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ÖZET

Doktora Tezi

SONLU ULA�ILAB�L�R KATEGOR�LERDE PÜR �NJEKT�FL�K

Mustafa Kemal BERKTA�

Afyon Kocatepe Üniversitesi

Fen Bilimleri Enstitüsü

Matematik Anabilim Dal�

Dan�³man: Doç.Dr. Semra DO�RUÖZ

Bu çal�³mada, bir toplamsal sonlu ula³�labilir kategorinin sonlu temsil edilebilir

nesnelerinin izomor�zm s�n�f�ndan Abel gruplara tan�ml� bütün kontravariant

toplamsal funktorlar�n s�n�f�nda pür injekti�ik incelendi. Bir toplamsal sonlu

ula³�labilir kategoride bir pür-injektif nesnenin endomor�zmalar� halkas�n�n bir

e³-burulmal� halka oldu§u gösterildi.

Toplamsal sonlu ula³�labilir kategoriler tam de§ildir. Ancak bu çal�³mada yeni

bir kavram olarak funktorlar�n quasi-limiti tan�mlanarak, toplamsal sonlu ula³�la-

bilir kategorilerin her zaman quasi-tam oldu§u gösterildi. Ayr�ca, her toplam-

sal sonlu ula³�labilir kategorinin bir pür e³-üretece sahip oldu§u gösterildi. Son

olarak, herhangi bir düz funktorun ayr�³t�r�lamaz pür-injektif funktorlar�n quasi-

limiti içine pür olarak gömülebilece§i ispatland�.

2010, 42 sayfa

Anahtar Kelimeler: E³-burulmal� halka, Sonlu ula³�labilir kategori, Pür nesne,

Düz nesne, Sonlu temsil edilebilir nesne, Düz örtü, Quasi-limit.
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ABSTRACT

PhD Thesis

PURE INJECTIVITY IN FINITELY ACCESSIBLE CATEGORIES

Mustafa Kemal BERKTA�

Afyon Kocatepe University

Graduate School of the Natural and Applied Sciences

Department of Mathematics

Supervisor: Assoc. Prof.Dr. Semra DO�RUÖZ

In this study, we investigate pure injectivity in the category of all additive

contravariant functors from the set of all isomorphism classes of �nitely pre-

sentable objects of an additive �nitely accessible category to the category of

Abelian groups. We demonstrate that endomorphism ring of any pure injective

object in an additive �nitely accessible category is cotorsion.

Additive �nitely accessible categories do not need being complete. However,

we show that these categories always quasi-complete by de�ning a new concept

namely, quasi-limits of functors. In addition, we prove that every additive �nitely

accessible category has a cogenerator. Finally, we prove that any �at functor may

be purely embedded in a quasi-limit of indecomposable pure injective functors.

2010, 42 pages

Key Words : Cotorsion ring, Finitely accessible category, Pure object, Flat

object, Finitely presentable objects, Flat cover, Quasi-limit.
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S�MGELER ve KISALTMALAR D�Z�N�

R : Birimli ve birle³meli bir halka

N : Do§al say�lar kümesi

Z : Tam say�lar halkas�

R−Mod : Sol R-modüllerin kategorisi

Mod−R : Sa§ R-modüllerin kategorisi

Flat−R : Sa§ düz R-modüllerin kategorisi

R−Flat : Sol düz R-modüllerin kategorisi

Ab : Abel gruplar kategorisi

Func(Aop
0 ,Ab) : A0 kategorisinden Abel gruplara tan�ml� bütün kontravariant

toplamsal funktorlar�n kategorisi

Flat(Aop
0 ,Ab) : Func(Aop

0 ,Ab) nin tüm düz nesnelerinin alt kategorisi

Ind(C) : Func(Aop
0 ,Ab) kategorisinin bütün ayr�³t�r�lamaz düz

pür-injektif nesnelerinin kümesi

Hom(M,N) : M den N ye tan�ml� R-modül homomor�zmalar�n�n kümesi

HomC(C,C
′) : C kategorisinin C nesnesinden C ′ nesnesine tan�ml�

bütün mor�zmalar�n kümesi

Ext1
R(M,N) : Hom funktoru ile türetilmi³ homoloji gruplar�

M ⊗R N : M sa§ R-modülü ile N sol R-modülünün tensör çarp�m�

Ker(f) : f dönü³ümünün çekirde§i

Im(f) : f dönü³ümünün görüntüsü

Coker(f) : f dönü³ümünün e³-çekirde§i

lim←−F : F funktorunun limiti

limq

←−−H : H funktorunun quasi limiti

|X| : X kümesinin kardinalitesi

M ∼= N : M,N ′ye �zomorftur
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1 G�R��

Modül kategorisinde modüllerin injektif zar�ar�n�n varl�§� Eckman ve Schopf

taraf�ndan ellili y�llar�n ortalar�nda ispatland�ktan sonra, modüllerde örtü (cover)

ve zarf (envelope) kavramlar�, halka teorisinde ve genel olarak de§i³meli olmayan

cebirde önemli rol oynam�³t�r (Eckman Schopf 1953). E. Enochs düz örtü sav�

(�at cover conjecture) olarak da bilinen 1981 de yay�nlad�§� çal�³mas�nda, her-

hangi bir birimli ve birle³meli R halkas� üzerinde her R-modülün bir düz örtüye

sahip oldu§unu ortaya koydu (Enochs 1981).

Altm�³l� y�llarda Abel Gruplar kategorisinde benzer genelleme ve karakterizas-

yonlar bölünebilirlik (divisibility) kavram�yla ele al�nd�. Yine ayn� tip problemler

ba§�ms�z olarak, Auslander taraf�ndan grup temsilleri ve Artin Cebirlerin ho-

molojik özelliklerinin çal�³mas�ndaki temel teknikler kullan�larak çal�³�lm�³t�r.

Düz örtü sav�n�n yak�n zamandaki di§er bir gösterimi, Bican, El Bashir ve

Enochs taraf�ndan ele al�nd� (Bican et al. 2001). Sav�n bu gösterimi e³-burulma

teorisinin temel kavram ve teknikleri ile verilmi³tir. Bican'�n bu anlamdaki çal�³-

mas� son y�llarda Abel gruplar, halka ve cebirlerin homolojik çal�³mas�nda temel

olu³turmu³tur.

R birimli ve birle³meli bir halka olsun. Herhangi bir sa§ düz R-modül F için

Ext1
R(F,M) = 0 ise M sa§ R-modülüne e³-burulmal� (cotorsion) modül denir.

Abel gruplar�n homolojik genellemeleri için gerekli olan bu modüller ilk olarak

D. K. Harrison taraf�ndan sunulmu³tur (Harrison 1959). Ayr�ca düz örtü sav�n�n

bir çözümü de e³-burulmal� zarf�n varl�§� durumuna denktir (Xu 1996). Bir Abel

grup yada genel olarak bir sa§ R-modül, pür k�sa tam dizilere göre injektif ise bu

sa§ R-modüle pür-injektif modül denir. Bilindi§i gibi üçüncü terimi düz modül

olan her k�sa tam dizi pür tam oldu§undan her pür-injektif modül e³-burulmal�

modüldür.

Birimli ve birle³meli bir R halkas� üzerinde sa§ düz R-modüllerin kategorisi

üreteç kümesi sonlu temsil edilmi³ (�nitely presented) modüller olan bir sonlu

ula³�labilir kategoridir (Dung Garcia 2001). Böylece sonlu ula³�labilir kategori-

lerde elde edilen sonuçlar düz modül kategorisinin bir genellemesi olarak görülür.
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P.A. Guil Asensio ve Ivo Herzog bir sa§ R-modülün düz olmas� için gerek ve

yeter ko³ulun bu sa§ R-modülün ayr�³t�r�lamaz düz e³-burulmal� modüllerin

bir quasi direk çarp�m�n�n bir pür alt modülü oldu§unu göstermi³lerdir (Guil

Herzog 2006). Yine P.A. Guil Asensio ve Ivo Herzog di§er bir çal�³mada, düz

modüller kategorisinin direk limitler ve e³-burulmal� zar�ar alt�nda kapal� bir alt

kategorisindeki her düz modülün ayr�³t�r�lamaz düz e³-burulmal� modüllerin bir

direk çarp�m� içine pür olarak gömülebilece§ini gösterdiler (Guil Herzog 2007).

Burada ayr�³t�r�lamaz düz e³-burulmal� modüllerin quasi direk çarp�m� bu mo-

düllerin ayn� zamanda bir düz örtüsüdür.

Bu çal�³mada, P.A. Guil Asensio ve Ivo Herzog'un yukar�da bahsedilen düz

R-modüllerin kategorisinde elde ettikleri sonuç sonlu ula³�labilir kategorilere

genelle³tirilmi³tir. A bir toplamsal sonlu ula³�labilir kategori ve A0 bu kategori-

nin sonlu temsil edilebilir (�nitely presentable) nesnelerinin bir izomor�zm s�n�f�

olmak üzere, A0 dan Abel gruplara tan�ml� bütün düz kontravariant toplam-

sal funktorlar�n s�n�f�, A toplamsal sonlu ula³�labilir kategorisine denktir ve A0

dan Abel gruplara tan�ml� bütün kontravariant toplamsal funktorlar�n s�n�f�

bir Grothendieck kategoridir. Sonlu ula³�labilir kategoriler ve Grothendieck kat-

egoriler baz� ³artlar alt�nda düz örtüye sahiptir (Crivei et al. 2010) ve (El

Bashir 2006). Bu çal�³mada, yukar�da belirtti§imiz kontravariant funktor kate-

gorilerindeki teknikler kullan�larak, Guil ve Ivo Herzog'un düz modüller kate-

gorisinde elde etti§i sonuçlar sonlu ula³�labilir kategorilere genelle³tirilmi³tir.

Bu tez dört bölümden olu³maktad�r.

Birinci bölüm giri³ bölümü olarak düzenlenmi³tir.

�kinci bölümde, tezin okunabilirli§ini kolayla³t�rmak için gerekli olacak halka ve

modüller teorisi, homoloji cebiri ve kategori teorisi ile ilgili baz� temel kavram

ve sonuçlar ispats�z olarak verilmi³tir.

Üçüncü bölümde, ilk olarak A bir toplamsal sonlu ula³�labilir kategori ve A0 bu

kategorinin sonlu temsil edilebilir nesnelerinin izomor�zma s�n�f� olmak üzereA0

dan Abel gruplara tan�ml� bütün kontravariant toplamsal funktorlar�n s�n�f�nda

e³-burulma teorisi incelenmi³tir. Özgün bir sonuç olarak, bir toplamsal sonlu

ula³�labilir kategoride bir pür-injektif nesnenin endomor�zma halkas�n�n bir e³-

burulmal� halka oldu§u gösterildi.
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Toplamsal sonlu ula³�labilir kategorilerin tam olmad�§� bilinen bir gerçektir.

Örne§in sol coherent olmayan bir R halkas� üzerinde düz sa§ R-modüllerin

kategorisi direkt çarp�mlar alt�nda kapal� de§ildir. Ayn� zamanda düz sa§ R-

modüllerin kategorisi her zaman bir Abel kategori olmayabilece§inden dolay�

bir Grothendieck kategori de de§ildir. Yine bu bölümde, funktorlar�n quasi-

limiti tan�mlanarak, toplamsal sonlu ula³�labilir kategorilerin herzaman quasi-

tam oldu§u gösterildi. Ayn� zamanda bu bölümde, bir toplamsal sonlu ula³�la-

bilir kategorinin bir pür e³-üretece sahip oldu§u gösterildi.

Son olarak dördüncü bölümde, öncelikle bir toplamsal sonlu ula³�labilir kategori-

nin ayr�³t�r�lamaz pür injektif nesneleri s�n�f�n�n bir küme olu³turdu§u gösterildi.

Buradan hareketle herhangi bir düz funktorun bu kümenin elemanlar�n�n, yani

ayr�³t�r�lamaz pür injektif nesnelerinin limiti içine pür olarak gömülebilece§i

ispatland�. Ayr�ca, bir toplamsal sonlu ula³�labilir kategorinin bir pür e³-üreteç

kümesine sahip oldu§u gösterilmi³tir.

3



2 ÖN B�LG�LER

Bu bölüm tezde yer alan baz� temel kavram ve gösterimlerin genel hatlar�yla

ispats�z olarak tan�t�lmas�na ayr�lm�³t�r. Halka ve modüller teorisi, homoloji

cebiri, kümeler teorisi ve kategori teorisinin bu ve di§er bölümlerde kullan�lacak

olan genel ve temel kavramlar� için (Freyd 1964), (Stenström 1975), (Rotman

1979), (Wisbauer 1991), (Anderson Fuller 1992), (Adamek Rosicky 1994), (Xu

1996), (Alizade Pancar 1999), (Hrbacek Jech 1999), (Enochs Jenda 2000) ve

(Prest 2009) kaynaklar� referans verilebilir.

Bu tez boyunca özel olarak belirtilmedikçe, tüm halkalar birimli ve birle³meli

halkalar, modüller ise birimsel (unitary) sol R-modüller olarak kabul edilecektir.

2.1 Temel Kavramlar

R bir halka, M ve N R-modüller olsun. M modülünden N modülüne tan�ml�

R-homomor�zmalar�n�n kümesi Hom(M,N) bir Abel gruptur.

{Mn|n ∈ Z} modüller toplulu§undan ve bunlar�n fn : Mn → Mn−1 homomor-

�zmalar�ndan olu³an

· · · −→Mn+1
fn+1−→Mn

fn−→Mn−1 −→ · · ·

dizisinde her n ∈ Z için, Im(fn+1) = Ker(fn) ise bu diziye tam (exact) dizi

denir. Özel olarak A, B ve C modülleri için;

0 −→ A
f−→ B

g−→ C −→ 0

dizisi tam ise f bir monomor�zma ve g bir epimor�zmad�r. Bu diziye k�sa tam

dizi denir.
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De§i³meli diagram için biçimsel bir tan�m olmamakla birlikte, bir diagramda

herhangi iki modül aras�ndaki olas� tüm yollar ayn� dönü³ümü tan�ml�yorsa bu

diagrama de§i³meli (commutative) diagram denir.

P bir modül olsun. Her f : A → B epimor�zmas� ve her bir g : P → B

homomor�zmas� için

A
f−→ B −→ 0

↖h ↑g

P

diagram�n� de§i³meli k�lan, g = f ◦ h olacak ³ekilde bir h : P → A homomor�z-

mas� varsa P ye projektif modül denir.

I bir modül olsun. Her f : A → B monomor�zmas� ve her bir g : A → I

homomor�zmas� için

0 −→ A
f−→ B

↓g ↙h

I

diagram� de§i³meli k�lan, g = h◦f olacak ³ekilde bir h : B → I homomor�zmas�

varsa I ye injektif modül denir.

Projektif modüllerin herhangi direkt toplam� projektiftir ancak dual olarak in-

jektif modüllerin herhangi direkt çarp�m� injektif olur.

Bundan ba³ka, R-modüllerin herhangi bir

0 −→M
f−→ N

g−→ L −→ 0

k�sa tam dizisine M nin L ile bir geni³lemesi (extension) denir. Bu geni³lemede

e§er h ◦ f = 1M olacak ³ekilde bir h : N → M homomor�zmas� varsa bu

geni³lemeye parçalanan (split) k�sa tam dizi denir. Bu ko³ula denk olarak g◦k =

1L olacak ³ekilde bir k : L → N homomor�zmas� varsa bu dizi parçalanand�r.

Bir P modülünün projektif olmas� için gerek ver yeter ko³ul A ve B birer R-

modül olmak üzere;
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0 −→ A −→ B −→ P −→ 0

³eklindeki her dizinin parçalanan dizi olmas�d�r. M , N ve X R-modüller olmak

üzere

0 −→M −→ X −→ N −→ 0

k�sa tam dizisinin parçalanan olmas� için gerek ve yeter ko³ul Ext1
R(M,N) = 0

olmas�d�r. Burada Ext, Hom funktoru ile türetimi³ homoloji grubunu göster-

mektedir.

I bir k�smi s�ral� küme olsun. E§er her i, j ∈ I çifti için i ≤ k ve j ≤ k olacak ³ek-

ilde k ∈ I varsa, I ya yönlendirilmi³ (directed) küme denir. I bir yönlendirilmi³

indis kümesi ve i ≤ j olacak ³ekilde i, j ∈ I olmak üzere ϕij : Mi −→ Mj R-

modül homomor�zmalar� için {Mi, ϕij} kümesi R-modüllerin bir direkt sistemi

olsun. Bu sistemin direkt limiti; S, {λjϕji(ai − λi(ai)} elemanlar�yla üretilmi³

bir alt modül ve λi : Mi → ⊕Mi do§al injeksiyon olmak üzere, ⊕Mi/S ye

izomorftur.

M , N ve F , R-modüller olmak üzere R-modüllerin standart tensör çarp�m� ile

her 0 −→M −→ N tam dizisi için,

0 −→M ⊗R F −→ N ⊗R F

dizisi de tam ise F ye düz (�at) modül denir. Her projektif modül düz alt

modüldür fakat tersi her zaman do§ru de§ildir.

M birR-modül olsun. E§erM = Rx1+Rx2+...+Rxn olacak ³ekilde sonlu say�da

x1, x2, ..., xn ∈ M elemanlar� varsa M ye sonlu üretilmi³ (�nitely generated)

modül denir. Her düz modül sonlu üretilmi³ projektif modüllerin bir direkt

limitidir. Ayr�ca, düz modüllerin direk limiti yine bir düz modül olur.

M bir R-modül olmak üzere m,n pozitif tam say�lar� için

R(m) −→ R(n) −→M −→ 0

tam dizisi var ise M ye sonlu temsil edilmi³ (�nitely presented) modül denir.
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2.2 Örtü ve Zar�ar

R-modüllerin bir X s�n�f� ile s�f�r modülünü de içeren ve izomor�zmalar alt�nda

kapal� R-modüllerin bir kolleksiyonu kastedilecektir.

Tan�m 2.2.1 (Xu 1996) X , R-modüllerin bir s�n�f� ve M bir R-modül olsun.

A³a§�daki ko³ullar sa§lanacak ³ekilde bir ϕ : M → X homomor�zmas� varsa

X ∈ X modülüne M nin X -zarf� (X -envelope) denir.

• X ′ ∈ X olmak üzere her ϕ′ : M → X ′ homomor�zmas� için, ϕ′ = f ◦ ϕ
olacak ³ekilde bir f : X → X ′ homomor�zmas� vard�r. Di§er bir deyi³le

herhangi bir X ′ ∈ X için Hom(X,X ′) −→ Hom(M,X ′) −→ 0 dizisi

tamd�r.

• E§er f : X → X dönü³ümü ϕ = f ◦ ϕ olacak ³ekilde X in bir endomor-

�zmas� ise f bir otomor�zmad�r.

E§er sadece tan�mda yer alan birinci ³art sa§lan�yorsa ϕ : M → X ye bir

X -önzarf (X -preenvelope) denir.

Tan�m 2.2.2 (Xu 1996) X , R-modüllerin bir s�n�f� ve M bir R-modül olsun.

A³a§�daki ko³ullar sa§lanacak ³ekilde bir ϕ : X → M homomor�zmas� varsa

X ∈ X modülüne M nin X -örtüsü (X -cover) denir.

• X ′ ∈ X olmak üzere her ϕ′ : X ′ → M homomor�zmas� için, ϕ′ = ϕ ◦ f
olacak ³ekilde bir f : X ′ → X homomor�zmas� vard�r. Di§er bir deyi³le

herhangi bir X ′ ∈ X için Hom(X ′, X) −→ Hom(X ′,M) −→ 0 dizisi

tamd�r.

• E§er f : X → X dönü³ümü ϕ = ϕ ◦ f olacak ³ekilde X in bir endomor-

�zmas� ise f bir otomor�zmad�r.

E§er sadece tan�mda yer alan birinci ³art sa§lan�yorsa ϕ : X → M ye bir

X -önörtü (X -precover) denir.

F bütün düz sol modüllerin bir s�n�f� olsun. Bir M , R-modülünün F -örtüsüne
M nin düz örtüsü denir.
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Enochs Sav�: Herhangi birimli ve birle³meli R halkas� üzerinde her

R-modül bir düz örtüye sahiptir (Enochs 1981).

Bu sav�n varl�§� baz� ³artlar alt�nda injektif zarf�n varl�§�n�n dualidir. Bir çok

modül s�n�f�na göre bu sav do§ru olmas�na ra§men, genelde bu sav halen bir aç�k

problemdir. Ancak (Bican et al 2001) makalesinde bu sav baz� ³artlar alt�nda

çözülmü³tür.

X modüllerin bir s�n�f� olsun. E§er R-modüllerin her

0 −→M −→ N −→ L −→ 0

k�sa tam dizisi için M,L ∈ X oldu§unda N ∈ X ise X s�n�f�na geni³lemeler

alt�nda kapal�d�r denir. Örne§in; projektif, injektif ve düz modüller s�n�f� geni³-

lemeler alt�nda kapal�d�r.

A³a§�daki iki sonuç "Wakamatsu Lemmalar�" olarak bilinir:

Lemma 2.2.3 X geni³lemeler alt�nda kapal� bir s�n�f ve ϕ : X → M , M nin

bir X -örtüsü olsun. Bu durumda her X ′ ∈ X için Ext1
R(X ′, kerϕ) = 0 dir.

Lemma 2.2.4 X geni³lemeler alt�nda kapal� bir s�n�f ve ϕ : M → X, M nin

bir X -zarf� olsun. Bu durumda her X ′ ∈ X için Ext1
R(cokerϕ,X ′) = 0 dir.

2.3 E³-burulma Teorisi ve Pür-�njekti�ik

L, R-modüllerin bir s�n�f� olsun.

L⊥ = {X ∈ R−Mod|Ext1
R(L,X) = 0, her L ∈ L için }

⊥L = {X ∈ R−Mod|Ext1
R(X,L) = 0, her L ∈ L için }
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s�n��ar�n� tan�mlayal�m. L⊥ ye L nin sa§ dik s�n�f�, ⊥L ye de L nin sol dik s�n�f�

denir.

Projektif modüllerin s�n�f�n� P ve injektif modüllerin s�n�f�n� I ile gösterelim.

Bu durumda P⊥ = R-Mod ve ⊥(P⊥) = P ve benzer biçimde I⊥ = R-Mod ve
⊥(I⊥) = I dir.

Önerme 2.3.1 (Xu 1996) X , R modüllerin herhangi bir s�n�f� olmak üzere,

X ∈ X için ϕ : X →M örten ve kerϕ ∈ X⊥ olsun. Bu durumda X, M nin bir

X -önörtüsüdür. Bu önörtüye özel (special) önörtü denir.

Her sa§ R-modül A için

0 −→ A⊗RM −→ A⊗R N −→ A⊗R L −→ 0

dizisi tam ise R-modüllerin

0 −→M −→ N −→ L −→ 0

k�sa tam dizisine pür tam (pure-exact) dizi denir. Burada M ye N nin pür alt

modülü, N ye de M nin pür geni³lemesi denir. Her parçalanan k�sa tam dizi

pür-tamd�r fakar tersi her zaman do§ru de§ildir. Bir B′′ sol R-modülünün düz

olmas� için gerek ve yeter ko³ul R-modüllerin her tam

0 −→ B′ −→ B −→ B′′ −→ 0

dizisinin pür tam olmas�d�r. M , N ve P herhangi R-modülleri için pür tam

sat�rl� her

0 −→ N −→ M −→ L −→ 0

↓ ↙
P

diagram� bir g : M → P homomor�zmas� ile de§i³meli üçgene tamamlanabilirse

P ye pür-injektif modül denir. Di§er bir deyi³le, N ,M nin pür alt modülü olmak

üzere
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Hom(M,P ) −→ Hom(N,P ) −→ 0

dizisi tamd�r.

Bütün injektif modüller pür-injektiftir. Pür-injektif modüllerin s�n�f�n� PE ile

gösterelim. Bir R-modül M nin bir PE-zarf�na M nin pür-injektif zarf� denir

ve PE(M) ile gösterilir. PE s�n�f� ne geni³lemeler ne de direk limitler alt�nda

kapal�d�r. Her modül bir injektif modül içine gömülebilir ve her injektif modül

pür-injektif oldu§undan ϕ : M → PE(M) injektiftir. Ayr�ca her R-modül bir

pür-injektif zarfa sahiptir.(Xu 1996)

Tan�m 2.3.2 (Xu 1996) Her düz sol R-modül F için, Ext1
R(F,C) = 0, yani

C ∈ F⊥ ise, C sol R-modülüne e³-burulmal� (cotorsion) modül denir.

E³-burulmal� modüllerin s�n�f�, pür-injektif modüllerin s�n�f�n� ve dolay�s�yla in-

jektif modüllerin s�n�f�n� kapsar.

C bir e³-burulmal� modül ve F bir düz modül olmak üzere

0 −→ C −→ F −→M −→ 0

k�sa tam dizisi için e§er G bir düz modül ise

Hom(G,F ) −→ Hom(G,M) −→ Ext1
R(G,C) = 0

dizisi tamd�r. Buradan F → M bir düz önörtüdür. Böylece e³-burulmal� mo-

düller düz örtülerin çekirdekleridir. E³-burulmal� modüllerin s�n�f� geni³lemeler,

direkt çarp�mlar, sonlu direkt toplamlar ve direkt toplananlar alt�nda kapal�d�r.

C = F⊥ bütün e³-burulmal� solR-modüllerin s�n�f� olsun. BirM solR-modülünün

bir C-zarf� ϕ : M → C ye M nin e³-burulmal� zarf� denir. Burada ϕ nin injektif

oldu§u aç�kt�r.

Lemma 2.3.3 (Xu 1996) ⊥C = F , yani ⊥(F⊥) = F dir.

Teorem 2.3.4 (Xu 1996) ϕ : M → C bir e³-burulmal� zarf olsun. Bu durumda,

D = C/ϕ(M) düz modüldür. E§er M düz modül ise C de düz modüldür.
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2.4 Funktor Kategorileri

I bir küçük (small) kategori, yani, nesneleri bir küme olan kategori ve C herhangi
bir kategori olsun. Nesneleri I dan C ye funktorlar ve mor�zmalar� bu funk-

torlar aras�ndaki do§al dönü³ümler (natural transformations) olarak al�n�rsa

Func(I, C) funktor kategorisi tan�mlanm�³ olur. Bu kategoride bu mor�zmalar

aras�ndaki bile³ke i³lemi do§al dönü³ümlerin bile³kesi olmak üzere bile³ke i³lemi

birle³me özelli§ine sahiptir. Her T : I → C funktoru için 1T : T → T birim

dönü³ümü vard�r. �ki funktor aras�ndaki do§al dönü³ümler her zaman bir küme

olu³turur. S ve T funktorlar olmak üzere S den T ye tan�ml� mor�zmlerin

kümesini N(S, T ) ile gösterelim. I bir küçük kategori oldu§undan sadece bir

küme olarak dü³ünülebilir. Bu nedenle do§al dönü³ümlerin kümesi her i ∈ I

için Hom(S(i), T (i)) kümelerinin çarp�m�n�n (product) bir alt kümesi olarak

görülebilir.

C bir kategori, C, C ′ ve C ′′, C nin herhangi nesneleri olmak üzere e§er HomC(C,C
′)

kümesi bir abel grup ve HomC(C
′, C ′′) × HomC(C,C

′) → HomC(C,C
′′) bile³ke

dönü³ümleri bilineer ise C kategorisine bir öntoplamsal (preadditive) katego-

ri denir. B ve C öntoplamsal kategoriler ise α, α′ : C → C ′ olmak üzere

T (α+α′) = T (α)+T (α′) özelli§ini sa§layan T : B → C funktoruna bir toplamsal

(additive) funktor denir.

Tan�m 2.4.1 C bir kategori olsun. E§er a³a§�daki ko³ullar sa§lan�yorsa C bir

Abel kategoridir denir.

• C öntoplamsald�r.

• C deki nesnelerin her sonlu ailesi bir çarp�ma sahiptir.

• C deki her mor�zma bir çekirdek ve bir e³-çekirde§e sahiptir.

• Her α mor�zmas� için β : Coker(kerα)→ Ker(cokerα) bir izomor�zmad�r.

Önerme 2.4.2 I bir küçük kategori ve C bir öntoplamsal kategori ise Func(I, C)
kategorisi de öntoplamsal kategoridir. Bundan ba³ka, C bir Abel kategori ise

Func(I, C) kategorisi de bir Abel kategoridir.
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�spat. [(Stenström 1975), Proposition IV.7.1] �

Herbir C kategorisi için bir Cop dual kategorisini tan�mlayabiliriz. Bu kategoride

nesneler kümesi C kategorisi ile ayn�d�r fakat

HomC(C,C
′) = HomCop(C ′, C)

ve "∗", Cop kategorisindeki bile³ke i³lemi ve "·", C kategorisindeki bile³ke i³lemi

olmak üzere α ∗ β = β · α d�r. C kategorisinde geçerli olan kavram ve karakteri-

zasyonlar�n duali Cop kategorisinde de geçerlidir.

Her bir B ∈ B nesnesi için Hom(−, B) : Bop → Ab funktorunu hB ile gösterelim.

A³a§�daki önerme "Yoneda Lemma" olarak bilinir.

Önerme 2.4.3 B bir küçük öntoplamsal kategori olsun. B nin her B nesnesi

ve her toplamsal T : Bop → Ab funktoru için

N(hB, T ) ∼= T (B)

izomor�zmas� vard�r.

�spat. [(Stenström 1975), Proposition IV.7.3] �

Bu önermede hB′ = Hom(−, B′) : Bop → Ab olmak üzere T yerine hB′ al�n�rsa

N(hB, hB′) ∼= Hom(B,B′) do§al izomor�zmas� elde edilir. Böylece B 7→ hB

funktoru B nin Hom(Bop,Ab) içine full gömülmesidir. Buradan Hom(Bop,Ab)

içinde

0 −→ T ′ −→ T −→ T ′′ −→ 0

dizisinin tam olmas� için gerek ve yeter ko³ul, B kategorisinin bir B nesnesi için

0 −→ T ′(B) −→ T (B) −→ T ′′(B) −→ 0

dizisinin de tam olmas�d�r.
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C bir Abel kategori olsun. C nin bir C nesnesi için e§er Hom(C,−) : C → Ab

funktoru tam ise C ye projektif nesne denir. C ve D iki Abel kategori ve T :

C → D bir toplamsal funktor olsun. C de s�f�rdan farkl� her α mor�zmas� için

T (α) 6= 0 ise T ye sad�k (faithful) funktor denir.

Önerme 2.4.4 Bir T funktorunun sad�k olmas� için gerek ve yeter ko³ul s�f�r-

dan farkl� her C nesnesi için T (C) 6= 0 olmas�d�r.

�spat. [(Stenström 1975), Proposition IV.6.1] �

C herhangi bir kategori ve C, C nin bir nesnesi olsun. E§er Hom(C,−) sad�k ise

C ye C için bir üreteç (generator) denir.

Önerme 2.4.5 Bir P projektif nesnesinin bir üreteç olmas� için gerek ve yeter

ko³ul s�f�rdan farkl� her bir C nesnesi için s�f�rdan farkl� bir P → C mor�z-

mas�n�n var olmas�d�r.

�spat. [(Stenström 1975), Proposition IV.6.3] �

Sonuç 2.4.6 B bir küçük öntoplamsal kategori olsun. Bu durumda {hB}B∈B
ailesi Hom(Bop,Ab) nin projektif üreteçlerinin ailesidir.

�spat. [(Stenström 1975), Proposition IV.7.5] �

C bir öntoplamsal kategori, I bir küçük kategori ve F : I → C bir funktor olsun.

X, C nin bir nesnesi ve I n�n her bir i nesnesi için bir αi : X → F (i) mor�zmas�

verilsin. E§er I kategorisindeki her λ : i → j mor�zmleri için αj = F (λ)αi

sa§lan�yorsa {αi} ailesine uyumlu (compatible) aile denir.

Tan�m 2.4.7 (Stenström 1975) C bir öntoplamsal kategori, I bir küçük kate-

gori ve F : I → C bir funktor olsun. I n�n her bir i nesnesi ve C nin bir L nes-

nesi için, {πi : L → F (i)} mor�zmalar�n bir uyumlu ailesi ile {ξi : X → F (i)}
uyumlu ailesi için, πiξ = ξi olacak ³ekilde bir tek ξ : X → L mor�zmas� varsa

L ye F : I → C funktorunun bir limiti denir ve L = lim←−F ile gösterilir. Burada

bir F funktorunun limiti izomor�zma alt�nda tektir.
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I bir küçük kategori olsun. C herhangi bir kategori olmak üzere her F : I → C
funktorunun limiti varsa C kategorisine tam kategori (complete) denir. E§er C
bir tam kategori ve I bir küçük kategori olmak üzere L = lim←−F , Func(I, C)
den C ye bir funktor olarak dü³ünülebilir. Bundan ba³ka bir F funktorunun

e³-limiti (co-limit) dual olarak tan�mlan�r ve lim−→F ile gösterilir. Bu durumda

C kategorisinde her F funktorunun e³-limiti varsa C ye e³-tam (co-complete)

kategori denir. I bir ayr�k (discrete) kategori, yani, mor�zmalar� sadece birim

mor�zmalar olsun. Bu durumda lim←−F = ΠF (i) ve lim−→F =
⊕

F (i) olur. E§er I

bir yönlendirilmi³ küme ise F : I → C direkt sisteminin e³-limiti direkt limit ve

F : Iop → C sisteminin limiti ise ters (inverse) limittir.

I nesneleri {i, j, k} kümesi ve mor�zmalar�n�n kümesi de, i → k, j → k mor-

�zmalara ve birim mor�zmalar olan bir kategori olsun. F : I → C funktoru-

nun limiti, gerçekte a³a§�daki gibi bir pullback diagram�d�r. Böylece pullback

diagramlar� limitlerin özel halidirler.

lim←−F −→ F (i)

↓ ↓
F (j) −→ F (k)

Sonuç 2.4.8 Bir Abel kategorinin tam olmas� için gerek ve yeter ko³ul çarp�m-

lara sahip olmas�d�r.

�spat. [(Stenström 1975), Corollary IV.8.3] �

C ve D öntoplamsal kategoriler, I bir küçük kategori ve her F : I → C funk-

toru için lim←−F var olsun. E§er T : C → D funktoru, T (lim←−F ) = lim←−TF ve

lim←−F → F (i) mor�zmalar�n� lim←−TF → TF (i) mor�zmalar�n�n içine ta³�yor ise

T funktoruna limitleri koruyor denir. Bir C öntoplamsal kategorisi için C ve C ′,

C kategorisinin nesneleri olmak üzere Hom(C,−) : C → Ab ve Hom(−, C ′) :

Cop → Ab funktorlar�n�n her ikisi de limitleri korur. Yani C nin her bir Ci ve Di

nesneleri için

HomC(C, lim←−Di) = lim←−HomC(C,Di) ve HomC(lim−→Ci,D) = lim−→HomC(Ci,D)

sa§lan�r.
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2.5 Grothendieck Kategoriler

Tan�m 2.5.1 (Stenström 1975) Bir e³-tam Abel C kategorisinde direkt limitler

tam ve C bir üretece sahipse, bu kategoriye Grothendieck kategori denir.

Önerme 2.5.2 Grothendieck kategoriler tamd�r.

�spat. [(Stenström 1975), Corollary X.4.4] �

Sonuç 2.5.3 Her Grothendieck kategori çarp�mlara sahiptir.

�spat. Sonuç 2.4.8 den aç�kt�r. �

Bir R halkas� için Mod-R kategorisinde direkt limitler tam funktorlar oldu§un-

dan bir Grothendieck kategoridir. Üstelik B bir küçük öntoplamsal kategori

olmak üzere C = Hom(Bop,Ab) kategorisi bir Grothendieck kategoridir. Burada

B kategorisinin nesneleri, C kategorisinin projektif üreteçlerinin ailesidir.

Tan�m 2.5.4 (Carceles 2008) A direkt toplamlar alt�nda kapal� bir Abel kate-

gori olsun. Bu kategorideki her⊕i∈IXi :−→ Y epimor�zmas� için⊕i∈FXi :−→ Y

bir epimor�zma olacak ³ekilde sonlu bir F ⊂ I alt kümesi varsa Y nesnesine

sonlu üretilmi³ (�nitely generated) nesne denir.

C bir Grothendieck kategori olsun. Yukar�daki tan�ma denk olarak, C =
∑
Ci

e³itli§ini sa§layan C kategorisinin Ci direkt alt nesnelerinin ailesi için C = Cio

olacak ³ekilde bir io ∈ I varsa C nesnesine sonlu üretilmi³ nesne denir. Burada

C =
∑
Ci nesnesine Ci alt nesnelerinin direkt bile³imi (direct union) denir.

Tan�m 2.5.5 (Carceles 2008) A direk limitlere sahip bir toplamsal kategori ve

P , A n�n bir nesnesi olsun. E§er Hom(P,−) funktoru direk limitleri koruyor ise

P nesnesine sonlu temsil edilebilir (�nitely presentable) nesne denir.

15



Tan�m 2.5.6 (Carceles 2008) E§er bir C kategorisi sonlu temsil edilebilir

üreteçler ailesine sahip ise, C kategorisine yerel sonlu temsil edilmi³ (locally

�nitely presented) kategori denir. Yerel sonlu temsil edilmi³ kategoriler ilk olarak

(Crawley-Boevey 1994) de ele al�nm�³t�r.

Önerme 2.5.7 Bir yerel sonlu temsil edilmi³ Grothendieck kategorideki her

nesne sonlu temsil edilebilir nesnelerin direkt limitidir.

�spat. [(Wisbauer 1991), Proposition 34.2] �

C bir yerel sonlu temsil edilmi³ Grothendieck kategori olsun. Bu kategorideki

bir

0 −→ X ′ −→ X −→ X ′′ −→ 0

k�sa tam dizisi için X ′ ve X ′′ sonlu temsil edilebilir nesneler ise X de bir sonlu

temsil edilebilir nesnedir.

2.6 Sonlu Ula³�labilir Kategoriler

Tan�m 2.6.1 (Adamek Rosicky 1994) A direkt limitlere sahip bir toplamsal

kategori olsun. A kategorisindeki her nesne bu kategorinin sonlu temsil edilebilir

nesnelerinin bir direkt limiti olacak ³ekilde sonlu temsil edilebilir nesnelerin bir

kümesine sahip ise A kategorisine sonlu ula³�labilir (�nitely accessible) kategori

denir.

Bir sonlu ula³�labilir kategorinin her nesnesi sonlu temsil edilebilir nesnedir.

Ayr�ca sonlu ula³�labilir kategoriler her zaman tam olmak zorunda de§ildir.

Her yerel sonlu temsil edilmi³ kategori, sonlu ula³�labilir kategoridir fakat tersi

her zaman do§ru de§ildir. Örne§in; küçük kategoriler, mor�zmalar� bire-bir

fonksiyonlar olmak üzere, sonlu ula³�labilir kategorilerdir, fakat yerel sonlu tem-

sil edilmi³ kategori de§ildirler.
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Tan�m 2.6.2 (Borceux Rosicky 2007) A bir sonlu ula³�labilir kategori, f : A→
B bu kategoride bir mor�zma ve A′, B′ nesneleri A n�n sonlu temsil edilebilir

nesneleri olsun. Her bir

A′
f ′−→ B′

u ↓ ↓ ϕ
A

f−→ B

de§i³meli diagram� için u = ūf ′ olacak ³ekilde bir ū : B′ → A mor�zmas� varsa

f ye pür-mor�zma denir.

Parçalanan (split) monomor�zmalar pür monomor�zmalard�r. Pür mor�zmalar�n

bile³kesi de pür mor�zmad�r ve e§er f ◦g pür ise g de pür mor�zmad�r. Bir sonlu

ula³�labilir A kategorisi içindeki herhangi pür tam

0 −→ X −→ L −→M −→ 0

dizisi parçalanan ise A n�n bir X nesnesine pür-injektif nesne denir.

Bundan ba³ka pür mor�zma tan�mlar� direkt limitler veya Hom funktor yard�m�

ile a³a§�daki biçimde yap�labilir.

A bir sonlu ula³�labilir toplamsal kategori ve u : A → A′, A da bir mor�zma

ve u mor�zmas� A içinde {ui : Ai → A′i} mor�zmalar�n�n direkt sisteminin

bir direk limiti olsun. E§er her bir ui parçalanan monomor�zma olmak üzere

{fij : Ai → Aj}i≤j ve {gij : A′i → A′j}i≤j mor�zmalar�n direkt sistemleri varsa

u ya pür-monomor�zma denir. Ayr�ca e§er her bir ui parçalanan epimor�zma

olmak üzere {fij : Ai → Aj}i≤j ve {gij : A′i → A′j}i≤j mor�zmlar�n direkt

sistemleri varsa u ya pür-epimor�zma denir.

Böylece A kategorisinde, her pür-monomor�zma A da bir e³-çekirde§e (co-

kernel) ve benzer biçimde her pür-epimor�zma A da bir çekirde§e sahiptir.

Bu çekirdek ui mor�zmalar�n�n çekirdeklerinin direk limiti ve bu e³-çekirdek de

ui mor�zmalar�n�n e³-çekirdeklerinin bir direkt limitidir.
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A0, A kategorisinin sonlu temsil edilebilir nesnelerinin tüm izomorf s�n��ar�n�n

kümesi olsun. A0 �n herhangi A0 nesnesi için Hom(A0,−) direkt limitleri ko-

rudu§undan, A0 daki projektif nesnelerinin bulunmas� A kategorisindeki pür

epimor�zmalara ba§l�d�r. Bundan ba³ka, A kategorisindeki her nesne A0 kate-

gorisindeki nesnelerin direkt limiti oldu§undan, bir p : A → A′ mor�zmas�n�n

pür-epimor�zma olmas� için gerek ve yeter ko³ul A0 kategorisindeki nesnelerin

projektif olmas�d�r.

Tan�m 2.6.3 A kategorisindeki herhangi bir u pür-monomor�zmas� için e§er

HomA(u,A), Ab kategorisinde bir epimor�zma ise A n�n A nesnesine pür-

injektif nesne denir. Ayr�ca, A kategorisindeki herhangi bir p pür-epimor�zmas�

için HomA(A, p), Ab kategorisinde bir epimor�zma ise A n�n A nesnesine pür-

projektif nesne denir.

Tan�m 2.6.4 (Makkai Pare 1989) C bir sonlu ula³�labilir Grothendieck kate-

gori olsun. E§er bu kategoride her

0 −→ X −→ Y −→ F −→ 0

k�sa tam dizisi pür ise F ye düz (�at) nesne denir.

Her düz funktor, sonlu temsil edilebilir funktorlar�n bir limitidir ve ayr�ca her

düz funktor limitleri korur.

Tan�m 2.6.5 (Garcia 1999) F , bir A Abel kategorisindeki nesnelerin herhangi

bir s�n�f� ve X, A kategorisinde bir nesne olsun. F ve F ′, F s�n�f�n�n nesneleri

olmak üzere her bir X → F ′ mor�zmas� için

X
φ−→ F

↓
F ′

diagram� de§i³meli olacak ³ekilde bir φ : X → F homomor�zmas� varsa F ye

bir F-önzarf denir.

18



E§er

X −→ F

↓
F

diagram� sadece otomor�zmalarla de§i³meli olabiliyorsa φ : X → F ye bir F-
zarf denir.

F -örtüler dual olarak a³a§�daki ³ekilde tan�mlan�r.

Tan�m 2.6.6 (Garcia 1999) F , bir A Abel kategorisindeki nesnelerin herhangi

bir s�n�f� ve X, A kategorisinde bir nesne olsun. F ve F ′, F s�n�f�n�n nesneleri

olmak üzere her bir F ′ → X mor�zmas� için

F ′

↓
F

φ−→ X

diagram� de§i³meli olacak ³ekilde bir φ : F → X homomor�zmas� varsa F ye

bir F-önörtü denir.

E§er

F

↓
F −→ X

diagram� sadece otomor�zmalarla de§i³meli olabiliyorsa φ : F → X ye bir F-
örtü denir.

Modül s�n��ar�nda bahsetti§imiz "Wakamatsu Lemmalar�" Grothendieck ka-

tegoriler için de geçerlidir. Bundan ba³ka, sonlu ula³�labilir ve Grothendieck

kategorilerde a³a§�daki bilinen özellikler vard�r.

Teorem 2.6.7 C bir toplamsal yerel sonlu temsil edilmi³ kategori ve X bu ka-

tegoride bir nesne olsun. X nesnesinin pür monomor�zma olan bir pür injektif

η : X → PE(X) zarf� vard�r.

19



�spat. [(Herzog 2003), Theorem 6] �

Teorem 2.6.8 Bir G Grothendieck kategorinin nesnelerinin direkt e³-limitler

ve e³-çarp�mlar alt�nda kapal� bir s�n�f� F olsun. F nin her bir nesnesi F nin

bir S alt kümesinin nesnelerinin bir direkt limiti ise G kategorisinin her bir

nesnesi bir F-örtüye sahiptir.

�spat. [(El Bashir 2006), Theorem 3.2] �

Bundan ba³ka, F nin bir F nesnesinin bir pür alt nesnesi P olmak üzere F/P ,

F nin bir nesnesidir.

Teorem 2.6.9 C bir toplamsal sonlu ula³�labilir kategori ve C0 bu kategorinin

direkt limitler ve pür epimor�k görüntüler alt�nda kapal� bir s�n�f� olsun. Bu

durumda C nin her nesnesi bir C0-örtüye sahiptir.

�spat. [(Crivei et al. 2010), Theorem 2.6] �

Böylece, özel olarak bir toplamsal sonlu ula³�labilir Grothendieck kategoride her

bir düz nesne bir düz örtüye sahiptir.
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3 Func(Aop
0 ,Ab) KATEGOR�S�NDE PÜR-�NJEKT�FL�K

Bu bölümde, ilk olarak A bir toplamsal sonlu ula³�labilir kategori ve A0 bu ka-

tegorinin sonlu temsil edilebilir nesnelerinin izomor�zma s�n�f� olmak üzere A0

dan Abel gruplara tan�ml� bütün kontravariant toplamsal funktorlar�n s�n�f�nda

"e³-burulma teorisi" incelenmi³tir. Özgün bir sonuç olarak, bir toplamsal sonlu

ula³�labilir kategoride bir pür-injektif nesnenin endomor�zma halkas�n�n bir e³-

burulmal� halka oldu§u gösterilmi³tir. Böylece bu pür-injektif nesnenin endo-

mor�zmalar� halkas� (von Neumann) regüler olur.

Toplamsal sonlu ula³�labilir kategorilerin tam olmad�§� bilinen bir gerçektir.

Örne§in sol coherent olmayan bir R halkas� üzerinde düz sa§ R-modüllerin

kategorisi direkt çarp�mlar alt�nda kapal� de§ildir. Ayn� zamanda düz sa§ R-

modüllerin kategorisi her zaman bir Abel kategori olmayabilece§inden dolay� bir

Grothendieck kategori de de§ildir (Garcia Martinez 1995). Yine bu bölümde,

funktorlar�n quasi-limitini tan�mlayarak, toplamsal sonlu ula³�labilir kategori-

lerin her zaman quasi-tam oldu§u elde edildi.

Ayn� zamanda bu bölümde, bir toplamsal sonlu ula³�labilir kategorinin bir pür

e³-üretece sahip oldu§u gösterildi.

3.1 Func(Aop
0 ,Ab) ve Flat(Aop

0 ,Ab) Kategorileri

A bir toplamsal sonlu ula³�labilir kategori ve A0, A kategorisinin sonlu temsil

edilebilir nesnelerinin izomorf s�n�f� olsun. A0 dan Abel gruplara tan�ml� bütün

kontravariant toplamsal funktorlar�n s�n�f�n� Func(Aop
0 ,Ab) ile gösterelim. A bir

küçük kategori oldu§undan, Func(Aop
0 ,Ab), nesneleri kontravariant toplamsal

funktorlar ve mor�zmalar� bu funktorlar aras�ndaki do§al dönü³ümler olan bir

kategori tan�mlar. (Stenstrom 1975) de bu kategorinin tam ve e³-tam oldu§u

gösterilmi³tir. A bir küçük kategori ve Func(Aop
0 ,Ab) kategorisinin nesneleri

Abel kategorilere tan�ml� funktorlar oldu§undan, Func(Aop
0 ,Ab) kategorisi bir

Abel kategoridir.
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Func(Aop
0 ,Ab) kategorisi kontravariant toplamsal funktorlar�n s�n�f� oldu§un-

dan bir toplamsal kategoridir. Bundan ba³ka Func(Aop
0 ,Ab) bir Grothendieck

kategoridir. Ayn� zamanda Func(Aop
0 ,Ab) kategorisi elemanlar� sonlu temsil

edilebilir ve projektif olan bir

{HomA(−,A) | A ∈ A0}

üreteç kümesine sahiptir. Böylece bu kategorinin projektif üreteçlerinin kümesi

{HomA(−,A) | A ∈ A0} oldu§undan direkt limitlerin tam oldu§unu görmek

kolayd�r. Sonuç olarak, Func(Aop
0 ,Ab) bir yerel sonlu temsil edilmi³ kategori ve

dolay�s�yla bir toplamsal sonlu ula³�labilir kategoridir.

Bu çal�³mada Func(Aop
0 ,Ab) kategorisinin tüm düz nesnelerinin alt kategorisini

Flat(Aop
0 ,Ab) ile gösterece§iz.

Önerme 3.1.1 A bir toplamsal sonlu ula³�labilir kategori ve A0, A kategorisinin

sonlu temsil edilebilir nesnelerinin izomorf s�n�f� olsun. Buradan A kategorisi,

Func(Aop
0 ,Ab) kategorisinin bütün düz nesnelerinin alt kategorisi Flat(Aop

0 ,Ab)

kategorisine denktir.

�spat.
T : A −→ Func(Aop

0 ,Ab)

A 7−→ T (A) : A0 → Ab

A0 7→ Hom(A0, A)

funktorunu göz önüne alal�m . "Yoneda Lemma" dan T funktoru A ve Im(T )

aras�nda bir denklik tan�mlar [(Adamek Rosicky 1994), sayfa 3].

Di§er taraftan A0 �n herhangi bir A0 nesnesi için, her bir A0 sonlu temsil

edilebilir oldu§undan her Hom(A0,−) direkt limitleri korur. Böylece bir A0 �n

bir Ai nesnesi için Hom(−, A), Im(T ) nin Hom(−, Ai) funktorlar�n�n bir direkt

limitidir. Burada A0 �n herhangi Ai nesnesi için Hom(−, Ai), Func(Aop
0 ,Ab)

kategorisinde bir sonlu temsil edilebilir projektif nesnedir.
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Böylece, Im(T ) sonlu temsil edilebilir projektif funktorlar�n bütün direkt limit-

lerinin kategorisi olan Flat(Aop
0 ,Ab) kategorisidir. �

Yukardaki önerme gere§ince T funktoruA ve Flat(Aop
0 ,Ab) kategorileri aras�nda

bir denklik gösterdi§inden, bir A nesnesinin A da pür-injektif yada pür-projektif

olmas� için gerek ve yeter ko³ul T (A) n�n Flat(Aop
0 ,Ab) kategorisinde pür-

injektif yada pür-projektif olmas�d�r. Özel olarak, A n�n pür-projektif olmas� için

gerek ve yeter ko³ul A n�n Aop0 kategorisindeki nesnelerin bir direkt toplam�n�n,

bir direkt toplanan� olmas�d�r. Ayr�ca A n�n pür-injektif olmas� için gerek ve

yeter ko³ul herhangi bir F düz funktoru için

Ext1
Func(Aop

0 ,Ab)(F, T (A)) = 0

olmas�d�r.

Di§er taraftan, Func(Aop
0 ,Ab) kategorisinin bütün düz funktorlar�n�n s�n�f� olan

F = Flat(Aop
0 ,Ab) yi göz önüne alal�m. Bu s�n�f

{HomA(−,A) | A ∈ A0}

kümesinin direkt limitler alt�ndaki kapan�³�d�r. Ayr�ca Flat(Aop
0 ,Ab) geni³lemeler

alt�nda kapal�d�r. Böylece [(El Basir 2006) Teorem 3.2] den, Func(Aop
0 ,Ab) ka-

tegorisindeki herhangi bir nesne Flat(Aop
0 ,Ab) kategorisinde bir örtüye sahiptir.

Her F düz funktoru için Ext1
Func(Aop

0 ,Ab)(F,C) = 0 olacak ³ekildeki Func(Aop
0 ,Ab)

nin nesnesi olan bütün C funktorlar�n�n s�n�f�n� C ile gösterelim. (Enochs et al.

2004) ten Func(Aop
0 ,Ab) kategorisindeki herhangi bir H funktoru C de bir zarfa

sahiptir ve (F , C) bir e³-burulma teorisidir. O halde herhangi bir Flat(Aop
0 ,Ab)-

örtünün çekirde§i C ye aittir ve herhangi bir C-zarf�n e³-çekirde§i de F ye ait-

tir. Özel olarak Flat(Aop
0 ,Ab) k�sa tam dizilere göre geni³lemeler alt�nda kapal�

oldu§undan Flat(Aop
0 ,Ab) s�n�f�ndaki bir funktorun C-örtüsü de Flat(Aop

0 ,Ab)

s�n�f�nda olur (Aldrich et al. 2001).
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3.2 Pür-�njekti�ik

A³a§�daki Önerme Flat(Aop
0 ,Ab) s�n�f�nda C-örtü ve pür-injekti�ik aras�nda

güçlü bir ba§�nt� verir. Ayr�ca bu ba§�nt�y� dördüncü bölümde kullanaca§�z.

Her F düz funktoru için Ext1
Func(Aop

0 ,Ab)(F,C) = 0 olacak ³ekildeki Func(Aop
0 ,Ab)

nin nesnesi olan bütün C funktorlar�n�n s�n�f�n� C ile gösterelim.

Önerme 3.2.1 F , Flat(Aop
0 ,Ab) kategorisinde bir funktor ve u : F → C mor-

�zmas� de F nin C-zarf� olsun. Bu durumda u bir pür-monomor�zmad�r. Ayr�ca

C pür-injektif nesnedir.

�spat. Coker(u) nesnesinin F kategorisinin bir nesnesi oldu§unu biliyoruz. O

zaman Coker(u), A0 �n Ai nesneleri için projektif Hom(−, Ai) funktorlar�n�n bir

direkt limitidir. Buradan pullback diagram� olu³turularak Coker(u) parçalanan

mor�zmalar�n direkt limiti ve u da parçalanan monomor�zmalar�n bir direkt

limiti olur ve buradan u bir pür-monomor�zmad�r.

Di§er taraftan v : F → F ′, F de bir pür-monomor�zma olsun. Bu durumda

Coker(v), F nin bir nesnesi ve böylece Ext1(Coker(v), C) = 0 olur ki buradan

herhangi f : F → C mor�zmas� a³a§�daki diagram� de§i³meli yapacak ³ekilde

bir h : F ′ → C mor�zmas�na geni³letilebilir,

0 −→ F
v−→ F ′ −→ Coker(v) −→ 0

f ↓ ↙ h

C

Böylece C pür-injektif olur. �

Önerme 3.2.1 ile Flat(Aop
0 ,Ab) kategorisindeki nesnelerin C-zar�ar� yine bu kate-

gorideki pür-injektif zar�ard�r. �imdi A ve Flat(Aop
0 ,Ab) kategorileri aras�ndaki

T denkli§i kullan�l�rsa a³a§�daki sonuç elde edilir.

Sonuç 3.2.2 A bir sonlu ula³�labilir kategori olsun. A daki her nesne A da

bir u : A → E pür-injektif zarfa sahiptir. Bundan ba³ka, T (u) da T (A) n�n

Func(Aop
0 ,Ab) kategorisindeki C-zarf�d�r.
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Giri³ bölümünde belirtti§imiz gibi, bu tezdeki temel amaçlardan birisi de pür-

injektif zar�ar�n varl�§�n� kullanarak sonlu ula³�labilir kategorilerin yap�s�n� in-

celemektir.

Bilindi§i gibi, R bir halka olmak üzere herhangi bir sa§ R-modül C ve her düz

F sa§ R-modülü için Ext1
R(F,C) = 0 ise C modülüne e³-burulmal� modül denir.

(Guil Herzog 2004) te gösterildi§i gibi herhangi sa§ e³-burulmal� halka (von

Neumann) regülerdir. Böylece, a³a§�daki önerme toplamsal sonlu ula³�labilir

kategorilerde pür-injektif nesneler için güzel bir sonuçtur.

Önerme 3.2.3 E bir A toplamsal sonlu ula³�labilir kategoride bir pür injektif

nesne ve R = EndA(E) olsun. Bu durumda E nesnesinin endomor�zmalar

halkas� R, bir e³-burulmal� halkad�r.

�spat. F bir düz sa§ R-modül olsun. Burada sa§ R-modüller s�n�f�nda herhangi

bir

0→ R
v−→ X

q−→ F → 0

geni³lemesinin parçalanan oldu§unu göstermek ispat için yeterlidir.

�imdi

HomA(E,−) : A −→ Mod−R

funktorunu göz önüne alal�m. [(Freyd 1964), sayfa 84] den HomA(E,−) Adjoint

Funktor Teoreminin hipotezini sa§lar. Böylece HomA(E,−) funktoru

E ∼= G ◦ HomA(E,E)

olacak ³ekilde bir G : Mod−R→ A sol adjoint funktoruna sahiptir.

Di§er taraftan, F bir düz R-modül oldu§undan, sonlu temsil edilmi³ projek-

tif modüllerin bir direkt limiti olarak yaz�labilir. F = lim−→Pi olsun. Pullback
diagram� olu³turularak

0→ R
v−→ X

q−→ F → 0
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k�sa tam dizisi

0 −→ R
v−→ X

q−→ F −→ 0

↓ ↓
o −→ R

vi−→ Xi
qi−→ Pi −→ 0

diagram� ile

0→ R
vi−→ Xi

qi−→ Pi → 0

parçalanan k�sa tam dizilerinin bir direkt limiti olur.

�imdi, G funktoru direkt limitleri korudu§undan G(v) : G(R) → G(X), A da

G(vi) : G(R)→ G(Xi) parçalanan monomor�zmalar�n direkt limitidir. O zaman

E ∼= G(R) pür-injektif oldu§undanG(v) parçalanand�r. Böylece f◦G(v) = 1G(R)

olacak ³ekilde bir f : G(X) → G(R) mor�zmas� vard�r. Buradan HomA(E,−)

funktorunu f ye uygularsak

(HomA(E,−)(f)) ◦ (HomA(E,−)G(v)) = 1HomA(E,−)◦G(R)

olur. Böylece,

R
v−→ X

↓ 1R ↓
HomA(E,G(R)) −→ HomA(E,G(X)) −→ HomA(E,G(R))

de§i³meli diagram�n� elde ederiz. Diagramdaki alt dizi parçalanan oldu§undan

v de parçalanand�r. �

Sonuç olarak [(Stenström 1975) Proposition 5.1] den, E bir A toplamsal sonlu

ula³�labilir kategoride bir pür-injektif nesne olmak üzere e§er E ayr�³t�r�lamaz

nesne ise E nin endomor�zmalar� halkas� bir yerel (local) halka olur.
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3.3 Quasi-Limitler

Sonlu ula³�labilir kategori olan düz modüllerin kategorisi, direkt çarp�mlar al-

t�nda kapal� de§ildir. Dolay�s�yla bir tam kategori de§ildir. Pür-injektif modüller

e³-burulmal� modüldür fakat tersi her zaman do§ru olmayabilir. E§er Flat-R

direkt çarp�mlara sahipse, her düz e³-burulmal� R-modül pür-injektiftir (Xu

1996). Bu nedenle düz modüller kategorisinin direkt çarp�mlara sahip olmamas�

bu kategoride pür-injekti�i§in incelenebilmesi aç�s�ndan önemlidir.

Bu bölümde, ilk kez kategorilerde quasi-limit kavram�n� tan�mlay�p, bu kavram�n

temel özelliklerini inceleyece§iz. Daha sonra son bölümde görece§imiz gibi, quasi-

limit kavram� sonlu ula³�labilir kategorilerin karakterizasyonunda önemli bir rol

oynar.

Bu bölüm boyunca C herhangi bir kategoriyi ve I bir küçük (small) kategoriyi,

yani nesneleri bir küme olan kategoriyi gösterecektir.

Tan�m 3.3.1 H : I → C (kovariant) funktoru C kategorisinde bir nesne olsun.

Her bir i ∈ I için πi : F → H(i) mor�zmalar�n bir uyumlu (compatible) ailesi

olmak üzere;

• Her bir ξi : X → H(i) uyumlu ailesi için πiξ = ξi olacak ³ekilde bir

ξ : X → F mor�zmas� vard�r.

• E§er her bir i ∈ I için πi ◦ h = πi olacak ³ekilde bir h : F → F do§al

dönü³ümü varsa h bir otomor�zmad�r.

özellikleri sa§lan�yorsa, F = limq

←−−H nesnesine H funktorunun quasi-limiti denir.

Tan�mda yer alan birinci ³art tan�m�n hipoteziyle birlikte limit tan�m� oldu§un-

dan, e§er varsa bir H : I → C funktorunun iki quasi-limiti izomorftur. Özel

olarak, H nin quasi-limitinin bir limit olmas� için gerek ve yeter ko³ul H funk-

torunun C kategorisinde limitinin olmas�d�r.
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Teorem 3.3.2 C bir toplamsal sonlu ula³�labilir kategori ve C0 bu kategorinin

sonlu temsil edilebilir nesnelerinden olu³an bir üreteç kümesi olmak üzere H :

I → Flat(Cop
0 ,Ab) bir (kovariant) funktor, H nin Func(Cop

0 ,Ab) kategorisindeki

limiti (lim←−H, {πi : lim←−H → H(i)}) ve q : F → lim←−H mor�zmas� da lim←−H nin

bir düz örtüsü olsun. Bu durumda (F, {πi ◦ q : F → H(i)}) H funktorunun

Flat(Cop
0 ,Ab) kategorisinde bir quasi-limittir.

�spat. X, Flat(Cop
0 ,Ab) kategorisinde sabit bir nesne ve ξi : X → H(i) mor�z-

malar�n bir uyumlu ailesi olsun. (lim←−H, {πi}I),H funktorunun bir limiti oldu§un-

dan her i ∈ I için πi ◦g = ξi olacak ³ekilde bir g : X → lim←−H mor�zmas� vard�r.

Hipotezden q : F → lim←−H, H funktorunun bir düz örtüsü oldu§undan, q ◦h = g

olacak ³ekilde bir h : X → F mor�zmas� vard�r. Böylece,

X
ξi−→ H(i)

h ↓ ↘ ↑ πi
F

q−→ lim←−H

de§i³meli diagram�n� elde ederiz. Buradan her i ∈ I için, (πi ◦ q) ◦ h = ξi olur.

Son olarak, her i ∈ I için h : F → F do§al dönü³ümü (πi◦q)◦h = πi◦q e³itli§ini
sa§lad�§�n� kabul edelim. Bu durumda q : F → lim←−H bir düz örtü oldu§undan

h bir otomor�zma olur. �

Tan�m 3.3.3 I bir küçük kategori ve C herhangi kategori olmak üzere I dan C
ye tan�ml� her H : I → C funktoru, C de bir quasi-limite sahip ise bu kategoriye

quasi-tam kategori denir. �

Daha önce de belirtti§imiz gibi toplamsal sonlu ula³�labilir kategoriler tam ol-

mak zorunda de§ildir. Örne§in, sol cohorent olmayan bir R halkas� üzerinde düz

sa§ R-modüllerin kategorisi herhangi direkt çarp�mlar alt�nda kapal� de§ildir,

dolay�s�yla bir tam kategori de§ildir. Ancak, a³a§�daki sonuçta gösterece§imiz

gibi bu kategoriler her zaman quasi-tam kategorilerdir.

Sonuç 3.3.4 Her toplamsal sonlu ula³�labilir kategori quasi-tamd�r.
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�spat. C bir toplamsal sonlu ula³�labilir kategori ve C0, C nin sonlu temsil

edilebilir nesnelerinden olu³an alt kategorisi olmak üzere C nin Flat(Cop
0 ,Ab)

kategorisine izomorf oldu§unu biliyoruz. Func(Cop
0 ,Ab) bir Grothendieck kat-

egori oldu§undan I bir küçük kategori olmak üzere, herhangi kovariant H :

I → Flat(Cop
0 ,Ab) funktorunun Func(Cop

0 ,Ab) kategorisinde bir limiti vard�r.

Böylece, Teorem 3.3.2 den istenilen sonuç elde edilir. �

Bir C kategorisinde çarp�m, pullback ve çekirdek kavramlar� baz� özel küçük

kategorilerden C kategorisine tan�ml� funktorlar�n limitleridir. Buradan, ben-

zer biçimde, quasi-çarp�m, quasi-pullback ve quasi-çekirdek kavramlar� tan�m-

lanabilir. Böylece, bir C kategorisinin quasi tam olmas� için gerek ve yeter

ko³ul quasi-çekirdek ve quasi-çarp�m�n�n olmas�d�r. Sonuç 3.3.4 den dolay�, sonlu

ula³�labilir kategoriler quasi-çekirdek ve quasi-çarp�ma sahiptir.

Bu bölümü toplamsal sonlu ula³�labilir kategorilerde e³-üreteçlerin varl�§�n� gös-

tererek tamamlayal�m. Bilindi§i gibi herhangi bir toplamsal C kategorisinde s�f�r-
dan farkl� her f : A→ B mor�zmas� için g ◦ f 6= 0 olacak ³ekilde bir g : B → E

mor�zmas� varsa E nesnesine C de bir e³-üreteç (co-generator) denir.

Önerme 3.3.5 Bir sonlu ula³�labilir toplamsal kategori C bir e³-üretece sahip-

tir.

�spat. Func(Cop
0 ,Ab) bir Grothendieck kategori oldu§undan bir e³-üretece sahip-

tir. Q bu kategoride bir e³-üreteç ve q : E → Q, Q nun bir düz örtüsü olsun.

O zaman f : A → B mor�zmas� Flat(Cop
0 ,Ab) kategorisinde s�f�rdan farkl� bir

mor�zma ise, g ◦ f 6= 0 olacak ³ekilde bir g : B → Q mor�zmas� vard�r. Di§er

taraftan, q : E → Q bir düz örtü oldu§undan q ◦ h = g olacak ³ekilde bir

h : B → E mor�zmas� vard�r. Böylece q ◦h◦f = g ◦f 6= 0 oldu§undan h◦f 6= 0

elde edilir. Böylece E, C kategorisinin bir e³-üretecidir. �
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4 AYRI�TIRILAMAZ NESNELER

Son olarak, bu bölümde öncelikle bir toplamsal sonlu ula³�labilir kategorinin

ayr�³t�r�lamaz pür-injektif nesneler s�n�f�n�n bir küme olu³turdu§u gösterildi.

Buradan hareketle herhangi bir düz funktorun bu kümenin elemanlar�n�n, yani

ayr�³t�r�lamaz pür-injektif nesnelerinin limiti içine pür olarak gömülebilece§i is-

patland�.

Ayr�ca, bir toplamsal sonlu ula³�labilir kategorinin bir pür e³-üreteç kümesine

sahip oldu§u gösterilmi³tir. Bu sonuç, herhangi bir toplamsal sonlu ula³�labilir C
kategorisinin pür-injektif özellikleri ile ayr�³t�r�lamaz düz pür-injektif nesnelerin

s�n�f� üzerinde bir topoloji kurulabilece§ini ifade eder. Bu yöntem modül kate-

gorilerinde Ziegler spekturumuyla kurulan topolojiye benzer bir yöntemdir.

4.1 Alt Funktorlar

Tan�m 4.1.1 (Auslander 1976) C bir küçük toplamsal kategori ve F : C → Ab

bir kontravariant funktor olsun. C nin herhangi bir C nesnesi için, s�f�rdan farkl�

sabit bir XC ⊂ ⊕C∈CF (C) alt kümesini alal�m. G : C → Ab olmak üzere;

• πC : ⊕C∈CF (C)→ F (C) do§al projeksiyon olmak üzere G(C), F (C) nin

{F (fC′) ◦ πC(XC) | C ′ ∈ C ve fC′ : C → C ′ bir mor�zma}

kümesiyle üretilmi³ bir Abel alt grubudur.

• E§er f : C → C ′ bir mor�zma ise G(f) : G(C)→ G(C ′), F (f) nin G(C)

ye k�s�tlanm�³�d�r.

özellikleri sa§lan�yorsa, G funktoruna F nin XC ile üretilmi³ bir alt funktoru

denir.
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Yukarda tan�mlanan G alt funktoru F nin ⊕G(C), XC kümesini kapsayacak

³ekilde en küçük toplamsal alt funktorudur. Özel olarak, F funktorunun G alt

funktoru bir XC ⊆ ⊕F (C) sonlu alt kümesi ile üretilirse G ye sonlu üretilmi³

alt funktor denir.

Hiç bir alt funktoru olmayan funktora basit funktor denir. S�f�ndan farkl� her

bir a ∈ ⊕C∈CF (C) eleman� ile üretilmi³ her funktor basit funktordur.

Bundan ba³ka F : C → Ab bir kontravariant funktor ve {Gα}α∈A, F nin alt

funktorlar�n�n bir ailesi olsun. F nin
⊕

C∈C(
∑

α∈AGα(C)) Abel grubu taraf�ndan

üretilen alt funktoruna {Gα}α∈A ailesi taraf�ndan üretilen alt funktor denir.

Ayr�ca bir toplamsal funktor direkt limitleri koruyor ise bu funktora sürekli

funktor denir (Guil Herzog 2007).

Lemma 4.1.2 C bir toplamsal sonlu ula³�labilir kategori, C0 bu kategorinin

sonlu temsil edilebilir nesnelerinden olu³an üreteç kümesi ve C0 kategorisinin

kontravariant funktor kategorisi E = Func(Cop
0 ,Ab) olsun. E§er u : F → G

mor�zmas� E içinde bir mor�zma ise u mor�zmas�n�n pür-monomor�zma ol-

mas� için gerek ve yeter ko³ul her kovariant sürekli H : E → Ab funktoru için

H(u) nun bir monomor�zma olmas�d�r.

�spat. Bir modül monomor�zmas�n�n pür olmas� için gerek ve yeter ko³ul her-

hangi sonlu temsil edilmi³ modül ile tensör çarp�m�n�n monomor�zma olmas�d�r.

Benzer biçimde E = Func(Cop
0 ,Ab) bir Grothendieck kategori oldu§undan iste-

nilen kolayca elde edilir. �

Lemma 4.1.3 C bir toplamsal sonlu ula³�labilir kategori, C0 bu kategorinin

sonlu temsil edilebilir nesnelerinden olu³an üreteç kümesi ve C0 kategorisinin

kontravariant funktor kategorisi E = Func(Cop
0 ,Ab) olsun. ℵ bir sonsuz kardinal

olmak üzere, E kategorisindeki herhangi F funktorunun sonlu üretilmi³ herhangi

G alt funktoru için ⊕C∈C0H(C) nin kardinalitesi ℵ ile s�n�rl� olacak ³ekilde F

nin G yi içeren bir H pür alt funktoru vard�r.

�spat. G, F funktorunun sonlu üretilmi³ bir alt funktoru ve u : G→ F içerme

dönü³ümü olsun. F funktorunun G alt funktorunu içeren pür alt funktorunu,

do§al say�larda indüksiyon ile olu³turaca§�z.
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n bir do§al say� olmak üzere

• n = 0 için H0 = G olarak tan�mlayal�m.

• n > 0 sabit bir do§al say� olsun. ℵ, herhangi C,C ′ sonlu temsil edilebilir

nesneleri için

ℵ ≥ | ⊕C∈C0 G(C)| ve ℵ ≥ |Hom(C.C ′)|

³artlar�n� sa§layan sabit bir kardinal say� olsun. E nin sonlu üretilmi³ pro-

jektif L,L′ nesneleri ve αn : L → Hn mor�zmas� için a³a§�daki diagram�

de§i³meli yapan

L
ξ−→ L′

αn ↓ ↓ β
Hn

un−→ F

β ◦ ξ = un ◦ αn olacak ³ekilde ξ ve β mor�zmalar� var olsun. Burada

β(L′(C)) Abel grubunuXξ,αn ile gösterelim.Hn+1, F funktorununXξ,αn ile

üretilmi³ alt funktoru olsun. L′ sonlu üretilmi³ projektif funktor oldu§un-

dan, C0 daki sonlu Ci nesneleri için L′ funktoru⊕IHom(−, Ci) formundad�r.
Dolay�s�yla | ⊕C∈C Hn(C)| ≤ ℵ elde edilir.

�imdi, Hn zincirinin direkt bile³imine H diyelim. H funktorunun sonlu üretilmi³

alt funktor G yi içerdi§ini ve F nin bir alt funktoru oldu§unu görmek kolayd�r.

Son olarak, H nin bir pür alt funktor oldu§unu gösterelim. Z bir sonlu temsil

edilebilir funktor ve φ : Z → F/H bir mor�zma olsun. O zaman Z sonlu temsil

edilebilir oldu§undan Z = Coker(ξ) olacak ³ekilde L, L′ sonlu üretilmi³ projektif

funktorlar olmak üzere ξ : L→ L′ mor�zmas� vard�r.

Buradan,

L
ξ−→ L′

p−→ Z −→ 0

↓ α ↓ β ↓ φ
H

u−→ F
q−→ F/H −→ 0
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diagram�n� olu³turabiliriz. L ve L′ projektif nesneler oldu§undan β ◦ ξ = u ◦ α
olacak ³ekilde β : L′ → F ve α : L → H mor�zmalar� vard�r. Dolay�s�yla

yukar�daki diagram de§i³melidir.

L sonlu üretilmi³ ve H = ∪nHn oldu§undan Im(α) ⊆ Hn olacak ³ekilde bir n

do§al say�s� vard�r. H nin olu³umundan Im(α) ⊆ Hn+1 olur. Böylece u ◦ δ = β

olacak ³ekilde bir δ : L′ → H mor�zmas� ve buradan η ◦p = β olacak ³ekilde bir

η : Z → F mor�zmas� vard�r. Sonuç olarak E kategorisinde herhangi Z sonlu

temsil edilebilir funktoru q epimor�zmine göre projektiftir. �

4.2 Ayr�³t�r�lamaz Nesneler

E§er bir C nesnesi s�f�rdan farkl� iki nesnenin direkt toplam� olarak yaz�lam�-

yorsa bu C nesnesine ayr�³t�r�lamaz nesne denir (Stenström 1975).

Lemma 4.2.1 C bir toplamsal sonlu ula³�labilir kategori, C0 bu kategorinin

sonlu temsil edilebilir nesnelerinden olu³an üreteç kümesi ve C0 kategorisinin

kontravariant funktor kategorisi ise E = Func(Cop
0 ,Ab) olsun. Bu durumda

Flat(Cop
0 ,Ab) nin herhangi ayr�³t�r�lamaz E funktoru için, ⊕C∈CE(C) nin kar-

dinalitesi ℵ ile s�n�rl� olacak ³ekilde bir ℵ kardinali vard�r.

�spat. E, Flat(Cop
0 ,Ab) kategorisinde bir ayr�³amaz pür-injektif nesne olsun.

Lemma 4.1.3 ile ℵ′ sabit bir kardinal olmak üzere |⊕C∈CH(C)| ≤ ℵ′ olacak ³ek-

ilde E funktorunun bir H pür alt funktoru vard�r. �imdi E(H), H funktorunun

Flat(Cop
0 ,Ab) kategorisindeki pür-injektif zarf� olsun. H, E nin pür alt funktoru

ve E pür-injektif oldu§undan E(H), E nin direk toplanan�d�r. E ayr�³t�r�la-

maz pür-injektif nesne oldu§undan E = E(H) olur. Böylece E nin kardinalitesi

|E(H)| kardinallerinin supremumu ile s�n�rl�d�r. �

Ind(E), E kategorisindeki bütün ayr�³t�r�lamaz düz pür-injektif nesnelerden olu³an

bir s�n�f olsun. O halde bu s�n�f�n nesneleri s�n�rl� kardinaliteye sahiptir. A³a§�-

daki sonuç Ind(E) s�n�f�n�n her nesnesinin s�n�rl� kardinaliteye sahip olmas� ile

kolayca elde edilir.

33



Sonuç 4.2.2 C bir toplamsal sonlu ula³�labilir kategori, C0 bu kategorinin sonlu

temsil edilebilir nesnelerinden olu³an üreteç kümesi ve C0 kategorisinin kon-

travariant funktor kategorisi E = Func(Cop0 , Ab) olsun. Bu durumda Ind(E) s�n�f�

bir kümedir.

Teorem 4.2.3 C bir toplamsal sonlu ula³�labilir kategori ve C0 bu kategorinin

sonlu temsil edilebilir nesnelerinden olu³an üreteç kümesi olsun. F : C0 → Ab bir

düz kontravariant funktor, C, C kategorisinin bir nesnesi ve x, F (C) nin s�f�rdan

farkl� bir eleman� olmak üzere, Func(Cop0 , Ab) kategorisinin bir G ayr�³t�r�lamaz

düz pür-injektif funktoru ve τC(x) 6= 0 olacak ³ekilde bir τ : F → G do§al

dönü³ümü vard�r.

�spat. F bir düz kontravariant funktor olsun ve F (C) nin s�f�rdan farkl� bir x

eleman�n� göz önüne alal�m. H, F nin x ile üretilmi³ pür alt funktoru olsun.

Lemma 4.1.3 den | ⊕C∈C H(C)| ≤ ℵ′ olacak ³ekilde bir ℵ′ kardinal say�s� vard�r.
O halde, H pür alt funktor oldu§undan,

0 −→ H−→F−→F/H −→ 0

dizisi parçalanan bir dizi olur. Burada F/H düz funktordur. �imdi F nin pür

alt funktorlar�n�n

{F ′ 6 F | x /∈ F ′(C)}

kümesini dü³ünelim. Zorn Lemma ile bu kümenin bir en büyük eleman� vard�r.

Bu eleman� F1 ile gösterelim. Böylece π1 : F → F/F1 do§al dönü³ümünü elde

ederiz. Buradan x /∈ F1(C) oldu§undan π1(x) 6= 0 olur. Ayr�ca F1 en büyük

eleman oldu§undan F/F1 ayr�³t�r�lamazd�r.

Di§er taraftan, F/F1 düz funktor oldu§undan Func(Cop
0 ,Ab) kategorisinde bir

e³-burulmal� zarfa sahiptir. Bu zar� τ1 : F/F1 → G ile gösterelim. Burada G

e³-burulmal� zarf� F/F1 in düz essential geni³lemesi oldu§undan G de ayr�³t�r�la-

mazd�r. Ayr�ca π1(x) 6= 0 oldu§undan τ : F → G için τC(x) 6= 0 oldu§unu

görmek kolayd�r. Son olarak Önerme 3.2.1 ten G pür-injektiftir.

�
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Sonuç 4.2.4 C bir toplamsal sonlu ula³�labilir kategori ve C0 bu kategorinin

sonlu temsil edilebilir nesnelerinden olu³an üreteç kümesi olsun. Bu durumda E
nin herhangi düz F funktoru için, F den Ind(E) s�n�f�ndaki funktorlar�n direkt

çarp�m�na tan�ml� bir τ monomor�zmas� vard�r.

�spat. Teorem 4.2.3 ile herhangi bir ⊕C∈C0F (C) nin s�f�rdan farkl� herhangi bir

x eleman� için, F den x e ba§l� ayr�³t�r�lamaz pür-injektif düz funktor olan Ex
ye tan�ml� bir τx : F → Ex do§al dönü³ümü vard�r. Buradan her bir Ex bir

e³-burulmal� zarf oldu§undan

τ : F → ux∈⊕C∈C0F (C)Ex

bir monomor�zmad�r. �

Teorem 4.2.5 C bir toplamsal sonlu ula³�labilir kategori ve C0 bu kategorinin

sonlu temsil edilebilir nesnelerinden olu³an üreteç kümesi olsun. E nin herhangi

bir düz funktoru, Ind(E) s�n�f�n�n nesnelerinin quasi-limiti içine pür olarak

gömülebilir.

�spat. F , E = Func(Cop
0 ,Ab) kategorisinde bir düz funktor olsun. Sonuç 4.2.4

den E kategorisinde bir

τ : F → ux∈⊕C∈C0F (C)Ex

monomor�zmas� vard�r. Kolayl�k için ux∈⊕C∈C0F (C)Ex = A ile gösterelim.

Böylece,

0 −→ F
τ−→ A

η−→ A/F −→ 0

dizisi tamd�r.

A/F nin E deki düz örtüsü β : FC(A/F ) → A/F olsun. Böylece η ve β n�n

pullback diagram� al�n�rsa, tam sat�rl� ve de§i³meli
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0 −→ F
τ ′−→ P

η′−→ FC(A/F ) −→ 0

‖ ↓ ↓
0 −→ F

τ−→ A
η−→ A/F −→ 0

diagram�n� elde ederiz. Burada F ve FC(A/F ) düz funktor oldu§undan P de

bir düz funktordur. O halde P , A n�n bir ön-örtüsüdür ve bir X funktoru için

P = FC(A)⊕X biçiminde yaz�labilir. Buradan,

0 −→ X = X

↓ ↓ ↓
0 −→ F

τ ′−→ FC(A)⊕X −→ FC(A/F ) −→ 0

‖ ↓ ↓
0 −→ F

Φ−→ FC(A) −→ FC(A/F )/X −→ 0

↓ ↓
0 0

de§i³meli diagram�n� elde ederiz. FC(A/F ) düz funktor oldu§undan τ ′ pür-

monomor�zma olur.

Di§er taraftan,

0 −→ F
Φ−→ FC(A)

i−→ FC(A)⊕X

dizisi için τ ′ = iΦ bir pür-monomor�zma oldu§undan Φ de bir pür-monomor�zma

olur. Böylece Teorem 3.3.2 den, FC(A) ayr�³t�r�lamaz pür-injektif nesnelerin bir

quasi-limitidir.

�

Tan�m 4.2.6 C bir sonlu ula³�labilir kategori ve C ′, C deki nesnelerin herhangi

bir kümesi olsun. E§er C nin her C nesnesi için C den C ′ nün nesnelerinin bir

quasi-limitine tan�ml� bir pür-monomor�zma var ise C ′ kümesine C kategorisinin
bir pür e³-üreteç kümesidir denir.
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Bu çal�³mada son olarak, bir sonlu ula³�labilir toplamsal kategorinin bir pür e³-

üreteç kümesinin bir karakterizasyonunu ayr�³t�r�lamaz pür-injektif nesnelerin

quasi-limitine göre elde edece§iz.

Sonuç 4.2.7 C bir sonlu ula³�labilir kategori ve Ind(C), C kategorisinde ki

ayr�³t�r�lamaz düz pür-injektif nesnelerinin kümesi olsun. Bu durumda Ind(C),
C kategorisinin bir pür e³-üreteç kümesidir.

�spat. Teorem 4.2.5 ve Tan�m 4.2.6 den aç�kt�r. �

Bu sonuç, herhangi bir sonlu ula³�labilir toplamsal C kategorisinin pür-injektif

özellikleriyle Ind(C) üzerinde bir topoloji kurulabilece§ini ifade eder. Bu yön-

tem modül kategorilerinde Ziegler spekturumuyla kurulan topolojiye benzer bir

yöntemdir.
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