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Bu tezde s�n�r ³artlar�ndan birinde özde§er parametresi bulunduran bir diferansiyel-operatör
s�n�r-de§er-geçi³ probleminin baz� spektral özelliklerini ara³t�rd�k. Bu çal�³ma be³
bölümden olu³maktad�r. Birinci bölümde, ara³t�r�lan konunun güncelli§i, uygulama
alanlar�, teorik ve pratik önemi hakk�nda k�sa bilgiler verdik. �kinci bölümünde tez
konumuzla ilgili yap�lm�³ olan çal�³malar hakk�nda bilgi verdik. Üçüncü bölümde
çal�³mam�z için gerekli olan baz� temel tan�m ve teoremleri verdik. Dördüncü bölümde
problemimizle ilgili olan yard�mc� ba³lang�ç-de§er problemlerini inceleyerek, problemimiz
için temel çözüm fonksiyonlar�n� tan�mlad�k ve bu fonksiyonlar için asimptotik formüller
elde ettik. Daha sonra bu formüllerden yararlanarak özde§erler için asimptotik formüller
bulduk. Son bölüm tezimizin orjinal k�sm�n� olu³turmaktad�r. Bu bölümde denkleminde
soyut lineer operatör bulunduran s�n�r-de§er-geçi³ probleminin özde§erleri için asimptotik
formüller bulduk.
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In this thesis, we investigated some spectral properties of one differential-operator
boundary-value-transmission problem which contain eigenvalue parameter in one of
boundary conditions. This thesis are arranged in �ve chapters. In the �rst chapter,
we indicated a brief explanation about current interest, application areas, theoretical and
practical importance. In the second chapter, we gave information about studies which
related to the investigated problem this thesis study. In Chapter 3, we explained some
basic de�nitions and theorems which are used through the thesis study. In Chapter 4,
by examining some auxiliary initial-value problems we de�ne fundamental solutions
for our problem and found asymptotic formulas for these solutions. Then by using
these formulas we establish asymptotic formulas for eigenvalues. The last section is
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boundary-value-transmission problems for the case when the equation contain abstract
linear operator.
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1. G�R��

Bilind§i gibi bir çok matematiksel �zik problemlerinin çözümü için uygulanan baz�
yöntemler, uygun adi diferansiyel denklemler için s�n�r de§er problemlerinin spektral
özelliklerinin ara³t�r�lmas�n� gerektirmektedir. Bu özelliklere örnek olarak özde§erler ve
özfonksiyonlar�n asimptoti§inin bulunmas�, Green fonksiyonunun in³a edilmesi, rezolvent
operatörünün kurulmas� v.b. özellikler gösterilebilir.

Birçokmatematiksel �zik probleminin, de§i³kenlerine ay�rmayöntemiyle incelenebilmesi
için Sturm-Liouville tipinde problemlerin özelliklerinin incelenmesi gerekmektedir. Bu
tür problemlerin önemi matematiksel �zik problemlerinin çözümünde etkin biçimde
uygulanabilmesidir. Ancak ça§da³ mekanik ve �zi§in talepleri yeni ve standart (al�³�lm�³)
olmayan s�n�r-de§er problemlerinin incelenmesi ihtiyac�n� ortaya koymu³tur.

Bu tez çal�³mas�n�n esas konusu bir diferansiyel operatör s�n�r-de§er-geçi³ problemi için
yukar�da bahsetti§imiz özelliklerin incelenmesidir.Tez çal�³mas�nda incelenen problemin
ifadesi klasik Sturm-Liouville problemlerin ifadesinden a³a§�daki farklar� bulundurmaktad�r.
1) Denklemde soyut (genel) lineer operatör bulunmaktad�r.
2) Verilen aral�kta süreksizlik noktas� vard�r ve süreksizlik noktas�nda problem geçi³
³artlar�yla birlikte verilmi³tir.
3)Ayr�ca s�n�r ³artlar�ndan bir tanesinde özde§er parametresi bulunmaktad�r.



2. L�TERATÜR ÖZET�

Matematik �zi§in problemleri genelde k�smi diferansiyel denklemlerin baz� ba³lang�ç ve
s�n�r ³artlar�n� sa§layan çözümlerin bulunmas�na indirgenmektedir. Böyle problemlerin
incelenmesi için çok farkl� yöntemler geli³tirilmi³tir. Bu yöntemlerin bir k�sm�n�n,
örne§in; özellikle Fourier yönteminin(de§i³kenlere ay�rma yönteminin) esasland�r�lmas�
adi diferansiyel denklemler için s�n�r de§er problemleminin spektral özelliklerinin
incelenmesini gerektirmektedir. Böyle s�n�r de§er problemlerinden biri olanSturm-Liouville
problemleri ilk olarak 19. yüzy�l�n ortalar�nda �s� vemadde iletimi problemleri ara³t�r�l�rken
Sturm ve Liouville taraf�ndan tan�mlanm�³ ve incelenmi³tir.

Daha sonra bu tip problemlerdeBirkoff (1908) özde§er parametresine ba§l� adi diferansiyel
denklemlerin temel çözümleri için asimptotik e³itlikler elde etmi³, regüler s�n�r ³artlar�n�
tan�mlam�³ ve regüler s�n�r-de§er problemleri için özfonksiyonlar ve özfonksiyonlara
ba§l� fonksiyonlar sisteminin taml�§� ile ilgili teoremler ispatlam�³t�r.

Tamarkin (1917)'in çal�³malar�nda parametreye ba§l� lineer diferansiyel denklemler için
temel çözüm fonksiyonla�n�n asimtoti§i bulunmu³, regüler ve güçlü regüler s�n�r ³artlar�
tan�mlanm�³t�r. Bu çal�³malarda regüler s�n�r-de§er problemleri için Green fonksiyonu
de§erlendirilmi³ ve tan�m bölgesindeki fonksiyonlar�n verilmi³ s�n�r de§er problemlerinin
özfonksiyonlar� ve özfonksiyonlar�na ba§lanm�³ fonksiyonlar sistemi
üzerine seriye aç�l�m formülleri elde edilmi³, ayr�ca s�n�r ³artlar�n�n güçlü regüler oldu§u
durumda özde§erler için asimptotik formüller bulunmu³tur.

Daha sonraki y�llarda ister soyut teorinin iç talepleri, isterse dematematik �zi§in özelliklede
kuantummekani§inin, ortaya koydu§u yeni yeni somut problemlerin ara³t�r�lma ihtiyaçlar�
diferansiyel operatörlerin spektral teorisinin h�zl� bir ³ekilde geli³mesine neden olmu³tur.
Yüzlerce kitap ve makale yay�nlanmas�na ra§men Sturm-Liouville problemleri hem
diferansiyel denklemler teorisinin hem de uygulamal� matemati§in en önemli ve en
güncel konusu olmaya devam etmektedir. Bununda esas nedeni matematik �zi§in ortaya
koydu§u yeni ve güncel problemlerdir. Böyle yeni problemler klasik Sturm-Liouville
problemlerinin farkl� yönlerden genelle³tirilmesi ve ara³t�rma yöntemlerinin geli³tirilmesi
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ihtiyac�n� ortaya ç�karmakt�r. Örne§in, farkl� �ziksel özelliklere sahip olan maddeler
aras�ndaki �s� ve madde iletimi problemleri s�n�r ³artlar�n�n yan� s�ra geçi³ ³artlar� da
içeren Sturm-Liouville problemlerinin incelenmesini gerektirmektedir. Son y�llarda
Sturm-Liouville problemlerinin farkl� yönlerde genelle³tirilmeleri yayg�n olarak
ara³t�r�lmaktad�r. S�n�r ³artlar�nda özde§er parametresi bulunduran baz� kendine e³lenik
s�n�r-de§er problem leri kaynaklar k�sm�nda yer alan Walter (1973), Schneider (1974),
Fulton (1977), Hinton (1970) tarihli çal�³malarda incelenmi³tir.

Russakovskiy' in 1975' deki çal�³mas�nda özde§er parametresi s�n�r ³artlar�na polinomal
³ekilde dahil oldu§u için uygun lineer A operatörü L2(a, b) yerine L2(a, b) ⊕ CN

³eklinde uzaylarda tan�mlanm�³t�r.
Shkalikov'un, 1983' deki ve onu takip eden birkaç çal�³mas�nda ise özde§er parametresinin
hemdiferansiyel denkleminin katsay� fonksiyonlar�nda, hemde s�n�r ³artlar�nda polinomal
³ekilde içeren kendine e³lenik olmayan s�n�r-de§er problemlerinin ara³t�r�lmas� için yeni
yorum ve lineerle³tirme yöntemi geli³tirmi³tir.
Muhtarov'un, 1988' deki çal�³mas�nda s�n�r ³artlar�nda özde§er parametresi bulundurmayan,
ancak denkleminde soyut lineer operatör bulunduran ve esas k�sm� kendine e³lenik
olan s�n�r-de§er probleminin özde§erlerinin asimptoti§i bulunmu³tur. Alt�n�³�k' �n,
1998 y�l�nda yazd�§� "s�n�r ³artlar�nda özde§er parametresi bulunduran süreksiz katsay�l�
s�n�r-de§er problemi" ba³l�kl� Doktora Tezi'n de ise s�n�r ³artlar�nda özde§er parametresi
bulunduran süreksiz katsay�l� s�n�r-de§er probleminin spektral özellikleri ara³t�r�lm�³t�r.
Demir' in 1999 y�l�nda yazd�§� "bir diferansiyel-operatör denklem için s�n�r-de§er problemi"
ba³l�kl� Doktora Tezi' n de ise hem s�n�r ³artlar�nda özde§er parametresi bulunduran hem
de denkleminde soyut linner operatör bulunduran ve esas k�sm� kendine e³lenik olan
s�n�r-de§er probleminin özde§erlerinin asimptoti§i ara³t�r�lm�³t�r.
Son y�llarda ise bu alanda en önemli sonuçlar Yakubov ve Yakubov'un çal�³malar�nda
elde edilmi³tir (Yakubov, Y., 1993; 1994; 1998 and Yakubov and Yakubov, 1999; 2000).
Yakubov' un , 1994' de yay�mlanan kitab�nda reguler diferansiyel operatörlerin genel
teorisi kurulmu³ ve bu teori de yeni yöntemler geli³tirilmi³tir. Yakubov' un son y�llardaki
çal�³malar�nda ise irregüler s�n�r-de§er problemlerinin spektral özellikleri ara³t�r�larak
elde edilen sonuçlar bir çok �ziksel problemlere uygulanm�³t�r. Yakubov (1995;1998)'
un çal�³malar� örnek olarak verilebilir.



3. GENEL B�LG�LER

3.1 Sturm-Liouville Denklemi

S�n�r-de§er problemleri aras�nda Sturm-Liouville problemlerinin önemli bir yeri vard�r.
Sturm-liouville problemini ifade etmeden önce herhangi ikinci mertebeden

−u
′′

+ p(x)u
′
+ r(x)u = λs(x)u (3.1.1)

bir diferansiyel denklemin (s(x) ikinci mertebeden, p(x) ise birinci mertebeden sürekli
diferansiyellenebilir fonksiyonlar ise ve s(x) > 0 ise)

−v
′′

+ q(y)v = λv (3.1.2)

biçiminde denkleme indirgenebilece§ini belirtelim. Bunun içinxveu = u(x)de§i³kenlerinden

y =
1

c

∫ x

a

√
s(t)dt, c =

1

π

∫ b

a

√
s(t)dt (3.1.3)

v(y) = 4
√

s(x)exp

(
1

2

∫ x

a

p(t)dt

)
u(x) (3.1.4)

dönü³ümleri ile yeni y ve v = v(y) de§i³kenlerine geçmek yeterlidir. Bu durumda [a, b]

aral�§� [0, π] aral�§�na dönü³ür. Bu dönü³üm, Liouville dönü³ümü olarak adland�r�l�r
(Titchmars, 1962).

3.1.1 Regüler Sturm-Liouville Problemi

Genel olarak regüler Sturm-Liouville problemi L2[a, b] (−∞ < a < b < +∞) Hilbert
uzay�nda verilmi³

Lu =: −u
′′

+ q(x)u = λu, x ∈ [a, b] (3.1.5)
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denkleminin ve baz� s�n�r ³artlar�n�n olu³turdu§u s�n�r de§er problemleri olarak tan�mlanmaktad�r.
Böyle s�n�r ³artlar�dan biri de ,

α1u(a) + α2u
′
(a) = 0 (3.1.6)

β1u(b) + β2u
′
(b) = 0 (3.1.7)

s�n�r ³artlar�ndan olu³maktad�r. Burada q(x) verilen aral�kta reel de§erli sürekli bir
fonksiyon, α1, α2, β1, β1 reel sabitler, α2

1 + α2
2 6= 0, β2

1 + β2
2 6= 0 ve λ ∈ C ise x den

ba§�ms�z parametredir.
E§er herhangi λ = λ0 de§eri için bu problemin a³ikar olmayan u0 ∈ W 2

2 [a, b] (u0 6= 0)

çözümü bulunursa, λ0 say�s�na verilmi³ problemin özde§eri, u = u0(x) fonksiyonuna ise
bu özde§ere uygun özfonksiyon denir.
3.1.5−3.1.7SturmLiouville probleminde [a, b] aral�§� sonlu ve bu aral�kta q(x) fonksiyonu
integrallenebilirse bu tip problemlere regüler Sturm-Liouville problemler aksi taktirde
yani [a, b] aral�§� sonsuzsa veya q(x) fonksiyonu bu aral�kta integrallenemezse veya
her iki ³art sa§lan�yorsa, (yani hem aral�k sonsuz, hemde q(x) fonksiyonu bu aral�kta
integrallenemezse) bu tip problemlere singüler Sturm-Liouville problemleri denir. p(a) =

p(b) olmak üzere e§er 3.1.5 diferansiyel denklemi

u(a) = u(b) (3.1.8)

u
′
(a) = u

′
(b) (3.1.9)

s�n�r ³artlar�yla verilmi³se bu tip problemlere de periyodik Sturm-Liouville problemi
denir.

3.2 Lineer Diferansiyel �fade ve S�n�r �artlar�

pi(x) : R −→ R (i = 0, 1, 2, ..., n), sürekli fonksiyonlar olmak üzere

`(y) := p0(x)y(n) + p1(x)y(n−1) + ... + pn(x)y, x ∈ (a, b) (3.2.1)
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biçimindeki ifadeye n−mertebeden lineer diferansiyel ifade denir. Genel olarak her x

için p0(x) 6= 0 oldu§u kabul edilir.

U(y) := α0y(a) + α1y
′(a) + ... + αn−1y

(n−1)(a)

+β0y(b) + β1y
′(b) + ... + βn−1y

(n−1)(b) (3.2.2)

biçimindeki ifadeye ise s�n�r de§er ifadesi denir. Ui(y), i = 1, 2, ..., m ifadeleri s�n�r de§er
ifadeleri oldu§unda

Ui(y) = 0, i = 1, 2, ...,m (3.2.3)

biçimindeki e³itlikler s�n�r ³artlar� olarak adland�r�l�r.

Bilindi§i gibi C[a, b] ile, [a, b] aral�§�nda tan�ml� ve sürekli olan fonksiyonlar�n lineer
uzay� gösterilir.

{f ∈ C[a, b] |f ′, f ′′, ..., f (n) ∈ C[a, b]}

lineer uzay� ise C(n)[a, b] biçiminde gösterilir. L : C[a, b] −→ C[a, b]

D(L) = D = {y ∈ C[a, b] | y ∈ C(n)[a, b], Ui(y) = 0, i = 1, 2, ...,m}

L(y) = `(y) = p0(x)y(n) + p1(x)y(n−1) + ... + pn(x)y

e³itlikleri ile tan�mlanan L−lineer operatörüne lineer diferansiyel operatör veya `(y)

diferansiyel ifadesi ile
Ui(y) = 0, i = 1, 2, ..., m

s�n�r ³artlar�n�n üretti§i lineer diferansiyel operatör denir (Naimark, 1967).

3.3 Lineer Operatörlerin Özde§er ve Özfonksiyonlar�

H kompleks lineer uzay�nda tan�m bölgesi D(A) olan A : H −→ H lineer operatörü ve
λ kompleks parametresi verilsin. E§er λ = λ0 için

Ay = λ0y (3.3.1)
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operatör denkleminin y0 6= 0 çözümü varsa, λ0 say�s�na A operatörünün özde§eri, y0 ∈
D(A) eleman�na ise bu özde§ere uygun özfonksiyonu denir (Kreyszig, 1989).

3.4 L2[a, b] Uzay�

Verilmi³ [a, b] aral�§�nda tan�ml� ve Lebesgue anlam�nda ölçülebilir olan f(x) fonksiyonu
için |f(x)|2 fonksiyonu bu aral�ktaLebesgue anlam�nda integrallenebilir ise f(x) fonksiyon
una [a, b] aral�§�nda karesi integrallenebilir fonksiyon denir (Naimark, 1967). Karesi
integrallenebilir fonksiyonlar�n lineer uzay�nda

< f, g >:=

∫ b

a

f(x)g(x)dx (3.4.1)

ile gösterilen bu formül bir iç çarp�m tan�mlar (Birbiriyle e³de§er olan (yani h.h.h. e³it
olan) fonksiyonlar� e³it fonksiyonlar olarak kabul ediyoruz. Bu durumda s�f�r olarak
h.h.h. s�f�ra e³it olan bütün fonksiyonlar s�n�f�n� kabul ediyoruz.). Bu ³ekilde tan�mlanan
iç çarp�m uzay�n�n bir Hilbert uzay� oldu§u bilinmektedir. Bu uzay L2[a, b] ile gösterilir.
[a, b] aral�§� sonlu oldu§u durumda L2(a, b)'den olan herbir fonksiyonun (a, b) aral�§�nda
Lebesgue anlam�nda integrallenebilir olaca§� aç�kt�r.

3.5 Hilbert Uzaylar�nda Simetrik ve Kendine E³lenik Operatörler

Tan�m 3.5.1. H Hilbert uzay�nda tan�mbölgesi D(A) ⊂ H olan A : D(A) ⊂ H −→ H

lineer operatörü verilsin. E§er her x, y ∈ D(A) için

〈Ax, y〉H = 〈x,Ay〉H

e³itli§i sa§lan�yorsa, A operatörüne simetrik operatör denir (Naimark, 1967).

Tan�m 3.5.2. H Hilbert uzay�nda D(A) = H olacak ³ekilde (yani tan�m bölgesi her
yerde yo§un olacak ³ekilde ) A : D(A) ⊂ H −→ H lineer operatörü verilsin.
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E§er herhangi y ∈ H eleman� için öyle zy ∈ H eleman� varsa ki,

〈Ax, y〉H = 〈x, zy〉H

e³itli§i bütün y ∈ D(A) elemanlar� için sa§lans�n, o halde y −→ zy : H −→ H

dönü³ümüne A operatörünün e³lene§i denir (Naimark, 1967) ve A∗ ile gösterilir. Bu
özelli§e sahip olan bütün y ∈ H elemanlar� kümesi A∗ operatörünün tan�m bölgesi
olarak kabul edilir ve D(A∗) ile gösterilir.

Sonuç 3.5.1. A∗ operatörü bir lineer operatördür ve her x ∈ D(A) , y ∈ D(A∗) için

〈Ax, y〉H = 〈x,A∗y〉H

e³itli§i sa§lan�r.

Sonuç 3.5.2. Her A : H −→ H simetrik operatörü için D(A) ⊂ D(A∗) ' d�r ve her
x ∈ D(A) için

A∗x = Ax

e³itli§i sa§lan�r. Yani, her simetrik operatörün e³lene§i bu operatörün bir geni³lemesidir
(devam�d�r).

Simetrik operatörlerle e³lenikleri aras�ndaki çok önemli bir ba§�nt�y� verebilmek için önce
a³a§�daki tan�mlar� verelim.

H Hilbert uzay� verilsin. H ×H := {(x, y)|x ∈ H, y ∈ H} kümesi al�³�lm�³ yöntemle
lineer uzaya dönü³türülebilir. Bu lineer uzayda x = (x1, x2), y = (y1, y2) ∈ H × H

elemanlar� için
〈x, y〉H⊕H := 〈x1, y1〉H + 〈x2, y2〉H

e³itli§i bir iç çarp�m tan�ml�yor ve bu iç çarp�ma göre

H ⊕H := (H ×H, 〈., .〉H⊕H)

bir Hilbert uzay�d�r (Kreyszig, 1989).
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Tan�m 3.5.3. A lineer operatörü verilsin. E§er

ΓA := {(x, y) ∈ H ⊕H| x ∈ D(A), y = Ax}

kümesi H ⊕ H Hilbert uzay�nda kapal� bir küme ise o halde A operatörüne kapal�
operatör denir. ΓA' ya bu operatörün gra�§i denir.

H Hilbert uzay�nda A : D(A) ⊂ H −→ H lineer operatörü ve λ ∈ C kompleks say�s�
verilsin. A + λI operatörünün de§er bölgesini

R(A + λI) := {Ax + λx | x ∈ D(A)}

ile gösterelim. Ayr�ca M ⊂ H alt kümesi verildi§inde M⊥ ile M kümesinin ortogonal
tümleyenini gösterelim:

M⊥ = {x ∈ H | y ∈ M ⇒ 〈x, y〉H = 0}

�imdi a³a§�daki teoremi ifade edebiliriz (Kreyszig, 1989).

Teorem 3.5.1. H Hilbert uzay�nda tan�m bölgesi her yerde yo§un olan simetrik A

lineer operatörü verilsin. E§er A kapal� operatör ise o halde Imλ 6= 0 olacak ³ekilde
her λ ∈ C kompleks say�s� ve her y ∈ D(A∗) eleman� için

z = x + y1 + y2, x ∈ D(A), y1 ∈ (R(A + λy))⊥, y2 ∈ (R(A + λy))⊥

olacak ³ekilde (x, y1, y2) üçlüsü var ve tektir.

Bu anlamda D(A∗) tan�m bölgesi

D(A∗) = D(A) + (R(A + λI))⊥ + (R(A + λI))⊥

biçiminde gösterilebilir (Debnath ve Mikusinski, 2005).
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Sonuç 3.5.3. H Hilbert uzay�nda tan�m bölgesi her yerde yo§un olan kapal� ve simetrik
A : D(A) ⊂ H −→ H lineer operatörü için

(R(A + λI)) = H ve (R(A + λI)) = H

olacak ³ekilde λ ∈ C ve Imλ 6= 0 say�s� mevcut ise A operatörü kendine e³leniktir,
yani A∗ = A' d�r.

H Hilbert uzay�nda verilmi³ A simetrik operatörünün kendine e³lenik olmas� için
D(A∗) = D(A) olmas�n�n gerek ve yeter ³art oldu§u aç�kt�r (Debnath ve Mikusinski,
2005).

Teorem 3.5.2. H Hilbert uzay�nda A simetrik operatörü verilsin. E§er λ ∈ C say�s�
varsa ki (A − λI) ve (A − λI) operatörlerin de§er bölgeleri H uzay� ile çak�³s�n, o
halde A operatörü kendine e³leniktir (Debnath ve Mikusinski, 2005).

�spat: Herhangi bir y ∈ D(A∗) eleman�n� alal�m. O halde x ∈ D(A) için

〈Ax, y〉 = 〈x, y∗〉

e³itli§i sa§lan�r. Buradan

(
(A− λI)x, y

)
= 〈Ax, y〉 − 〈λx, y〉 = 〈x, y∗〉 − 〈x, λy〉 = 〈x, y∗ − λy〉 (3.5.1)

e³itli§i elde edilir. A− λI operatörünün de§erleri bütün H uzay� ile çak�³t�§� için

〈A− λI〉z = y∗ − λy (3.5.2)

olacak ³ekilde z ∈ D(A) eleman� bulunur. A operatörü simetrik oldu§u için

〈x, y∗ − λy〉 = 〈x, (A− λI)z〉 = 〈(A− λI)x, z〉 (x ∈ D(A)) (3.5.3)

e³itli§i sa§lan�r. 3.5.1, 3.5.2 ve 3.5.3 e³itliklerinden

〈(A− λI)x, y〉 = 〈(A− λI)x, z〉 (3.5.4)
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e³itli§i bütün x ∈ D(A) için sa§lan�r. (A− λI) operatörünün de§er bölgesi bütün H

uzay� ile çak�³�k olaca§�ndan sonuncu e³itlikten

y = z ∈ D(A)

elde edilir. Böylece D(A) ⊂ D(A∗) oldu§u ispatlanm�³ oldu. �spat bitti.

3.6 Mutlak Sürekli Fonksiyonlar

Tan�m 3.6.1. [a, b] aral�§�nda tan�ml�f fonksiyonu verilsin. E§er ∀ ε > 0 için öyle
δ > 0 say�s� varsa ki

n∑

k=1

(bk − ak) < δ

her sonlu say�da ayr�k (a1, b1), (a2, b2), ...(an, bn) aral�klar� için

|
∑

k

f(bk)− f(ak) |< ε

olsun, o zaman bu f fonksiyonuna [a, b] aral�§�ndamutlak süreklidir denir (burada n ∈ N;

(ak, bk) ⊂ [a, b], k = 1, 2, ...n) (Balc�, 2000 ).

Teorem 3.6.1. f fonksiyonu [a, b] de mutlak sürekli ise [a, b] nin hemen-hemen her
noktas�nda türevlenebilirdir ve f ′ integrallenebilirdir(Balc�, 2000 ).

3.7 Kompleks Fonksiyonlar�n S�f�r Yerlerinin Say�s�

Tan�m 3.7.1.D ⊂ C bir bölge olsun.f : D −→ C ve z0 ∈ D olsun. E§er f fonksiyonu z0'
�n enaz bir kom³ulu§unda diferansiyellenebilir ise f fonksiyonuna z0 noktas�nda analitiktir
denir.
Tan�m 3.7.2. D ⊂ C bir bölge olsun. E§er f : D −→ C bütün D bölgesinde
diferansiyellenebilir ise f fonksiyonuna D bölgesinde analitiktir denir.
Tan�m 3.7.3. E§er f : C −→ C bütün C düzleminde diferansiyellenebilir ise f
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fonksiyonuna tam fonksiyon denir.
S�f�rdan farkl� olan tam fonksiyonun s�f�r yerlerinin sonlu veya say�labilir say�da oldu§u
ve de sonlu y�§�lma noktas�n�n bulunmad�§� (veya hiç olmad�§�) kompleks analizden iyi
bilinmektedir. f : C −→ C ile tan�ml� f(z) fonksiyonu ve z0 ∈ C noktas� verildi§inde

f(z0) = f ′(z0) = ... = f (k−1)(z0) = 0, f (k)(z0) 6= 0

ise bu durumda z = z0 noktas�na f(z) fonksiyonunun k katl� s�f�r yeri denir. S�f�rdan
farkl� tam fonksiyonlar�n herbir s�f�r yerinin sonlu katl� oldu§u kompleks analizden iyi
bilinmektedir.

Teorem 3.7.1. (Rouche Teoremi)

E§er f(z) ve ϕ(z) kompleks fonksiyonlar� kapal� düzlenebilir Jordan e§risi olan Γ

üzerinde ve içinde analitiklerse ve her z ∈ Γ için,

|f(z)| > |ϕ(z)|

³art� sa§lan�yorsa; o halde Γ e§risinin içinde f(z)+ϕ(z) fonksiyonunun s�f�r yerlerinin
say�s� ile f(z) fonksiyonunun s�f�r yerlerinin say�s� (her s�f�r yeri kat� say�da
hesaplanmak üzere) e³ittir (Ulucay, 1971).

3.8 Parametreye Ba§l� S�n�r-De§er Probleminin Çözümünün Varl�§� , Tekli§i ve
Parametreye Göre Taml�k Teoremi

Teorem 3.8.1. Kabul edelim ki q : [a, b] −→ R fonksiyonu sürekli bir fonksiyondur. O
halde

−u′′ + q(x)u = λu, x ∈ [a, b]

diferansiyel denkleminin

u(a) = sin α, u′(a) = − cos α α ∈ [0, π)
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s�n�r ³artlar�n� sa§layan bir tek u(x, λ) çözümü vard�r, tekdir ve bu çözüm her x ∈ [a, b]

için λ ∈ C parametresinin tam fonksiyonudur (Titchmarsh, 1939).

3.9 Asimptotik �fadeler

Kompleks düzlemin herhangi G ⊂ C bölgesinde tan�ml� olan f(z), g(z) ve h(z)

fonksiyonlar� verilsin. E§er

|f(z)| ≤ M |g(z)| , z ∈ G ∩ {z : |z| > R}

olacak ³ekilde R > 0, M > 0 say�lar� mevcutsa

f(z) = O(g(z)), z ∈ G, z −→∞ (3.9.1)

³eklinde yaz�l�r. Bu ifadeye asimptotik e³itlik denir. E§er,

f(z)− h(z) = O(g(z)), z ∈ G, z −→∞

ise o halde
f(z) = h(z) + O(g(z)), z ∈ G, z −→∞ (3.9.2)

yaz�l�r. z0 ∈ G verilsin. E§er f(z) = g(z)α(z) ve

lim
z→z0, z∈G

α(z) = 0

olacak biçimde α(z) : C→ C fonksiyonu varsa

f(z) = o(g(z)), z ∈ G, z −→ z0 (3.9.3)

yaz�l�r ve f(z) fonksiyonu z0 noktas�n�n yak�n kom³ulu§unda g(z)'ye göre sonsuz
küçüktür denir. f(z)

g(z)
fonksiyonu z0 noktas�n�n herhangi kom³ulu§unda s�n�rl� ise, yani

e§er z0-�n öyle kom³ulu§u ve öyle M>0 varsa ki bu kom³ulukta
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|f(z)| ≤ M |g(z)| olsun. O halde

f(z) = O(g(z)), z ∈ G, z −→ z0 (3.9.4)

yaz�l�r. E§er
lim
z→z0

f(z)

g(z)
= 1

ise
f(z) ∼ g(z), z ∈ G, z −→ z0 (3.9.5)

yaz�l�r. Hangi G bölgesinden bahsedildi§i aç�k ³ekilde bilinirse bazen z ∈ G ifadesi
yaz�lmaz.

{an} , {bn} ve {cn} reel veya kompleks say� dizileri verildi§inde ∃n0 ∈ N ve ∃M > 0

varsa ki ∀n ≥ n0 için | an |≤ M | bn | olsun, o halde

an = O(bn) (3.9.6)

yaz�l�r. an − cn = O(bn) oldu§unda ise bu durum

an = cn + O(bn) (3.9.7)

³eklinde gösterilir. E§er an = αnbn, αn → 0 olacak biçimde (αn) dizisi mevcutsa

( lim
n→∞

an

bn

= 0 ise)

bu durum
an = o(bn) (3.9.8)

³eklinde gösterilir. an − cn = o(bn) oldu§unda ise bu durum

an = cn + o(bn) (3.9.9)

³eklinde gösterilir. 3.9.1 − 3.9.9 ³eklindeki formüllere asimptotik formüller denir
(Titchmars, 1962).
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3.10 Green Fonksiyonu

S�ras�yla 3.2.1 ve 3.2.3 ile tan�ml� `(y) diferansiyel ifadesinin ve Ui(y) = 0, i =

1, 2, 3, ....., n s�n�r ³artlar�n�n üretti§i L lineer operatörü için Ly=0 denkleminin bir tek
y=0 a³ikar çözümünün bulundu§unu kabul edelim.

Bu halde `(y) = 0 denkleminin her bir y1, y2, ...., yn lineer ba§�ms�z çözüm sistemi için

det|Ui(yj)|i,j=1,2,....,n 6= 0

olaca§�ndan L operatörünün L−1 ters operatörü olacak ve bu ters operatörün

L−1f =

∫ b

a

G(x, t)f(t)dt (3.10.1)

biçiminde ifade edilebilece§i bilinmektedir. Bu durumda 3.10.1 integral operatörünün
G(x,t) çekirde§ine L lineer diferansiyel operatörünün Green fonksiyonu denir (Naimark,
1967).
Green fonksiyonunun bulunmas� için a³a§�daki Teoremyayg�n bir ³ekilde uygulanmaktad�r.

Teorem 3.10.1. E§er Ly = 0 s�n�r-de§er probleminin sadece y = 0 a³ikar çözümü
varsa, o halde L lineer diferansiyel operatörünün bir tek G(x, t) Green fonksiyonu var
ve bu fonksiyon a³a§�daki ³artlar� sa§l�yor:

1. G(x, t) fonksiyonu her t ∈ [a, b] için süreklidir ve x-de§i³kenine göre bütün [a, b]

aral�§�nda (n − 2). mertebeye kadar (n − 2' ci mertebe de dahil olmak üzere ) sürekli
diferansiyellenebilirdir.

2. G(x, t) fonksiyonu her t ∈ (a, b) için [a, t) ve (t, b] aral�klar�n�n her birinde
x-de§i³kenine göre (n−1). mertebeden (n−1' ci mertebe de dahil olmak üzere ) sürekli
diferansiyellenebilirdir ve (n − 1). mertebeden türev fonksiyonu x = t noktas�nda
süreksizdir ve 1

p0(t)
s�çramas�na sahiptir, yani

∂n−1

∂xn−1
G(t + 0, t)− ∂n−1

∂xn−1
G(t− 0, t) =

1

p0(t)
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3. [a, t) ve (t, b] aral�klar�n�n her birindeG(x, t) fonksiyonu x-de§i³kenine göre `(y) = 0

diferansiyel denklemini ve Ui(y) = 0, i = 1, 2, 3, ....., n s�n�r ³artlar�n� sa§l�yor.

Bunun terside do§rudur. Yani, teoremin ³artlar� alt�nda (1.) − (3.) ³artlar�n� sa§layan
bir tek G(x, t) fonksiyonu var ve bu fonksiyon L operatörü için Green fonksiyonudur
(Naimark, 1967).

3.11 RezolventOperatörü, S�n�rl� ve KompaktOperatörler, KompaktGömülmeler

Tan�m 3.11.1. Özde§er olmayan her λ ∈ C için L − λI operatörünün G(x, t; λ)

Green fonksiyonu vard�r ve her f ∈ C[a, b] için (L−λI)y = f s�n�r-de§er probleminin
bir tek

y(x) =

∫ b

a

G(x, t; λ)f(t)dt (3.11.1)

çözümü bulunur. Bu çözüme

`(y) = λy (3.11.2)

Uiy = 0, i = 1, 2, ...., n (3.11.3)

s�n�r-de§er probleminin Rezolventi,

(L− λI)−1 f =

∫ b

a

G(x, t; λ)f(t)dt

ters operatörüne ise L operatörünün veya (3.11.2), (3.11.3) s�n�r-de§er probleminin
Rezolvent operatörü denir ve R(λ, L) ile gösterilir:

R(λ, L) = (L− λI)−1

(Naimark, 1960)
Not: Baz� kaynaklarda (λI − L)−1 operatörüne Rezolvent operatörü denir.

E§er verilmi³ λ ∈ C kompleks say�s� için λI − L operatörünün s�n�rl� ters operatörü
varsa λ say�s�na L operatörünün regüler de§eri denir.
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L operatörünün regüler de§eri olmayan bütün kompleks say�lar kümesine L operatörünün
spektrumu denir ve σ(L) ile gösterilir. L operatörünün regüler de§erler kümesi ise ρ(L)

ile gösterilir (Triebel, 1978).

Tan�m 3.11.2. X metrik uzay�nda E ⊂ X alt kümesi verilsin. E§er E kümesinin
elemanlar�ndan olu³mu³ her dizinin yak�nsak altdizisi varsa bu kümeye kompakt küme
denir. E§er bu altdizilerin limitleri E-nin eleman� ise E-ye kendi içinde kompakt küme
denir, aksi halde ise E-ye X-e göre kompakt küme veya E-ye X-de kompakt (bazen
önkompakt ) küme denir. X kümesinin kendisi kompakt ise X metrik uzay�na kompakt
denir.

Tan�m 3.11.3. X ve Y Banach uzay� ve A : X −→ Y lineer operatörü verilsin.
A operatörünün tan�m bölgesini D(A), de§er bölgesini R(A)ile gösterelim. E§er
D(A) = X ise ve istenilen her u ∈ X için

‖Au‖Y ≤ C ‖u‖X

olacak ³ekilde bir C > 0 say�s� varsa A operatörüne X −→ Y ' ye s�n�rl� operatör denir.
(Yakubov, 1994).

Bütün s�n�rl� A : X −→ Y operatörler kümesini L(X, Y ) ile, L(X,X)' i ise k�saca
L(X) ile gösterece§iz (Yakubov, 1994).

E§er D(A) = X ise ve her M ⊂ X s�n�rl� kümesinin A(M) ⊂ Y görüntüsü Y ' de
önkompakt ise A operatörüne X' den Y ' ye giden kompakt operatör denir (Kreyszig,
1989).

Tan�m 3.11.4. X Banach uzay�ndan Y Banach uzay�na giden bire-bir ve cebirsel
i³lemleri koruyan J : X −→ Y dönü³ümü verilmi³se, o halde X,Y ' ye gömülmü³tür
denir. Bu halde J(X) ile X ayn� uzaylar olarak kabul edilir ve X ⊂ Y olarak
gösterilir. J operatörüne ise gömülme operatörü denir (Kreyszig, 1989).
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J : X −→ Y gömülme operatörü sürekli ise X ⊂ Y gömülmesi de sürekli gömülme
olarak adland�r�l�r (Triebel, 1978).
J : X −→ Y gömülme operatörü kompakt ise X ⊂ Y gömülmesi de kompakt gömülme
olarak adland�r�l�r (Triebel, 1978).
E§er J(X) görüntü kümesi, Y ' de her yerde yo§un ise X ⊂ Y gömülmesi de her yerde
yo§undur denir (Triebel, 1978) .

Lemma 3.11.1. A³a§�daki üç ³art�n sa§land�§�n� kabul edelim.

1) X ve Y bazlar� bulunan birer Banach uzaylar�d�r ve X yans�mal�d�r.

2) X ⊂ Y gömülmesi de her yerde yo§un ve süreklidir.

3) B : X −→ Y operatörü kompaktt�r. O halde her ε > 0 ve bütün u ∈ X için

‖Bu‖Y ≤ ε ‖u‖X + C(ε) ‖u‖Y

olacak ³ekilde C(ε) > 0 say�s� vard�r (Yakubov, 1994).

3.12 Sobolev Uzaylar�

(a, b) aral�§�nda tan�ml� ve lokal integrallenebilir olan u(x) ve v(x) fonksiyonlar�
verilsin. E§er sonsuz mertebeden diferansiyellenebilir ve

sup ϕ = {x | ϕ(x) 6= 0} ⊂ (a, b)

³art�n� sa§layan her ϕ(x) fonksiyonu için

∫ b

a

u(x)ϕ(n)(x)dx = (−1)n

∫ b

a

v(x)ϕ(x)dx

e³itli§ini sa§l�yorsa v(x) fonksiyonuna u(x) fonksiyonunun n (n ∈ N) mertebeden
genelle³tirilmi³ türevi denir (Triebel, 1978).
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(a, b) ⊂ R aral�§� q > 1 reel say�s� ve m > 0 tamsay�s� verildi§inde Wm
q (a, b) ile (a, b)

aral�§�nda Lebesque anlam�nda ölçülebilir ve u
′
(x), u

′′
(x), ...., u(m)(x) genelle³mi³

türevleri bulunan ve her k = 1, 2, ....,m için u(k) ∈ L2(a, b) olan fonksiyonlar�n lineer
uzay�n� gösterece§iz. Bu uzayda

〈u, v〉W m
2 (a,b) =

(
m∑

k=0

〈 u(k) , v(k) 〉L2(a,b)

) 1
2

formülü bir iç çarp�m tan�ml�yor. Bu uzaylara Sobolev uzaylar� denir. Bu uzaylar�n
Hilbert uzaylar� oldu§u biliniyor (Triebel, 1978).

�leride, literatürde de oldu§u gibi L2(a, b) yerine bazen W 0
2 (a, b) yazaca§�z.

3.13 Diskret Spektrumlu Operatörler

H Hilbert uzay� verilsin ve A : H −→ H operatörü kapal� olsun ( hat�rlatal�m ki, e§er
un ∈ D(A) (n ∈ N), un −→ u , Aun −→ v ³artlar�n� sa§layan her un (n ∈ N) dizisi
için u ∈ D(A) ve Au = v ise A operatörüne H ' da kapal� operatör denir).

A : H −→ H , D(A)H-da heryerde yo§un yaniD(A) = H olacak biçide s�n�rl� olmayan
A lineer kapal� operatörü verilsin . E§er en az bir λ = λ0 için R(λ,A) = (A − λI)−1

mevcut ve kompakt ise A-ya diskret spektrumlu operatör denir (Kato).

Böyle operatör için N(r, A) ile A operatörünün {λ ∈ C | |λ| ≤ r} kapal� yuvar�nda
bulunan özde§erlerin katlar�n�n toplam�n� gösterece§iz. N(r, A) fonksiyonuna A

operatörünün özde§erlerinin da§�l�m fonksiyonu denir. φ ⊂ C herhangi küme oldu§unda

N(r, φ, A) =
∑

|λj(A)|≤r, λ∈φ

1 (3.13.1)

gösterimini kullanaca§�z.

Ψ±
α = {λ ∈ C : | arg(±λ)| < α}
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oldu§unda N(r , Ψ±
α , A) yerine N±(r , α , A) yazaca§�z. R+ ve R− uygun olarak

pozitif ve negatif reel say�lar kümesini gösterdi§inde N(r , R± , A) yerine sadece
N±(r , A) yazaca§�z.

A operatörü diskret spektrumlu oldu§unda onun özde§erlerinin |λ1| ≤ |λ2| ≤ |λ3| ≤ ....

³eklinde mutlak de§erlerinin azalmayan s�ras�na göre s�raland�§�n� kabul edece§iz ( bu
durumda her özde§erin kat� say�da yaz�ld�§�n� da kabul ediyoruz). Her bir mλi

(A) ⊂ H

kök linealinde baz vektörleri seçelim ve bütün bu baz vektörlerinden fi ∈ mλi
(A), i =

1, 2, .... olmak üzere {fi} , i = 1, 2, ... vektörler sistemini olu³tural�m. Bu sisteme A

operatörünün kök vektörler sistemi (öz ve ³erik vektörler sistemi) denir.

Tan�m 3.13.1. E§er A : H −→ H lineer operatörünün hiç olmazsa bir tane λ regular
de§eri mevcutsa ve D(B) ⊃ D(A) olacak ³ekilde B : H −→ H lineer operatörü için
BR(λ,A) operatörü kompakt ise o halde B operatörüne A operatörüne göre(nazaran)
kompakt operatör denir.

Teorem 3.13.1. E§er S diskret spektrumlu kendine e³lenik operatör ise, o halde S'
ye göre kompakt olan her lineer B operatörü için S + B de diskret spektrumludur
(Gohberg ve Krein , 1969).

Teorem 3.13.2. S kendine e³lenik diskret spektrumlu lineer opeatörü ve S' ye göre
kompakt olan B lineer operatörü olsun. E§er S operatörünün sonsuz say�da pozitif
özde§eri mevcut ise ve

lim

r −→∞
ε −→ 0

N+ (r(1 + ε), S)

N+(r, S)
= 1

ise o halde 0 < α < π
2
olacak ³ekilde her α say�s� için

lim
r−→∞

N+ (r, α, S + B)

N+(r, S)
= 1

dir (Markus ve Matsayev , 1982).



4. METOTLAR

Ça§da³ mekanik ve �zi§in talepleri gere§i, son y�llarda özde§er parametresini hem
diferansiyel denkleminde hem de s�n�r ³artlar�nda içeren s�n�r-de§er problemlerine ilgi
gittikçe artmaktad�r.
Bu çal�³mada klasik Sturm-Liouville problemlerinden üç esas fark� olan ve sadece esas
k�sm� diferansiyel operatör olan bir s�n�r-de§er-geçi³ probleminin spektral özellikleri
(özde§erler ve özfonksiyonlar�n asimptotik ifadelerinin bulunmas�, Green fonksiyonunun
in³a edilmesi, rezolvent operatörünün kurulmas�, özelliklerinin incelenmesi ve normunun
de§erlendirilmesi v.b.) incelenmi³tir. Bu farklar a³a§�daki biçimde s�ralanabilir.
�lk olarak özde§er parametresinin sadece diferansiyel denklemde de§il ayn� zamanda s�n�r
³artlar�n�n bir tanesinde de bulunmas�d�r. �kinci olarak verilen aral�kta süreksizlik noktas�
mevcuttur ve bu süreksizlik noktas�nda problem geçi³ ³artlar�yla birlikte verilmi³tir.
Sonuncusu ve bizim için en önemlisi olan denklemde soyut (genel) lineer operatör
bulunmas�d�r.
Tez çal�³mam�zda literatürden bilinen a³a§�daki materyal ve metotlardan yararlan�lm�³t�r.
Diferansiyel operatörler teorisinden regüler Sturm-Liouville teorisi ve yöntemleri ;
fonksiyonel analizden baz� temel tan�mlar ve simetrik operatörlerin baz� temel özellikleri
Kompleks analizden tam fonksiyonlar�n s�f�r yerleri ile ilgili olan Rouche teoremi ; Lineer
diferansiyel denklemler teorisi Lineer integral denklemlerin çözümlerinin asimptoti§ini
bulmayöntemleri ; asimptotik de§erlendirmelerle ilgili yöntemler ile birlikte Sturm-Liouville
teorisi yöntemleri ve kaynaklar k�sm�nda yer alan çal�³malardan özellikle yararlan�lm�³
olup gösterilmi³ yöntemlerden faydalan�lm�³t�r.



5. BULGULAR

Tez çal�³mam�z�n esas konusu; Denkleminde soyut lineer operatör bulunduran

u′′(x) + q(x)u(x) + (Bu)(x) = λu(x), x ∈ [−1, 0) ∪ (0, 1]

diferansiyel denkleminden,
u(−1) = 0

u′(1) = λu(1)

s�n�r ³artlar�ndan ve de x = 0 süreksizlik noktas�ndaki

u(+0) = δu(−0)

u′(+0) = γu′(−0)

geçi³ ³artlar�ndan olu³an s�n�r-de§er-geçi³ probleminin baz� spektral özelliklerinin
incelenmesidir. Biz ilk önce a³a§�daki 5.1.1−5.1.5 Sturm-Liouville problemini ele ald�k.

5.1 S�n�rDe§er Probleminin �fadesi, Özde§erlerininReelli§i veÖzfonksiyonlar�n�n
Ortogonelli§i

Bu bölümde ,
Lu := −u′′ + q(x)u = λu, x ∈ [−1, 0) ∪ (0, 1] (5.1.1)

diferansiyel (Sturm-Liouville) denkleminden bir tanesi λ özde§er parametresine ba§l�
olan

u(−1) = 0 (5.1.2)

λu(1)− u′(1) = 0 (5.1.3)

s�n�r ³artlar�ndan ve x = 0 süreksizlik noktas�ndaki

u(+0)− δu(−0) = 0 (5.1.4)
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u′(+0)− γu′(−0) = 0 (5.1.5)

geçi³ ³artlar�ndan olu³anSturm-Liouville probleminin baz� spektral özellikleri incelenecektir.
Burada q(x); [−1, 0) ve (0, 1] aral�klar�nda sürekli, x = 0 noktas�nda ise sonlu q(±0)

limit de§erlerine sahip olan bir fonksiyon, λ kompleks özde§er parametresi ve δ, γ reel
katsay�lard�r. Bundan sonra heryerde δγ > 0 oldu§unu kabul edece§iz.

Teorem 5.1.1. 5.1.1−5.1.5 e³itlikleri ile verilmi³ s�n�r - de§er - geçi³ probleminin bütün
özde§erleri reeldir.

�spat: 5.1.1 − 5.1.5 s�n�r-de§er-geçi³ probleminin λ özde§erine uygun özfonksiyonu u

olsun. u, u' nun ve λ, λ' n�n e³lene§i olmak üzere, 5.1.1− 5.1.5 ve

−u′′ + q(x)u = λu (5.1.6)

u(−1) = 0 (5.1.7)

u′(1) = λu(1) (5.1.8)

u(+0) = δu(−0) (5.1.9)

u′(+0) = γu′(−0) (5.1.10)

e³itlikleri sa§lan�r. 5.1.1 denklemi u ile 5.1.6 denklemi de u ile çarp�l�p taraf tarafa
ç�kart�l�rsa,

uu
′′ − uu

′′
= (λ− λ)uu (5.1.11)

e³itli§i elde edilir. uu
′′ − uu

′′
= (uu

′ − uu
′
)
′ oldu§undan

(uu
′ − uu

′
)
′
= (λ− λ)uu (5.1.12)

yaz�labilir. 5.1.12 e³itli§i −1' den 0' a integrallenirse

∫ 0

−1

(uu
′ − uu

′
)
′
dx = (λ− λ)

∫ 0

−1

uudx

(uu
′ − uu

′
)|0−1 = (λ− λ)

∫ 0

−1

uudx
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u(−0)u
′
(−0)− u(−0)u

′
(−0) − u(−1)u

′
(−1) + u(−1)u

′
(−1)

= (λ− λ)

∫ 0

−1

uudx (5.1.13)

elde edilir. Di§er taraftan 5.1.2 ve 5.1.7 s�n�r ³artlar� sa§land�§� için

u(−1)u′(−1)− u(−1)u′(−1) = 0 (5.1.14)

bulunur. 5.1.14' de elde etti§imiz ifade 5.1.13' te yerine yaz�l�rsa

u(−0)u′(−0)− u(−0)u′(−0) = (λ− λ)

∫ 0

−1

uudx (5.1.15)

elde edilir. Ayn� ³ekilde 5.1.12 ifadesi 0' dan 1' e integrallenirse;

∫ 1

0

(uu′ − uu′)′dx = (λ− λ)

∫ 1

0

uudx

(uu′ − uu′)|10 = (λ− λ)

∫ 1

0

uudx

u(1)u′(1)− u(1)u′(1) − u(+0)u′(+0) + u(+0)u′(+0)

= (λ− λ)

∫ 1

0

uudx (5.1.16)

elde edilir. 5.1.3 ve 5.1.8' deki

u′(1) = λu(1) ve u′(1) = λu(1)

s�n�r ³artlar� 5.1.16' da yerine yaz�l�rsa

λu(1)u(1)− λu(1)u(1)− {u(+0)u′(+0)− u(+0)u′(+0)} = (λ− λ)

∫ 1

0

uudx

(λ− λ)u(1)u(1)− {u(+0)u
′
(+0)− u(+0)u

′
(+0)} = (λ− λ)

∫ 1

0

uudx (5.1.17)
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ifadesi elde edilir. 5.1.3− 5.1.4 ve 5.1.9− 5.1.10 geçi³ ³artlar� kullan�larak

u(−0) =
1

δ
u(+0)

u′(−0) =
1

γ
u′(+0) (5.1.18)

u(−0) =
1

δ
u(+0)

u′(−0) =
1

γ
u′(+0)

e³itlikleri yaz�labilir. Bu e³itlikler 5.1.15' de yerine yaz�l�rsa,

1

δγ

[
u(+0)u

′
(+0)− u(+0)u

′
(+0)

]
= (λ− λ)

∫ 0

−1

uudx

elde edilir. Bu son e³itlik 5.1.17' de yerine yaz�l�p gerekli düzenlemeler yap�l�rsa,

(λ− λ)u(1)u(1)− δγ (λ− λ)

∫ 0

−1

uudx = (λ− λ)

∫ 1

0

uudx

(λ− λ)

[
δγ

∫ 0

−1

uudx +

∫ 1

0

uudx + u(1)u(1)

]
= 0

esitli§i bulunur. δγ > 0 ve u özfonksiyonu s�f�rdan farkl� oldu§undan dolay� parentez
içindeki ifade s�f�rdan farkl�d�r. O halde sonuncu e³itlikten

λ = λ

elde edilir. �spat bitti.
Not Bundan sonra her yerde δγ > 0 oldu§unu kabul edece§iz.

Teorem 5.1.2. 5.1.1 − 5.1.5 s�n�r-de§er-geçi³ probleminin iki farkl� λm ve λn

özde§erlerine uygun özfonksiyonlar� um ve un olsun. Bu durumda

δγ

∫ 0

−1

um(x)un(x)dx +

∫ 1

0

um(x)un(x)dx + um(1)un(1) = 0 (5.1.19)

e³itli§i sa§lan�r.
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�spat: um ve un s�ras�yla λm ve λn özde§erlerine uygun özfonksiyonlar oldu§undan

−u
′′
m + q(x)um = λmum (5.1.20)

−u
′′
n + q(x)un = λnun (5.1.21)

e³itlikleri sa§lan�r. 5.1.20 e³itli§i un ve 5.1.21 e³itli§i um ile çarp�l�p taraf tarafa
ç�kar�l�rsa

umu
′′
n − u

′′
mun = (λm − λn)umun (5.1.22)

elde edilir. Bu son e³itlik ilk olarak −1' den 0' a integrallenirse,

∫ 0

−1

(umu
′
n − u

′
mun)

′
dx = (λm − λn)

∫ 0

−1

umundx

(umu
′
n − u

′
mun)|0−1 = (λm − λn)

∫ 0

−1

umundx

=⇒ um(−0)u
′
n(−0)− u

′
m(−0)un(−0) − um(−1)u

′
n(−1) + u

′
m(−1)un(−1)

= (λm − λn)

∫ 0

−1

umundx (5.1.23)

elde edilir. Problemimizde verilmi³ olan 5.1.2 s�n�r ³art� um ve un özfonksiyonlar� için
de geçerli oldu§undan,

um(−1) = 0 ve um(−1) = 0

e³itlikleri sa§lan�r. Bu de§erler 5.1.23' te yerine yaz�l�rsa,

um(−0)u
′
n(−0)− u

′
m(−0)un(−0) = (λm − λn)

∫ 0

−1

umundx (5.1.24)

elde edilir. Ayn� ³ekilde 5.1.22 e³itli§i 0' dan 1' e integrallenip

u
′
m(1) = λmum(1) ve u

′
n(1) = λnun(1)

s�n�r ³artlar� uygulan�rsa,

(λn − λm)um(1)un(1) − [um(+0)u
′
n(+0)− u

′
m(+0)un(+0)]

= (λm − λn)

∫ 1

0

umundx (5.1.25)



27

e³itli§i elde edilir. Yine 5.1.3− 5.1.4 geçi³ ³artlar� kullan�larak

um(−0) =
1

δ
um(+0)

u
′
m(−0) =

1

γ
u
′
m(+0) (5.1.26)

un(−0) =
1

δ
un(+0)

u
′
n(−0) =

1

γ
u
′
n(+0)

e³itlikleri yaz�labilir . Bu ifadeler 5.1.24' de yerine yaz�l�rsa

[um(+0)u
′
n(+0)− u

′
m(+0)un(+0)] = (λm − λn) δγ

∫ 0

−1

umundx

elde edilir. Elde etti§imiz bu son e³itlik 5.1.25' te yerine yaz�l�p gerekli düzenlemeler
yap�l�rsa,

(λm − λn)

[
δγ

∫ 0

−1

umundx +

∫ 1

0

umundx + um(1)un(1)

]
= 0

elde edilir. λm 6= λn oldu§undan dolay�,

δγ

∫ 0

−1

umundx +

∫ 1

0

umundx + um(1)un(1) = 0

bulunur.

Not: Bu teorem ve klasik Sturm-Liouville teorisindeki uygun teorem dikkate al�n�rsa,
problemimize özgü olan yeni bir ortogonallik kavram� tan�mlamam�z gerekti§i kolayca
anla³�labilir. O halde 5.1.19 e³itli§ini sa§layan un ve um özfonksiyonlar�na ortogonaldir
dememiz gerekir. ileride problemimize özgü olarak kuraca§�m�zHilbert uzay� ve ortagonellik
kavram� tan�mlanacakt�r.
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5.2 Verilmi³ Problemle �lgili Baz� Yard�mc� Ba³lang�ç-De§er Problemlerinin Temel
Çözümleri Ve bu Temel Çözümlerle �lgili Önermeler

5.2.1 Baz� Yard�mc� Ba³lang�ç De§er Problemleri

Bu bölümde ara³t�rd�§�m�z 5.1.1 - 5.1.5 s�n�r-de§er-geçi³ problemi ile yak�ndan ilgili
olan ve sadece [−1, 0] veya [0, 1] alt aral�klar�nda (esas [-1,1] aral�§�n�n alt aral�klar�nda)
verilmi³ baz� yard�mc� ba³lang�ç-de§er problemlerinin çözümlerinin mevcut oldu§u ve bu
çözümlerin λ kompleks özde§er parametresine göre bütün kompleks düzlemde analitik
(tam fonksiyon) oldu§u ispat edilecektir. Daha sonra bu çözümlerden yararlanarak
5.1.1 denkleminin 5.1.1 - 5.1.5 s�n�r-de§er-geçi³ problemi için temel olacak çözümleri
tan�mlanacakt�r.

Teorem 5.2.1. Her λ ∈ C için

−u
′′
(x) + q(x)u(x) = λu(x), x ∈ [−1, 0] (5.2.1)

u(−1) = 0 (5.2.2)

u′(−1) = −1 (5.2.3)

e³itlikleri ile tan�ml� ba³lang�ç-de§er probleminin bir tek Φ1(x, λ) çözümü bulunur
ve bu çözüm her bir x ∈ [−1, 0] de§eri için λ de§i³kenine göre bütün kompleks
düzlemde analitiktir. Yani her x ∈ [−1, 0] için λ parametresinin tam fanksiyonudur
(Titchmarsh,1962).

Teorem 5.2.2. Her λ ∈ C için

−u
′′
(x) + q(x)u(x) = λu(x), x ∈ [0, 1] (5.2.4)

u(0) = δΦ1(0, λ) (5.2.5)

u′(0) = γ Φ
′
1(0, λ) (5.2.6)
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e³itlikleri ile tan�ml� ba³lang�ç-de§er probleminin bir tek Φ2(x, λ) çözümü bulunur ve
bu çözüm her bir x ∈ [0, 1] de§eri için λ de§i³kenine göre bütün kompleks düzlemde
analitiktir (yani λ de§i³keninin tam fonksiyonudur).

�spat: Öncelikle
−u

′′
(x) + q(x)u(x) = λu(x)

denklemini
u
′′
(x) = (q(x)− λ)u(x)

biçiminde yazal�m. Bu ifade ard arda iki kere integrallenirse,

u′(x) =

∫ x

0

(q(t)− λ)u(t)dt + c0(λ), x ∈ [0, 1] (5.2.7)

u(x) =

∫ x

0

ds

∫ s

0

(q(t)− λ)u(t)dt + c0(λ)x + c1(λ), x ∈ [0, 1] (5.2.8)

bulunur. Bu son ifadedeki integral s�ras� de§i³tirilir, gerekli i³lemler yap�l�rsa,

u(x) =

∫ x

0

(x− t)(q(t)− λ)u(t)dt + c0(λ)x + c1(λ) (5.2.9)

e³itli§i elde edilir. c0(λ) ve c1(λ) ifadelerini elde etmek için 5.2.5 - 5.2.6 ba³lang�ç
³artlar�n� 5.2.7 ve 5.2.9' da yerine koyarsak

u(0) = c1(λ) = δΦ1(0, λ)

u′(0) = c0(λ) = γΦ
′
1(0, λ)

bulunur. c0(λ) ve c1(λ) de§erleri 5.2.9' da yerlerine yaz�l�rsa

u(x) =

∫ x

0

(x− t)(q(t)− λ)u(t)dt + γΦ
′
1(0, λ)x + δΦ1(0, λ) (5.2.10)

elde edilir. 5.2.10 integral denklemi 5.2.4−5.2.6 ba³lang�ç-de§er problemi ile e³de§erdir.
Φ2(x, λ)' n�n 5.2.4 − 5.2.6 ba³lang�ç-de§er probleminin bir tek çözümü oldu§u ve
∀ x ∈ [0, 1] için λ ∈ C kompleks de§i³keninin tam fonksiyonu oldu§unu ispatlamak
için yani Φ2(x, λ) fonksiyonuna yak�nsayan fonksiyon dizisinin in³a edilmesi için ard�³�k
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yakla³�mlar metodundan yararlan�lacakt�r.

u0(x, λ) = γΦ
′
1(0, λ)x + δΦ1(0, λ) (5.2.11)

un(x, λ) =

∫ x

0

(x− t)(q(t)− λ)un−1(t)dt + u0(x, λ) n = 1, 2, ... (5.2.12)

biçiminde tan�mlanm�³ {un(x, λ)} fonksiyonlar dizisini olu³tural�m. Budiziyi kullanarak

u0(x, λ) +
∞∑

n=1

[un(x)− un−1(x)] (5.2.13)

serisi olu³turulur. N > 0 için, |λ| ≤ N oldu§unu kabul edelim. 0 ≤ x ≤ 1 için, q(x)

ve u(x) fonksiyonlar� sürekli olduklar�ndan ve de sonlu q(±0) limit de§erleri mevcut
oldu§undan |q(x)| ≤ M ve |u(x)| ≤ K olacak biçimde M > 0 ve K > 0 say�lar�
mevcuttur.
Bu durumda, |un(x)− un−1(x)| ifadesini gözönüne alal�m. n = 1 için,

|u1(x)− u0(x)| =

∣∣∣∣
∫ x

0

(x− t)(q(t)− λ)u0(t)dt + u0(x)− u0(x)

∣∣∣∣

≤
∫ x

0

|q(t)− λ| |u0(t)| |x− t|dt

≤
∫ x

0

(|q(t)|+ |λ|) |u0(t)| |x− t|dt

≤
∫ x

0

(N + M)K(x− t)dt = (N + M)K

∫ x

0

(x− t)dt

= (N + M)K

[
xt− t2

2

]x

o

= (N + M)K

[
x2 − x2

2

]

=⇒ |u1(x)− u0(x)| ≤ (N + M)K
x2

2!
(5.2.14)
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bulunur. n = 2 için,

|u2(x)− u1(x)| =

∣∣∣∣
∫ x

0

(x− t)(q(t)− λ)u1(t)dt−
∫ x

0

(x− t)(q(t)− λ)u0(t)dt

∣∣∣∣

=

∣∣∣∣
∫ x

0

(q(t)− λ) (u1(t)− u0(t)) (x− t)dt

∣∣∣∣

≤
∫ x

0

|q(t)− λ| |u1(t)− u0(t)| |x− t|dt

≤
∫ x

0

(|q(t)|+ |λ|) (N + M)K
t2

2
(x− t)dt

≤ 1

2

∫ x

0

(N + M)2Kt2(x− t)dt

=
(N + M)2K

2

∫ x

0

[
t2x− t3

]
dt

=
1

2
(N + M)2K

x4

12

=⇒ |u2(x)− u1(x)| ≤ (N + M)2K
x4

4!
(5.2.15)

bulunur. Sonuç itibariyle n > 0 için Tümevar�m yöntemini kullanarak,

|un(x)− un−1(x)| ≤ (N + M)n K
x2n

(2n)!
(5.2.16)

e³itsizli§i kolayca bulunabilir.
x ∈ [0, 1] oldu§undan 0 ≤ x2n ≤ 1 ve buna ba§l� olarak,

|un(x)− un−1(x)| ≤ (N + M)n K

(2n)!
(5.2.17)

elde edilir. ∞∑
n=1

(N + M)n K

(2n)!

say�sal serisi yak�nsak oldu§undan, 5.2.13 serisi x ∈ [0, 1] ve N > 0 için, |λ| ≤ N

³artlar�yla birlikte mutlak ve düzgün yak�nsakt�r. Di§er taraftan 5.2.13 serisi N > 0 ve
|λ| ≤ N ile tan�mlanm�³ bölgede analitik oldu§u için, Φ2(x, λ) k�smi toplamlar diziside
analitiktir. Di§er taraftan serinin yak�nsak oldu§u durumda {un(x, λ)} fonksiyonlar
dizisinin limiti, serinin k�smi toplamlar dizisinin limiti oldu§undan 5.2.13' de n −→ ∞
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için limit almakla,

Φ2(x, λ) = u0(x, λ) +
∞∑

n=1

[un(x)− un−1(x)]

=

∫ x

0

(x− t)(q(t)− λ)Φ2(t, λ))dt + γΦ
′
1(0, λ)x + δΦ1(0, λ)(5.2.18)

e³itli§i elde edilir. Ayr�ca 5.2.12 ile tan�mlanan {un(x, λ)} fonksiyonlar dizisinin

u
′
n(x)− u

′
n−1(x) =

∫ x

0

(q(t)− λ){un−1(t)− un−2(t)}

u
′′
n(x)− u

′′
n−1(x) = (q(x)− λ){un−1(x)− un−2(x)}

birinci ve ikinci türevleri mevcut oldu§u için 5.2.18 serisi x de§i³kenine göre terim terim
diferansiyellenebilir ve de

Φ
′′
2(x, λ) =

∞∑
n=1

[u
′′
n(x)− u

′′
n−1(x)]

=
∞∑

n=1

{q(x)− λ}{un−1(x)− un−2(x)}

= {q(x)− λ} {u0(x) +
∞∑

n=2

{un−1(x)− un−2(x)}}

=⇒ Φ
′′
2(x, λ) = {q(x)− λ}Φ2(x, λ) (5.2.19)

e³itli§i sa§lan�r. Bu sonuç Φ2(x, λ)' n�n ayn� zamanda 5.2.1 denkleminin bir çözümü
oldu§unu gösterir. �spat bitti.

Sonuç 5.2.1. ∀λ ∈ C

Φ(x, λ) =





Φ1(x, λ), x ∈ [−1, 0)

Φ2(x, λ), x ∈ (0, 1]

ile tan�ml� Φ(x, λ) fonksiyonu,

−u
′′

+ q(x)u = λu, x ∈ [−1, 0) ∪ (0, 1] (5.2.20)
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diferansiyel denkleminin birinci s�n�r ³art� olan,

u(−1) = 0 (5.2.21)

³art�n� ve de
u(+0) = δu(−0) (5.2.22)

u′(+0) = γu′(−0) (5.2.23)

geçi³ ³artlar�n�n her ikisini sa§lar.

�spat: Her λ ∈ C teorem 5.2.1' den dolay�, x ∈ [−1, 0) için

Φ(x, λ) = Φ1(x, λ)

oldu§undan ve de 5.2.2 s�n�r ³art� sa§land�§�ndan dolay�,

Φ(−1, λ) = Φ1(−1, λ) = 0

bulunur. Böylece Φ(x, λ) fonksiyonu 5.2.21 s�n�r ³art�n� sa§lam�³ olur. �imdi geçi³
³artlar�n� sa§lad�§�n� gösterelim. 5.2.5 ba³lang�ç ³art�ndan dolay�,

Φ2(0, λ) = δΦ1(0, λ)

oldu§u aç�kt�r. Bu yüzden de

Φ2(0, λ)− δΦ1(0, λ) = Φ2(+0, λ)− δΦ1(−0, λ) = Φ(+0, λ)− δΦ(−0, λ) = 0

=⇒ Φ(+0, λ) = δΦ(−0, λ)

elde edilir. Yine ayn� ³ekilde 5.2.4 − 5.2.6 ba³lang�ç-de§er probleminin 5.2.6 ³art�ndan
dolay�

Φ
′
2(0, λ) = γΦ

′
1(0, λ)

olup buradan,
Φ
′
(+0, λ) = Φ

′
2(0, λ) = γΦ

′
1(0, λ) = γΦ

′
(−0, λ)



34

yaz�l�r. Yani
Φ
′
(+0, λ) = γΦ

′
(−0, λ)

e³itli§i elde edilir.
Böylece Φ(x, λ) fonksiyonunun 5.2.20 denklemini, 5.2.21 s�n�r ³art�n� ve de 5.2.22−
5.2.23 geçi³ ³artlar�n�n her ikisini de sa§lad�§� ispatlanm�³ olur.

Teorem 5.2.3. Her λ ∈ C için

−u
′′
(x) + q(x)u(x) = λu(x), x ∈ [0, 1] (5.2.24)

u(1) = 1 (5.2.25)

u′(1) = λ (5.2.26)

e³itlikleri ile tan�ml� ba³lang�ç-de§er probleminin bir tek χ2(x, λ) çözümü bulunur
ve bu çözüm her bir x ∈ [0, 1] de§eri için λ de§i³kenin tam fonksiyonudur. Yani
∀ x ∈ [0, 1] için λ kompleks parametresine göre tüm kompleks düzlemde analitik
fonksiyondur (Titchmarsh,1962).

Teorem 5.2.4. Her λ ∈ C için

−u
′′
(x) + q(x)u(x) = λu(x), x ∈ [−1, 0] (5.2.27)

u(0) =
1

δ
χ2(0, λ) (5.2.28)

u′(0) =
1

γ
χ
′
2(0, λ) (5.2.29)

ba³lang�ç-de§er probleminin bir tek χ1(x, λ) çözümü bulunur ve bu çözüm her bir
x ∈ [−1, 0] de§eri için λ de§i³keninin tam fonksiyonudur. Yani ∀x ∈ [0, 1] için λ

kompleks parametresine göre tüm kompleks düzlemde analitik fonksiyondur.

�spat: 5.2.27 denklemi için Teorem 5.2.2' de ki yöntem kullan�larak 5.2.9 integral
denkleminin ayn�s� yaz�labilir. Yani

u(x) =

∫ 0

x

(t− x)(q(t)− λ)u(t)dt + c0(λ)x + c1(λ) (5.2.30)
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e³itli§i yaz�l�r. �imdi c0 ve c1 ifadelerini elde etmek için 5.2.28 − 5.2.29 ba³lang�ç
³artlar�n� uygulayal�m.Bu taktirde

u(0) = c1(λ) =
1

δ
χ2(0, λ)

olur. 5.2.30 e³itli§i x' e göre türevlenirse

u′(x) =

∫ 0

x

(q(t)− λ)u(t)dt + c0(λ) (5.2.31)

elde edilir. Bu son denklemde 5.4.29 ba³lang�ç ³art� uygulan�rsa,

u′(0) = co(λ) =
1

γ
χ
′
2(0, λ)

bulunur. c0(λ) ve c1(λ) de§erleri 5.2.30' integral denkleminde yerlerine yaz�l�rsa,

u(x) =

∫ 0

x

(t− x)(q(t)− λ)u(t)dt +
1

δ
χ2(0, λ) +

1

γ
χ
′
2(0, λ)x (5.2.32)

elde edilir. 5.2.32 integral denklemi 5.2.27 − 5.2.29 ba³lang�ç-de§er problemi ile
e³de§erdir. χ1(x, λ)' n�n 5.2.27 − 5.2.29 ba³lang�ç-de§er probleminin bir tek çözümü
oldu§u ve ∀ x ∈ [−1, 0] için λ ∈ C kompleks de§i³keninin tam fonksiyonu oldu§unu
ispatlamak için, yani χ1(x, λ) fonksiyonuna yak�nsayan fonksiyon dizisinin in³a edilmesi
için ard�³�k yakla³�mlar metodundan yararlan�lacakt�r. Teorem 5.2.2' nin ispat�na benzer
³ekilde,

u0(x, λ) =
1

δ
χ2(0, λ) +

1

γ
χ
′
2(0, λ)x (5.2.33)

un(x, λ) =

∫ 0

x

(t− x)(q(t)− λ)un−1(t)dt + u0(x, λ) (5.2.34)

biçiminde {un(x, λ)} fonksiyonlar dizisi olu³turulur ve bu diziyi kullanarak,

u0(x, λ) +
∞∑

n=1

[un(x)− un−1(x)] (5.2.35)

serisi olu³turulabilir. N > 0 için |λ| ≤ N ,

M := max
x∈[−1,0]

|q(x)| , K := max
x∈[−1,0]

|u0(x, λ)|
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olmak üzere 5.2.33− 5.2.34 e³itliklerinin mutlak de§erleri incelenecektir. Bu durumda
yine Teorem 5.2.2' nin ispat�yla benzer biçimde,

|u1(x)− u0(x)| ≤ (N + M) K
x2

2!

|u2(x)− u1(x)| ≤ (N + M)2 K
x4

4!

e³itsizlikleri ve n ≥ 2 için tümevar�m yöntemi kullan�larak,

|un(x)− un−1(x)| ≤ (N + M)n K
x2n

(2n)!
(5.2.36)

e³itsizlikleri elde edilir. x ∈ [−1, 0] oldu§undan 0 < x2n ≤ 1 olup bir önceki
e³itsizlikten,

|un(x)− un−1(x)| ≤ (N + M)n K

(2n)!
(5.2.37)

elde edilir. ∞∑
n=1

(N + M)n K

(2n)!

say�sal serisi yak�nsak oldu§undan 5.2.35 serisi x ∈ [−1, 0] ve N > 0 için, |λ| ≤ N

³artlar� dahilinde mutlak ve düzgün yak�nsakt�r. Ayr�ca 5.2.35 serisi N > 0 ve |λ| ≤ N

ile tan�mlanm�³ bölgede serinin her terimi analitik oldu§u için, χ1(x, λ) k�smi toplamlar
diziside analitiktir. Ayr�ca serinin yak�nsak oldu§u durumda {un(x, λ)} fonksiyonlar
dizisinin limiti ile serinin k�smi toplamlar dizisi ayn� oldu§undan 5.2.34' de n −→ ∞
için limit almakla,

χ1(x, λ) =

∫ 0

x

(t− x)(q(t)− λ)χ1(t, λ))dt +
1

δ
χ2(0, λ) +

1

γ
χ
′
2(0, λ)x (5.2.38)

e³itli§i elde edilir. Ayr�ca,

χ1(x, λ) = u0(x, λ) +
∞∑

n=1

[un(x)− un−1(x)] (5.2.39)
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ifadesi x' e göre düzgün yak�nsak oldu§u için ve de n ≥ 2 için 5.2.33 − 5.2.34 ile
tan�mlanan {un(x, λ)} fonksiyonlar dizisinin,

u
′
n(x)− u

′
n−1(x) =

∫ 0

x

(q(t)− λ){un−1(t)− un−2(t)}dt

u
′′
n(x)− u

′′
n−1(x) = (q(x)− λ){un−1(x)− un−2(x)}

birinci ve ikinci türevleri mevcut oldu§undan 5.2.35 serisi x de§i³kenine göre terim
terim diferansiyellenebilir ve de

χ
′′
1(x, λ) =

∞∑
n=1

[u
′′
n(x)− u

′′
n−1(x)]

=
∞∑

n=1

{q(x)− λ}{un−1(x)− un−2(x)}

= {q(x)− λ} {u0(x) +
∞∑

n=2

{un−1(x)− un−2(x)}}

=⇒ χ
′′
1(x, λ) = {q(x)− λ}χ1(x, λ) (5.2.40)

e³itli§i sa§lan�r. Bu sonuç χ1(x, λ)' n�n ayn� zamanda 5.2.27 denkleminin bir çözümü
oldu§unu gösterir. Buda ispat� tamamlar.

Sonuç 5.4.2. ∀λ ∈ C için

χ(x, λ) =





χ1(x, λ), x ∈ [−1, 0)

χ2(x, λ), x ∈ (0, 1]

ile tan�ml� χ(x, λ) fonksiyonu

−u
′′

+ q(x)u = λu, x ∈ [−1, 0) ∪ (0, 1] (5.2.41)

diferansiyel denklemini,
u′(1) = λu(1) (5.2.42)

ikinci s�n�r ³art�n� ve de
u(+0) = δu(−0) (5.2.43)

u′(+0) = γu′(−0) (5.2.44)
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geçi³ ³artlar�n� sa§lar.

�spat: Sonuç 5.4.1 ile benzer ³ekilde yap�l�r.

5.2.2 Temel Çözümler ile E³de§er Olan �ntegral Denklemler

Önceki bölümdeΦi(x, λ) ve χi(x, λ) (i = 1, 2) fonksiyonlar�n�nλ kompleks parametresine
göre bütün kompleks düzlemde analitik fonksiyon olduklar� ispatlanm�³t�. Bu bölümde
yard�mc� ba³lang�ç problemlerinin e³de§er olduklar� integral ve integral-diferansiyel
denklemler bulunacak ve ilerde her yerde λ = s2 gösteriminden yararlan�lacakt�r.

Teorem 5.2.5. ∀ x ∈ C için, λ = s2 olmak üzere 5.2.1− 5.2.3 ba³lang�ç de§er problemi

u(x) = −1

s
sin s(x + 1) +

1

s

∫ x

−1

sin s(x− y)u(y)q(y)dy (5.2.45)

u′(x) = − cos s(x + 1) +

∫ x

−1

cos s(x− y)u(y)q(y)dy (5.2.46)

integral denklemleriyle e³de§erdir.

�spat: 5.2.1 denklemi
−u

′′
+ λu = q(x)u (5.2.47)

³eklinde yaz�labilir. Bu denklemi çözmek için denklem homojen lineer diferansiyel
denklem gibi kabul edilerek,

u
′′

+ λu = 0

denkleminin çözümlerinden hareket edilir. Son yazd�§�m�z denklemin genel çözümü,

u(x) = c0(x) cos
√

λx + c1(x) sin
√

λx

u(x) = c0(x) cos sx + c1(x) sin sx (5.2.48)

³eklinde yaz�labilir. Burada c0(x) = c0(x, λ) ve c1(x) = c1(x, λ) yeni bilinmeyen
fonksiyonlard�r. Bu yeni bilinmeyen fonksiyonlar� bulmak için iki tane denklemkurulacakt�r.
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Bu denklemlerden bir tanesin de c0(x), c1(x) fonksiyonlar�n� öyle seçilecek ki

c
′
0(x) cos sx + c

′
1(x) sin sx = 0 (5.2.49)

e³itli§i sa§lans�n. 5.2.48 e³itli§inin her iki yan�nda x' e göre türevi al�n�rsa,

u′(x) = −sc0(x) sin sx− sc
′
0(x) cos sx + c

′
1(x) sin sx + sc1(x) cos sx

elde edilir. 5.2.49 e³itli§i bu son buldu§umuz ifadede yerine yaz�l�rsa,

u′(x) = −sc0(x) sin sx + sc1(x) cos sx (5.2.50)

elde edilir. Tekrar x' e göre türev al�n�rsa,

u
′′
(x) = −sc

′
0(x) sin sx− s2c0(x) cos sx + sc

′
1(x) cos sx− s2c1(x) sin sx (5.2.51)

e³itli§i bulunur. 5.2.50 ve 5.2.51 e³itlikleri 5.2.47' de yerine yaz�l�rsa,

−sc
′
0(x) sin sx + sc

′
1(x) cos sx = q(x)u (5.2.52)

e³itli§i elde edilir. �imdi 5.2.49 ve 5.2.52 e³itliklerini bir arada dü³ünerek, c
′
0(x) ve

c
′
0(x) de§i³kenlerine göre lineer denklem sistemi gibi çözersek s 6= 0 için,

c
′
0(x) =

∣∣∣∣∣∣
0 sin sx

q(x)u s cos sx

∣∣∣∣∣∣
∣∣∣∣∣∣

cos sx sin sx

−s sin sx s cos sx

∣∣∣∣∣∣

=
− sin sx q(x)u

s
(5.2.53)

bulunur. Bu e³itlik integrallenirse,

c0(x) = −1

s

∫ x

−1

sin sy q(y) u(y)dy + c0(λ) (5.2.54)
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elde edilir. Benzer ³ekilde,
c
′
1(x) =

cos sx q(x)u

s
(5.2.55)

bulunur. Son e³itlik integrallenirse,

c1(x) =
1

s

∫ x

−1

cos sy q(y) u(y)dy + c1(λ) (5.2.56)

bulunur. Burada c0(λ) ve c1(λ) key� sabitlerdir. Buldu§umuz 5.2.54 ve 5.2.56

ifadeleri 5.2.48' de yaz�l�p gerekli düzenlemeler yap�l�rsa,

u(x) = − 1

s
cos sx

∫ x

−1

sin sy q(y) u(y)dy + c0(λ) cos sx

+
1

s
sin sx

∫ x

−1

cos sy q(y) u(y)dy + c1(λ) sin sx

elde edilir. Son ifade düzenlenirse,

u(x, λ) = −1

s

∫ x

−1

sin s(x− y) q(y) u(y)dy + c0(λ) cos sx

+ c1(λ) sin sx (5.2.57)

bulunur. Benzer yöntemle 5.2.54 ve 5.2.56 e³itlikleri 5.2.50' de yerlerine yaz�l�p
gerekli düzenlemeler yap�l�rsa,

u′(x) =

∫ x

−1

cos s(x− y) q(y) u(y)dy − sc0(λ) sin sx

+ sc1(λ) cos sx (5.2.58)

bulunur. Bu durumda 5.2.48 denklemi 5.2.57 integral denklemine indirgenmi³ olur. O
halde 5.2.57 ve 5.2.58 ifadeleri 5.2.2− 5.2.3 ba³lang�ç ³artlar�n� sa§lar. Bu ba³lang�ç
³artlar� uygulan�rsa,

u(−1) = c0(λ) cos s− c1(λ) sin s = 0

u′(−1) = sc0(λ) sin s + sc1(λ) cos s = −1
(5.2.59)

lineer denklem sistemi bulunur. c1(λ) ve c2(λ) sabitlerini bulmak için bu lineer
denklem sistemini çözelim. Bunun için c

′
1(x, λ) ve c

′
2(x, λ) fonksiyonlar�n�n çözümleri
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bulunurken yap�lan i³lemler tekrarlan�l�rsa,

c0(λ) = −1

s
sin s (5.2.60)

c1(λ) = −1

s
cos s (5.2.61)

elde edilir. Bu c0 ve c1 de§erleri 5.3.13 integral denkleminde yerine yaz�l�rsa ve
düzenlenirse,

u(x) = −1

s
sin s(x + 1) +

1

s

∫ x

−1

sin s(x− y) u(y) q(y)dy (5.2.62)

integral denklemi elde edilir.
Böylece 5.2.1− 5.2.3 ile verilen ba³lang�ç de§er problemi 5.2.62 integral denklemine
indirgenmi³ olur.
Ayn� ³ekilde c0 ve c1 de§erleri 5.2.58 integral denkleminde yerine yaz�l�p gerekli
düzenlemeler yap�l�rsa 5.2.46 e³itli§inin de sa§land�§� kolayca gösterilebilir.

Sonuç 5.2.3. Φ1(x, λ) fonksiyonu a³a§�daki integral ve integral-diferansiyel denklemleri
sa§lar.

Φ1(x, λ) = −1

s
sin s(x + 1) +

1

s

∫ x

−1

sin s(x− y)Φ1(y, λ)q(y)dy (5.2.63)

Φ
′
1(x, λ) = − cos s(x + 1) +

∫ x

−1

cos s(x− y)Φ1(y, λ)q(y)dy (5.2.64)

�spat: Önce 5.2.63 e³itli§ini ispat edelim. Φ1(x, λ) fonksiyonu [−1, 0] aral�§�nda
5.2.1 denklemini sa§lad�§� için,

q(y)Φ1(y, λ) = Φ
′′
1(y, λ) + λΦ1(y, λ)

e³itli§i sa§lan�r. Buradan,
∫ x

−1

sin s(x− y)Φ1(y, λ)dy =

∫ x

−1

sin s(x− y)(Φ
′′
1(y, λ) + λΦ1(y, λ))dy

= λ

∫ x

−1

sin s(x− y)Φ1(y, λ)dy

+

∫ x

−1

sin s(x− y)Φ
′′
1(y, λ)dy (5.2.65)
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e³itlikleri bulunur. E³itli§in sa§ taraf�ndaki ikinci integrale iki kere ard arda k�smi
integrasyon uygulan�rsa ve 5.2.1− 5.2.3 probleminin

Φ1(−1, λ) = 0 ve Φ
′
1(−1, λ) = −1

ba³lang�ç de§erlerinden yararlan�l�p gerekli düzenlemeler yap�l�rsa,
∫ x

−1

sin s(x− y)Φ
′′
1(y, λ)q(y)dy = sin s(x− y)Φ

′
1(y, λ)|x−1 + s

∫ x

−1

cos s(x− y)Φ
′
1(y, λ)dy

= − sin s(x + 1)Φ
′
1(−1, λ) + s cos s(x− y)Φ1(y, λ)|x−1

− s2

∫ x

−1

sin s(x− y)Φ1(y, λ)dy

= sin s(x + 1) + sΦ1(x, λ)

− s2

∫ x

−1

sin s(x− y)Φ1(y, λ)dy

son e³itlik 5.2.65' de yerine yaz�l�rsa,
∫ x

−1

sin s(x− y)Φ1(y, λ)q(y)dy = sin s(x + 1) + sΦ1(x, λ)

elde edilir. Buradan gerekli düzenlemeler yap�l�rsa,

Φ1(x, λ) = −1

s
sin s(x + 1) +

1

s

∫ x

−1

sin s(x− y)Φ1(y, λ)q(y)dy (5.2.66)

bulunur. Böylece 5.2.63 e³itli§i ispatlanm�³ olur. Bu e³itli§in her iki taraf�nda x' e göre
türev al�n�rsa 5.2.64 e³itli§inin de sa§land�§� kolayca ispatlanabilir.

Teorem 5.2.6. ∀ x ∈ C için, λ = s2 olmak üzere 5.2.4−5.2.6 ba³lang�ç de§er problemi,

u(x, λ) = δΦ1(0, λ) cos sx +
1

s
γ Φ

′
1(0, λ) sin sx

+
1

s

∫ x

0

sin s(x− y)q(y)u(y, λ)dy (5.2.67)

u′(x, λ) = −sδΦ1(0, λ) sin sx + γ Φ
′
1(0, λ) cos sx

+

∫ x

0

cos s(x− y)q(y)u(y, λ)dy (5.2.68)

integral denklemleriyle e³de§erdir.
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�spat: Teorem 5.2.5' in ispat�na benzer ³ekilde yap�l�r.

Sonuç 5.2.4. Φ2(x, λ) fonksiyonu a³a§�daki integral ve integral-diferansiyel denklemleri
sa§lar.

Φ2(x, λ) = δΦ1(0, λ) cos sx +
1

s
γ Φ

′
1(0, λ) sin sx

+
1

s

∫ x

0

sin s(x− y)q(y)Φ2(y, λ)dy (5.2.69)

Φ
′
2(x, λ) = −sδΦ1(0, λ) sin sx + γ Φ

′
1(0, λ) cos sx

+

∫ x

0

cos s(x− y)q(y)Φ2(y, λ)dy (5.2.70)

�spat: Sonuç 5.2.3' in ispat�na benzer ³ekilde yap�l�r.

Teorem 5.2.7. ∀ x ∈ C için, λ = s2 olmak üzere 5.2.24 − 5.2.26 ba³lang�ç de§er
problemi,

u(x, λ) = cos s(x− 1) + s sin s(x− 1)

+
1

s

∫ 1

x

sin s(x− y)q(y)u(y, λ)dy (5.2.71)

u′(x, λ) = −s sin s(x− 1) + s2 cos s(x− 1)

+

∫ 1

x

cos s(x− y)q(y)u(y, λ)dy (5.2.72)

integral denklemleriyle e³de§erdir.

�spat: Teorem 5.2.5' in ispat�na benzer ³ekilde yap�l�r.
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Sonuç 5.2.5. χ2(x, λ) fonksiyonu a³a§�daki integral ve integral-diferansiyel denklemleri
sa§lar.

χ2(x, λ) = cos s(x− 1) + s sin s(x− 1)

+
1

s

∫ 1

x

sin s(x− y)q(y)χ2(y, λ)dy (5.2.73)

χ
′
2(x, λ) = −s sin s(x− 1) + s2 cos s(x− 1)

+

∫ 1

x

cos s(x− y)q(y)χ2(y, λ)dy (5.2.74)

�spat: Sonuç 5.2.3' ün ispat�na benzer ³ekilde yap�l�r.

Teorem 5.2.8. ∀ x ∈ C için, λ = s2 olmak üzere 5.2.27 − 5.2.29 ba³lang�ç de§er
problemi,

u(x, λ) =
1

δ
χ2(0, λ) cos sx +

1

sγ
χ
′
2(0, λ) sin sx

+
1

s

∫ 0

x

sin s(x− y)q(y)u(y, λ)dy (5.2.75)

u′(x, λ) = −s
1

δ
χ2(0, λ) sin sx +

1

γ
χ
′
2(0, λ) cos sx

+

∫ 0

x

cos s(x− y)q(y)u(y, λ)dy (5.2.76)

integral denkelemleriyle e³de§erdir.

�spat: Teorem 5.2.5' in ispat�na benzer ³ekilde yap�l�r.

Sonuç 5.2.6. χ1(x, λ) fonksiyonu a³a§�daki integral ve integral-diferansiyel denklemleri
sa§lar.

χ1(x, λ) =
1

δ
χ2(0, λ) cos sx +

1

sγ
χ
′
2(0, λ) sin sx

+
1

s

∫ 0

x

sin s(x− y)q(y)χ1(x, λ)dy (5.2.77)

χ
′
1(x, λ) = −s

1

δ
χ2(0, λ) sin sx +

1

γ
χ
′
2(0, λ) cos sx

+

∫ 0

x

cos s(x− y)q(y)χ1(y, λ)dy (5.2.78)



45

�spat: Sonuç 5.2.3' ün ispat�na benzer ³ekilde yap�l�r.

5.3 Φ(x, λ) ve χ(x, λ) Temel Çözümlerinin Asimptotik Davran�³lar�

Bu kesimde Φi(x, λ) ve χi(x, λ) (i = 1, 2) temel çözümlerinin önceki bölümde
ispatlad�§�m�z e³de§er oldu§u integral denklemleri kullanarak , bunlar�n λ parametresine
göre |λ| −→ ∞ için asimptotik formülleri elde edilecektir.

Teorem 5.3.1. λ = s2, s = σ + it, Ims = t olmak üzere, Φ1(x, λ) fonksiyonu için
−1 ≤ x ≤ 0 aral�§�nda

Φ1(x, λ) = O

(
1

|s| e|t|(x+1)

)
, |λ| −→ ∞ (5.3.1)

Φ
′
1(x, λ) = O

(
e|t|(x+1)

)
, |λ| −→ ∞ (5.3.2)

Φ1(x, λ) = −1

s
sin s(x + 1) + O

(
1

|s|2 e|t|(x+1)

)
, |λ| −→ ∞ (5.3.3)

Φ
′
1(x, λ) = − cos s(x + 1) + O

(
1

|s| e|t|(x+1)

)
, |λ| −→ ∞ (5.3.4)

asimptotik e³itlikleri sa§lan�r.
�spat: ( Titcmarch (1962) Lemma 1.7(ii)).

Teorem 5.3.2. λ = s2, s = σ + it, Ims = t olmak üzere, Φ2(x, λ) fonksiyonu için
0 ≤ x ≤ 1 aral�§�nda a³a§�daki asimptotik e³itlikler sa§lan�r.

Φ2(x, λ) = O

(
1

|s| e|t|(x+1)

)
, |λ| −→ ∞ (5.3.5)

Φ
′
2(x, λ) = O

(
e|t|(x+1)

)
, |λ| −→ ∞ (5.3.6)

�spat:
F (x, λ) := e−|t|(x+1) Φ2(x, λ) (5.3.7)
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ile gösterrelim. Φ2(x, λ) için daha önce göstermi³ oldu§umuz sonuç 5.2.46' deki integral
denklemini üstteki e³itlikte yerine yazal�m.

F (x, λ) = e−|t|(x+1)

[
δΦ1(0, λ) cos sx +

1

s
γ Φ

′
1(0, λ) sin sx

+
1

s

∫ x

0

sin s(x− y)q(y)Φ2(y, λ)dy

]

F (x, λ) = δΦ1(0, λ) cos sxe−|t|(x+1) +
1

s
γ Φ

′
1(0, λ) sin sxe−|t|(x+1)

+
1

s

∫ x

0

sin s(x− y)q(y)Φ2(y, λ)e−|t|(x+1)dy (5.3.8)

5.3.1 ve 5.3.2 asimptotik e³itlikleri dikkate al�n�rsa,

Φ1(0, λ) = O

(
1

|s|e
|t|

)
=⇒ |Φ1(0, λ)| ≤ M1

1

|s| e|t|

Φ
′
1(0, λ) = O

(
e|t|

)
=⇒ |Φ′

1(0, λ)| ≤ M2 e|t|

bulunur. Bu son iki e³itsizlikte bulunan de§erler 5.3.8 e³itli§inde yerine yaz�l�rsa ve

| sin z| ≤ e|Imz| ve | cos z| ≤ e|Imz|

ifadelerinden yararlan�l�rsa,

|F (x, λ)| ≤ M1δ
1

|s|e
|t|e|t|xe−|t|(x+1) + M2γ

1

|s|e
|t|e|t|xe−|t|(x+1)

+
1

|s|
∫ x

0

| sin[s(x− y)]| |q(y)| |F (y, λ)|e|t|(y+1)e−|t|(x+1)dy

=
1

|s|
[
δM1 + γM2 +

∫ x

0

e|t|(x−y) |q(y)||F (y, λ)|e−|t|(x−y)dy
]

=
1

|s|
[
δM1 + γM2 +

∫ x

0

|q(y)||F (y, λ)|dy
]

(5.3.9)

elde edilir. 5.3.9 e³itsizli§inde,

F1 := max
x∈[0,1]

|F (x, λ)| , q1 := max
x∈[0,1]

∫ 1

0

|q(y)|dy
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ile tan�mlayal�m. Bu durumda,

|F (x, λ)| ≤ 1

|s|
[
δM1 + γM2 +

∫ x

0

|q(y)||F (y, λ)|dy
]

≤ 1

|s|
[
δM1 + γM2 + F1q1

]
(5.3.10)

M := δM1 + γM2 + F1q1

ile gösterirsek,

|F (x, λ)| ≤ 1

|s|M =⇒ |e−|t|(x+1) Φ2(x, λ)| ≤ 1

|s|M

=⇒ |Φ2(x, λ)| ≤ 1

|s|Me|t|(x+1)

Elde etti§imiz bu son e³itsizlikten,

Φ2(x, λ) = O

(
1

|s| e|t|(x+1)

)
, |λ| −→ ∞

asimptotik e³itli§i elde edilir. Böylece istenilen ilk asimptotik e³itli§in sa§land�§� gösterildi.
�imdi 5.3.6 asimptotik e³itli§ini ispatlayal�m. Daha önce,

Φ
′
2(x, λ) = −δsΦ1(0, λ) sin sx + γ Φ

′
1(0, λ) cos sx

+

∫ x

0

cos s(x− y)q(y)Φ2(y, λ)dy

oldu§u gösterilmi³ti. �imdi bu integral denklemini gözönüne alarak istenilen asimptotik
e³itli§in sa§land�§�n� gösterelim. Daha önceden bilindi§i gibi

Φ1(0, λ) = O

(
1

|s|e
|t|

)
=⇒ |Φ1(0, λ)| ≤ M1

1

|s| e|t|

Φ
′
1(0, λ) = O

(
e|t|

)
=⇒ |Φ′

1(0, λ)| ≤ M2 e|t|

idi. Bu ifadelerden yararlan�larak,

| − sδΦ1(0, λ) sin sx| ≤ M1δ|s| 1

|s|e
|t|e|t|x
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olup buradan,

−sδΦ1(0, λ) sin sx = O
(

e|t|(x+1)
)

(5.3.11)

asimptotik e³itli§i elde edilir. Ayn� ³ekilde,

|γΦ
′
1(0, λ) cos sx| ≤ M2γe|t|e|t|x

olup yine buradan asimptotik e³itlik tan�m gere§i,

γΦ
′
1(0, λ) cos sx = O

(
e|t|(x+1)

)
(5.3.12)

yaz�l�r.

Φ2(x, λ) = O

(
1

|s| e|t|(x+1)

)
, |λ| −→ ∞

asimptotik e³itli§i gözönüne al�n�rsa ve

q1 := max
x∈[0,1]

∫ 1

0

|q(y)|dy

ile tan�mlan�rsa, a³a§�daki integral denklem için,

|
∫ x

0

cos s(x− y)q(y)Φ2(y, λ)dy| ≤ 1

|s|
∫ x

0

|e|t|(x−y) |q(y)|e|t|(y+1)dy

≤ q1
1

|s| e|t|(x+1)

≤ M3e
|t|(x+1)

bulunur. Buradan,
∫ x

0

cos s(x− y)q(y)Φ2(y, λ)dy = O
(

e|t|(x+1)
)

(5.3.13)

yaz�l�r. 5.3.11 - 5.3.13 ifadeleri Φ′
2(x, λ) integral denkleminde yerine yaz�l�rsa,

Φ
′
2(x, λ) =

(
e|t|(x+1)

)

asimptotik e³itli§i elde edilir.
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Teorem 5.3.3. λ = s2, s = σ + it, Ims = t olmak üzere, Φ2(x, λ) fonksiyonu için
0 ≤ x ≤ 1 aral�§�nda

Φ2(x, λ) = −δ
1

s
sin s cos sx + γ

1

s
cos s sin sx

+ O

(
1

|s|2 e|t|(x+1)

)
, |λ| −→ ∞ (5.3.14)

Φ
′
2(x, λ) = δ sin s sin sx− γ cos s cos sx

+ O

(
1

|s| e|t|(x+1)

)
, |λ| −→ ∞ (5.3.15)

asimptotik e³itlikleri sa§lan�r.

�spat: Önce 5.3.14 asimptotik e³itli§ini ispatlayal�m. Bu ifadeyi ispatlamak için
Φ2(x, λ) için sonuç 5.2.4' de buldu§umuz

Φ2(x, λ) = δΦ1(0, λ) cos sx + γ
1

s
Φ
′
1(0, λ) sin sx

+
1

s

∫ x

0

sin s(x− y)q(y)Φ2(y, λ)dy

integral denkleminin sa§ taraf�ndaki terimlerin asimptotik e³itleri ayr� ayr� de§erlendirilecektir.
Teorem 5.3.1'deki 5.3.3 ve 5.3.4 e³itliklerinden,

Φ1(0, λ) = −1

s
sin s + O

(
1

|s|2 e|t|
)

, |λ| −→ ∞

Φ
′
1(0, λ) = − cos s + O

(
1

|s| e|t|
)

, |λ| −→ ∞

elde edilir. Buradan

Φ1(0, λ) cos sx = cos sx
[− 1

s
sin s + O

(
1

|s|2 e|t|
) ]

= −1

s
sin s cos sx + O

(
1

|s|2 e|t|
)

O
(

e|t|(x)
)

= −1

s
sin s cos sx + O

(
1

|s|2 e|t|(x+1)

)
(5.3.16)
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Φ
′
1(0, λ) sin sx = sin sx

[− cos s + O

(
1

|s| e|t|
) ]

= − cos ssinsx + O

(
1

|s| e|t|
)

O
(

e|t|(x)
)

= − cos s sin sx + O

(
1

|s| e|t|(x+1)

)
(5.3.17)

�imdi üstte Φ2(x, λ) için yazd�§�m�z integral denklemdeki integral ifade de§erlendirilecektir.
Φ2(x, λ) için daha önce buldu§umuz 5.3.5 asimptotik e³itli§i gere§i,

|Φ2(x, λ)| ≤ M
1

|s|e
|t|(x+1)

olacak ³ekilde x ve λ' dan ba§�ms�z M > 0 sabiti mevcuttur. Bu durumda,
∣∣∣∣
1

s

∫ x

0

sin s(x− y)q(y)Φ2(y, λ)dy

∣∣∣∣ ≤ 1

|s|2
∫ x

0

| sin s(x− y)| |q(y)| |Φ2(y, λ)|dy

≤ 1

|s|2
∫ x

0

e|t|(x−y)|q(y)|Me|t|(y+1)dy

≤ M
1

|s|2 e|t|(x+1)

∫ 1

0

|q(y)|dy

yaz�l�r. q1 := maxy∈[0,1]

∫ 1

0
|q(y)|dy ile tan�mlan�rsa,

∣∣∣∣
1

s

∫ x

0

sin s(x− y)q(y)Φ2(y, λ)dy

∣∣∣∣ ≤ Mq1
1

|s|2 e|t|(x+1)

e³itsizli§i bulunur. Buradan asimptotik e³itlik tan�m� gere§i,

1

s

∫ x

0

sin s(x− y)q(y)Φ2(y, λ)dy = O

(
1

|s|2 e|t|(x+1)

)
(5.3.18)

e³itli§i bulunur. 5.3.16−5.3.18 asimptotik ifadeleriΦ2(x, λ) integral denkleminde yaz�l�r
ve gerekli düzenlemeler yap�l�rsa,

Φ2(x, λ) = −δ
1

s
sin s cos sx + δO

(
1

|s|2 e|t|(x+1)

)
− γ

1

s
cos s sin sx

+
1

|s|γO

(
1

|s| e|t|(x+1)

)
+ O

(
1

|s|2 e|t|(x+1)

)

= −δ
1

s
sin s cos sx− γ

1

s
cos s sin sx + O

(
1

|s|2 e|t|(x+1)

)
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asimptotik e³itli§i bulunur. Böylece 5.3.14 asimptotik e³itli§inin sa§land�§� ispatland�.
�imdi 5.3.15 asimptotik e³itli§ini ispatlayal�m. Bunun için,

Φ
′
2(x, λ) = −δsΦ1(0, λ) sin sx + γ Φ

′
1(0, λ) cos sx

+

∫ x

0

cos s(x− y)q(y)Φ2(y, λ)dy

integral denkleminin sa§ tarf�ndaki sa§ taraf�ndaki terimlerin asimptotik ifadeleri ayr� ayr�
de§erlendirilecektir.

−δsΦ1(0, λ) sin sx = sin sx
[
(−s)(−1

s
sin s) + (−s)O

(
1

|s|2 e|t|
) ]

≤ sin s sin sx + O

(
1

|s| e|t|
)

O
(

e|t|(x)
)

= sin s sin sx + O

(
1

|s| e|t|(x+1)

)
(5.3.19)

Φ
′
1(0, λ) cos sx = cos sx

[− cos s + O

(
1

|s| e|t|
) ]

≤ − cos s cos sx + O

(
1

|s| e|t|
)

O
(

e|t|(x)
)

= − cos s cos sx + O

(
1

|s| e|t|(x+1)

)
(5.3.20)

�imdi Φ′
2(x, λ) integral denklemindeki integral içeren ifadeyi inceleyelim.

∣∣∣∣
∫ x

0

cos s(x− y)q(y)Φ2(y, λ)dy

∣∣∣∣ ≤
∫ x

0

| cos s(x− y)| |q(y)| |Φ2(y, λ)|dy

≤ 1

|s|
∫ x

0

e|t|(x−y)|q(y)|Me|t|(y+1)dy

≤ M
1

|s|e
|t|(x+1)

∫ 1

0

|q(y)|dy

bulunur. q1 := maxx∈[0,1]

∫ 1

0
|q(y)|dy ile tan�mlan�rsa,

∣∣∣∣
∫ x

0

cos s(x− y)q(y)Φ2(y, λ)dy

∣∣∣∣ ≤ Mq1
1

|s|e
|t|(x+1)
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e³itsizli§i bulunur. Asimptotik e³itlik tan�m� gere§i son ifadeden,
∫ x

0

cos s(x− y)q(y)Φ2(y, λ)dy = O

(
1

|s| e|t|(x+1)

)
(5.3.21)

yaz�l�r. 5.3.16− 5.3.18 asimptotik ifadeleri Φ2(x, λ) integral denkleminde yaz�l�rsa,

Φ
′
2(x, λ) = δ sin s sin sx + δO

(
1

|s| e|t|(x+1)

)
− γ cos s cos sx

+ γO

(
1

|s| e|t|(x+1)

)
+ O

(
1

|s| e|t|(x+1)

)

elde edilir. Bu son ifadede gerekli düzenlemeler yap�l�rsa,

Φ
′
2(x, λ) = δ sin s sin sx− γ cos s cos sx

+ O

(
1

|s| e|t|(x+1)

)
, |λ| −→ ∞

asimptotik e³itli§i bulunur. Böylece 5.3.15 asimptotik e³itli§inin sa§land�§�da gösterildi.

Böylece Φ1(x, λ) ve Φ2(x, λ) fonksiyonlar� için gerekli asimptotik formüller bulundu.
�imdi bu formüller χ1(x, λ) ve χ2(x, λ) fonksiyonlar� için bulunacakt�r. χ1(x, λ)

fonksiyonu χ2(x, λ) fonksiyonu arac�l�§� ile tan�mland�§� için bu formüllerin öncelikle
χ2(x, λ) fonksiyonu için bulunmas� gerekir. Ancak χ2(x, λ) fonksiyonu için geçerli olan
asimptotik formüller ispats�z olarak verilecektir. �spat�, Titcmarch (1962) kayna§�ndaki
Lemma 1.7 (ii)' nin ispat�na t�pat�p benzerdir.

Teorem 5.3.4. λ = s2, s = σ + it, Ims = t olmak üzere, χ2(x, λ) fonksiyonu için
0 ≤ x ≤ 1 aral�§�nda

χ2(x, λ) = O
(|s| e|t|(1−x)

)
, |λ| −→ ∞ (5.3.22)

χ
′
2(x, λ) = O

(|s|2 e|t|(1−x)
)
, |λ| −→ ∞ (5.3.23)

χ2(x, λ) = s sin s(x− 1) + O
(

e|t|(1−x)
)
, |λ| −→ ∞ (5.3.24)

χ
′
2(x, λ) = s2 cos s(x− 1) + O

(|s| e|t|(1−x)
)
, |λ| −→ ∞ (5.3.25)

asimptotik e³itlikleri sa§lan�r.
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Teorem 5.3.5. λ = s2, s = σ + it, Ims = t olmak üzere, χ1(x, λ) fonksiyonu için
−1 ≤ x ≤ 0 aral�§�nda

χ1(x, λ) = O
(|s| e|t|(1−x)

)
, |λ| −→ ∞ (5.3.26)

χ
′
1(x, λ) = O

(|s|2 e|t|(1−x)
)
, |λ| −→ ∞ (5.3.27)

asimptotik e³itlikleri sa§lan�r.

�spat: Teorem 5.3.4' deki asimptotik e³itlikler gözönüne al�n�rsa,

χ2(x, λ) = O
(|s| e|t|(1−x)

)
=⇒ |χ2(x, λ)| ≤ M1|s| e|t|(1−x)

χ
′
2(x, λ) = O

(|s|2 e|t|(1−x)
)

=⇒ |χ′2(x, λ)| ≤ M2|s|2 e|t|(1−x)

yaz�l�r.

F (x, λ) := χ1(x, λ) e−|t|(1−x) (5.3.28)

ile gösterelim. O halde F (x, λ fonksiyonu için,

F (x, λ) = e−|t|(x+1)

[
1

δ
χ2(0, λ) cos sx +

1

γs
χ
′
2(0, λ) sin sx

+
1

s

∫ x

0

sin s(x− y)q(y)χ1(y, λ)dy

]

e³itli§i sa§lan�r. Bu durumda son e³itlikte,

| sin z| ≤ e|Imz| ve | cos z| ≤ e|Imz|

ifadelerinden yararlan�l�rsa,

|F (x, λ)| ≤ 1

δ
M1e

|t|e−|t|xe−|t|(1−x) +
1

γ|s|M2|s|2e|t|e−|t|xe−|t|(1−x)

+
1

|s|
∫ x

0

e|t|(y−x) |q(y)| e|t|(1−y)|F (y, λ)|e−|t|(1−x)dy

≤ 1

δ
M1|s|+ 1

γ
M2|s|+ 1

|s|
∫ x

0

|q(y)||F (y, λ)|dy
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F1(x, λ) := max
x∈[−1,0]

|F (x, λ)| , q1 := max
x∈[−1,0]

∫ 1

0

|q(y)|dy

al�n�rsa,

|F (x, λ)| ≤ |s|
[
1

δ
M1 +

1

γ
M2 + q1

1

|s|2F1(x, λ)

]

≤ M0|s|

buradan,

|χ1(x, λ) e−|t|(1−x)| ≤ M0|s| =⇒ |χ1(x, λ)| ≤ M0|s|e|t|(1−x)

e³itsizli§i bulunur. Buradan,

χ1(x, λ) = O
(|s|e|t|(1−x)

)

asimptotik e³itli§i bulunur. Böylece 5.3.26 asimptotik e³itli§inin sa§land�§� gösterildi.
�imdi 5.3.27 asimptotik e³itli§ini ispatlayal�m.

χ
′
1(x, λ) = −1

δ
sχ2(0, λ) sin sx +

1

γ
χ
′
2(0, λ) cos sx

+

∫ 0

x

cos s(x− y)q(y)χ1(y, λ)dy

integral denklemini gözönüne alal�m. Yine Teorem 5.3.4' deki

χ2(x, λ) = O
(|s| e|t|(1−x)

)

χ
′
2(x, λ) = O

(|s|2 e|t|(1−x)
)

asimptotik e³itlikleri gözönüne al�n�rsa,

| − 1

δ
sχ2(0, λ) sin sx| ≤ 1

δ
M1|s||s|e|t|e−|t|x

=
1

δ
M1|s|2e|t|(1−x)

elde edilir. O halde asimptotik e³itlik tan�m� gere§i,

−1

δ
sχ2(0, λ) sin sx = O

(|s|2e|t|(1−x)
)

(5.3.29)
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yaz�l�r.

|1
γ

χ
′
2(0, λ) cos sx| ≤ 1

γ
M2|s|2e|t|e−|t|x

=
1

γ
M2|s|2e|t|(1−x)

buradanda,

1

γ
χ
′
2(0, λ) cos sx = O

(|s|2e|t|(1−x)
)

(5.3.30)

yaz�l�r. �imdi,

χ1(x, λ) = O
(|s|e|t|(1−x)

)

asimptotik e³itli§i ve

q1 := max
x∈[−1,0]

∫ 1

0

|q(y)|dy

³eklinde tan�mlanan ifade gözönüne al�n�rsa a³a§�daki integral denklem için,

|
∫ 0

x

cos s(x− y)q(y)χ1(y, λ)dy| ≤ |s|
∫ x

0

e|t|(y−x) |q(y)| e|t|(1−y)dy

≤ |s|2
|s| q1e

|t|(1−x)

= M |s|2e|t|(1−x),M =
q1

|s|

olup buradan,

∫ 0

x

cos s(x− y)q(y)χ1(y, λ)dy = O
(|s|2e|t|(1−x)

)
(5.3.31)

asimptotik e³itli§i elde edilir. 5.3.30−5.3.32 ifadeleri χ
′
1(x, λ)' n�n integral denkleminde

yerine yaz�l�rsa,

χ1(x, λ) = O
(|s|2e|t|(1−x)

)
(5.3.32)

asimptotik e³itli§i elde edilir. Buda ispat� tamamlar.
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Teorem 5.3.6. λ = s2, s = σ + it, Ims = t olmak üzere, χ1(x, λ) fonksiyonu için
−1 ≤ x ≤ 0 aral�§�nda

χ1(x, λ) = −1

δ
s sin s cos sx +

1

γ
s cos s sin sx

+ O
(

e|t|(1−x)
)
, |λ| −→ ∞ (5.3.33)

χ
′
1(x, λ) =

1

δ
s2 sin s sin sx +

1

γ
s2 cos s cos sx

+ O
(|s| e|t|(1−x)

)
, |λ| −→ ∞ (5.3.34)

asimptotik e³itlikleri sa§lan�r.

�spat: Yukar�daki istenilen e³itlikleri göstermek için,

χ1(x, λ) =
1

δ
χ2(0, λ) cos sx +

1

sγ
χ
′
2(0, λ) sin sx

+
1

s

∫ 0

x

sin s(x− y)q(y)χ1(x, λ)dy

integral denkleminin sa§ taraf�ndaki ifadeler ayr� ayr� de§erlendirilecektir. Daha önce
χ2(x, λ) için yaz�lan asimptotik e³itliklerden,

χ2(0, λ) = −s sin sx + O
(

e|t|
)

χ
′
2(0, λ) = s2 cos s + O

(|s| e|t|)

bulunur.

χ2(0, λ) cos sx = cos sx

[
− s sin s + O

(
e|t|

) ]

= −s sin s cos sx + O
(

e|t|
)
O

(
e−|t|x

)
, x ∈ [−1, o]

= −s sin s cos sx + O
(

e|t|(1−x)
)

(5.3.35)

1

s
χ
′
2(0, λ) sin sx =

1

s
s2 cos s sin sx +

1

s
O

(|s| e|t|) cos sx

= s cos s sin sx + O
(|s| e|t|) O

(
e−|t|x

)
, x ∈ [−1, o]

= s cos s sin sx + O
(

e|t|(1−x)
)

(5.3.36)
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³imdi denklemdeki integral içeren ifade de§erlendirilirse, χ1(x, λ) için bir önceki teorem
gere§i,

|χ1(x, λ)| ≤ M |s|e|t|(1−x)

olacak ³ekilde x ve λ' dan ba§�ms�z M > 0 say�s� vard�r.

q1 := max
x∈[−1,0]

∫ 1

0

|q(y)|dy

olmak üzere,

|1
s

∫ 0

x

sin s(x− y)q(y)χ1(x, λ)dy| ≤ 1

|s|
∫ 0

x

| sin s(x− y)||q(y)||χ1(x, λ)|dy

≤ 1

|s|M
∫ 0

x

e|t|(y−x)|q(y)|s|e|t|(1−y)dy

≤ Mq1e
|t|(1−x)

e³itsizli§i bulunur. Buradan tan�m gere§i,

1

s

∫ 0

x

sin s(x− y)q(y)χ1(x, λ)dy = O
(

e|t|(1−x)
)

(5.3.37)

oldu§u kolayca görülür. 5.3.35 − 5.3.37 ifadeleri χ1(x, λ) integral denkleminde yerine
yaz�l�p gerekli düzenlemeler yap�l�rsa,

χ1(x, λ) = −1

δ
s sin s cos sx +

1

γ
s cos s sin sx

+ O
(

e|t|(1−x)
)
, |λ| −→ ∞ (5.3.38)

asimptotik e³itli§i bulunur. Böylece istenilen ilk asimptotik e³itlik ispatlanm�³ olur.
Benzer yöntemle üstte yapt�§�m�z i³lemler χ

′
1(x, λ)' n�n integral denklemi için uygulan�rsa,

χ
′
1(x, λ) =

1

δ
s2 sin s sin sx +

1

γ
s2 cos s cos sx

+ O
(|s| e|t|(1−x)

)
, |λ| −→ ∞ (5.3.39)

asimptotik e³itli§i bulunur. Bu ise teoremin ispat�n� tamamlar.
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5.4 TemelÇözümler,KarakteristikFonksiyonveKarakteristikFonksiyonunAsimptotik
Davran�³�

5.4.1 Temel Çözümler ve Karakteristik Fonksiyon

Bu kesimde

Lu : = −u
′′

+ q(x)u = λu, x ∈ [−1, 0) ∪ (0, 1] (5.4.1)

L1u : = u(−1) = 0 (5.4.2)

L2u : = λu(1)− u′(1) = 0 (5.4.3)

L3u : = u(+0)− δu(−0) = 0 (5.4.4)

L4u : = u′(+0)− γu′(−0) = 0 (5.4.5)

S�n�r- de§er- geçi³ probleminin özde§er ve özfonksiyonlar� aras�ndaki baz� temel ba§�nt�lar�
incelenecektir. Önceki bölümlerde, Φ1(x, λ) ve χ1(x, λ) fonksiyonlar�n�n ∀ x ∈ [−1, 0]

için Φ2(x, λ) ve χ2(x, λ) fonksiyonlar�n�n ise ∀ x ∈ [0, 1] için λ parametresine göre
bütün kompleks düzlemde analitiktik (yani λ parametresinin tam fonksiyonu) oldu§unu
ispatlam�³t�k. Bu fonksiyonlar�n [−1, 1] aral�§�nda s�f�rla devamlar�na uygun olarak
Φ̃i(x, λ) ve χ̃i(x, λ) ile gösterelim. Yani

Φ̃1 =





Φ1, x ∈ [−1, 0)

0, x ∈ (0, 1]

Φ̃2 =





0, x ∈ [−1, 0)

Φ2, x ∈ (0, 1]

χ̃1 =





χ1, x ∈ [−1, 0)

0, x ∈ (0, 1])

χ̃2 =





0, x ∈ [−1, 0)

χ2, x ∈ (0, 1]
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ile gösterelim. Φi(x, λ) ve χi(x, λ) (i=1,2) olmak üzere, bu çözüm fonksiyonlar�n
wronskiyeni,

ωi(λ) = W (Φi(x, λ), χi(x, λ)) = Φi(x, λ)χ
′
i(x, λ)− Φ

′
i(x, λ)χi(x, λ)

ile tan�ml�d�r. ω1(λ) ile Φ1(x, λ) ve χ1(x, λ) çözüm fonksiyonlar�n�n wronskiyeni,
ω2(λ) ile Φ2(x, λ) ve χ2(x, λ) çözüm fonksiyonlar�n�n wronskiyeni gösterilecektir.
Ayr�ca W (Φ1(x, λ), χ1(x, λ)) ve W (Φ2(x, λ), χ2(x, λ)) wronskiyenleri uygun olarak
x ∈ [−1, 0] ve x ∈ [0, 1] de§i³kenlerinden ba§�ms�z olduklar� için ve Φ̃i(x, λ) ve
χ̃i(x, λ) (i = 1, 2) her bir x için λ parametresinin tam fonksiyonu olduklar�ndan dolay�,

ω1(λ) := W (Φ1(x, λ), χ1(x, λ)) (5.4.6)

ω2(λ) := W (Φ2(x, λ), χ2(x, λ)) (5.4.7)

fonksiyonlar� λ parametresinin tam fonksiyonlar�d�r.

Lemma 5.4.1. ∀ λ ∈ C için

ω(λ) = ω1(λ) =
1

δγ
ω2(λ) (5.4.8)

e³itli§i sa§lan�r.

�spat: 5.4.6− 5.4.7 e³itlikleri x de§i³keninden ba§�ms�z olduklar�ndan,

W (Φ2(x, λ), χ2(x, λ)) = Φ2(x, λ)χ
′
2(x, λ)− Φ

′
2(x, λ)χ2(x, λ)

= Φ2(0, λ)χ
′
2(0, λ)− Φ

′
2(0, λ)χ2(0, λ) (5.4.9)

e³itli§i sa§lan�r. Di§er taraftan Φi(x, λ) ve χi(x, λ) (i = 1, 2) çözümlerinin tan�mlar�
gere§i,
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Φ2(0, λ) = δΦ1(0, λ)

Φ
′
2(0, λ) = γΦ

′
1(0, λ)

χ2(0, λ) = δχ1(0, λ)

χ
′
2(0, λ) = γχ

′
1(0, λ)

e³itlikleri de sa§lan�r. Bu de§erler 5.4.9' da yerine yaz�l�rsa,

ω2(λ) = δΦ1(0, λ)γχ
′
1(0, λ)− γΦ

′
1(0, λ)δχ1(0, λ)

= δγ
(
Φ1(0, λ)χ

′
1(0, λ)− Φ

′
1(0, λ)χ1(0, λ)

)

= δγω1(λ)

elde edilir.

Sonuç 5.4.1. ω1(λ) ve ω2(λ) tam fonksiyonlar�n�n s�f�r yerleri çak�³�kt�r. �imdi
[−1, 0) ∪ (0, 1]' de tan�ml� olan Φ(x, λ) ve χ(x, λ) fonksiyonlar�n�

Φ(x, λ) =





Φ1(x, λ), x ∈ [−1, 0)

Φ2(x, λ), x ∈ (0, 1]

χ(x, λ) =





χ1(x, λ), x ∈ [−1, 0)

χ2(x, λ), x ∈ (0, 1]

e³itlikleri ile tan�mlan�rsak, Lemma 5.4.1' den a³a§�daki sonuç elde edilir.

Sonuç 5.4.2. Φ(x, λ) ve χ(x, λ) fonksiyonlar�n�n wronskiyeni [−1, 0) ∪ (0, 1]

aral�klar�n�n her birinde x de§i³keninden ba§�ms�zd�r ve x de§i³kenin her bir x ∈
[−1, 0) ∪ (0, 1] de§erinde, λ parametresinin tam fonksiyonudur.

ω(λ) = W (Φ(x, λ), χ(x, λ))

ile gösterelim. O halde
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ω(λ) = W (Φ(x, λ), χ(x, λ)) =





ω1(λ), x ∈ [−1, 0)

1
δγ

ω2(λ), x ∈ (0, 1]

formülü elde edilir. Bu durumda Lemma 5.5.1 gere§i

ω(λ) = ω1(λ) =
1

δγ
ω2(λ) (5.4.10)

e³itli§i yaz�l�r. Bundan sonraki bölümlerde her yerde Lemma 5.4.1 dikkate al�narak
5.4.10 gösteriminden yararlan�lacakt�r.

Teorem 5.4.1. 5.4.1 -5.4.5 s�n�r de§er probleminin özde§erleri ancak ve ancak ω(λ)

fonksiyonun s�f�r yerlerinden ibarettir.

�spat: (⇒) : λ = λ0 say�s� ω(λ)' n�n s�f�r� olsun. Yani ω(λ0) = 0 olsun. Bu durumda
λ0 say�s�n�n özde§er oldu§unu göstermeliyiz. 5.4.10 e³itli§i gere§i,

ω1(λ0) = 0 ve ω2(λ0) = 0

olur. ω1(λ0) = 0 ise ω1(λ)' n�n tan�m�ndan,

W (Φ1(x, λ), χ1(x, λ)) = 0

yaz�l�r. Bu durumda Φ1(x, λ) ve χ1(x, λ) fonksiyonlar� diferansiyel denklemler
teorisinden iyi bilinen "y1(x), y2(x), y3(x),..., yn(x) fonksiyonlar� n. mertebeden
diferansiyel denklemin lineer ba§�ml� çözümleri ise o halde bu fonksiyonlar�nwronskiyeni
bütün noktalarda s�f�rd�r." teoreminin sonucu olarak lineer ba§�ml�d�r. Yani,

χ1(x, λ0) = kΦ1(x, λ0), x ∈ [−1, 0] (5.4.11)

olacak biçimde k 6= 0 say�s� mevcuttur. 5.4.11 ve Φ1(x, λ)' n�n tan�m�ndan dolay�,

χ1(−1, λ0) = kΦ1(−1, λ0) = 0
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elde edilir. Φ1(−1, λ0)' n�n çözümünden dolay�

χ(−1, λ0) = 0

bulunur. Bu sonuç χ(−1, λ0) fonksiyonunun 5.4.2 s�n�r ³art�n� sa§lad�§�n� gösterir.
χ(−1, λ0) ayn� zamanda 5.4.3 ba³lang�ç ³art�n� ve 5.4.4 − 5.4.5 geçi³ ³artlar�n� da
sa§lad�§�ndan dolay� 5.4.1 − 5.4.5 probleminin çözümü olur. Bu durumda χ(−1, λ0)

fonksiyonu λ0 özde§erine uygun özfonksiyon olur. Bu ise λ = λ0 say�s�n�n özde§er
oldu§unu gösterir.

(⇐) : �imdi ise tersine λ = λ0 say�s� 5.4.1 − 5.4.5 probleminin özde§eri olsun bu
durumda

ω(λ0) = 0

oldu§unu gösterilecektir. Kabul edelim ki λ0 5.4.1 − 5.4.5 probleminin özde§eri ve
ω(λ0) 6= 0 olsun. Bu durumda 5.4.10 e³itli§inden ω1(λ0) 6= 0 ve ω2(λ0) 6= 0 olur.
Buradan

W (Φ1(x, λ0), χ1(x, λ0)) 6= 0 ve W (Φ2(x, λ0), χ2(x, λ0)) 6= 0

elde edilir. Bu durumda, Φ1(x, λ0) fonksiyonu χ1(x, λ0) fonksiyonuyla, Φ2(x, λ0)

fonksiyonu χ2(x, λ0) fonksiyonuyla lineer ba§�ms�z olacakt�r. Böylece 5.5.1 denkleminin
genel çözümü,

u(x, λ) = c1Φ̃1(x, λ) + c2χ̃1(x, λ) + c3Φ̃2(x, λ) + c4χ̃2(x, λ)

³eklinde ifade edilebilir. Bu durumda, λ0 özde§erine uygun olan her u0(x) özfonksiyonu
için,

u0(x) = k1Φ̃1(x, λ0) + k2χ̃1(x, λ0) + k3Φ̃2(x, λ0) + k4χ̃2(x, λ0) (5.4.12)

olacak ³ekilde enaz biri s�f�rdan farkl� olan k1, k2, k3, k4 reel say�lar� bulunur. 5.4.12
e³itli§i ile verilen u0(x) özfonksiyonu 5.4.2 - 5.4.5 s�n�r ve geçi³ ³artlar�n�
sa§lad�§�ndan,
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L1(Φ̃1(x, λ0))k1 + L1(χ̃1(x, λ0))k2 + L1(Φ̃2(x, λ0))k3 + L1(χ̃2(x, λ0))k4 = 0

L2(Φ̃1(x, λ0))k1 + L2(χ̃1(x, λ0))k2 + L2(Φ̃2(x, λ0))k3 + L2(χ̃2(x, λ0))k4 = 0

L3(Φ̃1(x, λ0))k1 + L3(χ̃1(x, λ0))k2 + L3(Φ̃2(x, λ0))k3 + L3(χ̃2(x, λ0))k4 = 0

L4(Φ̃1(x, λ0))k1 + L4(χ̃1(x, λ0))k2 + L4(Φ̃2(x, λ0))k3 + L4(χ̃2(x, λ0))k4 = 0

e³itlikleri geçerlidir. ki katsay�lar�n�n en az biri enaz biri sf�rdan farkl� oldu§undan dolay�,

∣∣∣∣∣∣∣∣∣∣∣

L1(Φ̃1(x, λ0)) L1(χ̃1(x, λ0)) L1(Φ̃2(x, λ0)) L1(χ̃2(x, λ0))

L2(Φ̃1(x, λ0)) L2(χ̃1(x, λ0)) L2(Φ̃2(x, λ0)) L2(χ̃2(x, λ0))

L3(Φ̃1(x, λ0)) L3(χ̃1(x, λ0)) L3(Φ̃2(x, λ0)) L3(χ̃2(x, λ0))

L4(Φ̃1(x, λ0)) L4(χ̃1(x, λ0)) L4(Φ̃2(x, λ0)) L4(χ̃2(x, λ0))

∣∣∣∣∣∣∣∣∣∣∣

= 0 (5.4.13)

elde edilir. �imdi bu elemanlar�n determinant�n� hesaplayal�m: Φ̃i(x, λ) ve χ̃i(x, λ)

(i = 1, 2) fonksiyonlar�n�n tan�m� gere§i,

L1(Φ̃1(x, λ0)) = Φ̃1(−1, λ0) = Φ1(−1, λ0) = 0 (5.4.14)

L1(χ̃1(x, λ0)) = χ̃1(−1, λ0) = χ1(−1, λ0)

= Φ1(−1, λ0)χ
′
1(−1, λ0)− Φ

′
1(−1, λ0χ1(−1, λ0)

= W (Φ1(x, λ0), χ1(x, λ0))|x=−1

= ω1(λ0) (5.4.15)

L1(Φ̃2(x, λ0)) = Φ̃2(−1, λ0 = 0 (5.4.16)

L1(χ̃2(x, λ0)) = χ̃2(−1, λ0) = 0 (5.4.17)
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L2(Φ̃1(x, λ0)) = λ Φ̃1(1, λ0)− Φ̃
′
1(1, λ0)

= λ Φ1(1, λ0)− Φ
′
1(1, λ0)

= λ0− 0

= 0 (5.4.18)

L2(χ̃1(x, λ0)) = λ χ̃1(1, λ0)− χ̃
′
1(1, λ0)

= λ χ1(1, λ0)− χ
′
1(1, λ0)

= λ0− 0

= 0 (5.4.19)

L2(Φ̃2(x, λ0)) = λ Φ̃2(1, λ0)− Φ̃
′
2(1, λ0)

= λ Φ2(1, λ0)− Φ
′
2(1, λ0)

= χ
′
2(1, λ0)Φ2(1, λ0)− χ2(1, λ0)Φ

′
2(1, λ0)

= W (Φ2(x, λ0), χ2(x, λ0))|x=1

= ω2(λ0) (5.4.20)

L2(χ̃2(x, λ0)) = λχ̃2(1, λ0)− χ̃
′
2(1, λ0)

= λχ2(1, λ0)− χ
′
2(1, λ0)

= χ
′
2(1, λ0)χ2(1, λ0)− χ

′
2(1, λ0)χ2(1, λ0)

= 0 (5.4.21)

L3(Φ̃1(x, λ0)) = δΦ1(−0, λ0)− Φ1(+0, λ0)

= δΦ1(−0, λ0) (5.4.22)

L3(χ̃1(x, λ0)) = δχ1(−0, λ0)− χ1(+0, λ0)

= δχ1(−0, λ0) (5.4.23)

L3(Φ̃2(x, λ0)) = δΦ2(−0, λ0)− Φ2(+0, λ0)

= −Φ2(+0, λ0) (5.4.24)

L3(χ̃2(x, λ0)) = δχ2(−0, λ0)− χ2(+0, λ0)

= −χ2(+0, λ0) (5.4.25)
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L4(Φ̃1(x, λ0)) = γ Φ
′
1(−0, λ0)− Φ

′
1(+0, λ0)

= γ Φ
′
1(−0, λ0) (5.4.26)

L4(χ̃1(x, λ0)) = γχ
′
1(−0, λ0)− χ

′
1(+0, λ0)

= γχ
′
1(−0, λ0) (5.4.27)

L4(Φ̃2(x, λ0)) = γΦ
′
2(−0, λ0)− Φ

′
2(+0, λ0)

= −Φ
′
2(+0, λ0) (5.4.28)

L4(χ̃2(x, λ0)) = γχ
′
2(−0, λ0)− χ

′
2(+0, λ0)

= −χ
′
2(+0, λ0) (5.4.29)

elde edilir. �imdi bulunan 5.4.14 - 5.4.29 e³itlikleri 5.4.13 determinant�nda yerlerine
yaz�l�rsa,

∣∣∣∣∣∣∣∣∣∣∣

0 ω1(λ0) 0 0

0 0 ω2(λ0) 0

δΦ1(−0, λ0) δχ1(−0, λ0) −Φ2(+0, λ0) −χ2(+0, λ0)

γΦ
′
1(−0, λ0) γχ

′
1(−0, λ0) −Φ

′
2(+0, λ0) −χ

′
2(+0, λ0)

∣∣∣∣∣∣∣∣∣∣∣

= 0

=⇒ ω1(λ0)ω2(λ0)

∣∣∣∣∣∣
δΦ1(−0, λ0) −χ2(+0, λ0)

γΦ′
1(−0, λ0) −χ′2(+0, λ0)

∣∣∣∣∣∣
= 0

elde edilir. Kabülümüz gere§i ω1(λ0) 6= 0 ve ω2(λ0) 6= 0 e³itliklerini dikkate al�n�rsa
son e³itlikteki determinant s�f�r olur. O halde,

γ χ2(+0, λ0) Φ′
1(−0, λ0)− Φ1(−0, λ0) χ′2(+0, λ0) = 0 (5.4.30)

e³itli§i bulunur. 5.4.3 ve 5.4.4 geçi³ ³artlar� gere§i,

χ2(+0, λ0) = δχ1(−0, λ0) ve χ
′
2(+0, λ0) = γ χ

′
1(−0, λ0)

yaz�labilir. Bunlar 5.4.39' da yerine yaz�l�p gerekli düzenlemeler yap�l�rsa,

−δγ ω1(λ0) = 0 (5.4.31)
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elde edilir. 5.4.10' dan ve δ, γ > 0 oldu§undan dolay� 5.4.31 e³itli§inden,

ω(λ0) = 0 (5.4.32)

e³itli§i elde edilir.
Bu ise ω(λ0) 6= 0 oldu§u kabulüyle çeli³ir. Bu durumda verilen s�n�r-de§er-geçi³
probleminin özde§erleri ω(λ) fonksiyonun s�f�r yerlerinden ibarettir.

5.4.2 Karakteristik Fonksiyonun Asimptotik Davran�³lar�

Bölüm 5.5.1' de ara³t�r�lan problemin özde§erleri ω(λ) fonksiyonunun s�f�r yerlerinden
ibaret oldu§u için öncelikle ω(λ) fonksiyonunun asimptotik davran�³� incelenecek ve
daha sonra bu asimptotik ifadeden yararlanarak problemimizin özde§erleri için asimptotik
formüller elde edilecektir.

Teorem 5.4.2. λ = s2, s = σ+ it, Ims = t olmak üzere ω(λ) karakteristik fonksiyonu
için a³a§�daki asimptotik e³itlik sa§lan�r.

ω(λ) = −1

2
(δ + γ) s sin(2s) + O

(
e2|t|) (5.4.33)

�spat: ω(λ) fonksiyonunu x de§i³keninden ba§�ms�z oldu§u için,

ω(λ) = ω2(λ) = W (Φ2(x, λ), χ2(x, λ))

= W (Φ2(1, λ), χ2(1, λ))

= Φ2(1, λ)χ′2(1, λ)− Φ′
2(1, λ)χ2(1, λ) (5.4.34)

biçiminde yaz�labilir. χ2(x, λ) fonksiyonu çözümü oldu§u problemin ba³lang�ç ³artlar�n�
sa§lad�§�ndan dolay�,

χ2(1, λ) = 1 (5.4.35)

χ′2(1, λ) = λ = s2 (5.4.36)
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sa§lan�r. Bulunan bu de§erler ve Φ2(1, λ) ile Φ2(1, λ)' n�n asimptotik ifadelerinden
elde edilen,

Φ2(1, λ) = −1

s
δ sin s cos s− 1

s
γ cos s sin s

+ O

(
1

|s|2 e2|t|
)

, |λ| −→ ∞ (5.4.37)

Φ
′
2(1, λ) = δ sin2 s− γ cos2 s

+ O

(
1

|s| e2|t|
)

, |λ| −→ ∞ (5.4.38)

ifadeleri 5.4.34' de yerine koyulursa,

ω(λ) = (Φ2(1, λ)χ′2(1, λ)− Φ′
2(1, λ)χ2(1, λ))

= s2

[
−δ

1

s
sin s cos s + γ

1

s
cos s sin s

]
+ O

(
1

|s|2 e2|t|
)

−
[
δ sin2 s− γ cos2 s + O

(
1

|s| e2|t|
)]

bulunur. Son e³itlik düzenlenirse,

ω(λ) =
[−s [δ sin s cos s + γ sin s cos s] + O

(
e2|t|)]

−
[
δ sin2 s− γ cos2 s + O

(
1

|s| e2|t|
)]

(5.4.39)

elde edilir.
− [

sin2(s)− γ cos2(s)
]

= O
(

e2|t|)

yaz�labilir. Bu durumda 5.4.39 e³itli§i

ω(λ) = −1

2
(δ + γ)s sin 2s + O

(
e2|t|)

³eklinde yaz�labilir. Böylece ω(λ) s�n�r fonksiyonunun asimptotik e³itli§i elde edilir.

Teorem 5.4.3. 5.4.1 − 5.4.5 s�n�r-de§er-geçi³ probleminin özde§erleri için λn ≥ K,
n = 0, 1, 2, ... olacak ³ekilde K reel say�s� vard�r. Yani özde§erler a³a§�dan s�n�rl�d�r.
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�spat: 5.4.33 asimptotik e³itli§i için durumu ara³t�ral�m. Bu durumda 5.4.33 ifadesinde
s = it, (t > 0) yaz�l�rsa,

ω(−t2) = (δ + γ)t sinh t cosh t + O
(
e2t

)
(5.4.40)

e³itli§i elde edilir. δγ > 0 ( ayn� i³aretli) oldu§undan dolay� 5.4.40 e³itli§inden,

lim
t→∞

ω(−t2) = ∞ (5.4.41)

oldu§u aç�kça görülebilir. Bundan dolay� t > t0 oldu§unda ω(−t2) 6= 0 olacak ³ekilde
t0 > 0 say�s� bulunur. Dolay�s�yla λ < −t20 için ω(λ) 6= 0 olacakt�r. Buna göre K = t20

olmak üzere λn > K' d�r. Buda ispat� tamamlar.

5.5 Özde§erler �çin Asimptotik Davran�³lar

Bir önceki bölümde ω(λ) s�n�r fonksiyonun asimptotik davran�³� incelenmi³ti. Bu
bölümde 5.4.1 − 5.4.5 probleminin özde§erleri ile ω(λ) s�n�r fonksiyonun s�f�r yerleri
çak�³�k oldu§undan ω(λ) s�n�r fonksiyonun s�f�r yerlerinin asimptoti§i ara³t�r�lacakt�r.
Bunun için daha önce elde etti§imiz,

ω(λ) = −1

2
(δ + γ)s sin 2s + O

(
e2|t|)

asimptotik ifadeki ilk terim ω̃1(λ) ile, ikinci terim ise ω̃2(λ) ile gösterilirse,

ω̃1(λ) = −1

2
(δ + γ) s sin(2s) (5.5.1)

ω̃2(λ) = ω(λ)− ω̃1(λ) = O
(

e2|t|) (5.5.2)

yaz�labilir. Buradan,

ω(λ) = ω̃1(λ) + ω̃2(λ) (5.5.3)

³eklinde ifade edebiliriz.
Kompleks analizden iyi bilinenRoucheTeoreminden yararlanmakla ω̃1(λ) fonksiyonunun
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s�f�r yeri kat� say�da yaz�l�rsa, ω̃1(λ) = ω̃1(s
2) fonksiyonunun s�f�rlar� s− de§i³keninin

fonksiyonu olarak

..., −3π

2
, −π , −π

2
, 0 0

π

2
, π ,

3π

2
, 2π , ... (5.5.4)

³eklinde s�ralan�r. Kompleks s-düzleminde,
{

s = σ + it ∈ C : |σ| ≤ π

2
(n +

1

2
), |t| ≤ π

2
(n +

1

2
) , n = 0, 1, 2, ...

}
(5.5.5)

bölgesinin s�n�r�n� Γn ile gösterilsin. Kompleks analizden iyi bilinen,

| sin s| =
√

sinh2 t + sin2 σ

e³itli§inden ve bu e³itlikten elde edilen

√
sinh2 t + 1 ≥ | sin s| ≥ | sin ht|

ve
| sin s| ∼ 1

2
e|t| , |t| −→ ∞

özelliklerinden yararlanmakla,

|ω̃1(λ)| =
∣∣∣∣−

1

2
(δ + γ) s sin 2s

∣∣∣∣

|ω̃1(λ)| ∼ 1

4
|δ + γ| |t| e2|t| , |t| −→ ∞ (5.5.6)

elde edilir. Ayr�ca en az bir M > 0 vard�r öyleki,

|ω̃2(λ)| ≤ M e2|t|

yaz�labilir. Burada n' nin yeteri kadar büyük de§erlerinde (n ≥ n0 için) s ∈ Γn

oldu§unda,

|ω̃1(λ)| > |ω̃2(λ)| , s ∈ Γn , n ≥ n0 (5.5.7)
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e³itsizli§i sa§lan�r. O halde n ≥ n0 için s ∈ Γn olmak üzere |ω̃1(λ)| > |ω̃2(λ)|
e³itsizli§ini sa§layan ω̃1(λ) ve ω̃2(λ) fonksiyonlar�na Rouche teoremi uygulanarak bu
teoremin gere§i,

ω̃0(λ) = ω̃1(λ) + ω̃2(λ)

fonksiyonunun Γn e§risi içinde kalan s�f�r yerlerinin say�s�yla, ω̃1(λ) fonksiyonunun Γn

e§risi içinde kalan s�f�r yerlerinin say�s� e³ittir. 5.5.4 ifadesinden de anla³�lacabile§i gibi
ω̃1(λ) fonksiyonunun Γn e§risi içinde kalan s�f�r yerlerinin say�s�n�n 2(n+1) = 2n+2

say�da s�f�r yeri oldu§u aç�kt�r.
ω̃1(λ) = ω̃1(s

2) ve ω̃(λ) = ω̃(s2) fonksiyonlar�n herbiri |s|− de§i³keninin çift
fonksiyonlar� oldu§undan , ω̃(λ) fonksiyonunun her s�f�r yerine kar³�l�k ω̃(s2)

fonksiyonunun iki tane s�f�r yeri olu³aca§�ndan ve ayr�ca ω̃(s2) ve ω̃1(s
2) fonksiyonlar�n�n

bütün s�f�r yerleri reel eksen üzerinde oldu§undan sadece pozitif reel eksende yerle³en
s�f�r yerlerini incelemek yeterli olur. ω̃1(s

2) fonksiyonunun pozitif reel eksen üzerindeki
s�f�r yerleri,

s̃0 = 0 , s̃1 =
π

2
, s̃2 = π, s̃3 =

3π

2
, ..., s̃n =

nπ

2
(5.5.8)

³eklinde s�ralans�n. ω̃(s2) fonksiyonunun pozitif reel eksendeki s�f�r yerleri ise,
s0 < s1 < s2 < s3 < s4 < ... ³eklinde s�ralans�n. Rouche Teoremi gere§i n ≥ n0 için,

π

2
(n− 1

2
) < s <

π

2
(n +

1

2
) (5.5.9)

aral�klar�n�n her birinde ω̃(s2) fonksiyonunun bir tek sn− s�f�r yeri bulunur. Yani,
n ≥ n0 için

π

2
(n− 1

2
) < sn <

π

2
(n +

1

2
) (5.5.10)

sa§lan�r. 5.5.8 ve 5.5.10 ifadelerinden; n ≥ n0 için

|sn − s̃n| < π

4
(5.5.11)

elde edilir.

δn := sn − s̃n
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gösteriminden yararlan�rsa, n ≥ n0 için

sn =
nπ

2
+ δn , |δn| < π

4
(5.5.12)

bulunur. �imdi {δn} dizisini asimptotik olarak de§erlendirelim. 5.4.33 ifadesinde s

yerine sn yaz�l�rsa,
sn sin(2sn) = O(

1

n
) (5.5.13)

elde edilir. Di§er taraftanda 5.5.12 e³itli§inden dolay�da,

sn = O(n)

oldu§u aç�kt�r. 5.5.12 ve 5.5.13' den,

sin(2sn) = O(
1

n
) (5.5.14)

elde edilir. 5.5.12 ifadesi 5.5.14' de yerine yaz�l�rsa,

sin(nπ + 2δn) = O(
1

n
) (5.5.15)

asimptotik e³itli§i bulunur. Bilinen baz� trigonometrik özde³liklerden yararlanarak

sin(nπ + 2δn) = (−1)n sin(2δn) (5.5.16)

oldu§u görülür. Son iki e³itlikten,

sin(2δn) = O(
1

n
) (5.5.17)

asimptotik e³itli§i elde edilir. |δn| < π
4
oldu§u için |2δn| < π

2
yaz�l�r. Buradan sonuncu

e³itlikte n −→∞ almakla limite geçersek,

lim
n−→∞

sin(2δn) = 0 (5.5.18)

elde edilir. Burada |δn| < π
4
oldu§u dikkate al�narak,

lim
n−→∞

δn = 0 (5.5.19)
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bulunur. Bu son iki ifadeden,

sin(2δn) ∼ δn , n −→∞ (5.5.20)

elde edilir. 5.5.17 ve 5.5.20' den

δn = O(
1

n
) (5.5.21)

oldu§u kolayca görülür. Bu son e³itlik 5.7.12' de yaz�l�rsa

sn =
nπ

2
+ O(

1

n
) (5.5.22)

asimptotik e³itli§i bulunur.

Teorem 5.5.1. 5.4.1− 5.4.5 probleminin özde§erleri için,

λn =
n2π2

4
+ O(1) (5.5.23)

asimptotik formülü geçerlidir.

5.6 Verilen S�n�r-De§er-Geçi³ Problemi ile Ayn� Özde§erlere Sahip Olan Lineer
Diferansiyel Operatörün Kurulmas�

Bu bölümde 5.5.1−5.1.5 s�n�r-de§er-geçi³ problemine uygun Hilbert Uzay� ve bu uzayda
özde§erleri ile uygun özfonksiyonlar� ara³t�r�lan 5.1.1 − 5.1.5 probleminin özde§erleri
ve uygun özfonksiyonlar� ile çak�³an lineer diferansiyel operatör kurulacakt�r.
L2(−1, 0)⊕L2(0, 1) Hilbert uzay� ile kompleks say�lar�n Hilbert uzay� C ile gösterilsin.

f(x) ∈ L2(−1, 0) ⊕ L2(0, 1) , f1 ∈ C olmak üzere F =


 f(x)

f1


 iki bile³enli

elamanlar�n lineer uzay�n� ise H = L2(−1, 0)⊕ L2(0, 1)⊕ C ile gösterelim.

H =



F =


 f(x)

f1


 : f(x) ∈ L2(−1, 0)⊕ L2(0, 1), f1 ∈ C



 (5.6.1)
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biçiminde olan direkt toplamdaki iç çarp�m� a³a§�daki gibi tan�mlayal�m.

F =


 f(x)

f1


 ∈ H , G =


 g(x)

g1


 ∈ H ve δ, γ > 0 olmak üzere

< F,G >= δγ

∫ 0

−1

f(x)g(x)dx +

∫ 1

0

f(x)g(x)dx + f1g1 (5.6.2)

e³itli§i ile tan�mlayal�m. O halde H iç çarp�m uzay�n�n bir Hilbert Uzay� olaca§� aç�kt�r.
�imdi 5.1.1−5.1.5 probleminin özde§erleri ve uygun özfonksiyonlar� ile çak�³anA lineer
operatörünü a³a§�daki biçimde tan�mlayal�m.

A : H −→ H (5.6.3)

lineer operatörünün tan�m kümesi

D(A) = { F =


 f(x)

f1


 ∈ H : f(x) ve f ′(x) fonksiyonlar� [−1, 0) ve (0, 1]

aral�klar�nda mutlak süreklidirler ve sonlu f(±0) ve f ′(±0) limit

de§erleri mevcuttur. − f ′′ + q(x)f ∈ L2(−1, 0)⊕ L2(0, 1)

f(−1) = 0, f(+0) = δf(−0), f ′(+0) = γf ′(−0), f1 = f(1) }(5.6.4)

olmak üzere

AF =


 −f ′′ + q(x)f

f ′(1)


 (5.6.5)

e³itli§iyle tan�mlans�n. Burada F =


 f(x)

f(1)


 ∈ D(A) ve

AF = −f
′′

+ q(x)f (5.6.6)

d�r. Bu durumda 5.1.1− 5.1.5 ile verilen s�n�r-de§er- geçi³ problemi H uzay�nda

AF = λF (5.6.7)

operatör denklem biçiminde yaz�labilir.
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Gerçekten F =


 f(x)

f(1)


 ve AF =


 −f ′′ + q(x)f

f ′(1)


 oldu§undan

AF = λF =⇒

 −f ′′ + q(x)f

f ′(1)


 = λ


 f(x)

f(1)


 (5.6.8)

³eklinde yaz�l�r. 5.6.8 e³itli§i,

−f ′′ + q(x)f = λf (5.6.9)

f ′(1) = λf(1) (5.6.10)

e³itlikleri biçiminde yaz�labilir. Ayr�ca F =


 f(x)

f(1)


 ∈ D(A) oldu§u için,

f(−1) = 0 (5.6.11)

f(+0)− δf(−0) = 0 (5.6.12)

f ′(+0)− γf ′(−0) = 0 (5.6.13)

e³itlikleri sa§lan�r. 5.6.9 − 5.6.13 e³itlikleri birarada yaz�l�rsa, 5.6.7 e³itli§i ile e³de§er
olan a³a§�daki denklem sistemi elde edilir.

−f ′′ + q(x)f = λf

f ′(1) = λf(1)

f(−1) = 0 (5.6.14)

f(+0)− δf(−0) = 0

f ′(+0)− γf ′(−0) = 0

Demek ki ara³t�rd�§�m�z 5.1.1− 5.1.5 s�n�r-de§er-geçi³ problemi,

F =


 f(x)

f(1)


 =⇒ AF = λF (5.6.15)

³eklinde yaz�labilir. Bu nedenleA operatörün özde§erleri ve uygun özfonksiyonlar� s�ras�
ile 5.1.1− 5.1.5 probleminin özde§erleri ve özfonksiyonlar� olarak adland�r�l�r.
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Teorem 5.6.1. H := L2(−1, 0)⊕L2(0, 1)⊕CHilbert uzay�nda 5.6.4−5.6.5 e³itlikleri
ile tan�ml� A operatörü simetriktir.

�spat: ∀ F, G ∈ D(A) ⊂ H , F =


 f(x)

f1 = f(1)


, G =


 g(x)

g1 = g(1)


 ∈ H için

< AF, G >H = < F,AG >H (5.6.16)

oldu§u gösterilmelidir. Gerçekten H' daki iç çarp�m tan�m�na göre

< AF, G >H = δγ

∫ 0

−1

(−f ′′(x) + q(x)f(x))g(x)dx +

∫ 1

0

(−f ′′(x) + q(x)f(x))g(x)dx

+ f
′
(1)g(1)

= −δγ

∫ 0

−1

f ′′(x)g(x)dx + δγ

∫ 0

−1

q(x)f(x)g(x)dx

−
∫ 1

0

f ′′(x)g(x)dx +

∫ 1

0

q(x)f(x)g(x)dx + f
′
(1)g(1) (5.6.17)

³eklinde yaz�labilir.

δγ

∫ 0

−1

(−f ′′(x) + q(x)f(x))g(x)dx = −δγ

∫ 0

−1

f ′′(x)g(x)dx + δγ

∫ 0

−1

q(x)f(x)g(x)dx

Herhangi aral�kda diferansiyellenebilir iki f(x) ve g(x) fonksiyonlar�n�n Wronskiyen'i

W (f, g; x) = f(x)g′(x)− g(x)f ′(x)

tan�m�n� kullanarak son e³itli§in sa§ tarf�ndaki ilk integrale ard arda iki kere k�smi
integrasyon uygulan�p i³lemlere devam edilirse,
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= −δγ {f ′(x)g(x) |0−1 −
∫ 0

−1

f ′(x)g′(x)dx}+ δγ

∫ 0

−1

q(x)f(x)g(x)dx

= δγ

∫ 0

−1

f ′(x)g′(x)dx + δγ

∫ 0

−1

q(x)f(x)g(x)dx− δγ (f ′(x)g(x) |0−1)

= δγ {f(x)g′(x) |0−1 −δγ

∫ 0

−1

f(x)g′′(x)dx}+ δγ

∫ 0

−1

q(x)f(x)gdx− δγ (f ′(x)g(x) |0−1)

= δγ

∫ 0

−1

f(x)g′′(x)dx + δγ

∫ 0

−1

q(x)f(x)g(x)dx + δγ {f(−0)g′(−0)− f(−1)g′(−1)}
− δγ {f ′(−0)g(−0)− f ′(−1)g(−1)}
= −δγ

∫ 0

−1

f(x)g′′(x)dx + δγ

∫ 0

−1

q(x)f(x)g(x)dx + δγ W (f, g;−0)

−δγ W (f, g;−1)

= δγ

∫ 0

−1

f(x)(−g′′(x) + q(x)g(x))dx + δγ W (f, g;−0)− δγ W (f, g;−1) (5.6.18)

elde edilir.
∫ 1

0

(−f ′′(x) + q(x)f(x))g(x)dx = −
∫ 1

0

f ′′(x)g(x)dx +

∫ 1

0

q(x)f(x)g(x)dx

benzer ³ekilde e³itli§in sa§�ndaki ilk terime iki kere arda arda k�smi integrasyon uygulan�p
gerekli i³lemler yap�l�rsa,

= −{f ′(x)g(x) |10 −
∫ 1

0

f ′(x)g′(x)dx}+

∫ 1

0

q(x)f(x)g(x)dx

=

∫ 1

0

f ′(x)g′(x)dx +

∫ 1

0

q(x)f(x)g(x)dx− (f ′(x)g(x) |10)

= {f(x)g′(x) |10 −
∫ 1

0

f(x)g′′(x)dx}+

∫ 1

0

q(x)f(x)g(x)dx− (f ′(x)g(x) |10)

= −
∫ 1

0

f(x)g′′(x)dx +

∫ 1

0

q(x)f(x)gdx + {f(1)g′(1)− f(+0)g′(+0)}
− {f ′(1)g(1)− f ′(+0)g(+0)}
= −

∫ 1

0

f(x)g′′(x)dx +

∫ 1

0

q(x)f(x)gdx + f(1)g′(1)− f ′(1)g(1)−W (f, g; +0)

=

∫ 1

0

f(x)(−g′′(x) + q(x)g(x))dx + f(1)g′(1)− f ′(1)g(1)−W (f, g; +0)(5.6.19)
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bulunur. 5.6.18 ve 5.6.19 , 5.6.17' de yerine yaz�l�rsa,

< AF, G >H = δγ

∫ 0

−1

f(x)(−g′′(x) + q(x)g(x))dx +

∫ 1

0

f(x)(−g′′(x) + q(x)g(x))dx

+ f(1)g′(1)−W (f, g; +0) + δγ W (f, g;−0)

− δγ W (f, g;−1) (5.6.20)

elde edilir.

< F, AG >H = δγ

∫ 0

−1

f(x)(−g′′(x) + q(x)g(x))dx +

∫ 1

0

f(x)(−g′′(x) + q(x)g(x))dx

+ f(1)g′(1) (5.6.21)

yaz�labilir. Buradan 5.6.20 ve 5.6.21 ifadeleri taraf tarafa ç�kart�l�rsa,

< AF, G >H − < F,AG >H = δγ W (f, g;−0)− δγ W (f, g;−1)

− W (f, g; +0) (5.6.22)

e³itli§i bulunur.

A operatörünün simetrik oldu§unu söyleyebilmek için 5.6.22 e³itli§inin sa§ taraf�n�n
s�f�ra e³it oldu§unu göstermemiz gerekir. Bunun için f(x) ve g(x) fonksiyonlar� A

operatörünün tan�m bölgesinin elemanlar� olduklar�ndan s�n�r ³artlar�n� kullanarak

W (f, g;−1) = 0 ve W (f, g; +0) = δγ W (f, g;−0)

ifadeleri bulunur. Bu ifadeler 5.6.22' de yerine yaz�l�rsa sa§ taraf�n s�f�ra e³it oldu§u
görülür. Sonuç itibariyle

< AF, G >H = < F,AG >H (5.6.23)

e³itli§ini elde ederiz. Bu da bizeA operatörünün simetrik oldu§unu gösterir. Bu ise ispat�
tamamlar.
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5.7 S�n�r-De§er-Geçi³ ProblemininRezolventinin veGreenFonksiyonununKurulmas�

5.7.1 S�n�r-De§er-Geçi³ Probleminin Rezolventi ve Green Fonksiyonu

Bu kesimde verilmi³ 5.1.1 − 5.1.5 s�n�r-de§er-geçi³ problemine uygun olan rezolventi
kurulacakt�r. Bunun için

L(u) := −u
′′

+ [q(x)− λ]u = f(x), x ∈ [−1, 0) ∪ (0, 1] (5.7.1)

homojen olmayan diferansiyel denkleminin

L1(u) := u(−1) = 0 (5.7.2)

L2(u) := λu(1)− u′(1) = 0 (5.7.3)

L3(u) := u(+0)− δu(−0) = 0 (5.7.4)

L4(u) := u′(+0)− γu′(−0) = 0 (5.7.5)

homojen s�n�r-de§er-geçi³ ³artlar�n� sa§layan çözümü (bu çözüm rezolvent olarak adland�r�l�r)
bulunacakt�r. Bunun için önce a³a§�daki Lemma ispat edilecektir.

Lemma 5.7.1. E§er λ = λ0 ∈ C say�s� 5.1.1 − 5.1.5 s�n�r-de§er-geçi³ probleminin
özde§eri de§ilse, o halde 5.7.1− 5.7.5 probleminin λ = λ0 için çözümü varsa tektir.

�spat: Aksini kabul edelim. Yani kabul edelim ki, u1(x, λ0) ve u2(x, λ0) fonksiyonlar�
5.7.1− 5.7.5 probleminin λ = λ0 de§erine uygun farkl� çözümleri olsun. O halde

u0(x, λ0) := u1(x, λ0)− u2(x, λ0) 6= 0

fonksiyonunun uygun homojen 5.1.1 − 5.1.5 s�n�r-de§er-geçi³ probleminin çözümü
olaca§� aç�kt�r. Buna göre u0(x, λ0) fonksiyonu 5.1.1 − 5.1.5 s�n�r-de§er-geçi³
probleminin özfonksiyonudur. Bu ise λ = λ0 say�s�n�n özde§er oldu§u anlam�na
gelir. Bu ise kabülle çeli³ir. Buda ispat� tamamlar.
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�imdi f ∈ L2(−1, 0)⊕L2(0, 1) ve özde§er olmayan λ için 5.7.1− 5.7.5 probleminin
u(x, λ) çözümünü, Φ(x, λ) ve χ(x, λ) çözümleri ile ifade eden formül ç�kar�lacakt�r.
Bunun için a³a§�daki yard�mc� önerme verilecektir.

Lemma 5.7.2. λ ∈ C say�s� özde§er de§ilse o halde 5.1.1 diferansiyel denkleminin
5.1.4− 5.1.5 geçi³ ³artlar�n� sa§layan her u(x, λ) çözümü

u(x, λ) = c1Φ(x, λ) + c2χ(x, λ) (5.7.6)

biçiminde ifade edilebilir. Yani, 5.1.1, 5.1.4, 5.1.5 probleminin genel çözümü 5.7.6

biçimindedir. (Burada c1 ve c2) katsay�lar� key� sabitlerdir.

�spat: λ özde§er olmad�§� için (i = 1, 2) olmak üzere

ωi(λ) = W (Φi(x, λ), χi(x, λ)) 6= 0 , i = 1, 2

Wronskiyenleri s�f�rdan farkl� oldu§u için Φi(x, λ) ve χi(x, λ) fonksiyonlar� lineer
ba§�ms�zd�rlar. Bu nedenle 5.1.1 denkleminin genel çözümü c1, c2, d1, d2 katsay�lar�
key� sabitler olmak üzere

u(x, λ) =





c1Φ1(x, λ) + c2χ1(x, λ) , x ∈ [−1, 0)

d1Φ2(x, λ) + d2χ2(x, λ) , x ∈ (0, 1]
(5.7.7)

biçiminde yaz�labilir. Bu ifade 5.1.4− 5.1.5 geçi³ ³artlar�nda yaz�l�rsa,

δ(c1Φ1(0, λ) + c2χ1(0, λ)) = d1Φ2(0, λ) + d2χ2(0, λ)

γ(c1Φ
′
1(0, λ) + c2χ

′
1(0, λ)) = d1Φ

′
2(0, λ) + d2χ

′
2(0, λ)

e³itlikleri elde edilir. Φi(x, λ) ve χi(x, λ) , i = 1, 2 fonksiyonlar�n�n 5.1.4 − 5.1.5

geçi³ ³artlar�n� sa§lad�klar� dikkate al�n�rsa son iki e³itlikten,

(c1 − d1)Φ2(0, λ) + (c2 − d2)χ2(0, λ) = 0

(c1 − d1)Φ
′
2(0, λ) + (c2 − d2)χ

′
2(0, λ) = 0



80

elde edilir. Bu e³itlikler (c1 − d1) ve (c2 − d2) de§i³kenlerine göre lineer denklem
sistemidir. Bu sistem de

W (Φ2(0, λ), χ2(0, λ)) = ω2(λ) 6= 0

oldu§u için bir tek
(c1 − d1) = 0 , (c2 − d2) = 0

çözümü bulunur. �imdi 5.7.7' de c1 = d1 =: C , c2 = d2 =: D yazarsak,

u(x, λ) = CΦ(x, λ) + Dχ(x, λ) , x ∈ [−1, 0) ∪ (0, 1]

elde edilir. Bu ise ispat� tamamlar.

�imdi

ω(x, λ) = W (Φ(x, λ), χ(x, λ)) =





ω1(λ) , x ∈ [−1, 0)

1
δγ

ω2(λ) , x ∈ (0, 1]
(5.7.8)

gösterimini dahil ederek a³a§�daki teoremi ispat edelim.

Teorem 5.7.1. Özde§er olmayan her λ ∈ C için 5.7.1 − 5.7.5 homojen olmayan
s�n�r-de§er-geçi³ probleminin çözümü vard�r ve tektir. Ayr�ca bu çözüm için

u(x, λ) =
χ(x, λ)

ω(λ)

∫ x

−1

Φ(y, λ)f(y)dy +
Φ(x, λ)

ω(λ)

∫ 1

x

χ(y, λ)f(y)dy

+





1
δγ

Φ1(x,λ)
ω(λ)

∫ 1

0
χ2(y, λ)f(y)dy , x ∈ [−1, 0)

χ2(x,λ)
ω(λ)

∫ 0

−1
Φ1(y, λ)f(y)dy , x ∈ (0, 1]

(5.7.9)

formülü geçerlidir.

�spat: Özde§erlerden farkl� olan∀λ ∈ C için 5.1.1 diferansiyel denkleminin Φi(x, λ), χi(x, λ)

çözümleri lineer ba§�ms�z olduklar�ndan bu denklemin genel çözümü,

u(x, λ) =





c1Φ1(x, λ) + d1χ1(x, λ) , x ∈ [−1, 0)

c2Φ2(x, λ) + d2χ2(x, λ) , x ∈ (0, 1]
(5.7.10)
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³eklinde ifade edilebilir. Burada c1, c2, d1, d2 key� sabitlerdir.
Sabitin de§i³imi yöntemini kullanarak homojen olmayan

−u′′ + q(x)u = λu− f(x) (5.7.11)

diferansiyel denkleminin genel çözümünü,

u(x, λ) =





c1Φ1(x, λ) + d1χ1(x, λ) , x ∈ [−1, 0)

c2Φ2(x, λ) + d2χ2(x, λ) , x ∈ (0, 1]
(5.7.12)

³eklinde arayal�m. Sabitin de§i³imi yöntemi gere§i s�ras�yla, c1(x, λ) ve d1(x, λ)

fonksiyonlar� x ∈ [−1, 0) için,





c
′
1(x, λ)Φ1(x, λ) + d′1(x, λ)χ1(x, λ) = 0

c
′
1(x, λ)Φ

′
1(x, λ) + d′1(x, λ)χ

′
1(x, λ) = f(x)

(5.7.13)

denklem sisteminin, c2(x, λ) ve d2(x, λ) fonksiyonlar� da x ∈ (0, 1] için,





c
′
2(x, λ)Φ2(x, λ) + d′2(x, λ)χ2(x, λ) = 0

c
′
2(x, λ)Φ

′
2(x, λ) + d′2(x, λ)χ

′
2(x, λ) = f(x)

(5.7.14)

denklem sistemininin çözümünden bulunacakt�r. λ özde§er olmad�§�ndan,

W (Φ1(λ), χ1(λ); x) =

∣∣∣∣∣∣
Φ1(x, λ) χ1(x, λ)

Φ
′
1(x, λ) χ

′
1(x, λ)

∣∣∣∣∣∣
6= 0

ve

W (Φ2(λ), χ2(λ); x) =

∣∣∣∣∣∣
Φ2(x, λ) χ2(x, λ)

Φ
′
2(x, λ) χ

′
2(x, λ)

∣∣∣∣∣∣
6= 0
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olur. O halde 5.7.13 ve 5.7.14 denklem sistemlerinin herbiri tek çözüme sahiptir. Bu
çözümler x ∈ [−1, 0) için c1 ve d1, x ∈ (0, 1] için c2 ve d2 olmak üzere,

c
′
1(x, λ) = − 1

ω1(λ)
f(x)χ1(x, λ) =⇒ c1(x, λ) =

1

ω1(λ)

∫ 0

x

f(y)χ1(y, λ)dy + c1(λ)

d′1(x, λ) =
1

ω1(λ)
f(x)Φ1(x, λ) =⇒ d1(x, λ) =

1

ω1(λ)

∫ x

−1

f(y)Φ1(y, λ)dy + d1(λ)

c
′
2(x, λ) = − 1

ω2(λ)
f(x)χ2(x, λ) =⇒ c2(x, λ) =

1

ω2(λ)

∫ 1

x

f(y)χ2(y, λ)dy + c2(λ)

d′2(x, λ) =
1

ω2(λ)
f(x)Φ2(x, λ) =⇒ d2(x, λ) =

1

ω2(λ)

∫ x

0

f(y)Φ2(y, λ)dy + d2(λ)

³eklinde bulunur. Buldu§umuz bu de§erler 5.7.12' de yerine yaz�l�rsa,

u(x, λ) =





Φ1(x,λ)
ω1(λ)

∫ 0

x
f(y)χ1(y, λ)dy + χ1(x,λ)

ω1(λ)

∫ x

−1
f(y)Φ1(y, λ)dy

+c1(λ)Φ1(x, λ) + d1(λ)χ1(x, λ) , x ∈ [−1, 0)

Φ2(x,λ)
ω2(λ)

∫ 1

x
f(y)χ2(y, λ)dy + χ2(x,λ)

ω2(λ)

∫ x

0
f(y)Φ2(y, λ)dy

+c2(λ)Φ2(x, λ) + d2(λ)χ2(x, λ) , x ∈ (0, 1]

(5.7.15)

homojen olmayan 5.7.11 diferansiyel denkleminin genel çözümü elde edilmektedir.
Buldu§uz bu son ifade diferansiyellenirse,

u′(x, λ) =





Φ
′
1(x,λ)

ω1(λ)

∫ 0

x
f(y)χ1(y, λ)dy +

χ
′
1(x,λ)

ω1(λ)

∫ x

−1
f(y)Φ1(y, λ)dy

+c1(λ)Φ
′
1(x, λ) + d1(λ)χ

′
1(x, λ) , x ∈ [−1, 0)

Φ
′
2(x,λ)

ω2(λ)

∫ 1

x
f(y)χ2(y, λ)dy +

χ
′
2(x,λ)

ω2(λ)

∫ x

0
f(y)Φ2(y, λ)dy

+c2(λ)Φ
′
2(x, λ) + d2(λ)χ

′
2(x, λ) , x ∈ (0, 1]

(5.7.16)

ifadesi bulunur. Son iki e³itli§i kullanmakla Li(u) , i = 1, 2, 3, 4 için a³a§�daki e³itlikler
elde edilir. i = 1 için,

L1(u) = u(−1)

=
Φ1(−1, λ)

ω1(λ)

∫ 0

x

f(y)χ1(y, λ)dy

+ c1(λ)Φ1(−1, λ) + d1(λ)χ1(−1, λ)
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elde edilir.

u(−1) = Φ1(−1, λ) = 0

u′(−1) = −1 =⇒ Φ
′
1(−1, λ) = −1

olup bu de§erler bir üstteki e³itlikte yerine yerine yaz�l�rsa,

L1(u) = d1(λ)χ1(−1, λ)

= d1(λ)(Φ1(−1, λ)χ
′
1(−1, λ)− Φ

′
1(−1, λ)χ1(−1, λ))

= d1(λ)ω1(λ)

= 0 (5.7.17)

bulunur. ω1(λ) 6= 0 oldu§undan,

d1(λ) = 0 (5.7.18)

bulunur.
Benzer ³ekilde i = 2 için,

L2(u) = λu(1)− u′(1)

=
1

ω2(λ)
{λχ2(1, λ)− χ

′
2(1, λ)}

∫ 1

0

f(y)Φ2(y, λ)dy

+ c2(λ){λΦ2(1, λ)− Φ
′
2(1, λ)}

+ d2(λ){λχ2(1, λ)− χ
′
2(1, λ)} (5.7.19)

bulunur.

u(1) = 1 =⇒ χ2(1, λ) = 1

u′(1) = λ =⇒ χ
′
2(1, λ) = λ

e³itliklerinden dolay� Φ2(x, λ) ve χ2(x, λ) a³a§�daki denklemleri sa§lar.

λ χ2(1, λ)− χ
′
2(1, λ) = 0 (5.7.20)

λ Φ2(1, λ)− Φ
′
2(1, λ) = ω2(λ) (5.7.21)
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5.7.20− 5.7.21 e³itlikleri 5.7.19' da yerine yaz�l�rsa,

L2(u) = c2(λ)ω2(λ) = 0 (5.7.22)

formülü bulunur. ω2(λ) 6= 0 oldu§undan

c2(λ) = 0 (5.7.23)

bulunur. Yine benzer ³ekilde i = 3, 4 için,

L3(u) = u(+0)− δu(−0)

=
Φ2(+0, λ)

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy + c2(λ)Φ2(+0, λ) + d2(λ)χ2(+0, λ)

− δ{χ1(−0, λ)

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy − c1(λ)Φ1(−0, λ)− d1(λ)χ1(−0, λ)}

=
Φ2(+0, λ)

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy − χ1(−0, λ)

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy

− c1(λ)Φ1(−0, λ) + d2(λ)χ2(+0, λ) (5.7.24)

L4(u) = u′(+0)− γu′(−0)

=
Φ
′
2(+0, λ)

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy + d2(λ)χ
′
2(+0, λ)

− γ{χ
′
1(−0, λ)

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy − γ c1(λ)Φ
′
1(−0, λ)} (5.7.25)

bulunur. Buldu§umuz bu Li(u) = 0 , i = 1, 2, 3, 4 e³itlikleri dikkate al�n�rsa
c1(λ) ve d2(λ) sabitlerini bulmak için a³a§�daki lineer denklem sistemi elde edilir.

δ c1(λ)Φ1(−0, λ)− d2(λ)χ2(+0, λ) =
Φ2(+0, λ)

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy

− δ
χ1(−0, λ)

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy

γ c1(λ)Φ
′
1(−0, λ)− d2(λ)χ

′
2(+0, λ) =

Φ
′
2(+0, λ)

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy

− γ
χ
′
1(−0, λ)

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy
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φi(x, λ) ve χi(x, λ) (i=1,2) çözüm fonksiyonlar�n�n tan�m�ndan yararlan�l�rsa lineer
denklem sisteminin determinant� için

∣∣∣∣∣∣
δ Φ1(−0, λ) −χ2(+0, λ)

γ Φ
′
1(−0, λ) −χ

′
2(+0, λ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Φ2(+0, λ) −χ2(+0, λ)

Φ
′
2(+0, λ) −χ

′
2(+0, λ)

∣∣∣∣∣∣
= −ω2(λ) 6= 0

e³itli§i bulunur. Bu determiant s�f�rdan farkl� oldu§u için lineer denklem sisteminin bir
tek çözümü bulunur. Bu sistem çözülürse, c1(λ) ve d2(λ) katsay�lar� için,

c1(λ) =
1

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy (5.7.26)

d2(λ) =
1

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy (5.7.27)

denklemler elde edilir. Sonuç itibariyle 5.7.18, 5.7.23, 5.7.26, 5.7.27 de§erleri
5.7.15' de yerine yaz�l�rsa,

u(x, λ) =





Φ1(x,λ)
ω1(λ)

∫ 0

x
f(y)χ1(y, λ)dy + χ1(x,λ)

ω1(λ)

∫ x

−1
f(y)Φ1(y, λ)dy

+Φ1(x,λ)
ω2(λ)

∫ 1

0
f(y)χ2(y, λ)dy , x ∈ [−1, 0)

Φ2(x,λ)
ω2(λ)

∫ 1

x
f(y)χ2(y, λ)dy + χ2(x,λ)

ω2(λ)

∫ x

0
f(y)Φ2(y, λ)dy

+χ2(x,λ)
ω1(λ)

∫ 0

−1
f(y)Φ1(y, λ)dy , x ∈ (0, 1]

(5.7.28)

formülü bulunur.

Buradan,

Φ(x, λ) =





Φ1(x, λ), x ∈ [−1, 0)

Φ2(x, λ), x ∈ (0, 1]

χ(x, λ) =





χ1(x, λ), x ∈ [−1, 0)

χ2(x, λ), x ∈ (0, 1]
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tan�mlar�n� kullanarak 5.7.28 formülü a³a§�daki ³ekilde yeniden yaz�labilir.

u(x, λ) =
χ(x, λ)

ω(λ)

∫ x

−1

Φ(y, λ)f(y)dy +
Φ(x, λ)

ω(λ)

∫ 1

x

χ(y, λ)f(y)dy

+





1
δγ

Φ1(x,λ)
ω(λ)

∫ 1

0
χ2(y, λ)f(y)dy , x ∈ [−1, 0)

χ2(x,λ)
ω(λ)

∫ 0

−1
Φ1(y, λ)f(y)dy , x ∈ (0, 1]

(5.7.29)

Böylece s�n�r-de§er-geçi³ probleminin rezolventi elde edilir. 5.7.29 formülünden Green
fonksiyonu kolayca bulunabilir. Yani;

G(x, y; λ) =





χ(x,λ) Φ(y,λ)
ω(λ)

, −1 ≤ y ≤ x ≤ 1, x.y > 0

χ2(x,λ) Φ1(y,λ)
ω(λ)

, −1 ≤ y ≤ x ≤ 1, x.y < 0

Φ(x,λ) χ(y,λ)
ω(λ)

, −1 ≤ x ≤ y ≤ 1, x.y > 0

1
δγ

Φ1(x,λ) χ2(y,λ)
ω(λ)

, −1 ≤ x ≤ y ≤ 1, x.y < 0

(5.7.30)

ile gösterilirse u(x, λ) rezolventi

u(x, y) =

∫ 1

−1

G(x, y; λ)f(y)dy (5.7.31)

³eklinde yaz�labilir. BöyleceGreen fonksiyonunun 5.7.30 formülü ile ifade edilebilece§i
gösterilmi³ oldu.
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5.7.2 Rezolvent Operatörü

Bu kesimde her yerde λ ∈ C parametresinin özde§er olmad�§� kabul edilecektir. Ayr�ca
bu kesimde 5.1.1−5.1.5 s�n�r-de§er-geçi³ probleminin üretti§i ve 5.6.3−5.6.5 e³itlikleri
ile tan�ml�

A : H −→ H

simetrik operatörünün rezolventi olan

R(λ,A) := (λI − A)−1 : H −→ H

operatörü kurulacakt�r. Bunun için F =


 f(x)

f1


 ∈ H eleman� için

(λI − A)U = F (5.7.32)

operatör denkleminin her F ∈ H için V =


 v(x)

v(1)


 ∈ D(A) çözümünün mevcut

olup olmad�§�n�, mevcut ise tek olup olmad�§�n�, çözümünmevcut ve tek oldu§u durumda
ise R(λ,A) : H −→ H rezolvent operatörünün s�n�rl� olup olmad�§�n�n ara³t�r�lmas�
gerekir. 5.7.32 operatör denklemi ile hem denklemi , hem de s�n�r ³artlar� homojen
olmayan,

L(u) := −u
′′

+ q(x)u = λu− f(x), x ∈ [−1, 0) ∪ (0, 1] (5.7.33)

L1(u) := u(−1) = 0 (5.7.34)

L2(u) := u′(1)− λu(1) = f1 (5.7.35)

L3(u) := u(+0)− δu(−0) = 0 (5.7.36)

L4(u) := u′(+0)− γu′(−0) = 0 (5.7.37)

s�n�r-de§er-geçi³ problemi e³de§erdir. Önceki kesimde 5.7.33 denkleminin genel
çözümünün 5.7.15 formülü ile verildi§i ispatlanm�³t�. 5.7.33−5.7.37 s�n�r-de§er-geçi³
probleminin çözümünü bulmak için 5.7.15 ifadesini 5.7.34 − 5.7.37 s�n�r ve geçi³
³artlar�nda yerine yazarak, 5.7.17, 5.7.19, 5.7.24 ve 5.7.25 formüllerinden yararlan�larak
bir önceki kesime benzer ³ekilde c1(λ), d1(λ), c2(λ), d2(λ) sabitleri bulunur. L1(u) = 0
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s�n�r ³art�ndan 5.7.18 gere§i

d1(λ) = 0 (5.7.38)

L2(u) = f1 s�n�r ³art�ndan 5.7.22 gere§i

c2(λ)ω2(λ) = f1 =⇒ c2(λ) =
f1

ω2(λ)
(5.7.39)

bulunur. Bulunan son iki e³itli§i 5.7.15' de yerine yaz�p, 5.7.24−5.7.25 formüllerinden
de yararlan�l�rsa, c1(λ) ve d2(λ) katsay�lar� için a³a§�daki lineer denklem sistemi elde
edilir.

δc1(λ)Φ1(−0, λ) − d2(λ)χ2(+0, λ) =
Φ2(+0, λ)

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy

− χ1(−0, λ)

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy +
f1 Φ2(0, λ)

ω2(λ)

γ c1(λ)Φ
′
1(−0, λ) − d2(λ)χ

′
2(+0, λ) =

Φ
′
2(+0, λ)

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy

− γ
χ
′
1(−0, λ)

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy +
f1 Φ

′
2(0, λ)

ω2(λ)

Bu lineer denklem sisteminin determinant�,
∣∣∣∣∣∣

δΦ1(−0, λ) −χ2(+0, λ)

γ Φ
′
1(−0, λ) −χ

′
2(+0, λ)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Φ2(+0, λ) −χ2(+0, λ)

Φ
′
2(+0, λ) −χ

′
2(+0, λ)

∣∣∣∣∣∣
= −ω2(λ) 6= 0

s�f�rdan farkl� oldu§undan çözümü vard�r ve tektir. E§er bu lineer denklem sistemi,
bölüm 5.7.1' dekine benzer ³ekilde çözülürse, c1(λ) ve d2(λ) katsay�lar� için a³a§�daki
denklemler

c1(λ) =
1

ω2(λ)

∫ 1

0

f(y)χ2(y, λ)dy +
f1

ω2(λ)
(5.7.40)

d2(λ) =
1

ω1(λ)

∫ 0

−1

f(y)Φ1(y, λ)dy (5.7.41)
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bulunur. c1(λ), d1(λ), c2(λ) ve d2(λ) katsay�lar� 5.7.15' de yerlerine yaz�l�rsa
5.7.33− 5.7.37 problemin çözümünün mevcut oldu§u, tek oldu§u ve

v(x, λ) =





Φ1(x,λ)
ω1(λ)

∫ 0

x
f(y)χ1(y, λ)dy + χ1(x,λ)

ω1(λ)

∫ x

−1
f(y)Φ1(y, λ)dy

+Φ1(x,λ)
ω2(λ)

∫ 1

0
f(y)χ2(y, λ)dy + f1Φ1(x,λ)

ω2(λ)
, x ∈ [−1, 0)

Φ2(x,λ)
ω2(λ)

∫ 1

x
f(y)χ2(y, λ)dy + χ2(x,λ)

ω2(λ)

∫ x

0
f(y)Φ2(y, λ)dy

+χ2(x,λ)
ω1(λ)

∫ 0

−1
f(y)Φ1(y, λ)dy + f1Φ2(x,λ)

ω2(λ)
, x ∈ (0, 1]

(5.7.42)

biçiminde ifade edilebilece§i gösterilmi³ olur. 5.7.29 ve 5.7.31 ifadeleri dikkate al�narak
sonuncu e³itlik

V (x, λ) =

∫ 1

−1

G(x, y; λ)f(y)dy +
f1

ω2(λ)
Φ(x, λ) (5.7.43)

³eklinde yaz�labilir.

Teorem 5.7.2. E§er λ özde§er de§ilse her F ∈ H için 5.7.32 operatör denkleminin
bir tek

R(λ; A)F = V =


 v(x)

v(1)


 ∈ D(A)

çözümü bulunur ve her F ∈ D(A) için

R(λ,A) (λ I − A) F = F (5.7.44)

e³itli§i sa§lan�r.

Lemma 5.7.3. Her F ∈ H ve Imλ 6= 0 olan her reel olmayan λ say�s� için

R(λ; A) : H −→ H

operatörünün D(R(λ,A)) tan�m bölgesi bütün H uzay�d�r. Imλ 6= 0 olan her λ için
bu operatör s�n�rl�d�r ve

‖R(λ; A)F‖ ≤ |Imλ|−1 ‖F‖ (5.7.45)
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e³itsizli§ini sa§lar.

�spat: Imλ 6= 0 olsun. Bir önceki teorem gere§i R(λ; A) operatörünün tan�m bölgesi
bütün H uzay�d�r. Key� F ∈ H alal�m ve

V = R(λ; A) F (5.7.46)

ile gösterelim. O halde

λV − AV = F =⇒ AV = λV − F

e³itli§i sa§lanacakt�r. Buradan

〈AV, V 〉H = 〈λV − F, V 〉H = λ〈V, V 〉H − 〈F, V 〉H

〈V,AV 〉H = 〈V, λV − F 〉H = λ〈V, V 〉H − 〈V, F 〉H

e³itlikleri elde edilir.

A operatörünün simetrik oldu§unu dikkate alarak sonuncu iki e³itlik taraf tarafa ç�kar�l�rsa,

(λ− λ)〈V, V 〉H = 〈F, V 〉H − 〈V, F 〉H

elde edilir. Buradan
|Imλ| ‖V ‖2

H = |Im〈F, V 〉H | (5.7.47)

yaz�l�r. Di§er taraftan Cauchy-Schwartz e³itsizli§i gere§i,

|Im〈F, V 〉H | ≤ |〈F, V 〉H |
≤ ‖F‖H ‖V ‖F (5.7.48)

elde edilir. 5.7.47 ve 5.7.48' den

‖R(λ,A)F‖H = ‖V ‖H ≤ 1

|Imλ| ‖F‖H
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e³itsizli§i bulunur. Böylece 5.7.45 ifadesi ispatlanm�³ olur.

Lemma 5.7.4. 5.1.1− 5.1.5 s�n�r-de§er-geçi³ problemine uygun olan ve 5.6.4− 5.6.6

e³itlikleri ile tan�ml� olan
A : H −→ H

operatörü kendine e³leniktir.

�spat: Bir önceki Lemma 5.7.5' de Imλ 6= 0 olacak ³ekildeki her λ ∈ C kompleks
say�s�n�n A operatörünün regüler de§eri olaca§� gösterilmi³ti. O halde λ = ± i için
(iI −A) ve (−iI−A) operatörlerinin de§er bölgeleri olan R(iI −A) ve R(−iI −A)

lineer alt uzaylar� bütün H Hilbert uzay� ile çak�³acak. Dolay�s�yla

Ni := (R(iI − A))⊥ , N−i := (R(−iI − A))⊥

ortogonal tümleyenlerinin her biri sadece ve sadece 0 ∈ H s�f�r eleman�ndan ibaret
olacak. Dolay�s�yla A∗ e³lenik operatörünün D(A∗) tan�m kümesi için Teorem 3.5.1
gere§i

D(A∗) = D(A)

e³itli§i sa§lan�r. Böylece A operatörünün kendine e³lenik oldu§u ispatlanm�³ oldu.
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5.8 Diferansiyel-Operatör S�n�r-De§er-Geçi³ Probleminin �fadesi, �zomor�u§u,
Rezolventinin Normunun De§erlendirilmesi, Spektrumu ve Özde§erlerinin
Asimptoti§i

5.8.1 Giri³

Bu bölümde B : L2(−1, 0) ⊕ L2(0, 1) −→ L2(−1, 0) ⊕ L2(0, 1) soyut lineer operatör
olmak üzere,

−u
′′
(x) + q(x)u(x) + (Bu)(x) = λu(x), x ∈ [−1, 0) ∪ (0, 1] (5.8.1)

diferansiyel operatör denkleminden,

u(−1) = 0 (5.8.2)

u′(1) = λu(1) (5.8.3)

s�n�r ³artlar�ndan ve

u(+0) = δu(−0) (5.8.4)

u′(+0) = γu′(−0) (5.8.5)

geçi³ ³artlar�ndan olu³an s�n�r-de§er-geçi³ problemi incelenecektir. Burada q(x) [-1,0)
ve (0,1] aral�klar�n�n herbirinde sürekli fonksiyon, B ise soyut (genel) lineer operatördür.
Özel olarak seçti§imiz s�n��ardan al�nan B operatörleri için bu problemin diskret
spektrumlu oldu§u gösterilecek, spektrumu içeren aç�lar bulunacak, kompleks düzlemin
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bu aç�lar�n d�³�nda kalan bölgesinde verilmi³ 5.8.1 − 5.8.5 probleminin rezolventinin
normu de§erlendirilecek ve ayr�ca bu problemin özde§erlerinin asimptoti§i bulunacakt�r.
Bu problemin klasik Sturm-Liouville Problemlerinden üç esas fark� vard�r;
1) Verilen denklem sadece diferansiyel ifadeleri de§il ayr�ca B soyut (genel) lineer
operatörünü içermektedir.
2) Verilen aral�kta süreksizlik noktas�n�n bulunmas� ve bu süreksizlik noktas�nda
problemin geçi³ ³artlar�ya birlikte verilmesidir.
3) λ kompleks özde§er parametresinin sadece denklemde de§il ayn� zamanda s�n�r
³artlar�n�n birinde de bulunmas�d�r.

5.8.2 S�n�r-De§er-Geçi³ Probleminin �zomor�u§u

D(B) ⊃ W 2
2 (−1, 0)⊕W 2

2 (0, 1) oldu§unu kabul ederek, verilmi³ problemin
H = L2(−1, 0)⊕L2(0, 1)⊕C Hilbert uzay�nda üretti§i operatörü A ile gösterelim. Yani

A : H −→ H

D(A) = { U =


 u(x)

u1


 : u(x) ∈ W 2

2 (−1, 0)⊕W 2
2 (0, 1),

u(−1) = 0, u(+0) = δu(−0),

u′(+0) = γu′(−0), u1 = u(1) } (5.8.6)

olmak üzere

AU =


 −u′′ + qu + Bu

u′(1)


 (5.8.7)

e³itlikleriyle tan�mlayal�m. F =


 f(x)

f1


 ∈ H olmak üzere

(λI − A)Φ = F (5.8.8)
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denklemini göz önüne alal�m ve bu denklem için ileride kullan�lacak olan

H1 = { U =


 u(x)

u1


 : u(x) ∈ W 2

2 (−1, 0)⊕W 2
2 (0, 1),

u(−1) = 0, u(+0) = δu(−0),

u′(+0) = γu′(−0), u1 = u(1) } (5.8.9)

lineer uzay�n� tan�mlayal�m. Bu uzayda

U =


 u(x)

u(1)


 , V =


 v(x)

v(1)


 ∈ H1

elemanlar�n�n iç çarp�m�n�

〈U, V 〉H1 = 〈u, v〉W 2
2 (−1,0) + 〈u, v〉W 2

2 (0,1) (5.8.10)

ile tan�mlayal�m.

Lemma 5.8.1. H1 bir Hilbert uzay�d�r.

�spat: Önce 5.8.10 formülünün gerçekten bir iç çarp�m oldu§unu gösterelim. Bunun
için iç çarp�m aksiyomlar�ndan sadece

〈U,U〉H1 = 0 =⇒ U = 0

aksiyomunun sa§land�§�n� göstermekyeterlidir. (�ç çarp�m�n di§er aksiyomlar�n�n sa§land�§�
aç�kt�r.)

〈U,U〉H1 = 0 =⇒ 〈u, u〉W 2
2 (−1,0) + 〈u, u〉W 2

2 (0,1) = 0

=⇒ 〈u, u〉W 2
2 (−1,0) = 0 ∧ 〈u, u〉W 2

2 (0,1) = 0

=⇒ u(x) ≡ 0 ∧ u(x) ≡ 0

=⇒ u(−1) = 0 ∧ u(1) = 0 =⇒ U = 0
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�imdi H1 iç çarp�m uzay�n�n Hilbert uzay� oldu§u gösterilecektir. Bunun için H1

uzay�ndan al�nan key� bir Cauchy dizisinin yak�nsak oldu§unu göstermek gerekir. O
halde key� {Un}, n = 1, 2, ... cauchy dizisi alal�m ve bu dizinin yak�nsak oldu§unu
gösterelim.
∀ε > 0, ∃n0(ε) ∈ N öyle ki ∀ n, m > n0(ε) için,

‖Un − Um‖2
H1

= 〈Un − Um, Un − Um〉H1

= 〈un − um, un − um〉W 2
2 (−1,0) + 〈un − um, un − um〉W 2

2 (0,1)

= ‖un − um‖2
W 2

2 (−1,0) + ‖un − um‖2
W 2

2 (0,1)

olur. {Un} cauchy dizisi oldu§undan dolay�,

‖Un − Um‖2
H1
−→ 0 (n,m →∞)

olup buradan,

‖un − um‖2
W 2

2 (−1,0) −→ 0 ve ‖un − um‖2
W 2

2 (0,1) −→ 0 (n,m →∞)

elde edilir. Bu ise {Un} ∈ H1, n = 1, 2, ... cauchy dizisinin W 2
2 (−1, 0) ve W 2

2 (0, 1)

Hilbert uzaylar�nda da bir Cauchy dizisi oldu§unu gösterir. W 2
2 (−1, 0) ve W 2

2 (0, 1)

Hilbert uzay� olduklar�ndan,

‖un − u∗0‖2
W 2

2 (−1,0) −→ 0 ve ‖un − u∗∗0 ‖2
W 2

2 (0,1) −→ 0 (n →∞)

olacak ³ekilde u∗0 ∈ W 2
2 (−1, 0) ve u∗∗0 ∈ W 2

2 (0, 1) fonksiyonlar� mevcuttur.

W 2
2 (−1, 0) ⊂ C[−1, 0] ve W 2

2 (0, 1) ⊂ C[0, 1]

gömülmeleri sürekli oldu§undan dolay�,

‖un − u∗0‖2
C[−1,0] −→ 0 ve ‖un − u∗∗0 ‖2

C[0,1] −→ 0 (n →∞)

olur. Buradan da

‖Un − Um‖2
H1

= ‖un − u∗0‖2
C[−1,0] + ‖un − u∗∗0 ‖2

C[0,1] −→ 0 (n →∞)
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yaz�l�r.

u0 =:





u∗0, x ∈ [−1, 0)

u∗∗0 , x ∈ (0, 1]
(5.8.11)

ile tan�mlan�rsa,

un(−1) −→ u0(−1) = 0

un(1) −→ u0(1) (n →∞)

un(+0)− δun(−0) −→ 0 (n →∞)

u′n(+0)− γu′n(−0) −→ 0 (n →∞)

yaz�l�r. Buna göre u0(−1) = 0 ,

U0 =


 u0(x)

u0(1)


 ∈ H1 ve ‖Un − U0‖H1

−→ 0 (n →∞) (5.8.12)

elde edilir. Buda ispat� tamamlar.

Teorem 5.8.1. E§er B operatörü W 2
2 (−1, 0) ⊕W 2

2 (0, 1) uzay�ndan L2(−1, 0) ⊕
L2(0, 1) uzay�na kompakt dönü³üm ise, o halde ∀ ε > 0 say�s� için öyle Rε > 0 , Cε > 0

say�lar� bulunur ki
ε < arg λ < 2π − ε ve |λ| > Rε

³artlar�n� sa§layan her λ ∈ C kompleks say�s� için λI −A dönü³ümü H1 ile H uzay�
aras�nda izomor�zmad�r ve 5.8.8 denkleminin Φ = Φ(λ) çözümleri için

‖Φ‖H1
+ |λ| ‖Φ‖H ≤ Cε ‖F‖H (5.8.13)

Coersitiv e³itsizli§i sa§lan�r.

�spat: ∀λ ∈ C için λI − A : H1 −→ H lineer operatörünün sürekli oldu§u aç�kt�r.
Önce

F =


 f(x)

f1


 , Φ =


 u(x)

u(1)



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gösterimlerinden yararlanarak 5.8.8 operatör denklemini,

λu(x) + u
′′
(x)− (Bu)(x) = f(x)

u(−1) = 0

λu(1)− u′(1) = f(1)

u(+0)− δu(−0) = 0

u′(+0)− γu′(−0) = 0

s�n�r-de§er-geçi³ problemi ³eklinde yazal�m ve Gε = {λ ∈ C| ε < | arg λ| < 2π − ε}

L(λ)u := λu(x) + u
′′
(x)− (B1u)(x)

L1(λ)u := u(−1)

L2(λ)u := λu(1)− u′(1)

L3(λ)u := u(+0)− δu(−0)

L4(λ)u := u′(+0)− γu′(−0)

ile gösterilim. O halde (S.Y. Yakubov ve Y.Y. Yakubov' un , 1999) makalesindeki
Teorem 3.4. gere§i öyle Rε > 0 say�s� mevcuttur ki, λ ∈ Gε ve |λ| > Rε ³artlar�n�
sa§layan λ kompleks say�lar� için,

L̃(λ) : u → (L(λ)u, L1(λ)u)

operatörü

{u : u ∈ W 2
2 (−1, 0)⊕W 2

2 (0, 1), u(−1) = 0, u(+0) = δu(−0), u′(+0) = γu′(−0)

‖u‖H1
= ‖u‖W 2

2 (−1,0) + ‖u‖W 2
2 (0,1)}

uzay� ile L2(−1, 0) ⊕ L2(0, 1) ⊕ C aras�nda izomor�zmad�r. Buradan λI − A lineer
dönü³ümünün H1 ile H aras�nda izomor�zma oldu§u görülür. Yine (S.Y. Yakubov ve
Y.Y. Yakubov' un , 1999) makalesindeki 3.20 e³itsizli§inden direkt olarak talep olunan
5.8.13 e³itli§ide elde edilmi³ olur. Bu ise Teoremin ispat�n� tamamlar.
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Sonuç 5.8.1. B : W 2
2 (−1, 0)⊕W 2

2 (0, 1) −→ L2(−1, 0)⊕L2(0, 1) operatörü kompakt
ise, ∀ε > 0 say�s� için öyle Rε > 0, say�s� bulunur ki

ε < | arg λ| < 2π − ε ve |λ| > Rε (5.8.14)

³artlar�n� sa§layan her λ ∈ C kompleks say�s� 5.8.7 ile tan�ml� olan A operatörünün
regüler de§eridir ve A operatörünün R(λ,A) = (λI − A)−1 rezolventi için 5.8.14

bölgesinde (aç�s�nda)
‖R(λ,A)‖ ≤ Cε |λ|−1 (5.8.15)

e³itsizli§i sa§lan�r ve R(λ,A) rezolvent operatörü H uzay�ndan H1 uzay�na s�n�rl�d�r.

Teorem 5.8.2. 5.8.1 Teoreminin ³artlar� sa§land�§�nda verilmi³ ε > 0 için λ ∈ Gε ve
|λ| > Rε ³artlar�n� sa§l�yan ∀λ ∈ C için

R(λ,A) : H −→ H

rezolvent operatörü kompaktt�r.

�spat: Önce H1 ⊂ H gömülmesinin kompakt oldu§unu görelim.

Un =


 un(x)

un(1)


 ∈ H1 , n = 1, 2, ....

key� s�n�rl� bir dizi olsun. O halde un(x) ∈ W 2
2 (−1, 0)⊕W 2

2 (0, 1) , n = 1, 2, ... dizisi
s�n�rl� olur.

W 2
2 (−1, 0) ⊂ L2(−1, 0) ve W 2

2 (0, 1) ⊂ L2(0, 1)

gömülmeleri kompakt oldu§undan (S.Y. Yakubov ve Y.Y. Yakubov, 1999)

δγ ‖unk
− u∗0‖L2(−1,0) −→ 0 ve ‖unk

− u∗∗0 ‖L2(0,1) −→ 0 (n →∞) (5.8.16)

olacak ³ekilde u0(x) ∈ L2(−1, 0) ⊕ L2(0, 1) fonksiyonu ve {unk
} alt dizisi bulunur.

Di§er taraftan
W 2

2 (−1, 0) ⊂ C[−1, 0] ve W 2
2 (0, 1) ⊂ C[0, 1]
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gömülmeleri sürekli olduklar�ndan {unk
(1)} say�sal dizisi s�n�rl�d�r. O halde bu dizinin

yak�nsak olan {unks
(1)} alt dizisi mevcuttur. Bu alt diziyi

lim
s→∞

unks
(1) = u1 (5.8.17)

ile gösterelim ve U0 =


 u0(x)

u1


 ∈ H , u0(x) =


 u∗0(x) , x ∈ [−1, 0)

u∗∗0 (x) , x ∈ (0, 1]


 eleman�n�

gözönüne alal�m. Bu takdirde

∥∥Unks
− U0

∥∥2

H
= δγ

∥∥unks
− u∗0

∥∥2

L2(−1,0)
+

∥∥unks
− u∗∗0

∥∥2

L2(0,1)
+

∣∣unks
(1)− u1

∣∣2
C

oldu§u için 5.8.16− 5.8.17 ifadeleri gere§i

∥∥Unks
− U0

∥∥2

H
−→ 0 (n →∞) (5.8.18)

yaz�l�r. Demek ki H1 ⊂ H gömülmesi kompaktt�r. Di§er taraftan (S.Y. Yakubov ve
Y.Y. Yakubov ,1999) makalesindeki Teorem 3.4 gere§i R(λ,A) operatörü λ ∈ Gε ve
|λ| > Rε için H- dan H1− ya s�n�rl�d�r. Dolay�s�yla R(λ,A) operatörü H- dan H- a
kompaktt�r.

Sonuç 5.8.2. 5.8.6− 5.8.7 e³itlikleriyle tan�ml� A operatörü diskret spektrumludur.

5.8.3 Esas Diferansiyel K�sm�na Göre Kompakt Olan Operatörle Etkilenmi³
S�n�r-De§er-Geçi³ Probleminin Özde§erlerinin Asimptoti§i

5.8.1− 5.8.5 s�n�r-de§er-geçi³ problemi verilsin. Önceki k�s�mda oldu§u gibi
H := L2(−1, 0)⊕ L2(0, 1)⊕ C olmak üzere

A : H −→ H

lineer operatörünü 5.8.6− 5.8.7 e³itlikleri ile tan�mlanm�³t�.
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B1 : H −→ H

operatörünü ise F =


 f(x)

f1


 olmak üzere

D(B1) = D(A) (5.8.19)

B1F =


 (Bf)(x)

0


 (5.8.20)

e³itlikleri ile tan�mlayal�m. Bu takdirde 5.8.1− 5.8.5 s�n�r-de§er-geçi³ problemi

(A + B1)u = λu (5.8.21)

e³itli§i ³eklinde yaz�labilir. Bu durumda 5.8.1 − 5.8.5 s�n�r-de§er-geçi³ probleminin
özde§erleri ile A+B1 operatörünün özde§erleri ayn� olaca§�ndan A+B1 operatörünün
özde§erleri incelenecektir.

Lemma 5.8.2. E§er B1 lineer operatörü s�n�r-de§er-geçi³ probleminin esas k�sm�n�n
üretti§i A lineer operatörüne göre kompakt ise 5.8.1 − 5.8.5 s�n�r-de§er-geçi³
probleminin spektrumu diskrettir ve bu problemin Ψ+

α aç�s� içinde kalan ve
|λ1,α| ≤ |λ2,α| ≤ .... olacak biçimde s�ralanm�³ (her özde§er kat� say�da yaz�lm�³t�r)
λn,α özde§erlerinin mutlak de§erleri için,

|λn,α| = 4π2n2 + o(n2) , n −→∞ (5.8.22)

�spat: A operatörünün kendine e³lenik oldu§u Lemma 5.7.4 de ispatlanm�³t�. �imdi
A operatörü için Teorem 3.13.4' in ³artlar�n�n sa§land�§� gösterilecektir.
A operatörünün özde§erleri için Teorem 5.5.1 de elde edilen,

Sn =
πn

2
+ O(

1

n
) (5.8.23)
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asimptotik formül gere§i,

λn = S2
n =

(
πn

2
+ O(

1

n
)

)2

=⇒ λn =
π2n2

4
+ O(1) (λ = s2)

bulunur. Bu durumda α < O(1) < β olmak üzere

π2n2

4
+ α ≤ λn ≤ π2n2

4
+ β

olacak ³ekilde α , β ∈ R say�lar� bulunur. Buradan,

∑

π2n2

4
+β≤r

1 ≤ N+(r, A) ≤
∑

π2n2

4
+α≤r

1 (5.8.24)

elde edilir. Sonuncu e³itsizlikten,
[∣∣∣∣∣

√
4(r − β)

π2

∣∣∣∣∣

]
≤ N+(r, A) ≤

[∣∣∣∣∣

√
4(r − α)

π2

∣∣∣∣∣

]
=⇒

[∣∣∣∣
2

π

√
r − β

∣∣∣∣
]
≤ N+(r, A) ≤

[∣∣∣∣
2

π

√
r − α

∣∣∣∣
]

bulunur. Burada [|.|] ile reel say�n�n tam de§eri gösterilmi³tir. Di§er taraftan her M ∈ R
reel say�s� ve yeteri kadar büyük r pozitif reel say�s� için,

√
r −M =

√
r

√
1− M

r
=
√

r

(
1 + O(

1

r
)

)
=
√

r + O(
1√
r
), r −→∞

asimptotik e³itli§i sa§land�§�ndan sonuç itibariyle

N+(r, A) =
2
√

r

π
+ O(

1√
r
), r −→∞ (5.8.25)

asimptotik e³itli§i bulunur. O halde bu son ifadeden
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lim

r −→∞
ε −→ 0

N+ (r(1 + ε), A)

N+(r, A)
= lim

r −→∞
ε −→ 0

2
√

r(1 + ε) + O( 1√
r(1+ε)

)

2
√

r + O( 1√
r
)

= lim

r −→∞
ε −→ 0

2
√

1 + ε + O(1
r
)

2 + O(1
r
)

= 1 (5.8.26)

bulunur. O halde Teorem 3.13.4 gere§i 0 < α < π
2
olacak ³ekildeki her α say�s� için,

lim
r−→∞

N+ (r, α, A + B1)

N+(r, A)
= 1 (5.8.27)

elde edilir. Buradan

N+ (r, α, A + B1) = N+(r, A) + o(N+(r, A)) =
2
√

r

π
+ o(

√
r), r −→∞ (5.8.28)

bulunur.

L = A + B1 operatörünün spektrumu diskret oldu§u için 0 < α < π
2
' yi sa§layan her α

için L operatörünün Ψ+
α aç�s� içerisinde kalan özde§erleri mutlak de§erlerinin artmas�na

göre s�ralanabilir. Yani bu özde§erler,

|λ1,α| ≤ |λ2,α| ≤ |λ3,α| ≤ ...

³eklinde (her özde§er kat� say�da yaz�lmak üzere) numaraland�r�labilir. O halde 5.8.28

formülünden

n =
2

√|λn,α|
π

+ o(
√
|λn,α|) (5.8.29)

elde edilir. E³itli§in her iki taraf�n�n karesi al�n�p düzenlenirse,

π2n2 = 4|λn,α|+ o(|λn,α|) (5.8.30)
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bulunur. Dolay�s�yla,

π2n2 = 4|λn,α|+ an |λn,α| (5.8.31)

olmak üzere limn−→∞ an = 0 olacak ³ekilde {an} reel say�lar dizisi bulunabilir.
Buradan

|λn,α| = π2n2

4 + an

=⇒ |λn,α| = 4π2n2 + o(n2) , n −→∞ (5.8.32)

asimptotik formülü bulunur. Böylece 5.8.22 formülü ispat edilmi³ olur.

Teorem 5.8.3. Lemma 5.8.1' in ³artlar� sa§land�§�nda 5.8.1 − 5.8.5 s�n�r-de§er-geçi³
probleminin spektrumu diskrettir ve

|λ1| ≤ |λ2| ≤ |λ3| ≤ ...

olacak ³ekilde numaralanm�³ (her özde§er kat� say�da yaz�lmak üzere) λn özde§erleri
için,

λn = 4π2n2 + o(n2) , n −→∞ (5.8.33)

asimptotik formülü geçerlidir.

�spat: Teorem 5.8.2 gere§i 0 < α < π
2
³art�n� sa§layan her α say�s� için A + B1

operatörünün Ψ+
α aç�s�n�n d�³�nda kalan özde§erlerinin say�s� sonludur. Bu say�y� Kα ile

A + B1 operatörünün özde§erlerini ise {λn}∞n=1 ile gösterirsek, {λn}∞n=1 özde§erlerini,

λn+kα = λn,α, n = 1, 2, ... (5.8.34)

olacak ³ekilde s�ralayabiliriz. 0 < α < π
2
olacak ³ekilde key� α0 say�s�n� alarak

sabitle³tirirsek ve K0 = Kα0 ile gösterirsek bir önceki teoremdeki 5.8.32' den ve
5.8.34' den A + B1 operatörünün mutlak de§erlerinin özde§erleri için,

|λn| = |λn−K0,α| = 4π2(n−K0)
2 + o((n−K0)

2)

= 4π2n2 + o(n2) , n −→∞ (5.8.35)
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asimptotik formülünü bulmu³ oluruz.
{λn} özde§erlerinin asimptoti§ini bulmak için önce, Reλn ve Imλn reel say� dizilerinin
asimptoti§ini bulaca§�z.Yine Teorem 5.8.1 gere§i 0 < α < π

2
olacak ³ekildeki her α için

n ≥ nα oldu§unda,
Reλn

|λn| > cos α,
Imλn

|λn| < sin α,

olacak ³ekilde nα do§al say�s� mevcuttur. Son e³itsizlikten.

cos α ≤ lim
n→∞

inf
Reλn

|λn| ≤ lim
n−→∞

sup
Reλn

|λn| ≤ 1,

0 ≤ lim
n−→∞

inf
Imλn

|λn| ≤ lim
n−→∞

sup
Imλn

|λn| ≤ sin α

elde edilir. α (0 < α < π
2
) say�s� key� oldu§undan son e³itsizlikten α −→ 0 almakla

limite geçersek,
lim

n−→∞
Reλn

|λn| = 1 ve lim
n−→∞

Imλn

|λn| = 0

e³itliklerini elde ederiz. Bu e³itliklerden ise s�ras�yla,

Reλn = |λn|+ o(|λn|) = 4π2n2 + o(n2) ve Imλn = o(|λn|) = o(n2)

asimptotik e³itlikleri bulunur. Son iki e³itlikten kolayca

λn = 4π2n2 + o(n2) , n −→∞ (5.8.36)

asimptotik formülü elde edilir.

Teorem 5.8.4. E§er B : L2(−1, 0) ⊕ L2(0, 1) −→ L2(−1, 0) ⊕ L2(0, 1) operatörü
W 2

2 (−1, 0)⊕W 2
2 (0, 1) uzay�ndan L2(−1, 0)⊕ L2(0, 1) uzay�na kompakt dönü³üm ise

5.8.1 − 5.8.5 s�n�r-de§er-geçi³ probleminin spektrumu diskrettir ve |λ1| ≤ |λ2| ≤ ...

olacak ³ekilde s�ralanm�³ (her özde§er kat� say�da yaz�lmak üzere) {λn} özde§erleri için,

λn = 4π2n2 + o(n2) , n −→∞ (5.8.37)

asimptotik formülü geçerlidir.
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�spat: Özel olarak Bu = q(x)u olmak ³art�yla 5.8.6 − 5.8.7 e³itli§iyle tan�ml� A
operatörü için 5.8.1 teoreminin ³artlar� sa§lanaca§� için 5.8.2 teoremi gere§i,

R(λ,A) : H −→ H1

operatörü s�n�rl� olacakt�r. Di§er taraftan,
B : W 2

2 (−1, 0) ⊕ W 2
2 (0, 1) −→ L2(−1, 0) ⊕ L2(0, 1) operatörü kompakt oldu§u için

5.8.19− 5.8.20 e³itli§iyle tan�ml� B1 : H1 −→ H operatörüde kompakt�r. O halde

B1R(λ,A) : H −→ H

operatörü kompaktd�r.
YaniB1 lineer operatörü A lineer operatörüne göre kompaktd�r. Dolay�s�yla 5.8.1−5.8.5

problemi için 5.8.4 Teoreminin ³artlar� sa§lan�r. Bu da ispat� tamamlar.



6. SONUÇ

Bu yüksek lisans tez çal�³mas�nda ,

u′′(x) + q(x)u(x) + (Bu)(x) = λu(x), x ∈ [−1, 0) ∪ (0, 1]

diferansiyel-operatör denkleminden,

u(−1) = 0

u′(1) = λu(1)

s�n�r ³artlar�ndan ve de x = 0 süreksizlik noktas�ndaki

u(+0) = δu(−0)

u′(+0) = γu′(−0)

geçi³ ³artlar�ndan olu³an s�n�r-de§er-geçi³ probleminin baz� spektral özellikleri incelenmi³tir.
Matematik �zi§in farkl� �ziksel yap�lara sahip olan iki maddesi aras�ndaki bir çok iletim
(�s� ve madde iletimi) problemleri incelenirken s�n�r ³artlar� ile birlikte geçi³ ³artlar� da
ortaya ç�kmaktad�r. Fakat bizim problemimizdeki en belirgin fark geçi³ ³artlar�n�n yan�
s�ra denklemde B soyut lineer operatörün bulunmas�d�r. B operatörüne örnek olarak,
Bu = p(x)u′(x) + q(x)u′(x),
Bu = p(x)u′(c1) + q(x)u′(c2), c1, c2 ∈ [−1, 0) ∪ (0, 1] verilebilir.
Tezde bulunan sonuçlar teorik olmas�na ra§men, giri³ bölümünde de belirtildi§i gibi
mekanik ve �zi§in bir çok somut problemlerinin analitik ve yakla³�k çözümlerinin
bulunmas�nda uygulanabilir.
Sonuç olarak tez çal�³mam�zda inceledi§imiz problem bir çok yönde genelle³tirilebilir.
Örne§in tezde uygulad�§�m�z yöntemlerle yüksek mertebeden diferansiyel-operatör
denklemlerden ve daha genel s�n�r ³artlar�ndan olu³an s�n�r de§er problemleri de ara³t�r�labilir.
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