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N-BOYUTTA SPİN-0 VE SPİN-1/2 PARÇACIKLARIN RELATİVİSTİK 

DAVRANIŞLARINA MERKEZCİL OLMAYAN POTANSİYELLERİN ETKİSİ 

                                                             Aysel ÖZFİDAN 

                               Erciyes Üniversitesi, Fen Bilimleri Enstitüsü 

                                         Doktora Tezi, Mayıs 2018 

                                   Danışman: Doç. Dr. Ayşen DURMUŞ 

                                                            ÖZET 

N-boyutta küresel simetrik olmayan alanda hareket eden spin-0 ve spin-1/2 parçacıklar 

için relativistik dalga denklemlerinin analitik çözümleri asimptotik iterasyon metodu ve 

kuantum Hamilton-Jacobi formalizmi ile araştırıldı. Yüksek küresel koordinatlarda, 

Hartmann potansiyeli için Klein-Gordon denkleminin çözümleri asimptotik iterasyon 

metodu (AİM) çerçevesinde elde edildi. Merkezcil olmayan potansiyel alandaki hidrojen 

molekülünün açısal olasılık dağılımları N-boyutta kapsamlı olarak incelendi. Aynı 

zamanda, relativistik teoride Hartmann potansiyeli için N-boyutta radyal beklenen 

değerler bulundu. Yüksek küresel koordinatlarda, merkezcil olmayan Morse ve merkezcil 

olmayan Manning-Rosen potansiyelleri ile etkileşen spin-0 parçacıkları için relativistik 

dönme-titreşim enerjileri, normalize dalga fonksiyonları AİM ile elde edildi. Merkezcil 

olmayan Morse potansiyelini kullanarak modellenen toprak alkali iki atomlu 

moleküllerin relativistik titreşim frekansları hesaplandı ve elde edilen sonuçlar Rydberg-

Klein-Rees (RKR) deneysel verileriyle karşılaştırıldı. Farklı boyutlu sistemlerde, 

Manning-Rosen potansiyeli için relativistik olmayan enerji özdeğerlerinin nümerik 

değerleri verildi. Diğer taraftan, N-boyutta double ring-shaped Kratzer ve Makarov 

potansiyelleri için spin simetri durumunda Dirac denkleminin bağlı durum çözümleri 

kuantum Hamilton-Jacobi formalizmiyle incelendi. Double ring-shaped Kratzer 

potansiyeli için bağlı durum relativistik enerjileri üzerinde açıya bağlı potansiyel 

parametrelerinin etkisi araştırıldı. Merkezcil olmayan potansiyel alanda, iki atomlu 

moleküller için relativistik dalga fonksiyonları üzerinde boyutun etkisi tartışıldı. Makarov 

potansiyeli etkisindeki spin-1/2 parçacığın küresel ve kutupsal koordinatlarda açısal 

dalga fonksiyonlarının olasılık dağılımları üç ve beş boyutlu sistemlerde incelendi. 

Anahtar Kelimeler: Merkezcil olmayan potansiyeller, Yüksek küresel koordinatlar, 

Asimptotik iterasyon metodu, Kuantum Hamilton-Jacobi formalizmi, Dirac denklemi, 

Klein-Gordon denklemi, Açısal Olasılık Dağılımları, İki atomlu moleküller 
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EFFECT OF NON-CENTRAL POTENTIALS TO RELATIVISTIC 

BEHAVIOURS OF SPIN-0 AND SPIN-1/2 PARTICLES IN N-DIMENSIOINS 

 

                                                     Aysel ÖZFİDAN 

            Erciyes University, Graduate School of  Natural and Applied Sciences 

                                                  Ph.D. Thesis, May 2018 

                                 Supervisor: Assoc. Prof. Dr. Ayşen DURMUŞ 

                                                         ABSTRACT 

Analytical solutions of relativistic wave equations for spin-0 and spin-1/2 particles 

moving in N-dimensional spherically non-symmetrical field are investigated with 

asymptotic iteration method and quantum Hamilton-Jacobi formalism. Solutions of 

Klein-Gordon equation for Hartmann potential in hyperspherical coordinates are obtained 

within the framework of asymptotic iteration method (AIM). The angular probability 

distributions of hydrogen molecule in non-central potential field in N-dimensions are 

examined in detail. N-dimensional radial expectation values for Hartmann potential are 

also found in relativistic theory. In hyperspherical coordinates, relativistic rovibrational 

energies, the normalized wavefunctions for spin-0 particles interacting with non-central 

Morse and non-central Manning-Rosen potentials are obtained with AIM. Relativistic 

vibratinal frequencies of the alkaline earth diatomic molecules modeled with non-central 

Morse potential are calculated and the results are compared with the Rydberg-Klein-Rees 

(RKR) data. Numerical calculations of non-relativistic energy eigenvalues for Manning-

Rosen potential in different dimensional systems are introduced. On the other hand, 

bound state solutions of the Dirac equation under condition of spin symmetry for double 

ring-shaped Kratzer and Makarov potentials in N-dimensions are investigated via 

quantum Hamilton-Jacobi formalism. The influence of the angle-dependent potential 

parameters on the bound state relativistic energies are probed for double ring-shaped 

Kratzer potential. The effect of dimension on the relativisic wavefunctions for diatomic 

molecules in non-central potential field are discussed. Angular probability distributions 

in spherical and polar coordinates of spin-1/2 particle in the presence of Makarov 

potential are investigated in three and five dimensional systems. 

Keywords: Non-central potentials, Hyperspherical coordinates, Asymptotic iteration 

method, Quantum Hamilton-Jacobi formalism, Dirac equation, Klein-Gordon equation,  

Angular probability distributions, Diatomic molecules 
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                                                                       GİRİŞ 

 
      Bir parçacık kuvvetli bir potansiyel alanda hareket ettiği zaman relativistik etkiler 

ortaya çıkar. Relativistik etkiler hesaba katılırsa parçacığın hareketi Klein-Gordon, Dirac 

ve Duffin-Kemmer-Petiau dalga denklemleriyle tanımlanır [1]. Klein-Gordon dalga 

denklemi ilk olarak 1926 yılında Klein [2], Fock [3] ve Gordon [4] tarafından yazıldı. 

Pion, mezon ve kaon gibi spin-0 mikroskobik parçacıkların davranışını tanımlamak için 

bu relativistik dalga denklemi kullanılır. Dirac [5], elektronların ve diğer spin-1/2 

parçacıkların özelliklerini tanımlayan relativistik dalga denklemini 1928’de önerdi. Dirac 

dalga denklemi relativistik kuantum mekaniğinde en sık kullanılan denklemdir. Bu 

denklemin fizik ve matematiği oldukça kapsamlıdır. Dirac denklemi relativistik olmayan 

durumda açıklanamayan farklı fiziksel olayları aydınlatmıştır. Bu denklem, parçacıkta 

spinin varlığını ortaya koymuştur. Aynı zamanda, Dirac dalga denklemi sayesinde 

modern teorik fiziğin en büyük başarılarından biri olan pozitronun keşfinden önce varlığı 

öngörülmüştür. Duffin-Kemmer-Petiau [6-9] dalga denklemi spin-0 ve spin-1 

parçacıkların hareketini tanımlamaktadır. 

      Atom ve molekül fiziği,  kuantum optiği,  katıhal fiziği ve nükleer fizik gibi alanlarda  

N  boyutlu  uzayda fiziksel problemleri ele almak önemlidir. Yüksek koordinatlarda dalga 

denklemleri hakkında yapılan tüm çalışmalar genelleştirilmiş yörüngesel açısal 

momentuma dayandırılır. İlk olarak Louck, tam çözülebilir model olan harmonik osilatör 

potansiyel ile çalıştı [10-12]. Aslında, bu genelleme Appel, Fock, Bargmann, 

Sommerfeld gibi birçok araştırmacı tarafından yapılan daha önceki çalışmalara 

dayanmaktadır [13-16]. Louck’ın çalışmalarını takiben, de Broglie ve çalışma arkadaşları 

[17], daha yüksek boyutlu harmonik osilatör ve moleküler titreşimi analiz etmek için 

temel olarak yüksek küresel harmonikleri önerdi. Bu çalışmada, Minkowski uzayında 

relativistik genişletilmiş yapılar olarak temel parçacıkların döndürücü modelini göz 

önüne aldılar. Bu varsayımın altında “temel parçacıklar nokta benzeri yapıda değildir 

bundan ziyade Minkowski uzayında genişletilmiş yapıdadırlar” prensibi bulunmaktadır. 
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İki yıl sonra Granzow [18], N-boyutlu uzayda ortogonal kutupsal koordinat sistemleri 

üzerine çalışmasını yayınladı ve toplam yörüngesel açısal momentum operatörü için tam 

ve açık gösterimleri çalışmasında açıkladı. Aynı zamanda, çalışmasında kutupsal 

koordinattan kartezyen koordinata dönüşümü ispatladı ve kartezyen koordinatta 𝑥𝑛  

terimini kuantum sisteminde dalga fonksiyonu olarak yorumladı. Çalışmaları 

genelleştirilmiş açısal momentum teorisine dayanan Bergmann ve Frishman [19], dalga 

denklemleri ve dalga fonksiyonları üzerinde temel dönüşümler yaparak hidrojen atomu 

ve harmonik osilatör arasında ilişki kurdular. Cizek, Paldus, Kostelecky’nin ve daha 

birçok araştırmacının çalışmalarında vardıkları sonuç  N-boyutta çalışmak gerçek fiziksel 

sistemleri tanımlamak için çok önemlidir [20]. Bu nedenle fiziksel problemlerin N-

boyutlu uzayda incelenmesi fiziğin birçok alanında önemli rol oynar. 

      Merkezcil olmayan potansiyeller fizik ve kimyanın birçok alanında önemli rol 

oynamaktadır. Küresel simetrik olmayan sistemlerin  kuantum dinamiğini  açıklamak için  

bu potansiyeller yardımcı olur. Elde edilen sonuçlar kullanılarak gerçek fiziksel 

sistemlerin enerji spektrumu bulunur. Merkezcil olmayan potansiyeller  nanoyapılar ve 

saçılma teorisi, benzen gibi halka şeklinde moleküllerin incelenmesi, katıların yapısal 

özelliklerinin anlaşılması, çok bileşenli metalik camların yapısal ve dinamik özelliklerini 

tanımlayan modellerin geliştirilmesinde çalışılır [21-26]. Fiziksel öneminden dolayı bu 

potansiyeller için relativistik dalga denklemlerinin analitik çözümleri teorik fizikçilere 

katkı sağlamaktadır. 

      Kuantum mekaniğinde tam olarak çözülebilen potansiyellerden biri olan Hartmann 

potansiyeli, halkalı polien ve benzen gibi molekülleri çalışmak için 1972’de önerildi [27]. 

Böylece, birçok araştırmacı Hartmann moleküler potansiyel üzerine çalışmaya yöneldi. 

Literatürde,  bu potansiyel için relativistik olmayan enerji seviyeleri standart metodla elde 

edilmiştir [28]. Sonra, bu metodun dışında path integral yaklaşımı [29-30], süpersimetri 

ve ayar değişmezliği [31-33], Kustaanheimo-Steifel (KS) dönüşümü [34-35] ve dinamik 

grup teori yöntemiyle [36-39] çözümler üzerine çalışılmıştır. Aynı zamanda, Hartmann 

potansiyeli etkisindeki bir parçacık için üç boyutta relativistik bağlı ve saçılma 

durumlarında çözümler mevcuttur [40-42]. N-boyutta Hartmann potansiyeli için 

Schrödinger denkleminin çözümleri asimptotik iterasyon metoduyla Durmuş ve Özfidan 

[43] tarafından elde edildi. Bu tez çalışmasında, N-boyutta Hartmann potansiyel 

etkisindeki spin-0 parçacık için skaler ve vektör potansiyellerinin eşit olduğu durumda 
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çözümler aynı metodla araştırıldı. 1973 yılında, Hautot [44] çalışmasında bir grup 

merkezcil olmayan potansiyel önerdi. Daha sonra, bu çalışmadaki potansiyellerin üç 

boyutta relativistik olmayan [45] ve relativistik [46-50] dalga denklemlerinin çözümleri 

yapılmıştır. Bu çalışmada ise Hautot’un önerdiği potansiyellerden ikisi ele alınarak N-

boyutta Klein-Gordon denkleminin çözümleri incelendi. Makarov potansiyeli 1967’de 

önerildi [51]. Bu potansiyel genel bir potansiyeldir. Bundan dolayı, potansiyeldeki 

parametrelerin özel durumlarının alınmasıyla Coulomb, Aharonov-Bohm ve Hartmann 

potansiyeli elde edilir. Literatürde,  bu potansiyel için küresel koordinatlarda relativistik 

olmayan dalga denklemlerinin çözümleri Nikiforov-Uvarov [52-53], süpersimetri ve ayar 

değişmezliği [54], Laplace dönüşümü [55] ve asimptotik iterasyon yöntemiyle [56] 

çalışılmıştır. Diğer taraftan, üç boyutta relativistik parçacık için enerji spektrumu 

faktorizasyon metodu [57], Nikiforov-Uvarov [58-59] ve Laplace dönüşümü [60] ile elde 

edilmiştir. Aynı zamanda, kuantum Hamilton-Jacobi yöntemiyle skaler ve vektör 

potansiyellerinin eşit olduğu koşulda küresel koordinatlarda Makarov potansiyeli için 

Dirac denklemi çözülmüştür [61]. N-boyutta Makarov potansiyeli etkisindeki relativistik 

olmayan parçacık için çözümler asimptotik iterasyon metoduyla Durmuş ve Özfidan [43] 

tarafından elde edilmiştir. Bu çalışmada ise, yüksek küresel koordinatlarda Makarov 

potansiyeli için spin simetri durumunda Dirac denkleminin çözümü kuantum Hamilton-

Jacobi formalizmiyle incelendi. 

      Kratzer potansiyeli 1920’de Kratzer tarafından önerildi [62]. Bu potansiyel,  kuantum 

kimyasında iki atomlu moleküllerin yapılarının ve etkileşimlerinin tanımlanmasında 

önemli olduğundan dolayı birçok çalışmada ele alınmıştır [63-68]. Literatürde, double 

ring-shaped Kratzer potansiyeli için küresel koordinatta çalışmalar mevcuttur. Durmuş 

ve Yaşuk [63] bu potansiyel için Klein-Gordon ve Schrödinger denkleminin çözümlerini 

AİM, Arda ve Sever [55] Schrödinger denkleminin çözümlerini Laplace dönüşümü, 

Oyewumi ve arkadaşları [69] spin ve pseudospin simetri durumunda Dirac denkleminin 

çözümlerini AİM, Kasri ve Chetouani [70] Schrödinger denkleminin çözümlerini tam 

kuantumlanma yöntemi ile elde etti. Gharbi ve çalışma arkadaşları [71], double ring-

shaped Kratzer potansiyeli için küresel koordinatta Klein-Gordon denkleminin 

çözümlerini kuantum Hamilton-Jacobi yöntemi kullanarak buldu. Bu çalışmada da, aynı 

potansiyel için N-boyutta spin simetri durumunda Dirac denkleminin çözümleri kuantum 

Hamilton-Jacobi yöntemiyle araştırıldı. 
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      Moleküller arasındaki titreşim hareketi yay benzeri geri çağırıcı kuvvet özelliği 

gösterip Hooke kanunuyla açıklanır. Fakat, bu varsayım denge konumundan küçük 

yerdeğiştirmeler söz konusu olduğunda geçerlidir. İki atomlu moleküllerin gerçek 

davranışı tam olarak harmonik değildir. Bundan dolayı, r’nin büyük değerlerinde 

moleküller ayrışır, birbirlerinden etkilenmezler ve kuvvet sabiti sıfır olur. Potansiyel 

enerjide değişim olmadan r sonsuza doğru arttırılabilir. Böylece, potansiyel enerji eğrisi 

ayrışma enerjisi potansiyele eşit olduğunda düzleşir. Ayrışma enerjisi, kuvvet sabiti sıfıra 

yaklaştığında moleküller arasındaki bağ gittikçe zayıflar. Bu durumda en uygun 

modelleme harmonik olmayan Morse potansiyel fonksiyonuyla yapılır. Bu nedenle,  

moleküler fizikte temel oluşturan Morse potansiyeli birçok çalışmada araştırmacılar 

tarafından ele alınmıştır [72-76]. Bu potansiyel Morse tarafından 1929’da önerildi [77]. 

Morse potansiyeli faktorizasyon metodu [78-81], süpersimetri yaklaşımı [82-83], Green 

fonksiyon yaklaşımı [84] gibi farklı metodlar kullanılarak çözülebilmektedir. Morse 

potansiyeli için  𝑙 = 0 durumunda Schrödinger denkleminin çözümleri elde edilmiştir 

[85-86]. Fakat 𝑙 ≠ 0 durumu karmaşık olduğundan dolayı dalga denklemi sadece 

pertürbasyon ve yaklaşım yapılarak çözülebilir. Relativistik veya non-relativistik dalga 

denklemini çözmek için en iyi yaklaşımlardan biri Pekeris metodudur. Bu metod,  1934’te 

Pekeris tarafından önerildi [87]. Morse potansiyeli için N-boyutta Schrödinger denklemi 

seriler [88], Laplace dönüşümü [89] ve N-boyutta Klein-Gordon denklemi [90] ile 

çözümleri mevcuttur. Aynı zamanda, üç boyutta relativistik ve non-relativistik dalga 

denklemlerinin çözümleri asimptotik iterasyon metoduyla incelenmiştir [91-94].  Bu tez 

çalışmasında, Morse potansiyeli için yüksek küresel koordinatlarda Klein-Gordon 

denkleminin yaklaşık çözümleri asimptotik iterasyon metoduyla elde edildi. Bu 

çalışmada ele alınan bir diğer merkezcil potansiyel Manning-Rosen potansiyelidir. Bu 

potansiyel, 1932’de Manning-Rosen tarafından önerildi [95-96]. Üstel fonksiyonlu 

potansiyel varlığında Klein-Gordon denklemi 𝑙 = 0  olduğunda analitik olarak çözülebilir 

[97-98]. Fakat, herhangi bir 𝑙 durumunda yaklaşım kullanmadan denklemi çözmek 

mümkün değildir. Bu nedenle, relativistik dalga denklemini çözmek için Greene-Aldrich 

[99] yaklaşımı kullanılır. Literatürde, Manning-Rosen potansiyeli için yüksek küresel 

koordinatlarda Schrödinger denkleminin çözümleri Nikiforov-Uvarov [100], 

kuantumlanma metodu [101]; küresel koordinatlarda Schrödinger  denkleminin 

çözümleri standart metod [102-104], Nikiforov-Uvarov [105-107], GPS [108], AİM 

[109] ve Klein-Gordon denkleminin çözümleri [110] mevcuttur. Bu çalışmada ise 
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Manning-Rosen potansiyeli için  N-boyutta Klein-Gordon denkleminin çözümleri aynı 

metodla elde edildi. Manning-Rosen potansiyeli Hulthén potansiyeline indirgenmektedir. 

Böylece, Hulthén potansiyeli etkisindeki spin-0 parçacık için N boyutlu relativistik bağlı 

durum çözümleride bulundu. 

      Bu tez çalışmasında, farklı potansiyeller için çözümlerin elde edilmesinde kullanılan 

yöntemlerden biri asimptotik iterasyon metodudur. Bu yöntem, ikinci mertebeden lineer 

homojen diferansiyel denklemleri çözmek için Çiftçi ve arkadaşları tarafından 

önerilmiştir [111-114]. Asimptotik iterasyon yöntemi, merkezcil ve merkezcil olmayan 

potansiyellerle etkileşen relativistik ve relativistik olmayan parçacıklar için çözümlerin 

etkin ve sistematik olarak elde edilebilmesinde yardımcı olmaktadır. Yüksek küresel 

koordinatlarda Hartmann potansiyeli, merkezcil olmayan Morse ve merkezcil olmayan 

Manning-Rosen potansiyeli etkisindeki spin-0 parçacık için Klein-Gordon dalga 

denkleminin çözümleri bu yöntemle araştırıldı. Diğer taraftan, yüksek küresel 

koordinatlarda double ring-shaped Kratzer ve Makarov potansiyeli için spin simetri 

durumunda Dirac dalga denkleminin çözümleri Leacock ve Padgett [115-116]  tarafından 

önerilen kuantum Hamilton-Jacobi yöntemiyle incelendi. Bu formalizm, kuantum 

mekaniğinde tam olarak çözülebilen potansiyellerin enerji spektrumunu belirlemek için 

kullanılan etkin bir yöntemdir. Bir boyutlu [117-118],  iki boyutlu merkezcil potansiyeller 

[119], merkezcil olmayan potansiyeller [120] ve üç boyutlu merkezcil potansiyeller [121] 

için kuantum Hamilton–Jacobi metoduyla çözümler literatürde mevcuttur. Kapoor ve  

arkadaşları [122] bu yöntemi geliştirerek tam kuantizasyon koşulunu kullanmadan hem 

enerji özdeğerlerini hem de enerji özfonksiyonlarını elde etmişlerdir. Tam kuantizasyon 

koşulunu kullanmadan küresel koordinatta tam olarak çözülebilen potansiyeller için 

çözümler  mevcuttur [123-124].  

     Bu çalışmada, merkezcil olmayan potansiyel etkisindeki göreli kuantum sistemi için 

yüksek küresel koordinatlarda Klein-Gordon ve Dirac denklemlerinin bağlı durumda 

analitik çözümleri araştırılacaktır. N-boyutta küresel simetrik olmayan potansiyel alanda 

hareket eden spin-0 ve spin-1/2 parçacıkların tam çözümlerinin doğru bir şekilde elde 

edilmesi amaçlanmaktadır. Yüksek küresel koordinatlarda, Hartmann, merkezcil 

olmayan Morse ve merkezcil olmayan Manning-Rosen potansiyelleri için Klein-Gordon 

dalga denkleminin çözümleri etkin ve sistematik olarak asimptotik iterasyon metoduyla 

elde edilecektir. Farklı boyutlu sistemlerde, iki atomlu moleküller için relativistik 
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titreşim-dönme enerjisinin değerleri bulunarak kullanılan metodun geçerliliği tespit 

edilecektir. Diğer taraftan, yüksek küresel koordinatlarda double ring-shaped Kratzer ve 

Makarov potansiyelleri etkisindeki spin-1/2 parçacık için spin simetri bağlı durum 

çözümleri kuantum Hamilton-Jacobi yöntemiyle incelenecektir. Böylelikle, kuantum 

Hamilton-Jacobi formalizminin merkezcil olmayan potansiyeller için küresel 

koordinatlarda relativistik dalga denklemlerinin çözümlerinin yanısıra N-boyutta 

relativistik dalga denklemlerinin analitik çözümlerinin elde edilebileceğini göstermek 

hedeflenmektedir. Double ring-shaped Kratzer potansiyeli için spin simetri bağlı durum 

relativistik enerjileri üzerinde açıya bağlı potansiyel parametrelerinin ve iki atomlu 

moleküller için relativistik dalga fonksiyonları üzerinde boyutun etkisi araştırılacaktır. 

Makarov potansiyeli için küresel ve kutupsal koordinatlarda açısal dalga fonksiyonlarının 

olasılık dağılımları farklı boyutlarda incelenecektir. 

      Bu tez çalışmasının ilk bölümünde kullanılan yöntemler, yüksek küresel 

koordinatlarda gradyent ve laplasyenin nasıl elde edildiği anlatıldı. İkinci bölümde, 

yüksek küresel koordinatlarda skaler ve vektör potansiyellerinin eşit olduğu durumda 

Klein-Gordon denklemlerinin çıkarılışı verildi. Spin-0 parçacık için çözümler asimptotik 

iterasyon metoduyla araştırıldı. İlk olarak, N-boyutta Hartmann potansiyeli etkisindeki 

hidrojen molekülü için relativistik enerji spektrumu ve dalga fonksiyonu elde edildi.  𝐻2 

molekülünün küresel ve kutupsal koordinatlarda açısal olasılık dağılımları üzerinde 

boyutun etkisi detaylı bir şekilde araştırıldı. Relativistik durumda, N-boyutta Hartmann 

potansiyeli için köşegen matris elemanları ve bu matris elemanlarının analitik ifadeleri 

arasındaki tekrarlama bağıntıları elde edildi. Beklenen değerler  ⟨𝑛𝑙|𝑟𝑠|𝑛𝑙⟩  ,  −4 ≤ 𝑠 ≤

4  aralığı için bulundu. Beklenen değerler, diğer fiziksel nicelikleri hesaplamakta 

kullanıldığından önemlidir. Örneğin, Kirkwood [125] ve Buckhingam [126] 

çalışmalarında 𝑠 ≥ 1 için 〈𝑟𝑠〉 ifadelerini atomların kutuplanmasını hesaplamada 

kapsamlı olarak kullanmıştır.  〈𝑟−1〉  ve  〈𝑟2〉  ifadeleri hidrojen gibi atomlar  ve izotropik 

harmonik osilatörler için potansiyelin ortalama değerinin doğrudan sonucunu verir. Aynı 

zamanda,  〈𝑟−1〉  diamanyetik perdeleme sabitini hesaplamada kullanılır [127-128].  

〈𝑟−2〉 ise son zamanlarda çalışılan bir konu olan kuantum bilgi teorisinde önemli rol 

oynamaktadır. Şimdiye kadar, N-boyutta Hartmann potansiyeli için relativistik beklenen 

değerleri içeren bir çalışma yoktur. Ayrıca, hidrojen molekülü için küresel ve kutupsal 

koordinatlarda açısal olasılık dağılımları üzerine çalışılmamıştır. Bu nedenle, N-boyutta 
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Hartmann potansiyeli etkisindeki hidrojen molekülü için yapılan hesaplama ve grafikler 

önemlidir. Diğer taraftan, yüksek küresel koordinatlarda merkezcil olmayan Morse 

potansiyelinin yaklaşık çözümleri üzerine çalışıldı. Toprak alkali metaller periyodik 

cetvelde IIA grubundadır. Homonükleer 𝐶𝑎2 𝑋
1Σ+, 𝑆𝑟2 𝑋

1Σ+, 𝑆𝑟2 𝐴
1Σ+ve heteronükleer  

𝑀𝑔𝐶𝑎𝑋1Σ+ iki atomlu molekülleri için merkezcil olmayan Morse potansiyelinin yüzey 

grafikleri kapsamlı olarak incelendi. Bu yüzey grafiklerinde merkezcil olmayan 

potansiyel parametrelerinin farklı değerler alması durumundaki etkisi gösterildi. 

Kalsiyum, magnezyum-kalsiyum moleküllerinin taban durumunda, strontiyum 

molekülünün hem taban durumunda hem de uyarılmış durumda  yüzey grafikleri çizildi. 

Aynı zamanda,  𝐶𝑎2 𝑋
1Σ+, 𝑀𝑔𝐶𝑎 𝑋1Σ+, 𝑆𝑟2 𝑋

1Σ+ ve  𝑆𝑟2 𝐴
1Σ+ moleküllerinin 

relativistik titreşim frekansları hesaplandı. Kalsiyum molekülünün soğurma spektrumu 

1975’de Balfour ve Whitlock [129] tarafından gözlenmiştir. Daha sonra, bu molekül için 

araştırmalar lazer floresan metodu kullanılarak Sakurai ve Broida [130], Vidal [131], 

Hofmann ve Harris [132] tarafından yapılmıştır. Strontiyum molekülü ilk olarak 

Bergeman ve Lio [133] tarafından gözlenmiştir. Sonra, Gerber ve çalışma arkadaşları 

[134] daha doğru sonuçlar elde etmek için lazer floresans yöntemiyle kesikli ve sürekli 

spektrumu analiz etmişlerdir. Magnezyum-kalsiyum molekülünün soğurma spektrumu 

Miller ve çalışma arkadaşları [135] tarafından gözlenmiştr. Bu çalışmanın ardından 

Atmanspacher ve arkadaşları [136], lazer floresan metodunu kullanarak araştırma 

yapmışlardır. Bu çalışmalar dikkate alınarak toprak alkali metal grubundan iki atomlu 

moleküller için elde edilen relativistik titreşim frekanslarının deneysel sonuçlarla 

[131,134,136] karşılaştırması yapıldı. Bir diğer çalışılan merkezcil olmayan Manning-

Rosen potansiyeli için N-boyutta yaklaşık çözümler araştırıldı. Belirli parametrelerin 

indirgenmesi durumunda Manning-Rosen potansiyeli Hulthen potansiyeline dönüşür. Bu 

nedenle, bu indirgemeler yapılarak yüksek küresel koordinatlarda Hulthen potansiyeli 

için de çözümler elde edildi. Manning-Rosen potansiyeli için elde edilen N-boyutta 

relativistik enerji değeri 𝑐 → ∞ limitinde non-relativistik enerjiye indirgenerek farklı 

kuantum durumları için iki, üç ve dört boyutta atomik birimde nümerik değerler 

hesaplandı. Kullanılan metodun geçerliliği ve hesaplanan enerji değerlerinin doğruluğu 

literatürdeki çalışmalarla karşılaştırılarak gösterildi. Aynı zamanda, aynı potansiyel için 

Hellmann-Feynmann teoremi [137-139] kullanılarak  〈𝑟−2〉  beklenen değeri elde edildi. 

Sonra, 2p, 3p, 3d, 4p  durumlarındaki 〈𝑟−2〉’nin nümerik değerleri hesaplandı. Üçüncü 

bölümde, kuantum Hamilton-Jacobi formalizmi çerçevesinde incelenen yüksek küresel 
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koordinatlarda spin simetri durumunda Dirac denklemlerinin çıkarılışları verildi. N-

boyutta double ring-shaped Kratzer potansiyelinin spin simetri durumunda relativistik 

enerji spektrumu ve dalga fonksiyonu elde edildi. Bulunan enerji spektrumu küresel 

koordinata indirgendi ve bu spektrum üzerinde merkezcil olmayan potansiyel 

parametrelerin değişimi incelendi. Ayrıca, double ring-shaped Kratzer potansiyeli 

etkisindeki iki atomlu moleküller (HI 𝑎3Σ+,  NaH 𝑋1Σ+,  MgH 𝑋2Σ+) için  üç ve beş 

boyutta 𝑆(𝑟, 𝜃𝑁−1) = 𝑉(𝑟, 𝜃𝑁−1)  koşulundaki relativistik enerjinin değerleri elde edildi.  

Hidrojen halojenürler birçok relativistik yaklaşımda önemli rol oynar. Ağır bir atoma 

bağlı hidrojenden oluşan moleküller için hesaplamalar farklı yöntemlerde kolaylıkla 

uygulanabilir [140].  HI 𝑎3Σ+ molekülü hidrojen halojenürler grubundadır. NaH 𝑋1Σ+ 

ve MgH 𝑋2Σ+ molekülleri ise metal hidrür grubudur. Bu moleküller için  radyal ve açısal 

dalga fonksiyonlarının grafiklerinde boyutun etkisi kapsamlı olarak araştırıldı. Yüksek 

küresel koordinatlarda Makarov potansiyeli etkisindeki spin-1/2 parçacık için çözümler 

elde edildi. Aynı potansiyel için farklı boyutlarda açısal dalga fonksiyonunun küresel ve 

kutupsal koordinatlarda olasılık dağılımlarının grafikleri çizildi. N-boyutlu uzayda farklı 

potansiyellerin çözümleri kuantum Hamilton-Jacobi formalizminde ilk defa bu tez 

çalışmasında incelendi. Bundan dolayı, N-boyutta double ring-shaped Kratzer ve 

Makarov potansiyelleri için yapılan hesaplama ve uygulamalar önemlidir. Son bölümde, 

elde edilen sonuçların tartışması yapıldı. 

       

 

 

 

          



 

 

 

 

 

                                                                 1. BÖLÜM 

METODLAR ve MATEMATİKSEL ARAÇLAR 

 
1.1. Asimptotik  İterasyon  Metodu 

      Standart bir yapı olarak  

      𝑦′′(𝑥) = 𝜆0(𝑥)𝑦′(𝑥) + 𝑠0(𝑥)𝑦(𝑥)                                                                     (1.1.1) 

şeklinde yazılabilen denklemler ikinci mertebeden lineer homojen diferansiyel 

denklemler olarak adlandırılır. Fizik ve mühendislikte bu diferansiyel denklemlerle çok 

sık karşılaşılır. İkinci mertebeden lineer homojen diferansiyel denklemleri sınır 

koşullarıyla çözmek için pek çok yöntem mevcuttur. Çiftçi ve arkadaşları [111-114], bu  

yapıdaki denklemlerin çözümü için asimptotik iterasyon metodunu önermiştir. 

      Denklem (1.1.1)’de,  𝜆0(𝑥) ≠ 0 olmak üzere  𝜆0(𝑥)  ve 𝑠0(𝑥)  𝐶∞(𝑎, 𝑏) aralığında 

tanımlı türevlenebilir fonksiyonlardır. Denklemin genel çözümünü bulmak için denklem 

(1.1.1)’in  x’e  göre türevi alındığında 

      𝑦′′′(𝑥) = 𝜆1(𝑥)𝑦′(𝑥) + 𝑠1(𝑥)𝑦(𝑥)                                                                    (1.1.2) 

elde edilir  ve burada 

      𝜆1(𝑥) = 𝜆0
′ (𝑥) + 𝑠0(𝑥) + 𝜆0

2(𝑥)       

      𝑠1(𝑥) = 𝑠0
′ (𝑥) + 𝑠0(𝑥)𝜆0(𝑥)                                                                              (1.1.3)             

şeklindedir. Benzer olarak, denklem (1.1.1)’in dördüncü mertebeden türevi 

      𝑦(4)(𝑥) = 𝜆2(𝑥)𝑦′(𝑥) + 𝑠2(𝑥)𝑦(𝑥)                                                                   (1.1.4) 

olarak bulunur. Burada, 𝜆2  ve  𝑠2 

      𝜆2(𝑥) = 𝜆1
′ (𝑥) + 𝑠1(𝑥) + 𝜆0(𝑥)𝜆1(𝑥) 
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      𝑠2(𝑥) = 𝑠1
′(𝑥) + 𝑠0(𝑥)𝜆1(𝑥)                                                                              (1.1.5)     

şeklinde  yazılır. Denklem (1.1.1)’in  (n+1).  ve  (n+2).  mertebeden türevleri alındığında   

𝑛 = 1, 2, 3…  olmak üzere 

      𝑦(𝑛+1)(𝑥) = 𝜆𝑛−1(𝑥)𝑦′(𝑥) + 𝑠𝑛−1(𝑥)𝑦(𝑥)      

      𝑦(𝑛+2)(𝑥) = 𝜆𝑛(𝑥)𝑦′(𝑥) + 𝑠𝑛(𝑥)𝑦(𝑥)                                                               (1.1.6)      

elde edilir. Bu denklemlerde 

      𝜆𝑛(𝑥) = 𝜆𝑛−1
′ (𝑥) + 𝑠𝑛−1(𝑥) + 𝜆0(𝑥)𝜆𝑛−1(𝑥) 

      𝑠𝑛(𝑥) = 𝑠𝑛−1
′ (𝑥) + 𝑠0(𝑥)𝜆𝑛−1(𝑥)                                                                      (1.1.7) 

şeklindedir. Denklem (1.1.7)  tekrarlama bağıntısı olarak bilinir. (n+1). mertebeden  türev 

(n+2). mertebeden  türeve oranlandığında 

     
𝑑

𝑑𝑥
𝑙𝑛[𝑦(𝑛+1)(𝑥)] =

𝑦(𝑛+1)(𝑥)

𝑦(𝑛+2)(𝑥)
=

𝜆𝑛(𝑥)[𝑦′(𝑥)+
𝑠𝑛(𝑥)

𝜆𝑛(𝑥)
𝑦(𝑥)]

𝜆𝑛−1(𝑥)[𝑦′(𝑥)+
𝑠𝑛−1(𝑥)

𝜆𝑛−1(𝑥)
𝑦(𝑥)]

                                      (1.1.8) 

olarak bulunur. Yeterince büyük  n  değerleri için, 

      
𝑠𝑛(𝑥)

𝜆𝑛(𝑥)
=

𝑠𝑛−1(𝑥)

𝜆𝑛−1(𝑥)
≡ 𝛼(𝑥)                                                                                        (1.1.9) 

elde edilir ve kuantizasyon şartı olarak adlandırılır. Bu denklem, özdeğer problemi 

analitik çözümlere sahip olduğunda  

      𝛿𝑛(𝑥) = 𝜆𝑛(𝑥)𝑠𝑛−1(𝑥) − 𝜆𝑛−1(𝑥)𝑠𝑛(𝑥) = 0                                                  (1.1.10) 

her bir yaklaşıklıkta  x’den bağımsız bir ifade üretir.  

      Denklem (1.1.9), denklem (1.1.8)’de kullanılır ve birkaç matematiksel işlem 

yapıldıktan sonra 

      
𝑑

𝑑𝑥
𝑙𝑛[𝑦(𝑛+1)(𝑥)] =

𝜆𝑛(𝑥)

𝜆𝑛−1(𝑥)
                                                                                (1.1.11) 

denklemi elde edilir  ve  buradan 

      𝑦(𝑛+1)(𝑥) = 𝐶1𝑒𝑥𝑝 (∫
𝜆𝑛(𝑥)

𝜆𝑛−1(𝑥)
𝑑𝑥)                                                                    (1.1.12) 
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olarak bulunur. Denklem (1.1.7)’den  𝜆𝑛(𝑥), denklem (1.1.12)’de kullanılır ve gerekli 

düzenleme yapılırsa   

      𝑦(𝑛+1)(𝑥) = 𝐶1𝜆𝑛−1(𝑥)𝑒𝑥𝑝(∫[𝛼(𝑥) + 𝜆0(𝑥)] 𝑑𝑥)                                          (1.1.13) 

denklemi elde edilir. Burada 𝐶1 integrasyon sabiti olarak adlandırılır. Denklem (1.1.13) 

ve denklem (1.1.7)’den birinci mertebeden diferansiyel denklem  

      𝑦′(𝑥) + 𝛼(𝑥)𝑦(𝑥) = 𝐶1𝑒𝑥𝑝(∫[𝛼(𝑥) + 𝜆0(𝑥)] 𝑑𝑥)                                         (1.1.14) 

şeklinde elde edilir. Bu diferansiyel denklemin çözümü  

      𝑦(𝑥) = exp⁡(−∫
𝑥
𝛼𝑑𝑥′) [𝐶2 + 𝐶1∫

𝑥
𝑒𝑥𝑝 (∫

𝑥′

[𝜆0(𝜏) + 2𝛼(𝜏)]𝑑𝜏) 𝑑𝑥′]      (1.1.15) 

olarak bulunur. Burada elde edilen (1.1.15) çözümü, denklem (1.1.1) eşitliği ile verilen 

ikinci dereceden lineer homojen diferansiyel denkleminin genel çözümüdür. Bu 

çözümde, ilk terim fiziksel olarak kabul edilebilir çözümü sağlarken ikinci terim fiziksel 

çözümleri içermez. Sonuç olarak, analitik çözülebilen potansiyeller için  enerji 

özdeğerlerine karşılık gelen dalga fonksiyonları  

      𝑦(𝑥) = 𝐶2𝑒𝑥𝑝 (−∫
𝑥′ 𝑠𝑛(𝑥′)

𝜆𝑛(𝑥′)
𝑑𝑥′)                                                                     (1.1.16) 

bağıntıdan elde edilir. Burada, 𝐶2 normalizasyon sabiti olup normalizasyon koşulundan 

belirlenir. 

 

1.2. Kuantum Hamilton-Jacobi Yöntemi 

      Kuantum Hamilton-Jacobi formalizmi klasik Hamilton-Jacobi teorisini temel alarak 

geliştirilmiştir. Bu formalizm, kuantum mekaniğinde tam olarak çözülebilen sistemlerin 

bağlı durum enerji özdeğerlerini elde etmek için etkin bir yöntemdir. Leacock ve Padgett 

[115-116], bu enerji özdeğerlerini sistemin dalga fonksiyonlarını hesaplamaya gerek 

kalmadan nasıl elde edileceğini gösteren ilk araştırmacılardır. 

      𝑉(𝑥̂)  potansiyeli etkisinde  tek boyutta hareket eden bir parçacığın Hamiltonyeni 

      𝐻̂ ≡ 𝐻(𝑥̂, 𝑝̂) = 𝑝̂2 + 𝑉(𝑥̂)                                                                                 (1.2.1) 

şeklinde tanımlanır. Burada, 𝑥̂  lineer konum operatörü ve  𝑝̂  momentum operatörü  

olmak üzere  𝑥̂ = 𝑥,  𝑝̂ = (ℏ 𝑖⁄ ) 𝜕 𝜕𝑥⁄   şeklindedir. Leacock ve Padgett, kuantum 
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Hamilton-Jacobi yönteminde   𝑥̂,  𝑝̂,  𝑄̂, ⁡𝑃̂  ve 𝐻̂  operatörlerinin yerine  𝑥,  𝑝,  𝑄, ⁡𝑃  ve 

E  özdeğerlerini kullanır. Böylece, bu nicelikler kullanılarak kuantum kanonik dönüşümü,   

      𝑝 =
𝜕𝑊(𝑥,𝐸(𝑃))

𝜕𝑥
   ,   𝑄 =

𝜕𝑊(𝑥,𝐸(𝑃))

𝜕𝑃
                                                                       (1.2.2) 

klasik dönüşümdeki aynı yapıyla tanımlanır. Burada, 𝑊(𝑥, 𝐸(𝑃))  kuantum Hamilton’un 

karakteristik fonksiyonu olarak adlandırılır. Denklem (1.2.1) ve denklem (1.2.2)’den 

kuantum Hamilton-Jacobi denklemi  

      
ℏ

𝑖

𝜕2𝑊(𝑥,𝐸)

𝜕𝑥2 + (
𝜕𝑊(𝑥,𝐸)

𝜕𝑥
)
2
= 𝐸 − 𝑉(𝑥)                                                                   (1.2.3) 

elde edilir. Burada, 𝑊(𝑥, 𝐸), fiziksel olarak sınır şartlarını sağlayan fonksiyondur. 

Kuantum Hamilton-Jacobi denkleminin iki, üç ve daha yüksek boyutlara genelleştirilmesi 

      −𝑖ℏ∇⃗⃗ . ∇⃗⃗ 𝑊 + ∇⃗⃗ 𝑊. ∇⃗⃗ 𝑊 = 𝐸 − 𝑉                                                                          (1.2.4) 

olarak yazılabilir.  

      Aslında, kuantum Hamilton-Jacobi yöntemi, kuantum momentum fonksiyonun tekil 

yapısı üzerine kuruludur. Aynı zamanda, kuantum momentum fonksiyonu 

      𝑝(𝑥, 𝐸) =
ℏ

𝑖

𝑑

𝑑𝑥
ln𝜓(𝑥)                                                                                        (1.2.5) 

şeklinde tanımlıdır. Denklem (1.2.2)’de tanımlanan kuantum momentum fonksiyonu  

𝑝(𝑥, 𝐸), denklem (1.2.3)’de yerine yazıldığında 

      
ℏ

𝑖

𝜕𝑝(𝑥,𝐸)

𝜕𝑥
+ 𝑝2(𝑥, 𝐸) = 𝐸 − 𝑉(𝑥) = 𝑝𝑘

2(𝑥, 𝐸)                                                          (1.2.6) 

şeklinde elde edilir. Bu denkleme kuantum momentum fonksiyon denklemi denir. 

Burada, 𝑝𝑘(𝑥, 𝐸)  klasik momentum fonksiyonudur. Klasik limitte ℏ → 0,  kuantum 

momentum fonksiyonu  klasik momentum fonksiyonuna indirgenir. 

      𝑝(𝑥, 𝐸) → ⁡𝑝𝑘(𝑥, 𝐸) = √𝐸 − 𝑉(𝑥)                                                                     (1.2.7) 

Klasik momentum fonksiyonu,  𝑥1 ve  𝑥2  dönme noktalarında sıfıra eşittir.  

      𝑝𝑘(𝑥1, 𝐸) = 𝑝𝑘(𝑥2, 𝐸) = 0                   
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Kompleks  𝑥  düzlemi üzerinde tanımlı  𝑝𝑘(𝑥, 𝐸)’nin  fiziksel olarak gerekli ve anlamlı 

çözümü,  karşılama ilkesi gereği 𝑝(𝑥, 𝐸)’nin davranışını sınırlandırır. Daha kapsamlı 

bilgiler Leacock ve Padegett’ın çalışmalarından elde edilebilir [115-116]. 

      Kuantum hareket değişkeninin  kompleks bölgede kuantum momentum fonksiyonun 

C  kapalı eğrisi üzerinden integrali 

      𝐽 = 𝐽(𝐸) ≡
1

2𝜋
∮ 𝑝(𝑥, 𝐸)𝑑𝑥
𝐶

                                                                                (1.2.8) 

şeklinde yazılır. Kuantum momentum fonksiyonunun kutup noktaları, ele alınan sistemde 

uyarılmış durumları verir. Örneğin, taban durumunda 𝑝(𝑥, 𝐸)’nin kutup noktası yoktur. 

Birinci uyarılmış durumda 1 tane, ikinci uyarılmış durumda 2 tane kutup noktasına 

sahiptir. Bu yoldan hareketle, kuantum hareket değişkeni kullanılarak tam kuantizasyon 

koşulu 

      𝐽 = 𝑛ℏ = 𝐽(𝐸)                                                                                                    (1.2.9) 

şeklinde yazılır. Burada, 𝑛 = 0, 1, 2… değerlerini alır. Bu denklem, enerji spektrumunu 

bulmak için kullanılır. 

      Kapoor ve çalışma arkadaşları [122], kuantum Hamilton-Jacobi formalizmini 

geliştirmişler ve tam kuantizasyon koşulunu kullanmadan hem enerji özdeğerlerini hem 

de enerji özfonksiyonlarını elde etmişlerdir.  

 

1.3. Yüksek Küresel Koordinatlarda  Gradyent Operatörünün Elde Edilmesi 

      Bu bölümde, yüksek küresel koordinatlarda kuantum Hamilton-Jacobi denkleminde 

karşımıza çıkan N-boyutta gradyent operatörü elde edilecek. 

      N boyutta gradyent,  kartezyen koordinatlarda  (𝑥1, 𝑥2, … , 𝑥𝑁) 

      ∇⃗⃗ 𝑁=
1

N

k kx




                                                                                                         (1.3.1) 

şeklinde tanımlıdır.  

      Louck [10-12] ve Chatterjee [141]’nin  çalışmalarına göre N-boyutlu uzayda küresel 

koordinatlar 
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      𝑥1 = 𝑟 cos 𝜃1 sin 𝜃2 sin 𝜃3 …sin 𝜃𝑁−1 

      𝑥2 = 𝑟 sin 𝜃1 sin 𝜃2 sin 𝜃3 …sin 𝜃𝑁−1 

      𝑥3 = 𝑟 cos 𝜃2 sin 𝜃3 sin 𝜃4 …sin 𝜃𝑁−1 

      𝑥4 = 𝑟 cos 𝜃3 sin 𝜃4 sin 𝜃5 …sin 𝜃𝑁−1 

       ⋮ 

       𝑥𝑘 = 𝑟 cos 𝜃𝑘−1 sin 𝜃𝑘 sin 𝜃𝑘+1 …sin 𝜃𝑁−1  ,    3 ≤ 𝑘 ≤ 𝑁 − 1    

      𝑥𝑁 = 𝑟 cos 𝜃𝑁−1                                                                                                  (1.3.2) 

şeklinde yazılır. Burada, 𝑁 = 3, 4, 5… değerlerini alır. r, N-boyutlu bir kürenin 

yarıçapıdır. Bütün uzayda tanımlı  𝑟, 𝜃1 ve 𝜃𝑘  parametrelerinin tanım aralıkları sırasıyla 

𝑘 = 2, 3, …𝑁 − 1  için   0 ≤ 𝑟 ≤ ∞,  0 ≤ 𝜃1 ≤ 2𝜋,  0 ≤ 𝜃𝑘 ≤ 𝜋  şeklindedir. 𝑁 = 2  için  

𝑥1 = 𝑟 cos 𝜃1,  𝑥2 = 𝑟 sin 𝜃1  ve  𝑁 = 3  için  𝑥1 = 𝑟 cos 𝜃1 sin 𝜃2,  𝑥2 = 𝑟 sin 𝜃1 sin 𝜃2  

ve  𝑥3 = 𝑟 cos 𝜃2  olarak bulunur. 

      Skala faktörü  ℎ𝑗  ve  metrik katsayılar  𝑔𝑗𝑗  arasındaki bağıntı 

      ℎ𝑗
2 = 𝑔𝑗𝑗 =

2

1

N
k

k j

x



 
   

                                                                                         (1.3.3) 

olarak yazılır. N-boyutta skala faktörleri 

      ℎ0 = 1 

      ℎ1 = 𝑟 sin 𝜃2 sin 𝜃3 …sin 𝜃𝑁−1 

      ℎ2 = 𝑟 sin 𝜃3 sin 𝜃4 …sin 𝜃𝑁−1 

      ℎ3 = 𝑟 sin 𝜃4 sin 𝜃5 …sin 𝜃𝑁−1 

       ⋮ 

      ℎ𝑗 = 𝑟 sin 𝜃𝑗+1 sin 𝜃𝑗+2 …sin 𝜃𝑁−1 ,    1 ≤ 𝑗 ≤ 𝑁 − 1                       

      ℎ𝑁−2 = 𝑟 sin 𝜃𝑁−1 

      ℎ𝑁−1 = 𝑟                                                                                                             (1.3.4) 

𝑁 = 3, 4, 5…  olmak üzere şeklinde yazılır. 𝑁 = 2  için  ℎ0 = 1,  ℎ1 = 𝑟  ve  𝑁 = 3  için 

ℎ0 = 1,  ℎ1 = 𝑟 sin 𝜃2  ve  ℎ2 = 𝑟  olarak elde edilir. 

      Denklem (1.3.2) ve denklem (1.3.4)’ü kullanarak  𝜃0 = 𝑟   olmak üzere yüksek 

küresel koordinatlarda gradyent   ⁡⁡                                                                                                                           
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      ∇⃗⃗ 𝑁=
1

0

1 ˆ
N

j

j j jh











                                                                                                 (1.3.5) 

şeklinde elde edilir. 

 

1.4. Yüksek Küresel Koordinatlarda Laplasyen Operatörünün Elde Edilmesi 

         Bu bölümde, Louck [10-12]  ve Chatterjee [141]’nin çalışmaları temel alınarak  

yüksek küresel koordinatlarda Laplasyen operatörünün çıkarılışı verilecek. N-boyutta 

Laplasyen operatörü elde edilirken genelleştirilmiş açısal momentum operatörlerinin 

nasıl tanımlandığı ve bu operatörlerin kartezyen koordinatlarla nasıl ilişkilendirildiği 

incelenecek. Daha sonra, genelleştirilmiş açısal momentum operatörlerinin özdeğerleri 

ve özfonksiyonları elde edilecek. 

      N-boyutta kartezyen koordinatlarda  (𝑥1, 𝑥2, … , 𝑥𝑁)  tanımlı olan Laplasyen 

operatörü  

      ∇𝑁
2 =

2

2
1

N

k kx




                                                                                                          (1.4.1)    

şeklindedir. N-boyutlu uzayda küresel koordinatlar önceki bölümde verilmişti. Buradan 

hareketle, N-boyutta küresel koordinatlarda tanımlı Laplasyen operatörü,  𝜃0 = 𝑟  ve   

ℎ =
1

0

N

k

k

h




    olmak üzere 

      ∇𝑁
2 =

1

2
0

1 N

j j j j

h

h h 





  
    

                                                                                      (1.4.2) 

şeklinde yazılır. Burada, ℎ𝑗  önceden bahsedildiği gibi skala faktörüdür ve N-boyuttaki 

ifadeleri denklem (1.3.4)’de verilir. ℎ’nin açılımı 

      ℎ = 𝑟𝑁−1𝑠𝑖𝑛𝜃2⁡𝑠𝑖𝑛
2𝜃3𝑠𝑖𝑛

2𝜃4 …𝑠𝑖𝑛𝑗−1𝜃𝑗 …𝑠𝑖𝑛𝑁−2𝜃𝑁−1                                  (1.4.3) 

olarak yazılır. 

      Denklem (1.3.4) ve denklem (1.4.3),  denklem (1.4.2)’de yerine yazıldığında yüksek 

küresel koordinatlarda Laplasyen operatörü 
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2 1

1

2
1

2 2 2 2 1
1 1 2 1

2

12 2

1 1 1

1

1 1 1
sin

sin sin ...sin sin

1 1
sin

sin

N

N N

N
j

jj
j j j N j j

N

NN

N N N

r
r r r

r k

r


    


  









   





  

 
 

 

  
     

  
  

  

                  (1.4.4) 

                                                                                                                                   

şeklinde elde edilir. 

      Genelleştirilmiş yörünge  açısal momentum bileşenleri  

      𝐿𝑖𝑗 = −𝐿𝑗𝑖 = 𝑥𝑖𝑝𝑗 − 𝑥𝑗𝑝𝑖                                                                                    (1.4.5) 

𝑖 = 1, 2, 3, … 𝑗 − 1  ve  𝑗 = 2, 3, …𝑁  şeklinde yazılır. Burada  𝑝𝑖  momentum operatörü 

olmak üzere 

      

1 1

2
0 0

1N N
j k

k

j jk k j j j j

x
p i i i

x x h



  

 

 

     
                 

 
                                   (1.4.6)                                              

şeklindedir.  

      Denklem (1.4.5)’de tanımlanan  yörünge  açısal momentumun   
𝑁(𝑁−1)

⁡2
  bileşeni  

      
11

2 2

2 1

, 1,2,3,... 1
jk

k ij

j i

L L k N


 

                                                                          (1.4.7) 

olarak yazılır. Açısal momentum operatör ifadeleri genelleştirildiğinde  

      𝐿1
2 = −ℏ2 𝜕2

𝜕𝜃1
2 

      𝐿2
2 = −ℏ2 (

1

𝑠𝑖𝑛𝜃2

𝜕

𝜕𝜃2
𝑠𝑖𝑛𝜃2

𝜕

𝜕𝜃2
−

𝐿1
2

ℏ2𝑠𝑖𝑛2𝜃2
) 

      𝐿3
2 = −ℏ2 (

1

𝑠𝑖𝑛2𝜃3

𝜕

𝜕𝜃3
𝑠𝑖𝑛2𝜃3

𝜕

𝜕𝜃3
−

𝐿2
2

ℏ2𝑠𝑖𝑛2𝜃3
) 

       ⋮ 

      𝐿𝑘
2 = −ℏ2 (

1

𝑠𝑖𝑛𝑘−1𝜃𝑘

𝜕

𝜕𝜃𝑘
𝑠𝑖𝑛𝑘−1𝜃𝑘

𝜕

𝜕𝜃𝑘
−

𝐿𝑘−1
2

ℏ2𝑠𝑖𝑛2𝜃𝑘
) 
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       ⋮ 

      𝐿𝑁−1
2 = −ℏ2 (

1

𝑠𝑖𝑛𝑁−2𝜃𝑁−1

𝜕

𝜕𝜃𝑁−1
𝑠𝑖𝑛𝑁−2𝜃𝑁−1

𝜕

𝜕𝜃𝑁−1
−

𝐿𝑁−2
2

ℏ2𝑠𝑖𝑛2𝜃𝑁−1
)                       (1.4.8) 

 

şeklinde tanımlanır. Burada ilk iki operatörde   𝜃1 = 𝜑,  𝜃2 = 𝜃  alındığında üç boyutta 

açısal momentum operatörleri olan  𝐿𝑧
2   ve  𝐿2  bulunur. Böylece, yüksek küresel 

koordinatlarda Laplasyen operatörü 

      ∇𝑁
2 =

1

𝑟𝑁−1

𝜕

𝜕𝑟
𝑟𝑁−1 𝜕

𝜕𝑟
−

𝐿𝑁−1
2

ℏ2𝑟2                                                                                  (1.4.9) 

 

şeklinde elde edilir. 

     𝐿1
2 , 𝐿2

2 , … , 𝐿𝑁−1
2    operatörlerinin özdeğer denklemi  

 

    𝐿𝑘
2𝑌𝜆𝑁−1,𝜆𝑁−2,…𝜆2,𝜆1

(𝜃1, 𝜃2, … 𝜃𝑁−1) = 𝜆𝑘ℏ
2𝑌𝜆𝑁−1,𝜆𝑁−2,…𝜆2,𝜆1

(𝜃1, 𝜃2, … 𝜃𝑁−1)    (1.4.10) 

 

şeklinde yazılır. Burada, 𝑘 = 1, 2, 3, …𝑁 − 1 değerlerini alır. Özdeğer denkleminde  𝜆𝑘,  

𝐿𝑘
2 ’nin özdeğeridir.  

      Denklem (1.4.8)  verilen açısal momentum operatörlerinin özfonksiyonları 

 

      
1 2 2 1 1

1

, ,... , 1 2 1 ,

1

( , ,... ) ( )
N N k k

N

N k

k

Y        
  







                                                        (1.4.11) 

 

olarak yazılır. Bu eşitlikte,   Θ𝜆𝑘,𝜆𝑘−1
(𝜃𝑘)   fonksiyonu sadece  𝜃𝑘’ya  bağlıdır  ve  

Θ(𝜆1, 𝜆0) = Θ1(𝜆1)’dir. Böylece, özdeğer denklemleri 

      𝐿1
2Θ1(𝜃1) = 𝜆1ℏ

2Θ1(𝜃1) 

      𝐿𝑘
2 (𝜆𝑘−1)Θ𝜆𝑘,𝜆𝑘−1

(𝜃𝑘) = 𝜆𝑘ℏ
2Θ𝜆𝑘,𝜆𝑘−1

(𝜃𝑘)                                                      (1.4.12) 

 

şeklinde yeniden düzenlenir. Burada,  𝑘 = ⁡2, 3, …𝑁 − 1   olmak üzere 

 

      𝐿𝑘
2 (𝜆𝑘−1) = −ℏ2 [

𝜕2

𝜕𝜃𝑘
2 + (𝑘 − 1)𝑐𝑜𝑡𝜃𝑘

𝜕

𝜕𝜃𝑘
−

𝜆𝑘−1

𝑠𝑖𝑛2𝜃𝑘
]                                       (1.4.13) 
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olarak ifade edilir. 𝑘 = ⁡2  için denklem (1.4.12)  ve  denklem (1.4.13) ,  üç boyutta 

küresel harmonikleri verir. Yükseltme ve alçaltma operatörleri kullanılarak 

      𝜆1 = 𝑙1
2  ,  𝜆2 = 𝑙2(𝑙2 + 1)                                                                                (1.4.14) 

 

𝑙2 = 0, 1, 2… ;  𝑙1 = 𝑙2, 𝑙2 − 1,… ,−𝑙2 + 1,−𝑙2  olmak üzere bulunur. Bu denklem 

genelleştirildiğinde  

 

      𝜆𝑘 = 𝑙𝑘(𝑙𝑘 + 𝑘 − 1)                                                                                          (1.4.15) 

 

elde edilir. Denklem (1.4.15), denklem (1.4.12)’de yerleştirildiğinde  

 

      𝐿𝑘
2 (𝑙𝑘−1)Θ𝑘(𝑙𝑘, 𝑙𝑘−1) = 𝑙𝑘(𝑙𝑘 + 𝑘 − 1)ℏ2Θ𝑘(𝑙𝑘, 𝑙𝑘−1)                                    (1.4.16)  

 

𝑘 = 1, 2, 3, …𝑁 − 1   olmak üzere elde edilir. Böylece, genelleştirilmiş  açısal momentum 

operatörlerinin özdeğer denklemi 

 

      𝐿𝑁−1
2 𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1

(𝜃1, 𝜃2, … 𝜃𝑁−1) 

                                = 𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)ℏ2𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1
(𝜃1, 𝜃2, … 𝜃𝑁−1)      (1.4.17) 

 

olarak bulunur. 𝑙𝑁−1 = 0, 1, 2… ; 𝑙𝑁−2 = 0, 1, 2… 𝑙𝑁−1 ; 𝑙𝑁−3 = 0, 1, 2… 𝑙𝑁−2 ; 𝑙3 =

0, 1, 2… 𝑙4 ; 𝑙2 = 0, 1, 2… 𝑙3 ; 𝑙1 = −𝑙2, −𝑙2 + 1,… 𝑙2 − 1, 𝑙2  olmak üzere  𝐿𝑁−1
2 ’in 

özfonksiyonu  𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1
(𝜃1, 𝜃2, … 𝜃𝑁−1)  genelleştirilmiş küresel harmoniklerdir. 

Bu konu hakkında  daha  detaylı bilgi edinmek için Louck [10-12] ve Chatterjee [141]’nin  

çalışmalarına bakılabilir. 

    



 

 

 

 

 

 

                                                 2. BÖLÜM 

 

YÜKSEK KÜRESEL KOORDİNATLARDA MERKEZCİL 

OLMAYAN POTANSİYEL ETKİSİNDEKİ SPİN-0 PARÇACIK 

İÇİN KLEİN-GORDON DENKLEMİ 

 

2.1. Yüksek Küresel Koordinatlarda Klein-Gordon Denkleminin Elde Edilmesi 

      N-boyutta merkezcil olmayan Lorentz skaler  potansiyel  𝑆(𝑟, 𝜃𝑁−1) ve Lorentz 

vektör potansiyeli 𝑉(𝑟, 𝜃𝑁−1) etkisindeki μ kütleli spin-0 parçacığın hareketini 

tanımlayan Klein-Gordon denklemi 

 

    −ℏ2𝑐2∇𝑁
2 𝜓(𝑟, 𝜃𝑁−1) + [(𝜇𝑐2 + 𝑆(𝑟, 𝜃𝑁−1))

2
− (𝐸 − 𝑉(𝑟, 𝜃𝑁−1))

2
] 𝜓(𝑟, 𝜃𝑁−1) = 0  (2.1.1) 

 

şeklindedir. Burada N uzaysal boyut 𝑁 ≥ 2,  ∇𝑁
2   N  boyutta Laplasyen işlemcisi, ℏ 

Planck sabiti, c ışık hızı, E relativistik enerjidir.  

      (2.1.1) denklemi 𝑆(𝑟, 𝜃𝑁−1) = 𝑉(𝑟, 𝜃𝑁−1) koşulunda nonrelativistik limite 

indirgendiğinde 2V potansiyel için Schrödinger denklemini verir. Bundan dolayı,  

nonrelativistik limitte V potansiyeli için Schrödinger denklemini sağlaması gerektiğinden 

skaler ve vektör potansiyelleri Alhaidari ve arkadaşlarının [142] çalışması esas alınarak 

işlem yapıldı. Bu bilginin sonucunda yüksek küresel koordinatlarda Klein-Gordon 

denklemi  𝑆(𝑟, 𝜃𝑁−1) = 𝑉(𝑟, 𝜃𝑁−1)   durumu için 

 

      −ℏ2𝑐2∇𝑁−1
2 𝜓(𝑟, 𝜃𝑁−1) + [(𝐸 + 𝜇𝑐2)𝑉(𝑟, 𝜃𝑁−1) − (𝐸2 − 𝜇2𝑐4)]𝜓(𝑟, 𝜃𝑁−1) = 0     (2.1.2) 

 

şeklinde elde edilir. Bu denkleme değişkenlerine ayırma yöntemi uygulanır. Dalga 

fonksiyonu   

      𝜓(𝑟, 𝜃1, 𝜃2, … , 𝜃𝑁−1) = 𝑅(𝑟)𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1
(𝜃1, 𝜃2, … 𝜃𝑁−1)                                       (2.1.3) 

 



20 
 

𝑅(𝑟) dalga fonksiyonu, 𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1
(𝜃1, 𝜃2, … 𝜃𝑁−1) genelleştirilmiş küresel harmonik 

olmak üzere iki çarpandan oluşur.  

      N-boyutta Laplasyen operatörü denklem (2.1.2)’de  yerine yazıldığında 

 

      
1

𝑅(𝑟)

𝑟2

𝑟𝑁−1

𝜕

𝜕𝑟
𝑟𝑁−1 𝜕𝑅(𝑟)

𝜕𝑟
−

𝑟2

ℏ2𝑐2
(𝐸 + 𝜇𝑐2)𝑉(𝑟) +

𝑟2

ℏ2𝑐2
(𝐸2 − 𝜇2𝑐4) 

       +
1

𝑌𝑙𝑁−1,𝑙𝑁−2,…𝑙2,𝑙1(𝜃1,𝜃2,…𝜃𝑁−1)
(

1

𝑠𝑖𝑛𝑁−2𝜃𝑁−1

𝜕

𝜕𝜃𝑁−1
𝑠𝑖𝑛𝑁−2𝜃𝑁−1

𝜕

𝜕𝜃𝑁−1
−

𝐿𝑁−2
2

ℏ2𝑠𝑖𝑛2𝜃𝑁−1
) 

        −
𝑟2

ℏ2𝑐2
(𝐸 + 𝜇𝑐2)𝑉(𝜃𝑁−1) = 0                                                                                     (2.1.4) 

 

elde edilir. Buradan, yüksek küresel koordinatlarda relativistik dalga denkleminin radyal 

kısmı 

 

      
𝑑2𝑅(𝑟)

𝑑𝑟2 +
𝑁−1

𝑟

𝑑𝑅(𝑟)

𝑑𝑟
+ [

(𝐸2−𝜇2𝑐4)

ℏ2𝑐2 −
(𝐸+𝜇𝑐2)

ℏ2𝑐2 𝑉(𝑟) −
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)

𝑟2 ] 𝑅(𝑟) = 0                   (2.1.5) 

 

ve N-boyutta açısal  Klein-Gordon denklemleri 

 

      
𝑑2Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
2 + (𝑁 − 2)

cos 𝜃𝑁−1

sin 𝜃𝑁−1

𝑑Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
− [

(𝐸+𝜇𝑐2)

ℏ2𝑐2 𝑟2𝑉(𝜃𝑁−1) − 𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2) 

                        +
𝑙𝑁−1(𝑙𝑁−1+𝑁−3)

𝑠𝑖𝑛2𝜃𝑁−1
] Θ(𝜃𝑁−1) = 0 

       
𝑑2Θ(𝜃1)

𝑑𝜃1
2 + 𝑙1

2 Θ(𝜃1) = 0                                                                                                  (2.1.6) 

 

şeklinde elde edilir. Klein-Gordon denklemi  (𝜃1, 𝜃2, 𝜃3 … 𝜃𝑁−1)   açısal  değişkenleri  

için  (N-1)  açısal denkleme  ve  r  radyal değişken için bir radyal denkleme ayrılır.  

  

2.2. Asimptotik İterasyon Metodu İle Hartmann Potansiyeli İçin N-Boyutta Klein-

Gordon Denkleminin Analitik Çözümleri 

      N-boyutta Hartmann potansiyeli 

 

      𝑉(𝑟, 𝜃𝑁−1) = 𝜂𝜎2 (
2𝑎0

𝑟
− 𝑞𝜂

𝑎0
2

𝑟2𝑠𝑖𝑛2𝜃𝑁−1
) 𝜀0                                                        (2.2.1) 

şeklindedir. Burada  𝑎0 =
ℏ2

𝑚𝑒2  Bohr yarıçapı, ℇ0 = −
me4

2ℏ2   hidrojen atomunun temel 

enerji düzeyi, 𝜂 ve 𝜎  kuantum kimyasındaki uygulamalarda 1 ve 10 aralığındaki pozitif 

sayılardır, q ise gerçek parametredir [27].  (2.2.1)’de hidrojen atomu için  𝜂𝜎2 = 𝑍 ,  𝑞 =
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𝜂 = 1 olarak alınır [36-37]. Hidrojen molekülü için Hartmann potansiyelinin yüzey 

grafiği Matlab yazılımı ile elde edilmiş ve Şekil 2.1’de gösterilmiştir. Şekil 2.1’e 

bakıldığında Hartmann potansiyeli etkisindeki iki hidrojen atomu arasındaki uzaklık 

arttıkça potansiyel enerjinin azaldığı açıkça görülmektedir. 

 

      Şekil 2.1. Çekici bölgede 𝐻2 molekülü için Hartmann potansiyelinin yüzey grafiği 

 

2.2.1. Yüksek Küresel Koordinatlarda Açısal Klein-Gordon Denkleminin Bağlı 

Durum Çözümleri 

      Bu bölümde asimptotik iterasyon metodu kullanılarak açıya bağlı N-boyutlu Klein-

Gordon denkleminin çözümleri elde edilecektir.  

      Merkezcil olmayan potansiyel için N-boyutta açısal relativistik dalga denklemi 

 

       
𝑑2Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
2 + (𝑁 − 2)

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1

𝑑Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
− [−𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2) 

                          +
𝑙𝑁−2(𝑙𝑁−2+𝑁−3)

𝑠𝑖𝑛2𝜃𝑁−1
+

(
𝐸+𝜇𝑐2

2𝜇𝑐2 )𝑞𝜂2𝜎2

𝑠𝑖𝑛2𝜃𝑁−1
] Θ(𝜃𝑁−1) = 0                              (2.2.2) 

 

şeklindedir. (2.2.2)  denkleminde 

      𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2) = 𝑙′
𝑁−1
2

−
(𝑁−2)

4
      𝑚′2

= 𝑙𝑁−2(𝑙𝑁−2 + 𝑁 − 3)              (2.2.3) 

yazılırsa  
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𝑑2Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
2 + (𝑁 − 2)

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1

𝑑Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
− [

(
𝐸+𝜇𝑐2

2𝜇𝑐2 )𝑞𝜂2𝜎2+𝑚′2

𝑠𝑖𝑛2𝜃𝑁−1
 

                        −𝑙′
𝑁−1
2

+
(𝑁−2)

4
] Θ(𝜃𝑁−1) = 0                                                          (2.2.4)          

     

denklemine dönüşür. (2.2.4) denklemini çözmek için 𝑥 = cos 𝜃𝑁−1 dönüşümü 

uygulanırsa 

 

        
𝑑2Θ(𝑥)

𝑑𝑥2 −
(𝑁−1)𝑥

1−𝑥2

𝑑Θ(𝑥)

𝑑𝑥
− [

(
𝐸+𝜇𝑐2

2𝜇𝑐2 )𝑞𝜂2𝜎2+𝑚′2

(1−𝑥2)2 −
𝑙′

𝑁−1
2

−
(𝑁−2)

4

(1−𝑥2)
] Θ(𝑥) = 0                 (2.2.5) 

 

elde edilir. (2.2.5) denkleminin  𝑥 → 1(𝜃 = 0)  ve 𝑥 → −1(𝜃 = 𝜋) limitinde asimptotik 

davranışı incelenirse önerilen çözüm 

 

      Θ(𝑥) = (1 − 𝑥2)

3−𝑁

4
+

1

4
√4((

𝐸+𝜇𝑐2

2𝜇𝑐2 )𝑞𝜂2𝜎2+𝑚′2
)+(𝑁−3)2

𝑓(𝑥)                                  (2.2.6) 

 

şeklindedir. Burada f(x), bu aralıkta dalga fonksiyonunu sonlu tutan belirlenecek 

fonksiyondur. (2.2.6)  ifadesinde  

 

       𝑝 =
3−𝑁

4
+

1

2
√((

𝐸+𝜇𝑐2

2𝜇𝑐2 ) 𝑞𝜂2𝜎2 + 𝑚′2) + (
𝑁−3

2
)

2
                                           (2.2.7) 

 

kısaltması kullanılır ve önerilen çözüm  (2.2.5)  denkleminde yerine yazılırsa  

 

       
𝑑2𝑓(𝑥)

𝑑𝑥2 = (
(4𝑝+𝑁−1)𝑥

1−𝑥2 )
𝑑𝑓(𝑥)

𝑑𝑥
+ (

4𝑝2+2𝑝(𝑁−2)+
1

4
(𝑁−2)−𝑙′2

𝑁−1

1−𝑥2 ) 𝑓(𝑥)                   (2.2.8) 

 

elde edilir. (2.2.8) denklemi asimptotik iterasyon metoduna uygundur. 

      (2.2.8)  denklemi (1.1.1)  denklemi ile karşılaştırıldığında 

 

       𝜆0(𝑥) =
(4𝑝+𝑁−1)𝑥

1−𝑥2  

       𝑠0(𝑥) =
4𝑝2+2𝑝(𝑁−2)+

1

4
(𝑁−2)−𝑙′2

𝑁−1

1−𝑥2  
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belirlenir. Maple programında, (1.1.7) denklemleri kullanılarak  𝜆𝑛(𝑥)  ve  𝑠𝑛(𝑥) 

değerleri elde edilir.  

       𝜆1(𝑥) =
(4𝑝+𝑁−1)

1−𝑥2 +
2(4𝑝+𝑁−1)𝑥2

(1−𝑥2)2 +
4𝑝2+2𝑝(𝑁−2)+

1

4
(𝑁−2)−𝑙′2

𝑁−1

1−𝑥2  

          +
(4𝑝+𝑁−1)2𝑥2

(1−𝑥2)2  

       𝑠1(𝑥) =
2(4𝑝2+2𝑝(𝑁−2)+

1

4
(𝑁−2)−𝑙′2

𝑁−1)𝑥

(1−𝑥2)2 +
(4𝑝2+2𝑝(𝑁−2)+

1

4
(𝑁−2)−𝑙′2

𝑁−1)(4𝑝+𝑁−1)𝑥

(1−𝑥2)2  

          ⋮                                                                                                                       (2.2.9) 

 

      AİM’nun iterasyon şartı olan (1.1.9) denkleminden N-boyutta  𝑙𝑁−1
′   değerleri 

 

       
𝑠0

𝜆0
=

𝑠1

𝜆1
   ⇒   𝑙′

𝑁−1
2

= 4𝑝2 + 2𝑝(𝑁 − 2) +
1

4
𝑁 −

1

2
 

       
𝑠1

𝜆1
=

𝑠2

𝜆2
   ⇒   𝑙′

𝑁−1
2

= 4𝑝2 + 2𝑝𝑁 +
5

4
𝑁 −

3

2
 

       
𝑠2

𝜆2
=

𝑠3

𝜆3
   ⇒   𝑙′

𝑁−1
2

= 4𝑝2 + 2𝑝(𝑁 + 2) +
9

4
𝑁 −

1

2
 

           ⋮                                                                                                                      (2.2.10) 

 

olarak bulunur. Genelleştirme yapıldığında 

 

       𝑙′
𝑁−1
2

= 4𝑝2 + 2𝑝(𝑁 − 2 + 2𝑛𝜃) + (𝑛𝜃 +
1

4
) 𝑁 + (𝑛𝜃

2 − 2𝑛𝜃 −
1

2
)             (2.2.11) 

       𝑛𝜃 = 0,1,2, … 

olarak elde edilir. 𝑝 ve 𝑙′
𝑁−1
2

 değerleri (2.2.11) denkleminde yazılırsa yüksek küresel 

koordinatlarda   𝑙𝑁−1   değeri 

 

       𝑙𝑁−1 =
3−𝑁

2
+ √((

𝐸+𝜇𝑐2

2𝜇𝑐2 ) 𝑞𝜂2𝜎2 + 𝑚′2) + (
𝑁−3

2
)

2
+ 𝑛𝜃                              (2.2.12) 

 

şeklinde elde edilir. 

      N-boyutta merkezcil olmayan potansiyel için açısal dalga fonksiyonları (1.1.16) 

denklemi  kullanılarak elde edilir. 
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       𝑓0(𝑥) = 𝐶2 = 𝐶2 2F1(0, 4𝑝 + 𝑁 − 2, 2𝑝 +
𝑁−1

2
;

1−𝑥

2
) 

       𝑓1(𝑥) = 𝐶2[(4𝑝 + 𝑁 − 1)𝑥] 

                 = 𝐶2 (2𝑝 +
𝑁−1

2
)2F1(−1, 4𝑝 + 𝑁 − 1, 2𝑝 +

𝑁−1

2
;

1−𝑥

2
) 

       𝑓2(𝑥) = 𝐶2[(4𝑝 + 𝑁)(4𝑝 + 𝑁 + 1)𝑥2 − (4𝑝 + 𝑁 + 1)]                  

                 = 𝐶2 (2𝑝 +
𝑁−1

2
) (2𝑝 +

𝑁+1

2
)2F1(−2, 4𝑝 + 𝑁, 2𝑝 +

𝑁−1

2
;

1−𝑥

2
) 

      𝑓3(𝑥) = 𝐶2[(4𝑝 + 𝑁 + 1)(4𝑝 + 𝑁 + 2)(4𝑝 + 𝑁 + 3)𝑥3  

                             −3(4𝑝 + 𝑁 + 1)(4𝑝 + 𝑁 + 3)𝑥]                               

              = 𝐶2 (2𝑝 +
𝑁−1

2
) (2𝑝 +

𝑁+1

2
) (2𝑝 +

𝑁+3

2
)2F1(−3, 4𝑝 + 𝑁 + 1, 2𝑝 +

𝑁−1

2
;

1−𝑥

2
) 

         ⋮                                                                                                                      (2.2.13) 

 

Bu sonuçlardan  f(x)  için genel  çözüm 

 

      𝑓𝑛𝜃
(𝑥) = 𝐶2 (2𝑝 +

𝑁−1

2
)

𝑛𝜃

2F1(−𝑛𝜃, 4𝑝 + 𝑁 − 2 + 𝑛𝜃, 2𝑝 +
𝑁−1

2
;

1−𝑥

2
)           (2.2.14) 

 

şeklinde yazılır. Burada, 2F1  Gauss hipergeometrik fonksiyondur. Gauss hipergeometrik 

fonksiyonun  ifadesi  

 

      
 

   

   
2 1

0

( 1) !
( , , ; )

! !

k
k

k

kn
F n x x

n k k k

 
 

 





  
 

   
                                                     (2.2.15) 

 

şeklindedir [143].  (2.2.14) denklemi (2.2.5) denkleminde yerine yazılır ve 𝑥’den  𝜃𝑁−1’e 

geçiş yapılarak  N-boyutlu merkezcil olmayan potansiyel için normalize olmamış açısal 

dalga fonksiyonu 

 

      Θ(𝜃𝑁−1) = 𝐶2(𝑠𝑖𝑛𝜃𝑁−1)2𝑝 (2𝑝 +
𝑁−1

2
)

𝑛𝜃

 

                            ×2F1(−𝑛𝜃 , 4𝑝 + 𝑁 − 2 + 𝑛𝜃, 2𝑝 +
𝑁−1

2
;

1−cos 𝜃𝑁−1

2
)                 (2.2.16) 

olarak bulunur. Burada 𝐶2  normalizasyon  sabitidir  ve  ∫ |Θ(𝜃𝑁−1)|2𝜋

0
𝑠𝑖𝑛𝑁−2𝜃𝑁−1𝑑𝜃𝑁−1 = 1 

normalizasyon şartından bulunacaktır. Normalizasyon sabiti hesaplanırken 
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         ∫ 𝑥𝛾−1(1 − 𝑥)𝛼−𝛾1

0
2F1(−𝑛, 𝛼 + 𝑛, 𝛾, 𝑥)2F1(−𝑘, 𝛼 + 𝑘, 𝛾, 𝑥)𝑑𝑥 

                                                         =
Γ2(𝛾)Γ(𝛼−𝛾+𝑛+1)

Γ(𝛼+𝑛)Γ(𝛾+𝑛)

𝑛!

𝛼+2𝑛
𝛿𝑛𝑘                                 (2.2.17) 

 

hipergeometrik polinomlarının (2.2.17)  diklik bağıntısı [143]  kullanılır ve gerekli 

düzenlemelerden sonra normalize olmuş N-boyutta açısal dalga fonksiyonu  

 

         Θ(𝜃𝑁−1) =
1

Γ(2𝑝+
𝑁−1

2
)

[
Γ(4𝑝+𝑁−2+𝑛𝜃)(4𝑝+𝑁−2+2𝑛𝜃)

24𝑝+𝑁−2𝑛𝜃!
]

1

2 (𝑠𝑖𝑛𝜃𝑁−1)2𝑝 

                             ×2F1(−𝑛𝜃, 4𝑝 + 𝑁 − 2 + 𝑛𝜃, 2𝑝 +
𝑁−1

2
;

1−cos 𝜃𝑁−1

2
)                (2.2.18)   

 

şeklinde elde edilir. Gauss hipergeometrik fonksiyonun Jacobi polinomları arasındaki 

bağıntı [143] 

 

         2F1(−𝑛, 𝛼 + 𝛽 + 𝑛 + 1, 𝛼 + 1,
1−𝑥

2
) =

𝑛!

(𝛼+1)𝑛
𝑃𝑛

(𝛼,𝛽)
(𝑥)                               (2.2.19) 

 

kullanılırsa N-boyutta merkezcil olmayan potansiyel için normalize olmuş açısal dalga 

fonksiyonu Jacobi polinomları cinsinden 

 

         Θ(𝜃𝑁−1) = [
n𝜃!Γ(4𝑝+𝑁−2+𝑛𝜃)(4𝑝+𝑁−2+2𝑛𝜃)

24𝑝+𝑁−2Γ(2𝑝+
𝑁−1

2
+𝑛𝜃)Γ(2𝑝+

𝑁−1

2
+𝑛𝜃)

]

1

2

(𝑠𝑖𝑛𝜃𝑁−1)2𝑝 

                              × 𝑃𝑛𝜃

(2𝑝+
𝑁−3

2
,2𝑝+

𝑁−3

2
)
(𝑐𝑜𝑠𝜃𝑁−1)                                                  (2.2.20) 

 

şeklinde elde edilir. Jacobi ve  Gegenbauer  polinomları arasında 

 

         𝐶𝑛
𝜆 =

Γ(𝑛+2𝛼+1)Γ(𝛼+1)

Γ(2𝛼+1)Γ(𝑛+𝛼+1)
𝑃𝑛

(𝛼,𝛼)
(𝑥)                                                                     (2.2.21) 

 

şeklinde bağıntı vardır [144]. Denklem (2.2.20), denklem (2.2.21) kullanılarak yeniden 

düzenlendiğinde  N-boyutta spin-0 parçacık için normalize olmuş açısal dalga fonksiyonu 

Gegenbauer polinomu cinsinden 
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      Θ(𝜃𝑁−1) = [
n𝜃!(4𝑝+𝑁−2+2𝑛𝜃)

2𝑁−2Γ(4𝑝+𝑁−2+𝑛θ)
]

1

2 (𝑠𝑖𝑛𝜃𝑁−1)2𝑝 

                      
/ 2

20

( 1) (2 2 4 2)

1
2 2 !( 2 )!

2

mn

n pm

n m p N

N
n m p m n m



 



     


 
     
 

 (𝑐𝑜𝑠𝜃𝑁−1)𝑛𝜃−2𝑚   (2.2.22) 

 

şeklinde elde edilir. Denklem (2.2.22), non-relativistik limitte Chen ve çalışma 

arkadaşlarının [28] elde ettiği küresel koordinatlarda relativistik olmayan dalga 

fonksiyonuna indirgenir. 

 

2.2.2. Yüksek Küresel Koordinatlarda Radyal Klein-Gordon Denkleminin Bağlı 

Durum Çözümleri 

      Bu bölümde, N-boyutta radyal enerji spektrumu ve dalga fonksiyonu elde edilecektir.  

      Hartmann potansiyeli için N boyutta radyal Klein-Gordon denklemi 

 

    
𝑑2𝑅(𝑟)

𝑑𝑟2 +
(𝑁−1)

𝑟

𝑑𝑅(𝑟)

𝑑𝑟
+ [

(𝐸+𝜇𝑐2)

ℏ2𝑐2

𝜂𝜎2𝑒2

𝑟
+

(𝐸2−𝜇2𝑐4)

ℏ2𝑐2 −
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)

𝑟2 ] 𝑅(𝑟) = 0   (2.2.23) 

şeklindedir. Radyal dalga fonksiyonu 

 

       𝑅(𝑟) = 𝑟− 
𝑁−1

2 𝑢(𝑟)                                                                                             (2.2.24) 

şeklinde alınır ve  (2.2.23) denkleminde yerine yazılırsa N-boyutta radyal Klein-Gordon 

denklemi 

 

     
𝑑2𝑢(𝑟)

𝑑𝑟2 + [
(𝐸+𝜇𝑐2)

ℏ2𝑐2

𝜂𝜎2𝑒2

𝑟
−

(𝑁−1)(𝑁−3)

4𝑟2 +
(𝐸2−𝜇2𝑐4)

ℏ2𝑐2 −
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)

𝑟2 ] 𝑢(𝑟) = 0   (2.2.25) 

 

elde edilir. (2.2.25)  denklemini düzenlemek için  

 

      𝜅 = (
𝐸+𝜇𝑐2

ℏ2𝑐2𝜀
) 𝜂𝜎2𝑒2        𝜀2 = −4 (

𝐸2−𝜇2𝑐4

ℏ2𝑐2 )                                                      (2.2.26) 

 

uygun kısaltmalar yapıldıktan sonra    𝑥 = 𝜀𝑟   dönüşümü yapılırsa 

 

      
𝑑2𝑢(𝑥)

𝑑𝑥2 + [
𝜅

𝑥
−

1

4
−

(𝑁−1)(𝑁−3)

4𝑥2 +
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)

𝑥2 ] 𝑢(𝑥) = 0                                             (2.2.27) 
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denklemi elde edilir. Dalga fonksiyonu sonlu olması gerektiğinden  𝑥 → 0  ve 𝑥 → ∞’a 

giderken  

      𝑢(𝑥) = 𝑥𝑙𝑁−1+
𝑁−1

2 𝑒−
𝑥

2𝑓(𝑥)                                                                                  (2.2.28) 

 

şeklinde dalga fonksiyonu önerilir. Bu limitlerde f(x),  önerilen çözümü sonlu tutan bir 

fonksiyondur. Önerilen dalga fonksiyonu (2.2.27) denkleminde yerine yazılırsa ikinci 

mertebeden lineer homojen diferansiyel denklem  

 

      
𝑑2𝑓(𝑥)

𝑑𝑥2 = (1 −
2𝑙𝑁−1+𝑁−1

𝑥
)

𝑑𝑓(𝑥)

𝑑𝑥
+ (

2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
) 𝑓(𝑥)                                   (2.2.29) 

 

elde edilir ve  (2.2.29) denklemi asimptotik iterasyon metoduna uygundur. (2.2.29) 

denklemini çözmek için  (1.1.1)  denklemi ile karşılaştırılırsa 

 

      𝜆0(𝑥) = 1 −
2𝑙𝑁−1+𝑁−1

𝑥
 

      𝑠0(𝑥) =
2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
 

 

belirlenir. (1.1.7) denklemi kullanılarak  𝜆𝑛(𝑥)  ve  𝑠𝑛(𝑥) hesaplanır. 

 

      𝜆1(𝑥) =
2𝑙𝑁−1+𝑁−1

𝑥2 +
2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
+ (1 −

2𝑙𝑁−1+𝑁−1

𝑥
)

2
 

      𝑠1(𝑥) = −
2𝑙𝑁−1+𝑁−1

2𝑥2 +
𝜅

𝑥2 + (
2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
) (1 −

2𝑙𝑁−1+𝑁−1

𝑥
) 

      𝜆2(𝑥) = −
2(2𝑙𝑁−1+𝑁−1)

𝑥3 −
2𝑙𝑁−1+𝑁−1

𝑥2 +
𝜅

𝑥2 +
2(1−

2𝑙𝑁−1+𝑁−1

𝑥
)(2𝑙𝑁−1+𝑁−1)

𝑥2  

                     + (
2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
) (1 −

2𝑙𝑁−1+𝑁−1

𝑥
) 

                     + (1 −
2𝑙𝑁−1+𝑁−1

𝑥
) (

2𝑙𝑁−1+𝑁−1

𝑥2 +
2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
+ (1 −

2𝑙𝑁−1+𝑁−1

𝑥
)

2

) 

      𝑠2(𝑥) =
(2𝑙𝑁−1+𝑁−1)

𝑥3 −
2𝜅

𝑥3 + (−
2𝑙𝑁−1+𝑁−1

2𝑥2 +
𝜅

𝑥2) (1 −
2𝑙𝑁−1+𝑁−1

𝑥
) 

                     +
(

2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
)(2𝑙𝑁−1+𝑁−1)

𝑥2  

                     + (
2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
) (

2𝑙𝑁−1+𝑁−1

𝑥2 +
2𝑙𝑁−1+𝑁−1

2𝑥
−

𝜅

𝑥
+ (1 −

2𝑙𝑁−1+𝑁−1

𝑥
)

2

) 

      ⋯                                                                                                                         (2.2.30) 
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      Kullanılan metotta (1.1.9) denkleminden N-boyutta relativistik enerji özdeğerleri  

 

       
𝑠0

𝜆0
=

𝑠1

𝜆1
   ⇒   𝜅0𝑙𝑁−1

= 𝑙𝑁−1 +
𝑁−1

2
 

       
𝑠1

𝜆1
=

𝑠2

𝜆2
   ⇒   𝜅1𝑙𝑁−1

= 𝑙𝑁−1 +
𝑁+1

2
 

       
𝑠2

𝜆2
=

𝑠3

𝜆3
   ⇒   𝜅2𝑙𝑁−1

= 𝑙𝑁−1 +
𝑁+3

2
                                                                   (2.2.31) 

            ⋮ 

 

şeklinde bulunur. (2.2.31) eşitliğindeki ifadeler genelleştirilirse 

 

       𝜅𝑛𝑙𝑁−1
= 𝑙𝑁−1 +

𝑁−1

2
+ 𝑛       𝑛 = 0,1,2, ⋯                                                     (2.2.32) 

 

şeklinde elde edilir. Denklem (2.2.26)’da tanımlanan eşitlikler denklem (2.2.32)’de  

yerine yazılırsa  Hartmann potansiyeli için N-boyutta  relativistik radyal  enerji spektrumu 

 

       
𝐸𝑛𝑙𝑁−1

−𝜇𝑐2

𝐸𝑛𝑙𝑁−1
+𝜇𝑐2

= −
(𝜂𝜎2𝑒2)2

4ℏ2𝑐2[𝑙𝑁−1+
𝑁−1

2
+𝑛 ]

2                                                    (2.2.33) 

elde edilir. Denklem (2.2.12), denklem (2.2.33)’de yerine yazılır ve gerekli düzenleme 

yapılırsa Hartmann potansiyeli için N-boyutta relativistik titreşim-dönme enerji 

spektrumu  

 

     
𝐸

𝑛𝑛𝜃𝑚′−𝜇𝑐2

𝐸𝑛𝑛𝜃𝑚′+𝜇𝑐2
= −

(𝜂𝜎2𝑒2)2

4ℏ2𝑐2[𝑛+𝑛𝜃+1+√(
𝑁−3

2
)

2
+(

𝐸+𝜇𝑐2

2𝜇𝑐2 )𝑞𝜂2𝜎2+𝑚′2
]

2                (2.2.34) 

şeklinde elde edilir. Denklem (2.2.34), non-relativistik limitte (𝑐 → ∞), Durmus ve 

Özfidan[43]’ın elde ettiği sonucu sağlamaktadır. 

      Denklem (2.2.31)’deki N-boyutta enerji özdeğerlerine karşı gelen radyal dalga 

fonksiyonları hesaplanır. Bölüm 1’de verilen (1.1.16) denklemi kullanılarak Maple 

programı yardımıyla N-boyutta radyal dalga fonksiyonları  
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       𝑓0(𝑥) = 𝐶2 = 𝐶2 1F1(0, 2𝑙𝑁−1 + 𝑁 − 1, 𝑥)     

       𝑓1(𝑥) = −𝐶2(2𝑙𝑁−1 + 𝑁 − 1 − 𝑥) = −𝐶2(2𝑙𝑁−1 + 𝑁 − 1)1F1(−1, 2𝑙𝑁−1 + 𝑁 − 1, 𝑥)     

       𝑓2(𝑥) = 𝐶2[(2𝑙𝑁−1 + 𝑁 − 1)(2𝑙𝑁−1 + 𝑁) − (2𝑙𝑁−1 + 𝑁)𝑥 + 𝑥2] 

                  = 𝐶2(2𝑙𝑁−1 + 𝑁 − 1)(2𝑙𝑁−1 + 𝑁)1F1(−2, 2𝑙𝑁−1 + 𝑁 − 1, 𝑥)     

      𝑓3(𝑥) = −𝐶2[(2𝑙𝑁−1 + 𝑁 − 1)(2𝑙𝑁−1 + 𝑁)(2𝑙𝑁−1 + 𝑁 + 1) 

                           −3(2𝑙𝑁−1 + 𝑁)(2𝑙𝑁−1 + 𝑁 + 1)𝑥 + 3(2𝑙𝑁−1 + 𝑁 + 1)𝑥2 − 𝑥3] 

               = 𝐶2(2𝑙𝑁−1 + 𝑁 − 1)(2𝑙𝑁−1 + 𝑁)(2𝑙𝑁−1 + 𝑁 + 1)1F1(−3, 2𝑙𝑁−1 + 𝑁 − 1, 𝑥) 

        ⋮ 

 

şeklinde elde edilir. Bu sonuçlardan 𝑓(𝑥) için genel çözüm 

 

      𝑓𝑛(𝑥) = 𝐶2(−1)𝑛(2𝑙𝑁−1 + 𝑁 − 1)𝑛1F1(−𝑛, 2𝑙𝑁−1 + 𝑁 − 1, 𝑥)                         (2.2.35) 

 

olarak bulunur. Burada 

 

      1 1

0

( 1) ! ( )
( , , )

( )! ! ( )

kn
k

k

n
F n y y

n k k k






 
 

  
                                                                         (2.2.36) 

 

konfluent hipergeometrik fonksiyondur [143]. (2.2.35) denklemi, (2.2.28) denkleminde 

yerine yazılırsa yüksek küresel koordinatlarda Hartmann potansiyeli için normalize 

olmamış radyal dalga fonksiyonu  

 

     𝑢(𝑥) = 𝐶2(−1)𝑛(2𝑙𝑁−1 + 𝑁 − 1)𝑛𝑥𝑙𝑁−1+
𝑁−1

2 𝑒−
𝑥

2 1F1(−𝑛, 2𝑙𝑁−1 + 𝑁 − 1, 𝑥)   (2.2.37) 

                                                                                                  

elde edilir. Burada 𝐶2 normalizasyon sabitidir. Normalizasyon sabiti 

 

      ∫ |𝑅(𝑟)|2𝑟𝑁−1𝑑𝑟 = 1
∞

0
                                                                                      (2.2.38) 

şartından bulunur. Konfluent hipergeometrik fonksiyonlarla Laguerre polinomları 

arasındaki bağıntı [143] 

 

      1F1(−𝑛, 𝛼, 𝑥) =
Γ(𝛼)𝑛!

Γ(𝛼+𝑛)
𝐿𝑛

𝛼−1(𝑥)                                                                                         (2.2.39)  

 

normalizasyon sabitinin bulunmasında yardımcı olmaktadır.  
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      Denklem (2.2.37), denklem (2.2.24)’de yerine yazılır. Daha sonra, (2.2.39) bağıntısı 

ve  𝑥 = 𝜀𝑟    dönüşümü kullanılarak N-boyutta normalize olmamış dalga fonksiyonu 

 

       𝑅(𝑟) = 𝐶2(−1)𝑛𝜀𝑙𝑁−1+
𝑁−1

2 𝑟𝑙𝑁−1𝑒−
𝜀𝑟

2 𝑛! 𝐿𝑛
2𝑙𝑁−1+𝑁−2

(𝜀𝑟)                                 (2.2.40) 

 

şeklinde düzenlenir. Denklem (2.2.40), denklem (2.2.38)’de yerine yazılır ve elde edilen  

integralin çözümü için Laguerre polinomunun diklik bağıntısı [149-150] 

 

      ∫ 𝑒−𝑥𝑥𝛽[𝐿𝑛
𝛽−1

(𝑥)]
2∞

0
𝑑𝑥 =

(𝛽+2𝑛)Γ(𝛽+𝑛)

𝑛!
                                                         (2.2.41) 

 

kullanılır. Normalizasyon sabiti bulunarak denklem (2.2.40)’da yerine yazılırsa 

 

     𝑅(𝑟) = [
𝑛!𝜀2𝑙𝑁−1+𝑁

(2𝑙𝑁−1+𝑁−2+𝑛)!(2𝑛+2𝑙𝑁−1+𝑁−1)
]

1

2
𝑟𝑙𝑁−1𝑒−

𝜀𝑟

2 (−1)𝑛𝐿𝑛
2𝑙𝑁−1+𝑁−2

(𝜀𝑟)       (2.2.42) 

 

yüksek küresel koordinatlarda Hartmann potansiyeli için normalize radyal dalga 

fonksiyonu elde edilir. 

 

 2.2.3. N-Boyutta Radyal Beklenen Değerler 

 

      Bu bölümde, Chen ve arkadaşlarının [28] çalışmasındaki yaklaşım kullanılarak 

relativistik teoride N-boyutta Hartmann potansiyeli için köşegen matris elemanları ve bu 

matris elemanlarının analitik ifadeleri arasındaki tekrarlama bağıntıları elde edilir. 

      N-boyutta Hartmann potansiyeli için normalize edilmiş radyal dalga fonksiyonu 

 

         𝑢(𝑟) = 𝑁′(𝜀𝑟)𝑙𝑁−1+
𝑁−1

2 𝑒−
𝜀𝑟

2 1F1(−𝑛𝑟 , 2𝑙𝑁−1 + 𝑁 − 1, 𝜀𝑟)                                (2.2.43) 

 

şeklindedir. Burada 𝑁′, normalizasyon sabitidir. 

 

         𝑁′ = [
𝜀Γ(2𝑙𝑁−1+𝑁−1+𝑛𝑟)

𝑛𝑟!(Γ(2𝑙𝑁−1+𝑁−1))
2

(2𝑙𝑁−1+𝑁−1+2𝑛𝑟)
]

1

2
                                                      (2.2.44) 

 

İşlem kolaylığı için 𝑙𝑁−1 = 𝑙 alınır ve yüksek küresel koordinatlarda Hartmann 

potansiyeli için beklenen değer 
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         ⟨𝑛𝑙|𝑟𝑠|𝑛𝑙⟩ = ∫ 𝑟𝑠∞

0
[𝑢𝑛𝑙(𝑟)]2𝑑𝑟 

                        = 𝑁′2
𝜀2𝑙+𝑁−1 ∫ 𝑟2𝑙+𝑁−1+𝑠∞

0
𝑒−𝜀𝑟  

2

1 1( ,2 1, )F n l N r dr                (2.2.45) 

 

şeklinde yazılır. Konfluent hipergeometrik fonksiyonu içeren integral formülü [147] 

 

         𝐴𝜈 = ∫ 𝑒−𝑘𝑧𝑧𝜈−1∞

0  
2

1 1( , , )F n kz dz                                                                  (2.2.46) 

 

şeklindedir. Burada,  n  tamsayı ve  𝑅𝑒𝜈 > 0 . (2.2.46)  eşitliği kullanılarak beklenen 

değer 

         ⟨𝑛𝑙|𝑟𝑠|𝑛𝑙⟩ = 𝑁′2
𝜀2𝑙+𝑁−1𝐴2𝑙+𝑁+𝑠                                                                            (2.2.47) 

 

olarak yazılır. Denklem (2.2.45) ile denklem (2.2.46) karşılaştırılırsa  𝑘 = 𝜀 , 𝜈 = 2𝑙 +

𝑁 + 𝑠,  𝛼 = 2𝑙 + 𝑁 − 1 olarak elde edilir.  𝐴𝜈 integrali 

 

         𝐴𝛼+𝑝 =
(𝛼−𝑝−1)(𝛼−𝑝)…(𝛼+𝑝−1)

𝑘2𝑝+1 𝐴𝛼−𝑝−1                                                                    (2.2.48) 

 

şeklinde tanımlıdır [153]. Burada p herhangi bir tamsayıdır. 𝑝 = 𝑠 + 1 alınır ve  (2.2.48) 

eşitliğinde 𝛼 ‘nın değeri yerine yazıldığında  

 

         𝐴2𝑙+𝑁+𝑠 =
(2𝑙+𝑁−3−𝑠)(2𝑙+𝑁−2−𝑠)…(2𝑙+𝑁−1+𝑠)

𝜀2𝑠+3 𝐴2𝑙+𝑁−3−𝑠                                         (2.2.49) 

 

elde edilir. (2.2.47) denkleminin elde edilmesine benzer şekilde 

 

         ⟨𝑛𝑙|𝑟−𝑠−3|𝑛𝑙⟩ = 𝐶2
2𝜀2𝑙+𝑁−1𝐴2𝑙+𝑁−𝑠−3                                                                  (2.2.50) 

 

denklemi yazılır. Denklem (2.2.47) ve denklem (2.2.50)’den faydalanarak  (2.2.49) 

eşitliği yeniden düzenlendiğinde yüksek küresel koordinatlarda radyal beklenen değerler 

için tekrarlama bağıntısı  

 

         ⟨𝑛𝑙|𝑟𝑠|𝑛𝑙⟩ =
(2𝑙+𝑁−3−𝑠)(2𝑙+𝑁−2−𝑠)…(2𝑙+𝑁−1+𝑠)

𝜀2𝑠+3
⟨𝑛𝑙|𝑟−𝑠−3|𝑛𝑙⟩                                (2.2.51)  

 

şeklinde elde edilir. Denklem (2.2.26)’nın denklem (2.2.25)’de yerine yazılması 

Hartmann potansiyelinin için N-boyutta radyal beklnen değerleri için diğer tekrarlama 

bağıntısını elde etmemizi sağlar. Böylece, N-boyutta radyal Klein-Gordon denklemi  
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𝑑2𝑢𝑛𝑙(𝑟)

𝑑𝑟2 + [−
𝜀2

4
+

𝜅𝜀

𝑟
−

(𝑁−1)(𝑁−3)

4𝑟2 −
𝑙(𝑙+𝑁−2)

𝑟2 ] 𝑢𝑛𝑙(𝑟) = 0                                     (2.2.52) 

şeklinde yazılır ve bu denklemin her terimini  𝑟𝑠𝑢𝑛𝑙(𝑟)  ile  çarpıp ∫ ⋯ 𝑑𝑟
∞

0
 integrali 

alınır ve gerekli cebirsel işlemler yapılır ise 

 

         ∫ 𝑟𝑠 (
𝑑𝑢𝑛𝑙(𝑟)

𝑑𝑟
)

2
𝑑𝑟

∞

0
= (

𝑠(𝑠−1)

2
−

(𝑁−1)(𝑁−3)

4
− 𝑙(𝑙 + 𝑁 − 2)) ⟨𝑛𝑙|𝑟𝑠−2|𝑛𝑙⟩ 

                                                −
𝜀2

4
⟨𝑛𝑙|𝑟𝑠|𝑛𝑙⟩ + 𝜅𝜀⟨𝑛𝑙|𝑟𝑠−1|𝑛𝑙⟩                                       (2.2.53) 

elde edilir.  (2.2.52)  denkleminin her terimini  𝑟𝑠+1 𝑑𝑢𝑛𝑙(𝑟)

𝑑𝑟
  ile  çarpıp  ∫ ⋯ 𝑑𝑟

∞

0
 integrali 

alınır ve gerekli işlemler yapıldıktan sonra 

 

         ∫ 𝑟𝑠 (
𝑑𝑢𝑛𝑙(𝑟)

𝑑𝑟
)

2
𝑑𝑟

∞

0
=

𝜀2

4
⟨𝑛𝑙|𝑟𝑠|𝑛𝑙⟩ −  𝜅𝜀 (

𝑠

𝑠+1
) ⟨𝑛𝑙|𝑟𝑠−1|𝑛𝑙⟩ 

                                                 + (
(𝑁−1)(𝑁−3)

4
+ 𝑙(𝑙 + 𝑁 − 2))

𝑠−1

𝑠+1
⟨𝑛𝑙|𝑟𝑠−2|𝑛𝑙⟩              (2.2.54) 

 

elde edilir. (2.2.53) ve (2.2.54) eşitliklerini karşılaştırdığımızda N-boyutta Hartmann 

potansiyeli için beklenen değerlerin bir diğer tekrarlama bağıntısı  

 

         
𝜀2

2
⟨𝑛𝑙|𝑟𝑠|𝑛𝑙⟩ = 𝜅𝜀 (

2𝑠+1

𝑠+1
) ⟨𝑛𝑙|𝑟𝑠−1|𝑛𝑙⟩   

                                    −
𝑠

2(𝑠+1)
[(2𝑙 + 𝑁 − 2)2 − 𝑠2]⟨𝑛𝑙|𝑟𝑠−2|𝑛𝑙⟩                                   (2.2.55) 

 

elde edilir. (2.2.51) ve  (2.2.55) tekrarlama bağıntılarını kullanarak Hartmann potansiyeli 

için N-boyutta beklenen değerler 

 

      ⟨𝑛𝑙|𝑟4|𝑛𝑙⟩ = 2 (
ℏ2𝑐2

(𝐸+𝜇𝑐2)𝜂𝜎2𝑒2)
4

(𝑙 +
𝑁−1

2
+ 𝑛)

4
[63 (𝑙 +

𝑁−1

2
+ 𝑛)

4
− (70𝑙(𝑙 + 𝑁 − 2) 

                              +
35

2
(𝑁2 − 4𝑁 − 3)) (𝑙 +

𝑁−1

2
+ 𝑛)

2
+ 15 (𝑙 +

𝑁−1

2
) (𝑙 +

𝑁−3

2
) 

                              × (𝑙 +
𝑁−5

2
) (𝑙 +

𝑁+1

2
) − 20 (𝑙 +

𝑁−1

2
) (𝑙 +

𝑁−3

2
) + 12] 

       ⟨𝑛𝑙|𝑟3|𝑛𝑙⟩ = (
ℏ2𝑐2

(𝐸+𝜇𝑐2)𝜂𝜎2𝑒2)
3

(𝑙 +
𝑁−1

2
+ 𝑛)

2
[35 (𝑙 +

𝑁−1

2
+ 𝑛)

4
− (30𝑙(𝑙 + 𝑁 − 2) 

                              +
15

2
𝑁2 − 30𝑁 −

5

2
) (𝑙 +

𝑁−1

2
+ 𝑛)

2
+ 3 (𝑙 +

𝑁−1

2
) (𝑙 +

𝑁−3

2
)   

                              × (𝑙 +
𝑁−5

2
) (𝑙 +

𝑁+1

2
)] 
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       ⟨𝑛𝑙|𝑟2|𝑛𝑙⟩ = 2 (
ℏ2𝑐2

(𝐸+𝜇𝑐2)𝜂𝜎2𝑒2)
2

(𝑙 +
𝑁−1

2
+ 𝑛)

2
[5 (𝑙 +

𝑁−1

2
+ 𝑛)

2
−

3

4
(2𝑙 + 𝑁 − 2)2 +

7

4
] 

       ⟨𝑛𝑙|𝑟|𝑛𝑙⟩ =
ℏ2𝑐2

(𝐸+𝜇𝑐2)𝜂𝜎2𝑒2
[3 (𝑙 +

𝑁−1

2
+ 𝑛)

2
−

1

4
((2𝑙 + 𝑁 − 2)2 − 1)] 

       ⟨𝑛𝑙|𝑟−1|𝑛𝑙⟩ =
1

2
(

𝐸+𝜇𝑐2

ℏ2𝑐2 )
𝜂𝜎2𝑒2

(𝑙+
𝑁−1

2
+𝑛)

2 

       ⟨𝑛𝑙|𝑟−2|𝑛𝑙⟩ = (
𝐸+𝜇𝑐2

ℏ2𝑐2 )
2

(𝜂𝜎2𝑒2)
2

2(𝑙+
𝑁−1

2
+𝑛)

3
(2𝑙+𝑁−2)

 

       ⟨𝑛𝑙|𝑟−3|𝑛𝑙⟩ = (
𝐸+𝜇𝑐2

ℏ2𝑐2 )
3

(𝜂𝜎2𝑒2)
3

(𝑙+
𝑁−1

2
+𝑛)

3
(2𝑙+𝑁−3)(2𝑙+𝑁−2)(2𝑙+𝑁−1)

 

       ⟨𝑛𝑙|𝑟−4|𝑛𝑙⟩ = (
𝐸+𝜇𝑐2

ℏ2𝑐2 )
4

(𝜂𝜎2𝑒2)
4

(𝑙+
𝑁−1

2
+𝑛)

5

[3(𝑙+
𝑁−1

2
+𝑛)

2
−

1

4
(2𝑙+𝑁−3)(2𝑙+𝑁−1)]

(2𝑙+𝑁−4)(2𝑙+𝑁−3)(2𝑙+𝑁−2)(2𝑙+𝑁−1)(2𝑙+𝑁)
             (2.2.56) 

 

şeklinde elde edilir. Denklem (2.2.56)’da elde edilen radyal beklenen değerler, küresel 

koordinatlarda non-relativistik limitte (𝑐 → ∞)  Chen ve çalışma arkadaşlarının [28] elde 

ettiği sonuçlara indirgenmektedir.  𝜂𝜎2 = 𝑍  ve  𝑁 = 3  için denklem (2.2.56)’daki radyal 

beklenen değerler nonrelativistik limitte Bockasten [148]’in çalışmasını sağlamaktadır. 

 

2.2.4. Hidrojen Molekülü İçin Relativistik Enerjinin Nümerik Hesaplamaları  

 

      Bu bölümde, N-boyutta radyal enerji spektrumu olan denklem (2.2.33) kullanılarak 

hidrojen molekülünün üç, dört ve beş boyutta farklı kuantum durumları için relativistik 

enerjinin (𝐸𝑛𝑙) nümerik değerleri elde edildi ve bu değerler Tablo 2.1’de verildi. Ayrıca, 

denklem (2.2.12) kullanılarak N boyutta dönme ve titreşim spektrumunun hidrojen 

molekülü için üç, dört ve beş boyutta  𝑛 = 1, 𝑙1 = 0 ve farklı 𝑛𝜃 durumlarında 

hesaplaması yapıldı. Denklem (2.2.3)’de verilen  𝑚′2
  tanımından  𝑁 = 3  için  𝑚′2

= 𝑙1
2  

,  𝑁 = 4  için  𝑚′2
= 𝑙2(𝑙2 + 1)  ve 𝑁 = 5  için  𝑚′2

= 𝑙3(𝑙3 + 2) olarak belirlenir. İlk 

olarak,  𝑁 = 3,  𝑙1  ve 𝑛𝜃  sıfır alınıp, denklem (2.2.12)’de yerine yazılırsa  𝑙2  denklemi 

elde edilir. Elde edilen  𝑙2 denklemi, (2.2.33) denkleminde yerine yazılarak relativistik 

enerjinin değeri bulundu. Benzer şekilde, farklı boyut ve açısal kuantum durumlarında  

hesaplanan  𝐸𝑛𝑚  değerleri Tablo 2.2’de verildi.              

      Hidrojen molekülü için üç, dört ve beş boyutta relativistik enerjinin nümerik 

değerlerini hesaplarken  𝜇 = 0.50391𝑎𝑚𝑢 ,  ℏ𝑐 = 1973.29 × 10−10𝑒𝑉𝑚  olarak alındı. 
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      Tablo 2.1. Hartmann potansiyeli etkisindeki  𝐻2 molekülü için farklı boyutlarda  

                        hesaplanan relativistik enerji değerleri                          

 

 

 

 

 

 

      Tablo 2.2.  𝑛 = 1, 𝑙1 = 0  durumunda  𝐻2 molekülü için üç, dört ve beş boyutlu  

                        dönme-titreşim relativistik enerjilerinin nümerik değerleri 

          

 𝑛𝜃              𝑁 = 3   
  𝐸𝑛𝑚(𝑀𝑒𝑉)                        

   𝑁 = 4 
   𝐸𝑛𝑚(𝑀𝑒𝑉)                                                                            

    𝑁 = 5 
   𝐸𝑛𝑚(𝑀𝑒𝑉)                                                                            

 0                    469.3917855         469.3923094    469.3925591 
 1           469.3923924  469.3927875 469.3929392 
 2        469.3926734  469.3929589 469.3930533 
 3          469.3930260  469.3920376 469.3931008 

 

 

2.2.5. Farklı Boyutlar İçin Küresel ve Kutupsal Koordinatlarda Açısal Dalga 

Fonksiyonlarının Olasılık Dağılımları 

 

      Bu bölümde, Hartmann potansiyeli etkisindeki 𝐻2 molekülü için üç, dört ve beş 

boyutlu açısal relativistik dalga fonksiyonlarının küresel ve kutupsal koordinatlarda 

olasılık dağılımlarının grafikleri Matlab programı kullanılarak çizildi. Bu grafiklerin 

çiziminde Tablo 2.2’de elde edilen relativistik dönme-titreşim enerjileri denklem 

(2.2.7)’de kullanılarak her bir durum için p değeri elde edildi. Hesaplanan bu değer 

denklem (2.2.20)’de yerine yazılarak üç, dört ve beş boyut için farklı kuantum 

durumlarında normalize olmamış açısal dalga fonksiyonları bulundu. 

      Denklem (2.2.6) yardımıyla denklem (2.2.19)’daki Jacobi polinomlarının 𝑁 = 3,  

𝑁 = 4 ve 𝑁 = 5 boyut için açılımları Tablo 2.3, 2.4  ve  2.5’de verildi. 

 

 

 

 n          𝑙       𝑁 = 3   
  𝐸𝑛𝑙(𝑀𝑒𝑉)                        

   𝑁 = 4 
   𝐸𝑛𝑙(𝑀𝑒𝑉)                                                                            

   𝑁 = 5 
   𝐸𝑛𝑙(𝑀𝑒𝑉) 

 1          0          469.3900514         469.3911751    469.3917855 
 2           0 469.3917855  469.3921536 469.3923924 
 2           1 469.3923924  469.3925562 469.3926734 
 3           0 469.3923924  469.3925562 469.3926734 
 3           1 469.3926734  469.3927601 469.3928260 
 3           2 469.3928260  469.3928773 469.3929180 
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      Tablo 2.3.  𝑁 = 3  için  Jacobi polinomları 

   𝑛𝜃        p        𝑃𝑛𝜃

(2𝑝,2𝑝)(𝑐𝑜𝑠𝜃) 

    0 0.4999996305           1 

    1 0.4999997921     1.999999584𝑐𝑜𝑠𝜃 

    2 0.4999998670    − 0.7499999333+3.749999266𝑐𝑜𝑠2𝜃 

    3 0.4999999076      6.999998878𝑐𝑜𝑠3𝜃 −2.999999678 𝑐𝑜𝑠𝜃 

 

      Tablo 2.4.  𝑁 = 4  için  Jacobi polinomları       

   𝑛𝜃        p 
       𝑃𝑛𝜃

(2𝑝+
1

2
,2𝑝+

1

2
)
(𝑐𝑜𝑠𝜃) 

    0 0.651387384           1 

    1 1.096290970     3.692581940𝑐𝑜𝑠𝜃 

    2 1.570027329     −1.410013664+14.49509461𝑐𝑜𝑠2𝜃 

    3 2.054886069      59.60223687𝑐𝑜𝑠3𝜃 −12.57471495 𝑐𝑜𝑠𝜃 

 

      Tablo 2.5.  𝑁 = 5  için  Jacobi polinomları             

   𝑛𝜃        p        𝑃𝑛𝜃

(2𝑝+1,2𝑝+1)(𝑐𝑜𝑠𝜃) 

    0 0.755266006           1 

    1 1.655095304      5.310190608𝑐𝑜𝑠𝜃 

    2 2.610477096     −2.055238550+31.73680539𝑐𝑜𝑠2𝜃 

    3 3.585596776      202.0846106𝑐𝑜𝑠3𝜃 −28.40609296 𝑐𝑜𝑠𝜃 

 

 

Tablo 2.3 elde edilen açılımlar denklem (2.2.20)’de yazıldı ve  𝐻2 molekülü için küresel 

ve kutupsal koordinatlarda açısal relativistik dalga fonksiyonlarının olasılık dağılımları 

elde edildi. Bu dağılımlar Şekil 2.2’de verildi. Benzer şekilde, Tablo 2.4 ve 2.5 ‘deki 

açılımların yardımıyla 𝑁 = 4 ve  𝑁 = 5 için küresel ve kutupsal koordinatlarda açısal 

relativistik dalga fonksiyonlarının olasılık dağılımları elde edildi ve sırasıyla Şekil 2.3, 

2.4’de gösterildi. Grafikler incelendiğinde  𝑁 = 4  ve 𝑁 = 5 boyutta hidrojen molekülü 

için açısal olasılık dağılımlarının  𝑁 = 3 boyutta elde edilen olasılık dağılımlarından 

farklı olduğu görülmektedir. Farklı açısal kuantum sayılarında, boyut artışı ile birlikte 
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olasılık dağılımlarında küresel boğum yüzeyinin çapı azalıp açısal dalga fonksiyonlarının 

genliğinin arttığı gözlenmektedir. 
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Şekil 2.2.  (a) ve (b) 𝑛𝜃 = 0 , (c) ve (d) 𝑛𝜃 = 1 , (e) ve (f) 𝑛𝜃 = 2, (g) ve (h) 𝑛𝜃 = 3 

durumunda 𝑁 = 3 için küresel ve kutupsal koordinatlarda açısal dalga 

fonksiyonlarının olasılık dağılımları 
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Şekil 2.3.  (a) ve (b) 𝑛𝜃 = 0 , (c) ve (d) 𝑛𝜃 = 1 , (e) ve (f) 𝑛𝜃 = 2, (g) ve (h) 𝑛𝜃 = 3 

durumunda 𝑁 = 4 için küresel ve kutupsal koordinatlarda açısal dalga 

fonksiyonlarının olasılık dağılımları 

 

 



39 
 

 

 

 
Şekil 2.4.  (a) ve (b) 𝑛𝜃 = 0 , (c) ve (d) 𝑛𝜃 = 1 , (e) ve (f) 𝑛𝜃 = 2, (g) ve (h) 𝑛𝜃 = 3 

durumunda 𝑁 = 5 için küresel ve kutupsal koordinatlarda açısal dalga 

fonksiyonlarının olasılık dağılımları 
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2.3. Asimptotik İterasyon Metodu İle Merkezcil Olmayan Morse Potansiyeli İçin    

N- Boyutta Klein-Gordon Denkleminin Yaklaşık Çözümleri 

 

      Merkezcil olmayan Morse potansiyeli  

 

      𝑉(𝑟, 𝜃𝑁−1) = 𝐷𝑒(1 − 𝑒−𝛼(𝑟−𝑟𝑒))
2

+
𝜂𝑐𝑜𝑠4𝜃𝑁−1+𝛽𝑐𝑜𝑠2𝜃𝑁−1+𝛾

𝑟2𝑠𝑖𝑛2𝜃𝑁−1𝑐𝑜𝑠2𝜃𝑁−1
                                 (2.3.1)       

                                                        

şeklinde tanımlanır. Burada, 𝑟𝑒  atomlar arasındaki denge uzaklığı,  𝐷𝑒 ayrışma enerjisi, 

𝛼 potansiyeli tanımlayan spektroskopik sabit, 𝜂, 𝛽  ve  𝛾 potansiyeli tanımlayan 

parametrelerdir. Toprak alkali iki atomlu moleküller (𝐶𝑎2 𝑋
1Σ+, 𝑀𝑔𝐶𝑎 𝑋1Σ+, 𝑆𝑟2 𝑋

1Σ+ 

ve  𝑆𝑟2 𝐴
1Σ+) için merkezcil olmayan Morse potansiyelinin yüzey grafikleri Şekil 2.5, 

2.6,  2.7  ve  2.8’de verildi.  𝜂 = 𝛽 = 𝛾 = 1 𝑒𝑉𝐴02
 alındığında merkezcil olmayan  Morse 

potansiyelinin yüzey grafiklerinde açısal katkı etkisini net bir şekilde görebiliriz. Fakat, 

merkezcil olmayan potansiyel parametrelerini  10−6 𝑒𝑉𝐴02
 değerine eşit veya küçük alıp 

her grafikte r’nin aralığını aynı tutarsam vardığımız sonuç toprak alkali metal grubu 

moleküllerinden uyarılmış durumda strontiyum molekülü için çizdiğimiz yüzey grafiği 

merkezcil potansiyelin yüzey grafiğine en yakın eğriyi vermiştir. Daha sonra, sırasıyla 

taban durumunda magnezyum-kalsiyum, strontiyum ve kalsiyum molekülleri için 

çizdiğimiz yüzey grafiklerinin merkezcil potansiyelin yüzey grafiğine yaklaştığı 

görülmektedir. Kullanılan moleküller için spektroskopik sabitler Tablo 2.6’da verildi.  

 

 

Şekil 2.5. Merkezcil olmayan Morse potansiyeli etkisindeki 𝐶𝑎2 𝑋
1Σ+molekülü için 

yüzey grafiği (a) 𝜂 = 𝛽 = 𝛾 = 1 𝑒𝑉𝐴02
(b)  𝜂 = 𝛽 = 𝛾 = 10−6𝑒𝑉𝐴02
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Şekil 2.6.  Merkezcil olmayan Morse potansiyeli etkisindeki 𝑀𝑔𝐶𝑎 𝑋1Σ+ molekülü için 

yüzey grafiği  (a)  𝜂 = 𝛽 = 𝛾 = 1 𝑒𝑉𝐴02
 (b) 𝜂 = 𝛽 = 𝛾 = 10−6𝑒𝑉𝐴02

  

 

 

Şekil 2.7. Merkezcil olmayan Morse potansiyeli etkisindeki 𝑆𝑟2 𝑋
1Σ+ molekülü için 

yüzey grafiği (a) 𝜂 = 𝛽 = 𝛾 = 1 𝑒𝑉𝐴02
  (b)  𝜂 = 𝛽 = 𝛾 = 10−6𝑒𝑉𝐴02
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Şekil 2.8. Merkezcil olmayan Morse potansiyeli etkisindeki  𝑆𝑟2 𝐴
1Σ+  molekülü için 

yüzey grafiği  (a)  𝜂 = 𝛽 = 𝛾 = 1 𝑒𝑉𝐴02
  (b)  𝜂 = 𝛽 = 𝛾 = 10−6𝑒𝑉𝐴02

   

 

Tablo 2.6.  İki atomlu moleküllerin spektroskopik sabitleri 

 

 

 

 

 

 

2.3.1. Merkezcil Olmayan Potansiyel İçin Yüksek Küresel Koordinatlarda Açısal 

Klein-Gordon Denkleminin  Çözümleri 

 

      Bu bölümde, merkezcil olmayan potansiyel etkisindeki spin-0 parçacık için N-

boyutta açısal Klein-Gordon denkleminin çözümleri elde edilecektir. 

      Merkezcil olmayan potansiyel için N-boyutta relativistik  açısal dalga denklemi 

 

       
𝑑2Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
2 + (𝑁 − 2)

cos 𝜃𝑁−1

sin 𝜃𝑁−1

𝑑Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
− [

(𝐸+𝜇𝑐2)

ℏ2𝑐2

𝜂𝑐𝑜𝑠4𝜃𝑁−1+𝛽𝑐𝑜𝑠2𝜃𝑁−1+𝛾

𝑠𝑖𝑛2𝜃𝑁−1𝑐𝑜𝑠2𝜃𝑁−1
 

                  +
𝑙𝑁−2(𝑙𝑁−2+𝑁−3)

𝑠𝑖𝑛2𝜃𝑁−1
− 𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)] Θ(𝜃𝑁−1) = 0                                         (2.3.2) 

 

şeklinde yazılır. (2.3.2)  denkleminde     

 

       𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2) = 𝑙′
𝑁−1
2

−
1

4
(𝑁 − 2)      𝑚2 = 𝑙𝑁−2(𝑙𝑁−2 + 𝑁 − 3)                (2.3.3) 

 𝐶𝑎2 𝑋
1Σ+ 𝑀𝑔𝐶𝑎 𝑋1Σ+ 𝑆𝑟2 𝑋

1Σ+ 𝑆𝑟2 𝐴
1Σ+ 

 𝐷𝑒(cm−1) 1095.0 691.5 1060.0 5400.0 

 𝑤𝑒(cm−1) 65.0748 60.257 40.32 85.07 

 𝑟𝑒(𝐴𝑜) 4.276891 4.039 4.4464 3.9518 

 𝜇(amu) 19.981296 14.988896 43.9528095 43.9528095 
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tanımları kullanılır  ve  𝑧 = 𝑐𝑜𝑠2𝜃𝑁−1  dönüşümü uygulanırsa  

 

      4𝑧(1 − 𝑧)
𝑑2Θ(𝑧)

𝑑𝑧2 + 2(1 − 𝑁𝑧)
𝑑Θ(𝑧)

𝑑𝑧
− [𝜉 −

ν

𝑧(1−𝑧)
−

𝜔

1−𝑧
] Θ(𝑧) = 0                            (2.3.4) 

elde edilir. Burada, 

 

      𝜉 =
𝜂(𝐸+𝜇𝑐2)

ℏ2𝑐2 + 𝑙′
𝑁−1
2

−
1

4
(𝑁 − 2)                                                                                          (2.3.5) 

      𝜔 = (𝛽 + 𝜂)
(𝐸+𝜇𝑐2)

ℏ2𝑐2 + 𝑚2                                                                                             (2.3.6) 

      𝜈 =
𝛾(𝐸+𝜇𝑐2)

ℏ2𝑐2                                                                                                          (2.3.7) 

 

olarak alınır. Açısal dalga fonksiyonun asimptotik davranışı incelendiğinde önerilen 

çözüm 

 

      Θ(𝑧) = 𝑧
1

4
+

√1+4𝜈

4 (1 − 𝑧)
3−𝑁

4
+

√(𝑁−3)2+4𝜔+4𝜈

4 𝑓(𝑧)                                                             (2.3.8) 

şeklindedir.  Burada,  f(z) belirlenecek fonksiyondur. Denklem (2.3.8)’de  

 

      𝐴 =
1

4
+

√1+4𝜈

4
 

      𝐵 =
3−𝑁

4
+

√(𝑁−3)2+4𝜔+4𝜈

4
                                                                                   (2.3.9) 

 

olarak tanımlanır ve denklem (2.3.8), denklem (2.3.4)’de yerine yazılırsa 

 

      
𝑑2𝑓(𝑧)

𝑑𝑧2 = [
𝑧(2𝐴+2𝐵+

𝑁

2
)−(2𝐴+

1

2
)

𝑧(1−𝑧)
]

𝑑𝑓(𝑧)

𝑑𝑧
+ [

(𝐴+𝐵)2+(𝐴+𝐵)
(𝑁−2)

2
−

𝜉

4

𝑧(1−𝑧)
] 𝑓(𝑧)                         (2.3.10) 

 

ikinici mertebeden lineer diferansiyel denklem elde edilir. Denklem (2.3.10)’un yapısı 

asimptotik iterasyon yöntemine uygundur. 
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      Denklem (2.3.10),  denklem (1.1.1)  ile karşılaştırıldığında 

 

      𝜆0(𝑧) =
𝑧(2𝐴+2𝐵+

𝑁

2
)−(2𝐴+

1

2
)

𝑧(1−𝑧)
 

      𝑠0(𝑧) =
(𝐴+𝐵)2+(𝐴+𝐵)

(𝑁−2)

2
−

𝜉

4

𝑧(1−𝑧)
 

olarak belirlenir. Denklem (1.1.9)  kullanılarak  𝜆𝑛(𝑧)  ve 𝑠𝑛(𝑧) değerleri 

 

      𝜆1(𝑧) =
2𝐴+2𝐵+

𝑁

2

𝑧(1−𝑧)
−

𝑧(2𝐴+2𝐵+
𝑁

2
)−(2𝐴+

1

2
)

𝑧2(1−𝑧)
+

𝑧(2𝐴+2𝐵+
𝑁

2
)−(2𝐴+

1

2
)

𝑧(1−𝑧)2 +
(𝐴+𝐵)2+(𝐴+𝐵)

(𝑁−2)

2
−

𝜉

4

𝑧(1−𝑧)
 

                     +
(𝑧(2𝐴+2𝐵+

𝑁

2
)−(2𝐴+

1

2
))

2

𝑧2(1−𝑧)2  

      𝑠1(𝑧) = −
(𝐴+𝐵)2+(𝐴+𝐵)

(𝑁−2)

2
−

𝜉

4

𝑧2(1−𝑧)
+

(𝐴+𝐵)2+(𝐴+𝐵)
(𝑁−2)

2
−

𝜉

4

𝑧(1−𝑧)2  

                        +
((𝐴+𝐵)2+(𝐴+𝐵)

(𝑁−2)

2
−

𝜉

4
)(𝑧(2𝐴+2𝐵+

𝑁

2
)−(2𝐴+

1

2
))

𝑧2(1−𝑧)2  

         ⋮                                                                                                                      (2.3.11) 

 

elde edilir. 

       Asimptotik iterasyon metodunun denklem (1.1.9)’da verilen kuantizasyon koşulu 

kullanılarak  yüksek küresel koordinatlarda enerji özdeğerleri     

 

        
𝑠0

𝜆0
=

𝑠1

𝜆1
   ⟹  𝜉0 = 4(𝐴 + 𝐵)2 + 2(𝑁 − 2)(𝐴 + 𝐵) 

        
𝑠1

𝜆1
=

𝑠2

𝜆2
   ⟹  𝜉1 = 4(𝐴 + 𝐵)2 + 2(𝑁 + 2)(𝐴 + 𝐵) + 2𝑁 

       
𝑠2

𝜆2
=

𝑠3

𝜆3
   ⟹  𝜉2 = 4(𝐴 + 𝐵)2 + 2(𝑁 + 6)(𝐴 + 𝐵) + 2(2𝑁 + 4) 

            ⋮                                                                                                                               (2.3.12) 

 

olarak bulunur. 𝑛 = 0,1,2, … olmak üzere (2.3.12) eşitliğindeki ifadeler 

genelleştirildiğinde 

 

      𝜉𝑛 = 4(𝐴 + 𝐵)2 + [8𝑛 + 2(𝑁 − 2)](𝐴 + 𝐵) + 𝑛(2𝑁 + 4𝑛 − 4)                           (2.3.13) 
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eşitliği elde edilir. Denklem (2.3.3) ve denklem (2.3.5), denklem (2.3.13)’de yerine yazılır 

ve belirli işlem basamaklarından sonra yüksek küresel koordinatlarda   𝑙𝑁−1 ifadesi 

 

      𝑙𝑁−1 =
2−𝑁

2
+

√(𝑁−2)2+16(𝐴+𝐵)2+4[8𝑛+2(𝑁−2)](𝐴+𝐵)+4𝑛(2𝑁+4𝑛−4)− 
4𝜂(𝐸+𝜇𝑐2)

ℏ2𝑐2

2
               (2.3.14) 

şeklinde elde edilir. Burada, 𝑛 = 0,1,2, …  değerlerini alır. 

      N-boyutta merkezcil olmayan potansiyel için açısal dalga fonksiyonları (1.1.16) 

denklemi  kullanılarak elde edilir. 

 

      𝑓0(𝑧) = 𝐶2 = 𝐶22F1(0, 2𝐴 + 2𝐵 +
𝑁−2

2
, 2𝐴 +

1

2
; 𝑧) 

      𝑓1(𝑧) = −𝐶2[4𝐴 + 1 − (4𝐴 + 4𝐵 + 𝑁)𝑧] 

                = −𝐶2 (2𝐴 +
1

2
)2F1(−1, 2𝐴 + 2𝐵 +

𝑁

2
, 2𝐴 +

1

2
; 𝑧) 

      𝑓2(𝑧) = 𝐶2[(4𝐴 + 1)(4𝐴 + 3) − 2(4𝐴 + 4𝐵 + 𝑁 + 2)(4𝐴 + 3)𝑧 

                          +(4𝐴 + 4𝐵 + 𝑁 + 2)(4𝐴 + 4𝐵 + 𝑁 + 5)𝑧2] 

                = 𝐶2 (2𝐴 +
3

2
) (2𝐴 +

1

2
)2F1(−2, 2𝐴 + 2𝐵 +

𝑁+2

2
, 2𝐴 +

1

2
; 𝑧)    

      𝑓3(𝑧) = −𝐶2[−(4𝐴 + 5)(4𝐴 + 3)(4𝐴 + 1) + 3(4𝐴 + 4𝐵 + 𝑁 + 4)(4𝐴 + 5)(4𝐴 + 3)𝑧 

                           −3(4𝐴 + 4𝐵 + 𝑁 + 6)(4𝐴 + 4𝐵 + 𝑁 + 4)(4𝐴 + 5)𝑧2 − (4𝐴 + 4𝐵 + 𝑁 + 8) 

                             × (4𝐴 + 4𝐵 + 𝑁 + 6)(4𝐴 + 4𝐵 + 𝑁 + 4)𝑧3] 

                = −𝐶2 (2𝐴 +
5

2
) (2𝐴 +

3

2
) (2𝐴 +

1

2
)2F1(−3, 2𝐴 + 2𝐵 +

𝑁+4

2
, 2𝐴 +

1

2
; 𝑧) 

         ⋮                                                                                                                       (2.3.15) 

 𝑓(𝑧)  için  elde edilen sonuçlar genelleştirildiğinde 

 

      𝑓𝑛(𝑧) = 𝐶2(−1)𝑛 (2𝐴 +
1

2
)

𝑛
2F1(−𝑛, 2𝐴 + 2𝐵 +

𝑁−2

2
+ 𝑛, 2𝐴 +

1

2
; 𝑧)                                 (2.3.16) 

 

olarak bulunur. Denklem (2.3.16)’da  2F1,  Gauss hipergeometrik fonksiyondur. Denklem 

(2.3.16), denklem (2.3.8)’de  yerine yazılır ve  z’den 𝜃𝑁−1’e  geçiş  yapıldığında yüksek 

küresel koordinatlarda   normalize olmamış açısal relativistik dalga fonksiyonu 
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      Θ(𝜃𝑁−1) = 𝐶2(𝑐𝑜𝑠2𝜃𝑁−1)𝐴(1 − 𝑐𝑜𝑠2𝜃𝑁−1)𝐵(−1)𝑛 (2𝐴 +
1

2
)

𝑛
 

                          ×2F1(−𝑛, 2𝐴 + 2𝐵 +
𝑁−2

2
+ 𝑛, 2𝐴 +

1

2
; 𝑐𝑜𝑠2𝜃𝑁−1)                       (2.3.17) 

 

şeklinde elde edilir. ∫ |Θ(𝜃𝑁−1)|2𝜋

0
𝑠𝑖𝑛𝑁−2𝜃𝑁−1𝑑𝜃𝑁−1 = 1   normalizasyon şartı kullanılarak 

denklem (2.3.17)’deki  𝐶2 normaliasyon sabiti bulunur. Buradan, merkezcil olmayan 

potansiyel etkisindeki spin-0 parçacık için normalize dalga fonksiyonu  

 

      Θ(𝜃𝑁−1) = [
Γ(2𝐴+2𝐵+

𝑁−2

2
+𝑛)Γ(2𝐴+

1

2
+𝑛)(2𝐴+2𝐵+

𝑁−2

2
+2𝑛)

Γ(2𝐵+
𝑁−1

2
+𝑛)𝑛!

]

1
2⁄

 

                          × (𝑐𝑜𝑠2𝜃𝑁−1)𝐴(1 − 𝑐𝑜𝑠2𝜃𝑁−1)𝐵(−1)𝑛 1

Γ(2A+
1

2
)
 

                          × 2F1(−𝑛, 2𝐴 + 2𝐵 +
𝑁−2

2
+ 𝑛, 2𝐴 +

1

2
; 𝑐𝑜𝑠2𝜃𝑁−1)                                 (2.3.18) 

 

şeklinde elde edilir. Gauss hipergeometrik fonksiyon ve Jacobi polinomu arasındaki 

bağıntı [143]  kullanılarak 

 

      2F1(−𝑛, 𝑎0 + 𝑏0 + 1 + 𝑛, 𝑎0 + 1; 𝑠) = 𝑃𝑛
(𝑎0,𝑏0)

(1 − 2𝑠)                                                 (2.3.19) 

denklem (2.3.18)  Jacobi polinomu cinsinden 

 

      Θ(𝜃𝑁−1) = (𝑐𝑜𝑠2𝜃𝑁−1)𝐴(1 − 𝑐𝑜𝑠2𝜃𝑁−1)𝐵(−1)𝑛 [
Γ(2𝐴+2𝐵+

𝑁−2

2
+𝑛)(2𝐴+2𝐵+

𝑁−2

2
+2𝑛)𝑛!

Γ(2𝐴+
1

2
+𝑛)Γ(2𝐵+

𝑁−1

2
+𝑛)

]

1
2⁄

 

                          × 𝑃𝑛

(2𝐴−
1

2
,2𝐵+

𝑁−3

2
)
(1 − 2𝑐𝑜𝑠2𝜃𝑁−1 )                                                                (2.3.20) 

 

olarak bulunur. 

 

2.3.2. Yüksek Küresel Koordinatlarda Radyal  Klein-Gordon Denkleminin Yaklaşık 

Çözümleri 

 

      Bu bölümde, N-boyutta radyal relativistik enerji spektrumu ve radyal dalga 

fonksiyonu elde edilecektir.  

      Morse  potansiyeli için  N-boyutta  radyal  Klein-Gordon  denklemi 
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𝑑2𝑢(𝑟)

𝑑𝑟2 + [
(𝐸2−𝜇2𝑐4)

ℏ2𝑐2 −
(𝐸+𝜇𝑐2)

ℏ2𝑐2 𝐷𝑒(1 − 𝑒−𝛼(𝑟−𝑟𝑒))
2
 

                                                         −
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)+

(𝑁−1)(𝑁−3)

4

𝑟2 ] 𝑢(𝑟) = 0                     (2.3.21) 

 

şeklindedir. Denklem (2.3.21)’de   𝑥 = 𝑒−𝛼(𝑟−𝑟𝑒)  dönüşümü uygulanırsa 

 

      
𝑑2𝑢(𝑥)

𝑑𝑥2 +
1

𝑥

𝑑𝑢(𝑥)

𝑑𝑥
+ [

𝐸2−𝜇2𝑐4−(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2𝑥2 −
(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2  

                 +
2(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2𝑥
−

(𝑙𝑁−1(𝑙𝑁−1+𝑁−2)+
(𝑁−1)(𝑁−3)

4
)

𝛼2𝑥2 (𝑟𝑒 −
𝑙𝑛𝑥

𝛼
)

−2

] 𝑢(𝑥) = 0      (2.3.22) 

şeklinde elde edilir. Denklem (2.3.22)’de  𝐴 =
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)+

(𝑁−1)(𝑁−3)

4

𝑟𝑒
2     olarak tanımlanır. 

Pekeris yaklaşımı [87] kullanılarak  (𝑟𝑒 −
𝑙𝑛𝑥

𝛼
)

−2
 ifadesi  𝑥 = 1 civarında Taylor serisine 

açılırsa,  

 

       
1

(1−
𝑙𝑛𝑥

𝛼𝑟𝑒
)

2 = 1 +
2

𝛼𝑟𝑒
(𝑥 − 1) + [−

1

𝛼𝑟𝑒
+

3

𝛼2𝑟𝑒
2
] (𝑥 − 1)2 

                                    + [
2

3𝛼𝑟𝑒
−

3

𝛼2𝑟𝑒
2 +

4

𝛼3𝑟𝑒
3] (𝑥 − 1)3 + ⋯                                             (2.3.23) 

eşitliği elde edilir. Denklem (2.3.22)’de denklem (2.3.23) kullanılarak  

 

       
𝑑2𝑢(𝑥)

𝑑𝑥2 +
1

𝑥

𝑑𝑢(𝑥)

𝑑𝑥
+ [

𝐸2−𝜇2𝑐4−(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2𝑥2 −
(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2  

                                             +
2(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2𝑥
−

𝑑

𝛼2𝑥2 −
𝑑1

𝛼2𝑥
−

𝑑2

𝛼2] 𝑢(𝑥) = 0                    (2.3.24) 

elde edilir. Burada, 

 

         𝑑 = 𝐴 [1 −
3

𝛼𝑟𝑒
+

3

𝛼2𝑟𝑒
2] 

         𝑑1 = 𝐴 [
4

𝛼𝑟𝑒
−

6

𝛼2𝑟𝑒
2] 

         𝑑2 = 𝐴 [−
1

𝛼𝑟𝑒
+

3

𝛼2𝑟𝑒
2]                                                                                       (2.3.25) 
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olarak alınır. Toprak alkali metal grubundan iki atomlu molleküller için Pekeris 

yaklaşımının  1 𝑟2⁄ ’li terime uyumluluğu Şekil 2.9’da gösterildi. 𝐶𝑎2 𝑋
1Σ+, 𝑀𝑔𝐶𝑎 𝑋1Σ+, 

𝑆𝑟2 𝑋
1Σ+ ve  𝑆𝑟2 𝐴

1Σ+ moleküllerinin 𝑟𝑒 sabiti Tablo 2.6’da verildi. Tablo 2.6’dan 

bakıldığında toprak alkali metal iki atomlu moleküllerin atomlar arasındaki denge 

uzaklığı yaklaşık 4 𝐴0’dur. Şekil 2.9 incelendiğinde Pekeris yaklaşımının atomlar 

arasındaki denge uzaklığında daha geçerli olduğu görülmektedir. 

 

 
 

   Şekil 2.9.  Toprak alkali metal iki atomlu moleküller için Pekeris yaklaşımının analizi 

 

     Denklem (2.3.24)’de işlem kolaylığı için 

 

      −𝜀2 = (
𝐸2−𝜇2𝑐4−(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2 −
𝑑

𝛼2)                                                                                   (2.3.26) 

       Λ1 = (
2(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2 −
𝑑1

𝛼2)                                                                                              (2.3.27) 

       Λ2
2 = (

(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2 +
𝑑2

𝛼2)                                                                                              (2.3.28) 

 

kısaltmaları kullanılır ve gerekli düzenlemeler yapıldığında 

 

      
𝑑2𝑢(𝑥)

𝑑𝑥2 +
1

𝑥

𝑑𝑢(𝑥)

𝑑𝑥
+ [−

𝜀2

𝑥2 − Λ2
2 +

Λ1

𝑥
] 𝑢(𝑥) = 0                                                     (2.3.29) 

 

ikinci metebeden denklem elde edilir. Dalga fonksiyonu sonlu olması gerektiğinden 𝑥 →

0  ve 𝑥 → ∞ limit durumlarında  
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      𝑢(𝑥) = 𝑥𝜀𝑒−Λ2𝑥𝑓(𝑥)                                                                                                (2.3.30) 

 

şeklinde dalga fonksiyonu önerilir. Bu limitlerde f(x) fonksiyonu, çözümü sonlu tutan bir 

fonksiyondur. Önerilen dalga fonksiyonu (2.3.29) denkleminde yerine yazılırsa ikinci 

mertebeden lineer homojen diferansiyel denklem  

 

      
𝑑2𝑓(𝑥)

𝑑𝑥2 = [
2Λ2𝑥−2𝜀−1

𝑥
]

𝑑𝑓(𝑥)

𝑑𝑥
+ [

Λ2+2Λ2𝜀−Λ1

𝑥
] 𝑓(𝑥)                                               (2.3.31) 

 

elde edilir ve bu denklem asimptotik iterasyon metoduna uygundur. Denklem (2.3.31), 

denklem (1.1.1)  ile karşılaştırılırsa  

 

       𝜆0(𝑥) =
2Λ2𝑥−2𝜀−1

𝑥
                           

       𝑠0(𝑥) =
Λ2+2Λ2𝜀−Λ1

𝑥
 

 

olarak belirlenir. Maple programında, (1.1.7) denklemi kullanılırsa 

 

       𝜆1(𝑥) =
2Λ2

𝑥
−

2Λ2𝑥−2𝜀−1

𝑥2 +
2𝜀Λ2+Λ2−Λ1

𝑥
+

(2Λ2𝑥−2𝜀−1)2

𝑥2  

       𝑠1(𝑥) = −
2𝜀Λ2+Λ2−Λ1

𝑥2 +
(2𝜀Λ2+Λ2−Λ1)(2Λ2𝑥−2𝜀−1)

𝑥2  

       𝜆2(𝑥) = −
4Λ2

𝑥2 +
2(2Λ2𝑥−2𝜀−1)

𝑥3 −
2(2𝜀Λ2+Λ2−Λ1)

𝑥2 +
4Λ2(2Λ2𝑥−2𝜀−1)

𝑥2 −
2(2Λ2𝑥−2𝜀−1)2

𝑥3  

                        +
(2𝜀Λ2+Λ2−Λ1)(2Λ2𝑥−2𝜀−1)

𝑥2  

                        +
(2Λ2𝑥−2𝜀−1)(

2Λ2
𝑥

−
2Λ2𝑥−2𝜀−1

𝑥2 +
2𝜀Λ2+Λ2−Λ1

𝑥
+

(2Λ2𝑥−2𝜀−1)2

𝑥2 )

𝑥
 

       𝑠2(𝑥) =
2(2𝜀Λ2+Λ2−Λ1)

𝑥3 −
2(2𝜀Λ2+Λ2−Λ1)(2Λ2𝑥−2𝜀−1)

𝑥3 +
2Λ2(2𝜀Λ2+Λ2−Λ1)

𝑥2  

                       +
(2𝜀Λ2+Λ2−Λ1)(

2Λ2
𝑥

−
2Λ2𝑦−2𝜀−1

𝑥2 +
2𝜀Λ2+Λ2−Λ1

𝑥
+

(2Λ2𝑥−2𝜀−1)2

𝑥2 )

𝑥
 

          ⋮                                                                                                                     (2.3.32) 

 

olarak elde edilir. 
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      AİM’de  denklem (1.1.9)’da verilen kuantizasyon koşulu kullanılarak  yüksek küresel 

koordinatlarda enerji özdeğerleri     

 

       
𝑠0

𝜆0
=

𝑠1

𝜆1
   ⟹  𝜀0 =

Λ1−Λ2

2Λ2
 

       
𝑠1

𝜆1
=

𝑠2

𝜆2
   ⟹  𝜀1 =

Λ1−3Λ2

2Λ2
 

       
𝑠2

𝜆2
=

𝑠3

𝜆3
   ⟹  𝜀2 =

Λ1−5Λ2

2Λ2
  

            ⋮                                                                                                                   (2.3.33) 

 

olarak bulunur. (2.3.33) eşitliğindeki ifadeler genelleştirilirse 

 

       𝜀𝑛𝑙𝑁−1
=

Λ1−(2n+1)Λ2

2Λ2
  ,         𝑛 = 0,1,2, …                                                       (2.3.34) 

 

şeklinde elde edilir. Denklem (2.3.26), denklem (2.3.27) ve denklem (2.3.28), denklem 

(2.3.34)’de yerine yazıldığında  Morse potansiyeli etkisindeki  spin-0  parçacık  için N- 

boyutta enerji spektrumu  

      
𝐸2−𝜇2𝑐4

ℏ2𝑐2 =
(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2 + 𝑑 − 𝛼2 [

2(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2  − 
𝑑1
𝛼2

2(
(𝐸+𝜇𝑐2)𝐷𝑒

ℏ2𝑐2𝛼2  + 
𝑑2
𝛼2)

1
2

− (𝑛 +
1

2
)]

2

,  𝑛 = 0,1,2, …          (2.3.35)         

şeklinde elde edilir.  

 

      Bölüm 1’de verilen denklem (1.1.16) kullanılarak N-boyutta radyal dalga 

fonksiyonları 

      𝑓0(𝑥) = 𝐶2 = 𝐶2 1F1(0, 2𝜀 + 1, 2Λ2𝑥)     

       𝑓1(𝑥) = −𝐶2(2Λ2𝑥 − 2𝜀 − 1) = −𝐶2(2𝜀 + 1)1F1(−1, 2𝜀 + 1, 2Λ2𝑥)     

       𝑓2(𝑥) = 𝐶2[(2𝜀 + 2)(2𝜀 + 1) − 4Λ2𝑥(2𝜀 + 2) + 4Λ2
2 𝑥2] 

                  = 𝐶2(2𝜀 + 2)(2𝜀 + 1)1F1(−2, 2𝜀 + 1, 2Λ2𝑥)     

       𝑓3(𝑥) = −𝐶2[(2𝜀 + 3)(2𝜀 + 2)(2𝜀 + 1) − 6Λ2𝑦(2𝜀 + 3)(2𝜀 + 2) + 8Λ2
2 𝑥3 

                                −12(2𝜀 + 3)Λ2
2 𝑥2] 

                  = −𝐶2(2𝜀 + 3)(2𝜀 + 2)(2𝜀 + 1)1F1(−3, 2𝜀 + 1, 2Λ2𝑥)     
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        ⋮                                                                                                                       (2.3.36) 

       

şeklinde bulunur. Bu sonuçlardan 𝑓(𝑥) için genel çözüm 

 

       𝑓𝑛(𝑥) = (−1)𝑛𝐶2(2𝜀 + 1)𝑛 1F1(−𝑛, 2𝜀 + 1, 2Λ2𝑥)                                                  (2.3.37) 

 

olarak bulunur. Burada, 1F1 konfluent hipergeometrik fonksiyondur [143]. Denklem 

(2.3.37), denklem (2.2.30)’da yerine yazılırsa yüksek küresel koordinatlarda Morse  

potansiyeli için normalize olmamış radyal dalga fonksiyonu 

 

       𝑢(𝑥) = 𝑥𝜀𝑒−Λ2𝑥(−1)𝑛𝐶2(2𝜀 + 1)𝑛 1F1(−𝑛, 2𝜀 + 1, 2Λ2𝑥)                               (2.3.38) 

 

elde edilir. Burada 𝐶2 normalizasyon sabiti olup normalizasyon şartından bulunur. 

Denklem (2.2.24) denklem (2.2.38)’de yerine yazılır ve 

 

        ∫ 𝑒−𝑐𝑧𝑧𝛼−1
1F1(𝑎, 𝑏, 𝑐𝑧)𝑑𝑧 =

𝑧𝛼

𝛼
2F2(−𝑎 + 𝑏, 𝛼; 𝑏, 1 + 𝛼; −𝑐𝑧)                                  (2.3.39) 

 

integrali [149] kullanılırsa, yüksek küresel koordinatlarda Morse potansiyeli için 

normalize radyal dalga fonksiyonu  

 

      𝑅(𝑥) = 𝑥𝜀𝑒−Λ2𝑥√
𝛼

𝑟𝑒𝑠𝑛
1F1(−𝑛, 2𝜀 + 1, 2Λ2𝑥)                                                   (2.3.40) 

 

şeklinde elde edilir. Burada  𝑠𝑛, 

 

       𝑠𝑛=  
(2 )

2

0

( )
2

!(2 1) 2

er mn
mm

m m

n e

m m

 

 








 
  

                          ×2F2 (𝑛 + 2𝜀 + 1,2𝜀 + 𝑚; 2𝜀 + 1,2𝜀 + 1 + 𝑚; −2Λ2𝑒𝛼𝑟𝑒)                                 (2.3.41) 

 

şeklinde elde edilir. 

 

2.3.3. Toprak Alkali Metal İki Atomlu Moleküllerin Relativistik Titreşim 

Frekansları 

      Bu bölümde, toprak alkali metal grubundan  𝐶𝑎2 𝑋
1Σ+ , 𝑀𝑔𝐶𝑎 𝑋1Σ+,  𝑆𝑟2 𝑋

1Σ+  ve  

𝑆𝑟2 𝐴
1Σ+ iki atomlu moleküller için relativistik titreşim frekansları hesaplanacak. 
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Kalsiyum ve strontiyum eş çekirdekli olup homonükleer iki atomlu moleküller olarak 

adlandırılır. Magnezyum-kalsiyum farklı çekirdek içerdiği için heteronükleer iki atomlu 

moleküldür. Toprak alkali metal grubu kalsiyum, magnezyum ve strontiyum atomlarının 

nükleer spinleri sıfırdır.  

      İki atomlu moleküllerin titreşim hareketi molekül fiziği, astrofizik ve plazma fiziği 

gibi birçok alanda önemli bir araştırma konusudur. Bu moleküler sistemler için titreşim 

enerji seviyeleri farklı metodlarla elde edilir. Deneysel olarak gözlenen titreşim seviyeleri 

doğru potansiyel enerji eğrisini oluşturmak için kullanılır. Özetle, potansiyel enerji 

eğrileri molekülün yapısı hakkında bilgi verir. Potansiyel enerji minumumdayken denge 

uzaklığı belirlenir. Potansiyel enerjinin r’ye göre ikinci türevi kuvvet sabitini verir ve 

buradan molekülün titreşim ve dönme seviyeleri bulunur [150]. 

      Potansiyel enerji fonksiyonunun, iki atomlu moleküller için ayrışma enerjisi (𝐷𝑒),  

atomlar arasındaki denge uzaklığı ( 𝑟𝑒) ve titreşim frekansı (𝑤𝑒) arasındaki ilişki 

 

       𝑉(𝑟𝑒) − 𝑉(∞) = −𝐷𝑒                                                                                      (2.3.42) 

      (
𝑑𝑉(𝑟)

𝑑𝑟
)

𝑟=𝑟𝑒

= 0                                                                                   (2.3.43)        

     (
𝑑2𝑉(𝑟)

𝑑𝑟2 )
𝑟=𝑟𝑒

= 𝑘𝑒 = 4𝜋2𝜇𝑐2𝑤𝑒
2                                                                       (2.3.44) 

şeklinde verilir [150]. Denklem (2.3.1)’deki Morse potansiyel parametresi 𝛼, denklem 

(2.3.44)’den 

 

      𝛼 = 𝜋𝑐𝑤𝑒√
2𝜇

𝐷𝑒
                                                                                                    (2.3.45) 

 

şeklinde elde edilir. Tablo 2.6’daki herbir molekül için verilen spektroskopik 

parametreler denklem (2.3.45)’de yerine yazılırsa, potansiyel parametresi hesaplanır. Her 

bir molekül için elde edilen sonuçlar Tablo 2.7’de verildi. 
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        Tablo 2.7. İki atomlu moleküller için potansiyel parametre sabiti 

 

         

    

        

        

      Küresel koordinatlarda, denklem (2.3.35)’de 𝑙 = 0 olarak alındığında 𝐴 = 0 olur ve 

dolayısıyla  𝑑 = 0, 𝑑1 = 0 ve 𝑑2 = 0 olur. Böylece, Morse potansiyelinin relativistik 

titreşim spektrumu 

 

         𝐸2 − 𝜇2𝑐4 = 2ℏ𝑐𝛼√𝐷𝑒(𝐸 + 𝜇𝑐2) (𝑛 +
1

2
) − ℏ2𝑐2𝛼2 (𝑛 +

1

2
)

2
                             (2.3.46) 

 

şeklinde elde edilir. Jia ve Cao [151], küresel koordinatlarda Morse potansiyeli için 

Klein-Gordon denkleminin çözümlerini süpersimetri yaklaşımıyla elde etmiştir. Denklem 

(2.3.46), bu çalışmadaki enerji spektrumunu sağlamaktadır. İki atomlu moleküllerin 

ayrışma enerjisi ( 𝐷𝑒), titreşim frekansı (𝑤𝑒), atomlar arasındaki denge uzaklığı (𝑟𝑒)  ve 

indirgenmiş kütlesi (𝜇 ) Tablo 2.6’da verilmişti. Bu tablodaki sabitler ve denklem (2.3.46) 

kullanılarak taban durumunda kalsiyum, strontiyum ve magnezyum-kalsiyum; uyarılmış 

durumda strontiyum moleküllerinin titreşim enerjileri hesaplanarak buradan relativistik 

titreşim frekansları elde edildi. Elde edilen teorik titreşim frekansları ve deneysel 

Rydberg-Klein-Rees (RKR) sonuçları Tablo 2.8, 2.9, 2.10 ve 2.11’de verildi. Tablodaki 

sonuçlara bakarak mutlak sapmayı incelediğimizde, deneysel sonuçlara en yakın 

değerleri homonükleer moleküllerden uyarılmış durumda strontiyum molekülü için 

hesapladığımız titreşim frekansları göstermiştir. Taban durumunda strontiyum molekülü 

için elde ettiğimiz titreşim frekansları da deneysel verilere oldukça yakın sonuç vermiştir. 

Aynı zamanda, Tablo 2.8 ve 2.11’de görüldüğü gibi kalsiyum ve magnezyum-kalsiyum 

molekülleri için hesapladığımız frekanslar deneysel sonuçlarla uyumludur. 

 

 

 

 

 𝛼 (𝐴0−1
) 

𝐶𝑎2 𝑋
1Σ+ 1.069980816 

𝑀𝑔𝐶𝑎 𝑋1Σ+ 1.079828084 

𝑆𝑟2 𝑋
1Σ+ 0.999353856 

𝑆𝑟2 𝐴
1Σ+ 0.934181483 
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Tablo 2.8.  𝐶𝑎2 𝑋
1Σ+ molekülü için teorik relativistik titreşim frekansları ve deneysel 

RKR değerleri 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑛 → 𝑛 − 1  𝜈𝑡𝑒𝑜𝑟𝑖𝑘(𝑐𝑚−1)  𝜈𝑑𝑒𝑛𝑒𝑦𝑠𝑒𝑙(𝑐𝑚−1)[131] mutlak sapma Δ𝜈 

        1 63.1121059 62.91 0.2021059 

        2 61.1802731 60.77 0.4102731 

        3 59.2484403 58.64 0.6084403 

        4 57.3166073 56.54 0.7766073 

        5 55.3847745 54.47 0.9147745 

        6 53.4529417                 52.4               1.0529417 

        7 51.5211087 50.36               1.1611087 

        8     49.589276 48.34               1.249276 

        9     47.657443 46.34               1.317443 

      10 45.7256102 44.37               1.3556102 

      11 43.7937774 42.41               1.3837774 

      12 41.8619444 40.47               1.3919444 

      13 39.9301116 38.56               1.3701116 

      14 37.9982787 36.67               1.3282787 

      15 36.0664458 34.79               1.2764458 

      16 34.1346131 32.94               1.1946131 

      17 32.2027803 31.11               1.0927803 

      18 30.2709474 29.29 0.9809474 

      19 28.3391135 27.51 0.8291135 

      20 26.4072817 25.73 0.6772817 

      21 24.4754488 23.99 0.4854488 

      22     22.543616 22.26               0.283616 

      23     20.611783 20.55               0.061783 

      24     18.6799502 18.87 0.1900498 

      25     16.748117                 17.2               0.451883 

      26     14.816284                 15.56               0.743716 

      27     12.884452 13.93               1.045548 

      28     10.952618 12.33               1.377382 

      29      9.020786 10.75               1.729214 

      30      7.088953                 9.18               2.091047 
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Tablo 2.9.  𝑆𝑟2 𝑋
1Σ+ molekülü için teorik relativistik titreşim frekansları ve deneysel 

RKR değerleri 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑛 → 𝑛 − 1  𝜈𝑡𝑒𝑜𝑟𝑖𝑘(𝑐𝑚−1)  𝜈𝑑𝑒𝑛𝑒𝑦𝑠𝑒𝑙(𝑐𝑚−1)[134] mutlak sapma Δ𝜈 

        1 40.19478194 39.515  0.67978194 

        2 39.42866539 38.709  0.71966539 

        3    38.6625489 37.904               0.7585489 

        4    37.8964323 37.104               0.7924323 

        5    37.1303159 36.304               0.8263159 

        6    36.3641993                35.509               0.8551993 

        7    35.5980828 34.714               0.8840828 

        8    34.8319661 33.924               0.9079661 

        9    34.0658497 33.135               0.9308497 

      10    33.2997332                32.35               0.9497332 

      11    32.5336167 31.566               0.9676167 

      12    31.7675 30.785               0.9825 

      13    31.0013836 30.008               0.9933836 

      14    30.235267 29.231               1.004267 

      15    29.4691506 28.459               1.0101506 

      16    28.7030339 27.688               1.0150339 

      17    27.9369174 26.921               1.0159174 

      18    27.170801 26.155               1.015801 

      19    26.4046843 25.393               1.0116843 

      20    25.6385678 24.632               1.0065678 

      21    24.8724514 23.875               0.9974514 

      22    24.1063348 23.120               0.9863348 

      23    23.3402181 22.367               0.9732181 

      24    22.5741022      21.618               0.9561022 

      25    21.8079847                20.871               0.9369847 

      26    21.0418692                20.126               0.9158692 

      27    20.2757516 19.384               0.8917516 

      28    19.5096361 18.644               0.8656361 

      29    18.7435186 17.908               0.8355186 

      30    17.9774021                17.173               0.8044021 

      31    17.2112865                16.442               0.7692865 

      32    16.445169                15.712               0.733169 

      33    15.6790534                14.986               0.6930534 

      34    14.912936                14.261               0.651936 

      35    14.1468205                13.541               0.6058205 
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Tablo 2.10.  𝑆𝑟2 𝐴
1Σ+ molekülü için teorik relativistik titreşim frekansları ve deneysel 

RKR değerleri 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑛 → 𝑛 − 1  𝜈𝑡𝑒𝑜𝑟𝑖𝑘(𝑐𝑚−1)  𝜈𝑑𝑒𝑛𝑒𝑦𝑠𝑒𝑙(𝑐𝑚−1)[134] mutlak sapma Δ𝜈 

        1 84.36036847 84.402   0.04163153 

        2    83.6909175 83.729 0.0380825 

        3    83.0214666 83.055 0.0335334 

        4    82.3520156 82.382 0.0299844 

        5    81.6825647 81.708 0.0254353 

        6    81.0131137                81.034 0.0208863 

        7    80.3436629 80.361 0.0173371 

        8    79.6742119 79.686 0.0117881 

        9    79.0047609 79.011             0.0062391 

      10    78.3353099                78.338             0.0026901 

      11    77.6658591 77.662             0.0038591 

      12    76.9964084 76.988             0.0084084 

      13    76.326957 76.313             0.013957 

      14    75.657506 75.638             0.019506 

      15    74.988055 74.963             0.025055 

      16    74.318604 74.287             0.031604 

      17    73.649154 73.612             0.037154 

      18    72.979702 72.936             0.043702 

      19    72.310251 72.261             0.049251 

      20    71.640801 71.584             0.056801 

      21    70.971350 70.908             0.06335 

      22    70.301899 70.232             0.069899 

      23    69.632447 69.555             0.077447 

      24    68.962997 68.879             0.083997 

      25    68.293546                68.202             0.091546 

      26    67.624095 67.525             0.099095 

      27    66.954644 66.848             0.106644 

      28    66.285193 66.171             0.114193 

      29    65.615742 65.493             0.122742 

      30    64.946291                64.816             0.130291 

      31    64.276840                64.138             0.13884 
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Tablo 2.11.  𝑀𝑔𝐶𝑎 𝑋1Σ+ molekülü için teorik relativistik titreşim frekansları ve deneysel 

RKR değerleri 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Asimptotik İterasyon Metodu İle Merkezcil Olmayan Manning-Rosen 

Potansiyeli İçin N-Boyutta Klein-Gordon Denkleminin Yaklaşık Çözümleri 

  

      Merkezcil olmayan Manning-Rosen potansiyeli, 

         

       𝑉(𝑟, 𝜃𝑁−1) =
ℏ2𝜎2

2𝜇
[

𝜂(𝜂−1)𝑒−2𝜎𝑟

(1−𝑒−𝜎𝑟)2 −
𝐴𝑒−𝜎𝑟

1−𝑒−𝜎𝑟] +
𝛼𝑐𝑜𝑠2𝜃𝑁−1+𝛽𝑐𝑜𝑠𝜃𝑁−1+𝛾

𝑟2𝑠𝑖𝑛2𝜃𝑁−1
                             (2.4.1) 

 

şeklinde tanımlanmaktadır. Burada, 𝜂 ve A potansiyel parametreleri, 𝜎 =
1

𝑏
  olup b 

uzunluk boyutundadır,  𝛼,  𝛽  ve  𝛾  ise potansiyeli  tanımlayan parametrelerdir. Bu 

potansiyelin yüzey grafiği Şekil 2.10’da gösterildi. Grafik çiziminde  𝜎 = 0.025,  𝜂 =

0.75,  𝐴 = 0.05 ve   𝛼 = 𝛽 = 𝛾 = 1 olarak alındı. 

 

𝑛 → 𝑛 − 1  𝜈𝑡𝑒𝑜𝑟𝑖𝑘(𝑐𝑚−1)  𝜈𝑑𝑒𝑛𝑒𝑦𝑠𝑒𝑙(𝑐𝑚−1)[136] mutlak sapma Δ𝜈 

        1    57.605724 57.03                0.575724 

        2    54.98281102 53.92                1.06281102 

        3    52.3598979 50.96                1.3998979 

        4    49.7369849                 48.1                1.6369849 

        5    47.1140719                 45.32                1.7940719 

        6    44.4911589                 42.61                1.8811589 

        7    41.8682458 39.96                1.9082458 

        8    39.2453328 37.38                1.8653328 

        9    36.6224198 34.86                1.7624198 

      10    33.9995068                 32.39                1.6095068 

      11    31.3765938 29.95                1.4265938 

      12    28.7536807 27.56                1.1936807 

      13    26.1307676 25.19                0.9407676 

      14    23.5078547 22.85                0.6578547 

      15    20.8849416 20.51                0.3749416 

      16    18.2620286                 18.2                0.0620286 

      17    15.6391156                 15.91                0.2708844 

      18    13.0162025                 13.67                0.6537975 

      19    10.3932895                 11.5                1.1067105 

      20    7.7703765                 9.48                1.7096235 

      21    5.1474634                 7.63                2.4825366 
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            Şekil 2.10.  Merkezcil olmayan Manning-Rosen potansiyelinin yüzey grafiği 

 

 

2.4.1. Merkezcil Olmayan Potansiyel İçin Yüksek Küresel Koordinatlarda Açısal 

Klein-Gordon Denkleminin  Çözümleri 

 

      Bu bölümde, merkezcil olmayan potansiyel etkisindeki spin-0 parçacık için N- 

boyutta açısal Klein-Gordon denkleminin analitik çözümleri elde edilecektir. 

      Merkezcil olmayan potansiyel için N-boyutta açısal relativistik dalga denklemi 

 

      
𝑑2Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
2 + (𝑁 − 2)

cos 𝜃𝑁−1

sin 𝜃𝑁−1

𝑑Θ(𝜃𝑁−1)

𝑑𝜃𝑁−1
− [

(𝐸+𝜇𝑐2)

ℏ2𝑐2

𝛼𝑐𝑜𝑠2𝜃𝑁−1+𝛽 cos 𝜃𝑁−1+𝛾

𝑠𝑖𝑛2𝜃𝑁−1
 

                          +
𝑙𝑁−2(𝑙𝑁−2+𝑁−3)

𝑠𝑖𝑛2𝜃𝑁−1
− 𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)] Θ(𝜃𝑁−1) = 0                               (2.4.2) 

 

şeklinde yazılır. Burada 

      𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2) = 𝑙′
𝑁−1
2

−
(𝑁−2)

4
      𝑚′2

= 𝑙𝑁−2(𝑙𝑁−2 + 𝑁 − 3) 

kısaltmaları kullanıldığında ve  𝑥 = 𝑐𝑜𝑠2 𝜃𝑁−1

2
    dönüşümü uygulandığında 

 

       𝑥(1 − 𝑥)
𝑑2Θ(𝑥)

𝑑𝑥2 + (𝑁 − 1)
(1−2𝑥)

2

𝑑Θ(𝑥)

𝑑𝑥
− [𝜅 −

𝑝

𝑥(1−𝑥)
−

𝑞

1−𝑥
] Θ(𝑥) = 0                     (2.4.3) 

 

ikinci mertebeden denklem elde edilir. Burada, 𝜅, 𝑞 ve 𝑝 ifadeleri 
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       𝜅 =
𝛼(𝐸+𝜇𝑐2)

ℏ2𝑐2 + 𝑙′
𝑁−1
2

−
1

4
(𝑁 − 2)          

       𝑞 = 𝛽
(𝐸+𝜇𝑐2)

4ℏ2𝑐2  

       𝑝 =
(𝛾−𝛽+𝛼)(𝐸+𝜇𝑐2)

4ℏ2𝑐2 +
𝑚2

4
                                                                                              (2.4.4) 

 

şeklinde tanımlanır.  Açısal dalga fonksiyonun asimptotik davranışı incelenerek önerilen 

çözüm 

 

       Θ(𝑥) = 𝑥
3−𝑁

4
+

√(𝑁−3)2+16𝑝

4 (1 − 𝑥)
3−𝑁

4
+

√(𝑁−3)2+16𝑞+16𝑝

4 𝑓(𝑥)                                                         (2.4.5) 

 

şeklindedir. Burada,  

 

      Λ1 =
3−𝑁

4
+

√(𝑁−3)2+16𝑝

4
 

       Λ2 =
3−𝑁

4
+

√(𝑁−3)2+16𝑞+16𝑝

4
                                                                                                 (2.4.6) 

 

şeklinde tanımlanır. Denklem (2.4.5), denklem (2.4.3)’te yerine yazılırsa ikinci 

mertebeden lineer homojen diferansiyel denklem 

 

       
𝑑2𝑓(𝑥)

𝑑𝑥2 = [
𝑥(2Λ1+2Λ2+𝑁−1)−(2Λ1+

𝑁−1

2
)

𝑥(1−𝑥)
]

𝑑𝑓(𝑥)

𝑑𝑥
+ [

(Λ1+Λ2)2+(Λ1+Λ2)(𝑁−2)−𝜅

𝑥(1−𝑥)
] 𝑓(𝑥)            (2.4.7) 

 

 

elde edilir. Bu denklem asimptotik iterasyon metoduna uygundur. Denklem (2.4.7), 

denklem (1.1.1)  ile karşılaştırılarak  𝜆0(𝑥)  ve   𝑠0(𝑥)  belirlenir. Daha sonra, denklem 

(1.1.7) kullanılarak  𝜆𝑛(𝑥)  ve  𝑠𝑛(𝑥) değerleri bulunur. 

 

      𝜆0 =
𝑥(2Λ1+2Λ2+𝑁−1)−(2Λ1+

𝑁−1

2
)

𝑥(1−𝑥)
 

       𝑠0 =
(Λ1+Λ2)2+(Λ1+Λ2)(𝑁−2)−𝜅

𝑥(1−𝑥)
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      𝜆1 =
(2Λ1+2Λ2+𝑁−1)

𝑥(1−𝑥)
−

𝑥(2Λ1+2Λ2+𝑁−1)−(2Λ1+
𝑁−1

2
)

𝑥2(1−𝑥)
+

𝑥(2Λ1+2Λ2+𝑁−1)−(2Λ1+
𝑁−1

2
)

𝑥(1−𝑥)2  

                +
(Λ1+Λ2)2+(Λ1+Λ2)(𝑁−2)−𝜅

𝑥(1−𝑥)
+

(𝑥(2Λ1+2Λ2+𝑁−1)−(2Λ1+
𝑁−1

2
))

2

𝑥2(1−𝑥)2  

      𝑠1 = −
(Λ1+Λ2)2+(Λ1+Λ2)(𝑁−2)−𝜅

𝑥(1−𝑥)
+

(Λ1+Λ2)2+(Λ1+Λ2)(𝑁−2)−𝜅

𝑥(1−𝑥)2  

                 +
(𝑥(2Λ1+2Λ2+𝑁−1)−(2Λ1+

𝑁−1

2
))((Λ1+Λ2)2+(Λ1+Λ2)(𝑁−2)−𝜅)

𝑥2(1−𝑥)2  

         ⋮                                                                                                                                                 (2.4.8) 

 

Asimptotik iterasyon metodunda kuantizasyon koşulu kullanılarak yüksek küresel 

koordinatlarda  enerji özdeğerleri  

     

      
𝑠0

𝜆0
=

𝑠1

𝜆1
   ⇒    𝜅0 = (Λ1 + Λ2)2 + (𝑁 − 2)(Λ1 + Λ2) 

      
𝑠1

𝜆1
=

𝑠2

𝜆2
   ⇒    𝜅1 = (Λ1 + Λ2)2 + 𝑁(Λ1 + Λ2) + 𝑁 − 1 

      
𝑠2

𝜆2
=

𝑠3

𝜆3
   ⇒    𝜅2 = (Λ1 + Λ2)2 + (𝑁 + 2)(Λ1 + Λ2) + 2𝑁 

            ⋮                                                                                                                                                             (2.4.9) 

 

bulunur.  Bu ifadeler genelleştirildiğinde 

 

      𝜅𝑛 = (Λ1 + Λ2)2 + [𝑁 + 2𝑛 − 2](Λ1 + Λ2) + 𝑛(𝑁 + 𝑛 − 2)  , 𝑛 = 0,1,2, . ..          (2.4.10)    

 

bulunur. Kullanılan kısaltmalar yerine yazılır ve gerekli düzenlemeler yapılırsa yüksek 

küresel koordinatlarda merkezcil olmayan potansiyel için  𝑙𝑁−1  değeri 

 

      𝑙𝑁−1 =
2−𝑁

2
+

√(𝑁−2)2+4(Λ1+Λ2)2+4[𝑁+2𝑛−2](Λ1+Λ2)+4𝑛(𝑁+𝑛−2)− 
4𝛼(𝐸+𝜇𝑐2)

ℏ2𝑐2

2
                  (2.4.11) 

       

şeklinde elde edilir. 

      Bölüm 1’de verilen (1.1.16) denklemi kullanılarak N-boyutta merkezcil olmayan 

potansiyel için açısal dalga fonksiyonları 
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      𝑓0(𝑥) = 𝐶2 = 𝐶22F1(0, 2Λ1 + 2Λ2 + 𝑁 − 2, 2Λ1 +
𝑁−1

2
, 𝑥 ) 

      𝑓1(𝑥) = −𝐶2[4Λ1 + 𝑁 − 1 − (4Λ1 + 4Λ2 + 2𝑁 − 2)𝑥] 

                = −𝐶22 (2Λ1 +
𝑁−1

2
)2F1(−1, 2Λ1 + 2Λ2 + 𝑁 − 1, 2Λ1 +

𝑁−1

2
, 𝑥 ) 

      𝑓2(𝑥) = 𝐶2[(4Λ1 + 𝑁 − 1)(4Λ1 + 𝑁 + 1) − 2(4Λ1 + 4Λ2 + 2𝑁)(4Λ1 + 𝑁 + 1)𝑥 

                          +(8Λ1 + 8Λ2 + 4𝑁)( 8Λ1 + 8Λ2 + 4𝑁 + 4)𝑥2] 

                = 𝐶24 (2Λ1 +
𝑁−1

2
) (2Λ1 +

𝑁+1

2
)2F1(−2, 2Λ1 + 2Λ2 + 𝑁, 2Λ1 +

𝑁−1

2
, 𝑥 ) 

       𝑓3(𝑥) = −𝐶2[(4Λ1 + 𝑁 + 3)(4Λ1 + 𝑁 + 1)(4Λ1 + 𝑁 − 1) − 3(4Λ1 + 4Λ2 + 2𝑁 + 2) 

                    × (4Λ1 + 𝑁 + 3)(4Λ1 +  𝑁 + 1)𝑥 + 3(4𝐴 + 4𝐵 + 2𝑁 + 4)(4𝐴 + 4𝐵 + 2𝑁 + 2) 

                    × (4Λ1 + 𝑁 + 3)𝑥2 − (4Λ1 + 4Λ2 + 2𝑁 + 6)(4Λ1 + 4Λ2 + 2𝑁 + 4) 

                    × (4Λ1 + 4Λ2 + 2𝑁 + 2)𝑥3] 

                = −𝐶28 (2Λ1 +
𝑁+3

2
) (2Λ1 +

𝑁+1

2
) (2Λ1 +

𝑁−1

2
) 

                    × 2F1(−3, 2Λ1 + 2Λ2 + 𝑁 + 1, 2Λ1 +
𝑁−1

2
, 𝑥 ) 

          ⋮                                                                                                                                                             (2.4.12) 

 

olarak bulunur. Elde edilen sonuçlar için genelleme yapıldığında  

 

      𝑓𝑛(𝑥) = 𝐶22𝑛(−1)𝑛 (2Λ1 +
𝑁−1

2
)

𝑛
 

                    × 2F1(−𝑛, 2Λ1 + 2Λ2 + 𝑁 − 2 + 𝑛, 2Λ1 +
𝑁−1

2
, 𝑥 )                                    (2.4.13) 

 

şeklinde elde edilir. Denklem (2.4.13), denklem (2.4.5)’de yerleştirilir ve uygulanan 

dönüşüm yerine yazılırsa 

 

      Θ(𝜃𝑁−1) = (𝑐𝑜𝑠2 𝜃𝑁−1

2
)

Λ1
(1 − 𝑐𝑜𝑠2 𝜃𝑁−1

2
)

Λ2

𝐶22𝑛(−1)𝑛 (2Λ1 +
𝑁−1

2
)

𝑛
 

                          × 2F1 (−𝑛, 2Λ1 + 2Λ2 + 𝑁 − 2 + 𝑛, 2Λ1 +
𝑁−1

2
, 𝑐𝑜𝑠2 𝜃𝑁−1

2
 )                         (2.4.14) 

 

elde edilir.∫ |Θ(𝜃𝑁−1)|2𝜋

0
𝑠𝑖𝑛𝑁−2𝜃𝑁−1𝑑𝜃𝑁−1 = 1 normalizasyon şartından  𝐶2  normalizasyon 

sabiti bulunur. Bu integrali alabilmek için hipergeometrik polinomların diklik 

bağıntısından [143] 
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      ∫ 𝑦𝛾−11

0
(1 − 𝑦)𝛼−𝛾

12 F (−𝑛, 𝛼 + 𝑛, 𝛾, 𝑦)
12 F (−𝑘, 𝛼 + 𝑘, 𝛾, 𝑦)𝑑𝑦  

                                                                       =
Γ2(𝛾)Γ(𝛼−𝛾+𝑛+1)

Γ(𝛼+𝑛)Γ(𝛾+𝑛)

𝑛!

𝛼+2𝑛
𝛿𝑛𝑘           

 

faydalanılır. Elde edilen normalizasyon sabiti denklem (2.4.14)’de yerine yazıldığında  

 

      Θ(𝜃𝑁−1) = (𝑐𝑜𝑠2 𝜃𝑁−1

2
)

Λ1
(1 − 𝑐𝑜𝑠2 𝜃𝑁−1

2
)

Λ2

 

                          ×
1

Γ(2Λ1+
𝑁−1

2
)

[
Γ(2Λ1+2Λ2+𝑁−2+𝑛)Γ(2Λ1+

𝑁−1

2
+𝑛)(2Λ1+2Λ2+𝑁−2+2𝑛)

Γ(2Λ2+
𝑁−1

2
+𝑛)𝑛!2𝑁−2

]

1
2⁄

 

                          × 2F1 (−𝑛, 2Λ1 + 2Λ2 + 𝑁 − 2 + 𝑛, 2Λ1 +
𝑁−1

2
, 𝑐𝑜𝑠2 𝜃𝑁−1

2
 )                         (2.4.15) 

 

elde edilir. Hipergeometrik ve Jacobi polinomları arasındaki bağıntı [143] kullanılarak 

yüksek küresel koordinatlarda merkezcil olmayan potansiyel etkisindeki spin-0 parçacık 

için normalize açısal dalga fonksiyonu 

      Θ(𝜃𝑁−1) = (𝑐𝑜𝑠2 𝜃𝑁−1

2
)

Λ1

(1 − 𝑐𝑜𝑠2 𝜃𝑁−1

2
)

Λ2

[
Γ(2Λ1+2Λ2+𝑁−2+𝑛)𝑛!(2Λ1+2Λ2+𝑁−2+2𝑛)

Γ(2Λ1+
𝑁−1

2
+𝑛)Γ(2Λ2+

𝑁−1

2
+𝑛)2𝑁−2

]

1
2⁄

 

                           × 𝑃𝑛

(2Λ1+
𝑁−3

2
,2Λ2+

𝑁−3

2
)

(1 − 2𝑐𝑜𝑠2 𝜃𝑁−1

2
)                                                 (2.4.16) 

 

şeklinde elde edilir. 

 

2.4.2. Yüksek Küresel Koordinatlarda Radyal Klein-Gordon Denkleminin Yaklaşık 

Çözümleri 

 

      Bu bölümde, Manning-Rosen potansiyeli  etkisindeki  spin-0 parçacık için N-boyutta 

radyal Klein-Gordon denkleminin yaklaşık çözümleri elde edilecektir. 

      Manning-Rosen potansiyeli için N-boyutta relativistik radyal dalga denklemi 

 

       
𝑑2𝑅(𝑟)

𝑑𝑟2 + [
(𝐸2−𝜇2𝑐4)

ℏ2𝑐2 −
(𝐸+𝜇𝑐2)𝜎2

2𝜇𝑐2

𝜂(𝜂−1)𝑒−2𝜎𝑟

(1−𝑒−𝜎𝑟)2 +
(𝐸+𝜇𝑐2)𝜎2

2𝜇𝑐2

𝐴𝑒−𝜎𝑟

(1−𝑒−𝜎𝑟)
 

                           −
(𝑁−1)(𝑁−3)

4𝑟2 −
𝑙𝑁−1(𝑙𝑁−1+𝑁−2)

𝑟2 ] 𝑅(𝑟) = 0                                              (2.4.17)          
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şeklinde yazılır. Bu denklem  𝑙 ≠ 0  durumunda analitik olarak çözülmesi zor olduğundan 

sadece pertürbasyon ve yaklaşıklık yapılarak çözülebilir. Bu nedenle, denklem  

(2.4.17)’yi çözmek için   

 

         
1

𝑟2 ≈ 𝜎2 𝑒−𝜎𝑟

(1−𝑒−𝜎𝑟)2 ,  𝜎 =
1

𝑏
                                                                                 (2.4.18) 

 

şeklinde verilen Greene-Aldrich yaklaşımı [99]  kullanılır. Bu yaklaşıklığın   1
𝑟2⁄ ’li 

terime uyumluluğu Şekil 2.11’de gösterilmiştir. Grafikten anlaşıldığı gibi Greene-Aldrich  

yaklaşımı  𝜎’nın  küçük değerlerinde geçerlidir. 

 

 
               Şekil 2.11.  Farklı  𝜎  değerleri için Greene-Aldrich yaklaşımının  analizi 

 

Denklem (2.4.18), denklem (2.4.17)’de yerine yazıldığında 

 

      
𝑑2𝑅(𝑟)

𝑑𝑟2 + [
(𝐸2−𝜇2𝑐4)

ℏ2𝑐2 −
(𝐸+𝜇𝑐2)𝜎2

2𝜇𝑐2

𝜂(𝜂−1)𝑒−2𝜎𝑟

(1−𝑒−𝜎𝑟)2 +
(𝐸+𝜇𝑐2)𝜎2

2𝜇𝑐2

𝐴𝑒−𝜎𝑟

(1−𝑒−𝜎𝑟)
 

                    − (
(𝑁−1)(𝑁−3)

4
+ 𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)) (𝜎2 𝑒−𝜎𝑟

(1−𝑒−𝜎𝑟)2)]  𝑅(𝑟) = 0     (2.4.19) 

 

şeklinde elde edilir. Denklem  (2.4.19)’da  𝑧 = 𝑒−𝜎𝑟   dönüşümü uygulandığında  

 

       
𝑑2𝑅(𝑧)

𝑑𝑧2 +
1

𝑧

𝑑𝑅(𝑧)

𝑑𝑧
+ [−

𝜀2

𝑧2 +
𝐴′

𝑧(1−𝑧)
−

(𝐸+𝜇𝑐2)

2𝜇𝑐2  
𝜂(𝜂−1)

(1−𝑧)2 − 𝜅(𝜅 + 1)
𝑧

(1−𝑧)2] 𝑅(𝑧) = 0      (2.4.20) 
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olarak düzenlenir. Burada işlem kolaylığı için 

 

        −𝜀2 =
(𝐸2−𝜇2𝑐4)

ℏ2𝑐2𝜎2    ,   𝜅 = 𝑙𝑁−1 +
𝑁−3

2
   ,    𝐴′ =

(𝐸+𝜇𝑐2)

2𝜇𝑐2 𝐴                                          (2.4.21) 

 

kısaltmaları kullanılır. Dalga fonksiyonu sınır şartlarını sağlaması gerektiğinden dolayı 

çözüm  

 

      𝑅(𝑧) = (1 − 𝑧)𝛾′+1𝑧𝜀𝑓(𝑧)                                                                                            (2.4.22) 

 

şeklinde önerilir. Burada,  f(z) fonksiyonu dalga fonksiyonunu sonlu tutan bir 

fonksiyondur. Denklem (2.4.22)’de  

 

      𝛾′ = −
1

2
+

√
4(𝐸+𝜇𝑐2)

2𝜇𝑐2 𝜂(𝜂−1)+(2𝜅+1)2

2
                                                                                (2.4.23) 

 

olarak  alınır. Denklem (2.4.23),  denklem (2.4.20)’de yerine yazılır ve gerekli düzenleme 

yapılırsa asimptotik iterasyon metoduna uygun ikinci mertebeden lineer homojen 

diferansiyel denklem 

 

      
𝑑2𝑓(𝑧)

𝑑𝑧2 = [
(2𝛾′+2𝜀+3)𝑧−(2𝜀+1)

𝑧(1−𝑧)
]

𝑑𝑓(𝑧)

𝑑𝑧
+ [

𝜅(𝜅+1)+(1+𝛾′)(2𝜀+1)−𝐴′

𝑧(1−𝑧)
] 𝑓(𝑧)                   (2.4.24) 

 

şeklinde elde edilir. Bu denklem, (1.1.1) denklemi ile karşılaştırıldığında 

 

      𝜆0 = [
(2𝛾′+2𝜀+3)𝑧−(2𝜀+1)

𝑧(1−𝑧)
] 

      𝑠0 = [
𝜅(𝜅+1)+(1+𝛾′)(2𝜀+1)−𝐴′

𝑧(1−𝑧)
]                                                                                              

 

olarak belirlenir. Maple programında, (1.1.7) denklemleri kullanılarak  𝜆𝑛(𝑥)  ve  𝑠𝑛(𝑥) 

değerleri  

 

      𝜆1 =
2𝛾′+2𝜀+3

𝑧(1−𝑧)
−

(2𝛾′+2𝜀+3)𝑧−(2𝜀+1)

𝑧2(1−𝑧)
+

(2𝛾′+2𝜀+3)𝑧−(2𝜀+1)

𝑧(1−𝑧)2 +
𝜅(𝜅+1)+(1+𝛾′)(2𝜀+1)−𝐴′

𝑧(1−𝑧)
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                +
((2𝛾′+2𝜀+3)𝑧−(2𝜀+1))

2

𝑧2(1−𝑧)2  

      𝑠1 = −
𝜅(𝜅+1)+(1+𝛾′)(2𝜀+1)−𝐴′

𝑧2(1−𝑧)
+

𝜅(𝜅+1)+(1+𝛾′)(2𝜀+1)−𝐴′

𝑧(1−𝑧)2  

                +
(𝜅(𝜅+1)+(1+𝛾′)(2𝜀+1)−𝐴′)((2𝛾′+2𝜀+3)𝑧−(2𝜀+1))

𝑧2(1−𝑧)2  

         ⋮                                                                                                                                  (2.4.25) 

şeklinde elde edilir.  

      Kullanılan metotta (1.1.9) denklemiyle verilen koşulla N-boyutta relativistik enerji 

özdeğerleri  

 

      
𝑠0

𝜆0
=

𝑠1

𝜆1
  ⇒   𝐴0

′ = 𝜅(𝜅 + 1) + 2𝜀𝛾′ + 2𝜀 + 𝛾′ + 1 

       
𝑠1

𝜆1
=

𝑠2

𝜆2
 ⇒   𝐴1

′ = 𝜅(𝜅 + 1) + 2𝜀𝛾′ + 4𝜀 + 3𝛾′ + 4 

       
𝑠2

𝜆2
=

𝑠3

𝜆3
 ⇒   𝐴2

′ = 𝜅(𝜅 + 1) + 2𝜀𝛾′ + 6𝜀 + 5𝛾′ + 9 

              ⋮                                                                                                                                            (2.4.26) 

elde edilir. (2.4.26)  eşitliğindeki ifadeler genelleştirildiğinde 

 

      𝐴𝑛
′ = 𝜅(𝜅 + 1) + 𝜀(2𝛾′ + 2𝑛 + 2) + (2𝑛 + 1)𝛾′ + (𝑛 + 1)2 , 𝑛 = 0,1,2, …         (2.4.27) 

şeklinde elde edilir. Denklem (2.4.27)’de kullanılan kısaltmalar yerine yazılır ve gerekli 

düzenleme yapılırsa  Manning-Rosen potansiyeli için N-boyutta radyal relativistik enerji 

spektrumu  

 

      𝐸2 − 𝜇2𝑐4 = −ℏ2𝑐2𝜎2 (
(𝑛+1)2−

(𝐸+𝜇𝑐2)

2𝜇𝑐2 𝐴+
(𝑁+2𝑙𝑁−1−2)

2
−1

4
+(2𝑛+1)𝛾′

2(𝑛+1+𝛾′)
)

2

                          (2.4.28) 

 

şeklinde elde edilir. Qiang ve Dong [102], Manning-Rosen potansiyelinin üç boyutta 

relativistik olmayan enerji spektrumunu standart metodla elde etmiştir.  𝑁 = 3  için  non-

relativistik limitte denklem (2.4.28), bu metodla bulunan çalışmadaki sonucu 

sağlamaktadır. N-boyutta ise Schrödinger denkleminin çözümleri Nikiforov-Uvaraov 

yöntemiyle Ikdhair ve Sever [100] tarafından çalışılmıştır ve nonrelativistik limitte 

denklem (2.4.28) bu çalışmada elde edilen spektruma indirgenmektedir. 
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      Bölüm 1’de verilen (1.1.16) denklemi kullanılarak N-boyutta radyal dalga 

fonksiyonları 

      𝑓0(𝑧) = 𝐶2 = 𝐶2 2F1(0, 2𝛾′ + 2𝜀 + 2, 2𝜀 + 1, 𝑧 ) 

        𝑓1(𝑧) = −𝐶2[2𝜀 + 1 − (2𝛾′ + 2𝜀 + 3)𝑧] 

                  = −𝐶2(2𝜀 + 1)2F1 (−1, 2𝛾′ + 2𝜀 + 3, 2𝜀 + 1, 𝑧 ) 

       𝑓3(𝑧) = −𝐶2[(2𝜀 + 1)(2𝜀 + 2)(2𝜀 + 3) − 3(2𝛾′ + 2𝜀 + 5)(2𝜀 + 3)(2𝜀 + 2)𝑧 

                                +3(2𝛾′ + 2𝜀 + 6)(2𝛾′ +  2𝜀 + 5)(2𝜀 + 3)𝑧2 − (2𝛾′ + 2𝜀 + 7) 

                             × (2𝛾′ + 2𝜀 + 6)(2𝛾′ + 2𝜀 + 5)𝑧3] 

                = −𝐶2(2𝜀 + 1)(2𝜀 + 2)(2𝜀 + 3) 2F1(−3, 2𝛾′ + 2𝜀 + 5, 2𝜀 + 1, 𝑧 )     

           ⋮                                                                                                                                                             (2.4.29) 

 

 

şeklinde elde edilir. Buradan  f(z)  için genelleştirme yapıldığında 

 

      𝑓𝑛(𝑧) = 𝐶2(2𝜀 + 1)𝑛(−1)𝑛
2F1(−3, 2𝛾′ + 2𝜀 + 5, 2𝜀 + 1, 𝑧 )                                  (2.4.30) 

 

olarak bulunur. Denklem (2.4.30), denklem (2.4.22)’de yerine yazıldığında N-boyutta 

normalize olmamış radyal dalga fonksiyonu 

 

       𝑅(𝑧) =  (1 − 𝑧)𝛾′+1𝑧𝜀𝐶2(2𝜀 + 1)𝑛(−1)𝑛 

                         ×2F1(−𝑛, 2𝛾′ + 2𝜀 + 2 + 𝑛, 2𝜀 + 1, 𝑧 )                                                   (2.4.31) 

 

elde edilir. Burada, 𝑧 = 𝑒−𝜎𝑟 yerine yazılır ve hipergeometrik fonksiyon ile Jacobi 

polinomları  arasındaki bağıntı [143] kullanılırsa  

 

       𝑅(𝑟) =  (1 − 𝑒−𝜎𝑟)𝛾′+1𝑒−𝜎𝜀𝑟𝐶2𝑛! 𝑃𝑛
(2𝜀,2𝛾′+1)

(1 − 2𝑒−𝜎𝑟)                                      (2.4.32) 

 

olarak bulunur. Normalizasyon sabitini bulmak için 

 

      ∫ (1 − 𝑥)𝜈−1(1 + 𝑥)𝜇1

−1
[𝑃𝑛

(𝜈,𝜇)
(𝑥)]

2
𝑑𝑥 = 2𝜈+𝜇 Γ(n+ν+1)Γ(n+μ+1)

𝑛!𝜈Γ(𝑛+𝜈+𝜇+1)
 

      ∫ (1 − 𝑥)𝜈(1 + 𝑥)𝜇1

−1
[𝑃𝑛

(𝜈,𝜇)
(𝑥)]

2
𝑑𝑥 = 2𝜈+𝜇+1 Γ(n+ν+1)Γ(n+μ+1)

𝑛!Γ(𝑛+𝜈+𝜇+1)(2𝑛+𝜈+𝜇+1)
 

 

integrallerinden [143] faydalanılır ve gerekli matematiksel işlemler yapıldıktan sonra  

yüksek  küresel  koordinatlarda normalize  radyal  dalga  foksiyonu 
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      𝑅(𝑟) =  (1 − 𝑒−𝜎𝑟)𝛾′+1𝑒−𝜎𝜀𝑟 [
2𝜀(𝑛+𝛾′+𝜀+1)𝑛!Γ(2𝛾′+2𝜀+2+𝑛)𝜎

(𝑛+𝛾′+1)Γ(2𝛾′+2+𝑛)Γ(2𝜀+1+𝑛)
]

1/2

 

                    × 𝑃𝑛
(2𝜀,2𝛾′+1)

(1 − 2𝑒−𝜎𝑟)                                                                              (2.4.33) 

 

şeklinde elde edilir. 

      𝜂 = 0  veya  𝜂 = 1  durumunda  Manning-Rosen potansiyeli Hulthén potansiyeline 

indirgenir. 

 

       𝑉(𝑟) = −𝑉0
𝑒−𝜎𝑟

1−𝑒−𝜎𝑟  ,  𝑉0 = 𝑍𝑒2𝜎,   𝜎 =
1

𝑏
                                                                  (2.4.34) 

Burada  𝜎, potansiyelin genişliğini tanımlayan parametredir. Denklem (2.4.28)’de gerekli 

indirgemeler yapıldığında yüksek küresel koordinatlarda Hulthen potansiyeli için 

relativistik enerji spektrumu 

 

      𝐸2 − 𝜇2𝑐4 = −ℏ2𝑐2𝜎2 (

(2𝑛+𝑁+2𝑙𝑁−1−1)
2

4
−

(𝐸+𝜇𝑐2)

2𝜇𝑐2 𝐴

(2𝑛+𝑁+2𝑙𝑁−1−1)
)

2

                                                   (2.4.35) 

 

şeklinde elde edilir. Non-relativistik limitte, bu enerji spektrumu literatürle uyum 

sağlamaktadır [100].  

      N-boyutta  Hulthen potansiyeli için  radyal  relativistik dalga fonksiyonu denklem  

(2.4.33)’den 

 

      𝑅(𝑟) =  (1 − 𝑒−𝜎𝑟)𝑙𝑁−1+
𝑁−1

2 𝑒−𝜎𝜀𝑟 [
2𝜀(𝑛+𝜀+𝑙𝑁−1+

𝑁−1

2
)𝑛!Γ(2𝑙𝑁−1+2𝜀+𝑁−1+𝑛)𝜎

(𝑛+𝑙𝑁−1+
𝑁−1

2
)Γ(2𝑙𝑁−1+𝑁−1+𝑛)Γ(2𝜀+1+𝑛)

]

1/2

 

                     × 𝑃𝑛
(2𝜀,2𝑙𝑁−1+𝑁−2)

(1 − 2𝑒−𝜎𝑟)                                                                      (2.4.36) 

olarak bulunur.  
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2.4.3. Manning-Rosen Potansiyeli İçin Farklı Boyutlarda Enerjinin Nümerik 

Değerleri 

 

      Bu bölümde, Manning-Rosen  potansiyeli için elde edilen N-boyutta relativistik enerji 

değeri 𝑐 → ∞ limitinde non-relativistik enerjiye indirgenerek farklı n ve l durumları için 

iki, üç ve dört boyutta atomik birimde nümerik değerleri hesaplandı. Ayrıca, bu 

potansiyel için Hellmann-Feynmann teoremi kullanılarak  〈𝑟−2〉  beklenen değeri elde 

edildi ve  2p, 3p, 3d, 4p  durumlarındaki nümerik sonuçları bulundu. 

      Denklem (2.4.28), non-relativistik limitte 

 

         𝐸 = −
ℏ2

2𝜇𝑏2 [
(𝑛+1)2−𝐴+

(𝑁+2𝑙𝑁−1−2)
2

−1

4
+(2𝑛+1)𝛾′

2(𝑛+𝛾′+1)
]

2

                                            (2.4.37) 

 

şeklinde elde edilir. Bu denklemde, 𝐴 = 2𝑏  ve atomik birimde  ℏ = 𝜇 = 1 alınarak farklı 

boyutlardaki relativistik olmayan enerjinin nümerik değerleri elde edildi ve sonuçlar 

Tablo 2.12, 2.13, 2.14 ve 2.15’de verildi. Tablodaki sonuçlardan boyutun etkisi kolaylıkla 

analiz edilebilir. Potansiyel 𝜎 parametresinin aynı değeri için sonuçları 

karşılaştırdığımızda boyut arttığında enerjinin değerinde de artış olduğu görülmektedir. 

Asimptotik iterasyon metodunun geçerliliği ve hesapladığımız enerjilerin doğruluğu 

literatürde farklı yöntemler kullanılarak elde edilen sonuçlarla karşılaştırılarak 

gösterilmiştir. 
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Tablo 2.12. N=2 için farklı kuantum durumlarında titreşim-dönme enerjisinin (–En,l ) 

(a.b.) hesaplanan değerleri 

 

 

 

 

 

 

 

 

 

 

 

 

Tablo 2.13. N=4 için farklı kuantum durumlarında titreşim-dönme enerjisinin (–En,l ) 

(a.b.) hesaplanan değerleri 

 

          

 

 

 

 

 

 

 

 

  
 1/b 

𝜎 = 0.75 
    AİM   

 
NU[100]   

𝜎 = 1.50 
AİM 

 
NU[100] 

2p  0.025 0.241087727 0.241087728 0.140949065 0.140949065 

  0.050 0.227946676 0.227946676 0.131737328 0.131737328 

   0.075 0.215173756 0.215173874 0.122836186 0.122836866 

  0.100 0.202769319 0.202769319 0.114247678 0.114247678 

3p  0.025 0.074279113 0.074279113 0.051933431 0.051933432 

  0.050 0.062813563 0.062813564 0.042142549 0.042142549 

  0.075 0.052308568 0.052308602 0.033373396 0.033373420 

  0.100 0.042764227 0.042764227 0.025626042 0.025626042 

3d  0.025 0.070734690 0.070734690 0.058898861 0.058898861 

  0.050 0.059344084 0.059344084 0.049054155 0.049054156 

  0.075 0.048952519 0.048952839 0.040108841 0.040109106 

4p  0.025 0.031448122 0.031448122 0.023381941 0.023381941 

4d  0.025 0.030209821 0.030209821 0.026068346 0.026068346 

4f  0.025 0.029833655 0.029833656 0.027228277 0.027228277 

5p  0.025 0.014735069 0.014732070 0.011100960 0.011100961 

5d  0.025 0.014180351 0.014180352 0.012357598 0.012357598 

        
     1/b 

𝜎 = 0.75 
    AİM   

 
NU[100] 

𝜎 = 1.50 
AİM 

 
NU[100] 

2p     0.025 0.070619466 0.070734690 0.058898861 0.058898861 

      0.050 0.059247415 0.059344084 0.049054155 0.049054156 

       0.075 0.048872778 0.048952839 0.040108841 0.040109106 

      0.100 0.039496510 0.039560954 0.032063712 0.032063712 

3p      0.025 0.030209821 0.030209821 0.026068346 0.026068346 

     0.050 0.020395577 0.020395577 0.017092049 0.017092049 

      0.075 0.012502801 0.012502916 0.010003140 0.010003237 

      0.100 0.006531839 0.006531840 0.004801907 0.004801908 

3d      0.025 0.029833655 0.029833656 0.027228277 0.027228277 

      0.050 0.020047208 0.020047209 0.018176768 0.018176769 

      0.075 0.012199557 0.012199670 0.010947871 0.010947973 

4p      0.025 0.014180351 0.014180352 0.012357598 0.012357598 

4d      0.025 0.014011823 0.014011823 0.012892982 0.012892982 

4f      0.025 0.013929373 0.013929374 0.013182138 0.013182139 

5p      0.025 0.006591028 0.007127957 0.005695750 0.006175251 

5d      0.025 0.006506751 0.006506751 0.008828005 0.005967020 
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Tablo 2.14. N=3 ve 𝜎 = 0.75 için farklı kuantum durumlarında titreşim-dönme 

enerjisinin (–En,l ) (a.b.) hesaplanan değerleri 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

1/b 
𝜎 = 0.75 
Hesaplanan 

değerler   

 
Standard[102]   

 
  GPS[108] 

2p 0.025 0.1205793 0.1205793 0.1205723089 

 0.050 0.1084227 0.1084228 0.1082151728 

  0.075 0.0969063 0.0969120  

3p 0.025 0.0459296 0.0459297 0.0458778846 

 0.050 0.0352672 0.0352672 0.0350633277 

 0.075 0.0260090 0.0260110  

3d 0.025 0.0449299 0.0449299 0.0447742874 

 0.050 0.0343082 0.0343082 0.0350633277 

 0.075 0.0251168 0.0251168  

4p 0.025 0.0208608 0.0208608  

4d 0.025 0.0204555 0.0204555 0.0203017276 

4f 0.025 0.0202886 0.0202887  

5p 0.025 0.0098576 0.0098576 0.0098079253 

5d 0.025 0.0096636 0.0096637  

  

1/b        

 
 D-K[152] 

 

  Num[153] 
 

     AİM[109] 

 

2p 0.025 0.1205297 0.1205271 0.120579348 

 0.050 0.1082245 0.1082151 0.108422798 

 0.075  0.0964469 0.094099532 

3p 0.025 0.0458800 0.0458779 0.045929694 

 0.050 0.0350689 0.0350633 0.035267202 

 0.075 0.0255647 0.0255654 0.026010959 

3d 0.025 0.0447812 0.0447743 0.044929943 

 0.050 0.0337133 0.0336930 0.034308244 

 0.075 0.0237782 0.0237621 0.025116813 

4p 0.025 0.0208112 0.0208097 0.020860820 

4d 0.025 0.0203068 0.0203017 0.020455547 

4f 0.025 0.0199911 0.0199797 0.020288663 

5p 0.025 0.0098080 0.0098079 0.009663688 

5d 0.025 0.0095150 0.0095141 0.009583676 
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Tablo 2.15. N=3 ve 𝜎 = 1.50 için farklı kuantum durumlarında titreşim-dönme 

enerjisinin (–En,l ) (a.b.) hesaplanan değerleri 

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         
1/b 

𝜎 = 1.50    
Hesaplanan 
değerler  

 
Standard[102]   

 
GPS[108] 

2p 0.025 0.0900228 0.0900229 0.0899708754 

 0.050 0.0802472 0.0802472 0.0800399908 

  0.075 0.0710332 0.0710332  

3p 0.025 0.0369650 0.0369651 0.0369133922 

 0.050 0.0274719 0.0274719 0.0272696509 

 0.075 0.0193850 0.0193850  

3d 0.025 0.0396344 0.0396345 0.0394789425 

 0.050 0.0300629 0.0300629 0.0294495639 

 0.075 0.0218120 0.0218121  

4p 0.025 0.0172249 0.0172249  

4d 0.025 0.0183649 0.0183649 0.0182114637 

4f 0.025 0.0189222 0.0189223  

5p 0.025 0.0081307 0.0081308 0.0080816394 

5d 0.025 0.0086902 0.0086902  

  

1/b 

 
D-K[152] 

 
Num.[153] 

 
AİM[109] 

2p 0.025 0.0899732 0.0899708 0.089902617 

 0.050 0.0802472 0.0800400 0.079787754 

 0.075  0.0705701 0.070050273 

3p 0.025 0.0369154 0.0369134 0.036911875 

 0.050 0.0272736 0.0272696 0.027286328 

 0.075 0.0189388 0.0189474 0.019030789 

3d 0.025 0.0394857 0.0394789 0.039464723 

 0.050 0.0294680 0.0294496 0.029466438 

 0.075 0.0204734 0.0204663 0.020664098 

4p 0.025 0.0171753 0.0171740 0.017197171 

4d 0.025 0.0182162 0.0182115 0.018277246 

4f 0.025 0.0186247 0.0186137 0.018742772 

5p 0.025 0.0080812 0.0080816 0.008115365 

5d 0.025 0.0085415 0.0085415 0.008862907 
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      Hellmann-Feynmann teoremi [137-139]  

 

      
𝜕𝐸𝑛(𝑞)

𝜕𝑞
= ⟨𝜓(𝑞)|

𝜕𝐻(𝑞)

𝜕𝑞
|𝜓(𝑞)⟩                                                                                       (2.4.38) 

 

şeklindedir. Burada q parametre, 𝐸𝑛(𝑞) ve 𝜓(𝑞) Hamiltonyenin özdeğeri ve 

özfonksiyonudur. Küresel koordinatlarda, Manning-Rosen potansiyeli için  Hamiltonyen 

 

      𝐻 =
ℏ2

2𝜇

𝑑2

𝑑𝑟2 +
ℏ2𝑙(𝑙+1)

2𝜇𝑟2 −
ℏ2

2𝜇𝑏2 [
𝜂(𝜂−1)𝑒

−
2𝑟
𝑏

(1−𝑒
−

𝑟
𝑏)

2 −
𝐴𝑒

−
𝑟
𝑏

1−𝑒
−

𝑟
𝑏

]                                            (2.4.39) 

 

olarak yazılır. (2.4.38) eşitliğinde, denklem (2.4.39) ve küresel koordinatlarda non-

relativistik enerji spektrumu yerine yazılır. Daha sonra,  𝑞 = 𝑙  için gereken işlemler 

yapılırsa 〈𝑟−2〉  beklenen değeri  

 

    〈𝑟−2〉 = −
2

(2𝑙+1)𝑏2 [
(𝑛+1)2−𝐴+𝑙(𝑙+1)+(2𝑛+1)(−

1

2
+

√4𝜂(𝜂−1)+(2𝑙+1)2

2
)

2𝑛+1+√4𝜂(𝜂−1)+(2𝑙+1)2
] 

               × [

2𝑙+1+
(2𝑛+1)(8𝑙+4)

4√4𝜂(𝜂−1)+(2𝑙+1)2

2𝑛+1+√4𝜂(𝜂−1)+(2𝑙+1)2

(8𝑙+4)((𝑛+1)2−𝐴+𝑙(𝑙+1)+(2𝑛+1)(−
1

2
+

√4𝜂(𝜂−1)+(2𝑙+1)2

2
))

2(2𝑛+1+√4𝜂(𝜂−1)+(2𝑙+1)2)2√4𝜂(𝜂−1)+(2𝑙+1)2
] 

                                                                                                                                (2.4.40)     

 

şeklinde elde edilir. Farklı kuantum durumları için   〈𝑟−2〉   beklenen  değerinin  atomik 

birimde nümerik sonuçları hesap edildi ve literatürdeki çalışma [108] ile karşılaştırılarak 

uyumlu sonuçlar verdiği gözlendi. Bu sonuçların  Tablo 2.16’da karşılaştırması yapıldı. 
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Tablo 2.16.  2p, 3p, 4p  ve 3d durumlarında  〈𝑟−2〉 (a.b.)’nin  nümerik  değerleri 

       

 

 

       

 

       

 

 

     1/b=0.1, 𝜂 = 0.75  
 
           AİM 

 
 
 GPS[108] 

 1/b=0.1, 𝜂 = 1.5 
 
      AİM 

 
 
  GPS[108] 

2p      0.090777          0.091584     0.052664 0.053464 

3p      0.021882 0.022569     0.013740 0.014398 

4p      0.004352 0.039654     0.001232 0.002030 

3d      0.104222 0.103225     0.010096 0.010760 



 

 

 

 

 

                                                                       3. BÖLÜM 

 

YÜKSEK KÜRESEL KOORDİNATLARDA MERKEZCİL 

OLMAYAN POTANSİYEL ETKİSİNDEKİ SPİN-1/2 PARÇACIK 

İÇİN DİRAC DENKLEMİ 

 

3.1. Yüksek Küresel Koordinatlarda Spin Simetri Durumunda Dirac Denkleminin 

Elde Edilmesi 

 

      Merkezcil olmayan Lorentz skaler ve vektör potansiyel etkisindeki  𝑀  kütleli spin-

1/2 parçacık için N-boyutta Dirac denklemi 

      
2

1 1

1

ˆˆ . ( , ) ( , ) ( ) ( )
N

j j N N

j

c p Mc S r V r r E r    



 
        

 
                          (3.1.1) 

şeklinde yazılır. Burada N uzaysal boyut 𝑁 ≥ 2 , c ışık hızı, 𝑝𝑗  momentum işlemcisi, E 

relativistik enerji ve  𝛼̂𝑗 , 𝛽̂   𝑁 × 𝑁  kare Dirac matrislerdir.  

      Dirac  dalga fonksiyonu 

      Ψ(𝑟) = (
𝜑(𝑟)

𝜒(𝑟)
)                                                                                                                      (3.1.2)         

şeklindedir. Denklem (3.1.1)’de  denklem (3.1.2) yerine yazıldığında 

       

       (
𝑀𝑐2 + 𝑆(𝑟, 𝜃𝑁−1) + 𝑉(𝑟, 𝜃𝑁−1) 𝑐(𝜎⃗. 𝑝⃗)

𝑐(𝜎⃗. 𝑝⃗) −𝑀𝑐2 − 𝑆(𝑟, 𝜃𝑁−1) + 𝑉(𝑟, 𝜃𝑁−1)
) (

𝜑(𝑟)

𝜒(𝑟)
)       

                                                                                                  = 𝐸 (
𝜑(𝑟)

𝜒(𝑟)
)                         (3.1.3) 

 

elde edilir. Burada   𝜑(𝑟)  ve  𝜒(𝑟)  spin yukarı ve spin aşağı bileşenlerdir. Denklem (3.1.3)  

düzenlenirse 
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      [𝐸 − 𝑀𝑐2 − 𝑆(𝑟, 𝜃𝑁−1) − 𝑉(𝑟, 𝜃𝑁−1)]𝜑(𝑟) − 𝑐(𝜎⃗. 𝑝⃗)𝜒(𝑟) = 0                               (3.1.4) 

      [𝐸 + 𝑀𝑐2 + 𝑆(𝑟, 𝜃𝑁−1) − 𝑉(𝑟, 𝜃𝑁−1)]𝜒(𝑟) − 𝑐(𝜎⃗. 𝑝⃗)𝜑(𝑟) = 0                                  (3.1.5) 

 

denklemleri elde edilir. Denklem (3.1.5)’de  𝜒(𝑟)  çekilir, denklem (3.1.4)’de  yerine 

yazılır ve gerekli düzenleme ve işlemler yapılırsa 

      [ℏ2𝑐2∇⃗⃗⃗𝑁
2 + (𝐸 + 𝑀𝑐2 + 𝑆(𝑟, 𝜃𝑁−1) − 𝑉(𝑟, 𝜃𝑁−1)) 

                  × (𝐸 − 𝑀𝑐2 + 𝑆(𝑟, 𝜃𝑁−1) − 𝑉(𝑟, 𝜃𝑁−1))]𝜑(𝑟) = 0                                         (3.1.6) 

denklemi elde edilir. Denklem (3.1.6)’da 

      𝜑(𝑟) = exp (
𝑖

ℏ
𝑊(𝑟))                                     

      ∆(𝑟) =  𝑉(𝑟, 𝜃𝑁−1) −  𝑆(𝑟, 𝜃𝑁−1)                                                         

      Σ(𝑟) =  𝑉(𝑟, 𝜃𝑁−1) +  𝑆(𝑟, 𝜃𝑁−1)                                                                                  (3.1.7) 

tanımları kullanılır  ve spin simetri durumu için ∆(𝑟) = 𝐶𝑠  olarak alınırsa, spin simetri 

durumunda relativistik kuantum Hamilton-Jacobi denklemi  

      
ℏ

𝑖
∇⃗⃗⃗𝑁

2 𝑊(𝑟) + (∇⃗⃗⃗𝑁𝑊(𝑟))
2

−
𝐴2

𝑐2 −
𝐵Σ(𝑟)

𝑐2 = 0                                                        (3.1.8) 

şeklinde elde edilir. Burada 

      𝐴𝟐 = 𝐸2 − 𝑀2𝑐4 − Cs(𝐸 − 𝑀𝑐2)  ,   𝐵 = 𝐶𝑠 − 𝐸 − 𝑀𝑐2                                           (3.1.9) 

olarak alınır.  Yüksek küresel koordinatlarda,  merkezcil olmayan potansiyel  

      Σ(𝑟) = 𝑉1(𝑟) +
𝑉2(𝜃𝑁−1)

𝑟2                                                                                                (3.1.10) 

ve kuantum karakteristik fonksiyonu  𝑊(𝑟) 

      𝑊(𝑟) = 𝑊𝑟(𝑟) + 𝑊𝜃𝑁−1
(𝜃𝑁−1) + 𝑊𝜃1

(𝜃1)                                                                (3.1.11) 

şeklindedir. Bölüm 1’de elde ettiğimiz yüksek küresel koordinatlarda gradyent ve 

Laplasyen operatörleri ile denklem (3.1.10) ve denklem (3.1.11), denklem (3.1.8)’de 

yerine yazılıp değişkenlerine ayırma metodu uygulanırsa 
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ℏ

𝑖
(

1

𝑟𝑁−1

𝜕

𝜕𝑟
𝑟𝑁−1 𝜕𝑊𝑟(𝑟)

𝜕𝑟
) −

ℏ

𝑖

𝐿𝑁−1
2

ℏ2𝑟2 (𝑊𝜃𝑁−1
(𝜃𝑁−1) + 𝑊𝜃1

(𝜃1)) + (
𝜕𝑊𝑟(𝑟)

𝜕𝑟
)

2

 

     +
1

𝑟2 (
𝜕𝑊𝜃𝑁−1

(𝜃𝑁−1)

𝜕𝜃𝑁−1
)

2

+
1

𝑟2𝑠𝑖𝑛2𝜃𝑁−1
(

𝜕𝑊𝜃1
(𝜃1)

𝜕𝜃1
)

2

−
𝐴2

𝑐2 −
𝐵𝑉1(𝑟)

𝑐2 −
𝑉2(𝜃𝑁−1)𝐵

𝑐2 = 0 (3.1.12) 

 

elde edilir. Buradan yüksek küresel koordinatlarda radyal ve açısal relativistik dalga 

denklemleri  

      
ℏ

𝑖
[

𝜕2𝑊𝑟(𝑟)

𝜕𝑟2 +
𝑁−1

𝑟

𝜕𝑊𝑟(𝑟)

𝜕𝑟
] + (

𝜕𝑊𝑟(𝑟)

𝜕𝑟
)

2

=
𝐴2

𝑐2 +
𝐵𝑉1(𝑟)

𝑐2 −
𝑎

𝑟2                                   (3.1.13) 

      
ℏ

𝑖
[

𝜕2𝑊𝜃𝑁−1
(𝜃𝑁−1)

𝜕𝜃𝑁−1
2 + (𝑁 − 2)

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1

𝜕𝑊𝜃𝑁−1
(𝜃𝑁−1)

𝜕𝜃𝑁−1
] + (

𝜕𝑊𝜃𝑁−1
(𝜃𝑁−1)

𝜕𝜃𝑁−1
)

2

 

                                                                       = 𝑎 −
𝑏

𝑠𝑖𝑛2𝜃𝑁−1
+

𝑉2(𝜃𝑁−1)𝐵

𝑐2               (3.1.14) 

       
ℏ

𝑖

𝜕2𝑊𝜃1
(𝜃1)

𝜕𝜃1
2 + (

𝜕𝑊𝜃1
(𝜃1)

𝜕𝜃1
)

2

= 𝑏                                                                         (3.1.15) 

şeklinde elde edilir. Burada  𝑎  ve 𝑏,  denklemin  bağımsız değişkenlerinin her  değerinde 

doğrulanabilmesini sağlayan ayırma sabitleridir. 

      Yüksek küresel koordinatlarda kuantum momentum fonksiyonu 

      𝑝⃗ = ∇⃗⃗⃗𝑁𝑊(𝑟)                                                                                                     (3.1.16) 

şeklinde tanımlanır. Denklem (3.1.7)’de 𝜑(𝑟) tanımı ve denklem (3.1.16)’dan kuantum 

momentum fonksiyonu 

      𝑝⃗ =
ℏ

𝑖

∇⃗⃗⃗𝑁𝜑(𝑟)

𝜑(𝑟)
                                                                                                       (3.1.17) 

elde edilir. Denklem (3.1.11), denklem (3.1.16)’da yerine yazıldığında 

      𝑝𝑟 =
𝜕𝑊𝑟(𝑟)

𝜕𝑟
  ,   𝑝𝜃𝑁−1

=
𝜕𝑊𝜃𝑁−1

(𝜃𝑁−1)

𝜕𝜃𝑁−1
 ,  𝑝𝜃1

=
𝜕𝑊𝜃1

(𝜃1)

𝜕𝜃1
                                   (3.1.18) 

olarak bulunur. Radyal ve açısal kuantum kanonik dönüşümler denklem (3.1.13), (3.1.14)  

ve (3.1.15)’de yerine yazılırsa N-boyutta spin simetri durumunda radyal ve açısal 

relativistik dalga denklemleri  

      
ℏ

𝑖
[

𝜕𝑝𝑟

𝜕𝑟
+

(𝑁−1)

𝑟
𝑝𝑟] + 𝑝𝑟

2 =
𝐴2

𝑐2 +
𝐵𝑉1(𝑟)

𝑐2 −
𝑎

𝑟2                                                        (3.1.19) 



77 
 

      
ℏ

𝑖
[

𝜕𝑝𝜃𝑁−1

𝜕𝜃𝑁−1
+ (𝑁 − 2)

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1
𝑝𝜃𝑁−1

] + 𝑝𝜃𝑁−1

2 =  𝑎 −
𝑏

𝑠𝑖𝑛2𝜃𝑁−1
+

𝑉2(𝜃𝑁−1)𝐵

𝑐2                    (3.1.20) 

      
ℏ

𝑖

𝜕𝑝𝜃1

𝜕𝜃1
+ 𝑝𝜃1

2 = 𝑏                                                                                                (3.1.21) 

şeklinde elde edilir. Yüksek küresel koordinatlarda dalga fonksiyonu  

       

       𝜑(𝑟) = 𝑟−
(𝑁−1)

2 𝑅(𝑟)
𝐻(𝜃𝑁−1)

(𝑠𝑖𝑛𝜃𝑁−1)
(𝑁−2)

2

𝑒𝑖𝑚′𝜃1                                                                    (3.1.22)                                                                 

şeklinde alınır. Denklem (3.1.16)  ve denklem (3.1.17) kullanılarak 

       

      𝑝𝑟 =
ℏ

𝑖

𝑅′(𝑟)

𝑅(𝑟)
−

ℏ

𝑖

(𝑁−1)

2𝑟
                                                                                         (3.1.23) 

    

      𝑝𝜃𝑁−1
=

ℏ

𝑖

𝐻′(𝜃𝑁−1)

𝐻(𝜃𝑁−1)
−

ℏ

𝑖

(𝑁−2)

2

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1
                                                                        (3.1.24) 

 

elde edilir. Radyal kuantum momentum fonksiyonu yeniden  

  

      𝑝̃𝑟 = 𝑝𝑟 +
ℏ

𝑖

(𝑁−1)

2𝑟
                                                                                               (3.1.25) 

olarak tanımlanır. Denklem (3.1.23) ve denklem (3.1.25)’den radyal dalga fonksiyonu 

      𝑅(𝑟) = 𝑒𝑥𝑝 (
𝑖

ℏ
∫ 𝑝̃𝑟𝑑𝑟)                                                                                     (3.1.26) 

elde edilir. Açısal kuantum momentum fonksiyonu yeniden 

     

      𝑝̃𝜃𝑁−1
= 𝑝𝜃𝑁−1

+
ℏ

2𝑖
(𝑁 − 2)

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1
                                                                 (3.1.27) 

 

olarak tanımlanır. Bu tanımlama ve denklem (3.1.24) kullanılarak açısal dalga 

fonksiyonu 

      𝐻(𝜃𝑁−1) = exp (
𝑖

ℏ
∫  𝑝̃𝜃𝑁−1

𝑑𝜃𝑁−1)                                                                 (3.1.28) 

olarak elde edilir. 
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3.2. Kuantum Hamilton-Jacobi Yöntemi İle Double Ring-shaped Kratzer 

Potansiyeli İçin N-Boyutta Spin Simetri Durumunda Dirac Denkleminin Çözümleri 

 

      Yüksek küresel koordinatlarda, double ring-shaped Kratzer potansiyeli 

      𝑉(𝑟, 𝜃𝑁−1) = −2𝐷𝑒 (
𝑟𝑒

𝑟
−

1

2

𝑟𝑒
2

𝑟2 ) +
𝛼

𝑟2𝑠𝑖𝑛2𝜃𝑁−1
+

𝛽

𝑟2𝑐𝑜𝑠2𝜃𝑁−1
                                (3.2.1) 

şeklinde tanımlanır. Burada, 𝑟𝑒  atomlar arasındaki denge uzaklığı,  𝐷𝑒 ayrışma enerjisi,   

𝛼 ve  𝛽 pozitif gerçel parametrelerdir.  

      İki atomlu moleküller (NaH 𝑋1Σ+, MgH 𝑋2Σ+, HI 𝑎3Σ+) için double ring-shaped 

Kratzer potansiyelinin yüzey grafikleri Şekil 3.1, 3.2 ve  3.3’de gösterildi. Potansiyelin 

yüzey grafiği çizilirken kullanılan moleküler sabitler NaH 𝑋1Σ+ [154] için 𝐷𝑒 =

15900.0 𝑐𝑚−1,  𝑟𝑒 = 1.887015 𝐴° ; HI 𝑎3Σ+ [155] için 𝐷𝑒 = 25811.60𝑐𝑚−1 ,  𝑟𝑒 =

1.604 𝐴° ; MgH 𝑋2Σ+ [154] için  𝐷𝑒 = 11104.7𝑐𝑚−1, 𝑟𝑒 = 0.967804 𝐴° olarak 

alınmıştır. Bu yüzey grafikleri Matlab programında çizilmiştir. 

      

 

Şekil 3.1. NaH 𝑋1Σ+ molekülü için double ring-shaped Kratzer potansiyelinin yüzey   

grafiği 
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Şekil 3.2. MgH 𝑋2Σ+ molekülü için double ring-shaped Kratzer potansiyelinin yüzey   

grafiği 

 

 

 

Şekil 3.3. HI 𝑎3Σ+ molekülü için  double ring-shaped Kratzer potansiyelinin yüzey   

grafiği 

 

3.2.1. Yüksek Küresel Koordinatlarda Spin Simetri Durumunda Relativistik Enerji 

Spektrumu   

 

      Bu bölümde, yüksek küresel koordinatlarda double ring-shaped Kratzer potansiyeli 

için  spin simetri durumunda relativistik enerji spekturumu elde edilecektir.        

      Kratzer potansiyeli,  (3.1.19) denkleminde yerine yazılırsa 
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ℏ

𝑖
[

𝜕𝑃𝑟

𝜕𝑟
+

(𝑁−1)

𝑟
𝑃𝑟] + 𝑃𝑟

2 =
𝐸2−𝑀2𝑐4−𝐶𝑠(𝐸−𝑀𝑐2)

𝑐2 −
𝑎

𝑟2   

                                                   +
(𝐶𝑠−𝐸−𝑀𝑐2)

𝑐2 (−
2𝐷𝑒𝑟𝑒

𝑟
+

𝐷𝑒𝑟𝑒
2

𝑟2 )                                (3.2.2) 

şeklinde elde edilir. 

Kuantum Hamilton-Jacobi metoduyla N-boyutta radyal enerji spektrumunu bulmak için 

kuantum hareket değişkenini tanımlamamız gerekir. Kuantum hareket değişkeni, 

kompleks bölgede kuantum momentum fonksiyonunun  𝑝(𝑥, 𝐸) , C çevresi üzerinden 

integralidir.  

      𝐽 =
1

2𝜋
∮ 𝑝(𝑥, 𝐸)𝑑𝑥

𝐶
                                                                                                       (3.2.3) 

Burada, C saat ibresinin tersi yönünde tanımlanan kapalı bir eğridir. Dalga fonksiyonunun 

kutup noktaları, kuantum momentum fonksiyonun sabit olmayan noktalarına denk gelir. 

Bölüm 1’de anlatıldığı gibi Leacock ve Padgett [115-116] enerji spektrumunu elde etmek 

için kuantum momentum fonksiyonunu kullanarak tam kuantizasyon koşulu tanımlanır. 

      𝐽 = 𝑛ℏ ,         𝑛 = 0,1,2 …                                                                                  (3.2.4) 

Radyal kuantum hareket değişkeni 

      𝐽𝑟 =
1

2𝜋
∮ 𝑝

𝑟
𝑑𝑟

𝐶𝑟
                                                                                                             (3.2.5) 

şeklindedir. Burada, 𝐶𝑟 saat ibresinin tersi yönünde tanımlanan konturdur. Radyal hareket 

değişkeni, r=0 ve r=∞  kutup noktalarındaki kuantum hareket değişkenlerinin 

toplamıdır. 

      𝐽𝑟 = 𝐽0 + 𝐽∞                                                                                                         (3.2.6) 

𝐽0  integralini hesaplamak için  𝑟 = 0 noktası yakınında 𝑝𝑟  Laurent serisine açılır ve  

𝑝𝑟 =
𝑏1

𝑟
+ 𝑎0 + 𝑎1𝑟 + ⋯ şeklinde alınarak sonra (3.2.2) denkleminde yerine yazılır. 

1

𝑟2 li 

terimlerin katsayısından 𝑏1 elde edilir. 

      𝑏1 = 𝑖ℏ
(𝑁−2)

2
± 𝑖√

(𝑁−2)2ℏ2

4
+ 𝑎 +

𝐷𝑒𝑟𝑒
2(𝐸+𝑀𝑐2−𝐶𝑠)

𝑐2                                               (3.2.7) 

Klasik momentum fonksiyonu tanımından  𝑝̃𝑧
𝑐 ≈ −𝑖

|𝑀|

𝑧
  ,  
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      𝑏1 = 𝑖ℏ
(𝑁−2)

2
− 𝑖√

(𝑁−2)2ℏ2

4
+ 𝑎 +

𝐷𝑒𝑟𝑒
2(𝐸+𝑀𝑐2−𝐶𝑠)

𝑐2                                                 (3.2.8) 

olarak alınır. Rezidü teoremi kullanılarak 

       𝐽0 = −
ℏ

2
(𝑁 − 2) − √ℏ2(𝑁−2)2

4
+ 𝑎 +

𝐷𝑒𝑟𝑒
2(𝐸+𝑀𝑐2−𝐶𝑠)

𝑐2                                          (3.2.9) 

elde edilir. 

𝐽∞  integralini hesaplamak için   𝑟 =
1

𝑠
   dönüşümü uygulanır  ve 

       𝐽∞ =
1

2𝜋
∮

𝑝𝑠

𝑠2𝐶𝑠
𝑑𝑠                                                                                                         (3.2.10) 

olarak bulunur. 𝑠 = 0  noktası yakınında 𝑝𝑠  Laurent serisine 𝑝𝑠 = 𝑎0 + 𝑎1𝑠 + ⋯  

şeklinde  açılır  ve  (3.2.2) denkleminde yerine yazılırsa 

       𝑎1 = 𝑖ℏ
(𝑁−1)

2
−

𝐷𝑒𝑟𝑒

𝑐
√

(𝐸+𝑀𝑐2−𝐶𝑠)

𝐸−𝑀𝑐2                                                                      (3.2.11) 

olarak bulunur. Rezidü teoremi kullanılırsa 

       𝐽∞ = −ℏ
(𝑁−1)

2
+

𝐷𝑒𝑟𝑒

𝑐
√−

(𝐸+𝑀𝑐2−𝐶𝑠)

𝐸−𝑀𝑐2                                                                (3.2.12) 

elde edilir. (3.2.9)  ve  (3.2.12)  denklemleri,  (3.1.6)  denkleminde yerine yazıldığında 

       𝐽𝑟 = −
ℏ

2
− √ℏ2(𝑁−2)2

4
+ 𝑎 +

𝐷𝑒𝑟𝑒
2(𝐸+𝑀𝑐2−𝐶𝑠)

𝑐2 +
𝐷𝑒𝑟𝑒

𝑐
√−

(𝐸+𝑀𝑐2−𝐶𝑠)

𝐸−𝑀𝑐2 = 𝑛𝑟ℏ      (3.2.13) 

𝑛𝑟 = 0,1,2, …  olmak üzere elde edilir. 

      Açısal kuantum hareket değişkeni  

       𝐽𝜃 =
1

2𝜋
∮ 𝑝

𝜃
𝑑𝜃

𝐶𝜃
                                                                                                        (3.2.14) 

şeklindedir. (3.1.20) denkleminde merkezcil olmayan potansiyel yerine yazılır. 𝑧 =

𝑠𝑖𝑛2𝜃𝑁−1  dönüşümü uygulanır ve  𝑝𝑧 = 2√𝑧(1 − 𝑧)𝑝̃𝑧   tanımı kullanılırsa  

       
ℏ

𝑖
(

𝜕𝑝̃𝑧

𝜕𝑧
+

(𝑁−1)−𝑁𝑧

2𝑧(1−𝑧)
𝑝̃𝑧) + 𝑝̃𝑧

2 =
𝑎

4𝑧(1−𝑧)
−

(
𝐸+𝑀𝑐2−𝐶𝑠

𝑐2 )𝛼+ℏ2𝑚2

4𝑧2(1−𝑧)
−

(
𝐸+𝑀𝑐2−𝐶𝑠

𝑐2 )𝛽

4𝑧(1−𝑧)2       (3.2.15) 

elde edilir. Dönüşümler sonucunda açısal kuantum hareket değişkeni denklem (3.2.14), 
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      𝐽𝜃 =
1

2𝜋
∮ 𝑝̃

𝑧
𝑑𝑧

𝐶𝑧
                                                                                                          (3.2.16) 

şeklinde elde edilir. Açısal kuantum hareket değişkeni,  𝑧 = 0 , 𝑧 = 1 , 𝑧 = ∞ kutup 

noktalarındaki hareket değişkenlerinin toplamıdır. 

      𝐽𝜃 = 𝐽0 + 𝐽1 + 𝐽∞                                                                                              (3.2.17) 

Burada, 

      𝐽0 =
1

2𝜋
∮ 𝑝̃

𝑧
𝑑𝑧

𝐶0
                                                                                                          (3.2.18) 

şeklindedir. 𝐶0  saat ibresi yönünde tanımlanan konturdur. 𝑧 = 0 noktası yakınında 𝑝̃𝑧   

Laurent serisine  𝑝̃𝑧 =
𝑏1

𝑧
+ 𝑎0 + 𝑎1𝑧 + ⋯  şeklinde açılır  ve  denklem (3.2.15)’ de yerine 

yazılır. 
1

𝑧2 li terimlerin katsayısından  𝑏1  elde edilir. 

      𝑏1 = 𝑖ℏ
(𝑁−3)

4
±

𝑖

2
√

ℏ2(𝑁−3)2

4
+ 𝑏 + (

𝐸+𝑀𝑐2−𝐶𝑠

𝑐2
) 𝛼                                              (3.2.19) 

Klasik momentum fonksiyonu tanımından  𝑝̃𝑧
𝑐 ≈ −𝑖

|𝑀|

𝑧
  , 

      𝑏1 = 𝑖ℏ
(𝑁−3)

4
−

𝑖

2
√

ℏ2(𝑁−3)2

4
+ 𝑏 + (

𝐸+𝑀𝑐2−𝐶𝑠

𝑐2
) 𝛼                                              (3.2.20) 

olarak alınır. Rezidü teoremi kullanılarak 

      𝐽0 =
1

2
(ℏ

(𝑁−3)

2
− √

ℏ2(𝑁−3)2

4
+ 𝑏 + (

𝐸+𝑀𝑐2−𝐶𝑠

𝑐2
) 𝛼)                                           (3.2.21) 

elde edilir.  

      Denklem (3.2.17)’ de  

       𝐽1 =
1

2𝜋
∮ 𝑝̃

𝑧
𝑑𝑧

𝐶1
                                                                                                         (3.2.22) 

şeklindedir. 𝐶1  saat ibresi yönünde tanımlanan konturdur. 𝑧 = 1 noktası yakınında  𝑝̃𝑧 =

𝑏1

(𝑧−1)
+ 𝑎0 + ⋯  şeklinde Laurent seriye açılır  ve denklem (3.2.15)’ de yerine yazılır. 

1

(𝑧−1)2 li terimlerin katsayısından  𝑏1  elde edilir. 

      𝑏1 = −
𝑖ℏ

4
±

𝑖

2
√

ℏ2

4
+ (

𝐸+𝑀𝑐2−𝐶𝑠

𝑐2
) 𝛽                                                                     (3.2.23) 
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Klasik momentum fonksiyonu tanımından  𝑝̃𝑧
𝑐 ≈ −𝑖

|𝑀|

𝑧
  , 

      𝑏1 = −
𝑖ℏ

4
−

𝑖

2
√

ℏ2

4
+ (

𝐸+𝑀𝑐2−𝐶𝑠

𝑐2
) 𝛽                                                                     (3.2.24) 

olarak alınır. Rezidü teoremi kullanılarak 

      𝐽1 = −
1

2
(

ℏ

2
+ √

ℏ2

4
+ (

𝐸+𝑀𝑐2−𝐶𝑠

𝑐2
) 𝛽)                                                                  (3.2.25) 

elde edilir. 

       Denklem  (3.2.17)’ de 

        𝐽∞ =
1

2𝜋
∮ 𝑝̃

𝑧
𝑑𝑧

𝐶∞
                                                                                                      (3.2.26) 

şeklindedir. Denklem (3.2.26)’da  𝑧 =
1

𝑠
  dönüşümü uyugulanırsa 

       𝐽∞ =
1

2𝜋
∮

𝑝𝑠

𝑠2𝐶𝑠
𝑑𝑠                                                                                                         (3.2.27) 

elde edilir. Burada, 𝐶𝑠  saat ibresinin tersi yönünde tanımlanan konturdur. 𝑠 = 0  noktası 

yakınında 𝑝𝑠 Laurent serisine  𝑝𝑠 = 𝑎0 + 𝑎1𝑠 + ⋯  şeklinde açılır ve denklem (3.2.15)’de 

yerine yazılırsa 

      𝑎1 =
1

2
(𝑖ℏ

(𝑁−2)

2
− 𝑖√

ℏ2(𝑁−2)2

4
+ 𝑎)                                                                 (3.2.28) 

olarak bulunur. Rezidü teoremi kullanılarak 

      𝐽∞ =
1

2
(−ℏ

(𝑁−2)

2
+ √

ℏ2(𝑁−2)2

4
+ 𝑎)                                                                 (3.2.29) 

elde edilir. (3.2.21), (3.2.25) , (3.2.29) denklemleri , (3.2.17) denkleminde yerine yazılırsa 

      𝐽𝜃 = −
ℏ

2
+

ℏ

2
√

(𝑁−2)2

4
+

𝑎

ℏ2 −
ℏ

2
√

1

4
+ (

𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2 ) 𝛽 

               −
ℏ

2
√

(𝑁−3)2

4
+ 𝑚′2 + (

𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2 ) 𝛼 = 𝑛𝜃ℏ ,  𝑛𝜃 = 0,1,2, …                            (3.2.30) 

 

elde edilir. 
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(3.2.13) ve (3.2.30) denklemleri, (3.2.4) denkleminde yerine yazılır ve gerekli 

düzenlemeler yapılırsa double ring-shaped Kratzer potansiyeli için N-boyutta spin simetri 

durumunda relativistik enerji spektrumu 

 

− (
2𝐷𝑒𝑟𝑒

ℏ𝑐
)

2

(
𝐸+𝑀𝑐2−𝐶𝑠

𝐸−𝑀𝑐2 ) =  

(2𝑛𝑟 + 1 + 2√(2𝑛𝜃 + 1 + √
1

4
+ (

𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2
) 𝛽 + √

(𝑁−3)2

4
+ 𝑚′2 + (

𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2
) 𝛼)

2

+
𝐷𝑒𝑟𝑒

2(𝐸+𝑀𝑐2−𝐶𝑠)

ℏ2𝑐2
)

2

 (3.2.31)   

 

şeklinde elde edilir. Falaye ve arkadaşları [69], küresel koordinatta double ring-shaped 

Kratzer potansiyeli için spin simetri durumunda relativistik enerji spektrumunu 

asimptotik iterasyon metoduyla elde etti. N-boyutta spin simetri durumunda bulunan 

(3.2.31) denklemi küresel koordinata indirgenerek Falaye’nin çalışmasında elde edilen 

enerji spektrumuyla aynı sonucu vermektedir.  Aynı zamanda denklem (3.2.31), 𝑁 = 3 

için 𝐶𝑠 = 0  durumunda, Gharbi ve arkadaşları [71] tarafından elde edilen relativistik 

enerji spekturumunu sağlamaktadır. 

 

3.2.2. Yüksek Küresel Koordinatlarda Radyal Dalga Fonksiyonu 

      Bu bölümde, Kratzer potansiyeli etkisindeki spin-1/2 parçacık için  N-boyutta  

relativistik  radyal dalga denklemi kuantum Hamilton-Jacobi yöntemiyle çözülerek dalga 

fonksiyonu bulunur. Daha sonra, N-boyutta elde edilen radyal dalga fonksiyonu 

normalize edilir. 

      (3.2.2) denkleminde 

      𝑝̃𝑟 = 𝑝𝑟 +
ℏ

𝑖

(𝑁−1)

2𝑟
                                                                                              (3.2.32) 

tanımı kullanılırsa 

       
ℏ

𝑖

𝜕𝑝̃𝑟

𝜕𝑟
+ 𝑝̃𝑟

2 −
ℏ2(𝑁−1)(3−𝑁)

4𝑟2 =
𝐸2−𝑀2𝑐4−𝐶𝑠(𝐸−𝑀𝑐2)

𝑐2 +
2𝐷𝑒𝑟𝑒

2(𝐸+𝑀𝑐2−𝐶𝑠)

𝑐2𝑟
 

                                                       −
𝑎2

𝑟2 −
𝐷𝑒𝑟𝑒

2(𝐸+𝑀𝑐2−𝐶𝑠)

𝑐2𝑟2                                       (3.2.33) 

elde edilir. (3.2.33)  denkleminde  𝑦 =
𝑟

𝑟𝑒
   dönüşümü uygulanır. Uygun kısaltmalar 

      𝜅2 = −
(𝐸2−𝑀2𝑐4−𝐶𝑠(𝐸−𝑀𝑐2))

ℏ2𝑐2 𝑟𝑒
2                                                                         (3.2.34) 
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      𝜎2 =
(𝐸+𝑀𝑐2−𝐶𝑠)

ℏ2𝑐2 𝐷𝑒𝑟𝑒
2                                                                                       (3.2.35) 

ve ayırma sabiti  

      𝑎 = ℏ2𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)                                                                              (3.2.36) 

denklem (3.2.33)’de yerine yazıldığında 

 

      
ℏ

𝑖

𝜕𝑝̃𝑦

𝜕𝑦
+ 𝑝̃𝑦

2 −
ℏ2(𝑁−1)(3−𝑁)

4𝑦2 = ℏ2 (−𝜅2 +
2𝜎2

𝑦
−

𝜎2+𝑙𝑁−1(𝑙𝑁−1+𝑁−2)

𝑦2 )                  (3.2.37) 

şeklinde elde edilir. Denklem (3.1.26)’dan  𝑝̃𝑟  çekilir ve  𝑝̃𝑦 = 𝑝̃𝑟𝑟𝑒  tanımı uygulanarak 

       𝑝̃𝑦 =
ℏ

𝑖

𝑅′(𝑦)

𝑅(𝑦)
                                                                                                       (3.2.38) 

olarak bulunur. Sonlu kompleks y  düzleminde, kuantum momentum fonksiyonu  𝑝̃𝑦 ,  𝑛𝑟 

sabit olmayan noktalara ve  𝑦 = 0’ da sabit bir kutup noktasına sahiptir. Böylece, 

kuantum momentum fonksiyonu 

      𝑝̃𝑦 =
ℏ

𝑖

𝑄𝑛𝑟
′ (𝑦)

𝑄𝑛𝑟(𝑦)
+

𝑏1

𝑦
+ 𝑐                                                                                       (3.2.39) 

şeklinde yazılır. 𝑏1 i bulmak için 𝑝̃𝑦 , 𝑦 = 0  yakınında Laurent serisine açıldığında 

       𝑝̃𝑦 ≈
𝑏1

𝑦
+ 𝑎0                                                                                                    (3.2.40)    

olarak  yazılır. Denklem (3.2.40) , denklem  (3.2.37)’de yerine yazılır  ve   
1

𝑦2 li terimlerin 

katsayılarından  𝑏1 hesaplanır.            

         𝑏1 = −
𝑖ℏ

2
±

𝑖ℏ

2
√(𝑁 − 2)2 + 4[𝜎2 + 𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)]                           (3.2.41) 

Dalga fonksiyonunun sonlu olması gerektiğinden  

          𝑏1 = −𝑖ℏ𝜈                                                                                                      (3.2.42) 

olarak bulunur. Burada ,  𝜈 =
1

2
+ √𝜎2 + (𝑙𝑁−1 +

𝑁−2

2
)

2
   olarak alınır. Benzer şekilde, 

dalga fonksiyonunun sınır şartlarından dolayı  𝑐 = +𝑖ℏ𝜅  olarak bulunur. 𝑏1  ve  c, 

denklem (3.2.39)’ da yerine yazıldıktan sonra bu denklem, denklem (3.2.37)’de  

kullanılırsa 
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𝑄𝑛𝑟

′′ (𝑦)

𝑄𝑛𝑟
(𝑦)

+
𝑄𝑛𝑟

′ (𝑦)

𝑄𝑛𝑟
(𝑦)

(
2𝜈

𝑦
− 2𝜅) −

2𝜈𝜅

𝑦
+

2𝜎2

𝑦
= 0                                                    (3.2.43) 

elde edilir. (3.2.43)  denklemine,  𝑥 = 2𝜅𝑦   dönüşümü uygulandığında 

         𝑥𝑄𝑛𝑟
′′ (𝑥) + 𝑄𝑛𝑟

′ (𝑥)((2𝜈 − 1) + 1 − 𝑥) + (
𝜎2

𝜅
− 𝜈) 𝑄𝑛𝑟

(𝑥) = 0                             (3.2.44) 

elde edilir. (3.2.34), (3.2.35), (3.2.13) denklemleri ve  𝜈  tanımlarından  

          𝑛𝑟 =
𝜎2

𝜅
− 𝜈                                                                                                              (3.2.45) 

olarak bulunur. (3.2.44)  denklemi 

         𝑥𝑄𝑛𝑟
′′ (𝑥) + 𝑄𝑛𝑟

′ (𝑥)((2𝜈 − 1) + 1 − 𝑥) + 𝑛𝑟𝑄𝑛𝑟
(𝑥) = 0                                        (3.2.46) 

şeklinde yeniden yazılır. (3.2.46) denklemi genelleştirilmiş Laguerre [156] diferansiyel 

denklemidir. Bundan dolayı, (3.2.46) denkleminin çözümü 

         𝑄𝑛𝑟
(𝑥) = 𝐿𝑛𝑟

2𝜈−1(𝑥)                                                                                        (3.2.47) 

şeklindedir. Radyal dalga fonksiyonu 

         𝑅(𝑦) = 𝑒𝑥𝑝 (
𝑖

ℏ
∫ 𝑝̃𝑦𝑑𝑦)                                                                                 (3.2.48) 

ile hesaplanır. Önceden elde edilen 𝑏1  ve c’nin değerleri denklem (3.2.39)’da yerine 

yazılırsa    

      𝑝̃𝑦 =
ℏ

𝑖

𝑄𝑛𝑟
′ (𝑦)

𝑄𝑛𝑟(𝑦)
− 𝑖ℏ

𝜈

𝑦
+ 𝑖ℏ𝜅                                                                                (3.2.49) 

şeklinde elde edilir. Denklem (3.2.49), denklem (3.2.48)’de yazılır ve  𝑦 =
𝑟

𝑟𝑒
 dönüşümü 

uygulanır. Gerekli düzenleme ve hesaplamalar sonucunda N-boyutta relativistik dalga 

fonksiyonu 

      𝑅(𝑟) = 𝐶2 (
𝑟

𝑟𝑒
)

𝜈
𝑒

−𝜅
𝑟

𝑟𝑒𝐿𝑛𝑟
2𝜈−1 (2𝜅

𝑟

𝑟𝑒
)                                                                            (3.2.50) 

olarak bulunur. Burada,  𝐶2 normalizasyon sabitidir. Normalizasyon sabiti 

      ∫ |𝑅(𝑟)|2𝑑𝑟 = 1
∞

0
                                                                                                        (3.2.51) 

şartından bulunur. Denklem (3.2.50), denklem (3.2.51)’ de yerine yazılır. Bu integralin 

çözümü için Laguerre polinomunun diklik bağıntısı [145-146] 
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         ∫ 𝑒−𝑥𝑥𝛽[𝐿𝑛
𝛽−1

(𝑥)]
2∞

0
𝑑𝑥 =

(𝛽+2𝑛)Γ(𝛽+𝑛)

𝑛!
                                                       (3.2.52) 

kullanılırsa  normalizasyon sabiti  

         𝐶2 = [
(2𝜅)2𝜈+1𝑛𝑟!

2𝑟𝑒(𝑛𝑟+𝜈)(𝑛𝑟+2𝜈−1)!
]

1

2
                                                                             (3.2.53)  

 

şekinde elde edilir. Denklem (3.2.53), denklem (3.2.50)’ da yerine yazılır ve gerekli 

düzenlemeler yapılırsa  N-boyutta  normalize edilmiş relativistik radyal dalga fonksiyonu 

         𝑅(𝑟) = ((2𝜅)2𝜈+1 𝑛𝑟!

𝑟𝑒(2𝜈+2𝑛𝑟)Γ(2𝜈+𝑛𝑟)
)

1

2
(

𝑟

𝑟𝑒
)

𝜈
𝑒

−𝜅
𝑟

𝑟𝑒𝐿𝑛𝑟
2𝜈−1 (2𝜅

𝑟

𝑟𝑒
)                           (3.2.54) 

bulunur.  

3.2.3. Yüksek Küresel Koordinatlarda  Açısal Dalga Fonksiyonu 

      Bu bölümde, merkezcil olmayan potansiyel için yüksek küresel koordinatlarda 

relativistik açısal dalga denklemi kuantum Hamilton-Jacobi metoduyla çözülerek dalga 

fonksiyonu bulunur. Daha sonra, yüksek küresel koordinatlarda elde edilen açısal dalga 

fonksiyonu normalize edilir. 

      Merkezcil olmayan potansiyel, (3.1.20) denkleminde yerine yazılırsa 

      
ℏ

𝑖
[

𝜕𝑃𝜃𝑁−1

𝜕𝜃𝑁−1
+ (𝑁 − 2)

𝐶𝑂𝑆𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1
𝑃𝜃𝑁−1

] + 𝑃𝜃𝑁−1

2 = ℏ2𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2) 

                                                                        −
(

𝐸+𝑀𝑐2−𝐶𝑠
𝑐2 )𝛼+ℏ2𝑚′2

𝑠𝑖𝑛2𝜃𝑁−1
−

(
𝐸+𝑀𝑐2−𝐶𝑠

𝑐2 )𝛽

𝑐𝑜𝑠2𝜃𝑁−1
           (3.2.55) 

elde edilir. (3.2.55) denkleminde 

       𝑝̃𝜃𝑁−1
= 𝑝𝜃𝑁−1

+
ℏ

2𝑖
(𝑁 − 2)

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1
                                                                           (3.2.56) 

tanımı uygulanır ve  

      𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2) = 𝑙𝑁−1
′ 2

−
(𝑁−2)

4
                                                                         (3.2.57) 

      𝜀 = √𝑚′2 + (
𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2
) 𝛼 +

(𝑁−3)2

4
−

1

2
                                                                     (3.2.58) 

      𝜌 = √(
𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2 ) 𝛽 +
1

4
−

1

2
                                                                                        (3.2.59) 
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şeklindeki uygun kısaltmalar kullanılırsa 

       
ℏ

𝑖

𝜕𝑝̃𝜃𝑁−1

𝜕𝜃𝑁−1
+ 𝑝̃𝜃𝑁−1

2 = ℏ2 [𝑙𝑁−1
′ 2

+
(𝑁−2)(𝑁−3)

4
−

𝜀(𝜀+1)

𝑠𝑖𝑛2𝜃𝑁−1
−

𝜌(𝜌+1)

𝑐𝑜𝑠2𝜃𝑁−1
]                      (3.2.60) 

denklemi elde edilir. (3.2.60) denkleminde  𝑧 = 𝑠𝑖𝑛2𝜃𝑁−1  dönüşümü uygulanır ve   

      𝑝̃𝑧 = 2√𝑧(1 − 𝑧)𝛾(𝑧)                                                                                                  (3.2.61) 

      𝜒(𝑧) = 𝛾(𝑧) +
ℏ

4𝑖

(1−2𝑧)

𝑧(1−𝑧)
                                                                                                (3.2.62) 

tanımları kullanılırsa 

      𝜒2(𝑧) +
ℏ

𝑖

𝜕𝜒(𝑧)

𝜕𝑧
=

3ℏ2

16

(1−2𝑧)2

𝑧2(1−𝑧)2 +
ℏ2

2𝑧(1−𝑧)
+ ℏ2 [

𝑙𝑁−1
′ 2

4𝑧(1−𝑧)
−

𝜀(𝜀+1)

4𝑧2(1−𝑧)
−

𝜌(𝜌+1)

4𝑧(1−𝑧)2]           (3.2.63) 

olarak bulunur. Sonlu kompleks z  düzleminde, kuantum momentum fonksiyonu  𝜒(𝑧) ,  

𝑛𝜃 sabit olmayan noktalara, 𝑧 = 0  ve  𝑧 = 1’ de sabit iki kutup noktasına sahiptir. 

Böylece, kuantum momentum fonksiyonu 

      𝜒(𝑧) =
𝑏1

𝑧
+

𝑏1
′

𝑧−1
+

ℏ

𝑖

𝑄𝑛𝜃
′ (𝑧)

𝑄𝑛𝜃
(𝑧)

+ 𝑐                                                                                    (3.2.64) 

şeklinde yazılır. 𝑏1’i  bulmak için  𝑧 = 0  noktası yakınında 𝜒(𝑧) Laurent serisine 

açıldığında 

      𝜒(𝑧) ≈
𝑏1

𝑧
+ 𝑎0 + ⋯                                                                                            (3.2.65) 

olarak yazılır. Denklem (3.2.65), denklem (3.2.63)’de yerine yazılırsa  
1

𝑧2’li terimlerin 

katsayılarından  𝑏1 hesaplanır. Burada  𝑏1, 

      𝑏1 = −
𝑖ℏ

2
±

𝑖ℏ

2
(𝜀 +

1

2
)                                                                                       (3.2.66) 

şeklindedir. Dalga fonksiyonunun sonlu olması gerektiğinden  𝑏1 ifadesi 

      𝑏1 =
ℏ

𝑖
(

𝜀

2
+

3

4
)                                                                                                   (3.2.67) 

olarak bulunur.  

      𝑏1
′   bulmak için 𝜒(𝑧) , 𝑧 = 1  noktası yakınında  Laurent serisine açılırsa 

      𝜒(𝑧) ≈
𝑏1

′

𝑧−1
+ 𝑎0 + ⋯                                                                                                  (3.2.68) 
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şeklinde yazılır. Denklem (3.2.68), denklem (3.2.63)’de yerine yazılır ve  
1

(𝑧−1)2’li 

terimlerin katsayısından  𝑏1
′     elde edilir. 

      𝑏1
′ = −

𝑖ℏ

2
±

𝑖ℏ

2
(𝜌 +

1

2
)                                                                                        (3.2.69) 

Dalga fonksiyonunun sonlu olması gerektiğinden  

      𝑏1
′ =

ℏ

𝑖
(

𝜌

2
+

3

4
)                                                                                                   (3.2.70) 

olarak bulunur. Benzer şekilde, c sabitini bulmak için denklem (3.2.64), denklem 

(3.2.63)’ de yerine yazılır ve sabit terimleri karşılaştırarak 𝑐 = 0  olarak bulunur. Bu 

düzenlemeler sonucunda, kuantum momentum fonksiyonu 

      𝜒(𝑧) =
ℏ

𝑖

𝑄𝑛𝜃
′ (𝑧)

𝑄𝑛𝜃
(𝑧)

+
ℏ

𝑖

(
𝜀

2
+

3

4
)

𝑧
+

ℏ

𝑖

(
𝜌

2
+

3

4
)

𝑧−1
                                                                               (3.2.71) 

şeklinde elde edilir. Denklem  (3.2.71), denklem (3.2.63)’de yerine yazıldığında 

      𝑧(1 − 𝑧)𝑄𝑛𝜃
′′ (𝑧) + 𝑄𝑛𝜃

′ (𝑧) [(
3

2
+ 𝑧) − 𝑧(𝜌 + 𝜀 + 3)]    

                        − [(−
𝑙𝑁−1

′

2
+

𝜀

2
+

𝜌

2
+ 1) (

𝑙𝑁−1
′

2
+

𝜀

2
+

𝜌

2
+ 1)] 𝑄𝑛𝜃

(𝑧) = 0                     (3.2.72) 

elde edilir. (3.2.72) denklemi, hipergeometrik [156] diferansiyel denklemdir. Bundan 

dolayı, denklemin çözümü 

      𝑄𝑛𝜃
(𝑧) =2F1(−

𝑙𝑁−1
′

2
+

𝜀

2
+

𝜌

2
+ 1,

𝑙𝑁−1
′

2
+

𝜀

2
+

𝜌

2
+ 1,

3

2
+ 𝜀, 𝑧  )                                    (3.2.73) 

olarak bulunur. (3.2.30), (3.2.57), (3.2.58) ve (3.2.59)  tanımlarından 

      𝑛𝜃 =
𝑙𝑁−1
′

2
−

𝜀

2
−

𝜌

2
− 1                   𝑛𝜃 = 0,1,2 …                                                  (3.2.74) 

şeklinde elde edilir. 

      Denklem (3.1.28)’de  𝑧 = 𝑠𝑖𝑛2𝜃𝑁−1  dönüşümü uygulanır ve  (3.2.61) tanımı 

kullanılırsa 

      𝐻(𝑧) = exp (
𝑖

ℏ
∫ 𝛾(𝑧)𝑑𝑧)                                                                                (3.2.75) 

olarak bulunur. Denklem (3.2.62), denklem (3.2.75)’ de yerine yazılır ve integral hesabı 

sonucu 
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      𝐻(𝑧) = 𝐶1𝑧
𝜀+1

2 (𝑧 − 1)
𝜌+1

2 𝑄𝑛𝜃
(𝑧)                                                                                (3.2.76) 

şeklinde elde edilir. Denklem (3.2.73), denklem (3.2.76)’de yerine yazıldığında  

      𝐻(𝜃𝑁−1) = 𝐶1(𝑠𝑖𝑛𝜃𝑁−1)1+𝜀(𝑐𝑜𝑠𝜃𝑁−1)1+𝜌 

                            × 2F1(−𝑛𝜃, 𝑛𝜃 + 𝜀 + 𝜌 + 2,
3

2
+ 𝜀, 𝑠𝑖𝑛2 𝜃𝑁−1 )                                                    (3.2.77) 

N boyutta normalize edilmemiş relativistik açısal dalga fonksiyonu elde edilir. Burada,  

𝐶1 normalizasyon sabitidir. Normalizasyon sabiti 

      ∫ 𝐻(𝜃𝑁−1)𝑑
𝜋

0
𝜃𝑁−1 = 1                                                                                     (3.2.78) 

şartından bulunur. Jacobi polinomu ve hipergeometrik fonksiyon arasındaki bağıntı [143]  

      2F1(−𝑛, 𝑎0 + 𝑏0 + 𝑛 + 1, 𝑎0 + 1, 𝑠 ) =
𝑛!

(𝑎0+1)𝑛
𝑃𝑛

(𝑎0,𝑏0)
(1 − 2𝑠)                                          (3.2.79) 

kullanılarak  denklem (3.2.77) 

      𝐻(𝜃𝑁−1) = 𝐶1(𝑠𝑖𝑛𝜃𝑁−1)1+𝜀(𝑐𝑜𝑠𝜃𝑁−1)1+𝜌   
𝑛!

( 
3

2
+𝜀)

𝑛

     

                           × 𝑃𝑛

( 𝜀+
1

2
,𝜌+

1

2
)
(1 − 2𝑠𝑖𝑛2 𝜃𝑁−1)                                                        (3.2.80)   

olarak yazılır. Denklem (3.2.80), denklem (3.2.78)’de yerine yazılır ve integralin çözümü 

için Jacobi polinomunun diklik bağıntısı [143] 

      ∫ (1 − 𝑥)𝛼(1 + 𝑥)𝛽 [𝑃𝑛
(𝛼,𝛽)

(𝑥)]
21

−1
𝑑𝑥 =

2𝛼+𝛽+1Γ(𝑛+𝛼+1)Γ(𝑛+𝛽+1)

𝑛!(2𝑛+𝛼+𝛽+1)Γ(𝑛+𝛼+𝛽+1)
                   (3.2.81) 

kullanılır ve matematiksel işlemler sonucunda N-boyutta normalize edilmiş relativistik 

açısal dalga fonksiyonu 

       𝐻(𝜃𝑁−1) = (𝑠𝑖𝑛𝜃𝑁−1)1+𝜀(𝑐𝑜𝑠𝜃𝑁−1)1+𝜌 [
𝑛!(2𝑛+𝜀+𝜌+2)Γ(𝑛+𝜀+𝜌+2)

Γ(𝑛+𝜀+
3

2
)Γ(𝑛+𝜌+

3

2
)

]

1

2

 

                                × 𝑃𝑛

( 𝜀+
1

2
,𝜌+

1

2
)
(1 − 2𝑠𝑖𝑛2 𝜃𝑁−1)                                                      (3.2.82) 

şeklinde elde edilir. 
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3.2.4. Double Ring-shaped Kratzer Potansiyeli İçin Spin Simetri Durumunda 

Enerjinin Nümerik Değerleri 

      N-boyutta spin simetri durumunda relativistik enerji spektrumu, 𝑁 = 3 boyutta farklı 

kuantum durumlarında ve 𝐶𝑠 = 5 𝑓𝑚−1, 𝑟𝑒 = 0.4 𝑓𝑚−1, 𝐷𝑒 = 15 𝑓𝑚−1, 𝑀 = 5 𝑓𝑚−1 

değerleri için elde edildi ve sonuçlar Tablo 3.1, Tablo 3.2’de gösterildi. Burada elde 

edilen sonuçlar Falaye ve arkadaşları [69] tarafından bulunan sonuçlar ile uyumludur. 

Tablo 3.1  Double ring-shaped Kratzer potansiyeli için spin simetri durumunda  

                  relativistik enerji özdeğerleri  (𝑓𝑚−1) 

 

𝑛𝑟         𝑛𝜃        𝑚                   𝛼 = 𝛽 = 1    
     QHJ                           AİM[69]    

                   𝛼 = 0  𝛽 = 1 
      QHJ                            AİM[69]                                                         

 0          0         0 2.072188142        2.072188142 1.406939539       1.406939539 
 9.060994524        9.060994522 12.09217551       12.09217551 
 1          0         0 2.725765192        2.725765193 2.166121214       2.166121214 
 8.207625096        8.207625097 10.32429829       10.32429829 
 1          0         1 2.845560701        2.845560703 2.315560483       2.315560481 
 8.103584650        8.103584648 10.16638485       10.16638485        
 1          1         0 3.425589262        3.425589261 3.012069405       3.012069404 
 7.186557628        7.186557630 8.504093195       8.504093195 
 1         1         1 3.490508001        3.490508001 3.099115025       3.099115024 
 7.113819334        7.113819334 8.378950513       8.378950515 
 2         0         0 3.167137609        3.167137607 2.720904245       2.720904245 
 7.561368030        7.561368032 9.033462864       9.033462867 
 2         0         1 7.479670323        7.479670321 2.820166861       2.820166862 
 3.247127505        3.247127506 8.910883178       8.910883178 
 2         1         0 3.678964622        3.678964621 3.346561780       3.346561778 
 6.787568955        6.787568957 7.717297246       7.717297246 
 2         1         1 3.727193110        3.727193112 3.410443772       3.410443771 
 6.730700771        6.730700771 7.623294976       7.623294975 
 2         2         0 4.010999393        4.010999391 3.774204752       3.774204752 
 6.281221372        6.281221374 6.839147058       6.839147059 
 2         2         1 4.041936970        4.041936969 3.815408674       3.815408674 
 6.242991096        6.242991096 6.776804597       6.776804599 
 3         0         0 3.485915059        3.485915060 3.131267846       3.131267848 
 7.073115012        7.073115012 8.106020477       8.106020479 
 3         0         1 3.543052442        3.543052442 3.201037906       3.201037907 
 7.009267663        7.009267661 8.012834666       8.012834667 
 3         1         0 3.874907652        3.874907652         3.605610391       3.605610390 
 6.482650215        6.482650213 7.153253653       7.153253654 
 3         1         1 3.911932693        3.911932694 3.653932541       3.653932542 
 6.437892254        6.437892252 7.082243861       7.082243862 
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Tablo 3.2 Double ring-shaped Kratzer potansiyeli için spin simetri durumunda  

                relativistik enerji özdeğerleri  (𝑓𝑚−1) 

 

𝑛𝑟       𝑛𝜃    𝑚                   𝑎 = 𝛽 = 0    
        QHJ                           AİM[69]    

                   𝑎 = 1   𝛽 = 0 
       QHJ                            AİM[69]                                                         

 0       0     0  17.29953765       17.29953766 
 0.7441797016     0.744179704 

 1.116712575          1.116712576 
 12.74519748          12.74519748 

 -0.4009466430    -0.400946639       -0.2410864897     
 1      0      0  1.493268566       1.493268566     

 13.98804932       13.98804932 
 1.947036164          1.947036165 
 10.81287613          10.81287612     

 -0.7512716058    -0.751271606  
 1      0      1  1.955144904       1.955144908 

 13.07639777       13.07639776 
 2.447369326          2.447369328 
 9.779027299          9.779027300 

 -1.666666667      -1.66666667         
 1      1      0  2.389717507       2.389717500 

 11.87959407       11.87959406 
 2.860071672          2.860071672 
 8.868839383          8.868839382 

 -3.079630226      -3.079630218          
 1      1      1  2.769682621       2.769682610 

 10.59130824       10.59130823 
 3.193384975          3.193384975 
 8.115160359          8.115160360 

 -5.205436923      -5.205436911          
 2      0      0  11.53551968       11.53551968          2.561073200          2.561073200 
  2.156404229       2.156404231         9.389148001          9.389148000       
 2      0      1  2.500000000       2.500000000 

 10.82905932       10.82905932 
 2.922513886          2.922513885 
 8.634882756          8.634882758 

 -2.292912051      -2.292912051          
 2      1      0  2.834669754       2.834669759 

 9.943446165       9.943446173 
 3.230176780          3.230176780 
 7.978234689          7.978234688 

 -4.123924148      -4.123924146         
 2      1      1  3.132086643       3.132086660         3.484971874          3.484971875 
  9.038300042       9.03830004 

-6.702239959      -6.702239952         
 7.436562471          7.436562470 

 2      2      0  3.387164205       3.38716421 
 8.235838079       8.23583808         

 3.694652627          3.694652628 
 7.003717432          7.003717432 

 -10.17752526      -10.17752526          
 2      2      1  3.602671867       3.60267187 

 7.586741735       7.58674172        
 3.867483357          3.867483358 
 6.662707035          6.662707035 

 -14.61359280      -14.61359280          
 3      0      0  2.678986991       2.678986992         3.012356170          3.012356170 
  9.795375767       9.795375780         8.362128944          8.362128945        
 3      0      1  2.932318930       2.932318925 

 9.272753320       9.272753313 
 3.280500248          3.280500248 
 7.816722460          7.816722460 

 -2.604114295     -2.604114296                                           
 3      1      0  3.188810548       3.188810550 

 8.640638655       8.640638643 
 3.514963519          3.514963518 
 7.341939089          7.341939088 

 -4.888919081      -4.888919080         
 3      1      1  3.421849736       3.421849740 

 8.014106864       8.01410686        
 3.713426640          3.713426640 
 6.947883889          6.947883890 

 -7.848088909      -7.848088905          
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3.2.5. İki Atomlu Moleküller İçin Relativistik Enerji Spektrumunun Nümerik 

Değerlerinde ve Relativistik Dalga Fonksiyonlarında Boyut Etkisi 

      Bu bölümde, denklem (3.2.31)’de 𝐶𝑠 = 0 için yüksek küresel koordinatlarda 

𝑆(𝑟, 𝜃𝑁−1) = 𝑉(𝑟, 𝜃𝑁−1)   koşulundaki relativistik enerji spektrumu elde edildi ve iki 

atomlu moleküller (HI 𝑎3Σ+, NaH 𝑋1Σ+, MgH 𝑋2Σ+) için  üç ve beş boyutta  relativistik  

enerji değerleri hesaplandı. Aynı zamanda, dönme ve titreşim spektrumunun (𝐸𝑛𝑚 )  

nümerik değerleri, üç boyutta  𝑛 = 1,  𝑙1 = 0  durumunda elde edildi. Maple programında 

HI 𝑎3Σ+, NaH 𝑋1Σ+, MgH 𝑋2Σ+ molleküllerinin 𝑁 = 3 ve 𝑁 = 5 boyutta  𝑙𝑁−1 = 0, 1, 2 

durumlarında radyal ve açısal dalga fonksiyonlarının grafikleri çizildi. 

      İki atomlu moleküllerin üç ve beş boyutta relativistik enerjinin  nümerik değerlerinin 

hesaplamasında kullanılan moleküler sabitlerin değerleri Tablo 3.3’de verildi.  

         Tablo 3.3.  İki atomlu moleküllerin spektroskopik parametreleri 

          

 

. 

Bu değerler kullanılarak elde edilen relativistik enerjinin nümerik değerleri Tablo 3.4’de 

verildi. 

     Tablo 3.4.  İki atomlu moleküllerin üç ve beş boyutta hesaplanan relativistik enerji  

                        değerleri 

             

         

 

 

 

 

 

 NaH 𝑋1Σ+ HI 𝑎3Σ+ MgH 𝑋2Σ+ 
 𝐷𝑒(cm−1)  15900.0 25811.60 11104.7 

 𝑟𝑒(A°) 1.887015 1.604 1.729682 

 𝜇(amu) 0.9655499 1.0002 0.967804 

             
 

 
 

n        l 

                                   N=3  ve   N=5 

 

𝐸𝑛𝑙
𝑁𝑎𝐻(𝑀𝑒𝑉)         𝐸𝑛𝑙

𝐻𝐼(𝑀𝑒𝑉)          𝐸𝑛𝑙
𝑀𝑔𝐻

(𝑀𝑒𝑉) 
 

1        0 899.3648624       931.6882973      901.5119844 

2        0 899.3648625       931.6882974      901.5119845 

2        1 899.3648625       931.6882974      901.5119845 

3        0 899.3648626       931.6882975      901.5119845 

3        1 899.3648626       931.6882975      901.5119845 

3        2 899.3648626       931.6882975      901.5119845 
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Tablo 3.3’deki değerler kullanılarak elde edilen 1s durumundaki dönme-titreşim 

relativistik enerji spekturumunun (𝐸𝑛𝑙) ve açısal katkılı dönme-titreşim relativistik enerji 

spekturumunun (𝐸𝑛𝑚)  nümerik sonuçları Tablo 3.5’de verildi. 

         Tablo 3.5. İki atomlu moleküllerin  dönme-titreşim relativistik enerji değerleri 

           

 

 

      HI 𝑎3Σ+ molekülü için  n=1, 2, 3  ve  0 ≤ 𝑙𝑁−1 ≤ 𝑛 − 1  durumlarında  üç ve beş 

boyutta   radyal dalga fonksiyonlarının grafikleri Şekil 3.4’de verildi. 

 

 

 

 

 

 𝐸𝑛𝑙(𝑀𝑒𝑉) 𝐸𝑛𝑚(𝑀𝑒𝑉) 

NaH 𝑋1Σ+ 899.3648624 899.3648643 

HI 𝑎3Σ+ 931.6882973 931.6883004 

MgH 𝑋2Σ+ 901.5119844 901.5119857 
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Şekil 3.4. HI 𝑎3Σ+ molekülü için radyal dalga fonksiyonlarında boyutun etkisi 

 

      HI 𝑎3Σ+  molekülü için  𝑙𝑁−1 = 0,1,2  durumlarında  üç ve beş boyutta  açısal dalga 

fonksiyonlarının grafikleri Şekil 3.5’de gösterildi. 
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Şekil 3.5. HI 𝑎3Σ+ molekülü için açısal dalga fonksiyonlarında boyutun etkisi 

 

      NaH 𝑋1Σ+ molekülü için  n=1, 2, 3  ve  0 ≤ 𝑙𝑁−1 ≤ 𝑛 − 1  durumlarında  üç ve beş 

boyutta  radyal dalga fonksiyonlarının grafikleri  Şekil 3.6’da  verildi. 
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Şekil 3.6. NaH  𝑋1Σ+ molekülü için radyal dalga fonksiyonlarında boyutun etkisi    
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      NaH 𝑋1Σ+ molekülü için  𝑙𝑁−1 = 0,1,2  durumlarında  üç ve beş boyutta  açısal dalga 

fonksiyonlarının grafikleri Şekil 3.7’de verildi. 

 

 

  

 

  

Şekil 3.7. NaH 𝑋1Σ+  molekülü için açısal dalga fonksiyonlarında boyutun etkisi     
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      MgH 𝑋2Σ+ molekülü için  n=1, 2, 3  ve  0 ≤ 𝑙𝑁−1 ≤ 𝑛 − 1  durumlarında  üç ve beş 

boyutta  radyal dalga fonksiyonlarının grafikleri Şekil 3.8’de verildi. 
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 Şekil 3.8. MgH 𝑋2Σ+ molekülü için radyal dalga fonksiyonlarında boyutun etkisi 

     

      MgH 𝑋2Σ+  molekülü için  𝑙𝑁−1 = 0,1,2   durumlarında  üç ve beş boyutta  açısal 

dalga fonksiyonlarının grafikleri Şekil 3.9’da verildi. 
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Şekil 3.9. MgH  𝑋2Σ+ molekülünün açısal dalga fonksiyonlarında boyutun etkisi   

 

      HI 𝑎3Σ+ , NaH 𝑋1Σ+ ve MgH  𝑋2Σ+ iki atomlu moleküller için 𝑁 = 3,  𝑁 = 5 

boyutta radyal dalga fonksiyonları çakışık gibi görünse de aslında belirli bir r aralığında 

grafiği incelediğimizde boyut farkı görünmektedir. Aynı n kuantum sayısında  l  değerinin 

artması aradaki farkın belirginleşmesine neden olmaktadır. Bu moleküller için 𝑁 = 3 ve 

𝑁 = 5 boyutta açısal dalga fonksiyonlarının grafikleri üst üste gelmiş görünmesine 

rağmen belirli  𝜃 aralığında boyutun etkisi analiz edilebilmektedir.  

                             

3.3. Kuantum Hamilton-Jacobi Yöntemiyle Makarov Potansiyeli İçin N-Boyutta 

Spin Simetri Durumunda Dirac Denkleminin Çözümleri 

 

      Yüksek küresel koordinatlarda, Makarov potansiyeli 

       𝑉(𝑟, 𝜃𝑁−1) =
𝜂

𝑟
+

𝛽+𝛾𝑐𝑜𝑠𝜃𝑁−1

𝑟2𝑠𝑖𝑛2𝜃𝑁−1
                                                                            (3.3.1) 

şeklinde tanımlanır. Burada  𝜂, 𝛽  ve  𝛾 potansiyeli tanımlayan parametrelerdir. Makarov 

potansiyeli,  𝜂 < 0  durumunda çekici bölgededir ve bütün r değerleri için negatiftir;  𝜂 >

0  durumunda itici bölgededir ve bütün r değerleri için pozitiftir. Her iki durumda 

Makarov potansiyelinin yüzey grafiği Şekil 3.13’de verildi. Yüzey grafiği çiziminde 

potansiyel parametreleri  𝜂 = 15, 𝛽 = 5 × 10−4, 𝛾 = 20 × 10−4 olarak alındı. 



102 
 

 

Şekil 3.10. (a) Çekici bölgede (b) İtici bölgede Makarov potansiyelinin yüzey grafiği  

 

3.3.1. Yüksek Küresel Koordinatlarda Radyal Enerji Spektrumu ve Dalga 

Fonksiyonu 

 

     Bu bölümde, yüksek küresel koordinatlarda merkezcil potansiyel için relativistik 

radyal dalga denklemi çözülerek enerji özdeğeri ve enerji özdeğerine karşı gelen dalga 

fonksiyonu bulundu. 

      Merkezcil potansiyel, (3.1.19) denkleminde yerine yazıldığında 

      
ℏ

𝑖
[

𝜕𝑝𝑟

𝜕𝑟
+

(𝑁−1)

𝑟
𝑝𝑟] + 𝑝𝑟

2 = −ℏ2𝜅2 − ℏ2 𝜈𝜂

𝑟
−

𝑎

𝑟2                                                   (3.3.2) 

şeklinde elde edilir. Burada kullanılan kısaltmalar 

      −𝜅2 =
𝐸2−𝑀2𝑐4−𝐶𝑠(𝐸−𝑀𝑐2)

ℏ2𝑐2       𝜈 =
(𝐸+𝑀𝑐2−𝐶𝑠)

ℏ2𝑐2                                                      (3.3.3) 

şeklinde tanımlanır. (3.3.2) denkleminde 

      𝑝̃𝑟 = 𝑝𝑟 +
ℏ

𝑖

(𝑁−1)

2𝑟
                                                                                                (3.3.4) 

tanımı kullanıldığında 

      
ℏ

𝑖

𝜕𝑝̃𝑟

𝜕𝑟
+ 𝑝̃𝑟

2 −
ℏ2(𝑁−1)(3−𝑁)

4𝑟2 = −ℏ2𝜅2 − ℏ2 𝜈𝜂

𝑟
−

𝑎

𝑟2                                             (3.3.5) 

elde edilir. 𝑝̃𝑟 , 𝑟 = 0 da sonlu kompleks-r düzleminde sabit bir kutup noktasına ve 𝑛𝑟 

sabit olmayan noktaya sahiptir. Böylece, kuantum momentum fonksiyonu 
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      𝑝̃𝑟 =
ℏ

𝑖

𝑄𝑛𝑟
′ (𝑟)

𝑄𝑛𝑟(𝑟)
+

𝑏1

𝑟
+ 𝑐                                                                                          (3.3.6) 

şeklinde yazılır. 𝑏1’i bulmak için 𝑝̃𝑟 , 𝑟 = 0  yakınında Laurent serisine açıldığında 

       𝑝̃𝑟 =
𝑏1

𝑟
+ 𝑎0                                                                                                       (3.3.7) 

olarak yazılır. Denklem (3.3.7), denklem (3.3.5)’de yerine yazılır ve  
1

𝑟2 li terimlerin 

katsayısından 𝑏1 elde edilir. 

      𝑏1 = −
𝑖ℏ

2
±

𝑖ℏ

2
√(𝑁 − 2)2 + 4𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)                                           (3.3.8) 

(3.3.7) denklemi (3.1.26) denkleminde yerine yazılır ve dalga fonksiyonu 𝑟 → 0’a 

giderken sonlu olması gerektiğinden  

      𝑏1 = −𝑖ℏ (𝑙𝑁−1 +
𝑁−1

2
)                                                                                      (3.3.9) 

olarak bulunur. 

      Denklem (3.3.5) denklem (3.3.6)’da yerine yazılır ve  𝑟’nin büyük değerleri için sabit 

terimler eşitlenirse 

      𝑐 = ±𝑖ℏ𝜅                                                                                                           (3.3.10) 

elde edilir. Dalga fonksiyonu  𝑟 → ∞ limitinde sonlu olması gerektiğinden 𝑐 = 𝑖ℏ𝜅 

olarak alınır. Denklem (3.3.9) ve elde edilen c  değeri denklem (3.3.6)’da yerine yazılırsa 

       𝑝̃𝑟 =
ℏ

𝑖

𝑄𝑛𝑟
′ (𝑟)

𝑄𝑛𝑟(𝑟)
+

ℏ

𝑖

(𝑙𝑁−1+
𝑁−1

2
)

𝑟
+ 𝑖ℏ𝜅                                                                   (3.3.11) 

şeklinde elde edilir. Denklem (3.3.11), denklem (3.3.5)’de yerleştirilir ve  𝑥 = 2𝜅𝑟  

dönüşümü uygulanırsa  

      𝑥𝑄𝑛𝑟
′′ (𝑥) + 𝑄𝑛𝑟

′ (𝑥) (2 (𝑙𝑁−1 +
𝑁−1

2
) − 𝑥) + (− (𝑙𝑁−1 +

𝑁−1

2
) −

𝜈𝜂

2𝜅
) 𝑄𝑛𝑟

(𝑥) = 0    (3.3.12) 

genelleştirilmiş Laguerre [156] diferansiyel denklemielde edilir. Denklem (3.3.12)’den 

N-boyutta radyal enerji özdeğeri 

         𝑛𝑟 = − (𝑙𝑁−1 +
𝑁−1

2
) −

𝜈𝜂

2𝜅
                                                                                      (3.3.13) 

olarak bulunur. Genelleştirilmiş Laguerre diferansiyel denklemin çözümü 
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      𝑄𝑛𝑟
(𝑥) = 𝐿𝑛𝑟

(2𝑙𝑁−1+𝑁−2)
(2𝜅𝑟)                                                                                       (3.3.14) 

şeklinde elde edilir. Denklem (3.3.11), denklem (3.1.26)’da yerine yazılırsa N-boyutta 

normalize olmamış radyal dalga fonksiyonu 

      𝑅(𝑟) = 𝐶2𝑟𝑙𝑁−1+
𝑁−1

2 𝑒−𝜅𝑟𝐿𝑛𝑟

(2𝑙𝑁−1+𝑁−2)
(2𝜅𝑟)                                                              (3.3.15) 

şeklinde elde edilir. Burada,  𝐶2 normalizasyon sabitidir. Normalizasyon sabiti 

      ∫ |𝑅(𝑟)|2𝑑𝑟 = 1
∞

0
                                                                                                        (3.3.16) 

normalizasyon şartından bulunur. Bu integralin çözümü için Bölüm 3.2.2’de tanımlanan 

Laguerre polinomunun diklik bağıntısı  denklem (3.2.52) kullanılırsa normalizasyon 

sabiti 

      𝐶2 = [
𝑛𝑟!(2𝜅)2𝑙𝑁−1+𝑁

(2𝑙𝑁−1+𝑁−1+2𝑛𝑟)Γ(2𝑙𝑁−1+𝑁−1+𝑛𝑟)
]

1

2
                                                               (3.3.17) 

elde edilir.  Denklem (3.3.17), denklem (3.3.15)’de yazılır ve gerekli düzenlemeler 

yapılırsa N-boyutta normalize edilmiş relativistik radyal dalga fonksiyonu  

      𝑅(𝑟) = (
𝑛𝑟!(2𝜅)2𝑙𝑁−1+𝑁

(2𝑙𝑁−1+𝑁−1+2𝑛𝑟)Γ(2𝑙𝑁−1+𝑁−1+𝑛𝑟)
)

1

2
𝑟𝑙𝑁−1+

𝑁−1

2 𝑒−𝜅𝑟𝐿𝑛𝑟

(2𝑙𝑁−1+𝑁−2)
(2𝜅𝑟)        (3.3.18) 

şeklinde bulunur.  

3.3.2. Yüksek Küresel Koordinatlarda Açısal Enerji Spektrumu ve Dalga 

Fonksiyonu 

 

      Bu bölümde, yüksek küresel koordinatlarda merkezcil olmayan potansiyel etkisindeki 

spin-1/2  parçacık için relativistik açısal dalga denkleminin çözümleri elde edilecek. 

      Merkezcil olmayan potansiyel, (3.1.20) denkleminde  yerine yazılırsa 

       
ℏ

𝑖
[

𝜕𝑝𝜃𝑁−1

𝜕𝜃𝑁−1
+ (𝑁 − 2)

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1
𝑝𝜃𝑁−1

] + 𝑝𝜃𝑁−1

2 = 𝑎 −
𝑏+ℏ2𝜈(𝛽+𝛾𝑐𝑜𝑠𝜃)

𝑠𝑖𝑛2𝜃
                           (3.3.19) 

 

elde edilir. Burada, ayırma sabitleri                                                                                                    

       𝑎 = ℏ2𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2)                                                                                          (3.3.20) 
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       𝑏 = ℏ2𝑙𝑁−2(𝑙𝑁−2 + 𝑁 − 3) = ℏ2𝑚′2                                                                       (3.3.21) 

şeklindedir. Denklem (3.3.19)’da , 

      𝑝̃𝜃𝑁−1
= 𝑝𝜃𝑁−1

+
ℏ

2𝑖
(𝑁 − 2)

𝑐𝑜𝑠𝜃𝑁−1

𝑠𝑖𝑛𝜃𝑁−1
                                                                            (3.3.22) 

tanımı ve  𝑙𝑁−1(𝑙𝑁−1 + 𝑁 − 2) = 𝑙′
𝑁−1
2

−
1

4
(𝑁 − 2)  kısaltması kullanıldığında 

      
ℏ

𝑖

𝜕𝑝̃𝜃𝑁−1

𝜕𝜃𝑁−1
+ 𝑝̃𝜃𝑁−1

2 = ℏ2 [𝑙′
𝑁−1
2

−
𝑚′2

+𝜈(𝛽+𝛾𝑐𝑜𝑠𝜃𝑁−1)−
(𝑁−2)(3−𝑁)

2
−

(𝑁−2)2

4

𝑠𝑖𝑛2𝜃𝑁−1
]                       (3.3.23) 

şeklinde elde edilir. Denklem (3.3.23)’de  𝑧 = 𝑐𝑜𝑠𝜃𝑁−1 dönüşümü uygulanır ve  

      𝜒(𝑧) = 𝜉(𝑧) −
ℏ

𝑖

𝑧

2(1−𝑧2)
                                                                                    (3.3.24) 

      𝑝̃𝑧(𝑧) = −√1 − 𝑧2𝜉(𝑧)                                                                                               (3.3.25)          

tanımları kullanılırsa       

      𝜒2(𝑧) +
ℏ

𝑖

𝜕𝜒(𝑧)

𝜕𝑧
=

ℏ2

4

(𝑧2+2)

(1−𝑧2)2 + ℏ2 𝑙𝑁−1
′ 2

1−𝑧2 − ℏ2
𝑚′2

−
(𝑁−2)(3−𝑁)

2
−

(𝑁−2)2

4
+𝜈(𝛽+𝛾𝑧)

(1−𝑧2)2                (3.3.26) 

olarak bulunur. Sonlu kompleks z düzleminde, kuantum momentum fonksiyonu  𝜒(𝑧) ,  

𝑛𝜃 sabit olmayan nokta,  𝑧 = 1 ve  𝑧 = −1’ de sabit iki kutup noktasına sahiptir. Böylece, 

kuantum momentum fonksiyonu 

      𝜒(𝑧) =
𝑏1

𝑧−1
+

𝑏1
′

𝑧+1
+

ℏ

𝑖

𝑄𝑛𝜃
′ (𝑧)

𝑄𝑛𝜃
(𝑧)

+ 𝑐                                                                                  (3.3.27) 

olarak yazılır. 𝑏1’i  bulmak için  𝑧 = 1  noktası yakınında 𝜒(𝑧) Laurent serisine 

açıldığında 

      𝜒(𝑧) =
𝑏1

𝑧−1
+ 𝑎0 + ⋯                                                                                                  (3.3.28) 

olarak yazılır. Denklem (3.3.28), denklem (3.3.26)’de yerine yazılır ve  
1

(𝑧−1)2 terimlerin 

katsayısından  

      𝑏1 = −
𝑖ℏ

2
±

𝑖ℏ

2
√

(𝑁−3)2

4
+ 𝑚′2 + 𝜈(𝛽 + 𝛾)                                                       (3.3.29) 

şeklinde elde edilir. Denklem (3.3.29), denklem (3.1.28)’de yerine yazılıp gerekli 

işlemler yapılırsa açısal dalga fonksiyonu 
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      𝐻(𝑧) = 𝑒𝑥𝑝 (
𝑖

ℏ
∫ 𝜉(𝑧)𝑑𝑧)                                                                                 (3.3.30) 

olarak bulunur. Denklem (3.3.24), denklem (3.3.28) ve denklem (3.3.29), denklem 

(3.3.30)’da yerine yazılarak dalga fonksiyonunun sınır şartlarında sonlu olması  

gerektiğinden  𝑏1 

      𝑏1 = −
𝑖ℏ

2
−

𝑖ℏ

2
√

(𝑁−3)2

4
+ 𝑚′2 + 𝜈(𝛽 + 𝛾)                                                        (3.3.31) 

şekinde alınır. 

      𝑏1
′   bulmak için 𝜒(𝑧) , 𝑧 = −1  noktası yakınında  Laurent serisine açılırsa 

      𝜒(𝑧) =
𝑏1

𝑧+1
+ 𝑎0 + ⋯                                                                                                  (3.3.32) 

şeklinde yazılır. Denklem (3.3.32), denklem (3.3.26)’de yerine yazılır ve  
1

(𝑧+1)2  

terimlerin katsayısından  

      𝑏1
′ = −

𝑖ℏ

2
±

𝑖ℏ

2
√

(𝑁−3)2

4
+ 𝑚′2 + 𝜈(𝛽 − 𝛾)                                                           (3.3.33) 

şeklinde elde edilir. Dalga fonksiyonunu 𝐻(𝑧), 𝜃 = 𝜋 (𝑧 = −1)’de sınır şartını 

sağlaması için 

      𝑏1
′ = −

𝑖ℏ

2
−

𝑖ℏ

2
√

(𝑁−3)2

4
+ 𝑚′2 + 𝜈(𝛽 − 𝛾)                                                           (3.3.34) 

olarak alınır. Denklem (3.3.27), denklem (3.3.26)’de yerine yazılır ve her iki taraftaki 

eşitlikten  𝑐 = 0  bulunur. Denklem (3.3.31), denklem (3.3.34) ve bulunan c değeri 

denklem (3.3.27)’de yerleştirildiğinde 

      𝜒(𝑧) =
ℏ

2𝑖

1+𝑝

𝑧−1
+

ℏ

2𝑖

1+𝑞

𝑧+1
+

ℏ

𝑖

𝑄𝑛𝜃
′ (𝑧)

𝑄𝑛𝜃
(𝑧)

                                                                       (3.3.35)              

şeklinde elde edilir. Burada, işlem kolaylığı için 

      𝑝 = √
(𝑁−3)2

4
+ 𝑚′2 + 𝜈(𝛽 + 𝛾)                                                                       (3.3.36) 

      𝑞 = √
(𝑁−3)2

4
+ 𝑚′2 + 𝜈(𝛽 − 𝛾)                                                                       (3.3.37) 
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olarak alınır. Denklem (3.3.35), denklem (3.3.26)’de yazılır ve  𝑧2’li terim katsayıları 

eşitlenerek  N-boyutta açısal enerji özdeğeri 

      𝑛𝜃 = 𝑙𝑁−1 −
(3−𝑁)

2
−

𝑝

2
−

𝑞

2
                                                                               (3.3.38) 

şeklinde elde edilir. Denklem (3.3.35) ve denklem (3.3.38), denklem (3.3.26)’da 

yerleştirilir, gerekli düzenlemeler yapılırsa 

      (1 − 𝑧2)𝑄𝑛𝜃
′′ (𝑧) + 𝑄𝑛𝜃

′ (𝑧)(𝑞 − 𝑝 − (𝑞 + 𝑝 + 2)𝑧) 

                                          +𝑄𝑛𝜃
(𝑧)(𝑛𝜃(𝑛𝜃 + 𝑞 + 𝑝 + 1)) = 0                            (3.3.39) 

elde edilir. Denklem (3.3.39), Jacobi diferansiyel [156] denklemidir. Bundan dolayı, 

denklem (3.3.39)’un çözümü Jacobi polinomu 

      𝑄𝑛𝜃
(𝑧) = 𝑃𝑛𝜃

(𝑝,𝑞)
(𝑧)                                                                                                      (3.3.40) 

olarak bulunur. 

      Denklem (3.3.35), denklem (3.3.30)’da yerine yazılır ve denklem (3.3.40) kullanılırsa 

matematiksel düzenlemeler sonrasında N-boyutta normalize olmamış açısal dalga 

fonksiyonu 

      𝐻(𝑧) = 𝐶2(1 − 𝑧)
(𝑝+1)

2 (1 + 𝑧)
(𝑞+1)

2 (1 − 𝑧2)−
1

4𝑃𝑛𝜃

(𝑝,𝑞)
(𝑧)                                       (3.3.41) 

şeklinde elde edilir. Burada,  𝐶2  normalizasyon sabitidir. Normalizasyon sabiti 

      ∫ 𝐻(𝜃𝑁−1)𝑑
𝜋

0
𝜃𝑁−1 = 1                                                                                    (3.3.42) 

şartından bulunur. Denklem (3.3.41), denklem (3.3.42)’de yerine yazılır ve integralin 

çözümü için Bölüm 3.2.3’de verilen Jacobi polinomunun diklik bağıntısı denklem 

(3.2.82) kullanılarak normalizasyon sabiti 

      𝐶2 = [
𝑛𝜃!(2𝑛𝜃+𝑝+𝑞+1)Γ(𝑛𝜃+𝑝+𝑞+1)

2𝑝+𝑞+1Γ(𝑛𝜃+𝑝+1)Γ(𝑛𝜃+𝑞+1)
]

1

2
                                                                    (3.3.43) 

elde edilir.  Denklem (3.3.43), denklem (3.3.41)’de yazılır ve gerekli düzenlemeler 

yapılırsa N-boyutta normalize edilmiş relativistik açısal dalga  fonksiyonu 

 



108 
 

         𝐻(𝜃𝑁−1) = [
𝑛𝜃!(2𝑛𝜃+𝑝+𝑞+1)Γ(𝑛𝜃+𝑝+𝑞+1)

2𝑝+𝑞+1Γ(𝑛𝜃+𝑞+1)Γ(𝑛𝜃+𝑝+1)
]

1

2 (1 − 𝑐𝑜𝑠𝜃𝑁−1)
𝑝

2(1 + 𝑐𝑜𝑠𝜃𝑁−1)
𝑞

2  

                            × (𝑠𝑖𝑛𝜃𝑁−1)
1

2𝑃𝑛𝜃

(𝑝,𝑞)
(𝑐𝑜𝑠𝜃𝑁−1)                                                        (3.3.44)      

şeklinde elde edilir. 

 

3.3.3. N-Boyutta Makarov Potansiyeli İçin Spin Simetri Durumunda Relativistik 

Enerji Spektrumu 

      Bu bölümde, 3.3.1 ve 3.3.2 bölümlerinde elde edilen radyal ve açısal enerji 

özdeğerleri kullanılarak yüksek küresel koordinatlarda Makarov potansiyeli için spin 

simetri durumunda relativistik enerji spektrumu bulunacak. 

      Denklem (3.3.13)  ve  denklem (3.3.39) 

      𝑛𝑟 + 𝑛𝜃 = − (𝑙𝑁−1 +
𝑁−1

2
) −

𝜈𝜂

2𝜅
+ 𝑙𝑁−1 −

(3−𝑁)

2
−

𝑝

2
−

𝑞

2
                                   (3.3.45) 

olarak yazılır. Denklem (3.3.3), denklem (3.3.45)’de yerine yazılır ve gerekli işlemler 

yapılırsa N-boyutta Makarov potansiyeli için spin simetri durumunda relativistik enerji 

spektrumu 

 

    −
𝜇2

ℏ2𝑐2

𝐸+𝑀𝑐2−𝐶𝑠

𝐸−𝑀𝑐2 = 4[(𝑛𝜃 + 𝑛𝑟 + 1) 

              +
1

√2
(

(𝑁−3)2

4
+ 𝑚′2

+
𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2
𝛽 + √(

(𝑁−3)2

4
+ 𝑚′2

+
𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2
𝛽)

2

− 𝛾2 (
𝐸+𝑀𝑐2−𝐶𝑠

ℏ2𝑐2
)

2

)

1

2

]

2

(3.3.46) 

şeklinde elde edilir. Bu relativistik enerji spektrumu, 𝑁 = 3 için 𝐶𝑠 = 0 durumunda 

Touloum ve arkadaşları [61] tarafından elde edilen enerji spektrumuna indirgenmektedir. 

Burada 𝐶𝑠 = 0 durumunda ve  𝑐 → ∞ limitinde denklem (3.3.46), N-boyutta non-

relativistik enerji spektrumuna indirgenir ve bu sonuç Durmuş ve Özfidan [43]’ın 

çalışmasını sağlamaktadır.        
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3.3.4. Küresel ve Kutupsal Koordinatlarda Açısal Dalga Fonksiyonlarının Olasılık 

Dağılımları 

 

      Bu bölümde, Makarov potansiyeli etkisindeki spin-1/2 parçacık için 𝑁 = 3  ve  𝑁 =

5 boyutta küresel ve kutupsal koordinatlarda açısal dalga fonksiyonlarının olasılık 

dağılımlarının grafikleri çizildi. Grafik çiziminde, denklem (3.3.3)’de tanımlanan 𝜈 = 1 

değeri için denklem (3.3.36), denklem (3.3.37) düzenlenerek denklem (3.3.44)’de yerine 

yazıldı. Merkezcil olmayan potansiyeldeki parametreler  𝛽 = 0.75,  𝛾 = 0.25  alınarak  

𝑁 = 3  boyut için Şekil 3.14  ve  𝑁 = 5  boyut için Şekil 3.15’deki grafikler elde edildi. 

Grafikler incelendiğinde beş boyutlu sistemdeki olasılık dağılımlarının üç boyutlu 

sistemden farklı sonuçlar verdiği görülmektedir. Bu dağılımlarda boyut artışı küresel 

boğum yüzey çapının azalmasına ve açısal dalga fonksiyonlarında genliğin artmasına 

neden olmuştur. 
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Şekil 3.11. (a) ve (b) 𝑛𝜃 = 0 , (c) ve (d) 𝑛𝜃 = 1 , (e) ve (f) 𝑛𝜃 = 2, (g) ve (h) 𝑛𝜃 = 3 

durumunda 𝑁 = 3 için küresel ve kutupsal koordinatlarda açısal dalga 

fonksiyonlarının olasılık dağılımları 
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Şekil 3.12. (a) ve (b) 𝑛𝜃 = 0 , (c) ve (d) 𝑛𝜃 = 1 , (e) ve (f) 𝑛𝜃 = 2, (g) ve (h) 𝑛𝜃 = 3 

durumunda 𝑁 = 5 için küresel ve kutupsal koordinatlarda açısal dalga 

fonksiyonlarının olasılık dağılımları   



 

 

 

 

 

                                                                    4. BÖLÜM 

 

                                      TARTIŞMA-SONUÇ ve ÖNERİLER 

     Bu tez çalışmasında, küresel simetrik olmayan kuantum sistemler ele alındı. Yüksek 

küresel koordinatlarda, Hartmann, merkezcil olmayan Morse ve merkezcil olmayan 

Manning-Rosen potansiyel alanlarında spin-0 parçacıkların etkileşimleri asimptotik 

iterasyon metodu ile araştırıldı. Diğer taraftan, N-boyutta spin-1/2 parçacığın relativistik 

davranışlarına double ring-shaped Kratzer ve Makarov potansiyelinin etkisi kuantum 

Hamilton-Jacobi formalizmiyle incelendi. İlk olarak, asimptotik iterasyon metodu ve 

kuantum Hamilton-Jacobi yöntemi anlatıldı. Yüksek küresel koordinatlarda gradyent 

operatörünün genelleştirilmesi verildi. Daha sonra, genelleştirilmiş açısal momentum 

operatörleri tanımlanarak N-boyutta Laplasyen elde edildi. Aynı zamanda, 

genelleştirilmiş açısal momentum operatörlerinin özdeğerleri ve özfonksiyonları Louck 

[10-12]  ve Chatterjee [141]’nin  çalışmaları temel alınarak bulundu. Bu çalışmanın ikinci 

bölümünde, yüksek küresel koordinatlarda skaler ve vektör potansiyellerinin eşit olduğu 

durumda Klein-Gordon denklemi elde edildi. Daha sonra, N-boyutta Hartmann 

potansiyeli için relativistik enerji spektrumu ve dalga fonksiyonu bulundu. Yüksek 

küresel koordinatlarda relativistik durumda Hartmann potansiyeli için tekrarlama 

bağıntıları elde edilerek radyal beklenen değerler ifade edildi. N-boyutlu sistemde 

boyutun etkisini analiz etmek amacıyla Hartmann potansiyeli alanındaki hidrojen 

molekülü için relativistik enerjinin değerleri iki, üç ve dört boyutta hesaplandı. Teorik ve 

deneysel olarak geniş ölçüde çalışılan taban durumunda hidrojen molekülü hesaplamaları 

kontrol etmek için kullanılan en temel sistemlerden biridir. Bundan dolayı, bu molekül 

için küresel ve kutupsal koordinatlarda açısal olasılık dağılımlarında boyutun etkisi 

araştırıldı. Bu araştırmanın sonucunda, 𝑛 = 1 ve farklı 𝑛𝜃 durumlarında daha yüksek 

boyutların açısal dalga fonksiyonlarının genliğinde artışa neden olduğu belirlendi. Bunun 

anlamı, dört ve beş boyutlu sistemlerin 𝑛𝜃 = 2  ve  𝑛𝜃 = 3  için  hidrojen molekülünün 
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açısal olasılık dağılımlarında üç boyutlu sistemden önemli ölçüde farklı sonuçlar 

vermesidir. Diğer taraftan, yüksek küresel koordinatlarda merkezcil olmayan Morse 

potansiyeli için 𝑙 ≠ 0 durumunda Klein-Gordon denkleminde Pekeris yaklaşımı 

kullanılarak çözümler araştırıldı. 𝐶𝑎2 𝑋
1Σ+, 𝑆𝑟2 𝑋

1Σ+, 𝑆𝑟2 𝐴
1Σ+  ve 𝑀𝑔𝐶𝑎𝑋1Σ+  toprak 

alkali metal iki atomlu moleküllerin etkisinde merkezcil olmayan Morse potansiyelinin 

yüzey grafikleri çizilerek bu moleküllere açısal katkının etkisi kapsamlı olarak incelendi. 

Sonuç olarak, merkezcil olmayan potansiyeldeki parametrelerin farklı değerler alması 

durumunda açının potansiyelin yüzey grafiğindeki etkisi gösterildi. Toprak alkali metal 

grubu iki atomlu molekülleri için elde edilen sonuçlardan Pekeris yaklaşımının atomlar 

arasındaki denge uzaklığında daha geçerli olduğu gözlendi. Bu moleküllerin relativistik 

titreşim frekansları hesaplandı. Teorik olarak elde edilen bu sonuçlar literatürdeki 

deneysel RKR değerleriyle tutarlılık gösterdi. RKR sonuçlarına en yakın değerlerle 

yaklaşan uyarılmış durumda strontiyum molekülüdür. İki atomlu moleküllerin titreşim 

hareketi molekül fiziğinde önemli olduğundan dolayı elde edilen sonuçlar bu alanda 

çalışan araştırmacılara katkı sağlayacaktır. İkinci bölümde son olarak ele alınan 

merkezcil olmayan Manning-Rosen potansiyelidir. Bu potansiyel için yüksek küresel 

koordinatlarda çözümler Greene-Aldrich yaklaşıklığı kullanılarak asimptotik iterasyon 

yöntemiyle elde edildi. Hulthen potansiyeli, Manning-Rosen potansiyelinin özel 

durumudur. Bundan dolayı, Hulthen potansiyeli için N-boyutlu uzayda açısal momentum 

katkılı yaklaşık çözümlerde bulundu. Manning-Rosen potansiyeli için elde edilen N 

boyutta relativistik enerji değeri 𝑐 → ∞ limitinde non-relativistik enerjiye indirgenerek 

2p, 3p, 3d, 4p, 4d, 4f, 5p ve 5d durumlarında  enerjinin atomik birimde değerleri 

hesaplandı. İki, üç ve dört boyut için bu enerji değerleri literatürdeki çalışmalarda farklı 

metodlarla elde edilen sonuçlarla uyum sağlamaktadır. Manning-Rosen potansiyeli için  

〈𝑟−2〉  beklenen değeri Hellmann-Feynmann teoremiyle elde edildi ve bu beklenen 

değerin farklı kuantum durumları için nümerik değerleri hesaplandı. Beklenen değerler, 

fiziksel nicelikleri hesaplarken kullanılmaktadır. Son yıllarda, kuantum mekanik 

sistemlerin bilgi teorisi üzerine yapılan çalışmalar artış göstermektedir. Bu sistem birçok 

teknolojik gelişmeler için temel oluşturmaktadır. Kuantum sisteminde özellikle Shannon 

entropisi ve Fisher bilgisi, her bir mesajı içeren bilginin beklenen değeri olarak görülür. 

Bu nedenle, bu çalışmada elde edilen beklenen değerler entropi hesabında kullanılabilir. 

Yüksek küresel koordinatlarda  Klein-Gordon denkleminin çözümü için asimptotik 

iterasyon yöntemi etkin bir hesaplama metodudur. Aynı zamanda, merkezcil olmayan 
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potansiyel etkisindeki göreli kuantum sistemini doğru olarak analiz etmemizi sağlayan 

sistematik bir yöntemdir. Tez çalışmasının üçüncü bölümünde ilk olarak kuantum 

Hamilton-Jacobi yönteminde incelenen N-boyutta spin simetri durumunda Dirac 

denklemleri elde edildi. Yüksek küresel koordinatlarda double ring-shaped Kratzer 

potansiyeli etkisindeki spin-1/2 parçacık için çözümler analitik olarak araştırıldı. Bu 

potansiyel için  N-boyutta spin simetri durumunda enerji spektrumu 𝑁 = 3 boyutta 

merkezcil olmayan parametrelerinin farklı değerler alması durumunda spin-1/2 parçacık 

için  relativistik dönme-titreşim enerji değerleri hesaplandı. Ayrıca, 𝐶𝑠 = 0 için  N-

boyutta skaler ve vektör potansiyellerinin eşit olduğu durumda relativistik enerji 

spektrumu elde edildi.  𝑁 = 3  ve  𝑁 = 5  alınarak   HI 𝑎3Σ+,  NaH 𝑋1Σ+, MgH 𝑋2Σ+  

molekülleri için relativistik enerji değerleri hesaplandı. Bu iki atomlu moleküller için 

𝑙𝑁−1 = 0,1,2 durumlarında radyal ve  açısal dalga fonksiyonlarında boyutun etkisi 

gösterildi. N-boyutta Makarov potansiyeli için spin simetri durumunda Dirac 

denkleminin çözümleri kuantum Hamilton-Jacobi yöntemiyle elde edildi. Üzerinde 

çalıştığımız bu potansiyel için  𝑁 = 3, 𝑁 = 5 boyutta açısal dalga fonksiyonunun küresel 

ve kutupsal koordinatlarda olasılık dağılımlarının grafikleri çizildi. Olasılık dağılımları 

atom ve molekül, kuantum gibi fiziğin birçok alanında ilgilenilen bir konudur. Bu 

nedenle, Hartmann ve  Makarov  potansiyel alanlarında hareket eden spin-0 ve spin-1/2 

parçacıklar için farklı boyutlarda olasılık dağılımlarının araştırılması önem arz 

etmektedir.  İlk defa bu tez çalışmasında,  yüksek küresel koordinatlarda tam olarak 

çözülebilen potansiyeller kuantum Hamilton-Jacobi yöntemiyle ele alındı. Bundan 

dolayı, bu çalışmamız N-boyutlu uzayda kuantum Hamilton-Jacobi yöntemi ile farklı 

potansiyel alanlarını incelemek için literatürde temel oluşturacaktır.  
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