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MODEL BASED DIAGNOSIS OF THE OXYGEN SENSORS

SUMMARY

Targets such as complying with legislations on emissions regulated for the protection
of the environment and human health, increasing fuel consumption performance, and
being competitive in the market, have consistently encouraged the experts to
contemplate on air-fuel ratio control for decades. Therefore, many advanced systems,
components, and methodologies have been developed and used in the industry.

Oxygen sensor is one of these systems.

Oxygen sensors in the exhaust layout of the vehicles are used as feedback elements for
precise control of lambda calculation in engine cylinders to be sure that the three-way
catalyst works in optimum range and to optimize the power output and fuel
consumption of the engine. Both OBDII and EOBD regulations oblige the monitoring
of oxygen sensors and warning the driver in case of detection of a faulty sensor.

The primary purpose of the thesis is to develop a methodology for precise and accurate
monitoring and diagnosis of the oxygen sensor to meet the legislations and the
performance targets while the required calibration effort is reduced regarding time,
cost and human resources. The thesis consists of six different chapters. Chapter 1
explains the role of air-fuel ratio in emission control in detail. The aftertreatment layout
is presented for a better understanding. Besides, emission gases and their damages are
explained. Finally, different methodologies in the literature about the model-based

diagnosis applied to various applications are analyzed.

Chapter 2 introduces the oxygen sensors in detail. There are generally two types of
oxygen sensors used in vehicles. The first type is a binary sensor and gives information
whether the mixture is rich or lean. The type of the oxygen sensor studied in this thesis
is the second type called as Universal Exhaust Gas Oxygen Sensor. Therefore, the

chapter explains the working principle of Bosch LSU4.9 sensor and importance of the
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sensor in closed loop control of the air-fuel ratio. Besides, the factors causing oxygen
sensor to fail, the defect types and the conclusion of having a malfunctioning sensor

in the aftertreatment layout are described in the section.

The benefits of modeling the dynamics systems are indicated in Chapter 3. Besides,
the advantages of the system identification for both linear and nonlinear systems are
detailed for some specific methodologies such as impulse response, state space and
ARX models for linear system identification and NARX models for nonlinear system
identification. System identification uses a set of experimental data to correlate
predefined inputs and the system output. System identification is a helpful approach
especially when there is not enough information about the dynamic characteristic of

the system, or mathematical equations to represent the physic behind are not known.

Chapter 4, firstly, describes the location of the UEGO sensor in the current exhaust
layout and the characteristic of experimental data. Then, input selection for system
identification methods described in the previous section is realized by using principal
component analysis, and fundamentals of combustion and ideal gas law. Using linear
system identification follows the input selection step. In this step, three different linear
identification model is created by using different combinations of preselected inputs.
Since no satisfactory result could be reached, the data is split small portions to analyze
the existence of local linearity. Afterward, due to lack of improvement in the
performance nonlinear system identification approach is decided to utilize. Nonlinear-
autoregressive-exogenous model is designed with several different configurations of
the number of hidden layers, the number of the neurons, delays, learning algorithms,
etc. to obtain the best suitable model representing the UEGO sensor. In the end, a
NARX model with two hidden layers and eight neurons in each hidden layers is

decided to use in residual generation phase of sensor diagnosis.

After a successful model has been achieved to a sufficient degree, the residual
generation and residual evaluation steps are continued in Chapter 5. Residuals are
produced by comparing the sensor output to model output in two WLTC data. The first
data set is collected in a WLTC with a good sensor on the vehicle whereas a faulty
sensor is located on the vehicle during the second WLTC. After that, these two residual
sets are analyzed statistically to decide on if the sensor is defective or not. It is decided
to use the decision-making approach by using two different threshold values based on
the standard deviation and mean values calculated for each residual data set.

xxii



In future work, some other residual evaluation methods can be tried to see the
effectiveness of different approaches. In addition, it is recommended that validations

be performed under various environmental conditions.
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OKSIJEN ALGILAYICILARIN MODEL TABANLI ARIZA TESHISI

OZET

Cevre ve insan sagliginin korunmasina yonelik diizenlenmis emisyon mevzuatlarina
uyma, yakit tiikketiminin iyilestirilmesi, ara¢ performansinin artirtlmasi ve piyasada
rekabet edebilme gibi hedefler, uzmanlar1 hava-yakit oran1 kontrolii {izerine yogun
calismalar gerceklestirmeye yoOneltmistir. Bunun sonucu olarak otomotiv
endistrisinde hava-yakit orani kontrolii iizerine pek ¢ok sistem gelistirilmekte ve

kullanilmaktadir. Oksijen algilayici bu sistemlerden bir tanesidir.

Oksijen algilayici, araglarin egzoz hattinda yer alir ve egzoz gazinda bulunan oksijen
miktarini 6lgerek silindir icerisindeki hava yakit orant hesaplamalari i¢in geri besleme
elemani olarak kullanilir. Béylece, {i¢ yollu katalitik konvertdriin, emisyon gazlarinin
indirgenebilmesi i¢in optimum aralikta calismasi saglanirken, motor giicii ve yakit
tikketimi performansi optimize edilir. OBDII ve EOBD yonetmeliklerinin her ikisi de
oksijen algilayicilarin ¢aligma siiresince gézlemlenmesini ve algilayicida ariza teshis

edilmesi halinde siiriicliniin uyarilmasinin zorunlu oldugunu birdirmektedir.

Bu calismanin temel amaci, oksijen algilayicinin emisyon yonetmeliklerine uygun
olarak performans hedeflerini karsilayabilmek i¢in hassas ve dogru bir sekilde
izlenmesini ve ariza durumunda algilayiciya teshis konulmasini saglarken, zaman,
maliyet ve insan giicli agisindan kalibrasyon i¢in gerekli is giiciinii azaltacak bir
yontem gelistirmektir. Tez alt1 farkli boliim icermektedir. Birinci boliimde, emisyon
kontrollinde hava yakit oraninin rolii detayli olarak agiklanmaktadir. Ayrica, sistemin
anlagilabilirligini kolaylastirmak i¢in genel elemanlart ile bir egzoz hatt1 gosterilirken;
emisyon gazlari ile emisyon gazlarinin zararlarina yer verilmektedir. Son olarak ise,
literatiirde yer alan model tabanli teshis uygulamalarina yonelik gesitli ¢alismalar

incelenmektedir.
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Ikinci boliim oksijen algilayicilar ayrmtili olarak tanitmaktadir. Araglarda genellikle
iki tip oksijen algilayici kullanilmaktadir. Bunlardan ilki ikili sistemde c¢aligmaktadir,
ve karigimin zengin ya da fakir karisim oldugunu belirtmektedir. Bu tezde incelenen
oksijen algilayicinin tipi ise ikinci tip olan Universal Egzoz Gazi Oksijen
Algilayicisidir. Bu algilayicr tipine 6rnek olarak Bosch LSU4.9 algilayicinin ¢aligma
prensibi ve algilayicinin kapali ¢evrim hava-yakit orani kontroliindeki 6nemi
aciklanmaktadir. Ek olarak, oksijen algilayicinin arizalanmasina neden olabilecek
etkenler, hata tipleri, ve egzoz hattinda arizali bir algilayici kullanilmasinin neden

olabilecegi sonuglar anlatilmaktadir.

Ucgiincii boliimde dinamik sistemlerin modellenmesinin énemine deginilmektedir.
Dogrusal ve dogrusal olmayan sistemler i¢in sistem tanilama ydntemlerinin
kullanilmasmin sagladigi avantajlar belirli metodlar {izerinden anlatilmaktadir.
Dogrusal sistemler igin diirtii yanitr, durum uzay ve ARX modelleri agiklanirken;
dogrusal olmayan sistemler i¢cin NARX modeli detaylandirilmaktadir. Sistem
tanilama, bir sistemin 6nceden tanimlanmis girdileri ile sistemin ¢ikt1 ya da ¢iktilarim
iliskilendirmek i¢in bir dizi deneysel veri kullanilmasi esasina dayanmaktadir. Sistem
tanilama Ozellikle sistemin dinamik karakteristigi hakkinda yeterli bilgiye sahip
olunmadig1 ya da sistemi fiziksel olarak temsil eden matematiksel denklemlerin

bilinmedigi durumlarda tercih edilen faydali bir yaklagimdir.

Mevcut projede kullanilan UEGO algilayicisinin egzoz hattindaki konumundan
dordiincii boliimde bahsedilmektedir. Ayrica, bu béliimde sasi dinamometresinde arag
lizerinde toplanmus verilerin dzellikleri belirtilmektedir. Ugiincii boliimde anlatilan
sistem tanilama yontemlerinde kullanilmak {izere girdi se¢imi analizi de bu bdliimde
yapilmaktadir. Girdi se¢imi temel bilesen analizi, yanma dinamikleri ve ideal gaz
kanunu kullanilarak gerceklestirilmektedir. Girdi se¢ciminin ardindan dogrusal sistem
tanilama yontemi kullanilmaktadir. Bu adimda, 6nceden belirlenen olas1 girdi
sinyallerinin farkli kombinasyonlar1 kullanilarak ti¢ farkli dogrusal tanilama modeli
olusturulmaktadir. Farkli ¢alisma noktalarinda toplanmis veri seti kullanilarak farkli
girdi kombinasyonu ve modeller ile basarili bir sonuca ulagilamamaistir. Bu nedenle,
veri seti yerel dogrusallik durumunu incelemek iizere farkli motor hizlar1 i¢in daha
kiiciik parcalara ayrilmistir. Bu adimda da tatmin edici bir sonug elde edilemediginden
bir sonraki adimda dogrusal olmayan sistem tanilama yaklagiminin kullanilmasi

kararlagtirilmistir. Dogrusal olmayan sistem tanilama yaklasimi olarak bir yapay sinir
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ag1 yontemi olan "nonlinear-autoregressive-exogenous model" kullanilmaktadir.
UEGO algilayicisint  en 1iyi ¢ikti performansmni elde edebilecek sekilde
modelleyebilmek amaglanmistir. Bu amagla, ¢esitli sayida sakli katman ve néronlar
icin girdilere farkli gecikmeler ve farkli 6grenme yontemleri uygulanarak bir ¢ok
konfiglrasyon olusturulmustur. Bu konfigiirasyonlarin performanslari karsilagtirilarak
en iyi modele karar verilmistir. Iki sakl1 katmanli, her sakli katmanda sekiz adet néron
bulunduran, sistem gecikmesinin bes olarak belirlendigi NARX modelinin, algilayici

ar1za teshisinin artik iiretme asamasinda kulanilmasina karar verilmistir.

Besinci boliimde, NARX modeli ile yeterli seviyede basarili bir model elde
edilmesinin ardindan artik iiretimi ve artik degerlendirme asamalari ile devam
edilmektedir. Artik ya da kalan degerler, WLTC sirasinda toplanan model ve algilayici
ciktilariin karsilastirilmasi ile elde edilmektedir. Calisma igin iki farkli WLTC verisi
toplanmustir. ilk WLTC sirasinda arag iizerinde normal ¢alisan bir oksijen algilayici
ile veri toplanirken ikinci WLTC'de arizali bir oksijen algilayict kullanilarak veri
toplanmaktadir. Her iki test c¢evrimindeki model ve algilayict ¢iktilarinin
karsilastirilmasi ile elde edilen iki farkl artik veri seti, algilayici ariza teshisi hakkinda
karar verebilmek amaciyla istatistiksel olarak analiz edilmektedir. Her bir artik veri
seti i¢in hesaplanan standart sapma ve ortalama degerlere bagl iki farkli esik deger

kullanilarak karar verme yaklagiminin kullanilmasina karar verilmistir.

Gelecekteki ¢alismalarda, artik degerlendirme asamasinda farkli yaklagimlar
denenerek bu  yaklasimlarin  verimliliklerinin ~ ve  uygulanabilirliklerinin
gozlemlenebilecegi distliniilmektedir. Ayrica, c¢esitli cevresel kosullar altinda

validasyon testlerinin yapilmasi tavsiye edilmektedir.
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1. INTRODUCTION

It is considered that it is possible to achieve the most effective trade-off between
engine power, fuel economy, and emissions when the air-to-fuel ratio is equal to the
theoretically required amount for complete combustion (stoichiometric) [1]. Lambda
Is the ratio used to specify how far the actual air-to-fuel mixture deviates from that
stoichiometric ratio. If the engine is not running in that idealized point, some
unfavorable effects occur. In lean condition, which means the air-fuel mixture
containing a relatively low proportion of fuel, the emissions increase, particularly
NOX, there will be heat increase as well as the high possibility of engine knock coupled
with a slight drop in engine power. On the other hand usually fuel economy increases.
If the engine is running in the rich condition, which means the air-fuel mixture
containing an excessive proportion of fuel, there will be emissions and fuel
consumption increase, a slight decrease in the heat with lower risk for engine
knocking. Engine power will be slightly higher in this case.

The air-to-fuel ratio is defined as

(A/F) = Z_f (1.1
Where m, and ms are the mass of air and fuel entering the engine respectively.
Lambda is defined as:

A=—AH0 (1.2)

N (A/F)stoch

Where (A/F)stoch IS the stochiometric air-to-fuel ratio, which is obtained when complete

combustion (theoretically) occurs.

To be able to specify the lambda value and to make calculations about air-to-fuel ratio,

or AFR in short, a measurement system or sensor within the system is required.

The oxygen sensor (or lambda sensor) is an electronic device that is located in the
exhaust system, close to the engine as shown in Figure 1.1. Its purpose is to monitor

the concentration of residual oxygen within the exhaust gases produced by the engine.



In internal combustion engines the sensor is used in order to estimate, and dynamically
tune the air-to-fuel ratio. In this way, the three-way catalytic converters can work
optimally. Additionally, a second sensor behind the catalytic converter can also

determine whether a catalyst is performing correctly or not [1].

Alr | Exhaust gas
Fuel Mixing LO O O I TWC I
Downstream

Fuel Upstream
Engine Oxygen Oxygen
Sensor Sensor

Figure 1.1: Engine and after treatment layout

To reach optimal combustion several inputs, depending on the operation point, need
to be considered. Such as engine coolant temperature, throttle position, air mass
volume and engine speed (rpm). To further refine combustion, additional values like
changes in altitude, humidity, ambient temperature and fuel quality can be used. The
primary Oxygen sensor is located upstream of the catalytic converter and delivers the
actual AFR to allow the ECU to provide the necessary air-to-fuel ratio for optimal

combustion.

Using a three-way catalytic converter (TWC) is the most widespread technique utilized
by vehicle manufacturers to decrease exhaust emissions especially in gasoline engines.
The TWC uses precious metals to convert harmful emissions into non-toxic end
products. It contains ceramic or metallic monolithic structures which surface areas and
walls are coated with platinum, palladium, and rhodium. In a TWC uncombusted fuel
residues as hydrocarbons (HC). This causes a depression of the central nervous system
(CNS). The hydrocarbons are oxidized with residual oxygen to produce carbon dioxide
and water. The nitrogen oxides (NOx), which cause irritations in the respiratory system
of humans and animals, are converted to ubiquitous nitrogen, and toxic carbon

monoxide (CO) preventing delivery of oxygen to bodily tissues [2].

If the exhaust gases are within specified tolerances on air/fuel ratio and the catalyst
operates at a specific temperature range, the TWC can perform the conversion of

exhaust gases efficiently. Figure 1.2 represents the general trend of conversion



efficiencies in relations to the air-fuel ratio [3]. Utilizing an exhaust gas oxygen sensor
installed upstream of the catalyst, the required air/fuel ratio to operate the system is
provided precisely. By receiving the feedback signal from upstream of the catalyst, the
control unit can adjust the fuel quantity to keep the whole system in the tight range of
air/fuel ratio. Therefore, having an oxygen sensor that works correctly in the exhaust
system is substantial to be able to meet emission targets defined by authorities.
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Figure 1.2: Conversion efficiency of TWC vs Air-Fuel Ratio [3]

In addition to not passing the emission testing, due to an undetected failure or damage
of the catalytic converter and wrong AFR, a malfunctioning oxygen sensor may cause
increased fuel consumption (by up to 15 % on average, considerably more for city

driving), failure or poor driving characteristic.

Detecting when there is a sensor which is not working correctly in the system prevents
these above mentioned unfavorable consequences. By means of warning the driver and
indicating the necessity of going to car care service. In vehicles, detection of
malfunctioning component and taking the further actions are carried out by an onboard

diagnostic system (OBD), the vehicle's self-diagnostic and reporting capability.

The legislations about exhaust emission regulations, represented by institutions like
California Air Regulation Board (CARB), Environmental Protection Agency (EPA)
are the primary motivations for the function and methodology developers for OBD.
Stringent emission regulations require monitoring the upstream exhaust gas oxygen
sensor (UEGO, Universal Exhaust Gas Oxygen Sensor) for any possible malfunction

causing the exhaust emissions to exceed certain thresholds.



Due to increased environmental consciousness, and the need to be competitive in the
global market to meet engine performance targets and driver expectations, the
complexity of components and control algorithms have been increasing drastically. In
the automotive industry, experts are used to rely on extensive experimental calibration
to fine-tune performance. However, they are moving towards different approaches
nowadays. Data based or model-based methods to control and calibrate control
parameters to minimize costs, time and effort and systematically incorporate advances

in powertrain technology are increasingly common.

1.1 Purpose of the Thesis

In compliance with both the European and US legislations, motor vehicles having On
Board Diagnostics are required to monitor and detect the slow response of Oxygen
Sensor. Detection of slow sensor response is one of the fundamental parts of On-Board
Diagnostics to ensure that the oxygen sensors in an automotive emission control
system continue to operate properly with age. After possessing this complex
functionality in control structure, it usually requires the use of sophisticated
measurement methods and the post-processing of the measured signals. The effort to
make the sensor diagnostics functional is time-consuming and often needs engineering

skills at a certain level.

The aim of this thesis is to examine and explore dynamics of Universal Exhaust Gas
Oxygen Sensors and the feasibility and effectiveness of different modeling and
diagnostic approaches to provide simplicity to control and calibrate the system even if
the designer does not have enough experience.

This study is organized as follows: Chapter 1 gives a detailed description of lambda,
oxygen sensors, and OBD, and also provides reasons of the necessity of oxygen
sensors in-vehicle systems and motivation behind the monitoring functions and the
need of new diagnostic approaches. Different approaches to monitoring various
components and systems in automotive environments are detailed. The aim of the
thesis and the literature survey are mentioned. Chapter 2 presents a comprehensive
description of oxygen sensors and environmental legislations. System Identification
methods for linear and nonlinear systems are briefly mentioned in Chapter 3. Chapter
4 provides the steps followed to get a sufficient system model, while chapter 5 reports

the proposed solution to detect slow response failure of the oxygen sensor.



Finally, chapter 6 outlines the conclusions derived from this research, and therefore
the original contributions of this work.

1.2 Literature Survey

Continuous developments to improve the performance of the three-way catalyst
provides a field of study to researchers since the eighties. This is due to the significant
effect of precise air-to-fuel ratio calculation on emission control. The UEGO sensor
located in the exhaust system substituted for the heated exhaust oxygen sensors has a
great contribution to the AFR control algorithm [4]. Therefore, the diagnosis of the
UEGO sensor takes a considerable place in the literature. Fault detection and diagnosis
of sensors as well as actuators and comprehensive components of automotive systems
have been very popular. It is proved useful to prevent misleading the control system
due to the misrepresented measurements. Different approaches developed or proposed
for fault detection and diagnosis in literature are discussed in this chapter. The current
methodologies can be branched two main subcategories called model-free and model-
based fault diagnosis. Applications and limitations of these different approaches are
also detailed. Figure 1.3 summarizes the model-free and model-based diagnostic

methods.

Model Free Methods

* Signal Based
* Plausibility Check
* Physical Redundancy

Model Based Methods

» Knowledge Based
* Data Driven
* Neural Network
* Fuzzy
* Multivariation statistical
* Analytical Models
» Parity Relations
* Observers
* Parameter Estimation (Sliding Mode Observers, Kalman Filters)

Figure 1.3: Fault Detection and Diagnosis Methods



Model-free methods rely on system characteristics and heuristics approaches to decide
if the system is running faulty or as expected. A signal based diagnosis approach
analyzes the feature of the affected system by using signal processing techniques or
filter the final output signal to decide on the faulty or healthy system [5,6,7]. The signal
based fault diagnosis methodology usually does not take the internal dynamics of the
system during decision making into consideration. It needs a database for fault
scenarios. A diagnosis method similar to the signal based methods is the plausibility
check, since it uses the sensor output signal against the physical laws to analyze the
conditions for fault detection. Analogically, the plausibility check is not interested in
dynamic relations between system variables [8]. The major trends are mostly far from
using a physical redundancy approach. Using several sensors to measure the quantity
of same physical feature needs more space and increases cost and complexity.
Nevertheless, it can be efficient regarding accurate detection and isolation of the faults
[9].

Model-based methods mostly take advantage of mathematical models which use
inputs and outputs of the real system. Once obtaining the model, outputs of the model
and the actual system are compared and a decision is made based on the difference
between two signals. One of the popular model-based methods is the knowledge-based
model. Even though model-based techniques are preferred in case of imprecise
measurement data and environmental conditions, the main hassle is the necessity of
prior knowledge and experience with deep understanding of the system. In the study
of Nybarg and Nielse, direct redundancy and nonlinear diagnostic observers are used
in the diagnosis of air intake system. It utilizes mean value modeling of the system
including throttle model and air dynamics. The throttle is modeled as second order
linear system, and air dynamics is derived from ideal gas law, whereas physical
knowledge about the air intake system and mathematical equations come into
prominence. After obtaining the residuals using mean value model, residual evaluation
is realized based on fuzzy thresholding [10]. The analytical models are another
common way used in literature for fault detection and diagnosis. Analytical models
utilize dynamical models of the system or components based on physical laws. These
dynamical models are used to generate residuals to decide if the system is faulty or
not. Analytical models can be examined by separating several different groups. These

groups mainly include parity relations, observers, and parameter estimation methods,



such as sliding mode observers or Kalman Filter. In the structured parity equation
approach, inputs such as sensor bias, actuator bias and disturbances coming from
simulation data, are used to get residuals in the system on the purpose of online
detection of sensors and actuator faults in automobile engine [11]. Using parity
equation is a cost-effective way with a trace of performance loss compared to more
complex methods. Even despite the difficulties on working with the physical systems,
due to the issues researchers do not face in the simulation environments. The exhaust
oxygen sensor, which is one of the main components subjected to study, has the main
difficulty on identification due to its nonlinear characteristic. A suitable method for
nonlinear systems is using sliding mode observers, as it is used to detect misfiring
faults [12]. However, a sufficient engine model is essential to be able to get satisfying
results with sliding mode observers. Structured hypothesis testing is another
methodology being used in literature. In the application of air path diagnosis in a diesel
engine, the study shows validated results on a vehicle in real-world driving conditions.
It is based on structured hypothesis testing, which observers used to calculate error
parameters [13]. Another structured hypothesis test based diagnosis is exemplified in
order to demonstrate that many different faults can be detected by the same diagnosis
system modeled and diagnosed by using different methods [14]. To achieve this goal,
several behavioral modes are generated. Mainly for cases such as no fault as well as
different faults that might be observed in the air intake like leakage of boost and
disconnection of the manifold pressure sensor. Since separate hypothesis tests are
needed for different behavioral modes, the burden of excess test numbers and
computation is the main drawback. Statistical methods to detect a failure of the UEGO
sensor provides a good way to separate different sensor faults under different
operation. However, this approach requires modeling the distribution function of the
difference between consecutive sensor measurements and its parameters. It also needs
to model a probability density function [15]. This non-intrusive statistical based
methodology involves two different steps based on the operation. In the first step,
parameters which belong to the distribution function in case of asymmetric operation
are calculated. Considering these parameters a decision is made whether a fault exists.
To be able to specify the fault type, a system identification process is applied for the
case of symmetric operation in the second step. According to central peak and shape
of the distribution functions, the type of the operation can be defined. Principal

component analysis (PCA) provides another approach for fault detection and diagnosis



of sensors utilizing Q-statistic and/or squared prediction error estimations [9]. In the
study two PCA models were build for diagnosis of air handling unit sensors. The main
idea is to minimize the impact of the system nonlinearity and improve the robustness,
while the Q contribution plot is used to isolate the fault. In such diagnostic structures
using only a single PCA model is not enough to be able to detect all sensor failures.
Thus, it is important to use extensive PCA models in parallel. Other than methods
mentioned above, estimating fuel film dynamics in the intake port of an Sl engine, by
using adaptive estimator, gives a good performance in predicting AFR by exploiting
extended Kalman filter [16]. However, this method needs to be extended for a wide
range of throttle operation. Fuzzy-based pattern recognition method for real-time
detection of abnormal injection pressure patterns is another approach revealed in the
literature [17].

In order to overcome the experimental and computational workloads, and decrease the
complexity of physical equations, applying data-driven methodologies can be another
solution. Especially when the topic comes to the nonlinear systems, neural network
based fault diagnosis can be efficient and robust as well. An example of the recurrent
neural network model is proposed to predict the air-to-fuel ratio to use in closed loop
fuel calculation, and diagnostic application in a port fuel injection spark ignited engine
[18]. In this study, it is observed that, by means of RNN based methods, robust system
models for a broad range of operating conditions can be obtained with no remarkable
delay and with high accuracy. Consequently, the behavior of the system dynamics
which are close to the real system can be achieved with no complicated calculations
and a high number of experimental data. Therefore, improving such data-driven
model-based approaches to detect sensor failure has become primary motivation for
this study. During the next chapters, it is focused to enhance a suitable diagnostic
methodology which does not require in-depth analysis of various data to be able to
calibrate system or control parameters. Therefore, firstly applicability of different
modeling approaches are investigated and then residual generation and decision
making are analyzed based on the likeliest model. Once the best model is decided,
ideally it requires less time to collect data on the vehicle or engine during calibration.
In this way, a calibration engineer can tune the necessary parameters for fault detection
and diagnosis easily. Consequently, there is less effort to understand the complex

physical equations of the system, with no high burden of statistical examinations.



2. OXYGEN SENSORS

2.1 Overview Of Oxygen Sensors

Oxygen sensors located in the exhaust layout are commonly used as sensing devices
in ICE systems. The primary purpose is to deduce the AFR via sampling the exhaust
gas from the engine. Thus, the feedback of the sensor is used to calculate the amount
of injected fuel by the closed-loop controller to provide a sufficient operating condition
to the TWC and allow it to convert the residual exhaust gases efficiently. Besides that,
the fuel consumption and engine power output are optimized as well. The sensor is
usually positioned after the turbocharger and before the TWC in turbocharged engines.
The high-temperature exhaust gases are leaving the cylinder during the exhaust stroke
under high pressure, then travel through the exhaust manifold before they come in
contact with the oxygen sensor placed ahead of the TWC. Another reason to have an
oxygen sensor in the exhaust layout is monitoring the performance of the TWC by
placing another sensor after the catalyst. The output signals of one sensor positioned
upstream, and one sensor downstream of the catalyst are compared to detect any

degradation in catalyst efficiency [19].

There are several different types of oxygen sensors used in literature for the
abovementioned purposes [20]. One of the most common types of sensors is the
switched type or binary oxygen sensor, also known as Heated Exhaust Gas Oxygen
(HEGO) sensor. This sensor signal shows whether the exhaust gas is the output of rich
or lean combustion. Another common oxygen sensor type is wideband oxygen sensor,
also called Universal Exhaust Gas Oxygen (UEGO) sensor. The UEGO sensor uses
relatively new technology compared to HEGO sensor. Differently, from the HEGO
sensor, it provides exact information of how lean or rich the combustion is. These two
different sorts of sensing devices can be used interchangeably in fuel calculations, as
well as in the same system for TWC diagnostics. Within the scope of this thesis,
UEGO sensors used for regulating the fuel supply is focused.



In this study, the considered sensor design is the Bosch LSU4.9 whose physical and
electrical structure is as shown in Figure 2.1 [21]. The reference and pump cells, the
measurement cavity, and the diffusion barrier are the crucial parts of the sensor. Within
a steel shell, the sensing element interacting with the exhaust gas of UEGO is
composed of yttria-stabilized zirconia (YSZ) to make use of its feature as a good
conductor of oxygen ions. Down the line, the ceramic sensing element of YSZ is
connected to platinum electrodes as well as wire leads. After flowing through the holes
in the steel shell the exhaust gases, consisting of oxygen molecules, contacts the
sensing element. The ambient air is forced to flow through the gaps between the
connecting cables while being heated to enable the ions to produce voltage. Due to the
difference in concentration of oxygen molecules in the exhaust gas and the ambient air
an ion exchange takes place. This exchange happens from the higher to the lower
concentration between the exhaust gas and reference gas. The actual measuring occurs
in the Nernst cell. As a result of the movement of oxygen ions from one platinum layer
to the other, a potential difference is generated in the Nernst cell, which enables a
current to flow. Generated voltage signals are fed to the engine control unit, or ECU
for short. The ECU compares the voltage signal with the pre-stored standard data to
decide whether the mixture is rich or lean.

Platinum-coated

barrier Electrical lead

Cylindrical construction Heater
Axis of symmetry

Figure 2.1: Electrical structure of Bosch LSU4.9 UEGO Sensor [21]

The standard way to model the UEGO sensor dynamics is considering a linear
response around stoichiometry and approximated by a first order transfer functions
with a delay [22]. The ECU has a cascaded AFR controller algorithm including inner
and outer control loops. The outer loop provides the set-point value of AFR for the
inner loop. The inner loop controller keeps the AFR at the set-point by using feedback

10



from UEGO sensor [23]. In this feedback loop, HEGO sensor is also used as a corrector
to enhance the robustness of UEGO sensor. The feedback component decreases the
steady-state error to minimize the differences between the desired AFR and the actual
AFR even though it is slower than feedforward component which might not always be
accurate since it may be controlled independently from the actual AFR [24]. The inner
loop controller is shown in Figure 2.2, and the normalized AFR and the overall open
loop dynamics are stated in equations 2.1 and 2.2 respectively whereas T stands for

the time constant and Tq stands for the time delay [15].
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Figure 2.2: Inner loop air-fuel ratio controller
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The time delay is the difference between the inclusion of fuel-air mixture into the
cylinder and when it is observed at the UEGO sensor. The first reason for this delay is
the physical plant delay due to the combustion dynamics while the second reason is
the delay of exhaust gas transportation [24]. In further steps of this study,
understanding of these controller loops and the time delay is essential to comprehend
the dynamics of the system.

2.2 Oxygen Sensor Failures

The functioning of the oxygen sensor may be affected by high thermal overload and
poor fuel quality causing poisoning. Besides other environmental influences, residues
in the exhaust gas like chemicals, soot, and oil as well as vibration on the exhaust after-
treatment line can result in severe damage. Eventually, the performance of the oxygen
sensors is diminished over the years. Like every other component on a vehicle, they

are subjected to a certain amount of aging and wear. Therefore, it is essential to monitor
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the performance of oxygen sensors to detect any failure. Using the sensor diagnostics,
in case of failure, the ECU can take further action and can inform the driver. This
prevents some side effects like increased fuel consumption with resulting higher CO2
emissions, possible engine and/or catalytic converter damage, poor driving

characteristics and the possibility of failure to pass the emissions testing.

2.3 Environmental Legislation

On-Board Diagnostic, or OBD in short, means that the diagnostic is done self-reliant
respectively stand-alone by the engine control unit. The OBD is divided into two
subgroups as OBD I and OBD II. While OBD I includes mainly electrical faults, OBD
Il stands for emission-related defects. The main drivers of OBD are the US which are
mainly the California Air Resources Board (CARB) and US Environmental Protection
Agency (EPA) and Europe certification authorities. The most stringent OBD
requirements, especially OBD |1 regulations, are featured by the CARB since 1996.
OBD regulations for Europe called EOBD adjust its requirements mostly based on US
standards. If any failure that may occur in one of the components of the vehicle affects
the emission performance of the vehicle, both of the emission regulation for US and

EU will require the diagnosis of this component.

Since the oxygen sensors have a crucial role in AFR control for the TWC to work with
the maximum efficiency by providing feedback from exhaust line, a well established
diagnostic function must monitor the sensor activity. Thus, the control unit may ensure
a proper mixture for the optimal operating conditions of TWC. That allows the TWC
to convert the harmful emissions efficiently at the end.

Regarding diagnosis of the dynamic behavior of oxygen sensors, OBD legislations
require the detection of two fault cases shown in Figure 2.3. The transient-time faults
consist in a reduction of the oxygen sensor signal gradient concerning the gradient of
the real lambda value, while the response-time defects include in a retarded reaction
of the oxygen sensor signal to lambda changes. Both kinds of faults have to be detected
regardless of the direction of the lambda changes. Said that either rich-to-lean or lean-

to-rich, as well as changes in both directions, are covered.
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Figure 2.3: Transient Time Fault, Response Time Fault

In this study, European legislation is taken into consideration especially while deciding

on faulty component and error thresholds.
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3. MODELING OF DYNAMICAL SYSTEMS

Modeling of dynamical systems provides convenient solutions in many different
working areas, since the models allow the internal dynamics of the systems to be
simulated and analyzed by mathematical representations, without physically building
the system. Also, it is possible to run models way more quickly. Thus they save time
and cost.

Dynamical system modeling can be performed by using physical laws and equations
or by system identification. System identification is a principal to obtain the system
model by use of the inputs and outputs of the system. In the present study, system
identification is examined to model the dynamical system of the oxygen sensor due to

the inconvenience of applying physical principals based equations.

3.1 System Identification

System identification is a process to find the mathematical functions correlating to the
inputs and outputs of a dynamical system [25]. This system might also include
disturbances. A system identification characterizes the behavior of the system and
internal dynamics such as delays, speed, oscillations, and so on. The model based on
experimental data should be suitable and compact with respect to the certain purpose
it is to be used for.

If the mathematical model is derived from physical principles, it is referred to white
box modeling approach. On the other hand, it is called black-box modeling approach,
if the relationship between input and output is estimated from experimental data only.
As a result of mixing the white box modeling principle and empirical estimation of the

model parameters is called as grey-box modeling.

A typical procedure of system identification includes input and output selection first.
Then an experiment should be designed to collect required input and output data. After
getting enough amount of experimental data, the model structure is selected from a

predefined set of possible solutions. As a next step, the relevant parameters of the
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model are estimated. Finally, the model is validated with a set of data which is different
than the first data used in modeling [25].

Difference or differential equations can describe the connections between the system
variables of the mathematical models. These models can be separated as time
continuous or time discrete, linear or nonlinear, deterministic or stochastic, etc. These
features determine the type of the equations. The steps to follow are different from the
systems having various characteristics. Therefore, before starting the model
construction, the specific characteristics of the system should be determined. For
example, the system should be classified as continuous or intermittent time, dynamic
or static system that changes with time or does not change with time. The methods
applied in the identification depend on the assumptions that are made on the model
structure [25]. To differentiate the system identification methods clearly, they can be
separated as nonparametric and parametric identification. To estimate the first
parameters of the already defined model, a parametric identification is often preferred
over the less accurate nonparametric model estimation [25]. Still its useful to apply the
nonparametric model estimation to gain more detailed pieces of information about the
system to help to define parameters like time delay, model order or if preconditioning
is required. Even though there are several different identification techniques
determined under parametric and nonparametric identification methods in the
literature, only the methods discussed in the scope of this study are highlighted in the
3.2 and 3.3. In the following two sections, linear and nonlinear system modeling
methods are detailed.

3.2 Linear System ldentification

A linear model complies with the principles of superposition and homogeneity. This

can be represented by the equations 3.1 and 3.2, respectively [25].

yi = f(u)

y2 = f(uz)
flug +ug) = fluw) + fwa) =1+, 3.1)
flaiuy) = a1 f(wy) = a1y 3.2)
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The system inputs are named with ul and u2 while y1 and y2 are the system outputs.
A discrete linear polynomial model can be described by the following equation 3.3:

y(k) =z"xG(z71,0) xu(k) + H(z™1,0) x e(k) (3.3)

With u(k) as input and y(k) as the output of the system. The disturbance e(k) of the
system is usually zero-mean. The transfer function of the deterministic part of the
system is formed with white noise G(z—1, 6) while the stochastic part of the system is

shown in the transfer function H(z-1, 6).

The deterministic transfer function specifies the relationship between the output and
the input signal. The stochastic transfer function determines the random disturbances
which affect the output signalfunction. In many cases, the deterministic part is referred
to system dynamics, respectively the stochastic components of a system to stochastic
dynamics. The backward shift operator term z—1 is defined by the equations 3.4, 3.5,
3.6.

z x(k) = x(k — 1) (3.4)
z7%2x(k) = x(k — 2) (3.5)
27 (k) = x(k — ) (3.6)

z-n defines the number of delay samples between the input and the output. G(z—1, 0)

and H(z—-1, 0) are rational polynomials as defined by the equations 3.7 and 3.8.

B(z,0)

-1 = —

G(z™,0) = A(z,0)+F (z,0) o0
1 gy - C@e)

H(z™,0) = A(z,0)*D(z,0) .

The vector 0 is the set of model parameters. Equations in the following sections of this
manual do not display 6 to make the equations easier to read. The equations from 3.9
to 3.13 define A(z), B(z), C(z), D(z), and F(z).

A(z) =1+ alz_1 + a22_2+...+aka2_ka (3.9)
By = b + byz™t + byz 2+, +by,  z”*b™D (3.10)
C(Z) = 1 + Clz_l + C2Z_2+. .. +CkCZ_kC (3'11)
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Dy =1+ diz7t +dyz7%+... +dkdz_kd (3.12)
Foy=14fiz '+ f22_2+...+fkfz_kf (3.13)
Equation 3.14 describes a general-linear polynomial model where ka, kb, kc, kd, and

kf are the model orders.

z "B,

— (
A2 = 5

) ) Bz C2)

Particular attention is given to the impulse response model which a nonparametric
identification method, state space model and finally auto regressive exogeneous
(ARX) model within the scope of linear system identification.

3.2.1 Impulse response model

An impulse in a discrete system specifies a physical impulse using unit-amplitudes for
the first sample period and zero-amplitudes all other times. To compute the output y(k)
of the system, the equation 3.16 can be used if the input signal u(k) and impulse

response h(n) is known.
Vi) = Zk=—co Uk—n) * iy + €y (3.16)

where e(k) is the disturbance of the system.

3.2.2 State space model

Difference or differential equations with auxiliary state vector are used within the

discrete state-space model. This model is described with the equations 3.17 and 3.18.
Xk+1) = Axey + Bugy + Ke (3.17)
Yy = Cxgey + Dugey + e (3.18)
where
e X: the state vector

e k: the model sampling time multiplied by the discrete time step, where the

discrete time step equals 0, 1, 2, ...
e t: the time for the continuous model

e A: the system matrix that describes the dynamics of the states of the system
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e B: the input matrix that relates the inputs to the states

e C: the output matrix that relates the outputs to the states

e D: the transmission matrix that relates the inputs to the outputs
e K: the Kalman gain.

Physical characteristics of a system are reflected by the state-space transfer matrices
(A, B, C, D). For describing multivariable systems the state-space model is known for
its convenience and therefore preferably used, especially in modern control

applications, as polynomial models focusing on multivariable systems.

3.2.3 ARX model

For reducing the general-linear-polynomial model to an ARX model, C(z), D(z), and

F(z) need to be equal 1.
AV = 27 " Bayumy + ey = BayUg-n) + €w) (3.20)

Y(t) + a(l)Y(t - 1) + et a(na)y(t - na) = blu(t - nk) .t bnbu(t — Nk —
n, +1) +e(t) (3.21)

For a discrete-time SISO system, y(t) is the output at time t whereas u(t) is the input at
time t, na represents the number of poles, nb represents the number of zeros plus
1, nk shows the input delay. Input delay means the number of samples before the input

affects the system output. e(t) is the white-noise disturbance.

It is possible to bias the estimation of the ARX model while using the coupling
between deterministic and stochastic dynamics, if the disturbance e(k) of a system is
not white noise. Especially if the signal-to-noise ratio is low, a way to minimize the
estimation error can be to set the model higher than the actual model order. However,
some dynamic characteristics, like the overall stability of the model, can be affected
by an increased model order. The method to identify the ARX model is a particular

case of the prediction error method called the least-squares approach.
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3.3 Nonlinear System ldentification

The principles of superposition or homogeneity do not comply with nonlinear models, unlike
the linear models. Real-world systems such as relays, switches and rate limiters are showing
nonlinear effects like saturation, dead-zone, friction, backlash, and quantization. Despite the
fact that most real-world systems are nonlinear, the use of a linear model, to simplify the
analysis procedure or even the design, can simulate most real-world systems. For defining an
identification method for a nonlinear system with effective function approximators, neural
networks are known to be reliable if there is a lack of physical insight about the system or
mathematical difficulties with physical modeling. Neural networks just require the behavior of
the system to be modeled, with no need for any physical modeling.

3.3.1 Neural network modeling

Over time many necessities of automatic control like to work with more and more complicated
systems and satisfy stricter design criteria have occurred. At this point, the neural network
modeling provides solutions to the previously mentioned concerns and gives the opportunity to
fulfill the requirements with less and less a priori knowledge of the plant dynamics. The
excellent performance for the approximation of nonlinear functions is the most critical

capability of neural networks because of their ability to learn.

Currently, neural networks based on multilayer feedforward, back propagation learning or more
efficient variations of this algorithm are used mostly for system identification in the industry
[27].

The basic units of neural networks are called neurons. A number of those highly interconnected,
identical or similar, simple processing units (neurons) are the structure of neural networks.
Those neurons are arranged in ordered topology and are doing the local processing. To acquire
the knowledge from their environment, they also have a learning algorithm using examples as

well as a recall algorithm to be able to use the learned knowledge later on.

Artificial neurons can be visualized as shown in Figure 3.1.
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Figure 3.1: Internal structure of an artificial neuron

A specific weight representing the strength of connections between units is added to each
connection and each input. The corresponding connections weights are multiplied with all the
inputs to compute the state when the neuron is activated as shown in equation 3.21.
Additionally, an extra and separate weighted input, the bias, is included and contains a constant

value of one.
Sj = NiWij * U (3.21)

Where ui represents all the inputs including bias. After the computing of the state, the neuron
needs to pass through its activation function. Activation function also normalizes the results.

Equation 3.22 gives the output.

vi = £(5) (3:22)
The activation functions can be summarized as:
Linear Function

fawy =au+b (3.23)

Sigmoid Function

1

fw = e (3.24)

Hyperbolic Tangent Function

2

for = rey (3.25)
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Rectified Linear Unit (ReLU) Function

faw = maxw) (3.26)

The components of an artificial neural network are the input and output layers as well as hidden
layers in between as in Figure 3.2. Starting with the first layer (as input layer) which receives
its inputs from the environment and provides its outputs as input for the next layer, until the
final layer is reached. The end of the process gives the output through the output layer.

data flow
— >

input 1 output 1

input 2 output 2

-

input layer hidden layers output layer

Figure 3.2: Multi-layer artificial neural network

The algorithm to make the learning possible by training, is called backpropagation. To produce
an output, an input is given first. The teaching part contains a comparison of the actual output
to what should have been ideal or target output for the specific input. To produce a more
accurate output layer, the network can adjust the weights by going backward, starting with the
output layer until the input layer is reached. When providing the same input to the network, it
will give an output much closer to the ideal one used to train to the network. This process needs
to be repeated until the calculated error between the network output and the typical output is at
an acceptable level. Figure 3.3 shows a typical learning structure.

input | Votant

Plant I

v

[ Learning Algorithm

Figure 3.3: Learning structure
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There are different types of learning in artificial neural networks. Supervised learning is the
learning method where both inputs and outputs are provided to the neural network whereas in

unsupervised learning only inputs are provided.
There are seven steps within the workflow of the general neural network design process:
e data collection
e network creation
e network configuration
e Initial values for weights and biases
e network training
e network validation or post-training analysis

e network usage

3.3.2 NARX

The NARX or nonlinear-autoregressive-exogenous model is one of the feedforward neural
networks. The NARX network is used to model time series as a special form of the linear ARX
[28]. This model relates both, the past and current values of the inputs as well as the past values
of the time series, to the present output of a time series. Figure 3.4 represents the generalize
NARX network [28].

inputs weights
u(t)

yit)

activation
function

Figure 3.4: NARX network
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Equation 3.27 shows the formulation of NARX network.

Yo =1 (Y(t—1); V(t=2)s o+ oo 1 Y(t-ny) W(t—1) U(e—2)» e - 'Y(t—nu)) (3.27)

3.4 Proposed Method

Designation the most suitable model for the system is the essential problem of the system
identification. First, the input and output data should be observed, and then a convenient model
should be searched among a set of candidate model structures. To be able to select the most
suitable model, some criteria should be set. Therefore, the abovementioned linear system
identification techniques are first tested, and then neural network based nonlinear system

identification technique is applied to obtain a sufficient model of the oxygen sensor.
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4. MODELING OF OXYGEN SENSOR

4.1 Experimental Design

The project studied in this thesis is subject to the EOBD regulations. For this reason,
the error cases of lag in sensor response during the transition for both directions, rich-

to-lean and lean-to-rich have been taken into consideration.

In this application, the system identification is handled for a UEGO sensor on a light
duty gasoline vehicle with different approaches. As shown in Figure 4.1, the UEGO
sensor is located after the turbocharger and before the TWC in the exhaust line. After
the TWC, there is a Gasoline Particulate Filter (GPF) followed by a HEGO sensor.
The UEGO sensor measures the oxygen concentration in the exhaust gas resulting

from the combustion of the air and fuel mixture.

UEGO HEGO
Turbocharger ¢ v

O —7/// \\« 8| TWC GPF

0
O

Engine

Figure 4.1: lllustration of the experimental setup

The ECU calculates the amount of air and fuel involved in the combustion based on
the torque calculation algorithm and other parameters affecting the combustion
dynamics. A wide variety of data is collected on the vehicle before system
identification, so that the model to be constructed can work properly for different
combustion conditions. Instead of testing on the road, data is collected in chassis
dynamometer under different steady state and transient driving maneuvers. Figure 4.2,
Figure 4.3 and Figure 4.4 show the vehicle speed, engine speed and torque traces of

the data used in this study.
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Figure 4.4: Steady State Mapping Measurement

Calibration software ATI is used to collect data on the vehicle. MATLAB is used to

process the data for system identification and model-based diagnostic.

4.2 Input Selection for System Identification

One of the most important parameters to get a sufficient system identification is
choosing the correct inputs. Otherwise, it is possible to face obtaining irrelevant and
unsatisfactory results. Firstly, the physics of the system is considered, and signals that
might influence the output are determined. In the current application of UEGO sensor,
the system is a Multi Input Single Output (MISO) system. The output is the predicted
UEGO sensor signal. Regarding inputs, first, some general parameters such as vehicle
speed, engine speed, and torque are selected. Then, air and fuel mass are added to the
input lists as main contributors of the combustion, to get more accurate and general
outputs. By taking the physics of the combustion into consideration, a reflection of the
environmental effects and disturbances to the system is possible. The ideal gas
equation is used to add the parameters affecting the amount of air in the cylinder to the
input list. Equation (4.1) and equation (4.2) show the general gas equation and

standardized air mass calculation respectively.
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p*xV=mx*Rx*T 4.2)

Mstandardized = PRo.- ;foh ,  p0=1013 hPa, T0=273 K (4.2)

In equation (4.1), p and V stand for pressure and volume respectively whereas m stands
for mass, R is gas constant, and T is temperature. Vh in Equation (4.2) is the cylinder
displacement volume. When this ideal gas equation is referred to the combustion
chamber, the air mass in the combustion chamber, mcomb,air can be shown by

equation (4.3).

Pcomb- Vh (Pman— Dres)- Vh
m . —_— = 4-3
comb,air R. Tcomp R.Tcomb ( )

Where pcomb iS partial air pressure in the combustion chamber, pres is partial pressure
of internal residual gas and pman is intake manifold pressure. Also, Tcomb Stands for gas

temperature in the combustion chamber.

As a result, it is seen that Mass Air Flow (MAF) sensor signal, manifold temperature,
manifold pressure, and throttle angle might influence the system identification process
regarding air mass calculation. Finally, rail pressure is also taken into consideration
since it affects the fuel quantity injected into the combustion chamber and the lambda
controller output due to its influence on closed loop controller as well. After deciding
on possible input parameters, Principal Component Analysis (PCA) method is applied
to specify the final inputs to use in system identification process. PCA is one of the
common techniques in input selection due to its positive impact on improving the
robustness of the identification [30]. PCA helps to find which variables are most
strongly correlated with each component. During the calculations, PCA assumes that
the input data set is a linear combination of the variables. According to PCA, the
components with larger variance correspond to remarkable dynamics whereas the
lower variation corresponds to noise. In this thesis, the PCA Toolbox for MATLAB is

used for the analysis of the input data [30].

Inputs for PCA analysis are vehicle speed, engine speed, torque, air mass, fuel mass,
intake manifold temperature and pressure, throttle valve position, MAF output, rail
pressure and lambda controller output whereas the only output is UEGO sensor signal.

It is seen in Figure 4.5 that PC1, PC2 and PC3 cover approximately 94% of the total

variance.
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Figure 4.5: Variations of the components

Table 4.1 represents the correlations between abovementioned input parameters. In the
Table 4.1, the numbers having large absolute magnitudes are the most strongly

correlated parameters with the relevant component.

Table 4.1: Eigenvector analysis of the correlation matrix.

Variables PC1 PC2 PC3 PC4 PC5 PC6 PC7Y PC8 PC9 PC10 PC11
Torque 0.38 0.06 -0.04 012 -010 -0.02 010 -040 -0.53 0.61 0.00

ES';)%L” 001 068 -003 -008 006 -001 017 -007 -001 000 071
Air 038 009 -003 010 -008 -00L 029 -029 -029 -076 0.00
Fuel 038 010 -002 011 -009 00l 035 -027 078 016 000
MAF 036 -018 -002 007 -002 -026 -082 -0.22 016 -011 000
Rail 034 -015 -014 036 -046 041 -006 057 -004 002 000

Pressure

Intake

Manifold 0.8 004 029 -070 003 057 -012 -005 000 000 0.00
Temperature
Intake

Manifold 0.35 0.04 0.19 -038 -0.14 -0.65 0.18 0.47 -0.06 0.05 0.00
Pressure

Throttle 0.36 0.04 -0.11 018 086 0.09 003 029 -0.03 0.04 0.00

Lambda 50 008 092 038 004 002 00l 000 -00L 000 0.00
Controller
Vsepi'g('f 001 068 -003 -008 006 -001 017 -007 -001L 000 -0.71

Loading plot in Figure 4.6, can be used to define which variables have the most

significant effect on each component as well.
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Figure 4.6: Loading plot of PC1 vs. PC2

The range for loading values is from -1 to 1. The loading values near to -1 and 1 shows
the variable strongly affects the component. On the other hands, loading close to 0
means that the variable has a weak impact on the component. In this loading plot, air,
fuel, torque, MAF, Throttle, Rail pressure, intake manifold pressure, and temperature
have large positive loadings on component 1, so this component mainly identifies the
UEGO sensor output. Engine speed and vehicle speed have large negative loadings on
component 2. By considering the PCA results and combustion dynamics together,
initial input variables are defined as air, fuel, MAF, rail pressure, intake manifold

pressure, intake manifold temperature and lambda controller output.

4.3 System ldentification with Linear System Approach

The system is a procedure to construct the mathematical model of a system. A model
refers to a series of mathematical equations between inputs and outputs of a system.
Usually, such model structure involves unknown parameters. The relevant model is
often a dynamic system. When the system is a dynamic system, the magnitude of the
outputs consists in both the instantaneous values of the inputs and the past behavior of
the system. And system identification makes use of the system's premeasured inputs

and outputs.

System identification procedure includes steps that should be followed one by one.

Firstly, the inputs and outputs of the system are measured either in time or frequency
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domain. Then a candidate model structure is chosen. An estimation method which is
suitable for the preselected model structure is applied to calculate the unknown
parameters. Finally, the obtained model and the parameters are evaluated to see the
suitability with the application. In case of getting unsatisfying results, another model
structure might be selected. This modeling approach also used in this thesis is called
black-box modeling. System Identification Toolbox in Matlab is used for system

identification steps.

As mentioned in the previous section, input selection is an essential step before starting
the system identification procedure, but it is not enough. These preselected inputs
should process and prepared for the identification. As a first step, data can be plotted
and checked with bare eyes to see if there are any outliers in the data. Besides, the data
needs to be filtered in case of noise in the system. In this study, the Fourier Transform
Analysis is used to check the existence of noise. The Fourier Transform analyzes the
signal in the frequency domain. In Figure 4.7, the amplitude vs. frequency plot shows
which frequencies are dominant. A specific frequency that involves noise is
determined in this plot, and a suitable filter can be constructed to filter the noise in the
system out. The data is filtered for the frequency range 2.4-2.5 Hz based on the analysis

result.
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Figure 4.7: Fourier Transform Analysis Results
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After removing the outliers, and filtering the data, the scale of the different variables
should be considered. Since the input parameters define different physical features like
pressure, mass flow, temperature and so on, there are big differences between the
magnitudes of the signal. Therefore, both input and output data series should be
normalized to a common scale. Otherwise, the differences in a variable range might
affect the modeling performance negatively. At this stage, the z-score normalization
method shown in equation 4.4 is used for each input and output parameters.

z; = Xi~ Xmean (4.4)

S

Where z; is the normalized value of input Xi, Xmean iS the mean value of the relevant
signal and s is the standard deviation. Another preprocessing operation is detrending
the data. Detrending means removing means, offsets or linear trends. The detrending
provides more accurate linear models because of eliminating the random differences
between the input and output levels. After all these preprocessing steps, data is split as

identification and validation dataset.

In black-box modeling, the process is usually based on a trial-and-error method by
estimating the model parameters for different model structures and finding the best
model reflecting the input-output relationship. The best way is the starting with simple
structures and then moving to more complex models. At this step, model order and
model delay can be estimated as well. In this study, various input combinations are
also tried next to different model structures. As the starting point, Quick Start function
of the System Identification Toolbox is used. The Toolbox uses minimization criterion
to estimate model parameters by minimizing the deviation between the model response
and the measured output. By using Quick Start, State-space model using n4sid, fourth
order ARX model and step response over a period, the impulse algorithms are
estimated. In Table 4.2, the performance values of these models for various inputs are

listed. 100 indicates a perfect fit, and O is a poor fit.
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Table 4.2: Linear System Identification Results from 1000 RPM to 3100 RPM.

Air Air Air Air Air Air Air Air Air
Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel Fuel
MAE MAF MAF ue ue MAF
Rail Rail Rail Rail
Pressure Pressure  pressure Pressure
Intake
Model Manifold Intake N:nt?ke
: Pressure : anifold
Input (s): Manifold Pressure
Intake Pressure ki
Manifold Intake Intake
Temperature - Manifold
Manifold  Temperature
Lambda Lambda  Lambda Lambda  1emperatur
Controller Controll  Controller Controller €
er
E\)At?t(;ilt' Oxygen Sensor Output
:?rzgpuésnie imp: imp: imp: imp: imp: imp: imp: imp: imp:
Model: 32 23 21 35 34 22 34 18 16
Discrete
time —
identified n4s6: n4s6: n4s8: n4s8: n4s6: n4s8: n4s5: n4s5: n4s6:
State — 29 15 15 31 31 11 30 12 13
Space
Model:
ARX arxgs: arxgs:  arxgs: arxgs: arxgs: arxgs: arxgs: arxgs: arxgs:
Model: 21 9 9 20 20 10 20 10 9

As seen in Table 4.2 and Figure 4.8 model performance values with the max value of
40% are not sufficient for system identification. Therefore, data is split in smaller

portions based on engine speed ranges and processed separately.
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Figure 4.8: Best-Fit Analysis of the data range from 1000 RPM to 3100 RPM.
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The measured and simulated model output signals for the input configuration, giving

the best results shown for different engine speed ranges in Table 4.3 - Table 4.7. Even

though the results are improved for different engine speed ranges, there are only slight

differences with max 50% best-fit value.

Table 4.3: Linear System Identification Results from 1000 RPM.

Air Air Air Air Air Air Ai Ai Air
Fuel Fuel Fuel Fuel Fuel Fuel F "I F ”I Fuel
MAF MAF MAF ue ue MAF
Rail Rail Rail Rail
Pressure Pressure  pressure Pressure
Intake
Model Manifold Intake Intgke
: Pressure ) Manifold
Input (s): Manifold Pressure
Intake Pressure
i Intake
Manifold Intak °
Temperature ntaxe Manifold
Manifold  Temperature
Lambda Lambda  Lambda Lambda  Yemperatur
Controller Controll  Controller Controller 9
er
g&‘;ﬂt_ Oxygen Sensor Output
IRn;EF';IcI)?se imp: imp: imp: imp: imp: imp: imp: imp: imp:
Model: 8 27 31 22 26 20 26 14 5
Discrete
time — n4s6
identified n4s5: n4s7: ) n4s6: n4s6: n4s7: n4s5: n4s5: n4s6:
State — 29 31 3'0 32 29 35 32 32 16
Space
Model:
ARX arxgs: . axa : : : : : :
gs: arxgs: . arxgs: arxgs: arxgs: arxgs: arxgs: arxgs:
Model: 28 25 26 29 19 20 13 32 25
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Table 4.4: Linear System Identification Results from 1500 RPM.

Air Air Air Air Air Air Aj Aj Air
Fuel Fuel Fuel Fuel Fuel Fuel F "I F Irl Fuel
MAE MAF MAF ue ue MAF
Rail Rail Rail Rail
Pressure Pressure  pressure Pressure
Intake
Model Manifold Intake N:nta}ke
: Pressure . anifold
Input (s): Manifold P
Intake Pressure o551
; Intake
Manifold Intake 8
Temperature Manifold Manifold
anio Temperature
Lambda Lambda  Lambda Lambda  1emperatur
Controller Controll  Controller Controller €
er
?)At?t(:)ilt' Oxygen Sensor Output
:?rzgpuésnie imp: imp: imp: imp: imp: imp: imp: imp: imp:
Model: 27 25 20 31 30 27 35 21 11
Discrete
time —
identified n4s5: n4s7: n4s5: n4s8: n4s8: n4s5: n4s n4s5: n4s5:
State — 25 11 -4 30 28 10.5 8:31 13 8
Space
Model:
ARX arxgs: arxgs:  arxgs: arxgs: arxgs: arxgs: arxgs: arxgs: arxgs:
Model: 27 10 1 25 26 20 27 12 11
Table 4.5: Linear System Identification Results from 2000 RPM.
Air Air Air Air Air Air . . Air
Fuel Fuel Fuel Fuel Fuel Fuel Ifdrl lf\lrl Fuel
MAF MAF MAF ue ue MAF
Rail Rail Rail Rail
Pressure Pressure  pressure Pressure
Intake
Model Manifold Intake Inta}ke
Input (s): Pressure . Manifold
put (s): Manifold P
Intake Pressure ressure
A Intake
Manifold Intake a
Temperature Manifold Manifold
anito Temperature
Lambda Lambda  Lambda Lambda  |emperatur
Controller Controll ~ Controller Controller €
er
'\Olll?t?)ilt' Oxygen Sensor Output
:?nggpl:cl)iese imp: imp: imp: imp: imp: imp: imp: imp: imp:
Model: 49 31 31 52 52 30 52 23 21
Discrete
time —
identified n4s7: n4s6: n4s5: n4s8: n4s7: n4s6: n4s8: n4s5: n4s6:
State — 43 29 27 52 47 27 51 26 24
Space
Model:
ARX arxgs: arxgs:  arxgs: arxgs: arxgs: arxgs: arxgs: arxgs: arxgs:
Model: 35 8 8 39 22 10 40 1 15
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Table 4.6: Linear System Identification Results from 2600 RPM.

Air Air Air Air Air Air Aj Aj Air
Fuel Fuel Fuel Fuel Fuel Fuel F "I F Irl Fuel
MAE MAF MAF ue ue MAF
Rail Rail Rail Rail
Pressure Pressure Pressure Pressure
Intake ‘
Manifold Intake
Model v Intake Manifold
Input (s): ressure Manifold P
Intake p ressure
. ressure Intake
Manifold Intake 8
Temperature Manifold Manifold
anito Temperature
Lambda Lambda  Lambda Lambda lemperatur
Controller Controll  Controller Controller e
er
?)At?t(:)ilt' Oxygen Sensor Output
:?rzgpuésnie imp: imp:  imp: imp: imp: imp: imp: imp: imp:
Model: 16 29 27 35 33 28 35 15 -7
Discrete
time —
identified n4s7: n4.s7 n4.56 n4s6: n4s6: n4s8: n4s7: n4s8: n4ss:
State — 31 y ' 29 30 25 30 18 20
Space 23 24
Model:
arxq  arxq
ARX arxgs: . N arxgs: arxgs: arxgs: arxgs: arxgs: arxgs:
Model: : ’ .
33 25 25 26 26 25 30 26 225
Table 4.7: Linear System Identification Results from 3100 RPM.
Air Air Air Air Air Air . . Air
Fuel Fuel Fuel Fuel Fuel Fuel Ifdrl Iflrl Fuel
MAE MAF MAF ue ue MAF
Rail Rail Rail Rail
Pressure Pressure  pressure Pressure
Intake ‘
Manifold Intake
:\AOdEI . Pr Inta}ke Manifold
nput (s): essure Manifold P
Intake Pressure ressure
; Intake
Manifold Intake o
Temperature fold Manifold
Manifo Temperature
Lambda Lambda Lambda Lambda Temperatur
Controller Controll  Controller Controller e
er
('\Dﬂl?t(;ilt' Oxygen Sensor Output
:?nggpl:cl)zese imp: imp:  imp: imp: imp: imp: imp: imp: imp:
Model: 24 24 15 37 31 6 36 -2 -12
Discrete
time — n4s6
identified n4s8: n4s9 . n4s8: n4s6: n4s6: n4s7: n4s6: n4s7:
State — 44 125 ’ 39 40 28 41 10 16
Space 30
Model:
ARX arxgs: arxq  arxq arxgs: arxgs: arxgs: arxgs: arxgs: arxgs:
Model: 26 s:25 5120 32 32 28 40 32 28
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The best-fit analyses of the model output for different engine speed ranges are also

shown in Figure 4.9 — 4.13.
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Figure 4.9: Best-Fit Analysis of the modeled output for 1000 RPM
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Figure 4.10: Best-Fit Analysis of the modeled output for 1500 RPM
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Figure 4.12: Best-Fit Analysis of the modeled output for 2600 RPM
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Measured and simulated model output
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Figure 4.13: Best-Fit Analysis of the modeled output for 3100 RPM

There might be several reasons why the results are not sufficient so far. The ARX or
state-space model may be unstable. These two models may ignore the effect of the
feedback signal from the output to the input. The disturbances may have a significant
impact on the system, and so they may need to be modeled as well. Higher order
models might be required. The nonlinearities in the system might not be modeled with

linear system identification.

At this point, firstly, the system delay is calculated, and the calculated system delay is
compared with the raw data. Then, a few different model orders are tried for ARX

model.

Figure 4.14 shows the graphic to select the best-fit ARX model. In Figure 4.14, the x-
axis is the total number of poles, na, nb and zeros. The y-axis is unexplained output
variance in percentage. The unexplained output variance means the portion of the
output is not explained by the model. Three bars highlighted on the plot in green, blue,
and red show a type of different best-fit criterion. The red bar is the best-fit minimizing
the sum of the squares of the difference between the validation data output and the
model output. The green bar indicates the best-fit minimizing Rissanen MDL criterion,

whereas the blue bar is for the best-fit minimizing Akaike AIC criterion. Among all
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these three bars, the red bar has the overall best-fit. Besides, system delay, nk is

calculated as three here.
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Figure 4.14: ARX model structure selection
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In Figure 4.15, the sensor output and model outputs of various ARX models with

different system orders are shown.
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Measured and simulated model output
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Figure 4.15: Measured and simulated ARX model outputs for different system
orders

Since the results are far away from any acceptable values to improve with linear system

identification method, nonlinear system identification methods are decided to be used.

4.4 System ldentification with Neural Network

In this part of the thesis, nonlinear system identification is used for modeling since the
linear model approaches being discussed in the previous section cannot capture the
system dynamics. As a nonlinear system identification method, Neural Network

approach is used.

One data set is used to train the recurrent neural network model, and one data set is
used for validating the model. The PCA calculations and the results being obtained
based on different inputs configuration in the previous sections are considered to select
the inputs of the recurrent neural network model. As a result, system input parameters
are selected as air, fuel, MAF sensor signal, rail pressure and lambda controller output.
The output of the system is the oxygen sensor signal. Before moving through the
training process, data normalization is an essential step. Better results and significantly
fast calculations can be provided because of normalization of input data [31]. Min-
max normalization method is used to preprocess the input data by using equation 4.5.

g, — xi—minx) (4.5)

i max(x)—min(x)
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Figure 4.16 shows the normalized inputs and output variables of the neural network.
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Figure 4.16: Normalized inputs and output variables of the neural network

Open loop structure where the delayed target data is used as an additional input is
selected. In the open loop network structure, the output is generated based on the
common time extent of the input signals and target output data. Other parameters of
neural network structure to have a successful model are number of hidden layers,

number of neurons and the training methods.

The selection of a proper number of hidden layers and an adequate amount of neurons
is a significant problem to have a good model. In case of less hidden layers and neurons
than necessary, considering the complexity of the system, the model might fail to meet
the target output on a large scale of the data. This case is called as underfitting. On the
other hand, in case of having too many hidden layers and neurons might cause
overfitting. Overfitting causes to have output values that are so tightly fit a limited set
of input data. Therefore, such model might have issues to fit another additional data
set other than training data. Trial-and-error method to define the numbers of the hidden
layers and neurons is a well-accepted way in the literature. The trial-and-error
approach starts with training and testing the neural network by using a small number
of hidden layers and neurons. Then according to the results, the number is increased.

These attempts continue until getting sufficient model outputs [32].
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Training algorithms are another crucial factor to enhance the model performance.
Different algorithms might provide performances in a wide range due to their varied
characteristics. Even though there are many different training algorithms available,
only four of them are used to compare the performances in this study. These are
Levenberg-Marquardt Backpropagation (LM) algorithm, Gradient Descent with
Momentum and Adaptive Learning Rate Backpropagation (GDX) algorithm, Bayesian
Regularization Backpropagation (BR) algorithm, and Scaled Conjugate Gradient
Backpropagation (SCG) algorithm. The LM is a second-order numerical optimization
technique. The advantage of LM is to combine features of Gauss-Newton and steepest
descent algorithms. The LM has better convergence features than the conventional
backpropagation algorithm with its very efficient performance when the network has
maximum few hundredweights. The performance of GDX training algorithm depends
on the learning rate. Besides, there is a momentum coefficient input since the GDX
combines the advantage of adaptive learning rate and momentum coefficient. The BR
training algorithm considers the goodness of fit next to network architecture.
Therefore, the BR usually has the successful performance to overcome the overfitting
problems in the neural network structure. Firstly, the BR minimizes the combination
of squared errors and weights. After that, the BR specifies the appropriate
combination. Thus, the network generalizes better. The conjugate gradient algorithms
are mostly expensive regarding computations because they need that the network
output to all training inputs is computed several times for each search. However, the
SCG training algorithm avoids this time-consuming line search and reduces the
number of computations performed in each iteration [33]. The entire dataset is divided
into three different parts. The first 70% of the dataset is used to train the network while
the next 15% is used for validation and last 15% is used for testing. Table 4.8 shows
the results of correlation coefficients and performances for a wide variety of neural
network structures with different number of hidden layers, number of nodes, training
methods and delay values. After this trial-and-error method, the best NN model with

high convergence performance is selected.

Since the system delay is calculated as three and validated by using raw data in
previous sections, the delay value is started with three in neural network structure as

well. Then the increased delay values are applied to the system to improve the
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performance output. In Table 4.8 correlation coefficients refers to the relationship
between input dataset and output.
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Table 4.8: NN Model performances of different configurations.

Correlation Coefficients MSE Input Output # of # of LR ™
Delay HL Neurons
Training Val. Test

1 0.735 0.678 0.690 0.013 3 y(k) 1 10 0.2 Im
2 0.760 0.695 0.653 0.013 3 y(k) 1 15 0.2 Im
3 0.752 0.705  0.706  0.012 3 y(k) 1 20 0.2 Im
4 0.784 0.696  0.673  0.012 3 y(k) 2 10-10 0.2 Im
5 0.748 0.708 0.690 0.012 3 y(k) 2 15-15 0.2 Im
6 0.666 0.664 0.651  0.015 3 y(k) 1 10 0.2 gdx
8 0.679 0.655  0.631  0.015 3 y(Kk) 1 20 0.2 gdx
9 0.679 0.654  0.635  0.015 3 y(k) 2 10-10 0.2 gdx
10 0.668 0.664  0.652  0.015 3 y(k) 2 15-15 0.2 gdx
11 0.705 0.754  0.639 0.014 3 y(k) 1 10 0.2 br
12 0.756 0.770 0.649 0.012 3 y(K) 1 20 0.2 br
13 0.889 0.891  0.876  0.006 4 y(k) 1 20 0.2 Im
14 0.932 0.865  0.797  0.005 5 y(K) 1 20 0.2 Im
15 0.908 0.908 0.886  0.005 5 y(k) 1 20 0.2 scg
16 0.919 0.896  0.861  0.005 5 y(k) 1 30 0.2 Im
17 0.910 0.908 0.869  0.005 5 y(k) 1 30 0.2 scg
18 0.927 0916 0872  0.004 5 y(K) 2 15-15 0.2 Im
19 0.966 0.904  0.745  0.005 5 y(k) 2 20-20 0.2 Im
20 0.946 0.896  0.787  0.005 5 y(k) 2 15-15 0.4 Im
21 0.908 0.905 0.881  0.005 5 y(k) 2 15-15 0.1 Im
22 0.927 0914  0.874  0.004 5 y(k) 2 20-20 0.2 br
23 0.925 0.914  0.884  0.004 5 y(k) 2 20-20 0.2 scg
24 0.952 0.914  0.880  0.003 5 y(k) 2 30-30 0.2 scg
25 0.804 0.841  0.787  0.009 5 y(k) 2 20-20 0.2 gdx
26 0.970 0.940  0.884  0.002 5 y(k) 2 13-13 0.2 Im
27 0.963 0.937  0.905  0.002 5 y(k) 2 12-12 0.2 Im
28 0.961 0.952  0.905  0.002 5 y(k) 2 8-8 0.2 Im
29 0.965 0.945  0.903  0.002 5 y(k) 2 10-10 0.2 Im
30 0.939 0911  0.823  0.004 8 y(k) 1 20 0.2 Im
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The value can change from 0 to 1. While 1 indicates that two variables are perfectly
correlated a 0 means poor correlation. While choosing the best-fit model, a trade-off
between overfitting to training data and underfit to test and validation data must be
considered. If the accuracy of the training data set is increasing, but the accuracy of
validation dataset stays same or decreases, then that means the current neural network
structure overfits. In addition to correlation coefficients, mean squared error (MSE)
calculation is used to measure the performance of the model structure. The MSE takes
the errors between the target value and the model output and squares them to remove
any negative signs. Then the MSE calculates the average of a set of errors. The smaller
MSE value indicates having a better fit. According to the results of the models 1, 6 and
11, the LM gives the best performance compared to GDX and BR for this application.
On the other hand, if models 14-17 are analyzed, it is seen that there are no significant
differences in the performance of LM and SCG. In this case, LM is recommended due
to the speed of data processing. When models 18, 20, 21 is analyzed, it is seen that
increase learning rate improves the correlation coefficients for training dataset, but
also decreases the performance of test and validation sets. Therefore, the learning rate
is selected as 0.2. Also, it is observed that increasing the delay value from three to five
enhances the performance significantly as past values of the system have a substantial
impact on the results. Using two hidden layers instead of only one hidden layer gives
better results for different configurations of the number of neurons, delays, learning
rates or training algorithms. While deciding on the number of neurons, the
optimization between overfitting and improved overall results are taken into
consideration. As a result, the Model 28 is selected to use for model-based diagnostics
calculations. Figure 4.17 represents the model structure. Figure 4.18— Figure 4.20

show the performance outputs of the Model 28.

y(t)

h

Figure 4.17: The chosen NARX model structure
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Figure 4.19: Comparison of the model output and measured signal for test and

validation data sets
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5. MONITORING OF OXYGEN SENSOR

Chapter 5 firstly describes how to use artificial neural network model of the oxygen
sensor to generate residuals after getting an accurate-enough model. As a second step,
Chapter 5 illustrates how the residuals can be evaluated to develop a sufficient fault
diagnosis approach for the oxygen sensor. Figure 5.1 represents the overall process of

residual generation and evaluation.

Inputs

Generation Making Detection

Model ]
Residual Decision Fault

Oxygen
Sensor Output

Figure 5.1: Block diagram of residual generation and evaluation process

5.1 Residual Generator

Residuals indicate the amount of deviation of the estimated signal from the actual
system output. Most of the diagnostic approaches in literature are based on the residual
evaluation. For this purpose residuals in the system, at different working ranges and
conditions, need to be produced. The neural network-based model of the oxygen sensor
is the fundamental component in residual generator step. The model structure is
composed as an open loop in the training phase in Chapter 4. To be able to use the
model with other datasets of a functional and damaged sensor, the model is converted
to a closed loop system. In the closed-loop system a delayed output connection is used
directly, instead of the delayed target input. Figure 5.2 shows the closed loop model

structure.
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Figure 5.2: Closed-loop model structure of the oxygen sensor

By using closed-loop model and new datasets, the residual generator is designed as

shown in Figure 5.3.

. UEGO
rail pressure
—

lambda controller output

e

Figure 5.3: Residual generator

)\ stands for the actual signal of oxygen sensor on the vehicle whereas A' represent
model output for sampling time t. The residuals according to the residual generator is

calculated as equation 5.1.
r(t)= (1) - A(t) (5.1)

The magnitude of residuals must be large enough and last long enough. So, the fault
can be detected robustly. Residual generator collects the output signals of the actual
component and model for a specific range of time or event and calculates the error

between these two signals. Afterward, the residuals are analyzed for decision making.
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The main neural network is modeled by using steady-state data in different operating

points of engine speed and torque. During residual generation, this steady-state data-

based model is used with two different sets of transient emission cycle data. The first

data-set is collected during WLTC with a good oxygen sensor. The second data-set is

gathered again in a WLTC, but by using a faulty sensor this time. Emission limits are

considered to decide the degree of malfunctioning of the faulty sensor.

The normalized values of vehicle speed, engine speed, and oxygen sensor outputs are

in Figure 5.4 and Figure 5.5 for good and faulty sensors respectively.
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Figure 5.4: Normalized data of WLTC with the good sensor
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Figure 5.5: Normalized data of WLTC with the faulty sensor

5.2 Residual Evaluation

Residual evaluation is necessary to decide if the system is faulty or functioning in an
acceptable range. The residual evaluation process involves assessment of residual for
a predetermined range of data by comparing to a threshold value. The threshold can
be a single value, a varying signal, or a variety depending on the application. In the
ideal case, the residual is expected as zero for a component or system with no fault.
However, in real-practices, this is almost impossible. Unknown disturbances,
dynamics that cannot be modeled, modeling errors and the degree of the precision of
input measurements are the factors causing non-zero residuals for adequately working
components. Even though there is no residual because of the functioning component,
the residual might differ from zero due to these factors. Therefore, a robust residual
evaluation algorithm is essential to prevent any misdetection. Besides, the residual
evaluation should not identify any malfunctioning component as a component working

correctly.

Several ways are studied in the literature for robust residual assessment. Statistical data
processing, adaptive thresholds, fuzzy clustering, pattern recognition data correlation
are some of the standard residual evaluation methods [35], [36], [37], [38]. The

residual evaluation algorithm directly affects the performance of fault detection.
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Therefore, the selected function must be suitable and applicable for the relevant

component.

In this study, fault detection with limit checking is focused. A statistical method based

on the estimation of mean and variance of the normal distribution is investigated.

5.2.1 Statistical Approach

The main idea is based on the comparison of the probability distribution of the
residuals for functional and malfunctioning components. For this purpose, an
appropriate area is chosen on WLTC, and the comparison is realized for that specific
operating region. Figure 5.6 shows the normal distribution plots of residuals for
functional and malfunctioning components. The differences concerning mean and

standard deviation are seen clearly.
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Figure 5.6: Probability distributions of residuals of OK and not-OK oxygen sensors

The mean is attained by the addition of values of each sample for a specific range of
data and then dividing the total value by the number of the samples, as shown in the
equation 5.2. Any change in mean value or average of the residuals is related to the

accuracy.
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N .
p=2200 N=123, (5.2)
The standard deviation shows how the samples spread around the mean value. The
smaller value of the standard deviation of the residuals reflects a good precision.

Equation 5.3 indicates the estimation of the standard deviation.

1

N
o=, (i —w?) (5.3)
In this study, the calculation of mean and standard deviation is based on taking 50
samples after monitoring function is enabled into account. After estimating the
characteristic features such as mean and standard deviation values of the normal

distributions, a quantitative threshold must be set to decide about the component.

In order to get a more robust evaluation of the residuals, an approach where two

different thresholds are defined is built.
Ju < |lur|l A Js < 0, = Fault detection (5.4)

Ju and Js stand for threshold values for mean and standard deviation respectively,
whereas - is the mean value of the residuals in a specified data range and or is the
standard deviation of the residuals. Equation 5.4 and the Figure 5.7 represent the

residual evaluation approach.
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Figure 5.7: Decision-making process

The decision-making process is based on two criteria. The calculated mean value of
the residuals is compared to a predefined threshold J,, and the standard deviation of
the probability distribution is compared to another predefined threshold value Js.
Based on the comparison results the final decision is given to the oxygen sensor.
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6. CONCLUSION AND RECOMMENDATIONS

Oxygen sensors on aftertreatment systems of motor vehicles play an essential role in
emission control and fuel economy. Due to the impact on emissions, the authorities
like CARB, EPA or EU apply strict rules regarding on-board diagnostics of the oxygen
sensors. Therefore, the monitoring of the sensor and detection the slow response due
to a malfunctioning sensor is essential as well. Damaging of the sensor might occur
due to aging, environmental influences, temperature fluctuations of the exhaust gas or

residues in the exhaust gas such as soot and oil.

In literature, there are many different methods for fault detection and diagnosis on
various areas including automotive industry and related components. However, most
of the proposed techniques are questionable regarding applying to the real
implementations in life, even though they recommend sophisticated and successful
approaches in the lab environment with virtual data. The main reasons usually are due
to physical limitations in dynamic systems during measurements and data collections,
the required excessive calibration effort for the parameters involved in the proposed
solutions or the complexity of the proposed method. In the meantime, the diagnostics
method for oxygen sensor used by the manufacturer in the current project show good
performance regarding fault detection, but in a limited operating area. Also, the present
method requires extreme calibration effort coming with excessive costs due to the
usage of chassis dynamometer and vehicle, besides it is time-consuming. Furthermore,
the calibration engineer must have a certain level of experience to be able to process
the measurements and interpret the collected data in a right way. Considering the time
constraint, a qualified engineer has a significant impact on meeting calibration delivery

targets before the start of production by using the current diagnostic method.

This study has presented an accurate-enough and successful design of the diagnostic
system for monitoring the oxygen sensor with less effort to collect data and calibrate
the monitoring function in less time. The entire steps of design, including the modeling
of the sensor, residual generation, and decision making has been discussed. First of all,
the system identification methods are investigated to model the oxygen sensor with
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the black-box approach. The black-box approach provides the system to be modeled
with no previous knowledge about the physical background of the sensor or deep
understanding of the system dynamics. For this purpose, a wide range of steady-state
data is collected on chassis dynamometer for only once. The PCA approach is applied
to see the correlation between different possible input signals and sensor output. A
group of inputs is specified as initial input set. Then, an overview of varying system
identification approaches is given with the theory behind of each method. Initially,
different linear system identification methods with differing configurations of input
are analyzed to see the applicability to the relevant system. At this point, it is
understood that the results of PCA give an idea about what the correct inputs of the
model should be. However, it does not have to be exactly same in real application. In
addition, the linear system identification does not give sufficient results regarding
modeling of the oxygen sensor, even with different input selections. Splitting the
whole data into smaller pieces, based on engine speed range, does not improve the
outcomes either. Therefore, nonlinear system identification approach is the next focus
as a further step. NARX neural network model is used as a nonlinear system
identification method. Different neural network structures including a variety of
number of hidden layers, number of neurons, learning rates, training algorithms, input
delay are investigated for fault detection. The best performance is obtained by using
two hidden layers with eight neurons, while the system delay is five and the training

algorithm is chosen as Levenberg-Marquardt.

Designing of the monitoring function follows the obtaining a successful model.
Residual generation and evaluations are the successor steps. One WLTC ran with well-
functioning sensor and data collected whereas the next data is collected using a faulty
sensor in the same emission test cycle. Two different residual sets are generated for
these two data-sets by using the neural network model. In the residual evaluation
process, the statistical approach based on mean and standard deviation calculations is
taken advantage of decision making between faulty and healthy oxygen sensors. The
design of neural network models for healthy and malfunctioning sensors is proved to

be applicable for fault detection in such nonlinear system.

In further studies, the environmental conditions like temperature in hot and cold

climates, different altitudes, or piece to piece variations can be considered to build a
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more robust model while collecting data at the beginning. Also, more data can be
gathered with sensors having a different level of degradations. Regarding residual
evaluation method, different approaches known in literature such as fuzzy clustering

can be investigated to compare the performances.
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