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OZET

Bu caligma yedi boliim halinde olusturulmustur.

Birinci boliimde temel tanimlar verilmistir.

Ikinci boliimde, lineer olmayan kismi diferensiyel denklemlerin periyodik dalga
¢oziimlerini elde etmek i¢in kullanilan bazi metotlarin tarihsel olarak analizi yapilmistir.
Bu metotlarin hepsi goz oniine alinan denklemde en yiiksek mertebeden lineer olan terim
ile en yiiksek mertebeden lineer olmayan terimin dengelenmesiyle dengeleme terimini
bulma esasina dayanir. Bu yiizden bu metotlar sadece lineer olmayan kismi difrensiyel
denklemlere uygulanabilir. Ayrica, bu metotlar bir kismi diferensiyel denklemi bir adi
diferensiyel denkleme doniistiiriir. Boylece ¢oziime daha kolay ulasilabilir.

Ugiincii béliimde, ikinci béliimde analizleri yapilan metotlardan biri ile bazi lineer
olmayan kismi diferensiyel denklemlerin periyodik dalga ¢oziimleri elde edilmistir.

Dordiincii boliimde, lineer ve lineer olmayan diferensiyel denklemlerin ¢éziimiinde
kullanilan baz1 yar1 analitik metotlarin analizi yapilmstir.

Besinci boliimde, dordiincii boliimde analizleri yapilan yar1 analitik metotlar
kullanilarak tigiincii boliimde goz Oniine alinan denklemler i¢in seri ¢oziimler elde
edilmistir.

Altinct boliimde, besinci boliimde elde edilen seri ¢oziimlerin sayisal sonuglari
irdelenmistir.

Yedinci boliimde, bu calismada elde edilen sonuglar literatiirde bulunan ¢alismalar

ile desteklenerek genel bir degerlendirme yapilmstir.

Anahtar Kelimeler: Solitary dalgalar, Solitonlar, Jakobi eliptik fonksiyon, Dengeleme

terimi, Analitik ¢6ziim, Periyodik ¢6ziim, Tanh metot, Jakobi eliptik

!

fonksiyon metot, (%j acilim metot, Ustel fonksiyon metot, SRLW

denklemi, (1+1) boyutlu sa¢ilma terimli uzun dalga denklemi, Yar1
analitik metotlar, Seri ¢dziim, Adomian ayrisim metot, Homotopi

analiz metot, Homotopi perturbasyon metot.



SUMMARY
Periodic Wave Solutions of Some Nonlinear Partial Differential Equations

This study is constructed in seven chapters.

In chapter one, some fundamental definitions are given.

In chapter two, it is made a historical analyze of some methods to obtain periodic
wave solutions of nonlinear partial differential equations. All of these methods are based
on finding balance term with balancing of the highest order linear and nonlinear term. So,
these methods can be only applied to nonlinear partial differential equation. Moreover,
these methods convert a nonlinear partial differential equation to an ordinary differential
equation. Therefore, solution can be obtained easily.

In chapter three, it is obtained periodic solutions of some nonlinear partial
differential equations by using one of the methods whose analysis is made in chapter two.

In chapter four, it is made analyze of some semi analytical methods which are used
to solve linear and nonlinear equations.

In chapter five, it is obtained series solutions for equations which are considered in
third chapter by using semi analytical methods whose analysis are made in chapter four.

In chapter six, it is discussed numerical results of series solutions which are obtained
in chapter five.

In chapter seven, it is made a generalized assessment by supporting results which are

obtained in this study with some studies in literature.
Keywords: Solitary waves, Solitons, Jacobi elliptic function, Balance term, Analytical
solution, Periodic solution, Tanh method, Jacobi elliptic function method,

(%) -expansion method, Exp-function method, SRLW equation, (1+1)

dimensional dispersive long wave equation, Semi analytical methods, Series
solution, Adomian decomposition method, Homotopy analysis method,

Homotopy perturbation method.
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1. GIRIS

I¢inde yasadigimiz diinyada hayatimizi etkileyen ve yasamimiza yon veren birgok
olay dalga kavrami ile aciklanir. Deprem esnasinda yeryiiziindeki hareketler ve bu
hareketlenme ile okyanuslarda meydana gelen biiyiik su dalgalar1 (tusunami), radyo,
televizyon ve cep telefonlart gibi hayatimizi kolaylastiran elektronik cihazlarin dogasinda
bulunan elektromanyetik dalgalar, insanlar ve diger canlilar ile iletisim kurmak i¢in var
olan ses dalgalar1 gibi dalgalar 6rnek verilebilir. Yukarida bahsedilen olaylarin hepsinin
matematiksel modellemesi diferensiyel denklemler ile agiklanabilir. Bu diferensiyel
denklemlerin ¢ozlimleri, modellemesi yapilan olaylarin dogas1 hakkinda insanlara ¢ok
biiylik katkilar saglar. Bu yiizden diferensiyel denklemlerin ¢oziimlerine olan ilgi hicbir
zaman azalmamustir. Bu ilgi ile birlikte diferensiyel denklemlerin ¢éziimlerinde kullanilan
bir¢ok teknik ve metot gelistirilmistir.

Dalga kavrami oldukg¢a soyut bir kavram olarak karsimiza ¢ikar. Su ylizeyine
bakilirken, aslinda su dalgasi olarak adlandirilip goriilen olay, su yiizeyinin yeni bir diizene
gecmesi olarak tarif edilebilir. Bir cisim veya ortamdaki sarsintiya karsilik gelen olay
dalga olarak adlandirilabilir. Su dalgasi goézlemlendigi zaman, su yiizeyinin yeniden
diizenlendigi goriilebilir. Eger su olmasa dalgada olmayacaktir. Sarmal yay olmasa,
tizerinde ilerleyen bir dalga olmayacaktir. Ses dalgalarmin hava icerisinde bir noktadan
diger bir noktaya ilerlemesi basing degisimi sonucunda ortaya c¢ikar. Bu nedenle, bir
dalgaya sarsintinin hareketi olarak bakilabilir. Sarsintinin hareketi (yani dalganin kendisi
ya da ortamin durumu), pargaciklarin hareketi ile karigtirllmamalidir. Bir havuza bir ¢akil
tagi atildiginda cakil taginin olusturdugu sarsinti kiigiik su dalgalar1 meydana getirir. Bu
dalgalar disartya dogru hareket ederek havuzun kenarinda son bulur. Eger sarsintinin
yakininda yiizen bir yapragin hareketi dikkatlice izlenirse, onun ilk konumu etrafinda
asagi-yukar1 hareket ettigi, fakat sarsintt kaynagindan asla uzaklasmadigi veya ona
yaklagmadig1 izlenebilir. Yani, su dalgalar1 (ya da sarsint1) bir yerden baska bir yere
hareket ederken su onunla birlikte siiriiklenmez.

Dalga olaymin agiklanmasinda kullanilan matematiksel ifadelerin hepsi biitlin
dalgalarda ortaktir. Dalgalarin tanimlanmasinda {i¢ fiziksel biiylikliik 6nemli rol oynar.
Bunlar dalga boyu, frekans ve dalganin hizidir. Bir dalga boyu, dalga lizerinde 6zdes

olarak davranan herhangi iki nokta arasmndaki minimum uzakliktir. Ornegin, su



dalgalarinda dalga boyu, komsu tepeler ya da komsu cukurlar arasindaki uzakliktir.
Dogadaki olaylarin ¢ogu periyodiktir. Boyle periyodik dalgalarin frekansi, sarsintinin
kendini tekrarlama hizidir. Her dalga i¢cinde bulundugu ortamin 6zelliklerine bagl olarak
ozel bir hizla ilerler ya da yayilir. Ornegin, ses dalgalar havada 20°C de 344 m/s hiz ile
yayilir, halbuki katilarin ¢ogunda 344 m/s den daha biiyiik hizla yayilmaktadir. Yayilmak
icin bir ortama ihtiyagc duymayan bir dalga elektromanyetik dalgalardir. Bu dalgalar

boslukta 3x10° m/s biiyiikliigiinde bir hiz ile yayilirlar.

Sekil 1. Gerilmis bir ip lizerinde ilerleyen enine dalga

Dalga hareketini gostermenin bir yolu Sekil I de goriildiigii gibi; gerilmis ve bir ucu
bir yere sabitlenmis uzun bir ipin diger ucunu ani olarak hareket ettirmektir. Bu durumda
tek bir dalga atmasi meydana gelir ve belli bir hiz ile saga dogru hareket eder. Bu tip
sarsintiya ilerleyen dalga denir. Dalga atmasi ip boyunca ilerlerken sarsilan ipin her
parcasi dalga hareketine dik dogrultuda titresir. Ortamin sarsilan pargaciklari, dalga hizina
dik olarak hareket ettiginde, bu tip ilerleyen dalgaya enine dalga denir. Dalgalarin baska
bir tipine ise boyuna dalgalar denir. Bu dalgalarda ortamin parcaciklari, dalganin hareket

dogrultusuna paralel bir dogrultuda yer degistirme yapar.



»
3] A
Sekil 2. Bir boyutta dalga atmasinin saga dogru v hizi ile ilerlemesi (a) ¢ =0 da atmanin ifadesi (b)

'yl X

t stire sonra sekil degismez ve yer degistirme f (x - vt) ile verilir

Sekil 2 de goriildiigii gibi gerilmis bir ipin ilizerinde sabit v hiz1 ile saga dogru
ilerleyen bir dalga géz Oniline alindiginda, atma x ekseni boyunca hareket eder ve ipin

enine yer degistirmesi y koordinati ile dlgiiliir. Sekil 2a da # =0 aninda atmanin konumu
ve sekli gosterilmektedir. Bu anda, atmanin sekli ne olursa olsun y = f (x) ifadesi ile

temsil edilir. Yani y, x in tanimli bir fonksiyonudur. Maksimum yer degistirme A=y, ,

dalganin genligi adini alir. Dalga atmasinin hizi v oldugundan; ¢ =0 anindan herhangi bir
t zamanina kadar saga dogru v¢ uzunlugunda yol alir (Sekil 2b).
Dalga atmasinin sekli zamanla degismez ise, orijini O da olan durgun bir referans

sisteminde Ol¢iilen yer degistirme, biitiin zamanlar i¢in y ile temsil edilir. Yani,
yv=f (x —vt)
olur. Benzer sekilde, dalga atmasi sola dogru ilerler ise, yer degistirme
y=f (x+ vt)
seklinde yazilir. Bazen dalga fonksiyonu adi verilen y yer degistirmesi x ve ¢ gibi iki
degiskene baglidir. Bu nedenle ¢ogu kez y(x,t) seklinde yazilir ve “y, x ile ¢ nin

fonksiyonu” seklinde okunur [1].

Bir kismi diferensiyel denklemde bulunan bagimli u degiskeni, bir dalganin su
ylizeyinden itibaren yiiksekligini veya bir elektromanyetik dalganin boyu gibi fiziksel bir
nicelige karsilik geldigi zaman bagimli u degiskeninin Ozelliklerini veya iiretimini
calismak olduk¢a onemlidir. Bu durum, evulasyon veya dalga denklemlerinin analitik
olarak ¢oziilmesi i¢in metotlarin ¢alisilmasina yol agmistir. Buradaki amag¢ hareket eden
dalga c¢oziimlerini bulmaktir. Eger ¢oziimler liretim esnasinda sekillerini degistirmiyorlar

ise bu dalgalara solitary dalgalar denir.



Solitary dalgalar ilk olarak John Scott Russell tarafindan 1834 yilinda
gozlemlenmistir. Russell, Edinburg-Glasgow kanalinda dalganin seklinde herhangi bir
degisiklik olmaksizin yavas bir sekilde hareket eden suyun cikisin1 goézlemlemistir.
“Harika dalga aktarimi” olarak nitelendirdigi bu su c¢ikisini Russell su sekilde
anlatmaktadir: “Ben ¢ift beygir giiciiyle giden bir botun, dar bir kanaldan gegerken
hareketini gdzlemliyordum. Bot aniden durunca kanalda hareketli olan su kiitlesinin botun
uc kisminin etrafinda biriktigini gérdiim. Daha sonra bu su kiitlesi arkaya dogru yayildi.
Biiyiik bir hizla 6ne dogru tek basina bir su dalgasinin meydana geldigini fark ettim. Bu
yuvarlanmig su kiitlesinin hizinin azalmadan ve formunu degistirmeden kanal boyunca
ilerleyisine devam ettigini gordiim. Onu at sirtinda takip ettim. Ona yetistigim zaman saatte
yaklasik 8-9 mil hizla ilerledigini gordiim. Onu 1-2 mil takip ettikten sonra kanalin
doniisiinde kaybettim. Bdylece 1834’iin Agustos aymda Translasyon Dalgast olarak
adlandirdigim ilk goriisiimii tanitma sansim oldu” [2]. Dikkate deger bu kesif solitary
dalgalar1 caligmak ve fiziksel laboratuar deneylerini yapmak i¢in Russell’i motive etmistir.

Russell, deneysel olarak

=g (h + a)
iliskisini ortaya ¢ikarmistir. Burada Sekil 3 de goriildiigii gibi ¢ solitary dalganin hizi, a
su ylizeyi lizerinde dalganin genligi, # sonlu bir derinli§i ve g yercekimi ivmesini
gostermektedir. Solitary dalgalar bundan dolay1 yercekimi dalgalari olarak da adlandirilir.

1
uz,t)
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Sekil 3. Bir solitary dalga

Solitary dalgalarin tarihi 1844 yilinda John Scott Russell tarafindan yapilan deney ve
gozlemlerin detayli bir sekilde rapor edilmesi ile baslar. Baslangigta John Scott Russell’in
calismalar1 bazi celiskiler tasisa da 1870 yilinda Boussinesq ve Rayleigh tarafindan yapilan
teorik calisma ile Korteweg ve de Vries tarafindan 1895 yilinda yayinlanan makale
Russell’in ¢aligmalarini dogrulamistir. 1895 yilinda Diederik Johannes Korteweg ve

doktora 6grencisi Gustav de Vries, KdV denklemi olarak bilinen ve solitary dalgalarin
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varhiginda sig su ylizeyinin yiiksekligini modellemek i¢in lineer olmayan bir kismi
diferensiyel denklemini tiiretmislerdir. Ortaya atilan bu KdV denklemi daha sonra birgok
fiziksel olayin agiklanmasinda kullanilmistir. En basit bir bicimde tanimlanan KdV
denklemi

u,+6uu +u =0,
seklinde yazilabilir. Burada wu_ terimi non-lineerligi ve u__ terimi ise lineer dagilimi

temsil eder. KdV denklemi fizik ve miihendisligin pek ¢ok dalinda zayif bir sekilde lineer

olmayan uzun dalgalarin tarifi i¢in bir paradigma olarak yaygin bir sekilde bilinir. Bu

denklem pek ¢ok sivi akist durumu i¢in uygun bir model olarak kullanilir. Burada; u (x, t)

dalga genligini tanimlayan uygun alan degiskenini, ¢ zamani, x ise dalganin yayilim

yoniindeki uzay koordinatin1 gostermektedir. KAV denklemi
u (x,t) = aSech’ (}/(x— Vt)) , V=2a=4y’
seklinde solitary dalga ¢oziimlerinin ailesi tarafindan karakterize edilir. Burada y dalga

sayisini, V' dalganin hizini, @ dalganin genligini gostermektedir.

1960 yillarina kadar solitary dalgalar gereken ilgiyi géormemistir. Ancak 1965 yilinda
Zabusky ve Kruskal [3] solitary dalgalarin birbirleriyle etkilesimini incelemislerdir.
Zabusky ve Kruskal, KdV denklemi i¢in yaptiklart sayisal ¢aligmalar ve bu denklemin
integrallenebilecegini gdstermeleri ile solitary dalgalara olan ilgiyi tekrar arttirmiglardir.
Aym y1l igerisinde Zabusky ve Kruskal, solitary dalgalarin birbirleriyle etkilesim i¢inde
oldugunu kesfetmislerdir. Bunlara ilaveten, seklini ve genligini muhafaza eden bu dalgalar
bu etkilesimden ortaya c¢iktigi gozlemlenmistir. Kimliklerini koruyan ve karakterlerini
kiiciik parcalarina aktarabilen solitary dalgalarin kesfi, Zabusky ve Kruskal’1 bu solitary
dalgalara solitonlar demek i¢in cesaretlendirmistir. Bu bilim adamlari, solitonlar
kavraminin dogusuna damgalarint vurmuslardir. Ayni zamanda Schrodinger denklemi gibi
lineer olmayan dalga denklemleri ile birlikte soliton c¢oziimler bu alanda yapilan
caligmalarda 6nemli bir rol oynamustir. Solitonlar ve integrallenebilir sistemlerin modern
teorisi matematigin biiylik bir alan1 olma yolunda gelismektedir. Ayrica soliton teorisi [4,5]

pek cok fiziksel alanlarda da uygulama sahasina sahiptir.
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Sekil 4. iki soliton etkilesimi

Sekil 4’ te goriildiigii gibi ¢carpigma esnasinda sekillerini koruyan solitary dalgalara
solitonlar denir. Solitary dalgalar ve solitonlar {iretim ve lineer olmayanlik arasinda kritik
bir dengeden dolay1 ortaya ¢ikmustir. Soliton kavrami bilimin pek ¢ok alaninda bir gergek
olmadan Once dar anlamda lineer olmayanlik ¢er¢evesinde ortaya ¢ikmistir. Arastirmacilar,
soliton kavramini diinya ¢apinda bilimsel alanin degisik dallarina yaymislardir. Soliton
kavrami plazma fizigi, astrofizik, akiskanlar dinamigi gibi bilimin degisik alanlarindaki
roliinden dolay1 ¢caligsmalarin biiyiik bir kismin1 etkilemistir.

Diger taraftan, bir soliton asagidaki 6zellikleri tagiyan bir lineer olmayan kismi diferensiyel

denklemin bir ¢6zlimii olarak tanimlanabilir.

i ) Coziim, siirekli bir dalga formunda olmalidir.

ii ) Coziim sinirlandirilir, yani; KdV denkleminde elde edilen solitonlar gibi ¢6ziim
tistel olarak sifira dogru bozulur veya Sine-Gordon denkleminde verilen solitonlar gibi
¢Oziim sonsuzda bir sabite yakinsar.

il ) Soliton, karakterini koruyan diger solitonlar ile i¢ etkilesim i¢inde bulunur.

KdV denklemi ve diger benzer denklemlerin tek soliton ¢oziimii genellikle tek dalga

olarak kullanilir, eger birden fazla soliton ¢6ziim varsa solitonlar olarak adlandirilir. Diger

bir ifade ile bir soliton diger bir solitondan sonsuz olarak ayriliyorsa bir tek dalgadir.
Ayrica, KdV denkleminden baska denklemler igin tek dalga ¢oziimii sec’” fonksiyonu
olmayabilir fakat seck veya tan™' (e"") olabilir. Soliton kavramina 1960 yillarinda giris

yapilmasina ragmen solitonlarin bilimsel arastirmalar1 19. yiizyilda John Scott Russell’in

Edinburg kanalinda solitary dalgalar1 kesfi ile baglamigtir. Scott Russell’in zamaninda



solitary dalgalarin bu tiir bir varlig1 hakkinda bir¢ok tartisma vardi. Fakat giiniimiizde pek
cok lineer olmayan diferensiyel denklemlerin soliton ¢oziimlere sahip oldugu bilinir.

Son zamanlarda soliton kavrami ¢ok yaygin olarak kullanilmaktadir. Hirota [6] bilineer
forma indirgeyerek evulasyon denklemlerinin N -soliton ¢oziimlerini olusturmustur.
Bilineer formulasyonu Hirota tarafindan ortaya atilmis ve bu formulasyon lineer olmayan
denklemlerin calisilmasinda 6nemli a¢ilimlar saglamistir. Nimmo ve Freeman [7], N -
soliton c¢oziimlerinin formulasyonuna alternatif olarak N -fonksiyonlarin Wronskian
determinantina girig yapmislardir.

Bu tezde, baz1 lineer olmayan kismi diferensiyel denklemlerin periyodik dalga
¢Oziimlerini elde etmek icin kullanilan ve literatiirde var olan analitik metotlarin tarihsel
olarak analizi yapilmis olup bu metotlardan biri kullanilarak simetrik diizenlenmis uzun
dalga (symmetric regularized long wave) denklemi (SRLW) [8] ve (1+1) boyutlu sagilma
terimli (dispersive) uzun dalga denkleminin [9] hareket eden dalga ¢oziimleri elde edilmis
ve bu ¢oziimler icerisinde periyodik olan ¢éziimler ayrica belirtilmistir. Daha sonra kismi
diferensiyel denklemlerin sayisal irdelenmesinde kullanilan birkac yar1 analitik metotlarin
analizi yapilarak SRLW denklemi ve (1+1) boyutlu sa¢ilma terimli uzun dalga denklemi
icin baz1 sayisal sonuglar alinmistir.
=0, (1.1)

u,+u, +uu , +uu, +u

seklinde tanimlanan SRLW denklemi, zayif bir sekilde lineer olmayan iyon-akustik
dalgalar1 ve uzay yiik (space-charge) dalgalarim1 tanimlamak i¢in kullanilir [8]. Bu
denklem x ve ¢ ye gore simetriktir ve ayni zamanda matematiksel fizigin diger lineer
olmayan problemlerinde ortaya ¢ikar [10,11]. Sayisal arastirmalar bu denklemin solitary
dalgalariin birbirleri ile etkilesiminin elastik olmadigini gosterir [12]. Buna gére SRLW
denkleminin solitary dalgalar1 soliton degildir. Son zamanlarda genellestirilmis SRLW
denklemlerinin yoriinge kararlilik ve kararsizlig tartisitlmistir [13]. Bo-ling [14], SRLW
denklemlerinin bir sinifinin, periyodik baslangi¢c deger problemi i¢in spektral metotlari
sunmustur. Jia-dong [15], genellestirilmis SRLW ve SRLW denkleminin ¢oziimii i¢in yar1
spektral collocation metodunu sunmustur. Bo-ling [16], ¢ok boyutlu SRLW denklemleri
icin blow-up ve ¢oziimiin global varligimi calismistir. Ya-dong ve Zhi-shen [17], ¢ok
boyutlarda genellestirilmis SRLW denklemlerinin periyodik baslangi¢c deger problemi igin

Fourier spektral metotlari incelemislerdir. Ayrica



u,+uu_+v =0

1 , (1.2)
v, tuv+uy + gum =0

olarak tanimlanan (1+1) boyutlu sagilma terimli uzun dalga denklemi akiskanlar
dinamiginin temel denklemlerinden biridir. Burada v—1 su dalgasinin yiiksekligini, u ise
x ekseni boyunca suyun ylizey hizim1 gostermektedir. Bu denklem kiy1 kenarlarindaki

dalgalar1 modellemek i¢in kullanilir [18].

1.1. Temel Tanimlar

Tamm 1. 1 Bir bilinmeyen fonksiyon ve bu fonksiyonun mubhtelif tiirevlerini iceren
matematiksel denklemlere diferensiyel denklemler denir. Bir denklemde belirli bir
degiskene gore tiirev alintyorsa, o degiskene bagimsiz degisken, denklemde tiirevi alinan
degiskene ise bagimli degisken denir.

Bir tek bagimsiz degisken iceren diferensiyel denkleme adi diferensiyel denklem

denir ve genel olarak n. mertebeden adi bir diferensiyel denklem;

Flx, v, 0" v)=0, (1.3)
seklinde gosterilir.
Iki veya daha fazla bagimsiz degisken ihtiva eden diferensiyel denkleme kismi

diferensiyel denklem denir ve n. mertebeden bir kismi diferensiyel denklem

(1.4)

X, 9taua_a_9_9 ’ 5 5 LEERE)
4 ox oy ot ox* oxdy oy’ ot ox"

F[ ou ou ou O’u O'u O'u Ou 8"u)=0’
olarak yazilir.

Tamm 1. 2 Bir diferensiyel denklem lineer veya lineer olmayan olmak iizere iki
sekilde siniflandirilir. Eger bir diferensiyel denklemde bagimli degisken ve tiirevlerinin
katsayilar1 bagimsiz degisken ihtiva ediyor ise bu diferensiyel denkleme lineer diferensiyel
denklem denir. Eger bir diferensiyel denklemde bagimli degisken kendisi veya tiirevleri ile
carpim ya da boliim durumunda ise veya bagimh degisken iistel, trigonometrik ya da
logaritmik olarak bulunuyor ise veya bagimli degiskenin herhangi bir tiirevinin derecesi iki

ve ikiden biiyiik ise bu tiir diferensiyel denklemlere /ineer olmayan diferensiyel denklem

denir.



Tamm 1. 3 Bir a <x<b araliginda tanimh bir @ fonksiyonu a < x < b araliginda

bulunan her x i¢in tanimli ve ilk n. mertebeden tiireve sahip fonksiyonu
F (x,®(x), @' (x),.... 0" ) =0, (1.5)

ise @ fonksiyonuna (1.3) denkleminin ¢oziimiidiir denir. Bir adi diferensiyel denklemin
genel ¢Oziimil, diferensiyel denklemin mertebesi kadar sabit igerir. Cozliim
fonksiyonundaki sabitlere verilen her bir degere karsilik bulunan ¢6ziime de dzel ¢oziim
denir. Bir adi diferensiyel denklemin ¢dziimii egri ailesine karsilik gelmesine karsin, bir
kismi diferensiyel denklemin ¢6ziimii ylizey ailesine karsilik gelir.

Ozel olarak, ikinci mertebeden bir diferensiyel denklem goz éniine alindiginda bu
tip denklemlerin ¢oziimleri iki sabit icerdiginden bu sabitleri bulmak i¢in iki ek sart
verilmelidir. Eger sartlar; bagimli degisken ve tiirevleri lizerinde bagimsiz degiskenin ayni
degeri icin verilen sartlar ise baslangi¢ sartlar:, bagimsiz degiskenin farkli degerleri igin
verilen sartlar seklinde ise simir sartlar: ile tanimlanir. Bir diferensiyel denklemin
baslangi¢c sartlar1 ile incelenmesine baslangic deger problemi, smir sartlar1 ile

incelenmesine sinir deger problemi denir.

Hxo) = o5 ¥ (x0) =21 2 ) = 3 (1.6)
(1.3) ve (1.6) ile birlikte verilen bir problem baslangi¢ deger veya Cauchy Problemi olarak
bilinir. Diger taraftan

)= o, vx)=y1sesv(x,) =2, (1.7)
(1.3) ve (1.7) ile birlikte verilen denkleme sinir deger problemi denir.

Diferensiyel denklem bir fiziksel olaymm modeli oldugundan kolaylik olmasi
acisindan genellikle ikinci mertebeden sabit katsayili bir kismi diferensiyel denklem
almarak smiflandirmaya gidilmistir, ikinci mertebeden bir kismi diferensiyel denklemin
genel hali;

au, +bu, +cu, +du +eu + fu+g=0, (1.8)

seklinde yazilabilir. Burada a,b,c,d,e.f ve g sabitler ve A = b* —4ac olmak iizere;

A =0 ise denklem Parabolik (Difiizyon Denklemi),

A> 0 ise denklem Hiperbolik (Dalga Denklemi),

A <0 ise denklem Eliptik (Laplace Denklemi),
olarak siniflandirilmaktadir. Parabolik tipteki bir kismi diferensiyel denkleme 6rnek olarak;
difiizyon (1s1) denklemi, hiperbolik tipteki bir kismi diferensiyel denklem; dalga denklemi,

eliptik tipteki bir kismi diferensiyel denkleme ise Laplace denklemi verilebilir.
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u, +c’u =0 Difiizyon Denklemi,
u, —c’u_ =0 Dalga Denklemi,

u, +u, =0 Laplace Denklemi,

XX
Ornegin;
B o'u Ou B

Au=—+—=
ox> oy’

0, (1.9)

denklemini géz Oniine alalim. (1.9) ile verilen Laplace denkleminin ¢dziimleri harmonik

fonksiyonlardir. Yukarida goz oniine alinan (1.9) denklemi

u(x,O):f(x) ve ux(x,O):g(x), (1.10)
baslangi¢ sartlari ile verilmis ise probleme Cauchy problemi,
u(O,t):p(t) ve u(ﬁ,t)zq(t), (1.11)

(1.9) denklemi (1.11) sartlar1 ile verildiginde, probleme Dirichlet Problemi, eger ¢dziim
bolgesinin disinda dis normali boyunca ¢6z{im araniyorsa yani,

ou

— = fl¢), 1.12
~ =/ (1.12)
sart1 ile verilen (1.9) denklemine ise Neumann Problemi denir.

Tammm 1.4 f: Ac R — R olsun. k& pozitif bir reel say1 olmak lizere Vx € 4 i¢in
f(xtk)= 1 (x),
esitligi saglantyor ise f fonksiyonuna periyodiktir denir ve k ya da f fonksiyonunun
periyodudur denir.

Tammm 1. 5 Kompleks diizlemde iki yonde periyodik olan fonksiyonlara eliptik
fonksiyon denir. Eliptik fonksiyon, eliptik integrallerin ters fonksiyonlar1 olarak da

tanimlanabilir. w herhangi bir kompleks say1 olmak iizere kompleks diizlemdeki biitiin z
sayilari i¢in f(z+w)= f(z) olacak sekilde f fonksiyonuna periyodiktir denir ve w ise
f fonksiyonunun periyodu olarak adlandirilir. @ ve b iki esas periyot olmak {izere

w=ma+nb olarak yazilabilir. Boylece her eliptik fonksiyon bir ¢ift esas periyoda

sahiptir.
Tamm 1. 6 Jakobi eliptik fonksiyonlar eliptik fonksiyonlarin standart formudur. Bu

fonksiyonlar, k eliptik modiil olmak tizere cn(u,k), dn(u,k), sn(u,k) olacak sekilde ii¢

temel fonksiyon ile gosterilir. Bu ii¢ temel fonksiyon
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@
u:F(go,k):IL, 0<k? <,
0

1-k’sin’t
seklinde verilen birinci tip eliptik integralin versiyonundan ortaya ¢ikar. Burada k& = modu
ve ¢ =am(u,k)=am(u) olmak iizere Jakobi genliktir ve ayrica ¢ = F~' (u,k)=am(u,k)
ile tamimlanir. Bu agiklamalardan sonra
sin ((p) =sin (am (u,k)) =sn (u,k) ,

cos((p) = cos(am(u, k)) =cn (u,k) ,

\/l —k*sin’ ((o) = \/1 —k*sin’ (am(u,k)) = dn(u,k),

esitlikleri yazilabilir. Burada £ — 0 ve k — 1 iken sirasi ile bu fonksiyonlar

sn(u,O):sin(u) sn(u,l)ztanh(u),
cn(u,O)zcos(u) cn(u,l)zsech(u),
dn(u,O):l dn(u,1)=sech(u),

olarak tanimlanir. Ayrica Jakobi eliptik fonksiyonlar iizerinde tiirev

() =en()an(a),

d

du
~(dn()) = ~Ksn () en(u),

du
(cn(u)) = —sn(u)dn(u),

d
esitlikleri ile agiklanir. Jakobi eliptik fonksiyonlarin bu Ozelliklerinin yani sira bu
fonksiyonlar arasinda

sn’ (u) +cn’ (u) =1,

k*sn’ (u) + dn? (u) =1,
bagintilar1 vardir.

Tanmm 1. 7 Lineer olmayan herhangi bir adi diferensiyel denklemde en yiiksek

du

mertebeden lineer olan terim —g ve en yiksek mertebeden lineer olmayan terim
dg

7 N
u? [Z;;j ile verilsin. M dengeleme terimi olmak tizere M +¢ =Mp+s(M +r) esitligi

yazilabilir.
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Tanmm 1. 8 X ve Y iki uzay ve [/ {t|0£t£1} araliginda tanimli olsun. Eger
@: X xI —Y siirekli bir doniisiimii Vx € X icin ¢(x,0) = f(x) ve ¢(x,1) =g(x) oluyor

ise f,g:X —Y doniisimlerine homotopiktirler denir ve f =g ile gosterilir. ¢: f =g

ise ¢, f’den g ’ye bir homotopi kurar seklinde ifade edilir.
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2. LINEER OLMAYAN KISMi DIFERENSIYEL DENKLEMLERIN
PERIYODIiK DALGA COZUMLERI iCiIN BAZI ANALITiK METOTLAR

Lineer olmayan evulasyon denklemleri ve dalga denklemleri birinci veya ikinci
mertebeden zamana bagl tiirevler iceren kismi diferensiyel denklemlerdir. Lineer olmayan
bu denklemlerin analitik veya sayisal ¢oziimlerini bulmak i¢in baz1 metotlar son yillarda
yogun bir sekilde calisilmaktadir. Karmagsik ve sikict cebirsel hesaplamalarda
arastirmacilara kolaylik saglayan Maple veya Mathematica gibi sembolik bilgisayar
programlarinin kullanilmasiyla lineer olmayan kismi diferensiyel denklemlerin analitik
cOziimlerini elde etmek giderek ilgi cekici hale gelmistir. Lineer olmayan kismi
diferensiyel denklemlerin analitik ¢oziimlerini bulmak soliton teorisinde [4] biiylik bir
oneme sahiptir. Ciinkii bu denklemler; miihendislik, kimya, biyoloji, mekanik ve fizikte
ortaya c¢ikan karmasik fiziksel olaylarin matematiksel modelleridir. Bu fiziksel modellerin
mekanizmasin1 daha iyi anlamak i¢in fizik¢ilere ve miihendislere yardimer olmak veya
fiziksel problemlere ve uygulamalarina daha iyi bilgi saglamak i¢in bircok etkili metot
gelistirilmistir.

Bu boliimde kismi diferensiyel denklemlerin periyodik dalga ¢oziimlerinin elde

edilmesinde kullanilan bazi analitik metotlarin analizleri verilecektir.

2.1. Analitik Metotlarin Analizi

Fiziksel sistemlerin matematiksel modellemesi genellikle lineer olmayan evulasyon
denklemleri ile agiklanir. Bu gibi denklemlerin analitik ¢dziimleri biiylik bir 6neme
sahiptir. Ciinkli bir denklemin analitik ¢6ziimii o denklemin yapis1 ve karakteri hakkinda
bilgi verir. Ozellikle kismi diferensiyel denklemlerin hareket eden dalga c¢oziimleri ve
periyodik dalga ¢oOzlimlerine olan ilgi son zamanlarda giderek artmaktadir. Bu tip
¢cOziimleri elde etmek ic¢in birka¢ standart metot vardir. Bu metotlardan bazilarini sdyle
siralayabiliriz: Hirota’nin bagimli degisken metodu [19], Backlund doniisiimii [20], Cole-
hopf doniisiimii [21], genellestirilmis Miura donlisimii [22], ters sagilma metodu [23],
darboux doniisiimii [24], painleve agilim metodu [25], homojen balans metodu [26],

benzerlik indirgeme metodu [27], sine—cosine metodu [28].



Ayrica pek ¢ok lineer olmayan evulasyon denklemlerin hareket eden dalga ¢oziimleri
tanh fonksiyon terimleri ile ifade edilebilir [29,30]. Tanh fonksiyon terimleri orijinal

olarak 1990 ve 1991 yillarinda bir ad hoc temeli iizerine kullanildi [31,32].

2.1.1. Tanh Metot

1992 yilinda ilk olarak Malfliet [33] tarafindan tanh metot formiilize edilmis olup bu
metot, 1s1 yayilimi, difiizyon reaksiyonu, plazma fizigi, tiirbiilans teorisi, okyanus dinamigi
ve biyofizik gibi doga olaylarim1 tanimlayan kismi diferensiyel denklemlerin analitik
¢cozlimlerini bulmak i¢in 6dnemli bir rol oynar. Bu teknik ile elde edilen ¢oziimler kapali
tanh fonksiyonu formundadir. Malfliet bu metot ile

H(u,ut,ux,uxx,...):O, (2.1)
seklinde verilen bir kismi diferensiyel denklemin hareket eden dalga ¢éziimiinii bulmak
icin & =c(x—vt) gibi bir koordinat géz Oniine alarak bu koordinata gore (2.1) denklemini
adi diferensiyel denkleme doniistiirerek yeniden yazmistir. Burada v dalga hizin1 ve ¢ ise
L=c"' genislikli duragan bir dalgay: ifade eder. Genelligi bozmaksizin ¢ >0 olarak
tanimlanir. Adi diferensiyel denklem elde edildikten sonra Y =tanh(§) gibi yeni bir

bagimsiz degiskene giris yapilir. Bu yeni degiskene gore tiirevler

< (-r)L,
dé dY

d’ d &’
7 —>(1—Y2)(—2Yd—y+(l—Y2)dY2j,

2

d d d? d d? d
d—g—>—2Y(1—Y2)(—2Yd—y+(1—yz)%}(1—%)2[—2d—Y—2YF+(1—Y2)W}

seklinde yazilabilir, ayrica daha yiiksek mertebeden tiirevler benzer sekilde hesaplanabilir.

Bu tiirevler ile birlikte (2.1) denklemi i¢in aranan
M
u(x,t)=> a,¥", (2.2)
m=0

coziimii, elde edilen adi diferensiyel denklemde yerlerine yazilmasiyla Y"

(m =0,1,2,....M ) katsayilar1 yok edilerek cebirsel denklem sistemi bulunur. Bulunan bu

cebirsel denklem sisteminde a,, (m =0,1,2,....M ) katsayilar1 elde edilir ve bu katsayilar
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(2.2) serisinde yerlerine yazilarak (2.1) denkleminin dalga ¢6ziimii bulunmus olur. Burada
M en yiiksek mertebeden lineer olan terim ile lineer olmayan terimlerin dengelenmesiyle
bulunabilen parametredir. Normal olarak analitik ¢6ziimiin elde edilebilmesi i¢in M

parametresinin pozitif bir aralik igerisinde olmasi beklenir. Ancak M parametresinin

negatif deger aldigt bir Srnek bulunabilir. Ornek olarak (-1<Y <1) durumunda
Y — Otekilliginden kaginmak igin (2.2) serisi degistirilmelidir. Bunun igin (2.2) serisi
M -1
[Zamw’j , M =-M(>0), (2.3)
m=0
seklinde yazilir. [34-36] c¢alismalarinda bu metot kullanarak bazi kismi diferensiyel

denklemlerin periyodik dalga ¢ézlimleri elde edilmistir.

2.1.2. Otomatik Tanh Metot

1996 yilinda Parkes ve Duffy [37], Malfliet tarafindan sunulan tanh metot {izerine
otomatik tanh fonksiyon metodunu gelistirmislerdir. Malfliet tarafindan 1992 yilinda
sunulan fanh metot her ne kadar diger analitik metotlardan daha acik ve dogrudan ¢oziime
ulagsmay1 sagliyor olsa bile el ile yapilan islemlerin sikicilig1 ve metodun sadece ¢oziimii
tanh formunda olan denklemlere uygulanabilmesi bu metodun bir ¢ikmazi olarak
goriilebilir. 1996 yilinda Parkes ve Duffy tanh metot ile birlikte el ile yapilan cebirsel
islemlerin sikiciligin1 ve hesaplamadaki zorlugu ortadan kaldirmak icin Mathematica
bilgisayar programini kullanarak otomatik tanh fonksiyon metodu gelistirmislerdir. Ornegin
metot geregi bulunmasi gereken M dengeleme teriminin negatif olmasi durumunda
yapilacak islemler hem zor hem de zaman alacagindan otomatik tanh fonksiyon metodu bu

acidan biiyiik kolaylik saglamistir.

2.1.3. Genisletilmis Tanh Metot

2000 yilinda Fan [38] tanh metot ve otomatik tanh metot lizerine calisarak
genisletilmis tanh fonksiyon metodu sunmustur. Bu metodun isleyisi Malfliet tarafindan

sunulan tanh metot ile aynidir. Ancak farkli olan tarafi tanh metot ile (2.1) denklemi i¢in
sadece Y = tanh(f) formunda hareket eden dalga ¢oziimleri elde edilir iken Fan [38] bu

metot ile
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F'=b+F?, (2.4)

Riccati diferensiyel denkleminin ¢oziimleri olarak elde edilen

{F - _J-p tanh[\/jﬂ’ b<0 ise (2.5)
F = —J=b coth[V-b&]

F:—é, b=0 ise 26)
{F:\/Z tan[\/h¢]  b>0 ise 2.7)
F=-b cot[\/gé’]

fonksiyonlari ile (2.1) denkleminin hareket eden dalga ¢6zliimlerini elde etmistir. Burada b
nin durumuna gore hareket eden dalga ¢ozlimiiniin tipi (2.5-2.7) esitliklerinde goriildiigii

gibi belirlenebilir.

2.1.4. Degistirilmis Genisletilmis Tanh Metot

2002 yilinda Elwakil ve arkadaslar1 [39] degistirilmis genisletilmis tanh fonksiyon
metodunu literatiire kazandirmiglardir. Bu metodun yukarida bahsedilen fanh
metotlarindan farkli olan tek tarafi (2.1) denkleminin ¢6ziimii i¢in (2.2) ile verilen ¢6ziim
yerine

M
u(x,t)=a,+Y aF +bF~, (2.8)
)

¢ozlimiiniin secilmesidir. Burada q,a,,b, (i =12,..M ) sabitlerdir. Bu farklilik disinda bu

metotta kullanilan Riccati denklemi ve bu denkleminin ¢6ziimleri sirasiyla (2.5-2.7)
esitliklerinde verilen ifadeler ile aynidir. Elwakil ve arkadaslari bu calisma ile diger tanh
metotlar ile elde edilemeyen yeni tam ¢oziimler elde etmislerdir. Ayrica bu metot ile (2.1)
denklemi i¢in ¢oziim olarak kabul edilen (2.8) esitliginde £~ terimi bulundugundan elde
edilen ¢oziimler singiiler ¢oziim ve blow-up davranisi gosterirler. Zhang ve arkadaglar
[40] calismalarinda degistirilmis genisletilmis tanh fonksiyon metodunu kullanarak

Konopelchenko—Dubrovsky denkleminin periyodik dalga ¢6ziimlerini elde etmistir.
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2.1.5. Genellestirilmis Genisletilmis Tanh Metot

2003 yilinda Zheng ve arkadaslar1 [41] yukarida agikladigimiz sirasiyla tanh metot,
genisletilmis tanh fonksiyon metot ve degistirilmis genisletilmis tanh fonksiyon metot
tizerine ¢aligsarak bu metotlar ile elde edilen ¢oziimleri de kapsayan daha genel ¢oziimler
ile birlikte bu metotlar ile elde edilemeyen yeni coziimler bularak genellestirilmis
genisletilmis tanh metodunu sunmuslardir. Bu metodun bahsedilen diger metotlardan fakli
olan tarafi (2.1) denklemi i¢in kabul edilen ¢6ziimiin
M; ) . . b+ F? o

u, (5) =a, +Z}{%FJ +b,F +c,F’ 'Nb+F? +d, T}’(l’] =1,2,3,...,n) (2.9)
J=

olarak secilmesidir. Bu fark disinda metodun isleyisi tamamen diger fanh metotlar1 ile

aynidir. Burada j sayist i yinci denklemi ve n ise denklemlerin sayisini gosterir.

a.b..c..d. (i=1,2,...,n; Jj =1,2,..M) ve b daha sonra belirlenebilen sabitlerdir. Gergekten,

R R

(2.9) esitliginde b,y =¢; =d[j =0, (i=1,2,...,n;j=1,2,...,Mi) almir ise 2000 yilinda Fan
[38] tarafindan sunulan genisletilmis tanh fonksiyon metot elde edilir. Eger
¢, =d; =0,(i=1,2,...,n;j=1,2,...,Ml.) almir ise 2002 yilinda Elwakil [39] tarafindan

sunulan degistirilmis genisletilmis tanh fonksiyon metot elde edilir. Gortildiigii gibi 2003
yilinda Zheng ve arkadaslar tarafindan literatiire kazandirilan genellestirilmis genisletilmis
tanh fonksiyon metot, swras1 ile genisletilmis tanh fonksiyon metot ve degistirilmis

genisletilmis tanh fonksiyon metotlarini kapsayan bir metottur.

2.1.6. Gelistirilmis Tanh Metot

2004 yilinda Chen ve Zhang [42], (2.1) denkleminin hareket eden dalga ¢6zlimlerini
elde etmek icin yukarida bahsedilen tanh metotlarinda kullanilan Riccati diferensiyel
denklemlerinden farkli olarak

d—F:A+BF+CF2, (2.10)
dg

seklinde bir Riccati diferensiyel denklemi alarak gelistirilmis tanh fonksiyon metodunu

sunmuslardir. (2.10) denkleminin ¢oziimleri olarak géz oniine alinan
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1. Durum:

A=C=1, B=0 ise F =tanz, (2.11)
2. Durum:

Az%, B=0, C:—% ise F =cothzxcschz veya F =tanhztisechz, (2.12)
3. Durum:

A:C:i%, B=0ise F=seczttanz veya F=cscztcotz, (2.13)
4. Durum:

A=1, B=0, C=-1ise F =tanhz veya F =cothz, (2.14)
5. Durum:

A=C=-1, B=0 ise F=cotz, (2.15)
6. Durum:

(exp(Bz) - A)

C=0,B#0 ise F:T, (2.16)
7. Durum:
A=B=0, C#0 ise F:—;, (2.17)
(CZ+CO)

fonksiyonlar1 ile (2.1) denkleminin hareket eden dalga ¢oziimleri yazilabilir. Bu metot ile

(2.1) denklemi i¢in aranan ¢oziim
M
u(x,t)=Y aF' (&), (2.18)
i=0

seklinde yazilir. Bu metot yardimi ile El-Wakil ve arkadaslar1 [43] ¢alismalarinda lineer
olmayan fiziksel bir model i¢in periyodik dalga ¢coziimleri elde etmislerdir.

Yukarida bahsedilen ve kismi diferensiyel denklemlerin hareket eden dalga ¢6ziimlerini ve
periyodik dalga coOziimlerini veren tanh metotlarinin yani sira aynm1 zamanda eliptik
fonksiyonlarin yardimi ile kismi diferensiyel denklemlerin periyodik dalga ¢oziimlerini
veren metotlarda vardir. Bu metotlar sirast ile 2001 yilinda Jakobi eliptik fonksiyon metot
[44], 2003 yilinda degistirilmis jakobi eliptik fonksiyon metot [45] ve 2004 yilinda
genellestirilmiy jakobi eliptik fonksiyon metot [46] olmak iizere bilim adamlar1 tarafindan
literatlire kazandirilmistir. Bu kisimda, yukarida bahsedilen eliptik fonksiyon metotlardan
sadece genellestirilmis jakobi eliptik fonksiyon metodunun analizi yapilacaktir. Diger

metotlara verilen referanslardan bakilabilir.
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2.1.7 Genellestirilmis Jakobi Eliptik Fonksiyon Metot

2004 yilinda Chen ve Zhang [46] tarafindan sunulan bu metodu a¢iklamak icin (2.1)

kismi  diferensiyel  denklemini g6z  Oniine  alalim. (2.1)  denklemine
u(x,t)=u(¢&), & =hke+wt doniisimii yapildiginda

Q'(u',u”,u"’,...)zO, (2.19)
seklinde adi diferensiyel denklem haline doniisiir. (2.1) denkleminin periyodik dalga
¢Oziimlerini bulmak icin

(F')" = A+ BF*+CF*, (2.20)
. . . C , dF . .
seklinde diferensiyel denklemi g6z oniine alinir. Burada F :d_ ve A,B,C sabitlerdir.

(2.1) diferensiyel denklemi igin
M
u(x.t)=a,+Y | aF (£)+bF " (£)]. (2.21)
i=1

formunda bir ¢oziim arandigi kabul edilir. Burada M (2.19) denkleminde en yiiksek
mertebeden lineer olan terim ile lineer olmayan terimin dengelenmesi sonucu bulunan sabit
bir sayidir. Bu ¢oziim {lizerinden gerekli tiirevler alinarak (2.19) diferensiyel denkleminde
yerine yazilir. Daha sonra elde edilen denklemde F' ve F~' terimlerinin katsayilar sifira
esitlenerek cebirsel denklem sistemi yazilir. Elde edilen cebirsel denklem sistemi ¢oziilerek

a,,a;,b, sabitleri bulunur. Bulunan bu sabitler, (2.20) eliptik diferensiyel denklemin

coziimleri olarak bilinen ve Chen ve Zhang [46] tarafindan hesaplanan

A=1

i) \B=—(1+m") , F(&)=sné,cdé (2.22)
C=m’
A=1-m’

ii) {B=2m" -1, F(§)=cn§ (2.23)
C=-m
A=m*-1

iii)yB=2-m*> , F(&)=dné (2.24)
C=-1
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vi)

Vil

Viii

B=2m"-1 . F(&)=ds¢
Cc=1
A=1-m’
B=2-m", F(f):csf
Cc=1
4=t
4
m* =2 sn
B= . F(g)=2ne
2 1+ dné
c="
4
a="
4
2_
=" 2, F(f):sn§iicn§, dne
2 i\/l—mzsnficngg
c="
4
Pl
4 F(&)= dng msné tidné Sne
B_1—2m2 () mené +iN1-m’ l+cng
2 ’ cné
C:l \/l—mzsnfidnf’
4
A=m2—1
4
m* +1 dn
B="H F()=t=
2 1+ msné
C:m2—1
4
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(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)



Xi)

Xii

Xiii)

A:
4
m’ +1 cné
B= , =
2 (é) 1+sné
2
C:l_m
4
1-m*)
o (=)
4
m*+1
B= 5 , F(f)zmcnfidné
c-_1
4
4=1
4
m* +1 sné&
B: =
2 ’ (é) dné tcené
1-m*)
(=)
4
.
4
B:E F(QE)ZL
2 Jl—m? +dné
4
cm
4

(2.31)

(2.32)

(2.33)

(2.34)

fonksiyonlarda yerlerine yazilarak (2.1) diferensiyel denklemi igin periyodik dalga

¢Oziimler elde edilebilir.

Yukarida bahsedilen eliptik fonksiyon metotlar1 {izerine ¢aligmalar yapilarak 2004

yilinda Jakobi eliptik rasyonel acilim metot [47], 2006 yilinda Weierstrass jakobi eliptik

fonksiyon agilim metot [48] literatiire kazandirilarak lineer olmayan kismi diferensiyel

denklemlerin periyodik dalga ¢oziimleri elde edilmistir. Periyodik dalga ¢oziimler elde

etmek i¢in yukarida analizleri yapilan tanh fonksiyon metotlar1 ve eliptik fonksiyon

metotlarindan farkli olarak {istel fonksiyonlar kullanilarak 2006 yilinda He [49] tarafindan

sunulan iistel fonksiyon metot, 2008 yilinda Wang ve arkadaslar1 [50] tarafindan sunulan

!’

vl acilim metot gibi metotlar lineer olmayan diferensiyel denklemlerin bilimsel
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caligmalarina biiyiik katkilar saglamistir. Bu metot iizerine caligmalar yapilarak 2010

!

yilinda Guo ve Zhou [54] tarafindan genisletilmis % actlim metot ve arkasindan Lii ve

!

arkadaglar1 [55] tarafindan genellestirilmis % acilim metot literatiire kazandirilmistir.

2.1.8. Ustel Fonksiyon Metot

He [49] tarafindan 2006 yilinda literatiire kazandirilan bu metodu agiklamak ig¢in

(2.1) ile verilen iki degiskenli lineer olmayan kismi diferensiyel denklemini géz Oniine

alalm. (2.1) denklemi u(x,7)=u(&), & =kx+wt doniisiimii ile

O'(u'u"u",...)=0, (2.35)
seklinde adi diferensiyel denklem haline doniisiir. (2.35) denkleminin ¢ézimii
d
> a, exp(ng)
u(g) == , (2.36)
> b, exp(mé)
m=-p

formunda kabul edilir. Burada c, d, p ve ¢ daha sonra belirlenebilen pozitif tamsayilardir.
a, ve b_ bilinmeyen sabitlerdir. (2.35) denkleminin ¢oziimii olarak kabul edilen (2.36)

esitligi daha agik olarak

_ a.expleé)+...+a, exp(-df) (2.37)
a, exp(p§)+ ta, exp(— q§) ’

seklinde yazilabilir. Burada p,c,d ve ¢ pozitif tam sayilar1 (2.35) denklemindeki en
yiiksek mertebeden lineer olmayan terim ile lineer terimin dengelenmesiyle belirlenebilir.
Daha sonra (2.36) ¢6ziimii ve gerekli tlirevleri (2.35) denkleminde yerlerine yazilarak
exp(£) ye bagh olan denklem elde edilir. Bu denklemde exp(&) fonksiyonunun
kuvvetlerine gore katsayilari sifira esitlenerek cebirsel denklem sistemi bulunur. Bu

cebirsel denklemin ¢oziilmesi ile a, ve b, sabitleri bulunur. Bulunan bu sabitler (2.36)
esitliginde yerlerine yazildigi zaman (2.1) denkleminin hareket eden dalga ¢ozlimleri

bulunmus olur. Elde edilen bu ¢oziimlerde 6zel olarak k& =ik, (1’2 =—1) doniisimii

yapilirsa (2.1) denkleminin periyodik dalga c¢oziimleri bulunur. Burada K keyfi bir
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parametre olarak kabul edilir. Bu metot yardimi ile periyodik dalga ¢oziimii elde edilen

caligmalara [50-52] referanslarindan ulagilabilir.

!

2.1.9 %-A(;lhm Metot

2008 yilinda ilk olarak Wang ve arkadaslar1 tarafindan sunulan metodun [53]

yukarida bahsedilen tanh metotlarindan farkli olan tarafi Riccati diferensiyel denkleminin
yerine G = G (&) olmak iizere

G"+AG"+uG=0 (2.38)
seklinde ikinci mertebeden sabit katsayili lineer bir diferensiyel denklemin

secilebilmesidir. Ayrica (2.1) denklemi i¢in (2.2) seklinde aranan ¢6ziim yerine burada

u (x,t) = iam (%)’" (2.39)

m=0

!

olacak sekilde ¢ozlim aranir. (2.39) ¢oziimii yazilirken % fonksiyonunun degeri (2.38)

denkleminin ¢6zlimiinde hesaplanan G ¢6zlim fonksiyonu yardimiyla elde edilir.
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3. LINEER OLMAYAN KISMi DIFERENSIYEL DENKLEMLERIN
PERIYODIK DALGA COZUMLERI ICiN BAZI UYGULAMALAR

Bu boéliimde, ikinci boliimde analizleri yapilan ve lineer olmayan kismi diferensiyel
denklemlerin periyodik dalga ¢oziimlerini veren metotlardan genellestirilmis jakobi eliptik
fonksiyon metodu kullanilarak SRLW denklemi ve (1+1) boyutlu sagilma terimli uzun

dalga denklemi i¢in periyodik dalga ¢oztimler elde edilecektir.

3.1. SRLW Denklemine Genellestirilmis Jakobi Eliptik Fonksiyon Metodunun

Uygulanmasi

u,+u  +uu, +uu, +u_, =0, (3.1)

seklinde tanimlanan SRLW denklemini g6z Oniine alalim. (3.1) denklemi igin
u(x,t)=u(¢&), & =hx+wt doniisimii yapildiginda (3.1) denklemi

WA+ 2u" + kwuu” + kw(u') +wiku® = 0, (3.2)
haline doniisiir. (3.2) denkleminin her iki tarafi integre edilirse

wou' + k*u' + kwuu' + kK*w'u" =0, (3.3)
olarak yazilabilir. Burada integrasyon sabiti sifir olarak alinmistir. (3.3) denkleminde en
yiiksek mertebeden lineer olan u"” terimi ile lineer olmayan uu' terimlerinin dengelenmesi
ile (2.21) esitliginde bulunmasi gereken M degeri M =2 olarak bulunur. Bdylece (3.3)

denklemi i¢in

b b
u=a0+a1F+a2F2+Fl+F—22, (3.4)

seklinde bir ¢6ziim aranabilir. Bu ¢oziimde (3.3) denkleminde bulunan gerekli tiirevler
almarak yerlerine yazildiginda ve elde edilen denklemde F,F’,F™',F~ terimlerinin
katsayilari sifira esitlendigi zaman

ak’ +a,akw+a,bkw+aw +aBk’w’ =0,

—2bkB - 24 Abk*w* =0,

—3bb,kw—6Abk*W —2bk* — bl kw—2a,b,kw—2b,w* —8Bb,k’w* =0,



~bk* — abkw— ab,kw—bw’ — Bbk’w* =0, (3.5)
2a,k” + alkw+ 2a,a,kw+ 2a,w* +8a, Bk*w’ =0,
3a,a,kw+6a,Ck’w* =0,
2a2kw+24a,Ck*w* =0,
olacak sekilde cebirsel denklem sistemi elde edilir. Bu cebirsel denklem sistemi

Mathematica bilgisayar programi yardimi ile ¢oziildiiglinde

=————- 4Bkw, a, =0 =-12Ckw, b =0
a, w K > » > ’ (3.6)

b, ==124kw, k#0,w=0,
olarak istenilen sabitler bulunmus olur. Bulunan bu sabitler (2.22)-(2.34) esitliklerinde
verilen fonksiyonlarda g6z Oniine alinarak (3. 4) esitliginde yerlerine yazildig1 zaman (3. 1)

diferensiyel denkleminin tam ¢6ziimleri asagidaki gibi yazilir.

i)4=1,B=—(1+m*) C=m

k w 1
=—— ABkw—12Ckwsn® (kx +wt) =12 Akw| ———— |. 3.7
* w k - ( x+w) (snz(kx+wt)J 3-7)
k kx+we) Y dn(kx+wt))
S Y VS Yo (] S 0 ) IR PPN KGO R (3.8)
w k dn(kx+wt) cn(kx+wt)
iiy A=1-m*>, B=2m" -1, C =—-m"
u3=—f—ﬁ—wkw—lzckwcnz(kx+wz)—12Akw vt (3.9)
w k cnz(kx+wt)
iii)A=m>-1,B=2-m*,C=-1.
u =—5—1—4Bkw—1zckwdn2(kx+wr)—12Akw S S (3.10)
! w k dnz(kx+wt) ' '
lv)A=—m2(1—m2),B=2m2—1,C=
dn(kx+wt)) kx+wi) )
S Sy YRR Y (L Gbai PO I CAa N (3.11)
w k Sn(kx+wt) dn(kx+wt)
v)A=1-m*>,B=2-m’,C =
kx+wit)Y fex+wi)Y
LS PYR e ™ o Coaulio ) ISP LGSR0 N (3.12)
w k sn(kx+wt) cn(kx+wt)
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w sn(kx+wt) ’ 1idn(kx+wt) ’
U, =————- 4Bkw—12Ckw| 12 Akw . (3.13)
w k 1idn(kx+wt) sn(kx+wt)

2
1
—12A4kw . 314
[Sn(kx+wt)iicn(kx+wt)] (3.14)

2
Uy = ————— 4Blow—12Clow - : dn(kx+wt) )
k iN1—m sn(kx+wt)*cn(kx+wt)

2
_12Akw[i\/l—mzsn(kx+wt)icn(kx+wt)J |

dn(kx+wr)

(3.15)

2
1
=12 Akw . 316
(msn(kx-i—wt)iidn(kx+ wt)] (3.16)

mcn(kx+ wt)iim
_12Akw(mcn(kx+wt)ii\/1m2 Jz.

dn (kx + wt)

2
dn(kx+wt
u11=5243kw1zckw[ n(kx+wi) J _

(3.17)

2
ulz:—£—2—4BkW—l2Ckw sn(kx+wt)
w k 1+ cn(kx+wr)

1+ cn(kx+wt) ’

sn(kx+wt) )~ (3.18)

—12Akw(
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k w

cn (kx + wt)
Uy =————— 4Bkw—12Ckw)
w k

2
\/l—mzsn(kx+wt)+dn(kx+wt)} B

—12Akw[ (3.19)

\/1mzsn(kx+wt)+dn(kx+wt)J2

cn (kx + wt)

2
dn(kx+wt) B
1imsn(kx+ wt)

(3.20)

kK w cn(kx+wt) ’ 1isn(kx+wt) ’
U :———;—4Bkw—12Ckw n —12Akw . (3.21)
_Sn(kx+wt) cn(kx+wt)

Ug=————— 4Bkw—12Ckw(mcn(kx+ wt)idn(kx+ wt))2 —

2
1
mcn(kx + wt) + dn(kx + wt)} ’

—12Akw( (3.22)

B:m2+l C:(l—m2)2

1
4 2 4

2
u =K 4 Blw—12CI sn(kx+ w) -
w k dn(kx+wt)ircn(kx+wt)

(3.23)

2
—12Akw(dn(kx+ wt)ircn(kx+ wt)} .

Sn(kx + wt)
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2
g —£—£—4Bkw—12Ckw[ cn(kx-+wi) J _
w k )

Nl=m? idn(kx+wt
Vl—-m? idn(kx+wt)J2

cn (kx + Wt) (3-24)

—12Akw(

Yukarida elde edilen ¢oziimler dikkate alindiginda m — 0 i¢in (3.1) denkleminin

periyodik dalga ¢oziimleri

kK w 1
) =————+4kw—12kw , 3.25
u(x t) w k i sin® (kx+ wt) ( )
k w 1
) =————+ 4w —-12kw——, 3.26
u(x t) w k i cos* (kx+wt) ( )
u (x,t) = —%—%—Skw—ukw(cotz (kx+ wt) +tan® (kx+ wt)) , (3.27)
2
() =~ 3oy S Ut wr) (1 cos(le+ ) (3.28)
’ (1ic0s(/oc+wt))2 sin’ (kx+wt)
(5.1) S 3 cos’ (kx+wt) . (sin(karwt)il)2 (3.29)
u(x,t)=————- — .
(sin(kx+wt)il)2 cos® (kx+wr)

olarak bulunmus olur.

Sekil 5. SRLW denkleminin (3.26) ¢6ziimii i¢in ii¢
boyutlu periyodik dalga gériinimii, £ =1, w= 0.5
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Sekil 6. SRLW denkleminin (3.26) ¢6ziimii i¢in iki boyutlu periyodik dalga grafigi, a) t =0,b)  =0.5,
Qt=1,d)r=2, (k=1Lw=0.5)

Yukarida Sekil 6 da goriildiiglii gibi zaman ilerledikce SRLW denkleminin (3.26)

¢Ozlimii i¢in sola dogru hareket eden periyodik dalga grafikleri goriilmektedir.

3.2. (1+1) Boyutlu Sacilma Terimli Uzun Dalga Denklemine Genellestirilmis
Jakobi Eliptik Fonksiyon Metodunun Uygulanmasi

u,+uu_+v =0

1 (3.30)
v, tu v+uy, +§um =0

seklinde tanimlanan (1+1) boyutlu sacilma terimli uzun dalga denklemini g6z Oniine
alahm. (3.30) denklemi igin u(x,f)=u(&),v(x,t)=v(&),E=hke+wt  doniisimii
yapildiginda (3.30) denklemi
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wu'+kuu'+kv' =0,

' 3.31
wv' + k(uv) +%k3u'" =0. 331
olarak yazilir. (3.31) denkleminin her iki tarafi integre edilirse
wu + Euz +kv=0,
2 (3.32)

wv+kuv+lk3u” =0.

seklinde elde edilir. Burada integrasyon sabiti sifir olarak alinmistir. (3.32) denkleminde en

yiiksek mertebeden lineer olan u" terimi ile lineer olmayan uv terimlerinin ve lineer olan
v terimi ile lineer olmayan u” teriminin dengelenmesi ile M, =1 ve M, =2 olarak
bulunur. Boylece (3.32) denklemi i¢in
u=a,+al +ﬂ
j ., (3.33)
v=c,+oF+—L+,F?+—=2
F F
olacak sekilde bir ¢oziim aranabilir. (3.33) esitliginde gerekli tiirevleri alinir (3.32)
denkleminde yerlerine yazildiginda ve elde edilen denklemde F,F* F~' F7 terimlerinin
katsayilari sifira esitlendigi zaman
a,cok +bck+adk+cw=0,

24b,k?
b,k + 240K

=0, bdk+ayd,k+d,w=0,

Bb,k’

b,k +aydk+ad,k+ +d,w=0,

alcok—i—alclk—l-blczk+§alBk3 +cw=0, (3.34)

a,c.k+ayc,k+c,w=0, ac,k +§ale3 =0,

2 bk
“; abkt ek +aw=0, 25+ dok =0, agbk-+dk+bw=0,

asak+ck+aw=0, %alzk-i-czk:O. C#0,k=0.

seklinde elde edilen cebirsel denklem sistemi Mathematica bilgisayar programi yardimu ile

¢Oziildiigii zaman
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2 24/ Ck
T C L
3 NE) NE)

2
¢, =%(_Bkz ~2JANCR?), ¢, =0, ¢, =_%, d, =0, (3.35)

2 2
d, =—2/;k : w:k\/— 212" — 44 Ck?

elde edilir. Bulunan bu sabitler (2.22)-(2.34) esitliklerinde verilen fonksiyonlarda goz
Oniine alinarak (3.33) esitliginde yerlerine yazildigi zaman (3.30) diferensiyel denkleminin

analitik ¢oziimleri asagidaki gibi yazilir.

2
i) A=1, B=—(1+m"), C=n’, §=/oc+k\/—2l;k NN S

O R G ko] 536
: 26K 5 : |
o R e S e
Lo | 2B , 2JCk( en(&) 2fk[dn(g)]
2 \/ e [dn(é)J en() .
1 ) o\ 2CK* [ en(&)) 24k dn(&) e
“§feav-aier) 2GS <é>] BT J
i) A=(1-m*), B=2m*~1, C=-m’, & =hkx+ k\/—ﬂ—m/_\/_k2
_ | 2Bk . 2JCk 2k 1
u3—\/ 4JaCk? - 5 (g)f(éJ
2 2 (3.38)
3( ~Bi* -2\ 4K ) - Zik (&)~ 2Ak( j
> 3 2 _ _ 2Bk’ 2
zzz)Az(m —1),B-(2—m ),C——l,é—kx+k\/— 3 —aJ4-/Ck t,
O R O Te) 559
e iEe) 2 )2
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iv) A=-m’(1-m*), B=(2m’-1), C=1, §=kx+k\/—2]§k2 —4J 4 Ck e,

. :_\/_23/(2_4\/—\/—]{2 2fk(dn(§)J ka(sn( )J
Snf () (3.40)
2 2\ 2CK 24K

3( ~Bi* -2 ANCR? ) - (Sn )] ( J
v) A=(1-m?), B=(2-m"), C=1, é=hku+ k\/—ﬁ—w_sz
. \/—&—4\/7\/71{2 2\/_k(cn(§)) 2\/_k(sn( )]

sn(f 2 cn( (341)
3<_Bk2 23Tk - 2CK? (Sn ;j 24k Lcn ]
vi) A % m2—2 C:m_,ézloc+k\/—2ik2—4\/2\/5k2t,
28K o WCk( _sn(&) |, 2Vdk(1£dn(£)

A (Hdn(cf)] 7 [ (é) ]

. O sn(f) 2 A lidn(f) 2 (3.42)
=3 (8K -2 ek )= (lidn(@J E [ () J
vii)A=C=mTZ,B=m22 , E=hrt k\/—ﬁ—w_\/_kz

| 28K , 2JCk ol E) e +2J2k 1
Uy = \/ 3 4 4Ck NE ( (é:)— (f)) NE {(Sn(f)ilcn(f))J
7 (343)
Y )\ 20K s () 2R 1
_3( Bk 2\/_\/_]{) 3 ( n(£)* (é:)) 3 [(sn(f)iwn(f))}
L |2 , Ak dn(&) | 2k | 1= sn(&) % en(¢)
’ \/ Wack V3 [z l—mzsn(§)+cn(§)J V3 [ dn(&) ]
o2 2y 20K dn(¢) 2_2Ak2 iN1=m’sn(&) £ cn (&) 2
(Bk 2\/2\/616) (l\/l—mzsn(ﬁ)icn(f)J 3 { dn(f) J
(3.44)
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viii) A=C=

A

_ 2 2
plz2m ,g:mk\/fﬁk NN

_ _ﬂ_ > 2Ck msn(&)+tidn +2\/Zk :
w, = \/ 4 ANCI —==(msn(&)%idn(£)) NE ((msn(é‘)iidn(‘f))]

75
1 N 20K L 2 24K I ’
vw:g(—Bk —2J4Ck )— 3 (msn(f)_ldn(f)) 3 ((msn(é‘)iidn(f))]
(3.45)
_ | 28K , 2Ck dn(& 2k | men(E)£iN1-nm’
S, I L [m L J { ) J) J

)
1 2 2\ 2CK ( men( i 22

(3.46)
- \/_ﬂ_w—sz ZIk( sn(£) ] 2fk(1+cn(§)J
12 1+cn(§ 3 ( )
(3.47)
vy =~ (B ~2ANCR ) - 20K ( n( J 24k [ch J
3 1+cn
Lo |2BE , 2ACk en(&) +2J2k 1=m?sn(&)xdn(£)
13 \/ 3 4'\/2\/Ek \5 [ l—mzsn(§)+dn(§)J \/3 [ Cl’l(f) J
v = (g 2\ 2CK en(€) 2_2Ak2 1=m’sn(&)xdn(&) ]
13 3( Bk 2\/2\/6k) 3 [*/l—mzsn(§)+dn(§)] 3 [ cn(€) J
(3.48)
) A:C:m24_1, B:m22+1, cfzkx+k\/—&—4\/—\/—k2
u, = _ﬂ_ , 2JCk n(&) 2\/Zk[limsn(§)]
4= \/ ININE == 75 (1+msn(§)J+ 5 dn(f)
1 206 dn(£) Y 24K (1£msn(&)Y G4
VMZE(_Bk -2V ANCk )_ 3 [limsn(g)J 3 ( dn(f) J
x) A:C:1_4m2, B:1+2m2, §:kx+k\/—2B3k2 —aJ4ck,
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- \/—ﬁ—4\/7\/7k2 2\/—k[ en(€) J+2\/Zk(lisn(§)]

B 1sn(&) V3 en(é)
I 208 (en(¢) Y 24k (1£5n(8)Y -
=§(—Bk —2J4\Ck )_ 3 (]isn(f)] 3 ( cn($) )

1-m*)’ 2
xi) Az—( ;n) ,B=1+2m ,C=—— E=hr+ k\/—ﬁ—w_sz

O R S G S e rre)

V3 V3 tdn(£))
1 ) o\ 2Ck° 2 24k7 1 ’
:5(—Bk —2J4-Ck )— 3 (mcn(é‘)idn(é‘)) 3 ((mcn(ﬁ)idn(gt))]
(3.51)
xii) A:i, B:1+2m2, C=(1_Z12) : §=kx+k\/—2l;k2 —aJaCk*,
o | 2BK , 2JCk sn(&) 2\/Zk(dn(§)icn(§)J
L [dn«s)i n(«f)j FUE )
v =M N2 (&) ) 248 (dn(&)+en())
v 3( Bk 2\/2\/Ek) 3 (dn(é)icn(f)] 3 [ sn(& )
xiii) A:%, B:mzz_z, C:’"%, §:kx+k\/—2ik2 SNINeI
_— _&_ 5 2\/_k cn((f) 2\/21\7 \/1—m2idn(§)
18 — \/ 4\/_\/_k E\/l m2+dn(§)J+ \/5 { Cn(f) J
X o (3.53)
_1 2 2\ 2CK? cen(&) 24k [ N1=m?* £dn
Vls_g(_Bk — 24 Ck )_ 3 {1/1_’%2 +dn(§)} 3 [ cn(g&) }

Yukarida (3.30) denklemi i¢in elde edilen ¢oziimler dikkate alindiginda m — 0 i¢in
(3.30) denkleminin periyodik dalga ¢6ziimleri

34



2
u(x,t)— 2k 1
3 2k>
sin| kx + k& 3 t
k2 2k2 (3.54)
v( ,t) 3
2k*
sin| kx + & t
3
2 2 2
u( ,t): 16k kx+k 16k +&tan kx+k 16kt
V- V3 \
(3.55)
2 2 2
(x,1)= 1( 4k2 —&cotz(loﬁk,/ 16k t}——tan [kx k,f 16k J
2 2
sin kx+k1/ 4k 1+ cos kx+k1/ 4k
u(x t)—— —ﬂ—— k >
| NG "Bl
1+cos| kx+k 3 sin +k
) , (3.56)
2 2
sin{kx+k1/—4]3€ t] 1tcos| kx+k 4];
2 2
) =3 () -C
3 6 4K
1tcos| kx+k.|— 3 t sin| kx+k 3

u(x,t):— —-_—— 4+

\/5 2 ﬁ 2
1+sin| kx+k —ﬂt cos kx+k 4k
3 3
2 : 2
cos[kx+k1/—4kt] 1+sm(kx+k —4ktJ
3 k2
6 2 _? 2
1+sm[kx+k1/—4l3€t] {kx+k1/—4]§tJ

2 2
co kx+k1/—ﬂt 1+sin| kx+ k. [— 4k
[ a4t &k 3 k
3

seklinde bulunur.
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Sekil 7. (1+1) boyutlu sagilma terimli uzun dalga denkleminin (3.54) igin sirasi ile u(x,t) ve v(x,t)

¢dziimleri igin ii¢ boyutlu periyodik dalga gériiniimii, (k=1)

a) b)
15} 14
10} 0t
SHY yHY RV
19 5 0 -10 = 5 0
HSE AT
-10 =10|F
15 -15
) d)
BBt .
1 10!
5t 5
10 5 0 o " 5 0
' ale
-1Dr 10 |
15 | 15 |

Sekil 8. (1+1) boyutlu sagilma terimli uzun dalga denkleminin (3.54) igin u(x,t) ¢Oziimiiniin iki boyutlu
periyodik dalga grafigi,a) t=0,b) t=0.5,¢) t=1,d) t =2, (k=1)
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Sekil 9. (1+1) boyutlu sagilma terimli uzun dalga denkleminin (3.54) igin v(x,t) ¢Ozlimiiniin iki boyutlu
periyodik dalga grafigi,a) t=0,b) t=0.5,¢) t=1,d) t =2, (k=I)

Yukarida Sekil 8-9 da goriildiigii gibi zaman ilerledik¢e (1+1) boyutlu sagilma
terimli uzun dalga denkleminin (3.54) i¢in u(x,t) ve v(x,t) goziimlerinin sola dogru

hareket eden periyodik dalga grafikleri goriilmektedir.
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4. LINEER OLMAYAN KISMi DIFERENSIYEL DENKLEMLERIN
PERIYODIK DALGA COZUMLERI ICiN BAZI YARI ANALITIiK
METOTLAR

Bu boliimde, lineer ve lineer olmayan adi ve kismi diferensiyel denklemlerin seri
¢oziimlerinin elde edilmesinde kullanilan Adomian ayrisim (Decomposition) metodu
(ADM), homotopi analiz metodu (HAM) ve homotopi perturbasyon metodu (HPM) olarak

bilinen yar1 analitik metotlarin analizleri yapilacaktir.

4.1. Baz1 Yar1 Analitik Metotlar ve Analizleri
4.1.1. Adomian Ayrisim Metot

Ayrisim yontemi bir seri metodu oldugu ve bir¢ok cebirsel, lineer veya lineer
olmayan diferensiyel denklemlere basarili bir sekilde uygulandigi bilinmektedir [56-61].
Bu metodu ag¢iklamak i¢in ' hem lineer hem de lineer olmayan terimleri iceren bir genel
lineer olmayan adi diferensiyel operatdr olmak iizere agagidaki

Fu(x,t)zg(x,t), 4.1)
denklemini goéz Oniine alalim. Burada L; verilen diferensiyel denklemin en yiiksek
mertebeden tiirevini R ; lineer operatérden kalan kismi ve N ; diferensiyel denklemde
lineer olmayan terimi gostermek tizere (4.1) denklemi

Lu+Ru+Nu=g, 4.2)
seklinde yazilir. L tersi mevcut olan ve 6zel olarak ikinci mertebeden tiirevlenebilir lineer
bir operatdr olsun. (4.2) esitliginin her iki tarafi L' operatorii ile sol taraftan isleme
konursa

L'Lu=L"g—L"'Ru—L"Nu, (4.3)
esitligi elde edilir. Bu son esitlikte gerekli diizenlemeler yapildiktan sonra

u (x, t) =u (x, 0) +tu, (x, O) +L'g—L"'Ru—L"'Nu, (4.4)



¢6ziim fonksiyonu bulunur. (4.4) esitligindeki Nu lineer olmayan terimdir ve Nu = z A,
n=0

seklinde yazilir. Burada 4, Adomian polinomlar1 6zel polinomlardir ve

1 d" 0
A4, =— oY A
n n'|:d/1n [; ukj:|

olarak hesaplanabilir. (4.4) esitligindeki u ayrnistirilmis seri ¢6ziim fonksiyonudur. Bu

, n20, (4.5)

A=0

¢6ziim fonksiyonunun u, baslangi¢ degeri u, =u(x,0)+1u,(x,0) ile bulunur. Daha sonra

u, baslangic degeri kullanilarak u ,u,,--- terimleri elde edilerek (4.1) denkleminin

ayrigtirtlmis seri ¢oziim fonksiyonu

u(x,t)ziun (x,t), (4.6)

n=0

seklinde yazilir.

4.1.2. Homotopi Analiz Metot

Bu metot ilk kez 1992 yilinda Liao [62] tarafindan doktora tezi olarak sunularak,
2003 yilinda yine Liao tarafindan yazilan bir kitapta [63] bu metodun fen ve miihendislik
alanlarindaki uygulamalarn ve diger analitik teknikler ile arasindaki iliskileri ortaya
koyulmustur. HAM’u pek ¢ok lineer ve lineer olmayan adi ve kismi diferensiyel
denklemlere [64—66] basaril1 bir sekilde uygulanmigtir. Bu tekniklerin ¢cogu Taylor serisine
dayanmaktadir. Eger baslangi¢ fonksiyonu iyi secilirse serinin birkag¢ teriminde ¢ok iyi
yaklagimlar elde edilebilir. Metodu agiklamak i¢in

Nlu(x,t)]=0, (4.7)
olacak sekilde lineer olmayan bir diferensiyel denklemini gz Oniine alalim. Burada N
hem lineer hem de lineer olmayan terimleri iceren genel bir lineer olmayan adi diferensiyel

operatdr, x,7 bagimsiz degiskenler, u(x,¢) denklemin ¢oziimiidiir. Ayrica

lim ®(x,£; p) =y (x,1) = u(x,0), (4.8)
P>

seklinde bir CI)(x, t;p) fonksiyonu tanimlanir. Burada p €[0,1] ve u,(x,?) ise baslangi¢

veya sinir sartlarini gergekleyen tahmini bir baslangic fonksiyonudur. Eger genel homotopi

teknigi kullanilarak
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m@(x, 2 p) =u(x,1), (4.9)
P>

seklinde bir esitlik yazilirsa Liao’nun sfirinci mertebeden bozulma (deformasyon)

denklemi

(l—p)L[(D(x,t;p)—uo (x,t)] = th(x,t)N[d)(x,t;q)] , (4.10)
olarak yazilir. Burada / yakinsaklik araligini belirlemede kullanilan keyfi bir parametre,
H (x,t) keyfi bir fonksiyon, L lineer bir operatérdiir. HAM unu diger sayisal metotlar
arasinda onemli bir yere koyan ve gecerli kilan sebep, 4 parametresinin ve H (x,t)
fonksiyonunun arastirmacilar tarafindan 6zgiir bir sekilde secilebilmesidir. Eger p, 0 dan
1 e artarsa @ (x,z; p) ¢oziimii u, (x,t) baslangi¢ sarti ve u(x,7) ¢oziimii arasinda degisir.

@ (x,t; p) fonksiyonunun p ye gore Taylor seri agilimi

+00

(I)(x,t;p):uo (x,t)+Zum (x,t)p’", (4.11)

m=1

olarak yazilir. Burada

1 0""'®(x,1p)

u (x,t)= , 4.12
m ( ) m ' apm—l ( )
p=0
seklinde yazilir. Eger p —1 ise
u(x,t) =uy(x,0)+ > u, (x,1), (4.13)
m=1

olarak yazilir. (4.10) ile verilen sifirinct mertebeden deformasyon denklemi p ye gore m

kez diferensiyellenir, m! ile boliiniir ve sonucta p =0 alinir ise

L[um ,t)—x,u, (x, l)} = hH(x,l)Rm [um_l (x,t)] , (4.14)

olacak sekilde deformasyon denklemi yeniden yazilabilir. Burada

R, (ttn) = N6 p)] @.15)
m | Um (m—l)' apm,l pzo, .
Ve
0 m<li
zm={1 " (4.16)

seklinde tanimlanir.
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4.1.3. Homotopi Perturbasyon Metot

Bu metodun [67] temel fikrini agiklamak igin

A(u)—f(r):O, reQl, 4.17)
lineer olmayan diferensiyel denklemini géz oniine alalim. (4.17) denkleminin sinir sartlari
B[u,a—ujzo, rel’, (4.18)
on

seklinde belirlenir. Burada 4 genel diferensiyel operatér, B sinir operatorii, f bilinen bir

analitik fonksiyon, I' ise € bdlgesinin simiridir. 4 operatorii L ve N olmak tlizere iki
kisma ayrilabilir. L lineer operatér ve N lineer olmayan operatordiir. Boylece (4.17)

denklemi
L(u)+N(u)-f(r)=0, (4.19)
seklinde yazilir. Buna gore Homotopi teknigi [68] ile bir Homotopi olugturulur:
v(r,p):Qx[0,1]] >R
olmak tizere
H(v,p)=(1-p)(L(v)-L(u,))+p(4(v)-f(r))=0, pe[01],reQ, (420
burada p e [0,1] bir parametre ve u, ise (4.17) denkleminin bir baslangig ¢ozimidir.
(4.20) esitligi g6z oniine alindignda smir sartlar
H(v,0)=L(v)-L(u,)=0,
H(v,1)=4(v)-f(r)=0,
seklinde belirlenir. L(v)—L(u,), A(v)—f(r) ifadeleri homotopik olarak adlandirilir. Bu

metot geregince p kiigiik bir parametre olarak kabul edilir ve (4.20) denkleminin ¢oziimii
_ 2 3 _ < n
V=v,+pv+p v2+pv3+...—2p V., (4.21)
n=0
olacak sekilde p parametresinin kuvvet serisi olarak yazilir. p=1 alarak (4.17)

denkleminin ¢oziimii

u= lpiil}(vo +pv, + pv, + py, +) = ,,Z:;‘v" , (4.22)
seklinde elde edilir. Bu metot ile yapilan bazi calismalar [69-71] referanslarinda

goriilebilir.

41



5. YARI ANALITIK METOTLARIN LINEER OLMAYAN BAZI KISMi
DIFERENSIYEL DENKLEMLERE UYGULANMASI

Bu bolimde, dordiincii boliimde analizleri yapilan ADM, HAM ve HPM

kullanilarak, SRLW ve (1+1) boyutlu sagilma terimli uzun dalga denklemlerinin seri

¢Oziimleri elde edilecektir.

5.1. SRLW Denklemine ADM’ unun Uygulanmasi

u, +u_ +uu, +uu +u_, =0, (5.1
u(x,o)=—£—1+4kw—12kw+,
w ok Cos* (kx) (5.2)

u, (x, 0) = 24kw’*Sec? (kx)Tan (kx) ,

baslangi¢ sartlar1 ile verilmis olan SRLW denklemini g6z oniine alalim. (5.1) denklemi

asagidaki gibi
Lu+L u+N(u)+L, u=0, (5.3)
o o o
operator formunda yazilir. Burada L, = PR L. = PR L., =i ve

1

ters

N(u)=uu,+uu, olacak sekilde lineer olmayan terimleri ifade etmektedir. L,

tt
operatdriiniin var oldugu kabul edilir ve L =”(.)dtdt seklinde tanimlanarak (5.3)
00

denkleminin her iki tarafina uygulanirsa

L) (Lu)+ L' (Lyu)+ L (N (u))+ L, (L,,u)=0 (5.4)

xxtt
elde edilir. Buradan

u(x,t)—u(x,O)—tut (x,O) = —Lt_tl (Lxxu)—L;l (N(u))—L;l (L u) (5.5)

xxtt

olur. Burada N (u)=uu, +uu, = Z A, + Z B, seklinde tanimlanarak 4, ve B, Adomian

n=0 n=0

polinomlarinin bazi terimleri (4.5) genel formiilii kullanilarak



A4, =u, (”0)x; +u, (u1 )xt +u, (u2 )xt , (5.6)

w,), (uy), + (), (), +(uy), (), (5.7)
(), (1), + (1), (1), ,

&

Il
—_ o~~~

<
(5]
~
—_

<
(=)
~
=

+
—_

<
S
N
—_
<
~
-

+

olarak yazilabilir. (5.5) denklemi i¢in asagidaki gibi bir rekiirans bagintis1 yazilabilir.

{uo =u (x, 0) +tu, (x, 0)

g} g ; , k>0, (5.8)
Uy = _Ltt (Lxxuk)_Ltt (Ak +Bk)_Ltt (Lxxttuk)

(5.8) esitligi ile verilen rekiirans bagintist kullanilarak (4.6) ile ifade edilen ayrisim
serisinin terimlerinin bazilari
Z'tl = _Lt_tl (LxxuO ) - Lt_tl (AO + BO ) - Lt_tl (Lxxttuo )
u, =—L, (Lxxul ) ~L, (Al +B, )_ L, (Lxxttul )

(5.9)
u3 = —Lt_tl (vauz ) - L_l (A2 + Bz ) - L;tl (Lxxttu2)
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seklinde yazilir. Buradan (5.2) ile verilen baslangi¢ sartlar1 ve (5.9) ile verilen esitlikler

kullanildiginda
k 1
u, = —;—%+ 4kw—12kw o (1) —24kw’tsec’ (kx)tan (kx)

w, ==3kt*w* (3+132k" +2cos2hr) ~104k” cos( 24x) — cos(4her) + 4k cos(4ex) ) sec (fer) -
—2k°£w? (~9+192w —8cos (2kx) —96w* cos (2kx) +cos (4kr) ) sec (k) tan (k)

u, =$kt2wsecg (kx)(—240k2w2 (-40-4832" +3 (=5 +1588k" ) cos (2kx) +
+(24-480k” ) cos (4kx) — cos (6kx) + 4k cos (6kx) )+ 5k’ (95K +190w” +
+5000k>w* — 4800w — 372480k w* +2 (86w’ —240w" + & (43+376w" +

+212928w4))cos(2kx)—32(2w2 120w 4/ (1+118w” +2208w ) cos (4kr) -
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—22k ? cos (6kx ) — 44w’ cos (6kx ) + 464k w’ cos (6kx ) — 480w cos (6kx) +

+1920k>w* cos(6kx )+ k* cos (8kx) + 2w’ cos (8kx) —8k*w” cos (Skx)) sec” (k) -
40tw(26k2 +1520k* + 26w +1232k>w? —9952k*w? +3(1 1w +72k* (5+38w2)+...
uy ==3k°Fw* (1225 + 312380k +154 cos ( 2hr) —352936k” cos 2kx) —952 cos (4kx) +

+58432k* cos(4kx) +118cos (6kx) —2008k” cos (6kx)— cos(8kx) +4k* cos (8kx))
sec'” (kx) +ék¢4w(—276k4 —31248k° —552/*w* — 73248 k*w* — 2542464k w* —

—276w* —21168k*w* +1038528k*w" +208207104k°w* —330k" cos(2kx) -

21672K° cos( 2Uer) —660k>w? cos(2kx) —S51072k*w? cos( 2x) + 177984k W? cos(2kx) -

—330w" cos (2kx) —14952k*w* cos (2kx) —...

terimleri bulunur. Bulunan bu terimler (4.6) esitliginde yazilarak (5.1) ve (5.2) ile verilen

problem i¢in bir yaklasik ¢6ziim elde edilmis olur.

5.2. SRLW Denklemine HAM’ unun Uygulanmasi

(5.1)-(5.2) ile verilen SRLW denklemine HAM’ unu uygulamak i¢in (4.14) ile

verilen

L[um -y, u, (x t)] =hH(x,t)R, [um_l (x, t)], m21

(5.10)

n. mertebeden deformasyon denklemini yeniden goz oniine alalim. Burada R [umfl (x,t)}

ifadesi (5.1) denklemi i¢in

0*u
m—1-i m—1-i m—1

2 2 m— 2 m—
Rm[um_l(x,t)]:au'”“+au“+Z‘1 lau Z‘i%au

o o' & oo ‘SFex o o ox'or
olacak sekilde yazilir.

u(x,0)= 1 (x),

u, (x,O) = g(x),
olmak iizere u, (x,¢)= f (x)+tg(x) seklinde alinarak;

m=1,H (x,t)=1 ve (4.16)-(5.11) esitlikleri ile
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L[u,(x,t)] =hR, [uo(x,t)]
o’u, s “ou ou . 0Ou
— h m 1—i it 8 m—1-i 0
( or* ZO: oxot ZO: x o axzaﬁ]

5 o’u, N o’u, . o’u, 8u0 ou, N o'u,
o ox’ 6x6t ox ot ox‘or

2 2 .
u, (x,1) =L"h d L;O + 0 uzo +u o il + Ou, u, + 62“02
o ox*  'oxor ox of  oxor

olarak yazilir.

m=2,H (x,t)=1 i¢in

Llu, (x,0) = u,(x, )] = h R, [ u, (x,1) |

ou 8214 = “ou ou .. O'u
— h 1 1 m 1-i Ittt m—1-i + 1
( or* z oxOt Z(:‘ ox ot 8x28t2j

3 o’u, +82u1 . o’u, u o’u, +8u0%+%%+ o'y,
orr  ox° 'oxor ‘oxot ox ot Ox ot oxPor

82u0+ 8ul+6u6u 6u6u+84u1
o’ oxor oxor Ox ot ox o oxlor

benzer sekilde u,(x,¢) terimi de yazilarak gerekli islemler yapildigi zaman

uy ==Y w12k ——

—24ktw” sec” (kx ) tan (kx),

w k Cos (kx) > ( ) an( )
= h(3ke"w* (341324 +2cos (2/r) ~ 104k cos (2kx) - cos (4kx) + 4k cos (4kx))
sec’ (kx) +2k° 4w’ (—9 +192w* —8cos (2kx) — 96w’ cos (2kx) +cos (4kx))
sec’ (kx)tan(kx))

u, =1, +h(—% hkt*w’ (—8—320k2 —19328k* —9cos( 2kx) —120k* cos( 2kx) +19056k" cos (24x) +
+192/? cos (4kx) —1920k" cos (4kx) + cos(6kx) —8k” cos(6kx) +16k* cos (6kx)) sec® (kx)
+...

Uy, =1, —%h/€3t41/1/(—95k2 —190w* —5000k*w?* +1920w* +107520k*w* —86k* COS(2kx) -
—172w” cos(2kx) - 752k*w’ cos(2kx ) +192w" cos (2kx) 120576k w* cos (2kx ) +
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+32k* cos (4kx )+ 64w’ cos(4kx)+3776k*w* cos(4kx)—...

olacak sekilde wug,u,,u,,u; terimleri elde edilir. Benzer sekilde diger terimler de

bulunabilir. Bulunan bu degerler (4.13) esitliginde yazilarak (5.1) ile verilen problem i¢in

seklinde yaklasik bir ¢6ziim yazilabilir.

5.3. SRLW Denklemine HPM’ unun Uygulanmasi

HPM’unun (5.1) ve (5.2) ile verilen SRLW denklemine nasil uygulandigini
gostermek i¢in (4.20) esitligi yardim ile (5.1) denklemi i¢in asagidaki gibi bir homotopi
olusturalim:

0’Y ou 0’y oYY 0’Y oyoy o'ty
1- s R + +Y +——4+——1=0 5.12
(1=p )( o or j b ( o o’ oxor ox ot axzaﬁ} -12)

(5.1) denklemi igin

Y=Y, +pY,+p’Y,+p’Y, +.. (5.13)
seklinde bir ¢dziim aradigimizi kabul edelim. Bu ¢oziimde (5.12) esitliginde gerekli olan
tiirevler alinir ve yerlerine yazilir ise
oYy, o ,o0%, ;0% odu, ou, 0% ,0% 0%,

+ + + - + + +
o o P TP ok e ¥ e

2

Y,
s + pY,

oY, ,, oY 0%Y, 0%Y, 0%y, oY
+p%Y, — L4 pY 24 ptYy — 34 pY — 04 ply — !
o P P e P e vt P P

oY, oY,

1 A A, 1 +
Oxot OxOt
+p4)7]_2 +p3}72 aZYI 4Y 62)70 + %%4_ 2%%4_ 3%%4_
oxot oxot

+ _
oot P oot Pax e P F e o
ox Ot ox ot ox ot ox ot Oox Ot Ox Ot
4 0Y; oY) 'Y, , 0%, , 0Y, s 0,
+ + + + +
o o Poxor P oo oo P atxor

olacak sekilde cebirsel denklem sistemi elde edilir. Bu cebirsel denklem sisteminde

4

+p'Y,

+p

polinom esitligi 6zelligi kullanilarak p nin kuvvetlerine gore asagidaki gibi bir ayrisim

yapilabilir:
oY, ou
0.9% 9% _ 5.14
ot or 149
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2 2 2 2 4
OV, Oy Y, 0N 0% 0% O _ (5.15)

Por ot Tae  Vaxar ox o ovor
2:821/2+82YI+Y oY, +Y62Y°+6Y0%+%%+ oy = (5.16)
o ox* ‘oxdt 'oxor ox ot ox ot axPor
2 2 2 2 2 4
p3:a§3+8§2+}’06Y2+Y16Y‘+Y28YO+%%+%%+%%+ 82Y22: (5.17)
ot ox oxot Ooxot ox0t Ox Ot Ox Of Ox O ox ot

(5.14)-(5.17) esitlikleri u,(x,1)=f(x)+tg(x) baslangig sarti ile ¢oziildiigii zaman
Y,,%.Y,.,Y,,--- terimleri

Y, :—ﬁ—3+4kw—12kw+

— o — 24ktw* sec’ (kx) tan (kx),
Y, = =12k’ w(~2+ cos (kx) ) sec’ (kx) = 3kt*w(3k” + 3w’ + 132k w” + 2k* cos (2kx) +
207 cos (2er) 104k cos(2r) — & cos (4hox) —w? cos(4ke) + 4k w? cos (4ox) ) sec® (k) -
—4k’r*w? sec” (kx ) (—11sin (kx)+sin (3kx))+ 96k’ w* sec” (kx)(—5sin (kx)+sin (3kx)),
Y, =3k’ w’ (—40 - 4832k” — 15 cos 2kx) + 4764k cos (2kcx) + 24 cos (2kx) — 480k” cos (4hex) -
—cos (6kx) +4k” cos(6kx) ) sec” (k) —ik3t4w3 (—40-4832k” ~15cos( 2kx) + 4764k” cos  2kx) +
+24 cos (2hr) — 480k cos (4kx) —cos (6kx) + 4k cos (6kx) ) sec® (kx) —..
Y, = =3k’ w’ (1225 + 312380k +154 cos (2kx) — 352936k cos 2hx) — 952 cos (4kx) +

+584324k” cos (4kx)+118 cos (6kx) — 2008k cos (6kx) — cos (8kx) + 4k cos (8kx) )
sec'’ (kx) —%k5t4w3 (1225 +312380k” +154 cos(2kx) —352936k” cos (2kx) —952 cos (4kx) +

+58432k* cos (4kx)+118 cos (6kx ) —2008k* cos (6kx ) —cos (8kx )+ 4k’ cos (8kx))

sec'’ (kx)—...

olarak bulunur. Boylece (4.22) esitligi ve yukarida elde edilen Y,,Y,Y,,Y,,--- degerleri

kullanilarak

u(x,t):limII/:)’()+I/1+Yz+Y3+... (5.18)
P>
olacak sekilde (5.1) denkleminin yaklasik ¢ozlimii yazilabilir.
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5.4. (1+1) Boyutlu Sac¢ilma Terimli Uzun Dalga Denklemine ADM’ unun

Uygulanmasi

u,+uu_+v_ =0

1 (5.19)
v, +uv+uy, +§um =0
2k 2k 1
u(x,0)=- v -pev e
in (kx
3 sin (k) (5.20)
K 2k2 1

v(x0)=—-——F—5——,
(x-0) 3 3 sin’(kx)
baslangig sartlar1 ile verilmis olan (1+1) boyutlu sagilma terimli uzun dalga denklemini goz
Oniine alalim. (5.19) denklemi asagidaki gibi
Lu+N(u)+Lyv=0
1 , (5.21)
Ltv+M(u,v)+R(u,v)+§Lmu =0

, 0 ot . o
operator formunda yazilir. Burada L, = Py L = Py tirev operatorlerinin  ve
t X

N(u)=uu,, M(u,v)=uyv, R(u,v)=uv, olacak sekilde lineer olmayan terimleri ifade
t

etmektedir. L' ters operatdriinin var oldugu kabul edilir ve L'= j()dt seklinde
0

tanimlanarak (5.21) denkleminin her iki tarafina uygulanirsa

L' (Lu)+ L' (N(u))+ L' (Ly)=0

, 5.22
L'(Ly)+L" (M (u,v))+ L (R(u,v))+ L' (%Lmuj =0 08
elde edilir. Buradan
u (x,t) = u(x,O) —L;l (N(u)) —L;l (va)
(5.23)

v(x,t)=v(x,0)-L (M (u,v))-L;" (R(u,v))—Lt_1 (%Lmuj ’

olur. Burada N (u)=uu, —ZA M(u,v)=uy= ZB R(u,v) uvx:ZCn seklinde

n?
n=0 n=0 n=0

tanimlanarak 4,,B, ve C, Adomian polinomlarinin bazi terimleri (4.5) genel formiilii

kullanilarak
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B, :(“o)x Voo
B, :(uo)x v+ (1) v,
B, =(u,

(5.24)

(5.25)

(5.26)

olarak yazilabilir. (5.23) denklemi i¢in asagidaki gibi bir rekiirans bagintisi yazilabilir.

{u :u(x 0)

L)

—L _u

XXX n

j, n=0,

(5.27a)

(5.27b)

(5.27a) ve (5.27b) esitlikleri ile verilen rekiirans bagintilar1 kullanilarak (4.6) ile ifade

edilen ayrigim serisinin terimlerinin bazilari

w ==L (4,)-L" (L)
u, ==L (4)-L" (L)
U, = _Lt_l (Az ) - Lt_l (vaz )
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v, ==L (B)-L"'(C)-L (—Lmulj (5.28b)

seklinde yazilir. Buradan (5.20) ile verilen baslangic sartlar1 ve (5.28a) ve (5.28b) ile

verilen esitlikler kullanildiginda

yoo_ [P 2k 1

0 3 43 sin (kx) ’

2\/_(k2) t cot (kx)cesc(kx),

——FkS 2(3+cos(2kx))csc3(kx),
143:W1c6 k>t (23 cos (kx) + cos (3kx) ) esc* (kx) ,
u, =— 216\/_k9 *(115+76 cos (2kx) + cos (4kx ) ) esc® (kx),
; _k 2 1
3 3 sin’ (k)

v, :g\/§k3 k*tcot (kx)cse® (kx),
v, = —gkét2 (2+c0s(2kx))csc4 (kx),
—i7 §k7\/k_2t3(11cos(kx)+cos(3kx))cscs(kx)’

v, = —%kloz‘4 (33 +26cos(2kx) + cos (4kx))csc6 (kx),

degerleri bulunur. Bulunan bu degerler (4.6) esitliginde yazilarak (5.19) ve (5.20) ile

verilen problem i¢in bir yaklasik ¢dziim bulunmus olur.
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5.5. (1+1) Boyutlu Sac¢ilma Terimli Uzun Dalga Denklemine HAM’ unun

Uygulanmasi

(5.19)-(5.20) ile verilen (1+1) boyutlu sac¢ilma terimli uzun dalga denklemine HAM’

unu uygulamak icin (4.14) ile verilen
L[um ,t)—x,u, (x, l)} =hH(x,t)R, [“m_1 (x,t)]
, m=1 (5.29)
L[vm =%,V (x,t)] =hH(x,t)R, [vm_l (x, t)]

n. mertebeden deformasyon denklemini yeniden goz oniine alalim. Burada R [umfl (x,t)}

ve R, [ v, (x.1)] ifadeleri (5.19) denklemi igin

~ 6
Rm |:um—1 (x,t)} EO ’” o gr.nx—l , (5303)
R _ W Z’“ ou, Z’“ v, 1, 10,
m [v’"—‘(x’t)]_ ot +i:0 K ox +,~:o 5 Ox 3 6x ’ (5.30b)

olacak sekilde yazilir. m=1,H (x,¢) =1 ve (4.16), (5.30a) ile (5.30b) esitlikleri goz oniine

alindig1 zaman

L [“1 (x, t)] =hR, [uo (x, t)]

=2 Sy P 20)

i=0

ou Ou, Ov
L[Ml(x,t)]:h(g—;)‘f‘uog—;-i‘a—;J

u(x,t)=L"| h %+uo%+%
ot ox Ox

ve benzer sekilde

Ly (x.0)]=hR [vy(x.0) ]

m-1 m=1 a ) 183
o 2

ov ou ov, 10u
L[Vl(x,t)]:h(a—to'FVOa—xO'i‘uoa—;'Fg ax;)}

3
v(x,t)=L"| h %-I-VO%-FL!O% 107,
ot ox ox 3 ox



olarak yazilir.

m=2,H (x,t)=1 i¢in

L [u2 (x, 1) —u,(x, t)] =hR, [ul(x, t)]

L{uy(x,0) ~u,(x,0)] = (5“1 Zi u, ., avj

" ox

L [u2 (x, 1) —u, (x, t)] =h (—

Ou, ou, ou, 0V, j
fu—>+u, —+—L
ot ox Oox Ox

1) = 1)+ -1 hl —L 4y —0 4 1,71
u,(x,0) =u,(x,t)+ L ( ( i u,—- D

benzer bigimde

L[v,(x,t)=v,(x,0)]=h R [vl(x,t)]

m- m—1 3
[Vz(x t) Vl(x t) (av] z m 1-i z u, avm—l i 1 0 ulj

=0 i=0 8)(' 3 8x

ov ou ov ov 163u
Liv,(x,t)—v,(x,0)|=h| L +v,—L+v, —L+u,—L+u, —2+ !
[2( ad )] ((% “ox ' ox ox | ox 38x ]

3
v (x,t)=v,(x,0)+ L | h My, a”1+ %+u0 5V1+u1%+la_“31
o ox ox Oox ox 3 0x

olacak sekilde u,(x,t) ve v,(x,¢) terimleri de yazilarak gerekli islemler yapildig1 zaman

268 2k 1

fh(kz) t cot (kx)ese(kx),
u, = —éhtcs& (kx)(\/ghkstcos@x) + 3(\@1/«% +V2(1+h) (K )% sin(Zx)D ,
! V!
uy :—5—4htcsc4(kx)[x/§(k2) *(9+187+ R (9+23k** ) ) cos (kx) +
+J§(k2)% (—9—18h+h2(—9+k4t2))cos(Skx)+6\/§h(1+h)kst(Ssin(loc)+sin(3kx))j,
u, = —%htcscs (ke ) (2703300t + S40NBR* Kt + 2T0NBR Kt + 1153k +
A3t (~54—108h+ 1 (—54-+ 194" )| cos 2k +/3hk’t (54— 108h+ 11 (~54+ K2 )
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cos(4kx) +1082 (K )% sin(2/er) +3243/2h (K )% sin (2/r) +3243/ 27 (K )% sin(2/x) +
+108V21* (K )% sin (2kx) + 39652k sin (2kx) + 3968 20Kk £ sin ( 2kr) -
~5442 (kz)% sin (4kx) - 162ﬁh(k2)% sin (4kx) —16227° (k2 )% sin (4kx) -

—sav2i () sin (4c) + 183202k sin (4he) + 1832k i sin(4kx)j,

S S B
3 3 sin’(k)’
v, = —%\/glﬁh k*tcot (kx)csc? (kx),

v, = —%hk% csc’ (kx)(4hk3t + 2kt cos (2kx) + /6 (1+ h)\/k_zsin(2kx)) ’

" =h(—g\Eh(l+h)k3x/Ptc0t(kx)csc2 (loc)—gh(1+2h)k6t2 (2:+ cos( 2k)esc* (k) -

—2;47 §h2k7 \/p £ (1 1cos ( kx) +cos (3kx)) csc’ (kx)J —% hic’tesc* (kx) (4hk3t +2hic’t cos (2kx) +

6 (1+ 1)V sin (2x)).
v, =%hk3zcsc4 (k) (108 7k’ —2161°K 1 —108h°K 1 = 3Oh(1+ h)NK* (6-+ (3 +22k*) -

—3(2+h) cos(2kr) ) cot () — 6612k NI 1 cos (3kx) esc (or) — 66 Rk I £
cos (3kx)csc(kx)—33R°k"t esc? (kx)— Rk’ cos(4kx)csc? (kx)—2hk’t cos (kx)

(27(1+h)2+13h2k4t2 csc? (kx))—wg ke sin (2kx) - 96 K sin(ka)),

olacak sekilde u,,u,,u,,u, ve v,,v,,v,,v, terimleri elde edilir. Benzer sekilde diger terimler

de bulunabilir. Bulunan bu degerler (4.13) esitliginde yazilarak (5.19) ile verilen problem

icin yaklasik bir ¢oziim yazilabilir.
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5.6. (1+1) Boyutlu Sacilma Terimli Uzun Dalga Denklemine HPM’ unun

Uygulanmasi

HPM’ unun (5.19) ve (5.20) ile verilen (1+1) boyutlu sa¢ilma terimli uzun dalga
denklemine nasil uygulandigini gostermek i¢in (4.20) esitligi yardimu ile (5.19) denklemi
i¢in

oY auoj (GY oY aWj 0

1—p)| LG L m
( p)(ét a ) P\ T

ow 9 oW oY ow 1Y -3
(1_p)(__ﬁj+p _W W+ Y
ot ot ot Ox ox  3ox
biciminde bir homotopi olusturalim. (5.19) denklemi i¢in
Y=Y, +pY,+p’Y,+p’Y, +... (5.32a)
W=W,+ pW, + p’W, + p'W, +... (5.32b)

seklinde bir ¢6ziim aradigimizi kabul edelim. Bu ¢6éziimde (5.31) esitliginde gerekli olan

tiirevler alinir ve yerlerine yazilir ise

+p4YO%+p2YI%+p3Yl%+p aay +pYaaY +p'Y, 2: p41@%+

+pa£§)+pza;§+p3a§2+p48£:3+...=0

+p*W, %Y +p'W, 8; +p’W, %i p4%%+p3%%+p4m%+p4%%+
aW 8;: p oaaW; 4086W;+p2YlaaW;+p3Yl%+p4Ylagy;+
8W0+p4Y28Wl ow, 1 0%, 1283Yl+l oY, A 4ﬂ+”:0

+P3Yza—x —x+P4Ys top—=tZp

>3 3P e 3 e 3
olacak sekilde cebirsel denklem sistemi elde edilir. Bu cebirsel denklem sisteminde
polinom esitligi 6zelligi kullanilarak p nin kuvvetlerine gore asagidaki gibi bir ayrisim
yapilabilir:

0. 0% Oy _ g (5.33)

]

ot ot
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1 Oh Gy O W

0, 5.34
P o e o 639
pz:%+%%+YI%+%:O’ (535)
Ot ox ox Ox
p3:%+%%+x%+g%+amzo’ (535)
ot Ox Ox ox  Ox
ow. ov
0.2% T _y, 5.36
P 539
3
plzanJr%JrWoa%”Oa%Qa?:o, (5.37)
ot ot ox ox 3 0ox
3
ey Oty 0Ny Wy O 1O (5.38)

Oox ox Oox ox 3 ox

3
e B e L L N G )
ot ox ox ox ox ox ox 3 ox

S ot

(5.33)-(5.39) esitlikleri (5.20) ile verilen u(x,0)=u, ve v(x,0)=v, baslangi¢ sartlar ile
¢oziildigii zaman Y,Y,,Y,,Y,,---, W,,W,,W,,W,,--- terimleri

2k 2k 1

Yy —— 20 et -
0 3 \/gsin(kx)’

Y = %/E(kz )% t cot (fx)esc(kx),

Y, = L g (3+cos (2kx))csc’ (kx) ,

33
Y, :ﬁké K21 (23cos (kr) + cos (3kx) esc” (k).
Y, = —ﬁk%‘* (115+ 76 cos (2kx) + cos (4kx)) esc® (kx),
K2k 1
3 3 sin’(k)’
W, =§\Ek3 Kt cot (kx)ese® (kx).
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W, = —gk%2 (2+ cos(2kx))esc’ (kx),
W, =% §k7\/k_2t3 (llcos(loc)+cos(3loc))0305 (lcx),

W, = —%k”)t4 (33+26cos(2kx) + cos (4kx))csc® (kx) ,

olarak bulunur. Bdylece (4.22) esitligi ve yukarida elde edilen Y.Y.Y,,Y,,--- ve

w,, W, ,W,,W,,--- degerleri kullanilarak

u(x0)=limy =Y, + ¥+ Y, +% +.., (5.40a)

p—>

v(x,t)zlimll/V:W0+W1 + W, + W, +..., (5.40Db)
P>

olacak sekilde (5.19) denkleminin yaklasik ¢oziimii yazilabilir.

56



6. YARI ANALITIK METOTLARIN SAYISAL SONUCLARININ
IRDELENMESI

Bu bolimde, SRLW denkleminin (3.26) esitligi ile tanimlanan u(x,t) analitik
¢Oziimii ile (1+1) boyutlu sacilma terimli uzun dalga denkleminin (3.54) esitligi ile
tanimlanan u(x,t) ve v(x,t) ¢Ozltimleri icin ADM, HAM ve HPM kullanilarak elde edilen

sayisal sonuglarinin iic boyutlu goriinlimleri verilmistir. Ayrica bu sayisal sonuglarin
analitik ¢6zlim ile arasindaki mutlak hata verileri tablolar ve grafikler {izerinde verilerek
sayisal irdelenmesi yapilmistir. Daha sonra HAM’ unda kullanilan ve elde edilen yaklasik
¢ozlimiin yakinsaklik araligini belirlemede 6nemli bir rol oynayan keyfi 4 parametresinin
grafigi cizilerek SRLW ve (1+1) boyutlu sagilma terimli uzun dalga denklemlerinin
yaklasik ¢oziimleri i¢in yakinsaklik araligi belirlenmistir. Belirlenen bu yakinsaklik araligi
icerisindeki noktalarda keyfi 4 parametresine degerler verilerek en iyi yaklasimin £

parametresinin hangi degerinde oldugu tablolarda gdsterilmistir.

Incelenen denklemlerin analitik ¢dziimleri u(x,7) ve v(x,t) olmak iizere ADM,

n—-1
HAM ve HPM kullanilarak elde edilen yaklasik ¢6ziim serisi ¢n(x,t)=2uk (x,7)
k=0

n—1
@, (x,t)=Y v, (xt), n>1 seklinde ifade edilebilir.

k=0

6.1. Sayisal Sonuclarin Degerlendirilmesi
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Sekil 10. SRLW denkleminin analitik ¢6ziimii ve yaklasik ¢oziimiiniin {i¢ boyutlu goriiniimii a) SRLW
denkleminin (3.26) ¢6ziim fonksiyonu i¢in analitik ¢6ziimiin {i¢ boyutlu goriiniimii, b) SRLW denkleminin
ADM ile yaklasik ¢ozlimiiniin ii¢ boyutlu goriiniimii, ¢) SRLW denkleminin HAM ile yaklasik ¢dziimiiniin

iic boyutlu goriiniimii (h = —l) , d) SRLW denkleminin HPM ile yaklasik ¢6ziimiiniin {i¢ boyutlu gériiniimii

(k=0.1,

w=0.05)

Tablo 1. ADM kullanilarak SRLW denkleminin mutlak hatasi (k =0.1,w= 0.05)

u(x,t)—¢4 (x,t)
t./x, 0.1 0.2 0.3 0.4 0.5
0.1 | 6.14628x107 | 2.79449x10™° | 7.63524x10™° | 1.70213x107" | 3.36293x10~’
02 |6.037x10”° 2.69078x107° | 7.26275x10™ | 1.60984x1077 | 3.17497x107"
0.3 | 5.95425x107 | 2.59832x10°* | 6.91875x10°® | 1.52349x1077 | 2.99814x10”"
0.4 | 5.89779x107 | 2.51674x10"° | 6.60185x10™° | 1.44272x107" | 2.8317x107’
0.5 |586753x107” | 2.44576x10™° | 6.31079x10™° | 1.36721x107" | 2.67497x10”
Tablo 2. HAM kullanilarak SRLW denkleminin mutlak hatast (k = 0.1, w = 0.05, = —1)

u (x,t) -, (x,t)
t./x, 0.1 0.2 0.3 0.4 0.5
0.1 | 6.14628x107° | 2.79449x10°* | 7.63524x10™* | 1.70213x107 | 3.36293x10”
0.2 |6.037x10” 2.69078x10°° | 7.26275x10™° | 1.60984x1077 | 3.17497x10~’
0.3 | 5.95425x107° | 2.59832x10°° | 6.91875x10™ | 1.52349x1077 | 2.99814x107’
0.4 | 5.89779x107° | 2.51674x10°° | 6.60185x10™° | 1.44272x1077 | 2.8317x10”"
0.5 | 5.86753x107 | 2.44576x10°* | 6.31079x10™° | 1.36721x107" | 2.67497x107’
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Tablo 3. HPM kullanilarak SRLW denkleminin mutlak hatasi (k =0.1,w= 0.05)

u (x, t) A (x,t)

t./x, 0.1 0.2 0.3 0.4 0.5

0.1 6.14628x107° | 2.79449x107° | 7.63524x107° | 1.70213x107" | 3.36293x10”’
0.2 | 6.037x107° 2.69078x107% | 7.26275x107* | 1.60984x1077 | 3.17497x107’
0.3 5.95425x107° | 2.59832x107° | 6.91875x107* | 1.52349x1077 | 2.99814x10’
0.4 5.89779x107° | 2.51674x10° | 6.60185x10™" | 1.44272x107 | 2.8317x107’
0.5 5.86753x107° | 2.44576x107° | 6.31079x10°* | 1.36721x107" | 2.67497x10”’
Tablo 4. h keyfi parametresinin farkli degerleri icin SRLW denkleminin mutlak hatasi
(x=0.5, k=0.1, w=0.05)

t h=-14 h=-12 h=-1 h=-0.8 h=-0.6
0.1 | 7.29309%x10°° | 2.04421x10°° | 3.36293x1077 | 1.8686x1077 | 1.88144x10°°
0.2 | 7.07509%x107° | 1.96146x107° | 3.17497x107" | 1.93032x107" | 1.90638x10°°
0.3 | 6.86981x107° | 1.88322x107° | 2.99814x107 | 1.99173x107 | 1.9325%10°°
0.4 | 6.67668x107° | 1.80926x107° | 2.8317x107 | 2.05298x107" | 1.95984x10°°
0.5 | 6.49521x107°° | 1.73936x10°° | 2.67497x107" | 2.11423x107 | 1.98843x10°°

-2.5396
-2.5398

Sekil 11. SRLW denkleminin ¢, (x,t) icin A egrisinin grafigi

-2.5402
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Sekil 12. SRLW denkleminin analitik ¢6ziimii ile ADM, HAM ve HPM ile elde edilen yaklasik ¢6ziimlerinin
karsgilagtirilmasi

(5.1) ve (5.2) esitlikleri ile verilen SRLW denkleminin ADM, HAM ve HPM ile elde
edilen sayisal sonuclar1 Sekil 10, Tablo 1-4 ve Sekil 12 de verilmistir. Tablo 1-3 de

goriildigii gibi SRLW denkleminin u(x,t) seri ¢Oziimiinlin sadece bes teriminde bile

gercek ¢oziime cok yakin degerler elde edilmistir. Burada & ve w mnin daha kiiclik
secilmesiyle ¢ok daha yakin degerler elde edilebilir. Tablo 2 de goriildiigli gibi HAM ile

hesaplanan sayisal sonuglar i¢in A=-1, H (x,t) =1 almmustir. Keyfi 4 parametresinin bu

sekilde secimi ADM ve HPM ile elde edilen sayisal sonuglarin, HAM ile elde edilen
degerler ile Ortiistiigli sonucuna ulagilmistir. Bu durum Tablo 1-3 ten goriilebilir. Ayrica
HAM ile elde edilen seri ¢ozlimlerde gercek ¢oziime en iyi yakinsamayi saglamak igin
keyfi h parametresinin grafigi cizilerek seri ¢ozlimiin yakinsaklik araligi bulunabilir. Sekil
11 de (5.1) ve (5.2) ile verilen SRLW denklemi i¢in HAM’ u uygulanarak elde edilen seri
cozlimiine gore keyfi # parametresinin egrisi ¢izilmistir. Sekil 11 de goriildiigii gibi seri
cozlimiin yakinsaklik araligi yaklasik olarak —1.4<h<-0.4 araligindadir. Bu aralik
icerisinde 4 parametresine degerler verilerek en iyi yaklasimin hangi noktada olabilecegi
hesaplanabilir. Bu durum Tablo 4 te verilmistir. Bu tablolardan da anlasilacag: iizere

h=-0.8 degerinde gercek ¢cozlime en iyi yakinsama goriilmiistiir.
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a) b)

10
Sekil 13. (1+1) boyutlu sagilma terimli uzun dalga denkleminin u (x,t) analitik ¢oziim ile yaklagik
¢Oziimiiniin ii¢ boyutlu goriiniimii, a) (1+1) boyutlu sa¢ilma terimli uzun dalga denkleminin (3.54) u (x,t)
analitik ¢dzlimiiniin {i¢ boyutlu gériiniimii, b) ADM ile yaklasik ¢6ziimiiniin ii¢ boyutlu goriiniimii, ¢) HAM
ile yaklasik ¢6ziimiiniin ¢ boyutlu gorinimii (h = —1), d) HPM ile yaklagik ¢6ziimiiniin {i¢ boyutlu

goriinimi (& = 0.05)
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Sekil 14. (1+1) boyutlu sagilma terimli uzun dalga denkleminin v(x,t) analitik ¢oziim ile yaklasik

¢Oziimiiniin ii¢ boyutlu goriiniimii, a) (1+1) boyutlu sagilma terimli uzun dalga denkleminin (3.54) v(x, t)

analitik ¢6ziimiiniin {i¢ boyutlu goriiniimii, b) ADM ile yaklagik ¢6ziimiiniin {i¢ boyutlu goriiniimii, ¢c) HAM

ile yaklasik ¢oziimiiniin ii¢ boyutlu goriinimii (h = —1), d) HPM ile yaklagik ¢Oziimiiniin {i¢ boyutlu
goriinimi (k = 0.05)

Tablo 5a. ADM kullanilarak (5.19) denklemi igin u (x, t) ¢dziimiiniin mutlak hatast (k=0.05)

u (x,t) — ¢ (x,t)

t/x, 0.1 0.2 0.3 0.4 0.5
0.1 |1.2581x107° 3.87396x107° | 2.83479x107* | 1.15266x10~ | 3.39836x10°
0.2 | 2.0051x10° 6.29048x107" | 4.68495x107° | 1.93698x107 | 5.8017x10~
03 | 1.77212x107° | 5.59566x10°° | 4.19365x107 | 1.74439x10™° | 5.25564x107°
0.4 | 3.16462x107" | 1.00255x10° | 7.53771x10™° | 3.14524x107" | 9.5053x107"
0.5 | 83126x107"" | 2.63868x10” | 1.98778x10™ | 8.31025x10°* | 2.51619x10”

Tablo 5b. ADM kullanilarak (5.19) denklemi igin v (x, t) ¢Oziimiiniin mutlak hatast (£=0.05)

v(x,t) — Qs (x, t)
t./x, 0.1 0.2 0.3 0.4 0.5
0.1 | 4.32968x107 | 1.32509%x107 | 9.64143x10 | 3.8995x107 | 1.14397x10""
0.2 | 3.46135x107 | 1.08242x10™° | 8.03653x107° | 3.31274x10™* | 9.89373x107*
0.3 | 2.04169%x10°° | 6.43278x1077 | 4.81076x107° | 1.99692x10 | 6.00425x10°
04 | 2.73602x107° | 8.65338x10™° | 6.49553x1077 | 2.70605x107° | 8.16522x10°°
0.5 |5.7514x107"° | 1.82323x10™° | 1.37168x1077 | 5.72716x107 | 1.73187x10°°

62




Tablo 6a. HAM kullanilarak (5.19) denklemi igin u (x, t) ¢Oziimiiniin mutlak hatasi (k =0.05,h= —1)

u (x,t) — ¢ (x,t)
t./x, 0.1 0.2 0.3 0.4 0.5
0.1 |1.2581x10° 3.87396x107° | 2.83479x107* | 1.15266x107 | 3.39836x10
0.2 | 2.0051x10° | 6.29048x107 | 4.68495x10°° | 1.93698x10° | 5.8017x107°
0.3 | 1.77212x10”° | 5.59566x10°° | 4.19365x107" | 1.74439x10™° | 5.25564x10™°
0.4 | 3.16462x107" | 1.00255x10™ | 7.53771x10"° | 3.14524x1077 | 9.5053x107’
0.5 | 83126x107"" | 2.63868x10~ | 1.98778x10™° | 8.31025x10™* | 2.51619x107

Tablo 6b. HAM kullanilarak (5.19) denklemi i¢in v(x, t) ¢Oziimiiniin mutlak hatasi (k =0.05h = —1)

v(x,t) — Qs (x, t)
t/x, 0.1 0.2 0.3 0.4 0.5
0.1 | 4.32968x107 | 1.32509%x107 | 9.64143x10 | 3.8995x107> | 1.14397x10™"
0.2 | 3.46135x107 | 1.08242x107° | 8.03653x10° | 3.31274x10™* | 9.89373x10™*
0.3 | 2.04169%x107° | 6.43278x1077 | 4.81076x107° | 1.99692x10° | 6.00425x10~
0.4 | 2.73602x107° | 8.65338x10°* | 6.49553x107 | 2.70605x10°° | 8.16522x10°°
0.5 |5.7514x107" | 1.82323x10™ | 1.37168x1077 | 5.72716x107 | 1.73187x10°°

Tablo 7a. HPM kullanilarak (5.19) denklemi igin u (x, t) ¢Oziimiiniin mutlak hatasi (k = 0.05)

u(x,t)— ¢ (x,1)

t/x, 0.1 0.2 0.3 0.4 0.5
0.1 |1.2581x10°° 3.87396x107° | 2.83479x107™* | 1.15266x107° | 3.39836x10
0.2 | 2.0051x107° 6.29048x107" | 4.68495x107° | 1.93698x107 | 5.8017x10~
0.3 | 1.77212x107° | 5.59566x10°° | 4.19365x107 | 1.74439x107° | 5.25564x10™°
0.4 | 3.16462x107" | 1.00255x10° | 7.53771x10™° | 3.14524x107" | 9.5053x107"
0.5 | 83126x10™"" | 2.63868x107 | 1.98778x10™ | 8.31025x10°* | 2.51619x107
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Tablo 7b. HPM kullanilarak (5.19) denklemi igin v(x, t) ¢Ozimiiniin mutlak hatasi (k = 0.05)

v(x,t) — Qs (x, t)

t/x, 0.1 0.2 0.3 0.4 0.5

0.1 | 4.32968x107 | 1.32509%x107 | 9.64143x10 | 3.8995x107> | 1.14397x10™"
0.2 | 3.46135x107 | 1.08242x107° | 8.03653x10° | 3.31274x10™* | 9.89373x107*
0.3 | 2.04169%x107° | 6.43278x1077 | 4.81076x107° | 1.99692x10° | 6.00425x10~
0.4 | 2.73602x107° | 8.65338x10°* | 6.49553x107 | 2.70605x10°° | 8.16522x10°°
0.5 |5.7514x107" | 1.82323x10™ | 1.37168x1077 | 5.72716x107 | 1.73187x10°°

Tablo 8. /1 keyfi parametresinin farkli degerlerinde (5.19) denklemi igin u (x, t) ¢Oziimiiniin mutlak hatasi

(x=0.5, k=0.05)

t h=-14 h=-1.2 h=-1 h=-0.8 h=-0.6
0.1 | 432928x107" | 7.67244%x107* | 3.39836%x107° | 3.53561x10° | 1.16117x10*
0.2 | 4.64443x107% | 5.782x10°° 5.8017x107° | 1.04884x10™* | 7.04149x10°*
0.3 | 1.4752x1072 | 1.543x10°° 5.25564x107° | 1.10083x10™* | 4.08067x107°
0.4 | 6.92358x107° | 6.52767x10™* | 9.5053x107 | 8.99609x107° | 2.60907x10°°
0.5 | 3.95614x10° | 3.48139x10™* | 2.51619x107" | 7.10151x10™° | 1.80073x10°"

Sekil 15. (1+1) boyutlu sagilma terimli uzun dalga denkleminin

u(x,t) ¢Oziimiiniin g, (x,t) icin /& egrisinin grafigi
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Tablo 9. /& keyfi parametresinin farkli degerlerinde (5.19) denklemi igin v(x, t) ¢Oziimiiniin mutlak hatasi

(x=0.5, k=0.05)

t h=-14 h=-12 h=-1 h=-0.8 h=-0.6
0.1 | 8.74167 1.78628 1.14397x107" | 3.2739x10™* | 4.37402x107°
0.2 | 3.96884x107" | 5.71937x107 | 9.89373x10™* | 2.58064x10™* | 2.40746x107>
0.3 | 7.68156x107% | 9.19333x107° | 6.00425x107° | 9.33438x10 | 1.16364x107*
0.4 | 2.556x107 2.72214x107° | 8.16522%x10°° | 1.202x10™* 6.10085x10°°
0.5 | 1.12423x107 | 1.10465x10° | 1.73187x10°° | 9.67905x10~° | 3.535%x10°°

h

|

1 2

Sekil 16. (1+1) boyutlu sa¢ilma terimli uzun dalga denkleminin

v(x,t) ¢Oziimiiniin g, (x,t) igin /1 egrisinin grafigi

Sekil 17. (1+1) boyutlu sa¢ilma terimli uzun dalga denkleminin u (x, t) analitik ¢coziimii ile ADM, HAM ve

HPM ile elde edilen yaklasik ¢oziimlerinin karsilagtirilmasi
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Sekil 18. (1+1) boyutlu dispersive uzun dalga denkleminin v(x,) analitik ¢oziimi ile ADM, HAM ve HPM

ile elde edilen yaklagik ¢oziimlerinin karsilastiriimast

(5.19) ve (5.20) esitlikleri ile verilen (1+1) boyutlu sacilma terimli uzun dalga
denkleminin ADM, HAM ve HPM ile elde edilen sayisal sonuglart Sekil 13—18 ve Tablo
5-9 verilmistir. Tablo 5-9 da goriildiigii gibi (1+1) boyutlu sagilma terimli uzun dalga

denkleminin u(x,t) ve v(x,t) seri ¢dziimlerinin sadece alt1 terimi gdz oniine aliarak

analitik ¢6ziime ¢ok yakin degerler elde edilmistir. Tablo 5-9 da goériilecegi lizere ADM,
HAM ve HPM ile elde edilen sayisal sonuglar aynmi ¢ikmistir. Ancak bu durum 4 =-1
alindig1 zaman gergeklesebilen bir durumdur. Yani incelenen problem igin 4 =—1 segilirse
ADM ve HPM’ unun sayisal sonuglart HAM ile bulunan degerlere yakinsar. HAM ile elde
edilen seri ¢oziimlerde gercek ¢ozlime en iyi yakinsamanin / keyfi parametresinin hangi

noktasinda oldugunu belirlemek icin Sekil 15-16 da gorildiigii gibi 4 parametresinin

grafigi cizilerek u(x,7) ve v(x,) seri ¢oziimlerinin yakinsaklik araliklar1 bulunmustur.

Bu sekillere gore u (x, t) ve v(x, t) seri ¢oziimlerinin yakinsaklik araliklar1 yaklagik olarak

—-1.4<h<-0.6 araligindadir. Bu aralik igerisinde # parametresine degerler verilerek en
1yi yaklagimin 4 = —1 noktasinda oldugu Tablo 8-9 dan goriilebilir.

Her iki 6rnek icinde keyfi 4 parametresinin bu sekilde se¢ilebilmesi HAM’ unun bir
avantaji olarak goriilebilir. Clinkii ~# parametresi elde edilen seri ¢oziimiin yakinsaklik
araligin1 belirlemede ©nemli bir rol oynar. Bu tespitten hareket ile gerek SRLW
denkleminin gerek ise (1+1) boyutlu sagilma terimli uzun dalga denkleminin HAM ile

bulunan seri ¢éziimlerinde # =—1 seg¢ilmesi ile Tablo 2-3 ve Tablo 67 den de goriildiigii
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gibi ADM ve HPM’ un aslinda HAM’ unun 6zel bir durumu oldugu sdylenebilir. Bu

durum [72-76] ¢alismalarinda da gosterilmistir.
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7. SONUC

Uygulamali bilimlerde, {izerinde ¢alisilan olay1 matematiksel olarak modelleyerek bu
modelin analitik ¢oziimleri hakkinda bilgi sahibi olmak ¢ok dnemlidir. Ciinkii bu ¢ozliimler
modellenen olayin karakteri hakkinda bilgi verir. Bu yiizden lineer veya lineer olmayan adi
ve kismi diferensiyel denklemlerin analitik ¢oziimlerini bulmak fizik, kimya, biyoloji ve
miihendislik alanlarinda olduk¢a Onemli bir yere sahiptir. Son zamanlarda ozellikle
uygulamali matematik alaninda ¢alisan bilim adamlart lineer olmayan kismi diferensiyel
denklemlerin hareket eden dalga ¢6ziimleri lizerine odaklanmislardir. Elde edilen bu dalga
coziimleri, dalganin yapis1 ve dalgalarin birbirleri ile olan etkilesimleri gibi bir¢ok konuda
uygulama sahasinda calisan bilim adamlarina ilham vermektedir. Boyle bir ihtiyagtan
dolay1 lineer olmayan kismi diferensiyel denklemlerin analitik ¢oziimlerini veren birgok
etkili metot gelistirilmistir. Bu metotlarin ¢ogu sadece lineer olmayan kismi diferensiyel
denklemlere uygulanabilir. Ciinkii bu metotlarin isleyisi “dengeleme terimi” olarak
adlandirilan ve en yiliksek mertebeden lineer terim ile en yiiksek mertebeden lineer
olmayan terimin karsilastirilmasina dayanir.

Lineer olmayan kismi diferensiyel denklemlerin dalga ¢6zlimlerini bulmak igin
kullanilan ve ikinci boliimde analizleri yapilan metotlara bakildiginda temelde hepsi, ele
alman kismi diferensiyel denklemi bir degisken doniisiimii altinda adi bir diferensiyel
denkleme doniistlirerek ¢oziime ulagsma esasina dayanir. Bu metotlarin birbirlerinden farkl
olan tek tarafi secilen Riccati diferensiyel denkleminin ve dolayisiyla kullanilan ¢6ziim

fonksiyonunun farkli olmasidir. Ancak bazi metotlarda Riccati diferensiyel denklemin

!

yerine farkli denklemler almarak ¢oziime ulasilmistir. Ornegin, ) acilim metodunda

Riccati diferensiyel denklemi yerine ikinci mertebeden sabit katsayili adi bir diferensiyel
denklem kullanilmistir. Bu sekilde denklemin segilmesi konusunda bilim adamlarimin
Ozgilir olmasi, bu calismada bahsedilmeyen fakat literatiirde direkt cebirsel metot [77] ve
keyfi denklem metodu [78] olarak gecen metotlarin ortaya ¢ikmasina yol agmustir.
Bahsedilen metotlarin hepsi lineer olmayan kismi diferensiyel denklemlerin hareket eden
dalga ¢oziimlerini verir. Bu ¢oziimler igerisinde periyodik olan dalga ¢6ziimleri ayr1 bir yer
tutar. Bu metotlarin hepsi dengeleme terimini bulma esasina dayandigindan dengeleme

teriminin negatif olmasi1 durumunda ortaya ¢ikabilecek bazi gii¢liikler bu metotlarin bir



cikmazi olarak goriilebilir. Ancak bu durum ile ilgili yapilan ve yapilmakta olan ¢caligmalar
da vardir [37].

Lineer olmayan kismi diferensiyel denklemlerin ¢oziimleri lineer denklemlere gore
daha zordur. Bu yiizden ikinci bdliimde bahsedilen metotlar ve literatiirde var olan daha
baska metotlar ile analitik ¢éztimleri elde edilemeyen lineer olmayan denklemlerin, seri
¢Ozlimlerinin elde edilebildigi ve dordiincii boliimde analizleri yapilan yar1 analitik
metotlar olarak da bilinen bazi sayisal yontemler de vardir. Bu tiir metotlarda ¢oziim seri
formunda aranir. Yart analitik metotlar, ele aliman problem igin verilen bir baglangic
sartindan hareketle serinin diger terimlerini bulma esasina dayanir. Bu noktada karsimiza
serinin yakinsaklig1 kavrami ¢ikar. Bundan dolay1 bu tip sayisal metotlarin yakinsaklik
analizine ihtiya¢ duyulur. Bu yakinsaklik analizi teorik olarak yapilacagi gibi incelenen
problemin seri ¢oziimiinde bagimsiz degiskenlere belirli bir aralikta verilen degerler ile
elde edilen sayisal sonuglarin, problemin ger¢ek ¢oziimii ile arasindaki farkin mutlak
degerine bakilarak ta ¢oziimiin yakinsakligi hakkinda bilgi edinilebilir. Baz1 yar1 analitik
metotlar ile elde edilen seri ¢oziimlerde serinin sadece birkag teriminde bile yakinsamanin
cok iyi oldugu goriilebilir. Literatiirde var olan ve uygulamali matematikgiler tarafindan
sikca kullanilan ADM, HAM ve HPM bu metotlara 6rnek olarak verilebilir. Bu {i¢ metot
da lineer veya lineer olmayan adi ve kismi diferensiyel denklemlere basarili bir sekilde
uygulanmigstir.

Lineer olmayan denklemlerin yar1 analitik metotlar ile c¢oziimii yapilirken
denklemdeki lineer olmayan terimin sayist ve lineer olmayanligin kuvvetliligi ¢oziim
esnasinda bazi zorluklar ¢ikarabilir. Bu yiizden ADM kullanilirken bu zorluklar1 asmak
icin adomian polinomlar1 kullanilir. Lineer olmayanliligin kuvvetli oldugu denklemlerin
sayisal ¢oziimii yapilirken seri ¢oziimiin gercek ¢oziime yakinsamasi ig¢in bazen serinin
birkac teriminin hesaplanmasi yetmeyebilir ve daha fazla terime ihtiya¢ duyulabilir. Bu
durum farkli sayisal metotlarin dogmasina sebep olmustur.

HAM kullanilarak yapilan seri ¢oziimlerde keyfi bir /4 parametresi ve keyfi bir

H (x,t) fonksiyonu kullanilir. Bu durum HAM i¢in bir avantaj olarak goriilebilir. Ciinkii

elde edilen seri ¢oziimiin yakinsaklig1 keyfi 4 parametresine gore yapilir. Bunun igin 4
parametresinin grafigi cizilerek grafikte yatay dogrunun icinde bulundugu # araligi seri
¢Ozlimiin yakinsaklik araligi olarak alinir [64]. Yani ger¢ek ¢Oziime en iyi yakinsama bu
aralikta & parametresine verilen degerler ile elde edilir. Bu aralik i¢inde # degerinin hangi

noktada en iyi yakinsamayi gosterdigini ise bu yakinsaklik araliginda 4 parametresine
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verilen degerler ile elde edilen sayisal sonuglarin, gergek ¢6ziim ile farkinin mutlak degeri

hesaplanarak goriilebilir. Bu igslemler yapilirken genellikle H (x,t) =1 almir. Ancak keyfi

H (x,t) fonksiyonunun farkli secimlerinde gercek ¢oziime yakinsamanin nasil olabilecegi

ayrica incelenebilir. HAM’ unun bir diger avantaji1 ise ¢6ziim serisinin terimlerini bulmak

icin L lineer operatdriiniin 6zglirce belirlenebilmesidir [79,80].
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