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Abstract

System identi�cation and sensor type selection and placement problems are examined

for �exible structures in this thesis� System identi�cation with generalized orthonor	

mal basis functions prove to be suitable for modeling �exible structures� Generalized

orthonormal functions allow for the incorporation of a	priori information about the

system into the identi�cation process in the form of approximate pole locations� It is

shown that specifying the pole location at the beginning of the identi�cation process

leads to a low order minimal multivariable realization for �exible structures� It is

observed that the system poles play an important role in the accuracy of the model�

therefore a method for re�ning the pole locations is developed�

In a control design problem� the performance requirements and feedback signals are

usually assumed to be given� However� for �exible structures� due to the order of the

structural model and limited e�ectiveness of the lumped sensors and actuators� the

performance requirements and optimum location for sensors are not obvious� Hence

de�ning the objectives of active control is an important part of control design� In this

thesis the role of performance criteria selection for vibration attenuation of �exible

structures is investigated� It is shown that using non	collocated acceleration feed	

back has advantages over collocated displacement and velocity feedback when the

performance objective is vibration attenuation� A natural extension of choosing per	

formance requirements and feedback signal types is the optimal placement of sensors�

A technique based on full control synthesis is developed for �nding the optimal sensor

locations� An experimental four story �exible structure is used to test the results�

Experimental results show that the sensor locations based on full control synthesis

are e�ective for output control design�
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Chapter �

Introduction

Lightly damped� �exible structures are an interesting and challenging �eld of applica	

tion for robust control and system identi�cation� Future space stations� tall buildings

under earthquake and wind loading� large civil engineering machinery are some of

the examples of �exible structures that require active control for safe and precise

operation�

Closely spaced� lightly damped modes of these structures make the accurate modeling

and control a di�cult task� For practical control design� the models of these systems

should not be very complex� and modeling errors in the natural frequencies and

damping levels of the controlled modes and unmodeled high frequency modes should

be taken into account in the control design process�

In the last two decades there has been substantial research in modeling and control

of �exible structures� The main part of this research was concerned with applying

new digital technology and multi	input�multi	output �MIMO� robust control design

techniques to �exible structures ��� �� �� ��� ��� ���� Using smart materials such as

shape memory alloys and magnetorheological �uids as passive damping elements to

�



augment active control is also a growing area of research ���� ����

Having an accurate model is an essential step in design of a high performance active

control system� This model may be obtained from �rst principles� �nite element

modeling or system identi�cation� System identi�cation is a method for constructing

a mathematical model for a dynamical system from input	output data� For complex

systems it provides a valuable alternative to modeling from fundamental laws of

physics� Experimental results show that the modeling of large �exible structures

via �nite element method may not be accurate enough for high performance active

control design purposes ����

There are a large variety of system identi�cation techniques for dynamical systems

���� �
� ��� ���� However most of these techniques are not well suited to modeling

�exible structures due to the complexity of these systems� Some researchers have

speci�cally tailored system identi�cation algorithms to identify �exible systems� In

���� Bayard develops a technique for curve �tting nonparametric frequency domain

data to identify a parametric model composed of two models in parallel� where each

model has dynamics in a speci�ed portion of the frequency band� In ��� Balas and

Doyle use Chebyshev polynomials to �t the single	input�multi	output experimental

frequency domain data ������ and an ad hoc model reduction technique based on

a	priori knowledge of the system and singular value decomposition to develop a mul	

tivariable model� In ���� Juang develops a system identi�cation technique speci�c for

large �exible structures� Markov parameters �sampled pulse or impulse response� of

the system to be identi�ed is calculated from time or frequency domain experimental

data and a multi	input�multi	output �MIMO� state space model and an observer are

constructed from the Markov parameters� Gilpin etal� in ���� present a method of

obtaining a uniquely identi�able� multi	input�multi	output model which avoids the

need for a model reduction algorithm� The state space model is constructed from the

matrix partial fraction expansion of the system transfer function matrix by using a
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dyadic decomposition of the matrix partial fraction expansion residue matrices�

The above system identi�cation techniques represent the model in the canonical ba	

sis fz�k� k � �� �� ���g� where z�� is a delay operator� An alternative to representing

a system model in canonical basis is to represent the system model in terms of the

orthonormal basis generated by the a	priori information about the poles of the system

���� ��� ��� ���� In the �rst part of this thesis the application of system identi�ca	

tion technique using orthonormal basis functions to �exible structures is examined�

System identi�cation with orthonormal functions allow the introduction of a	priori in	

formation about the system poles into the system identi�cation process� It is shown

on an experimental structure that this provides advantages for identifying MIMO

models for �exible structures� However this approach is sensitive to the accuracy

of the pole locations� therefore a ad	hoc method is developed for re�ning the pole

locations�

In a control design problem� the performance requirements and feedback signals are

usually assumed to be given� However� for �exible structures� due to the state order

of the plant model and limited e�ectiveness of the lumped sensors and actuators� the

performance requirements and feedback signal types are not obvious� Hence de�ning

the objectives of active control is an important part of control design� In this thesis the

role of performance criteria selection for vibration attenuation of �exible structures is

investigated� De�ning the �correct� performance objective is key to designing a good

controller�

For �exible structures there usually is a freedom in choosing sensor and actuator

locations� A systematic way of �nding the optimal sensor locations for accurate and

economic control design becomes an interesting engineering problem� The second

part of the thesis examines the actuator and sensor placement problem for �exible

structures�
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One approach to the selection of sensor locations is to consider a cost function which

includes the observability grammians in minimizing a cost function� Skelton and

DeLorenzo consider a cost function as an LQG performance metric formulated as the

root mean square contribution of each sensor output� Sensors associated with small

cost functions may be removed due to their low e�ectiveness ����� Similar approaches

are developed using modal properties� Kim and Jenkins choose a performance metric

based on modal controllability weighted by the modal cost of Skelton ����� This

approach emphasizes both the degree of controllability and modal participation in

the performance criteria� An alternative approach by Lim involves the relationship

between grammian singular values and modal observability ��
�� The performance

metric is a weighted modal projection with actuator and sensor pairs chosen such

that principal directions are parallel to the modes with large singular values� In �
�

Balas and Young develop a sensor selection technique that takes into account the

closed	loop performance objectives� Di�erent sensor locations are compared based on

the information each group of sensors can observe� The information is quanti�ed in

terms of the associated H� cost of estimating the full system state�

The technique presented in this thesis considers a set of candidate sensor locations�

Globally optimal� Full Control H� based compensators are computed at each of these

locations to determine the maximum performance and robustness level achievable�

The sensor locations chosen for implementation on the physical system correspond

to the sensor locations achieving the best Full Control H� performance� There is no

guarantee that the optimal Full Control sensor locations are equivalent to the opti	

mal sensor locations for a general output feedback controller� however� experiments

indicate this technique can choose e�ective con�gurations for a physical system� In

this technique it is possible to include the system uncertainties and closed	loop per	

formance objectives into the sensor selection process�

The generalized orthonormal basis system identi�cation� performance criteria selec	
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tion and Full control sensor placement techniques previously discussed are applied to

an experimental �exible structure located at the Dynamics and Control Laboratory

of Aerospace Engineering Department at the University of Minnesota� The structure

is a four story space truss and was designed to capture the important characteristics

of a �exible structure such as lightly damped and closely spaced modes�

The thesis is organized as follows� In Chapter � de�nitions of signals and systems

are given and an overview of � analysis and synthesis and H� control design tech	

niques is presented� The experimental University of Minnesota structure is described

in Chapter �� Dimensions� actuator and sensor types and locations are presented

together with the data acquisition system� Chapter � presents system identi�cation

techniques for �exible structures� It begins by explaining the nonparametric identi�	

cation technique used in obtaining the experimental transfer functions of the structure

from time domain data� A least squares frequency domain curve �tting technique is

used to obtain the model of the �exible structure� This model is used to provide

the a	priori information to the system identi�cation technique based on generalized

orthonormal basis functions� Application of identi�cation with generalized orthonor	

mal basis functions to �exible structures and extension of this technique to generate

multi	input�multi	output models constitutes the main part of Chapter �� In Chapter

� relations between error and feedback signal selection and performance objectives

for vibration attenuation of �exible structures is investigated� In Chapter � a sensor

placement technique based on full control synthesis is developed� Experimental re	

sults of output feedback controllers designed for the sensor locations chosen by this

technique is presented� Chapter 
 gives a summary and discussion of the results and

suggestions for future work�
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Chapter �

Robust Control Design and

Analysis Techniques

The objective of control design is to stabilize the system and improve its performance

in the presence of model inaccuracies or uncertainties� It is assumed that the be	

havior of the system can be represented in terms of a mathematical model and the

mismatches between the mathematical model and the true system� the changes in the

system parameters due to aging� damage� environmental changes etc� are the sources

of uncertainties�

Analysis of a control system consists of quantifying the stability and performance

characteristics of the system� In this thesis� H� and �	synthesis �D	K iteration�

techniques are used for designing controllers for the �exible structures and complex

and real�complex �	analysis techniques are used to analyze the controllers� This

chapter presents an overview of these techniques� The design method used for optimal

placement of sensors is based on Linear Matrix Inequalities �LMI�� This technique

along with a brief introduction to LMIs is presented in Chapter ��
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��� Signals and Systems

In the time domain� �nite dimensional linear systems can be represented as sets of

linear ordinary di�erential equations and signals as Lebesgue measurable �for practical

purposes� piece	wise continuous� functions of time� Using Laplace transform� both

signals and systems can be represented as functions of a complex variable� �s�� In

this chapter� unless otherwise stated� systems �matrix valued functions of s� will be

denoted by upper case letters� such as G�s�� H�s� and signals will be denoted by lower

case letters� such as in time domain� x�t�� y�t� and in frequency domain� x�s�� y�s��

Signals and systems are classi�ed into spaces based on their properties� Following are

the de�nitions for some of the signal and system spaces related to H� control theory�

De�nition �
�
� ���norm of a signal� ��norm of a signal �the energy of the signal�

is

kx�t�k� �
�Z �

��
jx�t�j�dt

� �
�

De�nition �
�
� �Lebesgue ��space� The set of signals for which the ��norm is

�nite is the Lebesgue ��space�

L� � fx�t� � kx�t�k� ��g

De�nition �
�
� �L� norm� L� norm of a system is the supremum of the singular

value when the transfer function matrix is evaluated on the jw axis�

kGk� � sup
�
��G�jw��

De�nition �
�
� �L� space� The space of systems for which the L� norm is �nite

is the L� space�

L� � fG � kGk� ��g

�






De�nition �
�
� �H� space� The set of systems analytic on the right half plane

with a �nite in�nity norm is called the H� space�

��� H� Optimal Control

Measuring the performance of a system in terms of the � norm rather than the �	

norm has advantages in dealing with the uncertainties arising in control design �����

Consider the linear time invariant systems M and �� The � norm of these systems

satisfy the submultiplicative property�

kM�k� � kMk�k�k�

The small gain theorem ����� �
�� states that a feedback loop consisting of stable

systems is stable if the the loop	gain is less then unity� Submultiplicative prop	

erty together with the small gain theorem states that a plant M is robustly stable

to perturbations � entering the system as shown in Figure ��� with k�k� � � if

kMk� � ����

M

��

�

Figure ���� Small gain problem

The goal of H� design is is to minimize the � norm of the system M in order to

increase the robustness of the system to the uncertainties represented in the � block�

In H� control the uncertainties in signal and system components are modeled as

stochastic processes whereas in H� control they are modeled as elements of a bounded

set� Following are the descriptions of modeling uncertainties in H� framework�

�



Parametric Uncertainty Parameters in a state space or transfer function repre	

sentation of a system are assumed to lie in a set given as

p � fp� � w	� 	 � ��k� k�g

where p� is the nominal value of the parameter� 	 is allowed to take any value between

�k and k and w is the problem dependent scaling factor� It is common practice to

scale the parametric uncertainty such that k is �� This type of uncertainty is suitable

in representing uncertain natural frequency and damping levels in �exible structure

modes�

Additive and multiplicative uncertainties

P

� � W

��c��

�

P

� � W

�c��

�

�

Figure ���� a� Additive uncertainty b� Multiplicative uncertainty

The nominal model is assumed to be in the set

fP� � �W� jj�jj � �g

for additive uncertainty and

fP��I � �W �� jj�jj � �g

for the multiplicative uncertainty descriptions� In these representations � is a vari	

able� norm bounded stable transfer function and W is a �xed stable transfer function

compatible with the � block�

Coprime factor uncertainty

�



Perturbing the coprime factors of the model separately allows the introduction of

unstable uncertainty� The set of plants is represented by

P � f�N� � �N��M� � �M ���� jj��M �N �jj � 
g

where N� and M� are the coprime factors of the nominal plant P� � NoM
��
� and

�M ��N denote the uncertainty on each factor ���� ���� Figure ��� shows the block

diagram representation for right coprime factor uncertainty�

N�

�N

�c��

�

M��
�

�M

�� c

�

�

Figure ���� Coprime factor uncertainty

In general an uncertain system can be represented in a linear fractional transfor	

mation �LFT� form as shown in Figure ���� In this �gure� G is the nominal model

together with uncertainty and performance weights and� for analysis problems� the

controller may be absorbed in G� � is a block diagonal matrix with di�erent types

of uncertainties as the block diagonal elements�

G

��

��

�

z w

ve

Figure ���� Upper Linear Fractional Transformation Structure

The transfer function G can be partitioned as�

G �

�
� G���s� G���s�

G���s� G���s�

�
� �

�
� z

e

�
� � G

�
� w

v

�
� � w � �z

��
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Figure ���� Lower Linear Fractional Transformation Structure

� block is such that the set of equations is well posed and the vectors e and v are

related by

e � Fu�G���v

where

Fu�G��� � G�� � G����I �G������G��

is called an upper linear fractional transformation of G with �� Similarly� the transfer

function from inputs to outputs when lower loop is closed with � is

Fl�G��� � G�� � G����I �G������G��

This is called a lower LFT �Figure �����

Following are some de�nitions and theorems related to H� control problem� Proofs

of these theorems are given in �����

Robust Stability� The controller must stabilize all plants de�ned by the uncer	

tainty description Fu�G����

Theorem �
�
� The LFT Fu�G��� is stable for all stable ��s� with k�k� � � if

and only if kG��k� � �

��
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Figure ���� General Structure

Nominal Performance� In addition to stability the closed	loop system should

satisfy performance requirements�

Theorem �
�
� Nominal performance is achieved if and only if kG��k� � ��

Robust Performance� The performance speci�cations must be satis�ed by the

closed	loop system for all plants de�ned by the uncertainty description�

Consider the general framework shown in Figure ���� P �s� represents the system

interconnection structure� K the controller and � the perturbations or uncertainties�

v is a vector of exogenous inputs such as reference commands� disturbances and noise�

e is a vector of error signals to be kept small� y is a vector of sensor measurements

and u is a vector of control signals�

For design purposes the � block is eliminated and the input	output map from �w v�T

to �z e�T is expressed in LFT form as

�
� z

e

�
� � Fl�P�K�

�
� w

v

�
�

This structure is shown in Figure ��
� For the H� optimal control problem� the

objective is to �nd a stabilizing controller K which minimizes kFl�P�K�k��
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Figure ��
� Synthesis structure

Initially the H� problem was formulated in an input output framework ���� ���� The

solution techniques were based on Nevanlinna	Pick interpolation or methods based on

operator theory ��
� ��� These techniques had di�culties in solving multi	input�multi	

output systems� In the following years state space algorithms were developed to solve

the H� control problem ����� These state space techniques are based on solution of

two Riccati equations which originate from the separation structure of the controller

in the form of full state feedback and optimal state estimation� This structure is

similar to the H� control problem�

��� Structured Singular Value ���

The limitation of the H� control design is that the uncertainty structure in the

problem is not taken into account� In general� a system is built from components

which are themselves uncertain with norm bounded perturbations� This results in

the structure of the uncertainty block �� The norm bounds given by Theorems �����

and ����� are too conservative for realistic problems with structured uncertainty� The

structured singular value � is introduced to reduce this conservatism� see ���� �
� ���

General framework for �	analysis is given in Figure ���� The � block in this rep	

resentation is de�ned to have a special structure� � � 
 where 
 is a set of block

diagonal matrices de�ned as

��




 �
n

� � diag
�
	R� IR� � � � � � 	

R
mIRm � 	

C
� IC� � � � � � 	

C
n ICn ���� � � � ��p

�
� 	Ri � R� 	Ci � C��i � Cci�ci

o

This block structure is general enough to allow for repeated real scalars� repeated

complex scalars and full complex blocks�

De�nition �
�
� �Structured Singular Value �� For M � Cn�n� ���M� is de�

�ned

���M� �
�

minf����� � � � 
� det�I �M�� � �g

if no � � 
 makes �I �M�� singular then ���M� � �

An exact solution for � does not exist� a solution can be approximated via upper

and lower bounds on �� The method of approximation depends on the structure of

the � block� If the � block does not contain any real elements� the upper and lower

bounds for � can be found by using scaling matrices Q and D� Let

Q � fQ � � � Q�Q � Ing

D �
n
D � diag

�
DR

� � � � � � D
R
m� D

C
� � � � � � D

C
n � d

c
�Ic�� � � � � d

c
pIcp

�
� DR

i � DR�

i � CRi�Ri � DC
i � DC�

i � i
�
gCCiCi� di � d�i � C

o

Q and D leave � invariant in the sense that if � � 
� Q � Q and D � D then

����Q� � ���Q�� and D�D�� � �

Upper and lower bounds for � are

sup ��MQ� � ��M� � inf ���DMD���

Q � Q D � D �������

��



The case when � contains real elements is more complicated� In order to exploit

the real block structure� G matrices are needed in addition to D scalings�

The set of scalings� G� a�ect only the real parametric uncertainty blocks�

G �
n
G � diag

�
G�� � � � � Gm� �C�� � � � � �Cn � �c�� � � � � �cp

�
� Gi � G�i � CRi�Ri

o

If there is a � � �� D � D and G � G such that

�

�
�I � G���

�
� �

�

�
DMD�� � jG��I � G���

�
�

	
� �

then

���M� � �

This � value can be formulated as a Linear Matrix Inequality and solved by convex

programming techniques ���� ��� ���

The structured singular value � can be used to evaluate the robustness margins for

a linear system with structured uncertainty� Consider the following theorem

Theorem �
�
� �Robust stability�

Fu�G��� is stable �� � 
 i� sup ��G���jw�� � �� � � w � �
w

This theorem provides a test for the stability of the system shown in Figure ��� for

all allowable perturbations� Usually stability is not the only property of a feedback

system that must be robust to perturbations� The e�ect of disturbances on the error

signals can increase greatly and performance may degrade signi�cantly when the

nominal modal is perturbed� A robust performance test is necessary to indicate the

worst case level of performance associated with a given level of perturbations�

��



The robust performance problem can be formulated as a robust stability problem by

associating a �ctitious full block of uncertainty� �perf � with the performance inputs

and outputs� The robust performance problem is equivalent to a robust stability

problem but with respect to a di�erent block structure� Consider a new � structure

de�ned as

� � f
�
� � �

� �perf

�
� � � � 
��perf � Cnv�neg

A robust performance test is given by the following theorem�

Theorem �
�
� �Robust performance�

Fu�G��� is stable and kFu�G���k� � � �� � 
 i� sup ���G�jw�� � ��

w

This means that performance robustness of a closed	loop system can be evaluated by

a � test across all frequencies� The peak value on the � plot determines the robustness

properties�

��� ��Synthesis �D�K Iteration Technique�

This section gives a brief explanation of the D	K iteration technique� a more detailed

description can be found in ��� ���� The �	synthesis design technique combines the

H� control design with �	analysis� Considering the standard robust performance

�	analysis framework shown in Figure ���� the general structure in Figure ��� and

Theorem ������ it is desired to �nd a controller K achieving

inf sup ��fFl�P �jw�� K�jw��g
stabilizing K w

This minimization does not have a closed form solution� Upper bound de�ned for

complex � in Equation ����� can be used to approximate the solution� Using this

fact the problem can be put in the following form�

��



min fmin fmax ���DwFl�P�K��jw�D��
w �gg

stabilizing K Dw � D w

or equivalently

min fmin jjDwFl�P�K��jw�D��
w jj�g

stabilizing K Dw � D
�������

The magnitude Dw across frequency can be approximated by a real� rational stable�

minimum phase transfer function �D�s�� then Equation ����� becomes�

min fmin jj �D�s�Fl�P�K��s� �D���s�jj�g
stabilizing K �D�s� � D

The approach used in solving this problem is to minimize the above expression for

either K or �D�s� while holding the other constant� For �xed D it becomes an H�

optimal control problem� For K �xed D can be formulated as a convex optimization

problem� This process is applied iteratively until a satisfactory controller is achieved�

It should be noted that this D	K iteration technique assumes that the uncertainty is

modeled as complex�

�




Chapter �

University of Minnesota

Experimental Flexible Structure

The system identi�cation� performance criteria selection and sensor placement tech	

niques discussed in this thesis will be tested on an experimental �exible structure in

the Dynamics and Control Laboratory of the Aerospace Engineering Department at

the University of Minnesota� The structure is a four story space truss and was de	

signed to capture the important characteristics of a �exible structure such as lightly

damped and closely spaced modes� The entire structure� constructed of aluminum�

is suspended from a mounting structure �xed to the ceiling� The top three stories

are each ���� m high and the bottom story is ���
 m high� The width of each bay

is ���� cm and they are constructed of ���� cm thick aluminum plates in the form

of equilateral triangles� Two of the plates are solid and two have ���� cm equilat	

eral triangles removed from the center� A set of displacement and velocity sensors

are collocated with each actuator located along the diagonals of the third bay� Six

noncollocated accelerometers are placed at the �rd and �th bays and they measure

accelerations along the directions parallel to the sides of the triangular plates they

are attached to� A detailed picture of the structure is shown in Figure ���� The

��



natural frequencies and damping levels of the modes of the structure are discussed in

Chapter �

D
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Figure ���� Experimental Flexible Structure
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��� Actuators� Accelerometers� Velocity and Dis�

placement Transducers

The voice coil type actuators are manufactured by Northern Magnetics �ML�	����	

���LB�� The input to the actuators are provided by a current ampli�er� The actuators

can output �� lbs force corresponding to �� volts input to the current ampli�er� The

bandwidth and stroke length of the actuators are ���Hz and ��� inch respectively�

The structure displacements are measured by Trans	Tek ��� LVDTs �linear variable

di�erential transformer�� These transducers have a working range of �� inch and a

bandwidth of ��� Hz� They require a DC power supply in the � to �� volts range� The

displacement measurement are �ltered by a �� Hz� fourth order� low	pass Butterworth

�lter�

The three velocity transducers are Trans	Tek ���� They provide a voltage output

proportional to linear velocity with a sensitivity of ��� millivolts�inch�sec� The band	

width of these transducers is ��� Hz and the output signals are �ltered by a �� Hz�

fourth order� low	pass Butterworth �lter�

The accelerometers are of the type ICSensor ����	���� These accelerometers have a

bandwidth of ��� Hz with a sensitivity of ��� millivolts�g� They require a DC power

supply in the � to �� volts range�

��� Data Acquisition and Real Time Control

The equipment used in acquiring the data and implementing the real time controllers

for the experimental �exible structure are a Macintosh IIfx computer� a National In	

struments NB	DSP���� digital signal processing board with a TMS���C�� processor�

��



a National Instruments MIO	��X board and an National Instruments AO	� analog

output board� The computer communicates with the other components via Lab View

software package� The MIO	��X board has eight �� bit di�erential A�D input chan	

nels and two �� bit D�A channels both with ��� volt range� The AO	� board has

six �� bit D�A output channels� The control algorithms are C codes compiled by the

DSP board s compiler and loaded on to the DSP board� The Macintosh computer is

used for editing and storing the code� Controllers with number of states up to �� can

be implemented on the structure with a ��� Hz sampling rate� Figure ��� shows the

block diagram of the data acquisition system� An external disturbance is generated

by a function generator and added to one of the actuator inputs generated by the

computer� The sensor measurements are transmitted to the computer via the A�D

board after being �lter by the Butterworth �lters� The DSP board processes these

measurements according to control algorithm and the voltage outputs from the D�A

converter is sent to the current ampli�er which activates the actuators�

Signal

Generator

�

Computer

with DSP
�

� D�A

A�D

� �e Current Ampli�er

Butterworth Filter� �

� Actuators

Sensors �

�

Experimental

Structure

Figure ���� Block Diagram of Data Acquisition
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Chapter �

System Identi�cation for Flexible

Structures

A dynamical system can be considered as a map �operator� from input signals to out	

put signals� System identi�cation is a method for constructing a mathematical model

�an approximate representation� for a dynamical system from input	output data� For

complex systems it provides a valuable alternative to modeling from fundamental laws

of physics� Experimental results show that the modeling of large �exible structures

via �nite element method may not be accurate enough for high performance active

control design purposes ����

In this chapter system identi�cation using generalized orthonormal basis functions

is developed for �exible structures� This identi�cation technique requires the approx	

imate pole locations of the system being identi�ed as the a	priori information prior

to initiating the identi�cation process� It has been shown that generating the basis

functions from these approximate pole locations may provide faster convergence for

these identi�cation techniques ����� It is seen that specifying the pole locations at the

beginning of the identi�cation process is especially suitable for �exible structures in

��



that a low order multi	input�multi	output �MIMO� model can be realized from in	

dividual single	input�single	output �SISO� systems� The approximate pole locations

for identi�cation with generalized orthonormal basis function can be obtained either

directly from experimental data or from a simpler identi�cation technique� A fre	

quency domain identi�cation technique based on least squares curve �tting is used to

�nd the approximate pole locations for the experimental �exible structure described

in Chapter ��

Both of these identi�cation techniques� least squares curve �tting and identi�cation

with generalized orthonormal basis functions� require the frequency response function

�Fourier transform of the impulse response function� of the system to be modeled� In

Section ��� a method of obtaining the system frequency response function� namely�

nonparametric identi�cation based on spectral analysis� from input�output time do	

main data will be explained� Section ��� explains the frequency domain identi�cation

technique based on least squares curve �tting�

��� Nonparametric Identi	cation

The impulse response of a linear� time invariant system characterizes the dynamics

of that system� To arrive at parametric representation of a dynamical system� most

system identi�cation methods use the Fourier transform of the impulse response func	

tion 	the frequency response function� Methods of determining these functions from

given input�output measurements is called nonparametric identi�cation� Ideally non	

parametric identi�cation characterizes the input�output relation of a system without

being constrained to a parametrized model set� In practice� however� large number

of parameters are used to describe the nonparametric estimate�

In the following section the spectral estimation method of nonparametric identi	

��



�cation is explained� Other common methods of nonparametric identi�cation are

impulse	response and step	response analysis in time domain and sine	wave testing in

frequency domain ���� �
� ����

First the system to be identi�ed is excited with an input signal x�t� and the output

signal y�t� is measured� The input signal should continuously excite the system at

the frequency range of interest� A band limited white noise or a sinusoidal signal with

continuously changing frequency �chirp� is usually used as input signals ���� ��� For

the University of Minnesota �exible structure� a chirp signal changing from ��� Hz to

�� Hz is used� A portion of the time domain representation of this signal is shown in

Figure ���
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Figure ���� Input Signal in Time Domain for Nonparametric Identi�cation

The input�output relation of a linear system is given by the convolution integral

y�t� �
Z �

�
h�
�x�t� 
�d
 �������

where h�
� is the impulse response of the system�

The output of an experiment y�t� will have noise due to sensor errors and noise from
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Figure ���� Output Signal in Time Domain for Nonparametric Identi�cation

the environment� To reduce the e�ect of these on the resulting transfer function�

correlation technique is used� This computes averages to reduce the e�ect of noise on

the output� In Equation ����� changing the variables 
 to �� t to t�
 and multiplying

both sides by x�t� leads to

x�t�y�t � 
� �
Z �

�
h���x�t�x�t � 
 � ��d�

Calculating the expected values of both sides of the above equation results in the

input�output cross	correlation relation

Rxy�
� �
Z �

�
h���Rxx�
 � ��d� �������

where

Rxx�
� � lim
T��

�

T

Z T

�
x�t�x�t � 
�dt

is the autocorrelation function of x�t� and

Rxy�
� � lim
T��

�

T

Z T

�
x�t�y�t � 
�dt

��



is the cross	correlation function between x�t� and y�t��

The integral in Equation ����� is a convolution integral� Taking the Fourier transform

of this equation gives the relation between power spectral density functions Sxx� Sxy

and the transfer function H�w��

Sxy�w� � H�w�Sxx�w�

where

Sxy�w� �
Z �

��
Rxy�
�e�j��w�d


Sxx�w� �
Z �

��
Rxx�
�e�j��w�d


Plots of power spectral density functions� Sxx and Sxy� corresponding to the time

domain signals in Figures ��� and ��� are shown in Figures ��� and ���� The exper	

imental frequency response functions� H�w�� for the �exible structure are shown in

Figure ����

In most of the recent signal processing software programs the power spectral density

functions� Sxx and Sxy are calculated approximately from the Discrete Fourier Trans	

form of the time domain sequences x�t� and y�t� rather than the correlation functions

Rxx and Rxy due to the numerical advantages of the former technique ���� ��� ��� ����

��� Frequency Domain Least Squares Curve Fit�

ting Technique

An accurate model of the input�output behavior of the system is required for control

design� One method to achieve this is by curve �tting a transfer function model
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Figure ���� Power Spectral Density of the Output Signal

to each non	parametric SISO experimental frequency response function obtained in

the previous section �see ������ These transfer functions are combined to form a

multivariable representation of the structure�

Assume that the discrete transfer function representation for each experimental

transfer function is given in the form�

g�z� �
n�z�

d�z�
�������

�
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Figure ���� Bode plot for the experimental transfer functions

Here n�z� and d�z� are polynomials of degree � p with unknown coe�cients� As	

suming that d is monic� equation ����� can be written as

g�z� �

Pp
j�� njz

j

zp �
Pp��

j�� djz
j

multiplying both sides by the denominator and rearranging gives

p��X
j��

djz
jg�z��

pX
j��

njz
j � �g�z�zp �������

Equation ����� can be put in a compact form by de�ning the following variables�

fzigMi�� represents the points on the unit circle obtained by mapping the discrete

frequency points �wi� of the experimental transfer function� i�e zi � ej
wi
T where T is

the sampling frequency�

��
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Z� � Z with the last column deleted

D � diag�g�z��� ���� g�zM��

�n � �n�� ������ np�
T

�d � �d�� ������ dp���
T

y � �g�z��z
n
� � ���� g�zM�znM �T

Hence equation ����� can be rewritten as

�DZ� � Z�

�
� �d

�n



A � �y �������

This now is a standard least squares problem� The vectors �n and �d can be estimated

by solving equation ������ In the solution an iterative technique is used to remove the

high frequency emphasis� The resulting discrete transfer function can be transformed

to a continuous system by using bilinear transformation�

This approach is the approach taken in this section to derive a multi	input�multi	

output �MIMO� model of the experimental structure� A transfer function model is

obtained for each actuator� This results in three ��th order transfer functions from

each actuator to all sensors� These three transfer functions are combined and the

balanced realization model reduction technique and truncation of the least signi�cant

modes results in a ��th order model of the structure ���� A comparison of this model

��



with the experimental transfer function for the channels from the second actuator to

the third accelerometer and to the third displacement sensor is shown in Figure ����

Table � shows the natural frequencies� damping levels and the mode shapes for the

�rst �� modes�

��
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Mode Natural Frequency �rad�s� Damping Ratio �!� Mode Type

� ����� ��� �st X bending

� ���
� ��
 �st Y bending

� ����� ��� �st torsional

� ���
� ��� �nd X bending

� ����
 ��� �nd Y bending

� ����� ��� �nd torsional


 ����� ��� �rd X bending

� ����� ��� �rd Y bending

� ����� ��� �rd torsional

�� ������ ��� �th X bending

�� ������ ��� �th Y bending

�� ��
��� ��� �th torsional

Table ���� First Twelve Natural Frequencies of the Flexible Structure

��� Identi	cation with Generalized Orthonormal

Basis Functions

A model is represented in canonical basis fz�k� k � �� �� ���g where z�� is a delay

operator in classical system identi�cation� If T is the sampling time� a sample uk at

time kT is represented as ukz
�k� An alternative to representing a system model in H�

�

using canonical basis is to represent the system model in terms of the orthonormal

basis generated by the a	priori information about the poles of the system� Non	

canonical basis have been used successfully in the past for system identi�cation� Two

examples of this approach is the use of Laguerre and Kautz systems ���� ��� ��� ����

Laguerre functions are suitable for constructing orthonormal basis for identi�cation

of well	damped systems with one dominating time constant� whereas Kautz functions

result in better convergence for lightly damped systems with complex	conjugate poles

��



���� ���� Laguerre and Kautz functions can be obtained as special cases of generalized

orthonormal basis functions which are derived from the approximate knowledge about

the poles of the system to be identi�ed ���� ��� ��� ����

Including a	priori knowledge of the system dynamics via the use of orthonormal

basis functions into the identi�cation process can have the advantage of reducing the

number of parameters to be estimated� Since the resulting model will have the poles

speci�ed by the basis functions� only the most signi�cant modes of a system need

to be incorporated into the identi�cation procedure� In this thesis it is shown that

the ability to choose the signi�cant modes of a model at the beginning of a system

identi�cation process is useful in generating a MIMO model from SISO models�

����� Generating the Orthonormal Basis

A basis in H�
� can be constructed by applying Wold decomposition ���� ���� Let

f��� �����rg be the set of the approximate poles of the system inside the unit disc�

Denote by m�z� an all	pass function ��nite order Blaschke product�

m �
rY

i��

mi� mi � ej�i
�� �iz

z � �i
� j�ij � �

where �i is chosen such that mi���� � ���

The following theorem can be used to form a basis in H�
� from the poles of a system

���� ����

Theorem �
�
� Let H�m� � H�
� � m�z�H�

� � then dimH�m� � r� Let f�i�z�� i �

�� ���rg be a basis for H�m�� Then the functions f�i�z�ml�z�� i � �� ����r� l � �� ����g
form a complete orthonormal system in H�

� �

��



The orthonormal functions �i�z� are given by ���� ���

�i�z� �

q
�� j�ij�
z � �i

i��Y
j��

mj�z� � � i � r �������

Corollary �
�
� A function f � H�
� can be uniquely represented in

f�i�z�ml�z�� i � �� ����r� l � �� ����g as

f�z� �
�X
l��

rX
i��

crl�i�i�z�ml�z� �����
�

the coe	cients of the expansion can be obtained as

crl�i � hf�z�� �i�z�ml�z�i� i � �� ����r� l � �� �� �����

where h�� �i denotes the usual scalar product in H�
� �

An expression for the coe�cients of the series expansion in equation �����
� can be

obtained as follows�

De�ne ���� as

���� �
�

r

rX
i��

�i���

where �i are the phase functions of mi� mi�e
j�� � e�j�i	�


Theorem �
�
� Let the model 
f of a system in H�
� be parameterized as

�f�z� �
nX
l��

rX
i��

�crl�i�i�z�ml�z��

and the measured data set Z be given in the frequency points determined by ����

Z � fak � f�ej�
��	sk
�� sk � �k�N� k � �N� ���� �� ���� N � �g

��



Let N�rM� M� N� The coe	cients of the model �f can be expressed as

�crl�i �
�

�M

M��X
s��M

F v
i�se

jls �
M �������

where
F v
i�s �

�

r

rX
k��

Fi�s��	k��
M

and
Fi�s � as�i�e

j���	 s�
rM


�
rPr

k��
��j�kj�

je
j����s �

rM
�
��kj�

Note that the expansion coe�cients f �ckg in equation ������� are obtained from the

inverse discrete Fourier transform of F v
i�s and they tend to fckg as the number of data

points tends to in�nity�

The method of calculating the coe�cients f �ckg from F v
i�s �the virtual frequency do	

main points� can be illustrated with two examples� Consider the transfer function of

a simple �rst order system given as sys �
���

z � ���
� Note that from equation ��������

���z� �
����

z � ���
and sys � ���� The normal frequency response and the virtual fre	

quency domain data of this system are shown in Fig� ��
� Clearly� taking the inverse

Fourier transform of virtual frequency domain data� as suggested by equation ��������

gives c� � ��

Consider a second example with the system to be identi�ed given as

sys� �
���

z � ���
� ��

����

z � ���
��

�� ���z

z � ���
��

This system is exactly in the form sys� � c��� � c���m� Taking the inverse fourier

transform of F v
i�s� shown in Fig� ���� gives c� � �� c� � ��

��
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����� Selection of the approximate pole locations

First step in applying the system	based orthonormal functions in system identi�ca	

tion is to obtain the approximate location of the poles of the system that will be

identi�ed� For this �exible structure� linear least squares method of identi�cation�

explained in Section ���� is used to obtain the poles� Models are �tted to the exper	

imental transfer functions from each actuator to the accelerometers with the linear

least squares technique� The state order of the models for each input	output channel

vary from �� to ��� The poles resulting from these models are shown in Fig� ��� with

��



�� ��� symbols� Some poles in the least squares identi�cation are for the purpose of

adjusting the gain and the phase of the system and do not represent the real poles

of the system� These poles show a randomly distributed pattern in Fig� ���� Some

of the poles from the least squares models� however� are clustered at de�nite regions

of the complex plane� These pole locations are selected as the pole locations of the

system model�
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Figure ���� Poles of the least square models

����� Construction of the MIMO State Space Model

The SISO models developed from frequency domain identi�cation using the general	

ized orthonormal basis are of the form

�fij�z� �
MijX
l��

rX
i��

�crl�i�i�z�ml�z�� � i � �� ��p� j � �� ��q �������

where p and q are the number of inputs and outputs respectively� There are p � q

SISO transfer functions and each of these SISO models are identi�ed individually ie�

using a di�erent set of approximate pole locations� The associated MIMO model can

�




be written as

�f�z� �
MX
l��

rX
i��

�Crl�i�i�z�ml�z�� M � max�Mij� ��������

where �Crl�i are matrices assembled from the coe�cients �crl�i�

Most of the available control analysis and synthesis approaches require models in

state space form� One method of realizing the system model given in equation ��������

in state space is based on matrix partial fractional �MPF� representation of MIMO

systems� Since the basis functions of H�m� have denominators dpi�z� � "r
i���z � �i�

the matrix transfer function �f�z� can be written in MPF form as

�f�z� �
rX

i��

�fi�z��

�fi�z� �
RK�i

�z � �i�K
� ���� �

R��i

�z � �i�
��������

where K � M � r

The above form is obtained from the fact that all poles �i i������r have multiplicity

K � M � r in equation ��������� Using standard results from realization theory� it is

known that a minimal realization of �f�z� can be obtained as a direct sum of minimal

state space realizations of �fi�z� ���� ��� ���� This follows from the fact that all the

poles of �fi�z� are di�erent� The problem now is to construct a minimal realization

for all �fi�z�� i � �� �� ���r� The elements of this minimal realization are given by the

following �����

Proposition The dimension of a minimal state space realization of �fi�z� is given by

�i � rank

�









�

RK�i � � � �

RK���i RK�i � � �

� � � � �

R��i � � � �

R��i R��i � � RK�i

�
����������

��������

��



The proof of the proposition can be obtained by constructing a minimal state space

representation and showing that the observability and controllability follows from the

above condition�

Proof of Proposition Consider the matrix transfer function f�z� given as

f�z� �
KX
l��

Rl

�z � ��l
�

�

z � �
�R� �

�

z � �
�����

�

z � �
�RK�� �

RK

z � �
���

De�ne the state variables as

x��z� � RK
z��

U�z�

x��z� � �
z��

�RK��U�z� � x��z��

x��z� � �
z��

�RK��U�z� � x��z��

�

�

Applying the inverse Z transform� the state space equations can be written in the

form

xk�� �

�






�

��Ip � � �

Ip ��Ip � �
� � � � � �

� � Ip ��Ip

�
�������
xk �

�






�

RK

RK��

���

R�

�
�������
uk

i�e�
xk�� � Axk � Buk

where A � RKp�Kp� B � RKp�q� p � dim�yt�� q � dim�ut�� and

yt �

�









�

�

�

�

�

Ip

�
����������
xt

��



It is simple to show that this representation is always observable but not necessarily

controllable� The controllability matrix can be written in the form

C�A�B� �

�





�

RK � � �

� RK � �

� � � �

R� R� � RK

�
������

�





�

Ip ��Ip ��Ip �

� Ip ���Ip �

� � Ip �

� � � Ip

�
������

where Ip is a p � p identity matrix� Since the right hand side matrix is of full rank�

the rank condition of equation �������� for the minimal dimension follows�

����� Application to the U of M Structure

The system identi�cation technique presented in Section ��� is applied to the �� in	

dividual channels �� actuator inputs to � accelerometer measurements� of the �exible

structure with the pole location determined from the linear least squares �t� The

�� SISO systems are realized as a ��th order state space MIMO model using Matrix

Partial Fractional representation technique discussed in Section �� The order of the

MIMO model is reduced to �� using balanced realization model reduction� A com	

parison of the ��th order MIMO model� the experimental transfer functions� and the

corresponding SISO systems is presented in Figure ���� for two channels� From these

�gures it is seen that there is good agreement between the model and the experimen	

tal data and the ��th order model captures the �rst �� modes and the �th order �lter

characteristics� Hence the assumed pole locations were representative of the actual

system� It should also be noted that in this identi�cation technique mismatches in

the natural frequencies and damping levels of the model can be corrected by adjusting

the assumed pole locations and repeating the identi�cation process with these new

pole locations�

The MIMO minimal realization based on Matrix Fractional Expansion is especially

��



suitable for identi�cation with generalized orthonormal basis functions due to the

predetermined poles of the system� and since similar poles in di�erent channels are

factored together� For large symmetric systems� as is the experimental �exible struc	

ture in this research� control over the pole locations results in the minimum number

of terms in the matrix partial fraction expansion�

��
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��� Controller Design

To validate the ��th order MIMO model identi�ed using generalized orthonormal basis

functions� a high performance multivariable controller is designed for the experimental

�exible structure using the H� control design framework �see ��� ��� ���� A block

diagram formulation of the control problem is shown in Fig� �����

h

h
h

Wp �p
�

�

SY Snom �

�

�add
	 � �Wadd

Wnois
	 	 sensor noise

	 �
K

�

�

�

Wper

�

�

error signal

�

�

�

Wdist

�

�

disturbance

�

�

�

Wact

�

�

actuator limits

�

�

�

�

�

��

Figure ����� Block diagram formulation of the control problem

The performance objective is to attenuate vibration at the bay � accelerometer

locations due to external disturbances entering at the actuators� �A diagram of the

structure and sensor locations is provided in Fig� ����� To accomplish this objective�

bay � acceleration measurements are penalized in the control design� i�e� weighted

accelerations are taken as the error signal� Third and fourth bay accelerometers are

��



used as feedback measurements and the three actuators acting along the diagonals of

the �rd bay are used as the control inputs� The frequency range of interest is between

� Hz and �� Hz ���� and ��� rad�sec� which contains the �rst ten �exible modes of the

�exible structure� Mathematically� the performance objective is de�ned as minimizing

the weighted H� norm of the transfer function from the input disturbance to weighted

error outputs� In the H� control problem formulation� the weighting functions are

selected so that robust performance is achieved when the structured singular value

��� of the closed loop system is less than ��

Wper represents a performance weight on the bay � acceleration measurements to

achieve this objective� The shape of this transfer function and the error signal it

is applied to re�ect the performance objectives of the controller design process� The

maximum singular value of the transfer function matrices from each disturbance input

to bay � accelerometers are �rst scaled to one and Wper is used to select the desired

level of vibration attenuation� For this design Wper is a diagonal matrix with wp as

the diagonal elements� wp is a low pass �lter with a DC gain of � and cut o� frequency

at 
� rad�sec� This corresponds to an attenuation ratio of ��� in the frequency range

of interest�

The input to the voice coil actuators is a voltage from a current ampli�er� A one

volt command to the current ampli�er results in ��� lbs of force� with a maximum

force of �� lbs� To limit the actuator command signals in the control design process

to �� volts ���lbs�� a value of ��� is used to weight each actuator signal� The weight

Wact is �
�
I����

The weights on the disturbance inputs� Wdist� is taken to be the ��� identity matrix�

This indicates that the input disturbance is on the same order of magnitude as the

controller signals� The accelerometer measurement signals have a signal to noise ratio

of ��� on all the channels� Based on open	loop experiments� it is expected that the

��



maximum magnitude response of the accelerometers will be ��volt� Therefore the

sensor noise weight� Wnoise� in the control interconnection structure� Fig� ����� is

taken to be ���� I����

An additive uncertainty is included in the problem formulation to account for the

unmodeled or neglected high frequency modes� limit the controller bandwidth and

modeling errors inside the control bandwidth� This weight is selected to have a

magnitude greater than the structural modes above ��� rad�sec� Hence if robust

stability of the closed	loop system is achieved for this additive uncertainty weight�

the �exible modes of the structure above ��� rad�sec will be gain stabilized� The

additive uncertainty weight is given by

wadd �
���s� � ��s� � 
���s � ���� ����

s� � ����s� � �����s� ���� ��

��������

Fig� ���� shows the magnitude of wadd versus the singular value plot of the transfer

functions from actuator � to all accelerometers� In the control problem formulation

shown in Fig� ����� the additive uncertainty Wadd is a � � � diagonal matrix with

each diagonal entry as wadd�

The pole locations used to derive the MIMO structural model do not exactly corre	

spond to the natural frequencies and damping levels of the structure� �see Figs� �����

and ������ These errors or variations in the �rst �� modes are accounted for by intro	

ducing parametric uncertainty in the state space coe�cients� It is not important to

include parametric uncertainty in the other modes since they are to be gain stabilized

based on the additive uncertainty weight selected�

Parametric uncertainty is modeled as complex variations in the control design pro	

cess� Since this may introduce conservatism in the control design� it is important

to carefully select which state space entries are to be perturbed� It turns out that

��
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complex perturbations in the damping levels lead to variations in the damping levels

and structural natural frequencies in the system model ��� ���� In this problem� the

A matrix of the state space realization of the experimental structure is transformed

to bidiagonal form and only the �rst element of each �� � natural frequency block is

perturbed� This corresponds to complex uncertainty in the damping values of each

mode� A complex perturbation of the damping values results in a small change in

the natural frequency and a signi�cant change in the damping level of that mode�

There is a variation of ���! in natural frequency and ��! in damping level of the

�rst mode when the �rst element of the �� � submatrix corresponding to this mode

is perturbed by ��!� Wp in Fig� ���� is an �� � �� diagonal matrix with ���� as

the diagonal elements which represents the perturbation on the �rst elements of the

� � � bidiagonal modal matrices� This weight corresponds approximately to ��!

uncertainty in the damping values of the �rst �� modes�

The resulting � input� � output H� controller has �� states� Fig� ���� shows

a singular value plot of the loop transfer function� The controller expends most

of its e�ort in the mid frequency range� the region where the peaks of the loop

��



transfer function singular value plot are above �� to achieve the desired performance

objectives and rolls of around �� rad�sec� These results are consistent with the

shapes of the additive uncertainty and performance weights� The robust stability�

nominal performance and robust performance plots for the controller are shown in

Fig� ����� A maximum value of ��� on the robust stability plot indicates that stability

is guaranteed for the set of systems described by the uncertainty model� A maximum

� value of ��� indicates that a worst case performance level of ����� is achieved for

all the plants with in the uncertainty set� A comparison of solid and dotted lines in

Fig� ���� shows that there is almost no di�erence between complex and real�complex

� values� This is due to small parametric uncertainty in the low frequency modes of

the model� The system has the modes with the largest amplitude around �� rad�sec

and performance objective dominates at that frequency �robust performance � ���

and nominal performance � ����� The low value of the robust stability plot at high

frequency range shows that the unmodeled dynamics are not the driving factor in the

design�
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The controller is implemented on the structure and the responses to a sine	sweep
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disturbance through actuator � are shown in Figures� ���� and ����� Experimental

results show that an attenuation ratio of approximately ����� is achieved on channels

� and �� This is very close to the desired performance ratio of ���� This shows that

the real plant is in the set of plants de�ned by the nominal identi�ed model and the

additive and parametric uncertainties�

The simulation results are shown in Figs� ���� and ����� The amount of attenuation

on the simulation results are in agreement with the experimental results� The low

frequency peaks of the transfer function in the simulation data are not attenuated as

well as the experimental transfer function data� This may be due to smaller damping

values for those modes in the identi�ed model than the real system�

��



10
1

10
2

10
−2

10
−1

10
0

10
1

Transfer function from actuator 2 to accelerometer 4

Frequency (rad/sec)

M
ag

ni
tu

de
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Chapter �

Performance Criteria and Feedback

Signal Selection

An interesting area to investigate for active vibration attenuation in �exible struc	

tures is the selection of error signals and performance weights that directly re�ects

the performance objectives� This issue is investigated by designing eight vibration

attenuation controllers using �	synthesis technique in this chapter� Six of these con	

trollers use collocated displacement and noncollocated acceleration feedback� one uses

collocated velocity feedback and one uses only noncollocated acceleration feedback�

The level of uncertainty is held constant among the controllers using the same feed	

back information� Performance objectives are related to velocity� acceleration and

displacement signals that are penalized in turn at di�erent locations� The results of

this investigation show the direct relationship between the weighted error signals and

performance�

��




�� Control Problem Formulation and Objectives

Structured Singular Value ��� synthesis technique is used to design controllers for the

�exible structure� For a detailed explanation of this technique see reference ����

g

g
gSY Snom

� Wadd

Wnoise
dnoise

K

�

�

Wperf

error signal

�

�

�

Wdist

disturbance

�

�

�

Wact

actuator limits

�

�

�

�

�

��

Figure ���� Block diagram formulation of the control problem

A block diagram formulation of the control problem is shown in Figure ���� SY Snom

represents the identi�ed nominal model of the structure� For velocity feedback case

this model has three inputs and three outputs and for acceleration�displacement

feedback the model has three inputs and six outputs� These models are obtained by

the frequency domain least squares curve �tting technique discussed in Section ����

The weight Wdist is selected as � for each input channel� The noise on the measure	

ment channels are represented by dnoise� Wnoise is a diagonal matrix with diagonal

elements equal to ����� This represents a signal to noise ratio of ��� on all the

��
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Figure ���� Magnitude plot for the additive uncertainty Wadd �solid� and singular

value plot for the experimental transfer function from actuator � to all the sensors

�dashed�

channels�

Wact penalizes the actuator action and is selected to be a diagonal matrix with ���

as the diagonal elements� This scales the output of Wact to one when the actuator

force is �� lbs �see Section �����

Unmodeled dynamics of the structure are accounted for in the control design process

via an additive uncertainty model� Wadd� around the nominal model� The unmod	

eled dynamics represent high frequency modes outside the desired control bandwidth

that may cause instability in the closed	loop system if unaccounted for in the design

model� The magnitude of the additive uncertainty weight is selected to cover the

transfer function response of these modes� The magnitude plot of Wadd for displace	

ment�acceleration feedback cases and the singular value plot of the transfer function

from actuator � to all the sensors is shown in Figure ���� The input signal excites the

structure up to ��� rad�sec� hence the noisy part of the transfer function above ���

rad�sec in Figure ��� does not represent the true dynamics of the structure� In this

��



research Wadd is held �xed for the designs that use the same feedback information in

order to be able to see the e�ects of performance weight selection on the results� The

additive uncertainty weight for displacement�acceleration case is given by

Wadd �
���s� � ��s � �
���

s� � ����s� �
���

For velocity feedback case� Wadd is scaled by ���� and for the acceleration feedback

case

Wadd �
���s� � �
��s � �����s� 
���� ����

s� � ��
s� � �����s� ���� ���

Wperf is the transfer function that represents the performance weight� The shape

of this transfer function and the error signal it is applied to re�ects the performance

objectives of the controller design process� This relation will be investigated in detail

in the following section�


�� Experimental Results

Eight controllers are designed for the �exible structure� Table ��� shows the outputs

being penalized �error signal�� feedback information being used and the location of the

error signal for each design� In each design the performance objective is to minimize

the maximum transfer function frequency response between the input disturbances

and the weighted error signals� The frequency range of interest is between � Hz and ��

Hz which contains �rst nine �exible modes of the �exible structure� The performance

weight� Wperf � is chosen as a constant value for the frequency range of interest for all

the designs in order to make the comparison between the cases easier and more fair�

although frequency dependent weights would provide better results in most cases�

��



Feedback Error signal type Error signal location

case � acceleration�displacement displacement actuators

case � acceleration�displacement displacement acceleration sensors

case � acceleration�displacement acceleration acceleration sensors

case � acceleration�displacement velocity acceleration sensors

case � acceleration�displacement velocity actuators

case � acceleration�displacement acceleration actuators

case 
 velocity velocity actuators

case � acceleration acceleration accelerometer sensors

Table ���� Feedback and Error Signals

The disturbance to error signal transfer functions are �rst scaled to one and Wperf is

used to determine the amount of attenuation of the frequency response peaks�

A description of each case follows and experimental results are presented in Figures

��� 	 ����� In each �gure the frequency response of the transfer functions from

actuator � to accelerometer � and displacement sensor � are given� The other channels

have very similar characteristics to the ones displayed�

Case �� Displacement error is penalized with a constant weight at actuator loca	

tions� From Figure ��� it is seen that the controller performs very well in minimizing

the displacement error� The peaks are approximately at the same level� This ex	

actly is the goal being posed by a constant performance weight on the displacement

channels� Considering the acceleration signals however� the controller has a poor

performance� Only the �rst bending and second torsional modes are attenuated� If

the performance objective was the attenuation of vibration in the entire structure�

penalizing displacement signals at actuator locations with a constant weight would

not be a good choice�

Case �� Penalizing displacement signals at accelerometer locations which is a non	

��



collocated performance objective improves the attenuation of structural vibration at

the third bay� From Figure ��� it can be seen that the �rst and second bending

modes are signi�cantly attenuated� It is interesting to note that Controller � does

almost as good as Controller � in attenuating the displacement signals at actuator

locations� Overall� Controller � performs better in attenuating the vibrations at bay

� than Controller ��

Case �� Controller � signi�cantly attenuates the structural vibrations at the ac	

celerometer locations when acceleration signals at accelerometer sensor locations are

used as the performance objective� This also is a noncollocated performance objective�

Displacement signals at actuator locations are also attenuated� The main di�erence

between Controller � and Controller � is that Controller � attenuates vibrations in the

mid frequency range� ��	��� rad�sec� better than Controller � although Controller �

attenuates low frequency vibrations� �rst bending and torsional modes� better� This

is expected since an approximate double integrator is used in design � to obtain the

displacement signals at accelerometer locations and this emphasizes the low frequency

modes more�

Case �� Selecting the performance objective of minimizing velocity at the accelerom	

eter locations� a noncollocated criteria� results in a controller very similar to Case ��

The low frequency modes are not as signi�cantly attenuated as with Controller ��

although better attenuated than in Controller �� This again is due to the integra	

tor being used to obtain velocity signals from acceleration measurements� Often the

overall performance objective is not just to attenuate acceleration velocity or displace	

ment� therefore a frequency dependent weight would be used to capture the desired

performance objective�

Case �� A similar performance goal is posed for case � as case �� In this case veloc	

ity signals are penalized at displacement sensor locations� a collocated performance

��



objective� again with a constant performance weight� From Figure ��
 it can be seen

that the controller performs very well on the displacement channel� all the peaks are

at the same level� The acceleration signals are not attenuated as well� This is the

main di�erence between case � and �� This result should also be compared with the

�rst case� The only di�erence between these cases is the di�erentiator that creates

the velocity signal in case �� Due to the di�erentiator action the higher frequency

modes are emphasized more and attenuated better in case ��

Case �� Controller � is designed to minimize the acceleration response at the dis	

placement sensor locations� As can be seen from Figure ���� this controller performs

very well at the high frequency� ��	��� rad�sec� structural modes at displacement

sensor locations� Unfortunately the performance of the controller at accelerometer

locations is not as good� Also low frequency modes of the structure are poorly atten	

uated� This type of controller may be of interest in vibration isolation applications�

Case 	� Controller 
 is designed using velocity sensors collocated with the actuators

to attenuate velocity signals at the sensor locations� This is not exactly collocated ve	

locity feedback since cross coupling between the actuators and the sensors is allowed�

Overall this controller performs poorly when compared with the previous designs�

The main objective of this design is to increase the damping levels of the structural

modes� therefore the controller may improve the damping but not the overall magni	

tude of the response� The results of this design are often not what is desired based

on the performance objectives�

Case �� In case � only acceleration feedback is used and a performance weight

that approximates a double integrator in the frequency range of interest is applied

to the acceleration signals at accelerometer locations� Comparing the results shown

in Figure ���� with that of case � and � it is seen that the vibrations in the third

bay can be attenuated by using noncollocated acceleration feedback alone� It is an

��



important observation since accelerometers are accurate and can be placed at the

desired locations on the structure easily�


�� Summary

This chapter focused on the selection of error signals and performance weights for

active vibration attenuation in �exible structures� It is shown that the controllers

may succeed in achieving what is being asked for by the design criteria but this

may not be the overall desired result� As seen in �	synthesis design the choice of

performance weightings and the signals being penalized play an extremely important

role and they must be selected based on the performance objectives�

The type of attenuation desired �acceleration� velocity� displacement at collocated

and noncollocated locations� and the frequency range of interest are factors that

dictate the choice of penalty weights and error signals as well as sensor locations�

In the above cases penalizing signals measured at accelerometer locations gave good

results� This has the advantage that acceleration measurements are accurate and

sensors can be placed anywhere on the structure easily� This �exibility leads to the

problem of selecting optimal sensor locations for �exible structures which will be

considered in the next chapter�

Collocated velocity feedback did not provide a good level of attenuation at the sensor

locations when compared with the other designs� This type of feedback is often used

in increasing the damping of the modes but may be a poor choice for attenuating the

vibrations at locations other than at the actuators on the structure�

�
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Figure ���� Case �� Frequency response of the transfer functions from actuator � to

accelerometer � and displacement sensor �� Displacement is penalized at actuator

locations�
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Figure ���� Case �� Frequency response of the transfer functions from actuator � to

accelerometer � and displacement sensor �� Displacement is penalized at accelerom	

eter locations�
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Figure ���� Case �� Frequency response of the transfer functions from actuator � to

accelerometer � and displacement sensor �� Acceleration is penalized at accelerometer

locations�
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Figure ���� Case �� Frequency response of the transfer functions from actuator � to

accelerometer � and displacement sensor �� Velocity is penalized at accelerometer

locations�
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Figure ��
� Case �� Frequency response of the transfer functions from actuator � to

accelerometer � and displacement sensor �� Velocity is penalized at actuator locations�
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Figure ���� Case �� Frequency response of the transfer functions from actuator �

to accelerometer � and displacement sensor �� Acceleration is penalized at actuator

locations�
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Figure ���� Case 
� Frequency response of the transfer functions from actuator � to

accelerometer � and displacement sensor �� Velocity is penalized at actuator locations

using only velocity feedback�
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Figure ����� Case �� Frequency response of the transfer functions from actuator � to

accelerometer � and displacement sensor �� Acceleration is penalized at accelerometer

locations using only acceleration feedback�
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Chapter �

Optimal Sensor Placement

Choosing an e�ective set of sensor measurements is essential for designing controllers

to achieve stringent performance and robustness objectives� Often control require	

ments are not considered in the design stage for physical systems and the location

of sensors for control are chosen in an ad hoc manner� Flexible structures are espe	

cially challenging systems to determine sensor locations and types due to the large

number of lightly damped modes to be controlled� Also� tradeo�s need to be con	

sidered which balances the number of sensors needed to observe a large number of

modes while simultaneously considering the added weight cost and quality of these

additional sensors�

One approach to the selection of sensor locations is to consider a cost function which

includes the observability grammians in minimizing a cost function� Skelton and

DeLorenzo consider a cost function as an LQG performance metric formulated as the

root mean square contribution of each sensor output� Sensors associated with small

cost functions may be removed due to their low e�ectiveness ����� Similar approaches

are developed using modal properties� Kim and Jenkins choose a performance metric

based on modal controllability weighted by the modal cost of Skelton ����� This

��



approach emphasizes both the degree of controllability and modal participation in

the performance criteria� An alternative approach by Lim involves the relationship

between grammian singular values and modal observability ��
�� The performance

metric is a weighted modal projection with actuator and sensor pairs chosen such

that principal directions are parallel to the modes with large singular values� In �
�

Balas and Young develop a sensor selection technique that takes into account the

closed	loop performance objectives� Di�erent sensor locations are compared based on

the information each group of sensors can observe� The information is quanti�ed in

terms of the associated H� cost of estimating the full system state�

This chapter considers a technique based on Full Control synthesis for choosing a

sensor con�guration� In this technique it is possible to include the system uncer	

tainties and closed	loop performance objectives into the sensor selection process� The

Full Control system allows the controller to independently a�ect every state and error

signal� Computing the optimal Full Control controller is equivalent to computing the

optimal controller for a given set of sensors� Synthesis of globally optimal controllers

to minimize an H� or � upper bound is formulated in the Linear Matrix Inequal	

ity �LMI� framework for Full Information feedback and extended here to the dual

problem of Full Control synthesis ���� ��� ��� ����

The con�guration of feedback sensors is closely associated with the issue of control

design� The optimal closed	loop system requires an optimal con�guration of sensors

and optimal gains in the compensator� Optimality in only one of these areas will

restrict the achievable performance and robustness of the closed	loop system� Uti	

lizing the Full Control system is advantageous for synthesis and analysis of sensor

con�guration since a Full Control compensator can be computed which is globally

optimal� The procedure will not be a�ected by local minima associated with control

synthesis�

��



The technique presented in this thesis considers a chosen set of sensor locations�

Globally optimal Full Control compensators are computed at each of these locations

to determine the maximum performance and robustness level achievable� The sensor

locations chosen for implementation on the physical system correspond to the sensor

locations achieving the best Full Control performance� There is no guarantee that the

optimal Full Control sensor locations are equivalent to the optimal sensor locations

for a general output feedback controller� however� experiments indicate this technique

can choose e�ective con�gurations for a physical system�

The proposed approach easily allows a sensor con�guration to be determined by

considering variations in both type and location of sensors� The plant model used to

design controllers for these con�gurations may be generated from experimental trans	

fer functions or from a computational �nite element model� Additionally� choosing

actuator con�guration using globally optimal Full Information synthesis is a natural

extension to this technique�

Sensor con�gurations are chosen for a �exible structure using the method described

in this section� Several sets of sensor locations are considered for feedback measure	

ments to achieve vibration attenuation at di�erent positions on the structure� Glob	

ally optimal Full Control compensators are computed to determine the best sensor

con�guration of the sets� Output feedback controllers are generated and implemented

on the experimental structure using feedback from these sensor con�gurations�

��� Optimally Scaled H� Problem

Consider a linear time	invariant plant P �s� mapping the input signals d and u into

output signals z and y�

��



P�� P��

P�� P���y

�z

� u

� d

The state space description of P �s� is written as
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where A � Rn�n� B� � Rn�nd� B� � Rn�nu� C� � Rne�n� C� � Rny�n � and the E

matrices of appropriate similar dimensions�

De�ne KP as the set of all real� rational� proper controllers� K�s�� which stabilize

the closed	loop system� Analyzing performance using the induced H� norm leads

to the following minimization problem for Fl�P�K� which is the linear fractional

transformation �LFT� for the lower loop of P closed with the controller K �see Section

�����

inf
K�K

sup
��R

� �Fl �P ����� K������ � inf
K�K

kFl �P�K� k�

This is an H� optimal controller synthesis problem which has been explained brie�y

in Section ����

In this section the problem of minimizing the scaled H� norm will be explained�

Consider the set of scalings de�ned as

D �
n
diag

�
DR

� � � � � � D
R
m� D

C
� � � � � � D

C
n � d

c
�Ic� � � � � � d

c
pIcp

�

The optimally scaled H� problem is ���� ���

�opt � inf kD �
�Fl�P�K�D� �

� k�
D � D
K � KP

�������
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Since the uncertainty block � and the scaling block D commute the following rela	

tions hold

Fu�D
�
�PD

��
� ��� � Fu�P���

���D
�
�PD

��
� � 	 ��P ��

Hence� the D scalings provide a way of taking in to account the structure of the

uncertainties and the constant �opt in de�nition ����� is an upper bound for � �see

section ����

The solution of the scaled H� problem is not convex and an exact solution does

not exist ����� With some simpli�cations on the problem data however� the optimally

scaled H� problem can be cast as a LMI problem which gives a global minimum for

�opt� In the next section optimal H� problem will be formulated as a convex LMI

problem and full control problem will be explained�

��� LMIs and Full Control Problem

The LMI feasibility conditions utilize a matrix T� which is formulated for a real scalar

� � ��

T� �

�
� I

p
��Ip

��I �I

�
�

This matrix is used to compute the following star product LFT �

Fs�T��M� �

�
� �I � �A� �I � �A���

p
�� �I � �A���Bp

��C �I � �A��� E � �C �I � �A���B

�
�

The block diagram for the star product is shown in Figure ���

Computing the star product with T� has several important properties� The most

immediately noticed property is the relationship between the star product and the
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Figure ���� Star Product

bilinear transformation� The matrix �P � Fs�T�� P � is the discrete	time formulation

of the continuous	time plant P � The star product also has a commutation property

such that Fs �T�� Fl�P�K�� � Fl�P� Fs�T�� K���

The following theorem demonstrates a constant matrix condition� formulated using

the star product� which is equivalent to an H� condition �����

Theorem �
�
� Given the state�space plant P �s�� its associated constant matrix data

MP � and the set D of scaling matrices� the following are equivalent�

�� There exists D � D and stabilizing K � KP such that

kD �
�Fl�P�K�D� �

�k� � �

�� There exists D � D and stabilizing K � KP along with real X � XT � � such

that with Z � diag�X�D��

�
�
Z

�
�Fs�T�� Fl�MP � K��Z�

�
�

�
� �


� There exists D � D and stabilizing K � KP along with real X � XT � � such

that with Z � diag�X�D��

�
�
Z

�
�Fl�Fs�T��MP �� K�Z�

�
�

�
� �

�




Now perform a change of variables� Denote fR�U� V� Tg as elements of the constant

matrix term involving the star product Fs�T��MP �� Introduce Q to replace K�I �

TK��� in the closed	loop LFT for notational convenience�

Fl �Fs �T��MP � � K� � Fl

�
�
�
� R U

V T

�
� � K



A � R � UQV

The �nal theorem presents the pair of LMI optimizations that represent the H�

controller feasibility condition for a general output feedback system� The variant of

Parrott s theorem is applied to the constant matrix condition involving the maximum

singular value �����

Theorem �
�
� Given the state�space plant P �s� and associated constant matrixMP

with the star product elements Fl �Fs �T��MP � � K� � R � UQV along with the set D
of scaling matrices� then the following are equivalent�

�� There exists stabilizing K � KP and D � D such that

kD �
�Fl�P�K�D� �

�k� � �

�� There exists stabilizing K � KP and D � D along with real X � XT � � such

that with Z � diag�X�D��

�
�
Z

�
� �R � UQV �Z�

�
�

�
� �


� There exists stabilizing K � KP and D � D along with real X � XT � � such

that with Z � diag�X�D��

�
�
UT
�

�
RZ��RT � Z��

�
U�
�
� �

�
�
V�

�
RTZR� Z

�
V T
�

�
� �

��



����� Full Control Problem

When the state	space representation of the plant Pfc is in the special form

Pfc �

�



�

A B �I ��

C� E�� �� I�

C� E�� �� ��

�
����

the controller will have direct access to states and disturbance signal� This special

problem is called the full control problem� De�ne MPfc as the constant matrix asso	

ciated with the state	space elements of Pfc� Formulate the R�U� V elements of the

star product term Fs

�
T��MPfc

�
�

R �

�
� �I � �A� �I � �A���p

��C� �I � �A���

p
�� �I � �A���B�

E�� � �C� �I � �A���B�

�
�

U �

�
�
p

�� �I � �A���B�

�C� �I � �A���
�

I

�
�

V �
hp

��C� �I � �A��� E�� � �C� �I � �A���B�

i

The matrix U is square and invertible for the Full Control system� This full rank

condition is anticipated by the complete controllability of this system� A linearly

independent set of control vectors are available to a�ect the states and error outputs

of the plant� Correspondingly� the perpendicular subspace� U�� utilized in the LMI

conditions for H� controller feasibility is null�

The feasibility condition for existence of an H� controller for Full Control feedback

is reduced to a single LMI� The LMI involving U� in Theorem ����� is vacuous and

automatically satis�ed� The remaining LMI involving variables V and V� constitutes

the only condition for Full Control feasibility as demonstrated in Theorem ������

��



Theorem �
�
� Given the Full Control plant Pfc and scaling set D� de�ne the fol�

lowing �

�� The augmented scaling matrices Z

Z �

��
�
�
� X �

� D

�
� � � � X � XT � Rn�n� D � D

��
�

�� Real scalar � � �� so that �I � �A� is invertible


� R and V as de�ned above

�� V� such that V TV� � � and

�
� V

V�

�
� is invertible

Then� there exists a stabilizing K � KPfc and a constant D � D such that

���D �
�Fl �Pfc� K�D� �

�

���
�
� �

if and only if the following convex set is nonempty�

fZ � Z � �max �V� �R�ZR� Z�V ��� � �g 
� f�g

��� Optimal Sensor Placement for the Flexible

Structure

The technique of selecting sensor locations based on full control synthesis is applied

to the University of Minnesota �exible structure �Chapter ��� The results in Chapter

� of this thesis show that accelerometer feedback is more e�ective than displacement

feedback for vibration attenuation and accelerometers provide greater freedom in

sensor location selection� hence only optimal placement of accelerometer sensors are

considered�

The accelerometers are grouped as follows�


�



a��� a
�
�� a

�
� accelerometers in Bay �

a��� a
�
�� a

�
� accelerometers in Bay �

The superscripts designate the side of the �exible structure on which the sensors are

located and the accelerometers measure accelerations along the directions parallel to

the sides of the triangular plates they are attached to �Fig� �����

Six sensor locations are chosen as the candidate optimal sensor locations� The plant

models for these sensor locations are obtained by using the least squares frequency

domain identi�cation technique explained in Chapter �� The nominal sensor locations

are shown in Table ���� The block diagram for the control problem formulation is

shown in Figure ���

Location$ Sensor combination

� a��� a
�
�

� a��� a
�
�� a

�
�

� a��� a
�
�

� a��� a
�
�� a

�
�

� a��� a
�
�

� a��� a
�
�

Table ���� Nominal sensor locations

The additive uncertainty block Wadd is given as

Wadd � �
s� � 
�s� �
��

s� � ���s� �����

The performance objective is to attenuate the bay � and bay � accelerations� For

this� the acceleration measurements are penalized� Wper in �g ��� represents the

performance penalty and given for bay � and bay � as

W bay�
per �

���

��
W bay�

per �
���

��
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Model�Wperf
�

errors

�Wact
�actuator

penalty

�Wadd
��add

�e�

�eWnoise
�

noise
� � feedback

measurements

disturbances

�

Wdist

�e� � control
input

Figure ���� Flexible Structure Block Diagram

These performance weights approximately correspond to an attenuation ratio of ���

of the largest peak at the frequency range of �� to ��� rad�sec�

Wnoise is a diagonal matrix with ���� as the diagonal elements� This corresponds

to a �! noise uncertainty on the acceleration measurements� A constant weighting�

Wdist � ���� is included to normalize the disturbance signal a�ecting each actuator�

To limit the actuator command signals in the control design process to �� volts

���lbs�� a value of ��� is used to weight each actuator signal� The weight Wact is

�
�
I����

Full control compensators are computed for the sensor locations in Table ���� The

error signals to be attenuated are either bay � accelerations �a��� a
�
�� a

�
�� or bay �

accelerometers �a��� a
�
�� a

�
��� The � performance levels for the optimal Full Control

compensators are given in Table ����

The second column of Table ��� shows the e�ectiveness of the six sensor con�gura	

tions in attenuating the bay � accelerations� The most e�ective sensor con�guration
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Feedback
Accelerometers

bay �

Performance

k��� ��� ��k�

bay �

Performance

k��� ��� ��k�
��� �� ���
� �����

��� ��� �� ����� ��
��

��� �� ����� �����

��� ��� �� ����� �����

��� �� ����� �����

��� �� ����� �����

Table ���� Achievable Full Control � Performance Levels

for bay � vibration attenuation is to use three sensors in the same bay� Feedback

con�gurations using all bay � sensors or using all bay � sensors achieve � � ����

for Full Control closed	loop performance� These performance levels are similar since

the set of sensors in each bay is able to observe the dynamics of bay �� Each set of

accelerometers is able to provide su�cient information to the controller to attenuate

the bay � vibration responses�

Restricting the feedback to only two sensors signi�cantly decreases the optimal per	

formance level� The � values increase by approximately a factor of � when using

f��� ��g as compared to f��� ��� ��g for feedback� The performance decreases even

more if the two sensor are aligned in the same direction� The � of ���� is for f��� ��g
is twice the � � ���� value achieved when using f��� ��g� This is due to the fact that

one of the bending modes can only be sensed partially with a two sensor con�guration�

The results in Table ��� are based on Full control design which assumes full au	

thority of the actuators which is not practical� However� the assumption is that the

controllers designed by D	K iteration will have similar performance to the full control

controllers in terms of preserving the sensor con�guration relations� Output feedback

controllers are generated using D�K iteration for vibration attenuation of the bay �
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accelerometers� Separate controllers are designed for � di�erent feedback con�gura	

tions� The �rst controller� K�
� � will use the � sensors in bay � to control vibration in

bay �� The second controller� K�
� will feedback the � sensors in bay � to attenuate

vibration in bay ��

Robust stability is plotted for each controller in Figure ���� The peak robust stability

singular values are ����� for K�
� and ����� for K�

� � � value is less than one for each

controller which indicates that the desired robustness objectives are achieved�

10
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m
u

Bay 3 feedback − SOLID
Bay 4 feedback − DASHED

Figure ���� Robust Stability

Nominal performance is also calculated for each controller as ����� for K�
� and �����

for K�
� � The weighted norms greater than � indicate neither controller is able to

achieve the desired performance objectives� Nominal performance is plotted in Fig	

ure ���� The robust performance � values for each controller is given in Figure ����

The � upper bounds are computed as ����� for K�
� and ����� for K�

� � Each controller

gives a peak � greater than � indicating robust performance is not achieved for either

output feedback controller�

The robust performance � plots are of similar shape for each controller with peaks at

the modes� though � for K�
� is much higher� Both controllers are driven by meeting

the performance goals as evidenced by Figure ����
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Figure ���� Nominal Performance
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Figure ���� � for Robust Performance

The � values resulting from full control synthesis indicate that the same performance

could be achieved by bay � and bay � acceleration feedback� The poor performance

of the D	K iteration controller K�
� may be explained by the fact that the full control

results are globally optimal whereas D	K iteration may result in a controller far from

the optimal one�

D	K iteration controllers are implemented on the structure �see Section ��� Magni	

tude plots of the experimental transfer functions from actuator � to bay � accelerom	

eters are shown in Figure ���� K�
� provides better attenuation at the mid	frequency

range which agrees with the robust performance plot ����
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Figure ���� Experimental Closed	Loop Peak Gains for bay � Accelerometers with K�
�

��� and K�
� �����

The performances of the optimal full control compensators in attenuating bay �

accelerations using the same sensor con�gurations are shown in the third column of

Table ���� The � values in Table ��� indicate that feedback measurements from bay

� are necessary for adequate attenuation of bay � vibrations� Designing a full control

compensator with only two of the bay � accelerometers gives a � value of ����� and

using all three sensors in bay � achieves a � value of ��
��� Feeding back all three of

the bay� accelerometers achieves a � value of ������

The need for utilizing bay � accelerometers to control bay � vibrations can be seen

by the open	loop responses in Figure ��
� A torsional mode exists at �� rad�sec that

is clearly observable by bay � but does not appear in the frequency response data

of bay �� Any feedback con�guration utilizing only bay � sensors fails to provide

information to the controller about the torsional mode dynamics at this frequency�

Consequently� the controller can not adequately e�ect these dynamics as is demon	

strated by the poor closed	loop performance�
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celerometers

Two output feedback controllers are synthesized using D�K iteration for vibration

attenuation of the bay � accelerometers� K�
� � uses bay � accelerometers to control

vibration in bay �� K�
� � uses bay � accelerometers to attenuate vibration in bay ��

Figure ��� shows the robust stability plots for bay � controllers� K�
� and K�

� both

achieve robust stability with largest singular values of ��
� and ��
� respectively�
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Figure ���� Robust Stability

The nominal performance plots are shown in Fig� ���� The nominal performance

value for K�
� is ��� and for K�

� it is ����� A value greater than � indicates that

performance objectives can not be achieved used only bay � accelerations�
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The robust performance � values for each controller are given in Figure ����� The

� upper bounds are computed as ���� for K�
� and ���
 for K�

� � The controller using

bay � feedback� K�
� � is able to achieve robust performance while K�

� is unable to

achieve the desired robustness goals due to its associated � being greater than ��
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Figure ����� � for Robust Performance

Implementing each controller on the experimental �exible structure produces per	

formance levels which agree with the Full Control synthesis results� Using bay �

accelerometers as feedback measurements allows better vibration attenuation than

using bay � feedbacks� Peak gains of closed	loop transfer functions from the experi	

mental �exible structure are presented in Figure ����� K�
� demonstrates the expected

poor performance in attenuating the �� rad�sec mode while K�
� is able to attenuate
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each mode to nearly equal peak gains as expected by the � plots�
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Chapter �

Summary and Conclusions

In this thesis system identi�cation� performance criteria selection and optimal sensor

placement for �exible structures are examined� The ideas developed are tested on an

experimental �exible structure�

A system identi�cation technique based on orthonormal basis functions is applied to

identify input�output response of the experimental �exible structure� This resulted

in identi�ed SISO models for each input�output channel of the data� The a	priori

information about the poles of the experimental structure for the orthonormal basis

identi�cation is obtained from a classical linear least squares identi�cation technique�

A matrix partial fraction expansion method is used to obtain a MIMO state space

realization of the experimental structure from individual SISO systems� This model is

used to design a high performance vibration attenuation controller using H� control

techniques� This controller is implemented on the structure and good agreement is

observed between the predicted and experimental performance�

Unlike most of the feedback design problems there usually is a freedom to choose

the signals to be penalized and the signals to be fed back in �exible structure control

��



design� The next area of research focused on the selection of error signals and perfor	

mance weights for active vibration attenuation in �exible structures� It is shown that

the controllers may succeed in achieving what is being asked for by the design criteria

but this may not be the overall desired result� The choice of performance weightings

and the signals being penalized play an extremely important role and they must be

selected based on the performance objectives� The type of attenuation desired �ac	

celeration� velocity� displacement at collocated and noncollocated locations� and the

frequency range of interest are factors that dictate the choice of penalty weights and

error signals as well as sensor locations� Penalizing signals measured at accelerometer

locations gave good results� This has the advantage that acceleration measurements

are accurate and sensors can be placed anywhere on the structure easily�

The results on performance criteria selection leads to the question of sensor location

selection on �exible structures� In the last part of this thesis a technique based on

full control design is presented for selecting optimal sensor locations� The technique

is optimal in the sense that it selects the best sensor con�guration among a given

set of sensor locations� Globally optimal Full Control compensators are computed

at each of these locations to determine the maximum performance and robustness

level achievable� The sensor locations chosen for implementation on the physical sys	

tem correspond to the sensor locations achieving the best Full Control performance�

There is no guarantee that the optimal Full Control sensor locations are equivalent to

the optimal sensor locations for a general output feedback controller� however� exper	

iments indicate that this technique can choose e�ective con�gurations for a physical

system� In this technique model uncertainties and closed	loop performance objectives

can easily be incorporated into the sensor placement process�

There are two obvious areas that can be considered as extensions to the research

presented in this thesis� The �rst is to develop a systematic technique for re�ning

the a	priori pole location information necessary for identi�cation with generalized

��



orthonormal basis functions and a quantitative examination of the sensitivity of the

identi�cation technique to the errors in pole locations� The second research area is

the optimal placement of actuator locations for closed loop control� This problem

is dual to optimal sensor placement problem and can be formulated as a Full in	

formation synthesis problem� It may also be interesting to formulate the optimal

sensor�actuator placement problems so that elements of B and D matrices of the

state space representation are found rather than selecting one location among a given

set of locations�
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