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ÖZET  

 

Bu çalışma yedi bölüm halinde oluşturulmuştur. 

Birinci bölümde temel tanımlar verilmiştir.  

İkinci bölümde, lineer olmayan kısmi diferensiyel denklemlerin periyodik dalga 

çözümlerini elde etmek için kullanılan bazı metotların tarihsel olarak analizi yapılmıştır. 

Bu metotların hepsi göz önüne alınan denklemde en yüksek mertebeden lineer olan terim 

ile en yüksek mertebeden lineer olmayan terimin dengelenmesiyle dengeleme terimini 

bulma esasına dayanır. Bu yüzden bu metotlar sadece lineer olmayan kısmi difrensiyel 

denklemlere uygulanabilir. Ayrıca, bu metotlar bir kısmi diferensiyel denklemi bir adi 

diferensiyel denkleme dönüştürür. Böylece çözüme daha kolay ulaşılabilir.  

Üçüncü bölümde, ikinci bölümde analizleri yapılan metotlardan biri ile bazı lineer 

olmayan kısmi diferensiyel denklemlerin periyodik dalga çözümleri elde edilmiştir. 

Dördüncü bölümde, lineer ve lineer olmayan diferensiyel denklemlerin çözümünde 

kullanılan bazı yarı analitik metotların analizi yapılmıştır. 

Beşinci bölümde, dördüncü bölümde analizleri yapılan yarı analitik metotlar 

kullanılarak üçüncü bölümde göz önüne alınan denklemler için seri çözümler elde 

edilmiştir.  

Altıncı bölümde, beşinci bölümde elde edilen seri çözümlerin sayısal sonuçları 

irdelenmiştir.  

Yedinci bölümde, bu çalışmada elde edilen sonuçlar literatürde bulunan çalışmalar 

ile desteklenerek genel bir değerlendirme yapılmıştır.  

 

Anahtar Kelimeler: Solitary dalgalar, Solitonlar, Jakobi eliptik fonksiyon, Dengeleme 

terimi, Analitik çözüm, Periyodik çözüm, Tanh metot, Jakobi eliptik 

fonksiyon metot, G
G
′ 

 
 

 açılım metot, Üstel fonksiyon metot, SRLW 

denklemi, (1+1) boyutlu saçılma terimli uzun dalga denklemi, Yarı 

analitik metotlar, Seri çözüm, Adomian ayrışım metot, Homotopi 

analiz metot, Homotopi perturbasyon metot. 
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SUMMARY 

         

Periodic Wave Solutions of Some Nonlinear Partial Differential Equations 

 

This study is constructed in seven chapters. 

In chapter one, some fundamental definitions are given. 

In chapter two, it is made a historical analyze of some methods to obtain periodic 

wave solutions of nonlinear partial differential equations. All of these methods are based 

on finding balance term with balancing of the highest order linear and nonlinear term. So, 

these methods can be only applied to nonlinear partial differential equation. Moreover, 

these methods convert a nonlinear partial differential equation to an ordinary differential 

equation. Therefore, solution can be obtained easily. 

In chapter three, it is obtained periodic solutions of some nonlinear partial 

differential equations by using one of the methods whose analysis is made in chapter two.  

In chapter four, it is made analyze of some semi analytical methods which are used 

to solve linear and nonlinear equations. 

In chapter five, it is obtained series solutions for equations which are considered in 

third chapter by using semi analytical methods whose analysis are made in chapter four. 

In chapter six, it is discussed numerical results of series solutions which are obtained 

in chapter five. 

In chapter seven, it is made a generalized assessment by supporting results which are 

obtained in this study with some studies in literature. 

 

Keywords: Solitary waves, Solitons, Jacobi elliptic function, Balance term, Analytical 

solution, Periodic solution, Tanh method, Jacobi elliptic function method, 

G
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-expansion method, Exp-function method, SRLW equation, (1+1) 

dimensional dispersive long wave equation, Semi analytical methods, Series 
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Homotopy perturbation method. 
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1. GİRİŞ 

 

İçinde yaşadığımız dünyada hayatımızı etkileyen ve yaşamımıza yön veren birçok 

olay dalga kavramı ile açıklanır. Deprem esnasında yeryüzündeki hareketler ve bu 

hareketlenme ile okyanuslarda meydana gelen büyük su dalgaları (tusunami), radyo, 

televizyon ve cep telefonları gibi hayatımızı kolaylaştıran elektronik cihazların doğasında 

bulunan elektromanyetik dalgalar, insanlar ve diğer canlılar ile iletişim kurmak için var 

olan ses dalgaları gibi dalgalar örnek verilebilir. Yukarıda bahsedilen olayların hepsinin 

matematiksel modellemesi diferensiyel denklemler ile açıklanabilir. Bu diferensiyel 

denklemlerin çözümleri, modellemesi yapılan olayların doğası hakkında insanlara çok 

büyük katkılar sağlar. Bu yüzden diferensiyel denklemlerin çözümlerine olan ilgi hiçbir 

zaman azalmamıştır. Bu ilgi ile birlikte diferensiyel denklemlerin çözümlerinde kullanılan 

birçok teknik ve metot geliştirilmiştir.  

Dalga kavramı oldukça soyut bir kavram olarak karşımıza çıkar. Su yüzeyine 

bakılırken, aslında su dalgası olarak adlandırılıp görülen olay, su yüzeyinin yeni bir düzene 

geçmesi olarak tarif edilebilir. Bir cisim veya ortamdaki sarsıntıya karşılık gelen olay 

dalga olarak adlandırılabilir. Su dalgası gözlemlendiği zaman, su yüzeyinin yeniden 

düzenlendiği görülebilir. Eğer su olmasa dalgada olmayacaktır. Sarmal yay olmasa, 

üzerinde ilerleyen bir dalga olmayacaktır. Ses dalgalarının hava içerisinde bir noktadan 

diğer bir noktaya ilerlemesi basınç değişimi sonucunda ortaya çıkar. Bu nedenle, bir 

dalgaya sarsıntının hareketi olarak bakılabilir. Sarsıntının hareketi (yani dalganın kendisi 

ya da ortamın durumu), parçacıkların hareketi ile karıştırılmamalıdır. Bir havuza bir çakıl 

taşı atıldığında çakıl taşının oluşturduğu sarsıntı küçük su dalgaları meydana getirir. Bu 

dalgalar dışarıya doğru hareket ederek havuzun kenarında son bulur. Eğer sarsıntının 

yakınında yüzen bir yaprağın hareketi dikkatlice izlenirse, onun ilk konumu etrafında 

aşağı-yukarı hareket ettiği, fakat sarsıntı kaynağından asla uzaklaşmadığı veya ona 

yaklaşmadığı izlenebilir. Yani, su dalgaları (ya da sarsıntı) bir yerden başka bir yere 

hareket ederken su onunla birlikte sürüklenmez.  

Dalga olayının açıklanmasında kullanılan matematiksel ifadelerin hepsi bütün 

dalgalarda ortaktır. Dalgaların tanımlanmasında üç fiziksel büyüklük önemli rol oynar. 

Bunlar dalga boyu, frekans ve dalganın hızıdır. Bir dalga boyu, dalga üzerinde özdeş 

olarak davranan herhangi iki nokta arasındaki minimum uzaklıktır. Örneğin, su 
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dalgalarında dalga boyu, komşu tepeler ya da komşu çukurlar arasındaki uzaklıktır. 

Doğadaki olayların çoğu periyodiktir. Böyle periyodik dalgaların frekansı, sarsıntının 

kendini tekrarlama hızıdır. Her dalga içinde bulunduğu ortamın özelliklerine bağlı olarak 

özel bir hızla ilerler ya da yayılır. Örneğin, ses dalgaları havada 020 C  de 344 /m s  hız ile 

yayılır, hâlbuki katıların çoğunda 344 /m s  den daha büyük hızla yayılmaktadır. Yayılmak 

için bir ortama ihtiyaç duymayan bir dalga elektromanyetik dalgalardır. Bu dalgalar 

boşlukta 83 10 /m s×  büyüklüğünde bir hız ile yayılırlar. 

 

 

 

 
                 Şekil 1. Gerilmiş bir ip üzerinde ilerleyen enine dalga 

 

Dalga hareketini göstermenin bir yolu Şekil 1 de görüldüğü gibi; gerilmiş ve bir ucu 

bir yere sabitlenmiş uzun bir ipin diğer ucunu ani olarak hareket ettirmektir. Bu durumda 

tek bir dalga atması meydana gelir ve belli bir hız ile sağa doğru hareket eder. Bu tip 

sarsıntıya ilerleyen dalga denir. Dalga atması ip boyunca ilerlerken sarsılan ipin her 

parçası dalga hareketine dik doğrultuda titreşir. Ortamın sarsılan parçacıkları, dalga hızına 

dik olarak hareket ettiğinde, bu tip ilerleyen dalgaya enine dalga denir. Dalgaların başka 

bir tipine ise boyuna dalgalar denir. Bu dalgalarda ortamın parçacıkları, dalganın hareket 

doğrultusuna paralel bir doğrultuda yer değiştirme yapar. 
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   a)                                                                                    b) 

                       
Şekil 2. Bir boyutta dalga atmasının sağa doğru v  hızı ile ilerlemesi (a) 0t =  da atmanın ifadesi (b) 
t  süre sonra şekil değişmez ve yer değiştirme ( )f x vt−  ile verilir 

  

Şekil 2 de görüldüğü gibi gerilmiş bir ipin üzerinde sabit v  hızı ile sağa doğru 

ilerleyen bir dalga göz önüne alındığında, atma x  ekseni boyunca hareket eder ve ipin 

enine yer değiştirmesi y  koordinatı ile ölçülür. Şekil 2a da 0t =  anında atmanın konumu 

ve şekli gösterilmektedir. Bu anda, atmanın şekli ne olursa olsun ( )y f x=  ifadesi ile 

temsil edilir. Yani y, x in tanımlı bir fonksiyonudur. Maksimum yer değiştirme mA y= , 

dalganın genliği adını alır. Dalga atmasının hızı v  olduğundan; 0t =  anından herhangi bir 

t zamanına kadar sağa doğru vt  uzunluğunda yol alır (Şekil 2b). 

Dalga atmasının şekli zamanla değişmez ise, orijini O  da olan durgun bir referans 

sisteminde ölçülen yer değiştirme, bütün zamanlar için y  ile temsil edilir. Yani, 

( )y f x vt= −  

olur. Benzer şekilde, dalga atması sola doğru ilerler ise, yer değiştirme 

( )y f x vt= +  

şeklinde yazılır. Bazen dalga fonksiyonu adı verilen y  yer değiştirmesi x  ve t  gibi iki 

değişkene bağlıdır. Bu nedenle çoğu kez ( ),y x t  şeklinde yazılır ve “ y , x  ile t  nin 

fonksiyonu” şeklinde okunur [1]. 

Bir kısmi diferensiyel denklemde bulunan bağımlı u  değişkeni, bir dalganın su 

yüzeyinden itibaren yüksekliğini veya bir elektromanyetik dalganın boyu gibi fiziksel bir 

niceliğe karşılık geldiği zaman bağımlı u  değişkeninin özelliklerini veya üretimini 

çalışmak oldukça önemlidir. Bu durum, evulasyon veya dalga denklemlerinin analitik 

olarak çözülmesi için metotların çalışılmasına yol açmıştır. Buradaki amaç hareket eden 

dalga çözümlerini bulmaktır. Eğer çözümler üretim esnasında şekillerini değiştirmiyorlar 

ise bu dalgalara solitary dalgalar denir. 
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Solitary dalgalar ilk olarak John Scott Russell tarafından 1834 yılında 

gözlemlenmiştir. Russell, Edinburg-Glasgow kanalında dalganın şeklinde herhangi bir 

değişiklik olmaksızın yavaş bir şekilde hareket eden suyun çıkışını gözlemlemiştir. 

“Harika dalga aktarımı” olarak nitelendirdiği bu su çıkışını Russell şu şekilde 

anlatmaktadır: “Ben çift beygir gücüyle giden bir botun, dar bir kanaldan geçerken 

hareketini gözlemliyordum. Bot aniden durunca kanalda hareketli olan su kütlesinin botun 

uç kısmının etrafında biriktiğini gördüm. Daha sonra bu su kütlesi arkaya doğru yayıldı. 

Büyük bir hızla öne doğru tek başına bir su dalgasının meydana geldiğini fark ettim. Bu 

yuvarlanmış su kütlesinin hızının azalmadan ve formunu değiştirmeden kanal boyunca 

ilerleyişine devam ettiğini gördüm. Onu at sırtında takip ettim. Ona yetiştiğim zaman saatte 

yaklaşık 8–9 mil hızla ilerlediğini gördüm. Onu 1–2 mil takip ettikten sonra kanalın 

dönüşünde kaybettim. Böylece 1834’ün Ağustos ayında Translasyon Dalgası olarak 

adlandırdığım ilk görüşümü tanıtma şansım oldu” [2]. Dikkate değer bu keşif solitary 

dalgaları çalışmak ve fiziksel laboratuar deneylerini yapmak için Russell’i motive etmiştir. 

Russell, deneysel olarak 

( )2c g h a= +  

ilişkisini ortaya çıkarmıştır. Burada Şekil 3 de görüldüğü gibi c  solitary dalganın hızı, a  

su yüzeyi üzerinde dalganın genliği, h  sonlu bir derinliği ve g  yerçekimi ivmesini 

göstermektedir. Solitary dalgalar bundan dolayı yerçekimi dalgaları olarak da adlandırılır.  

 
Şekil 3. Bir solitary dalga 

  

Solitary dalgaların tarihi 1844 yılında John Scott Russell tarafından yapılan deney ve 

gözlemlerin detaylı bir şekilde rapor edilmesi ile başlar. Başlangıçta John Scott Russell’ın 

çalışmaları bazı çelişkiler taşısa da 1870 yılında Boussinesq ve Rayleigh tarafından yapılan 

teorik çalışma ile Korteweg ve de Vries tarafından 1895 yılında yayınlanan makale 

Russell’ın çalışmalarını doğrulamıştır. 1895 yılında Diederik Johannes Korteweg ve 

doktora öğrencisi Gustav de Vries, KdV denklemi olarak bilinen ve solitary dalgaların 
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varlığında sığ su yüzeyinin yüksekliğini modellemek için lineer olmayan bir kısmi 

diferensiyel denklemini türetmişlerdir. Ortaya atılan bu KdV denklemi daha sonra birçok 

fiziksel olayın açıklanmasında kullanılmıştır. En basit bir biçimde tanımlanan KdV 

denklemi 

6 0t x xxxu uu u+ + = , 

şeklinde yazılabilir. Burada xuu  terimi non-lineerliği ve xxxu  terimi ise lineer dağılımı 

temsil eder. KdV denklemi fizik ve mühendisliğin pek çok dalında zayıf bir şekilde lineer 

olmayan uzun dalgaların tarifi için bir paradigma olarak yaygın bir şekilde bilinir. Bu 

denklem pek çok sıvı akışı durumu için uygun bir model olarak kullanılır. Burada; ( ),u x t  

dalga genliğini tanımlayan uygun alan değişkenini, t  zamanı, x  ise dalganın yayılım 

yönündeki uzay koordinatını göstermektedir. KdV denklemi 

( ) ( )( )2,u x t aSech x Vtγ= − , 22 4V a γ= =  

şeklinde solitary dalga çözümlerinin ailesi tarafından karakterize edilir. Burada γ  dalga 

sayısını, V  dalganın hızını, a  dalganın genliğini göstermektedir. 

1960 yıllarına kadar solitary dalgalar gereken ilgiyi görmemiştir. Ancak 1965 yılında 

Zabusky ve Kruskal [3] solitary dalgaların birbirleriyle etkileşimini incelemişlerdir.  

Zabusky ve Kruskal, KdV denklemi için yaptıkları sayısal çalışmalar ve bu denklemin 

integrallenebileceğini göstermeleri ile solitary dalgalara olan ilgiyi tekrar arttırmışlardır. 

Aynı yıl içerisinde Zabusky ve Kruskal, solitary dalgaların birbirleriyle etkileşim içinde 

olduğunu keşfetmişlerdir. Bunlara ilaveten, şeklini ve genliğini muhafaza eden bu dalgalar 

bu etkileşimden ortaya çıktığı gözlemlenmiştir. Kimliklerini koruyan ve karakterlerini 

küçük parçalarına aktarabilen solitary dalgaların keşfi, Zabusky ve Kruskal’ı bu solitary 

dalgalara solitonlar demek için cesaretlendirmiştir. Bu bilim adamları, solitonlar 

kavramının doğuşuna damgalarını vurmuşlardır. Aynı zamanda Schrödinger denklemi gibi 

lineer olmayan dalga denklemleri ile birlikte soliton çözümler bu alanda yapılan 

çalışmalarda önemli bir rol oynamıştır. Solitonlar ve integrallenebilir sistemlerin modern 

teorisi matematiğin büyük bir alanı olma yolunda gelişmektedir. Ayrıca soliton teorisi [4,5] 

pek çok fiziksel alanlarda da uygulama sahasına sahiptir.  
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Şekil 4. İki soliton etkileşimi 

 

Şekil 4’ te görüldüğü gibi çarpışma esnasında şekillerini koruyan solitary dalgalara 

solitonlar denir. Solitary dalgalar ve solitonlar üretim ve lineer olmayanlık arasında kritik 

bir dengeden dolayı ortaya çıkmıştır. Soliton kavramı bilimin pek çok alanında bir gerçek 

olmadan önce dar anlamda lineer olmayanlık çerçevesinde ortaya çıkmıştır. Araştırmacılar, 

soliton kavramını dünya çapında bilimsel alanın değişik dallarına yaymışlardır. Soliton 

kavramı plazma fiziği, astrofizik, akışkanlar dinamiği gibi bilimin değişik alanlarındaki 

rolünden dolayı çalışmaların büyük bir kısmını etkilemiştir. 

Diğer taraftan, bir soliton aşağıdaki özellikleri taşıyan bir lineer olmayan kısmi diferensiyel 

denklemin bir çözümü olarak tanımlanabilir. 

 )i  Çözüm, sürekli bir dalga formunda olmalıdır. 

 )ii  Çözüm sınırlandırılır, yani; KdV denkleminde elde edilen solitonlar gibi çözüm 

üstel olarak sıfıra doğru bozulur veya Sine-Gordon denkleminde verilen solitonlar gibi 

çözüm sonsuzda bir sabite yakınsar. 

 )iii  Soliton, karakterini koruyan diğer solitonlar ile iç etkileşim içinde bulunur. 

KdV denklemi ve diğer benzer denklemlerin tek soliton çözümü genellikle tek dalga 

olarak kullanılır, eğer birden fazla soliton çözüm varsa solitonlar olarak adlandırılır. Diğer 

bir ifade ile bir soliton diğer bir solitondan sonsuz olarak ayrılıyorsa bir tek dalgadır. 

Ayrıca, KdV denkleminden başka denklemler için tek dalga çözümü 2sec h  fonksiyonu 

olmayabilir fakat hsec  veya ( )axe1tan −  olabilir. Soliton kavramına 1960 yıllarında giriş 

yapılmasına rağmen solitonların bilimsel araştırmaları 19. yüzyılda John Scott Russell’ın 

Edinburg kanalında solitary dalgaları keşfi ile başlamıştır. Scott Russell’ın zamanında 
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solitary dalgaların bu tür bir varlığı hakkında birçok tartışma vardı. Fakat günümüzde pek 

çok lineer olmayan diferensiyel denklemlerin soliton çözümlere sahip olduğu bilinir. 

Son zamanlarda soliton kavramı çok yaygın olarak kullanılmaktadır. Hirota [6] bilineer 

forma indirgeyerek evulasyon denklemlerinin N -soliton çözümlerini oluşturmuştur. 

Bilineer formulasyonu Hirota tarafından ortaya atılmış ve bu formulasyon lineer olmayan 

denklemlerin çalışılmasında önemli açılımlar sağlamıştır. Nimmo ve Freeman [7], N -

soliton çözümlerinin formulasyonuna alternatif olarak N -fonksiyonların Wronskian 

determinantına giriş yapmışlardır. 

Bu tezde, bazı lineer olmayan kısmi diferensiyel denklemlerin periyodik dalga 

çözümlerini elde etmek için kullanılan ve literatürde var olan analitik metotların tarihsel 

olarak analizi yapılmış olup bu metotlardan biri kullanılarak simetrik düzenlenmiş uzun 

dalga (symmetric regularized long wave) denklemi (SRLW) [8] ve (1+1) boyutlu saçılma 

terimli (dispersive) uzun dalga denkleminin [9] hareket eden dalga çözümleri elde edilmiş 

ve bu çözümler içerisinde periyodik olan çözümler ayrıca belirtilmiştir. Daha sonra kısmi 

diferensiyel denklemlerin sayısal irdelenmesinde kullanılan birkaç yarı analitik metotların 

analizi yapılarak SRLW denklemi ve (1+1) boyutlu saçılma terimli uzun dalga denklemi 

için bazı sayısal sonuçlar alınmıştır. 

,0=++++ xxtttxxtxxtt uuuuuuu                                               (1.1) 

şeklinde tanımlanan SRLW denklemi, zayıf bir şekilde lineer olmayan iyon-akustik 

dalgaları ve uzay yük (space-charge) dalgalarını tanımlamak için kullanılır [8]. Bu 

denklem x  ve t  ye göre simetriktir ve aynı zamanda matematiksel fiziğin diğer lineer 

olmayan problemlerinde ortaya çıkar [10,11]. Sayısal araştırmalar bu denklemin solitary 

dalgalarının birbirleri ile etkileşiminin elastik olmadığını gösterir [12]. Buna göre SRLW 

denkleminin solitary dalgaları soliton değildir. Son zamanlarda genelleştirilmiş SRLW 

denklemlerinin yörünge kararlılık ve kararsızlığı tartışılmıştır [13]. Bo-ling [14], SRLW 

denklemlerinin bir sınıfının, periyodik başlangıç değer problemi için spektral metotları 

sunmuştur. Jia-dong [15], genelleştirilmiş SRLW ve SRLW denkleminin çözümü için yarı 

spektral collocation metodunu sunmuştur. Bo-ling [16], çok boyutlu SRLW denklemleri 

için blow-up ve çözümün global varlığını çalışmıştır. Ya-dong ve Zhi-shen [17], çok 

boyutlarda genelleştirilmiş SRLW denklemlerinin periyodik başlangıç değer problemi için 

Fourier spektral metotları incelemişlerdir. Ayrıca  
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0
1 0
3

t x x

t x x xxx

u uu v

v u v uv u

+ + =

+ + + =
,                                                           (1.2) 

olarak tanımlanan (1+1) boyutlu saçılma terimli uzun dalga denklemi akışkanlar 

dinamiğinin temel denklemlerinden biridir. Burada 1v −  su dalgasının yüksekliğini, u  ise 

x  ekseni boyunca suyun yüzey hızını göstermektedir. Bu denklem kıyı kenarlarındaki 

dalgaları modellemek için kullanılır [18]. 

 

1.1. Temel Tanımlar 

 

Tanım 1. 1 Bir bilinmeyen fonksiyon ve bu fonksiyonun muhtelif türevlerini içeren 

matematiksel denklemlere diferensiyel denklemler denir. Bir denklemde belirli bir 

değişkene göre türev alınıyorsa, o değişkene bağımsız değişken, denklemde türevi alınan 

değişkene ise bağımlı değişken denir. 

Bir tek bağımsız değişken içeren diferensiyel denkleme adi diferensiyel denklem 

denir ve genel olarak n. mertebeden adi bir diferensiyel denklem; 
( )( ) 0,,,,, =′′′ nyyyyxF … ,                                                              (1.3) 

şeklinde gösterilir. 

İki veya daha fazla bağımsız değişken ihtiva eden diferensiyel denkleme kısmi 

diferensiyel denklem denir ve n. mertebeden bir kısmi diferensiyel denklem  
2 2 2 2

2 2 2, , , , , , , , , , , , 0
n

n

u u u u u u u uF x y t u
x y t x x y y t x

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

… ,                             (1.4) 

olarak yazılır. 

Tanım 1. 2 Bir diferensiyel denklem lineer veya lineer olmayan olmak üzere iki 

şekilde sınıflandırılır. Eğer bir diferensiyel denklemde bağımlı değişken ve türevlerinin 

katsayıları bağımsız değişken ihtiva ediyor ise bu diferensiyel denkleme lineer diferensiyel 

denklem denir. Eğer bir diferensiyel denklemde bağımlı değişken kendisi veya türevleri ile 

çarpım ya da bölüm durumunda ise veya bağımlı değişken üstel, trigonometrik ya da 

logaritmik olarak bulunuyor ise veya bağımlı değişkenin herhangi bir türevinin derecesi iki 

ve ikiden büyük ise bu tür diferensiyel denklemlere lineer olmayan diferensiyel denklem 

denir.  
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Tanım 1. 3 Bir a x b< <  aralığında tanımlı bir Φ  fonksiyonu a x b< < aralığında 

bulunan her x için tanımlı ve ilk n. mertebeden türeve sahip fonksiyonu 

( )( ), ( ), ( ),..., 0,nF x x x′Φ Φ Φ =                                                     (1.5) 

ise Φ  fonksiyonuna (1.3) denkleminin çözümüdür denir. Bir adi diferensiyel denklemin 

genel çözümü, diferensiyel denklemin mertebesi kadar sabit içerir. Çözüm 

fonksiyonundaki sabitlere verilen her bir değere karşılık bulunan çözüme de özel çözüm 

denir. Bir adi diferensiyel denklemin çözümü eğri ailesine karşılık gelmesine karşın, bir 

kısmi diferensiyel denklemin çözümü yüzey ailesine karşılık gelir. 

 Özel olarak, ikinci mertebeden bir diferensiyel denklem göz önüne alındığında bu 

tip denklemlerin çözümleri iki sabit içerdiğinden bu sabitleri bulmak için iki ek şart 

verilmelidir. Eğer şartlar; bağımlı değişken ve türevleri üzerinde bağımsız değişkenin aynı 

değeri için verilen şartlar ise başlangıç şartları, bağımsız değişkenin farklı değerleri için 

verilen şartlar şeklinde ise sınır şartları ile tanımlanır. Bir diferensiyel denklemin 

başlangıç şartları ile incelenmesine başlangıç değer problemi, sınır şartları ile 

incelenmesine sınır değer problemi denir. 

( ) 00 yxy = , ( ) 10 yxy =′ ,… , ( ) ( ) 10
1

−
− = n

n yxy                                           (1.6) 

(1.3) ve (1.6) ile birlikte verilen bir problem başlangıç değer veya Cauchy Problemi olarak 

bilinir. Diğer taraftan  

( ) 00 yxy = , ( ) 11 yxy = ,… , ( ) ,n ny x y=                                                     (1.7) 

(1.3) ve (1.7) ile birlikte verilen denkleme sınır değer problemi denir. 

Diferensiyel denklem bir fiziksel olayın modeli olduğundan kolaylık olması 

açısından genellikle ikinci mertebeden sabit katsayılı bir kısmi diferensiyel denklem 

alınarak sınıflandırmaya gidilmiştir, ikinci mertebeden bir kısmi diferensiyel denklemin 

genel hali; 

0,xx xy yy x yau bu cu du eu fu g+ + + + + + =                                               (1.8) 

şeklinde yazılabilir. Burada a,b,c,d,e,f ve g sabitler ve  acb 42 −=∆  olmak üzere; 

  0=∆  ise denklem Parabolik (Difüzyon Denklemi), 

  ∆ > 0 ise denklem Hiperbolik (Dalga Denklemi), 

  ∆< 0 ise denklem Eliptik (Laplace Denklemi), 

olarak sınıflandırılmaktadır. Parabolik tipteki bir kısmi diferensiyel denkleme örnek olarak; 

difüzyon (ısı) denklemi, hiperbolik tipteki bir kısmi diferensiyel denklem; dalga denklemi, 

eliptik tipteki bir kısmi diferensiyel denkleme ise Laplace denklemi verilebilir. 
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02 =+ xxt ucu  Difüzyon Denklemi, 

02 =− xxtt ucu  Dalga Denklemi, 

0=+ yyxx uu  Laplace Denklemi, 

örneğin; 
2 2

2 2 0,u uu
x y
∂ ∂

∆ = + =
∂ ∂

                                                                     (1.9) 

denklemini göz önüne alalım. (1.9) ile verilen Laplace denkleminin çözümleri harmonik 

fonksiyonlardır. Yukarıda göz önüne alınan (1.9) denklemi  

( ) ( ),0u x f x=  ve ( ) ( ),0 ,xu x g x=                                                   (1.10) 

başlangıç şartları ile verilmiş ise probleme Cauchy problemi, 

( ) ( )0,u t p t=  ve ( ) ( ), ,u t q t=A                                                       (1.11) 

(1.9) denklemi (1.11) şartları ile verildiğinde, probleme Dirichlet Problemi, eğer çözüm 

bölgesinin dışında dış normali boyunca çözüm aranıyorsa yani; 

( )tf
n
u
=

∂
∂ ,                                                                                (1.12) 

şartı ile verilen (1.9) denklemine ise Neumann Problemi denir. 

Tanım 1. 4 :f A⊂ →\ \  olsun. k  pozitif bir reel sayı olmak üzere x A∀ ∈  için  

( ) ( ) ,f x k f x+ =  

eşitliği sağlanıyor ise f  fonksiyonuna periyodiktir denir ve k  ya da f  fonksiyonunun 

periyodudur denir. 

Tanım 1. 5 Kompleks düzlemde iki yönde periyodik olan fonksiyonlara eliptik 

fonksiyon denir. Eliptik fonksiyon, eliptik integrallerin ters fonksiyonları olarak da 

tanımlanabilir. w  herhangi bir kompleks sayı olmak üzere kompleks düzlemdeki bütün z  

sayıları için ( ) ( )f z w f z+ =  olacak şekilde f  fonksiyonuna periyodiktir denir ve w  ise 

f  fonksiyonunun periyodu olarak adlandırılır. a  ve b  iki esas periyot olmak üzere 

w ma nb= +  olarak yazılabilir. Böylece her eliptik fonksiyon bir çift esas periyoda 

sahiptir. 

Tanım 1. 6 Jakobi eliptik fonksiyonlar eliptik fonksiyonların standart formudur. Bu 

fonksiyonlar, k  eliptik modül olmak üzere ( ),cn u k , ( ),dn u k , ( ),sn u k  olacak şekilde üç 

temel fonksiyon ile gösterilir. Bu üç temel fonksiyon 
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( )
2 2

0

, ,
1

dtu F k
k sin t

ϕ

ϕ= =
−

∫    20 1,k< <  

şeklinde verilen birinci tip eliptik integralin versiyonundan ortaya çıkar. Burada modk u=  

ve ( ) ( ),am u k am uϕ = =  olmak üzere Jakobi genliktir ve ayrıca ( ) ( )1 , ,F u k am u kϕ −= =  

ile tanımlanır. Bu açıklamalardan sonra  

( ) ( )( ) ( ), , ,sin sin am u k sn u kϕ = =  

( ) ( )( ) ( ), , ,cos cos am u k cn u kϕ = =  

( ) ( )( ) ( )2 2 2 21 1 , , ,k sin k sin am u k dn u kϕ− = − =  

eşitlikleri yazılabilir. Burada 0k →  ve 1k →  iken sırası ile bu fonksiyonlar 

( ) ( ),0sn u sin u=   ( ) ( ),1 ,sn u tanh u=  

( ) ( ),0cn u cos u=   ( ) ( ),1 ,cn u sech u=  

( ),0 1dn u =    ( ) ( ),1 ,dn u sech u=  

olarak tanımlanır. Ayrıca Jakobi eliptik fonksiyonlar üzerinde türev 

( )( ) ( ) ( ) ,d sn u cn u dn u
du

=  

( )( ) ( ) ( ) ,d cn u sn u dn u
du

= −  

( )( ) ( ) ( )2 ,d dn u k sn u cn u
du

= −  

eşitlikleri ile açıklanır. Jakobi eliptik fonksiyonların bu özelliklerinin yanı sıra bu 

fonksiyonlar arasında  

( ) ( )2 2 1,sn u cn u+ =  

( ) ( )2 2 2 1,k sn u dn u+ =  

bağıntıları vardır. 

Tanım 1. 7 Lineer olmayan herhangi bir adi diferensiyel denklemde en yüksek 

mertebeden lineer olan terim 
qd u

qdξ
 ve en yüksek mertebeden lineer olmayan terim 

srd upu rdξ

 
 
 

 ile verilsin. M  dengeleme terimi olmak üzere ( )M q Mp s M r+ = + +  eşitliği 

yazılabilir. 
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Tanım 1. 8 X  ve Y  iki uzay ve { }0 1I t t≤ ≤  aralığında tanımlı olsun. Eğer 

: X I Yφ × →  sürekli bir dönüşümü x X∀ ∈  için ( ) ( ),0x f xφ =  ve ( ) ( ),1x g xφ =  oluyor 

ise , :f g X Y→  dönüşümlerine homotopiktirler denir ve f g�  ile gösterilir. : f gφ �  

ise φ , f ’den g ’ye bir homotopi kurar şeklinde ifade edilir.   



 

2. LİNEER OLMAYAN KISMİ DİFERENSİYEL DENKLEMLERİN 

PERİYODİK DALGA ÇÖZÜMLERİ İÇİN BAZI ANALİTİK METOTLAR 

 

Lineer olmayan evulasyon denklemleri ve dalga denklemleri birinci veya ikinci 

mertebeden zamana bağlı türevler içeren kısmi diferensiyel denklemlerdir. Lineer olmayan 

bu denklemlerin analitik veya sayısal çözümlerini bulmak için bazı metotlar son yıllarda 

yoğun bir şekilde çalışılmaktadır. Karmaşık ve sıkıcı cebirsel hesaplamalarda 

araştırmacılara kolaylık sağlayan Maple veya Mathematica gibi sembolik bilgisayar 

programlarının kullanılmasıyla lineer olmayan kısmi diferensiyel denklemlerin analitik 

çözümlerini elde etmek giderek ilgi çekici hale gelmiştir. Lineer olmayan kısmi 

diferensiyel denklemlerin analitik çözümlerini bulmak soliton teorisinde [4] büyük bir 

öneme sahiptir. Çünkü bu denklemler; mühendislik, kimya, biyoloji, mekanik ve fizikte 

ortaya çıkan karmaşık fiziksel olayların matematiksel modelleridir. Bu fiziksel modellerin 

mekanizmasını daha iyi anlamak için fizikçilere ve mühendislere yardımcı olmak veya 

fiziksel problemlere ve uygulamalarına daha iyi bilgi sağlamak için birçok etkili metot 

geliştirilmiştir. 

Bu bölümde kısmi diferensiyel denklemlerin periyodik dalga çözümlerinin elde 

edilmesinde kullanılan bazı analitik metotların analizleri verilecektir. 

 

2.1. Analitik Metotların Analizi 

 

Fiziksel sistemlerin matematiksel modellemesi genellikle lineer olmayan evulasyon 

denklemleri ile açıklanır. Bu gibi denklemlerin analitik çözümleri büyük bir öneme 

sahiptir. Çünkü bir denklemin analitik çözümü o denklemin yapısı ve karakteri hakkında 

bilgi verir. Özellikle kısmi diferensiyel denklemlerin hareket eden dalga çözümleri ve 

periyodik dalga çözümlerine olan ilgi son zamanlarda giderek artmaktadır. Bu tip 

çözümleri elde etmek için birkaç standart metot vardır. Bu metotlardan bazılarını şöyle 

sıralayabiliriz: Hirota’nın bağımlı değişken metodu [19], Bäcklund dönüşümü [20], Cole-

hopf dönüşümü [21], genelleştirilmiş Miura dönüşümü [22], ters saçılma metodu [23], 

darboux dönüşümü [24], painleve açılım metodu [25], homojen balans metodu [26], 

benzerlik indirgeme metodu [27], sine–cosine metodu [28]. 
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Ayrıca pek çok lineer olmayan evulasyon denklemlerin hareket eden dalga çözümleri 

tanh fonksiyon terimleri ile ifade edilebilir [29,30]. Tanh fonksiyon terimleri orijinal 

olarak 1990 ve 1991 yıllarında bir ad hoc temeli üzerine kullanıldı [31,32]. 

 

2.1.1. Tanh Metot 

 

1992 yılında ilk olarak Malfliet [33] tarafından tanh metot formülize edilmiş olup bu 

metot, ısı yayılımı, difüzyon reaksiyonu, plazma fiziği, türbülans teorisi, okyanus dinamiği 

ve biyofizik gibi doğa olaylarını tanımlayan kısmi diferensiyel denklemlerin analitik 

çözümlerini bulmak için önemli bir rol oynar. Bu teknik ile elde edilen çözümler kapalı 

tanh fonksiyonu formundadır. Malfliet bu metot ile 

( ), , , , 0,t x xxH u u u u =…                                                          (2.1)  

şeklinde verilen bir kısmi diferensiyel denklemin hareket eden dalga çözümünü bulmak 

için ( )c x tξ ν= −  gibi bir koordinat göz önüne alarak bu koordinata göre (2.1) denklemini 

adi diferensiyel denkleme dönüştürerek yeniden yazmıştır. Burada ν  dalga hızını ve c  ise 
1L c−=  genişlikli durağan bir dalgayı ifade eder. Genelliği bozmaksızın 0c >  olarak 

tanımlanır. Adi diferensiyel denklem elde edildikten sonra ( )tanhY ξ=  gibi yeni bir 

bağımsız değişkene giriş yapılır. Bu yeni değişkene göre türevler 

( )21 ,d dY
d dYξ

→ −  

( ) ( )
2 2

2 2
2 21 2 1 ,d d dY Y Y

d dY dYξ
 

→ − − + − 
 

 

( ) ( ) ( ) ( )
3 2 2 322 2 2 2
3 2 2 32 1 2 1 1 2 2 1 ,d d d d d dY Y Y Y Y Y Y

d dY dY dY dY dYξ
   

→− − − + − + − − − + −   
   

 

şeklinde yazılabilir, ayrıca daha yüksek mertebeden türevler benzer şekilde hesaplanabilir. 

Bu türevler ile birlikte (2.1) denklemi için aranan 

( )
0

, ,
M

m
m

m
u x t a Y

=

= ∑                                                                         (2.2) 

çözümü, elde edilen adi diferensiyel denklemde yerlerine yazılmasıyla mY  

( )0,1, 2,...,m M=  katsayıları yok edilerek cebirsel denklem sistemi bulunur. Bulunan bu 

cebirsel denklem sisteminde ma  ( )0,1, 2,...,m M=  katsayıları elde edilir ve bu katsayılar 
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(2.2) serisinde yerlerine yazılarak (2.1) denkleminin dalga çözümü bulunmuş olur. Burada 

M  en yüksek mertebeden lineer olan terim ile lineer olmayan terimlerin dengelenmesiyle 

bulunabilen parametredir. Normal olarak analitik çözümün elde edilebilmesi için M  

parametresinin pozitif bir aralık içerisinde olması beklenir. Ancak M  parametresinin 

negatif değer aldığı bir örnek bulunabilir. Örnek olarak ( )1 1Y− ≤ ≤  durumunda 

0Y → tekilliğinden kaçınmak için (2.2) serisi değiştirilmelidir. Bunun için (2.2) serisi 
1'

0

M
m

m
m

a Y
−

=

 
 
 
∑ , ( )' 0 ,M M= − >                                                     (2.3) 

şeklinde yazılır. [34–36] çalışmalarında bu metot kullanarak bazı kısmi diferensiyel 

denklemlerin periyodik dalga çözümleri elde edilmiştir. 

 

2.1.2. Otomatik Tanh Metot 

 

1996 yılında Parkes ve Duffy [37], Malfliet tarafından sunulan tanh metot üzerine 

otomatik tanh fonksiyon metodunu geliştirmişlerdir. Malfliet tarafından 1992 yılında 

sunulan tanh metot her ne kadar diğer analitik metotlardan daha açık ve doğrudan çözüme 

ulaşmayı sağlıyor olsa bile el ile yapılan işlemlerin sıkıcılığı ve metodun sadece çözümü 

tanh formunda olan denklemlere uygulanabilmesi bu metodun bir çıkmazı olarak 

görülebilir. 1996 yılında Parkes ve Duffy tanh metot ile birlikte el ile yapılan cebirsel 

işlemlerin sıkıcılığını ve hesaplamadaki zorluğu ortadan kaldırmak için Mathematica 

bilgisayar programını kullanarak otomatik tanh fonksiyon metodu geliştirmişlerdir. Örneğin 

metot gereği bulunması gereken M  dengeleme teriminin negatif olması durumunda 

yapılacak işlemler hem zor hem de zaman alacağından otomatik tanh fonksiyon metodu bu 

açıdan büyük kolaylık sağlamıştır. 

 

2.1.3. Genişletilmiş Tanh Metot 

 

2000 yılında Fan [38] tanh metot ve otomatik tanh metot üzerine çalışarak 

genişletilmiş tanh fonksiyon metodu sunmuştur. Bu metodun işleyişi Malfliet tarafından 

sunulan tanh metot ile aynıdır. Ancak farklı olan tarafı tanh metot ile (2.1) denklemi için 

sadece ( )tanhY ξ= formunda hareket eden dalga çözümleri elde edilir iken Fan [38] bu 

metot ile 
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2 ,F b F′ = +                                                                                (2.4) 

Riccati diferensiyel denkleminin çözümleri olarak elde edilen 

tanh[ ]
,

coth[ ]

F b b

F b b

ξ

ξ

 = − − −


= − − −
   0b <  ise                                                                       (2.5) 

1 ,F
ξ

= −    0b =  ise                                                                                                (2.6) 

tan[ ]
,

cot[ ]

F b b

F b b

ξ

ξ

 =


= −
   0b >  ise                                                                             (2.7) 

fonksiyonları ile (2.1) denkleminin hareket eden dalga çözümlerini elde etmiştir. Burada b  

nin durumuna göre hareket eden dalga çözümünün tipi (2.5–2.7) eşitliklerinde görüldüğü 

gibi belirlenebilir.  

 

2.1.4. Değiştirilmiş Genişletilmiş Tanh Metot 

 

2002 yılında Elwakil ve arkadaşları [39] değiştirilmiş genişletilmiş tanh fonksiyon 

metodunu literatüre kazandırmışlardır. Bu metodun yukarıda bahsedilen tanh 

metotlarından farklı olan tek tarafı (2.1) denkleminin çözümü için (2.2) ile verilen çözüm 

yerine 

( ) 0
1

, ,
M

i i
i i

i
u x t a a F b F −

=

= + +∑                                                                                   (2.8) 

çözümünün seçilmesidir. Burada ( )0 , , 1, 2,...,i ia a b i M=  sabitlerdir. Bu farklılık dışında bu 

metotta kullanılan Riccati denklemi ve bu denkleminin çözümleri sırasıyla (2.5–2.7) 

eşitliklerinde verilen ifadeler ile aynıdır. Elwakil ve arkadaşları bu çalışma ile diğer tanh 

metotlar ile elde edilemeyen yeni tam çözümler elde etmişlerdir. Ayrıca bu metot ile (2.1) 

denklemi için çözüm olarak kabul edilen (2.8) eşitliğinde iF −  terimi bulunduğundan elde 

edilen çözümler singüler çözüm ve blow-up davranışı gösterirler. Zhang ve arkadaşları 

[40] çalışmalarında değiştirilmiş genişletilmiş tanh fonksiyon metodunu kullanarak 

Konopelchenko–Dubrovsky denkleminin periyodik dalga çözümlerini elde etmiştir. 
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2.1.5. Genelleştirilmiş Genişletilmiş Tanh Metot 

 

2003 yılında Zheng ve arkadaşları [41] yukarıda açıkladığımız sırasıyla tanh metot, 

genişletilmiş tanh fonksiyon metot ve değiştirilmiş genişletilmiş tanh fonksiyon metot 

üzerine çalışarak bu metotlar ile elde edilen çözümleri de kapsayan daha genel çözümler 

ile birlikte bu metotlar ile elde edilemeyen yeni çözümler bularak genelleştirilmiş 

genişletilmiş tanh metodunu sunmuşlardır. Bu metodun bahsedilen diğer metotlardan faklı 

olan tarafı (2.1) denklemi için kabul edilen çözümün  

( )
2

1 2
0

1

iM
j j j

i i ij ij ij ij j
j

b Fu a a F b F c F b F d
F

ξ − −

=

 + = + + + + + 
  

∑ , ( ), 1, 2,3,...,i j n=         (2.9) 

olarak seçilmesidir. Bu fark dışında metodun işleyişi tamamen diğer tanh metotları ile 

aynıdır. Burada j  sayısı i  yinci denklemi ve n  ise denklemlerin sayısını gösterir. 

( ), , , 1,2,..., ; 1,2,...ij ij ij ij ia b c d i n j M= =  ve b  daha sonra belirlenebilen sabitlerdir. Gerçekten, 

(2.9) eşitliğinde ( )0, 1, 2,..., ; 1, 2,...,ij ij ij ib c d i n j M= = = = =  alınır ise 2000 yılında Fan 

[38] tarafından sunulan genişletilmiş tanh fonksiyon metot elde edilir. Eğer 

( )0, 1, 2,..., ; 1, 2,...,ij ij ic d i n j M= = = =  alınır ise 2002 yılında Elwakil [39] tarafından 

sunulan değiştirilmiş genişletilmiş tanh fonksiyon metot elde edilir. Görüldüğü gibi 2003 

yılında Zheng ve arkadaşları tarafından literatüre kazandırılan genelleştirilmiş genişletilmiş 

tanh fonksiyon metot, sırası ile genişletilmiş tanh fonksiyon metot ve değiştirilmiş 

genişletilmiş tanh fonksiyon metotlarını kapsayan bir metottur.       

 

2.1.6. Geliştirilmiş Tanh Metot 

 

2004 yılında Chen ve Zhang [42], (2.1) denkleminin hareket eden dalga çözümlerini 

elde etmek için yukarıda bahsedilen tanh metotlarında kullanılan Riccati diferensiyel 

denklemlerinden farklı olarak  

2dF A BF CF
dξ

= + + ,                                                                                             (2.10) 

şeklinde bir Riccati diferensiyel denklemi alarak geliştirilmiş tanh fonksiyon metodunu 

sunmuşlardır. (2.10) denkleminin çözümleri olarak göz önüne alınan 
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1. Durum: 

1, 0A C B= = =  ise tanF z= ,                                                                            (2.11) 

2. Durum: 

1 1, 0,
2 2

A B C= = = −  ise coth cscF z hz= ±  veya tanh secF z i hz= ± ,         (2.12) 

3. Durum: 

1 , 0
2

A C B= = ± =  ise sec tanF z z= ±  veya csc cotF z z= ± ,                        (2.13) 

4. Durum: 

1, 0, 1A B C= = = −  ise tanhF z=  veya cothF z= ,                                        (2.14) 

5. Durum: 

1, 0A C B= = − =  ise cotF z= ,                                                                         (2.15) 

6. Durum: 

0, 0C B= ≠  ise 
( )( )exp Bz A

F
B

−
= ,                                                                   (2.16) 

7. Durum: 

0, 0A B C= = ≠  ise 
( )0

1F
Cz c

= −
+

,                                                                 (2.17) 

fonksiyonları ile (2.1) denkleminin hareket eden dalga çözümleri yazılabilir. Bu metot ile 

(2.1) denklemi için aranan çözüm 

( ) ( )
0

,
M

i
i

i

u x t a F ξ
=

=∑ ,                                                                                             (2.18) 

şeklinde yazılır. Bu metot yardımı ile El-Wakil ve arkadaşları [43] çalışmalarında lineer 

olmayan fiziksel bir model için periyodik dalga çözümleri elde etmişlerdir. 

Yukarıda bahsedilen ve kısmi diferensiyel denklemlerin hareket eden dalga çözümlerini ve 

periyodik dalga çözümlerini veren tanh metotlarının yanı sıra aynı zamanda eliptik 

fonksiyonların yardımı ile kısmi diferensiyel denklemlerin periyodik dalga çözümlerini 

veren metotlarda vardır. Bu metotlar sırası ile 2001 yılında Jakobi eliptik fonksiyon metot 

[44], 2003 yılında değiştirilmiş jakobi eliptik fonksiyon metot [45] ve 2004 yılında 

genelleştirilmiş jakobi eliptik fonksiyon metot [46] olmak üzere bilim adamları tarafından 

literatüre kazandırılmıştır. Bu kısımda, yukarıda bahsedilen eliptik fonksiyon metotlardan 

sadece genelleştirilmiş jakobi eliptik fonksiyon metodunun analizi yapılacaktır. Diğer 

metotlara verilen referanslardan bakılabilir. 
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2.1.7 Genelleştirilmiş Jakobi Eliptik Fonksiyon Metot 

 

2004 yılında Chen ve Zhang [46] tarafından sunulan bu metodu açıklamak için (2.1) 

kısmi diferensiyel denklemini göz önüne alalım. (2.1) denklemine 

( ) ( ), ,u x t u kx wtξ ξ= = +  dönüşümü yapıldığında   

( ), , , 0Q u u u′ ′ ′′ ′′′ =… ,                                                                                              (2.19) 

şeklinde adi diferensiyel denklem haline dönüşür. (2.1) denkleminin periyodik dalga 

çözümlerini bulmak için 

( )2 2 4F A BF CF′ = + + ,                                                                                        (2.20) 

şeklinde diferensiyel denklemi göz önüne alınır. Burada dFF
dξ

′ =  ve , ,A B C  sabitlerdir. 

(2.1) diferensiyel denklemi için 

( ) ( ) ( )0
1

,
M

i i
i i

i

u x t a a F b Fξ ξ−

=

 = + + ∑ ,                                                                (2.21) 

formunda bir çözüm arandığı kabul edilir. Burada M  (2.19) denkleminde en yüksek 

mertebeden lineer olan terim ile lineer olmayan terimin dengelenmesi sonucu bulunan sabit 

bir sayıdır. Bu çözüm üzerinden gerekli türevler alınarak (2.19) diferensiyel denkleminde 

yerine yazılır. Daha sonra elde edilen denklemde iF  ve iF −  terimlerinin katsayıları sıfıra 

eşitlenerek cebirsel denklem sistemi yazılır. Elde edilen cebirsel denklem sistemi çözülerek 

0 , ,i ia a b  sabitleri bulunur. Bulunan bu sabitler, (2.20) eliptik diferensiyel denklemin 

çözümleri olarak bilinen ve Chen ve Zhang [46] tarafından hesaplanan 

 i) ( )2

2

1

1

A

B m

C m

 =
 = − +


=

,     ( ) ,F sn cdξ ξ ξ=                                                               (2.22) 

ii) 

2

2

2

1
2 1,

A m
B m
C m

 = −


= −
 = −

     ( )F cnξ ξ=                                                                          (2.23) 

iii)

2

2

1
2

1

A m
B m
C

 = −


= −
 = −

,     ( )F dnξ ξ=                                                                           (2.24) 
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iv) 

( )2 2

2

1

2 1
1

A m m

B m
C

 = − −
 = −
 =

,     ( )F dsξ ξ=                                                                  (2.25) 

v)  

2

2

1
2
1

A m
B m
C

 = −


= −
 =

,     ( )F csξ ξ=                                                                           (2.26) 

vi) 
2

2

1
4

2
2

4

A

mB

mC

 =


− =



=


,     ( )
1

snF
dn
ξξ
ξ

=
±

                                                                    (2.27) 

vii 

2

2

2

4
2

2

4

mA

mB

mC


=


− =




=


,     ( )
2

,
1

dnF sn icn
i m sn cn

ξξ ξ ξ
ξ ξ

= ±
− ±

                               (2.28) 

viii 
2

1
4
1 2

2
1
4

A

mB

C

 =


− =

 =


,     
( )

2

2

, , ,
11

,
1

dn snF msn idn
cnmcn i m

cn
m sn dn

ξ ξξ ξ ξ
ξξ

ξ
ξ ξ

= ±
±± −

− ±

           (2.29) 

ix) 

2

2

2

1
4

1
2

1
4

mA

mB

mC

 −
=


+ =


 −

=


,     ( )
1

dnF
msn
ξξ
ξ

=
±

                                                                 (2.30) 
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x) 

2

2

2

1
4

1
2

1
4

mA

mB

mC

 −
=


+ =


 −

=


,     ( )
1

cnF
sn
ξξ
ξ

=
±

                                                                      (2.31) 

xi)

( )22

2

1
4

1
2
1
4

m
A

mB

C

 −
 = −

 + =

 = −


,     ( )F mcn dnξ ξ ξ= ±                                                        (2.32) 

xii  

( )

2

22

1
4

1
2

1
4

A

mB

m
C


=


 + =

 − =


,     ( ) snF
dn cn

ξξ
ξ ξ

=
±

                                                              (2.33) 

xiii) 
2

4

1
4

2
2

4

A

mB

mC

 =


− =



=


,     ( )
21

cnF
m dn

ξ
ξ

=
− ±

                                                          (2.34) 

fonksiyonlarda yerlerine yazılarak (2.1) diferensiyel denklemi için periyodik dalga 

çözümler elde edilebilir. 

Yukarıda bahsedilen eliptik fonksiyon metotları üzerine çalışmalar yapılarak 2004 

yılında Jakobi eliptik rasyonel açılım metot [47], 2006 yılında Weierstrass jakobi eliptik 

fonksiyon açılım metot [48] literatüre kazandırılarak lineer olmayan kısmi diferensiyel 

denklemlerin periyodik dalga çözümleri elde edilmiştir. Periyodik dalga çözümler elde 

etmek için yukarıda analizleri yapılan tanh fonksiyon metotları ve eliptik fonksiyon 

metotlarından farklı olarak üstel fonksiyonlar kullanılarak 2006 yılında He [49] tarafından 

sunulan üstel fonksiyon metot, 2008 yılında Wang ve arkadaşları [50] tarafından sunulan 

G
G
′
 açılım metot gibi metotlar lineer olmayan diferensiyel denklemlerin bilimsel 
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çalışmalarına büyük katkılar sağlamıştır. Bu metot üzerine çalışmalar yapılarak 2010 

yılında Guo ve Zhou [54] tarafından genişletilmiş G
G
′
 açılım metot ve arkasından Lü ve 

arkadaşları [55] tarafından genelleştirilmiş G
G
′
 açılım metot literatüre kazandırılmıştır. 

 

2.1.8. Üstel Fonksiyon Metot 

 

He [49] tarafından 2006 yılında literatüre kazandırılan bu metodu açıklamak için 

(2.1) ile verilen iki değişkenli lineer olmayan kısmi diferensiyel denklemini göz önüne 

alalım. (2.1) denklemi ( ) ( ), ,u x t u kx wtξ ξ= = +  dönüşümü ile  

( ) 0,,, =′′′′′′′ …uuuQ ,                                                                                              (2.35) 

şeklinde adi diferensiyel denklem haline dönüşür. (2.35) denkleminin çözümü 

( )
( )

( )∑

∑

−=

== q

pm

d

b

a
u

ξ

ξ
ξ

mexp

nexp

m

-cn
n

,                                                                                         (2.36) 

formunda kabul edilir. Burada c, d, p ve q daha sonra belirlenebilen pozitif tamsayılardır.  

na  ve mb  bilinmeyen sabitlerdir. (2.35) denkleminin çözümü olarak kabul edilen (2.36) 

eşitliği daha açık olarak 

( ) ( ) ( )
( ) ( )ξξ

ξξ
ξ

qapa
daca

u
qp

dc

−++
−++

=
−

−

expexp
expexp

…
…

,                                                               (2.37) 

şeklinde yazılabilir. Burada , ,p c d  ve q  pozitif tam sayıları (2.35) denklemindeki en 

yüksek mertebeden lineer olmayan terim ile lineer terimin dengelenmesiyle belirlenebilir. 

Daha sonra (2.36) çözümü ve gerekli türevleri (2.35) denkleminde yerlerine yazılarak 

( )ξexp  ye bağlı olan denklem elde edilir. Bu denklemde ( )ξexp  fonksiyonunun 

kuvvetlerine göre katsayıları sıfıra eşitlenerek cebirsel denklem sistemi bulunur. Bu 

cebirsel denklemin çözülmesi ile na  ve mb  sabitleri bulunur. Bulunan bu sabitler (2.36) 

eşitliğinde yerlerine yazıldığı zaman (2.1) denkleminin hareket eden dalga çözümleri 

bulunmuş olur. Elde edilen bu çözümlerde özel olarak ( )2, 1k iK i= = −  dönüşümü 

yapılırsa (2.1) denkleminin periyodik dalga çözümleri bulunur. Burada K  keyfi bir 
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parametre olarak kabul edilir. Bu metot yardımı ile periyodik dalga çözümü elde edilen 

çalışmalara [50–52] referanslarından ulaşılabilir. 

 

2.1.9 G
G
′
-Açılım Metot 

 

2008 yılında ilk olarak Wang ve arkadaşları tarafından sunulan metodun [53] 

yukarıda bahsedilen tanh metotlarından farklı olan tarafı Riccati diferensiyel denkleminin 

yerine ( )G G ξ=  olmak üzere 

0G G Gλ µ′′ ′+ + =                                                                                                  (2.38) 

şeklinde ikinci mertebeden sabit katsayılı lineer bir diferensiyel denklemin 

seçilebilmesidir. Ayrıca (2.1) denklemi için (2.2) şeklinde aranan çözüm yerine burada 

( )
0

,
mM

m
m

Gu x t a
G=

′ =  
 

∑                                                                                            (2.39) 

olacak şekilde çözüm aranır. (2.39) çözümü yazılırken G
G
′
 fonksiyonunun değeri (2.38) 

denkleminin çözümünde hesaplanan G  çözüm fonksiyonu yardımıyla elde edilir. 



 

3. LİNEER OLMAYAN KISMİ DİFERENSİYEL DENKLEMLERİN 

PERİYODİK DALGA ÇÖZÜMLERİ İÇİN BAZI UYGULAMALAR 

 

Bu bölümde, ikinci bölümde analizleri yapılan ve lineer olmayan kısmi diferensiyel 

denklemlerin periyodik dalga çözümlerini veren metotlardan genelleştirilmiş jakobi eliptik 

fonksiyon metodu kullanılarak SRLW denklemi ve (1+1) boyutlu saçılma terimli uzun 

dalga denklemi için periyodik dalga çözümler elde edilecektir. 

 

3.1. SRLW Denklemine Genelleştirilmiş Jakobi Eliptik Fonksiyon Metodunun 

Uygulanması 

 

,0=++++ xxtttxxtxxtt uuuuuuu                                                                             (3.1) 

şeklinde tanımlanan SRLW denklemini göz önüne alalım. (3.1) denklemi için 

( ) ( ), ,u x t u kx wtξ ξ= = +  dönüşümü yapıldığında (3.1) denklemi 

( ) ( )2 42 2 2 2 0,w u k u kwuu kw u w k u′′ ′′ ′′ ′+ + + + =                                                         (3.2) 

haline dönüşür. (3.2) denkleminin her iki tarafı integre edilirse 
2 2 2 2 0,w u k u kwuu k w u′ ′ ′ ′′′+ + + =                                                                            (3.3) 

olarak yazılabilir. Burada integrasyon sabiti sıfır olarak alınmıştır. (3.3) denkleminde en 

yüksek mertebeden lineer olan u ′′′  terimi ile lineer olmayan uu ′  terimlerinin dengelenmesi 

ile (2.21) eşitliğinde bulunması gereken M  değeri 2M =  olarak bulunur. Böylece (3.3) 

denklemi için     

2
212

210 F
b

F
bFaFaau ++++= ,                                                                             (3.4) 

şeklinde bir çözüm aranabilir. Bu çözümde (3.3) denkleminde bulunan gerekli türevler 

alınarak yerlerine yazıldığında ve elde edilen denklemde 2 1 2, , ,F F F F− −  terimlerinin 

katsayıları sıfıra eşitlendiği zaman 
2 2 2 2

1 0 1 2 1 1 1 0,a k a a kw a b kw a w a Bk w+ + + + =  

2 2 2
2 22 24 0,b kB Ab k w− − =  

2 2 2 2 2 2 2
1 2 1 2 1 0 2 2 23 6 2 2 2 8 0,b b kw Ab k w b k b kw a b kw b w Bb k w− − − − − − − =  
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2 2 2 2
1 0 1 1 2 1 1 0,b k a b kw a b kw b w Bb k w− − − − − =                                                          (3.5) 

2 2 2 2 2
2 1 0 2 2 22 2 2 8 0,a k a kw a a kw a w a Bk w+ + + + =  

2 2
1 2 13 6 0,a a kw a Ck w+ =  

2 2 2
2 22 24 0a kw a Ck w+ = , 

olacak şekilde cebirsel denklem sistemi elde edilir. Bu cebirsel denklem sistemi 

Mathematica bilgisayar programı yardımı ile çözüldüğünde 

0 1 2 1

2

4 , 0 , 12 , 0 ,

12 , 0 , 0,

k wa Bkw a a Ckw b
w k
b Akw k w

= − − − = = − =

= − ≠ ≠
                                          (3.6) 

olarak istenilen sabitler bulunmuş olur. Bulunan bu sabitler (2.22)-(2.34) eşitliklerinde 

verilen fonksiyonlarda göz önüne alınarak (3. 4) eşitliğinde yerlerine yazıldığı zaman (3. 1) 

diferensiyel denkleminin tam çözümleri aşağıdaki gibi yazılır.  

)i ( ) 22 ,1,1 mCmBA =+−==  

( ) ( )
2

1 2

14 12 12k wu Bkw Ckwsn k x wt Akw
w k sn k x wt

 
= − − − − + −   + 

.                   (3.7) 

( )
( )

( )
( )

2 2

2 4 12 12
cn k x wt dn k x wtk wu Bkw Ckw Akw

w k dn k x wt cn k x wt
   + +

= − − − − −      + +   
.              (3.8) 

)ii 222 ,12,1 mCmBmA −=−=−=  

( ) ( )
2

3 2

14 12 12k wu Bkw Ckwcn k x wt Akw
w k cn k x wt

 
= − − − − + −   + 

.                   (3.9) 

)iii 1,2,1 22 −=−=−= CmBmA . 

( ) ( )
2

4 2

14 12 12k wu Bkw Ckwdn k x wt Akw
w k dn k x wt

 
= − − − − + −   + 

.                (3.10) 

)iv ( ) 1,12,1 222 =−=−−= CmBmmA  

( )
( )

( )
( )

2 2

5 4 12 12
dn k x wt sn k x wtk wu Bkw Ckw Akw

w k sn k x wt dn k x wt
   + +

= − − − − −      + +   
.            (3.11) 

)v 1,2,1 22 =−=−= CmBmA . 

( )
( )

( )
( )

2 2

6 4 12 12
cn k x wt sn k x wtk wu Bkw Ckw Akw

w k sn k x wt cn k x wt
   + +

= − − − − −      + +   
.             (3.12) 
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)vi
4

,
2

2,
4
1 22 mCmBA =

−
== . 

( )
( )

( )
( )

2 2

7

1
4 12 12

1
sn k x wt dn k x wtk wu Bkw Ckw Akw

w k dn k x wt sn k x wt
   + ± +

= − − − − −      ± + +   
.  (3.13) 

)vii
4

,
2

2,
4

222 mCmBmA =
−

== . 

( ) ( )( )2
8 4 12k wu Bkw Ckw sn k x wt icn k x wt

w k
= − − − − + ± + −  

     
( ) ( )

2
112 .Akw

sn k x wt icn k x wt
 

−   + ± + 
                                                         (3.14) 

( )
( ) ( )

2

9 2
4 12

1

dn k x wtk wu Bkw Ckw
w k i m sn k x wt cn k x wt

 +
 = − − − − −
 − + ± + 

 

     ( ) ( )
( )

2
21

12 .
i m sn k x wt cn k x wt

Akw
dn k x wt

 − + ± +
 −
 + 

                                            (3.15) 

)viii
4
1,

2
21,

4
1 2

=
−

== CmBA  

( ) ( )( )2
10 4 12k wu Bkw Ckw msn k x wt idn k x wt

w k
= − − − − + ± + −  

      
( ) ( )

2
112Akw

msn kx wt idn k x wt
 

−   + ± + 
.                                                      (3.16) 

( )
( )

2

11 2
4 12

1

dn k x wtk wu Bkw Ckw
w k mcn k x wt i m

 +
 = − − − − −
 + ± − 

 

      ( )
( )

2
21

12
mcn k x wt i m

Akw
dn kx wt

 + ± −
 −
 + 

.                                                            (3.17) 

( )
( )

2

12 4 12
1

sn k x wtk wu Bkw Ckw
w k cn k x wt

 +
= − − − −   ± + 

 

      ( )
( )

2
1

12
cn k x wt

Akw
sn k x wt

 ± +
−   + 

.                                                                           (3.18) 
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( )
( ) ( )

2

13 2
4 12

1

cn k x wtk wu Bkw Ckw
w k m sn k x wt dn k x wt

 +
 = − − − − −
 − + ± + 

 

      ( ) ( )
( )

2
21

12
m sn k x wt dn k x wt

Akw
cn k x wt

 − + ± +
 −
 + 

.                                                 (3.19) 

)ix
4

1,
2

1,
4

1 222 −
=

+
=

−
=

mCmBmA  

( )
( )

2

14 4 12
1

dn k x wtk wu Bkw Ckw
w k msn k x wt

 +
= − − − − −  ± + 

 

      ( )
( )

2
1

12
msn k x wt

Akw
dn kx wt

 ± +
−   + 

.                                                                        (3.20) 

)x
4

1,
2

1,
4

1 222 mCmBmA −
=

+
=

−
=  

( )
( )

( )
( )

2 2

15

1
4 12 12

1
cn k x wt sn k x wtk wu Bkw Ckw Akw

w k sn k x wt cn k x wt
   + ± +

= − − − − −      ± + +   
.  (3.21) 

)xi ( )
4
1,

2
1,

4
1 222

−=
+

=
−

−= CmBmA  

( ) ( )( )2
16 4 12k wu Bkw Ckw mcn k x wt dn k x wt

w k
= − − − − + ± + −  

      
( ) ( )

2
112Akw

mcn k x wt dn k x wt
 

−   + ± + 
.                                                      (3.22) 

)xii ( )
4

1,
2

1,
4
1 222 mCmBA −

=
+

==  

( )
( ) ( )

2

17 4 12
sn k x wtk wu Bkw Ckw

w k dn k x wt cn k x wt
 +

= − − − − −  + ± + 
 

      ( ) ( )
( )

2

12
dn k x wt cn k x wt

Akw
sn k x wt

 + ± +
−   + 

.                                                         (3.23) 

)xiii
4

,
2

2,
4
1 42 mCmBA =

−
==  
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( )
( )

2

18 2
4 12

1

cn k x wtk wu Bkw Ckw
w k m dn k x wt

 +
 = − − − − −
 − ± + 

 

     ( )
( )

2
21

12
m dn k x wt

Akw
cn k x wt

 − ± +
 −
 + 

.                                                               (3.24) 

Yukarıda elde edilen çözümler dikkate alındığında 0m →  için (3.1) denkleminin 

periyodik dalga çözümleri 

( ) ( )2

1, 4 12k wu x t kw kw
w k sin kx wt

= − − + −
+

,                                                     (3.25) 

( ) ( )2

1, 4 12k wu x t kw kw
w k cos kx wt

= − − + −
+

,                                                     (3.26) 

( ) ( ) ( )( )2 2, 8 12k wu x t kw kw cot kx wt tan kx wt
w k

= − − − − + + + ,                          (3.27) 

( ) ( )
( )( )

( )( )
( )

22

2 2

1
, 2 3

1

cos kx wtsin kx wtk wu x t kw kw
w k sin kx wtcos kx wt

 ± ++ = − − − − +
 +± + 

,         (3.28) 

( ) ( )
( )( )

( )( )
( )

22

2 2

1
, 2 3

1

sin kx wtcos kx wtk wu x t kw kw
w k cos kx wtsin kx wt

 + ±+ = − − − − +
 ++ ± 

,          (3.29) 

olarak bulunmuş olur.  
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Şekil 5. SRLW denkleminin (3.26) çözümü için üç  
boyutlu periyodik dalga görünümü, 1, 0.5k w= =  
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            a)                                                                      b) 
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   c)                                                                    d) 
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Şekil 6. SRLW denkleminin (3.26) çözümü için iki boyutlu periyodik dalga grafiği, a) 0t = , b) 0.5t = , 
c) 1t = , d) 2t = , ( )1, 0.5k w= =  

 

Yukarıda Şekil 6 da görüldüğü gibi zaman ilerledikçe SRLW denkleminin (3.26) 

çözümü için sola doğru hareket eden periyodik dalga grafikleri görülmektedir. 

 

3.2. (1+1) Boyutlu Saçılma Terimli Uzun Dalga Denklemine Genelleştirilmiş 

Jakobi Eliptik Fonksiyon Metodunun Uygulanması   

 

0
1 0
3

t x x

t x x xxx

u uu v

v u v uv u

+ + =

+ + + =
                                                                                       (3.30) 

şeklinde tanımlanan (1+1) boyutlu saçılma terimli uzun dalga denklemini göz önüne 

alalım. (3.30) denklemi için ( ) ( ) ( ) ( ), , , ,u x t u v x t v kx wtξ ξ ξ= = = +  dönüşümü 

yapıldığında (3.30) denklemi 
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( ) .0
3
1

,0

3 =′′′+′+′

=′+′+′

ukuvkvw

vkukuuw
                                                                                     (3.31) 

olarak yazılır. (3.31) denkleminin her iki tarafı integre edilirse 

.0
3
1

,0
2

3

2

=′′++

=++

ukkuvwv

kvukwu
                                                                                           (3.32) 

şeklinde elde edilir. Burada integrasyon sabiti sıfır olarak alınmıştır. (3.32) denkleminde en 

yüksek mertebeden lineer olan u′′  terimi ile lineer olmayan uv  terimlerinin ve lineer olan 

v  terimi ile lineer olmayan  2u  teriminin dengelenmesi ile 1 1M =  ve 2 2M =  olarak 

bulunur. Böylece (3.32) denklemi için 

1
0 1

21 2
0 1 2 2

bu a a F
F
d dv c c F c F
F F

 = + +

 = + + + +


                                                                              (3.33) 

olacak şekilde bir çözüm aranabilir. (3.33) eşitliğinde gerekli türevleri alınır (3.32) 

denkleminde yerlerine yazıldığında ve elde edilen denklemde 2 1 2, , ,F F F F− −  terimlerinin 

katsayıları sıfıra eşitlendiği zaman  

,00111100 =+++ wckdakcbkca  

,0
3

2 3
1

21 =+
kAbkdb  ,022011 =++ wdkdakdb  

,0
3 1

3
1

211001 =++++ wdkBbkdakdakcb  

,0
3
1

1
3

1211101 =++++ wcBkakcbkcakca                                                             (3.34) 

,022011 =++ wckcakca   ,0
3
2 3

121 =+ Ckakca   

,0
2 0011

2
0 =+++ wakckba
ka

 ,0
2 2

2
1 =+ kdkb ,01110 =++ wbkdkba  

,01110 =++ wakckaa  .0
2
1

2
2
1 =+ kcka ,0≠C .0≠k  

şeklinde elde edilen cebirsel denklem sistemi Mathematica bilgisayar programı yardımı ile 

çözüldüğü zaman 
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2
2

0 4
3

2 kCABka −−−= , 
3

2
1

kC
a −= , 

3
2

1
kAb =  

( )22
0 2

3
1 kCABkc −−= , 01 =c , 

2

2
2

3
Ckc = − , 01 =d ,                                 (3.35) 

3
2 2

2
Akd −= , 2

2

4
3

2 kCABkkw −−=  

elde edilir. Bulunan bu sabitler (2.22)-(2.34) eşitliklerinde verilen fonksiyonlarda göz 

önüne alınarak (3.33) eşitliğinde yerlerine yazıldığı zaman (3.30) diferensiyel denkleminin 

analitik çözümleri aşağıdaki gibi yazılır. 

)i  ( )
2
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Yukarıda (3.30) denklemi için elde edilen çözümler dikkate alındığında 0m →  için 

(3.30) denkleminin periyodik dalga çözümleri 
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şeklinde bulunur.  



36 
 

0
2

4
6

8
10

x
-10

-5

0

5

10

t
-10
-5
0
5

u

0
2

4
6

8
10

x

         

0
2

4
6

8
10

x
-10

-5

0

5

10

t
-20
-15
-10
-5
0

v

0
2

4
6

8
10

x

 
Şekil 7. (1+1) boyutlu saçılma terimli uzun dalga denkleminin (3.54) için sırası ile ( ),u x t  ve ( ),v x t  

çözümleri için üç boyutlu periyodik dalga görünümü, ( )1k=  
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Şekil 8. (1+1) boyutlu saçılma terimli uzun dalga denkleminin (3.54) için ( ),u x t  çözümünün iki boyutlu 

periyodik dalga grafiği, a) 0t = , b) 0.5t = , c) 1t = , d) 2t = , ( )1k=  
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       a)                      b) 
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Şekil 9. (1+1) boyutlu saçılma terimli uzun dalga denkleminin (3.54) için ( ),v x t  çözümünün iki boyutlu 

periyodik dalga grafiği, a) 0t = , b) 0.5t = , c) 1t = , d) 2t = , ( )1k=  
 
 

Yukarıda Şekil 8–9 da görüldüğü gibi zaman ilerledikçe (1+1) boyutlu saçılma 

terimli uzun dalga denkleminin (3.54) için ( ),u x t  ve ( ),v x t  çözümlerinin sola doğru 

hareket eden periyodik dalga grafikleri görülmektedir. 



 

4. LİNEER OLMAYAN KISMİ DİFERENSİYEL DENKLEMLERİN 

PERİYODİK DALGA ÇÖZÜMLERİ İÇİN BAZI YARI ANALİTİK 

METOTLAR 

 

Bu bölümde, lineer ve lineer olmayan adi ve kısmi diferensiyel denklemlerin seri 

çözümlerinin elde edilmesinde kullanılan Adomian ayrışım (Decomposition) metodu 

(ADM), homotopi analiz metodu (HAM) ve homotopi perturbasyon metodu (HPM) olarak 

bilinen yarı analitik metotların analizleri yapılacaktır. 

 

4.1. Bazı Yarı Analitik Metotlar ve Analizleri 

 

4.1.1. Adomian Ayrışım Metot 

 

Ayrışım yöntemi bir seri metodu olduğu ve birçok cebirsel, lineer veya lineer 

olmayan diferensiyel denklemlere başarılı bir şekilde uygulandığı bilinmektedir [56–61]. 

Bu metodu açıklamak için F  hem lineer hem de lineer olmayan terimleri içeren bir genel 

lineer olmayan adi diferensiyel operatör olmak üzere aşağıdaki 

( ) ( ), ,Fu x t g x t= ,                                                                                                   (4.1) 

denklemini göz önüne alalım. Burada L ; verilen diferensiyel denklemin en yüksek 

mertebeden türevini R ; lineer operatörden kalan kısmı ve N ; diferensiyel denklemde 

lineer olmayan terimi göstermek üzere (4.1) denklemi 

Lu Ru Nu g+ + = ,                                                                                                   (4.2) 

şeklinde yazılır. L  tersi mevcut olan ve özel olarak ikinci mertebeden türevlenebilir lineer 

bir operatör olsun. (4.2) eşitliğinin her iki tarafı 1L−  operatörü ile sol taraftan işleme 

konursa 
1 1 1 1L Lu L g L Ru L Nu− − − −= − − ,                                                                                 (4.3) 

eşitliği elde edilir. Bu son eşitlikte gerekli düzenlemeler yapıldıktan sonra 

( ) ( ) ( ) 1 1 1, ,0 ,0tu x t u x tu x L g L Ru L Nu− − −= + + − − ,                                                (4.4) 
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çözüm fonksiyonu bulunur. (4.4) eşitliğindeki Nu  lineer olmayan terimdir ve 
0

n
n

Nu A
∞

=

=∑  

şeklinde yazılır. Burada nA  Adomian polinomları özel polinomlardır ve 

1 0

1 , 0
!

n
k

n kn
k

dA u n
n d

λ

λ
λ

∞

= =

  
= Φ ≥  

  
∑ ,                                                                 (4.5) 

olarak hesaplanabilir. (4.4) eşitliğindeki u  ayrıştırılmış seri çözüm fonksiyonudur. Bu 

çözüm fonksiyonunun 0u  başlangıç değeri ( ) ( )0 ,0 ,0tu u x tu x= +  ile bulunur. Daha sonra 

0u  başlangıç değeri kullanılarak 1 2, ,u u "  terimleri elde edilerek (4.1) denkleminin 

ayrıştırılmış seri çözüm fonksiyonu 

( ) ( )
0

, ,n
n

u x t u x t
∞

=

=∑ ,                                                                                                (4.6) 

şeklinde yazılır. 

 

4.1.2. Homotopi Analiz Metot 

 

Bu metot ilk kez 1992 yılında Liao [62] tarafından doktora tezi olarak sunularak, 

2003 yılında yine Liao tarafından yazılan bir kitapta [63] bu metodun fen ve mühendislik 

alanlarındaki uygulamaları ve diğer analitik teknikler ile arasındaki ilişkileri ortaya 

koyulmuştur. HAM’u pek çok lineer ve lineer olmayan adi ve kısmi diferensiyel 

denklemlere [64–66] başarılı bir şekilde uygulanmıştır. Bu tekniklerin çoğu Taylor serisine 

dayanmaktadır. Eğer başlangıç fonksiyonu iyi seçilirse serinin birkaç teriminde çok iyi 

yaklaşımlar elde edilebilir. Metodu açıklamak için 

[ ( , )] 0N u x t = ,                                                                                                          (4.7) 

olacak şekilde lineer olmayan bir diferensiyel denklemini göz önüne alalım. Burada N  

hem lineer hem de lineer olmayan terimleri içeren genel bir lineer olmayan adi diferensiyel 

operatör, ,x t  bağımsız değişkenler, ( ),u x t  denklemin çözümüdür. Ayrıca 

00
lim ( , ; ) ( , ) ( ,0)
p

x t p u x t u x
→
Φ = = ,                                                                             (4.8) 

şeklinde bir ( ), ;x t pΦ  fonksiyonu tanımlanır. Burada [0,1]p∈  ve 0 ( , )u x t  ise başlangıç 

veya sınır şartlarını gerçekleyen tahmini bir başlangıç fonksiyonudur. Eğer genel homotopi 

tekniği kullanılarak 
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1
lim ( , ; ) ( , )
p

x t p u x t
→
Φ = ,                                                                                             (4.9) 

şeklinde bir eşitlik yazılırsa Liao’nun sfırıncı mertebeden bozulma (deformasyon) 

denklemi 

( ) ( ) ( ) ( ) ( )01 , ; , , , ;p L x t p u x t h p H x t N x t q− Φ − = Φ       ,                                (4.10) 

olarak yazılır. Burada h  yakınsaklık aralığını belirlemede kullanılan keyfi bir parametre, 

( ),H x t  keyfi bir fonksiyon, L  lineer bir operatördür. HAM’unu diğer sayısal metotlar 

arasında önemli bir yere koyan ve geçerli kılan sebep, h  parametresinin ve ( ),H x t  

fonksiyonunun araştırmacılar tarafından özgür bir şekilde seçilebilmesidir. Eğer ,p  0  dan 

1 e artarsa ( ), ;x t pΦ  çözümü ( )0 ,u x t  başlangıç şartı ve ( ),u x t  çözümü arasında değişir. 

( ), ;x t pΦ  fonksiyonunun p  ye göre Taylor seri açılımı 

( ) ( ) ( )0
1

, ; , , m
m

m

x t p u x t u x t p
+∞

=

Φ = +∑ ,                                                                    (4.11) 

olarak yazılır. Burada 

( ) ( )1

1
0

, ;1,
!

m

m m
p

x t p
u x t

m p

−

−

=

∂ Φ
=

∂
,                                                                           (4.12) 

şeklinde yazılır. Eğer 1p →  ise 

0
1

( , ) ( , ) ( , )m
m

u x t u x t u x t
+∞

=

= +∑ ,                                                                                (4.13) 

olarak yazılır. (4.10) ile verilen sıfırıncı mertebeden deformasyon denklemi p  ye göre m  

kez diferensiyellenir, !m  ile bölünür ve sonuçta 0p =  alınır ise 

( )1 1( , ) ( , ) , ( , )m m m m mL u x t u x t h H x t R u x tχ − −   − =    ,                                         (4.14) 

olacak şekilde deformasyon denklemi yeniden yazılabilir. Burada 

( ) ( )
( )1

1 1

0

, ;1
1 !

m

mm m

p

N x t p
R u

m p

−

− −

=

∂ Φ  =
− ∂

,                                                         (4.15) 

ve 

0 1
1 1m

m
m

χ
≤

=  >
,                                                                                                  (4.16) 

şeklinde tanımlanır. 
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4.1.3. Homotopi Perturbasyon Metot 

 

Bu metodun [67] temel fikrini açıklamak için  

( ) ( ) 0,A u f r r− = ∈Ω ,                                                                                     (4.17) 

lineer olmayan diferensiyel denklemini göz önüne alalım. (4.17) denkleminin sınır şartları 

, 0,uB u r
n
∂  = ∈Γ ∂ 

,                                                                                           (4.18) 

şeklinde belirlenir. Burada A  genel diferensiyel operatör, B  sınır operatörü, f  bilinen bir 

analitik fonksiyon, Γ  ise Ω  bölgesinin sınırıdır. A  operatörü L  ve N  olmak üzere iki 

kısma ayrılabilir. L  lineer operatör ve N  lineer olmayan operatördür. Böylece (4.17) 

denklemi  

( ) ( ) ( ) 0L u N u f r+ − = ,                                                                                       (4.19) 

şeklinde yazılır. Buna göre Homotopi tekniği [68] ile bir Homotopi oluşturulur: 

( ) [ ], : 0,1v r p Ω× → \  

olmak üzere 

( ) ( ) ( ) ( )( ) ( ) ( )( ) [ ]0, 1 0, 0,1 ,H v p p L v L u p A v f r p r= − − + − = ∈ ∈Ω ,        (4.20) 

burada [ ]0,1p∈  bir parametre ve 0u  ise (4.17) denkleminin bir başlangıç çözümüdür. 

(4.20) eşitliği göz önüne alındığında sınır şartları 

( ) ( ) ( )0H ,0 0,v L v L u= − =  

( ) ( ) ( )H ,1 0,v A v f r= − =  

şeklinde belirlenir. ( ) ( )0L v L u− , ( ) ( )A v f r−  ifadeleri homotopik olarak adlandırılır. Bu 

metot gereğince p  küçük bir parametre olarak kabul edilir ve (4.20) denkleminin çözümü 

2 3
0 1 2 3

0

... n
n

n

v v pv p v p v p v
∞

=

= + + + + =∑ ,                                                               (4.21) 

olacak şekilde p  parametresinin kuvvet serisi olarak yazılır. 1p =  alınarak (4.17) 

denkleminin çözümü 

( )2 3
0 1 2 31 0

lim ... np n

u v pv p v p v v
∞

→
=

= + + + + =∑ ,                                                          (4.22) 

şeklinde elde edilir. Bu metot ile yapılan bazı çalışmalar [69–71] referanslarında 

görülebilir. 



 

5. YARI ANALİTİK METOTLARIN LİNEER OLMAYAN BAZI KISMİ 

DİFERENSİYEL DENKLEMLERE UYGULANMASI 

 

Bu bölümde, dördüncü bölümde analizleri yapılan ADM, HAM ve HPM 

kullanılarak, SRLW ve (1+1) boyutlu saçılma terimli uzun dalga denklemlerinin seri 

çözümleri elde edilecektir.  

 

5.1. SRLW Denklemine ADM’ unun Uygulanması 

 

,0=++++ xxtttxxtxxtt uuuuuuu                                                                             (5.1) 

( ) ( )
( ) ( ) ( )

2

2 2

1,0 4 12 ,

,0 24 ,t

k wu x kw kw
w k Cos kx

u x kw Sec kx Tan kx

= − − + −

= −

                                                             (5.2) 

başlangıç şartları ile verilmiş olan SRLW denklemini göz önüne alalım. (5.1) denklemi 

aşağıdaki gibi  

( ) 0tt xx xxttL u L u N u L u+ + + = ,                                                                                 (5.3) 

operatör formunda yazılır. Burada 
2

2ttL
t
∂

=
∂

, 
2

2xxL
x
∂

=
∂

, 
4

2 2xxttL
x t
∂

=
∂ ∂

 ve 

( ) xt x tN u uu u u= +  olacak şekilde lineer olmayan terimleri ifade etmektedir. 1
ttL−  ters 

operatörünün var olduğu kabul edilir ve ( )1

0 0

.
t t

ttL dtdt− = ∫ ∫ şeklinde tanımlanarak (5.3) 

denkleminin her iki tarafına uygulanırsa 

( ) ( ) ( )( ) ( )1 1 1 1 0tt tt tt xx tt tt xxttL L u L L u L N u L L u− − − −+ + + =                                                  (5.4) 

elde edilir. Buradan 

( ) ( ) ( ) ( ) ( )( ) ( )1 1 1, ,0 ,0t tt xx tt tt xxttu x t u x tu x L L u L N u L L u− − −− − = − − −                         (5.5) 

olur. Burada ( )
0 0

xt x t n n
n n

N u uu u u A B
∞ ∞

= =

= + = +∑ ∑  şeklinde tanımlanarak nA  ve nB  Adomian 

polinomlarının bazı terimleri (4.5) genel formülü kullanılarak 
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( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

3 3 0 2 1 1 2 0 3

,

,

,

,

xt

xt xt

xt xt xt

xt xt xt xt

A u u

A u u u u

A u u u u u u

A u u u u u u u u

=

= +

= + +

= + + +

#

                                                         (5.6) 

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

3 3 0 2 1 1 2 0 3

,

,

,

,

x t

t x t x

t x t x t x

t x t x t x t x

B u u

B u u u u

B u u u u u u

B u u u u u u u u

=

= +

= + +

= + + +

#

                                          (5.7) 

olarak yazılabilir. (5.5) denklemi için aşağıdaki gibi bir rekürans bağıntısı yazılabilir. 

( ) ( )
( ) ( ) ( )

0

1 1 1
1

,0 ,0t

k tt xx k tt k k tt xxtt k

u u x tu x

u L L u L A B L L u− − −
+

= +


= − − + −
,   0k ≥ ,                                      (5.8) 

(5.8) eşitliği ile verilen rekürans bağıntısı kullanılarak (4.6) ile ifade edilen ayrışım 

serisinin terimlerinin bazıları 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

1 1 1
1 0 0 0 0

1 1 1
2 1 1 1 1

1 1 1
3 2 2 2 2

tt xx tt tt xxtt

tt xx tt tt xxtt

tt xx tt tt xxtt

u L L u L A B L L u

u L L u L A B L L u

u L L u L A B L L u

− − −

− − −

− − −

= − − + −

= − − + −

= − − + −

#

                                                         (5.9) 

şeklinde yazılır. Buradan (5.2) ile verilen başlangıç şartları ve (5.9) ile verilen eşitlikler 

kullanıldığında 

( ) ( ) ( )2 2
0 2

14 12 24 sec tan
cos

k wu kw kw kw t kx kx
w k kx

= − − + − −  

( ) ( ) ( ) ( )( ) ( )2 3 2 2 2 6
1 3 3 132 2cos 2 104 cos 2 cos 4 4 cos 4 secu kt w k kx k kx kx k kx kx= − + + − − + −  

       ( ) ( ) ( )( ) ( ) ( )3 3 2 2 2 62 9 192 8cos 2 96 cos 2 cos 4 sec tank t w w kx w kx kx kx kx− − + − − +  

( ) ( )(( ( )2 8 2 2 2 2
2

1 sec 240 40 4832 3 5 1588 cos 2
80

u kt w kx k w k k kx= − − − + − + +  

      ( ) ( ) ( ) ( )) (2 2 2 2 2 224 480 cos 4 cos 6 4 cos 6 5 95 190k kx kx k kx k t k w+ − − + + + +  

      ( (2 2 4 2 4 2 4 2 25000 4800 372480 2 86 240 43 376k w w k w w w k w+ − − + − + + +  

      )) ( ) ( ))( ( )4 2 4 2 2 4212928 cos 2 32 2 120 1 118 2208 cos 4w kx w w k w w kx+ − − + + + −   
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      ( ) ( ) ( ) ( )2 2 2 2 422 cos 6 44 cos 6 464 cos 6 480 cos 6k kx w kx k w kx w kx− − + − +  

      ( ) ( ) ( ) ( )) ( )2 4 2 2 2 2 21920 cos 6 cos 8 2 cos 8 8 cos 8 seck w kx k kx w kx k w kx kx+ + + − −  

      ( ( )(2 4 2 2 2 4 2 2 4 240 26 1520 26 1232 9952 3 11 72 5 38 ...tw k k w k w k w w k w− + + + − + + + +  

( ) ( )( ( )5 2 3 2 2
3 3 1225 312380 154cos 2 352936 cos 2 952cos 4u k t w k kx k kx kx= − + + − − +  

      ( ) ( ) ( ) ( ) ( ))2 2 258432 cos 4 118cos 6 2008 cos 6 cos 8 4 cos 8k kx kx k kx kx k kx+ + − − +  

      ( ) (10 4 4 6 2 2 4 2 6 21sec 276 31248 552 73248 2542464
64

kx kt w k k k w k w k w+ − − − − − −  

      ( )4 2 4 4 4 6 4 4276 21168 1038528 208207104 330 cos 2w k w k w k w k kx− − + + − −  

      ( ) ( ) ( ) ( )6 2 2 4 2 6 221672 cos 2 660 cos 2 51072 cos 2 177984 cos 2k kx k w kx k w kx k w kx− − − + − 

      ( ) ( )4 2 4330 cos 2 14952 cos 2 ...w kx k w kx− − −

#
 

terimleri bulunur. Bulunan bu terimler (4.6) eşitliğinde yazılarak (5.1) ve (5.2) ile verilen 

problem için bir yaklaşık çözüm elde edilmiş olur. 

 

5.2. SRLW Denklemine HAM’ unun Uygulanması   

 

(5.1)-(5.2) ile verilen SRLW denklemine HAM’ unu uygulamak için (4.14) ile 

verilen 

( )1 1( , ) ( , ) , ( , ) , 1m m m m mL u x t u x t h H x t R u x t mχ − −   − = ≥                                   (5.10) 

.n  mertebeden deformasyon denklemini yeniden göz önüne alalım. Burada 1( , )m mR u x t−    

ifadesi (5.1) denklemi için  
2 2 2 41 1

1 1 1 1 1
1 2 2 2 2

0 0
( , )

m m
m m m i i m i m

m m i
i i

u u u u u uR u x t u
t x x t x t x t

− −
− − − − − − −

−
= =

∂ ∂ ∂ ∂ ∂ ∂  = + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑           (5.11) 

olacak şekilde yazılır. 

( ) ( )
( ) ( )

,0 ,

,0 ,t

u x f x

u x g x

=

=
 

olmak üzere ( ) ( ) ( )0 ,u x t f x tg x= +  şeklinde alınarak; 

 1m = , ( ), 1H x t =  ve (4.16)-(5.11) eşitlikleri ile 
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[ ]1 1 0( , ) ( , )L u x t h R u x t =    

                 
2 2 2 41 1

0 0 1 1 0
2 2 2 2

0 0

m m
m i i m i

i
i i

u u u u u uh u
t x x t x t x t

− −
− − − −

= =

 ∂ ∂ ∂ ∂ ∂ ∂
= + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑  

                 
2 2 2 4

0 0 0 0 0 0
02 2 2 2

u u u u u uh u
t x x t x t x t

 ∂ ∂ ∂ ∂ ∂ ∂
= + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

     
2 2 2 4

1 0 0 0 0 0 0
1 02 2 2 2( , ) u u u u u uu x t L h u

t x x t x t x t
−   ∂ ∂ ∂ ∂ ∂ ∂

= + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
 

olarak yazılır. 

2m = , ( ), 1H x t =  için 

[ ]2 1 2 1( , ) ( , ) ( , )L u x t u x t h R u x t − =    

                                
22 2 41 1

1 11 1 1
2 2 2 2

0 0

m m
m i i m i

i
i i

u u uu u uh u
t x x t x t x t

− −
− − − −

= =

 ∂ ∂ ∂∂ ∂ ∂
= + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

∑ ∑  

                                
22 2 2 4

0 0 01 1 1 1 1 1
1 02 2 2 2

u u uu u u u u uh u u
t x x t x t x t x t x t

 ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 

22 2 2 4
1 0 0 01 1 1 1 1 1

2 1 1 02 2 2 2( , ) ( , ) u u uu u u u u uu x t u x t L h u u
t x x t x t x t x t x t

−   ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

 

benzer şekilde 3( , )u x t  terimi de yazılarak gerekli işlemler yapıldığı zaman 

( ) ( ) ( )2 2
0 2

14 12 24 sec tank wu kw kw ktw kx kx
w k Cos kx

= − − + − − , 

( ) ( ) ( ) ( )( )( 2 3 2 2 2
1 3 3 132 2cos 2 104 cos 2 cos 4 4 cos 4u h kt w k kx k kx kx k kx= + + − − +  

     ( ) ( ) ( ) ( )( )6 3 3 2 2 2sec 2 9 192 8cos 2 96 cos 2 cos 4kx k t w w kx w kx kx+ − + − − +  

     ( ) ( ))6sec tankx kx  

( ) ( )( ( )2 3 2 4 2 4
2 1

3 8 320 19328 9cos 2 120 cos 2 19056 cos 2
4

u u h hkt w k k kx k kx k kx= + − − − − − − + +


 

     ( ) ( ) ( ) ( ) ( )) ( )2 4 2 4 8192 cos 4 1920 cos 4 cos 6 8 cos 6 16 cos 6 seck kx k kx kx k kx k kx kx+ − + − +  

     +…  

( ( )3 4 2 2 2 2 4 2 4 2
3 2

1 95 190 5000 1920 107520 86 cos 2
16

u u hk t w k w k w w k w k kx= − − − − + + − −  

     ( ) ( ) ( ) ( )2 2 2 4 2 4172 cos 2 752 cos 2 192 cos 2 120576 cos 2w kx k w kx w kx k w kx− − + − +  
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     ( ) ( ) ( )2 2 2 232 cos 4 64 cos 4 3776 cos 4k kx w kx k w kx+ + + −…  

olacak şekilde 0 1 2 3, , ,u u u u  terimleri elde edilir. Benzer şekilde diğer terimler de 

bulunabilir. Bulunan bu değerler (4.13) eşitliğinde yazılarak (5.1) ile verilen problem için 

şeklinde yaklaşık bir çözüm yazılabilir. 

 

5.3. SRLW Denklemine HPM’ unun Uygulanması   

 

HPM’unun (5.1) ve (5.2) ile verilen SRLW denklemine nasıl uygulandığını 

göstermek için (4.20) eşitliği yardımı ile (5.1) denklemi için aşağıdaki gibi bir homotopi 

oluşturalım: 

( )
22 2 2 2 4

0
2 2 2 2 2 21 0uY Y Y Y Y Y Yp p Y

t t t x x t x t x t
   ∂∂ ∂ ∂ ∂ ∂ ∂ ∂

− − + + + + + =   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  
                 (5.12) 

(5.1) denklemi için  
2 3

0 1 2 3 ...Y Y pY p Y p Y= + + + +                                                                                (5.13) 

şeklinde bir çözüm aradığımızı kabul edelim. Bu çözümde (5.12) eşitliğinde gerekli olan 

türevler alınır ve yerlerine yazılır ise 
2 2 2 2 22 2 2 2

2 3 2 30 3 0 0 01 2 1 2
2 2 2 2 2 2 2 2 2

Y Y u u YY Y Y Yp p p p p p p
t t t t t t x x x

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
+ + + − + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

2 2 2 22 2 2
4 2 3 4 2 33 0 3 01 2 1

0 0 0 0 1 12

Y Y Y YY Y Yp pY p Y p Y p Y p Y p Y
x x t x t x t x t x t x t

∂ ∂ ∂ ∂∂ ∂ ∂
+ + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

2 22 2
4 3 4 4 2 30 0 0 0 0 02 1 1 2

1 2 2 3
Y Y Y Y Y YY Y Y Yp Y p Y p Y p Y p p p

x t x t x t x t x t x t x t
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂

+ + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

4 2 3 4 3 40 3 0 01 1 1 1 2 2 2 1Y Y Y YY Y Y Y Y Y Y Yp p p p p p
x t x t x t x t x t x t

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

4 44 4
4 2 3 43 0 0 31 2

2 2 2 2 2 2 2 2 ... 0Y Y Y YY Yp p p p p
x t x t x t x t x t

∂ ∂ ∂ ∂∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

olacak şekilde cebirsel denklem sistemi elde edilir. Bu cebirsel denklem sisteminde 

polinom eşitliği özelliği kullanılarak p  nin kuvvetlerine göre aşağıdaki gibi bir ayrışım 

yapılabilir: 
2 2

0 0 0
2 2: 0Y up

t t
∂ ∂

− =
∂ ∂

                                                                                                        (5.14) 
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2 2 2 42
1 0 0 0 0 0 01

02 2 2 2 2: 0u Y Y Y Y YYp Y
t t x x t x t x t

∂ ∂ ∂ ∂ ∂ ∂∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
                                                (5.15) 

22 2 2 4
2 0 0 02 1 1 1 1 1

0 12 2 2 2: 0Y Y YY Y Y Y Y Yp Y Y
t x x t x t x t x t x t

∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
                             (5.16) 

2 22 2 2 4
3 3 0 0 02 2 1 2 1 1 2 2

0 1 22 2 2 2: 0Y Y Y YY Y Y Y Y Y Y Yp Y Y Y
t x x t x t x t x t x t x t x t

∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
       (5.17) 

#  

(5.14)-(5.17) eşitlikleri ( ) ( ) ( )0 ,u x t f x tg x= +  başlangıç şartı ile çözüldüğü zaman 

0 1 2 3, , , ,Y Y Y Y "  terimleri 

( ) ( ) ( )2 2
0 2

14 12 24 sec tank wY kw kw ktw kx kx
w k Cos kx

= − − + − − , 

( )( ) ( ) ( )(3 2 4 2 2 2 2 2 2
1 12 2 cos sec 3 3 3 132 2 cos 2Y k t w kx kx kt w k w k w k kx= − − + − + + + +  

     ( ) ( ) ( ) ( ) ( )) ( )2 2 2 2 2 2 2 62 cos 2 104 cos 2 cos 4 cos 4 4 cos 4 secw kx k w kx k kx w kx k w kx kx+ − − − + −  

     ( ) ( ) ( )( ) ( ) ( ) ( )( )3 3 2 5 3 3 4 74 sec 11sin sin 3 96 sec 5sin sin 3k t w kx kx kx k t w kx kx kx− − + + − + , 

( )( ( ) ( ) ( )3 2 3 2 2 2
2 3 40 4832 15cos 2 4764 cos 2 24cos 2 480 cos 4Y k t w k kx k kx kx k kx= − − − − + + − −  

     ( ) ( )) ( ) ( )( ( )2 8 3 4 3 2 21cos 6 4 cos 6 sec 40 4832 15cos 2 4764 cos 2
4

kx k kx kx k t w k kx k kx− + − − − − + +  

     ( ) ( ) ( ) ( )) ( )2 2 824cos 2 480 cos 4 cos 6 4 cos 6 seckx k kx kx k kx kx+ − − + −…  

( )( ( ) ( )5 2 3 2 2
3 3 1225 312380 154cos 2 352936 cos 2 952cos 4Y k t w k kx k kx kx= − + + − − +  

     ( ) ( ) ( ) ( ) ( ))2 2 258432 cos 4 118cos 6 2008 cos 6 cos 8 4 cos 8k kx kx k kx kx k kx+ + − − +  

     ( ) ( )( ( ) ( )10 5 4 3 2 21sec 1225 312380 154cos 2 352936 cos 2 952cos 4
4

kx k t w k kx k kx kx− + + − − +  

     ( ) ( ) ( ) ( ) ( ))2 2 258432 cos 4 118cos 6 2008 cos 6 cos 8 4 cos 8k kx kx k kx kx k kx+ + − − +  

     ( )10sec kx −…  

#  

olarak bulunur. Böylece (4.22) eşitliği ve yukarıda elde edilen 0 1 2 3, , , ,Y Y Y Y "  değerleri 

kullanılarak 

( ) 0 1 2 31
, lim ...

p
u x t Y Y Y Y Y

→
= = + + + +                                                                      (5.18) 

olacak şekilde (5.1) denkleminin yaklaşık çözümü yazılabilir. 



48 
 

5.4. (1+1) Boyutlu Saçılma Terimli Uzun Dalga Denklemine ADM’ unun 

Uygulanması 

 

0
1 0
3

t x x

t x x xxx

u uu v

v u v uv u

+ + =

+ + + =
                                                                                       (5.19) 

( ) ( )

( ) ( )

2

3 2

2

2 2 1,0 ,
3 sin3

2 1,0 ,
3 3 sin

k ku x
kx

k kv x
kx

= − −

= −

                                                                            (5.20) 

başlangıç şartları ile verilmiş olan (1+1) boyutlu saçılma terimli uzun dalga denklemini göz 

önüne alalım. (5.19) denklemi aşağıdaki gibi  

( )

( ) ( )

0
1, , 0
3

t x

t xxx

L u N u L v

L v M u v R u v L u

+ + =

+ + + =
,                                                                    (5.21) 

operatör formunda yazılır. Burada tL
t
∂

=
∂

, 
3

3xxxL
x
∂

=
∂

 türev operatörlerinin ve 

( ) xN u uu= , ( ), xM u v u v= , ( ), xR u v uv= olacak şekilde lineer olmayan terimleri ifade 

etmektedir. 1
tL−  ters operatörünün var olduğu kabul edilir ve ( )1

0

.
t

tL dt− = ∫ şeklinde 

tanımlanarak (5.21) denkleminin her iki tarafına uygulanırsa 

( ) ( )( ) ( )

( ) ( )( ) ( )( )

1 1 1

1 1 1 1

0

1, , 0
3

t t t t x

t t t t t xxx

L L u L N u L L v

L L v L M u v L R u v L L u

− − −

− − − −

+ + =

 + + + = 
 

,                                  (5.22) 

elde edilir. Buradan 

( ) ( ) ( )( ) ( )

( ) ( ) ( )( ) ( )( )

1 1

1 1 1

, ,0

1, ,0 , ,
3

t t x

t t t xxx

u x t u x L N u L L v

v x t v x L M u v L R u v L L u

− −

− − −

= − −

 = − − −  
 

,                             (5.23) 

olur. Burada ( )
0

x n
n

N u uu A
∞

=

= =∑ , ( )
0

, x n
n

M u v u v B
∞

=

= =∑ , ( )
0

, x n
n

R u v uv C
∞

=

= =∑  şeklinde 

tanımlanarak nA , nB  ve nC  Adomian polinomlarının bazı terimleri (4.5)  genel formülü 

kullanılarak 
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( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

3 3 0 2 1 1 2 0 3

,

,

,

,

x

x x

x x x

x x x x

A u u

A u u u u

A u u u u u u

A u u u u u u u u

=

= +

= + +

= + + +

#

                                                          (5.24) 

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0

1 0 1 1 0

2 0 2 1 1 2 0

3 0 3 1 2 2 1 3 0

,

,

,

,

x

x x

x x x

x x x x

B u v

B u v u v

B u v u v u v

B u v u v u v u v

=

= +

= + +

= + + +

#

                                                           (5.25) 

( )
( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )

0 0 0

1 1 0 0 1

2 2 0 1 1 0 2

3 3 0 2 1 1 2 0 3

,

,

,

,

x

x x

x x x

x x x x

C u v

C u v u v

C u v u v u v

C u v u v u v u v

=

= +

= + +

= + + +

#

                                                           (5.26) 

olarak yazılabilir. (5.23) denklemi için aşağıdaki gibi bir rekürans bağıntısı yazılabilir. 

( )
( ) ( )

0

1 1
1

,0

n t n t x n

u u x

u L A L L v− −
+

=


= − −
,                                                                             (5.27a) 

( )

( ) ( )

0

1 1 1
1

,0

1
3n t n t n t xxx n

v v x

v L B L C L L u− − −
+

=

  = − − −    

,       0n ≥ ,                                      (5.27b) 

(5.27a) ve (5.27b) eşitlikleri ile verilen rekürans bağıntıları kullanılarak (4.6) ile ifade 

edilen ayrışım serisinin terimlerinin bazıları 

( ) ( )
( ) ( )
( ) ( )

1 1
1 0 0

1 1
2 1 1

1 1
3 2 2

t t x

t t x

t t x

u L A L L v

u L A L L v

u L A L L v

− −

− −

− −

= − −

= − −

= − −

#

                                                                                   (5.28a) 
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( ) ( )

( ) ( )

( ) ( )

1 1 1
1 0 0 0

1 1 1
2 1 1 1

1 1 1
3 2 2 2

1
3
1
3
1
3

t t t xxx

t t t xxx

t t t xxx

v L B L C L L u

v L B L C L L u

v L B L C L L u

− − −

− − −

− − −

 = − − −  
 
 = − − −  
 
 = − − −  
 

#

                                                             (5.28b) 

şeklinde yazılır. Buradan (5.20) ile verilen başlangıç şartları ve (5.28a) ve (5.28b) ile 

verilen eşitlikler kullanıldığında 

( )
2

0
2 2 1
3 sin3
k ku

kx
= − − , 

( ) ( ) ( )
3

2 2
1

2 2 cot csc
3

u k t kx kx= , 

( )( ) ( )5 2 3
2

1 3 cos 2 csc
3 3

u k t kx kx= − + , 

( ) ( )( ) ( )6 2 3 4
3

1 23cos cos 3 csc
27 2

u k k t kx kx kx= + , 

( ) ( )( ) ( )9 4 5
4

1 115 76cos 2 cos 4 csc
216 3

u k t kx kx kx= − + + , 

#  

( )
3 2

0 2

2 1
3 3 sin
k kv

kx
= − , 

( ) ( )3 2 2
1

4 2 cot csc
3 3

v k k t kx kx= , 

( )( ) ( )6 2 4
2

4 2 cos 2 csc
9

v k t kx kx= − + , 

( ) ( )( ) ( )7 2 3 5
3

4 2 11cos cos 3 csc
27 3

v k k t kx kx kx= + , 

( ) ( )( ) ( )10 4 6
4

2 33 26cos 2 cos 4 csc
81

v k t kx kx kx= − + + , 

#  
değerleri bulunur. Bulunan bu değerler (4.6) eşitliğinde yazılarak (5.19) ve (5.20) ile 

verilen problem için bir yaklaşık çözüm bulunmuş olur. 
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5.5. (1+1) Boyutlu Saçılma Terimli Uzun Dalga Denklemine HAM’ unun 

Uygulanması 

 

(5.19)-(5.20) ile verilen (1+1) boyutlu saçılma terimli uzun dalga denklemine HAM’ 

unu uygulamak için (4.14) ile verilen 

( )
( )

1 1

1 1

( , ) ( , ) , ( , )

( , ) ( , ) , ( , )

m m m m m

m m m m m

L u x t u x t h H x t R u x t

L v x t v x t h H x t R v x t

χ

χ

− −

− −

   − =   
   − =   

, 1m ≥                               (5.29) 

.n  mertebeden deformasyon denklemini yeniden göz önüne alalım. Burada 1( , )m mR u x t−    

ve 1( , )m mR v x t−    ifadeleri (5.19) denklemi için  

1
1 1 1

1
0

( , )
m

m m i m
m m i

i

u u vR u x t u
t x x

−
− − − −

−
=

∂ ∂ ∂  = + +  ∂ ∂ ∂∑ ,                                                    (5.30a) 

31 1
1 1 1 1

1 3
0 0

1( , )
3

m m
m m i m i m

m m i i
i i

v u v uR v x t v u
t x x x

− −
− − − − − −

−
= =

∂ ∂ ∂ ∂  = + + +  ∂ ∂ ∂ ∂∑ ∑ ,                         (5.30b) 

olacak şekilde yazılır. 1m = , ( ), 1H x t =  ve (4.16), (5.30a) ile (5.30b) eşitlikleri göz önüne 

alındığı zaman 

[ ]1 1 0( , ) ( , )L u x t h R u x t =    

[ ]
1

0 1 0
1

0

( , )
m

m i
i

i

u u vL u x t h u
t x x

−
− −

=

∂ ∂ ∂ = + + ∂ ∂ ∂ 
∑  

[ ] 0 0 0
1 0( , ) u u vL u x t h u

t x x
∂ ∂ ∂ = + + ∂ ∂ ∂ 

 

1 0 0 0
1 0( , ) u u vu x t L h u

t x x
−  ∂ ∂ ∂  = + +  ∂ ∂ ∂  

 

ve benzer şekilde 

[ ]1 1 0( , ) ( , )L v x t h R v x t =    

[ ]
31 1

0 1 1 0
1 3

0 0

1( , )
3

m m
m i m i

i i
i i

v u v uL v x t h v u
t x x x

− −
− − − −

= =

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ 

∑ ∑  

[ ]
3

0 0 0 0
1 0 0 3

1( , )
3

v u v uL v x t h v u
t x x x

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ 

 

3
1 0 0 0 0

1 0 0 3

1( , )
3

v u v uv x t L h v u
t x x x

−   ∂ ∂ ∂ ∂
= + + +  ∂ ∂ ∂ ∂  
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olarak yazılır. 

2m = , ( ), 1H x t =  için 

[ ]2 1 2 1( , ) ( , ) ( , )L u x t u x t h R u x t − =     

[ ]
1

11 1
2 1

0

( , ) ( , )
m

m i
i

i

uu vL u x t u x t h u
t x x

−
− −

=

∂∂ ∂ − = + + ∂ ∂ ∂ 
∑  

[ ] 01 1 1
2 1 1 0( , ) ( , ) uu u vL u x t u x t h u u

t x x x
∂∂ ∂ ∂ − = + + + ∂ ∂ ∂ ∂ 

 

1 01 1 1
2 1 1 0( , ) ( , ) uu u vu x t u x t L h u u

t x x x
−  ∂ ∂ ∂ ∂ = + + + +  ∂ ∂ ∂ ∂  

 

benzer biçimde 

[ ]2 1 1 1( , ) ( , ) ( , )L v x t v x t h R v x t − =    

[ ]
31 1

1 11 1
2 1 3

0 0

1( , ) ( , )
3

m m
m i m i

i i
i i

u vv uL v x t v x t h v u
t x x x

− −
− − − −

= =

 ∂ ∂∂ ∂
− = + + + ∂ ∂ ∂ ∂ 

∑ ∑  

[ ]
3

0 01 1 1 1
2 1 0 1 0 1 3

1( , ) ( , )
3

u vv u v uL v x t v x t h v v u u
t x x x x x

 ∂ ∂∂ ∂ ∂ ∂
− = + + + + + ∂ ∂ ∂ ∂ ∂ ∂ 

 

3
1 0 01 1 1 1

2 1 0 1 0 1 3

1( , ) ( , )
3

u vv u v uv x t v x t L h v v u u
t x x x x x

−   ∂ ∂∂ ∂ ∂ ∂
= + + + + + +  ∂ ∂ ∂ ∂ ∂ ∂  

 

olacak şekilde 3 ( , )u x t  ve 3 ( , )v x t  terimleri de yazılarak gerekli işlemler yapıldığı zaman 

( )
2

0
2 2 1
3 sin3
k ku

kx
= − − , 

( ) ( ) ( )
3

2 2
1

2 2 cot csc
3

u h k t kx kx= − , 

( ) ( ) ( )( ) ( )
3

3 5 5 2 2
2

1 csc 3 cos 2 3 3 2 1 sin 2
9

u ht kx hk t x hk t h k x  = − + + +    
, 

( ) ( ) ( )( ) ( )
3

4 2 2 4 22
3

1 csc 2 9 18 9 23 cos
54

u ht kx k h h k t kx= − + + + +


 

     ( ) ( )( ) ( ) ( ) ( ) ( )( )
3

2 2 4 2 522 9 18 9 cos 3 6 3 1 5sin sin 3k h h k t kx h h k t kx kx + − − + − + + + + 


, 

( )(5 5 2 5 3 5 3 9 3
4

1 csc 270 3 540 3 270 3 115 3
648

u ht kx hk t h k t h k t h k t= − + + + +  

     ( )( ) ( ) ( )( )5 2 4 2 5 2 4 24 3 54 108 54 19 cos 2 3 54 108 54hk t h h k t kx hk t h h k t+ − − + − + + − − + − +  
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     ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 3 3

2 2 2 22 2 2cos 4 108 2 sin 2 324 2 sin 2 324 2 sin 2kx k kx h k kx h k kx+ + + +  

     ( ) ( ) ( ) ( )
3

3 2 2 6 2 2 3 6 2 22108 2 sin 2 396 2 sin 2 396 2 sin 2h k kx h k k t kx h k k t kx+ + + −  

     ( ) ( ) ( ) ( ) ( ) ( )
3 3 3

2 2 2 22 2 254 2 sin 4 162 2 sin 4 162 2 sin 4k kx h k kx h k kx− − − −  

     ( ) ( ) ( ) ( )
3

3 2 2 6 2 2 3 6 2254 2 sin 4 18 2 sin 4 18 2 sin 4h k kx h k k t kx h k k kx − + + 


, 

#  

( )
3 2

0 2

2 1
3 3 sin
k kv

kx
= − , 

( ) ( )3 2 2
1

4 2 cot csc
3 3

v k h k t kx kx= − , 

( ) ( ) ( ) ( )( )3 4 3 3 2
2

2 csc 4 2 cos 2 6 1 sin 2
9

v hk t kx hk t hk t kx h k kx= − + + + , 

( ) ( ) ( ) ( ) ( )( ) ( )3 2 2 6 2 4
3

4 2 41 cot csc 1 2 2 cos 2 csc
3 3 9

v h h h k k t kx kx h h k t kx kx= − + − + + −


 

     ( ) ( )( ) ( ) ( ) ( ( )2 7 2 3 5 3 4 3 34 2 211cos cos 3 csc csc 4 2 cos 2
27 3 9

h k k t kx kx kx hk t kx hk t hk t kx


− + − + +


 

     ( ) ( ))26 1 sin 2h k kx+ + ,       

( )( ( ) ( )(3 4 3 2 3 3 3 2 4 2
4

2 csc 108 216 108 3 6 1 6 3 22
81

v hk t kx hk t h k t h k t h h k h k t= − − − − + + + −  

     ( ) ( )) ( ) ( ) ( )2 4 2 2 3 4 2 23 2 cos 2 cot 6 6 cos 3 csc 6 6h kx kx h k k t kx kx h k k t− + − −   

     ( ) ( ) ( ) ( ) ( ) ( )3 7 3 2 3 7 3 2 3cos 3 csc 33 csc cos 4 csc 2 coskx kx h k t kx h k t kx kx hk t kx− − −  

     ( ) ( )( ) ( ) ( ))2 2 4 2 2 2 227 1 13 csc 9 6 sin 2 9 6 sin 2h h k t kx k kx h k kx+ + − − , 

#  

olacak şekilde 0 1 2 3, , ,u u u u  ve 0 1 2 3, , ,v v v v  terimleri elde edilir. Benzer şekilde diğer terimler 

de bulunabilir. Bulunan bu değerler (4.13) eşitliğinde yazılarak (5.19) ile verilen problem 

için yaklaşık bir çözüm yazılabilir. 
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5.6. (1+1) Boyutlu Saçılma Terimli Uzun Dalga Denklemine HPM’ unun 

Uygulanması   

 

HPM’ unun (5.19) ve (5.20) ile verilen (1+1) boyutlu saçılma terimli uzun dalga 

denklemine nasıl uygulandığını göstermek için (4.20) eşitliği yardımı ile (5.19) denklemi 

için  

( )

( )

0

3
0

3

1 0

11 0
3

uY Y Y Wp p Y
t t t x x

vW W Y W Yp p W Y
t t t x x x

∂∂ ∂ ∂ ∂   − − + + + =  ∂ ∂ ∂ ∂ ∂  
 ∂∂ ∂ ∂ ∂ ∂ − − + + + + =  ∂ ∂ ∂ ∂ ∂ ∂   

                                 (5.31) 

biçiminde bir homotopi oluşturalım. (5.19) denklemi için  
2 3

0 1 2 3 ...Y Y pY p Y p Y= + + + +                                                                              (5.32a) 

2 3
0 1 2 3 ...W W pW p W p W= + + + +                                                                        (5.32b) 

şeklinde bir çözüm aradığımızı kabul edelim. Bu çözümde (5.31) eşitliğinde gerekli olan 

türevler alınır ve yerlerine yazılır ise 

2 3 2 30 3 0 0 01 2 1 2
0 0 0

Y Y u u YY Y Y Yp p p p pY p Y p Y
t t t t t t x x x

∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂
+ + + − + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

4 2 3 4 3 4 43 0 0 01 2 1
0 1 1 1 2 2 3

Y Y Y YY Y Yp Y p Y p Y p Y p Y p Y p Y
x x x x x x x

∂ ∂ ∂ ∂∂ ∂ ∂
+ + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

2 3 40 31 2 ... 0W WW Wp p p p
x x x x

∂ ∂∂ ∂
+ + + + + =

∂ ∂ ∂ ∂
 

2 3 2 30 3 0 0 0 0 01 2
0 1 2

W W v v Y Y YW Wp p p p pW p W p W
t t t t t t x x x

∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂
+ + + − + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 

4 2 3 4 3 4 40 31 1 1 2 2
3 0 1 2 0 1 0

Y YY Y Y Y Yp W p W p W p W p W p W p W
x x x x x x x

∂ ∂∂ ∂ ∂ ∂ ∂
+ + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

2 3 4 2 3 40 3 01 2 1 2
0 0 0 0 1 1 1

W W WW W W WpY p Y p Y p Y p Y p Y p Y
x x x x x x x

∂ ∂ ∂∂ ∂ ∂ ∂
+ + + + + + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 

3 33 3
3 4 4 2 3 40 0 0 31 1 2

2 2 3 3 3 3 3

1 1 1 1 0
3 3 3 3

W W Y YW Y Yp Y p Y p Y p p p p
x x x x x x x

∂ ∂ ∂ ∂∂ ∂ ∂
+ + + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
…  

olacak şekilde cebirsel denklem sistemi elde edilir. Bu cebirsel denklem sisteminde 

polinom eşitliği özelliği kullanılarak p  nin kuvvetlerine göre aşağıdaki gibi bir ayrışım 

yapılabilir: 

0 0 0: 0Y up
t t

∂ ∂
− =

∂ ∂
,                                                                                                 (5.33) 
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1 0 0 01
0: 0u Y WYp Y

t t x x
∂ ∂ ∂∂

+ + + =
∂ ∂ ∂ ∂

,                                                                         (5.34) 

2 02 1 1
0 1: 0YY Y Wp Y Y

t x x x
∂∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂

,                                                                      (5.35) 

3 3 02 1 2
0 1 2: 0Y YY Y Wp Y Y Y

t x x x x
∂ ∂∂ ∂ ∂

+ + + + =
∂ ∂ ∂ ∂ ∂

,                                                             (5.35) 

#  

0 0 0: 0W vp
t t

∂ ∂
− =

∂ ∂
,                                                                                                (5.36) 

3
1 0 0 0 01

0 0 3

1: 0
3

v Y W YWp W Y
t t x x x

∂ ∂ ∂ ∂∂
+ + + + =

∂ ∂ ∂ ∂ ∂
,                                                     (5.37) 

3
2 0 02 1 1 1

1 0 0 1 3

1: 0
3

Y WW Y W Yp W W Y Y
t x x x x x

∂ ∂∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂ ∂
,                                   (5.38) 

3
3 3 0 01 2 2 1 2

2 1 0 0 1 2 3

1: 0
3

W Y WY Y W W Yp W W W Y Y Y
t x x x x x x x

∂ ∂ ∂∂ ∂ ∂ ∂ ∂
+ + + + + + + =

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
,              (5.39) 

#  

(5.33)-(5.39) eşitlikleri (5.20) ile verilen ( ) 0,0u x u=  ve ( ) 0,0v x v=  başlangıç şartları ile 

çözüldüğü zaman 0 1 2 3, , , ,Y Y Y Y " , 0 1 2 3, , , ,W W W W "  terimleri 

( )
2

0
2 2 1
3 sin3
k kY

kx
= − − , 

( ) ( ) ( )
3

2 2
1

2 2 cot csc
3

Y k t kx kx= , 

( )( ) ( )5 2 3
2

1 3 cos 2 csc
3 3

Y k t kx kx= − + , 

( ) ( )( ) ( )6 2 3 4
3

1 23cos cos 3 csc
27 2

Y k k t kx kx kx= + , 

( ) ( )( ) ( )9 4 5
4

1 115 76cos 2 cos 4 csc
216 3

Y k t kx kx kx= − + + , 

 #  

( )
3 2

0 2

2 1
3 3 sin
k kW

kx
= − , 

( ) ( )3 2 2
1

4 2 cot csc
3 3

W k k t kx kx= , 
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( )( ) ( )6 2 4
2

4 2 cos 2 csc
9

W k t kx kx= − + , 

( ) ( )( ) ( )7 2 3 5
3

4 2 11cos cos 3 csc
27 3

W k k t kx kx kx= + , 

( ) ( )( ) ( )10 4 6
4

2 33 26cos 2 cos 4 csc
81

W k t kx kx kx= − + + , 

#  

olarak bulunur. Böylece (4.22) eşitliği ve yukarıda elde edilen 0 1 2 3, , , ,Y Y Y Y "  ve 

0 1 2 3, , , ,W W W W "  değerleri kullanılarak 

( ) 0 1 2 31
, lim ...

p
u x t Y Y Y Y Y

→
= = + + + + ,                                                                  (5.40a) 

( ) 0 1 2 31
, lim ...

p
v x t W W W W W

→
= = + + + + ,                                                             (5.40b) 

olacak şekilde (5.19) denkleminin yaklaşık çözümü yazılabilir. 



 

6. YARI ANALİTİK METOTLARIN SAYISAL SONUÇLARININ 

İRDELENMESİ 

 

Bu bölümde, SRLW denkleminin (3.26) eşitliği ile tanımlanan ( ),u x t  analitik 

çözümü ile (1+1) boyutlu saçılma terimli uzun dalga denkleminin (3.54) eşitliği ile 

tanımlanan ( ),u x t ve ( ),v x t  çözümleri için ADM, HAM ve HPM kullanılarak elde edilen 

sayısal sonuçlarının üç boyutlu görünümleri verilmiştir. Ayrıca bu sayısal sonuçların 

analitik çözüm ile arasındaki mutlak hata verileri tablolar ve grafikler üzerinde verilerek 

sayısal irdelenmesi yapılmıştır. Daha sonra HAM’ unda kullanılan ve elde edilen yaklaşık 

çözümün yakınsaklık aralığını belirlemede önemli bir rol oynayan keyfi h  parametresinin 

grafiği çizilerek SRLW ve (1+1) boyutlu saçılma terimli uzun dalga denklemlerinin 

yaklaşık çözümleri için yakınsaklık aralığı belirlenmiştir. Belirlenen bu yakınsaklık aralığı 

içerisindeki noktalarda keyfi h  parametresine değerler verilerek en iyi yaklaşımın h  

parametresinin hangi değerinde olduğu tablolarda gösterilmiştir. 

İncelenen denklemlerin analitik çözümleri ( ),u x t  ve ( ),v x t  olmak üzere ADM, 

HAM ve HPM kullanılarak elde edilen yaklaşık çözüm serisi ( ) ( )
1

0
, ,

n

n k
k

x t u x tφ
−

=

=∑  

( ) ( )
1

0

, ,
n

n k
k

x t v x tϕ
−

=

=∑ , 1n ≥  şeklinde ifade edilebilir. 

 
6.1. Sayısal Sonuçların Değerlendirilmesi 
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   c)                                                                     d) 
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Şekil 10. SRLW denkleminin analitik çözümü ve yaklaşık çözümünün üç boyutlu görünümü a) SRLW 
denkleminin (3.26) çözüm fonksiyonu için analitik çözümün üç boyutlu görünümü, b) SRLW denkleminin 
ADM ile yaklaşık çözümünün üç boyutlu görünümü, c) SRLW denkleminin HAM ile yaklaşık çözümünün 
üç boyutlu görünümü ( )1h = − , d) SRLW denkleminin HPM ile yaklaşık çözümünün üç boyutlu görünümü 

( )0.1, 0.05k w= =  
 

Tablo 1. ADM kullanılarak SRLW denkleminin mutlak hatası ( )0.1, 0.05k w= =  

( ) ( )4, ,u x t x tφ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 96.14628 10−×  82.79449 10−× 87.63524 10−× 71.70213 10−×  73.36293 10−×  

0.2 96.037 10−×  82.69078 10−× 87.26275 10−× 71.60984 10−×  73.17497 10−×  

0.3 95.95425 10−×  82.59832 10−× 86.91875 10−× 71.52349 10−×  72.99814 10−×

0.4 95.89779 10−×  82.51674 10−× 86.60185 10−× 71.44272 10−×  72.8317 10−×  

0.5 95.86753 10−×  82.44576 10−× 86.31079 10−× 71.36721 10−×  72.67497 10−×

 

Tablo 2. HAM kullanılarak SRLW denkleminin mutlak hatası ( )0.1, 0.05, 1k w h= = = −  

( ) ( )4, ,u x t x tφ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 96.14628 10−×  82.79449 10−×  87.63524 10−× 71.70213 10−×  73.36293 10−×  

0.2 96.037 10−×  82.69078 10−×  87.26275 10−× 71.60984 10−×  73.17497 10−×  

0.3 95.95425 10−×  82.59832 10−×  86.91875 10−× 71.52349 10−×  72.99814 10−×

0.4 95.89779 10−×  82.51674 10−×  86.60185 10−× 71.44272 10−×  72.8317 10−×  

0.5 95.86753 10−×  82.44576 10−×  86.31079 10−× 71.36721 10−×  72.67497 10−×
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Tablo 3. HPM kullanılarak SRLW denkleminin mutlak hatası ( )0.1, 0.05k w= =  

( ) ( )4, ,u x t x tφ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 96.14628 10−×  82.79449 10−× 87.63524 10−× 71.70213 10−×  73.36293 10−×  

0.2 96.037 10−×  82.69078 10−× 87.26275 10−× 71.60984 10−×  73.17497 10−×  

0.3 95.95425 10−×  82.59832 10−× 86.91875 10−× 71.52349 10−×  72.99814 10−×

0.4 95.89779 10−×  82.51674 10−× 86.60185 10−× 71.44272 10−×  72.8317 10−×  

0.5 95.86753 10−×  82.44576 10−× 86.31079 10−× 71.36721 10−×  72.67497 10−×

 

Tablo 4. h  keyfi parametresinin farklı değerleri için SRLW denkleminin mutlak hatası 
( )0.5, 0.1, 0.05x k w= = =  
t  1.4h = −  1.2h = −  1h = −  0.8h = −  0.6h = −  

0.1  67.29309 10−×  62.04421 10−× 73.36293 10−×  71.8686 10−×  61.88144 10−×  

0.2  67.07509 10−×  61.96146 10−×  73.17497 10−×  71.93032 10−×  61.90638 10−×

0.3  66.86981 10−×  61.88322 10−×  72.99814 10−× 71.99173 10−×  61.9325 10−×  

0.4  66.67668 10−×  61.80926 10−×  72.8317 10−×  72.05298 10−×  61.95984 10−×  

0.5  66.49521 10−×  61.73936 10−×  72.67497 10−× 72.11423 10−×  61.98843 10−×  

 
 

-4 -2 2 4
h

-2.5408
-2.5406
-2.5404
-2.5402

-2.5398
-2.5396

u

 
Şekil 11. SRLW denkleminin ( )4 ,x tφ  için h  eğrisinin grafiği 
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a)                       b) 

-10 -5 5 10 x

-2.68
-2.66
-2.64
-2.62

-2.58
-2.56
-2.54

u

uExact

uADM

          

-10 -5 5 10 x

-2.68
-2.66
-2.64
-2.62

-2.58
-2.56
-2.54

u

uExact

uHAM

 

       c) 

-10 -5 5 10 x

-2.68
-2.66
-2.64
-2.62

-2.58
-2.56
-2.54

u

uExact

uHPM

 
Şekil 12. SRLW denkleminin analitik çözümü ile ADM, HAM ve HPM ile elde edilen yaklaşık çözümlerinin 
karşılaştırılması 
 

(5.1) ve (5.2) eşitlikleri ile verilen SRLW denkleminin ADM, HAM ve HPM ile elde 

edilen sayısal sonuçları Şekil 10, Tablo 1–4 ve Şekil 12 de verilmiştir. Tablo 1–3 de 

görüldüğü gibi SRLW denkleminin ( ),u x t  seri çözümünün sadece beş teriminde bile 

gerçek çözüme çok yakın değerler elde edilmiştir. Burada k  ve w  nın daha küçük 

seçilmesiyle çok daha yakın değerler elde edilebilir. Tablo 2 de görüldüğü gibi HAM ile 

hesaplanan sayısal sonuçlar için ( )1, , 1h H x t= − =  alınmıştır. Keyfi h  parametresinin bu 

şekilde seçimi ADM ve HPM ile elde edilen sayısal sonuçların, HAM ile elde edilen 

değerler ile örtüştüğü sonucuna ulaşılmıştır. Bu durum Tablo 1–3 ten görülebilir. Ayrıca 

HAM ile elde edilen seri çözümlerde gerçek çözüme en iyi yakınsamayı sağlamak için 

keyfi h  parametresinin grafiği çizilerek seri çözümün yakınsaklık aralığı bulunabilir. Şekil 

11 de (5.1) ve (5.2) ile verilen SRLW denklemi için HAM’ u uygulanarak elde edilen seri 

çözümüne göre keyfi h  parametresinin eğrisi çizilmiştir. Şekil 11 de görüldüğü gibi seri 

çözümün yakınsaklık aralığı yaklaşık olarak 1.4 0.4h− ≤ ≤ −  aralığındadır. Bu aralık 

içerisinde h  parametresine değerler verilerek en iyi yaklaşımın hangi noktada olabileceği 

hesaplanabilir. Bu durum Tablo 4 te verilmiştir. Bu tablolardan da anlaşılacağı üzere 

0.8h = −  değerinde gerçek çözüme en iyi yakınsama görülmüştür.  
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   c)      d) 
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Şekil 13. (1+1) boyutlu saçılma terimli uzun dalga denkleminin ( ),u x t  analitik çözüm ile yaklaşık 

çözümünün üç boyutlu görünümü, a) (1+1) boyutlu saçılma terimli uzun dalga denkleminin (3.54) ( ),u x t  
analitik çözümünün üç boyutlu görünümü, b) ADM ile yaklaşık çözümünün üç boyutlu görünümü, c) HAM 
ile yaklaşık çözümünün üç boyutlu görünümü ( )1h = − , d) HPM ile yaklaşık çözümünün üç boyutlu 

görünümü ( )0.05k =  
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   c)      d) 
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Şekil 14. (1+1) boyutlu saçılma terimli uzun dalga denkleminin ( ),v x t  analitik çözüm ile yaklaşık 

çözümünün üç boyutlu görünümü, a) (1+1) boyutlu saçılma terimli uzun dalga denkleminin (3.54) ( ),v x t  
analitik çözümünün üç boyutlu görünümü, b) ADM ile yaklaşık çözümünün üç boyutlu görünümü, c) HAM 
ile yaklaşık çözümünün üç boyutlu görünümü ( )1h = − , d) HPM ile yaklaşık çözümünün üç boyutlu 

görünümü ( )0.05k =  
 

Tablo 5a. ADM kullanılarak (5.19) denklemi için ( ),u x t  çözümünün mutlak hatası ( )0.05k=  

( ) ( )5, ,u x t x tφ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 61.2581 10−×  53.87396 10−× 42.83479 10−× 31.15266 10−×  33.39836 10−×  

0.2 82.0051 10−×  76.29048 10−× 64.68495 10−×  51.93698 10−×  55.8017 10−×  

0.3 91.77212 10−×  85.59566 10−× 74.19365 10−×  61.74439 10−×  65.25564 10−×  

0.4 103.16462 10−×  81.00255 10−×  87.53771 10−×  73.14524 10−×  79.5053 10−×  

0.5 118.3126 10−×  92.63868 10−× 81.98778 10−×  88.31025 10−×  72.51619 10−×

 
Tablo 5b. ADM kullanılarak (5.19) denklemi için ( ),v x t  çözümünün mutlak hatası ( )0.05k=   

( ) ( )5, ,v x t x tϕ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 54.32968 10−×  31.32509 10−×  39.64143 10−×  23.8995 10−×  11.14397 10−×  

0.2 73.46135 10−×  51.08242 10−×  58.03653 10−×  43.31274 10−×  49.89373 10−×  

0.3 82.04169 10−×  76.43278 10−× 64.81076 10−× 51.99692 10−×  56.00425 10−×  

0.4 92.73602 10−×  88.65338 10−× 76.49553 10−×  62.70605 10−×  68.16522 10−×  

0.5 105.7514 10−×  81.82323 10−×  71.37168 10−×  75.72716 10−×  61.73187 10−×  
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Tablo 6a. HAM kullanılarak (5.19) denklemi için ( ),u x t  çözümünün mutlak hatası ( )0.05, 1k h= = −  

( ) ( )5, ,u x t x tφ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 61.2581 10−×  53.87396 10−× 42.83479 10−× 31.15266 10−×  33.39836 10−×  

0.2 82.0051 10−×  76.29048 10−× 64.68495 10−×  51.93698 10−×  55.8017 10−×  

0.3 91.77212 10−×  85.59566 10−× 74.19365 10−×  61.74439 10−×  65.25564 10−×  

0.4 103.16462 10−×  81.00255 10−×  87.53771 10−×  73.14524 10−×  79.5053 10−×  

0.5 118.3126 10−×  92.63868 10−× 81.98778 10−×  88.31025 10−×  72.51619 10−×

 

Tablo 6b. HAM kullanılarak (5.19) denklemi için ( ),v x t  çözümünün mutlak hatası ( )0.05, 1k h= = −  

( ) ( )5, ,v x t x tϕ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 54.32968 10−×  31.32509 10−×  39.64143 10−×  23.8995 10−×  11.14397 10−×  

0.2 73.46135 10−×  51.08242 10−×  58.03653 10−×  43.31274 10−×  49.89373 10−×  

0.3 82.04169 10−×  76.43278 10−× 64.81076 10−× 51.99692 10−×  56.00425 10−×  

0.4 92.73602 10−×  88.65338 10−× 76.49553 10−×  62.70605 10−×  68.16522 10−×  

0.5 105.7514 10−×  81.82323 10−×  71.37168 10−×  75.72716 10−×  61.73187 10−×  

 

Tablo 7a. HPM kullanılarak (5.19) denklemi için ( ),u x t  çözümünün mutlak hatası ( )0.05k =  

( ) ( )5, ,u x t x tφ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 61.2581 10−×  53.87396 10−× 42.83479 10−× 31.15266 10−×  33.39836 10−×  

0.2 82.0051 10−×  76.29048 10−× 64.68495 10−×  51.93698 10−×  55.8017 10−×  

0.3 91.77212 10−×  85.59566 10−× 74.19365 10−×  61.74439 10−×  65.25564 10−×  

0.4 103.16462 10−×  81.00255 10−×  87.53771 10−×  73.14524 10−×  79.5053 10−×  

0.5 118.3126 10−×  92.63868 10−× 81.98778 10−×  88.31025 10−×  72.51619 10−×
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Tablo 7b. HPM kullanılarak (5.19) denklemi için ( ),v x t  çözümünün mutlak hatası ( )0.05k =  

( ) ( )5, ,v x t x tϕ−  

/i it x  0.1 0.2 0.3 0.4 0.5 

0.1 54.32968 10−×  31.32509 10−×  39.64143 10−×  23.8995 10−×  11.14397 10−×  

0.2 73.46135 10−×  51.08242 10−×  58.03653 10−×  43.31274 10−×  49.89373 10−×  

0.3 82.04169 10−×  76.43278 10−× 64.81076 10−× 51.99692 10−×  56.00425 10−×  

0.4 92.73602 10−×  88.65338 10−× 76.49553 10−×  62.70605 10−×  68.16522 10−×  

0.5 105.7514 10−×  81.82323 10−×  71.37168 10−×  75.72716 10−×  61.73187 10−×  

 

Tablo 8. h  keyfi parametresinin farklı değerlerinde (5.19) denklemi için ( ),u x t  çözümünün mutlak hatası 

( )0.5, 0.05x k= =  
t  1.4h = −  1.2h = −  1h = −  0.8h = −  0.6h = −  

0.1  14.32928 10−×  27.67244 10−×  33.39836 10−×  63.53561 10−×  21.16117 10−×  

0.2  24.64443 10−×  35.782 10−×  55.8017 10−×  41.04884 10−×  37.04149 10−×  

0.3  21.4752 10−×  31.543 10−×  65.25564 10−×  41.10083 10−×  34.08067 10−×

0.4  36.92358 10−×  46.52767 10−× 79.5053 10−×  58.99609 10−×  32.60907 10−×

0.5  33.95614 10−×  43.48139 10−×  72.51619 10−× 57.10151 10−×  31.80073 10−×  
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Şekil 15. (1+1) boyutlu saçılma terimli uzun dalga denkleminin  
( ),u x t  çözümünün  ( )5 ,x tφ  için h  eğrisinin grafiği 
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Tablo 9. h  keyfi parametresinin farklı değerlerinde (5.19) denklemi için ( ),v x t  çözümünün mutlak hatası 

( )0.5, 0.05x k= =  
t  1.4h = −  1.2h = −  1h = −  0.8h = −  0.6h = −  

0.1  8.74167  1.78628  11.14397 10−×  43.2739 10−×  34.37402 10−×  

0.2  13.96884 10−×  25.71937 10−× 49.89373 10−× 42.58064 10−×  22.40746 10−×

0.3  27.68156 10−×  39.19333 10−× 56.00425 10−× 59.33438 10−×  21.16364 10−×  

0.4  22.556 10−×  32.72214 10−× 68.16522 10−× 41.202 10−×  36.10085 10−×  

0.5  21.12423 10−×  31.10465 10−×  61.73187 10−×  59.67905 10−×  33.535 10−×  
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Şekil 16. (1+1) boyutlu saçılma terimli uzun dalga denkleminin  
( ),v x t  çözümünün ( )5 ,x tϕ  için h  eğrisinin grafiği 
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Şekil 17. (1+1) boyutlu saçılma terimli uzun dalga denkleminin ( ),u x t  analitik çözümü ile ADM, HAM ve 
HPM ile elde edilen yaklaşık çözümlerinin karşılaştırılması 
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Şekil 18. (1+1) boyutlu dispersive uzun dalga denkleminin ( ),v x t  analitik çözümü ile ADM, HAM ve HPM 
ile elde edilen yaklaşık çözümlerinin karşılaştırılması 
 

(5.19) ve (5.20) eşitlikleri ile verilen (1+1) boyutlu saçılma terimli uzun dalga 

denkleminin ADM, HAM ve HPM ile elde edilen sayısal sonuçları Şekil 13–18 ve Tablo 

5–9 verilmiştir. Tablo 5–9 da görüldüğü gibi (1+1) boyutlu saçılma terimli uzun dalga 

denkleminin ( ),u x t  ve ( ),v x t  seri çözümlerinin sadece altı terimi göz önüne alınarak 

analitik çözüme çok yakın değerler elde edilmiştir. Tablo 5–9 da görüleceği üzere ADM, 

HAM ve HPM ile elde edilen sayısal sonuçlar aynı çıkmıştır. Ancak bu durum 1h = −  

alındığı zaman gerçekleşebilen bir durumdur. Yani incelenen problem için 1h = −  seçilirse 

ADM ve HPM’ unun sayısal sonuçları HAM ile bulunan değerlere yakınsar. HAM ile elde 

edilen seri çözümlerde gerçek çözüme en iyi yakınsamanın h  keyfi parametresinin hangi 

noktasında olduğunu belirlemek için Şekil 15–16 da görüldüğü gibi h  parametresinin 

grafiği çizilerek ( ),u x t  ve ( ),v x t  seri çözümlerinin yakınsaklık aralıkları bulunmuştur. 

Bu şekillere göre ( ),u x t  ve ( ),v x t  seri çözümlerinin yakınsaklık aralıkları yaklaşık olarak 

1.4 0.6h− ≤ ≤ −  aralığındadır. Bu aralık içerisinde h  parametresine değerler verilerek en 

iyi yaklaşımın 1h = −  noktasında olduğu Tablo 8-9 dan görülebilir. 

Her iki örnek içinde keyfi h  parametresinin bu şekilde seçilebilmesi HAM’ unun bir 

avantajı olarak görülebilir. Çünkü h  parametresi elde edilen seri çözümün yakınsaklık 

aralığını belirlemede önemli bir rol oynar. Bu tespitten hareket ile gerek SRLW 

denkleminin gerek ise (1+1) boyutlu saçılma terimli uzun dalga denkleminin HAM ile 

bulunan seri çözümlerinde 1h = −  seçilmesi ile Tablo 2–3 ve Tablo 6–7 den de görüldüğü 
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gibi ADM ve HPM’ un aslında HAM’ unun özel bir durumu olduğu söylenebilir. Bu 

durum [72–76] çalışmalarında da gösterilmiştir.  



 

7. SONUÇ 

 

Uygulamalı bilimlerde, üzerinde çalışılan olayı matematiksel olarak modelleyerek bu 

modelin analitik çözümleri hakkında bilgi sahibi olmak çok önemlidir. Çünkü bu çözümler 

modellenen olayın karakteri hakkında bilgi verir. Bu yüzden lineer veya lineer olmayan adi 

ve kısmi diferensiyel denklemlerin analitik çözümlerini bulmak fizik, kimya, biyoloji ve 

mühendislik alanlarında oldukça önemli bir yere sahiptir. Son zamanlarda özellikle 

uygulamalı matematik alanında çalışan bilim adamları lineer olmayan kısmi diferensiyel 

denklemlerin hareket eden dalga çözümleri üzerine odaklanmışlardır. Elde edilen bu dalga 

çözümleri, dalganın yapısı ve dalgaların birbirleri ile olan etkileşimleri gibi birçok konuda 

uygulama sahasında çalışan bilim adamlarına ilham vermektedir. Böyle bir ihtiyaçtan 

dolayı lineer olmayan kısmi diferensiyel denklemlerin analitik çözümlerini veren birçok 

etkili metot geliştirilmiştir. Bu metotların çoğu sadece lineer olmayan kısmi diferensiyel 

denklemlere uygulanabilir. Çünkü bu metotların işleyişi “dengeleme terimi” olarak 

adlandırılan ve en yüksek mertebeden lineer terim ile en yüksek mertebeden lineer 

olmayan terimin karşılaştırılmasına dayanır. 

Lineer olmayan kısmi diferensiyel denklemlerin dalga çözümlerini bulmak için 

kullanılan ve ikinci bölümde analizleri yapılan metotlara bakıldığında temelde hepsi, ele 

alınan kısmi diferensiyel denklemi bir değişken dönüşümü altında adi bir diferensiyel 

denkleme dönüştürerek çözüme ulaşma esasına dayanır. Bu metotların birbirlerinden farklı 

olan tek tarafı seçilen Riccati diferensiyel denkleminin ve dolayısıyla kullanılan çözüm 

fonksiyonunun farklı olmasıdır. Ancak bazı metotlarda Riccati diferensiyel denklemin 

yerine farklı denklemler alınarak çözüme ulaşılmıştır. Örneğin, G
G
′
 açılım metodunda 

Riccati diferensiyel denklemi yerine ikinci mertebeden sabit katsayılı adi bir diferensiyel 

denklem kullanılmıştır. Bu şekilde denklemin seçilmesi konusunda bilim adamlarının 

özgür olması, bu çalışmada bahsedilmeyen fakat literatürde direkt cebirsel metot [77] ve 

keyfi denklem metodu [78] olarak geçen metotların ortaya çıkmasına yol açmıştır. 

Bahsedilen metotların hepsi lineer olmayan kısmi diferensiyel denklemlerin hareket eden 

dalga çözümlerini verir. Bu çözümler içerisinde periyodik olan dalga çözümleri ayrı bir yer 

tutar. Bu metotların hepsi dengeleme terimini bulma esasına dayandığından dengeleme 

teriminin negatif olması durumunda ortaya çıkabilecek bazı güçlükler bu metotların bir 



69 
 

çıkmazı olarak görülebilir. Ancak bu durum ile ilgili yapılan ve yapılmakta olan çalışmalar 

da vardır [37]. 

Lineer olmayan kısmi diferensiyel denklemlerin çözümleri lineer denklemlere göre 

daha zordur. Bu yüzden ikinci bölümde bahsedilen metotlar ve literatürde var olan daha 

başka metotlar ile analitik çözümleri elde edilemeyen lineer olmayan denklemlerin, seri 

çözümlerinin elde edilebildiği ve dördüncü bölümde analizleri yapılan yarı analitik 

metotlar olarak da bilinen bazı sayısal yöntemler de vardır. Bu tür metotlarda çözüm seri 

formunda aranır. Yarı analitik metotlar, ele alınan problem için verilen bir başlangıç 

şartından hareketle serinin diğer terimlerini bulma esasına dayanır. Bu noktada karşımıza 

serinin yakınsaklığı kavramı çıkar. Bundan dolayı bu tip sayısal metotların yakınsaklık 

analizine ihtiyaç duyulur. Bu yakınsaklık analizi teorik olarak yapılacağı gibi incelenen 

problemin seri çözümünde bağımsız değişkenlere belirli bir aralıkta verilen değerler ile 

elde edilen sayısal sonuçların, problemin gerçek çözümü ile arasındaki farkın mutlak 

değerine bakılarak ta çözümün yakınsaklığı hakkında bilgi edinilebilir. Bazı yarı analitik 

metotlar ile elde edilen seri çözümlerde serinin sadece birkaç teriminde bile yakınsamanın 

çok iyi olduğu görülebilir. Literatürde var olan ve uygulamalı matematikçiler tarafından 

sıkça kullanılan ADM, HAM ve HPM bu metotlara örnek olarak verilebilir. Bu üç metot 

da lineer veya lineer olmayan adi ve kısmi diferensiyel denklemlere başarılı bir şekilde 

uygulanmıştır.    

Lineer olmayan denklemlerin yarı analitik metotlar ile çözümü yapılırken 

denklemdeki lineer olmayan terimin sayısı ve lineer olmayanlığın kuvvetliliği çözüm 

esnasında bazı zorluklar çıkarabilir. Bu yüzden ADM kullanılırken bu zorlukları aşmak 

için adomian polinomları kullanılır. Lineer olmayanlılığın kuvvetli olduğu denklemlerin 

sayısal çözümü yapılırken seri çözümün gerçek çözüme yakınsaması için bazen serinin 

birkaç teriminin hesaplanması yetmeyebilir ve daha fazla terime ihtiyaç duyulabilir. Bu 

durum farklı sayısal metotların doğmasına sebep olmuştur.  

HAM kullanılarak yapılan seri çözümlerde keyfi bir h  parametresi ve keyfi bir 

( ),H x t  fonksiyonu kullanılır. Bu durum HAM için bir avantaj olarak görülebilir. Çünkü 

elde edilen seri çözümün yakınsaklığı keyfi h  parametresine göre yapılır. Bunun için h  

parametresinin grafiği çizilerek grafikte yatay doğrunun içinde bulunduğu h  aralığı seri 

çözümün yakınsaklık aralığı olarak alınır [64]. Yani gerçek çözüme en iyi yakınsama bu 

aralıkta h  parametresine verilen değerler ile elde edilir. Bu aralık içinde h  değerinin hangi 

noktada en iyi yakınsamayı gösterdiğini ise bu yakınsaklık aralığında h  parametresine 



70 
 

verilen değerler ile elde edilen sayısal sonuçların, gerçek çözüm ile farkının mutlak değeri 

hesaplanarak görülebilir. Bu işlemler yapılırken genellikle ( ), 1H x t =  alınır. Ancak keyfi 

( ),H x t  fonksiyonunun farklı seçimlerinde gerçek çözüme yakınsamanın nasıl olabileceği 

ayrıca incelenebilir. HAM’ unun bir diğer avantajı ise çözüm serisinin terimlerini bulmak 

için L  lineer operatörünün özgürce belirlenebilmesidir [79,80]. 
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