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ABSTRACT

During the past years, there has been an increasing interest in studying oscilla-

tion and nonoscillation criteria for dynamic equations and systems on time scales that

harmonize the oscillation and nonoscillation theory for the continuous and discrete

cases in order to combine them in one comprehensive theory and eliminate obscurity

from both.

We not only classify nonoscillatory solutions of dynamic equations and systems

on time scales but also guarantee the (non)existence of such solutions by using the

Knaster fixed point theorem, Schauder - Tychonoff fixed point theorem, and Schauder

fixed point theorem. The approach is based on the sign of nonoscillatory solutions.

A short introduction to the time scale calculus is given as well.

Examples are significant in order to see if nonoscillatory solutions exist or not.

Therefore, we give several examples in order to highlight our main results for the set

of real numbers R, the set of integers Z, and qN0 = {1, q, q2, q3, ...}, q > 1, which are

the most well-known time scales.
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1. INTRODUCTION

1.1. PRELIMINARIES

The theory of time scales was first introduced by Stefan Hilger in his Ph.D.

thesis in 1988. The main idea is to unify and extend the continuous and discrete

theories that are used in mathematical models in population dynamics, economics,

and engineering. For example, if the time scale is chosen as the set of real numbers,

the general results give the results in differential equations, while if the time scale is

chosen as the set of integers, the results hold for difference equations. In this section,

basic definitions and the theory of time scales are introduced based on the books by

Bohner and Peterson, see [14].

A time scale T is an arbitrary nonempty closed subset of the real numbers R

that has the following properties:

(i) T and ∅ are closed subsets of T,

(ii) Any intersection of arbitrarily many closed subsets of T is a also closed subset

of T,

(iii) Any union of finitely many closed subsets of T is a closed subset of T.

The most well known examples for time scales are R, Z, and qN0 . However,

Q, R\Q, C, and the interval (0, 1) are not time scales.

Definition 1.1. [14, Definition 1.1] Let T be a time scale. For t ∈ T, we have the

following definitions:

(i) The forward jump operator σ : T→ T by

σ(t) := inf{s ∈ T : s > t} for all t ∈ T.
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(ii) The backward jump operator ρ : T→ T by

ρ(t) := inf{s ∈ T : s < t} for all t ∈ T.

(iii) The graininess function µ : T→ [0,∞) by

µ(t) := σ(t)− t for all t ∈ T.

We define inf ∅ = supT. If σ(t) > t, then t is called right - scattered, while if

ρ(t) < t, t is called left - scattered. If t is right and left - scattered at the same time,

then we say that t is isolated. If t < supT and σ(t) = t, then t is called right - dense,

while if t > inf T and ρ(t) = t, we say t is left - dense. Also, if t is right and left -

dense at the same time, then we say t is dense.

Tables 1.1 and 1.2 show some examples of the forward and backward jump op-

erators and the graininess function for most known time scales and the classifications

for a time scale point.

Table 1.1 Examples of Most Known Time Scales

T σ(t) ρ(t) µ(t)

R t t 0

Z t+ 1 t− 1 1

qN0 tq t
q

(q − 1)t
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Table 1.2 Classification of Points

t < σ(t) t is right-scattered

t > ρ(t) t is left-scattered

ρ(t) < t < σ(t) t is isolated

t = σ(t) t is right-dense

t = ρ(t) t is left dense

ρ(t) = t = σ(t) t is dense

If supT < ∞, then Tκ = T\(ρ(supT), supT], and Tκ = T if otherwise.

Suppose that f : T → R is a function. Then fσ : T → R is defined by fσ(t) =

f(σ(t)) for all t ∈ T.

Definition 1.2. [14, Definition 1.10] For any ε, if there exists a δ > 0 such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s| for all s ∈ (t− δ, t+ δ) ∩ T,

then f is called delta (or Hilger) differentiable on Tκ and f∆ is called delta derivative

of f.

Theorem 1.3. [14, Theorem 1.16] Let f : T→ R be a function with t ∈ Tκ. Then

(i) If f is differentiable at t, f is continuous at t.

(ii) If f is continuous at t and t is right-scattered, then f is differentiable at t and

f∆(t) =
f(σ(t))− f(t)

µ(t)
.

(iii) If f is differentiable at t, then f(σ(t)) = f(t) + µ(t)f∆(t).
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The following theorem presents the product and quotient rules on time scales.

Theorem 1.4. [14, Theorem 1.20] Let f, g : T→ R be differentiable at t ∈ Tκ. Then

(i) If fg : T→ R is differentiable at t, then

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t)).

(ii) If g(t)g(σ(t)) 6= 0, then f
g

is differentaible at t with

(
f

g

)∆

(t) =
f∆(t)g(t)− f(t)g∆(t)

g(t)g(σ(t))
.

The following concepts must be introduced in order to define ∆ - integrable

functions.

Definition 1.5. [14, Definition 1.58] f : T → R is called rd-continuous, denoted

by Crd,Crd(T), or Crd(T,R) if it is continuous at right dense points in T and its left

sided limits exist as a finite number at left dense points in T. Also the set of functions

f : T → R which are differentiable and whose derivative is rd-continuous is denoted

by C1
rd,C

1
rd(T), or C1

rd(T,R).

Theorem 1.6. [14, Theorem 1.60] Let f : T→ R.

(i) If f is continuous, then f is rd-continuous.

(ii) The jump operator σ is rd-continuous.

Also, Cauchy integral is defined by

∫ b

a

f(t)∆t = F (b)− F (a) for all a, b ∈ T.

The following theorem presents the existence of antiderivatives.
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Theorem 1.7. [14, Theorem 1.74] Every rd-continuous function has an antideriva-

tive. Moreover, F given by

F (t) =

∫ t

t0

f(s)∆s for t ∈ T

is called an antiderivative of f .

Remark 1.8. [14, Theorem 1.76] If f∆ ≥ 0, then f is nondecreasing.

Theorem 1.9. [14, Theorem 1.77] Let a, b, c ∈ T, α ∈ R, and f, g ∈ Crd. Then the

following holds:

(i)
∫ b
a
[(αf(t)) + (αg(t))] = α

∫ b
a
f(t)∆t+

∫ b
a
αg(t)∆t.

(ii)
∫ b
a
f(t)∆t = −

∫ a
b
f(t)∆t.

(iii)
∫ b
a
f(t)∆t =

∫ c
a
f(t)∆t+

∫ b
c
f(t)∆t.

(iv)
∫ a
a
f(t)∆t = 0.

Table 1.3 shows the derivative and integral definitions for the most known

time scales for a, b ∈ T. Finally, we finish the subsection by the following fixed point

theorems.

Table 1.3 Derivative and Integrals for Most Common Time Scales

T f∆(t)

∫ b

a

f(t)∆t

R f ′(t)

∫ b

a

f(t)dt

Z ∆f(t)
b−1∑
t=a

f(t)

qN0 ∆qf(t)
∑

t∈[a,b)
qN0

f(t)µ(t)
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Theorem 1.10 (Schauder’s Fixed Point Theorem). [50, Theorem 2.A] Let M be a

nonempty, closed, bounded, convex subset of a Banach space X, and suppose that

T : M →M is a compact operator. Then, T has a fixed point.

The following theorem is the alternate version of the Schauder’s fixed point

theorem, see [50].

Corollary 1.11. Let M be a nonempty, compact, convex subset of a Banach space

X, and suppose that T : M → M is a continuous operator. Then, T has a fixed

point.

The Schauder fixed point theorem was proved by Juliusz Schauder in 1930. In

1934, Tychonoff proved the same theorem for the case when M is a compact convex

subset of a locally convex space X. In the literature, this version is known as the

Schauder - Tychonoff fixed point theorem, see [45].

Theorem 1.12 (Schauder - Tychonoff Fixed Point Theorem). Let M be a compact

convex subset of a locally convex (linear topological) space X and T a continuous map

of M into itself. Then, T has a fixed point.

Finally, we provide the Knaster fixed point theorem, see [38].

Theorem 1.13 (Knaster Fixed Point Theorem). If (M,≤) is a complete lattice and

T : M →M is order-preserving (also called monotone or isotone), then T has a fixed

point. In fact, the set of fixed points of T is a complete lattice.

1.2. INTRODUCTION TO DYNAMIC EQUATIONS AND SYSTEMS

Asymptotic properties of systems of first order dynamic equations on time

scales have recently gotten a lot of attention that combines continuous and discrete

analyses, which are related but in distinct areas. One special case of systems of

dynamic equations is the Emden-Fowler type equation. The equation has several
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interesting applications such as in astrophysics, gas dynamics and fluid mechanics,

relativistic mechanics, nuclear pyhsics, and chemically reacting systems. For example,

the fundamental problem in studying the stellar structure for gaseous dynamics in

astrophysics was to look into the equilibrium formation of the mass of spherical clouds

of gas for the continuous case, proposed by Kelvin and Lane, see [47] and [36]. They

considered the equation

1

t2
d

dt

(
t2
du

dt

)
+ un = 0 (1)

for n = 1.5 and n = 2.5. This equation is referred to as the Lane - Emden equation,

see [16] - [17]. At that time, astrophysicists were interested in equation (1) for initial

conditions u(0) = 1 and u′(0) = 0. The mathematical foundation for the study of

such an equation was made by Fowler in a series of four papers during 1914 - 1931,

see [29] - [32]. The other types of dynamic equations on time scales are quasilinear,

half - linear and self - adjoint equations. Classification for nonoscillatory solutions of

the quasilinear dynamic equation

[
a(t)Φp(x

∆)
]∆

= b(t)f(xσ) (2)

is considered in [4] and [5], where a, b ∈ Crd(T, R+) and f : R→ R is continuous with

uf(u) > 0 for u 6= 0 and Φp(u) = |u|p−2u with p > 1. When T = R, equation (2) is

reduced to a quasilinear differential equation, see [21]

[a(t)Φp(x
′)]
′
= b(t)f(x),

while if T = Z, it is reduced to a quasilinear difference equation, see [22]

∆ [akΦp(∆xk)] = bkf(xk+1).
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The following half - linear dynamic equation

[
a(t)Φp(x

∆)
]∆

= b(t)Φp(x
σ) (3)

is considered by P. Řehak in [48], where f = Φp in equation (2). The continuous and

discrete cases of equation (3)

[a(t)Φp(x
′)]
′
= b(t)Φp(x

′) (4)

and

∆ [akΦp(∆xk)] = bkΦp(xk+1). (5)

are considered by Došly in [27] and by Řehak in [49], respectively.

In case p = 2 in equations (3), (4) and (5), we obtain Sturm-Liouville dynamic,

differential, and difference equations

(
a(t)x∆

)∆
= b(t)xσ,

(a(t)x′)
′
= b(t)x

and

∆ (ak∆xk) = bkxk+1,

respectively, see [14], [34], and [2]. Finally, the case a(t) = 1, p = 2 and f = Φq, q > 1

in equation (2) is considered by E. Akın and J. Hoffacker in [8] and [9].

In the first paper, we consider

[
a(t)|x∆(t)|α sgnx∆

]∆
= b(t)|xσ(t)|β sgnxσ(t),
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where f = Φq(x
σ) in equation (2) for q = β + 1 and p = α + 1, and deal with

the (non)existence of nonoscillatory solutions by using fixed point theorems and the

convergence/divergence of some improper integrals of coefficient functions a and b.

Systems of dynamic equations are more fit for physical applications. There-

fore, classification of nonoscillatory solutions is important in order to have enough

information about the behavior of solutions in a long term. For example, the study of

discrete systems has been motivated by their applications in modeling for population,

extinction, and neuron dynamics because their computational costs are very low.

Motivated by [20], we study the classification and existence of nonoscillatory

solutions of the Emden - Fowler system of first order dynamic equations


x∆(t) =

(
1
a(t)

) 1
α |y(t)|

1
α sgny(t)

y∆(t) = −b(t) |xσ(t)|β sgnxσ(t),

(6)

where α, β > 0 and a, b ∈ Crd ([t0,∞)T,R+) .

Systems of delay dynamic equations take a lot of attention in all areas such

as population dynamics and epidemiology in biological sciences. For instance, when

the birth rate of preys is affected by the previous values rather than current values, a

system of delay dynamic equations is used, because the delta derivative at any time

depends on solutions at prior times. Therefore, we consider a system of first order

delay dynamic equations


x∆(t) = a(t)f(y(t))

y∆(t) = −b(t)g(x(τ(t)))

(7)

where a, b ∈ Crd ([t0,∞)T,R+), τ ∈ Crd ([t0,∞)T, [t0,∞)T) , τ(t) ≤ t, and τ(t) → ∞

as t→∞, f and g are nondecreasing functions such that uf(u) > 0 and ug(u) > 0 for

u 6= 0 in order to make observations for the (non)existence of nonoscillatory solutions.
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We also consider the special cases τ(t) = t in (7) in order to show the asymp-

totic behaviors and the (non)existence of nonoscillatory solutions in M+ and M−

based on the sign of such solutions. Classification of nonoscillatory solutions when

T = R and T = Z is given in [40] and [39] as
x′ = a(t)f(y(t))

y′ = −b(t)g(x(t)),


∆xn = anf(yn)

∆yn = −bng(xn),

respectively.
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I. CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF
NONLINEAR DYNAMIC EQUATIONS ON TIME SCALES

ABSTRACT

We study the asymptotic behavior of nonoscillatory solutions of nonlinear dynamic

equations on time scales. More precisely, all eventually monotone solutions of non-

linear dynamic equations can be divided into several disjoint subsets by means of

necessary and sufficient integral conditions. Examples are given to illustrate some of

our main results.
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1. INTRODUCTION

This paper deals with the asymptotic behavior of solutions of the nonlinear

dynamic equation

[
a(t)|x∆(t)|α sgnx∆

]∆
= b(t)|xσ(t)|β sgnxσ(t), (I.1)

where a, b ∈ Crd ([t0,∞)T,R+) and α, β > 0. A time scale, denoted by T, is a closed

subset of real numbers. Throughout this paper, we assume that T is unbounded above.

By a solution we mean a delta differentiable function x satisfying equation (I.1) such

that
[
a(t)|x∆(t)|α sgnx∆

]
∈ C1

rd, where the set of rd-continuous functions and the

set of functions that are differentiable and whose derivative is rd-continuous will be

denoted by Crd and C1
rd, respectively. We also assume that x(t) is a proper solution

on [t0, T )T, i.e., x(t) exists and x(t) 6= 0 on [t0, T )T. Whenever we write t ≥ t1, we

mean that t ∈ [t1,∞)T := [t1,∞) ∩ T.

Equation (I.1) reduces to the nonlinear differential equation, see Cecchi, Došlá,

Marini and Vrkoč [8], and Tanigawa [15],

[a(t)|x′(t)|α sgnx′]
′
= b(t)|x(t)|β sgnx (I.2)

when T = R, and the nonlinear difference equation, see Cecchi, Došlá, Marini [9],

∆(an|∆xn|α sgn ∆xn) = bn|xn+1|β sgnxn+1 (I.3)

when T = Z.

Such dynamic equations are studied by Akın-Bohner in [1, 2, 3], by Erbe,

Baoguo and Peterson in [12] and Akın-Bohner, Bohner, and Saker in [4]. Such studies

are motivated by the dynamics of positive radial solutions of reaction-diffusion (flow
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through porous media, nonlinear elasticity) problems, see Diaz [11] and Grossinho and

Omari [13]. Our results and methods extend those stated and used in the continuous

case in [1] and [8], and in the discrete case in [9, 10], see also references therein.

Our goal is to investigate the asymptotic behavior of nonoscillatory solutions

of (I.1) by certain types of integrals depending on a, b, α and β. In Section 2, we

classify eventually monotone solutions in two types, introduce the sub-classes that

are obtained by using equation (I.1) and show the existence and non-existence of

nonoscillatory solutions of (I.1). In Section 3, we investigate the convergence and

divergence of more general integrals and use those results in Section 4 to show the

co-existence of solutions of (I.1) in these sub-classes when α > β, α < β and α = β.

Finally, we construct examples to highlight some of our results in the last section.

An excellent introduction of time scales calculus can be found in [6] and [7]

by Bohner and Peterson. Therefore, we only give the preliminary results that we use

in our proofs.

Theorem 1.1. [6, Theorem 1.75]. If f ∈ Crd and t ∈ Tκ, then

∫ σ(t)

t

f(τ)∆τ = µ(t)f(t).

Theorem 1.2. [6, Theorem 1.77] If a, b ∈ T and f, g ∈ Crd,then

∫ b

a

f(σ(t))g∆(t) = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(t)∆t;

or

∫ b

a

f(t)g∆(t) = (fg)(b)− (fg)(a)−
∫ b

a

f∆(t)g(σ(t))∆t.

Theorem 1.3. [6, Theorem 1.90] Let f : R 7→ R be continuously differentiable and

suppose g : T 7→ R is delta differentiable. Then f ◦ g : T 7→ R is delta differentiable
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and the formula

(f ◦ g)∆(t) =

{∫ 1

0

f ′
(
g(t) + hµ(t)g∆(t)

)
dh

}
g∆(t)

holds.

Theorem 1.4. [6, Theorem 1.98] Assume ν : T −→ R is strictly increasing and

T̃ = ν(T) is a time scale. If f : T −→ R is an rd-continuous function and ν is

differentiable with rd-continuous derivative, then for a, b ∈ T

∫ b

a

f(t)ν∆(t)∆t =

∫ ν(b)

ν(a)

(f ◦ ν−1)(s)∆̃s.

Theorem 1.5. (Integral Minkowski Inequality) [5, Theorem 2.1] Let (X,M , µ∆) and

(Y,L , ν∆) be time scale measure spaces and let u, v and f be nonnegative functions

on X,Y, and X × Y , respectively. If p ≥ 1, then

[∫
X

(∫
Y

f(x, y)v(y)dν∆(y))

)p
u(x)dµ∆(x)

] 1
p

≤
∫
Y

(∫
X

fp(x, y)u(x)dµ∆(x)

) 1
p

v(y)dν∆(y) (I.4)

holds provided all integrals in (I.4) exist. If 0 < p < 1 and

∫
X

(∫
Y

fvdν∆

)p
udµ∆ > 0,

∫
Y

fvdν∆ > 0 (I.5)

then (I.4) is reversed. If f < 0 and (I.5) and

∫
X

fpudµ∆ > 0

hold, then (I.4) is reversed, as well.
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Theorem 1.6. (Hölder’s Inequality) [5, Theorem 1.3] For p 6= 1, define q = p/(p−

1). Let (E,F , µ∆) be a time scale measure space. Assume w, f, g are nonnegative

functions such that wfp, wgp, w(f + g)p are ∆− integrable on E. If p > 1, then

∫
E

w(t)f(t)g(t)dµ∆(t) ≤
(∫

E

w(t)fp(t)dµ∆(t)

) 1
p
(∫

E

w(t)gq(t)dµ∆(t)

) 1
q

. (I.6)

If 0 < p < 1 and
∫
E
wgqdµ∆ > 0, or if p < 0 and

∫
E
wfpdµ∆ > 0, then (I.6) is

reversed.

We also use the algebraic inequality

(a+ b)p ≤ 2p(ap + bp) (I.7)

for a ≥ 0, b ≥ 0 and p > 0, see [14].

It is shown by Akın-Bohner in [1] that any nontrivial solutions of equation (1)

on [t0,∞)T is eventually monotone and belongs to one of the following classes:

M+ := {x is a solution of (1) : ∃ t1 ≥ t0 such that x(t)x∆(t) > 0 for t ≥ t1},

M− := {x is a solution of (1) : x(t)x∆(t) < 0 for t ≥ t0}.

For equation (I.1), M+ can be empty when T = R, see [1]. However, it is not

true when T = Z, see [9]. In addition, M− can be empty when T = R, see [1], while

this is an open problem in the case T = Z. In this paper, we study the solutions of

(I.1) in M+ and M− described by the following integrals:

J1 = lim
T→∞

∫ T

t0

(
1

a(t)

) 1
α
(∫ t

t0

b(s)∆s

) 1
α

∆t, (I.8)

K1 = lim
T→∞

∫ T

t0

b(t)

(∫ t

t0

(
1

a(s)

) 1
α

∆s

)β

∆t, (I.9)
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J2 = lim
T→∞

∫ T

t0

(
1

a(t)

) 1
α
(∫ T

σ(t)

b(s)∆s

) 1
α

∆t, (I.10)

K2 = lim
T→∞

∫ T

t0

b(t)

(∫ T

σ(t)

(
1

a(s)

) 1
α

∆s

)β

∆t, (I.11)

J3 = lim
T→∞

∫ T

t0

(
1

a(t)

) 1
α

∆t,

K3 = lim
T→∞

∫ T

t0

b(t)∆t.

We now present the convergence and divergence relationships between above

integrals. One can prove the followings similar to [2, Lemma 2.1].

Lemma 1.7. For the integrals J1, K1, J2, K2, J3 and K3, we have the following rela-

tionships:

(a) If J1 <∞, then J3 <∞.

(b) If K1 <∞, then K3 <∞.

(c) If J1 =∞, then J3 =∞ or K3 =∞.

(d) If K1 =∞, then J3 =∞ or K3 =∞.

(e) J1 <∞ and K1 <∞ if and only if J3 <∞ and K3 <∞,

(f) If J2 <∞, then K3 <∞.

(g) If K2 <∞, then J3 <∞.

(h) If J2 =∞, then J3 =∞ or K3 =∞.

(i) If K2 =∞, then J3 =∞ or K3 =∞.

(j) J2 <∞ and K2 <∞ if and only if J3 <∞ and K3 <∞.
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2. CLASSIFICATION OF NONOSCILLATORY SOLUTIONS OF

(I.1) IN M+ AND M−

In this section, we obtain the existence and non-existence of solutions of (I.1)

in M+ and M− depending on J1, K1, and J2, K2, respectively.

For the convenience, we denote

x[1] = a(t)|x∆|α sgnx∆, (I.12)

so-called the quasi-derivative of x. Let x(t) be a proper solution of (1) in M+ on

[t0,∞)T, and without loss of generality assume that x(t) > 0 for [t0,∞)T. By equation

(I.1) we have that x[1](t) is increasing for t ≥ t0. Then either there exists t1 ≥ t0 such

that x[1](t) > 0, t ≥ t1 or x[1](t) < 0, t ≥ t0. If x[1](t) > 0, t ≥ t1, then x∆(t) > 0

for t ≥ t1 and x[1](t) tends to a positive constant or infinity as t→∞. Clearly, x has

a positive limit or infinite limit. Similarly, if x[1](t) < 0, t ≥ t0, then x∆(t) < 0 for

t ≥ t0 and so x[1](t) tends to a non-positive constant as t → ∞ while x(t) goes to a

non-negative constant t→∞.

So in the light of this information, we can have the following lemmas:

Lemma 2.1. For positive real numbers c and d, M+ can be a divided into the fol-

lowing sub-classes according to the asymptotic behavior of solution x of (I.1) and

x[1]:

M+
B,B =

{
x ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|x[1](t)| = d

}
,

M+
∞,B =

{
x ∈M+ : lim

t→∞
|x(t)| =∞, lim

t→∞
|x[1](t)| = d

}
,

M+
B,∞ =

{
x ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|x[1](t)| =∞

}
,

M+
∞,∞ =

{
x ∈M+ : lim

t→∞
|x(t)| =∞, lim

t→∞
|x[1](t)| =∞

}
.
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Lemma 2.2. For positive real numbers c and d, M− can be divided into the following

sub-classes according to the asymptotic behavior of solution x of (I.1) and x[1]:

M−
B,B =

{
x ∈M− : lim

t→∞
|x(t)| = c, lim

t→∞
|x[1](t)| = d

}
,

M−
B,0 =

{
x ∈M− : lim

t→∞
|x(t)| = c, lim

t→∞
|x[1](t)| = 0

}
,

M−
0,B =

{
x ∈M− : lim

t→∞
|x(t)| = 0, lim

t→∞
|x[1](t)| = d

}
,

M−
0,0 =

{
x ∈M+ : lim

t→∞
|x(t)| = 0, lim

t→∞
|x[1](t)| = 0

}
.

In the literature, any eventually nontrivial solution x ∈M+ is called regularly

(weakly) increasing if at least one of lim
t→∞
|x(t)|, lim

t→∞
|x[1](t)| exists finitely. Other-

wise, it is called a strongly increasing solution. Similarly, a solution in M−
0,B is called

regularly (weakly) decaying while a solution in M−
0,0 is called strongly decaying.

The following theorem gives us the existence of proper solutions of (I.1) in

sub-classes of M+ based on the integrals J1 and K1.

Theorem 2.3. For solutions of (I.1) in M+, we have the followings:

(a) J1 <∞ and K1 <∞ if and only if M+
B,B 6= ∅.

(b) J1 <∞ and K1 =∞ if and only if M+
B,∞ 6= ∅.

(c) If M+
∞,B 6= ∅, then J1 =∞ and K1 <∞.

(d) If J1 = K1 =∞, then every solution in M+ belongs to M+
∞,∞.

Proof. (a) Suppose that there exists a solution of (I.1) in M+
B,B. Without loss of

generality we assume that x(t) > 0 for t ≥ t1. Then x[1](t) is increasing for t ≥ t1. By

[2, Theorem 3.1], if x has a finite limit, then J1 < ∞. So it is enough to prove that

K1 <∞. Since x[1](t) is increasing for t ≥ t1, x[1](t) ≥M , where x[1](t1) = M ∈ R+.

This implies that

x∆(t) ≥M
1
α

(
1

a(t)

) 1
α

, t ≥ t1.
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Integrating the last inequality from t1 to t yields

x(t) > M
1
α

∫ t

t1

(
1

a(s)

) 1
α

∆s, t ≥ t1

or

xσ(t) > M
1
α

∫ t

t1

(
1

a(s)

) 1
α

∆s, t ≥ t1 (I.13)

by the monotonicity of x. Taking the βth power of both sides of (I.13) and multiplying

the resulting by b yield

(xσ(t))β b(t) > M
β
α b(t)

[∫ t

t1

(
1

a(s)

) 1
α

∆s

]β
, t ≥ t1.

From (I.1) we get

[
x[1](t)

]∆
> M

β
α b(t)

[∫ t

t1

(
1

a(s)

) 1
α

∆s

]β
, t ≥ t1.

Finally, integrating the last inequality from t1 to t yields

x[1](t) > M
β
α

∫ t

t1

b(s)

[∫ s

t1

(
1

a(τ)

) 1
α

∆τ

]β
∆s, t ≥ t1. (I.14)

Since x[1] has a finite limit, K1 <∞ from the above inequality.

Conversely, suppose that J1 < ∞ and K1 < ∞. Without loss of generality

assume that x(t) > 0 for t ≥ t1. By [2, Theorem 3.1], there exists a solution x of

(I.1) such that lim
t→∞

x(t) = c, where 0 < c < ∞. So it is enough to show that x[1](t)

converges to a finite number as t → ∞. Since x(t) has a finite limit, there exists
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t2 ≥ t1 such that xσ(t) < c for t ≥ t2. Integrating equation (I.1) from t2 to t gives

x[1](t) = x[1](t2) +

∫ t

t2

b(s) (xσ(s))β ∆s < x[1](t2) + cβ
∫ t

t2

b(s)∆s. (I.15)

By Lemma 1.7(b), K3 < ∞. Therefore, taking the limit of both sides of (I.15) as

t→∞ proves the assertion.

(b) Suppose that there exists a solution x of (I.1) in M+
B,∞. It is enough to

show that K1 = ∞ since we show in Theorem 2.3(a) that if there exists a bounded

solution of (I.1), then J1 <∞. By Lemma 1.1(b), it is enough to show that K3 =∞.

Without loss of generality, we assume that x(t) > 0 for t ≥ t1. Integrating equation

(1) from t1 to t yields

x[1](t) = x[1](t1) +

∫ t

t1

b(s) (xσ(s))β ∆s ≤ x[1](t1) + (xσ(t))β
∫ t

t1

b(s)∆s, t ≥ t1.

Taking the limit of both sides of the inequality above as t→∞ gives us that K3 =∞.

Conversely, suppose that J1 <∞ and K1 =∞. By Theorem 2.3(a), we have

the existence of a bounded solution x of (I.1) in M+. By the estimate (I.14) and

the divergence of K1, we obtain that x[1] has an infinite limit. So this completes the

proof.

(c) Suppose that there exists a solution of (I.1) in M+
∞,B. By [2, Corollary 3.1],

J1 =∞. So it suffices to prove that K1 <∞ . The proof is very similar to the proof

of Theorem 2.3(a). So from estimate (I.14) and since x[1] has a finite limit, we obtain

that K1 <∞.

(d) It follows from Theorem 2.3 (a).

In the following corollary, we obtain the necessary conditions for the non-

existence of solutions in sub-classes of M+ based on the integrals J1 and K1 and the

proof follows from Theorem 2.3.
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Corollary 2.4. For solutions of (I.1) in M+, we have the followings:

(a) If J1 =∞ or K1 =∞, then M+
B,B = ∅.

(b) If J1 =∞ or K1 <∞, then M+
B,∞ = ∅.

(c) If J1 <∞ or K1 =∞, then M+
∞,B = ∅.

We finish this section by showing the existence and non-existence of solutions

of equation (I.1) in sub-classes of M−. In order to do that we define the following

integral

I = lim
T→∞

∫ T

t0

(
1

a(t)

) 1
α
(∫ T

t

b(s)∆s

) 1
α

∆t.

The proofs of (b) and (d) below can be found in [3, Theorem 2.1, Theorem 2.3] and

[3, Theorem 2.4], respectively. So we only prove parts (a) and (c). We use Schauder-

Tychonoff fixed point theorem in order to show some of the existence of solutions in

M−.

Theorem 2.5. For solutions of (I.1) in M−, we have the followings:

(a) M−
B,B 6= ∅ if and only if I <∞ and K2 <∞.

(b) M−
0,B 6= ∅ if and only if K2 <∞.

(c) If I <∞ and K2 =∞, then M−
B,0 6= ∅

(d) If J2 = K2 =∞, then every solution in M− belongs to M−
0,0.

Proof. (a) Suppose that M−
B,B 6= ∅. Then for c > 0 and d > 0, there exists a solution

x ∈ M− of (I.1) such that |x(t)| → c and |x[1](t)| → d as t → ∞. By [1, Theorem

4.1], we have that I < ∞. So it is enough to show that K2 < ∞. Without loss of

generality, assume that x(t) > 0 for t ≥ t0. Then integrating (I.1) from σ(t) to ∞

gives us

xσ(t) >

∫ ∞
σ(t)

(
1

a(s)

) 1
α [
−x[1](s)

] 1
α ∆s > d

1
α

∫ ∞
σ(t)

(
1

a(s)

) 1
α

∆s. (I.16)
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Taking the βth power and multiplying both sides of (I.16) by b yield us

[
−x[1](t)

]∆
> d

β
α b(t)

[∫ ∞
σ(t)

(
1

a(s)

) 1
α

∆s

]β
. (I.17)

Integrating (I.17) from t0 to t gives us

0 < −x[1](t0) + (d)
β
α

∫ t

t0

b(s)

[∫ ∞
σ(s)

(
1

a(τ)

) 1
α

∆τ

]β
∆s < −x[1](t).

As t→∞ the assertion follows.

Conversely, assume that I < ∞ and K2 < ∞. Since J3 < ∞ by Lemma

1.7(g), for arbitrarily given c > 0 and d > 0, take t1 ≥ t0 so large that

∫ ∞
t1

(
1

a(t)

) 1
α
[
d+ (2c)β

∫ ∞
t

b(s)∆s

] 1
α

∆t ≤ c.

Define X to be the Frečhet space of all continuous functions on [t1,∞)T endowed

with the topology of uniform convergence on compact sub-intervals of [t1,∞)T. Let

Ω be the nonempty subset of X given by

Ω := {x ∈ X : c ≤ x(t) ≤ 2c, t ≥ t1}.

Define

(Fx)(t) = c+

∫ ∞
t

(
1

a(s)

) 1
α
[
d+

∫ ∞
s

b(τ)(xσ(τ))β∆t

] 1
α

∆s.

Clearly Ω is closed, convex and bounded. One can also show that F : Ω → Ω is a

continuous mapping and relatively compact. Then by the Schauder-Tychonoff fixed

point theorem, F has a fixed element x ∈ Ω such that x = F (x), i.e.,

x(t) = (Fx)(t) = c+

∫ ∞
t

(
1

a(s)

) 1
α
[
d+

∫ ∞
s

b(τ)(xσ(τ))β∆t

] 1
α

∆s. (I.18)
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So by (I.18), we have x∆(t) < 0 for [t1,∞)T, i.e., x(t)x∆(t) < 0 on [t1,∞)T. Taking

the limit as t→∞ proves the assertion.

(c) Suppose that I < ∞ and K2 = ∞. By [1, Theorem 4.1], we have that there

exists a solution x of (I.1) such that |x(t)| → c as t→∞. So we only show that x[1]

has a zero limit. Since K2 = ∞, by Lemma 1.7(i), J3 = ∞ or K3 = ∞. But since

I <∞ implies that J2 <∞, we have that K3 <∞ by Lemma 1.7(f). Hence J3 =∞.

Therefore by [3, Lemma 1.3], the proof is complete.

The following corollary gives us the non-existence of solutions of (1) in sub-

classes of M−.

Corollary 2.6. For solutions of (I.1) in M−, we have the following results:

(a) M−
B,B = ∅ if and only if I =∞ or K2 =∞.

(b) M−
0,B = ∅ if and only if K2 =∞.

(c) Let β ≥ α. M−
0,0 = ∅ if I <∞ or K2 <∞.

(d) Let β ≥ α. If J2 =∞ or K2 <∞, then M−
B,0 = ∅.

Proof. (a) and (b) immediately follow from Theorem 2.5(a) and (b), respectively.

The part (c) was proved in [3, Theorem 2.2]. For part (d), non-existence of such a

solution of (I.1) can be found in [1, Theorem 4.1] and limit behavior of x[1] can be

shown with the similar idea as in [3, Theorem 2.2(ii)].
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3. INTEGRAL RELATIONS

In this section, we introduce more general integrals than Ji and Ki, i = 1, 2.

The goal is to obtain not only integral relations between these integrals but also some

preliminary results in order to investigate the co-existence of solutions in M+ and

M−.

Let r, q ∈ Crd ([t0,∞)T,R+) and λ, γ > 0.

Define

Lλ(r, q) = lim
T→∞

∫ T

t0

q(t)

(∫ t

t0

r(s)∆s

)λ
∆t (I.19)

and

Mγ(r, q) = lim
T→∞

∫ T

t0

r(t)

(∫ T

σ(t)

q(s)∆s

) 1
γ

∆t. (I.20)

We can rewrite the integrals J1, J2, K1 and K2 by using (I.19) and (I.20) as follows:

J1 = L 1
α
(b, A), J2 = Mα(A, b), K1 = Lβ(A, b), K2 = M 1

β
(b, A),

where A =
(

1
a

) 1
α . It is clear that if

lim
T→∞

∫ T

t0

q(t)∆t =∞, (I.21)

then

Lλ(r, q) = Mγ(r, q) =∞.

The following follows from Theorem 1.2.

Lemma 3.1. If λ = γ = 1, then L1(r, q) = M1(r, q).

The following lemmas show the convergence and divergence of (I.19) and (I.20)

by using λ and γ.

Lemma 3.2. Let λ = γ ≤ 1. If Mλ(r, q) =∞, then  Lλ(r, q) =∞.
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Proof. Let p = 1
λ
. So Lλ(r, q) and Mλ(r, q) can be rewritten as

L 1
p
(r, q) = lim

T−→∞

∫ T

t0

q(t)

(∫ t

t0

r(s)∆s

) 1
p

∆t,

M 1
p
(r, q) = lim

T−→∞

∫ T

t0

r(t)

(∫ T

σ(t)

q(s)∆s

)p
∆t.

Set

r(t, s) =

 0; s ≤ σ(t)

r(t); s > σ(t).

Then we have

[∫ T

t0

r(t)

(∫ T

σ(t)

q(s)∆s

)p
∆t

] 1
p

=

[∫ T

t0

(∫ T

σ(t)

(r(t))
1
p q(s)∆s

)p
∆t

] 1
p

=

[∫ T

t0

(∫ T

t0

(r(t, s))
1
p q(s)∆s

)p
∆t

] 1
p

≤
∫ T

t0

q(s)

(∫ T

t0

r(t, s)∆t

) 1
p

∆s

=

∫ T

t0

q(s)

(∫ s

t0

r(t)∆t

) 1
p

∆s,

where u = 1, f = r
1
p and v = q in Theorem 1.5. Taking limit as T → ∞ completes

the proof.

Lemma 3.3. Let λ = γ ≥ 1. If Lλ(r, q) =∞, then Mλ(r, q) =∞.

Proof. Suppose that Lλ(r, q) =∞ and λ ≥ 1. Let

q(t, s) =

 0; s ≥ t

q(t); s < t.



26

Then we have

[∫ T

t0

q(t)

(∫ t

t0

r(s)∆s

)λ
∆t

] 1
λ

=

[∫ T

t0

(∫ t

t0

(q(t))
1
λ r(s)∆s

)λ
∆t

] 1
λ

=

[∫ T

t0

(∫ T

t0

(q(t, s))
1
λ r(s)∆s

)λ
∆t

] 1
λ

≤
∫ T

t0

r(s)

(∫ T

t0

q(t, s)∆t

) 1
λ

∆s

=

∫ T

t0

r(s)

(∫ T

σ(s)

q(t)∆t

) 1
λ

∆s,

where f = q
1
λ , v = r and u = 1 in Theorem 1.5. As T →∞, the assertion follows.

Now we will obtain similar results for λ 6= γ. But in order to do that we need

the following two lemmas.

Lemma 3.4. Let

QT (t) =

∫ T

t

q(s)∆s. (I.22)

If η < 1 and

lim
T→∞

∫ T

t0

q(s)∆s <∞,

then

lim
T−→∞

∫ T

t0

−Q∆
T (t)

[QT (σ(t)]η
∆t <∞.

Proof. Set ν(t) = −QT (t) and f(t) = 1
[QT (σ(t)]η

. Since −QT (t) is increasing on

[t0, T )T and f ∈ Crd(T,R) on [t0, T )T, by Theorem 1.4, we have

∫ T

t0

−Q∆
T (t)

[QT (σ(t))]η
∆t =

∫ 0

−
∫ T
t0
q(s)∆s

dt

[QT ((−QT )−1(t))]η
for t ∈ Range(QT ).
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So

∫ T

t0

−Q∆
T (t)

[QT (σ(t))]η
∆t =

∫ 0

−
∫ T
t0
q(s)∆s

dt

(−t)η
= lim

b→0−

1

1− η

[
(−b)−η−1 −

(∫ T

t0

q(s)ds

)]−η+1

= − 1

1− η

[∫ T

t0

q(s)ds

]1−η

.

As T → ∞, the assertion follows, in which ν(t) = −QT (t) and f(t) = 1
[QT (σ(t)]η

in

Theorem 1.4.

Lemma 3.5. Let

R1(t) = 1 +

∫ t

t0

r(s)∆s.

If η > 1, then ∫ ∞
t0

R∆
1 (t)

Rη
1(t)

∆t <∞.

Proof. Set ν(t) = R1(t) and f(t) = 1
Rη1(t)

in Theorem 1.4. Since R1(t) is strictly

increasing on [t0, T )T and f ∈ Crd([t0, T )T,R) by Theorem 1.4, we have

∫ T

t0

R∆
1 (t)

Rη
1(t)

∆t =

∫ 1+
∫ T
t0
r(s)∆s

1

dt[
R1(R−1

1 (t))
]η for t ∈ Range(R1(t)).

So we have

∫ T

t0

R∆
1 (t)

Rη
1(t)

∆t =

∫ 1+
∫ T
t0
r(s)∆s

1

dt

tη
=

1

1− η

[
1−

(
1 +

∫ T

t0

r(s)∆s

)−η+1
]
.

As T →∞, the assertion follows.

Lemma 3.6. Let γ > λ. If Lλ(r, q) =∞, then Mγ(r, q) =∞.

Proof. Suppose that γ > λ. If (I.21) holds, the assertion follows. Since Lλ(r, q) =∞,

we can assume

lim
T→∞

∫ T

t0

r(t)∆t =∞ and lim
T→∞

∫ T

t0

q(t)∆t <∞. (I.23)
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Denote

R1(t) = 1 +R(t),

where

R(t) =

∫ t

t0

r(s)∆s. (I.24)

Consider two cases:

(i) γ ≥ 1 and (ii) 0 < γ < 1

Case(i): Let t1 ≥ t0 be such that R(t) > 1 for t ≥ t1. Since  Lλ(r, q) =∞, we have

∫ T

t1

q(t)

(∫ t

t0

r(s)∆s

)γ
∆t ≥

∫ T

t1

q(t)

(∫ t

t0

r(s)∆s

)λ
∆t.

As T →∞, the right hand side goes to infinity, so does the left hand side. Then by

Lemma 3.3, we have Mγ(r, q) =∞. This completes Case(i).

Case(ii): By Theorem 1.2, we have

∫ T

t0

q(t)Rλ
1(t)∆t = Q(t0) +

∫ T

t0

(
Rλ

1(t)
)∆
QT (σ(t))∆t.

By Theorems 1.2, 1.3, and 1.6, we have

∫ T

t0

q(t)Rλ
1(t)∆t = QT (t0) +

∫ T

t0

{∫ 1

0

λ
[
R1(t) + hµ(t)R∆

1 (t)
]λ−1

dh

}
R∆

1 (t)QT (σ(t))∆t

≤ QT (t0) +

∫ T

t0

λ [R1(t)]λ−1R∆
1 (t)QT (σ(t))∆t

≤ QT (t0) + λ

[∫ T

t0

R∆
1 (t)Q

1
γ

T (σ(t))∆t

]γ [∫ T

t0

R∆
1 (t) (R1(t))

λ−1
1−γ ∆t

]1−γ

= QT (t0) + λ

[∫ T

t0

R∆
1 (t)Q

1
γ

T (σ(t))∆t

]γ [∫ T

t0

R∆
1 (t)

[R1(t)]
1−λ
1−γ

∆t

]1−γ

.
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Hence we have

∫ T

t0

q(t)Rλ
1(t)∆t ≤ QT (t0) + λ

[∫ T

t0

R∆
1 (t)Q

1
γ

T (σ(t))∆t

]γ [∫ T

t0

R∆
1 (t)

[R1(t)]
1−λ
1−γ

∆t

]1−γ

.

Since

∫ ∞
t0

R∆
1 (t)

[R1(t)]
1−λ
1−γ

∆t <∞

for 1−λ
1−γ > 1, by Lemma 3.5 the assertion follows as T →∞.

Lemma 3.7. Let γ < λ. If Mγ(r, q) =∞, then Lλ(r, q) =∞

Proof. It is clear that if (I.21) holds, there is nothing to show. So since Mγ(r, q) =∞,

as in the proof in Lemma 3.6, we can assume (I.23) holds.

We will consider two cases:

(i) γ ≤ 1 and (ii) γ > 1.

Case(i): For t1 ≥ t0, we may suppose R(t) > 1 for t ≥ t1. Since Mγ(r, q) = ∞, we

have Lγ(r, q) = ∞ by Lemma 3.2. Hence, similar to the Case(i) in proof of Lemma

3.6, the assertion follows.

Case(ii): By (I.22), (I.24) and Theorem 1.2, we have

∫ T

t0

r(t) (QT (σ(t))
1
γ ∆t = −

∫ T

t0

[
(QT (t))

1
γ

]∆

R(t)∆t.

Finally, Theorems 1.3 and 1.6 yield

∫ T

t0

r(t) (QT (σ(t))
1
γ ∆t =

1

γ

∫ T

t0

{∫ 1

0

(
QT (t) + hµ(t)Q∆

T (t)
) 1−γ

γ dh

}
q(t)R(t)∆t

≤ 1

γ

∫ T

t0

(QT (σ(t)))
1−γ
γ q(t)R(t)∆t ≤ 1

γ

[∫ T

t0

q(t)Rλ(t)∆t

] 1
λ

[∫ T

t0

− Q∆
T (t)

(QT (σ(t)))ξ
∆t

]λ−1
λ

,
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where ξ = (γ−1)λ
γ(λ−1)

< 1, w = q, f = R and g = (Qσ)
1−γ
γ in Theorem 1.6. Taking the

limit as T →∞ and using Lemma 3.4 complete the proof.



31

4. EXAMPLES

In this section, we give two examples to highlight Theorem 2.5(b).

Example 4.1. Let T = R, α = 1, β = 1
4
, a(t) = 1+e−4t

2e−2t and b(t) = 4e
−7t
2 in equation

(I.1). Then we have

lim
T→∞

(∫ T

σ(t)

A(s)ds

)β
= lim

T→∞

(∫ T

t

2e−2s

1 + e−4s
ds

) 1
4

<
(π

2

) 1
4

and so we obtain

∫ T

t0

b(t)

(∫ T

σ(t)

A(s)ds

) 1
4

dt =

∫ T

t0

4e
−7t
2

(∫ T

t

2e−2s

1 + e−4s
ds

) 1
4

dt <
(π

2

) 1
4 8

7
e

−7t0
2 .

As T →∞, we have K2 <∞. One can also easily show that x(t) = e−2t is a solution

of [
1 + e−4t

2e−2t
|x′| sgnx′

]′
= 4e

−7t
2 |x|

1
4 sgnx

such that lim
t→∞

x(t) = 0 and lim
t→∞

x[1](t) = −1, i.e., M−
0,B 6= ∅.

Example 4.2. Let T = Z, α = 1, β < 1, t0 ≥ 1, an = 3
2
(3n + 1) and bn = 2(3n+1)β−1

in equation (I.1). Letting t = n and s = m gives us

∫ T

t0

b(t)

(∫ T

σ(t)

A(s)∆s

)β
∆t =

T−1∑
n=1

2(3n+1)β−1

(
T−1∑

m=n+1

2

3(3m + 1)

)β

≤ 2

3

T−1∑
n=1

(
1

31−β

)n
.

Hence, we have K2 <∞ as T →∞ . One can show that xn = 3−n is a solution of

∆

[
3

2
(3n + 1)|∆xn| sgn ∆xn

]
= 2(3n+1)β−1|xn+1|β sgnxn+1

such that lim
n→∞

xn = 0 and lim
n→∞

x[1]
n = −1, i.e., M−

0,B 6= ∅.
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5. CONCLUSIONS

In this section, one can obtain the co-existence and non-coexistence of solu-

tions of (I.1) in sub-classes of M− and M+ in each of the cases α = β, α > β and

α < β.

The following integral relationships among J1, K1, J2 and K2 follow directly

from Lemmas 3.1-3.3 and 3.6-3.7.

Lemma 5.1. We have the followings:

(a) If α = β = 1, then J1 = K2 and J2 = K1.

(b) If α = β ≤ 1, then J2 =∞ =⇒ K1 =∞ and J1 =∞ =⇒ K2 =∞.

(c) If α = β ≥ 1, then K1 =∞ =⇒ J2 =∞ and K2 =∞ =⇒ J1 =∞.

(d) If α > β, then K1 =∞ =⇒ J2 =∞ and J1 =∞ =⇒ K2 =∞.

(e) If α < β, then J2 =∞ =⇒ K1 =∞ and K2 =∞ =⇒ J1 =∞.

In the light of Lemma 5.1, there exist eight cases:

(C1) : J1 = J2 = K1 = K2 =∞,

(C2) : J1 = K2 =∞, J2 <∞, K1 <∞,

(C3) : J1 <∞, K2 <∞, J2 = K1 =∞,

(C4) : J1 <∞, K1 <∞, J2 <∞, K2 <∞,

(C5) : J1 = J2 = K2 =∞, K1 <∞,

(C6) : J1 = J2 = K1 =∞, K2 <∞,

(C7) : J1 = K1 = K2 =∞, J2 <∞,

(C8) : K1 = K2 = J2 =∞, J1 <∞.
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Note that Cases (Ci), i = (1)-(4) occur for any α > 0 and β > 0 while (C5) occurs

only for α = β > 1 or α > β, (C6) occurs only for α = β > 1 or α < β, (C7) occurs

only for α < β or α = β < 1 and (C8) occurs only for α > β or α = β < 1.

We now investigate the co-existence and co-nonexistence of solutions of (I.1)

by using the cases (Ci), i = (1)-(8) and Theorems (2.3), (2.4), (2.5) and (2.6) in the

following theorems.

Theorem 5.2. Let α = β. For solutions of equation (I.1) in M+ and M−, we have

the followings:

(a) If (C1) holds, then M+ = M+
∞,∞ and M− = M−

0,0.

(b) If (C2) holds, then M+
B,B = M+

B,∞ = ∅ and M−
B,B = M−

0,B = ∅.

(c) If (C3) holds, then M+
B,∞ 6= ∅,M

+
B,B = M+

∞,B = ∅ and M−
B,B = M−

0,0 = M−
B,0 = ∅.

Therefore M− = M−
0,B.

(d) If (C4) holds, then M+
B,B 6= ∅, M

+
B,∞ = M+

∞,B = ∅ and M−
0,B 6= ∅, M

−
0,0 = M−

B,0 =

∅.

(e) If (C5) holds, then M+
B,B = M+

B,∞ = ∅ and M− = M−
0,0.

(f) If (C6) holds, then M+ = M+
∞,∞ and M−

B,B = M−
0,0 = M−

B,0 = ∅. Therefore,

M− = M−
0,B.

(g) If (C7) holds, then M+ = M+
∞,∞ and M−

B,B = M−
0,B = ∅.

(h) If (C8) holds, then M+
B,∞ 6= ∅, M

+
B,B = M+

∞,B = ∅ and M− = M−
0,0.

Theorem 5.3. Let α > β. For solutions of equation (I.1) in M+ and M−, we have

the followings:

(a) If (C1) holds, then M+ = M+
∞,∞ and M− = M−

0,0.

(b) If (C2) holds, then M+
B,B = M+

B,∞ = ∅ and M−
B,B = M−

0,B = ∅.

(c) If (C3) holds, then M+
B,∞ 6= ∅, M

+
B,B = M+

∞,B = ∅ and M−
0,B 6= ∅, M−

B,B = ∅.

(d) If (C4) holds, then M+
B,B 6= ∅, M

+
B,∞ = M+

∞,B = ∅, and M−
0,B 6= ∅.

(e) If (C5) holds, then M+
B,B = M+

B,∞ = ∅ and M− = M−
0,0.

(f) If (C8) holds, then M+
∞,∞ 6= ∅, M+

B,B = ∅, M+
∞,B = ∅ and M− = M−

0,0.
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Theorem 5.4. Let α < β. For solutions of equation (I.1) in M+ and M−, we have

the followings:

(a) If (C1) holds, then M+ = M+
∞,∞ and M− = M−

0,0.

(b) If (C2) holds, then M+
B,B = M+

B,∞ = ∅ and M−
B,B = M−

0,B = ∅.

(c) If (C3) holds, then M+
B,∞ 6= ∅, M

+
B,B = M+

∞,B = ∅ and M−
B,B = M−

0,0 = M−
B,0 = ∅.

Therefore M− = M−
0,B.

(d) If (C4) holds, then M+
B,B 6= ∅, M

+
B,∞ = M+

∞,B = ∅ and M−
0,B 6= ∅, M−

0,0 = M−
B,0 =

∅.

(e) If (C6) holds, then M+ = M+
∞,∞ and M−

B,B = M−
0,0 = M−

B,0 = ∅. Therefore,

M− = M−
0,B.

(f) If (C7) holds, then M+ = M+
∞,∞ and M−

B,B = M−
0,B = ∅.

Our goal for the entire paper has been to classify nonoscillatory solutions of

(I.1) depending on J1, K1, J2 and K2. However, we would like to indicate the following

remarks.

Remark 5.5. When J1 =∞ and K1 <∞, we have to assume that

µ(t) is differentiable such that µ∆(t) ≥ 0 and aσ(t) ≥ a(t) for t ≥ t1 (I.25)

to be able to obtain M+
∞,B 6= ∅, which follows from [2, Theorem 3.1] and [2, Corollary

5.1]. On the other hand, in case (C2) or (C5) holds with α ≥ β, or (C2) holds with

α < β, we obtain M+
∞,B 6= ∅ as well. If T = R, then (I.25) holds automatically.

So our result corresponds with the continuous case. Of course, one can obtain that

M+
∞,B 6= ∅ by assuming both conditions

J1 =∞, and lim
T→∞

∫ T

t0

b(t)

(∫ t

t0

Aσ(s)∆s

)β
∆t <∞

without (I.25) as in the discrete case, see [9].
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Remark 5.6. When J1 <∞ or K1 <∞, we have to assume that

∫ ∞
t1

b(t)µβ(t)

(
1

a(t)

) β
α

∆t <∞, (I.26)

where α > β to be able to obtain M+
∞,∞ = ∅ by using [2, Theorem 3.2], Theorem 1.1,

inequality (I.7), and Lemma 1.7(b). On the other hand, if we have one of the cases

(C2), (C3), (C4), (C5) and (C8) with α > β, then M+
∞,∞ = ∅ as well. If T = R,

then (I.26) holds automatically. So our result matches with the continuous case. Of

course, one can show that M+
∞,∞ = ∅ by assuming

lim
T→∞

∫ T

t0

b(t)

(∫ t

t0

Aσ(s)∆s

)β
∆t <∞, α > β

without (I.26) as in the discrete case, see [9].

Another reasonable nonlinear dynamic equation is to consider

[
a(t)|x∆(t)|α sgnx∆

]∆
= −b(t)|xσ(t)|β sgnxσ(t) (I.27)

as our new project because several questions arise. For example, what integral con-

ditions might we have in order to obtain the existence of nonoscillatory solutions of

(I.27)? And what sub-classes might occur for nonoscillatory solutions of (I.27) de-

pending on the convergence/divergence of J3 and K3? Also what oscillation criteria

do we need for (I.27)?



36

REFERENCES

[1] E. Akın-Bohner. Positive Decreasing Solutions of Quasilinear Dynamic Equa-
tions. Math. and Comput. Modelling, 43(3-4):283-293, 2006.

[2] E. Akın-Bohner. Positive Increasing Solutions of Quasilinear Dynamic Equa-
tions. Math. Inequal. Appl., 10(1):99-110, 2007.

[3] E. Akın-Bohner. Regularly and Strongly Decaying Solutions for Quasilinear
Dynamic Equations. Adv. Dyn. Syst. Appl 3(1), 15-24, 2008.

[4] E. Akın-Bohner, M. Bohner and Samir H. Saker. Oscillation Criteria for a
certain class of second order Emden Fowler Dynamic Equations. Electron. Trans.
Numer. Anal., 27: 1–12, 2007.
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II. ON NONOSCILLATORY SOLUTIONS OF EMDEN-FOWLER
DYNAMIC SYSTEMS ON TIME SCALES

ABSTRACT

We study the existence and asymptotic behavior of nonoscillatory solutions of Emden-

Fowler dynamic sytems on time scales. In order to show the existence, we use Schauder,

Knaster and Tychonoff Fixed Point Theorems. Some examples are illustrated as well.
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1. INTRODUCTION

In this paper, we deal with the classification of nonoscillatory solutions of the

Emden-Fowler system of first order dynamic equations


x∆(t) =

(
1
a(t)

) 1
α |y(t)|

1
α sgn y(t)

y∆(t) = −b(t) |xσ(t)|β sgnxσ(t),

(II.1)

where α, β > 0 and a, b ∈ Crd ([t0,∞)T,R+). Whenever we write t ≥ t1, we mean

that t ∈ [t1,∞)T := [t1,∞) ∩ T. A time scale T, a nonempty closed subset of real

numbers, is introduced by Bohner and Peterson in [6] and [7]. Throughout this paper,

we assume that T is unbounded above. We call (x, y) a proper solution if it is defined

on [t0,∞)T and sup{|x(s)|, |y(s)| : s ∈ [t,∞)T} > 0 for t ≥ t0. A solution (x, y)

of (II.1) is said to be nonoscillatory if the component functions x and y are both

nonoscillatory, i.e., either eventually positive or eventually negative. Otherwise it is

said to be oscillatory. Throughout this paper without loss of generality we assume

that x is eventually positive in our proofs. Our results can be obtained similarly for

the case that x is eventually negative.

System (II.1) can be easily derived from the Emden Fowler dynamic equation

(
a(t)|x∆(t)|αsgnx∆(t)

)∆
+ b(t)|x(t)|βsgnxσ(t) = 0 (II.2)

by letting x = x and y = |x∆|αsgnx∆ in (II.2). If α = β in (II.2), then it is called a

half-linear dynamic equation.

If T = R and T = Z, equation (II.2) reduces to the Emden Fowler differential

equation

(a(t)|x′(t)|αsgnx′(t))′ + b(t)|x(t)|βsgnx(t) = 0,
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see [11], and the Emden-Fowler difference equation

∆ (an|∆xn|αsgn∆xn) + bn|xn+1|βsgnxn+1 = 0,

see [8], respectively.

This paper is motivated by the papers [8], [14] and [10]. The related oscillation

and nonoscillation results for two and three dimensional dynamic systems are given in

[5], [3], [4], and [2], respectively. The setup of this paper is as follows: In Section 1, we

give preliminary lemmas playing an important role in the further sections. In Sections

2 and 3, we show the existence and asymptotic properties of nonoscillatory solutions

of system (II.1) by using certain improper integrals and fixed point theorems. In

Section 4, we obtain some conclusions. And finally, the paper concludes with some

examples.

Let M be the set of all nonoscillatory solutions of system (II.1). One can

easily show that any nonoscillatory solution (x, y) of system (II.1) belongs to one of

the following classes:

M+ := {(x, y) ∈M : x(t)y(t) > 0 eventually}

M− := {(x, y) ∈M : x(t)y(t) < 0 eventually}.

Lemma 1.1. [5, Lemma 2.1] Let (x, y) be a solution of system (II.1). Then the

component functions x and y are themselves nonoscillatory if (x, y) is a nonoscillatory

solution of system (II.1).

Remark 1.2. Let (x, y) be a nonoscillatory solution of system (II.1). If x(t) is

nonoscillatory for t ≥ t0, then the other component function y(t) is also nonoscillatory

for sufficiently large t.
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For convenience, let us set

Ya =

∫ ∞
t0

A(t)∆t and Zb =

∫ ∞
t0

b(t)∆t, (II.3)

where A =
(

1
a

) 1
α .

The following lemma gives some sufficient conditions for oscillation and nonoscil-

lation of system (II.1).

Lemma 1.3. (a)[5, Lemma 2.3] If Ya < ∞ and Zb < ∞, then system (II.1) is

nonoscillatory.

(b)[5, Lemma 2.2] If Ya =∞ and Zb =∞, then system (II.1) is oscillatory.

In the next two lemmas we show that M+ and M− can be empty.

Lemma 1.4. If Ya = ∞ and Zb < ∞, then any nonoscillatory solution (x, y) of

system (II.1) belongs to M+, i.e M− = ∅.

Proof. Suppose that Ya =∞ and Zb <∞. The proof is by contradiction. So assume

that there exists a solution (x, y) of system (II.1) such that (x, y) ∈ M−. Without

loss of generality assume that x(t) > 0 for t ≥ t1. Then by integrating the first

equation of system (II.1) from t1 to t and the monotonicity of y, we have

x(t) = x(t1)−
∫ t

t1

A(s) (−y(s))
1
α ∆s ≤ x(t1)− (−y(t1))

1
α

∫ t

t1

A(s)∆s.

As t → ∞, x → −∞. But this contradicts the positivity of x. Note that the proof

can be done without the condition Zb < ∞. However in order for nonoscillatory

solutions to exist, we need the assumption Zb <∞ by Lemma 1.3 (b).

Lemma 1.5. If Ya < ∞ and Zb = ∞, then any nonoscillatory solution (x, y) of

system (II.1) belongs to M−, i.e., M+ = ∅.
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Proof. Suppose that Ya <∞ and Zb =∞. The proof is by contradiction. So assume

that there exists a nonoscillatory solution (x, y) of system (II.1) such that xy > 0

eventually. Without loss of generality, assume that x(t) > 0 for t ≥ t1. So by

integrating the second equation of system (II.1) from t1 to t and the monotonicity of

x give us

y(t) ≤ y(t1)− (xσ(t1))β
∫ t

t1

b(s)∆s.

As t → ∞, it follows that y(t) → −∞. But this contradicts that y is eventually

positive.

The discrete version of the following lemmas can be found in [14].

Lemma 1.6. Let (x, y) be a nonoscillatory solution of system (II.1).

(a) If Ya <∞, then the component function x has a finite limit.

(b) If Ya =∞ or Zb <∞, then the component function y has a finite limit.

Proof. (a) Suppose that Ya < ∞ and (x, y) is a nonoscillatory solution of system

(II.1). Then by Lemma 1.1, x and y are themselves nonoscillatory. Without loss

of generality, assume that there exists t1 ≥ t0 such that x(t) > 0 for t ≥ t1. If

(x, y) ∈ M−, then by the first equation of system (II.1), x∆(t) < 0 for t ≥ t1.

Therefore, limit of x exists. So let us show that the assertion follows if (x, y) ∈M+.

From the first equation of system (II.1), we have x∆(t) > 0 for t ≥ t1. Hence two

things might happen: The limit of the component function x exists or blows up. Now

let us show that lim
t→∞

x(t) = ∞ cannot happen. Assume x(t) → ∞ as t → ∞. By

integrating the first equation of system (II.1) from t1 to t and using the monotonicity

of y, we get

x(t) ≤ x(t1) + y
1
α (t1)

∫ t

t1

A(s)∆s.
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Taking the limit as t → ∞, it follows that Ya = ∞, which is a contradiction. This

completes the proof.

(b) Suppose that Ya = ∞ or Zb < ∞ and (x, y) is a nonoscillatory solution

of system (II.1). The case Zb < ∞ can be proved similar to part (a). For Ya = ∞,

assume that x is eventually positive. Then proceeding as in the proof of Lemma 1.4,

it can be shown that y is eventually positive. Then by the second equation of system

(II.1), it follows that y has a finite limit.

In the following lemmas, we find upper and lower bounds for the component

function x of a nonoscillatory solution (x, y) of system (II.1).

Lemma 1.7. Let Ya <∞. If (x, y) is a nonoscillatory solution of system (II.1), then

there exist c, d > 0 and t1 ≥ t0 such that

c

∫ ∞
t

A(s)∆s ≤ x(t) ≤ d

or

−d ≤ x(t) ≤ −c
∫ ∞
t

A(s)∆s

for t ≥ t1.

Proof. Suppose that Ya < ∞ and (x, y) is a nonoscillatory solution of system (II.1).

Without loss of generality, let us assume that x is eventually positive. Then by

Lemma 1.6 (a), we have x(t) ≤ d for t ≥ t1. If y(t) > 0 for t ≥ t1, then x is eventually

increasing by the first equation of system (II.1). So for large t, the assertion follows.

If y(t) < 0 for t ≥ t1, then integrating the first equation of system (II.1) from t to ∞

and the monotonicity of y give

x(t) = x(∞) +

∫ ∞
t

A(s)(−y(s))
1
α∆s ≥

∫ ∞
t

A(s)(−y(s))
1
α∆s

≥ (−y(t1))
1
α

∫ ∞
t

A(s)∆s.
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Setting c = (−y(t1))
1
α in the last inequality proves the assertion. Assuming x is

eventually negative gives the second part of the proof.

Lemma 1.8. Let Ya = ∞ and Zb < ∞. If (x, y) is a nonoscillatory solution of

system (II.1), then there exist k1, k2 > 0 and t1 ≥ t0 such that

k1 ≤ x(t) ≤ k2

∫ t

t1

A(s)∆s

or

−k2

∫ t

t1

A(s)∆s ≤ x(t) ≤ k1

for t ≥ t1.

Proof. Suppose that Ya = ∞ and Zb < ∞, and (x, y) is a nonoscillatory solution of

system (II.1). Then by Lemma 1.1, x and y are themselves nonoscillatory. Without

loss of generality let us assume that x(t) > 0 for t ≥ t1. Then by Lemma 1.4, (x, y)

must be in M+. Hence, there is a constant k1 > 0 such that x(t) ≥ k1 for t ≥ t1.

Integrating the first equation of system (II.1) and the monotonicity of y give

x(t) = x(t1) +

∫ t

t1

A(s)y
1
α (s)∆s ≤ x(t1) + y

1
α (t1)

∫ t

t1

A(s)∆s

=

(
x(t1)∫ t

t1
A(s)∆s

+ y
1
α (t1)

)∫ t

t1

A(s)∆s.

Since Ya =∞, we can choose t2 ≥ t1 such that

∫ t

t2

A(t)∆t ≥ 1 for t ≥ t2.
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So this implies that

x(t) ≤
(
x(t1) + y

1
α (t1)

)∫ t

t1

A(s)∆s

and the assertion follows by letting k2 = x(t1)+y
1
α (t1). Assuming that x is eventually

negative proves the second part of the proof.
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2. THE CASE Ya =∞ AND Zb <∞

In this section, we show that M+ can be divided into some sub-classes under

the case Ya =∞. By Lemma 1.3(b), in order to obtain the existence of nonoscillatory

solutions, we also have to assume Zb < ∞. So throughout this section, we suppose

that Ya = ∞ and Zb < ∞ hold. Then by Lemma 1.4, (x, y) ∈ M+. Without loss of

generality we suppose that x > 0 eventually. Then by the second equation of system

(II.1), y is positive and decreasing eventually. In addition to that, by using the first

equation of system (II.1) and taking Lemma 1.6(b) into consideration we have that

x(t)→ c or ∞, and y(t)→ d or 0 as t→∞ for 0 < c <∞ and 0 < d <∞.

Lemma 2.1. If x(t)→ c , then y(t)→ 0 as t→ 0 for c < 0 <∞ .

Proof. Suppose that x(t) → c as t → ∞. Assume the contrary. So y(t) → d for

0 < d < ∞ as t → ∞. Then since y(t) > 0 and decreasing eventually, there exists

t1 ≥ t0 such that y(t) ≥ d for t ≥ t1. By the first equation of system (II.1), we have

x∆(t) = A(t)y
1
α (t) ≥ A(t)d

1
α for t ≥ t1. (II.4)

Integrating (II.4) from t1 to t yields

x(t) ≥ x(t1) + d
1
α

∫ t

t1

A(s)∆s.

As t → ∞, this gives us a contradiction to the fact x(t) → c. So the assertion

follows.

In light of Lemma 2.1 and the explanation above, we have the following lemma.
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Lemma 2.2. For 0 < c < ∞ and 0 < d < ∞, any nonoscillatory solution in M+

must belong to one of the following sub-classes:

M+
B,0 =

{
x ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
,

M+
∞,B =

{
x ∈M+ : lim

t→∞
|x(t)| =∞, lim

t→∞
|y(t)| = d

}
,

M+
∞,0 =

{
x ∈M+ : lim

t→∞
|x(t)| =∞, lim

t→∞
|y(t)| = 0

}
.

In the literature, solutions in M+
B,0, M+

∞,B and M+
∞,0 are called subdominant

solutions, dominant solutions and intermediate solutions, respectively.

The following theorems show the existence of nonoscillatory solutions in sub-

classes mentioned above by using the improper integrals:

Jα =

∫ ∞
t0

A(t)

(∫ ∞
t

b(s)∆s

) 1
α

∆t (II.5)

Kβ =

∫ ∞
t0

b(t)

(∫ σ(t)

t0

A(s)∆s

)β

∆t. (II.6)

Theorem 2.3. M+
B,0 6= ∅ if and only if Jα <∞.

Proof. Suppose that M+
B,0 6= ∅. Then there exists (x, y) ∈M+ such that |x(t)| → c >

0 and |y(t)| → 0 as t → ∞. Without loss of generality let us assume that x(t) > 0

for t ≥ t1. Integrating the second equation of system (II.1) from t to ∞ gives us

y(t) =

∫ ∞
t

b(s) (xσ(s))β ∆s. (II.7)

Solving the first equation of system (II.1) for y, substituting the resulting equation

into (II.7) and by the monotonicity of y, we obtain

x∆(t) ≥ A(t)x
β
α (t)

(∫ ∞
t

b(s)∆s

) 1
α

. (II.8)
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Integrating (II.8) from t1 to t gives

x(t) ≥ x(t1) +

∫ t

t1

A(s)x
β
α (s)

(∫ ∞
s

b(τ)∆τ

) 1
α

∆s

≥ x
β
α (t1)

∫ t

t0

A(s)

(∫ ∞
s

b(τ)∆τ

) 1
α

∆s.

As t→∞, the assertion follows.

Conversely, suppose that Jα <∞. Choose t1 ≥ t0 so large that

∫ ∞
t1

A(t)

(∫ ∞
t

b(s)∆s

) 1
α

∆t <
( c

2

) 1

c
β
α

(II.9)

for arbitrarily given c > 0. Let X be the set of all bounded, continuous, real valued

functions with the norm ‖x‖ = sup
t∈[t1,∞)T

{|x(t)|}. It is clear that X is a Banach Space,

see [9]. Let us define a subset Ω of X such that

Ω := {x ∈ X :
c

2
≤ x(t) ≤ c, t ≥ t1}.

It is clear that Ω is closed, bounded and convex. Define an operator F : Ω→ X by

(Fx)(t) = c−
∫ ∞
t

A(s)

(∫ ∞
s

b(τ) (xσ(τ))β ∆τ

) 1
α

∆s for t ≥ t1. (II.10)

By inequality (II.9), we have

c ≥ (Fx)(t) = c−
∫ ∞
t

A(s)

(∫ ∞
s

b(τ) (xσ(τ))β ∆τ

) 1
α

∆s

≥ c− c
β
α

∫ ∞
t

A(s)

(∫ ∞
s

b(τ)∆τ

) 1
α

∆s ≥ c

2
,
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and so F : Ω→ Ω. Since

||(Fxn)(t)− (Fx)(t)||

≤
∫ ∞
t1

A(s)

∣∣∣∣∣
(∫ ∞

s

b(τ) (xσn(τ))β ∆τ

) 1
α

−
(∫ ∞

s

b(τ) (xσ(τ))β ∆τ

) 1
α

∣∣∣∣∣∆s,
where xn is a sequence of functions converging to x. Hence, the Lebesque Dominated

Convergence Theorem yields

||(Fxn)(t)− (Fx)(t)|| → 0,

which implies the continuity of F on Ω. Also

0 ≤ − [F (x)(t)]∆ = A(t)

(∫ ∞
t

b(τ) (xσ(τ))β ∆τ

) 1
α

≤ c
β
αA(t)

(∫ ∞
t

b(τ)∆τ

) 1
α

<∞

implies that F is equibounded and equicontinuous. Therefore by Schauder’s Fixed

Point Theorem, there exists x̄ ∈ Ω such that x̄ = Fx̄. Then

x̄(t) = c−
∫ ∞
t

A(s)

(∫ ∞
s

b(τ) (x̄σ(τ))β ∆τ

) 1
α

∆s. (II.11)

So as t→∞, x̄(t)→ c. Note that x̄∆(t) > 0 for t ≥ t1. So it is eventually monotone,

i.e., x̄ is nonoscillatory. Therefore, taking the derivative of (II.11) and using the first

equation of system (II.1) give us

ȳ(t) =

∫ ∞
t

b(τ) (x̄σ(τ))β ∆τ.

It follows that ȳ(t) > 0 for t ≥ t1, i.e., (x̄, ȳ) is nonoscillatory and then by Remark

1.2 and Lemma 1.4, (x̄, ȳ) ∈M+. Taking the limit as t→∞ yields ȳ(t)→ 0. Hence

M+
B,0 6= ∅.
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Theorem 2.4. M+
∞,B 6= ∅ if and only if Kβ <∞.

Proof. Suppose that M+
∞,B 6= ∅. Then there exists (x, y) ∈M+ such that |x(t)| → ∞

and |y(t)| → d, for 0 < d < ∞. Without loss of generality assume that x(t) > 0 for

t ≥ t1 Integrating the first equation from t1 to σ(t) and the second equation from t1

to t of system (II.1) give us

xσ(t) = xσ(t1) +

∫ σ(t)

t1

A(s)y
1
α (s)∆s > d

1
α

∫ σ(t)

t1

A(s)∆s. (II.12)

and

y(t1)− y(t) =

∫ t

t1

b(s) (xσ(s))β ∆s, (II.13)

respectively. Then by (II.12) and (II.13), we have

∫ t

t1

b(s)

(∫ σ(s)

t1

A(τ)∆τ

)β

∆s < d
−β
α

∫ t

t1

b(s) (xσ(s))β ∆s

< d
−β
α (y(t1)− y(t))

So as t goes to ∞, it follows that Kβ <∞.

Conversely, suppose that Kβ <∞. Choose t1 ≥ t0 so large that

∫ ∞
t1

b(s)

(∫ σ(s)

t1

A(τ)∆τ

)β

∆s <
d

(2d)β
(II.14)

for arbitrarily given d > 0. Let X be the partially ordered Banach Space of all

real-valued continuous functions with the norm ‖x‖ = sup
t>t1

|x(t)|∫ t
t1
A(s)∆s

and the usual

pointwise ordering ≤. Define a subset Ω of X as follows:

Ω : {x ∈ X : d
1
α

∫ t

t1

A(s)∆s ≤ x(t) ≤ (2d)
1
α

∫ t

t1

A(s)∆s for t > t1}.
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First since every subset of Ω has a supremum and infimum in Ω, (Ω,≤) is a complete

lattice. Define an operator F : Ω→ X as

(Fx)(t) =

∫ t

t1

A(s)

(
d+

∫ ∞
s

b(τ) (xσ(τ))β ∆τ

) 1
α

∆s. (II.15)

It can be shown that F : Ω→ Ω is an increasing mapping for t ≥ t1.

So by the Knaster Fixed Point Theorem, we have that there exists x̄ ∈ Ω such

that

x̄(t) =

∫ t

t1

A(s)

(
d+

∫ ∞
s

b(τ) (x̄σ(τ))β ∆τ

) 1
α

∆s for t > t1. (II.16)

Hence x̄ is eventually positive, and hence nonoscillatory. Then by taking the deriva-

tive of (II.16) and using the first equation of system (II.1) give us

ȳ(t) =
(
x̄∆(t)

)α
a(t) = d+

∫ ∞
t

b(τ) (x̄σ(τ))β ∆τ. (II.17)

Then it follows that ȳ is eventually positive, i.e., nonoscillatory. Hence, (x̄, ȳ) is a

nonoscillatory solution of system (II.1) and by Lemma 1.4 we have (x̄, ȳ) ∈M+. For

x̄ ∈ Ω, we also have

x̄(t) ≥
∫ t

t1

A(s)

d+

∫ ∞
s

b(τ)

(
d

1
α

∫ σ(τ)

t1

A(λ)∆λ

)β

∆τ

 1
α

∆s

As t → ∞, the right hand side of the last inequality goes to ∞ since Ya = ∞.

Therefore x̄(t)→∞ as t→∞. Taking the limit as t→∞ of (II.17) gives that y has

a finite limit. Therefore M+
∞,B 6= ∅.

Theorem 2.5. If Jα =∞ and Kβ <∞, then M+
∞,0 6= ∅.
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Proof. Suppose that Jα =∞ and Kβ <∞. Since Ya =∞, we can choose t1, t2 ≥ t0

so large that ∫ ∞
t2

b(t)

(∫ σ(t)

t0

A(s)∆s

)β

∆t ≤ 1 (II.18)

and ∫ t2

t1

A(s)∆s ≥ 1. (II.19)

Let X be the Fréchet Space of all continuous functions on [t1,∞)T endowed with the

topology of uniform convergence on compact subintervals of [t1,∞)T. Set

Ω := {x ∈ X : 1 ≤ x(t) ≤
∫ t

t1

A(s)∆s for t ≥ t1}

and define an operator T : Ω→ X by

(Tx)(t) = 1 +

∫ t

t2

A(s)

(∫ ∞
s

b(τ) (xσ(τ))β ∆τ

) 1
α

. (II.20)

We can show that T : Ω → Ω is continuous on Ω ⊂ X by the Lebesque Dominated

Convergence Theorem. Since

0 ≤ [(Tx)(t)]∆ = A(t)

(∫ ∞
t

b(τ) (xσ(τ))β ∆τ

) 1
α

≤ A(t)

∫ ∞
t

b(τ)

(∫ σ(τ)

t1

A(λ)∆λ

)β

∆τ

 1
α

<∞,

it follows that T is equibounded and equicontinuous. Then by Tychonoff Fixed Point

Theorem, there exists x̄ ∈ Ω such that

x̄(t) = (T x̄)(t) = 1 +

∫ t

t2

A(s)

(∫ ∞
s

b(τ) (x̄σ(τ))β ∆τ

) 1
α

for t ≥ t2. (II.21)
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Therefore, it follows that x̄ is eventually positive, i.e nonoscillatory. Then integrating

(II.21) and by the first equation of system (II.1), we have

ȳ(t) = a(t)
(
x∆(t)

)α
=

∫ ∞
t

b(τ) (x̄σ(τ))β ∆τ. (II.22)

It follows that ȳ is eventually positive, and hence (x, y) is a nonoscillatory solution

of system (II.1). So by Lemma 1.4 it follows that (x̄, ȳ) ∈M+. Also by monotonicity

of x̄, we have

x̄(t) = 1 +

∫ t

t2

A(s)

(∫ ∞
s

b(τ) (x̄σ(τ))β ∆τ

) 1
α

≥ (x̄(t2))β
∫ t

t2

A(s)

(∫ ∞
s

b(τ)∆τ

) 1
α

.

Hence as t → ∞, it follows that x̄(t) → ∞. And by (II.22), we have ȳ(t) → 0 as

t→∞. Therefore M+
∞,0 6= ∅.

Next we give the integral relationships between Jα, Kβ, Ya, and Zb and obtain

a conclusion for the existence and non-existence of solution (x, y) of system (II.1)

based on α and β. The proof of the following lemma is similar to the proofs of

Lemma 1.1, Lemma 3.2, Lemma 3.3, Lemma 3.6 and Lemma 3.7 in [13].

Lemma 2.6. (a) If Jα <∞ or Kβ <∞ then Zb <∞.

(b) If Kβ =∞, then Ya =∞ or Zb =∞.

(c) If Jα =∞, then Ya =∞ or Zb =∞.

(d) Let α ≥ 1. If Jα <∞, then Kα <∞.

(e) Let β ≤ 1. If Kβ <∞, then Jβ <∞.

(f) Let α < β. If Kβ <∞, then Jα <∞ and Kα <∞.

(g) Let α > β. If Jα <∞, then Kβ <∞ and Jβ <∞.

The following corollaries give the existence and nonexistence of nonoscillatory

solutions (x, y) of system (II.1) in our subclasses by Lemma 2.6 and our main theorems

presented in this section.
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Corollary 2.7. Suppose that Ya =∞ and Zb <∞. Then

(a) M+
B,0 6= ∅ if any of the followings hold:

(i) Jα <∞,

(ii) α < β and Kβ <∞,

(iii) α < β, β ≥ 1 and Jβ <∞,

(iv) α ≤ 1 and Kα <∞.

(b) M+
∞,B 6= ∅ if any of the followings hold:

(i) Kβ <∞,

(ii) α > β and Jα <∞,

(iii) α ≥ 1 and Jβ <∞.

(c) M+
B,0 = ∅ if any of the followings hold:

(i) Jα =∞,

(ii) α > β and either Jβ =∞ or Kβ =∞,

(iii) α ≥ 1 and Kα =∞.

(d) M+
∞,B = ∅ if any of the followings hold:

(i) Kβ =∞,

(ii) α < β and either Jα =∞ or Kα =∞,

(iii) β ≤ 1 and Jβ =∞.
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3. THE CASE Ya <∞ AND Zb <∞

In this section, we show the existence of a solution (x, y) of system (II.1) by

assuming Ya < ∞. Since we investigate a solution (x, y) in M+, we also have to as-

sume that Zb <∞ because of Lemma 1.5. Recall that M+ is the set of nonoscillatory

solutions (x, y) such that x and y have the same sign. Without loss of generality let

us assume that x > 0 eventually. Then by the first equation of system (II.1), x is

eventually increasing and by Lemma 1.6 the limit of x approaches a positive constant

and the limit of y exists. Also by the second equation of system (II.1) y is eventually

decreasing and approaches a nonnegative constant.

In light of this information, one can easily prove the following lemma.

Lemma 3.1. For 0 < c < ∞ and 0 < d < ∞, any nonoscillatory solution in M+

belongs to the following subclasses:

M+
B,B =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = d

}
M+

B,0 =
{

(x, y) ∈M+ : lim
t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
.

The following theorems show the existence of nonoscillatory solutions (x, y) in

these subclasses of M+.

Theorem 3.2. (a) M+
B,B 6= ∅ if Ya <∞ and Zb <∞.

(b) If M+
B,B 6= ∅, then Jα <∞.

Proof. (a) Suppose that Ya < ∞ and Zb < ∞. Then Jα < ∞ by Lemma 2.6 (c).

Since Ya <∞, for arbitrarily given c, d > 0 there exists t1 ≥ t0 such that

∫ t

t1

A(s)

(
d+

∫ ∞
s

cβb(s)∆s

) 1
α

≤ c

2
for t ≥ t1. (II.23)
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Let X be the Banach space of all real-valued continuous functions endowed with the

norm ‖x‖ = sup
t∈[t1,∞)T

|x(t)| and with the usual pointwise ordering ≤. Define a subset

Ω of X such that

Ω :=
{
x ∈ X :

c

2
≤ x(t) ≤ c for t ≥ t1

}
.

For any subset Ω̃ ∈ Ω, it is obvious that inf Ω̃ ∈ Ω and sup Ω̃ ∈ Ω. Define an operator

F : Ω→ X as

(Fx)(t) =
c

2
+

∫ t

t1

A(s)

(
d+

∫ ∞
s

b(τ) (xσ(τ))β ∆τ

) 1
α

∆s.

One can show that F : Ω → Ω and F is an increasing mapping. So by the Knaster

Fixed point theorem [12], there exists x̄ ∈ Ω such that

x̄(t) = (Fx̄)(t) =
c

2
+

∫ t

t1

A(s)

(
d+

∫ ∞
s

b(τ) (x̄σ(τ))β ∆τ

) 1
α

∆s. (II.24)

Therefore, it follows that x̄(t) > 0 for t ≥ t1. So by the first equation of system (II.1),

we have ȳ(t) > 0 for t ≥ t1, i.e., (x̄, ȳ) ∈M+. From (II.24), we have

x̄ ≤ c

2
+

∫ t

t1

A(s)

(
d+ cβ

∫ ∞
s

b(τ)∆τ

) 1
α

∆s.

So as t→∞, it follows that the limit of x̄ is finite. By taking the derivative of (II.24)

and the first equation of system (II.1), we have

ȳ(t) =
(
x̄∆(t)

)α
a(t) = d+

∫ ∞
t

b(τ) (x̄σ(τ))β ∆τ. (II.25)

Taking the limit of (II.25) as t → ∞ yields that ȳ(t) → d. Therefore, we conclude

that (x̄, ȳ) ∈M+
B,B 6= ∅.

(b) Suppose that M+
B,B 6= ∅. Without loss of generality assume that x is eventually
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positive. Then there exists t1 ≥ t0 and (x, y) ∈ M+ such that x → c and y → d as

t → ∞ for 0 < c < ∞ and 0 < d < ∞. Integrating the second equation of system

(II.1) from t to ∞ and using the monotonicity of x give us

y(t) > (x(t))β
∫ ∞
t

b(s)∆s for t ≥ t1

or

y
1
α (t) > (x(t))

β
α

(∫ ∞
t

b(s)∆s

) 1
α

for t ≥ t1. (II.26)

Substituting (II.26) into the first equation of system (II.1) yields

x∆(t) > A(t)x
β
α

(∫ ∞
t

b(s)∆s

) 1
α

. (II.27)

Integrating (II.27) from t1 to t and by the monotonicity of x give us

x(t) > x
β
α (t1)

∫ t

t1

A(s)

(∫ ∞
s

b(τ)∆τ

) 1
α

∆s (II.28)

As t→∞, the assertion follows.

The following theorem can be proved similar to Theorem 2.3.

Theorem 3.3. (a) M+
B,0 6= ∅ if Ya <∞ and Zb <∞.

(b) If M+
B,0 6= ∅, then Jα <∞.

By Lemma 2.1 and from our main results in Sections 2 and 3, one can have

the following corollaries.

Corollary 3.4. If Ya <∞ and Zb <∞, then any nonoscillatory solution in M+ of

system (II.1) belongs to M+
B,B or M+

B,0, i.e., M+
∞,B = M+

∞,0 = ∅.

Corollary 3.5. If Ya =∞ and Zb <∞, then M+
B,B = ∅.
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4. EXAMPLES

In this section, we give three examples to illustrate Theorem 2.4 and Theorem

2.5.

Example 4.1. Let T = qN0 , q > 1, α = 1, A(t) = t
1+2t

, b(t) = 1
q1+βtβ+2 , s = qm

and t = qn, where m,n ∈ N0, in system (II.1). It is easy to show that Ya = ∞ and

Zb <∞. Let us show that Kβ <∞.

∫ T

t0

b(t)

(∫ σ(t)

t0

A(s)∆s

)β

∆t =

ρ(T )∑
t=1

1

q1+βtβ+2

(
t∑

s=1

s2(q − 1)

1 + 2s

)β

(q − 1)t

<
(q − 1)β+1

q1+β

ρ(T )∑
t=1

1

t1+β

(
t∑

s=1

s

)β

<
q − 1

q

ρ(T )∑
t=1

1

t
.

We also have

lim
T→∞

ρ(T )∑
t=1

1

t
=
∞∑
n=0

1

qn
<∞

by the geometric series test. So we have that Kβ <∞. It can be verified that (t, 1
t
+2)

is a nonoscillatory solution of


x∆ = t

1+2t
|y| sgny

y∆ = − 1
q1+βtβ+2 |xσ|β sgnx

in M+ such that lim
t→∞

t =∞ and lim
t→∞

1

t
+ 2 = 2, i.e., M+

∞,B 6= ∅.

Example 4.2. Let T = R, α > β with β < 1, A(t) = e2t and b(t) = αe−t(α+β) in

system (II.1). Clearly, Ya =∞ and Zb <∞. One can show that

Jα =

∫ ∞
t0

e2t

(∫ ∞
t

αe−s(α+β)ds

) 1
α

dt =∞
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and

Kβ =

∫ ∞
t0

αe−t(α+β)

(∫ t

t0

e2sds

)β
dt <∞.

It is easy to verify that (et, e−αt) is a nonoscillatory solution of


x′ = e2t |y|

1
α sgny

y′ = −αe−t(α+β) |x|β sgnx

in M+ such that lim
t→∞

et =∞ and lim
t→∞

e−αt = 0, i.e., M+
∞,0 6= ∅.

Example 4.3. Let T = qN0 , q > 1, α = 1, β < 1, A(t) = 1 + t, b(t) = 1
(1+t)(1+tq)β+1

in system (II.1). It is easy to verify that Ya = ∞ and Zb < ∞. Letting s = qm and

t = qn, where m,n ∈ N0, gives

∫ T

t0

A(t)

(∫ T

t

b(s)∆s

) 1
α

∆t =

ρ(T )∑
t=1

(1 + t)

ρ(T )∑
s=t

(q − 1)s

(1 + s)(1 + sq)β+1

 (q − 1)t

≥ (q − 1)2

ρ(T )∑
t=1

(1 + t)

(
t

(1 + t)(1 + tq)β+1

)
t = (q − 1)2

ρ(T )∑
t=1

t2

(1 + tq)β+1
.

So we have

lim
T→∞

ρ(T )∑
t=1

t2

(1 + tq)β+1
=
∞∑
n=0

q2n

(1 + qn+1)β+1
=∞

by the Test for Divergence and β < 1. Now let us show that Kβ <∞. One can show

that ∫ σ(t)

t0

A(s)∆s =
t∑

s=1

(1 + s)(q − 1)s ≤ tq(1 + tq)
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and so we have

∫ T

t0

b(t)

(∫ σ(t)

t0

A(s)∆s

)β

∆t ≤
ρ(T )∑
t=1

1

(1 + t)(1 + tq)β+1
(tq(1 + tq))β t(q−1)qβ(q−1)

ρ(T )∑
t=1

tβ

1 + t
.

Therefore,

lim
T→∞

qβ(q − 1)
T∑
t=1

tβ

1 + t
= qβ(q − 1)

∞∑
n=0

(qn)β

(1 + qn)
<∞

by the Ratio Test and β < 1. It can also be verified that
(
1 + t, 1

t+1

)
is a nonoscillatory

solution of 
x∆ = (1 + t) |y|

1
α sgny

y∆ = − 1
(1+t)(1+tq)β+1 |xσ|β sgnx

in M+ such that lim
t→∞

(1 + t) =∞ and lim
t→∞

1

t+ 1
= 0, i.e., M+

∞,0 6= ∅.
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[7] M. Bohner and A. Peterson. Advances in Dynamic Equations on Time Scales.
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III. NONOSCILLATION CRITERIA FOR TWO-DIMENSIONAL
TIME-SCALE SYSTEMS

ABSTRACT

We study the existence and nonexistence of nonoscillatory solutions of a two-dimensional

system of first-order dynamic equations on time scales. Our approach is based on the

Knaster and Schauder fixed point theorems and some certain integral conditions.

Examples are given to illustrate some of our main results.
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1. INTRODUCTION

In this paper, we study on the asymptotic behavior of solutions of the nonlinear

system of the first-order dynamic equations


x∆(t) = a(t)f(y(t))

y∆(t) = −b(t)g(x(t)),

(III.1)

where f, g ∈ C(R,R) are nondecreasing such that uf(u) > 0, ug(u) > 0 for u 6= 0

and a, b ∈ Crd ([t0,∞)T,R+). Whenever we write t ≥ t1, we mean that t ∈ [t1,∞)T :=

[t1,∞)∩T. A time scale, denoted by T, is a closed subset of real numbers. An excellent

introduction of time scales calculus can be found in [2, 3] by Bohner and Peterson.

Throughout this paper, we assume that T is unbounded above. We call (x, y) a

proper solution if it is defined on [t0,∞)T and sup{|x(s)|, |y(s)| : s ∈ [t,∞)T} > 0

for t ≥ t0. A solution (x, y) of (III.1) is said to be nonoscillatory if the component

functions x and y are both nonoscillatory, i.e., either eventually positive or eventually

negative. Otherwise, it is said to be oscillatory. Throughout this paper, without loss

of generality, we assume that x is eventually positive. Our results can be shown for

that x is eventually negative similarly.

If T = R and T = Z, equation (III.1) turns out to be system of first-order

differential equations and difference equations


x′ = a(t)f(y(t))

y′ = −b(t)g(x(t))

see [7], 
∆xn = anf(yn)

∆yn = −bng(xn)
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see [8], respectively. Oscillation and nonoscillation criteria for two-dimensional time

scale systems have been studied by [1], [5], [10], [11, 12].

One can easily show that any nonoscillatory solution (x, y) of system (III.1)

belongs to one of the following classes:

M+ := {(x, y) ∈M : x(t)y(t) > 0 eventually}

M− := {(x, y) ∈M : x(t)y(t) < 0 eventually},

where M is the set of all nonoscillatory solutions of system (III.1). In this paper, we

only focus on the existence and nonexistence of solutions of system (III.1) in M−.

The set up of this paper is as follows. In Section 1, we give preliminary

lemmas that are used in the proofs of our main theorems. In Section 2, we introduce

the subclasses that are obtained by using system (III.1) and show the existence of

nonoscillatory solutions of system (III.1) by using the Knaster and Schauder fixed

point theorems and certain improper integrals. In Section 3, we show the nonexistence

of such solutions by relaxing the monotonicity condition on the functions f and g.

We finalize the paper by giving some examples and a conclusion.

The following lemma is shown in [1].

Lemma 1.1. If (x, y) is a nonoscillatory solution of system (III.1), then the compo-

nent functions x and y are themselves nonoscillatory.

For convenience, let us set

Y (t) =

∫ ∞
t

a(t)∆t and Z(t) =

∫ ∞
t

b(t)∆t. (III.2)

The following lemma shows the existence and nonexistence of nonoscillatory solutions

of system (III.1) by using convergence/divergence of Y (t) and Z(t).
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Lemma 1.2. Let t0 ∈ T. Then we have the following:

(a) [1, Lemma 2.3] If Y (t0) <∞ and Z(t0) <∞, then system (III.1) is nonoscilla-

tory.

(b) [1, Lemma 2.2] If Y (t0) =∞ and Z(t0) =∞, then system (III.1) is oscillatory.

(c) If Y (t0) < ∞ and Z(t0) = ∞, then any nonoscillatory solution (x, y) of system

(III.1) belongs to M−, i.e., M+ = ∅.

(d) If Y (t0) = ∞ and Z(t0) < ∞, then any nonoscillatory solution (x, y) of system

(III.1) belongs to M+, i.e., M− = ∅.

Proof. Here we only prove part (c) because (d) can be shown similarly. Suppose that

Y (t0) < ∞ and Z(t0) = ∞. So assume that there exists a nonoscillatory solution

(x, y) of system (III.1) in M+ such that xy > 0 eventually. Without loss of generality,

assume that x(t) > 0 for t ≥ t1. Then by monotonicity of x and g, there exists a

number k > 0 such that g(x(t)) ≥ k for t ≥ t1. Integrating the second equation of

system (III.1) from t1 to t gives us

y(t) ≤ y(t1)− k
∫ t

t1

b(s)∆s.

As t → ∞, it follows that y(t) → −∞. But this contradicts that y is eventually

positive. Proof is by contradiction.

The following two lemmas are related with the first component function of

any nonoscillatory solutions of (III.1) when Y (t0) <∞.

Lemma 1.3. Let (x, y) be a nonoscillatory solution of system (III.1) and Y (t0) <∞.

Then the component function x has a finite limit.

Proof. Suppose that Y (t0) < ∞ and (x, y) is a nonoscillatory solution of system

(III.1). Then by Lemma 1.1, x and y are themselves nonoscillatory. Without loss of

generality, assume that there exists t1 ≥ t0 such that x(t) > 0 for t ≥ t1. If (x, y) ∈
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M−, then by the first equation of system (III.1), x∆(t) < 0 for t ≥ t1. Therefore, the

limit of x exists. So let us show that the assertion follows if (x, y) ∈ M+. Suppose

(x, y) ∈ M+. Then from the first equation of system (III.1), we have x∆(t) > 0 for

t ≥ t1. Hence two possibilities might happen: The limit of the component function x

exists or blows up. Now let us show that lim
t→∞

x(t) = ∞ cannot happen. Integrating

the first equation of system (III.1) from t1 to t and using the monotonicity of y and

f yield

x(t) ≤ x(t1) + f(y(t1))

∫ t

t1

a(s)∆s.

Taking the limit as t → ∞, it follows that x has a finite limit. This completes the

proof.

Lemma 1.4. Let Y (t0) <∞. If (x, y) is a nonoscillatory solution of system (III.1),

then there exist c, d > 0 and t1 ≥ t0 such that

c

∫ ∞
t

a(s)∆s ≤ x(t) ≤ d

or

−d ≤ x(t) ≤ −c
∫ ∞
t

a(s)∆s

for t ≥ t1.

Proof. Suppose that Y (t0) < ∞ and (x, y) is a nonoscillatory solution of system

(III.1). Without loss of generality, let us assume that x is eventually positive. Then

by Lemma 1.3, we have x(t) ≤ d for t ≥ t1 and for some d > 0. If y(t) > 0 for t ≥ t1,

then x is eventually increasing by the first equation of system (III.1). So for large

t, the assertion follows. If y(t) < 0 for t ≥ t1, then integrating the first equation of
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system (III.1) from t to ∞ and the monotonicity of f and y give

x(t) = x(∞)−
∫ ∞
t

a(s)f(y(s))∆s

≥ −f(y(t1))

∫ ∞
t

a(s)∆s.

Setting c = −f(y(t1)) > 0 on the last inequality proves the assertion.

According to Lemma 1.2 (c), we assume Y (t0) <∞ and Z(t0) =∞ from now

on. Let (x, y) be a nonoscillatory solution of system (III.1) such that the component

function x of the solution (x, y) is eventually positive. Then by the second equation

of system (III.1), we have y < 0 and eventually decreasing. Then for d < 0, we have

y → d or y → −∞. In view of Lemma 1.3, x has a finite limit. So in light of this

information, we obtain the following lemma.

Lemma 1.5. Any nonoscillatory solution of system (III.1) in M− belongs to one of

the following subclasses:

M−
0,B =

{
(x, y) ∈M− : lim

t→∞
|x(t)| = 0, lim

t→∞
|y(t)| = d

}
,

M−
B,B =

{
(x, y) ∈M− : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = d

}
,

M−
0,∞ =

{
(x, y) ∈M− : lim

t→∞
|x(t)| = 0, lim

t→∞
|y(t)| =∞

}
,

M−
B,∞ =

{
(x, y) ∈M− : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| =∞

}
,

where 0 < c <∞ and 0 < d <∞.
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2. EXISTENCE OF NONOSCILLATORY SOLUTIONS OF (III.1)

IN M−

The following theorems show the existence of nonoscillatory solutions in sub-

classes of M− given in Lemma 1.5.

Theorem 2.1. M−
0,B 6= ∅ if and only if

∫ ∞
t0

b(t)g

(
c1

∫ ∞
t

a(s)∆s

)
∆t <∞ (III.3)

for some c1 6= 0.

Proof. Suppose that there exists a solution (x, y) ∈ M−
0,B such that x(t) > 0 for

t ≥ t0, x(t)→ 0 and y(t)→ −d as t→∞, where d > 0. By Lemma 1.4, there exists

c > 0 such that

x(t) ≥ c

∫ ∞
t

a(s)∆(s), t ≥ t0. (III.4)

By integrating the second equation from t0 to t, using inequality (III.4) with c = c1

and the monotonicity of g, we have

y(t) = y(t0)−
∫ t

t0

b(s)g(x(s))∆s ≤ −
∫ t

t0

b(s)g

(
c1

∫ ∞
s

a(τ)∆τ

)
∆s.

So as t → ∞, the assertion follows since y has a finite limit. (For the case x < 0

eventually, the proof can be shown similarly with c1 < 0.)

Conversely, suppose that (III.3) holds for some c1 > 0. (For the case c1 < 0

can be shown similarly.) Then there exist t1 ≥ t0 and d > 0 such that

∫ ∞
t1

b(t)g

(
c1

∫ ∞
t

a(s)∆s

)
∆t < d, t ≥ t1, (III.5)



69

where c1 = −f(−3d). Let X be the space of all continuous and bounded functions

on [t1,∞)T with the norm ‖y‖ = sup
t∈[t1,∞)T

|y(t)|. Let Ω be the subset of X such that

Ω := {y ∈ X : −3d ≤ y(t) ≤ −2d, t ≥ t1}

and define an operator T : Ω→ X such that

(Ty)(t) = −3d+

∫ ∞
t

b(s)g

(
−
∫ ∞
s

a(τ)f(y(τ))∆τ

)
∆s.

It is easy to see that T maps into itself. Indeed, we have

−3d ≤ (Ty)(t) ≤ −3d+

∫ ∞
t

b(s)g

(
−
∫ ∞
s

a(τ)f(−3d)∆τ

)
∆s ≤ −2d

by (III.5). Let us show that T is continuous on Ω. Let yn be a sequence in Ω such

that yn → y ∈ Ω = Ω̄. Then

|(Tyn)(t)− (Ty)(t)|

≤
∫ ∞
t1

b(s)

∣∣∣∣[g(−∫ ∞
s

a(τ)f(yn(τ))∆τ

)
− g

(
−
∫ ∞
s

a(τ)f(y(τ))∆τ

)]∣∣∣∣∆s.
Then the Lebesque dominated convergence theorem and the continuity of g give

‖(Tyn)− (Ty)‖ → 0 as n→∞, i.e., T is continuous. Also since

0 < −(Ty)∆(t) = b(t)g

(
−
∫ ∞
t

a(τ)f(y(τ))∆τ

)
<∞,

it follows that T (Ω) is relatively compact. Then by the Schauder Fixed point theorem,

there exists ȳ ∈ Ω such that ȳ = T ȳ. So as t→∞, we have ȳ(t)→ −3d < 0. Setting

x̄(t) = −
∫ ∞
t

a(τ)f(ȳ(τ))∆τ > 0



70

gives that x̄(t)→ 0 ans t→∞, i.e., M−
0,B 6= ∅.

Theorem 2.2. M−
B,B 6= ∅ if and only if

∫ ∞
t0

b(t)g

(
d1 − f(c1)

∫ ∞
t

a(s)∆s

)
∆t <∞ (III.6)

for some c1 < 0 and d1 > 0. (Or c1 > 0 and d1 < 0.)

Proof. Suppose that there exists a nonoscillatory solution (x, y) ∈ M−
B,B such that

x > 0 eventually, lim
t→∞

x(t1) = c2 > 0 and lim
t→∞

y(t) = d2 < 0. Since x and y have

finite limits, there exist t1 ≥ t0, c3 > 0 and d3 < 0 such that c2 ≤ x(t) ≤ c3 and

d2 ≤ y(t) ≤ d3 for t ≥ t1. Integrating the first equation from t to ∞ gives

x(t) = c2 −
∫ ∞
t

a(s)f(y(s))∆s ≥ c2 − f(d3)

∫ ∞
t

a(s)∆s. (III.7)

By integrating the second equation from t1 to t and using (III.7, ) we get

y(t) ≤ −
∫ t

t1

b(s)g(x(s))∆s ≤ −
∫ t

t1

b(s)g

(
c2 − f(d3)

∫ ∞
s

a(τ)∆τ

)
∆s.

By setting c2 = d1 > 0 and d3 = c1 < 0 and taking the limit of the last inequality as

t→∞, the assertion follows. (The case x < 0 eventually can be done similarly with

c1 > 0 and d1 < 0.)

Conversely, choose t1 ≥ t0 so large that

∫ ∞
t1

b(t)g

(
d1 − f(c1)

∫ ∞
t

a(s)∆s

)
∆t <

−c1

2
, (III.8)

where c1 < 0 and d1 > 0. (The case c1 > 0 and d1 < 0 can be done similarly.) Let

X be the set of all all bounded and continuous functions endowed with the norm

‖y‖ = sup
t∈[t1,∞)T

|y(t)|. Clearly (X, ‖ · ‖) is a Banach space, see [4]. Define a subset Ω
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of X such that

Ω =:
{
y ∈ X : c1 ≤ y(t) ≤ c1

2
, t ≥ t1

}
.

Define an operator F : Ω→ X such that

(Fy)(t) = c1 +

∫ ∞
t

b(s)g

(
d1 −

∫ ∞
s

a(τ)f(y(τ))∆τ

)
∆s.

First, we show that F : Ω→ Ω.

c1 ≤ (Fy)(t) ≤ c1 +

∫ ∞
t

b(s)g

(
d1 −

∫ ∞
s

a(τ)f(c1)∆τ

)
∆s ≤ c1

2
.

Second, we show that F is continuous on Ω. Let yn be a sequence in Ω such that

yn → y ∈ Ω = Ω̄. Then

‖Fyn − Fy‖ ≤
∫ ∞
t1

b(s)

(∣∣∣∣g(d− ∫ ∞
s

a(τ)f(yn(τ))∆τ

)∣∣∣∣− ∣∣∣∣g(d− ∫ ∞
s

a(τ)f(y(τ))∆τ

)∣∣∣∣)∆s.

By the Lebesque dominated convergence theorem and the continuity of f and g, it

follows that F is continuous.

Third, we show that F (Ω) is relatively compact. Since Y (t0) <∞, we have

0 < −(Fy)∆(t) = b(t)g

(
d1 −

∫ ∞
t

a(τ)f(y(τ))∆τ

)
<∞

and therefore F is equibounded and equicontinuous, i.e., relatively compact. So by

the Schauder fixed point theorem, there exists ȳ ∈ X such that

ȳ(t) = F ȳ(t) = c1 +

∫ ∞
t

b(s)g

(
d1 −

∫ ∞
s

a(τ)f(ȳ(τ))∆τ

)
∆s.



72

Setting x̄(t) = d1−
∫∞
t
a(τ)f(y(τ))∆τ and taking limit as t→∞, we have that there

exists a nonoscillatory solution in M− such that x̄(t) → d1 > 0 and ȳ(t) → c1 < 0,

i.e., M−
B,B 6= ∅.

Theorem 2.3. M−
B,∞ 6= ∅ if and only if

∫ ∞
t0

a(s)f

(
g(c1)

∫ s

t0

b(τ)∆τ

)
∆s <∞ (III.9)

for some c1 6= 0, where f is an odd function.

Proof. Suppose that there exists a nonoscillatory solution (x, y) ∈ M−
B,∞ such that

x > 0 eventually, x(t)→ c2 and y(t)→ −∞ as t→∞, where 0 < c2 <∞. Because

of the monotonicity of x and the fact that x has a finite limit, there exist t1 ≥ t0 and

c3 > 0 such that

c2 ≤ x(t) ≤ c3 for t ≥ t1. (III.10)

Integrating the first equation from t1 to t gives us

c2 ≤ x(t) = x(t1) +

∫ t

t1

a(s)f(y(s))∆s ≤ c3, t ≥ t1.

So by taking the limit as t→∞, we have

∫ ∞
t1

a(s)|f(y(s))|∆s <∞. (III.11)

The monotonicity of g, (III.10) and integrating the second equation from t1 to t yield

y(t) ≤ y(t1)− g(c2)

∫ t

t1

b(s)∆s ≤ −g(c2)

∫ t

t1

b(s)∆s.



73

Since f(−u) = −f(u) for u 6= 0 and by the monotonicity of f , we have

|f(y(t))| ≥ f

(
g(c2)

∫ t

t1

b(s)∆s

)
, t ≥ t1. (III.12)

By (III.11) and (III.12), we have

∫ t

t1

a(s)|f(y(s))|∆s ≥
∫ t

t1

a(s)f

(
g(c2)

∫ s

t1

b(τ)∆τ

)
∆s.

As t→∞, the proof is finished. (The case x < 0 eventually can be proved similarly

with c1 < 0.)

Conversely, suppose that

∫ ∞
t0

a(s)f

(
g(c1)

∫ s

t0

b(τ)∆τ

)
∆s <∞ for some c1 6=

0. Without loss of generality, assume that c1 > 0. (The case c1 < 0 can be done

similarly.) Then we can choose t1 ≥ t0 and d > 0 such that

∫ ∞
t1

a(s)f

(
g(c1)

∫ s

t1

b(τ)∆τ

)
∆s < d, t ≥ t1, (III.13)

where c1 = 2d > 0. Let X be the partially ordered Banach space of all real-valued

continuous functions endowed with supremum norm ‖x‖ = sup
t∈[t1,∞)T

|x(t)| and with

the usual pointwise ordering ≤. Define a subset Ω of X such that

Ω =: {x ∈ X : d ≤ x(t) ≤ 2d, t ≥ t1}. (III.14)

For any subset B of Ω, inf B ∈ Ω and supB ∈ Ω, i.e., (Ω,≤) is complete. Define an

operator F : Ω→ X as

(Fx)(t) = d+

∫ ∞
t

a(s)f

(∫ s

t1

b(τ)g(x(τ))∆τ

)
∆s, t ≥ t1. (III.15)
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First, we need to show that F : Ω → Ω is an increasing mapping into itself. It is

obvious that it is an increasing mapping and since

d ≤ (Fx)(t) = d+

∫ ∞
t

a(s)f

(∫ s

t1

b(τ)g(x(τ))∆τ

)
∆s ≤ 2d

by (III.13), it follows that F : Ω → Ω. Then by the Knaster fixed point theorem,

there exists x̄ ∈ Ω such that

x̄(t) = (Fx̄)(t) = d+

∫ ∞
t

a(s)f

(∫ s

t1

b(τ)g(x̄(τ))∆τ

)
∆s, t ≥ t1. (III.16)

By taking the derivative of (III.16) and the fact that f is an odd function, we have

x̄∆(t) = a(t)f

(
−
∫ t

t1

b(τ)g(x̄(τ))∆τ

)
, t ≥ t1.

Setting ȳ = −
∫ t

t1

b(τ)g(x̄(τ))∆τ and using the monotonicity of g give

ȳ(t) ≤ −g(d)

∫ t

t1

b(τ)∆τ, t ≥ t1.

So we have that x̄(t) > 0 and ȳ(t) < 0 for t ≥ t1, and x̄(t) → d and ȳ(t) → −∞ as

t→∞. This completes the proof.

Theorem 2.4. If

∫ ∞
t0

a(t)f

(∫ ∞
t

b(s)g(c1)∆s

)
∆t <∞

and∫ ∞
t0

b(t)g

(
d1

∫ ∞
t

a(s)∆s

)
∆t =∞ (−∞)

for some c1 > 0 and any d1 > 0 (c1 < 0 and d1 < 0), where f is an odd function,

then M−
0,∞ 6= ∅.
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Proof. Choose t1 ≥ t0 and c1 > 0 such that

∫ ∞
t1

a(t)f

(
g(c1)

∫ ∞
t

b(s)∆s

)
∆t <

c1

2
, t ≥ t1. (III.17)

Let X be the partially ordered Banach space of all real-valued continuous functions

endowed with the norm ‖x‖ = sup
t∈[t1,∞)T

|x(t)| and with the usual pointwise ordering

≤. Define a subset Ω of X such that

Ω =: {x ∈ X : f(1)

∫ ∞
t

a(s)∆s ≤ x(t) ≤ c1

2
, t ≥ t1}.

It is clear that (Ω,≤) is complete. Define an operator F : Ω→ X such that

(Fx)(t) =

∫ ∞
t

a(s)f

(∫ s

t1

b(τ)g(x(τ))∆τ

)
∆s.

It is clear that F is an increasing mapping. We also need to show that F : Ω → Ω.

By (III.17), the monotonicity of g and the fact that x ∈ Ω, we have

(Fx)(t) ≤
∫ ∞
t

a(s)f

(
g(c1)

∫ s

t1

b(τ)∆τ

)
∆s ≤ c1

2
.

Also since ∫ ∞
t0

b(t)g

(
d1

∫ ∞
t

a(s)∆s

)
∆t =∞,

we can choose t2 ≥ t1 such that

∫ t

t2

b(s)g

(
d1

∫ ∞
s

a(τ)∆τ

)
∆s > 1

for t ≥ t2 and any d1 > 0. So by setting f(1) = d1, we have
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(Fx)(t) ≥
∫ ∞
t

a(s)f

(∫ s

t1

b(τ)g

(
f(1)

∫ ∞
τ

a(λ)∆λ

)
∆τ

)
∆s ≥ f(1)

∫ ∞
t

a(s)∆s.

Then by the Knaster fixed point theorem, there exists x̄ ∈ Ω such that x̄ = Fx̄.

Setting

ȳ(t) = −
∫ t

t1

b(τ)g(x̄(τ))∆τ,

using the fact that x̄ ∈ Ω and taking the limit of x̄ and ȳ as t → ∞, the proof is

complete. (The case c1 < 0 and d1 < 0 can be shown similarly.)
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3. NONEXISTENCE OF NONOSCILLATORY SOLUTIONS OF

(III.1) IN M−

In the previous section, we used the monotonicity of the functions f and g in

order to show the existence of nonoscillatory solutions of system (III.1). Nonexistence

of such solutions in M−
0,B, M

−
B,B, and M−

B,∞ directly follows from Theorems 2.1 - 2.3.

In this section, we relax this condition by assuming that there exist positive constants

F and G such that

f(u)

u
≥ F and

g(u)

u
≥ G for u 6= 0 (III.18)

in order to get the emptiness of those subclasses. The following theorems show the

nonexistence of such solutions in the subclasses of M− given in Lemma 1.5.

Theorem 3.1. Suppose that (III.18) holds. If

∫ ∞
t1

a(s)

(∫ s

t1

b(τ)

(∫ ∞
τ

a(λ)∆λ

)
∆τ

)
∆s =∞, (III.19)

then M−
0,∞ = ∅.

Proof. Assume that there exists a solution (x, y) ∈ M− such that x > 0 eventually,

x → 0 and y → −∞ as t → ∞. By Lemma 1.4, there exist c1 > 0 and t1 ≥ t0 such

that

c1

∫ ∞
t

a(s)∆s ≤ x(t), t ≥ t1. (III.20)

By integrating the second equation from t1 to t, and using (III.18) and (III.20), there

exist t2 ≥ t1 and G > 0 such that

y(t) ≤ −c1G

∫ t

t1

b(s)

(∫ ∞
s

a(τ)∆τ

)
∆s, t ≥ t2. (III.21)
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By integrating the first equation from t2 to t, and using (III.21) and (III.18), there

exist t3 ≥ t2 and F > 0 such that

x(t2) ≥ c1FG

∫ t

t2

a(s)

(∫ s

t1

b(τ)

(∫ ∞
τ

a(λ)∆λ

)
∆τ

)
∆s, t ≥ t3. (III.22)

As t→∞, it contradicts to (III.19). So the assertion follows. Proof is by contradic-

tion.

Theorem 3.2. Suppose that (III.18) holds. If

∫ ∞
t0

b(t)

(∫ ∞
t

a(s)∆s

)
∆t =∞, (III.23)

then M−
0,B = ∅ and M−

B,B = ∅.

Proof. We only show the emptiness of M−
0,B since M−

B,B = ∅ can be shown similarly.

So assume that there exists a nonoscillatory solution (x, y) in M−
0,B such that x > 0

eventually, lim
t→∞

x(t) = 0 and lim
t→∞

y(t) = d1 < 0. By Lemma 1.4, we have that there

exist c2 > 0 and t1 ≥ t0 such that

c2

∫ ∞
t

a(s)∆s ≤ x(t), t ≥ t1. (III.24)

Integrating the first equation from t to ∞ gives

x(t) = −
∫ ∞
t

a(s)f(y(s))∆s, t ≥ t1. (III.25)

By integrating the second equation from t1 to t, and by using (III.18) and (III.25),

we have that there exists G > 0 such that

y(t) ≤ −Gc2

∫ t

t1

b(s)

(∫ ∞
s

a(τ)∆τ

)
∆s.
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So as t→∞, it contradicts to (III.23). Proof is by contradiction.

Theorem 3.3. Suppose that (III.18) holds and f is an odd function. If

∫ ∞
t0

a(s)

(∫ s

t0

b(τ)∆τ

)
∆s =∞, (III.26)

then M−
B,∞ = ∅.

Proof. Suppose (III.26) holds and that there exists a nonoscillatory (x, y) solution

of (III.1) in M−
B,∞ such that x > 0 eventually, x(t) → c1 > 0 and y(t) → −∞ as

t → ∞. Since x has a finite limit, there exist t1 ≥ t0 such that c1 ≤ x(t) for t ≥ t1.

Integrating the first equation from t1 to t gives

x(t) = x(t1) +

∫ t

t1

a(s)f(y(s))∆s. (III.27)

By taking the limit of (III.27) as t→∞, we have

∫ ∞
t1

a(s)|f(y(s))|∆s <∞. (III.28)

By integrating the second equation from t1 to t, using (III.18) and the fact that

x(t) ≥ c1 for t ≥ t1, we have that there exist t2 ≥ t1 and G > 0 such that

y(t) = y(t1)−
∫ t

t1

b(s)g(x(s))∆s ≤ −Gc1

∫ t

t1

b(s)∆s, t ≥ t2. (III.29)

By (III.29) and the fact that f is an odd function, there exist t3 ≥ t2 and F > 0 such

that

|f(y(t))| ≥ f

(
Gc1

∫ t

t1

b(s)∆s

)
≥ FGc1

∫ t

t1

b(s)∆s, t ≥ t3. (III.30)
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Multiplying (III.30) by a(t) and integrating the resulting inequality from t3 to t give

us ∫ t

t3

a(s)|f(y(s))|∆s ≥ FGc1

∫ t

t3

a(s)

(∫ s

t3

b(τ)∆τ

)
∆s.

By taking the limit of the last inequality as t → ∞ and by (III.28), we obtain a

contradiction. So the assertion follows.
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4. EXAMPLES

In this section, we give some examples in order to highlight our main results.

Example 4.1. Let T = qN0, t0 = 1, q > 1, a(t) = t
1
3

(t+1)(tq+1)(2t−1)
1
3
, b(t) = (t+1)

5
3

qt2
,

f(u) = u
1
3 , c1 = 1, g(u) = u

5
3 , t = qn and s = tqm, where n,m ∈ N0 in system (III.1).

First we need to show Y (1) <∞ and Z(1) =∞.

One can easily show that

∫ T

1

a(s)∆s = (q − 1)
∑

s∈[1,T )
qN0

s
4
3

(s+ 1)(sq + 1)(2s− 1)
1
3

≤ (q − 1)
∑

s∈[1,T )
qN0

1

s
2
3

.

(III.31)

So as T →∞, we have that

Y (1) ≤ (q − 1)
∞∑
n=0

(
1

q
2
3

)n
<∞.

One can also show

∫ T

1

b(s)∆s =
∑

s∈[1,T )
qN0

(s+ 1)5
3

qs2
(q − 1)s ≥ q − 1

q

∑
s∈[1,T )

qN0

s
2
3 .

So as T →∞, we have

Z(1) =

∫ ∞
1

b(s)∆s ≥ q − 1

q

∞∑
m=0

(q
2
3 )m =∞.

Now let us show that (III.3) holds. First we have

∫ T

t

a(s)∆s ≤ (q − 1)
∑

s∈[t,T )
qN0

1

s
2
3
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by (III.31). So taking the limit as T →∞, we have

∫ ∞
t

a(s)∆s ≤ (q − 1)
∑

s∈[t,∞)
qN0

1

s
2
3

=
q

2
3 (q − 1)

(q
2
3 − 1)t

2
3

.

Therefore,

∫ T

1

b(t)g

(
c1

∫ ∞
t

a(s)∆s

)
∆t ≤ α

∑
t∈[1,T )

qN0

(t+ 1)
5
3

t
19
10

,

where α =
(q − 1)2q

1
9

(q
2
3 − 1)

5
3

. So as T → ∞, we have that (III.3) holds by using the ratio

test. One can also show that

(
1

t+ 1
,−2 +

1

t

)
is a solution of


∆qx(t) = t

1
3

(t+1)(tq+1)(2t−1)
1
3
y

1
3 (t)

∆qy(t) = − (t+1)
5
3

qt2
x

5
3 (t)

such that x(t)→ 0 and y(t)→ −2, i.e., M−
0,B 6= ∅ by Theorem 2.1.

Example 4.2. Let T = Z, t0 = 0, an = 2
−6n
5
−1, bn = 4n

1+2n
, c1 = 1, f(u) = u

1
5 and

g(u) = u. It is clear that Y (0) <∞ and Z(0) =∞. Also note that

∫ T

0

a(s)f

(∫ s

0

b(τ)g(c1)∆τ

)
∆s =

T−1∑
s=0

2
−6s
5
−1

(
s−1∑
τ=0

4τ

1 + 2τ

) 1
5

≤ 1

2

T−1∑
s=0

(
1

2

)s
.

So as T →∞, it follows that

∫ ∞
0

a(s)f

(∫ s

0

b(τ)g(c1)∆τ

)
∆s <∞
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by the geometric series. It can also be shown that (xn, yn) = (1 + 2−n,−2n) is a

nonosicllatory solution of 
∆xn = 2

−6n
5
−1(yn)

1
5

∆yn = − 4n

1+2n
(xn)

such that xn → 1 and yn → −∞ as n → ∞, i.e., M−
B,∞ 6= ∅ by Theorem 2.3 (or

Theorem 10 in [8]).
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5. CONCLUSIONS

In this paper, we consider the case Y (t0) < ∞ and Z(t0) = ∞ in order to

show the existence and nonexistence of nonoscillatory solutions in M−. When we

have the case

Y (t0) =∞ and Z(t0) <∞, (III.32)

we know from Lemma 1.2(d) that all nonoscillatory solutions belong to M+. So as

a future work, we will consider the case (III.32) in order to show the existence and

nonexistence of nonoscillatory solutions in M+.

Another open problem is to extend our main results to the delay equation


x∆(t) = a(t)f(y(t))

y∆(t) = −b(t)g(x(τ(t))),

(III.33)

where τ : T → T is an increasing function such that τ(t) < t and τ(t) → ∞ as

t→∞. Even though the system


x∆(t) = a(t)f(y(t))

y∆(t) = −b(t)g(x(t− τ)),

(III.34)

where τ > 0, is considered in [11], it is not valid for all time scales, such as T = qN0 ,

where q > 1.
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IV. ON NONOSCILLATORY SOLUTIONS OF TWO - DIMENSIONAL
NONLINEAR TIME - SCALE SYSTEMS WITH DELAY

ABSTRACT

The classification schemes for nonoscillatory solutions of a class of nonlinear

two - dimensional systems of first order delay dynamic equations on time scales are

studied. Necessary and sufficient conditions are also given in order to show the

existence and nonexistence of such solutions, and some of the results are new for the

discrete case. Examples are given to illustrate some of the results.
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1. INTRODUCTION

A number of oscillation and nonoscillation criteria have already been given for

special cases of the system


x∆(t) = a(t)f(y(t))

y∆(t) = −b(t)g(x(τ(t)))

(IV.1)

where a, b ∈ Crd ([t0,∞)T,R+), τ ∈ Crd ([t0,∞)T, [t0,∞)T) , τ(t) ≤ t, and τ(t) → ∞

as t→∞, f and g are nondecreasing functions such that uf(u) > 0 and ug(u) > 0 for

u 6= 0, see [1], [10], [11]. Motivated by [12] in which τ(t) = t− η, η > 0, the purpose

of this study is to obtain the existence and nonexistence of nonoscillatory solutions

of (IV.1). According to the current knowledge, not only are the results obtained in

[12] improved but some of the results are also new for the discrete case. The theory

of time scales, which is a nonempty closed subset of real numbers denoted by T, was

introduced by Stefan Hilger in his Ph.D. thesis in 1988 in order to unify continuous

and discrete analyses and to extend the results to any time scale (see [2] and [3]).

Throughout this paper, it is assumed that T is unbounded above. We mean by t ≥ t1

that t ∈ [t1,∞)T := [t1,∞) ∩ T. We call (x, y) a proper solution if it is defined on

[t0,∞)T and sup{|x(s)|, |y(s)| : s ∈ [t,∞)T} > 0 for t ≥ t0. A solution (x, y) of (IV.1)

is said to be nonoscillatory if the component functions x and y are both nonoscillatory

( i.e., either eventually positive or eventually negative). Otherwise, it is said to be

oscillatory.

One can easily show that any nonoscillatory solution (x, y) of system (IV.1)

belongs to one of the following two classes:

M+ := {(x, y) ∈M : xy > 0 eventually}

M− := {(x, y) ∈M : xy < 0 eventually},
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where M is the set of all nonoscillatory solutions of system (IV.1).

For convenience, set

A(t) =

∫ ∞
t

a(s)∆s and B(t) =

∫ ∞
t

b(s)∆s. (IV.2)

The set up of this paper is as follows: in Section 1, essential lemmas that

are used in proofs of the main results are given. In Section 2, the existence of

nonoscillatory solutions of system (IV.1) is shown in some sub-classes of M+ and

M− by using convergence/divergence of A(t0) and B(t0) for t0 ∈ T and some other

improper integrals. We also give examples in order to highlight our main results. In

Section 3, we show the nonexistence of nonoscillatory solutions of system (IV.1) in

M+ and M−. Finally, we end up the paper by a conclusion.

As shown in [1], the component functions x and y are themselves nonoscillatory

if (x, y) is a nonoscillatory solution of the system (IV.1). The following lemmas show

the oscillation and nonoscillation criteria of the system (IV.1). Because system (IV.1)

has been considered without a delay term in [11], we refer the reader to [11] for some

of the proofs we skip here.

Lemma 1.1. (a) If A(t0) <∞ and B(t0) <∞, then system (IV.1) is nonoscillatory.

(b) If A(t0) =∞ and B(t0) =∞, then system (IV.1) is oscillatory.

Proof. (a) Suppose that A(t0) <∞ and B(t0) <∞. Choose t1 ∈ [t0,∞)T such that

∫ ∞
t1

a(t)f(1 + g(2)

∫ ∞
t

b(s)∆s)∆t < 1.

Let X be the space of all rd-continuous functions on T with the norm ‖x‖ =

sup
t∈[t1,∞)T

|x(t)| and with the usual pointwise ordering ≤. Define a subset Ω of X

as

Ω := {x ∈ X : 1 ≤ x(τ(t)) ≤ 2, τ(t) ≥ t1}.
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For any subset S of Ω, inf S ∈ Ω and supS ∈ Ω. Define an operator F : Ω→ X such

that

(Fx)(t) = 1 +

∫ t

t1

a(s)f

(
1 +

∫ ∞
s

b(u)g(x(τ(u)))∆u

)
∆s, τ(t) ≥ t1.

By using the monotonicity of f and g and the fact that x ∈ Ω, we have

1 ≤ (Fx)(t) ≤ 1 +

∫ t

t1

a(s)f(1 + g(2)

∫ ∞
s

b(u)∆u)∆s ≤ 2, τ(t) ≥ t1.

It is also easy to show that F is an increasing mapping. Therefore, by the Knaster

fixed point theorem, there exists x̄ ∈ Ω such that Fx̄ = x̄. Then

x̄∆(t) = a(t)f

(
1 +

∫ ∞
t

b(u)g(x̄(τ(u)))∆u

)
.

Setting
ȳ(t) = 1 +

∫ ∞
t

b(u)g(x̄(τ(u)))∆u

gives

ȳ∆(t) = −b(t)g(x̄(τ(t))),

i.e., (x̄, ȳ) is a nonoscillatory solution of (IV.1).

Lemma 1.2. (a) If A(t0) < ∞ and B(t0) = ∞, then any nonoscillatory solution

(x, y) of system (IV.1) belongs to M−, i.e., M+ = ∅.

(b) If A(t0) = ∞ and B(t0) < ∞, then any nonoscillatory solution (x, y) of system

(IV.1) belongs to M+, i.e., M− = ∅.

The following lemma shows the limit behaviors of the component functions x

and y of solution (x, y) of system (IV.1).

Lemma 1.3. Let (x, y) be a nonoscillatory solution of system (IV.1).

(a) If A(t0) <∞, then the component function x of (x, y) has a finite limit.

(b) If A(t0) =∞ or B(t0) <∞, then the component function y of (x, y) has a finite

limit.
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2. EXISTENCE OF NONOSCILLATORY SOLUTIONS OF (IV.1)

IN M+ AND M−

This section shows the existence of nonoscillatory solutions of system (IV.1)

by considering the convergence/divergence of A(t0) and B(t0). Because the system

(IV.1) is oscillatory for the case A(t0) = ∞ and B(t0) = ∞, only the other three

cases are considered.

2.1. THE CASE A(t0) =∞ AND B(t0) <∞

Let (x, y) be a nonoscillatory solution of system (IV.1) such that the

component function x of the solution (x, y) is eventually positive. Then by the same

discussion in [11], any nonoscillatory solution of system (IV.1) in M+ belongs to one

of the following sub-classes:

M+
B,0 =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
,

M+
∞,B =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| =∞, lim

t→∞
|y(t)| = d

}
,

M+
∞,0 =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| =∞, lim

t→∞
|y(t)| = 0

}
,

where 0 < c <∞ and 0 < d <∞.

Theorem 2.1. M+
B,0 6= ∅ if and only if

∫ ∞
t0

a(t)f

(
k

∫ ∞
t

b(s)∆s

)
∆t <∞ (IV.3)

for some nonzero k.

Proof. Suppose that there exists a solution (x, y) ∈M+
B,0 such that x(t) > 0, x(τ(t)) >

0 for t ≥ t0, x(t) → c1 and y(t) → 0 as t → ∞. Because x is eventually increasing,

there exist t1 ≥ t0 and c2 > 0 such that c2 ≤ g(x(τ(t))) for t ≥ t1. Integrating the
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second equation from t to ∞ gives

y(t) =

∫ ∞
t

b(s)g(x(τ(s)))∆s, t ≥ t1. (IV.4)

Also, integrating the first equation from t1 to t, using the monotonicty of g and (IV.4)

result in

x(t) ≥
∫ t

t1

a(s)f

(∫ ∞
s

b(u)g(x(τ(u)))∆u

)
∆s ≥

∫ t

t1

a(s)f

(
c2

∫ ∞
s

b(u)∆u

)
∆s

Setting c2 = k and taking the limit as t→∞ prove the assertion. (For the case x < 0

eventually, the proof can be shown similarly with k < 0.)

Conversely, suppose that (IV.3) holds for some k > 0. (For the case k < 0 can

be shown similarly.) Then choose t1 ≥ t0 so large that

∫ ∞
t1

a(t)f

(
k

∫ ∞
t

b(s)∆s

)
∆t <

c1

2
, t ≥ t1, (IV.5)

where k = g(c1). Let X be the space of all continuous and bounded functions on

[t1,∞)T with the norm ‖y‖ = sup
t∈[t1,∞)T

|y(t)|. Then, X is a Banach space, (see [4] ).

Let Ω be the subset of X such that

Ω := {x ∈ X :
c1

2
≤ x(τ(t)) ≤ c1, τ(t) ≥ t1},

and define an operator F : Ω→ X such that

(Fx)(t) = c1 −
∫ ∞
t

a(s)f

(∫ ∞
s

b(u)g(x(τ(u)))∆u

)
∆s, τ(t) ≥ t1.
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It is easy to see that Ω is bounded, convex and a closed subset of X. Now, F has the

following properties. In addition, F maps into itself. Indeed, we have

c1 ≥ (Fx)(t) ≥ c1 −
∫ ∞
t

a(s)f

(
g(c1)

∫ ∞
s

b(u)∆u

)
∆s ≥ c1

2
, τ(t) ≥ t1

by (IV.5). In order to show that F is continuous on Ω, let xn be a sequence in Ω

such that xn → x ∈ Ω = Ω̄. Then, for τ(t) ≥ t1

|(Fxn)(t)− (Fx)(t)|

≤
∫ ∞
t1

a(s)

∣∣∣∣[f (−∫ ∞
s

b(u)g(xn(τ(u)))∆u

)
− f

(
−
∫ ∞
s

b(u)g(x(τ(u)))∆u

)]∣∣∣∣∆s.
Then, the Lebesgue Dominated Convergence theorem and the continuity of g give

‖(Fxn)− (Fx)‖ → 0 as n→∞, i.e., F is continuous on Ω. Finally, FΩ is shown to

be precompact. Let x ∈ Ω and s, t ≥ t1. Without loss of generality, assume s > t.

Then, we obtain

|(Fx)(s)− (Fx)(t)| ≤
∫ t

s

a(u)f

(
g(c1)

∫ ∞
u

b(λ)∆λ

)
∆u < ε, τ(t) ≥ t1,

by assumption, which implies that FΩ is relatively compact. Then, by the Schauder

fixed point theorem, there exists x̄ ∈ Ω such that x̄ = Fx̄. As t → ∞, we get

x̄(t)→ c1 > 0. Setting

ȳ(t) =

∫ ∞
t

b(u)g(x̄(τ(u)))∆u > 0, τ(t) ≥ t1

shows that ȳ(t)→ 0 as t→∞, i.e., M+
B,0 6= ∅.

Example 2.2. Let T = 2N0 , τ(t) = t
4
, t = 2n, s = 2m, m, n ≥ 2, a(t) =

1

2t
4
5
,
, b(t) =

3

4t2(8t− 4)
, f(u) = u

3
5 , k = 1 and g(u) = u. First, it must be shown that A(t0) =∞
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and B(t0) <∞. Indeed,

∫ t

t0

a(s)∆s =
1

2

∑
s∈[4,t)

2N0

s
1
5 .

Therefore,

A(t0) =
1

2
lim
n→∞

n−1∑
m=2

(2m)
1
5 =∞.

Because

∫ t

t0

b(s)∆s ≤ 3

16

∑
s∈[4,t)

2N0

1

s
,

we have

B(t0) ≤ 3

16
lim
n→∞

n−1∑
m=2

1

2m
<∞

by the geometric series. Note that

∫ T

t

b(s)∆s ≤ 3

16

∑
s∈[t,T )

2N0

1

s
.

This implies that

B(t) ≤ 3

16
lim
n→∞

n−1∑
m=2

1

2m
=

3

8
lim
n→∞

(
1

t
− 1

t2n

)
=

3

8t
.

Letting k = 1 and using the last inequality gives

∫ T

t0

a(t)f

(
k

∫ ∞
t

b(s)∆s

)
∆t ≤

∫ T

t0

1

2t
4
5

(
3

8t

) 3
5

∆t =

(
3

8

) 3
5 1

2

∑
t∈[1,T )

2N0

1

t
2
5

.
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Therefore, we have

∫ ∞
t0

a(t)f

(
k

∫ ∞
t

b(s)∆s

)
∆t ≤

(
3

8

) 3
5 1

2

∞∑
n=0

1

2
2n
5

<∞

by the geometric series. One can also show that (x, y) =
(
8− 1

t
, 1
t2

)
is a nonoscillatory

solution of 
∆2x(t) =

1

2t
4
5

(y(t))
3
5

∆2y(t) = − 3

4t2(8t− 4)
x(
t

4
),

(IV.6)

where ∆2x is the delta-derivative of x in 2N0 , i.e., ∆2h(t) =
h(2t)− h(t)

t
such that

x(t)→ 8 and y(t)→ 0 as t→∞, i.e., M+
B,0 6= ∅ by Theorem 2.1.

When the case A(t0) =∞ and B(t0) <∞ holds, it can be shown that M+
B,∞ 6=

∅ with τ(t) = t− η for η ≥ 0, see [12].

2.2. THE CASE A(t0) <∞ AND B(t0) <∞

Because the component fuctions x and y have finite limits by Lemma 1.3,

only two subclasses in M+ can exist by the same discussion in [11]

M+
B,0 =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = 0

}
,

M+
B,B =

{
(x, y) ∈M+ : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = d

}
,

where 0 < c < ∞ and 0 < d < ∞. Because the existence of nonoscillatory solutions

in M+
B,0 is shown in the previous subsection, it is only proven for M+

B,B.

Theorem 2.3. M+
B,B 6= ∅ if and only if

∫ ∞
t0

a(s)f

(
d1 + k

∫ ∞
s

b(u)∆u

)
∆s <∞ (IV.7)

for some k 6= 0 and d1 6= 0.
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Proof. Suppose that a nonoscillatory solution (x, y) ∈ M+
B,B exists such that x > 0

eventually, x(t) → c1, and y(t) → d1 as t → ∞. (For the case x < 0 eventually, the

proof can be shown similarly.) Because x is eventually positive and increasing, there

exist a large t1 ≥ t0 and c2 > 0 such that c2 ≤ x(τ(t)) ≤ c1 for t ≥ t1. Integrating

the second equation from t to ∞ and the monotonicity of g give

y(t) ≥ d1 + g(c2)

∫ ∞
t

b(s)∆s, t ≥ t1. (IV.8)

Integrating the first equation from t1 to t and using the monotonicity of f yield

x(t) ≥
∫ t

t1

a(s)f

(
d1 + g(c2)

∫ ∞
s

b(τ)∆τ

)
∆s.

So, as t→∞, the assertion follows for k = g(c2).

Conversely, suppose (IV.7) holds. Choose t1 ≥ t0, k > 0 and d1 > 0 such that

∫ ∞
t1

a(s)f

(
d1 + k

∫ ∞
s

b(u)∆u

)
∆s < d1, (IV.9)

where k = g(2d1). (The case k, d1 < 0 can be done similarly.) Let X be the Ba-

nach space of all continuous real valued functions endowed with the norm ‖x‖ =

sup
t∈[t1,∞)T

|x(t)| and with usual pointwise ordering ≤. Define a subset Ω of X as

Ω := {x ∈ X : d1 ≤ x(τ(t)) ≤ 2d1, τ(t) ≥ t1}.

For any subset B of Ω, it is clear that inf B ∈ Ω and supB ∈ Ω. An operator

F : Ω→ X is defined as

(Fx)(t) = d1 +

∫ t

t1

a(s)f

(
d1 +

∫ ∞
s

b(u)g(x(τ(u)))∆u

)
∆s, τ(t) ≥ t1.
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It is obvious that F is an increasing mapping into itself. Therefore,

d1 ≤ (Fx)(t) ≤ d1 +

∫ t

t1

a(s)f

(
d1 + g(2d1)

∫ ∞
s

b(u)∆u

)
∆s ≤ 2d1, τ(t) ≥ t1.

Then, by the Knaster fixed point theorem, there exists x̄ ∈ Ω such that x̄ = Fx̄. By

setting

ȳ(t) = d1 +

∫ ∞
t

b(u)g(x̄(τ(u))), τ(t) ≥ t1,

we get that

ȳ∆(t) = −b(t)g(x̄(τ(t))).

Therefore, x̄(t) → α and ȳ(t) → d1 as t → ∞, where 0 < α < ∞, i.e., M+
B,B 6= ∅.

Note that a similar proof can be done for the case k < 0 and d1 < 0 with x < 0.

Example 2.4. Let T = 2N0 , τ(t) = t
4
, t = 2n, s = 2m, n ≥ 2, a(t) =

1

2t
5
3 (3t+ 1)

1
3

,

b(t) = 1
2t(6t−4)

, f(u) = u
1
3 and g(u) = u. We first show A(t0) <∞ and B(t0) <∞.

∫ t

t0

a(s)∆s =
1

2

∑
s∈[4,t)

2N0

1

s
2
3 (3s+ 1)

1
3

.

So we have

A(t0) =
1

2
lim
n→∞

n−1∑
m=2

1

(2m)
2
3 (3 · 2m + 1)

1
3

<∞

by the ratio test. Similarly,

∫ t

t0

b(s)∆s =
1

2

∑
s∈[4,t)

2N0

1

6s− 4
.

Hence, as t→∞, we obtain

B(t0) =
1

2
lim
n→∞

n−1∑
m=2

1

6.2m − 4
<∞.
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Because A(t0) < ∞ and B(t0) < ∞, it is easy to show that (IV.7) holds. One can

also show that
(
6− 1

t
, 3 + 1

t

)
is a nonoscillatory solution of


∆2x(t) =

1

2t
5
3 (3t+ 1)

1
3

y
1
3 (t)

∆2y(t) = − 1

2t(6t− 4)
x

(
t

4

) (IV.10)

such that x(t)→ 6 and y(t)→ 3 as t→∞, i.e., M+
B,B 6= ∅ by Theorem 2.3.

2.3. THE CASE A(t0) <∞ AND B(t0) =∞

By the similar argument in [11], any nonoscillatory solution of system (IV.1)

in M− belongs to one of the following sub-classes:

M−
0,B =

{
(x, y) ∈M− : lim

t→∞
|x(t)| = 0, lim

t→∞
|y(t)| = d

}
,

M−
B,B =

{
(x, y) ∈M− : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| = d

}
,

M−
0,∞ =

{
(x, y) ∈M− : lim

t→∞
|x(t)| = 0, lim

t→∞
|y(t)| =∞

}
,

M−
B,∞ =

{
(x, y) ∈M− : lim

t→∞
|x(t)| = c, lim

t→∞
|y(t)| =∞

}
,

where 0 < c <∞ and 0 < d <∞.

Theorem 2.5. M−
B,∞ 6= ∅ if and only if

∫ ∞
t0

a(s)f

(
k

∫ s

t0

b(u)∆u

)
∆s <∞ (IV.11)

for some k 6= 0, where f is an odd function.

Proof. Suppose that there exists a nonoscillatory solution (x, y) ∈ M−
B,∞ such that

x(t) > 0, x(τ(t)) > 0, t ≥ t1, x(t)→ c2 and y(t)→ −∞ as t→∞, where 0 < c2 <∞.

Because x is monotonic and has a finite limit, there exist t2 ≥ t1 and c3 > 0 such
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that

c2 ≤ x(τ(t)) ≤ c3 for t ≥ t2. (IV.12)

Integrating the first equation from t2 to t gives

c2 ≤ x(t) = x(t1) +

∫ t

t1

a(s)f(y(s))∆s ≤ c3, t ≥ t2.

By taking the limit as t→∞, we obtain

∫ ∞
t2

a(s)|f(y(s))|∆s <∞. (IV.13)

Using the monotonicity of g, (IV.12) and integrating the second equation from t2 to

t yield

y(t) ≤ y(t2)− g(c2)

∫ t

t2

b(s)∆s ≤ −g(c2)

∫ t

t2

b(s)∆s.

Because f(−u) = −f(u) for u 6= 0 and by the monotonicity of f , we have

|f(y(t))| ≥ f

(
g(c2)

∫ t

t2

b(s)∆s

)
, t ≥ t2. (IV.14)

By (IV.13) and (III.12), we have

∫ t

t2

a(s)|f(y(s))|∆s ≥
∫ t

t2

a(s)f

(
g(c2)

∫ s

t2

b(u)∆u

)
∆s.

As t→∞, the assertion follows by setting g(c2) = k. (The case x < 0 eventually can

be proved similarly with k < 0.)

Conversely, without loss of generality, suppose that (IV.11) holds for some

k > 0. (The case k < 0 can be done similarly.) Then one can choose t1 ≥ t0 and
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d > 0 such that

∫ ∞
t1

a(s)f

(
k

∫ s

t1

b(u)∆u

)
∆s < d, τ(t) ≥ t1, (IV.15)

where k = g(2d). Let X be the partially ordered Banach space of all real-valued

continuous functions endowed with supremum norm ‖x‖ = sup
t∈[t1,∞)T

|x(t)| and with

the usual pointwise ordering ≤. Define a subset Ω of X such that

Ω := {x ∈ X : d ≤ x(τ(t)) ≤ 2d, τ(t) ≥ t1}. (IV.16)

For any subset B of Ω, inf B ∈ Ω and supB ∈ Ω, i.e., (Ω,≤) is complete. Define an

operator F : Ω→ X as

(Fx)(t) = d+

∫ ∞
t

a(s)f

(∫ s

t1

b(u)g(x(τ(u)))∆u

)
∆s, τ(t) ≥ t1. (IV.17)

It must be shown that F : Ω→ Ω is an increasing mapping into itself. It is obvious

that it is an increasing mapping and because

d ≤ (Fx)(t) = d+

∫ ∞
t

a(s)f

(∫ s

t1

b(u)g(x(τ(u)))∆u

)
∆s ≤ 2d

by (IV.15), it follows that F : Ω → Ω. Then, by the Knaster fixed point theorem,

there exists x̄ ∈ Ω such that

x̄(t) = (Fx̄)(t) = d+

∫ ∞
t

a(s)f

(∫ s

t1

b(u)g(x̄(τ(u)))∆u

)
∆s, τ(t) ≥ t1. (IV.18)

Taking the derivative of (IV.18) and the fact that f is an odd function show that

x̄∆(t) = a(t)f

(
−
∫ t

t1

b(u)g(x̄(τ(u)))∆u

)
, τ(t) ≥ t1.
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Setting ȳ = −
∫ t

t1

b(u)g(x̄(τ(u)))∆u and using the monotonicity of g give

ȳ(t) ≤ −g(d)

∫ t

t1

b(u)∆u, τ(t) ≥ t1.

Therefore, x̄(t) > 0 and ȳ(t) < 0 for t ≥ t1, and x̄(t)→ d and ȳ(t)→ −∞ as t→∞.

This completes the proof.

Example 2.6. Let T = 2N0 , τ(t) = t
4
, t = 2n, s = 2m, m, n ≥ 2, k = 1, a(t) =

1

2t
7
5 (t2 + 1)

3
5

, b(t) =
2t2 − 1

2t
9
5 (3t+ 4)

1
5

, f(u) = u
3
5 and g(u) = u

1
5 . One can easily show

A(t0) <∞ and B(t0) =∞. To show (IV.11) holds, first we have

∫ s

t0

b(u)∆u =
1

2

∑
u∈[4,s)

2N0

2u2 − 1

u
4
5 (3u+ 4)

1
5

≤
∑

u∈[1,s)
2N0

u = s− 1

Hence ∫ ∞
t0

a(s)f

(
k

∫ s

t0

b(u)∆u

)
∆s ≤

∫ T

t0

1

2s
7
5 (s2 + 1)

3
5

(s− 1)
3
5 ∆s

=
1

2

∑
s∈[4,T )

2N0

(s− 1)
3
5

s
2
5 (s2 + 1))

3
5

≤
∑

s∈[4,T )
2N0

1

s
.

Because

lim
T→∞

∑
s∈[4,T )

2N0

1

s
=

∞∑
m=2

1

2m
<∞,

it can be shown that (IV.11) holds as T →∞. It can also be shown that (3+ 1
t
,−t− 1

t
)

is a nonoscillatory solution of


∆2x(t) =

1

2t
7
5 (t2 + 1)

3
5

(y(t))
3
5

∆2y(t) = − 2t2 − 1

2t
9
5 (3t+ 4)

1
5

(
x(
t

4
)

) 1
5

(IV.19)

such that x(t)→ 3 and y(t)→ −∞ as t→∞, i.e., M−
B,∞ 6= ∅ by Theorem 2.5.
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3. NONEXISTENCE OF NONOSCILLATORY SOLUTIONS OF

(IV.1) IN M+ AND M−

The nonexistence of nonoscillatory solutions of system (IV.1) in M+
B,0, M+

B,B

and M−
B,∞ directly follows from Theorems 2.1, 2.3 and 2.5, respectively. Hence, the

focus is only on M+
∞,B, M

+
∞,0, M

−
0,B, M

−
B,B and M−

0,∞.

3.1. THE CASE A(t0) =∞ AND B(t0) <∞

Theorem 3.1. If ∫ ∞
t0

b(s)g

(
c1

∫ τ(s)

t0

a(u)∆u

)
∆s =∞ (IV.20)

for some nonzero c1, then M+
∞,B = ∅.

Proof. Assume that there exists a solution (x, y) ∈M+
∞,B of (IV.1) such that x(t) > 0,

x(τ(t)) > 0, y(t) > 0 for t ≥ t0, x(t) → ∞ and y(t) → d1 as t → ∞, where

0 < d1 < ∞. Because y(t) > 0 and decreasing for t ≥ t0, there exists t1 ≥ t0 and

d2 > 0 such that d1 ≤ y(t) ≤ d2 for t ≥ t1. Integrating the first equation from t1 to

τ(t) gives

x(τ(t)) ≥ f(d1)

∫ τ(t)

t1

a(s)∆s. (IV.21)

By integrating the second equation form t1 to t and using (IV.21) yield us

y(t1) ≥
∫ t

t1

b(s)g(x(τ(s)))∆s ≥
∫ t

t1

b(s)g

(
c1

∫ τ(s)

t1

a(u)∆u

)
∆s, t ≥ t1,

where c1 = f(d1). As t →∞, we have a contradiction to (IV.20). The proof can be

shown similarly when x < 0 eventually with c1 < 0.
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Theorem 3.2. If

∫ ∞
t0

a(t)f

(∫ ∞
t

b(s)g

(
c1

∫ s

t0

a(u)∆u

)
∆s

)
∆t <∞ (IV.22)

for some c1 6= 0, then M+
∞,0 = ∅.

Proof. The proof is by contradiction, so assume that there exists a nonoscillatory

solution in M+
∞,0 such that x(t) > 0, x(τ(t)) > 0, y(t) > 0 for t ≥ t0, x(t) → ∞ and

y(t)→ 0 as t→∞. Integrating the second equation from t to ∞ gives

y(t) =

∫ ∞
t

b(s)g(x(τ(s)))∆s. (IV.23)

Because y is eventually decreasing, there exist t1 ≥ t0 and d1 > 0 such that f(y(t)) ≤

d1 for t ≥ t1. Then by integrating the first equation from t1 to t and the monotonicity

of x and f , we have that

x(τ(t)) ≤ x(t) ≤ x(t1) + d1

∫ t

t1

a(s)∆s ≤ c1

∫ t

t1

a(s)∆s, t ≥ t1, (IV.24)

where c1 = 1+max{x(t1), d1}. Integrating the first equation from t1 to t, monotonicty

of f and g, (IV.23) and (IV.24) give

x(t) ≤ x(t1) +

∫ t

t1

a(s)f

(∫ ∞
s

b(u)g

(
c1

∫ u

t1

a(λ)∆λ

)
∆u

)
∆s.

As t → ∞, we have a contradiction to x(t) → ∞. The proof can be done similarly

when x < 0 eventually with c1 < 0.

3.2. THE CASE A(t0) <∞ AND B(t0) =∞

Theorem 3.3. If ∫ ∞
t0

b(t)g

(
c1

∫ ∞
t

a(s)∆s

)
∆t =∞ (IV.25)



103

for some c1 6= 0, then M−
0,B = ∅.

Proof. The proof is by contradiction. Assume that there exists a solution (x, y) ∈

M−
0,B such that x(t) > 0, x(τ(t)) > 0, y(t) < 0 for t ≥ t0, x(t) → 0 and y(t) → −d

as t→∞, where d > 0. By integrating the first equation of system (IV.1) and using

the monotonicity of x, y and f , there exist c1 > 0 and t1 ≥ t0 such that

x(τ(t)) ≥ x(t) ≥ c1

∫ ∞
t

a(s)∆(s), t ≥ t1. (IV.26)

By integrating the second equation from t1 to t, using inequality (IV.26) and the

monotonicity of g, we have

y(t) = y(t0)−
∫ t

t0

b(s)g(x(τ(s)))∆s ≤ −
∫ t

t0

b(s)g

(
c1

∫ ∞
s

a(τ)∆τ

)
∆s.

As t → ∞, we have a contradiction to (IV.25). For the case x < 0 eventually, the

proof can be shown similarly with c1 < 0.

Theorem 3.4. If ∫ ∞
t0

b(t)g

(
c1 − d1

∫ ∞
t

a(s)∆s

)
=∞ (IV.27)

for some c1 > 0 and d1 < 0, (or c1 < 0 and d1 > 0) then M−
B,B = ∅.

Proof. The proof is by contradiction. Hence, assume that there exists a nonoscillatory

solution (x, y) ∈M−
B,B such that x(t) > 0, x(τ(t)) > 0, y(t) < 0 for t ≥ t0, lim

t→∞
x(t) =

c1 > 0 and lim
t→∞

y(t) = d1 < 0. Since y is decreasing, there exists d2 < 0 and t1 ≥ t0

such that f(y(t)) ≤ d2 for t ≥ t1. Integrating the first equation from t to ∞ and the

monotonicty of x yield

x(τ(t)) ≥ x(t) = c1 −
∫ ∞
t

a(s)f(y(s))∆s ≥ c1 − d2

∫ ∞
t

a(s)∆s, t ≥ t1. (IV.28)
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By integrating the second equation from t1 to t and using (IV.28), we have

y(t) ≤ −
∫ t

t1

b(s)g(x(τ(s)))∆s ≤ −
∫ t

t1

b(s)g

(
c1 − d2

∫ ∞
s

a(u)∆u

)
∆s,

where d2 = d1 < 0 and taking the limit of the last inequality as t → ∞, we have

a contradiction to (IV.27). This completes the proof. Note that the case x < 0

eventually can be done similarly with c1 < 0 and d1 > 0.

Theorem 3.5. Suppose that f is an odd function. If

∫ ∞
t0

a(s)f

(∫ s

t1

b(u)g

(
c1

∫ ∞
u

a(λ)∆λ

)
∆u

)
∆s =∞ (IV.29)

for some c1 6= 0, then M−
0,∞ = ∅.

Proof. The proof is by contradiction. Assume that there exists a nonoscillatory solu-

tion (x, y) ∈ M−
0,∞ such that x(t) > 0, x(τ(t)) > 0, y(t) < 0 for t ≥ t0, x(t)→ 0 and

y(t) → −∞ as t → ∞. Inequality (IV.26) and the monotonicity of g yield us that

there exists c1 > 0 and t1 ≥ t0 such that

g(x(τ(t))) ≥ g(x(t)) ≥ g

(
c1

∫ ∞
t

a(s)∆s

)
, t ≥ t1. (IV.30)

Integrating the second equation of system (IV.1) from t1 to t and using (IV.30) yield

y(t) ≤ −
∫ t

t1

b(s)g

(
c1

∫ ∞
s

a(u)∆u

)
∆s, t ≥ t1. (IV.31)

By integrating the first equation of system (IV.1) from t1 to t, (IV.31) and the fact

that f is an odd function, we have

x(t1) ≥ x(t1)− x(t) ≥
∫ t

t1

a(s)

(∫ s

t1

b(u)g

(
c1

∫ ∞
u

a(λ)∆λ

)
∆u

)
∆s, t ≥ t1.
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Taking the limit of the last inequality as t→∞, we have a contradiction to (IV.29).

For the case x < 0, the proof can be shown similary with c1 < 0.
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4. CONCLUSION

In this section, we reconsider (IV.1), where τ(t) = t, namely,


x∆(t) = a(t)f(y(t))

y∆(t) = −b(t)g(x(t))

(IV.32)

and investigate the asymptotic properties of nonoscillatory solutions for (IV.32). Be-

cause the existence and nonexistence of nonoscillatory solutions of (IV.32) in M−

are considered in [11], we only focus on M+. Notice that the results are obtained

for system (IV.1) in Sections 2 and 3 also hold for system (IV.32). Therefore, we

only show the existence of nonoscillatory solutions for (IV.32) in M+
∞,B and M+

∞,0,

which are not acquired for (IV.1). In order to do that, we assume A(t0) = ∞ and

B(t0) <∞ throughout this section.

Theorem 4.1. M+
∞,B 6= ∅ if and only if

∫ ∞
t0

b(s)g

(
c1

∫ s

t0

a(u)∆u

)
∆s <∞ (IV.33)

for some c1 6= 0.

Proof. The necessity directly follows from Theorem 3.1. For suffiency, suppose that

(IV.33) holds. Choose t1 ≥ t0, c1 > 0 and d1 > 0 such that

∫ ∞
t1

b(s)g

(
c1

∫ s

t1

b(u)∆u

)
∆s < d1, t ≥ t1, (IV.34)

where c1 = f(2d1) > 0. (The case c1 < 0 can be done similarly.) Let X be the

partially ordered Banach space of all real-valued continuous functions endowed with

supremum norm ‖x‖ = sup
t∈[t1,∞)T

|x(t)|∫ t
t1
a(s)∆s

and with the usual pointwise ordering ≤.
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Define a subset Ω of X such that

Ω =: {x ∈ X : f(d1)

∫ t

t1

a(s)∆s ≤ x(t) ≤ f(2d1)

∫ t

t1

a(s)∆s, t ≥ t1}. (IV.35)

For any subset B of Ω, inf B ∈ Ω and supB ∈ Ω, i.e., (Ω,≤) is complete. Define an

operator F : Ω→ X as

(Fx)(t) =

∫ t

t1

a(s)f

(
d1 +

∫ ∞
t

b(u)g(x(u))∆u

)
∆s, t ≥ t1. (IV.36)

First we need to show that F : Ω → Ω is an increasing mapping into itself. It is

obvious that it is an increasing mapping, so let us show F := Ω→ Ω.

f(d1)

∫ t

t1

a(s)∆s ≤ (Fx)(t)

≤
∫ t

t1

a(s)f

(
d1 +

∫ ∞
s

b(u)g

(
f(2d1)

∫ u

t1

a(λ)∆λ

)
∆u

)
∆s

≤ f(2d1)

∫ t

t1

a(s)∆s

by (IV.34). Then, by the Knaster fixed point theorem, there exists x̄ ∈ Ω such that

x̄(t) = (Fx̄)(t) =

∫ t

t1

a(s)f

(
d1 +

∫ ∞
s

b(u)g(x̄(u))∆u

)
∆s, t ≥ t1. (IV.37)

By taking the derivative of (IV.37)

x̄∆(t) = a(t)f

(
d1 +

∫ ∞
t

b(u)g(x̄(u))∆u

)
, t ≥ t1.

Setting ȳ(t) = d1 +

∫ ∞
t

b(u)g(x̄(u))∆u and taking the limit as t → ∞ show that

x̄(t) > 0 and ȳ(t) > 0 for t ≥ t1, and x̄(t) → ∞ and ȳ(t) → d1 > 0 as t → ∞, i.e.,

M+
∞,B 6= ∅.
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Theorem 4.2. If

∫ ∞
t0

a(t)f

(
k

∫ ∞
t

b(s)∆s

)
∆t =∞ (−∞)

and

∫ ∞
t0

b(t)g

(
l

∫ ∞
t0

a(s)∆s

)
∆t <∞

for any k > 0 and some l > 0 (k < 0 and l < 0), then M+
∞,0 6= ∅.

Proof. Choose t1 ≥ t0 and c1 > 0 such that

∫ ∞
t1

b(t)g

(
l

∫ t

t0

a(s)∆s

)
∆t <

c1

2
, t ≥ t1, (IV.38)

where l = f(c1). Let X be the partially ordered Banach space of all real-valued

continous functions endowed with the norm ‖y‖ = sup
t∈[t1,∞)T

|y(t)| and with the usual

pointwise ordering ≤. Define a subset Ω of X such that

Ω =: {y ∈ X : g(1)

∫ ∞
t

b(s)∆s ≤ y(t) ≤ c1

2
, t ≥ t1}.

It is clear that (Ω,≤) is complete. Define an operator F : Ω→ X such that

(Fy)(t) =

∫ ∞
t

b(s)g

(∫ s

t1

a(u)f(y(u))∆u

)
∆s.

It is clear that F is an increasing mapping. We also need to show that F : Ω → Ω.

By (IV.38) and the monotonicity of g, we have

(Fy)(t) ≤
∫ ∞
t

b(s)g

(
l

∫ s

t1

a(u)∆u

)
∆s ≤ c1

2
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for y ∈ Ω. Since ∫ ∞
t0

a(t)f

(
k

∫ ∞
t

b(s)∆s

)
∆t =∞,

there exists t2 ≥ t1 such that

∫ t

t2

a(s)f

(
k

∫ ∞
s

b(u)∆u

)
∆s > 1

for t ≥ t2 and any k > 0, so by setting k = g(1), we have

(Fy)(t) ≥
∫ ∞
t

b(s)g

(∫ s

t1

a(u)f

(
g(1)

∫ ∞
u

b(λ)∆λ

)
∆u

)
∆s ≥ g(1)

∫ ∞
t

a(s)∆s,

for t ≥ t2. Then, by the Knaster fixed point theorem, there exists ȳ ∈ Ω such that

ȳ = F ȳ. Then we have

ȳ∆(t) = −b(t)g
(∫ t

t1

a(u)f(ȳ(u))∆u

)
.

Setting

x̄(t) =

∫ t

t1

a(u)f(x̄(u))∆u

and taking the limit as t → ∞ give us that x̄ → ∞ and ȳ → 0, i.e., M+
∞,0 6= ∅. The

case k < 0 and l < 0 with x < 0 can be shown similarly.
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SECTION

2. CONCLUSIONS

In this thesis, we investigated the existence and nonexistence of nonoscillatory so-

lutions of equation (I.1) and systems (II.1), (III.1), and (IV.1) in M+ and M−.

Investigation of classification of nonoscillatory solutions to dynamic equations and

systems on time scales is related with the signs of their solutions.

In the first paper, we consider equation (I.1) which can be rewritten as a

system of first order dynamic equations


x∆(t) =

(
1
a(t)

) 1
α |y(t)|

1
α sgny(t)

y∆(t) = b(t) |xσ(t)|β sgnxσ(t),

(2.1)

where y = x[1] defined in (I.12).

The following tables indicate the criteria for nonoscillatory solutions of (I.1)

(or system (2.1)) in M+ and M− based on the integrals J1, K1, J2, and K2 defined as

(I.8) - (I.11), respectively.

Table 2.1 Classification for (I.1) in M+

M+
B,B 6= ∅(= ∅) J1 <∞ and K1 <∞ (J1 =∞ or K1 =∞)

M+
B,∞ 6= ∅(= ∅) J1 <∞ and K1 =∞ (J1 =∞ or K1 <∞)

M+
∞,B = ∅ J1 <∞ or K1 =∞
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Table 2.2 Classification for (I.1) in M−

M−
B,B 6= ∅ (= ∅) I <∞ and K2 <∞ (I =∞ or K2 =∞)

M−
0,B 6= ∅ (= ∅) K2 <∞ (K2 =∞)

M−
B,0 6= ∅ (= ∅) I <∞ and K2 =∞ (J2 =∞ or K2 <∞ with β ≥ α)

M−
0,0 = ∅ I <∞ or K2 <∞ with β ≥ α

The second paper is concerned with system (II.1). Table 2.3 presents the clas-

sification of nonoscillatory solutions of (II.1) in M+ by using the integrals Ya, Zb, Jα,

and Kβ defined by (II.3), (II.5), and (II.6), respectively. Here, we assume Ya = ∞

and Zb <∞.

Table 2.3 Classification for (II.1) in M+

M+
B,0 6= ∅ Jα <∞

α < β and

Kβ <∞

α < β, β ≥ 1

and Jβ <∞

α ≤ 1

and

Kα <∞

M+
∞,B 6= ∅ Kβ <∞

α > β and

Jα <∞

α ≥ 1 and

Jβ <∞

M+
∞,0 6= ∅

Jα =∞ and

Kβ <∞

M+
B,0 = ∅ Jα =∞

α > β and either

Kβ =∞ or Jβ =∞
α ≥ 1 and Kα =∞

M+
∞,B = ∅ Kβ =∞

α < β and either

Jα =∞ or Kα =∞
β ≤ 1 and Jβ =∞
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We also prove the (non)existence of nonoscillatory solutions of (II.1) without

any need of Jα and Kβ. Therefore, we have the following table:

Table 2.4 Classification for (II.1) in M+

M+
B,B 6= ∅ Ya <∞ and Zb <∞

M+
B,0 6= ∅ Ya <∞ and Zb <∞

In order to classify of nonoscillatory solutions of (III.1) and (IV.1), for sim-

plicity we let

I1 =

∫ ∞
t0

b(t)g

(
c1

∫ ∞
t

a(s)∆s

)
∆t, I2 =

∫ ∞
t0

b(t)g

(
k − l

∫ ∞
t

a(s)∆s

)
∆t,

I3 =

∫ ∞
t0

a(s)f

(
k

∫ s

t0

b(τ)∆τ

)
∆s, I4 =

∫ ∞
t0

a(t)f

(
k

∫ ∞
t

b(s)∆s

)
∆t,

I5 =

∫ ∞
t0

a(s)f

(
d1 + k

∫ ∞
s

b(u)∆u

)
∆s, I6 =

∫ ∞
t0

b(s)g

(
c1

∫ τ(s)

t0

a(u)∆u

)
∆s,

I7 =

∫ ∞
t0

a(t)f

(∫ ∞
t

b(s)g

(
c1

∫ s

t0

a(u)∆u

)
∆s

)
∆t,

I8 =

∫ ∞
t0

a(s)f

(∫ s

t1

b(u)g

(
c1

∫ ∞
u

a(λ)∆λ

)
∆u

)
∆s,

I9 =

∫ ∞
t0

b(s)g

(
c1

∫ s

t0

a(u)∆u

)
∆s, I10 =

∫ ∞
t0

b(t)g

(
l

∫ ∞
t0

a(s)∆s

)
∆t.

In the third paper, we assume that Y (t0) =∞ and Z(t0) <∞ for the following

tables, where Y (t0) and Z(t0) are defined in (III.2).
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Table 2.5 Classification for (III.1) in M−

M−
0,B 6= ∅ (= ∅) I1 <∞(I1 =∞)

M−
B,B 6= ∅ (= ∅) I2 <∞ (I2 =∞)

M−
B,∞ 6= ∅ (= ∅) I3 <∞ (I3 =∞)

M−
0,∞ 6= ∅ I4 <∞ and I1 =∞

In the fourth paper, Tables 2.6 - 2.8 present how we classify nonoscillatory

solutions of the delay system (IV.1) in M+ and M− and of system (IV.32) in M+.

For Tables 2.6 and 2.8, it is assumed that A(t0) =∞ and B(t0) <∞, while for Table

2.7, we assume that A(t0) < ∞ and B(t0) = ∞, where A(t0) and B(t0) are defined

in (IV.2). Finally, in the case A(t0) < ∞, B(t0) < ∞, and I5 < ∞, we obtaine the

existence of nonoscillatory solutions of (IV.1) in M+
B,B.

Table 2.6 Classification for (IV.1) in M+

M+
B,0 6= ∅ (= ∅) I4 <∞(I4 =∞)

M+
∞,B = ∅ I6 =∞

M+
∞,0 = ∅ I7 =∞
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Table 2.7 Classification for (IV.1) in M−

M−
B,∞ 6= ∅ (= ∅) I3 <∞(I3 =∞)

M−
0,B = ∅ I1 =∞

M−
B,B = ∅ I2 =∞

M−
0,∞ = ∅ I8 =∞

Table 2.8 Classification for (IV.32) in M+

M+
∞,B 6= ∅ (= ∅) I9 <∞ (I9 =∞)

M+
∞,0 6= ∅ I4 =∞ and I10 <∞
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[15] M. Bohner and A. Peterson, Advances in Dynamic Equations on Time Scales.
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