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ABSTRACT

LEGENDRIAN KNOTS AND OPEN BOOK DECOMPOSITIONS

Celik Onaran, Sinem
Ph.D., Department of Mathematics
Supervisor . Prof. Dr. Mustafa Korkmaz

Co-Supervisor : Prof. Dr. John B. Etnyre

July 2009, 46 pages

In this thesis, we define a new invariant of a Legendrian knot in a contanifold using an
open book decomposition supporting the contact structure. We definegpers genusg(L)

of a Legendrian kndt in a contact 3-manifoldNl, £) as the minimal genus of a page of an open
book of M supporting the contact structureuch that_ sits on a page and the framings given
by the contact structure and the page agree. For any topological I8kire construct a planar
open book decomposition whose monodromy is a product of positive Dasits such that the
planar open book contains the link on its page. Using this, we show any tppaldink, in
particular any knot in any 3-manifolsl sits on a page of a planar open book decomposition of
M and we show any null-homologous loose Legendrian knot in an overtvaetgect structure

has support genus zero.

Keywords: contact structures, Legendrian knots, open book dexsitigms



Oz

LEGENDRIAN DUGUMLER VE ACIK K iTAPLAR

Celik Onaran, Sinem
Doktora, Matematik BIumu
Tez Yoneticisi : Prof. Dr. Mustafa Korkmaz

Ortak Tez Yoneticisi : Prof. Dr. John B. Etnyre

Temmuz 2009, 46 sayfa

Bu tezde, kontakt yapilari destekleyen acik kitaplari kullanarak komgtaikatlilar icindeki
Legendrian dgumler icin yeni dgismezler tanimladik. Kontakt 3-boyutlu ¢okkatM(¢)
icindeki bir Legendriark. dugiminin sg(L) ile gosterdgimiz cinsini, kontakt yap§'yi destek-
leyen,L’yi bir sayfasinda iceren ve sayfasiruhye verdigi ¢cati kontakt catiya esit olan acik ki-
taplarin sayfa cinslerinin erikiigu olarak tanimladikS? icinde verilen her topolojik link igin
monodromisi pozitif Dehn burgularindan olusan ve verilen linki sayfasigdren dizlemsel
acik kitaplar olusturduk. Bu sonucu kullanarak, 3-boyutlu her edkkcindeki her linkin
cokkatlinin dizlemsel bir acik kitabinin bir sayfasi icinde kalgoa kanitladik. Ayrica, asiri
donen kontakt yapilar icinde homolojisi sifir olan her gevsek Legendtigimin cinsinin

sifir oldwunu @isterdik.

Anahtar Kelimeler: kontakt yapilar, Legendriaagdimler, acik kitaplar
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CHAPTER 1

INTRODUCTION

One of the most striking results of contact geometry is a theorem of Giroichwlives a char-
acterization of contact 3-manifolds in terms of open book decompositionsuxitas shown
that there is a one to one correspondence between isotopy classegauft &ructures on a
closed orientable 3-manifolsll and suitable equivalence classes of open book decompositions
of M, [20]. This result allows us to treat contact structures as topologicatisbjen another
direction, one may study Legendrian knots to study contact structuragentdgan knots is
important in contact geometry since they reveal the geometry and topoldbg ohderlying
3-manifold. For example, Legendrian knots are used to distinguish catitactures [24], to
detect topological properties of knots [34] and to detect overtwistadofesontact structures
[14]. In this thesis, we study Legendrian knots in contact 3-manifoldsyusipen book de-
compositions. We first study the topological properties of knots sitting oagpafjopen book
decompositions and then we study the contact geometric properties of ktiotsan pages of
open book decompositions.

In Chapter 2, we give a review of background information on contaatsires, Legendrian
knots in contact manifolds and open book decompositions.

In Chapter 3, for a given topological link 8% we present an explicit algorithm to construct a
planar open book decomposition whose monodromy is a product of poBika twists and
contains the given link on its page. Using this, we prove a general gyofegrtopological
links, in particular for knots. We prove that any topological link in a closaigntable 3-
manifold sits on a planar page of an open book decomposition. It is well ikribat, [2],
every closed orientable 3-manifold has an open book decompositioniingda@ planar open
book decomposition, [33]. [ierent ways of constructing open book decompositions for 3-
manifolds are known for a long time. Alternatively, using the ideas for caositrg planar open



books for knots and links we construct explicit planar open booksrfgicébsed orientable 3-
manifolds.

In [16], given any contact 3-manifold, Etnyre and Ozbagci defined mvariants of contact
structures in terms of open book decompositions supporting the contaztusgruOne of the
invariants is the support genus of the contact structure which is def#iet aninimal genus

of a page of an open book that supports the contact structure. In a siastaon, we define

the support genusg(L) of a Legendrian knok in a contact 3-manifoldN, £) as the minimal
genus of a page of an open book of M supporting the contact stru¢sureh that_ sits on a
page and the framings &fgiven by the contact structure and the page agree. This definition is
originally due to Etnyre.

In the last chapter, we show any null-homologous loose Legendriarnrkantovertwisted con-
tact 3-manifold has support gensgL) = 0. We construct examples of non-loose Legendrian
knots having support genus zero or non-zero. We list severahaisgms related to Legen-
drian knots in contact 3-manifolds. We observe that for any given fmpe K in (S3, £5),
there is a Legendrian representativef K such thaisgL) = 0. We show the existence of Leg-
endrian knots with non-zero support genus in weakly fillable contaattstes. Moreover, we
observe that for a non-zero rational number Q, any contact 3-manifold which is obtained
by a contact-surgery on a support genus zero Legendrian knot has supgausgero.



CHAPTER 2

BACKGROUND

In this chapter we review the basics of contact geometry. In Section 2.Hgefire contact
structures and give some examples that will be used throughout the tiSesigon 2.2 dis-
cusses Legendrian knots in contact 3-manifolds. Finally, in Section 2.8gfuge open book
decompositions and we discuss the relation between open book decomsasfiBemanifolds
and contact structures.

2.1 Contact Structures

Contact structures on odd dimensional manifolds are very natural abj&etsestrict ourself
to contact structures on 3-manifolds. For more information see [10], [39].

Definition 2.1.1. A contact structure¢ on an oriented 3-manifold/ is a maximally non-
integrable 2-plane field.

The non-integrability condition implies thais not everywhere tangent to any surface. Locally
there is a 1-fornw such that = kera anda A da # 0. If £ is orientable, in this case 1-form
exists globally and the 1-form is called acontact form We denote @ontact3-manifold as

(M, §).

Definition 2.1.2. Two contact manifoldsNl1, &1) and (M2, &) arecontactomorphidf there is
a diffeomorphismy : My — M such thaiy.(&1) = &. Two contact structureg andé, on a
3-manifold M areisotopicif there is a contactomorphisi: (M, &1) — (M, &) such thaiy is
isotopic to the identity.

There are two types of contact structures on 3-manifolds, tight antwasesd.



Definition 2.1.3. A contact structuré on M is overtwistedf it contains an overtwisted disk,
that is, an embedded digkin M such thatD is tangent taf and the contact framing @D
coincides with the framing given by the digk If £ does not contain an overtwisted disk, then
£ is calledtight.

Example 2.1.4.Let @ = dz— ydxin Cartesian coordinates. The contact structidtg= kera

is the standard tight contact structure B Note thate A de = dx A dy A dz # 0 andé is
spanned by%, 2 +yd} See Figure 2.H). Also, considerr = cosrdz- rsinrdd in R® with
cylindrical coordinates. The contact structgge= kera is an overtwisted contact structure on
RR3. Note that in this case A de = (1 + Sinr%’)rdr A dd A dz# 0and forr # 0 &y is spanned

by (£, cosr — rsinrZ}. See Figure 2.1).

(a) (b)

Figure 2.1: &) The standard tight contact structurel®f, (b) An overtwisted contact structure
onR3,

All contact structures look the same near a point.

Theorem 2.1.5Darboux’s theorem)For a given contac8-manifold(M, ¢£) and a point xe M,
there is a neighborhood U of x in M such th@at, & |y) is contactomorphic tgV, £siq |v) for
some open set V iR3, £sq).

Example 2.1.6. The standard tight contact structutgy on the 3-spher&2 in R* is given by
the kernel of the 1-fornx = x;dy; — y1dXx + Xedy» — y2dX |gs With Cartesian coordinates
(X1, Y1, X2, Yo) in R*. Note the standard tight contact structureSrwith one point removed is
contactomorphic to the standard tight contact structur&§rsee [19] for an explicit contac-
tomorphism.

Example 2.1.7. The standard overtwisted contact structégieon S2 is obtained fromtsg by
performing a simple Lutz twist along a transverse knotSA, £5). A transverse knot in a



contact 3-manifold i1, &) is a knot which is everywhere transverse to the contact planes. A
simple Lutz twist along a transverse kiots an operation replacing the contact structure on a
tubular neighborhoo8* x D? of T with a contact structurg given by the kernel of the 1-form

B = hy(r)dd + hy(r)de whered is theS! coordinate andr(y) are the polar coordinates @?
andhg, hy : [0, 1] — R smooth functions satisfying:

1. hy=-1,hy, = —r2nearr =0,
2. hi=1,hy=r2nearr =1,
3. (h1, hp) is never parallel tol(;, h,) whenr = O,

4. (h1, hp) does not intersect the positiyeaxis.

Note that a simple Lutz twist results in an overtwisted contact 3-manifold andnergkit
changes the homotopy type of the contact structure.

Theorem 2.1.8(Eliashberg, [9]) Two overtwisted contact structures are isotopic if and only
if they are homotopic as oriented 2-plane fields. Moreover, every tapypalass of oriented
2-plane fields contains an overtwisted contact structure.

In general, for two oriented 2-plane fields to be homotopic we have:

Theorem 2.1.9(Gompf, [21]) Two oriented2-plane fields are homotopic if and only if their
2-dimensional invariants gland 3-dimensional invariants fglare equal.

For the notation we use here for the 2-dimensional invaridpntand the 3-dimensional in-
variantsds, see [19]. Notice that we can regard a contact structuoe a 3-manifoldM as a
complex line bundle and in this way we can consider its first Chern clégse H?(M, Z). The
2-dimensional invariand; is determined by the sgirstructure associated foand if H2(M, Z)
has no 2-torsion thedy, is also determined bgy (£). If (X, J) is an almost complex 4-manifold
with X = M, then the almost complex structudenaturally induces a 2-plane field dvi
by taking the complex tangencies dfalongdX. If ci(¢) is torsion then the 3-dimensional
invariantds(£) can be computed as

() = 5(6170% 9) - 3(00) - 2((0)

whereX is an almost complex 4-manifold withX = M such that the oriented 2-plane field
induced by complex tangencies is homotopic to the contact struétoreM. Here, o(X)



denotes the signature ¥fandy(X) denotes the Euler characteristicXf For the computation
of c12(X, J) see [21], [6].

Finally, we recall the fillability of contact structures. A contact 3-manifdidl £) is called
weakly symplectically fillabléf M is the oriented boundary of a symplectic manifoi] ¢)
such that [-> 0.

Theorem 2.1.10(Eliashberg [8], Gromov [22]) Any weakly symplectically fillable contact
3-manifold(M, &) is tight.

2.2 Legendrian Knots

Legendrian and transverse knots are very natural objects in contaahBolds and they play
an important role in the theory. For more information see [12].

Definition 2.2.1. A knot L in a contact 3-manifoldN], &) is calledLegendrianif it is every-
where tangent tg, that is, TyL € &4 forall x € L.

There are two types of Legendrian knots in overtwisted contact strsctomse and non-loose.

Definition 2.2.2. A Legendrian knot in an overtwisted contact 3-manifMds calledlooseif
its complement is also overtwisted. We call a Legendrian kiootlooseif its complement is
tight.

The classical invariants of Legendrian knots are the topological knet tiip Thurston-Benne-
quin invarianttb(L) and the rotation numbeot(L). The Thurston-Bennequin invariant tb(L)
measures the framing afgiven by the contact planes with respect to the framing given by the
Seifert surface of.. The rotation number rot(L)of an oriented null-homologous Legendrian
knotL can be computed as the winding numbeT @fafter trivializingé along a Seifert surface
for L.

Let L be a Legedrian knot ifR® with its standard contact structuggy given by kernel of
the 1-forma = dz— ydx Thefront projection of L is the image olL, #(L), under the map
7R3 - R?: (xv,2) — (X 2. Using front projections, one can compute the Thurston-
Bennequin invariantb(L), and the rotation numbeot(L) of a Legendrian knolt by using the



following formulas:

th(L)

writhe(L) — %(#cu p3,

rot(L) %(#down cusps #up cusps

where the writhe of. is the sum of the signs of the crossingd.of

Example 2.2.3.In Figure 2.2 we show a front diagram of a Legendrian trefoil knot wi(h) =

1 androt(L) = 0. Notice that, the front projection has no vertical tangencies, insteag dner
cusps. In addition, at a crossing the strand with a smaller slope lies in firtimt strand with
a larger slope.

_C

Figure 2.2: Legendrian Trefoil knot.

Definition 2.2.4. The positive stabilizatior5. (L) andthe negative stabilizatiors_(L) of a
Legendrian knoL in the standard contact structufgq on R? is obtained by modifying the
front projection ofL by adding a down cusp and an up cusp as in Figure 2.3, respectively.

Y

Figure 2.3: The positive stabilizatid®, (L) and the negative stabilizatié (L) of L.



Since stabilizations are done locally, by Darboux’s theorem this defingfzttions of Legen-
drian knots in any contact 3-manifoli( ¢). After stabilizing a Legendrian knot the classical
invariants change ab(S.(L)) = tb(L) — 1 androt(S.(L)) = rot(L) + 1.

By looking at the characteristic foliation we may see how to destabilize a Leigeridhot. The
characteristic foliationX; is the singular foliation induced ahfrom ¢ whereZ (p) = £pNTXp,

p € Z. The singular points are the points whépe= TX,. Any surfaceX may be perturbed so
that its characteristic foliatioB; has only generic isolated singularities, elliptic singularities
and hyperbolic singularities. The singularity is positive if the orientatiorz,pagrees with
the orientation off Z,,. If the orientation or¥, disagrees with the orientation o&, then the
singularity is negative.

Recall that a closed oriented surfatén a contact manifoldNI, &) is calledconvexif there

is acontact vector fieldv, that is a vector field whose flow preserves the contact strugture
transverse t&. Given a convex surfacg in (M, &) with a contact vector field, thedividing
setl's of 2 is defined as

I's ={XxeX: VX e&l.

The dividing sefy is a multi curve, that is a properly embedded smooth 1-manifold, possibly
disconnected and possibly with boundary. The isotopy clads afoes not depend on the
choice of the contact vector field

A properly embedded curv€ on a convex surfacg is non-isolating if C is transverse to
I's and every component & — (I's U C) intersectd’s. The next theorem gives a criteria to
determine whether a given curve or a collection of disjoint curves onegmurfacee can be
made Legendrian.

Theorem 2.2.5(Legendrian Realization Principle, [25], [23])f C is a properly embedded
non-isolating curve on a convex surfaE¢éhen C can be made Legendrian, that is there exists
an isotopyps of X, se€ [0, 1], such thaipo = id |5, ¢s(X) is convex for all s¢1(I's) = I'y,x) and
#1(C) is Legendrian.

Given an oriented Legendrian kniot the positive stabilizatio®. (L) of L and the Legendrian
knot L cobound a convex disk wheretb(0D) = —1 andD N L contains two negative elliptic
and one negative hyperbolic singularities &d S, (L) contains the same two negative elliptic
singularities and one positive elliptic singularity. Similarly, the negative stabiliz&igL) of

L and the Legendrian knat cobound a convex disk wheretb(oD) = —1 andD n L contains



two positive elliptic and one positive hyperbolic singularities &nd S_(L) contains the same
two positive elliptic singularities and one negative elliptic singularity. Such aidisklled a
stabilizing diskfor L or abypasdor L andS.(L). See Figure 2.4. Note that all the singularities
of D¢ have the same sign except one which indicate us whether we are positivelgatively
stabilizing the Legendrian knat For a detailed discussion of stabilizations and bypass disks
see [12], [15].

Figure 2.4: A bypass for andL’ = S.(L). The curve is the dividing curve oD.

2.3 Open Book Decompositions

Alexander proved that every closed orientable 3-manifold has an apa decomposition,
[2]. Thus open book decompositions provide us another way of stu@ymgnifold topology.

Definition 2.3.1. An open book decompositioof a closed, oriented 3-manifol is a triple
(B, S, ) whereB is an oriented link inVl andr is a fibration of the complemem — B over
the circle whose fibers are the interior of Seifert surfaced. dhe link B is called thebinding
and the fiber surfac8 is called thepageof the open book decomposition.

The genusof an open book decomposition is defined as the genus of the page.titrulzay
planar open book decompositions are genus zero open book decompsositio

An alternative definition of an open book decomposition can be givenlas/fo

Definition 2.3.2. An abstract open book decompositiafi a closed, oriented 3-manifold is
apair S, ¢) whereS is an oriented compact surface with boundary By#ndy is a difeomor-



phism ofS such thaty is identity on a neighborhood of the bound@% and
M -B=Sx][0,1]/(1,X) ~ (0, ¢p(x)).
The mapy is called thenonodromyof the open book decomposition.

Definition 2.3.3. Positive stabilizatiorof an open book decompositio8,(p) is the open book
decomposition$’, pot,*1) whereS’ = Su(1-handle) and, is a right handed Dehn twist along
the closed curvain S’ running over the 1-handle and intersecting the co-core of the 1-handle
once. Instead of a right handed twigtf we use a left handed twigg* along the closed cune

in S’ then the resulting open book decompositih (ot,™1) is called anegative stabilization

of (S, ¢).

Definition 2.3.4. An open book decomposition & and a contact structugeon M arecom-

patible if after an isotopy of the contact structure, there is a contact ferfor ¢ such that
a > 0 on the bindingB, in other words the bindin® is a positive transverse link, amd > 0

on every page of the open book decomposition.

Example 2.3.5. Consider the open book decompositigh ¢ = t,) of S where the binding
H* is the positive Hopf link, the pag# is an annulus and the monodromys a right-handed
Dehn twist along the middle curve The open book decompositioA,(p = t,) is compatible
with the standard tight contact structutg on S. See Figure 2.5).

Also, consider the open book decompositidag = t;*) of S where the bindingH~ is the
negative Hopf link, the pag& is an annulus and the monodromys a left-handed Dehn twist
along the middle curve. The open book decompositioA,(p = t;1) is compatible with the
standard overtwisted contact structggeon S3. See Figure 2.%).

Open book decompositions and contact structures are closely relategeArbook decompo-
sition of a 3-manifold M naturally gives rise to a contact structurd/band the isotopy classes
of contact structures are in one to one correspondence with suitallalegee classes of open
book decompositions d¥l.

Theorem 2.3.6(Thurston and Winkelnkemper [36]Every open book decomposition 08a
manifold admits a compatible contact structure.

Theorem 2.3.7(Giroux, [20]). Every contact structure is compatible with some open book
decomposition and there is a one to one correspondence between driemtact structures
up to isotopy and open book decompositions up to positive stabilization.
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(@ (@

(H, ;)
(a) (b)

Figure 2.5: &) The open book decomposition compatible with the standard tight contact struc
ture onS2, (b) The open book decomposition compatible with the standard overtwisted tontac
structure ors®.

The plumbing of open book decompositions is a special case of a more lggpenaion called
Murasugi sum which is a method for constructing manifolds with open boo&rdpositions.

Definition 2.3.8. Let (S1, ¢1) and G2, ¢2) be open book decompositions fibl; and M, re-
spectively. Thelumbing of open books$1, 1) and S», ¢») is an open book decomposition
(S1 * S2, ¢1 0 @) for the connected sumi1 M, where the pageS; = S, is obtained by gluing
S; to Sy along a rectangular neighborhoBd= s x [-1, 1] of properly embedded arcsin
Si,i=12.

Theorem 2.3.9(Gabai [18], Torisu [37]) Let (S1, ¢1) and (S, ¢2) be open book decompo-
sitions compatible with the conta8tmanifolds(M41, £1) and (M2, &), respectively. Then, the
plumbing (S1 = Sy, 1 o ¢2) of the open bookéS1, ¢1) and (S, ¢2) is compatible with the
contact3-manifold(M14Mo, £14£5).

The next lemma is useful and gives the relation between the stabilization®ofomok de-
compositions and the stabilizations of Legendrian knots sitting on a page gieanbmok
decomposition.

Lemma 2.3.10.Let (S ¢) be an open book decomposition for a closed orieBtetanifold M
compatible with a contact structuggon M. Let L be a Legendrian knot sitting on a page of
the open book.

(1) Positive (resp. negative) stabilization &) (resp. S (L)) of the Legendrian knot L can
be realized on the page of the open book by first stabilizing the open lbsadk/ply and
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then pushing the knot L over tiehandle that we use to stabilize the open book. See
Figure 2.qa) and(b).

(2) If we first negatively stabilize the open book and then push the knot Lilee&rhandle
that we use to stabilize the open book, then the negatively stabilized opernshomk
longer compatible with the contact structuge but the curve L on the page gives a
Legendrian knot Lin the new contact structure and Legendrian knofsand L. in
Figure 2.6c) and(d) are positive and negative destabilizations 6frespectively.

Figure 2.6: &) Positive stabilizatiorsS, (L) of L, (b) Negative stabilizatior5_(L) of L, (c)
Positive destabilization df’, S, (L) = L’, (d) Negative destabilization df’, S_(L”) = L’.

Proof. (1) To prove (1) we find a stabilizing disk for each case as we discusse@wops
Section 2. See Figure 2.4. First, positively stabilize the open book as in Figure) 26
push the Legendrian knatover the 1-handle that is used to stabilize the open book positively,
call the new curve.,. We will show thatlL, is a positive stabilizatios, (L) of L.

Notice the Legendrian unknatwith tb(a) = —1 in Figure 2.68). Legendrian unkncd bounds
a diskD in M. Sincetb(a) = -1, D is convex and the dividing curves intersé€l twice. Now,
we can thinkL, as the knot obtained from pushihgacrossD. Note thatD is a bypass fot
andL.. See Figure 2.4), the curvd” denotes the diving curve @. A singularity along)D is
positive or negative depending on whether the contact planes pa3sirgtwisting in a right
handed fashion or a left handed fashion. The sign of the singularitietesndined by using
the orientation of. which determines the orientation bfnear the boundary. See Figure 2)7(
again.

12



h_ — \‘) —
é < & = L [ hy [
+
(b)
(=
(a)

Figure 2.7: &) Positive stabilizatior, = S, (L) of L, (b) Negative stabilizatioh._ = S_(L)
of L.

The negative stabilizatio_(L) of the Legendrian knoL can be realized on a page of the
open book decomposition in a similar way. This time we use the Legendrian ubkmith
tb(b) = —1 in Figure 2.6§) and the convex disk th&itbounds inM. See Figure 2.1).

(2) We prove (2) for null-homologous Legendrian knots only. First, negbtigtabilize the
open book as in Figure 2 §(and then push the knatover the 1-handle that is used to stabilize
the open book negatively, call the new cubve

Note that in general the negative stabilization of an open book decompositanges the
contact structuré. However, in this case the curkeon the page gives a Legendrian kot
in the new contact structure. We will show thdtin Figure 2.6€) is a positive destabilization
of L.

We want to remark that the Legendrian unkieawith tb(c) = +1 in Figure 2.6¢) bounds a
disk D in M. SinceD is not convex unlike in the proof of (1) we can not use this disk to
find a bypass. Instead, we positively stabilize the open book as in Figg@ and push the
Legendrian knotL’, over the 1-handle that we use to stabilize the open book positively. By
(1), the resulting Legendrian knot is a positive stabilizatBrfL’ ) of L’.. We will show that
S.(L%) is Legendrian isotopic th’. Note that the curver in Figure 2.8¢) is a Legendrian
unknot withtb(a) = 0. In fact, Legendrian unknat bounds an overtwisted disk which is
disjoint from L/, in M. Legendrian knotd” and S, (L’ ) have the same classical invariants,
that is, they have the same knot type, same Thurston-Bennequin invanidsiame rotation

13



number, and since they have a common overtwisted disk in their complemeny, by Bhd
S.(L%) are Legendrian isotopic.

(c)

Figure 2.8: €) Positive destabilization df’, S, (L”) = L’, (d) Negative destabilization df’,
S (L") =L

Similarly, the negative destabilizatidtri of the Legendrian knot’ can be realized on a page
of the open book decomposition. We stabilize the open book as in Figu 2r&{ push the
Legendrian knot.” over the 1-handle to get negative stabilizat®r(L”) of L’ . We conclude
thatS_(L”) andL’ are Legendrian isotopic by using the Legendrian unjgiatFigure 2.8().

[ |
We also use the following lemma later.

Lemma 2.3.11.Let M be a closed oriente8tmanifold and le{(S, ¢) be an open book decom-
position for M.

(1) If K is a knot in M intersecting each page S transversely once, then thit @&fsa
O-surgery along K gives a new manifold with an open book decompositiancghav
page S = S—{open disk and having the knot K as one of the binding components. In
particular, if the knot K= {x} x [0, 1]/ ~ in the mapping torus Y= M - Bin M for a
fixed point xe S ofp and ife [;opendisk= id then the new monodrongy after a0-surgery
alongKis¢’ = ¢ |s.

14



(2) If Kis aknotin M sitting on a page S of the open book decomposition sthesurgery
along K with respect to the page framing gives a new manifold with an opendeok
composition(B, S, ¢ o t£1) where !/t ! denotes rightieft handed Dehn twists along the
knot K.

A proof of above Lemma 2.3.11 and more information on open book decompssiod

contact structures can be found in [13].
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CHAPTER 3

TOPOLOGICAL LINKS AND OPEN BOOK
DECOMPOSITIONS

In this chapter, we study the topological properties of links sitting on thespaiyepen book
decompositions. In the following section, we define some terminology and teessfanda-
mental lemma that we use to prove the main theorems. In Section 3.2, we studynlipages

of open book decompositions &2. Finally, in the last section, we study links on pages of
open book decompositions of arbitrary 3-manifolds.

3.1 Pure braided plat of Links

It is well known that any linkL of k componentd s, ..., Lk, in particular any knoK, can be
represented as anzplat, see Figure 3.4, [4].

Definition 3.1.1. The shifted 2-plat of the linkL of k componentd 4, ..., Lk is defined as the
closure of a B-braid as shown in Figure 34), We say a shiftedr2plat of the linkL is pure
braided 2&-plat if its associatedrbraid is a pure braid.

To prove the main theorems, we need the following lemma.

Lemma 3.1.2. (1) Every knot can be represented as a pure braided plat.

(2) Every link of k componentsiL . ., Lk can be represented as a pure braided plat.

Proof. (1) We may isotope a shiftednzplat of the knotK to get a pure braidedr2plat for K
as follows: First orient the knd€ and label the lower and the upper end points of the strands
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Nn-nn An-AAnd

2n- braid 2n- braid
TUTUU WY
(@) L () Ly
2n-plat of the link L Shifted 2n-plat of the link L

Figure 3.1: Shifted @-plat of the linkL.

of associatedr2braidb and pair them as in Figure 3.2. We have the following list of pairs: for
the lower end points (£1), (23), ..., (- 2,2n - 1) and for the upper end points’(2’),

..y ((n =1y, (2n)). Also, denote the permutation in the permutation gr&dpon the set
{1,...,2n} associated tor2braidb of the shifted 2-plat byo-.

(r,2)  @3.4) (2n-1)', (2m)")
l'f>\2' 3(>\4' S TS
2n-braid b
1 2 3 4 5 25l 2n
& 25 o

(2n, 1)

Figure 3.2: From a shiftedr2plat to a pure braided plat.

Now, start in the lower left strand with a labeled 1 lower end point. This strandects to
its upper pointj” = o(1). Isotope {/,(j + 1)) to the left as in Figure 3.3] so that the first

17



labeled upper point at the top j$ = o(1). Now relabel upper end points asZ, ..., (2n)

and without loss of generality denote the permutation associated to méwall aso again.
Next, find where the strand whose upper end point iso2inects at the bottom, its lower end
point will be c~1(2") = k wherek is an element from the s€?, ..., 2n — 1}. Note thatk # 2n,
otherwise the knoK would be a link. Isotopek( k + 1) to the left as in Figure 3.B] to be the
second labeled strand at the bottom. Relabel the lower end point2.as.12n and without
loss of generality denote the permutation associated to mewd#d aso- again. Note that we
haveo(1) = 1/, 0(2') = 2. Findo(3) and isotope similarly to be the third labeled strand at the
top. Continuing in this manner, we will obtain a pure braid giving a pure bda2deplat of the
knotK.

G',G+D) (1,2 (3,4 ((2n-1), (2n)" 1,2y 3,4y @,5) ((2n-1),(2n))
Retabel 130D sy i ew A A A A
NI (D=1
RSN
o(D)=" j+1’

c'Q=k k+1 2n

1 2n Relabel (J ¢ \X\\ )
(2,3) >Z) (2n-2,

2n, 1) (2n, 1)
(a) ()

-1) k k+1) (2 3) (4 5)

Figure 3.3: Pure braided plat.

(2) First of all, given a linkL of k componentd.4,...,Lx we can present the link as a
plat. From this plat we can obtain a shifted-glat of L such that it has the same form as in
Figure 3.1b) with an associated braid which is not necessarily a pure braid. However, the
algorithm described in proof of (1) extends to convert a shifteglat of L into a pure braided
2n-plat. |
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3.2 Knots and Links in 3-sphere

Theorem 3.2.1.Any knot K in S is planar, that is, K sits on a page of a planar open book
decomposition for &

Before the proof of Theorem 3.2.1, let us give an illustrative example. prbof will follow
exactly the same scheme.

Example 3.2.2. The figure eight knoK is planar. The aim here is to present the figure eight
knotK as a pure braided plat as in Figure &)adnd using this pure braided plat and the ideas
in Lemma 2.3.11 to construct a planar open book which contains the figurekeighon its

PN
a
./

0
U

Vs

Vs

LS

N

Figure 3.4: Braid representative of the figure eight knot.

We start with a minimum braid representation of the figure eight khats in Figure 3.4.
Throughout this example, i = 1,...,n— 1, stand for the standard generators of the braid
group B, on n-strands. Note thaK has braid index 3 and its associated braid word is
0'510'10'510'1. As seen in Figure 3.8§, we can represei€ by a 6-plat associated to a 6-braid
bobhy ! wherebg = (020304075)(0304) and b is the 6-braid obtained frorh by adding 3
trivially braided strands.

Now isotope the diagram in Figure 3&) (o obtain a shifted 6-plat as in Figure 3bé&nd using
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6-plat for K Shifted 6-plat for K Pure braided 6-plat for K

Figure 3.5: Pure braided plat presentation of the figure eight knot.

the algorithm given in Lemma 3.1.2 continue isotoping to obtain a pure braidéat 6pthe
figure eight knot as in Figure 3.&(

Next, we decompose the pure braided 6-plat of the figure eight knotridatd generators of
the pure braid group on 6-strands as in Figure&.a{ow to obtain the open book decompo-
sition which contains the figure eight knidét we unknotkK using the diagram in Figure 3#(
We unknotK by blowing up twists. See Figure 3§( We get a linkLk of unknots linkingK
whose components have framisd. We continue blowing up to ensure that each component
of Lk links K exactly once. See Figure 3dh(Notice that we add newl-framed components
to the link Lx and the components &f link each other as the Hopf link and link the knét
only once. We continue blowing up as in Figure 3.7 to remove each linking batthe com-
ponents. We need to be careful with the resultirigframed unknots linking the components
of Lx. To be more precise, at each linking crossing between the componémntswef have dif-
ferent choices where to blow up as explained in the proof of Theorerh Beow. We always
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choose the one that guarantees that after blowing up, the ressiltifi;amed unknots linking
the components dfx can be isotoped to sit on the page of the open book decomposition at the
end. See Figure 3.7 again.

Falf} 2(las
1D D ol D
C— G (@RS
BB D 779
—_ — -1 —_ | — sel— 1 —
GZ|IZ| = SN B 2C_<_l>___
0 0 P
___:) +1 __D _13
(LI <G | Z|Z 05| 2| =
-1
A i R
i® .

C
5
§

b

C S

6

—~
()
N
~
=3
~
~~
(e]
~

Figure 3.6: Unknotting the figure eight knot.

Finally, we blow up again as in Figure 3.8 so that each component of thé firflas framing
codficient 0.

Now, using Lemma 2.3.11 we are in a position to see the open book decomposiiimitlg.

Note that we obtain a planar open book decompositioSfarhere the figure eight knét and
each O-framed componentslof are the binding components of the open book decomposition
and eacht1-framed unknots linking the componentslgf sits on the page and contributes
negative positive Dehn twists to the monodromy of the open book decompaosition resggcti
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We are now ready for the proof of one of the main theorems of this chapter.

Proof.of Theorem 3.2.1.Given a knotK in S3, we construct a planar open book®t such
thatK is one of the binding components. We then push the knohto one of the pages.

First, present the kndt as a pure braided plat using the algorithm given in Lemma 3.1.2. Next,
decompose the pure braided platofn terms of standard generators of the pure braid group.
A generating set of braid&;j, 1 <i < j < 2n, for the pure braid group omzstrands is shown

in Figure 3.9.

T

I J

Figure 3.9: Generatokj; for the pure braid group.

Note to unknot the knoK using a decomposed pure braided plat presentatidgf, @fe only
need to remove full twists. We remove twists and unkQdly blowing up. Note also that there
is not a unique way to do so. Thefidirent ways of blowing up are shown in Figure 3.10.

Hor d b S

5/7\ || ﬁ/(\ |
SR | N WY |

Figure 3.10: Diferent ways of blowing up to remove twists.

The idea of the proof is that using a pure braided plat presentation ohtit&k unknotK by
blowing up several times in such a way that at the Krid the unknot which we denote yx
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and the resulting link of unknotsc = Lo U L. coming from the blow ups linkingJx satisfy:

[

. Each component dfx links Uk only once,
2. The components dfx are pairwise unlinked or linked as the Hopf link,

3. Ifthe components dfk linked as the Hopf link, then continue blowing up to remove the
linking and get:1-framed unknots.. linking the components df,

4. L. does not linkUx and each can be isotoped to sit on a disk thatbounds,

5. The component dfk linking Uk only once has 0-framing, we denote such components
by Lo.

The knotUk has a natural open book decompositiorSthcoming from the disk it bounds.
The O-framed link_g of unknots puncture each disk page transversely once and we cgpeisoto
+1-framed linkL.. of unknots linkingLy components onto one of the punctured disk pages.
Thus, after performing surgerié$c will be isotopic to the knoK and by Lemma 2.3.11 we
will get a planar open book 082 where the knotUx and the O-framed linko of unknots
form the binding components and eaeh-framed linkL.. of unknots sitting on the punctured
disk page contributes to negatiymsitive Dehn twist to the monodromy of the new open book
decomposition respectively.

Note that it is enough to verify we can do this for the set of generatorstegidinverses
given in Figure 3.11. All the generators fall in one of the five casesgivd-igure 3.11. We
explain one complicated case, ®).1j+1, in Figure 3.12 and we give a summary for all cases
in Figure 3.13 and their inverses in Figure 3.14.

We want to remark that a pure braided plat presentation of the Knot the type in Fig-
ure 3.1p) allows us to isotopa-1-framed curves onto a page.
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Theorem 3.2.3.1f L is a link of k componentsil... ., L in S8, then L is planar, that is, L sits
on a page of a planar open book decomposition for S

Proof. Here, we mimic the proof of the Theorem 3.2.1. The only modification requirad is
the end. Using a pure braided plat presentation of thellimepeatedly blow up to unknot the

given link L and arrange the framing of the unknots linkingnly once to be 0 and remove each
linking between the unknots linking to get the middle:1-framed curves. After performing

the O-surgeries, the page of the open book can be constructed by tiagingnnected sum of

componentd s, ..., Lg of the link L as shown in Figure 3.15.

2n- braid
L L, Ly
Lig Loy 4L,

Figure 3.15: Construct the page of the open book by taking conneatedfsihe components
L1,..., Lk of the link L.

Hence, we can isotope the middid-framed curves onto a page using the bands connecting
the components. Clearly, the liriksits on a page of this planar open book. [ |

Remark 3.2.4. Note that other than the unknots with O-framing coming from resolving the
generators (1.1, (3) Aij+1, (4) Air1j in the proof of Theorem 3.2.1, we have onrl§-framed
unknots. In these cases]-framed unknots contribute positive Dehn twists to the monodromy
of the new open book. We want to remark that we can arrange this to beaseefar all
generators and their inverses. Namely, by blowing up fiecént ways we can make sure that
other than O-framed unknots, each case contains -etframed knots. Thus, at the end we
will have an open book decomposition f8f whose monodromy is a product of only positive
Dehn twists and contains the given knot or link on its page. We discussgths (%)Ai‘jljﬂ and
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3) Aﬁlﬂ in Figure 3.16 in detail. Other cases can be worked out similarly, we givenensiny
for the remaining cases in Figure 3.17.
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Figure 3.16: Resolving the cases A@lml and (3)Ai‘jl+1 in such a way that the cases contribute
only positive Dehn twists to monodromy.

As a consequence, we have

Theorem 3.2.5. Any topological knot or link in & sits on a planar page of an open book
decomposition for $whose monodromy is a product of positive Dehn twists. [ |

3.3 Knots and Links in 3-manifolds

Theorem 3.3.1.Let L be a link of k componentgL.., Lk in a closed orientabl&-manifold
M. Then L is planar, that is, L sits on a page of a planar open book for M.

Proof. Itis known, see [26] and [38], that any closed orientable 3-manifblthay be obtained
by +1 surgery on a link.yy of unknots inS3. Given a linkL of k components.y, ..., Lx in a 3-
manifold M, we may think ofL_ as a link inS3 which is disjoint from the surgery linky. Now
using the algorithm described in Theorem 3.2.3 we can find a planar op&rdeoomposition
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Figure 3.17: Other than O-framed knots each remaining case contains bifilgmed knots.

for S2 such that the link_ L Ly sits on its page. Also, using a similar idea in Lemma 2.3.10
we can arrange framing of each componerit gfsitting on a page to bel with respect to the
page framing by first stabilizing the open book and then pushing thelkoeer the 1-handle
that we use to stabilize the open book. Then away from theljmke can perfornx1 surgeries

on Ly which yield a planar open book for the 3-manifditicontaining the link. on its page.
Moreover, this new open book has a monodromy which is the old monodromgased with
negative positive Dehn twists along eaetl-framed component of the linky. [ |

Corollary 3.3.2. Any knotK in a 3-manifoldM is planar, that isK sits on a page of a planar
open book forM.

Remark 3.3.3. It is well known that any closed, orientable 3-manifdldhas an open book
decomposition, [2], in particular has a planar open book decompositi8h, [Bfferent ways

of constructing open book decompositions for 3-manifolds are knowa fong time. In fact,

by Theorem 3.3.1 a planar open book for a linkn a closed orientable 3-manifold gives

a planar open book decomposition fdr. Here we want to remark that using the idea in the
proof of Theorem 3.2.1 an alternative way of constructing explicit plapan books for any
given 3-manifoldM can be given. Namely, we can determine the monodromy of the planar
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open book forM.

Theorem 3.3.4.Every closed orientabld-manifold has a planar open book decomposition.

Proof. Assume that given 3-manifollll is obtained by:1-surgery on a link_y, of n unknots.

We can present the linky as the closure of e-braid as in Figure 3.18. Notice that since we
have a link ofn unknotsn-braid in Figure 3.18 is a pure braid. Now, decompose the pure braid
in terms of standard generators of the pure braid group-stnands.

Figure 3.18:+1-surgery on a linky, of n unknots giving the 3-manifol®/.

Consider the unkndd in Figure 3.18. We will construct a planar open book kbéusing the
planar open bookY, D, ¢ = 1) of S® where the binding is the unknbt, pages are disk and

the monodromyp is theld. We remove each linking between the components of the surgery
link Ly by blowing up so that the resultingl-framed unknots can be isotoped to sit the disk
thatU bounds. Note each component of the linl punctures transversely once the disk that
U bounds. We continue blowing up to arrange the framindgftment of each component of

Lm to be zero. Then by Lemma 2.3.11, we will have a planar open bod¥ f@here the pages
are disk withn-punctures and the monodromy is a product of negapesitive Dehn twists
along the+1- framed surgery curves on the punctured disk théobunds. |

Example 3.3.5. Consider the Poincarhomology spher&(2, 3,5) which can be given by a
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surgery on the Borromean link as in Figure 3.19.

-1 +1

%A

-1

Figure 3.19: Surgery on a Borromean link giving the Poiadasmology sphere.

We construct a planar open book &2, 3, 5) using the given surgery diagram as follows: First
we present the Borremean link as a pure 3-braid and we decomposeréhbrpid in terms
of standard generators of the pure braid group on 3-strands. Nextemove each linking
between the components of the Borromean link by blowing up and we contiowag up to
arrange the framing of each component of the Borromean link to be 0.i§aeRB.20.

)

4

o

C

(&

Figure 3.20: Pure braid representation of Borromean link and a wayolviag the twists.

Now, using the unkndd) given in Figure 3.20 and using its natural fibratiorSity we construct
a planar open book decomposition (2, 3, 5). We slide the surgery curves on to the disk that
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U bounds and we perform the surgeries on the page. By Lemma 2.3.11paftemming O-
framed surgeries, each component of the Borremean link becomes agotmaitponenty, 52
andds. Note that we set the notation for binding components from inner compéoenter
component. By Lemma 2.3.11 again, we know that eattiramed surgery curve contribute
negative positive Dehn twist to the monodromy of the starting open book which in thisisase
the identity. Hence, the monodromy of the open book is given bytlglt(;ltﬁtat(;llt(;zt(;sl.

Figure 3.21: A planar open book for the Poiredromology sphere, the monodronayis

¢= tﬁ—lt(;ltﬁtatgllt(;ztggl.
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CHAPTER 4

LEGENDRIAN KNOTS AND OPEN BOOK DECOMPOSITIONS

In this chapter, we study the contact geometric properties of knots sittingegraties of open
book decompositions. In Section 4.1, we define the support genus ehtdeggn knots. In
the following sections, first we study the support genus of Legendmatskin overtwisted
contact 3-manifolds and then in tight contact 3-manifolds. Finally, we stuglgipport genus
of Legendrian knots in arbitrary contact 3-manifolds. We list severaénlations related to
support genus of knots.

4.1 Support Genus of Legendrian Knots

Definition 4.1.1. The support genussgL) of a Legendrian knot. in a contact 3-manifold
(M, &) is the minimal genus of a page of an open book decompositidh sfipportings such
thatL sits on a page of the open book and the framings givendoyd the page agree.

Given a Legendrian kndt in a contact 3-manifoldNl, £), one can always find an open book
decomposition compatible with containingL on a page such that the contact framingLof
is equal to the framing given by the page. Such an open book decompdsiti(¥, £) can
be constructed by an application of Giroux’s algorithm, using a contactieetmposition of
(M, ¢) and including the given Legendrian knoin the 1-skeleton of the contact cell decom-
position, [20]. For Legendrian knots iS¢, £5tg) an alternative algorithm that uses the front
projection of Legendrian knots can be found in [1], cf. also [3]. Tthessupport genusg(L)

of a Legendrian knot is well defined.

We want to remark that definition of support genus for Legendrian krensbe extended to
Legendrian links.
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Example 4.1.2. Consider the Legendrian unknbtin (S3, £sq) as shown in Figure 4.1. The
Legendrian unknot sits on the page of an open book decompositidi,@,¢ = t,) of
(S8, £sd). Thus, the support genus bfis zero.

CEDE

(STH 1)

Figure 4.1: Legendrian unknat tb(L) = -1, rot(L) = O, sg(L) = 0.

4.2 Legendrian Knots in overtwisted contact structures

Recall that there are two types of Legendrian knots in overtwisted costfactures: loose
Legendrian knots and non-loose Legendrian knots.

4.2.1 Loose Legendrian Knots

Theorem 4.2.1.1If L is a null-homologous Legendrian loose knot in an overtwisted contact
3-manifold (M &), then sgL) = 0.

Proof. Itis known that if two null-homologous Legendrian loose knot@ndL. in a knot type

K have the same Thurston-Bennequin invariant and the same rotation ntineethere is a
contactomorphisry of (M, &) such thaty(L1) = L, [17]. Here, we show that we can realize
any pair of integersm, n) with m+n odd as (b(L), r(L)) for a null-homologous loose kndtin

a knot typeK that sits on a planar open bodg, (o) supporting M, &.). By Theorem 3.3.1, we
know there is a planar open book decompaosition, Sy ¢« ), for M such thaK lies on a page
of the open book. The planar open bo&«(¢k) is compatible with some contact structdre
on M. If necessary we can negatively stabilize the open book in such a wathéheesulting
open book is still planar and it is overwisted. Furthermore, following [14Joan assume that
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& is the same as the overtwisted contact strucfyreBriefly, by performing necessary Lutz
twists and taking plumbing o8k, ¢k) with an appropriate overtwisted open book &%, we
can arrange the 2-dimensional invariadisand the 3-dimensional invariants of & andéy

to be the same. Thus, the two contact structures will be homotopic, [21h, DigeEliashberg
[9] two overtwisted contact structures will be isotopic. Note that we can idokdeping the
open book planar and keeping the given kidain the page. For the details of how to arrange
invariants of overtwisted contact structures, see the proof of The®rgim [11].

Now, we can assume that the planar open b&x ¢k) containing the knoK on its page is
compatible with the overtwisted contact structégeon M. If necessary by stabilizing the open
book positively and pushing the knkitover the 1-handle, we may assukés non-separating
and we may Legendrian realize the kioton the page, say it has a Thurston-Bennequin in-
variantt” and a rotation numbet. To realize any pairtb(L), r(L)) for any Legendrian repre-
sentative of the knoK from the pair {',r’), first realize the appropriate Thurston-Bennequin
invarianttb(L). If ' > tb(L), then to decrease the Thurston-Bennequin invariant stabilize the
knot positively or negatively on the page by using Lemma 2.3.10(1). Mab#&yopen book

as in Figure 2.6&) or (b), both will decreaséb(L). Note, this modification alters neither the
contact structure nor the genus of the open book. Now, # tb(L), then to increase the
Thurston-Bennequin invariant we need to destabilize the knot positivelggatively on the
page by using Lemma 2.3.10(2). Note, this modification alters the contact s&ucimwever,

as before, away from the knot by taking plumbing of this new open bodk wfith an appro-
priate overtwisted open book &2, we can make sure that the resulting overtwisted contact
structure is still isotopic t@o.

Now, once we realize the paitt(L), r”’), to complete the proof we only need to realize any
possible rotation numbept(L) from r”’. To increase or decrase the rotation number, we will
use Lemma 2.3.10 again and stabilize the knot positively or negatively ondlee Bacall that

a positive and a negative stabilization of a knot increase and decreasgation number by 1,
respectively and also recall that both stabilizations decrease the TimBstmequin invariant
tb(L) by 1. Thus, every time we increase or decradsave need to make sure thd(L) stays
the same. Clearly, this is possible since to increase the rotation number if tygoBigvely
stabilize the knot on the page as in Figure @)&nd then negatively destabilize the knot on
the page as in Figure 2d)( the rotation number will increase by 2 atifL) stays the same.
Note after negatively stabilizing the open book, we again perform a plundpegation to
keep the contact structure sameégs Similarly, to decrease the rotation number, we first
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modify the open book as in Figure 2¥(@nd then as in Figure 2€( this time the rotation

number will decrease by 2 ani(L) stays the same. Sintlg(L) +rot(L) is odd, we can realize
any pair ¢(b(L), rot(L)). Thus, for any null-homologous loose Legendrian representatitreeo

knot K we can find a planar open book decomposition suppo#ipguch that the Legendrian
representative sits on the page. [ |

4.2.2 Non-loose Legendrian Knots

There are examples of support genus zero non-loose knots in ovedwsntact structures.

Example 4.2.2. The contact 3-manifold given by the surgery diagram in Figure 4.2 is an ov
twisted 63, &n) with d3(&,) = 1 — np(p — 1). The Legendrian kndt, in (S3, &) is non-loose
with support genus zero and topologically @ pn + 1) positive torus knot. Whep = 2,
Legendrian non-loose knots of knot type 28 + 1) positive torus knots first appeared in [28].

Figure 4.2: Legendrian Torus knots.

Let X denote the 4-manifold obtained by viewing the integral surgeries as 4-dioneh2-
handle attachments ®*. With the help ofX, we can compute the 3-dimensional invariant
ds(&n) of the contact structurg,. From Figure 4.3, the signature ¥fis o(X) = -n— p+ 1
and the Euler characteristic #fis y(X) = n+ p + 1. Also, using a second cohomology class
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¢ € H?(X, Z) defined by the rotation number, we compuote= —n(2p — 1)° — (p — 1). From
the formula:

() = (& - 3 1¥) - 2¢(X) +
whereq denotes the number efl-contact surgeries, we compute the 3-dimensional invariant
of &, asds(&n) = 1-np(p—1). Note that, is overtwisted sincds(4,) < 0. Note also thak, is
non-loose since Legendrian surgery aldnpgancels one of thel-surgeries in Figure 4.2 and
results in a tight contact structure. By a similar argument used in [35], tigeisuink together
with the Legendrian kndt,, given in Figure 4.2 can be put on a page of a planar open book of
(S3,&4). After performing surgeries, we will geSg, £,) compatible with a planar open book
containing the Legendrian knat, on its page. ThereforesgL,) = O.

p-strings

Figure 4.3: f, pn+ 1) Torus knots.
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There are examples of support genus non-zero non-loose knotgrtwisted contact struc-
tures.

Example 4.2.3. Consider a Legendrian knatwith a Thurston-Bennequin invariatii(L) >
0in (S3¢&sd). Let (M,€) denote the contact-3nanifold results from ar1-contact surgery
along a positive stabilizatioB, (L) of the Legendrian knok. (M, ¢) is overtwisted by [30],
also by [27]. Sinceb(S.(L)) > 0 according to Remark 4.3.2 beloag(S,(L)) > 0. Note
the imageS. (L)" of S.(L) in the surgered overtwisted contact manifold, €) is a non-loose
Legendrian knot with a non-zero support genus. The Legendriah&nL)’ is non-loose
since the complement @, (L)" in (M, £) is contactomorphic to the complement®f(L) in
(S8, éstd) andsg(S.(L)) > 0, otherwise this would contradict to the fact tisafS. (L)) > 0.

Remark 4.2.4. As we discussed in Example 4.2.3 above, in overtwisted contact structares th
are examples of non-loose knots having support genus non-zerb.desa null-homologous,
support genus non-zero, non-loose Legendrian knot of knotKyjyean overtwisted contact
manifold (M, &»). We can find a loose kndt of knot typeK in (M, &) such thatl has the
same classical invariants &s Moreover, by Theorem 4.2.1 it follows thag(L) = 0. Thus,
we have examples of knots having the same classical invariantsfieredi support genus in
overtwisted contact structures.

4.3 Legendrian Knots in tight contact structures

In Chapter 3, we showed that any topological knot or linB#sits on a planar page of an open
book decomposition dB2. Moreover, we showed that we can arrange the monodromy of the
open book decomposition to be a product of positive Dehn twists only Ol &@roux showed

that a contact 3-manifold is Stein fillable if and only if there is a compatible opek de-
composition for the contact manifold whose monodromy is a product of pegtdhn-twists.
Since there is a unique tight contact structureSdnthe planar open book we constructed for

a given knot or link inS® will be compatible with 83, £sq). For a given knoK in S2 after
putting the knotK on a page of a planar open book with positive monodromy, we may Legen-
drian realize the kndK on the page. If necessary first we may arrag®e be non-separating

on the page by stabilizing the open book positively and pushing thekmeer the 1-handle
and then we may Legendrian realize the kidain the page. As a consequence, we have

Theorem 4.3.1.Given a knot type K ifS2, £sq), there is a Legendrian representative L of K
such that s¢l-) = 0.
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It is easy to find examples of support genus non-zero Legendrias knmaeakly fillable tight
contact structures.

Lemma 4.3.2. If L is a Legendrian knot in a weakly fillable tight contact structure with a
Thurston- Bennequin invariant tb) > 0, then sgL) > 0. In particular, any Legendrian knot
L in (S8, £stg) With Thurston-Bennequin invariant(tb) > 0 has sgL) > O.

Proof. In [11], Etnyre gives constraints on contact structures having stigeaus zero. In
particular, according to [11] a contact 3-manifolbl,¢) obtained by a Legendrian surgery
along a Legendrian kndt in a weakly fillable contact structure having Thurston-Bennequin
invarianttb(L) > 0 hassg¢) > 0. If a Legendrian knot withb(L) > 0 had support genus
sg(L) = 0, then performing a Legendrian surgery aldngitting on a planar page would yield

a contact 3-manifoldN], &) with support genusg¢) = 0, which is not the case. Therefore,
such a Legendrian knot hasgfL) > 0. The Legendrian knots wittb(L) = 0 hassglL) > 0
follows from [32]. [ |

4.4 Legendrian Knots in contact structures

As explained in Lemma 2.3.10(1), if a Legendrian khosits on a page of an open book
decomposition, then positive or negative stabilizatioh g&n be seen on the page of the open
book as in Figure 2.6 and ). Note that we add 1-handles in such a way that the resulting
open book still has the same genus. As a result, we have

Theorem 4.4.1.1f a Legendrian knot L has support genuglsg= n, then the stabilizations
SMS™(L) of L have the support genus(83*S™(L)) < n.

By the above Theorem 4.4.1, given a knot tyfeif all Legendrian knots realizing without
maximal Thurston-Bennequin invariant destabilize and the Legendriats kvith maximal
Thurston-Bennequin invariant has support genus zero, then adindegn knots of the knot
type K has support genus zero. For example, all Legendrian unknoss jeis(q) are planar.

Remark 4.4.2. Note that the support genus of a Legendrian knot gives an uppedbmuthe
support genus of a contact structure, thasggl) > sgé). So, if there is a Legendrian knht
in a contact 3-manifoldN], £) having support genus zero, theg¢) = 0.

Recall that for a non-zero rational numbee Q, a contact-surgery on a Legendrian knat
in a contact 3-manifoldN], £) is a topologicak-surgery with respect to the contact framing.
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The resulting manifold is a new contact 3-manifold’(£’) where the contact structugé is
constructed by extendingfrom the complement of a standard contact neighborhoddtofa
tight contact structure on the glued solid torus, [5]. Such an extensiayalexists and it is
unique wherr = £, k € N, [23].

Theorem 4.4.3.Let L be a Legendrian knot in a conte@&manifold(M, &) such that s@.) = 0.
Then, the contac8-manifold (M’, &) obtained from M by a contact r-surgery along L has

sg¢’) = 0.

We want to remark that rational contact surgeries on a Legendrian lir8ejg4q) on pages of
open book decompositions first discussed in [29].

Proof. Case 1. Contactr-surgery with r < 0: Consider a continued fraction expansion of
r-1

[riro....f] =1 — ————

withintegers; < —-2,i = 1,...,n. LetL; be thegri+1| times stabilization of the front projection

of the Legendrian knot and letL; be the Legendrian pushimf L;_; with additional|r; + 2|
stabilizationsj = 2,...,n. Then following [5], we can replace contacsurgery alond. by

a sequence of contaetl-surgeries alondi1, ..., L,. Since the support gensg(L) = 0, by
Lemma 2.3.10(1) and by keeping the page of the open book planar wealere reachlL; on

a planar open book containirhgon its page. Again by using Lemma 2.3.10(1) we can arrange
framing of eachL; sitting on a planar page to bel with respect to the page framing. After
performing contact surgeries, we will obtain a support genus zer@aco8-manifold.

Case 2. Contactr-surgery with r = g > 0,(p,q) = 1. According to [5], a contact =
g-surgery alond. corresponds t& contact+1-surgeries alon$ Legendrian pushfis of L
followed by a contact’ = q_—‘i(p-surgery along a Legendrian pusk of L for any integer

k € N such thatg — kp < 0. By starting with a planar open book containing the Legendrian
knot L on its page, we can easily ské egendrian pushfts of L on the page and by using
Lemma 2.3.10(1) we can arrange the framings of each pfishf & sitting on a planar page
to be+1 with respect to the page framing. Hence to complete the proof we only nsbdwo
that we can perform’ < 0 surgery on a Legendrian pusfi of L on the page also, but this can

be easily arranged as we did in Case 1. [ |
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