EGE UNiIVERSITESI FEN BiLIMLERI ENSTITUSU
(YUKSEK LiSANS TEZi)

SUPERSIMETRIK WKB YAKLASIMI

H. Hale YILMAZ
Fizik Anabilim Dali
Bilim Dali Kodu : 404.06.01
Sunus Tarihi : 25.11.2008

Tez Danigmani : Prof. Dr. A. Dogan DEMIRHAN

Bornova - iZMIR






H. Hale YILMAZ tarafindan Yuksek Lisans tezi olarak sunulan
“Supersimetrik WKB Yaklasimi” bashkli bu calisma E.U. Lisansist
Egitim ve Ogretim Yonetmeligi ile E.U. Fen Bilimleri Enstitist Egitim
ve Ogretim Yonergesi’nin ilgili hilkimleri uyarinca tarafimizdan
degerlendirilerek savunmaya deger bulunmus ve 25.11.2008 tarihinde
yapilan tez savunma sinavinda aday oybirligi/oycoklugu ile basarili

bulunmustur.

Jiri Uyeleri: imza

Juri Baskani : Prof. Dr. Fevzi BUYUKKILIC ...,
Raportor Uye: Prof. Dr. A. Dogan DEMIRHAN ..o,
Uye : Dog. Dr. Ozhan KAYACAN e,






OZET
SUPERSIMETRIK WKB YAKLASIMI
YILMAZ, H. Hale

Yuksek Lisans Tezi, Fizik Bolumi
Tez Yoneticisi: Prof. Dr. A. Dogan DEMIRHAN

Ekim 2008, 63 sayfa

Bu tezde, supersimetrik kuantum mekanigi tanitilarak, en disuk
mertebeli supersimetrik Wentzel-Kramers-Brillouin (SWKB) yaklasim
yontemi detaylariyla incelendi. Bu yontemin bircok fiziksel uygulama
icin verdigi sonuclar arastirildi ve sekil invaryant potansiyeller icin tam
bagl durum spektrumlarinin elde edilebilecegi gosterildi. Ayrica segilen

D

bazi q deforme potansiyellerin ve V(x)=Ctanh2(ax)—ﬁ
cosh?(ax

potansiyelinin enerji 6zdegerlerini elde etmek i¢in denenen bu yontemin,

bu potansiyeller icin dogrulugu kanitlandi.

Anahtar sozcikler: Sipersimetri, SWKB kuantumlanma kosulu, sekil

Invaryant potansiyeller, g deforme potansiyeller.
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ABSTRACT
SUPERSYMMETRIC WKB APPROXIMATION
YILMAZ, H. Hale

MSc in Physics
Supervisor: Prof. Dr. A.Dogan DEMIRHAN

October, 2008, 63 pages

In this thesis, the lowest order supersymmetric Wentzel-Kramers-
Brillouin (SWKB) approximation method is studied by using the
supersymmetric quantum mechanics. The results obtained by SWKB
approximation method are analysed for shape invariant potentials. It is
shown that the SWKB approximation method gives the exact bound state
spectra for these potentials. Additionally, we attempt to use this method

to obtain the eigenvalues of Haniltonians in the presence of some q

deformed potentials and the potential of V(x)=C tanhz(ax)—ﬁ.
cosh?(ax

Eventually, we show that SWKB approximation method gives exact
results for these potentials.

Keywords: Supersymmetry, SWKB quantization condition, shape

invariant potentials, q deformed potentials.
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1. GiRis

Supersimetri (SUSY), fermiyonlar ve bozonlar arasinda doniistim
olusturmak icin kullanilan bir simetri olup, bu teori; yiksek enerji
fiziginde dogadaki tim temel etkilesimlerin birlestirilmis tanimini elde
etmek icin, 1971 yilinda Ramond tarafindan 6ne strilmustir (Ramond,
1971). Siipersimetri cebiri, komitasyon ve antikomitasyon bagintilarini
iceren kapali bir cebirdir. Fermiyonlar ve bozanlarin sahip oldugu farkl
Ozellikler nedeniyle oldukga ilging olan bu simetri, son yillarda atom
fizigi, molekudl fizigi, nukleer fizik, istatistiksel fizik ve yogun madde

fizigi gibi fizigin bircok dalinda kullanilmaya baslandi.

1981 yilinda Witten, bir boyutlu supersimetrik bir sistemde bir
fermiyon igin, taban durumu hari¢ ayni spektrumlara sahip iki partner
Hamiltonyenden olusan bir Hamiltonyen tanimlamistir ve fermiyonik
bilesenin taban durumu bilindigine go6re, bozonik bilesenin birinci
uyartimis seviyesine ulasilabilecegini gostermistir (Witten, 1981).
Boylece supersimetri; kuantum mekanigine de uygulanmis ve bircok
potansiyel icin enerji 6zdurumlarinin tam olarak elde edilebilecegi
gosterilmistir.

Fizigin cesitli dallarinda ortaya c¢ikan birgok potansiyel igin
Schrédinger denkleminin tam analitik ¢c6zimu bazi durumlarda mimkan
olmamaktadir. Bu durumda pertlrbasyon, varyasyon veya Wentzel-
Kramers-Brillouin  (WKB) gibi yaklasim yontemlerinden birine
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basvurulur. Bunlardan en kullanighsi, bir boyutlu Schrédinger
denklemini ¢dzmek icin kullanilan WKB yaklasimidir. WKB teorisi
ayrica adi diferansiyel denklemlerin ¢ozumlerini elde etmek icin de
kullanilan ¢ok yararli bir yontemdir. Ancak bu yaklasim yontemi sadece
basit harmonik osilatér ve Morse potansiyeli icin tam sonuclar
verilebilmekte, tam c¢ozulebilir diger potansiyeller icin ise bazi
duzeltmeler gerektirmektedir (Hriska et al.,, 1996). Slpersimetrik
kuantum mekanigi kavramindan yola cikarak, 1985 yilinda Comtet ve
calisma arkadaslari WKB yo6ntemini slpersimetrik kuantum mekanigi
(SUSY QM) kavramina uygulamis ve sipersimetrik WKB (SWKB)
kosulu olarak bilinen yari-klasik bir kuantumlanma kosulu énermislerdir
(Comtet, 1985). Bu kosul ile, WKB yonteminin ¢ozemedigi ya da ok
uzun cebirsel islemler sonrasinda ¢6zebildigi potansiyeller ve 1983
yilinda Gendenshtein tarafindan tanimlanan sekil invaryant potansiyeller
(SiP) (Gendenshtein, 1983) icin tam enerji 6zdurum spektrumlari elde

edilmistir.

Bu projenin amaci, en dusik mertebeli SWKB yaklasim
yontemini tanimlamak ve bu yodntemle ilgili bircok fiziksel uygulama
vermektir. Bunun icin bazi sekil invaryant potansiyeller SWKB
yaklasimi ile analitik olarak ¢6zildi ve bulunan sonuclar sekil
invaryanthk kosulu kullanilarak hesaplanan sonuclar ile karsilastirilarak,
SWKB yaklagiminin tim SIP icin dogrulugu incelendi. Ayrica q deforme
Rosen Morse, q deforme degistirilmis Rosen Morse, q deforme Pdschl
Teller ve q deforme hiperbolik Kratzer benzeri potansiyelleri ile

V(x)=C tanh?(ax) - potansiyeli SWKB yéntemi ile analitik

cosh?(ax)
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olarak cozilerek, bu yaklasim yontemi ile bu potansiyeller icin enerji
Ozdeger ve Ozfonksiyonlarinin tam olarak elde edilip edilmedigi

arastirildi.



2. SUPERSIMETRIK KUANTUM MEKANIGI
2.1 Teori

Schrodinger  denklemini  ¢6zmek icin  gelistirilen  6nemli
yontemlerden biri de yaratma ve yok etme operatorleri kullanilarak

Hamiltonyeni carpanlarina ayirmaktir. Buna benzer olarak supersimetrik

kuantum mekaniginde yaratma (A") ve yok etme (A) operatorleri;

o4 wey . A =9 @.1)

A:— =
\2m dx v2m dx

seklinde tanimlanabilir. Bu iki operatérden H; ve H, Hamiltonyen

operatorleri asagidaki sekilde tlretilir,
H,=A"A H,=AA". (2.2)

Bunu gosterebilmek igin, A'A operatér carpimi herhangi bir g(x)
deneme fonksiyonuna uygulanir:

(A*A)g(x):ng(x){ h_d W(x)J[iva(x)Jg(x)

T mdx J2m dx
B _ﬁ d? _h dW(x) )
_( 2mdx*  2m  dx W (X)Jg(x)
n® d? ) h ,
H, =—%d7+vl(x) , V,(x) =W (x)—ﬁw (x) . (2.3)



5

Sonugta H; Hamiltonyenine ulasilir. Ayni zamanda V,(x) potansiyeli,

kendisini Ureten stiper potansiyel cinsinden elde edilir. Ayni islemler H,

Hamiltonyeni icin tekrarlandiginda;

K® d?
2:_%W+V2(X) . VL, (X) =W2(x) +

W' (%) (2.4)

h
\2m
bagintilarina ulagilir. SUSY QM’ de W(x) ‘e sliper potansiyel, V1,(X) ‘ e

de stpersimetrik partner potansiyeller adi verilir.

Bulunan V, potansiyeli icin H, Hamiltonyeninin saglanmasi
gerekmektedir. Bu durumda Hj ile belirlenen orijinal sistem ve onun H;

ile belirlenen stipersimetrik partneri arasinda bir iliski kurulabilir (Khare,
2004). Ornegin EY Hy “in 6zdegeri ise H, ‘nin de 6zdegeri olmalidir. Hy

Hamiltonyeni i¢in Schrddinger denklemi su sekilde yazilir:

HY® =EPYD. (2.5)

Bu orijinal sistem igin yazilmis 6zdeger denklemidir ve E’ de n. durum
dalga fonksiyonu olan ¥ ‘e Karsilik gelen enerji seviyesidir. H;

Hamiltonyeni agikca yazildiginda;

ATAYY = EDYW

ifadesine ulasilir. Denklemin her iki tarafi A operatéri ile soldan

carpildiginda;

AATAYS = AEVY® =EVAYY



6

AAT(AYD) =EP (AYY)

bulunan AA" carpani H, Hamiltonyenine esit oldugundan;

H, (AP) = EP (AY,”) (2.6)

sonucu elde edilir. Bu denkleme gore (A¥®)’in partner sistem igin
Schrodinger denkleminin E® enerjili bir ¢6zimi oldugu sonucuna
varilir,

Benzer islemler partner sistemin H, Hamiltonyeni igin de
yapilirsa, E® n. durum dalga fonksiyonu olan ¥® ‘ye karsilik gelen

enerji seviyesi olmak (zere;

H,(ATW®) = E2 (ATY®) (2.7)

ozdeger denklemi elde edilir ve (A™W()’ nin, orijinal sistem icin
Schrodinger denkleminin E? enerjili bir ¢oziimii oldugu sonucuna

varilir.

Bdylece H; ile belirlenen orijinal sistem ve H, ile belirlenen
stipersimetrik partneri arasindaki iliskinin varligi gosterilmis olur. Bunun
yorumu su sekilde yapilabilir: orijinal sistemin herhangi bir
Ozfonksiyonuna A operatori uygulandiginda, partner sistemin ayni enerji
0zdegerli 6z fonksiyonu elde edilir. Benzer sekilde stipersimetrik partner
sistemin herhangi bir 6zfonksiyonuna A" operatorii uygulandiginda

orijinal sistemin ayni enerjili 6zfonksiyonu elde edilir. Buna gore
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yaratma ve yok etme operatorleri ile ayni enerji seviyesinde gecisler
yapilabildiginden orijinal sistem ile stpersimetrik partneri 0zdes
sistemler olarak distnalebilir. Ancak iki spektrum arasinda bir fark
vardir. Bu da A operatorii yok etme operatori oldugundan orijinal
sistemin taban durumu dalga fonksiyonuna uygulandiginda, bu dalga
fonksiyonunu yok etmesinden kaynaklanir. Boylece orijinal sistemin
taban durumu dalga fonksiyonuna ayni enerjide Karsilik gelen
stipersimetrik partnerinin olmadigl ortaya cikar. (bkz. Sekil 2.1) Oyleyse
partner sistemin taban durumu enerji seviyesi orijinal sistemin birinci
uyartimis durumdaki enerji seviyesine karsilik gelir (Khare, 2004). Buna

gore, iki sistemin enerji seviyeleri arasindaki iligki:

ErEZ) —ED

n+l '

E® =0 (2.8)

bagintilariyla ifade edilebilir. Simdi artik dalga fonksiyonlari arasindaki
iliski de yazilabilir:

AYY =ay? (2.9.2)
AP —pyp® (2.9.b)

Burada a ve b normalizasyon sabiti olup normalizasyon kosulu ve A ile

A" operatorlerinin  adjointlik  6zelligi  kullanilarak  bulunabilir.
Operatorlerin adjointligi f ve g herhangi iki fonksiyon olmak (zere

(Af|g) :<f ‘ATg> esitligi ile verilir. Normalizasyon kosulundan;

<\P (1)

n+1

ATA[WE) = (PO, w8 ) = G (¥

n+l n+l

\Pr&)1> = Eﬁlfl (2-10)
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enerji degeri elde edilir. Bu sonu¢ dalga fonksiyonunun normalize

edilebilir oldugu gercegine dayanir. Adjoint olma 6zelliginden;

(wefaa[w2) = (A we )] (A wd))=ave) dr@)=at @1

n+1

bulunur.|'¥*) *nin de normalize edilebilir oldugu kabul edilerek; (2.10)

ve (2.11) denklemlerinden a sabiti bulunabilir:
a=+[EY . (2.12)

Ayni islemler b sabiti igin de yapilabilir ve sonugta;

b=+,/E® (2.13)

bulunur.

Sabitler yerine yazildiginda birbirinin stpersimetrik partneri olan
iki sistemin dalga fonksiyonlari arasindaki iliski tam olarak elde edilir
(Ozer, 2003):

AP =B P : (2.14)

AY® =+ [EOYD  m=nigin AP =+ E@WD . (2.15)

m+1 n+1



H H,
{1 A (¥
E Yy A/~ 1 E®
i3 ‘t_‘_______/ ‘2
A’r
1 A ¥4
EY v, o m, Lol E®
s .~ '
A‘I‘
1 A 2
LN Ult J A m, .-F”“ e
E. s = E,
t
W A
E;‘I)

Sekil 2.1 iki stipersimetrik partner potansiyelin enerji seviyeleri

W(x) slUper potansiyeli; Vl(x) potansiyelinin  bilindigi
durumlarda, daha once verilen ve Riccati diferansiyel denklemi olarak
adlandirilan denklem (2.3) c¢ozilerek bulunabilir. Bu potansiyeli elde
etmenin bir diger yolu da; A yok etme operatérinun, orijinal sistemin

taban durumu dalga fonksiyonunu yok ettigi gercegini kullanmaktir.

A¥YP (x)=0

[%%w(x)jws“(x):o ,

W(x)=— 1 n P n PP

O Vam A Vam wP(x)

(2.16)

Bu formile goére taban durumu dalga fonksiyonu biliniyorsa W(X)
bulunabilir.
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Ayrica bu ifade dizenlenip, integrali alindiginda taban durumu dalga

fonksiyonuna ulastlabilir:

P (x)=N exp[—@j‘W(y)dy} . (2.17)

Bu durumda da W(x) stper potansiyeli biliniyorsa taban durumu dalga
fonksiyonu bulunabilir. Problem ¢6ztimlerinde denklem (2.3) ve denklem
(2.17) cikis noktalari olarak alinir. Stiper potansiyel, taban durumu dalga
fonksiyonu bilinmiyorsa denklem (2.3), biliniyorsa denklem (2.17)

cozllerek bulunabilir.

Hy ve H; supersimetrik partner  Hamiltonyenlerinin
spektrumlarinin sahip oldugu dejenereligi anlamak igin supersimetri
cebirinin  6zelliklerini  incelemek gerekir. Stpersimetrik partner
potansiyeller ayni 6zdegerlere sahip iki ayri sistem olarak goriinse de
aslinda tek bir sistemdir (Lee, 1999). Hem H; hem de H;
Hamiltonyenlerini kapsayan supersimetrik matris Hamiltonyeni;

H, ©
H=[0 Hj (2.18)

seklinde tanimlanir. Bu matris hem bozonik hem de fermiyonik

operatorler ile komitasyon ve antikomitasyon bagintilarini iceren kapali

cebirin bir parcasidir. Stiperyiikler olarak bilinen Q ve Q" operatérleri:

[0 o0 . [0 A
Q—{A o} , Q _{o 0} (2.19)
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seklinde tanimlanir. Matris Hamiltonyen ve siperyiklerin komdtasyon
ve antikomutasyon bagintilari asagidaki ifadeleri saghyorsa kapali bir
cebir olusturur (Khare, 2004):

[H.Q]=[H.Q"]=0
Q.Q'f=H
Q.Q}={@".Q"}=0. (2.20)

Bu bagintilarin saglandigi su sekilde gosterilebilir:
H, 00 o] [0 O[H, O 0 0
[H.Ql= - -
0 H,|A 0] |A 0|0 H,| |HA-AH, ©
[H,Q]= 0 0| |00 o
U | AATA-AATA 0] [0 o

ATA 0 H 0
T{_ T T _ _ 1 _
{Q,Q }—QQ +Q Q—[ 0 T}{o Hj—H :

wa-aasoa-[3 32 S L2 3o I

Supersimetrik alan teorisine gore; H Hamiltonyeni icindeki H;
fermiyonik kismi H; ise bozonik kismi temsil etmektedir. Q,Q" siiper

yuk operatorleri ise fermiyonik serbestlik derecesini bozonik serbestlik
derecesine, bozonik serbestlik derecesini de fermiyonik serbestlik
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derecesine (enerji seviyesinde degisiklik yapmadan) donUstiren
operatorlerdir (Wellman, 2004; Cooper et al., 1994).

H Hamiltonyeninin 6zvektorleri asagidaki gibi ifade edilebilir.

® 0
HEES

Burada ¥ Hy’in, W¥?de Hz’nin 6zfonksiyonudur. Bu ézvektorlerin

Q,Q" siiperyiik operatorlerinin 6zvektorleri olup olmadigina bakilir ve

sonuca gore Hamiltonyen spektrumlarinin dejenereligi yorumlanabilir
(Lee, 1999).

5 Rl e
o[ ST He)

0 ]_[o of o] _[o]_,
Q\Prff)_AO\Pr;Z’_o_’
(0 | jo AT 0 | |ATYY
“le@ o ofw2|T| o |

Sonuglara bakildiginda H  Hamiltonyeni ile Q,Q" siiperyiik
operatorlerinin ayni  0zvektére sahip olmadigi gordlir. Kuantum
mekaniginde birbiriyle komdit, dejenere olmayan iki operatrden birinin
Ozvektoru bir sabit farkiyla digerinin de 6zvektort olmalidir. Buna gore;
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H Hamiltonyeni, Q,Q"siiperyiikleriyle komiit olmasina ragmen, ayni
Ozvektorlere sahip olmadigindan Hamiltonyen spektrumunun dejenere

oldugu sonucuna vartlir (Lee, 1999).

Artik orijinal sistemin taban durumu dalga fonksiyonuna ayni
enerjide karsilik gelen supersimetrik partnerinin - olmadigr ve
Hamiltonyen spektrumunun dejenere oldugu bilindigine gore; tek olan bu

sifir enerjili  6zdurumun hangi spektrumda yer alacagl sorusu

yanitlanabilir. Bunun icin A, A'operatérleri ile yok edilen ¥, ¥/?
dalga fonksiyonlarinin normalize edilebilirligi incelenmelidir. A¥® =0,

A" ® =0 kosulunu saglayan dalga fonksiyonlari;
¥y (x)=N® exp(— —,2;" fw (y)dy] ,

P32 (x)=N® exr{@fw (y)dy}

seklinde daha once bulunmustu. W&, ¥? dalga fonksiyonlarinin
normalize edilebilmesi igin sonsuzda sifir olmalari gerekir. Ornegin
¥?nin sonsuzda sifir olmasi igin, Ustel ifadenin -ooolmasi
gerekmektedir. Bunun ic¢in slper potansiyel; X — —o’da pozitif,
X — +o0’da negatif olmalidir. Bu durumda ¥/ normalize edilebilir ve
sifir enerjili 6zdurum H’nin spektrumunda yer alir. Ayni incelemeler

¥ icin yapildiginda tam ters sonuglar elde edilir. Boylece iki dalga
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fonksiyonunun ayni anda normalize edilemeyecegi sonucuna varilir
(Cooper et al., 1994; Lee, 1999).

Genel olarak W normalize edilebilir olarak secilir. Yani sifir
enerjili 6zdurum H;’in spektrumunda yer ahlr (bkz. Sekil 2.1). Bu
durumda W stper potansiyeli, H; Hamiltonyenine siipersimetrik partner
H, Hamiltonyenini Uretecek sekilde secilir. Ancak bu potansiyel H,
Hamiltonyenine slpersimetrik partner H; Hamiltonyenini Uretecek
sekilde de segilebilir. Bu durumda W{” normalize edilemez olacagindan,

sifir enerjili  eslesmemis taban durumu H,; Hamiltonyeninin
spektrumunda yer alir (Sekil 2.2).

=
o

[} A @

3]
E;

i
l.l_i.

SR

m
E,

Ll_'m &
n 1

5 (2}

E,

A' o
¥, o
1]

Sekil 2.2 SUSY’nin bozulmadigi durumda verilen alternatif secim
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Bir diger secim de W slper potansiyelinin Hi, H, partner
sistemlerinin, hicbirinin normalize edilebilir taban durumu dalga
fonksiyonuna sahip olmayacak sekilde alinmasidir. Bu secimde A, A’

operatorlerinden hicbiri ¥, ¥® dalga fonksiyonlarini yok edemez.

Dolayisiyla taban durumu dalga fonksiyonlari acikca elde edilemez. Bu

durum bozulmus supersimetri olarak bilinir (Lee, 1999), ( Sekil 2.3).

H H,

1

1y i)
t} ..P2 o e, qu

L]
E,

‘l’,m Py l{,la: N

i @
m o o m Fo @

Sekil 2.3 Bozulmus slipersimetri

Buraya kadar anlatilanlardan sonra soyle bir degerlendirme
yapilabilir. SUSY nin bozulmadigl durumda, n tane bagh durumu olan ve

taban durumu enerjisi E, olan ¢oziilebilir bir V(x) potansiyeli igin,

V, (x)potansiyeli;

V,(x) =W ?2(x) - —==W'(x)=V(x)- E, (2.22)
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olarak alinir ve bdylece sistemin taban durumu enerjisi sifir yapilir
(Khare, 2004; Dutt et al., 1988). H;, H, partner Hamiltonyenlerinin
¢oziimii zor, dalga fonksiyonlari elde edilebilir oldugu durumda A’
operatorii Hy nin taban durumuna uygulanarak H; in birinci uyariimis
durumu elde edilir. Diger durumlari bulmak igin H, ye yeni bir
stpersimetrik partner Hs olusturulur. Dolayisiyla yeni bir W(x) stper
potansiyeli ve yeni A, A" operatérleri olusturulur (Cooper et al., 2001).
Yeni A" operatériinin Hs Un taban durumuna uygulanmasiyla, H, nin
birinci uyariimis seviyesi ve ayni anda Hj in ikinci uyarilmis seviyesi
hesaplanmis olur. Bu islemler devam ettirilerek her seferinde yeni stiper
potansiyeller ve yeni basamak operatorleri olusturularak daha Ust

mertebe uyariimis seviyelere ulastlabilir.

Bu bolimde elde edilen sonucglarin bir uygulamasi olarak;
kuantum mekaniginde iyi bilinen bir sistem olan basit harmonik osilator

modeli ele alinabilir.

2.2 Supersimetrinin Basit Harmonik Osilatére Uygulanmasi:
Bu sistem i¢in potansiyel,
V(X) = %mwzx2

seklinde verilir. Sistemin enerji 6zdurumlarini stpersimetri teorisi ile
elde etmek igin ilk ©6nce super potansiyel tanimlanmahdir. Sutper
potansiyel;
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W(x):\/%x

seklinde secilebilir. Denklem (2.22) kullanilarak;

V(x)—EO:Wz(x)—LW'(x):%mwzxz—h—W : EO:h—W
m

Jom 2

degerine ulasthr ve bu basit harmonik osilatérin taban durumu
enerjisidir. Slper potansiyel bilindigine gore taban durumu dalga

fonksiyonu da denklem (2.17)’den kolayca elde edilebilir:

v2m ¢ |1
$O(x)=N exp(— TJ. , /5 mw? ydy]
0

N sabiti, normalizasyon kosulundan bulunur:

1=T\\y0<l>(x)(2dx | Nz(%jm.

Bu durumda artik taban durumu dalga fonksiyonu tam olarak
yazilabilir.

1/4
\Pgn(x):(gj p(%j |

Tim bagh durumlara ait 6zdurumlari bulabilmek igin énce V, (x)

partner potansiyeli hesaplanir:
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Aw

V,(x) =W 2(x) + W'(x)=%mw2x2+7

h
\2m

Bu olduk¢a onemli bir sonuctur. Goruldigl gibi harmonik
osilatérin  partneri  yine  bir  harmonik  osilatordir.  Sadece

V, (x)=V,(x)+Aw oldugundan, potansiyeli 7w kadar arttirilmistir (Lee,

1999). Bu sabitin eklenmesi dalga fonksiyonlarini degistirmez. Sadece bu

potansiyele karsilik gelen 6zdegerleri bu sabit kadar arttirir. Bu durumda

V, (x)’in taban durumu enerji ozdegeri kolayca elde -edilebilir.
EP =Y +nw=3/2aw Bu deger ayni zamanda E® =EgY

bagintisindan V, (x)’in birinci uyarilmis durumuna ait enerji degeridir.

Bu durumda bir sabit farkiyla orijinal potansiyeli tekrar Uretmis
oluyoruz. Oyleyse V, (x) taban durumu enerjisi bilindiginden ve ayni
stper potansiyel icin potansiyeli yine 7w kadar arttirilmis olan yeni bir

V, (x) partner potansiyelini tanimlayabiliriz. (bkz. Sekil 2.4) Bu
potansiyel igin taban durumu enerjisi 5/2Aaw olup, ayni zamanda V, (x)

potansiyelinin birinci uyariimis durumuna, dolayisiyla V, (x) in ikinci

uyariimis ait enerji degeridir. Isleme bu sekilde devam ederek harmonik

osilator icin enerji 6zdeger spektrumu elde edilir.

E, = [n +%jhw (n=0,1,2...) .
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H; H, Hs
Sizh n=4 n=3 n=2
Tizh —————— =] — =2 e —— =1
5iZh n=2 n=1 n=0
32h n=1 n=0
1/2hw n=0

v, (x) v, (x) V; (x)

Sekil 2.4 Harmonik osilatoriin sipersimetrik partner potansiyellere ait 6zdeger
spektrumu

Sistemin 6zfonsiyonlarini elde etmek icin de benzer olarak
bulunan partner sistemlerin yine bir harmonik osilator oldugu g6z 6nilinde
bulundurularak, stpersimetrik partner potansiyeller i¢in taban durumu
dalga fonksiyonlarinin degismedigi gercegi kullantlir. Yani siipersimetrik
partner sistemin taban durumu dalga fonksiyonu, orijinal sistemin taban
durumu dalga fonksiyonu ile ayni kalacaktir. Buna gore harmonik
osilatériin herhangi bir uyarilmis duruma ait dalga fonksiyonunu elde
etmek icin A" operatorii taban durumu dalga fonksiyonuna istenilen

sayida uygulanir.
¥ =NAH"Y, |, (n=0,1,2...) .

Buradaki N sabiti; dalga fonksiyonlari arasindaki iliskiyi veren denklem
(2.15) kullanilarak bulunabilir.

AT = J(n+D)awY, ,
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2.3 Sekil Invaryantlhig ve Coziilebilir Potansiyeller

Bu kavram ilk defa Gendenshtein (1983) tarafindan tam olarak
cozllebilen potansiyellerin (harmonik osilatér, Coulomb, Morse vb.
potansiyeller) sahip oldugu ortak 6zelligin ne oldugu sorusuna cevap
olarak one surildi ve sekil-invaryant potansiyeller (SIP) su sekilde
tanimlandi.  Stpersimetrik partner potansiyeller sekil bakimindan
birbirinin ayni, sadece icerdikleri parametreler bakimindan farkli ise bu
potansiyellere sekil-invaryant potansiyeller denir (Gendenshtein, 1983).
Bunu su sekilde ifade etmek mumkundur. Eger partner potansiyeller

V,,(x,a,) asagidaki kosulu saglyorsa;

V,(x,a,)=V,(x,a,)+R(a,) (2.23)

V,(x,a,) ve V,(x,a) potansiyellerinin sekil-invaryant oldugu sdylenir.
Burada a,; parametrelerin bir serisi, a,; a,’in bir fonksiyonu
(a, = f(a;)) ve R(a,); X’ den bagimsiz bir sabittir (Dutt et al., 1988;
Khare, 2004).

Sekil-invaryanthk kosulu ve Hamiltonyenlerin hiyerarsisini
kullanarak herhangi bir sekil-invaryant potansiyelin enerji 6zdegerleri ve
Ozfonksiyonlari stpersimetrinin bozulmadigr durumda kolaylikla elde
edilebilir. Bunun igin 0zdeger ve 0zfonksiyonlari SUSY ile birbirine

baglh olan, H, ve H, slipersimetrik partner Hamiltonyenlerden baslanir.

SUSY bozulmadiginda; denklem (2.8) ve (2.17)’den;
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Ey’(a)=0 ‘Pé“(x,al)zNeXp[— le(y,al)dy}

oldugu biliniyor. H,’in tam spektrumunun sekil-invaryant kosulunun
kullaniimasiyla cebirsel olarak kolaylikla elde edilebilecegini gostermek
icin ilk adim olarak; H,’in birinci uyariimis durumuna ait 6zdeger ve

ozfonksiyonu elde edilir. Denklem (2.23)’Un her iki tarafina kinetik

enerji operatort eklendiginde, sekil-invaryantlik kosulu igin;

H,(x,a,) =H,(x,a,)+R(a,) = A*(x,aZ)A(x,az) +R(a,) (2.24)

yazilabilir. Bu iki Hamiltonyen birbirinden bir sabit kadar farkl
oldugundan, bunlarin 6zdegerleri de birbirinden bu sabit kadar farkl ve
0zfonksiyonlari da birbirleriyle orantili olacaktir. Bu su sekilde ifade

edilebilir:

B (a)=E(a,)+R(@) . ¥ (xa)e ¥ (xa,) . (225)

EM(a)=0 ve a, = f(a,) oldugundan E{"(a,)=0olur ve bu durumda

taban durumu dalga fonksiyonu;

¥ (x,a,)c exp{— jX'W (y, az)dy} (2.26)

olarak yazilabilir. SUSY QM’ nin teorisi anlatilirken bulunan denklem
(2.8) ve denklem (2.25) kullanilarak, birinci uyarilmis duruma ait enerji

0zdegeri;
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Ef(a,)=E(a,)=R(a,) (2.27)

elde edilir. Dalga fonksiyonlarini elde etmek icin de benzer olarak; daha
once elde edilen A'W® =+ EPPD 5 ATP® o w®  baginti ile
denklem (2.25)’deki dalga fonksiyonlari arasindaki iliskiyi gosteren ifade

kullanildiginda;

1{11(1) (X' al) oc Af (X’ Q )‘PéZ) (X' al) oc A (X’ Q )qjél) (X! a, ) (2.28)

birinci uyarilmis duruma ait dalga fonksiyonu bulunur. Bu islemlere

devam edildiginde H, in tam spektrumu ve 06zfonksiyonlari elde
edilebilir. Bunun i¢in s=1,2,3... olmak lzere H, Hamiltonyen serisi
olusturulur. Eger H;, n tane bagli duruma sahipse bu durumda
H, H,..H seklinde n tane Hamiltonyen kurulabilir ve p.

n+l
Hamiltonyen H ’de H, in ilk p-1 seviyesi yoktur. H ’nin spektrumu
H,’in geriye kalan spektrumu ile aynidir. Denklem (2.23)’de verilen

sekil-invaryanthk kosulu ard arda kullanilarak, 7#=+2m =1 igin
asagidaki ifadeye ulasilabilir:

2 s—1
H, =—d—2+V1(x,as)+ZR(ak). (2.29)
dx k=1

Burada a, = f**'(a,) yani f fonksiyonu a,’e s-1 kez uygulanmistir.

Denklem (2.23) ve denklem (2.29) kullanilarak H, ve H

s+1

Hamiltonyenlerinin spektrumlari karsilastirilabilir:
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2 s 2 s—1
Hs+1 = _d_2+vl(x’as+1)+ R(ak)= __2+V2(X’as)+ZR(ak)
dx k=1 dx k=1
H, ve H,, Hamiltonyenlerine bakildiginda, bunlarin supersimetrik

partner Hamiltonyenler oldugu gorulur ve H, nin taban durumu enerjisi

hari¢, 6zdes baglh durum spektrumuna sahip olduklari sonucuna varilir.

EP =0 oldugu g6z o6niinde bulundurularak, H.,’nin taban durumu
enerjisi denklem (2.29)’dan;

s—1

ES =>R(a) (2.30)

k=1
olarak bulunur.

Bundan sonra, H, den H_,’e dogru gidilerek H,ve H,’e
ulasthir. H,’in taban durumu enerjisi sifirdir ve n seviyesi de H,

Hamiltonyeninin taban durumu seviyesine Karsilik gelir. Buna gore

H, ’in tam spektrumu su sekilde verilebilir (Dutt et al., 1988):

E9(a)=YR@) . E¥@)=0 . (231)

Herhangi bir sekil-invaryant potansiyel icin tim bagh durumlara

ait O (x,al) dalga fonksiyonu, siiper potansiyel cinsinden yazilabilen
v (x,a,) taban durumu dalga fonksiyonundan kolaylikla elde edilebilir.

Bunu gostermek icin taban durumu dalga fonksiyonu ‘Pél’(x,as) olan,
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denklem (2.25) ile verilen H Hamiltonyeni ele alinir. H 'den H_, ‘e
dogru gidilerek H, Hamiltonyenine ulasthir ve denklem (2.15)
kullanilarak Hl(x,al) orijinal Hamiltonyeni icin n. durum dalga

fonksiyonu, taban durumu dalga fonksiyonu cinsinden elde edilir:

¥O(x,a,)oc AT(x,a,)AT(x,a, )......AT(x,a, )PP (x,a,.,) . (2.32)

Dalga fonksiyonlarinin tam olarak bilinmesi ¢cogu zaman daha

kullanishdir. Bu durumda denklem (2.32)’yi kullanmak yerine;

¥O(x,a,)=A"(x,a, ¥ (x.a,) (2.33)

denklemini kullanmak daha kolaydir (Cooper et al., 1995).

Burada konuyu aciklayan somut bir ornek vermek ve enerji
0zdeger ve 6zfonksiyonlarinin analitik olarak nasil elde edilebilecegini

gostermek oldukca yararh olacaktir. Bunun igin;

W (x) = B tanh x

sliper potansiyelinin Grettigi;
V,(x)=B?-B(B +1)sech’x (2.34)
V,(x)=B? - B(B —1)sech®x (2.35)

partner potansiyeller incelenebilir. Bu iki potansiyelin sekil-invaryant
oldugunu goéstermek igin, Vl(x) potansiyeli (B-1) parametresi cinsinden

tekrar yazilir.
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V,(x,B-1)=(B-1)*-(B-1)Bsech’x . (2.36)
Artik denklem (2.35) ve denklem (2.36) ile verilen iki potansiyel

birbirinden bir sabit kadar farkl oldugundan sekil-invaryantlik kosulu

yazilabilir.

V,(x,B)=V,(x,B-1)+B? - (B -1)’

Buna gore a, =B, a, =B -1 ve R(a,)=B?-(B-1)° =a’ —aZ olur ve
denklem (2.32)’den Vl(x, B)’nin tam bagli durum spektrumu elde

edilebilir.

EY(B)=>R(a)=R(@)+..+R(@a,)=a’ —a2, =B*~(B-n)  (n=0,1,2...).

k=1
Taban durumu dalga fonksiyonu ise, denklem (2.17)’ den;
YO (x,B) o exp{— j B tanh xdx} =sech®x

olarak bulunur. Buradan artik birinci uyarilmis durum dalga fonksiyonu
da elde edilebilir:

¥O(x,a, = B)oc A'(x,B)¥®(x,a, = B-1)

o [—di+ B tanh x} sech®*x oc sech®*x tanh x
X
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islemlere bu sekilde devam ederek V,(x,B)’nin tim bagh durumlara ait

Ozfonsiyonlari bulunabilir (Khare, 2004).
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3. WKB (Wentzel, Kramers, Brillouin) YAKLASIMI

Kuantum mekaniginde bazi problemlerin kesin analitik ¢ozumleri
bulunamadigindan, gerekli kosullar saglandiginda olay klasik mekanik

sinirina indirilerek yaklasik ¢éztimler aranir (Landau et al., 1977).

WKB yontemi, kuantum mekanigi problemlerini ¢6zmek icin
klasik ifadelere dizeltmeler getiren yari-klasik bir yaklasim yontemi
olarak tanimlanir. Bu yontemin kullanilabilmesi icin gerekli kosul,
parcacigin yavas degisen bir potansiyel alaninda, buyik bir momentuma

sahip olmasidir.
Enerjisi E olan bir parcacigin, potansiyelin sabit oldugu bir
bolgede hareket ettigini disunelim. E > V(x) ise dalga fonksiyonu;

P(x)= Ae*™ , k = ;—T[E -V (x)] (3.

seklinde elde edilir. Burada (+) isareti saga dogru giden parcacigin, (-)
isareti ise sola dogru giden pargacigin hareketini tanimlar. Bu dalga
fonksiyonu, dalga boyu A=2z/k ve genligi A olan bir titresim
hareketini belirtir. V(x)’in sabit olmadigl ancak 1 ‘ya gore ¢ok yavas
degistigi durumda bolge birgok tam dalgaboyu icerdiginden, potansiyel
yine sabit gibi dusunulebilir. Ayrica dalgaboyu ve genligin x ile yavas
degismesi ve ¥ ’nin sinusoidal olarak kalmasi potansiyelin sabit olarak

kabul edilebilecegini dogrular.



28

E<V(X) oldugu durumda; V=sabit icin dalga fonksiyonu,

¥(x)= Ae™™ k="M (x)-E] (3.2)

seklinde Ustel bir fonksiyondur. Dolayisiyla E<V(x) i¢in normalize

edilebilir dalga fonksiyonu bulunamaz.

E=V icin ise dalga boyu sonsuza gider. Bu durumu saglayan

noktalara donim noktalari adi verilir.

Klasik Boélge: Schrodinger denklemi;

ot d*Y

e +V(X)¥ =E¥

p(x)=+2mE -V (x)] olmak iizere;

a2 p(x)

=— v 3.3
dx? / (3:3)
seklinde yazilabilir. Burada p(x), toplam enerjisi E ve potansiyel enerjisi
V(x) olan bir parcacigin momentumudur. E > V(x) oldugunda
momentum reel olur ve parcacigin hapsoldugu bu bolgeye klasik bolge

adi verilir (bkz. Sekil 3.1).
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V(x) A

Déniim noktalar

xY

e

Klasik bolge

Sekil 3.1 Klasik bolge

A(x) genligi ve ¢(x) fazi géstermek Uzere; kompleks formdaki

Y dalga fonksiyonu bu reel nicelikler cinsinden yazilabilir.

(x)= A(x)e' (3.4)

Bu dalga fonksiyonu denklem (3.3)’ de yerine yazildiginda, genligi ve

fazi veren iki denklem elde edilir:

A= A{(qﬁ')z —g—} (35)

(a%g)=0 . (3.6)

Denklem (3.6)’nin ¢ozuminden genligin, faza bagl oldugu sonucu ¢ikar:

A*¢'=C? | I (C=sabit) . (3.7)

5



30

Dogrudan cozllemeyen denklem (3.7) icin, A" nin X ile yavas
degistigi kabul edilir ve bu yaklasim ile A", A" nin yaninda ihmal
edilebilir. Bu durumda denklem (3.7);

d¢_.p
dx h

denklemine indirgenir ve artik ¢(x) fazina ulasilabilir:

x) =+ [ p(x)ex . (38)

Denklem (3.7) ve denklem (3.8)’da elde edilen sonuglar denklem

(3.4)’de yerine yazildiginda;

C ei; P(x)dx (39)

sonucu bulunur. Goruldugi gibi, bu yaklasim ile elde edilen dalga
fonksiyonu sadece parcacigin momentumuna baghdir. Bu nedenle
parcacigin hareketi klasik olarak disuntlebilir. Ayrica WKB ydnteminin,
yari-klasik yaklagsim yontemi olarak adlandiriimasinin nedeni de bundan

kaynaklanir.

Parcacigin x noktasinda bulunma olasiligi ise;

0 (3.10)

p(x)
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parcacigin bu noktadaki momentumu (dolayisiyla da hizi) ile ters orantili
olarak elde edilir (Griffiths, 1995).

Bu durumda, boyle bir bélgede hareket eden bir pargacigin enerji

Ozdegerlerini bulabilmek icin;

J.1/2m|E—V(x§|dx=(n+%)h7z . n=0,1,2,... (3.11)

seklinde bir kuantumlanma kosulu yazilabilir (Landau, 1977). Bu
kuantumlanma kosuluna WKB yaklasim yontemi ya da yari-klasik

yaklasim yontemi adi verilir.
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4, SUPERSIMETRIK WKB (SWKB) YAKLASIMI
4.1 En Dustk Mertebeli SWKB Kuantumlanma Kosulu

Yaklasik 20 yil once, supersimetri ile klasik WKB yaklasim
yonteminin birlestirilmesiyle en disuk mertebeli SWKB kuantumlanma
kosulu elde edildi ve bu kosul ile enerji 6zdegerlerinin sadece biyik n
degerleri igin degil ayni zamanda taban durumu icin de bulunulabilecegi
gosterildi (Comtet et al, 1983). Bu bolimde; en disik mertebeli SWKB

kuantumlanma kosulu ayrintili bir sekilde incelenecektir.

Vl(x) potansiyelinin W(x) siper potansiyel cinsinden degeri

denklem (2.3)’de verilmisti. Bu deger denklem (3.11) ile verilen WKB

kuantumlanma kosulunda yerine yazildiginda;

2 . ) o 1
j\/Zm[Eé)—W (x)+mw (x)}dx:(nJrE)h;z (4.1)

Xy

ifadesine ulasilir. Burada potansiyel 7’ye acikca bagh oldugundan

integral;

)
1= | f(x,h)ix=(n+%)hﬂ (4.2)

f(x,h)=\/zm[egﬂ_w2(x)+ \/Z_mW'(x)}

seklinde yazilabilir.
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Cozume ulasabilmek icin | integrali 7 ’nin kuvvetleri cinsinden seriye

acithr.  2#—0 limitinde a ve b klasik donim noktalari

EW =W?(@)=W?2(b) tanimi ile verilir ve limx,, =a,bolur. I'nin 7°ye

gore Taylor Serisi acilimi;

= lim1 = }sz[Egn ~W2(x)dx

dl % of dx, dx,
I, =lim-_ =1im J:%dx+ f(xz,h)d—h— f(xl,h)E

J2m

R e

olmak tizere;

| =1, +7l, +O(r?) (4.3)

seklindedir. Klasik donim noktalarinin tanimindan f (x,,%) = f(x,,%)=0

oldugu bulunur. Buna goére denklem (4.2);

[ anET w?

j\/i (2):(n+%]h7z (4.4)

olur. Bu denklemdeki ikinci integral kolayca hesaplanabilir:

I L)Z(X)dx =sin1[M] . (4.5)
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Supersimetrinin bozulmadigr durumda W(x) slper potansiyeli donim

noktalarinda zit isaretlidir:

~W(a)=W(b)=EY . (4.6)

Bu tanima gore;

b

W (x)

sin™ = 4.7)

a

olacagindan, denklem (4.5)’de verilen integralin sonucu =z olarak

bulunur. Bu sonug denklem (4.4)’de yerine yazildiginda;

Jb. 2mlE® —W2(x)dx = naz n=0,12,... (4.8)

a

en disuk mertebeli stipersimetrik WKB kuantumlanma kosulu elde edilir

(Dutt et al., 1991). Ayni islemler V, (x) potansiyeli igin yapildiginda;

? V2m[ER —W2(x)dx = (n+ DAz n=0,1.2,... (4.9)

sonucu bulunur. Boylece stpersimetrik her iki partner potansiyel icin
SWKB kuantumlanma kosulu bulunmus olur. Bu kosullarla ilgili su

yorumlar siralanabilir:
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a) Denklem (4.8) taban durumu (n=0) icin incelendiginde, a ve b

donim noktalari gakisik olarak elde edilir ve E{’=0 olur. Buna gore

SWKB kuantumlanma kosulu;

K% d?
H=-2 9% v (x
LT omdx? 1)

Hamiltonyeninin taban durumu enerjisi i¢in dogru degeri verir.

b) Denklem (4.8) ve denklem (4.9)’da bulunan sonugclar
karsilastirlldiginda; SWKB  kosulunun,  Bélim.2’de  anlatilan
Hamiltonyen spektrumlarindaki dejenereligi korudugu sonucuna varilir.
Yani SWKB kuantumlanma kosulu ile hesaplanan yaklasik enerji

ozdegerleri E? =E®

n+1

bagintisini dogrular.

c) En dusuk mertebeli SWKB kuantumlanma kosulu sadece
biylik n degerleri icin degil ayni zamanda taban durumu icin de tam
sonuglar verdiginden, klasik WKB yaklasiminin aksine SWKB yaklasimi
ile tm n degerleri igin enerji 6zdegerleri hesaplanabilir (Khare, 2004).
Buna gore SWKB’ nin WKB*den daha iyi sonuclar verdigi soylenebilir.
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4.2  Sekil-invaryant Potansiyeller icin SWKB Kosulunun

Dogrulanmasi

SWKB yonteminin Gstlnliklerinden biri, kuantum mekaniginde
tam olarak ¢ozilebilen potansiyellerin sekil-invaryanthgl 6zelliginin
kullaniimasidir. Bunun sayesinde klasik WKB yaklasiminin ¢6zemedigi
ya da uzun cebirsel islemler sonunda ¢ozebildigi potansiyeller SWKB
yaklasimi ile kolayca cozllebilir ve tam degerlere ulasilir. Yani tim
sekil-invaryant potansiyellerin kesin analitik ¢oziimleri SWKB yaklasimi
ile bulunabilir. Bunu gosterebilmek icin denklem (2.23) ile verilen
partner potansiyellerin sekil invaryantligi kosulu ve denklem (2.29) ile

verilen s. Hamiltonyen kullanilir. H_ Hamiltonyeni icin SWKB

kuantumlanma kosulu;

b

| sz{Eﬁ - kzl; R(a, )-W?(a,, x)}dx = nhz

a

seklinde ifade edilir. SWKB kuantumlanma kosulu taban durumu enerjisi
icin de dogru oldugundan;

s-1
E = z R(ak)

k=1
degeri H, Hamiltonyeni igin dogrudur. H ’den H_,’e dogru
gidildiginde H, ve H, Hamiltonyenlerine ulasilir ve SWKB kosulunun

E® =EY dejenereligini korudugu kullanilirsa SWKB kuantumlanma

n+l
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kosulu ile tim sekil-invaryant potansiyeller icin tam enerji 6zdegerleri
bulunur (Khare, 2004).

Bu, tim SIP icin tam dogru degerler vermeyen klasik WKB
yaklasimina yapilan 6nemli bir dizeltmedir. Klasik WKB yaklasimi
sadece harmonik osilatér ve Morse potansiyeli icin tam degerler verirken,
SWKB yaklasimi ile tim SIP icin tam 6zdurum spektrumlari elde
edilebilir (Hruska et al., 1996).

Bilinen tum sekil-invaryant potansiyellerin (basit harmonik
osilatér, ti¢c boyutlu harmonik osilatér, Coulomb, Morse, Rosen Morse I,
Eckart, Rosen Morse I, Scarf I, Genellestirilmis Péschl Teller, Scarf I )
taban durumu enerjileri WKB ve SWKB yaklasim yontemleri ile
hesaplanmis ve bu potansiyellerin bagli oldugu parametrelere
(A, B,a,w,l) degerler verilerek sayisal sonuglar elde edilmistir. (Hriiska
et al., 1996) Cizelge 4.1’de A/B,a,w,I >0 ve —0<x<0,0<r<w
olmak Uzere; bu potansiyellerden bazilari igin, siiper potansiyeller ve
orijinal sistem icin stipersimetrik partner potansiyeller, Cizelge 4.2 “de de
secilen parametre degerleri ve sayisal olarak elde edilen taban durumu
enerji 6zdegerleri gortlmektedir. Cizelge 4.2 incelendiginde, SWKB
kuantumlanma kosulu ile bulunan degerlerin gercek degerlerle ayni
oldugu sonucuna vartlir. Buna gore tiim SiP’ler icin tam degerler veren
SWKB yaklasiminin, WKB yaklasimina goére tercih edilebilir oldugu

soylenir.
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Potansiyelin W(x) Super -
Adi Potansiyel Vi(x) Potansiyeli
Basit
Harmonik 1, 1 5.
Osilator SV X ;WX
Coulomb | 2 (141) e 11+1) e
B Tt Tt
20+1) r roor2 417+
5 A(A a)tanh’
Rosen Morse | A tanh ax + 2 - + A(A+a)tanh? ax
(hiperbolik) A | (RrAd)
B(A? + 2B tanh ax
B2 )
Eckart _ Acothar +% er A(A-a)coth? ar
B)A’ —2Bcothar
() A oot
Rosen Morse + AlA—«a)cot” ax
. . B 2 _
(trigonometrik) | — Acotax —— A" - Aa
+ 2B cot ax

Cizelge 4.1.Sekil-invaryant potansiyellere karsilik gelen super potansiyel degerleri
ve i =+/2m =1igin hesaplanan siipersimetrik partner potansiyeller(Hrlska et al., 1996)
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Potansiyelin | Parametre EJV® EJ® E, (gercek)
Adi Sec¢imi [eV] [eV] [eV]
Basit

Harmonik - 0,5w 0,5w 0,5w
Osilator
e=1
Coulomb -1 0,0625 0,5677 0,0625
Rosen Morse a=1
(hiperbolik) A=2 1,9167 | 2,1030 1,9167
B=1
a=1
Eckart A=2 7.00 6,51 7.00
B=6
Rosen Morse a=1
(trigonometrik) A=2 3,00 2,5727 3,00
B=2

Cizelge 4.2.Bu potansiyellerin secilen parametre degerlerine gore SWKB ve WKB
kuantumlanma kosullari ile hesaplanan taban durumu enerji 6zdegerleri

(Hriska et al., 1996)
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5. SWKB YONTEMI iLE BAZI POTANSIYELLER iCiN
COZUMLER

5.1 Bazi Sekil invaryant Potansiyellerin Cozumleri

En dusiik mertebeli SWKB kuantumlanma kosulunun tim SIP
icin dogru oldugunu gostermek icin, bu potansiyellerin sekil invaryantlik
kosulu ile hesaplanan enerji 6zdegerleri referans degerler (bkz. Ek.1)
olarak kabul edilerek, SWKB yaklasimi ile ayni degerlerin elde edilip
edilmeyecegi arastirilabilir. Bunun icin bazi SiP, SWKB yontemi ile

¢oOzildl ve sonuclar bu referans degerlerle karstlastirildi.
5.1.1 Poschl-Teller

Bu potansiyel icin stper potansiyel
W (x) = Acoth(ar) — Bcosech(ar) , A(B seklinde  secilebilir
(Khare,2004). Bu potansiyel denklem (4.8)’de verilen 1°"*® integralinde

yerine yazilir.

f\/ZmlErgl) — A% coth? (ar) +2ABcothr) cosecr(ar) _ B2 cosech (ar)Jdr e

Bu integrali ¢ozebilmek igin y:cosh(ar) degisken donistimu yapilir.

Bu doniistim altinda a ve b (a<b) dénim noktalarr;

Ay—-B _ 4 E(l)

Jy? -1 ’
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denkleminin koklerine esit olur. integral tablosunda verilen (bkz. Ek.2)
Is(a,b) tablo integrali kullanilarak bu potansiyel icin enerji 6zdeger
spektrumu elde edilir:

«/2m,/A2—E§”T dy \/_y2+ 2AB EW 1 B?
a

y_
Ly’ -1 (A2-EW)” (A2-EY

n

J2m,/A? —EY
- I5(a,b)

=nhrx |,

2
E(1)=A2—(A—nh—aj . (5.1)

" V2m

Taban durumuna ait Ozfonksiyon ise; 0Ozfonksiyonu super
potansiyel cinsinden veren denklem (2.17) kullanilarak bulunur.
Islemlerde kolaylik saglamasi agisindan normalizasyon sabiti burada 1

olarak alindi. N=1 i¢in taban durumu dalga fonksiyonu;

Jam
sinh(ar ) e &P
PO (x) = [sinh(ar)] # —

[L+ cosh(ar )] e ©

(5.2)

seklinde bulunur.

5.1.2 Scarf I (trigonometrik) W(x)= Atan(ax)— Bsec(ax)

I SWKB

Bu potansiyel integralinde yerine yazilir ve y:sin(ax)

degisken dontsumi yapilir. Bu durumda a ve b déniim noktalari



denkleminin koklerine esit olur. 1,(a,b) tablo integrali (bkz. Ek.2)

kullanilarak, bu potansiyel igin enerji 6zdeger spektrumu elde edilir:

«/2mJA2+E§)T dy J_y2+ 2AB +ESP—B2

o y11_y2 (Az_i_Er(‘l))y (A2+Er(]1))::nh7[ ,

V2m, /A2 +EY

l,=nAr
[04
2
Eﬁ”:(m“—”h] _AZ, (5.3)
\/2m

Scarf | potansiyel i¢in taban durumu dalga fonksiyonu N=1 icin

W (x) = [cos(eex)] e ® P+ sin(eox [ e ® (5.4)

olarak bulunur.

5.1.3 Scarf 11 (hiperbolik) W(x)= Atanh(ax)+ Bsech(ax)

I SWKB

Bu potansiyel integralinde yerine yazilir ve y =sinh(ax)

degisken dontsumi yapilir. Bu durumda a ve b déniim noktalart;
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denkleminin koklerine esit olur. 1,(a,b) tablo integrali (bkz. Ek.2)
kullanilarak, bu potansiyel igin enerji 6zdeger spektrumu elde edilir:

VZm\/AZ—Eﬁ”T dy \/_yz_ 2AB EY - B?
a A 2

ey ) e T

n

/ a2 _ gl
2amyA - Ey I,(a,b)=nnArx
o

2
n
EP:AZ—(A—ﬂj . 5.5
o (5.5)

Scarf 11 potansiyeli igin taban durumu dalga fonksiyonu N=1 i¢in

PO (x)=[sec h(ocx)]%A exp{— @ B tan * (sinh(ax)) (5.6)
o

olarak bulunur.

5.1.4 Rosen Morse Il (hiperbolik) W(x)= Atanh(ax)+ B/ A

Bu potansiyel 1" integralinde yerine yazilir ve y = tanh(ax)

degisken dontsumi yapilir. Bu durumda a ve b doniim noktalari

Ay+% = +,/EY

denkleminin kdklerine esit olur.
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I,(a,b) tablo integrali (bkz. Ek.2) kullanilarak, bu potansiyel icin enerji
0zdeger spektrumu elde edilir (Hriska et al., 1996):

J2mA % dy , 2B EW B2
» jl_ R AR Al vanb vl
Y1 y
VaMA e
o
2 2 2
IR )

)

Rosen Morse Il potansiyel icin taban durumu dalga fonksiyonu
N=1 icin
A2m B

()= fech(a)] exp{—TK } 59

olarak bulunur.
5.2 g-Deforme Potansiyellerin Cézumleri

Burada SWKB yaklasim yontemi baska bir potansiyel sinifi olan
g deforme potansiyeller (bkz. Ek.3) icin incelendi. Bunun icin secilen
bazi q deforme potansiyellerin enerji 6zdegerleri SWKB yontemi ile
hesaplandi ve sonuglar bu potansiyeller icin gercek enerji 6zdegerleri ile
karstlastirildi. Ayrica bu potansiyeller icin taban durumu 6zfonksiyonlari

stiper potansiyel kullanilarak bulundu.
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5.2.1 g deforme Rosen Morse potansiyeli

g deforme Rosen Morse potansiyeli;

U 1_ q e—2w< e—2w<
0 _ 4U .

V, (X) =B, tanh, (ex) - costﬁ () =Pl - 0 m

(5.9)

esitligi ile verilir (Egrifes vd., 1999a) ve bu potansiyel icin siper

potansiyel,

W(x)= Atanhq(ax)+% (5.10)

seklinde secilebilir. Taban durumu enerji 6zdegerini elde etmek icin

denklem (2.22) bu slper potansiyel i¢in ¢ozilur.

B, tanh, (ax)-U, sech? (ax)- ES

2

Aajq sech?(ax)+ A% + %

h
=2Btanh_(ax)—| A*+

Burada, ayni degiskenlerin katsayilari ve sabitler birbirine esitlenerek

stper potansiyelin bagl oldugu parametreler, Vq(x) potansiyelinin bagh

oldugu parametreler cinsinden elde edilir:

ha 8mu
A:ﬁ[—l+ 1+qh2a°2J ,  B=B,/2
BZ
—Efy = A’ Y
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A ve B sabitleri yerine yazilirsa; bu potansiyel icin taban durumu enerji
Ozdegeri:

, 2mB;
2 2 2 2 2
—E(():;) =A2 +B_=h a (—l—‘r 1+ 8mU0 ) +( o - (511)

2 2 2
A* 8m o’ _1+JI:@551;]

oo’

seklinde elde edilir.

Tum baglh durumlara ait enerji 6zdegerlerini bulabilmek igin,

stper potansiyel denklem (4.8) ile verilen en dusik mertebeli SWKB
kuantumlanma kosulunda yazilir:

Xy 2

I\/Zm{Eﬁ) — A’ tanh’(ax)- 2B tanhq(ax)—i—}dx = nhr

2
Xy

Bu integrali ¢ozebilmek icin y = tanhq(ax) degisken donustimu yapilir.

Bu durumda integral sinirlari, klasik doniim noktalarinin tanimindan;

Er(]l) Ergl)
ylza:——q—i2 , yzzbz—q—iz
A A A A

seklinde elde edilir. I4(a,b) tablo integrali kullanilarak, (bkz. Ek.2)

orijinal sistem igin enerji 6zdeger spektrumu su sekilde elde edilir.

V2mA L dy , 2B EY p?
j Yy -y
A

a 1-y?

a
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“ZmAI4(a,b):nh7r ,
(94
2 2 2
EQ:AZ—(A-“—MJ +B__B—2 , (5.12)
v2m

Bu degere denklem (5.11)’deki taban durumu enerji 6zdegeri

eklendiginde;

2
anh B?
o :E&)JFE&‘):_(A_«/Zm] ) nY
(A—“” j (5.13)

J2m

ifadesine ulasilir. Son olarak A ve B sabitleri yerine yazilir ve q deforme
Rosen Morse potansiyeli icin tim bagli durumlara ait enerji 6zdeger

spektrumu asagidaki sekilde elde edilir.

2
L ~(2n+1)+ |1+ 8m2U%
16 gh

- Enq = szg 1 (5.14)
m + h40{4 8 U 2
—(2n+1)+ 1+ m2 ¢
o)/ o7

Taban durumuna karsilik gelen 6zfonksiyon ise N=1 i¢in denklem
(2.17) kullanilarak;
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W& (x) = [sech, ax)] ha exp{—@% } :

W ()= sech, (e il ot Jexp -2M B | (5.5)

seklinde bulunur.
5.2.2 q deforme degistirilmis Rosen Morse potansiyeli

q deforme degistirilmis Rosen Morse potansiyeli;
v, (x)= V_21[1+ tanhq(ax)]—\%[l— tanh? ()] (5.16)

seklinde ifade edilir (Egrifes vd., 1999a) ve bu potansiyel igin slper
potansiyel W(x):Atanhq(ax)+% olarak segilebilir. Taban durumu

enerji Ozdegerini bulabilmek icin denklem (2.22)’den baslanir. Elde
edilen denklemde, ayni degiskenlerin katsayilarinin  birbirine
esitlenmesiyle A,B sabitleri, ve bu sabitlere bagl olan taban durumu

enerji 6zdegeri elde edilebilir:

2
R L = = =2 e

ha?
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Bulunan A,B sabitleri Eél) ifadesinde yerine yazilirsa;

2 2 2 2
g0 Vi _Ma [—1+ 1+ vazj = v, /16 (5.17)
ot

2 8m h2a2 2mV2 2
-1+ 1+
h

a

sonucuna ulastlir,

Tum bagh durumlara ait enerji 6zdegerlerini bulabilmek icin

I SWKB

secilen slper potansiyel integralinde yerine yazilir ve

y:tanhq(ax) degisken donustimu yapihr. Bu durumda a ve b doniim

noktalari;
B

denkleminin koklerine esit olur. I4(a,b) tablo integrali (bkz. Ek.2)

kullanilarak, orijinal sistem icin enerji 6zdeger spektrumu;

\/ZmAj’- dy \/_yz 28 Eq B _

o 11—y TVt T T

“zmAIA(a,b):nhzr

(04
anti )’ B? B?

Egl>:Az_[A__j LB B (5.18)
\/2m

A? (A— onh jz
V2m
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olarak bulunur. Bu degere denklem (5.17)’deki taban durumu enerji
Ozdegeri de eklenir ve A, B sabitleri yerine yazilirsa; q deforme
degistirilmis Rosen Morse potansiyeli igin tim bagh durumlara ait enerji
0zdeger spektrumu elde edilir:

2
2 2 2
P —(@2n+1)+ 1 2% | _ V16 . (5.19)
"2 8m na’ 2
@ nao’ 2mv,
—@n+D)+ 1+
8m na

Taban durumuna Kkarsilik gelen 6zfonksiyon ise N=1 i¢in denklem
(2.17) kullanilarak;

¥ (%)= [SeChq (Otx)]%[f1+ 1%] expg — hzzrz By ~ X (5.20)
14 14 T
i oh’a’ |

seklinde bulunur.

5.2.3 g deforme Podschl Teller potansiyeli
g deforme Pdschl Teller potansiyeli;

VO

~ cosh? (ax) .21)

V, (x)=

olarak verilir (Egrifes vd., 1999b).
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Bu potansiyel icin stper potansiyel W(x)= Atanh,(ex) olarak

secilebilir. Denklem (2.22)’nin bu siiper potansiyel icin ¢ozilmesiyle;

A:%(—u 1+ 8;]2\/02] L EW--A
m ghla

taban durumu enerji 6zdegeri A sabitine bagl olarak elde edilir. Bu sabit

yerine yazilirsa;

2 2
T {—1+ 14-3MYe j (5.22)

8m gh’a’

ifadesine ulastlir.

Tum bagh durumlara ait enerji 6zdegerlerini bulabilmek icin

| SWKB

secilen super potansiyel integralinde yerine yazilir. Integrali

cozebilmek icin y =tanh, (ex) degisken donisimi yapilir. Bu durumda

a ve b doniim noktalart;
_ (6]
Ay =+,/E

denkleminin koklerine esit olur. 1,(a,b) tablo integrali (bkz. Ek.2)

kullanilarak, orijinal sistem icin enerji 6zdeger spektrumu elde edilir:

'ZmAI4(a,b):nh7r :
a
20,222
E(1)=2anh A_a n°h . (5.23)

Mo J2m 2m
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Bu degere denklem (5.22)’deki taban durumu enerji 6zdegeri de eklenir
ve A sabiti yerine yazilirsa; g deforme Pdschl Teller potansiyeli icin tim

bagli durumlara ait enerji 6zdeger spektrumu elde edilir:

2
nla’ [ 8mv
Eng =~ o l:— (2n+1)+ 1+ qh2a02 } : (5.24)

Taban durumuna karsilik gelen 0zfonksiyon ise normalizasyon
sabiti N=1 i¢in denklem (2.17) kullanilarak;

P (x)= [sec h, (ozx)]%[‘“J“(?rinl\;02 ] (5.25)

seklinde bulunur.
5.2.4 q deforme hiperbolik Kratzer Benzeri potansiyel

Bu potansiyel,

V, (x)= V—zl[l—cothq(ax)]+vf[coth§(ax)—l] (5.26)

seklinde wverilir  (Egrifes vd., 1999b) ve super potansiyel
B o , - .
W (x)= Acothq(ax)+x olarak secilebilir. Denklem (2.22)’nin segilen

super potansiyel igin ¢ozilmesiyle, A ve B sabitleri ile bu sabitlere bagl
olan taban durumu enerji 6zdegeri elde edilebilir.
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PO Y L g
A/8m hca 4

e Vi Vo B° n

2 4 A 2m

Sabitler yerine yazilirsa; n=0 icin enerji 6zdegeri,

2 2 2 2
P R T WL\ Vi /16 (5.27)
2 o

8m ha? 2
(10
h

(24

8m
olarak bulunur.

Tum bagh durumlara ait enerji 6zdegerlerini bulabilmek icin

I SWKB

secilen slper potansiyel integralinde yerine yazilir ve

y = coth, (ax) degisken donistimii yapilir. Bu durumda a ve b dénim

noktalart;
B
Ay+—=t EY

denkleminin koklerine esit olur. 1,(a,b) tablo integrali (bkz. Ek.2)

kullanilarak, orijinal sistem icin enerji 6zdeger spektrumu;

2 2 2
£ _ 2 _[A_“_”hJ LB B (5.28)

" V) A (A_ o J
A/2m

olarak bulunur. Bu degere denklem (5.27) ile verilen taban durumu enerji

Ozdegeri de eklenir ve sabitler yerine yazilirsa; q deforme hiperbolik
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Kratzer Benzeri potansiyel icin tim bagli durumlara ait enerji 6zdeger

spektrumu elde edilir.

2 2 2 2
Enz\ﬁ—h @ (_(2n+1)+‘/1+2r;1\£2} - Vi /16 - . (5.29)
2 8m o h2a2 2m\/2
am —(2n+D) + l+h2 >
o

Taban durumuna karsilik gelen 6zfonksiyon ise N=1 i¢in denklem
(2.17) kullanilarak;

P (x) [cosech1 ;( | 2;VZZJexp m Vi X (5.30)

seklinde bulunur.

53  V(x)=Ctanh®(ax)- Potansiyelinin Cozumu

cosh?(ax)

Bu potansiyel (Blyukkilic vd., 1997) icin super potansiyel
W (x)= Atanh(ax) olarak segilebilir. Taban durumu enerji 6zdegeri

denklem (2.22)’den

2 2 2
S 1+8m(S+ZD) + 22"[2 (5.31)
2m | 2 ha h“a

olarak bulunur.
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Tidm bagh durumlara ait enerji 6zdegerlerini bulabilmek icin

| " integralinde yerine yazihr ve

secilen slper potansiyel
y = tanh(ax) degisken déniisimi yapilir. Bu durumda a ve b dénim

noktalari;

denkleminin koklerine esit olur. 1,(a,b) tablo integrali (bkz. Ek.2)

kullanilarak, orijinal sistem icin enerji 6zdeger spektrumu su sekilde elde

edilir.

«/ZmAT dy , EY

A=Y +?:=nh7r

a 1-y
'ZmAIA(a,b):nhn
(24
2,222
EW = f/oéln? A-Z Z”mh (5.32)

Bu degere denklem (5.31)’deki taban durumu enerji 6zdegeri de eklenir
ve A sabiti yerine yazilirsa; bu potansiyel icin tim bagh durumlara ait

enerji 6zdeger spektrumu elde edilir.
2 2

g M) [y Jp, 8MC+OIL fy ) 8mC+D)) 2mD| - o
2m o 2 o o

Taban durumuna karsilik gelen 6zfonksiyon ise N=1 olmak (izere
denklem (2.17)’den;
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8m(C+D)J

P (x)=[sec h(ocx)]%[’1+ o (5.34)

olarak bulunur.
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6. SONUC

Supersimetri, fizigin bircok alanina uygulanan ve dogada bilinen
her parcacigin, supersimetrik bir partneri oldugunu savunan oldukca ilgi

cekici bir konudur.

Daha 6nce, en disuk mertebeli SWKB kuantumlanma kosulunun
WKB yaklasimina gore tercih edilebilir oldugu ve bu kosul ile tim sekil
invaryant potansiyellerin tam 6zdeger spektrumlarina ulasilabilecegi 6ne
strdlmusti (Khare, 2004). Bu tezde, bazi sekil invaryant potansiyellerin
Ozdegerleri SWKB yaklasim yontemi ile hesaplandi. Referans degerler
ile yapilan Kkarsilastirmalar sonucunda, SWKB yontemi ile elde edilen
sonuclarin dogrulugu gosterildi. Ayrica SWKB yaklasim yodntemi
secilen bazi g deforme potansiyeller icin denendi ve elde edilen
sonuclarin  gercek degerlerle birebir uyustugu goraldi. Diger
yontemlerle oldukg¢a uzun islemler sonunda ¢ozilebilen bu potansiyeller

icin SWKB yaklagim yonteminin dogru oldugu sonucuna varildi.
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Ek 1. SWKB ile hesaplanan sekil invaryant potansiyeller icin alinan

referans degerler

Hiperbolik

Potansiyelin W (x) EW w0(x)
Adi: (Khare,2004): | (Khare, 2004): (Dutt, 1988):
Jam
sinh(ar )| e =
Paschl-Teller | Acoth(ar) A2 —(A-na [()]hmB
— Bcosech(ar) [L+cosh(ar )] 4
Jam
——(B-A)
~Scarfl Atan(ax) (Asna) - A [cos(ax)] e
trigonometrik _ Vam
~ Bsec(ax) [L+sin(ox)] e
[sech(ox)]%A
Scarf 11 Atanh(ax) A?—(A-na) B
hiperbolik | + Bsech(ax) exi{—haBtan (s.nm))}
Jam
RosenI IMorse Atanh(ax) 2 —(A-naf fsech (ax)]%’*
+B/A +B?/ N B’ J(A-naf’

vJ2m B
exp —Txx

Cizelge Ek.1: Sekil invaryant potansiyellere karsilik gelen siiper potansiyel degerleri
ile7i=+/2m =1icin hesaplanan enerji 6zdegerleri (Khare, 2004) ve bu potansiyellerin
taban durumu dalga fonksiyonlari (Dutt, 1988)
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Ek 2. integral Tablosu

En dusuk mertebeli SWKB kuantumlanma kosulu kullanilarak,
enerji 6zdegerlerinin hesaplanmasinda karsilasilan integraller asagidaki

tablo integralleri kullanilarak ¢ozilebilir.

= jdy\/(y a)b-y)=

D

lz(a1b)=§d—; (y-a b—y)=§(a+b)—ﬁx/5

|3(a,b)=31+dyyz (y—a)(b—y)—%(«/hr—am—abﬂ) 2
L00)= [ 72 J=alby) - 3o~ JA-ali-B) -G+ )i )
)= [ a6 -9) - 5 (@60 - D632

Burada a ve b dénim noktalari olup, a<b olmak (izere gercel sayilardir

(Hruska et al., 1996).
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Ek 3. g Deforme Hiperbolik Potansiyeller

g>0 reel bir parametre olmak (zere;

sinhq(x):i’ COShq(X)=ﬂ,
2 2
sinh_(x) 1
tanh (x) = —— 2 | h,(x)=—=
anh (x) cosh,(x) sech, (x) cosh,(x)

seklinde verilen hiperbolik fonksiyonlar kullanilarak, g deforme

hiperbolik potansiyeller olarak adlandirilan ve g —1 igin standart

potansiyellere donusen yeni bir potansiyel sinifi tanimlanmistir (Arai,
1991). Bu potansiyellerin enerji  6zdurumlarinin  genellikle q
parametresine bagh olmasi beklenmektedir. Ancak bazi q deforme
potansiyeller igin bulunan enerji 6zdegerleri bu parametreden bagimsiz
olarak elde edilir. Bu durumu saglayan potansiyeller sekil invaryant
potansiyellerdir. Yani q parametresi ile bu potansiyellerin sekilleri
degismez kahr (Egrifes vd., 1999b). q deforme degistirilmis Rosen
Morse potansiyeli ve g deforme hiperbolik Kratzer benzeri potansiyel
sekil invaryant potansiyellere 6rnek gosterilebilir.

Genel hiperbolik fonksiyonlar igin bilinen tum bagintilar, q
deforme hiperbolik fonksiyonlar igin dizenlenebilir:

cosh?(x)—sinh?(x) =g 1-tanh? (x) = gsech?(x)

%sinhq(x): cosh, (x), %coshq(x): sinh , (x)
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