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MODEL BASED DIAGNOSIS OF THE OXYGEN SENSORS 

SUMMARY 

Targets such as complying with legislations on emissions regulated for the protection 

of the environment and human health, increasing fuel consumption performance, and 

being competitive in the market, have consistently encouraged the experts to 

contemplate on air-fuel ratio control for decades. Therefore, many advanced systems, 

components, and methodologies have been developed and used in the industry. 

Oxygen sensor is one of these systems. 

Oxygen sensors in the exhaust layout of the vehicles are used as feedback elements for 

precise control of lambda calculation in engine cylinders to be sure that the three-way 

catalyst works in optimum range and to optimize the power output and fuel 

consumption of the engine. Both OBDII and EOBD regulations oblige the monitoring 

of oxygen sensors and warning the driver in case of detection of a faulty sensor.  

The primary purpose of the thesis is to develop a methodology for precise and accurate 

monitoring and diagnosis of the oxygen sensor to meet the legislations and the 

performance targets while the required calibration effort is reduced regarding time, 

cost and human resources. The thesis consists of six different chapters. Chapter 1 

explains the role of air-fuel ratio in emission control in detail. The aftertreatment layout 

is presented for a better understanding. Besides, emission gases and their damages are 

explained. Finally, different methodologies in the literature about the model-based 

diagnosis applied to various applications are analyzed.   

Chapter 2 introduces the oxygen sensors in detail. There are generally two types of 

oxygen sensors used in vehicles. The first type is a binary sensor and gives information 

whether the mixture is rich or lean. The type of the oxygen sensor studied in this thesis 

is the second type called as Universal Exhaust Gas Oxygen Sensor. Therefore, the 

chapter explains the working principle of Bosch LSU4.9 sensor and importance of the 
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sensor in closed loop control of the air-fuel ratio. Besides, the factors causing oxygen 

sensor to fail, the defect types and the conclusion of having a malfunctioning sensor 

in the aftertreatment layout are described in the section.   

The benefits of modeling the dynamics systems are indicated in Chapter 3. Besides, 

the advantages of the system identification for both linear and nonlinear systems are 

detailed for some specific methodologies such as impulse response, state space and 

ARX models for linear system identification and NARX models for nonlinear system 

identification. System identification uses a set of experimental data to correlate 

predefined inputs and the system output. System identification is a helpful approach 

especially when there is not enough information about the dynamic characteristic of 

the system, or mathematical equations to represent the physic behind are not known. 

Chapter 4, firstly, describes the location of the UEGO sensor in the current exhaust 

layout and the characteristic of experimental data. Then, input selection for system 

identification methods described in the previous section is realized by using principal 

component analysis, and fundamentals of combustion and ideal gas law. Using linear 

system identification follows the input selection step. In this step, three different linear 

identification model is created by using different combinations of preselected inputs. 

Since no satisfactory result could be reached, the data is split small portions to analyze 

the existence of local linearity. Afterward, due to lack of improvement in the 

performance nonlinear system identification approach is decided to utilize. Nonlinear-

autoregressive-exogenous model is designed with several different configurations of 

the number of hidden layers, the number of the neurons, delays, learning algorithms, 

etc. to obtain the best suitable model representing the UEGO sensor. In the end, a 

NARX model with two hidden layers and eight neurons in each hidden layers is 

decided to use in residual generation phase of sensor diagnosis.  

After a successful model has been achieved to a sufficient degree, the residual 

generation and residual evaluation steps are continued in Chapter 5. Residuals are 

produced by comparing the sensor output to model output in two WLTC data. The first 

data set is collected in a WLTC with a good sensor on the vehicle whereas a faulty 

sensor is located on the vehicle during the second WLTC. After that, these two residual 

sets are analyzed statistically to decide on if the sensor is defective or not. It is decided 

to use the decision-making approach by using two different threshold values based on 

the standard deviation and mean values calculated for each residual data set. 
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In future work, some other residual evaluation methods can be tried to see the 

effectiveness of different approaches. In addition, it is recommended that validations 

be performed under various environmental conditions.   
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OKSİJEN ALGILAYICILARIN MODEL TABANLI ARIZA TEŞHİSİ 

ÖZET 

Çevre ve insan sağlığının korunmasına yönelik düzenlenmiş emisyon mevzuatlarına 

uyma, yakıt tüketiminin iyileştirilmesi, araç performansının artırılması ve piyasada 

rekabet edebilme gibi hedefler, uzmanları hava-yakıt oranı kontrolü üzerine yoğun 

çalışmalar gerçekleştirmeye yöneltmiştir. Bunun sonucu olarak otomotiv 

endüstrisinde hava-yakıt oranı kontrolü üzerine pek çok sistem geliştirilmekte ve 

kullanılmaktadır. Oksijen algılayıcı bu sistemlerden bir tanesidir. 

Oksijen algılayıcı, araçların egzoz hattında yer alır ve egzoz gazında bulunan oksijen 

miktarını ölçerek silindir içerisindeki hava yakıt oranı hesaplamaları için geri besleme 

elemanı olarak kullanılır. Böylece, üç yollu katalitik konvertörün, emisyon gazlarının 

indirgenebilmesi için optimum aralıkta çalışması sağlanırken, motor gücü ve yakıt 

tüketimi performansı optimize edilir. OBDII ve EOBD yönetmeliklerinin her ikisi de 

oksijen algılayıcıların çalışma süresince gözlemlenmesini ve algılayıcıda arıza teşhis 

edilmesi halinde sürücünün uyarılmasının zorunlu olduğunu birdirmektedir. 

Bu çalışmanın temel amacı, oksijen algılayıcının emisyon yönetmeliklerine uygun 

olarak performans hedeflerini karşılayabilmek için hassas ve doğru bir şekilde 

izlenmesini ve arıza durumunda algılayıcıya teşhis konulmasını sağlarken, zaman, 

maliyet ve insan gücü açısından kalibrasyon için gerekli iş gücünü azaltacak bir 

yöntem geliştirmektir. Tez altı farklı bölüm içermektedir. Birinci bölümde, emisyon 

kontrolünde hava yakıt oranının rolü detaylı olarak açıklanmaktadır. Ayrıca, sistemin 

anlaşılabilirliğini kolaylaştırmak için genel elemanları ile bir egzoz hattı gösterilirken; 

emisyon gazları ile emisyon gazlarının zararlarına yer verilmektedir. Son olarak ise, 

literatürde yer alan model tabanlı teşhis uygulamalarına yönelik çeşitli çalışmalar 

incelenmektedir. 
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İkinci bölüm oksijen algılayıcıları ayrıntılı olarak tanıtmaktadır. Araçlarda genellikle 

iki tip oksijen algılayıcı kullanılmaktadır. Bunlardan ilki ikili sistemde çalışmaktadır, 

ve karışımın zengin ya da fakir karışım olduğunu belirtmektedir. Bu tezde incelenen 

oksijen algılayıcının tipi ise ikinci tip olan Üniversal Egzoz Gazı Oksijen 

Algılayıcısıdır. Bu algılayıcı tipine örnek olarak Bosch LSU4.9 algılayıcının çalışma 

prensibi ve algılayıcının kapalı çevrim hava-yakıt oranı kontrolündeki önemi 

açıklanmaktadır. Ek olarak, oksijen algılayıcının arızalanmasına neden olabilecek 

etkenler, hata tipleri, ve egzoz hattında arızalı bir algılayıcı kullanılmasının neden 

olabileceği sonuçlar anlatılmaktadır.  

Üçüncü bölümde dinamik sistemlerin modellenmesinin önemine değinilmektedir. 

Doğrusal ve doğrusal olmayan sistemler için sistem tanılama yöntemlerinin 

kullanılmasının sağladığı avantajlar belirli metodlar üzerinden anlatılmaktadır. 

Doğrusal sistemler için dürtü yanıtı, durum uzay ve ARX modelleri açıklanırken; 

doğrusal olmayan sistemler için NARX modeli detaylandırılmaktadır. Sistem 

tanılama, bir sistemin önceden tanımlanmış girdileri ile sistemin çıktı ya da çıktılarını 

ilişkilendirmek için bir dizi deneysel veri kullanılması esasına dayanmaktadır. Sistem 

tanılama özellikle sistemin dinamik karakteristiği hakkında yeterli bilgiye sahip 

olunmadığı ya da sistemi fiziksel olarak temsil eden matematiksel denklemlerin 

bilinmediği durumlarda tercih edilen faydalı bir yaklaşımdır. 

Mevcut projede kullanılan UEGO algılayıcısının egzoz hattındaki konumundan 

dördüncü bölümde bahsedilmektedir. Ayrıca, bu bölümde şasi dinamometresinde araç 

üzerinde toplanmış verilerin özellikleri belirtilmektedir. Üçüncü bölümde anlatılan 

sistem tanılama yöntemlerinde kullanılmak üzere girdi seçimi analizi de bu bölümde 

yapılmaktadır. Girdi seçimi temel bileşen analizi, yanma dinamikleri ve ideal gaz 

kanunu kullanılarak gerçekleştirilmektedir. Girdi seçiminin ardından doğrusal sistem 

tanılama yöntemi kullanılmaktadır. Bu adımda, önceden belirlenen olası girdi 

sinyallerinin farklı kombinasyonları kullanılarak üç farklı doğrusal tanılama modeli 

oluşturulmaktadır. Farklı çalışma noktalarında toplanmış veri seti kullanılarak farklı 

girdi kombinasyonu ve modeller ile başarılı bir sonuca ulaşılamamıştır. Bu nedenle, 

veri seti yerel doğrusallık durumunu incelemek üzere farklı motor hızları için daha 

küçük parçalara ayrılmıştır. Bu adımda da tatmin edici bir sonuç elde edilemediğinden 

bir sonraki adımda doğrusal olmayan sistem tanılama yaklaşımının kullanılması 

kararlaştırılmıştır. Doğrusal olmayan sistem tanılama yaklaşımı olarak bir yapay sinir 
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ağı yöntemi olan "nonlinear-autoregressive-exogenous model" kullanılmaktadır. 

UEGO algılayıcısını en iyi çıktı performansını elde edebilecek şekilde 

modelleyebilmek amaçlanmıştır. Bu amaçla, çeşitli sayıda saklı katman ve nöronlar 

için girdilere farklı gecikmeler ve farklı öğrenme yöntemleri uygulanarak bir çok 

konfigürasyon oluşturulmuştur. Bu konfigürasyonların performansları karşılaştırılarak 

en iyi modele karar verilmiştir. İki saklı katmanlı, her saklı katmanda sekiz adet nöron 

bulunduran, sistem gecikmesinin beş olarak belirlendiği NARX modelinin, algılayıcı 

arıza teşhisinin artık üretme aşamasında kulanılmasına karar verilmiştir. 

Beşinci bölümde, NARX modeli ile yeterli seviyede başarılı bir model elde 

edilmesinin ardından artık üretimi ve artık değerlendirme aşamaları ile devam 

edilmektedir. Artık ya da kalan değerler, WLTC sırasında toplanan model ve algılayıcı 

çıktılarının karşılaştırılması ile elde edilmektedir. Çalışma için iki farklı WLTC verisi 

toplanmıştır. İlk WLTC sırasında araç üzerinde normal çalışan bir oksijen algılayıcı 

ile veri toplanırken ikinci WLTC'de arızalı bir oksijen algılayıcı kullanılarak veri 

toplanmaktadır. Her iki test çevrimindeki model ve algılayıcı çıktılarının 

karşılaştırılması ile elde edilen iki farklı artık veri seti, algılayıcı arıza teşhisi hakkında 

karar verebilmek amacıyla istatistiksel olarak analiz edilmektedir. Her bir artık veri 

seti için hesaplanan standart sapma ve ortalama değerlere bağlı iki farklı eşik değer 

kullanılarak karar verme yaklaşımının kullanılmasına karar verilmiştir. 

Gelecekteki çalışmalarda, artık değerlendirme aşamasında farklı yaklaşımlar 

denenerek bu yaklaşımların verimliliklerinin ve uygulanabilirliklerinin 

gözlemlenebileceği düşünülmektedir. Ayrıca, çeşitli çevresel koşullar altında 

validasyon testlerinin yapılması tavsiye edilmektedir. 
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 INTRODUCTION 

It is considered that it is possible to achieve the most effective trade-off  between 

engine power, fuel economy, and emissions when the air-to-fuel ratio is equal to the 

theoretically required amount for complete combustion (stoichiometric) [1]. Lambda 

is the ratio used to specify how far the actual air-to-fuel mixture deviates from that 

stoichiometric ratio. If the engine is not running in that idealized point, some 

unfavorable effects occur. In lean condition, which means the air-fuel mixture 

containing a relatively low proportion of fuel, the emissions increase, particularly 

NOx, there will be heat increase as well as the high possibility of engine knock coupled 

with a slight drop in engine power. On the other hand usually fuel economy increases. 

If the engine is running in the rich condition, which means the air-fuel mixture 

containing an excessive proportion of fuel, there will be emissions and fuel 

consumption increase, a slight decrease in the heat with lower risk for engine 

knocking. Engine power will be slightly higher in this case. 

The air-to-fuel ratio is defined as 

(𝐴/𝐹) =
𝑚𝑎

𝑚𝑓
     (1.1) 

Where ma and mf are the mass of air and fuel entering the engine respectively. 

Lambda is defined as: 

𝜆 =
(𝐴/𝐹)

(𝐴/𝐹)𝑠𝑡𝑜𝑐ℎ
     (1.2) 

Where (A/F)stoch is the stochiometric air-to-fuel ratio, which is obtained when complete 

combustion (theoretically) occurs.   

To be able to specify the lambda value and to make calculations about air-to-fuel ratio, 

or AFR in short, a measurement system or sensor within the system is required. 

The oxygen sensor (or lambda sensor) is an electronic device that is located in the 

exhaust system, close to the engine as shown in Figure 1.1. Its purpose is to monitor 

the concentration of residual oxygen within the exhaust gases produced by the engine. 
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In internal combustion engines the sensor is used in order to estimate, and dynamically 

tune the air-to-fuel ratio. In this way, the three-way catalytic converters can work 

optimally. Additionally, a second sensor behind the catalytic converter can also 

determine whether a catalyst is performing correctly or not [1]. 

 

 

Figure 1.1: Engine and after treatment layout 

 

To reach optimal combustion several inputs, depending on the operation point, need 

to be considered. Such as engine coolant temperature, throttle position, air mass 

volume and engine speed (rpm). To further refine combustion, additional values like 

changes in altitude, humidity, ambient temperature and fuel quality can be used. The 

primary Oxygen sensor is located upstream of the catalytic converter and delivers the 

actual AFR to allow the ECU to provide the necessary air-to-fuel ratio for optimal 

combustion. 

Using a three-way catalytic converter (TWC) is the most widespread technique utilized 

by vehicle manufacturers to decrease exhaust emissions especially in gasoline engines. 

The TWC uses precious metals to convert harmful emissions into non-toxic end 

products. It contains ceramic or metallic monolithic structures which surface areas and 

walls are coated with platinum, palladium, and rhodium. In a TWC uncombusted fuel 

residues as hydrocarbons (HC). This causes a depression of the central nervous system 

(CNS). The hydrocarbons are oxidized with residual oxygen to produce carbon dioxide 

and water. The nitrogen oxides (NOx), which cause irritations in the respiratory system 

of humans and animals,  are converted to ubiquitous nitrogen, and toxic carbon 

monoxide (CO) preventing delivery of oxygen to bodily tissues [2]. 

 

If the exhaust gases are within specified tolerances on air/fuel ratio and the catalyst 

operates at a specific temperature range, the TWC can perform the conversion of 

exhaust gases efficiently. Figure 1.2 represents the general trend of conversion 
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efficiencies in relations to the air-fuel ratio [3]. Utilizing an exhaust gas oxygen sensor 

installed upstream of the catalyst, the required air/fuel ratio to operate the system is 

provided precisely. By receiving the feedback signal from upstream of the catalyst, the 

control unit can adjust the fuel quantity to keep the whole system in the tight range of 

air/fuel ratio. Therefore, having an oxygen sensor that works correctly in the exhaust 

system is substantial to be able to meet emission targets defined by authorities.  

 

Figure 1.2: Conversion efficiency of TWC vs Air-Fuel Ratio [3] 

 

In addition to not passing the emission testing, due to an undetected failure or damage 

of the catalytic converter and wrong AFR, a malfunctioning oxygen sensor may cause 

increased fuel consumption (by up to 15 % on average, considerably more for city 

driving), failure or poor driving characteristic. 

Detecting when there is a sensor which is not working correctly in the system prevents 

these above mentioned unfavorable consequences. By means of warning the driver and 

indicating the necessity of going to car care service. In vehicles, detection of 

malfunctioning component and taking the further actions are carried out by an onboard 

diagnostic system (OBD), the vehicle's self-diagnostic and reporting capability. 

The legislations about exhaust emission regulations, represented by institutions like 

California Air Regulation Board (CARB), Environmental Protection Agency (EPA) 

are the primary motivations for the function and methodology developers for OBD. 

Stringent emission regulations require monitoring the upstream exhaust gas oxygen 

sensor (UEGO, Universal Exhaust Gas Oxygen Sensor) for any possible malfunction 

causing the exhaust emissions to exceed certain thresholds.  
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Due to increased environmental consciousness, and the need to be competitive in the 

global market to meet engine performance targets and driver expectations, the 

complexity of components and control algorithms have been increasing drastically. In 

the automotive industry, experts are used to rely on extensive experimental calibration 

to fine-tune performance. However, they are moving towards different approaches 

nowadays. Data based or model-based methods to control and calibrate control 

parameters to minimize costs, time and effort and systematically incorporate advances 

in powertrain technology are increasingly common. 

 Purpose of the Thesis 

In compliance with both the European and US legislations, motor vehicles having On 

Board Diagnostics are required to monitor and detect the slow response of Oxygen 

Sensor. Detection of slow sensor response is one of the fundamental parts of On-Board 

Diagnostics to ensure that the oxygen sensors in an automotive emission control 

system continue to operate properly with age. After possessing this complex 

functionality in control structure, it usually requires the use of sophisticated 

measurement methods and the post-processing of the measured signals. The effort to 

make the sensor diagnostics functional is time-consuming and often needs engineering 

skills at a certain level.  

The aim of this thesis is to examine and explore dynamics of Universal Exhaust Gas 

Oxygen Sensors and the feasibility and effectiveness of different modeling and 

diagnostic approaches to provide simplicity to control and calibrate the system even if 

the designer does not have enough experience. 

This study is organized as follows: Chapter 1 gives a detailed description of lambda, 

oxygen sensors, and OBD, and also provides reasons of the necessity of oxygen 

sensors in-vehicle systems and motivation behind the monitoring functions and the 

need of new diagnostic approaches. Different approaches to monitoring various 

components and systems in automotive environments are detailed. The aim of the 

thesis and the literature survey are mentioned. Chapter 2 presents a comprehensive 

description of oxygen sensors and environmental legislations. System Identification 

methods for linear and nonlinear systems are briefly mentioned in Chapter 3.  Chapter 

4 provides the steps followed to get a sufficient system model, while chapter 5 reports 

the proposed solution to detect slow response failure of the oxygen sensor. 
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Finally, chapter 6 outlines the conclusions derived from this research, and therefore 

the original contributions of this work. 

 Literature Survey 

Continuous developments to improve the performance of the three-way catalyst 

provides a field of study to researchers since the eighties. This is due to the significant 

effect of precise air-to-fuel ratio calculation on emission control. The UEGO sensor 

located in the exhaust system substituted for the heated exhaust oxygen sensors has a 

great contribution to the AFR control algorithm [4]. Therefore, the diagnosis of the 

UEGO sensor takes a considerable place in the literature. Fault detection and diagnosis 

of sensors as well as actuators and comprehensive components of automotive systems 

have been very popular. It is proved useful to prevent misleading the control system 

due to the misrepresented measurements. Different approaches developed or proposed 

for fault detection and diagnosis in literature are discussed in this chapter. The current 

methodologies can be branched two main subcategories called model-free and model-

based fault diagnosis. Applications and limitations of these different approaches are 

also detailed. Figure 1.3 summarizes the model-free and model-based diagnostic 

methods.  

 

Figure 1.3: Fault Detection and Diagnosis Methods 
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Model-free methods rely on system characteristics and heuristics approaches to decide 

if the system is running faulty or as expected. A signal based diagnosis approach 

analyzes the feature of the affected system by using signal processing techniques or 

filter the final output signal to decide on the faulty or healthy system [5,6,7]. The signal 

based fault diagnosis methodology usually does not take the internal dynamics of the 

system during decision making into consideration. It needs a database for fault 

scenarios. A diagnosis method similar to the signal based methods is the plausibility 

check, since it uses the sensor output signal against the physical laws to analyze the 

conditions for fault detection. Analogically, the plausibility check is not interested in 

dynamic relations between system variables [8]. The major trends are mostly far from 

using a physical redundancy approach. Using several sensors to measure the quantity 

of same physical feature needs more space and increases cost and complexity. 

Nevertheless, it can be efficient regarding accurate detection and isolation of the faults 

[9].  

Model-based methods mostly take advantage of mathematical models which use 

inputs and outputs of the real system. Once obtaining the model, outputs of the model 

and the actual system are compared and a decision is made based on the difference 

between two signals. One of the popular model-based methods is the knowledge-based 

model. Even though model-based techniques are preferred in case of imprecise 

measurement data and environmental conditions, the main hassle is the necessity of 

prior knowledge and experience with deep understanding of the system. In the study 

of Nybarg and Nielse, direct redundancy and nonlinear diagnostic observers are used 

in the diagnosis of air intake system. It utilizes mean value modeling of the system 

including throttle model and air dynamics. The throttle is modeled as second order 

linear system, and air dynamics is derived from ideal gas law, whereas physical 

knowledge about the air intake system and mathematical equations come into 

prominence. After obtaining the residuals using mean value model, residual evaluation 

is realized based on fuzzy thresholding [10]. The analytical models are another 

common way used in literature for fault detection and diagnosis. Analytical models 

utilize dynamical models of the system or components based on physical laws. These 

dynamical models are used to generate residuals to decide if the system is faulty or 

not. Analytical models can be examined by separating several different groups. These 

groups mainly include parity relations, observers, and parameter estimation methods, 
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such as sliding mode observers or Kalman Filter. In the structured parity equation 

approach, inputs such as sensor bias, actuator bias and disturbances coming from 

simulation data, are used to get residuals in the system on the purpose of online 

detection of sensors and actuator faults in automobile engine [11]. Using parity 

equation is a cost-effective way with a trace of performance loss compared to more 

complex methods. Even despite the difficulties on working with the physical systems, 

due to the issues researchers do not face in the simulation environments. The exhaust 

oxygen sensor, which is one of the main components subjected to study, has the main 

difficulty on identification due to its nonlinear characteristic. A suitable method for 

nonlinear systems is using sliding mode observers, as it is used to detect misfiring 

faults [12]. However, a sufficient engine model is essential to be able to get satisfying 

results with sliding mode observers. Structured hypothesis testing is another 

methodology being used in literature. In the application of air path diagnosis in a diesel 

engine, the study shows validated results on a vehicle in real-world driving conditions. 

It is based on structured hypothesis testing, which observers used to calculate error 

parameters [13]. Another structured hypothesis test based diagnosis is exemplified in 

order to demonstrate that many different faults can be detected by the same diagnosis 

system modeled and diagnosed by using different methods [14]. To achieve this goal, 

several behavioral modes are generated. Mainly for cases such as no fault as well as 

different faults that might be observed in the air intake like leakage of boost and 

disconnection of the manifold pressure sensor. Since separate hypothesis tests are 

needed for different behavioral modes, the burden of excess test numbers and 

computation is the main drawback. Statistical methods to detect a failure of the UEGO 

sensor provides a good way to separate different sensor faults under different 

operation. However, this approach requires modeling the distribution function of the 

difference between consecutive sensor measurements and its parameters. It also needs 

to model a probability density function [15]. This non-intrusive statistical based 

methodology involves two different steps based on the operation. In the first step, 

parameters which belong to the distribution function in case of asymmetric operation 

are calculated. Considering these parameters a decision is made whether a fault exists. 

To be able to specify the fault type, a system identification process is applied for the 

case of symmetric operation in the second step. According to central peak and shape 

of the distribution functions, the type of the operation can be defined. Principal 

component analysis (PCA) provides another approach for fault detection and diagnosis 
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of sensors utilizing Q-statistic and/or squared prediction error estimations [9]. In the 

study two PCA models were build for diagnosis of air handling unit sensors. The main 

idea is to minimize the impact of the system nonlinearity and improve the robustness, 

while the Q contribution plot is used to isolate the fault. In such diagnostic structures 

using only a single PCA model is not enough to be able to detect all sensor failures. 

Thus, it is important to use extensive PCA models in parallel. Other than methods 

mentioned above, estimating fuel film dynamics in the intake port of an SI engine, by 

using adaptive estimator, gives a good performance in predicting AFR by exploiting 

extended Kalman filter [16]. However, this method needs to be extended for a wide 

range of throttle operation. Fuzzy-based pattern recognition method for real-time 

detection of abnormal injection pressure patterns is another approach revealed in the 

literature [17].  

In order to overcome the experimental and computational workloads, and decrease the 

complexity of physical equations, applying data-driven methodologies can be another 

solution. Especially when the topic comes to the nonlinear systems, neural network 

based fault diagnosis can be efficient and robust as well. An example of the recurrent 

neural network model is proposed to predict the air-to-fuel ratio to use in closed loop 

fuel calculation, and diagnostic application in a port fuel injection spark ignited engine 

[18]. In this study, it is observed that, by means of RNN based methods, robust system 

models for a broad range of operating conditions can be obtained with no remarkable 

delay and with high accuracy. Consequently, the behavior of the system dynamics 

which are close to the real system can be achieved with no complicated calculations 

and a high number of experimental data. Therefore, improving such data-driven 

model-based approaches to detect sensor failure has become primary motivation for 

this study. During the next chapters, it is focused to enhance a suitable diagnostic 

methodology which does not require in-depth analysis of various data to be able to 

calibrate system or control parameters. Therefore, firstly applicability of different 

modeling approaches are investigated and then residual generation and decision 

making are analyzed based on the likeliest model. Once the best model is decided, 

ideally it requires less time to collect data on the vehicle or engine during calibration. 

In this way, a calibration engineer can tune the necessary parameters for fault detection 

and diagnosis easily. Consequently, there is less effort to understand the complex 

physical equations of the system, with no high burden of statistical examinations.
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 OXYGEN SENSORS  

 Overview Of Oxygen Sensors 

Oxygen sensors located in the exhaust layout are commonly used as sensing devices 

in  ICE systems. The primary purpose is to deduce the AFR via sampling the exhaust 

gas from the engine. Thus, the feedback of the sensor is used to calculate the amount 

of injected fuel by the closed-loop controller to provide a sufficient operating condition 

to the TWC and allow it to convert the residual exhaust gases efficiently. Besides that, 

the fuel consumption and engine power output are optimized as well. The sensor is 

usually positioned after the turbocharger and before the TWC in turbocharged engines. 

The high-temperature exhaust gases are leaving the cylinder during the exhaust stroke 

under high pressure, then travel through the exhaust manifold before they come in 

contact with the oxygen sensor placed ahead of the TWC. Another reason to have an 

oxygen sensor in the exhaust layout is monitoring the performance of the TWC by 

placing another sensor after the catalyst. The output signals of one sensor positioned 

upstream, and one sensor downstream of the catalyst are compared to detect any 

degradation in catalyst efficiency [19].  

There are several different types of oxygen sensors used in literature for the 

abovementioned purposes [20]. One of the most common types of  sensors is the 

switched type or binary oxygen sensor, also known as Heated Exhaust Gas Oxygen 

(HEGO) sensor. This sensor signal shows whether the exhaust gas is the output of rich 

or lean combustion. Another common oxygen sensor type is wideband oxygen sensor, 

also called Universal Exhaust Gas Oxygen (UEGO) sensor.  The UEGO sensor uses 

relatively new technology compared to  HEGO sensor. Differently, from the HEGO 

sensor, it provides exact information of how lean or rich the combustion is. These two 

different sorts of sensing devices can be used interchangeably in fuel calculations, as 

well as in the same system for  TWC diagnostics. Within the scope of this thesis, 

UEGO sensors used for regulating the fuel supply is focused.  
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In this study, the considered sensor design is the Bosch LSU4.9 whose physical and 

electrical structure is as shown in Figure 2.1 [21]. The reference and pump cells, the 

measurement cavity, and the diffusion barrier are the crucial parts of the sensor. Within 

a steel shell, the sensing element interacting with the exhaust gas of UEGO is 

composed of yttria-stabilized zirconia (YSZ) to make use of its feature as a good 

conductor of oxygen ions. Down the line, the ceramic sensing element of YSZ is 

connected to platinum electrodes as well as wire leads. After flowing through the holes 

in the steel shell the exhaust gases, consisting of oxygen molecules, contacts the 

sensing element. The ambient air is forced to flow through the gaps between the 

connecting cables while being heated to enable the ions to produce voltage. Due to the 

difference in concentration of oxygen molecules in the exhaust gas and the ambient air 

an ion exchange takes place. This exchange happens from the higher to the lower 

concentration between the exhaust gas and reference gas. The actual measuring occurs 

in the Nernst cell. As a result of the movement of oxygen ions from one platinum layer 

to the other, a potential difference is generated in the Nernst cell, which enables a 

current to flow. Generated voltage signals are fed to the engine control unit,  or ECU 

for short. The ECU compares the voltage signal with the pre-stored standard data to 

decide whether the mixture is rich or lean.  

 

Figure 2.1: Electrical structure of Bosch LSU4.9 UEGO Sensor [21] 

 

The standard way to model the UEGO sensor dynamics is considering a linear 

response around stoichiometry and approximated by a first order transfer functions 

with a delay [22]. The ECU has a cascaded AFR controller algorithm including inner 

and outer control loops. The outer loop provides the set-point value of AFR for the 

inner loop. The inner loop controller keeps the AFR at the set-point by using feedback 
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from UEGO sensor [23]. In this feedback loop, HEGO sensor is also used as a corrector 

to enhance the robustness of UEGO sensor. The feedback component decreases the 

steady-state error to minimize the differences between the desired AFR and the actual 

AFR even though it is slower than feedforward component which might not always be 

accurate since it may be controlled independently from the actual AFR [24].  The inner 

loop controller is shown in Figure 2.2, and the normalized AFR and the overall open 

loop dynamics are stated in equations 2.1 and 2.2 respectively whereas Tc stands for 

the time constant and Td stands for the time delay [15]. 

 

Figure 2.2: Inner loop air-fuel ratio controller 

 

𝜆 =
1

𝐾𝑠𝑡𝑜𝑐ℎ
∗

𝑚̇𝑂2

𝑚̇𝑓𝑢𝑒𝑙
    (2.1) 

𝐺(𝑠) =
𝜆𝑜𝑢𝑡(𝑠)

𝜆𝑖𝑛(𝑠)
≈

𝑒−𝑇𝑑𝑆

𝑇𝑐𝑠+1
         (2.2) 

The time delay is the difference between the inclusion of fuel-air mixture into the 

cylinder and when it is observed at the UEGO sensor. The first reason for this delay is 

the physical plant delay due to the combustion dynamics while the second reason is 

the delay of exhaust gas transportation [24]. In further steps of this study, 

understanding of these controller loops and the time delay is essential to comprehend 

the dynamics of the system. 

 Oxygen Sensor Failures 

The functioning of the oxygen sensor may be affected by high thermal overload and 

poor fuel quality causing poisoning. Besides other environmental influences, residues 

in the exhaust gas like chemicals, soot, and oil as well as vibration on the exhaust after-

treatment line can result in severe damage. Eventually, the performance of the oxygen 

sensors is diminished over the years. Like every other component on a vehicle, they 

are subjected to a certain amount of aging and wear. Therefore, it is essential to monitor 
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the performance of oxygen sensors to detect any failure. Using the sensor diagnostics, 

in case of failure, the ECU can take further action and can inform the driver. This 

prevents some side effects like increased fuel consumption with resulting higher CO2 

emissions, possible engine and/or catalytic converter damage, poor driving 

characteristics and the possibility of failure to pass the emissions testing. 

 Environmental Legislation 

On-Board Diagnostic, or OBD in short, means that the diagnostic is done self-reliant 

respectively stand-alone by the engine control unit. The OBD is divided into two 

subgroups as OBD I and OBD II. While OBD I includes mainly electrical faults, OBD 

II stands for emission-related defects. The main drivers of OBD are the US which are 

mainly the California Air Resources Board (CARB) and US Environmental Protection 

Agency (EPA) and Europe certification authorities. The most stringent OBD 

requirements, especially OBD II regulations, are featured by the CARB since 1996. 

OBD regulations for Europe called EOBD adjust its requirements mostly based on US 

standards. If any failure that may occur in one of the components of the vehicle affects 

the emission performance of the vehicle, both of the emission regulation for US and 

EU will require the diagnosis of this component. 

Since the oxygen sensors have a crucial role in AFR control for the TWC to work with 

the maximum efficiency by providing feedback from exhaust line, a well established 

diagnostic function must monitor the sensor activity. Thus, the control unit may ensure 

a proper mixture for the optimal operating conditions of  TWC. That allows the TWC 

to convert the harmful emissions efficiently at the end.  

Regarding diagnosis of the dynamic behavior of oxygen sensors, OBD legislations 

require the detection of two fault cases shown in Figure 2.3. The transient-time faults 

consist in a reduction of the oxygen sensor signal gradient concerning the gradient of 

the real lambda value, while the response-time defects include in a retarded reaction 

of the oxygen sensor signal to lambda changes. Both kinds of faults have to be detected 

regardless of the direction of the lambda changes. Said that either rich-to-lean or lean-

to-rich, as well as changes in both directions, are covered. 
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Figure 2.3: Transient Time Fault, Response Time Fault 

 

In this study, European legislation is taken into consideration especially while deciding 

on faulty component and error thresholds. 
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 MODELING OF DYNAMICAL SYSTEMS 

Modeling of dynamical systems provides convenient solutions in many different 

working areas, since the models allow the internal dynamics of the systems to be 

simulated and analyzed by mathematical representations, without physically building 

the system. Also, it is possible to run models way more quickly. Thus they save time 

and cost.  

Dynamical system modeling can be performed by using physical laws and equations 

or by system identification. System identification is a principal to obtain the system 

model by use of the inputs and outputs of the system. In the present study, system 

identification is examined to model the dynamical system of the oxygen sensor due to 

the inconvenience of applying physical principals based equations. 

 System Identification 

System identification is a process to find the mathematical functions correlating to the 

inputs and outputs of a dynamical system [25]. This system might also include 

disturbances. A system identification characterizes the behavior of the system and 

internal dynamics such as delays, speed, oscillations, and so on. The model based on 

experimental data should be suitable and compact with respect to the certain purpose 

it is to be used for.  

If the mathematical model is derived from physical principles, it is referred to white 

box modeling approach. On the other hand, it is called black-box modeling approach, 

if the relationship between input and output is estimated from experimental data only. 

As a result of mixing the white box modeling principle and empirical estimation of the 

model parameters is called as grey-box modeling. 

A typical procedure of system identification includes input and output selection first. 

Then an experiment should be designed to collect required input and output data. After 

getting enough amount of experimental data, the model structure is selected from a 

predefined set of possible solutions. As a next step, the relevant parameters of the 
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model are estimated. Finally, the model is validated with a set of data which is different 

than the first data used in modeling [25].   

Difference or differential equations can describe the connections between the system 

variables of the mathematical models. These models can be separated as time 

continuous or time discrete, linear or nonlinear, deterministic or stochastic, etc. These 

features determine the type of the equations. The steps to follow are different from the 

systems having various characteristics. Therefore, before starting the model 

construction, the specific characteristics of the system should be determined. For 

example, the system should be classified as continuous or intermittent time, dynamic 

or static system that changes with time or does not change with time. The methods 

applied in the identification depend on the assumptions that are made on the model 

structure [25]. To differentiate the system identification methods clearly, they can be 

separated as nonparametric and parametric identification. To estimate the first 

parameters of the already defined model, a parametric identification is often preferred 

over the less accurate nonparametric model estimation [25]. Still its useful to apply the 

nonparametric model estimation to gain more detailed pieces of information about the 

system to help to define parameters like time delay, model order or if preconditioning 

is required. Even though there are several different identification techniques 

determined under parametric and nonparametric identification methods in the 

literature, only the methods discussed in the scope of this study are highlighted in the 

3.2 and 3.3. In the following two sections, linear and nonlinear system modeling 

methods are detailed. 

 Linear System Identification 

A linear model complies with the principles of superposition and homogeneity. This 

can be represented by the equations 3.1 and 3.2, respectively [25]. 

𝑦1 = 𝑓(𝑢1) 

𝑦2 = 𝑓(𝑢2) 

𝑓(𝑢1 + 𝑢2) = 𝑓(𝑢1) + 𝑓(𝑢2) = 𝑦1 + 𝑦2   (3.1) 

𝑓(𝑎1𝑢1) = 𝑎1𝑓(𝑢1) = 𝑎1𝑦1    (3.2) 
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The system inputs are named with u1 and u2 while y1 and y2 are the system outputs. 

A discrete linear polynomial model can be described by the following equation 3.3: 

𝑦(𝑘) = 𝑧−𝑛 ∗ 𝐺(𝑧−1, 𝜃) ∗ 𝑢(𝑘) + 𝐻(𝑧−1, 𝜃) ∗ 𝑒(𝑘) (3.3) 

With u(k) as input and y(k) as the output of the system. The disturbance e(k) of the 

system is usually zero-mean. The transfer function of the deterministic part of the 

system is formed with white noise G(z–1, θ) while the stochastic part of the system is 

shown in the transfer function H(z–1, θ).  

The deterministic transfer function specifies the relationship between the output and 

the input signal. The  stochastic transfer function determines the random disturbances 

which affect the output signalfunction. In many cases, the deterministic part is referred 

to system dynamics, respectively the stochastic components of a system to stochastic 

dynamics. The backward shift operator term z–1 is defined by the equations 3.4, 3.5, 

3.6.  

 

𝑧−1𝑥(𝑘) = 𝑥(𝑘 − 1)    (3.4) 

𝑧−2𝑥(𝑘) = 𝑥(𝑘 − 2)    (3.5) 

                    …       

𝑧−𝑛𝑥(𝑘) = 𝑥(𝑘 − 𝑛)    (3.6) 

z–n defines the number of delay samples between the input and the output. G(z–1, θ) 

and H(z–1, θ) are rational polynomials as defined by the equations 3.7 and 3.8. 

𝐺(𝑧−1, 𝜃) =
𝐵(𝑧,𝜃)

𝐴(𝑧,𝜃)∗𝐹(𝑧,𝜃)
    (3.7) 

𝐻(𝑧−1, 𝜃) =
𝐶(𝑧,𝜃)

𝐴(𝑧,𝜃)∗𝐷(𝑧,𝜃)
   (3.8) 

The vector θ is the set of model parameters. Equations in the following sections of this 

manual do not display θ to make the equations easier to read. The equations from 3.9 

to 3.13 define A(z), B(z), C(z), D(z), and F(z). 

𝐴(𝑧) = 1 + 𝑎1𝑧−1 + 𝑎2𝑧−2+. . . +𝑎𝑘𝑎
𝑧−𝑘𝑎   (3.9) 

𝐵(𝑧) = 𝑏0 + 𝑏1𝑧−1 + 𝑏2𝑧−2+. . . +𝑏𝑘𝑏−1
𝑧−(𝑘𝑏−1)  (3.10) 

𝐶(𝑧) = 1 + 𝑐1𝑧−1 + 𝑐2𝑧−2+. . . +𝑐𝑘𝑐
𝑧−𝑘𝑐    (3.11) 
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𝐷(𝑧) = 1 + 𝑑1𝑧−1 + 𝑑2𝑧−2+. . . +𝑑𝑘𝑑
𝑧−𝑘𝑑   (3.12) 

  𝐹(𝑧) = 1 + 𝑓1𝑧−1 + 𝑓2𝑧−2+. . . +𝑓𝑘𝑓
𝑧−𝑘𝑓   (3.13) 

Equation 3.14 describes a general-linear polynomial model where ka, kb, kc, kd, and 

kf are the model orders. 

𝐴(𝑧)𝑦(𝑘) =
𝑧−𝑛𝐵(𝑧)

𝐹(𝑧)
∗ 𝑢(𝑘) +

𝐶(𝑧)

𝐷(𝑧)
∗ 𝑒(𝑘) =

𝐵(𝑧)

𝐹(𝑧)
∗ 𝑢(𝑘−𝑛) +

𝐶(𝑧)

𝐷(𝑧)
∗ 𝑒𝑘 (3.15) 

Particular attention is given to the impulse response model which a nonparametric 

identification method, state space model and finally auto regressive exogeneous 

(ARX) model within the scope of linear system identification. 

3.2.1 Impulse response model 

An impulse in a discrete system specifies a physical impulse using unit-amplitudes for 

the first sample period and zero-amplitudes all other times. To compute the output y(k) 

of the system, the equation 3.16 can be used if the input signal u(k) and impulse 

response h(n) is known. 

𝑦(𝑘) = ∑ 𝑢(𝑘−𝑛)
∞
𝑘=−∞ ∗ ℎ(𝑛) + 𝑒(𝑘)    (3.16)  

where e(k) is the disturbance of the system. 

3.2.2 State space model 

Difference or differential equations with auxiliary state vector are used within the 

discrete state-space model. This model is described with the equations 3.17 and 3.18. 

𝑥(𝑘+1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) + 𝐾𝑒(𝑘)   (3.17) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) + 𝑒(𝑘)    (3.18) 

where 

 x: the state vector 

 k: the model sampling time multiplied by the discrete time step, where the 

discrete time step equals 0, 1, 2, ... 

 t: the time for the continuous model 

 A: the system matrix that describes the dynamics of the states of the system 
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 B: the input matrix that relates the inputs to the states 

 C: the output matrix that relates the outputs to the states 

 D: the transmission matrix that relates the inputs to the outputs 

 K: the Kalman gain. 

Physical characteristics of a system are reflected by the state-space transfer matrices 

(A, B, C, D). For describing multivariable systems the state-space model is known for 

its convenience and therefore preferably used, especially in modern control 

applications, as polynomial models focusing on multivariable systems. 

3.2.3 ARX model 

For reducing the general-linear-polynomial model to an ARX model, C(z), D(z), and 

F(z) need to be equal 1. 

𝐴(𝑧)𝑦(𝑘) = 𝑧−𝑛𝐵(𝑧)𝑢(𝑘) + 𝑒(𝑘) = 𝐵(𝑧)𝑢(𝑘−𝑛) + 𝑒(𝑘)  (3.20) 

y(t) + 𝑎(1)y(t − 1) + ⋯ + 𝑎(𝑛𝑎)y(t − 𝑛a)  = 𝑏1u(t − 𝑛k) + ⋯ + 𝑏𝑛𝑏u(t − 𝑛k −

𝑛𝑏 + 1) + e(t)                                                                                                        (3.21) 

For a discrete-time SISO system, y(t) is the output at time t whereas u(t) is the input at 

time t, na represents the number of poles, nb represents the number of zeros plus 

1, nk shows the input delay. Input delay means the number of samples before the input 

affects the system output. e(t) is the white-noise disturbance.  

It is possible to bias the estimation of the ARX model while using the coupling 

between deterministic and stochastic dynamics, if the disturbance e(k) of a system is 

not white noise. Especially if the signal-to-noise ratio is low, a way to minimize the 

estimation error can be to set the model higher than the actual model order. However, 

some dynamic characteristics, like the overall stability of the model, can be affected 

by an increased model order. The method to identify the ARX model is a particular 

case of the prediction error method called the least-squares approach.
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 Nonlinear System Identification 

The principles of superposition or homogeneity do not comply with nonlinear models, unlike 

the linear models. Real-world systems such as relays, switches and rate limiters are showing 

nonlinear effects like saturation, dead-zone,  friction, backlash, and quantization. Despite the 

fact that most real-world systems are nonlinear, the use of a linear model, to simplify the 

analysis procedure or even the design, can simulate most real-world systems. For defining an 

identification method for a nonlinear system with effective function approximators, neural 

networks are known to be reliable if there is a lack of physical insight about the system or 

mathematical difficulties with physical modeling. Neural networks just require the behavior of 

the system to be modeled, with no need for any physical modeling. 

3.3.1 Neural network modeling 

Over time many necessities of automatic control like to work with more and more complicated 

systems and satisfy stricter design criteria have occurred. At this point, the neural network 

modeling provides solutions to the previously mentioned concerns and gives the opportunity to 

fulfill the requirements with less and less a priori knowledge of the plant dynamics. The 

excellent performance for the approximation of nonlinear functions is the most critical 

capability of neural networks because of their ability to learn. 

Currently, neural networks based on multilayer feedforward, back propagation learning or more 

efficient variations of this algorithm are used mostly for system identification in the industry 

[27]. 

The basic units of neural networks are called neurons. A number of those highly interconnected, 

identical or similar, simple processing units (neurons) are the structure of neural networks. 

Those neurons are arranged in ordered topology and are doing the local processing. To acquire 

the knowledge from their environment, they also have a learning algorithm using examples as 

well as a recall algorithm to be able to use the learned knowledge later on. 

Artificial neurons can be visualized as shown in Figure 3.1. 
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Figure 3.1: Internal structure of an artificial neuron 

 

A specific weight representing the strength of connections between units is added to each 

connection and each input. The corresponding connections weights are multiplied with all the 

inputs to compute the state when the neuron is activated as shown in equation 3.21. 

Additionally, an extra and separate weighted input, the bias, is included and contains a constant 

value of one. 

𝑠𝑗 = ∑ 𝑤𝑖𝑗 ∗ 𝑢𝑖𝑖     (3.21) 

Where ui represents all the inputs including bias. After the computing of the state, the neuron 

needs to pass through its activation function. Activation function also normalizes the results. 

Equation 3.22 gives the output. 

𝑦𝑖 = 𝑓𝑗(𝑆𝑗)     (3.22) 

The activation functions can be summarized as: 

Linear Function 

𝑓(𝑢) = 𝑎𝑢 + 𝑏                           (3.23) 

Sigmoid Function 

𝑓(𝑢) =
1

(1+𝑒−𝑢)
             (3.24) 

Hyperbolic Tangent Function 

𝑓(𝑢) =
2

(1+𝑒−2𝑢)−1
    (3.25) 
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Rectified Linear Unit (ReLU) Function    

𝑓(𝑢) = 𝑚𝑎𝑥(0,𝑢)    (3.26) 

The components of an artificial neural network are the input and output layers as well as hidden 

layers in between as in Figure 3.2. Starting with the first layer (as input layer) which receives 

its inputs from the environment and provides its outputs as input for the next layer, until the 

final layer is reached. The end of the process gives the output through the output layer.   

 

Figure 3.2: Multi-layer artificial neural network 

 

The algorithm to make the learning possible by training, is called backpropagation. To produce 

an output, an input is given first. The teaching part contains a comparison of the actual output 

to what should have been ideal or target output for the specific input. To produce a more 

accurate output layer, the network can adjust the weights by going backward, starting with the 

output layer until the input layer is reached. When providing the same input to the network, it 

will give an output much closer to the ideal one used to train to the network. This process needs 

to be repeated until the calculated error between the network output and the typical output is at 

an acceptable level. Figure 3.3 shows a typical learning structure. 

 

Figure 3.3: Learning structure 
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There are different types of learning in artificial neural networks. Supervised learning is the 

learning method where both inputs and outputs are provided to the neural network whereas in 

unsupervised learning only inputs are provided. 

There are seven steps within the workflow of the general neural network design process: 

 data collection 

 network creation 

 network configuration 

 Initial values for weights and biases 

 network training 

 network validation or post-training analysis 

 network usage 

3.3.2 NARX 

The NARX or nonlinear-autoregressive-exogenous model is one of the feedforward neural 

networks. The NARX network is used to model time series as a special form of the linear ARX 

[28].  This model relates both, the past and current values of the inputs as well as the past values 

of the time series, to the present output of a time series. Figure 3.4 represents the generalize 

NARX network [28]. 

 

Figure 3.4: NARX network 
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Equation 3.27 shows the formulation of NARX network. 

𝑦(𝑡) = 𝑓 (𝑦(𝑡−1), 𝑦(𝑡−2), … … , 𝑦(𝑡−𝑛𝑦), 𝑢(𝑡−1), 𝑢(𝑡−2), … … , 𝑦(𝑡−𝑛𝑢)) (3.27) 

 Proposed Method 

Designation the most suitable model for the system is the essential problem of the system 

identification. First, the input and output data should be observed, and then a convenient model 

should be searched among a set of candidate model structures. To be able to select the most 

suitable model, some criteria should be set. Therefore, the abovementioned linear system 

identification techniques are first tested, and then neural network based nonlinear system 

identification technique is applied to obtain a sufficient model of the oxygen sensor. 
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 MODELING OF OXYGEN SENSOR 

 Experimental Design 

The project studied in this thesis is subject to the EOBD regulations. For this reason, 

the error cases of lag in sensor response during the transition for both directions, rich-

to-lean and lean-to-rich have been taken into consideration.  

In this application, the system identification is handled for a UEGO sensor on a light 

duty gasoline vehicle with different approaches. As shown in Figure 4.1, the UEGO 

sensor is located after the turbocharger and before the TWC in the exhaust line. After 

the TWC, there is a Gasoline Particulate Filter (GPF) followed by a HEGO sensor. 

The UEGO sensor measures the oxygen concentration in the exhaust gas resulting 

from the combustion of the air and fuel mixture. 

 

Figure 4.1: Illustration of the experimental setup 

 

The ECU calculates the amount of air and fuel involved in the combustion based on 

the torque calculation algorithm and other parameters affecting the combustion 

dynamics. A wide variety of data is collected on the vehicle before system 

identification, so that the model to be constructed can work properly for different 

combustion conditions. Instead of testing on the road, data is collected in chassis 

dynamometer under different steady state and transient driving maneuvers. Figure 4.2, 

Figure 4.3 and Figure 4.4 show the vehicle speed, engine speed and torque traces of 

the data used in this study. 
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Figure 4.2: Worldwide Harmonized Light Vehicles Test Cycle (WLTC) 

 

 

 

 

Figure 4.3: Engine Speed – Torque Sweep Measurement 
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Figure 4.4: Steady State Mapping Measurement 

 

 

Calibration software ATI is used to collect data on the vehicle. MATLAB is used to 

process the data for system identification and model-based diagnostic. 

 Input Selection for System Identification 

One of the most important parameters to get a sufficient system identification is 

choosing the correct inputs. Otherwise, it is possible to face obtaining irrelevant and 

unsatisfactory results. Firstly, the physics of the system is considered, and signals that 

might influence the output are determined. In the current application of UEGO sensor, 

the system is a Multi Input Single Output (MISO) system. The output is the predicted 

UEGO sensor signal. Regarding inputs, first, some general parameters such as vehicle 

speed, engine speed, and torque are selected. Then, air and fuel mass are added to the 

input lists as main contributors of the combustion, to get more accurate and general 

outputs. By taking the physics of the combustion into consideration, a reflection of the 

environmental effects and disturbances to the system is possible. The ideal gas 

equation is used to add the parameters affecting the amount of air in the cylinder to the 

input list. Equation (4.1) and equation (4.2) show the general gas equation and 

standardized air mass calculation respectively. 
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 𝑝 ∗ 𝑉 = 𝑚 ∗ 𝑅 ∗ 𝑇    (4.1)      

𝑚𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 =
𝑝0.  𝑉ℎ

R.  𝑇0
 ,     p0=1013 hPa,      T0=273 K  (4.2) 

In equation (4.1), p and V stand for pressure and volume respectively whereas m stands 

for mass, R is gas constant, and T is temperature. Vh in Equation (4.2) is the cylinder 

displacement volume. When this ideal gas equation is referred to the combustion 

chamber, the air mass in the combustion chamber, mcomb,air can be shown by 

equation (4.3). 

𝑚𝑐𝑜𝑚𝑏,𝑎𝑖𝑟 =
𝑝𝑐𝑜𝑚𝑏.  𝑉ℎ

R.  𝑇𝑐𝑜𝑚𝑏
=

(𝑝𝑚𝑎𝑛− 𝑝𝑟𝑒𝑠).  𝑉ℎ

R. 𝑇𝑐𝑜𝑚𝑏
   (4.3) 

Where pcomb is partial air pressure in the combustion chamber, pres is partial pressure 

of internal residual gas and pman is intake manifold pressure. Also, Tcomb stands for gas 

temperature in the combustion chamber. 

As a result, it is seen that Mass Air Flow (MAF) sensor signal, manifold temperature, 

manifold pressure, and throttle angle might influence the system identification process 

regarding air mass calculation. Finally, rail pressure is also taken into consideration 

since it affects the fuel quantity injected into the combustion chamber and the lambda 

controller output due to its influence on closed loop controller as well. After deciding 

on possible input parameters, Principal Component Analysis (PCA) method is applied 

to specify the final inputs to use in system identification process. PCA is one of the 

common techniques in input selection due to its positive impact on improving the 

robustness of the identification [30]. PCA helps to find which variables are most 

strongly correlated with each component. During the calculations, PCA assumes that 

the input data set is a linear combination of the variables. According to PCA, the 

components with larger variance correspond to remarkable dynamics whereas the 

lower variation corresponds to noise. In this thesis, the PCA Toolbox for MATLAB is 

used for the analysis of the input data [30]. 

Inputs for PCA analysis are vehicle speed, engine speed, torque, air mass, fuel mass, 

intake manifold temperature and pressure, throttle valve position, MAF output, rail 

pressure and lambda controller output whereas the only output is UEGO sensor signal.  

It is seen in Figure 4.5 that PC1, PC2 and PC3 cover approximately 94% of the total 

variance. 
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Figure 4.5: Variations of the components 

 

 

Table 4.1 represents the correlations between abovementioned input parameters. In the 

Table 4.1, the numbers having large absolute magnitudes are the most strongly 

correlated parameters with the relevant component.  

 

Table 4.1: Eigenvector analysis of the correlation matrix. 

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

Torque 0.38 0.06 -0.04 0.12 -0.10 -0.02 0.10 -0.40 -0.53 0.61 0.00 

Engine 

Speed 
0.01 -0.68 -0.03 -0.08 0.06 -0.01 0.17 -0.07 -0.01 0.00 0.71 

Air 0.38 0.09 -0.03 0.10 -0.08 -0.01 0.29 -0.29 -0.29 -0.76 0.00 

Fuel 0.38 0.10 -0.02 0.11 -0.09 0.01 0.35 -0.27 0.78 0.16 0.00 

MAF 0.36 -0.18 -0.02 0.07 -0.02 -0.26 -0.82 -0.22 0.16 -0.11 0.00 

Rail 

Pressure 
0.34 -0.15 -0.14 0.36 -0.46 0.41 -0.06 0.57 -0.04 0.02 0.00 

Intake 

Manifold 

Temperature 

0.28 0.04 0.29 -0.70 0.03 0.57 -0.12 -0.05 0.00 0.00 0.00 

Intake 

Manifold 

Pressure 

0.35 0.04 0.19 -0.38 -0.14 -0.65 0.18 0.47 -0.06 0.05 0.00 

Throttle 0.36 0.04 -0.11 0.18 0.86 0.09 0.03 0.29 -0.03 0.04 0.00 

Lambda 

Controller 
-0.02 -0.08 0.92 0.38 0.04 0.02 0.01 0.00 -0.01 0.00 0.00 

Vehicle 

Speed 
0.01 -0.68 -0.03 -0.08 0.06 -0.01 0.17 -0.07 -0.01 0.00 -0.71 

 

Loading plot in Figure 4.6, can be used to define which variables have the most 

significant effect on each component as well. 
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Figure 4.6: Loading plot of PC1 vs. PC2 

 

The range for loading values is from -1 to 1. The loading values near to -1 and 1 shows 

the variable strongly affects the component. On the other hands, loading close to 0 

means that the variable has a weak impact on the component.  In this loading plot, air, 

fuel, torque, MAF, Throttle, Rail pressure, intake manifold pressure, and temperature 

have large positive loadings on component 1, so this component mainly identifies the 

UEGO sensor output. Engine speed and vehicle speed have large negative loadings on 

component 2. By considering the PCA results and combustion dynamics together, 

initial input variables are defined as air, fuel, MAF, rail pressure, intake manifold 

pressure, intake manifold temperature and lambda controller output. 

  System Identification with Linear System Approach 

The system is a procedure to construct the mathematical model of a system. A model 

refers to a series of mathematical equations between inputs and outputs of a system. 

Usually, such model structure involves unknown parameters. The relevant model is 

often a dynamic system. When the system is a dynamic system, the magnitude of the 

outputs consists in both the instantaneous values of the inputs and the past behavior of 

the system. And system identification makes use of the system's premeasured inputs 

and outputs. 

System identification procedure includes steps that should be followed one by one. 

Firstly, the inputs and outputs of the system are measured either in time or frequency 
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domain. Then a candidate model structure is chosen. An estimation method which is 

suitable for the preselected model structure is applied to calculate the unknown 

parameters. Finally, the obtained model and the parameters are evaluated to see the 

suitability with the application. In case of getting unsatisfying results, another model 

structure might be selected. This modeling approach also used in this thesis is called 

black-box modeling. System Identification Toolbox in Matlab is used for system 

identification steps. 

As mentioned in the previous section, input selection is an essential step before starting 

the system identification procedure, but it is not enough. These preselected inputs 

should process and prepared for the identification. As a first step, data can be plotted 

and checked with bare eyes to see if there are any outliers in the data. Besides, the data 

needs to be filtered in case of noise in the system. In this study, the Fourier Transform 

Analysis is used to check the existence of noise.  The Fourier Transform analyzes the 

signal in the frequency domain. In Figure 4.7, the amplitude vs. frequency plot shows 

which frequencies are dominant. A specific frequency that involves noise is 

determined in this plot, and a suitable filter can be constructed to filter the noise in the 

system out. The data is filtered for the frequency range 2.4-2.5 Hz based on the analysis 

result. 

 

 

Figure 4.7: Fourier Transform Analysis Results 
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After removing the outliers, and filtering the data, the scale of the different variables 

should be considered. Since the input parameters define different physical features like 

pressure, mass flow, temperature and so on, there are big differences between the 

magnitudes of the signal. Therefore, both input and output data series should be 

normalized to a common scale. Otherwise, the differences in a variable range might 

affect the modeling performance negatively. At this stage, the z-score normalization 

method shown in equation 4.4 is used for each input and output parameters.  

𝒛𝒊 =
𝒙𝒊− 𝒙𝒎𝒆𝒂𝒏

𝐬
                                                   (4.4) 

Where zi is the normalized value of input xi , xmean is the mean value of the relevant 

signal and s is the standard deviation. Another preprocessing operation is detrending 

the data. Detrending means removing means, offsets or linear trends. The detrending 

provides more accurate linear models because of eliminating the random differences 

between the input and output levels. After all these preprocessing steps, data is split as 

identification and validation dataset. 

In black-box modeling, the process is usually based on a trial-and-error method by 

estimating the model parameters for different model structures and finding the best 

model reflecting the input-output relationship. The best way is the starting with simple 

structures and then moving to more complex models. At this step, model order and 

model delay can be estimated as well. In this study, various input combinations are 

also tried next to different model structures. As the starting point, Quick Start function 

of the System Identification Toolbox is used. The Toolbox uses minimization criterion 

to estimate model parameters by minimizing the deviation between the model response 

and the measured output. By using Quick Start, State-space model using n4sid, fourth 

order ARX model and step response over a period, the impulse algorithms are 

estimated. In Table 4.2, the performance values of these models for various inputs are 

listed. 100 indicates a perfect fit, and 0 is a poor fit. 

 

 

 

https://de.mathworks.com/help/ident/ref/impulse.html
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Table 4.2: Linear System Identification Results from 1000 RPM to 3100 RPM. 

Model  

Input (s):  

Air 
Fuel 

MAF 

Rail  
Pressure 

Intake 

Manifold 

Pressure 
Intake 

Manifold 

Temperature 

Air 
Fuel 

Air Air 
Fuel 

 

 
 

 

 
 

 

 
 

 
Lambda 

Controll

er 

Air 
Fuel 

MAF 

 
 

 

 
 

 

 
 

 
Lambda 

Controller 

Air 
Fuel 

 

Rail 
Pressure 

Air 

Fuel 

Air 

Fuel 

Air 
Fuel 

MAF 

 
 

 

Intake 
Manifold 

Pressure 

Intake 
Manifold 

Temperature 

Fuel 

MAF 

Rail  

Pressure 

Rail 

Pressure 

 

 
 

 

 
 

Lambda 

Controller 

Intake 

Manifold 
Pressure 

Intake 

Manifold 
Temperatur

e 
Lambda 

Controller 
 

Model 

Output:  
Oxygen Sensor Output 

Impulse 
Response 

Model: 

imp: 

32 

imp: 

23 

imp: 

21 

imp: 

35 

imp: 

34 

imp: 

22 

imp: 

34 

imp: 

18 

imp: 

16 

Discrete  

time – 

identified 
State – 

Space 

Model: 

n4s6: 

29 

n4s6: 
15 

n4s8: 
15 

n4s8: 

31 

n4s6: 

31 

n4s8: 

11 

n4s5: 

30 

n4s5: 

12 

n4s6: 

13 

ARX  

Model: 

arxqs: 

21 

arxqs: 

9 

arxqs: 

9 

arxqs: 

20 

arxqs: 

20 

arxqs: 

10 

arxqs: 

20 

arxqs: 

10 

arxqs: 

9 

 

As seen in Table 4.2 and Figure 4.8 model performance values with the max value of 

40% are not sufficient for system identification. Therefore, data is split in smaller 

portions based on engine speed ranges and processed separately. 

 

Figure 4.8: Best-Fit Analysis of the data range from 1000 RPM to 3100 RPM. 
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The measured and simulated model output signals for the input configuration, giving 

the best results shown for different engine speed ranges in Table 4.3 - Table 4.7. Even 

though the results are improved for different engine speed ranges, there are only slight 

differences with max 50% best-fit value.  

Table 4.3: Linear System Identification Results from 1000 RPM. 

Model  
Input (s):  

Air 
Fuel 

MAF 

Rail  

Pressure 

Intake 

Manifold 

Pressure 
Intake 

Manifold 

Temperature 

Air 
Fuel 

Air Air 
Fuel 

 
 

 

 
 

 

 
 

 

 
Lambda 

Controll

er 

Air 
Fuel 

MAF 
 

 

 
 

 

 
 

 

 
Lambda 

Controller 

Air 
Fuel 

 
Rail 

Pressure 

Air 

Fuel 

Air 

Fuel 

Air 
Fuel 

MAF 
 

 

 
Intake 

Manifold 

Pressure 
Intake 

Manifold 

Temperature 

Fuel 

MAF 

Rail  

Pressure 

Rail 

Pressure 

 

 
 

 
 

 

Lambda 
Controller 

Intake 

Manifold 
Pressure 

Intake 

Manifold 
Temperatur

e 
Lambda 

Controller 
 

Model 

Output:  
Oxygen Sensor Output 

Impulse 

Response 

Model: 

imp: 

8 

imp: 

27 

imp: 

31 

imp: 

22 

imp: 

26 

imp: 

20 

imp: 

26 

imp: 

14 

imp: 

5 

Discrete  

time – 
identified 

State – 

Space 
Model: 

n4s5: 

29 

n4s7: 

31 

n4s6

: 

30 

n4s6: 

32 

n4s6: 

29 

n4s7: 

35 

n4s5: 

32 

n4s5: 

32 

n4s6: 

16 

ARX  

Model: 

arxqs: 

28 

arxqs: 

25 

arxq

s: 

26 

arxqs: 

29 

arxqs: 

19 

arxqs: 

20 

arxqs: 

13 

arxqs: 

32 

arxqs: 

25 
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Table 4.4: Linear System Identification Results from 1500 RPM. 

Model  

Input (s):  

Air 
Fuel 

MAF 

Rail  
Pressure 

Intake 

Manifold 

Pressure 
Intake 

Manifold 

Temperature 

Air 
Fuel 

Air Air 
Fuel 

 

 
 

 

 
 

 

 
 

 
Lambda 

Controll

er 

Air 
Fuel 

MAF 

 
 

 

 
 

 

 
 

 
Lambda 

Controller 

Air 
Fuel 

 

Rail 
Pressure 

Air 

Fuel 

Air 

Fuel 

Air 
Fuel 

MAF 

 
 

 

Intake 
Manifold 

Pressure 

Intake 
Manifold 

Temperature 

Fuel 

MAF 

Rail  

Pressure 

Rail 

Pressure 

 

 
 

 

 
 

Lambda 

Controller 

Intake 

Manifold 
Pressure 

Intake 

Manifold 
Temperatur

e 
Lambda 

Controller 
 

Model 

Output:  
Oxygen Sensor Output 

Impulse 
Response 

Model: 

imp: 

27 

imp: 

25 

imp: 

20 

imp: 

31 

imp: 

30 

imp: 

27 

imp: 

35 

imp: 

21 

imp: 

11 

Discrete  

time – 

identified 
State – 

Space 

Model: 

n4s5: 

25 

n4s7: 

11 

n4s5: 

-4 

n4s8: 

30 

n4s8: 

28 

n4s5: 

10.5 

n4s 

8:31 

n4s5: 

13 

n4s5: 

8 

ARX  

Model: 

arxqs: 

27 

arxqs: 

10 

arxqs: 

1 

arxqs: 

25 

arxqs: 

26 

arxqs: 

20 

arxqs: 

27 

arxqs: 

12 

arxqs: 

11 

 

Table 4.5: Linear System Identification Results from 2000 RPM. 

Model  

Input (s):  

Air 

Fuel 
MAF 

Rail  

Pressure 

Intake 

Manifold 
Pressure 

Intake 

Manifold 
Temperature 

Air 

Fuel 

Air Air 

Fuel 
 

 

 
 

 

 
 

 

 
 

Lambda 

Controll
er 

Air 

Fuel 
MAF 

 

 
 

 

 
 

 

 
 

Lambda 

Controller 

Air 

Fuel 
 

Rail 

Pressure 

Air 
Fuel 

Air 
Fuel 

Air 

Fuel 
MAF 

 

 
 

Intake 

Manifold 
Pressure 

Intake 

Manifold 
Temperature 

Fuel 
MAF 

Rail  
Pressure 

Rail 
Pressure 
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Model 
Output:  

Oxygen Sensor Output 

Impulse 

Response 
Model: 

imp: 

49 

imp: 

31 

imp: 

31 

imp: 

52 

imp: 

52 

imp: 

30 

imp: 

52 

imp: 

23 

imp: 

21 

Discrete  
time – 

identified 

State – 
Space 

Model: 

n4s7: 

43 

n4s6: 

29 

n4s5: 

27 

n4s8: 

52 

n4s7: 

47 

n4s6: 

27 

n4s8: 

51 

n4s5: 

26 

n4s6: 

24 

ARX  

Model: 

arxqs: 

35 

arxqs: 

8 

arxqs: 

8 

arxqs: 

39 

arxqs: 

22 

arxqs: 

10 

arxqs: 

40 

arxqs: 

1 

arxqs: 

15 
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Table 4.6: Linear System Identification Results from 2600 RPM. 

Model  

Input (s):  

Air 
Fuel 

MAF 

Rail  
Pressure 

Intake 

Manifold 

Pressure 
Intake 

Manifold 

Temperature 

Air 
Fuel 

Air Air 
Fuel 
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Rail  

Pressure 

Rail 

Pressure 

 

 
 

 

 
 

Lambda 

Controller 

Intake 

Manifold 
Pressure 

Intake 

Manifold 
Temperatur

e 
Lambda 

Controller 
 

Model 

Output:  
Oxygen Sensor Output 

Impulse 
Response 

Model: 

imp: 

16 

imp: 

29 

imp: 

27 

imp: 

35 

imp: 

33 

imp: 

28 

imp: 

35 

imp: 

1.5 

imp: 

-7 

Discrete  

time – 

identified 
State – 

Space 

Model: 

n4s7: 

31 

n4s7

: 

23 

n4s6

: 

24 

n4s6: 

29 

n4s6: 

30 

n4s8: 

25 

n4s7: 

30 

n4s8: 

18 

n4s5: 

20 

ARX  

Model: 

arxqs: 

33 

arxq

s: 

25 

arxq

s: 

25 

arxqs: 

26 

arxqs: 

26 

arxqs: 

25 

arxqs: 

30 

arxqs: 

26 

arxqs: 

22.5 

 

Table 4.7: Linear System Identification Results from 3100 RPM. 

Model  

Input (s):  
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Pressure 
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Model 

Output:  
Oxygen Sensor Output 

Impulse 
Response 

Model: 

imp: 

24 

imp: 

24 

imp: 

15 

imp: 

37 

imp: 

31 

imp: 

6 

imp: 

36 

imp: 

-2 

imp: 

-12 

Discrete  

time – 

identified 
State – 

Space 

Model: 

n4s8: 

44 

n4s9
: 25 

n4s6

: 

30 

n4s8: 

39 

n4s6: 

40 

n4s6: 

28 

n4s7: 

41 

n4s6: 

10 

n4s7: 

16 

ARX  

Model: 

arxqs: 

26 

arxq

s: 25 

arxq

s: 20 

arxqs: 

32 

arxqs: 

32 

arxqs: 

28 

arxqs: 

40 

arxqs: 

32 

arxqs: 

28 
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The best-fit analyses of the model output for different engine speed ranges are also 

shown in Figure 4.9 – 4.13. 

 

 

Figure 4.9: Best-Fit Analysis of the modeled output for 1000 RPM 

 

 

 

Figure 4.10: Best-Fit Analysis of the modeled output for 1500 RPM 
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Figure 4.11: Best-Fit Analysis of the modeled output for 2000 RPM 

 

 

 

Figure 4.12: Best-Fit Analysis of the modeled output for 2600 RPM 
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Figure 4.13: Best-Fit Analysis of the modeled output for 3100 RPM 

 

 

There might be several reasons why the results are not sufficient so far. The ARX or 

state-space model may be unstable. These two models may ignore the effect of the 

feedback signal from the output to the input. The disturbances may have a significant 

impact on the system, and so they may need to be modeled as well. Higher order 

models might be required. The nonlinearities in the system might not be modeled with 

linear system identification. 

At this point, firstly, the system delay is calculated, and the calculated system delay is 

compared with the raw data. Then, a few different model orders are tried for ARX 

model.  

 

Figure 4.14 shows the graphic to select the best-fit ARX model. In Figure 4.14, the x-

axis is the total number of poles, na, nb and zeros. The y-axis is unexplained output 

variance in percentage. The unexplained output variance means the portion of the 

output is not explained by the model. Three bars highlighted on the plot in green, blue, 

and red show a type of different best-fit criterion. The red bar is the best-fit minimizing 

the sum of the squares of the difference between the validation data output and the 

model output. The green bar indicates the best-fit minimizing Rissanen MDL criterion, 

whereas the blue bar is for the best-fit minimizing Akaike AIC criterion. Among all 
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these three bars, the red bar has the overall best-fit. Besides, system delay, nk is 

calculated as three here.  

 

Figure 4.14: ARX model structure selection 

 

In Figure 4.15, the sensor output and model outputs of various ARX models with 

different system orders are shown. 
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Figure 4.15: Measured and simulated ARX model outputs for different system 

orders 

 

Since the results are far away from any acceptable values to improve with linear system 

identification method, nonlinear system identification methods are decided to be used. 

 System Identification with Neural Network 

In this part of the thesis, nonlinear system identification is used for modeling since the 

linear model approaches being discussed in the previous section cannot capture the 

system dynamics. As a nonlinear system identification method, Neural Network 

approach is used. 

One data set is used to train the recurrent neural network model, and one data set is 

used for validating the model. The PCA calculations and the results being obtained 

based on different inputs configuration in the previous sections are considered to select 

the inputs of the recurrent neural network model. As a result, system input parameters 

are selected as air, fuel, MAF sensor signal, rail pressure and lambda controller output. 

The output of the system is the oxygen sensor signal. Before moving through the 

training process, data normalization is an essential step. Better results and significantly 

fast calculations can be provided because of normalization of input data [31]. Min-

max normalization method is used to preprocess the input data by using equation 4.5. 

𝒛𝒊 =
𝒙𝒊− 𝐦𝐢𝐧 (𝒙)

𝐦𝐚𝐱(𝒙)−𝐦𝐢𝐧 (𝒙)
      (4.5) 



42 

Figure 4.16 shows the normalized inputs and output variables of the neural network. 

 

Figure 4.16: Normalized inputs and output variables of the neural network 

 

Open loop structure where the delayed target data is used as an additional input is 

selected. In the open loop network structure, the output is generated based on the 

common time extent of the input signals and target output data. Other parameters of 

neural network structure to have a successful model are number of hidden layers, 

number of neurons and the training methods.  

The selection of a proper number of hidden layers and an adequate amount of neurons 

is a significant problem to have a good model. In case of less hidden layers and neurons 

than necessary, considering the complexity of the system, the model might fail to meet 

the target output on a large scale of the data. This case is called as underfitting. On the 

other hand, in case of having too many hidden layers and neurons might cause 

overfitting. Overfitting causes to have output values that are so tightly fit a limited set 

of input data. Therefore, such model might have issues to fit another additional data 

set other than training data. Trial-and-error method to define the numbers of the hidden 

layers and neurons is a well-accepted way in the literature. The trial-and-error 

approach starts with training and testing the neural network by using a small number 

of hidden layers and neurons. Then according to the results, the number is increased. 

These attempts continue until getting sufficient model outputs [32].  
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Training algorithms are another crucial factor to enhance the model performance. 

Different algorithms might provide performances in a wide range due to their varied 

characteristics. Even though there are many different training algorithms available, 

only four of them are used to compare the performances in this study. These are 

Levenberg-Marquardt Backpropagation (LM) algorithm, Gradient Descent with 

Momentum and Adaptive Learning Rate Backpropagation (GDX) algorithm, Bayesian 

Regularization Backpropagation (BR) algorithm, and Scaled Conjugate Gradient 

Backpropagation (SCG) algorithm. The LM is a second-order numerical optimization 

technique. The advantage of LM is to combine features of Gauss-Newton and steepest 

descent algorithms. The LM has better convergence features than the conventional 

backpropagation algorithm with its very efficient performance when the network has 

maximum few hundredweights. The performance of GDX training algorithm depends 

on the learning rate. Besides, there is a momentum coefficient input since the GDX 

combines the advantage of adaptive learning rate and momentum coefficient. The BR 

training algorithm considers the goodness of fit next to network architecture. 

Therefore, the BR usually has the successful performance to overcome the overfitting 

problems in the neural network structure. Firstly, the BR minimizes the combination 

of squared errors and weights. After that, the BR specifies the appropriate 

combination. Thus, the network generalizes better. The conjugate gradient algorithms 

are mostly expensive regarding computations because they need that the network 

output to all training inputs is computed several times for each search. However, the 

SCG training algorithm avoids this time-consuming line search and reduces the 

number of computations performed in each iteration [33]. The entire dataset is divided 

into three different parts. The first 70% of the dataset is used to train the network while 

the next 15% is used for validation and last 15% is used for testing. Table 4.8 shows 

the results of correlation coefficients and performances for a wide variety of neural 

network structures with different number of hidden layers, number of nodes, training 

methods and delay values. After this trial-and-error method, the best NN model with 

high convergence performance is selected. 

Since the system delay is calculated as three and validated by using raw data in 

previous sections, the delay value is started with three in neural network structure as 

well.  Then the increased delay values are applied to the system to improve the 
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performance output. In Table 4.8 correlation coefficients refers to the relationship 

between input dataset and output. 
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Table 4.8: NN Model performances of different configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

# 
 

Correlation Coefficients MSE Input 
Delay 

Output # of  
HL 

# of 
Neurons 

LR TM 

Training Val. Test 

1 0.735 0.678 0.690 0.013 3 y(k) 1 10 0.2 lm 

2 0.760 0.695 0.653 0.013 3 y(k) 1 15 0.2 lm 

3 0.752 0.705 0.706 0.012 3 y(k) 1 20 0.2 lm 

4 0.784 0.696 0.673 0.012 3 y(k) 2 10-10 0.2 lm 

5 0.748 0.708 0.690 0.012 3 y(k) 2 15-15 0.2 lm 

6 0.666 0.664 0.651 0.015 3 y(k) 1 10 0.2 gdx 

8 0.679 0.655 0.631 0.015 3 y(k) 1 20 0.2 gdx 

9 0.679 0.654 0.635 0.015 3 y(k) 2 10-10 0.2 gdx 

10 0.668 0.664 0.652 0.015 3 y(k) 2 15-15 0.2 gdx 

11 0.705 0.754 0.639 0.014 3 y(k) 1 10 0.2 br 

12 0.756 0.770 0.649 0.012 3 y(k) 1 20 0.2 br 

13 0.889 0.891 0.876 0.006 4 y(k) 1 20 0.2 lm 

14 0.932 0.865 0.797 0.005 5 y(k) 1 20 0.2 lm 

15 0.908 0.908 0.886 0.005 5 y(k) 1 20 0.2 scg 

16 0.919 0.896 0.861 0.005 5 y(k) 1 30 0.2 lm 

17 0.910 0.908 0.869 0.005 5 y(k) 1 30 0.2 scg 

18 0.927 0.916 0.872 0.004 5 y(k) 2 15-15 0.2 lm 

19 0.966 0.904 0.745 0.005 5 y(k) 2 20-20 0.2 lm 

20 0.946 0.896 0.787 0.005 5 y(k) 2 15-15 0.4 lm 

21 0.908 0.905 0.881 0.005 5 y(k) 2 15-15 0.1 lm 

22 0.927 0.914 0.874 0.004 5 y(k) 2 20-20 0.2 br 

23 0.925 0.914 0.884 0.004 5 y(k) 2 20-20 0.2 scg 

24 0.952 0.914 0.880 0.003 5 y(k) 2 30-30 0.2 scg 

25 0.804 0.841 0.787 0.009 5 y(k) 2 20-20 0.2 gdx 

26 0.970 0.940 0.884 0.002 5 y(k) 2 13-13 0.2 lm 

27 0.963 0.937 0.905 0.002 5 y(k) 2 12-12 0.2 lm 

28 0.961 0.952 0.905 0.002 5 y(k) 2 8-8 0.2 lm 

29 0.965 0.945 0.903 0.002 5 y(k) 2 10-10 0.2 lm 

30 0.939 0.911 0.823 0.004 8 y(k) 1 20 0.2 lm 
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The value can change from 0 to 1. While 1 indicates that two variables are perfectly 

correlated a 0 means poor correlation. While choosing the best-fit model, a trade-off 

between overfitting to training data and underfit to test and validation data must be 

considered. If the accuracy of the training data set is increasing, but the accuracy of 

validation dataset stays same or decreases, then that means the current neural network 

structure overfits. In addition to correlation coefficients, mean squared error (MSE) 

calculation is used to measure the performance of the model structure. The MSE takes 

the errors between the target value and the model output and squares them to remove 

any negative signs. Then the MSE calculates the average of a set of errors. The smaller 

MSE value indicates having a better fit. According to the results of the models 1, 6 and 

11, the LM gives the best performance compared to GDX and BR for this application. 

On the other hand, if models 14-17 are analyzed, it is seen that there are no significant 

differences in the performance of LM and SCG. In this case, LM is recommended due 

to the speed of data processing. When models 18, 20, 21 is analyzed, it is seen that 

increase learning rate improves the correlation coefficients for training dataset, but 

also decreases the performance of test and validation sets. Therefore, the learning rate 

is selected as 0.2. Also, it is observed that increasing the delay value from three to five 

enhances the performance significantly as past values of the system have a substantial 

impact on the results. Using two hidden layers instead of only one hidden layer gives 

better results for different configurations of the number of neurons, delays, learning 

rates or training algorithms. While deciding on the number of neurons, the 

optimization between overfitting and improved overall results are taken into 

consideration. As a result, the Model 28 is selected to use for model-based diagnostics 

calculations. Figure 4.17 represents the model structure. Figure 4.18– Figure 4.20 

show the performance outputs of the Model 28. 

 

Figure 4.17: The chosen NARX  model structure 
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Figure 4.18: Comparison of the model output and measured signal 

 

 

 

 

 

Figure 4.19: Comparison of the model output and measured signal for test and 

validation data sets 
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Figure 4.20: Correlation coefficient 
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 MONITORING OF OXYGEN SENSOR 

Chapter 5 firstly describes how to use artificial neural network model of the oxygen 

sensor to generate residuals after getting an accurate-enough model. As a second step, 

Chapter 5 illustrates how the residuals can be evaluated to develop a sufficient fault 

diagnosis approach for the oxygen sensor. Figure 5.1 represents the overall process of 

residual generation and evaluation. 

 

Figure 5.1: Block diagram of residual generation and evaluation process 

 

 Residual Generator 

Residuals indicate the amount of deviation of the estimated signal from the actual 

system output. Most of the diagnostic approaches in literature are based on the residual 

evaluation. For this purpose residuals in the system, at different working ranges and 

conditions, need to be produced. The neural network-based model of the oxygen sensor 

is the fundamental component in residual generator step. The model structure is 

composed as an open loop in the training phase in Chapter 4. To be able to use the 

model with other datasets of a functional and damaged sensor, the model is converted 

to a closed loop system.  In the closed-loop system a delayed output connection is used 

directly, instead of the delayed target input. Figure 5.2 shows the closed loop model 

structure. 
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Figure 5.2: Closed-loop model structure of the oxygen sensor 

 

By using closed-loop model and new datasets, the residual generator is designed as 

shown in Figure 5.3. 

 

Figure 5.3: Residual generator 

 

 

λ stands for the actual signal of oxygen sensor on the vehicle whereas λI represent 

model output for sampling time t. The residuals according to the residual generator is 

calculated as equation 5.1.  

r(t)= λ(t) - λI(t)     (5.1) 

The magnitude of residuals must be large enough and last long enough. So, the fault 

can be detected robustly. Residual generator collects the output signals of the actual 

component and model for a specific range of time or event and calculates the error 

between these two signals. Afterward, the residuals are analyzed for decision making. 
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The main neural network is modeled by using steady-state data in different operating 

points of engine speed and torque. During residual generation, this steady-state data-

based model is used with two different sets of transient emission cycle data. The first 

data-set is collected during WLTC with a good oxygen sensor. The second data-set is 

gathered again in a WLTC, but by using a faulty sensor this time. Emission limits are 

considered to decide the degree of malfunctioning of the faulty sensor. 

The normalized values of vehicle speed, engine speed, and oxygen sensor outputs are 

in Figure 5.4 and Figure 5.5 for good and faulty sensors respectively.  

 

Figure 5.4: Normalized data of WLTC with the good sensor 

 



52 

 

Figure 5.5: Normalized data of WLTC with the faulty sensor 

 

 Residual Evaluation 

Residual evaluation is necessary to decide if the system is faulty or functioning in an 

acceptable range. The residual evaluation process involves assessment of residual for 

a predetermined range of data by comparing to a threshold value. The threshold can 

be a single value, a varying signal, or a variety depending on the application. In the 

ideal case, the residual is expected as zero for a component or system with no fault. 

However, in real-practices, this is almost impossible. Unknown disturbances, 

dynamics that cannot be modeled, modeling errors and the degree of the precision of 

input measurements are the factors causing non-zero residuals for adequately working 

components. Even though there is no residual because of the functioning component, 

the residual might differ from zero due to these factors. Therefore, a robust residual 

evaluation algorithm is essential to prevent any misdetection. Besides, the residual 

evaluation should not identify any malfunctioning component as a component working 

correctly. 

Several ways are studied in the literature for robust residual assessment. Statistical data 

processing, adaptive thresholds, fuzzy clustering, pattern recognition data correlation 

are some of the standard residual evaluation methods [35], [36], [37], [38]. The 

residual evaluation algorithm directly affects the performance of fault detection. 
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Therefore, the selected function must be suitable and applicable for the relevant 

component.  

In this study, fault detection with limit checking is focused. A statistical method based 

on the estimation of mean and variance of the normal distribution is investigated. 

5.2.1 Statistical Approach 

The main idea is based on the comparison of the probability distribution of the 

residuals for functional and malfunctioning components. For this purpose, an 

appropriate area is chosen on WLTC, and the comparison is realized for that specific 

operating region. Figure 5.6 shows the normal distribution plots of residuals for 

functional and malfunctioning components. The differences concerning mean and 

standard deviation are seen clearly. 

 

Figure 5.6: Probability distributions of residuals of OK and not-OK oxygen sensors 

 

The mean is attained by the addition of values of each sample for a specific range of 

data and then dividing the total value by the number of the samples, as shown in the 

equation 5.2. Any change in mean value or average of the residuals is related to the 

accuracy. 
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𝛍 =
∑ 𝐱𝐢𝑵

𝒊=𝟎

𝑵
  ,  N=1,2,3,…                                   (5.2) 

The standard deviation shows how the samples spread around the mean value. The 

smaller value of the standard deviation of the residuals reflects a good precision. 

Equation 5.3 indicates the estimation of the standard deviation. 

𝝈 =
𝟏

𝑵
∑ ((𝒙𝒊 − 𝛍)𝟐)

𝑵

𝒊=𝟏
                                     (5.3) 

In this study, the calculation of mean and standard deviation is based on taking 50 

samples after monitoring function is enabled into account. After estimating the 

characteristic features such as mean and standard deviation values of the normal 

distributions, a quantitative threshold must be set to decide about the component. 

In order to get a more robust evaluation of the residuals, an approach where two 

different thresholds are defined is built. 

𝑱𝝁 ≤  |𝝁𝒓 |  ∧    𝑱𝝈 ≤ 𝝈𝒓  ⇒  Fault detection                        (5.4) 

Jμ and Jσ stand for threshold values for mean and standard deviation respectively, 

whereas μr is the mean value of the residuals in a specified data range and σr is the 

standard deviation of the residuals. Equation 5.4 and the Figure 5.7 represent the 

residual evaluation approach. 
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Figure 5.7: Decision-making process 

 

The decision-making process is based on two criteria. The calculated mean value of 

the residuals is compared to a predefined threshold Jμ, and the standard deviation of 

the probability distribution is compared to another predefined threshold value Jσ. 

Based on the comparison results the final decision is given to the oxygen sensor.  
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 CONCLUSION AND RECOMMENDATIONS  

Oxygen sensors on aftertreatment systems of motor vehicles play an essential role in 

emission control and fuel economy. Due to the impact on emissions, the authorities 

like CARB, EPA or EU apply strict rules regarding on-board diagnostics of the oxygen 

sensors. Therefore, the monitoring of the sensor and detection the slow response due 

to a malfunctioning sensor is essential as well. Damaging of the sensor might occur 

due to aging,  environmental influences, temperature fluctuations of the exhaust gas or 

residues in the exhaust gas such as soot and oil.  

In literature, there are many different methods for fault detection and diagnosis on 

various areas including automotive industry and related components. However, most 

of the proposed techniques are questionable regarding applying to the real 

implementations in life, even though they recommend sophisticated and successful 

approaches in the lab environment with virtual data. The main reasons usually are due 

to physical limitations in dynamic systems during measurements and data collections, 

the required excessive calibration effort for the parameters involved in the proposed 

solutions or the complexity of the proposed method. In the meantime, the diagnostics 

method for oxygen sensor used by the manufacturer in the current project show good 

performance regarding fault detection, but in a limited operating area. Also, the present 

method requires extreme calibration effort coming with excessive costs due to the 

usage of chassis dynamometer and vehicle, besides it is time-consuming. Furthermore, 

the calibration engineer must have a certain level of experience to be able to process 

the measurements and interpret the collected data in a right way. Considering the time 

constraint, a qualified engineer has a significant impact on meeting calibration delivery 

targets before the start of production by using the current diagnostic method. 

This study has presented an accurate-enough and successful design of the diagnostic 

system for monitoring the oxygen sensor with less effort to collect data and calibrate 

the monitoring function in less time. The entire steps of design, including the modeling 

of the sensor, residual generation, and decision making has been discussed. First of all, 

the system identification methods are investigated to model the oxygen sensor with 
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the black-box approach. The black-box approach provides the system to be modeled 

with no previous knowledge about the physical background of the sensor or deep 

understanding of the system dynamics. For this purpose, a wide range of steady-state 

data is collected on chassis dynamometer for only once. The PCA approach is applied 

to see the correlation between different possible input signals and sensor output. A 

group of inputs is specified as initial input set. Then, an overview of varying system 

identification approaches is given with the theory behind of each method. Initially, 

different linear system identification methods with differing configurations of input 

are analyzed to see the applicability to the relevant system. At this point, it is 

understood that the results of PCA give an idea about what the correct inputs of the 

model should be. However, it does not have to be exactly same in real application. In 

addition, the linear system identification does not give sufficient results regarding 

modeling of the oxygen sensor, even with different input selections. Splitting the 

whole data into smaller pieces, based on engine speed range, does not improve the 

outcomes either. Therefore, nonlinear system identification approach is the next focus 

as a further step. NARX neural network model is used as a nonlinear system 

identification method. Different neural network structures including a variety of 

number of hidden layers, number of neurons, learning rates, training algorithms, input 

delay are investigated for fault detection. The best performance is obtained by using 

two hidden layers with eight neurons, while the system delay is five and the training 

algorithm is chosen as Levenberg-Marquardt. 

Designing of the monitoring function follows the obtaining a successful model. 

Residual generation and evaluations are the successor steps. One WLTC ran with well-

functioning sensor and data collected whereas the next data is collected using a faulty 

sensor in the same emission test cycle. Two different residual sets are generated for 

these two data-sets by using the neural network model. In the residual evaluation 

process, the statistical approach based on mean and standard deviation calculations is 

taken advantage of decision making between faulty and healthy oxygen sensors. The 

design of neural network models for healthy and malfunctioning sensors is proved to 

be applicable for fault detection in such nonlinear system. 

In further studies, the environmental conditions like temperature in hot and cold 

climates, different altitudes, or piece to piece variations can be considered to build a 
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more robust model while collecting data at the beginning. Also, more data can be 

gathered with sensors having a different level of degradations. Regarding residual 

evaluation method, different approaches known in literature such as fuzzy clustering 

can be investigated to compare the performances. 
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