verilmis olan ve NOMA islemi
sirasinda  kullanilan maliyet fonksiyonunun eniyilemesinde yerel minimuma

ulasildigint KKT kosullarinin kontrol edilmesiyle gosteren ispat detaylandirilmistir.

Artimsal negatif olmayan matris ayristrma teknigi agirliklandirmali maliyet
fonksiyonu sayesinde veri kiimesi i¢gindeki dinamik igerik degisimlerini, olusturdugu
diisiik boyutlu gosterimlere kiigiik bir iglemsel yiik karsiliginda basarili bir sekilde
yansitabilmektedir. Bu da ANOMA’y1 arkaplan modelleme problemi igin elverisli
bir teknik yapmaktadir.

ANOMA, NOMA ve bu problem ig¢in teknik yazinda kullanilan diger bir yontem
olan ATBA ile PETS2001 veritabaninda kayitli videolar iizerinde yapilan test
sonuclari, ANOMA’nin arkaplan modellemede basariyla kullanilabilecek bir
ayristrma  metodu oldugunu gostermektedir. Ayrica ANOMA’nin 1s1klilik
degisimlerinde video igerigini dogrulukla modelleyebildigi de goriilmiistiir. ANOMA
icin veri iizerinde herhangi bir kabuliin (Gauss dagilimina sahip olmasi gibi)

yapilmamasi 1s1klilik degisimlerine kars1 giirbiizliiglin ATBA’ya oranla daha yiiksek
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olmasini agiklayabilir. Bu ¢alismada yapilan deneylerde herhangi bir 6nigleme ya da
art igleme iglemi yapilmamigtir. Performansin arttirilmasi i¢in bu tiir islemlerin
(maskeleme, golge kaldirilmasi, videoda nesne hareket analizi kullanimi vb.)

gergeklenmesi de denenebilir.

Bu problem i¢in gelistirdigimiz algoritma Bolim 5’teki deneylerde 2.40 GHz Intel
Core 2 Quad. CPU ozellikli bilgisayarda ger¢cek zamanli olarak g¢aligmaktadir.
Artimsal ve cevrimigi yapist ise bellek gereksinimi konusunda 6nemli bir fayda
saglamaktadir. Gozetleme tiiri video uygulamalarinda hizin ve bellegin 6nemi
disiiniildiginde, ANOMA’nin bu problem igin etkin bir ¢6ziim sundugu

gorilmistiir.

[41] numarali referansta NOMA’nin k-ortalamali topaklandirma yontemine denk
oldugu ispatlanmis ve deneysel olarak gdsterilmisti. NOMA, k-ortalamali
topaklandirma yontemi ile aymi maliyet fonksiyonunu eniyileyerek altuzay
topaklandirmasi (subspace clustering) yapmaktadir. Karisim matrisi (W) dbekler igin
gosterim olustururken kodlama matrisinin (H) siitunlar1 da her bir 6rnegin hangi
obege ait oldugunu belirler. Onerdigimiz ANOMA yontemi de W ve H matrislerini
ayni maliyet fonksiyonunu temel alarak yeni gelen 6rnegin etkisinin katilmasiyla
giincelledigi igin topaklandirma islevine sahiptir. Burada Boliim 4’te incelenen
NOMA ’nin, dolayisiyla da ANOMA ’nin topaklandirma islevi, 6nerdigimiz yontemin
arkaplan modelleme problemindeki basarisinin nedenlerinden biridir. Elde ettigimiz
arkaplan modeli, bir anlamda islenen tiim video cergevelerindeki ortak bilginin
cikarilmasiyla olusturulur ve bu bilginin kullanilmasiyla her bir piksel i¢in dnplan ve
arkaplan oObekleri ile ikili bir smiflandirma yapilmasina olanak saglar. [41]
calismasinda gosterilen NOMA ve topaklandirma iliskisi de bu sebepten dolayi

NOMA kullanilarak etkin bir arkaplan modeli olugturulmasini saglar.

ANOMA yontemini gozetleme tiirii videolarda arkaplan modelleme probleminde
kullanirken video gercevelerindeki piksellerin gri diizey degerleri iizerinde islem
yapilmaktadir. Bunun nedeni gri diizey kullanimimin getirdigi basitligin yaninda gri
diizey kullaniminin renk bilgilerinin kullamimma gore 1siklilik degisimleri gibi
etkilere kars1 glirbiizliigii arttiracagini  diisiinmemizdir. Yine de cesitli renk

uzaylariin kullanimi ileriki ¢aligmalarda diisiiniilebilir.

[39] caligmasindakine benzer bir sekilde NOMA nin veya ANOMA ’nin her bir video

gercevesine blok blok uygulanmasi da gelecek caligmalar i¢in diigliniilebilir. Bu
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sayede sahnedeki degisik bolgelerin daha detayl bir sekilde islenmesi, dolayisiyla da
sahnedeki nesnelerin daha ayrintili analizini ve yoOntemin giirblizliiligliniin

arttirilmasi mimkiin olabilir.

Bu calismada diger NOMA tabanl ¢aligmalarinin aksine NOMA’nin video arka plan
modelleme konusunda uygulanmasi incelenmis, artimsal ve ¢evrimigi bir yontem
olan ANOMA onerilerek bu problemde kullanilmigtir. Hizi, basitligi ve giirbiizliigii
nedeniyle ANOMA kullanimiyla olusturdugumuz arkaplan modelleme araci bir¢ok

video uygulamasinda bir bilesen olarak etkin olarak kullanilabilir.
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EK-A

Lineer olmayan eniyileme probleminde ama¢ xeR" {zerinde f (x) maliyet
fonksiyonunu /4 (x) =0 (esitlik kosulu) ve g(x) <0 (esitsizlik kosulu) kosullarina bagh
olarak enkiiciiltmektir.

Negatif olmayan matris ayristirma islemi bir eniyileme siireci olarak incelediginde

maliyet fonksiyonu su sekilde yazilir:
f((H)l_j):tr[VTV—2VTWH+HTWTWH] (A.1)

Kisitlamalardan ise sadece esitsizlik kosulu mevcuttur ve o da denklem (A.2)’deki gibi

ifade edilir:
g((H),)=-(n), <0 (A2)

Bu sekildeki bir tekil esitsizlik kisitlamali eniyileme stirecinde, yakinsaklik noktasinin
yerel minimum olup olmadigini anlamak i¢in tamamlayic1 KKT kosulu (complementary

condition) incelenelir.

Oncelikle x noktasmin yerel minimum olmasi igin >0 olmak iizere (A.3) ile verilen

esitlik gecerli olmalidir [49]:
Vf(x):—,qu(x) (A.3)

NOMA i¢in bu kosulu uygulayarak g degerini bulabiliriz. Maliyet fonksiyonunun H

matrisinin bir elemanina gore tlirevinin denklem (A.4)’teki ifadeye esit oldugu Boliim
2.1°de gosterilmisti.

(A4)

y

Vuf =(-W'ViW'WH)
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Kisitlayict fonksiyonun (g(.) ) tirevi ise denklem (A.5)’te verilmistir:

_A) (A5)

(A.3) denkleminde (A.4) ve (A.5) esitlikleri ile verilen ifadeleri kullanarak denklem
(A.6)’daki u ifadesini elde ederiz:

_(WTv+WTWH) =4, (-1)= ﬂl.j.z-(WTVJrWTWH)_,

ij ij

(A.6)

Tamamlayic1 KKT kosulu ise x* yerel minimum noktasi olmak {izere su sekilde verilir:
,u*g(x*)zo (A.7)
Bu kosulu NOMA i¢in denklem (A.8) ile gosterildigi bigimde yazabiliriz

w'g((H),)=0= (-WTV+WIWH), g((m); )= (WIV-W'WH) (H), =0 (A38)

Yakinsaklik durumunda H matrisi elemanlar1 denklem (A.9) ile verilen giincelleme

kuralindan yola ¢ikilarak (A.10)’deki esitlige varilir.

w’'v
(H") = (B° —( )J (A.9)
i 7 (W'WH')

y

(H") (W'WH') = (H) (WV) =(H) (WV-WWH") =0 (A.10)

ij ij ij ij ij ij

(A.2) ve (A.6) denklemlerindeki ifadelerden faydalanarak (A.11) denkleminin
NOMA’da H matrisinin giincelleme kurali i¢in tamamlayict KKT kosulunu verdigi

gortlir.

H;(WTV—WTWH*)ij =u'g(H")=0 (A.11)
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Benzer sekilde W matrisinin giincelleme kurali i¢in de KKT kosullarinin saglandigini

kontrol edelim. Maliyet fonksiyonu denklem (A.12)’de yazilmistir.

f((w)._) =tr[VTV—2VTWH+HTWTWH] (A.12)

y

(A.12) esitligindeki maliyet fonksiyonunun (W)l,/ ’ye gore tlirevinin denklem (A.13) ile

verilen ifadeye esit oldugu Boliim 2°de gosterilmisti.

VS = (—VHT + WHHT) (A.13)

)

g((W)y) = _(W)y <0 olan kisitlayic1 fonksiyonun (W)U ’ye gore tiirevi ise denklem

(A.14)’te verilmistir.

1 (A.14)

s(w)) ol

o(W),  o(W)

y

(A.3) esitligi ile verilen KKT kosulunu kullanarak (W)U i¢in x degerini bulalim:

-(-vH"+WHH' ) =4 (-1)= pg;=(-VH" + WHH' |

y )

(A.15)

Denklem (A.7)’deki tamamlayict KKT kosulu (W)U icin denklem (A.16)’da yeniden

yazilmistir.

*

p g((W*)Uj:O:(—VHT+WHHT) g((w*)i]_):(VHT—WHHT)U(W*)Zj =0 (A.16)

y

W matrisi elemanlarinin  giincelleme kuralina gore yakinsaklik aninda denklem

(A.17)’de verilen esitlik s6z konusudur.

(V')

(W), =(W ),-,(W*TT) (A.17)

g
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Buradan, sirasiyla igler dislar ¢arpimi ve taraf tarafa toplama yaparak (A.18) esitligine
ulasilir.

(W), (WHH") =(W) (VH"),

y g g g

J

(W), (i) ~(W"),

y y y

(WHH") =0 (A.18)

(A.18) ile verilen esitlik (A.16) denklemindeki KKT kosulunu esit oldugundan bu

giincelleme kural1 ile yakinsanan noktanin yerel minimum oldugu sonucuna varilir.
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EK-B

Buradaki amag, gradyan inis algoritmasinda (B.1) esitligi ile verilen adim boyunun
secilmesi durumunda denklem (B.2)’de gosterilen maliyet fonksiyonunun her bir
giincelleme ANOMA dongiisii i¢in artmayan bir fonksiyon oldugunu ispatlamaktir.
ANOMA giincelleme kurallar1 s6z konusu adim boyunun sec¢imi ile ¢ikarildigindan,
giincelleme siirecinde maliyet fonksiyonunun artmayacagini gostermek, yakinsaklik
ispatina denk diiser. Zaten KKT kosullarinin incelenmesiyle yapilan yerel minimumluk

testi ANOMA i¢in Ek-A’da verilmisti.

_ (Wk+l )ia
ia " 41

Z S; (@) (WiriHiwy )y (H1€+1)

J=1

(B.1)

ja

Denklem (B.1)’de gortilen S, (a), her bir k+1 Ornek i¢in kullanilan agirliklandirma

fonksiyonudur. i=1,2,...,n ve a=1,2,....,r olmak {lizere Wy karisim matrisinin n.r tane

elemaninin her biri i¢in farkli bir adim boyu segilir.

Denklem (B.2)’deki maliyet fonksiyonunda ise v ve w sirasiyla V. ve Wiy
matrislerinin ig¢ersinde bulunan n’er tane satir vektoriinden birer tanesini temsil

etmektedirler.
F(w)= %zls (@)((v),~(wn),)’ (B.2)

Tanmm 1: G(w,w’ ) (B.3a) ve (B.3b) denklemleri ile verilen kosullar1 saglarsa F (w)

maliyet fonksiyonu igin yardimci fonksiyon olarak segilebilir. w' burada ¢ amindaki

w vektorini ifade etmektedir.
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G(w,w' )2 F(w) (B.3a)
G(w,w)=F(w) (B.3b)

Onerme 1: Eger G(w,w’) F (w) fonksiyonu i¢in yardimci fonksiyon olarak segilirse,

(B.4) denklemi ile verilen giincelleme kurali altinda F (w) artmayan bir fonksiyon

olacaktir.

wt =arg minG(w,wt) (B.4)

Ispat: Denklem (B.3a)’ya gore G(w”l,w’)ZF (w”l) esitsizligi gegerlidir. Denklem
(B.4) ile verilen giincelleme kuralina gore ise G(w”l,w’)ﬁ G(w’ W ) olmak

durumundadir. Bunun sebebi w'*'’in G(w,wt) fonksiyonunu enkiigiilten w degeri
olarak secilmesidir. Son olarak (B.3b) esitligine gore G(w,w):F (w) oldugu i¢in
denklem (B.5) yazilir ve buradan F (w”l) <F (wt) oldugu, bir baska ifade sekli ile

F (w) "nin bir artmayan fonksiyon oldugu goriiliir.
F(w’”)ﬁG(w’”,w’)SG(wt,w’)zF(w’) (B.5)

Onerme 2: K kosegen matrisi denklem (B.6)’deki gibi tanimlansin. Bu durumda (B.7)
esitligi ile gosterilen G(w,w’) fonksiyonu denklem (B.2)’de verilen maliyet fonksiyonu

icin yardimci fonksiyon olarak seg¢ilebilir. T matrisi (B.8) denkleminde tanimlanmistir.

t T
K(w’) :M, a=12,....r (B.6)
aa Wa
G(W,Wt)=F(Wt)+(W—W[)VF(W[)-I—%(W—WI)K(Wt)(W—Wt)T (B.7)
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(T), =S, (a)(H.y), (B.8)

Ispat: (B.4a) ve (B.4b) denklemleri ile verilen kosullarin gecerli oldugunu gostermek
(B.8) esitligi ile verilen G(w,w’ )’nin denklem (B.2)’de gosterilmis olan F (w) icin

yardimci1 fonksiyon olarak secilebilecegini kanitlamak icin yeterlidir.

Oncelikle (B.7) esitligindeki w'ifadelerini wile degistirelim. Bu sekilde (B.9)

esitliginden Tanim-1’in ikinci kosulunun saglandigi goriiliir.

G(w,w) :F(w)+(w—w)VF(w)+%(w—w)K(w)(w—w)T
= F(w) (B.9)
Diger kosulun saglandigim1 gérmek icin ise G(w,wt) >F (w) kosulu kontrol edilmeli.

Bu ylizden karsilastirma igleminde F (w) ‘nin Taylor Teoremi ile elde edilen ve (B.10)

denkleminde verilen ifadesi kullanilacaktir.

_ t t t 1 t T t r 1
F(w)—F(w )+(w—w )VF(W )+5(w—w )(HT )(w—w ) (B.10)
(B.7) ve (B.10) denklemlerini kullanarak (B.3a) kosulu su sekilde diizenlenebilir:

G(w,w’)—F(w)ZO:%(w—w’)(K(w)—HTT)(w—w’)T >0 (B.11)

(B.11) denklemindeki ifade (K (w)—HTT ) matrisi i¢in pozitif yart tanimli olma

kosuludur. Bu sebeple denklem (B.11)’deki kosulun saglandigini ispatlamak, denklem

(B.12)’de gosterilen matrisin pozitif yari tanimh oldugunu gostermeye denktir. Sonugta
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w vektoriiniin elemanlar1 negatif olmamak durumundadir ve bu yiizden M matrisi

(K (w)-HT’ ) ’in 6lceklenmis halidir.
M, (w')=(w"). (K (w')-H1" )ab (W), s a=12,r3 b=12,0r (B.12)

p, 7 elemanli bir vektér olmak iizere (B.13) esitligi ile verilen matrisin pozitif yari

taniml1 olup olmadig1 kontrol edilmelidir.
p'Mp =D (p), (M), (p),

S0 (W), K, (), (0~ S0, (), (117), (W), ), 319

a,b

K bir késegen matris oldugu icin (B.14)’teki denklem asagidaki gibi ifade edilebilir.

(1) (W) (), (B.14)

a

p'Mp = ;(p)hz (w[ )b K(w’ )bb (w’ )b - Z(p)a (w’)

ab

K matrisi i¢in (B.6) denklemi ile verilen ifade kullanilirsa (B.15) esitligi su sekilde elde

edilir:

P'Mp=X(p), (), (Z(W’ ), (HT" )ab]—zb@)a (w), (1T7) (W), (),
=2(p), (w), (), (57, = 2(e), (w), (A7), (), (p),

(), () (117), (3013 0) (), 0

ab
2

(W), (W) (HT") ((p),-(p),) (B.15)

a

IS
S

ANOMA’da W ve H matrisleri negatif olmayan matrislerden olustugu igin (B.15)
esitligi ile verilmis ifadenin 0’dan biiyiik oldugu sonucuna varilir. Sonug olarak denklem

(B.16)’daki kosul M matrisinin pozitif yar1 tanimli oldugunu gdésterir. Boylece (B.11)
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kosulu, yani G(w,w’ ) ‘nin yardimci fonksiyon segilebilmesi i¢in gerekli olan son kosul

saglanmis olur.

p’Mp=>0 (B.16)

Simdi sira (B.4) denklemi ile verilen giincelleme kuralim gergeklemektir. Once

G(W,w’) ‘nin tiirevini hesaplayip 0’a esitleyelim.

o) G(wow! )= VF (w)+-2(w), ~(w'), JK(w') =0 (B.17)

a

Denklem (B.17)’den ¢ekilen ve denklem (B.18)’de gosterilen (w)a bir sonraki adimda

kullanilacak olan elemandir.

(w), =(w), =K (')

L oF(w)

aa a(wt)a

(B.18)

Denklem (B.18)’deki gilincelleme kurali gradyan inisi eniyileme algoritmasinin formiile

dokiilmiis big¢imidir. Yakinsaklik garantisi veren adim boyu (B.19) esitliginde

verilmistir.
o (v),
K(W’ )a: - (W’HTT )a (B.19)

(B.8) denklemi kullanilirsa w satir vektorlerinin bilesiminden olusan Wy4; matrisi i¢in
(B.19) esitligindeki ifade denklem (B.20)’de goriildiigii sekilde yazilir. Bu ifadenin

denklem (B.1)’e esit olmasi ispat1 tamamlar.

( k+1 )ia
A =5 : (B.20)
Z Sj (a)( ' 'k+lHk+l )g/ (Hk+l )/.a
J=1 ’
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