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ARTIMSAL NEGATĐF OLMAYAN MATRĐS AYRIŞTIRMA ĐLE GÖZETLEME 
TÜRÜ VĐDEOLARDA ARKA PLAN MODELLEME 

ÖZET 

Gözetleme türü videoların kullanıldığı uygulamalarının hemen hepsinde video arka 

planın başarı ile modellenmesi bir gerekliliktir. Oluşturulacak arka plan modeli, video 

içeriğindeki değişimlere göre uyarlanabilmeli ve temsil başarımı her durumda yüksek 

olmalıdır. Bunun yanında başarılı bir arka plan modeli, video sahnelerinde var 

olabilecek yoğun ışıklılık değişimleri ya da yüksek frekans bileşenlerine sahip duruk 

olmayan arka plan gibi zor durumlara karşı gürbüz olmalıdır. Ancak bu özellikleri 

barındıran bir arka plan modeline sahip olunduğu zaman videoda ön plan arka plan 

ayrıştırılması sağlıklı bir şeklide yapılabilir ve amaçlanan uygulamalar gerçeklenebilir. 

Bu çalışmada, dinamik arka plan modelleme probleminde artımlı negatif olmayan matris 

ayrıştırma (ANOMA) metodunun kullanımı incelenmiştir. ANOMA’nın gözetleme 

videolarında yeni gelen çerçevelerin mevcut gösterime katılımını kontrol ederek arka 

planı başarıyla modelleyebildiği gösterilmiştir. Bunun yanı sıra ANOMA, çevrimiçi 

yapısı ile teknik yazında var olan negatif olmayan matris ayrıştırma (NOMA)  tekniğinin 

toplu işleme yapısına alternatif, düşük işlemsel karmaşıklıklı bir içerik modelleme 

metodudur.  

Performans değerlendirmesi için PETS2001 veri tabanından alınan gözetleme 

videolarıyla yapılan test sonuçları NOMA, ANOMA ve bu tür uygulamalar için 

önerilmiş bilinen bir teknik olan artımlı temel bileşen analizi (ATBA) için karşılaştırmalı 

olarak raporlanmıştır. ANOMA’nın bu uygulamada başarı ile kullanılabileceği 

görülmüş, özellikle ışıklılık değişimlerine karşı diğer iki yönteme göre daha gürbüz 

olduğu gözlenmiştir. 
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BACKGROUND MODELING IN VIDEO SURVEILLANCE VIA 

INCREMENTAL NONNEGATIVE MATRIZ FACTORIZATION 

SUMMARY 

Modeling the video background effectively is a necessity for most of the video 

surveillance applications. The background model should be adaptive to the dynamic 

content changes of the video sequences and should represent the video background 

successfully regardless the content of the video. Furthermore, a successful background 

model should be robust against intense illumination changes or non static backgrounds 

which contain high frequency components. Background-foreground separation and then 

the intended application can be achieved only if the obtained background model satisfies 

these conditions.  

In this work, the use of incremental non-negative matrix factorization method in 

dynamic background modeling problem is examined. The proposed factorization method 

is derived from non-negative matrix factorization, and models the dynamic content of 

the video by controlling contribution of the subsequent observations to the existing 

model adaptively. Unlike the batch nature of non-negative matrix factorization, INMF is 

an on-line content representation scheme which is capable of extracting moving 

foreground objects.  

Test results are reported in order to compare background modeling performances of 

INMF, NMF and Incremental Principal Components Analysis, which is a well-known 

technique. It is concluded that INMF outperforms both NMF and IPCA and its 

robustness to illumination changes makes it a powerful representation tool in video 

surveillance applications. 
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1. GĐRĐŞ 

Videolarda arkaplan modelleme problemi, günümüzde birçok uygulama için önemli 

bir bileşen olarak ortaya çıkmaktadır [1-7]. Başarılı bir arkaplan modeli sayesinde 

sabit bir kamera ile çekilmiş video sahnelerindeki hareketli önplan nesnelerinin 

ayrıştırılması mümkün olmakta, bu sayede de sahnenin önemli bileşenleri daha 

detaylı ve verimli işlenebilmektedir.  

Oluşturulacak arkaplan modelinin videonun değişken içeriğine göre güncellenebilir 

olması önemlidir.  Örneğin bir park yeri gözetleme kamerasıyla kaydedilen videoda 

park halinde olduğu için arkaplana dahil olan bir taşıt harekete geçince kısa bir süre 

içinde arkaplan modelinden çıkarılabilmelidir. Buna ek olarak hareketli bir cisim 

durduğunda arkaplan modeline eklenebilmelidir. Arkaplan modelleri ayrıca 

nesnelerin sahneye giriş ve çıkışlarına göre de güncellenebilir olmalıdır. 

Arkaplan modelleme tekniklerinin başarımlarındaki önemli bir etken işlemsel 

verimlilikleridir. Bu problemde kullanılacak tekniklerin hızlı ve verimli olması son 

derece önemlidir. Gerçek zamanlı ve çevrimiçi olarak gerçeklenecek arkaplan 

modelleme teknikleri birçok uygulama için önemli avantajlar getirir.    

Arkaplan modelleme işleminde başa çıkılması gereken çeşitli problemler vardır. Bu 

problemlerin en önemlilerinden birisi ışıklılık değişimine karşı gürbüzlüğün 

sağlanmasıdır. Özellikle açık havada yapılan video çekimlerinde ışıklılık değişimleri 

önemli bir sorundur. Güneşin parlaklığına ya da bulutluluğa göre arkaplanın renk 

bileşiminde değişiklikler meydana gelmektedir. Bu değişimler, özellikle 

modellemede renk ya da gri düzey bilgisinin kullanıldığı yöntemlerde önemli 

sorunlar teşkil etmektedir [4-5]. Gri düzeylerindeki ışıklılık değişimlerinden 

kaynaklanan sapmalar oluşturulan arkaplan modelinin tutarlılığını etkiler. Bu yüzden 

kullanılacak yöntem arkaplan modelini içerik değişimlerini yansıtacak şekilde 

güncellerken, ışıklılık değişimlerine karşı dayanaklı olmalıdır. Işıklılık değişimleri 

arkaplan modeline doğrudan etki edebildiği gibi neden olduğu gölgeler aracılığı ile 
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de problemi güçleştirebilmektedir. Gölgeler de kaynaklandıkları nesnelerle birlikte 

hareket edecekleri için hatalı olarak önplan nesnesi olarak etiketlenebilirler. Böyle 

durumlarda gölgeleri yok etmek için çeşitli yöntemler kullanılmaktadır [3-5].   

Arkaplan modellemede ortaya çıkabilecek bir başka sorun ise duruk (statik) olmayan 

yüksek frekans bileşenli arkaplandır. Buna örnek olarak rüzgar esintisiyle hareket 

eden yapraklar, akan ya da dalgalanan su ya da sahnede yer alan bir televizyonun 

değişen ekranı verilebilir. Bu tür durumlar da ışıklılık değişimlerinin yaptığı gibi 

piksel gri düzeyi değerlerinde oynamalara yol açıp arkaplan modelinde tutarsızlıklara 

neden olurlar. 

Kamera hareketleri ve bu hareketlerden kaynaklanan bulanıklık ya da gürültüler de 

arkaplan modelleme işleminin problemleri arasındadır. Ayrıca önplan nesnelerinin 

değişen boyutları (örneğin kameraya yaklaşan cismin büyümesi), nesnelerin 

birbirleriyle örtüşmeleri,  düzenli olmayan hızları veya arkaplan cisimlerinin yer 

değiştirmesi (bir çantanın bir yerden alınıp başka bir yere koyulması) gibi etkenler de 

üstesinden gelinmesi gereken problemler arasında sayılabilir. 

Arkaplan modelleme ve önplan nesnelerinin ayrıştırılması için birçok yöntem öne 

sürülmüştür. Arkaplanı o an işlenen video çerçevesinden (video frame) önceki n tane 

çerçevenin ortalaması veya ortanca değeri olarak seçen yöntemler [6, 7] bu konudaki 

basit tekniklere örnek olarak verilebilirler. Bu yöntemler hızlı olmalarına rağmen, 

utuçerçeveboyn×  olan bellek gereksinimleri yüksektir. Bu yöntemlerde arkaplan 

önplan ayrıştırılması için ise her bir çerçevenin arkaplan modelinden farkı bir eşik 

değeri ile karşılaştırılır ve eşik değerinden büyük bir farkın gözlendiği pikseller 

önplan bileşenleri olarak belirlenir. Bu yöntemlerde arkaplanın güncellenmesi n 

parametresine önemli derecede bağlıdır. Aynı zamanda son gelen örneklere bir 

ağırlık verilmemesi gerek güncellenebilirlik açısından gerek ışıklılık gibi değişimlere 

dayanıklılık açısından sistemin güvenilirliğini zayıflatmaktadır. Bu nedenle arkaplan 

modellenmesinde (1.1) güncelleme denklemi ile ifade edilebilecek kayan ortalama 

hesaplamaya dayalı yöntemler de kullanılmaktadır [7].  

( ) iii FBB αα +−=+ 11                   (1.1) 
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Denklem (1.1)’de iB , i. video çerçevesi için bulunmuş arkaplanı gösterirken iF  ise i. 

video çerçevesini temsil etmektedir. α  ağırlıklandırma sabiti olup genelde küçük bir 

değer alır. Bu güncelleme şekli ile bellek gereksinimi de azalmaktadır. 

Bir başka arkaplan modelleme yöntemi ise imge piksel gri düzeylerinin bir Gauss 

dağılımı ile modellenmesidir [8]. Bu şekilde, önceki daha basit yöntemlerin aksine 

çok kipli (multimodal) arkaplan modellemesi yapılabilmektedir. Çok kipli arkaplanın 

daha iyi modellenebilmesi için her pikselin K Gauss dağılımının karışımı şeklinde 

modellenmesi de önerilmiştir (K genelde 3 ile 5 arsında küçük bir sayı olmak üzere)  

[9-13]. Piksellerin arkaplan modeline uyup uymama kontrolü dağılımların sürekli 

güncellenen değişinti (variance) değerlerine ve ağırlık katsayılarına göre yapılır. Bir 

piksel için her bir K Gauss dağılımına ait olma olasılığını gösteren K tane ağırlık 

katsayısı vardır. Bu ağırlık katsayılardan her birinin temsil ettiği dağılımın değişinti 

değerine oranının büyük olması söz konusu pikselin o dağılımla modellenen arkaplan 

modeline dahil olduğunu işaretler. Güncellenen Gauss dağılımları sayesinde bu 

yöntemle hızlı olmayan ışıklılık değişimlerine karşı dayanıklı ve çok kipli arkaplan 

modelleme yapılabilmektedir. Yine de arkaplan yüksek frekanslı hızlı değişimlere 

sahipse (hareketli yapraklar, bilgisayar monitörü, gölge değişimleri)  söz konusu 

modelin başarımı düşmektedir [14]. Bunun temel nedeni piksel gri düzeyleri için 

yapılan Gauss dağılımı varsayımının bu durumlarda geçerli olmamasıdır.  

Her bir pikselin son n video çerçevesinde aldığı değerlerin bir olasılık yoğunluk 

işlevine oturtulması (kernel density estimation) ile de arkaplan modellemesi 

yapılabilir [14]. Genelde Gauss kerneli uygulanmış son n çerçevedeki piksel 

değerlerinin oluşturduğu histogram ile elde edilen olasılık yoğunluk işlevine göre bir 

pikselin o an işlenen video çerçevesi için aldığı değerin arkaplana dahil olma 

olasılığının önceden belirlenmiş bir eşik değerinden büyük olması durumunda söz 

konusu pikselin arkaplana dahil olduğu varsayılır. Bu yöntemin bir önceki paragrafta 

anlatılan Gauss karışımı modeli (GKM) kullanan yöntemlere göre avantajı 

parametrik olmamasıdır. Buna rağmen önceki n tane video çerçevesinin saklanması 

ve kullanılması bellek gereksinimi arttırmakta ve her adımda kernel değerlerinin 

hesaplanması da işlem yükünü arttırmaktadır. Yine de bu işlemsel yük, kodlama 

tablosu kullanımıyla (LUT, lookup table) azaltılabilir [14].     
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Arkaplanın modellemesinde piksel değerlerinin oturtulduğu normal dağılımlarının 

uyarlamalı olarak güncellenmesi sahnede var olabilecek hızlı arkaplan değişimlerine 

yeterince çabuk yanıt veremeyebilir. Bu yüzden uyarlamalı bir model oluşturma 

aşamasında Gauss dağılımı kullanımının yanı sıra Kalman filtre kullanımı da söz 

konusudur [15-16].  

Temel bileşen analizi (TBA) [17] ile elde edilen özvektörler yardımı ile de arkaplan 

modellemesi gerçeklenebilir. [18] numaralı kaynakta raporlanan çalışmada, 

videodaki arkaplanı modellemek için video dizisinden N tane örnek çerçeve alarak 

oluşturulan rankı N olan matristen faydalanarak arkaplanın başarıyla 

modellenebileceği anlatılmaktadır. Buna göre öncelikle alınan N adet çerçeve ile 

oluşturulan matrisin ortak değişinti matrisi (covariance matrix)  bulunur. Bu 

matristen elde edilen N tane özdeğerden en büyük M<N özdeğere karşılık gelen M 

tane özvektör seçilir. Her bir video çerçevesinin bu özvektörlerin gerdiği uzaya iz 

düşürülmesi sonucunda söz konusu çerçeve için arkaplan bulunmuş olur. Orijinal 

çerçeve ile iz düşümünden geri çatılmış (reconstructed) imgenin farkının alınması ile 

önplan nesneleri arkaplandan ayrıştırılabilir. Bu yöntem, uzayın boyutunu önemli 

ölçüde küçültmeyi mümkün kılmaktadır. Bunun yanı sıra söz konusu tekniğin 

çalışmasındaki temel mantık, hareketli önplan nesnelerinin alınan N adet örnek 

çerçevede aynı yerde bulunmadığının kabul edilmesidir. Makalede bu yöntemin 

Gauss karışımı modeli (GKM) tekniklerine göre daha başarılı ve hızlı olduğu iddia 

edilmektedir.  Bunun yanında bu teknikle ilgili olası bir sorun hareketli bir cismin 

durarak arkaplana eklendiği ya da bir arkaplan nesnesinin önplan nesnesine 

dönüştüğü durumlarda gözlenebilir. 

Temel bileşen analizinin kullanıldığı [18] numaralı kaynaktaki çalışmada arkaplan 

modelinin güncellenmesi olası bir sorun olarak göze çarpmaktadır. Temel bileşen 

analizi gibi yöntemlerde farklı örneklerin işlenmesinde tüm taban kümesinin (basis 

set) yeniden oluşturulması gerekebilir. Böyle bir işleme alternatif olarak [19,20] 

numaralı kaynaklarda raporlanan çalışmada temel bileşen analizinin artımsal olarak 

gerçeklenip arkaplanın bu şekilde güncellenebildiği bir yöntem sunulmaktadır. Bu 

yöntemde her gelen örnekten faydalanarak denklem (1.1)’dekine benzer bir 

ağırlıklandırma kullanımıyla ortalama değer, özdeğerler ve özvektörler güncellenir. 

Bu şekilde yeni gelen çerçevelerin etkisi arkaplan modeline yansıtılmış olur. 

TBA’nın artımsal uygulanmasının arkaplan modelleme konusunda ışıklılık 
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değişimleri gibi koşullara karşı dayanıklılığını arttırmak için gürbüz temel bileşen 

analizi yöntemi önerilmiştir [19,20]. 

Yukarıda bahsedilen istatistiksel çalışmaların yanı sıra çeşitli renk uzayı (RGB, 

HSV, YUV) bilgilerinden faydalanarak oluşturulan arkaplan modelleme ve arkaplan 

çıkarma teknikleri de mevcuttur [5,21-25]. [22] numaralı kaynak makalede HSV 

bileşenlerinden çıkarılacak renklilik (chromaticity) ve parlaklık (brightness) 

bileşenlerinin ışıklılık değişimlerine karşı dayanıklılığı arttırabileceği ve YUV ile 

RGB uzaylarına göre bu konuda daha avantajlı olduğu raporlanmaktadır. Buna 

karşılık önplan arkaplan ayrıştırması sonucunda elde edilen sonuçlarda gürültü olarak 

nitelendirilecek blokların ortaya çıktığı rapor edilmiştir [26]. Sonuç olarak her bir 

renk uzayının belli noktalarda avantajları ve bunlara karşılık bazı dezavantajları 

olduğu sonucuna varılabilir.  

Bu tez çalışmasında negatif olmayan matris ayrıştırma yöntemi (NOMA) [27-41] ve 

bu yöntemden geliştirilen artımsal negatif olmayan matris ayrıştırma (ANOMA) [42-

44] tekniği ile gizetleme videolarında arkaplan modelleme gerçeklenmiştir. 

Geliştirilen negatif olmayan matris ayrıştırma hem işlemsel yük bakımından avantaj 

sağlamakta, hem de arkaplan modelinin yeni gelen örneklere göre 

güncellenebilmesini mümkün kılmaktadır. ANOMA’nın arkaplan modellemesindeki 

kullanımında piksel değerleri ya da bunların dağılımları hakkında herhangi bir kabul 

yapılmamaktadır. ANOMA’daki tek kısıt işlenecek verinin negatif değerlere sahip 

olmamasıdır ve bu da video verisinin doğasına tamamıyla uygundur.  

Bu çalışmada ayrıca NOMA’nın ve ANOMA’nın topaklandırma işlevleri ve bu 

işlevlerin ANOMA’nın arkaplan modelleme uygulamasındaki kullanımına nasıl bir 

katkı yapacağı irdelenmiştir. NOMA’nın bulanık k-ortalamalı (k-means) 

topaklandırmasına denk olduğunun gösterildiği [40] çalışmasından yola çıkarak 

ANOMA’nın da benzer bir özelliğinin olduğu gösterilebilir. ANOMA’nın arkaplanı 

tüm video çerçevelerinden edinilen ortak bilgi (içerik) ile modellediği düşünülürse, 

topaklandırma özelliğinin bu problemde etkin bir işlevi olduğu da söylenebilir. 

Hareketli önplan nesnelerine ait pikseller video boyunca aynı yerde kalmadıkları için 

elde edilecek arkaplan modelinde kendilerine yer bulamayacaklardır. Buna karşın 

arkaplandaki piksel değerlerinin fazla değişmemesi, bir anlamda video çerçevelerden 

çıkarılan ortak bilgiyle oluşturulan arkaplan modelinin bu piksel değerlerine sahip 
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olmasını sağlar. Bu sebeple topaklandırma işlevine sahip ANOMA tekniği, başarılı 

bir arkaplan modeli oluşturma yetisine sahiptir. 

ANOMA’nın performansını ölçmek amacıyla PETS veritabanından alınmış 

gözetleme türü videolarda testler gerçekleştirildi. Karşılaştırma amacıyla 

ANOMA’nın yanı sıra NOMA ve ATBA yöntemlerinin de kullanıldığı testler 

sonucunda söz konusu uygulama için ANOMA’nın etkin bir yöntem olduğu ve 

ışıklılık değişimlerine karşı diğer iki yönteme göre daha gürbüz olduğu görüldü.  
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2.   NEGATĐF OLMAYAN MATRĐS AYRIŞTIRMA  

Çok boyutlu verilerdeki fazlalık bilgiden kurtularak önemli bileşenleri ortaya 

çıkarmak içerik analiz yöntemlerindeki temel adımlardan birisidir. Temel bileşen 

analizi (TBA) [17] başta olmak üzere birçok ayrışım (decomposition) yöntemi 

işlenen veri boyutunu küçülterek ve önemli bilgi bileşenlerini açığa çıkararak bu 

işlevi yerine getirmeyi amaçlar. Bu yöntemlere ek olarak, döngülü (iterative) bir 

şekilde matris çarpanlarına ayırma işlemi gerçekleştirerek verinin özniteliklerini 

(features) çıkarmayı amaçlayan negatif olmayan matris ayrıştırma (NOMA) [27-40] 

da çok boyutlu veriler üzerinde kullanılmak üzere önerilen yeni tekniklerden 

birisidir. Negatif olmayan matris ayrıştırma, orijinal veri matrisini iki tane çarpan 

matrisine ayırarak boyut azaltır ve yararlı gösterimler (representation) oluşturur. 

NOMA sonucunda elde edilen çarpan matrislerin orijinal veri içerisindeki gizli ve 

önemli bileşenleri barındırmaları beklenir. Diğer birçok yöntemin aksine, NOMA’da 

bu çarpan matrisler üzerinde negatif olmama koşulu vardır ve bu koşul neden olduğu 

toplanabilirlik ilkesi sebebiyle sezgisel ve parça tabanlı (parts based) gösterimlerin 

oluşturulmasına olanak sağlar. 

Negatif olmayan matris ayrıştırma problemine çözüm getiren ilk çalışmalar [45,46] 

numaralı kaynaklarda mevcut olsa da, NOMA ününü daha çok Lee ve Seung’un 

1999 yılında yayımladıkları çalışma ile kazanmıştır [27]. Söz konusu makalede 

NOMA için döngüsel ve çarpımsal güncelleme kuralları önerilmiş ve NOMA’nın 

başarılı bir makine öğrenmesi (machine learning)  tekniği olduğu gösterilmiştir. 

Daha sonraları NOMA araştırmasındaki eğilim elde edilen çarpanların seyreklik 

(sparseness) özelliklerini arttırarak oluşturulacak gösterimlerin parça tabanlı olma 

olasılığını arttırmak olmuştur [29-33]. Bunun için NOMA’nın klasik maliyet 

fonksiyonuna ek terimler eklenerek eniyileme sürecindeki kısıtlamalar arttırılmış, 

bunun neticesinde seyrekliği daha yüksek çarpanlar oluşturulmaya çalışılmıştır.  

NOMA için önerilen yöntemler genelde döngüseldir ve bu yüzden algoritma 

yakınsaklığı önemli bir konudur. Yakınsama hızının arttırılması için farklı 

izdüşürülmüş gradyan inişi (projected gradient descent) yöntemleri sunulmuştur 
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[36]. Döngüsel ve çarpımsal güncellemeli tekniklere alternatif olarak Newton türü 

sayısal yöntemler de önerilmiştir [35].  

Boyut küçültme ve sezgisel gösterimler oluşturma yetileri nedeniyle NOMA çeşitli 

uygulama alanlarında kullanılmıştır. Bunlara örnek olarak yüz tanıma [36], çeşitli 

biyomedikal uygulamalar [30], nota tanıma [37], biyoinformatik [38], kaynak (ses) 

ayrıştırma [31] ve görüntü kıyımı (image hashing) [39] verilebilir. NOMA’nın bu 

alanlarda kullanımında tercih nedenlerinin en önemlilerinden birisi, kullanılan 

verilerin doğasına uyumlu olmasıdır. Bu tür uygulamalarda genelde negatif olmayan 

elemanlardan oluşan veriler söz konusudur, bu da NOMA’nın çalıştırılmasını son 

derece elverişli kılar. Toplanabilir ve sezgisel gösterimler oluşturma yetisinin 

yanında, seyreklik de NOMA’nın değişik uygulamalarda fayda sağlayabilecek 

özelliklerinden biridir. Buna ek olarak, NOMA’nın bulanık k-ortalamalı 

topaklandırma tekniğine denk olduğu ve topaklandırmada başarılı sonuçlar verdiği de 

gösterilmiştir [40]. 

Değişik uygulamaların ihtiyaçlarını karşılamak için NOMA’nın değişik versiyonları 

da önerilmiştir [40-41]. Bunlara örnek olarak negatif değerlere sahip verilerde (söz 

gelimi ses uygulamalarında) kullanılmak üzere veri ve karışım matrislerindeki 

negatif olmama koşulunu ortadan kaldıran yarı-NOMA (semi-NMF) [41] ve özellikle 

öbekleme uygulamalarında kullanılmak üzere ortaya atılmış olan ve karışım matrisi 

sütunlarının veri matrisi sütunları tarafından gerilen bir uzayda yer almasını sağlayan 

konveks-NOMA [41] verilebilir. Bunların yanında çekirdek-NOMA (kernel-NMF), 

üçlü çarpan ayırma (tri-factorization) ve simetrik NOMA gibi farklı türler de 

mevcuttur [40]. 

2.1.  Negatif Olmayan Matris Ayrıştırma için Matematiksel Tanımlar 

Kullanılacak veri n boyutlu m tane gözlemden oluşsun ve mn× boyutlu bir matriste 

tutulsun. Vij, V matrisinin i. satır (i=1,..,n) ve j. sütundaki (j=1,..,m) elemanını 

göstermek üzere, veri matrisi V, mn× boyutlu olarak tanımlanır. Denklem (2.1)’de 

gösterildiği gibi, negatif olmayan matris ayrıştırma (NOMA) ile n mR ×∈V  matrisi 

iki adet çarpan matrisine belli bir yaklaşıklık ile ayrıştırılır [28]. Bu matrislerden ilki 

nxrR∈W  ile gösterilen karıştırma matrisi (mixing matrix) iken diğer çarpan matrisi 

ise rxmR∈H  ile temsil edilen kodlama matrisidir (encoding matrix) [28]. r ise 
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NOMA algoritmasının değişkeni olup ayrıştırma rankı ya da kısaca rank olarak 

adlandırılır. Rank değerinin seçimi çarpan matrislerine ayırma işlemindeki boyut 

küçültme miktarını belirler. NOMA belli bir hata karşılığında belli bir yaklaşıklık ile 

ayrıştırma yaptığı için küçük rank seçimi ile artan boyut küçültme miktarı geri çatma 

hatasını (reconstruction error) arttırır. Dolayısıyla rank küçüldükçe çarpanlara 

ayırma işlemi sırasındaki bilgi kaybı artar.  

≈V WH                      (2.1) 

V matrisinin her bir sütunu farklı bir gözleme denk düşüp H matrisinde kendisini 

ifade eden bir tane gösterim vektörüne sahiptir. 1 2 3 mV = [v  v  v  ... v ]  ve 

1 2 3 mH = [h  h  h  ... h ]  şeklinde ifade edilebilen bu matrisler için vc ve hc sırası ile V 

ve H matrislerinin c’inci (c=1,…,m) sütunlarını göstermektedir. Aynı şekilde 

karıştırma matrisi ise 1 2 rW = [w  w  ... w ] şeklinde gösterilebilir. Denklem (2.2) ile, H 

matrisinin bir sütunundaki katsayılardan faydalanarak, V’de bulunan aynı indisli 

gözlemin W matrisinin sütunlarının kullanımıyla nasıl oluşturulduğu gösterilmiştir. 

mc ,...,2,1  , == cc Whv                                                  (2.2) 

NOMA yönteminin uygulanmasında genelde denklem (2.3) ile verilen ortalama 

karesel geri çatma hatası maliyet fonksiyonu olarak seçilip enküçültülür. Literatürde 

değişik maliyet fonksiyonları tanımlanıp kullanılıyor olsa da [30,32] denklem (2.3) 

ile verilmiş olan karesel hata, basitliği ve etkinliği nedeniyle, birçok araştırmacı 

tarafından tercih edilmektedir [27-30]. 

( ) ( )( )
2

2

1 1

1 1
|| ||

2 2

n m

ij ij
i j

F V WH V WH
= =

= − = −∑∑                                    (2.3) 

Denklem (2.3)’deki karesel hata fonksiyonu, W ve H matrislerine göre ayrı ayrı 

konvekstir [28]. Bu nedenle, (2.3)  maliyet fonksiyonunun gradyan inişi (gradient 

descent) yöntemi ile eniyilenmesi sonucunda, H ve W matrislerinin elemanları için 

dönüşümlü ve çarpımsal (alternating multiplicative) güncelleme kuralları bulunur 

[28].   
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H matrisinin elemanları için gradyan inişi yöntemi kullanılarak bulunan güncelleme 

bağıntısı (2.4)’te gösterildiği gibi formüle edilir. Burada j=1,…m, a= 1,…r olup ajη  

eniyileme adım boyunu (step size) göstermektedir. 

( ) ( )
( )ajaj aj

aj

F
η

∂
← −

∂
H H

H
                                                                                    (2.4) 

(2.4)’teki kısmi türev (2.5)  eşitliğindeki gibi ayrıntılandırılabilir.  

( ) ( )
( ) ( )( )

2

1 1

1

2

n m

ik ik
i k

aj aj

F
V WH

H H = =

 ∂ ∂ = −   ∂ ∂
∑∑  

            ( ) ( )( )
( )

( ) ( )( )
1 1

1
2

2

n m

ij ij ik ik
i k

aj

V WH V WH
H= =

 ∂ = − −   ∂  
∑ ∑  

            ( ) ( )( )( )
1

n

ij ij ia
i

V WH W
=

=− −∑        

( ) ( )           
aj aj

T TW V W WH=− +                                                                         (2.5) 

(2.5)’de verilen kısmi türev eşitliği, adım boyunun (2.6) eşitliğindeki gibi seçilmesi 

koşulu ile, (2.4)’te kullanıldığında, H matrisinin elemanları için (2.7)’de verilen 

güncelleme kuralı elde edilir. 

( )

( )
aj

aj T

aj

η =
H

W WH
                                                                                                    (2.6) 

( ) ( )
( )

( )

T

aj

aj aj T

aj

←
W V

H H
W WH

                                                                                     (2.7) 

Benzer şekilde, W matrisinin elemanları için güncelleme kuralı elde etmek amacıyla 

gradyan inişi eniyileme yöntemi kullanılabilir. i=1,…n, ve a=1,…r için iaλ adım 

boyunu göstermek üzere, gradyan inişi tekniğine göre W matrisinin elemanları için 

(2.8)’de görülen güncelleme kuralı elde edilir. 

( ) ( )
( )iaia ia

ia

F
λ

∂
← −

∂
W W

W
                                                                                  (2.8) 
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(2.8)’deki kısmi türevin sonucu şöyledir: 

( ) ( )
( ) ( )( )

2

1 1

1

2

n m

kj kj
k j

ia ia

F
V WH

W W = =

 ∂ ∂  = −  ∂ ∂  
∑∑  

           ( ) ( )( )
( )

( ) ( )( )
1 1

1
 2

2

m n

ij ij kj kj
j k

ia

V WH V WH
W= =

 ∂  = − −   ∂  
∑ ∑  

             ( ) ( )( )( )
1

m

ij ij aj
j

V WH Η
=

=− −∑  

             ( ) ( )T T

ia ia
VH WHH=− +                                                                          (2.9) 

(2.9)’da verilen türev eşitliği, adım boyu (2.10)’daki gibi seçilmek koşulu ile, 

denklem (2.8)’e yerleştirilirse, W matrisinin elemanları için de dünüşümlü ve 

çarpımsal güncelleme kuralları elde edilir. i=1,…n, a=1,…r olmak üzere söz konusu 

güncelleme formülü (2.11)’de verilmektedir. 

( )

( )
ia

ia T

ia

λ =
W

WHH
                                                                                                   (2.10) 

( ) ( )
( )
( )

T

ia

ia ia T

ia

←
VH

W W
WHH

                                                                                  (2.11) 

Genel olarak gradyan inişi yönteminde seçilecek adım boyutunun önemi büyüktür. 

Küçük seçilen adım boyu eniyilemede yakınsamayı yavaşlatırken, adım boyunun 

gereğinden büyük seçilmesi ıraksamaya neden olabilir. Ancak, (2.6) ve (2.10)’da 

verilen adım boylarının seçilmesi durumunda maliyet fonksiyonunun döngüsel 

olarak güncelleme sırasında hiç artmayacağı, Lee ve Seung tarafından ispatlamıştır 

[28]. Adım boylarının bu şekilde seçilmesinin bir başka önemli noktası ise 

güncelleme döngüleri sırasında adım boylarının otomatik olarak değişmeleridir. Yani 

herhangi bir kontrol ya da atama yapmaya gerek kalmadan adaptif olarak belirlenen 

adım boyları  NOMA algoritmasında kullanılmaktadır. 

(2.7) ve (2.11)’deki güncelleme kuralları dönüşümlü olarak uygulanır.  Burada 

dönüşümlülükten kasıt, güncelleme işleminin her bir döngüsünde önce H matrisinin 
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elemanlarının güncellenmesi, daha sonra da elde edilen H matrisinin kullanımıyla W 

matrisinin güncellenmesi ve her döngüde bu işlemin yinelenmesidir.  

NOMA ile ilgili diğer bir nokta ise başlangıç koşullarının belirlenmesidir. NOMA 

algoritmalarında W ve H matrisinin güncellenmesinden önce başlangıç koşullarının 

belirlenmesi çok kritik olmamakla birlikte, eniyileme sürecinde mutlak minimuma 

erişmenin garanti olmaması nedeniyle, farklı ilk koşullar farklı sonuçlar 

verebilmektedir. Genelde ilk koşul olarak W ve H matris elemanlarına negatif 

olmayan rasgele sayılar atanır. Sonuçta ilk koşullar ne olursa olsun yakınsaklık 

durumunda KKT (Karush-Kuhn-Tucker) koşullarının incelenmesiyle yerel 

minimuma ulaşılacağı görülebilir. Detaylar Ek-A’da verilmiştir. 

2.2.  Negatif Olmayan Matris Ayrıştırma ile Arkaplan Modelleme 

Literatürde gözetleme türü videolarda arkaplan modelleme probleminde negatif 

olmayan matris ayrıştırma (NOMA) tekniğini kullanan bir çalışma (bu tez yazarının 

bildiği kadarıyla) yoktur. Sadece [42,43] çalışmalarında söz konusu problem için 

kullandığımız artımsal negatif olmayan matris ayrıştırma yöntemiyle karşılaştırma 

yapmak amacıyla NOMA tarafımızca kullanılmıştır. Aslında NOMA’nın bu 

uygulama için elverişli bir yöntem olduğunu tahmin etmek zor değildir. Keza 

NOMA ile kıyaslayabileceğimiz temel bileşen analizi (TBA) daha önce bu 

problemde başarı ile uygulanmıştır [18-20]. 

[18] çalışmasında gözetleme videolarında arkaplanın video çerçevelerinin 

kullanımıyla oluşturulacak veri matrisinin ortak değişinti (covariance) matrisinden 

elde edilecek birkaç özvektörle modellenebileceği anlatılmaktadır. Buna göre video 

dizisinden alınacak örnek çerçevelere TBA uygulanmasıyla elde edilecek 

özvektörler, işlenen videodaki statik kısımları kapsayan arkaplanı modellemeyi 

sağlayacak bilgi bileşenlerini içerir. Bu sayede, hem boyut küçültme 

gerçekleştirilmiş olurken, hem de TBA ile hesaplanan özvektörlerin kullanımıyla, 

geri çatılan her bir video çerçevesinin orijinalinden farkının bulunmasıyla arkaplan 

önplan ayrıştırılması yapılabilir. 

NOMA da video arkaplan modellemesinde TBA’ya benzer şekilde kullanılabilir. 

Sözgelimi N adet çerçeve barındıran bir videodan seçilecek m tane örnek üzerine 

NOMA uygulanması ile (1)’e göre r sütunlu bir karıştırma matrisi elde edilir. Veri 
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matrisi V’nin her bir sütununun bir örneğe denk seçildiği durumda, karıştırma matrisi 

W’nun her bir sütunu işlevsel olarak TBA’daki bir öz vektöre denk düşer. Tabii bu 

sütun vektörleri için TBA’daki özvektörlerin aksine diklik (orthogonality) veya 

lineer bağımsızlık garantisi verilemeyeceği için düşük boyutlu bir uzay germe her 

zaman söz konusu değildir. Bu yüzden bir çalışmada bu karışım vektörleri ‘verinin 

yapı blokları’ (building blocks) olarak nitelendirilmiştir [29]. Buradaki amaç, veri 

kümesindeki her bir gözlemin bu karışım vektörlerinin lineer birleşimleri ile 

oluşturulabileceğinin altını çizmektir. Bunu mümkün kılan şey ise veri kümesindeki 

bilgilerin bu karışım vektörlerinde tutulmasıdır. 

Sonuç itibariyla, m örnek üzerinde çalıştırılmış NOMA algoritması ile elde edilen r 

adet karışım vektörü boyut küçültme sağladığı kadar bir bilgi kaybına da neden 

olacaktır. Video sahnesindeki hareketli cisimler her bir çerçevede farklı konumlarda 

olacakları için düşük boyutlu bir karışım matrisinde yapacakları katkı/katılım az 

olacak, karışım vektörleri videodaki bu bileşenler ile ilgili bilgileri tutamayacaktır. 

Buna karşılık videoda arkaplan olarak niteleyebileceğimiz duruk (static) kısımların 

gösterime katılımı çok olacak ve karışım vektörleri bu bileşenleri 

betimleyebilecektir. Bu yüzden NOMA ile elde edilen karışım vektörlerinin, 

videonun arkaplanının olasılık dağılım fonksiyonunu için başarılı bir model 

oluşturabileceği sonucuna varılabilir. Aynı çıkarım önplan nesneleri için 

yapılamayacağı için NOMA sonrası geri çatılmış çerçevelerde önplan bileşenleri 

bulunmayacak, bu da arkaplan önplan ayrıştırmasını kolaylaştıracaktır.    

2.3.  Negatif Olmayan Matris Ayrıştırma ile Arkaplan Modellemedeki 

Kısıtlamalar 

Bölüm 2.2’de NOMA’nın arkaplan modelleme probleminde nasıl kullanılabileceği 

anlatıldı. NOMA doğası gereği bu problem için elverişli gözükse de NOMA’nın 

gözlem vektörlerinden oluşan veri üzerinde toplu halde (batch mode) uygulanması 

belli kısıtlamalar ve problemler doğurmaktadır. Bu kısıtlamalar NOMA’nın özellikle 

çevrimiçi uygulamalarda kullanılmasını zorlaştırmaktadır.  

Öncelikle örneklerin toplu işlenmesi modelin video içeriğindeki değişimlere 

uyarlanabilir (adaptive) olma özelliğini kısıtlamaktadır. Bu iddianın daha iyi 

anlaşılması için iki durum örnek olarak verilebilir. Birinci durum, videonun büyük 

bir bölümünde hareketsiz halde duran bir nesnenin videonun nispeten daha kısa bir 
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bölümünde hareketlenip önplana dahil olmasıdır. Bu durumda örneklerin çoğunda 

sabit bir konumda bulunan cisim karışım vektörlerine ve dolayısıyla arkaplan 

modeline bu şekilde dahil olacaktır. Video çerçeveleri bu karışım matrisi ile geri 

çatıldığı zaman ise, cismin hareketli olduğu bölümlerde o cisim önplanda 

görünmesinin yanında arkaplandaki konumunda da görünecektir. NOMA’nın toplu 

işlemesinin neden olabileceği bu duruma verilebilecek bir diğer örnek ise, videonun 

ilk kısımlarında hareket halinde olan bir nesnenin sonraki kısımlarda sabitlenip 

arkaplana dahil olduğu durumdur. Sonuçta bahsi geçen nesne, videonun büyük bir 

bölümünde arkaplanın bir parçası olduğundan karışım matrisinde arkaplan modeline 

dahil olacak, bu da hareketli olduğu video bölümlerinde bile arkaplanda da 

gözükmesine yol açacaktır. 

NOMA’nın veri kümesinden alınan örnekleri toplu şekilde işlemesi, özellikle içerik 

değişimlerinin yaşandığı uzun videolarda, çok avantajlı bir uygulama değildir. 

Videoların dinamik içeriği, üstteki paragrafta verilen örneklerden de anlaşılacağı 

şekilde, arkaplan modelinin videoda bulunan değişikliklere uyarlanabilmesi için 

NOMA’nın bir defadan çok uygulanması gerekliliğini doğurur. Özellikle çevrimiçi 

uygulamaları düşündüğümüzde, eğer yeni gelen örneklerle birlikte NOMA 

tekrarlanırsa işlemsel yük önemli bir sorun haline gelir. Çarpımsal güncelleme 

kurallarındaki matris çarpımları dolayısıyla NOMA’nın işlemsel karmaşıklığı 

O(nmr) mertebesindedir. Burada n bir örneğin boyutu, r rank, m ise örnek sayısıdır. 

Buradan her yeni gelen örnekle birlikte NOMA’nın getireceği işlemsel yükün 

artacağı görülür. Aynı zamanda sabit bir r değeri için NOMA algoritmasına giren 

örnek sayısı arttıkça geri çatma başarımı düşecektir. Bu şartlarda, duruma göre, 

işlemsel yükün daha da artması pahasına rankın arttırılması da gerekebilir. 

NOMA’nın bellek gereksinimi de özellikle çevrimiçi uygulamalarda bir başka 

problem olarak göze çarpmaktadır. (2.7) ve (2.11)’de görüldüğü gibi güncelleme 

işlemlerinde V, W ve H matrisleri kullanılmaktadır ve bu da tüm örneklerin 

saklanması gerekliliğini doğurur. Bu yüzden NOMA’nın tekrar gerçeklenebilmesi 

için tüm örneklere karşılık gelen V ve H sütunlarının saklanması gereksinimi 

NOMA’yı bu tür büyük boyutlu uygulamalara oldukça elverişsiz yapar. 

Hareketli bir içeriğe sahip uzun bir videoya NOMA’nın toplu (batch) halde 

uygulanması arkaplan modelleme problemi için çok etkin bir çözüm 

getiremeyeceğinden NOMA’nın bir şekilde çevrim içi uygulanması düşünülebilir. 
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Her gelen yeni örnekle birlikte NOMA tekrar gerçeklenebilir. Burada işlemsel yükün 

azaltılma gerekliliği ile birlikte üstesinden gelinmesi gereken bir diğer nokta ise en 

son gelen örneklerin etkilerini arkaplan modeline hızla katabilmektir. Teorik olarak 

her bir örneğin NOMA yönteminde yaptığı katkı denktir. Fakat dinamik arkaplan 

modelleme gibi problemlerde bir ölçüde belleksizlik özelliği aranmaktadır. Burada 

belleksizlikten kasıt, sistemin belli bir noktadan sonra eski örneklerin etkisini 

arkaplan modelinden çıkarabilmesidir. Đdeal durumda, oluşturulacak arkaplan 

modelinin video içeriğindeki dinamik değişimlere anında yanıt verebilmesi istenir. 

Örneğin hareketli bir nesne hareketini sonlandırdığı anda arkaplan modeline 

yerleştirilebilmelidir. Benzer şekilde sabit bir arkaplan parçası harekete geçtiği anda 

arkaplan modelinden çıkarılıp önplan nesnesi olarak etiketlenebilmedir. Arkaplan 

modelinde yapılması gereken bu tür uyarlamalar, ancak yeni gözlemlerin etkilerinin 

var olan modele etkin bir biçimde eklenebilmesi ile yapılabilir. Klasik NOMA 

uygulamalarında ise her bir örneğin etkisi eşit olduğundan oluşturulan modelde bu 

tür uyarlamaların hızlı şekilde yapılması güçtür.  

NOMA’nın çevrimiçi uygulamalarında eski örneklerin etkilerinin zamanla 

azaltılması için, her yeni gelen örnekte eski bir örneğin, üzerinde NOMA 

gerçekleştirilecek veri matrisinden çıkarılması akla gelen ilk çözüm önerilerinden 

birisidir. Ne var ki bu yöntemin, video içeriğinde yaşanan değişimin hızına göre 

performansı değişebilir. Aynı zamanda en güncel gözlemlere bir ağırlık verilmediği 

sürece modelin içerik değişimlerine göre hızlıca uyarlanma sorununun çözümü 

zordur. 

Bu bölümde anlatılmış olan NOMA’nın dinamik içeriğe sahip büyük boyutlu veri 

kümelerine uygulanmasındaki zorluklar ve kısıtlamalar nedeniyle NOMA tekniğinin 

klasik uygulanış biçimiyle arkaplan modelleme problemine çok uygun olmadığı 

sonucuna varılabilir.  Aynı zamanda arkaplan modelleme probleminde birçok 

avantajı olan çevrimiçi gerçekleme NOMA ile mümkün gözükmemektedir.   
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3.   ARTIMSAL NEGATĐF OLMAYAN MATRĐS AYRIŞTIRMA  

Bölüm 2.3’te bahsedilen kısıtlamaları aşmak için artımsal negatif olmayan matris 

ayrıştırma (ANOMA) tekniğini önerdik [42]. ANOMA, ağırlıklı maliyet fonksiyonu 

sayesinde içerik değişimlerini oluşturduğu çarpanlarına hızlı bir şekilde yansıtırken 

işlemsel yükü ve bellek gereksinimini önemli ölçüde azaltmaktadır. Bu nedenle 

arkaplan modelleme problemine doğası gereği çok uygun olup, bu uygulamaya 

çevrimiçi bir çözüm sunmaktadır [42-44].  

ANOMA tekniğindeki amaç, işlemsel yükü fazla arttırmadan en güncel örneklerin 

etkisini de katarak W ve H çarpan matrislerini güncellemektir. Her yeni örnek 

gelişiyle birlikte V ve H matrislerine birer sütun eklenir ve karışım matrisi W bu 

örneklere göre güncellenir. 

3.1.  ANOMA için Maliyet Fonksiyonunun Oluşturulması 

k adet örneğin işlenmesi sonucu elde edilmiş çarpan matrisler Wk ve Hk ile 

gösterilsin. Buna göre, n bir video çerçevesindeki piksel sayısını vermek üzere, bu k 

örnek için NOMA sonucu elde edilmiş maliyet fonksiyonu (3.1)’de verildiği gibidir. 

( ) ( )( )22

1 1

1
|| ||

2

n k

k ij ij
i j

F
= =

= − = −∑∑k k k kV W H V W H                                     (3.1) 

vk+1 ile gösterilen k+1’inci örneğin işlenmesi için maliyet fonksiyonu (3.2) verildiği 

şekilde yazılır. Burada hata fonksiyonu Wk+1 and Hk+1 matrisleri cinsinden yazılır. 

( ) ( )( )
1 2

2
1

1 1

1
|| ||

2

n k

k ij ij
i j

F
+

+
= =

= − = −∑∑k+1 k+1 k+1 k+1V W H V W H                          (3.2) 

Bu maliyet fonksiyonunun eniyilenme sürecinde (2.7) ve (2.11) ile verilen klasik 

NOMA güncelleme kuralları da kullanılabilir. Fakat her yeni gelen örnek için böyle 

bir işlem getireceği işlemsel yük bakımından oldukça verimsiz olacaktır. 
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Bölüm 2.2’de Wk+1 matrisinin sütunlarının NOMA uygulanan veriyi betimlemedeki 

önemi anlatılmıştı. (2.2)’de ifade edildiği gibi hk+1 kodlama vektöründeki katsayılar 

vk+1 örneğinin geri çatılmasında karışım vektörlerinin (Wk+1 matrisinin sütunları) 

nasıl kullanılacağını veya bir başka deyişle her bir karışım vektörünün k+1’inci 

gözlem içindeki katılımını belirler. Sonuç olarak her bir gözlemin, dolayısıyla da tüm 

veri kümesinin ifade edilmesinde Wk+1 matrisinin önemi büyüktür. Ayrıca, her yeni 

gelen örneğin veri kümesinin boyutunu arttırması ile birlikte örneklerin karışım 

matrisi üzerindeki bireysel etkileri azalmaktadır. Bu sebeple, özellikle video gibi 

örneklerin zamansal olarak ilişkisinin yüksek olduğu veriler için, yeni gelen örnekler 

Wk+1 matrisinin önceki örnekleri temsil etmekteki başarımını çok etkilemeyecekleri 

için ANOMA yönteminde önceki örneklere karşılık gelen kodlama vektörlerinin 

güncellenmesine gerek yoktur. Hk+1 matrisinin ilk k sütununun Hk matrisine yaklaşık 

olarak eşit olacağı kabulü altında, W matrisine ek olarak Hk+1 matrisinin sadece son 

sütununu güncellemek yeterli olacaktır. Bu yüzden gözlem sayısı k+1’e çıktığında 

toplam geri çatma hatası Fk+1 (3.3)’te ifade edildiği gibi olur. Burada hk+1 son örneğe 

karşılık gelen kodlama vektörü olup, toplam hata fonksiyonu görüldüğü üzere biri 

son örneğin geri çatma hatasını temsil eden iki tane bileşenin toplamı biçiminde 

gösterilmiştir.  

( ) ( )( )

( ) ( )( ) ( ) ( )( )

1 2

1
1 1

2 2

1 1 1

1

2

1 1
      

2 2

n k

k ij ij
i j

n k n

ij ij i i
i j i

F
+

+ + +
= =

+ +
= = =

= −

≅ − + −

∑∑

∑∑ ∑

k 1 k 1

k 1 k k+1 k 1 k+1

V W H

V W H v W h

                 (3.3) 

(3.3)’de verilen toplam hata, ilk k örneğe ait kodlama vektörlerinin güncellenmemesi 

sebebiyle (3.2) ile gösterilen NOMA sonucu elde edilecek geri çatma hatasına 

yapılan bir yaklaşıklıktır. Sonuçta bu yaklaşıklıkla birlikte, toplam geri çatma hatası 

(3.4)’de yazıldığı şekilde birisi ilk k örneğe denk gelen, diğeri ise son örnekten 

kaynaklanan 2 tane hata bileşeninin toplamı halinde ifade edilir. 

1 1k k kF F f+ +≅ +                                   (3.4) 

(3.4)’te verilen maliyet fonksiyonunda her bir örneğin katılımı aynıdır. Teorik olarak 

örnekler bağımsız olursa bu durumda bir sorun yoktur. Fakat video işleme 

uygulamalarında olduğu gibi ardışık örneklerin ilintisinin ve benzerliğinin yüksek 



 18 

olduğu durumlarda ayrıştırma sonucu elde edilen çarpanlar veya gösterimler üzerinde 

bazı örnek gruplarının etkisi daha büyük olabilir. Bu da özellikle önceden işlenen 

örnek sayısının fazla olduğu durumlarda yeni örneklerle birlikte gelen içerik 

değişimlerinin çarpan matrislerine veya oluşturulacak gösterimlere yansıtılmasını 

zorlaştırır. Bu engeli aşmak için her bir örneğin maliyet fonksiyonuna dolayısıyla da 

eniyileme sürecine yaptığı katılım kontrol edilebilir. Gerçekten de çevrimiçi çoğu 

uygulamada dinamik içerik değişimlerini sağlıklı bir şekilde modelleyebilmek için 

son gelen örneklerin katılımları arttırmak istenir. Örnek olarak bölüm 2.3’te 

anlatıldığı gibi, gözetleme türü videolarda oluşturulacak arkaplan modelinin dinamik 

içerik değişimlerine karşı uyarlanabilir olmasını arttırmak için son gelen video 

çerçevelerinin maliyet fonksiyonundaki ağırlıkları arttırılmalıdır [43,44].  

Her bir örneğin elde edilecek gösterimlere yapacağı katkıyı kontrol edebilmek ve 

oluşturulacak ANOMA modeline istenilen seviyede belleksizlik özelliği 

kazandırmak için (3.5)’te gösterildiği gibi Fk+1 maliyet fonksiyonuna ( )oS α  ve 

( )αfS  ağırlıklandırma fonksiyonları eklenmiştir. Bunlar α sabitinin fonksiyonlarıdır 

ve α değeri yapılacak uygulamaya göre genellikle deneysel olarak seçilir. ( )oS α ile 

eski örneklerden gelen hatanın katılımı kontrol edilirken  ( )αfS  son gelen örneğin 

etkisini belirler. 

( ) ( )( )21
1

1
( ) ( )

2

n

k o k f i i
i

F S F Sα α+ + + +
=

= + −∑ k 1 k 1 k 1v W h                                   (3.5) 

(3.5)’te verilen ifadeye göre her yeni gelen ve işlenen örnek için eski örneklerden 

kaynaklanan hata terimleri sürekli ( )oS α ile çarpılırken yeni gelen gözlemin neden 

olduğu hata bileşeni ise ( )αfS  ile ağırlıklandırılacaktır. Bu ağırlıklandırma düzeni 

sonucunda (3.5)’te verilen maliyet fonksiyonu (3.6)’da gösterilen şekilde de 

yazılabilir.  
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     (3.6)                          
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(3.6)’da ( )jS α  j indisli örneğin ağırlıklandırma katsayısını göstermektedir. Burada, 

her gelen örnekle birlikte eski terimlerin ( )oS α ile çarpılmasının ağırlıklandırma 

katsayılarında ( )oS α ’nin üstel serisini oluşturduğu gözden kaçırılmaması gereken 

bir noktadır.  

( )oS α  fonksiyonunun 1’den küçük olması kabulü altında ( )1 2k r
oS α+ − ×  veya 

( )1-k j

oS α+  ile ağırlıklandırılan eski örneklerden kaynaklanan hata terimlerinin 

fonksiyondaki katılımlarının giderek düşeceği ve işlenen örnek sayısı k büyüdükçe 

sıfıra yakınsayacağı görülür. Bu durum, önerilen artımsal çarpan matrislerine ayırma 

işleminin sisteme istenilen düzeyde belleksizlik özelliğini aşılayabileceği anlamına 

gelir. Bu ağırlıklandırma düzeninde ( )oS α  eski örneklerin sönme miktarını belirler.  

3.2 ANOMA için Güncelleme Kurallarının Çıkarılması 

ANOMA için ağırlıklandırılmış hata fonksiyonu belirlendiğine göre, güncelleme 

kurallarının çıkarılması için bu (3.6)’daki maliyet fonksiyonunu eniyilemek için 

gradyan inişi (gradient descent) yöntemi kullanılabilir. Đşlenecek her yeni gelen 

örnek için kodlama matrisine eklenecek yeni sütunla birlikte karışım matrisi 

güncellenecektir. a=1,…,r olmak üzere k+1’inci örnek alındığı zaman, hk+1 

vektörünün güncelleme kuralı gradyan inişi yöntemine göre (3.7)’deki gibi 

verilebilir.  

( ) ( )
( )

1k
aa a

a

F
µ +∂

← −
∂k+1 k+1

k+1

h h
h

                          (3.7) 

(3.7) formülündeki kısmi türev şu şekilde alınır: 
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(3.8) ile verilen kısmi türevle birlikte (3.9)’daki adım boyunun (3.7)’ye 

yerleştirilmesiyle (3.10)’daki güncelleme kuralı elde edilir. 

( )
( )( )

a
a T

j
a

S
µ

α +

= k+1

k 1 k+1 k+1

h

W W h
                     (3.9)                
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                                  (3.10) 

Benzer şekilde, i=1,2,…n ve a=1,2,…r değerleri için  gradyan inişi yöntemi ile Wk+1 

matrisinin ia indisli elemanının güncellenmesi şu (3.11) ile verilen çerçeve içinde 

yapılır.  

( ) ( )
( )

1k
iaia ia

ia

F
λ +∂

← −
∂k+1 k+1

k+1

W W
W

             (3.11) 

Öncelikle (3.11)’deki kısmi türevi şu şekilde hesaplayalım: 

( ) ( )
( ) ( ) ( )( )

1 2
1

1 1

            1

2

k n
k

j ij ij
j iia ia

F
S α

+
+

+ +
= =

 ∂ ∂
= − 

∂ ∂   
∑ ∑ k 1 k 1

k+1 k+1

V W H
W W

    

                  ( )
( )

( ) ( )( )
1 2

1 1

1             

2

k n

j ij ij
j iia

S α
+

+ +
= =

 ∂
= − ∂  

∑ ∑ k 1 k 1
k+1

V W H
W

 

                  ( ) ( ) ( )( )( )
1

1

1
2
2

k

j ij ij aj
j

S α
+

+ + +
=

= −∑ k 1 k 1 k 1V W H H  

                  ( ) ( ) ( ) ( ) ( )( )
1

1

k

j ij aj aj ij
j

S α
+

=

= − +∑ k+1 k+1 k+1 k+1V H H W H                      (3.12) 

Wk+1 matrisinin elemanlarının güncellenmesinde kullanılacak gradyan inişi 

eniyileme tekniğinde adım boyu olarak (3.13) ile verilen iaλ değeri seçilebilir. Söz 

konusu adım boyunun seçilmesi durumunda maliyet fonksiyonunun döngüsel 

güncelleme adımları sırasında artmayacağının ispatı Lee ve Seung’un ispatına benzer 

şekilde Ek-B’de yapılmıştır. 
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( )

( )( ) ( )
1

1

ia
ia k

T
j ij ja

j

S

λ
α

+

=

=

∑

k+1

k+1 k+1 k+1

W

W H H

            (3.13) 

(3.12) ve (3.13)’de verilen eşitliklerin (3.11)’de kullanılmasıyla Wk+1 matrisinin 

elemanları için çarpımsal güncelleme kuralları elde edilmiş olur. Bu güncelleme 

formülünün verildiği (3.14)’te hj vektörü Hk+1 matrisinin j’inci sütununu, vj vektörü 

ise j’inci örneği temsil ederken i=1,…n, a= 1…r değerleri geçerlidir. Video verisinin 

özelliği göz önüne alındığında bir önceki çerçevenin işlenmesi sonucunda elde edilen 

Wk matrisi Wk+1 matrisinin güncelleme sürecinde ilk koşul olarak kullanılabilir. 

Ardışık çerçevelerin ilintisinin ve benzerliğinin yüksek olması bu şekilde yapılacak 

bir güncellemedeki yakınsama hızını arttıracaktır.                  

( ) ( )
( ) ( )

( ) ( )

1

1

1

1

k
T

j
ia

j

kia ia
T

j
ia

j

S

S

α

α

+

=
+

=

←
∑

∑

j j

k+1 k+1

k+1 k+1 k+1

v h

W W

W h h

                          (3.14) 

k+1’inci çerçeve için ANOMA’nın uygulanmasında Hk+1 matrisinin ilk k sütunu 

güncellenmeyip değişmeyeceğinden (3.14)’teki ifade (3.15) ile verilen şekilde 

yazılabilir.  

( ) ( )
( ) ( )( )

( ) ( )( )

T T
o f

ia

ia ia T T
o f

ia

S S

S S

α α

α α

+ +

+

+
←

+

k k k 1 k 1

k+1 k+1

k+1 k k k+1 k+1 k 1

V H v h
W W

W H H W h h
                 (3.15) 

(3.14) ve (3.15) ile verilen ifadeler aynı işi yapıyor olsalar da Wk+1 matrisinin 

güncelleme sürecinde (3.15)’in kullanılması işlemsel yük ve bellek kullanımı 

bakımdan önemli avantajlar sağlar. V ve Hk+1 matrislerinin ilk k sütunları 

değişmediğine göre (3.14)’teki gibi söz konusu sütun vektörlerinin ayrı ayrı çarpılıp 

teket teker ağırlıklandırılması yerine (3.15)’teki gibi toplu bir kullanımdan 

faydalanılabilir. Her çerçeve için sonlandırılan güncelleme işleminden sonra (3.16) 

ve (3.17)’de gösterilen şekilde hesaplanan matris çarpımları bu biçimleriyle saklanıp 

kullanılır. 

( ) ( )T T T
o fS Sα α+ + + += +k 1 k 1 k k k 1 k 1V H V H v h                                   (3.16) 
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( ) ( )T T T
o fS Sα α= +k+1 k+1 k k k+1 k+1H H H H h h                     (3.17) 

Bu şekildeki gerçeklenecek güncelleme kuralları iki önemli avantajı beraberinde 

getirir. Đlk kazanım bellek kullanımı ile ilgilidir. Her yeni gelen örnekle beraber 

boyutu artan Vk ve Hk matrislerinin kullanılması yerine bunların çarpımlarından elde 

edilen ve boyutu değişmeyen T
k kV H  ve T

k kH H matrislerinin kullanılması gerekli 

bellek miktarının sabit kalmasını sağlar. NOMA’nın klasik uygulanmasında ise tüm 

örneklerin saklanma ihtiyacı, artan örnek sayısıyla beraber bellek kullanımını da 

arttırıp ilerleyen aşamalarda algoritmayı uygulanabilir olmaktan çıkarır. 

ANOMA’nın sahip olduğu ikinci önemli avantaj ise güncelleme kurallarındaki 

matris çarpımlarının neden olduğu işlemsel yükü azaltmasıdır. Her yeni gelen örnek 

için (3.14)’teki vektör çarpımlarını teker teker gerçeklemek yerine (3.16) ve 

(3.17)’deki çarpımlar tek seferde hesaplanabilir.  Örneğin her adımda 

( )
1

1

k
T

i

i

S α
+

=
∑ i iv h vektörel toplamı yinelemek yerine aynı işleve sahip 

( ) ( )T T

o fS Sα α+k k k+1 k+1V H v h  toplamı tek seferde yapılabilir. Her gelen örnek için 

T

k kV H matris çarpımının ( )oS α  ile ağırlıklandırılması (3.6)’daki hedeflene üstel 

ağırlıklandırma etkisini oluşturacaktır. 
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Şekil 3.1 : NOMA ve ANOMA yöntemleri için bir güncelleme döngüsünün gerçeklenme 
zamanının örnek sayısına bağlı olarak değişimi  
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(3.16) ve (3.17)’deki matris çarpımı hesapları, aynı işlevi O(nmr) miktarında bir 

işlemsel karmaşıklıkla yerine getiren (3.14)’teki vektör çarpımlarına karmaşıklığı 

O(nr) olan bir alternatiftir. Dolayısıyla (3.15)’teki güncelleme formülünün 

kullanılmasıyla ANOMA’nın işlemsel karmaşıklığı O(nr2) olur. Bir ANOMA 

döngüsünün işlemsel karmaşıklığının veri kümesindeki örnek sayısını gösteren 

m’den bağımsız olması önemli bir noktadır. 

Şekil 3.1’de, NOMA ve ANOMA yöntemleri arasında neden oldukları işlemsel yük 

bakımından bir karşılaştırma yapılmaktadır. Đşlenen örnek sayısı arttıkça, NOMA 

sırasında gerçeklenen bir güncelleme döngüsünün süresi doğrusal olarak artarken 

ANOMA’da bu süre sabit kalmaktadır. Yani ANOMA güncelleme işlemlerinin 

örnek sayısından bağımsız olduğu bu sonuçla da görülmüş olur. 

3.3.  Ağırlıklandırma Fonksiyonunun Seçimi 

Bu bölümde ANOMA maliyet fonksiyonunun ağırlıklandırma düzeni ve bu 

ağırlıklandırma modelinin belleksizlik (memorylessness) ve uyarlanabilirlik 

(adaptability) özellikleri üzerindeki etkileri incelenecektir. Bölüm 3.1’de sunulan 

( )oS α  ve ( )fS α  ağırlıklandırma fonksiyonları V, W ve H matrislerinin 

elemanlarından bağımsız olmalıdır. Bu fonksiyonlar maliyet fonksiyonuna işlenecek 

örneklerin eniyileme sürecine katılımlarını kontrol etmek amacıyla eklenmiş olup, 

negatif olamam zorunlulukları dışında başka ek bir kısıtlamaya sahip değillerdir. 

Negatif olmama kısıtlaması ise ANOMA’nın doğasının bir parçası olan 

toplanabilirlik ilkesinin (additivity) korunumu için gereklidir.  

Gözetleme türü videolarda arkaplan modelleme problemi göz önüne alındığında-

( )oS α ve ( )fS α  ağırlıklandırma fonksiyonları, yeni örneklerin maliyet fonksiyonu 

üzerinde etkisini arttıracak bunun yanında eski örneklerin katılımını ise zamanla 

azaltacak şekilde seçilmelidir. α [0,1] aralığında olmak üzere ( )oS α ve ( )fS α  

fonksiyon ikilisi için uygun bir seçim sırasıyla (1- α) ve α olacaktır. Başta [21] olmak 

üzere birçok benzer çalışmada aynı mantığa sahip ağırlıklandırma sistemi 

kullanılmıştır. 

Bölüm 3.1’de anlatıldığı gibi, bu ağırlıklandırma işleminin yeni gelen ve işlenen 

örneklerle birlikte arka arkaya tekrarlanması (3.18)’de görüldüğü gibi 
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ağırlıklandırma katsayılarında ( )oS α =1-α fonksiyonunun güç serisini oluşturacaktır. 

(3.18)’de f2r+k ile (2r+k) indisli örnekten kaynaklanan hata terimi ifade edilmektedir.  

( ) ( ) ( )1 2
2 2 2 1 2 2 21 1 1 ...

k k k

r k r r r r kF F f f fα α α α α α− −
+ + + += − + − + − + +          (3.18) 

( )oS α  1’den küçük bir değer olarak seçildiği için maliyet fonksiyonunun içerisinde 

eski örneklerin ağırlıkları zamanla azalacaktır ve yeni örneklerin ağırlıkları daha 

fazla olacaktır.                                                    

(3.18)’de verilen ağırlıklandırılmış maliyet fonksiyonunun bir sonucu dinamik içerik 

değişimlerine karşı modelin uyarlanabilir olmasıdır. Ağırlıklandırma 

fonksiyonlarının (1- α) ve α olarak belirlenmesindeki asıl sebep bu olsa da, elde 

edilen tek kazanım bu değildir. NOMA yönteminin klasik uygulamasında rankın 

işlemsel yüke etkisi ile çarpanlara ayırma işleminin geri çatma performans başarımı 

üzerindeki etkisi arasında bir ödünleme (tradeoff) vardır. Rankın büyümesi geri 

çatma başarımını arttırırken işlemsel verimliliğin azalmasına neden olur. Oysa 

ANOMA’nın ağırlıklandırılmış modeli ile rank nu çarpanlara ayırma işlemi için 

önemli bir değişken olmaktan çıkar.  Bunun nedeni, önceki örneklerin katılımının 

giderek zayıflamasının bir pencereleme etkisi oluşturmasıdır. Bu yüzden o ana kadar 

kullanılmış örnek sayısı çok yüksek olsa bile, problemdeki gerçek veri boyutu 

belleksizlik özelliği sayesinde değişmeyecek, küçük rank seçimleri bile yüksek 

başarımlı geri çatma performansı doğuracaktır.  

α değerinin belirlenmesi uygulamadan uygulamaya değişmekle birlikte, arkaplan 

modellemesi probleminde genelde küçük değerler almaktadır [42-44]. 

3.4. Artımsal Temel Bileşen Analizi 

ANOMA’nın gözetleme videolarında arkaplan modelleme konusunda başarımını 

ölçerken karşılaştırmayı mümkün kılmak için benzer bir algoritma olan ve [19]’da 

önerilen artımsal temel bileşen analizi (ATBA) yöntemi de gerçeklenmiştir. 

ATBA’daki temel mantık, yeni gelen her bir örnek için mevcut özdeğer ve 

özvektörleri yeni örnek ile birlikte kullanarak işlem yükü bakımından verimli bir 

şekilde özdeğer ve özvektörleri güncellemektir. 
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n boyutlu yeni örnek x’, ortalaması sıfıra çekilmiş hali ise x ile gösterilsin. Bu 

durumda, µ ile ortalama gösterilmek üzere ANOMA’daki ağırlıklandırma işlemine 

benzer bir şekilde önce veri kümesinin ortalaması (3.19)’deki gibi güncellenir [19]. 

( ) ( )1 ' 1yeni α α α= + − = + −µ µ x µ x                (3.19) 

{ }iu ve { }iλ ile sırasıyla bir önceki adımdaki özvektör ve özdeğerler gösterilmek 

üzere, r+1 adet özvektör (3.20a) ve (3.20b) ile gösterilen biçimde oluşturulur. 

Buradaki r ATBA algoritmasında kullanılan rank değeridir.  

ii uy iαλ= , 1, 2,...,i r=                (3.20a) 

( )1 α= −r+1y x                 (3.20b) 

Yeni gelen örneğin işlenmesi ile birlikte bu süreç r+1 adet vektörün özdeğer 

problemi olarak düşünülebilir. Bu durumda A veri matrisi denklem (3.21)’de 

gösterildiği gibi tanımlanır. 

[ ]= 1 2 3 r+1A y  y  y ......y                    (3.21) 

Ortak değişinti matrisi en büyük r özdeğere karşılık gelen özvektörün kullanımıyla 

yaklaşık olarak ifade edilebilir. nrU , C matrisinin özvektörlerini sütunlarında 

barındıran matris, rrΛ  ise C matrisinin özdeğerlerini içeren bir köşegen matris 

olmak üzere, C ortak değişinti matrisi denklem (3.22) ile hesaplanabilir. 

T≈ nr rr nrC U Λ U                   (3.22) 

Yeni örneğin etkisinin katılmasıyla ortak değişinti matrisi şu şekilde güncellenir: 

( ) Tyeni xxCC αα −+= 1  

( )         1T Tα α≈ + −nr rr nrU Λ U xx  

( )
1

         1
r

T T
i

i

αλ α
=

= + −∑ i iu u xx                        (3.23) 
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(3.20a), (3.20b) ve (3.21) denklemlerinin kullanımıyla denklem (3.23), denklem 

(3.24)’daki eşitlik ile ifade edilebilir. 

 Tyeni AAC =                   (3.24) 

Bu noktada nn× ’lik Cyeni matrisi yerine boyutu ( ) ( )1 1r r+ × + olan ve eşitlik (3.25) 

ile gösterilen B matris (3.26) denkleminde gösterilen biçimde özdeğer ve 

özvektörlerine ayrılır. 

AAB T=                   (3.25) 

yeniyeni
i

yeni
ii vBv λ= , 1, 2,....., 1.i r= +                   (3.26) 

(3.26) denkleminin iki tarafı da A matrisi ile çarpılırsa, (3.25)’deki ifadenin de 

kullanımıyla eşitlik (3.27) elde edilir. 

yeniyeni
i

yeniT
ii AvAvAA λ=                   (3.27) 

Denklem (3.28) ile tanımlanan vektör ile (3.27) denklemi kullanılarak (3.29)’daki 

ifade elde edilir. 

yeniyeni
ii Avu =                   (3.28) 

yeniyeni
i

yeniyeni
ii uuC λ=                  (3.29) 

Denklem (3.29) de görülen eşitlik, yeni örneğin gelişiyle elde edilen ortak değişinti 

matrisi için, özdeğer probleminin denkleminden başka bir şey değildir. Sonuçta yeni 

özvektörler eşitlik (3.28) ile hesaplanmış olur. 

Bir önceki adımda güncellenen özvektörleri içeren Unr matrisi kullanımıyla yeni 

gelen örnek olan x vektörü, (3.30) eşitliği kullanılarak düşük boyutlu uzaya 

izdüşürülür: 

T= nrh U x                    (3.30) 

Eğer işlenen örnekler gözetleme türü bir videodan alınan çerçeveler ise (3.30) ile 

elde edilen katsayı vektörü ile Unr vektörünün çarpılması mevcut çerçeve için 
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arkaplanı oluşturur. Đstenildiği takdirde buradan geri çatma hatası (3.31a) 

denkleminden faydalanarak hesaplanır. Önplan nesnelerinin ayrılması ile (3.31b)’de 

gösterilen biçimde basit bir çıkarma ile gerçeklenebilir. 

− nrx U h                  (3.31a) 

− nrx U h                 (3.31b) 
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4.   NOMA ve TOPAKLANDIRMA  

Arkaplan modelleme ile arkaplan önplan ayrıştırma işlemi ikili bir sınıflandırma 

problemi olarak da düşünülebilir. Nihayetinde her bir piksel önplan ya da arkaplan 

pikseli olarak etiketlenecektir. Bu yüzden [40] çalışmasında NOMA ile 

topaklandırma arasında kurulan ilişki, NOMA’dan türetilmiş olan ANOMA 

tekniğinin bu problemdeki başarısını açıklamakta kullanılabilir. Bölüm 1’de 

TBA’nın bu uygulama için kullanımının açıklanmasına benzer bir mantıkla 

ANOMA’nın arkaplanı tüm video çerçevelerinden edinilen ortak bilgi (içerik) ile 

modellediği düşünülebilir. Bu noktada ANOMA’nın topaklandırma özelliğinin etkin 

bir işlevi olduğu söylenebilir. Hareketli önplan nesnelerine ait pikseller video 

boyunca aynı yerde kalmadıkları için elde edilecek arkaplan modelinde kendilerine 

yer bulamayacaklardır. Buna karşın arkaplandaki piksel değerlerinin değişmemesi, 

bir anlamda video çerçevelerden çıkarılan ortak bilgiyle oluşturulan arkaplan 

modelinin bu piksel değerlerine sahip olmasını sağlar. 

4.1.  NOMA’nın Topaklandırma Đşlevi 

[40] çalışmasında NOMA’nın bulanık k-ortalamalı (k-means) topaklandırma 

yöntemine denk olduğu gösterilmiştir. Buradaki dayanak, her iki yöntemin de aynı 

maliyet fonksiyonunu eniyilemesidir. K-ortalamalı topaklandırma yönteminin 

maliyet fonksiyonu denklem (4.1)’deki gibi yazılabilir. 

2

1 1

m K

K means ki

i k

F h−
= =

= −∑∑ i kv w                (4.1) 

Denklem (4.1)’de vi vektörü ile i. örnek gösterilirken, wk  k. öbek merkezini gösteren 

vektördür ve hki da i. örneğin k. öbeğe ait olup olmadığını gösteren belirteçtir. Yani 

eğer i. örnek k. öbeğe aitse hki 1 değerini, aksi durumda ise 0 değerini alır. H matrisi 

bu belirteç değerlerinin temsil ettikleri öbekte bulunan eleman sayısına bölünmesiyle 

elde edilen değerlerden oluşan bir matris olursa, her bir örnek sadece bir tane öbeğe 
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dahil olabileceğinden H matrisinin her bir sütununda sadece bir tane sıfırdan farklı 

değer yer alır. Bu durumda denklem (4.2)’deki eşitlik geçerlidir. 

IHH =T                      (4.2) 

K-ortalamalı topaklandırma algoritmasında her bir öbek merkezi, kendisine ait 

olduğu belirlenen örneklerin ortalamasının alınmasıyla bulunur. Bu durumda öbek 

merkezlerini içeren W matrisi denklem (4.3)’teki gibi hesaplanabilir.  

T=W VH                   (4.3) 

Bu durumda (4.2) ve (4.3) eşitliklerinin kullanımıyla denklem (4.1) ile verilen 

maliyet fonksiyonu şu şekilde ifade edilebilir. 

2
, .T T

K meansF − = − =V VH H HH I                                    

   2T T T T T T
Tr  = − + V V V VH H H HV VH H                                     

   2T T T T T T
Tr  = − + V V H V VH HH HV VH                                  

   T T T
Tr  = − V V H V VH                                                         (4.4) 

[40] çalışmasında, dikgen (orthogonal) NOMA’nın maliyet fonksiyonunun denklem 

(4.4) ile aynı olmasından yola çıkarak NOMA ile k-ortalamalı topaklandırma 

yöntemlerinin birbirlerine denk oldukları öne sürülmektedir. Dikgen NOMA’nın 

maliyet fonksiyonu şu şekilde yazılabilir: 

2 T

0, 0
min ,  .

W H
F

≥ ≥
= − =V WH HH I                 (4.5) 

(4.5) denklemi şu şekilde de yazılabilir: 

2
2T T T TF Tr  = − = − + V WH V V W VH W W               (4.6) 

Denklem (4.6) ile verilen fonksiyonun W’ya göre türevini alınıp 0’a eşitlenirse 

denklem (4.7) elde edilir. 

2 2 0TF∂ = − + =∂ VH WW                  (4.7) 
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Buradan çekilen T=W VH  ifadesi (4.6) denklemine yerleştirilirse denklem (4.8)’e 

ulaşılır. 

T T T
F Tr  = − V V H V VH                  (4.8) 

(4.8) ile (4.4) denklemlerinin aynı olmasından yola çıkarak NOMA’nın k-ortalamalı 

topaklandırma yöntemine denk olduğu sonucuna varılır. Bunun yanında diklik 

koşulunun esnetildiği durum bulanık (fuzzy) k-ortalamalı topaklandırmasına denktir. 

 

 

 

Şekil 4.1 : Kullanılan 3 ayrı video sahnesinden üçer örnek video çerçevesi 

NOMA’nın topaklandırma işlevini görebilmek için 3 değişik video sahnesinden 

(sınıfından) alınmış 10’ar çerçeveden oluşan bir veri matrisine r=3 olmak üzere 

NOMA’yı uygulayalım. Alınan video çerçevelerinden bazı örnekler Şekil 4.1’de 

gösterilmektedir. NOMA sonucunda elde edilen W matrisinin her bir sütunu ise 

Şekil 4.2’de verilmiştir ve görülmüştür ki gerçekten de bu sütunlar (Şekil 4.2 için bu 

sütunlar önce 2 boyuta geri döndürülmüş sonra da söz konusu imgeler 

oluşturulmuştur) öbek merkezleri olarak nitelendirilebilir. 
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 Şekil 4.2 : Elde edilen topak merkezleri 

Hangi örneğin hangi sınıfa ait olduğu ise kodlama matrisi H’nin incelenmesiyle 

anlaşılır. Kodlama matrisinin Şekil 4.1’de verilen çerçevelere karşılık gelen sütunları 

sırasıyla şöyledir: 
















=

039.0034.0035.0117.0116.0117.0631.0656.0646.0

589.0595.0585.0138.0139.0140.0105.0088.0090.0

079.0075.0080.0648.0649.0648.0107.0107.0109.0

H  

H matrisinin ilk 3 sütunundan, bu sütunlara karşılık gelen örneklerin (Şekil 4.1 ilk 

satır) 3 numaralı sınıfa ait oldukları sonucuna varılabilir. Gerçektende Şekil 4.2’nin 

3. sütunu ile Şekil 4.1’in ilk satırındaki çerçeveler birbirlerine oldukça 

benzemektedir. Aynı mantıkla sonraki 3 örneğin ilk topağa, son 3 örneğin ise 2. 

sınıfa ait olduğu görülür. 

0
0.2

0.4
0.6

0.8

0

0.2

0.4

0.6

0.8
0

0.2

0.4

0.6

0.8

 

Şekil 4.3:  NOMA (r=3) sonucu elde edilen H matrisinin her bir sütunu 3 boyutlu uzayda bir noktaya 
denk gelir.  Kırmızılar ilk sınıfa, yeşiller ikinci sınıfa, maviler üçüncü sınıfa denk gelen 
elemanlardır.  
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H matrisinin topaklandırma konusundaki işlevini daha iyi anlayabilmek için Şekil 

4.3.’e de bakılabilir. 3 değişik video sahnesinden alınmış yaklaşık 600 video 

çerçevesine r=3 seçimi altında NOMA uygulandığında elde edilen H matrisinin 3 

boyutlu uzayda çizdirilmesi sonucunda oluşturulan Şekil 4.3, H matrisi aracılığı ile 

topaklandırmanın nasıl yapıldığını göstermektedir. Gerçekten de NOMA aracılığı ile 

boyutu küçültülen video verisine ait örnekler net bir şekilde 3 sınıfa ayrılmaktadır.  

4.2.  ANOMA’nın Topaklandırma Đşlevi 

ANOMA’nın eniyileme süreci de NOMA’nınkinden farklı değildir; sonuçta 

ANOMA NOMA’da birkaç yaklaşıklık yapılmasıyla türetilmiştir. 

Ağırlıklandırılmamış ANOMA maliyet fonksiyonu denklem (4.9)’da verilmiştir. 

2 2

1k k kF F f− − −= + = − + −k 1 k k 1 k k kV W H v W h              (4.9) 

Denklem (4.9), iz operatörü kullanımıyla aşağıdaki gibi de yazılabilir. 

( )kF Tr − − − − − −= − +T T T T
k 1 k 1 k k 1 k 1 k k 1 k 1 kV V 2W H V W H H W                   

       ( )Tr+ − +T T T T
k k k k k k k k kv v 2W h v W h h W                     (4.10) 

H matrisine diklik koşulu getirilirse yine, denklem (4.11) elde edilir. 

( ) ( )2T T
kF Tr Tr− − − −= − + + −T T T

k 1 k 1 k k 1 k 1 k k k k k k kV V 2W H V W W v v W h v                     (4.11) 

Denklem (4.11)’in Wk’ya göre türevi alınıp 0’a eşitlenirse denklem (4.12) denklemi 

yazılır. 

2 2 2 0T TF∂ = − + − =∂ k-1 k-1 k k k
k

V H W v hW                        (4.12) 

Buna göre Wk aşağıdaki gibi ifade edilir. 

T T T= + =k k-1 k-1 k k k kW V H v h V H                (4.13) 

(4.13) eşitliğinin denklem (4.11)’in içinde kullanılmasıyla (4.14) denklemine ulaşılır. 

T T T
F Tr  = − k k k k k kV V H V V H               (4.14) 
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Denklem (4.14)’ün NOMA’nın maliyet fonksiyonu olan denklem (4.8)’e ve k-

ortalamalı topaklandırma tekniğininki olan denklem (4.4)’e eş olmasından dolayı 

ANOMA’nın da aynı işleve sahip olduğu sonucuna varılabilir. Tabii diklik koşulu 

normalde uygulanmadığından bulanık bir topaklandırma söz konusudur. 

  

  

Şekil 4.4: Đlk satırda işlenen video dizisine ait iki sahneden birer örnek çerçeve verilmiştir. 
Đkinci satırda ise ANOMA sonunda bu video çerçevelerinin geri çatılmış imgeleri 
verilmiştir. 

ANOMA’nın topaklandırma işlevine bir örnek vermek amacıyla Şekil 4.4’te iki tane 

örnek çerçevesi verilen ve her biri 80’ar tane çerçeveye sahip 2 adet sahne içeren 

video dizisi ANOMA ile işlensin. Her adımda elde edilen taban imgesi çiftlerinden 4 

tanesi Şekil 4.5’te gösterilmektedir. Đlk 80 çerçeve sadece ilk sahneye ait olduğundan 

elde edilen taban imgeleri Şekil 4.5’in ilk iki sütunundan görüldüğü üzere sadece ilk 

sahneye ait bilgi içermektedir. Bunun yanında 81. çerçeve ile birlikte ikinci sahnenin 

sürece dahil olmasının etkisi taban imgelerine yansımıştır (sütun 3, Şekil 4.5). 

Sürecin sonunda ise taban imgeleri yaklaşık olarak iki sınıfın öbek merkezlerine 

yakınsamıştır (sütun 4, Şekil 4.5). 

4.3.  Topaklandırma Đşlevinin Arkaplan Modellemedeki Kullanımı 

Şekil 4.6’nın incelenmesiyle topaklandırma konusunu gözetleme türü videolarda 

arkaplan modelleme problemine bağlanabilir. Şekil 4.6’nın ilk iki satırında 50’şer 

çerçeve atlanarak alınmış 4 örnek verilmiştir. Đlk çerçevede durma pozisyonunda 

olan 2 araba da diğer çerçevelerde geriye doğru hareket etmektedir. Son çerçevenin 

ANOMA’ya dahil edilmesiyle elde edilen taban (basis) imgeleri (karışım matrisi 

W’nun sütunları) Şekil 4.6’in son satırında verilmiştir. Đkinci çerçevede kırmızı kare 
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içine alınmış araba birinci, mavi kare içine alınmış olan ise ikinci araba olsun. Đlk 

taban imgesinde (satır 3, sütun 1) kırmızı kare içine alınan bölgede birinci arabanın 

sabit hareketsiz duran hali, yani arkaplana dahil olduğu zamanki konumu 

görülmektedir. Đkinci taban imgesinin (satır 3, sütun 2)  aynı bölgesinde (yine kırmızı 

içine alınan alan) ise bu sefer beyaz bir gölge mevcuttur. Bu ise birinci arabanın 

hareket edip o bölgeden (denk olarak arkaplan modelinden) çıktığını temsil 

etmektedir. Sonuçta oluşturulan arkaplan modeli, bu 2 taban imgesinin değişik 

birleşimleri ile oluşturulur. Birinci arabanın sabit olduğu video çerçeveleri için ilk 

taban imgesinin ağırlığı fazlayken, aynı arabanın hareketli olduğu bölgelerde ikinci 

taban imgesinin katılımı daha büyük olacaktır. Aynı mantık mavi kare içine alınmış 

ikinci araba için de oluşturulabilir. Bu taşıtın son geldiği konum ikinci taban 

imgesinde mavi kare içine alınmıştır. Đlk taban imgesinin aynı bölgesinde ise beyaz 

bir gölge vardır. Bu ise ikinci arabanın arkaplana dahilken bu bölgede bulunmadığına 

dair bir işarettir.   

    

    

Fig. 4.5: Artımsal olarak elde edilmiş taban imgeleri. Đlk satır birinci taban imgelerini 
(Wk’nın ilk sütunu), ikinci satır ise ikinci taban imgelerini (Wk’nın ikinci sütunu) 
göstermektedir. Đlk sütun 12. örneğin, ikinci sütun 63. örneğin, üçüncü sütun 84. 
örneğin, son sütun ise 160.örneğin işlenmesinin sonunda elde edilmiştir. 
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Şekil 4. 6 : Đlk 2 satırda video dizisinden alınmış orijinal video çerçeveleri, son satırda ise bu 
video dizisinin ANOMA (r=2) ile işlenmesi sonucu elde edilen taban imgeleri 
verilmiştir 

 

 



 36 

5.  DENEYSEL SONUÇLAR 

Artımsal negatif olmayan matris ayrıştırmanın (ANOMA) arkaplan modelleme 

problemindeki performansını ölçmek için PETS denektaşı veritabanından [47] 

alınmış gözetleme türü videolar üzerinde testler yapılmıştır. Benzer yöntemlerle 

karşılaştırma yapmayı mümkün kılmak için aynı video dizileri üzerinde NOMA ve 

artımsal temel bileşen analizi (ATBA) [19,20] yöntemleri de kullanılmıştır. 

Deneylerde kullanılan PETS videoları sabit bir kamera ile açık havada kaydedilmiş 

sahnelerden oluşmaktadır. Çeşitli yüksek frekanslı bileşenlere sahip duruk (static) 

olmayan arkaplana sahip ve zaman zaman şiddetli ışıklılık değişimlerinin yaşandığı 

bu video dizileri video arkaplan modelleme probleminde kullanılacak bir yöntemin 

gürbüzlüğünü (robustness) değerlendirmek için iyi bir deney seti oluşturmaktadır. 

Arkaplanın özelliklerinin yanında bu video örneklerindeki önplan nesnelerinin 

değişik boyutlarda olup farklı hareketler içinde bulunmaları da deneylerin kalitesini 

arttırıcı niteliklerdir. Bu da kullanacağımız yöntemin videonun dinamik içeriğini 

modellemede nasıl bir başarım sağladığını görmemize yardımcı olacaktır. 

ANOMA gerçeklenmesinde denklem (3.5) ile verilen maliyet fonksiyonu 

enküçültülmeye çalışıldığı için, faktörlere ayırma başarımını ölçmenin bir yolu her 

bir örnek için elde edilecek geri çatma hatasını incelemektir. Bu yüzden deneysel 

sonuçlar değerlendirilirken oluşturulacak modellerin veya gösterimlerin 

performansları, her video çerçevesi için hesaplanacak geri çatma hatası cinsinden 

karşılaştırılacaktır. Yani, aşağıda denklem (5.1) ile verilen geriçarım hata 

fonksiyonunun düşük çıkması, söz konusu örnek (k’inci çerçeve) için faktörlere 

ayırma işleminin başarılı olduğunu gösterecektir. Eşitliğin sağ tarafındaki toplam n 

sayısına bölünerek her bir video çerçevesi için piksel başına düşen geri çatma hatası 

bulunmaktadır.  

( ) ( )( )2
1

1

2

n

k i i
i

f
n =

= −∑ k k kv W h                  (5.1) 
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5.1.  ANOMA’nın Arkaplan Gösterimleri Oluşturma Başarımı 

Bu bölümde, ANOMA’nın durağan içerikli veriyi modelleme yeteneği sadece 

arkaplan içeren gözetleme türü video parçalarından alınmış çerçeveler üzerinde 

yapılan testlerle incelenmektedir. Bu yüzden PETS2001 veritabanındaki  

‘dataset1_cam1’ isimli gözetleme türü video dizisinin ilk 100 çerçevesi kullanılarak 

V veri matrisi oluşturulmuştur. Her bir video çerçevesinden elde edilen (144x192) 

boyutundaki dc imgesi [48] bir gözlem olarak kabul edilmiş ve imge sütunları alt alta 

dizilerek tek boyutlu hale getirilmiş ve V matrisinin bir sütununda tutulmuştur. Bu 

yüzden veri matrisi V ((144x192)x100) boyutlu bir matris olmaktadır. Buradaki tüm 

video çerçeveleri arkaplan çerçeveleri olduğu için videonun bu bölümündeki içeriğin 

durağan olduğu kabul edilebilir.  

Karşılaştırma amacı ile uygulayacağımız klasik NOMA uygulaması aynı 100 video 

çerçevesi üzerine toptan uygulanacaktır. Bu durumda k’inci çerçeveye ait geri çatma 

hatası denklem (5.2) ile hesaplanır. 

( ) ( )( )2
1

1

2

n

k ik ik
i

f
n =

= −∑ V WH                (5.2) 

Şekil 5.1 de her bir video çerçevesi için rankın r =2 olarak alındığı durumda 4 

değişik test ile elde edilmiş geri çatma hatalarının değişimi gösterilmektedir. Đşlenen 

100 arkaplan çerçevesinin tümü birbirlerine benzer olduğu için ağırlıklandırılmamış 

ANOMA ve klasik NOMA ile elde edilen geri çatma hataları oldukça küçüktür 

(Şekil 5.1’deki mavi ve kırmızı çizgiler). Gri düzey değerlerinin kullanılmasından 

dolayı bir piksel için geri çatma hatasının en büyük değerinin 2552/2 olduğu 

düşünüldüğünde, 0.5 civarındaki geri çatma hatalarının gerçekten de çok küçük 

kaldığı sonucu çıkarılabilir. Bu sonuçlar hem ANOMA’nın hem de NOMA’nın 

durağan sahneyi modelleyerek başarılı bir arkaplan ilklendirmesi (initialization) 

yapabildiğini göstermektedir. Bu testte faktorizasyon güncellemede belirlenen durma 

koşulları NOMA için döngünün 250 defa tekrarlanması sonucunda sağlanırken 

ANOMA için çerçeve başına 13 döngü ile sağlanmıştır.   
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Şekil 5.1 :  Her bir çerçeve için elde edilen geri çatma hatasının değişimi. 

Şekil 5.1 de aynı zamanda çerçeve ağırlıklandırma katsayılarının geri çatma başarımı 

üzerindeki etkisi de gözlenebilmektedir. Bölüm 3.3’te arkaplan modelleme problemi 

için denklem (3.5)’te sunulan ( )oS α ve ( )fS α  fonksiyonlarının uygun bir seçiminin 

(1-α) ve  α ikilisi olduğu belirtilmişti. Ağırlıklandırma için böyle bir tercih 

yapıldığında, her ne kadar iki durum için de yeterli ve makul sonuçlar elde ediliyor 

olsa da, α=0.3 koşulunda elde edilen geri çatma hatası beklendiği üzere α=0.2 

durumununkine göre daha küçüktür. Bunun nedeni ise α değerinin büyümesi ile son 

gözlenen çerçevenin, matris faktörlerine ayırma işlemine yapacağı etkinin artmasıdır. 

Burada vurgulanması gereken nokta, NOMA’nın aksine ANOMA’nın her bir yeni 

gözlemin katılımını kontrol ederek daha başarılı bir eniyileme gerçekleştirebildiğidir. 

5.2.  ANOMA ile Arkaplan Modelinin Dinamik Đçerik Değişimlerine Göre 

Güncellenmesi 

Gözetleme türü video uygulamalarında ilk adım öncelikle bir arkaplan modeli 

oluşturmaktır.  Eğer sahnede hareketli bir önplan nesnesi varsa, örneğin bir nesne 

sahneye girerse ya da başta arkaplanda hareketsiz duran bir nesne hareket etmeye 
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başlarsa video çerçevelerinde arkaplan modelinden sapmalar gözlenir. Öte yandan 

hareketli bir nesne durarak arkaplanın bir parçası haline gelebilir. Böyle bir durumda 

ise duran cisim arkaplana dahil edilebilmelidir. Arkaplan modelleme probleminde 

kullanılacak güçlü bir çevrimiçi yöntem, oluşturduğu modeli dinamik içerik 

değişimleri olarak adlandırılan bu tür değişikliklere karşı güncelleyebilmelidir. 

Önplan nesneleri ile ilgili bu tür değişimler mevcut modele göre yerel (local) 

sapmalar olarak nitelendirilebilir. Bunun nedeni bu tür bir değişimin bir video 

çerçevesinin tüm imgeciklerinde değil, sadece belli bir bölümünde yaşanmasıdır. Bu 

yüzden dinamik içerik gösterim (dynamic content representation) başarımı, önplan 

nesneleri içeren gözlemlerin arkaplan modeline iz düşürülmesi ve daha sonra elde 

edilen sapmaların ölçülmesi ile değerlendirilebilir. Burada bir anlamda Wk matrisinin 

dikgen uzayının kullanılması ile yapılan izdüşüm sonucu ile önplan ayrıştırılması 

yapılmaktadır. Yani belli bir yaklaşıklıkla k. video çerçevesi (vk) için önplan 

nesnelerinin şöyle elde edildiği söylenebilir: 

( )T− k k kI W W v                     (5.3) 

Şekil 5.2(a) ve 5.2(b), PETS2000 veri tabanından ANOMA’nın çevrimiçi arkaplan 

modelleme performansını incelemek için seçilmiş bir video test dizisinden alınmış 

iki video çerçevesini göstermektedir. Đlk çerçevede (Şekil 5.2(a)) iki tane hareketli 

nesne mevcuttur: bir araba park ederken bir adam yürümektedir. Đkinci video 

çerçevesinde (Şekil 5.2(b)) ise ilk çerçevede park etmeye çalışan araba hareketsizdir. 

Bunun yanında birisi o arabadan çıkan adam diğeri de sahneye yeni giren bir araba 

olmak üzere iki yeni önplan nesnesi yer almaktadır. Şekil 5.2(c) ve 5.2(d), Şekil 

5.2(a) ve 5.2(b) deki video çerçeveler için, gözlenen video çerçevesi ile geri çatılmış 

arkaplan arasındaki farkın alınmasıyla oluşturulmuş fark imgelerini (difference 

image, residue image) göstermektedir. Fark imgelerinden de görülebileceği gibi, 

ANOMA dinamik arkaplanı başarı ile modelleyebildiği için önplan nesneleri fark 

imgelerinde kolaylıkla fark edilebilmektedir. Aynı zamanda Şekil 5.2(a)’daki 

hareketli arabanın durduğu zaman arkaplan modeline eklenmiş olması, dolayısıyla 

Şekil 5.2(d) de görünmemesi de ANOMA’nın dinamik arkaplan modelleme 

başarısını göstermektedir. Yapılan test için ağırlıklandırma fonksiyonları ( )oS α =0.8 

ve ( ) 2.0=αfS olarak seçilmiş olup, duran arabanın arkaplana eklenebilmesi 7 

çerçevelik bir zaman diliminde (24 çerçeve/sn örnekleme hızında) gerçekleşmiştir. 
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Şekil 5.2 : (a) 614. çerçeve. (b) 837. çerçeve. (c) 614 nolu çerçeve için oluşturulan fark 
resmi, ve (d) 837 numaralı çerçeve için oluşturulan fark resmi  

Değişik yöntemlerin başarımını incelemek amacıyla, bir önceki teste ek olarak 

PETS2001 veritabanından alınan bir başka video dizisi üzerinde de aynı deney 

gerçekleştirilmiştir. Şekil 5.3 (a)-(d)’de test videosundan bazı örnek çerçeveler 

gösterilirken, Şekil 5.4’te bu videodan alınan 700 çerçevelik bölüm için geri çatma 

hatasının değişimi verilmektedir. Bu testle üç faklı ayrıştırma yöntemi 

karşılaştırılmıştır. Bunlar: artımsal negatif olmayan matris ayrıştırma (ANOMA), 

negatif olmayan matris ayrıştırma (NOMA) ve [19,20] çalışmalarında sunulmuş olan 

artımsal temel bileşen analizi (ATBA) yöntemleridir. 

Test videosunda 800 ve 980 numaralı video çerçeveler arasındaki bölümde herhangi 

bir önplan nesnesi bulunmadığından bu bölgelerdeki geri çatma hatasının küçük 

olduğu Şekil 5.4’te görülmektedir. Bölüm 5.1’deki testten farklı olarak, bu durağan 

kısımlarda NOMA ile elde edilen geri çatma hatasının diğer iki yönteme göre büyük 

kalmasıdır. Bu durum NOMA’nın tüm çerçeveleri toplu işlemesinden 

kaynaklanmaktadır. Daha ayrıntılı açıklarsak, Bölüm 2.2’de anlatıldığı şekilde, video 

dizisinden alınacak az sayıda (bu test için örneğin 50) örnek çerçevelerden 

oluşturulan veri matrisi üzerinde NOMA uygulanır ve bu şekilde arkaplan modeli 

oluşturulur. Ancak, alınan bu örnekler tüm videoyu betimleyeceği için videonun 

ilerleyen kısımlarında yer alacak olası arkaplan değişimleri ilk kısımlardaki geri 

çatma hatasının artmasına neden olmaktadır. 

a b 

c d 



 41 

   

   

    

    

Şekil 5. 3 :  Đşlenen video dizisinden seçilmiş 4 adet örnek çerçeve: sırasıyla (a) 1050, (b) 
1120, (c) 1140 ve (d) 1433 numaralı çerçeveler. (e) 1050, (f) 1120, (g) 1140, (h) 
1433 numaralı çerçeveler için ANOMA işlemi sonunda ayrıştırılmış önplan 
nesnelerinin görüldüğü fark imgeleri.  

a b 

c d 

e f 

g h 
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Şekil 5. 4 : Üç değişik yöntem ile elde edilen geri çatma hatalarının çerçeve numarasına 
bağlı değişimi: So=0.8 and Sf=0.2 katsayılı ANOMA, NOMA, ve ATBA. 

Aynı test videosunda 980 numaralı çerçeveden itibaren sahneye bir arabanın girdiği 

ve 1120 numaralı çerçeveye kadar hareket ettiği Şekil 5.4’teki geri çatma hatasının 

değişiminden anlaşılabilir. Bu arabanın bir önplan nesnesi olarak başarı ile saptandığı 

Şekil 5.3 (e)’de de görülmektedir. Bir önplan nesnesinin varlığı arkaplan modelinden 

sapmaları arttıracağı için bu aralıktaki çerçevelerde hata artmaktadır. Burada bir 

başka önemli nokta ise 1120 numaralı çerçeveden sonra hareketli arabanın 

durmasıyla birlikte arkaplana dahil edilmesi ve dolayısıyla geri çatma hatasının 

düşmesidir. Şekil 5.3 (f)’ye dikkat edilirse araba 1120. çerçeve için elde edilen fark 

imgesinde 5.3 (e)’deki 1050. çerçevenin fark imgesindeki halinden daha az 

belirgindir. Bu durum arabanın arkaplan modeline eklenmeye başladığına dair bir 

göstergedir. Nitekim yine Şekil 5.3(g)’de görüleceği üzere, durduktan bir süre sonra 

araba tamamıyla arkaplana dahil olur. Bu süreç Şekil 5.4’te hatanın sıfıra inmesiyle 

de anlaşılabilir. Bu da duran nesnenin arkaplana dahil edilmesiyle birlikte 

arkaplandan sapmaların azalıp zamanla yok olduğunun işaretidir.  
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Şekil 5. 5 : Sırasıyla (a) 1050, (b) 1120, (c) 1140, (d) 1433 numaralı çerçeveler için ATBA 
işlemi sonunda ayrıştırılmış önplan nesnelerinin görüldüğü fark imgeleri 
verilirken, aynı video dizisi için klasik NOMA uygulanması sonucu (e) 1050, (f) 
1120, (g) 1140, (h) 1433 numaralı çerçeveler için fark imgeleri NOMA için de 
verilmiştir. 

a b 

c d 

e f 

g h 
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Daha sonra ortaya çıkan önplan nesneleri (bkz Şekil 5.3(h)) hatanın tekrar artmasına 

neden olur. Bu süreç boyunca videonun içeriğine göre ANOMA sonucu elde edilen 

geri çatma hatası sürekli değişir. Fakat ANOMA’nın aksine arkaplanı değişen içeriğe 

göre güncelleyebilme bakımından NOMA’nın çok başarılı sonuçlar ürettiğini 

söyleyemeyiz (Şekil 5.4’teki siyah eğri ve Şekil 5.5 (e)-(h)). 

Şekil 5.4’ün elde edildiği test sonucunda ANOMA’nın, NOMA’nın aksine, matris 

faktörleri değişen içeriğe göre güncelleyebildiği ve oluşturduğu modele belleksizlik 

özelliği katabildiği söylenebilir. Ayrıca ANOMA’nın ve ATBA’nın bu konudaki 

performanslarının oldukça yakın olduğu gözden kaçırılmaması gereken bir sonuçtur. 

Gerçekten de iki yöntem sonucunda dört farklı çerçeve için elde edilen fark imgeleri 

birbirlerine çok benzemektedir (Şekil 5.3 (e)-(h) ve Şekil 5.4 (a)-(d)). Her iki yöntem 

için de ( )oS α ve ( )fS α  ağırlıklandırma katsayıları sırasıyla 0.8 ve 0.2 olarak 

belirlenmiştir. Bölüm 3.3’te anlatıldığı gibi, ( )oS α =0.8 seçimi eski örneklerin 

etkisinin üstel olarak azalmasını sağlayarak modele belleksizlik özelliği kazandırır. 

5.3.  Işıklılık Değişimlerine Karşı Gürbüzlük 

Arkaplan modelleme başarımını daha iyi analiz edebilmek için ANOMA’nın 

başarımı yoğun ışıklılık değişimlerinin yaşandığı video dizileri üzerinde de teste 

dildi. Işıklılığın yoğun bir biçimde değiştiği video bölümlerinde piksellerin çoğunun 

değerleri önemli miktarda artar, bu da ortalama şiddeti (intensity) değiştirir. Bu tür 

etkilere sahip ışıklılık değişimleri, orijinal veri üzerinde neden oldukları önemli 

sapmalar nedeniyle zor problemlerdir.  

Bu bölümdeki test için PETS2001 veri setinden ışıklılık değişiminin yoğun olarak 

yaşandığı bir bölge seçilmiştir. α=0.05 olmak üzere (1- α) ve α olarak seçilmiş 

ağırlıklandırma katsayıları için ANOMA ve ATBA arasında bir karşılaştırma 

yapılmıştır. Đçeriğinde yoğun ışıklılık değişiminden başka bir şey olmayan durağan 

bir sahne üzerinde bu iki yöntemin uygulanması sonucu elde edilen geri çatma 

hatalarının değişimi Şekil 5.6’te çizdirilmiştir. Şekil 5.6’ten bu tür genel (global) 

sapmalara karşı ANOMA’nın ATBA’ya göre daha gürbüz olduğu söylenebilir. Bu 

yargı, aynı diziden alınmış Şekil 5.7(a) ve 5.7(b)’da verilen orijinal çerçeveler için 

elde edilen ve Şekil 5.7(c) ve 5.7(d) ile gösterilen fark imgeleri tarafından da 

desteklenmektedir. Sahnede herhangi bir önplan nesnesi olmadığı için fark 
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imgelerinin boş olması gerekmektedir. Fakat video süresince gözlenen ışıklılık 

değişimleri piksel değerlerini önemli miktarda değiştirdiği için sahnenin parlak 

kısımlarında bulunan pikseller fark imgelerinde fark edilmektedirler. Her ne kadar iki 

yöntem için de elde edilen imgeler ışıklılık kaynaklı bozulmalara maruz kalmış 

olsalar da, bu bozulmaların miktarı ATBA’ya göre ANOMA’da daha azdır (bkz 

Şekil 5.7(d)). Bunun nedeni, ATBA’da yapılan örneklerin Gauss dağılımlı olma 

kabulünün ANOMA modelinde bulunmamasıdır. Bu yüzden ANOMA gözlemlerin 

ortalama miktarını önemli ölçüde değiştiren ışıklılık değişimlerine karşı ATBA’ya 

göre nispeten daha gürbüzdür. 
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Şekil 5.6 : ATBA ve ANOMA ile elde edilen geri çatma hatalarının çerçeve numarasında 
göre değişimi. 

    

Şekil 5.7 : (a)  Orijinal çerçeve 2635. (b) Orijinal çerçeve 2874. 2874 numaralı çerçeve için 
elde edilen sapmalar: (c) ATBA ile elde edilen (d) ANOMA ile elde edilen. 

a b c d 
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Bu bölümde gösterilen sonuçlara ek olarak daha uzun video dizilerinde yapılan 

deneylerde de benzer sonuçlar elde edilmiştir. Farklı koşullarda değişik hızlarda ve 

büyüklüklerde önplan nesnelerine sahip videolarda hareketli cisimlerin bu tür 

özelliklerinden bağımsız olarak arkaplanda başarılı bir şekilde ayrıştırıldıkları 

gözlenmiştir. Sonuçta bu bölümde yapılan testlerle ANOMA’nın bu uygulamada 

kullanılmasının başarılı sonuçlar vereceği görülmüştür.       
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6.   SONUÇLAR VE TARTIŞMA 

Bu çalışmada büyük boyutlu veri kümelerinin çevrimiçi işlenmesi için önerdiğimiz 

artımsal negatif olmayan matris ayrıştırma (ANOMA) yöntemi gözetleme türü 

videolarda arkaplan modelleme problemine uygulanmıştır [42-44]. Geliştirilen 

çevrimiçi ve artımsal negatif olmayan matris ayrıştırma hem işlemsel yük 

bakımından avantaj sağlamakta, hem de arkaplan modelinin yeni işlenen örneklere 

göre güncellenebilmesini mümkün kılmaktadır. ANOMA’nın arkaplan 

modellemesindeki kullanımında piksel değerleri ya da bunların dağılımları hakkında 

herhangi bir kabul yapılmamaktadır. ANOMA’daki tek kısıt işlenecek verinin negatif 

değerlere sahip olmamasıdır ve bu da video verisinin doğasına tamamıyla uygundur.  

     NOMA yönteminin matematiksel altyapısı Bölüm 2’de anlatıldıktan sonra [42] 

çalışmasında önerdiğimiz ANOMA yönteminin maliyet fonksiyonunun ve 

güncelleme kurallarının çıkarımları Bölüm 3’te verilmiştir. ANOMA yöntemi için 

öne sürdüğümüz güncelleme kurallarının yakınsaklığını göstermek için yaptığımız 

ispat ise Ek-B’dedir. Ek-A’da [41] çalışmasında verilmiş olan ve NOMA işlemi 

sırasında kullanılan maliyet fonksiyonunun eniyilemesinde yerel minimuma 

ulaşıldığını KKT koşullarının kontrol edilmesiyle gösteren ispat detaylandırılmıştır.  

Artımsal negatif olmayan matris ayrıştırma tekniği ağırlıklandırmalı maliyet 

fonksiyonu sayesinde veri kümesi içindeki dinamik içerik değişimlerini, oluşturduğu 

düşük boyutlu gösterimlere küçük bir işlemsel yük karşılığında başarılı bir şekilde 

yansıtabilmektedir. Bu da ANOMA’yı arkaplan modelleme problemi için elverişli 

bir teknik yapmaktadır.  

ANOMA, NOMA ve bu problem için teknik yazında kullanılan diğer bir yöntem 

olan ATBA ile PETS2001 veritabanında kayıtlı videolar üzerinde yapılan test 

sonuçları, ANOMA’nın arkaplan modellemede başarıyla kullanılabilecek bir 

ayrıştırma metodu olduğunu göstermektedir. Ayrıca ANOMA’nın ışıklılık 

değişimlerinde video içeriğini doğrulukla modelleyebildiği de görülmüştür. ANOMA 

için veri üzerinde herhangi bir kabulün (Gauss dağılımına sahip olması gibi) 

yapılmaması ışıklılık değişimlerine karşı gürbüzlüğün ATBA’ya oranla daha yüksek 
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olmasını açıklayabilir.  Bu çalışmada yapılan deneylerde herhangi bir önişleme ya da 

art işleme işlemi yapılmamıştır. Performansın arttırılması için bu tür işlemlerin 

(maskeleme, gölge kaldırılması, videoda nesne hareket analizi kullanımı vb.) 

gerçeklenmesi de denenebilir.  

Bu problem için geliştirdiğimiz algoritma Bölüm 5’teki deneylerde 2.40 GHz Intel 

Core 2 Quad. CPU özellikli bilgisayarda gerçek zamanlı olarak çalışmaktadır. 

Artımsal ve çevrimiçi yapısı ise bellek gereksinimi konusunda önemli bir fayda 

sağlamaktadır. Gözetleme türü video uygulamalarında hızın ve belleğin önemi 

düşünüldüğünde, ANOMA’nın bu problem için etkin bir çözüm sunduğu 

görülmüştür. 

[41] numaralı referansta NOMA’nın k-ortalamalı topaklandırma yöntemine denk 

olduğu ispatlanmış ve deneysel olarak gösterilmiştir. NOMA, k-ortalamalı 

topaklandırma yöntemi ile aynı maliyet fonksiyonunu eniyileyerek altuzay 

topaklandırması (subspace clustering) yapmaktadır. Karışım matrisi (W) öbekler için 

gösterim oluştururken kodlama matrisinin (H) sütunları da her bir örneğin hangi 

öbeğe ait olduğunu belirler. Önerdiğimiz ANOMA yöntemi de W ve H matrislerini 

aynı maliyet fonksiyonunu temel alarak yeni gelen örneğin etkisinin katılmasıyla 

güncellediği için topaklandırma işlevine sahiptir. Burada Bölüm 4’te incelenen 

NOMA’nın, dolayısıyla da ANOMA’nın topaklandırma işlevi, önerdiğimiz yöntemin 

arkaplan modelleme problemindeki başarısının nedenlerinden biridir. Elde ettiğimiz 

arkaplan modeli, bir anlamda işlenen tüm video çerçevelerindeki ortak bilginin 

çıkarılmasıyla oluşturulur ve bu bilginin kullanılmasıyla her bir piksel için önplan ve 

arkaplan öbekleri ile ikili bir sınıflandırma yapılmasına olanak sağlar. [41] 

çalışmasında gösterilen NOMA ve topaklandırma ilişkisi de bu sebepten dolayı 

NOMA kullanılarak etkin bir arkaplan modeli oluşturulmasını sağlar.  

ANOMA yöntemini gözetleme türü videolarda arkaplan modelleme probleminde 

kullanırken video çerçevelerindeki piksellerin gri düzey değerleri üzerinde işlem 

yapılmaktadır. Bunun nedeni gri düzey kullanımının getirdiği basitliğin yanında gri 

düzey kullanımının renk bilgilerinin kullanımına göre ışıklılık değişimleri gibi 

etkilere karşı gürbüzlüğü arttıracağını düşünmemizdir. Yine de çeşitli renk 

uzaylarının kullanımı ileriki çalışmalarda düşünülebilir. 

[39] çalışmasındakine benzer bir şekilde NOMA’nın veya ANOMA’nın her bir video 

çerçevesine blok blok uygulanması da gelecek çalışmalar için düşünülebilir. Bu 
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sayede sahnedeki değişik bölgelerin daha detaylı bir şekilde işlenmesi, dolayısıyla da 

sahnedeki nesnelerin daha ayrıntılı analizini ve yöntemin gürbüzlülüğünün 

arttırılması mümkün olabilir. 

Bu çalışmada diğer NOMA tabanlı çalışmalarının aksine NOMA’nın video arka plan 

modelleme konusunda uygulanması incelenmiş, artımsal ve çevrimiçi bir yöntem 

olan ANOMA önerilerek bu problemde kullanılmıştır. Hızı, basitliği ve gürbüzlüğü 

nedeniyle ANOMA kullanımıyla oluşturduğumuz arkaplan modelleme aracı birçok 

video uygulamasında bir bileşen olarak etkin olarak kullanılabilir.  
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EK-A 

Lineer olmayan eniyileme probleminde amaç nx R∈  üzerinde ( )f x  maliyet 

fonksiyonunu ( ) 0h x =  (eşitlik koşulu) ve ( ) 0g x ≤  (eşitsizlik koşulu) koşullarına bağlı 

olarak enküçültmektir.  

Negatif olmayan matris ayrıştırma işlemi bir eniyileme süreci olarak incelediğinde 

maliyet fonksiyonu şu şekilde yazılır: 

( )( ) 2T T T T

ij
f tr  = − + H V V V WH H W WH                     (A.1) 

Kısıtlamalardan ise sadece eşitsizlik koşulu mevcuttur ve o da denklem (A.2)’deki gibi 

ifade edilir: 

( )( ) ( ) 0
ij ij

g = − ≤H H                        (A.2) 

Bu şekildeki bir tekil eşitsizlik kısıtlamalı eniyileme sürecinde, yakınsaklık noktasının 

yerel minimum olup olmadığını anlamak için tamamlayıcı KKT koşulu (complementary 

condition) incelenelir. 

Öncelikle x noktasının yerel minimum olması için 0µ >  olmak üzere (A.3) ile verilen 

eşitlik geçerli olmalıdır [49]: 

( ) ( )f x g xµ∇ = − ∇                        (A.3) 

NOMA için bu koşulu uygulayarak µ  değerini bulabiliriz. Maliyet fonksiyonunun H 

matrisinin bir elemanına göre türevinin denklem (A.4)’teki ifadeye eşit olduğu Bölüm 

2.1’de gösterilmişti. 

( )T T- +    H
ij

f∇ = W V W WH                      (A.4) 
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Kısıtlayıcı fonksiyonun ( ( ).g ) türevi ise denklem (A.5)’te verilmiştir: 

( )( )
( )

( )( )
( )

= = -1   
ij ij

ij ij

g∂ ∂

∂ ∂

H H

H H
                     (A.5) 

(A.3) denkleminde (A.4) ve (A.5) eşitlikleri ile verilen ifadeleri kullanarak denklem 

(A.6)’daki µ  ifadesini elde ederiz: 

( ) ( ) ( )T T T T- +  =-  -1 =- +    ij ij
ij ij

µ µ⇒W V W WH W V W WH                 (A.6) 

Tamamlayıcı KKT koşulu ise x* yerel minimum noktası olmak üzere şu şekilde verilir: 

( )* * 0       g xµ =                       (A.7) 

Bu koşulu NOMA için denklem (A.8) ile gösterildiği biçimde yazabiliriz 

( )( ) ( ) ( )( ) ( ) ( )* * ** T T T T0 - + 0
ij ij ijij ij

g gµ = ⇒ = − =H W V W WH H W V W WH H       (A.8) 

Yakınsaklık durumunda H matrisi elemanları denklem (A.9) ile verilen güncelleme 

kuralından yola çıkılarak (A.10)’deki eşitliğe varılır. 

( ) ( )
( )

( )
* *

*
=  

T

ij

Tij ij

ij

W V

H H
W WH

                     (A.9) 

( ) ( ) ( ) ( ) ( ) ( )* * * * * *= 0T T T T

ij ij ij ij ij ij
⇒ − =H W W H H W V H W V W WH               (A.10) 

(A.2) ve (A.6) denklemlerindeki ifadelerden faydalanarak (A.11) denkleminin 

NOMA’da H matrisinin güncelleme kuralı için tamamlayıcı KKT koşulunu verdiği 

görülür. 

( ) ( )* * * * 0T T
ij

ij
H g Hµ− = =W V W WH                    (A.11) 
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Benzer şekilde W matrisinin güncelleme kuralı için de KKT koşullarının sağlandığını 

kontrol edelim. Maliyet fonksiyonu denklem (A.12)’de yazılmıştır. 

( )( ) 2T T T T

ij
f tr  = − + W V V V WH H W WH                  (A.12) 

(A.12) eşitliğindeki maliyet fonksiyonunun ( )
ij

W ’ye göre türevinin denklem (A.13) ile 

verilen ifadeye eşit olduğu Bölüm 2’de gösterilmişti. 

( )    T T
W

ij
f∇ = − +VH WHH                   (A.13) 

( )( ) ( ) 0
ij ij

g = − ≤W W  olan kısıtlayıcı fonksiyonun ( )
ij

W ’ye göre türevi ise denklem 

(A.14)’te verilmiştir. 

( )( )
( )

( )( )
( )

= = -1   
ij ij

ij ij

g∂ ∂

∂ ∂

W W

W W
                   (A.14) 

(A.3) eşitliği ile verilen KKT koşulunu kullanarak ( )
ij

W  için µ  değerini bulalım: 

( ) ( ) ( )-   =-  -1 =-    T T T T
ij ij

ij ij
µ µ− + ⇒ − +VH WHH VH WHH               (A.15) 

Denklem (A.7)’deki tamamlayıcı KKT koşulu ( )
ij

W  için denklem (A.16)’da yeniden 

yazılmıştır. 

( ) ( ) ( ) ( ) ( )* * * *0 0T T T T

ij ij ij ij ij
g gµ    = ⇒ − + = − =   
   
W VH WHH W VH WHH W       (A.16) 

W matrisi elemanlarının güncelleme kuralına göre yakınsaklık anında denklem 

(A.17)’de verilen eşitlik söz konusudur. 

( ) ( )
( )

( )
* *

*

T

ij

Tij ij

ij

=
VH

W W
W HH

                    (A.17) 



 59 

Buradan, sırasıyla içler dışlar çarpımı ve taraf tarafa toplama yaparak (A.18) eşitliğine 

ulaşılır. 

( ) ( ) ( ) ( )* * *T T

ij ij ij ij
=W W HH W VH  

( ) ( ) ( ) ( )* * * 0T T

ij ij ij ij
− =W VH W W HH                   (A.18) 

(A.18) ile verilen eşitlik (A.16) denklemindeki KKT koşulunu eşit olduğundan bu 

güncelleme kuralı ile yakınsanan noktanın yerel minimum olduğu sonucuna varılır. 
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EK-B 

Buradaki amaç, gradyan iniş algoritmasında (B.1) eşitliği ile verilen adım boyunun 

seçilmesi durumunda denklem (B.2)’de gösterilen maliyet fonksiyonunun her bir 

güncelleme ANOMA döngüsü için artmayan bir fonksiyon olduğunu ispatlamaktır. 

ANOMA güncelleme kuralları söz konusu adım boyunun seçimi ile çıkarıldığından, 

güncelleme sürecinde maliyet fonksiyonunun artmayacağını göstermek, yakınsaklık 

ispatına denk düşer. Zaten KKT koşullarının incelenmesiyle yapılan yerel minimumluk 

testi ANOMA için Ek-A’da verilmişti.   

( )

( ) ( ) ( )
1

1

ia
ia k

T
j ij ja

j

S

λ
α

+

=

=

∑

k+1

k+1 k+1 k+1

W

W H H

                     (B.1) 

Denklem (B.1)’de görülen ( )jS α , her bir k+1 örnek için kullanılan ağırlıklandırma 

fonksiyonudur. i=1,2,…,n ve a=1,2,….,r olmak üzere Wk+1 karışım matrisinin n.r tane 

elemanının her biri için farklı bir adım boyu seçilir.  

Denklem (B.2)’deki maliyet fonksiyonunda ise v  ve w  sırasıyla V ve Wk+1 

matrislerinin içersinde bulunan n’er tane satır vektöründen birer tanesini temsil 

etmektedirler.  

( ) ( ) ( ) ( )( )2
1

1

2

m

i i i
i

F S α
=

= −∑w v wH                        (B.2) 

Tanım 1: ( )tG ww,  (B.3a) ve (B.3b) denklemleri ile verilen koşulları sağlarsa ( )F w  

maliyet fonksiyonu için yardımcı fonksiyon olarak seçilebilir. tw  burada t anındaki 

w vektörünü ifade etmektedir. 
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( ) ( ), tG F≥w w w                      (B.3a) 

( ) ( )G F=w,w w                      (B.3b) 

Önerme 1: Eğer ( )tG ww,  ( )F w fonksiyonu için yardımcı fonksiyon olarak seçilirse,    

(B.4) denklemi ile verilen güncelleme kuralı altında ( )F w  artmayan bir fonksiyon 

olacaktır. 

( )1 argmin ,t tG+ =
w

w w w                       (B.4) 

Đspat: Denklem (B.3a)’ya göre ( ) ( )1 1,t t tG F+ +≥w w w  eşitsizliği geçerlidir. Denklem 

(B.4) ile verilen güncelleme kuralına göre ise ( ) ( )1, ,t t t tG G+ ≤w w w w  olmak 

durumundadır. Bunun sebebi 1t+w ’in ( ), tG w w  fonksiyonunu enküçülten w değeri 

olarak seçilmesidir. Son olarak  (B.3b) eşitliğine göre ( ) ( )G F=w,w w  olduğu için 

denklem (B.5) yazılır ve buradan ( ) ( )1t tF F+ ≤w w  olduğu, bir başka ifade şekli ile  

( )F w ’nin bir artmayan fonksiyon olduğu görülür. 

( ) ( ) ( ) ( )1 1, ,t t t t t tF G G F+ +≤ ≤ =w w w w w w                    (B.5) 

Önerme 2: K köşegen matrisi denklem (B.6)’deki gibi tanımlansın. Bu durumda (B.7) 

eşitliği ile gösterilen ( )tG ww,  fonksiyonu denklem (B.2)’de verilen maliyet fonksiyonu 

için yardımcı fonksiyon olarak seçilebilir. T matrisi (B.8) denkleminde tanımlanmıştır. 

( )
( )t T

t a

taa
a

K
w

=
w HT

w ,   a=1,2,….r                                            (B.6) 

( ) ( ) ( ) ( ) ( ) ( )( )1

2

T
t t t t t t tG F F K= + − ∇ + − −w,w w w w w w w w w w                 (B.7) 
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( ) ( ) ( )jij ij
S α += k 1T H                      (B.8) 

Đspat: (B.4a) ve (B.4b) denklemleri ile verilen koşulların geçerli olduğunu göstermek 

(B.8) eşitliği ile verilen ( )tG ww, ’nin denklem (B.2)’de gösterilmiş olan ( )F w  için 

yardımcı fonksiyon olarak seçilebileceğini kanıtlamak için yeterlidir. 

Öncelikle (B.7) eşitliğindeki tw ifadelerini w ile değiştirelim. Bu şekilde (B.9) 

eşitliğinden Tanım-1’in ikinci koşulunun sağlandığı görülür.   

( ) ( ) ( ) ( ) ( ) ( ) ( )1

2

T
G F F K= + − ∇ + − −w,w w w w w w w w w w  

               ( )F= w                                                                                                          (B.9) 

Diğer koşulun sağlandığını görmek için ise ( ) ( ), tG F≥w w w koşulu kontrol edilmeli. 

Bu yüzden karşılaştırma işleminde ( )F w ’nin Taylor Teoremi ile elde edilen ve (B.10) 

denkleminde verilen ifadesi kullanılacaktır. 

( ) ( ) ( ) ( ) ( )( )( )1

2

T
t t t t T tF F F= + − ∇ + − −w w w w w w w HT w w 1                (B.10) 

(B.7) ve (B.10) denklemlerini kullanarak (B.3a) koşulu şu şekilde düzenlenebilir: 

( ) ( ) ( ) ( )( ) ( )1
, 0 0

2

T
t t T tG F K− ≥ ⇒ − − − ≥w w w w w w HT w w                (B.11) 

(B.11) denklemindeki ifade ( )( )TK −w HT  matrisi için pozitif yarı tanımlı olma 

koşuludur. Bu sebeple denklem (B.11)’deki koşulun sağlandığını ispatlamak, denklem 

(B.12)’de gösterilen matrisin pozitif yarı tanımlı olduğunu göstermeye denktir. Sonuçta 

                                                 

1 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 21 1

2 2

x

a

f x f a x a f a x a f a x t f t dt′ ′′ ′′′= + − + − + −∫  
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w vektörünün elemanları negatif olmamak durumundadır ve bu yüzden M matrisi 

( )( )TK −w HT ’in ölçeklenmiş halidir. 

( ) ( ) ( )( ) ( )t t T
ab

a bab
= −t tM w w K w HT w  , 1,2,...a r= ; 1, 2,...b r=                   (B.12) 

p, r elemanlı bir vektör olmak üzere (B.13) eşitliği ile verilen matrisin pozitif yarı 

tanımlı olup olmadığı kontrol edilmelidir.   

( ) ( ) ( )
,

T

a ab b
a b

=∑p Mp p M p                    

           ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
, ,

t t t t T t

a b a ba ab b a ab b
a b a b

K= −∑ ∑p w w w p p w HT w p      (B.13) 

K bir köşegen matris olduğu için (B.14)’teki denklem aşağıdaki gibi ifade edilebilir. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2

,

T t t t t T t

b a bb bb b a ab b
b a b

K= −∑ ∑p Mp p w w w p w HT w p  (B.14) 

K matrisi için  (B.6) denklemi ile verilen ifade kullanılırsa (B.15) eşitliği şu şekilde elde 

edilir: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

2

2

,

2 2

,

          

1 1
          

2 2

T t t T t T t

b a bb a ab a ab b
b a ab

t t T t T t

b a bb a ab a ab b
a b ab

t t T

b a a bb a ab
a b

 
= − 

 

= −

 = + −  

∑ ∑ ∑

∑ ∑

∑

p Mp p w w HT p w HT w p

p w w HT p w HT w p

w w HT p p p p

 

( ) ( ) ( ) ( ) ( )( )2
,

          t t T

a bb a ab
a b

= −∑ w w HT p p                                      (B.15) 

ANOMA’da W ve H matrisleri negatif olmayan matrislerden oluştuğu için (B.15) 

eşitliği ile verilmiş ifadenin 0’dan büyük olduğu sonucuna varılır. Sonuç olarak denklem 

(B.16)’daki koşul M matrisinin pozitif yarı tanımlı olduğunu gösterir. Böylece (B.11) 
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koşulu, yani ( ), tG w w ’nin yardımcı fonksiyon seçilebilmesi için gerekli olan son koşul 

sağlanmış olur. 

0T ≥p Mp              (B.16)

  

Şimdi sıra (B.4) denklemi ile verilen güncelleme kuralını gerçeklemektir. Önce 

( ), tG w w ’nin türevini hesaplayıp 0’a eşitleyelim. 

( ) ( ) ( ) ( ) ( )( ) ( )1
.2. 0

2
t t t

a a aa
a

G F
∂

= ∇ + − =
∂

tw,w w w w K w
w

   (B.17) 

Denklem (B.17)’den çekilen ve denklem (B.18)’de gösterilen ( )
a

w  bir sonraki adımda 

kullanılacak olan elemandır.    

( ) ( ) ( ) ( )
( )

11

t

t t t

ta a aa

a

F−+
 ∂
 = −
 ∂
 

w
w w K w

w
             (B.18) 

Denklem (B.18)’deki güncelleme kuralı gradyan inişi eniyileme algoritmasının formüle 

dökülmüş biçimidir. Yakınsaklık garantisi veren adım boyu (B.19) eşitliğinde 

verilmiştir. 

( )
( )

( )
1

t

t a

t Taa

a

K
−
=

w
w

w HT
        (B.19) 

(B.8) denklemi kullanılırsa w satır vektörlerinin bileşiminden oluşan Wk+1 matrisi için 

(B.19) eşitliğindeki ifade denklem (B.20)’de görüldüğü şekilde yazılır. Bu ifadenin 

denklem (B.1)’e eşit olması ispatı tamamlar. 

( )

( ) ( ) ( )
1

1

ia
ia k

T
j ij ja

j

S

λ
α

+

=

=

∑

k+1

k+1 k+1 k+1

W

W H H

      (B.20) 
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