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Abstract

System identification and sensor type selection and placement problems are examined
for flexible structures in this thesis. System identification with generalized orthonor-
mal basis functions prove to be suitable for modeling flexible structures. Generalized
orthonormal functions allow for the incorporation of a-priori information about the
system into the identification process in the form of approximate pole locations. It is
shown that specifying the pole location at the beginning of the identification process
leads to a low order minimal multivariable realization for flexible structures. It is
observed that the system poles play an important role in the accuracy of the model,

therefore a method for refining the pole locations is developed.

In a control design problem, the performance requirements and feedback signals are
usually assumed to be given. However, for flexible structures, due to the order of the
structural model and limited effectiveness of the lumped sensors and actuators, the
performance requirements and optimum location for sensors are not obvious. Hence
defining the objectives of active control is an important part of control design. In this
thesis the role of performance criteria selection for vibration attenuation of flexible
structures is investigated. It is shown that using non-collocated acceleration feed-
back has advantages over collocated displacement and velocity feedback when the
performance objective is vibration attenuation. A natural extension of choosing per-
formance requirements and feedback signal types is the optimal placement of sensors.
A technique based on full control synthesis is developed for finding the optimal sensor
locations. An experimental four story flexible structure is used to test the results.
Experimental results show that the sensor locations based on full control synthesis

are effective for output control design.
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Chapter 1

Introduction

Lightly damped, flexible structures are an interesting and challenging field of applica-
tion for robust control and system identification. Future space stations, tall buildings
under earthquake and wind loading, large civil engineering machinery are some of
the examples of flexible structures that require active control for safe and precise

operation.

Closely spaced, lightly damped modes of these structures make the accurate modeling
and control a difficult task. For practical control design, the models of these systems
should not be very complex, and modeling errors in the natural frequencies and
damping levels of the controlled modes and unmodeled high frequency modes should

be taken into account in the control design process.

In the last two decades there has been substantial research in modeling and control
of flexible structures. The main part of this research was concerned with applying
new digital technology and multi-input/multi-output (MIMO) robust control design
techniques to flexible structures [2, 5, 8, 24, 10, 20]. Using smart materials such as

shape memory alloys and magnetorheological fluids as passive damping elements to



augment active control is also a growing area of research [48, 43].

Having an accurate model is an essential step in design of a high performance active
control system. This model may be obtained from first principles, finite element
modeling or system identification. System identification is a method for constructing
a mathematical model for a dynamical system from input-output data. For complex
systems it provides a valuable alternative to modeling from fundamental laws of
physics. Experimental results show that the modeling of large flexible structures
via finite element method may not be accurate enough for high performance active

control design purposes [2].

There are a large variety of system identification techniques for dynamical systems
[32, 37, 24, 21]. However most of these techniques are not well suited to modeling
flexible structures due to the complexity of these systems. Some researchers have
specifically tailored system identification algorithms to identify flexible systems. In
[9], Bayard develops a technique for curve fitting nonparametric frequency domain
data to identify a parametric model composed of two models in parallel, where each
model has dynamics in a specified portion of the frequency band. In [4] Balas and
Doyle use Chebyshev polynomials to fit the single-input/multi-output experimental
frequency domain data ([14]) and an ad hoc model reduction technique based on
a-priori knowledge of the system and singular value decomposition to develop a mul-
tivariable model. In [24] Juang develops a system identification technique specific for
large flexible structures. Markov parameters (sampled pulse or impulse response) of
the system to be identified is calculated from time or frequency domain experimental
data and a multi-input/multi-output (MIMO) state space model and an observer are
constructed from the Markov parameters. Gilpin etal. in [20] present a method of
obtaining a uniquely identifiable, multi-input/multi-output model which avoids the
need for a model reduction algorithm. The state space model is constructed from the

matrix partial fraction expansion of the system transfer function matrix by using a



dyadic decomposition of the matrix partial fraction expansion residue matrices.

The above system identification techniques represent the model in the canonical ba-
sis {z7%,k = 0,1,...}, where 27! is a delay operator. An alternative to representing
a system model in canonical basis is to represent the system model in terms of the
orthonormal basis generated by the a-priori information about the poles of the system
[22, 36, 49, 19]. In the first part of this thesis the application of system identifica-
tion technique using orthonormal basis functions to flexible structures is examined.
System identification with orthonormal functions allow the introduction of a-priori in-
formation about the system poles into the system identification process. It is shown
on an experimental structure that this provides advantages for identifying MIMO
models for flexible structures. However this approach is sensitive to the accuracy
of the pole locations, therefore a ad-hoc method is developed for refining the pole

locations.

In a control design problem, the performance requirements and feedback signals are
usually assumed to be given. However, for flexible structures, due to the state order
of the plant model and limited effectiveness of the lumped sensors and actuators, the
performance requirements and feedback signal types are not obvious. Hence defining
the objectives of active control is an important part of control design. In this thesis the
role of performance criteria selection for vibration attenuation of flexible structures is
investigated. Defining the ”correct” performance objective is key to designing a good

controller.

For flexible structures there usually is a freedom in choosing sensor and actuator
locations. A systematic way of finding the optimal sensor locations for accurate and
economic control design becomes an interesting engineering problem. The second
part of the thesis examines the actuator and sensor placement problem for flexible

structures.



One approach to the selection of sensor locations is to consider a cost function which
includes the observability grammians in minimizing a cost function. Skelton and
DeLorenzo consider a cost function as an LQG performance metric formulated as the
root mean square contribution of each sensor output. Sensors associated with small
cost functions may be removed due to their low effectiveness [42]. Similar approaches
are developed using modal properties. Kim and Jenkins choose a performance metric
based on modal controllability weighted by the modal cost of Skelton [26]. This
approach emphasizes both the degree of controllability and modal participation in
the performance criteria. An alternative approach by Lim involves the relationship
between grammian singular values and modal observability [27]. The performance
metric is a weighted modal projection with actuator and sensor pairs chosen such
that principal directions are parallel to the modes with large singular values. In [7]
Balas and Young develop a sensor selection technique that takes into account the
closed-loop performance objectives. Different sensor locations are compared based on
the information each group of sensors can observe. The information is quantified in

terms of the associated Hy cost of estimating the full system state.

The technique presented in this thesis considers a set of candidate sensor locations.
Globally optimal, Full Control H,, based compensators are computed at each of these
locations to determine the maximum performance and robustness level achievable.
The sensor locations chosen for implementation on the physical system correspond
to the sensor locations achieving the best Full Control H,, performance. There is no
guarantee that the optimal Full Control sensor locations are equivalent to the opti-
mal sensor locations for a general output feedback controller; however, experiments
indicate this technique can choose effective configurations for a physical system. In
this technique it is possible to include the system uncertainties and closed-loop per-

formance objectives into the sensor selection process.

The generalized orthonormal basis system identification, performance criteria selec-



tion and Full control sensor placement techniques previously discussed are applied to
an experimental flexible structure located at the Dynamics and Control Laboratory
of Aerospace Engineering Department at the University of Minnesota. The structure
is a four story space truss and was designed to capture the important characteristics

of a flexible structure such as lightly damped and closely spaced modes.

The thesis is organized as follows: In Chapter 2 definitions of signals and systems
are given and an overview of p analysis and synthesis and H,, control design tech-
niques is presented. The experimental University of Minnesota structure is described
in Chapter 3. Dimensions, actuator and sensor types and locations are presented
together with the data acquisition system. Chapter 4 presents system identification
techniques for flexible structures. It begins by explaining the nonparametric identifi-
cation technique used in obtaining the experimental transfer functions of the structure
from time domain data. A least squares frequency domain curve fitting technique is
used to obtain the model of the flexible structure. This model is used to provide
the a-priori information to the system identification technique based on generalized
orthonormal basis functions. Application of identification with generalized orthonor-
mal basis functions to flexible structures and extension of this technique to generate
multi-input/multi-output models constitutes the main part of Chapter 4. In Chapter
5 relations between error and feedback signal selection and performance objectives
for vibration attenuation of flexible structures is investigated. In Chapter 6 a sensor
placement technique based on full control synthesis is developed. Experimental re-
sults of output feedback controllers designed for the sensor locations chosen by this
technique is presented. Chapter 7 gives a summary and discussion of the results and

suggestions for future work.



Chapter 2

Robust Control Design and

Analysis Techniques

The objective of control design is to stabilize the system and improve its performance
in the presence of model inaccuracies or uncertainties. It is assumed that the be-
havior of the system can be represented in terms of a mathematical model and the
mismatches between the mathematical model and the true system, the changes in the
system parameters due to aging, damage, environmental changes etc. are the sources

of uncertainties.

Analysis of a control system consists of quantifying the stability and performance
characteristics of the system. In this thesis, Hy and p-synthesis (D-K iteration)
techniques are used for designing controllers for the flexible structures and complex
and real/complex p-analysis techniques are used to analyze the controllers. This
chapter presents an overview of these techniques. The design method used for optimal
placement of sensors is based on Linear Matrix Inequalities (LMI). This technique

along with a brief introduction to LMIs is presented in Chapter 6.



2.1 Signals and Systems

In the time domain, finite dimensional linear systems can be represented as sets of
linear ordinary differential equations and signals as Lebesgue measurable (for practical
purposes, piece-wise continuous) functions of time. Using Laplace transform, both
signals and systems can be represented as functions of a complex variable, ”s”. In
this chapter, unless otherwise stated, systems (matrix valued functions of s) will be
denoted by upper case letters, such as G(s), H(s) and signals will be denoted by lower
case letters, such as in time domain, z(t),y(¢) and in frequency domain, z(s), y(s).

Signals and systems are classified into spaces based on their properties. Following are

the definitions for some of the signal and system spaces related to H, control theory.

Definition 2.1.1 (2-norm of a signal) 2-norm of a signal (the energy of the signal)

letole = ([ o)’

Definition 2.1.2 (Lebesgue 2-space) The set of signals for which the 2-norm is

18

finite is the Lebesque 2-space:

Ly = {a(t) : flz(t)]l2 < oo}

Definition 2.1.3 (L., norm) L., norm of a system is the supremum of the singular

value when the transfer function matriz is evaluated on the jw axis.

G e = sup (G (jiw))

Definition 2.1.4 (L., space) The space of systems for which the Lo, norm is finite

18 the Lo space.

Ly ={G: |G| < 00}



Definition 2.1.5 (H,, space) The set of systems analytic on the right half plane

with a finite infinity norm is called the H., space.

2.2 H, Optimal Control

Measuring the performance of a system in terms of the oo norm rather than the 2-
norm has advantages in dealing with the uncertainties arising in control design [55].
Consider the linear time invariant systems M and A. The oo norm of these systems

satisfy the submultiplicative property:
[M Ao < [[M||ool| Al

The small gain theorem ([55, 57]) states that a feedback loop consisting of stable
systems is stable if the the loop-gain is less then unity. Submultiplicative prop-
erty together with the small gain theorem states that a plant M is robustly stable
to perturbations A entering the system as shown in Figure 2.1 with [|A]|s < 7 if
[M|loo < 1/7.

==

Figure 2.1: Small gain problem

The goal of H,, design is is to minimize the oo norm of the system M in order to
increase the robustness of the system to the uncertainties represented in the A block.
In H, control the uncertainties in signal and system components are modeled as
stochastic processes whereas in H,, control they are modeled as elements of a bounded

set. Following are the descriptions of modeling uncertainties in H,, framework:



Parametric Uncertainty Parameters in a state space or transfer function repre-

sentation of a system are assumed to lie in a set given as

p € {po+wd,s € [—k, k|}

where pg is the nominal value of the parameter. ¢ is allowed to take any value between
—k and k£ and w is the problem dependent scaling factor. It is common practice to
scale the parametric uncertainty such that & is 1. This type of uncertainty is suitable
in representing uncertain natural frequency and damping levels in flexible structure

modes.

Additive and multiplicative uncertainties

Pl ml

Figure 2.2: a) Additive uncertainty b) Multiplicative uncertainty

The nominal model is assumed to be in the set
{Py + AW, ||A]| < 1}
for additive uncertainty and
{Po(I +AW),[|All <1}

for the multiplicative uncertainty descriptions. In these representations A is a vari-
able, norm bounded stable transfer function and W is a fixed stable transfer function

compatible with the A block.

Coprime factor uncertainty



Perturbing the coprime factors of the model separately allows the introduction of

unstable uncertainty. The set of plants is represented by

P € {(No+ An) (Mo + An) 4 [[[Ax An]l| <€}
where Ny and M, are the coprime factors of the nominal plant Py = N,M, L and

Ay, Ay denote the uncertainty on each factor [56, 18]. Figure 2.3 shows the block

diagram representation for right coprime factor uncertainty.
E - — 1
- Ny Mt

Figure 2.3: Coprime factor uncertainty

In general an uncertain system can be represented in a linear fractional transfor-
mation (LFT) form as shown in Figure 2.4. In this figure, G is the nominal model
together with uncertainty and performance weights and, for analysis problems, the
controller may be absorbed in G. A is a block diagonal matrix with different types

of uncertainties as the block diagonal elements.

[,

G

v

Figure 2.4: Upper Linear Fractional Transformation Structure

The transfer function GG can be partitioned as:

G =

GH(S) GIZ(S) ] . [ z
G21(S) GQQ(S) ’

e

10



g P l——w

Figure 2.5: Lower Linear Fractional Transformation Structure

A block is such that the set of equations is well posed and the vectors e and v are
related by
e=F,(G, A

where
F.(G,A) = Gy + G AL — G11A)71G12

is called an upper linear fractional transformation of G' with A. Similarly, the transfer

function from inputs to outputs when lower loop is closed with A is

F(G,A) = G114+ G1aA(I — GoeA) ' Goy
This is called a lower LFT (Figure 2.5).

Following are some definitions and theorems related to H,, control problem. Proofs

of these theorems are given in [16].

Robust Stability: The controller must stabilize all plants defined by the uncer-
tainty description F,(G, A).

Theorem 2.2.1 The LFT F,(G,A) is stable for all stable A(s) with ||Al|l < 1 if
and only if |G|l < 1

11



e P(s) v

Figure 2.6: General Structure

Nominal Performance: In addition to stability the closed-loop system should

satisfy performance requirements.
Theorem 2.2.2 Nominal performance is achieved if and only if ||Gaslle0 < 1.

Robust Performance: The performance specifications must be satisfied by the

closed-loop system for all plants defined by the uncertainty description.

Consider the general framework shown in Figure 2.6. P(s) represents the system
interconnection structure, K the controller and A the perturbations or uncertainties.
v is a vector of exogenous inputs such as reference commands, disturbances and noise.
e is a vector of error signals to be kept small, y is a vector of sensor measurements

and u is a vector of control signals.

For design purposes the A block is eliminated and the input-output map from [w v]*
to [z €]” is expressed in LFT form as

:]-men] ]

This structure is shown in Figure 2.7. For the H., optimal control problem, the

:Fl(PaK)

objective is to find a stabilizing controller K which minimizes || F}(P, K)|| -

12



Z+— D E—V V)

Figure 2.7: Synthesis structure

Initially the H,, problem was formulated in an input output framework [54, 55]. The
solution techniques were based on Nevanlinna-Pick interpolation or methods based on
operator theory [47, 1]. These techniques had difficulties in solving multi-input/multi-
output systems. In the following years state space algorithms were developed to solve
the H,, control problem [16]. These state space techniques are based on solution of
two Riccati equations which originate from the separation structure of the controller
in the form of full state feedback and optimal state estimation. This structure is

similar to the H, control problem.

2.3 Structured Singular Value ()

The limitation of the H,, control design is that the uncertainty structure in the
problem is not taken into account. In general, a system is built from components
which are themselves uncertain with norm bounded perturbations. This results in
the structure of the uncertainty block A. The norm bounds given by Theorems 2.2.1
and 2.2.2 are too conservative for realistic problems with structured uncertainty. The

structured singular value p is introduced to reduce this conservatism, see [15, 17, 3].

General framework for p-analysis is given in Figure 2.4. The A block in this rep-
resentation is defined to have a special structure. A € A where A is a set of block

diagonal matrices defined as

13



A= {A = diag (5{%1&,...,551%,510101,...,5,§fcn,A1,...,Ap)
10f € R, 60 € C, A € Coxeaf

This block structure is general enough to allow for repeated real scalars, repeated

complex scalars and full complex blocks.

Definition 2.3.1 (Structured Singular Value p) For M € C™ " un(M) is de-
fined

1
pa(M) = min{a(A) : A € A, det(I — MA) = 0}

if no A € A makes (I — MA) singular then pua(M) =0

An exact solution for u does not exist, a solution can be approximated via upper
and lower bounds on u. The method of approximation depends on the structure of
the A block. If the A block does not contain any real elements, the upper and lower

bounds for 4 can be found by using scaling matrices @ and D. Let

Q={QeA:QQ=1}

D= {D = diag (D{E ...,DE DS . DC dI,,,. ..,d;;[cp)
: Dt = DI e Clfi DE = DE” € igCCiC, d; = d € C}

Q and D leave A invariant in the sense that if A € A/ Q) € Q and D € D then
7(AQ) =a(QA) and DAD ' = A

Upper and lower bounds for p are

sup  p(MQ) < wu(M) < inf G(DMD™')

(2.3.1)
QeqQ DeD

14



The case when A contains real elements is more complicated. In order to exploit

the real block structure, G matrices are needed in addition to D scalings.

The set of scalings, G, affect only the real parametric uncertainty blocks.

G = {G =diag (G1,...,Gm,0c,,...,0¢,,0,,..,0,,)
1 G; = G € Clixhi}

If thereisa 8> 0,D € D and G € G such that

1

o4 [(1 + G?)—%(BDMD—1 — iU +GH)7| <1

then
pa(M) < B

This [ value can be formulated as a Linear Matrix Inequality and solved by convex

programming techniques [13, 28, 3].

The structured singular value p can be used to evaluate the robustness margins for

a linear system with structured uncertainty. Consider the following theorem

Theorem 2.3.2 (Robust stability)

F.(G,A) is stable VA € A iff sup p(G11(jw)) <1, 0 <w < oo
w

This theorem provides a test for the stability of the system shown in Figure 2.4 for
all allowable perturbations. Usually stability is not the only property of a feedback
system that must be robust to perturbations. The effect of disturbances on the error
signals can increase greatly and performance may degrade significantly when the
nominal modal is perturbed. A robust performance test is necessary to indicate the

worst case level of performance associated with a given level of perturbations.
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The robust performance problem can be formulated as a robust stability problem by
associating a fictitious full block of uncertainty, A, ¢, with the performance inputs
and outputs. The robust performance problem is equivalent to a robust stability
problem but with respect to a different block structure. Consider a new A structure

defined as
A 0

A=
A=t 0 Apery

tAEA Ay € CPNeY

A robust performance test is given by the following theorem.

Theorem 2.3.3 (Robust performance)

F,(G,A) is stable and ||F,(G,A)|le <1 VA € A iff sup pa(G(jw)) < 1.

w

This means that performance robustness of a closed-loop system can be evaluated by
a i test across all frequencies. The peak value on the u plot determines the robustness

properties.

2.4 p-Synthesis (D-K Iteration Technique)

This section gives a brief explanation of the D-K iteration technique, a more detailed
description can be found in [3, 58]. The u-synthesis design technique combines the
H, control design with p-analysis. Considering the standard robust performance
p-analysis framework shown in Figure 2.4, the general structure in Figure 2.6 and
Theorem 2.3.3, it is desired to find a controller K achieving

inf sup pa{Fi[P(jw), K(jw)]}
stabilizing K w

This minimization does not have a closed form solution. Upper bound defined for
complex p in Equation 2.3.1 can be used to approximate the solution. Using this

fact the problem can be put in the following form.
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min {min {max o[D,F(P,K)(jw)D,'}}
stabilizing K D, €D w

or equivalently

min {min  ||D,F(P,K)(jw)D," ||}

(2.4.2)
stabilizing K D, € D

The magnitude D,, across frequency can be approximated by a real, rational stable,

minimum phase transfer function D(s), then Equation 2.4.2 becomes;

min {min [ID(s)E (P, K)(5) D (5)l oo}
stabilizing K D(s) € D

The approach used in solving this problem is to minimize the above expression for
either K or D(s) while holding the other constant. For fixed D it becomes an H.
optimal control problem. For K fixed D can be formulated as a convex optimization
problem. This process is applied iteratively until a satisfactory controller is achieved.
It should be noted that this D-K iteration technique assumes that the uncertainty is

modeled as complex.
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Chapter 3

University of Minnesota

Experimental Flexible Structure

The system identification, performance criteria selection and sensor placement tech-
niques discussed in this thesis will be tested on an experimental flexible structure in
the Dynamics and Control Laboratory of the Aerospace Engineering Department at
the University of Minnesota. The structure is a four story space truss and was de-
signed to capture the important characteristics of a flexible structure such as lightly
damped and closely spaced modes. The entire structure, constructed of aluminum,
is suspended from a mounting structure fixed to the ceiling. The top three stories
are each 0.62 m high and the bottom story is 0.47 m high. The width of each bay
is 50.8 ¢cm and they are constructed of 0.64 c¢cm thick aluminum plates in the form
of equilateral triangles. Two of the plates are solid and two have 43.2 cm equilat-
eral triangles removed from the center. A set of displacement and velocity sensors
are collocated with each actuator located along the diagonals of the third bay. Six
noncollocated accelerometers are placed at the 3rd and 4th bays and they measure
accelerations along the directions parallel to the sides of the triangular plates they

are attached to. A detailed picture of the structure is shown in Figure 3.1. The
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natural frequencies and damping levels of the modes of the structure are discussed in

Chapter 4

Accelerometers

Displacement Transducers

Force Actuators

© ©® @ ®

Velocity Transducers

Figure 3.1: Experimental Flexible Structure
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3.1 Actuators, Accelerometers, Velocity and Dis-

placement Transducers

The voice coil type actuators are manufactured by Northern Magnetics (ML3-1310-
020LB). The input to the actuators are provided by a current amplifier. The actuators
can output +3 lbs force corresponding to 45 volts input to the current amplifier. The

bandwidth and stroke length of the actuators are 200Hz and 0.5 inch respectively.

The structure displacements are measured by Trans-Tek 244 LVDTs (linear variable
differential transformer). These transducers have a working range of +1 inch and a
bandwidth of 100 Hz. They require a DC power supply in the 6 to 30 volts range. The
displacement measurement are filtered by a 40 Hz, fourth order, low-pass Butterworth

filter.

The three velocity transducers are Trans-Tek 114. They provide a voltage output
proportional to linear velocity with a sensitivity of 500 millivolts/inch/sec. The band-
width of these transducers is 120 Hz and the output signals are filtered by a 40 Hz,

fourth order, low-pass Butterworth filter.

The accelerometers are of the type ICSensor 3145-002. These accelerometers have a
bandwidth of 300 Hz with a sensitivity of 998 millivolts/g. They require a DC power

supply in the 6 to 30 volts range.

3.2 Data Acquisition and Real Time Control

The equipment used in acquiring the data and implementing the real time controllers
for the experimental flexible structure are a Macintosh IIfx computer, a National In-

struments NB-DSP2300 digital signal processing board with a TMS320C30 processor,
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a National Instruments MIO-16X board and an National Instruments AO-6 analog
output board. The computer communicates with the other components via Lab View
software package. The MIO-16X board has eight 16 bit differential A/D input chan-
nels and two 12 bit D/A channels both with +10 volt range. The AO-6 board has
six 12 bit D/A output channels. The control algorithms are C codes compiled by the
DSP board’s compiler and loaded on to the DSP board. The Macintosh computer is
used for editing and storing the code. Controllers with number of states up to 99 can
be implemented on the structure with a 200 Hz sampling rate. Figure 3.2 shows the
block diagram of the data acquisition system. An external disturbance is generated
by a function generator and added to one of the actuator inputs generated by the
computer. The sensor measurements are transmitted to the computer via the A/D
board after being filter by the Butterworth filters. The DSP board processes these
measurements according to control algorithm and the voltage outputs from the D/A

converter is sent to the current amplifier which activates the actuators.

Signal
Generator
D/A O Current Amplifier Actuators
Computer Experimental
with DSP Structure
A/D Butterworth Filter Sensors

Figure 3.2: Block Diagram of Data Acquisition
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Chapter 4

System Identification for Flexible

Structures

A dynamical system can be considered as a map (operator) from input signals to out-
put signals. System identification is a method for constructing a mathematical model
(an approximate representation) for a dynamical system from input-output data. For
complex systems it provides a valuable alternative to modeling from fundamental laws
of physics. Experimental results show that the modeling of large flexible structures
via finite element method may not be accurate enough for high performance active

control design purposes [2].

In this chapter system identification using generalized orthonormal basis functions
is developed for flexible structures. This identification technique requires the approx-
imate pole locations of the system being identified as the a-priori information prior
to initiating the identification process. It has been shown that generating the basis
functions from these approximate pole locations may provide faster convergence for
these identification techniques [24]. It is seen that specifying the pole locations at the

beginning of the identification process is especially suitable for flexible structures in
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that a low order multi-input/multi-output (MIMO) model can be realized from in-
dividual single-input/single-output (SISO) systems. The approximate pole locations
for identification with generalized orthonormal basis function can be obtained either
directly from experimental data or from a simpler identification technique. A fre-
quency domain identification technique based on least squares curve fitting is used to
find the approximate pole locations for the experimental flexible structure described

in Chapter 3.

Both of these identification techniques, least squares curve fitting and identification
with generalized orthonormal basis functions, require the frequency response function
(Fourier transform of the impulse response function) of the system to be modeled. In
Section 4.1 a method of obtaining the system frequency response function, namely,
nonparametric identification based on spectral analysis, from input/output time do-
main data will be explained. Section 4.2 explains the frequency domain identification

technique based on least squares curve fitting.

4.1 Nonparametric Identification

The impulse response of a linear, time invariant system characterizes the dynamics
of that system. To arrive at parametric representation of a dynamical system, most
system identification methods use the Fourier transform of the impulse response func-
tion -the frequency response function. Methods of determining these functions from
given input/output measurements is called nonparametric identification. Ideally non-
parametric identification characterizes the input/output relation of a system without
being constrained to a parametrized model set. In practice, however, large number

of parameters are used to describe the nonparametric estimate.

In the following section the spectral estimation method of nonparametric identi-
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fication is explained. Other common methods of nonparametric identification are
impulse-response and step-response analysis in time domain and sine-wave testing in

frequency domain [32, 37, 11].

First the system to be identified is excited with an input signal x(¢) and the output
signal y(t) is measured. The input signal should continuously excite the system at
the frequency range of interest. A band limited white noise or a sinusoidal signal with
continuously changing frequency (chirp) is usually used as input signals [24, 4]. For
the University of Minnesota flexible structure, a chirp signal changing from 0.2 Hz to
30 Hz is used. A portion of the time domain representation of this signal is shown in
Figure 4.1

Input Signal

I I
0 5 10 15
Time(sec)

Figure 4.1: Input Signal in Time Domain for Nonparametric Identification

The input/output relation of a linear system is given by the convolution integral

y(t) = /0°° h(r)a(t — 7)dr (4.1.1)

where h(7) is the impulse response of the system.

The output of an experiment y(¢) will have noise due to sensor errors and noise from
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Figure 4.2: Output Signal in Time Domain for Nonparametric Identification

the environment. To reduce the effect of these on the resulting transfer function,
correlation technique is used. This computes averages to reduce the effect of noise on
the output. In Equation 4.1.1 changing the variables 7 to v, ¢ to t4+7 and multiplying
both sides by z(t) leads to

s(y(t+7) = [ ha(®r(t +7 = )dy

Calculating the expected values of both sides of the above equation results in the

input/output cross-correlation relation

Ry (1) = /Ooo h(7) R (T — 7)dy (4.1.2)
where
R..(T) = 71520 1 /OTx(t):c(t + 7)dt

is the autocorrelation function of x(t) and

Rgy(7) = lim ?/ y(t + 7)dt

T%oo
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is the cross-correlation function between z(t) and y(t).

The integral in Equation 4.1.2 is a convolution integral. Taking the Fourier transform
of this equation gives the relation between power spectral density functions S;;, Sz

and the transfer function H(w).

where

Sy (W) :/ R, (T)e *™7dr
Sxx(w) — /oo Rxx(T)e—jQﬂ'urrdT

Plots of power spectral density functions, S,, and S,,, corresponding to the time
domain signals in Figures 4.1 and 4.2 are shown in Figures 4.3 and 4.4. The exper-
imental frequency response functions, H(w), for the flexible structure are shown in

Figure 4.5.

In most of the recent signal processing software programs the power spectral density
functions, S;, and S;, are calculated approximately from the Discrete Fourier Trans-
form of the time domain sequences x(t) and y(¢) rather than the correlation functions

R, and Ry, due to the numerical advantages of the former technique [31, 24, 35, 45].

4.2 Frequency Domain Least Squares Curve Fit-

ting Technique

An accurate model of the input/output behavior of the system is required for control

design. One method to achieve this is by curve fitting a transfer function model
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Figure 4.3: Power Spectral Density of the Input Signal

Cross Spectrum of Input and Output Signals
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Figure 4.4: Power Spectral Density of the Output Signal

to each non-parametric SISO experimental frequency response function obtained in
the previous section (see [10]). These transfer functions are combined to form a

multivariable representation of the structure.

Assume that the discrete transfer function representation for each experimental

transfer function is given in the form:

9(z) = % (4.2.3)
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Experimental transfer functions from actuator 1 to accel3, vell,and displ
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Figure 4.5: Bode plot for the experimental transfer functions

Here n(z) and d(z) are polynomials of degree < p with unknown coefficients. As-

suming that d is monic, equation 4.2.3 can be written as

P o~

> o,z
P+ S di

J=0"7

9(z) =

multiplying both sides by the denominator and rearranging gives

p—1 ) P )
> diZg(z) — Y njz) = —g(z)2F (4.2.4)
=0 =0

Equation 4.2.4 can be put in a compact form by defining the following variables.
{2}, represents the points on the unit circle obtained by mapping the discrete

- Wy
frequency points ,w;, of the experimental transfer function, i.e 2; = ¢/7 where T is

the sampling frequency.
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- b\ T
1 21 41
p
1 29 25
7 =
o\ 1 Zm 2z )]

Zy = Z with the last column deleted

D = diag[g(z1), .., 9(z2m)]

Y= [g(zl)z?a 000y g(ZM)Z;\l/[]T

Hence equation 4.2.4 can be rewritten as

(DZy —Z) ( !

This now is a standard least squares problem. The vectors n and d can be estimated

by solving equation 4.2.5. In the solution an iterative technique is used to remove the

high frequency emphasis. The resulting discrete transfer function can be transformed

to a continuous system by using bilinear transformation.

This approach is the approach taken in this section to derive a multi-input/multi-

output (MIMO) model of the experimental structure. A transfer function model is

obtained for each actuator. This results in three 24" order transfer functions from

each actuator to all sensors. These three transfer functions are combined and the

balanced realization model reduction technique and truncation of the least significant

modes results in a 28" order model of the structure [3]. A comparison of this model

29



with the experimental transfer function for the channels from the second actuator to
the third accelerometer and to the third displacement sensor is shown in Figure 4.6.
Table 1 shows the natural frequencies, damping levels and the mode shapes for the

first 12 modes.
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Figure 4.6: Experimental and MIMO Model Transfer Functions
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Mode | Natural Frequency (rad/s) | Damping Ratio (%) | Mode Type
1 11.68 2.9 1st X bending
2 11.75 2.7 1st Y bending
3 21.00 2.3 1st torsional
4 33.79 1.6 2nd X bending
Y 33.97 1.5 2nd Y bending
6 63.50 1.4 2nd torsional
7 64.21 1.5 3rd X bending
8 64.44 1.1 3rd Y bending
9 94.41 1.0 3rd torsional
10 103.98 0.4 4th X bending
11 104.44 0.5 4th Y bending
12 147.30 0.8 4th torsional

Table 4.1: First Twelve Natural Frequencies of the Flexible Structure
4.3 Identification with Generalized Orthonormal

Basis Functions

Lis a delay

A model is represented in canonical basis {z % k = 0,1,...} where z~
operator in classical system identification. If 7" is the sampling time, a sample u; at
time KT is represented as uzz~%. An alternative to representing a system model in H;
using canonical basis is to represent the system model in terms of the orthonormal
basis generated by the a-priori information about the poles of the system. Non-

canonical basis have been used successfully in the past for system identification. Two

examples of this approach is the use of Laguerre and Kautz systems [51, 50, 44, 52].

Laguerre functions are suitable for constructing orthonormal basis for identification
of well-damped systems with one dominating time constant, whereas Kautz functions

result in better convergence for lightly damped systems with complex-conjugate poles
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[52, 44]. Laguerre and Kautz functions can be obtained as special cases of generalized
orthonormal basis functions which are derived from the approximate knowledge about

the poles of the system to be identified [22, 36, 49, 19].

Including a-priori knowledge of the system dynamics via the use of orthonormal
basis functions into the identification process can have the advantage of reducing the
number of parameters to be estimated. Since the resulting model will have the poles
specified by the basis functions, only the most significant modes of a system need
to be incorporated into the identification procedure. In this thesis it is shown that
the ability to choose the significant modes of a model at the beginning of a system

identification process is useful in generating a MIMO model from SISO models.

4.3.1 Generating the Orthonormal Basis

A basis in Hj can be constructed by applying Wold decomposition [19, 41]. Let
{p1,.....1z } be the set of the approximate poles of the system inside the unit disc.
Denote by m(z) an all-pass function (finite order Blaschke product)

! o L — iz
m = ] mi, mize‘m’z_ilz_, il <1
i=1 i

where «; is chosen such that m;(—1) = —1.
The following theorem can be used to form a basis in H;- from the poles of a system

19, 12].

Theorem 4.3.1 Let H(m) = Hi- © m(2)Hy, then dimH(m) = r. Let {¢i(z),i =
1,..r} be a basis for H(m). Then the functions {@;(z)m'(2),i = 1,..r;1 = 0,1...}

form a complete orthonormal system in Hy-.
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The orthonormal functions ¢;(z) are given by [36, 46]

V1= uil? ﬁ mi(z) 1<i<r (4.3.6)

pi(z) =
2 M j=1

Corollary 4.3.2 A function f € Hy can be uniquely represented in
{pi(z)ml(2),i=1,...r; 1=0,1...} as

f(z) = i 2’": Crz+z'<Pi(Z)ml(Z) (4.3.7)

1=0 i=1
the coefficients of the expansion can be obtained as
Cri+i = <f(Z), sz(z)ml(z)% L= 17 -1 [ = 07 17 2....

where (.,.) denotes the usual scalar product in Hy .

An expression for the coefficients of the series expansion in equation (4.3.7) can be

obtained as follows:

Define () as )
BU0) = 3 (0)

where (3; are the phase functions of m;: m;(e/?) = e =75

Theorem 4.3.3 Let the modelfof a system in Hi- be parameterized as

n r

f(z) = Z Zérl+z’90i(z)ml(z)7

[=0:=1

and the measured data set Z be given in the frequency points determined by 3 ':

Z = {a, = f(e® '©¥)) sy = wk/N, k=—N,..,0,...,N —1}
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Let N=rM, Me N. The coefficients of the modelf can be expressed as

1 M—-1 -
Criqi = oYY F el (4.3.8)
s=—M
where 10
FZS =~ Z Fz,s+2(1c—1)M

k=1

and _ r
: 5. (I8 G
Fz,s = 5P, (ej ( )) 2271 =AE

=T (5 1
‘615 (SJVI)*MHQ

Note that the expansion coefficients {¢} in equation (4.3.8) are obtained from the
inverse discrete Fourier transform of F’; and they tend to {cy} as the number of data

points tends to infinity.

The method of calculating the coefficients {cj} from F?_ (the virtual frequency do-
main points) can be illustrated with two examples: Consider the transfer function of

2
a simple first order system given as sys = -t Note that from equation (4.3.6),

(- 0 .
=09

quency domain data of this system are shown in Fig. 4.7. Clearly, taking the inverse

and sys = 5p;. The normal frequency response and the virtual fre-

Fourier transform of virtual frequency domain data, as suggested by equation (4.3.8),
gives ¢; = 5.

Consider a second example with the system to be identified given as
2.2 0.44 1-0.9z

- 0.9 +4(z —0.9)( z—0.9 )

SYsa =
z

This system is exactly in the form sys, = c1¢1 + copym. Taking the inverse fourier

transform of F’;, shown in Fig. 4.8, gives ¢; =5, ¢; =4,
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Figure 4.7: Frequency domain and virtual frequency domain data for 23'3.9
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Figure 4.8: Frequency domain and virtual frequency domain data for sys,

4.3.2 Selection of the approximate pole locations

First step in applying the system-based orthonormal functions in system identifica-
tion is to obtain the approximate location of the poles of the system that will be
identified. For this flexible structure, linear least squares method of identification,
explained in Section 4.2, is used to obtain the poles. Models are fitted to the exper-
imental transfer functions from each actuator to the accelerometers with the linear
least squares technique. The state order of the models for each input-output channel

vary from 16 to 40. The poles resulting from these models are shown in Fig. 4.9 with
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X, 0, + symbols. Some poles in the least squares identification are for the purpose of
adjusting the gain and the phase of the system and do not represent the real poles
of the system. These poles show a randomly distributed pattern in Fig. 4.9. Some
of the poles from the least squares models, however, are clustered at definite regions
of the complex plane. These pole locations are selected as the pole locations of the
system model.

Poles of the transfer function from actuatorl to accelerometer 3
T T T T

0.6

0.5

0.4r

0.3F

0.2r

0.1r

Figure 4.9: Poles of the least square models

4.3.3 Construction of the MIMO State Space Model

The SISO models developed from frequency domain identification using the general-

ized orthonormal basis are of the form

M;; r

fis(2) = 22D buvipi(2)m'(2), si=1,.p, j=1,.q (4.3.9)

1=0 i=1
where p and ¢ are the number of inputs and outputs respectively. There are p X ¢

SISO transfer functions and each of these SISO models are identified individually ie.

using a different set of approximate pole locations. The associated MIMO model can
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be written as

f(z) = ;i:lérlﬂgoi(z)ml(z), M = max(M;;) (4.3.10)

where C,,; are matrices assembled from the coefficients ¢, ;.

Most of the available control analysis and synthesis approaches require models in
state space form. One method of realizing the system model given in equation (4.3.10)
in state space is based on matrix partial fractional (MPF) representation of MIMO
systems. Since the basis functions of H(m) have denominators d,, (z) = IIl_, (= — 11;)

the matrix transfer function f(z) can be written in MPF form as
fz) =2_ fil2),
i=1

; Rk ; A Ry,

fi(z) = TR T T (4.3.11)

where K = M +r
The above form is obtained from the fact that all poles pu; i=1,...r have multiplicity

K = M +r in equation (4.3.10). Using standard results from realization theory, it is
known that a minimal realization of f(z) can be obtained as a direct sum of minimal
state space realizations of f;(z) [20, 23, 25]. This follows from the fact that all the
poles of fz(z) are different. The problem now is to construct a minimal realization
for all fz(z), i = 1,2,...r. The elements of this minimal realization are given by the

following [34].

Proposition The dimension of a minimal state space realization of fz(z) is given by

[ Rg;,2 0 0 . 0 ]
Rx_1; Rg; . . .
pi = rank : S (4.3.12)
Ry
| Ri; Rei . . Rgy |

38



The proof of the proposition can be obtained by constructing a minimal state space

representation and showing that the observability and controllability follows from the

above condition.

Proof of Proposition Consider the matrix transfer function f(z) given as

S | 1 1 R
fz) = ; R ! Gl UL )

Define the state variables as
21(2) = Z£U(2)
22(2) = 74 (Ri-1U(2) +21(2))
1‘3(2) = %M(RK_QU(Z) + 1‘2(2))

Applying the inverse Z transform, the state space equations can be written in the

form
—pd, 0 0 Ry
I, wl, 0 Ry
Thy1 = Tk + . UL
0 0 I, —ul, R
i.e.

Tl = Al’k + Buk

where A € REP*EP B € REPX4 1 = dim(y,), ¢ = dim(u;), and

Yt = . Tt
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It is simple to show that this representation is always observable but not necessarily

controllable. The controllability matrix can be written in the form

Rk 0 0 0 I, —upl, p*I,
Rk . . 0 I, —2ul
C(A, B) _ K p Kip
IP
Ry Ry . Rg 0 0 0 I,

where I, is a p X p identity matrix. Since the right hand side matrix is of full rank,

the rank condition of equation (4.3.12) for the minimal dimension follows.

4.3.4 Application to the U of M Structure

The system identification technique presented in Section 4.3 is applied to the 18 in-
dividual channels (3 actuator inputs to 6 accelerometer measurements) of the flexible
structure with the pole location determined from the linear least squares fit. The
18 SISO systems are realized as a 58th order state space MIMO model using Matrix
Partial Fractional representation technique discussed in Section 3. The order of the
MIMO model is reduced to 28 using balanced realization model reduction. A com-
parison of the 28th order MIMO model, the experimental transfer functions, and the
corresponding SISO systems is presented in Figure 4.10 for two channels. From these
figures it is seen that there is good agreement between the model and the experimen-
tal data and the 28th order model captures the first 12 modes and the 4th order filter
characteristics. Hence the assumed pole locations were representative of the actual
system. It should also be noted that in this identification technique mismatches in
the natural frequencies and damping levels of the model can be corrected by adjusting
the assumed pole locations and repeating the identification process with these new

pole locations.

The MIMO minimal realization based on Matrix Fractional Expansion is especially
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suitable for identification with generalized orthonormal basis functions due to the
predetermined poles of the system, and since similar poles in different channels are
factored together. For large symmetric systems, as is the experimental flexible struc-
ture in this research, control over the pole locations results in the minimum number

of terms in the matrix partial fraction expansion.
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Figure 4.10: MIMO Orthonormal Basis System Model (solid), Experimental Transfer
Function (dotted), SISO system (dashed)
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4.4 Controller Design

To validate the 28th order MIMO model identified using generalized orthonormal basis
functions, a high performance multivariable controller is designed for the experimental
flexible structure using the H., control design framework (see [3, 33, 2]). A block

diagram formulation of the control problem is shown in Fig. 4.11.

disturbance l 3
error signal

3T |_: Wp Ap ] 8 Wdist

3
Wper 3 fl\‘

SYSnom - 3 T

A

6 Avia | Waaa |2

sensor noise
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-~

3 Y
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actuator limits 3 l

Figure 4.11: Block diagram formulation of the control problem

The performance objective is to attenuate vibration at the bay 4 accelerometer
locations due to external disturbances entering at the actuators. (A diagram of the
structure and sensor locations is provided in Fig. 3.1). To accomplish this objective,
bay 4 acceleration measurements are penalized in the control design, i.e. weighted

accelerations are taken as the error signal. Third and fourth bay accelerometers are
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used as feedback measurements and the three actuators acting along the diagonals of
the 3rd bay are used as the control inputs. The frequency range of interest is between
1 Hz and 16 Hz (6.2 and 104 rad/sec) which contains the first ten flexible modes of the
flexible structure. Mathematically, the performance objective is defined as minimizing
the weighted H,, norm of the transfer function from the input disturbance to weighted
error outputs. In the H,, control problem formulation, the weighting functions are
selected so that robust performance is achieved when the structured singular value

(u) of the closed loop system is less than 1.

Wyer tepresents a performance weight on the bay 4 acceleration measurements to
achieve this objective. The shape of this transfer function and the error signal it
is applied to reflect the performance objectives of the controller design process. The
maximum singular value of the transfer function matrices from each disturbance input
to bay 4 accelerometers are first scaled to one and W), is used to select the desired
level of vibration attenuation. For this design W, is a diagonal matrix with w, as
the diagonal elements. w),, is a low pass filter with a DC gain of 4 and cut off frequency
at 70 rad/sec. This corresponds to an attenuation ratio of 4:1 in the frequency range

of interest.

The input to the voice coil actuators is a voltage from a current amplifier. A one
volt command to the current amplifier results in 0.6 lbs of force, with a maximum
force of £3 lbs. To limit the actuator command signals in the control design process
to £5 volts (+3lbs), a value of 1/5 is used to weight each actuator signal. The weight

O |
Wact 1S g[gxg.

The weights on the disturbance inputs, Wy;4, is taken to be the 3 x 3 identity matrix.
This indicates that the input disturbance is on the same order of magnitude as the
controller signals. The accelerometer measurement signals have a signal to noise ratio

of 100 on all the channels. Based on open-loop experiments, it is expected that the
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maximum magnitude response of the accelerometers will be £1volt. Therefore the
sensor noise weight, W,,s, in the control interconnection structure, Fig. 4.11, is

taken to be 0.01 Igyg.

An additive uncertainty is included in the problem formulation to account for the
unmodeled or neglected high frequency modes, limit the controller bandwidth and
modeling errors inside the control bandwidth. This weight is selected to have a
magnitude greater than the structural modes above 160 rad/sec. Hence if robust
stability of the closed-loop system is achieved for this additive uncertainty weight,
the flexible modes of the structure above 160 rad/sec will be gain stabilized. The

additive uncertainty weight is given by

18(s® + 8552 + 7200s + 2.4 x 10°)
s3 + 125052 4+ 98600s + 3.5 x 107

Wadd = (4413)

Fig. 4.12 shows the magnitude of w,4q versus the singular value plot of the transfer
functions from actuator 2 to all accelerometers. In the control problem formulation
shown in Fig. 4.11, the additive uncertainty W44 is a 3 x 3 diagonal matrix with

each diagonal entry as wgqqq.

The pole locations used to derive the MIMO structural model do not exactly corre-
spond to the natural frequencies and damping levels of the structure. (see Figs. 4.3.4
and 4.10). These errors or variations in the first 10 modes are accounted for by intro-
ducing parametric uncertainty in the state space coefficients. It is not important to
include parametric uncertainty in the other modes since they are to be gain stabilized

based on the additive uncertainty weight selected.

Parametric uncertainty is modeled as complex variations in the control design pro-
cess. Since this may introduce conservatism in the control design, it is important

to carefully select which state space entries are to be perturbed. It turns out that
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complex perturbations in the damping levels lead to variations in the damping levels
and structural natural frequencies in the system model [6, 53]. In this problem, the
A matrix of the state space realization of the experimental structure is transformed
to bidiagonal form and only the first element of each 2 x 2 natural frequency block is
perturbed. This corresponds to complex uncertainty in the damping values of each
mode. A complex perturbation of the damping values results in a small change in
the natural frequency and a significant change in the damping level of that mode.
There is a variation of 0.2% in natural frequency and 15% in damping level of the
first mode when the first element of the 2 x 2 submatrix corresponding to this mode
is perturbed by 15%. W, in Fig. 4.11 is an 10 x 10 diagonal matrix with 0.05 as
the diagonal elements which represents the perturbation on the first elements of the
2 x 2 bidiagonal modal matrices. This weight corresponds approximately to 15%

uncertainty in the damping values of the first 10 modes.

The resulting 6 input, 3 output H,, controller has 40 states. Fig. 4.13 shows
a singular value plot of the loop transfer function. The controller expends most

of its effort in the mid frequency range, the region where the peaks of the loop
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transfer function singular value plot are above 1, to achieve the desired performance
objectives and rolls of around 90 rad/sec. These results are consistent with the
shapes of the additive uncertainty and performance weights. The robust stability,
nominal performance and robust performance plots for the controller are shown in
Fig. 4.14. A maximum value of 0.4 on the robust stability plot indicates that stability
is guaranteed for the set of systems described by the uncertainty model. A maximum
p value of 1.2 indicates that a worst case performance level of 1/1.2 is achieved for
all the plants with in the uncertainty set. A comparison of solid and dotted lines in
Fig. 4.14 shows that there is almost no difference between complex and real /complex
i values. This is due to small parametric uncertainty in the low frequency modes of
the model. The system has the modes with the largest amplitude around 80 rad/sec
and performance objective dominates at that frequency (robust performance = 1.2
and nominal performance = 1.1). The low value of the robust stability plot at high
frequency range shows that the unmodeled dynamics are not the driving factor in the

design.
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Figure 4.13: Singular value plot of the system loop gain

The controller is implemented on the structure and the responses to a sine-sweep
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Figure 4.14: p plot for the closed-loop system corresponding to the interconnection

diagram in Fig. 4.11

disturbance through actuator 2 are shown in Figures. 4.15 and 4.16. Experimental
results show that an attenuation ratio of approximately 3.5:1 is achieved on channels
1 and 2. This is very close to the desired performance ratio of 4:1. This shows that
the real plant is in the set of plants defined by the nominal identified model and the

additive and parametric uncertainties.

The simulation results are shown in Figs. 4.15 and 4.16. The amount of attenuation
on the simulation results are in agreement with the experimental results. The low
frequency peaks of the transfer function in the simulation data are not attenuated as
well as the experimental transfer function data. This may be due to smaller damping

values for those modes in the identified model than the real system.
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Figure 4.15: Experimental Transfer Functions: closed-loop (solid), open-loop (dot-

ted), closed-loop simulation of the nominal plant (dashed)

Transfer function from actuator 2 to accelerometer 6
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Figure 4.16: Experimental Transfer Functions: closed-loop (solid), open-loop (dot-

ted), closed-loop simulation of the nominal plant (dashed)
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Chapter 5

Performance Criteria and Feedback

Signal Selection

An interesting area to investigate for active vibration attenuation in flexible struc-
tures is the selection of error signals and performance weights that directly reflects
the performance objectives. This issue is investigated by designing eight vibration
attenuation controllers using p-synthesis technique in this chapter. Six of these con-
trollers use collocated displacement and noncollocated acceleration feedback, one uses
collocated velocity feedback and one uses only noncollocated acceleration feedback.
The level of uncertainty is held constant among the controllers using the same feed-
back information. Performance objectives are related to velocity, acceleration and
displacement signals that are penalized in turn at different locations. The results of
this investigation show the direct relationship between the weighted error signals and

performance.
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5.1 Control Problem Formulation and Objectives

Structured Singular Value (1) synthesis technique is used to design controllers for the

flexible structure. For a detailed explanation of this technique see reference [3].

disturbance
. Wdist
error signal
o !
P SY Snom T O
A fe—{Wada
Y d.
()<_ Wnoise [e——TL0t5¢€
> K

Y

Wact

l actuator limits

Figure 5.1: Block diagram formulation of the control problem

A block diagram formulation of the control problem is shown in Figure 5.1. SY'S,om
represents the identified nominal model of the structure. For velocity feedback case
this model has three inputs and three outputs and for acceleration/displacement
feedback the model has three inputs and six outputs. These models are obtained by

the frequency domain least squares curve fitting technique discussed in Section 4.2.

The weight W is selected as 1 for each input channel. The noise on the measure-
ment channels are represented by dppise- Whoise 15 @ diagonal matrix with diagonal

elements equal to 0.01. This represents a signal to noise ratio of 100 on all the
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Figure 5.2: Magnitude plot for the additive uncertainty W,4; (solid) and singular
value plot for the experimental transfer function from actuator 2 to all the sensors

(dashed)

channels.

W, penalizes the actuator action and is selected to be a diagonal matrix with 0.2
as the diagonal elements. This scales the output of W, to one when the actuator

force is £3 Ibs (see Section 4.4).

Unmodeled dynamics of the structure are accounted for in the control design process
via an additive uncertainty model, W44, around the nominal model. The unmod-
eled dynamics represent high frequency modes outside the desired control bandwidth
that may cause instability in the closed-loop system if unaccounted for in the design
model. The magnitude of the additive uncertainty weight is selected to cover the
transfer function response of these modes. The magnitude plot of W44 for displace-
ment /acceleration feedback cases and the singular value plot of the transfer function
from actuator 2 to all the sensors is shown in Figure 5.2. The input signal excites the
structure up to 190 rad/sec, hence the noisy part of the transfer function above 190

rad/sec in Figure 5.2 does not represent the true dynamics of the structure. In this
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research W44 is held fixed for the designs that use the same feedback information in
order to be able to see the effects of performance weight selection on the results. The

additive uncertainty weight for displacement/acceleration case is given by

13(s* + 45s + 1760)

Wogg =
4762 1719905 + 37500

For velocity feedback case, W,4q is scaled by 1.25 and for the acceleration feedback

case

24(s® +170%s + 14300s + 7.62 x 10°)

Wogg =
. s3 + 38752 + 460005 + 6.6 x 106

Wiers is the transfer function that represents the performance weight. The shape
of this transfer function and the error signal it is applied to reflects the performance
objectives of the controller design process. This relation will be investigated in detail

in the following section.

5.2 Experimental Results

Eight controllers are designed for the flexible structure. Table 5.1 shows the outputs
being penalized (error signal), feedback information being used and the location of the
error signal for each design. In each design the performance objective is to minimize
the maximum transfer function frequency response between the input disturbances
and the weighted error signals. The frequency range of interest is between 1 Hz and 16
Hz which contains first nine flexible modes of the flexible structure. The performance
weight, W, f, is chosen as a constant value for the frequency range of interest for all
the designs in order to make the comparison between the cases easier and more fair,

although frequency dependent weights would provide better results in most cases.
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Feedback Error signal type | Error signal location
case 1 | acceleration/displacement displacement, actuators
case 2 | acceleration/displacement displacement, acceleration sensors
case 3 | acceleration/displacement acceleration acceleration sensors
case 4 | acceleration/displacement velocity acceleration sensors
case b | acceleration/displacement velocity actuators
case 6 | acceleration/displacement acceleration actuators
case 7 velocity velocity actuators
case 8 acceleration acceleration accelerometer sensors

Table 5.1: Feedback and Error Signals

The disturbance to error signal transfer functions are first scaled to one and W, s is

used to determine the amount of attenuation of the frequency response peaks.

A description of each case follows and experimental results are presented in Figures
5.3 - 5.10. In each figure the frequency response of the transfer functions from
actuator 2 to accelerometer 3 and displacement sensor 3 are given. The other channels

have very similar characteristics to the ones displayed.

Case 1: Displacement error is penalized with a constant weight at actuator loca-
tions. From Figure 5.3 it is seen that the controller performs very well in minimizing
the displacement error. The peaks are approximately at the same level. This ex-
actly is the goal being posed by a constant performance weight on the displacement
channels. Considering the acceleration signals however, the controller has a poor
performance. Only the first bending and second torsional modes are attenuated. If
the performance objective was the attenuation of vibration in the entire structure,
penalizing displacement signals at actuator locations with a constant weight would

not be a good choice.

Case 2: Penalizing displacement signals at accelerometer locations which is a non-
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collocated performance objective improves the attenuation of structural vibration at
the third bay. From Figure 5.4 it can be seen that the first and second bending
modes are significantly attenuated. It is interesting to note that Controller 2 does
almost as good as Controller 1 in attenuating the displacement signals at actuator
locations. Overall, Controller 2 performs better in attenuating the vibrations at bay

3 than Controller 1.

Case 3: Controller 3 significantly attenuates the structural vibrations at the ac-
celerometer locations when acceleration signals at accelerometer sensor locations are
used as the performance objective. This also is a noncollocated performance objective.
Displacement signals at actuator locations are also attenuated. The main difference
between Controller 3 and Controller 2 is that Controller 3 attenuates vibrations in the
mid frequency range, 30-100 rad/sec, better than Controller 2 although Controller 2
attenuates low frequency vibrations, first bending and torsional modes, better. This
is expected since an approximate double integrator is used in design 2 to obtain the
displacement signals at accelerometer locations and this emphasizes the low frequency

modes more.

Case 4: Selecting the performance objective of minimizing velocity at the accelerom-
eter locations, a noncollocated criteria, results in a controller very similar to Case 2.
The low frequency modes are not as significantly attenuated as with Controller 2,
although better attenuated than in Controller 3. This again is due to the integra-
tor being used to obtain velocity signals from acceleration measurements. Often the
overall performance objective is not just to attenuate acceleration velocity or displace-
ment, therefore a frequency dependent weight would be used to capture the desired

performance objective.

Case 5: A similar performance goal is posed for case 5 as case 4. In this case veloc-

ity signals are penalized at displacement sensor locations, a collocated performance
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objective, again with a constant performance weight. From Figure 5.7 it can be seen
that the controller performs very well on the displacement channel, all the peaks are
at the same level. The acceleration signals are not attenuated as well. This is the
main difference between case 4 and 5. This result should also be compared with the
first case. The only difference between these cases is the differentiator that creates
the velocity signal in case 5. Due to the differentiator action the higher frequency

modes are emphasized more and attenuated better in case 5.

Case 6: Controller 6 is designed to minimize the acceleration response at the dis-
placement sensor locations. As can be seen from Figure 5.8, this controller performs
very well at the high frequency, 40-120 rad/sec, structural modes at displacement
sensor locations. Unfortunately the performance of the controller at accelerometer
locations is not as good. Also low frequency modes of the structure are poorly atten-

uated. This type of controller may be of interest in vibration isolation applications.

Case 7: Controller 7 is designed using velocity sensors collocated with the actuators
to attenuate velocity signals at the sensor locations. This is not exactly collocated ve-
locity feedback since cross coupling between the actuators and the sensors is allowed.
Overall this controller performs poorly when compared with the previous designs.
The main objective of this design is to increase the damping levels of the structural
modes, therefore the controller may improve the damping but not the overall magni-
tude of the response. The results of this design are often not what is desired based

on the performance objectives.

Case 8: In case 8 only acceleration feedback is used and a performance weight
that approximates a double integrator in the frequency range of interest is applied
to the acceleration signals at accelerometer locations. Comparing the results shown
in Figure 5.10 with that of case 2 and 3 it is seen that the vibrations in the third

bay can be attenuated by using noncollocated acceleration feedback alone. It is an
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important observation since accelerometers are accurate and can be placed at the

desired locations on the structure easily.

5.3 Summary

This chapter focused on the selection of error signals and performance weights for
active vibration attenuation in flexible structures. It is shown that the controllers
may succeed in achieving what is being asked for by the design criteria but this
may not be the overall desired result. As seen in pu-synthesis design the choice of
performance weightings and the signals being penalized play an extremely important

role and they must be selected based on the performance objectives.

The type of attenuation desired (acceleration, velocity, displacement at collocated
and noncollocated locations) and the frequency range of interest are factors that
dictate the choice of penalty weights and error signals as well as sensor locations.
In the above cases penalizing signals measured at accelerometer locations gave good
results. This has the advantage that acceleration measurements are accurate and
sensors can be placed anywhere on the structure easily. This flexibility leads to the
problem of selecting optimal sensor locations for flexible structures which will be

considered in the next chapter.

Collocated velocity feedback did not provide a good level of attenuation at the sensor
locations when compared with the other designs. This type of feedback is often used
in increasing the damping of the modes but may be a poor choice for attenuating the

vibrations at locations other than at the actuators on the structure.
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Figure 5.3: Case 1: Frequency response of the transfer functions from actuator 2 to
accelerometer 3 and displacement sensor 3. Displacement is penalized at actuator

locations.
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Figure 5.4: Case 2: Frequency response of the transfer functions from actuator 2 to
accelerometer 3 and displacement sensor 3. Displacement is penalized at accelerom-

eter locations.
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Case 3 (solid: closed-loop dashed: open-looop)
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Figure 5.5: Case 3. Frequency response of the transfer functions from actuator 2 to
accelerometer 3 and displacement sensor 3. Acceleration is penalized at accelerometer

locations.
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Figure 5.6: Case 4. Frequency response of the transfer functions from actuator 2 to
accelerometer 3 and displacement sensor 3. Velocity is penalized at accelerometer

locations.
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Case 5 (solid: closed-loop dashed: open-looop)
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Figure 5.7: Case 5. Frequency response of the transfer functions from actuator 2 to

accelerometer 3 and displacement sensor 3. Velocity is penalized at actuator locations.
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Figure 5.8: Case 6. Frequency response of the transfer functions from actuator 2
to accelerometer 3 and displacement sensor 3. Acceleration is penalized at actuator

locations.
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Case 7 (solid: closed-loop dashed: open-looop)
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Figure 5.9: Case 7. Frequency response of the transfer functions from actuator 2 to
accelerometer 3 and displacement sensor 3. Velocity is penalized at actuator locations

using only velocity feedback.
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Figure 5.10: Case 8. Frequency response of the transfer functions from actuator 2 to
accelerometer 3 and displacement sensor 3. Acceleration is penalized at accelerometer

locations using only acceleration feedback.
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Chapter 6

Optimal Sensor Placement

Choosing an effective set of sensor measurements is essential for designing controllers
to achieve stringent performance and robustness objectives. Often control require-
ments are not considered in the design stage for physical systems and the location
of sensors for control are chosen in an ad hoc manner. Flexible structures are espe-
cially challenging systems to determine sensor locations and types due to the large
number of lightly damped modes to be controlled. Also, tradeoffs need to be con-
sidered which balances the number of sensors needed to observe a large number of
modes while simultaneously considering the added weight cost and quality of these

additional sensors.

One approach to the selection of sensor locations is to consider a cost function which
includes the observability grammians in minimizing a cost function. Skelton and
DeLorenzo consider a cost function as an LQG performance metric formulated as the
root mean square contribution of each sensor output. Sensors associated with small
cost functions may be removed due to their low effectiveness [42]. Similar approaches
are developed using modal properties. Kim and Jenkins choose a performance metric

based on modal controllability weighted by the modal cost of Skelton [26]. This
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approach emphasizes both the degree of controllability and modal participation in
the performance criteria. An alternative approach by Lim involves the relationship
between grammian singular values and modal observability [27]. The performance
metric is a weighted modal projection with actuator and sensor pairs chosen such
that principal directions are parallel to the modes with large singular values. In [7]
Balas and Young develop a sensor selection technique that takes into account the
closed-loop performance objectives. Different sensor locations are compared based on
the information each group of sensors can observe. The information is quantified in

terms of the associated Hy cost of estimating the full system state.

This chapter considers a technique based on Full Control synthesis for choosing a
sensor configuration. In this technique it is possible to include the system uncer-
tainties and closed-loop performance objectives into the sensor selection process. The
Full Control system allows the controller to independently affect every state and error
signal. Computing the optimal Full Control controller is equivalent to computing the
optimal controller for a given set of sensors. Synthesis of globally optimal controllers
to minimize an H., or p upper bound is formulated in the Linear Matrix Inequal-
ity (LMI) framework for Full Information feedback and extended here to the dual
problem of Full Control synthesis [30, 29, 38, 28|.

The configuration of feedback sensors is closely associated with the issue of control
design. The optimal closed-loop system requires an optimal configuration of sensors
and optimal gains in the compensator. Optimality in only one of these areas will
restrict the achievable performance and robustness of the closed-loop system. Uti-
lizing the Full Control system is advantageous for synthesis and analysis of sensor
configuration since a Full Control compensator can be computed which is globally
optimal. The procedure will not be affected by local minima associated with control

synthesis.
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The technique presented in this thesis considers a chosen set of sensor locations.
Globally optimal Full Control compensators are computed at each of these locations
to determine the maximum performance and robustness level achievable. The sensor
locations chosen for implementation on the physical system correspond to the sensor
locations achieving the best Full Control performance. There is no guarantee that the
optimal Full Control sensor locations are equivalent to the optimal sensor locations
for a general output feedback controller; however, experiments indicate this technique

can choose effective configurations for a physical system.

The proposed approach easily allows a sensor configuration to be determined by
considering variations in both type and location of sensors. The plant model used to
design controllers for these configurations may be generated from experimental trans-
fer functions or from a computational finite element model. Additionally, choosing
actuator configuration using globally optimal Full Information synthesis is a natural

extension to this technique.

Sensor configurations are chosen for a flexible structure using the method described
in this section. Several sets of sensor locations are considered for feedback measure-
ments to achieve vibration attenuation at different positions on the structure. Glob-
ally optimal Full Control compensators are computed to determine the best sensor
configuration of the sets. Output feedback controllers are generated and implemented

on the experimental structure using feedback from these sensor configurations.

6.1 Optimally Scaled H,, Problem

Consider a linear time-invariant plant P(s) mapping the input signals d and u into

output signals z and y.
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The state space description of P(s) is written as

T A Bl BZ X
z | =|Ci En Eip d
Y Cy E9 Ey u

where A € R"" B, € R""™ By, €¢ R"™"™ () € R"*" (y € R™*" | and the F

matrices of appropriate similar dimensions.

Define Kp as the set of all real, rational, proper controllers, K(s), which stabilize
the closed-loop system. Analyzing performance using the induced H., norm leads
to the following minimization problem for Fj(P, K) which is the linear fractional
transformation (LFT) for the lower loop of P closed with the controller K (see Section
2.2).

[gggiggﬁ[ﬂ(lj(yw),f((w))] = jnf |[F (P K) (oo

This is an H,, optimal controller synthesis problem which has been explained briefly

in Section 2.2.

In this section the problem of minimizing the scaled H,, norm will be explained.

Consider the set of scalings defined as

D= {dmg (Df,...,D}f;,Df,...,D,f,d;[cl,...,dgfcp)

The optimally scaled H,, problem is [39, 28]

Bopt = inf D3Fy(P,K)D %||o
pt - |DzF(P, K)D 2| (6.1.1)
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Since the uncertainty block A and the scaling block D commute the following rela-

tions hold

F,(D:PD% A) = F,(P,A)
7(D*PDT) > u(P)a

Hence, the D scalings provide a way of taking in to account the structure of the
uncertainties and the constant (3, in definition 6.1.1 is an upper bound for p (see

section 2.3.

The solution of the scaled H,, problem is not convex and an exact solution does
not exist [13]. With some simplifications on the problem data however, the optimally
scaled H,, problem can be cast as a LMI problem which gives a global minimum for
Bopt- In the next section optimal Hy, problem will be formulated as a convex LMI

problem and full control problem will be explained.

6.2 LMlIs and Full Control Problem

The LMI feasibility conditions utilize a matrix T, which is formulated for a real scalar

a > 0.

V2al ol

This matrix is used to compute the following star product LFT .

[T

[ +ad)(I+ad)  V2a(l+ad)'B |

B M) =1 e 40y E+aC(+at)" B |

The block diagram for the star product is shown in Figure 6.1

Computing the star product with 7, has several important properties. The most

immediately noticed property is the relationship between the star product and the
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Figure 6.1: Star Product

bilinear transformation. The matrix P = F,(T,, P) is the discrete-time formulation

of the continuous-time plant P. The star product also has a commutation property

such that Fy (T, Fi(P, K)) = F(P, Fs(T,, K)).
The following theorem demonstrates a constant matrix condition, formulated using

the star product, which is equivalent to an H,, condition [39].

Theorem 6.2.1 Given the state-space plant P(s), its associated constant matriz data

Mp, and the set D of scaling matrices, the following are equivalent.

1. There exists D € D and stabilizing K € Kp such that

|D? Fy(P,K)D7||s < 1

2. There erists D € D and stabilizing K € Kp along with real X = XT > 0 such
that with 7 = diag(X, D),

7 (Z3F(To, Fi(Mp, K))Z72) <1

3. There erists D € D and stabilizing K € Kp along with real X = XT > 0 such
that with 7 = diag(X, D),

7 (Z3 F(Fu(Ta, Mp), K)Z72) < 1
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Now perform a change of variables. Denote {R, U, V, T} as elements of the constant
matrix term involving the star product Fy(T,, Mp). Introduce @ to replace K (I +

TK) ™! in the closed-loop LFT for notational convenience.

R U

F,(F, (T, Mp) ,K) = F,
1 (S ( p), K) l( Vo7

,K) =R+ UQV

The final theorem presents the pair of LMI optimizations that represent the H.,
controller feasibility condition for a general output feedback system. The variant of
Parrott’s theorem is applied to the constant matrix condition involving the maximum

singular value [40].

Theorem 6.2.2 Given the state-space plant P(s) and associated constant matriz Mp
with the star product elements F) (Fy (T,, Mp),K) = R+ UQV along with the set D
of scaling matrices, then the following are equivalent.

1. There exists stabilizing K € Kp and D € D such that

|D? Fy(P,K)D 2| < 1

2. There ezists stabilizing K € Kp and D € D along with real X = XT > 0 such
that with 7 = diag(X, D),

7(Z}(R+UQV)Z %) <1

3. There ezists stabilizing K € Kp and D € D along with real X = X > 0 such
that with Z = diag(X, D),

X(UT(RZ7'R" = 27 UL) <0

X(Vi(R'zrR-2z)V]) <0
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6.2.1 Full Control Problem

When the state-space representation of the plant Py, is in the special form

Al B (10
Pfc = Cl E11 [0 I]
Co | Ear [0 0]

the controller will have direct access to states and disturbance signal. This special
problem is called the full control problem. Define Mp, as the constant matrix asso-
ciated with the state-space elements of Pj.. Formulate the R,U,V elements of the
star product term Fj (Ta, Mpfc).

- (I +ad) (T +ad)! V2a (I +aA) ' B,
- V2a0, (I+ ch)f1 Ein+aCi (I + aA)il B |
U [ V2a (I+ad)"' B 0
aCy (I +ad)™
V= [\/ 200, (I + aA)™" By +aCy (I + aA)™ Bl]

The matrix U is square and invertible for the Full Control system. This full rank
condition is anticipated by the complete controllability of this system. A linearly
independent set of control vectors are available to affect the states and error outputs
of the plant. Correspondingly, the perpendicular subspace, U, utilized in the LMI

conditions for H,, controller feasibility is null.

The feasibility condition for existence of an H,, controller for Full Control feedback
is reduced to a single LMI. The LMI involving U, in Theorem 6.2.2 is vacuous and
automatically satisfied. The remaining LMI involving variables V" and V| constitutes

the only condition for Full Control feasibility as demonstrated in Theorem 6.2.3.
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Theorem 6.2.3 Given the Full Control plant Ps. and scaling set D, define the fol-

lowing :

1. The augmented scaling matrices Z

X 0
Z = 0<X=XTeR" DeD
0 D

2. Real scalar o > 0, so that (I — «A) is invertible

3. R and V as defined above

Vv
4. Vi such that VIV, =0 and [
Vi

] 18 1nvertible

Then, there exists a stabilizing K € Kp,, and a constant D € D such that

| D3 Fy (Pre, ) D72 <1

o0

if and only if the following convex set is nonempty.

{Z € Z: Ao [VL(R*ZR — Z) V] < 0} # {0}

6.3 Optimal Sensor Placement for the Flexible

Structure

The technique of selecting sensor locations based on full control synthesis is applied
to the University of Minnesota flexible structure (Chapter 3). The results in Chapter
5 of this thesis show that accelerometer feedback is more effective than displacement
feedback for vibration attenuation and accelerometers provide greater freedom in
sensor location selection, hence only optimal placement of accelerometer sensors are

considered.

The accelerometers are grouped as follows:
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1 .2 3 :
as, as,a; accelerometers in Bay 3

1.2 3 :
ay,ay,a; accelerometers in Bay 4

The superscripts designate the side of the flexible structure on which the sensors are
located and the accelerometers measure accelerations along the directions parallel to

the sides of the triangular plates they are attached to (Fig. 3.1).

Six sensor locations are chosen as the candidate optimal sensor locations. The plant
models for these sensor locations are obtained by using the least squares frequency
domain identification technique explained in Chapter 4. The nominal sensor locations
are shown in Table 6.1. The block diagram for the control problem formulation is

shown in Figure 6.2

Location# Sensor combination

1.2
1 as, a3

1 2 3

1 .2
Qy, Ay

1 .2 .3
Ay, Ay, Ay

1 1
as, ay

1,2
as, Qy

S Ot s W

Table 6.1: Nominal sensor locations

The additive uncertainty block W44 is given as

s+ 72s + 4790
52 + 2055 + 28910

Wadd = 4

The performance objective is to attenuate the bay 3 and bay 4 accelerations. For
this, the acceleration measurements are penalized. W), in fig 6.2 represents the
performance penalty and given for bay 3 and bay 4 as

Wbay3 _ @ Wbay4 _ ﬁ

per 10 per 10
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disturbances

act
uator W,
penalty Wiist
errors l
— Wperf Model O C9ntr01
mput
O——1 Agad Wadd
noise
o Wonise —O feedback
measurements

Figure 6.2: Flexible Structure Block Diagram

These performance weights approximately correspond to an attenuation ratio of 4:1

of the largest peak at the frequency range of 10 to 100 rad/sec.

Wioise 1s a diagonal matrix with 0.01 as the diagonal elements. This corresponds
to a 1% noise uncertainty on the acceleration measurements. A constant weighting,
Waise = 0.5, is included to normalize the disturbance signal affecting each actuator.
To limit the actuator command signals in the control design process to £5 volts
(£3lbs), a value of 1/5 is used to weight each actuator signal. The weight W, is

1
gI3><3-

Full control compensators are computed for the sensor locations in Table 6.1. The
error signals to be attenuated are either bay 3 accelerations (a},a3,a3) or bay 4
accelerometers (al,a? a3). The p performance levels for the optimal Full Control

compensators are given in Table 6.2.

The second column of Table 6.2 shows the effectiveness of the six sensor configura-

tions in attenuating the bay 3 accelerations. The most effective sensor configuration
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bay 3 bay 4

Feedback

Accelerometers  Performance Performance
131,32, 33| 141,42, 43|

31,39 1.378 3.031

31, 39,33 0.299 0.719

41,45 1.641 0.656

41,45, 43 0.299 0.511

31,44 3.281 1.312

31,4 1.641 0.609

Table 6.2: Achievable Full Control y Performance Levels

for bay 3 vibration attenuation is to use three sensors in the same bay. Feedback
configurations using all bay 3 sensors or using all bay 4 sensors achieve p = .299
for Full Control closed-loop performance. These performance levels are similar since
the set of sensors in each bay is able to observe the dynamics of bay 3. Each set of
accelerometers is able to provide sufficient information to the controller to attenuate

the bay 3 vibration responses.

Restricting the feedback to only two sensors significantly decreases the optimal per-
formance level. The g values increase by approximately a factor of 4 when using
{31,32} as compared to {3i, 39,33} for feedback. The performance decreases even
more if the two sensor are aligned in the same direction. The p of 3.28 is for {31,4;}
is twice the p = 1.64 value achieved when using {3;,45}. This is due to the fact that

one of the bending modes can only be sensed partially with a two sensor configuration.

The results in Table 6.2 are based on Full control design which assumes full au-
thority of the actuators which is not practical. However, the assumption is that the
controllers designed by D-K iteration will have similar performance to the full control
controllers in terms of preserving the sensor configuration relations. Output feedback

controllers are generated using D-K iteration for vibration attenuation of the bay 3
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accelerometers. Separate controllers are designed for 2 different feedback configura-
tions. The first controller, K3, will use the 3 sensors in bay 3 to control vibration in
bay 3. The second controller, K} will feedback the 3 sensors in bay 4 to attenuate

vibration in bay 3.

Robust stability is plotted for each controller in Figure 6.3. The peak robust stability
singular values are 0.445 for K3 and 0.456 for K}. p value is less than one for each

controller which indicates that the desired robustness objectives are achieved.

2r Bay 3 feedback - SOLID
Bay 4 feedback - DASHED

15F

mu

freq (rad/sec)

Figure 6.3: Robust Stability

Nominal performance is also calculated for each controller as 1.152 for K3 and 1.880
for K}. The weighted norms greater than 1 indicate neither controller is able to
achieve the desired performance objectives. Nominal performance is plotted in Fig-
ure 6.4. The robust performance p values for each controller is given in Figure 6.5.
The p upper bounds are computed as 1.296 for K3 and 2.065 for K. Each controller
gives a peak p greater than 1 indicating robust performance is not achieved for either

output feedback controller.

The robust performance pu plots are of similar shape for each controller with peaks at
the modes, though p for K3 is much higher. Both controllers are driven by meeting

the performance goals as evidenced by Figure 6.4.
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2r Bay 3 feedback - SOLID
Bay 4 feedback - DASHED

freq (rad/sec)

Figure 6.4: Nominal Performance

2F  Bay 3 feedback - SOLID |
Bay 4 feedback - DASHED §

10" 10
freq (rad/sec)

Figure 6.5: p for Robust Performance

The p values resulting from full control synthesis indicate that the same performance
could be achieved by bay 3 and bay 4 acceleration feedback. The poor performance
of the D-K iteration controller K3 may be explained by the fact that the full control
results are globally optimal whereas D-K iteration may result in a controller far from

the optimal one.

D-K iteration controllers are implemented on the structure (see Section 3). Magni-
tude plots of the experimental transfer functions from actuator 2 to bay 3 accelerom-
eters are shown in Figure 6.6. K3 provides better attenuation at the mid-frequency

range which agrees with the robust performance plot 6.5.
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open-loop - DOTTED

Bay 3 feedback — SOLID
Bay 4 feedback — DASHED

-

100

10° |

Magnitude

10 10
freq (rad/sec)

Figure 6.6: Experimental Closed-Loop Peak Gains for bay 3 Accelerometers with K3
(—) and K ()

The performances of the optimal full control compensators in attenuating bay 4
accelerations using the same sensor configurations are shown in the third column of
Table 6.2. The p values in Table 6.2 indicate that feedback measurements from bay
4 are necessary for adequate attenuation of bay 4 vibrations. Designing a full control
compensator with only two of the bay 3 accelerometers gives a u value of 3.031 and
using all three sensors in bay 3 achieves a p value of 0.719. Feeding back all three of

the bay4 accelerometers achieves a p value of 0.511.

The need for utilizing bay 4 accelerometers to control bay 4 vibrations can be seen
by the open-loop responses in Figure 6.7. A torsional mode exists at 62 rad/sec that
is clearly observable by bay 4 but does not appear in the frequency response data
of bay 3. Any feedback configuration utilizing only bay 3 sensors fails to provide
information to the controller about the torsional mode dynamics at this frequency.
Consequently, the controller can not adequately effect these dynamics as is demon-

strated by the poor closed-loop performance.
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10

!

1| 4
Bay 3 Open-Loop - SOLID b ! l
Bay 4 Open-Loop — DASHED

Magnitude

10
freq (rad/sec)

Figure 6.7: Open-Loop Peak Gains from bay 3 Actuators to bay 3 and bay 4 Ac-
celerometers

Two output feedback controllers are synthesized using D-K iteration for vibration
attenuation of the bay 4 accelerometers. Kj, uses bay 3 accelerometers to control
vibration in bay 4. K, uses bay 4 accelerometers to attenuate vibration in bay 4.
Figure 6.8 shows the robust stability plots for bay 4 controllers. Kj and K both

achieve robust stability with largest singular values of 0.71 and 0.79 respectively.

1.2

Bay 3 feedback - SOLID
Bay 4 feedback - DASHED

freq (rad/sec)

Figure 6.8: Robust Stability

The nominal performance plots are shown in Fig. 6.9. The nominal performance

value for K3 is 1.2 and for K} it is 0.54. A value greater than 1 indicates that

performance objectives can not be achieved used only bay 3 accelerations.
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12f Bay 3 feedback - SOLID
Bay 4 feedback - DASHED

freq (rad/sec)

Figure 6.9: Nominal Performance

The robust performance p values for each controller are given in Figure 6.10. The
p upper bounds are computed as 0.98 for Kj and 1.27 for K. The controller using
bay 4 feedback, K, is able to achieve robust performance while K3 is unable to

achieve the desired robustness goals due to its associated p being greater than 1.

r Bay 3 feedback — SOLID
Bay 4 feedback - DASHED

.
10* 10°
freq (rad/sec)

Figure 6.10: p for Robust Performance

Implementing each controller on the experimental flexible structure produces per-
formance levels which agree with the Full Control synthesis results. Using bay 4
accelerometers as feedback measurements allows better vibration attenuation than
using bay 3 feedbacks. Peak gains of closed-loop transfer functions from the experi-
mental flexible structure are presented in Figure 6.11. K3 demonstrates the expected

poor performance in attenuating the 62 rad/sec mode while K7 is able to attenuate
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each mode to nearly equal peak gains as expected by the p plots.

1 open-loop - DOTTED i

Bay 3 feedback — SOLID
Bay 4 feedback - DASHED

Magnitude

10" 5
10 10
freq (rad/sec)

Figure 6.11: Experimental Closed-Loop Peak Gains for bay 4 Accelerometers with

4 () and K ()
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Chapter 7

Summary and Conclusions

In this thesis system identification, performance criteria selection and optimal sensor
placement for flexible structures are examined. The ideas developed are tested on an

experimental flexible structure.

A system identification technique based on orthonormal basis functions is applied to
identify input/output response of the experimental flexible structure. This resulted
in identified SISO models for each input/output channel of the data. The a-priori
information about the poles of the experimental structure for the orthonormal basis
identification is obtained from a classical linear least squares identification technique.
A matrix partial fraction expansion method is used to obtain a MIMO state space
realization of the experimental structure from individual SISO systems. This model is
used to design a high performance vibration attenuation controller using H., control
techniques. This controller is implemented on the structure and good agreement is

observed between the predicted and experimental performance.

Unlike most of the feedback design problems there usually is a freedom to choose

the signals to be penalized and the signals to be fed back in flexible structure control
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design. The next area of research focused on the selection of error signals and perfor-
mance weights for active vibration attenuation in flexible structures. It is shown that
the controllers may succeed in achieving what is being asked for by the design criteria
but this may not be the overall desired result. The choice of performance weightings
and the signals being penalized play an extremely important role and they must be
selected based on the performance objectives. The type of attenuation desired (ac-
celeration, velocity, displacement at collocated and noncollocated locations) and the
frequency range of interest are factors that dictate the choice of penalty weights and
error signals as well as sensor locations. Penalizing signals measured at accelerometer
locations gave good results. This has the advantage that acceleration measurements

are accurate and sensors can be placed anywhere on the structure easily.

The results on performance criteria selection leads to the question of sensor location
selection on flexible structures. In the last part of this thesis a technique based on
full control design is presented for selecting optimal sensor locations. The technique
is optimal in the sense that it selects the best sensor configuration among a given
set, of sensor locations. Globally optimal Full Control compensators are computed
at each of these locations to determine the maximum performance and robustness
level achievable. The sensor locations chosen for implementation on the physical sys-
tem correspond to the sensor locations achieving the best Full Control performance.
There is no guarantee that the optimal Full Control sensor locations are equivalent to
the optimal sensor locations for a general output feedback controller; however, exper-
iments indicate that this technique can choose effective configurations for a physical
system. In this technique model uncertainties and closed-loop performance objectives

can easily be incorporated into the sensor placement process.

There are two obvious areas that can be considered as extensions to the research
presented in this thesis. The first is to develop a systematic technique for refining

the a-priori pole location information necessary for identification with generalized
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orthonormal basis functions and a quantitative examination of the sensitivity of the
identification technique to the errors in pole locations. The second research area is
the optimal placement of actuator locations for closed loop control. This problem
is dual to optimal sensor placement problem and can be formulated as a Full in-
formation synthesis problem. It may also be interesting to formulate the optimal
sensor/actuator placement problems so that elements of B and D matrices of the
state space representation are found rather than selecting one location among a given

set of locations.
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