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N-BOYUTTA SPIN-0 VE SPiN-1/2 PARCACIKLARIN RELATIVISTIK
DAVRANISLARINA MERKEZCIL OLMAYAN POTANSIYELLERIN ETKIiSi

Aysel OZFIDAN
Erciyes Universitesi, Fen Bilimleri Enstitiisii
Doktora Tezi, Mayis 2018
Danisman: Do¢. Dr. Aysen DURMUS

OZET

N-boyutta kiiresel simetrik olmayan alanda hareket eden spin-0 ve spin-1/2 pargaciklar
icin relativistik dalga denklemlerinin analitik ¢oztimleri asimptotik iterasyon metodu ve
kuantum Hamilton-Jacobi formalizmi ile arastirildi. Yiiksek kiiresel koordinatlarda,
Hartmann potansiyeli i¢in Klein-Gordon denkleminin ¢oziimleri asimptotik iterasyon
metodu (AIM) gergevesinde elde edildi. Merkezcil olmayan potansiyel alandaki hidrojen
molekiiliiniin agisal olasilik dagilimlari N-boyutta kapsamli olarak incelendi. Ayni
zamanda, relativistik teoride Hartmann potansiyeli i¢in N-boyutta radyal beklenen
degerler bulundu. Yiiksek kiiresel koordinatlarda, merkezcil olmayan Morse ve merkezcil
olmayan Manning-Rosen potansiyelleri ile etkilesen spin-0 pargaciklari igin relativistik
donme-titresim enerjileri, normalize dalga fonksiyonlar1 AIM ile elde edildi. Merkezcil
olmayan Morse potansiyelini kullanarak modellenen toprak alkali iki atomlu
molekiillerin relativistik titresim frekanslar1 hesaplandi ve elde edilen sonuglar Rydberg-
Klein-Rees (RKR) deneysel verileriyle karsilagtirildi. Farkli boyutlu sistemlerde,
Manning-Rosen potansiyeli i¢in relativistik olmayan enerji 6zdegerlerinin niimerik
degerleri verildi. Diger taraftan, N-boyutta double ring-shaped Kratzer ve Makarov
potansiyelleri i¢in spin simetri durumunda Dirac denkleminin bagli durum ¢oziimleri
kuantum Hamilton-Jacobi formalizmiyle incelendi. Double ring-shaped Kratzer
potansiyeli i¢in bagli durum relativistik enerjileri lizerinde aciya bagli potansiyel
parametrelerinin etkisi arastirildi. Merkezcil olmayan potansiyel alanda, iki atomlu
molekiiller i¢in relativistik dalga fonksiyonlar1 izerinde boyutun etkisi tartisildi. Makarov
potansiyeli etkisindeki spin-1/2 pargacigin kiiresel ve kutupsal koordinatlarda agisal

dalga fonksiyonlarinin olasilik dagilimlari ii¢ ve bes boyutlu sistemlerde incelendi.

Anahtar Kelimeler: Merkezcil olmayan potansiyeller, Yiiksek kiiresel koordinatlar,
Asimptotik iterasyon metodu, Kuantum Hamilton-Jacobi formalizmi, Dirac denklemi,

Klein-Gordon denklemi, Agisal Olasilik Dagilimlari, iki atomlu molekiiller
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EFFECT OF NON-CENTRAL POTENTIALS TO RELATIVISTIC
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ABSTRACT

Analytical solutions of relativistic wave equations for spin-0 and spin-1/2 particles
moving in N-dimensional spherically non-symmetrical field are investigated with
asymptotic iteration method and quantum Hamilton-Jacobi formalism. Solutions of
Klein-Gordon equation for Hartmann potential in hyperspherical coordinates are obtained
within the framework of asymptotic iteration method (AIM). The angular probability
distributions of hydrogen molecule in non-central potential field in N-dimensions are
examined in detail. N-dimensional radial expectation values for Hartmann potential are
also found in relativistic theory. In hyperspherical coordinates, relativistic rovibrational
energies, the normalized wavefunctions for spin-0 particles interacting with non-central
Morse and non-central Manning-Rosen potentials are obtained with AIM. Relativistic
vibratinal frequencies of the alkaline earth diatomic molecules modeled with non-central
Morse potential are calculated and the results are compared with the Rydberg-Klein-Rees
(RKR) data. Numerical calculations of non-relativistic energy eigenvalues for Manning-
Rosen potential in different dimensional systems are introduced. On the other hand,
bound state solutions of the Dirac equation under condition of spin symmetry for double
ring-shaped Kratzer and Makarov potentials in N-dimensions are investigated via
qguantum Hamilton-Jacobi formalism. The influence of the angle-dependent potential
parameters on the bound state relativistic energies are probed for double ring-shaped
Kratzer potential. The effect of dimension on the relativisic wavefunctions for diatomic
molecules in non-central potential field are discussed. Angular probability distributions
in spherical and polar coordinates of spin-1/2 particle in the presence of Makarov

potential are investigated in three and five dimensional systems.

Keywords: Non-central potentials, Hyperspherical coordinates, Asymptotic iteration
method, Quantum Hamilton-Jacobi formalism, Dirac equation, Klein-Gordon equation,
Angular probability distributions, Diatomic molecules
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GIRIS

Bir pargacik kuvvetli bir potansiyel alanda hareket ettigi zaman relativistik etkiler
ortaya ¢ikar. Relativistik etkiler hesaba katilirsa par¢acigin hareketi Klein-Gordon, Dirac
ve Duffin-Kemmer-Petiau dalga denklemleriyle tanimlanir [1]. Klein-Gordon dalga
denklemi ilk olarak 1926 yilinda Klein [2], Fock [3] ve Gordon [4] tarafindan yazild:.
Pion, mezon ve kaon gibi spin-0 mikroskobik pargaciklarin davranigini tanimlamak igin
bu relativistik dalga denklemi kullanilir. Dirac [5], elektronlarin ve diger spin-1/2
parcaciklarin 6zelliklerini tanimlayan relativistik dalga denklemini 1928’de 6nerdi. Dirac
dalga denklemi relativistik kuantum mekaniginde en sik kullanilan denklemdir. Bu
denklemin fizik ve matematigi oldukg¢a kapsamlidir. Dirac denklemi relativistik olmayan
durumda agiklanamayan farkl fiziksel olaylar1 aydinlatmistir. Bu denklem, parcacikta
spinin varligii ortaya koymustur. Ayn1 zamanda, Dirac dalga denklemi sayesinde
modern teorik fizigin en biiylik basarilarindan biri olan pozitronun kesfinden dnce varligi
ongorilmistir. Duffin-Kemmer-Petiau [6-9] dalga denklemi spin-0 ve spin-1
parcaciklarin hareketini tanimlamaktadir.

Atom ve molekiil fizigi, kuantum optigi, katihal fizigi ve niikleer fizik gibi alanlarda
N boyutlu uzayda fiziksel problemleri ele almak 6nemlidir. Yiiksek koordinatlarda dalga
denklemleri hakkinda yapilan tiim c¢alismalar genellestirilmis yoriingesel agisal
momentuma dayandirilir. Tlk olarak Louck, tam ¢dziilebilir model olan harmonik osilator
potansiyel ile calistt [10-12]. Aslinda, bu genelleme Appel, Fock, Bargmann,
Sommerfeld gibi bir¢ok arastirmaci tarafindan yapilan daha Onceki ¢aligmalara
dayanmaktadir [13-16]. Louck’in ¢alismalarini takiben, de Broglie ve ¢alisma arkadaslari
[17], daha yiiksek boyutlu harmonik osilatér ve molekiiler titresimi analiz etmek igin
temel olarak yiiksek kiiresel harmonikleri 6nerdi. Bu ¢alismada, Minkowski uzayinda
relativistik genigletilmis yapilar olarak temel parcaciklarin dondiiriicii modelini goz
Ontine aldilar. Bu varsayimin altinda “temel pargaciklar nokta benzeri yapida degildir

bundan ziyade Minkowski uzayinda genisletilmis yapidadirlar” prensibi bulunmaktadir.



Iki y1l sonra Granzow [18], N-boyutlu uzayda ortogonal kutupsal koordinat sistemleri
iizerine ¢aligmasini yayinladi ve toplam yoriingesel agisal momentum operatorii igin tam
ve agik gosterimleri calismasinda agikladi. Aynmi zamanda, c¢alismasinda kutupsal
koordinattan kartezyen koordinata doniisimii ispatladi ve kartezyen koordinatta x™
terimini  kuantum sisteminde dalga fonksiyonu olarak yorumladi. Calismalari
genellestirilmis agisal momentum teorisine dayanan Bergmann ve Frishman [19], dalga
denklemleri ve dalga fonksiyonlar1 iizerinde temel doniistimler yaparak hidrojen atomu
ve harmonik osilatér arasinda iliski kurdular. Cizek, Paldus, Kostelecky’nin ve daha
bir¢ok arastirmacinin ¢alismalarinda vardiklari sonu¢ N-boyutta calismak gercek fiziksel
sistemleri tanimlamak i¢in ¢ok Onemlidir [20]. Bu nedenle fiziksel problemlerin N-

boyutlu uzayda incelenmesi fizigin bir¢ok alaninda 6nemli rol oynar.

Merkezcil olmayan potansiyeller fizik ve kimyanin bir¢gok alaninda 6nemli rol
oynamaktadir. Kiiresel simetrik olmayan sistemlerin kuantum dinamigini agiklamak i¢in
bu potansiyeller yardimci olur. Elde edilen sonuclar kullanilarak gercek fiziksel
sistemlerin enerji spektrumu bulunur. Merkezcil olmayan potansiyeller nanoyapilar ve
sagilma teorisi, benzen gibi halka seklinde molekiillerin incelenmesi, katilarin yapisal
ozelliklerinin anlagilmasi, ¢ok bilesenli metalik camlarin yapisal ve dinamik 6zelliklerini
tanimlayan modellerin gelistirilmesinde calisilir [21-26]. Fiziksel 6neminden dolay1 bu
potansiyeller igin relativistik dalga denklemlerinin analitik ¢éziimleri teorik fizikgilere

katk1 saglamaktadir.

Kuantum mekaniginde tam olarak ¢6ziilebilen potansiyellerden biri olan Hartmann
potansiyeli, halkali polien ve benzen gibi molekiilleri galismak igin 1972’de 6nerildi [27].
Boylece, bir¢ok arastirmaci Hartmann molekiiler potansiyel iizerine ¢alismaya yoneldi.
Literatiirde, bu potansiyel i¢in relativistik olmayan enerji seviyeleri standart metodla elde
edilmistir [28]. Sonra, bu metodun disinda path integral yaklasimi [29-30], siipersimetri
ve ayar degismezligi [31-33], Kustaanheimo-Steifel (KS) doniistiimii [34-35] ve dinamik
grup teori yontemiyle [36-39] ¢oziimler {izerine ¢alisilmistir. Ayn1 zamanda, Hartmann
potansiyeli etkisindeki bir parcacik i¢in {i¢ boyutta relativistik bagli ve sacilma
durumlarinda ¢6ziimler mevcuttur [40-42]. N-boyutta Hartmann potansiyeli igin
Schrodinger denkleminin ¢dziimleri asimptotik iterasyon metoduyla Durmus ve Ozfidan
[43] tarafindan elde edildi. Bu tez c¢alismasinda, N-boyutta Hartmann potansiyel

etkisindeki spin-0 pargacik i¢in skaler ve vektor potansiyellerinin esit oldugu durumda



¢ozlimler ayn1 metodla arastirildi. 1973 yilinda, Hautot [44] calismasinda bir grup
merkezcil olmayan potansiyel 6nerdi. Daha sonra, bu ¢alismadaki potansiyellerin ii¢
boyutta relativistik olmayan [45] ve relativistik [46-50] dalga denklemlerinin ¢6ziimleri
yapilmistir. Bu ¢aligmada ise Hautot’un onerdigi potansiyellerden ikisi ele alinarak N-
boyutta Klein-Gordon denkleminin ¢6ziimleri incelendi. Makarov potansiyeli 1967°de
onerildi [51]. Bu potansiyel genel bir potansiyeldir. Bundan dolayi, potansiyeldeki
parametrelerin 6zel durumlarinin alinmasiyla Coulomb, Aharonov-Bohm ve Hartmann
potansiyeli elde edilir. Literatiirde, bu potansiyel i¢in kiiresel koordinatlarda relativistik
olmayan dalga denklemlerinin ¢6ziimleri Nikiforov-Uvarov [52-53], siipersimetri ve ayar
degismezligi [54], Laplace doniisimii [55] ve asimptotik iterasyon yontemiyle [56]
calistlmigtir. Diger taraftan, {i¢ boyutta relativistik parcacik igin enerji spektrumu
faktorizasyon metodu [57], Nikiforov-Uvarov [58-59] ve Laplace doniigiimii [60] ile elde
edilmistir. Ayni1 zamanda, kuantum Hamilton-Jacobi yontemiyle skaler ve vektor
potansiyellerinin esit oldugu kosulda kiiresel koordinatlarda Makarov potansiyeli i¢in
Dirac denklemi ¢oziilmiistiir [61]. N-boyutta Makarov potansiyeli etkisindeki relativistik
olmayan parcacik i¢in ¢dziimler asimptotik iterasyon metoduyla Durmus ve Ozfidan [43]
tarafindan elde edilmistir. Bu ¢aligmada ise, yliksek kiiresel koordinatlarda Makarov
potansiyeli i¢in spin simetri durumunda Dirac denkleminin ¢6ziimii kuantum Hamilton-

Jacobi formalizmiyle incelendi.

Kratzer potansiyeli 1920’de Kratzer tarafindan 6nerildi [62]. Bu potansiyel, kuantum
kimyasinda iki atomlu molekiillerin yapilarinin ve etkilesimlerinin tanimlanmasinda
onemli oldugundan dolay1 bir¢ok ¢alismada ele alinmustir [63-68]. Literatiirde, double
ring-shaped Kratzer potansiyeli i¢in kiiresel koordinatta ¢alismalar mevcuttur. Durmus
ve Yasuk [63] bu potansiyel igin Klein-Gordon ve Schrodinger denkleminin ¢oziimlerini
AIM, Arda ve Sever [55] Schrédinger denkleminin ¢dziimlerini Laplace doniisiimii,
Oyewumi ve arkadaslar1 [69] spin ve pseudospin simetri durumunda Dirac denkleminin
¢oziimlerini AIM, Kasri ve Chetouani [70] Schrddinger denkleminin ¢oziimlerini tam
kuantumlanma yontemi ile elde etti. Gharbi ve ¢alisma arkadaslar1 [71], double ring-
shaped Kratzer potansiyeli igin kiiresel koordinatta Klein-Gordon denkleminin
¢Oziimlerini kuantum Hamilton-Jacobi yontemi kullanarak buldu. Bu ¢alismada da, aym
potansiyel i¢in N-boyutta spin simetri durumunda Dirac denkleminin ¢oziimleri kuantum

Hamilton-Jacobi yontemiyle arastirildi.



Molekiiller arasindaki titresim hareketi yay benzeri geri c¢agirici kuvvet 6zelligi
gosterip Hooke kanunuyla agiklanir. Fakat, bu varsayim denge konumundan kii¢iik
yerdegistirmeler s6z konusu oldugunda gecerlidir. Iki atomlu molekiillerin gercek
davranig1 tam olarak harmonik degildir. Bundan dolayi, r’nin biiyiik degerlerinde
molekiiller ayrisir, birbirlerinden etkilenmezler ve kuvvet sabiti sifir olur. Potansiyel
enerjide degisim olmadan r sonsuza dogru arttirilabilir. Béylece, potansiyel enerji egrisi
ayrisma enerjisi potansiyele esit oldugunda diizlesir. Ayrisma enerjisi, Kuvvet sabiti sifira
yaklagtiginda molekiiller arasindaki bag gittikce zayiflar. Bu durumda en uygun
modelleme harmonik olmayan Morse potansiyel fonksiyonuyla yapilir. Bu nedenle,
molekiiler fizikte temel olusturan Morse potansiyeli bir¢cok c¢alismada arastirmacilar
tarafindan ele alinmistir [72-76]. Bu potansiyel Morse tarafindan 1929°da 6nerildi [77].
Morse potansiyeli faktorizasyon metodu [78-81], siipersimetri yaklasimi [82-83], Green
fonksiyon yaklasimi [84] gibi farkli metodlar kullanilarak ¢oziilebilmektedir. Morse
potansiyeli i¢in [ = 0 durumunda Schrodinger denkleminin ¢éziimleri elde edilmistir
[85-86]. Fakat [ # 0 durumu karmasik oldugundan dolayr dalga denklemi sadece
pertiirbasyon ve yaklasim yapilarak ¢oziilebilir. Relativistik veya non-relativistik dalga
denklemini ¢ozmek igin en iyi yaklasimlardan biri Pekeris metodudur. Bu metod, 1934’te
Pekeris tarafindan onerildi [87]. Morse potansiyeli i¢in N-boyutta Schrodinger denklemi
seriler [88], Laplace doniisiimii [89] ve N-boyutta Klein-Gordon denklemi [90] ile
¢ozlimleri mevcuttur. Ayn1 zamanda, ii¢ boyutta relativistik ve non-relativistik dalga
denklemlerinin ¢oziimleri asimptotik iterasyon metoduyla incelenmistir [91-94]. Bu tez
calismasinda, Morse potansiyeli i¢in yiiksek kiiresel koordinatlarda Klein-Gordon
denkleminin yaklasik ¢oziimleri asimptotik iterasyon metoduyla elde edildi. Bu
caligmada ele alinan bir diger merkezcil potansiyel Manning-Rosen potansiyelidir. Bu
potansiyel, 1932°de Manning-Rosen tarafindan &nerildi [95-96]. Ustel fonksiyonlu
potansiyel varliginda Klein-Gordon denklemi | = 0 oldugunda analitik olarak ¢oziilebilir
[97-98]. Fakat, herhangi bir [ durumunda yaklasim kullanmadan denklemi ¢6zmek
miimkiin degildir. Bu nedenle, relativistik dalga denklemini ¢6zmek i¢in Greene-Aldrich
[99] yaklasimi kullanilir. Literatiirde, Manning-Rosen potansiyeli i¢in yiiksek kiiresel
koordinatlarda  Schrodinger denkleminin  ¢oztimleri  Nikiforov-Uvarov  [100],
kuantumlanma metodu [101]; kiiresel koordinatlarda Schrodinger — denkleminin
¢oziimleri standart metod [102-104], Nikiforov-Uvarov [105-107], GPS [108], AiM

[109] ve Klein-Gordon denkleminin ¢oziimleri [110] mevcuttur. Bu caligmada ise



Manning-Rosen potansiyeli i¢in N-boyutta Klein-Gordon denkleminin ¢6ziimleri ayni
metodla elde edildi. Manning-Rosen potansiyeli Hulthén potansiyeline indirgenmektedir.
Boylece, Hulthén potansiyeli etkisindeki spin-0 pargacik i¢in N boyutlu relativistik bagli

durum ¢6ztimleride bulundu.

Bu tez calismasinda, farkli potansiyeller i¢in ¢oziimlerin elde edilmesinde kullanilan
yontemlerden biri asimptotik iterasyon metodudur. Bu yontem, ikinci mertebeden lineer
homojen diferansiyel denklemleri ¢ozmek icin Cift¢i ve arkadaslar1 tarafindan
onerilmistir [111-114]. Asimptotik iterasyon yontemi, merkezcil ve merkezcil olmayan
potansiyellerle etkilesen relativistik ve relativistik olmayan pargaciklar i¢in ¢6ziimlerin
etkin ve sistematik olarak elde edilebilmesinde yardimeci olmaktadir. Yiiksek kiiresel
koordinatlarda Hartmann potansiyeli, merkezcil olmayan Morse ve merkezcil olmayan
Manning-Rosen potansiyeli etkisindeki spin-0 pargacik icin Klein-Gordon dalga
denkleminin ¢dziimleri bu yontemle arastirildi. Diger taraftan, yiiksek kiiresel
koordinatlarda double ring-shaped Kratzer ve Makarov potansiyeli i¢in spin simetri
durumunda Dirac dalga denkleminin ¢oziimleri Leacock ve Padgett [115-116] tarafindan
onerilen kuantum Hamilton-Jacobi ydntemiyle incelendi. Bu formalizm, kuantum
mekaniginde tam olarak ¢oziilebilen potansiyellerin enerji spektrumunu belirlemek i¢in
kullanilan etkin bir yontemdir. Bir boyutlu [117-118], iki boyutlu merkezcil potansiyeller
[119], merkezcil olmayan potansiyeller [120] ve ii¢ boyutlu merkezcil potansiyeller [121]
icin kuantum Hamilton—Jacobi metoduyla ¢oziimler literatiirde mevcuttur. Kapoor ve
arkadaglar1 [122] bu yontemi gelistirerek tam kuantizasyon kosulunu kullanmadan hem
enerji 6zdegerlerini hem de enerji 6zfonksiyonlarini elde etmislerdir. Tam kuantizasyon
kosulunu kullanmadan kiiresel koordinatta tam olarak ¢oziilebilen potansiyeller icin

¢coziimler mevcuttur [123-124].

Bu ¢alismada, merkezcil olmayan potansiyel etkisindeki goreli kuantum sistemi i¢in
yiiksek kiiresel koordinatlarda Klein-Gordon ve Dirac denklemlerinin bagh durumda
analitik ¢oziimleri arastirilacaktir. N-boyutta kiiresel simetrik olmayan potansiyel alanda
hareket eden spin-0 ve spin-1/2 pargaciklarin tam ¢oziimlerinin dogru bir sekilde elde
edilmesi amaclanmaktadir. Yiiksek kiiresel koordinatlarda, Hartmann, merkezcil
olmayan Morse ve merkezcil olmayan Manning-Rosen potansiyelleri i¢in Klein-Gordon
dalga denkleminin ¢6ziimleri etkin ve sistematik olarak asimptotik iterasyon metoduyla

elde edilecektir. Farkli boyutlu sistemlerde, iki atomlu molekiiller icin relativistik



titresim-donme enerjisinin degerleri bulunarak kullanilan metodun gegerliligi tespit
edilecektir. Diger taraftan, yiiksek kiiresel koordinatlarda double ring-shaped Kratzer ve
Makarov potansiyelleri etkisindeki spin-1/2 parcacik i¢in spin simetri bagli durum
cozlimleri kuantum Hamilton-Jacobi yontemiyle incelenecektir. Boylelikle, kuantum
Hamilton-Jacobi formalizminin  merkezcil olmayan potansiyeller i¢in kiiresel
koordinatlarda relativistik dalga denklemlerinin ¢oziimlerinin yanisira N-boyutta
relativistik dalga denklemlerinin analitik ¢6ziimlerinin elde edilebilecegini gostermek
hedeflenmektedir. Double ring-shaped Kratzer potansiyeli i¢in spin simetri bagli durum
relativistik enerjileri lizerinde agiya bagli potansiyel parametrelerinin ve iki atomlu
molekiiller i¢in relativistik dalga fonksiyonlar: lizerinde boyutun etkisi arastirilacaktir.
Makarov potansiyeli i¢in kiiresel ve kutupsal koordinatlarda agisal dalga fonksiyonlarmin

olasilik dagilimlar1 farkli boyutlarda incelenecektir.

Bu tez c¢aligmasinin ilk boliimiinde kullanilan yontemler, yiiksek kiiresel
koordinatlarda gradyent ve laplasyenin nasil elde edildigi anlatildi. ikinci béliimde,
yiiksek kiiresel koordinatlarda skaler ve vektdr potansiyellerinin esit oldugu durumda
Klein-Gordon denklemlerinin ¢ikarilis1 verildi. Spin-0 pargacik igin ¢oziimler asimptotik
iterasyon metoduyla arastirildi. ilk olarak, N-boyutta Hartmann potansiyeli etkisindeki
hidrojen molekiilii i¢in relativistik enerji spektrumu ve dalga fonksiyonu elde edildi. H,
molekiiliiniin kiiresel ve kutupsal koordinatlarda agisal olasilik dagilimlar1 {izerinde
boyutun etkisi detayli bir sekilde arastirildi. Relativistik durumda, N-boyutta Hartmann
potansiyeli i¢in kdsegen matris elemanlar1 ve bu matris elemanlarmin analitik ifadeleri
arasindaki tekrarlama bagintilar1 elde edildi. Beklenen degerler (nl|rS|nl) , —4 <s <
4 araligr i¢in bulundu. Beklenen degerler, diger fiziksel nicelikleri hesaplamakta
kullanildigindan  6nemlidir. Ornegin, Kirkwood [125] ve Buckhingam [126]
calismalarinda s > 1 igin (r®) ifadelerini atomlarin kutuplanmasini hesaplamada
kapsamli olarak kullanmustir. (r~1) ve (r?) ifadeleri hidrojen gibi atomlar ve izotropik
harmonik osilatorler igin potansiyelin ortalama degerinin dogrudan sonucunu verir. Ayni
zamanda, (r~!) diamanyetik perdeleme sabitini hesaplamada kullanilir [127-128].
(r=2) ise son zamanlarda ¢alisilan bir konu olan kuantum bilgi teorisinde 6nemli rol
oynamaktadir. Simdiye kadar, N-boyutta Hartmann potansiyeli igin relativistik beklenen
degerleri igeren bir calisma yoktur. Ayrica, hidrojen molekiilii i¢in kiiresel ve kutupsal

koordinatlarda agisal olasilik dagilimlari tizerine ¢alisiimamistir. Bu nedenle, N-boyutta



Hartmann potansiyeli etkisindeki hidrojen molekiilii i¢in yapilan hesaplama ve grafikler
onemlidir. Diger taraftan, yiliksek kiiresel koordinatlarda merkezcil olmayan Morse
potansiyelinin yaklasik ¢6ziimleri lizerine ¢alisildi. Toprak alkali metaller periyodik
cetvelde ITA grubundadir. Homoniikleer Ca, X', Sr, XX+, Sr, A'X*ve heteroniikleer
MgCaX'x* iki atomlu molekiilleri igin merkezcil olmayan Morse potansiyelinin yiizey
grafikleri kapsamli olarak incelendi. Bu ylizey grafiklerinde merkezcil olmayan
potansiyel parametrelerinin farkli degerler almasi durumundaki etkisi gosterildi.
Kalsiyum, magnezyum-kalsiyum molekiillerinin taban durumunda, strontiyum
molekiiliiniin hem taban durumunda hem de uyarilmis durumda ytiizey grafikleri ¢izildi.
Ayni zamanda, Ca, X'Z*t, MgCa X':*, Sr, XLt ve Sr, A1 molekiillerinin
relativistik titresim frekanslar1 hesaplandi. Kalsiyum molekiiliiniin sogurma spektrumu
1975°de Balfour ve Whitlock [129] tarafindan gozlenmistir. Daha sonra, bu molekiil i¢in
arastirmalar lazer floresan metodu kullanilarak Sakurai ve Broida [130], Vidal [131],
Hofmann ve Harris [132] tarafindan yapilmustir. Strontiyum molekilii ilk olarak
Bergeman ve Lio [133] tarafindan gbzlenmistir. Sonra, Gerber ve ¢alisma arkadaslari
[134] daha dogru sonuglar elde etmek igin lazer floresans yontemiyle kesikli ve siirekli
spektrumu analiz etmiglerdir. Magnezyum-kalsiyum molekiiliiniin sogurma spektrumu
Miller ve galisma arkadaslar1 [135] tarafindan gozlenmistr. Bu ¢alismanin ardindan
Atmanspacher ve arkadaslart [136], lazer floresan metodunu kullanarak arastirma
yapmiglardir. Bu ¢alismalar dikkate alinarak toprak alkali metal grubundan iki atomlu
molekiiller i¢cin elde edilen relativistik titresim frekanslarinin deneysel sonuglarla
[131,134,136] karsilastirmas1 yapildi. Bir diger calisilan merkezcil olmayan Manning-
Rosen potansiyeli i¢in N-boyutta yaklasik ¢oziimler arastirildi. Belirli parametrelerin
indirgenmesi durumunda Manning-Rosen potansiyeli Hulthen potansiyeline dontisiir. Bu
nedenle, bu indirgemeler yapilarak yiiksek kiiresel koordinatlarda Hulthen potansiyeli
icin de ¢oziimler elde edildi. Manning-Rosen potansiyeli i¢in elde edilen N-boyutta
relativistik enerji degeri ¢ — oo limitinde non-relativistik enerjiye indirgenerek farkli
kuantum durumlar1 i¢in iki, ii¢ ve dort boyutta atomik birimde niimerik degerler
hesaplandi. Kullanilan metodun gegerliligi ve hesaplanan enerji degerlerinin dogrulugu
literatiirdeki ¢calismalarla karsilagtirilarak gosterildi. Ayn1 zamanda, ayn1 potansiyel i¢in
Hellmann-Feynmann teoremi [137-139] kullanilarak (r~2) beklenen degeri elde edildi.
Sonra, 2p, 3p, 3d, 4p durumlarindaki (r~2?)’nin niimerik degerleri hesaplandi. Ugiincii

boliimde, kuantum Hamilton-Jacobi formalizmi ¢ergevesinde incelenen yiiksek kiiresel



koordinatlarda spin simetri durumunda Dirac denklemlerinin ¢ikarilislar1 verildi. N-
boyutta double ring-shaped Kratzer potansiyelinin spin simetri durumunda relativistik
enerji spektrumu ve dalga fonksiyonu elde edildi. Bulunan enerji spektrumu kiiresel
koordinata indirgendi ve bu spektrum {izerinde merkezcil olmayan potansiyel
parametrelerin degisimi incelendi. Ayrica, double ring-shaped Kratzer potansiyeli
etkisindeki iki atomlu molekiiller (HI a3Z*, NaH XX+, MgH X237%) i¢in ii¢ ve bes
boyutta S(r,0y_1) = V(r,0y_,1) kosulundaki relativistik enerjinin degerleri elde edildi.
Hidrojen halojentirler birgok relativistik yaklasimda dnemli rol oynar. Agir bir atoma
bagli hidrojenden olugsan molekiiller i¢in hesaplamalar farkli yontemlerde kolaylikla
uygulanabilir [140]. HI a3Z* molekiilii hidrojen halojeniirler grubundadir. NaH Xx+
ve MgH X2%* molekiilleri ise metal hidriir grubudur. Bu molekiiller i¢in radyal ve agisal
dalga fonksiyonlarinin grafiklerinde boyutun etkisi kapsamli olarak arastirildi. Yiiksek
kiiresel koordinatlarda Makarov potansiyeli etkisindeki spin-1/2 parcacik i¢in ¢éziimler
elde edildi. Ayni1 potansiyel i¢in farkli boyutlarda agisal dalga fonksiyonunun kiiresel ve
kutupsal koordinatlarda olasilik dagilimlariin grafikleri ¢izildi. N-boyutlu uzayda farkli
potansiyellerin ¢6ziimleri kuantum Hamilton-Jacobi formalizminde ilk defa bu tez
calismasinda incelendi. Bundan dolayi, N-boyutta double ring-shaped Kratzer ve
Makarov potansiyelleri i¢in yapilan hesaplama ve uygulamalar 6nemlidir. Son boliimde,

elde edilen sonuglarin tartismasi yapildi.



1. BOLUM

METODLAR ve MATEMATIKSEL ARACLAR

1.1. Asimptotik iterasyon Metodu
Standart bir yap1 olarak
Y (x) = 2(x)y" (x) + 5o () y(x) (1.1.3)

seklinde yazilabilen denklemler ikinci mertebeden lineer homojen diferansiyel
denklemler olarak adlandirilir. Fizik ve miihendislikte bu diferansiyel denklemlerle ¢ok
sik karsilagilir. Ikinci mertebeden lineer homojen diferansiyel denklemleri siir
kosullariyla ¢6zmek i¢in pek ¢ok yontem mevcuttur. Ciftci ve arkadaslar1 [111-114], bu

yapidaki denklemlerin ¢dziimii i¢in asimptotik iterasyon metodunu dnermistir.

Denklem (1.1.1)’de, Ay(x) # 0 olmak tlizere Ay(x) ve sq(x) Cw(a,b) araliginda
taniml1 tiirevlenebilir fonksiyonlardir. Denklemin genel ¢6ziimiinii bulmak i¢in denklem

(1.1.1)’in x’e gore tiirevi alindiginda

y"'(x) = 2 (0)y' (x) + 51(0)y(x) (1.1.2)
elde edilir ve burada

A1 (x) = A5(x) + 50(x) + A5 (x)

51(x) = s55(x) + s(x) A5 (x) (1.1.3)
seklindedir. Benzer olarak, denklem (1.1.1)’in dordiincii mertebeden tiirevi

YW () = ()Y (x) + s, ()y(x) (1.1.4)
olarak bulunur. Burada, 4, ve s,

A2(x) = A1) + 51(x) + A9 ()24 (x)
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$2(x) = 51(x) + 50(x) 21 (%) (1.1.5)

seklinde yazilir. Denklem (1.1.1)’in (n+1). ve (n+2). mertebeden tiirevleri alindiginda

n=1,2,3.. olmak iizere

Yy () = A1 ()Y () + 51 ()Y (x)

Yy (x) = 2, (0)y' (%) + s, () y (%) (1.1.6)
elde edilir. Bu denklemlerde

An(x) = A1 (x) + 551 (%) + Ao () A1 ()

sn(x) = sp_1 (%) + 50(x)Ap—1(x) (1.1.7)

seklindedir. Denklem (1.1.7) tekrarlama bagimntisi olarak bilinir. (n+1). mertebeden tiirev

(n+2). mertebeden tiireve oranlandiginda

)
Yy @[y 0Dy )]
_ln (n+1) x 1.1.8
[y ( )] y(n+2) (x) Apeq (%) [y (x)_l_sn 1((2?))7(9()] ( )
olarak bulunur. Yeterince biiyiik n degerleri igin,
sn(x) _ Sn-1x) 1) _ C{(X) (119)

An (x) An—1(x)

elde edilir ve kuantizasyon sart1 olarak adlandirilir. Bu denklem, 6zdeger problemi

analitik ¢oziimlere sahip oldugunda
O (%) = 2, (x)sp—1 (%) — Ap_1 ()5, (x) = 0 (1.1.10)
her bir yaklasiklikta X’den bagimsiz bir ifade iiretir.

Denklem (1.1.9), denklem (1.1.8)’de kullanilir ve birka¢ matematiksel islem

yapildiktan sonra

a (n+1) _ )
— In[y™*D (x)] pa (1.1.11)

denklemi elde edilir ve buradan

(n+1) — An(x)
y (x) = Ciexp (f yR dx) (1.1.12)
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olarak bulunur. Denklem (1.1.7)’den A, (x), denklem (1.1.12)’de kullanilir ve gerekli

diizenleme yapilirsa
YD (x) = €1 Anq (exp(fla(x) + Ao (x)] dx) (1.1.13)

denklemi elde edilir. Burada C; integrasyon sabiti olarak adlandirilir. Denklem (1.1.13)

ve denklem (1.1.7)’den birinci mertebeden diferansiyel denklem

y' () + a()y(x) = Cexp(flaCx) + 20(x)] dx) (1.1.14)

seklinde elde edilir. Bu diferansiyel denklemin ¢6ziimii

y(x) = exp(—[ xadx’) [C2 +C,f “exp (f x,[/lo(r) + Za(T)]dT) dx’] (1.1.15)

olarak bulunur. Burada elde edilen (1.1.15) ¢6ztimii, denklem (1.1.1) esitligi ile verilen
ikinci dereceden lineer homojen diferansiyel denkleminin genel ¢6ziimidiir. Bu
¢oziimde, ilk terim fiziksel olarak kabul edilebilir ¢oziimii saglarken ikinci terim fiziksel
¢coziimleri icermez. Sonu¢ olarak, analitik ¢oziilebilen potansiyeller icin  enerji

O0zdegerlerine karsilik gelen dalga fonksiyonlari

y(x) = C,exp (—f * ,511((}:'3 dx’) (1.1.16)

bagintidan elde edilir. Burada, C, normalizasyon sabiti olup normalizasyon kosulundan

belirlenir.

1.2. Kuantum Hamilton-Jacobi Yontemi

Kuantum Hamilton-Jacobi formalizmi klasik Hamilton-Jacobi teorisini temel alarak
gelistirilmistir. Bu formalizm, kuantum mekaniginde tam olarak ¢oziilebilen sistemlerin
bagli durum enerji 6zdegerlerini elde etmek igin etkin bir yontemdir. Leacock ve Padgett
[115-116], bu enerji 6zdegerlerini sistemin dalga fonksiyonlarini hesaplamaya gerek

kalmadan nasil elde edilecegini gdsteren ilk aragtirmacilardir.
V(x) potansiyeli etkisinde tek boyutta hareket eden bir pargacigin Hamiltonyeni

a

H(%,p) = P2+ V(2) (12.1)

seklinde tanimlanir. Burada, ¥ lineer konum operatorii ve P momentum operatorii

olmak tizere X =x, p = (h/i)d/dx seklindedir. Leacock ve Padgett, kuantum
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Hamilton-Jacobi yonteminde £, p, Q, P ve H operatorlerinin yerine x, p, Q, P ve

E 6zdegerlerini kullanir. Bdylece, bu nicelikler kullanilarak kuantum kanonik doniisiimii,

_ AW (xE(P)) _ OW(xE(P)

ox » op (12.2)

klasik doniisiimdeki ayni yapiyla tanimlanir. Burada, W (x, E(P)) kuantum Hamilton’un
karakteristik fonksiyonu olarak adlandirilir. Denklem (1.2.1) ve denklem (1.2.2)’den

kuantum Hamilton-Jacobi denklemi

2
£62w(x,E) + (aW(x.E)) =E-V(x) (1.2.3)

i 0x2 0x

elde edilir. Burada, W (x,E), fiziksel olarak siir sartlarin1 saglayan fonksiyondur.

Kuantum Hamilton-Jacobi denkleminin iki, li¢ ve daha yiiksek boyutlara genellestirilmesi
—ihV.VW + VW.VW = E —V (1.2.9)
olarak yazilabilir.

Aslinda, kuantum Hamilton-Jacobi yontemi, kuantum momentum fonksiyonun tekil

yapist tizerine kuruludur. Ayni zamanda, kuantum momentum fonksiyonu

p(x, E) =2 LIny(x) (1.2.5)
idx
seklinde tanimhidir. Denklem (1.2.2)’de tanimlanan kuantum momentum fonksiyonu
p(x, E), denklem (1.2.3)’de yerine yazildiginda

h Op(x.E)

o TP E) = E—V(x) = pi(x,E) (1.2.6)

seklinde elde edilir. Bu denkleme kuantum momentum fonksiyon denklemi denir.
Burada, py(x, E) klasik momentum fonksiyonudur. Klasik limitte 2 — 0, kuantum

momentum fonksiyonu klasik momentum fonksiyonuna indirgenir.

p(x,E) = pip(x,E) = JE =V (x) (1.2.7)

Klasik momentum fonksiyonu, x; ve x, donme noktalarinda sifira esittir.

Pk(x1, E) = pr(x2,E) = 0
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Kompleks x diizlemi tizerinde tanimli py (x, E)’nin fiziksel olarak gerekli ve anlamli
¢oziimii, karsilama ilkesi geregi p(x, E)’nin davranisini sinirlandirir. Daha kapsaml

bilgiler Leacock ve Padegett’in ¢alismalarindan elde edilebilir [115-116].

Kuantum hareket degiskeninin kompleks bolgede kuantum momentum fonksiyonun

C kapali egrisi lizerinden integrali
J =J(E) =5-.p(x, E)dx (1.2.8)

seklinde yazilir. Kuantum momentum fonksiyonunun kutup noktalari, ele alinan sistemde
uyarilmis durumlari verir. Ornegin, taban durumunda p(x, E) nin kutup noktas1 yoktur.
Birinci uyarilmis durumda 1 tane, ikinci uyarilmis durumda 2 tane kutup noktasina
sahiptir. Bu yoldan hareketle, kuantum hareket degiskeni kullanilarak tam kuantizasyon

kosulu
J =nh=J(E) (1.2.9)

seklinde yazilir. Burada, n = 0, 1, 2 ... degerlerini alir. Bu denklem, enerji spektrumunu

bulmak i¢in kullanilir.

Kapoor ve calisma arkadaslart [122], kuantum Hamilton-Jacobi formalizmini
gelistirmisler ve tam kuantizasyon kosulunu kullanmadan hem enerji 6zdegerlerini hem

de enerji 6zfonksiyonlarini elde etmislerdir.

1.3. Yiiksek Kiiresel Koordinatlarda Gradyent Operatoriiniin Elde Edilmesi

Bu boliimde, yiiksek kiiresel koordinatlarda kuantum Hamilton-Jacobi denkleminde

karsimiza ¢ikan N-boyutta gradyent operatorii elde edilecek.
N boyutta gradyent, kartezyen koordinatlarda (x;, x5, ..., xy)

- NoD
Vy=> — (1.3.1)
o1 OX,

seklinde tanimlidir.

Louck [10-12] ve Chatterjee [141]’nin g¢alismalarina gére N-boyutlu uzayda kiiresel

koordinatlar
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Xy =1 cosB;sinf,sinf;...sinfy_4

X, = 1rsinf; sin 6, sin b ...sin Oy_4

X3 =71rcosf,sinf;sinf, ...sinfy_,

X4 =71C0osB;3sinf,sinf ...sinOy_,

X =71C0S0;_qsinfsinbf,q..sinfy_; , 3<k<N-1

Xy =1cosfy_q (1.3.2)

seklinde yazilir. Burada, N = 3,4,5... degerlerini alir. r, N-boyutlu bir kiirenin
yarigapidir. Biitlin uzayda tanimli r, 6; ve 6, parametrelerinin tanim araliklar sirastyla
k=23.N—-1i¢in 0<r <o, 0<6, <2m 0<6; <m seklindedir. N = 2 i¢in
X, =rcosb;, x, =rsinf; ve N =3 icin x; = rcosf,sinf,, x, =rsinb; sinb,

ve x3 = rcos 6, olarak bulunur.

Skala faktorii h; ve metrik katsayilar g;; arasindaki baginti

2
N[ ox

] JJ
2 26,

k=1

olarak yazilir. N-boyutta skala faktorleri
ho = 1
hy =rsinf,sinf; ...sinfy_4
h, =rsinf;sinf, ...sinfy_;

h; =rsinf,sinfs ...sin Oy_,

hj =rsin@;,;sinb,,..sinfy_,, 1<j<N-1
hN—Z = T'Sln 9N—1

hN—l =T (134)

N = 3,4,5 ... olmak iizere seklinde yazilir. N = 2 i¢in hy =1, hy =r ve N =3 i¢in

ho =1, hy =rsin6f, ve h, = r olarak elde edilir.

Denklem (1.3.2) ve denklem (1.3.4)’ti kullanarak 6, =r  olmak iizere yiiksek

kiiresel koordinatlarda gradyent
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v =§iié (1.3.5)
Y 4h, 00, e

seklinde elde edilir.

1.4. Yiiksek Kiiresel Koordinatlarda Laplasyen Operatoriiniin Elde Edilmesi

Bu boliimde, Louck [10-12] ve Chatterjee [141]’nin ¢aligmalar1 temel alinarak
yiiksek kiiresel koordinatlarda Laplasyen operatoriiniin ¢ikarilist verilecek. N-boyutta
Laplasyen operatorii elde edilirken genellestirilmis agisal momentum operatorlerinin
nasil tanimlandig1 ve bu operatorlerin kartezyen koordinatlarla nasil iliskilendirildigi
incelenecek. Daha sonra, genellestirilmis a¢isal momentum operatdrlerinin 6zdegerleri

ve 0zfonksiyonlar elde edilecek.

N-boyutta kartezyen koordinatlarda  (x;, x3,..,xy) tanmimli olan Laplasyen

operatoru

N A2
vz2=%\__ (1.4.2)
p k=1 ax;f

seklindedir. N-boyutlu uzayda kiiresel koordinatlar 6nceki boliimde verilmisti. Buradan

hareketle, N-boyutta kiiresel koordinatlarda tanimli Laplasyen operatorii, 6, =1 ve

N-1

h=]] h, olmak iizere
k=0
N-1
=120 o (1.4.2)
hi% 00, | hi 00

seklinde yazilir. Burada, h; Onceden bahsedildigi gibi skala faktoridiir ve N-boyuttaki

ifadeleri denklem (1.3.4)’de verilir. h’nin agilimi
h = rN1sind, sin?6;sin®0, ...sin/ 16, ...sin" 20y _, (1.4.3)
olarak yazilir.

Denklem (1.3.4) ve denklem (1.4.3), denklem (1.4.2)’de yerine yazildiginda yiiksek

kiiresel koordinatlarda Laplasyen operatorii
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0 na 0
Vi = PNt
< or or
%Z S (1.4.4)
i sin’ 49]+ls|n 0,,,--SIN" G, sin’ 0, ok a0,

-

+i2( _ Nflz 0 sin’“HN_le
sin" 6, 06, 00, ,

seklinde elde edilir.
Genellestirilmis yoriinge acisal momentum bilesenleri
Lij = _L]l = xipj - ijl' (145)

i=1,2,3,..j—1 ve j=2,3,..N seklinde yazilir. Burada p; momentum operatorii

olmak tlizere

(00, =1 0ox | o
— h_ _ in k
P =1 ' Z[ j P z, O(hz 00, Jae (1.4.6)

seklindedir.
Denklem (1.4.5)’de tanimlanan ydriinge agisal momentumun N(Nz_l) bileseni
k+1 j-1
=> > L5 k=123..N-1 (1.4.7)
j=2 i=1

olarak yazilir. A¢isal momentum operator ifadeleri genellestirildiginde

62

2 _ 32
L =—h 307

1 4 . 0 L2
L3 =—h2( —sing, — — —2 )
2 sind, 36, 280, h2sin26,

1 ] ] L3
3= 2 (2L sin2g, 2 )
3 sin26; 965 300, h2sin26;

1 d 9 L2
12 = —hz( —sink~19, — — k=1 )
k sink=16, 96, ka0, h2sin26
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1 d d L3
2 = 2( V-2 T ) 1.4.8
N-1 h sinN‘ZBN_laeN_lsln On 1ooy_1 h2sin20y_, ( )

seklinde tanimlanir. Burada ilk iki operatorde 6; = ¢, 6, = 6 alindiginda {i¢ boyutta
agisal momentum operatdrleri olan L2 ve L? bulunur. Boylece, yiiksek kiiresel

koordinatlarda Laplasyen operatorii

1 0 nN_10 Li
V3= mErN 15_# (1.4.9)
seklinde elde edilir.

13, L3, ..,L%_, operatorlerinin 6zdeger denklemi

L%CYA'N—I'XN—ZF"'AZ'A]_ (91' 921 b BN—I) = A’khZYAN_l,AN_ZP..Az,/ll (01' 92’ e 9N—1) (1'4'10)

seklinde yazilir. Burada, k = 1,2,3, ... N — 1 degerlerini alir. Ozdeger denkleminde Ay,
L% nin 6zdegeridir.
Denklem (1.4.8) verilen agisal momentum operatorlerinin 6zfonksiyonlari
N-1

YAN,l,AN,Z,...AQ,zl (6,,6,,..0,) = HG)AMH é,) (1.4.11)
k=1

olarak yazilir. Bu esitlikte, 0, 5, ,(6;) fonksiyonu sadece 6)’ya baghdir ve

0(A4,49) = 04(4,) dir. Boylece, 6zdeger denklemleri
L%@1(91) = /11712@1(91)

Ly (=102, 2, (1) = 1120y, 5, (61) (1.4.12)
seklinde yeniden diizenlenir. Burada, k = 2,3,..N —1 olmak iizere

L2(Ay) = =02 |2+ (k = Doty -2 — 2 (1.4.13)
k 30

GLE sin26y
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olarak ifade edilir. k = 2 igin denklem (1.4.12) ve denklem (1.4.13), {i¢ boyutta

kiiresel harmonikleri verir. Yiikseltme ve algaltma operatorleri kullanilarak

l,=012..; lL=1,1,—-1,...,—l,+1,—1, olmak iizere bulunur. Bu denklem
genellestirildiginde
A =L +k—-1) (1.4.15)

elde edilir. Denklem (1.4.15), denklem (1.4.12)’de yerlestirildiginde
L3 (Le—1) O Ly li—1) = (L + k — 1A% 0, (L, Li—1) (1.4.16)

k=1,2,3,..N — 1 olmak iizere elde edilir. Boylece, genellestirilmis ag¢isal momentum

operatdrlerinin 6zdeger denklemi

2
LN—lle_l,lN_Z,...lz,ll (91’ 92’ e 9N—1)

=y (ly-1 +N = Z)hZYlN_l,lN_z,...lz,ll (61,03, ...0n_1) (1.4.17)

olarak bulunur. ly_; =0,1,2... ; Iy, =0,1,2 ...ly_1 ; ly.3=0,1,2...ly_5 ; I3 =
0,1,2..1, ; ,=012..1013; 1, ==l,,-l,+1,..1,— 1,1, olmak iizere L%_;’in
ozfonksiyonu Y, ;. o (61,02, ...0y_1) genellestirilmis kiiresel harmoniklerdir.
Bu konu hakkinda daha detayli bilgi edinmek igin Louck [10-12] ve Chatterjee [141]’nin

calismalarina bakilabilir.



2. BOLUM

YUKSEK KURESEL KOORDINATLARDA MERKEZCIL
OLMAYAN POTANSIYEL ETKIiSINDEKI SPIN-0 PARCACIK
ICIN KLEIN-GORDON DENKLEMI

2.1. Yiiksek Kiiresel Koordinatlarda Klein-Gordon Denkleminin Elde Edilmesi

N-boyutta merkezcil olmayan Lorentz skaler potansiyel S(r,60y_,) ve Lorentz
vektor potansiyeli V(r,6y_,) etkisindeki p kiitleli spin-0 pargacigin hareketini

tanimlayan Klein-Gordon denklemi

—h2c?VAY(r,Oy_1) + [(ucz + S(r, HN_l))Z —(E-v(, 9N_1))2] Y(r,0y-1) =0 (2.1.1)

seklindedir. Burada N uzaysal boyut N > 2, V4 N boyutta Laplasyen islemcisi, %

Planck sabiti, ¢ 1s1k hizi, E relativistik enerjidir.

(2.1.1) denklemi S(r,6y_1) =V(r,0y-,1) kosulunda nonrelativistik limite
indirgendiginde 2V potansiyel i¢in Schrodinger denklemini verir. Bundan dolayi,
nonrelativistik limitte V potansiyeli i¢in Schrodinger denklemini saglamasi gerektiginden
skaler ve vektor potansiyelleri Alhaidari ve arkadaglarinin [142] ¢aligmasi esas alinarak
islem yapildi. Bu bilginin sonucunda yiiksek kiiresel koordinatlarda Klein-Gordon

denklemi S(r,0y_1) =V (r,0y-1) durumu igin
—h2c2VA_ (1, 0y_1) + [(E + uc®Hv(r, 0y_1) — (E? — i2cH)Y(r,0p-1) =0  (2.1.2)

seklinde elde edilir. Bu denkleme degiskenlerine ayirma yontemi uygulanir. Dalga

fonksiyonu

Y(r,04,0;,...,0y_1) = R(M)Yiy_ 1 in-dnty (01,02, .. Oy 1) (2.1.3)
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R(r) dalga fonksiyonu, Y, 1. .. 1,1, (61,65, ... Oy_1) genellestirilmis kiiresel harmonik

olmak tizere iki ¢arpandan olusur.

N-boyutta Laplasyen operatdrii denklem (2.1.2)’de yerine yazildiginda

2 2 2
L 0, n-1080) T g 4 2 () + —— (B2 — u2ct)

R(r)rN-19r or h2c2 h2c2
1 ( 1 d . N-2 i} Ly, )
- sin" 740y _ — =
Yip_yin—gedoly (0102, 0n—1) \sinN=20y_; 06y_4 N=196y_,  h2sin?oy_,
2
r 2 —

elde edilir. Buradan, yiiksek kiiresel koordinatlarda relativistik dalga denkleminin radyal

kismi
d’R(r) | N-1dR(r) | [(E®-p?c*) (E+uc?) _ Iy—1(In-1+N-2) _
dr? + r dr + [ h2c2 h2c? V(T) r2 ]R(T‘) =0 (215)

ve N-boyutta agisal Klein-Gordon denklemleri

d?0(fn-1)

) cosOy_1dO(6nN-_1) (E+uc
bR

sinfy_; dOy_q h2c?

2
+ (N - )TZV(QN—1) —Iy-1Uy-1 +N=2)

+ lN—l(lN—1+N_3)] @(HN_l) — 0

sin26y_41

T+ 12 0(6,) = 0 (2.1.6)

seklinde elde edilir. Klein-Gordon denklemi (6,,6,,05 ...0y_1) agisal degiskenleri

icin (N-1) agisal denkleme ve r radyal degisken i¢in bir radyal denkleme ayrilir.

2.2. Asimptotik iterasyon Metodu fle Hartmann Potansiyeli i¢cin N-Boyutta Klein-

Gordon Denkleminin Analitik Coziimleri

N-boyutta Hartmann potansiyeli

2 2
V(r,0y-1) =no? (% —qn #2091\,_1) =) (2.2.)
2 4
seklindedir. Burada a, = % Bohr yarigapi, €, = —% hidrojen atomunun temel

enerji diizeyi, 7 ve o kuantum kimyasindaki uygulamalarda 1 ve 10 araligindaki pozitif

sayilardir, q ise gergek parametredir [27]. (2.2.1)’de hidrojen atomu i¢in no? =Z, q =
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n = 1 olarak alinir [36-37]. Hidrojen molekiilii i¢in Hartmann potansiyelinin yiizey
grafigi Matlab yazilimi ile elde edilmis ve Sekil 2.1°de gosterilmistir. Sekil 2.1°e
bakildiginda Hartmann potansiyeli etkisindeki iki hidrojen atomu arasindaki uzaklik

arttikca potansiyel enerjinin azaldig1 agikca goriilmektedir.

Sekil 2.1. Cekici bolgede H, molekiilii icin Hartmann potansiyelinin yiizey grafigi

2.2.1. Yiiksek Kiiresel Koordinatlarda Acisal Klein-Gordon Denkleminin Bagh

Durum Coéziimleri

Bu béliimde asimptotik iterasyon metodu kullanilarak agiya bagli N-boyutlu Klein-

Gordon denkleminin ¢oziimleri elde edilecektir.

Merkezcil olmayan potansiyel i¢in N-boyutta agisal relativistik dalga denklemi

d?e(6y-1) +(N—2) cosfy—1 dO(ON-1) [—ly_1(ly_1 + N = 2)

dei_, sinfy_; dOn_1
E+[lCZ 2 2
lN—Z(lN—2+N_3) ( Zucz )qn o _
sin20n_4 sin20yn_4 0(On-1) =0 (22.2)
seklindedir. (2.2.2) denkleminde
lN—l(lN—l + N - 2) = lllzv_l - (N4_2) mlz == lN—Z(lN—Z + N - 3) (223)

yazilirsa
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2
40(n-1) + (N —2) cosOy—1 dO(ON-1) _ (Ezticz )qnzazﬂnlz
dei_, sinfy_; dOn_q sin20y_1
2 (N-2)

—ho + ]@(e,v_l) =0 (2.2.4)
denklemine donisiir. (2.2.4) denklemini ¢6zmek i¢in x = cosfy_; doniisimi
uygulanirsa

2 , _
o) _ -vraoeo _ |(Gher)anterem” it 0(x) =0 (2.2.5)
dx? 1-x2  dx (1-x2)2 (1-x2) X = o

elde edilir. (2.2.5) denkleminin x - 1(6 = 0) ve x - —1(0 = m) limitinde asimptotik

davranisi incelenirse Onerilen ¢ozim

3-N, 1 E+uc? 5 o ,2 a2
—t \/4((—2“2 )qn ag?+m'” |+(N-3)

0(x) = (1 — x2) £(x) (2.2.6)

seklindedir. Burada f(x), bu aralikta dalga fonksiyonunu sonlu tutan belirlenecek

fonksiyondur. (2.2.6) ifadesinde

o=t (G e o)+ (5 02

kisaltmasi Kullanilir ve 6nerilen ¢éziim (2.2.5) denkleminde yerine yazilirsa

2 _ 4p2+2p(N=-2)+2(N=2)-1"%y_
d?f(x) _ ((4p+N 1)x) df (x) +< p~+ip 4 N 1>f(x) (2.2.8)

dx? 1—x2 dx 1-x2

elde edilir. (2.2.8) denklemi asimptotik iterasyon metoduna uygundur.

(2.2.8) denklemi (1.1.1) denklemi ile karsilastirildiginda

(4p+N-1)
Ao() =5

4p2+2p(N—2)+%(N—2)—l'2N_1
So(x) = P
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belirlenir. Maple programinda, (1.1.7) denklemleri kullanilarak A,(x) ve s,(x)

degerleri elde edilir.

1 2
__ (4p+N-1) | 2(4p+N-1)x? 4p2+2p(N—2)+Z(N—2)—l’ N-1

A (x) = 1-x2 (1-x2)? 1-x2
(4p+N—-1)%x2
+ (1-x2)2
5100 = 2(4p2+2p(N—2)+%(N—2)—l'2N_1)x N (4—p2+2p(N—2)+%(N—2)—I'ZN_1)(4—p+N—1)x
1 (1-x2)2 (1-x2)2

(2.2.9)

AIM’nun iterasyon sart1 olan (1.1.9) denkleminden N-boyutta Iy,_, degerleri

S s 2 1 1

S1 __ S2

12 — 2 E _E
ol = l'y_1=4p +2pN+4N >

22 o I =4pP+2p(N+2) N —

A2 A3
(2.2.10)
olarak bulunur. Genellestirme yapildiginda
12 2 1 2 1
U1 = 4p% + 2p(N = 2+ 2ng) + (ng +2) N + (n§ — 21y - 3) (2.2.11)

ng = 0,1,2, ...

olarak elde edilir. p ve l’,zv_l degerleri (2.2.11) denkleminde yazilirsa yiiksek kiiresel

koordinatlarda [y_; degeri

ly_1= % + \/((H—#CZ) qn?c? + m’2> + (%)2 + ny (2.2.12)

seklinde elde edilir.

N-boyutta merkezcil olmayan potansiyel igin agisal dalga fonksiyonlar1 (1.1.16)

denklemi kullanilarak elde edilir.
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fox) = C; = C, oF1(0,4p + N — 2,2p + 2, 2%)

fi(x) = G[(4p + N — 1)x]

=Cz(2p+%)zF1( 1,4p+ N —1, 210+u 1—x)

) =C[(4p+ N)(A4p+ N+ 1)x? — (4p + N + 1)]

_CZ(Zp‘l'_)(ZP‘F—)zFl( 2,4p + N, 2p+u 1_")

f3(0)=C[(4p+ N+ 1)4p+N+2)(4p + N + 3)x3
—3@p+ N+ 1)(4p + N + 3)x]

=G (2 +22) (20 +22) (20 + Z2)eFa(=3,4p + N + 1,2p + 5, 2F)

2

(2.2.13)
Bu sonuglardan f(x) icin genel ¢6ziim

N-1 N—-1 1-
fao@) =Gy (20 +52) oFi(—ng4p+ N —2+mg,2p + T4 2E)  (2214)

Ng 2

seklinde yazilir. Burada, 2F1 Gauss hipergeometrik fonksiyondur. Gauss hipergeometrik
fonksiyonun ifadesi

(=D)'n! T(B+K)T(7)
(n—KKIT(A)T (7 +K) | (2.2.19)

JF(NByix) = Z

N—"

seklindedir [143]. (2.2.14) denklemi (2.2.5) denkleminde yerine yazilir ve x’den 6y _;’e

gecis yapilarak N-boyutlu merkezcil olmayan potansiyel i¢in normalize olmamis agisal

dalga fonksiyonu

O(Oy_1) = Cr(sinBy_,)?P (2 .|._)

ng

XZFl( n9,4p+N—2+n9,2p+N ! L"Nl)

2

(2.2.16)

olarak bulunur. Burada C, normalizasyon sabitidir ve [|0(8y_,)|?sin"=20y_1d6y_, = 1

normalizasyon sartindan bulunacaktir. Normalizasyon sabiti hesaplanirken
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fol xV71(1 — )V oFi(—n, a + n,y,x)2Fi(—=k,a + k,y, x)dx

_ I?’(pr(a-y+n+1) n!
- IF(a+n)T(y+n) a+2n

Sk (2.2.17)

hipergeometrik polinomlarinin (2.2.17) diklik bagintis1 [143] kullanilir ve gerekli

diizenlemelerden sonra normalize olmus N-boyutta acisal dalga fonksiyonu

1

1 F(4p+N-2+ng)(4p+N-2+2ng)]2 , . 2

CICE — [ sinBy_,)°P
( N 1) F(2p+¥) 24,p+N_2n9! ( N 1)

N-1 PLHAH) (2.2.18)

><2F1(—n9, 4p + N — 2 +ng, 2p + —; 3
seklinde elde edilir. Gauss hipergeometrik fonksiyonun Jacobi polinomlari arasindaki
bagint1 [143]

— I=x\y _ _ ! pap)
Fi(-na+p+n+la+1,=)= a BP0 (2.2.19)
kullanilirsa N-boyutta merkezcil olmayan potansiyel i¢in normalize olmus agisal dalga

fonksiyonu Jacobi polinomlari cinsinden

1

T(4p+N—-24ng)(4p+N—-2+2ng) z . 2
0(Oy_,) = |[—2 SinBy_1)?P
(On-1) me—zr(2p+%+ng)r(2p+$+ng) (sinfy-1)

% P(Zp +$,2p +¥)

ng

(cosOy_1) (2.2.20)

seklinde elde edilir. Jacobi ve Gegenbauer polinomlari arasinda

1 _ Fm+2a+I'(a+1) ,(a,a)
Cn = F(2a+1DT(n+a+1) N C) (2.2.21)

seklinde bagint1 vardir [144]. Denklem (2.2.20), denklem (2.2.21) kullanilarak yeniden
diizenlendiginde N-boyutta spin-0 pargacik i¢in normalize olmus agisal dalga fonksiyonu

Gegenbauer polinomu cinsinden
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1

] (sinBy_1)?P

ng!(4p+N-2+2ng)
2N=2T(4p+N-2+ng)

OOy-1) = |

V2 (-)"r(2n,-2m+4p+N-2)

3

N1 (cosOy_)M6~2™m (2.2.22)
m-=0 2“”*2"1"(% —m+2p+2]m!(ng —2m)!

seklinde elde edilir. Denklem (2.2.22), non-relativistik limitte Chen ve g¢alisma
arkadaslarmin [28] elde ettigi kiiresel koordinatlarda relativistik olmayan dalga

fonksiyonuna indirgenir.

2.2.2. Yiiksek Kiiresel Koordinatlarda Radyal Klein-Gordon Denkleminin Bagh

Durum Coéziimleri

Bu béliimde, N-boyutta radyal enerji spektrumu ve dalga fonksiyonu elde edilecektir.

Hartmann potansiyeli i¢in N boyutta radyal Klein-Gordon denklemi

2 r 2 2,2 2204
a?R(r) | (N-1) dR() | [(E+HC )na’e n (E*-p%c)  In- 1(lN 1+N 2)]R(r) =0 (2.2.23)

dr? T dr h2c2 r h2c2

seklindedir. Radyal dalga fonksiyonu

N-1

R(r) =r" "z u(r) (2.2.24)

seklinde alinir ve (2.2.23) denkleminde yerine yazilirsa N-boyutta radyal Klein-Gordon

denklemi

d?u(r) (E+uc?) no?e? _ (N-1D)(N-3) (E2—u2c*) _ Iy—1(IN-1+N-2)
dr? h2c? r 4r? h2c? r?

|u@) =0 (2225)

elde edilir. (2.2.25) denklemini diizenlemek i¢in

K= (Eﬂwz) nole? g2 =-4 (EZ_MZC4) (2.2.26)

h2c2g h2c2

uygun kisaltmalar yapildiktan sonra x = er doniisiimii yapilirsa

d?u(x) k 1 (N-1)(N-3)  Iy_ 1(1N 1+1v 2) _
0 [ B Ju@ =0 (2.2.27)
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denklemi elde edilir. Dalga fonksiyonu sonlu olmasi gerektiginden x - 0 ve x - o’a

giderken
Iyo 4t X
ulx) =xN1"27e 2f(x) (2.2.28)
seklinde dalga fonksiyonu onerilir. Bu limitlerde f(X), Onerilen ¢6ziimii sonlu tutan bir

fonksiyondur. Onerilen dalga fonksiyonu (2.2.27) denkleminde yerine yazilirsa ikinci

mertebeden lineer homojen diferansiyel denklem

a?f(x) _ 2ly—1+N-1) df (%) 2ly—1+N-1 K
= (1 ) L2+ ( @) (2.2.29)

dx? x dx 2x

elde edilir ve (2.2.29) denklemi asimptotik iterasyon metoduna uygundur. (2.2.29)

denklemini ¢6zmek igin (1.1.1) denklemi ile karsilastirilirsa

2lny—q+N-1

Ao(x) =1-—

2ly_1+N-1 &

So(x) = Y . Y

belirlenir. (1.1.7) denklemi kullanilarak A,(x) ve s, (x) hesaplanir.

2
_ ZlN_1+N—1 le_1+N_1 K ZlN_1+N_1
Ay(x) = 2ot iot g 2N Ly (g 2t
2ly_1+N-1 K 2ly_1+N-1 K 2ly_1+N-1
Sl(x)=—N1—+—+ SNaTTTo D) (2N
2x2 x2 2x x x
2ly_1+N-1
1 _ 2(Q2Iy—q+N-1) 2Ily_1+N-1 | K 2(1_N+)(21N—1+N_1)
Z(x) - x3 - x2 + x2 + x2
2ly_1+N-1 K 2lny_1+N-1
+ (Nl— _ _) (1 _ Nl—)
2x x X
2
2lny_1+N-1 2ly_1+N-1 2ly_1+N-1 K 2ly_1+N-1
+(1— N—1 )<N12 4 21 __+(1_N1—)>
X X 2x X x

_ (ZlN_1+N—1) 2K ZlN_1+N_1 K le_1+N—1
R A ek o) | Gt

(Ba=tL S o1y g +N-1)
2X X
+ 2
x
2

2ly_1+N-1 K\ [(2ly—1+N-1  2ly_1+N—-1 kK 2ly_1+N—-1

+ (— — —) + ——4+({1—-————
2x x x2 2x x x

(2.2.30)



28

Kullanilan metotta (1.1.9) denkleminden N-boyutta relativistik enerji 6zdegerleri

So S1 N-1

_— = — $ K = l _ _—

S1 Sy N+1

=== = K l _ -

N A 1iy-1 N-1 + 2

So S3 N+3

=== = K =ly_1+— 2.2.31
P 2y_, = IN-1 ( )

seklinde bulunur. (2.2.31) esitligindeki ifadeler genellestirilirse

KTllN_]_ = lN—l + % +n n= 0I1I2I (2232)

seklinde elde edilir. Denklem (2.2.26)’da tanimlanan esitlikler denklem (2.2.32)’de
yerine yazilirsa Hartmann potansiyeli igin N-boyutta relativistik radyal enerji spektrumu
Eniy_, —BC? (no?e?)?

= - 3 5 (2.2.33)
Eniy_, the? 4h2c2[lzv—1+¥+n]

elde edilir. Denklem (2.2.12), denklem (2.2.33)’de yerine yazilir ve gerekli diizenleme

yapilirsa Hartmann potansiyeli i¢in N-boyutta relativistik titresim-déonme enerji

spektrumu
E r—uc? 2,2y2
nngm g-e
TRem - _ (no”e’) - (2.2.34)
Enn m’-H'LC2 N-3\2 (E+pc? 2
0 4h2c2 n+n9+1+\/(T) +( 2nc? )qn202+m’

seklinde elde edilir. Denklem (2.2.34), non-relativistik limitte (c — o0), Durmus ve

Ozfidan[43]’1n elde ettigi sonucu saglamaktadir.

Denklem (2.2.31)’deki N-boyutta enerji 6zdegerlerine karsi gelen radyal dalga
fonksiyonlar1 hesaplanir. Boliim 1’de verilen (1.1.16) denklemi kullanilarak Maple

programi yardimiyla N-boyutta radyal dalga fonksiyonlari
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fox) =C, = C;1F1(0,2ly_1 + N —1,x)
filx) =—C,QRlIy.41+N—-1—-x)=—-C,(2ly_1 + N — 1)1F1(-1,2ly_1 + N —1,x)
() = C[RIy_1 + N —1DQ@ly_1 + N) — 2ly_1 + N)x + x?]
= C,(2ly_1 + N = D)ly_1 + N)1F1(=2,2ly_1 + N — 1,x)
f(0) = =C[QRly_1 + N = 1D 2ly_1 + N)ly_1 + N+ 1)
—3QIy_1+N)Qly_; + N+ Dx+3Qly_; + N + 1)x* — x3]
=C,(2ly_1 + N = D(Qly_1 + N)Qly_; + N + 1)1F1(=3,2ly_1 + N — 1,x)

seklinde elde edilir. Bu sonuglardan f (x) i¢in genel ¢6ziim
fn(X) = CZ(—l)n(ZIN_l + N — 1)n1F1(—7’l, 2lN—1 + N — 1,X) (2235)

olarak bulunur. Burada

) & (D)
Fi ”'V'V)‘é(n—k)!k!r(ﬁk)

(2.2.36)

konfluent hipergeometrik fonksiyondur [143]. (2.2.35) denklemi, (2.2.28) denkleminde
yerine yazilirsa yiiksek kiiresel koordinatlarda Hartmann potansiyeli i¢cin normalize

olmamis radyal dalga fonksiyonu

N-1

u(x) = C,(-)"Qly_, + N — 1)nxlN‘1+Te_§ 1tFi(—n,2ly_1 + N —1,x) (2.2.37)

elde edilir. Burada C, normalizasyon sabitidir. Normalizasyon sabiti

S IR@PrVtdr = 1 (2.2.38)

sartindan bulunur. Konfluent hipergeometrik fonksiyonlarla Laguerre polinomlari
arasindaki baginti [143]

I'(a)n!
I'(a+n)

1IFi(—n,a,x) = L% 1(x) (2.2.39)

normalizasyon sabitinin bulunmasinda yardimci olmaktadir.
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Denklem (2.2.37), denklem (2.2.24)’de yerine yazilir. Daha sonra, (2.2.39) bagintisi

ve x = er doniistimii kullanilarak N-boyutta normalize olmamig dalga fonksiyonu

N-1 Er
R(r) = Cy(—1)"eN-1+"7 plv-1e 7z n! [ZN-1TN"2 (o) (2.2.40)

seklinde diizenlenir. Denklem (2.2.40), denklem (2.2.38)’de yerine yazilir ve elde edilen

integralin ¢6ziimii i¢in Laguerre polinomunun diklik bagintisi [149-150]
2
o _ - (B+2n)T(B+
J e xP |57 ()| dae = A (2.2.41)

kullanilir. Normalizasyon sabiti bulunarak denklem (2.2.40)’da yerine yazilirsa

1

]2rlN-le_%(—1)"LfllN‘1+N_2(er) (2.2.42)

ZlN_1+N

R(T‘) _ [ nle

(2ly—1+N—-2+n)!(2n+2ly_1+N-1)

yiiksek kiiresel koordinatlarda Hartmann potansiyeli i¢cin normalize radyal dalga

fonksiyonu elde edilir.

2.2.3. N-Boyutta Radyal Beklenen Degerler

Bu bolimde, Chen ve arkadaslarimin [28] caligmasindaki yaklasim kullanilarak
relativistik teoride N-boyutta Hartmann potansiyeli i¢in kdsegen matris elemanlari ve bu

matris elemanlarinin analitik ifadeleri arasindaki tekrarlama bagintilar1 elde edilir.

N-boyutta Hartmann potansiyeli i¢in normalize edilmis radyal dalga fonksiyonu

N-1 &r
u(r) = N'(er)'™ 1"z e 21F1(—n,, 2ly_1 + N — 1, r) (2.2.43)

seklindedir. Burada N', normalizasyon sabitidir.

1

N - [ eTQ2ly—_1 +N-1+n;) ]2 (2.2.44)

nT!(F(ZlN_1+N—1))2(ZlN_1+N—1+2nr)

Islem kolayh@ igin Ily_; =1 almr ve yiiksek kiiresel koordinatlarda Hartmann

potansiyeli i¢in beklenen deger



31

(nl|rs|nl) = fooo 5 [uy, (N)]1?dr

= N'2g2UN=1 (2204145 o=er [ F (-, 21+ N —L er)] dr (2.2.45)
seklinde yazilir. Konfluent hipergeometrik fonksiyonu iceren integral formiilii [147]
A, = [ ez [ [F(-n,a,k2)] dz (2.2.46)

seklindedir. Burada, n tamsayi ve Rev > 0 . (2.2.46) esitligi kullanilarak beklenen
deger

(nl|rs|nly = N'?24N=14, (2.2.47)

olarak yazilir. Denklem (2.2.45) ile denklem (2.2.46) karsilastirilirsa k = ¢, v = 21 +
N +s, a =21+ N — 1 olarak elde edilir. A, integrali

(@=p-1)(a—p)..(a+p-1)
Agip =L Zzpﬁl P Ay s (2.2.48)

seklinde tanimlidir [153]. Burada p herhangi bir tamsayidir. p = s + 1 alinir ve (2.2.48)

esitliginde a ‘nin degeri yerine yazildiginda

(2I+N-3-5)(21+N-2-5)...(2l+N—1+5)
Azipn+s = 7573 Azi4N-3-s (2.2.49)

elde edilir. (2.2.47) denkleminin elde edilmesine benzer sekilde
(nllr=s73nl) = €% N 1Ay y 53 (2.2.50)

denklemi yazilir. Denklem (2.2.47) ve denklem (2.2.50)’den faydalanarak (2.2.49)
esitligi yeniden diizenlendiginde yiiksek kiiresel koordinatlarda radyal beklenen degerler

icin tekrarlama bagintisi

_ (2I+N-3-5)(21+N-2-5)...(2l+N—1+5s)

(nl|rs|nl) = (nl|lr=s73|nl) (2.2.51)

£25+3

seklinde elde edilir. Denklem (2.2.26)’nin denklem (2.2.25)’de yerine yazilmasi
Hartmann potansiyelinin i¢in N-boyutta radyal beklnen degerleri i¢in diger tekrarlama

bagmtisini elde etmemizi saglar. Boylece, N-boyutta radyal Klein-Gordon denklemi
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2 2 - — -
Ton0) 4 [- £ K MEDAED M)y, 6) = 0 (2.2.52)

dr? 4 r 4r2 r?

seklinde yazilir ve bu denklemin her terimini r°u,,;(r) ile carpip fooo -~ dr integrali

alir ve gerekli cebirsel islemler yapilir ise

[ee] 2 -— - _
Jyrs (P ar = (S(S D _ WoDW 3)—l(l+N—2)) (nl|rs=2|nl)

dar 2 4
—%(nllrslnl) + ke(nl|rs~tnl) (2.2.53)
elde edilir. (2.2.52) denkleminin her terimini r“ldu;‘—i(r) ile garpip [.” - dr integrali

alinir ve gerekli islemler yapildiktan sonra

00 2 2
fo rs (du;i(r)) dr = %(nl|r5|nl) — k& (si_l) (nl|rs=1|nl)

+ (—(N_ll(”_” +UL+N - 2))§<nllrs‘2|nl) (2.2.54)

elde edilir. (2.2.53) ve (2.2.54) esitliklerini karsilastirdigimizda N-boyutta Hartmann

potansiyeli icin beklenen degerlerin bir diger tekrarlama bagintisi

2
%(nllrslnl) = ke (2::11) (nl|rs~1|nl)

——_[(2L + N = 2)2 = s2)(nl|rs~2|nl) (2.2.55)

2(s+1)
elde edilir. (2.2.51) ve (2.2.55) tekrarlama bagintilarin1 kullanarak Hartmann potansiyeli
icin N-boyutta beklenen degerler

(nllrInl) = 2 (Lf

(E+uc?®)no?e?

(l+%+n)4[63(1+%+n)4—(701(1+1v—2)

+§(Nz_4N_3))(1+$+n)2+15(l+%)(l+¥)

><(l+NT'5)(l+%)—20(l+%)(l+?)+12]

3

(nl|r3|nl) = (L)

(E+uc?)no?e?

+175N2—30N—§)(l+%+n)2+3(l+%)(l+lv_3)

(129 012 N

(l+%+n)2[35(z+%+n)4—(301(l+1\/—2)
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(nl[r2[nl) = 2 (L)2

(E+uc®)noze?

[5 + 4 —%(21+N—2)2+Z

_ h2c? N-1 2 1 2
(nllrlnl) = W[:g (l +T+ Tl) - Z((Zl + N — 2) — 1)]
-1 E+puc? no2e?
(nllr=tnl) = 5 (S5 )(HN v

(nl|r=2%|nl) = (E+#CZ)2 : (no%e?)”

2,2 - 3
27 2 (147 2 4n) 214N -2)

(nl|r=3|nl) = (E+ucz)3( (no2e?)’

2.2 - 3
h%c 1+ 2 4n) (214N -3)(21+N-2)(21+N-1)

[3 (i) L 2ten-3) 214N -1)

(nl|r=4|nl) = (“’“2)4 ((”“262)4 (2.2.56)

n2c? l+N_1+n)5 (21+N—-4)(21+N—-3)(214+N—-2)(21+N-1)(21+N)
2

seklinde elde edilir. Denklem (2.2.56)’da elde edilen radyal beklenen degerler, kiiresel
koordinatlarda non-relativistik limitte (¢ = o0) Chen ve ¢alisma arkadaslarinin [28] elde
ettigi sonuclara indirgenmektedir. no? = Z ve N = 3 i¢in denklem (2.2.56) daki radyal

beklenen degerler nonrelativistik limitte Bockasten [148]’in ¢alismasini saglamaktadir.

2.2.4. Hidrojen Molekiilii icin Relativistik Enerjinin Niimerik Hesaplamalari

Bu boliimde, N-boyutta radyal enerji spektrumu olan denklem (2.2.33) kullanilarak
hidrojen molekiiliiniin ii¢, dort ve bes boyutta farkli kuantum durumlari i¢in relativistik
enerjinin (E,;) nimerik degerleri elde edildi ve bu degerler Tablo 2.1°de verildi. Ayrica,
denklem (2.2.12) kullanilarak N boyutta donme ve titresim spektrumunun hidrojen
molekiili i¢in Ui¢, dort ve bes boyutta n =1, [; =0 ve farkli ny durumlarinda
hesaplamasi yapildi. Denklem (2.2.3)’de verilen m'? tammindan N = 3 i¢in m'”> = [2
, N =4 i¢in m'>=1,(l, +1) ve N =5 icin m'> = l3(I5 + 2) olarak belirlenir. ilk
olarak, N = 3, l; ve ng sifir alinip, denklem (2.2.12)’de yerine yazilirsa [, denklemi
elde edilir. Elde edilen [, denklemi, (2.2.33) denkleminde yerine yazilarak relativistik
enerjinin degeri bulundu. Benzer sekilde, farkli boyut ve agisal kuantum durumlarinda

hesaplanan E,,, degerleri Tablo 2.2’de verildi.

Hidrojen molekiilii i¢in {i¢, dort ve bes boyutta relativistik enerjinin niimerik

degerlerini hesaplarken p = 0.50391amu, Ac = 1973.29 X 10~ 1%Vm olarak alind1.



Tablo 2.1. Hartmann potansiyeli etkisindeki H, molekiilii i¢in farkli boyutlarda

hesaplanan relativistik enerji degerleri

n l N=3 N =4 N=5
E, (MeV) E (MeV) E (MeV)

1 0 | 469.3900514  469.3911751 469.3917855
2 0 | 469.3917855  469.3921536 469.3923924
2 1 ]469.3923924  469.3925562 469.3926734
3 0 | 469.3923924  469.3925562 469.3926734
3 1 | 469.3926734 469.3927601 469.3928260
3 2 | 469.3928260 469.3928773 469.3929180
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Tablo 2.2. n=1,1; =0 durumunda H, molekiilii i¢in ii¢, dort ve bes boyutlu
donme-titresim relativistik enerjilerinin niimerik degerleri

ng | N=3 N=4 N=5
Epm(MeV) Epm(MeV) Epm(MeV)
0 | 469.3917855 469.3923094  469.3925591
1 | 469.3923924  469.3927875  469.3929392
2 | 469.3926734 469.3929589  469.3930533
3 | 469.3930260 469.3920376  469.3931008

2.2.5. Farkh Boyutlar icin Kiiresel ve Kutupsal Koordinatlarda Acisal Dalga

Fonksiyonlarinin Olasihk Dagilimlar

Bu boliimde, Hartmann potansiyeli etkisindeki H, molekiilii i¢in ii¢, dort ve bes
boyutlu agisal relativistik dalga fonksiyonlarinin kiiresel ve kutupsal koordinatlarda
olasilik dagilimlarinin grafikleri Matlab programi kullanilarak c¢izildi. Bu grafiklerin
ciziminde Tablo 2.2°de elde edilen relativistik donme-titresim enerjileri denklem
(2.2.7)’de kullanilarak her bir durum igin p degeri elde edildi. Hesaplanan bu deger
denklem (2.2.20)’de yerine yazilarak ii¢, dort ve bes boyut icin farkli kuantum

durumlarinda normalize olmamis agisal dalga fonksiyonlar1 bulundu.

Denklem (2.2.6) yardimiyla denklem (2.2.19)’daki Jacobi polinomlarinin N = 3,
N = 4 ve N = 5 boyut i¢in acilimlar1 Tablo 2.3, 2.4 ve 2.5’de verildi.
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Tablo 2.3. N = 3 igin Jacobi polinomlari

ng p Prfjp'zp) (cos6)

0 0.4999996305 1

1 0.4999997921 1.999999584cos0

2 0.4999998670 — 0.7499999333+3.749999266c0s%6

3 0.4999999076 6.999998878c0s30 —2.999999678 cosh

Tablo 2.4. N = 4 igin Jacobi polinomlar1

o P P,fjp%zp%) (cosB)

0 0.651387384 1

1 1.096290970 3.692581940c0s6

2 1.570027329 —1.410013664+14.49509461cos?6

3 2.054886069 59.60223687cos30 —12.57471495 cosf

Tablo 2.5. N =5 igin Jacobi polinomlari

Ng p P,fjpﬂ’zpﬂ) (cosH)

0 0.755266006 1

1 1.655095304 5.310190608cos6

2 2.610477096 —2.055238550+31.73680539c0s26

3 | 3.585596776 202.0846106c0s30 —28.40609296 cosf

Tablo 2.3 elde edilen agilimlar denklem (2.2.20)’de yazild1 ve H, molekiilii i¢in kiiresel
ve kutupsal koordinatlarda acisal relativistik dalga fonksiyonlarinin olasilik dagilimlari
elde edildi. Bu dagilimlar Sekil 2.2°de verildi. Benzer sekilde, Tablo 2.4 ve 2.5 ‘deki
acilimlarin yardimiyla N = 4 ve N =5 i¢in kiiresel ve kutupsal koordinatlarda agisal
relativistik dalga fonksiyonlarinin olasilik dagilimlar1 elde edildi ve sirasiyla Sekil 2.3,
2.4’de gosterildi. Grafikler incelendiginde N =4 ve N = 5 boyutta hidrojen molekiili
icin agisal olasilik dagilimlarinin N = 3 boyutta elde edilen olasilik dagilimlarindan

farkli oldugu goriilmektedir. Farkli acisal kuantum sayilarinda, boyut artis1 ile birlikte
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olasilik dagilimlarinda kiiresel bogum ytlizeyinin ¢ap1 azalip agisal dalga fonksiyonlariin

genliginin arttig1 gézlenmektedir.
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Sekil 2.2. (a) ve (b)) ng =0, (c) ve (d) ng =1, (e) ve (f) ng =2, (g) ve (h) nyg =3
durumunda N = 3 igin kiiresel ve kutupsal koordinatlarda agisal dalga

fonksiyonlarmin olasilik dagilimlar
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Sekil 2.3. (@) ve (b)) ng =0, (c)ve(d)ng=1, () ve(f)ng=2,(g) ve (h) ng =3
durumunda N =4 i¢in kiiresel ve kutupsal koordinatlarda agisal dalga

fonksiyonlarimin olasilik dagilimlar
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R 2
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Sekil 2.4. (@) ve (b) ng=0,(c)ve(d) ng =1, (e) ve (f) ng =2, () ve (h) ng =3
durumunda N =5 igin kiiresel ve kutupsal koordinatlarda agisal dalga
fonksiyonlarmin olasilik dagilimlar
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2.3. Asimptotik Iterasyon Metodu ile Merkezcil Olmayan Morse Potansiyeli i¢in
N- Boyutta Klein-Gordon Denkleminin Yaklasik Coziimleri

Merkezcil olmayan Morse potansiyeli

4 2
V(r,By_1) = Dy(1 — e=a(r=10))? 4 105" O tficos On=y 1y (2.3.1)

125in20pN_1c05%0N_1

seklinde tanimlanir. Burada, 7, atomlar arasindaki denge uzakligi, D, ayrigma enerjisi,
a potansiyeli tanimlayan spektroskopik sabit, n, f Vve y potansiyeli tanimlayan
parametrelerdir. Toprak alkali iki atomlu molekiiller (Ca, X'Z*, MgCa X%, Sr, X132+

ve Sr, A'Z*) igin merkezcil olmayan Morse potansiyelinin yiizey grafikleri Sekil 2.5,

2.6, 2.7 ve 2.8deverildi. n=p =y =1 eV A% alindiginda merkezcil olmayan Morse

potansiyelinin yiizey grafiklerinde acisal katk: etkisini net bir sekilde gorebiliriz. Fakat,

merkezcil olmayan potansiyel parametrelerini 1076 eV’ A°” degerine esit veya kiigiik alip
her grafikte r’nin araligini ayni tutarsam vardigimiz sonug toprak alkali metal grubu
molekiillerinden uyarilmis durumda strontiyum molekiilii i¢in ¢izdigimiz ylizey grafigi
merkezcil potansiyelin ylizey grafigine en yakin egriyi vermistir. Daha sonra, sirasiyla
taban durumunda magnezyum-kalsiyum, strontiyum ve kalsiyum molekiilleri i¢in
cizdigimiz ylizey grafiklerinin merkezcil potansiyelin ylizey grafigine yaklastig
goriilmektedir. Kullanilan molekiiller i¢in spektroskopik sabitler Tablo 2.6’da verildi.

V(r,#) (eV)
Vir,6) (eV)

Sekil 2.5. Merkezcil olmayan Morse potansiyeli etkisindeki Ca, X'~ molekiilii icin
yiizey grafigi (@) n = f =y = 1eVA*’(b) n =B =y = 10-6eV A*’
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V(r,t) (eV)

(b)

Sekil 2.6. Merkezcil olmayan Morse potansiyeli etkisindeki MgCa XX+ molekiilii i¢in
yiizey grafigi @ n=p=y =1 eVA®? (b)n =B =y = 10-%eV A°?

V(r,0) (8Y)
Vi(r.0) (eV)

(a) (b)

Sekil 2.7. Merkezcil olmayan Morse potansiyeli etkisindeki Sr, X1=* molekiilii i¢in
yiizey grafigi () n = =y = 1eVA®” (b)) n =B =y = 1075eV A"’
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Sekil 2.8. Merkezcil olmayan Morse potansiyeli etkisindeki Sr, AT molekiilii igin
yiizey grafigi (@) n=f =y =1eVA°" (b)) n=f =y = 1075V A"’

Tablo 2.6. iki atomlu molekiillerin spektroskopik sabitleri

Ca, X'3* | MgCa X't | Sr, X'yt Sr, Azt
D.(cm™1) 1095.0 691.5 1060.0 5400.0
w, (cm™1) 65.0748 60.257 40.32 85.07
7,(A?%) 4.276891 4.039 4.4464 3.9518
u(amu) 19.981296 14.988896 43.9528095 43.9528095

2.3.1. Merkezcil Olmayan Potansiyel I¢in Yiiksek Kiiresel Koordinatlarda Agisal

Klein-Gordon Denkleminin Coéziimleri

Bu boliimde, merkezcil olmayan potansiyel etkisindeki spin-0 parcacik igin N-

boyutta agisal Klein-Gordon denkleminin ¢oziimleri elde edilecektir.

Merkezcil olmayan potansiyel igin N-boyutta relativistik agisal dalga denklemi

d?0(fn-1)
403,

IN—2(In—2+N-3)
sin20y_1

+(N -

) cosOy—; d®(On-1) [(E+;u:2) ncos*Oy_1+Bcos?Oy_1+y

sin GN_l d6’N_1

h2c2

seklinde yazilir. (2.3.2) denkleminde

sin26y_1c0s%0y_1

— Iy (Uy-1 + N - 2)] 0(Oy-1) =0

, 1
Inoa(yor +N=2) =1}, -, (N =2) m? = ly_o(Iy—, + N = 3)

(2.3.2)

(2.3.3)



tanimlar1 kullanilir ve z = cos?8y_; doniisiimii uygulanirsa

d?0(2)
dz?

de(z)

4z(1—2) o

+2(1—=N2z)

|- - sle@ =0

z(1-2)

elde edilir. Burada,

_ N(E+uc?)
f - h2c2

+Uj—7(N=2)

w= (6 +m 4 m?

h2c2

E+uc?
v=1’( uc*)
h2c2
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(2.3.4)

(2.3.5)

(2.3.6)

(2.3.7)

olarak almir. Acisal dalga fonksiyonun asimptotik davranisi incelendiginde Onerilen

¢Oziim

1, Vitav 3-N_ V(N-3)?+4w+4v
0@ =zt + (l-2+" 1 f@

seklindedir. Burada, f(z) belirlenecek fonksiyondur. Denklem (2.3.8)’de

A= l + V1+4v
4 4

B = 3-N n J(N=-3)2+4w+4v
4 4

olarak tanimlanir ve denklem (2.3.8), denklem (2.3.4)’de yerine yazilirsa

@f@) _ z(2A+23+¥)—(2A+%) i@ (A+B)2+(A+B)(N2_2)_§ o)
dz? z(1-2) dz z(1-2)

(2.3.8)

(2.3.9)

(2.3.10)

ikinici mertebeden lineer diferansiyel denklem elde edilir. Denklem (2.3.10)’un yapisi

asimptotik iterasyon yontemine uygundur.
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Denklem (2.3.10), denklem (1.1.1) ile karsilastirildiginda

z(24+2B+5)-(24+3)

AO (Z) = z(1-2z)
(a+B)2+(a+B)yA=2_¢
so(z) = e =

olarak belirlenir. Denklem (1.1.9) kullanilarak A,,(z) ve s,(z) degerleri

5 2442845 z(24+2B+3)-(2442)  z(24+28+3)-(2443)  (a+B)2+a+B) RS
1(2)_ z(1-2) - z2(1-2) z(1-2)2 z(1-2)

(z(2A+ZB+g)—(2A+%))2

z2(1-z)%

(N-2) & (N-2) §
51(2) = — (A+B)?+(A+B)"2-%  (A+B)?+(A+B) 23
1 z2(1-2) z(1-2)2

((A+B)2+(A+B)(N2;2)—§)(z(2A+23+¥)—(2A+§))
z2(1-z)2

(2.3.11)

elde edilir.
Asimptotik iterasyon metodunun denklem (1.1.9)’da verilen kuantizasyon kosulu

kullanilarak ytiksek kiiresel koordinatlarda enerji 6zdegerleri
0= = 5 =4A+B)2+2(N-2)(A+B)
Ao A

2=2 = 5 =4A+B)?+2(N+2)(A+B) +2N
1 2

23 = 5 =4A+B)?+2(N+6)(A+B)+ 202N +4)

Ay A3
(2.3.12)
olarak bulunur. n=0,1,2,.. olmak izere (2.3.12) esitligindeki ifadeler
genellestirildiginde

é,=4(A+B)?+[8n+2(N-2)[(A+B) +n(2N + 4n — 4) (2.3.13)
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esitligi elde edilir. Denklem (2.3.3) ve denklem (2.3.5), denklem (2.3.13)’de yerine yazilir

ve belirli islem basamaklarindan sonra yiiksek kiiresel koordinatlarda [_ ifadesi

2N J(N—Z)Z+16(A+B)2+4»[8n+2(N—2)](A+B)+4n(2N+4n—4)— an(E+uc?)

e h2c2
Iy-1=—-+ . (2.3.14)

seklinde elde edilir. Burada, n = 0,1,2, ... degerlerini alir.

N-boyutta merkezcil olmayan potansiyel icin agisal dalga fonksiyonlar1 (1.1.16)
denklemi kullanilarak elde edilir.

fo@) = C; = C;2F1(0,24 + 2B + 22,24+ 3, 2)

fi(2) = —C,[4A + 1 — (44 + 4B + N)z]

=—C, (24+2)oF1(-1,24+ 2B + 2,24 + 1, 2)

f2(z) = C,[(4A+1)(4A+3) —2(4A+ 4B + N + 2)(4A + 3)z
+(4A+4B + N + 2)(4A + 4B + N + 5)z?]

N+2
2 !

=G, (24+3) (24 +2)Fu(-2,24+ 2B + 22 24+ 2.2)

f3(z) = —C,[—(4A +5)(4A+3)(4A+ 1) + 3(4A+ 4B+ N + 4)(4A + 5)(4A + 3)z
—3(4A+4B +N +6)(4A+4B + N +4)(4A+5)z> — (4A+ 4B + N + 8)
X (4A+4B + N +6)(4A+ 4B + N + 4)z3]

=, (24+3) (24 +3) (24 +3)oF1(=3,24 + 2B + 2,24 + 53 2)
(2.3.15)
f(2) icin elde edilen sonuglar genellestirildiginde
fal@) = C,(-1)" (24 + %)nZFl(—n, 24+ 2B+ 24,24 +3;2) (2.3.16)

olarak bulunur. Denklem (2.3.16)’da 2F1, Gauss hipergeometrik fonksiyondur. Denklem
(2.3.16), denklem (2.3.8)’de yerine yazilir ve z’den 8y_;’e ge¢is yapildiginda yiiksek

kiiresel koordinatlarda normalize olmamis agisal relativistik dalga fonksiyonu
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O(By-1) = C;(cos?0y_1)" (1 — cos?0y_)? (-1)" (24 + %)n

><2F1(—1’l, 2A+ 2B + % +n,24 + %; COSZQN_l) (2.3.17)

seklinde elde edilir. [ 0” |0(8y_1)|? sinV"20y_,dOy_; = 1 normalizasyon sarti kullanilarak

denklem (2.3.17)’deki C, normaliasyon sabiti bulunur. Buradan, merkezcil olmayan

potansiyel etkisindeki spin-0 pargacik i¢in normalize dalga fonksiyonu

r(2A+ZB+¥+n)F(2A+%+n)(2A+23+¥+2n)] 2

9(9N—1) = [

F(ZB+%+n)n!

1

F(2A+%)

X 2F1(—n, 2A+ 2B + % +n,24 + %; COSZHN_l) (2.3.18)

X (cos?0y_1)2(1 — cos?0y_)B (D"

seklinde elde edilir. Gauss hipergeometrik fonksiyon ve Jacobi polinomu arasindaki

bagmt1 [143] kullanilarak
Fi(—n,ag + by + 1 + 1, a0 + 1;5) = PP (1 = 25) (2.3.19)
denklem (2.3.18) Jacobi polinomu cinsinden

1,

(2A+23+¥+n)(2A+2B+¥+2n)n!

r
_ 2 A _ 2 Bi_1\n
G(QN—l) - (COS HN—l) (1 cos 9N—1) ( 1) F(2A+%+n)[‘(28+¥+n)

N-3

z )(1 —2c05%0y_1) (2.3.20)

(ZA—%,ZB+
X P

n

olarak bulunur.

2.3.2. Yiiksek Kiiresel Koordinatlarda Radyal Klein-Gordon Denkleminin Yaklasik

Coziimleri

Bu boliimde, N-boyutta radyal relativistik enerji spektrumu ve radyal dalga

fonksiyonu elde edilecektir.

Morse potansiyeli igin N-boyutta radyal Klein-Gordon denklemi
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) | [Ee) (D (1 pmatrra)’

dr? h2c? h2c2 €

) (N-DW=3)
_ W-aly-q+N-2)+— u(@) =0 (2.3.21)

r2

seklindedir. Denklem (2.3.21)’de x = e~*(""7) doniisiimii uygulanirsa

d?u(x) | 1du(x)
dx? x dx

EZ—p?c*—(E+pc?)D,  (E+pc?)De
h2c2a?x2 T R2c2q2

+|

2(B+uc?)p,  (In-a g +N-2)+E=28=2)

h2c2a2x a?x?

+

(r. - ”’—")_Zl u(x) =0  (2.3.22)

a

N-1DN=3)

Iv—1(n—1+N—=2)+
4 olarak tanimlanir.

2

seklinde elde edilir. Denklem (2.3.22)’de A =

)
Pekeris yaklagimi [87] kullanilarak (re — l%x) ifadesi x = 1 civarinda Taylor serisine

agilirsa,
Y _ 2 (x— _ 1 3 _ 12
T L+ 2= D+ [~ | - D)
2 3 4t =13+
+ [3are a2ry? + a3re3] (X 1) + (2323)

esitligi elde edilir. Denklem (2.3.22)’de denklem (2.3.23) kullanilarak

d*u(x) | 1du(x) n [EZ—MZC4—(E+[1C2)D9 _ (E+puc?)D,

dx? x dx h2c2a?x? h2c2g2
2(E+pc®)p,  d  dy  d
t g T e T U =0 (2.3.24)
elde edilir. Burada,
d=A4l1-=>+-2 ]
B are  a?r?
4 6
dy =4 a_re - azrez]
1 3
d=A-5 azrg] (2.3.25)
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olarak alinir. Toprak alkali metal grubundan iki atomlu mollekiiller i¢in Pekeris
yaklasiminm 1 /rz ’li terime uyumlulugu Sekil 2.9°da gosterildi. Ca, X1Zt, MgCa X3,
Sr, X1Zt ve Sr, A'S* molekiillerinin 7, sabiti Tablo 2.6’da verildi. Tablo 2.6’dan
bakildiginda toprak alkali metal iki atomlu molekiillerin atomlar arasindaki denge
uzakligi yaklasik 4 A%’ dur. Sekil 2.9 incelendiginde Pekeris yaklasgimmm atomlar

arasindaki denge uzakliginda daha gecerli oldugu goriilmektedir.

Sekil 2.9. Toprak alkali metal iki atomlu molekiiller i¢in Pekeris yaklagiminin analizi

Denklem (2.3.24)’de islem kolayligi igin

2 _ (E*-u*c*—(E+uc?)D, d
e _( (e _az) (2.3.26)
A, = (Z(i:ffaz)De _ %) (2.3.27)
2 ((E+uc?)D, dy
A = (B e+ 2 (2.3.28)

kisaltmalar1 kullanilir ve gerekli diizenlemeler yapildiginda

d?u(x) | 1du(x)
dx? x dx

2 A
+]-5-n2+ 2 u@ =0 (2.3.29)

ikinci metebeden denklem elde edilir. Dalga fonksiyonu sonlu olmasi gerektiginden x —

0 ve x — oo limit durumlarinda
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u(x) = xfe 2% f(x) (2.3.30)

seklinde dalga fonksiyonu dnerilir. Bu limitlerde f(X) fonksiyonu, ¢oziimii sonlu tutan bir
fonksiyondur. Onerilen dalga fonksiyonu (2.3.29) denkleminde yerine yazilirsa ikinci

mertebeden lineer homojen diferansiyel denklem

a?f(x) [ZAzx—Ze—l] df(x)

+ [AZ +2A2€ A1
dx? x dx

[7eo (23:31)

elde edilir ve bu denklem asimptotik iterasyon metoduna uygundur. Denklem (2.3.31),

denklem (1.1.1) ile karsilastirilirsa

2Ar,x—2e—-1
Ao(x) = ZT

A2 +2A2 E—Al
X

So(x) =

olarak belirlenir. Maple programinda, (1.1.7) denklemi kullanilirsa

2A 2A,x—2e—1 | 2eA,4+A,—A (2A,x—2&8—-1)2
Al(x) — 2 _ 2 + 2 2 1 + 2

x? x x?
_ 2€A2+A2—A1 (2£A2+A2—A1)(2A2x—2€—1)
51(0) = ——— + 2
4AZ 2(2A2x—2£—1) 2(2€A2+A2—A1) 4A2(2A2x—2£—1) 2(2A2x—2£—1)2
/12(36) - e + 3 - 22 + 2 - 3
X
(2£A2+A2 Al)(ZAzx 2&e— 1)
x2

(2A,x—26— 1)<2A2 2Apx—28-1 2eNp+Ap—Aq | (2A2x 28-1)2 )

x2 + x x2

X

2(28A2+A2 Al) 2(28A2+A2—A1)(2A2x—28—1) 2A2(28A2+A2—A1)
SZ( ) - x3 x3 + x2

(2eA2+Az—A )(ZAZ 20zy-26-1, 26N +A =M1 | (20px—26-1)2 )

x2 + x x2

X

(2.3.32)

olarak elde edilir.
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AiIM’de denklem (1.1.9)’da verilen kuantizasyon kosulu kullanilarak yiiksek kiiresel

koordinatlarda enerji 6zdegerleri

(2.3.33)
olarak bulunur. (2.3.33) esitligindeki ifadeler genellestirilirse
Enty, = %ﬁ:”"z . n=012,.. (2.3.34)

seklinde elde edilir. Denklem (2.3.26), denklem (2.3.27) ve denklem (2.3.28), denklem
(2.3.34)’de yerine yazildiginda Morse potansiyeli etkisindeki spin-0 pargacik igin N-

boyutta enerji spektrumu

2
2(E+pc?)De  dy

2_ 2.4 2
Pt e g g2 |28 2 (4 )| n=012,.. (2335
¢ ¢ ((E+uc2)Dg dz>E 2
h2c2a? a?

seklinde elde edilir.

Bolim 1’de verilen denklem (1.1.16) kullanilarak N-boyutta radyal dalga

fonksiyonlar1
fo(x) = C, = C, 1F1(0,2e + 1,2A,x)
fl(x) = _Cz(ZAzx —2& — 1) = —CZ(ZE + 1)1F1(_1, 2+ 1, 2A2x)

f(x) = C,[(2e + 2)(2e + 1) — 4A,x(2e + 2) + 4A3x?]
= C,(2e +2)(2e + 1)1F1(—2,2e + 1,2A5x)

f3(x) = —=C,[(2e + 3)(2e + 2)(2e + 1) — 6A,y(2e + 3)(2 + 2) + 8A%x3
—12(2¢ + 3)A3x?]
= —C,(2e +3)(2e + 2)(2e + 1)1F1(-3,2e + 1, 2A,x)
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(2.3.36)

seklinde bulunur. Bu sonuglardan f(x) i¢in genel ¢éziim
fn(x) = (=1)"C,(2e + 1),, 1F1(—n, 2e + 1, 2A,x) (2.3.37)

olarak bulunur. Burada, 1F1 konfluent hipergeometrik fonksiyondur [143]. Denklem
(2.3.37), denklem (2.2.30)’da yerine yazilirsa yiiksek kiiresel koordinatlarda Morse

potansiyeli i¢in normalize olmamis radyal dalga fonksiyonu
u(x) = xfe A2*(—1)"C,(2e + 1), 1F1(—n, 2 + 1, 2A,%) (2.3.38)

elde edilir. Burada C, normalizasyon sabiti olup normalizasyon sartindan bulunur.
Denklem (2.2.24) denklem (2.2.38)’de yerine yazilir ve

[ e ?z%1,F(a,b,cz)dz = %ze(—a +b,a;b, 1+ a;—cz) (2.3.39)

integrali [149] kullanilirsa, yiiksek kiiresel koordinatlarda Morse potansiyeli ig¢in

normalize radyal dalga fonksiyonu
R(x) = xfeh2X /%ﬂ:l(—n, 26 4+ 1,20,%) (2.3.40)

seklinde elde edilir. Burada s,

ar, (2e+m)

s (—n)m m €
Sn= Zm!(T—l—l)m(ZAZ)

m=0 26+m

X,F,(n+2e+ 1,26 + m;2e + 1,26 + 1 + m; —2A,e%e) (2.3.41)

seklinde elde edilir.
2.3.3. Toprak Alkali Metal iki Atomlu Molekiillerin Relativistik Titresim
Frekanslar

Bu béliimde, toprak alkali metal grubundan Ca, X'=* , MgCa X'2*, Sr, X13% ve

Sr, A'Z* iki atomlu molekiiller igin relativistik titresim frekanslari hesaplanacak.



52

Kalsiyum ve strontiyum es ¢ekirdekli olup homoniikleer iki atomlu molekiiller olarak
adlandirilir. Magnezyum-kalsiyum farkli ¢ekirdek igerdigi i¢in heteroniikleer iki atomlu
molekiildiir. Toprak alkali metal grubu kalsiyum, magnezyum ve strontiyum atomlarinin

niikleer spinleri sifirdir.

Iki atomlu molekiillerin titresim hareketi molekiil fizigi, astrofizik ve plazma fizigi
gibi bir¢ok alanda onemli bir aragtirma konusudur. Bu molekiiler sistemler igin titresim
enerji seviyeleri farkli metodlarla elde edilir. Deneysel olarak gozlenen titresim seviyeleri
dogru potansiyel enerji egrisini olusturmak igin kullamilir. Ozetle, potansiyel enerji
egrileri molekiiliin yapist hakkinda bilgi verir. Potansiyel enerji minumumdayken denge
uzaklig1 belirlenir. Potansiyel enerjinin r’ye gore ikinci tiirevi kuvvet sabitini verir ve

buradan molekiiliin titresim ve donme seviyeleri bulunur [150].

Potansiyel enerji fonksiyonunun, iki atomlu molekiiller i¢cin ayrisma enerjisi (D,),

atomlar arasindaki denge uzakhigi ( ) ve titresim frekansi (w,) arasindaki iliski

V(r,) — V() = =D, (2.3.42)
av(r) _

( dr_)r=re =0 (2.3.43)
da?v

( dr(j))r:re =k, = 4m2uc?w? (2.3.44)

seklinde verilir [150]. Denklem (2.3.1)’deki Morse potansiyel parametresi «, denklem
(2.3.44)’den

a= 7rcwe\/21 (2.3.45)

seklinde elde edilir. Tablo 2.6’daki herbir molekiil igin verilen spektroskopik
parametreler denklem (2.3.45)’de yerine yazilirsa, potansiyel parametresi hesaplanir. Her

bir molekiil i¢in elde edilen sonuglar Tablo 2.7°de verildi.
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Tablo 2.7. Iki atomlu molekiiller igin potansiyel parametre sabiti

a (Ao_l)
Ca, X2+ 1.069980816
MgCa X'x+ 1.079828084
Sr, X1zt 0.999353856
Sry ATt 0.934181483

Kiiresel koordinatlarda, denklem (2.3.35)’de [ = 0 olarak alindiginda A = 0 olur ve
dolayisiyla d =0, d; = 0 ve d, = 0 olur. Boylece, Morse potansiyelinin relativistik

titresim spektrumu
2
E? — u%c* = 2hca/ Do (E + uc?) (n + %) — h%c?a? (n + %) (2.3.46)

seklinde elde edilir. Jia ve Cao [151], kiiresel koordinatlarda Morse potansiyeli igin
Klein-Gordon denkleminin ¢dziimlerini siipersimetri yaklasimiyla elde etmistir. Denklem
(2.3.46), bu calismadaki enerji spektrumunu saglamaktadir. Iki atomlu molekiillerin
ayrigma enerjisi ( D,), titresim frekansi (w,), atomlar arasindaki denge uzakligi (r,) ve
indirgenmis kiitlesi (u ) Tablo 2.6’da verilmisti. Bu tablodaki sabitler ve denklem (2.3.46)
kullanilarak taban durumunda kalsiyum, strontiyum ve magnezyum-kalsiyum; uyarilmis
durumda strontiyum molekiillerinin titresim enerjileri hesaplanarak buradan relativistik
titresim frekanslar1 elde edildi. Elde edilen teorik titresim frekanslar1 ve deneysel
Rydberg-Klein-Rees (RKR) sonuglar1 Tablo 2.8, 2.9, 2.10 ve 2.11°de verildi. Tablodaki
sonuclara bakarak mutlak sapmayi inceledigimizde, deneysel sonuclara en yakin
degerleri homoniikleer molekiillerden uyarilmis durumda strontiyum molekiilii i¢in
hesapladigimiz titresim frekanslar1 gostermistir. Taban durumunda strontiyum molekdilii
icin elde ettigimiz titresim frekanslari da deneysel verilere oldukga yakin sonu¢ vermistir.
Ayni zamanda, Tablo 2.8 ve 2.11°de goriildiigii gibi kalsiyum ve magnezyum-kalsiyum

molekiilleri i¢in hesapladigimiz frekanslar deneysel sonuglarla uyumludur.



Tablo 2.8. Ca, XX molekiilii i¢in teorik relativistik titresim frekanslar1 ve deneysel

RKR degerleri
n-n-—1 Vteorik (Cm_l) Vdeneysel(cm_l)[lsl] mutlak Sapma Av
1 63.1121059 62.91 0.2021059
2 61.1802731 60.77 0.4102731
3 59.2484403 58.64 0.6084403
4 57.3166073 56.54 0.7766073
5 55.3847745 54.47 0.9147745
6 53.4529417 52.4 1.0529417
7 51.5211087 50.36 1.1611087
8 49.589276 48.34 1.249276
9 47.657443 46.34 1.317443
10 45.7256102 44.37 1.3556102
11 43.7937774 42.41 1.3837774
12 41.8619444 40.47 1.3919444
13 39.9301116 38.56 1.3701116
14 37.9982787 36.67 1.3282787
15 36.0664458 34.79 1.2764458
16 34.1346131 32.94 1.1946131
17 32.2027803 31.11 1.0927803
18 30.2709474 29.29 0.9809474
19 28.3391135 27.51 0.8291135
20 26.4072817 25.73 0.6772817
21 24.4754488 23.99 0.4854488
22 22.543616 22.26 0.283616
23 20.611783 20.55 0.061783
24 18.6799502 18.87 0.1900498
25 16.748117 17.2 0.451883
26 14.816284 15.56 0.743716
27 12.884452 13.93 1.045548
28 10.952618 12.33 1.377382
29 9.020786 10.75 1.729214
30 7.088953 9.18 2.091047




Tablo 2.9. Sr, X1Z* molekiilii igin teorik relativistik titresim frekanslar1 ve deneysel

RKR degerleri
n-n-—1 Vteorik (Cm_l) Vdeneysel(cm_l)[134] mutlak Sapma Av
1 40.19478194 39.515 0.67978194
2 39.42866539 38.709 0.71966539
3 38.6625489 37.904 0.7585489
4 37.8964323 37.104 0.7924323
5 37.1303159 36.304 0.8263159
6 36.3641993 35.509 0.8551993
7 35.5980828 34.714 0.8840828
8 34.8319661 33.924 0.9079661
9 34.0658497 33.135 0.9308497
10 33.2997332 32.35 0.9497332
11 32.5336167 31.566 0.9676167
12 31.7675 30.785 0.9825
13 31.0013836 30.008 0.9933836
14 30.235267 29.231 1.004267
15 29.4691506 28.459 1.0101506
16 28.7030339 27.688 1.0150339
17 27.9369174 26.921 1.0159174
18 27.170801 26.155 1.015801
19 26.4046843 25.393 1.0116843
20 25.6385678 24.632 1.0065678
21 24.8724514 23.875 0.9974514
22 24.1063348 23.120 0.9863348
23 23.3402181 22.367 0.9732181
24 22.5741022 21.618 0.9561022
25 21.8079847 20.871 0.9369847
26 21.0418692 20.126 0.9158692
27 20.2757516 19.384 0.8917516
28 19.5096361 18.644 0.8656361
29 18.7435186 17.908 0.8355186
30 17.9774021 17.173 0.8044021
31 17.2112865 16.442 0.7692865
32 16.445169 15.712 0.733169
33 15.6790534 14.986 0.6930534
34 14.912936 14.261 0.651936
35 14.1468205 13.541 0.6058205




Tablo 2.10. S7, A'X* molekiilii i¢in teorik relativistik titresim frekanslari ve deneysel

RKR degerleri
n-n-—1 Vteorik (Cm_l) 1/deneysel(Crn_l)[l?"l'] mutlak Sapma Av
1 84.36036847 84.402 0.04163153
2 83.6909175 83.729 0.0380825
3 83.0214666 83.055 0.0335334
4 82.3520156 82.382 0.0299844
5 81.6825647 81.708 0.0254353
6 81.0131137 81.034 0.0208863
7 80.3436629 80.361 0.0173371
8 79.6742119 79.686 0.0117881
9 79.0047609 79.011 0.0062391
10 78.3353099 78.338 0.0026901
11 77.6658591 77.662 0.0038591
12 76.9964084 76.988 0.0084084
13 76.326957 76.313 0.013957
14 75.657506 75.638 0.019506
15 74.988055 74.963 0.025055
16 74.318604 74.287 0.031604
17 73.649154 73.612 0.037154
18 72.979702 72.936 0.043702
19 72.310251 72.261 0.049251
20 71.640801 71.584 0.056801
21 70.971350 70.908 0.06335
22 70.301899 70.232 0.069899
23 69.632447 69.555 0.077447
24 68.962997 68.879 0.083997
25 68.293546 68.202 0.091546
26 67.624095 67.525 0.099095
27 66.954644 66.848 0.106644
28 66.285193 66.171 0.114193
29 65.615742 65.493 0.122742
30 64.946291 64.816 0.130291
31 64.276840 64.138 0.13884
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Tablo 2.11. MgCa X' molekiilii igin teorik relativistik titresim frekanslar1 ve deneysel

RKR degerleri
n-n-—1 Vteorik (Cm_l) 1/deneysel(Crn_l)[l?’G] mutlak Sapma Av
1 57.605724 57.03 0.575724
2 54.98281102 53.92 1.06281102
3 52.3598979 50.96 1.3998979
4 49.7369849 48.1 1.6369849
5 47.1140719 45.32 1.7940719
6 44.4911589 42.61 1.8811589
7 41.8682458 39.96 1.9082458
8 39.2453328 37.38 1.8653328
9 36.6224198 34.86 1.7624198
10 33.9995068 32.39 1.6095068
11 31.3765938 29.95 1.4265938
12 28.7536807 27.56 1.1936807
13 26.1307676 25.19 0.9407676
14 23.5078547 22.85 0.6578547
15 20.8849416 20.51 0.3749416
16 18.2620286 18.2 0.0620286
17 15.6391156 15.91 0.2708844
18 13.0162025 13.67 0.6537975
19 10.3932895 11.5 1.1067105
20 7.7703765 9.48 1.7096235
21 5.1474634 7.63 2.4825366

2.4. Asimptotik Iterasyon Metodu Ile Merkezcil Olmayan Manning-Rosen
Potansiyeli i¢cin N-Boyutta Klein-Gordon Denkleminin Yaklasik Coziimleri

Merkezcil olmayan Manning-Rosen potansiyeli,

2.2 _1\p—20T —-or 2
V(T, HN—1) _ h%o [77(11 e Ae ] acos®Oyn_1+LcosOn_1+Y (241)

2u (1—e—07)2 1—e—07 r25in20y_1

seklinde tamimlanmaktadir. Burada, n ve A potansiyel parametreleri, o :% olup b
uzunluk boyutundadir, a, f ve y ise potansiyeli tanimlayan parametrelerdir. Bu
potansiyelin ylizey grafigi Sekil 2.10°da gosterildi. Grafik ¢iziminde ¢ = 0.025, n =
0.75, A=0.05ve a = =y =1 olarak alind1.
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Sekil 2.10. Merkezcil olmayan Manning-Rosen potansiyelinin yiizey grafigi

2.4.1. Merkezcil Olmayan Potansiyel I¢in Yiiksek Kiiresel Koordinatlarda Agisal

Klein-Gordon Denkleminin Coziimleri

Bu boliimde, merkezcil olmayan potansiyel etkisindeki spin-0 pargacik igin N-

boyutta agisal Klein-Gordon denkleminin analitik ¢oziimleri elde edilecektir.

Merkezcil olmayan potansiyel igin N-boyutta agisal relativistik dalga denklemi

d?0(fn-1)
a6},

cos Oy_1 dO(Bn—1) (E+uc?) acos?Oy—_,+ cos Oy_1+y
sinfy_; dOyn_q h2c2 sin20y_4

+ (N —2)

Iy_>(ly—>+N-3
+%— lN—l(lN—l + N — 2)] G)(QN—l) =0

sin26y_1

seklinde yazilir. Burada

_ v-2)

In-1(y-1 + N —=2) = l’zzv—1 m'? = In-2(ly-2 + N —3)

ON-1

kisaltmalar1 kullamldiginda ve x = cos? doniigiimii uygulandiginda

) d?e(x)

x(1- dx?

4-20dé® [, __P _ a4 -
+ (N N 1) 2 dx [K x(1-x) 1—x] G)(x) =0

ikinci mertebeden denklem elde edilir. Burada, , g ve p ifadeleri

(2.4.2)

(2.4.3)
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E+puc? 2 1
K= a(hzfzc ) + l,N—l — Z(N - 2)
_ , (E+uc?)
9= B
_ (y=Bra)(E+uc?) K m?
p =T T + = (2.4.4)

seklinde tanimlanir. Agisal dalga fonksiyonun asimptotik davranisi incelenerek 6nerilen

¢Oziim
_ (N-3)2+16p _ (N-3)2+16q+16p
0(x) = x¥+f(1 - x)34N= 7 f(x) (2.4.5)

seklindedir. Burada,

__3-N , J(N-3)2+16p
M=t

+
4 4

A, = 3N J(N-3)2+16q+16p (2.4.6)

seklinde tanimlanir. Denklem (2.4.5), denklem (2.4.3)’te yerine yazilirsa ikinci
mertebeden lineer homojen diferansiyel denklem

a’f(x) x(2A1+2Az+N—1)—(2A1+%) df(x)_l_ [(A1+A2)2+(A1+A2)(N—2)—K
dx? x(1-x)

- e ] £(x0) (2.4.7)

elde edilir. Bu denklem asimptotik iterasyon metoduna uygundur. Denklem (2.4.7),
denklem (1.1.1) ile karsilastirilarak Aq(x) ve sy(x) belirlenir. Daha sonra, denklem

(1.1.7) kullanilarak 4,,(x) ve s,(x) degerleri bulunur.

3 X(2A1 4205 +N-1)—(2A1 +720)
0~ x(1-x)

_ (A+A)P (A +A)(N-2)—K

So x(1-x)
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N-1 N-1
_ (2A1+2A,+N-1) X(2A1+2A2+N—1)—(2A1+T) x(2A1+2A2+N—1)—(2A1+T)

M = x(1-%) x2(1-x) x(1-x)2
N-1.\2
(A1 +A3)%+ (A1 +A)(N-2)—k (x(2A1+2A2+N—1)—(2A1+T))
+ +
x(1-x) x2(1—x)2
5 = (A1+A2)2+(A1+A2)(N—2)—K+(A1+A2)2+(A1+A2)(N—2)—K
1= -

x(1—x) x(1-x)2

(x@As+20,+N-1)- 22+ ) (A1 +42)%+ (A1 +45) (N-2) k)

x2(1-x)2

(2.4.8)

Asimptotik iterasyon metodunda kuantizasyon kosulu kullanilarak yiiksek kiiresel

koordinatlarda enerji 6zdegerleri

S—0=S—1 = KO - (A1+A2)2+(N_2)(A1 +A2)

o M
%:j—z = k=D +A)2+ N +A)+N -1
%:i—z = K, =0 +A,)2+ (N +2)(Ay +A,) +2N
(2.4.9)
bulunur. Bu ifadeler genellestirildiginde
Kn=(N1+A)>+[N+2n-2](A; +A)+n(N+n—-2) ,n=0,1.2,.. (2.4.10)

bulunur. Kullanilan kisaltmalar yerine yazilir ve gerekli diizenlemeler yapilirsa yiiksek

kiiresel koordinatlarda merkezcil olmayan potansiyel i¢in ly_; degeri

2
2N J(N—Z)Z+4(A1+A2)2+4[N+2n—2](A1+A2)+4n(N+n—2)— sa(B+uc?)

Iyog ==+ nc? (2.4.11)

2 2

seklinde elde edilir.

Bolim 1’de verilen (1.1.16) denklemi kullanilarak N-boyutta merkezcil olmayan

potansiyel i¢in agisal dalga fonksiyonlari
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x) = Cy = CpoF1(0,2A1 + 2A; + N — 2,2A, + —,x
fo) = Gy = CoF1(0,2A1 + 20, + N = 2,27, + = x )

fi(x) = —C,[4Ay + N — 1 — (4A; + 4A; + 2N — 2)x]
— N-1
= ;2 (28 + 1) Fa(= 1,200 + 20, + N = 1,20, + 2 x )
fo(x) = C,[(4A{ + N —1)(4AL + N + 1) — 2(4A; + 4A, + 2N)(4A; + N + 1x
+(8A; + 8A, + 4N)(8A; + BA, + 4N + 4)x?]

N+1

= C,4 (ZA1 + %) (2/\1 +1 N2—1

YoF1(=2,20 + 28, + N, 20, + 7> x )

f3(x) = —=C,[(4A; + N +3)(4A; + N + 1)(4A; + N — 1) — 3(4A; + 4A, + 2N + 2)
X (4A{ + N +3)(4A{ + N+ 1)x + 3(4A+ 4B + 2N + 4)(4A + 4B + 2N + 2)
X (401 + N + 3)x? — (4A; + 4A, + 2N + 6)(4A; + 4A, + 2N + 4)
X (4A; + 4A, + 2N + 2)x3]

= —C,8 (28, +22) (20, + ) (28, + 22)

2 2

x oF1(=3,201 + 205 + N + 1,2, + = x )

(2.4.12)
olarak bulunur. Elde edilen sonuglar i¢in genelleme yapildiginda
ful0) = G2 (=1)" (28, + 7).
N-1
x 2F1(—n, 20, +2A, + N — 2 +1n,2A, + T,x) (2.4.13)

seklinde elde edilir. Denklem (2.4.13), denklem (2.4.5)’de yerlestirilir ve uygulanan

doniistim yerine yazilirsa

0(Oy-1) = (cosz %)Al (1 — cos? 91\,2_1)/\2 C,2n(—1)" (2A1 n %)n

x oF1 (—n, 201 + 20 + N = 241,20, + 7, cos? %) (2.4.14)

elde edilir.f(:tIG)(H,\,_l)I2 sinN=26,_,d6y_, = 1 normalizasyon sartindan C, normalizasyon
sabiti bulunur. Bu integrali alabilmek icin hipergeometrik polinomlarin diklik
bagmtisindan [143]
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Ly A=Y, R a+n,y,y),F (-k a+ky,y)dy

_ I2(I(a-y+n+1) nl

- F(a+n)C(y+n) a+2n nk

faydalanilir. Elde edilen normalizasyon sabiti denklem (2.4.14)’de yerine yazildiginda

0(On-1) = (cos2 %)Al (1 — cos? 91\12—1)"2

1
1 [r(2A1+2A2+N—2+n)r(2A1+¥+n)(2A1+2A2+N—2+2n)] /2

N-1 N-1 N—2
r@ea+5 r(28,+=24n)ni2

X oF1 (=1, 200 + 20, + N = 2+, 2A, + 72, cos? 22 ) (2.4.15)

elde edilir. Hipergeometrik ve Jacobi polinomlar1 arasindaki bagmti [143] kullanilarak
yiiksek kiiresel koordinatlarda merkezcil olmayan potansiyel etkisindeki spin-0 pargacik

icin normalize agisal dalga fonksiyonu

Y
)AZ [F(2A1+2A2+N—2+n)n!(2A1+2A2+N—2+2n) 2
N—1 N—1 N2
r(28,+7 2401282+ 2402

0(Oy-1) = (COS2 %)Al (1 — cos? 91\/2—1

N-3

=) (1 - 2c0s221) (2.4.16)

(2A1+¥,2A2+
X B,

seklinde elde edilir.

2.4.2. Yiiksek Kiiresel Koordinatlarda Radyal Klein-Gordon Denkleminin Yaklasik

Coziimleri

Bu béliimde, Manning-Rosen potansiyeli etkisindeki spin-0 pargacik i¢in N-boyutta

radyal Klein-Gordon denkleminin yaklasik ¢oziimleri elde edilecektir.

Manning-Rosen potansiyeli i¢in N-boyutta relativistik radyal dalga denklemi

d?R(r) [(Ez—/,tzc4) (E+pc?)o? n(n-1e2°7  (E+puc?)o? Ae O
dr? h2c2 2uc? (1—e—07)2 2uc?  (1-e~97)

_ IN-1)(N-3)  In—1(UN—1+N—2)
412 r2

]R(r) =0 (2.4.17)
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seklinde yazilir. Budenklem [ # 0 durumunda analitik olarak ¢dziilmesi zor oldugundan
sadece pertiirbasyon ve yaklasiklik yapilarak ¢oziilebilir. Bu nedenle, denklem

(2.4.17)’yi ¢dozmek i¢in
(2.4.18)

e—O’T

1
2 o=21
b

7~ ey

seklinde verilen Greene-Aldrich yaklagimi [99] kullanilir. Bu yaklasikligin 1/r2’|i
terime uyumlulugu Sekil 2.11°de gosterilmistir. Grafikten anlagildigi gibi Greene-Aldrich

yaklasim1 o’nin kii¢iik degerlerinde gecerlidir.

— 1

= 216072 5=0.25

— %6162, 5=0.75

)

Sekil 2.11. Farkli o degerleri i¢in Greene-Aldrich yaklasiminin analizi

Denklem (2.4.18), denklem (2.4.17)’de yerine yazildiginda

(E2-p2c*)  (E+uc?)o?nm-1)e 29"  (E+uc?)o? Ae "
2uc? (1—e—0T)2 2uc?  (1—e~97M)

d?R(r)

dr? h2c2

(A tyallas + N -2 ) (02 55 5) | ROY =0 2419)

seklinde elde edilir. Denklem (2.4.19)’da z = e™" doniisiimii uygulandiginda

. (E+ucz) n(n-1) _ K(K + 1) (1_22)2] R(Z) =0 (2420)

g2 A
2uc?  (1-z)2

Z_2 z(1-2)

d’R(z) | 1dR(2) [
dz? +z dz +
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olarak diizenlenir. Burada islem kolaylig1 i¢in

E2—y2c* N-3 , E+uc?
2 =(h2£ac2) T NI =%A (2.4.21)

kisaltmalar1 kullanilir. Dalga fonksiyonu sinir sartlarini saglamasi gerektiginden dolay1

¢Oziim
R(z) = (1 —2)Y *1z5f(2) (2.4.22)

seklinde onerilir. Burada, f(z) fonksiyonu dalga fonksiyonunu sonlu tutan bir
fonksiyondur. Denklem (2.4.22)’de

4(E+pc?
) ) \/%ﬂ(n—l)+(2k+1)z

r'="3 2

(2.4.23)

olarak alinir. Denklem (2.4.23), denklem (2.4.20)’de yerine yazilir ve gerekli diizenleme
yapilirsa asimptotik iterasyon metoduna uygun ikinci mertebeden lineer homojen

diferansiyel denklem

d?f(z) _ [(2y'+2e+3)z—(2e+1)] df (2) k(e+1)+(1+y") (2e+1) A"
o 2(1-2) ] dz +[ 2(-2) ]f(Z) (2.4.24)

seklinde elde edilir. Bu denklem, (1.1.1) denklemi ile karsilastirildiginda

_ [(2y'+2e+3)z—(2e+1)
AO - [ z(1-z) ]

_ [K(K+1)+(1+y')(28+1)—A’]
So = z(1-z)

olarak belirlenir. Maple programinda, (1.1.7) denklemleri kullanilarak 4,,(x) ve s,(x)

degerleri

1 = 2y'+2e+3  (2y'+2e+3)z-(2e+1) | (2y'+2e+3)z—(2e+1) n k(c+1)+(14y")(2e+1)-A'
1= z(1-2) z2(1-2) z(1-2)2 z(1-z)
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((2]/’+2£+3)z—(2£+1))2

z2(1-2)2

_ k(c+D)+(14y")2e+1)-4" | k(e+1)+(1+y")(2e+1)-4'

Sl=

z2(1-z) z(1-2)2
(K(K+1)+(1+y')(2£+1)—A')((Zy'+2£+3)z—(2£+1))
+ 2 2
z2%(1-2)
(2.4.25)
seklinde elde edilir.

Kullanilan metotta (1.1.9) denklemiyle verilen kosulla N-boyutta relativistik enerji

Ozdegerleri

D=2 o Ay=k(k+1)+2ey +2e+y' +1

L=25 A=k(k+1)+2ey +4e+3y +4

23 o A =k(+1)+2ey +66+5y +9

2.2 13

(2.4.26)

elde edilir. (2.4.26) esitligindeki ifadeler genellestirildiginde

Ay =kk+1D+ey' +2n+2)+Cn+ 1)y '+ (n+1)?,n=0,1,2,... (2.4.27)

seklinde elde edilir. Denklem (2.4.27)’de kullanilan kisaltmalar yerine yazilir ve gerekli

diizenleme yapilirsa Manning-Rosen potansiyeli i¢in N-boyutta radyal relativistik enerji
spektrumu

2

2
(n+1)? (E+#CZ)A+(N+21N—1_2) -1
4

+2n+1)y’
2puc? (
E% — y2c* = —h2c2g2 ue

(2.4.28)

2(n+1+y")

seklinde elde edilir. Qiang ve Dong [102], Manning-Rosen potansiyelinin ii¢ boyutta
relativistik olmayan enerji spektrumunu standart metodla elde etmistir. N = 3 i¢in non-
relativistik limitte denklem (2.4.28), bu metodla bulunan ¢alismadaki sonucu
saglamaktadir. N-boyutta ise Schrodinger denkleminin ¢dziimleri Nikiforov-Uvaraov
yontemiyle Ikdhair ve Sever [100] tarafindan ¢alisilmistir ve nonrelativistik limitte

denklem (2.4.28) bu ¢alismada elde edilen spektruma indirgenmektedir.
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Bolim 1’de verilen (1.1.16) denklemi kullanilarak N-boyutta radyal dalga

fonksiyonlar1
fo2) = C, = C, oF1(0,2y" + 26 + 2,26 + 1,2)

fi(z) = —C,[2e + 1 — (2y' + 2¢ + 3)7]
=—C,2e +1)F1(—1,2y"' + 26+ 3,26 + 1,2)

f3(2) = —C,[(2e + 1)(2e + 2)(2e + 3) —3(2y' + 2e + 5)(2e + 3)(2e + 2)z
+3Q2y" +2e+6)2y' + 26 +5)(2e +3)z2 — 2y' + 2+ 7)
X (2y" +2e + 6)(2y’ + 2e + 5)z3]

=—C,2e +1)(2e + 2)(2e + 3) 2F1(-3,2y" + 26 + 5,2 + 1,2)
(2.4.29)

seklinde elde edilir. Buradan f(z) i¢in genellestirme yapildiginda
(@) = C,2e + 1), (—1)™F1(-3,2y" + 26 + 5,26 + 1,2) (2.4.30)

olarak bulunur. Denklem (2.4.30), denklem (2.4.22)’de yerine yazildiginda N-boyutta

normalize olmamis radyal dalga fonksiyonu

R(z) = (1—-2)Y*125C,(2¢ + 1), ()"
XoF1(—n, 2y + 26 +2+n,2¢e +1,2) (2.4.31)

elde edilir. Burada, z = e™" yerine yazilir ve hipergeometrik fonksiyon ile Jacobi

polinomlar1 arasindaki baginti [143] kullanilirsa
R(r) = (1—e Ty *le=0oercynt p2E2 *1) (1 _ gp-omy (2.4.32)

olarak bulunur. Normalizasyon sabitini bulmak i¢in

1 — V-1 ulpv.w) 2 _ ov+u T+Hv+ DI (n+p+1)
f_l(l X) (1 + x) [Pn (x)] dx =2 nwI(n+v+u+1)

1 — )V ulpv) 2 — ov+u+l I'(n+v+1)I'(n+p+1)
f_1(1 x) (1+x) [Pn (x)] dx =2 n'r(n+v+u+1)2n+v+u+1)

integrallerinden [143] faydalanilir ve gerekli matematiksel islemler yapildiktan sonra

yiiksek kiiresel koordinatlarda normalize radyal dalga foksiyonu
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2e(n+y’ +e+1)n!T(2y’ +2£+2+n)0] 1/2

— _ ,—or\Y'+1,—cer
R(r) (1 e ) e [(n+y’+1)F(2y’+2+n)r(2£+1+n)

x p2EH*) (1 _ gg-omy (2.4.33)

seklinde elde edilir.

n =0 veya n =1 durumunda Manning-Rosen potansiyeli Hulthén potansiyeline

indirgenir.

V(i) = Voo | Vo =Ze%0, 0 =1 (2.4.34)

e—o'
1-e~o7 '

Burada o, potansiyelin genisligini tanimlayan parametredir. Denklem (2.4.28)’de gerekli
indirgemeler yapildiginda yliksek kiiresel koordinatlarda Hulthen potansiyeli igin

relativistik enerji spektrumu

(2n+N+2ly_q-1)° (E+uc?)

E? — u%c* = —h?c?0? - g (2.4.35)

(@n+N+2ly_1—-1)

seklinde elde edilir. Non-relativistik limitte, bu enerji spektrumu literatiirle uyum
saglamaktadir [100].

N-boyutta Hulthen potansiyeli i¢in radyal relativistik dalga fonksiyonu denklem
(2.4.33)’den

- 1/2
R(T) _ (1 _ e—ar)lN—1+%e—0'£r 2£(n+e+lNI:;+-¥)n!F(21N_1+2£+N—1+n)a /
(n+lN_l+T)F(21N_1+N—1+n)[‘(2£+1+n)
x pE2IN-1¥N=2) (1 _ po-ory (2.4.36)

olarak bulunur.
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2.4.3. Manning-Rosen Potansiyeli Icin Farkl Boyutlarda Enerjinin Niimerik

Degerleri

Bu béliimde, Manning-Rosen potansiyeli i¢in elde edilen N-boyutta relativistik enerji
degeri ¢ — oo limitinde non-relativistik enerjiye indirgenerek farkli n ve | durumlari i¢in
iki, i¢ ve dort boyutta atomik birimde niimerik degerleri hesaplandi. Ayrica, bu
potansiyel i¢in Hellmann-Feynmann teoremi kullanilarak (r~2) beklenen degeri elde

edildi ve 2p, 3p, 3d, 4p durumlarindaki niimerik sonuglari bulundu.

Denklem (2.4.28), non-relativistik limitte

2

2
p(N2ly—g-2) -1, @n+1)y’

a2 |(n+1)%-4 n
2ub? 2(n+y’+1)

(2.4.37)

seklinde elde edilir. Bu denklemde, A = 2b ve atomik birimde A = p = 1 alinarak farkl
boyutlardaki relativistik olmayan enerjinin nimerik degerleri elde edildi ve sonuglar
Tablo 2.12,2.13, 2.14 ve 2.15°de verildi. Tablodaki sonuglardan boyutun etkisi kolaylikla
analiz  edilebilir. Potansiyel o parametresinin ayni degeri igin sonuglari
karsilagtirdigimizda boyut arttifinda enerjinin degerinde de artis oldugu goriilmektedir.
Asimptotik iterasyon metodunun gecerliligi ve hesapladigimiz enerjilerin dogrulugu
literatiirde farkli yontemler kullanilarak elde edilen sonuglarla karsilagtirilarak

gosterilmistir.
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Tablo 2.12. N=2 i¢in farkli kuantum durumlarinda titresim-dénme enerjisinin (—En, )
(a.b.) hesaplanan degerleri

1/b

o =0.75
AIM

NU[100]

o =1.50
AIM

NU[100]

2p

3p

3d

4p
4d
af
5p
5d

Tablo 2.13. N=4 igin farkli kuantum durumlarinda
(a.b.) hesaplanan degerleri

0.025
0.050
0.075
0.100
0.025
0.050
0.075
0.100
0.025
0.050
0.075
0.025
0.025
0.025
0.025
0.025

0.241087727
0.227946676
0.215173756
0.202769319
0.074279113
0.062813563
0.052308568
0.042764227
0.070734690
0.059344084
0.048952519
0.031448122
0.030209821
0.029833655
0.014735069
0.014180351

0.241087728
0.227946676
0.215173874
0.202769319
0.074279113
0.062813564
0.052308602
0.042764227
0.070734690
0.059344084
0.048952839
0.031448122
0.030209821
0.029833656
0.014732070
0.014180352

0.140949065
0.131737328
0.122836186
0.114247678
0.051933431
0.042142549
0.033373396
0.025626042
0.058898861
0.049054155
0.040108841
0.023381941
0.026068346
0.027228277
0.011100960
0.012357598

0.140949065
0.131737328
0.122836866
0.114247678
0.051933432
0.042142549
0.033373420
0.025626042
0.058898861
0.049054156
0.040109106
0.023381941
0.026068346
0.027228277
0.011100961
0.012357598

titresim-donme enerjisinin

(—En,l )

1/b

o =0.75
AIM

NU[100]

o =1.50
AIM

NU[100]

2p

3p

3d

4p
4d
af
5p
5d

0.025
0.050
0.075
0.100
0.025
0.050
0.075
0.100
0.025
0.050
0.075
0.025
0.025
0.025
0.025
0.025

0.070619466
0.059247415
0.048872778
0.039496510
0.030209821
0.020395577
0.012502801
0.006531839
0.029833655
0.020047208
0.012199557
0.014180351
0.014011823
0.013929373
0.006591028
0.006506751

0.070734690
0.059344084
0.048952839
0.039560954
0.030209821
0.020395577
0.012502916
0.006531840
0.029833656
0.020047209
0.012199670
0.014180352
0.014011823
0.013929374
0.007127957
0.006506751

0.058898861
0.049054155
0.040108841
0.032063712
0.026068346
0.017092049
0.010003140
0.004801907
0.027228277
0.018176768
0.010947871
0.012357598
0.012892982
0.013182138
0.005695750
0.008828005

0.058898861
0.049054156
0.040109106
0.032063712
0.026068346
0.017092049
0.010003237
0.004801908
0.027228277
0.018176769
0.010947973
0.012357598
0.012892982
0.013182139
0.006175251
0.005967020
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Tablo 2.14. N=3 ve o =0.75 igin farkli kuantum durumlarinda titresim-dénme
enerjisinin (—En,1) (a.b.) hesaplanan degerleri

o=0.75
1/b Hesaplanan  Standard[102]  GPS[108]
degerler
2p 0.025 0.1205793 0.1205793 0.1205723089
0.050 0.1084227 0.1084228 0.1082151728
0.075 0.0969063 0.0969120
3p 0.025 0.0459296 0.0459297 0.0458778846
0.050 0.0352672 0.0352672 0.0350633277
0.075 0.0260090 0.0260110
3d 0.025 0.0449299 0.0449299 0.0447742874
0.050 0.0343082 0.0343082 0.0350633277
0.075 0.0251168 0.0251168
4p 0.025 0.0208608 0.0208608
4d 0.025 0.0204555 0.0204555 0.0203017276
4f 0.025 0.0202886 0.0202887
S5p 0.025 0.0098576 0.0098576 0.0098079253
5d 0.025 0.0096636 0.0096637
1/b D-K[152] Num[153] AIM[109]
2p 0.025 0.1205297 0.1205271 0.120579348
0.050 0.1082245 0.1082151 0.108422798
0.075 0.0964469 0.094099532
3p 0.025 0.0458800 0.0458779 0.045929694
0.050 0.0350689 0.0350633 0.035267202
0.075 0.0255647 0.0255654 0.026010959
3d 0.025 0.0447812 0.0447743 0.044929943
0.050 0.0337133 0.0336930 0.034308244
0.075 0.0237782 0.0237621 0.025116813
4p 0.025 0.0208112 0.0208097 0.020860820
4d 0.025 0.0203068 0.0203017 0.020455547
af 0.025 0.0199911 0.0199797 0.020288663
5p 0.025 0.0098080 0.0098079 0.009663688
5d 0.025 0.0095150 0.0095141 0.009583676
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Tablo 2.15. N=3 ve o = 1.50 igin farkli kuantum durumlarinda titresim-dénme
enerjisinin (—En,1) (a.b.) hesaplanan degerleri

o =150
1/b Hesaplanan ~ Standard[102] GPS[108]
degerler
2p 0.025 0.0900228 0.0900229 0.0899708754
0.050 0.0802472 0.0802472 0.0800399908
0.075 0.0710332 0.0710332
3p 0.025 0.0369650 0.0369651 0.0369133922
0.050 0.0274719 0.0274719 0.0272696509
0.075 0.0193850 0.0193850
3d 0.025 0.0396344 0.0396345 0.0394789425
0.050 0.0300629 0.0300629 0.0294495639
0.075 0.0218120 0.0218121
4p 0.025 0.0172249 0.0172249
4d 0.025 0.0183649 0.0183649 0.0182114637
af 0.025 0.0189222 0.0189223
5p 0.025 0.0081307 0.0081308 0.0080816394
5d 0.025 0.0086902 0.0086902
1/b D-K[152]  Num.[153] AIM[109]
2p 0.025 0.0899732 0.0899708 0.089902617
0.050 0.0802472 0.0800400 0.079787754
0.075 0.0705701 0.070050273
3p 0.025 0.0369154 0.0369134 0.036911875
0.050 0.0272736 0.0272696 0.027286328
0.075 0.0189388 0.0189474 0.019030789
3d 0.025 0.0394857 0.0394789 0.039464723
0.050 0.0294680 0.0294496 0.029466438
0.075 0.0204734 0.0204663 0.020664098
4p 0.025 0.0171753 0.0171740 0.017197171
4d 0.025 0.0182162 0.0182115 0.018277246
af 0.025 0.0186247 0.0186137 0.018742772
5p 0.025 0.0080812 0.0080816 0.008115365
5d 0.025 0.0085415 0.0085415 0.008862907
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Hellmann-Feynmann teoremi [137-139]

aEn(q) <¢( )| 9H(q) |¢( q)> (2.4.38)

seklindedir. Burada ¢ parametre, E,(q) ve 3(q) Hamiltonyenin 0Ozdegeri ve

ozfonksiyonudur. Kiiresel koordinatlarda, Manning-Rosen potansiyeli icin Hamiltonyen

2r T
h? d? | h21(1+1) h? |n(n-1)e B  Ae’b 94.39
Zdrz 2ur? _Z,ub2 rnZ - (2.4.39)
(1—3_5) 1-e b

H =

olarak yazilir. (2.4.38) esitliginde, denklem (2.4.39) ve kiiresel koordinatlarda non-
relativistik enerji spektrumu yerine yazilir. Daha sonra, q =1 igin gereken iglemler

yapilirsa (r~2) beklenen degeri

1 /4n(n—1)+(zl+1)2
(n+1)2—A+1(1+1)+(2n+1)( >t )

2 2

(21+1)b? 2n+1+/4n(n—1)+(21+1)2

(r=2)=-

(2n+1)(8l+4)
20+1+ /471(17 1)+(Zl+1)2
4\/417(7; 1)+(21+1)2 (81+4)((n+1)2—A+l(l+1)+(2n+1)(
X

2n+1+/an(m-D+QRI+1D2  2@2n+1+/4n(m-1)+(21+1)2 )2\/4’77(77 1)+(21+1)2

(2.4.40)

seklinde elde edilir. Farkli kuantum durumlari icin  (r~2) beklenen degerinin atomik
birimde niimerik sonuglar1 hesap edildi ve literatiirdeki ¢calisma [108] ile karsilastirilarak

uyumlu sonuglar verdigi gézlendi. Bu sonuglarin Tablo 2.16’da karsilastirmast yapildi.



Tablo 2.16. 2p, 3p, 4p ve 3d durumlarinda (r~2) (a.b.)’nin niimerik degerleri

1/b=0.1,17 = 0.75 1/b=0.1,71 = 1.5
AlM GPS[108] AIM GPS[108]
2p 0.090777 0.091584 0.052664 0.053464
3p 0.021882 0.022569 0.013740 0.014398
4p 0.004352 0.039654 0.001232 0.002030
3d 0.104222 0.103225 0.010096 0.010760
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3. BOLUM

YUKSEK KURESEL KOORDINATLARDA MERKEZCIL
OLMAYAN POTANSIYEL ETKIiSINDEKI SPIN-1/2 PARCACIK
ICIN DIRAC DENKLEMI

3.1. Yiiksek Kiiresel Koordinatlarda Spin Simetri Durumunda Dirac Denkleminin
Elde Edilmesi

Merkezcil olmayan Lorentz skaler ve vektor potansiyel etkisindeki M Kiitleli spin-

1/2 pargacik i¢in N-boyutta Dirac denklemi
N ~
{czo}j Py + B M +5(r,6, ) |+V(r, 9N_1)}P(r) =EY(r) (3.1.1)
j=1

seklinde yazilir. Burada N uzaysal boyut N > 2, ¢ 151k hiz1, p; momentum islemcisi, E

relativistik enerji ve &;,4 N x N kare Dirac matrislerdir.

Dirac dalga fonksiyonu

W) = ()“;Eg) (3.1.2)

seklindedir. Denklem (3.1.1)’de denklem (3.1.2) yerine yazildiginda

<MC2 + S, Oy-_1) +V(r,0y_1) c(a.p) ) (‘P(ﬂ)
C(& ﬁ) _MC2 - S(T, 9N—1) + V(T' GN—l) X(F)
_ (e
—F (X (?)) (3.1.3)

elde edilir. Burada ¢(#) ve y(#) spin yukari ve spin asagi bilesenlerdir. Denklem (3.1.3)

diizenlenirse
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[E — Mc?* - S(r, On-1) =V (r,0y_1)]@F) — c(@.P)x(#) =0 (3.1.4)

[E +Mc? +S(r,0y-1) =V (r,0y-1)]x () — c(G.P)p(@) = 0 (3.1.5)

denklemleri elde edilir. Denklem (3.1.5)’de x(¥) ¢ekilir, denklem (3.1.4)’de yerine

yazilir ve gerekli diizenleme ve islemler yapilirsa

[hzczvlzv + (E + MCZ + S(T, 91\]_1) - V(T, HN—I))

X (E—=Mc?+S(r,0y_1) = V(r,0y_1))]eGE) =0 (3.1.6)
denklemi elde edilir. Denklem (3.1.6)’da
o) = exp (tW )
A(@) = V(r,0y_1) — S, 0y-1)
2(#) = V(r,0y_1) + S(r,04_1) (3.1.7)

tanimlar1 kullanilir ve spin simetri durumu igin A(#) = C, olarak alinirsa, spin simetri

durumunda relativistik kuantum Hamilton-Jacobi denklemi

ho . r, ~\2 A2 BI(®

VW@ + (V@) -5 -22=0 (3.1.8)
seklinde elde edilir. Burada

A% = E? — M?c* —C,(E—Mc?), B=C,—E — Mc? (3.1.9

olarak alinir. Yiiksek kiiresel koordinatlarda, merkezcil olmayan potansiyel

£(7) =V, (r) + 221 (3.1.10)
ve kuantum karakteristik fonksiyonu W (7)

W) = W.(r) + Wy, (By_1) + Wy, (6,) (3.1.11)

seklindedir. Bolim 1°de elde ettigimiz yiiksek kiiresel koordinatlarda gradyent ve
Laplasyen operatorleri ile denklem (3.1.10) ve denklem (3.1.11), denklem (3.1.8)’de

yerine yazilip degiskenlerine ayirma metodu uygulanirsa
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ﬁ'(;iqu aWT(r)) - (WBN_1 (On-1) + Wy, (91)) + (M)Z

i \N-1 9, or i h?r? or
i(ﬁWeN_l(eN—ﬂ)z 1 (6W91(91)>2 _A_Bn(m) _ Va(On-1B _ 0(3.1.12)
r2 90N_1 T2sin26N_1 06, c? ¢z ¢ - h

elde edilir. Buradan yiiksek kiiresel koordinatlarda radyal ve agisal relativistik dalga
denklemleri

R[82Wr(r) . N—10Wn(r) aw,(\? _ A2 | B»(r) a
7[ or? r or ( or ) =T T2 (3'1'13)

c2 c? r2

h [62W9N_1(9N—1) +(N=2) cosOy_1 0W9N_1(9N—1)] (aWGN_1(9N—1))2

i 80%_, Sinfy_q 00N_1 00N_1
b V2(On-1)B
=qa-— 1.14
& sin20py_4 + c? (3 )

h0*Wo, (61) (aw91(91))2 _ b

- 5, (3.1.15)

seklinde elde edilir. Burada a ve b, denklemin bagimsiz degiskenlerinin her degerinde

dogrulanabilmesini saglayan ayirma sabitleridir.
Yiiksek kiiresel koordinatlarda kuantum momentum fonksiyonu
p=VyW(# (3.1.16)

seklinde tanimlanir. Denklem (3.1.7)’de ¢(#) tanim1 ve denklem (3.1.16)’dan kuantum
momentum fonksiyonu

L hVye@)
p= ;% (3.1.17)
elde edilir. Denklem (3.1.11), denklem (3.1.16)’da yerine yazildiginda
_OW(1) _ owgy_ (On-1) _ 0wy, (61)
r= e 0 Pona = e Po, = (3.1.18)

olarak bulunur. Radyal ve agisal kuantum kanonik doniistimler denklem (3.1.13), (3.1.14)
ve (3.1.15)’de yerine yazilirsa N-boyutta spin simetri durumunda radyal ve agisal

relativistik dalga denklemleri

h[opr | (N-1) 2 A2 Bh(@m _a
i[6r+ r pr]+pr— T

c? c? r2

(3.1.19)



h[OPoy_, cosOn_1 ] 2 _ b V,(8y-1)B
i[aeN_1 +(WW-2) sinfy_y Pon-1 tPoy, = @ sinZQN_1+ c2
flapgl 2

2 =)

i 96, t Do,

seklinde elde edilir. Yiiksek kiiresel koordinatlarda dalga fonksiyonu

5 _(v-1) H(On- ;
e(r)=r"2 R(r)(#g,_z)e”ﬁ"’a1
(sinfy-1) 2

seklinde alinir. Denklem (3.1.16) ve denklem (3.1.17) kullanilarak

_hR@ (-1

" iR(M i 2r

_ hH'(ON—1) R (N-2)cosOy_q
Pon-1 = THON) i 2 sinby_,

elde edilir. Radyal kuantum momentum fonksiyonu yeniden

Br=pr + 50
r — Ur

i 2r
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(3.1.20)

(3.1.21)

(3.1.22)

(3.1.23)

(3.1.24)

(3.1.25)

olarak tanimlanir. Denklem (3.1.23) ve denklem (3.1.25)’den radyal dalga fonksiyonu

R(r) = exp (%fﬁrdr)
elde edilir. Agisal kuantum momentum fonksiyonu yeniden

_ h O
Poy_, = Poy_, +5; (N — 2) et

sinfyn-1

(3.1.26)

(3.1.27)

olarak tanimlanir. Bu tanimlama ve denklem (3.1.24) kullanilarak acisal dalga

fonksiyonu

H(Oy_1) = exp (%f ﬁeN_ldeN—1)

olarak elde edilir.

(3.1.28)
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3.2. Kuantum Hamilton-Jacobi Yoéntemi ile Double Ring-shaped Kratzer

Potansiyeli icin N-Boyutta Spin Simetri Durumunda Dirac Denkleminin Céziimleri

Yiiksek kiiresel koordinatlarda, double ring-shaped Kratzer potansiyeli

V(r,6yg) = 2D, (B —31) 4 ot F (3.2.1)

T 2 r2 r2sin20n_1 T2%c0s%20p5_4

seklinde tanimlanir. Burada, 7, atomlar arasindaki denge uzakligi, D, ayrisma enerjisi,

a ve [ pozitif gercel parametrelerdir.

Iki atomlu molekiiller (NaH X*Z*, MgH X22*, HI a3%") igin double ring-shaped
Kratzer potansiyelinin yiizey grafikleri Sekil 3.1, 3.2 ve 3.3’de gosterildi. Potansiyelin
yiizey grafigi ¢izilirken kullamlan molekiiler sabitler NaH XXt [154] i¢in D, =
15900.0 cm™!, 7, = 1.887015 A" ; HI a3%* [155] igin D, = 25811.60cm™ , 7, =
1.604 A" ; MgH X2?%* [154] i¢cin D, = 11104.7cm™1, r, = 0.967804 A" olarak

alinmustir. Bu ylizey grafikleri Matlab programinda ¢izilmistir.

Vi(r,0) (eV)

Sekil 3.1. NaH X'X* molekiilii i¢in double ring-shaped Kratzer potansiyelinin yiizey
grafigi



79

Vi(r.6) (V)

Sekil 3.2. MgH X22* molekiilii i¢in double ring-shaped Kratzer potansiyelinin yiizey
grafigi

Vi) (8V)

Sekil 3.3. HI a3X* molekiilii icin double ring-shaped Kratzer potansiyelinin yiizey
grafigi

3.2.1. Yiiksek Kiiresel Koordinatlarda Spin Simetri Durumunda Relativistik Enerji

Spektrumu

Bu boliimde, yiiksek kiiresel koordinatlarda double ring-shaped Kratzer potansiyeli

icin spin simetri durumunda relativistik enerji spekturumu elde edilecektir.

Kratzer potansiyeli, (3.1.19) denkleminde yerine yazilirsa
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h[oP: | (N-1) ] 2 _ E*-MPc*—C4(E-Mc*) a
i[6r+ r F|+5h = c2 r2
(Cs—E—Mc?) 2Dty , Dpré
4GP (20 y Do) (3.2.2)

seklinde elde edilir.

Kuantum Hamilton-Jacobi metoduyla N-boyutta radyal enerji spektrumunu bulmak igin
kuantum hareket degiskenini tanimlamamiz gerekir. Kuantum hareket degiskeni,
kompleks bolgede kuantum momentum fonksiyonunun p(x, E) , C gevresi lizerinden

integralidir.
J = %fﬁcp(x, E)dx (3.2.3)

Burada, C saat ibresinin tersi yoniinde tanimlanan kapali bir egridir. Dalga fonksiyonunun
kutup noktalari, kuantum momentum fonksiyonun sabit olmayan noktalarina denk gelir.
Boliim 1°de anlatildig: gibi Leacock ve Padgett [115-116] enerji spektrumunu elde etmek

icin kuantum momentum fonksiyonunu kullanarak tam kuantizasyon kosulu tanimlanir.
J=nh, n=012. (3.2.4)

Radyal kuantum hareket degiskeni
1
Jr=5-%. p,dr (3.2.5)

seklindedir. Burada, C, saat ibresinin tersi yoniinde tanimlanan konturdur. Radyal hareket
degiskeni, r=0 ve r=oco kutup noktalarindaki kuantum hareket degiskenlerinin

toplamudir.

]r =]O +]oo (326)
Jo integralini hesaplamak i¢in 7 = 0 noktas1 yakininda p, Laurent serisine acilir ve
Dr = % + ay + a7 + -+ seklinde alinarak sonra (3.2.2) denkleminde yerine yazilir. riz li

terimlerin katsayisindan b, elde edilir.

c2

- —2)242 2 2_
b= i (D Dk (327)

. . ~ .M
Klasik momentum fonksiyonu tanimindan p; = Ll ,
z
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4 c?

— —2)242 2 2_
by =i 2y \/(’V DR | q 4 DB ) (3.2.8)

olarak alinir. Rezidi teoremi kullanilarak

2 —2)2 2 2_
Jo=—2(N-2)- \/—h B2 1 g o Dere G0 (3.2.9)

C2
elde edilir.

Jo 1integralini hesaplamak icin r =§ doniisiimii uygulanir ve

Joo = igscsf—;ds (3.2.10)

olarak bulunur. s =0 noktasi yakininda pg Laurent serisine p, = ag + a;5 + -+

seklinde acilir ve (3.2.2) denkleminde yerine yazilirsa

= 2_
ay = 0D _Dere |EHe’Cy (3.2.11)
2 c E-Mc

olarak bulunur. Rezidi teoremi kullanilirsa

_ 3 (N-1) | Dere | (E+Mc2-Cy)
Joo = ===+ / T (3.2.12)

elde edilir. (3.2.9) ve (3.2.12) denklemleri, (3.1.6) denkleminde yerine yazildiginda

h h2 —_72)\2 2 2_ 2_
R e N =t P EPEE)

n, = 0,1,2, ... olmak iizere elde edilir.

Agisal kuantum hareket degiskeni
1
Jo =5, pydb (3.2.14)

seklindedir. (3.1.20) denkleminde merkezcil olmayan potansiyel yerine yazilir. z =

sin?6@y_, doniisiimii uygulanir ve p, = 2{/z(1 — z)p, tanimi kullanilirsa

h(aﬁz (N-1)-Nz ) 52 =—2 (%j_%)a%zmz - (E+MCCZZ_CS) (3.2.15)

i bz = 4z(1-z) N 4z2(1-2) 4z(1-z)2

0z 2z(1-z) %

elde edilir. Doniistimler sonucunda agisal kuantum hareket degiskeni denklem (3.2.14),
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Jo = igﬁcz 5, dz (3.2.16)

seklinde elde edilir. Agisal kuantum hareket degiskeni, z=0,z =1, z = oo kutup

noktalarindaki hareket degiskenlerinin toplamudir.

Jo=Jot+/]it]w (3.2.17)
Burada,
Jo = %4560 p,dz (3.2.18)

seklindedir. C, saat ibresi yoniinde tanimlanan konturdur. z = 0 noktas1 yakininda #,

Laurent serisine p, = % + ay + a;z + -+ seklinde agilir ve denklem (3.2.15)” de yerine

yazilir. iz li terimlerin katsayisindan b, elde edilir.
z

2 4 c?

by = in ™2+ i\/m +b+ (%) q (3.2.19)

. . < .M
Klasik momentum fonksiyonu tanimindan pg = —; ,
Z

by = in &2 L JhZ(N‘3)2 +b+(B2) g (3.2.20)

4 2 4 c?

olarak alinir. Rezidi teoremi kullanilarak

]0 _ %(h (N2—3) _ \/h2(1\;—3)2 Lh4 (E+M6522_C5) a) (3221)
elde edilir.

Denklem (3.2.17)’ de

hi=o . ,dz (3.2.22)

seklindedir. C; saat ibresi yoniinde tanimlanan konturdur. z = 1 noktas1 yakininda p, =

by
(z-1)

+ ay + -+ seklinde Laurent seriye acilir ve denklem (3.2.15)’ de yerine yazilir.

1
(z-1)2

by=-241 \/ﬁ +(BH)p (3.2.23)

4 T2 4 c

li terimlerin katsayisindan b, elde edilir.




83

M|

1
Z

py= -0t \/E ¥ (B (3.2.24)

4 [4

Klasik momentum fonksiyonu tanimindan p; =~ —i

olarak alinir. Rezidi teoremi kullanilarak

Ji = —;(2 T \/ﬁ— - (Bes) ﬂ) (3:2.25)

elde edilir.

Denklem (3.2.17)’ de

Joo = = $. P,dz (3.2.26)
seklindedir. Denklem (3.2.26)°’da z = % dontlistimii uyugulanirsa

Joo = 5%, Bas (3.2.27)

elde edilir. Burada, C; saat ibresinin tersi yoniinde tanimlanan konturdur. s = 0 noktasi
yakininda pg Laurent serisine py = ay + a5 + -+ seklinde agilir ve denklem (3.2.15)’de

yerine yazilirsa

a, = %(ih &2y /ﬁz(’i 2" a) (3.2.28)

olarak bulunur. Rezidi teoremi kullanilarak

2 4

Jo =1 (—h D) [ a> (3.2.29)
elde edilir. (3.2.21), (3.2.25) , (3.2.29) denklemleri, (3.2.17) denkleminde yerine yazilirsa
_ _h & (N=2)2 a k(1 E+Mc2—Cg
Jo = 2+2\/ T 2\/4+( h2c? )ﬂ

_ﬁ\/M_i_ m? + (E+M02—Cs) a=ngh, ng =012, .. (3.2.30)

2 4 h2c2

elde edilir.
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(3.2.13) ve (3.2.30) denklemleri, (3.2.4) denkleminde yerine yazilir ve gerekli
diizenlemeler yapilirsa double ring-shaped Kratzer potansiyeli i¢in N-boyutta spin simetri

durumunda relativistik enerji spektrumu

(ZDere)z (E+MCZ—CS) _
hc E-Mc? -

2

2

1, (E+Mc?—Cs (N-3)? 2 E+Mc2—C; DerZ(E+Mc2—Cy)
<2nr+1+2j<2n9+1+\/z+( o ),8+\/ T tm +( i )a) +T> (3.2.31)

seklinde elde edilir. Falaye ve arkadaslar1 [69], kiiresel koordinatta double ring-shaped
Kratzer potansiyeli igin sSpin simetri durumunda relativistik enerji spektrumunu
asimptotik iterasyon metoduyla elde etti. N-boyutta spin simetri durumunda bulunan
(3.2.31) denklemi kiiresel koordinata indirgenerek Falaye’nin ¢alismasinda elde edilen
enerji spektrumuyla ayni sonucu vermektedir. Ayni zamanda denklem (3.2.31), N = 3
icin C; = 0 durumunda, Gharbi ve arkadaslar1 [71] tarafindan elde edilen relativistik

enerji spekturumunu saglamaktadir.

3.2.2. Yiiksek Kiiresel Koordinatlarda Radyal Dalga Fonksiyonu

Bu bolimde, Kratzer potansiyeli etkisindeki spin-1/2 pargacik i¢in N-boyutta
relativistik radyal dalga denklemi kuantum Hamilton-Jacobi yontemiyle ¢oziilerek dalga
fonksiyonu bulunur. Daha sonra, N-boyutta elde edilen radyal dalga fonksiyonu

normalize edilir.

(3.2.2) denkleminde

- A (N-1)
Pr = Pr PR (3-2-32)
tanimi1 kullanilirsa
hopr | ~ 2 h2(N-1)(3-N) _ E2-M?c*-Cs(E-Mc?)  2Dor2(E+Mc?-Cy)
i or 4r c c?r
_a* Der2(E+Mc?—Cs) (3.2.33)

r2 272

elde edilir. (3.2.33) denkleminde y = TL dontigiimil uygulanir. Uygun kisaltmalar

e

2_nm2,-4_ _ 2
g2 = — E M CEMC)) .2 (3.2.34)

h2c2
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2_
o2 = EEZG) p 12 (3.2.35)

h2c2
ve ayirma sabiti
a = hle—l(lN—l + N - 2) (3.2.36)

denklem (3.2.33)’de yerine yazildiginda

h 0Dy ~2_h2(N—1)(3—N)_ 2(_ .2 £_02+1N_1(1N_1+N—2)
Ty g - = (—x>+ " ) (3.2.37)

seklinde elde edilir. Denklem (3.1.26)’dan p, ¢ekilir ve p,, = p, 7, tanimi uygulanarak

__hRY)
Py =0 (3.2.38)

olarak bulunur. Sonlu kompleks y diizleminde, kuantum momentum fonksiyonu p,, , n,

sabit olmayan noktalara ve y = 0’ da sabit bir kutup noktasina sahiptir. Boylece,

kuantum momentum fonksiyonu

~ hQn,.(¥) | by
_hon, 2
Py = 1 0n Tyt (3.2.39)

seklinde yazilir. by 1 bulmak igin p,, , y = 0 yakininda Laurent serisine agildiginda

b
Py~ +ag (3.2.40)

olarak yazilir. Denklem (3.2.40) , denklem (3.2.37)’de yerine yazilir ve 3% li terimlerin

katsayilarindan b, hesaplanir.

b, = _%J_r B JIN =202+ 4[62 + Iy_1(ly_1 + N — 2)] (3.2.41)

2
Dalga fonksiyonunun sonlu olmasi gerektiginden

by = —ihv (3.2.42)

N
olarak bulunur. Burada , v = %+ \/02 + (lzv—1 +¥) olarak alinir. Benzer sekilde,

dalga fonksiyonunun sinir sartlarindan dolay1 ¢ = +ihx olarak bulunur. b; ve c,
denklem (3.2.39)’ da yerine yazildiktan sonra bu denklem, denklem (3.2.37)’de

kullanilirsa
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Qn(») . Qn, () [2v 2vk | 202
o) Ty \y ~2K) -+ =0 2.4
00 T on ) ( y ") + (3.2.43)

elde edilir. (3.2.43) denklemine, x = 2ky doniisiimii uygulandiginda

xQ4, () + Q@ =D +1-2) + (T =) 0, () = 0 (3.2.44)

elde edilir. (3.2.34), (3.2.35), (3.2.13) denklemleri ve v tanimlarindan

no=%y (3.2.45)

K

olarak bulunur. (3.2.44) denklemi
xQH () + @, ()((2v — 1) + 1 —x) + 1,Qp, (x) = 0 (3.2.46)

seklinde yeniden yazilir. (3.2.46) denklemi genellestirilmis Laguerre [156] diferansiyel

denklemidir. Bundan dolay1, (3.2.46) denkleminin ¢6ziimii
Qn, (x) = L271(x) (3.2.47)

seklindedir. Radyal dalga fonksiyonu

R) = exp (5[ pydy) (3.2.48)

ile hesaplanir. Onceden elde edilen b; ve c’nin degerleri denklem (3.2.39)’da yerine

yazilirsa

< _ hon, ()
Y [ Qn,- )

— ih% + ik (3.2.49)
seklinde elde edilir. Denklem (3.2.49), denklem (3.2.48)’de yazilir ve y = TL doniistimii
uygulanir. Gerekli diizenleme ve hesaplamalar sonucunda N-boyutta relativistik dalga
fonksiyonu

R() = G, (—)” e re2r1 (20 T) (3.2.50)

olarak bulunur. Burada, C, normalizasyon sabitidir. Normalizasyon sabiti
Jo IR@)Idr = 1 (3.2.51)

sartindan bulunur. Denklem (3.2.50), denklem (3.2.51)’ de yerine yazilir. Bu integralin

¢ozlimii i¢in Laguerre polinomunun diklik bagintis1 [145-146]



87

0 _ 2
J e xP[157 ()| dxe = EEEE) (3.2.52)

kullanilirsa normalizasyon sabiti

1

A P (3.2.53)

2re(ny+v)(ny+2v-1)!

sekinde elde edilir. Denklem (3.2.53), denklem (3.2.50)’ da yerine yazilir ve gerekli

diizenlemeler yapilirsa N-boyutta normalize edilmis relativistik radyal dalga fonksiyonu

R() = ((i)?+ — = ) (£)" e erzr-1 (26 ) (3.2.54)

Te(2v+2n,)I' (2v+n,) Te e

bulunur.

3.2.3. Yiiksek Kiiresel Koordinatlarda Agisal Dalga Fonksiyonu

Bu boliimde, merkezcil olmayan potansiyel i¢in yiiksek kiiresel koordinatlarda
relativistik acisal dalga denklemi kuantum Hamilton-Jacobi metoduyla ¢oziilerek dalga
fonksiyonu bulunur. Daha sonra, yiiksek kiiresel koordinatlarda elde edilen agisal dalga

fonksiyonu normalize edilir.

Merkezcil olmayan potansiyel, (3.1.20) denkleminde yerine yazilirsa

h[9Pg COSON_
[aBN LE (N - 2) SN, J+ PR = Ry ey + N - 2)

2_ 2 2_
(E+Mc2 Cs)a+h2m’ (E+Mc Cs)ﬁ
C

sin26py-4 CosCZGN_l (3255)
elde edilir. (3.2.55) denkleminde
Pony = Poy_, +5; (N —2) o= (3.2.56)
tanimi1 uygulanir ve
Iy-1(lyoy + N =2) = Iy, - 22 (3.2.57)
, E+M (N=-3)2 1
S—\/‘m2+ +h2C2 ) +T—E (3.2.58)
p= J (B S)p+i-2 (3.2.59)
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seklindeki uygun kisaltmalar kullanilirsa

op ' —2)(N—
hPoy_, + 52 _p2 [lN—lz + (N-2)(V=3)  e(e+1)  p(p+1) (3.2.60)

i 00N-1 ON-1 4 sin®Oy_1  cosOy_q

denklemi elde edilir. (3.2.60) denkleminde z = sin?6y_,; doniisiimii uygulanir ve

p, = 24/z(1 - 2)y(2) (3.2.61)

x@) =y(@) + 522 (3.2.62)

4i z(1-2)

tanimlart kullanilirsa

hdx(z) _ 3h? (1-22)> h? 2 [ o' £(e+1) pp+1) (3.2.63)

2 i — L
4 (Z) +i 9z 16 z2(1-2)2  2z(1-2) 4z(1-z) 4z2%(1-z) 4z(1-z)2

olarak bulunur. Sonlu kompleks z diizleminde, kuantum momentum fonksiyonu y(z) ,
ng sabit olmayan noktalara, z=0 ve z = 1" de sabit iki kutup noktasina sahiptir.

Boylece, kuantum momentum fonksiyonu

2@ =2y B 2% ® (3.2.64)

z-1 i Qne (Z)
seklinde yazilir. b;’i bulmak i¢in z =0 noktas1 yakininda y(z) Laurent serisine

acildiginda

X@) ~ 2 +ag+ - (3.2.65)

olarak yazilir. Denklem (3.2.65), denklem (3.2.63)’de yerine yazilirsa le’li terimlerin
katsayilarindan b, hesaplanir. Burada b,

by=-4 %(e + 1) (3.2.66)

2

seklindedir. Dalga fonksiyonunun sonlu olmas1 gerektiginden b; ifadesi

b, = %(2 + Z) (3.2.67)

olarak bulunur.

b; bulmak icin y(z) , z = 1 noktasi yakininda Laurent serisine agilirsa

2@ ~ Bt ag - (3.2.68)

Z—
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seklinde yazilir. Denklem (3.2.68), denklem (3.2.63)’de yerine yazilir ve ﬁ’i
terimlerin katsayisindan b; elde edilir.
, _ ih | ik 1
bi=—212(p+3) (3.2.69)
Dalga fonksiyonunun sonlu olmas1 gerektiginden
r_h(p, 3
by =2(2+3) (3.2.70)

olarak bulunur. Benzer sekilde, ¢ sabitini bulmak icin denklem (3.2.64), denklem
(3.2.63)’ de yerine yazilir ve sabit terimleri karsilastirarak ¢ = 0 olarak bulunur. Bu
diizenlemeler sonucunda, kuantum momentum fonksiyonu

_n0hy® () | n(G+)
_?Qne(z) iz i z-1

x(2) (3.2.71)
seklinde elde edilir. Denklem (3.2.71), denklem (3.2.63)’de yerine yazildiginda
z(1—2)Qr,(2) + Qn,(2) [(3 + Z) —z(p+e+ 3)]

(st resatao,m=0 G2

elde edilir. (3.2.72) denklemi, hipergeometrik [156] diferansiyel denklemdir. Bundan

dolay1, denklemin ¢éziimii

= O = O I
Qny(2) —zFl( R +2+2+1,2+s,z) (3.2.73)

olarak bulunur. (3.2.30), (3.2.57), (3.2.58) ve (3.2.59) tanimlarindan

Iy_ €
ng=-"t—--"-1 ng =0,1,2 ... (3.2.74)
seklinde elde edilir.

Denklem (3.1.28)’de z = sin®Oy_, doniisiimii uygulanir ve (3.2.61) tammi

kullanilirsa

H(z) = exp (%fy(z)dz) (3.2.75)

olarak bulunur. Denklem (3.2.62), denklem (3.2.75)’ de yerine yazilir ve integral hesab1

sonucu
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e+1 p+

H@) = Gz (=170, @) (3.2.76)
seklinde elde edilir. Denklem (3.2.73), denklem (3.2.76)’de yerine yazildiginda
H(Oy_1) = C;(sinBy_1) ¢ (cosOy_)HP
x zFl(—ng,ng +e+p+ 2,% + &,sin? Oy_4 ) (3.2.77)

N boyutta normalize edilmemis relativistik agisal dalga fonksiyonu elde edilir. Burada,

C; normalizasyon sabitidir. Normalizasyon sabiti
Jy HOy-1)d6y_1 =1 (3.2.78)
sartindan bulunur. Jacobi polinomu ve hipergeometrik fonksiyon arasindaki bagint1 [143]

Fi(-n,ag+bo+n+1a9+1,s)= W%Pn(“o'bo)a — 25) (3.2.79)

kullanilarak denklem (3.2.77)

H(Oy-1) = C;(sinBy_1)**(cosOy_)' P

1 1
x P (1 2 2sin 0, ) (3.2.80)

n

olarak yazilir. Denklem (3.2.80), denklem (3.2.78)’de yerine yazilir ve integralin ¢ozimii

i¢in Jacobi polinomunun diklik bagintisi [143]

20tBH1IP(nta+1)T(n+F+1)
n!2n+a+f+1)I(n+a+L+1)

1,0 =01 + 0P |[pP (X)]2 dx = (3.2.81)

kullanilir ve matematiksel islemler sonucunda N-boyutta normalize edilmis relativistik

acisal dalga fonksiyonu

1

nl2n+e+p+2)F(n+e+p+2) 2
3 3
F(n+s+E)F(n+p+E)

H(Oy-1) = (SinHN—1)1+£(C059N—1)1+p[

1 1
x P21 _ 242 0,_) (3.2.82)

n

seklinde elde edilir.
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3.2.4. Double Ring-shaped Kratzer Potansiyeli i¢cin Spin Simetri Durumunda

Enerjinin Niimerik Degerleri

N-boyutta spin simetri durumunda relativistik enerji spektrumu, N = 3 boyutta farkl
kuantum durumlarinda ve C; =5 fm™, r, =04 fm™!, D, =15 fm™ !, M =5 fm™1!
degerleri icin elde edildi ve sonuglar Tablo 3.1, Tablo 3.2’de gosterildi. Burada elde

edilen sonuclar Falaye ve arkadaglar1 [69] tarafindan bulunan sonuglar ile uyumludur.

Tablo 3.1 Double ring-shaped Kratzer potansiyeli i¢in spin simetri durumunda
relativistik enerji 6zdegerleri (fm™1)

n, Ng m a=p=1 a=0p=1
QHJ AIM[69] QHIJ AIM[69]
0 0 2.072188142 2.072188142 1.406939539  1.406939539
9.060994524 9.060994522 12.09217551  12.09217551
1 0 2.725765192 2.725765193 2.166121214  2.166121214
8.207625096 8.207625097 10.32429829  10.32429829
1 0 2.845560701 2.845560703 2.315560483  2.315560481
8.103584650 8.103584648 10.16638485  10.16638485
1 1 3.425589262 3.425589261 3.012069405  3.012069404
7.186557628 7.186557630 8.504093195  8.504093195
1 1 3.490508001 3.490508001 3.099115025  3.099115024
7.113819334 7.113819334 8.378950513  8.378950515
2 0 3.167137609 3.167137607 2.720904245  2.720904245
7.561368030 7.561368032 9.033462864  9.033462867
2 0 7.479670323 7.479670321 2.820166861  2.820166862
3.247127505 3.247127506 8.910883178  8.910883178
2 1 3.678964622 3.678964621 3.346561780  3.346561778
6.787568955 6.787568957  7.717297246  7.717297246
2 1 3.727193110 3.727193112 3.410443772  3.410443771
6.730700771 6.730700771 7.623294976  7.623294975
2 2 4.010999393 4.010999391 3.774204752  3.774204752
6.281221372 6.281221374 6.839147058  6.839147059
2 2 4.041936970 4.041936969 3.815408674  3.815408674
6.242991096 6.242991096 6.776804597  6.776804599
3 0 3.485915059 3.485915060 3.131267846  3.131267848
7.073115012 7.073115012 8.106020477  8.106020479
3 0 3.543052442 3.543052442 3.201037906  3.201037907
7.009267663 7.009267661 8.012834666  8.012834667
3 1 3.874907652 3.874907652 3.605610391  3.605610390
6.482650215 6.482650213  7.153253653  7.153253654
3 1 3.911932693 3.911932694 3.653932541  3.653932542
6.437892254 6.437892252  7.082243861  7.082243862




Tablo 3.2 Double ring-shaped Kratzer potansiyeli i¢in spin simetri durumunda
relativistik enerji 6zdegerleri (fm™1)

a=£=0 a=1 =0

QHJ

AiIM[69]

QHJ

AiM[69]

17.29953765
0.7441797016
-0.4009466430
1.493268566
13.98804932
-0.7512716058
1.955144904
13.07639777
-1.666666667
2.389717507
11.87959407
-3.079630226
2.769682621
10.59130824
-5.205436923
11.53551968
2.156404229
2.500000000
10.82905932
-2.292912051
2.834669754
9.943446165
-4.123924148
3.132086643
9.038300042
-6.702239959
3.387164205
8.235838079
-10.17752526
3.602671867
7.586741735
-14.61359280
2.678986991
9.795375767
2.932318930
9.272753320
-2.604114295
3.188810548
8.640638655
-4.888919081
3.421849736
8.014106864
-7.848088909

17.29953766
0.744179704
-0.400946639
1.493268566
13.98804932
-0.751271606
1.955144908
13.07639776
-1.66666667
2.389717500
11.87959406
-3.079630218
2.769682610
10.59130823
-5.205436911
11.53551968
2.156404231
2.500000000
10.82905932
-2.292912051
2.834669759
9.943446173
-4.123924146
3.132086660
9.03830004
-6.702239952
3.38716421
8.23583808
-10.17752526
3.60267187
7.58674172
-14.61359280
2.678986992
9.795375780
2.932318925
9.272753313
-2.604114296
3.188810550
8.640638643
-4.888919080
3.421849740
8.01410686
-7.848088905

1.116712575
12.74519748
-0.2410864897
1.947036164
10.81287613

2.447369326
9.779027299

2.860071672
8.868839383

3.193384975
8.115160359

2.561073200
9.389148001
2.922513886
8.634882756

3.230176780
7.978234689

3.484971874
7.436562471

3.694652627
7.003717432

3.867483357
6.662707035

3.012356170
8.362128944
3.280500248
7.816722460

3.514963519
7.341939089

3.713426640
6.947883889

1.116712576
12.74519748

1.947036165
10.81287612

2.447369328
9.779027300

2.860071672
8.868839382

3.193384975
8.115160360

2.561073200
9.389148000
2.922513885
8.634882758

3.230176780
7.978234688

3.484971875
7.436562470

3.694652628
7.003717432

3.867483358
6.662707035

3.012356170
8.362128945
3.280500248
7.816722460

3.514963518
7.341939088

3.713426640
6.947883890
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3.2.5. iki Atomlu Molekiiller i¢in Relativistik Enerji Spektrumunun Niimerik
Degerlerinde ve Relativistik Dalga Fonksiyonlarinda Boyut Etkisi

Bu boliimde, denklem (3.2.31)’de C; = 0 igin yiiksek kiiresel koordinatlarda
S(r,0n_1) =V (r,0y_1)
atomlu molekiiller (HI a3z, NaH X'z*, MgH X2x%) i¢in li¢ ve bes boyutta relativistik

kosulundaki relativistik enerji spektrumu elde edildi ve iki

enerji degerleri hesaplandi. Ayn1 zamanda, donme ve titresim spektrumunun (E,, )
niimerik degerleri, ti¢ boyutta n = 1, [; = 0 durumunda elde edildi. Maple programinda
HI a3z, NaH x1z*, MgH X22* mollekiillerinin N = 3ve N = 5 boyutta [y_, =0,1,2

durumlarinda radyal ve agisal dalga fonksiyonlarinin grafikleri ¢izildi.

Iki atomlu molekiillerin ii¢ ve bes boyutta relativistik enerjinin niimerik degerlerinin

hesaplamasinda kullanilan molekiiler sabitlerin degerleri Tablo 3.3’de verildi.

Tablo 3.3. Iki atomlu molekiillerin spektroskopik parametreleri

NaH X1+ Hl a3xt MgH X2+
D(cm™) 15900.0 25811.60 11104.7
(A" 1.887015 1.604 1.729682
p(amu) 0.9655499 1.0002 0.967804

Bu degerler kullanilarak elde edilen relativistik enerjinin niimerik degerleri Tablo 3.4’de

verildi.

Tablo 3.4. Iki atomlu molekiillerin ii¢ ve bes boyutta hesaplanan relativistik enerji
degerleri

N=3 ve N=5

ENAH (MeV)

EH (MeV)

MgH
E,; " (MeV)

w W W NN

N P O B O O

899.3648624
899.3648625
899.3648625
899.3648626
899.3648626
899.3648626

931.6882973
931.6882974
931.6882974
931.6882975
931.6882975
931.6882975

901.5119844
901.5119845
901.5119845
901.5119845
901.5119845
901.5119845
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Tablo 3.3’deki degerler kullanilarak elde edilen 1s durumundaki donme-titresim

relativistik enerji spekturumunun (E,;;) ve agisal katkili donme-titresim relativistik enerji

spekturumunun (E,,,) nimerik sonuglar1 Tablo 3.5’de verildi.

Tablo 3.5. iki atomlu molekiillerin dénme-titresim relativistik enerji degerleri

E,;(MeV) Epm(MeV)
NaH X1x+* 899.3648624 899.3648643
HI a32* 931.6882973 931.6883004
MgH X2xt | 901.5119844 901.5119857

HI a32* molekiilii icin n=1, 2,3 ve 0<Ily_; <n—1 durumlarinda {i¢ ve bes

boyutta radyal dalga fonksiyonlarinin grafikleri Sekil 3.4’de verildi.
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I}_ j 'I ..... wN=3
] 1 2 3 I
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-1.=10 ‘“': U
1
B.(r) 2107 PI l“ll
gt | % 10-2] .”l | '-,l ..... N=3
u———»‘l—li%&—'—ﬁ N
1 12 3 4
-1.% 1075 ]_-l’.i":l
-2w 10725 l'['
_ iy
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2 0 2% 107+ I ]‘].
21 i % 10°24 “ r | v N=3
S T N gt
-1.% 107281 ‘tf‘i‘-j
-2.x 10734 I

1.17 x 102 ;:'*"-:‘.\\
1.168 x 10-2 f’é "'h
1.166% 1072 7 A\
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1.162 = 1028 —
144 145 136
r(_e{n]
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15 ..'.-..'-h-
2.61%10° 2 ff' N\
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- TO136 137 138
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2] A ] AT
42X 1075 I\ f'l 5.1% 1073 fz:“' ™
Bolr)h ) 1024 [ ill- 506x 104 g
] i ]
D-—'—‘l—rI—l—'—r}h—'ﬂ """ N=3 5 = 10-24 fi
14- 1 H ] f‘ 3 41 N=5 -J=L-,(‘
3 % 10-2 Aty 196 % 1024,
] i 120130151152133
4% 1072+ v L/ r(47)
-6.% 10724 V
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R () 3 102 'll'| |'l 5.1% 1074 Vs
| f |-| 3.06 % 102 £
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Sekil 3.4. HI a3Z* molekiilii igin radyal dalga fonksiyonlarinda boyutun etkisi

HI a32* molekiilii i¢in ly_; = 0,1,2 durumlarinda ¢ ve bes boyutta agisal dalga
fonksiyonlarmin grafikleri Sekil 3.5’de gosterildi.

g | | L
<l 1 R
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Sekil 3.5. HI a3t molekiilii igin agisal dalga fonksiyonlarinda boyutun etkisi

NaH x1z* molekiili igin n=1,2,3 ve 0 <ly_; <n—1 durumlarinda {i¢ ve bes

boyutta radyal dalga fonksiyonlarinin grafikleri Sekil 3.6’da verildi.
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Sekil 3.6. NaH X'X* molekiilii i¢in radyal dalga fonksiyonlarinda boyutun etkisi
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NaH x*z+* molekiilii i¢in [y_; = 0,1,2 durumlarinda {i¢ ve bes boyutta agisal dalga

fonksiyonlarmin grafikleri Sekil 3.7°de verildi.
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Sekil 3.7. NaH X2+ molekiilii i¢in agisal dalga fonksiyonlarinda boyutun etkisi
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MgH X232* molekiilii igin n=1,2,3 ve 0 <ly_; <n—1 durumlarinda g ve beg

boyutta radyal dalga fonksiyonlarinin grafikleri Sekil 3.8’de verildi.
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Sekil 3.8. MgH X22* molekiilii icin radyal dalga fonksiyonlarinda boyutun etkisi

MgH X2%* molekiilii i¢in Iy_; = 0,1,2 durumlarinda ii¢ ve bes boyutta agisal

dalga fonksiyonlarinin grafikleri Sekil 3.9°da verildi.
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Sekil 3.9. MgH X2Z* molekiiliiniin agisal dalga fonksiyonlarinda boyutun etkisi

HI a32* , NaH X't ve MgH X?2X* iki atomlu molekiiller icin N =3, N =75
boyutta radyal dalga fonksiyonlar1 ¢akisik gibi goriinse de aslinda belirli bir r aralifinda
grafigi inceledigimizde boyut farki goriinmektedir. Ayni n kuantum sayisinda | degerinin
artmasi aradaki farkin belirginlesmesine neden olmaktadir. Bu molekiiller i¢in N = 3 ve
N =5 boyutta acgisal dalga fonksiyonlarmin grafikleri iist iiste gelmis goriinmesine

ragmen belirli 6 araliginda boyutun etkisi analiz edilebilmektedir.

3.3. Kuantum Hamilton-Jacobi Yéntemiyle Makarov Potansiyeli i¢cin N-Boyutta

Spin Simetri Durumunda Dirac Denkleminin Coziimleri

Yiiksek kiiresel koordinatlarda, Makarov potansiyeli

V(r,Oy_y) = 1+ E3rcosOn= (3.3.1)

r r2s5in20p5_4

seklinde tanimlanir. Burada 7, f ve y potansiyeli tanimlayan parametrelerdir. Makarov
potansiyeli, n < 0 durumunda ¢ekici bolgededir ve biitiin r degerleri igin negatiftir; n >
0 durumunda itici bolgededir ve biitiin r degerleri i¢in pozitiftir. Her iki durumda
Makarov potansiyelinin yiizey grafigi Sekil 3.13°de verildi. Yiizey grafigi ¢iziminde
potansiyel parametreleri n = 15, 8 =5 x 107%, ¥ = 20 x 10~* olarak alind.
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(a) (b)

Sekil 3.10. (a) Cekici bolgede (b) itici bélgede Makarov potansiyelinin yiizey grafigi

3.3.1. Yiiksek Kiiresel Koordinatlarda Radyal Enerji Spektrumu ve Dalga

Fonksiyonu

Bu boliimde, yiiksek kiiresel koordinatlarda merkezcil potansiyel icin relativistik
radyal dalga denklemi ¢oziilerek enerji 6zdegeri ve enerji 6zdegerine karsi gelen dalga

fonksiyonu bulundu.

Merkezcil potansiyel, (3.1.19) denkleminde yerine yazildiginda

2+ B2 |+ pp = —n2 -2 - S (3.3.2)

ilor r r2
seklinde elde edilir. Burada kullanilan kisaltmalar

5 E?2—M?c*—Cs(E-Mc?) __ (E+Mc?—Cy) 333
- h2c? v= h2c2 (3.33)

—K

seklinde tanimlanir. (3.3.2) denkleminde

B, = p, + -2 (3.3.4)

r i 2r
tanimi1 kullanildiginda

hopr | ~2 RWIN-DB-N) _ .5 5 .2V a
Ty T T T =—Rx"—h"T -5 (3.3.5)

elde edilir. p, , r = 0 da sonlu kompleks-r diizleminde sabit bir kutup noktasina ve n,

sabit olmayan noktaya sahiptir. Boylece, kuantum momentum fonksiyonu
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S _ hQn (M) b

T i Qn, ) r

+c (3.3.6)

seklinde yazilir. b;’1 bulmak i¢in p,. , r = 0 yakininda Laurent serisine ag¢ildiginda

Br="+a, (3.3.7)

" . 1 . . .
olarak yazilir. Denklem (3.3.7), denklem (3.3.5)’de yerine yazilir ve = li terimlerin

katsayisindan b, elde edilir.

b, = _% + %\/(N —2)2 +4ly_1(ly_1 + N —2) (3.3.8)

(3.3.7) denklemi (3.1.26) denkleminde yerine yazilir ve dalga fonksiyonu r — 0’a

giderken sonlu olmasi gerektiginden
) N—1
by = —ih (Iy_y + =) (3.3.9)
olarak bulunur.

Denklem (3.3.5) denklem (3.3.6)’da yerine yazilir ve r’nin biiyiik degerleri i¢in sabit

terimler esitlenirse
c = tihk (3.3.10)

elde edilir. Dalga fonksiyonu r — oo limitinde sonlu olmasi gerektiginden ¢ = ifik

olarak alinir. Denklem (3.3.9) ve elde edilen ¢ degeri denklem (3.3.6)’da yerine yazilirsa

~_noho (et

T Qe

+ ihK (3.3.11)

seklinde elde edilir. Denklem (3.3.11), denklem (3.3.5)’de yerlestirilir ve x = 2kr

doniistimii uygulanirsa

xQ5 () + Qi () (2 (s +52) = x) + (= (e +52) = 2) Qn, (1) =0 (3.3.12)

2K
genellestirilmis Laguerre [156] diferansiyel denklemielde edilir. Denklem (3.3.12)’den

N-boyutta radyal enerji 6zdegeri

n, = — (g +57) - 2 (3.3.13)

2K

olarak bulunur. Genellestirilmis Laguerre diferansiyel denklemin ¢6ziimii
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Qn, () = LEN-N"2 (2r) (3.3.14)

seklinde elde edilir. Denklem (3.3.11), denklem (3.1.26)’da yerine yazilirsa N-boyutta

normalize olmamis radyal dalga fonksiyonu

N-1
R(r) = Cor'N-1""7 g =r [PtV 9,0 (3.3.15)
seklinde elde edilir. Burada, C, normalizasyon sabitidir. Normalizasyon sabiti
o IR 2dr =1 (3.3.16)

normalizasyon sartindan bulunur. Bu integralin ¢6ziimii i¢in B6liim 3.2.2°de tanimlanan
Laguerre polinomunun diklik bagmtis1 denklem (3.2.52) kullanilirsa normalizasyon

sabiti

1
c [ nyl(2K)2N-1+N ]E
2 7 [(2ly—1 +N-1+2n)T2ly_1 +N—-1+n;)

(3.3.17)

elde edilir. Denklem (3.3.17), denklem (3.3.15)’de yazilir ve gerekli diizenlemeler

yapilirsa N-boyutta normalize edilmis relativistik radyal dalga fonksiyonu

1

= N-1
)2 rlN_1+Te_KrLSle_1+N_2)(ZKT) (3318)

n,1(2i) 2IN-1+N
(ZlN_1+N—1+2nr)F(21N_1+N—1+nT)

R(r) = (
seklinde bulunur.

3.3.2. Yiiksek Kiiresel Koordinatlarda Agisal Enerji Spektrumu ve Dalga

Fonksiyonu

Bu béliimde, yiiksek kiiresel koordinatlarda merkezcil olmayan potansiyel etkisindeki

spin-1/2 pargacik igin relativistik agisal dalga denkleminin ¢éziimleri elde edilecek.

Merkezcil olmayan potansiyel, (3.1.20) denkleminde yerine yazilirsa

cosOn_1

_ b+h%v(B+ycosH) (3319)

sin20

a
E[%_{_(N_Z)

ilody_1 sinfy—4

2
PeN_J + gy, =a

elde edilir. Burada, ayirma sabitleri

a= hle—l(lN—l + N — 2) (3.3.20)
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b = hle—Z(lN—Z + N — 3) = hzm/z (3321)
seklindedir. Denklem (3.3.19)’da ,

cosOy_q

Po-y = Poy_y 3 (N — 2) ooy (3.3.22)
tanimi ve ly_;(ly_1 + N —2) =U'3_4 — i (N —2) kisaltmasi kullanildiginda
/2 (N-2)(3-N) (N-2)?
hapgN 1 2z M +v(B+ycosOn_1) > n
T ooy T Pona = 1| P (33.23)

seklinde elde edilir. Denklem (3.3.23)’de z = cosfy_; donilisiimii uygulanir ve

x(2) =¢(z )—;2(1 = (3.3.24)
pz(2) = —V1—2z%¢(2) (3.3.25)
tanimlart kullanilirsa
12_(N-2)3-N) (N-2)?
hoy(z) _ h% (z%+2 U’ m tv(B+yz)
X + {2 = e e e e (3.3.26)

olarak bulunur. Sonlu kompleks z diizleminde, kuantum momentum fonksiyonu y(z) ,
ng sabit olmayan nokta, z = 1 ve z = —1’ de sabit iki kutup noktasina sahiptir. Boylece,

kuantum momentum fonksiyonu

h Qng(2)
X&) = 25

+c (3.3.27)

olarak yazilir. b;’i bulmak i¢in z =1 noktas1 yakininda y(z) Laurent serisine

acildiginda

2(2) =2+ ag + -+ (3.3.28)
olarak yazilir. Denklem (3.3.28), denklem (3.3.26)’de yerine yazilir ve (2_11)2 terimlerin
katsayisindan

by=-242 \/“V D m? £ v(B +7) (3.3.29)

seklinde elde edilir. Denklem (3.3.29), denklem (3.1.28)’de yerine yazilip gerekli

islemler yapilirsa agisal dalga fonksiyonu
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H(z) = exp (%ff(z)dz) (3.3.30)

olarak bulunur. Denklem (3.3.24), denklem (3.3.28) ve denklem (3.3.29), denklem
(3.3.30)’da yerine yazilarak dalga fonksiyonunun sinir sartlarinda sonlu olmasi

gerektiginden b,

2 2

p, = i _it \/“V D L2 (B +7) (3.3.31)

sekinde alinir.

b; bulmak icin y(z) , z = —1 noktas1 yakininda Laurent serisine agilirsa

2(2) =2+ ag + - (3.3.32)
seklinde yazilir. Denklem (3.3.32), denklem (3.3.26)’de yerine yazilir ve G2
terimlerin katsayisindan

b{=—%iZJm3)+m/+v$ %) (3.3.33)

seklinde elde edilir. Dalga fonksiyonunu H(z), 6 = (z = —1)’de smir sartini

saglamasi igin

b =~ 4~ 4 (2 e+ vg ) (33.34)

olarak alinir. Denklem (3.3.27), denklem (3.3.26)’de yerine yazilir ve her iki taraftaki
esitlikten ¢ =0 bulunur. Denklem (3.3.31), denklem (3.3.34) ve bulunan c¢ degeri
denklem (3.3.27)’de yerlestirildiginde

x(z)=Lbp hlra 1&g (3.3.35)

2i z—-1 2i z+1 i Qne(z)

seklinde elde edilir. Burada, islem kolaylig1 i¢in

p_JW3)+mﬂ+wﬁ+w (3.3.36)

q—Jm3)+mﬂ+vw ¥) (3.3.37)
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olarak alinir. Denklem (3.3.35), denklem (3.3.26)’de yazilir ve z?’li terim katsayilari

esitlenerek N-boyutta agisal enerji 6zdegeri
ng =1y, —W_r_4 (3.3.38)

seklinde elde edilir. Denklem (3.3.35) ve denklem (3.3.38), denklem (3.3.26)’da

yerlestirilir, gerekli diizenlemeler yapilirsa

(1-2%0,,2) +Qn,@D(@—pr—-(q+p+2)2)
+Quy (D) (ng(ng+q+p+1)) =0 (3.3.39)

elde edilir. Denklem (3.3.39), Jacobi diferansiyel [156] denklemidir. Bundan dolayi,

denklem (3.3.39)’un ¢oziimii Jacobi polinomu
Qny (2) = PY?(2) (3.3.40)
olarak bulunur.

Denklem (3.3.35), denklem (3.3.30)’da yerine yazilir ve denklem (3.3.40) kullanilirsa
matematiksel diizenlemeler sonrasinda N-boyutta normalize olmamis agisal dalga

fonksiyonu

{pr1) fg41) 2y—3 p(0.)
H(z)=C(Q—-2z)z (1+2) z (1-2°)4P, " (2) (3.3.41)
seklinde elde edilir. Burada, C, normalizasyon sabitidir. Normalizasyon sabiti
fonH(eN—ﬂd Oy-1=1 (3.3.42)

sartindan bulunur. Denklem (3.3.41), denklem (3.3.42)’de yerine yazilir ve integralin
¢cOzlimii i¢in Bolim 3.2.3’de verilen Jacobi polinomunun diklik bagmtisi denklem

(3.2.82) kullanilarak normalizasyon sabiti

1
_ [ne!@ng+p+q+1)L(ng+p+q+1)]z
CZ - [ 2p+q+1l"(n6+p+1)[‘(n0+q+1) ] (3343)

elde edilir. Denklem (3.3.43), denklem (3.3.41)’de yazilir ve gerekli diizenlemeler

yapilirsa N-boyutta normalize edilmis relativistik acisal dalga fonksiyonu
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1
12ng+p+q+1)T(ng+p+q+1)]z p a
HOn-1) = [nzepwr}fzF?neiq+1)17“1(9nez-)+p‘11) ]2 (1 = cosOy_1)2(1 + cosOy_1)>
2 p®0)
X (sinBN_l)ZPnZ'q (cosOy_1) (3.3.44)
seklinde elde edilir.

3.3.3. N-Boyutta Makarov Potansiyeli Icin Spin Simetri Durumunda Relativistik

Enerji Spektrumu

Bu boliimde, 3.3.1 ve 3.3.2 boliimlerinde elde edilen radyal ve agisal enerji
Ozdegerleri kullanilarak yiiksek kiiresel koordinatlarda Makarov potansiyeli i¢in spin

simetri durumunda relativistik enerji spektrumu bulunacak.

Denklem (3.3.13) ve denklem (3.3.39)

nr+n9:—(lN_1 +%)—g+l1v_1_@_£_g (3345)

olarak yazilir. Denklem (3.3.3), denklem (3.3.45)’de yerine yazilir ve gerekli islemler
yapilirsa N-boyutta Makarov potansiyeli igin spin simetri durumunda relativistik enerji

spektrumu

_ u? E+Mc?-cCg
h2c2 E-Mc?

172
1 [ (n—-3)? 2 E+Mc®—C, (N—3)2 2 E+Mc—C, \? Erm—c\2 \°
+$< , Mot T B+ \/( PR O ﬁ) -7 ( h2c? ) ) ] (3'3'46)

= 4[(n, +n, + 1)

seklinde elde edilir. Bu relativistik enerji spektrumu, N = 3 i¢in C; = 0 durumunda
Touloum ve arkadaslar1 [61] tarafindan elde edilen enerji spektrumuna indirgenmektedir.
Burada C; = 0 durumunda ve ¢ — oo limitinde denklem (3.3.46), N-boyutta non-
relativistik enerji spektrumuna indirgenir ve bu sonu¢ Durmus ve Ozfidan [43]'1n

caligsmasini saglamaktadir.
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3.3.4. Kiiresel ve Kutupsal Koordinatlarda Acisal Dalga Fonksiyonlarinin Olasihik

Dagilimlarn

Bu boliimde, Makarov potansiyeli etkisindeki spin-1/2 parcacik igin N =3 ve N =
5 boyutta kiiresel ve kutupsal koordinatlarda agisal dalga fonksiyonlarinin olasilik
dagilimlarinin grafikleri ¢izildi. Grafik ¢iziminde, denklem (3.3.3)’de tanimlanan v = 1
degeri i¢in denklem (3.3.36), denklem (3.3.37) diizenlenerek denklem (3.3.44)’de yerine
yazildi. Merkezcil olmayan potansiyeldeki parametreler g = 0.75, y = 0.25 alinarak
N = 3 boyut i¢in Sekil 3.14 ve N =5 boyut igin Sekil 3.15’deki grafikler elde edildi.
Grafikler incelendiginde bes boyutlu sistemdeki olasilik dagilimlarimin ¢ boyutlu
sistemden farkli sonuglar verdigi goriilmektedir. Bu dagilimlarda boyut artis1 kiiresel
bogum yiizey ¢apinin azalmasina ve agisal dalga fonksiyonlarinda genligin artmasina

neden olmustur.

-1 08 06 04 02 0 02 04 06 08
X

(© (d)
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Sekil 3.11. (a) ve (b) ng =0, (c)ve (d) ng =1, (e) ve (F) ng =2, (g) ve (h) ng =3
durumunda N = 3 ig¢in kiiresel ve kutupsal koordinatlarda agisal dalga
fonksiyonlarmin olasilik dagilimlar

(a) (b)



111

2 15 4 05 0 05 1 15
X
(d)
5
4
3
2
1
=0
El
2
3
4
5
5 4 2 0 2 4
X
@) )
15
10
5
N >0
5
-10
15
15 10 5 0 5 10 15
X
(h)

Sekil 3.12. (@) ve (b) ng =0, (c)ve(d)ng =1, (e) ve () ng =2, (g) ve (h) ng =3
durumunda N =5 igin kiiresel ve kutupsal koordinatlarda agisal dalga
fonksiyonlariin olasilik dagilimlar



4. BOLUM

TARTISMA-SONUC ve ONERILER

Bu tez calismasinda, kiiresel simetrik olmayan kuantum sistemler ele alindi. Yiiksek
kiiresel koordinatlarda, Hartmann, merkezcil olmayan Morse ve merkezcil olmayan
Manning-Rosen potansiyel alanlarinda spin-0 pargaciklarin etkilesimleri asimptotik
iterasyon metodu ile arastirildi. Diger taraftan, N-boyutta spin-1/2 parcacigin relativistik
davraniglarina double ring-shaped Kratzer ve Makarov potansiyelinin etkisi kuantum
Hamilton-Jacobi formalizmiyle incelendi. 1k olarak, asimptotik iterasyon metodu ve
kuantum Hamilton-Jacobi yontemi anlatildi. Yiiksek kiiresel koordinatlarda gradyent
operatoriiniin genellestirilmesi verildi. Daha sonra, genellestirilmis agisal momentum
operatorleri tanimlanarak N-boyutta Laplasyen elde edildi. Ayni zamanda,
genellestirilmis agisal momentum operatdrlerinin 6zdegerleri ve 6zfonksiyonlart Louck
[10-12] ve Chatterjee [141]’nin ¢alismalari temel alinarak bulundu. Bu ¢alismanin ikinci
boliimiinde, yiiksek kiiresel koordinatlarda skaler ve vektor potansiyellerinin esit oldugu
durumda Kilein-Gordon denklemi elde edildi. Daha sonra, N-boyutta Hartmann
potansiyeli i¢in relativistik enerji spektrumu ve dalga fonksiyonu bulundu. Yiiksek
kiiresel koordinatlarda relativistik durumda Hartmann potansiyeli igin tekrarlama
bagintilar1 elde edilerek radyal beklenen degerler ifade edildi. N-boyutlu sistemde
boyutun etkisini analiz etmek amaciyla Hartmann potansiyeli alanindaki hidrojen
molekiilii i¢in relativistik enerjinin degerleri iki, ti¢ ve dort boyutta hesaplandi. Teorik ve
deneysel olarak genis 6l¢iide ¢aligilan taban durumunda hidrojen molekiilii hesaplamalari
kontrol etmek i¢in kullanilan en temel sistemlerden biridir. Bundan dolay1, bu molekiil
icin kiiresel ve kutupsal koordinatlarda agisal olasilik dagilimlarinda boyutun etkisi
arastirildi. Bu arastirmanin sonucunda, n = 1 ve farkli ny durumlarinda daha yiiksek
boyutlarin agisal dalga fonksiyonlarinin genliginde artisa neden oldugu belirlendi. Bunun

anlami, dort ve bes boyutlu sistemlerin ng = 2 ve ng = 3 icin hidrojen molekiiliiniin
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acisal olasilik dagilimlarinda {i¢ boyutlu sistemden 6nemli Ol¢iide farkli sonuglar
vermesidir. Diger taraftan, yiiksek kiiresel koordinatlarda merkezcil olmayan Morse
potansiyeli i¢in [ # 0 durumunda Klein-Gordon denkleminde Pekeris yaklagimi
kullanilarak ¢oziimler arastirildi. Ca, XX+, Sr, X12%, Sr, A1Z* ve MgCaX'E* toprak
alkali metal iki atomlu molekiillerin etkisinde merkezcil olmayan Morse potansiyelinin
ylizey grafikleri ¢izilerek bu molekiillere acisal katkinin etkisi kapsamli olarak incelendi.
Sonug olarak, merkezcil olmayan potansiyeldeki parametrelerin farkli degerler almasi
durumunda aginin potansiyelin yiizey grafigindeki etkisi gosterildi. Toprak alkali metal
grubu iki atomlu molekiilleri i¢in elde edilen sonug¢lardan Pekeris yaklasiminin atomlar
arasindaki denge uzakliginda daha gegerli oldugu gézlendi. Bu molekiillerin relativistik
titresim frekanslart hesaplandi. Teorik olarak elde edilen bu sonuglar literatiirdeki
deneysel RKR degerleriyle tutarlilik gosterdi. RKR sonuglara en yakin degerlerle
yaklasan uyarilmis durumda strontiyum molekiiliidiir. Iki atomlu molekiillerin titresim
hareketi molekiil fiziginde 6nemli oldugundan dolay1 elde edilen sonuglar bu alanda
calisan arastirmacilara katki saglayacaktir. Ikinci bélimde son olarak ele alinan
merkezcil olmayan Manning-Rosen potansiyelidir. Bu potansiyel i¢in yiiksek kiiresel
koordinatlarda ¢oziimler Greene-Aldrich yaklasikligi kullanilarak asimptotik iterasyon
yontemiyle elde edildi. Hulthen potansiyeli, Manning-Rosen potansiyelinin 6zel
durumudur. Bundan dolay1, Hulthen potansiyeli i¢in N-boyutlu uzayda agisal momentum
katkili yaklasik ¢6ziimlerde bulundu. Manning-Rosen potansiyeli i¢in elde edilen N
boyutta relativistik enerji degeri ¢ — oo limitinde non-relativistik enerjiye indirgenerek
2p, 3p, 3d, 4p, 4d, 4f, 5p ve 5d durumlarinda enerjinin atomik birimde degerleri
hesaplandu. iki, ii¢ ve dort boyut icin bu enerji degerleri literatiirdeki calismalarda farkli
metodlarla elde edilen sonuglarla uyum saglamaktadir. Manning-Rosen potansiyeli i¢in
(r=2) beklenen degeri Hellmann-Feynmann teoremiyle elde edildi ve bu beklenen
degerin farkli kuantum durumlari i¢in niimerik degerleri hesaplandi. Beklenen degerler,
fiziksel nicelikleri hesaplarken kullanilmaktadir. Son yillarda, kuantum mekanik
sistemlerin bilgi teorisi lizerine yapilan ¢aligmalar artis gostermektedir. Bu sistem bir¢ok
teknolojik gelismeler i¢in temel olusturmaktadir. Kuantum sisteminde 6zellikle Shannon
entropisi ve Fisher bilgisi, her bir mesaj1 igeren bilginin beklenen degeri olarak goriiliir.
Bu nedenle, bu calismada elde edilen beklenen degerler entropi hesabinda kullanilabilir.
Yiiksek kiiresel koordinatlarda Klein-Gordon denkleminin ¢6ziimii i¢in asimptotik

iterasyon yontemi etkin bir hesaplama metodudur. Ayni zamanda, merkezcil olmayan
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potansiyel etkisindeki goreli kuantum sistemini dogru olarak analiz etmemizi saglayan
sistematik bir yontemdir. Tez g¢alismasimnin tgilincii boliimiinde ilk olarak kuantum
Hamilton-Jacobi yonteminde incelenen N-boyutta spin simetri durumunda Dirac
denklemleri elde edildi. Yiiksek kiiresel koordinatlarda double ring-shaped Kratzer
potansiyeli etkisindeki spin-1/2 pargacik i¢in ¢6ziimler analitik olarak arastirildi. Bu
potansiyel i¢in N-boyutta spin simetri durumunda enerji spektrumu N = 3 boyutta
merkezcil olmayan parametrelerinin farkli degerler almasi durumunda spin-1/2 pargacik
icin relativistik donme-titresim enerji degerleri hesaplandi. Ayrica, C; = 0 igin  N-
boyutta skaler ve vektor potansiyellerinin esit oldugu durumda relativistik enerji
spektrumu elde edildi. N =3 ve N =5 alimarak HIla32*, NaH X'zt MgH X2z*
molekiilleri i¢in relativistik enerji degerleri hesaplandi. Bu iki atomlu molekiiller i¢in
Iy-1 =0,1,2 durumlarinda radyal ve agisal dalga fonksiyonlarinda boyutun etkisi
gosterildi. N-boyutta Makarov potansiyeli ig¢in spin simetri durumunda Dirac
denkleminin ¢oziimleri kuantum Hamilton-Jacobi ydntemiyle elde edildi. Uzerinde
calistigimiz bu potansiyel icin N = 3, N = 5 boyutta a¢isal dalga fonksiyonunun kiiresel
ve kutupsal koordinatlarda olasilik dagilimlariin grafikleri ¢izildi. Olasilik dagilimlari
atom ve molekiil, kuantum gibi fizigin bir¢ok alaninda ilgilenilen bir konudur. Bu
nedenle, Hartmann ve Makarov potansiyel alanlarinda hareket eden spin-0 ve spin-1/2
parcaciklar icin farkli boyutlarda olasilik dagilimlarmin arastirilmast 6nem arz
etmektedir. 1lk defa bu tez ¢alismasinda, yiiksek kiiresel koordinatlarda tam olarak
¢oziilebilen potansiyeller kuantum Hamilton-Jacobi yontemiyle ele alindi. Bundan
dolay1, bu ¢alismamiz N-boyutlu uzayda kuantum Hamilton-Jacobi yontemi ile farkli

potansiyel alanlarini incelemek icin literatiirde temel olusturacaktir.
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