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ÖZET 

SÜPERSİMETRİK WKB YAKLAŞIMI 

YILMAZ, H. Hale 

Yüksek Lisans Tezi, Fizik Bölümü 

Tez Yöneticisi: Prof. Dr. A. Doğan DEMİRHAN 

Ekim 2008, 63 sayfa 

 

 Bu tezde, süpersimetrik kuantum mekaniği tanıtılarak, en düşük 

mertebeli süpersimetrik Wentzel-Kramers-Brillouin (SWKB) yaklaşım 

yöntemi detaylarıyla incelendi. Bu yöntemin birçok fiziksel uygulama 

için verdiği sonuçlar araştırıldı ve şekil invaryant potansiyeller için tam 

bağlı durum spektrumlarının elde edilebileceği gösterildi. Ayrıca seçilen 

bazı q deforme potansiyellerin ve ( ) ( ) ( )x
DxCxV
α

α 2
2

cosh
tanh −=  

potansiyelinin enerji özdeğerlerini elde etmek için denenen bu yöntemin, 

bu potansiyeller için doğruluğu kanıtlandı.  

Anahtar sözcükler: Süpersimetri, SWKB kuantumlanma koşulu, şekil 

İnvaryant potansiyeller, q deforme potansiyeller. 
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ABSTRACT 

SUPERSYMMETRIC WKB APPROXIMATION 

YILMAZ, H. Hale 

MSc in Physics 

Supervisor: Prof. Dr. A.Doğan DEMİRHAN 

October, 2008, 63 pages 

  

 In this thesis, the lowest order supersymmetric Wentzel-Kramers-

Brillouin (SWKB) approximation method is studied by using the 

supersymmetric quantum mechanics. The results obtained by SWKB 

approximation method are analysed for shape invariant potentials. It is 

shown that the SWKB approximation method gives the exact bound state 

spectra for these potentials. Additionally, we attempt to use this method 

to obtain the eigenvalues of Haniltonians in the presence of some q 

deformed potentials and the potential of ( ) ( ) ( )x
DxCxV
α

α 2
2

cosh
tanh −= . 

Eventually, we show that SWKB approximation method gives exact 

results for these potentials. 

Keywords: Supersymmetry, SWKB quantization condition, shape 

invariant potentials, q deformed potentials. 
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1. GİRİŞ 

 
 Süpersimetri (SUSY), fermiyonlar ve bozonlar arasında dönüşüm 

oluşturmak için kullanılan bir simetri olup, bu teori; yüksek enerji 

fiziğinde doğadaki tüm temel etkileşimlerin birleştirilmiş tanımını elde 

etmek için, 1971 yılında Ramond tarafından öne sürülmüştür (Ramond, 

1971). Süpersimetri cebiri, komütasyon ve antikomütasyon bağıntılarını 

içeren kapalı bir cebirdir. Fermiyonlar ve bozanların sahip olduğu farklı 

özellikler nedeniyle oldukça ilginç olan bu simetri, son yıllarda atom 

fiziği, molekül fiziği, nükleer fizik, istatistiksel fizik ve yoğun madde 

fiziği gibi fiziğin birçok dalında kullanılmaya başlandı.  

1981 yılında Witten, bir boyutlu süpersimetrik bir sistemde bir 

fermiyon için, taban durumu hariç aynı spektrumlara sahip iki partner 

Hamiltonyenden oluşan bir Hamiltonyen tanımlamıştır ve fermiyonik 

bileşenin taban durumu bilindiğine göre, bozonik bileşenin birinci 

uyarılmış seviyesine ulaşılabileceğini göstermiştir (Witten, 1981). 

Böylece süpersimetri; kuantum mekaniğine de uygulanmış ve birçok 

potansiyel için enerji özdurumlarının tam olarak elde edilebileceği 

gösterilmiştir. 

Fiziğin çeşitli dallarında ortaya çıkan birçok potansiyel için 

Schrödinger denkleminin tam analitik çözümü bazı durumlarda mümkün 

olmamaktadır. Bu durumda pertürbasyon, varyasyon veya Wentzel-

Kramers-Brillouin (WKB) gibi yaklaşım yöntemlerinden birine 



 
 
2 

başvurulur. Bunlardan en kullanışlısı, bir boyutlu Schrödinger 

denklemini çözmek için kullanılan WKB yaklaşımıdır. WKB teorisi 

ayrıca adi diferansiyel denklemlerin çözümlerini elde etmek için de 

kullanılan çok yararlı bir yöntemdir. Ancak bu yaklaşım yöntemi sadece 

basit harmonik osilatör ve Morse potansiyeli için tam sonuçlar 

verilebilmekte, tam çözülebilir diğer potansiyeller için ise bazı 

düzeltmeler gerektirmektedir (Hrüska et al., 1996). Süpersimetrik 

kuantum mekaniği kavramından yola çıkarak, 1985 yılında Comtet ve 

çalışma arkadaşları WKB yöntemini süpersimetrik kuantum mekaniği 

(SUSY QM) kavramına uygulamış ve süpersimetrik WKB (SWKB) 

koşulu olarak bilinen yarı-klasik bir kuantumlanma koşulu önermişlerdir 

(Comtet, 1985). Bu koşul ile, WKB yönteminin çözemediği ya da çok 

uzun cebirsel işlemler sonrasında çözebildiği potansiyeller ve 1983 

yılında Gendenshtein tarafından tanımlanan şekil invaryant potansiyeller 

(ŞİP) (Gendenshtein, 1983) için tam enerji özdurum spektrumları elde 

edilmiştir.  

Bu projenin amacı, en düşük mertebeli SWKB yaklaşım 

yöntemini tanımlamak ve bu yöntemle ilgili birçok fiziksel uygulama 

vermektir. Bunun için bazı şekil invaryant potansiyeller SWKB 

yaklaşımı ile analitik olarak çözüldü ve bulunan sonuçlar şekil 

invaryantlık koşulu kullanılarak hesaplanan sonuçlar ile karşılaştırılarak, 

SWKB yaklaşımının tüm ŞİP için doğruluğu incelendi. Ayrıca q deforme 

Rosen Morse, q deforme değiştirilmiş Rosen Morse, q deforme Pöschl 

Teller ve q deforme hiperbolik Kratzer benzeri potansiyelleri ile 

( ) ( ) ( )x
DxCxV
α

α 2
2

cosh
tanh −=  potansiyeli SWKB yöntemi ile analitik 
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olarak çözülerek, bu yaklaşım yöntemi ile bu potansiyeller için enerji 

özdeğer ve özfonksiyonlarının tam olarak elde edilip edilmediği 

araştırıldı. 
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2.         SÜPERSİMETRİK KUANTUM MEKANİĞİ 

2.1       Teori 

Schrödinger denklemini çözmek için geliştirilen önemli 

yöntemlerden biri de yaratma ve yok etme operatörleri kullanılarak 

Hamiltonyeni çarpanlarına ayırmaktır. Buna benzer olarak süpersimetrik 

kuantum mekaniğinde yaratma )( †A  ve yok etme (A) operatörleri;  

)(
2

xW
dx
d

m
A +=

h    ,       )(
2

 † xW
dx
d

m
A +−=

h                          (2.1) 

 

şeklinde tanımlanabilir. Bu iki operatörden H1 ve  H2 Hamiltonyen 

operatörleri aşağıdaki şekilde türetilir,  

  AAH †
1 =            ,                  

†
2 AAH =  .                           (2.2) 

 
Bunu gösterebilmek için, AA†  operatör çarpımı herhangi bir g(x) 

deneme fonksiyonuna uygulanır:   

( )

)()()(
22

)()(
2

)(
2

)()(

2
2

22

1
†

xgxW
dx

xdW
mdx

d
m

xgxW
dx
d

m
xW

dx
d

m
xgHxgAA

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+−==

hh

hh

 

)(
2 12

22

1 xV
dx
d

m
H +−=

h       ,         )('
2

)()( 2
1 xW

m
xWxV h
−=  .       (2.3) 
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Sonuçta H1 Hamiltonyenine ulaşılır. Aynı zamanda ( )xV1  potansiyeli, 

kendisini üreten süper potansiyel cinsinden elde edilir. Aynı işlemler H2 

Hamiltonyeni için tekrarlandığında; 

 

)(
2 22

22

2 xV
dx
d

m
H +−=

h     ,     )('
2

)()( 2
2 xW

m
xWxV h
+=               (2.4) 

 
  
bağıntılarına ulaşılır. SUSY QM’ de W(x) ‘e süper potansiyel, V1,2(x) ‘ e 

de süpersimetrik partner potansiyeller adı verilir.  

Bulunan V2 potansiyeli için H2 Hamiltonyeninin sağlanması 

gerekmektedir. Bu durumda H1 ile belirlenen orijinal sistem ve onun H2 

ile belirlenen süpersimetrik partneri arasında bir ilişki kurulabilir (Khare, 

2004). Örneğin )1(
nE  H1 ‘in özdeğeri ise H2 ‘nin de özdeğeri olmalıdır. H1 

Hamiltonyeni için Schrödinger denklemi şu şekilde yazılır: 

)1()1()1(
1 nnn EH Ψ=Ψ .                                                                                (2.5) 

Bu orijinal sistem için yazılmış özdeğer denklemidir ve )1(
nE  de n. durum 

dalga fonksiyonu olan )1(
nΨ  ‘e karşılık gelen enerji seviyesidir. H1 

Hamiltonyeni açıkça yazıldığında; 

)1()1()1(†
nnn EAA Ψ=Ψ                                                                           

ifadesine ulaşılır. Denklemin her iki tarafı A operatörü ile soldan 

çarpıldığında; 

)1()1()1()1()1(†
nnnnn AEAEAAA Ψ=Ψ=Ψ    , 
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)()( )1()1()1(†
nnn AEAAA Ψ=Ψ  ,      

bulunan †AA  çarpanı H2 Hamiltonyenine eşit olduğundan; 

)()( )1()1()1(
2 nnn AEAH Ψ=Ψ           (2.6) 

sonucu elde edilir. Bu denkleme göre  )( )1(
nAΨ ’in partner sistem için 

Schrödinger denkleminin )1(
nE  enerjili bir çözümü olduğu sonucuna 

varılır. 

Benzer işlemler partner sistemin H2 Hamiltonyeni için de 

yapılırsa, )2(
nE  n. durum dalga fonksiyonu olan )2(

nΨ  ‘ye karşılık gelen 

enerji seviyesi olmak üzere;          

)()( )2(†)2()2(†
1 nnn AEAH Ψ=Ψ           (2.7) 

özdeğer denklemi elde edilir ve ( )2(†
nA Ψ )’ nin, orijinal sistem için 

Schrödinger denkleminin )2(
nE  enerjili bir çözümü olduğu sonucuna 

varılır.  

 Böylece H1 ile belirlenen orijinal sistem ve H2 ile belirlenen 

süpersimetrik partneri arasındaki ilişkinin varlığı gösterilmiş olur. Bunun 

yorumu şu şekilde yapılabilir: orijinal sistemin herhangi bir 

özfonksiyonuna A operatörü uygulandığında, partner sistemin aynı enerji 

özdeğerli öz fonksiyonu elde edilir. Benzer şekilde süpersimetrik partner 

sistemin herhangi bir özfonksiyonuna †A  operatörü uygulandığında 

orijinal sistemin aynı enerjili özfonksiyonu elde edilir. Buna göre 
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yaratma ve yok etme operatörleri ile aynı enerji seviyesinde geçişler 

yapılabildiğinden orijinal sistem ile süpersimetrik partneri özdeş 

sistemler olarak düşünülebilir. Ancak iki spektrum arasında bir fark 

vardır. Bu da A operatörü yok etme operatörü olduğundan orijinal 

sistemin taban durumu dalga fonksiyonuna uygulandığında, bu dalga 

fonksiyonunu yok etmesinden kaynaklanır. Böylece orijinal sistemin 

taban durumu dalga fonksiyonuna aynı enerjide karşılık gelen 

süpersimetrik partnerinin olmadığı ortaya çıkar. (bkz. Şekil 2.1) Öyleyse 

partner sistemin taban durumu enerji seviyesi orijinal sistemin birinci 

uyarılmış durumdaki enerji seviyesine karşılık gelir (Khare, 2004). Buna 

göre, iki sistemin enerji seviyeleri arasındaki ilişki:  

)1(
1

)2(
+= nn EE          ,       0)1(

0 =E                     (2.8) 

bağıntılarıyla ifade edilebilir. Şimdi artık dalga fonksiyonları arasındaki 

ilişki de yazılabilir:  

)2()1(
1 nn aA Ψ=Ψ +                                                                                   (2.9.a) 

)1(
1

)2(†
+Ψ=Ψ mm bA .                  (2.9.b) 

Burada a ve b normalizasyon sabiti olup normalizasyon koşulu ve A  ile 
†A  operatörlerinin adjointlik özelliği kullanılarak bulunabilir. 

Operatörlerin adjointliği f ve g herhangi iki fonksiyon olmak üzere 

gAfgAf †=  eşitliği ile verilir. Normalizasyon koşulundan; 

)1(
1

)1(
1

)1(
1

)1(
1

)1(
11

)1(
1

)1(
1

†)1(
1 ++++++++ =ΨΨ=ΨΨ=ΨΨ nnnnnnnn EEHAA            (2.10) 
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enerji değeri elde edilir. Bu sonuç dalga fonksiyonunun normalize 

edilebilir olduğu gerçeğine dayanır. Adjoint olma özelliğinden; 

( ) ( ) 2)2(†)2()1(
1

†)1(
1

)1(
1

†)1(
1 aaaAAAA nnnnnn =ΨΨ=ΨΨ=ΨΨ ++++    (2.11) 

bulunur. )2(
nΨ ’nin de normalize edilebilir olduğu kabul edilerek; (2.10) 

ve (2.11) denklemlerinden a sabiti bulunabilir: 

)1(
1+±= nEa  .         (2.12) 

Aynı işlemler b sabiti için de yapılabilir ve sonuçta; 

)2(
mEb ±=           (2.13) 

bulunur. 

Sabitler yerine yazıldığında birbirinin süpersimetrik partneri olan 

iki sistemin dalga fonksiyonları arasındaki ilişki tam olarak elde edilir 

(Özer, 2003): 

)2()1(
1

)1(
1 nnn EA Ψ±=Ψ ++   ,                  (2.14) 

)1(
1

)2()2(†
+Ψ±=Ψ mmm EA        m=n için    )1(

1
)2()2(†

+Ψ±=Ψ nnn EA   .   (2.15) 
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Şekil 2.1 İki süpersimetrik partner potansiyelin enerji seviyeleri 

 

 W(x) süper potansiyeli; ( )xV1  potansiyelinin bilindiği 

durumlarda, daha önce verilen ve Riccati diferansiyel denklemi olarak 

adlandırılan denklem (2.3) çözülerek bulunabilir. Bu potansiyeli elde 

etmenin bir diğer yolu da; A yok etme operatörünün, orijinal sistemin 

taban durumu dalga fonksiyonunu yok ettiği gerçeğini kullanmaktır.   

0)()1(
0 =Ψ xA   , 

( ) ( ) 0
2

)1(
0 =Ψ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ xxW

dx
d

m
h      , 

( ) ( )
( ) ( )

( )x
x

mdx
xd

mx
xW )1(

0

)1(
0

)1(
0

)1(
0

'
22

1
Ψ
Ψ

−=
Ψ

Ψ
−=

hh      .                     (2.16) 

Bu formüle göre taban durumu dalga fonksiyonu biliniyorsa W(x) 

bulunabilir.  
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Ayrıca bu ifade düzenlenip, integrali alındığında taban durumu dalga 

fonksiyonuna ulaşılabilir: 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=Ψ ∫

x

dyyWmNx )(2exp)1(
0

h
   .                                               (2.17) 

Bu durumda da W(x) süper potansiyeli biliniyorsa taban durumu dalga 

fonksiyonu bulunabilir. Problem çözümlerinde denklem (2.3) ve denklem 

(2.17) çıkış noktaları olarak alınır. Süper potansiyel, taban durumu dalga 

fonksiyonu bilinmiyorsa denklem (2.3), biliniyorsa denklem (2.17) 

çözülerek bulunabilir.  

 H1 ve H2 süpersimetrik partner Hamiltonyenlerinin 

spektrumlarının sahip olduğu dejenereliği anlamak için süpersimetri 

cebirinin özelliklerini incelemek gerekir. Süpersimetrik partner 

potansiyeller aynı özdeğerlere sahip iki ayrı sistem olarak görünse de 

aslında tek bir sistemdir (Lee, 1999). Hem H1 hem de H2 

Hamiltonyenlerini kapsayan süpersimetrik matris Hamiltonyeni; 

⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

0
0

H
H

H          (2.18) 

şeklinde tanımlanır. Bu matris hem bozonik hem de fermiyonik 

operatörler ile komütasyon ve antikomütasyon bağıntılarını içeren kapalı 

cebirin bir parçasıdır. Süperyükler olarak bilinen Q  ve †Q  operatörleri: 

⎥
⎦

⎤
⎢
⎣

⎡
=

0
00

A
Q                   ,                   ⎥

⎦

⎤
⎢
⎣

⎡
=

00
0 †

† A
Q      (2.19) 
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şeklinde tanımlanır. Matris Hamiltonyen ve süperyüklerin komütasyon 

ve antikomütasyon bağıntıları aşağıdaki ifadeleri sağlıyorsa kapalı bir 

cebir oluşturur (Khare, 2004): 

[ ] [ ] 0,, † == QHQH   , 

{ } HQQ =†,   , 

{ } { } 0,, †† == QQQQ  .                                        (2.20) 

Bu bağıntıların sağlandığı şu şekilde gösterilebilir: 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

=⎥
⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=

0
00

0
0

0
00

0
00

0
0

,
122

1

2

1

AHAHH
H

AAH
H

QH    

 

[ ] 0
00
00

0
00

   , †† =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
−

=
AAAAAA

QH   , 

 

{ } H
H

H
AA

AA
QQQQQQ =⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=+=

2

1
†

†
†††

0
0

0
0

,   , 

 

{ } 0
00
00

0
00

0
00

0
00

0
00

, =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
=+=

AAAA
QQQQQQ  . 

 Süpersimetrik alan teorisine göre; H Hamiltonyeni içindeki H1 

fermiyonik kısmı H2 ise bozonik kısmı temsil etmektedir. Q , †Q  süper 

yük operatörleri ise fermiyonik serbestlik derecesini bozonik serbestlik 

derecesine, bozonik serbestlik derecesini de fermiyonik serbestlik 
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derecesine (enerji seviyesinde değişiklik yapmadan) dönüştüren 

operatörlerdir (Wellman,  2004; Cooper et al., 1994). 

 H Hamiltonyeninin özvektörleri aşağıdaki gibi ifade edilebilir. 

⎥
⎦

⎤
⎢
⎣

⎡Ψ
0

)1(
n       ,        ⎥

⎦

⎤
⎢
⎣

⎡
Ψ )2(

0

m

        (2.21) 

Burada )1(
nΨ  H1’in,  )2(

mΨ de H2’nin özfonksiyonudur. Bu özvektörlerin 

Q , †Q  süperyük operatörlerinin özvektörleri olup olmadığına bakılır ve 

sonuca göre Hamiltonyen spektrumlarının dejenereliği yorumlanabilir 

(Lee, 1999). 

⎥
⎦

⎤
⎢
⎣

⎡
Ψ

=⎥
⎦

⎤
⎢
⎣

⎡Ψ
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡Ψ
)1(

)1()1( 0
00

00
0 n

nn

AA
Q ,            

0
0
0

000
0

0

)1(†)1(
† =⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡Ψ
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡Ψ nn A
Q   . 

 

0
0
00

0
000

)2()2( =⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
Ψ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
Ψ mm A

Q ,               

⎥
⎦

⎤
⎢
⎣

⎡ Ψ
=⎥

⎦

⎤
⎢
⎣

⎡
Ψ⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
Ψ 0

0
00

00 )2(†

)2(

†

)2(
† m

mm

AA
Q   . 

Sonuçlara bakıldığında H Hamiltonyeni ile Q , †Q  süperyük 

operatörlerinin aynı özvektöre sahip olmadığı görülür. Kuantum 

mekaniğinde birbiriyle komüt, dejenere olmayan iki operatörden birinin 

özvektörü bir sabit farkıyla diğerinin de özvektörü olmalıdır. Buna göre; 
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H Hamiltonyeni, Q , †Q süperyükleriyle komüt olmasına rağmen, aynı 

özvektörlere sahip olmadığından Hamiltonyen spektrumunun dejenere 

olduğu sonucuna varılır (Lee, 1999). 

 Artık orijinal sistemin taban durumu dalga fonksiyonuna aynı 

enerjide karşılık gelen süpersimetrik partnerinin olmadığı ve 

Hamiltonyen spektrumunun dejenere olduğu bilindiğine göre; tek olan bu 

sıfır enerjili özdurumun hangi spektrumda yer alacağı sorusu 

yanıtlanabilir. Bunun için A , †A operatörleri ile yok edilen )1(
0Ψ , )2(

0Ψ  

dalga fonksiyonlarının normalize edilebilirliği incelenmelidir. 0)1(
0 =ΨA , 

0)2(
0

† =ΨA  koşulunu sağlayan dalga fonksiyonları;  

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=Ψ ∫

x

dyyWmNx )(2exp)1()1(
0

h
   , 

( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Ψ ∫

x

dyyWmNx )(2exp)2()2(
0

h
    

şeklinde daha önce bulunmuştu. )1(
0Ψ , )2(

0Ψ  dalga fonksiyonlarının 

normalize edilebilmesi için sonsuzda sıfır olmaları gerekir. Örneğin 
)2(

0Ψ ’nin sonsuzda sıfır olması için, üstel ifadenin -∞ olması 

gerekmektedir. Bunun için süper potansiyel; −∞→x ’da pozitif, 

+∞→x ’da negatif olmalıdır. Bu durumda )2(
0Ψ  normalize edilebilir ve 

sıfır enerjili özdurum H2’nin spektrumunda yer alır. Aynı incelemeler 
)1(

0Ψ  için yapıldığında tam ters sonuçlar elde edilir. Böylece iki dalga 
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fonksiyonunun aynı anda normalize edilemeyeceği sonucuna varılır 

(Cooper et al., 1994; Lee, 1999).  

 Genel olarak )1(
0Ψ  normalize edilebilir olarak seçilir. Yani sıfır 

enerjili özdurum H1’in spektrumunda yer alır (bkz. Şekil 2.1). Bu 

durumda W süper potansiyeli, H1 Hamiltonyenine süpersimetrik partner 

H2 Hamiltonyenini üretecek şekilde seçilir. Ancak bu potansiyel H2 

Hamiltonyenine süpersimetrik partner H1 Hamiltonyenini üretecek 

şekilde de seçilebilir. Bu durumda )1(
0Ψ  normalize edilemez olacağından, 

sıfır enerjili eşleşmemiş taban durumu H2 Hamiltonyeninin 

spektrumunda yer alır (Şekil 2.2).   

 

 

Şekil 2.2 SUSY’nin bozulmadığı durumda verilen alternatif seçim 

 



 
 

15

Bir diğer seçim de W süper potansiyelinin H1, H2 partner 

sistemlerinin, hiçbirinin normalize edilebilir taban durumu dalga 

fonksiyonuna sahip olmayacak şekilde alınmasıdır. Bu seçimde  A , †A   

operatörlerinden hiçbiri )1(Ψ , )2(Ψ  dalga fonksiyonlarını yok edemez. 

Dolayısıyla taban durumu dalga fonksiyonları açıkça elde edilemez. Bu 

durum bozulmuş süpersimetri olarak bilinir (Lee, 1999), ( Şekil 2.3). 

 

Şekil 2.3 Bozulmuş süpersimetri 

 Buraya kadar anlatılanlardan sonra şöyle bir değerlendirme 

yapılabilir. SUSY nin bozulmadığı durumda, n tane bağlı durumu olan ve 

taban durumu enerjisi 0E  olan çözülebilir bir ( )xV  potansiyeli için, 

( )xV1 potansiyeli;                                                      

( ) ( ) ( ) ( ) oExVxW
m

xWxV −=−= '
2

2
1

h                                            (2.22)                                  
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olarak alınır ve böylece sistemin taban durumu enerjisi sıfır yapılır 

(Khare, 2004; Dutt et al., 1988). H1, H2 partner Hamiltonyenlerinin 

çözümü zor, dalga fonksiyonları elde edilebilir olduğu durumda †A  

operatörü H2 nin taban durumuna uygulanarak H1 in birinci uyarılmış 

durumu elde edilir. Diğer durumları bulmak için H2 ye yeni bir 

süpersimetrik partner H3 oluşturulur. Dolayısıyla yeni bir W(x) süper 

potansiyeli ve yeni A , †A  operatörleri oluşturulur (Cooper et al., 2001). 

Yeni †A  operatörünün H3 ün taban durumuna uygulanmasıyla, H2 nin 

birinci uyarılmış seviyesi ve aynı anda H1 in ikinci uyarılmış seviyesi 

hesaplanmış olur. Bu işlemler devam ettirilerek her seferinde yeni süper 

potansiyeller ve yeni basamak operatörleri oluşturularak daha üst 

mertebe uyarılmış seviyelere ulaşılabilir. 

 Bu bölümde elde edilen sonuçların bir uygulaması olarak; 

kuantum mekaniğinde iyi bilinen bir sistem olan basit harmonik osilatör 

modeli ele alınabilir.  

  

2.2      Süpersimetrinin Basit Harmonik Osilatöre Uygulanması: 

 Bu sistem için potansiyel,  

22

2
1)( xmwxV =  

şeklinde verilir. Sistemin enerji özdurumlarını süpersimetri teorisi ile 

elde etmek için ilk önce süper potansiyel tanımlanmalıdır. Süper 

potansiyel; 



 
 

17

( ) xmwxW 2

2
1

=  

şeklinde seçilebilir. Denklem (2.22) kullanılarak; 

22
1)('

2
)()( 222

0
wxmwxW

m
xWExV hh

−=−=−   ,           
20
wE h

=   

değerine ulaşılır ve bu basit harmonik osilatörün taban durumu 

enerjisidir. Süper potansiyel bilindiğine göre taban durumu dalga 

fonksiyonu da denklem (2.17)’den kolayca elde edilebilir: 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=Ψ ∫

x

ydymwmNx
0

2)1(
0 2

12exp
h

   . 

N sabiti, normalizasyon koşulundan bulunur: 

( )∫
∞

∞−

Ψ= dxx
2)1(

01       ,        
4/1

⎟
⎠
⎞

⎜
⎝
⎛=

hπ
mwN . 

Bu durumda artık taban durumu dalga fonksiyonu tam olarak 

yazılabilir. 

( ) ⎟
⎠
⎞

⎜
⎝
⎛−⎟

⎠
⎞

⎜
⎝
⎛=Ψ 2

4/1
)1(

0 2
exp xmwmwx

hhπ
  . 

Tüm bağlı durumlara ait özdurumları bulabilmek için önce ( )xV2  

partner potansiyeli hesaplanır: 
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( )
22

1)('
2

)( 222
2

wxmwxW
m

xWxV hh
+=+=    . 

Bu oldukça önemli bir sonuçtur. Görüldüğü gibi harmonik 

osilatörün partneri yine bir harmonik osilatördür. Sadece 

( ) ( ) wxVxV h+= 12  olduğundan, potansiyeli wh  kadar arttırılmıştır (Lee, 

1999). Bu sabitin eklenmesi dalga fonksiyonlarını değiştirmez. Sadece bu 

potansiyele karşılık gelen özdeğerleri bu sabit kadar arttırır. Bu durumda 

( )xV2 ’in taban durumu enerji özdeğeri kolayca elde edilebilir. 

wwEE hh 2/3)1(
0

)2(
0 =+=  Bu değer aynı zamanda )1(

1
)2(

0 EE =  

bağıntısından ( )xV1 ’in birinci uyarılmış durumuna ait enerji değeridir.  

 Bu durumda bir sabit farkıyla orijinal potansiyeli tekrar üretmiş 

oluyoruz. Öyleyse ( )xV2  taban durumu enerjisi bilindiğinden ve aynı 

süper potansiyel için potansiyeli yine wh  kadar arttırılmış olan yeni bir  

( )xV3  partner potansiyelini tanımlayabiliriz. (bkz. Şekil 2.4) Bu 

potansiyel için taban durumu enerjisi wh2/5  olup, aynı zamanda ( )xV2  

potansiyelinin birinci uyarılmış durumuna, dolayısıyla ( )xV1  in ikinci 

uyarılmış ait enerji değeridir. İşleme bu şekilde devam ederek harmonik 

osilatör için enerji özdeğer spektrumu elde edilir.  

wnEn h⎟
⎠
⎞

⎜
⎝
⎛ +=

2
1                        (n=0,1,2…)  . 
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                     H1                                              H2                                                  H3 

 

                    ( )xV1                           ( )xV2                           ( )xV3  
 

Şekil 2.4 Harmonik osilatörün süpersimetrik partner potansiyellere ait özdeğer  
spektrumu 

 

Sistemin özfonsiyonlarını elde etmek için de benzer olarak 

bulunan partner sistemlerin yine bir harmonik osilatör olduğu göz önünde 

bulundurularak, süpersimetrik partner potansiyeller için taban durumu 

dalga fonksiyonlarının değişmediği gerçeği kullanılır. Yani süpersimetrik 

partner sistemin taban durumu dalga fonksiyonu, orijinal sistemin taban 

durumu dalga fonksiyonu ile aynı kalacaktır. Buna göre harmonik 

osilatörün herhangi bir uyarılmış duruma ait dalga fonksiyonunu elde 

etmek için †A  operatörü taban durumu dalga fonksiyonuna istenilen 

sayıda uygulanır.  

0
† )( Ψ=Ψ n

n AN    ,               (n=0,1,2…)   .    

Buradaki N sabiti; dalga fonksiyonları arasındaki ilişkiyi veren denklem 

(2.15) kullanılarak bulunabilir. 

1
† )1( +Ψ+=Ψ nn wnA h    .         
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2.3 Şekil İnvaryantlığı ve Çözülebilir Potansiyeller  

Bu kavram ilk defa Gendenshtein (1983) tarafından tam olarak 

çözülebilen potansiyellerin (harmonik osilatör, Coulomb, Morse vb. 

potansiyeller) sahip olduğu ortak özelliğin ne olduğu sorusuna cevap 

olarak öne sürüldü ve şekil-invaryant potansiyeller (ŞİP) şu şekilde 

tanımlandı. Süpersimetrik partner potansiyeller şekil bakımından 

birbirinin aynı, sadece içerdikleri parametreler bakımından farklı ise bu 

potansiyellere şekil-invaryant potansiyeller denir (Gendenshtein, 1983). 

Bunu şu şekilde ifade etmek mümkündür. Eğer partner potansiyeller 

( )12,1 ,axV  aşağıdaki koşulu sağlıyorsa;  

)(),(),( 12112 aRaxVaxV +=                     (2.23) 

),( 21 axV  ve ),( 12 axV  potansiyellerinin şekil-invaryant olduğu söylenir. 

Burada 1a ; parametrelerin bir serisi, 2a ; 1a ’in bir fonksiyonu 

( )( 1 2 afa = ) ve )( 1aR ; x’ den bağımsız bir sabittir (Dutt et al., 1988;  

Khare, 2004). 

 Şekil-invaryantlık koşulu ve Hamiltonyenlerin hiyerarşisini 

kullanarak herhangi bir şekil-invaryant potansiyelin enerji özdeğerleri ve 

özfonksiyonları süpersimetrinin bozulmadığı durumda kolaylıkla elde 

edilebilir. Bunun için özdeğer ve özfonksiyonları SUSY ile birbirine 

bağlı olan, 1H  ve 2H  süpersimetrik partner Hamiltonyenlerden başlanır. 

SUSY bozulmadığında; denklem (2.8) ve (2.17)’den;  



 
 

21

0)( 1
)1(

0 =aE       ,        
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=Ψ ∫

x

dyayWNax ),(exp),( 111
)1(

0              

olduğu biliniyor. 1H ’in tam spektrumunun şekil-invaryant koşulunun 

kullanılmasıyla cebirsel olarak kolaylıkla elde edilebileceğini göstermek 

için ilk adım olarak; 1H ’in birinci uyarılmış durumuna ait özdeğer ve 

özfonksiyonu elde edilir. Denklem (2.23)’ün her iki tarafına kinetik 

enerji operatörü eklendiğinde, şekil-invaryantlık koşulu için; 

)(),(),()(),(),( 122
†

12112 aRaxAaxAaRaxHaxH +=+=                (2.24) 

yazılabilir. Bu iki Hamiltonyen birbirinden bir sabit kadar farklı 

olduğundan, bunların özdeğerleri de birbirinden bu sabit kadar farklı ve 

özfonksiyonları da birbirleriyle orantılı olacaktır. Bu şu şekilde ifade 

edilebilir: 

( ) ( ) ( )12
)1(

01
)2(

0 aRaEaE +=   ,        ( ) ( )2
)1(

01
)2(

0 ,, axax Ψ∝Ψ    .           (2.25) 

( ) 01
)1(

0 =aE  ve ( )12 afa =  olduğundan ( ) 0E 2
(1)
0 =a olur ve bu durumda 

taban durumu dalga fonksiyonu;  

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝Ψ ∫

x

dyayWax ),(exp, 22
)1(

0                                                      (2.26) 

olarak yazılabilir. SUSY QM’ nin teorisi anlatılırken bulunan denklem 

(2.8) ve denklem (2.25) kullanılarak, birinci uyarılmış duruma ait enerji 

özdeğeri; 
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( ) ( ) ( )11
)2(

01
)1(

1 aRaEaE ==                                                                  (2.27) 

elde edilir. Dalga fonksiyonlarını elde etmek için de benzer olarak; daha 

önce elde edilen  )1(
1

)2(†)1(
1

)2()2(†
++ Ψ∝Ψ→Ψ±=Ψ nnnnn AEA  bağıntı ile 

denklem (2.25)’deki dalga fonksiyonları arasındaki ilişkiyi gösteren ifade 

kullanıldığında; 

( ) ( ) ( ) ( ) ( )2
)1(

01
†

1
)2(

01
†

1
)1(

1 ,,,,, axaxAaxaxAax Ψ∝Ψ∝Ψ                     (2.28)       

birinci uyarılmış duruma ait dalga fonksiyonu bulunur. Bu işlemlere 

devam edildiğinde 1H  in tam spektrumu ve özfonksiyonları elde 

edilebilir. Bunun için s=1,2,3… olmak üzere sH  Hamiltonyen serisi 

oluşturulur. Eğer 1H  n tane bağlı duruma sahipse bu durumda 

132 ...., +nHHH  şeklinde n tane Hamiltonyen kurulabilir ve p. 

Hamiltonyen pH ’de 1H  in ilk p–1 seviyesi yoktur. pH ’nin spektrumu 

1H ’in geriye kalan spektrumu ile aynıdır. Denklem (2.23)’de verilen 

şekil-invaryantlık koşulu ard arda kullanılarak, 12 == mh  için 

aşağıdaki ifadeye ulaşılabilir: 

( ) ( )∑
−

=

++−=
1

1
12

2

,
s

k
kss aRaxV

dx
dH  .                                                    (2.29) 

Burada )( 1
1 afa s

s
−=  yani f fonksiyonu 1a ’e s-1 kez uygulanmıştır. 

Denklem (2.23) ve denklem (2.29) kullanılarak sH  ve 1+sH  

Hamiltonyenlerinin spektrumları karşılaştırılabilir: 
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( ) ( ) ( ) ( )∑∑
−

==
++ ++−=++−=

1

1
22

2

1
112

2

1 ,,
s

k
ks

s

k
kss aRaxV

dx
daRaxV

dx
dH      .             

sH  ve 1+sH  Hamiltonyenlerine bakıldığında, bunların süpersimetrik 

partner Hamiltonyenler olduğu görülür ve sH  nin taban durumu enerjisi 

hariç, özdeş bağlı durum spektrumuna sahip oldukları sonucuna varılır. 

0)1(
0 =E  olduğu göz önünde bulundurularak, sH ’nin taban durumu 

enerjisi denklem (2.29)’dan; 

( )∑
−

=

=
1

1

)(
0

s

k
k

s aRE          (2.30) 

olarak bulunur. 

 Bundan sonra, sH  den 1−sH ’e doğru gidilerek 2H ve 1H ’e 

ulaşılır. 1H ’in taban durumu enerjisi sıfırdır ve n seviyesi de nH  

Hamiltonyeninin taban durumu seviyesine karşılık gelir. Buna göre 

1H ’in tam spektrumu şu şekilde verilebilir (Dutt et al., 1988): 

( ) ( )∑
=

=
n

k
kn aRaE

1
1

)1(           ,         ( ) 01
)1( =aEn     .    (2.31) 

 Herhangi bir şekil-invaryant potansiyel için tüm bağlı durumlara 

ait ( )1
)1( ,axnΨ  dalga fonksiyonu, süper potansiyel cinsinden yazılabilen 

( )1
)1(

0 ,axΨ  taban durumu dalga fonksiyonundan kolaylıkla elde edilebilir.  

Bunu göstermek için taban durumu dalga fonksiyonu ( )sax,)1(
0Ψ  olan, 
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denklem (2.25) ile verilen sH Hamiltonyeni ele alınır. sH 'den 1−sH  ‘e 

doğru gidilerek 1H  Hamiltonyenine ulaşılır ve denklem (2.15) 

kullanılarak ( )11 , axH  orijinal Hamiltonyeni için n. durum dalga 

fonksiyonu, taban durumu dalga fonksiyonu cinsinden elde edilir: 

( ) ( ) ( ) ( ) ( )1
)1(

0
†

2
†

1
†

1
)1( ,,........,,, +Ψ∝Ψ nnn axaxAaxAaxAax     .           (2.32) 

 Dalga fonksiyonlarının tam olarak bilinmesi çoğu zaman daha 

kullanışlıdır. Bu durumda denklem (2.32)’yi kullanmak yerine; 

( ) ( ) ( )2
)1(
11

†
1

)1( ,,, axaxAax nn −Ψ=Ψ        (2.33) 

denklemini kullanmak daha kolaydır (Cooper et al., 1995). 

 Burada konuyu açıklayan somut bir örnek vermek ve enerji 

özdeğer ve özfonksiyonlarının analitik olarak nasıl elde edilebileceğini 

göstermek oldukça yararlı olacaktır. Bunun için; 

( ) xBxW tanh=      

süper potansiyelinin ürettiği; 

( ) ( ) xhBBBxV 22
1 sec1+−=       ,                                                      (2.34) 

( ) ( ) xhBBBxV 22
2 sec1−−=                                                              (2.35)  

partner potansiyeller incelenebilir. Bu iki potansiyelin şekil-invaryant 

olduğunu göstermek için, ( )xV1  potansiyeli (B-1) parametresi cinsinden 

tekrar yazılır. 
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( ) xhBBBBxV 22
1 sec)1()1(1, −−−=−      .                                      (2.36) 

Artık denklem (2.35) ve denklem (2.36) ile verilen iki potansiyel 

birbirinden bir sabit kadar farklı olduğundan şekil-invaryantlık koşulu 

yazılabilir. 

( ) ( ) ( )22
12 11,, −−+−= BBBxVBxV    . 

Buna göre Ba =1 , 12 −= Ba  ve ( ) ( ) 2
2

2
1

22
1 1 aaBBaR −=−−=  olur ve  

denklem (2.32)’den ( )BxV ,1 ’nin tam bağlı durum spektrumu elde 

edilebilir. 

( ) ( ) ( ) ( ) ( ) ( )222
1

2
11

1

1 ... nBBaaaRaRaRBE nn

n

k
kn −−=−=++== +

=
∑       (n=0,1,2…).  

Taban durumu dalga fonksiyonu ise, denklem (2.17)’ den; 

( ) xhxdxBBx Bsectanhexp,)1(
0 =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−∝Ψ ∫  

olarak bulunur. Buradan artık birinci uyarılmış durum dalga fonksiyonu 

da elde edilebilir: 

( ) ( ) ( )1,,, 2
)1(

0
†

1
)1(

1 −=Ψ∝=Ψ BaxBxABax
    . 

             xxhxhxB
dx
d BB tanhsecsectanh 11 −− ∝⎥⎦

⎤
⎢⎣
⎡ +−∝  
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İşlemlere bu şekilde devam ederek ( )BxV ,1 ’nin tüm bağlı durumlara ait 

özfonsiyonları bulunabilir (Khare, 2004). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

27

3.        WKB (Wentzel, Kramers, Brillouin) YAKLAŞIMI 

 Kuantum mekaniğinde bazı problemlerin kesin analitik çözümleri 

bulunamadığından, gerekli koşullar sağlandığında olay klasik mekanik 

sınırına indirilerek yaklaşık çözümler aranır (Landau et al., 1977). 

 WKB yöntemi, kuantum mekaniği problemlerini çözmek için 

klasik ifadelere düzeltmeler getiren yarı-klasik bir yaklaşım yöntemi 

olarak tanımlanır. Bu yöntemin kullanılabilmesi için gerekli koşul, 

parçacığın yavaş değişen bir potansiyel alanında, büyük bir momentuma 

sahip olmasıdır. 

 Enerjisi E olan bir parçacığın, potansiyelin sabit olduğu bir 

bölgede hareket ettiğini düşünelim. E > V(x) ise dalga fonksiyonu; 

( ) ikxAex ±=Ψ             ,              ( )[ ]xVEmk −= 2

2
h

                    (3.1) 

şeklinde elde edilir. Burada (+) işareti sağa doğru giden parçacığın, (-) 

işareti ise sola doğru giden parçacığın hareketini tanımlar. Bu dalga 

fonksiyonu, dalga boyu k/2πλ =  ve genliği A olan bir titreşim 

hareketini belirtir. V(x)’in sabit olmadığı ancak λ  ‘ya göre çok yavaş 

değiştiği durumda bölge birçok tam dalgaboyu içerdiğinden, potansiyel 

yine sabit gibi düşünülebilir. Ayrıca dalgaboyu ve genliğin x ile yavaş 

değişmesi ve Ψ ’nin sinüsoidal olarak kalması potansiyelin sabit olarak 

kabul edilebileceğini doğrular. 
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 E<V(x) olduğu durumda; V=sabit için dalga fonksiyonu, 

( ) xAex κ±=Ψ   ,         ( )[ ]ExVm
−= 2

2
h

κ              (3.2) 

şeklinde üstel bir fonksiyondur. Dolayısıyla E<V(x) için normalize 

edilebilir dalga fonksiyonu bulunamaz. 

E=V için ise dalga boyu sonsuza gider. Bu durumu sağlayan 

noktalara dönüm noktaları adı verilir. 

Klasik Bölge: Schrödinger denklemi;  

( ) Ψ=Ψ+
Ψ

− ExV
dx
d

m 2

22

2
h   , 

( ) ( )[ ]xVEmxp −= 2   olmak üzere;  

( )
Ψ−=

Ψ
2

2

2

2

h

xp
dx
d                (3.3) 

şeklinde yazılabilir. Burada p(x), toplam enerjisi E ve potansiyel enerjisi 

V(x) olan bir parçacığın momentumudur. E > V(x) olduğunda 

momentum reel olur ve parçacığın hapsolduğu bu bölgeye klasik bölge 

adı verilir (bkz. Şekil 3.1). 
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Şekil 3.1 Klasik bölge 
 

A(x) genliği ve ( )xφ  fazı göstermek üzere; kompleks formdaki 

Ψ dalga fonksiyonu bu reel nicelikler cinsinden yazılabilir. 

( ) ( ) ( )xiexAx φ=Ψ                         (3.4) 

Bu dalga fonksiyonu denklem (3.3)’ de yerine yazıldığında, genliği ve 

fazı veren iki denklem elde edilir: 

⎥
⎦

⎤
⎢
⎣

⎡
−= 2

2
2)'(''

h

pAA φ                                                                        (3.5)                 

( ) 0''2 =φA                        .                                                                     (3.6)             

Denklem (3.6)’nin çözümünden genliğin, faza bağlı olduğu sonucu çıkar: 

22 ' CA =φ       ,       
'φ

CA =    ;     (C=sabit)       .                                (3.7)           
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Doğrudan çözülemeyen denklem (3.7) için, 'A  nın x ile yavaş 

değiştiği kabul edilir ve bu yaklaşım ile ''A , 'A  nın yanında ihmal 

edilebilir. Bu durumda denklem (3.7); 

h

p
dx
d

±=
φ    

denklemine indirgenir ve artık ( )xφ  fazına ulaşılabilir: 

( ) ( )∫±= dxxpx
h

1φ   .                                                       (3.8)                     

Denklem (3.7) ve denklem (3.8)’da elde edilen sonuçlar denklem 

(3.4)’de yerine yazıldığında; 

( )
( )

( )∫≅Ψ
± dxxPi

e
xp

Cx h         (3.9) 

sonucu bulunur. Görüldüğü gibi, bu yaklaşım ile elde edilen dalga 

fonksiyonu sadece parçacığın momentumuna bağlıdır. Bu nedenle 

parçacığın hareketi klasik olarak düşünülebilir. Ayrıca WKB yönteminin, 

yarı-klasik yaklaşım yöntemi olarak adlandırılmasının nedeni de bundan 

kaynaklanır. 

 Parçacığın x noktasında bulunma olasılığı ise; 

( ) ( )xp
Cx

2
2 =Ψ          (3.10)   
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parçacığın bu noktadaki momentumu (dolayısıyla da hızı) ile ters orantılı 

olarak elde edilir (Griffiths, 1995). 

Bu durumda, böyle bir bölgede hareket eden bir parçacığın enerji 

özdeğerlerini bulabilmek için; 

( )[ ] πh∫ +=−
2

1

)
2
1(2

x

x

ndxxVEm        ,      n=0,1,2,…               (3.11) 

şeklinde bir kuantumlanma koşulu yazılabilir (Landau, 1977). Bu 

kuantumlanma koşuluna WKB yaklaşım yöntemi ya da yarı-klasik 

yaklaşım yöntemi adı verilir. 
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4.        SÜPERSİMETRİK WKB  (SWKB) YAKLAŞIMI 

4.1      En Düşük Mertebeli SWKB Kuantumlanma Koşulu 

Yaklaşık 20 yıl önce, süpersimetri ile klasik WKB yaklaşım 

yönteminin birleştirilmesiyle en düşük mertebeli SWKB kuantumlanma 

koşulu elde edildi ve bu koşul ile enerji özdeğerlerinin sadece büyük n 

değerleri için değil aynı zamanda taban durumu için de bulunulabileceği 

gösterildi (Comtet et al, 1983). Bu bölümde; en düşük mertebeli SWKB 

kuantumlanma koşulu ayrıntılı bir şekilde incelenecektir. 

( )xV1  potansiyelinin W(x) süper potansiyel cinsinden değeri 

denklem (2.3)’de verilmişti. Bu değer denklem (3.11) ile verilen WKB 

kuantumlanma koşulunda yerine yazıldığında; 

( ) ( ) πhh
∫ +=⎥

⎦

⎤
⎢
⎣

⎡
+−

2

1

)
2
1('

2
2 2)1(

x

x
n ndxxW

m
xWEm                              (4.1) 

ifadesine ulaşılır. Burada potansiyel h ’ye açıkça bağlı olduğundan 

integral; 

( )
( )

( )

πhh
h

h

⎟
⎠
⎞

⎜
⎝
⎛ +== ∫ 2

1,
2

1

ndxxfI
x

x

                               (4.2) 

( ) ( ) ( ) ( )⎥⎦
⎤

⎢⎣

⎡ +−= xW
m

xWEmxf n '
2

2, 21 h
h  

şeklinde yazılabilir.  
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Çözüme ulaşabilmek için I integrali h ’nin kuvvetleri cinsinden seriye 

açılır. 0→h  limitinde a ve b klasik dönüm noktaları 
( ) ( ) ( )bWaWEn

221 ==  tanımı ile verilir ve bax ,lim 2,10
=

→h
olur. I’nın h ’ye 

göre Taylor Serisi açılımı; 

( ) ( )[ ]∫ −==
→

b

a
n dxxWEmII 21

00 2lim
h

   , 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−+

∂
∂

== ∫→→

2

1

1
1

2
2001 ,,limlim

x

x d
dxxf

d
dxxfdxf

d
dII

h
h

h
h

hh hh
   

    ( ) ( ) ( )[ ]{ } 2/1212'
2
2 −

−= xWEmxWm
n         

olmak üzere; 

( )2
10 hh OIII ++=                                                                              (4.3) 

şeklindedir. Klasik dönüm noktalarının tanımından ( ) ( ) 0,, 21 == hh xfxf  

olduğu bulunur. Buna göre denklem (4.2); 

( ) ( )[ ] ( )
( ) ( )

( )∫ ∫ ⎟
⎠
⎞

⎜
⎝
⎛ +=+

−
+−

b

a

b

a n

n nO
xWE

dxxWdxxWEm πhh
h

2
1'

2
2 2

21

21       (4.4)                  

olur.  Bu denklemdeki ikinci integral kolayca hesaplanabilir: 

( )
( )

( )
b

ann

b

a E
xWdx

xWE
xW

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
=

−
−∫ )1(

1

2)1(
sin'  .       (4.5) 
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Süpersimetrinin bozulmadığı durumda W(x) süper potansiyeli dönüm 

noktalarında zıt işaretlidir: 

( ) ( ) )1(
nEbWaW ==−  .          (4.6) 

Bu tanıma göre; 

( ) π=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−

b

anE
xW

)1(

1sin                                                                             (4.7) 

olacağından, denklem (4.5)’de verilen integralin sonucu π  olarak 

bulunur. Bu sonuç denklem (4.4)’de yerine yazıldığında;   

( )[ ] πhndxxWEm n

b

a

=−∫ 2)1(2         ,               n=0,1,2,…                   (4.8) 

en düşük mertebeli süpersimetrik WKB kuantumlanma koşulu elde edilir 

(Dutt et al., 1991). Aynı işlemler ( )xV2  potansiyeli için yapıldığında; 

( )[ ] πh)1(2 2)2( +=−∫ ndxxWEm n

b

a

    ,           n=0,1,2,…                  (4.9)               

sonucu bulunur. Böylece süpersimetrik her iki partner potansiyel için 

SWKB kuantumlanma koşulu bulunmuş olur. Bu koşullarla ilgili şu 

yorumlar sıralanabilir: 
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 a) Denklem (4.8) taban durumu (n=0) için incelendiğinde, a ve b 

dönüm noktaları çakışık olarak elde edilir ve )1(
0E =0 olur. Buna göre 

SWKB kuantumlanma koşulu; 

)(
2 12

22

1 xV
dx
d

m
H +−=

h    

Hamiltonyeninin taban durumu enerjisi için doğru değeri verir. 

 b) Denklem (4.8) ve denklem (4.9)’da bulunan sonuçlar 

karşılaştırıldığında; SWKB koşulunun, Bölüm.2’de anlatılan 

Hamiltonyen spektrumlarındaki dejenereliği koruduğu sonucuna varılır. 

Yani SWKB kuantumlanma koşulu ile hesaplanan yaklaşık enerji 

özdeğerleri )1(
1

)2(
+= nn EE  bağıntısını doğrular. 

 c) En düşük mertebeli SWKB kuantumlanma koşulu sadece 

büyük n değerleri için değil aynı zamanda taban durumu için de tam 

sonuçlar verdiğinden, klasik WKB yaklaşımının aksine SWKB yaklaşımı 

ile tüm n değerleri için enerji özdeğerleri hesaplanabilir (Khare, 2004). 

Buna göre SWKB’ nin WKB‘den daha iyi sonuçlar verdiği söylenebilir. 
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4.2 Şekil-İnvaryant Potansiyeller İçin SWKB Koşulunun 

Doğrulanması 

 SWKB yönteminin üstünlüklerinden biri, kuantum mekaniğinde 

tam olarak çözülebilen potansiyellerin şekil-invaryantlığı özelliğinin 

kullanılmasıdır. Bunun sayesinde klasik WKB yaklaşımının çözemediği 

ya da uzun cebirsel işlemler sonunda çözebildiği potansiyeller SWKB 

yaklaşımı ile kolayca çözülebilir ve tam değerlere ulaşılır. Yani tüm 

şekil-invaryant potansiyellerin kesin analitik çözümleri SWKB yaklaşımı 

ile bulunabilir. Bunu gösterebilmek için denklem (2.23) ile verilen 

partner potansiyellerin şekil invaryantlığı koşulu ve denklem (2.29) ile 

verilen s. Hamiltonyen kullanılır. sH  Hamiltonyeni için SWKB 

kuantumlanma koşulu; 

( ) ( ) πhndxxaWaREm s

s

k
k

s
n

b

a

=⎥
⎦

⎤
⎢
⎣

⎡
−−∑∫

−

=

,2 2
1

1

)(  

şeklinde ifade edilir. SWKB kuantumlanma koşulu taban durumu enerjisi 

için de doğru olduğundan; 

( )∑
−

=

=
1

1

)(
0

s

k
k

s aRE  

değeri  sH  Hamiltonyeni için doğrudur. sH ’den 1−sH ’e doğru 

gidildiğinde 2H  ve 1H  Hamiltonyenlerine ulaşılır ve SWKB koşulunun 
)1(
1

)2(
+= nn EE  dejenereliğini koruduğu kullanılırsa SWKB kuantumlanma 
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koşulu ile tüm şekil-invaryant potansiyeller için tam enerji özdeğerleri 

bulunur (Khare, 2004). 

 Bu, tüm ŞİP için tam doğru değerler vermeyen klasik WKB 

yaklaşımına yapılan önemli bir düzeltmedir.  Klasik WKB yaklaşımı 

sadece harmonik osilatör ve Morse potansiyeli için tam değerler verirken, 

SWKB yaklaşımı ile tüm ŞİP için tam özdurum spektrumları elde 

edilebilir  (Hrüska et al., 1996). 

Bilinen tüm şekil-invaryant potansiyellerin (basit harmonik 

osilatör, üç boyutlu harmonik osilatör, Coulomb, Morse, Rosen Morse II, 

Eckart,  Rosen Morse I, Scarf II, Genelleştirilmiş Pöschl Teller, Scarf I ) 

taban durumu enerjileri WKB ve SWKB yaklaşım yöntemleri ile 

hesaplanmış ve bu potansiyellerin bağlı olduğu parametrelere 

),,,,( lwBA α  değerler verilerek sayısal sonuçlar elde edilmiştir. (Hrüska 

et al., 1996) Çizelge 4.1’de 0,,,, ≥lwBA α  ve ∞≤≤∞≤≤∞− rx 0,  

olmak üzere; bu potansiyellerden bazıları için, süper potansiyeller ve 

orijinal sistem için süpersimetrik partner potansiyeller, Çizelge 4.2 ‘de de  

seçilen parametre değerleri ve sayısal olarak elde edilen taban durumu 

enerji özdeğerleri görülmektedir. Çizelge 4.2 incelendiğinde, SWKB 

kuantumlanma koşulu ile bulunan değerlerin gerçek değerlerle aynı 

olduğu sonucuna varılır.  Buna göre tüm ŞİP’ler için tam değerler veren 

SWKB yaklaşımının, WKB yaklaşımına göre tercih edilebilir olduğu 

söylenir.  

 

 

 



 
 
38 

 

 

 
Potansiyelin 

Adı 
 

 
W(x) Süper 
Potansiyel 

 

 
V1(x) Potansiyeli 

 

 
Basit 

Harmonik 
Osilatör 

 

 

xw2

2
1  

 
22

2
1 xw  

 
Coulomb 

 
 

 

( )
( )

r
l

l
e 1

12

2 +
−

+

 
( )

( )14
1

2

4

2

2

+
+

+
+−

l
e

r
ll

r
e  

 
Rosen Morse 
(hiperbolik) 

 

 

A
BxA +αtanh ,  

2AB〈  

 

( ) ( )

xB

xAA
AA

B

α

αα
α

tanh2

tanh 2
2

2

+

++
+  

 

 
Eckart 

 
 

 

A
BrA +− αcoth  

2AB〉  

 

( ) ( )

rB

rAA
AA

B

α

αα
α

coth2

coth 2
2

2

−

−+
−  

 

 
Rosen Morse 

(trigonometrik) 
 

 

A
BxA −− αcot  

 

( ) ( )

xB

xAA
AA

B

α

αα
α

cot2

cot 2
2

2

+

−+
−  

 
 

Çizelge 4.1.Şekil-invaryant potansiyellere karşılık gelen süper potansiyel değerleri 
ve 12 == mh için hesaplanan süpersimetrik partner potansiyeller(Hrüska et al., 1996) 
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Potansiyelin 

Adı 
 

 
Parametre 

Seçimi 
 

SWKBE0  
[eV] 

WKBE0  
[eV] 

)(0 gerçekE  
[eV] 

 
Basit 

Harmonik 
Osilatör 

 

- 0,5w 0,5w 0,5w 

 
Coulomb 

 

 

1
1

=
=

l
e

 

 

0,0625 0,5677 0,0625 

Rosen Morse 
(hiperbolik) 

 

 

1
2
1

=
=
=

B
A
α

 

 

1,9167 2,1030 1,9167 

Eckart 
 

 

6
2
1

=
=
=

B
A
α

 

 

7,00 6,51 7,00 

Rosen Morse 
(trigonometrik)

 

 

2
2
1

=
=
=

B
A
α

 

 

3,00 2,5727 3,00 

 
Çizelge 4.2.Bu potansiyellerin seçilen parametre değerlerine göre SWKB ve WKB 

kuantumlanma koşulları ile hesaplanan taban durumu enerji özdeğerleri  
(Hrüska et al., 1996) 
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5.        SWKB YÖNTEMİ İLE BAZI POTANSİYELLER İÇİN 

ÇÖZÜMLER 

5.1      Bazı Şekil İnvaryant Potansiyellerin Çözümleri 

 En düşük mertebeli SWKB kuantumlanma koşulunun tüm ŞİP 

için doğru olduğunu göstermek için, bu potansiyellerin şekil invaryantlık 

koşulu ile hesaplanan enerji özdeğerleri referans değerler (bkz. Ek.1) 

olarak kabul edilerek, SWKB yaklaşımı ile aynı değerlerin elde edilip 

edilmeyeceği araştırılabilir. Bunun için bazı ŞİP, SWKB yöntemi ile 

çözüldü ve sonuçlar bu referans değerlerle karşılaştırıldı.  

5.1.1   Pöschl-Teller 

 Bu potansiyel için süper potansiyel 

( ) )(cos)coth( rechBrAxW αα −= , BA〈  şeklinde seçilebilir 

(Khare,2004). Bu potansiyel denklem (4.8)’de verilen SWKBI  integralinde 

yerine yazılır. 

( ) ( ) ( ) ( )[ ]∫ =−+−
2

1

22221 coscos)coth(2coth2
x

x
n ndrrechBrechrABrAEm παααα h  

Bu integrali çözebilmek için ( )ry αcosh=  değişken dönüşümü yapılır. 

Bu dönüşüm altında a ve b  (a<b) dönüm noktaları;  

( )1

2 1
nE

y
BAy

±=
−

−  
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denkleminin köklerine eşit olur. İntegral tablosunda verilen (bkz. Ek.2) 

( )baI ,5  tablo integrali kullanılarak bu potansiyel için enerji özdeğer 

spektrumu elde edilir: 

( )

( )( )
( )

( )( ) hn
EA
BEy

EA
ABy

y
dyEAm y

y n

n

n

n =
−
+

−
−

+−
−

−
∫

2

1

12

21

12
2

2

12 2
1

2
α

  , 

( )
( ) π

α
hnbaI

EAm n =
−

,
2

5

12

  , 

( )
2

21

2
⎟
⎠

⎞
⎜
⎝

⎛ −−=
m

nAAEn
αh .                                                                      (5.1) 

Taban durumuna ait özfonksiyon ise; özfonksiyonu süper 

potansiyel cinsinden veren denklem (2.17) kullanılarak bulunur. 

İşlemlerde kolaylık sağlaması açısından normalizasyon sabiti burada 1 

olarak alındı. N=1 için taban durumu dalga fonksiyonu;              

( ) ( )[ ] ( )

( )[ ] Bm

ABm

r

rx
α

α

α

α

h

h

2

2

)1(
0

cosh1

sinh

+
=Ψ

−

          (5.2) 

şeklinde bulunur. 

5.1.2   Scarf I (trigonometrik) ( ) ( ) ( )xBxAxW αα sectan −=  

 Bu potansiyel SWKBI  integralinde yerine yazılır ve ( )xy αsin=  

değişken dönüşümü yapılır. Bu durumda a ve b dönüm noktaları  
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( )1

21
nE

y
BAy

±=
−

−  

denkleminin köklerine eşit olur. ( )baI ,4  tablo integrali (bkz. Ek.2) 

kullanılarak, bu potansiyel için enerji özdeğer spektrumu elde edilir: 

( )

( )( )
( )

( )( ) π
α

hn
EA
BEy

EA
ABy

y
dyEAm y

y n

n

n

n =
+
−

+
+

+−
−

+
∫ :2

1
2 2

1

12

21

12
2

2

12

   , 

( )
π

α
hnI

EAm n =
+

4

122
  , 

( ) 2
2

1

2
A

m
nAEn −⎟

⎠

⎞
⎜
⎝

⎛ +=
hα .                                                                      (5.3) 

Scarf I potansiyel için taban durumu dalga fonksiyonu N=1 için 

( ) ( )[ ] ( ) ( )[ ] BmABm
xxx αα αα hh

22
)1(

0 sin1cos +=Ψ −         (5.4) 

olarak bulunur. 

5.1.3 Scarf II (hiperbolik) ( ) ( ) ( )xhBxAxW αα sectanh +=  

Bu potansiyel SWKBI  integralinde yerine yazılır ve ( )xy αsinh=  

değişken dönüşümü yapılır. Bu durumda a ve b dönüm noktaları;  

( )1

21
nE

y
BAy

±=
+

+  
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denkleminin köklerine eşit olur. ),(3 baI  tablo integrali (bkz. Ek.2) 

kullanılarak, bu potansiyel için enerji özdeğer spektrumu elde edilir: 

( )

( )( )
( )

( )( ) π
α

hn
EA
BE

y
EA

ABy
y

dyEAm y

y n

n

n

n =
−
−

+
−

−−
+

−
∫

2

1

12

21

12
2

2

12 2
1

2
  , 

( )
( ) π

α
hnbaI

EAm n =
−

,
2

3

12

  , 

( )
2

21

2
⎟
⎠

⎞
⎜
⎝

⎛ −−=
m

nAAEn
hα .                                                                      (5.5) 

Scarf II potansiyeli için taban durumu dalga fonksiyonu N=1 için 

( ) ( )[ ] ( ) ⎥
⎦

⎤
⎢
⎣

⎡
−=Ψ − )(sinhtan2expsec 1

2
)1(

0 xBmxhx Am
α

α
α α

h
h       (5.6) 

olarak bulunur. 

5.1.4   Rosen Morse II (hiperbolik) ( ) ( ) ABxAxW /tanh += α  

Bu potansiyel SWKBI  integralinde yerine yazılır ve ( )xy αtanh=  

değişken dönüşümü yapılır. Bu durumda a ve b dönüm noktaları  

( )1
nE

A
BAy ±=+  

denkleminin köklerine eşit olur.  
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),(4 baI  tablo integrali (bkz. Ek.2) kullanılarak, bu potansiyel için enerji 

özdeğer spektrumu elde edilir (Hrüska et al., 1996): 

( )
π

α
hn

A
B

A
E

y
A
By

y
dyAm y

y

n =−+−−
−∫

2

1

4

2

2

1

2
2

2

2
1

2    , 

π
α

hnIAm
=4

2    , 

( )
2

2

2

22
21

2
2

⎟
⎠
⎞

⎜
⎝
⎛ −

−+⎟
⎠

⎞
⎜
⎝

⎛ −−=

m
nA

B
A
B

m
nAAEn

h

h

α
α .                                    (5.7) 

Rosen Morse II potansiyel için taban durumu dalga fonksiyonu 

N=1 için 

( ) ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−=Ψ x

A
Bmxhx Am

h
h

2expsec
2

)1(
0 αα         (5.8) 

olarak bulunur. 

5.2      q-Deforme Potansiyellerin Çözümleri 

 Burada SWKB yaklaşım yöntemi başka bir potansiyel sınıfı olan 

q deforme potansiyeller (bkz. Ek.3) için incelendi. Bunun için seçilen 

bazı q deforme potansiyellerin enerji özdeğerleri SWKB yöntemi ile 

hesaplandı ve sonuçlar bu potansiyeller için gerçek enerji özdeğerleri ile 

karşılaştırıldı. Ayrıca bu potansiyeller için taban durumu özfonksiyonları 

süper potansiyel kullanılarak bulundu.  
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5.2.1   q deforme Rosen Morse potansiyeli 

 q deforme Rosen Morse potansiyeli; 

( )22

2

02

2

020
1

4
1
1

)(cosh
)(tanh)(

x

x

x

x

q

o
qq

qe
eU

qe
qeB

x
U

xBxV
α

α

α

α

α
α

−

−

−

−

+
−

+
−

=−=              (5.9) 

eşitliği ile verilir (Eğrifes vd., 1999a) ve bu potansiyel için süper 

potansiyel; 

( ) ( )
A
BxAxW q += αtanh         (5.10) 

şeklinde seçilebilir. Taban durumu enerji özdeğerini elde etmek için 

denklem (2.22) bu süper potansiyel için çözülür.    

( ) ( ) ( )1
0

2
00 sectanh qqq ExhUxB −− αα  

( ) ( ) 2

2
222 sec

2
tanh2

A
BAxhqA

m
AxB qq ++⎟

⎠

⎞
⎜
⎝

⎛ +−= ααα h  

Burada, aynı değişkenlerin katsayıları ve sabitler birbirine eşitlenerek 

süper potansiyelin bağlı olduğu parametreler, ( )xVq  potansiyelinin bağlı 

olduğu parametreler cinsinden elde edilir: 

  ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−= 22

08
11

8 α
α

h

h

q
mU

m
A           ,        20BB =  

( )
2

2
21

0 A
BAE q +=−        . 
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A ve B sabitleri yerine yazılırsa; bu potansiyel için taban durumu enerji 

özdeğeri: 

( )
2

22
0

22

2
02

22
0

22

2

2
21

0
8

11

2
8

11
8

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=+=−

α

α
α

α

h

h
h

h

q
mU

mB

q
mU

mA
BAE q   (5.11) 

şeklinde elde edilir.  

Tüm bağlı durumlara ait enerji özdeğerlerini bulabilmek için, 

süper potansiyel denklem (4.8) ile verilen en düşük mertebeli SWKB 

kuantumlanma koşulunda yazılır: 

( ) ( ) ( )∫ =⎥
⎦

⎤
⎢
⎣

⎡
−−−

2

1

2

2
221 tanh2tanh2

x

x
qqnq ndx

A
BxBxAEm παα h    . 

Bu integrali çözebilmek için ( )xy q αtanh=   değişken dönüşümü yapılır. 

Bu durumda integral sınırları, klasik dönüm noktalarının tanımından; 

( )

2

1

1 A
B

A

E
ay nq

−−==         ,            
( )

2

1

2 A
B

A

E
by nq

−==  

şeklinde elde edilir. ( )baI ,4  tablo integrali kullanılarak, (bkz. Ek.2) 

orijinal sistem için enerji özdeğer spektrumu şu şekilde elde edilir. 

( )

π
α

hn
A
B

A
E

y
A
By

y
dyAm b

a

nq =−+−−
−∫ 4

2

2

1

2
2

2

2
1

2   , 
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( ) π
α

hnbaIAm
=,2

4    , 

( )
2

2

2

22
21

2
2

⎟
⎠
⎞

⎜
⎝
⎛ −

−+⎟
⎠

⎞
⎜
⎝

⎛ −−=

m
nA

B
A
B

m
nAAEnq

h

h

α
α  .    (5.12) 

Bu değere denklem (5.11)’deki taban durumu enerji özdeğeri 

eklendiğinde; 

( ) ( )
2

22
1

0
1

2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=+=

m
nA

B
m

nAEEE qnqnq
h

h

α

α

     (5.13) 

ifadesine ulaşılır. Son olarak A ve B sabitleri  yerine yazılır ve q deforme 

Rosen Morse potansiyeli için tüm bağlı durumlara ait enerji özdeğer 

spektrumu aşağıdaki şekilde elde edilir. 

( )

( ) ⎪
⎪
⎪

⎭

⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++−

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++−

=−
2

22
0

44

2
0

2

2

22
0

22

8
112

1

8
112

16
1

2

α

α

α
α

h

h

h
h

q
mU

n

Bm

q
mU

n

m
Enq     (5.14) 

Taban durumuna karşılık gelen özfonksiyon ise N=1 için denklem 

(2.17) kullanılarak; 
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( ) ( )[ ] ⎥
⎦

⎤
⎢
⎣

⎡
−=Ψ x

A
Bmxhx Am

qq
h

h
2expsec

2
)1(

0 αα   , 

( ) ( )[ ]
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−

−=Ψ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++− x

q
mU

Bmxhx q
mU

qq

22
0

0
2

8
11

2
1

)1(
0

8
11

2expsec 22
0

α

α
α α

h

h
h      (5.15) 

şeklinde bulunur. 

5.2.2   q deforme değiştirilmiş Rosen Morse potansiyeli 

q deforme değiştirilmiş Rosen Morse potansiyeli;  

( ) ( )[ ] ( )[ ]xVxVxV qqq αα 221 tanh1
4

tanh1
2

−−+=      (5.16)  

şeklinde ifade edilir (Eğrifes vd., 1999a) ve bu potansiyel için süper 

potansiyel ( ) ( )
A
BxAxW q += αtanh  olarak seçilebilir. Taban durumu 

enerji özdeğerini bulabilmek için denklem (2.22)’den başlanır. Elde 

edilen denklemde, aynı değişkenlerin katsayılarının birbirine 

eşitlenmesiyle A,B sabitleri, ve bu sabitlere bağlı olan taban durumu 

enerji özdeğeri elde edilebilir: 

 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−= 22

22
11

8 α
α

h

h mV
m

A    ,  
4
1VB =   ,  ( ) αA

mA
BVVE

242 2

2
211

0
h

+−−= .       
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Bulunan A,B sabitleri ( )1
0E  ifadesinde yerine yazılırsa; 

 

( )
2

22
2

22

2
1

2

22
2

22
11

0
2

11
8

16/2
11

82
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−−=

α
αα

α

h

hh

h

mV
m

VmV
m

V
E        (5.17) 

sonucuna ulaşılır.  

Tüm bağlı durumlara ait enerji özdeğerlerini bulabilmek için 

seçilen süper potansiyel SWKBI  integralinde yerine yazılır ve 

( )xy q αtanh=  değişken dönüşümü yapılır. Bu durumda a ve b dönüm 

noktaları; 

( )1
nqE

A
BAy ±=+  

denkleminin köklerine eşit olur. ( )baI ,4  tablo integrali (bkz. Ek.2) 

kullanılarak, orijinal sistem için enerji özdeğer spektrumu; 

( )

π
α

hn
A
B

A
E

y
A
By

y
dyAm b

a

nq =−+−−
−∫ 4

2

2

1

2
2

2

2
1

2     

( ) π
α

hnbaIAm
=,2

4  

( )
2

2

2

22
21

2
2

⎟
⎠
⎞

⎜
⎝
⎛ −

−+⎟
⎠

⎞
⎜
⎝

⎛ −−=

m
nA

B
A
B

m
nAAEn

h

h

α
α                                    (5.18) 
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olarak bulunur. Bu değere denklem (5.17)’deki taban durumu enerji 

özdeğeri de eklenir ve A, B sabitleri yerine yazılırsa; q deforme 

değiştirilmiş Rosen Morse potansiyeli için tüm bağlı durumlara ait enerji 

özdeğer spektrumu elde edilir: 

2

22
2

22

2
1

2

22
2

22
1

2
1)12(

8

162
1)12(

82
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++−−=

α
αα

α

h

hh

h

mV
n

m

VmV
n

m
V

En
 . (5.19) 

Taban durumuna karşılık gelen özfonksiyon ise N=1 için denklem 

(2.17) kullanılarak; 

( ) ( )[ ]
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−

−=Ψ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++− x

q
mU

Bmxhx q
mU

qq

22
0

0
2

8
11

2
1

)1(
0

8
11

2expsec 22
0

α

α
α α

h

h
h    (5.20) 

şeklinde bulunur. 

 

5.2.3 q deforme Pöschl Teller potansiyeli    

q deforme Pöschl Teller potansiyeli; 

 ( ) ( )x
V

xV
q

q α2
0

cosh
−=          (5.21) 

olarak verilir (Eğrifes vd., 1999b).  



 
 

51

Bu potansiyel için süper potansiyel ( ) ( )xAxW q αtanh=  olarak 

seçilebilir. Denklem (2.22)’nin bu süper potansiyel için çözülmesiyle;   

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−= 22

08
11

8 α
α

h

h

q
mV

m
A               ,       ( ) 21

0 AE q −=  

taban durumu enerji özdeğeri A sabitine bağlı olarak elde edilir. Bu sabit 

yerine yazılırsa; 

( )
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−= 22

0
22

1
0

811
8 α
α

h

h

q
mV

m
E q                                                        (5.22) 

ifadesine ulaşılır. 

Tüm bağlı durumlara ait enerji özdeğerlerini bulabilmek için 

seçilen süper potansiyel SWKBI  integralinde yerine yazılır. İntegrali 

çözebilmek için ( )xy q αtanh=  değişken dönüşümü yapılır. Bu durumda 

a ve b dönüm noktaları; 

( )1
nqEAy ±=  

denkleminin köklerine eşit olur. ( )baI ,4  tablo integrali (bkz. Ek.2) 

kullanılarak, orijinal sistem için enerji özdeğer spektrumu elde edilir: 

( ) π
α

hnbaIAm
=,2

4   ,     

( )

m
nA

m
nEnq 22

2 222
1 hh αα

−=     .                                                                (5.23) 
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Bu değere denklem (5.22)’deki taban durumu enerji özdeğeri de eklenir 

ve A sabiti yerine yazılırsa; q deforme Pöschl Teller potansiyeli için tüm 

bağlı durumlara ait enerji özdeğer spektrumu elde edilir: 

( )
2

22
0

22 8
112

8 ⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++−−=

α
α

h

h

q
mV

n
m

Enq   .     (5.24) 

Taban durumuna karşılık gelen özfonksiyon ise normalizasyon 

sabiti N=1 için denklem (2.17) kullanılarak; 

( ) ( )[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−=Ψ 22

08
11

2
1

)1(
0 sec αα hq

mV

qq xhx        (5.25) 

şeklinde bulunur. 

5.2.4 q deforme hiperbolik Kratzer Benzeri potansiyel 

 Bu potansiyel; 

( ) ( )[ ] ( )[ ]1coth
4

coth1
2

221 −+−= xVxVxV qqq αα      (5.26) 

 

şeklinde verilir (Eğrifes vd., 1999b) ve süper potansiyel 

( ) ( )
A
BxAxW q += αcoth  olarak seçilebilir. Denklem (2.22)’nin seçilen 

süper potansiyel için çözülmesiyle, A ve B sabitleri ile bu sabitlere bağlı 

olan taban durumu enerji özdeğeri elde edilebilir. 
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⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−= 22

22
11

8 α
α

h

h mV
m

A        ,        
4
1VB −=    , 

( ) αA
mA

BVVE
242 2

2
211

0
h

+−−=     . 

Sabitler yerine yazılırsa; n=0 için enerji özdeğeri, 

( )
2

22
2

22

2
1

2

22
2

22
11

0
211

8

16/211
82

:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−=

α
αα

α

h

hh

h

mV
m

VmV
m

VE      (5.27) 

olarak bulunur.  

Tüm bağlı durumlara ait enerji özdeğerlerini bulabilmek için 

seçilen süper potansiyel SWKBI  integralinde yerine yazılır ve 

( )xy q αcoth=  değişken dönüşümü yapılır. Bu durumda a ve b dönüm 

noktaları; 

( )1
nqE

A
BAy ±=+  

denkleminin köklerine eşit olur. ( )baI ,4  tablo integrali (bkz. Ek.2) 

kullanılarak, orijinal sistem için enerji özdeğer spektrumu; 

( )
2

2

2

22
21

2

2
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

m
nA

B
A
B

m
nAAEnq

h

h

α

α      (5.28) 

olarak bulunur. Bu değere denklem (5.27) ile verilen taban durumu enerji 

özdeğeri de eklenir ve sabitler yerine yazılırsa; q deforme hiperbolik 
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Kratzer Benzeri potansiyel için tüm bağlı durumlara ait enerji özdeğer 

spektrumu elde edilir. 

2

22
2

22

2
1

2

22
2

22
1

2
1)12(

8

162
1)12(

82
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++−

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++−−=

α
αα

α

h

hh

h

mV
n

m

VmV
n

m
V

En
  .    (5.29) 

Taban durumuna karşılık gelen özfonksiyon ise N=1 için denklem 

(2.17) kullanılarak; 

( ) ( )[ ]
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++−

=Ψ ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++− x

q
mV

Vmxechx q
mV

qq

22
2

1
2

2
11

2
1

)1(
0

211
2

expcos 22
2

α

α
α α

h

h
h    (5.30) 

şeklinde bulunur. 

5.3      ( ) ( ) ( )x
DxCxV
α

α 2
2

cosh
tanh −=  Potansiyelinin Çözümü 

Bu potansiyel (Büyükkılıç vd., 1997) için süper potansiyel 

( ) ( )xAxW αtanh=  olarak seçilebilir. Taban durumu enerji özdeğeri 

denklem (2.22)’den 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+−−= 22

2

22

22
1

0
2811

2
1

2 αα
α

hh

h mDDCm
m

E      (5.31) 

olarak bulunur.  
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Tüm bağlı durumlara ait enerji özdeğerlerini bulabilmek için 

seçilen süper potansiyel SWKBI  integralinde yerine yazılır ve 

( )xy αtanh=  değişken dönüşümü yapılır. Bu durumda a ve b dönüm 

noktaları; 

( )1
nEAy ±=  

denkleminin köklerine eşit olur. ( )baI ,4  tablo integrali (bkz. Ek.2) 

kullanılarak, orijinal sistem için enerji özdeğer spektrumu şu şekilde elde 

edilir.    

( )
π

α
hn

A
Ey

y
dyAm b

a

n =+−
−∫ :

1
2

2

1
2

2  

( ) π
α

hnbaIAm
=,2

4  

( )

m
nA

m
nEn 22

2 222
1 hh αα

−=  .                            (5.32) 

Bu değere denklem (5.31)’deki taban durumu enerji özdeğeri de eklenir 

ve A sabiti yerine yazılırsa; bu potansiyel için tüm bağlı durumlara ait 

enerji özdeğer spektrumu elde edilir. 

( ) ( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
+−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +
+−+−= 222222

2
22 2811

2
1811

2 ααα
α

hhh

h mDDCmnDCmn
m

En  .   (5.33) 

Taban durumuna karşılık gelen özfonksiyon ise N=1 olmak üzere 

denklem (2.17)’den; 
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( ) ( )[ ]
( )

⎟
⎟
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⎞
⎜
⎜
⎝

⎛ +
++−=Ψ 22

811
2
1

)1(
0 sec αα h

DCm

q xhx        (5.34) 

olarak bulunur. 
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6.       SONUÇ 

 Süpersimetri, fiziğin birçok alanına uygulanan ve doğada bilinen 

her parçacığın, süpersimetrik bir partneri olduğunu savunan oldukça ilgi 

çekici bir konudur.   

 Daha önce, en düşük mertebeli SWKB kuantumlanma koşulunun 

WKB yaklaşımına göre tercih edilebilir olduğu ve bu koşul ile tüm şekil 

invaryant potansiyellerin tam özdeğer spektrumlarına ulaşılabileceği öne 

sürülmüştü (Khare, 2004). Bu tezde, bazı şekil invaryant potansiyellerin 

özdeğerleri SWKB yaklaşım yöntemi ile hesaplandı. Referans değerler 

ile yapılan karsılaştırmalar sonucunda, SWKB yöntemi ile elde edilen 

sonuçların doğruluğu gösterildi. Ayrıca SWKB yaklaşım yöntemi 

seçilen bazı q deforme potansiyeller için denendi ve elde edilen 

sonuçların gerçek değerlerle birebir uyuştuğu görüldü. Diğer 

yöntemlerle oldukça uzun işlemler sonunda çözülebilen bu potansiyeller 

için SWKB yaklaşım yönteminin doğru olduğu sonucuna varıldı. 
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EKLER 

Ek 1. SWKB ile hesaplanan şekil invaryant potansiyeller için alınan 

referans değerler 

 
Çizelge Ek.1: Şekil invaryant potansiyellere karşılık gelen süper potansiyel değerleri 
ile 12 == mh için hesaplanan enerji özdeğerleri (Khare, 2004) ve bu potansiyellerin 
taban durumu dalga fonksiyonları (Dutt, 1988) 

Potansiyelin 
Adı: 

( )xW   
(Khare,2004): 

( )1
nE   

(Khare, 2004): 

 
( ) ( )x1
0Ψ   

(Dutt, 1988): 
 

 
Pöschl-Teller 

 

 
 

)(cos
)coth(

rechB
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α
α

−
 

 
( )22 αnAA −−  
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Scarf I 
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Scarf II 

hiperbolik 
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α
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Rosen Morse 
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Ek 2. İntegral Tablosu 

 
 En düşük mertebeli SWKB kuantumlanma koşulu kullanılarak, 

enerji özdeğerlerinin hesaplanmasında karşılaşılan integraller aşağıdaki 

tablo integralleri kullanılarak çözülebilir. 

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( ) ( )( )( )∫

∫

∫

∫

∫

−−−−++=−−
−

=

++−−−−=−−
−

=

−+−++=−−
+

=

−+=−−=

−=−−=

b

a

b

a

b

a

b

a

b

a

babaybay
y

dybaI

babaybay
y

dybaI

abbaybay
y

dybaI

abbaybay
y

dybaI

abybaydybaI

21111
21

,

11112
21

,

111
21

,

2
,

8
,

25

24

2/1
22

23

2

2
1

π

π

ππ

ππ

π

 

Burada a ve b dönüm noktaları olup, a<b olmak üzere gerçel sayılardır 

(Hrüska et al., 1996). 
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Ek 3. q Deforme Hiperbolik Potansiyeller 

 

q>0 reel bir parametre olmak üzere; 

( )
2

sinh
xx

q
qeex

−−
= ,             ( )

2
cosh

xx

q
qeex

−+
= ,  

( ) ( )
( )x
x

x
q

q
q cosh

sinh
tanh = ,             ( ) ( )x

xh
q

q cosh
1sec =  

şeklinde verilen hiperbolik fonksiyonlar kullanılarak, q deforme 

hiperbolik potansiyeller olarak adlandırılan ve 1→q  için standart 

potansiyellere dönüşen yeni bir potansiyel sınıfı tanımlanmıştır (Arai, 

1991). Bu potansiyellerin enerji özdurumlarının genellikle q 

parametresine bağlı olması beklenmektedir. Ancak bazı q deforme 

potansiyeller için bulunan enerji özdeğerleri bu parametreden bağımsız 

olarak elde edilir. Bu durumu sağlayan potansiyeller şekil invaryant 

potansiyellerdir. Yani q parametresi ile bu potansiyellerin şekilleri 

değişmez kalır (Eğrifes vd., 1999b). q deforme değiştirilmiş Rosen 

Morse potansiyeli ve q deforme hiperbolik Kratzer benzeri potansiyel 

şekil invaryant potansiyellere örnek gösterilebilir. 

Genel hiperbolik fonksiyonlar için bilinen tüm bağıntılar, q 

deforme hiperbolik fonksiyonlar için düzenlenebilir: 

( ) ( ) qxx qq =− 22 sinhcosh  ( ) ( )xhqx qq
22 sectanh1 =−  

( ) ( )xx
dx
d

qq coshsinh = , ( ) ( )xx
dx
d

qq sinhcosh =    .  
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