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ABSTRACT

Local phenomena related to the isomerization of torsional angles in polymers are
studied using computational tools with emphasis on the problem of efficiency. Brownian and
molecular dynamics (BD and MD) methods reproduce the time evolved coordinates of the
particles in the system. An efficient algorithm to incorporate the effect of side-groups into
these dynamic simulation methods is proposed. BD is demonstrated to give results that are
in agreement with experimental findings. Other methods which are suitable for the solution
of more specific problems are also used: Dynamic Rotational Isomeric States (DRIS)
method is utilized to probe local dynamics of chain molecules in solution. Cooperative
Kinematics (CK), on the other hand, is a computationally inexpensive method for observing
dynamic behavior in the bulk state. The results from DRIS and CK are shown to compare
well with those from BD and MD, respectively. These are also in agreement with
experimental findings.

MD, BD, DRIS, and CK are used to study various aspects of local dynamics. The
results provide a clear picture of local phenomena: Disturbances along the chain are
accommodated by local motion confined to a segment of ten bonds approximately. Mainly,
large and small amplitude torsions in neighboring bonds, spatial reorientation of bonds, and
translational motion of chain atoms occur. The exact mechanism of relaxation behavior is
dictated by the geometry of the backbone bonds. The state of the environment, on the other
hand, alters the amplitudes of motion only. All of the mentioned mechanisms are composed
of the combined effect of rotameric jumps and librational motions. Coupling between the
two is particularly enhanced during the passage over the rotation barrier. It is now known
that librational motions which are generally assumed to be decoupled from the slow
relaxation processes in polymer chains in many studies in literature are not random. On the
contrary, they are highly directed so that local chain direction is preserved and the
reorientations induced by isomeric jumps are accommodated without significant distortion

of chain conformation on a large scale.



OZET

Polimerlerin donme agilarnm izomerlegmesine bagh yerel olaylar hesaplama
yontemlerinde verimlilife onem verilerek aragtinlmugtir. Brownian ve molekiiler dinamik
(BD ve MD) yontemleri sistemdeki pargaciklarm bir zaman dilimi boyunca koordinatlarm:
verir. Yan gruplarm etkisini bu dinamik simiilasyon yontemlerine verimli gekilde uyarlayan
bir algoritma gelistirilmigtir. BD’nin deneysel yontemlerde elde edilen sonuglara uygun
oldugu gosterilmigtir. Daha belirgin problemleri ¢6zmek amaciyla ortaya atilmug hesap
yontemleri de kullanilmigtir: Dinamik donme izomerleri (DRIS) modeli ¢6ziinmiig haldeki
zincirlerin yerel dinamigini incelemek i¢in kullamimaktadir. Kooperatif kinematik (CK) ise
polimerlerin yogun ortamdaki dinamik davramgmi gozlemlemek igin kullamlan bir
hesaplama yontemidir. DRIS ve CK sonuglarmm BD ve MD yontemleri ve deneylerle
benzer oldugu gosterilmigtir.

MD, BD, DRIS ve CK yerel dinamigi cesitli yonleriyle aragurmak iizere
kullanilmigtir. Sonuglar, yerel olaylart genel bir bakig agismdan agiklamaktadir: Zincir
boyunca olusan biyiik dlgekli hareketler, yaklagik on baga sikigmug yerel hareketlere yol
acar. Buna bagh olarak, komgu baglarda biiyiik ve kiigiik olgekli donme hareketleri, baglarm
uzayda yon degistirmesi, ve atomlarm uzayda hareketi olugan baghca mekanizmalardir. Bu
rahatlama mekanizmalan zincirin geometrisince kontrol edilmektedir. Ote yandan' zincirin
i¢inde bulundugu ortam hareketin karakterini degil biiyiikkigiinii belirlemektedir. Belirtilen
" tim mekanizmalar minimumlar arasindaki atlamalar ve titregimlerin etkilegsmesiyle
olugmaktadir. Bunlar arasmdaki iletisim 6zellikle konformasyonlar arasmdaki atlama aninda
one ¢ikmaktadir. Literatiirdeki birgok ¢ahgmada yavas rahatlama hareketlerinden bagimsiz
kabul edilen titresimlerin aslinda raslantisal olmadig: goriilmiigtiir. Aksine, bunlar yerel zincir
yoniinii sabit kilacak gekilde ¢ahgmaktadw. Boylece izomerlegme anmnda ortaya gikan yon
degistirmeler biiyiik 6lgekte zincir konformasyonunu fazlaca bozmadan sabitlegtiriimektedir.
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1. INTRODUCTION

Polymers constitute an integral part of our everyday life. Since the beginning of the
century, human beings have been using more and more synthetic polymers. Biopolymers, on
the other hand, have been around since the beginning of life on Earth. For the chemist,
biologist and the material scientist it is extremely important to determine the
structure/function relationship in these molecules. Their study is also challenging for the
physicist in that the multi-body structure and collective motions of macromolecules lead to a
class of dynamics that is nonexistent in other complex systems. Thus, investigation of
polymer dynamics mvites attention to many scientists from numerous disciplines.

The dynamics of polymer chains results from the coordinated motions of its atoms.
Depending on the length and time scale of observations, the dynamics may be analyzed in
two broad regimes: (i) The Rouse-Zimm regime[l,2] involves the cooperative
reorganization of individual Gaussian subchains, and cover time scales of 107 s or slower in
solution; (ii) local dynamics regime encompasses the faster motions contributing to the local
rearrangements within subunits of the cham[3-7]. The former dictates the long-range
motions of the polymer and the chemical identity is not realized. On the other hand, many of
the properties that are of interest for the experimentalist take place in a much shorter time
and length scale. Local dynamics refers to motions on this scale where the chemical identity
of each chain becomes significant. |

The mechanism and rate of conformational changes in polymer chains are controlled
by chain connectivity, intramolecular conformational potential and interactions with the
environment. These factors set the polymer in motion which is subdivided into two groups
consisting of high-frequency motions such as bond angle bending, bond stretching and small
amplitude oscillations about rotational energy minima, and bond rotameric transitions in the
form of discrete jumps from one isomeric state to another. Comprehension of local
phenomena will provide an understanding of the mechanism and basic factors controlling the
stochastic process of local relaxation in specific polymers. The ultimate goal is to explore the
structure/property relationship in polymers so as to interpret the macroscopic behavior.

Within the last two decades, due to the vast amount of improvements made in the
speed of computers, a new area of research has emerged in the study of polymers. It is now
possible to simulate the static and dynamic behavior of a given polymer in the computer



environment and use the output to interpret experimental results and theoretical propositions.
In fact, these studies are suitably called computer experiments.

In the original computer simulation studies of polymers, simple models of bistable
oscillatorsf{8] and linked rigid bodies[9,10] have been used. More realistic model chains
mvolving three-fold symmetric rotation barriers for backbone bonds have then been adopted
to study stress, dielectric, mode and conformational relaxation of chains[11,12]. When the
prediction of real polymer behavior is aimed at, adopting more complicated models is
inevitable. At this point, a compromise between realistic molecular models and efficient
computation algorithms is necessary in order to search the enormous configuration space of
macromolecular systems. Molecular models with different levels of complexity have been
employed depending on the nature of the problem at hand. For example, for simulating
polyethylene (PE) several models have been proposed which contributed to the
understanding of the mechanism of various processes, such as orientational and translational
motions in solution[13-16] and in the bulk state[17-19], glass transition phenomena[20,21],
and conformational transitions in uniaxially deformed state[22,23]. The "united atom"
approximation has been commonly adopted in simulations, by collapsing the hydrogen
atoms onto the backbone carbon atoms. This is a computationally efficient approach due to
the fact that the total simulation duration scales roughly with the square of the number of
units explicitly considered. Furthermore, elimination of the highest frequency motions
associated with hydrogen atoms allows the use of larger size time steps in the numerical
integration algorithms. Likewise, a highly simplified model of polyisoprene has been adopted
by Adolf and Ediger[24], in which the CH = CCHj3 group was treated as a united group. The
differences in the orientational correlation times of different C-H vectors observed in NMR
experiments were successfully reproduced by this method. However, the united atom
approximation is not, in general, adequate for investigating properties which are affected by
the intrinsic conformational features of the chains. A full atomic description, in which side
groups are explicitly considered, becomes indispensable for the examination of local
phenomena, and in particular, when dealing with polymers having large side groups.

When large systems such as polymers in the bulk state and biopolymers are explored,
or when properties effective on time scales longer than those attainable by available
computer systems are investigated, numerical solution of particle motion becomes too
costly. For example, it is reported in the bulk PIP simulation of Moe and Ediger that it takes
50 days of CPU time to reproduce a nanosecond trajectory for the system of 3562 atoms on
an IBM RS6000/325[25]. In this case, analytical models are developed[26-28]. Among such
models is the dynamic rotational isomeric state (DRIS) formalism whereby the classical



rotational isomeric state theory of chain statistics is recapitulated to interpret local
phenomena[29-37]. In DRIS, successive transitions of bond torsional angles from one
isomeric minimum to another is assumed to be the only dynamic process governing local
motions. Thus, short-range conformational statistics are emphasized. In this respect, DRIS is
more appropriate for dilute polymer systems in which environmental effects are negligibly
small compared to internal barriers to bond rotations. In contrast, Cooperative Kinematics
(CK) model[38-41] systematically accounts for the restrictions imposed by the long-range
connectivity of the chain and by the frictional resistance of the environment. CK therefore
applies to the investigation of chain dynamics in dense media.

A group of methods have been developed in the present thesis, and applied to
different model chains with the purpose of improving the efficiency of the computer
simulation of polymers, and understanding the basics of local chain dynamics using these
computationally efficient approaches. In Section 2, the methods and models are outlined in
detail with a sample application to polyisoprene (PIP). In particular, a computationally
efficient method developed for incorporating the effect of side group motions to the
backbone dynamics is illustrated. In Section 3, the applications to model chains of PE, cis-
and trans-polybutadiene (PBD) and their copolymers are presented. Mainly, overall
mechanisms underlying local motions, the specific types of torsional coupling between
neighboring bonds, the consequences of simplifications intrinsic in the model used on the
nature of torsional coupling, the effect of backbone geometry, the range and character of
orientational correlations, and communication between motions operating at different
frequencies are investigated. The conclusions of the study are presented in Section 4,
together with recommendations on possiblé future applications.



2. COMPUTATIONAL METHODS AND MOLECULAR MODELS

The prerequisite for effective simulation is the utilization of an appropriate model
which is complete enough to represent the true dynamics of the polymer but simple enough
to extract information in reasonable computational time. A compromise between realistic
models and efficient computation algorithms is necessary in order to search the
configurational space of macromolecular systems. The simulation techniques utilized in this
study are broadly classified as (i) those solving the real-time motion of a system of particles
in space, (MD and BD); and (ii) those employing analytical models (DRIS and CK) to
generate the most probable motion without intensive simulations.

2.1. Molecular and Brownian Dynamics Methods

Both MD and BD rest on the idea of solving the equations of motion of particles so
as to find the time evolution of their coordinates. In principle, any quantity of interest may
be calculated provided that the so-called "trajectory” of the system is available. In both
methods, a chain of #+1 backbone units, indexed from 0 to 7, is considered. The notation of
Flory[42] is adopted for defining bond vectors (1;), bond angles (&), and torsional angles
(). A portion of a polymer chain designating the Flory convention is presented in Figure
2.1. The position vector of the ith backbone atom relative to the laboratory-fixed system is
given by

ri=x;e;ty,e;+ze; 0<i<n (2.1)

where x; y;, z; are the components of r; along the respective base vectors e, e;, and es of the

coordinate system.



FIGURE 2.1. Part of a polymer chain, showing the definition of internal coordinates.

In MD, the potentials governing the motion of every particle within the system is
incorporated into the model. The equation of motion of the ith particle is

F,=ma =-V,V (2.2)

where m; is the mass of ith particle, F; is the force exerted on the particle, a; is its
acceleration. -V,V denotes the gradient of the total potential experienced by the ith particle
with respect to 7. The potential, ¥, governing the motion of the particle 7 is the sum of all the
effective potentials and are explained in detail in Appendix A. The velocity Verlet
algorithm[43] is used to integrate Equation 2.2. The time steps by which the motion of the
particles is propagated is dictated by the fastest motions and is on the scale of femtoseconds.
The time evolved coordinates of the atoms are recorded at time intervals appropriate for the
property to be investigated. The velocity rescaling procedure proposed by Berendsen et
al.[44] is adopted to keep the temperature of the system constant at the desired value.

One of the greatest problems in MD is encountered when one form of motion in the



system is much faster than another. This is called time scale separation. The short time steps
needed to handle the fast motion and the long runs needed to allow evolution of the slower
modes make the simulations very expensive. This is especially a problem if the fast motions
are not of great interest in themselves. A full MD simulation is very expensive, since the
motion of the solvent molecules is of little interest but cannot be discarded as it effects the
dynamics. In such a case, an approximate approach is adopted: The solvent particles are
omitted from the simulation, and their effects upon the solute is represented by a
combination of random forces and frictional terms. Newton's equations of motion are thus
replaced by the Langevin equation:

d’r, dr, .
m a7 =—§—‘}Z——V,V+mA,(t) 0<iZn (2.3)

In the high friction limit where the acceleration of the particles is negligible, Equation 2.3
reduces to the Brownian equation of motion:

ar, 1 ,
7tf=—EV,V+A,(t) 0<i<n (2.4)

In Equations 2.3 and 2.4, £ is the friction coefficient of solvent and Stokes equation, & =
6, is utilized to generate the friction coefficient of a solvent at the given temperatures. 77
is the viscosity of the solvent and a is the hydrodynamic radius of the group interacting with
the solvent, which is usually taken as half the bond length[45]. A(?) is a Gaussianly
distributed random force with mean zero and covariance characterized by the correlation

T
(Af(t)-A ,(t')) Zkg 5,8(t—1") (2.5)

il



Here, k3 is the Boltzmann constant, 7" is the absolute temperature, Jj is the Kronecker delta,
and 6 (¢-¢') is the Dirac delta function. In BD simulations, the temperature is maintained
during the simulations through the random noise whose covariance obeys a temperature
dependent Gaussian distribution, according to Equation 2.5. Thus, fixed temperature is a
consequence of the application of white noise, which acts as a constant temperature heat
bath. No further temperature control is implemented in the simulation algorithm. The
numerical method developed by Helfand[46] is applied to integrate Equation 2.4. An
extensive review on BD simulation technique has recently been presented by Ediger and
Adolf[47]. '

At this point, it is convenient to provide specific examples for (i) demonstrating the
applicability of the presented techniques to real systems, and (ii) increasing the efficiency of
the methods. These cases will be taken up in the next two subsections.

2.1.1. An llustrative Example: Application of the BD Technique to cis-PIP

As an illustration of the simulation techniques, the application of BD to cis-PIP is
presented with comparisons to experimental data. The motivation is to test the predictive
capabilities of BD simulation technique with its inherent approximations for a dynamically
flexible polymer.

In many of the BD studies, because of its simple structure, the PE chain has
conveniently been utilized; a simplified model of cis-PIP has also been studied. Unlike PE
which lacks experimental findings describing its dynamics in solution, cis-PIP provides a
good example for understanding the applicability of the BD method to real systems, since it
has been studied extensively in a variety of solvents by many experimental techniques such
as °C NMR[48,49] or transient holographic grating[50].

In the following, BD simulations of cis-PIP in solvents at different viscosities and at
different temperatures are presented. The structure of cis-PIP repeat unit is given in Figure
2.2.
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FIGURE 2.2. Structure of cis-PIP repeat unit.

Simulation results are compared with those of experimental observables to see the
extent of a reasonably realistic description of the local dynamics by the technique. The
model is an extension of that used in the BD simulation of local motions in PIP by Adolf and
Ediger[24,51]. There, the doubly bonded carbon atom along with the attached hydrogen
atoms and the CH; group has been considered as one unit with the argument that this group
is rigid enough to suppress all the internal degrees of freedom. Here, the simple
representation has been elaborated by incorporating this unit more explicitly; the double
bond is given a limited freedom to rotate about its own axis and the CH; side group is
explicitly included. The hydrogen atoms are kept collapsed onto the carbon atom they are
bonded to. Short-range interactions between atom pairs separated by four bonds are also
included in the effective potential since the local dynamics might be considerably affected by
such interactions. The details of the operating potentials are given in Appendix B.

Simulations are performed for a set of viscosity-temperature combinations describing
the dynamic environment of the following solvents: chloroform, cyclohexane,
tetrachloroethane and Aroclor 1248. These are chosen from the set of solvents used in
reference 48 so as to compare the NMR results therein with those from BD i this study. Of
these, chloroform, cyclohexane and tetrachloroethane are good solvents for cis-PIP; i.e. the
polymer-solvent contacts are preferred over polymer-polymer contacts. Aroclor 1248,
which will be referred to as Aroclor from this point on, is a highly viscous mixture of
polychlorinated biphenyls. The equations giving the temperature dependence of solvent
viscosities and the associated temperature dependent viscosity relations are also taken from
reference 48 and are given explicitly in Appendix B.

The simulated polymer chain consists of 20 repeat units, i.e. 80 backbone atoms.
The backbone carbon atoms are labeled a-d in Figure 2.2. Depending on the C-H vector



utilized for a particular calculation, the motation C-H* or C-H’ is used in reference to
positions a or b in Figure 2.2.

Time steps of 0.1 - 0.8 fs are used depending on the viscosity of the solvent and the
temperature of the system. The suitable time step corresponding to a particular viscosity-
temperature combination is determined so that the equilibrium properties of the system are
maintained. A minimum number of three runs with independent starting configurations are
performed at each viscosity-temperature set to obtain statistically reliable results.

The trajectories are analyzed in comparison to C NMR results. The correlation
times, 7c, measured by these experiments correspond to the integral of the decay of the
second orientational auto-correlation function, M, given as

1 2
M,(0)= 5 (3m(r) mee+ o) - 1) (26)

Here, m(?) is the unit vector affixed to C-H bond vector of interest at time 7. The 7z values
obtained from the simulations are compared to those from “C NMR experiments[48,49] at
different viscosities for the temperature range of 230 - 330 K in Figure 2.3 for C-H* bonds.

At moderate viscosities, exemplified by the solvents chloroform, cyclohexane and
tetrachloroethane, the BD results exhibit satisfactory agreement with experiment.
Simulations reproduce average deviation of 7¢ in a particular solvent as 10 - 75 per cent for
either C-H vector. At higher viscosities, represented by the uppermost curve of solvent
Aroclor, there is a marked difference between the ¢ values predicted by BD simulations and
measured experimentally, indicating that the technique fails in this high viscosity regime.
This result suggests that in polymers with fast dynamics such as cis-PIP, the motion of the
polymer might involve time scales comparable to that of the solvent and thus be coupled to
that of the solvent. Equation 2.5 is not applicable under these conditions. In contrast, slow
polymers have time-scales well separated from that of the solvent. For the former type of
polymers, at high viscosities, both the motion of the solvent and the solute slow down
appreciably so that their motion becomes coupled.
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FIGURE 2.3. Comparison of experimental and simulation results for the correlation times
of cis-PIP CH" vectors in various solvents.

In summary, BD simulation technique proves to be a powerful tool to study local
phenomena in dilute solution, provided that a cautious choice of polymer-solvent system is
made within the frame of approximations of the technique. The rigorous approach used here
leads to define a domain of applicability insofar as the viscosity of the solvent and
temperature is concerned.

2.1.2. A Computationally Efficient Method for Incorporating Side Group Effects into
Polymer Dynamic Simulations

The full atomic description of the molecule being investigated has the disadvantages
of (i) necessitating the use of relatively small time steps in the integration algorithm due to
- the inclusion of the high frequency motions of side groups, and (ii) increasing the
computation time cost of each step due to the presence of larger number of interacting
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atoms. In order to circumvent the step size limitation associated with high frequency
vibrations, models with holonomic constraints have been invoked. In fact, the so-called
SHAKE method[52], based on the iterative solution of equations constraining bond lengths
and angles has been widely employed in MD simulations. In general, constraining bond
lengths decreases the computing time by a factor of 2 - 4[53]. On the other hand, the
imposition of constraints on bond angles has been pointed out to alter the mechanism of
molecular motion[54]. It is also possible to freeze the high frequency motions of only the
side groups by using an appropriate set of constraint equations{55,56].

The problem of achieving computational efficiency in realistic chain models has led
to devising a method accounting for the contribution of the side group interactions on the
dynamics of the chain backbone, without explicit consideration of the fast vibrational
motions associated with the side groups. The proposed method can be conveniently
implemented in various simulation algorithms and allows the use of relatively large time
steps. The basic approach relies on the transfer of the forces exerted on the side groups onto
the backbone atoms by an appropriate choice of equivalent forces and couples. A couple is
defined here as two parallel forces which are equal in magnitude, and opposite in direction.
These forces impart a rotational motion, without translation, to the object on which they act.

2.1.2.1. Basic Approach. A portion of a polymer chain is presented in Figure 2.4. The side

groups are shown as empty spheres and the backbone atoms as filled ones. A chain of »
bonds with bond vectors 1;, indexed as 0 < i < n, |; extending from atom i-1 to i, is

considered. Side groups affixed to the ith atom are connected by bond vectors l;; and I;»
originating from the ith atom. The position vector of the ith backbone atom with respect to
the laboratory fixed frame OXYZ is indicated by the position vector r;. Local chain-
embedded coordinate frames xy;z; with origin affixed to the ith backbone atom, C;, are
defined for each backbone atom, i. The x;-axis is normal to the plane formed by atoms C;.; -
C; - C;+1, and points outward. The z;-axis bisects the angle formed by the bond vectors 1;1
and l;3. The y;-axis completes a right handed coordinate system. The side group atoms are
denoted by H;; and Hjp, pointing in the +x; and -x; directions of the local frame,
respectively.

The unit vectors 8y, 3, and 3, along the axes of the frame xy/z; are expressed as



- L, x1,
P x|
8y = liz xlil
L. XIn’

6, =9, x8y

12

(2.7)

Here, x denotes the vector product and the magnitude of a vector is shown by two vertical

bars.

FIGURE 2.4. Segment of the polymer chain showing the general coordinate system OXYZ

and the local frame xyz;.
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The side group atoms are subject to forces exerted either by the environment or by
other atoms of the chain in close neighborhood. One such force, f;; acting on Hj; is shown in
Figure 2.4. In the united atom model, the side group is collapsed on the backbone and the
force fi is applied directly to the backbone. In that approximation, the eccentricity present
due to the finite distance of the side group from the backbone is ignored. In the presence of
eccentricity the force on the side group imparts a torque to the backbone which is absent in
the united atom approximation. In this work such effects resulting from the finite separation
of the side groups from the backbone are incorporated. This is achieved through the
following steps:

(1) The force f; is translated from H; to C; and a moment m = l;; x f;, is added. In
order to accomplish this transformation we assume that the bond C-Hj, is rigid and is rigidly
embedded to the backbone. The transformation is based on the principle that in a rigid body,
a force f exerted at a point P may be translated to another point P’ provided that a moment
equating to PP’ x f is added. As a result of this step, the side group is removed but a
moment m acting on the backbone is introduced that is absent in the united atom model.

(2) The moment m introduced in step 1 imparts a rotational effect to the backbone.
At this step we replace m by equivalent couples (pairs of parallel, equal magnitude and
opposite sense forces) acting on the three backbone atoms, C..;, C; and Cx;. To achieve this,
the Ciy - C; ~ Ci unit is assumed to be momentarily rigid. It is to be noted that this
assumption is adopted only during the distribution of the effect of m to the three backbone
atoms. For this replacement, m is expressed as the sum of three components along the local
X~ yr and z-axes as

m=mod, +m3s,+ms, (2.8)

The three components of m are obtained from
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mx = [lil X il] .sx

m, = [lu X n] -5, f (2.9)

m, = [lu x il] 'sz

Now these three components of m are replaced by couples acting on the atoms C;,, C; and
C:1. The couples are chosen according to the following procedure: m, is assumed to be the
result of a couple composed of a pair of forces of magnitude g, acting on atom Cj, along the
+z; direction and on atom C;, along the -z; direction as shown in Figure 2.5(a).

Thus, m, imparts a right handed rotation and defines g, as

g1 =my/d (2.10)

where d| is the distance between the couple, given by

Here, 0 is the bond angle defined by atoms C.;, C; and Cx, and /; is the magnitude of the
bond vector 1;. The component m, results from three forces; a force of magnitude g, acting
on atom C; along the +x; direction and two forces of magnitude g /2, acting on atoms C;,;
and C;, along the -x; direction as shown in Figure 2.5(b). gz is expressed in terms of m, as



15

g2 = my / dz (2 12)

where d» is

d>= ;1 cos (6/2) (2.13)

m; results from two forces each of magnitude g; , acting on atom C;, along the -x; direction
and the other on atom C,, along -x; direction as shown in Figure 2.4(c). g; is evaluated from

g=m,/d (2.14)

The couples chosen in this manner form a system equivalent to m. The choice of
these components is not unique, however, and different couples acting on the three backbone
atoms may be chosen with the same resultant moment m. Combining the results of
Equations 2.8 - 2.14, the forces F;,, F; and F;.; exerted on the respective backbone C.;, C;
and Cj4, as a result of the external forces applied on atom H;; become equal to

F,=(g-8/2)8,—g3,

F=g8+/f, g (2.15)

F,=—(g+8,/2)8,+g39,



(a)

(c)

FIGURE 2.5. Selected couples giving rotations about the local axes.
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The procedure described above is repeated for all side chain atoms. Thus, forces
acting on side groups are transmitted to the backbone atoms, and the problem reduces to
that of the simulation of backbone dynamics using common integration algorithms.

2.1.2.2. Calculations. The application of the above scheme to BD simulations of PE is
presented. Comparison of the results is made with those from a model in which the full
atomic description of the same chain is adopted. The two approaches will be referred to as
Model I and Model II, respectively.

A polyethylene chain of » = 30 bonds, each of length /; = 1.53 A, is considered.
Following Model I described above, the hydrogen atoms are assumed to be rigidly affixed to
carbon atoms. C-H bonds are of fixed length /; = I; = 1.10 A, and make an angle 6, =
109.5° with each other. The constraints on bond lengths and angles of side groups are
relaxed in Model I1, in which the forces on H atoms are not transferred to backbone but are
considered explicitly. In Model I, the vectors I;; and 1, of C-H bonds are determined at each
step from the backbone geometry using

L=, 6 L,xl, .8
=T COsS— + s 2.16
y Ili - li+l‘ 2 ’lm x lil 2 )7 ( )

The second term on the right-hand side of Equation 2.16 is positive for j = 1 and negative
forj = 2.

The total conformational potential of the chains results from (i) the intrinsic threefold
symmetric torsional potentials of each backbone bond, characteristic of sp3 bonds, (ii) the
Lennard-Jones (LJ) interactions between non-bonded pairs of | atoms, including both
backbone and side groups, and (iii) the harmonic potentials controlling the stretching and
angle distortion of backbone bonds. Model I, on the other hand, comprises the harmonic
potentials associated with the stretching and angle distortion of the bonds of the side groups
in addition to the potentials of Model I. Appendix A summarizes the potential energy
functions and Appendix B gives parameters, as well as other simulation and geometry
parameters used in these models.
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The position vector I{z+5) of backbone atom i at time #+& is computed from that
of the preceding step by applying the following numerical integration algorithm[57]:

ot g,(t) 45

r(t+51)=r,(t)+ A (2.17)

Here &t is the size of an integration time step and & is the friction coefficient corresponding
to the ith atom. JA is related to the Gaussianly distributed stochastic force acting on the
backbone carbon atoms, given by Equation 2.5. In Model I, the force G(f) comprises the
force exerted on atom i due to the gradient of potential energy and the force F(¢)
transmitted to atom / from the attached side groups. After the evaluation of the new
configuration of the backbone, the position of the side groups are readily calculated in
Model I by using Equation 2.16. On the other hand, in Model II, the position vectors of side
groups are updated by direct application of the integration algorithm given by Equation 2.17.
In all simulations, the ratio of the atomic radius of hydrogen to that of carbon is taken as ry /
rc=2& /& =213 and & = 1400 kg mol! ns°! at a temperature of 300 K.

2.1.2.3. Comparison of Models I and II. First, simulation time and efficiency is tested.
For each model, a trajectory of duration 4.25 ns is generated. The efficiency of a simulation
method is measured by the real-time it takes to generate a trajectory of a given duration. In
the present study, the simulations are carried out on Silicon Graphics, Challenge L
Networked Resource Server System, with 2 x 150 MHz CPUs. It turns out that the
computation time is 1.25 times faster with Model I compared to Model II, provided that
integration time steps ot of the same size are adopted in both models. However, a larger time
step may be employed in Model I, since the high frequency modes associated with side
group motions are eliminated, as discussed above. Note that, it is trivial in MD to determine
the largest & which reproduces the same trajectories as those of smaller size; whereas, in
BD, the trajectory is not unique since the effect of the surroundings is included via a random
term, and the sequence of random numbers generated changes with different J¢. This
problem is resolved by examining the consistency of the general conformational features of
runs, such as the extent of bond stretching and bond angle distortions, obtained at various
of's. Model I can take on about three times larger time steps. Thus, the computing time of
the program is improved by a factor of about 3.75 upon using Model L.
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Next, the proposed algorithm is tested for reproducibility of the general equilibrium
conformational features of PE chains. The analysis of the results from the two models
demonstrates that the amplitudes of the highest frequency motions, which are associated
with bond stretching and bond angle distortion, are of comparable magnitudes in the two
models. In fact, the rms fluctuations of bond lengths are observed to be 9.9 x 102 am for
Model I and 9.1 x 10° nm for Model II. Similarly, the respective rms fluctuations in the
bond angles are found to be 8.2° and 10.6°, which are within acceptable proximity of each
other. The conformational statistics predicted by Model I also exhibit the characteristics of
real PE chains, in agreement with Model II. The backbone bonds have three rotational
minima at 0° (trans, ), and £120° (gauchet, g*), with probabilities closely conforming with
real PE chains. A distinguishing property is the severe suppression of the g'g” (or g'g") state.
Furthermore, a rigorous examination of the probability surface obtained as a function of two
consecutive dihedral angles reveals in both models the splitting of the minimum at g'g~ into
two, those being slightly distorted from the (£120°, F120°) location towards (+110°,
F130°), similar to the well established behavior of PE bonds[42,58]. Thus, although in
Model I, the repulsive interactions between hydrogen atoms separated by a pair of g'g~ (or
g£g") bonds are not directly accounted for, but only transmitted to the backbone atoms, the
detailed features of the rotameric probability distributions of real PE chains are satisfactorily
reproduced.

The new model should also reproduce the dynamic, i.e. time dependent, properties.
As a sample dynamic property, distributions of bond torsion and reorientation angles are
utilized. A mean isomerization time of 11 ps is obtained with Model I, by taking into
account the total number of rotational tramsitions occurring throughout the 4.25 ns
trajectories of four independent runs. Similarly, Model II yields a mean isomerization time
of 12 ps. A more detailed description of the time evolution of relaxation processes
associated with isomerization mechanisms may be obtained by considering time-dependent
probability distribution functions[22,23]. In Figure 2.6, the probability, P(|A¢@, A?), of having
an absolute change |[A¢g| in bond dihedral angles occurring within the time interval Af is
presented. The solid curves are obtained from Model I and the dotted curves from Model II
for A7 = 0.005 and 1.0 ns, as indicated in the figure. In each case, the probability values are
recorded in 3° intervals of Ag; the displayed curves are normalized so as to make the area
under the curve equal to one radian. Since the curves evolve from a Dirac delta function at
At = 0 ns, the probability distribution curves are confined to a small range of angles at short
times (At = 0.005 ns). After a sufficiently long time interval, on the other hand, a second
peak in the 120° region is observed due to the occurrence of conformational jumps with a
mean isomerization time of 11 - 12 ps as mentioned above. P(|A¢, A?) values for Model II
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in the range |[A¢| < 10° are slightly lower than those for Model I, indicating faster torsional
librations of small amplitudes in the full atomic Model II. However, this increased rate does
not affect features related to the behavior of the bond torsional motions such as the
isomerization rates or the distribution of consecutive bond torsional angles since the region
where it is effective is associated with the fluctuations of bond torsional angles about their
equilibrium values. The close similarity between the curves from the two models at a given
time demonstrates that the bond torsional motion, which represents the most important
degree of freedom in polymers, is adequately represented by the new model.
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FIGURE 2.6. Comparison of Models I and II: Time dependent distribution function of
bond torsional motions.

Information similar to that for bond torsional angles may be obtained for the bond
vectors from distributions of C-C and C-H bond reorientation angles. The probabilities
P(|Aql, A?) of the reorientation angles, |Ac], experienced by the bond vectors C-C and C-H
are shown in Figures 2.7 and 2.8, respectively. The recording of the probability values and
the normalization of the curves are carried out as in Figure 2.6. At short times, the C-C
bonds display a somewhat faster dynamics in Model I (Figure 2.7, Af = 0.005 ns). However,
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the correspondence between the two models is quickly achieved as can be observed in the Az
= 0.01 ns curves, and is maintained until the equilibrium distribution (A7 = 1 ns) is reached.
Hence, the proposed model correctly describes the orientational dynamics of the backbone
bonds.

C - C bonds
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FIGURE 2.7. Comparison of Models I and II: Time dependent distribution function of the
reorientation of C-C bond vectors.

On the other hand, in the case of the reorientation of C-H vectors, the departure
between the two models which appears at small Az (Figure 2.8, A = 0.005 ns) persists even
at long time intervals (Figure 2.8, A7 = 0.1 ns) until the equilibrium distributions are
obtained. Here, Model I predicts a slower reorientation for the C-H bonds indicating a loss
in their mobility which should be expected due to the suppression of the flexibility of bond
angles and bond lengths of the side groups in this model. The probability distributions at
large Af (Figure 2.8, inset), are identical in the two models, which shows that the equilibrium
properties of the polymer are not altered by the conditions imposed in Model L.

In summary, the introduced method includes the role of the side groups into dynamic
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simulations without their explicit incorporation into the integration algorithm. Such an
approach eliminates the uninteresting degrees of freedom e.g. the high frequency motions of
the side groups, and thereby increases the efficiency of simulations. The main assumptions of
the proposed method are valid in that they bring about no major changes in the static and
dynamic properties of the chain. It should be noted that although the model presented here
has been used in BD simulations of PE, it is readily applicable to MD simulations of more
complex macromolecules bearing bulky side groups.
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FIGURE 2.8. Comparison of Models I and II: Time dependent distribution function of the
reorientation of C-H bond vectors.

2.2. Other Computational Methods

As mentioned previously, some computational methods do not reproduce the
trajectories of the polymeric system. Instead, the goal of efficiency is achieved by
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developing special models that are suitable for solving the problem at hand. Two such
models will be presented in this section: The DRIS scheme is an efficient method for
studying local dynamics of chains of a given detailed chemical structure up to several
nanoseconds in solution whereas CK is applicable to the local dynamics of polymers in dense
environment[26,29].

2.2.1. Dynamic Rotational Isomeric States Model

The DRIS model developed for investigating local chain dynamics has been applied
to segments of polymer chains like polyethylene[29], poly(ethyleneoxide)[33], poly(dialkyl
siloxanes)[59] and PIP[37]. The model is based on the master equation

dP(£)/dt = A P(?) (2.18)

where P(?) is the vector of time-dependent probabilities of all possible configurations and A
is the transition rate matrix of the rate constants for the passage between configurations.
Sequences of bond torsional states characterize a given configuration. Bond angles and
lengths are assumed to be fixed at their equilibrium values. In general, the dynamic behavior
of a given segment of n bonds with v rotational isomeric states accessible to each bond is
characterized by the set of eigenvalues 4; of A, with j=1 to V. For stationary processes, the
elements of P(#) are independent of time and equal to the equilibrium probabilities of the V'
configurations.

Precise determination of A is critically important for a realistic estimation of the
conformational dynamics of polymers. In the simplest case of bonds subject to independent
conformational energetics A is readily evaluated from the direct product of the transition
rate matrices for independent bonds, and closed form expressions for the frequencies and
distributions of isomerization modes are obtainable[60]. However, in most cases,
consideration of the interdependence of neighboring bonds rotational states is a basic
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requirement for establishing the connection between theory and experiments.
Interdependence of bonds may be extended beyond first neighbors by considering
simultaneous and/or coupled transitions of groups of bonds of size » > 2. Previous DRIS
study of polyisoprene is an example in which coupled rotational dynamics of groups of three
or more bonds were considered for the interpretation of dielectric relaxation behavior[37].
Here, the discussion is confined to the stochastics of pairwise interdependent bonds.

The types and activation energies of passages between pairs of rotameric states are
found from conformational energy maps constructed as a function adjacent torsional angles.
For the case of bond pairs with v =3 rotational states accessible to each bond, the operating
transition rate matrix, denoted as A®, is given by a 9x9 matrix. The superscript in A® refers
to the number of interdependent bonds. The explicit form of A® for bonds in PE reads

_A“ r, r, r, 0 0 r, 0 0 |
n 4, 0 0 r, O 0 r, O
n 0 4, 0 0 r, 0 0 r,
n 0 0 A, r, r, 0 0 O

A®={0 r, 0 r, 4, O 0 0 O (2.19)

0O 0 » r,b 0 A4, 0 0 O
n 0 0 0 0 0 4, r, r,
0O r 0 0 0 0 rn 4, O

| 0 0 0 0 0 r, 0 A,

where the diagonal elements are evaluated from the negative sum of the remaining elements
in the corresponding column, and r; (i = £ 1 - 3) refer the rate constants of the transitions
shown in Figure 2.9. In general, the off-diagonal element A” of A® s the rate constant, k;,
of passage from the jth isomeric state {7 of the bond pair to the ith state {'7". k; is given by
the Arrhenius-type expression k; = A, exp {-E,;/RT} where R is the gas constant, 7" is the
absolute temperature and E, ; is the activation energy for the particular transition (77— {'77’.
A, is the front factor related to the mobility of the system, which may be constructed to
include the frictional resistance of the environment depending on the specific transition.
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The master equation 2.18 is solved by using the transformation A = B A B where
A is the diagonal matrix of the eigenvalues of A, and B is the matrix of the eigenvectors of
A, and B-1 is the inverse of B. The solution is written as

P()=C()P(t=0)=BeB'P(r=0) (2.20)

where P(z = 0) is the vector of the original probabilities of ail configurations, C(¢) is the
time-dependent conditional probability defined by the second equality in Equation 2.20. The
ijth element C(£'n',t |{7,0) of C(#) represents the time-delayed conditional probability of

occurrence of state ¢’7’ at time ¢, provided that the given pair of bonds assumes the state {7
at =0.
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FIGURE 2.9. Kinetic scheme of PE with bond interdependence.
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The transition probability C(¢'77',t [{n,0) may also be calculated by BD since for a
stationary process, as presently studied, the time origin is immaterial, but the time interval ¢
between two successive states is important. Thus, data recorded at various time origins along
the trajectory are suitably combined to evaluate C({'n',t |{7,0), provided that #<< £*, where
r* is the total duration of simulation.

2.2.2, Cooperative Kinematics Model

In a recent series of papers[38,39,41], the correlated motions of chain atoms in dense media
are mvestigated using CK. In these studies, the term dense media is used in reference to
polymers in the bulk state, above glass transition temperature, where the femtosecond
librations and fluctuations due to acceleration are neglected. The most probable trajectory of
chain atoms accompanying the rotameric transitions of a given bond from one rotational
isomeric minimum to another is obtained, by considering the torsional potentials and the
frictional resistance exerted by the environment{41]. The basics of the CK method are
outlined below.

The Lagrange equation of motion for a chain is expressed as

d{é’L} oL o7 .2

— = |-==+=—=0
dté’qj 5qj é’qj

where q represents the set of generalized coordmates, the dot denotes the time derivative, L
is the Lagrangian and % is the Rayleigh's dissipation function whose gradient with respect to
the velocity of any atom gives the frictional force experienced by that atom. Backbone
atoms are numbered from 0 to #+1. The set q includes the following variables: (i) the
position vector R, = collX,, Y, Z,] of the zeroth atom relative to a laboratory-fixed
coordinate system, (ii) the Euler angles, @, ¥, y, defining the absolute orientation of the
chain in space, (iii) the internal torsional angles, ¢;. In a highly viscous medium, such as that
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experienced by a polymer chain in the bulk state, the kinetic energy term in L and the
acceleration contribution may be neglected, and the equation of motion simplifies to

&Y 2.22)

where V is the potential. Following this approximation, the problem of finding the optimal
changes in the generalized coordinates in response to a torsional rotation reduces to the
solution of

W+155W‘§-0 : 2<5i< 1 \
2p, T2 08p, 0+ =iz

| (2.23)
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Here 6W; denotes the differential work done by the chain against friction during small
incremental displacements JR; in chain units occurring within short time intervals &. It is

expressed in terms of the Rayleigh dissipation function and the effective friction coefficient &
as,

SW, =250t = (g/az)zfm, 4R, (2.24)

A complete derivation of the above equations and a detailed presentation of the
mathematical formalism of the CK approach is given in Appendix C.
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According to the CK approach, a bond in the middle of the chain is rotated by small
increments, and the new values of the remaining degrees of freedom are determined at each
step from the simultaneous solution of the n+4 equations implicit in Equatibn 2.23. The
incremental variation procedure is repeated until the rotating bond completes a full isomeric
transition. This operation leads to the cooperative response of the all the chain elements in
the particular original configuration to the rotational isomerization of the given bond. For
assessing the general response of chain irrespective of the original configuration, it is
essential to take average over an ensemble of minimum 500 chains. In MC generations,
dihedral bond angles are assigned to each bond in conformity with the equilibrium
distribution of rotational states of the polymer being investigated.

Results are conveniently expressed in terms of a dimensionless ratio relating the
strength of the two factors affecting the mechanism of motion, i.e., the frictional resistance
and the internal rotational barriers, as

2k

k, = - .

where %, is the barrier height for the single bond rotation, / is the bond length, £ is the
friction coefficient. Af is the mean time it takes for the isomerization to take place and is
assigned a fixed value irrespective of the environmental conditions of the chain.
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3. LOCAL MOTIONS IN POLYMERS

3.1. Contribution of Short-Range Intramolecular Interactions to Local Chain
Dynamics

Short-range intramolecular interactions in polymers have been broadly classified as
first and second order interactions (Appendix A). The former involves interactions between
atoms separated by three bonds. The latter refers to those between atoms separated by four
bonds. Chains composed of conformationally independent bonds are devoid of second order
interactions.

The effect of second order interactions on equilibrium chain conformations in
polymers has been addressed in numerous studies. In particular, the strong repulsive
interactions between backbone atoms separated by four bonds when the middle two bonds
assume gauche rotational states of opposite sign, have been recognized to significantly effect
the equilibrium statistics of polyethylenelike chains, and commonly referred to as the:
"pentane effect” (Figure A.1). In what follows, the effect of such second order interactions
on the dynamics of polymer chains are investigated. BD and DRIS are undertaken to assess
the influence of bond interdependence on the mechanism of local motions. Comparison of
DRIS predictions with simulations allows to establish the validity and/or limitations of the
DRIS formalism, as far as the local conformational transitions of real chains are concerned.

In previous BD studies[5,9,22,62,63], backbone bonds were assumed to be subject
to independent rotational potentials, ie. no intrachain interactions other than chain
connectivity and first order interactions along the chain were included. Cooperativity
between torsional transitions of bonds / and i+2 emerged in these studies as a requirement
for the localization of the motion along the chain, thus stipulating the intrinsic effect of chain
connectivity and geometry. The role of intrachain cooperativity in conformational transitions
has been addressed by Adolf and Ediger in the BD study of polyisoprene[24,51,63]. A
recent review by Adolf and Ediger gives a comprehensive summary of the work done using
BD method[47]. In the present work, the specific changes in the conformational dynamics of
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PE chains arising from the inclusion of second order interactions are analyzed. The
calculations are carried out so as (i) to compare simulations including second order
interactions to those that do not, and (ii) to provide a possible assessment of the validity of
the DRIS formalism as a first approximation for treating local chain dynamics. Furthermore,
the contribution of neighboring bond interdependence to the type and frequency of
correlated transitions of longer range along the chain is analyzed.

In carrying out the comparison mentioned in item (i) above, results from two classes
of calculations are utilized: The chain model with independent bonds using only V;, V, and
V, (Equations A.2-A.4) will be referred to as Model I. In Model II, on the other hand,
interactions between chain atoms separated by four bonds leading to pentane effect, are
included. In this chain model such interdependent bonds which are characterized by the LJ
potential (Equation A.5) in addition to the potentials given by Equations A.2 - A.4 are
operative. In the present work, V. (r;) will be taken as zero for |j - 7] 2 5. Thus, interactions
between atoms that are close in their location in space but far from each other along the
contour of the polymer are not considered in the calculations. These are called long-range
interactions and a representative case is presented in Figure A.2. The simulations are carried
out for polyethylene chains of # + 1 = 50 units at 300 K.

A first configuration of the chain is generated by Monte Carlo method using
equilibrium values of bond lengths and bond angles. For the calculations with Model II, the
occurrence of g*g* states in the original conformer is excluded, to avoid a highly
unfavorable energy state. The integration time step is chosen as 5x10° ns which gives
satisfactory convergence to equilibrium valies. Equilibration runs of 10> time steps (0.5 ns
total duration) are made in order to achieve more realistic orientations in space to use at zero
time. Results are recorded every 1000 steps until a 25 ns trajectory is performed.
Calculations in Sections 3.1.3 and 3.1.4, require investigating very short time dynamics for
which simulations with 5x107 ns time steps are performed for a total duration of 50 ns in the
form of six independent trajectories, with results recorded every 200 steps.

3.1.1. Probability Distributions of Bond Torsional Angles

First the distribution of bond rotational angles resulting from simulations is
considered. The frans probabilities are obtained as 0.669 and 0.738, using Models I and II
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respectively (Table 3.1). These are evaluated from the average over all bonds i, excluding
the five terminal bonds at both ends, i.e. 6 <i< n-5. Likewise, all equilibrium and transition
probabilities reported below are determined from the average behavior of the same subset of
internal bonds. Although the stretching, bending and torsion parameters are the same in both
models, the frans population is enhanced in Model II. This is a direct consequence of the
inclusion of second order interactions. The probability of trans conformers obtained for
Model IT agrees with the molecular dynamics (MD) value of 0.718 calculated by Rigby and
Roe[64] for 20-segment chains at 301K.

TABLE 3.1. Probabilities of various states®

state probability (Model I) | probability (Model ITI)
t 0.669 0.738
tt 0.445 0.512
tg or g't 0.113 0.111
ggorg'g’ 0.026 0.018
ggorg’g* 0.026 0.0014

@) g° means g° and g states may be used interchangeably.
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FIGURE 3.1. Probability distribution of bond dihedral angles given that state ¢, = -120°.
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The equilibrium probability distributions p(@; @) for the joint state of two
consecutive dihedral angles, ¢; and @ exhibit the difference between Models I and II
clearly. The cross-section at -120° of the two-dimensional probability distribution surface
resulting from Models I and II is displayed in Figure 3.1.

The peaks belonging to g'g” and g'g’ are identical therein for Model I. In the curve
for Model II, however, the peak belonging to g'g” is absent altogether. The emergy
difference between these two distinct states, £,, may be estimated from

E, = —RTln{-p—”L] 3.1

p gtg+

where (Pg:g/Pg+q+) is the ratio of the equilibrium probabilities p,. . and p,.,. of the respective
rotameric states g*g® and g*g® for consecutive bonds. The probability of a state is
evaluated from the volume element enclosed under the corresponding peak in the
normalized probability distribution surface[16,61,66]. For example, p,.,., is evaluated from

-zl3 7
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the integration therein being approximated by summation over grids of size 10°. The
probabilities of various states calculated accordingly by adding up discrete probabilities at the
center of surface elements of 10°x10° intervals, are also presented in Table 3.1. In Model L,
there is no difference between the probabilities of g*g* and g*g* states, and hence E, = 0.
In Model I, on the other hand, an E, value of 1.54 kcal/mol is obtained by using equations
3.1 and 3.2. A more rigorous relationship which makes use of interdependent probability
distribution surfaces of the MD trajectories for the formulation of statistical weight matrices
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is given by Mattice et al[65]. Using that scheme, E,, turns out to be 1.47 kcal/mol. Note that
in the original work of Abe, Jernigan and Flory[66] a value of E, = 2.0 kcal/mol is adopted.
The use of a lower E,, has the effect of reducing the characteristic ratio of PE, although this
effect may be more than counterbalanced by varying the equilibrium dihedral angle ¢, of
the g* state. Ranges of parameter E, affording good agreement with experiments on
characteristic ratio and its temperature coefficient are pointed out[42] to be 1.7 < E, < 2.0
kcal/mol for @, = +120° and 1.3 < E, < 1.6 kcal/mol for ¢, = +112.5°, which are in
satisfactory agreement with the value £, = 1.51 + 0.04 kcal/mol presently obtained.

3.1.2. Conditional Probabilities of Rotational Transitions

3.1.2.1, Comparison of BD Results from Models I and II. Time-dependent conditional
probabilities of bond rotations give information both on the dynamics of transitions between
isomeric states and on their equilibrium probabilities. The conditional probabilities, C({'n’,¢
[¢n,0), are obtained by tabulating the total number of initial and final states assumed by two
consecutive bonds at various time differences ¢ and then dividing these by the sum of the 81
different transitions recorded.

TABLE 3.2. Most probable pairs of initial and final states”

type of states | {n—> n’
1 >t
2 g —> g
3 ge>ge
4 gge>g'g”
5 gttt
6 tt—>tg*
7 g >tg
8 g:kg$_> tg$
9 gigf>n
10 18— g't

a) In cases 1-4 the states of the bonds remain
unchanged; cases 5-10 refer to rotational transitions
of one or both bonds of the pair.
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Table 3.2 gives a list of the most probable transitions of pairs of adjacent bonds, {77
— ¢’n’. Here ¢ and 7 stand for the rotational isomeric states z, g*, g. In the transitions 1 -
4, the original pair of rotameric states {7 is identical to the final state {'7". Thus, in a strict
sense, those are not passages between rotameric states but refer to the cases in which the
state of a given bond pair remains unchanged.

First, the time evolution of C(4'7',t | {7,0) in the absence of bond interdependence is
studied. The results for those cases with {’'n’ = {n and {'n’ # {n are presented in Figures
3.2(a) and 3.2(b), respectively.

10

80 02 . 04 06 08
time (ns)

FIGURE 3.2. Time-dependent conditional probabilities of bond pairs subject to
independent rotational potentials. (a) Initial state of bond is maintained; (b)
initial and final states are different. See Table 3.2 for the definition of the
curve labels.
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In these figures, the values asymptotically approached represent the equilibrium
probabilities of the state {'7’ and are consistent with the values in Table 3.1. It is also worth
noting that in all the curves, equilibrium probabilities have been reached within 1 ns. The
transitions g*g* — g*g® and g*g® — g*gobey identical kinetics in the absence of
secondary interactions; these are represented by the curve labeled 3,4 in Figure 3.2(a). This
follows from the equivalence of g*g® and g*g¥states when bond interdependence is
neglected. The same is true for transitions g*g* — g't and g*g*— gt (in Figure 3.2(b),
curves 7,8).

The counterpart of Figure 2(a) in the presence of second order interactions is Figure
3.3(a). That of Figure 3.2(b) is presented in two distinct figures, 3.3(b) and 3.3(c), for
clarity. The major difference between results from Models I and II is observed in the time
evolution of the pair of gauche bonds. In Model II, the passage g*g* — g*g* (Figure
3.3(a), curve 4) is distinct from g*g* — g*g* (Figure 3.3(a), curve 3), there is an
immediate escape from the state g*g*and the corresponding low equilibrium value is
quickly reached. One can also observe that the transition probabilities for the passages g*g*
~> g't and g*g* —> g't (i.e. Figure 3.3(b), curve 7, and Figure 3.3(c), curve 8) reach a
maximum at short times, before converging to the equilibrium probability of the g state. In
particular, that of g*g™ — g is very pronounced, in contrast to the time dependence of the
same transition displayed in Figure 3.2(b) in the absence of second order interactions along
the chain.

In the transition curves for the Model II, the fluctuations in the time evolution of the
passage g°g* — # and g*g® — tg* (Figure 3.3(c), curves 9 and 8) are due to the very
small sample space of the g*g™ population. The g*g* —> #g" transition is affected by the
strong tendency to escape from the g*g* state, indicated by the short time peak in the 30 ps
range in Figure 3.3(c). It has a time dependence separate from that of the g*g* — tg*
transition, whereas the two transitions are represented by the same curve for Model I, Figure
3.2(b).

The two transitions g*t — # (Figure 3.3(b), curve 5) and g*g* — # (Figure 3.3(c),
curve 9) exhibit similar time dependence in Model II provided that the oscillations induced
by g*g" state are overlooked. This phenomena is explained by the two-step character of
transition 9, which occurs through the mechanism g*g* — fg" — #. Here, the first
transition, (Figure 3.3(c), curve 8) is fast, and the second, which corresponds to transition 5
itself, is the rate controlling one. The same argument cannot be made for Model I, since the
two steps of tramsition 9 evolve in comparable times. As a result, there are two distinct
curves corresponding to transitions 5 and 9, as shown in Figure 3.2(b).
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FIGURE 3.3. Time-dependent conditional probabilities of bond pairs subject to
independent rotational potentials. (a) Initial state of bond is maintained; (b-c)
initial and final states are different. Symbols represent DRIS results. The
curve labels are defined in Table 3.2.
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From the above comparison, it is deduced that the types and rates of rotational
transitions taking place during the Brownian motion of real chains are rather sensitive to
second order interactions along the chain. The second order interactions result in the
coupling of the torsional states and transitions of neighboring bonds, and give rise to a
mechanism of relaxation different from that observed in the absence of bond
interdependence, as described above in terms of the time evolution of transition probabilities.
Simulations with energy functions and parameters disregarding second order interactions
along the chain, as has been performed in a number of BD studies, may lead to serious
departure from real chain behavior and should be interpreted with caution.

3.1.2.2. Comparison of DRIS Results to BD Simulations. Results of DRIS calculations
at 300 K are presented by the circles and triangles in Figures 3.3(a-c). The calculations are
performed with the kinetic scheme and activation energy data given in reference 29. The
basic assumption therein is the pairwise interdependence of bonds. In order to compare the
results from DRIS approach with those of BD in the presence of bond interdependence, the
front factor 4, (Section 2.2.1), which accounts for the frictional resistance to motion in the
expressions for %, is adjusted to match that of BD simulations (¢ = 10° ns™). Hence, 4, is
rescaled to fit the # — #t decay curve (1) of the two approaches, which yields 4, = 5.72 x
10" s, Using this value in the rest of the calculations for all transitions, not only qualitative
but also quantitative correspondence between DRIS model and BD simulations is
accomplished.

In both techniques, equilibrium values are reached within 1 ns. DRIS predicts a
slightly stronger tendency to escape from the g*g™ state compared to BD. This is attributed
to the fact that part of the repulsive force produced in the g*g” state is normally taken on
by the distortions in the bond lengths and angles so that the escape from this configuration is
weakened. However, these distortions are not included in the DRIS Method. The only
transition where there is no quantitative agreement is g*g* — tg* (Figure 3.3(b), transition
7). There, the passage through a peak is well predicted by DRIS but the equilibrium value of
0.11 is reached quicker than BD simulations. On the other hand, here BD simulations exhibit
a faster rate of escape from the g*g* state at short times. In all other curves there is good
qualitative and quantitative agreement between the results from BD and those from DRIS.
This proves DRIS to be a well suited method for the prediction of bond pair dynamics.
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3.1.3. Near Neighbor Transitions

The importance of correlated transitions occurring among near neighbors along the
chain have been pointed out in BD studies[15,24,62], and later discussed in MD simulations
of Zuniga et al[16]. Successive transitions occurring within 5 ps approximately, are
identified as correlated transitions, in general. In the present study, first passage times
between successive transitions have been accordingly analyzed in BD trajectories resulting
from both Models I and II. Simulations of six different starting configurations, using ten
times shorter time steps, i.e. 5x107 ns, have been followed up to a total duration of 50 ns.
The regions determining the isomeric states have been identified as in reference 16 as |@] <
30° for #, and 90° < |@| < 135° for g*; the rest of the dihedral angles are assigned their last
definite states. This procedure avoids the redundant counting of passages over saddle points,
during the evaluation of first passage times between rotational isomeric states. A total of
12310 transitions have been recorded using Model I, whereas 13981 transitions occur
during the same time interval, with the same initial configurations when Model II is used.
Thus, the presence of a high energy state (g*g*) renders the chains of Model II more
susceptible (by 14 per cent) to rotational transitions.

The time evolution of coupled transitions between near neighbors from six different
trajectories of total duration 50 ns is shown in Figure 3 4.

g

oL tranﬂtlons
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FIGURE 3.4. Time evolution of coupled transitions among second neighbors along
the chain. The solid and dashed curves are obtained from BD simulations with Models I and
II, respectively.



39

The solid curves in the figure are calculated using Model I, for the pair of second and third
neighbors, as indicated by the labels; their counterparts obtained with Model IT are shown by
the dashed curves.

The curves in these figures are calculated according to the following procedure:
First, the time at which a given bond % undergoes an isomeric jump is recorded; then, one
observes the /th topological neighbor, and the time interval Az elapsed until bond 4+i changes
its rotational state is recorded. This procedure is repeated up to Az = 2 ps, for all internal
bonds in the chain, throughout the whole trajectory, except for the terminal five bonds,
which are not considered because of end effects. The number of coupled transitions between
second and third neighbors are found to increase by the interdependence of backbone
torsional states, as may be observed from the deviations between the solid and dashed curves
m Figure 3.4. In particular, the number of coupled transitions between third neighbors (i =
13) increase by 42 per cent. Those between second neighbors (i = 12) increase by 35 per
cent. The results for / = 1 and 4, whose frequencies of occurrence were lower compared to
i =2 or 3, are not displayed in the figure, for clarity. Those of first neighbors (i = 1) are also
augmented (by about 30 per cent) upon consideration of second order interaction, whereas
the number of correlated transitions between fourth neighbors was almost insensitive to the
model, suggesting that correlated transitions involving farther neighbors, if any, are less
affected by second order interactions. Calculations performed for farther neighbors (i = 10,
for instance) verified that the corresponding time evolution curves exhibit the same behavior
as that of the overall ensemble of transitions (15 per cent deviation), and hence the
rotational motion of such distant bonds are not affected by intramolecular correlations.

3.1.4. Mechanisms for Localization of Motion

When a transition occurs at one of the internal bonds of a chain, the near neighbors
of the rotating bond rearrange so as to minimize the spatial displacements of the atoms and
the total energy of the system. If a rotational jump of a reference bond is accompanied by
small rotations (+£30°) of the nearby bonds, this is called an isolated transition. Alternatively,
the polymer may compensate for the energy difference created by a rotational transition by
making a cooperative rotameric transition at one or more neighboring bonds. Well known
mechanisms of the latter type are gauche migration (g*# <> #g*), gauche pair creation (¢t >
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g'1g”) and annmihilation (g*tg*—> #f) [4,62]. These are identified as motions where the
remainder of the chain does not change shape but just translates.

Of the total number of transitions taking place within the 50 ns trajectories of Section
3.1.3, the percentage of isolated transitions is found to be 70.3 + 0.05 per cent at 300 K,
irrespective of second order interactions. Note that this proportion of isolated and
cooperative transitions compares favorably with that obtained at 330 K by Weber and
Helfand[61] in the absence of second order interactions (70.7 per cent).

Although the proportion of the cooperative transitions among all transitions is the
same in both models, their distribution among different types of passages are different in the
two approaches. For example, the numbers of the most frequently occurring types of second
neighbor transitions are presented in Table 3.3. The last column indicates the percent change
in the rates of those passages upon inclusion of second order interactions. There is a
considerable increase in these tramsitions, which is substantially larger than the overall
enhancement of transition rates (i.e. 14 per cent) in Model Il In particular, gauche pair
annihilation, shown in the third row of the table, is found to increase by 27 per cent upon
inclusion of second order interactions.

TABLE 3.3. Number of most probable cooperative transitions among second neighbors

transition | ModelI | Model Il | % increase
gt > ug* 957 1144 20
ttt— gtg* 395 479 21
gigt >t 338 430 27

Note that in both models the frequency of gauche pair creation exceeds that of
gauche pair annihilation. This might suggest at first sight some gradual increase and eventual
saturation in the population of gauche states during simulations. However, it should be
recalled that Table 3.3 is constructed for a subset of transitions only, mainly cooperative
transitions among second neighbors. There is a much larger number of transitions, either
isolated or cooperative between other neighbors, contributing to the equilibration of the
population of different rotameric states, and maintaining the state of dynamic equilibrium
(detailed balance) conforming with the specific chain statistics.
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3.2. Kinematics of Polymer Chains in Dense Medium. Effect of Backbone Geometry
and Application to Polybutadiene

The problem of cooperativity between the motions of chain units in polymers during
the rotameric transition of a given bond is central to the study of local polymer dynamics.
From spectroscopic measurements and numerical simulations, it is now known that the
motions induced by rotameric jumps are highly localized in space for chains in the bulk state
as well as for those in dilute solution[5,25,26,46,61,67]. The localization is established
through correlations between the motion of the bond undergoing the rotameric transition and
the neighboring atoms, either along the chain or in the surrounding medium.

Calculations show that the mechanism of localization involves three types of motions
of neighboring bonds: (i) Correlated torsions. For PE, a rotational transition results in
correlated torsions up to sixth neighboring bonds on each side of the rotating bond. The
second neighbors show the strongest response in the form of a counterrotation. (i) An
overall reorientation, in space, of a few bonds including and adjoining the bond that
undergoes the rotameric transition. In PE, the bond undergoing the rotameric transition is
itself reoriented by about 25 - 35°. The first neighbors on each side exhibit the largest
reorientations (~ 50 - 60°) and the extent of reorientations is vanishingly small beyond sixth
neighbors. (iii) Displacement of atoms in space. For PE, mean translations of about 0.8 A
were observed in the atoms located at both ends of the rotating bond. These results, which
are obtainable with a minimum computational effort by the CK approach, were shown to
conform closely with those extracted from BD runs.

BD and MD simulations carried out for different polymers, and in particular the
comparison of the results for PE and polyisoprene (PIP) [45], suggest that the local chain
geometry is an important property determining the type and strength of intramolecular
correlations. Here, the kinematics of PBD chains in dense environment is investigated in
order to assess the poésﬂale importance of chain geometry. Due to the presence of double
bonds and non-tetrahedral bond angles along the backbone, as well as the possibility of cis
and frans isomers, the backbone geometry of these chains depart significantly from that of
PE studied in references 38,39,41. In the following the results for PBD are compared with
recent MD simulations of PBD[68,69] and of polyisoprene[25] in the bulk state. The
predominant role of the backbone geometry in prescribing the mechanism of local
conformational motions is emphasized.
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3.2.1. Chain Model and General Calculation Procedure

A segment of a cis-PBD chain of n backbone bonds is presented in Figure 3.5. The
backbone carbon atoms and their pendant hydrogens are taken as united groups. All bond
lengths, /, and bond angles, 6, are fixed to their equilibrium values. Only the dihedral angles,
@i, about the single bonds are assumed to rotate. The bonds labeled as o; and a; in the
figure, are structurally equivalent and will be referred to as a bonds throughout the text. The
rotatable CHj - CHy bond confined between two o bonds is termed as S type. The structure
shown in Figure 3.5 corresponds to the cis-isomer. The frans-isomer is obtained by a 180°
rotation about the double bonds. Thus, a repeat unit comprises of one double bond, one
bond of type £ and two bonds of type a.

cis-PBD

FIGURE 3.5. A segment of cis-PBD chain.

The rotational potential of each backbone bond is expressed as a polynomial in the
form given in Equation A.4. The values of %, and the coefficients a,, are taken from
reference 45. These are given in Table IV according to the type of bond considered. An
average value of 1.5 A is adopted for all bond lengths for computational simplicity, although
in reality the double bond is shorter (~1.32 A), the « bond is 1.53 A and Bis 1.51 A. The
supplements of the bond angles defined by CH-CH2-CH; and CH-CH-CH units are fixed at
the respective values of 6, = 65.4° and &, = 60.0°,



43

In the calculations, the response of the chain to the rotation of either an « or a S
bond is seeked. For this purpose, the procedure outlined in Section 2.2.2 is applied. 500
Monte Carlo (MC) chains are generated for the cases of all cis- or all #rans-PBD, although
averaging over 50 chains is verified to yield approximately the same results. Calculations are
performed for » = 25 while no major differences are observed between the results for n = 25-
and 39 bonds. This confirms that the motion is localized to only a few neighboring units.

The states accessible to different types of bonds and their probabilities are presented
in Table 3.4[70-72]. In trans-PBD, there is a third order interdependence between the a;
and o, bonds located within a repeat unit[70]. The conditional probabilities calculated from
the statistical weight matrices provided i reference 70 are presented in Table 3.5. It is
shown in the table that the conditional probabilities are rather close to those of the
independent bonds presented in Table 3.5. In fact, the calculations show that results obtained
using conditional probabilities differ insignificantly from those obtained by the use of
independent probabilities.

TABLE 3.4. Rotational isomeric states of each type of bond in PBD and their equilibrium

probabilities
Bond Type Isomeric States® and Their Probabilities”
a bond (cis-PBD) A" (0.48) A (0.48) £(0.04)
@ bond (trans-PBD) | A (0.44) A (0.44) ¢ (0.12)
Bbond £(0.38) g (0.31) £(0.31)
double bond’ t/¢(1.00)
a) t: trans (0°); c: cis (180°); A%: anticlinal (+60°); 4*: gauche ( 120°)

b) in parentheses
<) depends on cis- and trans- forms

In this study, the %, value (Equation 2.25) must be carefully selected because there
are three different types of bonds on the backbone and the rotational potential coefficient &,
takes on distinct values depending on the bond considered (Table B.3). In order to compare
the results obtained for PE and PBD at the same frictional environment, it proves convenient
to fix %, of the Sbond (8.09 kJ/mol) for all classes of bonds and rescale the a,, values.

In the following, cis- and #rans-PBD are separately considered and their mechanisms
of localization of motion in various environmental conditions are compared. The response to



120° rotation of each type of bond, & and g, in the middle of the chain are considered for
both stereoisomers. In each case, the kinematics is analyzed from three perspectives: (i)

changes in dihedral angles, (i) angular displacement of backbone bonds, (iii) translation of
chain atoms.

TABLE 3.5. Conditional probabilities for frars-PBD bonds in a repeat unit

State of a8 State of a»
c A A

ct 0.12 0.44 0.44
A't 0.12 0.44 0.44
At 0.12 0.44 0.44
cg’ 0.12 0.44 0.44
Ag 0.02 0.49 0.49
Ag 0.02 0.49 0.49
cg 0.12 0.44 0.44
Ag 0.02 0.49 0.49
Ag 0.02 0.49 0.49

3.2.2. S Bond Isomerization

The Bbond is composed of two tetrahedrally bonded CH, groups; this type of bond
is common to PE and PBD, and therefore allows for the comparison of the behavior of PE,
cis-PBD and trans-PBD chain segments, in response to the isomerization of the given type
of bond. The localization mechanism for each of the three polymers is investigated for £,/ =
0.01 A? or &At = 1.62 x 10° kg/(molns®) which is approximately representative of the
frictional resistance experienced by flexible chains in dense environment. The torsional
motions of the neighboring bonds accompanying the isomerization of the S bond are
presented in Figures 3.6(a - b).
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In Figure 3.6(a), the change in absolute dihedral angles <|/A¢>, averaged over 500
different configurations, is plotted as a function of serial bond index. The bond undergoing
the torsional rotation is shown as the zeroth bond. For both cis- and #rans-PBD, the
response of the first neighbors, o bonds, is observed to be stronger than that of farther
neighbors. This is different from the behavior of PE where the tendency of second neighbors
to rotate is stronger. Also, in PE, the response of bonds beyond second neighbors is quickly
lost while in PBD the torsional motion of the third and fourth neighbors are quite significant.
That of the second neighbor, which is a double bond, is severely restricted.

In Figure 3.6(b), the actual values of torsional rearrangements resulting from the
rotational transition of the zeroth bond are presented as a function of bond index. The full
120° rotation of the zeroth bond is not shown along the ordinate in order to see the rotations
of the neighbors on a larger scale. The term corotation will be used in the following in
reference to torsional motions of bonds in the same sense as the zeroth bond and
counterrotation for those in the opposite sense. In PBD, the four nearest neighbors on both
sides of the rotating S bond exhibit counterrotations of various amplitudes, whereas in PE
the counterrotations are confined to the first and second neighbors only. The first neighbor
exhibits the largest counterrotation (~35°) m all cases. The fourth neighbor, i.e. the S bond
of the adjacent repeat unit, is the bond which exhibits the next strongest response in trans-
PBD, whereas in cis-PBD, the counterrotations of the third and fourth neighbors are of
comparable strength. Figures 3.6(a - b) already reveal that the coupling between bond
rotational motions is not confined to nearest neighbors in PBD, but extends to third or fourth
neighbors, departing from the behavior of PE bonds.

The spatial reorientations of backbone bonds accompanying the isomerization of the
zeroth bond are presented in Figure 3.7. These angular displacements, including that of the
bond undergoing the torsional tramsition, are postulated to play an important role in
localizing the transition[41]. The zeroth bond is observed to reorient by 40-45° in PBD,
which is slightly larger than that of PE. The spatial reorientation of the first neighbors for the
trans- and cis-PBD are observed to be 50°, approximately, indicating that the angular
change of 109.5° induced by the rotameric jump of the 8 bond is equally distributed among
the first neighboring bonds on both sides. Interestingly, the « bond of the adjoining repeat
unit, ie. the third neighboring bond along the chain, exhibits a large amplitude spatial
reorientation in PBD, and in ¢is-PBD in particular, which strongly departs from the behavior
of PE.
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FIGURE 3.7. Average spatial reorientations of bond vectors in response to the rotation of
bonds.

The average translations of backbone atoms during the rotational isomerization of a
central bond are presented in Figure 3.8. The ordinate represents the mean displacements of
the backbone atoms while the [ bond between the 13th and the 14th atoms undergoes a
rotameric transition as indicated in the figure. The atoms directly attached to the rotating S
bond go through the largest displacement, as expected: 1.2 A for trans-PBD, 1.0 A for cis-
PBD. In cis-PBD, the next highest displacement (~ 0.8 A) is observed in the 11th and 12th
atoms, and their symmetric counterparts, 15th and 16th atoms. These are the atoms flanking
the two closest neighboring double bonds of the rotating #bond. In trans-PBD, on the other
hand, the largest displacement (~ 0.8 A) among neighbors is observed in the 10th atom and

its symmetric counterpart, i.e. the 17th. These are the atoms at the inner termini of the
nearest  bonds along the chain,



48

B %l e p i ap

1.4 T 1 T T T 1
o e
12 F —A— cis-PBD ~
—&— trans-PBD 1
NREE —0— PE
gy
S
S 0.8
VD
S
'B.‘ 0.6 [
2 i
N
s 04
S s
S rotation
0.2 % J’
L N } " ] " { 2 i

6 8 10 12 14 16 18 20 22
atom number
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3.2.3. a Bond Isomerization

The torsional energy barrier associated with « bonds is significantly lower than that
of Sbonds (Table B.3), which implies that the rotational isomerization of @ bonds is more
frequent than that of £ bonds. This property is also verified by the bulk simulations of Gee
and Boyd[69]. The chain response is now asymmetric with respect to the rotating bond. The
results are displayed for the rotation of @;. The results for @, are symmetrically related and
are not shown separately.
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For comparative purposes, it is more convenient to examine the results obtained
under the same frictional environmental resistance as in the previous section. This
necessitates the readjustment of &, such that the ratio &/At is held constant in analyzing either
« or bonds. Thus, we introduce the variable £* = &, (ks /%) is introduced where k,,,
and &, grepresent the torsional potential barrier heights for @ and Sbonds, respectively.

The absolute changes in the dihedral angles of cis- and trans-PBD bonds following
the rotation of an a; bond, <|A¢g>, are presented as solid curves in Figure 3.9(a) for k,* =
0.01 A% or &/At = 1.62x10° kg/(mol-ns®). The dashed line is obtained for cis-PBD on the
basis of a subset of conformations in which the excluded volume effect is taken into
consideration; precisely, configurations involving non-bonded atom pairs (|j - §| > 5) closer
than 3.8 A are not included in the original set of MC chains. In intermediate or final steps, on
the other hand, states violating excluded volume are verified to be rare, and are neglected.
The excluded volume effect is negligibly small in #ans-PBD chains of » = 25 presently
explored.

In both cis- and trans-PBD, the response of the second neighbors (bond ) are
found to be quite strong. In cis-PBD, the o, bond across the § bond exhibits the strongest
response, whereas in frans-PBD, the nearest o, bond across the double bond is rotated by
|Ag@ > 80°, on the average. The response of the adjacent #bond (i = 1) and «, bond across
the fbond (i = 2) in cis-PBD are significantly affected by volume exclusion.

A qualitative comparison of these results with those from the MD simulations of bulk
PBD performed by Gee and Boyd[69] and Kim and Mattice[68] is possible. In the former
study, the largest correlation when rotating an o bond is shown to occur between second
neighbors, for both cis- and frans-PBD. A detailed analysis of the types of correlated (i, i £
2) transitions, where / is the rotating bond, is provided therein: These make up 30.1 per cent
~ of all the o bond transitions in cis-PBD and 35.3 per cent in trans-PBD. Furthermore,
among the coupled transitions between bonds / and i + 2, 2.6 times as many is reported[69]
to occur across the S bond than across the double bond in cis-PBD, in qualitative
accordance with the present results. This ratio is 0.5 in zrans-PBD, i.e. correlated transitions
occur most probably between « bonds separated by a double bond (i = 0 and -2), and not
between those separated by a fbond as in the cis- form. These results are in agreement with
the picture provided by CK theory in Figure 3.9(a).
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Apart from the absolute changes in dihedral angles, the mechanism of coupling
between local torsional motions may be assessed from the <A g>> curves displayed in Figure
3.9(b). Again, the dashed line is obtained by explicitly considering non-bonded interactions.
In trans-PBD, the rotation of the o bond is accompanied predominantly by a strong (-80°)
counterrotation of the second neighbor across the double bond. The other neighbors, which
are demonstrated in Figure 3.9(a) to undergo some torsional motions in response to the
isomerization of the zeroth bond, do not exhibit a distinct preference for counterrotation or
corotation. The situation is different in the cis- form where corotations of the & bond across
the double bond (7 = -2) are observed. The first neighboring S bond (i = 1) exhibits a
counterrotation, whose strength is diminished when excluded volume effects are considered.
Likewise, the response of the other second neighbor, i.e. the & bond (i = 2) next to the S
bond on the right, depends strongly on the original set of MC chains considered: a
counterrotation is observed only if atoms in the generated chains do not violate their
respective van der Waals radii (dashed curve). Neglect of the excluded volume effect leads
to an underestimation of the response of that particular bond.

In trans-PBD, 67.2 per cent of correlated transitions between second neighbors are
reported to occur between the pairs of o bonds flanking the double bond, and 95.8 per cent
of them are manifested in the form of counterrotations[69]. That the strongest coupling
between bond torsions in trans-PBD occurs between the pair of bonds flanking the double
bond is unambiguously indicated by the CK results obtained for / = 0 and -2 in Figure
3.9(a); and that this coupling is in the form of counterrotations is clear from Figure 3.9(b).
Also, the cooperative motion of bonds 0 and 2, i.e. the pair of  bonds flanking a B bond, is
reported to involve counterrotations 62.3 per cent of the time, which is also consistent with
the present results, where a weak tendency to counterrotate is observed in bond 7/ = 2. The
results concerning the behavior of second neighbors are in agreement with the findings of
Kim and Mattice from MD simulations in a similar environment[68]. In the latter study,
information on the nearest 10 neighbors on either side of the isomerizing bond within 400 ps
of rotation in both cis- and frans- forms is given. The distribution provided by Figure 4 in
Kim and Mattice, and that of the rotations of the dihedral angles for frans-PBD presented in
Figure 3.9(b) show close agreement. In comparing the two pictures, note that the bond
subject to full rotation in their study is @ in contrast to the «; bond rotated here. For this
reason, the two figures are mirror images of each other with respect to the i = 0 axis.

In cis-PBD, on the other hand, only 17.9 per cent of all the correlated jumps across
the double bond are in the form of counterrotations[69], i.e. the coupling between these
bonds ( = 0 and -2) is expressed by corotations, which is in conformity with present
predictions. The type of correlations between the pair of & bonds separated by a Sbond, on
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the other hand, is shown in Figure 3.9(a - b) of the present work to depend on non-bonded
interactions beyond nearest neighbors. Likewise, the coupling between adjacent o and B
bonds exhibits some dependence on long-range interactions. MD simulations indicate that
90.9 per cent of the correlated motions between bonds ; and «, occur in the form of
counterrotations. This is mainly due to the excessive occurrence of anticlinal pair inversion
across the trans conformation of the Sbond, A"t 4" <> A"t A" transitions. A preference for
counterrotation of the two « bonds is also indicated by the distribution of correlations
obtained by Kim and Mattice. Such a preference for counterrotation is obtained in CK
method only if long-range effects are approximately taken into account, as the comparison
of the dashed and solid curves at i = 2 reveals. At the same time, the preferential response of
the first neighbor (f bond, i = 1) is weakened. This trend is further enhanced if a subset of
MC configurations is considered where the middle repeat unit is constrained to assume the
state A"t A" in 90 per cent of the MC chains. Also, it will be demonstrated below that a slight
reduction in the strength of intermolecular resistance to motion relative to intramolecular
torsional barriers, i.e. decreasing &/At, improves the accord between CK predictions and MD
simulations.

The above comparison of MD simulations and CK predictions lay evidence for the
strong effect of long-range intramolecular interactions in cis-PBD which should be explicitly
considered for a rigorous assessment of the conformational kinematics. The results for cis-
PBD in the following are obtained accordingly. It should be noted that the results obtained
from CK and MD are in good qualitative agreement in general, although the computational
time requirement of CK approach is 2 - 3 orders of magnitude lower than that of bulk state
MD simulations: The CPU time required by a CK calculation applied to 500 PBD chains
with 25 bonds is only 470 seconds on a Silicon Graphics Challenge L series computer with
150 MHz R4400 CPU.

It is worth emphasizing that the localization mechanisms considered so far occur as a
direct consequence of the backbone geometry rather than frictional factors or side group
contributions. In fact, Moe and Ediger[25] have recently performed MD calculations for cis-
PIP in the bulk. According to their calculations, the major response to the isomerization of
an « bond is observed at the o bond across the 5 bond in the form of counterrotations,
irrespective of the type of the « bond undergoing rotational isomerization. This is in exact
agreement with our results. The response of an @ bond with a CH; group in PIP was
observed to be more sluggish, resulting from the enhanced frictional resistance due to the
size of this group.
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In Figure 3.10, the average reorientations of bonds in space following the
isomerization of an o bond are presented for £/Az = 1.62x10® kg/(mol-ns®). The central
bond, which undergoes the torsional rotation, sweeps at the same time an average angular
displacement of ~25° in space in both cis- and #rans- forms. A striking difference in the
behavior of cis and frans chains is observed upon examination of the reorientation of the
bonds in the close neighborhood of the zeroth bond: In #rans-PBD, average reorientations of
~65° and ~35° are undergone by the adjacent double bond (7 = -1) and B bond (i = 1),
respectively. The response of the first neighbors is totally reversed in cis-PBD. In addition, a
considerable amount of reorientation (~30°) takes place in the second neighbor across the S
bond as may be observed for the case of 7/ = 2. This neighbor is an «, bond, like the rotating
bond itself which suggests an enhanced cooperativity between the motion of « bonds across
the fbond in cis-PBD, compared to frans-PBD.

bond reorientation (degrees)

bond index i

FIGURE 3.10. Average spatial reorientations of bond vectors in response to the rotation of
o bonds.
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In Figure 3.11, the displacements of backbone atoms are compared for cis- and
trans-PBD. Calculations are again obtained from the average of 500 chains in the same
frictional environment as before, i.e. £&/At = 1.62x10® kg/(mol-ns®). The atom displacements
are in general higher in cis-PBD, although the frictional resistance is taken to be the same in
both cases. Thus, on the basis of the response of the chain to the isomerization of an « bond,
cis-PBD exhibits a larger amplitude motion compared to trans, which is inherently induced
by the conformational state of the double bond.
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FIGURE 3.11. Average spatial displacements of chain atoms in response to the rotation of
o bonds.

The area under the curves in Figure 3.11 may be viewed as a measure of the
amplitude of local motion undergone by the associated polymer. The areas under the curves
for cis- and trans-PBD are found to be 7.83 A and 5.70 A, respectively. Note that in Figure
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3.8, which is the counterpart of Figure 3.11 for the case of a S bond undergoing
isomerization, the areas under the curves are 9.19 A for PE, 11.07 A for cis-PBD, and 11.99
A for trans-PBD. Thus, the rotational transition of an « bond induces a larger scale
translation in cis-PBD segments, compared to #rans-PBD, whereas that of the 5bond results
in a slightly more restricted motion in cis-PBD. In order to understand which of the
rotations, @ or f, plays a predominant role in prescribing the overall conformational
kinematics of PBD, we turn to the MD simulations of Gee and Boyd[69]: Only 23.6 per
cent of all transitions occur at the £ bond of cis-PBD at 300 K in the bulk state and the
remainder at o bonds. The situation is much more severe for trans-PBD where the
percentage of rotating # bonds reduces to 1.8 per cent. These observed percentages is
accepted to be proportional to the a priori probabilities of occurrences of the respective
transitions. Within the limits of this approximation, the amplitude of local motions in cis-
PBD appears to exceed that of frans- chains by a ratio of 1.48 : 1.00.

Another interesting feature, which emerges from both Figures 3.10 and 3.11 is that,
in cis-PBD the most extensive cooperativity during the collective motion of chain segments
takes place between units located in the same repeat unit (between two successive double
bonds), and that the double bond somehow suppresses the propagation of the motion along
the chain. This effect is not distinguishable in #rans-PBD; on the contrary, the position and
orientation of the double bond is observed to be significantly affected by the rotation of the
adjoining bond, and apart from the strong reorientation of the double bond, the translational
and orientational motions diffuse almost evenly on both sides of the rotating bond.

3.2.4. Effect of Environment

In a previous CK study[41], special attention was given to the effect of environment
on chain behavior. It was demonstrated that the type of coupling between bond torsions
depend on the interplay between intramolecular effects and environmental friction,
accounted for through the ratio given by Equation 2.25. The precise values of the ratio
corresponding to the bulk state simulations mentioned above are not known. It is of interest
to find out if changes in the frictional resistance of the surrounding medium would induce
modifications in the mechanism of various relaxation phenomena.
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An examination of Equation 2.25 reveals that changing %, is equivalent to a
proportional change in the strength of internal barriers to rotation relative to frictional
effects. In this section, the & bonds whose transition probabilities are higher due to the low
barrier heights between rotameric states are considered. The analysis is further restricted to
cis-PBD which is experimentally and commercially more important. In fact, negligible
differences are observed in the localizing motions of #rans-PBD; the governing mechanisms
remain unaltered to changes in the environmental conditions in response to the isomerization
of o bonds.

In the following, the &/At value is varied by a factor of 20 between 1.62x10" -
3.24x10® kg/(molns®). Excluded volume effects are considered in generating the original
chains in all cases. In Figure 3.12(a), the absolute changes in the dihedral angles, <|A@>, of
cis-PBD upon the manipulation of &At values are presented for the rotational isomerization
of o; bonds. The corresponding <A@> curves are given in Figure 3.12(b). An increase in
&/At is equivalent to increasing the strength of the frictional resistance relative to
intramolecular torsional potentials. Alternatively, this may be viewed as diminishing the
intramolecular barriers to rotation in a given environment and gradually approaching the
behavior of a freely rotating chain of equilibrium statistics where internal rotational barriers
have little importance and the dynamics is controlled by the surrounding medium. An
examination of Figures 3.12 (a - b) shows that the mechanism of conformational relaxation
is not affected by the frictional effects, in general. By adopting £/A¢ = 2x10’ kg/(mol-ns®),
the behavior predicted by the MD simulations in bulk state is obtained, i.e. second
neighboring « bond across the £ bond undergoes the largest torsion in response to the
rotation of an « bond.

The effect of changing environment on the reorientation of bond vectors is displayed
in Figure 3.13. The £/Af values considered are in the same range as those of Figures 3.12(a -
b). Excluded volume effects are taken into consideration in each case. The rotameric
transition occurs at bond 0. Increasing the friction coefficient tends to decrease the
reorientation of the neighboring S bond (i=1) while the reorientation of the first neighboring
double bond (i = -1) and that of the nearest @ bonds on both sides (i = £2) increase.
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FIGURE 3.12. Effect of increasing friction coefficient on average changes in the dihedral
angles of bonds of cis-PBD in response to a bond rotation.
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FIGURE 3.13. Reorientation of bond angles in response to o bond isomerization in various
frictional environments for cis-PBD.

Another interesting feature which emerges in PBD chains irrespective of the type of
conformer (cis/trans) or the type of bond going through rotameric transition (/) is that the
reorientations and atomic displacements of the farther neighbors (ji| > 6) do not depend on
the environmental friction. In a previous CK study[41] where the corresponding
displacements of PE chains were investigated, some dependence of these localization
mechanisms on friction coefficient was observed. This invariance in PBD chains is attributed
to the constraints induced by the existence of rigid double bonds.

3.2.5. Energetic Calculations and Relative Isomerization Rates

Another key item that needs to be clarified is the isomerization rate of various bonds.
Even though time is not explicitly involved in CK simulations, it is possible to resolve the
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problem of relative isomerization rates by making use of the energy required to overcome
barriers to internal rotation, V-V, In Figure 3.14 the cumulative evolution of this energy in
response to the rotation of the two distinct types of bonds, « and f, is presented for the all-
cis and all-frans stereoisomers.
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FIGURE 3.14. The cumulative evolution of the energy required to overcome barriers to
internal rotation.

At the same temperature, the energy needed by the  bonds of both cis- and frans-
PBD, enlarged in the inset, is about the same: they require almost equal amounts of energy
to surmount the internal rotation barriers. Since these bonds have the same %, value, it seems
plausible that this should be the case. However, the S bond in trans-PBD requires four times
as much energy to accomplish the same type of isomerization as that in cis-PBD even
though these two bonds also have the same k,. Thus, the barrier to rotation is not due to the
rotating bond only but requires the collective contribution of its immediate environment.
These results are in agreement with the MD findings of Kim and Mattice[68] in the bulk
state which indicates that the difference in torsional relaxation between two rotatable bonds,
c and f3, is less pronounced in cis-PBD. Likewise, in the similar study of Gee and Boyd[69]
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[ bond transitions make up 1 - 5 per cent of all transitions in ##ans-PBD in the temperature
range of 200 - 450 K whereas they occur 10 - 30 per cent of the time in cis-PBD over the
same temperature range.

Examination of the energy spent against the environment, W, for the various
transitions complements the information from V values that the 8 bond transitions in frans-
PBD are very improbable both energetically and entropically (W .5 = 1.02 kcal/mol, W
= 3.08 kcal/mol, Wy, = 3.77 kcal/mol, W gsuns = 23.7 kcal/mol). The subscripts denote the
rotated bond and the isomer, respectively. The W values also indicate that the rate of
conformational transitions of o bonds in cis-PBD should be faster. This is contrary to the
findings of previous bulk MD simulations.[68,69] However, it must be born in mind that the
potential functions used m all these studies are diverse. The fact that the overall quality of
the results is the same contrary to the variety of the torsional potentials applied confirms the
viewpoint that the local behavior of the polymers is controlled by chain geometry.

3.2.6. Copolymers of cis- and trans-PBD

Finally, CK is applied to copolymers of cis- and trans-PBD. Thus, the & value of the
copolymers are necessary. Chen and Ferry have provided the diffusion coefficients, D, at
room temperature for various microstructures[73]. Using the relation & = kg7/D, and
plotting per cent cis content versus log & one obtains the linear relation

per cent cis content = - 106 log & -~ 650 (3.3)

through which £ (in dyn s™ cm™) for any microstructure is calculable.

In Figure 3.15(a), <Ag> for the isomerization of the @; bond for polymers at
various microstructures are shown, each under room temperature conditions. The responses

of the neighbors occur as a distribution between the two extreme cases: pure cis- and pure
trans-PBD.
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The location of the cis and trans units within the polymer are random, i.e. the identity of the
unit containing the rotating bond may be either cis or frams, occurring at the probability
dictated by the microstructure. Next the case where the rotating bond is constrained to be
within a particular type of monomeric unit is taken up. An example case for 75 per cent cis
content copolymer is given in Figure 3.15(b) where the rotating bond in the sample chains
are constrained to be either in cis or frans monomeric units (curves i and ii, respectively), or
no such constraint is imposed (curve iii). In each constrained case, the behavior is similar to
that of their pure polymer. This demonstrates that the rotation is localized and that only the
near neighbors are influenced. An exception is observed in the constrained cis case where the
relative strength of the 1st neighboring S bond and the « bond across the S bond (i = 1 and
2) are interchanged, i.e. the motion is even more localized. The curve (iii) corresponding to
totally random sequences shows a behavior that is the weighted mean of the constrained
cases. This implies that the behavior of the whole polymer is governed by the independent
motions of each monomeric unit. Yet it is not possible to make such a strong statement by
Just examining the <Ag> curves. Another route is adopted to question this point further:
Instead of performing the CK calculations using the friction coefficient & from Equation 3.3
which is characteristic of the given composition, each monomeric unit is subjected to the &
value of its pure polymer depending on its identity. Surprisingly, the quantities calculated in
the CK method are identical no matter which approach is adopted in the calculations. In fact,
using the CK method it is possible to determine the & of copolymers of any composition
from the knowledge of the £ of their pure forms alone.

3.3. Modal Correlation Analysis of Coupling between Different Modes in Local
Chain Dynamics

Local chain dynamics may be divided into two groups[25]: (1) High-frequency
motions such as bond-angle bending, bond stretching, and small-amplitude oscillations about
rotational energy minima of backbone bonds; and (2) bond rotameric transitions in the form
of discrete jumps from one rotational isomeric state to another.

There is a growing interest in analyzing the first group of motions via normal mode
(NM) analysis especially for biological macromolecules[74-76). The overall motion is
described therein as a superposition of a set of independent harmonic oscillators conforming
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with a linearized analysis. The general nonlinear dynamics of the chain manifests itself in the
combination of the first and the second groups of motions. Recently, Dauber-Osguthorpe
and Osguthorpe[77] found a way to characterize the motion in MD simulations by using
digital signal processing techniques. They first used Fourier transform (FT) to obtain the
frequency distribution of the operating modes. Then, using filtering techniques, they focused
on the frequency ranges of interest and eliminated the rest[78-80]. In addition, Levitt
suggested an alternative filtering method that employs a smoothing function in time domain
known as finite impulse response and takes considerably less computational time in
programs[81].

The analysis of the trajectories in the frequency domain leads to the identification of
characteristic modes of motion operating at different frequency ranges (windows). In
analogy with eigenvectors describing the normal modes of linear systems in NM analysis,
Dauber-Osguthorpe and Osguthorpe[77] have extracted vectors defining the characteristic
motion for each frequency in MD simulations. Thus, the nonlinear motion is partitioned into
its characteristic modes. The authors have observed for acetamide that in the absence of
rotameric transitions, the eigenfrequencies obtained from NM analysis and the characteristic
frequencies from MD almost coincide. These two approximations disagree if rotameric
transitions are observed, which indicates the existence of correlations between the
characteristic modes in the general nonlinear dynamics of the chains{82].

A generally accepted view of local chain dynamics of polymers is that the degrees of
freedom with higher frequencies, such as bond stretching and bending, form a bath for those
associated with lower frequencies, i.e., for the rotameric transitions of backbone bonds. The
extent of cooperativity between these motions is of utmost interest. Several pioneering
studies by Moro[27,28] show that the librational motions operating after a transition
contribute to the attainment of the new equilibrium state. This means that”after a rotational
jump, librational motions operating consecutively bring the chain to a new equilibrium
configuration. Therefore, there must be a continuous kinetic energy transfer between the
bath (librational motions at high frequencies) and the anharmonic oscillators of interest
(rotameric transitions at low frequencies).

Cooperativity that is perceived as energy flow between pertinent modes of a given
system is a well-studied problem introduced first by Fermi, Pasta, Ulam, and Tsingou[83].
The more recent reviews of the problem are given by Benettin[84] and Ford[85]. The
proposed model of Fermi ez. al.[83] holds for an isolated chain, and the energy is therefore
preserved. It is now known that though the whole energy is initially given to a few modes of
the chain, a significant amount of energy flow occurs from these initially excited modes to
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other characteristic modes. The interest in analyzing the kinetic energy transfer from one
chain atom along the backbone to another, using constant temperature MD simulations,
originates essentially from the work of Fermi et al. It will be further important to identify the
pertinent modes through which the chain backbone atoms communicate.

In the present study, the analysis of the coupling between various modes of
frequencies will be performed on the basis of a modal correlation function the structure of
which is inspired by the work of Noda and collaborators[86-88]. In their interpretation of
two-dimensional infrared spectroscopy, Noda ef al. define the absorptive-intensity cross-
correlation function[86]

2 v, 0) = (4,04 (v, 1 +7)) (3.4)

in terms of a pair of time-dependent variations of IR signals or dynamic absorbance, 4'(v; ?),
measured at two different frequencies, v; and v. Here 2(v;, v, 7) may be expressed as an n x
n matrix for discrete frequencies with i = 1, 2, ..., », and j = 1, 2, ..., n, for each 7. This
correlation function is used to define two independent correlation spectra, ®(v, 1) and
¥(v,, v), referred to as the synchronous and the asynchronous parts of the dynamic
spectrum, respectively. The former characterizes the degree of coupling between the spectral
intensities measured at two different frequencies, while the latter represents the sequential, or
unsynchronized, changes in spectral intensities, and increases with the degree of incoherence.
" In the absence of a time delay 7, the asynchronous part vanishes. A method for decomposing
Equation 3.4 into its synchronous and asynchronous parts and a discussion of the potential
application areas are recently given by Noda[88]. A similar 2D spectral plane is used in the
present analysis in order to understand the coupling between various modes of motion. The
use of the FT of MD trajectories provides the frequency spectrum of the characteristic
modes. The FT of the time series related to several properties such as kinetic energy
fluctuations, atom displacements, bond length or angle oscillations, shows that the
characteristic modes are not pure but are spread to overlapping frequency ranges, indicating
the inherent nonlinearity of chain dynamics.

In the following, the modal correlation analysis is described and modes of interest
lying in the lowest part of the frequency spectrum are examined. In Section 3.3.1, the basic
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formalism and the computational methods used in the modal analysis are outlined. Then, the
application of the present methodology to local chain motions is presented in Section 3.3.2.
It will be shown that the strongest mode-mode coupling occurs between the lowest
frequency modes of the spectrum associated with rotameric tramsitions; whereas the
correlations between the characteristic modes belonging to distinct frequencies are weaker in
general but are significantly enhanced during bond rotameric jumps.

3.3.1. Theoretical

3.3.1.1. Details of the Molecular Dynamics Method. The time evolution of chain
properties, such as internal bond torsions or the kinetic energies of backbone atoms is
generated by MD simulations. In order to exclude any effects but those coming from the
chain itself, the simulations are carried out in vacuo. A PE chain of 100 CH, units with the
hydrogen atoms collapsed onto the backbone carbon atoms is used. The effective potential
consists of the bond stretching, bond bending, and bond torsion potentials as well as the
mnteractions between non-bonded atom pairs that are within 1.2 nm cutoff distance of each
other. The exact forms of the potentials are presented in Appendix A, and their parameters
are given in Appendix B. The time evolved coordinates and velocities of the atoms are
recorded at 4 fs intervals. 25 ps equilibration time is allowed in each run. Two independent
runs are performed for each set of variables to ensure the reproducibility of the results. The
temperature of the system is constant at 400 K.

Since the major part of the work consists of employing FT techniques, the total
duration of the simulation and the time interval, &, between each recorded set of data, i.e.
the frequency of sampling in the time domain must be carefully selected. The resolution of
the frequency domain is inversely proportional to the total duration of the simulation. Also,
truncation of the periodic time domain function due to finite simulation duration gives rise to
band broadening and artificially introduces additional frequency components, which are
particularly pronounced in short simulations. On the other hand, the value of & determines
the highest frequency to be explored. When the whole frequency range is not covered, the
high frequency components appear in a position below the maximum frequency. The details
of these two phenomena referred to as leakage and aliasing, respectively, are provided by
Dauber-Osguthorpe and Osguthorpe[79]. In order to avoid aliasing, & is chosen as 4 fs,
which corresponds to a maximum frequency of ~4170 cm”. The total duration of each
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simulation is chosen as 131.072 ps yielding 2'° data points for each atom group. This
duration satisfies the condition required by the Fast Fourier Transform (FFT) technique[89]
that the number of data to be transformed should be a power of two.

3.3.1.2. Filtering Technique. The trajectories obtained from the MD simulations are
stochastic. Yet, much valuable information is hidden therein. A portion of the time evolution
of a torsional angle is displayed by the lowest curve (a) in Figure 3.16. It is evident from this
curve that the torsional motion is made up of (i) librations about rotational minima of
potential wells and (ii) occasional jumps between the minima. However, the exact nature of
the motion is not well understood from this figure alone.

dihedral angle/degrees

0 000 10000 12000 20000 25000 30000
timeffs

FIGURE 3.16. Effect of filtering on a given dihedral angle trajectory.

In order to determine the effect of various modes on the observed trajectory A(f), a
filtering method is applied, which consists of;,

a) Fourier transforming the trajectory, A(?), into the frequency domain,
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-]

Av) = [ Atyexp(—jvtyde 3.5)

b) applying a filter function F(v) which removes all the frequency components
outside the range of interest by equating their values to zero,

A(v)= A (V)F(v)

1;
F(v)=
0; v<v_,v>v

min > max

Viin < V < Vi [ (3.6)

¢) inverse Fourier transforming 2’( v) back to the time domamn so as to obtain the
frequency filtered trajectory A'(v,, <v<v_,,?) as

-]

A (v < v < v t)= | A (V)exp(jt)dt G.7)

In the following, A'(V,, <V < V,,,,t) will be replaced by A'(v,,?) where v; symbolically
represents the region between Vumin and Vime Thus, a characteristic mode of frequency v,

which will be conveniently referred to as the ith mode, will be representative of all operating
modes whose frequencies lie in the interval v, <v<v__ .

In the curve (b) of Figure 3.16, the trajectory obtained with a low-pass filter of 20
cm’, i.e. by preserving only frequencies below 20 cm™ is displayed. Here most of the
librations are eliminated and the major component of motion is the isomeric transition. The
curve (c), on the contrary, shows the trajectory with the frequency components below 20
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cm” removed. This trajectory consists of mainly the librational motions of the original
trajectory. From this simple analysis, it may be deduced that modes related to isomeric
transitions are confined to the region below 20 cm’’, This is only a rather small portion of
the whole spectrum, which covers modes with frequencies as high as 4000 cm™. Low-pass
frequency of 20 cm™ is selected with the purpose of emphasizing the coupling between the
rotational isomeric jumps and higher frequency motions. It should be noted that the
amplitude of coupled fluctuations in curve (c) diminishes by the choice of threshold values v
> 20 cm’’. The configurational space spanned by a subset of effective modes is called the
essential space by Amadei et al[90]. An interesting observation in curve (c) is the
occurrence of relatively large amplitude oscillatory motions each time a rotational transition
from one isomeric state to another takes place. This indicates the enhanced coupling
between low and high frequency modes during the passages over the rotational energy
barriers.

3.3.1.3. Filtered Kinetic Energy Trajectory of Backbone Atoms. The fluctuation AE(?)
in the kinetic energy trajectory Ey(¢) of the kth atom is given by

AE,(t) = E (t) - (E, (¢)) (3.8)

where the angular brackets refer to the time average over the total sampling period. AE(?) is
filtered using Equations 3.6 and 3.7 to obtain the frequency filtered trajectory of the kinetic
energy fluctuations, AE’i(v;, #). The latter is averaged over all atoms as

AE (v, =1 LAE, (v,1) (3.9)

k=1

The overbar here and in the following indicates averaging over all atoms.
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FIGURE 3.17. Time-resolved spectra of fluctuations in kinetic energy.

Results of calculations based on Equation 3.9 are presented in Figure 3.17. 25 non-
overlapping frequency intervals of Width Vi - Ve = 1 cm’, in the range 0-25 cm™ are
considered for filtering the trajectories. The two-dimensional plot displays the time evolution
of the kinetic energy fluctuations induced by each of the characteristic frequency range. The
average kinetic energy fluctuations of the chain atoms, Wv,,t), exhibit periodic
fluctuations as time proceeds, the wavelength of which decreases as higher frequency
domains are approached. This feature may be verified by examining the time evolution of

various constant frequency slices.

3.3.1.4. Modal Correlation Function. The correlations between the fluctuations in the
kinetic energies of pairs of atoms will be expressed by the modal correlation function

defined as

Z(Vu Vj,l3T)= <AE'I:(Viat)AE'k+I(Vjat+T)>

(3.10)
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where the subscript £t/ refers to the /th neighbor of atom . y(v, v, [, 7) gives the
correlation between the kinetic energy fluctuations of an atom & induced by modes of a
given frequency v; and that of the /th neighbor driven by another frequency ; after a time
delay, 7. Note that the correlation involves averaging over both original time (#) and space
(%) indicated by the angular brackets and the overbar, respectively. A positive correlation
means that an increase (or decrease) in the kinetic energy of the Ath backbone atom
associated with modes of frequency v, is accompanied, after a time delay of ¢ by an
increase (or decrease) in the kinetic energy of its /th neighbor, which is contributed by mode
of frequency ;. A negative correlation means a negative (or positive) contribution from the
ith mode to the kinetic energy of the kth atom is accompanied by a positive (or negative)
change in kinetic energy of its /th neighbor, induced by mode ;. A zero value for x(v, v; |,
7) means no correlation between the ith and jth modes operating on the kinetic energy
fluctuations of the two atoms.

3.3.1.5. Modal Correlation Matrix. When the time interval 7 and the neighbor number /
are fixed, the correlation function of Equation 3.10 defines a matrix of modal correlations
with two independent axes of spectral variables, v; and 1. Such a correlation matrix may be
readily decomposed into its symmetric and antisymmetric parts as

qmvj)=[z(%,vj);x(%,vj) ] (3.11)
\P(V”Vj)=[l("n1’j)—2/‘(("n"j) } (3'12)

For simplicity, the arguments / and 7 are not explicitly shown in Equations 3.11 and 3.12,
although it should be recalled that both the modal correlation matrix and its symmetric and
antisymmetric parts do depend on the space and time variables / and 7, respectively.
Omission of the latter from the arguments implies that the related results hold for fixed,
predefined values of / and .
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The physical meanings of the symmetric and the antisymmetric parts of the modal
correlation matrix may be envisaged as follows: The function y(v; 1;) describes the
correlation between the ith mode of the 4th atom at a given time, and the jth mode of the .
atom k+/, at a later time #+7 (v, v) will depart from zero, in the positive or negative
direction if a given energy fluctuation of atom %, induces a well defined energy fluctuation
(of same or opposite sense) in atom A+/. Likewise, the transpose of ¥(v;, V) indicates the
coupling between atoms & and k+/, initiated this time by jth mode operating on atom k+/. On
the basis of this explanation, ©(v;, v;) may be viewed as a measure of the communication or
energy exchange between the ith and jth modes operating on the respective atoms % and
(k+1), averaged over both directions of energy flow.

A large absolute value for ®(v, v) means that the modes v; and 1; are strongly
coupled, positive and negative values referring to correlated and anticorrelated motions.
Although a large absolute value for ®(v;, ;) invariably indicates strong coupling between the
respective modes i and j operating on atoms & and k+/ with a time lag 7, a small value does
not necessarily imply the absence of coupling. In fact, a small (v, v;) may result from the
average of a highly correlated motion (large, positive y(v; v;)) generated by the mode i of
the Ath atom and a highly anticorrelated one (large, negative (v, v;)) induced by the mode j
of the /th neighbor. This situation in which a strong coupling leads to an overall small ®(v;
;) value will be referred to as a coupled but incoherent relaxation process. The term
incoherent is used here to indicate that the effect induced by bond % on bond k+/ is in the
opposite sense to that induced by bond 4+/ on bond %. The antisymmetric component small
¥(v; vj) is large in all incoherent motions. In fact, the degree of incoherence is reflected by
the magnitude of ¥(v; v). The latter approaches zero if the two modes induce energy
fluctuations in the same direction. In this case, the time-delayed effect of the ith mode on the

Jth conforms with that of the jth mode on the ith. In this case, the coupled motion of atoms £
and k+/ 1s said to be coherent.

In summary, three types of mode-mode coupling may occur, which are expressed by
the symmetric and antisymmetric parts of the modal correlation function as: (i) a large
absolute value, |®(v;, v)for the symmetric component, and a low value for the
antisymmetric one, [¥(v; v)|. This typifies correlated (or anticorrelated if ®(v, v) is
negative) and cokerent motions generated by the ith mode operating on atom %, and jth
mode on atom £+/; (ii) a small |®(v, v)| and a large [¥(v; V)| characterizes correlated (or
anticorrelated) but incoherent motions; and (iii) both |®(v; v)| and |®(v, V)| are small,
which corresponds to uncorrelated motions. The coupling between different modes will be
analyzed on the basis of this classification in the following section.



72

Inasmuch as the antisymmetric part ¥(v, ;) of the modal correlation function
represents the deviations from the coherent motion due to the time and space differences, 7
and /, it is possible to view it as an extension of the asynchronous correlations of the
dynamic spectrum defined by Noda[86,87]. On the other hand, by definition, the diagonal
elements of (v, V) are equal to those of the symmetric part of the modal correlation
matrix, whereas the antisymmetric part ¥(v; ;) has zero diagonal elements. Owing to these
definitions, the symmetric and antisymmetric parts of the correlation function may be
respectively associated with the synchronous and asynchronous component of the
absorptive-intensity cross-correlation function defined by Noda.

3.3.2. Results

3.3.2.1. Modal Autocorrelation Function, In order to understand the time evolution of the
coupling between modes operating on a given atom with a time delay, the modal
autocorrelations (v; = ;) are examined as a function of 7 for / = 0. A comparison of the
function for the cases (i) 0 < v;< 4167 cm™; (ii) 0 < v < 20 cm™, and (jii) 20 < v;< 4167 cm’
!is presented in Figure 3.18. Results for case (i) are shown by the solid curve. The latter
comprises all operating modes. A rapid drop in correlation within 1 ps followed by slow
oscillations around the zero line is the general trend. Case (ii), which reflects the contribution
of the slowest modes only, is shown by the dashed curve superposed on the solid curve. The
close coincidence of the two curves suggests that this small subset (v < 20 cm™) of the total
frequency spectrum successfully describes the overall behavior, particularly after ~2 ps. On
the other hand, the correlations in the relatively broad frequency range v > 20 cm™ are
short-lived as shown by the lower dashed curve, and rapidly decay to zero.

For a better understanding of the effect of slower modes on the overall dynamics of
the chain, a comparative plot of the correlation functions obtained by further filtering the
low frequency modes is presented in the inset of Figure 3.18 with the abscissa and the
ordinate confined to the ranges 0 - 10 ps and 0 - 2.0x10° (J/mol)’, respectively. The curves
are drawn for the cases where the low-pass filtering has been restricted to frequencies below
20 cm™, 5 cm™ and 2 cm™ along with the curve comprising all frequencies (solid curve). It is
interesting to observe that, for times larger than ~3 ps, even the modes in the frequency
range v; < 2 cm” lead approximately to the same time decay of the correlation function as
that obtained from the unfiltered trajectory.
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FIGURE 3.18. Autocorrelation function for fluctuations in kinetic energies filtered in
various ranges.

The short time region where the effect of different frequency modes on the
correlation of kinetic energy is distinguishable (~7 < 3 ps) corresponds to the time scale at
which coupled transitions occur. Coupled transitions refer to successive transitions
undergone by the pair of bonds 4 and A+/ within time intervals much shorter than the mean
isomerization time of the bonds. The mean isomerization time is found as 68 ps in the
present MD simulations. This value is deduced from the hazard analysis of the dihedral angle
trajectories, a method introduced by Helfand[8] for studying conformational transition rates

in polymers.

3.3.2.2. Diagonal Elements of the Modal Correlation Matrix . Here the dispersion of the
diagonal elements y(v;, 1)) of the modal correlation function will be examined for various /.

7 is set equal to 1 ps in order to capture the dynamics of the coupled transitions between
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bonds. This value corresponds to a frequency of ~16.7 cm™, which is in the slower end of
the spectrum within the scale of torsional motions.
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FIGURE 3.19. Diagonal terms of the modal correlation function for 7= 1 ps.

The results are presented in Figure 3.19 for / = 0-3. For neighbors that are farther
apart (I 2 4), the contribution from frequencies v > 5 cm™ is vanishingly small as may be
verified from the figure. From these curves it may be deduced that the kinetic energy
transfer between near neighbors (/ 2 3) along the chain proceeds mostly through lowest
frequency modes, and exhibits a periodic dependence on the operating frequency above v; 2
5 cm™. In fact such a picture suggests that in some regions of the spectrum, the
communication between chain atoms takes place through a simultaneous increase or
decrease in energy, ie. the kinetic energy fluctuations are correlated, whereas in some
others, a time delay of 1 ps causes anticorrelated energy fluctuations.
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At the lowest frequencies (1 < v; < 3 cm™), the correlations of the atom with itself
and with its near neighbors are almost indistinguishable in Figure 3.19, in contrast to the
deviations between the curves observed in the rest of the spectrum. The modes at low
frequéncies are associated with the overall motion of the chain, the torsions accompanying
bond isomerizations, and the large amplitude rotational fluctuations involved in the
localization of the motions. Thus, various mechanisms may be responsible for the close
similarity of the curves for / = 0 - 3 in this range. In order to clarify the effect of various
modes, filtered dihedral angle trajectories are examined next.
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FIGURE 3.20. Time evolution of the dihedral angle trajectory of an internal bond obtained
from the complete MD run without filtering (i), and from filtered
trajectories. The trajectories are subdivided by vertical lines to guide the

eye.
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In Figure 3.20, a portion of the trajectory of an internal bond dihedral angle is
presented in curve (i), along with the same trajectory filtered to keep frequenéies in the
ranges: 0< ;< lcem™, 1S v;<2cem”, and 2 < v, < 3 cm™ in curves (i) - (iv), respectively.
Finally, a superposition of the frequency ranges of curves (ii) - (iv) is compiled in curve (v)
as a low-pass filtered trajectory below 3 cm™. The time coordinate is subdivided by vertical
lines so as to visualize the role of these characteristic modes.

It is possible to classify the rotameric transitions observed in curve (i) into two major
categories: These are either stable transitions that take the bond from one of its isomeric
minima to another, or else occasional jumps that occur due to the strains arising within the
chain and are restored back to the original state in a very short time (< 0.5 ps) period. In the
sample trajectory of Figure 3.20, there are three transitions which may be considered to be
of the former, and three jumps of the latter type. In fact, after the first transition from g to ¢
state, the first unstable jump occurs at about 5 ps. Yet, at this point the preference to stay at
the  state dominates and the bond returns to its stable isomeric state. The bond attempts two
more such jumps, one to the g* state and the other to g state, before it makes its second
isomerization to the state g* at 7~ 14.5 ps. The state of the bond remains stable for about 5
ps before it undergoes its last isomeric transition to the ¢ state.

Curve (v), which conveys only those motions with characteristic frequencies less
than 3 cm”, embodies the general tendencies of the marked regions. The following may be
deduced from a careful examination of these curves: (1) The transitions between isomeric
minima are predominantly determined by the modes operating at frequencies between 1 and
2 cm™ as presented in curve (iii), (2) The modes belonging to the range 2 < v; <3 cm™, are
responsible for torsional fluctuations around the average value of 0°, as exemplified by curve
(iv); although these fluctuations are large in magnitude (£30°), they do not indicate any
isomerization phenomena; 3) Finally, the slowest modes (1; < 1 cm™), shown in curve (ii),
seem to be correlated with the stable isomeric transitions but do not sense the three
occasional jumps in the original trajectory (curve (i)) which are quickly restored back.

The low frequency range of Figure 3.19 now gains more meaning, In the 0 < v;< 1
cm™, the energy coupling between atoms is diminished as one considers interactions between
farther neighbors. This hierarchy is broken in the range 1 < v; < 2 cm™ where the modal
autocorrelation between near neighbors is the same for all cases. The latter suggests that the
torsional fluctuations of near neighbors (/ < 3), which are driven by the modes in the
frequency range 1 < v < 2 cm’, are strongly cooperative. In fact, the modes in this
frequency range effectively prescribe the conformational dynamics of the chain, as
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evidenced by the curve (iii) of Figure 3.20. This cooperativity between near neighbors along
the chain gradually diminishes beyond v;>2 cm™.

3.3.2.3. Symmetric Part of the Modal Correlation Matrix. The calculations for the
symmetric part ®(v, ) of the correlation matrix y(v;, 1) indicate that the diagonal
elements (v; = ) are predominantly large. The diagonal terms of ®(v;, 1;) have already
been presented in Figure 3.19. This dominance is explained by the fact that the major
contribution to the flow of kinetic energy between motions occurring at some frequency is
through the same frequency. Yet, some leakage of energy between modes must be present
for the coupling to occur. In fact, off-diagonal terms do exist, although this is on a scale
about two orders of magnitude lower than that of diagonal elements. ®(v; ;) provides a
measure of coupling and coherence between modes located at different frequencies when
interpreted together with ¥(v; v).

‘ For visual clarity, only the off-diagonal elements of the ®(v;, 1;) surface are
presented in Figure 3.21(a). The space and time variables are set to /=0 and 7= 1 ps. v; and
y; are varied in the range 0-40 cm™ using 1 cm™ bins as in the curves of Figure 3.15. It is
observed that for low frequency range (0 < v < ~5 cm™) the magnitude of ®(v; ) is
notable, indicating that the energy fluctuations of the modes within this frequency range are
significantly coupled. It is further detected from Figure 3.19a that ®(v; v)) is low in regions
which are far away from the diagonal, and vanishes periodically even near diagonal
elements.

3.3.2.4. Antisymmetric Part of the Modal Correlation Matrix. The antisymmetric part
of y(vi, v) shows the degree of incoherence between the energy fluctuations observed at
different wavenumbers. By definition (see Equation 3.12) the diagonal terms are equal to
zero; cross-peaks appear if there is an incoherent correlation between different modes.

¥(v;, v) matrix for / = 0 and 7 = 1 ps is shown in Figure 3.21(b), which
demonstrates that the energy fluctuations successively imparted by different characteristic
modes on a given atom are not necessarily coherent but do exhibit some incoherence, even
in the low frequency regions of the spectral plane where a strong modal coupling has been
shown to occur. A periodic change in the degree of incoherence is observed in the 2D
spectral plane, in analogy with the symmetric part of the modal correlation function. The
antisymmetric parts are not zero for all regions where the symmetric part is vanishingly
small. For instance, the degree of incoherence is large in the region 20 < v, v; < 30 cm”,
while the corresponding ®(v; v)) are low, as seen in Figure 3.21(a). This indicates that the
modes characterized by such frequencies are still coupled, but this coupling is expressed via
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FIGURE 3.21. Symmetric and antisymmetric parts of the modal correlation matrix: (a)
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I=2and r=1ps;
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incoherent energy fluctuations, as discussed above. On the other hand, the fact that ¥(v; v)
is very low in the neighborhood of v;= ;= 15 cm™ in spite of the corresponding large [¥( v,
V)| reveals the strong coherence of the modes operating at these frequencies.

The magnitude of the incoherent correlations is notable for the range 0 < v, 15 < 10
cm™. Modal correlations always exist between frequencies which are close to each other. On
the other hand, as one proceeds away from the diagonal, both components of the modal
correlation function in Figure 3.21(a) and 3.21(b) are attenuated, indicating that the modes
of distinct frequencies are weakly correlated or almost uncorrelated.

For understanding the spatial effects on the degree of incoherence among various
modes, calculations are repeated for / = 2. The resulting ¥(v;, v;) are shown in Figure
3.21(c). The ®(v; v) surface for / = 2 exhibits the same characteristics as Figure 3.21(c),
and hence is not separately shown. Thus, the off-diagonal regions of the spectral plane are
depressed in both cases, indicating the absence of correlations between modes whose
frequencies differs by more than 15 cm™, approximately.

Comparison of Figures 3.21(b) and 3.19(c) shows that the correlations between
modes operating on a given atom with a given time delay, and those between the modes
operating on second neighbors along the chain, exhibit quite distinct characteristics. The
periodic dependence of ‘¥(v;, V) on the frequency is no longer discernible. Instead, a more
or less uniform degree of incoherence is observed between modes of comparable
frequencies, |15 - 14| < 15 cm™, except for the lowest frequency region of the spectral plane
where the fluctuations in (v, vj) are relatively enhanced.

The above correlation analysis was also performed for 7 = 68 ps, the mean
isomerization time of the chains. The diagonal terms located at the lowest end of the
spectrum (v < 4 cm’™) were the major elements of the corresponding #(v; V) matrices.
Furthermore, these were approximately one order of magnitude weaker compared to the
corresponding peaks for 7 = 1 ps. Thus, at these long time scales, the effect of high
frequency modes is vanishingly small, and the kinetic energy flow occurs only through a few
slowest characteristic modes of motions.
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3.4. Molecular Dynamics Analysis of Coupling between Librational Motions and
Isomeric Jumps in Chain Molecules

One way of quantifying the cooperativity between librational motions and isomeric
jumps is to monitor the conformational and orientational motions of chain segments.
Conformational motions are those that may be described without reference to an external
coordinate system, such as the transitions between 7, g and g states and the fluctuations in
bond dihedral angles. Orientational motions, on the other hand, require a coordinate system
for their specification. The angle between a bond at a given time and another bond at a later
time is an example. Both conformational and orientational motions are characterized by
time-delayed correlation functions (CF) and the associated correlation times. These are not
only predictable by computational methods, but also measurable by experiments, such as
time-resolved fluorescence or nuclear magnetic resonance. However, the assumptions made
i interpreting the experimental results can only be rationalized by computer simulations.

Although there have been several attempts to express the experimental relaxation
curves by analytical functions[26], most approaches have either neglected the torsional
librations[91] or confined the motion to a few bonds only[92]. Some studies do not consider
three-dimensional motions[93] and others associate high frequency effects with additional
fast anisotropic processes[49] icorporating Howarth's reflections on librations[94-96].
Meanwhile, derivation of correlation functions by using analytical models become rather
complex in three-dimensions. Therefore, Cook and Helfand[97] developed a one-
dimensional analytical model and showed a single exponential decay for the conformational
state merging single and cooperative transition processes. A similar model was used by
Moro where the coupling between librations and conformational jumps was analyzed on the
basis of a linear chain of rotors. Therein it is demonstrated that librational motions operating
after a transition are responsible for attaining the new equilibrium state[98]. Recently Kim
and Mattice[68] have taken another path in that they investigated the effect of libration on
the time evolution of the conformational autocorrelation functions (CACF) for dihedral
angles. Interestingly, they found that the adoption of discrete conformational states
excluding librations, as in the basic approach of DRIS theory, results in an overestimation of
conformational correlation times.

In all of the above treatments some questions remain to be answered: How is the
time decay of CFs affected by the contribution of librational motions? Do the librations have
a random character so that the overall chain dynamics can be adequately predicted by
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removing them and adopting a DRIS-like treatment? Is the superposition of an additional
single exponential type fast relaxation mechanism on the relaxation spectrum sufficient to
account for the effect of librations, as performed in several studies? Or do librations act in
some cooperative manner and exert different effects on different types of correlations? If
some cooperativity exists, i.e. if librations are actively involved in the initiation or
localization of rotameric jumps for example, is it possible to retain the effect imposed by
librations on large amplitude movements by simply eliminating the high frequency
components of the overall motion?

In the present study, an MD trajectory is analyzed with the objective of testing the
validity of various assumptions made in mterpreting experiments and clarifying the above
raised issues. Time series obtained from MD simulations are filtered as outlined in Section
3.3.1.2 to obtain smoother trajectories where only low frequency modes remain. The
fluctuations in bond lengths and angles and/or dihedral angles are also turned off, and the
consequences of eliminating these degrees of freedom on the relaxation mechanism are
explored. Alternatively, these degrees of freedom are assigned Gaussianly distributed
random variables about their equilibrium values. CFs calculated by using these modified
trajectories are compared to those determined from actual MD, in order to assess the effects
of different levels of approximation.

3.4.1. Method and Calculations

3.4.1.1. Correlation Functions. The effect of librations on the local relaxation
phenomenon is explored on the basis of two types of autocorrelation functions: (i) The
OACEF associated with the reorientation of backbone bonds. This is expressed in terms of the
instantaneous unit vector 1{ 7) along the /th bond as

MI[Kz)]= %{3{[1,(:) 1, + r)]2>— 1} (3.13)
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Equation 3.13 is similar to Equation 2.6; the unit vector is affixed to the C-C backbone bond
in the former and to the C-H vector in the latter. (ii) The second conformational
autocorrelation function CACF describing the time evolution of the rotational isomeric states
of backbone bonds. This is given by

Mlo(7)]= %{3(0052 [¢, (t+7)- (o,(t)]) ~ 1} 3.14)

where @i(7) is the dihedral angle of the /th bond. The angular brackets in Equations 3.13
and 3.14 refer to the ensemble average over internal bonds, and the overbar denotes the time
average over all conformational transitions starting at various 7 and occurring within the time
interval 7.

3.4.1.2. Details of the Molecular Dynamics Method. MD simulations are carried out for
a united atom model polyethylene (PE) chain of » = 100 CH; units. The time evolved
coordinates of atoms are obtained as an array of position vectors r{f) = [x{?) y{?) z{9)]", 0
< i < n. These are transformed into a set of generalized coordinates, consisting of (i) bond
dihedral angles ¢;, 2 < i < n-1, (ii) bond angles, 6, 1 <i < n-1, (iii) bond lengths, /;, 1 <i < n,
of the particles at any instant in time, following the formulation presented in Appendix A.
Here the time arguments are omitted for brevity. For convenience, the transformation matrix
or operator that permits the passage from the set of position vectors to that of the
generalized coordinates is denoted as Q;:

x| 1k
Q¥ |6 (3.15)
Z @

The inverse operator Q;”, transforms from the generalized coordinates [/, 6, ¢;]" to the set
of position vectors, [x;, y;, z]". The set of generalized coordinates, obtained for all units in a
sequence of 40 bonds located in the middle of the chain, and recorded at 4 fs intervals, will
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be referred to as the original trajectory. The latter will be subjected to various operations as
will be presented below.

The chain is chosen to be in vacuo so that only those interactions generated by the
polymer itself are operative. The overall potential is the sum of (i) a harmonic bond
stretching (Equation A.1) and (ii) a harmonic bond bending function (Equation A.2); (iii) a
quintic function which accounts for the intrinsic torsional potential of dihedral angles and
first order interactions between chain atoms separated by 3 bonds (Equation A.3), and (iv)
an LJ potential (Equation A.4) which operates on atom pairs that are separated by 4 or more
bonds and are within 12 A distance of each other. Initially, a 25 ps equilibration time is
allowed. The total simulation duration after equilibration is ~260 ps. The temperature is kept
constant at 300 K.

3.4.1.3. Reconstruction of Trajectories Subject to Various Operations. The original
MD trajectories are subjected to the following operations to obtain the so-called modified
trajectories:

(a) The fluctuations in bond lengths and bond angles are removed from the
trajectories by replacing these variables with their mean values. This may be expressed by
the operation

I +Al 1,
Q,1 6. +A6, || 6, (3.16)
@, ®,

where the instantaneous bond lengths and bond angles are expressed as a sum of their mean
values and their fluctuations, as

I =1, +Al, } a1
6,=06,+A8,
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The mean bond lengths and bond angles are 1.53 A and 109.5°, for all bonds. Comparison
of the modified trajectory with the original trajectories will provide information on the
contribution of the librations in bond lengths and bond angles on the local chain relaxation
mechanism. Clearly the modified set of position vectors may be generated by the application
of the inverse operator Q," on the modified generalized coordinates obtained in Equation
3.15. In summary, a modified set of position vectors is obtained by premultiplication of the
original array by Q;” Q; Q..

(b) In addition to bond length and bond angles, torsional librations about rotational
isomeric minima may be eliminated by replacing the original trajectories by a new one
modified according to the operation

I +Al I,
Q,] 6, +A6, || 6, (3.18)
P, +Ag, ?,

Here ?p-, represents the rotational isomeric state values assumed by the ith dihedral angle.
This is given by a step function of the form:

0°  -60°< g, (r)<60°
0, (r)=1 120° 0,(7) > 60° (3.19)
~120° 9,(t) < 60°

(c) Alternatively, normal fluctuations may be superimposed on bond lengths and
bond angles, which would provide insight into the differences between random librations and
those occurring in the original MD trajectories. Accordingly, the instantaneous bond lengths
and bond angles are expressed as Gaussumly distributed random variables with the mean
values 1.53 A and 109.5° and covariances 0.10 A and 10°, respectively. This transformation
may be written as
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Li+Al I +AI" (3:20)
Q.| 6, +A8, | |0, +A6"
?, b

Here the superscripts » refer to the normal distribution, and the dihedral angles are left
unchanged.

(d) A final transformation to be considered in the calculations is Qs, represented as

Z,+Al, Z,+Al,"
Q.| 6, +A6, |>| 6, +A6” (3.21)
?i Ei

which is identical to Q, except for the replacement of the original torsional angles by their
isomeric isomeric state values following Equation 3.18. Clearly, in all cases (a) - (d) the
modified set of position vectors is constructed by application of the operation Q;" Q. Q;,
with m = 2 - 5, on the original position vectors.

Table 3.6 provides a summary of the operations adopted in obtaining modified
trajectories subject to various approximations, starting from the original MD trajectory. It
should be noted that the perturbations applied to the various degrees of freedom do not
result from a change in the potential field used in MD simulations. On the contrary, all
trajectories originate from the same MD run with a given potential field. In the earlier work
of Helfand et al.[99] the force constants in the potentials were changed so as to constrain /;
and 6. This is a different approach which can provide an estimation of the effect of
constraining the librational motions on the relaxation mechanism. In contrast, the present
approach provides a direct measure of the perturbation of the MD trajectories by several
factors, including the elimination of a class of operating modes via filtering technique, the
removal of the librational motions, which may be directed and/or random, the imposition of
a white noise for approximating the additional mobility imparted by the high frequency
librational motions.
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TABLE 3.6. Characteristics of the trajectories utilized for extracting OACFs and their
orientational correlation times®

OACF | operation | 7. (ps) | 7/%
] none 7.81 1.00
(ii) filtered”® 939 | 1.20
(i) | Q'QQ | 562 | 072
i) | Q'Q;Q | 409 | 052
® | Q'QQ | 551.| 071

(vi) | Q'QsQ | 359 | 046
a) t¢: orientational correlation times; ¢ : T of original MD run
b) Using a low-pass filter of 20 em™,

3.4.2. Results

3.4.2.1. Conformational Autocorrelations. The CACFs, M[¢(7)], evaluated using
different approaches are presented in Figure 3.22, up to == 100 ps.

Mlo(™)]

0 20 40 60 80 100
time (ps)

FIGURE 3.22. Conformational autocorrelation functions extracted from trajectories with
various degrees of assumptions.
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Curve (a) represents the result from the original MD trajectory. Curve (b) is
obtained by applying a low-pass filtering below 20 cm™. Curve (c), on the other hand, is
obtained by subjecting the original generalized coordinates to the transformation operator
Q;. This eliminates all bond angle, bond length and torsional librations. However,
eliminating the bond lengths and bond angles are inconsequential since the CACF is a
quantity which depends purely on dihedral angles. In this approximation, the conformational
dynamics corresponds to that adopted in the DRIS model. This curve also compares to that
given by Kim and Mattice[68]. It is evident from the figure that both approximations (b) and
(c) predict a slower decay compared to the original trajectory (a). The CACF from the
filtered trajectory, curve (b), indicates that the departure between the approximated and
original behavior arises primarily from a fast decay to about 0.86 of the ordinate value in
curve (a) within tenths of picoseconds, which is absent in curve (b). This initial decay in
curve (a) is clearly induced by the high frequency motions which have been eliminated in the
filtered trajectory (b). The departure from the original CACF is even stronger in curve (c),
where all torsional librations are extinguished following Equation 3.14.

A comparison along the same lines was made by Kim and Mattice for polybutadiene
chains in the bulk state and a similar result was obtained[68]. Therein, it was argued that the
dynamics is governed by two relaxation phenomena at separate time scales: one is
responsible for librations and the other for conformational transitions. Thus, neglect of
librational motions leads to slower relaxation insofar as the CACF is concerned. However,
this approximation can be partly overcome by rescaling of the decay curves at short times.
This explains the good agreement between the CACFs extracted from Brownian dynamics
simulations and those predicted by the DRIS formalism in which librational motions are not
accounted for (Section 3.1.2.2).

A mere analysis of the decays of CACF provides an incomplete picture of the
relaxation mechanism. A more thorough understanding of the role of high frequency
motions in local dynamics is gained by examining the time-dependent orientation of chain
segments in space, in the presence and absence of librations.

3.4.2,2. Orientational Autocorrelations. The OACFs of bond vectors, M[/(7)], obtained
by subjecting a given MD trajectory to different operations, are presented in Figure 3.23, up
to 7= 15 ps.

Note that only the short time range is given to emphasize the differences between the initial
decay of the curves. They all decay to zero eventually. Curve (i) represents the correlation
fimction given by the original MD trajectory. The curves labeled (ii)-(vi) result from the
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trajectories modified following the procedures summarized in Table 3.7. Mainly, curve (ii)
refers to the low-pass (20 cm™) filtered trajectory. Curve (iii) and (iv), résult from the
application of the operators Q," Q. Q; and Q;" Q; Q,, respectively. This allows the
extraction of the contribution of librational motions to the observed OACFs. Cases (v)-(vi),
follow from the operations Q,'Q,Q;and Q;' Qs Q, applied to the set of position vectors
recorded in the original MD trajectories. Here bond lengths and bond angles are assigned
Gaussianly distributed random fluctuations, which permit the visualization of the difference
between random librations and those cooperatively operating in the original MD run. The
orientational correlation times 7. and their ratios /T, with respect to that resulting from
the original MD run, T.,, are listed in the last two columns of Table 3.7 in order to provide a
quantitative measure of the effect of the various operations on the apparent OACFs.

=
=
iv v
0.1 vio el -
[ { N i
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FIGURE 3.23. Orientational autocorrelation functions extracted from trajectories outlined
in Table 3.6.

The low-pass filtered trajectory yields a slower decay of the OACF than that of the
original trajectory, as the comparison of the curves (i) (solid) and (ii) reveals. The more
interesting feature observed in Figure 3.23 is that all other curves, (iii)(vi), exhibit faster
decays compared to the original curve (i). Even the suppression of librations in bond lengths
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and bond angles, which is represented by curve (iii), enhances the decay rate of M[/(7)] by a
considerable amount. A decrease in orientational correlation time of 28 per cent is induced
by eliminating the vibrations in bond lengths and bond angles.

In many experimental and computational studies it is assumed that librations, especially
those associated with stretching and bending, have a random character[48,94]. Curves (v)
and (vi) in Figure 3.23 result from the imposition of Gaussianly distributed random
fluctuations on the equilibrium values of bond lengths and angles. Examination of these
curves demonstrates that the replacement of the original directed librational motions by
random fluctuations leads to a significantly faster loss of orientation. The relaxation time is-
decreased by a factor of 0.71 and 0.46, respectively in curves (v) and (vi), compared to the
original behavior. These results invite attention to the inadequacy of interpreting the
stretching, bending and torsional librational motions as a random accelerating relaxation
mechanism.
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4. CONCLUSIONS AND RECOMMENDATIONS

4.1. Conclusions

Local motions in chain molecules are investigated using various computationally
efficient methods. Localization is an important factor in that the isomerization at a bond
induces various motions in the neighboring degrees of freedom so as to minimize the overall
energy of the system. The mechanism of localization involves three types of motions of
neighboring bonds. These are not independent processes but are closely interrelated. Namely
they are (i) correlated torsions in the form of either coupled transitions or large amplitude
motions (+30°) within the current isomeric minimum,; (ii) an overall spatial reorientation of
bonds; and (iii) translational motion of atoms in space. In all the above mechanisms, the
motion is highly localized to the rotating bond and the three to four bonds on its either side.
Torsional motions play a dominant role in local chain dynamics. However, its mechanism
and relaxation rate are controlled by librations. Librations originate from bond stretching,
bond angle distortion, and small amplitude fluctuations in bond dihedral angles. They are
observed to be strongly correlated with the rotational jumps of bonds between isomeric
states. In this study conformational transitions and librations are investigated in detail. The
major conclusions are itemized in the following:

1. Second order interactions help localization. The mechanism of conformational
relaxation is strongly affected by second neighbor interactions along the chain. Specifically,
upon inclusion of second order interactions in the simulation model, the time evolution of
the transitions g*g* — g%, g*g*— g't, g't > # andg*g™ — 1 changes significantly, as
illustrated in the respective curves 7, 8, 5 and 9 of Figures 3.2(b) and 3.3(b-c). The overall
conformational mobility of the chain is enhanced upon inclusion of second order interactions
as discussed in Sections 3.1.3 and 3.1.4. Thus, the number of rotameric jumps is increased
by 14 per cent. This increase is equally distributed among cooperative and isolated
transitions. However, certain types of the cooperative transitions, such as gauche migration,
gauche pair creation and gauche pair annihilations exhibit an even stronger (by 20, 21 and 27
per cent, respectively) enhancement. On the other hand, coupled transitions occurring within
2 ps among third neighbors undergo an increase of 42 per cent, in the presence of second
order interactions.
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2. DRIS is a suitable formalism as a first approximation in treating local chain dynamics.
The comparison of BD results obtained in the presence of second order mteractions, with the
predictions of the analytical DRIS theory in Figures 3.3(a-c) shows that the DRIS formalism
gives a satisfactory account of the probability distributions and rates of particular rotameric
transitions. A major shortcoming of the DRIS formalism is that the tails are free to translate
following a rotameric transition over an internal bond. In this sense, long range chain
connectivity is not rigorously taken into account in the DRIS formalism. BD method, on the
other hand, intrinsically incorporates cooperative interactions of longer-range resulting from
chain connectivity. Despite this basic difference between the two methods, it is shown in
Figures 3.3(a-c) that the passages between rotameric states of bond pairs obey similar time
evolution in the two approaches. This is an important observation which lends support to the
use of DRIS approach for describing the dynamics of local conformational motions in

polymers.

3. Motions in PBD are less localized than PE. In contrast to the highly localized response
of PE to bond rotational jumps, in which the strongest coupling between rotational motions
is observed between second neighboring bonds, the coupling in PBD is shown to involve
longer chain segments. This feature is demonstrated by the response of chain units to fbond
isomerization in PBD which is identical to torsional bonds of PE. Comparisons made in
Figures 3.6 - 3.8 reveal that the isomerization of S bonds is distinguished by strong
correlations extending up to third and fourth neighbors along the chain.

4. Relaxation mechanisms differ for cis- and trans- conformers of PBD. Even though the
energetics of the two conformers are identical, their respomse to the same type of
isomerization is different. This feature is discussed in detail in Section 3.2.3. The
isomerization of an a bond in #rans-PBD is systematically accommodated by the
counterrotation of the & bond across the double bond. In cis-PBD, the same two « bonds
exhibit corotations; also, major coupled torsions in the form of counterrotations take place at
second neighboring « bonds across the £ bond. Furthermore, upon rotating an « bond, the
strongest orientational and translational coupling is observed in the first neighboring S bonds
in cis-PBD and first neighboring double bonds in #frans-PBD. Coordinated translational
motions of atoms are observed in cis-PBD within the repeat unit where isomerization
occurs. In frans-PBD, on the other hand, only the position and orientation of the
neighboring double bond is significantly affected. As a result, under the same frictional
environment, cis-PBD has higher mobility than the #rans form by a factor of ~1.5. Finally,
non-bonded mtramolecular interactions have a strong influence on conformational relaxation
in cis-PBD, whereas this influence is negligibly small in frans-PBD.
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5. Local dynamics is mainly controlled by backbone geometry. It is demonstrated in
Sections 3.2.2, 3.2.4, and 3.2.5 that the backbone geometry plays an important role in
determining relative motions of near neighbors during rotational isomerization. Furthermore,
in the case of copolymers of cis- and frans-PBD (Section 3.2.6), the behavior of the whole
polymer is governed by the independent motions of each monomeric unit. Other factors
such as the presence of large side groups and the resistance to motion of the environment are
identified as additional contributions to the relaxation mechanism: these are not significant in
the localization phenomena but they modulate the amplitudes of motion.

6. CK is a suitable method for predicting local motions of polymers in the bulk state. All
of the predictions stated in items 3 - 5 above are in good agreement with the results from
recent molecular dynamics (MD) simulations of PBD[68,69]. More interestingly, good
agreement between the results obtained for cis-PBD and those from the bulk state MD
simulations of cis-PIP[25] is found, confirming that backbone geometry has the major role
in determining the mechanism of local conformational relaxations. The advantage of the
present approach is that the computational time required is at least two orders of magnitude
less than that of conventional MD simulations.

7. Motions governing chain dynamics lie in the lower end of the frequency spectrum. The
relaxation behavior of the kinetic energy fluctuations, as well as the time evolution of bond
rotameric states, are shown to be adequately described by a small subset of modes confined
to the lowest end (0 < v < 20 cm™) of the total frequency spectrum (0 < v < 4170 cm™), as
illustrated in Figure 3.16. An even more stringent analysis of the low-pass filtered (v < 20
cm'") trajectories reveals that, among the slow characteristic modes, those with frequencies
in the interval 1 < v<2 cm™ are predominantly responsible for the rotational isomerization
of backbone bonds. In fact, the time evolution of the bond dihedral angles can be traced
back in the trajectory prescribed by the modes lying in this interval alone, as the comparison
of curves (i) and (iii) in Figure 3.20 demonstrates. This region of the spectrum is
characterized by highly cooperative motions uniformly spread over nearest neighbors (/=0 -
3), as evidenced by the superposition of the modal correlation functions.

8. Coupling between low and high frequency nodes is enhanced during rotational
isomerization. This coupling between the low and high frequency modes is maximized
during the transition of bond rotational states from one isomeric minimum to another. This is
clearly demonstrated by the low-pass (v < 20 cm™) and high-pass (v > 20 cm™) filtered
forms of the dihedral angle trajectory displayed in Figure 3.16. Relatively large amplitude
oscillatory motions are observed in the high-pass trajectory, which occur precisely during the
short time intervals (~2 ps) at which a rotameric jump takes place. This is in conformity with



93

the view that the rotameric transitions are coupled with large amplitude fluctuations which
localize and/or compensate the motion[16,38], and with the work of Moro[27,28] which
suggests that the librational motions operating after a transition contribute to the attainment
of the new equilibrium distribution.

9. A strong coupling persists between modes of comparable frequencies. The modal
correlation matrix (v, V) is split into its symmetric and antisymmetric components to
further understand the mechanism of energy exchange underlying bond isomerization and
anharmonic motions. The simultaneous examination of the surfaces drawn for the
symmetric and antisymmetric components (Figure 3.21) permits the identification of the
strength of coupling and degree of coherence between the various characteristic modes
operating with a given time delay, on well defined atoms of the chain. Modes in the
relatively low frequency region (v, v < 20 cm™) of the two-dimensional spectral plane,
operating with a time delay of about 1 ps on a given atom, are highly correlated, as
illustrated in Figure 3.21(a), and this coupling is shown in Figure 3.21(b) to be expressed by
both coherent and incoherent exchange of kinetic energy. A relatively strong coupling
persists between modes of comparable frequencies, in the neighborhood of the diagonals in
Figures 3.21(a-c), around |v; - v| < 15 cm’, although this type of coupling exhibits a
periodic dependence on the frequency.

10. Librations cause a slower time decay of OACFs but a faster relaxation of CACFs.
Removal of frequencies higher than 20 cm™ from the trajectory of Figure 3.16 results in the
slowing down of the relaxation of conformational and configurational transitions shown by
curve b in Figure 3.22 and curve ii in Figure 3.23. This is essentially due to the elimination
of some pathways of relaxation from the trajectory which otherwise would lead to faster
decay of correlations. Operating on the trajectory with Q. (Table 3.6) eliminates all
librations of bond lengths and angles and therefore excludes the possible localization effects
that would result from the concerted motions of these degrees of freedom. Consequently,
any change in a torsional angle of a given bond has to move the remaining parts of the chain
as a rigid body which results in large displacements and leads to a rapid decay of the OACF
shown in Figure 3.23, curve iii. Likewise, operating on the trajectory with Qs (Table 3.6)
eliminates all localization effects resulting from librations in torsional angles as well as those
in bond angles and bond lengths. In the absence of such cooperative fluctuations, a jump in a
torsional angle from one isomeric minimum to another induces large scale displacements of
the tails flanking the torsional angle undergoing the jump. This results in large changes in the
orientations of bonds with consequent rapid decay of the OACF as shown by curve iv of
Figure 3.23. Although the rotameric jump induces large displacements of the tails in this
manner, it does not affect the isomeric states of the remaining bonds along the chain. Thus,
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removal of librations by the application of Q; does not result in faster decay of bond angle
correlations, i.e., the CACF’s. On the contrary, a slow down in the decay of the CACF
(Figure 3.22¢) results because of the removal of the rapid pathways of relaxation.

11. Librations are not random. The replacement of the librations of the trajectory of Figure
3.16(a) with uncorrelated librations results in OACF curves (curves v and vi in Figure 3.23)
which are significantly below the OACF curve of the actual trajectory. In fact the new
OACF curves lie very close to the corresponding curves iii and iv obtained in the absence of
librations. It may thus be concluded that random librations are far from representing the
effects of the coordinated librations and may not be adopted as appropriate mechanisms of
decay in the real motion of chains.

12. CACF and QACF time decays obey different functional forms. Functional forms of
CACFs, and in particular that of Hall and Helfand[93], have been commonly used in
literature for interpreting or fitting the time decay of OACFs, without a rational justification.
In Section 3.4, it is demonstrated that the response of OACFs and CACEFs to librations differ
from each other. Consequently, the use of the same functional form to express both
correlation functions may not be adequate.

4.2. Recommendations

The stringent analysis carried out in this thesis provides a comprehensive
interpretation of the local phenomena. This information is to be utilized to define a subspace
where only the essential dynamics operates. Thus, the uninteresting degrees of freedom will
be eliminated while keeping their fundamental influence in the dynamic behavior. This will
lead to defining the chain with a smaller number of degrees of freedom and/or achieving
larger time steps in the simulations. The ultimate goal is to investigate the long-time
dynamics since the phenomena of practical interest occurs on this time scale. For instance,
the folding <> unfolding dynamics in proteins occur on the order of milliseconds whereas
only the nanosecond dynamics is observable with today’s most efficient algorithms and
fastest computers. Similarly, it is known that the glass transition phenomena is closely
interrelated to local aspects but a detailed investigation necessitates observation of longer
time dynamics. Finally, the quantities considered in Section 3.3 are closely interrelated to
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those measured in 2D NMR experiments [100-103]. In principle, it is possible to correlate
these results with experiments.

Another possible future application is to employ the CK method in the simulation of
biopolymers. This method is ideal for investigating how various disturbances are
accommodated in these stable molecules. Alternatively, CK may be developed into a
dynamic simulation method: The rotations induced at a random bond will be followed by
transitions at the other bonds of the chain. The usual incremental minimization procedure
will be applied to each transition. The transitions will be accepted on the basis of the current
state of the neighboring bonds and according to the probabilities of occurrence of coupled or
isolated transitions. Short MD simulations must be utilized to deduce the kinetics of
conformational transitions for the polymer being investigated. Such studies may give us
more insight on the mechanism of local motions.
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APPENDIX A. POTENTIAL FUNCTIONS AND INTERACTION
TYPES OF CHAIN MOLECULES

The motion of a polymer chain is dictated by the potentials involved. In the most
general case, the total potential operating on the system is written as the sum:

n-1 n-1

V=Zj:V,(l,)'i';Ve(ai)"';an(%)"‘iZ;Vu("y) A1)

Here, VAl is the potential energy due to the stretching of ith bond, given by the
harmonic function

1
Vi) =Sk(,~1,) (A2)

where, % is the bond stretching force constant, /; is the instantaneous length of the bond
between atoms -1 and /, and /, is the equilibrium value about which the bond length
fluctuates. The bond bending potential V,(6;) is formulated by a similar expression,

1
V,(8,)= Ekg (cos6, —cosd,)? (A3)
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with &, being the bending force constant, 6; the instantaneous supplementary bond angle of
the ith atom, and 6, is its equilibrium value. Several types of torsional potential functions
have been used in literature, which are cubic or quintic functions of the dihedral angle. In the
present simulations, the torsional potential, V,(¢), proposed by Ryckaert et al.[104] and

given by
V. (9)=k, ga,, cos”p, (A.4)

is used. Here £, is the torsional constant, ¢, the torsional angle of the ith bond and the
parameters a, satisfying the proper distribution of the torsional potential. Equation A.4
contains the sum of two effects: the mtrinsic torsional potential and first order interactions
between chain atoms. The intrinsic torsional potential is due to the sp? hybrids of
tetrahedrally bonded atom groups. It leads to three equally probable minima at ¢ = 0°,
% 120°. The first order interactions induce a preference for the trans state (@ = 0°) relative
to the gauche (¢ = * 120°) states, which is expressed by Equation A.4. Non-bonded
interactions may be readily accounted for via the Lennard-Jones (LJ) 6-12 potential, V;Ar;),

Vu(r_,,)=4eg,[(%”J -(f;*-] } (AS5)
i

where ry = |r; - rl, & and oy are the energy and length parameters characteristic of the
specific pair of non-bonded atoms 7 and j, separated by 4 or more bonds, i.e. |i-j| = 4. The
internal coordinates of the chain are described by the set of generalized coordinates {/, 6,
@;}. They are described in terms of the coordinates of atoms as:
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l= |r, —r,_ll 1<i<n
cosd, = L L 1<i<n-1 } (A-6)
oL,
cosQ, LU 2<i<n-1
i - —
XL XLy

Several types of interactions are present between the atoms of a polymer chamn.
These are mainly classified as local and non-local interactions. The former defines
interactions among near neighbors in the chain sequence whereas the latter describes
interactions among atoms that are distant along the contour of the polymer.

FIGURE A.1. An example of short-range intramolecular interactions: The pentane effect.

In that case, two consecutive bonds take on gauche states of opposite sign (g*g*)
whereby severe steric overlap between the H atoms bonded to C atoms four bonds apart is
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observed. In the most ideal case, all non-bonded interactions should also be taken into
account so as to include the effect of long-range interactions between chain atoms; Figure
A.2. Since such calculations are computationally expensive, cutoff values, 7., are set such
that Vi, — 0 for 7 > Fou

FIGURE A.2. Long-range intramolecular interactions.

The chain is best modeled when all such interactions are taken into account.
However, depending on the problem being considered, simplifications are tolerable for the
sake of computational efficiency. The simplest model chains must take into account bond
stretching, bond bending, and torsional potentials; Equations A.2-4. If second-order
interactions are also to be included, then non-bonded interactions between bonds separated
by four bonds are added to the governing potential. A representative case where such
interactions are important is the pentane effect in PE chains; Figure A. 1.
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APPENDIX B. POTENTIAL FUNCTION PARAMETERS

The parameters used in the potential functions of Appendix A are given explicitly for
the three polymers studied in this work: PIP, PE, and PBD. The parameters in Tables B.1
and B.2 are applied to the polymer and in the Section specified in the last two columns.

TABLE B.1. Bond stretching potential parameters

ki (W/mol. A% I,(A) | Polymer | Section
CH,- CH 3.5x10° 1.51 PIP 2.1.1
CH-CH 3.5x10° 1.32 PIP 2.1.1
CH, - CH, 3.5x10° 1.54 PIP 2.1.1
C-C 3.5x10° 1.53 PE 2.1.2
C-H 1.3x10° 1.09 PE 2.1.2
CH,- CH, 3.5x10° 1.53 PE 3.1,3.3,3.4
CH,- CH | none (fixed bond lengths) 1.5 PBD 3.2
CH - CH | none (fixed bond lengths) 1.5 PBD 3.2
TABLE B.2. Bond bending potential parameters
ko (J/mol) 0, (degrees) | Polymer Section
CH,- CH,- CH 5.2x10° 114.6 PIP 2.1.1
CH,- CH- CH 10.4x10° 120.0 PIP 2.1.1
CH - CH - CH; 10.4x10° 120.0 PIP 2.1.1
CH,- CH - CH; 10.4x10° 120.0 PIP 2.1.1
C-C-C 1.82x10° 109.5 PE 2.1.2
C-C-H 1.67 x10° 109.5 PE 2.1.2
H-C-H 1.67x10° 109.5 PE 2.1.2
CH,- CH,-CH, 1.82x10° 109.5 PE 3.1,3.3,3.4
CH,- CH none (fixed bond angles) 120.0 PBD 3.2
CH-CH none (fixed bond angles) 114.6 PBD 32




TABLE B.3. Torsional potential parameters

abond® | Bbond" | double bond
k, (J/mol) | 2594.3 | 8088.7 2.60x10°
a, 1.00 1.00 1.00
a 6.27 1.92 +2.00¢
a; 0.18 -0.55 1.00
as 7.45 -1.91 0.00
a4 0.00 1.10 0.00
as 0.00 -1.56 0.00

a) CH;- CH, - CH - CH bond of PIP and PBD
b) CH - CH, - CH, - CH bond of PIP and PBD, and all bonds of PE
¢) CH; - CH - CH - CH, bond of PIP and PBD
d) +2.00 for cis-PBD, -2.00 for trans-PBD

TABLE B.4. Non-bonded mteraction parameters

ai(A) | & (I/mol)
CH.-CH,;; x=1-3 3.6 580.8
C-C 3.2 351.8
C-H 2.8 318.7
H-H 23 301.5

101
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APPENDIX C. FORMULATION OF THE COOPERATIVE
KINEMATICS METHOD

Consider the rotational potential  of the chain at a given instantaneous configuration
q. This potential may be expressed as a Taylor series expansion in the close neighborhood of
q°={@° @°, ..., @u1®, ¥, X%, 1o°, Z,°} as

174 1 o
V=V, + [—-—] Ap, +— [ jl ApAp +..
0 Z a¢i o 4 2 12; a¢i5¢j 4 e ?s (Cl)

For the particular form of V' given by Equation A.4, the second derivative vanishes for i # .
Accordingly for small Ag,, the derivative of V" with respect to the dihedral angle ¢, at

configuration q reads

o 100, =V 150,) . +(5%V 1 59,2) .00, (C2)

0
1

In the following, the notation Ag,, and A¢, instead of &g, and &, will be adopted for
small incremental changes in the generalized coordinates and for the corresponding time
intervals, respectively. It is implicit in the notation that all incremental changes refer to
differential variations consistent with the basic approach.

Inasmuch as 0V/ 0@, = OAV/ OA@,, the first line of Equation 2.23 may be written in

the form
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oW, 12+AV]  5[AE]
JAg, =~ SAp,

0- (C.3)

in which the definition AE = W,/2 + AV is introduced.

On the other hand, the position vector r; of the /ith atom relative to the local frame
X,V 0z, affixed to the first atom of the chain is evaluated from

r,=[E 0][ﬁGk] l (C.4)

k=1 1

where 1 is the local bond vector col(/ O 0) for bonds of length /, E is the identity matrix of
order three, and G; is the conventional generator matrix for determining r,[42]. The passage
to absolute position vectors R; is readily established by the identity

R, = TCH)T(Drr, +R, (C.5)

where T(¥) and T(®) are the transformation matrices accounting for the orientation of the
first bond of the chain in space.

Adopting this framework, the first term in the first line of Equation 2.23 is obtained
from
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5t OW, =i
22 g " gu"yé'qyj +p, 0P +w,50+v,, -OR, (C.6)

where the coefficients of the incremental generalized coordinates are defined as

n

P, = iﬂ};(a,,,, Dr,) (C.7)

w = ;;l(am ‘Br,) (C.8)

v, = T(‘P)T(d))iglam (C.9)
4y = Da,a, (C.10)

isk+1

with the summation index k£ = max(m, j), and

s [ fn iz o fle. €1
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where A, B, and C are unitary matrices yielding the derivatives of the transformation
matrices according to the relationships

IT(D) IT(YF)
o¥

T,
- =AT,; =T(D)B;

%0, >0 = T(®)C (C.12)

and finally D is defined as D = T(®) CT(®).

Equations C.2 and C.6 are inserted into Equation C.3 to obtain the equality

n-1
Dty +7" ) )AQ, + DAY + W, AD 4V, AR, +V", = 0 (C.13)
J=1

V' and V7, are defined as

v =(6t1 £V 1 6,)

qO

(C.14)
v =(6t1€) 6V 1 69,%) .6,

qO
where &, is the Kronecker delta.

If bond s is externally constrained to undergo a given rotational perturbation Ag,
Equation C.13 becomes
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n-1
Z(uw +V",,,,)A¢j +p, AY +w AD+v, AR, =-V' -u_Ag@, (C.15)

e
J=s

Likewise, the counterpart of the three equalities in the second line of Equation 2.23 in the
presence of the constraint A g, are

n-1 n n
ZPmA(Pm + ,ZO(Drt - Dr, )ALP"' ,Z(:)(Dri -Br, )A(D"'
m=1 I= I=
s (C.16)
|:T("P)T((D) 2)])1‘, ] ‘AR, = -FPAg,
i=
n-1 n n
mz;wmAqym + ig(Br, - Br, )A<I> + IZ(:)(Dr, - Br, )A‘I’ + (C.17)

m#s

[T(‘Y)T((D)igl;l', ] ‘AR, = -wsApg

iv AP, +[T(‘~P)T((I>) ﬁ(‘,)Dr, }A\P +[T(‘I’)T(<I>) ﬁ(:)Br, ] -AD+
m=1 I= =
. (C.18)

(n+1)AR = —v Ag;
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Equation C.15 - C.18 are the basic eq}iations of motion to be solved simuitaneously
to determine the new set of generalized coordinates following the perturbation of the original

configuration q°. This set of equations may be conveniently represented in matrix notation
as

Q1 Qz A(P Aq)°
[Q;‘ Q4][AX] [Ax] (€.19)

in which the solution is expressed in the form of an array of incremental changes in
generalized coordinates, using the notation

Ao=[Ap, Ap, ... Ap,, Ag, .. Ap,y (C.20)

and

AX=[AY A® AX, AY, AZ] (C21)

A@° and AX° depend on the rotational perturbation of the bond s and on the rotational
potentials and are given by the expressions
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A =Ju, w, - u,, ”r;u
i (C.22)
[, 7, e Vi Vi woe Vs ]

i=0 u

AX=-{p, w, VST]TA% (C.23)
The matrices Q1, Q: and Q4 in Equation C.19 is defined by
Q=U+V" (C.24)
r =
b w, V;r
P, W, Vg
P s~1 ws—l v:—l
Qz S| Pen Wen v:l-l (CZS)
LPu1 Waa v};—l .
Zl)r, -Dr, e ee
i=0
> ; 26
Q,= ZDI', -Br, ZBri -Br, . (C.26)
=0 =0
T(Y)T(D®)Y . Dr, T()T(D)) Br, (n+1)E
- i=0
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Ag@ and AX are determined from

e ollar

(C.27)

which readily follows from Equation C.19.
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