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ṠINEM ÇELİK ONARAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF DOCTOR OF PHILOSOPHY
IN

MATHEMATICS

JULY 2009



Approval of the thesis:

LEGENDRIAN KNOTS AND OPEN BOOK DECOMPOSITIONS
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Prof. Dr. Sinan Sertöz
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ABSTRACT

LEGENDRIAN KNOTS AND OPEN BOOK DECOMPOSITIONS

Çelik Onaran, Sinem

Ph.D., Department of Mathematics

Supervisor : Prof. Dr. Mustafa Korkmaz

Co-Supervisor : Prof. Dr. John B. Etnyre

July 2009, 46 pages

In this thesis, we define a new invariant of a Legendrian knot in a contactmanifold using an

open book decomposition supporting the contact structure. We define the support genussg(L)

of a Legendrian knotL in a contact 3-manifold (M, ξ) as the minimal genus of a page of an open

book of M supporting the contact structureξ such thatL sits on a page and the framings given

by the contact structure and the page agree. For any topological link inS3 we construct a planar

open book decomposition whose monodromy is a product of positive Dehn twists such that the

planar open book contains the link on its page. Using this, we show any topological link, in

particular any knot in any 3-manifoldM sits on a page of a planar open book decomposition of

M and we show any null-homologous loose Legendrian knot in an overtwistedcontact structure

has support genus zero.

Keywords: contact structures, Legendrian knots, open book decompositions
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ÖZ

LEGENDRIAN DÜĞÜMLER VE AÇIK K İTAPLAR

Çelik Onaran, Sinem

Doktora, Matematik B̈olümü

Tez Yöneticisi : Prof. Dr. Mustafa Korkmaz

Ortak Tez Ÿoneticisi : Prof. Dr. John B. Etnyre

Temmuz 2009, 46 sayfa

Bu tezde, kontakt yapıları destekleyen açık kitapları kullanarak kontakt çokkatlılar içindeki

Legendrian d̈uğümler için yeni dĕgişmezler tanımladık. Kontakt 3-boyutlu çokkatlı (M, ξ)

içindeki bir LegendrianL düğümünün sg(L) ile gösterdĭgimiz cinsini, kontakt yapıξ’yi destek-

leyen,L’ yi bir sayfasında içeren ve sayfasınınL’ ye verdiği çatı kontakt çatıya eşit olan açık ki-

tapların sayfa cinslerinin en küçüğü olarak tanımladık.S3 içinde verilen her topolojik link için

monodromisi pozitif Dehn burgularından oluşan ve verilen linki sayfasında içeren d̈uzlemsel

açık kitaplar oluşturduk. Bu sonucu kullanarak, 3-boyutlu her çokkatlı içindeki her linkin

çokkatlının d̈uzlemsel bir açık kitabının bir sayfası içinde kalacağını kanıtladık. Ayrıca, aşırı

dönen kontakt yapılar içinde homolojisi sıfır olan her gevşek Legendriandüğümün cinsinin

sıfır oldŭgunu g̈osterdik.

Anahtar Kelimeler: kontakt yapılar, Legendrian düğümler, açık kitaplar
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CHAPTER 1

INTRODUCTION

One of the most striking results of contact geometry is a theorem of Giroux which gives a char-

acterization of contact 3-manifolds in terms of open book decompositions. Giroux has shown

that there is a one to one correspondence between isotopy classes of contact structures on a

closed orientable 3-manifoldM and suitable equivalence classes of open book decompositions

of M, [20]. This result allows us to treat contact structures as topological objects. In another

direction, one may study Legendrian knots to study contact structures. Legendrian knots is

important in contact geometry since they reveal the geometry and topology ofthe underlying

3-manifold. For example, Legendrian knots are used to distinguish contactstructures [24], to

detect topological properties of knots [34] and to detect overtwistedness of contact structures

[14]. In this thesis, we study Legendrian knots in contact 3-manifolds using open book de-

compositions. We first study the topological properties of knots sitting on pages of open book

decompositions and then we study the contact geometric properties of knots sitting on pages of

open book decompositions.

In Chapter 2, we give a review of background information on contact structures, Legendrian

knots in contact manifolds and open book decompositions.

In Chapter 3, for a given topological link inS3 we present an explicit algorithm to construct a

planar open book decomposition whose monodromy is a product of positiveDehn twists and

contains the given link on its page. Using this, we prove a general property for topological

links, in particular for knots. We prove that any topological link in a closed,orientable 3-

manifold sits on a planar page of an open book decomposition. It is well known that, [2],

every closed orientable 3-manifold has an open book decomposition; in fact has a planar open

book decomposition, [33]. Different ways of constructing open book decompositions for 3-

manifolds are known for a long time. Alternatively, using the ideas for constructing planar open
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books for knots and links we construct explicit planar open books for any closed orientable 3-

manifolds.

In [16], given any contact 3-manifold, Etnyre and Ozbagci defined new invariants of contact

structures in terms of open book decompositions supporting the contact structure. One of the

invariants is the support genus of the contact structure which is defined as the minimal genus

of a page of an open book that supports the contact structure. In a similarfashion, we define

the support genussg(L) of a Legendrian knotL in a contact 3-manifold (M, ξ) as the minimal

genus of a page of an open book of M supporting the contact structureξ such thatL sits on a

page and the framings ofL given by the contact structure and the page agree. This definition is

originally due to Etnyre.

In the last chapter, we show any null-homologous loose Legendrian knotin an overtwisted con-

tact 3-manifold has support genussg(L) = 0. We construct examples of non-loose Legendrian

knots having support genus zero or non-zero. We list several observations related to Legen-

drian knots in contact 3-manifolds. We observe that for any given knottype K in (S3, ξstd),

there is a Legendrian representativeL of K such thatsg(L) = 0. We show the existence of Leg-

endrian knots with non-zero support genus in weakly fillable contact structures. Moreover, we

observe that for a non-zero rational numberr ∈ Q, any contact 3-manifold which is obtained

by a contactr-surgery on a support genus zero Legendrian knot has support genus zero.
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CHAPTER 2

BACKGROUND

In this chapter we review the basics of contact geometry. In Section 2.1, wedefine contact

structures and give some examples that will be used throughout the thesis.Section 2.2 dis-

cusses Legendrian knots in contact 3-manifolds. Finally, in Section 2.3, wedefine open book

decompositions and we discuss the relation between open book decompositions of 3-manifolds

and contact structures.

2.1 Contact Structures

Contact structures on odd dimensional manifolds are very natural objects. We restrict ourself

to contact structures on 3-manifolds. For more information see [10], [19], [31].

Definition 2.1.1. A contact structureξ on an oriented 3-manifoldM is a maximally non-

integrable 2-plane field.

The non-integrability condition implies thatξ is not everywhere tangent to any surface. Locally

there is a 1-formα such thatξ = kerα andα ∧ dα , 0. If ξ is orientable, in this case 1-formα

exists globally and the 1-formα is called acontact form. We denote acontact3-manifold as

(M, ξ).

Definition 2.1.2. Two contact manifolds (M1, ξ1) and (M2, ξ2) arecontactomorphicif there is

a diffeomorphismψ : M1 → M2 such thatψ∗(ξ1) = ξ2. Two contact structuresξ1 andξ2 on a

3-manifoldM areisotopicif there is a contactomorphismψ : (M, ξ1) → (M, ξ2) such thatψ is

isotopic to the identity.

There are two types of contact structures on 3-manifolds, tight and overtwisted.
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Definition 2.1.3. A contact structureξ on M is overtwistedif it contains an overtwisted disk,

that is, an embedded diskD in M such that∂D is tangent toξ and the contact framing of∂D

coincides with the framing given by the diskD. If ξ does not contain an overtwisted disk, then

ξ is calledtight.

Example 2.1.4.Let α = dz− ydx in Cartesian coordinates. The contact structureξstd = kerα

is the standard tight contact structure onR3. Note thatα ∧ dα = dx∧ dy∧ dz , 0 andξ is

spanned by{ ∂∂y,
∂
∂x + y ∂

∂z}. See Figure 2.1(a). Also, considerα = cosrdz− rsinrdθ in R3 with

cylindrical coordinates. The contact structureξot = kerα is an overtwisted contact structure on

R3. Note that in this caseα ∧ dα = (1+ sinrcosr
r )rdr ∧ dθ ∧ dz, 0 and forr , 0 ξot is spanned

by { ∂∂r , cosr ∂∂θ − rsinr ∂∂z}. See Figure 2.1(b).

Figure 2.1: (a) The standard tight contact structure onR3, (b) An overtwisted contact structure
onR3.

All contact structures look the same near a point.

Theorem 2.1.5(Darboux’s theorem). For a given contact3-manifold(M, ξ) and a point x∈ M,

there is a neighborhood U of x in M such that(U, ξ |U) is contactomorphic to(V, ξstd |V) for

some open set V in(R3, ξstd).

Example 2.1.6.The standard tight contact structureξstd on the 3-sphereS3 in R4 is given by

the kernel of the 1-formα = x1dy1 − y1dx1 + x2dy2 − y2dx2 |S3 with Cartesian coordinates

(x1, y1, x2, y2) in R4. Note the standard tight contact structure onS3 with one point removed is

contactomorphic to the standard tight contact structure onR3, see [19] for an explicit contac-

tomorphism.

Example 2.1.7.The standard overtwisted contact structureξot on S3 is obtained fromξstd by

performing a simple Lutz twist along a transverse knot in (S3, ξstd). A transverse knotT in a
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contact 3-manifold (M, ξ) is a knot which is everywhere transverse to the contact planes. A

simple Lutz twist along a transverse knotT is an operation replacing the contact structure on a

tubular neighborhoodS1×D2 of T with a contact structureξ′ given by the kernel of the 1-form

β = h1(r)dθ + h2(r)dϕ whereθ is theS1 coordinate and (r, ϕ) are the polar coordinates onD2

andh1,h2 : [0,1]→ R smooth functions satisfying:

1. h1 = −1, h2 = −r2 nearr = 0,

2. h1 = 1, h2 = r2 nearr = 1,

3. (h1,h2) is never parallel to (h′1,h
′
2) whenr , 0,

4. (h1,h2) does not intersect the positivey axis.

Note that a simple Lutz twist results in an overtwisted contact 3-manifold and in general it

changes the homotopy type of the contact structure.

Theorem 2.1.8(Eliashberg, [9]). Two overtwisted contact structures are isotopic if and only

if they are homotopic as oriented 2-plane fields. Moreover, every homotopy class of oriented

2-plane fields contains an overtwisted contact structure.

In general, for two oriented 2-plane fields to be homotopic we have:

Theorem 2.1.9(Gompf, [21]). Two oriented2-plane fields are homotopic if and only if their

2-dimensional invariants d2 and3-dimensional invariants d3 are equal.

For the notation we use here for the 2-dimensional invariantsd2 and the 3-dimensional in-

variantsd3, see [19]. Notice that we can regard a contact structureξ on a 3-manifoldM as a

complex line bundle and in this way we can consider its first Chern classc1(ξ) ∈ H2(M,Z). The

2-dimensional invariantd2 is determined by the spinc structure associated toξ and if H2(M,Z)

has no 2-torsion thend2 is also determined byc1(ξ). If (X, J) is an almost complex 4-manifold

with ∂X = M, then the almost complex structureJ naturally induces a 2-plane field onM

by taking the complex tangencies ofJ along∂X. If c1(ξ) is torsion then the 3-dimensional

invariantd3(ξ) can be computed as

d3(ξ) =
1
4

(c1
2(X, J) − 3(σ(X)) − 2χ(X))

whereX is an almost complex 4-manifold with∂X = M such that the oriented 2-plane field

induced by complex tangencies is homotopic to the contact structureξ on M. Here,σ(X)

5



denotes the signature ofX andχ(X) denotes the Euler characteristic ofX. For the computation

of c1
2(X, J) see [21], [6].

Finally, we recall the fillability of contact structures. A contact 3-manifold (M, ξ) is called

weakly symplectically fillableif M is the oriented boundary of a symplectic manifold (X, ω)

such thatω |ξ> 0.

Theorem 2.1.10(Eliashberg [8], Gromov [22]). Any weakly symplectically fillable contact

3-manifold(M, ξ) is tight.

2.2 Legendrian Knots

Legendrian and transverse knots are very natural objects in contact 3-manifolds and they play

an important role in the theory. For more information see [12].

Definition 2.2.1. A knot L in a contact 3-manifold (M, ξ) is calledLegendrian if it is every-

where tangent toξ, that is,TxL ∈ ξx for all x ∈ L.

There are two types of Legendrian knots in overtwisted contact structures, loose and non-loose.

Definition 2.2.2. A Legendrian knot in an overtwisted contact 3-manifoldM is calledlooseif

its complement is also overtwisted. We call a Legendrian knotnon-looseif its complement is

tight.

The classical invariants of Legendrian knots are the topological knot type, the Thurston-Benne-

quin invarianttb(L) and the rotation numberrot(L). The Thurston-Bennequin invariant tb(L)

measures the framing ofL given by the contact planes with respect to the framing given by the

Seifert surface ofL. The rotation number rot(L)of an oriented null-homologous Legendrian

knotL can be computed as the winding number ofT L after trivializingξ along a Seifert surface

for L.

Let L be a Legedrian knot inR3 with its standard contact structureξstd given by kernel of

the 1-formα = dz− ydx. The front projection of L is the image ofL, π(L), under the map

π : R3 → R2 : (x, y, z) 7→ (x, z). Using front projections, one can compute the Thurston-

Bennequin invarianttb(L), and the rotation numberrot(L) of a Legendrian knotL by using the
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following formulas:

tb(L) = writhe(L) −
1
2

(#cups),

rot(L) =
1
2

(#down cusps− #up cusps).

where the writhe ofL is the sum of the signs of the crossings ofL.

Example 2.2.3.In Figure 2.2 we show a front diagram of a Legendrian trefoil knot withtb(L) =

1 androt(L) = 0. Notice that, the front projection has no vertical tangencies, instead there are

cusps. In addition, at a crossing the strand with a smaller slope lies in front of the strand with

a larger slope.

Figure 2.2: Legendrian Trefoil knot.

Definition 2.2.4. The positive stabilizationS+(L) and the negative stabilizationS−(L) of a

Legendrian knotL in the standard contact structureξstd on R3 is obtained by modifying the

front projection ofL by adding a down cusp and an up cusp as in Figure 2.3, respectively.

Figure 2.3: The positive stabilizationS+(L) and the negative stabilizationS−(L) of L.
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Since stabilizations are done locally, by Darboux’s theorem this defines stabilizations of Legen-

drian knots in any contact 3-manifold (M, ξ). After stabilizing a Legendrian knot the classical

invariants change astb(S±(L)) = tb(L) − 1 androt(S±(L)) = rot(L) ± 1.

By looking at the characteristic foliation we may see how to destabilize a Legendrian knot. The

characteristic foliationΣξ is the singular foliation induced onΣ from ξ whereΣξ(p) = ξp∩TΣp,

p ∈ Σ. The singular points are the points whereξp = TΣp. Any surfaceΣ may be perturbed so

that its characteristic foliationΣξ has only generic isolated singularities, elliptic singularities

and hyperbolic singularities. The singularity is positive if the orientation onξp agrees with

the orientation ofTΣp. If the orientation onξp disagrees with the orientation ofTΣp, then the

singularity is negative.

Recall that a closed oriented surfaceΣ in a contact manifold (M, ξ) is calledconvexif there

is a contact vector fieldv, that is a vector field whose flow preserves the contact structureξ,

transverse toΣ. Given a convex surfaceΣ in (M, ξ) with a contact vector fieldv, thedividing

setΓΣ of Σ is defined as

ΓΣ = {x ∈ Σ : v(x) ∈ ξx}.

The dividing setΓΣ is a multi curve, that is a properly embedded smooth 1-manifold, possibly

disconnected and possibly with boundary. The isotopy class ofΓΣ does not depend on the

choice of the contact vector fieldv.

A properly embedded curveC on a convex surfaceΣ is non-isolating if C is transverse to

ΓΣ and every component ofΣ − (ΓΣ ∪ C) intersectsΓΣ. The next theorem gives a criteria to

determine whether a given curve or a collection of disjoint curves on a convex surfaceΣ can be

made Legendrian.

Theorem 2.2.5(Legendrian Realization Principle, [25], [23]). If C is a properly embedded

non-isolating curve on a convex surfaceΣ then C can be made Legendrian, that is there exists

an isotopyφs of Σ, s∈ [0,1], such thatφ0 = id |Σ, φs(Σ) is convex for all s,φ1(ΓΣ) = Γφ1(Σ) and

φ1(C) is Legendrian.

Given an oriented Legendrian knotL, the positive stabilizationS+(L) of L and the Legendrian

knot L cobound a convex diskD wheretb(∂D) = −1 andD ∩ L contains two negative elliptic

and one negative hyperbolic singularities andD∩S+(L) contains the same two negative elliptic

singularities and one positive elliptic singularity. Similarly, the negative stabilization S−(L) of

L and the Legendrian knotL cobound a convex diskD wheretb(∂D) = −1 andD ∩ L contains
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two positive elliptic and one positive hyperbolic singularities andD∩S−(L) contains the same

two positive elliptic singularities and one negative elliptic singularity. Such a diskis called a

stabilizing diskfor L or abypassfor L andS±(L). See Figure 2.4. Note that all the singularities

of Dξ have the same sign except one which indicate us whether we are positively or negatively

stabilizing the Legendrian knotL. For a detailed discussion of stabilizations and bypass disks

see [12], [15].

Figure 2.4: A bypass forL andL′ = S±(L). The curveΓ is the dividing curve ofD.

2.3 Open Book Decompositions

Alexander proved that every closed orientable 3-manifold has an open book decomposition,

[2]. Thus open book decompositions provide us another way of studying3-manifold topology.

Definition 2.3.1. An open book decompositionof a closed, oriented 3-manifoldM is a triple

(B,S, π) whereB is an oriented link inM andπ is a fibration of the complementM − B over

the circle whose fibers are the interior of Seifert surfaces ofB. The link B is called thebinding

and the fiber surfaceS is called thepageof the open book decomposition.

Thegenusof an open book decomposition is defined as the genus of the page. In particular,

planar open book decompositions are genus zero open book decompositions.

An alternative definition of an open book decomposition can be given as follows:

Definition 2.3.2. An abstract open book decompositionof a closed, oriented 3-manifoldM is

a pair (S, ϕ) whereS is an oriented compact surface with boundary linkB andϕ is a diffeomor-
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phism ofS such thatϕ is identity on a neighborhood of the boundary∂S and

M − B = S × [0,1]/(1, x) ∼ (0, ϕ(x)).

The mapϕ is called themonodromyof the open book decomposition.

Definition 2.3.3. Positive stabilizationof an open book decomposition (S, ϕ) is the open book

decomposition (S′, ϕ◦ta+1) whereS′ = S∪(1-handle) andta is a right handed Dehn twist along

the closed curvea in S′ running over the 1-handle and intersecting the co-core of the 1-handle

once. Instead of a right handed twistta if we use a left handed twistt−1
a along the closed curvea

in S′ then the resulting open book decomposition (S′, ϕ◦ ta−1) is called anegative stabilization

of (S, ϕ).

Definition 2.3.4. An open book decomposition ofM and a contact structureξ on M arecom-

patible if after an isotopy of the contact structure, there is a contact formα for ξ such that

α > 0 on the bindingB, in other words the bindingB is a positive transverse link, anddα > 0

on every page of the open book decomposition.

Example 2.3.5.Consider the open book decomposition (A, ϕ = tα) of S3 where the binding

H+ is the positive Hopf link, the pageA is an annulus and the monodromyϕ is a right-handed

Dehn twist along the middle curveα. The open book decomposition (A, ϕ = tα) is compatible

with the standard tight contact structureξstd onS3. See Figure 2.5(a).

Also, consider the open book decomposition (A, ϕ = t−1
α ) of S3 where the bindingH− is the

negative Hopf link, the pageA is an annulus and the monodromyϕ is a left-handed Dehn twist

along the middle curveα. The open book decomposition (A, ϕ = t−1
α ) is compatible with the

standard overtwisted contact structureξot onS3. See Figure 2.5(b).

Open book decompositions and contact structures are closely related. Anopen book decompo-

sition of a 3-manifold M naturally gives rise to a contact structure onM and the isotopy classes

of contact structures are in one to one correspondence with suitable equivalence classes of open

book decompositions ofM.

Theorem 2.3.6(Thurston and Winkelnkemper [36]). Every open book decomposition of a3-

manifold admits a compatible contact structure.

Theorem 2.3.7(Giroux, [20]). Every contact structure is compatible with some open book

decomposition and there is a one to one correspondence between oriented contact structures

up to isotopy and open book decompositions up to positive stabilization.
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Figure 2.5: (a) The open book decomposition compatible with the standard tight contact struc-
ture onS3, (b) The open book decomposition compatible with the standard overtwisted contact
structure onS3.

The plumbing of open book decompositions is a special case of a more general operation called

Murasugi sum which is a method for constructing manifolds with open book decompositions.

Definition 2.3.8. Let (S1, ϕ1) and (S2, ϕ2) be open book decompositions forM1 andM2, re-

spectively. Theplumbing of open books (S1, ϕ1) and (S2, ϕ2) is an open book decomposition

(S1 ∗S2, ϕ1 ◦ ϕ2) for the connected sumM1♯M2 where the pagesS1 ∗S2 is obtained by gluing

S1 to S2 along a rectangular neighborhoodRi = si × [−1,1] of properly embedded arcssi in

Si , i = 1,2.

Theorem 2.3.9(Gabai [18], Torisu [37]). Let (S1, ϕ1) and (S2, ϕ2) be open book decompo-

sitions compatible with the contact3-manifolds(M1, ξ1) and (M2, ξ2), respectively. Then, the

plumbing(S1 ∗ S2, ϕ1 ◦ ϕ2) of the open books(S1, ϕ1) and (S2, ϕ2) is compatible with the

contact3-manifold(M1♯M2, ξ1♯ξ2).

The next lemma is useful and gives the relation between the stabilizations of open book de-

compositions and the stabilizations of Legendrian knots sitting on a page of an open book

decomposition.

Lemma 2.3.10.Let (S, ϕ) be an open book decomposition for a closed oriented3-manifold M

compatible with a contact structureξ on M. Let L be a Legendrian knot sitting on a page of

the open book.

(1) Positive (resp. negative) stabilization S+(L) (resp. S−(L)) of the Legendrian knot L can

be realized on the page of the open book by first stabilizing the open book positively and
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then pushing the knot L over the1-handle that we use to stabilize the open book. See

Figure 2.6(a) and(b).

(2) If we first negatively stabilize the open book and then push the knot L overthe1-handle

that we use to stabilize the open book, then the negatively stabilized open bookis no

longer compatible with the contact structureξ, but the curve L on the page gives a

Legendrian knot L′ in the new contact structure and Legendrian knots L′
+ and L′− in

Figure 2.6(c) and(d) are positive and negative destabilizations of L′, respectively.

Figure 2.6: (a) Positive stabilizationS+(L) of L, (b) Negative stabilizationS−(L) of L, (c)
Positive destabilization ofL′, S+(L′+) = L′, (d) Negative destabilization ofL′, S−(L′−) = L′.

Proof. (1) To prove (1) we find a stabilizing disk for each case as we discussed in previous

Section 2.2. See Figure 2.4. First, positively stabilize the open book as in Figure 2.6(a) and

push the Legendrian knotL over the 1-handle that is used to stabilize the open book positively,

call the new curveL+. We will show thatL+ is a positive stabilizationS+(L) of L.

Notice the Legendrian unknota with tb(a) = −1 in Figure 2.6(a). Legendrian unknota bounds

a diskD in M. Sincetb(a) = −1, D is convex and the dividing curves intersect∂D twice. Now,

we can thinkL+ as the knot obtained from pushingL acrossD. Note thatD is a bypass forL

andL+. See Figure 2.7(a), the curveΓ denotes the diving curve ofD. A singularity along∂D is

positive or negative depending on whether the contact planes passingD are twisting in a right

handed fashion or a left handed fashion. The sign of the singularities is determined by using

the orientation ofL which determines the orientation ofD near the boundary. See Figure 2.7(a)

again.
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Figure 2.7: (a) Positive stabilizationL+ = S+(L) of L, (b) Negative stabilizationL− = S−(L)
of L.

The negative stabilizationS−(L) of the Legendrian knotL can be realized on a page of the

open book decomposition in a similar way. This time we use the Legendrian unknot b with

tb(b) = −1 in Figure 2.6(b) and the convex disk thatb bounds inM. See Figure 2.7(b).

(2) We prove (2) for null-homologous Legendrian knots only. First, negatively stabilize the

open book as in Figure 2.6(c) and then push the knotL over the 1-handle that is used to stabilize

the open book negatively, call the new curveL′+.

Note that in general the negative stabilization of an open book decompositionchanges the

contact structureξ. However, in this case the curveL on the page gives a Legendrian knotL′

in the new contact structure. We will show thatL′+ in Figure 2.6(c) is a positive destabilization

of L′.

We want to remark that the Legendrian unknotc with tb(c) = +1 in Figure 2.6(c) bounds a

disk D in M. SinceD is not convex unlike in the proof of (1) we can not use this disk to

find a bypass. Instead, we positively stabilize the open book as in Figure 2.8(c) and push the

Legendrian knotL′+ over the 1-handle that we use to stabilize the open book positively. By

(1), the resulting Legendrian knot is a positive stabilizationS+(L′+) of L′+. We will show that

S+(L′+) is Legendrian isotopic toL′. Note that the curveα in Figure 2.8(c) is a Legendrian

unknot with tb(α) = 0. In fact, Legendrian unknotα bounds an overtwisted disk which is

disjoint from L′+ in M. Legendrian knotsL′ andS+(L′+) have the same classical invariants,

that is, they have the same knot type, same Thurston-Bennequin invariantand same rotation
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number, and since they have a common overtwisted disk in their complement by [7], L′ and

S+(L′+) are Legendrian isotopic.

Figure 2.8: (c) Positive destabilization ofL′, S+(L′+) = L′, (d) Negative destabilization ofL′,
S−(L′−) = L′.

Similarly, the negative destabilizationL′− of the Legendrian knotL′ can be realized on a page

of the open book decomposition. We stabilize the open book as in Figure 2.8(d) and push the

Legendrian knotL′− over the 1-handle to get negative stabilizationS−(L′−) of L′−. We conclude

thatS−(L′−) andL′ are Legendrian isotopic by using the Legendrian unknotβ in Figure 2.8(d).

�

We also use the following lemma later.

Lemma 2.3.11.Let M be a closed oriented3-manifold and let(S, ϕ) be an open book decom-

position for M.

(1) If K is a knot in M intersecting each page S transversely once, then the result of a

0-surgery along K gives a new manifold with an open book decomposition having a

page S′ = S−{open disk} and having the knot K as one of the binding components. In

particular, if the knot K= {x} × [0,1]/ ∼ in the mapping torus Mϕ = M − B in M for a

fixed point x∈ S ofϕ and ifϕ |{open disk}= id then the new monodromyϕ′ after a0-surgery

along K isϕ′ = ϕ |S′ .
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(2) If K is a knot in M sitting on a page S of the open book decomposition, then±1-surgery

along K with respect to the page framing gives a new manifold with an open bookde-

composition(B,S, ϕ◦ t∓1
K ) where t+1

K / t
−1
K denotes right/ left handed Dehn twists along the

knot K.

A proof of above Lemma 2.3.11 and more information on open book decompositions and

contact structures can be found in [13].
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CHAPTER 3

TOPOLOGICAL LINKS AND OPEN BOOK

DECOMPOSITIONS

In this chapter, we study the topological properties of links sitting on the pages of open book

decompositions. In the following section, we define some terminology and we state a funda-

mental lemma that we use to prove the main theorems. In Section 3.2, we study links on pages

of open book decompositions ofS3. Finally, in the last section, we study links on pages of

open book decompositions of arbitrary 3-manifolds.

3.1 Pure braided plat of Links

It is well known that any linkL of k componentsL1, . . . , Lk, in particular any knotK, can be

represented as a 2n-plat, see Figure 3.1(a), [4].

Definition 3.1.1. The shifted 2n-plat of the linkL of k componentsL1, . . . , Lk is defined as the

closure of a 2n-braid as shown in Figure 3.1(b). We say a shifted 2n-plat of the linkL is pure

braided 2n-plat if its associated 2n-braid is a pure braid.

To prove the main theorems, we need the following lemma.

Lemma 3.1.2. (1) Every knot can be represented as a pure braided plat.

(2) Every link of k components L1, . . . , Lk can be represented as a pure braided plat.

Proof. (1) We may isotope a shifted 2n-plat of the knotK to get a pure braided 2n-plat for K

as follows: First orient the knotK and label the lower and the upper end points of the strands
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Figure 3.1: Shifted 2n-plat of the linkL.

of associated 2n-braidb and pair them as in Figure 3.2. We have the following list of pairs: for

the lower end points (2n,1), (2,3), . . . , (2n − 2,2n − 1) and for the upper end points (1′,2′),

. . . , ((2n − 1)′, (2n)′). Also, denote the permutation in the permutation groupS2n on the set

{1, . . . ,2n} associated to 2n-braidb of the shifted 2n-plat byσ.

Figure 3.2: From a shifted 2n-plat to a pure braided plat.

Now, start in the lower left strand with a labeled 1 lower end point. This strand connects to

its upper pointj′ = σ(1). Isotope (j′, ( j + 1)′) to the left as in Figure 3.3(a) so that the first

17



labeled upper point at the top isj′ = σ(1). Now relabel upper end points as 1′,2′, . . . , (2n)′

and without loss of generality denote the permutation associated to new 2n-braid asσ again.

Next, find where the strand whose upper end point is 2′ connects at the bottom, its lower end

point will beσ−1(2′) = k wherek is an element from the set{2, . . . ,2n− 1}. Note thatk , 2n,

otherwise the knotK would be a link. Isotope (k, k+ 1) to the left as in Figure 3.3(b) to be the

second labeled strand at the bottom. Relabel the lower end points as 1,2, . . . ,2n and without

loss of generality denote the permutation associated to new 2n-braid asσ again. Note that we

haveσ(1) = 1′, σ(2′) = 2. Findσ(3) and isotope similarly to be the third labeled strand at the

top. Continuing in this manner, we will obtain a pure braid giving a pure braided 2n-plat of the

knot K.

Figure 3.3: Pure braided plat.

(2) First of all, given a linkL of k componentsL1, . . . , Lk we can present the linkL as a

plat. From this plat we can obtain a shifted 2n-plat of L such that it has the same form as in

Figure 3.1(b) with an associated braidb which is not necessarily a pure braid. However, the

algorithm described in proof of (1) extends to convert a shifted 2n-plat of L into a pure braided

2n-plat. �
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3.2 Knots and Links in 3-sphere

Theorem 3.2.1.Any knot K in S3 is planar, that is, K sits on a page of a planar open book

decomposition for S3.

Before the proof of Theorem 3.2.1, let us give an illustrative example. The proof will follow

exactly the same scheme.

Example 3.2.2.The figure eight knotK is planar. The aim here is to present the figure eight

knot K as a pure braided plat as in Figure 3.6(a) and using this pure braided plat and the ideas

in Lemma 2.3.11 to construct a planar open book which contains the figure eight knot on its

page.

Figure 3.4: Braid representative of the figure eight knot.

We start with a minimum braid representation of the figure eight knotK as in Figure 3.4.

Throughout this exampleσi , i = 1, . . . ,n − 1, stand for the standard generators of the braid

group Bn on n-strands. Note thatK has braid index 3 and its associated braid word isb =

σ−1
2 σ1σ

−1
2 σ1. As seen in Figure 3.5(a), we can representK by a 6-plat associated to a 6-braid

b0b̃b0
−1 whereb0 = (σ2σ3σ4σ5)(σ3σ4) and b̃ is the 6-braid obtained fromb by adding 3

trivially braided strands.

Now isotope the diagram in Figure 3.5(a) to obtain a shifted 6-plat as in Figure 3.5(b) and using
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Figure 3.5: Pure braided plat presentation of the figure eight knot.

the algorithm given in Lemma 3.1.2 continue isotoping to obtain a pure braided 6-plat for the

figure eight knot as in Figure 3.5(c).

Next, we decompose the pure braided 6-plat of the figure eight knot in standard generators of

the pure braid group on 6-strands as in Figure 3.6(a). Now to obtain the open book decompo-

sition which contains the figure eight knotK, we unknotK using the diagram in Figure 3.6(a).

We unknotK by blowing up twists. See Figure 3.6(b). We get a linkLK of unknots linkingK

whose components have framing±1. We continue blowing up to ensure that each component

of LK links K exactly once. See Figure 3.6(c). Notice that we add new±1-framed components

to the linkLK and the components ofLK link each other as the Hopf link and link the knotK

only once. We continue blowing up as in Figure 3.7 to remove each linking between the com-

ponents. We need to be careful with the resulting±1-framed unknots linking the components

of LK . To be more precise, at each linking crossing between the components ofLK we have dif-

ferent choices where to blow up as explained in the proof of Theorem 3.2.1 below. We always
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choose the one that guarantees that after blowing up, the resulting±1-framed unknots linking

the components ofLK can be isotoped to sit on the page of the open book decomposition at the

end. See Figure 3.7 again.

Figure 3.6: Unknotting the figure eight knot.

Finally, we blow up again as in Figure 3.8 so that each component of the linkLK has framing

coefficient 0.

Now, using Lemma 2.3.11 we are in a position to see the open book decomposition explicitly.

Note that we obtain a planar open book decomposition forS3 where the figure eight knotK and

each 0-framed components ofLK are the binding components of the open book decomposition

and each±1-framed unknots linking the components ofLK sits on the page and contributes

negative/ positive Dehn twists to the monodromy of the open book decomposition respectively.
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Figure 3.7: The unknotted knotK bounds a disk.
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Figure 3.8: Page of a planar open book decomposition containing the figureeight knot, pages
are disk with 16 punctures.
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We are now ready for the proof of one of the main theorems of this chapter.

Proof.of Theorem 3.2.1.Given a knotK in S3, we construct a planar open book ofS3 such

thatK is one of the binding components. We then push the knotK onto one of the pages.

First, present the knotK as a pure braided plat using the algorithm given in Lemma 3.1.2. Next,

decompose the pure braided plat ofK in terms of standard generators of the pure braid group.

A generating set of braidsAi j , 1 ≤ i < j ≤ 2n, for the pure braid group on 2n-strands is shown

in Figure 3.9.

Figure 3.9: GeneratorAi j for the pure braid group.

Note to unknot the knotK using a decomposed pure braided plat presentation ofK, we only

need to remove full twists. We remove twists and unknotK by blowing up. Note also that there

is not a unique way to do so. The different ways of blowing up are shown in Figure 3.10.

Figure 3.10: Different ways of blowing up to remove twists.

The idea of the proof is that using a pure braided plat presentation of the knot K, unknotK by

blowing up several times in such a way that at the endK is the unknot which we denote byUK
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and the resulting link of unknotsLK = L0 ∪ L± coming from the blow ups linkingUK satisfy:

1. Each component ofLK links UK only once,

2. The components ofLK are pairwise unlinked or linked as the Hopf link,

3. If the components ofLK linked as the Hopf link, then continue blowing up to remove the

linking and get±1-framed unknotsL± linking the components ofLK ,

4. L± does not linkUK and each can be isotoped to sit on a disk thatUK bounds,

5. The component ofLK linking UK only once has 0-framing, we denote such components

by L0.

The knotUK has a natural open book decomposition inS3 coming from the disk it bounds.

The 0-framed linkL0 of unknots puncture each disk page transversely once and we can isotope

±1-framed linkL± of unknots linkingL0 components onto one of the punctured disk pages.

Thus, after performing surgeriesUK will be isotopic to the knotK and by Lemma 2.3.11 we

will get a planar open book ofS3 where the knotUK and the 0-framed linkL0 of unknots

form the binding components and each±1-framed linkL± of unknots sitting on the punctured

disk page contributes to negative/ positive Dehn twist to the monodromy of the new open book

decomposition respectively.

Note that it is enough to verify we can do this for the set of generators andtheir inverses

given in Figure 3.11. All the generators fall in one of the five cases given in Figure 3.11. We

explain one complicated case, (2)Ai+1 j+1, in Figure 3.12 and we give a summary for all cases

in Figure 3.13 and their inverses in Figure 3.14.

We want to remark that a pure braided plat presentation of the knotK of the type in Fig-

ure 3.1(b) allows us to isotope±1-framed curves onto a page.

25



Figure 3.11: Generators:Aii+1, Ai+1 j+1, Ai j+1, Ai+1 j , Ai j .

Figure 3.12: Case (2)Ai+1 j+1.
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Figure 3.13: Generators:Aii+1, Ai+1 j+1, Ai j+1, Ai+1 j , Ai j .

Figure 3.14: Inverses:A−1
ii+1, A−1

i+1 j+1, A−1
i j+1, A−1

i+1 j , A−1
i j .
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Theorem 3.2.3. If L is a link of k components L1, . . . , Lk in S3, then L is planar, that is, L sits

on a page of a planar open book decomposition for S3.

Proof. Here, we mimic the proof of the Theorem 3.2.1. The only modification required isat

the end. Using a pure braided plat presentation of the linkL, repeatedly blow up to unknot the

given linkL and arrange the framing of the unknots linkingL only once to be 0 and remove each

linking between the unknots linkingL to get the middle±1-framed curves. After performing

the 0-surgeries, the page of the open book can be constructed by takingthe connected sum of

componentsL1, . . . , Lk of the link L as shown in Figure 3.15.

Figure 3.15: Construct the page of the open book by taking connected sum of the components
L1, . . . , Lk of the link L.

Hence, we can isotope the middle±1-framed curves onto a page using the bands connecting

the components. Clearly, the linkL sits on a page of this planar open book. �

Remark 3.2.4. Note that other than the unknots with 0-framing coming from resolving the

generators (1)Aii+1, (3) Ai j+1, (4) Ai+1 j in the proof of Theorem 3.2.1, we have only−1-framed

unknots. In these cases,−1-framed unknots contribute positive Dehn twists to the monodromy

of the new open book. We want to remark that we can arrange this to be the case for all

generators and their inverses. Namely, by blowing up in different ways we can make sure that

other than 0-framed unknots, each case contains only−1-framed knots. Thus, at the end we

will have an open book decomposition forS3 whose monodromy is a product of only positive

Dehn twists and contains the given knot or link on its page. We discuss the cases (2)A−1
i+1 j+1 and
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(3) A−1
i j+1 in Figure 3.16 in detail. Other cases can be worked out similarly, we give a summary

for the remaining cases in Figure 3.17.

Figure 3.16: Resolving the cases (2)A−1
i+1 j+1 and (3)A−1

i j+1 in such a way that the cases contribute
only positive Dehn twists to monodromy.

As a consequence, we have

Theorem 3.2.5. Any topological knot or link in S3 sits on a planar page of an open book

decomposition for S3 whose monodromy is a product of positive Dehn twists. �

3.3 Knots and Links in 3-manifolds

Theorem 3.3.1.Let L be a link of k components L1, . . . , Lk in a closed orientable3-manifold

M. Then L is planar, that is, L sits on a page of a planar open book for M.

Proof. It is known, see [26] and [38], that any closed orientable 3-manifoldM may be obtained

by±1 surgery on a linkLM of unknots inS3. Given a linkL of k componentsL1, . . . , Lk in a 3-

manifoldM, we may think ofL as a link inS3 which is disjoint from the surgery linkLM. Now

using the algorithm described in Theorem 3.2.3 we can find a planar open book decomposition
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Figure 3.17: Other than 0-framed knots each remaining case contains only−1-framed knots.

for S3 such that the linkL ⊔ LM sits on its page. Also, using a similar idea in Lemma 2.3.10

we can arrange framing of each component ofLM sitting on a page to be±1 with respect to the

page framing by first stabilizing the open book and then pushing the knotL over the 1-handle

that we use to stabilize the open book. Then away from the linkL, we can perform±1 surgeries

on LM which yield a planar open book for the 3-manifoldM containing the linkL on its page.

Moreover, this new open book has a monodromy which is the old monodromy composed with

negative/ positive Dehn twists along each±1-framed component of the linkLM. �

Corollary 3.3.2. Any knot K in a 3-manifoldM is planar, that is,K sits on a page of a planar

open book forM.

Remark 3.3.3. It is well known that any closed, orientable 3-manifoldM has an open book

decomposition, [2], in particular has a planar open book decomposition, [33]. Different ways

of constructing open book decompositions for 3-manifolds are known fora long time. In fact,

by Theorem 3.3.1 a planar open book for a linkL in a closed orientable 3-manifoldM gives

a planar open book decomposition forM. Here we want to remark that using the idea in the

proof of Theorem 3.2.1 an alternative way of constructing explicit planaropen books for any

given 3-manifoldM can be given. Namely, we can determine the monodromy of the planar
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open book forM.

Theorem 3.3.4.Every closed orientable3-manifold has a planar open book decomposition.

Proof. Assume that given 3-manifoldM is obtained by±1-surgery on a linkLM of n unknots.

We can present the linkLM as the closure of an-braid as in Figure 3.18. Notice that since we

have a link ofn unknots,n-braid in Figure 3.18 is a pure braid. Now, decompose the pure braid

in terms of standard generators of the pure braid group onn-strands.

Figure 3.18:±1-surgery on a linkLM of n unknots giving the 3-manifoldM.

Consider the unknotU in Figure 3.18. We will construct a planar open book forM using the

planar open book (U,D, ϕ = I ) of S3 where the binding is the unknotU, pages are diskD and

the monodromyϕ is the Id. We remove each linking between the components of the surgery

link LM by blowing up so that the resulting±1-framed unknots can be isotoped to sit the disk

thatU bounds. Note each component of the linkLM punctures transversely once the disk that

U bounds. We continue blowing up to arrange the framing coefficient of each component of

LM to be zero. Then by Lemma 2.3.11, we will have a planar open book forM where the pages

are disk withn-punctures and the monodromy is a product of negative/ positive Dehn twists

along the±1- framed surgery curves on the punctured disk thatU bounds. �

Example 3.3.5. Consider the Poincaré homology sphereΣ(2,3,5) which can be given by a
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surgery on the Borromean link as in Figure 3.19.

Figure 3.19: Surgery on a Borromean link giving the Poincaré homology sphere.

We construct a planar open book forΣ(2,3,5) using the given surgery diagram as follows: First

we present the Borremean link as a pure 3-braid and we decompose the pure braid in terms

of standard generators of the pure braid group on 3-strands. Next, we remove each linking

between the components of the Borromean link by blowing up and we continue blowing up to

arrange the framing of each component of the Borromean link to be 0. See Figure 3.20.

Figure 3.20: Pure braid representation of Borromean link and a way of resolving the twists.

Now, using the unknotU given in Figure 3.20 and using its natural fibration inS3, we construct

a planar open book decomposition forΣ(2,3,5). We slide the surgery curves on to the disk that
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U bounds and we perform the surgeries on the page. By Lemma 2.3.11, afterperforming 0-

framed surgeries, each component of the Borremean link becomes a binding componentδ1, δ2

andδ3. Note that we set the notation for binding components from inner componentto outer

component. By Lemma 2.3.11 again, we know that each±1-framed surgery curve contribute

negative/ positive Dehn twist to the monodromy of the starting open book which in this caseis

the identity. Hence, the monodromy of the open book is given byϕ = t−1
β t−1

α tβtαt−1
δ1

tδ2t
−1
δ3

.

Figure 3.21: A planar open book for the Poincaré homology sphere, the monodromyϕ is
ϕ = t−1

β t−1
α tβtαt−1

δ1
tδ2t
−1
δ3

.

33



CHAPTER 4

LEGENDRIAN KNOTS AND OPEN BOOK DECOMPOSITIONS

In this chapter, we study the contact geometric properties of knots sitting on the pages of open

book decompositions. In Section 4.1, we define the support genus of Legendrian knots. In

the following sections, first we study the support genus of Legendrian knots in overtwisted

contact 3-manifolds and then in tight contact 3-manifolds. Finally, we study the support genus

of Legendrian knots in arbitrary contact 3-manifolds. We list several observations related to

support genus of knots.

4.1 Support Genus of Legendrian Knots

Definition 4.1.1. The support genussg(L) of a Legendrian knotL in a contact 3-manifold

(M, ξ) is the minimal genus of a page of an open book decomposition ofM supportingξ such

thatL sits on a page of the open book and the framings given byξ and the page agree.

Given a Legendrian knotL in a contact 3-manifold (M, ξ), one can always find an open book

decomposition compatible withξ containingL on a page such that the contact framing ofL

is equal to the framing given by the page. Such an open book decompositionfor (M, ξ) can

be constructed by an application of Giroux’s algorithm, using a contact celldecomposition of

(M, ξ) and including the given Legendrian knotL in the 1-skeleton of the contact cell decom-

position, [20]. For Legendrian knots in (S3, ξstd) an alternative algorithm that uses the front

projection of Legendrian knots can be found in [1], cf. also [3]. Thusthe support genussg(L)

of a Legendrian knotL is well defined.

We want to remark that definition of support genus for Legendrian knotscan be extended to

Legendrian links.
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Example 4.1.2.Consider the Legendrian unknotL in (S3, ξstd) as shown in Figure 4.1. The

Legendrian unknotL sits on the page of an open book decomposition (H+,A, ϕ = tα) of

(S3, ξstd). Thus, the support genus ofL is zero.

Figure 4.1: Legendrian unknotL, tb(L) = −1, rot(L) = 0, sg(L) = 0.

4.2 Legendrian Knots in overtwisted contact structures

Recall that there are two types of Legendrian knots in overtwisted contactstructures: loose

Legendrian knots and non-loose Legendrian knots.

4.2.1 Loose Legendrian Knots

Theorem 4.2.1. If L is a null-homologous Legendrian loose knot in an overtwisted contact

3-manifold (M, ξot), then sg(L) = 0.

Proof. It is known that if two null-homologous Legendrian loose knotsL1 andL2 in a knot type

K have the same Thurston-Bennequin invariant and the same rotation number,then there is a

contactomorphismψ of (M, ξot) such thatψ(L1) = L2, [17]. Here, we show that we can realize

any pair of integers (m,n) with m±n odd as (tb(L), r(L)) for a null-homologous loose knotL in

a knot typeK that sits on a planar open book (S, ϕ) supporting (M, ξot). By Theorem 3.3.1, we

know there is a planar open book decomposition, say (SK , ϕK), for M such thatK lies on a page

of the open book. The planar open book (SK , ϕK) is compatible with some contact structureξ′

on M. If necessary we can negatively stabilize the open book in such a way that the resulting

open book is still planar and it is overwisted. Furthermore, following [11] we can assume that
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ξ′ is the same as the overtwisted contact structureξot. Briefly, by performing necessary Lutz

twists and taking plumbing of (SK , ϕK) with an appropriate overtwisted open book forS3, we

can arrange the 2-dimensional invariantsd2 and the 3-dimensional invariantsd3 of ξ′ andξot

to be the same. Thus, the two contact structures will be homotopic, [21]. Then, by Eliashberg

[9] two overtwisted contact structures will be isotopic. Note that we can do this keeping the

open book planar and keeping the given knotK on the page. For the details of how to arrange

invariants of overtwisted contact structures, see the proof of Theorem3.5 in [11].

Now, we can assume that the planar open book (SK , ϕK) containing the knotK on its page is

compatible with the overtwisted contact structureξot on M. If necessary by stabilizing the open

book positively and pushing the knotK over the 1-handle, we may assumeK is non-separating

and we may Legendrian realize the knotK on the page, say it has a Thurston-Bennequin in-

variantt′ and a rotation numberr ′. To realize any pair (tb(L), r(L)) for any Legendrian repre-

sentative of the knotK from the pair (t′, r ′), first realize the appropriate Thurston-Bennequin

invarianttb(L). If t′ > tb(L), then to decrease the Thurston-Bennequin invariant stabilize the

knot positively or negatively on the page by using Lemma 2.3.10(1). Modifythe open book

as in Figure 2.6(a) or (b), both will decreasetb(L). Note, this modification alters neither the

contact structure nor the genus of the open book. Now, ift′ < tb(L), then to increase the

Thurston-Bennequin invariant we need to destabilize the knot positively or negatively on the

page by using Lemma 2.3.10(2). Note, this modification alters the contact structure. However,

as before, away from the knot by taking plumbing of this new open book ofM with an appro-

priate overtwisted open book ofS3, we can make sure that the resulting overtwisted contact

structure is still isotopic toξot.

Now, once we realize the pair (tb(L), r ′′), to complete the proof we only need to realize any

possible rotation numberrot(L) from r ′′. To increase or decrase the rotation number, we will

use Lemma 2.3.10 again and stabilize the knot positively or negatively on the page. Recall that

a positive and a negative stabilization of a knot increase and decrease the rotation number by 1,

respectively and also recall that both stabilizations decrease the Thurston-Bennequin invariant

tb(L) by 1. Thus, every time we increase or decreaser ′′, we need to make sure thattb(L) stays

the same. Clearly, this is possible since to increase the rotation number if we first positively

stabilize the knot on the page as in Figure 2.6(a) and then negatively destabilize the knot on

the page as in Figure 2.6(d), the rotation number will increase by 2 andtb(L) stays the same.

Note after negatively stabilizing the open book, we again perform a plumbingoperation to

keep the contact structure same asξot. Similarly, to decrease the rotation number, we first
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modify the open book as in Figure 2.6(b) and then as in Figure 2.6(c), this time the rotation

number will decrease by 2 andtb(L) stays the same. Sincetb(L)± rot(L) is odd, we can realize

any pair (tb(L), rot(L)). Thus, for any null-homologous loose Legendrian representative of the

knot K we can find a planar open book decomposition supportingξot such that the Legendrian

representative sits on the page. �

4.2.2 Non-loose Legendrian Knots

There are examples of support genus zero non-loose knots in overtwisted contact structures.

Example 4.2.2.The contact 3-manifold given by the surgery diagram in Figure 4.2 is an over-

twisted (S3, ξn) with d3(ξn) = 1− np(p− 1). The Legendrian knotLn in (S3, ξn) is non-loose

with support genus zero and topologically a (p, pn + 1) positive torus knot. Whenp = 2,

Legendrian non-loose knots of knot type (2,2n+ 1) positive torus knots first appeared in [28].
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Figure 4.2: Legendrian Torus knots.

Let X denote the 4-manifold obtained by viewing the integral surgeries as 4-dimensional 2-

handle attachments toB4. With the help ofX, we can compute the 3-dimensional invariant

d3(ξn) of the contact structureξn. From Figure 4.3, the signature ofX is σ(X) = −n − p + 1

and the Euler characteristic ofX is χ(X) = n+ p+ 1. Also, using a second cohomology class
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c ∈ H2(X,Z) defined by the rotation number, we computec2 = −n(2p − 1)2 − (p − 1). From

the formula:

d3(ξ) =
1
4

(c2 − 3(σ(X)) − 2χ(X)) + q,

whereq denotes the number of+1-contact surgeries, we compute the 3-dimensional invariant

of ξn asd3(ξn) = 1−np(p−1). Note thatξn is overtwisted sinced3(ξn) < 0. Note also thatLn is

non-loose since Legendrian surgery alongLn cancels one of the+1-surgeries in Figure 4.2 and

results in a tight contact structure. By a similar argument used in [35], the surgery link together

with the Legendrian knotLn given in Figure 4.2 can be put on a page of a planar open book of

(S3, ξst). After performing surgeries, we will get (S3, ξn) compatible with a planar open book

containing the Legendrian knotLn on its page. Therefore,sg(Ln) = 0.
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There are examples of support genus non-zero non-loose knots in overtwisted contact struc-

tures.

Example 4.2.3.Consider a Legendrian knotL with a Thurston-Bennequin invarianttb(L) >

0 in (S3, ξstd). Let (M, ξ) denote the contact 3−manifold results from a+1-contact surgery

along a positive stabilizationS+(L) of the Legendrian knotL. (M, ξ) is overtwisted by [30],

also by [27]. Sincetb(S+(L)) ≥ 0 according to Remark 4.3.2 below,sg(S+(L)) > 0. Note

the imageS+(L)′ of S+(L) in the surgered overtwisted contact manifold (M, ξ) is a non-loose

Legendrian knot with a non-zero support genus. The Legendrian knot S+(L)′ is non-loose

since the complement ofS+(L)′ in (M, ξ) is contactomorphic to the complement ofS+(L) in

(S3, ξstd) andsg(S+(L)′) > 0, otherwise this would contradict to the fact thatsg(S+(L)) > 0.

Remark 4.2.4.As we discussed in Example 4.2.3 above, in overtwisted contact structures there

are examples of non-loose knots having support genus non-zero. Let L be a null-homologous,

support genus non-zero, non-loose Legendrian knot of knot typeK in an overtwisted contact

manifold (M, ξot). We can find a loose knot̃L of knot typeK in (M, ξot) such thatL̃ has the

same classical invariants asL. Moreover, by Theorem 4.2.1 it follows thatsg(L̃) = 0. Thus,

we have examples of knots having the same classical invariants but different support genus in

overtwisted contact structures.

4.3 Legendrian Knots in tight contact structures

In Chapter 3, we showed that any topological knot or link inS3 sits on a planar page of an open

book decomposition ofS3. Moreover, we showed that we can arrange the monodromy of the

open book decomposition to be a product of positive Dehn twists only. In [20], Giroux showed

that a contact 3-manifold is Stein fillable if and only if there is a compatible open book de-

composition for the contact manifold whose monodromy is a product of positive Dehn-twists.

Since there is a unique tight contact structure onS3, the planar open book we constructed for

a given knot or link inS3 will be compatible with (S3, ξstd). For a given knotK in S3 after

putting the knotK on a page of a planar open book with positive monodromy, we may Legen-

drian realize the knotK on the page. If necessary first we may arrangeK to be non-separating

on the page by stabilizing the open book positively and pushing the knotK over the 1-handle

and then we may Legendrian realize the knotK on the page. As a consequence, we have

Theorem 4.3.1.Given a knot type K in(S3, ξstd), there is a Legendrian representative L of K

such that sg(L) = 0.
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It is easy to find examples of support genus non-zero Legendrian knots in weakly fillable tight

contact structures.

Lemma 4.3.2. If L is a Legendrian knot in a weakly fillable tight contact structure with a

Thurston- Bennequin invariant tb(L) > 0, then sg(L) > 0. In particular, any Legendrian knot

L in (S3, ξstd) with Thurston-Bennequin invariant tb(L) ≥ 0 has sg(L) > 0.

Proof. In [11], Etnyre gives constraints on contact structures having support genus zero. In

particular, according to [11] a contact 3-manifold (M, ξ) obtained by a Legendrian surgery

along a Legendrian knotL in a weakly fillable contact structure having Thurston-Bennequin

invariant tb(L) > 0 hassg(ξ) > 0. If a Legendrian knot withtb(L) > 0 had support genus

sg(L) = 0, then performing a Legendrian surgery alongL sitting on a planar page would yield

a contact 3-manifold (M, ξ) with support genussg(ξ) = 0, which is not the case. Therefore,

such a Legendrian knot hassg(L) > 0. The Legendrian knots withtb(L) = 0 hassg(L) > 0

follows from [32]. �

4.4 Legendrian Knots in contact structures

As explained in Lemma 2.3.10(1), if a Legendrian knotL sits on a page of an open book

decomposition, then positive or negative stabilization ofL can be seen on the page of the open

book as in Figure 2.6(a) and (b). Note that we add 1-handles in such a way that the resulting

open book still has the same genus. As a result, we have

Theorem 4.4.1. If a Legendrian knot L has support genus sg(L) = n, then the stabilizations

Sn1
+ Sn2
− (L) of L have the support genus sg(Sn1

+ Sn2
− (L)) ≤ n.

By the above Theorem 4.4.1, given a knot typeK, if all Legendrian knots realizingK without

maximal Thurston-Bennequin invariant destabilize and the Legendrian knots with maximal

Thurston-Bennequin invariant has support genus zero, then all Legendrian knots of the knot

typeK has support genus zero. For example, all Legendrian unknots in (S3, ξstd) are planar.

Remark 4.4.2. Note that the support genus of a Legendrian knot gives an upper bound on the

support genus of a contact structure, that is,sg(L) ≥ sg(ξ). So, if there is a Legendrian knotL

in a contact 3-manifold (M, ξ) having support genus zero, thensg(ξ) = 0.

Recall that for a non-zero rational numberr ∈ Q, a contactr-surgery on a Legendrian knotL

in a contact 3-manifold (M, ξ) is a topologicalr-surgery with respect to the contact framing.
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The resulting manifold is a new contact 3-manifold (M′, ξ′) where the contact structureξ′ is

constructed by extendingξ from the complement of a standard contact neighborhood ofL to a

tight contact structure on the glued solid torus, [5]. Such an extension always exists and it is

unique whenr = 1
k , k ∈ N, [23].

Theorem 4.4.3.Let L be a Legendrian knot in a contact3-manifold(M, ξ) such that sg(L) = 0.

Then, the contact3-manifold (M′, ξ′) obtained from M by a contact r-surgery along L has

sg(ξ′) = 0.

We want to remark that rational contact surgeries on a Legendrian link in (S3, ξstd) on pages of

open book decompositions first discussed in [29].

Proof. Case 1. Contactr-surgery with r < 0: Consider a continued fraction expansion of

r − 1

[r1, r2, . . . , rn] = r1 −
1

r2 −
1
···− 1

rn

with integersr i ≤ −2, i = 1, . . . ,n. LetL1 be the|r1+1| times stabilization of the front projection

of the Legendrian knotL and letLi be the Legendrian push off of Li−1 with additional|r i + 2|

stabilizations,i = 2, . . . ,n. Then following [5], we can replace contactr-surgery alongL by

a sequence of contact−1-surgeries alongL1, . . . , Ln. Since the support genussg(L) = 0, by

Lemma 2.3.10(1) and by keeping the page of the open book planar we can realize eachLi on

a planar open book containingL on its page. Again by using Lemma 2.3.10(1) we can arrange

framing of eachLi sitting on a planar page to be−1 with respect to the page framing. After

performing contact surgeries, we will obtain a support genus zero contact 3-manifold.

Case 2. Contactr-surgery with r = p
q > 0, (p,q) = 1: According to [5], a contactr =

p
q-surgery alongL corresponds tok contact+1-surgeries alongk Legendrian push offs of L

followed by a contactr ′ = p
q−kp-surgery along a Legendrian push off of L for any integer

k ∈ N such thatq − kp < 0. By starting with a planar open book containing the Legendrian

knot L on its page, we can easily seek Legendrian push offs of L on the page and by using

Lemma 2.3.10(1) we can arrange the framings of each push off of L sitting on a planar page

to be+1 with respect to the page framing. Hence to complete the proof we only need toshow

that we can performr ′ < 0 surgery on a Legendrian push off of L on the page also, but this can

be easily arranged as we did in Case 1. �
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