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Bu tezde sinir sartlarindan birinde 6zdeger parametresi bulunduran bir diferansiyel-operator
smir-deger-gecis probleminin bazi1 spektral 6zelliklerini arastirdik. Bu c¢alisma bes
boliimden olusmaktadir. Birinci boliimde, arastirilan konunun giincelligi, uygulama
alanlari, teorik ve pratik énemi hakkinda kisa bilgiler verdik. Ikinci boliimiinde tez
konumuzla ilgili yapilmis olan ¢aligmalar hakkinda bilgi verdik. Ucgiincii béliimde
caligmamiz igin gerekli olan baz1 temel tanim ve teoremleri verdik. Dordiincii boliimde
problemimizle ilgili olan yardimci baglangig-deger problemlerini inceleyerek, problemimiz
icin temel ¢6ziim fonksiyonlarini tanimladik ve bu fonksiyonlar i¢in asimptotik formiiller
elde ettik. Daha sonra bu formiillerden yararlanarak 6zdegerler i¢in asimptotik formiiller
bulduk. Son boliim tezimizin orjinal kismini olusturmaktadir. Bu bdliimde denkleminde

soyut lineer operator bulunduran sinir-deger-gegis probleminin 6zdegerleri i¢in asimptotik
formiiller bulduk.
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by examining some auxiliary initial-value problems we define fundamental solutions
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1. GIRIS

Bilindgi gibi bir ¢ok matematiksel fizik problemlerinin ¢dziimii i¢in uygulanan bazi
yontemler, uygun adi diferansiyel denklemler icin siir deger problemlerinin spektral
Ozelliklerinin aragtirilmasini gerektirmektedir. Bu 6zelliklere 6rnek olarak dzdegerler ve
0zfonksiyonlarin asimptotiginin bulunmasi, Green fonksiyonunun inga edilmesi, rezolvent

operatdriiniin kurulmasi v.b. 6zellikler gosterilebilir.

Bir¢ok matematiksel fizik probleminin, degiskenlerine ayirma yontemiyle incelenebilmesi
icin Sturm-Liouville tipinde problemlerin 6zelliklerinin incelenmesi gerekmektedir. Bu
tiir problemlerin 6nemi matematiksel fizik problemlerinin ¢6ziimiinde etkin bigcimde
uygulanabilmesidir. Ancak ¢agdas mekanik ve fizigin talepleri yeni ve standart (alisilmis)

olmayan siir-deger problemlerinin incelenmesi ihtiyacini ortaya koymustur.

Bu tez ¢aligmasinin esas konusu bir diferansiyel operator sinir-deger-gecis problemi icin
yukarida bahsettigimiz 6zelliklerin incelenmesidir. Tez ¢alismasinda incelenen problemin
ifadesi klasik Sturm-Liouville problemlerin ifadesinden asagidaki farklar1 bulundurmaktadar.
1) Denklemde soyut (genel) lineer operator bulunmaktadir.

2) Verilen aralikta siireksizlik noktas1 vardir ve siireksizlik noktasinda problem ge¢is
sartlariyla birlikte verilmistir.

3)Ayrica sinir sartlarindan bir tanesinde 6zdeger parametresi bulunmaktadir.



2. LITERATUR OZETIi

Matematik fizigin problemleri genelde kismi diferansiyel denklemlerin bazi baslangic ve
siir sartlarint saglayan ¢éziimlerin bulunmasina indirgenmektedir. Boyle problemlerin
incelenmesi i¢in c¢ok farkli yontemler gelistirilmistir. Bu ydntemlerin bir kisminin,
ornegin; ozellikle Fourier yonteminin(degiskenlere ayirma yonteminin) esaslandirilmasi
adi diferansiyel denklemler i¢in sinir deger problemleminin spektral 6zelliklerinin
incelenmesini gerektirmektedir. Boyle sinir deger problemlerinden biri olan Sturm-Liouville
problemleriilk olarak 19. yilizyilin ortalarinda 1s1 ve madde iletimi problemleri arastirilirken

Sturm ve Liouville tarafindan tanimlanmis ve incelenmistir.

Daha sonra bu tip problemlerde Birkoff (1908) 6zdeger parametresine bagli adi diferansiyel
denklemlerin temel ¢oziimleri i¢in asimptotik esitlikler elde etmis, regiiler sinir sartlarini
tanimlamis ve regiiler sinir-deger problemleri i¢in 6zfonksiyonlar ve 6zfonksiyonlara

bagl fonksiyonlar sisteminin tamlig ile ilgili teoremler ispatlamistir.

Tamarkin (1917)’in calismalarinda parametreye bagh lineer diferansiyel denklemler i¢in
temel ¢oziim fonksiyonlainin asimtotigi bulunmus, regiiler ve gii¢lii regiiler sinir sartlar
tanimlanmistir. Bu ¢alismalarda regiiler sinir-deger problemleri i¢in Green fonksiyonu
degerlendirilmis ve tanim bolgesindeki fonksiyonlarin verilmis sinir deger problemlerinin
ozfonksiyonlar1 ve 6zfonksiyonlarina baglanmis fonksiyonlar sistemi

tizerine seriye a¢ilim formiilleri elde edilmis, ayrica sinir sartlarinin giiclii regiiler oldugu

durumda 6zdegerler i¢in asimptotik formiiller bulunmustur.

Daha sonraki yillarda ister soyut teorinin i¢ talepleri, isterse de matematik fizigin 6zelliklede
kuantum mekaniginin, ortaya koydugu yeni yeni somut problemlerin arastirilma ihtiyaglari
diferansiyel operatdrlerin spektral teorisinin hizli bir sekilde gelismesine neden olmustur.
Yiizlerce kitap ve makale yayinlanmasina ragmen Sturm-Liouville problemleri hem
diferansiyel denklemler teorisinin hem de uygulamali matematigin en 6nemli ve en
giincel konusu olmaya devam etmektedir. Bununda esas nedeni matematik fizigin ortaya
koydugu yeni ve giincel problemlerdir. Bdyle yeni problemler klasik Sturm-Liouville

problemlerinin farkl yonlerden genellestirilmesi ve arastirma yontemlerinin gelistirilmesi



ihtiyacim1 ortaya ¢ikarmaktir. Ornegin, farkli fiziksel dzelliklere sahip olan maddeler
arasindaki 1s1 ve madde iletimi problemleri sinir sartlarinin yani sira gegis sartlari da
iceren Sturm-Liouville problemlerinin incelenmesini gerektirmektedir. Son yillarda
Sturm-Liouville problemlerinin farkli yonlerde genellestirilmeleri yaygin olarak
aragtirllmaktadir. Sinir sartlarinda 6zdeger parametresi bulunduran bazi kendine eslenik
sinir-deger problem leri kaynaklar kisminda yer alan Walter (1973), Schneider (1974),
Fulton (1977), Hinton (1970) tarihli ¢alismalarda incelenmistir.

Russakovskiy’ in 1975 deki ¢alismasinda 6zdeger parametresi sinir sartlarina polinomal
sekilde dahil oldugu i¢in uygun lineer A operatdrii Lo(a,b) yerine Lo(a,b) @& CN
seklinde uzaylarda tanimlanmstir.

Shkalikov’un, 1983’ deki ve onu takip eden birkag calismasinda ise 6zdeger parametresinin
hem diferansiyel denkleminin katsay1 fonksiyonlarinda, hem de sinir sartlarinda polinomal
sekilde iceren kendine eslenik olmayan siir-deger problemlerinin arastirilmasi i¢in yeni
yorum ve lineerlestirme yontemi gelistirmistir.

Mubhtarov’un, 1988’ deki ¢alismasinda sinir sartlarinda 6zdeger parametresi bulundurmayan,
ancak denkleminde soyut lineer operator bulunduran ve esas kismi kendine eslenik
olan smir-deger probleminin 6zdegerlerinin asimptotigi bulunmustur. Altinisik’ 1n,
1998 yilinda yazdig: "sinir sartlarinda 6zdeger parametresi bulunduran siireksiz katsay1l
smir-deger problemi" baslikli Doktora Tezi’n de ise sinir sartlarinda 6zdeger parametresi
bulunduran siireksiz katsayili sinir-deger probleminin spektral 6zellikleri arastirilmistir.
Demir’ in 1999 yilinda yazdig1 "bir diferansiyel-operator denklem i¢in sinir-deger problemi"
baglikl1 Doktora Tezi’ n de ise hem sinir sartlarinda 6zdeger parametresi bulunduran hem
de denkleminde soyut linner operatér bulunduran ve esas kismi kendine eslenik olan
sinir-deger probleminin 6zdegerlerinin asimptotigi arastirilmistir.

Son yillarda ise bu alanda en énemli sonuclar Yakubov ve Yakubov’un calismalarinda
elde edilmistir (Yakubov, Y., 1993; 1994; 1998 and Yakubov and Yakubov, 1999; 2000).
Yakubov’ un , 1994’ de yayimlanan kitabinda reguler diferansiyel operatorlerin genel
teorisi kurulmus ve bu teori de yeni yontemler gelistirilmistir. Yakubov’ un son yillardaki
calismalarinda ise irregiiler sinir-deger problemlerinin spektral 6zellikleri arastirilarak
elde edilen sonuglar bir cok fiziksel problemlere uygulanmistir. Yakubov (1995;1998)’

un caligmalar1 6rnek olarak verilebilir.



3. GENEL BIiLGILER

3.1 Sturm-Liouville Denklemi

Sinir-deger problemleri arasinda Sturm-Liouville problemlerinin 6nemli bir yeri vardir.

Sturm-liouville problemini ifade etmeden 6nce herhangi ikinci mertebeden

—u" + p(x)u + r(z)u = As(z)u (3.1.1)

bir diferansiyel denklemin (s(z) ikinci mertebeden, p(z) ise birinci mertebeden siirekli

diferansiyellenebilir fonksiyonlar ise ve s(x) > 0 ise)
—v" +q(y)v = I (3.1.2)

bigiminde denkleme indirgenebilecegini belirtelim. Bununi¢in x ve v = u(z) degiskenlerinden

T b
y:%/ 5@t CZ%/Q 5@t (3.1.3)

o(y) = /s(@)exp (% / ’ p(t)dt) () (3.1.4)

doniistimleri ile yeni y ve v = v(y) degiskenlerine gegmek yeterlidir. Bu durumda [a, b]
aralig1 [0, 7] arahi@ma doniigiir. Bu doniisiim, Liouville doniisiimii olarak adlandirilir

(Titchmars, 1962).

3.1.1 Regiiler Sturm-Liouville Problemi

Genel olarak regiiler Sturm-Liouville problemi Ly[a,b] (—oo < a < b < +0o0) Hilbert
uzayinda verilmis

Lu=: —u" +q(z)u=u, =€ [a,b] (3.1.5)



denkleminin ve bazi sinir sartlarinin olusturdugu sinir deger problemleri olarak tanimlanmaktadar.

Boyle sinir sartlaridan biri de ,
aqu(a) + agu' (a) =0 (3.1.6)

Bru(b) + Bou (b) = 0 (3.1.7)

siir sartlarindan olugmaktadir. Burada ¢(z) verilen aralikta reel degerli siirekli bir
fonksiyon, oy, as, 31, 4 reel sabitler, af + a2 # 0,87 + 55 # 0 ve A € C ise z den
bagimsiz parametredir.

Eger herhangi A\ = )\ degeri i¢in bu problemin asikar olmayan ug € W[a, b] (ug # 0)
¢Oziimii bulunursa, A\g sayisina verilmis problemin d6zdegeri, u = () fonksiyonuna ise
bu 6zdegere uygun 6zfonksiyon denir.

3.1.5—3.1.7 Sturm Liouville probleminde [, b] aralig1 sonlu ve bu aralikta ¢ () fonksiyonu
integrallenebilirse bu tip problemlere regiiler Sturm-Liouville problemler aksi taktirde
yani [a,b] aralig1 sonsuzsa veya ¢(x) fonksiyonu bu aralikta integrallenemezse veya
her iki sart saglaniyorsa, (yani hem aralik sonsuz, hemde ¢(z) fonksiyonu bu aralikta
integrallenemezse) bu tip problemlere singiiler Sturm-Liouville problemleri denir. p(a) =

p(b) olmak tizere eger 3.1.5 diferansiyel denklemi
u(a) = u(b) (3.1.8)

u (a) =u (b) (3.1.9)

smir sartlartyla verilmisgse bu tip problemlere de periyodik Sturm-Liouville problemi

denir.

3.2 Lineer Diferansiyel ifade ve Siir Sartlan

pi(z): R— R (i=0,1,2,...,n), siirekli fonksiyonlar olmak tizere

0(y) = po(@)y™ + pr(@)y" D + 4 pa(x)y,  x € (a,b) (3.2.1)



bicimindeki ifadeye n—mertebeden lineer diferansiyel ifade denir. Genel olarak her x

icin po(z) # 0 oldugu kabul edilir.

Uly) = ayla)+ oy (a) + ... + an_1y™ V(a)
+B80y(b) + By () + . + Ba1y ™I (b) (3.2.2)

bigimindeki ifadeye ise sinir deger ifadesi denir. U;(y), i = 1,2, ..., m ifadeleri sinir deger
ifadeleri oldugunda

Ui(y) =0,i=1,2,...m (3.2.3)

bi¢imindeki esitlikler sinir sartlar1 olarak adlandirilir.

Bilindigi gibi C|a, b ile, [a,b] araliginda tanimli ve siirekli olan fonksiyonlarin lineer
uzay1 gosterilir.

{fecClab] |f, f"....f™ e Cla,b]}

lineer uzay1 ise C™[a, b] biciminde gosterilir. L : C[a, b] — C|a, b]

D(L)=D = {y e Cla,b] |y € C™[a,b],U;(y) =0, i=1,2,...,m}

L(y) = L(y) = po(x)y™ + pi(x)y" ™ + .. + pa(2)y

esitlikleri ile tamimlanan L —lineer operatoriine lineer diferansiyel operator veya £(y)

diferansiyel ifadesi ile

siir sartlarinin {irettigi lineer diferansiyel operator denir (Naimark, 1967).

3.3 Lineer Operatorlerin Ozdeger ve Ozfonksiyonlar:

H kompleks lineer uzayinda tanim bolgesi D(A) olan A : H — H lineer operatorii ve

A kompleks parametresi verilsin. Eger A = \g i¢in

Ay = Aoy (3.3.1)



operator denkleminin yy # 0 ¢Oziimii varsa, \g sayisina A operatoriiniin 6zdegeri, yo €

D(A) elemanina ise bu 6zdegere uygun 6zfonksiyonu denir (Kreyszig, 1989).

3.4 Lsfa,b] Uzayr

Verilmis [a, b] araliginda tanimli ve Lebesgue anlaminda 6lgiilebilir olan f () fonksiyonu
igin | f()|? fonksiyonu bu aralikta Lebesgue anlaminda integrallenebilir ise f () fonksiyon
una [a, b] aralifinda karesi integrallenebilir fonksiyon denir (Naimark, 1967). Karesi

integrallenebilir fonksiyonlarin lineer uzayinda

b _
< f,g >::/ f(z)g(x)dx (3.4.1)

ile gosterilen bu formiil bir i¢ carpim tanimlar (Birbiriyle esdeger olan (yani h.h.h. esit
olan) fonksiyonlar1 esit fonksiyonlar olarak kabul ediyoruz. Bu durumda sifir olarak
h.h.h. sifira esit olan biitiin fonksiyonlar sinifin1 kabul ediyoruz.). Bu sekilde tanimlanan
i¢ carpim uzayinin bir Hilbert uzayi oldugu bilinmektedir. Bu uzay Ls[a, b] ile gosterilir.
[a, b] aralig1 sonlu oldugu durumda Ls(a, b)’den olan herbir fonksiyonun (a, b) araliginda

Lebesgue anlaminda integrallenebilir olacagi aciktir.

3.5 Hilbert Uzaylarinda Simetrik ve Kendine Eslenik Operatorler

Tanmim 3.5.1. H Hilbert uzaymndatanimbolgesi D(A) C H olan A: D(A) C H — H

lineer operatorii verilsin. Eger her =,y € D(A) i¢in
(Az,y)y = (z, Ay)m

esitligi saglaniyorsa, A operatoriine simetrik operator denir (Naimark, 1967).

Tamm 3.5.2. H Hilbert uzayinda D(A) = H olacak sekilde (yani tanim bolgesi her
yerde yogun olacak sekilde ) A: D(A) C H — H lineer operatorii verilsin.



Eger herhangi y € H elemani i¢in dyle 2, € H eleman varsa ki,

(Az,y)i = (7, 2))n

esitligi biitin y € D(A) elemanlar i¢in saglansm, o haldle y — 2, : H — H
doniistimiine A operatoriiniin eslenegi denir (Naimark, 1967) ve A* ile gosterilir. Bu
Ozellige sahip olan biitin y € H elemanlan kiimesi A* operatdriiniin tanim bolgesi

olarak kabul edilir ve D(A*) ile gosterilir.

Sonug¢ 3.5.1. A* operatorii bir lineer operatordiir ve her = € D(A) , y € D(A*) igin

(Az,y)g = (v, A"y)

esitligi saglanir.

Sonu¢ 3.5.2. Her A: H — H simetrik operatori igin D(A) C D(A*)’* dir ve her
x € D(A) igin
A'x = Ax

esitligi saglanir. Yani, her simetrik operatoriin eslenegi bu operatoriin bir genislemesidir

(devanmudir).

Simetrik operatorlerle eslenikleri arasindaki cok 6nemli bir bagintiy1 verebilmek icin 6nce

asagidaki tanimlar1 verelim.

H Hilbert uzay1 verilsin. H x H := {(x,y)|r € H,y € H} kiimesi alistlmis yontemle
lineer uzaya doniistiiriilebilir. Bu lineer uzayda = = (x1,22),y = (y1,y2) € H x H

elemanlar1 i¢in

(T, W ren == (T1,y1)m + (T2, y2)H

esitligi bir i¢ carpim tanimliyor ve bu i¢ carpima gore
He H = (H X H> <'7 >H€BH)

bir Hilbert uzayidir (Kreyszig, 1989).



Tamim 3.5.3. A lineer operatorii verilsin. Eger
I'y:={(z,y) e H® H|x € D(A),y = Ax}

kiimesi H ¢ H Hilbert uzayinda kapal bir kiime ise o halde A operatoriine kapal

operatdr denir. ['4’ ya bu operatoriin grafigi denir.

H Hilbertuzaymmda A : D(A) C H — H lineer operatorii ve A € C kompleks sayisi

verilsin. A + Al operatdriiniin deger bolgesini
R(A+ M) :={Az+ Xz |z € D(A)}

ile gosterelim. Ayrica M C H alt kiimesi verildiginde M ile M kiimesinin ortogonal

tiimleyenini gosterelim:
M*+*={zcH|ye M= (z,9)yg =0}

Simdi asagidaki teoremi ifade edebiliriz (Kreyszig, 1989).

Teorem 3.5.1. H Hilbert uzayinda tanim bolgesi her yerde yogun olan simetrik A
lineer operatorii verilsin. Eger A kapali operator ise o halde I/mA\ # 0 olacak sekilde

her A\ € C kompleks sayisi ve her y € D(A*) elemani i¢in
z=x+y +y2,x € D(A),y1 € (R(A+Ay)) " ye € (R(A+ My))*
olacak sekilde (z,y1,y2) Uglisi var ve tektir.
Bu anlamda D(A*) tanim bolgesi
D(A*) = D(A) + (R(A+ M\))*" + (R(A + X))*

biciminde gosterilebilir (Debnath ve Mikusinski, 2005).
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Sonuc¢ 3.5.3. A Hilbert uzayinda tanim bdlgesi her yerde yogun olan kapali ve simetrik
A:D(A) C H — H lineer operatdrii i¢in

(RLA+ M) =Hve (R(A+ X)) =H

olacak sekilde A € C ve ImA # 0 sayist mevcut ise A operatorii kendine esleniktir,

yani A* = A’ dir.

H Hilbert uzayinda verilmis A simetrik operatoriiniin kendine eslenik olmasi igin
D(A*) = D(A) olmasinin gerek ve yeter sart oldugu agiktir (Debnath ve Mikusinski,
2005).

Teorem 3.5.2. H Hilbert uzayinda A simetrik operatorii verilsin. Eger A € C sayisi
varsa ki (A — XI) ve (A — \I) operatorlerin deger bolgeleri H uzayi ile ¢akissm, o
halde A operatorii kendine esleniktir (Debnath ve Mikusinski, 2005).

Ispat: Herhangi bir y € D(A*) elemanini alalim. O halde x € D(A) igin
(Az,y) = (z,y")
esitligi saglanir. Buradan
(A= M)z,y) = (Az,y) — Oz, y) = (2,y") — (&, \y) = (z,9" = Ny)  (3.5.1)
esitligi elde edilir. A — A\l operatoriiniin degerleri biitin H uzayi ile ¢akistigi i¢in
(A= X)z=y"— Ny (3.5.2)

olacak sekilde z € D(A) elemani bulunur. A operatorii simetrik oldugu i¢in
(2,5" = M) = (0, (A= AD)2) = (A= X)a,2) (v € D(A)  (3.53)

esitligi saglanir. 3.5.1,3.5.2 ve 3.5.3 esitliklerinden

(A= XDz,y) = (A= )z, 2) (3.5.4)
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esitligi biitin 2 € D(A) igin saglanir. (A — \I) operatdriiniin deger bolgesi biitiin H

uzay1 ile cakisik olacagindan sonuncu esitlikten
y==z¢€ D(A)

elde edilir. Boylece D(A) C D(A*) oldugu ispatlanmis oldu. Ispat bitti.

3.6 Mutlak Siirekli Fonksiyonlar

Tamim 3.6.1. [a, b] araliginda tanimlif fonksiyonu verilsin. Eger V ¢ > 0 igin dyle

0 > 0 sayis1 varsa ki
n

D (bx—ar) <o

k=1

her sonlu sayida ayrik (aq, by), (az, b2), ...(a,, b,) araliklar i¢in
| Zf(bk) — flay) [< e
k

olsun, 0 zaman bu f fonksiyonuna [a, b] araliginda mutlak siireklidir denir (burada n € N;

(ax, by) C [a,b], k =1,2,...n) (Balc1, 2000 ).

Teorem 3.6.1. [ fonksiyonu [a,b] de mutlak siirekli ise [a, b] nin hemen-hemen her

noktasinda tiirevlenebilirdir ve f” integrallenebilirdir(Balci, 2000 ).

3.7 Kompleks Fonksiyonlarin Sifir Yerlerinin Sayisi

Tanmim 3.7.1.D C Cbirbdélgeolsun.f : D — Cve 2y € D olsun. Eger f fonksiyonu 2,’
n enaz bir komsulugunda diferansiyellenebilir ise f fonksiyonuna z( noktasinda analitiktir
denir.

Tamm 3.7.2. D C C bir bolge olsun. Eger f : D — C biitiin D bolgesinde
diferansiyellenebilir ise f fonksiyonuna D bolgesinde analitiktir denir.

Tanim 3.7.3. Eger f : C — C biitiin C diizleminde diferansiyellenebilir ise f
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fonksiyonuna tam fonksiyon denir.
Sifirdan farkli olan tam fonksiyonun sifir yerlerinin sonlu veya sayilabilir sayida oldugu
ve de sonlu y1gilma noktasinin bulunmadigi (veya hi¢ olmadigi) kompleks analizden 1yi

bilinmektedir. f : C — C ile tammli f(z) fonksiyonu ve zo € C noktasi verildiginde

Flz0) = f(z0) = . = fF 7V (20) = 0, F#) (29) # 0

ise bu durumda z = 2y noktasina f(z) fonksiyonunun k Kkath sifir yeri denir. Sifirdan
farklh tam fonksiyonlarin herbir sifir yerinin sonlu katli oldugu kompleks analizden iyi

bilinmektedir.

Teorem 3.7.1. (Rouche Teoremi)

Eger f(z) ve ¢(z) kompleks fonksiyonlari kapali diizlenebilir Jordan egrisi olan I’

iizerinde ve i¢inde analitiklerse ve her z € I' i¢in,

[F(2)] > [ (2)]

sart1 saglantyorsa; o halde I' egrisininiginde f(2)+¢(2) fonksiyonunun sifir yerlerinin
sayisi ile f(z) fonksiyonunun sifir yerlerinin sayisi (her sifir yeri kati sayida

hesaplanmak {izere) esittir (Ulucay, 1971).

3.8 Parametreye Bagh Sinir-Deger Probleminin Coziimiiniin Varhg , Tekligi ve

Parametreye Gore Tamhik Teoremi

Teorem 3.8.1. Kabul edelim ki ¢ : [a,b] — R fonksiyonu siirekli bir fonksiyondur. O
halde
—u" +q(x)u = Au, x € [a,b

diferansiyel denkleminin

u(a) =sina, u'(a) =—cosa «a€[0,7)
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sinir sartlarini saglayan bir tek u(z, A) ¢oziimi vardir, tekdir ve bu ¢dziim her = € [a, 0]

icin A € C parametresinin tam fonksiyonudur (Titchmarsh, 1939).

3.9 Asimptotik ifadeler

Kompleks diizlemin herhangi G C C bolgesinde tanimli olan f(z), g(2) ve h(z)

fonksiyonlar1 verilsin. Eger
[f() < Mlg(2)], zeGn{z:[z[> R}
olacak sekilde R > 0, M > 0 sayilar1 mevcutsa
f(z)=0(g(z), z€G, z-— o (3.9.1)

seklinde yazilir. Bu ifadeye asimptotik esitlik denir. Eger,

ise o halde

f(z) =h(z)+0(g(2)), z€G, z-— (3.9.2)

yazilir. 2o € G verilsin. Eger f(2) = g(2)a(z) ve

lim «(z)=0
z—2z0, 2€G

olacak bigimde «(z) : C — C fonksiyonu varsa
f(2) = olg(2), z€G, =— 2 (39.3)

yazilir ve f(z) fonksiyonu zo noktasinin yakin komsulugunda ¢(z)’ye gore sonsuz

kiigtiktiir denir. % fonksiyonu zp noktasmin herhangi komsulugunda smirh ise, yani

eger 2p-1n Oyle komsulugu ve 6yle M>0 varsa ki bu komsulukta



|f(2)| < M|g(z)] olsun. O halde

f(z)=0(9(z)), z€G, z—x (3.9.4)
yazilir. Eger )
. f(z)
P
ise
f(z) ~g(2), 2€G, z-— 2 (3.9.5)

yazilir. Hangi GG bolgesinden bahsedildigi acik sekilde bilinirse bazen z € G ifadesi

yazilmaz.

{an} , {bn} ve {c,} reel veya kompleks say1 dizileri verildiginde In, € N ve IM > 0

varsa ki Vn > ng i¢in | a,, |[< M | b, | olsun, o halde
an = O(by,) (3.9.6)
yazilir. a,, — ¢, = O(b,,) oldugunda ise bu durum
a, = ¢, + O(by) (3.9.7)
seklinde gosterilir. Eger a,, = a,,b,,, «,, — 0 olacak bi¢imde (cv,,) dizisi mevcutsa

(lim 2% = 0 ise)

bu durum

a, = o(by) (3.9.8)

seklinde gosterilir. a,, — ¢, = o(b,) oldugunda ise bu durum
an = ¢, + o(by) (3.9.9)

seklinde gosterilir.  3.9.1 — 3.9.9 seklindeki formiillere asimptotik formiiller denir

(Titchmars, 1962).
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3.10 Green Fonksiyonu

Sirasiyla 3.2.1 ve 3.2.3 ile tammli ¢(y) diferansiyel ifadesinin ve U;(y) = 0, i =
1,2,3,.....;n smir sartlarinin {irettigi L lineer operatorii icin Ly=0 denkleminin bir tek

y=0 asikar ¢6ziimiiniin bulundugunu kabul edelim.

Bu halde /(y) = 0 denkleminin her bir 1, yo, ...., ¥, lineer bagimsiz ¢dziim sistemi igin

det|\U;(yj)|ij=12,..n. 70

olacagindan L operatoriiniin L~! ters operatorii olacak ve bu ters operatdriin

L'f= /bG(x,t)f(t)dt (3.10.1)

biciminde ifade edilebilecegi bilinmektedir. Bu durumda 3.10.1 integral operatdriiniin
G(x,t) cekirdegine L lineer diferansiyel operatoriiniin Green fonksiyonu denir (Naimark,
1967).

Green fonksiyonunun bulunmasi i¢in asagidaki Teorem yaygin bir sekilde uygulanmaktadar.

Teorem 3.10.1. Eger Ly = 0 smir-deger probleminin sadece y = 0 asikar ¢ozliimii
varsa, o halde L lineer diferansiyel operatoriiniin bir tek G(x,t) Green fonksiyonu var

ve bu fonksiyon asagidaki sartlar1 sagliyor:

1. G(z,t) fonksiyonu her ¢ € [a,b] i¢in siireklidir ve x-degiskenine gore biitiin [a, b]
araliginda (n — 2). mertebeye kadar (n — 2’ ci mertebe de dahil olmak tizere ) siirekli

diferansiyellenebilirdir.

2. G(x,t) fonksiyonu her t € (a,b) i¢in [a,t) ve (¢,b] araliklarinin her birinde
x-degiskenine gore (n—1). mertebeden (n — 1’ ci mertebe de dahil olmak iizere ) siirekli
diferansiyellenebilirdir ve (n — 1). mertebeden tiirev fonksiyonu x = t noktasinda

stireksizdir ve 1%@) sigramasina sahiptir, yani

n—1 n—1

gan1 CUF O = e
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3. [a,t)ve (t, b] araliklarinin her birinde G (z, t) fonksiyonu z-degiskenine gore ¢(y) = 0

diferansiyel denklemini ve U;(y) =0, i =1,2,3,.....,n simr sartlarmi sagliyor.

Bunun terside dogrudur. Yani, teoremin sartlar1 altinda (1.) — (3.) sartlarin1 saglayan
bir tek G(x,t) fonksiyonu var ve bu fonksiyon L operatorii igin Green fonksiyonudur

(Naimark, 1967).

3.11 Rezolvent Operatorii, Sinirh ve Kompakt Operatorler, Kompakt Gomiilmeler

Tammm 3.11.1. Ozdeger olmayan her A € C igin L — A operatoriiniin  G(z,t; \)
Green fonksiyonu vardir ve her f € C|a,b] i¢in (L — )y = f simir-deger probleminin
bir tek

b
y(x):/ Gz, t; \) f(t)dt (3.11.1)
¢Oziimii bulunur. Bu ¢6ziime
ly) = Ny (3.11.2)
Uy = 0, i=1,2,....n (3.11.3)

sinir-deger probleminin Rezolventi,

(LA f = /bG(x,t; N F(8)dt

ters operatoriine ise L operatoriiniin veya (3.11.2),(3.11.3) sinir-deger probleminin

Rezolvent operatorii denir ve R(\, L) ile gosterilir:
R\ L)=(L—-X)"

(Naimark, 1960)

Not: Baz1 kaynaklarda (A — L)™' operatdriine Rezolvent operatorii denir.

Eger verilmis A € C kompleks sayist igin A/ — L operatoriiniin sinirl ters operatorii

varsa A\ sayisina L operatoriiniin regiiler degeri denir.
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L operatoriiniin regiiler degeri olmayan biitiin kompleks sayilar kiimesine L operatoriiniin
spektrumu denir ve o(L) ile gosterilir. L operatoriiniin regiiler degerler kiimesi ise p(L)

ile gosterilir (Triebel, 1978).

Tammm 3.11.2. X metrik uzayinda £ C X alt kiimesi verilsin. Eger £ kiimesinin
elemanlarindan olusmus her dizinin yakinsak altdizisi varsa bu kiimeye kompakt kiime
denir. Eger bu altdizilerin limitleri £-nin elemani ise £-ye kendi i¢inde kompakt kiime
denir, aksi halde ise E-ye X-e gore kompakt kiime veya E-ye X-de kompakt (bazen
onkompakt ) kiime denir. X kiimesinin kendisi kompakt ise X metrik uzayina kompakt

denir.

Tanim 3.11.3. X ve Y Banachuzayive A: X — Y lineer operatorii verilsin.
A operatoriiniin tanim bolgesini D(A), deger bolgesini R(A)ile gosterelim. Eger
D(A) = X ise ve istenilen her u € X igin

[Aully < Clullx

olacak sekilde bir C' > 0 sayis1 varsa A operatoriine X — Y ye sinirh operat6r denir.

(Yakubov, 1994).

Biitiin sinirth A : X — Y operatorler kiimesini L(X,Y") ile, L(X, X)’ i ise kisaca
L(X) ile gosterecegiz (Yakubov, 1994).

Eger D(A) = X ise ve her M C X smurh kiimesinin A(M) C Y goriintiisii Y de
Oonkompakt ise A operatoriine X’ den Y’ ye giden kompakt operator denir (Kreyszig,
1989).

Tammm 3.11.4. X Banach uzayindan Y Banach uzayma giden bire-bir ve cebirsel
islemleri koruyan J : X — Y doniisiimii verilmisse, o halde X, Y ’ ye gomiilmiistiir
denir. Bu halde J(X) ile X aymi uzaylar olarak kabul edilir vee X C Y olarak

gosterilir. J operatdriine ise gomiilme operatdrii denir (Kreyszig, 1989).
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J: X — Y gOmiilme operatorii siirekli ise X C Y gomiilmesi de siirekli gomiilme
olarak adlandirilir (Triebel, 1978).

J: X — Y gomiilme operatorii kompaktise X C Y gomiilmesi de kompakt gomiilme
olarak adlandirilir (Triebel, 1978).

Eger J(X) goriintii kiimesi, Y de her yerde yogun ise X C Y gomiilmesi de her yerde
yogundur denir (Triebel, 1978) .

Lemma 3.11.1. Asagidaki {i¢ sartin saglandigini kabul edelim.

1) X veY bazlari bulunan birer Banach uzaylaridir ve X yansimalidir.

2) X C Y gomiilmesi de her yerde yogun ve siireklidir.

3) B: X — Y operatorii kompakttir. O halde her ¢ > 0 ve biitiin v € X i¢in

|Bully <& |lullx +C(e) |lully

olacak sekilde C'(¢) > 0 sayis1 vardir (Yakubov, 1994).

3.12 Sobolev Uzaylarn

(a,b) araliginda tamimli ve lokal integrallenebilir olan wu(x) ve v(x) fonksiyonlar

verilsin. Eger sonsuz mertebeden diferansiyellenebilir ve

sup o = {z [ o(z) # 0} C (a,b)
sartin1 saglayan her ¢(x) fonksiyonu i¢in

b b
/ u(e)p™ (@)dz = (~1)" / v(@)p(z)dz

esitligini sagliyorsa v(z) fonksiyonuna wu(z) fonksiyonunun n (n € N) mertebeden

genellestirilmis tiirevi denir (Triebel, 1978).
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(a,b) C R araligi ¢ > 1 reelsayisive m > 0 tamsayisi verildiginde W;"(a,b) ile (a,b)
araliginda Lebesque anlaminda dlgiilebilir ve  u'(z), u (z),....,u™ (z) genellesmis
tiirevleri bulunan ve her k = 1,2,.....,m i¢in u®) € Ly(a,b) olan fonksiyonlarin lineer

uzayini gosterecegiz. Bu uzayda

1
m 2
(U, V)wyr(ap) = (Z )La(a, b))
0

formiilii bir i¢ ¢arpim tanimliyor. Bu uzaylara Sobolev uzaylar1 denir. Bu uzaylarin

Hilbert uzaylar1 oldugu biliniyor (Triebel, 1978).

Ileride, literatiirde de oldugu gibi Lo (a,b) yerine bazen W2 (a,b) yazacagiz.

3.13 Diskret Spektrumlu Operatorler

H Hilbert uzay1 verilsin ve A : H — H operatorii kapali olsun ( hatirlatalim ki, eger
un € D(A) (n € N), u,, — u, Au, — v sartlarini saglayan her w, (n € N) dizisi

icin u € D(A) ve Au = v ise A operatorine H > da kapal operator denir).

A: H — H, D(A) H-daheryerde yogun yani D(A) = H olacak bi¢ide simirli olmayan
A lineer kapali operatdrii verilsin . Eger en az bir A = )¢ i¢in R(A\, A) = (A — \I)™!

mevcut ve kompakt ise A-ya diskret spektrumlu operatdr denir (Kato).

Boyle operator igin N (r, A) ile A operatériniin {\ € C | |\| < r} kapali yuvarinda
bulunan 6zdegerlerin katlarinin toplamini gosterecegiz.  N(r, A) fonksiyonuna A

operatdriiniin 6zdegerlerinin dagilim fonksiyonu denir. ¢ C C herhangi kiime oldugunda

N(r,¢,A) = > oo (3.13.1)

[A;(A)|<r, Ao

gosterimini kullanacagiz.

= {AeC : |arg(£N)| < a}
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oldugunda N(r, ¥ | A) yerine Ni(r, a, A) yazacagiz. R, ve R_ uygun olarak
pozitif ve negatif reel sayilar kiimesini gosterdiginde N(r , R+ , A) yerine sadece

Ni(r, A) yazacagiz.

A operatorii diskret spektrumlu oldugunda onun 6zdegerlerinin [A;| < [Aq| < [A3] < ...
seklinde mutlak degerlerinin azalmayan sirasina gore siralandigini kabul edecegiz ( bu
durumda her 6zdegerin kat1 sayida yazildigimi da kabul ediyoruz). Her bir my,(A) C H
kok linealinde baz vektorleri segelim ve biitiin bu baz vektorlerinden f; € m,,(4), i =
1,2,.... olmak lizere {f;}, ¢ =1,2,... vektorler sistemini olusturalim. Bu sisteme A

operatoriiniin kok vektorler sistemi (6z ve serik vektorler sistemi) denir.

Tanim 3.13.1. Eger A: H — H lineer operatdriiniin hi¢ olmazsa bir tane A regular
degeri mevcutsa ve D(B) D D(A) olacak sekilde B : H — H lineer operatdrii igin
BR(A, A) operatorii kompakt ise o halde B operatoriine A operatoriine gore(nazaran)

kompakt operator denir.

Teorem 3.13.1. Eger S diskret spektrumlu kendine eslenik operator ise, o halde S°
ye gore kompakt olan her lineer B operatorii i¢in S + B de diskret spektrumludur
(Gohberg ve Krein, 1969).

Teorem 3.13.2. S kendine eslenik diskret spektrumlu lineer opeatorii ve S° ye gore
kompakt olan B lineer operatorii olsun. Eger S operatoriiniin sonsuz sayida pozitif
0zdegeri mevcut ise ve

Ny (r(1+2),S)

=1
N+(T‘,S)

lim
T — 00

e—0

ise o halde 0 < o < 7 olacak sekilde her a sayis1 igin

lim N, (r,a,S + B)

=1
r——00 N+(T7S)

dir (Markus ve Matsayev , 1982).



4. METOTLAR

(Cagdas mekanik ve fizigin talepleri geregi, son yillarda 6zdeger parametresini hem
diferansiyel denkleminde hem de sinir sartlarinda igeren sinir-deger problemlerine ilgi
gittikge artmaktadir.

Bu ¢alismada klasik Sturm-Liouville problemlerinden ii¢ esas farki olan ve sadece esas
kism1 diferansiyel operatér olan bir sinir-deger-gecis probleminin spektral 6zellikleri
(6zdegerler ve 6zfonksiyonlarin asimptotik ifadelerinin bulunmasi, Green fonksiyonunun
insa edilmesi, rezolvent operatdriiniin kurulmasi, 6zelliklerinin incelenmesi ve normunun
degerlendirilmesi v.b.) incelenmistir. Bu farklar asagidaki bi¢cimde siralanabilir.

[lk olarak 6zdeger parametresinin sadece diferansiyel denklemde degil ayn1 zamanda sinir
sartlarinin bir tanesinde de bulunmasidir. Ikinci olarak verilen aralikta siireksizlik noktasi
mevcuttur ve bu siireksizlik noktasinda problem gecis sartlariyla birlikte verilmistir.
Sonuncusu ve bizim i¢in en Onemlisi olan denklemde soyut (genel) lineer operator
bulunmasidir.

Tez ¢alismamizda literatiirden bilinen agsagidaki materyal ve metotlardan yararlanilmastur.
Diferansiyel operatdrler teorisinden regiiler Sturm-Liouville teorisi ve yontemleri ;
fonksiyonel analizden bazi temel tanimlar ve simetrik operatdrlerin bazi temel 6zellikleri
Kompleks analizden tam fonksiyonlarin sifir yerleri ile ilgili olan Rouche teoremi ; Lineer
diferansiyel denklemler teorisi Lineer integral denklemlerin ¢éziimlerinin asimptotigini
bulma yontemleri ; asimptotik degerlendirmelerle ilgili yontemler ile birlikte Sturm-Liouville
teorisi yontemleri ve kaynaklar kisminda yer alan ¢alismalardan 6zellikle yararlanilmig

olup gosterilmis yontemlerden faydalanilmistir.



5. BULGULAR

Tez caligmamizin esas konusu; Denkleminde soyut lineer operatér bulunduran
u’ (@) + g(z)u(r) + (Bu)(z) = Au(z), z €[-1,0)U(0,1]

diferansiyel denkleminden,
u(—=1)=0
u' (1) = Au(1)

sinir sartlarindan ve de © = 0 siireksizlik noktasindaki
u(+0) = du(—-0)

! (+0) = v/ (~0)

gecis sartlarindan olusan sinir-deger-gecis probleminin bazi spektral dzelliklerinin

incelenmesidir. Biz ilk 6nce asagidaki 5.1.1 —5.1.5 Sturm-Liouville problemini ele aldik.

5.1 Smmr Deger Probleminin ifadesi, Ozdegerlerinin Reelligi ve Ozfonksiyonlarmnin

Ortogonelligi

Bu boliimde ,

Lu:=—u"+q(zx)u= X u, z€[-1,0)U(0,1] (5.1.1)

diferansiyel (Sturm-Liouville) denkleminden bir tanesi A &zdeger parametresine bagl

olan

w(=1) =0 (5.1.2)
Au(1) —u'(1) =0 (5.1.3)

sinir sartlarindan ve x = 0 siireksizlik noktasindaki

w(+0) — Su(—0) = 0 (5.1.4)
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u'(+0) — yu'(—=0) =0 (5.1.5)

gecis sartlarindan olusan Sturm-Liouville probleminin bazi spektral 6zellikleri incelenecektir.
Burada ¢(x); [—1,0) ve (0, 1] araliklarinda stirekli, z = 0 noktasinda ise sonlu ¢(+0)
limit degerlerine sahip olan bir fonksiyon, A kompleks 6zdeger parametresi ve o, 7y reel

katsayilardir. Bundan sonra heryerde 6y > 0 oldugunu kabul edecegiz.

Teorem 5.1.1. 5.1.1 —5.1.5 esitlikleri ile verilmis sinir - deger - gecis probleminin biitiin

6zdegerleri reeldir.

Ispat: 5.1.1 — 5.1.5 simir-deger-gegis probleminin )\ 6zdegerine uygun 6zfonksiyonu u

olsun. %, w’ nun ve A, A\’ nn eslenegi olmak iizere, 5.1.1 — 5.1.5 ve

" +q(z)u = M (5.1.6)
a(-1) = 0 (5.1.7)
(1) = Xu(l) (5.1.8)
u(+0) = du(-0) (5.1.9)
T(+0) = ~A@(-0) (5.1.10)

esitlikleri saglanir. 5.1.1 denklemi w ile 5.1.6 denklemi de u ile ¢arpilip taraf tarafa

cikartilirsa,

! ’ -~

—Tu = (A= Nua (5.1.11)

_
uu

(i — ) = (\— Nug (5.1.12)
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w(—0)7 (—0) = TW(—0)u (=0) — wu(—=1)T (=1) +a(—1)u (1)

0

= ()\—)\)/ wtida (5.1.13)

-1

elde edilir. Diger taraftan 5.1.2 ve 5.1.7 sinir sartlar1 saglandig icin

(1) (~1) — u(—1)T(~1) = 0 (5.1.14)

bulunur. 5.1.14” de elde ettigimiz ifade 5.1.13’ te yerine yazilirsa

w(—0)T (—0) — T(—0)u/(—0) = (A — N) / wiide (5.1.15)

-1

elde edilir. Aym sekilde 5.1.12 ifadesi 0’ dan 1’ e integrallenirse;
1 ol
/ (v’ —uu) de = (N — )\)/ uudx
0 0
ot
(i — 7))L = (A= N) / wiidz
0

w7 (1) —a(W'(1) —  u(+0)T (+0) + @(+0)u' (+0)
= (A—X)/ wtdz (5.1.16)

sinir sartlar1 5.1.16” da yerine yazilirsa

Au(1)a(1) — Au(1)a(1) — {u(+0)@' (+0) — u(+0)u'(+0)} = (A — X) /0 utids

(X = Nu(D)a(1) — {u(+0)@ (+0) — @(+0)u (+0)} = (A — X) / wadr  (5.1.17)

0
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ifadesi elde edilir. 5.1.3 — 5.1.4 ve 5.1.9 — 5.1.10 gegis sartlar1 kullanilarak

u(=0) = u(+0)

1 — lul

u'(—0) ;Y (+0) (5.1.18)
u(—0) = Sﬂ(—l—())

= — lﬂ’

u'(—0) > (+0)

esitlikleri yazilabilir. Bu esitlikler 5.1.15” de yerine yazilirsa,

(+0) (4+0) — H(+O)u'(+0)} =(\— X)/ utdx

— |u
0y -1
elde edilir. Bu son esitlik 5.1.17” de yerine yazilip gerekli diizenlemeler yapilirsa,

0

(X — Au(L)a(1) — 5y (A— ) /

-1

1
utidr = (A — \) / wudz
0

(A=X) {M /0 utdr + /01 utidx + u(l)ﬂ(l)} =0

-1
esitligi bulunur. 6y > 0 ve w 6zfonksiyonu sifirdan farkli oldugundan dolay1 parentez

icindeki ifade sifirdan farklidir. O halde sonuncu esitlikten
A=A

elde edilir. Ispat bitti.
Not Bundan sonra her yerde 0y > 0 oldugunu kabul edecegiz.

Teorem 5.1.2. 5.1.1 — 5.1.5 smir-deger-gecis probleminin iki farkli A\,, ve A\,

0zdegerlerine uygun 6zfonksiyonlar1 w,, ve u, olsun. Bu durumda

57/ um(x)un(:v)d:v+/0 U (T) U (2)dx + U (1)1, (1) = 0 (5.1.19)

-1

esitligi saglanir.
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ispat: u,, ve u, sirasiyla \,, ve \, 6zdegerlerine uygun dzfonksiyonlar oldugundan

—u, + () Uy = Al (5.1.20)
—t, + q()u, = Anty (5.1.21)

esitlikleri saglanir. 5.1.20 esitligi w, ve 5.1.21 esitligi w, ile ¢arpilip taraf tarafa

cikarilirsa

" "

Uy, — Uy Uy, = (A — Ap) U U, (5.1.22)
elde edilir. Bu son esitlik ilk olarak —1” den 0 a integrallenirse,
0 ’ / / O
/ (U, — Uy Uy) dx = (Ny — Ap) / U U, dx
—1 —1
0

(U, — 1, )| = (A — )\n)/ U Up AT

-1

/ /

= i (=0)1,(=0) =t (=0)un(=0) =t (= L)1ty (=1) + 10y, (Lt (1)

0

-1

elde edilir. Problemimizde verilmis olan 5.1.2 sinir sart1 u,,, ve w, 0zfonksiyonlari i¢gin
de gecerli oldugundan,
Um(—1) =0 ve up,(—1)=0

esitlikleri saglanir. Bu degerler 5.1.23’ te yerine yazilirsa,

U (—0)tu,, (—0) =, (—0) 2 (—0) = (A — An) / U U A (5.1.24)

-1

elde edilir. Ayn sekilde 5.1.22 esitligi 0” dan 1’ e integrallenip

/

u,, (1) = At (1) ve u,(1) = A\un(1)
siir sartlart uygulanirsa,

(A = M)t (Dt (1) = [t (F0) i, (40) — w1, (+0) 1, (+0)]

1
= (Am — M) / Upp U AT (5.1.25)
0
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esitligi elde edilir. Yine 5.1.3 — 5.1.4 gecis sartlart kullanilarak

U (—0) = %um(—l—(})

u (—0) = %u;n(%—()) (5.1.26)
Up(—0) = %un(—l—O)
w(=0) = i, (+0

esitlikleri yazilabilir . Bu ifadeler 5.1.24° de yerine yazilirsa

g (HOYL, (40) — 10, (40)un (40)] = (Aom — An) 9 / ot

-1

elde edilir. Elde ettigimiz bu son esitlik 5.1.25° te yerine yazilip gerekli diizenlemeler

yapilirsa,

0 1
A — An) {57/ Uy U dT +/ Uy Un dT + um(l)un(l)] =0
0

-1

elde edilir. )\, # A, oldugundan dolay1,

0 1
57/ umundx—i—/ U Un AT + Uy (1), (1) =0
0

-1

bulunur.

Not: Bu teorem ve klasik Sturm-Liouville teorisindeki uygun teorem dikkate alinirsa,
problemimize 6zgili olan yeni bir ortogonallik kavrami tanimlamamiz gerektigi kolayca
anlagilabilir. O halde 5.1.19 esitligini saglayan w,, ve u,, 6zfonksiyonlarina ortogonaldir
dememiz gerekir. ileride problemimize 6zgii olarak kuracagimiz Hilbert uzay1 ve ortagonellik

kavrami tanimlanacaktir.
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5.2 Verilmis Problemle flgili Bazi Yardimci Baslangic-Deger Problemlerinin Temel

Coziimleri Ve bu Temel Coziimlerle ilgili Onermeler

5.2.1 Baz Yardimci Baslangic Deger Problemleri

Bu béliimde arastirdigimiz 5.1.1 - 5.1.5 smur-deger-gecis problemi ile yakindan ilgili
olan ve sadece [—1,0] veya [0, 1] alt araliklarinda (esas [-1,1] araliginin alt araliklarinda)
verilmis baz1 yardime1 baglangig-deger problemlerinin ¢éziimlerinin mevcut oldugu ve bu
¢cozlimlerin A kompleks 6zdeger parametresine gore biitiin kompleks diizlemde analitik
(tam fonksiyon) oldugu ispat edilecektir. Daha sonra bu ¢odziimlerden yararlanarak
5.1.1 denkleminin 5.1.1 - 5.1.5 sinir-deger-gegis problemi i¢in temel olacak ¢oziimleri

tanimlanacaktir.

Teorem 5.2.1. Her A € C i¢in

—u" (z) + q(x)u(x) = Mu(z), ze[-1,0] (5.2.1)
w(=1) =0 (5.2.2)
d(=1) = -1 (5.2.3)

esitlikleri ile tanimli baslangig-deger probleminin bir tek ®;(z,\) ¢6ziimii bulunur
ve bu ¢oziim her bir x € [—1,0] degeri i¢in A degiskenine gore biitiin kompleks
diizlemde analitiktir. Yani her = € [—1,0] igin A parametresinin tam fanksiyonudur

(Titchmarsh,1962).

Teorem 5.2.2. Her A € Cigin
—u' (z) + q(z)u(z) = Mu(z), = €l0,1] (5.2.4)

w(0) = §®(0, \) (5.2.5)

u'(0) = v @, (0, \) (5.2.6)
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esitlikleri ile tanimli baglangig-deger probleminin bir tek ®o(z, ) ¢6ziimii bulunur ve
bu ¢oziim her bir x € [0,1] degeri igin A degiskenine gore biitiin kompleks diizlemde

analitiktir (yani A degiskeninin tam fonksiyonudur).

Ispat: Oncelikle
denklemini

biciminde yazalim. Bu ifade ard arda iki kere integrallenirse,

u'(x) = /x(q(t) — ANu(t)dt + co(M), z € [0, 1] (5.2.7)

u(z) = /0 " ds /0 (gt = Nu(t)dt + oM + 1 (A, € [0,1] (5.2.8)

bulunur. Bu son ifadedeki integral siras1 degistirilir, gerekli islemler yapilirsa,

u(w) = /0 “(@ = )(gt) — Nult)dt + eo(Nz + r(N) (5.2.9)

esitligi elde edilir. c¢o(\) ve c1(\) ifadelerini elde etmek igin 5.2.5 - 5.2.6 baslangig
sartlarin1 5.2.7 ve 5.2.9’ da yerine koyarsak

bulunur. ¢o(\) ve ¢;(\) degerleri 5.2.9° da yerlerine yazilirsa
u(r) = / (z — t)(q(t) — Nu(t)dt + P, (0, \)x + 6P, (0, \) (5.2.10)
0

elde edilir. 5.2.10 integral denklemi 5.2.4 — 5.2.6 baslangi¢-deger problemi ile esdegerdir.
®y(x,\)” nmin 5.2.4 — 5.2.6 baslangig-deger probleminin bir tek ¢oziimii oldugu ve
V z € [0,1] igin A € C kompleks degiskeninin tam fonksiyonu oldugunu ispatlamak

icin yani @5 (z, ) fonksiyonuna yakinsayan fonksiyon dizisinin insa edilmesi i¢in ardigik
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yaklasimlar metodundan yararlanilacaktir.

up(z,\) = (0, \)x + 6P1(0, ) (5.2.11)
up(x,\) = /x(x —1)(q(t) — Nup—1(t)dt + up(z,\) n =1,2,... (5.2.12)
0

bigiminde tanimlanmis {w,,(z, \)} fonksiyonlar dizisini olugturalim. Bu diziyi kullanarak

up(z, \) + [tun () — Up_1 ()] (5.2.13)
n=1
serisi olugturulur. N > 0 igin, |A| < N oldugunu kabul edelim. 0 < x < 1 igin, ¢(z)
ve u(x) fonksiyonlari siirekli olduklarindan ve de sonlu ¢(+0) limit degerleri mevcut
oldugundan |q(z)| < M ve |u(x)| < K olacak bi¢imde M > 0 ve K > 0 sayilari
mevcuttur.

Bu durumda, |u,(x) —w,_1(x)| ifadesini gozoniine alalm. n =1 igin,

jur () = uo(z)| =

/Ox(x —1)(q(t) — Nug(t)dt + up(x) — up(x)

< / "lat) = Al Juo(8)] | — tldt
< / “a(®)] + 1A lwo®)] | — tldt

< /m(NJrM)K(x—t)dt: (N+M)K/x(:v—t)dt

2

= (N+ MK [xt—%r: (N+ MK {;;;2—%2}

o
2

— |u(2) — uo(z)| < (N+M)K% (5.2.14)



bulunur. n =2

|us () — ua ()]

= [us(7) = (2)]
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i¢in,

A?x—w@w—AMAW#—A?x—@@@—AWdWﬁ

Aﬂaw—xmm@wwm@>@—ww\

< [l = A lus(®) = wa(0)] 1o~ el

2

< [ Qa0+ ) (V+ MK @ -

1

-2
2 x
= —(N+5W)K/ [t?z — %] dt
0

1 4
= SN+ M?KZ

< —/I(N+M)2Kt2(x—t)dt

12
4

< (N+MPK= (5.2.15)

4!

bulunur. Sonug itibariyle n > 0 i¢in Tiimevarim yontemini kullanarak,

esitsizligi kolayca bulunabilir.

x € [0,1] oldugundan 0 < 2" < 1 ve buna bagli olarak,

elde edilir.

2n
lu(2) — w1 (z)] < (N + M)" K (gn)! (5.2.16)
un(z) — 11 (z)] < EMK (5.2.17)

(2n)!

. (N+M"K
y

(2n)!

n=1

sayisal serisi yakinsak oldugundan, 5.2.13 serisi € [0,1] ve N > 0 igin, |A\| < N

sartlariyla birlikte mutlak ve diizgiin yakinsaktir. Diger taraftan 5.2.13 serist N > 0 ve

|A| < N ile tanimlanmig bolgede analitik oldugu igin, ®5(x, \) kismi toplamlar diziside

analitiktir. Diger taraftan serinin yakinsak oldugu durumda {u,(z,\)} fonksiyonlar

dizisinin limiti, serinin kismi toplamlar dizisinin limiti oldugundan 5.2.13’ de n — o0
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i¢in limit almakla,

Do(z,\) = wup(z,\) + [Un () — Up—1 ()]

n

- / C(@ — D) (q(t) — Nt N)dE + 4P, (0, N + 60, (0, \[5.2.18)

esitligi elde edilir. Ayrica 5.2.12 ile tanimlanan {u,(z, \)} fonksiyonlar dizisinin

() — () = / (@) = N s (8) — uns(t))

" 1"

Un () =ty () = (q(x) = A{tn1 (%) = uns(2)}

birinci ve ikincti tiirevleri mevcut oldugu i¢in 5.2.18 serisi « degiskenine gore terim terim

diferansiyellenebilir ve de

o
1" "

Oy(z,A) = Y [ug(x) = 1wy ()]

= > {al@) = MH{un-1(z) — un_a()}

= {a@) = A} {uo(@) + Y _{un-1(2) = un-a(2)}}

— Oy (z,\) = {q(z) — N} Dy(z, ) (5.2.19)

esitligi saglanir. Bu sonu¢ ®s(z, A)’ nin ayni zamanda 5.2.1 denkleminin bir ¢6ziimii

oldugunu gosterir. Ispat bitti.

Sonu¢ 5.2.1. VA € C

Oy(x,\), z€[-1,0)

2w A) = By(z, \), 7 € (0,1]

ile tamimli ®(z, \) fonksiyonu,

—u’ +q(x)u= I, x€[-1,0)U/(0,1] (5.2.20)
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diferansiyel denkleminin birinci sinir garti olan,

u(—=1) =0 (5.2.21)

sartin1 ve de
u(4+0) = du(—0) (5.2.22)
u' (+0) = yu'(—0) (5.2.23)

gecis sartlarinin her ikisini saglar.

Ispat: Her A\ € C teorem 5.2.1° den dolay1, « € [—1,0) i¢in
O(x,\) = Py(z, \)
oldugundan ve de 5.2.2 sinir sart1 saglandigindan dolayz,
B(—1,\) = &, (~1,\) =0

bulunur. Boylece ®(z, \) fonksiyonu 5.2.21 sinir sartin1 saglamis olur. Simdi gegis
sartlarin1 sagladigini gosterelim. 5.2.5 baslangi¢ sartindan dolayz,

(I)Q(O, )\) = (5@1(0, )\)
oldugu agiktir. Bu yiizden de
Dy (0,\) — dP1(0, \) = Do(40,\) — 0P1(—0,A) = (40, A) — 6D(—0,A) =0

— B(+0, ) = 60(—0, \)

elde edilir. Yine aym sekilde 5.2.4 — 5.2.6 baslangic-deger probleminin 5.2.6 sartindan
dolay1
(0, A) = 7@, (0, )

olup buradan,
(40, 1) = @,(0, 1) = 7@, (0, 1) = 7' (=0,\)
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yazilir. Yani
D' (40,\) = 7@ (=0, ))

esitligi elde edilir.
Boylece ®(z, A) fonksiyonunun 5.2.20 denklemini, 5.2.21 smur sartin1 ve de 5.2.22 —
5.2.23 geg¢is sartlarinin her ikisini de sagladigi ispatlanmis olur.

Teorem 5.2.3. Her A € Cigin

—u (x) + q(z)u(z) = Mu(z), = €]0,1] (5.2.24)
u(l) =1 (5.2.25)
W(1) = A (5.2.26)

esitlikleri ile tamimh baslangig-deger probleminin bir tek xo(z,\) ¢oziimii bulunur
ve bu ¢oziim her bir z € [0,1] degeri i¢in A\ degiskenin tam fonksiyonudur. Yani
V z € [0,1] i¢in A kompleks parametresine gore tim kompleks diizlemde analitik

fonksiyondur (Titchmarsh,1962).

Teorem 5.2.4. Her \ € C i¢in

—u' (z) + g(x)u(x) = u(z), xe[-1,0] (5.2.27)
u(0) = % (0, ) (5.2.28)
u'(0) = % X5(0,\) (5.2.29)

baglangig-deger probleminin bir tek yi(z,A) ¢oziimii bulunur ve bu ¢oziim her bir
x € [—1,0] degeri i¢in A degiskeninin tam fonksiyonudur. Yani Vx € [0,1] i¢in A

kompleks parametresine gore tiim kompleks diizlemde analitik fonksiyondur.

Ispat: 5.2.27 denklemi igin Teorem 5.2.2° de ki yontem kullanilarak 5.2.9 integral

denkleminin aynisi1 yazilabilir. Yani

u(z) = / (t = 2)(q(t) = Nu(t)dt + co( N + e () (5.2.30)



35

esitligi yazilir. Simdi ¢y ve c; ifadelerini elde etmek icin 5.2.28 — 5.2.29 bagslangic
sartlarin1 uygulayalim.Bu taktirde

olur. 5.2.30 esitligi x’ e gore tiirevlenirse

o (z) = / (q(t) — Nu(t)dt + co( ) (5.231)

elde edilir. Bu son denklemde 5.4.29 baslangi¢ sart1 uygulanirsa,

W (0) = c(N) = % Ya(0,0)

bulunur. ¢o(A\) ve c1(A) degerleri 5.2.30” integral denkleminde yerlerine yazilirsa,

u(zr) = /x (t —x)(q(t) — Nu(t)dt + % x2(0,A) + % X2(0, Nz (5.2.32)

elde edilir. 5.2.32 integral denklemi 5.2.27 — 5.2.29 baslangi¢-deger problemi ile
esdegerdir. x;(z,\)’ nin 5.2.27 — 5.2.29 baglangi¢-deger probleminin bir tek ¢ozimii
olduguve V x € [—1,0] i¢in A € C kompleks degiskeninin tam fonksiyonu oldugunu
ispatlamak igin, yani x1(x, \) fonksiyonuna yakinsayan fonksiyon dizisinin inga edilmesi
icin ardisik yaklagimlar metodundan yararlanilacaktir. Teorem 5.2.2° nin ispatina benzer

sekilde,

1 1,
up(z,\) = SXQ(O,)\)—F;)@(O,)\)x (5.2.33)

up(z,A) = / (t —2)(q(t) = Nup—1(t)dt + ug(x, ) (5.2.34)

bigiminde {u,(x,\)} fonksiyonlar dizisi olusturulur ve bu diziyi kullanarak,

[e.e]

wo(2, A) + Y [tn(x) — w1 ()] (5.2.35)
n=1
serisi olusturulabilir. N > 0 i¢in |[A| < N,

M = K = A
wg[l_afjo]lcz(xﬂ , nax, |uo(z, A
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olmak iizere 5.2.33 — 5.2.34 esitliklerinin mutlak degerleri incelenecektir. Bu durumda

yine Teorem 5.2.2° nin ispatiyla benzer bigimde,

lur(z) —up(x)| < UVJFM)K%
uz(z) —wi(z)] < <N+M)2K%

esitsizlikleri ve n > 2 i¢in timevarim yontemi kullanilarak,

(5.2.36)

esitsizlikleri elde edilir. = € [—1,0] oldugundan 0 < z?* < 1 olup bir 6nceki

esitsizlikten,

(N+M)"K

) (5.2.37)

|Un(l‘) - un—l(aj)l >~

elde edilir.
§:w+MWK
— (2n)!
sayisal serisi yakinsak oldugundan 5.2.35 serisi € [—1,0] ve N >0 i¢in, |A\| < N
sartlar1 dahilinde mutlak ve diizgiin yakinsaktir. Ayrica 5.2.35 serisi N >0 ve |A| < N
ile tanimlanmis bolgede serinin her terimi analitik oldugu igin, x1(z, A) kismi toplamlar
diziside analitiktir. Ayrica serinin yakinsak oldugu durumda {u,(z,\)} fonksiyonlar
dizisinin limiti ile serinin kismi toplamlar dizisi ayni oldugundan 5.2.34> de n — o0

icin limit almakla,

aale ) = [ (=00 = Nt i+ a0 + 2 G0N (5238)

esitligi elde edilir. Ayrica,

[e.9]

x1(x, A) = up(z, \) + Z [tn () — Up_1(2)] (5.2.39)

n=1
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ifadesi x’ e gore diizgiin yakinsak oldugu icin ve de n > 2 i¢in 5.2.33 — 5.2.34 ile

tanimlanan {u, (x, \)} fonksiyonlar dizisinin,

(1) — (1) = / (4(t) = N {ttns (1) — tina()

1’ 1"

U (2) =t () = (q(x) = A{un(2) — uns(2)}

birinci ve ikinci tlirevleri mevcut oldugundan 5.2.35 serisi x degiskenine gore terim

terim diferansiyellenebilir ve de

o0

i@ A) = Y fun(@) =y (@)]

n=1

= ) {a(=) = M{un_1(z) — upa(2)}

= {a(@) = A} {uo(2) + Y _{un-1(2) = un-a(2)}}

— (@A) = {qg@) = Az, N (5.2.40)

esitligi saglanir. Bu sonug x1(z,A\)’ nin aym zamanda 5.2.27 denkleminin bir ¢6ziimii

oldugunu gosterir. Buda ispati tamamlar.

Sonug 5.4.2. V) € C igin

xi(x,\), = €[-1,0)

T,A) =
Xz ) x2(x, \), =€ (0,1]

ile tamiml y (z, \) fonksiyonu

—u’ +q(x)u= I, z€[-1,0)U/(0,1] (5.2.41)

diferansiyel denklemini,
u' (1) = Au(1) (5.2.42)

ikinci sinir sartini ve de
u(+0) = ou(—0) (5.2.43)

u' (+0) = yu'(—0) (5.2.44)
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gecis sartlarini saglar.

Ispat: Sonug 5.4.1 ile benzer sekilde yapilir.

5.2.2 Temel Coziimler ile Esdeger Olan integral Denklemler

Onceki boliimde ®;(z, \) ve x;(z, \) (i = 1,2) fonksiyonlarinin A kompleks parametresine
gore biitiin kompleks diizlemde analitik fonksiyon olduklar1 ispatlanmisti. Bu bdliimde
yardimc1 baslangic problemlerinin esdeger olduklar1 integral ve integral-diferansiyel

2

denklemler bulunacak ve ilerde her yerde A = s° gosteriminden yararlanilacaktir.

Teorem 5.2.5.V = € C icin, A = s? olmak iizere 5.2.1 — 5.2.3 baslangi¢ deger problemi

u(r) = —% sins(z+1) + % /j sins(z — y)u(y)q(y)dy (5.2.45)
W(zr) = —coss(zx+1)+ /i cos s(x — y)u(y)q(y)dy (5.2.406)

integral denklemleriyle esdegerdir.
ispat: 5.2.1 denklemi
—u" + \u = q(z)u (5.2.47)

seklinde yazilabilir. Bu denklemi ¢6zmek i¢in denklem homojen lineer diferansiyel

denklem gibi kabul edilerek,
U 4+ =0

denkleminin ¢dziimlerinden hareket edilir. Son yazdigimiz denklemin genel ¢6ziimii,
u(z) = co(z) cos VAz + ¢ () sin vV Az

u(z) = co(x) cos st + ¢1(x) sin sx (5.2.48)

seklinde yazilabilir. Burada co(z) = co(x,\) ve c¢i(z) = ¢(x,\) yeni bilinmeyen

fonksiyonlardir. Bu yeni bilinmeyen fonksiyonlari bulmak i¢in iki tane denklem kurulacaktir.
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Bu denklemlerden bir tanesin de cy(z), ¢;(z) fonksiyonlarini dyle segilecek ki
¢o() cos sz 4 ¢, () sin sz = 0 (5.2.49)
esitligi saglansin. 5.2.48 esitliginin her iki yaninda 2’ e gore tiirevi alinirsa,
u' () = —sco(x) sin sz — scy(x) cos sz + ¢, (z) sin sz + s¢i () cos sz
elde edilir. 5.2.49 esitligi bu son buldugumuz ifadede yerine yazilirsa,
u'(z) = —sco(x) sin sz + scy () cos sx (5.2.50)

elde edilir. Tekrar 2’ e gore tiirev alinirsa,

u' (z) = —scy(x) sin sz — sco(x) cos sz + s¢; () cos st — s%¢;(z) sin sz (5.2.51)
esitligi bulunur. 5.2.50 ve 5.2.51 esitlikleri 5.2.47° de yerine yazilirsa,
—s¢y(x) sin sz + sc; (2) cos sz = q(x)u (5.2.52)

esitligi elde edilir. Simdi 5.2.49 ve 5.2.52 esitliklerini bir arada diisiinerek, cy(x) ve

cy(z) degiskenlerine gore lineer denklem sistemi gibi ¢ozersek s # 0 igin,

0 sin sx
, q(z)u scossx G
colx) = = Sf a(e)u (5.2.53)
COS ST sin sx

—SSIN ST SCOS ST

bulunur. Bu esitlik integrallenirse,

ola) = — / " sin sy ¢(y) u(y)dy + co(N) (5.2.54)
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elde edilir. Benzer sekilde,

¢ () = w (5.2.55)

bulunur. Son esitlik integrallenirse,

c(x) =

» |

/f cos sy q(y) u(y)dy + c1(N) (5.2.56)

-1

bulunur. Burada c¢o(\) ve c¢1(A) keyfi sabitlerdir. Buldugumuz 5.2.54 ve 5.2.56
ifadeleri 5.2.48” de yazilip gerekli diizenlemeler yapilirsa,

1 x
u(r) = — S cossT / sin sy q(y) u(y)dy + co(N) cos sx
—1

1 xr
+ B sin sx / cos sy q(y) u(y)dy + c1(\) sin sx
-1

elde edilir. Son ifade diizenlenirse,

u(z,\) = 1 /x sins(x —y) q(y) u(y)dy + co(N) cos sz

S Ja

+ (M) sinsx (5.2.57)

bulunur. Benzer yontemle 5.2.54 ve 5.2.56 esitlikleri 5.2.50° de yerlerine yazilip

gerekli diizenlemeler yapilirsa,

u'(r) = /m cos s(x —y) q(y) u(y)dy — sco(N) sin sx

-1

+  sci() cos sz (5.2.58)

bulunur. Bu durumda 5.2.48 denklemi 5.2.57 integral denklemine indirgenmis olur. O
halde 5.2.57 ve 5.2.58 ifadeleri 5.2.2 — 5.2.3 baslangi¢ sartlarin1 saglar. Bu baslangi¢

sartlart uygulanirsa,

£
—~
|
—_
~—
I

co(A) cos s — ci(A) sins =0 (5.2.59)

<
~
—
|
—_
~—
I

sco(A)sins + scp(A) coss = —1

lineer denklem sistemi bulunur. ¢;(A) ve c¢(\) sabitlerini bulmak i¢in bu lineer

denklem sistemini ¢ozelim. Bunun igin ¢ (x, \) ve c,(z, \) fonksiyonlarmin ¢oziimleri
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bulunurken yapilan islemler tekrarlanilirsa,

1

co(N) = — sin s (5.2.60)
1

a(\) = — coss (5.2.61)

elde edilir. Bu ¢y ve c¢; degerleri 5.3.13 integral denkleminde yerine yazilirsa ve

diizenlenirse,

u(r) = —% sins(z+ 1) + % /i sins(z —y) u(y) q(y)dy (5.2.62)

integral denklemi elde edilir.

Boylece 5.2.1 — 5.2.3 ile verilen baslangic deger problemi 5.2.62 integral denklemine
indirgenmis olur.

Aym sekilde ¢y ve c¢; degerleri 5.2.58 integral denkleminde yerine yazilip gerekli

diizenlemeler yapilirsa 5.2.46 esitliginin de saglandig1 kolayca gosterilebilir.

Sonug¢ 5.2.3. ¢4 (z, \) fonksiyonu asagidaki integral ve integral-diferansiyel denklemleri

saglar.
1. L[
Oy (z,\) = — sin s(x+1)+ g/ sins(x — y)P1(y, N)g(y)dy  (5.2.63)
-1
®y(z,\) = —coss(xz+1)+ / cos s(z — y)P1(y, N)q(y)dy (5.2.64)
-1

Ispat: Once 5.2.63 esitligini ispat edelim. ®;(x,\) fonksiyonu [—1,0] arahiginda
5.2.1 denklemini sagladig: icin,

a()P1(y, A) = DY (y, A) + AD1(y, A)

esitligi saglanir. Buradan,

/I sins(z — y)P1(y,\)dy = /w sin s(z — y) (P (y, \) + A®4(y, \))dy

-1 -1

— )\/ sins(x — y) @1 (y, \)dy

+ / sin s(z — y)®; (y, \)dy (5.2.65)
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esitlikleri bulunur. Esitligin sag tarafindaki ikinci integrale iki kere ard arda kismi

integrasyon uygulanirsa ve 5.2.1 — 5.2.3 probleminin
P (—1,0) =0 ve @ (-1, =-1

baslangi¢ degerlerinden yararlanilip gerekli diizenlemeler yapilirsa,
[ sinste = )8 Nalw)dy = sinste = )8V +s [ consle =) Ny
—1 —1
= —sins(z+ 1)@ (=1, ) + scoss(z — y)®; (y, N[,
- 52/ sin s(z — y)P1(y, \)dy
—1

= sins(z+ 1)+ s®y(x, \)

- 52/ sin s(z — y)®1(y, \)dy

-1

son esitlik 5.2.65° de yerine yazilirsa,

/w sins(z — y)P1(y, N\)q(y)dy = sins(x + 1) + sPy(z, \)

-1

elde edilir. Buradan gerekli diizenlemeler yapilirsa,

Oy (z,\) = 1 sins(z + 1) + ! /w sins(x — y)P1(y, \)q(y)dy (5.2.66)

S S J_1

bulunur. Béylece 5.2.63 esitligi ispatlanmis olur. Bu esitligin her iki tarafinda x° e gore

tirev alimirsa 5.2.64 esitliginin de saglandig1 kolayca ispatlanabilir.

Teorem 5.2.6. V = € C igin, A = s? olmak iizere 5.2.4 — 5.2.6 baslangig deger problemi,

1
u(z,A) = dP1(0,\)cossx + —y P,(0,\) sin sz
s

1 x
+ g/ sins(z — y)q(y)u(y, \)dy (5.2.67)
0
u'(x,\) = —s0®(0,\)sin sz + D, (0,\) cos sz
+ / cos s(x — y)q(y)u(y, \)dy (5.2.68)
0

integral denklemleriyle esdegerdir.
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Ispat: Teorem 5.2.5’in ispatina benzer sekilde yapilir.

Sonug 5.2.4. $,(z, \) fonksiyonu asagidaki integral ve integral-diferansiyel denklemleri

saglar.

1
Dy(x,\) = 0P1(0, ) cos sz + 37 ®,(0,\) sin sz

1 /.
1 [ st = aly) @y Ny (5.2.69)
0
Do(z, ) = —5601(0,\)sin sz + v P, (0, \) cos sz
[ conste = o) aly. Ny (5.2.70)
0

Ispat: Sonu¢ 5.2.3’in ispatina benzer sekilde yapilir.

Teorem 5.2.7. V x € C icin, A\ = s* olmak iizere 5.2.24 — 5.2.26 baslangi¢ deger

problemi,

u(z,\) = coss(x —1)+ ssins(x —1)

1
+ o [ sinste = ety Ny (52.71)
u'(z,\) = —ssins(z — 1)+ scoss(z —1)
1
+ / cos s(x — y)q(y)u(y, \)dy (5.2.72)

integral denklemleriyle esdegerdir.

ispat: Teorem 5.2.5” in ispatina benzer sekilde yapilir.
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Sonug 5.2.5. x»(z, \) fonksiyonu agagidaki integral ve integral-diferansiyel denklemleri

saglar.

XQ(‘% )‘)

Xa(7,\)

= coss(x—1)+ ssins(zx — 1)

[t
v / sin s — y)q(y)xa(y, \dy (5.2.73)
= —ssins(x — 1)+ s*coss(z — 1)
1
+ / cos s(z — y)q(y)x2(y, A)dy (5.2.74)

Ispat: Sonu¢ 5.2.3iin ispatina benzer sekilde yapilir.

Teorem 5.2.8. Vx € C icin, A\ = s* olmak iizere 5.2.27 — 5.2.29 baslangi¢ deger

problemi,

u(z,\) =

u'(z, ) =

+

1 L :

SXQ(O, A) cos sz + o X2(0, \) sin sx

1 0

5 / sins(z — y)q(y)u(y, Ndy (5.2.75)

1 1
—sgxg(o, A)sin sz + = x5(0, A) cos sz
v

0
/ cos s(x — y)q(y)u(y, \)dy (5.2.76)

integral denkelemleriyle esdegerdir.

Ispat: Teorem 5.2.5’in ispatina benzer sekilde yapilir.

Sonug 5.2.6. x1(z, \) fonksiyonu agagidaki integral ve integral-diferansiyel denklemleri

saglar.

X1($7 /\) =

xi(z,\) =

1 1
5)(2(0, A) cos ST + o X2(0, A) sin sz

0
! / sins(z — y)q(y)xi(z, \)dy (5:2.77)

s
1 1
_SSX2(07 A)sin sz 4+ — x5(0, A) cos sx
Y

0
/ cos s(z — y)q(y)x1(y, N dy (5.2.78)
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Ispat: Sonu¢ 5.2.3’iin ispatina benzer sekilde yapilir.

53 ®(z,\) ve x(x,\) Temel Coziimlerinin Asimptotik Davranislar

Bu kesimde ®;(z,A) ve x;(xz,\) (i = 1,2) temel ¢dziimlerinin 6nceki bolimde
ispatladigimiz esdeger oldugu integral denklemleri kullanarak , bunlarin A parametresine

gore |A\| — oo igin asimptotik formiilleri elde edilecektir.

Teorem 5.3.1. \ = s, s = o + it, Ims = t olmak iizere, ®;(x, \) fonksiyonu igin
—1 < 2z < 0 araliginda

dy(x,\) = ( el x+1>) ;A — o0 (5.3.1)
O (z,A) = O (=) N — o0 (5.3.2)
Q(z,\) = —%sm s(x+1)+0 <‘ B eldl@+h) ) , A — o0 (5.3.3)
) (z,)) = —coss(z+1)+0 <| | ell@+D) ) A — o0 (5.3.4)

asimptotik esitlikleri saglanir.

Ispat: ( Titcmarch (1962) Lemma 1.7(ii)).

Teorem 5.3.2. \ = s?, s = o + it, Ims = t olmak iizere, P(z, \) fonksiyonu i¢in

0 <z < 1 arali@inda asagidaki asimptotik esitlikler saglanir.

1
Doz, \) = o(| | t“f“), |A| — oo (5.3.5)

Dy(z,A) = O (=) N — o0 (5.3.6)

ispat:
F(z,\) = e 1@ @, (2, \) (5.3.7)
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ile gosterrelim. ®5(z, A) i¢in daha 6nce gostermis oldugumuz sonug 5.2.46° deki integral

denklemini iistteki esitlikte yerine yazalim.

1
F(z,\) = e et {5@1(0, A) cos sx + —y @,(0, \) sin sz
s

1

+ /Ox sins(z — y)q(y) P2y, A)dy

1
F(z,\) = 601(0,))cossze” 1@+ 1 2~ @ (0, \) sin sze™ 1@+
s
1

+ g/ sins(z — y)q(y)®a(y, N)e @Dy (5.3.8)
0

5.3.1 ve 5.3.2 asimptotik esitlikleri dikkate alinirsa,

1 1
¢1<0,A>:0(me't') LS

©1(0,0) =0 () = [2,(0,)] <Myl

bulunur. Bu son iki esitsizlikte bulunan degerler 5.3.8 esitliginde yerine yazilirsa ve

|sin 2| < el ve |cosz| < ell™?

ifadelerinden yararlanilirsa,

IA

|F(z, \)| M15i|e|t|e|t|“e_t|(z+1) + Mﬂiewtlemme—m(m)
S

|s

1 x
+ m/ |Sin[3($ - y)” |Q(y)| |F(y, )\)|€\t|(y+1)6_|t|(x+1)dy
0
1 z
- H[(SMl + M, +/ oltl(z=v) lq(y)|| F(y, )\)‘67|t|(x—y)dy:|
0

_ %[m Myt / ()| F(y, )| dy] (5.3.9)
0

elde edilir. 5.3.9 esitsizliginde,

1
F = F )\ = d
| ;g[gf;]! (, M) , @« max /O lq(y)|dy
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ile tamimlayalim. Bu durumda,

Fan)| < %[5M1+7M2+ / 1) I1F(y, M]dy]

1
H [(5M1 + ’YMQ + qul}

IA

(5.3.10)

M = oMy + My + Fiq
ile gosterirsek,

1

1
|F(x,\)] < HM:> e~ @) @y (2, 0)] < HM
1
= [Py(z,\)] < ﬂMe‘t'(””
S

Elde ettigimiz bu son esitsizlikten,

Doz, N)

_ 0 (L et|<x+1>) A —

5]
asimptotik esitligi elde edilir. Boylece istenilen ilk asimptotik esitligin saglandig1 gosterildi
Simdi 5.3.6 asimptotik esitligini ispatlayalim. Daha 6nce,

Dy (z, \) —85®1 (0, \) sin sz + v D (0, \) cos sz

+ /Ox cos s(z — y)q(y) P2y, \)dy

oldugu gosterilmisti. Simdi bu integral denklemini g6zdniine alarak istenilen asimptotik

esitligin saglandigin1 gésterelim. Daha dnceden bilindigi gibi

1 1
<1>1<0,A>:0(me't') 1By (0,)] < Myt el

E
©1(0,A) =0 () = [2,(0,)] < Myl

idi. Bu ifadelerden yararlanilarak,

1
| — s0®(0, A) sin sz| < M1<5]s|‘—e“t|e‘t|z

s
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olup buradan,
—50®1(0, \) sin sz = O (et (5.3.11)
asimptotik esitligi elde edilir. Ayni sekilde,
7@ (0, ) cos sz| < Myvyellelt
olup yine buradan asimptotik esitlik tanim geregi,
Y (0, ) cos sz = O (et (5.3.12)
yazilir.

1
Oy(z,N) = O (H et|($+1)) , [N — o0

asimptotik esitligi gozoniine alinirsa ve

1
‘= ma d
q = max /0 lq(y)|dy

ile tanimlanirsa, asagidaki integral denklem icin,

x 1 T
|/ cos s(x — y)q(y)P2(y, N)dy| < ﬂ/ lelt@=v) | g(y) @ +D gy
0 s1Jo

1

g— et
5]

IN

< MgellE+D
bulunur. Buradan,
/: cos s(z — y)q(y)Pa(y, \dy = O () (5.3.13)
yazilir. 5.3.11 - 5.3.13 ifadeleri ®,(x, \) integral denkleminde yerine yazilirsa,
Doz, \) = (e'tl(”l))

asimptotik esitligi elde edilir.
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Teorem 5.3.3. \ = s, s = o + it, Ims = t olmak iizere, ®5(x, \) fonksiyonu igin

0 <z <1 araliginda

1
$y(x,\) = —0—sinscossz + y—cos ssin sz
s s
1
+ 0 (W eltl(x“)) A — o0 (5.3.14)
s
®y(z,\) = dsinssinss — ycosscos sz
1
+ O (|—’ eﬂ(”l)) A — o0 (5.3.15)
s

asimptotik esitlikleri saglanir.

Ispat:  Once 5.3.14 asimptotik esitligini ispatlayalim. Bu ifadeyi ispatlamak icin
®y(z, A) i¢in sonug 5.2.4” de buldugumuz

1
Oy(z,\) = 5@1(0,/\)cossx+7; ®,(0,\) sin sx

+ 1/03: sins(z — y)q(y)P2(y, A)dy

S

integral denkleminin sag tarafindaki terimlerin asimptotik esitleri ayr1 ayr degerlendirilecektir.

Teorem 5.3.1°deki 5.3.3 ve 5.3.4 esitliklerinden,

1 1
®(0,\) = —=sins+0(— €], [N\ — o0
s |s]2
/ 1
®,(0,\) = —coss+O (ﬂ etl) , (A — o0
S

elde edilir. Buradan

1 1
®1(0,\)cossz = cossz|— —sins+ O (W etl) |
s s

1 1
= ——sinscossx + O (— e't) O ( e't‘(x))

5 [

1 1
= ——sinscossx + O (— elt(x“)> (5.3.16)

5 [
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/ 1
®,(0,\)sinsz = sinsz|—coss+ O (— e'“) ]

5]

1
= —cosssinst + O (H @|t|> 10, ( e\tl(w))
s

1
= —cosssinsz + O (ﬂ e't(”l)) (53.17)
s

Simditistte ®o(z, A) igin yazdigimiz integral denklemdeki integral ifade degerlendirilecektir.

®y(x, A) icin daha 6nce buldugumuz 5.3.5 asimptotik esitligi geregi,

| Dy (z, N)] < Mﬁe”(”l)
S

olacak sekilde z ve A’ dan bagimsiz M > 0 sabiti mevcuttur. Bu durumda,

1 /" . 1 T
: / sms<x—y>q<y><b2<y,A>dy\ < o / [sin s(z — )] lq()| [Ba(y, A)ldy
0 0
< # / " M@ g ()] Ml dy
< =

1 . 1
M—| Selfll “)/ lq(y)|dy
5| 0

IN

yazilir. ¢; := maxyep ] fol lq(y)|dy ile tanimlanirsa,

1

: 1
_/ sin s(z — y)q(y) P2 (y, )\)dy‘ < Mthmem(xﬂ)
s Jo s

esitsizligi bulunur. Buradan asimptotik esitlik tanimi1 geregi,

1/1’ sin s(z — y)q(y)Pa(y, \)dy = O (L elt(”l)) (5.3.18)
0

5 [

esitligi bulunur. 5.3.16 — 5.3.18 asimptotik ifadeleri ®5(z, A) integral denkleminde yazilir

ve gerekli diizenlemeler yapilirsa,

1 1 1
$y(z,\) = —d—sinscossz + 60 (W elt(”l)) — y—cos ssin sz
s s s
+ oL e Lo (L e
5] 5] [

1 1 1
= —{0-sinscos sz — y— cos ssin sz + O <— e|t|(‘”1)>

s s |s]?
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asimptotik esitligi bulunur. Béylece 5.3.14 asimptotik esitliginin saglandig1 ispatlandi.
Simdi 5.3.15 asimptotik esitligini ispatlayalim. Bunun ig¢in,

Dy(z,\) = —05D1(0,\)sinsz + v P (0, \) cos sz
2 1

+ /Ow cos s(z — y)q(y)Pa(y, A)dy

integral denkleminin sag tarfindaki sag tarafindaki terimlerin asimptotik ifadeleri ayr1 ayr1

degerlendirilecektir.

—0s®1(0,\)sinsz = sin sx[(—s)(—% sins) + (—s)O (L elt) ]

|s[?
S 1 i t](z)
< sinssinsz +0 | — e O(e )
]
. . L et
= sinssinsx + O ﬂ e (5.3.19)
S

/ 1
®,(0,\)cossz = cossz|—coss+ O (H e|t|> ]
s

1
< —cosscossz+ O <|— e|t> o) ( eltl(x))

5|

1
= —cosscossr+ O <— elt(“l)) (5.3.20)

5]

Simdi ®,(x, \) integral denklemindeki integral igeren ifadeyi inceleyelim.

/ cos S(I - y)Q(y)CIh(Z% )\)dy‘ < / |COS S(x - y)l Iq(y)l |(I)2(y,)\)|dy
D 0
- ﬁ /z =9 |g(y)| M dy
Sl Jo

1 1
< M|—6't'($+1)/ lq(y)|dy
5| 0

bulunur. ¢; 1= maxgep 1] fol lg(v)|dy ile tanimlanirsa,

: 1
/ cos s(z — y)q(y)Pa(y, )\)dy‘ < Mqlﬂelt\(:cﬂ)
0 s



52

esitsizligi bulunur. Asimptotik esitlik tanim1 geregi son ifadeden,

/: cos s(x — y)q(y)Pa(y, \)dy = O (ﬁ etl(‘“l)) (5.3.21)

yazilir. 5.3.16 — 5.3.18 asimptotik ifadeleri ®5(z, A) integral denkleminde yazilirsa,

®y(z,\) = dsinssinsz + 00 (’ | |t|(x+1)) — 7 COS S COS ST
s

£ 30 (e ) o ()

elde edilir. Bu son ifadede gerekli diizenlemeler yapilirsa,

’ . .
O,(x,\) = Osinssinsx — ycosscos sz

+ o(’ | f'“ﬂ), I\ — o0

asimptotik esitligi bulunur. Boylece 5.3.15 asimptotik esitliginin saglandigida gosterildi.

Boylece ®1(x,\) ve Po(x, \) fonksiyonlar i¢in gerekli asimptotik formiiller bulundu.
Simdi bu formiiller x;(x,\) ve xa2(x,\) fonksiyonlar: i¢in bulunacaktir. xi(z,\)
fonksiyonu y2(x, A) fonksiyonu araciligi ile tanimlandigi igin bu formiillerin 6ncelikle
X2(z, A) fonksiyonu i¢in bulunmasi gerekir. Ancak y»(x, A) fonksiyonu i¢in gegerli olan
asimptotik formiiller ispatsiz olarak verilecektir. Ispati, Titcmarch (1962) kaynagindaki

Lemma 1.7 (i1)’ nin ispatina tipatip benzerdir.

Teorem 5.3.4. A\ = s> s = o +it, Ims = t olmak iizere, y2(z, \) fonksiyonu i¢in
0 <z < 1arahiginda

xo(z,A) = O(]s| 107) |\ — o0 (5.3.22)
Xo(x,A) = O (s 10 N — o (5.3.23)
x2(z,A\) = ssins(z—1)+ O ( em(l’x)) , A — o0 (5.3.24)
Xo(x, A) = s*coss(z—1)4+ O (Js] =) [N — oo (5.3.25)

asimptotik esitlikleri saglanir.
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Teorem 5.3.5. A\ = s?, s = o +it, Ims = ¢ olmak iizere, x;(x, \) fonksiyonu igin

—1 <z < 0 araliginda

xi(z,A) = O(]s| 0=2) [ |\ — o0 (5.3.26)
X, (z,\) = O (|sf” elt‘(l_x)) , A — o0 (5.3.27)

asimptotik esitlikleri saglanir.

Ispat: Teorem 5.3.4° deki asimptotik esitlikler gézoniine alinirsa,
xo(z,\) = O (|3‘ eltl(lfx)) — |y2(z, \)| < Mis| e t|(1—2)

Xa(,3) = O (|3 1079) = |xy(w, A)| < Myfs” 1072

yazilir.
F(x,)\) = x1(z, \) e l0=2) (5.3.28)
ile gosterelim. O halde F'(x, A fonksiyonu i¢in,

1 1
F(z,\) = e et {5)@(0, A) cos T + — x5(0, ) sin sz
Vs

1

+ . /Ow sins(z — y)q(y)x1(y, A)dy

esitligi saglanir. Bu durumda son esitlikte,

[Imz| [Imz|

|sinz] <e ve |cosz| <e

ifadelerinden yararlanilirsa,

Fa )| < 1Mleu ~ltle o~ lH(1-2) | |1|M2|3|26|te—|t|ze—t|<1—x>
s

+ P ’/ =) 14(4)| 9| (g, \) e~ 102 gy

IN

1
$301s|+ 2l [ la()lIP . Dy
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Fi(@ ) = max [Fz\)| . ¢ = n[lal;%/ () |dy
e

z€[—1,0]
alinirsa,
1
L | T ]
< M0\5|
buradan,

|X1(ZL‘, )‘) €—|t\(l—a:)| < M0|3| - |X1(~T, )\)| < M0|8|6|t|(1_$)

esitsizligi bulunur. Buradan,
xi(a, ) = O (Jse1=2)

asimptotik esitligi bulunur. Boylece 5.3.26 asimptotik esitliginin saglandig1 gosterildi.
Simdi 5.3.27 asimptotik esitligini ispatlayalim.

/ 1 1
xi(x,\) = —SSXQ(O, A) sin sz + 5 X2(0, A) cos sz

0
+ / cos s(x — y)q(y)x1(y, A)dy
integral denklemini gbzoniine alalim. Yine Teorem 5.3.4° deki

Xa(, ) = O (|s[* €"1072)

asimptotik esitlikleri gézoniine alinirsa,

1 1
| — 53)@(0, A)sinsz| < 5M1|5H3\e|t‘e’|t|x
1

elde edilir. O halde asimptotik esitlik tanimi1 geregi,

1
—53)(2(0, A)sinsx = O (]s|26|t|(1’“’”)) (5.3.29)
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yazilir.
1. 1 2 _|t| _—|t|z
| = x2(0,A) cossz| < —Mpls| ee
7 8
= Lagseria—
Y
buradanda,
L 2 [t|(1-2)
~ (0. X cos sz = O (|sPe0) (53.30)

yazilir. Simdi,
x1(z,\) =0 (]s|e|t‘(1_m))

asimptotik esitligi ve

1
@ = max / la(y)ldy
0

z€[—1,0]

seklinde tanimlanan ifade g6zoniine alinirsa asagidaki integral denklem igin,

0 x
|/ cos s(z — y)q(y)xa(y, Ndy| < |s|/ =) | 4(y)] el =0 gy
£ 0

2
< BE era-
IE
= M|sPell0- pp= I
sl
olup buradan,
0
/COSS(x—y)Q(y)m(y,A)dy = O (Js?e10=") (5.3.31)

asimptotik esitligi elde edilir. 5.3.30 —5.3.32 ifadeleri x;(z, A)’ mn integral denkleminde

yerine yazilirsa,
x1(z,A) = O (Js[ll=m) (5.3.32)

asimptotik esitligi elde edilir. Buda ispat1 tamamlar.
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Teorem 5.3.6. \ = s?, s = o +it, Ims = ¢ olmak iizere, x;(x, \) fonksiyonu igin

—1 <z < 0 araliginda

1 1

xi(z,\) = —gssinscossx%—;scosssinsx

+ O (eM072) A — o0 (5.3.33)
Xll(x,)\) = %SQSinSSiHS£L‘+ %82 COS S COS ST

+ O (]s €17) , |A] — o0 (5.3.34)

asimptotik esitlikleri saglanir.

Ispat: Yukaridaki istenilen esitlikleri gdstermek icin,

1 1
xi1(xz,A) = SXQ(O,)\) cossm—{—axz((), A) sin sx
1 0
+ ;/ sins(z — y)q(y)xi(z, A)dy

integral denkleminin sag tarafindaki ifadeler ayr1 ayr1 degerlendirilecektir. Daha 6nce

X2(x, \) i¢in yazilan asimptotik esitliklerden,

X2<Oa)‘) = _SSiDSQZ—FO(e't')
X2(0,A) = Szcoss+0(|5’€\tl)

bulunur.

X2(0,\)cossr = cossx| — ssins +O(e|t|)

= —ssinscossz+ 0 () O (e ") 2 € [-1,0]

= —ssinscossr + O ( e|t|(1_x)) (5.3.35)

/ 1 1
“X2(0,A\)sinsz = —s”cosssinsz + =0 (|s] em) COS ST
s s s

= scosssinsz+ O (|s| e O (e ") 2 € [-1,0]

= scosssinsx + O ( e‘tl(l_””)) (5.3.36)
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simdi denklemdeki integral igeren ifade degerlendirilirse, x;(z, A) i¢in bir dnceki teorem
geregi,

Ix1(z, \)| < M‘Slem(lﬂ;)

olacak sekilde z ve A’ dan bagimsiz M > 0 sayis1 vardir.

1
@ = max / la(y)ldy
0

z€[—1,0]
olmak iizere,
1 /[° 10
5 [ sinste = e < o [ sinst =l )iy
<

1 O s _
HM/em>meww@

esitsizligi bulunur. Buradan tanim geregi,

1

B /0 sin s(x — y)q(y)x1(x, \)dy = O ( e‘tl(l_x)) (5.3.37)

oldugu kolayca goriiliir. 5.3.35 — 5.3.37 ifadeleri x;(z, A) integral denkleminde yerine

yazilip gerekli diizenlemeler yapilirsa,

: 1 .
xi(x,\) = —5ssinscos sz + —scos ssin sz
Y
+ O (072 A — o0 (5.3.38)

asimptotik esitligi bulunur. Bdylece istenilen ilk asimptotik esitlik ispatlanmig olur.

Benzer yontemle iistte yaptigimz islemler y; (z, )’ ninintegral denklemi igin uygulanirsa,

/ 1 1
xi(x, A) = ESQSinssinsx—i-—52cosscossx
Y
+ O (Js] =) [N — oo (5.3.39)

asimptotik esitligi bulunur. Bu ise teoremin ispatini tamamlar.
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5.4 Temel Coziimler, Karakteristik Fonksiyon ve Karakteristik Fonksiyonun Asimptotik

Davranisi

5.4.1 Temel Coziimler ve Karakteristik Fonksiyon

Bu kesimde

Lu: = —u +q(@)u=Xu, zc[-1,0)0U(0,1] (5.4.1)
Liuw: = u(=1)=0 (5.4.2)
Lou: = du(l)—u/(1)=0 (5.4.3)
Lsu: = u(+0) — du(—0) =0 (5.4.4)
Lyu: = u/(+0) —yu/(=0) =0 (5.4.5)

Sinir- deger- gecis probleminin 6zdeger ve 6zfonksiyonlari arasindaki bazi temel bagintilar
incelenecektir. Onceki béliimlerde, ®;(z, \) ve xi(z, \) fonksiyonlarinin V x € [—1, 0]
icin ®o(z, A) ve x2(z,\) fonksiyonlarnm ise V = € [0,1] igin A parametresine gore
biitiin kompleks diizlemde analitiktik (yani A parametresinin tam fonksiyonu) oldugunu
ispatlamigtik. Bu fonksiyonlarin [—1,1] araliginda sifirla devamlarina uygun olarak

O, (x, \) ve X;(x, \) ile gosterelim. Yani

N &, ze[-1,0
b, = 1, T€E| )

0, x€(0,1]
- 0, ze[-1,0)
@2 =

(1)2, T e (0, ]_]
_ X1, * €[—1,0)
X1 =

0, x€(0,1))
- 0, z€l-1,0)
X2 =

X2, € (0,1]
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ile gosterelim. ®;(x,\) ve x;(z,\) (i=1,2) olmak lizere, bu ¢6ziim fonksiyonlarin

wronskiyent,
wilA) = W(@i(, ), xiw, A) = @i, A)x;(, A) — i, A)xi(, A)

ile tammlidir. wy(A) ile @4(z,\) ve xi(z,\) ¢6ziim fonksiyonlarinin wronskiyeni,
wa(A) ile Po(z,A) ve xa(x,\) ¢dziim fonksiyonlarinin wronskiyeni gosterilecektir.
Ayrica W(®q(z, A), x1(z, A)) ve W(Po(x, N), x2(z, ) wronskiyenleri uygun olarak
z € [-1,0] ve z € [0,1] degiskenlerinden bagimsiz olduklari i¢in ve ®;(z,\) ve

Xi(x, ) (i = 1,2) her bir z i¢in A parametresinin tam fonksiyonu olduklarindan dolayi,

wi(A) == W(Py(z, N), x1(z, A)) (5.4.6)
wa(A) := W(DPo(z, A), xa2(z, A)) (54.7)

fonksiyonlar1 A parametresinin tam fonksiyonlaridir.
Lemma 5.4.1. V )\ € Cigin
wA) = wi(A) = — wa(A) (5.4.8)
esitligi saglanir.
Ispat: 5.4.6 — 5.4.7 esitlikleri z degiskeninden bagimsiz olduklarindan,

W((D2(xv)‘)ax2(x7)‘)> = (I)Q(xv)‘)X;(x’)‘)_CI)IQ(xv)‘)XZ(‘T’)‘)
= 03(0,M)x5(0. 1) — 2,(0, V)xa(0, ) (5:4.9)

esitligi saglanir. Diger taraftan ®;(x, \) ve x;(z,\) (i = 1,2) ¢dziimlerinin tanimlari

geregi,
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Dy(0,N) = §P1(0,))
0,5(0,A) = ®,(0,))
x2(0,A) = dx1(0,A)
X2(0,0) = x1(0,))

esitlikleri de saglanir. Bu degerler 5.4.9° da yerine yazilirsa,

WZ(/\) 5(1)1(07 /\)VXQ(O, /\) - /ycbll (07 >‘)5X1(07 )‘)
= 57(21(0, A)x1 (0, 2) = (0, )x1(0, A)

= dywi(N)

elde edilir.

Sonu¢ 5.4.1. wi(\) ve wy(\) tam fonksiyonlarmn sifir yerleri ¢akigiktir. Simdi
[—1,0) U (0, 1] de tamimh olan ®(z, A) ve x(x, ) fonksiyonlarini

®1(z,\), x€[-1,0)

2w A) = Do(z, ), z € (0,1]

T,A) =
x@ ) x2(z,\), z € (0,1]

esitlikleri ile tanimlanirsak, Lemma 5.4.1° den asagidaki sonug elde edilir.

Sonu¢ 54.2. ®(x,\) ve x(x,\) fonksiyonlarinin wronskiyeni [—1,0) U (0, 1]
araliklarinin her birinde = degiskeninden bagimsizdir ve = degiskenin her bir z €

[—1,0) U (0, 1] degerinde, A parametresinin tam fonksiyonudur.
w(A) = W((z,A), x(z, )

ile gosterelim. O halde
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wi(N), x €[-1,0)

L), ze(0,1]

w(A) = W(®(x,A), x(x, A)) =

formiilii elde edilir. Bu durumda Lemma 5.5.1 geregi

MM:MM:%”Q) (5.4.10)

esitligi yazilir. Bundan sonraki boéliimlerde her yerde Lemma 5.4.1 dikkate alinarak

5.4.10 gosteriminden yararlanilacaktir.

Teorem 5.4.1. 5.4.1 -5.4.5 sinir deger probleminin dzdegerleri ancak ve ancak w(\)

fonksiyonun sifir yerlerinden ibarettir.

Ispat: (=) : A\ = )¢ sayis1 w(\)’ mn sifir olsun. Yani w()\g) = 0 olsun. Bu durumda

Ao sayisinin 6zdeger oldugunu gostermeliyiz. 5.4.10 esitligi geregi,
wi(Ng) =0 ve wa(Ng) =0

olur. wi(Ag) = 0 ise wy(A)’ min tammindan,
W(®1(z, A), xa(x,A) =0

yazilir. Bu durumda &(x,\) ve xi(x,A) fonksiyonlar1 diferansiyel denklemler
teorisinden iyi bilinen "y;(z), y2(z), y3(z),..., yo(z) fonksiyonlart n. mertebeden
diferansiyel denklemin lineer bagimli ¢dziimleri ise o halde bu fonksiyonlarin wronskiyeni

biitiin noktalarda sifirdir." teoreminin sonucu olarak lineer bagimlidir. Yani,
Xl(l’, )\0) = kq)l($,)\0), T e [—1,0] (5411)
olacak bigimde k # 0 sayisi mevcuttur. 5.4.11 ve ®;(z, A)’ nmin tammindan dolay,

Xl(—l, )\0) = ]{@1(—1,)\0) =0
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elde edilir. ®1(—1, \g)’ nin ¢oziimiinden dolay1
X(_17 )‘0) = O

bulunur. Bu sonug x(—1, \¢) fonksiyonunun 5.4.2 smr sartim sagladigim gosterir.
x(—1,X¢) ayn1 zamanda 5.4.3 baslangi¢ sartim1 ve 5.4.4 — 5.4.5 gecis sartlarim da
sagladigindan dolay1 5.4.1 — 5.4.5 probleminin ¢6ziimii olur. Bu durumda x(—1, \o)
fonksiyonu Ay 6zdegerine uygun 6zfonksiyon olur. Buise A = Ay sayisinin dzdeger

oldugunu gosterir.

(<) : Simdi ise tersine A\ = )¢ sayisi 5.4.1 — 5.4.5 probleminin 6zdegeri olsun bu
durumda

u)(>\0) =0

oldugunu gosterilecektir. Kabul edelim ki Ay 5.4.1 — 5.4.5 probleminin 6zdegeri ve
w(Ag) # 0 olsun. Bu durumda 5.4.10 esitliginden wy(X\g) # 0 ve wa(Ag) # 0 olur.

Buradan
W(q)l(ﬂf, )\0), Xl(x, )\0)) §£ 0 ve W((I)Q(.T, )\0), XQ(QZ, )\0)) # 0

elde edilir. Bu durumda, ®;(z, \¢) fonksiyonu x;(z, o) fonksiyonuyla, ®o(x, \o)
fonksiyonu xo(z, \g) fonksiyonuyla lineer bagimsiz olacaktir. Boylece 5.5.1 denkleminin

genel ¢ozimii,
w(z, \) = 191 (x, ) + caX1 (2, A) + c3Pa(z, A) + caXo(z, A)

seklinde ifade edilebilir. Bu durumda, \y 6zdegerine uygun olan her uq(z) 6zfonksiyonu

i¢in,
up(x) = ky®y(x, Ao) + kaXa (2, Ao) + ks®a(, Xo) + kaXa(, Ao) (5.4.12)

olacak sekilde enaz biri sifirdan farkli olan %y, ko, ks, k4 reel sayilari bulunur. 5.4.12
esitligi ile verilen wo(z)  Ozfonksiyonu 5.4.2 - 5.4.5 sinir ve gegis sartlarini

sagladigindan,
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esitlikleri gegerlidir. £; katsayilarinin en az biri enaz biri sfirdan farkli oldugundan dolay1,

elde edilir. Simdi bu elemanlarin determinantini hesaplayalim: ®;(z, \) ve xi(z,\)

(i

1,2) fonksiyonlarinin tanimi geregi,

]

(5.4.14)

P1(—1,X0) = P1(—1,A0) =0

Ly (D1 (z, \o)) =

x1(—1, Xo)
(=1, X)) — @

Li(X1(7, M) = X1(=1, )

(_17 A0X1<_17 )‘0)

’
1

W(®1(x, Xo), x1(, Xo))|a=—1

= W1 (/\[))

L1<q)2<l’, )\0)) =

X1

q)l(_lv )\0)

(5.4.15)

(5.4.16)

@2(-1, /\0 =0

(5.4.17)

— 5(12(—1, )\0) - 0

Li(Xa(z, Ao))



Lo(®y(z, X)) =

Ly(X1(, Ao))

Lo(®s(z, \o))

Ly(Xa(, Ao))

Ls(®y(z, N)) = 6®y( )
( )

Ly(X1(w, X)) = dx1(—0,X0) — x1(+0, Ao)
( )

Ls(®a(z, No)) = 6Po(—0, Ao)

Lz(Xa(z,A0)) = dx2(=0,Ao) — x2(+0, Ao)

A @y (1, X)) — @ (1, \)
Ay (1, A) — @ (1, \)
A0 —0

0

AX1(1, Ao) = X1 (1, Ao)
Axa(l, do) — X/1(17 Ao)
A0 —0

0

A Dy(1, Ag) — @5(1, o)
A Dy(1, Ag) — B5(1, o)

Xa(1, A0)@2(1, Ag) — X2(1, Ao)@5(1, Ao)

W (®a(x, M), X2 (2, Ao))|z=1

wa(Ao)
AX2(1, X0) — Xa(1, o)
Ax2(1, X0) = Xa(1, Ao)

Xa(1, Ao)x2(1, Ao) — Xa(1, Ao)x2(1, Ao)

0

—0, Ao

(5.4.18)

(5.4.19)

(5.4.20)

(5.4.21)

(5.4.22)

(5.4.23)

(5.4.24)

(5.4.25)
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Li(®1(x, %)) = 7 ®1(=0, ) — @, (+0, Ay)

= 4 & (=0, \o) (5.4.26)
La(X1(z, %)) = 7x1(=0, X0) = X, (40, Ao)

= x; (=0, o) (5.4.27)
Li(®a(7, X)) = 7P5(—0,Ag) — (40, Ao)

= —Dy(+0, \) (5.4.28)
La(Xa(z,20)) = 7Xa(=0, X)) = Xxa(+0, Ag)

= —xa(+0,No) (5.4.29)

elde edilir. Simdi bulunan 5.4.14 - 5.4.29 esitlikleri 5.4.13 determinantinda yerlerine

yazilirsa,

0 w1 (o) 0 0
wa(No) 0
dP1(—0,N) Ix1(—=0,0) —P2(+0,Ng) —x2(40, o)
YR (=0,A0) X1 (=0, h) —®5(+0,h0)  —x5(+0, Ao)

e (g)wn() 0P1(=0,20)  —xa2(+0,A0) | _

’Y(I)&(_Oa )‘0) _X,2<+07 >‘0)

elde edilir. Kabiiliimiiz geregi wi(Ao) # 0 ve wa(Ng) # 0 esitliklerini dikkate alinirsa

son esitlikteki determinant sifir olur. O halde,
¥ X2(+0, Ao) 1 (=0, Ag) — ®1(—0, Ag) X5(+0,X0) =0 (5.4.30)
esitligi bulunur. 5.4.3 ve 5.4.4 gecis sartlar geregi,
X2(+0, Xo) = 6x1(=0, X0) ve x5(+0, Ao) =7 x1(—=0, Ao)
yazilabilir. Bunlar 5.4.39” da yerine yazilip gerekli diizenlemeler yapilirsa,

—5ywi(Ag) =0 (5.4.31)
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elde edilir. 5.4.10” dan ve 9,7 > 0 oldugundan dolay1 5.4.31 esitliginden,
w(Xg) =0 (5.4.32)

esitligi elde edilir.
Buise w(X) # 0 oldugu kabuliiyle ¢elisir. Bu durumda verilen sinir-deger-gegis

probleminin d6zdegerleri w(\) fonksiyonun sifir yerlerinden ibarettir.

5.4.2 Karakteristik Fonksiyonun Asimptotik Davramslar

Boliim 5.5.1° de arastirilan problemin 6zdegerleri w(\) fonksiyonunun sifir yerlerinden
ibaret oldugu i¢in 6ncelikle w(A) fonksiyonunun asimptotik davranigi incelenecek ve
daha sonra bu asimptotik ifadeden yararlanarak problemimizin 6zdegerleri i¢in asimptotik

formiiller elde edilecektir.

Teorem 5.4.2. A\ = s*, s = o +it, Ims = t olmak {izere w(\) karakteristik fonksiyonu

icin agagidaki asimptotik esitlik saglanir.

w(\) = —% (0 +7) ssin(2s) + O () (5.4.33)

Ispat: w(\) fonksiyonunu x degiskeninden bagimsiz oldugu igin,

(.d()\) = WQ()‘) = W((I)Q(xv )‘)7 XQ(xv )‘))
= W(Q)Q(l?A)aXQ(L)‘))
= (L, A)xa(1, A) = P5(1, A)x2(1, A) (5.4.34)

bigiminde yazilabilir. x2(z, \) fonksiyonu ¢6ziimii oldugu problemin baslangig sartlarini

sagladigindan dolay1,

(LA = 1 (5.4.35)
Xa(LA) = A=¢ (5.4.36)
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saglanir. Bulunan bu degerler ve ®5(1,\) ile ®,(1,\)’ nin asimptotik ifadelerinden

elde edilen,

Do(1,N) = —gésinscoss—gvcosssins

1
+ O (W 62“) LA — o0 (5.4.37)

®y(1,)) = &sin®s —ycos’s
1
+ O (\?I tetl) A — o0 (5.4.38)

ifadeleri 5.4.34’ de yerine koyulursa,
1 1 1
= 5 [—5— sin s cos s 4 77— cos s sin s} +0 <|— €2|t|>
s s

s|?
1
— {681112 s —ycos?s+ O (— e2t|)1

5]

bulunur. Son esitlik diizenlenirse,

w(A) = [—S[5Sinscoss+ysinscoss]—1—0(62“\)]
1
- [(5 sin? s — ycos®s + O (m 62“)} (5.4.39)

elde edilir.
— [sin*(s) — v cos®(s)] = O ( teﬂ)

yazilabilir. Bu durumda 5.4.39 esitligi
1 ' 20t
w(A) = —5(5 + 7)ssin2s + O (")
seklinde yazilabilir. Boylece w(\) smir fonksiyonunun asimptotik esitligi elde edilir.

Teorem 5.4.3. 5.4.1 — 5.4.5 smir-deger-gegis probleminin 6zdegerleri i¢in A\, > K,

n =0,1,2,... olacak sekilde K reel sayisi vardir. Yani 6zdegerler asagidan sinirhdir.
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Ispat: 5.4.33 asimptotik esitligi igin durumu arastiralim. Bu durumda 5.4.33 ifadesinde

s =1it, (t > 0) yazilirsa,
w(—t*) = (6 + y)tsinhtcosht + O (e*) (5.4.40)
esitligi elde edilir. 0y > 0 (‘ayn1 isaretli) oldugundan dolay1 5.4.40 esitliginden,

lim w(—t?) = oo (5.4.41)

t—o00

oldugu acikca goriilebilir. Bundan dolay1 ¢ > ¢, oldugunda w(—t?) # 0 olacak sekilde
to > 0 sayis1 bulunur. Dolayistyla A < —t2 igin w(\) # 0 olacaktir. Buna gére K = 3

olmak iizere \,, > K’ dir. Buda ispati tamamlar.

5.5 Ozdegerler I¢in Asimptotik Davramslar

Bir 6nceki boliimde w(\) simir fonksiyonun asimptotik davranigi incelenmisti. Bu
boliimde 5.4.1 — 5.4.5 probleminin 6zdegerleri ile w(A) sinir fonksiyonun sifir yerleri
cakisik oldugundan w(\) smir fonksiyonun sifir yerlerinin asimptotigi arastirilacaktir.

Bunun i¢in daha once elde ettigimiz,
1
w(A) = —5((5 + 7)ssin2s + O ( e?l)

asimptotik ifadeki ilk terim wq(\) ile, ikinci terim ise wy(A) ile gosterilirse,

Sy = —% (6 + ) s sin(2s) (5.5.1)
@(\) = w\) —wi(\) =0 () (5.5.2)

yazilabilir. Buradan,
w(A) = wi(A) + wa2(N) (5.5.3)

seklinde ifade edebiliriz.

Kompleks analizden iyi bilinen Rouche Teoreminden yararlanmakla w7 (\) fonksiyonunun



69

sifir yeri kat1 sayida yazilirsa, w;()\) = w;(s*) fonksiyonunun sifirlar1 s— degiskeninin

fonksiyonu olarak

3T T 7T 3m
vy —— , =W, —— — —, 27, ... 5.
) 2 Y ™ 9 2 9 O O 2 Y m Y 2 Y ™ ) (5 5 4)
seklinde siralanir. Kompleks s-diizleminde,
, s 1 s 1
{3 =oc+4+iteC : |o < §(n + 5), It] < E(n—l— 5) ,n=0,1,2, } (5.5.5)

bolgesinin sinirmm I',, ile gosterilsin. Kompleks analizden iyi bilinen,

|sin s| = V/sinh? ¢t + sin? o
esitliginden ve bu esitlikten elde edilen
Vsinh®t 4+ 1 > |sin s| > |sin ht|

A

ozelliklerinden yararlanmakla,

— 1
lwr(N)] = —5 (6 + ) ssin2s

— 1
@]~ 1o+l 1t e 1t — oo (5.5.6)
elde edilir. Ayrica en az bir M > 0 vardir dyleki,
@A) < M e

yazilabilir. Burada n’ nin yeteri kadar biiylik degerlerinde (n > ng i¢in) s € I,

oldugunda,

G > GO, s€Tw, n > n (5.5.7)
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esitsizligi saglanir. O halde n > ng i¢in s € I';, olmak tizere |wi(N\)| > |w2(A)]
esitsizligini saglayan w;(\) ve ws(A) fonksiyonlarma Rouche teoremi uygulanarak bu
teoremin geregi,

wo(A) = wi(A) +wz(A)

fonksiyonunun T',, egrisi iginde kalan sifir yerlerinin sayistyla, w;(\) fonksiyonunun T,
egrisi icinde kalan sifir yerlerinin sayisi esittir. 5.5.4 ifadesinden de anlasilacabilegi gibi
wi(A) fonksiyonunun T',, egrisi igcinde kalan sifir yerlerinin sayisinin 2(n+1) = 2n+2
sayida sifir yeri oldugu aciktir.

wi(A) = wi(s?) ve @W(\) = w(s?) fonksiyonlarin herbiri |s|— degiskeninin gift
fonksiyonlar1 oldugundan , @(\) fonksiyonunun her sifir yerine karsiik &(s?)
fonksiyonunun iki tane sifir yeri olusacagindan ve ayrica &(s?) ve wy (s?) fonksiyonlarinin
biitiin sifir yerleri reel eksen iizerinde oldugundan sadece pozitif reel eksende yerlesen
sifir yerlerini incelemek yeterli olur. &y (s?) fonksiyonunun pozitif reel eksen iizerindeki

stfir yerleri,
~ .
So=0, 3125, So =T, S3= —,...,8, = — (5.5.8)

seklinde siralansin. @(s?) fonksiyonunun pozitif reel eksendeki sifir yerleri ise,

S0 < 81 < 89 < 83 < 84 < ... seklinde siralansin. Rouche Teoremi geregi n > ng igin,

s 1 s 1
§(n — 5) <s< §(n + 5) (5.5.9)

araliklarimn her birinde @(s?) fonksiyonunun bir tek s,— sifir yeri bulunur. Yani,
n > ng igin
us 1

T(n—5) << 2t ) (5:5.10)

saglanir. 5.5.8 ve 5.5.10 ifadelerinden; n > ny igin

15, — 55| <§ (5.5.11)

elde edilir.

On = S5, — Sp,
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gosteriminden yararlanirsa, n > ng igin

nm T
n=——=+0,, |0 <— 5.5.12
Sn= 0, |0l < g (5.5.12)

bulunur. Simdi {0,} dizisini asimptotik olarak degerlendirelim. 5.4.33 ifadesinde s
yerine s, yazilirsa,

Sp sin(2s,,) = O(%) (5.5.13)

elde edilir. Diger taraftanda 5.5.12 esitliginden dolayida,

oldugu agiktir. 5.5.12 ve 5.5.13’ den,

in(2s,) — 0(%) (5.5.14)

elde edilir. 5.5.12 ifadesi 5.5.14° de yerine yazilirsa,

sin(nm + 20,) = O(l
n

) (5.5.15)
asimptotik esitligi bulunur. Bilinen bazi1 trigonometrik 6zdesliklerden yararlanarak
sin(nm + 24,) = (—1)" sin(20,) (5.5.16)
oldugu goriiliir. Son iki esitlikten,
_ 1
sin(26,,) = O(E) (5.5.17)

asimptotik esitligi elde edilir. |d,| < 7 oldugu i¢in [20,| < § yazilir. Buradan sonuncu

esitlikte n — oo almakla limite gecersek,

lim sin(24,) =0 (5.5.18)

n—-—oo

elde edilir. Burada |d,,| < 7 oldugu dikkate alinarak,

lim 6, =0 (5.5.19)

n—:ox
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bulunur. Bu son iki ifadeden,
sin(26,,) ~ 6, , n — © (5.5.20)
elde edilir. 5.5.17 ve 5.5.20° den

On = O(%) (5.5.21)

Sp = — + O(=) (5.5.22)

asimptotik esitligi bulunur.

Teorem 5.5.1. 5.4.1 — 5.4.5 probleminin 6zdegerleri igin,

n?m?

Ap =
4

+0(1) (5.5.23)

asimptotik formdilii gecerlidir.

5.6 Verilen Simir-Deger-Gegis Problemi ile Aym1 Ozdegerlere Sahip Olan Lineer

Diferansiyel Operatoriin Kurulmasi

Bu boliimde 5.5.1 — 5.1.5 sinir-deger-gecis problemine uygun Hilbert Uzay1 ve bu uzayda
0zdegerleri ile uygun 6zfonksiyonlar: arastirilan 5.1.1 — 5.1.5 probleminin 6zdegerleri
ve uygun ozfonksiyonlari ile ¢akisan lineer diferansiyel operator kurulacaktir.

Ly(—1,0) & L2(0,1) Hilbert uzayi ile kompleks sayilarin Hilbert uzayi C ile gosterilsin.

x
f(z) € La(—1,0) @& Ly(0,1) , f1 € C olmak lizere F' = /() iki bilesenli

S

elamanlarin lineer uzaymni ise H = Ly(—1,0) & Lo(0,1) & C ile gosterelim.

goJlp_ fl@) )
={F= L f(w) € Ly(—1,0) @ Ly(0,1), f, € C (5.6.1)

f1



73

biciminde olan direkt toplamdaki i¢ carpimi agagidaki gibi tanimlayalim.

x x
F= /(@) eH, G= 9(@) € H ve 6,7 > 0 olmak tizere

fi 0

< F,G>= (57/ f(z dm+/ f(z dx+f191 (5.6.2)

esitligi ile tanimlayalim. O halde H i¢ ¢arpim uzayinin bir Hilbert Uzay1 olacagi agiktir.
Simdi 5.1.1 —5.1.5 probleminin 6zdegerleri ve uygun 6zfonksiyonlari ile ¢akisan A lineer

operatoriinii agagidaki bigimde tanimlayalim.

A:H— H (5.6.3)
lineer operatoriiniin tanim kiimesi
a [ f) , : .
DA)= { F= ) € H: f(x) ve f'(x) fonksiyonlari [—1,0) ve (0, 1]
1

araliklarinda mutlak siireklidirler ve sonlu f(£0) ve f'(£0) limit
degerleri meveuttur. — " + g(x)f € La(—1,0) ® Ly(0,1)
f(=1) =0, f(+0) =0f(=0), f'(+0) =7f(=0), fi = f(1) }5.6.4)

olmak iizere
— 4
ap— | @ (5.6.5)
f'(1)
. f(z)
esitligiyle tanimlansin. Burada F' = € D(A) ve
f(1)
AF = —f" +q(2)f (5.6.6)

dir. Budurumda 5.1.1 — 5.1.5 ile verilen sinir-deger- gecis problemi H uzayinda

AF = \F (5.6.7)

operatdr denklem biciminde yazilabilir.
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—f"+q(x)f

Gergekten F' = ve AF = oldugundan
f(1) f'(1)
PN T TR NN I 68
f'() f(1)
seklinde yazilir. 5.6.8 esitligi,
—f"+aqlx)f = Af (5.6.9)
(1) = Af(1) (5.6.10)
esitlikleri biciminde yazilabilir. Ayrica F' = J;Ef; € D(A) oldugu i¢in,
f(=1) =0 (5.6.11)
f(+0) =4f(=0) = 0 (5.6.12)
f(+0) =~f'(=0) = 0 (5.6.13)

esitlikleri saglanir. 5.6.9 — 5.6.13 esitlikleri birarada yazilirsa, 5.6.7 esitligi ile esdeger

olan asagidaki denklem sistemi elde edilir.

—f"+ql@)f = Af

f1(1) = AfQ)
f(=1) =0 (5.6.14)
F(+0) = 8f(~0) = 0
f'(+0) =7f'(=0) = 0

Demek ki arastirdigimiz 5.1.1 — 5.1.5 smir-deger-gecis problemi,

— AF = \F (5.6.15)

seklinde yazilabilir. Bu nedenle A operatoriin 6zdegerleri ve uygun dzfonksiyonlar sirasi

ile 5.1.1 — 5.1.5 probleminin 6zdegerleri ve 6zfonksiyonlar: olarak adlandirilir.
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Teorem 5.6.1. H := Ly(—1,0)® L2(0,1) @ C Hilbert uzayinda 5.6.4—5.6.5 esitlikleri

ile tamml1 A operatorii simetriktir.
. x
Ispat: VF.G € D(A) C H, F = , G = € H igin

<AF,G>p=<F AG >g (5.6.16)

oldugu gosterilmelidir. Gergekten '’ daki i¢ carpim tanimina gore

<AF,G>p = &y /_1(_f~($)+q(g;)f(a;))mdx+/o (—f"(@) + q(x) f(z))g(x)dz
+ fa

S / P+ oy [ o) s

-1

- / (x d:c+/0 q() f(x)g(x)dz + £ (1)g(1) (5.6.17)

seklinde yazilabilir.

5 / (—1"(x) + q(2) f(2))g@)dz = —b7 / F (@) g(@)de + 5y / o(2)f(2)g(@)da

-1 -1

Herhangi aralikda diferansiyellenebilir iki f(x) ve g(x) fonksiyonlarinin Wronskiyen’i

W(f,g;x) = f(x)g (z) — g(z) [ (x)

tanimin1 kullanarak son esitligin sag tarfindaki ilk integrale ard arda iki kere kismi

integrasyon uygulanip islemlere devam edilirse,



76

_ e (@) I / F@F@is} +67 [ gl f@atds
_ 5 / F(@) (@) + 6y / a(2)f (2)g()dz — &y ('(@)(x) [°,)

0

= oy (f@)T (@) 2y —67 / f(@)F(@)dz} + 6 / (@) (@)de = 67 (7/(@)5(a) )

= 0y | flx)g (Jf)dl’+57/ q(z)f(z)g(x)dz + oy {f(=0)g'(=0) — f(-1)g'(-1)}

-1

- 57{f( 0)g(=0) — f'(=Dg(=1)}

= oy | f@)F(@)dz + oy / (o) (@)gla)de + 57 W(£.3:=0)
—oy W f,g, 1)
s / fla @)g(0))dz + 67 W(f.:—0) — oy W(f.gi=1)  (56.18)
elde edilir.
/0< (@) + q2) /f” dx+/ o(2) f(2)g(@)dz

benzer sekilde esitligin sagindaki ilk terime iki kere arda arda kismi integrasyon uygulanip

gerekli islemler yapilirsa,

= —{f(@)g) |} - /f da:}+/ q(x)f(x)g(x)dz
_ / £ 7 (@)dz + / a(@) f (@)g(@)dx — (f (2)5(x) |})
_ / (@) g7 (2)da} + / a(@) f(2)g(x)dz — (f'(2)g(x) |})

- / F@) T ()dx + / o(@) f(0)gde + {f)FL) — F(H0)F(+0)}
(W)g(1) — F'(+0)3(+0)}
_ / F(@)F(2)de + / o(@)f(@)gdz + FOFA) — F()F(1) — W(f.7:+0)

= / F(@)(=g"(x) + q(x)g(z))dz + f(1)g'(1) — £(1)g(1) — W(f,7;+0)(5.6.19)
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bulunur. 5.6.18 ve 5.6.19, 5.6.17’ de yerine yazilirsa,

CAFG >y = 6 / fa T + / f T+ 4(@)9(@)da

+ g'(1) = W(f,7;: +0) + 6y W(f.7; —
- MW(f,E;—l) (5.6.20)

elde edilir.

<FAG>n = &1 [ J0) @+ a@a@)de + [ 1)+ a@al)da

+ f(Dg M) (5.6.21)

yazilabilir. Buradan 5.6.20 ve 5.6.21 ifadeleri taraf tarafa ¢ikartilirsa,

<AF,G >y — < F,AG >y = oyW(f,5;,-0) =y W(f, 7 —1)
- W(f,3;+0) (5.6.22)

esitligi bulunur.

A operatoriiniin simetrik oldugunu sdyleyebilmek igin 5.6.22 esitliginin sag tarafinin
sifira esit oldugunu géstermemiz gerekir. Bunun i¢in f(z) ve g¢(z) fonksiyonlar1 A

operatoriiniin tanim bolgesinin elemanlari olduklarindan sinir sartlarini kullanarak

ifadeleri bulunur. Bu ifadeler 5.6.22° de yerine yazilirsa sag tarafin sifira esit oldugu

goriliir. Sonug itibariyle

<AF,G>p=<F AG >g (5.6.23)

esitligini elde ederiz. Bu da bize A operatoriiniin simetrik oldugunu gosterir. Bu ise ispati

tamamlar.
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5.7 Sir-Deger-Gegis Probleminin Rezolventinin ve Green Fonksiyonunun Kurulmasi

5.7.1 Smr-Deger-Geg¢is Probleminin Rezolventi ve Green Fonksiyonu

Bu kesimde verilmis 5.1.1 — 5.1.5 smir-deger-gecis problemine uygun olan rezolventi

kurulacaktir. Bunun i¢in

Lu) = —u +[qlz) = Nu=f(z), z€[-1,0)U(0,1] (5.7.1)

homojen olmayan diferansiyel denkleminin

Li(u) == u(-1)=0 (5.7.2)
Ly(u) = Au(l)—u/(1)=0 (5.7.3)
Ls(u) = u(+0) — du(—0) =0 (5.7.4)
Ly(u) = '(4+0) —yu/(—0) = 0 (5.7.5)

homojen siir-deger-gecis sartlarini saglayan ¢oziimii (bu ¢oziim rezolvent olarak adlandirilir)

bulunacaktir. Bunun icin 6nce asagidaki Lemma ispat edilecektir.

Lemma 5.7.1. Eger A = )\ € C sayis1 5.1.1 — 5.1.5 smr-deger-ge¢is probleminin

Ozdegeri degilse, o halde 5.7.1 — 5.7.5 probleminin A = ) i¢in ¢ziimii varsa tektir.

Ispat: Aksini kabul edelim. Yani kabul edelim ki, u1(z, \g) ve ua(w, \g) fonksiyonlar:
5.7.1 — 5.7.5 probleminin A = )y degerine uygun farkli ¢éziimleri olsun. O halde

up(x, No) = uy(z, \g) — ua(x, Ng) #0

fonksiyonunun uygun homojen 5.1.1 — 5.1.5 sinir-deger-gegis probleminin ¢éziimii
olacag agiktir. Buna gére wug(z,)¢) fonksiyonu 5.1.1 — 5.1.5 sinir-deger-gegis
probleminin 6zfonksiyonudur. Bu ise A = )y sayisinin 6zdeger oldugu anlamina

gelir. Bu ise kabiille ¢elisir. Buda ispati tamamlar.
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Simdi f € Ly(—1,0) & L2(0,1) ve dzdeger olmayan A i¢in 5.7.1 —5.7.5 probleminin
u(z, \) ¢oziimiini, ®(z,\) ve x(x,\) ¢bzimleri ile ifade eden formiil ¢ikarilacaktir.

Bunun i¢in asagidaki yardime1 6nerme verilecektir.

Lemma 5.7.2. )\ € C sayisi1 6zdeger degilse o halde 5.1.1 diferansiyel denkleminin
5.1.4 — 5.1.5 gegis sartlarin1 saglayan her w(z, \) ¢Ozimi

u(z, ) = 1 ®(z, \) + cax(z, A) (5.7.6)

biciminde ifade edilebilir. Yani, 5.1.1, 5.1.4, 5.1.5 probleminin genel ¢éziimii 5.7.6
bicimindedir. (Burada c¢; ve cy) katsayilan keyfi sabitlerdir.

Ispat: \ 6zdeger olmadigi igin (i = 1,2) olmak iizere
wilA) = W (®s(x, A), xi(z, A) #0 , i=1,2

Wronskiyenleri sifirdan farkli oldugu igin  ®;(x, ) ve x;(z,\) fonksiyonlar1 lineer
bagimsizdirlar. Bu nedenle 5.1.1 denkleminin genel ¢6zimii ¢y, co,d;, ds katsayilar

keyfi sabitler olmak {izere

ul(e ) = 1Py (x, ) + coxa(z, \) , ¢ € [-1,0) (5.7.7)
7 dl(I)Q(xv/\) +d2X2("E7)‘) , T E (07 1] -

biciminde yazilabilir. Bu ifade 5.1.4 — 5.1.5 gegis sartlarinda yazilirsa,

6(01CI)1(0, /\) + CaX1 (O, )\)) = dl(I)Q(O, )\) + dQXQ(O, )\)
/V(Clq),l (07 /\) + C2X11(07 )‘)) = d1@/2(0, )‘) + dQXIQ(Ov )‘)

esitlikleri elde edilir.  ®;(z, \) ve x;(z,\) , i = 1,2 fonksiyonlarmm 5.1.4 — 5.1.5
gecis sartlarini sagladiklar dikkate alinirsa son iki esitlikten,

(Cl - dl)CDQ(O, /\) + (CQ — dg)Xg(O, )\) =0
(er = dr)®5(0,A) + (c2 — da)x5(0,A) = 0
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elde edilir. Bu esitlikler (¢; —dy) ve (co — dz) deZiskenlerine gore lineer denklem

sistemidir. Bu sistem de

W((I)Q(Ov )‘)a X2(07 A)) = (,()2()\) 7é 0

oldugu i¢in bir tek
(c1 —d1) =0, (ca—d2) =0

¢oztimi bulunur. Simdi 5.7.7° de ¢; =d; =: C', ¢o = dy =: D yazarsak,

u(z,\) = CP(x,\) + Dx(z,\), z € [-1,0) U (0,1]

elde edilir. Bu ise ispat1 tamamlar.

Simdi
wi(A), x € [-1,0)

w(z, A) = W(P(z, \), x(z,\)) = (5.7.8)
R BN

gosterimini dahil ederek asagidaki teoremi ispat edelim.

Teorem 5.7.1. Ozdeger olmayan her A € C igin 5.7.1 — 5.7.5 homojen olmayan

smir-deger-gecis probleminin ¢éziimii vardir ve tektir. Ayrica bu ¢6ziim i¢in

) = M [ agna+ T [ sy

w(A) S w(A)
5 % Jo x2(, N f(y)dy , = € [-1,0)
+ (5.7.9)

2288 19 By (y, \) f(y)dy . = € (0,1]

formiilii gecerlidir.

Ispat: Ozdegerlerden farkliolan VA € C igin 5.1.1 diferansiyel denkleminin ®;(x, \), x;(x, \)
cOziimleri lineer bagimsiz olduklarindan bu denklemin genel ¢6ziimii,
Clq)l(xv )‘) + lel(x7 )‘) y T € [_17 0)

u(z, \) = (5.7.10)
ca®o(z, A) + daxa(z, N) , z € (0,1]
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seklinde ifade edilebilir. Burada ¢, co, d;, d; keyfi sabitlerdir.

Sabitin degisimi yontemini kullanarak homojen olmayan
—u" + q(x)u = Mu — f(z) (5.7.11)
diferansiyel denkleminin genel ¢oziimiinii,

U(:L‘ /\) . clq)l(xv)‘) + lel(xv)‘) y & € [_170) (5 7 12)
7 02@2@3,)\) + dZXQ(xa )‘) y L € (07 1] -

seklinde arayalim. Sabitin degisimi yontemi geregi sirastyla, ¢;(z,\) ve di(x,)\)

fonksiyonlar1 x € [—1,0) igin,

¢y (2, \) @1 (2, A) + dy (2, \)xa (2, 4) = 0

(5.7.13)
cy(w, N)®y (2, A) + di (2, \)xy (2, A) = f(2)
denklem sisteminin, cy(x, \) ve do(z,A) fonksiyonlarida x € (0,1] igin,
Cy(w, \)@a (2, X) + di(w, X)x2(z, A) = 0
(5.7.14)

6/2(1" )‘)CDIZ(I’ )‘) + dé(l‘, )‘)XIQ(J:7)‘) = f(ZL’)

denklem sistemininin ¢éziimiinden bulunacaktir. A 6zdeger olmadigindan,

W(®1(N), x1(A);z) = s 40

veE

W(®@2(N), x2(N); 7) = o #0
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olur. O halde 5.7.13 ve 5.7.14 denklem sistemlerinin herbiri tek ¢éziime sahiptir. Bu

¢oziimler z € [—1,0) i¢in ¢; ved;, x € (0,1] i¢in ¢y ve dy olmak tizere,

AN =~ Fehale ) = ale) = Ny + ()
) = o5 MO0 = dfe) = h) o+ 0y
G =~ faha(e ) = a)) = — / £l Ny + 2
G = o H)a(e ) = da(e ) = —s [ )Pl Ny + ()

seklinde bulunur. Buldugumuz bu degerler 5.7.12” de yerine yazilirsa,

RED [T F)xay, Ny + 255 [7) F(y)®1(y, \)dy
+Cl<>\)(1)1(m7>\) +d1()\)X1(fL’, /\) ) [_17())
w(z, \) = (5.7.15)
q)jg(—z:,\/)\ f FW)xa(y, \dy + Xj;&;) Jo £ ; A)dy
+62()\)(I>2(xa )‘) + dZ()\)XQ(:Ev >‘) ) T e (Oa 1]

\

homojen olmayan 5.7.11 diferansiyel denkleminin genel ¢6ziimii elde edilmektedir.

Bulduguz bu son ifade diferansiyellenirse,

( ! x x
2ED [T F)xaly, Ny + le(f)f Fy)@1(y, Ny
+er (V)@ (2, >\)+d1(>\)x1($,)\)a [—170)
u'(z, ) = (5.7.16)

m)\ 2(1)\
208 [ F)xaly, Ny + 22530 [ £ (y)@a(y, A)dy
—1—02()\)@2(:6, A)+ dg()\)x2(x, A), x € (O, 1]

\
ifadesi bulunur. Son iki esitligi kullanmakla Li(u), i = 1,2, 3,4 i¢in asagidaki esitlikler

elde edilir. 2 = 1 i¢in,

Li(u) = u(-1)

R [ ot vy
+ aW)Pi(=1LA) + di(Mxa(=1,2)
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elde edilir.

u(=1) = P(—=1,N) =0
W(-1) = —1=®| (-1, =—

olup bu degerler bir iistteki esitlikte yerine yerine yazilirsa,

Li(u) = di(A)xa(=1A)
= (N (@1(=1, )x1(=1,A) = (=1, )xa (=1, 1))
= di(Mwi(A)
— 0 (5.7.17)

bulunur. w;(A) # 0 oldugundan,
di(\) =0 (5.7.18)

bulunur.

Benzer sekilde 7 = 2 igin,

Lafu) = 1) — /(1)
= O G0} [ sl

)
Co(A{ADP2 (1, A) — Dy(1,N) }
dy(\) {2 (1,0) — xo(1,\)} (5.7.19)

bulunur.

u(l) = 1= x2(1,N) =1
(1) = A= xy(1,\) =\

esitliklerinden dolay1r ®5(x, ) ve xo(z, ) asagidaki denklemleri saglar.

Axa(1L,A) = xo(1LA) = 0 (5.7.20)
ADy(1, ) — Do(1,0) = wo(N) (5.7.21)
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5.7.20 — 5.7.21 esitlikleri 5.7.19° da yerine yazilirsa,
Lo(u) = ca(AN)wa(N) =0 (5.7.22)
formiilii bulunur. wy(A) # 0 oldugundan
ca(N) =0 (5.7.23)
bulunur. Yine benzer sekilde 7 = 3,4 igin,

Ly(u) = u(+0) — du(-0)

- %j—OA/ F(y)xa(y: Ay + 2(A)@a(+0, A) + da(A)xa2(+0, A)

- 5{& / F)®1 (5 Ny — 1 (V@1 (—0, 1) — dy(A)xa(~0, )}

- BU0A *“ BN [ ptpaty iy = 28 )02y

- cl()\)¢>( 0, A) + da(A)x2(+0, \) (5.7.24)

Ly(u) = u'(+0) — yu'(-0)

w / F(9)xaw, Ny + da(A)xa(+0, )

- X1 “ / @)1y, Ny — 7 s (N, (~0, )} (5.7.25)

bulunur. Buldugumuz bu L;(u) = 0, i = 1,2,3,4 esitlikleri dikkate alimirsa

c1(A) ve da() sabitlerini bulmak igin agagidaki lineer denklem sistemi elde edilir.

§AND(-0.) — da(Wa(10,0) = PO *“ / F)xa(y: A

_5X10)\/f

7 NP (=0,A) — dy (V) xa(40,) = “” / )y A

X1 —0,>\
- M /_1f<y><1>1<y A)d
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oi(z,A) ve xi(z,A) (i=1,2) ¢oziim fonksiyonlarmin tanimindan yararlanilirsa lineer

denklem sisteminin determinanti i¢in

esitligi bulunur. Bu determiant sifirdan farkli oldugu i¢in lineer denklem sisteminin bir

tek ¢6ziimii bulunur. Bu sistem ¢oziiliirse, ¢;(A\) ve da(\) katsayilari igin,

A = =7 [ Fe i (57.26)
dy(A) = wllA) /_ F@)uly, Ay (5.7.27)

denklemler elde edilir. Sonug itibariyle 5.7.18,5.7.23, 5.7.26, 5.7.27 degerleri
5.7.15> de yerine yazilirsa,

(I)l(“ [2 F)xaly, \dy + X ’“ “ f fly N)dy
@jgf,\;) fol fW)xz2(y, )dy , [_1’0)
e = (5.7.28)
Do(z,\) 1 (A
j;(x) fx fW)x2(y, Ndy + ij)) fo \)dy
\ +X21(3(6/\/;) f71 f(y)q’1(y, )\)dy , T € (07 1]
formuli bulunur.
Buradan,
B(x, \) ®y(z,A), z€[-1,0)
x’ pu—
Dy(x,A), € (0,1]

x(z, A)
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tanimlarini kullanarak 5.7.28 formiilii agagidaki sekilde yeniden yazilabilir.

e ) = M55 [ atonsma+ 25 [ s

& 2 ) e N f(y)dy , @ € [-1,0)
+ (5.7.29)

) [0 @1 (y, N f(y)dy , = € (0,1]

Boylece siir-deger-gecis probleminin rezolventi elde edilir. 5.7.29 formiiliinden Green

fonksiyonu kolayca bulunabilir. Yani;

;

x(w,i)(i(yﬂ_) , —1<y<z<1, 2zy>0
(z,A) P1(y,A)
%, —1<y<z<l1l, zy<0
Gloy ) = (5.7.30)
‘1>(ﬂf,:\u)(§<)(y7>\) , —1<z<y<1l,zy>0
1 21(zA) x2(y:A)
\E%v —1<z<y<1l,zy<0

ile gosterilirse w(z, A) rezolventi

uwwszmu&wm/ (5.731)

1

seklinde yazilabilir. Bdylece Green fonksiyonunun 5.7.30 formiiliiile ifade edilebilecegi

gosterilmis oldu.
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5.7.2 Rezolvent Operatorii

Bu kesimde her yerde A € C parametresinin 6zdeger olmadigi kabul edilecektir. Ayrica
bukesimde 5.1.1—-5.1.5 sinir-deger-gecis probleminin lirettigi ve 5.6.3—5.6.5 esitlikleri
ile tanimli

A: H— H

simetrik operatoriiniin rezolventi olan
RMNA) = (M-A)1': H — H

f(x)

operatorii kurulacaktir. Bunun i¢in F' = € H eleman icin
fi
(M —-A)U = F (5.7.32)
. . v(x)
operatdr denkleminin her ' € H i¢cin V = ) € D(A) ¢bziimiiniin mevcut
v(1

olup olmadigini, mevcut ise tek olup olmadigini, ¢éziimiin mevcut ve tek oldugu durumda
ise R(\,A) : H — H rezolvent operatoriiniin sinirli olup olmadiginin arastirilmasi
gerekir.  5.7.32 operatér denklemi ile hem denklemi , hem de sinir sartlart homojen

olmayan,

Lw) = —u +q@)u=> u—f(z), ze[-1,00U(0,1] (5.7.33)
Li(u) = u(=1)=0 (5.7.34)
Ly(u) = u/(1) = Mu(l) = fy (5.7.35)
Ls(u) = u(+0) — du(—0) =0 (5.7.36)
Ly(u) = u/(+0) — yu/(=0) =0 (5.7.37)

smir-deger-gegis problemi esdegerdir. Onceki kesimde 5.7.33 denkleminin genel
¢Oziimiiniin 5.7.15 formiilii ile verildigi ispatlanmisti. 5.7.33 — 5.7.37 smir-deger-gegis
probleminin ¢6ziimiinii bulmak icin 5.7.15 ifadesini 5.7.34 — 5.7.37 sinir ve gecis
sartlarinda yerine yazarak, 5.7.17, 5.7.19, 5.7.24 ve 5.7.25 formiillerinden yararlanilarak
bir 6nceki kesime benzer sekilde ¢1()), di(A), c2()), do(A) sabitleri bulunur. Ly (u) = 0
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smir sartindan 5.7.18 geregi

di(A) =0 (5.7.38)

Ly(u) = f1 smr sartindan 5.7.22 geregi

CQ(/\)LUQ()\) = f1 — CQ()\) = (5739)

U)g()\)

bulunur. Bulunan son iki esitligi 5.7.15 de yerine yazip, 5.7.24 —5.7.25 formiillerinden
de yararlamilirsa, c¢1(\) ve do(A) katsayilari igin asagidaki lineer denklem sistemi elde

edilir.

Ser(\)B1(—0,)) — d2<A>xQ<+0,A>=w / F(9)xa(y, Ny

Xl O )\ f1 (I)Q(O )\)
0N / 1y o2V
(N (—0.0) — dy(A)xa(+0,) = *“ / F)ely

X/l(_()?)‘) i 2(7 )
- Ww/lf(y)q’1(y7)\)dy+T(>\)

Bu lineer denklem sisteminin determinanti,

5(1)1(—0, )\) —X2(+0, )\) _ @2("‘0, )\) —X2(+0, )\) _ —w2<)\) # 0
Y CDII(_O7 /\) _X/2(+07 /\) (I)/2(+07 /\) _X/2(+07 /\)

stfirdan farkli oldugundan ¢6ziimii vardir ve tektir. Eger bu lineer denklem sistemi,
boliim 5.7.1” dekine benzer sekilde ¢oziiliirse, ¢1(A) ve da()) katsayilart i¢in agagidaki
denklemler

1 ! fi

A = 5 [ TN+ s (5.7.40)
1 0

a0 = 5 [ I (5741)
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bulunur. ¢;(N\), di(N), () ve dao(N) katsayilart 5.7.15° de yerlerine yazilirsa

2.7.33 — 5.7.37 problemin ¢dzlimiiniin mevcut oldugu, tek oldugu ve

LD [0 F)xa(y, Ny + 2820 [7) £ ()P (y, \)dy
+ 28 [0 F )Xy, Ny + D252 [—1,0)
v(z,\) = (5.7.42)
% x/\ f f X2 Y, A)dy + ngf;)\ fo CI)2 Y, )dy
\ Xj% S f )dy+ Lt we (0]

biciminde ifade edilebilecegi gosterilmis olur. 5.7.29 ve 5.7.31 ifadeleri dikkate alinarak

sonuncu esitlik

(x,A)—/ G(x,y;)\)f(y)dy—l—wj(l/\)cb(x,)\) (5.7.43)

seklinde yazilabilir.

Teorem 5.7.2. Eger A\ Ozdeger degilse her F' € H i¢in 5.7.32 operator denkleminin
bir tek
RNAF =
v(1)

¢6ziimii bulunur ve her F' € D(A) igin

RMNA)Y AN -AF =F (5.7.44)

esitligi saglanir.
Lemma 5.7.3. Her F' € H ve ImA # 0 olan her reel olmayan \ sayisi igin

R(\MA) : H— H

operatoriiniin D(R(\, A)) tanim bolgesi biitiin H uzayidir. ImA # 0 olanher A igin

bu operator sinirhidir ve

IR AVF| < [T |IF) (5.7.45)
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esitsizligini saglar.

Ispat: Im) # 0 olsun. Bir dnceki teorem geregi R(\; A) operatdriiniin tanim bolgesi

biitiin A uzayidir. Keyfi /' € H alalim ve
V = RNA)F (5.7.46)
ile gosterelim. O halde
ANV —AV =F —= AV = AV - F
esitligi saglanacaktir. Buradan

(AV.Vg = AW —=FV)g =XV, Vg —(F,\V)n

Il
>|

(V. AV)g = (V,AV = F)g (V.Vyu — (V. F)y

esitlikleri elde edilir.

A operat6riiniin simetrik oldugunu dikkate alarak sonuncu iki esitlik taraf tarafa ¢ikarilirsa,
A=V Vg =(E,V)g —(V,F)u

elde edilir. Buradan

[ImA[|[V 5 = [Im(F, V)] (5.7.47)

yazilir. Diger taraftan Cauchy-Schwartz esitsizligi geregi,

Im(F,V)ul < [(F,V)ul

IA

[N IV (5.7.48)
elde edilir. 5.7.47 ve 5.7.48’ den

N AF = < — ||F
1RO Al = IVl < sy 1F
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esitsizligi bulunur. Béylece 5.7.45 ifadesi ispatlanmis olur.

Lemma 5.7.4. 5.1.1 —5.1.5 smir-deger-gecis problemine uygun olan ve 5.6.4 — 5.6.6
esitlikleri ile tanimli olan

A: H— H

operatorii kendine esleniktir.

Ispat: Bir 6nceki Lemma 5.7.5° de Im\ # 0 olacak sekildeki her A\ € C kompleks
sayisinin A operatoriiniin regiiler degeri olacagi gosterilmisti. O halde A = =+ ¢ igin
(il —A) ve (—il — A) operatérlerinin deger bolgeleri olan R(il — A) ve R(—il — A)
lineer alt uzaylar1 biitiin /7 Hilbert uzayi ile cakigacak. Dolayisiyla

N; = (R(iI — A))* | N_;:= (R(—il — A))*

ortogonal tiimleyenlerinin her biri sadece ve sadece 0 € H sifir elemanindan ibaret
olacak. Dolayisiyla A* eslenik operatoriiniin D(A*) tanim kiimesi igin Teorem 3.5.1
geregi

D(A*) = D(A)

esitligi saglanir. Boylece A operatoriiniin kendine eslenik oldugu ispatlanmis oldu.
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5.8 Diferansiyel-Operatér Siir-Deger-Gecis Probleminin ifadesi, izomorflugu,
Rezolventinin Normunun Degerlendirilmesi, Spektrumu ve Ozdegerlerinin

Asimptotigi

5.8.1 Giris

Bu bolimde B : Ly(—1,0) @ Ly(0,1) — Lo(—1,0) & Ly(0,1) soyut lineer operator

olmak iizere,

—u (x) + q(x)u(z) + (Bu)(z) = Mu(z), z€[-1,0)U(0,1] (5.8.1)

u(—1) = 0 (5:82)
u'(1) = Au(l) (5.8.3)

sinir sartlarindan ve
u(+0) = du(-0) (5.8.4)
u'(+0) = ~yu'(-0) (5.8.5)

gecis sartlarindan olusan siir-deger-gegis problemi incelenecektir. Burada ¢(z) [-1,0)
ve (0,1] araliklarinin herbirinde siirekli fonksiyon, B ise soyut (genel) lineer operatordiir.
Ozel olarak segtigimiz smiflardan alman B operatorleri igin bu problemin diskret

spektrumlu oldugu gosterilecek, spektrumu igeren agilar bulunacak, kompleks diizlemin
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bu acilarin diginda kalan boélgesinde verilmis 5.8.1 — 5.8.5 probleminin rezolventinin
normu degerlendirilecek ve ayrica bu problemin 6zdegerlerinin asimptotigi bulunacaktir.
Bu problemin klasik Sturm-Liouville Problemlerinden ii¢ esas farki vardir;

1) Verilen denklem sadece diferansiyel ifadeleri degil ayrica B soyut (genel) lineer
operatoriinii igermektedir.

2) Verilen aralikta siireksizlik noktasinin bulunmasi ve bu siireksizlik noktasinda
problemin gecis sartlariya birlikte verilmesidir.

3) )\ kompleks 6zdeger parametresinin sadece denklemde degil ayn1 zamanda sinir

sartlarinin birinde de bulunmasidr.

5.8.2 Smr-Deger-Gegis Probleminin izomorflugu

D(B) D W$(—1,0) & W3(0,1) oldugunu kabul ederek, verilmis problemin
H = Ly(—1,0)® Ly(0,1)®C Hilbert uzayinda iirettigi operatorii A ile gosterelim. Yani

A:H—H

Uy

o' (+0) = yu'(=0), uy = u(l) } (5.8.6)
olmak iizere
—u" + qu + Bu
AU = 1 (5.8.7)
u'(1)
L f(x) "
esitlikleriyle tanimlayalim. F' = ; € H olmak iizere
1

(M —A)d=F (5.8.8)
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denklemini g6z 6niine alalim ve bu denklem i¢in ileride kullanilacak olan

H= { U=| ") uw) en2-1,0@w0.1),

u(—1) =0, u(+0) = du(-0),
u'(+0) = 3/ (=0), vy = u(l) }

lineer uzayini tanimlayalim. Bu uzayda

elemanlarinin i¢ ¢arpimini
(U V) = (u,v)wz0 + (W 0)weo)
ile tanimlayalim.

Lemma 5.8.1. [, bir Hilbert uzayidir.

(5.8.9)

(5.8.10)

ispat: Once 5.8.10 formiiliiniin gercekten bir i¢ ¢arpim oldugunu gosterelim. Bunun

i¢in i¢ ¢carpim aksiyomlarindan sadece

(U, UV, =0=U=0

aksiyomunun saglandigim gdstermek yeterlidir. (Ig carpimin diger aksiyomlarmin saglandigi

aciktir.)

(U,U0)m, =0 <Uau>w22(—1,0) + <U7U>W22(0,1) =0

u(z) =0 A u(z)=0

Pl

wW=1)=0 A w(l)=0=U=0

(W, w100 =0 A (U, u)wz1) =0
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Simdi H; i¢ ¢arpim uzaymin Hilbert uzay1 oldugu gosterilecektir. Bunun i¢in H;
uzayindan alinan keyfi bir Cauchy dizisinin yakinsak oldugunu gdstermek gerekir. O
halde keyfi {U,}, n = 1,2,... cauchy dizisi alahm ve bu dizinin yakinsak oldugunu
gosterelim.

Ve >0, dng(e) € Noyle kiVn, m > ng(e) igin,

2
= (Un — U, Up — Um>W22(—1,0) + (U — U, Un — um>W22(0,1)

= |lun — um”%}[@?(fl,o) + [Jun — um”l2/1122(0,1)
olur. {U,} cauchy dizisi oldugundan dolayz,
1Un = Unllig, — 0 (n,m — o0)
olup buradan,
|t — Um||12zv22(—1,0) — 0 ve |u,— Um||12xv22(0,1) — 0 (n,m — o0)

elde edilir. Buise {U,} € Hy, n = 1,2, ... cauchy dizisinin W}(—1,0) ve W}(0,1)
Hilbert uzaylarinda da bir Cauchy dizisi oldugunu gésterir. W3(—1,0) ve WZ(0,1)
Hilbert uzay1 olduklarindan,

l|n — USH?/Vg(,Lo) — 0 ve |u,— ug*”%vg(m) — 0 (n — 00)
olacak sekilde u € W3(—1,0) ve ug* € Wi(0,1) fonksiyonlari mevcuttur.
W2(—1,0) c C[-1,0] ve WZ(0,1) c C[0,1]
gomiilmeleri siirekli oldugundan dolayz,
[tn — USHQC[A,O} — 0 ve |lu,— US*HZC[OJ] — 0 (n — o0)
olur. Buradan da

2 2 2
1Un = Una|7r, = llun — “8”0[—1,0] + [Jun — US*HC[O,I] — 0 (n — o)
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yazilir.
ug, r € [—1,0
u=:{ ° =1,0 (5.8.11)
ug*, x € (0,1]
ile tanimlanirsa,
up(—1) — wup(—=1)=0

yazilir. Buna gore ug(—1) =0,

uo ()
Up = € Hy ve [|U,—Uslly, — 0 (n — o0) (5.8.12)

ug(1)
elde edilir. Buda ispat1 tamamlar.
Teorem 5.8.1. Eger B operatérii. WZ(—1,0) & W(0,1) uzaymndan Lo(—1,0) &
L5(0,1) uzaymakompakt doniisiim ise, o halde Ve > 0 sayisii¢in6yle R. >0, C. > 0

sayilar1 bulunur ki

e<arg\<2m —e ve [A\ > R.

sartlarin1 saglayan her A\ € C kompleks sayist igin A\l — A doniisimii H, ile H uzayi

arasinda izomorfizmadir ve 5.8.8 denkleminin ® = ®()\) ¢oziimleri i¢in
1@, + AL 12l < Ce [[Fl g (5.8.13)
Coersitiv esitsizligi saglanir.

Ispat: VA € C i¢in A\ — A: H, — H lineer operatdriiniin siirekli oldugu agiktir.

Once
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gosterimlerinden yararlanarak 5.8.8 operator denklemini,

Mu(z) +u'(2) = (Bu)(z) = f(x)
u(—=1) = 0

Au(l) —u'(1) = f(1)
u(4+0) — du(—=0) = 0
u'(40) —yu'(—=0) = 0

sinir-deger-gegis problemi seklinde yazalm ve G. = {\ € C| e < |arg A\| < 27 — ¢}

1

LOVu = u(z)+u'(z) — (Bu)(x)
LiNu = u(-1)

LoOu = Mu(l) — /(1)

Ls(Nu = u(+0) — du(—0)

Li(Mu = /(+0) — yu/(~0)

ile gosterilim. O halde (S.Y. Yakubov ve Y.Y. Yakubov’ un, 1999) makalesindeki
Teorem 3.4. geregi 6yle R. > 0 sayist mevcuttur ki, A € G. ve |\ > R, sartlarmi

saglayan A kompleks sayilar1 igin,

LA :u— (L(N)u, Li(A)u)
operatoril

{u : uwe Wz(—=1,0)® W3(0,1), u(=1) =0, u(+0) = du(-0), v (+0) = vyu'(-0)

HUHH1 = Huuwg(fl,o) + HUng(o,l)}

uzayi ile Ly(—1,0) & L9(0,1) & C arasinda izomorfizmadir. Buradan AI — A lineer
doniisiimiiniin /; ile H arasinda izomorfizma oldugu gériiliir. Yine (S.Y. Yakubov ve
Y.Y. Yakubov’ un, 1999) makalesindeki 3.20 esitsizliginden direkt olarak talep olunan

5.8.13 esitligide elde edilmis olur. Bu ise Teoremin ispatini tamamlar.
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Sonuc¢ 5.8.1. B : W2(—1,0)® W(0,1) — Ly(—1,0) & Ly(0,1) operatdrii kompakt

ise, Ve > 0 sayist icin dyle R. > 0, sayis1 bulunur ki
e<|arg\| <2 —e ve |A > R. (5.8.14)

sartlarin1 saglayan her A € C kompleks sayis1 5.8.7 ile tanimli olan A operatoriiniin
regiiler degeridir ve A operatdriiniin  R(\, A) = (A — A)™! rezolventi i¢in 5.8.14
bolgesinde (acisinda)

RO\ A < Co [AIT! (5.8.15)

esitsizligi saglanir ve R(\, A) rezolvent operatorii H uzayindan H; uzaymna simirlidir.

Teorem 5.8.2. 5.8.1 Teoreminin sartlar1 saglandiginda verilmis £ > 0 igin A € G, ve

|A| > R. sartlarini sagliyan VA € C igin
R(MNA):H— H
rezolvent operatorii kompakttir.

Ispat: Once H, C H gomiilmesinin kompakt oldugunu gorelim.

Un: GHl, n:1,2,....

keyfi siirlt bir dizi olsun. O halde u,(z) € W}(—1,0) ® WZ(0,1), n=1,2,... dizisi
smurlt olur.

W3(=1,0) C La(—1,0) ve W5 (0,1) C Ly(0, 1)

gomiilmeleri kompakt oldugundan (S.Y. Yakubov ve Y.Y. Yakubov, 1999)
0 ||ttny, — USHLQ(fLo) — 0 ve [uy, — US*HLQ(OJ) — 0 (n — 00) (5.8.16)

olacak sekilde ug(z) € Lo(—1,0) @ Lo(0,1) fonksiyonu ve {u,,} alt dizisi bulunur.
Diger taraftan

W3 (—=1,0) € C[-1,0] ve W5(0,1) C C[0,1]
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gomiilmeleri siirekli olduklarindan {u,, (1)} sayisal dizisi sinirhidir. O halde bu dizinin

yakinsak olan {u,, (1)} alt dizisi mevcuttur. Bu alt diziyi

lim wy,, (1) =wu (5.8.17)
ug(x ug(x), x € |—1,0

ile gosterelimve Uy = ol®) € H, uy(x) = o) [ ) elemanini
Uy uy*(x) , x € (0,1]

g0zoniine alalim. Bu takdirde

2
Lo

12(0,1) + |u"ks(1) - ul‘é

[Uns, = Vol = 07 lutme, = 51110y + I, — "
oldugu i¢in 5.8.16 — 5.8.17 ifadeleri geregi

[Un. = Uo7, — 0 (n — o0) (5.8.18)

yazilir. Demek ki H; C H gomiilmesi kompakttir. Diger taraftan (S.Y. Yakubov ve
Y.Y. Yakubov ,1999) makalesindeki Teorem 3.4 geregi R(\, A) operatoérii A € G, ve
|A| > R. igin H- dan H,— ya sinirhdir. Dolayisiyla R(\, A) operatoric H- dan H-a
kompakttir.

Sonug 5.8.2. 5.8.6 — 5.8.7 esitlikleriyle tanimli A operatorii diskret spektrumludur.

5.8.3 Esas Diferansiyel Kismina Gore Kompakt Olan Operatorle Etkilenmis

Siir-Deger-Gegis Probleminin Ozdegerlerinin Asimptotigi

5.8.1 — 5.8.5 sinir-deger-gegis problemi verilsin. Onceki kistmda oldugu gibi
H := Ly(—1,0) @ L2(0,1) ® C olmak tizere

A:H—H

lineer operatoriinii 5.8.6 — 5.8.7 esitlikleri ile tanimlanmusti.
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Bi:H —H
operatriiniiise F— | ](:E) olmak iizere
s
D(B)) = D(A) (5.8.19)
BF = (BJZ (@) (5.8.20)

esitlikleri ile tamimlayalim. Bu takdirde 5.8.1 — 5.8.5 sinir-deger-gecis problemi
(A+ By)u = Au (5.8.21)

esitligi seklinde yazilabilir. Bu durumda 5.8.1 — 5.8.5 sinir-deger-gegis probleminin
Ozdegerleriile A+ B; operatoriiniin 6zdegerleri ayni olacagindan A+ B; operatoriiniin

6zdegerleri incelenecektir.

Lemma 5.8.2. Eger B; lineer operatorii sinir-deger-gegis probleminin esas kisminin
trettigi A lineer operatdriine gore kompakt ise 5.8.1 — 5.8.5 sinir-deger-gegis
probleminin spektrumu diskrettir ve bu problemin W agisi1 i¢inde kalan ve
Aol < [A2al < ... olacak bigcimde siralanmig (her 6zdeger kati sayida yazilmistir)

An,o Ozdegerlerinin mutlak degerleri igin,

Mol = 47°0% +0(n?) , n — o0 (5.8.22)

Ispat: A operatoriiniin kendine eslenik oldugu Lemma 5.7.4 de ispatlanmistr. Simdi
A operatorii igin Teorem 3.13.4” in sartlarinin saglandig gosterilecektir.

A operatoriiniin 6zdegerleri i¢in Teorem 5.5.1 de elde edilen,

) (5.8.23)
n
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asimptotik formiil geregi,

1.\? w2n?
= (Fom) = wm=Trom (=
bulunur. Bu durumda o < O(1) < 8 olmak tizere
7in? min?
<\, <

1 +a <), < 1 +

olacak sekilde «, 5 € R sayilar1 bulunur. Buradan,

Y 1SN (A< Y1 (5.8.24)

=202 B<r T tasr

elde edilir. Sonuncu esitsizlikten,

=

[ R e

< Ny(r,A) <

71

bulunur. Burada [|.|] ile reel sayinin tam degeri gosterilmistir. Diger taraftan her M € R

reel sayis1 ve yeteri kadar biiylik r pozitif reel sayisi i¢in,

Vi = vifL- 2 (1400)) = Vi O —

asimptotik esitligi saglandigindan sonug itibariyle

Ni(r,A) = 2\[ r— 00 (5.8.25)

(\/_)7

asimptotik esitligi bulunur. O halde bu son ifadeden
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Ny (F(1+2), A) 2vr(1+e) +0(25)

lim = lim T

r— 00 N (r, A) r —s 00 2\/77+O(7F)
c— 20 c— 20

2V1+e+0(%
~  lim - () 1 (5.826)
2+ 0(;)

r— 0
c—0

bulunur. O halde Teorem 3.13.4 geregi 0 < o < 7 olacak sekildeki her « sayist i¢in,

g Ne(ra, A+ By)
TE’HOO N—i—(T’ A)

=1 (5.8.27)
elde edilir. Buradan

Ny (r,a, A+ By) = Ny (r, A) + o(N.(r,A)) = 2T +o(v/1), r — 00 (5.8.28)

™

bulunur.

L = A+ B; operatdriiniin spektrumu diskret oldugu i¢in 0 < o < 7’ yi saglayan her «
icin L operatoriiniin ¥ agisiigerisinde kalan 6zdegerleri mutlak degerlerinin artmasina

gore siralanabilir. Yani bu 6zdegerler,
‘)\l,a’ S |)\2,a’ S ’>\3,a‘ S

seklinde (her 6zdeger kat1 sayida yazilmak iizere) numaralandirilabilir. O halde 5.8.28

formiiliinden

2 v/l
n =" 4 oy Awal) (5.8.29)

elde edilir. Esitligin her iki tarafinin karesi alinip diizenlenirse,

™0 = 4 Aol + o(|Anal) (5.8.30)
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bulunur. Dolayisiyla,
™0 = 4 Mol + an Al (5.8.31)

olmak iizere lim, .. a, = 0 olacak sekilde {a,} reel sayilar dizisi bulunabilir.

Buradan

72n?

)\na =
[Anal 4+ a,

= | Aol = 47°0% + 0(n?) , n — 0 (5.8.32)

asimptotik formiilii bulunur. Béylece 5.8.22 formiilii ispat edilmis olur.

Teorem 5.8.3. Lemma 5.8.1° in sartlar1 saglandiginda 5.8.1 — 5.8.5 smir-deger-geg¢is

probleminin spektrumu diskrettir ve
Al < o] < [As] <.

olacak sekilde numaralanmis (her 6zdeger kat1 sayida yazilmak iizere) A\, ozdegerleri

i¢in,
A\ = 47°n% 4+ o(n?) , n — oo (5.8.33)
asimptotik formiilii gecerlidir.

Ispat: Teorem 5.8.2 geregi 0 < a < 5 sartin1 saglayan her « sayis1 i¢cin A + B,
operatoriiniin W agisinin disinda kalan 6zdegerlerinin sayisi sonludur. Bu sayiy1 K, ile

A + By operatoriiniin 6zdegerlerini ise {\,, }2° ; ile gosterirsek, {\,}>°, 6zdegerlerini,
Motks = Anas m=1,2, .. (5.8.34)

olacak sekilde siralayabilirizz. 0 < a < 7 olacak sekilde keyfi o sayisim alarak

2
sabitlestirirsek ve Ky = K,, ile gosterirsek bir 6nceki teoremdeki 5.8.32” den ve

5.8.34’ den A + B; operatoriiniin mutlak degerlerinin 6zdegerleri i¢in,

Al = Muckoal = 47°(n — Ko)? + o((n — Ko)?)

= 4n°n®>+o(n*), n — oo (5.8.35)
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asimptotik formiiliinii bulmus oluruz.

{A\n} 6zdegerlerinin asimptotigini bulmak i¢in 6nce, Re\, ve Im), reel say1 dizilerinin
asimptotigini bulacagiz.Yine Teorem 5.8.1 geregi 0 < o < 7§ olacak sekildeki her a igin
n > n, oldugunda,

Fedn > oS o ImAn
| Anl B P

< sina,
olacak sekilde n,, dogal sayis1t mevcuttur. Son esitsizlikten.

ReM,

Re),
cosa < lim inf < lim sup € <1

.. dmA, . Im\, ,
0 < lim me < lim supW§81na

elde edilir. o (0 < a < %) sayis1 keyfi oldugundan son esitsizlikten & — 0 almakla

limite gecersek,
. Re\, o Im),
lim =1 ve lim =

esitliklerini elde ederiz. Bu esitliklerden ise sirasiyla,
ReX, = [Au] + o(|Mn]) = 47202 + o(n?) ve ImA\, = o(|\,|) = o(n?)
asimptotik esitlikleri bulunur. Son iki esitlikten kolayca
A, = 47°n% 4+ o(n?) , n — oo (5.8.36)
asimptotik formiilii elde edilir.

Teorem 5.8.4. Eger B : Ly(—1,0) & Ly(0,1) — Lo(—1,0) ® L2(0,1) operatorii
W3(—1,0) & W$(0,1) uzayindan Ly(—1,0) @& Ly(0,1) uzayma kompakt doniisiim ise
5.8.1 — 5.8.5 siir-deger-gegis probleminin spektrumu diskrettir ve |A1| < [Ao| < ...

olacak sekilde siralanmig (her 6zdeger kati sayida yazilmak tizere) {\,, } 6zdegerleri igin,
A, = 47°n* 4+ o(n?) , n — oo (5.8.37)

asimptotik formiilii gecerlidir.
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Ispat: Ozel olarak Bu = ¢(x)u olmak sartiyla 5.8.6 — 5.8.7 esitligiyle tanimhi A

operatdrii i¢in 5.8.1 teoreminin sartlar1 saglanacagi i¢in 5.8.2 teoremi geregi,
R(M\A): H— H

operatorii sinirl olacaktir. Diger taraftan,
B : W2(—1,0) ® W2(0,1) — Ly(—1,0) & Ly(0,1) operatdrii kompakt oldugu icin
0.8.19 — 5.8.20 esitligiyle tanirmh B, : H; — H operatoriide kompaktir. O halde

BiR(\,A): H — H

operatorii kompaktdir.
Yani 5, lineer operatorii A lineer operatoriine gore kompaktdir. Dolayisiyla 5.8.1 —5.8.5

problemi i¢in 5.8.4 Teoreminin sartlart saglanir. Bu da ispati tamamlar.



6. SONUC

Bu yiiksek lisans tez ¢alismasinda ,

u"(z) + g(x)u(z) + (Bu)(z) = du(z), z € [—1,0)U(0,1]

diferansiyel-operatdr denkleminden,

u' (1) = Au(1)

sinir sartlarindan ve de x = 0 siireksizlik noktasindaki

u(+0) = ou(—0)

u'(+0) = yu'(=0)

gecis sartlarindan olusan sinir-deger-gecis probleminin bazi spektral 6zellikleri incelenmistir.
Matematik fizigin farkl fiziksel yapilara sahip olan iki maddesi arasindaki bir ¢ok iletim
(1s1 ve madde iletimi) problemleri incelenirken simir sartlar ile birlikte gecis sartlar1 da
ortaya cikmaktadir. Fakat bizim problemimizdeki en belirgin fark gecis sartlarinin yani
sira denklemde B soyut lineer operatoriin bulunmasidir. B operatdriine 6rnek olarak,
Bu = p(x)u'(x) + ¢(z)u'(x),

Bu = p(x)u'(c1) + q(x)u'(c), c1,c0 € [—1,0) U (0, 1] verilebilir.

Tezde bulunan sonuglar teorik olmasma ragmen, giris boliimiinde de belirtildigi gibi
mekanik ve fizigin bir ¢ok somut problemlerinin analitik ve yaklasik ¢dzlimlerinin
bulunmasinda uygulanabilir.

Sonug olarak tez ¢alismamizda inceledigimiz problem bir ¢ok yonde genellestirilebilir.
Ornegin tezde uyguladigimiz ydntemlerle yiiksek mertebeden diferansiyel-operator

denklemlerden ve daha genel sinir sartlarindan olusan sinir deger problemleri de arastirilabilir.
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