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ABSTRACT

During the past years, there has been an increasing interest in studying oscilla-
tion and nonoscillation criteria for dynamic equations and systems on time scales that
harmonize the oscillation and nonoscillation theory for the continuous and discrete
cases in order to combine them in one comprehensive theory and eliminate obscurity
from both.

We not only classify nonoscillatory solutions of dynamic equations and systems
on time scales but also guarantee the (non)existence of such solutions by using the
Knaster fixed point theorem, Schauder - Tychonoff fixed point theorem, and Schauder
fixed point theorem. The approach is based on the sign of nonoscillatory solutions.
A short introduction to the time scale calculus is given as well.

Examples are significant in order to see if nonoscillatory solutions exist or not.
Therefore, we give several examples in order to highlight our main results for the set
of real numbers R, the set of integers Z, and ¢™° = {1,q,q? ¢3,...}, ¢ > 1, which are

the most well-known time scales.



ACKNOWLEDGMENTS

Firstly, I would like to express my sincere gratitude to my advisor, Dr. Elvan
Akin, for her continuous support of my Ph.D. studies and related research, and for her
patience, motivation, and immense knowledge. Her guidance helped me throughout
my research and writing of this thesis. I would also like to thank to the chair of
the Department of Mathematics and Statistics, Dr. Stephen Clark, for his support
during my Ph.D. and for providing oppurtunities for me to enhance my knowledge.

I would also like to thank the rest of my thesis committee members, Dr.
Martin Bohner, Dr. David Grow, Dr. John Singler, and Dr. Gregory Gelles for
their insightful comments and encouragement to widen my research from different
perspectives. Especially, speacial thanks go to Dr. Martin Bohner for his great
comments and contributions that lead me to complete my dissertation during the
Time Scale seminars. My sincere thanks also go to Dr. Matt Insall, Dr. Lean Hall,
Dr. V. A. Samaranayake, and Mrs. Stephanie Fitch for their support during the
great time that I spent in the mathematics department. I would also like to thank
Dr. Ismail U. Tiryaki for his tremendeous support and help with my research. I will
forever be thankful to my friends Sahika Sahan, Giilsah Yeni, Aziz Sen, Ozgiin Kamil
Sahin, Hiiseyin Sahiner, Efecan Karademir, Cagatay Atmaca, Elif Esra Ozyurt, Haci
Mehmet Gilizey, and my American friends, Brittany and Tom Cuchta, Judy Beckett,
Tiilin, and Clayton Price, who made me enjoy living in Rolla during my Ph.D. studies.

Last but not the least, I would like to thank my family: my parents, my
brother, and my little niece, Sude, for supporting me during my education and dur-
ing my life in general. Another special thanks the Ministry of Turkish Republic for
supporting me during my master’s and Ph.D. studies Final thanks go to Mirag, who

was about one year old and died last month, for his inspiration.



vi

TABLE OF CONTENTS

Page
PUBLICATION DISSERTATION OPTION ... ... fi1l
ABS T R AC T . fiv]
ACKNOWLEDGMENTS .. Ay
LIST OF TABLES . .. e e e e e
LIST OF SYMBOLS . ... bi¢
SECTION
1. INTRODUCTION . . . . ... [l
1.1. PRELIMINARIES . ... ... ... ... ... ........ [l
1.2. INTRODUCTION TO DYNAMIC EQUATIONS AND SYS-
TEMS . . . . 0]
PAPER

I CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF NONLIN-

EAR DYNAMIC EQUATIONS ON TIME SCALES ................ ... ... 11l
ABSTRACT . . . . e [
1 INTRODUCTION . . . .. oo . 12]

2 CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF (I.1)
INMTAND M~ . . . 17
3 INTEGRAL RELATIONS . . . . . ... .. ... ... .. ... 24
4  EXAMPLES . . . . ... 311
5 CONCLUSIONS . . .. e 32]
REFERENCES .. 3061

II ON NONOSCILLATORY SOLUTIONS OF EMDEN-FOWLER DYNAMIC
SYSTEMS ON TIME SCALES ... ..o 38



vii

ABSTRACT . . . o 38
1 INTRODUCTION . . .. ..o o 391
2 THECASEY,=00AND Z, <00 . . ... . ... 46}
3 THECASEY, <o AND Z, <00 . . . .. i i i
4  EXAMPLES. . . . . b8
REFERENCES .. (1

IIT NONOSCILLATION CRITERIA FOR TWO-DIMENSIONAL TIME-SCALE

SY S M S 62]
ABSTRACT . . . . 62]
1 INTRODUCTION . . . . .. o e 631

2 EXISTENCE OF NONOSCILLATORY SOLUTIONS OF (III.1) IN
My . 40F. . AW .. A% . A . . . .. ... . . ... 6]

3 NONEXISTENCE OF NONOSCILLATORY SOLUTIONS OF (III.1)
INME .. 48 . A . A .. = 9 @ ..... ... e
4 EXAMPLES. . . .. ... .. &1l
5 CONCLUSIONS . . . . . s &4
REFERENCES .. 5]

IV .ON NONOSCILLATORY SOLUTIONS OF TWO - DIMENSIONAL NON-

LINEAR TIME - SCALE SYSTEMS WITH DELAY ....................... =6
ABSTRACT . . oo =6
1 INTRODUCTION . . .. ..o 87
2 EXISTENCE OF NONOSCILLATORY SOLUTIONS OF (IV.1) IN
M4YAND M~ . oo 00
2.1  THE CASE A(ty) = 00 AND B(tg) <00 . . o o oo 00
2.2 THE CASE A(ty) < 00 AND B(tg) <00 . . o v oo 07
2.3 THE CASE A(ty) < 00 AND B(tg) =00 . . o o oot 07
3 NONEXISTENCE OF NONOSCILLATORY SOLUTIONS OF (IV.1)
IN M*AND M~ .. [0
3.1  THE CASE A(ty) = 00 AND B(tg) <00 . . o o o oo .. 01l
32  THE CASE A(ty) < 00 AND B(tg) =00 . . . . oo .. 102
4 CONCLUSION . . ..o, 106



REFERENCES .. 1101
SECTION

2. CONCLUSIONS . . . . e 111

REFERENCES .. 1106l



Table

LIST OF TABLES

1.1 Examples of Most Known Time Scales . . . . .. .. ... ... ...

1.2
1.3
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

Classification of Points . . . . .

Derivative and Integrals for Most Common Time Scales . . . . . . . .

Classification for in M* ..
Classification for in M~ .
Classification for in M* .
Classification for in M+ .

Classification for ([II.1f) in M~
Classification for (IV.1)) in M+

Classification for ([V.1]) in M~
Classification for (IV.32) in M™*

1X

Page

1121

115



LIST OF SYMBOLS

A Time Scale

A Set of Real Numbers

A Set of Natural Numbers
A Set of Integers

A Set of Complex Numbers
The Set {1,q,q¢% ¢>,...} for ¢ > 1.
Empty Set

Forward Jump Operator
Backward Jump Operator
Graininess Function

Delta Derivative Operator
Forward Difference Operator

q - Difference Operator



1. INTRODUCTION
1.1. PRELIMINARIES

The theory of time scales was first introduced by Stefan Hilger in his Ph.D.
thesis in 1988. The main idea is to unify and extend the continuous and discrete
theories that are used in mathematical models in population dynamics, economics,
and engineering. For example, if the time scale is chosen as the set of real numbers,
the general results give the results in differential equations, while if the time scale is
chosen as the set of integers, the results hold for difference equations. In this section,
basic definitions and the theory of time scales are introduced based on the books by
Bohner and Peterson, see [14].

A time scale T is an arbitrary nonempty closed subset of the real numbers R

that has the following properties:
(i) T and () are closed subsets of T,

(ii) Any intersection of arbitrarily many closed subsets of T is a also closed subset

of T,
(iii) Any union of finitely many closed subsets of T is a closed subset of T.

The most well known examples for time scales are R, Z, and ¢"°. However,

Q, R\Q, C, and the interval (0, 1) are not time scales.

Definition 1.1. [T}, Definition 1.1] Let T be a time scale. For t € T, we have the

following definitions:

(i) The forward jump operator o : T — T by

o(t):=inf{seT: s>t} forall teT.



(i) The backward jump operator p: T — T by

p(t):=inf{seT: s<t} forall teT.

(11i) The graininess function u: T — [0,00) by

u(t) :=o(t)—t forall teT.

We define inf ) = supT. If o(t) > t, then t is called right - scattered, while if
p(t) < t, t is called left - scattered. If ¢ is right and left - scattered at the same time,
then we say that ¢ is isolated. If ¢ < sup T and o(t) = t, then ¢ is called right - dense,
while if ¢ > inf T and p(t) = ¢, we say t is left - dense. Also, if ¢ is right and left -
dense at the same time, then we say ¢ is dense.

Tables and show some examples of the forward and backward jump op-
erators and the graininess function for most known time scales and the classifications

for a time scale point.

Table 1.1 Examples of Most Known Time Scales

T o(t) p(t) p(t)

R t t 0
t+1 t—1 1

q"° tq : (¢ —1)t




Table 1.2 Classification of Points

t <o(t) t is right-scattered

t> p(t) t is left-scattered
p(t) <t <o(t) t is isolated

t=o(t) t is right-dense

t = p(t) t is left dense
p(t) =t=o0(t) t is dense

If supT < oo, then T" = T\(p(supT),supT], and T" = T if otherwise.
Suppose that f : T — R is a function. Then f7 : T — R is defined by f7(t) =
f(o(t)) forall teT.

Definition 1.2. [7], Definition 1.10] For any e, if there exists a 6 > 0 such that

[f(o(t) = £(s) = fA(0)(0(t) = s)| < elo(t) —s| forall se(t—6t+0)NT,

then f is called delta (or Hilger) differentiable on T and f* is called delta derivative
of f.

Theorem 1.3. [1j, Theorem 1.16] Let f : T — R be a function with t € T*. Then

(1) If f is differentiable at t, f is continuous at t.

(11) If f is continuous at t and t is right-scattered, then f is differentiable at t and

(iii) If f is differentiable at t, then f(o(t)) = f(t) + u(t) f2(t).



The following theorem presents the product and quotient rules on time scales.
Theorem 1.4. [T], Theorem 1.20] Let f,g : T — R be differentiable at t € T". Then

(1) If fg: T — R is differentiable at t, then
(f9)2(t) = F2(0)g(t) + f(a(t)g>(t) = f(t)g>(t) + [2(t)g(a(t).

(i1) If g(t)g(o(t)) # 0, then % is differentaible at t with

A PO - Fd )
(g) O = e

The following concepts must be introduced in order to define A - integrable

functions.

Definition 1.5. [1j, Definition 1.58] f : T — R is called rd-continuous, denoted
by Cia, Cra(T), or Cuq(T,R) if it is continuous at right dense points in T and its left
sided limits exist as a finite number at left dense points in T. Also the set of functions

f T — R which are differentiable and whose derivative is rd-continuous is denoted

by C%dv ng(T), or C%d(Tv R)'
Theorem 1.6. [1], Theorem 1.60] Let f: T — R.

(1) If f is continuous, then f is rd-continuous.

(1) The jump operator o is rd-continuous.

Also, Cauchy integral is defined by

/bf(t)At = F(b) — F(a) forall a,beT.

The following theorem presents the existence of antiderivatives.



Theorem 1.7. [1], Theorem 1.74] Every rd-continuous function has an antideriva-

tive. Moreover, ' given by

F(t):/tf(s)As for teT

15 called an antiderivative of f.
Remark 1.8. [1], Theorem 1.76] If f» >0, then f is nondecreasing.

Theorem 1.9. [7j, Theorem 1.77] Let a,b,c € T,a € R, and f,g € C,q. Then the

following holds:
(i) [ 1(af(®) + (ag(®)] = a [, F()AL+ [ ag(t)At.
(ii) [P F()AL = — [* f(H)AL,
(iii) [7F()At = [C F(OAL+ [° f(t)AL.
(w) [ f(t)At =0.
Table shows the derivative and integral definitions for the most known

time scales for a,b € T. Finally, we finish the subsection by the following fixed point

theorems.

Table 1.3 Derivative and Integrals for Most Common Time Scales

v e | [
R | o sty

z | asm iif(t)
g || A1) t [% F()u(t)




Theorem 1.10 (Schauder’s Fixed Point Theorem). [50, Theorem 2.A] Let M be a
nonempty, closed, bounded, convex subset of a Banach space X, and suppose that

T : M — M is a compact operator. Then, T has a fized point.

The following theorem is the alternate version of the Schauder’s fixed point

theorem, see [50].

Corollary 1.11. Let M be a nonempty, compact, convexr subset of a Banach space
X, and suppose that T' : M — M 1is a continuous operator. Then, T has a fized

point.

The Schauder fixed point theorem was proved by Juliusz Schauder in 1930. In
1934, Tychonoff proved the same theorem for the case when M is a compact convex
subset of a locally convex space X. In the literature, this version is known as the

Schauder - Tychonoft fixed point theorem, see [45].

Theorem 1.12 (Schauder - Tychonoff Fixed Point Theorem). Let M be a compact
convez subset of a locally convex (linear topological) space X and T a continuous map

of M into itself. Then, T has a fized point.
Finally, we provide the Knaster fixed point theorem, see [3§].

Theorem 1.13 (Knaster Fixed Point Theorem). If (M, <) is a complete lattice and
T : M — M is order-preserving (also called monotone or isotone), then T has a fized

point. In fact, the set of fixed points of T 1s a complete lattice.

1.2. INTRODUCTION TO DYNAMIC EQUATIONS AND SYSTEMS

Asymptotic properties of systems of first order dynamic equations on time
scales have recently gotten a lot of attention that combines continuous and discrete
analyses, which are related but in distinct areas. One special case of systems of

dynamic equations is the Emden-Fowler type equation. The equation has several



interesting applications such as in astrophysics, gas dynamics and fluid mechanics,
relativistic mechanics, nuclear pyhsics, and chemically reacting systems. For example,
the fundamental problem in studying the stellar structure for gaseous dynamics in
astrophysics was to look into the equilibrium formation of the mass of spherical clouds

of gas for the continuous case, proposed by Kelvin and Lane, see [47] and [36]. They

1d [ ,du
— 22 n— 1
t2dt( dt)+u 0 (1)

considered the equation

for n = 1.5 and n = 2.5. This equation is referred to as the Lane - Emden equation,
see [16] - [17]. At that time, astrophysicists were interested in equation (1| for initial
conditions %(0) = 1 and «/(0) = 0. The mathematical foundation for the study of
such an equation was made by Fowler in a series of four papers during 1914 - 1931,
see [29] - [32]. The other types of dynamic equations on time scales are quasilinear,
half - linear and self - adjoint equations. Classification for nonoscillatory solutions of

the quasilinear dynamic equation

[a()®,(2%)] ™ = b(t) f(27) (2)

is considered in [4] and [5], where a,b € C,q(T, RT) and f : R — R is continuous with
uf(u) > 0 for u # 0 and ®,(u) = |ufP"?u with p > 1. When T = R, equation (2)) is

reduced to a quasilinear differential equation, see [21]

while if T = Z, it is reduced to a quasilinear difference equation, see [22]

Alap®y(Azy)] = by f(zk11)-



The following half - linear dynamic equation

[a(t),(x%)] ™ = b(t) Dy (27) (3)

is considered by P. Rehak in [48], where f = ®,, in equation . The continuous and

discrete cases of equation ((3|)

and

A fax®p(Axy)] = bpPy(Th41)- (5)

are considered by Dosly in [27] and by Rehak in [49], respectively.
In case p = 2 in equations , @) and , we obtain Sturm-Liouville dynamic,

differential, and difference equations

and
A (akAxk) = bk;karl,

respectively, see [14], [34], and [2]. Finally, the case a(t) =1,p=2and f = ®,, ¢ > 1
in equation ([2)) is considered by E. Akin and J. Hoffacker in [§] and [9].

In the first paper, we consider

[a(t)]2 ()] sgn ] ™ = b(t)[27 (1) sgna“(¢),



where f = ®,(z7) in equation for g = f+1and p = a + 1, and deal with
the (non)existence of nonoscillatory solutions by using fixed point theorems and the
convergence/divergence of some improper integrals of coefficient functions a and b.
Systems of dynamic equations are more fit for physical applications. There-
fore, classification of nonoscillatory solutions is important in order to have enough
information about the behavior of solutions in a long term. For example, the study of
discrete systems has been motivated by their applications in modeling for population,
extinction, and neuron dynamics because their computational costs are very low.
Motivated by [20], we study the classification and existence of nonoscillatory

solutions of the Emden - Fowler system of first order dynamic equations

where «, 5 > 0 and a,b € C,q ([tg, 00), RT).

Systems of delay dynamic equations take a lot of attention in all areas such
as population dynamics and epidemiology in biological sciences. For instance, when
the birth rate of preys is affected by the previous values rather than current values, a
system of delay dynamic equations is used, because the delta derivative at any time
depends on solutions at prior times. Therefore, we consider a system of first order

delay dynamic equations

(7)

where a’vb € C’r‘d ([t()?OO)TuRJr)’ T € Crd ([t()? OO)T7 [t()a OO)T)’ T(t) <t and T(t) — 0
ast — oo, f and g are nondecreasing functions such that wf(u) > 0 and ug(u) > 0 for

u # 0 in order to make observations for the (non)existence of nonoscillatory solutions.
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We also consider the special cases 7(t) =t in in order to show the asymp-
totic behaviors and the (non)existence of nonoscillatory solutions in M+ and M~
based on the sign of such solutions. Classification of nonoscillatory solutions when

T =R and T = Z is given in [40] and [39] as

o = a(t) f(y(1) Az, = anf(ya)

y = —b(t)g(x(t)), Ayn = —bng(zn),

respectively.
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I. CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF
NONLINEAR DYNAMIC EQUATIONS ON TIME SCALES

ABSTRACT

We study the asymptotic behavior of nonoscillatory solutions of nonlinear dynamic
equations on time scales. More precisely, all eventually monotone solutions of non-
linear dynamic equations can be divided into several disjoint subsets by means of
necessary and sufficient integral conditions. Examples are given to illustrate some of

our main results.
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1. INTRODUCTION

This paper deals with the asymptotic behavior of solutions of the nonlinear

dynamic equation
[a(t)|z2 (1) sgn 2] * = b(t) |2 (1)|® sgn 2° (1), (L1)

where a,b € Cq ([to, 00)r, RT) and «, 8 > 0. A time scale, denoted by T, is a closed
subset of real numbers. Throughout this paper, we assume that T is unbounded above.
By a solution we mean a delta differentiable function z satisfying equation such
that [a(t)|z®(t)|*sgnz®] € Cl;, where the set of rd-continuous functions and the
set of functions that are differentiable and whose derivative is rd-continuous will be
denoted by C,q and Cl;, respectively. We also assume that z(¢) is a proper solution
on [to, T)r, i.e., x(t) exists and z(t) # 0 on [to, T)r. Whenever we write t > t;, we
mean that ¢ € [t;, 00)r := [t;,00) N T.

Equation reduces to the nonlinear differential equation, see Cecchi, Dosla,

Marini and Vrko¢ [§], and Tanigawa [15],
[a()|2'(1)|* sgna’] = b(t)|z(t)|" sgnx (I.2)
when T = R, and the nonlinear difference equation, see Cecchi, Dosla, Marini [9],
A(an,|Az,|“sgn Azx,) = bn|xn+1|ﬁ SEN Xy i1 (1.3)

when T = Z.
Such dynamic equations are studied by Akin-Bohner in [I} 2, 8], by Erbe,
Baoguo and Peterson in [12] and Akin-Bohner, Bohner, and Saker in [4]. Such studies

are motivated by the dynamics of positive radial solutions of reaction-diffusion (flow
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through porous media, nonlinear elasticity) problems, see Diaz [11] and Grossinho and
Omari [13]. Our results and methods extend those stated and used in the continuous
case in [I] and [§], and in the discrete case in [9} [10], see also references therein.
Our goal is to investigate the asymptotic behavior of nonoscillatory solutions
of by certain types of integrals depending on a,b,a and S. In Section 2, we
classify eventually monotone solutions in two types, introduce the sub-classes that
are obtained by using equation ([.1)) and show the existence and non-existence of
nonoscillatory solutions of . In Section 3, we investigate the convergence and
divergence of more general integrals and use those results in Section 4 to show the
co-existence of solutions of in these sub-classes when a@ > 8, a < 8 and a = f3.
Finally, we construct examples to highlight some of our results in the last section.
An excellent introduction of time scales calculus can be found in [6] and [7]
by Bohner and Peterson. Therefore, we only give the preliminary results that we use

in our proofs.

Theorem 1.1. [0, Theorem 1.75]. If f € C.q and t € T", then

Theorem 1.2. [0, Theorem 1.77] If a,b € T and f,g € Cyq,then

/f — (f9)(b) /%

or

/f — (f9)(b) /f

Theorem 1.3. [6, Theorem 1.90] Let f : R — R be continuously differentiable and

suppose g : T — R s delta differentiable. Then fog: T — R is delta differentiable
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and the formula

(f o g)(t) = { [ 1 60+ i) dh} g2 (1)

holds.

Theorem 1.4. [6, Theorem 1.98] Assume v : T — R is strictly increasing and
T = v(T) is a time scale. If f : T — R is an rd-continuous function and v is

differentiable with rd-continuous derivative, then for a,b € T

b v(b) d
/ F()A ()AL = / (f o) (s)As.

(a)

Theorem 1.5. (Integral Minkowski Inequality) [5, Theorem 2.1] Let (X, 4, ua) and
(Y, Z,va) be time scale measure spaces and let u, v and f be nonnegative functions

on X,Y, and X XY, respectively. If p > 1, then

|:/X (/Y f(z, y)v(y)duA(y))>p U(x)d/m(x)} %

< /Y ( /X fp<x,y>u<x>dmx>)’l’v(ym(y) (14)

holds provided all integrals in exist. If 0 <p <1 and
p
/ </ fUdVA) udpp > 0, / fvdva >0 (1.5)
x \Jy Y
then is reversed. If f < 0 and and

/ fPudpa >0
X

hold, then is reversed, as well.
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Theorem 1.6. (Hélder’s Inequality) [5, Theorem 1.3] For p # 1, define ¢ = p/(p —
1). Let (E, %, ua) be a time scale measure space. Assume w, f, g are nonnegative

functions such that wfP wg?, w(f + g)P are A — integrable on E. If p > 1, then

[ wtroaans < ([ worwmsn) ([ oosoasn)’. oo

If0 < p <1and [Lwgldus > 0, or if p < 0 and [wfPdus > 0, then is

reversed.

We also use the algebraic inequality
(a+ b)P < 2P(aP + bP) (L.7)

fora >0, b >0 and p > 0, see [14].
It is shown by Akimm-Bohner in [I] that any nontrivial solutions of equation (1)

on [tg, 00)r is eventually monotone and belongs to one of the following classes:

M™ := {z is a solution of (1) : 3¢, > t, such that x(t)z*(t) > 0 for t > t,},

M~ := {x is a solution of (1) : z(t)a>(t) < 0 for t > t,}.

For equation , M™ can be empty when T = R, see [I]. However, it is not
true when T = Z, see [9]. In addition, M~ can be empty when T = R, see [I], while

this is an open problem in the case T = Z. In this paper, we study the solutions of

in M* and M~ described by the following integrals:

n= g [ () ([oems) o 08

ko [0 ([ () 2) o 1)

Q=
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=i [ () ([ o) e 110
o [0 ([ () ) a)

T 1 é
Jy = lim (_> At
T—o0 to CL(t)

T

T—o0 "
0

We now present the convergence and divergence relationships between above

integrals. One can prove the followings similar to [2, Lemma 2.1].

Lemma 1.7. For the integrals Jy, K1, Jo, Ko, J3 and K3, we have the following rela-
tionships:

a) If J; < 00, then J3 < 0o.

b) If Ky < oo, then K3 < 0.

c) If J; = o0, then J3 = o0 or K3 = co.

d) If Ki = oo, then J3 = o0 or K3 = oc.

(
(
(
(
(e) J1 < o0 and Ky < 0o if and only if J3 < oo and K3 < 00,
(f) If Jy < o0, then K3 < 00.

(g) If Ky < 00, then J3 < 0.

(h) If Jy = 00, then J3 = oo or K3 = o0.

(i) If Ky = o0, then J3s = 00 or K3 = c0.

(

j) Jo < 00 and Ky < 0o if and only if J3 < oo and K3 < 0.
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2. CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF
(I.1) IN M+ AND M~

In this section, we obtain the existence and non-existence of solutions of ([.1)
in M* and M~ depending on J;, K, and Jy, K,, respectively.

For the convenience, we denote
eV = a(t)]|z®]* sgn 22, (1.12)

so-called the quasi-derivative of x. Let x(t) be a proper solution of (1) in M* on
[to, 00)T, and without loss of generality assume that z(¢) > 0 for [to, c0)r. By equation
we have that x!!(¢) is increasing for ¢ > ;. Then either there exists ¢, > t, such
that 20(t) > 0, t > t; or 2l(t) < 0, t > to. If 2(t) > 0, t > t;, then 22(¢) > 0
for ¢ > t; and z!U(¢) tends to a positive constant or infinity as ¢t — co. Clearly,  has
a positive limit or infinite limit. Similarly, if x((¢) < 0, ¢ > t,, then z2(¢) < 0 for
t >ty and so z!'1(¢) tends to a non-positive constant as ¢ — oo while () goes to a
non-negative constant ¢t — oo.

So in the light of this information, we can have the following lemmas:

Lemma 2.1. For positive real numbers ¢ and d, M™* can be a divided into the fol-

lowing sub-classes according to the asymptotic behavior of solution x of and

2

ze M lim |z(t) =¢, lim |20(@#)| =d¢,

t—o00 t—o00

t—o00

MY, = {x € M*: lim |z(t)] = oo, tlim 120 (t)] = d},

’ —00

TENE _ : [/ _

{eerr m el = e Jim |a0(0)] = oo},

{x e M*: lim |z(t)] = oo, lim [z(t)]| = oo}
t—o0 t—o0
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Lemma 2.2. For positive real numbers ¢ and d, M~ can be divided into the following
sub-classes according to the asymptotic behavior of solution x of and z:

ze M : lim |z(t) = ¢, lim |zl ()|:d},

t—o00 t—o00

z e M :lim |z(t) =¢, lim |zl 0}

t—o0 t—o00

t—o00 t—o00

{
{

M&B:{xEM’: lim |z(t)| = 0, lim |2M(¢) d}
{ 2

ze Mt lim |z(t) =0, lim [zM(t)] =0

t—o00 t—o00

In the literature, any eventually nontrivial solution z € M is called regularly
(weakly) increasing if at least one of tliglo lz(t)], tlggo |z (2)| exists finitely. Other-
wise, it is called a strongly increasing solution. Similarly, a solution in M 5 is called
reqularly (weakly) decaying while a solution in Mg, is called strongly decaying.

The following theorem gives us the existence of proper solutions of in

sub-classes of M based on the integrals J; and K.

Theorem 2.3. For solutions of in M, we have the followings:
(a) Ji < oo and Ky < oo if and only if M 5 # 0.
(b) J1 < o0 and K1 = oo if and only szgoo # 0.
(c) If B%(Z) then J; = oo and K; < oo.
(

d) If J1 = Ky = oo, then every solution in M™ belongs to M,

Proof. (a) Suppose that there exists a solution of in Mg 5. Without loss of
generality we assume that z(t) > 0 for t > ¢;. Then x[!l(¢) is increasing for ¢ > t;. By
[2, Theorem 3.1], if  has a finite limit, then J; < 0o. So it is enough to prove that
K, < oo. Since zl!(t) is increasing for t > t,, z!!(t) > M, where 21!(t;) = M € R*.

This implies that
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Integrating the last inequality from ¢; to ¢ yields

1

z(t) > M= /tlt (ﬁ)a As, t >t

or

1

27(t) > M= /tt (ﬁ) CAs, t>1 (L.13)

by the monotonicity of . Taking the 5" power of both sides of (I.13)) and multiplying

the resulting by b yield

1 B
; 1
o 2 / ( 1 )“‘
()" b(t) > Mab(t — | As| ,t>t
(@ ()" b(t) <>L . :
From ([.1) we get
(1] A B t 1 é ’
x it > Mab(t /(—) As| , t>1t.
|: ( )} ( ) " G(S) 1
Finally, integrating the last inequality from ¢; to ¢ yields
t s 1 1 B
1 s / / ( )
xH(t) > Me b(s AT| As, t >t. 1.14
( ) t1 ( ) [ t1 CL(’T) ' ( )

Since z!" has a finite limit, K; < co from the above inequality.

Conversely, suppose that J; < oo and K; < oo. Without loss of generality
assume that x(t) > 0 for ¢t > ¢;. By [2, Theorem 3.1], there exists a solution z of
l} such that lim x(t) = ¢, where 0 < ¢ < co. So it is enough to show that z!(#)

t—o00

converges to a finite number as ¢ — oo. Since x(t) has a finite limit, there exists
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to > t; such that x7(t) < c for t > t5. Integrating equation ([I.1)) from ¢, to t gives

t

(1) = 20(ty) + /t b(s) (27(s))” As < zlU(ty) + cﬁ/ b(s)As. (I.15)

to t2

By Lemma [L.7(b), K3 < co. Therefore, taking the limit of both sides of as
t — oo proves the assertion.

(b) Suppose that there exists a solution x of (L.1) in M7 . It is enough to
show that K; = oo since we show in Theorem (a) that if there exists a bounded
solution of (L.1)), then J; < co. By Lemma 1.1(b), it is enough to show that K3 = cc.
Without loss of generality, we assume that z(¢) > 0 for ¢ > ¢;. Integrating equation

(1) from ¢, to ¢ yields

t

@) = 2Nty + / tb(s) (27(s))° As < 2U(ty) + (27(1))” / b(s)As, t > 1.

t1 t1

Taking the limit of both sides of the inequality above as t — oo gives us that K3 = oo.

Conversely, suppose that J; < oo and K; = co. By Theorem (a), we have
the existence of a bounded solution x of in M*. By the estimate and
the divergence of K, we obtain that z[!! has an infinite limit. So this completes the
proof.

(c) Suppose that there exists a solution of in M7, 5. By [2, Corollary 3.1],
Ji1 = 00. So it suffices to prove that K; < oo . The proof is very similar to the proof
of Theorem m(a). So from estimate and since 2! has a finite limit, we obtain
that K < oo.

(d) It follows from Theorem (a). O

In the following corollary, we obtain the necessary conditions for the non-
existence of solutions in sub-classes of M+ based on the integrals J; and K; and the

proof follows from Theorem [2.3]
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Corollary 2.4. For solutions of in M, we have the followings:
(a) If Jy = 00 or Ky = oo, then My 5 = 0.
(b) If Jy = 00 or Ky < oo, then My = 0.
(c) If J; < o0 or K; = oo, thenM+B—(Z)

We finish this section by showing the existence and non-existence of solutions

of equation in sub-classes of M~. In order to do that we define the following

r- g [ () ([ oas)

The proofs of (b) and (d) below can be found in [3, Theorem 2.1, Theorem 2.3] and

integral

[3, Theorem 2.4}, respectively. So we only prove parts (a) and (c). We use Schauder-
Tychonoff fixed point theorem in order to show some of the existence of solutions in

M-~.
Theorem 2.5. For solutions of in M~ , we have the followings:
a) Mg 5 # 0 if and only if I < co and K, < oo.

(

(b) My p # 0 if and only if Ky < oo.

(c) If I < o0 and Ky = oo, then My, # )
(

d) If Jo = = 00, then every solution in M~ belongs to M.

Proof. (a) Suppose that Mg p # (). Then for ¢ > 0 and d > 0, there exists a solution
x € M~ of (L1) such that |x(t)] — ¢ and |2!Y(t)] — d as t — co. By [I,, Theorem
4.1], we have that I < oo. So it is enough to show that Ky < co. Without loss of
generality, assume that z(t) > 0 for t > ¢;. Then integrating from o(t) to oo

gives us
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Taking the 8" power and multiplying both sides of (I.16|) by b yield us

[—2l($)]™ > de b(t) [ /U : <$) : As

Integrating ([.17) from ¢y to ¢ gives us

0 < —all(ty) + ()% /t: b(s) l/: (%) ® Ar

As t — oo the assertion follows.

B
(L17)

Conversely, assume that I < co and Ky < oo. Since J3 < oo by Lemma

(g), for arbitrarily given ¢ > 0 and d > 0, take t; > tg so large that

[ () oo [ e

Define X to be the Frechet space of all continuous functions on [t;, 00)r endowed
with the topology of uniform convergence on compact sub-intervals of [t;,00)r. Let

) be the nonempty subset of X given by
Q:={zeX: c<xt) <2 t>t}.

Define

Q=

[d+ / () (a7(7))P At éAs.

(F2)(t) = c + /too (%)

Clearly € is closed, convex and bounded. One can also show that .7 : Q0 — Q is a
continuous mapping and relatively compact. Then by the Schauder-Tychonoff fixed

point theorem, .# has a fixed element = € € such that z = .#(x), i.e.,

2(t) = (Fa)(t) = c + /t N (%) [d+ / b @) Al T As. (118)

Q=
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So by ([.18), we have z2(t) < 0 for [t;,00)y, i.e., z(t)z™(t) < 0 on [t;, 00)7. Taking
the limit as t — oo proves the assertion.

(¢) Suppose that I < oo and Ky = 0o. By [I, Theorem 4.1], we have that there
exists a solution z of such that |z(t)| — c as t — 0o. So we only show that x[!!
has a zero limit. Since K = oo, by Lemma [L.7]i), J5 = oo or K3 = co. But since
I < oo implies that J, < 0o, we have that K3 < co by Lemma[L.7)(f). Hence J3 = cc.

Therefore by [3, Lemma 1.3], the proof is complete. O

The following corollary gives us the non-existence of solutions of (1) in sub-

classes of M.

Corollary 2.6. For solutions of i M~ , we have the following results:
(a) Mg =0 if and only if I = oo or Kj = oo.

(b) Mgz =0 if and only if K = oc.

(c) Let B> . My =10 if I < oo or Ky < oc.

(d) Let B> a. If Jo = 00 or Ky < 00, then My, = 0.

Proof. (a) and (b) immediately follow from Theorem [2.5(a) and (b), respectively.
The part (¢) was proved in [3, Theorem 2.2]. For part (d), non-existence of such a
solution of can be found in [I, Theorem 4.1] and limit behavior of z!!! can be

shown with the similar idea as in [3| Theorem 2.2(ii)]. O
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3. INTEGRAL RELATIONS

In this section, we introduce more general integrals than J; and K;, + = 1, 2.
The goal is to obtain not only integral relations between these integrals but also some

preliminary results in order to investigate the co-existence of solutions in M* and

M.
Let r,q € Crq ([to, 00)T, RT) and A,y > 0.
Define
T t A
Ly(r,q) = 7lim q(t) (/ r(s)As) At (I.19)
=00 Jy, to
and
T T .
M, (r,q) = lim r(t) (/ q(s)As) At. (1.20)
o(t)

v T—oo ¢
0

We can rewrite the integrals Ji, Jo, K7 and K, by using ([.19)) and (I.20) as follows:

Ji=Li(b,A), Jo=DMy(A,Db), K1 = Ls(A,b), Ky = M%(b, A),
where A = (%)é . It is clear that if
T
lim q(t)At = oo, (L.21)
T—o0 n

then
Li(r,q) = M,(r,q) = oo.

The following follows from Theorem [1.2]

Lemma 3.1. If A\ =~ =1, then Li(r,q) = My(r,q).
The following lemmas show the convergence and divergence of ([.19)) and ([I.20))

by using A and 7.
Lemma 3.2. Let A =~ < 1. If My(r,q) = oo, then Lx(r,q) = o0
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Proof. Let p = % So Ly(r,q) and M,(r,q) can be rewritten as

Li(r,q) = lim ) < /t: T(S)As) : At,

T—o0 to
T T P
Mi(r,q) = lim r(t) (/ q(s)As) At.
P T—so00 to O'(t)
Set
0; s<o(t
r(t,s) = ()

Then we have

[ oL o <[ ([ i)
B {/tOT (/tOT (r(t, s))” q(s)As)p At} ’ /tOT ) (/:r(t’ S)At> N
- /:‘”5) < /t :r@w) * A,

where u =1, f = rv and v = q in Theorem Taking limit as 7" — oo completes

IN

the proof. n
Lemma 3.3. Let A\ =~ > 1. If Ly(r,q) = oo, then My(r,q) = oo.

Proof. Suppose that Ly(r,q) = oo and A > 1. Let
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Then we have

1

A X

[ /tOTq@) ( /t:r<s>As) sl - [ / i / (4(1)
- [ / ( / (alt,5))} T@AS)AN . /:r<s> ( /:q@,smt)im
_ /tOTT(s) (/U(T) q(t)At)iAs,

where f = qi v =r and u = 1 in Theorem . As T — oo, the assertion follows. [

>\

r(s)As)A At

Now we will obtain similar results for A\ = ~. But in order to do that we need

the following two lemmas.

Lemma 3.4. Let

T
Q)= [ als)s (1.22)
t
Ifn <1 and
T
lim q(s)As < oo,
T—oo J,
then
T A
. —Q7 (1)
lim —— At < o0.
T— Jy, [Qr(a(t)]”
Proof. Set v(t) = —Qr(t) and f(t) = m Since —Qr(t) is increasing on

to, T)r and f € Cy(T,R) on [to, T)r, by Theorem [1.4] we have

=N dt . .
/to [QT(U(t))]”At_/f;q<sms Qr(—Qry @ or € Range(@r).
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So

[l [ e o ([ aow)]

As T — oo, the assertion follows, in which v(t) = —Qr(t) and f(t) = m in

Theorem [L.4l O

Lemma 3.5. Let

Ri(t) =1+ /tr(s)As.

to

If n > 1, then

[ee) A t
/ Rln( )At < 00.
to Rl(t)

Proof. Set v(t) = Ry(t) and f(t) = R+(ﬂ in Theorem Since Ry(t) is strictly
1
increasing on [tg, T)r and f € Cyq([to, ), R) by Theorem we have

T RlA(t) 1+ft7(; r(s)As dt
At:/ ————  for t € Range(Ry(1)).
|, w02 [ @) o)
So we have
" RR(?) Hho@2s g1 r o
At:/ — = — 1—(1+/T8As) .
|, Fwee- ) T W
As T'— oo, the assertion follows. n

Lemma 3.6. Let v > . If Ly(r,q) = oo, then M, (r,q) = oc.

Proof. Suppose that v > A. If ([.21]) holds, the assertion follows. Since Ly(r,q) = oo,

we can assume

T T
lim r(t)At =00 and lim q(t)At < 0. (1.23)

T—oo T—o0
to to
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Denote

Ri(t) =1+ R(t),

where

R(t):/t r(s)As. (1.24)

Consider two cases:
(i)y>Tland (i) 0<y<1

Case(i): Let t; >ty be such that R(t) > 1 for ¢t > t;. Since Ly(r, q) = oo, we have

A

‘qu@)<]:T@0A5)7At2tlfq@)(]:ngAs) AL

As T — o0, the right hand side goes to infinity, so does the left hand side. Then by
Lemma [3.3] we have M, (r, q) = co. This completes Case(i).
Case(il): By Theorem we have

T

/q@@@mzmm+/(M@f@@@mt

to to

By Theorems [1.2] [I.3] and [1.6] we have

T

[ aom@st =+ [ { [ Al +m@ro] an} moenema

< Qrlto) + / AR (] RA(0)Qr (o (1) At

1

to to
T A
/_ﬁﬁﬁm
to [Ry(t)]™

1=y

= Qelto) | / RO )]
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Hence we have

TR T oa b e ]
| aorise< ont e a| [ moQieoa | [ s
to to to [Rl(t)]l—‘f
Since
o] A t
/ BN UV
to [Ry(8)]
for % > 1, by Lemma the assertion follows as T" — . O

Lemma 3.7. Let v < \. If M, (r,q) = oo, then Ly(r,q) = o0

Proof. Tt is clear that if holds, there is nothing to show. So since M, (1, ¢) = oo,
as in the proof in Lemma we can assume holds.

We will consider two cases:
(i) v <1 and (ii) v > 1.
Case(i): For t; > ty, we may suppose R(t) > 1 for ¢t > t;. Since M,(r,q) = oo, we
have L.(r,q) = oo by Lemma [3.2] Hence, similar to the Case(i) in proof of Lemma
3.6] the assertion follows.

Case(ii): By ([.22), ([.24) and Theorem [1.2] we have

2=

[ 0@yt st=— [ @] roa

to to

Finally, Theorems [1.3] and [L.6] yield

/to r(0) (@rlot)? ar =~ / { / (Qr(t) + hu(HQA(E) T dh}qu)R(t)At
1 [T 1y 11 /7 \ X[ T QA (1) =
<3 [ @itetonT aomwar< 3| [Cawros] | [ L0l
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11—y

where £ = % <lLw=g¢q f=Rand g=(Q7) 7 in Theorem . Taking the

limit as 7' — oo and using Lemma [3.4] complete the proof. O
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4. EXAMPLES

In this section, we give two examples to highlight Theorem (b)

Example 4.1. Let T=R, a=1, 8= i, a(t) = e ™ ond b(t) = de" in equation

2e—2t

. Then we have

T B T _2s i 1
2
lim (/ A(s)ds) = lim (/ ‘ I ds) < (Z)4
T—o0 O'(t) T—o0 t 1 + e S 2

and so we obtain

T T i T W . o 1 1
—7t 2 —Tt
/ b(t) (/ A(S)ds> dt:/ seF </ e—ds> dt<(f)“§el°.
to o(t) to ¢ L+es 2,7

As T — o0, we have Ky < 0o. One can also easily show that z(t) = e~ is a solution

of

|:1 + 6747&

/ / / =7, 1
YT |2'|sgna’| =4de2 |z|ssgnx

such that limz(t) = 0 and lim 20(t) = —1, i.e., My p #0.

t—o0 t—o0
Example 4.2. Let T=7Z,a =1, 8<1,t > 1, a, = 3(3"+1) and b, = 2(3")~!

i equation . Letting t =n and s = m gives us

T-1

L[ aos) s S (£ 2]

m

Hence, we have Ky < 00 asT — oo . One can show that x,, = 37" is a solution of

3
A 5(3“ + 1)|Ax,|sgn Aa:n] = 2(3"™)5 Y 1, 1P sgn

such that lim z, = 0 and lim =l = —1, i.e., My # 0.
n—o00 n—o0o )
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5. CONCLUSIONS

In this section, one can obtain the co-existence and non-coexistence of solu-
tions of in sub-classes of M~ and M in each of the cases « = 3, @ >  and
a < f.

The following integral relationships among Ji, K1, J, and K, follow directly
from Lemmas [3.1H3.3 and [3.6H3.7.

Lemma 5.1. We have the followings:
a) If a = =1, then J; = Ky and Jo = K.

b) Ifa =<1, then Jo =00 = K; =00 and J; = 0o = Ky =

(

(

(¢) Ifa=p>1, then K; =00 = Jy =00 and Ky = 00 = J; =
(d) If « > B, then K1 = 00 = Jy = o0 and J; = 0o = Ky = o0
(

e) If a« < 3, then Jy = 00 = K; = 00 and Ky = 0o = J; = o0

In the light of Lemma [5.1], there exist eight cases:

(C): Jy=Jy = K, = Ky = 00
(Cq): J1 = Ky =00, Jy <00, Ki < o0,
(C3) 1 Jp <00, Ky <00, Jp=K; =00
(Cy) : Jy <00, K1 <00, Jo <00, Ky <00,
(C5): Jp = Jy =Ky =00, Kj < 00,

(Co) : Jy = Jy = K1 =00, Ky < 00,

(Cr): J1 =K = Ky =00, Jy <00,

(Cg)ZKlzKQIJQIOO, J1<OO.



33

Note that Cases (C;), i = (1)-(4) occur for any a > 0 and § > 0 while (C5) occurs
only for a = 5 > 1 or a > 3, (Cg) occurs only for « = 5 > 1 or a < 3, (C7) occurs
only for @« < for a« = < 1 and (Cg) occurs only for « > for a = < 1.

We now investigate the co-existence and co-nonexistence of solutions of
by using the cases (C;),i = (1)-(8) and Theorems (2.3)), (2.4), and in the
following theorems.

Theorem 5.2. Let a = . For solutions of equation in M+ and M~ , we have
the followings:

(a) If (C1) holds, then M* = M,  and M~ = My,.

(b) If (C3) holds, then Mf; 5 = My =0 and Mg 5 = My 5 = 0.

(c) If (Cs) holds, then Mp  # 0, Mg g = MZ =0 and Mg 5 = My, = Mg, = 0.
Therefore M~ = M, .

(d) If (C4) holds, then Mf 5 # 0, Mf = MZ 5 =0 and My p #0, Mgy = Mg, =
0.

(e) If (Cs) holds, then Mf; 5 = My =0 and M~ = Mg,.

(f) If (Cs) holds, then M+ = M7 . and Mg p = My, = Mg, = 0. Therefore,
M~ = My,

(2) If (C7) holds, then M+ = MT,  and Mg p = My 5 = 0.

(h) If (Cs) holds, then My  # 0, Mp 5= MJ 5 =0 and M~ = Mg,

Theorem 5.3. Let a > . For solutions of equation in M+ and M~ , we have

the followings:

(a) If (C1) holds, then M+ = M,  and M~ = Mg,.

(b) If (Cs) holds, then My, = M5 = and My, = My, = 0.

(c) If (Cs) holds, then My  # 0, Mp 5 =ML 5 =0 and My #0, Mg p=0.
(d) If (C4) holds, then Mf; 5 # 0, Mg =M% 5 =0, and Mgy # 0.

(e) If (Cs) holds, then Mg = Mg =0 and M~ = Mg,.

(f) If (Cs) holds, then M  #0, Mpp =0, M7 5 =0 and M~ = M.
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Theorem 5.4. Let o < (3. For solutions of equation in M+ and M~ , we have
the followings:

(a) If (C1) holds, then M* = MZ,  and M~ = Mg,.

(b) If (C2) holds, then Mg p = Mg =0 and My 5 = My 5 = 0.

(c) If (Cs) holds, then My # 0, Mz =ML =10 and Mg 5 = Mgy = Mg, = 0.
Therefore M~ = M, .

(d) If (Cy) holds, then Mg p # 0, Mf o= M 5 =0 and My #0, Moo= Mg, =
0.

e) If (Cs) holds, then M* = M7  and My z = My, = Mg, = 0. Therefore,

M~ = My,
(f) If (C7) holds, then M = M . and My 5 = My 5 = 0.

00,00

Our goal for the entire paper has been to classify nonoscillatory solutions of
(I.1) depending on J;, K71, J5 and Ks. However, we would like to indicate the following

remarks.

Remark 5.5. When J; = 0o and K, < oo, we have to assume that
u(t) is differentiable such that p®(t) >0 and a°(t) > a(t) fort >t (1.25)

to be able to obtain M;;B # 0, which follows from [2, Theorem 3.1] and [2, Corollary
5.1]. On the other hand, in case (Cy) or (C5) holds with o > [3, or (C2) holds with
a < 3, we obtain M;B #+ 0 as well. If T = R, then holds automatically.
So our result corresponds with the continuous case. Of course, one can obtain that

MZ p # 0 by assuming both conditions

T—00

T t B
Ji =00, and lim b(t) (/ A”(s)As) At < o0
to to

without as in the discrete case, see [J).
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Remark 5.6. When J; < oo or Ky < oo, we have to assume that

/ O <i) “ Al 0, (1.26)

t1 a(t)

where o > B to be able to obtain MY, . =0 by using [2, Theorem 3.2], Theorem
inequality ([L.7), and Lemma[1.7(b). On the other hand, if we have one of the cases
(C2), (C3), (C4), (C5) and (Cg) with o > 3, then MY . = 0 as well. If T = R,
then holds automatically. So our result matches with the continuous case. Of

course, one can show that ME . =0 by assuming

T

t B
lim b(t) (/ A"(S)As) At <oo, a>f
to

T—o00 ¢
0

without (I.26) as in the discrete case, see [J].

Another reasonable nonlinear dynamic equation is to consider
[a(®)e (1) sz #4]® = —b(1) 27 ()] sen 27 (1) (1.27)

as our new project because several questions arise. For example, what integral con-
ditions might we have in order to obtain the existence of nonoscillatory solutions of
? And what sub-classes might occur for nonoscillatory solutions of de-
pending on the convergence/divergence of J3 and K3? Also what oscillation criteria

do we need for ([.27))7
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II. ON NONOSCILLATORY SOLUTIONS OF EMDEN-FOWLER
DYNAMIC SYSTEMS ON TIME SCALES

ABSTRACT

We study the existence and asymptotic behavior of nonoscillatory solutions of Emden-
Fowler dynamic sytems on time scales. In order to show the existence, we use Schauder,

Knaster and Tychonoff Fixed Point Theorems. Some examples are illustrated as well.
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1. INTRODUCTION

In this paper, we deal with the classification of nonoscillatory solutions of the

Emden-Fowler system of first order dynamic equations

1
a 1

5(0) = (k)" lw(0)]* sgny(®)

yA(t) = =b(t) |27 (8)] sgn” (1),

(IL.1)

where a, 8 > 0 and a,b € Coq([tg, o)1, RT). Whenever we write ¢ > t;, we mean
that t € [t1,00)r := [t1,00) N T. A time scale T, a nonempty closed subset of real
numbers, is introduced by Bohner and Peterson in [6] and [7]. Throughout this paper,
we assume that T is unbounded above. We call (z,y) a proper solution if it is defined
on [tg,00)r and sup{|z(s)],|y(s)| : s € [t,00)r} > 0 for t > t5. A solution (z,y)
of is said to be nonoscillatory if the component functions x and y are both
nonoscillatory, i.e., either eventually positive or eventually negative. Otherwise it is
said to be oscillatory. Throughout this paper without loss of generality we assume
that x is eventually positive in our proofs. Our results can be obtained similarly for
the case that x is eventually negative.

System (II.1)) can be easily derived from the Emden Fowler dynamic equation
(ot(t)|:1:A(7f)|0‘sgnxA(t))A + b(t)|x(t)[Psgna®(t) = 0 (11.2)

by letting = z and y = |22|*sgnz® in . If «=pin , then it is called a
half-linear dynamic equation.

If T=R and T = Z, equation (II.2)) reduces to the Emden Fowler differential
equation

(a(t)]2' ()| sgna’ (1)) + b(t)|=(t)]"sgna(t) = 0,
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see [11], and the Emden-Fowler difference equation

A (an|Axn’asgnAxn) + bn’xn+1’ﬁsgn'xn+1 = 07

see [8], respectively.

This paper is motivated by the papers [8], [14] and [I0]. The related oscillation
and nonoscillation results for two and three dimensional dynamic systems are given in
[5], [3], [4], and [2], respectively. The setup of this paper is as follows: In Section 1, we
give preliminary lemmas playing an important role in the further sections. In Sections
2 and 3, we show the existence and asymptotic properties of nonoscillatory solutions
of system by using certain improper integrals and fixed point theorems. In
Section 4, we obtain some conclusions. And finally, the paper concludes with some
examples.

Let M be the set of all nonoscillatory solutions of system . One can
easily show that any nonoscillatory solution (x,y) of system belongs to one of

the following classes:

M* = {(x,y) € M : x(t)y(t) > 0 eventually}

M~ :={(x,y) € M : z(t)y(t) <0 eventually}.

Lemma 1.1. [3, Lemma 2.1] Let (x,y) be a solution of system (IL.1]). Then the

component functions x and y are themselves nonoscillatory if (z,y) is a nonoscillatory

solution of system .

Remark 1.2. Let (z,y) be a nonoscillatory solution of system ([I.1). If x(t) is
nonoscillatory fort > to, then the other component function y(t) is also nonoscillatory

for sufficiently large t.
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For convenience, let us set

Y, = / TADAL and 7 — / T )AL (IL3)

to to

where A = (%) o,
The following lemma gives some sufficient conditions for oscillation and nonoscil-

lation of system ((LL.1).

Lemma 1.3. (a)[b, Lemma 2.3] If Y, < oo and Z, < oo, then system (II.1]) is
nonoscillatory.

(b)[5, Lemma 2.2] If Y, = oo and Z, = oo, then system (II.1]) is oscillatory.
In the next two lemmas we show that M™ and M~ can be empty.

Lemma 1.4. If Y, = o0 and Z, < oo, then any nonoscillatory solution (x,y) of

system belongs to M, i.e M~ = ().

Proof. Suppose that Y, = co and Z, < co. The proof is by contradiction. So assume
that there exists a solution (z,y) of system (II.1)) such that (z,y) € M~. Without
loss of generality assume that z(t) > 0 for t > ¢;. Then by integrating the first

equation of system (II.1)) from ¢; to ¢ and the monotonicity of y, we have

Q=

£(t) = (ty) — / As) (—y()* As < 2(t) — (—y(h)) / A(s)As.

Ast — 0o, x — —oo. But this contradicts the positivity of x. Note that the proof
can be done without the condition Z, < oco. However in order for nonoscillatory

solutions to exist, we need the assumption Z, < oo by Lemma (b). O]

Lemma 1.5. If Y, < o0 and Z, = oo, then any nonoscillatory solution (x,y) of

system belongs to M~ i.e., M = ().
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Proof. Suppose that Y, < oo and Z;, = oo. The proof is by contradiction. So assume
that there exists a nonoscillatory solution (x,y) of system ([I.1)) such that xy > 0
eventually. Without loss of generality, assume that xz(¢t) > 0 for ¢ > ¢;. So by
integrating the second equation of system from t; to ¢t and the monotonicity of
T give us

t

0) < (t) = () [ bs)As
!

As t — oo, it follows that y(f) — —oo. But this contradicts that y is eventually

positive. O
The discrete version of the following lemmas can be found in [I4].

Lemma 1.6. Let (z,y) be a nonoscillatory solution of system .
(a) If Y, < oo, then the component function z has a finite limit.

(b) If Y, = 0o or Z, < oo, then the component function y has a finite limit.

Proof. (a) Suppose that Y, < oo and (z,y) is a nonoscillatory solution of system
(I1.1). Then by Lemma , x and y are themselves nonoscillatory. Without loss
of generality, assume that there exists ¢; > ¢y such that z(t) > 0 for ¢t > ¢;. If
(r,y) € M~, then by the first equation of system (IL1), 22(¢) < 0 for t > t;.
Therefore, limit of = exists. So let us show that the assertion follows if (x,y) € M.
From the first equation of system (IL.1), we have z2(t) > 0 for ¢ > t;. Hence two
things might happen: The limit of the component function x exists or blows up. Now
let us show that tlg(r)lf(t) = oo cannot happen. Assume x(f) — oo as t — oco. By

integrating the first equation of system (LL.1]) from ¢; to ¢ and using the monotonicity

of y, we get

() < 2(t) + y3 (1) / A(s)As.

t1
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Taking the limit as ¢ — oo, it follows that Y, = oo, which is a contradiction. This
completes the proof.

(b) Suppose that Y, = 0o or Z, < oo and (x,y) is a nonoscillatory solution
of system ([I.1)). The case Z, < oo can be proved similar to part (a). For Y, = oo,
assume that x is eventually positive. Then proceeding as in the proof of Lemma [T.4]

it can be shown that y is eventually positive. Then by the second equation of system

(I1.1)), it follows that y has a finite limit. O

In the following lemmas, we find upper and lower bounds for the component

function x of a nonoscillatory solution (z,y) of system ([L.1)).

Lemma 1.7. Let Y, < oo. If (z,y) is a nonoscillatory solution of system , then

there exist ¢,d > 0 and t; >ty such that
c/ A(s)As < z(t) <d
t

or

—d<z(t) < —c/ A(s)As
t
fort > ty.

Proof. Suppose that Y, < co and (z,y) is a nonoscillatory solution of system .
Without loss of generality, let us assume that x is eventually positive. Then by
Lemmal [1.6] (a), we have z(t) < d for t > ¢;. If y(t) > 0 for ¢ > ¢, then x is eventually
increasing by the first equation of system . So for large t, the assertion follows.
If y(t) < 0 for ¢ > t1, then integrating the first equation of system from t to oo

and the monotonicity of y give
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Setting ¢ = (—y(t1))= in the last inequality proves the assertion. Assuming z is

eventually negative gives the second part of the proof. O

Lemma 1.8. Let Y, = oo and Z, < oo. If (z,y) is a nonoscillatory solution of

system , then there exist ki, ko > 0 and t; > tg such that

ki <x(t) < ky /tA(s)As

t1

or

—ko /tA(s)As <z(t) <k

t1
fort > t.

Proof. Suppose that Y, = oo and Z, < oo, and (z,y) is a nonoscillatory solution of
system . Then by Lemma , x and y are themselves nonoscillatory. Without
loss of generality let us assume that x(¢) > 0 for ¢ > ¢;. Then by Lemma , (x,y)
must be in M ™. Hence, there is a constant k; > 0 such that x(t) > ky for t > t;.

Integrating the first equation of system (II.1) and the monotonicity of y give

= tl /A As<x(t1)+y tl /A

= (%wé(m)[ A(s)As.

Since Y, = oo, we can choose ty > t; such that

t
/ A(t)At > 1 for t > t,.

t2



45

So this implies that

t

() < (x(tl) + yé@l)) / A(s)As

t1

and the assertion follows by letting ks = x(t1) 4y (). Assuming that z is eventually

negative proves the second part of the proof. O
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2. THE CASE Y, =00 AND Z, < o0

In this section, we show that M™ can be divided into some sub-classes under
the case Y, = co. By Lemmall.3(b), in order to obtain the existence of nonoscillatory
solutions, we also have to assume Z, < co. So throughout this section, we suppose
that Y, = oo and Z, < oo hold. Then by Lemma (x,y) € M*. Without loss of
generality we suppose that x > 0 eventually. Then by the second equation of system
(IL.1}), y is positive and decreasing eventually. In addition to that, by using the first
equation of system ([I.1)) and taking Lemma (b) into consideration we have that

x(t) — cor 0o, and y(t) - dor 0 ast — oo for 0 < ¢ < co and 0 < d < 0.
Lemma 2.1. Ifz(t) — ¢, theny(t) >0 ast — 0 forc <0< oo .

Proof. Suppose that z(t) — ¢ as t — oco. Assume the contrary. So y(t) — d for
0 <d< oo ast— oo. Then since y(t) > 0 and decreasing eventually, there exists

t1 > to such that y(t) > d for t > t;. By the first equation of system ([I.1)), we have
22 (t) = A(t)ys (t) > A(t)ds for ¢ >ty (11.4)
Integrating (I1.4) from ¢; to ¢ yields

z(t) > a(ty) + de /tA(s)As.

t1

As t — oo, this gives us a contradiction to the fact z(t) — ¢. So the assertion

follows. O

In light of Lemma 2.1]and the explanation above, we have the following lemma.
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Lemma 2.2. For 0 < ¢ < oo and 0 < d < oo, any nonoscillatory solution in M™

must belong to one of the following sub-classes:

My = {o e M*: Jim [a()] =, lim [y(t)] =0},

Mt = {x e M*: Jim [a(t)] = oo, Jim [y(t)] = d} ,
’ —00

t—o0
0} .

In the literature, solutions in My, M7 5 and MZ , are called subdominant

oo

+ + .1 — 1
M, = {xeM : lim [2(8)] = oo, lim Jy(t)]

solutions, dominant solutions and intermediate solutions, respectively.
The following theorems show the existence of nonoscillatory solutions in sub-

classes mentioned above by using the improper integrals:

o= [~ aw ([ homs) A ws)

% o(t) B
Ky = /t b(t)(t A(S)AS) At. (IL6)

0

Theorem 2.3. Mj, # 0 if and only if Jo < oc.

Proof. Suppose that Mg’o # (). Then there exists (x,y) € M™T such that |z(¢)| — ¢ >
0 and |y(t)] — 0 as t — co. Without loss of generality let us assume that z(¢) > 0

for t > t;. Integrating the second equation of system ([II.1)) from ¢ to co gives us

y(t) = /t T b(s) (27(5))° As. (1.7)

Solving the first equation of system (II.1)) for y, substituting the resulting equation

into (I1.7) and by the monotonicity of y, we obtain

22 (t) > Atz (t) ( /t N b(s)As) : . (IL.8)
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Integrating (I1.8)) from ¢; to ¢ gives

As t — oo, the assertion follows.

Conversely, suppose that J, < co. Choose t; >t so large that

|4 ([ eras) " At < (5% 1)

for arbitrarily given ¢ > 0. Let X be the set of all bounded, continuous, real valued

functions with the norm ||z|| = sup {|z(¢)|}. It is clear that X is a Banach Space,
tE[tLOO)T

see [9]. Let us define a subset Q of X such that

Q={reX: —<z@t)<c¢ t>t}.

N O

It is clear that €2 is closed, bounded and convex. Define an operator F': {2 — X by
(Fz)(t) =c— / A(s) </ b(r) (27 (7))" AT) " As for t > ty. (I1.10)
t s
By inequality (I1.9), we have

> (Fz)(t)=c— /t h A(s) ( / h b(7) (z°(7))" m) - As

Zc—cg/tooA(s) </:Ob(7)m) As >

Qlm

)

N O
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and so F: QQ — Q. Since

||(F2n)(8) = (Fz)(1)]]

< /j A(s) ( / Oob(T) (z2(7))° m)é — ( / N b(7) (27 (7))’ Af)é

where x,, is a sequence of functions converging to x. Hence, the Lebesque Dominated

As,

Convergence Theorem yields
|(Fan)(t) = (Fz)(8)]| = 0,

which implies the continuity of F' on 2. Also

0 < — [F@)®)]* = A®) ( /t ") (27 (1) m) T <A ( /t h b(r)m)é <o

implies that F' is equibounded and equicontinuous. Therefore by Schauder’s Fixed

Point Theorem, there exists z € {2 such that z = Fz. Then

Z(t) = ¢ — /too A(s) (/OO b(r) (z7(7))" AT); As. (I1.11)

So as t — oo, Z(t) — c. Note that z2(t) > 0 for t > t;. So it is eventually monotone,

i.e., x is nonoscillatory. Therefore, taking the derivative of ([I.11)) and using the first

equation of system (II.1)) give us
i) = [ or) @)
t

It follows that g(¢t) > 0 for t > ¢4, i.e., (Z,y) is nonoscillatory and then by Remark
and Lemma (1.4} (Z,7) € MT. Taking the limit as ¢t — oo yields 7(¢) — 0. Hence
Mo # 0. O
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Theorem 2.4. MJ, , # 0 if and only if Kz < oo,

Proof. Suppose that M, ; # (. Then there exists (z,y) € M* such that |z(t)| — oo
and |y(t)| — d, for 0 < d < co. Without loss of generality assume that z(t) > 0 for
t > t; Integrating the first equation from ¢; to o(¢) and the second equation from t;

to t of system ([I.1]) give us

o(t) ) L o
z7(t) = 27(ty) —i—/ A(s)y=(s)As > de / A(s)As. (I1.12)

t1 t1

and

Mm—w@%i/wﬁuﬂ$fA& (IL.13)

t1

respectively. Then by (I1.12) and (II.13)), we have

/tlt b(s) (/tl"(s)A(T)AT>BAs <d= /tlt b(s) (2°(s))° As

< d% (y(t) —y(t)

So as t goes to 0o, it follows that Kz < oo.

Conversely, suppose that Kz < co. Choose t; > t, so large that

) o(s) A
/t b(s) ( /t A(T)AT> As<# (I1.14)

for arbitrarily given d > 0. Let X be the partially ordered Banach Space of all

real-valued continuous functions with the norm ||z| = sup 29— and the usual

3
t>t1 ftl A(s)As

pointwise ordering <. Define a subset ) of X as follows:

Q:{reX: da /tA(s)As <zx(t) < (20l)é /tA(s)As for t > t,}.

t1 t1
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First since every subset of Q has a supremum and infimum in €2, (€2, <) is a complete

lattice. Define an operator F': {2 — X as

(Fz)(t) = / tA(s) (d+ / ") (27 (1) AT)QAS. (IL.15)

t1

It can be shown that F': {2 — ) is an increasing mapping for ¢t > ¢;.
So by the Knaster Fixed Point Theorem, we have that there exists z € {2 such

that

Z(t) = /tltA(s) (d+ / 4 b(7) (z°(7))" Af); As for t > t;. (I1.16)

Hence 7 is eventually positive, and hence nonoscillatory. Then by taking the deriva-

tive of (I1.16]) and using the first equation of system ([I.1)) give us
. _ —A (e _ & —_o 6
g(t) = (z°(1) alt) =d+ [ b(r) (@ ()" AT. (I1.17)
t

Then it follows that ¢ is eventually positive, i.e., nonoscillatory. Hence, (z,7) is a
nonoscillatory solution of system (II.1) and by Lemma |1.4| we have (Z,y) € M*. For

z € Q, we also have

Z(t) > /t tA(s) d+ / Oob(r) (di /t J(T)A()\)AA>BAT iAs

As t — o0, the right hand side of the last inequality goes to oo since Y, = oc.
Therefore Z(t) — oo as t — oo. Taking the limit as ¢ — oo of (I1.17)) gives that y has
a finite limit. Therefore M 5 # 0. O

Theorem 2.5. If J, = 0o and Kz < oo, then MJ, , # 0.
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Proof. Suppose that J, = oo and Kz < oo. Since Y, = 0o, we can choose t1,t3 >t

0 (1) B
/t b(t) (/t A(S)As) At <1 (I1.18)

/ " As)As > 1. (IL.19)

t1

so large that

and

Let X be the Fréchet Space of all continuous functions on [t1, co)r endowed with the

topology of uniform convergence on compact subintervals of [t, 00)r. Set

¢
Q={zreX: 1§x(t)§/A(s)As for t > t1}

t1

and define an operator T": {2 — X by

(T2)(t) =1 + / "A(s) ( / ") (27 (7))’ AT) 3 (11.20)

to

We can show that 7" : 2 — 2 is continuous on €2 C X by the Lebesque Dominated

Convergence Theorem. Since

it follows that 7' is equibounded and equicontinuous. Then by Tychonoff Fixed Point

Theorem, there exists z € €2 such that

Q=

#(t) = (TT)(t) = 1 + / tA(s) ( / T ) (3 (1)° AT) for t>1,  (I121)

to
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Therefore, it follows that ¥ is eventually positive, i.e nonoscillatory. Then integrating

(I1.21)) and by the first equation of system ([I.1f), we have

g(t) = alt) (z2(1)" = /t T () (3(1)° Ar. (I1.22)

It follows that gy is eventually positive, and hence (z,y) is a nonoscillatory solution
of system ([L.1). So by Lemma [1.4]it follows that (Z,7) € M*. Also by monotonicity

of z, we have

Hence as t — oo, it follows that Z(t) — oco. And by ([1.22)), we have g(t) — 0 as
t — oo. Therefore MF , # 0. O

Next we give the integral relationships between J,, K3, Y,, and Z;, and obtain
a conclusion for the existence and non-existence of solution (x,y) of system (|LL.1)
based on « and . The proof of the following lemma is similar to the proofs of

Lemma 1.1, Lemma 3.2, Lemma 3.3, Lemma 3.6 and Lemma 3.7 in [13].

Lemma 2.6. (a) If .J, < co or Kz < oo then Z;, < oo.
b) If K3 = oo, then Y, = 0o or Z, = cc.
c) If J, = oo, then Y, = 0o or Z, = 0.
d) Let a > 1. If J, < o0, then K, < oc.

e) Let B < 1. If K3 < 00, then Jz < oc.

(
(
(
(e)
(f) Let a < . If K3 < 00, then J, < 0o and K, < 0.
(g) Let > p. If J, < 00, then K3 < 0o and Jg < o0,

The following corollaries give the existence and nonexistence of nonoscillatory
solutions (z, y) of system ([L.1)) in our subclasses by Lemmalf2.6|and our main theorems

presented in this section.



Corollary 2.7. Suppose that Y, = oo and Z, < oo. Then
(a) Mg, # 0 if any of the followings hold:
(i) Jo < 00,
(ii) o < B and Kg < oo,
(ili) a < B, f>1 and Jg < oo,
(iv) a <1 and K, < 0.
(b) ML # 0 if any of the followings hold:
(i) Kp < oo,
(ii) > B and J, < o0,
(ili) @ > 1 and Jz < oo.
(c) Mg}o = 0 if any of the followings hold:
(i) Jo = o0,
(i) o> S and either Jz = 0o or Kz = o0,
(i) a« > 1 and K, = o0.
(d) MZ g =0 if any of the followings hold:
(i) K= oo,
(ii) a < B and either J, = 0o or K, = o0,

(ili) B <1 and Jz = occ.

54
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3. THE CASE Y, <oco AND Z, < ¢

In this section, we show the existence of a solution (x,y) of system by
assuming Y, < 0o. Since we investigate a solution (x,y) in M, we also have to as-
sume that Z, < oo because of Lemma[1.5] Recall that M™ is the set of nonoscillatory
solutions (z,y) such that z and y have the same sign. Without loss of generality let
us assume that z > 0 eventually. Then by the first equation of system , x 18
eventually increasing and by Lemma the limit of  approaches a positive constant
and the limit of y exists. Also by the second equation of system ([I.1f) y is eventually
decreasing and approaches a nonnegative constant.

In light of this information, one can easily prove the following lemma.

Lemma 3.1. For 0 < ¢ < oo and 0 < d < oo, any nonoscillatory solution in M™

belongs to the following subclasses:

+ + .13 _ : _
M= { (@) € M*: Jim [2(t)| = ¢, lim |y(t)| = d
M = {(@,y) € M+ lim Jo(t)] = ¢, Tim [y(t)] =0} .

The following theorems show the existence of nonoscillatory solutions (x,y) in

these subclasses of M.

Theorem 3.2. (a) Mf 5 # 0 if Y, < 0o and Z, < co.
(b) If My 5 # 0, then J, < oo.

Proof. (a) Suppose that Y, < oo and Z, < oo. Then J, < oo by Lemma (c).

Since Y, < oo, for arbitrarily given ¢, d > 0 there exists t; > ty such that

t 00 %
/ A(s) <d+/ cﬂb(s)As) < g for ¢t > t;. (I1.23)
t1 S
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Let X be the Banach space of all real-valued continuous functions endowed with the

norm ||z|| = sup |z(¢)| and with the usual pointwise ordering <. Define a subset
tE[tl,OO)']I‘

Q) of X such that

Q::{xEX: §x(t)§cfort2t1}.

N o

For any subset Q € €, it is obvious that inf Q € Q and sup Q € Q. Define an operator
F:Q— X as

(Fz)(t) = g + /t : A(s) (d + / ") (27(1)° AT) : As.

One can show that F': 2 — 2 and F' is an increasing mapping. So by the Knaster

Fixed point theorem [12], there exists € { such that

N O

+ /tltA(s) (d+ / b (7(r)° AT)iAS. (11.24)

Therefore, it follows that Z(t) > 0 for ¢ > ¢;. So by the first equation of system ([II.1]),

we have g(t) > 0 for t > 1, i.e., (Z,7) € MT. From (I1.24]), we have

t o) é
z < g+ / A(s) (d+cﬁ / b(ﬂm) As,
t1 s

So as t — oo, it follows that the limit of  is finite. By taking the derivative of ([[I.24])

and the first equation of system ([I.1f), we have

g(t) = (22(1) " a(t) = d + /t T b(r) (27(7)) A (I1.25)

Taking the limit of (I1.25) as ¢ — oo yields that g(t) — d. Therefore, we conclude
that (zZ,7) € Mz 5 # 0.

(b) Suppose that Mg 5 # 0. Without loss of generality assume that x is eventually
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positive. Then there exists t; > ¢y and (z,y) € M T such that x — ¢ and y — d as
t — oo for 0 < c<ooand0 < d< oo. Integrating the second equation of system

(1L.1)) from ¢ to co and using the monotonicity of x give us

y(t) > (z() / T b(s)As for ¢ >t
yE(t) > (a(t))= ( /t h b(s)As)a for > (11.26)

Substituting (I1.26]) into the first equation of system (II.1]) yields

22(t) > A(t)za ( /t h b(s)As) : . (I1.27)

Integrating (I1.27)) from ¢; to ¢t and by the monotonicity of x give us

2(t) > x4 (t1) / t A(s) ( / h b(r)AT) - As (I1.28)

t1
As t — oo, the assertion follows. O
The following theorem can be proved similar to Theorem [2.3]

Theorem 3.3. (a) Mj, # 0 if Y, < oo and Z, < oo.
(b) If Mg, # 0, then J, < oco.

By Lemma [2.1) and from our main results in Sections [2] and [3| one can have

the following corollaries.

Corollary 3.4. If Y, < oo and Z, < oo, then any nonoscillatory solution in M™ of

system belongs to My p or My, i.e., M 5 = M7 ;= 0.

00,0 T

Corollary 3.5. If Y, = 0o and Z, < oo, then Mf; 5 = 0.
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4. EXAMPLES

In this section, we give three examples to illustrate Theorem and Theorem
2a

Example 4.1. Let T = ¢, ¢ > 1,a = 1, A(t) = o5, b(t) = ez, 5 = ¢
and t = q", where m,n € Ny, in system . It is easy to show that Y, = oo and

Zy < 0o. Let us show that Kg < 0o.

T o(t) p p(T) o 2(y A
/to b(1) (/ A(s)As) At:;qlwltm (Zl 1(1 251)) (g — 1)t

to

B
<(q_1>6+1P(T) 1 (t ) <q_1p(T)1
s — —.
1+ 1
q'+e t=1 t+e s=1 E A— ¢
We also have
p(T) 0o
. 1 1

fm ) 5= e

t=1 n=0

by the geometric series test. So we have that Kz < co. It can be verified that (t, %—1-2)

is a nonoscillatory solution of

v® = 55 |yl sgny

A 1 |8
Y= = — e 27" sgnx

1
in M such that limt = oo and lim—~+2 =2, i.e., ML 5 # 0.
t—o00 t—oot ’

Example 4.2. Let T = R,a > 8 with § < 1, A(t) = €* and b(t) = ae "9 in

system . Clearly, Y, = 00 and Z, < co. One can show that

1
Jo = / e?t </ aes(aw)ds) dt = o0
to t
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and

00 t B
Ky = / ae”Hoh) (/ ezsds) dt < 0.
to to

It is easy to verify that (e',e~") is a nonoscillatory solution of

1
o' = e Jy|= sgny

y = —ae @8 2% sgna

in M such that tlim el = 0o and tlim e =0, e, ME,#0.
—00 —00 ¢

Example 4.3. Let T = qNO, q > 1, o = 1, ﬁ < 1, A(t) =1 +t, b(t) = W
in system . 1t is easy to verify that Y, = oo and Z, < oo. Letting s = q"™ and

t =q", where m,n € Ny, gives

o(T) p(T)

/to A(t) (/t b(s)As)aAtZ;(1+t) > (1+£()J(Ii)jq)5“ (q—1)t

(T) 2

(1 +tq)s+t

p(T) " P

t=1 t=1
So we have

p(T)

) t2 > q2n
TIEI;O; (1 + tq)ﬁﬂ - ; (1 + qn+1)6+1 =

by the Test for Divergence and 3 < 1. Now let us show that Kz < co. One can show

that
t

o(t)
/ A(s)As = Z(l +5)(g —1)s < tq(1l +tq)

to s=1
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and so we have

T o(t) B p(T) 1 5 p(T) B
b(t / A(s)As | At < tq(1 +t¢))’ t(¢—1)¢*(g—1 —
/ <><t0 ) ) > g 0+ 10D Y
Therefore,
T 8 o n
li - 1) —1)
Jim o”(q ;1+t " nzzo

by the Ratio Test and 3 < 1. It can also be verified that (1 + ) 18 a nonoscillatory

s
solution of
1
= (L+1) |yl sgny

A 1 B
Y= = —mrarge 1701 sgna

1
in M+ such that 2flim(l +t) = 00 and lim —— =0, i.e., M}, #0.
—00 ;

t—oot + 1
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III. NONOSCILLATION CRITERIA FOR TWO-DIMENSIONAL
TIME-SCALE SYSTEMS

ABSTRACT

We study the existence and nonexistence of nonoscillatory solutions of a two-dimensional
system of first-order dynamic equations on time scales. Our approach is based on the
Knaster and Schauder fixed point theorems and some certain integral conditions.

Examples are given to illustrate some of our main results.
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1. INTRODUCTION

In this paper, we study on the asymptotic behavior of solutions of the nonlinear

system of the first-order dynamic equations

(I11.1)

where f,g € C(R,R) are nondecreasing such that uf(u) > 0, ug(u) > 0 for u # 0
and a,b € Cyq ([to, 00)r, RT). Whenever we write ¢ > ¢;, we mean that ¢ € [t,00)r :=
[t1,00)NT. A time scale, denoted by T, is a closed subset of real numbers. An excellent
introduction of time scales calculus can be found in [2, 3] by Bohner and Peterson.
Throughout this paper, we assume that T is unbounded above. We call (x,y) a
proper solution if it is defined on [ty,00)r and sup{|z(s)],|y(s)| : s € [t,00)r} > 0
for t > ty. A solution (z,y) of is said to be nonoscillatory if the component
functions x and y are both nonoscillatory, i.e., either eventually positive or eventually
negative. Otherwise, it is said to be oscillatory. Throughout this paper, without loss
of generality, we assume that = is eventually positive. Our results can be shown for
that x is eventually negative similarly.

If T=Rand T = Z, equation turns out to be system of first-order

differential equations and difference equations

see [1],
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see [8], respectively. Oscillation and nonoscillation criteria for two-dimensional time
scale systems have been studied by [1], [5], [10], [IT} 12].
One can easily show that any nonoscillatory solution (z,y) of system (III.1))

belongs to one of the following classes:

M* = {(x,y) € M : x(t)y(t) > 0 eventually}

M~ :={(z,y) € M : z(t)y(t) <0 eventually},

where M is the set of all nonoscillatory solutions of system . In this paper, we
only focus on the existence and nonexistence of solutions of system ([II.1f) in M.

The set up of this paper is as follows. In Section 1, we give preliminary
lemmas that are used in the proofs of our main theorems. In Section 2, we introduce
the subclasses that are obtained by using system and show the existence of
nonoscillatory solutions of system by using the Knaster and Schauder fixed
point theorems and certain improper integrals. In Section 3, we show the nonexistence
of such solutions by relaxing the monotonicity condition on the functions f and g.
We finalize the paper by giving some examples and a conclusion.

The following lemma is shown in [I].

Lemma 1.1. If (z,y) is a nonoscillatory solution of system ([I1.1), then the compo-

nent functions x and y are themselves nonoscillatory.

For convenience, let us set

Y(t) = /t Ta)At  and Z(t) = /t N (111.2)

The following lemma shows the existence and nonexistence of nonoscillatory solutions

of system (III.1)) by using convergence/divergence of Y (¢) and Z(t).
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Lemma 1.2. Let tg € T. Then we have the following:

(a) [1, Lemma 2.3] If Y (to) < oo and Z(ty) < oo, then system is nonoscilla-
tory.

(b) [, Lemma 2.2] If Y (to) = oo and Z(ty) = oo, then system is oscillatory.
(c) If Y(to) < oo and Z(ty) = oo, then any nonoscillatory solution (x,y) of system
belongs to M~ , i.e., M+ = ().

(d) If Y(tg) = oo and Z(ty) < oo, then any nonoscillatory solution (x,y) of system
[11.1]) belongs to M™, i.e., M~ = ().

Proof. Here we only prove part (c) because (d) can be shown similarly. Suppose that
Y (ty) < oo and Z(ty) = co. So assume that there exists a nonoscillatory solution
(x,y) of system (III.1)) in M such that xy > 0 eventually. Without loss of generality,
assume that x(t) > 0 for ¢ > ¢;. Then by monotonicity of = and g, there exists a

number k > 0 such that g(z(t)) > k for ¢t > ¢,. Integrating the second equation of

system ([1I.1)) from ¢; to ¢ gives us

o) < ole) & [ bs)ass

t1

As t — oo, it follows that y(t) — —oo. But this contradicts that y is eventually

positive. Proof is by contradiction. O]

The following two lemmas are related with the first component function of

any nonoscillatory solutions of (I1I.1)) when Y (#y) < oc.

Lemma 1.3. Let (z,y) be a nonoscillatory solution of system ([I1.1) and Y (ty) < oo.

Then the component function x has a finite limat.

Proof. Suppose that Y (ty) < oo and (x,y) is a nonoscillatory solution of system
(ITI.1). Then by Lemma , x and y are themselves nonoscillatory. Without loss of

generality, assume that there exists ¢; > ¢y such that z(t) > 0 for ¢t > ¢;. If (z,y) €
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M~ then by the first equation of system , x2(t) < 0 for t > t;. Therefore, the
limit of x exists. So let us show that the assertion follows if (z,y) € M. Suppose
(z,y) € M*. Then from the first equation of system (IIL.1)), we have z*(¢) > 0 for
t > t;. Hence two possibilities might happen: The limit of the component function z
exists or blows up. Now let us show that tlgglo x(t) = oo cannot happen. Integrating

the first equation of system ([II.1)) from ¢; to ¢ and using the monotonicity of y and

f yield

x(t) < z(ty) + f(y(tl))/ a(s)As.

t1

Taking the limit as ¢ — oo, it follows that x has a finite limit. This completes the

proof. O

Lemma 1.4. Let Y(ty) < co. If (z,y) is a nonoscillatory solution of system (II1.1)),

then there exist ¢,d > 0 and t1 > tg such that

c/oo a(s)As < z(t) <d

or

—d<z(t) < —c/ a(s)As
t
fort >t.

Proof. Suppose that Y (ty) < oo and (z,y) is a nonoscillatory solution of system
. Without loss of generality, let us assume that x is eventually positive. Then
by Lemma , we have z(t) < d for t > t; and for some d > 0. If y(t) > 0 for t > ¢y,
then z is eventually increasing by the first equation of system . So for large

t, the assertion follows. If y(t) < 0 for ¢ > ¢;, then integrating the first equation of



system ([[I1.1)) from ¢ to oo and the monotonicity of f and y give

()

Mmﬂ—zmawﬁw@DAs

z—ﬂﬁm»[mw@A&

Setting ¢ = — f(y(t1)) > 0 on the last inequality proves the assertion.
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]

According to Lemma [1.2) (), we assume Y (ty) < oo and Z(ty) = oo from now

on. Let (z,y) be a nonoscillatory solution of system ([II.1]) such that the component

function x of the solution (x,y) is eventually positive. Then by the second equation

of system (III.1)), we have y < 0 and eventually decreasing. Then for d < 0, we have

y — dor y — —oo. In view of Lemma [1.3] x has a finite limit. So in light of this

information, we obtain the following lemma.

Lemma 1.5. Any nonoscillatory solution of system (I11.1) in M~ belongs to one of

the following subclasses:

Mgy = {(x,y) e M
My ={(@,y) € M~
M. = {(:p,y) e M~ :
My, = {(:Jc,y) eM -

where 0 < ¢ < o0 and 0 < d < 0.

lim |x(%)|

t—o0

0,

lim |x(t)| = ¢,
t—o0

lim |z(t)| =

t—o00

0,

T Ja(1)] =c.
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2. EXISTENCE OF NONOSCILLATORY SOLUTIONS OF (IIIL.1)
IN M~

The following theorems show the existence of nonoscillatory solutions in sub-

classes of M~ given in Lemma [1.5]

Theorem 2.1. My # 0 if and only if

/t:o b(t)g (61 /too a(s)As) At < 00 (I11.3)

for some ¢y # 0.

Proof. Suppose that there exists a solution (x,y) € Mg such that x(t) > 0 for
t >to, 2(t) = 0 and y(t) = —d as t — oo, where d > 0. By Lemma [.4] there exists

¢ > 0 such that

NOEY / a(s)A(s), > to. (I11.4)
t
By integrating the second equation from t, to ¢, using inequality ([1I.4) with ¢ = ¢;
and the monotonicity of g, we have

(0 = slt0) — [ watass <= [ )9 ([~ amar) as

to to

So as t — oo, the assertion follows since y has a finite limit. (For the case z < 0
eventually, the proof can be shown similarly with ¢; < 0.)
Conversely, suppose that (II1.3) holds for some ¢; > 0. (For the case ¢; < 0

can be shown similarly.) Then there exist ¢; >ty and d > 0 such that

/too b(t)g <01 /too a(s)As) At<d, t>t, (ITL5)
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where ¢; = —f(—3d). Let X be the space of all continuous and bounded functions
on [t1,00)r with the norm ||y|| = sup |y(t)|. Let  be the subset of X such that
tE[tl,OO)']r

Q={yeX: =3d<y(t)<-2d, t>t}
and define an operator T : {2 — X such that
w0 = -3a+ [T (- [T sarnar) as
It is easy to see that T" maps into itself. Indeed, we have
—3d < (Ty)(t) < —3d + /too b(s)g (— /:O a(T)f(—?)d)AT) As < —2d

by (IIL5)). Let us show that T is continuous on (2. Let y, be a sequence in €2 such

that y, — y € Q = Q. Then

(Ty)(0) — (To)(0)
< [To|[s (= [ atnsmnar) o (= [ arsmnar)] s

Then the Lebesque dominated convergence theorem and the continuity of g give

|(Ty,) — (Ty)|| = 0 as n — oo, i.e., T is continuous. Also since

0 < —(Ty)A(t) = bit)g (— / OO@(T)f@(T)MT) <o,

it follows that T'(2) is relatively compact. Then by the Schauder Fixed point theorem,

there exists y € €2 such that y = T'y. So as t — oo, we have y(t) — —3d < 0. Setting

#(t) = - / " () fH(r)AT > 0
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gives that Z(t) — 0 ans t — oo, i.e., My 5 # 0. O

Theorem 2.2. My p # 0 if and only if

/: b(t)g (dl — f(c1) /t h a(s)As) At < 00 (I11.6)

for some ¢; <0 and d; > 0. (Orc; >0 and d; <0.)

Proof. Suppose that there exists a nonoscillatory solution (z,y) € Mp p such that

x > 0 eventually, tlim z(t;) = ¢ > 0 and 75lim y(t) = do < 0. Since = and y have
—00 —00

finite limits, there exist t; > o, ¢3 > 0 and d3 < 0 such that ¢; < z(t) < ¢3 and

dy < y(t) < ds for t > t;. Integrating the first equation from ¢ to oo gives

z(t) = co — /too a(s)f(y(s))As > co — f(ds) /too a(s)As. (I1L.7)

By integrating the second equation from ¢; to ¢ and using (I11.7} ) we get

t

y(t) < — /t b(s)g(z(s))As < _/

t1 t1

b(s)g (CQ ~ F(ds) / h a<7>m) As.

By setting co = d; > 0 and d3 = ¢; < 0 and taking the limit of the last inequality as
t — 00, the assertion follows. (The case z < 0 eventually can be done similarly with
g >0and d; <0.)

Conversely, choose t; > ty so large that

/:o b(t)g (dl — fer) /t h a(s)As) A< (1L8)

where ¢; < 0 and d; > 0. (The case ¢; > 0 and d; < 0 can be done similarly.) Let
X be the set of all all bounded and continuous functions endowed with the norm

lyll = sup |y(t)|. Clearly (X,] -||) is a Banach space, see [4]. Define a subset 2

te(t1,00)T
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of X such that

Q::{yEX: clgy(t)g%, tZtl}.

Define an operator F': {2 — X such that
0 =ci+ [0 (0 [T srar) as
First, we show that F': 2 — ().
o < (Fy)(t) <o + /too b(s)g (d1 - /:o a(T)f(cl)AT) As < %

Second, we show that F' is continuous on €. Let y, be a sequence in {2 such that

Yp — y € Q= Q. Then

IPu =Pl < b0 (‘g (4= [T atr)stuirnar )| - \g (4= [ atstwar)

By the Lebesque dominated convergence theorem and the continuity of f and g, it

)as

follows that F' is continuous.

Third, we show that F(£2) is relatively compact. Since Y (ty) < oo, we have

0 <=0 =00 (4~ [ a7 ) <o

and therefore F' is equibounded and equicontinuous, i.e., relatively compact. So by

the Schauder fixed point theorem, there exists § € X such that

yt) = Fyt) = c1 + /t ) b(s)g (d1 — / N a(t) f(y(T))AT) As.
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Setting Z(t) = d; — ft 7))AT and taking limit as t — oo, we have that there
exists a nonoscillatory solution in M~ such that z(t) — d; > 0 and y(t) — ¢; <0,

ie, Mgp #0.

Theorem 2.3. My # 0 if and only if

/tooo a(s)f (g(cl) /S b(T)AT) As < o0 (I11.9)

to
for some ¢y # 0, where f is an odd function.

Proof. Suppose that there exists a nonoscillatory solution (z,y) € Mpg ., such that
x > 0 eventually, z(t) — ¢ and y(t) — —oo as t — 00, where 0 < ¢y < co. Because
of the monotonicity of x and the fact that x has a finite limit, there exist t; > t5 and
c3 > 0 such that

o <z(t) < ey for t>t. (I11.10)

Integrating the first equation from ¢; to ¢ gives us

co <a(t) =x(ty) + /ta(s)f(y(s))As <cg, t>t.

t1

So by taking the limit as ¢t — oo, we have

/OO a(s)|f(y(s))]As < 0. (IIT.11)

t1
The monotonicity of g, (I11.10)) and integrating the second equation from ¢; to t yield

t

u(t) < y(h) — gle2) / b(s)As < —glc2) / b(s)As.

t1 t1
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Since f(—u) = —f(u) for u # 0 and by the monotonicity of f, we have

[f @)l = f (g(f:z)/tb(s)As> , t>t. (I11.12)

t1

By (I11.11)) and (II1.12f), we have

[ airwsnias> [ aor (ste) [ sinar) as

t1 t1 t1

As t — o0, the proof is finished. (The case x < 0 eventually can be proved similarly

with ¢; < 0.) 0

Conversely, suppose that / a(s)f (g(cl)/ b(T)AT) As < oo for some ¢; #

to to
0. Without loss of generality, assume that ¢; > 0. (The case ¢; < 0 can be done

similarly.) Then we can choose t; > tg and d > 0 such that

/ a(s)f <g(cl) / b(r)m> As<d, t>th, (II1.13)

t1 t1

where ¢; = 2d > 0. Let X be the partially ordered Banach space of all real-valued

continuous functions endowed with supremum norm ||z|| = sup |z(f)| and with
te[tl,oo)-ﬂ-

the usual pointwise ordering <. Define a subset €2 of X such that
Q={reX: d<z)<2d, t>t}. (I11.14)

For any subset B of Q, inf B € Q and sup B € Q, i.e., (Q, <) is complete. Define an

operator F': Q — X as

(Fo)(t) = d+ /t T als)f ( / s b(T)g(x(T>>AT) As, 1>t (I1.15)

t1
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First, we need to show that F' : 2 — () is an increasing mapping into itself. It is

obvious that it is an increasing mapping and since

d < (Fa)(t)=d+ /too als)f (/ b(T)g(x(T))AT) As < 2d

t1

by ([II.13), it follows that F' : 2 — €. Then by the Knaster fixed point theorem,

there exists T € {2 such that

#(t) = (F7)(t) = d + /t " a(s)f ( / Sb(T)g(f(T))AT) As, t>t.  (IL16)

t1

By taking the derivative of ([II.16]) and the fact that f is an odd function, we have

2t =alt)f - tb(T)g(i"(T))AT . >t
-/ )

t1

t
Setting y = —/ b(7)g(z(7))AT and using the monotonicity of g give

t1

y(t) < —g(d) /t b(T)AT, t>t.

t1
So we have that z(¢) > 0 and y(t) < 0 for t > ¢;, and Z(t) — d and y(t) - —o0 as

t — oo. This completes the proof.

Theorem 2.4. If

/: a(t)f (/too b(s)g(cl)AS> At < o0
/: b(t)g (d1 /too a(s)A$> At = oo (—o0)

for some ¢; > 0 and any d; > 0 (¢; < 0 and dy < 0), where f is an odd function,

and

then My ., # 0.
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Proof. Choose t; > tg and ¢; > 0 such that

/:O a(t)f (g(cl) /too b(s)As> At < % t>t. (IT1.17)

Let X be the partially ordered Banach space of all real-valued continuous functions

endowed with the norm ||z|| = sup |z(t)| and with the usual pointwise ordering
te[tl,oo)']r

<. Define a subset €2 of X such that

C1

Q={reX: f(l)/tOo a(s)As < z(t) < r t >t}

It is clear that (€2, <) is complete. Define an operator F' : Q — X such that

(Fa)(t) = /t " a(s)f ( / sb(T)g(x<T))AT) As.

t1

It is clear that F'is an increasing mapping. We also need to show that F': {2 — €.

By (I11.17)), the monotonicity of g and the fact that z € ), we have

#a)0 < [ as (sl [snar)as<

Also since

/: b(t)g (d1 /t N a(s)As) At = o,

we can choose ty > t; such that

/t: b(s)g (d1 / h a(T)AT) As > 1

for t >ty and any d; > 0. So by setting f(1) = d;, we have
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<F@@ﬁzlwa@ﬁ(lfwﬂg(ﬂn[fauﬂu)A{)Aszfu)[ma@A&

Then by the Knaster fixed point theorem, there exists z € {2 such that z = Fz.

Setting

ﬂ@z—lb@ﬂﬂwﬁn

using the fact that * € ) and taking the limit of z and § as ¢ — oo, the proof is

complete. (The case ¢; < 0 and d; < 0 can be shown similarly.)
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3. NONEXISTENCE OF NONOSCILLATORY SOLUTIONS OF
(I1L.1) IN M~

In the previous section, we used the monotonicity of the functions f and ¢ in
order to show the existence of nonoscillatory solutions of system . Nonexistence
of such solutions in M, 5, My 5, and My , directly follows from Theorems - .
In this section, we relax this condition by assuming that there exist positive constants

F and G such that

fu) > F and g(w) >G for u#0 (II1.18)
u u

in order to get the emptiness of those subclasses. The following theorems show the

nonexistence of such solutions in the subclasses of M~ given in Lemma .

Theorem 3.1. Suppose that ([11.18) holds. If

/t 100 a(s) ( /t b(7) ( / h a(A)AA) Ar) As = 0o, (I11.19)

then My, = 0.

Proof. Assume that there exists a solution (z,y) € M~ such that x > 0 eventually,
r— 0and y - —o0 as t — co. By Lemma [[.4] there exist ¢; > 0 and ¢; > ¢y such
that
& /OO a(s)As < z(t), t>t. (I11.20)
t

By integrating the second equation from ¢; to ¢, and using (I11.18)) and ([I1.20]), there

exist ty > t; and G > 0 such that

y(t) < —c1G / t b(s) ( / N a(T)AT) As, t>t. (II1.21)

t1
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By integrating the first equation from ¢, to t, and using ([11.21)) and (II1.18]), there

exist t3 > t9 and £ > 0 such that

2(ts) > 1 FG /t: a(s) ( /t 18 b(r) ( / h a()\)A)\> AT) As, t>ty.  (I11.22)

As t — oo, it contradicts to (I11.19). So the assertion follows. Proof is by contradic-

tion. O

Theorem 3.2. Suppose that ([11.18) holds. If

/: b(t) ( /t h a(s)As) At = oo, (I11.23)

then My p =0 and Mg = 0.

Proof. We only show the emptiness of M p since Mp p = () can be shown similarly.
So assume that there exists a nonoscillatory solution (z,y) in Mg such that z > 0
eventually, tliglo z(t) = 0 and tlggo y(t) = d; < 0. By Lemma , we have that there

exist cg > 0 and t; > ¢y such that
cz/ a(s)As < z(t), t>t. (I11.24)
t

Integrating the first equation from ¢ to oo gives

x(t) = — /too a(s)f(y(s))As, t>t. (I11.25)

By integrating the second equation from t; to ¢, and by using (III.18) and (III.25)),

we have that there exists G > 0 such that

y(t) < —Ges /: b(s) ( / N a(r)m> As.
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So as t — oo, it contradicts to ([11.23)). Proof is by contradiction. m

Theorem 3.3. Suppose that ([I1.18) holds and f is an odd function. If

/: s) </t0 b(T)AT> As = oo, (111.26)

then Mg ., = 0.

Proof. Suppose ([I1.26) holds and that there exists a nonoscillatory (z,y) solution
of (IL1)) in My  such that z > 0 eventually, z(t) — ¢; > 0 and y(t) — —o0 as
t — oco. Since z has a finite limit, there exist t; > ¢, such that ¢; < z(t) for ¢ > t;.

Integrating the first equation from ¢; to ¢ gives

x(t) = x(t1) + / a(s)f(y(s))As. (I11.27)

t1

By taking the limit of ([I1.27)) as ¢ — oo, we have

/ () F(y(s)]As < oo, (II1.28)

t1

By integrating the second equation from t¢; to ¢, using ([II.18]) and the fact that

x(t) > ¢; for t > t1, we have that there exist to > t; and G > 0 such that

t

y(t) = y(tr) — / (s)g(x(s))As < —Gey / b(s)As, >ty (I11.29)

t1 t1

By ([11.29) and the fact that f is an odd function, there exist t3 > ¢t5 and F' > 0 such

that

[fuE)l = f (Gcl / tb(s)As) > FGe, / tb(s)As, t > ts. (11.30)

t1 t1
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Multiplying (I11.30)) by a(¢) and integrating the resulting inequality from t3 to ¢ give

[ artwtsnias > pee [ ats) ( [orar) as

t3 t3

us

By taking the limit of the last inequality as ¢ — oo and by ([I1.28]), we obtain a

contradiction. So the assertion follows. O]
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4. EXAMPLES

1
t3 ’ b(t) — qT

In this section, we give some examples in order to highlight our main results
(t+1)3

Example 4.1. Let T = ¢q
= 00.

)

-1 1 —
o ¢> 1, at) (t+1)(tq+1)(2t—1)3
flu)=us,c; =1, g(u) = us, t = q" and s = tq™, where n,m € Ny in system (III.1)).

First we need to show Y (1) < oo and Z(1)

One can easily show that

<(¢—1) Z

s€ll T

ol

(s+1)(sq+1)(2s — 1)3

‘Se[lvT)qNO

/lTa<s>As= G-1 3

So as T — oo, we have that
oo 1 n
Y()<(g-1)> <q—> < 0.

One can also show

/1Tb(s)As = Z e

So as T — oo, we have
JRCINEE= BRI
1 - q

m=0

Z(1) =

Now let us show that holds. First we have

/t a(s)As < (¢ —1) Z ig

1
—.
S3

(111.31)
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by ([I1.31). So taking the limit as T — oo, we have

/too a(s)As < (¢ —1) Z

s€t,00) No

Therefore,
T 0o 5
t+1
/ b(t)g (cl/ a(s)As) At < « Z ( +E)3’
1 t tE[LT)qNO th
—1)24%
where a = M So as T — oo, we have that (II1.5) holds by using the ratio
3

(g5 = 1)
1 1
test. One can also show that (H_—l, -2+ ;) s a solution of

A —
a(1) (t+1)(tg+1)(2t—1)3

5 L
Agy(t) = —ED8 03 )

such that z(t) — 0 and y(t) — =2, i.e., My 5z # 0 by Theorem .

Example 4.2. Let T = Z,ty = 0, a,, = 27*1 by,
g(u) = u. It is clear that Y (0) < oo and Z(0) = co. Also note that

/ Ca(s)f ([ srigtear) As:jz;Qgs‘l (Zﬁz) %( )

So as T — oo, it follows that

/0 ey ( / bmg(q)m) N
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by the geometric series. It can also be shown that (z,,y,) = (1 +27",=2") is a

nonosicllatory solution of
Az, = 275" (y,)5
Ayn = _%(l’n)

such that x,, — 1 and y, — —o0 as n — oo, .e., Mg  # 0 by Theorem (or
Theorem 10 in [8]).
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5. CONCLUSIONS

In this paper, we consider the case Y (tg) < oo and Z(tg) = oo in order to
show the existence and nonexistence of nonoscillatory solutions in M~. When we
have the case

Y(tg) =00 and Z(ty) < oo, (I11.32)

we know from Lemma [1.2)d) that all nonoscillatory solutions belong to M*. So as
a future work, we will consider the case ([I1.32) in order to show the existence and
nonexistence of nonoscillatory solutions in M.

Another open problem is to extend our main results to the delay equation

(111.33)

where 7 : T — T is an increasing function such that 7(¢) < ¢t and 7(t) — oo as

t — oo. Even though the system

(111.34)

where 7 > 0, is considered in [I1], it is not valid for all time scales, such as T = ¢},

where ¢ > 1.
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IV. ON NONOSCILLATORY SOLUTIONS OF TWO - DIMENSIONAL
NONLINEAR TIME - SCALE SYSTEMS WITH DELAY

ABSTRACT

The classification schemes for nonoscillatory solutions of a class of nonlinear
two - dimensional systems of first order delay dynamic equations on time scales are
studied. Necessary and sufficient conditions are also given in order to show the
existence and nonexistence of such solutions, and some of the results are new for the

discrete case. Examples are given to illustrate some of the results.
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1. INTRODUCTION

A number of oscillation and nonoscillation criteria have already been given for

special cases of the system

(IV.1)

where a,b € C,q ([to,0)r, RT), 7 € Cyq ([to, 00)T, [t0, 00)T), T(t) < t, and 7(t) — oo
ast — oo, f and g are nondecreasing functions such that wf(u) > 0 and ug(u) > 0 for
u # 0, see [1], [10], [II]. Motivated by [12] in which 7(¢) =t —n, n > 0, the purpose
of this study is to obtain the existence and nonexistence of nonoscillatory solutions
of . According to the current knowledge, not only are the results obtained in
[12] improved but some of the results are also new for the discrete case. The theory
of time scales, which is a nonempty closed subset of real numbers denoted by T, was
introduced by Stefan Hilger in his Ph.D. thesis in 1988 in order to unify continuous
and discrete analyses and to extend the results to any time scale (see [2] and [3]).
Throughout this paper, it is assumed that T is unbounded above. We mean by ¢ > ¢,
that t € [t;,00)7 := [t1,00) NT. We call (x,y) a proper solution if it is defined on
[to, 00)T and sup{|z(s)|, |y(s)| : s € [t,00)r} > 0 for t > ;. A solution (z,y) of
is said to be nonoscillatory if the component functions x and y are both nonoscillatory
(i.e., either eventually positive or eventually negative). Otherwise, it is said to be
oscillatory.

One can easily show that any nonoscillatory solution (z,y) of system (IV.1))

belongs to one of the following two classes:

M* :={(x,y) € M : zy >0 eventually}

M~ :={(x,y) € M : xy <0 eventually},
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where M is the set of all nonoscillatory solutions of system (IV.1]).

For convenience, set

A(t) = /too a(s)As and B(t) = /too b(s)As. (IV.2)

The set up of this paper is as follows: in Section 1, essential lemmas that
are used in proofs of the main results are given. In Section 2, the existence of
nonoscillatory solutions of system (IV.1)) is shown in some sub-classes of M+ and
M~ by using convergence/divergence of A(ty) and B(ty) for tg € T and some other
improper integrals. We also give examples in order to highlight our main results. In
Section 3, we show the nonexistence of nonoscillatory solutions of system in
M™ and M~. Finally, we end up the paper by a conclusion.

As shown in [I], the component functions = and y are themselves nonoscillatory
if (x,y) is a nonoscillatory solution of the system . The following lemmas show
the oscillation and nonoscillation criteria of the system . Because system ([V.1])
has been considered without a delay term in [I1], we refer the reader to [11] for some

of the proofs we skip here.

Lemma 1.1. (a) If A(ty) < oo and B(tyg) < oo, then system (IV.1)) is nonoscillatory.

(b) If A(ty) = oo and B(ty) = oo, then system (IV.1]) is oscillatory.

Proof. (a) Suppose that A(ty) < co and B(ty) < co. Choose t; € [ty, c0) such that

/OO a(t)f(1+ ¢(2) /OO b(s)As)At < 1.

t1 t

Let X be the space of all rd-continuous functions on T with the norm ||z| =

sup |x(t)| and with the usual pointwise ordering <. Define a subset 2 of X
tE[tl,oo)T

Q={reX: 1<z(r(t) <2, 7(t)>1t}.
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For any subset S of 2, inf § € 2 and sup S € 2. Define an operator F': {0 — X such

that

Fa0 =1+ [ a)f (14 [ bagtar@nan) 85, w0 2 0

t1

By using the monotonicity of f and g and the fact that x € ), we have

1< (Fz)(t) <1+ /ta(s)f(l +9(2) /00 b(u)Au)As <2, 7(t) > t;.

t1 s

It is also easy to show that F'is an increasing mapping. Therefore, by the Knaster

fixed point theorem, there exists z € €2 such that F'z = z. Then

Kl
>
=
I

a(t) f (1 + /t h b(u)g(x(T(u)))Au> .

Setting o0
i) =1+ [ bulgta(r(u)du
gives
jo(t) = —b(t)g(z((1))),
i.e., (Z,y) is a nonoscillatory solution of . O

Lemma 1.2. (a) If A(ty) < oo and B(tg) = oo, then any nonoscillatory solution

(x,y) of system belongs to M~ i.e., M = ().
(b) If A(tg) = oo and B(ty) < oo, then any nonoscillatory solution (z,y) of system
belongs to M*, i.e., M~ = 0.
The following lemma shows the limit behaviors of the component functions x
and y of solution (z,y) of system (IV.I]).
Lemma 1.3. Let (z,y) be a nonoscillatory solution of system .
(a) If A(tp) < oo, then the component function x of (x,y) has a finite limit.
(b) If A(ty) = oo or B(tyg) < oo, then the component function y of (z,y) has a finite

limit.
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2. EXISTENCE OF NONOSCILLATORY SOLUTIONS OF (IV.1)
IN M* AND M~

This section shows the existence of nonoscillatory solutions of system ([V.1]
by considering the convergence/divergence of A(ty) and B(ty). Because the system
(IV.1)) is oscillatory for the case A(tg) = oo and B(t;) = oo, only the other three

cases are considered.

2.1. THE CASE A(t,) = co AND B(t) < 00

Let (z,y) be a nonoscillatory solution of system (IV.1]) such that the
component function z of the solution (x,y) is eventually positive. Then by the same
discussion in [I1], any nonoscillatory solution of system (IV.1)) in M belongs to one

of the following sub-classes:

Mo = {(@,y) € M+ lim Jo(t)] = ¢, Tim [y(0)|

I
o
——

+ . _ ' _
MY = {(e,y) € MY lim [a(t)] = oo, Tim [y(1)] = d},
+ + .13 — : —
Mg ={(z.y) € M*: lim [2(t)] = o0, lim Jy(t)| =0},
where 0 < ¢ < oo and 0 < d < oo.

Theorem 2.1. Mf, # 0 if and only if

/to T ahf <k /t N b(s)As> At < o0 (IV.3)

for some nonzero k.

Proof. Suppose that there exists a solution (x,y) € M such that z(t) > 0, z(7(t)) >
0 for t > to, x(t) — ¢; and y(t) — 0 as t — oo. Because z is eventually increasing,

there exist t; > ¢y and ¢y > 0 such that co < g(z(7(t))) for t > ;. Integrating the
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second equation from ¢ to oo gives

y(t) = /t T b(s)gla(r(s)As, 1> b (IV.4)

Also, integrating the first equation from ¢; to ¢, using the monotonicty of g and (IV.4)

result in

x(t) > /tlta(s) f ( / N b(u)g(ﬂn(T(u)))Au) As > /t:a(s) f <CQ / N b(u)Au) As

Setting co = k and taking the limit as ¢ — oo prove the assertion. (For the case x < 0
eventually, the proof can be shown similarly with & < 0.)
Conversely, suppose that (IV.3]) holds for some k& > 0. (For the case k < 0 can

be shown similarly.) Then choose t; > ty so large that

/too a(t)f (kr /too b(s)As) At < %, t> 1, (IV.5)

where k = g(c¢;). Let X be the space of all continuous and bounded functions on

[t1,00)r with the norm ||y|| = sup |y(¢)]. Then, X is a Banach space, (see [4] ).
tG[tl,OO)'ﬂ‘

Let Q be the subset of X such that
Q:={reX: % <z(r(t) < e, () >t}
and define an operator F': {2 — X such that

(Fz)(t) = e = /too afs) f (/Oo b(U)g(w(T(U)))AU) As, 7(t) =t
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It is easy to see that €2 is bounded, convex and a closed subset of X. Now, I’ has the

following properties. In addition, F' maps into itself. Indeed, we have

az (PO 2 e~ [ a0 (ste) [ bsu) as= G w0 20

by (IV.5). In order to show that F' is continuous on €, let z,, be a sequence in 2

such that x,, — 2 € Q = Q. Then, for 7(t) > t;

(Fa) () — (F) (1)
< [Taw (= [ swstenr@nan) - 1 (= [Tswgtetrnad)] \ As.

Then, the Lebesgue Dominated Convergence theorem and the continuity of g give

|(Fx,) — (Fx)|| — 0 as n — oo, i.e., F is continuous on 2. Finally, F'Q is shown to
be precompact. Let x €  and s,t > t;. Without loss of generality, assume s > t.

Then, we obtain

(F)(s) = (F0) < [ atws (ste) [Tonmn) du < ri =,

by assumption, which implies that F'Q2 is relatively compact. Then, by the Schauder
fixed point theorem, there exists £ € () such that z = Fz. As t — oo, we get

z(t) — ¢; > 0. Setting

(1) = / T bwg(E(r(w)Au > 0, (1) > t

shows that §(t) — 0 as t — oo, i.e., Mg, # 0. O

Example 2.2. Let T =2 7(t) =

__3
42(8¢ — 4)’

1
,t=2"5=2" m,n > 2, a(t):2—é, b(t) =

5

PP

flu) = us, k=1 and g(u) = u. First, it must be shown that A(ty) = oo



and B(ty) < co. Indeed,

2No
Therefore,
n—1
1 o
Alt) =3 Jim > (27)% = o
Because
t
3 1
/ b(s)As < — =)
to 16 S
s€E[4,t),N,
we have
3 n—1 1
< — i -
B(to) < 16 nl—{gomzz om < o0

o\

S~
=
=
>
w
[\

| w0
| =

This implies that

Letting k = 1 and using the last inequality gives

/:a@)f (k/toob(s)As) At < /f% (%)gm_ @)%

93
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Therefore, we have

/: o) f (k/too b(s)As> At < (g) %io 21 <o

%) 15 a nonoscillatory

by the geometric series. One can also show that (z,y) = (8 — %

solution of

S

Aq(t) = — (y(t))
g (IV.6)
Bay(t) = ()
24 A28t —4) 4"
h(2t) — h(t
where Agx is the delta-derivative of x in 250 d.e., Ayh(t) = % such that

z(t) = 8 and y(t) = 0 as t — oo, i.e., Mg, # 0 by Theorem .

When the case A(ty) = 0o and B(ty) < oo holds, it can be shown that My  #

0 with 7(¢t) =t — n for n > 0, see [12].

2.2. THE CASE A(t,) < co AND B(t) < o0

Because the component fuctions x and y have finite limits by Lemma 1.3}

only two subclasses in M™ can exist by the same discussion in [I1]

Mo = {(@,y) € M¥: lim [2(t)] = ¢, Tim Jy()] = 0},

M ={(z,y) € M*: Jim [a(t)] = ¢, lim |y(t)] = d}

where 0 < ¢ < 0o and 0 < d < co. Because the existence of nonoscillatory solutions

. + . . . . . . +
in M} is shown in the previous subsection, it is only proven for My 5.

Theorem 2.3. My 5 # 0 if and only if

/t :o a(s)f <d1 +k / Oob(u)Au) As < 00 (IV.7)

for some k # 0 and dy # 0.
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Proof. Suppose that a nonoscillatory solution (x,y) € ng p exists such that z > 0
eventually, z(t) — ¢, and y(t) — d; as t — oo. (For the case x < 0 eventually, the
proof can be shown similarly.) Because x is eventually positive and increasing, there
exist a large t; > ty and ¢ > 0 such that ¢; < z(7(t)) < ¢; for t > t;. Integrating

the second equation from ¢ to oo and the monotonicity of g give
v 2 ditgler) [ bo)ds, 2t (v 8)
t

Integrating the first equation from ¢; to ¢ and using the monotonicity of f yield

() > / Cas)/ <d1—|—g(02) / Oob(T)AT) As.

t1

So, as t — oo, the assertion follows for k = g(c2).

Conversely, suppose ([V.7)) holds. Choose t; > tg, k > 0 and d; > 0 such that

/t 100 a(s) f (d1 +k / N b(u)Au) As < dj, (IV.9)

where k£ = ¢(2d;). (The case k,d; < 0 can be done similarly.) Let X be the Ba-
nach space of all continuous real valued functions endowed with the norm ||z| =

sup |x(t)| and with usual pointwise ordering <. Define a subset € of X as
teftr,00)T

Q={rxeX: d <z(r(t)) <2, 7(t)>t}.

For any subset B of €2, it is clear that inf B €  and sup B € ). An operator
F:Q — X is defined as

(Pa)(0)=dy+ [ als)) (d1 v [ mb(u)g(m(rm»mu) As, (t) > 1.

t1
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It is obvious that F'is an increasing mapping into itself. Therefore,

d, < (Fz)(t) < dy + /ta(s)f (d1 + g(2dy) /:O b(u)Au) As < 2dy, T(t) >t

t1

Then, by the Knaster fixed point theorem, there exists z € ) such that z = Fz. By

setting

§t) = dy + / b)), () > b,

we get that

Therefore, (t) — a and §(t) — dy as t — oo, where 0 < a < oo, i.e., My # 0.

Note that a similar proof can be done for the case k < 0 and d; < 0 with x < 0. [

B 1
23 (3t 4 1)3

b(t) = m, Flu) = us and g(u) = u. We first show A(ty) < oo and B(ty) < oo.

Example 2.4. Let T =2 7(t) =1 t=2" s=2™ n> 2 a(t) ,

t
4

So we have

Hence, ast — oo, we obtain

n—1

1 . 1
Blto) =3l D g g <>
m=2
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Because A(ty) < oo and B(ty) < oo, it is easy to show that holds. One can

also show that (6 — %, 3+ %) 1s a nonoscillatory solution of

)
5 1Y

Agy(t) = —mx <§1>

such that x(t) — 6 and y(t) — 3 ast — oo, i.e., Mf; 5 # 0 by Theorem .

AQI(t) =

By the similar argument in [I1], any nonoscillatory solution of system (IV.1)

in M~ belongs to one of the following sub-classes:

Mg = {(z,5) € M~ : lim [2(t)] = 0, lim |y(t)] = d},
My ={(e.,y) € M~ lim a(t)] = ¢, lim Jy(t)] = d}
Moo = {(2.y) € M~ : Jim [2(t)] = 0, Jim [y(t)] = oo},
Moo = {(@.y) € M~ Jim [x(t)] = ¢, Jim |y(1)] = oo}

where 0 < ¢ < oo and 0 < d < oo.

Theorem 2.5. My # 0 if and only if

/: a(s)f <k: /sb(u)Au) As < (IV.11)

to
for some k # 0, where f is an odd function.

Proof. Suppose that there exists a nonoscillatory solution (z,y) € M B Such that
x(t) > 0,2(7(t)) > 0,t > 11, 2(t) = ce and y(t) — —oo ast — oo, where 0 < ¢y < 0.

Because x is monotonic and has a finite limit, there exist ¢t5 > ¢; and ¢3 > 0 such
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that

o <x(r(t)) <cg for t>ts. (IV.12)

Integrating the first equation from ¢5 to ¢ gives

o < x(t) =x(t)) + /ta(s)f(y(s))As <c, t>to.

t1

By taking the limit as ¢t — oo, we obtain

/OO a(s)|f(y(s))]As < oo. (IV.13)

to

Using the monotonicity of g, (IV.12)) and integrating the second equation from ¢, to
t yield
t t
(1) < olts) — glea) | Ws)As < ~gler) [ B(s)s
to to

Because f(—u) = —f(u) for u # 0 and by the monotonicity of f, we have

|fly@) = f <g(02)/tb(s)As), t > t,. (IV.14)

to

By (IV.13) and ([1I.12)), we have

[ aistotsnias> [ ar (stes) [ san) as

to to t2

As t — oo, the assertion follows by setting g(cs) = k. (The case x < 0 eventually can
be proved similarly with & < 0.)
Conversely, without loss of generality, suppose that ([V.11]) holds for some

k > 0. (The case k < 0 can be done similarly.) Then one can choose t; > t, and
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d > 0 such that

/ a(s)f <k/ b(u)Au) As<d, 7(t)>1t, (IV.15)

t1 t1

where k = g(2d). Let X be the partially ordered Banach space of all real-valued

continuous functions endowed with supremum norm ||z|| = sup [|z(f)| and with
te[tl,oo)qp

the usual pointwise ordering <. Define a subset {2 of X such that

Q={reX: d<z(r(t))<2d, 7(t)>t1}. (IV.16)

For any subset B of Q, inf B € Q and sup B € Q, i.e., (2, <) is complete. Define an

operator F': Q = X as

(Fa)(t) = d+ /t " a(s)f ( / S b(u)g(m(T(u)))Au) As, T(#)>t. (VA7)

t1

It must be shown that F': 2 — €) is an increasing mapping into itself. It is obvious

that it is an increasing mapping and because

d< (Fz)(t) =d+ /too a(s)f (/ b(u)g(x(T(u)))Au) As < 2d

t1

by (IV.15)), it follows that F' : Q — €. Then, by the Knaster fixed point theorem,

there exists z € () such that

z(t) = (Fz)(t) =d+ /too a(s)f (/ts b(u)g(a:(T(u)))Au> As, 7(t)>t;. (IV.18)

Taking the derivative of (IV.18) and the fact that f is an odd function show that

0 -a0s (- | t bulg(alrw)dn), 70> 0

t1
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t
Setting y = — / b(u)g(Z(7(u)))Au and using the monotonicity of g give

t1
t
) < ~9(a@) [ Mwdu. () =t
131
Therefore, z(t) > 0 and y(t) < 0 for t > ¢;, and z(t) — d and y(t) - —oc0 as t — oo.

This completes the proof. O

Example 2.6. Let T = 2N 7(t) =
1 2t2 — 1
NN ., Ok b(t) = 9., 1
2t5(t2 + 1)5 2t5(3t +4)5
A(to) < 00 and B(ty) = oo. To show (IV.11) holds, first we have

,t=2"s=2""mmn > 2 k=1 a(t) =

e

fu) = us and g(u) = us. One can easily show

/Sb( )A . 3 2u -1 3 1
u)Au = — e U=5s—
to 2 u3(3u+4)

u€l4,s),Ng u€ll,8),Ng

ut=

Hence
e s T 1
/ a(s)f (k/ b(u)Au) As < / - (s —1)5As
to to to 285(32 + ]-)g
1 (s—1)5 1
5 Z 2(s21)): — s
S€[4,T) g s5(s?+1))5 S€[4,T) g
Because

, 1 1
fm 2 D=2 gm<
SE[4,T)2N0 m=2

it can be shown that ([V.11)) holds asT"— oo. It can also be shown that (3—|—%, —t—%)

1 a nonoscillatory solution of

1 3
2t§(152—+1)§(y<t>>5

22— 1 £\
Aay(t) = o3 (3t +4)3 (x(i))

such that x(t) — 3 and y(t) = —oo ast — 00, i.e., My  # 0 by Theorem .

Agx(t) =
(IV.19)
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3. NONEXISTENCE OF NONOSCILLATORY SOLUTIONS OF
(IV.1) IN M+ AND M-

The nonexistence of nonoscillatory solutions of system (IV.1) in Mg, M5 4
and Mp  directly follows from Theorems , and respectively. Hence, the

: + -
focus is only on M7 5, M .

M; 5, My 5 and M.

3.1. THE CASE A(ty) = co AND B(t;) < 00

[0 ( /fa(umu) As— o0 v.20)

for some nonzero ¢y, then M 5 = 0.

Theorem 3.1. If

Proof. Assume that there exists a solution (z,y) € M;B of such that z(t) > 0,
z(r(t)) > 0, y(t) > 0 for t > ty, x(t) — oo and y(t) — d; as t — oo, where
0 < dy < co. Because y(t) > 0 and decreasing for ¢ > t,, there exists t; > t, and
dy > 0 such that dy < y(t) < dy for t > t;. Integrating the first equation from ¢; to

7(t) gives

T(t)
2+ (1)) > F(dy) / a(s)As. (IV.21)

t1

By integrating the second equation form t; to ¢t and using ([V.21]) yield us

t t 7(s)
y(t1) 2/ b(s)g(x(7(s)))As 2/ b(s)g (cl/ a(u)Au) As, t>ty,

t1 t1 t1

where ¢; = f(dy). Ast — oo, we have a contradiction to (IV.20]). The proof can be

shown similarly when z < 0 eventually with ¢; < 0. O]
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Theorem 3.2. If

/: a0 ( /t ey (Cl /t 08 a(U)Au) As) At < 00 (IV.22)

for some ¢; # 0, then M7, = 0.

Proof. The proof is by contradiction, so assume that there exists a nonoscillatory
solution in M, ; such that x(t) > 0, z(7(t)) > 0, y(t) > 0 for t > o, (t) — co and

y(t) — 0 as t — co. Integrating the second equation from t to oo gives

y(t) = /too b(s)g(z(7(s)))As. (IV.23)

Because y is eventually decreasing, there exist t; > ¢y and d; > 0 such that f(y(t)) <
dy for t > t1. Then by integrating the first equation from t; to ¢t and the monotonicity

of x and f, we have that

t

z(7(t)) < z(t) < x(ty) + d4 /ta(s)As < cl/ a(s)As, t>t, (IV.24)

t1 t1

where ¢; = 1+max{z(t;),d; }. Integrating the first equation from ¢; to ¢, monotonicty

of f and g, (IV.23) and (IV.24)) give

2(t) < x(ty) + /t ta(s) f ( / T b(u)g <01 /:a(A)AA) Au) As,

As t — oo, we have a contradiction to x(t) — oo. The proof can be done similarly

when z < 0 eventually with ¢; < 0. [

3.2. THE CASE A(t,) < co AND B(t) = 00

/t :O b(t)g (c1 /t h a(s)As) At = 0o (IV.25)

Theorem 3.3. If
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for some ¢; # 0, then My 5 = 0.

Proof. The proof is by contradiction. Assume that there exists a solution (z,y) €
Mg p such that z(t) > 0, z(7(t)) > 0, y(t) < 0 for t > to, x(t) — 0 and y(t) — —d
as t — oo, where d > 0. By integrating the first equation of system (IV.1)) and using

the monotonicity of x,y and f, there exist ¢; > 0 and t; > ¢y such that
z(7(t)) > x(t) > cl/ a(s)A(s), t>t. (IV.26)
t

By integrating the second equation from ¢; to ¢, using inequality ([V.26]) and the

monotonicity of g, we have

) = olto) - | B()gla(r(9)As < — / b(s)g ( / ooamm) As.

to to

As t — oo, we have a contradiction to (IV.25)). For the case x < 0 eventually, the

proof can be shown similarly with ¢; < 0. [

/: blt)g (Cl — & /t i a<S>A5) =09 (IV.27)

for some ¢c; >0 and d; <0, (or ¢y <0 and dy > 0) then Mpp= 0.

Theorem 3.4. If

Proof. The proof is by contradiction. Hence, assume that there exists a nonoscillatory
solution (z,y) € Mp p such that x(t) > 0, z((t)) > 0, y(t) < 0 for t > 1o, tlglolo x(t) =
c; > 0 and tlg;r)lo y(t) = dy; < 0. Since y is decreasing, there exists dy < 0 and t; > tg
such that f(y(t)) < dy for t > t;. Integrating the first equation from ¢ to co and the

monotonicty of z yield
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By integrating the second equation from t; to ¢t and using ([V.28§]), we have

o0 < = [ oelgtatromas < - [ (e [ atwzu) as

t1 t1

where dy = dy < 0 and taking the limit of the last inequality as t — oo, we have
a contradiction to (IV.27)). This completes the proof. Note that the case x < 0

eventually can be done similarly with ¢; < 0 and d; > 0. [

Theorem 3.5. Suppose that f is an odd function. If

[ ot ([ ss (e [“auma)so) o vz

for some ¢; # 0, then My, = 0.

Proof. The proof is by contradiction. Assume that there exists a nonoscillatory solu-
tion (x,y) € M, such that x(t) > 0, z(7(t)) > 0, y(t) < 0 for t > ¢y, z(t) — 0 and
y(t) — —oo as t — oo. Inequality (IV.26)) and the monotonicity of g yield us that

there exists ¢; > 0 and t; > ¢y such that
g(z(7(t)) > g(z(t)) > g (01/ a(s)As) , t>1. (IV.30)
t
Integrating the second equation of system ([V.1)) from ¢; to ¢ and using (IV.30)) yield

y(t) < — / tb(s)g (01 / Ooa(u)Au) As, t>1t. (IV.31)

t1

By integrating the first equation of system (IV.1)) from ¢; to ¢, (IV.31) and the fact

that f is an odd function, we have

o(ty) > 2(ty) — a(t) > /tlta(s) (/t b(u)g (01 /uoo a(/\)A/\) Au) As, 131
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Taking the limit of the last inequality as ¢ — oo, we have a contradiction to (IV.29).

For the case x < 0, the proof can be shown similary with ¢; < 0. O]
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4. CONCLUSION

In this section, we reconsider (IV.1)), where 7(¢) = ¢, namely,
(IV.32)

and investigate the asymptotic properties of nonoscillatory solutions for . Be-
cause the existence and nonexistence of nonoscillatory solutions of in M~
are considered in [I1], we only focus on M ™. Notice that the results are obtained
for system in Sections 2 and 3 also hold for system . Therefore, we
only show the existence of nonoscillatory solutions for in M7, 5 and MJ,
which are not acquired for (IV.1]). In order to do that, we assume A(ty) = oo and

B(tp) < oo throughout this section.

Theorem 4.1. M, 5 # 0 if and only if

/tooo bs)s <Cl /t “(“)A“> As <00 (IV.33)

for some ¢y # 0.

Proof. The necessity directly follows from Theorem [3.1] For suffiency, suppose that
(IV.33)) holds. Choose t; > ty, ¢; > 0 and d; > 0 such that

“os)g (e [ ban) As <, 1>t (IV.34)
[ e (e [ a2

t1

where ¢; = f(2d;) > 0. (The case ¢; < 0 can be done similarly.) Let X be the
partially ordered Banach space of all real-valued continuous functions endowed with

t
supremum norm |[z|| = sup ftlxi ))I
tG[tl,Oo)T 1 als

~; and with the usual pointwise ordering <.
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Define a subset €2 of X such that

t

Q=AHzeX: f(d) /ta(s)As <z(t) < f(2d1)/ a(s)As, t>t}. (IV.35)

t1 t1

For any subset B of 0, inf B € Q and sup B € ), i.e., (2, <) is complete. Define an

operator F: 2 — X as

(Fa)(t) = / ta(s) f (d1+ /t Oob(u)g(x(u))Au) As, t>1t. (IV.36)

t1

First we need to show that F' : Q2 — () is an increasing mapping into itself. It is

obvious that it is an increasing mapping, so let us show F' := ) — Q.

F(d) / a(s)As < (Fr)(t)

tl < /tlta(s) f (d1+ / T b(u)g (f(2d1) /:a(x)m) Au) As

< f(2d1)/ta(s)As

t1

by ([V.34). Then, by the Knaster fixed point theorem, there exists = € €2 such that
t 00
(1) = (F3)(t) = / a(s)f (d1 + / b(u)g(a‘:(u))Au) As, t>t.  (IV.37)
t1 s
By taking the derivative of ([V.37))
T2(t) = a(t) f (d1 +/ b(u)g(f(u))Au) . t>1.
t

Setting y(t) = d; +/ b(u)g(z(u))Au and taking the limit as ¢ — oo show that
t
Z(t) > 0 and y(t) > 0 for t > ¢, and z(t) — oo and y(t) — dy > 0 as t — oo, i.e.,

M, #0. 0
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Theorem 4.2. If

/t:oa(t)f (k/toob(s)As> A= oo (—o0)

and

/: b(t)g <z /: a(s)As> At < o0

for any k>0 and some 1 >0 (k <0 and | <0), then MZ o, # 0.

Proof. Choose t; > tg and ¢; > 0 such that

00 t
/ b(t)g <l / a(s)As) At < % >t (IV.38)
t1 to
where [ = f(c1). Let X be the partially ordered Banach space of all real-valued
continous functions endowed with the norm |ly|| = sup |y(¢)| and with the usual
tE[tLOO)']r

pointwise ordering <. Define a subset 2 of X such that

Oy X: o) [ MAs<yn <G, tznh

It is clear that (€2, <) is complete. Define an operator F': Q@ — X such that

F)0) = [0 ([ atwotnan) as

t1

It is clear that F' is an increasing mapping. We also need to show that F':  — .

By (IV.38) and the monotonicity of g, we have

(Fy)(t) < /too b(s)g (l /:G(U)A“) As = 6_21
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for y € Q. Since

/: a(t)f (k /too b(s)As> At = oo,

there exists t9 > t; such that

/t:a(s)f (k /:O b(u)Au> As > 1

for t >ty and any k > 0, so by setting k = ¢g(1), we have

0= [ o) ( | atws (gu) | b(Am) Au) Asz 1) [ als)s

for t > ty5. Then, by the Knaster fixed point theorem, there exists y € €2 such that

y = Fy. Then we have

Setting

and taking the limit as ¢t — oo give us that £ — oo and y — 0, i.e., M;;O # (). The

case k < 0 and [ < 0 with z < 0 can be shown similarly. O]
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SECTION
2. CONCLUSIONS

In this thesis, we investigated the existence and nonexistence of nonoscillatory so-
lutions of equation and systems , , and in M+ and M~.
Investigation of classification of nonoscillatory solutions to dynamic equations and
systems on time scales is related with the signs of their solutions.

In the first paper, we consider equation ([.1) which can be rewritten as a

system of first order dynamic equations

where y = 2! defined in (I.12)).
The following tables indicate the criteria for nonoscillatory solutions of

(or system ([2.1))) in M and M~ based on the integrals Jy, K1, J;, and K3 defined as

- ([[.11)), respectively.

Table 2.1 Classification for in M+

M g #0(=0) J1 <ooand K; < 0o (J; =00 or Kj = 0)

Mg #0(=10) J1 < oo and K; =00 (J; =00 or K; < o0)

§3
Sy

I
=

J1 < oo or K; =00
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Table 2.2 Classification for in M~

My #0(=0) I <ooand Ky <oo (I =o00o0r Ky=00)

MO_,B #@(:m) K2<OO(K2:OO)

Mg, #0(=0) I <ooand Ky =00 (Jy =00 or Ky < co with 8> «)

M&o =0 I <00 or Ky < oo with 8> «

The second paper is concerned with system (II.1]). Table presents the clas-
sification of nonoscillatory solutions of (IL.1)) in M ™ by using the integrals Yy, Z, J,,

and K defined by (IL.3), (IL.5]), and (II.6]), respectively. Here, we assume Y, = oo

and Z, < oo.

Table 2.3 Classification for 1) in M+

a<l
a < [ and a<p, pf>1
MLy || #0 J, < 00 and
Kg < o0 and Jg < 00
K, <o
o> [ and o > 1 and
Jo < 00 Jg < o0
J, = 00 and
Mo || #0
K5<OO
N a > (3 and either
Mg, = Jo = 00 a>1and K, =
Kg =00 or Jg =00
a < (B and either
MIigll=0] Kz=o0 f<1land Js=o0

J, =00 or K, =0
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We also prove the (non)existence of nonoscillatory solutions of (II.1)) without

any need of J, and K. Therefore, we have the following table:

Table 2.4 Classification for 1’ in M+

Mg || #

0|Y, <ooand Z, < oo
Mg | #0 | Yo <ooand Z, < 0o

In order to classify of nonoscillatory solutions of (III.1)) and (IV.1)), for sim-

plicity we let

Iy = /t b(s)g (01 /t (u)Au) As, I = /tooob(t)g (z /toooa(s)As) At.

In the third paper, we assume that Y (¢y) = oo and Z(ty) < oo for the following
tables, where Y (¢y) and Z(ty) are defined in ([1I.2)).
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Table 2.5 Classification for ([II.1)) in M~

My, || #0(=0) | L <oo(l; =)
My | #0(=0) | L<oo(l=o0)
My, || #0(=0) | IL<oo(ls=o0)
My £ 0 Iy < oo and I, = o0

In the fourth paper, Tables - present how we classify nonoscillatory
solutions of the delay system in M* and M~ and of system in M.
For Tables 2.6/ and [2.8] it is assumed that A(tg) = co and B(ty) < oo, while for Table
2.7, we assume that A(ty) < oo and B(tg) = oo, where A(ty) and B(ty) are defined
in ([V.2). Finally, in the case A(ty) < oo, B(ty) < oo, and I5 < oo, we obtaine the
existence of nonoscillatory solutions of in M;', B

Table 2.6 Classification for (IV.1)) in M
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Table 2.7 Classification for 1’ in M~

My, | #0(=0) | I <oo(ls = o)
M, 5 =0 I =
Mg g =0 I, =00
M =0 Iy = 00

Table 2.8 Classification for ([V.32)) in M™

MIg | #0(=0) Iy < 00 (ly = o0)

M;,O # ) I, = oo and [y < oo
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