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ABSTRACT

In this thesis, we propose a stochastic process describing the total number
of failed items under warranty over time. This stochastic process consists of
a sales process represented by a stochastic point process and a process count-
ing the total random number of repairs applied to an arbitrary item of this
product. Combining these two stochastic processes yields a representation of
the counting process of the total random number of failed items returned to
the manufacturer within their warranty period. To fit the proposed parametric
model to a large data set we need to estimate separately the intensity measure
of both the failure and sales process. To estimate the intensity measure of the
cumulative sales process we use some well known parametric functions and
apply linear regression techniques. Also, under the assumption that a repair
does not change the age of the particular item of the product it can be shown
that the counting process of failures is a non-homogenous Poisson process and
so we need to estimate the cdf of the time to the first failure. Since our data
set is censored we apply the Maximum Likelihood principle for censored data
and use as a parametric class the class of Weibull distributions. Our approach
serves as an alternative to the time series based approaches for cases where
item tracking information is available.
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OZET

Bu tezde, garanti siiresi icerisinde ariza cikaran triinlerin sayisi tizer-
ine bir model onerilmistir. Bu model, satis siirecini genel nokta stregleri
(siirekli zamanli model) ya da zaman serileri (ayrik zamanlh model) aracilig
ile gostermenin yam sira garanti kapsaminda geceklesen toplam onarim
sayisin1 da aciklamaktadir. Bu iki stokastik siirecin birlesmesi, uretici
tarafindan tamir edilecek toplam arizali iiriin sayisim1 sayan bir stokastik
siirecin tam bir temsilini verir. Geligtirilen kuramsal model ve onun
turetilmis 6zellikleri, parametrik bir model olarak biiyiik bir veri kiimesine
uygulanmistir. Ilk olarak, iki ayr1 trinin gelecekteki satislarinin bazi iyi
bilinen parametrik fonksiyonlar kullanilarak dogrusal regresyon vasitasiyla
nasil tahmin edilebilecegi incelenmistir. Ikinci olarak, onarimin iiriinin
yasinmi degistirmedigi varsayimi altinda, ariza siireleri Maksimum Olabilir-
lik Tahmin Edicisi yonteminin sansirli veriler iizerinde kullanimi yoluyla
tahmin edilmistir. Bu yontemde, sinif olarak sik kullanilan Weibull dagilim
smifi kullamlmigtir. Onerilen yaklagim, iriin bazinda takibin miimkiin
oldugu durumlarda zaman serilerini kullanan yaklagimlara bir alternatif
olusturmaktadir.
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Chapter 1

INTRODUCTION

In this thesis, we develop a model to predict the number of failures (break-
downs) that the units of a consumer product experience in the future. This is
an important problem for manufacturers as these failed items return to the
firm for repairs, especially if the product is under warranty. The firm uses
predictions of failures for various purposes including spare parts inventory
planning and repair facility resource planning. These predictions also allow
the firm to detect anomalies in product returns, which may indicate quality
issues in the production process or with component suppliers.

A straightforward way to predict the number of failures would be using
a time series analysis based on historical failure data. This approach, while
practical, ignores the effect of the installed product base, that is the number of
items sold and in use by customers. The inclusion of the installed product base
information can enhance failure rate predictions as higher number of items in
use would naturally increase the rate of failure observations. The installed
base, in turn, is determined by the rate of product sales, which is shaped by
product life cycle phases as well as seasonality.

In this thesis, we suggest a novel stochastic model of product failures that
is based on two sub-models for the counting process of item sales, and failures
of each individual item. Note that these sub-models provide value on their
own as well, for sales forecasting and item-level failure analysis.

We test our model using the sales and failure data of two products (to which
we refer to as product A and product B) of a major household manufacturing
firm in Turkey. The data is item-level, that is, it provides the sales and failure
date(s) of each individual item. The sales data contains the dates on which
items are installed. Since the usage time of the item starts at the day of its
installation, we assume the sales date of the item to be the same as its instal-
lation date. The failure data contains the dates on which item was returned
to the firm in order to be repaired for any reason that is covered under the
warranty policy. Assuming that a failed item is returned for repair immedi-
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ately and that the repair takes no time, failure and repair times becomes the
same. Therefore, we can model the failure process by using the repair data of
the firm.

The life flow of the products we consider can be summarized as in Figure
1.1. Throughout the warranty period, customers demand repair services when
their item fails. The repair performed can be either minimal or major. A
minimal repair restores the item to the previous deterioration stage, while a
major repair restores the item to good-as-new [21]. If an item is not returned
to the firm during the warranty period, the firm does not know if and when it
failed. Thus, the only information about the lifetime of that item will be that it
exceeds the warranty length. Such data is referred to as right-censored, which
is a typical situation with lifetime data. Developing a methodology that deals
with censoring is a major challenge of lifetime data analysis.

o R -

Repaired (+—| Returned

Figure 1.1: Life flow

While there has been numerous research on forecasting product failure
rates [25, 19, 26, 49], only few researchers have considered failures as a collec-
tion of random variables and suggested stochastic processes for their analysis.
The common approach is to use either a simple empirical forecasting method or
a Box-Jenkins transfer function model to capture the dependence of the item
returns (or the demand for spare parts) to the product installed base (or sales
quantities). We contribute to literature by generating a stochastic model for
both the total number of failures, and the accumulated repair cost over time.

The thesis is structured as follows. In Chapter 2, a review of the existing
research on lifetime analysisis provided. Next, in Chapter 3, the mathematical
model is presented. After the general continuous model for estimating the
total repairs and their costs is provided, a section on the cumulative sales
process is included. In Chapter 4, the sales data is analyzed and a proper
parametric function is provided for its estimation. In Chapter 5, the failure
data is analyzed and a Weibull distribution is fitted over the lifetime data.
Finally, in Chapter 6, the results of the analysis are discussed thoroughly.
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Chapter 2

LITERATURE REVIEW

Managing the return flow of failed items has added to the complexity of reverse
logistics operations. Predicting the number of items that will be returned in
some future period in advance will help maintain proper levels of inventory
and resource allocation. Accordingly, predicting the failure rate of different
products has been the focus of numerous works in literature [50, 49, 36, 26]. In
one basic approach, to which Toktay et al. [49] refer to as “Naive estimation”,
the failure probability is estimated merely by dividing the cumulative failures
to cumulative sales [50, 19]. In this case, the only information available is the
total percentage of failures and not their timing. Later, data-driven regres-
sion models which capture the dependence of failures to some explanatory
variables such as price, product category and the reason for return became
widely accepted [20]. Certain studies that use this approach exploit the fact
that current failures are a function of previous sales [49].

In this thesis, we propose a model based on point processes to estimate the
number of failed items by a specific point in time. Our model can be decom-
posed into two parts: the estimation of sales and the estimation of failures by
time ¢. In the following two sections, we provide an overview of the research
conducted on these two areas.

2.1 Sales

A large number of works in literature estimate the sales quantities of a prod-
uct, using mainly simple time series forecasting methods [44, 34]. Very few of
these, however, consider the product life cycle, which provides a shape for the
sales function of the product in its different life stages. With this approach,
the future sales is not merely an extrapolation of the most recent sales trend.
Instead, the change in the sales growth at different life stages is considered.
One of the works done in this area is of Brockhoff’s [12]. This author as-
sumes the life cycle to consist of three parts which respectively represent the
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sales growth during the initial periods, the sales decline in the later stages
and overlapping of these two phases with the impact of sales of the firm’s com-
plementary or substitute products. To estimate the shape of the life cycle, the
author proposes two models that respectively depend on the additive and the
multiplicative combination of certain functions. A variant of the least squares
method is used for calculating the standard error and the parameters of the
life cycle.

Gomez et al. [33] identify three stages over the life cycle: sharply growing,
stagnating in one level and slowly declining. Then, considering this asym-
metry over the life cycle, they propose to use the Weibull distribution with two
parameters to describe the appearance of the curve on the left and right side of
the life cycle plot. Minner [35] proposes a logistic growth function with three
parameters. The author uses the estimated sales amounts to calculate the
installed base measure; i.e., the number of items that are still in use by the
customers.

2.2 Failures

In this thesis we focus on the failures of durable products which are also
repairable. Therefore, we use the terms failure and return interchangeably.
Forecasting can either be done on period-level information; i.e., based on sales
and failures volumes in each period, or on item-level information where the
timing of sales and failures are tracked on an individual basis [49]. Toktay
et al. [50] studied forecasting of product returns for disposable cameras. To
model the returns flow, they assume the returns to be dependent on sales
through an unknown return probability and delay distribution. Kelle and
Silver [25], and Goh and Varaprasad [19] studied forecasting of returns for
reusable containers. In all these environments, the available data are in
period-level. The techniques used for such data types are usually based on
the time series modeling methodology, which relates past return volumes to
future return volumes. However, this approach ignores the effect of past sales
data and therefore can result in inaccurate estimations. Goh and Varaprasad
[19] propose to use the transfer function model of Box and Jenkins [9] which
relates current failures to previous sales. Yet, this model neglects the fact that
data is augmented in each period as new sales and failures data are revealed.

The distributed lag model of Toktay et al. [50] can conduct this augmenta-
tion. If we denote the number of realized sales at time ¢ by N;, ¢t = 1,...,T and
the random number of failures at time ¢ by the random variable M;, t = 1,....,T
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the functional form of a distributed lag model is given by

[—1
M=) BNexte =237 (2.2.1)

where 3, is the k" reaction coefficient which represents the proportion of the
realized sales N;_j in period ¢ — k that contributes towards the number of
failures in period t. The sequence of random variables g;, ¢ = 2, ..., T denote the
sequence of independent measurement errors and 7" is the number of periods
of data available for estimation. Toktay et al. [50] used geometric and negative
binomial delay functions to represent the coefficients. Clottey et al. [17] em-
ploy a Bayesian approach with a distributed lag model using the continuous
analog of the geometric function used by Toktay et al. [50]. Employing an
exponential delay function, they obtained accurate estimates of the number of
failures in future.

Black box methods such as Box-Jenkins forecast the future failures as a
simple extrapolation of observed failures during the initial and mature phases
[26]. This approach, because of its simplicity, became very popular; however it
neglects the decrease of failure during the end-of-life phase of the product life
cycle, leading to overestimation of the actual failures. To prevent this, Dekker
et al. [26] use the installed base of the products at time ¢ to forecast the number
of spare parts that will be demanded.

Another issue is that failure data is usually censored. There are some
categorizations regarding censored data. In a right censoring mechanism only
a lower bound on the lifetime for some individual items are available. In this
case, if the product’s lifetime is larger than the warranty time, the firm will
only know that the lifetime is larger than the warranty time. Left-censored
point values are known only to be less than a specific value. In Figure 2.1
the failure times of five different items of a product are demonstrated. At
the end of the experiment, the lifetimes of items 1 and 2 were realized, but the
exact lifetimes of item 3 and 4 operational at the end of the experiment remain
unknown.

Censored data can also be of type I, type II or randomly censored. In type
I censoring, the censoring levels are known, hence the number of censored
observations is a random variable, while in type II censoring the number of
censored observations is fixed in advance. In a randomly censored sample the
censoring levels and the number of censored observations are random out-
comes. In this thesis, the data exhibits type I right censoring, which often
arises when a study is conducted over a specified period of time.

A number of researchers have developed methodologies to address censor-
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Figure 2.1: Censoring within the failure times data

ing [22, 29, 42, 6]. These methodologies can be either in non-parametric or
parametric form. The non-parametric and graphical procedures introduced to
estimate the distributional characteristics of the univariate lifetime data can
be a simple relative-frequency table for censored data (life table methodology),
or methods such as Kaplan-Meier (KM) Estimate.

The exact lifetime distribution theory for estimation of lifetimes is usually
not available. Therefore, one must resort to approximations which are mainly
based on Maximum-likelihood large-sample theory. Various parametric mod-
els are used in modeling the failure processes. Scholz [42] derives the maxi-
mum likelihood estimates of the Weibull regression model involving censored
data. The author assumes a Gumbel distribution for the error terms, and
provides unique maximum likelihood estimates.

Log-normal distribution is also used in modeling of lifetimes. Basak et al.
[6] developed inferential methods from a sample of censored data of a three-
parameter log-normal distribution. Kus and Kaya [27] developed a maximum
likelihood estimation procedure to estimate the parameters of log-logistic dis-
tributions for censored data.

15



Chapter 3

A MATHEMATICAL MODEL FOR THE TOTAL NUMBER
OF FAILURES AND THE COST PROCESS

In this chapter we propose a mathematical model based on point processes
to describe the total cumulative cost process and the total cumulative return
process of failed items over time. In Section 3.1 we introduce a general contin-
uous time model while in Section 3.2 we assume that the sales process is given
by a non-homogeneous Poisson process. For a non-homogeneous Poisson sales
process one can derive more detailed properties of the stochastic processes that
represent the total number of returned items, and the total cost of repairing
those items up to any time. In particular, under this assumption these stochas-
tic processes belong to the class of filtered Poisson processes for which a lot of
nice theoretical properties can be derived that will be useful in our statistical
analysis.

In the proposed model we decompose the problem into a sales part and a
failure part. Because the type of repair influences future failures, we discuss
in this section different repair models available in the maintenance literature.
To keep the model as simple as possible, and because it seems to be a realistic
repair model for our statistical application, our main focus is on the minimal
repair model.

3.1 A continuous time model for the total cost of repair-
ing failed items and the total number of failed items

In this section we propose a continuous time stochastic model for the total
number of failures over time of a particular product sold to customers and
the total costs of repairs. To introduce the model let (2, #,P) be a probability
space hosting the point process (T),),,cn with T,,, n € N representing the ran-
dom arrival time of the nth arriving customer who buys exactly one item of
this product. It is assumed that this so-called one-dimensional random point
process (T,),cn is nonexplosive (see [11]) meaning the random variable T, is
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finite with probability one for every n, T, < T, for every n and
Too =71 limypoo Tpy = 00 a8

and denote by S = (S(¢)):>0 the counting process of this point process (T),),en
given by

S(t) = Z:;l Lip, <ty (3.1.1)

Due to the interpretation of the random variable T,, the random variable S(¢)
counts the total number of arriving customers within the interval [0, ¢]. Since
each customer buys exactly one product, the random variable S(¢) also counts
the cumulative sales up to time ¢. We also denote by ¥ the so-called intensity
measure of the point process (T),),cn (see [11] or section 1.4 of [28]) given by

TU(A) = E( anl Lirpeay) = anl P(T, € A) (3.1.2)
with A any Borel set on R, and we introduce the right-continuous increasing
function

U(t) = 0([0,1]) = Zf_l Fo(t),t >0 (3.1.3)
with
Fo(t) =P(T,, <t). (3.1.4)

Clearly ¥(t) = E(S(¢)) and to avoid pathological cases it is assumed in the
remainder of this chapter that ¥(¢{) < oo for every ¢ > 0. This means that
the expected amount of sales up to any time ¢ is always finite. Also in the
remainder of this chapter we call the item of the product bought by the nth
arriving customer item n.

After item n is bought at the random time T,,, it is used by the customer for
a random amount of time, called the usage time of item n, which is denoted by
the random variable U,,. It is assumed that the sequence (U,,),cn is indepen-
dent of the sequence (T,,),cn of selling times and that the random variables
U,, n € N are independent and identically distributed with cdf G satisfying
G(0) = 0 having a finite first moment. For a lot of consumer goods which
are not season-dependent the independence between selling times and usage
time seems to be a reasonable assumption. It is also possible to include in the
model that usage times depend on the time of sales but we will not discuss this
extension in this thesis. Since we are interested in the total number of repairs
of failed items and the corresponding costs of repairing these failed items up
to any time ¢ it is clear that the number of repaired items or the total repair
costs up to any time depend on the products available in the market at any
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time ¢t. Therefore we introduce the stochastic process U = {U(¢) : t > 0} with
U(t) = number of items of a given product in use at time ¢.

By its definition it is clear that

o0

U(t) = anl LU, >t-To L{To<t)- (3.1.5)

Since the random variable U(¢) is also known in the literature as the installed
base at time ¢ (see [26]), we refer to the stochastic process U as the installed
base stochastic process. For this stochastic process it is easy to verify the fol-
lowing result.

Lemma 1 For any non-explosive cumulative point process (T),),eN it follows
that

t
E(U(1)) = / (1 -Gt —u)¥(du),t > 0. (3.1.6)
0
with V(t) = E(S(t)), t > 0 the intensity measure of the point process (T,),en.

Proof. By relation (3.1.5) and the independence of the sequences (U,,),cx and
((T})nen We obtain using the monotone convergence theorem (see [14]) and the
tower property for conditional expectations that

E(U() = E(Xo5 Lxnst-Ta) HTa<t))
Do E(Lyxp > <)
= Tl fy (1= Gt~ w)Fy(du)
= o1 = G(t = w)¥(du).
This shows the desired result. O

Usage times can be used in a lot of different situations. One situation is
when a product is only used during the warranty period of length w and dis-
carded by the customer after the expiration date of the warranty. This means
that

a.s
U, = w.

This is the warranty installed base concept as defined in [26]. It is also possible
that the customer uses the product much longer than the warranty period,
thus in general the expected usage time of the product is much larger than the
length of its warranty period. This is the economic installed base concept as
defined in [26]. Most consumer household products belong to this class. If this
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scenario applies, the decision to stop using the product depends on the repair
cost of failures occurring after the expiration date of the warranty. Another
attitude that the consumers of a product might follow is to discard the product
before its warranty ends. This usually happens for products with short life
cycles. This is the mixed installed base concept as defined in [26].

Hence in general it is realistic to assume that the random usage time U,
of item n depends on the costs of repair in combination with the remaining
value of the failed item. A repair of a consumer good is either done by a repair
crew at the home address of the customer or by repairing the failed product
at a repair facility. In both cases this generates repair costs for the manu-
facturer if a failure occurs during the warranty period, or for the customer
after the expiration date of the warranty. In our proposed model we include
these repair costs. After item n is sold at time T, it generates during its usage
time a sequence of failures and each failure causes a repair. It is assumed for
simplicity that repairs do not take any time and a failed item after repair will
always function again. An easy extension of this model would be to include the
possibility that with a certain probability depending on the age of the defective
item this item cannot be repaired and needs to be replaced. This extension can
be analyzed using similar techniques but for simplicity we do not include this
extension into this thesis.

To describe the counting process of failures and corresponding repairs of
item n we introduce on the probability space (2, /{,P) a sequence of increasing
random variables

0 <T1n <T2n <T3n <..

with T, + T, representing the time of the jth failure of item n. The stochastic
cumulative counting process N,, = {N,,(¢) : ¢ > 0} describing the total number
of repairs or failures of item n within the interval [T,,, T, +t) is then given by

(o)

N, (t) = ijl Lz, <ot 2 0- (3.1.7)

Since the items are identical products, it seems reasonable to assume that for
every n € N the sequence (T},) jen of random variables are identically dis-
tributed and the sequences (Ty,) jen, n € N are independent. The assumption
of independence might be restrictive but without this assumption it seems to
be impossible to analyze the model. This implies that the counting processes
N,,n € Nlisted in relation (3.1.7) are independent and have the same probabil-

ity law. As for the sales process in relation (3.1.2) we denote by ® the intensity
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measure of the identically distributed point processes (T;y,) en, n € N given by

B(A) =E (Z;; L, e A}) =37 P(Tju € A) (3.1.8)

i=1

with A any Borel set on R,. As for the intensity measure of the sales process
we also introduce the right-continuous function

(e.e]

B(t) = B([0,4]) = E (ijl 1{@”9}) >0 (3.1.9)

The main remaining problem is to determine what the repair does to the state
of the item since this determines the intensity measure ®. In our statisti-
cal analysis we are dealing with household equipment that consist of a large
number of components. Thus it seems reasonable to assume as an approxi-
mation that the minimal repair assumption holds. As observed in [15], the
replacement of one failed component by an as-good-as-new component in a
product consisting of a lot of components does not really change the failure
rate of the product. Therefore, unless specified otherwise, we assume that
the minimal repair assumption holds throughout this chapter. Of course, this
assumption should be tested using our particular data sample of failures of
individual items. This will be the topic of future research.

In this section we also discuss another type of repair process popular within
the maintenance literature. It should be obvious that depending on the in-
fluence of the repair on the state of the product we obtain different intensity
measures ¢, and most of these intensity measures can only be calculated using
numerical evaluations. In the Appendix of [8] or [43] it is shown that the
point process N,, of failures under the minimal repair assumption is given by
a non-homogeneous Poisson process with arrival rate function the failure rate
function of the cdf

F(t) =P(Ty, < 1) (3.1.10)

with Ty, the random operation time of item n until its first failure. It is as-
sumed that this cumulative distribution function /" satisfies /'(0) = 0 and has
a density f. Hence its failure rate function is given by

ft)

"W=1"00

Since it is well-known that
1= F(t) = ¢ Jor(s)ds (3.1.11)
this shows using the well known properties of a non-homogeneous Poisson pro-
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cess (see [13]) that the intensity measure of the minimal repair model defined
in relation (3.1.9) is given by

O(t) = /Otr(u)du =—1In(1 - F(t)),t > 0. (3.1.12)

For more details on the minimal repair process, the reader is referred to [5].
In case the repair process brings the repaired item back to the as good as
new state, it follows with Ty,, = 0 that the random variables

Xjn - Tjn - Tj—l’lhj eN

are independent and identically distributed. This applies to items with only
a few critical components. Since this is not likely to be the case for consumer
goods, we only mention this type of repair process for completeness. Inter-
mediate types of repair processes based on residual life time after a repair
(so-called hazard rate repair models) can be found in [5]. The good as new
condition implies that the intensity measure in relation (3.1.9) of the failure
process is given by

O(1) = Z;: P(Tj, <t) = Z‘; FI(),6>0 (3.1.13)

with F"" denoting the n-fold convolution of F. Observe it is well known for
F(0) = 0 and /" has a density f on (0, c0) that for every n € N

t
F™ (1) = /O FO=D* (¢ — ) f(u)du, t > 0

with
FO(t)=1,t>0.

In this case the intensity measure ® of the failure process is also called the
proper renewal function associated with the cumulative distribution function
F. (see [10], [23] and [3]). In this case only for very special cases a simple
analytical formula is available. For a lot of details on the asymptotic behavior
of the renewal function including close bounds the reader should consult [3]
or [37] while for numerical approaches to evaluate numerically the renewal
function the reader should consult [47] or [31].

If we are interested in the cost of repairs, we introduce for each item n
bought at the random time T,, n € N the sequence of random variables
(Cjn)jen with Cj,, denoting the random cost of repairing the jth failure of item
n. Since the items are identical products we assume for every n € N that the
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sequence of random variables (Cj,);cy are identically distributed and the se-
quences (Cj,)jen, 7 € Nareindependent. Again the independence assumption
is most restrictive but without this condition it seems difficult to analyze the
model. Clearly the repair costs might also depend on the age of the item and
so Cj, can be correlated with Tjn. Instead of counting the total number of
repairs of item n within the interval [T,,, T,, + ¢] we then need to introduce the
stochastic process C,, = {C,,(¢) : { > 0} with C,,(¢) denoting the total random
cost within the interval [T,,, T, +t) of repairing item n . It is now obvious that
the random variable C,,(¢) is given by

Cult) = ;’:1 Cinl g, <yt > 0. (3.1.14)
Since the repair costs are nonnegative, the cumulative costs processes C,,
n € N for each item n have increasing sample paths. By our assumption on
the random cost (C;y,),cn of a repair of item n and the point process (T;,)jen
of arrivals of defects of item n, it follows that the cumulative costs processes
C,,n € N have the same probability law and are independent. Taking into
consideration the date of production of item n we can relax the assumption
that the stochastic processes C,,,n € N have the same probability law. This
extension is realistic since the technology of producing an item may change
over time and this change of technology affects the probability law of the failure
process. For simplicity we will not consider this extension as well.

Using relation (3.1.14) it follows by the monotone convergence theorem that

E(Ca() =Y.

To simplify this formula we need to make some additional assumptions. The
simplest case to consider is to assume that the average cost of a repair at age y
of any item n is given by ¢(y) with ¢: R, — R, some increasing function. This
function can be estimated using cost data on repairs of items. Now it follows
that

00 o t
cn(t)zzj:l (Tju)Lgw,, <ty = /0 c(u)dN,, (u). (3.1.16)

Using formula (3.1.15) this shows by the tower property of conditional expec-
tations that

E(Cn(t)):zzil /0 c(u)dP(Tjp < u) = /O c(w)dd (u) (3.1.17)

with ® the intensity measure of the failure process listed in relation (3.1.9).
In particular under the minimal repair assumption we obtain using relation
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(3.1.12) and (3.1.17) that
t
E(Cnh(t)) = / c(u)r(u)du. (3.1.18)
0

By taking c¢(y) = 1 for every y > 0 we recover in relation (3.1.17) the total
number N, (¢) of failures or repairs within the interval [T,,, T,, + {|. Another
extension not to be considered in this thesis is that the random variable C;,,,j €
N representing the cost of the jth repair is independent of the time of the
jth failure. This might apply to items in which a failed component is always
replaced by a completely new one and the repair costs are always given by the
sum of the cost of that component and some fixed service cost. If this holds we
obtain using relation (3.1.15) that

E(Cn(t) = Zj; BiP(Tjn < 1) (3.1.19)

with 3; := E(Cj,). In general this seems to be difficult to analyze unless we
specify the type of repair process. This will be the topic of future research.

Observe that the total number of repairs of a given item within a certain
time interval can be seen as a counting process of a non-explosive point process
starting at a different time T,,, while the cumulative cost process of failures or
repairs of a given item can be seen arising from a marked non-explosive point
process with the markers given by the cost of a repair. We are now interested in
the total number of failures up to time ¢ and this stochastic process is denoted
by the random process R = {R(¢) : ¢ > 0}. In the remainder of this thesis
this process is called the cumulative repair process. The more general process
we are also interested in is the total cost of repair process. We refer to this
process as the cumulative cost process and denote it by C = {C(() : { > 0}.
To derive a representation of the cumulative repair process we observe that
the repair process N,, of item n starts after it is bought at time T,,, and the
total number of recorded failures up to time ¢ is given by the random variable
N, ((t — T,) AU,}) with U,, the usage time of item n and o A 7 : = min{o, 7}.
Looking now at all the items of a particular product sold before time ¢ and
adding all the repairs it follows that the total number of repairs up to time
t > 0 is given by

R(t) = ZZ; Ny ((t = Tn)AUR) 1y, <4y (3.1.20)

If we are interested in the stochastic process R, = {R(¢) : ¢t > 0} representing
the total number of repairs of items under warranty up to any time ¢ then it
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follows introducing
R,(t) = total number of repairs under warranty up to time ¢ (3.1.21)

that
o0
R, (1) = anl N, ((t = Tn) Aw)ler, < (3.1.22)

with w denoting the length of the warranty period. This process shows the
total cost of repairs for the manufacturer, as it is the manufacturer who pays
for repairs that occur within the warranty period.

Clearly the stochastic processes R and R, are non-negative integer valued
stochastic processes. If we are interested in the cumulative cost process of all
repairs we obtain in a similar way for every ¢ > 0

C(t) = Zil Co((t — Tu)AUy) Ly, <4y (3.1.23)

with C,,, n € N the cumulative cost processes of each item n. Depending on
whether the cost of repair is measured in integer or continuous values, the
stochastic process C has state space Z, or R, .

Although we are dealing with the cumulative cost process C, the total cost
of repair is not always covered by the manufacturer. After the expiration of the
warranty, the customer has to pay these costs. Since the cost to be paid by the
manufacturer only applies to items under warranty the total cost of repairs
up to time ¢ that is completely covered by the manufacturer is given by the
stochastic process C, = {Cy(t) : t > 0} with

C,(t) = Z;’il Cu((t = To) Aw) g, <iy- (3.1.24)

with w representing the length of the warranty period.

In the next result we compute the expectation of the random variable C(t).
Observe that the expected total costs to be paid by the manufacturer up to any
time ¢, and the expected number of repairs up to any time ¢ are a special case.

Lemma 2 It follows for every t > 0 that

E(C(t)) = /0 it — ) U(du) (3.1.25)
with
,LL(S) = E(Cl(s VAN Ul)) = E(Cl(s) A C1(U1)), s> 0. (3.1.26)

denoting the expected total repair costs of item 1 within the interval [T, T| +
(s AUy)| and VU the intensity measure of the sales process.
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Proof. Since the random variable C, (¢ A U,) is independent of the random
variable T,, for every n € N and the random variables C,,(t A U,),n € N are
identically distributed, we obtain by relation (3.1.23) applying similar argu-
ments as in Lemma 1 that

E(C(t) = 2oZ1E(Cu((t = Tn) AUn))lir,<y)
= n 1 fO t - u Ey, du)
= [t — u) O (du)

with U the counting measure of the sales process listed in relation (3.1.3).
Hence we have verified relation (3.1.25). The result in relation (3.1.26) follows
using the non decreasing sample paths of the total cost process C; of item 1
and we have shown the result. O

A special and important case of Lemma 2 listed in the next corollary is
given by the expected number of cumulative repairs. In the statistical section
of this thesis, we only consider the problem of estimating the expected number
of failed items up to any time. This is because our data set does not include
costs of repair but only sale and failure times.

Corollary 1 It follows for every t > 0 that

t
ER()) = / p(t — u)¥(du) (3.1.27)
0
with the function p : Ry — Ry given by
w(s) =E(Ni(s A Uy)). (3.1.28)

In the above result we did not specify the type of repair applied to failed
items. In the next result we give a simplified formula for the function ;. under
the minimal repair assumption.

Lemma 3 If the repair process of items is of the minimal repair type and the
cost process C is given by relation (3.1.16) then the cumulative cost process C;
has independent increments. Additionally, if the usage time U, is a stopping
time with respect to the filtration generated by the failure process N then for
every s > 0

sAU1 s
E(Ci(sAU;))=E (/0 c(u)r(u)du) = /0 c(w)r(w)P(Uy > u)du  (3.1.29)
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Proof. We know under the minimal repair assumption that the counting pro-
cess N; is a non-homogeneous Poisson process with arrival rate function 7(.)
and this shows (see [14]) that the stochastic process ¢ — fg c(y)dN,(y) has
independent increments. Hence the process M = {M(¢) : t > 0} given by

t ¢
M(t) :/0 c(u)le(u)—/O c(u)r(u)du (3.1.30)

is a martingale. Since for every s > 0 the random variable s A U; is a bounded
stopping time with respect to the filtration generated by the stochastic count-
ing process, it follows by Doobs optimal stopping theorem for martingales (see
[14]) that

-sAU1 ~sAU1
E(Ci(s AUL)) = E ( / c(u)le(u)> _E ( / c(u)r(u)du) . (3.1.31)

0 0

To simplify the above formula we observe

/OsAUl c(u)r(u)du = /03 c(u)r(w) L, 5 du

and this implies by Fubinis theorem

sAU1 s
E (/U c(u)r(u)du) = /0 c(u)r(uw)P(U; > u}du.

Hence we have verified the result. O

Again we mention as a corollary the following important special case of
Lemma 3 if we only deal with the number of failures. It gives a formula for the
expected number of defects of a particular sold item under the minimal repair

assumption.

Corollary 2 If the repair process is of the minimal repair type and the usage
time U} is a stopping time with respect to the filtration generated by the failure
process N1 then for every s > 0

E(Ni(s AUY) = E(f;" r(u)du)
(3.1.32)
= —E(ln(1- F(sAUy)))

with F denoting the cumulative distribution function of the random time T,
until the first failure.

An immediate consequence of Lemma 2 and 3 is given by the next result.
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Corollary 3 If the repair process for each item is of the minimal repair type
and is given by relation (3.1.16) and the usage time U1 is a stopping time with
respect to the filtration generated by the failure counting process N, then it
follows for every t > 0 that

with .
u(s) = /0 Flu)r(w)P(Uy > u)du

and ¥V the intensity measure of the sales process listed in relation (3.1.3).

Proof. Apply Lemma 2 and 3. O

Again we list as a corollary the following special case of Corollary 3 related
to the cumulative repair process. Actually this result will be of importance in
our statistical section to obtain estimates of the expected cumulative repairs

over time.

Corollary 4 If the repair process is of the minimal repair type and the usage
time U1 is a stopping time with respect to the filtration generated by the failure
process N then for every t > (0

ER(t)) = /t,u(t —u)¥(du),t >0 (3.1.33)
0

with
u(s) = =E(In (1 — F(s AUy)). (3.1.34)

and I denoting the cumulative distribution function of the random time T11 of

item 1 until the first failure.

Next, we shortly explain the relation between our proposed mathematical
model and the statistical analysis that is presented in Chapters 4 and 5 of this
thesis. The primary goal of this thesis is to obtain estimates of the expected
number of returned defective items making use of the proposed model. Thus,
it is sufficient to estimate the intensity measures of both the sales process and
the failure process. In short we explain how these estimates are obtained.
For more detailed information about the statistical techniques and used para-
metric forms one should consult Chapter 4 (estimating sales) and Chapter 5
(estimating failure).

As discussed in Chapter 4, the sales in each year follow a similar pattern.
The sales are lower in the beginning and end of the year, and higher during
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the middle of the year. To capture this, we approximate each year’s sales by
the often-used parametric function ¢ — at’e~° approximating the derivative
T (¢) of the intensity measure U. Originally (see [12]) this parametric func-
tion is well known in the estimation of the total number of sales during the
total life cycle of a product. In particular, time ¢ is measured in days and
we fit this parametric function to each year sales. This means we set for any
parameters a,b,c > 0

t
U(t)=a / uPe™du, 0 < t < 365 (3.1.35)
0
and for every k € N
t(mod 365)
U(t) = ¥(365k) + a/ ube™"du, 365k < t < 365(k + 1) (3.1.36)
0

Observe for every ¢ > 0 the notation ¢(mod 365) means

t
t(mod 365) :==t — {%J 365
with | 35| the largest non-negative integer smaller or equal to zt=. Using now
our sales data over each year and employing the above parametric represen-
tation, we estimate the parameters a, b, c over each year separately. We also
consider some alternative parametric functions in that chapter.

In Chapter 5 we estimate the intensity measure of the counting process
of failures. Under the reasonable assumption of minimal repair, the estima-
tion of the intensity measure ® reduces to the estimation of the cumulative
distribution function of the first time to failure. As already mentioned, this
minimal repair assumption should be tested on our data set and this is part of
our future research. Given now that this assumption is reasonable we use as
an example in our statistical section the often-used parametric class of Weibull
cumulative distribution functions to fit to the sample failure data. This is
done by using the maximum likelihood principle for censored data which is
discussed in Chapter 5. Note that the class of Weibull cumulative distribution
functions is given by

Flz)=1—¢ @ )" 0>0,8>0 (3.1.37)

This shows that
In(1 — F(z)) = (x5 1)

and so by Corollary 4 it follows for this parametric class and the used para-
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metric class for the sales process that
t
E(R(1)) = §° / B((t — u)® A U)W (du) (3.1.38)
0

with ¥ listed in relation (3.1.2) and (3.1.36). In our case study the policy of the
manufacturer is to repair only items under warranty, and so in this case the
random variable U] is equal to the length w of the warranty period. Hence we
obtain from relation (3.1.38) for t < w that

E(R(1)) = 5~ “w®T(t) (3.1.39)

while for ¢ > w

ER(t) = B [f5((t —u)® Aw®)T(du)
(3.1.40)
= FTOWCU(t —w) + S [ —u)*T(du).

As can be seen from relation (3.1.22), an exact interpretation of the above
formula is the number of returned defective items under warranty given by
E(Ry(1)).

To come up with a reasonable model for the usage time, denote by 6(y)
the salvage value of an item of age y. Clearly the salvage value function 6 is
decreasing. A customer might now use the following reasonable decision rule:
discard the item at the random time U; with

U; =inf{t > w: Ci(t) — Ci(w) > 0(y)} (3.1.41)

with w representing the length of the warranty period. Note that under the

minimal repair model

Ci(t) — Ci(w) = / f(u)dNy(u)

denotes the cost the customer has to pay for repairs due to failures occurring
after the warranty period. We will not continue with this approach and leave
the details of deriving all kinds of properties for this chosen usage time under
the minimal repair to future research.

However, in some practical cases due to the policy of the manufacturer the
usage time can be independent of the failure process. An example is given by
the following. The manufacturer might only repair items which fall under the
warranty and to allocate resources a manufacturer likes to know an estimate
of the total number of defective items which need to be repaired by him. If this
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applies, the manufacturer is now interested in the stochastic process R with a
usage time given by U ¥ w with w denoting the length of the warranty period.
In this case the formula in relation (3.1.26) reduces to

p(s) =E(Ni(s Aw)),s >0 (3.1.42)

and it equals the total number of repairs on item n to be done by the manu-
facturer within the interval [T, T,, + s|]. Under the minimal repair assumption
this function equals

wu(s) = /:Aw r(u)du = —In(l — F(s Aw)) (3.1.43)

with I’ denoting the cumulative distribution function of the random first time
to failure. Moreover,

p(00) = limgpoo p(s) = E(Ny(w)) = —In(1 — F(w)) (3.1.44)

denotes the expected total number of times a repair occurs during the war-
ranty period and

/Ow c(u)r(u)du

the expected repair costs for each particular item .

Although we are dealing with the cumulative cost process C, the total cost
of repair is not always covered by the manufacturer. After the expiration of
the warranty time the customer has to pay these costs. Because the cost of
the manufacturer only applies to items under warranty, it follows by relation
(3.1.24) that the expected total cost of repairs up to time ¢ for items under
warranty is given by

E(Cy(1) = /U t p(t — u)U(du) (3.1.45)

with (take U; = w)
u(s) =E(Ci(sAw)),s >0 (3.1.46)

As already observed, under the minimal repair assumption and using relation
(5.2.15) it follows that

p(s) = B(Ca(s Aw) = [ T f ) (u)du,

In some cases the usage time U; is independent of the failure counting pro-
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cess N of item 1 (remember all items have identically distributed failure pro-
cessess). If this independence assumption holds we can simplify the function
i for any type of failure process. Clearly in this case we obtain

p(s) = ENi(sAUy))

= E(Nl(s A Ul)l{Ulgs}) + E(Nl(s A Ul)l{U1>s})
(3.1.47)

= E(N1(Ui)lu,<s)) + EN1(s)1{u,>5))
— [ O(w)G(du) + B(s)(1 — G(s))

with ¢ the intensity measure of the failure process listed in relation (3.1.9).
If the usage time depends on the failure process and hence is a stopping time
with respect to the filtration generated by the failure process, we might pro-
ceed for general type of repair processes as follows. Since the stochastic failure
process N is a non-explosive counting process we need to determine the so-
called compensator of that point processes. (see Chapter 3 of [4]). As shown in
Definition 1.8 on page 53 of [4] most counting processes have as a compensator
the stochastic process A = {A(¢) : t > 0} given by

¢
A(t) :/ a(s)ds (3.1.48)
0

with (a(?));>0 some non-negative progressively measurable stochastic pro-
cess. The simplest example is a compensator for which the stochastic pro-
cess (a(t))¢>o is given by a deterministic function and this corresponds to the
minimal repair model being a Poisson counting process. Also for the as-good-
as-new condition type of repair process the stochastic process (a(t));>0 is given
by (see [4] and [23])

with A = {A(s) : s > 0} the so-called age process associated with the failure
times and r the failure rate function of the cdf F of the time to first failure
listed in relation (3.1.10). Also by Theorem 10 of [4] the stochastic process A
measurable with respect of the filtration generated by the counting process N
is a compensator if and only the stochastic process M = {M(¢) : t > 0} given
by

M(t) = N(t) — A1) (3.1.49)

is a martingale (see Theorem 11 of [4]). Since the counting process satisfies
clearly N(0) = 0 and by relation (3.1.48) we obtain A(0) = 0 we obtain M(0) =
0. Applying now Doobs stopping theorem for martingales (see [14]) to this
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martingale M it follows for any stopping time 7 with respect to the filtration
generated by the point process that

EM({tAT)) =EM(0) =0
This shows by relation (3.1.49) that for any stopping time T
tAT
E(N{tAT)=EA(tAT)=E (/ a(s)ds> : (3.1.50)
Jo

Hence if the failure process of each item is a point process with a compensator
process A given by relation (3.1.48) and the usage time U is a stopping time

tAU
u(t) =FE (/0 a(s)ds)

and as already determined

then we obtain

E(R(1)) = /O ty(t — w)U(du). (3.1.51)

This concludes our general discussion of the cumulative cost process C of de-
fective products and the cumulative repair process R without using the prob-
ability law of both processess. If we want to derive more detailed properties
of these stochastic processes like the variance or covariance function we need
to impose conditions on the cumulative sales process. This is the topic of the

next section.

3.2 On non-homogeneous Poisson cumulative sales pro-

cesses.

In this section we restrict ourselves to a cumulative sales process represented
by a non-homogeneous Poisson process with arrival intensity function ¢ and
a compound counting process of failure costs. Under this framework the cu-
mulative cost process C or its special case the cumulative repair process R
is a so-called filtered Poisson process (see [38]). Although a more general
class of cumulative sales processes to consider is the class of renewal processes
equipped with a time transformation and so the total cost process is a so-called
filtered renewal processes (see [1]) we only discuss in detail cumulative sales
processes given by a non-homogeneous Poisson process. A very interesting
survey on more sophisticated techniques then used here is given in Chapter 6
on Poisson random measures of [14]. Some of the results listed here are special
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cases of general results discussed in that chapter. Also a very good survey on
Poisson processes and filtered Poisson processes is given in Chapter 4 of [38].
As already observed at the end of the previous section it seems that an expres-
sion for the cumulative expected cost E(C(t)),t > 0 is the only general result
for the cumulative cost process C one can derive without imposing additional
assumptions on the probability law of the cumulative sales process.

To derive more detailed results like the cumulative distribution function of
the random variable C(t¢) we need to assume that the cumulative sales process
S is a non-homogeneous Poisson process with arrival intensity function . For
such a process it is well known that the expected cumulative sales up to time
t is given by (see relation (3.1.3)

W(t) = /0 ' wdu. (3.2.1)

Observe this is the intensity measure of the counting process S. Hence by
Lemma 2 we obtain for a sales process modelled by a non-homogeneous Poisson
process that

E(C(t)) = /0 t P)E(Cy((t — u) A Uy)du (3.2.2)

In a lot of statistical applications a parametric model is fitted to cumulative
sales data and so we obtain an estimation of the expected cumulative sales up
to time ¢ for every ¢ > 0. If this estimated expected cumulative sales function
has a derivative function ¢/(.) we may assume as a first moment approximation
that the total sales process is represented by a non-homogeneous Poisson pro-
cess with arrival intensity function ¢. Using this approach we obtain a first
moment approximation of the cumulative costs process. Note this is related
to the widely used practice in engineering to determine the cdf of a random
variable by a so-called two-moment fit within a selected class of cumulative
distributions functions. Well known examples of these classes are Gamma
and Log-normal distributions (see Appendix B of [47]). Hence next to first mo-
ments we are also be interested in second and higher moments and in general
deriving an expression for the cumulative distribution function of the random
variable C(¢). To derive an expression for the probability Laplace-Stieltjes
tranform of this random R(¢) under the assumption that the sales process is a
non-homogeneous Poisson process we need the following result.

Lemma 4 If the cumulative sales process S ={S(l) : ¢ > 0} is a non-
homogeneous Poisson process with Borel arrival intensity function 1 indepen-
dent of the independent and identically distributed cumulative cost processes
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C,,n € N listed in relation (3.1.14) then for every k € Z, and s > 0
E(e=C | 8(t) = k) = E (e~n(=Yn0n)*

with the random variable Y concentrated on [0,t| and independent of the
stochastic process {C1(s A Uj) : s > 0} having cdf

I'(y) = M,O <y <L (3.2.3)

W(t)
with VU listed in relation (3.2.1).

Proof. By the properties of a non-homogeneous Poisson process (see [41] or
[13]) it follows for every s > 0 that

E(e—sC(t) ‘ S(t) _d k) =T (6_3 ZIZ=1 Cn((t_Yn:k)/\Un)> 3.2.4)

with (Y14, ..., Yr.x) the joint order statistics of a sequence of independent and
identically distributed random variables Y,,n = 1,...,k on [0,¢] having the
continuous cumulative distribution function

F(y):P(YSy):%,OSySt. (3.2.5)

Introducing the set IIj, of all permutations 7 on {1, ..., k} and for every = € Il
the event
Er={(Y1,...,Yg): Yw(l) <...< Yw(k)}

it follows using the random vector (Y1, ..., Y) has a continuous joint cumula-
tive distribution function that

E (6_8 Zfl:l C”((t_Yn:k)/\Un))
k
ZTFEH]C E (6—8 2 n=1 Cn((t_Y“'("))/\Un)].Eﬂ_>

S en, [ f[O,t]k E (e—s Yot Cn((t—yw(n))/\Un)> 1 (Y1, - o) AF (y1, oy y)
(3.2.6)
with
Er ={W1,9k)  Uzt) S Un) < oo < Yriy} (3.2.7)
and F the joint cumulative distribution function of the random vector
(Yy,...., Yy) given by

F(y1, cey) = U(t) "TIE_ U (yy).
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Since the cumulative cost processes C,, (. A U,),n € N are by assumption inde-
pendent and identically distributed and clearly for every = € II;,

k k
Yo Crm (= yr(m) AUnm) =D Cal(t —ya) A Un)
it follows for every y € I/, that
E (6—8 22:1 Cn((t—yﬂ.(n))/\Un)) — HfL:lE (e—SCn((t—yﬂ.(n))/\Un)>
= lez:lE (6_5(371'(71)((t_yﬂ'(n))/\Uﬂ'(n)))
= [E (6_3251:1 C‘ir(n)((t_f‘/ﬂ(n))/\Uﬂ(n))>
_ E (e—szﬁzl cn<(t—yn>AUn>)
- E (6—501((75—1/1)/\U1)) g ]

This shows applying relation (3.2.6)

E (e—sEii:l Cn((t—Yn:k)AUn)>

k
Zwel_[k f f[O,t]k E <e—sC1((t_yl))/\U1)) 1E7r (yh e yk)dF(yl, --->yk)
k
= JoE (e mmN) dp(y,)
— E(e—sc1((t—Y1)/\U1))k

and using relation (3.2.4) we obtain the desired result. O

A special case of Lemma 4 applied to the cumulative repair process R is
given by
E(e "R | 8(t) = k) = E(e N1 (=YD)AU )k (3.2.8)

with N the failure counting process of item 1.
Before discussing the next result we need to introduce the following well
known definition (see [45]).

Definition 1 Let X be a non-negative random variable on the probability space
(Q,H,P). The function 7x : [0,00) — [0, 1] defined by

x(s) =E(e™*%),5s >0 (3.2.9)
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is called the probability Laplace-Stieltjes transform (pLSt) of the random vari-
able X. If the random variable X is also integer valued the function Px : D — C
with D = {z € C:| z |< 1} C C the unit disk in the complex plane C defined by

Px(z) =E(z%),z €D (3.2.10)
is called the probability generating function (pgf) of the random variable X.

It is well known (see [51]) that the probability Laplace-Stieltjes transform
of the random variable X uniquely determines the underlying right continu-
ous cumulative distribution function of the same random variable. We also
introduce for every ¢ > 0 the functions @; : Ry — R given by

t
Qu(s) = / Y(y)E(e =AU gy (3.2.11)
0

It is obvious that

t
Qu(0) =,/U bly)dy = T (1)

with ¥ the intensity measure of the sales process. One can now show the
following important result about the probability Laplace-Stieltjes transform
of the random variable C(¢) for any ¢ > 0.

Theorem 1 If the cumulative sales process S = {S(t) : t > 0} is a non-
homogeneous Poisson process with Borel arrival intensity function i) and this
cumulative sales process is independent of the independent and identically
distributed cumulative cost processes C,,n € N then the probability Laplace-
Stieltjes transform of the random variable C(t) is given by

o (s) = E(e *CW) = ¢ (@0 s > ¢ (3.2.12)

with .
Qui(s) = / Y(y)E(e*C1 =AUy gy s > 0. (3.2.13)
0

Proof. Since the cumulative sales process S is a non-homogeneous Poisson
process with Borel intensity function ) we obtain

E(e—C®) — Y E (70 | S(1) = k) B(S(t) = k)

(1)K
= VO TRE (000 | S(t) = k) -
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Applying Lemma 4 it follows

—sCy((1-Y])AUY) k
E(e—sC(t)) — V() EEO:O (E(e ' k'l T )W(t))

(3.2.14)
—(t) (1—]E (6—301((t—Y1)/\U1))>
(& .

Since the stochastic process C(tAU ) is independent of the arrival process and
hence independent of the random variable Y, having cdf F' listed in relation
(3.2.3) it follows that

\I/(t)]E(e—S(Cl((t—Yl)/\Ul)) - qj(t) f()t 1\/1’1((33E(B—S(Cl((t—y)AUl))dy

=[5 (y)E(e*CLllt=AU) gy (3.2.15)

= Qus)

Substituting relation (3.2.15) and ();(0) = ¥(¢) into relation (3.2.14) yields the
desired result. O

In the statistical section, because we do not have cost data, we are inter-
ested in the estimation of the parameters of the cumulative stochastic repair
process R. Hence, in the next corollary we mention the probability Laplace-
Stieltjes transform of the random variable R(¢). Clearly this is a special case
of Theorem 1.

Corollary 5 If the cumulative sales process S ={S(l) : L > 0} is a non ho-
mogeneous Poisson process with Borel arrival intensity function 1 and this
cumulative sales process is independent of the independent and identically
distributed cumulative cost processes C,,n € N then the probability Laplace-
Stieltjes transform of the random variable R(t) is given by

TRt (s) = E(e™*BW) = = (@(0)=Qus) s >, (3.2.16)

with .
Qi(s) = / U (y)E(e N1 =AU g, (3.2.17)
0

Since the cumulative repair process R is an integer-valued process then by
exactly the same arguments we obtain for every z € D

Priyy(2) = E(zRW) = e~ (@(1)=@(2) (3.2.18)
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with
/QZ} N1 t— y/\U1 dy/ W(y le((t )/\Ul)( 2)dy. (3.2.19)

with P denoting the probability generating function.

Up to now we did not specify in our model the type of repair process. Clearly
this is needed to simplify the expression for (); both in relations (3.2.13) and
(3.2.17). In this chapter we mainly consider the special case that U; is inde-
pendent of the costs process C; and its special case U; = w with w denoting
the length of the warranty period. Observe that the last case covers the total
repair costs to be paid be the manufacturer due to warranty obligations. The
much more practical case that the random variable U; is a stopping time
with respect to the cost process (see relation (3.1.41) for an example of such
a stopping time) will also be discussed for the minimal repair model. However
in this case we can only derive some relations which might be of use in future
research.

If the usage time U; of an item is independent of the cost of repair process
of that item we obtain

B (ems0in00) = B(em OO ) + B OO 1, )
= B ) B ) 3220
= E(e—*C1)(1 - G)) —&—jg]E(e_SCl(u))G(dU)

with G the cdf of the usage time U,. For the special case of U; “* w with w the
length of the warranty period of the product we obtain the simplified formula

E (e—scﬂtAUl)) ) <€_sc1(m>) . (3.2.21)

By a similar proof we obtain for the cumulative failure process and the random
usage time U; independent of the failure process that

t
E(e N1ty — ge=NO)Y (1 — G(1)) + / E(e*N1) G (du). (3.2.22)
0
For U; & w it follows that
E (e sN1tAUDY — g(emsN1(tAw)y, (3.2.23)

Looking at the formulas in relations (3.2.13) and (3.2.20) for the cumulative
cost process and relations (3.2.17) and (3.2.22) for the cumulative repair pro-
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cess we need to derive for the evaluation of the function ); a more detailed
expression for the probability Laplace -Stieltjes transform of the individual
item cumulative cost or failure process. If we assume that repairs are minimal
repairs not changing the age of the item and we consider the item-dependent
cumulative cost process given by

- t
Ci(t) = ijl o(Tj)lr, <y = /0 c(y)dNq(y) (3.2.24)

we can simplify these formulas. Under these assumptions the next result
holds. Note that the proof of this result is actually easier than the proof of
Lemma 4 and for completeness it is listed.

Lemma 5 If the repair process of items is a minimal repair process and the
cumulative cost process is given by relation (3.2.24) then it follows that the

stochastic process C has independent increments and

Wcl(t)(s) il E(e—sCl(t)) — e_(Qt(O)_Qt(b’)), s>0 (3.2.25)

with .
Qu(s) = / r(y)e > Wdy (3.2.26)
JO

and r denoting the failure rate function of the cumulative distribution function
F of the random time to the first failure.

Proof. Since the repair process is a minimal repair process we know that the
counting process N; is a non-homogeneous Poisson process having indepen-
dent increments. It is now obvious using the definition of the cost process in
relation (3.2.24) that the cost process C; has independent increments. Also
we know that the arrival rate function of the counting process N; of failures
is given by r with r denoting the failure rate function of the cumulative distri-
bution function of the random time to the first failure. Hence it follows by the
tower property that

E(e—scl(t))
= P(Ny =0)+ Y02 E(e €0 | Ny(t) = n)P(Ny(t) = n) (3.2.27)

_ ) (1 + Yol E(e G | Ny (1) = n)%”)

with ¢(t) = fOT r(u)du the intensity measure of the counting process N;. By the
well known properties of a non-homogeneous Poisson process (see [13]) with
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arrival rate function r we obtain that
E(e—sch(t) | Nl(t) _ k) —F (6_8 Zﬁ:l C(Zn:k)>

with (Z;.,...Zy.;) the joint order statistics of a sequence of independent and
identivally distributed random variables Z,,,n = 1,...,k on [0, (| with cumula-
tive distribution function

P(Zl S Z) —

This implies using
Do AZhn) =), c(Zy)

that by the independence of the random variables Z;, k=1,....,n and hence the
independence of the random variables f(Zy),k=1,.....n

E(e—szzzlc(zk:n)) y E<e—szz:1c(zk>)
_ K <HZ:16_SC(ZI<)>
— E(e—sc(Yl))k
This shows by relation (3.2.27)

E(e5C1()) = o~ @(O(1-E(e*Y1))
and since

DoY) = a(1) [ Zemsetr = [y ~ G

the result follows. O

Applying Lemma 5 and relation (3.2.20) it follows for U, independent of the
individual item cumulative cost process C; that

_ _ 13 _ _
E(e~*C1tAU)) — =(Qu0)=Qu(=) (1 — (1)) +/ ¢~ QO G(du)  (3.2.28)
0

with Q,(s) listed in relation (3.2.26). For the special case U; “* w we obtain

E(e~5C1(tA Uy — o~ (Qi(0)=Qipu(s))
Using relation (3.2.13) we can therefore numerically evaluate @;(s). Hence
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we are able to numerical evaluate the probability Laplace-Stieltjes transform
of the random variable C(¢) for different values of s and we now might use
inversion techniques for Laplace-Stieltjes transforms (see Appendix F of [48])
to calculate numerically the cumulative distribution function of the random
variable C(/). This might be a topic of future research in case data on cost
of repairs are available and it is tested on our particular data set that the
assumption of minimal repair is a reasonable assumption. An example of such
an approach applied to the integer valued random variable R(¢) is discussed
at the end of this chapter.

In Lemma 5 we show that the individual item cost process has independent
increments. To evaluate for such a cost process the cumulative distribution
function of an increment we show the following generalization of Lemma 5.

Lemma 6 Ifthe repair process is a minimal repair process and the cumulative

cost process is given by relation (3.2.24) then for every t > u > 0

E(e—(C1(0-Ci®)) — o~(@(0)-2u(0)~(@1(5)-Qu(0)) (3.2.29)

with .
Qi(s) = / r(y)e *Wdy. (3.2.30)
0

Proof. Since by Lemma 5 the cost process has independent increments we
obtain that

E(e—scl(t)) _ E(e—s(Cl(u)—i—Cl(t)—Cl(u))) _ E(e—sCl(u))E(e—s(Cl(t)—Cl(u)))

Applying now again Lemma 5 yields the desired result. O

Since the cost process C; has independent increments it follows using stan-
dard techniques (see [2]) and lemma 6 that the stochastic process M = {M; :

t > 0} given by
M; = ¢ 5C1(0)oQ1(0)=Qu(s)

is a martingale. This observation might be useful for the case that the usage
time is a stopping time with respect to the failure process. This might also be
a topic of future research.

Again we mention as a corollary (take ¢(y) = 1 for every y > 0) the following
important special case of Lemma 5 in which we only deal with the number of
returned and defective items. It gives a formula for the probability-Laplace
Stieltjes transform of the number of defects of a particular sold item for a
minimal repair process. Although we already are familiar with this result it
is listed for completeness.
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Corollary 6 If the repair process of items is a minimal repair process then it
follows that its stochastic counting process N1 is a non-homogeneous Poisson

process and
E(e~N1(0)) = ¢~2(0)1-¢") (3.2.31)

with ® the intensity measure of the counting process N.

Again we can now derive a more detailed expression for the probability
Laplace-Stieltjes transform of the random variable R(¢) using Corollary 5 and
relation (3.2.22) for U; independent of the failure process. In particular ap-
plying relation (3.2.22) we obtain for a minimal repair process that

t
E(e~sN1(tAUL)y — o=2(M(1=7) (1 _ G(¢) + / e W= G(du)  (3.2.32)
0

with ® the intensity measure of the failure counting process N;. For the special
case U; %2 w it follows that

E(e—le(t/\U1)) _ 6—<I>(t/\w)(1—e_5). (3.2.33)

It is also possible using standard techniques and the special form of the
probability Laplace-Stieltjes transform of the random variable C(¢) given in
Theorem 1 to derive a recurrent relation for the nth moment of the cumula-
tive cost process at time ¢ relating it to the kth moment, 1 < k& < n, of the
cumulative cost process of each individual item.

Lemma 7 If the functions ¢, : [0,00) — [0, 00|,n € Z are given by
co(t) := 1and c,(t) :=E(C"(t)),n € N
and ¢, : [0,00) — [0,00],n € N by
t
Gult) = [ BCH(E ~ ) A VD)
then for every n € Nand t > 0

n—1
en(t) = Zkzﬂ Coi(t)cp(t). (3.2.34)
Proof. We know from Theorem 1 that for every s > 0

Tow(s) = E(e_sc(t)) — Qt(s)=Q¢(0)
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with Q:(s) = f(f Y (y)E(esC1{t=nAU) gy This shows that
wgégs):(ggNskqwg—@mm::(%n(ﬁﬁcaﬁsy (3.2.35)

Applying Lemma 18 in the Appendix A and Leibniz rule for the product of
functions to relation (3.2.35) it follows for every n € N and s > 0 that

n n—1(n—1 n—k k
SACED S G I BECAE)
Letting s | 0 this yields
(M oty = S (T L) o=k gy () o+
w00 =0 (" ) el 00
and so
n n=1(n—1 1 (n—
00 = X (M ) ol Pen ke, 00),
Again by Lemma 18 and relation (3.2.11) we know that

t
(—1)" Q™ (0%) = /0 SECT(t - y) AU))dy

and
k :
(=1)Fmy (07) = B(CE(1)
showing the desired result. O
For n = 1 it follows
70 (07) = 7o (0) = 1
C(t) C()

and so we obtain by Lemma 7

ot
B(OW) = [ BC(t—9) AUy
rediscovering the result in relation (3.2.2).

To compute the nth moment of the cumulative cost process we need to com-
pute beforehand the functions ¢ (¢) for every 1 < k£ < n — 1. In case the usage
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time U is independent of the cost process C; it follows for every y > 0 that
E(Cl(y AUL)) = E(CHyAU)lgy,<p) +E(CHYy AU Ly, 5yy)
= E(C’f(Ul)l{Ulgy}) +E(CY(y) iy, >y}) (3.2.36)
= Jy E(C}())dG(u) + E(Cl(y))(1 - G(y))
To compute the kth moments one may use the following result.

Lemma 8 Let the repair process be a minimal repair process and the cumu-
lative cost process be given by relation (3.2.24). If the functions ¢, : [0,00)
0,00), n € Z are given by

co(t) =1 and c,(t) == E(CT(1))

and ¢, : [0,00) — [0,00),n € N by

then for everyn € Nand t > 0
n—1
en(t) = ZH Cni(t) e (t). (3.2.37)

Proof By Lemma 5 we know that 77(1) ( ) = Qt ( ) Tc,(1)(s) with Qu(s) =

fo —s¢(¥)dy. Applying now the same arguments as the proof of Lemma 7
the de51red result follows. O

Hence under the minimal repair assumption and using the cost model of
relation (3.2.24) it seems to be in principle possible to compute using numerical
techniques these unknown constants. This approach will not be pursued in
this thesis. If we are only interested in the nth moment of the cumulative
repair process R up to time ¢ we obtain the following special case of Lemma 7.

Corollary 7 If the functions c,, : [0,00) — [0, o] are given by
co(t) := 1 and cp(t) := E(R"(t)),n € N

and ¢, : [0,00) — [0,00],n € N by

/w E(NT((t — y) A UY))dy

44



then for everyn € Nand t > 0

en®) =3 Eailt)e(t) (3.2.38)

In a statistical analysis it is important to derive a formula for the variance
to measure the variability of the random variable. An immediate consequence
of Lemma 7 for the second moment cy(¢) is the following expression for the
variance of the random variable C().

Lemma 9 It follows for any t > 0 that
Var(C / Y(y)E(CH(t —y) A UY))dy. (3.2.39)

Proof. By Lemma 7 we obtain for n = 2 that
E(CQ(t)) = co(t) =Ca(t)eo(t) +c1(t)er(t) = Ea(t) + 1 (t)er(t). (3.2.40)

Again by Lemma 7 ¢;({) = ¢,(¢) and so we obtain

E(C2(t)) = ca(t) = Ta(t) + A (2). (3.2.41)

This shows
Var(C(t)) = ea(t) — / Y(ECH(t—y) AUNdy  (3.2.42)
and we have verified relation (3.2.39). O

To evaluate the variance of C(¢) given in relation (3.2.39) we need to know
E(C3(t A Uy)) for every ¢t > 0. To compute this for a minimal repair process
and a cumulative costs process satisfying relation (3.2.24) we first mention
the following result.

Lemma 10 It follows for any minimal repair process and a cumulative costs
process C; satisfying relation (3.2.24) that

VaT(Cl(t)):/O r(y)c(y)dy. (3.2.43)

Proof. Apply the same proof as in Lemma 9 and use Lemma 8. O

In particular under the minimal repair assumption we obtain using Lemma

10 that 5

B(CH) - | )y + ( / tr(y)c(y)dy> | (3.2.44)
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Assuming that the random usage time U; is independent of the individual
item cumulative cost process C; it follows by relation (3.2.36) for £ = 2 that

E(CH(tAUy)) = /O/E(Cf(U))dG(U) +E(CI(1))(1 - G(1)).

with E(C%(t))) listed in relation (3.2.44). Applying now Lemma 9 we can write
down an expression for the variance of C;(¢) which can be numerically evalu-
ated. Clearly computing the variance is important since it gives a measure of
the variability of the random variable R(%).

Before discussing the challenging task to compute or approximate E(C (L A
U,)) for any stopping time U; we observe that under the minimal repair
assumption the cost process C; given by relation (3.2.24) has independent
increments. It is well-known that for any stochastic process X with inde-
pendent increments and satisfying E(X(¢)) = 0 that the stochastic process
M = {M;:t > 0} given by

M(t) = X?(t) — EX?(t)

is a martingale ( see [11]). Applying this result to the cumulative cost process
C, we observe by Lemma 10 that the stochastic process

M(t) = ( — du) — Var(Cy(t))
— (Cl(t) — f(; 7*(u)c(u)du)2 — fOf r(u)c? (u)du

is a martingale. Applying Doobs stopping theorem to this martingale we ob-
tain for a usage time U; being a stopping time with respect to the cost process
that

EM(tAU) =0

Hence we obtain a relation which might be useful in approximating or com-
puting E(C%(¢ A Uy)). This is a topic of future research.

If we are only interested in the cumulative repair process we obtain the
following special case of Lemma 9.

Corollary 8 It follows for any t > 0 that

Var(R / Y(y)E(N2((t —y) A Uy))dy. (3.2.45)
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To compute for the cumulative repair process the integral

AﬁMwMNﬁu—mAUnwy

we need to know the second moment of the counting process of repairs. A
special case of Corollary 8 is given by the next result. Actually this result is of
importance in the statistical section. It yields a measure of the variability of
the random variable R(t).

Corollary 9 If the repair process of items is a minimal repair process and the
usage time U; equals U; = w with w denoting the length of the warranty period
then for any t > 0

Var(R(t))
= — [J(t —y)In(1 — F(y Aw))dy — [y d(t —y)(In(1 — F(y Aw)))*dy
(3.2.46)

with I' denoting the cumulatiwe distribution function of the random time to
the first failure.

Proof. 1If the repair process is of the so-called minimal repair type we know by
Lemma 6 that the counting process N is a non-homogeneous Poisson process
with arrival intensity function given by the failure rate function

0
"W=1TF0

of the cdf I of the random time to the first failure. This implies for U; = w a.s
that

E(Ni(s A Uy)) = E(Ni(s Aw)) = Var(Ni(s A w)) + E(Ni(s A w))?.
Since for a Poisson distributed random variable we know that
Var(Ni(s Aw)) = E(N1(s Aw))
this shows that
E(N7(s A U1)) = E(Ni(s Aw)) +E(Ni(s Aw))?
and hence we obtain
E(N7(s AUL)) = (s A w) + D*(s A w)
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with

the intensity measure of the cumulative repair process N;. This shows for
U; = w that by Corollary 8

t t
Var(R(t)) = /0 Wt — )Py Aw)dy + /0 Wt —y) D% (y A w)dy. (3.2.47)

Applying relation (3.1.12) yields the desired result. O

In general we need numerical integration techniques (see [46] or [16]) to
compute the integrals in relation (3.2.46).

In case we are only interested in the cumulative stochastic process R of
returned and defective items it is also possible to derive a recursive equation
for

pi(t) =P(R(t) = k), k € Z (3.2.48)

A way to derive these recursive equations we first observe for every ¢t > 0 that
(see Section 1.2.2 of [48])

(k)
Pr(0)
pe(t) = R(kt? keZy (3.2.49)
with Pf(f()t)(()) denoting the kth derivative of the pgf Pr(;(z) evaluated in z = 0.

Using this result and relation (3.2.18) it is relatively easy to show the follow-
ing recurrent relation for the pdf of the random variable R(¢).This result is
actually know as Adelsons recursion formula (see [47]). Before discussing this
result we introduce the functions ¢, : Ry — R, k € Z, given by

t
o (t) = / PPN ((t — y) A UL = E)dy (3.2.50)
0
Lemma 11 It follows for every t > 0 that
po(t) =e ¥ (3.2.51)

while for n € N »
npy(t) = Zkzo(n — E)pe(t) e, 1(t) (3.2.52)

Proof. Clearly
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By relation (3.2.18) we know

Prp(2) = ¢@97@M

This shows
Pt (2) = QY () PRy (2).

Hence by Leibniz rule for the product of two differentiable functions we obtain
for every n € N that

(n) e e (k)

This shows applying relation (3.2.49) that

(n)
Pg 1,(0)
pat) = —

= A5 (R 0) P, 0)

" (3.2.53)
A (n=k) i3y PY) (0)
= Lynsin— kS PRy
. (n=k) (g
= Ly - RE i Pm(t).
Since it is easy to verify for every k that
/ O TN OLl
it follows that
t
[ wwPON( =) AT = Ry
Applying now relation (3.2.53) we obtain the desired result. OJ

Using the above lemma after having estimated both the arrival intensity
function of the non-homogeneous Poisson cumulative sales process (see [30])
and the probability law of the counting process of repairs we can compute
recursively the cdf of the random variable R(¢). It is well known that this
recursive procedure (see [48]) is in general stable. To compute the integral

t
[ B = ) AT = by
we need to know the cdf of the counting process of repairs.
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If the repair process is of the so-called minimal repair type (this repair type
applies to a lot of consumer goods consisting of a lot of different components)
we know that the random counting process N; is a non=homogeneous Poisson
process with arrival intensity function given by the failure rate function r(¢) =

T f gz ) of the cdf I of the random time to first failure. This shows that

NO(s)F
P(Ni(s) = k) = e_Al(b)%, jEeZy

If we consider the simplest case U; % w this shows that
Jo @B ((t—y) AU =k)dy = [0t — y)P(N1(y Aw) = k)dy
k
Al fOt ¢(t r y)e—é(y/\w) ‘I’(y]/c\!w) dy.
We now introduce the next definition.
Definition 2 For any s = (s1, s2) € R% the function mx : RZ — [0, 1] given by
mx(s) = E(e~51X1752X2) — F(¢757X). (3.2.54)

is called the bivariate probability Laplace-Stieltjes transform (bpLSt) of the
non-negative random vector X = (X1,X3s). If additionally the random vector
(X1, Xy) is integer valued the function Px : D?> — C given by

Px(z1,20) = E (23925%). (3.2.55)

is called the bivariate probability generating function of the random vector X =
(X1,X2)

In general we are also interested in the dependence of the cumulative cost
process C over time given by for example a covariance function and or any finite
dimensional cdf of this stochastic process. To derive some of these expressions
we first need to introduce useful notation. If C,,(¢tAU,,), ¢ > 0 is the cumulative
cost of repair process for item n introduce the following function

B Cp,(tAU,) ift>0
C.(tANU,) = (8.2.56)
0 ift <0

For ¢ > t; it follows by the above convention that

Ch) =D Cullt = Tu) AUp)Lim, <1y (3.2.57)
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One can now derive using a similar proof as done in Lemma 4 the following
generalization of this lemma.

Lemma 12 If the cumulative sales process S ={S(t) : ¢ > 0} is a non-
homogeneous Poisson process with Borel arrival intensity function v indepen-
dent of the independent and identically distributed cumulative cost processes
C,,,n € N listed in relation (3.1.14) then for every (o > (1 and k € Z, it follows
that

E(6—81C(t1)—82C(t2) | S(tg) _ k‘) _ E(6_5161((t1_Yl)/\Ul)—5261((t2_Y1)/\U1))k

with the random variable Y concentrated on [0,12] having cdf

Fy) = L0 <y <to. (8.2.58)

and being independent of the stochastic process {C1(s A U;) : s > 0}
Proof. By relation (3.2.57) we know for ¢o > ¢ that
(O C—

C(tl) =3 Zn:l Cn((tl — Tn) A Un)l{TnStQ}'
Introducing for the selected si, s > 0 the random variable

Qn(tla t2) = _Slan(tl A Un) - 326n(t2 A Un)
it follows that

(™1 O)=2200) | §(1y) = k) = K (Z Qn(tl_m,tg_ymkv

with (Y1, ..., Yr.x) the joint order statistics of a sequence of independent and
identically distributed random variables Y,,n = 1, ...,k on [0, {] concentrated
on [0,¢5] and having the continuous cumulative distribution function

Fly) =P(Y <y) =

0<y <ty (3.2.59)

Since the random variables Q,, are independent of the arrival process we ob-
tain by the same proof as used in Lemma 4 that

E (eZﬁﬂ Qn(tl_Yn;k:tZ—Yn;k)> - F <6Q1(t1—Y1»t2—Y1)>k
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This shows

E(eo1C)=200) | S(1y) = k) = E(eQﬂtl—M—Yl))k

_ ]E(e—slél((tl —Yl)/\Ul)—Sgél((tQ—Yl)/\Ul))k’,

and we have verified the desired result O

Before discussing the next result we introduce for ¢, > ¢; and t = (¢1,12)
and s = (s1,s2) € Ri the function Q) : R%r — R. given by
t _ _
Q(s) = 2 @/J(y)E(e_slcl((tl_y)AUl)_”Cl((tQ_y)AUl))dy. (3.2.60)
0
Clearly Q¢(0) = VU(t2). It is now possible to show the following result for
the bivariate probability Laplace-Stieltjes transform of the random vector
(C(t1), C(t2)) using a similar approach as done in Theorem 1.

Theorem 2 If the cumulative sales process S = {S(t) : t > 0} is a non-
homogeneous Poisson process with Borel intensity function 1 and this cumula-
tive sales process is independent of the independent and identically distributed
cumulative costs processes C,,,n € N then for every to >t and t = (t1,t2) and

s =(s1,s2) € R
E(6—81C(t1)—820(t2)) — ¢ (Qt(0)=Q¢(s))

with Q(s) given by relation (3.2.60).

Looking in detail at the proof of Theorem 2 one can actually conclude the
following. Introducing for any finite sequence 0 < ¢; < ¢ < t3 < ...t, and
t = (t1,.....t,) and s = (s1,...s,) € R’} the multivariate probability Laplace-
Stieltjes transform 7¢() : R — [0, 1] given by

Tow)(s) = E(e™5 €M) (3.2.61)

with C(t) = (C(t1),...C(t,)) and introducing the function Q¢(s) : R’ +— [0, 1]

given by
ln

Qi(s)= [ Y(E (e— i1 5261((”—1/“‘11)) dy (3.2.62)
0

one can show by the same approach as done in Theorem 2 for the bivariate
case the following theorem.

Theorem 3 If the cumulative sales process S = {S(t) : t > 0} is a non-
homogeneous Poisson process with Borel intensity function 1 and this cumula-
tive sales process is independent of the independent and identi cally distributed
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cumulative costs processes C,,,n € N then for every vector t = (t1, ....t,,) satisfy-
ingt) <....<tpands R}

E(@—STC(t)) _ 6—(Qt(0)—Qt(S)). (3.2.63)

Using Theorem 2 and for t = ({1, (9) with {1 <y

827TR(t)
881882

= —E(C(1)C(l2)) (3.2.64)

we obtain the following expression for the covariance function.

Lemma 13 It follows for to > t, that

Cov(C(t1), C(t2)) = ; 1 (y)E(C1((t1 —y) AUL)C1((t2 — y) A Ur))dy.

Proof. Apply Theorem 2 and use relation (3.2.64). O

This concludes the discussion of the model in this thesis. It is still to be in-
vestigated whether the stochastic process R has more useful properties under
the minimal repair assumption. In the second part of this thesis we discuss the
statistical techniques in the estimation of the parametric models describing
the failure and the sales process.
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Chapter 4

ESTIMATING THE INTENSITY MEASURE OF THE
SALES PROCESS

The prevailing approach in predicting the future sales of a product has been
time series forecasting. In this study we propose to use a parametric function
to estimate the sales quantities, which is a new approach independent of the
model proposed for returned items. In this chapter we present the simplest
possible parametric models to estimate the intensity measure of the sales pro-
cess of our two sample products. First, a simple polynomial regression model is
analyzed. Then, another method derived from [12] is tested and the results of
the two methods are compared. In addition, we also conduct a fit with weekly
data which smooths fluctuations in daily sales quantities.

4.1 Sales data

We begin by presenting the characteristics of our data. We have the item-level
data on the sales and failure dates of two products (Product A and Product B)
of a household durable goods manufacturer. To be precise, each “product” here
refers to a product group, including multiple models and SKUs.

The data covers the five consecutive years 2013,...,2017. Each row in the
database represents an individual item of the product and the number of data
in each years data set is around one million items. Columns identify the bill
number, the item’s production code, the year and month of production, serial
number and the date of installation (Figure 4.1). The installation date denotes
the day on which the warranty starts. We assume that the installation date
also represents the sales date of the product. In practice, there might be a
couple of days’ difference between the sale of the product and its installation
at the home of a customer, but this should have only a negligible impact on our
results.
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A _ B _ c D | E F

1 BillNo ProductionCode ProductionYear = ProductionMonth | SerieNo | WarrantyStart
2 | 253843236 r 70076 i 2012 January 100037 1/1/2013
3 | 258204975 " 70274 r 2011 March 100058 1/1/2013
4 253840466 70155 i 2012 January 100065 1/1/2013
5 253839061 | 70358 r 2012 January 100071 1/1/2013

Figure 4.1: Sales data in raw form

In Figures 4.2 and 4.3, the daily sales quantities in five years for the two
products are depicted. For both products, we observe the same repeating an-
nual pattern. Sales start low around January, and keep increasing towards
the summer months. After reaching a peak around September, sales drop
again in the subsequent months. This peak around September is caused by
regular promotional activity. We do not observe a significant upward or down-
ward trend over years. Since the sales refer to a product group containing
multiple models and SKUs (such as all refrigerator SKUs of the firm), we
do not observe a standard life cycle shape starting from 2013. Instead, the
dominant factor in the sales is the seasonality that repeats itself annually.

We also observe near-zero sales values on Sundays. Recall that our sales
data is actually installation data, and on Sundays the installation crews do
not operate in most cities.

Since the plots in different years follow the same pattern, and there is no
trend over the years, one may assume that this pattern will be repeated in
the future. Therefore, we use the average of the five years’ daily sales in the
estimation of the parameters of the sales model. These averages are depicted
in Figures 4.4 and 4.5.
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Figure 4.2: Daily sales data of product A (2013-2017)
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Figure 4.3: Daily sales data of product B (2013-2017)
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Figure 4.4: Average daily sales
data of product A
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Figure 4.5: Average daily sales
data of product B

4.2 Methodology for estimating sales

Traditionally, sales forecasting is based on simple extrapolation of histori-

cal data. Different from this approach, we assume that the sales process

is represented by some stochastic process with an unknown probability law.

Since our data is available in daily granularity we use a discrete time stochas-

tic process model. The accumulative non-negative sales process is given by
S ={S(t): t e N} and AS(t) = S(¢t) — S(t — 1),t € N, with S(0) = 0 denoting the
total sales in period (. To keep the estimation of the sales process as simple as
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possible we assume that the random variables AS(¢),¢ € N are independent
with finite unknown first moment m(¢) := E(AS(¢)). This means that

AS(t) = m(t) + & (4.2.1)

with €;, { € N a sequence of independent and identically distributed random
variables having zero mean. In an alternative model we also assume

AS(t) = m(t)e, (4.2.2)

and €, t € N a sequence of independent and non-negative identically dis-
tributed random variables with mean 1. The model in relation (4.2.1) is
called the additive sales model while the model in relation (4.2.2) is called
the multiplicative sales model. Clearly the multiplicative sales model can
be transformed into the additive sales model by using the In-transformation.
This means that the model for the logarithm of the data set is given by an
additive sales model. If T" denotes the number of observations, we propose in
parametric statistics some class of parametrized functions fy : {1,2,....7} —
R,0 € © C R* with © C R” the so-called parameter set which serve as an
estimation for the mean of the sales at time ¢. This means we assume that the
true functional form of the random variable AS(t) is given by

AS(t) = fo(t) + €&

or
AS(l) = fo(L)er.

and using our data we need to estimate the unknown 6. Hence using some
penalty function and our data vector AS := (AS(1),...,AS(T")) we determine
the parameter # € © which has the smallest penalty. In this section we always
use mean squared error as the penalty function. This means with 7" denoting
the number of observations and introducing

ol (S, 1e \2)%

for any finite sequence v : {1,2...,T} — R that for the model in relation (4.2.1)
we need to solve the optimization problem

infpea{ll AS — fo [13}. (P)
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For the multiplicative sales model in relation (4.2.2) our optimization problem
reduces to

infpeo{|l In(AS) — In(fy) 15} @)
with In(AS) = (In(AS(1)), ..., In(AS(T)).

4.2.1 The additive model
The first parametric model we consider is given by the additive sales model
AS(t) = fo(t) + €, t =1,...,T
with the class of parametric functions fy, # € © given by
Jot) =60+ 61t + ...+ OtF k< T +1

and © = RFF! This is the so-called polynomial regression model [7]. This
means we assume that our true functional model is given

AS(t) =0g+ 01t + ...+ Ot + et =1,..., T (4.2.3)
In matrix notation relation (4.2.3) reduces to
AS = X0+ € 4.2.4)

with 87 = (6, ...., 04), AST = (AS(1), ..., AS(T)), €T = (€1, ...., er) and

1 T—-1 (T-1)2% ... (T-1)*

1 T T2 .. Tk

Using relation (4.2.4) it follows that

| AS — f5 [I3= (AS — X0)T(AS — X0) = ASTAS — 2ASTX0 +6' XTX0
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and so our optimization problem (P) is given by
inf{ASTAS — 2ASTX0 + 0" XTX0 : 0 c RF1}.

The same optimization problem shows up in linear regression and it well
known ([32]) that the optimal 6, satisfies the so-called normal equations

XTX0,, = XTAS. (4.2.5)

Hence we can use a linear regression package to compute the optimal 6,,,.
Although the matrix XT7X is related to the so-called Hankel matrix [39] it
seems to be difficult to give a closed form expression in relation (4.2.5) for this
matrix. Observe that the matrix X ' X = (7;;) is a symmetric (k + 1) x (k + 1)
matrix with

Tij :Z;t”ﬂ’—?,l <i<k+1,1<j<k+1

In particular, for k = 2 we obtain a 3 x 3 matrix and Y, t77~2 can be com-
puted analytically. In the next section we only fit for £ = 1,2, 3, 4 this class of
parametric functions to our data set. By the same approach it is also easy to
fit the class of parametric functions

fo(t) =00 + 0191(t) + ... + Orgr(t)

with g;(¢) some given functions. The set g;,j = 1,..k are known as basis
functions (Chapter 3 of [7]). In this case we assume that our true functional
model is given by

AS(t) =00+ 0191(t) + ... + Orgr(t) + €, t = 1,...T. (4.2.6)
Observe relation (4.2.3) reduces in matrix notation to

AS = X0+ € (4.2.7)
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with 8T = (0, ...., 0;), AST = (AS(1), ..., AS(T)), €T = (e1, ..., er) and

1 g1(1) 92(1) o gr(1)

1 q(T=1) gp(T—1) .. g(T—1)

L gi(T) 92(T) o gk(T).

and we proceed the analysis as before.
4.2.2 The multiplicative model
The other parametric model we consider is the multiplicative sales model
AS(t) = fo(t)er,t =1,...,T
with the class of parametric functions given by
folt) = POttt 0 gT — (g, 6,) € RIF,

For k£ = 2 this model is the same as the model proposed in [12]. Observe
it is equivalent to assume that the true functional model for the logarithm
transformation of the data set is given by

In(AS(t)) = 0o + 01t + ....Qk_ltk_l + 0 1In(t) + In(e), t =1, ..., T. (4.2.8)
In matrix notation relation (4.2.8) reduces to

In(AS) = X0 + € (4.2.9)
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with 87 = (0, ...., 0;), In(AS)T = (In(AS(1)), ...., In(AS(T)), €" = (e1. ..., er) and
1 1 1 .. 0

12 22 .. In(2)

1 T—-1 (T-1)?% ... In(T—-1)

AN . In(T).

In Appendix B we discuss part of the theory of the linear model. In the
next two sections we fit the additive and multiplicative models to our daily
sales data. Parameters are estimated and by providing some goodness-of-fit
statistics, we determine the best model to fit to our sales data.

4.3 Fitting the additive model to daily sales

In this subsection we compute the least squares estimates for the unknown
parameters of the polynomial regression model given in Equation (4.2.3). In
Figures 4.6a and 4.6b, the polynomial regression model for &k = 1,2, 3, 4 is fitted
to the daily sales data. As can be seen from the figures, and supported by the
coefficient R? of multiple correlation ([32]) and the adjusted coefficient R? (adj)
shown in Table 4.1, the additive sales model with & = 4 is the best fit to the
daily sales data for both products. Note we do not take k larger than 4 since
for larger k we face the problem of overfitting ([7]). Since there is no noticeable
difference for both products in the coefficient of multiple correlation and the
adjusted coefficient with £ = 3 or 4 we prefer due to reducing the problem of
overfitting to select the additive sales model with & = 3 as the best choice to
fit our data.

Table 4.1: Goodness-of-fit measurements for the additive model

Product A Product B
Degree R? R? (adj) R? R? (adj)
k=1 0.0903 0.0878 0.0976 0.0951
k=2 0.6155 0.6133 0.5030 0.5002
k=3 0.7517 0.7446 0.5445 0.5407
k=4 0.7647 0.7621 0.5447 0.5397
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Figure 4.6: The additive models fitted over average daily sales data for product
A (a) and product B (b)

4.4 Fitting the multiplicative model to daily sales

Our multiplicative model is an extension of the model discussed in [12]. The
author proposes two models to estimate the parameters of life cycle shape.
These functions are drawn in Figures 4.7 and 4.8 respectively.

The first model is simply the additive combination of two functions describ-
ing the sales data in terms of time

E(AS,) = a+ bt? + i (4.4.1)

where AS(¢) stands for sales, ¢; for the time of growth and ¢, for the time of
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decline, and a, b and ¢ are the parameters. The second proposed model in this
paper is the multiplicative model for & = 2 given by

E(AS;) = atble™ (4.4.2)

where AS(t) stands for random sales at time ¢. In particular our relation (4.2.8)
reduces for k = 2 to relation (4.4.2) with a = ¢, b = 3 and ¢ = —6,.

The fitted multiplicative models for & = 2,3, 4 are depicted in Figure 4.9a
and 4.9b. As expected the multiplicative model for £ = 4 gives the best fit
to the data. In Table 4.2 we also compute for both products the coefficient
R? of multiple correlation and the adjusted coefficient R? (adj) applied to the
logarithm transformation of the data set. From Tables 4.1 and 4.2, we observe
that assuming a linear relation for the logarithm transformation of the daily
sales explains the data much better than assuming a linear relation for the
daily sales data. Hence we believe the best model for daily sales for both
product types is the multiplicative sales model with k& = 4.

Table 4.2: Goodness-of-fit measurements for the multiplicative model

Product A Product B
Degree R? R? (adj) R? R? (adj)
k=2 0.4027 0.3994 0.3776 0.3741
k=3 0.8033 0.8017 0.5353 0.5314
k=4 0.8524 0.8508 0.5800 0.5753

The daily data exhibits large fluctuation. Therefore, we expect the R-
squared measure to improve if we fit the models using weekly data, which
smooths the daily fluctuations. This is what we do in the next subsection.
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Figure 4.9: The multiplicative models fitted over average daily sales data of
product A (a) and product B (b)
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4.5 Fitting the multiplicative model using a smoothed
version of the data

In this subsection we aggregate the data and compute the weekly sales data.
By doing so we expect to eliminate the fluctuations due to daily sales varia-
tions. For this purpose we take the data of year 2017 since the pattern of sales
is almost the same in each year. To construct the weekly sales we simply sum
up the sales amount of every seven days starting from Sunday 1/1/2017. We use
the multiplicative model with & = 4 as we observed this model to be successful
with daily data. Figures 4.10a and 4.10b present the weekly average (over five
years) sales data together with the multiplicative model fit. As it also be seen
from the figure, the model seems to fit well and the R-squared values are 0.80
and 0.69 for products A and B respectively.

== The multiplicative model with k=4

= Weekly sales in 2017
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= The multiplicative model with k=4
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Figure 4.10: The multiplicative model fitted over weekly sales of product A (a)
and product B (b) in 2017
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Next, we obtain the daily sales estimations from the weekly sales estima-
tions by calculating daily weights. Let X; denote the total sales in week i, and
X;,; denote the sales on day j of week ¢, where j € 1,2,...,7 and 7 correspnds
to the days of the week. We calculate the daily weight for day j as

52

> Xij
= =l

Yj 52
> X
=1

; J=1..7 (4.5.1)

This weight estimates the percentage of weekly sales happening on day j of
any week. To obtain daily sales estimations, one multiplies the relevant daily
weight with the weekly sales estimation for a particular week. The weights
that we obtain are provided in Table 4.3 for different days of the week.

Table 4.3: Weights for each day of the week

Day-of-week Tue Wed Thu Fri Sat Sun Mon
Weight (Product A) 14.08 16.74 15.39 15.50 16.23 4.50 17.57
Weight (Product B) 14.27 16.73 15.31 15.04 16.19 3.82 17.50

Figure 4.11 illustrate the daily sales estimations obtained with this ap-
proach together with the real sales data for the two products. The R-squared
values are 0.27 and 0.21 for products A and B respectively which shows that
the model does not fit very well to the data. This is because we are using equal
daily weights for different weeks of the year while there might be different in
daily weights from one week to another.

Figure 4.12 is the residuals vs. order plot which is used to verify the as-
sumption that the error terms are independent. Residuals are almost dis-
tributed around zero and there is no trend or seasonality within them so they
are independent. But what we see in the plot is that there are some points
spread randomly but not around 0. These error terms belong to sales on Sun-
day which as we discussed before provide a separate cluster of points (Look at
Figure 4.11).
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Figure 4.11: The multiplicative model fitted over daily sales of product A (a)
and product B (b) in 2017. Left: Product A, right: product B.
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Figure 4.12: Residuals vs. time (Left: product A , right: product B)

4.6 Model selection

So far in this chapter, after testing the additive and multiplicative models,

we observe that the multiplicative model fits better to our daily sales data.

One can refer to Section 4.2.2 for the parametric function of the multiplicative

model with degree k. Later, we performed the fit over weekly data, assuming

that a smoothed version of the data would give a better fit. The weekly esti-

mated values are then converted into daily estimations using estimated daily

weight factors. Use of weekly values improved the R-squared performance of

product B whereas it slightly deteriorated the performance for product A (Look
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at table 4.2). Thus, the best performing estimation approach can be product-
dependent. In order to provide estimations for the daily sales, we used the
daily weights provided in 4.3. The R-squared values we obtained were rather
low. Which means using weekly data to provide estimations for the daily sales
is not successful. Therefore, we propose using daily values for estimation of
daily sales and using the weekly data in case you the weekly estimations are
needed.

Subsequently, the model that we use for the estimation of the weekly sales
of product A and B becomes

EA(AS(1)) = 8:83—0.044¢-0.0038¢°—0.00007¢° ,0.34 (4.6.1)

EB(AS(t)) 4 69.3+0.057t+0.0022t2—0.00003t3t0.38 (4.6.2)

One can refer to relations (3.1.27) in Corollary 1 and (3.1.35) to understand
the relation between the analysis in this chapter and the proposed model dis-
cussed in Chapter 3. Note that because time is measured in weeks, some of
the coefficients in these equations need to be very small values. Otherwise,
the function cannot capture the required curvature of the sales process.
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Chapter 5

ESTIMATING THE INTENSITY MEASURE OF THE
FAILURE PROCESS

In this chapter we apply statistical techniques to our data set to estimate the
intensity measure of the failure process. We do so by estimating the cumu-
lative distribution function of the random time to the first failure. This is
sufficient because we assume that the minimal repair assumption holds (see
Chapter 3). The issue we face is that we do not observe at least one failure for
all sold items; we have failure time data only for those items that failed and
returned to the firm within their warranty coverage. Hence we are dealing
with a censored data set. In Section 5.1, we discuss the main characteristics
of this set. In Section 5.2, we consider the statistical method to estimate the
intensity measure of our failure process.

In particular, we discuss the well-known Maximum Likelihood Principle
applied to censored data and to an arbitrary parametric class of cumulative
distribution functions. We specify this approach to the parametric class of
Weibull cumulative distribution functions, and present an algorithm to cal-
culate the so-called maximum likelihood estimators for this class. The main
reason for using this specific parametric class is its popularity within the main-
tenance literature. Finally in Section 5.3 we apply this approach to our data
set and discuss the quality of the fit we obtain.

5.1 Failure data

In this section we provide some graphical and statistical information about the
failure data of the two products (Product A and Product B) that we study. Each
individual item of these two products is tracked with a specific identifier. We
can match the sales and failure data of items using that identifier. For each
item sold, the firm provided us the warranty start date (which corresponds
to the item installation date) and dates in which the item is brought (if any)
to the firm for repairs within the three-year warranty period. The data is in
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daily detail, covering the period from January 2013 to October 2017. Note that
we use the “repair time” in the dataset as a proxy for the real “failure time”
because we do not know when exactly the failure occurred. In practice, the
consumer may bring the item to repair after some delay, but this is not likely
to be a long time. Figure 5.1 depicts the first six columns of our database.

Figure 5.1: Failure data in raw form

A B C D E F
1 :Prn&ﬁctCnﬂélPrnciuc'EinnYearlPrnd.uc‘tinnMnn‘lh.SerieNn . RepairTime . WarrantyStart .
2 r 60001 1980 1 7121927 6/14/2013 4/23/2013
3[ 60001 1980 1 7121927 5/11/2013 4/23/2013
60001 1954 2 201210 5/24/2013 4/25/2013
5 7  s0001 2005 10 "118416 2/4/2015 5/21/2013

Using this data, we first check if there is a pattern or trend in the total
failure data. Figures 5.2 and 5.3 present the monthly number of failures
for Products A and B respectively. We observe the number of failures to be
higher is summer months for product A. We could not find such a pattern for
product B. For instance, in 2013 the number of product B failures increased
over months, while in 2015 there was no such trend. Note, however, that one
cannot understand the failure rate (or, failure intensity) of the product from
these figures as this also depends on the number of products in use in each
month.

Figure 5.2: Number of failures by month (product A)
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In our following estimation study, we use only the data of items sold (in-
stalled) in year 2013. We refer to the time between the installation of the item
and its first failure as the item’s lifetime. As discussed earlier, we know the
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Figure 5.3: Number of failures by month (product B

Monthly failures in 2013 Monthly failu; n 2014 Monthly failures in 2015
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lifetime of items that failed at least once within the warranty period (uncen-
sored data), but not of items that did not fail during the warranty periods
(censored data). As summarized in Table 5.1, only a small percentage of items

experience a failure within the warranty period.

Table 5.1: Failure data statistics

Product A (%) Product B (%)

Uncensored 160,770 (17.38) 115,527 (12.7)

Censored 763,906 (82.62) 794,378 (87.3)
Total 924,676 909,905

Each item can fail multiple times during its warranty period. Table 5.2
shows the frequency of failures. For example, we observe 484 items of product
B to fail five times during the warranty period.

Table 5.2: Frequency of failures during the warranty period

Number of failures 1 2 3 4 5 >5 total total failures
Product A 128,787 24,481 5,404 1,337 344 117 160,770 201,911
Product B 92,327 16,747 4,304 1,337 484 328 115,624 148,613

Figures 5.4 and 5.5 depict the frequency distribution of lifetimes of products
A and B. We observe a significant percentage of failures to occur within the first
50 days for both products. This is consistent with the reported observations
in maintenance literature [52]. Products with production defects are likely to
be discovered within this initial usage period. Beyond that, product A failures
exhibit seasonality such that the item is more likely to fail around one year, two
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year etc. after installation. This may be due to a joint seasonality in installa-
tion time and time of failure, such as refrigerators installed and failed mostly
in summer months. On the other hand, we don’t observe such seasonality with
product B. With that product, after the initial 50 day period, the frequency of

failures increase slowly over time.

Figure 5.4: Lifetimes of uncen- Figure 5.5: Lifetimes of uncen-
sored Product A items sold in sored Product B items sold in

2013 2013
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We also plotted the hazard rate function of the uncensored and censored
lifetimes all together (Figures 5.6 and 5.7). The formulas of obtaining this
functions values are described in the Section 5.2. As it can be seen in the
figures, the hazard rate function of both products has the same pattern as
their frequency plot. The hazard rate functions start with a high peak and
end with a slight upward shape. This means the hazard rate function has a
bathtub shape.

Figure 5.6: Hazard rate func- Figure 5.7: Hazard rate func-
tion of lifetimes of items sold in tion of lifetimes of items sold in
2013 ( Product A) 2013 (Product B)
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Although Weibull hazard does not form a bathtub shape, considering its
popularity in the lifetime data analysis we will use this distribution in our
estimations of lifetimes.

5.2 Methodology

In this section, we first provide some definitions on the basic concepts used
in lifetime estimation process. Then, we discuss statistical procedures to es-
timate censored random variables (MLE method). In the next section, we
introduce the Weibull distribution, a MLE-tailored method for the Weibull-
distributed censored data, and a special purpose algorithm to obtain the esti-
mated optimal parameters of the distribution.

5.2.1 Basic concepts

We first list some well-known definitions.

Definition 3 The so-called failure rate or hazard function \ : R, — R, of a
non-negative random variable X with unbounded support is given by

ANz)i=——2— >0 (5.2.1)

with [ denoting the density of the cumulative distribution function F of the

random variable X. The so-called survival function is given by
S(z) :=1- F(x). (5.2.2)

By the definition of the survival function we know that

dln S
22 (0) = ~A@)

and this shows by the main theorem of integration that
In(S(z)) — In(5(0)) = —A(x)

with -
A(z) = / AMu)du (5.2.3)
0

the so-called cumulative hazard function. Since we always assume for non-
negative random variables that /'(0) = 0 and hence S(0) = 1 it follows that

S(z) =1— F(z) = ¢ M), (5.2.4)
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Although not standard, one can also define the failure rate function for real
valued random variables X having a cdf on R. In this case we also obtain by
standard differentiation that

S(z)=e M) zeR (5.2.5)

with

Since F'(00) := limypo F'(z) = 1it follows that lim,+., S(z) = 0 and so by relation
(5.2.5)
A(00) = limgpoo A(x) = 00. (5.2.6)

In order to portray a random sample one can graph the empirical survival
function (ESF). If there are no censoring within the data, ESF is defined as:
_ Number of observations >t

S(t) = - 4>0 (5.2.7)

In case the data we are dealing contains censored values, we have to modify
the survival function as follow:

N N _d
S(t) = Mgy <y ——

(5.2.8)

j
Where ¢, is the failure time of the j'h item, j = 1,....n, d; is the number of
failures that occur at ¢; and n; is the number of uncensored items with lifetimes
t; and greater then ¢;.
We next introduce the definitions of location, scale and shape parameters.

Definition 4 We introduce the definitions of location, scale and shape param-
eters. The notation X - Y means that the random variables X and Y have the
same cumulative distribution function.

1. A parameter v € R is called a location parameter of the random variable
X if
x4 vy+Y
with Y having a cdf which is independent of .

2. A parameter 3 > 0is called a scale parameter if

X 4

8Y
with Y having a cdf which is independent of 3.
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3. The parameters v € R and [ > 0 are called the location and scale param-
eters of the random variable X, respectively if

XL~ 45Y

with the cdf of Y independent of v and /3

4. The parameter o > 0 is called a shape parameter of the nonnegative ran-
dom variable X if
d —1
X=Y“

with Y a non-negative random variable with cdf independent of o

5. The parameters v € R and § > 0 and o > 0 are called respectively the
location, scale and shape parameters of the random variable X if

XLyypye

with Y a non-negative random variable with cdf independent of v, 3 and

Q.

A well known example of a cdf in the domain of maintenance belonging to
the above class mentioned in part 5 of Definition 4 and depending on the three
parameters v, « and [ is given by the Weibull cdf. In this case the random
variable Y has an exponential cdf with parameter 1 given by

PY<z)=1-¢" (5.2.9)

If we consider the most general parametric model having a location parameter
~v € R, a scale parameter 5 > 0 and a shape parameter a > 0 then one can
achieve the density function and the cumulative hazard rate function as in
the following.

Lemma 14 Let Y be a non-negative random variable with cdf F independent
of the parameters v € R and 3, a > 0 with density f, failure rate function \ and
cumulative hazard rate function A and set X 4 v+ ;BY"“_I. Then the following
results hold.

1. Forevery x >~
Po(X <z)=F(B “(x—7)) (5.2.10)

with density
Jolw) = ap™(z = 1) (B~ (& = 7))}y 00) (). (5.2.11)
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2. The cumulative hazard rate function is given by

Ag(z) = A8 %z —7)Y). (5.2.12)

Proof. To show the first part we observe using X 4 v+ ,BY"_lthat for every

T >y
Fy(z) = Py(X <x)

= Py(y + /Y <)
(5.2.13)
= B(Y < (8 ' (z—7)")
= (B %z —7)").
This implies taking the derivative of the cdf F) that its density is given by
fola) = aB (e =) B =) (o) (5214)

To show the second part of the lemma we observe by relation (5.2.4) and
(5.2.13) that for every = > v

No(z) = —In(1— Fy(x))
= —In(1=F((B" (z =)
= A8z =)
and we have shown the result. 0

In case we take v = 0 we obtain as a special case
Po(X < z) = F(B “2?) (5.2.15)

and
Ag(z) = A(B%z®). (5.2.16)

5.2.2 Maximum Likelihood Estimation for censored data

In this section we introduce the maximum likelihood principle to estimate
the underlying cdf of censored data. If we have a sample of censored type-1
distributed random variables then this sample is the realization (¢, ...,¢,,) of
the random vector (T4, ...., T;,) with

T, = an{XnSCn} + Al{Xn>Cn}' (6.2.17)
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If each of these independent and identically distributed random variables X,,
satisfy X,, ~ Fp, 0 € © with density fy(z),6 € ©, then the likelihood function
of the given sample (¢1, ..., ¢,,) is given by the function

L(O;t1, ooy tm) =TI fp(t) #2810 S () Hom=ay (i) (5.2.18)
with Sy(t) := Pyp(X,, > t) and
1 ifte A
14(t) =
0 ift ¢ A.
Introducing the log-likelihood function LI : © — R given by

LL(8) :=1n(L(0: L1, ..., lm) (5.2.19)

it follows by relation (5.2.18) that

m

LL(0) = anl Lty (bn) In(fo(6n) + 1yg—ay (6n) In Sp(Ch). (5.2.20)

Ifc ={n=1,...m : t, = A} denotes the set of censored data then an
equivalent representation is given by

LL(#) = anln( foltn)) + ancln(sg(cn)). (5.2.21)

In case (), = C for every n and and | C' |denote the cardinality or total number
of elements of the set C' this reduces to

LL(0) = angc In(fy(tn)) + (m— | C [)InSy(C). (5.2.22)

If the random variables X,, are discrete values and strictly positive then we
obtain the log-likelihood function

LL(0) = anc In(Py(X,, = 1)) + Z%C In(Sp(C)). (5.2.23)

To rewrite the log-likelihood function in relation (5.2.21) in terms of failure
rate functions, we observe by the definition of the failure rate function and
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relation (5.2.4) that
In(fp(z)) = In(Ag(2)(1 = Fy(x))
= In(Mg()) + In(1 — Fy(z)) (5.2.24)
= In(M\(x)) — Ag(a).

This implies using relation (5.2.20) and (5.2.4) that

LL(0) = anc I Ag(Ln) — an Ag(ly)) — ZnEC Ag(Ch). (5.2.25)

Applying the maximum likelihood principle in statistics, we need to solve the
optimization problem
v(P) = supyce LL(0). (P)

One of the main issues to prove is whether the above optimization problem
has a unique optimal solution, and under which conditions we can find an
algorithm which identifies this optimal solution. A sufficient condition to
guarantee this is to show that the log-likelihood function is strictly concave
in the parameter . If the parameter set © only consists of scale and shape
parameters then the log-likelihood function can be simplified. This is shown
in the next result.

Lemma 15 If X 4 ﬁYa_lwith B > 0 a scale parameter and o > 0 a shape
parameter and the non-negative random variable Y has a cdf I’ independent
of the parameters «, 3 > 0 with density [ and cumulative hazard rate function
A then the log-likelihood function of the given sample (t1,...,t,,) is given by

(m—| C )(In(a) + In(537)) + (@ = 1) 3¢ In(tn)
LL(av, B) = (5.2.26)

e I (37G) = e ABCE).

Proof. By relation (5.2.11) it follows with v = 0 that
In fy(tn) = In(a) + In(5~%) + (a — 1) In(ty,) +In f(B7 ).
Moreover, by relation (5.2.4) and (5.2.12) we obtain

n(Sp(Cn)) = =Ag(Cr) = —A(B7C).
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Applying relation (5.2.21) it follows

(m—1C)(In(a) +In(87%)) + (@ = 1) 3o gc n(tn)
+ 2 nge I f(B7UR) = 2hec AMBTCY)

LL(a, p) =

and we have shown the result. O

To analyse the structure of the optimization problem associated with
Lemma 15 we observe the following. It follows using the definition of opti-
mization problem P that by Lemma 15

v(P) = supgso p(a)
with
o(a) = supgsg LL(a, 3)
= (m—|C ) In(a) + (@ = 1) X g0 In(tn) + supgg ha(B877)
and
ha(y) = (m—| C ) In(y Z In f(yt%) Znec AyC2). (5.2.27)
Since for every o > 0 it is easy to see that solving
SUpy~0 ha(y) (5.2.28)

having optimal solution y,,; is the same as solving sups- ho (3 %) having as

an optimal solution 1

Bopt (@) = Yopt - (5.2.29)

We need to come up with sufficient conditions on the density f to show the
concavity of the function /. This is discussed in the next result.

Lemma 16 If the density function f on (0,00) is logconcave then the function
he is strictly concave on R. For lim, oy f(y) = 0 it follows that

limy |0 ha(y) = —o0
and for limy, y [ (y) = 0 we obtain

limy g ha(y) = —00.
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Proof. Since by assumption the density f is log-concave on R it follows using
Theorem 5.8 B on page 74 of [24] that the survival function y — 1 — F'(y) is also
log-concave on R ;. Since

1= F(y) =AW

this shows that the function y — —A(y) is concave on R . Using now the defi-
nition of h, in relation (5.2.27) and y — In(y) is strictly concave we obtain that
the function 5, defined in relation (5.2.27) is strictly concave on R, . To show
the limit relations we only prove it for y 1 co. The result for y | 0 can be proved
similarly. It follows that

In(y) +In f(yty) = In(y [ (yly)

and this implies using lim;,  f(y) = 0 that

limyoo In(y) + In(f(yty,) = —oo.

This shows using relation (5.2.27) the desired result. O

By Lemma 16 we obtain for f log-concave that the optimization problem
(5.2.28) for each o > 0 has a unique finite optimal solution y,,; satisfying
Rl (yopt) = 0. We observe that

_ dln f
o) = (m= | C ™" + 30Tt =3 RN

and this shows

dln f

hy(y) =0 m—|C|==> vy

t

nic (vt + > YORAWCR). (5.2.30)

One may now wonder under which parametric model the one dimensional op-
timization problem (5.2.28) has an analytical optimal solution. In the next
example we discuss the case of Weibull distributed random variables.

5.2.3 Weibull distribution

Weibull distribution is one of the most accepted distributions in the reliability
engineering [29] and this is mainly due to its potential in taking on the char-
acteristics of other distributions depending on the values of its parameters.
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Definition 5 A random variable X has a Weibull cumulative distribution
function with location parameter v > 0, scale parameter 3 > 0 and shape
parameter o > 0 if

XLy q gy (5.2.31)

with the non-negative random variable Y having an exponential cdf with pa-
rameter 1. We denote this by X ~Weibull(a, /3, 7).

For a Weibull cdf we know that the cdf of the random variable Y is given
by F(y) =1 — e™¥ with density f(y) = e Y1|p «)(y). Also its cumulative hazard
rate function is given by

Aly) = . (5.2.32)

Introducing for o > 0 the Gamma function

INa) := / y* e Vdy (5.2.33)
0
it is well known that
MNa+1)=al(a) (5.2.34)
and ’
r <§> = Jr. (5.2.35)

This shows for X ~Weibull(a, 3,7) and using relation (5.2.34)
E(X) = E(y+5Y"")
= 7+ BE(Y® )
(5.2.36)
© ot
= Y+ 8, vy e Vdy
= 7+ 35T (7))

Finally we also obtain

Var(X) = Var((7+,3Y°‘_1)
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5.2.4 MLE optimization for Weibull distribution

We now analyze the log-likelihood optimization problem (P) for the censored
data with Weibull distribution as the underlying lifetime distribution with
location parameter v = 0. By Definition 5 and Lemma 14 we obtain for every
x > ~ that the Weibull cdf with location parameter v > 0, scale parameter
£ > 0 and shape parameter o > 0 (take 6 = («, 3,7)) is given by

FQ(VL) = ]P)g(X < L)
(5.2.37)
= 1 - 6_('871(37_7))0‘

with density

—1

fo(w) = af™H(F @ =)t T (@)
Also by Lemma 14 and relation (5.2.32) we obtain
Ao(z) = (B (z = 7)) Ly 00) (@)
Since for v = 0 we obtain that
In f(A72) = In(e~ ")y — — 3=y

and
AT = 5Ch

We obtain by Lemma 15 that

(m—| €' In(e) — aln(3)] + (a = 1) X2, ¢c In(tn)
LL(a,3) = (5.2.38)
=B (Xngotn® + Xnee Cn?)
and we need to solve the optimization problem

v(P) = sup,s0. -0 LL(a, 3). (5.2.39)

Before analyzing optimization problem (5.2.39) we rewrite the log-likelihood
function and related it to a so-called norm. Let z € R™ be any vector and
introduce the function || z ||, R+ — R, given by

Iz lla= (32 120 Ic‘)a_l. (5.2.40)
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For every a > 1 the function z —|| z ||, represents the so-called L,-norm of the
vector z. [40]. In this notation using ¢,, > 0 and C,, > 0 we obtain

a a _|F (o
ZneStn +Zn¢SCn _“t“a

with the m—dimensional vector { = ({1, ..., (,;,) given by

t, nesS

~|
3
I

(5.2.41)
Cn n¢s.

This shows by relation (5.2.38) that an equivalent representation of the log-
likelihood function is given by

LL(a,3) = (m=| C (@) —aln(3)]+(@=1) Y  In(ta)—B~" | T |3 (5.2.42)

ng¢

To analyze the optimization problem (5.2.39) we first observe the following.
Introducing for every shape parameter o > 0, the optimization problem

¢(a) = supgso LL(a, ) (5.2.43)

the optimization problem (5.2.39) is the same as

v(P) = supgo p(@).

To show that for each « > 0 the optimization problem (5.2.43) has an optimal
solution we first observe

—aln(8) = In(3~") and limg,, lngf ;a) =0

This implies using relation (5.2.42) that
limgyo LL(c, B)— | | (@) = (o = 1) Y, g In(t)
= limgy | S (3™ - 5 T2 (5.2.44)
= —©

and
limgyoo LL(c, f) = —00. (5.2.45)

By the continuity of the function 3 — LL(«,3) and relations (5.2.44) and
(5.2.45) it follows therefore by Weierstrass theorem that for any o > 0 opti-
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mization problem (5.2.43) has a finite positive optimal solution j(«a). Actually
as shown in the next lemma it is possible to write down an analytical formula
for f(a) and show that the function ¢ is strictly concave.

Lemma 17 It follows for every « > 0 that the optimal solution of optimization
problem (5.2.43) is unique and given by

Bla) = : (5.2.46)

Moreover, the function ¢ : Ry — R being the optimal objective value of opti-
mization problem (5.2.43) is strictly concave on R, and has the form

(m—| C n(a) — aln(]| £ [|a)]
pla) = (5.2.47)
+a—=1)> gcnltn)+ | S| (In( S) - 1)

Proof. Let a > 0 be given and introduce the function g, : R. — R defined by

ga(B) =677

It is now well known that

Go(B) = —apU1F),

Hence we obtain using relation (5.2.42) that

LL _
807@,5) = —af 7| S| +ap VG (5.2.48)
Since we already verified for any o« > 0 that the optimization problem (5.2.43)
has a positive optimal solution j(a) it must follow for any o« > 0 and using

af~t > 0for any o > 0 and 3 > 0 that

L@, B(@) =0 & Ba) | Ts=m—]|C]

This shows for any o > 0 that there is only one unique maximizer given by J(«)
and substituting this into the objective function we obtain the expression for
o(a) = LL(a, 5(a)). In [40] it is shown in Theorem B on page 196 that the func-
tion &« — a/In(]| ¢ ||o) is convex. This shows since & — In(«) is a strictly concave
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function and using relation (5.2.47) that the function ¢ is strictly concave. [J

To finish the MLE estimation procedure for the Weibull case we now have
to solve the one dimensional strictly concave maximization problem

maxqs0 @() (5.2.49)
with
o(a) =| S| In(a) — aln(]| t [|o)] + (o — 1) Zn¢0 In(ty,)+ | S| (In(| S|)—1)
a strictly concave function. It is now sufficient to solve the problem
maxXa>0 o)

with
P(a) = (m— | C )In(e) — aln(|| T o)) + (@ =1)>

a strictly concave function . It follows (see [40]) that for a strictly concave

ndC In(ty,)

function ¢ its derivative ¢’ is strictly decreasing and so the above problem can
be solved numerically by finding the unique zero point of the derivative ¢’ of
the function ¢ using bisection. This also shows that for the Weibull case the
MLE optimization problem has a unique optimal solution. The derivative ¢’
of the function ¢ is given by

_ In(tn)tn® + >, co In(Cy) Cr
i _ _|C 1_Zn¢C neC In(t.,).
J(a) = (m— | C) (a R S EY i)

We can now apply the following special purpose algorithm.
Algorithm 4 Special purpose algorithm for the Weibull case

1. Solve the concave maximization problem (5.2.49) by a bisection method
applied to the derivative and compute its optimal solution «..

el
Kl

3. Output (o, B(ax)).

2. Evaluate (o) =

5.3 Estimation of Weibull parameters

In the methodology part of the chapter, we worked out the Log-likelihood func-
tion for the censored lifetimes that are assumed to have Weibull distribution.
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In this section this function is optimized (maximized) using the proposed bisec-
tion algorithm. Figures 5.8 and 5.9 depict the one-dimensional log-likelihood
function for different values of the scale parameter to show the concaveness of
the function. After obtaining the optimal shape parameter using Algorithm 4,
we acquire the scale parameter.

d(a) ep(a)/ oo

0.0e+00
I
1500000
I

1000000
L

-4 0e+07

500000

-8.0e+07

-1.2e+08
L

Figure 5.8: One-dimensional log-likelihood function and its gradient (Product
A)
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Figure 5.9: One-dimensional log-likelihood function and its gradient (Product
B)

Using the provided functions, one can easily find the roots of the gradient
function (shape parameter) as o« = 1.07521, and then from Algorithm 4 obtain
the value of scale parameter as 5 = 5190.92 for product A. The same process
yields o = 0.85987 and 3 = 11250.52 for product B. It is important to choose the
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initial interval values properly in this approach. Otherwise, the bisecting rule
will encounter errors.

Finally, we can assess the goodness-of-fit of Weibull distribution by means
of Kolmogorov-Smirnov test which is based on inspecting the distance between
the empirical distribution function (EDF). Figures (5.10a) and (5.10b) depict
the empirical cdf of the data plotted together with Weibull(«, 3) cdf fitted over
our lifetime data.

1.00- 1.00-
. Fy(t) s Fy(t)
o F(t) s F(O)

Cumulative Probability Function
& E &
Cumulative Probability Function

0 300 600 900 0 300 600 900
Lifetime Lifetime

(a) (b)

Figure 5.10: Empirical cdf and Weibull distribution with the estimated pa-
rameters for product A (a) and product B (b)

The Kolmogorov-Smirnov test statistic is : D = Sup,|Fy(z) — F'(z)| where
Fy(z) is the cdf of the Weibull distribution with estimated « and 5 and F'(z) is
the empirical distribution function of observed data. The test statistic and the
corresponding values respectively 0.16 and 0.003 for product A and 0.06 and
0.004 for product B which means that Weibull distribution did not perform
well in both product types. This can also be verified from the plotted Fy(x) and
F(z). For the case of product A (Figure 5.10a), the EDF is higher than the
CDF of the Weibull distribution for the lifetimes below 200 days and then it
declines to the below of estimated Weibull CDF. This is mainly due to the fact
that the distribution of lifetimes for product A has a multiplicative seasonality
(See Figure 5.4). Also Weibull distribution is not able to explain the bathtub
shape properly.
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Chapter 6

CONCLUSION AND DISCUSSION

Predicting the number of items that will fail within a specific time interval
in the future is of paramount importance for the manufacturers since this
would help them maintain proper spare parts inventory and effective repair
resource management. In this thesis, we aimed at providing a model for
this. We succeeded in developing two stochastic sub-models to estimate the
number of items sold up to a certain point in time, and the lifetimes of these
items. To predict the number of failures, these two sub-models can be used
separately and their results can be combined using numerical and/or compu-
tational methods. Combining the two sub-models analytically requires solving
a difficult numerical integration problem, which we plan to address in future
research.

We were fortunate to have access to a large dataset on the sale and failure
times of two products. To provide a model that best explains this data, we used
the MLE method assuming the lifetime data to follow a Weibull distribution.
While there are other popular parametric classes of failure time distributions
such as the lognormal, logistic and Gamma, these are not covered within this
thesis partly due to the lack of a proper algorithm that can guarantee the opti-
mal solution of our log-likelihood optimization problem. In addition, there are
other approaches to estimate the cumulative cdf [29, 22]. Finally and of more
importance is to test whether our failure data set satisfy the minimal repair
assumption such that the counting process of failures can be represented by a
non-homogeneous Poisson process. Statistical methods to test this assumption
can be found in [18]. In addition, if we can obtain data on the costs of different
repair types, we can test our cost estimation model as well. All of these suggest
topics for future research.
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Appendix A

In this Appendix we list the following well-known result for a probability
Laplace-Stieltjes transform of a non-negative random variable X. For com-
pleteness a proof of this result is listed. Observe f(© := f and f™ n € N
denotes the nth derivative of the function f.

Lemma 18 If the random variable X is non-negative with cdf F' satisfying
F(o0) = limgoo F(z) = 1 then its pLSt 7x : [0,00) — [0,1] is a continuous
function on (0,00) and 7x(0) = 1. Also all its derivatives exists on (0,c0) and

its kth derivative, k € N is given by

8 (s) = (~1)"EXFeX),5 > 0 (A.1)
and
(—=1)"7 P 0F) = (=1)" limyyo 7P (s) = B(XF) < o0. (A.2)

Proof. Since I'(c0) = 1 it is obvious that 7x(0) = 1. Also by the monotone
convergence theorem it follows that the pLSt function 7x is continuous on
(0, 00) satisfying mx (0"7) = 7x(0). To show the existence of the derivatives we
first verify the result for k£ = 1. It follows for any n € N and s > 0 that

n(rx(s) —mx(s +n 1) = n(E(e*X) - E(e_(smil)x)) =E(Yn)
with Y,, .= ne™*%(1 — e‘"_lx), n € N. Since for every = > 0

-1 x -1
0<n(l—c™ %) = / e Pds
0

it follows that the function n — ne™**(1 — e‘"fl”‘;) is increasing for every = > 0.
Hence the sequence of non-negative random variables Y,, satisfy Y1 > Y,
for every n € N and its limit random variable Y, is given by

Yoo = limgpe Yo T Xe %,

So the conditions of the monotone convergence theorem are satisfied and we
may conclude that

—wgé)(s) = limp g0 n(mx () — (5 + n71)) = E(Xe X)),
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Since for every s > 0 the function + — ze ** has a finite upper bound on
[0, oo] it follows that E(Xe~*X) is finite. Applying now a standard induction and
applying the same arguments yields the formula in relation (A.1). Again by the
monotone convergence theorem using Y,, = Xke_”_lx, k € N is an increasing
sequence of random variables with limit

Yoo = limppoe Y T XF

we obtain from relation (A.1) the result in relation (A.2). O
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Appendix B

In this appendix we discuss part of the theory of the linear regression model.
We start by making the following basic assumption. Let y be the endogenous
variable and x be the k-dimensional vector of exogeneous variables and assume

y=X0+¢€

for some @ € R* and € a k-dimensional vector of independent and identically
distributed random variables with mean zero and unknown variance o2. To
estimate the parameter 6, we use the mean square error function, and need
to solve the optimization problem

infoepe || y—X6 [|°= infoepr(y—X6)"(y—X6)
with || . || denoting the Euclidean norm. Since
f0)=(y—X0)"(y—X0) =y y—20"Xy+0TXTX60
and the gradient is given by
V/O)=-2TXTy+2XTX6O

it follows that the optimal solution 0 satisfies the so-called first order condi-
tions
V() =0<=XTX0=XTy

If the column rank of the n x k& matrix equals k£ one can show that the k& x k
matrix XTX has an inverse and so if this holds it follows that

6= (XTX)'XTy

Denoting now by y the part of y explained by the exogeneous variables defined
by
¥ = X6 =Hy (B.1)

with i := X (XTX)~!1XT the so-called hat matrix (by relation B.1 it transforms
y to ¥ and this creates the name). This matrix is clearly symmetric and it

satisfies
HX =X (B.2)
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and it is idempotent. This means
H?=HH=X(XTX)"'XTX(XTX)"'XT = H. (B.3)
Denoting now by e the unexplained part of the vector y given by
e=y-y
it follows by relation (B.1) and (B.2) that
e=y-y=UI-Hy=(—-H)(X0+¢)=XO0+e—HXO0+He=(I—H)e (B.4)
Since by relation (B.3) we obtain
(I—H?=(I-H(I—-H)=I-2H+H*=1—-H

the symmetric and idempotent matrix / — H is a projection and by the previous
relation this projection projects € to e. By relation (B.4) and (B.2) we obtain

yTe = 0'XTe = 0" XT(I — H)e =0. (B.5)

This means that the explained part y of y is orthogonal on the nonexplained
part of y. Now it follows by relation (B.5) that

yiy=F+e)T(y+e) =y'y+2yTe+ele=yTy +e'e

Similarly we can derive with
1
y = —yTi
n

with i denoting the vector of only ones and so y denotes the average value and

— 1 ..
y:=-yi
n

the average estimated value and using that the first column of the matrix X
is given by i we obtain by relation (B.2) that

HTi = i.

This implies
= 1 ST 1 Te 1 . 1 . J—
y=-yli=—(Hy)i=—yHTli=—yTi=7y.
n n n n
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Hence it follows
S 9=y oy =9y ety =3 (i-73) +ete
=17 i=1 \”"

The above relation relates the total variation of the original sample and the
estimation and the error as follows

SSiotal = SSexplamed + SSerror

Now we define
RQ _ SSewplamed
S Stotal
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