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YÜKSEK HIZLI YENİ UZAY-ZAMAN BLOK KODLARI 

ÖZET 

İnternet ve çoklu ortam uygulamalarının gelecek nesil telsiz iletişim sistemlerine 
katılmasıyla birlikte yüksek veri hızlı iletişim sistemlerine olan gereksinim gittikçe 
artmaktadır. Kullanılabilir spektrum sınırlı olduğu için yüksek veri hızları elde 
etmenin tek yolu daha etkin işaretleşme teknikleri kullanmaktır. Tek-girişli tek-
çıkışlı sistemlere göre çok-girişli çok-çıkışlı sistemlerin kullanılmasıyla kanal 
sığasında önemli kazançlar elde edilebileceği kanıtlanmıştır. Uzay-zaman blok 
kodlama, çok-girişli çok-çıkışlı kanalların kuramsal sığa sınırlarına ulaşmayı 
hedefleyen bir pratik işaret tasarım tekniğidir. Bu çalışmada iki, üç ve dört verici 
antenli çok-girişli çok-çıkışlı sistemler için düşük karmaşıklıklı, yüksek-hızlı, tam ve 
kısmi çeşitlemeli uzay-zaman blok kodları önerilmiştir. Bu kodların çözülmesinde 
koşullu en büyük olabilirlikli kod çözme olarak adlandırılan ve matematiksel olarak 
ifade edilen bir teknik kullanılmıştır. Önerilen kodlar için parametre optimizasyonları 
yapılarak yüksek çeşitleme ve kodlama kazançları elde edilmiştir. Önerilen kodların 
basitleştirilmiş en büyük olabilirlikli alıcı yapıları verilmiştir. İki verici anten için 
önerilen 2-hızlı kodun literatürdeki en iyi eşdeğerine göre daha düşük alıcı 
karmaşıklığı ile aynı hata başarımını yakaladığı, dört verici anten için önerilen 2-hızlı 
kodun ise en iyi eşdeğer koddan daha düşük alıcı karmaşıklığı ile daha iyi hata 
başarımı yakaladığı gösterilmiştir. İki, üç ve dört verici anten için karmaşıklık ve 
hata başarımı arasında ödünleşim sunan 1.5-hızlı kodlar da önerilmiştir. Son olarak 
üç ve dört verici anten için iletim hızları sırasıyla 3 ve 4 olan iki yüksek başarımlı 
kod önerilmiştir. Yapılan bilgi kuramsal analizler sonucu, dik uzay-zaman blok 
kodları ile karşılaştırıldığında, önerilen kodların maksimum karşılıklı bilgi miktarının 
çok-girişli çok-çıkışlı sistem sığasıyla aynı değerde olduğu ya da bu değere yakın 
olduğu gösterilmiştir. 
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NEW HIGH RATE SPACE-TIME BLOCK CODES 

SUMMARY 

With the integration of Internet and multimedia applications into the next generation 
wireless communication systems, the need for high data rate wireless systems has 
been growing. Since the available spectrum is limited, the only way to obtain higher 
data rates is to use more efficient signalling techniques. It is shown that with the use 
of multiple-input multiple-output systems, significant gains can be obtained in 
channel capacity. Space-time block coding is a pratical signal design technique that 
aims to achieve theoretical multiple-input multiple-output channel capacity limits. In 
this study, low decoding complexity, high-rate, full and partial diversity space-time 
block codes are proposed for multiple-input multiple-output systems with two, three 
and four transmit antennas. For the decoding of these codes, a technique which is 
named as conditional maximum likelihood decoding is used and mathematically 
described. High diversity and coding gains are obtained for the proposed schemes by 
parameter optimizations for some known signal constellations. Simplified maximum 
likelihood receiver structures for the proposed codes are given. It is shown that the 
proposed rate-2 code for two transmit antennas achieves the same error performance 
with that of its best counterpart given in the literature with a lower decoding 
complexity while proposed rate-2 code for four transmit antennas achieves better 
error performance than its best counterpart with a lower decoding complexity. For 
the systems with two, three and four transmit antennas, rate-1.5 space-time block 
codes which offer a tradeoff between complexity and performance, are proposed. 
Finally, for the systems with three and four transmit antennas we propose two high-
performance codes with symbol rates of 3 and 4, respectively. It is shown by 
information theoretic analysis that when compared with orthogonal space-time block 
codes, the maximum mutual information of the proposed codes are the same or 
closer to the actual multiple-input multiple-output channel capacity. 
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1.  GİRİŞ 

İnternet ve çoklu ortam (multimedia) uygulamalarının gelecek nesil telsiz iletişim 

sistemlerine katılmasıyla birlikte yüksek veri hızlı iletişim sistemlerine olan 

gereksinim gittikçe artmaktadır. Kullanılabilir spektrum sınırlı olduğu için yüksek 

veri hızları elde etmenin tek yolu daha etkin işaretleşme teknikleri kullanmaktır. Tek-

girişli tek-çıkışlı (single-input single-output, SISO) sistemlere göre çok-girişli çok-

çıkışlı (multiple-input, multiple-output, MIMO) sistemlerin kullanılmasıyla kanal 

sığasında önemli kazançlar elde edilebileceği Telatar[1] ve Foschini ve Gans[2]’ın 

bu alandaki öncü çalışmalarıyla kanıtlanmıştır. Bir telsiz iletişim sisteminin alıcı ve 

verici taraflarında çoklu antenlerin kullanılması daha yüksek veri oranlarına, servis 

kalitesine ve ağ sığasına olan gereksinimi karşılayan bir tekniktir [3]. Uzay-zaman 

kodlama (space-time coding) MIMO kanalların kuramsal sığa sınırlarına ulaşmayı 

hedefleyen bir pratik işaret tasarım tekniğidir [4]. Uzay-zaman kodlama, iletilen 

işaretlerin hem uzayda hem de zamanda yayılması ilkesine dayanmaktadır. Böylece 

aynı zamanda hem çeşitleme hem de kodlama kazançları elde edilebilmektedir. 

Uzay-zaman kodlamanın temelleri 1998 yılında Tarokh, Seshadri ve Calderbank 

tarafından atılmıştır [5]. Yine aynı yıl içerisinde Alamouti tarafından yapılan öncü 

çalışma [6] ile birlikte bu geçen 10 yıl içerisinde uzay-zaman kodlama teknikleri 

üzerine oldukça yoğun araştırmalar yapılmıştır. Genel olarak uzay-zaman kodlama, 

uzay-zaman kafes kodlama (space-time trellis coding, STTC) ve uzay-zaman blok 

kodlama (space-time block coding, STBC) olarak ikiye ayrılmaktadır. İlk olarak 

[5]’de önerilen uzay-zaman kafes kodları, modülasyon ile kafes kodlamayı 

birleştirerek veriyi MIMO kanal üzerinden iletir. Dolayısıyla STTC’ler MIMO 

kanallar için bir çeşit kafes kodlamalı modülasyon (trellis coded modulation, TCM) 

sistemi olarak düşünülebilir [7]. Uzay-zaman blok kodlama ise çoklu verici antenler 

için çeşitleme sağlayan ve düşük kod çözme karmaşıklıklı bir iletim yapısı olarak 

görülebilir. 

Uzay-zaman blok kodları, sönümlemenin bozucu etkileri altında sağladıkları yüksek 

başarım ve kod çözme yapılarının basitliği dolayısıyla uzay-zaman kafes kodlara 
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göre günümüzde birçok telsiz iletişim standardına girmiştir ve birçok gelecek nesil 

telsiz iletişim standardında da vazgeçilmez bir araç olarak karşımıza çıkmaktadır. 

Bundan dolayı, uzay-zaman blok kodlamanın temelini oluşturan ve 1998 yılında 

Siavash M. Alamouti tarafından yapılan öncü çalışmanın ardından geçen 10 yıl 

içerisinde birçok araştırmacı uzay-zaman blok kodlar üzerinde oldukça yoğun 

çalışmalarda bulunmuşlardır ve günümüzde de bu süreç aynı hızla devam etmektedir.  

Alamouti tarafından iki verici antenli MIMO sistemler için önerilen ve sonradan 

Alamouti STBC olarak adlandırılan bu STBC, literatürdeki dik STBC (orthogonal 

STBC, OSTBC)’lere ilk örnektir. OSTBC’ler, kod iletim matrislerinin özel yapısı 

sayesiyle oldukça basit bir şekilde en büyük olabilirlikli (maximum likelihood, ML) 

alıcı kullanılarak çözülebilir [6,8]. OSTBC’ler daha sonra Tarokh ve diğerleri 

tarafından üç ve dört verici antenli MIMO sistemler için genelleştirilmiştir [8]. 

Sonraki yıllarda değişik verici anten sayıları için birçok OSTBC önerilmiştir [9-15]. 

OSTBC’lerin temel mantığı, alıcının kod sözcük matrisi içerisindeki her bir bilgi 

simgesi için bu matrisin diklik özelliğinden faydalanarak sadece o bilgi simgesinin 

bir işlevi olan bir karar kuralı sağlaması ve bu simgeleri birbirlerinden bağımsız 

olarak teker teker çözmesidir. Dolayısıyla, bir OSTBC için alıcı karmaşıklığı, SISO 

bir kanalın alıcı karmaşıklığıyla aynı düzeydedir yani doğrusal olmaktadır. Ancak, 

bir STBC için diklik koşulu oldukça katıdır. Dahası bir dik tasarımın iletim hızı 

ancak ve ancak iki verici anten için kanal kullanımı başına bir karmaşık simge, yani 

tam (1-hızlı) olmaktadır ve ikiden daha çok verici antenli sistemler için OSTBC’lerin 

iletim hızının 3/4 ile üstten sınırlandığı kanıtlanmıştır [16]. Diğer taraftan [17]’de 

gösterilmiştir ki, OSTBC’ler düşük iletim hızları dolayısıyla telsiz MIMO kanalın 

sığasında önemli kayıplara yol açmaktadırlar. Dolayısıyla, araştırmacılar dik fakat 

düşük hızlı kodlar yerine, diklik koşulunu esneterek yüksek hızlı kodlar aramaya 

yönelmiştir. İlk olarak [18,19]’da yukarıda sözü geçen üst sınırı aşan, fakat daha 

yüksek kod çözme karmaşıklıklı ve tam çeşitleme de sağlamayan yarı-dik STBC 

(quasi-orthogonal STBC, QOSTBC)’ler önerilmiştir. QOSTBC’lerin temel mantığı 

kod matrisindeki sütun vektörlerini gruplara ayırmak ve bu grupların kendi içlerinde 

değil fakat kendi aralarındaki dikliği sağlamak, bundan dolayı ML kod çözme 

işlemini OSTBC’lar gibi simge temelli değil de simge grupları temelli 

gerçekleştirmektir. Dolayısıyla bir QOSTBC’nin kod çözme karmaşıklığı 

OSTBC’dan daha yüksek olmaktadır. [18,19]’da önerilen QOSTBC’lar daha sonra 
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iletim matrisindeki bazı simgeler döndürülerek tam verici çeşitlemesi sağlayacak 

şekilde geliştirilmiştir [20,21]. [22-24]’de Rajan ve Khan tarafından önerilen bileşen 

serpiştirmeli dik tasarımlar (coordinate interleaved orthogonal design, CIOD) ise üç 

ve dört verici anten için yarı-dik tasarımların iletim hızlarını yakalamalarının yanı 

sıra dik tasarımlar gibi simge temelli ML alıcı ile çözülebilmektedir. Sonraki 

yıllarda, bileşen serpiştirmeli yapı kullanılarak bazı tam-hızlı ve düşük karmaşıklıklı 

STBC’ler de önerilmiştir [25,26]. 

Geçen yıllar içerisinde tam hızlı (1-hızlı) STBC’lerin yeterli olamayacağı ortaya 

çıkmıştır. Hottinen ve Tirkkonen bu eksikliği fark ederek yüksek hızlı STBC’ler 

aramaya başlamışlar, [27]’in 9. Bölüm’ünde, iki ve dört verici antenli sistemler için 

2-hızlı STBC’ler önermişlerdir. Fakat bu ilk STBC’ler oldukça yüksek alıcı 

karmaşıklığına ve düşük kodlama kazançlarına sahiptir. Sonraki yıllarda cebrik sayı 

kuramı kullanarak yüksek-hızlı STBC elde etmek üzere bazı araştırmalar yapılmıştır 

[28,29]. Sayı kuramı kullanılarak elde edilen yüksek-hızlı kodlara en iyi örnek olarak 

günümüzde de gezgin WiMAX sistemlerinde kullanılan Altın kod (Golden code) 

[29] verilebilir. İletim hızı 2 olan Altın kodun en büyük dezavantajı ML kod çözme 

karmaşıklığının kullanılan işaret kümesinin eleman sayısının dördüncü kuvvetiyle 

orantılı olmasıdır. [30] ve [31]’de sırasıyla Parades ve diğerleri, Sezginer ve Sari 

tarafından Altın kod’a göre daha düşük ML kod çözme karmaşıklıklı fakat daha 

düşük kodlama kazancına ve dolayısıyla daha kötü hata başarımına sahip alternatif 

STBC’ler önerilmiştir. 

Dört verici antenli sistemler için Hottinen ve Tirkkonen tarafından önerilen 2-hızlı 

DjABBA kodu [27,32] yıllardan beri en iyi STBC olarak bilinmekteydi. Ancak, 

Biglieri, Hong ve Viterbo tarafından [33,34]’de önerilen yeni bir kodun DjABBA 

kodundan daha iyi hata başarımına sahip olduğu gösterilmiştir. Fakat sözü geçen bu 

iki STBC de kullanılan işaret kümesinin eleman sayısının yedinci kuvvetiyle orantılı 

bir ML kod çözme karmaşıklığına sahiptir ki bu da bu STBC’lerin pratik olarak 

oldukça zor ve pahalı bir şekilde gerçekleştirilebileceği anlamına gelmektedir. Üç ve 

dört verici antenli sistemler içinse uzamsal çoğullama (spatial multiplexing, SM) ile 

aynı iletim hızına sahip (üç verici anten için 3-hızlı, dört verici anten için 4-hızlı) 

düşük karmaşıklıklı STBC’ler ise literatürde bulunmamaktadır. 

Bu çalışmada, yukarıda sıralanan literatürdeki en iyi yüksek hızlı STBC’lere 

alternatif olarak düşük karmaşıklıklı yüksek-hızlı yeni STBC’ler önerilmiş, önerilen 
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bu kodlar için kodlama kazancı optimizasyonları yapılmış, basitleştirilmiş ML alıcı 

yapıları verilmiş ve bu kodların bilgi kuramsal analizleri yapılmıştır. Bu çalışmanın 

temel katkıları aşağıda sıralanmıştır: 

 İlk olarak Sezginer ve Sari tarafından [31] ve [35]’deki dik olmayan 

STBC’lerin kod çözümünde kullanılan teknik, koşullu ML kod çözme olarak 

adlandırılmış [36,37], matematiksel olarak açıklanmış ve literatürdeki birçok 

OSTBC’ye uygulanmıştır. 

 İki verici antenli MIMO sistemler için, hızları 2 ve 1.5 olan iki yeni tam-

çeşitlemeli STBC önerilmiştir [38]. Önerilen 2-hızlı kodun, litaratürdeki en 

iyi kod olan Altın kod ile aynı hata başarımını daha düşük bir alıcı 

karmaşıklığı ile yakaladığı gösterilmiştir. Önerilen 1.5-hızlı kodun ise 

[35]’deki eşdeğerinden daha iyi hata başarımına sahip olduğu gösterilmiştir. 

 Dört verici antenli MIMO sistemler için hızları 2, 1.5 ve 1 olan yeni tam-

çeşitlemeli STBC’ler önerilmiştir [36,37]. Önerilen 2-hızlı kodun literatürdeki 

en iyi kod olan Biglieri, Hong, Viterbo (BHV) kodundan daha düşük bir alıcı 

karmaşıklığı ile daha iyi hata başarımı verdiği gösterilmiştir. Önerilen 1.5-

hızlı ve 1-hızlı kodların da literatürdeki 1-hızlı kodlardan daha iyi hata 

başarımına sahip oldukları gösterilmiştir. 

 Dört verici anten için önerilen 2, 1.5 ve 1 oranlı kodlar uygun işlemler sonrası 

üç verici antene de uyarlanmış ve literatürdeki kodlarla karşılaştırılarak 

üstünlükleri ortaya konmuştur. 

 Dört ve üç verici antenli sistemler için maksimum iletim hızlı (dört verici 

anten için 4-hızlı ve üç verici anten için 3-hızlı) iki yeni STBC önerilmiş ve 

bu kodların ilişkin uzamsal çoğullamalı sistemlerden daha iyi hata başarımı 

sağladıkları gösterilmiştir [39]. 

 Önerilen kodlar için bilgi kuramsal analizler yapılmış ve bu kodların MIMO 

kanal sığasını maksimize ettikleri gösterilmiştir. 

Bu çalışmanın genel hatları şu şekildedir: 2. Bölümde MIMO telsiz kanal modeli ve 

çeşitleme teknikleri anlatılmıştır. 3. Bölümde uzay-zaman blok kodlama alanında son 

10 yıl içerisinde yapılan çalışmalar gözden geçirilmiştir. 4. ve 5. Bölümlerde 

sırasıyla 2, 3 ve 4 verici anten için yeni STBC’ler önerilmiştir. Son olarak 6. 

Bölümde sonuçlar verilmiştir. 
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2.  TELSİZ İLETİŞİM KANALLARI VE ÇEŞİTLEME 

Bu bölümde, telsiz iletişim kanalları ve sönümleme incelenmiş, çeşitleme ve 

çeşitleme teknikleri kısaca anlatılmış, çalışma boyunca kullanılan MIMO kanal 

modeli verilmiştir. Sonraki bölümlerde kullanılacak tasarım ölçütleri ve iletim hızı, 

alıcı karmaşıklığı gibi bazı temel kavramlar gözden geçirilmiştir. 

2.1  Toplamsal Beyaz Gauss Gürültülü (AWGN) Kanal 

Bir sayısal iletişim sistemi için kullanılabilecek en basit kanal tipi toplamsal beyaz 

Gauss gürültülü (additive white Gaussian noise, AWGN) kanaldır [50]. İletişim 

sistemlerinin modellenmesinde AWGN kanalların kullanılmasının nedeni ısıl 

gürültünün varlığıdır. Isıl gürültünün temel spektral karakteristiği güç spektral 

yoğunluğunun tüm frekanslarda aynı olmasıdır ki beyaz terimi bu amaçla 

kullanılmaktadır. Bir AWGN kanalda, iletilen işaretlerin işaret uzayında birbirinden 

istatistiksel olarak bağımsız Gauss raslantı değişkenlerinden etkilendiği kabul edilir. 

Gauss dağılımına sahip raslantı değişkeni n olmak üzere, bu raslantı değişkenin 

olasılık dağılım işlevi 

 2
22

2

1
( )        

2

n m

p n e n






        (2.1) 

şeklinde verilir. Burada m ortalamayı, 2  ise varyansı göstermektedir. 

Toplamsallıktan gürültünün iletilen işaretin üzerine doğrudan eklenmesi ve çarpıcı 

etkenlerin söz konusu olmaması anlaşılmaktadır. 

2.2  Telsiz Kanallar ve Sönümleme 

Birçok fiziksel kanal için uygun olan AWGN kanal modeli, zamanla iletim 

karakteristikleri değişen telsiz iletişim kanalları üzerinden işaret iletimi söz konusu 

olduğunda yeterli değildir [51]. Böyle durumlarda, kanalın zamanla değişen 

davranışını karakterize edecek daha genel matematiksel modellere gereksim vardır. 
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Telsiz kanalların en ayırt edici özelliği verici ve alıcı arasında birden çok yol 

olmasıdır [7,52]. Bu çeşitli yolların varlığı dolayısıyla iletilen işaretin birden çok 

versiyonu alıcıya ulaşmaktadır. Şekil 2.1’de bir telsiz iletişim kanalındaki değişik 

iletim mekanizmaları gösterilmiştir.  

 

Şekil 2.1 : Bir telsiz iletişim kanalındaki farklı iletim yolları 

Alıcı ve verici arasında doğru bir yol varsa bu hatta doğrudan görüş hattı (line of 

sight, LOS) adı verilir. Ancak LOS hattı olmadan da elektromanyetik dalgalar, 

vericiden alıcıya ulaşabilmektedir. Bir elektromanyetik dalga, dalga boyundan çok 

daha büyük bir nesneye çarptığı zaman yansımaktadır (reflection). İletilen dalga, 

çevredeki birçok büyük nesneden yansıyarak farklı zamanlarda ve farklı güçlerde 

alıcıya varabilir. Diğer bir iletim mekanizması ise kırınımdır (diffraction). 

Elektromanyetik dalgalar sivri uçlu nesnelere çarptıklarında kırınıma uğrarlar. Son 

olarak bir elektromanyetik dalga, dalga boyundan daha küçük bir nesneye çarptığı 

zaman ise saçılmaktadır (scattering).  

Yukarıda bahsedilen iletim mekanizmalarının doğal bir sonucu olarak alınan işaretin 

telsiz kanala özgü bazı özellikleri olmaktadır. Bu etkiler alınan işaretin gücünü iki 

farklı şekilde etkileyebilir. Bunların ilki, işaret gücünün uzun mesafelerde değiştiği 

geniş ölçekli etkidir. Bu etkiye, zayıflama (attenuation), yol kaybı (path loss) ya da 

geniş ölçekli sönümleme (large-scale fading) adı verilmektedir. Diğer etki ise alınan 

işaret gücünün çok kısa mesafelerde ve/veya zaman aralıklarında değiştiği küçük 

ölçekli sönümlemedir (small-scale fading). Küçük ölçekli sönümlemeye kısaca 
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sönümleme de denmektedir. Sönümlemeli kanallar çok yollu zaman gecikmesi 

açısından düz ve frekans seçici, Doppler yayılımına göre de yavaş ve hızlı olarak 

sınıflandırılmaktadır [52]. Buna göre dört farklı tip sönümlemeli kanalın varlığı söz 

konusudur: 

 Düz (Frekans seçici olmayan) yavaş sönümlemeli kanal: İşaretin bant 

genişliği kanalın uyumluluk bant genişliğinden küçüktür ve işaretin periyodu 

da kanalın uyumluluk zamanından küçüktür. 

 Düz (Frekans seçici olmayan) hızlı sönümlemeli kanal: İşaretin bant genişliği 

kanalın uyumluluk bant genişliğinden küçüktür ve işaretin periyodu da 

kanalın uyumluluk zamanından büyüktür. 

 Frekans seçici yavaş sönümlemeli kanal: İşaretin bant genişliği kanalın 

uyumluluk bant genişliğinden büyüktür ve işaretin periyodu da kanalın 

uyumluluk zamanından küçüktür. 

 Frekans seçici hızlı sönümlemeli kanal: İşaretin bant genişliği kanalın 

uyumluluk bant genişliğinden büyüktür ve işaretin periyodu da kanalın 

uyumluluk zamanından büyüktür. 

Burada, uyumluluk bant genişliği (coherence bandwidth) kanalın düz olarak 

görülebileceği frekans bölgelerinin istatistiksel bir ölçüsü olup kanalın zamanda 

yayılımlı doğasını açıklar. Uyumluluk zamanı (coherence time)  ise kanalın zamanla 

değişen doğasını açıklayan bir parametre olup Doppler yayılım frekansıyla ters 

orantılıdır.  Bu çalışmada kullanılacak olan telsiz kanal modeli düz (frekans seçici 

olmayan) yavaş sönümlemeli kanaldır. 

Bir telsiz iletişim sisteminde alınan işaret gücünün değişimini incelemek için bazı 

istatistiksel modellere gereksinim vardır. Düz sönümlemeli, LOS hattının olmadığı 

durumu ele alalım. I adet iletim yolunun olduğu çok yollu telsiz kanalı ele alacak 

olursak, iletilen işaretin frekansı fc olmak üzere alınan işaret, 

1

( ) cos(2 ) ( )
I

i c i
i

r t a f t t  


     (2.2) 

şeklinde verilir. Burada, ai ve i  sırasıyla i. bileşenin genlik ve faz değerleri ve ( )t  

de Gauss gürültüsüdür. (2.2)’deki cos terimi açılırsa, 

1 1

( ) cos(2 ) cos( ) sin(2 ) sin( ) ( )
I I

c i i c i i
i i

r t f t a f t a n t   
 

     (2.3) 
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elde edilir. 
1

cos( )
I

i ii
A a 


  ve 

1
sin( )

I

i ii
B a 


   olmak üzere bu terimler I adet 

terimin toplanması ile elde edilmiştir ve merkezi limit teoremine göre büyük I 

değerleri için A ve B değişkenleri istatistiksel bağımsız eş dağılımlı (independent 

identically distributed, iid) Gauss raslantı değişkenleri olarak kabul edilebilir. A ve B 

iid sıfır ortalamalı Gauss raslantı değişkenleri olduğundan alınan işaretin zarfı 

2 2A B  Rayleigh dağılımına sahiptir. Rayleigh dağılımlı bir raslantı değişkeninin 

pdf’i 

2

2 2
( ) exp ,        0

2R

r r
f r r

 
 

  
 

  (2.4) 

olup burada 2 , A ve B raslantı değişkenlerinin varyansıdır. (2.2) ve (2.3)’deki 

alınan işaretler alıcının ilk bölümündeki analog işaretlerdir. Ancak biz uyumlu 

süzgeç ve örnekleme devresi çıkışındaki temelbant sayısal işaretle ilgilendiğimizden 

aşağıdaki iletim modeli kullanılmıştır, 

t t tr hs n  .  (2.5) 

Burada rt demodülasyon sonucu uyumlu süzgecin çıkışı, h karmaşık Gauss raslantı 

değişkeni, st ve tn  ise iletilen işaret ( )s t  ve gürültü işareti ( )n t ’nin ayrık zamanlı 

biçimleridir. h’nin gerçel ve sanal kısımları sıfır ortalamalı Gauss raslantı 

değişkenleri olduğundan genliği h  Rayleigh dağılımlıdır. (2.5)’de verilen model 

Rayleigh sönümlemeli kanal modelidir. Burada h yol kazancı, tn  ise Gauss gürültüsü 

olarak adlandırılır. Bu çalışmada Rayleigh sönümlemeli kanal modeli kullanılacaktır. 

(2.5)’de 1h   alınarak AWGN kanala ilişkin model elde edilebilir.   

2.3  Çeşitleme 

Gauss kanalın zıttına (2.5)’de verilen sönümlemeli kanal modeli alınan güçte çok 

önemli düşüşlere neden olmaktadır. Alınan güçteki bu değişim 20, 30 dB’yi bile 

aşabilmektedir. Isıl gürültünün gücü alıcıda çok sık değişmediği için alıcıdaki işaret- 

gürültü oranı (signal to noise ratio, SNR) çok sert biçimde sönümlenebilir. İletişimin 

sağlıklı bir şekilde sürebilmesi için alınan SNR’ın belli bir eşiğin üzerinde kalması 

gerekmektedir. Çeşitlemenin (diversity) temel amacı iletilen işaretin birden fazla 

kopyasının alıcıya iletilmesidir. Bu kopyaların birbirlerinden farklı olarak 
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sönümlenmesi sonucu, hepsinin birden aşırı sönümlenme olasılığı oldukça düşecektir 

ki bu da iletişimin güvenilirliğini arttıracaktır. Alıcı, bu kopyaları birleştirerek ya da 

en güçlüsünü seçerek gönderilen işareti çözebilecektir. Çeşitleme ya da çeşitleme 

kazancı ( )dG , alınan SNR ( )  ve hata olasılığı ( )eP  arasındaki şu eşitlikle verilir, 

log( )
lim

log( )
e

d

P
G

 
  .  (2.6) 

Burada Pe,   alınan SNR değerindeki hata olasılığıdır. Diğer bir deyişle logaritmik 

bir düzlemde çeşitleme kazancı, artan SNR’la birlikte hata eğrisinin eğimini 

belirlemektedir. Burada göz önünde bulundurulması gereken iki önemli olgu vardır. 

Bunlardan ilki, vericinin iletilmek istenen işaretinin kopyalarını alıcıya güç, kod 

çözme karmaşıklığı ve bant genişliği gibi etkenleri göz önünde bulundurarak nasıl 

göndereceği, ikincisi ise alıcının iletilen işaretlerin bu değişik versiyonlarını nasıl 

birleştireceğidir. Bu çalışmanın temel konusu olan uzay-zaman blok kodları, verinin 

birden fazla verici anten üzerinden nasıl gönderildiğiyle ilgilenmektedir. Bu 

bölümde, sadece birden fazla alıcı antenin olduğu durumda kullanılan optimum 

birleştirme tekniği kısaca anlatılacaktır.  

2.3.1  En büyük oranlı birleştirme (Maximal ratio combining, MRC) 

İletilen işaretin nR adet kopyasını nR adet birbirinden bağımsız yoldan alan bir telsiz 

iletişim sistemini ele alalım. , 1, 2,...,m Rr m n  m. alıcı antende alınan işaret olmak 

üzere, 

m m mr h s n    (2.7) 

olup, burada hm, verici ve m. alıcı anten arasındaki kanal kazancı, nm ise m. alıcı 

antendeki Gauss gürültüsü örneğidir. Alıcının hm değerlerini bildiği varsayılsın. 

Gürültü örnekleri istatistiksel bağımsız olduğundan, iletilen işaret ve kanal kazançları 

koşulu altında alınan işaretler de istatistiksel bağımsız Gauss raslantı değişkenleri 

olup, koşullu ortak pdf’i 

 

2

1
1 2 1 2 /2

00

1
( , ,..., | , , ,..., ) exp

R

R R R

n

m m
m

n n n

r sh
f r r r s h h h

NN


 
    

 
  


 (2.8) 
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şeklindedir. Burada 0 / 2N  karmaşık Gauss gürültüsünün gerçel ve sanal kısımlarının 

varyansıdır. Alıcı (2.8)’i maksimize edecek işarete ˆ( )s  karar verecektir. Burada 

dikkat edilmesi gereken nokta, çeşitleme olmayan durumda (2.8)’deki minimizasyon 

probleminin 1Rn   için 
2

1 1r sh ’in minimizasyonuna indirgenmesidir ki bu da 

*
1 1r h ’ye en yakın olası iletilen simgenin bulunması problemidir. (2.8)’den hareketle, 

M-PSK gibi eşit enerjili simgeler içeren bir işaret kümesi için, karar kuralı, 

2 2 2 2* * *

1 1 1 1 1

2

*

1

ˆ arg min arg min

 arg min

R R R R R

R

n n n n n

m m m m m m i ms s
m m m i i

n

m ms
m

s r sh s h r s h r r s h

r h s

    



 
       

 

 

    


 (2.9) 

olarak bulunur. Dolayısıyla alıcı çeşitlemeli bu sistem için, ML karar kuralı, 

çeşitleme kullanılmayan sistemde kullanılan *
1 1r h  terimi yerine alınan işaretlerin 

ağırlıklandırılmış bir toplamı olan *

1

Rn

m mm
r h

   teriminin kullanılması ile elde edilir. 

Buna en büyük olabilirlikli birleştirme (maximal ratio combining, MRC) 

denmektedir [7]. Ortalama iletilen işaret enerjisi Es olmak üzere, m. alıcıdaki SNR, 

 2

0/m m sh E N  ’dır. En büyük olabilirlikli birleştirici çıkışındaki SNR ise 

2
2

2 21

2 1 10
0

1

R

R R

R

n

m s n n
m s

m mn
m m

m
m

h E
E

h
N

h N

 

 



 
 
   


 


  (2.10) 

şeklinde hesaplanır. Dolayısıyla, nR adet alıcı antenli durumda elde edilen etkin SNR, 

nR adet farklı yoldaki SNR’ların toplamıdır. Alınan SNR’daki bu nR katlık artış nR 

dereceden çeşitleme kazancı sağlamaktadır. Gösterilebilir ki bu da böyle bir sistemde 

elde edilebilecek maksimum çeşitleme kazancıdır.  

MRC tekniğinin optimum hata olasılığını garanti etmesinin yanı sıra alıcı 

karmaşıklığını daha da düşürmek için MRC tekniğine alternatif olarak çeşitli 

sistemler önerilmiştir. Bunlara örnek olarak eşit oranlı birleştirme (equal gain 

combining, EGC) ve seçmeli birleştirme (selection combining) teknikleri verilebilir 

[7]. Bu birleştirme tekniklerinin ayrıntılı bir incelemesi [7,54,55]’de bulunabilir. 
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2.4  MIMO Kanal Modeli 

Bu bölümde, bu çalışmada kullanılan kanal modeli verilecektir. nT verici, nR de alıcı 

anten sayısını göstermek üzere T Rn n bir telsiz MIMO kanalı ele alalım. Alınan 

RT n  işaret matrisi RT nY   

 Y XH N   (2.11) 

şeklinde verilmek üzere, TT nX   T zamanda iletilen kod sözcük (iletim) matrisi, H 

ve N de sırasıyla T Rn n  kanal matrisi ve RT n  gürültü matrisidir. H ve N’nin 

elemanları sırasıyla (0,1)N  ve 0(0, )N N  olasılık dağılım işlevli istatistiksel 

bağımsız ve aynı dağılımlı karmaşık Gauss raslantı değişkenleridir. H’nin bir kod 

sözcüğünün iletimi sırasında sabit kaldığı, her bir kod sözcüğü için birbirinden 

istatistiksel bağımsız değerler aldığı ve alıcı tarafından bilindiği varsayılmıştır. Kanal 

matrisi T Rn nH  , 

1,1 2,1 ,1

1,2 2,2 ,1

1, 2, ,

R

R

T T R T

n

n

n n n n

h h h

h h h

h h h

 
 
   
 
  

H




   


  (2.12) 

biçiminde olup burada hij, j. verici anten ile i. alıcı anten arasındaki kanal kazancıdır. 

2.5  MIMO Kanal Sığası 

Aşağıdaki giriş-çıkış ilişkisi ile verilen ayrık-zamanlı AWGN kanalı ele alalım, 

( ) ( ) ( )y i x i n i  .  (2.13) 

Burada x(i), i anındaki kanal girişi, y(i) ilişkin kanal çıkışı ve n(i) de beyaz Gauss 

rastlantı sürecidir. Kanal bant genişliğini B, alınan işaret gücünü de P ile gösterelim. 

Böylece alınan SNR 0/P N B   olacaktır. Bu kanalın sığası da [56],  

2log (1 )    /C B bit sn    (2.14) 

ile verilir. Ayrık belliksiz kanal (ABK) için rastgele X girişi ve Y çıkışı için kanalın 

karşılıklı bilgi miktarı (mutual information), 
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,

( , )
( ; ) ( , ) log

( ) ( )x X y Y

p x y
I X Y p x y

p x p y 

 
  

 
   (2.15) 

olarak verilir [53]. Shannon, kanal sığasının, kanalın karşılıklı bilgi miktarının tüm 

olurlu giriş dağılımları üzerinden maksimumuna eşit olduğunu göstermiştir, 

( ) ( )
,

( , )
max ( ; ) max ( , ) log

( ) ( )p x p x
x X y Y

p x y
C I X Y p x y

p x p y 

 
   

 
 . (2.16) 

Şimdi bu sonucu MIMO kanallar için genişletelim. ( ; ) ( ) ( / )I H H X Y Y Y X  

olduğu göz önüne alınırsa, giriş vektörü X ve çıkış vektörü Y arasındaki karşılıklı 

bilgi miktarı,  

( ) ( )
max ( ; ) max ( ) ( / )

p x p x
C I H H  X Y Y Y X   (2.17) 

olarak yazılabilir. ( / )H Y X  ve ( )H Y , sırasıyla Y/X ve Y’nin entropileridir. Entropi 

tanımına göre ( / ) ( )H HY X N   olacaktır. ( )H N  entropisi de kanal girişinden 

bağımsız olduğu için problem Y’nin entropisini maksimize etmeye indirgenir [1]. 

Giriş vektörünün kovaryans matrisi xR  olmak üzere, çıkışın kovaryans matrisi, 

 
R

H H
y x nE  R YY HR H I   (2.18) 

olup Y’nin entropisi, Y’nin sıfır ortalamalı, dairesel simetrik karmaşık Gauss raslantı 

vektörü olması durumunda maksimum olur. 2( ) log det[ ]yH B eY R  ve 

2( ) log det[ ]
TnH B eN I  olmak üzere karşılıklı bilgi miktarı [1], 

2( ; ) log det[ ]
R

H
n xI B X Y I HR H   (2.19) 

şeklinde bulunur. MIMO kanal sığası, (2.19)’da verilen karşılıklı bilgi miktarının güç 

koşulunu sağlayan tüm xR  giriş kovaryans matrisleri üzerinden maksimize 

edilmesiyle bulunur, 

2
: ( )
max log det[ ]

R
x x

H
n x

Tr
C B


 

R R
I HR H .  (2.20) 

(2.20)’de verilen maksimizasyon doğrudan doğruya H’nin alıcıda bilinip 

bilinmediğine bağlıdır. Kanalın alıcıda bilinip vericide bilinmediği durumu göz 

önüne alalım. Kanal bilgisi olmadan verici giriş kovaryansını optimize edemez. H 

için önceki bölümlerde yapılan kabuller altında [1]’de gösterilmiştir ki 
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( / )
Tx T nnR I  seçimi, kanalın karşılıklı bilgi miktarını maksimum yapmaktadır. 

Buna göre, 

2( ; ) log det[ ]
R

H
n

T

I B
n


 X Y I HH   (2.21) 

elde edilir. MIMO kanalın ergodik sığası da [7],   

2log det[ ]
R

H
E n

T

C E B
n

 
  

 
I HH   (2.22) 

şeklinde verilmiştir. Şekil 2.2’de Rayleigh sönümleme modelini kullanan değişik 

MIMO sistemler için SNR’a göre ergodik sığa eğrileri gösterilmiştir. Buradan da 

açıkça görüldüğü üzere çok sayıda anten kullanımı ergodik sığayı hatırı sayılır 

derecede arttırmaktadır. Diğer bir deyişle, çok anten kullanılması ile birim zamanda 

birim bant genişliğinden iletilebilecek bit sayısı atmaktadır. Dikkat edilmesi gereken 

bir diğer nokta da alıcı anten sayısının etkisinin verici anten sayısına göre daha fazla 

olmasıdır [7].  
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2.6  Rank ve Determinant Ölçütleri 

Bu bölümde, uzay-zaman kodları için [5]’de önerilen tasarım ölçütleri gözden 

geçirilmiştir. X iletilen, X̂  da çözülen kod sözcük matrisi olmak üzere  ˆX X ’ın 

minimum rankı r ile gösterilsin. Eğer X ve X̂ ’ın tüm olası değerleri için  ˆX X  

tam ranklı ise, yani Tr n  ise, bu uzay-zaman blok kodu tam çeşitlemelidir ve bu 

durumda elde edilen çeşitleme kazancı T Rn n ’dir. Tam çeşitlemeli bir STBC için, en 

kötü durum çiftsel hata olasılığı (pairwise error probability, PEP) değerinin bağlı 

olduğu bir diğer parametre ise, 

min ˆ
min  det ˆ ˆ ( )( )H


    X X
X X X X   (2.23) 

şeklinde tanımlanan minimum determinanttır. Bu kodun kodlama kazancı ise 

 1/

min
Tn ’dir.  Rank ve determinant ölçütleri [5], sırasıyla çeşitleme ve kodlama 

kazançlarının maksimize edilmesini gerektirirler. Burada dikkat edilmesi gereken bir 

diğer nokta ise, çeşitleme kazancının hata eğrisinin eğimini belirlemesinden dolayı 

daha baskın olmasıdır. Tam çeşitlemeden emin olduktan sonra, min  değeri 

maksimize edilerek en iyi hata başarımı garanti edilebilir. 

Tam çeşitleme sağlamayan bir STBC için ise bu çalışmada kodlama kazancı, 

min
ˆ ˆmin ( )( )H


  X X X X   (2.24) 

şeklinde hesaplanmıştır. Burada 


A , A’nın pozitif özdeğerlerin çarpımını 

göstermektedir.  ˆX X ’nın tam ranklı olması durumunda (2.23) ve (2.24) aynı 

sonucu vermektedir. Tam çeşitleme sağlanmasa bile (2.24)’ün maksimizasyonu yine 

en iyi hata başarımını garanti etmektedir. Bu çalışma boyunca yapılan tüm min  

hesaplarında ilişkin STBC’nin şu güç koşulunu sağlaması istenmiştir, 

   2H
TE tr Tn X X X . Buna göre her bir uzay-zaman yuvasından ortalama 1 

Joule enerji iletilmektedir. 

STBC tasarımda göz önünde bulundurulması gereken üçüncü bir parametre ise 

çarpımsallıktır (multiplicity). Kod sözcük uzaklık matrisi ˆ ˆ( )( )H X X X X ’nın 
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pozitif özdeğerlerinin çarpımı   olmak üzere, bu STBC’nin hata olasılığı şu şekilde 

üstten sınırlıdır [34],  

1
( ) ( , ) ( , )

k
r

P e A r P r
M 

   .  (2.25) 

Burada, M karmaşık işaret kümesinin eleman sayısı, k ilişkin STBC’nin kod sözcük 

matrisi içerisindeki bilgi simgelerinin toplam sayısı, ( , )P r   rankı r, pozitif özdeğer 

çarpımları   olan kod sözcük farklarının çiftsel hata olasılığı, ( , )A r   ise ( , )P r   

çiftsel hata olasılıklı rankı r, pozitif özdeğer çarpımları   olan kod sözcük 

farklarının toplam sayısı yani çarpımsallıktır. Örneğin tam çeşitlemeli bir STBC’yi 

ele alalım. (2.25)’e göre bu STBC için min( , )A r   değerinin minimum olması da hata 

başarımını etkiler. 

2.7  İletim Hızı ve Alıcı Karmaşıklığı 

Kod sözcük matrisi X olan bir STBC’nin iletim hızı /R k T  kanal kullanımı başına 

iletilen karmaşık simge olmak üzere burada k, X’in içerisindeki farklı bilgi 

simgelerinin toplam sayısıdır. Literatürde tanımlanmış tam hızlı STBC’ler için bu 

değer 1R  ’dir. Dolayısıyla bu çalışmanın konusu olan yüksek hızlı STBC’ler için R 

değeri 1’den büyüktür. nT verici antenli bir sistemde elde edilebilecek maksimum 

iletim hızı TR n ’dir. Sonuç olarak yüksek hızlı bir STBC’nin hızı 1 TR n   

aralığındadır.    

ML alıcı karmaşıklığı, X kod sözcüğünün çözülebilmesi için gerekli metrik 

hesaplarının toplam sayısı olarak tanımlanmıştır. (2.11)’den hareketle X’in ML 

çözümü için aşağıdaki doğrudan yaklaşım kullanılır,   

2ˆ arg min 
X

X Y XH .  (2.26) 

M adet eleman içeren bir işaret kümesinde (örneğin M-QAM), (2.26)’daki 

minimizasyon kM  adet metriğin hesaplanmasını gerektirir ki bu elde edilebilecek 

kuramsal maksimum alıcı karmaşıklığıdır. Bunun nedeni X’in içerisindeki tüm 

simgelerin birlikte çözülmesidir. Ancak dik uzay-zaman blok kodları (OSTBC’ler) 

(2.26)’daki metriğin her biri M karmaşıklıklı k adet metriğe ayrıştırılmasına olanak 

verirler ve OSTBC’ler için toplam alıcı karmaşıklığı böylece doğrusal olup kM’dir. 

Bunun nedeni OSTBC’lerin dik iletim matrisleri sayesinde içerisindeki simgelerin 
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ayrıştırılabilmesine olanak sağlamasıdır. Yüksek hızlı ancak dik olmayan bir STBC 

içinse ML kod çözümü simge tabanlı gerçekleştirilemez. Ancak bu STBC’lerde 

büyük k ve M değerleri için (2.26)’daki minimizasyon karmaşıklığı kabul edilebilir 

sınırların çok ötesine çıkabilir. Bu durumda alıcının optimum doğasını bozmadan 

(2.26)’daki karmaşıklığın düşürülmesi problemi ortaya çıkar ki bu da bu çalışmanın 

temel katkısıdır. Dik olmayan bir STBC için ML alıcı karmaşıklığı kM ’dan düşükse 

bu STBC’nin alıcı karmaşıklığı düşürülmüştür diyebiliriz.  
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3.  UZAY-ZAMAN BLOK KODLARININ TARİHÇESİ   

Bu bölümde, Alamouti’nin öncü çalışmasından [6] günümüze kadar uzay-zaman 

blok kodlama alanında yapılmış bazı önemli çalışmalar gözden geçirilmiş, bu 

alandaki genel problemler ve çözüm yolları tartışılmıştır. Tarihsel sıra ile ilk olarak 

OSTBC’ler [6,8,9-15], ardından QOSTBC’ler [18,19], CIOD’lar [22-24], Tirkkonen 

ve Hottinen tarafından önerilen STBC’ler [27], Altın kod [29], Sezginer-Sari kodları 

[31,35] ve Biglieri Hong Viterbo (BHV) kodu [33,34] kısaca anlatılmış, bu kodların 

özellikleri, avantajları ve dezavantajları verilmiştir. Sonraki bölümlerde önerilen yeni 

STBC’ler bu bölümde gözden geçirilen STBC’lere alternatif olarak ortaya atılmış 

dolayısıyla bu bölümdeki kodlarla karşılaştırılmıştır. 

3.1  Dik Uzay-Zaman Blok Kodları (OSTBCs) 

Bu alt bölümde M-PSK ve M-QAM gibi karmaşık işaret kümeleri için verilmiş 

OSTBC’ler ya da diğer adıyla karmaşık dik tasarımlar [8] (complex orthogonal 

desings, CODs) gözden geçirilmiştir. Gerçel işaret uzayları için verilen dik tasarımlar 

burada incelenmemiştir. 

Tanım: Bir genelleştirilmiş COD (generalized COD, GCOD) Q , 0 1 1, ,. , Kx x x   

değişkenlerinden oluşan TT n ’lik bir matris olup şu özellikleri sağlar: 

(i) Q’nun elemanları 0 1 1, ,. , Kx x x     veya eşlenikleri olan * * *
0 1 1, ,. , Kx x x     

bilgi simgelerinden oluşmaktadır. 

(ii)  2 2 2

0 1 1 T

H
K nx x x    Q Q I  olup burada 

TnI  T Tn n ’lik birim 

matristir. 

Gösterilmiştir ki Alamouti tarafından önerilen STBC, 1-hızlı ve tam-çeşitlemeli olan 

tek COD’dir. Alamouti kodu için iletim (kod sözcük) matrisi şu şekildedir: 

0 1
2 * *

1 0

x x

x x

 
   

Q .  (3.1) 
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Burada , 0,1ix i   karmaşık modülasyonlu simgelerdir. Alamouti kodunun tam-

çeşitleme sağladığını kanıtlamak için Alamouti koduna ait fark matrisinin  2 2
ˆQ Q  

minimum rankının 2 olduğu 2 2
ˆQ Q  olmak üzere tüm olası 2 2

ˆ,Q Q  çifteri için 

gösterilmedir. Bunun içinse Alamouti kodunun uzaklık matrisinin 

   2 2 2 2
ˆ ˆH

 Q Q Q Q   minimum determinantının sıfırdan farklı olduğu 

gösterilmelidir. ˆ ,  0,1i i ix x x i     olmak üzere bu değer 

 

*
0 1 0 1

min * * *
1 0 1 0

2 2

0 1

2 2

0 1

22 2

0 1

min

0
      min

0

      min

x x x x

x x x x

x x

x x

x x


                     
               
     
 

 (3.2) 

olarak bulunur. (3.2)’den açıkça görüldüğü üzere bu min  değeri ancak ve ancak  

0 1 0x x     için sıfır olmaktadır. Böylece Alamouti kodunun tam-çeşitleme 

sağladığı kanıtlanmıştır. Alamouti kodu için min  değeri ise sadece bir simge hatalı 

çözüldüğünde (örneğin 0 0ˆx x ) şu şekilde bulunur: 

4

min 0x   .  (3.3) 

nR alıcı antenli durumda (3.1)’de verilen Alamouti kodunun ML kod çözümünü 

verelim. Bu durumda alınan işaret matrisi şu şekilde olacaktır: 

1,1 2,1 ,1 1,1 2,1 ,10 1
* *
1 01,2 2,2 ,2 1,2 2,2 ,2

R R

R R

n n

n n

r r r h h hx x

x xr r r h h h

    
            

N
 
 

. (3.4) 

Burada N, (2.11)’de tanımlandığı gibidir. Alıcı alınan işaretleri şu şekilde 

birleştirerek, 

 

 

* *
0 ,1 ,1 ,2 ,2

1

* *
1 ,2 ,1 ,1 ,2

1

R

R

n

i i i i
i

n

i i i i
i

x h r h r

x h r h r





 

 








  (3.5) 
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x0 ve x1 simgelerine ait kestirimleri elde eder. x0 ve x1 simgelerine ait karar kuralları 

ise şu şekildedir: 

 

 

0

1

2 2 22
0 0 0 , 0

1 1

2 2 22
1 1 1 , 1

1 1

arg min , 1

arg min , 1 .

R

R

n
ML

i jx
i j

n
ML

i jx
i j

x d x x h x

x d x x h x






 


 

        
   
        
   









 (3.6) 

(3.6)’da 2 (.)d  işlemi karesel Öklit uzaklığını göstermektedir, yani 

    *2 ,d x y x y x y   . Buradan görüldüğü üzere Alamouti kod sözcüğü 

içerisindeki her bir simge için M elemanlı bir işaret kümesinde (örneğin M-QAM) M 

adet metrik hesabına gereksinim vardır. Buna göre Alamouti kodu için ML kod 

çözme karmaşıklığı 2M ’dir. 

Dört ve üç verici anten için 3/4-hızlı COD’ler şu şekildedir [40-42], 

0 1 2
* *
1 0 2

4,3 * *
2 0 1

* *
2 1 0

0

0

0

0

x x x

x x x

x x x

x x x

 
  
 
   

Q ,  (3.7) 

0 1 2
* *
1 0

3,3 * *
2 0

* *
2 1

0

0

0

x x x

x x

x x

x x

 
  
 
  

Q .  (3.8) 

(3.8)’deki Q3,3 kodu, Q4,3 kodunun en sağ sütununun silinmesi ile elde edilmiştir. 

Dikkat edilmesi gereken bir diğer nokta da Tarokh ve diğerleri tarafından [8]’de 

önerilen 3/4-hızlı dik tasarımlar ile (3.7) ve (3.8)’deki kodların birbirlerine eşdeğer 

olması ve değişken dönüşümü ve diğer işlemler sonucu birbirlerine 

dönüşebilmesidir. Alamouti koduna benzer şekilde Q3,3 ve Q4,3 kodları için de 

(3.6)’dakine benzer şekilde simge temelinde çalışan karar kuralları elde edilebilir [8]. 

Şekil 3.1’de Q2, Q3,3 ve Q4,3 kodlarının 3 bit/sn/Hz’lik bant verimliliğinde, 1 alıcı 

antenli durumdaki simge hata olasılığı (symbol error rate, SER) eğrileri alınan 

SNR’a göre verilmiştir. Aynı bant verimliliğini elde etmek için kodlamasız durum ve 

Alamouti kodu için 8-PSK, 3/4-hızlı kodlar içinse 16-QAM modülasyonu 
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kullanılmıştır. Bu şekilden görüldüğü üzere, OSTBC’ler sağladıkları tam çeşitlemeye 

bağlı olarak hata eğrisinin eğimini belirlemektedirler. 

0 5 10 15 20 25 30
10-6

10-5

10-4

10-3

10-2

10-1

100

 SNR(dB)

S
E

R

 Kodlamasiz,8-PSK
 Q

2
,8-PSK

 Q
4,3

,16-QAM
 Q

3,3
,16-QAM

 

Şekil 3.1 : Q2, Q3,3 ve Q4,3 kodlarının SER başarımları (3 bit/sn/Hz, 1 alıcı) 

Bir OSTBC’nin iletim hızının kanal kullanımı başına 3/4 karmaşık simgeyle üstten 

sınırlandığı [16]’da kuramsal olarak kanıtlanmıştır. Dahası verici anten sayısı arttıkça 

bu değer 1/2’ye düşmektedir. [9-15]’de bu üst sınırın doğal bir sonucu olarak 5 ve 8 

verici anten için birçok düşük-hızlı  3/ 4R   STBC önerilmiştir. Bu kodların genel 

bir özeti [7]’nin 4. Bölüm’ünde bulunabilir. Bu kısımda, son olarak Alamouti [6], 

Tarokh ve diğerleri [8] tarafından verilen metrik hesaplarına alternatif olarak eşdeğer 

kanal modeline [17] dayanan basit ayrıştırma (easy decomposition) [43,44] tekniği 

açıklanmıştır. (2.11)’de verilen kanal modelinin eşdeğeri, OSTBC’ler için şu 

şekildedir [17]: 

 y x n .  (3.9) 

Burada  , ilişkin STBC’nin eşdeğer kanal matrisi [17], y, x ve n de sırasıyla alınan 

işaret, iletilen işaret ve gürültü vektörleridir. OSTBC’ler için   matrisi 
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2

,
1 1

R Tn n
H

i j
i j

h
 

 
  

 
I   özelliğine sahiptir. Dolayısıyla alınan işaret vektörü, H  ile 

sol taraftan çarpılırsa, 

       

H H H

H

 

 

y x n

x n

   


  (3.10) 

elde edilir. (3.10)’dan görüldüğü üzere x vektörünün içerisindeki bilgi simgeleri 

tamamen ayrıştırılmıştır ve dolayısıyla Hn  gürültüsü artık beyaz olmasa da 

Hz y  vektörü yardımıyla bu simgelerin her biri için ML karar kuralı rahatlıkla 

elde edilebilir. (3.9)’daki model kullanılarak OSTBC’ler için daha da basit bir ML 

kuralı şu şekilde elde edilebilir.  0 1 1K h h h  olmak üzere i. bilgi 

simgesine ait ML karar kuralı şu şekildedir: 

2
arg min

i

ML
i i i

x
x x


 y h .  (3.11) 

[44]’de gösterilmiştir ki (3.9)’daki modelin gerçel eşdeğeri ve (3.11)’deki basit 

ayrıştırma tekniği kullanılarak kare M-QAM işaret uzayları için bilgi simgelerinin 

gerçel ve sanal kısımları için ayrı ayrı ML karar metrikleri elde edilebilir ki bu da 

daha düşük bir alıcı karmaşıklığını beraberinde getirmektedir.    

3.2  Yarı-Dik Uzay-Zaman Blok Kodları (QOSTBCs) 

Önceki bölümde belirtildiği üzere bir COD’in iletim hızı 3/4’le üstten sınırlanmıştı. 

Bu üst sınırın doğal bir sonucu olarak COD’ler kanal sığasında da ciddi kayıplara yol 

açmaktadır [17]. Dolayısıyla, araştırmacılar sonraki yıllarda bu üst sınırı aşmak için 

diklik koşulunu esnetme yoluna giderek yarı-dik tasarımları ortaya atmışlardır. 

QOSTBC’lerin temel mantığı kod matrisindeki sütun vektörlerini gruplara ayırmak 

ve bu grupların kendi içlerinde değil fakat kendi aralarındaki dikliği sağlamak, 

bundan dolayı ML kod çözme işlemini OSTBC’lar gibi simge temelli değil de simge 

grupları temelli olarak gerçekleştirmektir. İlk olarak Jafarkhani tarafından aşağıda 

verilen 1-hızlı QOSTBC önerilmiştir [7]: 
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0 1 2 3
* * * *
1 0 3 2
* * * ** *
2 3 0 1

3 2 1 0

x x x x

x x x x

x x x x

x x x x

 
          
   

A B

B A
.  (3.12) 

Burada A ve B iki ayrı Alamouti kod sözcüğüdür. Diğer bir QOSTBC ise Tirkkonen 

ve Hottinen tarafından önerilmiş ve ABBA kodu olarak adlandırılmıştır [19]: 

0 1 2 3
* * * *
1 0 3 2

* *
2 3 0 1

* * * *
3 2 1 0

x x x x

x x x x

x x x x

x x x x

 
         
   

A B

B A
.  (3.13) 

(3.12) ve (3.13)’de önerilen bu kodlar için kod fark matrislerinin minimum rankının 

2, dolayısıyla min  değerlerinin 0 olduğu rahatlıkla gösterilebilir. (3.12) ve (3.13) 

kodları için ML karar kuralları [7,18,19]’da verilmiştir. Ancak, önceki bölümde 

verilen basit ayrıştırma tekniği QOSTBC’ler için de grup temelli olarak 

uygulanabilir. Örneğin (3.12) kodu için biri  0 3,x x  diğeri de  1 2,x x ’nin işlevi olan 

iki adet karar metriği kullanmak yerine, (3.9)’daki eşdeğer model (3.12) kodu için 

yazılır ve bu simge gruplarına ait karar kuralları şu şekilde elde edilir: 

   

   

2
0 3

2
1 2

2

0
0 3 0 3

,
3

2

1
1 2 1 2

,
2

, arg min

, arg min .

ML ML

x x

ML ML

x x

x
x x

x

x
x x

x









 
   

 

 
   

 

y h h

y h h

 (3.14) 

Burada , 0,..., 4i i h  (3.11)’de tanımlandığı gibidir. (3.14)’den de görüldüğü üzere 

QOSTBC’lerin kod çözme karmaşıklığı birden çok simge birlikte çözüldüğü için 

simge temelli çözülen OSTBC’lere göre daha yüksektir. (3.14)’deki karar 

kurallarında iki simge birlikte çözüldüğü için her bir metriğin karmaşıklığı 2M ’dir. 

Dolayısıyla (3.12)’deki QOSTBC için ML kod çözme karmaşıklığı 22M ’dir. (3.12) 

ve (3.13)’deki tasarımların tam verici çeşitlemesi sağlaması için [20,21]’de bazı bilgi 

simgelerinin işaret kümelerinin döndürülmesi önerilmiştir. Örneğin ABBA kodu için 

M-QAM işaret kümesinde x2 ve x3 simgelerinin seçildiği küme / 4   derece 

döndürülmelidir, yani 1 2 3 4, ,   ,M j Mx x x x e     olmalıdır. 
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3.3  Bileşenleri Serpiştirilmiş Dik Tasarımlar (CIODs) 

[22-24]’de Rajan ve Khan, bileşen serpiştirme tekniği kullanarak iki, üç ve dört 

verici anten için simge simge çözülebilen CIOD olarak adlandırdıkları 1-hızlı kodlar 

elde etmişlerdir. CIOD’un tanımı aşağıda verilmiştir: 

Tanım: Bir genelleştirilmiş CIOD (GCIOD) , 0, , 1ix i K   (K çift sayı olmak 

üzere) simgelerini içeren TT n  bir matris olup 

1 0 /2 1

2 /2 1

( , , ) 0

0 ( , , )

x x

x x


 





 
  

 
 

  (3.15) 

şeklindedir. Burada 1 0 /2 1( , , )x x     ve 2 /2 1( , , )x x     , sırasıyla 1 1T n  ve 2 2T n  

boyutlarında genelleştirilmiş COD’lar olup 1 2T T T   , 1 2 Tn n n   , 

   ( /2)Re Im
Ki i i Kx x j x    ve ( )Ka  da a  mod K’dır. Eğer 1 2    ise (3.15)’deki 

tasarım CIOD’dur. 

İki, üç ve dört verici anten için CIOD’lar şu şekilde verilmiştir [24]: 

0 1

1 0

0

0
R I

R I

x jx

x jx

 
  

,  (3.16) 

0 2 1 3
* *

1 3 0 2

2 0
*

3 1

0

( ) ( ) 0

0 0

0 0 ( )

R I R I

R I R I

R I

R I

x jx x jx

x jx x jx

x jx

x jx

  
    
 
   

, (3.17) 

0 2 1 3
* *

1 3 0 2

2 0 3 1
* *

3 1 2 0

0 0

( ) ( ) 0 0

0 0

0 0 ( ) ( )

R I R I

R I R I

R I R I

R I R I

x jx x jx

x jx x jx

x jx x jx

x jx x jx

  
    
  
    

. (3.18) 

Geleneksel OSTBC’ların zıttına CIOD’ların tam çeşitleme sağlaması için işaret 

kümeleri belli bir açıyla döndürülmelidir. Örneğin (3.16) ve (3.18)’deki kare 

CIOD’lar için QPSK işaret kümesinde optimum eksen döndürme açısı 13.2885°’dir 

(bkz. Şekil 3.2). (3.17)’deki tasarım içinse bu değer 16°’dir. Simgelerin tek tamsayı 

bileşenlerde bulunduğu kare M-QAM işaret kümesi için optimum eksen döndürme 

açıları, 45°’den QPSK için verilen açıların çıkarılması ile elde edilir. Bu optimum 
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eksen döndürme açıları, CIOD’ların minimum determinantları maksimum olacak 

şekilde hesaplanmıştır. Örneğin (3.16)’daki CIOD için uzaklık matrisi 

2 2
0 1

2 2
1 0

( ) 0ˆ ˆ( )( )
0 ( )

H R I

R I

x x

x x

   
       

X X X X  (3.19) 

şeklindedir. (3.19)’dan min  şu şekilde hesaplanır: 

 
 

 

2 2
0 0 0

2 2
min 1 1 1

2 2 2 2
0 1 1 0 0 1

min ( )( ) ,   sadece  hatalı çözülmüşse,

min ( )( ) ,   sadece  hatalı çözülmüşse, 

min ( )( ) ,  hem  hem de  hatalı çözülmüşse.

R I

R I

R I R I

x x x

x x x

x x x x x x

 

  
  


     

 (3.20) 

(3.20)’den açıkça görüldüğü üzere (3.16)’daki CIOD’un minimum determinantı 

sadece bir bilgi simgesi hatalı çözüldüğünde elde edilir: 

   2 2 2 2
min 0 0 1 1min ( )( ) min ( )( )R I R Ix x x x       . (3.21) 

 

Şekil 3.2 : QPSK işaret kümesinin eksenlerinin döndürülmesi 

Şekil 3.3’de, (3.21)’deki ifadenin değeri QPSK işaret kümesinde değişik eksen 

döndürme açılarına göre çizdirilmiştir. Bu şekilden de görüldüğü üzere 13.2885° için 

min  değeri maksimum olmaktadır. Benzer bir analizle (3.17) ve (3.18)’deki 

CIOD’lar için de optimum eksen döndürme açıları elde edilmiştir. 

3.4  Hottinen-Tirkkonen Kodları 

Hottinen ve Tirkkonen, 2000’li yılların başlarından itibaren yüksek hızlı STBC’lere 

olan gereksinimi öngörmüşler ve bu alanda bazı öncü çalışmalar yapmışlardır. 
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Yaptıkları bu öncü çalışmalar [27]’nin 9. Bölüm’ünde bir arada verilmiş olup bu alt 

bölümde kısaca gözden geçirilmiştir. 

0 5 10 15 20 25 30 35 40 45
0,0

0,2

0,4

0,6

0,8

 m
in

Eksen Döndürme Açisi (derece)  

Şekil 3.3 : (3.21) ifadesinin QPSK’da değişik eksen döndürme açıları için değeri 

Hottinen ve Tirkkonen tarafından iki verici anten için ilk olarak denenen iki-hızlı 

STBC şu şekildedir: 

0 1 2 3
* * * *
1 0 3 2

1 0

0 1

x x x x

x x x x

    
         

.  (3.22) 

(3.22)’deki yapıdan açıkça görülebileceği gibi üst üste iki Alamouti kodunun 

toplanmasıyla elde edilen bu kodun minimum determinantı sıfırdır. Hottinen ve 

Tirkkonen, sıfırlanmayan determinant (non-vanishing determinant) özelliğini 

sağlayan bir STBC elde etmek için çeşitli birimsel (unitary) matrisler kullanmışlar ve 

aşağıdaki tam-çeşitlemeli STBC’yi elde etmişlerdir: 

0 1 2 3
* * * *
1 0 3 2

1 0 1 1 21

0 1 1 2 17

x x x x j j

x x x x j j

       
                

. (3.23) 
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(3.23)’deki yapının iki önemli problemi vardır. Birincisi, düşük bir min  değeri 

(QPSK için 0.5714), diğeri de yüksek bir alıcı karmaşıklığıdır. ([27]’de 

basitleştirilmiş ML alıcılar geliştirilmemiştir). 

Dört verici antenli MIMO sistemler için Hottinen ve Tirkkonen tarafından DjABBA 

(Double j ABBA) adında tam-çeşitlemeli, 2-hızlı bir kod önerilmiştir: 

   
   

0 4 1 5 2 6 3 7
* * * * * * * *
1 5 0 4 3 7 2 6

2 6 3 7 0 4 1 5

* * * * * * * *
3 7 2 6 1 5 0 4

x x x x x x x x

x x x x x x x x

j x x j x x x x x x

j x x j x x x x x x

    
       
    
 

       

. (3.24) 

Burada  1
0 1 2 3 4 5 6 7, , , ,   , , , ,   cos 2 / 5M j Mx x x x x x x x e       ’dir. (3.23)’deki 

koda benzer şekilde (3.24)’deki kod da düşük bir min  değerine (QPSK’da 0.04) ve 

çok yüksek bir alıcı karmaşıklığına (işaret kümesinin elaman sayısının yedinci 

kuvvetiyle orantılı) sahiptir. Hottinen ve Tirkkonen tarafından önerilen bu kodlar, 

yukarıda sözü geçen dezavantajlarına rağmen yüksek-hızlı STBC literatüründe 

oldukça önemli bir yer tutmuşlardır. 

3.5  Altın Kod (Golden code) 

Altın kod (Golden code) iki verici antenli MIMO sistemler için [29] ve [45]’de 

bağımsız bir şekilde bulunan cebrik sayı kuramı kullanılarak üretilmiş 2-hızlı bir 

STBC’dir. Altın kodun temel avantajları maksimum bir kodlama kazancı (minimum 

determinant) ile tam-çeşitleme sağlaması ve literatürde daha önceden var olan tüm 2-

hızlı kodlardan daha iyi hata başarımına sahip olmasıdır. Dahası, Altın kodun 

minimum determinantı kullanılan işaret kümesinin eleman sayısından bağımsızdır, 

dolayısıyla pratik açıdan uyarlamalı modülasyona (adaptive modulation) uyumludur. 

Altın kod, bu avantajlarından dolayı 802.16e WiMAX standardına alınmıştır [46]. 

Altın kodun üç tipi vardır: Belfiore-Rekaya-Viterbo tipi [29], Dayal-Vanasi tipi [45] 

ve WiMAX tipi [46]. Bu üç tip kod da birbirlerine birimsel matris çarpımlarıyla 

dönüştürülebildiğinden çeşitleme ve kodlama kazançları aynıdır. Belfiore ve diğerleri 

tarafından önerilen Altın kod:  

   
   

0 1 2 3

2 3 0 1

1
( ) ( ) ( ) ( )5

x x x x

j x x x x

   
       

  
   

 (3.25) 
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şeklinde olup burada 
1 5 1 5

1.618,  ( ) 1 ,  1 ( ),
2 2

j       
        

 ( ) 1 j    ’dır. M-QAM işaret kümesi için Altın kodun minimum determinantı 

3.2’dir ki bu değer bugüne kadar başka hiçbir 2-hızlı kod tarafından aşılamamıştır. 

Sağladığı bu avantajlarının yanı sıra Altın kodun en büyük dezavantajı kullanılan 

işaret uzayının eleman sayısının dördüncü kuvvetiyle orantılı bir alıcı karmaşıklığına 

sahip olmasıdır [31,35] ve bu yüksek alıcı karmaşıklığı Altın kodun özellikle gezgin 

aygıtlar için uygulanmasını pahalı bir duruma getirmektedir.  

3.6  Sezginer-Sari (SS) Kodlari 

Altın koda alternatif olarak Sezginer ve Sari ML kod çözme karmaşıklığı düşürülmüş 

bazı yüksek-hızlı tam çeşitlemeli kodlar önermişlerdir. Sezginer ve Sari tarafından 

önerilen bu kodlardan 2-hızlı olanı aşağıdaki iletim matrisine sahiptir [31,47], 

0 2 1 3
* * * *
1 3 0 2

ax bx ax bx

cx dx cx dx

  
    

.  (3.26) 

Burada a, b, c ve d katsayıları karmaşık tasarım parametreleri olup kodun minimum 

determinantını maksimum yapacak şekilde optimize edilirler. [31]’de verilen 

parametreler ile (3.26)’daki 2-hızlı SS kodunun minimum determinantı M-QAM için 

2’dir. Ancak, bu çalışmanın da özünü oluşturan koşullu ML kod çözme tekniği1 

sayesinde SS kodunun kod çözme karmaşıklığı 4M ’den 32M ’e düşürülmüştür. 

Dolayısıyla SS kodunun hata başarımı Altın koddan daha kötü olmasına karşın kod 

çözme karmaşıklığı daha düşüktür. 

Sezginer ve Sari, ML alıcı karmaşıklığını daha da düşürmek için (3.26)’daki 2-hızlı 

kodda 2 3x x  seçerek ve bu simgenin gücünü normalize ederek aşağıdaki 1.5-hızlı  

STBC’yi elde etmişlerdir [35]: 

0 2 1 2

* * * *
1 2 0 2

/ 2 / 2

/ 2 / 2

ax bx ax bx

cx dx cx dx

  
 
    

.  (3.27) 

                                                 
 
1 Koşullu ML kod çözme tekniği Bölüm 4.1’de ayrıntılı olarak açıklanmıştır. 
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(3.27)’deki kod için [35]’de optimize edilen parametrelere göre elde edilen min  

değeri M-QAM’de (3.26)’daki koda benzer şekilde 2’dir. Koşullu ML kod çözme 

tekniği sayesinde (3.27)’deki kodun kod çözme karmaşıklığı 3M ’den 22M ’ye 

düşürülmüştür. 

3.7  Biglieri-Hong-Viterbo (BHV) Kodu 

Dört verici antenli MIMO sistemler için (3.24)’de verilen Tirkkonen ve Hottinen 

tarafından önerilmiş DjABBA kodu düşük min  değerine rağmen yıllardan beri en iyi 

STBC olarak bilinmekteydi. Ancak, Biglieri, Hong ve Viterbo tarafından [33,34]’de 

dört verici antenli MIMO sistemler için önerilen yeni bir STBC’nin QPSK işaret 

kümesinde literatürdeki tüm 2-hızlı STBC’lerden daha iyi başarım verdiği 

gösterilmiştir. Üst üste iki QOSTBC bloğunun optimizasyon matrisleriyle 

çarpıldıktan sonra toplanmasıyla elde edilen BHV kodunun min  değeri sıfır olsa da, 

çarpımsallık değerinin oldukça küçük olması dolayısıyla daha iyi bir hata başarımına 

sahip olduğu açıklanmıştır. BHV kodunun kod sözcük matrisi şu şekildedir: 

0 1 2 3 0 1 2 3
* * * * * * * *
1 0 3 2 1 0 3 2
* * * * * * * *
2 3 0 1 2 3 0 1

3 2 1 0 3 2 1 0

x x x x z z z z

x x x x z z z z

x x x x z z z z

x x x x z z z z

   
         
      
         

T . (3.28) 

Burada    0 1 2 3 0 1 2 3

T T
z z z z x x x x U , 2

2

 
   

I 0
T

0 I
 olup U da karmaşık 

optimizasyon matrisidir. BHV kodunun, yıllardan beri dört verici antenli sistemler 

için en iyi kod olarak bilinen DjABBA koduna göre daha iyi hata başarımına sahip 

olduğu rapor edilmiştir [34]. BHV kodunun minimum determinantı sıfır olmasına 

rağmen, BHV kodunun kod matrisi içerisindeki U matrisi, kodun çarpımsallık değeri 

(ilişkin minimum determinant değerini veren farklı kod sözcük çiftlerinin toplam 

sayısı) minimum olacak şekilde optimize edilmiştir ki bu da BHV kodunun hata 

başarımının DjABBA kodundan neden daha iyi olduğunu açıklamaktadır. Ancak 

[34]’de, Şekil 2’den görüleceği üzere bu iki kodun hata başarımları birbirlerine 

oldukça yakındır.  BHV kodunun en büyük dezavantajı, DjABBA kodu gibi 

kullanılan işaret kümesinin eleman sayısının yedinci kuvvetiyle orantılı bir ML alıcı 

karmaşıklığının olmasıdır. 
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3.8  Sonuç 

Uzay-zaman blok kodlama alanında çalışan araştırmacılar ilk yıllardan başlayarak 

her zaman daha yüksek veri hızlarına daha düşük alıcı karmaşıklıkları ile çıkmayı 

hedeflemişlerdir. Veri hızlarındaki bu artışın doğal bir sonucu olarak yüksek-hızlı 

STBC’ler, aynı bant verimliğinde çalışıldığında düşük veri hızlı STBC’lere göre hata 

başarımında da kayda değer iyileşmeler sağlamaktadır. Bir yüksek-hızlı STBC 

tasarlanırken göz önünde bulundurulması gerekenler şu şekilde sıralanabilir: 

i) STBC’nin tam-çeşitleme sağlayıp sağlamadığı, 

ii) STBC’nin minimum determinant değerinin yüksek olup olmadığı, 

iii) STBC’nin kod çözme karmaşıklığının düşük olup olmadığı. 

Bu çalışmanın ilerleyen bölümlerinde bu 3 ölçüt göz önünde bulundurularak, bu 

bölümde kısaca gözden geçirilen literatürdeki en iyi STBC’lere alternatif olarak yeni 

yüksek-hızlı STBC’ler önerilmiştir. 
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4.  İKİ VERİCİ ANTENLİ MIMO SİSTEMLER İÇİN YENİ UZAY-ZAMAN 

BLOK KODLARI 

Bu bölümde iki verici anten için bir önceki bölümde anlatılan Altın kod ve Sezginer-

Sari (SS) kodlarına alternatif olarak 2 ve 1.5-hızlı, tam-çeşitlemeli, ML alıcı 

karmaşıklığı düşürülmüş iki yeni uzay-zaman blok kodu önerilmiştir [38]. Önerilen 

bu kodların tam-çeşitleme sağladığı ve literatürdeki benzerlerine göre bazı 

üstünlükleri oldukları ispatlanmıştır. Önerilen kodların kod çözümünde koşullu ML 

sezim tekniği kullanılmıştır. Üç ve dört verici anten için önerilen STBC’lerin de kod 

çözümünde kullanılan bu teknik, bu bölümde öncelikli olarak anlatılacaktır.   

4.1  Yüksek-Hızlı STBC Tasarımı ve Koşullu ML Sezim 

Dik olmayan bir STBC’nin ML alıcı karmaşıklığı bu STBC’nin kod sözcük matrisi 

içerisindeki bilgi simgelerinin sayısıyla üstel olarak artmaktadır. Kullanılan işaret 

kümesinin eleman sayısının üstel bir işlevi olan bu alıcı karmaşıklığından kaçınmak 

için sıfıra-zorlama (zero-forcing, ZF) ya da en küçük ortalama karesel hata 

(minimum mean square error, MMSE) kestirimi gibi optimum olmayan kod çözme 

teknikleri kullanılabilir [48]. Ancak bu durumda, [5]’de verilen tam-çeşitleme koşulu 

(tam-rank ölçütü) geçerliliğini yitirmekte bu da ML alıcılara göre hata başarımında 

önemli kötüleşmelere neden olmaktadır. Dolayısıyla, alıcının optimum doğasını 

bozmadan, ancak tüm olası senaryoları tek tek deneyen, ML alıcı kadar da işlem 

yükü olmayan alıcıların tasarlanması problemi ortaya çıkmıştır. İşte böyle bir 

optimum alıcı Sezginer ve Sari tarafından [31] ve [35]’deki dik olmayan STBC’lerin 

kod çözümünde kullanılmıştır. Bu bölümde bu teknik daha da genelleştirilerek, 

matematiksel olarak ifade edilecektir [36,37]. 

n verici antenli bir sistem için k adet bilgi simgesini 0 2 1( , ,..., )kx x x   ileten 

OSTBC için kod sözcük matrisi Qn,k ile gösterilsin. Bu çalışmada Qn,k’lar kod iletim 

matrisleri içerisinde, ilişkin kodun dikliğinin sağlanabilmesi için, boşluklar içeren 

OSTBC’ler içerisinden seçilmiştir. Bu tür STBC’lere örnek olarak CIOD’lar [22-24], 
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3/4-hızlı COD’lar [40-42] verilebilir. k+λ adet bilgi simgesi ileten yüksek-hızlı tam 

çeşitlemeli Xn,k+λ kodu Qn,k kodundan şu şekilde elde edilebilir: 

, ,n k n k   X Q PG   (4.1) 

burada Gλ,  adet ek bilgi simgesini 1 1( , ,..., )k k kx x x     Qn,k’nın boş yuvalarından 

ileten kod sözcük matrisidir. P ise elemanları rank ve determinant ölçütlerine göre 

belirlenen karmaşık tasarım parametreleri olan bir optimizasyon matrisidir. Qn,k ve 

PGλ’nin elemanları Xn,k+λ matrisi içerisinde çakışmamaktadır. Xn,k+λ kodunun dik 

olmayan yapısından dolayı, bu kodun ML kod çözümü için ( )kM   adet metrik 

hesabı gerekli olacaktır: 

0 1 1

2

, ,
, ,...,

ˆ arg min .
k

n k n k
x x x 

 
 

  X Y X H   (4.2) 

Xn,k+λ kodunun dik olmaması dolayısıyla içerisindeki bilgi simgelerinin hepsinin 

birlikte çözülmesi sonucu elde edilen alıcı karmaşıklığı ( )kM  , Qn,k kodunun 

doğrusal olan alıcı karmaşıklığı kM ile karşılaştırıldığında çok yüksektir. Fakat 

(4.1)’deki Xn,k+λ kodu içerisindeki ek simgeler alıcı tarafında bir şekilde yok 

edilebilirse geriye kalan k adet simge (Qn,k kodu) kM karmaşıklık ile çözülebilecektir. 

Bunu gerçekleştirebilmek için alıcı Gλ içerisindeki ek simgelerin 1 1, ,...,k k kx x x     

tüm olası değerleri için alınan işaretlerden ara işaretleri şu şekilde hesaplar: 

 Z Y PG H .  (4.3) 

1 1, ,...,k k kx x x     simgelerinin tüm olası değerleri denenirken sadece tek bir doğru 

kombinasyon (4.3)’ü aşağıdaki modele indirger: 

,n k Z Q H N .  (4.4) 

Buna rağmen 1 1, ,...,k k kx x x     simgelerinin tüm olası değerleri için ( M  olası değer) 

alıcı sanki (4.4)’deki model elde edilmiş gibi düşünerek, dik olan Qn,k kodunun basit 

kod çözme prosedürünü uygular ve 0 1 1, ,..., kx x x   simgelerine ait koşullu ML 

kestirimleri elde eder ( 0 1 1, ,...,ML ML ML
kx x x  ). Diğer bir deyişle, alıcı 1 1, ,...,k k kx x x     

simgelerinin M  farklı olası değerinin her biri için 0 1 1, ,..., kx x x   simgelerine ait 

kestirim değerlerini elde eder. Bu kestirim değerlerine koşullu kestirim denmesinin 

nedeni 1 1, ,...,k k kx x x     simgelerinin değerlerine olan bağlılıktır. Alıcı elde ettiği bu 
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M   simge dizisini daha sonra (4.2)’deki minimizasyon işleminde kullanır, yani (4.2) 

metriğini 0 1 1 1 1, ,..., , , ,...,ML ML ML
k k k kx x x x x x      için 1 1, ,...,k k kx x x     simgelerinin tüm 

olası değerleri üzerinden minimize eder. Sonuç olarak 0 1 1, ,..., kx x x    simgelerinin 

tüm olası değerlerini arayarak kM   alıcı karmaşıklığıyla çalışmak yerine, sadece 

M   karmaşıklıkla 1 1, ,...,k k kx x x     simgelerinin tüm olası değerleri aranmış ve bu 

M  adımın her biri için de kM  karmaşıklıkla  0 1 1, ,..., kx x x   simgelerine ait koşullu 

ML kestirimler elde edilmiştir. Dolayısıyla toplam ML alıcı karmaşıklığı 

1kM M kM    olmaktadır. İlk durumdaki alıcı karmaşıklığı olan ( )kM   ile 

karşılaştırıldığında, kayda değer bir düşüş sağlandığı görülmektedir.  

Yapılan testler sonucu yukarıda anlatılan koşullu sezim tekniğinin, (4.2)’deki tüm 

olası değerleri arayan metrikle aynı hata başarımına sahip olduğu görülmüştür. 

Kuşkusuz ki bunun nedeni, koşullu sezim tekniğinin ML, yani optimum olmasıdır. 

Alıcı ek simgelerin tüm olası değerlerini ararken, mutlaka birinde doğru 

kombinasyonu bulacak ve geriye kalan simgeleri ML olarak çözebilecektir. 

Dolayısıyla yukarıda anlatılan alıcı, tüm olası senaryoları aramadan da iletilen 

simgelerin ML kestirimlerini elde etmektedir. 

Bu çalışmada önerilen kodlarda Qn,k ve PGλ’nın elemanları Xn,k+λ matrisi içerisinde 

çakışmamakta ve Qn,k da sıfırlar içermektedir. Fakat bu koşullu ML sezici için 

zorunluluk oluşturmaz. Qn,k ve PGλ’nin elemanları çakışsa bile, ki SS kodlarında 

durum böyledir, ara işaretler hesaplanarak (4.4)’deki modele ulaşılabilir. Örneğin 

[31]’de verilen 2-hızlı SS kodunu ele alalım. Bu STBC’nin iletim matrisi (3.26)’da 

verilmiştir. (3.26)’dan görüldüğü üzere bu matris, iki Alamouti kod sözcük 

matrisinin dört adet karmaşık tasarım parametresi kullanarak üst üste toplanması ile 

elde edilmiştir. Sezginer ve Sari, buradaki dört simgenin tüm olası değerleri 

üzerinden ML alıcıyı çalıştırmak yerine, iki Alamouti kodundan birini yok etmeye 

çalışarak, geride kalan Alamouti kodunu simge temeli ML çözmüştür. Gösterilebilir 

ki koşullu ML sezim tekniği, BHV ve DjABBA kodlarının da ML alıcı 

karmaşıklığını düşürmektedir. 
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4.2  2-Hızlı Tam-Çeşitlemeli Bileşen Serpiştirmeli Yeni STBC [38] 

(3.16)’da verilen 1-hızlı CIOD’u ele alalım. (3.16)’daki tasarımın dik olması için 

bırakılan boş yuvalar hem düşük bir kod hızına, hem de yüksek bir tepe-ortalama güç 

oranına (peak-to-average power ratio, PAPR) neden olmaktadır. Bu tasarıma önceki 

alt bölümde verilen yüksek-hızlı STBC elde etme prosedürü uygulanarak dört 

modülasyonlu simgeyi iki zaman aralığında ileten aşağıdaki 2-hızlı, tam-çeşitlemeli 

STBC elde edilmiştir: 

0 1 2 3
2,4

3 2 1 0

( ) ( )

( ) ( )
R I R I

R I R I

x jx a x jx

b x jx x jx

  
    

X .  (4.5) 

Burada xiR and xiI, 0,...,3i   xi’nin sırasıyla gerçel ve sanal kısımlarını 

göstermektedir. a ve b ise rank ve determinant ölçütlerine göre belirlenen karmaşık 

tasarım parametreleridir. (4.5)’deki STBC için 2k   ’dir. 

Matematiksel kolaylık açısından iki alıcı antenli durumu ele alarak 2,4X  kodu için 

ML kod çözümünü verelim. Öncelikle (4.5)’deki bileşenleri serpiştirilmiş simgeleri 

şu şekilde gösterelim: 

0 0 1

1 1 0

2 2 3

3 3 2 .

R I

R I

R I

R I

x x jx

x x jx

x x jx

x x jx

 
 
 
 






  (4.6) 

Böylece alınan işaretler 

11 11 0 12 2 11

12 11 3 12 1 12

21 21 0 22 2 21

22 21 3 22 1 22

r h x h ax n

r h bx h x n

r h x h ax n

r h bx h x n

  
  
  
  

 
 
 
 

  (4.7) 

şeklinde olacaktır. Burada hij, j. verici antenle i. alıcı anten arasındaki kanal katsayısı, 

nij alıcıdaki toplamsal beyaz Gauss gürültüsünü gösteren karmaşık işaret, rij de i. alıcı 

antende j. zamanda alınan işarettir. Alıcı önceki alt bölümde belirtildiği gibi 

, 0,...,3ix i   için tüm olası değerleri denemek yerine x2 and x3’ün tüm olası değerleri 

için ara işaretleri hesaplar: 
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11 11 12 2

12 12 11 3

21 21 22 2

22 22 21 3.

z r h ax

z r h bx

z r h ax

z r h bx

 
 
 
 






  (4.8) 

x2 ve x3’ün doğru birleşimi için (4.8), 

11 11 0 11

12 12 1 12

21 21 0 21

22 22 1 22

z h x n

z h x n

z h x n

z h x n

 
 
 
 






  (4.9) 

biçimine gelecektir. Dolayısıyla alıcı 2,2Q  için ML kod çözme adımlarını kullanarak 

x2 ve x3 koşulu altında x0 ve x1’in ML kestirimlerini elde eder. Öncelikle ara işaretler 

şu şekilde birleştirilir: 

   
   

2 2* *
0 11 11 21 21 11 21 0 0

2 2* *
1 12 12 22 22 12 22 1 1

y h z h z h h x

y h z h z h h x





    

    

 

 
  (4.10) 

Burada * *
0 11 11 21 21h n h n    ve * *

1 12 12 22 22h n h n    gürültü terimleridir. 0y  ve 1y ’nin 

bileşen serpiştirilmiş yapısını göz önünde bulundurarak x0 ve x1’in kestirimleri şu 

şekilde elde edilir: 

   

   
0 0 1

2 2 2 2

11 21 0 12 22 0 0

ˆ Re Im

    ,R I

x y j y

h h x j h h x 

 

    

 
 (4.11) 

   

   
1 1 0

2 2 2 2

12 22 1 11 21 1 1

ˆ Re Im

    .R I

x y j y

h h x j h h x 

 

    

 
 (4.12) 

(4.11) ve (4.12)’deki gürültü terimleri şu şekilde yazılabilir: 

0 0 0 0 1

1 1 1 1 0 .
R I R I

R I R I

j j

j j

    
    

   
   

 
 

  (4.13) 

Gauss gürültü terimleri 0  ve 1 ’in gerçel ve sanal kısımlarının varyansları farklıdır, 
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     
     
     
     

2 2 2
0 0 11 21

2 2 2
0 1 12 22

2 2 2
1 1 12 22

2 2 2
1 0 11 21

var var

var var

var var

var var .

R R

I I

R R

I I

h h

h h

h h

h h

  

  

  

  

  

  

  

  









  (4.14) 

Burada 2 , nij’nin gerçel ve sanal kısımlarının varyanslarıdır. x0 ve x1’in ML 

kestirimlerini elde etmek için 0  ve 1 ’in olasılık dağılım işlevlerine (probability 

density function, pdf) gereksinim vardır: 

   
2 2
0 0

2 2 2 22 2
11 21 12 222 2

0 2 2 2 2 2 2 2 22
11 12 11 22 21 12 21 22

( )
2

R I

h h h h
e e

p
h h h h h h h h

 

 




 
 


  

, (4.15) 

   
2 2
1 1

2 2 2 22 2
12 22 11 212 2

1 2 2 2 2 2 2 2 22
11 12 11 22 21 12 21 22

( )
2

R I

h h h h
e e

p
h h h h h h h h

 

 




 
 


  

. (4.16) 

x0 ve x1’in 2 3( , )x x  simgeleri koşulu altında ML kestirimleri şu şekilde bulunur: 

0
0 0 0ˆarg max ( / )ML

x
x p x x ,  (4.17) 

1
1 1 1ˆarg max ( / )ML

x
x p x x .  (4.18) 

Öncelikle (4.11) ve (4.12), (4.15) ve (4.16)’ya sırasıyla konulur ve ardından da bu 

pdf ifadeleri de (4.17) ve (4.18)’e sırasıyla konulur ve düzenlenirse, 

   

   
0

2
2 2 2 2

0 12 22 0 11 21 0

2
2 2 2 2

11 21 0 12 22 0

ˆarg min

ˆ                   ,

ML
R Rx

I I

x h h x h h x

h h x h h x

   


    


 (4.19) 

   

   
1

2
2 2 2 2

1 11 21 1 12 22 1

2
2 2 2 2

12 22 1 11 21 1

ˆarg min

ˆ                  

ML
R Rx

I I

x h h x h h x

h h x h h x

   


    


 (4.20) 

elde edilir. Benzer bir analizle gösterilebilir ki, nR adet alıcı anten için x0 ve x1’in 

2 3( , )x x  simge çifti koşulu altında ML kestirimleri 
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 
0

2 2

0 0 0 0 0ˆ ˆarg minML
R R I Ix

x x x x x       , (4.21) 

 
1

2 2

1 0 0 0 0ˆ ˆarg minML
R R I Ix

x x x x x        (4.22) 

şeklindedir. Burada 
2 2

,1 ,21 1
,R Rn n

i ii i
h h 

 
   ’dir. Ardından (4.2)’de verilen 

metrik, (x2, x3) çiftinin tüm olası değerleri üzerinden 0 1 2 3, , ,ML MLx x x x  için hesaplanır. 

Diğer bir deyişle, x0, x1, x2 ve x3’ün tüm olası değerleri aranarak 4M  karmaşıklıkla 

çalışmak yerine, sadece x2 ve x3’ün tüm olası değerleri 2M  karmaşıklıkla aranmış ve 

bu 2M  denemenin her adımında (x2, x3) çifti koşulu altında x0 ve x1’in ML 

kestirimleri de 2M karmaşıklıkla elde edilmiştir. Böylece toplam ML alıcı 

karmaşıklığı 2k    için 4M ’den 2 32 2M M M  ’e indirilmiştir.  

2,4X  kodunun tam-çeşitleme sağlaması için (4.5)’de verilen karmaşık tasarım 

parametreleri a ve b optimize edilmelidir. Bunun için 2,4 2,4
ˆX X  olmak üzere 2,4X  

ve 2,4X̂ ’ün tüm olası değerleri için   2,4 2,4 2,4 2,4
ˆ ˆ H

  D X X X X   uzaklık 

matrisinin minimum determinantı maksimize edilecektir. Uzaklık matrisi D, 

11 12

21 22

A A

A A

 
 
 

  (4.23) 

olmak üzere burada 
22 2 2 2

11 0 1 2 3

*
12 0 1 3 2 2 3 1 0

*
21 0 1 3 2 1 0 2 3

22 2 2 2
22 1 0 3 2

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( )

R I R I

R I R I R I R I

R I R I R I R I

R I R I

A x x a x x

A b x j x x j x a x j x x j x

A b x j x x j x a x j x x j x

A x x b x x

       

             

             

       

 

biçimindedir. Dolayısıyla D’nin ( 2,4X  kodunun) minimum determinantı, 

2 2 2 2 2 2 2 2
0 1 1 0 2 3 3 2

* *
min 0 1 3 2 1 0 2 3

2 3 1 0 3 2 0 1

( )( ) ( )( )

min ( )( )( )( )

( )( )( )( )

R I R I R I R I

R I R I R I R I

R I R I R I R I

x x x x x x x x

a b x j x x j x x j x x j x

ab x j x x j x x j x x j x



             
 

              
              

 (4.24) 

şeklindedir. (4.24)’deki karesel olmayan terimlerden dolayı bu ifadenin minimum 

değeri QPSK ve 16-QAM işaret kümeleri için bilgisayar aramaları sonucu elde 

edilmiştir. Örneğin Şekil 4.1’de ja e   ve 1b   olmak üzere 2,4X  kodunun 
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minimum determinantı değişik   değerleri için elde edilmiştir. Bu şekilden 

görüldüğü üzere o90   için min  değeri maksimum olmakta ve 0.8 değerini 

almaktadır. Anımsanacağı üzere 2,2Q  kodu için de bu değer yine 0.8 olarak 

bulunmuştu. Dolayısıyla, kullanılan bu parametre kümesinin optimum olduğu ve 

olası maksimum min  değerini verdiği sonucuna varılabilir. Aynı parametre kümesi 

ile 16-QAM işaret uzayı için ise min  değeri 3.2 olarak bulunmuştur ki bu değer de 

2,2Q  göz önünde bulundurulduğunda optimumdur.  

0 30 60 90 120 150 180
0,0

0,2

0,4

0,6

0,8

 m
in

 (derece)  

Şekil 4.1 : 2,4X  kodunun ja e   ve 1b   için minimum  

   determinantının θ’ya bağlı değişimi 

4.3  Önerilen 2-hızlı STBC’nin Bilgi Kuramsal Analizi 

Bu alt bölümde, bir önceki alt bölümde önerilen 2,4X  kodunun ulaştığı maksimum 

karşılıklı bilgi miktarı (maximum mutual information, MMI) incelenmiş ve bu kodun 

alıcı anten sayısı ne olursa olsun MIMO kanal sığasını yakaladığı gösterilmiştir. 

Bir STBC için bilgi kuramsal bir analiz yapabilmek için öncelikle (2.11)’de verilen 

kanal modeli, şu şekilde yeniden yazılmalıdır: 
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Tn


 y x n .  (4.25) 

Burada,  , X kodunun eşdeğer kanal matrisi [5], y, x ve n de sırasıyla alınan işaret, 

birim varyanslı iletilen işaret ve gürültü vektörleridir. (4.25)’deki normalizasyon 

çarpanı,  ’nun her alıcıdaki SNR olmasını sağlamaktadır. Örneğin, (3.1)’de verilen 

Alamouti kodu için Rn  alıcı anten durumunda eşdeğer kanal modeli: 

1,1 1,1 1,2
* *

1,2 2,1 1,1

2,1 2,1 2,2
* * 0

2,2 2,2 2,1

1

,1 ,1 ,2

* *
,2 ,2 ,1

2

R R R

R R R

n n n

n n n

r h h

r h h

r h h
x

r h h
x

r h h

r h h



   
      
   
           

    
   
   
      

n
  

  (4.26) 

şeklindedir. Alamouti kodu tarafından ulaşılan MMI ise şu şekilde bulunur [17,49]: 
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 

 
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n
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i i
iR

R R R

n
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n

C n n C n



 



       
   

 



    (4.27) 

Burada ( , , )T RC n nX , nT verici, nR alıcı anten kullanan X kodunun   alınan SNR 

değerindeki maksimum karşılıklı bilgi miktarıdır. Beklenen değer işlemi öncesindeki 

1/2 çarpanının kullanılmasının nedeni, Alamouti kodunun MIMO kanalı iki zaman 

aralığı boyunca kullanmasıdır. (4.27)’deki üst sınır ancak ve ancak 1Rn   için 

sağlanır. Buradan varılan sonuç 2Rn   için Alamouti kodunun tam kanal sığasını 

yakalayamadığıdır.  

(3.16)’da verilen CIOD Q2,2 için eşdeğer kanal modeli ise 
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  (4.28) 

 biçiminde yazılır. Bu STBC’nin ulaştığı MMI ise şu şekilde hesaplanır [24]: 
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 (4.29) 

(4.29)’dan görüldüğü üzere, Alamouti kodunun zıttına Q2,2 kodu 1Rn   durumunda 

bile tam sığayı yakalayamamaktadır. Diğer taraftan önerilen 2,4X  kodunun eşdeğer 

modeli 
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 (4.30) 

biçiminde olup, ulaştığı MMI ise şu şekilde hesaplanır: 
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1 1
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X I A  . (4.31) 

Burada,  
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şeklindedir. Basitçe gösterilebilir ki 
2 2

c d  olduğundan    22
det ab c A ’dir. 

Dolayısıyla,  

  2,4

2
( , 2, ) logRC n E ab c  X   (4.32) 

olarak elde edilir. Aşağıdaki kanal matrisi ile tanımlanan 2 Rn  bir MIMO kanalı ele 

alalım, 
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
.  (4.33) 

(2.22)’den bu sistemin MMI’si, 
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 

 
X

I H H

 (4.34) 

olarak bulunur. Bu sonuçtan görüldüğü üzere, Alamouti kodu ve Q2,2 kodunun zıttına 

önerilen kod alıcı anten sayısı ne olursa olsun tam kanal sığasını yakalamaktadır. 

Şekil 4.2’de Alamouti kodunun, Q2,2 ve 2,4X  kodlarının sığaları bir ve iki alıcı 

antenli durumlar için elde edilmiştir. Burada dikkate değer nokta, alıcı anten sayısı 

arttığı zaman MIMO kanal sığasına göre dik STBC’lerin MMI’lerinin çok düşük  

olduğudur.  
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Şekil 4.2 : CIOD (Q2,2), Alamouti kodu ve önerilen kodun (X2,4) bir ve iki alıcı anten 

      durumlarında ergodik kanalda maksimum karşılıklı bilgi miktarları 

4.4  Başarım Değerlendirmeleri 

Şekil 4.3’de önerilen kodun, SS-kodunun ve Altın kodun bit hata olasılığı eğrileri, 4 

bit/sn/Hz bant verimliğinde alınan SNR’a göre elde edilmiştir. Bu bant verimliğini 

elde etmek için QPSK modülasyonu kullanılmaktadır. Bu eğrilerden görüldüğü üzere 

önerilen yeni kod Altın kod ile aynı hata başarımını yakalamakta ve bu iki sistem de 

SS koduna göre hata başarımında yaklaşık 0.4dB iyileşme sağlamaktadır. Önerilen 

kodun Altın kod ile aynı hata başarımına sahip olmasının nedeni bu iki kodun da 

aynı min  ve çarpımsallık değerlerine sahip olmalarıdır. Bu sonuca göre önerilen yeni 

kod, SS kodu ile aynı alıcı karmaşıklığına sahipken, Altın kod ile aynı hata 

başarımına sahiptir. Şekil 4.4’de ise karşılaştırmalar 8 bit/sn/Hz için tekrarlanmıştır. 

Bu bant verimliliğine ulaşmak içinse 16-QAM modülasyonu kullanılmaktadır. Bu 

şekilden görüldüğü üzere önerilen kod SS koduna göre yine daha iyi hata başarımına 

sahiptir.  
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Şekil 4.3 : Önerilen 2-hızlı kodun BER başarımının QPSK ve 16-QAM 
                  modülasyonları için SS kodu ve Altın kodla karşılaştırılması 

Şekil 4.4’de ise SS kodu ile önerilen kodun kod sözcük hata olasılığı (codeword error 

rate, CER) eğrileri karşılaştırılmıştır. Burada, iletilen kod sözcük matrisleri içerisinde 

tek bir simge bozulsa bile bu bir kod sözcük hatası olarak sayılmıştır. Bu eğrilerden 

görüldüğü üzere, önerilen kodun hata başarımı minimum determinant değerlerinin 

daha etkili olduğu yüksek işaret gürültü-oranlarında SS koduna göre yaklaşık 0.4dB 

daha iyidir.  

4.5  1.5-Hızlı Tam-Çeşitlemeli Bileşen Serpiştirmeli Yeni STBC 

Sezginer ve Sari’nın yaptığına benzer şekilde Bölüm 4.5’de önerilen 2-hızlı kodda 

2 3x x  seçilerek, 1.5-hızlı yeni bir STBC elde etmek mümkündür. ML alıcı 

karmaşıklığını M kat azaltmak için başvurulacak bu yöntem sonucu iletim hızında da 

%25’lik bir düşüş gözlenecektir.  
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Şekil 4.4 : Önerilen 2-hızlı kodun CER başarımının QPSK ve 16-QAM 
modülasyonları için SS kodu ile karşılaştırılması 

Önceki bölümlerde  anlatılan  yüksek-hızlı  STBC  elde etme prosedürünü ve 

(4.5)’de verilen 2-hızlı STBC’yi göz önünde bulundurarak, üç adet modülasyonlu 

simgeyi iki zaman aralığında ileten aşağıdaki 1.5-hızlı, tam-çeşitlemeli STBC elde 

edilmiştir: 

0 1 2
2,3 *

2 1 0

( / 2)

( / 2)

R I

R I

x jx a x

b x x jx

 
  

  
X .  (4.35) 

Benzer şekilde a ve b parametrelerini ilişkin işaret kümesi için optimize ederek 

maksimum kodlama kazancı elde edilmesi amaçlanmıştır. QPSK işaret kümesi için 

0.5 0.866a j   ve b j  seçilerek elde edilen min  değeri 0.8’dir ki bu da X2,4 

kodunun min  değeri ile aynı yani kuramsal maksimumdur. 16-QAM işaret kümesi 

için ise 0.7071 0.7071a j   ve 1b   seçilerek elde edilen min  değeri 1.64’tür. 

X2,3 kodunun ML kod çözümü X2,4 kodunun ML kod çözümüne oldukça 

benzemektedir. Alıcı, x2 simgesinin tüm olası değerlerini arayarak doğru x2 değeri 

için (4.9)’da verilen ara işaretleri elde eder ve aynı kod çözme adımlarını izleyerek x2 

koşulu altında x0 ve x1  simgelerinin  koşullu ML  kestirimlerini   (4.21) ve (4.22)’de  
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Şekil 4.5 : Önerilen 1.5-hızlı kodun SER başarımının QPSK ve 16-QAM 

modülasyonları için SS kodu ile karşılaştırılması  

verildiği gibi elde eder. Koşullu ML kod çözme kuralına göre, 2, 1k    için alıcı 

x0, x1 ve x2’nin tüm olası değerlerini arayarak 3M  karmaşıklıkla çalışmak yerine, 

sadece x2’in tüm olası değerlerini M karmaşıklıkla arar ve bu M denemenin her 

adımında x2 koşulu altında x0 ve x1’in ML kestirimlerini de 2M karmaşıklıkla elde 

ederek 22 2M M M  ’lik bir ML alıcı karmaşıklığı elde etmiş olur.  

Şekil 4.5’de önerilen X2,3 kodunun hata başarımı iki alıcı antenli durumda, QPSK 

ve 16-QAM modülasyonları için 1.5-hızlı Sezginer-Sari kodunun hata başarımı ile 

karşılaştırılmıştır. Burada Es, simge başına iletilen ortalama işaret enerjisidir. Bu 

eğrilerden görüldüğü üzere önerilen yeni STBC hem QPSK hem de 16-QAM işaret 

kümeleri için Sezginer-Sari kodundan daha iyi hata başarımına sahiptir. QPSK ve 

16-QAM için SS kodunun min  değerleri sırasıyla 0.5 ve 2’dir. Dolayısıyla QPSK 

için önerilen kodun hata başarımının daha iyi olması zaten beklenen bir sonuçtur. 

Ancak 16-QAM için önerilen kodun daha iyi bir hata başarımına sahip olmasının 

nedeni 17712 olan çarpımsallık değerinin SS kodununkine göre (47232) daha düşük 

olmasıdır.  
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5.  ÜÇ VE DÖRT VERİCİ ANTENLİ MIMO SİSTEMLER İÇİN YENİ UZAY-

ZAMAN BLOK KODLARI 

Bu bölümde, bir önceki bölümde anlatılan yüksek-hızlı STBC tasarım ve koşullu ML 

kod çözme teknikleri üç ve dört verici anten için, iletim matrisleri içerisinde kodun 

dikliğinin sağlanabilmesi için boş yuvaları olan literatürde verilmiş OSTBC’lere 

uygulanmıştır [22-24,40-42]. Bu işlemin sonucunda, üç ve dört verici antenli MIMO 

sistemler için iletim hızları 1, 1.5 ve 2 olan yeni STBC’ler önerilmiştir [36,37]. 

Önerilen kodların basitleştirilmiş ML kod çözme kuralları verilmiş, QPSK işaret 

kümesi için maksimum kodlama kazancı sağlayacak şekilde parametre 

optimizasyonları yapılmış ve önerilen kodların literatürde var olan eşdeğerlerine göre 

daha iyi hata başarımına sahip oldukları gösterilmiştir.   

5.1  Dört Verici Anten için 1-Hızlı Tam-Çeşitlemeli Yeni STBC 

(3.7)’de verilen 3/4-hızlı, tam-çeşitlemeli Q4,3 kodunu ele alalım. Bu kodun iletim 

matrisi içerisindeki boş yuvalar doldurularak aşağıdaki 1-hızlı, tam çeşitlemeli STBC 

elde edilmiştir, 

0 1 2 3
* * *
1 0 3 2

4,4 * * *
2 3 0 1
* * *
3 2 1 0

x x x ax

x x bx x

x cx x x

dx x x x

 
  
 
   

X .  (5.1) 

Burada a, b, c ve d rank ve determinant ölçütlerine göre belirlenen karmaşık tasarım 

parametreleridir. QPSK işaret kümesinde o o, sin 30 cos30a j b c d j      

seçilerek 4,4X  kodunun minimum determinantı 16 olarak bulunmuştur. Q4,3 kodunun 

minimum determinantı da aynı değer olduğundan, bu parametre kümesinin 

maksimum kodlama kazancı sağladığı sonucuna varılır.  nR alıcı anten için alınan 

işaretler şu şekilde olacaktır: 
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 
 

 
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  (5.2) 

Alıcı, tek ek simge olan x3’ün tüm olası değerleri için ara işaretleri şu şekilde 

hesaplar: 

 
 
 
 

,1 ,1 ,4 3

*
,2 ,2 ,3 3

*
,3 ,3 ,2 3

*
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z r h bx

z r h cx

z r h dx

 

 

 

 

  (5.3) 

Ardından tüm bu değerler için Q4,3 kodunun kod çözme adımlarını izleyerek x3 

koşulu altındaki x0, x1 ve x2 simgelerinin kestirimlerini şu şekilde elde eder: 
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
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2

2 .x
 
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 

 (5.4) 

Böylece alıcı (4.2)’de verilen karar metriğini 0 1 2 3, , ,x x x x  simgelerin tüm olası 

değerleri üzerinden minimize ederek 4M  karmaşıklıkla çalışmak yerine 

0 1 2 3, , ,ML ML MLx x x x  için x3’ün tüm olası değerleri üzerinden minimize ederek 23M ’lik 

bir ML alıcı karmaşıklığı elde eder. 

5.2  Üç Verici Anten için 1-Hızlı Tam-Çeşitlemeli Yeni STBC 

Q4,3 kodunun en sol sütunun silinerek Q3,3 kodunun elde edilebilmesine benzer 

şekilde X4,4 kodunun da en sol sütunu silinerek 1-hızlı, tam-çeşitlemeli X3,4 kodu şu 

şekilde elde edilmiştir,  
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0 1 2
* * *
1 0 3

3,4 * * *
2 3 0
* * *
3 2 1

x x x

x x bx

x cx x

dx x x

 
  
 
  

X .  (5.5) 

Burada b, c ve d parametreleri QPSK işaret kümesi için yine şu şekilde seçilmiştir: 

o osin 30 cos30b c d j    . Bu parametre kümesi ile QPSK için bilgisayar 

aramaları sonucu, X3,4 kodunun minimum determinantı da Q3,3 kodunun minimum 

determinant değeri ile aynı olarak 8 bulunmuştur. 

X3,4 kodunun koşullu ML kod çözme yapısı X4,4 kodununkine çok benzemektedir. 

Alıcı öncelikle (5.3)’dekine benzer şekilde alınan işaretlerden ara işaretleri hesaplar 

(burada ,1 ,1i iz r  olduğuna dikkat edilmelidir, yani birinci zaman aralığında ek simge 

x3 iletilmemiştir), ardından ,4 0ih   için (5.4)’deki karar kurallarını kullanarak x3 

koşulu altındaki x0, x1 ve x2 simgelerinin kestirimlerini elde eder.  

Şekil 5.1’de üç ve dört verici anten için önerilen 1-hızlı, tam çeşitlemeli yeni 

STBC’lerin (X3,4 ve X4,4) SER başarımları QPSK işaret kümesinde, iki alıcı antenli 

durumda ilişkin OSTBC’ler (Q3,3 ve Q4,3) ve CIOD’larla (Q3,4 ve Q4,4) 

karşılaştırılmıştır. Burada Es simge başına iletilen ortalama işaret enerjisidir. Tüm 

sistemler için QPSK modülasyonu kullanıldığından, OSTBC kullanan sistemlerin 

bant verimliliği 1.5 bit/sn/Hz iken, yeni STBC’leri ve CIOD’ları kullanan sistemler 

için bu değer 2 bit/sn/Hz’dir. Bunun doğal bir sonucu olarak Şekil 5.1’den görüldüğü 

üzere OSTBC’ler en iyi hata başarımına sahiptir. CIOD’lar ile aynı iletim hızına 

sahip yeni STBC’ler ise CIOD’lara göre daha iyi hata başarımına sahiptir. Örneğin 

10-5’lik bir SER değerinde dört verici anten için önerilen yeni STBC CIOD’a göre 

yaklaşık 0.25dB avantaj sağlarken, 10-4’lük bir SER değeri için üç verici antende bu 

değer yaklaşık 0.8dB’dir.  
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Şekil 5.1 : 3 ve 4 verici anten için 1-hızlı yeni STBC’lerin SER başarımları 

5.3  Dört Verici Anten için 2-Hızlı Tam-Çeşitlemeli Yeni STBC 

Bölüm 5.1 ve 5.2’de koşullu ML kod çözme tekniği kullanan 1-hızlı, tam-çeşitlemeli 

STBC’ler elde edilmiştir. Fakat, hata başarımlarında kayda değer iyileşmeler 

sağlamak için kanal kullanımı başına bir karmaşık simgeden daha yüksek iletim 

hızlarına çıkmak gereklidir. Bu amaçla,  (3.18)’de verilen 1-hızlı CIOD’u ele alalım. 

(3.18)’den görüldüğü üzere bu kodun dik olması için toplam uzay-zaman yuvalarının 

yarısı boş bırakılmıştır. Bu koda önceki bölümde anlatılan yüksek-hızlı STBC elde 

etme prosedürü uygulanarak sekiz modülasyonlu simgeyi dört zaman aralığında 

ileten aşağıdaki 2-hızlı, tam-çeşitlemeli STBC elde edilmiştir: 

0 2 1 3 4 6 5 7
* * * *

1 3 0 2 5 7 4 6
4,8

6 4 7 5 2 0 3 1
* * * *

7 5 6 4 3 1 2 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

R I R I R I R I

R I R I R I R I

R I R I R I R I

R I R I R I R I

x jx x jx a x jx a x jx

x jx x jx b x jx b x jx

c x jx c x jx x jx x jx

d x jx d x jx x jx x jx

    
       
    
       

X . (5.6) 

Burada a, b, c ve d rank ve determinant ölçütlerine göre optimize edilecek karmaşık 

tasarım parametreleridir. X4,8 kodunun minimum determinantı oldukça uzun 

bilgisayar aramaları sonucu QPSK işaret kümesinde 90oja b e  , 1c d   için 0.64 
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olarak bulunmuştur. (3.18)’deki CIOD için QPSK işaret kümesinde optimum eksen 

döndürme açısı olan 13.2885°, X4,8 kodu için de kullanılmıştır. Q4,4 ve X4,8 

kodlarının simge başına iletilen ortalama işaret enerjileri aynı tutulduğunda ( 1sE  ) 

iki kodun da minimum determinant değeri 0.64 olarak bulunmaktadır ki bu da 

yukarıda kullanılan parametre kümesinin maksimum kodlama kazancı sağladığını 

göstermektedir.  

X4,8 kodu için koşullu ML kod çözme yapısı, işlem kolaylığı açısından alıcı anten 

sayısını iki alarak aşağıdaki şekilde verilmiştir. Öncelikle (5.1)’deki bileşenleri 

serpiştirilmiş terimleri şu şekilde ifade edelim: 

    
    

4

4

2

2 4

Re Im ,       0 3

Re Im ,    4 7.

i i

i

i i

x j x i
x

x j x i



 

    
  



   (5.7) 

Burada ( )Ka  a mod K’dır. Bu durumda X4,8 kodu şu şekilde yazılabilir: 

0 1 4 5
* * * *
1 0 5 4

4,8
6 7 2 3

* * * *
7 6 3 2

x x ax ax

x x bx bx

cx cx x x

dx dx x x

 
   
 
   

X

   
   
   
   

.  (5.8) 

Bu durumda alıcı anten 1’de alınan işaretler, 

11 11 0 12 1 13 4 14 5 11

* * * *
12 11 1 12 0 13 5 14 4 12

13 11 6 12 7 13 2 14 3 13

* * * *
14 11 7 12 6 13 3 14 2 14

r h x h x h ax h ax n

r h x h x h bx h bx n

r h cx h cx h x h x n

r h dx h dx h x h x n

    

     

    

     

   
   
   
   

  (5.9) 

ve alıcı anten 2’de alınan işaretler, 

21 21 0 22 1 23 4 24 5 21

* * * *
22 21 1 22 0 23 5 24 4 22

23 21 6 22 7 23 2 24 3 23

* * * *
24 21 7 22 6 23 3 24 2 24

r h x h x h ax h ax n

r h x h x h bx h bx n

r h cx h cx h x h x n

r h dx h dx h x h x n

    

     

    

     

   
   
   
   

  (5.10) 

olacaktır. Alıcı rij alınan işaretlerinden 4 5 6, ,x x x  ve 7x  simgelerinin tüm olası 

değerleri için alınan işaretleri şu şekilde hesaplar: 
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11 11 13 4 14 5

* *
12 12 13 5 14 4

13 13 11 6 12 7

* *
14 14 11 7 12 6

21 21 23 4 24 5

* *
22 22 23 5 24 4

23 23 21 6 22 7

*
24 24 21 7

( )

( )

( )

( )

( )

( )

( )

(

z r h ax h ax

z r h bx h bx

z r h cx h cx

z r h dx h dx

z r h ax h ax

z r h bx h bx

z r h cx h cx

z r h dx h

  

  
  

  

  

  

  

  

 
 
 
 
 
 
 
 *

22 6 ).dx

  (5.11) 

4 5 6, ,x x x  ve 7x  simgelerin doğru bileşimi içinse bu ara işaretler aşağıdaki şekilde 

bulunur ve alıcı ardından Q4,4 kodunun ML kod çözme adımlarını izler: 

11 11 0 12 1 11

* *
12 11 1 12 0 12

13 13 2 14 3 13

* *
14 13 3 14 2 14

21 21 0 22 1 21

* *
22 21 1 22 0 22

23 23 2 24 3 23

* *
24 23 3 24 2 24.

z h x h x n

z h x h x n

z h x h x n

z h x h x n

z h x h x n

z h x h x n

z h x h x n

z h x h x n

  

   
  

   

  

   

  

   

 
 
 
 
 
 
 
 

  (5.12) 

Alıcı öncelikle ara işaretleri şu şekilde birleştirir: 

 
 
 

2 2 2 2* * * *
0 11 11 12 12 21 21 22 22 11 12 21 22 0 0

2 2 2 2* * * *
1 12 11 11 12 22 21 21 22 11 12 21 22 1 1

2 2 2 2* * * *
2 13 13 14 14 23 23 24 34 13 14 23 24 2 2

*
3 14 13 1

y h z h z h z h z h h h h x

y h z h z h z h z h h h h x

y h z h z h z h z h h h h x

y h z h







        

        

        

 

 

 

 

  2 2 2 2* * *
3 14 24 23 23 34 13 14 23 24 3 3.z h z h z h h h h x        

 (5.13) 

Buradaki gürültü terimleri , 0,...,3i i  , 

* * * *
0 11 0 12 1 21 4 22 5

* * * *
1 11 1 12 0 21 5 22 4

* * * *
2 13 2 14 3 23 6 24 7

* * * *
3 13 3 14 2 23 7 24 6

h n h n h n h n

h n h n h n h n

h n h n h n h n

h n h n h n h n









   

    

   

    






  (5.14) 

şeklinde yazılabilir. , 0,...,3iy i    terimleri geri serpiştirilerek, , 0,...3ix i   

simgelerinin kestirimleri ˆ , 0,...3ix i    şu şekilde elde edilir: 
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   
   
   
   

0 0 2 1 0 2 0 0

2 2 0 2 2 1 2 2

1 1 3 1 1 2 1 1

3 3 1 2 3 1 3 3

ˆ Re Im

ˆ Re Im

ˆ Re Im

ˆ Re Im .

R I

R I

R I

R I

x y j y x j x

x y j y x j x

x y j y x j x

x y j y x j x

  

  

  

  

    

    

    

    

 

 

 

 

 (5.15) 

(5.15)’de  

 
 

   
   
   
   

2 2 2 2

1 11 12 21 22

2 2 2 2

2 13 14 23 24

0 0 0 0 2

2 2 2 2 0

1 1 1 1 3

3 3 3 3 1

Re Im

Re Im

Re Im

Re Im

R I

R I

R I

R I

h h h h

h h h h

j j

j j

j j

j j





    

    

    

    

   

   

   

   

   

   

 

 

 

 

  (5.16) 

şeklindedir. Gösterilebilir ki , 0,...,3i i    gürültü terimlerinin gerçel ve sanal 

kısımlarının varyansları farklıdır: 

       
       

2
0 2 1 3 1

2
0 2 1 3 2

var var var var

var var var var .

R I R I

I R I R

     

     

   

   
 (5.17) 

(5.17)’de 2 , , 0,...,7in i   gürültü terimlerinin gerçel ve sanal kısımlarının 

varyansıdır. , 0,...3ix i   simgeleri için ML karar kurallarını elde etmek için 

(5.15)’den görüldüğü üzere , 0,...,3i i    gürültü terimlerinin pdf’lerine gereksinim 

vardır. (5.17)’den hareketle 0,...,3i   için bu pdf’ler şu şekilde bulunur: 

2 2

2 2
1 22 2

2
1 2

( ) .
2

iR iI

i

e e
p

 
   


  

 

   (5.18) 

 4 5 6 7( , , , )x x x x  dörtlüsü koşulu altında , 0,...3ix i   simgeleri için ML karar kuralları, 

ˆarg max ( / )
i

ML
i i i

x
x p x x   (5.19) 

şeklinde verilir. (5.15) kullanılarak sırasıyla 0,...,3i   için i  değerleri öncelikle 

(5.18)’de yerlerine konulur, ardından da bu pdf ifadeleri de (5.19)’da yerlerine 

konulur ve düzenlenirse, , 0,...3ix i   simgelerine ait koşullu ML karar kuralları, 
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    
    
    
    

0

1

2

3

2 2

0 2 0 1 0 1 0 2 0

2 2

1 2 1 1 1 1 1 2 1

2 2

2 1 2 2 2 2 2 1 2

2 2

3 1 3 2 3 2 3 1 3

ˆ ˆ arg min

ˆ ˆarg min

ˆ ˆarg min

ˆ ˆarg min

ML
R R I I

x

ML
R R I I

x

ML
R R I I

x

ML
R R I I

x

x x x x x

x x x x x

x x x x x

x x x x x

   

   

   

   

   

   

   

   

 (5.20) 

şeklinde bulunur. nR alıcı anten kullanılması durumunda  2 2

1 1 2
1

Rn

i i
i

h h


   ve 

 2 2

2 3 4
1

Rn

i i
i

h h


   olmak üzere (5.20)’de verilen karar metrikleri yine geçerlidir. 

Bir önceki bölümde anlatılan koşullu ML kod çözme kuralına göre 4k    için 

(4.2)’yi 4 5 6, ,x x x  ve 7x  simgelerinin tüm olası değerleri üzerinden 

0 1 2 3 4 5 6 7, , , , , , ,ML ML ML MLx x x x x x x x  için minimize ederek elde edilen toplam alıcı 

karmaşıklığı 54M ’tir. Kuşkusuz ki (4.2)’nin 0 1 2 3 4 5 6 7, , , , , , ,x x x x x x x x  simgelerinin 

tüm olası değerleri üzerinden minimizasyonu için gerekli olan metrik hesaplarının 

toplam sayısı olan 8M  ile karşılaştırıldığında, ML alıcı karmaşıklığında hatırı sayılır 

derecede bir düşüş sağlandığı görülmektedir. 

5.4  Dört Verici Anten için 1.5-Hızlı Tam-Çeşitlemeli Yeni STBC 

(5.6)’da verilen X4,8 kodu 54M ’lik bir ML alıcı karmaşıklığı ile kanal kullanımı 

başına 2 karmaşık simgeyi iletebilmektedir. Alıcı karmaşıklığını daha da düşürmek 

için (5.6)’da 6 7 0x x   alınarak, aşağıdaki 1.5-hızlı, tam-çeşitlemeli STBC elde 

edilmiştir: 

0 2 1 3 4 5
* *

1 3 0 2 5 4
4,6

4 5 2 0 3 1
* * * *

5 4 3 1 2 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j
R I R I R R

j j
R I R I R R

I I R I R I

I I R I R I

x jx x jx e x e x

x jx x jx e x e x

jx jx x jx x jx

jx jx x jx x jx

 

 

  
     
  
 

     

X . (5.21) 

X4,8 kodu için kullanılan aynı parametre kümesiyle X4,6 kodu için QPSK işaret 

kümesinde elde edilen min  değeri 0.64’dür. Kuşkusuz ki bu beklenen bir sonuçtur 

çünkü X4,8 kodunun min  araması sırasında bazı simgelerin sıfırlanması olası farklı 

kod sözcük çiftlerinin sayısını düşürecek bu da kodun minimum determinantını 
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düşürmeyecektir. X4,6 kodunun ML çözümü X4,8 kodunun çözümüne oldukça 

benzemektedir. Aradaki tek fark, (5.11)’de verilen ara işaretlerin X4,6 kodu için 

sadece x4 ve x5 simgelerin tüm olası değerleri için hesaplanmasıdır. Böylece alıcı X4,6 

kodunun koşullu ML çözümünde (5.12)’deki ara işaretleri hesaplar ve 4 5( , )x x  

ikilisinin bilindiği koşulu altında , 0,...3ix i   simgelerine ait koşullu ML kestirimleri 

(5.20)’deki gibi elde eder. Alıcı (4.2)’yi 0 1 2 3 4 5, , , , ,x x x x x x  simgelerinin tüm olası 

değerleri üzerinden minimize ederek 6M  karmaşıklık ile çalışmak yerine, 

4, 2k    olmak üzere, (4.2)’yi x4 ve x5 simgelerinin tüm olası değerleri üzerinden 

0 1 2 3 4 5, , , , ,ML ML ML MLx x x x x x  için minimize ederek toplam 34M ’lük bir ML alıcı 

karmaşıklığı elde eder.  

(4.1)’de verilen yüksek hızlı STBC tasarım kuralı, X4,6 ve X4,8 kodları arasında ara 

çözüm sunabilecek aşağıdaki STBC’ye olanak sağlamaktadır. (5.6)’da yalnızca 

7 0x   alınarak, aşağıdaki 7/4-hızlı, tam-çeşitlemeli STBC elde edilebilir: 

0 2 1 3 4 6 5
* * * *

1 3 0 2 5 4 6
4,7

6 4 5 2 0 3 1
* * * *

5 6 4 3 1 2 0

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j
R I R I R I R

j j
R I R I R R I

R I I R I R I

I R I R I R I

x jx x jx e x jx e x

x jx x jx e x e x jx

x jx jx x jx x jx

jx x jx x jx x jx

 

 

   
      
   
 

      

X . (5.22) 

4, 3k    olduğundan X4,7 kodu 44M ’lük bir ML alıcı karmaşıklığı ile çözülebilir. 

5.5  Üç Verici Anten için 2-Hızlı Tam-Çeşitlemeli Yeni STBC 

Dört verici anten için yapılana benzer şekilde, (3.17)’de verilen Q3,4 kodunun da boş 

yuvaları doldurularak aşağıdaki 2-hızlı, tam-çeşitlemeli STBC elde edilmiştir: 

0 2 1 3 4 6
* * *

1 3 0 2 5 7
3,8

6 4 7 5 2 0
* * *

7 5 6 4 3 1

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

j
R I R I R I

j
R I R I R I

j j
R I R I R I

j j
R I R I R I

x jx x jx e x jx

x jx x jx e x jx

e x jx e x jx x jx

e x jx e x jx x jx





 

 

   
      
   
 
      

X . (5.23) 

Burada   parametresi QPSK işaret kümesi için oldukça uzun bilgisayar aramaları 

sonucu X3,8 kodunun kodlama kazancı maksimum olacak şekilde ayarlanmıştır. 

 ’nın optimum değeri 13.91° olarak bulunmuştur ve bu   değeri için elde edilen 

min  değeri de 0.1564 olarak hesaplanmıştır. Fakat, Q3,4 kodunun min  değeri 
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0.3381’dir. Burada dikkat edilmesi gereken bir diğer nokta Q3,4  ve X3,8 kodların kod 

sözcük matrislerinin kare olmamasından dolayı, bu matrisler Bölüm 2’de verilen tam 

rank koşuluna uymalarına rağmen ( )Tr n  , fark matrislerinin determinantı sıfırdır. 

Bu durumda bu kodlar için min  değeri şu şekilde hesaplanmıştır: 
3

min ˆ
1

min i
i

 
 

 
X X

. 

Burada i ’ler,  ˆ ˆ( )( )H X X X X   uzaklık matrisinin sıfırdan farklı özdeğerleridir. 

X3,8 kodunun ML çözümü şu şekildedir. Alıcı rij alınan işaretlerinden 4 5 6, ,x x x  ve 7x  

simgelerinin tüm olası değerleri için alınan işaretleri hesaplar ve ardından (5.13)-

(5.20) adımlarında ,4 0, 1,...,i Rh i n   alınarak  4 5 6 7( , , , )x x x x  dörtlüsünün bilindiği 

koşulu altında , 0,...3ix i   simgeleri için koşullu ML kestirimlerini şu şekilde elde 

eder: 

    
    
    
    
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2 2

0 2 0 1 0 1 0 2 0
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1 2 1 1 1 1 1 2 1

2 2

2 1 2 2 2 2 2 1 2
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3 1 3 2 3 2 3 1 3

ˆ ˆ arg min

ˆ ˆarg min

ˆ ˆarg min

ˆ ˆarg min .

ML
R R I I

x

ML
R R I I

x

ML
R R I I

x

ML
R R I I

x

x x x x x

x x x x x

x x x x x

x x x x x

   

   

   

   

   

   

   

   

 (5.24) 

Burada  2 2

1 1 2
1

Rn

i i
i

h h


   ve 
2

2 3
1

Rn

i
i

h


 ’dir. Böylece 8M ’lik bir ML alıcı 

karmaşıklığı ile çalışmak yerine, koşullu ML kod çözme kuralına göre 4k    için 

(4.2)’yi 4 5 6, ,x x x  ve 7x  simgelerinin tüm olası değerleri üzerinden 

0 1 2 3 4 5 6 7, , , , , , ,ML ML ML MLx x x x x x x x  için minimize ederek 54M ’lik bir toplam ML alıcı 

karmaşıklığına ulaşılır.  

5.6  Üç Verici Anten için 1.5-Hızlı Tam-Çeşitlemeli Yeni STBC 

Dört verici antende olduğu gibi, 2-hızlı STBC’nin kod sözcük matrisinde çeşitli 

simgeler sıfırlanarak daha düşük bir iletim hızını kabul etmek koşulu ile ML kod 

çözme karmaşıklığı düşürülebilir. Bunun için (5.23)’de 6 7 0x x   alınarak, 

aşağıdaki 1.5-hızlı, tam-çeşitlemeli STBC elde edilmiştir: 
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X3,8 kodunun zıttına o45   için X3,6 kodunun min  değeri, Q3,4 kodunun da min  

değeri olan 0.3381’i yakalamıştır. Böylece X3,6 kodu için maksimum kodlama 

kazancı elde edildiği sonucuna varılır.  

X3,6 kodunun ML çözümü için X3,8 kodunun ML kod çözme adımları izlenir. Bu iki 

kodun çözümündeki tek fark, X3,6 kodu için ara işaretlerin sadece x4 ve x5 

simgelerinin tüm olası değerleri üzerinden hesaplanmasıdır. Böylece, alıcı (4.2)’yi 

0 1 2 3 4 5, , , , ,x x x x x x  simgelerinin tüm olası değerleri üzerinden minimize ederek 6M  

karmaşıklık ile çalışmak yerine, 4, 2k    olmak üzere, (4.2)’yi x4 ve x5 

simgelerinin tüm olası değerleri üzerinden 0 1 2 3 4 5, , , , ,ML ML ML MLx x x x x x  için minimize 

ederek toplam 34M ’lik bir ML alıcı karmaşıklığı elde eder. 

5.7  Önerilen 2-hızlı STBC’lerin Bilgi Kuramsal Analizi 

Bu bölümde, önerilen 2-hızlı X4,8 ve X3,8 kodlarının ulaştığı maksimum karşılıklı 

bilgi miktarları incelenmiş ve bu sonuçlar CIOD’larınkiler ve MIMO kanal sığası ile 

karşılaştırılmıştır. Öncelikle Q4,4 kodunun MMI hesabıyla başlayacak olursak, bu 

STBC’nin eşdeğer kanal modeli (4.25)’den 
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  (5.26) 

şeklinde verilir. Burada, 1,..., Rl n  için 
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şeklinde tanımlanmıştır. Q4,4 kodunun ulaştığı MMI, 
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olarak hesaplanır. Bu sonuçtan görüldüğü üzere Q4,4 kodu 1Rn   için bile MIMO 

kanal sığasını yakalayamamaktadır. Bunun nedeni, CIOD’ların iletimleri sırasında 

verici antenlerinin yarısını kapatmasıdır. Bunun sonucunda CIOD’lar ancak / 2Tn  

adet verici antenli bir MIMO sistemin sığasını yakalama şansına sahiptirlerdir ki bu 

da (5.27)’den görülmektedir. Benzer şekilde Q3,4 kodunun eşdeğer kanal modeli, 
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biçimindedir. Burada, 1,..., Rl n  için 
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şeklinde tanımlanmıştır. Q3,4 kodunun ulaştığı MMI, 
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olarak hesaplanır. Benzer şekilde iletim matrisi içerisindeki sıfırlar dolayısıyla Q3,4 

kodu da 1Rn   için bile MIMO kanal sığasını yakalayamamaktadır. Diğer taraftan 1-

hızlı CIOD’ların ulaştığı MMI OSTBC’lerinkinden daha yüksektir. nT verici anten 

için R-hızlı bir OSTBC’nin ulaştığı MMI [49]’dan şu şekilde hesaplanabilir: 

   , , / , ,1OSTBC T R R T RC n n RC n R n n  .  (5.30) 

Gösterilebilir ki OSTBC’ler için 2Tn   için 3 / 4R   olduğundan (5.30)’da verilen 

bir OSTBC’nin ulaştığı MMI bir CIOD’unkinden daha düşüktür.  

X4,8 kodunun eşdeğer kanal modeli, 
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  (5.31) 

şeklindedir. Burada 4 8Rn  , X4,8 kodunun eşdeğer kanal matrisidir ve , 1,...,l Rl n  

de 
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olarak tanımlanmıştır. X4,8 kodunun ulaştığı MMI, 

4,8 8 4 8 4 8

1
( , 4, ) log det

4 4 R R

H
R n nC n E

  

     
  

X I    (5.32) 

olarak hesaplanır. (5.32)’deki parametrik determinant hesabı oldukça zor olduğu için 

(5.32)’nin matematiksel değeri doğrudan Monte Carlo benzetimleri sonucu elde 

edilmiştir. Benzer şekilde X3,8 kodunun eşdeğer kanal modeli de yazılır ve bu kodun 

ulaştığı MMI da 
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eşitliğinden hesaplanabilir. Şekil 5.2 ve 5.3’de sırasıyla dört ve üç verici anten için 1-

hızlı CIOD’ların ve 2-hızlı yeni STBC’lerin ulaştığı MMI, bir ve iki alıcı antenli 

durumlarda MIMO kanal sığası ile karşılaştırılmıştır. Bu şekillerden görüldüğü üzere 

bir alıcı antenli durumda hem X4,8 hem de X3,8 kodu tam sığayı yakalarken, alıcı 

anten sayısı ikiye çıkartıldığında MIMO kanal sığasına göre hafif kayıpları 

olmaktadır. Diğer taraftan, bir alıcı anten durumunda CIOD’ların ulaştığı MMI 

MIMO kanal sığasına yakınken, alıcı anten sayısı ikiye çıkartıldığında düşük iletim 

hızlarından dolayı CIOD’ların ulaştığı MMI’de çok ciddi bir düşüş gözlenmektedir. 

Buradan, önerilen 2-hızlı kodların MIMO kanalları oldukça verimli bir şekilde 

kullandığı sonucuna varılabilir.  
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Şekil 5.2 : Dört verici anten için maksimum karşılıklı bilgi miktarı karşılaştırmaları 
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Şekil 5.3 : Üç verici anten için maksimum karşılıklı bilgi miktarı karşılaştırmaları 

5.8  Üç ve Dört Verici Anten için Önerilen 2 ve 1.5-Hızlı STBC’lerin Hata 

Başarımları 

Bu bölümde, bilgisayar benzetimleri sonucu üç ve dört verici anten için önerilen yeni 

yüksek-hızlı, tam-çeşitlemeli STBC’lerin BER başarımları elde edilmiş ve önerilen 

kodlar literatürde var olan eşdeğer sistemlerle karşılaştırılmıştır. 

Şekil 5.5’de, önerilen 2-hızlı  X4,8 kodunun ve BHV kodunun [33,34] BER 

başarımları 4 2 ’lik bir MIMO sistemde, QPSK modülasyonu için, alınan SNR’a 

göre elde edilmiştir. İki STBC’nin de hızı 2 olduğu için bu sistemlerin kullanımı ile 

elde edilen bant verimliliği QPSK için 4 bit/sn/Hz’dir. Bu eğrilerden görüldüğü 

üzere, yeni STBC, BHV kodundan daha iyi hata başarımına sahiptir. Dikkat edilecek 

bir diğer nokta da BHV kodu ile yeni STBC arasındaki başarım farkının artan 

SNR’la birlikte giderek artmasıdır. Bunun nedeni BHV kodunun çeşitleme 

derecesindeki kayıptır, çünkü BHV kodunun minimum determinantı sıfırdır. [34]’de 

BHV kodunun literatürde dört verici anten için var olan tüm sistemlerden daha iyi 

hata başarımına sahip olduğu rapor edilmiştir. Dolayısıyla, önerilen STBC, BHV 

kodundan da daha iyi hata başarımına daha düşük bir ML alıcı karmaşıklığıyla 
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ulaştığı için gelecek nesil kablosuz iletişim sistemleri için göz önünde 

bulundurulabilir. 1-hızlı, tam-çeşitlemeli QOSTBC’nin hata eğrisi yeni koda göre 

yaklaşık 2.5dB daha kötü olduğu için Şekil 5.5’den çıkarılmıştır. Diğer bir deyişle, 

aynı bant verimliliğinde 1-hızlı kodların 2-hızlı kodlar yanında başarım üstünlüğü 

açısından pek fazla şansı yoktur. 

Önerilen 2-hızlı X3,8 kodunun BER başarımı da Şekil 5.5’de verilmiş ve üç verici 

anten için bilinen en iyi kod olan QOSTBC [18,20] ile karşılaştırılmıştır. Bu 

QOSTBC, optimum eksen döndürmeli Jafarkhani kodunun [18] en sol sütunun 

silinmesi ile elde edilmiştir. Önerilen STBC QPSK modülasyonu kullanırken, 1-hızlı 

QOSTBC ise 16-QAM modülasyonu kullanmakta olup iki sistem de böylece 4 

bit/sn/Hz’lik bant verimliliğine sahip olmaktadır. Bu şekilden görüldüğü üzere, 

önerilen yeni kod X3,8, tam çeşitlemeli QOSTBC’ye göre yaklaşık 1.4dB daha iyi 

hata başarımına sahiptir. Bunun nedeni, önerilen kod ile tam-çeşitleme kaybı 

olmaksızın iletim hızındaki 2 katlık artıştır.   

Şekil 5.6’da ise üç ve dört verici anten için önerilen 1.5-hızlı STBC’lerin BER 

başarımları ilişkin 1-hızlı, tam-çeşitlemeli QOSTBC’ler ile karşılaştırılmıştır. Tüm 

sistemlerle 3 bit/sn/Hz’lik bant verimliliği elde etmek için 1.5-hızlı yeni kodlarla 

QPSK modülasyonu, 1-hızlı referans QOSTBC’lerle ise 8-QAM modülasyonu 

kullanılmıştır. [20]’de kare olmayan QAM işaret kümelerine değişik örnekler 

verilmiştir. Benzetimlerde, en iyi hata başarımını garanti eden dikdörtgen olmayan 

(non-rectangular) 8-QAM işaret kümesi kullanılmıştır. Bu işaret kümesi Şekil 5.4’de 

gösterilmiştir. Şekil 5.6’daki eğrilerden görüldüğü üzere yeni STBC X4,6, 

QOSTBC’ye göre yaklaşık 1.5dB daha iyi BER başarımına sahiptir. Üç verici 

antende ise önerilen STBC X3,6 ilişkin QOSTBC’den yaklaşık 0.6dB daha iyi hata 

başarımı göstermektedir. 1.5-hızlı yeni sistemlerin, referans 1-hızlı QOSTBC’lerden 

daha iyi hata başarımına sahip olmasının nedeni, 1-hızlı sistemlerin aynı bant 

verimliliğini yakalamak için simgelerarası normalize minimum Öklit uzaklığı daha 

küçük olan daha verimsiz işaret uzaylarında çalışmalarıdır. Şekil 5.5 ve 5.6 birlikte 

incelendiğinde dikkat edilmesi gereken bir diğer önemli nokta daha vardır. 

Görüldüğü üzere 1-hızlı QOSTBC’lerle 2-hızlı yeni kodlar arasındaki başarım farkı 

1-hızlı QOSTBC’lerle 1.5-hızlı yeni STBC’ler arasındakinden daha fazladır. 

Önerilen kodların hızları 2 ve 1.5 olduğundan, aynı bant verimliliğine ulaşmak için 

çok yüksek modülasyonlara gidilmesi gerekmektedir. Ancak önerilen kodlar sadece 
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QPSK işaret kümesinde optimize edildiğinden ve yüksek modülasyonlar için 

benzetim süreleri haftalarca süreceğinden 2-hızlı ve 1.5-hızlı STBC’ler birlikte 

karşılaştırılamamıştır. Ancak Şekil 5.5 ve Şekil 5.6’daki başarım farkları bize 2-hızlı 

sistemlerin daha iyi hata başarımına sahip olduğunu göstermektedir ki bu da zaten 

beklenen bir sonuçtur. Dolayısıyla, önerilen STBC’ler iletim hızı, hata başarımı ve 

alıcı karmaşıklığı açısından ilginç bir ödünleşim (trade-off) de sunmaktadır. 2-hızlı 

yeni kodlarla daha iyi hata başarımlarına 52M ’lik bir ML alıcı karmaşıklığıyla 

ulaşmak mümkünken, 1.5-hızlı yeni kodlar için ML alıcı karmaşıklığı 32M ’tür. 

Böylece ML alıcı karmaşıklığının daha kritik olduğu uygulamalarda 1.5-hızlı 

sistemler, başarımın daha kritik olduğu uygulamalarda ise 2-hızlı STBC’ler 

yeğlenebilir. Minimum alıcı karmaşıklığıyla çalışmak isteniyorsa, QOSTBC’ler 

22M ’lik bir kod çözme karmaşıklığıyla düşük bir hata başarımı sergileyecektir.        
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Şekil 5.4 : Dikdörtgen-olmayan 8-QAM işaret kümesi 



 
 

64

0 2 4 6 8 10 12 14 16 18 20
10-5

10-4

10-3

10-2

10-1

100

B
E

R

SNR(dB)

 BHV kodu,QPSK
 Yeni STBC X

4,8
,QPSK

 QOSTBC,16-QAM
 Yeni STBC X

3,8
,QPSK

 

Şekil 5.5 : Önerilen 2-hızlı STBC’lerin 4 bit/sn/Hz için BER başarımları 
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Şekil 5.6 : Önerilen 1.5-hızlı STBC’lerin 3 bit/sn/Hz için BER başarımları 
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5.9  Dört Verici Anten için 4-Hızlı Kısmi-Çeşitlemeli Yeni STBC 

Önceki alt bölümlerde, üç ve dört verici antenli MIMO sistemler için iletim hızları 2 

olan STBC’ler önerilmişti. Bölüm 4.7’de, önerilen 2-hızlı STBC’lerin bilgi kuramsal 

analizleri sonucu, bu kodların ikiden daha fazla alıcı anten için MIMO kanal sığasını 

tam yakalayamadıkları, fakat iki alıcı antenli durumda MIMO kanal sığasına oldukça 

yakın oldukları gösterilmişti. Alıcı anten sayısı kaç olursa olsun tam MIMO kanal 

sığasını yakalayan sistemlere örnek olarak iletim hızları maksimum olan uzamsal 

çoğullama (SM) yapıları verilebilir. Uzamsal çoğullama yapıları, uygulandıkları 

verici anten sayısı için kuramsal maksimum iletim hızında çalışırlar ve bundan dolayı 

MIMO kanal sığasını yakalarlar. Bu noktadan hareketle bu bölümde, öncelikle dört 

verici anten için maksimum iletim hızlı (4-hızlı), diğer bir deyişle MIMO kanal 

sığasını yakalayan, aynı zamanda da bileşen serpiştirmeli yapısı sayesinde ikinci 

dereceden de verici çeşitlemesi sağlayan yüksek başarımlı bir STBC önerilmiştir. 

İki verici antenli MIMO sistemler için önerilen 2-hızlı X2,4 kodunu ele alalım. Bu 

kodu kullanarak aşağıdaki iletim matrisleri tanımlansın: 

0 1 2 3

3 2 1 0

4 5 6 7

7 6 5 4

( )
,

( )
.

R I R I

R I R I

R I R I

R I R I

x jx j x jx

x jx x jx

x jx j x jx

x jx x jx

  
    

  
    

A

B

 

A ve B matrisleri kullanılarak aşağıdaki 4-hızlı STBC önerilmiştir: 

 
   

4,8

0 1 2 3 4 5 6 7

3 2 1 0 7 6 5 4

        .

maks

R I R I R I R I

R I R I R I R I

x jx j x jx x jx j x jx

x jx x jx x jx x jx



     
      

X A B

 (5.34) 

4,8
maksX  kodunun minimum rankı (5.34)’den de görüldüğü üzere 2’dir ki bu da 2. 

dereceden verici çeşitlemesi elde edildiği anlamına gelmektedir. 4,8
maksX  kodunun 

kodlama kazancı ise kod sözcük uzaklık matrisinin pozitif özdeğerlerinin çarpımının 

minimum değeri olup QPSK işaret uzayında 0.8’e eşittir. Bu da (5.34)’deki yapının 

doğal bir sonucudur. (4.2)’deki doğrudan yaklaşım 4,8
maksX  kodunun ML çözümü için 

tüm olası senaryoları deneyen 8M  adet metrik hesabını gerektirir. Ancak Bölüm 

3.1’de verilen ana formülasyona uymasa da koşullu kod çözme tekniği (5.34)’deki 
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yapıya da uygulanabilir. Alıcı , 0,...,7ix i   simgelerinin tüm olası değerlerini arayıp 

8M  alıcı karmaşıklığıyla çalışmak yerine, sadece , 2,...,7ix i   simgelerinin tüm 

olası değerlerini arar ve tüm bu olası değerler için X2,4 kodunun çözümünde olduğu 

gibi x0 ve x1 simgelerine ait koşullu ML kestirimlerini (4.21) ve (4.22)’de verildiği 

gibi elde eder. Alıcı, ardından (4.2)’yi 0 1 2 3 4 5 6 7, , , , , , ,ML MLx x x x x x x x  için , 2,...,7ix i   

simgelerinin tüm olası değerleri üzerinden minimize eder. Böylece koşullu ML kod 

çözme tekniğinin kullanılmasıyla elde edilen toplam alıcı karmaşıklığı 

6 72 2M M M   olmuş olur. Bu da QPSK işaret kümesinde karmaşıklığın 

geleneksel ML kod çözücüye göre %50 daha düşük olmasını sağlar. 

5.10  Üç Verici Anten için 3-Hızlı Kısmi-Çeşitlemeli Yeni STBC 

Bölüm 4.9’da yapılana benzer şekilde X2,4 kodu temel alınarak üç verici anten için 

iki zaman aralığında altı karmaşık simgeyi ileten aşağıdaki 3-hızlı, kısmi-çeşitlemeli 

STBC elde edilmiştir: 

 
 

0 1 2 3 4 5
3,6

5 4 1 0 3 2

R I R I R Imaks

R I R I R I

x jx x jx a x jx

b x jx x jx x jx

   
     

X . (5.35) 

X2,4 ve 4,8
maksX  kodlarının zıttına, (5.35)’deki kodun simetrik bir yapıya sahip 

olmaması dolayısıyla 3,6
maksX  kodu için kodlama kazancı optimizasyonu oldukça uzun 

bilgisayar aramaları sonucunda yapılabilmiştir. QPSK işaret kümesinde a = ej33°, b = 

ej49° değerleri için 3,6
maksX  kodunun kodlama kazancı 0.27 olarak bulunmuştur. 4,8

maksX  

gibi 3,6
maksX  kodu da ikinci dereceden verici çeşitlemesi sağlamaktadır. 4,8

maksX  kodunun 

ML çözümünde olduğu gibi 3,6
maksX  kodunun ML kod çözümünde de koşullu ML kod 

çözüm tekniği kullanılabilir. Böylece alıcı , 0,...,5ix i   simgelerinin tüm olası 

değerlerini arayıp 6M  alıcı karmaşıklığıyla çalışmak yerine, sadece , 2,...,5ix i   

simgelerinin tüm olası değerlerini arar ve tüm bu olası değerler için X2,4 kodunun 

çözümünde olduğu gibi x0 ve x1 simgelerine ait koşullu ML kestirimlerini (4.21) ve 

(4.22)’de verildiği gibi elde eder. Alıcı, ardından (4.2)’yi 0 1 2 3 4 5, , , , ,ML MLx x x x x x  için 

, 2,...,5ix i   simgelerinin tüm olası değerleri üzerinden minimize eder. Böylece 
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koşullu ML kod çözme tekniğinin kullanılmasıyla elde edilen toplam alıcı 

karmaşıklığı 4 52 2M M M   olur. 

5.11  Maksimum İletim Hızlı STBC’lerin Bilgi Kuramsal Analizi 

Bu alt bölümde, önceki iki alt bölümde önerilen maksimum iletim hızlı STBC’lerin 

bilgi kuramsal analizleri yapılmış ve bu kodların MIMO kanal sığasını yakaladıkları 

Monte Carlo benzetimleri yardımıyla gösterilmiştir. Öncelikle 4,8
maksX  kodu için nR 

alıcı antenli durumda eşdeğer kanal matrisini verelim: 

1

2

Rn

 
 
 
 
 
  










.  (5.36) 

Burada, 1,..., Ri n  için 

,1 ,2 ,3 ,4

,2 ,1 ,4 ,3

0 0 0 0

0 0 0 0
i i i i

i
i i i i

h jh h jh

h h h h

 
  
 

  

şeklindedir. 4,8
maksX  kodunun ulaştığı MMI ise şu eşitlikten hesaplanabilir: 

4,8
8

1
( , , ) log det

2 4
maks

H
T RC n n E

      
  X

I   . (5.37) 

(5.37)’nin parametrik olarak hesaplanmasının zorluğu nedeniyle Monte Carlo 

benzetimlerinden yararlanılmıştır. Benzer şekilde 3,6
maksX  kodunun eşdeğer kanal 

matrisi de (5.36) ile verilir, ancak burada 

,1 ,2 ,3

,2 ,3 ,1

0 0 0

0 0 0
i i i

i
i i i

h h ah

h h bh

 
  
 

  

şeklindedir. 3,6
maksX  kodunun ulaştığı MMI ise şu denklem ile hesaplanabilir: 

3,6
6

1
( , , ) log det

2 3
maks

H
T RC n n E

      
  X

I   . (5.38) 

(5.38)’in hesabında yine Monte Carlo benzetimleri kullanılmıştır. Şekil 5.7’de 4,8
maksX  

ve 3,6
maksX  kodlarının sırasıyla dört ve üç verici antenli durumlarda ulaştığı MMI’lar 
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edilmiştir. Karşılaştırma amacıyla 4 4  ve 3 3 ’lük MIMO kanalların ergodik 

sığaları da aynı şekil üzerinde gösterilmiştir. Bu eğrilerden görüldüğü üzere önerilen 

kodlar kullanıldıkları verici anten sayıları için MIMO kanal sığasını yakalamışlardır. 

Bunun nedeni önerilen kodların SM sistemleriyle aynı iletim hızına (yani kuramsal 

maksimum iletim hızına) sahip olmalarıdır.  
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X

4,8
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Şekil 5.7 : Önerilen maksimum iletim hızlı STBC’lerin  
     maksimum karşılıklı bilgi miktarları 

5.12  Maksimum İletim Hızlı STBC’lerin Hata Başarımları 

Şekil 5.8’de üç ve dört verici anten için önerilen 3,6
maksX  ve 4,8

maksX  kodlarının iki alıcı 

antenli durumdaki BER başarımları, QPSK modülasyonu için ilişkin uzamsal 

çoğullama (spatial multiplexing, SM) sistemleriyle karşılaştırılmıştır. Burada Eb, bit 

başına ortalama işaret enerjisidir. Bu eğrilerden görüldüğü üzere, önerilen kodlar 

sağladıkları verici çeşitlemesi dolayısıyla artan SNR’la birlikte uzamsal çoğullama 

sistemleriyle aralarındaki farkı açmaktadır. Ancak, başarımdaki bu iyileşme, alıcı 

yapısının karmaşıklığının artmasını beraberinde getirmiştir. Örneğin dört verici anten 

için önerilen kodun karmaşıklığı 72M  iken ilişkin SM sistemin ML alıcı 

karmaşıklığı 4M ’tür. Böylece önerilen sistem, SM sisteminin verici çeşitleme 
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derecesini ikiye katlarken simge başına alıcı karmaşıklığını da QPSK için 64 kat 

arttırmaktadır. Üç verici antende ise bu oran 16 kattır. Dolayısıyla önerilen sistemler 

karmaşıklık-hata başarımı açısından bir ödünleşim sunmaktadır. Ayrıca önerilen bu 

kodların, SM sistemlerinin hızlarına, 2. dereceden verici çeşitlemesi sağlayarak 

çıkmalarının yanı sıra basitleştirilmiş ML alıcılarının da olması dolayısıyla 

literatürde benzerleri bulunmamaktadır.  
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10-2

10-1

100
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 SM, n
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=4, 8 bit/sn/Hz

 Yeni kod, 8 bit/sn/Hz
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T
=3, 6 bit/sn/Hz

 Yeni kod, 6 bit/sn/Hz

 
    Şekil 5.8 : Üç ve dört verici antenler için maksimum iletim hızlı  

                                     STBC’lerin hata başarımları 
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6.  SONUÇLAR VE TARTIŞMA 

Bu çalışmada, koşullu ML kod çözme tekniği kullanılarak, iki, üç ve dört verici 

anten için yüksek hızlı yeni STBC’ler önerilmiştir. Önerilen STBC’lerle en iyi hata 

başarımını elde edebilmek için oldukça uzun bilgisayar aramaları sonucu bu 

STBC’lerin parametre optimizasyonları çeşitli işaret kümelerinde gerçekleştirilmiştir. 

Bunun sonuncunda literatürde var olan en iyi STBC’lere alternatif olacak yüksek 

başarımlı STBC’ler elde edilmiştir. Örneğin, 2 verici anten için önerilen 2-hızlı 

STBC, literatürdeki en iyi iki verici anten kodu olan Altın kodla aynı hata başarımını 

yakalarken, dört verici anten için önerilen 2-hızlı STBC, literatürdeki en iyi kodlar 

olan DjABBA ve BHV kodlarından daha iyi hata başarımı vermektedir. Ancak 

önerilen bazı kodların 16/64-QAM gibi büyük işaret kümelerindeki parametre 

optimizasyonları ilişkin bilgisayar aramalarının aylar süreceği öngörülerek geleceğe 

bırakılmıştır. Koşullu ML kod çözme tekniği sayesinde alıcı karmaşıklığında da 

kayda değer düşüşler sağlanmıştır. Elde edilen bu sonuçlar ışığında önerilen 

STBC’ler literatürdeki eşdeğerlerine göre güçlü birer alternatif olarak ortaya 

çıkmıştır. Yüksek hızlı STBC’lere gelecek nesil telsiz iletişim sistemlerindeki 

gereksinim de göz önünde bulundurulduğunda önerilen STBC’ler daha da önem 

kazanmaktadır. Bu çalışmada önerilen STBC’ler yüksek hızlı STBC’ler alanında 

gelecekde yapılacak çalışmalara da ilham vermektedir. 

Bu çalışmada önerilen kodlar sağladıkları yüksek başarımın yanı sıra dik olmayan 

yapılarından dolayı üstel ML alıcı karmaşıklıklarına sahiptir. Doğrusal ML alıcı 

karmaşıklıklı dik STBC’lerle karşılaştırıldığında ML alıcı karmaşıklığındaki bu artış 

göz ardı edilemeyecek kadar büyüktür. Ancak buna rağmen ML alıcı karmaşıklığı 

kullanılan işaret kümesinin eleman sayısının dördüncü kuvvetiyle orantılı olan Altın 

kod 2005 yılında gezgin WiMAX standartlarına alınmıştır. Yine de bu üstel alıcı 

karmaşıklığının özellikle gezgin aygıtlar için oldukça yüksek olduğu rapor 

edilmektedir. Dört verici anten göz önünde bulundurulduğunda ML alıcı 

karmaşıklığı daha da kritik olmaktadır. Dolayısıyla gelecek çalışmalarda, alıcı 

karmaşıklığı daha da düşük olan optimum (ML) ya da optimuma yakın kod çözme 
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algoritmaları ile çözülebilen tam çeşitlemeli yüksek hızlı STBC’lerin tasarlanması 

hedeflenmektedir.   
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