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Abstract

A series of detailed work on the long-term evolutions of young neutron star pop-
ulations, namely anomalous X-ray pulsars (AXPs), soft gamma repeaters (SGRs), dim
isolated neutron stars (XDINs), “high-magnetic-field” radio pulsars (HBRPs), and central
compact objects (CCOs) showed that the X-ray luminosities, Lx, and the rotational prop-
erties of these systems can be reached by the neutron stars evolving with fallback discs
and conventional dipole fields. Remarkably different individual source properties of these
populations are reproduced in the same model as a result of the differences in their initial
conditions, magnetic moment, initial rotational period, and the disc properties. In this the-
sis, we have analysed the properties of the rotating radio transients (RRATS) in the same
model. We investigated the long-term evolution of J1819-1458, which is the only RRAT
detected in X-rays. The period, period derivative and X-ray luminosity of J1819-1458
can be reproduced simultaneously with a magnetic dipole field strength By ~ 5 x 101 G
on the pole of the neutron star, which is much smaller than the field strength inferred from
the dipole-torque formula. Reasonable model curves are obtained with disc masses in
the range of (0.75 — 3.76) x 1075 M, producing the source properties, in the accretion
phase at ages ~ 2 x 10° yr. Our results are not sensitive to the initial period. We find that
J1819-1458 is close to and below the radio pulsar death line with this B, and the mea-
sured period. The numerical simulations indicate that J1819-1458 is evolving toward the
properties of XDINs, which implies that there is a close evolutionary connection between
RRATSs and XDINs. For 29 RRATs with measured period derivatives and unknown X-ray
luminosities, we estimate the minimum B, values in the fallback disc model. These lower
limits on the field strengths are sufficiently low such that the actual dipole fields of RRATs
could fill the B, gap between XDINs and CCOs in this model. Finally, we discuss the

possible evolutionary links between RRAT's and the other young neutron star populations.
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GECICI DONEN RADYO KAYNAKLARININ UZUN SURELI EVRIMLERI VE
FiZiKSEL OZELLIKLERI

Ali Arda Gengali
Fizik, Yiiksek Lisans Tezi, 2018

Tez Damigsmani: Dog. Dr. Unal Ertan

Ozet

Anormal X-1s1n1 kaynaklar1 (AXPs), gama 1s1n1 tekrarlayicilart (SGRs), soniik izole
kaynaklar (XDINs), “yiiksek manyetik alanli” radyo pulsarlari (HBRPs) ve merkezi yogun
cisimler (CCOs) geng nétron yildiz popiilasyonlaridir ve bu popiilasyonlarin uzun donem
evrimleri iizerine yapilan bir dizi detayli calisma gosterdi ki kalint1 diski ve klasik dipol
alaniyla evrilen notron yildizlari, bu sayilan sistemlerin X-151n1 1g31ma giicii, Ly, ve donme
ozelliklerine ulasabilirler. Baslangi¢ kosullari, manyetik momenti, baslangic donme periy-
odu ve disk ozelliklerindeki farkliliklarin neticesinde bu popiilasyonlarin dikkat cekecek
bicimde farkl: tekil kaynak o6zellikleri ayn1 model kullanilarak tekrar iiretilirler. Bu tezde,
biz gecici donen radyo kaynaklarinin (RRATSs) oOzelliklerini aynt model c¢ercevesinde
analiz ettik. Biz X-151ninda saptanmis tek RRAT olan J1819-1458’ in uzun dénem evrim-
ini inceledik. Notron y1ldizinin kutubundaki manyetik dipol alan giiciinii By ~ 5x 10'* G
alarak, J1819-1458" in periyot, periyot tiirevi ve X-151n1 151ma giicii eszamanl olarak
tekrar tiretilebilmektedir, bu alan giicii dipol-tork fomiilii kullanilarak elde edilenden daha
diigiiktiir. Farkli disk kiitleleri (0.75 — 3.76) x 107> M, araliginda alindiginda, makul
model egrileri kaynak 6zelliklerini iiretecek sekilde yaklasik olarak 2 x 10° yasinda ve
kiitle aktarim fazinda saptanmaktadir. Bizim sonug¢larimiz baslangi¢ periyotlarina has-
sas degildir. Biz J1819-1458" u saptanmig B, degeri ve Ol¢iilmiis periyoduyla radyo
pulsar 6liim cizgisine yakin ve altinda bulduk. Niimerik simiilasyonlar gosterdi ki J1819—
1458 XDIN’ lerin 6zelliklerine dogru evrilmektedir ve bu durum RRAT’ lar ile XDIN’
ler arasinda yakin bir evrimsel bag oldugunun isaretidir. Ol¢iilmiis periyot tiirevi ve bil-
inmeyen X-1s1n giiclerine sahip 29 RRAT i¢in kalint1 diski modelini kullanarak minimum
By degerlerini tahmin ettik. Bu alan giicleri iizerindeki alt limitler yeterince diisiiktiir, 6yle

ki RRAT’ larin ger¢ek dipol alanlar1t XDIN’ ler ile CCO’ lar arasindaki By boslugunu bu

v



modelde doldurabilir. Son olarak, RRAT” lar ile diger geng¢ notron yildizi popiilasyonlari

arasindaki olas1 evrimsel baglantilar tartigildi.



ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor Assoc. Prof. Unal Ertan for
his endless support and patience, also he always encroached me during this thesis period.
Thanks to his proper guidance, I well developed myself not only in the field of accretion
disc modeling, both in numerically and theoretically, but also in the field of fundamental
physics.

Also, I would like to thank to my thesis jury members, Prof. Kazim Yavuz Eksi, who
was my marvelous advisor during my undergraduate studies, and especially Prof. Mehmet
Ali Alpar for their valuable comments to the thesis.

I acknowledge support from the Scientific and Technological Research Council of
Turkey (TUBITAK) through grant 117F144. Beside that, I would like to thank to Sabanc1
University to provide me a good study environment and scholarship.

It is not possible to leave out the infinite support and love of my beloved girlfriend
Canan Yagmur Boynukara. You are my everything, just your existence is a source of joy
for me. Please don’t withhold your love and bliss in this though life.

At last but not least, I would also like to express my special thanks to my family for

their unconditional supports and love.

vi



Contents

ABSTRACT

OZET
ACKNOWLEDGEMENTS
LIST OF ABBREVIATIONS

1 INTRODUCTION

1.1 Neutron Stars . . . . . . . . . e e e e e

2 ROTATING RADIO TRANSIENT J1819-1458

2.1 Introduction . . . . . . . . . . e,

2.2 The Model and Application to RRAT J1819-1458

2.3 Summary and Conclusion . . . . . . ... ... ... ... ...

3 SUMMARY AND CONCLUSION

BIBLIOGRAPHY

vii

iii

iv

vi

11
12
14
20

22

31



List of Figures

1.1

1.2

2.1

A simplified picture of a radio pulsar. In the figure « is the angle between
the rotational axis and the magnetic field axis. Outside the light cylinder
radius the magnetic field lines are open. Radio beams are emitted from
the polar cap along the open field lines as shown in the figure. The radio
beams traces a certain portion of the sky as the neutron star rotates around
the rotation axis. This figure was taken from the Handbook of Pulsar
Astronomy by Lorimer and Kramer and modified. . . . . . . ... .. ..
P — P diagram of the single neutron star populations and the millisecond
pulsars recycled in binaries (from http://www.atnf.csiro.au/

people/pulsar/psrcat/). . . . v v i i e e e

Illustrative model curves for the long-term evolution of the J1819-1458.
These curves are obtained with By, = 4.6 x 10'' G. The values of My
in units of 1075 M, and C parameter are given in the top panel. The
horizontal dotted lines show the observed P = 4.26 s, P ~ 575 x
107 ss7 and L, = 4 x 10% (d/3.6 kpc)? erg s~! with 25 % uncer-
tainty (McLaughlin et al., 2006; Keane et al., 2011; Rea et al., 2009). For

all these curves, a = 0.045 and Tp = 53 K (see the text for details). . .

viii

18


http://www.atnf.csiro.au/people/pulsar/psrcat/
http://www.atnf.csiro.au/people/pulsar/psrcat/

2.2 By - P diagram. Filled and open diamonds show the B, values for J1819
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the classical pulsar death line (Bhattacharya et al., 1992). . . . . . .. ..
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Chapter 1

INTRODUCTION

1.1 Neutron Stars

When thermo-nuclear reactions terminate at the core of a massive main-sequence star,
thermal pressure cannot support the star against gravity. Subsequently, the core of the star
collapses in a short time, producing a very strong explosion, a "supernova", ejecting the
outer layers of the star. A supernova is estimated to produce either a neutron star or a black
hole depending on the mass of the main-sequence star. During the collapse, if the gravi-
tational force is balanced by the neutron degeneracy pressure, the core becomes a neutron
star. A typical neutron star has a mass close to one solar mass, M, = 1.99 x 10% g,
confined within a radius of 10 km, which corresponds to an enormous mean density of
~ 10'® g cm~3. Due to the conservation of angular momentum and magnetic flux through
the core during the collapse, neutron stars are born with extremely high rotation rates and
strong magnetic dipole fields. A newly born neutron star can reach a rotational period, P,
as short as milliseconds, and a magnetic dipole field strength greater than ~ 10'2 G on
the surface of the star. If the mass of the core is above a critical value (~ 3 M), even
the neutron-degeneracy pressure is not sufficient to balance the gravity of the star, and the
core continues to collapse, eventually producing a black hole.

Two years after the discovery of the neutron by Chadwick (1932), it was proposed
that neutron stars could exist (Baade & Zwicky, 1934). They suggested that supernova
explosions could produce compact objects that are much denser than white dwarfs, and
supported by neutron-degeneracy pressure against gravity. Even before the discovery of
neutrons, Landau had speculated that compact objects denser than white dwarfs could

exist. Later, Oppenheimer & Volkoff (1939) and Tolman (1939) independently estimated

that the mass of a neutron star is less than about 0.7 M neglecting nucleon-nucleon



interactions. Later, including these interactions in the calculations, the maximum mass of
a neutron star was estimated to be ~ 2 M (Cameron, 1959).

Pacini (1967) showed that a rapidly rotating neutron star with a strong magnetic dipole
field creates strong electric fields that accelerate charged particles and produce electro-
magnetic radiation. Gold (1968) suggested that these neutron stars have strong magnetic
fields ~ 102 G, and should be slowing down by magnetic dipole radiation at the expense
of their rotational energies. According to the standard model (light-house model), beams
of radio waves are produced by the charged particles (electrons and positrons) accelerated
along the open field lines originating from the magnetic poles of the neutron star. There
is an angle, «, between rotational and magnetic axes of a neutron star (see Figure 1.1).
The radio emission is emitted within a conic solid angle as seen in Figure 1.1. If this
radio beam sweeps the position of the observer during the rotation of the star, the ob-
server receives a radio pulse per rotation period of the neutron star. Some sources could
show two pulsations in one rotation period, depending on the viewing geometry, beaming
angle and the angle between the rotation and magnetic axes. Many radio pulsars also
emit pulsed radiation at other wavelengths of the electromagnetic spectrum from optical
to gamma-rays.

The first radio pulsar was discovered by a PhD student Jocelyn Bell and her supervisor
Anthony Hewish. The source (PSR 1919+21) was regularly pulsating radio waves with a
period P = 1.377 s (Hewish et al., 1968). Later, many radio pulsars with much shorter
periods were detected. These very regular pulsations with such short periods indicated
that these sources should be rapidly rotating neutron stars, because gravitational forces of
white dwarfs, which have masses comparable to M, and radii (~ 10° cm) three orders
of magnitude greater than these of neutron stars, cannot support these rapid rotations. At
present, there are more than 2500 radio pulsars that have been detected in the last 50 years.
Among these radio pulsars, the shortest period is 1.4 ms (Hessels et al., 2006), and the
longest period is 8 s (Young, Manchester & Johnston, 1999). Their period derivatives, P,
vary from ~ 1072 s s71 to ~ 10712 s s7! (see Figure 1.2).

Due to compactness of neutron stars, mass-flow onto these objects is a very powerful
electromagnetic radiation mechanism, more efficient than even fusion reactions. Neutron
stars and black holes in close binary systems could accrete matter from their companions.

The matter flowing onto the surface of a neutron star produces electromagnetic radiation



emitted mostly in X-rays. The accretion luminosity can be written as Ly = GM, M /R,
where R and M, are the radius and the mass of the neutron star, M is the rate of mass

accretion onto the neutron star and G is the gravitational constant (Davidson & Ostriker,

1973).
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Figure 1.1: A simplified picture of a radio pulsar. In the figure « is the angle between the
rotational axis and the magnetic field axis. Outside the light cylinder radius the magnetic field
lines are open. Radio beams are emitted from the polar cap along the open field lines as shown
in the figure. The radio beams traces a certain portion of the sky as the neutron star rotates
around the rotation axis. This figure was taken from the Handbook of Pulsar Astronomy by
Lorimer and Kramer and modified.
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Figure 1.2: P - P diagram of the single neutron star populations and the millisecond
pulsars recycled in binaries (from http://www.atnf.csiro.au/people/pulsar/
psrcat/).

Most of the main-sequence stars are in binary systems. In these systems, one of the
stars with higher mass evolves more rapidly and could become a compact star. If the
supernova does not disrupt the binary system, subsequent evolution of the normal star
(companion) could lead to mass flow onto the primary (compact star), and produce an X-
ray binary. The mass transfer from the companion could be by means of wind accretion,
if the mass of the companion is greater than several M (Bondi & Hoyle, 1944; van den
Heuvel & Heise, 1972). These systems are called high-mass X-ray binaries (HMXBs).
If the secondary is a low-mass star (M < M), the mass-flow is likely to be through

Roche-lobe overflow that could lead to formation of an accretion disc around the compact

object, which is possible for sufficiently close binary stars. These systems are called low-
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mass X-ray binaries (LMXBs). The compact star in a LMXB could be a neutron star or a
black hole.

The rotational periods of neutron stars in HMXBs are in the range of 60 — 850 s (see
White, 2002, and references therein), while the periods of neutron stars in LMXBs are
measured to be a few milliseconds. Estimated surface magnetic dipole field strengths
of neutron stars are ~ 10> G in HMXBs (Bhalerao et al., 2015) and ~ 10% — 10° G
in LMXBs (Burderi, King & Wynn, 1996; Burderi & D’Amico, 1997), indicating that
HMXBs are much younger than LMXBs, and the weak fields of the neutron stars in
LMXBs are likely to be resulting from the field decay during the long-term evolution of
these sources (Srinivasan et al., 1990; Ding, Cheng & Chau, 1993; Jahan Miri & Bhat-
tacharya, 1994; Konar & Bhattacharya, 1997, 1999; Ruderman, Zhu & Chen, 1998). The
millisecond periods of the old neutron stars in LMXBs could be achieved by the spin-up
torques provided by the matter accreting onto the neutron star in the long-term evolution
of the system (Alpar et al., 1982; Radhakrishnan & Srinivasan, 1982).

During the evolution of LMXBs, when the companion star fills its Roche-lobe, the
gas flows from the Roche-lobe of the companion to that of the neutron star from the inner
Lagrangian point, L; (Lewin, van Paradijs & van den Heuvel, 1995). Since the matter
enters the Roche-lobe of the neutron star with a large angular momentum, it cannot flow
directly onto the surface of the neutron star. Instead, conservation of angular momentum
and the gravity of the neutron star lead to formation of a geometrically thin accretion
disc around the star (Pringle & Rees, 1972). In the accretion disc, the matter moves with
Kepler velocity in the orbital (¢) direction interacting with the matter at neighbor radii.
Along the disc, turbulent viscous interactions transfer angular momentum outwards, while
the matter flows inwards (Shakura & Sunyaev, 1973). In a steady state, the rate of mass-
flow from the companion becomes equal to the accretion rate onto the neutron star.

The first X-ray source, SCO X-1, was detected during the rocket experiments by Gi-
acconi et al. (1962) before the discovery of radio pulsars. Shklovsky (1967) suggested
that this bright source could be an accreting neutron star in a binary system. Almost one
decade ago SCO X-1 was accepted as a member of LMXBs with new observations. Later,
in 1971, UHURU satellite detected other pulsating X-ray sources powered by accretion
in binary systems. One of the first observed source with UHURU was Cen X-3 which is
a HMXB.



In the last two or three decades, with developing observational techniques at all elec-
tromagnetic wavelengths, new isolated neutron star populations were discovered with
properties different from ordinary radio pulsars (see Pavlov et al., 2001; Abdo et al., 2013,
and references therein). These populations, namely dim isolated neutron stars (XDINs),
anomalous X-ray pulsars (AXP), soft gamma repeaters (SGRs), so called "high-magnetic-
field" radio pulsars (HBRPs), central compact objects (CCOs) and rotating radio tran-
sients (RRATSs), show both similarities and striking differences. For instance, the periods
of AXP/SGRs and XDINs are all clustered to a narrow range of 2 — 12 s. Rotation of all
these young neutron star populations are slowing down. Repeating short and energetic
soft gamma-ray bursts, that were initially observed only from SGRs (Mazets, Golenet-
skij & Guryan, 1979; Mazets et al., 1979), have been detected later from AXPs (Kaspi
et al., 2003; Israel et al., 2007) and HBRPs as well. The magnetic dipole field strengths
inferred from the measured P and P values of these sources with the purely dipole torque
assumption range from ~ 10'° G (for CCOs) to greater than 10'* G (for AXP/SGRs).

In addition to sporadic and super-Eddington soft gamma-ray bursts of AXPs and
SGRs, three SGRs showed giant flares with luminosities L > 10%* erg s=! (Mazets,
Golenetskij & Guryan, 1979; Hurley et al., 1999; Palmer et al., 2005). AXP/SGRs show
X-ray pulsations with periods in the 2 — 12 s range and period derivatives ~ 10713 —
1071 s s7! (Olausen & Kaspi, 2014). The estimated characteristic ages of AXP/SGRs
vary between ~ 100 yr and 107 yr. Persistent X-ray luminosities (1033 — 10?6 erg s71) of
most of these sources are well above their rotational powers, E = IQN ~ 103 erg s~h
where I, Q and (2 are the moment of inertia, the angular frequency and the angular fre-
quency derivative of the neutron star. Majority of the AXP/SGRs haven’t been detected
in the radio band. Only four sources show radio pulsations with properties rather different
from those of ordinary radio pulsars (Mereghetti, 2013). Association of some AXP/SGRs
with supernova remnants indicate that these are young objects. What is the source of their
X-ray luminosity, and what is the torque mechanism that slows down these systems?

In the magnetar model (Duncan & Thompson, 1992; Thompson & Duncan, 1995),
AXP/SGRs (and other young neutron star populations) are neutron stars rotating in vac-
uum, and slow down by purely magnetic dipole torques. With this assumption, the dipole
field strength on the pole of the star is estimated from the dipole torque formula which

gives By ~ 6.4 x 10" (PP)Y/2 > 10" G for most of these systems. In this model,



it is proposed that the crust of the star could be heated continuously by field decay and
produces the observed Lx. Hereafter, we use "B4" and "By" to denote the dipole field
strength on the pole of the star inferred from the dipole torque formula and estimated in
our model respectively.

Both the source of X-ray luminosity and the torque mechanism are rather different
in the fallback disc model (Chatterjee, Hernquist & Narayan, 2000; Alpar, 2001). In the
presence of fallback discs that are estimated to have formed after the supernova (Colgate,
1971; Chevalier, 1989; Michel & Dessler, 1981), the dipole field strength deduced using
the dipole torque overestimates the actual field strength by one or two orders of magni-
tude, because the magnetic torque originating from disc-field interaction dominates the
magnetic dipole torque in most cases. In the fallback disc model, Lx is produced either
by mass accretion onto the neutron star or by intrinsic cooling of the star when the system
is in the propeller phase.

It was shown that the long-term evolution of neutron stars with fallback discs can ex-
plain the characteristic rotational and Lx properties of AXP/SGRs (Ertan et al., 2009).
This model was later developed including the cooling luminosity of the neutron star,
and its contribution to the X-ray heating of the disc, and the inactivation of the disc
at low temperatures in the evolution of the neutron star (Ertan et al., 2009; Alpar, Er-
tan & Caligkan, 2011; Caligkan et al., 2013). This model can reproduce the individual
properties of AXP/SGRs self-consistently (producing P, Pand Ly simultaneously) only
with By ~ 10'2 — 10'® G. In other words, a hybrid model with a magnetar dipole field
(By > 10 G) and a fallback disc cannot account for the AXP/SGR properties (Alpar,
2001; Eksi & Alpar, 2003; Ertan et al., 2007, 2009).

The short time-scales and energetics of SGR bursts require magnetar fields. As sug-
gested by Eksi & Alpar (2003), much earlier than the discovery of the so-called low-B
magnetars (Livingstone et al., 2011; Rea et al., 2012), these strong fields could be stored
in the small-scale multipoles, localized close to the star’s surface, while the dipole compo-
nent has conventional strength. Since the disc interacts with large-scale dipole component
of the field, presence of magnetar quadrupoles is compatible with the fallback disc model.
This indicates that SGR bursts do not necessitate magnetar dipole fields, which was con-
firmed by the discovery of the low-B magnetars with By < 10'* G which showed typical

SGR bursts (Livingstone et al., 2011; Rea et al., 2012). Furthermore, the same long-



term evolution model can explain the properties of low-B magnetars as well without any
additional assumptions in the model (Benli et al., 2013).

The periods of XDINs are in the range of 3 — 11 s like those of AXP/SGRs. The period
derivatives are between 107 s s7! and 107!3 s s71. From the dipole torque formula, By
values for XDINs are estimated in the range of 10'® — 10'* G. Their characteristic ages
are estimated to be ~ (1 —4) x 10° yr which are greater than their estimated kinematic
and cooling ages (~ 10° — 10° yr). Measured X-ray luminosities of XDINs (103! —
1032 erg s—!) are greater than their £ ~ 103 — 103 erg s'. It is likely that Lx of XDINs
are powered by intrinsic cooling of the neutron star. The difference in the temperatures
at the polar and the equatorial regions could be the reason for the observed pulsed X-ray
emission. Due to these low X-ray luminosities, XDINs are hard to be detected at large
distances. All seven known XDINs are located ~ 500 pc. No pulsed radio emission
has been detected from these sources (Haberl et al., 1997; Turolla, 2009). Non-detection
of radio pulsations could be due to narrow beaming angles estimated for long-period
systems. Or, their rotational rates and magnetic dipole moments are not sufficient to
produce pulsed radio emission. A neutron star evolving with a fallback disc can reach the
rotational properties and X-ray luminosites of XDINs with By ~ 10 — 10?2 G (Ertan
et al., 2014; Ertan, 2017). The main disc parameters employed in this model are similar
to those used for AXP/SGRs. The model results show that XDINs are currently in the
propeller phase, and their Ly are powered by the cooling luminosity of the neutron star.
The ages of the sources estimated in the model are close to their cooling and kinematic
ages. The periods together with the estimated B, values place XDINs below the pulsar
death line in By — P plane (Ertan et al., 2014, Fig. 4). That is, our model results imply
that the non-detection of radio pulses from 6 of the currently known XDINs is not due to
beaming affect.

HBRPs are radio pulsars which have relatively high P values (10714 - 1072 s s71)
compared to those of ordinary radio pulsars. The rotational spin period of HBRPs are in
the 0.1 — 7.7 s range. For HBRPs, B, estimated from the dipole torque formula, is ~
10*% =10 G. The typical SGR bursts were also detected from the HBRPs (Gavriil et al.,
2008; Younes, Kouveliotou & Roberts, 2016) indicating that there could be evolutionary
links between HBRPs and AXP/SGRs (Keane & Kramer, 2008; Kaspi, 2010). The X-ray

luminosities of HBRPs are in 1032 — 10% erg s—! range while £ ~ 103 —10%" erg s, and



the rotational power of these sources are generally greater than their Lx. The rotational
properties and observed X-ray luminosities of HBRPs can be explained in the fallback
disc model with By ~ 102 — 10'3 G, similar to the By-range of AXP/SGRs in the same
model (Benli & Ertan, 2016, 2017, 2018b). The model sources are found to be evolving
in the propeller phase at present, which is consistent with their radio pulsar properties.
The ages estimated in the model in agreement with the estimated supernova ages of the
sources.

CCOs are located close to the center of supernova remnants (SNR), hence CCOs are
considerably younger than the other single neutron star populations. Currently, there are
10 confirmed CCOs. The period and period derivatives, that were measured for three
sources, are in the ranges of 0.1 — 0.4 s and 10~ — 107!" s s~! (Gotthelf, Halpern &
Alford, 2013). For CCOs, the dipole-torque formula gives By ~ 10'° G much smaller
than those of AXP/SGRs, XDINS and HBRPs. Like AXP/SGRs and XDINs, the X-ray
luminosities of these sources (~ 1033 erg s~1) (Gotthelf, Halpern & Alford, 2013) are also
greater than their rotational powers (£ ~ 10%! — 102 erg s—1). Observed X-ray spectra
of CCOs can be fitted with two blackbodies with temperatures of 0.30 keV and 0.52 keV
with emitting areas much smaller than the surface area of the neutron star (Halpern &
Gotthelf, 2010). CCOs haven’t been detected in the optical, infrared and radio bands
yet. The characteristic ages of CCOs (7, ~ 108 yr) are much grater than their estimated
supernova ages (7sny ~ several kyr). Recently, Benli & Ertan (2018a) showed that CCO
properties can be explained in the fallback disc model consistently with the estimated
supernova ages. The estimated B values for the three CCOs are a few 10° G (Benli &
Ertan, 2018a), the weakest magnetic dipole fields among the young, single neutron star
systems in the fallback disc model.

These results show that the long-term evolution of different young neutron star popula-
tions can be explained in the same fallback disc model with similar main disc parameters.
Rather different individual source properties can be reproduced with dipole field strengths
between ~ a few 10° and 10" G, which remain far below the By values inferred from the
dipole torque formula. The distribution of these young neutron star populations in P — P
diagram imply that there could be evolutionary links between these systems and RRAT
population. It seems that there is a gap between the estimated dipole field strengths of

CCOs (By ~ a few 10° G) and XDINs (B, > 10'!), which could be filled with the B,
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distribution of RRAT population.

In this thesis, we concentrate on the long-term evolution and the physical properties of
J1819-1458. We also estimated the minimum dipole field strengths of the other RRAT's
with known P and P values. Since these sources were not detected in the X-rays, detailed
analysis of their evolutions is not possible. With this currently limited Ly information,
we also try to understand the physical conditions responsible for the sporadic radio bursts
of RRATS.

In Chapter 2, we investigate the long-term evolution of the RRATs with fallback discs,
and summarize the details of the fallback disc model, and give the results of the model
calculations for RRAT J1819-1458. In Chapter 3, we summarize the properties of all
young neutron star populations obtained in the same model, and discuss their possible

evolutionary links with RRATS.
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Chapter 2

ROTATING RADIO TRANSIENT J1819-1458

This chapter was submitted to Monthly Notices of the Royal Astronomical Society, 2018,
Volume XXX, Issue Y, pp. XXXX-XXXX.
Ali Arda Gencali, Unal Ertan
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2.1 Introduction

Rotating Radio Transients (RRATSs) were discovered more than a decade ago as a new
neutron star population (McLaughlin et al., 2006). Unlike normal radio pulsars, RRATSs
do not exhibit regular radio pulses. They show sporadic and brief radio bursts with time
separations of ~ minutes to a few hours. Durations of the radio bursts range from 0.5
ms to 100 ms with flux densities from ~ 10 mJy to ~ 10 Jy, which make these systems
the brightest radio sources in the universe (McLaughlin et al., 2006; Deneva et al., 2009).
Detectable radio emission from a particular RRAT lasts for less than one second per day
(McLaughlin et al., 2006). From the analysis of burst times-of-arrival (Manchester et al.,
2001), the rotational periods have been obtained in the 0.1 — 7 s range (McLaughlin
et al., 2006; Deneva et al., 2009). Among more than 100 confirmed RRATSs (Taylor et al.,
2016), only J1819-1458 was detected in X-rays (McLaughlin et al., 2007), and upper
limits on the X-ray luminosity were estimated for JO847-4316 and J1846-0257 (Kaplan
et al., 2009). The main reason for non-detection of the other RRATSs in X-rays is the
uncertainties in the positions of the sources (Kaplan et al., 2009).

For J1819-1458 (hereafter J1819), the rotational period P = 4.26 s (McLaughlin
et al., 2006) and the period derivative P ~ 5.75 x 107 s s~! (Keane et al., 2011)
give the characteristic age 7. = P/ 2P ~ 1.2 x 10° yr and the rotational power
E ~ 472]PP3 ~ 3x10% erg s—', where I is the moment of inertia of the neutron star.
Radio bursts from J1819, repeating about every four minutes, were detected in Parkers
observations (McLaughlin et al., 2006). The distance is estimated to be d = 3.6 kpc
from the dispersion measure with an uncertainty of ~ 25% (McLaughlin et al., 2006). An
unabsorbed flux of 1.5 x 107! erg s~! cm ™2 detected in the 0.3 — 5 keV band gives an
X-ray luminosity L, = 4 x 10?3 (d/3.6 kpc)? erg s~!, which is an order of magnitude
higher than the rotational power of the source (Rea et al., 2009).

The reason for the transient nature of the radio emission from RRATSs has not been
understood yet. It was proposed that RRATs could have properties similar to the systems
that show giant pulses (Knight et al., 2006) or to nulling pulsars (Redman & Rankin,
2009). Alternatively, RRATs could be the radio pulsars close to the pulsar death line in
the magnetic dipole field-period plane (Chen & Ruderman, 1993). In this late phase of

radio-pulsar evolution, pulsations might become rare (Zhang, Gil & Dyks, 2007). These
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systems might be emitting weak, continuous radio pulses, which have not been detected
yet, in addition to the observed short radio bursts (Weltevrede et al., 2006). It was also
proposed that RRATs could have evolutionary links with the anomalous X-ray pulsars
(AXPs), soft gamma repeaters (SGRs) (McLaughlin et al., 2006, 2009) or thermally emit-
ting dim isolated neutron stars (XDINs) (Popov, Turolla & Possenti, 2006). This possibil-
ity has motivated us to study the long-term evolution of J1819 in the fallback disc model
that was applied earlier to the other neutron star populations.

The fallback disc model was first proposed to explain the long-term X-ray luminosity
and period evolution of AXPs (Chatterjee, Hernquist & Narayan, 2000). It was proposed
by Alpar (2001) that the observed properties of not only AXPs but also other neutron
star populations, SGRs, XDINs, and possibly central compact objects (CCOs), could be
explained if the fallback disc properties are included in the initial conditions in addition
to the magnetic dipole moment and the initial period. To test these ideas, a long-term
evolution model for neutron stars with fallback discs was developed including the effects
of X-ray irradiation with contribution of the intrinsic cooling of the neutron star, and
the inactivation of the disc at low temperatures on the evolution of the star (Ertan et al.,
2009; Alpar, Ertan & Caligkan, 2011; Caligkan et al., 2013). Later, it was shown that the
individual source properties of AXP/SGRs (Benli & Ertan, 2016), XDINs (Ertan et al.,
2014), high magnetic-field radio pulsars (HBRPs) (Caligkan et al., 2013; Benli & Ertan,
2017, 2018b), and CCOs (Benli & Ertan, 2018a) can be reproduced in the same long-term
evolution model with very similar main disc parameters, supporting the idea proposed by
Alpar (2001).

In this model, estimated magnetic dipole moments of these neutron star populations

039 G c¢cm?®, which are well below the values in-

range from ~ 10%° G cm? to a few 1
ferred from the magnetic dipole torque formula. From the numerical simulations, most
AXP/SGRs are estimated to be in the accretion regime, while XDINs are found in the
strong propeller regime. In line with these results, it was shown that the characteristic
high-energy spectra of AXPs can be produced in the accretion column, consistently with
the observed phase dependent pulse profiles (Triimper et al., 2010, 2013; Kylafis, Triimper
& Ertan, 2014).

In this work, we investigate the evolution of the rotating radio transient J1819 in the

same model. We also try to understand the conditions responsible for the radio emis-
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sion characteristics of RRATs through comparisons with the estimated properties of the
other neutron star populations in the same model. In Section 2.2, we briefly describe our
model and give the results of the numerical simulations for J1819. Our conclusions are

summarized in Section 2.3.

2.2 The Model and Application to RRAT J1819-1458

Since the details of the model with applications to other neutron star systems are described
in the earlier work (see e.g. Ertan et al., 2014; Benli & Ertan, 2016, 2017) here we sum-
marize the initial conditions and the basic disc parameters. To clarify the estimation of
the lower limits to the dipole field strengths of RRATSs, we also briefly describe the torque
calculation employed in the model.

In the fallback disc model, the rotational evolution of the neutron star is governed
mainly by the evolution of the disc, irradiated by the X-rays, produced either by mass
accretion onto the star or by intrinsic cooling of the star when accretion is not allowed. In
the spin-down phase there are two basic states: (1) the accretion with spin-down (ASD)
state, and (2) the propeller state. In the ASD state, the inner disc interacts with the dipole
field of the star in an interaction region (boundary) between the conventional Alfvén ra-
dius, 74, and the co-rotation radius, .., at which the field lines co-rotating with the star
have the same speed as the Kepler speed of the disc matter. To calculate the magnetic
spin-down torque acting on the star we integrate the magnetic torques from 7, to r tak-
ing B, ~ B, where B, and B, are the poloidal and azimuthal components of the field
lines interacting with the inner disc. That is, for the ASD phase, we assume that the inner
radius of the boundary region is equal to r.,. The conventional Alfvén radius can be writ-
ten as 75 ~ (GM)~V7uY 7Mi;2/ " where G is the gravitational constant, M and p are
the mass and the magnetic dipole moment of the neutron star. The integrated magnetic

spin-down torque can be written in terms of the disc mass-flow rate, M;,,, as

Ngp = % M (GMraA) Y2 [1 = (ra/Teo)’] 2.1

(Ertan & Erkut, 2008). When the estimated r, is greater than the light cylinder radius

rue = ¢/, where c is the speed of light, we replace 74 in equation (2.1) with rp¢. In the
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total torque calculation, we also include the magnetic dipole torque Ny, = — 2 p2Q2/3¢3,
where (), is the angular frequency of the neutron star, and the spin-up torque resulting
from the mass-flow onto the star in the ASD phase, Ngy ~ M*(GM rco)l/ 2 where M* 18
the rate of mass accretion onto the star. We calculate the total torque as Nror = Ngy +
Naip + Ngp. Over the long-term evolution of AXP/SGRs and XDINs, Ngi, and Ngy are
usually negligible in comparison with Ngp.

Since the critical condition for transition to the propeller phase is not well known, we
use the simplified condition rn = 7 for the accretion-propeller transition. Recently,
Ertan (2017) estimated the critical accretion rate, Mmt, for this transition which is consis-
tent with the minimum accretion rates estimated for the transitional millisecond pulsars
(tMSPs) (see e.g. Jaodand et al., 2016). The Mcrit estimated from the observations of
tMSPs (~ 10'3 g s71) are much lower than the rates corresponding to r = 7, the crit-
ical condition for the onset of the propeller phase in the conventional models (Illarionov
& Siuniaev, 1975). Our simplified propeller criterion is roughly in agreement with Mt
estimated by Ertan (2017). In particular, for J1819, our results indicate that the source
is currently in the accretion phase with M, ~ 2 x 10" g s7! > M. ~ 102 g 57!
estimated with the model of Ertan (2017) for P, = 300 ms and B, ~ 4.6 x 10! G
indicated by our model results (see below). Furthermore, since the onset of the propeller
phase corresponds to sharp decay of Ly, the uncertainty in M,,;; does not affect the model
curves significantly.

Starting from the outermost disc, the disc regions with effective temperature, 7.g, less
than a critical temperature 7p becomes viscously passive. The dynamical outer disc radius
Tout 18 calculated as royy = 7(Teg = Tp). In the long-term evolution, r,,; decreases with
decreasing X-ray irradiation flux that can be written as Fj,, ~ 1.2 C'Ly/ (7rr2) (Fukue,
1992), where r is radial distance from the star, L, is the X-ray luminosity of the star, and
C' is the irradiation parameter which depends on the disc geometry and the albedo of the
disc surfaces. Individual source properties of AXP/SGRs, XDINs, HBRPs, and CCOs
could be reproduced self consistently with 7p ~ 50 — 150 K (Benli & Ertan, 2016, 2017,
2018b,a) and C' ~ (1 — 7) x 10~* (Ertan & Caliskan, 2006; Ertan et al., 2007). The
Tp values estimated in our model are in agreement with results indicating that the disc is
likely to be active at temperatures ~ 300 K (Inutsuka & Sano, 2005), while our C range

is similar to that estimated for the low-mass X-ray binaries (see e.g. Dubus et al., 1999).
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For the kinematic viscosity, we use the a-prescription, ¥ = « ¢ h (Shakura & Sunyaev,
1973), where c; is the sound speed, h is the pressure scale-height of the disc, and « is the
kinematic viscosity parameter.

The main disc parameters, o, C', and Tp are similar for the fallback discs in differ-
ent neutron star populations. The initial conditions, namely the strength of the magnetic
dipole field on the pole of the star, By, the initial rotational period, F,, and the initial
mass of the disc, My, are mainly responsible for rather different characteristics emerging
during the evolutionary phases of the sources. Through many simulations, we determine
the allowed ranges of the initial conditions that can produce the P, P, and L, of sources
simultaneously. In most cases, the long-term evolution is not sensitive to F, (see Er-
tan et al., 2009, for details). In the present case, we take F, = 300 ms, the center of
the Gaussian distribution estimated for the initial periods of the radio pulsars (Faucher-
Giguere & Kaspi, 2006). In Fig. 2.1, we give illustrative model curves that can repre-
sent the long-term evolution of J1819. We obtain these model curves with 7p = 53 K,
C = (2—7) x 1074, and a = 0.045, which are the typical values used in all earlier
applications of the same model to AXP/SGR, XDINs and HBRPs (see e.g. Benli & Ertan,
2016). The illustrative sources in Fig. 2.1 reach the observed P, P, and Lx of J1819 at an
age of ~ 2 x 10° yr, when the source is evolving in the accretion phase. The inner radius
of the disc is more than 2 orders of magnitude greater than the radius of the star. That is,
in the accretion phase the main source of the X-rays is the accretion onto the neutron star,
while the contribution of the inner disc to the X-ray luminosity is negligible. The model
constrains By to a rather narrow range around ~ 5 x 10! G, while the source properties
can be reproduced with a large range of disc masses, My (see Fig. 2.1).

What is the basic, common property causing RRAT's to produce radio bursts, and no
regular radio pulsations? The dipole field strength indicated by the model results and the
measured period place J1819 below and close to the pulsar death line in the By — P plane
(Fig. 2.2). The model source is evolving into the properties of XDINs, which do not
show RRAT behavior. It is not clear whether all RRAT' are close to and below the pulsar
death line. For RRATsS other than J1819, for which the X-ray luminosity is not detected,
it is not easy to pin down the evolutionary status with P and P alone. Nevertheless, we
can estimate the lower bounds on By (B min), for the sources with measured P. In our

model, the maximum spin-down torque is obtained in the accretion with spin-down (ASD)
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phase when the source is not very close to rotational equilibrium. This corresponds to the
constant P phase (see Fig. 2.1) over which the second (negative) term of the magnetic
spin-down torque (equation 2.1) dominates both the accretion torque and the magnetic
dipole torque. For this phase of evolution, it can be seen from equation (2.1) that the
torque is independent of M,,, and the minimum dipole field strength on the pole of the
star can be estimated as By (Bg min) ~ 1.5 Piﬁ 10'? G where Piﬁ 1s the period derivative
in 107! s s7!. This formula, which underestimates the B, values for the sources that are
in the propeller phase or close to the rotational equilibrium in the accretion phase, gives
the minimum possible field strength for a given P independently of M,,. These Bo min
values are plotted in Fig. 2.2.

Without X-ray luminosity information, we cannot estimate the actual field strength
By. If the RRAT behavior of the sources start when they are close to the pulsar death line,
the actual By, is likely to be between B i, and the By corresponding to the period of the
source on the pulsar death line. The estimated By i, values seen in Fig. 2.2 is important
in that it is compatible with a continuous distribution for the B values of all single neutron
star populations (AXP/SGR, XDIN, HBRP, RRAT and CCO) in the fallback disc model,
filling the gap between By ~ 10° G for CCOs (Benli & Ertan, 2018a) and B, > 10! G
for the other populations (Alpar, 2001; Eksi & Alpar, 2003; Ertan et al., 2007, 2009, 2014;
Ertan, 2017; Benli & Ertan, 2017, 2018b).
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Figure 2.1: Illustrative model curves for the long-term evolution of the J1819-1458. These
curves are obtained with By = 4.6 x 10'' G. The values of My in units of 1075 M,
and C parameter are given in the top panel. The horizontal dotted lines show the observed
P = 4265, P~ 57 x10"¥ss ! and Ly, = 4 x 10 (d/3.6 kpc)? erg s~ with
25 % uncertainty (McLaughlin et al., 2006; Keane et al., 2011; Rea et al., 2009). For all these
curves, @ = 0.045 and Tp = 53 K (see the text for details).
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Figure 2.2: B - P diagram. Filled and open diamonds show the By values for J1819 inferred
from the dipole torque formula (~ 10'* G) and estimated in our model (~ 4.6 x 10'' G)
respectively. The minimum By (Bo min) values estimated in our model for the other RRATs
with known P and P (McLaughlin et al., 2006; Deneva et al., 2009; Burke-Spolaor & Bailes,
2010; Keane et al., 2010, 2011; Burke-Spolaor et al., 2011) are marked with open triangles
using By min ~ 1.5 Pi/121 10'2 G (see the text). For each of these sources, By inferred from
the dipole torque formula are also plotted (inverse filled triangle). Solid lines represent the
borders of the death valley (Chen & Ruderman, 1993). The lower border is similar to the

classical pulsar death line (Bhattacharya et al., 1992).

19



2.3 Summary and Conclusion

We have investigated the long-term evolution of J1819—-1458 which is the only RRAT
detected in X-rays. We have shown that the period, period derivative and X-ray luminosity
of the source can be explained in the same model that can account for the long-term
evolutions of AXP/SGRs, XDINs, HBRPs, and CCOs. The model can reproduce the
properties of the source only with a narrow range of By around 4.6 x 10'! G, while
reasonable model curves are obtained with rather different initial disc masses ((0.75 —
3.76) x 107° M,). The model sources reach the properties of J1819 in the accretion with
spin-down (ASD) phase at an age ~ 2 x 10° yr, when the estimated cooling luminosity
of the neutron stars is a few per cent of the observed Lx of J1819. In the accretion phase,
the mass-flow onto the neutron star is expected to switch off the radio pulses. Even if
the accretion stops by some reason, we do not expect regular pulsed radio emission from
J1819, since the By indicated by our model and the measured P place the source below
the pulsar death line.

[lustrative model curves in Fig. 2.1 imply that J1819 is currently evolving through
lower part of the AXP/SGR region in the P — P diagram. Currently, the short-term timing
behavior of the source seems to have been affected by the glitch effects (Bhattacharyya
et al., 2018). From the model results, we estimate that J1819 will reach the XDIN prop-
erties within a few 10° yr (Fig. 2.1).

The illustrative model curves in Fig. 2.1 imply that the source is evolving into the
XDIN properties. This result is not very sensitive to the initial period, the disc mass and
the resultant Ly history of the source. For the other RRATS, since the X-ray luminosities
are not known, it is not possible to estimate their evolutionary paths and the B, values.
Nevertheless, the lower bound, By i, for a given source can be estimated using the most
efficient torque reached in the ASD phase and the measured P of the source (Section 2.3).
In Fig. 2.2, it is seen that these lower limits on B allow a continuous B, distribution from
CCOs to AXP/SGRs in the fallback disc model.

The estimated evolution of J1819 toward the XDIN population might indicate that
all known XDINs could have evolved through RRAT phase in the past. The fact that all
measured RRAT periods are smaller than 8 s, and that 4 out of 7 XDINs have periods

greater than 8 s could point to a maximum period (for a given Bj) above which RRAT
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behavior disappear. Considering that we have found J1819 below the death line, for a
given source, there could be a certain RRAT phase that starts after the termination of the
normal radio pulsations, and ends above a critical P for this particular neutron star. It is
not clear whether the RRAT behavior itself is related to presence or properties of fallback
disc around the source. We need further detections of RRAT's in X-rays to test these ideas

in depth through long-term evolutionary analysis of these sources.
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Chapter 3

SUMMARY AND CONCLUSION

We have investigated the physical properties and the long-term evolution of RRATS in
the fallback disc model. For more than 100 RRATS, periods are between 0.1 and 7 s.
Period derivatives (~ 10716 — 1073 s s7!) were measured for 29 sources (McLaughlin
et al., 2006; Keane et al., 2011; Cui et al., 2017). Among these 100 RRATsS, because of
the uncertainties in their positions, the X-ray luminosity was estimated only for J1819—
1458 (Lx = 4 x 10 (d/3.6 kpc)? erg s™1; Rea et al., 2009), and there are upper
limits for JO847-4316 and J1846-0257 (Kaplan et al., 2009). The fallback disc model
employed in this thesis is the same model that was applied earlier to AXP/SGRs (Benli
& Ertan, 2016), XDINs (Ertan et al., 2014), HBRPs (Benli & Ertan, 2017, 2018b) and
CCOs (Benli & Ertan, 2018a). The rotational properties and the X-ray luminosities of
the individual sources were successfully reproduced for all these systems using similar
basic disc parameters, namely the irradiation efficiency (C'), viscosity parameter (), and
the critical inactivation temperature of the disc (7p). These parameters are expected to
be similar for different systems within the simplification of the model, since the fallback
discs of these systems are likely to have similar chemical compositions.

Results of the earlier applications of the model can be summarized as follows:

Most of the known AXP/SGRs are currently in the accretion phase. The two low-B-
magnetars evolved in the accretion phase to long periods, completed the accretion phase,
and are currently in the propeller phase. Their dipole field strengths are found to be
By ~ 10'2 - 10" G (Benli & Ertan, 2016). These sources can reach periods longer than
present upper limit (~ 12 s) at late phases of evolution with X-ray luminosities likely to
be detection limits.

Out of 7 XDINs, 6 sources with confirmed period derivatives have By ~ 101 =102 G,

lower than those of AXP/SGRs (Ertan et al., 2014; Ertan, 2017). These sources are found
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in the propeller phase. These weak fields and long periods place them well below the
radio-pulsar death line, in the By — P plane. That is, our model results indicate that the
non-detection of radio pulses from XDINs is not due to beaming effect.

The properties of all known HBRPs (8 sources) are reproduced in the model in the
propeller phase consistently with their radio-pulsar behavior. Their By values are found
inthe 3 x 10" -6 x 1012 G range (Benli & Ertan, 2017, 2018b). Together with observed
periods and these dipole fields, HBRPs are found to be sufficiently strong to produce
pulsed radio emission. For 3 HBRPs, the second derivatives of the periods were also
measured. The model sources can reach observed P, P, P and Lx simultaneously for
these there sources (Benli & Ertan, 2017).

CCOs, which were detected at the centers of supernova remnants, are young sources
with weak dipole fields. Even the dipole-torque formula gives ~ 10'° G for the three
CCOs with known P and P. In our model, these sources are in the accretion phase with
By ~ a few 10° G (Benli & Ertan, 2018a). Due to these weak fields, CCOs are likely
to evolve in the spin-up regime in the early phases of their evolutions. It is remarkable
that for the 3 CCOs observed Lx values are much greater than the theoretical cooling
luminosities corresponding to thir supernova ages. In the model, the accretion luminosity
can account for the observed Lx values consistently with the P and P values, and the
estimated supernova ages of these sources (Benli & Ertan, 2018a).

In the earlier work summarized above, rather different properties of individual sources
in different populations are produced as a result of the differences in the initial conditions
(By, Py, Mg). Model curves indicate that there could be evolutionary connections be-
tween these systems. For instance, a fraction of the HBRPs could be evolving towards the
AXP/SGRs properties, while the remaining fraction is approaching the ordinary radio-
pulsar properties. Some young XDINs, when they are still in the accretion phase, could
be identified as AXP/SGRs.

In the present work, we have studied the long-term evolution of J1819, which is the
only RRAT with measured Lx, in the fallback disc model. Our model results show that the
rotational properties (P = 4.26 s and P &~ 5.75 x 1073 s s~!) and the X-ray luminosity
of J1819 can be acquired by a neutron star evolving with a fallback disc with the initial
conditions By = 4.6 x 10" G, My = (0.75-3.76) x 107° My and B, = 300 ms.

These results are obtained with the disc parameters C = (2-7) X 1074, Tp = 53K

23



and a = 0.045. The model sources with different My values reaches the properties of
J1819 and evolve towards XDIN properties at ages greater than a few 10° yr (see Fig.
2.1). Our results indicate that J1819 is currently in the accretion phase and powered by
the accretion luminosity.

For AXP/SGRs, XDINs, and HBRPs, the B, values obtained from the model have a
continuous distribution from ~ 10! G to 10! G. There seems to be a gap between the By
values of CCOs (a few 10° G) and XDINs (2> 10! G). The only RRAT with estimated X-
ray luminosity (J1819-1458) is not sufficient to test whether the RRAT population could
fill this B, gap. Nevertheless, it is possible to estimate the minimum possible B values,
Bo min, for the RRATSs, with unknown Lx, using the, measured P and P values. For 29
RRATsS, we find that By i, values are in the range of ~ 5 x (109 - 1011) G, which allows
an actual B, distribution that fill the B, gap between the field strengths of CCOs and
XDINS.

Earlier work on XDINs show that the evolutionary model curves of XDINs pass
through the properties of J1819-1458 (Ertan et al., 2014, Fig. 3), indicating that a frac-
tion of RRATS could be progenitors of XDINs. Indeed, it can be seen from Fig. 2.1 that
J1819-1458 is evolving towards the XDIN properties (see Fig. 1.2). We find J1819 below
the pulsar death line in the By — P plane (see Fig. 2.2). The source is closer to the death
line than XDINs are. This might be reason for the sporadic radio behavior of J1819. For
a given By, the radio bursts could terminate at a certain P before the source becomes an
XDIN, considering that XDINs do not show RRAT behavior. Out of 7 XDINs, 5 sources
here P > 7 s while, the maximum P for more than 100 RRATS is about 7 s. This could
be another implication of the evolutionary link between these systems. To understand the
common properties of RRAT's causing their sporadic radio bursts, we need detections of
further sources in X-rays. This would allow us to investigate and compare their evolution-
ary phases in more detail. The evolutionary links between young neutron star populations

will be the subject of our future work.
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Figure 3.1: The long term evolution of J1819-1458 in the P — P diagram which contains
the populations of AXP/SGRs, XDINs, HBRPs, CCOs and RRATs. Solid lines illustrate the
borders of the death valley (Chen & Ruderman, 1993). The curve represents the evolutionary
path of J1819-1458, which is the only RRAT with estimated Lx. The initial conditions set as
By = 4.6 x 10" G, Mg = 1.32x107° My, Py = 300 ms. The main disc parameters are
takenas C = 4 x 1074, Tp = 53 K and o = 0.045. It is seen that J1819—1458 is evolving
towards XDIN region. Indeed, the source arrives the XDIN region with Lx similar to those
of XDINs (see also Fig. 2.1).
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