MODELING PATTERNS AND CULTURES OF
EMBEDDED SOFTWARE DEVELOPMENT PROJECTS

ATHESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS OF
THE MIDDLE EAST TECHNICAL UNIVERSITY
BY

DENiZ AKDUR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
IN
THE DEPARTMENT OF INFORMATION SYSTEMS

FEBRUARY 2018

MODELING PATTERNS AND CULTURES OF EMBEDDED SOFTWARE
DEVELOPMENT PROJECTS

Submitted by DENIZ AKDUR in partial fulfillment of the requirements for the degree of Doctor
of Philosophy in the Department of Information Systems, Middle East Technical University
by,

Prof. Dr. Deniz Zeyrek Bozsahin
Dean, Graduate School of Informatics

Prof. Dr. Yasemin Yardimci Cetin
Head of Department, Information Systems

Prof. Dr. Onur Demirors
Supervisor, Information Systems, METU & IZTECH

Examining Committee Members:

Assoc. Prof. Dr. Altan Kogyigit
Information Systems, METU

Prof. Dr. Onur Demirors
Information Systems, METU & IZTECH

Assoc. Prof. Dr. Erhan Eren
Information Systems, METU

Asst. Prof. Dr. Sadik Esmelioglu
Computer Engineering, Cankaya University

Asst. Prof. Dr. Omer Ozgiir Tanriover
Computer Engineering, Ankara University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. | also declare
that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this wok.

Name, Last name : Deniz AKDUR

Signature

ABSTRACT

MODELING PATTERNS AND CULTURES OF EMBEDDED SOFTWARE
DEVELOPMENT PROJECTS

Akdur, Deniz
Ph.D., Department of Information Systems
Supervisor: Prof. Dr. Onur Demir6rs

February 2018, 126 pages

Due to their multiple constraints across different dimensions of performance and quality, the
analysis, design, implementation and testing of software-intensive embedded systems are not
trivial, which makes their development more challenging. To cope with these growing
complexities, modeling is a widely used approach in this industry. However, the modeling
approaches in embedded software vary since the characteristics of diagram development
and usage (e.g., purpose, modeling rigor, medium type used, modeling stakeholder profile,
target sector, etc.) differ among systems as well as among sectors. At one extreme, some
stakeholders use software modeling informally, where they sketch the diagrams on a paper
in order to communicate with other stakeholders. At the other extreme, modeling turns into
programming with automated generation of some software development life cycle (SDLC)
artifacts (i.e., code, documentation or test driver). Moreover, different stakeholders in the
same software development project can use diagrams for different purposes within different
SDLC phases. This PhD dissertation identifies and defines the modeling patterns and
cultures of embedded software development projects. To achieve this, it firstly figures out
the current state-of-practice of modeling to investigate the relations between the
characteristics of diagram development and usage and also the significant parameters to
identify modeling patterns. After identifying the modeling patterns and cultures, this study
proposes a characterization model. This model not only identifies and defines modeling
patterns and cultures of the modeling stakeholder in embedded software development
projects, but also gives recommendations for commonsense modeling practices. Finally,
this proposed model is validated by multiple case studies.

Keywords: Software Modeling, Embedded Software, Model Driven Engineering (MDE),
Modeling Patterns and Cultures, Characteristics of a Diagram

0z

GOMULU YAZILIM GELISTIRME PROJELERINDE GOZLEMLENEN MODELLEME
YAKLASIMI KALIP VE KULTURLERI

Akdur, Deniz
Doktora, Bilisim Sistemleri Boliimii

Tez Yoneticisi: Prof. Dr. Onur Demirors

Subat 2018, 126 sayfa

Tasarim, gelistirme ve sinanmasi diger yazilim sistemlerine gore daha karmasik olan yazilim-
yogun gomiilii sistemlerde, artan karmasiklikla basa c¢ikabilmek i¢in kullanilan en etkin
yontemlerden biri yazilim modellemesidir. Ancak, gdmiilii yazilim endiistrisinde kullanilan
diyagramlarin gelistirilmesi ve kullanimi1 sirasindaki 6z niteliklerinin (6rnegin, amag,
modelleme katiligi, kullanilan medya, modelleme paydaslariin profilleri, hedef sektor, vb.)
farklilagmasi, modelleme yaklasimlarinin da hem sektdrler hem de sistemler arasinda
degisiklik gostermesine neden olmaktadir. Ug bir 6rnek olarak, bir modelleme paydasi kagit
iistiinde kabataslak diyagram cizip sadece fikir aligverisi yapmak isteyebilir. Diger u¢ bir
ornekte ise, yazilim modellemesi programlama diline doniistigiinden yazilim gelistirme
yasam dongiisii (YGYD) ¢iktilarini (6rnegin, kod, dokiiman, test simiilatorii gibi) bu modeller
araciligiyla olusturabilir. Dahasi, ayni sirketteki farkli bolimlerki paydaslar bile yazilim
modelleme yaklagimlarini farkli amag ve YGYD evrelerinde kullanabilirler. Gomiilii yazilim
gelistirme projelerinde gézlemlenen modelleme yaklasimi kaliplar1 ve kiiltiirlerini belirleyen
bu doktora savunmasi, Oncelikle endiistrideki en son modelleme kullanimlarini ortaya
cikartarak modelleme sirasinda kullanilan diyagramlarin 6z niteliklerini ve birbirleriyle olan
iliskilerini karakterize etmistir. Elde ettigi bu bilgiler 1s18inda, gémiilii yazilim gelistirme
projelerinde gozlemlenen modelleme yaklasimi kalip ve kiiltiirlerini ortaya ¢ikaran ve
tanimlayan bu ¢aligma, sonrasinda bir model 6nermistir. Bu model, gomiilii yazilim gelistirme
projelerinde kullanilan modelleme yaklasim kaliplar1 ve kiiltiirlerini ortaya g¢ikarmakla
kalmamis, modelleme paydasina etkin bir modelleme yaklagimi igin 6neriler de vermistir. Son
olarak, onerilen model yapilan ¢oklu vaka c¢alismalart ile dogrulanmustir.

Anahtar Sozciikler: Yazilim Modellemesi, Gomili Yazilim, GOomiili Sistem, Model
Giidiimlii Miihendislik (MGM), Modelleme Kaliplar1 ve Kiiltiirleri, Diyagram Oz Nitelikleri

to my beloved son, Ege

Vi

ACKNOWLEDGMENTS

First of all, I would like to express my sincere gratitude to my supervisor Prof. Dr. Onur
Demirors for his continuous guidance, insightful suggestions and comments throughout my
study. | also deeply appreciate his never ending patience and encouragements.

I would like to thank the rest of my thesis committee: Assoc. Prof. Dr. Altan Kogyigit, Asst.
Prof. Dr. Sadik Esmelioglu, Assoc. Prof. Dr. Erhan Eren and Asst. Prof. Dr. Omer Ozgiir
Tanri6ver for their valuable advices.

I would also like to thank Asst. Prof. Dr. Bilge Say, who gave me great suggestions and
feedbacks while finalizing and writing of this thesis. | am also grateful to Assoc. Prof. Dr.
Vahid Garousi, who contributed to related research during this PhD study.

The case studies reported in this dissertation would not have been possible without the
collaboration of my colleagues. I would like to thank all software professionals and companies,
who contributed to this study.

Last but not the least, | would like to thank my family for supporting me spiritually throughout
my life. Special thanks go to my parent: my father Mahmut and my mother Kadriye; to my
wife Tugba and also my brother Barig for their encouragement and support throughout this
academic journey. | am really happy and fortunate to be a part of this wonderful family.

vii

TABLE OF CONTENTS

ABSTRACT .ttt b bbb bbbt E R bbbt e et e iv
OZ e ettt ettt n ettt n e e v
DEDICATION ..ottt sttt bbbt b ettt st et eneeneene s Vi
ACKNOWLEDGMENTS ...ttt ettt vii
TABLE OF CONTENTS ...ttt sttt sttt viii
LIST OF TABLES ...ttt bbbttt X
LIST OF FIGURES. ..ottt sttt sttt sttt ne et Xi
LIST OF ABBREVIATIONS ..ottt sttt Xiii
CHAPTERS
1. INTRODUCTION ..ottt sttt sttt be st sne b e s 1
IO A @0 o[(=) (A 1[0 = (0] o] < S S 1
1.2 Research Goal and SIrategyccccoeiiiiieiiiice ettt s re et sre e re s 5
1.3 Contribution and Significance of the STUAYcccceiiiiiiiiiiic s 7
L4 SHUCKUIE .ttt b et b et b e b e et e et e sbe e bn e e nneenne e 7
2. EXISTING LITERATURE ON SOFTWARE MODELING PRACTICESccccccveeeee. 9
2.1 Modeling Patterns and CategOriBS.......cccvviiiiieriiieiiesieereesiesreere e se e sre e sreereesresre s 9
2.2 Empirical Evidence in Software Modeling and MDE.............cccooviiiiiiiniencies 11
2.3 Surveys on State-of-the-Practices in MDE..........cccccooieiiiieic e 13
3. STATE-OF-THE-PRACTICES IN SOFTWARE MODELINGcccceovviiiiiiniiniiene, 17
3.1 Research Methodologycccoiiiiiiiicice e e e 17
3.2 Survey Design and EXECULIONccoviiiiriinieiieieieesie st 18
B3 RESUILS ..ttt e r et e nee e 18
331 D =T g ToTo | =T o Lo PSRRI 19
3.3.2 Software Modeling and MDE-related QUESLIONSccovivivievesieie e, 21
3.3.3 Cross-faCtor ANAIYSISoiviiiiiice e 28
B4 SUMIMEIY ..ottt ettt b et b et bbbt b e bt e b e e b e e e sb e b e et sbe e s r e b 31
4. IDENTIFICATION OF MODELING PATTERNS AND CULTURES IN EMBEDDED
SOFTWARE DEVELOPMENT PROJECTS ...t 33
4.1 Conceptual Model of Development and Usage of Software Modeling..................... 34
4.2 Characteristics of Diagram Development and USage.........cccoovrvrrineninenenieniennenns 37

viii

4.3 Pre-investigated Modeling Patterns.ccooviiiiniiiieieeceseses e 41

4.4 Case Study to Validate Modeling Patterns via INterviewscccevevvvivcveseesnene. 44
441 Research Methodologycccoviiiiiiiieee s 44
442 Interview Design and EXECULION...........cccviveiieie e 44
443 FINAINGS ..t 46

45 MOAEliNG CURUIESocueeie et sttt e pe e 54

4.6 The Characterization Model: MAPTOIESccooiiiiiiiiee e 57

5. APPLICATION OF THE CHARACTERIZATION MODEL.......ccccoovoiiiiiiinnieieee 61

5.1 Research Methodologyccciuiiiiiiiiiiie et 61
51.1 Goal and Research QUESTIONScovcveiereeienie et ees 61

5.2 RESEAICH PrOCESScviiiiesieiieiisiisie sttt sttt sttt ne s 62
521 DIBSIGN .ttt 63
5.2.2 Selecting the Cases and Data..........cccccvveviiieiiiii i 64
5.2.3 ColleCting EVIABNCE........ccuiiiiiriiiierieieieee st 66
B.2.4 RESUIS ettt 67
525 ThreatsS t0 Validityccoiviiiiiiieieeeiee s 76

B CONCLUSION......oitittitiite ittt ettt sttt e st e b e sbesb et nbe e e neenenneas 79

6.1 Summary and Concluding REMAIKSccoiiiiiiiieieee e 79

6.2 CONIIDULION. ..ottt 80

6.3 Future ReSEarch DIrECHIONSceccveieiieiiiesieie st ste e sie et e e nee s 81

REFERENCGES ...ttt ettt e s e et e e st e e st e e s n e e e sae e e s rbe e s nteeeaneeeanres 83
APPENDICES ..ottt ettt sttt et b et e st et ettt eneeneane e 97
APPENDIX A — Systematic Literature Review — Tertiary Study..........c.ccoovrireneneneneieinan 97
APPENDIX B — SUIVEY dEtailS.......cooviiiiiie ettt 102

Appendix B.1 — Survey design and EXECULIONc.cuoirirererieireieiscsie e 102

APPENAIX B.2 — RESUILS.....c.viiiieiiectecc ettt st 105

Appendix B.3 — Implications for Practitioners, Researchers and Educators....................... 111

Appendix B.4 — Limitations and Threats to Validitycccccoeviiiiieiiniiccsece e 113

APPENDIX C — Pre-investigated modeling patterns’ visualizations............ccocceveevenereennenn 115
APPENDIX D — Questionnaire used in multiple case Studiesccccooevvreerieieeicie e 118
APPENDIX E — Evaluator notes/observations & ReSUILS...........cccccverviievineeie e 122
APPENDIX F — Evaluation form template ..o 123
CURRICULUM VITAEttt ettt ettt sttt e s be e sba e et e e sntaeennne s 125

LIST OF TABLES

Table 1 Modeling Maturity Level (MML) according to Kleppe etal. [32] ...c.ccccovvevveviiveiennnn, 9
Table 2 UML usage categories according to Petre [33]ccccevvrieieiieie e 10
Table 3 Modeling purposes derived from the tertiary Studycccocvvevevieiiveienienieece e 12
Table 4 Modeling benefits derived from the tertiary studycccccoovvvieiiiciiiiiccece e 12
Table 5 Modeling challenges derived from the tertiary study..........ccccoeveiiiiieniii v, 12
Table 6 Existing surveys expliCitly on MDEccoiiiiiiiiieeees s 15
Table 7 Choices of modeling languages VErsUS SECLOIScc.evviieriereeriesieeieseseesieseeseeseenes 30
Table 8 Modeling patterns investigated after survey data analysis...........cccoocevviviveveiiciennenne. 43
Table 9 Interview - company profiles, interview type and number of interviewees.................. 46

Table 10 Interview results on modeling patterns by comparing survey results with T-test......53
Table 11 Modeling cultures of embedded software development projects and their

(ol 0T (0 (=] S0P 55
Table 12 Expert opinion demographics for “decision tree” used in the model.............c.cc.e..ee. 57
Table 13 Multiple case Studies reSEArCh PrOCESSccvveieiieiieieiieireeteeriese e e stesreesre e aesre e 62
Table 14 Validation criteria used in the evaluation Strategyccccevveveieevienevieese s 64
Table 15 Agenda for data collection, analysis and reporting process on the organization visit64
Table 16 Case and data selection in multiple case StUdIESccoviereriieieenr e 65
Table 17 Case study results summary: comparison with survey and interview with respect to
PALtErN & CUITUIE PEICENTAGES ... e veireerierieeteete st et e ste st este e e seestesteeaesteeseestesneeseesreeneeseeereensenseas 68
Table 18 Abbreviations used in Table 19, Table 20 and Table 21..........cccccevevieviveveviccesiene 69
Table 19 Case study A results, Defense & Aerospace sector, Radar software project 70
Table 20 Case study B results, Automotive & Transportation sector, Bus software project72
Table 21 Case study C results, Consumer Electronics sector, TV software project 73
Table 22 Evaluation questions to achieve validation Criteria...........cc.ccoeovvivevenieiierienesie e 74
Table 23 Tertiary Study SEArch Strategy.........cccvvevieiiiieiece e 97
Table 24 Tertiary Study FINAI MAPcviiiiiiiie e 98
Table 25 List of the questions developed and used in the SUNVEYcccceevevvvviceviesiesieennns 103

Figure 1:
Figure 2:
Figure 3:
Figure 4.
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:

LIST OF FIGURES

The relationship among MDD, MDE, MBE and sketchingc.ccocvovniiincicnns 2
The “variable formality” slider for software modeling usage approaches............... 2
RESBAICH PrOCESS . .viveiiie ettt e bt sbe e besaeesreeree 6
SUrVEY - UNIVEISITY UEGIEES ...ovvevvicieceie ettt sttt st sreee 19
SUrvey - CUIreNnt POSTEIONS........c.viiiiierieieee e 19
Survey - Work vs. modeling experience of participants, who use modeling 20
Survey - Where/how software modeling was learned...........cccooevvieivieieciciennn, 20
Survey - Target SeCtors OF PrOUUCES.........c.ooveieirieiriiie e 21
Survey - Degree of software modeling USAgE...........cuuvrerrerierieiieinisisese e 21

Survey - Mediums to create sketch or model and their usage frequency 21
Survey - Modeling langUAGESccveiviiiiie e 22
Survey - Programming lanQUAGEScoeiueiririreneniesesieeeeee e 23
Survey - Usage frequency and interval of different diagram types..........c........... 24
Survey - SDLC phases where software modeling is used..........cccoceevveveieenennnn, 25
Survey - What software modeling and MDE are used forcccccocvviiencniennns 25
Survey - Motivations for adopting MDE..............ccccooiiiineniieins e 26
Survey - Achievements of MDE ... 27
Survey - Motivations versus achievements of MDEccccccovvviveienieineiennnn, 27

Figure 19: Survey - MDE ChallENges...........ccuiiiiiiiiiieee e 28
Figure 20: Survey - Software modeling usage ratio based on SECtorscccoceevvevevvernennnn, 29
Figure 21: Survey - MDE usage ratio VEISUS SECTOIS........c.cieieerieiieieeiresieeresieeree e saeenesne s 29
Figure 22: Survey - Diagram types USage VEISUS SECTOIS........cuiurererrerierieeeesesiesiesiesieneeneas 30
Figure 23: Conceptual model of development and usage for modelingccccccceevenennenn, 35
Figure 24: Characteristics of diagram development and usage while modeling.................... 38
Figure 25: Chart showing the relations between characteristics of a diagram...................... 39
Figure 26: The Decision Tree of the Characterization Modelcccooviiiiiiiiienciens 58
Figure 27: The relations between modeling patterns and cultures with the corresponding
Characteristics Of @ dIAgIaM..........coviiiiiiiir e 60
Figure 28: Example process for multiple case studies adapted from [38, 41]c..ccccevvennne 62
Figure 29: Tertiary study search process and final mapcccocovveiieiiniiiiieeee e 98
Figure 30: The trend on software modeling for systematic review studiesc..cc........ 100
Figure 31: Survey — Countries and geographical distribution of respondents..................... 106
Figure 32: Survey - Highest academiC degrees.........ccoouiiiririnienierieeesese e 106
Figure 33: Survey - Number of employees in SE rolescccooviiiiiiiieneieee e 107
Figure 34: Survey - Modeling t00IScooi i 107
Figure 35: Survey - Degree of USING MIDE ..o 107
Figure 36: Survey - Maturity OFf MDE USAQEcocueuiieeieieeiene e 108
Figure 37: Survey - MDE/MBE maturity level comparing with related works................... 109
Figure 38: Survey - Problems with MDE environments/tools............cc.ccoveviiiiinienien, 109
Figure 39: Survey - Consequences and complexity aspects of MDEccccccocieviinnnnee. 110
Figure 40: Bars Stacked Chart- “Purposes Set” vs “Modeling Languages”.............c.cccveueee 115
Figure 41: Bars Stacked Chart- “Purposes Set” vs “Modeling Languages Set”.................. 116

Xi

Figure 42: Scatter Chart- “Modeling Languages Set” vs “Medium Types Set” with “Purposes
N T A 7o) (o) oo 13 o WSS 117

Xii

AR
AUTOSAR
BSP
CMM
DSL
DSML
DSP
EBSE
EMF
GQM
ICD
IT
MAPforgS
MBE
MBT
MDA
MDD
MDE
MML
M2M
M2T
PIM
R&D
RQ
SCI
SDLC
SE
SLR
SM
T2T
UML

LIST OF ABBREVIATIONS

Action Research

AUTomotive Open System ARchitecture
Board Support Package

Capability Maturity Model

Domain Specific Language

Domain Specific Modeling Language
Digital Signal Processing

Evidence Based Software Engineering
Eclipse Modeling Framework

Goal, Question, Metrics

Interface Control Document
Information Technology

Modeling Approach Patterns for Embedded Software

Model Based Engineering
Model Based Testing

Model Driven Architecture
Model Driven Development
Model Driven Engineering
Modeling Maturity Level
Model to Model

Model to Text

Platform Independent Model
Research and Development
Research Question

Software Configuration ltem
Software Development Life Cycle
Software Engineering
Systematic Literature Review
Systematic Mapping

Text to Text

Unified Modeling Language

Xiii

CHAPTER 1

INTRODUCTION

Software-intensive embedded systems shape our world by becoming an essential aspect of our
lives [1]. They can be found in many devices such as cars [2], TVs [3], smart phones [4] and
defense systems [5]. As consumers acquire more such devices, the volume of embedded
software on different domains is increasing at 10% to 20% per year. Moreover, embedded
microprocessors account for more than 98% of all produced microprocessors, thus vastly
surpassing computing power in the IT industry [1]. The growth rate in software—intensive
embedded systems is more than 14% per annum and it is forecasted there will be over 40
billion devices (5-10 embedded devices per person) worldwide by 2020 [6].

Design, implementation and testing of software for modern embedded systems are not trivial
[7, 8] due to their multiple constraints across different dimensions of performance and quality
[9, 10]. Moreover, the increasing amount of components in these systems and having distinct
functionalities incorporated into a single system, which require seamless integration of many
hardware and software systems, make the embedded software development more challenging
[11]. Software modeling plays a crucial role in the embedded software industry by becoming
a tool to manage complexity of these systems. However, there is a large variety of modeling
practices used in this domain. Therefore, it is important to empirically analyze and investigate
all different approaches by understanding its state-of-the-practice while identifying the
relations between the characteristics of modeling (e.g., modeling rigor!, purpose, code
correspondence, stakeholder, medium type used, SDLC phase, benefits, challenges, etc.) in
order to help different modeling stakeholders to increase their awareness of these modeling
practices.

The rest of this chapter represents the context and problem, research goal and the approaches
used as a research strategy, the contribution and significance of this study, and finally, the
structure of the overall thesis.

1.1 Context and Problem

Software modeling helps engineers to work at higher levels of abstraction [12] and facilitates
communication [13]. However, the modeling approaches in embedded software vary since the
characteristics of modeling differ among systems as well as among sectors, e.g., consumer
electronics, defense or automotive. At one extreme, some stakeholders (e.g., some project
managers or systems engineers) use software modeling informally, where diagrams are
sketched on a paper or on a white board in order to communicate with colleagues. In such

1 Modeling rigor is the formality of modeling language (e.g., informal or formalized), which affects
software modeling usage in varying degrees.

cases, the emphasis is on communication rather than comprehensive formal specifications and
these diagrams might be either soon discarded or quickly become inaccurate since they are not
kept updated along with the source code [14]. At the other extreme, for some stakeholders
(e.g., some software developers), modeling turns into programming with automated generation
of code from models and the corresponding diagrams have more lifespan and archivability.
Furthermore, different units within the same company might use different modeling
approaches for different purposes in different phases of software development life cycle
(SDLC) [15].

To better analyze these different approaches, it is necessary to understand the terminology
used in the context of software modeling. According to Brambilla, Cabot and Wimmer, model-
driven development (MDD) treats models as the primary artifact of the development process
[16]. Usually, in MDD, there is an automatic code generation from the models. In addition to
just development, model-driven engineering (MDE) encompasses all the other tasks of the
software engineering (SE) process such as testing and maintenance, and thus, MDE is
considered a superset of MDD. On the other hand, model-based engineering (MBE) is a
process, where models have still important roles although they are not necessarily the key
artifacts of the development. For example, software designers specify the diagrams on paper
or by using modeling tools, but then these diagrams are directly handed out to the software
developers to manually write the code (i.e., no automated code generation). In that sense, all
model-driven processes are model-based but not the other way round [17]. Note that Brambilla
et al. differentiate between “model-based” and “model-driven” approaches for prescriptive
modeling [15] in their terminology [16]; however there is also descriptive modeling [18],
where MBE might be used. Therefore, the terminology used in this study is enriched and
synthesized by “sketching” with informal diagrams, which also plays an important role in
descriptive modeling. Figure 1 visually depicts all these concepts as discussed above.

Sketching
MBE

MDE

MDD ;

Figure 1: The relationship among MDD, MDE, MBE and sketching

In this study, software modeling usage has been decomposed into two main categories (i.e.,
descriptive and prescriptive modeling) and four main patterns (i.e., no modeling, sketching,
model-based and model-driven) as depicted in Figure 2.

abstract & high level detailed & complex
weak enforcement strict enforcement
less constraint more constraint

Software Modeling Rigor
The “variable formality” slider of modeling usage in embedded software development

0% 25% 50% 75% 100%
Descriptive Modeling Prescriptive Modeling
sketch model-based model-driven
informally & casually but includes (e.g., more formal & constrained
some formalized modeling language (e.g., UML) elements modeling language elements)

Figure 2: The “variable formality” slider for software modeling usage approaches

Throughout this study, “diagram”, which means a drawing that visually represents a thing to
explain how it works by showing the relation between its components [19], might be either
informal (e.g., sketch) or formalized (e.g., model); so any drawing (e.g., descriptive or

2

prescriptive) is considered as a “diagram™?. In descriptive modeling, the diagrams classify
actual objects, events, and processes into categories; whereas prescriptive ones specify what
is expected of systems’ components and how to develop them [15]. Descriptive diagrams are
created from observations for a specific intent and once the intent is satisfied, they might lose
its importance. On the other hand, in the context of prescriptive modeling, the subject does not
exist yet and the diagram is derived from the information available at that time. The primary
purposes of descriptive modeling are understanding and communication, while the primary
purpose of prescriptive modeling is development [15]. That distinction provides a formal
justification between the diagrams developed and used for analysis and design, which depends
on the purpose of modeling and affects the modeling rigor (formality). As seen from Figure 2,
“the variable formality” slider of modeling usage (i.e., modeling rigor) depends on these
categories. For example, when you have an abstract and high level modeling approach, which
has weak enforcement, you are at the beginning of the variable formality slider (e.g., sketch);
on the other hand, when you have more detailed and complex modeling approach, which has
strict enforcement, you are closer to 100% of modeling rigor (e.g., model-driven). In other
words, depending on the characteristics of a diagram, software modeling usage degree varies.

According to various sources, MDE is considered as the most popular approach and the state-
of-the-art in software abstraction while modeling [16, 20, 21]. MDE helps software engineers
manage the embedded systems’ challenges without accidental complexities [22] by
automating SDLC artifacts not only in implementation but also in testing and maintenance
[23]. Moreover, several studies point out the necessity of MDE in the embedded domain to
minimize the effects of platform heterogeneity (e.g., [24]) besides validation and verification
(e.g., [25]). On the other hand, there are also some criticisms on MDE since it might create
significant hurdles to demonstrate sufficient value to satisfy the needs of all different modeling
stakeholders (e.g., for sketch users®, depending on their purposes, there is no need for MDE
deployment and also related costs) and hence, stakeholders should not be forced to adopt
MDE. Moreover, some other studies claim that MDD, which is the subset of MDE, creates
other problems during automatic generation of software artifacts and moves complexity rather
than reducing it. Redundancy, which is caused by representing different views or levels of
abstraction on the same model; round-trip engineering during model transformations; and need
for more expertize are the main challenges in MDD [26].

Since there is a danger that resources are being wasted, deciding when to model or in what
degree and with how much modeling rigor (e.g., as a sketch without modeling language
formality or by automating software artifact generation as in MDE with strict enforcement)
are frequently asked and challenging questions for software teams. Therefore, there is a need
to identify the relations between the characteristics of modeling (e.g., modeling rigor, purpose,
code correspondence, stakeholder, medium type used, SDLC phase, benefits, costs, etc.) to
respond to these challenges. A potential approach to resolve the challenge would be to identify,
define and use “modeling patterns and cultures”, which might be analogous to the
characterization models, that is defined and tailored for software process improvement (SPI)
(e.g., Software Sub-Cultures [27]). In other words, a model, which defines software modeling

2 See Section 4.1 for the conceptual model of development and usage of software modeling, where
“diagram” is the backbone of all modeling entities.

3 In this study, as being one of the main modeling patterns, “sketch users” are the stakeholders, whose
modeling purposes are communication or understanding. They either use no formal modeling language
or some elements of a formalized modeling language selectively. They mainly use analog media (e.g.,
paper or white/blackboard) while modeling.

characteristics in embedded software development project might assist modeling stakeholders
to realize an effective modeling approach with respect to these characteristics.

There are different definitions for “pattern” in the literature. It is defined as “a particular way
in which something is done, is organized, or happens” [28] or “consistent and recurring
characteristic or trait that helps in the identification of a phenomenon or problem” [29]. In
SE literature, there is the “pattern” concept to rely on proven solutions to recurrent design
challenges like “software design pattern” [30, 31]. In this study, a "modeling pattern™ consists
of specific characteristics of modeling (e.g., purpose, medium type used, modeling language
type, SDLC phase, etc.), which helps to identify stakeholder's modeling practices; whereas a
“culture”, which is seen as a particular group of “modeling patterns”, consists of different
combinations of these characteristics for an effective modeling approach to better guide
stakeholders with necessary and sufficient process and tool improvements.

In the literature, there are two research studies related to the modeling patterns and categories
(See Section 2.1 for the details of these studies). Kleppe, Warmer and Bast classified the
modeling usage as maturity levels by taking only one of the characteristics of modeling (i.e.,
“modeling formality””) [32]. According to Kleppe et al., there are six (0 through 5) Modeling
Maturity Levels (MMLSs) in software development projects, in which there are different types
of modeling usage based on “modeling rigor”. They claimed that the awareness of the different
MMLs enables modeling stakeholder to make an assessment of her/his own modeling practice
and may trigger her/him to try to reach for a higher level [32]. They also thought that the goal
should be in MML-5, which is “models only” [32]. However, there are other significant
characteristics (e.g., “purpose”, “medium type used”, “SDLC phase”, etc.), which characterize
and affect the modeling usage patterns and cultures. Moreover, different characteristics of
modeling process need not necessarily force modeling stakeholders up the maturity level (i.e.,
into level MML-5) with respect to a single dimension such as rigor. The variety of modeling
characteristics are related with different purposes, notations, tasks and roles.

The second study focused on Unified Modeling Language (UML) usage categories and
revealed that there are different categories of what ‘using UML’ means in practice [33]. In her
study, Petre interviewed with only software developers and did not focus on the other modeling
stakeholders like software testers or software project managers. The majority of those
interviewed simply do not use UML, and those who do use UML tend to do so selectively and
often informally (See Section 2.1). The different patterns imply different purposes and needs
— and hence different implications for tool support [33]. However, software modeling, which
also includes Domain Specific Languages (DSL), is not restricted with just UML usage.
Although UML has been publicized as "defacto standard" of modeling, there are others, who
think UML is problematic due to the complexity of its semantics and difficulty while learning
it [13, 34]. Moreover, some other studies claim that MDE has more potential when using
formal languages especially DSLs as opposed to graphical languages. Greenfield et al. argued
that although UML is useful, it is not appropriate for MDD since it is designed for documenting
-not for programming- and they promoted DSLs instead [35]. As seen, there is a gap between
what constitutes “modeling” (e.g., including DSL usage) and the classification reported by
[33], which focused on only one graphical modeling language (i.e., UML).

Moreover, different modeling stakeholders might spend time, budget and effort to investigate
different modeling practices during feasibility analysis for relevant modeling languages,
diagram types, modeling tools, etc. with respect to their profiles (e.g., according to their SE
roles, project team size, the target sector of the products, etc.). Hence, there is also a danger to
waste the resources while trying out unusable or not yet experienced modeling practices, which
potentially increases initial entrance cost. Therefore, the modeling stakeholders would benefit
from a characterization model, which will decrease these feasibility costs.

4

There are not any studies in embedded software industry in particular that define the
characteristics of modeling and identify the modeling patterns and cultures, which helps to
improve modeling practices that can be used in different phases of SDLC by wide audiences
of SE roles (e.g., from software developer to tester and systems engineer to project manager).

In this study, we focused to fill all these gaps in the existing literature by identifying and
defining modeling patterns and cultures in embedded software industry with a characterization
model called MAPforES standing for Modeling Approach Patterns for Embedded Software.
The model enables modeling stakeholder to identify a commonsense approach of modeling
for her needs, by utilizing the modeling community’s prior experiences. This model, not only
identifies patterns and cultures of the modeling stakeholder, but also guides process and tool
improvements for modeling by referencing to a set of commonsense industrial practices in
embedded software development projects.

1.2 Research Goal and Strategy

The main goal of this PhD study is to identify and define different modeling patterns and
cultures of embedded software development projects for enabling the modeling stakeholders
with a characterization model to improve current modeling practices by getting strategically
important questions for commonsense industrial modeling practices to achieve an effective
modeling approach with respect to the characteristics of modeling (e.g., purpose, medium type
used, benefits, costs, etc.).

The main goal is decomposed into three sub-goals. The first sub-goal is to understand the latest
state-of-practice of software modeling and MDE together with the benefits and challenges.
The second sub-goal is to identify the characteristics of modeling in the embedded software
development projects in different contexts. We assume that there are different modeling
practices used for different needs and we can identify and group significant characteristics to
establish modeling patterns and cultures. In doing so, to utilize these patterns and cultures, this
study, as a third sub-goal, aims to construct a characterization model to find out modeling
patterns and cultures in embedded software industry to improve current practices.

Based on the above goals, this PhD has the following research questions (RQs):

RQ1: What are the modeling usage patterns and cultures in the embedded software
development projects?
RQL1.1. What is the current state-of-the-art and practice of software modeling and MDE
in embedded software industry?
RQ1.1.1. What is the current state of modeling in the embedded software industry?
RQ1.1.2. What is the current state of MDE adoption in the embedded software
industry?
RQ1.1.3. What are the achievements, challenges and consequences of using MDE in
the embedded software industry?
RQ1.2. What are the significant characteristics of modeling in the embedded software
development projects?

RQ2: How can a modeling stakeholder be guided to adopt commonsense industrial modeling
practices?

RQ2.1. What are the commonse industrial practices (with similar demographics) doing
while modeling?

RQ2.2. What are the recommendations for the corresponding modeling pattern?

RQ3: Is the proposed model useful and generalizable?
RQ3.1. Does the model reflect stakeholder's current modeling pattern and culture?
RQ3.2. Is the model useful and conceptually insightful?

The research strategy includes two phases; “building the existing knowledge” and “iterative
model building” as depicted in Figure 3. It can be categorized as constructive since it builds
an innovation based on the existing knowledge [36].

Perform systematic L) «flovun «datastores
literature review " —_———————————— — — — — — — —> Commonsense
(Tertiary Study) "o <. a set of commonsense modeling practices
- industrial practices database
il A
-~ "
s " |
Ve " |
- "
4 W : uses
Conductan L groq4 " \ ; |
online survey | ~ _ n |
SO\R RO1 Iteratively identify & define and RO2 cartfacts
implement modeling patterns and |— — — -|> Model
RO1.2 7 cultures -
-~ "
'
-7 RQ3

sandacty "
Conceptual model of 4 — {ldentify the characteristics " :
m multiple case studies

First phase L Second phase
Building the exigting knowledge " “Desgn sdence” activities

Figure 3: Research process

In order to build up this “existing knowledge”, at the beginning of the research, a systematic
literature review is performed to understand the related work on this domain as suggested in
[37]. The results of this baseline are planned to be used in later phases (e.g., during designing
survey questions as identifying the purpose(s), motivation(s) and challenge(s) for modeling
and while creating the conceptual model for software modeling). We then conduct a survey to
determine the state-of the-practices. The survey results are used to establish a commonsense
practices database (i.e., a set of common industrial practices on software modeling) and to
identify the significant characteristics of modeling. A conceptual model for the development
and usage for software modeling, which is enriched by expert opinions via semi-structured
interviews [38], is also presented to better characterize these significant characteristics.

After investigating the relations between these characteristics, in order to finalize RQ1, the
modeling patterns are identified and categorized in two iterations. During this iterative process,
firstly, as an attempt to create things that serve human purposes, a preliminary model is created
to achieve one of the main activities of design science (i.e., “build”) as described in [39]. Then,
this preliminary version is validated with case studies via semi-structured interviews and
improved accordingly. After grouping resultant patterns according to their characteristics, the
modeling cultures in the embedded software development projects are defined and further
refined by expert opinions. In order to address the need for software modeling practices’
improvements, which might help modeling stakeholders to know beforehand what similar
profiles (e.g., similar SE positions, target sector of products, etc.) are doing while modeling, a
commonsense modeling practices database is added to the model (i.e., the model now includes
the set of common industrial practices, which is constructed by survey data). Hereby, the
model becomes an artifact, which not only identifies patterns and cultures of the modeling

6

stakeholder in embedded software development projects, but also gives suggestions based on
commonsense modeling practices, which addresses RQ2. In that sense, the model guides
process and tool improvements for modeling by referencing a set of industrial practices, which
are formed by modeling community’s prior experiences. By this way, constructing an
innovation for a specific purpose is completed as a “build activity” of design science [36].

Finally, to address RQ3, “evaluate activity" (i.e., the other main activity) in design science,
which is the process of determining how well the artifact performs [36] is achieved by
implementing the model via multiple case study strategy as described in [38, 40, 41].

1.3 Contribution and Significance of the Study

This study provides a new insight for both conceptual and operational issues of software
modeling in embedded software development; therefore both practitioners and also academia
(e.g., researchers and also educators) will benefit from the research contributions of this study.

The main contribution of this dissertation is the identification of modeling patterns and
cultures by investigating the significant characteristics of modeling in embedded software
development projects. In doing so, to utilize these identifications, a characterization model
(MAPforES) to identify and define modeling patterns and cultures in embedded software
development projects with a set of commonsense industrial modeling practices is defined and
implemented for software organizations. In that sense, its theoretical contribution is lying in
identifying the current state-of-the-practices of modeling and MDE (e.g., with systematic
review, survey results) and in characterizing software modeling (e.g., conceptual model of
development and usage of software modeling, and the characteristics of modeling) in
embedded software development projects. With the help of these theoretical contributions,
both researchers and educators would benefit from their implications and this will also
encourage more academia-industry collaborations in this domain. Note that all case study
stages in this dissertation (e.g., survey, interviews, etc.) were conducted in both local and
global scale with high number of practitioner participants by focusing all aspects of software
modeling usage and practices in the world-wide embedded software industry, which is also
important with respect to the novelty and validity of this research. On the other hand, for its
practical contribution, the resulting artifacts of this thesis can be used by any modeling
stakeholder in the embedded software industry, with a variety of different SE roles from
software developer/programmer to tester, who would benefit from commonsense modeling
practices depending on their profiles to achieve an effective modeling approach.

The significance of this study is to being the first research in the literature, which defines and
characterizes the modeling patterns and cultures in the embedded software development
project by focusing on all significant characteristics of modeling (e.g., not only “modeling
rigor” but also "purpose™, "medium type used", "stakeholder profile”, etc.) and filling the gap
of what constitutes “software modeling” (e.g., including DSLs and other formal languages
beyond UML usage). Additionally, the model presented here, MAPforES, is also known to be
the first wide-coverage model, which not only identifies patterns and cultures of the modeling
stakeholder, but also enables process and tool improvements for modeling by referencing to a

set of commonsense industrial practices in embedded software development projects.

1.4 Structure

The rest of the thesis is divided into six chapters. Chapter 2 gives the background of this study,
in which literature review is presented. Chapter 3 presents online survey, which depicts the
state-of-the-practice in software modeling in the embedded software industry. Chapter 4,
presents the modeling patterns and cultures by first presenting a conceptual model and the

7

characteristics of diagram development and usage in embedded software domain; and then
defining the modeling patterns and cultures. The results of the implementations of the
characterization model in various organizations by utilizing a multiple case study strategy
is presented in Chapter 5. Finally, Chapter 6 provides an overall conclusion of this study
and discusses some of the future research directions.

CHAPTER 2

EXISTING LITERATURE ON SOFTWARE MODELING PRACTICES

This chapter consists of two sections. The first section gives the related studies for modeling
levels, patterns and categories in software development projects. The second section analyzes
existing systematic review studies on software modeling and MDE to generate inputs for the
following studies (e.g., survey design).

2.1 Modeling Patterns and Categories

There are two research studies, which have investigated the modeling patterns and categories
in the literature. According to Kleppe et al., modeling usage patterns are classified as maturity
levels and there are six (0 through 5) levels of MMLs in software development projects [32].
This concept is very similar to Capability Maturity Model (CMM) used for software process
improvement. Each level of MML is defined as presented in Table 1:

Table 1 Modeling Maturity Level (MML) according to Kleppe et al. [32]

Level-0 "The specification of software is not written down. It is kept in the minds of the
"No Specification" developers”

Level-1 "The software is specified by a natural language text, written down in one or
"Textual Specification" | more documents”

Level-2 “A textual specification is enhanced with several models to show some of the
"Text with Models" main structures of the system. The models often take the form of diagrams”
Level-3 “The specification of software is written down in one or more models. In
"Models with Text" addition to these models, natural language text is used to explain details, the

background, and the motivation of the models, but the core of the specifications
lies in the models.

The transition of model to code is done mostly manually. Keeping the models
up-to-date is often considered to be unimportant and to time consuming.

The code is the thing that is polished until the customer is satisfied.

The code is the thing that is changed when requirements change or bugs must
be fixed. The code is the product.”

Level-4 “The specification of the software is written down in one or more models.
"Precise Models" Natural language can still be used to explain the background and motivation
of the models, but it takes on the same role as comments in source code.

At this level the models are precise enough to have a direct link with the

actual code. Because of this direct link between models and code, it is possible
to generate large portions of the code automatically. Changes to the system
are done in the models, after which the code is regenerated. In effect the models
become part of the source code. This means that it is easy to keep models and
code up-to-date”
Level-5 “The models are precise and detailed enough to allow complete code
"Models only" generation. The code generators at this level have become as trustworthy as
compilers, therefore no developer needs to even look at the generated code. It
is as invisible as assembler code is today. In other words, the MML 5 is the
modeling Valhalla.

Unfortunately, there are no modeling languages in which we can write MML
5 models”

Kleppe et al. claimed that the awareness of the different MMLs enables modeling stakeholder
to make an assessment of her/his own modeling practice and may trigger her/him to try to
reach for a higher [32]. They also thought that software engineers’ goal should be in MML-5
while using software modeling [32]. However, in 2003, they expressed that they cannot work
at Level-5 at that time. They claimed that "only within specific and limited application domains
there are languages and tools that could achieve this" (e.g., “Executable UML”) and the
challenge for all, who work in this field is to reach this level [32].

On the other hand, Petre, who focused on only modeling language usage (i.e., UML), reported
a series of interviews with 50 software developers in her empirical study [33]. The results
showed that there are “very different models of what ‘using UML’ means in practice”, With
different implications. Accordingly, five categories of UML use were identified (Table 2):

Table 2 UML usage categories according to Petre [33]

Category of UML use | Characteristics

No UML (70%) "This category doesn 't use UML with some specific criticisms (e.g., 'Lack of
context', 'overheads of understanding the notation’, and 'Synchronization/
Consistency issues'

Retrofit (2%) ‘Retrofit’ UML use means, by and large, documenting things after-the-fact
“This group doesn’t really use UML, but retrofit UML in order to satisfy
management or comply with customer requirements"

Selective (22%) "UML is used in design in a personal, selective, and informal way, for as long
as it is considered useful, after which it is discarded.

There are different aspects of selective use as 'UML as a ‘Thought Tool',
‘Communicating with Stakeholders', 'Collaborative Dialogues', ‘Adaptation’,
and 'Keeping It Small — Selective Traction™

Automated code "UML is not used in design, but is used to capture the design when it

generation (6%) stabilizes, in order to generate code automatically (typically in the context of
product lines)"

Wholehearted (0%) "This usage should be organizational, top-down introduction of UML, with
investment in champions, tools and culture change, so that UML use is deeply
embedded.”

Petre interviewed with only software developers and she did not analyze any other modeling
stakeholders. According to the results, the majority of those interviewed in this study simply
do not use UML, and those who do use UML tend to do so selectively and often informally.
According to this study, using UML did not necessarily lead to success with respect to project
budget and time [33]. The interviewees, who used to be wholehearted use, which means that
they were wholehearted but later retracted to a different usage category, reported that they did
not achieve market requirements, despite the investment, or projects did not satisfy clients,
who found the UML representations complex and difficult. So, Petre’s study also shows that
there might not be upper “level” concept (e.g., wholehearted is the most intensive UML usage
category) since it cannot guarantee the optimal cost-effective solution. Moreover, the results
showed that companies, which use MDE, tend to use multiple modeling languages such as
DSL in addition to UML since DSL notion is very product/implementation focused [33].

The model presented in this dissertation, which identifies and defines modeling patterns and
cultures of embedded software development projects, proposes that the modeling approaches
vary since the characteristics of modeling differ among systems as well as among sectors (See
Section 4.2 for these characteristics). Kleppe et al. said: “your modeling maturity level
indicates how complete, precise, and consistent your model should be” [32], but in fact, this
is just ONE of the significant characteristics of diagram (i.e., modeling rigor) and according

10

to other characteristics (e.g., purpose, media type, benefit, cost, etc.), there is no “maturity
level” concept, but “pattern and culture” in the real industrial context.

In the categorization of patterns and cultures reported in this study (despite MML), more
rigorous ones (the ones who has more modeling rigor on the “variable formality” slider, see
Figure 2) can use other modeling approaches, which is less rigorous. A “higher” culture can
use the characteristics of the “lower” cultures and the modeling stakeholder might apply the
modeling stakeholders’ lower level patterns’ modeling practices, if necessary; but not vice
versa (e.g., model-driven users can also use both sketch and model-based approaches
according to the characteristics of modeling such as purpose; hence MML might vary). For
example, during “Analysis” phase of SDLC, since the purpose might be just “Communication”
and “Understanding”, sketch on an analog media with no formal modeling language is enough
to achieve a cost-effective approach; but for “Code generation” purpose in “Implementation”
phase of SDLC, more precise models are needed in digital media with a formal modeling
language. Therefore, a “higher” culture does not necessarily entail a more “correct” or
“mature” use of modeling with respect to job/task requirements of the stakeholder although a
change into a “higher” pattern might allow the stakeholder to better use software modeling
with possibly some extra costs and challenges.

Although Petre’s study has some similarities with respect to some similar characteristics such
as purpose and selective and informal usage of modeling [33], the study presented here fills
the gap what constitutes “modeling” since it also includes DSLs not just UML usage. Although
UML has been publicized as "defacto standard” of modeling, it is also problematic due to the
complexity of its semantics and difficulty while learning it [13, 34]. Furthermore, MDE has
more potential when using formal languages especially DSLs in opposed to graphical
languages (e.g., UML) [35]. According to Petre, the different categories (i.e., “patterns” in her
terminology) imply “different purposes and needs — and hence different implications for tool
support” [33]. In that sense, she also mentioned about some (but not all) characteristics of
modeling (Note that Petre’s terminology on “pattern” is similar to the “culture” in this
research, which is formed by a combination of patterns).

This dissertation is to being the first research in the literature, which focuses on all significant
characteristics of modeling (e.g., not only “modeling rigor” but also "purpose”, "medium type
used", "stakeholder profile", etc.) and fills the gap of what constitutes “software modeling”
(e.g., including DSLs and other formal languages beyond UML usage) in the embedded

software development project.

2.2 Empirical Evidence in Software Modeling and MDE

At ICSEO4, Kitchenham, Dyba and Jergensen suggested SE researchers should adopt
‘“Evidence-based Software Engineering”, which aims to apply an evidence-based approach
[42]. In this context, evidence is defined as a synthesis of best quality scientific studies on a
specific topic. Systematic literature reviews (SLR) are one of the main method of this synthesis
[37]. They are referred to as “secondary studies” and the studies they analyze are referred to
as “primary studies”. Secondary studies play an important role both in supporting further
research efforts and also in providing information about the impact of methods to assist SE
practitioners [43].

In order to investigate and understand the latest trends and practices in software modeling and
MDE, existing Systematic Mapping (SM) and SLR studies were analyzed. This investigation
was crucial since RQs of these referenced studies empirically present inputs for the rest of this
study (e.g., methods, languages, diagrams or techniques used to carry out the modeling

11

approach with different purpose(s), benefit(s), and challenge(s)) to identify and characterize
the different modeling patterns).

In that sense, this section gives a brief information about a sub-part of a tertiary study (as SLR
of secondary studies), whose resulting data sets (i.e., purposes, motivations and challenges)
were used during designing survey questions, which is presented in Chapter 3. This survey
forms one of the main inputs while identifying and defining modeling patterns and cultures.
Please refer APPENDIX A — Systematic Literature Review — Tertiary study for the RQs,
search strategy and process of this empirical evidence study. After the data extraction, the
following results were found: (Note that since there were different terminologies to indicate
the same purpose, benefit or challenge in different secondary studies, to get a common
language and get a catalog, similar items were combined in a single item. See [44] for all
extracted data in a specific paper).

e The “modeling purpose set” is given in Table 3.
Table 3 Modeling purposes derived from the tertiary study

Understanding a problem at an abstract level | Code generation

Communication Test case generation/Model-based testing (MBT)
Business process automation Documentation generation

Documenting design Model to model (M2M) transformation

Model simulation Prototyping

e The “modeling benefit set” is given in Table 4.
Table 4 Modeling benefits derived from the tertiary study

Cost savings Shorter development time

Ensuring source code & design model compatibility | Time and effort reduction

Quality improvement Reliability

Portability Traceability

Productivity Reusability

Maintainability Team collaboration

Extensibility Test effectiveness

Expandability Interoperability

Modularity Expressiveness

Guaranteeing the verification of important properties of a system in the early development stage

e The “modeling challenge set” is given in Table 5.
Table 5 Modeling challenges derived from the tertiary study

Tool support

Model quality (i.e. how to define, assure, predict, measure, improve and manage it?)

Model verification/validation techniques

Modeling expertize in the company

Modeling languages (i.e. domain specific modeling language (DSML) needs)

Optimization and performance issues with automatic code generation

Software certification (i.e. for safety-critical systems) with automatic code generation

Training

Transformation/merging of models (i.e. how to integrate/merge models in different projects?)
Understanding and acceptance of the model driven concept / Organizational resistance to change

While mentioning about tool support problems, these secondary studies pointed out specific
challenges related to these modeling tools (e.g., Back/Forward compatibility issues between

12

tool versions, difficulties in taking technical support from the tool supplier, difficulties with
code generation capabilities, and many usability issues in their editor, etc.).

All these results on modeling purposes, benefits and challenges are systematically used within
the survey, which will be presented in Chapter 3.

2.3 Surveys on State-of-the-Practices in MDE

There are only three survey studies [45-48], which have investigated the-state-of-the-practice
of model-driven techniques via opinion surveys. Some of the surveys have focused on the
embedded systems domain, while others are generic in terms of the domain. Table 6
summarizes those three surveys, which have been conducted in this topic. Apart from these
embedded systems-related surveys, there are also several studies, which investigate mainly
UML-based modeling [20, 49-57], which we also briefly review in Table 6.

The study in [45] was a 2011 world-wide survey of 67 participants which investigated the
reasons of introducing model-based development in only one domain of embedded systems
(i.e., automotive & transportation) with its costs and benefits. It focused on only
“development” phase (MBD) of the entire “engineering” (MBE) process. The main findings
from this study were: (1) The top three motivations of model-based development are:
“improvement of the product quality”, “development of functions with high complexity”, and
“shorter development times”; (2) Positive experiences of MBD are “‘communication with other
colleagues”, “possibility of early simulation of the functional model”, “easier maintenance if
the generated code is not changed manually”’; whereas “high process of redesign costs” and
“tool costs” are the negative experiences; and (3) MBD can bring significant cost savings, but
only with a “well-chosen” approach and an established development process with defined
interfaces and role allocations. Otherwise MBD can be much more expensive than a hand-
coded manual software development.

The study in [46] investigated the use of UML and MDE in the Brazilian embedded software
development industry. According to the results: (1) 45% of the participants use UML either
completely or partially; (2) The participants report increases in productivity and improvements
in quality (e.g., maintainability and portability) as key benefits of model-driven techniques;
(3) Models are mainly used for documentation and design with a little of code generation; (4)
Class, sequence, use case, and state machine diagrams are the most popularly used diagram
types. One of the interesting results is that experienced users (i.e., the ones with more than 10-
year experience) can better assess the benefits of UML during the embedded software
development. On the other hand, the major problems encountered in UML adoption refer to
the lack of modeling skills, the lack of appropriate tools, and the strict time requirements.

The recent study in [47] was a 2014 European survey, which investigated the current state of
MBE in embedded domain by analyzing its positive & negative effects and its shortcomings.
Its target projects were applying model-based approaches, where its participants had already
used model-based techniques (93%), therefore, it lacks of general embedded software
professionals contribution. The results confirmed that MBE is widespread in the embedded
industry. The main finding from this study was that models are not only used for
communication and documentation purposes; they are “key artifacts of the development
processes”, and they are also used for simulation and code generation. Moreover, while
participants reported mostly positive effects of MBE, the results showed some major
challenges (i.e., adoption, tool support and its interoperation). The same group of authors
presented a very recent study [48] in 2016 in which they analyzed the results of [47] in more
depth, and offered insights into the current industrial practice.

13

The survey in [49] was a 2005 world-wide survey of 131 participants, which investigated the
adoption and usage of UML by analyzing its perceptiveness and perceived ease of use. The
results of this survey showed: (1) The majority viewed UML as “accurate, consistent, and
flexible enough” to use on development projects; (2) Developers seemed eager to use UML,
which was spreading across the world; and (3) Use case, class, and sequence diagrams are the
most popularly used diagrams types.

In [50], how and why using UML were investigated. According to their results, UML may be
too complex supported by phrases such as “Not well understood by analysts” or “insufficient
value to justify the cost”. Respondents of [50] reported that class, use case, and sequence
diagrams were the most popularly used diagrams; whereas collaboration diagrams were used
the least. The other interesting result was that class, sequence and state machine diagrams were
considered as the most useful for capturing technical details; whereas use-case narratives,
activity and use case diagrams were the preferred means with respect to customer involvement.

The study in [51] investigated UML usage and its quality in actual projects. The results
addressed UML’s problems, where the main problems were synthesized as: “scattered
information”, “incompleteness”, “disproportion” and “inconsistency”. The results in [51]
showed that UML practices should be improved in some areas (e.g., modeling uniformity and

standards, development of project-specific reference architectures and patterns).

The survey in [53] was a 2008 European survey of 80 participants, which investigated the
impact of UML modeling styles. The findings focused only on the improvement in software
development quality and productivity. One of the results showed that the benefits of UML on
productivity was perceived mostly in the design, analysis, and implementation phases of
SDLC.

On the other hand, there were also some national surveys on UML. The results of survey in
[52], which investigated the use of UML in Bulgaria, showed that UML was not properly used
in the industry and more training was needed.

A Greek survey [54] with 91 participants, which mentioned “model-driven” concept but only
with UML, investigated the role of UML in different types of applications (e.g., web, windows,
or embedded). The findings indicated that UML was successfully used by the majority of
participants. Among the results: (1) The most popular diagrams were class, use cases and
activity, whereas the least used diagrams were package and state machines; (2) Even though
UML was extensively used, its extensions and profiles (e.g., SysML) were not well known
and majority was not familiar with them. The main conclusion was that despite its limitations
and further extensions needed, UML is a general-purpose modeling language that is supported
by various tool vendors [54].

There are also surveys on MDE in general [20, 55-57], which do not explicitly address
embedded software industry as their target. The study in [55] was a 2008 survey with two
thirds of the respondents from Canada and the United States, which investigated software
modeling experiences. According to its results, UML was the dominant notation. Participants
reported that “the biggest problem of model-centric approaches is keeping the model up-to-
date with the code”. Moreover, another interesting result is that participants working on real-
time systems agree that their organizational culture does not like software modeling.

The study in [56] was a 2011 survey of 250 participants which investigated the adoption and
application of MDE. According to the results: (1) MDE represented a need for new skills,
including modeling expertise (in which significant additional training is needed); (2) Code
generation was very important as one of MDE benefits, but integrating this code into existing

14

projects could be problematic; and (3) Class, activity and use case were the most popularly
diagrams. The same authors presented another study [20] by identifying the importance of
organizational, managerial and social factors, as opposed to only technical factors, which
affect the relative success, or failure, of MDD.

Another study [57] was a 2011 Italian survey which investigated the modeling languages,
processes and tools in the Italian software industry with MDE. According to its results: (1)
68% of participants reported to always or sometimes use models, and among them, 44%
reported generating codes from models; (2) The participants who do not use models commonly
stated that modeling requires too much effort and time investment (50%) or was not useful
enough (46%); (3) Models were used mainly in larger companies; and (4) a majority of all the
participants using models (76%) apply UML although DSLs are used as well. The same
authors presented another study [58] in which they analyzed the results in more depth.

The novelty of our survey in comparison to these studies is that, our study is not limited to
neither a sub-domain of the embedded systems (i.e., automotive & transportation), nor a subset
of engineering phase (i.e., development), nor a specific region. This survey focused on all
aspects of modeling usage in the world-wide embedded software industry. In other words, our
survey intents to be the first world-wide survey, which focuses on embedded software industry
by investigating a wide range of software modeling and MDE practices.

Table 6 Existing surveys explicitly on MDE

Citation Scale/ Numbe | Goal/Focus area MBD/MBE / | Domain
region r of MDD/MDE
partici
pants
[45] World- 67 Investigated the reasons of | MBD Embedded
wide introducing model-based systems

development in a single
domain of embedded systems
(i.e., automotive &
transportation) with its costs
and benefits. Focused on only
“development” phase (MBD)
of the entire “engineering”
(MBE) process.

[46] Brazil 209 Investigated the use of UML | MDD Embedded
and MDD in the embedded systems
software development industry

[47] Europe 112 Investigated the positive & | MBE Embedded
negative effects of MBE. systems

It did not address
categorization between model-
based and model-driven
techniques. Same authors
presented a very recent study
[48] in 2016 in which they
analyzed the results in more

depth.
The survey | World- 627 Investigates the degree to | MDE Embedded
reported in | wide which, why and how software systems
Chapter 3 modeling and it challenges,

shortcomings and

consequences.

15

Table 6 (continued)

[49] World- 131 Investigated the adoption and | MBD In general
wide usage of UML by analyzing its
perceptiveness and perceived
ease of use.
[50] No 182 Investigated how and why | MBD In general
informati using UML.
on given
[51] No 80 Investigated UML usage and | MDD (only In general
informati its quality in actual projects. with UML)
on given
[52] Bulgaria | 100+ Investigated the utilization of | MDE (only In general
UML with UML)
[53] Europe 80 Investigated the impact of | MDD (but In general
UML modeling styles. only with
UML)
[54] Greece 91 Investigated the role of UML. | MDD (but In general
only with
UML)
[55] World- 113 Investigated software | MDE In general
wide modeling experiences.
[56] World- 250 Investigated the adoption of | MDD In general
wide model-driven software
development in industry. Same
authors presented another
study [20] by identifying the
importance of complex
organizational, managerial and
social factors, as opposed to
only technical factors, that
appear to influence the success
or failure of MDD.
[57] Italy 155 Investigates the modeling | MDE In general

languages, processes and tools
with MDE. Same authors
presented another study [58] in
2013 in which they analyzed
the results in more depth.

16

CHAPTER 3

STATE-OF-THE-PRACTICES IN SOFTWARE MODELING

The goal of this chapter is to understand the state-of-the-practices in software modeling and
MDE practices in the embedded software industry by addressing RQ1.1. Getting such an
overview benefits to understand different modeling approaches by being aware of the trends,
successes and challenges in these areas as providing one of the main channel of evidence-
based inputs to identify and define the modeling patterns and cultures. To address that need, a
survey was designed and conducted in spring of 2015. 642 engineers with 627 acceptable
responses from 27 different countries working in different subsectors of embedded software
industry participated in this survey.

Although there have been a few prior surveys related to modeling in the embedded software
industry (e.g., [45-47]), they have either focused on only one aspect of modeling, (i.e., the use
of UML or the use of formal models), or modeling in regional contexts (e.g., UML and model-
driven approaches in Brazil or in Greece). There are also some surveys, whose participants
were involved with model-based/driven techniques on a single target sector of embedded
systems (i.e., automotive & transportation [45]). However, the survey reported here takes a
larger scope with a global higher scale (from world-wide) after reviewing all existing surveys
(See Section 2.3) and benefitting from SLR (i.e., tertiary study presented in previous section).

3.1 Research Methodology

Survey methodology is a well-established technique for obtaining broad characterization of a
particular issue by enabling collection of different information such as opinions, perceptions,
attitudes and behaviors [59]. In contrast to experiments and case studies, surveys only collect
and investigate information; hence, they are suitable for collecting empirical data from large
populations. Although there are different surveying methods [60], in this study, the online
survey method was chosen to obtain information from a relatively large number of
practitioners in a quick manner so that categorizing and analyzing these data would be easier
(Note that the other conventional approach is to conduct interviews, which is usually more
effort intensive — and this approach is used in the other parts of this research, see Chapter 4).
However, since there is no interviewer, poorly-worded questions might be problematic and the
opinion surveys approach may have drawbacks [59]. In order to cope with this challenge, a
pilot study was applied before the execution of this online survey (See Appendix B.1 — Survey
design and execution for pilot study).

Although it is relatively easy for software engineers to fill out questionnaires, “they still must
do so on their own and may not find the time” [59]. In that sense, the organization of survey
questions are crucial and require special considerations [61]. In order to get a survey with a
high quality and reduce the time taken to complete this survey, questions were carefully
designed. Individual item based design and organization of the survey to satisfy design criteria
is presented in Appendix B.1 — Survey design and execution for designing survey questions.

17

The research approach used in this survey is the Goal, Question, Metric (GQM)* methodology
[62]. By using its template [62], the goal is to understand the current state-of-the-art and
practice of modeling and MDE in the embedded software domain by identifying to what
degree, why and how modeling is conducted with its challenges. Based on this goal, the
following RQs were raised, which were previously presented in Section 1.2:

RQ1.1.1: What is the current state of modeling in the embedded software industry?
RQ1.1.2: What is the current state of MDE adoption in the embedded software industry?
RQ1.1.3: What are the achievements, challenges and consequences of using MDE in the
embedded software industry?

Note that by answering these RQs, RQ1.1, which enlightens the current state-of-the-art and
practice of software modeling and MDE in embedded software industry is achieved; and these
findings helps to investigate RQ1.2, which also helps to characterize the modeling patterns.

3.2 Survey Design and Execution

In designing the survey, it was made sure that the survey questions are relevant to the
embedded software industry and also capture the most useful information based on the goal
and RQ’s. During the design, several survey guidelines (e.g., [61, 63, 64]), the systematic
literature review (i.e., tertiary study) and also previous experience of executing industrial
survey studies, (e.g., [65]) were utilized and benefitted.

The identified target audience in this survey is anyone working in the embedded software
development projects, with a variety of different SE roles from requirement engineer to
business analyst and from software developer/programmer to tester. This study established a
sampling frame composed by a large set of embedded software professionals working in
different locations around the world and in different industrial sectors. Please refer Appendix
B.1 - Survey design and execution, which also includes sampling method used in this research,
the details of designing survey questions, survey piloting & execution and pre-analysis
considerations with data validation.

3.3 Results

The survey received 627 acceptable responses from 27 different countries in five continents
and different industrial sectors related to embedded software. There was a good mixture of
different profiles (both participants and companies), which helps to provide unbiased results
from certain types of demographics such as SE roles and target sectors of the companies. The
survey showed latest trends and interesting results in the embedded software, which help to
characterize the modeling patterns and cultures.

In this section, the findings, which are directly related to the rest of the study (e.g., the results,
which help to investigate the characteristics of a diagram, hence the modeling patterns and
cultures) are presented. Note that the survey answers given here are the main inputs for the
conceptual model and the characteristics of a diagram, which will be presented in Section 4.1
and Section 4.2. All other remaining results, which are not directly related with research
question RQ1 of this dissertation, are reported in Appendix B.2 — Results.

4 Goal, Question, Metric (GQM) is a methodology to identify meaningful metrics for measurement
process. In this methodology, questions are formulated based on a more abstract goal and metrics are
chosen to answer each question.

18

3.3.1

Note that the results given here are related with the significant characteristics of a diagram
(i.e., the modeling stakeholder’s characteristics and the target sector of the product, in which
this stakeholder is working), which will be presented in Section 4.2.

Demographics

In order to understand modeling stakeholder’s characteristics, the participants’ educational
skill-set (their university degree) were asked as a multiple-response question (Q3). (Figure 4).
Note that depending on the country, (since some universities have started to offer new
computing disciplines degrees in recent years), there might not be such a department and it is
better to analyze the underlying discipline in a single item as Computing Disciplines (e.g.,
computer engineering, computer science, software engineering, information systems) since
their “software modeling” curriculum might be similar.

Electrical/Electronics Engineering
Computer Engineering
Computer Science

34,4%
28,5%
19,4%

Software Engineering 5,6%
Information Systems 4,0%
Business Administration 2,1%
Mathematics 2,0%
Mechanical/Mechatronics Engineering 1,5%
Industrial Engineering 1,0%
Other 1,50%

Figure 4. Survey - University degrees

The current positions of respondents (Q4) was also a multiple-response question, so multiple
positions could be selected (e.g., a person can be a software developer/programmer and
software designer at the same time). The results are shown in Figure 5. Note that, people in
different positions, have different viewpoints on SE and related processes [66]. As seen, the
survey has a wide range of embedded professionals including from developer to tester and

project manager to quality assurance engineer, which supports different viewpoints.

Software Developer/Programmer 68,7%
Software Designer 19,0%
Software Architect 17,2%
Software Tester 11,5%
Project Manager 8,1%
Requirement Engineer 5,9%
Consultant 4,9%
High Level Manager 2,1%
Systems Engineer 1,8%
Quality Assurance Engineer/Lead 1,3%
Academic 1,3%
Business Analyst 1,0%
Other: 2,2%

Figure 5: Survey - Current positions

When work experience of the participants in software development was asked (Q5), the
majority of respondents have 10+ years (52%) and 6-10 years (40%) work experience. This
indicates that the participants are generally experienced industry professionals in embedded
systems (assuming that their work experience is on embedded systems). The participants were
then asked to report their modeling experience (Q11) in software development. The interesting
point here is that, although the majority of respondents have 10+ years (52%), which is

19

followed by 6-10 years (40%) of work experience, in this question the majority is in 6-10 years
(46%), followed by 10+ years of modeling experience (40%) (Figure 6). This might have
occurred by some possible reasons. Firstly, some respondents might have learned software
modeling after getting the job or employment (i.e., after graduation, during the job or with
some training). Secondly, modeling in embedded domain might require some initial work
experience to understand embedded requirements.

60%

Work Experience
40% P

® Modeling Experience
20%

less than 2 years 2-5 years 6-10 years 10+ years

Figure 6: Survey - Work vs. modeling experience of participants, who use modeling

Q12 was again a multiple-response question, in which where/how the participant learned
software modeling was asked. (e.g., participants might learn modeling in university and from
formal corporate trainings). As expected, “University” is the majority, followed by “On your
own” and “Formal corporate training” as shown in Figure 7. The answers are compatible with
the previous question, which investigates the modeling experience and explains why 6-10
years modeling experience is the majority. For example, some participants, who graduated
from Electrical/Electronics Engineering (EE) department, have learned software modeling
after getting the job (after graduation, on his/her own or with formal corporate training).
Therefore, his/her work experience is more than modeling experience since he/she did not take
any software engineering or computer science courses on modeling during university.
However, any computing discipline graduate’s work experience and modeling experience are
most probably the same. Note that this issue is addressed while investigating the relation
between the characteristics of diagram development and usage in Section 4.2.

University (i.e. from software engineering courses)
On your own (i.e. from books, in the job)

Formal corporate training

Other

70,8%

Figure 7: Survey - Where/how software modeling was learned

Notice that in this section, only Q3, Q4, Q5 and the relation between these questions with Q5,
Q11 and Q12 were presented since they are directly correlated to one of the characteristics of
a diagram (i.e., modeling stakeholder’s profile). Please refer [67] and Appendix B.2 — Results
for the details of other demographics data.

Q7 was about the target sectors of the products developed by the company, in which the
respondent is working (Figure 8). Seven possible choices were pre-given in the questionnaire,
after the discussions with embedded software industry partners during survey design. As seen,
there is a good mixture of participants from various embedded software industry sectors
(Please see Section 3.3.3 for cross-factor analysis on modeling practices and the target
sector(s) of the products developed by the company, which also affects the characteristics of
a diagram).

20

Consumer Electronics
Defense & Aerospace

IT & Telecommunications
Healthcare & Biomedical
Automotive & Transportation
Finance & Banking
Government

Other:

45,8%
23,6%
23,1%

18,5%
15,5%
15,3%

Figure 8: Survey - Target sectors of products

3.3.2 Software Modeling and MDE-related Questions

Note that all the questions presented in this section are directly related with the identification
of the characteristics of a diagram and the relations between them (which will be presented in
Chapter 4) and all other remaining answers, which are not directly related with this
investigation (but related to the corresponding RQs) are presented in Appendix B.2 — Results.

Degree of using software modeling in SDLC (Q10)

Q10 investigated how often the participants use software modeling in the SDLC by including
both formal and informal usage (i.e., models or sketches) using a 5-point Likert-scale. The
results are shown in Figure 9. As it is seen, the “often” choice is the most reported one.

Always (100%) ~ Never (0%)

2% 9
Most of thE/o‘ 11%
time (>75%)
0,
20% Sometimes
(<50%)

26%
Often (>=50%) —_—
41%

Figure 9: Survey - Degree of software modeling usage

Media used to create sketch or model (Q13)

In this multiple-response question, respondents were asked to report the media they use to
create (draw) the diagrams. A 5-point Likert-scale was utilized for the answers and results are
depicted in Figure 10. Accordingly, using modeling software/tool on PCs is the most used
medium for modeling. Modeling using pen and paper is the next common approach.

100% E— —
80% -
60%
40%
20%
0% — —

PC Paper Whiteboard Tablet/Smartphone

m Never (0%) = Sometimes (<50%) = Often (>=50%) = Most of the time (>75%) = Always (100%)

Figure 10: Survey - Mediums to create sketch or model and their usage frequency

21

The purpose of the modeling and the main software modeling category (e.g., sketching, model-
based or model-driven) are strongly related with the medium used and the industrial need. If
there is no auto-generation of some software artifacts (i.e., code, document or test scripts, etc.
— which means “model-based” usage), analog media like paper or whiteboard are enough for
communication or understanding a problem. It does not mean that model-driven users do not
use paper or whiteboard; indeed, such analog mediums might be a quick solution for better
communication and faster idea sharing in some situations. However, the lifespan of these
sketches or diagrams are less than the ones created digitally via PC or tablet/smartphone. In
that sense, the digital mediums like PC or tablet/smartphone are advantageous on archiving
and have longer lifespan. Therefore, PC is the most used medium since it provides modeling
tools (for both model-based and model-driven users) and easier archiving of diagrams (both
sketches and more formal models) as being digital.

It is possible that some of the respondents were referring to descriptive and others to
prescriptive modeling while answering this question and this is directly related with what
software modeling is used for (i.e., the purpose(s), see Q20). As the primary purpose of
descriptive modeling is communication and understanding [15], paper is enough to achieve
this. Therefore, there is a strong relation between the purpose and the medium used besides
the lifespan and archivability of this diagram. This issue is also addressed while investigating
the relations between the characteristics of a diagram.

Cross-factor analysis of the above data with Q14 (Modeling languages) showed that the
participants, who do not use any formal software modeling (i.e., the ones who draw some
sketches), use just paper or whiteboard. On the other hand, the participants, who use any formal
modeling language (e.g., the ones, who use UML), usually use modeling tools on PCs. Note
that there is a specific question that asks about the modeling tools (Q16).

Modeling languages (Q14)

Notice that any informal usage of modeling (e.g., sketch with no formalized modeling
language) is seen as "modeling usage" at the survey and this question is aimed to understand
the modeling language that participant use, if any. Multiple modeling languages could be
chosen (i.e., participants might use both UML and DSL) in the answers since this was again a
multiple-response question. The responses are given in Figure 11. The majority of participants
(77%) use UML (not surprisingly), but it is interesting that the second most frequently selected
response is “Sketch/No formal modeling language” (65%). Another interesting result is that
some respondents chose both UML and also “Sketch/No formal modeling language”, which
show that these participants use modeling both formally and informally as in [33] depending
on their purposes.

UML 77,0%
Sketch/No formal modeling language 65,2%
Domain Specific Language (DSL)
Any UML extensions (profiles) such as MARTE
Systems Modeling Language (SysML)
MATLAB modeling utilities
Any Business Process Modeling (BPM)..
Service Oriented Architecture Modeling..
Other:

Figure 11: Survey - Modeling languages

22

Apart from the pre-given choices, many “Other” modeling languages were reported, such as:
(1) models in the AUTOSAR (AUTomotive Open System ARchitecture) notation (2) models
compliant with the Eclipse Modeling Framework (EMF), (3) Markov Chain Markup
Language, (4) models compliant with the Architecture Analysis & Design Language (AADL),
(5) Modelica, and (6) EAST-ADL, an Architecture Description Language (ADL) for
automotive embedded systems. This denoted that there exists a wide spectrum of modeling
languages in this domain and engineers select the modeling languages suitable for their needs
in their projects (See Section 3.3.3 for cross-factor analysis of these modeling languages)

Since UML is a general-purpose modeling language, “its usage is not only restricted to
modeling software, but it is also used for system engineering, for business process modeling
and for representing the organizational structures” [54] although there are some specific
modeling languages for these disciplines (e.g., SysML for system engineering, BPML for
business process). Moreover, although UML is built upon object-oriented concepts such as
classes and operation, non-object oriented systems may also be modeled using it. Furthermore,
during university (i.e., from SE courses), mostly UML is taught as modeling language.
Therefore, UML’s popularity is not a surprise [68]. On the other hand, a very recent study on
the usage of UML in practice shows that “although UML is viewed as the ‘de facto’ standard,
it is by no means universally adopted” [33]. The majority of those interviewed in [33] who do
use UML tend to do so selectively and often informally. This finding also supports the ratio of
our second most selected response as “Sketch/No formal modeling language”.

Programming languages (Q15)

The responses given for this multiple-response question is given in Figure 12. The C language
is the first, followed by C++ and then Java. Notice that, although C is the most popular
programming language in the embedded world, the total responses for C++ and Java
combined, which are object-oriented programming languages are much more than C.
MATLAB, C#, BPEL, Ada, Delphi and Smalltalk received some responses, which were in the
pre-given answer set. Apart from these pre-given choices, Python, Objective-C, JavaScript,
and Scala were among the “Other” answers for this question. Please refer [67] for the details
of the answer set.

C 51,0%
C++ 45,3%
Java 33,3%
MATLAB 11,3%
Ct 8,1%
Any programming languages for BPM such as.. 8,0%
Ada 5,1%
Delphi 4,9%
Smalltalk 2,7%
Other 7,5%

Figure 12: Survey - Programming languages

Diagram types (Q17)

Participants were asked about the diagram types that they use while modeling via 5-point
Likert-scale. Notice that, it was not mandatory to select a frequency answer on each item,
therefore, total responses for each diagram types might vary (i.e., total response for Class
Diagram is 542, whereas this number is 516 for Deployment Diagram). Note that the
respondents, who state that they were doing informal modeling, make the sketches, which
include some essences of UML (e.g., some elements of state machine/charts, but not dependent
on strict UML rules) as reported in [33]. Therefore, these participants, who do informal

23

modeling, answered this question by selecting some model (diagram) types (e.g., some
participants, who use “Sketch/No formal modeling language”, draw a use case diagram or
sequence diagram informally). All responses are given in Figure 13.

According to the responses, sequence diagrams and state -machines/-charts are the most
popular diagram types in the embedded software by analyzing their usage interval values [67].
It was a surprise that sequence diagrams were more popular than state machines/-charts, since
the latter are discussed more commonly in the embedded-software-focused research venues
and also in industry meetings. By an in-depth look at the data, most people use sequence
diagrams informally to convey the communication among the entities in a given system.

Notice that although class diagram is relevant for object-oriented programming languages (i.e.,
C++ or Java) and is not used in C, which is the most used programming language according
to the survey result, this diagram is in third place. In other words, where applicable (i.e., if
relevant diagram for the programming language used), Class Diagram is widely used. The
reason for a large usage of class diagram might be just due to the fact that it is a fundamental
part of any well-formed UML diagram (i.e., if you draw a sequence diagram you need some
classes to type the lifelines).

500

400 |

300 |
frequency of |
responses 20 | 1]] i
100 | L |] I I I
, I#IJ W[, |
Sequence

State , Diagrams o R
iy Class Activity | Flowdhart/ | Pacage | “90°° | UseCase |Deployment |Communicst| Objsct | AnyBPMN

| Digam pitch Diagam | Diagam | Disgam | Diagam) Diagam | Diagam |ionDiagam | Diagam | Disgram

W Never (0%) [105 155 125 | 19 | 1 | 319 245 28 | a7 | 36 | M7 | 459
Sometimes (<% | 70 8 ® | 18 | 187 | 27 | & 24 %t | ¢ | w1 | 2 | ®
Ofen(0%) | 23 | 11 s | 160 | w7 | 105 | m » | B | 2 | 1 | 32 | 15

Mostofthetime (=75%) 195 24 15 50 3 7 3] 17 5 1 8 14
WALways (100%) | 5 23 81 6 2 | 4 3 4 | 1 6 1 1

100%

: fBgep,,.

0% — —

Figure 13: Survey - Usage frequency and interval of different diagram types

In [46], since Agner et al. focused only on UML, the four most used UML diagrams were
class, sequence, use-case and state machines, which were also reported so in [49] and [50].
Class diagrams were the most frequently used in these three surveys [46, 49, 50]. One of the
most interesting result is that, although previous surveys on modeling indicates that use-case
diagram usage was at one of the first places, the frequency of use case diagram usage is
relatively low in our survey. Perhaps, since use-case diagram has a specific role for the analysis
phase rather than design or implementation of SDLC and our pool of participants might use
different types of diagrams for analysis, if needed. Moreover, use cases might not be the best
way to present the requirements for an embedded system.

24

SDLC phases in which software modeling is used (Q18)

This multiple-response question was about SDLC phases, where software modeling is used.
The majority of respondents use modeling in the “systems/software design”, “implementation”
and “preliminary/systems analysis (requirements)”. “Integration” is the SDLC phase, in which
modeling is used at least. The results are presented in Figure 14. Notice that there is no
categorization on modeling approach (i.e., for sketches, model-based or model-driven) while
answering this question; therefore there is no any distinction for either descriptive or
prescriptive modeling. These findings are as expected since modeling (UML for example) is
mainly for design and requirements phases.

Systems/Software Design
Implementation
Preliminary/Systems Analysis
Maintenance

Testing

Business Process Analysis
Installation and Deployment
Integration

89,5%
74,4%

64,1%

Figure 14: Survey - SDLC phases where software modeling is used

What software modeling and MDE are used for (Q20)

The reasons for software modeling and MDE usage was asked in this multiple-response
question; therefore multiple purposes could be chosen. Note that this set of purposes was
synthesized from the tertiary study and also related surveys (as discussed in Section 2.2 and
Section 2.3). Results are shown in Figure 15. Documentation and code generation were
reported to be the most popular reasons for using MDE. Notice that there is no distinction
between descriptive and prescriptive models in that question (e.g., as in previous studies such
as [15], remember the terminology in Figure 2). However, as indicated, the purpose of the
modeling and the category of software modeling (and also the media used, the lifespan and the
archivability) are strongly related (See Q13). Note that all these relations are presented while
investigating the characteristics of software modeling.

Documentation generation 76,8%
Code generation 76,2%

Understanding a problem at an abstract level 67,0%
Documenting designs

Communication 40,5%
Test-case generation (Model-based/-driven testing) 38,4%
Model-to-Model (M2M) transformations 37,3%

Model simulation
Other

Figure 15: Survey - What software modeling and MDE are used for

In [45], communication and early simulation of the functional model were reported as the main
usage reasons of MBE. According to [46], communication, understanding and documenting
designs are the most important reasons of using MDE. The survey [47] reported that models
are mainly used for model simulation, code generation, test-case generation and
information/documentation; hence, using models for assisting activities in the SDLC seems to
be an important function as also confirmed by our survey results. On the other hand, most
participants in the survey in [46] reported no use of model-based automatic code and document
generation. The authors in [46] argued that the lack of skilled professionals in MDE and also

25

the lack of powerful and user-friendly MDE tool support are the main reasons of such a
situation. They also claimed that these findings differ from results of [56], which reported that
activities such as code generation, transformation models, and executable models are more
used in practice. We assumed that “documentation generation”, “code generation” and “test-
case generation” include some Model-to-Text (M2T) transformation; therefore we just gave
“M2M” transformations® in the answer set in order to get rid of any possible duplication. By
focusing on the embedded software industry, the survey reported here differs from [46]’s
results since automatic artifact generation (e.g., document or code) seems to be quite popular

in the embedded world for those who employ MDE.

Motivations for adopting MDE (Q23) and Achievement/Benefits of MDE (Q24)

Participants were asked about the motivations that they and/or their companies considered for
adopting MDE and results are shown in Figure 16. Since using MDE provides different types
of benefits for different users, the survey provided 12 motivations to be selected according to
the degree of importance. As the set of purposes, this set of motivations was also synthesized
from the tertiary study and also related works. According to results, cost savings and shorter
development time were generally ranked of the highest importance. In [45], quality
improvement, development of functions with high complexity and shorter development time
were reported as the top three motivations for MDE. On the other hand, according to [47],
shorter development time, reusability and quality improvements were the most three popular
motivations to introduce MBE; whereas cost savings is at sixth place in popularity while
adopting MBE.

Cost savings
Shorter development time

Test effectiveness |
Productivity

Ensuring source code & design model.. 1

Reliability
Quality improvement
Reusability
Maintainability
Traceability

Team collaboration -
Portability

0% 20% 40% 60% 80% 100%

Very Important = Important ~ Moderately Important = Of Little Importance ®mNo importance © | don't know
Figure 16: Survey - Motivations for adopting MDE

Following the above sets of questions, since it is important to understand the impact of the
MDE, participants were asked about the degree to which their motivations were actually
achieved (i.e., the degree to which their expectations were met). Note that the list of possible
answers for question Q23 (motivations) is the same as for that question, where “importance”
and “achievement” ranges are different. Results are shown in Figure 17.

°> Model transformation, in MDE, is an automated way of modifying and creating models. This might
be occurred as Model-to-Model (M2M), Model-to-Text (M2T) or Text-to-Model (T2M).

26

Cost savings

Shorter development time
Test effectiveness
Productivity

Ensuring source code & design model compatibility
Reliability

Quality improvement
Reusability
Maintainability
Traceability

Team collaboration
Portability

0% 20% 40% 60% 80% 100%

m Fully achieved Moderately achieved Partially achieved ~ mNo effect I don't know

Figure 17: Survey - Achievements of MDE

According to respondents, cost savings, ensuring compatibility between source code and
models, shorter development time and quality improvement are the top four achievements.
Generally, all the achievements are below the importance levels, denoting that expectations
are not fully met. If motivations versus achievements of MDE are depicted in a single graph
to see what expected and gotten from MDE, Figure 18 is achieved.

No Importance Of Little Importance ~ Moderately Important Important Very Important

Costsavings

PR ——————
| e——
s s s s s s sl A

Shorter development time
Reusability
Quality Improvement

Productivity

Ensuring source code & design model compatibility

& Importance

® Achi
Maintainability
Portability
Traceability
Reliability
Testeffectiveness
Team collaboration

4
No Effect Partially Achieved Moderately Achieved Fully Achieved

Figure 18: Survey - Mativations versus achievements of MDE

As in any engineering activity, embedded software projects should also be completed within
anticipated budget (cost), within anticipated schedule (time) with conformance to
requirements (quality) [69]. All individual quality factors (e.g., reusability, maintainability,
portability, etc.) and shorter development time have significant effect on project budget, which
is related with cost. Our participants experienced different achievement degrees on some
specific quality attributes (e.g., moderately achieved reusability, but partially achieved
productivity or vice versa) with a direct or an indirect effect on cost savings. Similarly, some
of our participants achieved shorter development time, which also affects cost savings. In other
words, although there might be some variations in the degree of achievement for quality

27

attributes, improvements and shorter development time; all these resulted cost savings. This
viewpoint might explain why "Cost savings" is the only achievement, which is between "Fully
Achieved" and "Moderately Achieved" range according to the findings.

MDE challenges (Q25)

Participants were asked about the MDE challenges in their company as multiple-response
answers. According to responses, tool support and modeling expertise in the company are the
most encountered challenges. All pre-given challenges (which were synthesized from the
tertiary study and also related works) and “Other”” answers are presented in Figure 19.

Although there was no explicit question on MDE challenges in [46], the reasons of not using
UML diagrams was asked and the top three results were: “short lead-time for the software
development”, “lack of understanding or knowledge of UML models” and “existence of few
people in the company who have deep knowledge of UML”. Furthermore, according to [46],
in MDE, “the users must have access to appropriate tools, in a way that integrating a tool
suite that meets requirements such as modeling, transformations, and code generation”. This
supports our finding about tool support challenges in order to guarantee synchronization
between software artifacts; i.e., code, document and test driver. In addition, although it is not
directly related with embedded systems, the study reported in [56] pointed out the need of a
longer training period in order to cope with the lack of UML expertise. According to [47],
“high effort for training” and “modeling tool challenges” were also mentioned, which are
similar to our findings. There was no explicit MDE-challenge question in [45], however "tool
costs" and “training” were seen as a negative aspect of MDE.

75,7%
73,0%

Tool support (Guaranteeing synchronization..
Modeling expertise in the company

Understanding and acceptance of the model-driven.. 51,4%
Model verification/validation technigues 45,4%
Model quality (i.e. how to define, assure, predict,..

Training
Transformation/merging of models (i.e. how to..
Software certification (i.e. for safety-critical..
Modeling languages (i.e. domain specific..
Optimization and performance issues with..
Other (Field debugging, cost of tools, etc..)

Figure 19: Survey - MDE challenges

3.3.3 Cross-factor Analysis

One of the opportunities the survey data provided as a further topic of study was to analyze
relations among software modeling practices and practitioner demographics. To understand
the effect of target sector of product(s) on the relations between the characteristics of a diagram
(See Section 4.2 for this terminology), this cross-factor analysis was conducted. Please refer
[70] for the details. According to the results:

e “Healthcare & Biomedical” sector is using software modeling the least (at “Sometimes”
level (<50%), the other sectors is at “Often” level as seen in Figure 20. However,
according to MDE usage, all sectors is at “Sometimes” level as in Figure 21:

o “Finance & Banking” is the least model-driven user sector.

o Although “Consumer Electronics” might be probably considered as one of the
sectors where innovation and time to market drives the business, MDE usage ratio
is between 9%-17%. MDE is a technique established to support these values at

28

Software Modeling Usage

most; but it might be important to analyze what and where is the problem in this
sector although its software modeling usage ratio (but not MDE usage) is high (e.g.,
the participants in this sector use model-based or sketch/no formal modeling
approaches, but what are the specific consumer electronics challenges or bad/poor
experiences on MDE, which resulted such a situation?)

“Defense & Aerospace” sector is the one, which uses MDE at most, whose MDE
usage ratio is between 24%-43%. Perhaps, the project length and necessary
investigation on MDE (its corresponding costs, i.e., tool, training, etc.) might be
suitable for this sector.

100%
Always
72% § s 5 I'T & Telecommunications
Consumer Electronics Automotive & Transportation
50%
Defense & Acrospace Finance & Banking
25% Healthcare & Biomedical
Never
0%

Figure 20: Survey - Software modeling usage ratio based on sectors

100%
Always
75%
@
o
b
2 50% =
e Defense & Aerospace : :
s Automotive & Transportation
IT & Telecommunications
25%
Consumer Electronics E Fitts S Banling
a :
Healthcare & Biomedical =
Never
0%

Figure 21: Survey - MDE usage ratio versus sectors

e The dominant modeling language is UML in all sectors (Table 7); however, there are
interesting results based on sectors.

O

Specific modeling language for target sectors (i.e. AADL (Architecture Analysis
& Design Language) for “Defense & Aerospace”, EAST-ADL for “Automotive &
Transportation” and Markov Chain Markup Language for “Consumer
Electronics™) are interesting results.

DSL is mostly used in “Automotive & Transportation”, where AUTOSAR usage
is ~15% although it was not in the pre-given answer set.

The usage of “Sketch/No formal modeling language” is very similar to UML usage
in “Finance & Banking”.

29

Table 7 Choices of modeling languages versus sectors

IT& Healthcare . Finance
Consumer Defense & Telecomm & Automotive &

Electronics Aerospace Transportation

unications Biomedical Banking
UML 84% T7% 69% 67% 71% 79%
Sketch/No formal
modeling language 76% 55% 63% 57% 59% 76%
DSL 33% 36% 32% 34% 47% 40%
UML extensions
(profiles) 13% 28% 17% 13% 21% 15%
SysML 10% 25% 19% 15% 12% 15%
MATLAB 7% 23% 14% 5% 15% 8%
BPML 9% 7% 7% 8% 9% 7%
SoaML 7% 6% 10% 9% 7% 9%
AUTOSAR 0% 1% 0% 0% 15% 0%
EMF 2% 1% 1% 2% 0% 2%
EAST-ADL 0% 0% 0% 0% 3% 0%
Markov Chain
Markup Language 2% 0% 0% 0% 0% 0%
AADL 0% 4% 0% 0% 0% 0%
Modelica 0% 1% 1% 0% 0% 0%

e The most used diagram type according to the overall survey result (i.e., Sequence
Diagram, which is left-most side) is also the most used diagram for only two sectors
(i.e., “IT & Telecommunications” and “Healthcare & Biomedical); the other sectors
have different most frequently used diagram types (e.g., for “Consumer Electronics” is
“Flowchart/Diagram” or for “Defense & Aerospace” is “State Machine/Chart”) as
shown in Figure 22 (Note that green boxes indicate the most used; whereas the red ones
indicate the least used diagram types in this figure).

Consumer Electronics Defense & Aerospace IT & Telecommunications

i

100%%

75%

am

100%%

750

5004

250%

Healthcare & Biomedical Automotive & Transportation Finance & Banking

Figure 22: Survey - Diagram types usage versus sectors

30

The state-of-the-practice of software modeling practices in different industrial sectors was
better understood with the help of this cross-factor analysis. It is interesting to see how
embedded software professionals within different embedded target sectors have different
software modeling usage and practices. Some modeling languages or diagrams are specific to
some sectors or their usage ratio is different depending on their needs and challenges.

3.4 Summary

Note that an overall summary of RQL1.1 is also presented in Appendix B.2 — Results. The
survey results have shed light on the state of software modeling and MDE practices in
embedded systems and would provide practical benefits. The implications of this survey
findings for practitioners, researchers and educators are presented in Appendix B.3 —
Implications for Practitioners, Researchers and Educators. The limitations of this survey, based
on a standard checklist [71], are presented in terms of construct, internal, external and
conclusion validity concerns in Appendix B.4 — Limitations and Threats to Validity. Moreover,
the steps to minimize or mitigate them are also discussed in this part.

With the help of this survey, the state-of-the-practice of software modeling and MDE were
better understood by identifying to what degree, why and how it is used with its possible
challenges and benefits. Notice that, all this survey data will be used in the next chapter to
identify and define modeling patterns and cultures in embedded software development
projects. However, survey data was insufficient to answer some qualitative questions (e.g.,
why they do not use MDE or what are their specific modeling challenges) and there is a need
to conduct in-depth interviewing to capture some detailed, rich contextual analysis concerning
the everyday practical realities of software modeling in embedded industry to better
characterize modeling patterns and cultures (See Chapter 4).

31

CHAPTER 4

IDENTIFICATION OF MODELING PATTERNS AND CULTURES IN
EMBEDDED SOFTWARE DEVELOPMENT PROJECTS

The goal of this chapter is to identify and define modeling patterns and cultures in embedded
software development projects after understanding the current state-of-the art and practices of
software modeling, which answers research question RQ1.1.

The survey presented in previous section showed that the embedded software professionals
use modeling approaches in varying degrees (e.g., either as informal sketch or more formal
model) with different constrainment and enforcement levels depending on their needs as
depicted in Figure 2, “the variable formality” slider of modeling usage. All of the usages could
be effective depending on the characteristics of modeling in embedded software industry, but
what are these significant characteristics? Based on the results of the survey and the findings
of Action Research [72] (AR) project's interviews® [5] as well as others incorporating different
classifications [17, 73, 74] about software modeling, the first section systematically presents
a conceptual model of development and usage for software modeling. The conceptual model,
which is enriched by expert opinions (via one-to-one interviews), clarifies the meaning of
ambiguous modeling terms (mainly related with modeling rigor) and ensure that different
interpretations of the concepts do not occur. The second section, which addresses research
guestion RQ1.2, investigates the significant characteristics of software modeling (i.e., the
characteristics of diagram development and usage) by referencing this conceptual model.
Then, the relations between these characteristics are also identified with the help of survey
data analysis to complete research question RQ1.2. Notice that these correlations are also
inputs to identify and define different modeling patterns and cultures of the embedded software
development industry. The third section presents the identification for modeling patterns based
on prior findings as a preliminary model. The fourth section, provides results on deeper and
more personalized modeling experiences via semi-structured in-depth interviews on top of the
results taken from the survey to improve and validate different modeling patterns. In this
section, the research methodology for this case study besides its main findings are presented.
During this process, hidden patterns (i.e., “unawares”), which could not be identified in the
survey, are also found with direct observations or informal question & answer sessions. After
identifying the final set for the patterns and cultures in the embedded software development
projects in fifth section, the sixth section proposes a characterization model, MAPforES, which
is also enriched by expert opinions.

® This study uses an industrial evidence to ensure the cost effectiveness and benefits of a MDE tool,
which is based on AR. While reporting the impacts, challenges and lessons learned of this tool, besides
presenting quantitative data, informal interview session results were also presented. Not directly related
with the context of this dissertation, these interviews provided real-life MDE practices, benefits and
also challenges, which are used as one of the inputs while identifying and defining modeling patterns.

33

4.1 Conceptual Model of Development and Usage of Software Modeling

In order to investigate the best real industrial context for modeling in embedded software
industry after the surprising results of the survey (e.g., “Sketch/No formal modeling” is the
second most frequently reported response), a conceptual model on software modeling usage
was created. Since it was crucial to have a complete & correct conceptual model for the rest
of the study, it was also important to take feedback and suggestions on this model from
experienced embedded software professionals. As a qualitative approach, to take feedback and
suggestions about the conceptual model, one-to-one interviews in different sectors were
conducted over four months with 20 embedded software professionals, whose total work
experience is 358 years. During the planning phase, it was necessary to decide from whom to
take feedback. Since it is recommended to select these professionals based on differences
instead of similarities [38], it is good to try to involve different industrial sectors, different
roles, different experiences and different practices in embedded software. These one-to-one
interviews were conducted mostly in face-to-face meetings, but if it was inconvenient, on
Skype as in the case of intercontinental interviews (i.e., USA and Taiwanian Companies’
interview were conducted via Skype; all other were face-to-face) [75].

Given their feedbacks and suggestions, the model was refined and updated for full industrial
coverage. In this way, the conceptual model used information was obtained from the survey
results, AR Project, similar related works [20, 45-47, 58, 73, 76] and finally feedbacks during
one-to-one interviews with expert opinion strategy. The conceptual model is given in Figure
23. Note that this conceptual model is also descriptive diagram (i.e., for understanding and
communication), in which there are some UML elements (e.g., some class diagram or use case
diagram elements as inheritance or actors, but selectively and informally as in [33]).

The model is decomposed into five conceptual areas, where "Diagram", which is developed
and used in different SDLC phases, is the backbone of this conceptual model. According to
the conceptual model, there are "Influencing Factors" (e.g., "Purpose”, "Stakeholder Profile",
"Target Sector" and “Programming Language’), which affect software modeling usage hence
modeling rigor. These factors are derived from the survey results (e.g., for purpose Q20, for
stakeholder profile Q3, Q4, Q5, Q9, Q11, Q12, for target sector Q7, for programming language
Q15, etc.). In order to understand and easily follow the model, these five areas are explained
next.

e Area lin Figure 23: Modeling rigor and modeling categories (On the upper middle part)

The “Diagram”, which is the backbone of the model, has "Modeling Rigor", which is either
"Informal” (i.e., sketch) or "Formalized" (i.e., model) modeling category. The survey results
showed that this formality affects the usage of modeling in varying degrees (i.e., Q10 and
Q19).Therefore, the terminology used in this study plays a critical role (i.e., descriptive
modeling versus prescriptive modeling) since “the variable formality” slider of modeling usage
(i.e., modeling rigor) depends on these categories of software modeling.

The “Diagram” has "Code Correspondence”, which shows the compatibility between design
model and source code. Our survey results showed that ensuring source code & design model
compatibility is one of the most reported benefits of MDE (i.e., Q23 and Q24), which can be
achieved by maximum code correspondence (i.e., Q27). As mentioned in [76], the rigor and
styles of modeling affect the model-code correspondence; “the higher the similarity between
models and the code, the higher the correspondence is”.

34

Buijapow 1o} abesn pue juswdojansp JO [apow |en1dasuo) £z ainbi4

PauwES| //

sem Buljapow
MO HBIBYAR

,.r—.m. aaun

onisod juauny

aBenbBue]

ssauaso|]
SIEMPIEH

saouanpul

saouan|ul

Guiwwelbolg

weppE Bulapow Jeproysyels Busepoyy sesuwBug swejshAs WOREUES SO -
@ sBuineg 1800 * = g «03:.0..(siemyog B)
fppgeased) fupgeuispaeyy (e =pcw S SPoN-
w pasnjpadoEnag ‘Ul g {Lasn) wessusb sa=01s3) -
Z anaeney O O 1sssuBug jefeuy ssameng st faas
UOoSELLIGISLRY| [BPOYY - S<MOY>> O sousinesy Aend .-o.un._oam-oo wes)) g
1e)89) w..n)tow uoEisusbapon-
JIE pajes Juswenosduy Aygend Ayxeydwoo eBeveyy
wpepues acpe s O USAUP-{SPOW 0} d1y:08de
& JswweiBoigpedoersg
funqepiod O o..m)tew «G!.-Gozt&o Jepoyg) LsuBiseqg siesyjoq Jesuibuz Juswe.mbey ubis=p BunuawNoog -
, (D) SupusisEpun -
puabay fngesnay W w SOYENILTD -
Aungonparg syyauag
T T T T T ouad
Ul pEAIIYOE ul paA3IyoE ul paAIIYOE UI:RRAIIYE: ul paAIIYIE ul paAIIYOE e
sapianoe 32A>a3-ss04) | | | N
H

3533
SPEJE D

ou1s
«PEHPED

A

buusaul

SSUSUSIUTEN
jonpuod

juawiojdag
2 uone| ey

smewm
@
o
c
n
c
a
]
c
m
2

- -
mwu:u:_w:__|

wajqosd uonedyIIaD

' uogeoyLaA 13po|

uonepIEn

Gunapowy

1SPO 5530044 30 Yoe

goid soueuopagd
p uoneziwngdo

J aBueyn o3 3oueysis3y|

v

u3 usaaug _QUO_; ' £

e.Sotu GA..._n._uvw

T

smm”

saouanpul

(ssasoid ssauisng
> swagshgpueuIw a1 g)
EEINY

b\

sabualieyd e \I\\—J/\J I
f X
uoneIauan yo ! 1 nezy o B\l SEy i sey sey
3pon ogewony Fabuatiens Sunapopy Fabuanenn Sunapoyy K
BUWLIOJSURL] |2PO) !l) n.
i 3 L1 o] 108y Buipspoyy |
Aienpd 13po Soaye fousysisuon Soaye. 551100
2 oA apon
2 2
_ (ispow 3" _. .:anm 31}
= _gi:nvmﬂ.-l / PAZIjEWIO angduosag / jewaou)

]
] wnipapy
i
sey
{pse0q A
.L&N&~?_2<
WPy

G=19%3 "0d) 1eubig
WP

ul pajE3I0 51

35

Moreover, our AR Project [5] showed that whenever the code is synchronized with the other
artifacts (i.e., test driver and documentation), which means that the correspondence is high (e.g.,
as in MDE), the benefits of software modeling is fully achieved. These indicators showed that
the correspondence affects modeling rigor (e.g., more rigor guarantees more correspondence).
As reported in [76], "Completeness & Level of details & Consistency" of diagram, which affects
other modeling entities, is also affected by modeling rigor (i.e., in sketch, there is an abstract
and high level modeling approach as depicted in Figure 2).

e Area 2 in Figure 23: Benefits for modeling stakeholders (On the lower part)

Since using software modeling provides different types of "Benefits" for different modeling
stakeholders (e.g., “Software Developer/Programmer” or “Software Tester”), who has different
purposes (e.g., either for general or specific to model-driven), our survey provided pre-given
motivation set to be selected according to the degree of importance. All the benefits in the
conceptual model, which are achieved in different SDLC phases, received some responses (i.e.,
at least one participant chose it) in our survey; however, according to respondents, “Cost
Savings”, “Ensuring source code & design model compatibility”, “Shorter Development Time”
and “Quality Improvement” are the top four achievements. When we analyzed the related
researches in embedded software development, the most significant benefits in [46] were
associated with “Quality Improvement”, “Portability”, “Maintainability” and “Productivity”.
On the other hand, according to [47], the effect of introducing MBE are “Reusability”,
“Reliability”, “Traceability”, “Maintainability”’ and “Shorter development time”, respectively
(according to highly positive answers). Note that modeling stakeholders depicted in the
conceptual model are derived from survey’s demographics of participants.

e Area 3in Figure 23: Medium type used and its effects (In the left upper part)

As the survey (Q13) investigated, different stakeholders use different media to create (draw)
models. Different diagrams, which might have different purposes, are drawn on a different
"Medium", which is either "Digital" (e.g., PC or tablet) or "Analog" (e.g., paper or whiteboard).
The results showed that using modeling software on PCs for modeling is the most used medium;
whereas modeling using pen and paper is the next common approach.

The semi-structured interviews and also related works (e.g., [73]) showed that the medium type
has a "Archivability" and this directly affects the "Lifespan" of this diagram. As reported in
[73], sketches created on analog media had an estimated lifespan of several work days, whereas
sketches created digitally had an estimated lifespan of several months.

Different from analog media, digital media is created in a "Modeling Environment/Tool". Our
survey results showed that a variety of modeling tools are used by embedded software
professionals from different SE roles with different motivations and challenges (i.e., Q16). This
also showed that “influencing factors” (e.g., stakeholder’s profile, their purposes, tool challenge
etc.) affects modeling tool choice; hence modeling rigor.

e Area4 in Figure 23: Modeling Challenges (In the right upper part)

The survey results showed that there are different “Organizational” and "Technical”
challenges while modeling [67]. Participants were asked about the modeling challenges (i.e.,
Q25) in their company as multiple-response answers. All modeling entities related to modeling
challenges in the conceptual model received some responses [67]; however, “Tool
Challenges”, “Modeling Expertize” in the company and “Resistance to Change” are the most
encountered challenges. Related works also mentioned such challenges. In [45], "Tool costs"
and “Training” were seen as a negative aspect of MDE. In [46], the existence of few people in
the company who have deep knowledge of UML (which maps to “modeling expertize”) and
appropriate modeling tools were the reasons of not using UML diagrams. In addition, although
it is not directly related with embedded systems, the study in [20] pointed out the need of a
longer training period to cope with the lack of UML expertise, which is also in parallel with the

36

“Modeling Expertize” challenge in our survey. According to [47], “high effort for training” and
“tool challenges” were also mentioned. As seen, these top challenges are mainly organizational;
however there are also technical modeling challenges, which are due to the nature of modeling
(e.g., “Modeling Language” itself (e.g., DSML needs), “Model Transformation”, or “Model
Verification & Validation”). While investigating the other technical challenges, during semi-
structured interviews, we also investigated that "Model Quality” is affected by a diagram’s
"Completeness & Level of details & Consistency" characteristic, which directly depends on
modeling rigor. Moreover, as our survey (Q25) and the AR interviews showed that embedded
software professionals suffered from “Optimization and Performance problem” besides
“Certification problem” (e.g., for safety-critical software) with “Automatic Code Generation™”
challenge.

e Area b in Figure 23: Cross lifecycle activities during modeling

During cross-lifecycle activities (i.e., Q18, where SDLC phases in which software modeling is
used was asked), there are "Cost incurring activities", which are related with purpose, hence
modeling rigor (e.g., for communication or understanding, “Gather Requirement” is valid for
descriptive modeling as a sketch; however, “Develop Test Code” for test case generation is
only valid for prescriptive model-driven usage). These activities create "Modeling artifacts",
which might be also an "Auto-generated artifact" (e.g., "src", "test", "doc") as in the case of
MDE via "Model Transformation" flow. The critical question is that depending on the modeling
purpose, whether this modeling cost is affordable or not with respect to its potential benefits.
Therefore, it is important to find out the optimal degree of modeling rigor for a cost-effective
approach. At that point, the characteristics of software modeling and their relations between
each other plays a crucial role to find the best solution.

4.2 Characteristics of Diagram Development and Usage

With the help of the conceptual model, the characteristics of modeling based on diagram
development and usage in embedded software development were identified. Accordingly,
there are 11 main characteristics, where some sub-characteristics affect its main characteristic
as seen in Figure 24. Based on previous results, the relations between these characteristics are
also presented in this section.

As survey results showed that RIGOR (i.e., modeling rigor) is affected by all other
characteristics (i.e., Q10 and Q19 results are correlated with these characteristics), therefore it
is crucial to analyze other characteristics based on this. In other words, PURPS (i.e., the
purpose of modeling), CORRS (i.e., the correspondence/compatibility between design model
and source code), COST (i.e., cost of modeling), STAKH (i.e., stakeholder profile), SDLC
(i.e., SDLC phases where modeling is used), BENFT (i.e., the benefits of modeling), CHALL
(i.e., the challenges of modeling), PL (i.e., programming language used), DOMN (i.e.,
embedded target sector of the company, where stakeholder works) and MEDM (i.e., the media
used while modeling) have a correlation with modeling formality. These characteristics —
somehow- influence RIGOR based on "the variable formality” slider, which explains the

" In embedded software development, although automatic code generation has benefits to manage the
embedded systems’ challenges by decreasing accidental complexities, some embedded software
professionals claimed that it introduces new challenges like performance problems and certification
problems. For example, in AR project interviews, some embedded engineers reported that due to
automatic code generation, they could not get certification from DO-178B/C standards for their safety-
critical airborne systems. These developers also thought that with automatic code generation, they could
not guarantee the optimization and the performance of the software.

37

difference and the notions between descriptive (e.g., sketch) and prescriptive (e.g., model-
based or model-driven) modeling.

purpose
modeling language PURPS
ML :
R code correspondence
(relation to source code)

modeling rigor CORRS

archivability (formality) ,
RRCEY RIGOR ! A cost
. N ' _- COST
lifespan ____ medium .. ' X »
LIFSP MEDM -. _ ‘~‘ :' /,’ et position
TEaa LR LR Lo _. POSIN
i o) i
. STAKH " --- yniversity degree
S P AL % UNVRS
programming o 13 S : i 3

language .

- PL 2 : where’/how modeling
hardware ~ - v . teamsize ' was leamed
closeness ,” ’ ‘\ T_SIZE % W/H L
HW_CL L’ : . B

. ; | experience
challenge \ EXPRN
L : target sector
benefit (domain)
BENFT DOMN

Figure 24: Characteristics of diagram development and usage while modeling

The chart in Figure 25 explains the relations of these characteristics based on modeling
approach, hence RIGOR (i.e., first column for sketch, second column for model-based and
third column for model-driven, if there is). RIGOR has a degree between 0% and 100% on
“the variable formality” slider. According to this column-based category, all common and
different characteristics of modeling usage (either descriptive or prescriptive) are mapped, if
applicable (e.g., there is no PL or DOMN on this chart since it is not easy to put these
characteristics on this column-based category).

For PURPS, which is depicted as an influencing factor in the conceptual model,
“Communication, Understanding and Documenting design” are all common purposes;
whereas "Code generation, Document generation, Test case generation (MB/DT), Model
transformation and Model simulation" are specific to the model-driven usage. (Note that in the
chart, “Communication” is closer to descriptive; whereas “Documenting design” is closer to
prescriptive modeling; but both of them are valid for all three categories).

For CORRS, whenever your modeling rigor is high, your source code and design model
compatibility is high. (e.g., your model-driven code correspondence is higher than to the ones
in the sketch). This code correspondence check is achieved by manual review, reverse
engineering or roundtrip depending on your modeling approach [76].

PURPS of the modeling and the category of software modeling are strongly related with the
MEDM used, which was also derived from Q13 of the survey. In that sense, digital media are
usable for all main modeling approaches (e.g., you can use PC for all three columns); however
analog media can be used for only sketch and model-based (e.qg., for the first two columns).
The survey cross-factor analysis of medium type data with modeling languages showed that
the participants, who do not use any formal modeling (i.e., the ones who draw sketches), use
just paper or whiteboard. On the other hand, the participants, who use any formal modeling
language (e.g., UML), usually use modeling tools on PCs besides using paper also.

38

Characteristics

H H abstract & high Jevel
Madeing Rugor ndipabdilog ¢
ot caavtraint Software Modeling Rigor i ”
The “variable fc “ slider of usage in software d)
0% 5% P < 100%
Descriptive Modeling Prescriptive Modeling
sketch model-based model-driven
informally & caswally bt includes (e, more formal & constrained
some formalized modeling language (e.g., UML) elements modeting language elements)
Purpose Communication
Understanding
Documenting design
Code generation
Document generation
Test case generation {MB/DT)
Model transformation
Model simulation
Correspondence Source code & model compatibility
Code correspondence
Medium PC
Tablet/Smartphone
Medium type affects Paper
archivability and lifespan. White/Blackboard
Analog: Paper, Archivability
White/Blackboard Lifespan
Digital: PC, analog digital
Tablet/Smartphone
Stakeholder Software Developer/Programmer
Software Designer
Educational skill set affects Software Architect
where/how the stakeholder Software Tester
learned modeling, hence Systems Engineer
modeling experience Business Analyst
Project Manager
Requirement Engineer
Quality Assurance Engineer
Benefits Manage complexity
Cost savings
Quality improvement: Maintzinability, Productivity, Reliability, Traceability
Shorter development time
Team collaboration
Test effectiveness
Portability
Reusability
| Ensuring source code & model compatibility
Cost lightweight ight
Challenges Training
Modeling expertise in the company
Resistance to change (understanding and acceptance of modeling concepts [organizational resistance)
Tool support
- Back/Forward compatibility issues between tool versions - High effort for training
'_c“ - Difficulties in taking technical support from the tool supplier - Usability issues in its editor
'g - Difficulties with traceability support - Difficulties with version management support
§ Difficulties with code generation
gb Difficulties with model level debugging
9 Lack of model checking capabilities
Model quality (i.e., how to define, predict, measure, improve and manage it?)
Model verification/vzlidation techniques
Modeling languzges (DSML needs — their notations {e.g., UML) complex to learn and apply?)
= Automatic code generation
E Optimization and performance issues
‘§ Software certification (i.e., for safety-criticzl systems)
o Model transformation

Figure 25: Chart showing the relations between characteristics of a diagram

MEDM type affects ARCHV and LIFSP. The lifespan of the sketches or model-based
diagrams created on analog media are less than the ones created digitally via PC or
tablet/smartphone. Therefore, the digital mediums like PC or tablet/smartphone have
advantageous on archiving and have longer lifespan (Q13). During the semi-structured
interviews, it was also observed some transitions from one medium to another to achieve more
ARCHYV and hence LIFSP. For example, some analog models (e.g., either in paper or in
white/blackboard) are archived by saving a digital picture or by redrawing them digitally. In

that sense, archived models are more formal; hence more RIGOR.

Descriptive modeling is lightweight and has low cost since it may benefit from lack of

precision (e.g., no extra cost for a modeling tool/environment as in prescriptive modeling).

However, prescriptive modeling is heavyweight and requires more precision. Therefore,
COST increases whenever you have more RIGOR on “the variable formality” slider. (e.g., it
is important to balance the cost according to your purpose and you do not need to use an

39

expensive modeling tool if your purpose is just selective communication, which might be
modeled with pen and paper). The survey showed that model-driven users have specific MDE
problems, which increases modeling costs (Q25 and Q26).

Modeling STAKH profile strongly affects modeling usage and the characteristics of a diagram.
Note that SE roles in Figure 23 are identified by the survey, which has a wide range of
embedded professionals including from developer to tester and project manager to quality
assurance engineer. Accordingly, the survey results (the correlation between current position
and modeling category; i.e., Q4 and Q19) showed that except some roles (i.e., requirement
engineer and quality assurance engineer), all given stakeholders might selectively use all
modeling types (i.e., sketch, model-based, model-driven). It was also observed during semi-
structured interviews that educational skill set affects where/how the stakeholder learned
software modeling, hence modeling experience. For example, user, who graduated from
Electrical/Electronics Engineering (EE), have learned software modeling after getting the job
(after graduation, on his/her own or with formal corporate training); however any stakeholder
who graduated from a Computing Discipline (e.g., Computer Science (CS), Computer
Engineering (CENG), Software Engineering (SE), and Information Systems (IS)) has learned
software modeling at the university (i.e., from SE courses). Therefore, there is a distinction
between work and modeling experience of STAKH (See Figure 6) and this affects the degree
of modeling and its relevant practices. Moreover, team size of the stakeholder (i.e., Q9) also
affects modeling practices with respect to PURPS and MEDM (e.g., for large team,
communication is very important to get the same understanding on a problem in the early
SDLC phases).

BENFT and CHALL are also mappable to this column-based chart. Software modeling
category (i.e., sketch, model-based, model-driven approaches) has common BENFT (e.g.,
“Managing complexities”, “Cost savings”, “Team collaboration”). However, “Portability” and
“Reusability” are achieved mainly in prescriptive modeling (e.g., model-based and model-
driven). On the other hand, since there is an automatic generation of artifact (e.g., code),
“Ensuring source code and model compatibility” is only achieved in model-driven approach.
This is also strongly related with CORRS, which affects RIGOR. On the other hand, as our
conceptual model revealed that there are mainly two modeling CHALL.: organizational and
technical. These challenges — based on RIGOR — might increase COST. (e.g., if RIGOR on
“the variable formality” slider is low (i.e., sketch), you do not need to concern about
difficulties/costs with code generation.)

One of the opportunities the survey data provided as a further study was to analyze relations
among software modeling practices and the target sector of the products (i.e., DOMN) as a
cross-factor analysis (See Section 3.3.3). The results of this cross-factor analysis of software
modeling practices versus DOMN showed that software modeling usage degree (i.e., RIGOR)
varies among embedded sectors.

Depending on PURPS, SDLC phases, where software modeling is used are affected. For
example, if PURPS requires only descriptive modeling (e.g., communication or understanding)
“preliminary/systems analysis” might be sufficient; however if there is code generation,
perhaps all SDLC phases use software modeling (e.g., use case diagram in analysis phase,
sequence diagrams in design phase, state machine and class diagrams in implementation phase)

PL choice affects the diagram type used while modeling. The survey consisted two questions
on both programming languages (Q15) and diagram types used while modeling (Q17). The C
language is the first, followed by C++ and then Java. Notice that, although C is the most popular
programming language in the embedded world, the total responses for C++ and Java combined,
which are object-oriented programming languages are much more than C. Notice that although
class diagram is only relevant for object-oriented programming languages (e.g., C++ or Java)

40

and is not used in C, which is the most used PL, this diagram is in third place. In other words,
where applicable (i.e., if relevant diagram for the programming language used), Class Diagram
is widely used. The reason for a large usage of class diagram might be just due to the fact that
it is a fundamental part of any well-formed UML diagram (i.e., if you draw a sequence diagram
you need some classes to type the lifelines), which is directly related to RIGOR. Furthermore,
it was also observed in survey results that STAKH position affects PL for a specific PURPS on
“the variable formality” slider during SDLC. For example, some systems engineers use
MATLAB for model simulation purpose in systems analysis and design phases of SDLC.
Moreover, by an in-depth look at the data, the respondents, who state that they were doing
informal modeling, make the sketches, which include some essences of UML (i.e., some
elements of state machine/charts, but not dependent on strict UML rules) as stated in [33].
Therefore, these participants, who do informal modeling, answered Q17 by selecting some
diagram types (i.e., some participants, who use “Sketch/No formal modeling language”, draw
a use case diagram or sequence diagram informally). Similar cases were also observed during
interviews that most people use sequence diagrams informally to convey the communication
among the entities in a given system.

During the interviews, it was also observed that software’s closeness to hardware affects
RIGOR and its corresponding modeling practices (e.g., modeling languages, diagram types,
etc.) via PL selection What meant by HW_CL (i.e., hardware closeness) is that firmware or
digital signal processing (DSP) software is closer to hardware than User Interface (Ul) or
middleware software. This characteristic indirectly affects RIGOR, but the real industrial
context (via semi-structured interviews and our industrial experience) showed us that whenever
the software is close to hardware, the PL selection is critical. As AR project [5] showed that
even in the same project, DSP team uses a PL (i.e., C), middleware team uses a different PL
(i.e., C++) and Ul team uses another PL (i.e., Java); and their modeling practices are different.

With the help of this section, which addresses research question RQ1.2, the characteristics of
diagram development and usage in embedded software development was better understood in
the best real industrial context. By this way, one of the inputs to investigate modeling patterns
and cultures of the embedded software development industry has been obtained by
understanding the relations between these characteristics.

4.3 Pre-investigated® Modeling Patterns

After investigating RQ1.1 and RQ1.2, rough clustered groups and classification on survey data
is very important to identify the possible modeling patterns.

As reported, 11 main characteristics were investigated and there would be lots of logical
combinations while grouping these characteristics on survey results data, which includes ~80
attributes/features [77]. Therefore, it is crucial to reduce the complexity by selecting the right
subset with the accuracy. As a preprocessing step, by using all our previous results and
observations on modeling usage patterns, the number of attributes/features in dataset were
reduced via a process, which is similar to any feature selection filter methods [78]. The
correlation here was based on Section 4.2 results. By this way, by eliminating the possible
dependent features, the most critical ones would be determined as most relevant starting points

8 These modeling patterns are derived from quantitative survey data. However, there might have been
would be other patterns, which might be found out with more qualitative strategies (e.g., in-depth
interviewing, which will be presented next section). Therefore, at that stage, they were pre-investigated.

41

instead of trying all combinations (e.g., heuristically, modeling purpose would be more
potential candidate than modeling challenge since the latter might be the result of the former).

As survey results showed that rigor, hence modeling language is affected by all other
characteristics. Furthermore, while investigating the relations between these characteristics, it
was found that purpose, which is one of the most important influencing factor to determine
modeling usage category, is strongly related with the medium type used while modeling; hence
purpose and medium type combinations would also be good candidates as a starting point.
Notice that this process is based on both our previous results and also experience.

Another problem is that, in some cases, one characteristic might include more than one survey
data item (attribute/feature) since it becomes more meaningful with the combinations of these
attributes. Therefore, it is also crucial to eliminate the unnecessary combinations by creating
a derived attribute on survey data while trying out the possible alternatives. For example, for
medium type, there are four medium type choices in the survey data (i.e., PC, paper,
white/blackboard, tablet/smartphone) with 5-point Likert-scale (i.e., from never (0%) to
always (100%); which leads us to derive “medium type(s) set” on these data. By this way, the
survey data includes a new single derived data, in which related survey responses are logically
grouped in this set. For example, if the data includes “The participant’s PC and
tablet/smartphone usage is never while modeling” (i.e., both PC usage and Table/Smartphone
usage is Never (0%)), this means that the medium type(s) set is “only analog media usage”.
Similarly, based on the other 5-point Likert-scale attributes depending on the medium type
(i.e., either digital or analog), the other two items are derived for the medium type(s) set:
“analog media usage is equal or greater than digital media usage” and “digital media usage is
greater than analog media usage”.

Since purpose and modeling language are also multiple-response questions, similar derived
attributes set were generated by applying the same technigue on the necessary characteristics
(e.g., purpose(s) set, modeling language(s) set, etc.). As reported in Figure 25, which shows
the relations between the characteristics of software modeling, the modeling purposes might
be grouped whether it includes any model-driven purpose or not. Further grouping would be
done among model-driven and no-model-driven purposes. In model-driven purposes, “Code
generation” and “Test case generation (MB/DT)” are significant since they are directly related
with implementation and testing phases of SDLC (remember SDLC phases for descriptive
modeling vs prescriptive modeling); hence “model driven purpose with code generation or
MBT” and the remaining model driven purposes (i.e., document generation, model simulation
and model transformation) are the two sub-groups. On the other hand, in no-model-driven
purposes, “Documenting design” is significant since it might affect other characteristics (e.g.,
medium type used and hence archivability). Therefore, “no model-driven purpose with
documenting design” and “without documenting design” are the other two sub-groups. By this
way, a new derived attribute on survey data, “purpose(s) set” includes four choices: model-
driven with code generation or MBT, model-driven without code generation or MBT, no
model-driven with documenting design and no model-driven without documenting design.

Similarly, besides being a multiple-response question, modeling language might include “free-
text” area in survey data. Therefore, it is also important to get appropriate subsets in this
characteristics. Mainly in this response, the participants reported that any combinations of
sketch/no formal modeling, UML and DSL-like languages (e.g., any DSL/DSML or UML
profiles). Hence, this new derived set, “modeling language(s) set” includes seven such
combinations (i.e., 2%-1). By this way, finding out the clustering groups would be easier.

In short, to eliminate unnecessary combinations, derived attributes on survey data are
generated after determining the most critical characteristics as starting points. During this

42

process, different alternatives for the combination of software modeling characteristics were
tried by using RapidMiner Studio [79] and Excel on survey results (e.g., with scatter and bars
stacked charts) to get these critical characteristics. After visualizing these groups in
RapidMiner, it was seen that further analysis would be done on SDLC phase to identify
possible model-based patterns (i.e., ~38,5% of the survey data) since there is a difference
between the phases of SDLC where modeling is used. This SDLC phase difference is again
based on the existence of “Implementation” or “Testing” phases to understand descriptive
versus prescriptive usage. See APPENDIX C - Pre-investigated modeling patterns’
visualizations for the details of this process.

After the analysis and visualization on these groups, the necessary characteristics, which have
critical importance on the categorization are derived: “purpose”, ‘“medium type”,
“archivability”, “modeling language, if any” and “SDLC phase”. Accordingly, nine
modeling patterns were pre-investigated as in Table 8, in which the percentage of these
patterns in the survey results are also given (Note that “model-based” and “sketching” category
were in the same group in the survey, see Appendix B.1 — Survey design and execution).

Table 8 Modeling patterns investigated after survey data analysis

Main Patterns pre-investigated % in
pattern survey
results
model- 3.3 | With DSL-like® | Purpose set includes With “any DSL/DSML | 16,9
driven “Code generation” or or UML profiles” 29,5
3.2 | Without DSL- “Test case generation Without “any 6,5
like (MB/DT)” DSL/DSML or UML
profiles”
3.1 | Limited Only with "Document generation" or "Model 6
simulation” or “Model transformation” purpose
model- 2.2 | Prescriptive SDLC set includes “implementation” or “testing” | 24,9
based 2.1 | Descriptive SDLC set does not include “implementation or 13,7 595
testing”
sketching | 1.3 | Archived Purpose sets includes “Documenting Design” 3,6
Analog media usage >= Digital media usage
1.2 | Selective Casually & informally with some formalized 13,1

modeling language (most probably, UML
elements) (UML-like sketching)

Modeling Language set includes sketch & any
formalized modeling language (e.g., UML &
DSL, BPML, etc.)

1.1 | Ad-hoc Purpose sets includes only “Understanding” or 4,1
“Communication”

Only pen & paper / free format

(e.g., without any formalized modeling language,
e.g., UML, elements)

Medium type is analog (paper or whiteboard)
Modeling Language set includes only “no formal
modeling/sketch”

none 0 No modeling Not using any modeling approach. 11

% «“With DSL-like” means that the modeling language set of the stakeholder includes any DSL-like
language (e.g., any DSL (provided by tool provider or their own design), any UML profiles such as
MARTE, SysML, SoaML, any BPML, MATLAB Modeling Utilities, AUTOSAR, EAST-ADL,
AADL, etc.)

43

Since there might be some hidden patterns'®, which could not be found out from the analysis
of survey data, there is a need to validate these pre-investigated modeling patterns with deeper
and more qualitative strategy via in-depth interviewing. The next section addresses this issue
and validated the investigation of modeling patterns in embedded software development
projects.

4.4 Case Study to Validate Modeling Patterns via Interviews

In order to find out possible hidden patterns on pre-investigated pattern set, this section
presents case study to validate and improve modeling patterns, which were investigated after
the analysis of survey data.

4.4.1 Research Methodology

In order to deal with topics in detail, data collection through interviews is one of the most
frequently used sources of evidence [38]. In that sense, after getting survey results, various
interview sessions were conducted to get detailed opinions and experiences of software
modeling in embedded domain. As a part of long interviewing session, the empirical study
reported here included a series of semi-structured interviews [38, 59, 80], which were
conducted over eight months with 53 embedded software professionals across a variety of
target industrial sectors and roles to validate and improve our pre-findings on modeling
patterns.

The main goals of this study are designed as specific as possible with the corresponding RQs:

RQ1.2_CaseStudyRQ1: What is main software modeling usage pattern of the interviewee
(i.e., no modeling, sketch, model-based or model-driven)?

RQ1.2_CaseStudyRQ2: What is the current state of software development
techniques/approaches of the interviewee (e.g., programming, modeling (if any), etc.) based
on her/his main modeling usage pattern? In other words, what are the characteristics of a
diagram development and usage?

RQ3.1_CaseStudyRQ3: Does the modeling pattern of the participant belong to the pre-
investigated pattern set? If not (i.e. hidden pattern), what are the main characteristics?

Each of the above RQs, which are cross-cutting with survey and complementing each other,
is used to derive “interview questions”, in which some questions were taken from the survey
(i.e., demographics) and some of them were improvised and detailed during the interviews.

4.4.2 Interview Design and Execution

As a general rule during its design phase [38], different industrial sectors, roles, experiences
and practices in embedded software industry were involved in the interview. The semi-
structured interviews in this section were conducted mostly in face-to-face meetings, but if it
is inconvenient, on Skype as in the case of intercontinental interviews. All interviewees were
promised that only anonymous data (see Table 9) would be presented and the interviewer

10 In this research, “hidden patterns” are the groups, which do not know exactly their software modeling
characteristics (especially their main modeling pattern and modeling rigor); hence their modeling
patterns could not be identified by only structured quantitative data (e.g., only with survey data
analysis).

44

would take notes on what he spontaneously found relevant and to be later transcribed for
analysis.

During the interview, there was a clear and complete list of general topics (i.e., interview
instrument), which cover about both personal and companies’ software modeling usage
patterns, purposes, motivations and challenges besides their success and failure stories, the
attitudes of people to the adoption of modeling and so on. However, the order of the questions
was not fixed and it was necessary to let the interviewee develop ideas and speak more in
detail with open-ended answers [80]. Therefore, the interviewee was encouraged to provide
more detail and rich information by changing the order of questions and the length of time
devoted to each question. In that sense, a ‘timeglass’ structure [38] “with an open introduction
with protocol, more specific questions in the middle, and ending with very open questions”
was followed.

The interviews lasted approximately more than ~1 hour and the protocol was straightforward,
presenting the objectives of the interview and explaining how the data would be used. Then a
set of questions about demographics were asked (The demographics questions are exactly the
same as in our survey [67]). After getting demographics data, the key/critical question was
"How often do you use software modeling in your software development life cycle? (either
informal and/or formalized: i.e., sketches and/or models)". The goal of this question was to
categorize the interviewee according to main modeling usage pattern. Depending on the
response, if the answer is "Never", which means that the main pattern (i.e., category) is "no
modeling", the interviewee was asked a series of questions why they don't use any software
modeling during their SDLC for the purpose of investigating their development practices
besides the reasons of not modeling. Otherwise, if the response to this key/critical question
was different from "Never" (e.g., sometimes, frequently, always, etc.), the interviewer tried to
understand their modeling practices (i.e., as sketching, model-based or model-driven). Then,
by giving the necessary terminology on MDE, MBE and sketching, the second key/critical
guestion about model-driven usage pattern was asked as in the survey (See Appendix B.1 —
Survey design and execution). Moreover, since it was also found out in Section 4.2 that
modeling purpose directly affected the modeling rigor (hence modeling approach), the
interviewer also asked “Is there any listed purpose while you are modeling?” by showing the
model-driven specific purpose list in the conceptual model (i.e., code generation,
documentation generation, test case generation, model transformation and model simulation).
Again, if the answer is “Never/No”, which means that this interviewee is at “sketching” or
“model-based” pattern, corresponding in-depth questions were asked to these interviewees.
Otherwise, this means that the participant uses “model-driven” techniques -at some degree-
and its state-of-practices besides the benefits, challenges, consequences and adoption of MDE
were investigated. During the interview session, the interviewer asked the set of questions
according to main modeling usage pattern, listened to the answers and followed up answers
with additional questions when necessary. During this process, the interviewer tried to find “a
good balance between asking questions, listening to the interviewee’s answers, and
monitoring what questions have been answered” by ensuring that all important topics were
covered, but in a flexible way [38].

After the interview session, before the analysis was started, a number of activities were
conducted. When the interview has been noted and before being transcribed into text, it is
recommended to have these notes reviewed by the participant to provide the opportunity for
the interviewee to correct, clarify or validate the answers [38]. Therefore, if possible (due to
time constraints), after the interview, the taken notes were shown or most critical parts (e.g.,
the critical characteristics of a diagram to derive pre-investigated modeling patterns) were
repeated to the interviewee to give an opportunity for clarification and expansion of specific

45

answers. When analyzing the data, the interviewer tried to investigate interesting key findings
and observations from the informal conversations during the interviews.

4.4.3 Findings

53 interviews in 14 different companies had been carried out. In total, interviewees represented
about different software engineering roles with different university degrees within different
target sectors (Table 9). Our interviewees have, cumulatively, 756 years of software
development experience.

Table 9 Interview - company profiles, interview type and number of interviewees

Company / Target Sector Type # of
Organization Interviewees
CE-1, Turkey Consumer Electronics Face-to-face 6
CE-2, UK Face-to-face / Skype 4
CE-3, Turkey Face-to-face 3
CE-4, Taiwan Skype 2
CE-5, Finland Face-to-face 2
DA-1, Turkey Defense & Aerospace Face-to-face 11
DA-2, Turkey Face-to-face 5
DA-3, USA Skype 3
DA-4, Germany Face-to-face / Skype 3
IT-1, Turkey IT & Telecommunications | Face-to-face 4
IT-2, Turkey Face-to-face 2
HB, USA Healthcare & Biomedical | Skype 3
FB-1, Turkey Finance & Banking Face-to-face 3
FB-2, Turkey Face-to-face 2
Total: 53 embedded software professionals with 756 years of work experience

In the following sub-sections, the findings and observations on the main software modeling
usage patterns (i.e., “no modeling”, “sketching”, “model-based” and “model-driven) to
validate and improve our pre-findings are presented. Moreover, important informal question
& answer session results are also presented with verbatim quotes of interviewees to understand
modeling practices and challenges in these patterns. All non-English quotes (i.e., only Turkish)
have been translated to English, as precise as possible, by the interviewer. For this study, due
to space constraints, not all, but the interesting points and observations on modeling patterns
are reported.

4.4.3.1 Patternsin “no modeling ”

As the survey (Q10) showed that 11% of respondents have not been using any software
modeling (neither informal nor formalized). As seen from our pre-investigated pattern set
(Table 8), this pattern (i.e., “0”) needs further analysis to understand why. When interview
data is analyzed, there are mainly two sub-patterns, who do not use any software modeling:
Some of these participants do not have any software modeling experience (i.e., “not
experienced”), whereas some of them do not use it although they have some experienced on
that (i.e., “bad experienced!!). There are totally six interviewees in this main pattern; two of

11 As a terminology, “bad experienced” pattern indicates the embedded software professionals, who
don’t use any kind of modeling due to disappointing and insufficient experiences of software modeling.

46

them are “not experienced”, the other four are “bad experienced”. By this way, the interview
divides “pattern 0” into two patterns, i.e., “pattern 0.0 and “pattern 0.1”.

When the survey data was analyzed, the ones who stated that they don’t use any software
modeling approach, are mainly Physics, Industrial Engineering, Mechanical Engineering and
Electrical/Electronics Engineering (EE) graduates. These respondents from the stated
backgrounds most probably have not learn any software modeling during university (e.g., from
SE courses) and do not need it in their job history, so that they did not take any training on
that. On the other hand, Q12 of the survey asked where/how the participant learned software
modeling. (i.e., participants might learn modeling in the university and from formal corporate
trainings) and the answers are compatible with the question, which investigates the modeling
experience (Q11). This result showed that these “not experienced” (i.e., “pattern 0.0”), who
did not take any SE courses on software modeling, did not learn it during the job or with
corporate training; therefore they did not know about software modeling (and any possible
benefits of modeling perhaps) and do not use it even as a sketch. There are only two
participants in this interview session, who both graduated from EE, whose replies complied
with the survey results.

On the other hand, the survey did not give any further information why some participants do
not use any software modeling although they know it. As interviews showed that these
participants have bad or poor experiences and failure stories on modeling. A verbatim quote
from a firmware engineer, who has 29 years of software development experience: “Very few
firmware projects | have participated in over the last 30 years have used software modeling.
The few for which it was tried caused me to come to the conclusion that modeling provides
little to no benefit for the vast majority of embedded projects”. When the reason of such an
opinion was asked, he continued: “The problem is that each embedded system has a unique
hardware platform that is unlike any other. It takes more work to try to set up the model to
accurately behave as if it were the real hardware than is worth it. Most embedded systems are
on the small side, with the code written usually by one or maybe two firmware engineers”.
Another software developer, who has 18 years of software development experience on this
pattern mentioned about projects size: “Small projects simply don't benefit much from
modeling as modeling itself requires a significant amount of setup, and the modeling doesn't
do anything for you that can be done by simply creating a ‘prototype’ of the code based on the
requirements”’. Very similar arguments were given by another software architect: “Modeling
would most likely be of more benefit on large, complex projects” and “We have honed our
design methods throughout the decades and have become quite successful at embedded
systems design without having to use modeling tools”. As seen, these experienced embedded
software engineers think and experienced that modeling is costly for their business due to
hardware closeness, uniqueness and project size (i.e., the characteristics of a diagram: HW_CL
and T_SIZE (i.e., team size)).

It was interesting that all of these “bad experienced” professionals mentioned about modeling
tools’ problems, which is a mandatory for “model-driven” approach, but not for “sketching”
or “model-based”. They had some resistances on modeling (e.g. one of the modeling
organizational challenges in the survey Q25) and it is difficult to change their negative attitude.
During the interview, some findings about modeling benefits, which are claimed to manage
the complexity of embedded systems were presented. The experienced firmware engineer
states: “Embedded firmware has always been complex - | can tell you that complex embedded
system are nothing new at all, and my career began at the firmware industry's beginning in
the mid 80's”. A verbatim quote from software developer: “Nothing you said to me is anything
new to me at all - I've heard it all many times before over the years and I'm not swayed by
"academic" arguments such as yours since they sound great but usually don't have much
"ground truth" factored in”. A project manager, who used to be an experienced board support

47

package (BSP) developer answers: “If you are in the BSP business then | wish you the best of
luck - it's not going to be easy to try to succeed by going over old ground where dozens of
others have failed in the past trying to do this”. Apart from these common opinions, there are
also some other issues, like “understanding the notation” of UML (A verbatim quote of one
developer: “too complex and not necessary syntax” and “l am sure that even a software
modeling professor also might not know the difference between “aggregation” and
“composition” in UML, so do 1.”), cost of training (e.g., just because of training, they might
not complete the project within the required time and budget), and the synchronization
problem between model & source code (since they badly experienced “sketching” or “model-
based”), made these interviewees (i.e., “pattern 0.1”) not use any software modeling.

4.4.3.2 Patternsin “sketching”

As survey and interviews showed that there are various patterns in “sketching”. To be a sketch
user, modeling purpose set of the stakeholder should not include any model-driven specific
purpose (i.e., code generation, documentation generation, test case generation, model
transformation or model simulation; but might include any general modeling purpose as
communication and/or understanding).

During the interviews, it was observed that there exist some “sketch” users, who does not
know that they actually do is software modeling. This hidden pattern, could not be investigated
from the survey results since such participants might indicate that they do not use any software
modeling. In that sense, with the help of this interview session, this hidden pattern (i.e.,
“pattern 1.x) is figured out in the embedded software development projects.

A verbatim guote from an experienced software developer and designer, whose response to
the first critical question in the interview (i.e., "How often do you use software modeling in
your software development life cycle? (either informal and/or formalized: i.e., sketches and/or
models)") was “Never”, states “I tried several modeling tools before, none of them ever
delivered something of benefit that was worth the extra time and cost of doing the modeling...
These kinds of tools have been promising great things yet | have never seen a single one deliver
anything that was really needed to complete a successful embedded design project”. When the
interviewer made him remember that his answer to the critical question was not drawing any
diagram or sketch on a paper, but now, he mentioned about modeling tools’ problems, the
interviewer again asked whether he uses any informal sketch or even a state machine to explain
something to his colleague on a paper without using a modeling tool. He continued: “Indeed,
yes. Sometimes we use some sketches, similar to statechart diagrams, but informally. We are
not using any modeling tool... |1 assumed that | did not count such drawings as software
modeling and just because of that I said “We are not using any software modeling”. But, as |
said, these drawings are also very rare in our development”.

Similar responses were taken from some EE graduates, who learned modeling after the
university, in the job from books and formal corporate trainings. They use both state machines
and also sequence diagram-like (i.e., includes some UML elements for informally and
casually) drawings. A verbatim quote from one of DSP engineers: ““| used these diagrams just
for understanding a problem at an abstract level or for communication purpose; but these are
not UML. Are these still counting as software modeling although | do not obey any UML
formality? ”. Moreover, a systems engineer, who claimed that he does not use any software
modeling, but explained during the interview that he used some pen & paper stuff to explain
the system scenarios to the necessary stakeholders (e.g., different software engineers,
hardware engineers, and also his systems engineer colleagues) without using any formalized
modeling language elements (e.g., UML), but with some personal drawings. In fact, with this

48

information taken during the interview session, his pattern is one of the pre-investigated
patterns (i.e., pattern 1.1, “Ad-hoc”), which is presented next.

The common characteristic of these “unaware of modeling” (i.e., pattern 1.x) is that they have
not taken any SE courses during the university and try to explain something intuitively and
informally without knowing that they actually do —somekind of- software modeling.

Another pattern (i.e. pattern 1.1) in “sketching” is an obvious usage, which is only “pen &
paper” with free-format (e.g.., without any formalized modeling language elements). Their
purposes are just communication or understanding a problem at an abstract level on an analog
media like paper or white/blackboard. Notice that it does not mean that all other main usage
patterns (i.e., model-based or model-driven) do not use paper or whiteboard; indeed, such
analog mediums might be a quick solution for a better communication and faster idea sharing
technique in some situations (Q13); but this pattern “only” uses such an approach on an analog
media as ad-hoc. Both our survey results and interviews showed that mainly systems
engineers, requirement engineers and low-level (e.g., BSP, DSP) engineers are in this
category. A verbatim quote from a BSP engineer: “Sometimes we use sketches, similar to
component diagrams to show the relations between some drivers, chips or processors, but
informally... While explaining the input of a BSP driver chip to my colleague, | use some boxes,
circles with pen & paper,; but we are not using any modeling tool”. In fact, depending on his
purpose, his modeling approach satisfies his motivation (i.e., in that case, for team
collaboration some sort of sketch is enough for communication and understanding); so no need
for any other (e.g., more formal) approach.

In the survey, the respondents, who state that they were doing informal modeling, make the
sketches, which include some essences of UML (i.e., some elements of state machine/charts,
but not dependent on strict UML rules) as reported in [33], where some participants use UML
elements informally. Therefore, these participants (i.e., pattern 1.2), who do informal
modeling, answered this question by selecting some diagram types. (i.e., some participants,
who use “Sketch/No formal modeling language”, draw a use case diagram or sequence
diagram informally). Semi-structured interviews also showed that most people use sequence
diagrams informally to convey the communication among the entities in a given system. Their
purpose is just a quick communication and understanding a scenario. This sketching might
have occurred either on analog or digital media, but without any documentation purpose (e.g.,
documenting design).

Another pattern for sketching (i.e., pattern 1.3) is based on the purpose of modeling (i.e.,
documenting design) and the medium type while modeling (i.e., digital or analog, which
affects “archivability” and “lifespan” of the diagrams). The lifespan of the sketches created on
analog media are less than the ones created digitally via PC or tablet/smartphone (Remember
the relations between PURPS (purpose), MEDM (medium type), ARCHYV (archivability) and
LFSP (lifespan)). In this pattern, in short, there is a “documenting design” purpose, but analog
media usage is more frequent than to the digital ones. These modeling stakeholders use some
transitions, after the modeling process, during documenting (e.g., during the semi-structured
interviews, it was observed transitions from one medium to another to achieve more
archivability and hence lifespan). For example, some analog models (e.g., either in paper or in
white/blackboard) are archived by saving a digital picture or by redrawing them digitally for
the customer requirement.

4.4.3.3 Patterns in “model-based ”

The survey results showed that some characteristics of model-based category and some
patterns of sketching are very similar (i.e., documenting design as a purpose but with different

49

media type usage degree). Note that with pattern 1.3, all the upper pattern (i.e., model-based
and model-driven approaches) has “documenting design” purpose with other characteristics
of a diagram [75]. Although there are some exceptions, in which more rigor (with strict
enforcement) without model-driven purpose (i.e., artifact generation) is used, almost all
interviewees in this pattern use UML selectively and often informally. Here, the differentiation
point is SDLC phase(s), where software modeling is used (Q18). It was realized that the
patterns are originated and depend on whether SDLC set include “Implementation or Testing”
or not. If the diagram might be an input for implementation or testing phase, this modeling
might be close to prescriptive approach; otherwise descriptive approach. In that sense, one of
the patterns in model-based (i.e., pattern 2.1) use modeling very close to descriptive approach
during systems/software analysis, business process analysis, systems/software design or
maintenance phase of SDLC. The other pattern (i.e., pattern 2.2) uses the diagrams either in
implementation or testing phase (or both of them).

A system engineer states: “With the help of a good sequence diagram, we save lots of cost and
time since we get rid of unnecessary meetings between stakeholders”. He continued if all
Software Configuration Item (SCI)!? and modules are well-depicted in a complete sequence
diagram with the necessary inputs (e.g., message interfaces in Interface Control Document
(ICD)* during a system scenario, every software engineer can understand the corresponding
scenario without looking at the “text description” of it, which might cause some
misinterpretation. In fact, when these sequence diagrams are analyzed with further questions
during the interview, it is seen that they were drawn in MS Visio without strict UML. The
creator of this sequence diagram (i.e., the systems engineer, who uses this diagram in
“analysis” phase) gives this input to another modeling stakeholder (i.e., a software developer,
who uses this diagram both in “analysis and implementation”) without any model-driven
specific purpose. This shows that in the same main modeling pattern, there are some cross-life
cycle activities, in which one modeling stakeholder’s input might be another’s output, whose
patterns are different.

Note that this pattern might be close to model-driven if the stakeholders in this pattern would
use more prescriptive approach with more constrainment so that their format is readable by a
machine). However, some of the interviewees had also bad/poor experiences on the modeling
environment and tool, which might be the reason of not using any model-driven approaches.
When the interviewer asked why they thought that the tool they experienced for their systems
is not sufficient for their needs, a software developer said: “The only people who actually know
enough about embedded design to be able to create effective modeling tools for embedded are
those embedded engineers who have lots of experiences on hard-core embedded

12 Software Configuration Item (SCI) is an entity designated for configuration management, which may
consist of multiple related work products like process description, requirements, design, source code,
test or interface description. In practice, “configuration item” may be interpreted as “configuration
component” or “configuration unit” as appropriate. In this context, this system engineers use this term
to indicate “configuration unit” as an executable, which has some design documents.

13 Interface Control Document (ICD) in systems engineering and software engineering, describes the
interfaces between subsystems or to a system. For example, a communications interface is described in
terms of data items and messages passed, protocols observed and timing and sequencing of events. An
ICD may also describe the interaction between a user and the system, a software component and a
hardware device or two software components.

50

development”. He continued: "Nobody else understands the real embedded development
process, they pretend they do - they think they do, but no”. Another verbatim quote of 26 years
of software development experienced developer: "Just send me an in mail, I'll make sure you
don't make a bad investment in developing/marketing embedded tools, that's my guarantee
and I'll stand behind it”. This experienced software engineer knows about model-driven
concepts and the necessity of tool in this approach; therefore the interviewer also suggested to
develop in-house modeling tool for their needs with their own DSML and benefitted from auto
generation of some software artifacts like code, document, etc. His responses was “When |
compatre the pros/cons of such an investment, | can say that we are good at what we are doing
without model-driven. We can benefit from communication, abstraction, understanding and
documentation for the new comers and that is enough”. As seen, if there is a bad and
disappointing experience on modeling or MDE, it is very difficult to change the attitudes and
technology acceptance. But, the critical question, do we need it or do they have to use model-
driven approaches? It depends on the characteristics of a diagram (mainly, purpose) [75].

In “model-based” patterns, some tool challenges with the used programming language were
also observed. One of the user interface (Ul) designer for medical devices, who use C
programming language for informative touch-screen, stated that there is not any embedded
modeling tool in their toolset. He continued that he uses modeling concepts in some diagrams,
but he could not use their toolset for code generation. A verbatim quote from this developer:
"l have lots of colleagues in different industrial sectors, who also do some Ul development.
However, they use another language than C (e.g., Java, C# or C++) and they can easily use
modeling and code-generation of these models. Currently, I am not benefiting from this
facility". He thought that his programming language and corresponding toolset restrict him
while modeling. He continued "I also wanted to guarantee that my state machine is reflected
to my code. Now, | draw this state machine on PC and | implement it manually". After asking
about the synchronization issue on these state machines (i.e., source code & model
compatibility), he answered that this is really a problem. He laughed by saying "Human
factor!”. He mentioned about organizational culture: "The team must be motivated to use the
new approach. If your team members do not like modeling and also there is no good tool
support, your attitude towards a new technology or approach does not make any sense as an
individual since there is no visible real benefit according to your experienced developers, who
say the last word as a decision maker". He was willing to use model-driven approaches if his
tool support and organizational culture challenges are coped with in the future. He stated: "I
know MDE benefits besides its challenges. In the near future, we will try C++ for our new
chipset. At that case, we can use a new tool, which easily support modeling. Then, I hope | can
show some ‘“‘real” benefits of modeling and I can convince my technical leaders or project
managers". In fact, Platform Independent Modeling (PIM)** concept might achieve modeling
independent from programming language. However, in some cases, programming language
choice affects both modeling attitude and also development process due to tool support.
Therefore, another observation is that organizational resistance might disappear with a relevant
tool support, which shows "real" model-driven benefits.

4.4.3.4 Patterns in “model-driven”

In “model-driven” category, first, it was also observed that there are some interviewees (i.e.,
pattern 3.x), who actually use MDE without knowing it, so they are “unaware of MDE”. This

14 platform Independent Modeling (PIM) is independent of platform or implementation technology of
the system. In this modeling, the model, which contains no reference to the underlying technological
platform, focuses on the high-level business logic.

51

hidden pattern is also derived from the interview results as in “pattern 1.x”. In these situations,
generally, there are mainly DSL/DSML usages while modeling. Although the modeling
stakeholders benefit from model-driven concepts (e.g. with model-driven purpose(s) via DSL
or UML profiles usages), they are a bit confused since there is not UML related diagrams
while modeling.

During one of the interviews, a participant, who stated “model-driven” usage since he benefits
from “code generation” and “documentation generation” of an MDE tool, confessed that he
was a bit confused about “modeling” terminology. In fact, the tool, which the interviewee is
using, has its own DSL and there is no UML element in this tool; the inputs are specifications
of the interface messages and their parameters; then the tool generates MDE artifacts. This
participant asked: “Yes, | know, there is a code and document generation in that tool, but are
these related to “model”’? In fact, there is not any UML element in the tool, right? Is this really
a software model? Where is the model?”. The similar conflicting terminologies were also
encountered with some systems engineers, who use Matlab/Simulink for model simulation, in
which there is no specific UML diagram.

As survey data analysis showed and it was also observed during interviews that some
participants are using model-driven techniques in a limited way (i.e., pattern 3.1) without
benefiting from “code generation”, “model transformation” or MBT. These “limited” model-
driven users mainly use diagrams for “document generation”, but not for code generation, or
they use some models (i.e., Simulink) for just “model simulation” (i.e., a Systems engineer,
who uses model simulation in designing an algorithm; but not sharing this with any software
engineer during implementation phase; or a software developer, who just wants to generate

documents from the models).

The most common consumers of prescriptive models (i.e., model-driven) are model
transformations [15]. Therefore, it is not so important to have a graphical syntax to represent
the model (as in UML), but these models should be represented in a format that is readable by
a machine with a language (as in DSL). Furthermore, one of Eclipse Committee member and
CEO of OBEOQ, Etienne Juliot presented “UML” as “Utopian Markup Language” not “Unified
Modeling Language” during his speech on “DSL vs Standards” at one of the modeling-related
event [81]. He said that it would be utopia that UML can be used for all purposes in all SDLC
phases. He claimed that for maximum benefit, there should be a customization on DSL, models
and tools (as code generators and visual editors) besides using UML profiles. Therefore, we
also investigated that model-driven users are characterized whether they use a
DSL/DSML/UML profile or not.

Moreover, survey data clustering in RapidMiner showed that DSL usage affects the patterns
in “model-driven” usage (APPENDIX C — Pre-investigated modeling patterns’ visualizations).
If modeling language set (e.g., Q14) does not include any DSL/DSML/UML profiles or used
diagram types does not include any DSL-based diagrams (i.e., Q17), these users are mainly
using UML (i.e., pattern 3.2). Notice that since UML is a general-purpose modeling language,
its usage is not only restricted to modeling software (See Q14). As observed in [15], “UML is
not so popular for prescriptive models” since the semantics of UML models is not exactly
defined and this would hamper the automatic translation towards other models or code. On the
other hand, the model-driven users, whose modeling language set includes any DSL/DSML
(besides any possible UML profiles) are in pattern 3.3. Therefore, as the survey and interviews
showed that there is a distinction and grouping while categorizing “model-driven” approach
according to their modeling purpose(s) and DSL-like modeling language usage.

As a result, with the help of these interviews, the different modeling usage patterns in
embedded software development were better understood by validating the survey data analysis

52

in the pre-investigated patterns; but more importantly, the hidden patterns are identified with
deeper and more personalized modeling experiences. As a lesson learned, some interviewees
(depending on their university degree, where/how modeling was learned and hardware
closeness) have some resistances and misbeliefs for modeling and MDE. Some of them think
that software modeling is only done with a tool via some (formal?) UML drawings; however
software modeling is not restricted with UML since it also includes descriptive modeling as
sketching or DSLs without UML diagrams.

After validating and improving our pre-investigated patterns, 12 patterns are characterized in
embedded software development projects as seen in Table 10. Notice that, all quantitative
results taken from our previous findings (i.e., survey and interview results) are depicted in this
table with their ratio (Note again that in our survey, sketching and model-based usage were in
the same category; so their merged ratio is 59,5%). Since there is no “pattern 3.x” or “pattern
1.x” in the survey results; when their ratios are merged into the corresponding possible pattern
(e.g., “pattern 1.x” might be “pattern 1.1” or “pattern 1.2”; and “pattern 3.x” might be
“pattern3.1” or “pattern 3.3”), it is interesting to have similar results in both survey and
interview. To validate this similarity, T-test®® for Interview Result vs Survey Result was
applied and its results is given in Table 10. As seen T-value® in this test is “-0,01”, which
shows the similarity between results (Note that “unaware” patterns were counted as 0% in
survey results; and “none” ratio was counted as 11,2% for the interview results and 11% for
the survey results in this test; hence N=11).

Table 10 Interview results on modeling patterns by comparing survey results with T-test

Main pattern | Patterns interviewees % in survey
% results

model-driven | 3.3 With DSL-like 8 15,1 16,9

3.2 Without DSL-like 4 75 321 6,5 29,5

3.1 Limited 3 5,6 6

3.X Unaware of MDE 2 3,7 -
model-based | 2.2 Prescriptive 10 18,9 24,9

2.1 Descriptive 6 11,3 30.1 13,7 595
sketching 1.3 Archived 2 3,7 26,5 3,6

1.2 Selective 7 13,2 131

11 Ad-hoc 2 3,7 4,1

1.x Unaware of modeling 3 5,6 -
none 0.1 Bad experienced 4 7,5 11,2 11

0.0 Not experienced 2 3,7

15 T-tests are handy hypothesis tests in statistics when you want to compare means and tells you how
significant the differences are. In this research, two-sample T test was applied to compare the means of
interview and survey results.

16 The T-value is a ratio between the difference between two groups and the difference within the

groups. The larger the t value, the more difference there is between groups. The smaller the t value, the
more similarity there is between groups

53

Two-sample T for Interview Result vs Survey Result

N Mean StDev SE Mean
Interview Result 11 0,0905 0,0522 0,016
Survey Result 11 0,0907 0,0767 0,023

Difference = p (Interview Result) - u (Survey Result)

Estimate for difference: -0,0003

95% CI for difference: (-0,0593; 0,0588)

T-Test of difference = 0 (vs #): T-Value = -0,01 P-Value = 0,992 DF = 17

45 Modeling Cultures

By analyzing the common/different characteristics of software modeling and applying
merging techniques between some patterns to get maximum benefit from this categorization
(e.g., to better guide stakeholders with necessary and sufficient process & tool improvements
for an effective modeling approach), six modeling cultures in embedded software development
projects are identified: None, Performed, Formalized, Archived, Prescripted and Auto-
generated.

- “Auto-generated” culture includes pattern 3.x, pattern 3.1, pattern 3.2 and pattern 3.3,
- “Prescripted” culture includes pattern 2.2,

- “Archived” culture includes pattern 2.1 and pattern 1.3,

- “Formalized” culture includes pattern 1.2 and pattern 1.x

- “Performed” culture includes pattern 1.1 and pattern 1.x

- “None” culture includes pattern 0.1 and pattern 0.0.

Accordingly, we can say that a culture (as a particular group of modeling patterns) consists of
different characteristics of diagram development and usage (e.g., modeling rigor, purpose,
medium used while modeling, SDLC phase where modeling is used, etc.). In this
categorization, a “higher” culture can use the characteristics of the “lower” cultures and the
modeling stakeholder might apply their lower level patterns’ modeling practices, if necessary;
but not vice versa. For example, a modeling stakeholder, who is at pattern 3.3, can also use
analog medium type (e.g., paper) besides digital ones (e.g., modeling tools in PC) while
modeling, i.e., sketching without any modeling rigor as being at pattern 1.1. Therefore,a
“higher” culture does not necessarily entail a more “correct” or “mature” use of modeling with
respect to job/task requirements of the stakeholder although a change into a “higher” pattern
might allow the stakeholder to better use software modeling with possibly some extra costs
and possible challenges. Notice that whenever a modeling stakeholder goes to a higher level
pattern from a lower one, the initial cost and challenges of this modeling approach increase;
however the benefits of this approach also increase. These cultures’ characteristics are given
in Table 11 with their main focus. Remember that there is no “maturity level” as MML in this
categorization (See Section 2). Since the cultures depicted are based on all modeling
characteristics of the individual stakeholder (e.g., purpose, task/responsibility, SDLC phase,
etc.), this scheme also differs maturity models based on organizational concepts in that it
focuses on individual practices.

54

Table 11 Modeling cultures of embedded software development projects and their characteristics

Approach/
Main
Pattern

Cultu
re

Foc
us

Patte
rns

Characteristics

model-driven

Auto-generated

Guaranteeing model software artifacts compatibility

3.3
3.2
3.1
3.X

This is the culture, where software modeling turns into programming
(automated generation of code from models) since programmers deal with
diagrams instead of focusing on the implementation details. Apart from
automatic code generation, there are also documentation and test case
generation from these precise models.

In this culture, the diagrams have more lifespan and archivability since
the modeling tool/environment, which should be digital, plays a crucial
role while generation software artifacts.

Since it is a more detailed and complex modeling approach, which has
strict enforcement, the modeling stakeholder is very close to 100% of “the
variable formality” slider of modeling, hence the rigor.

In this culture, the modeling stakeholder ensures about the
synchronization of model and the other software artifacts (i.e., source
code, test driver, documentation and also simulation).

"Model transformation" (i.e., Model2Model, Model2Text or
Text2Model) is very crucial in this culture.
In fact, model + transformation -> software.

Although initial cost and challenges in this culture is much more than the
other cultures, overall benefits increase since code correspondence is
guaranteed.

model-based

Prescripted

Prescriptive without auto

generation

2.2

This is the culture, where the modeling stakeholder uses mostly
prescriptive diagrams mainly in “Implementation” or “Testing” of SDLC.

The diagrams are more precise and there is more strict enforcement while
using modeling languages. Therefore, rigor also increases.

However, there is still “human factor” while coding since these diagrams
are not necessarily the key artifacts of the development. For example,
designers specify the diagrams (i.e., on paper or by using modeling tools),
but then these diagrams are directly handed out to the developers to
manually write the code.

sketching

Archived

Archivability & Lifespan

21
1.3

This is the first culture, where a diagram, which is drawn on either analog
or digital media, becomes archived.

The diagram might be either descriptive or prescriptive, which means that
the purpose might be "communication” or "understanding "as in
sketching, but with an extra "documenting design" purpose.

In this culture, there might be some situations in which the diagram was
originally drawn on an analog media; but, while archiving, there might be
some transition between analog to digital (For example, taking a photo
and save it as JPEG; or re-drawing it digitally). In that sense,
archivability affects the lifespan of these diagrams; hence some quality
factors (i.e. maintainability, traceability, reusability, etc.)

55

This is the first culture, where a diagram becomes a representation of the
software being built with some formalized modeling language elements.

Modeling stakeholders use the diagrams casually & informally with some
UML elements, but selectively. Therefore, this culture is something
UML-like sketching.

The diagrams are not just a roadmap, but show the general structure by
becoming “somekind" of true representation (reflection) of the software.
The rigor and enforcement start to play a role, but in a light way and not
depending on the strict UML rules.

Keeping the diagrams up-to-date with the source code is seen to be
unimportant and time consuming. Therefore, update problems still exist
since there is no archivability.

Programmer still makes business decisions. No guaranteeing to eliminate
possible "human factor" problems while implementing the code.

This is the starting level for software modeling via “ad-hoc” approach by
using pen & paper with some free-format drawings (e.g., boxes & lines)
but without any formalized modeling language element.

In other words, this culture is the starting of “descriptive modeling” as
sketching without any formalized modeling elements (not precise, no
strict enforcement, no rigor — it is very close to 0% on the variable
formality slider of modeling)

The main purposes here might be selective communication or
understanding instead of specification (i.e., communicate ideas with
colleagues or understanding the problem at an abstract level)

The modeling stakeholder has no standard process or approach for
software modeling. It looks like a specification of software with some
high level diagrams to explain the overall
architecture/system/requirements, etc. by showing the main parts of the
system under development.

There is no details of the diagram. (e.g., no attributes & fields, no
operations/methods)

Not archived, hence impossible to keep up-to-date (the lifespan of these
sketches are very short — depend on the lifespan of the analog medium;
i.e., paper or white/blackboard)

Modeling education and awareness are the main challenges in this culture.

Table 11 (continued)
1.2
1.x*
(3]
g
>
(=]
c
° 3
S o
—_— c
s |3
= 8
L S
11
1.x*
ie)
()
E o
£ 2
g |2
0.1
0.0
(=)
£
o
8
2 z

Bad experienced: Not using any software modeling although they know
it. The possible reasons are bad/poor and insufficient experience, failure
stories (time, cost, etc.): Misbelieves, resistances, misunderstandings on
the terminology, hardware closeness & uniqueness, project size,
understanding the notation of UML, cost of training, synch/consistency
problems.

Not experienced: Not took any SE courses on modeling during university
and no need it in the job. Typically, non-CS/CENG/SE graduates.

By this way, all modeling patterns and cultures in the embedded software development
projects are identified by addressing RQL1.

56

4.6 The Characterization Model: MAPforES

After identifying the patterns and cultures in the embedded software industry with their
characteristics based on prior findings (i.e., survey and interview results data), this section
proposes a characterization model called MAPforES, which identifies and defines a modeling
stakeholder’s pattern and culture as commonsense practices by presenting what the similar
profiles in the embedded domain is doing while modeling (via the database constructed with
survey data). By this way, besides identifying and defining the current pattern and culture, this
model identifies the widespread modeling practices (e.g., process and tool) in embedded
software development projects by referencing to a set of commonsense industrial practices.

During the creation of the MAPforES, various prediction methods (e.g., an artificial neural
network (ANN), lazy (k-NN) or support vector machine (SVM)) were applied to get the best
results for the available training set. However our data set size, which feed the model was
restricted (i.e., <1K) and it was very difficult to formalize a model with any deep learning
mechanism even the survey data might be split to augment the training data with some
techniques (i.e., remember that the survey includes a multiple-response question (Q7), which
was about the target sectors of the products developed by the company, in which the
respondent is working; and this data might be split based on a single target sector to have more
data). However, the data would be still missing to get a well-suited model to achieve the
concept. The straightforward technique was “decision tree” mechanism since all the necessary
& significant characteristics were derived during the identification of all patterns (except
“hidden patterns”).

After deciding to construct the decision tree, it was necessary to take feedback from software
professionals via expert opinion strategy before finalizing it. Then, by taking feedback from
14 software professionals (See Table 12), the final outcome of the decision tree is constructed
as seen in Figure 26. Note that none of these software professionals participated in the previous
interviews for this study; however, it cannot be guaranteed whether any of them participated
the survey or not.

Table 12 Expert opinion demographics for “decision tree” used in the model

Organization | Target Sector Position # of experts
DA, Turkey Defense & Aerospace | Software Architect & 2
Developer
Software Developer 2
Software Tester 1
CE, Turkey Consumer Electronics | Software Architect 3
UN-1, Turkey | Academia Academician 3
UN-2, Turkey Academician 2
UN-3, Turkey Academician 1

Total: 14 software professionals with 234 years of software development experience

This decision tree is the heart of the model, which identifies and defines the modeling
stakeholders’ current pattern and culture.

Accordingly, the model, firstly, takes the characteristics of diagram development and usage of
the modeling stakeholder (See Section 4.2). The model has pre-given sets for software
modeling characteristics as purpose of modeling, medium type used while modeling, SDLC
phase where diagrams are used and modeling language properties, if any. Depending on the
characteristics of a modeling stakeholder, the current modeling pattern and culture is found
with this model.

57

[9POIAl UoNRZIIS1RIBYD BY) JO 981 UOISIoaQ 8yl :9Z aInbi4

JDUBUIUIR -
wawAoidaq) ¥ uonejjesy - (| Furspowr gV TIVIN “TINDE “TINROS “TINSAS “(udtsap uso|| pieogyaes Ay “1adug Tommy

uonenUUIS [Spo -
UONRULIOISURR (JNZIN) [PPOW 01 [SPOR -

- uonriSau| -
UONEIIUD] =o_.nw=uE=qu - Sunsay, -
(LQ/EN) HonuIdual ased 183 - voneuswaydu -

UONRIAUAE 2P0)) = <= UIALIP-PPPOJN

i Penteaa uSIsa(q WLMYOS,/SWASAS -

(Sa1y0ad) SuOISUMXa PN Auy saninn
1noX 10 1apaoad (oo Aq papiacad) T[S CTR) a-1SA -

oFenBue| Furpopow (jewLIo)) oN -

suoydpewigAdiqe | *Hd b

SSURY WAIPS |

TN -

sisK[euy swasAg/Aleurijalg -
SISA|RUY §S300J4 SSAUISNE] -
Soseqd) 1as,

Surpurisaapun) -
UOLEDIUNWILIO)) - <-[EIdUIO)
sasodang

28D2.00U1 (20UaPUOAS.1402 2p0D) SNGUPdIWOD [apOWt USISAP P IPOD 22AN0S
ASPAIOUL SfAUIE
2SD24OUY SASUIJIDYD W SISOD DI

PAAIYAIY
amn)

PAATYIIY
TrumnEd

/ Vs “

payduosalg

saamyin) aanduasaq

Truamed

aandiosaig
sTzuianed s
panu
M-S oYUM Traaned
ow-Isa gua T Eooned 1-pw
E AW JO 2aemeun
Ngutoned S3A

ON
ON

BUTIS3),, JO | NONDINAWS,
Sapnjaul 398 1S,

S3A ON

ON

isaenfue] Suljapo
NI~ 1S Aue sapnjoul
FenSue| Surjap

S3A

SMLaAgnw)

T3ALIP-]apow 01 dijroads asody

;a%esn eipaw jensiqy
=< aTesn eipaw Fojeuy

pasuanadxa jou

pasuauadxa peq sprpuasiEd
‘Tpuianed

20Y-py “ gouou /
STrpuianed m [-auou M y
3

PawIogIag
@pamyn)

pazijeuno§
Ppamyn)

EIVIRETEIN
Tjuaaned
dIeMEUN
Xpuaaned

LM Moudf
[iouaniadxa
ulapow AUy

WIS FUIUI NS
njoul 338 asoda

ON

:e.:ukadzndw 25P2 j§a 1, 10 NONDIIUI.

AGE sapnjout 3as asoding,,
sapnjour 1as 3so :

ON

S3A

[_90BsSN SUI[aPOW 2IBMIJOS ([EULIOJUL 10 PAZI[EULIO)) AUy ———

aesn pue wawdojaaap werSelp Jo SONSLAOBIRYD uv_a,_._l|.

58

Moreover, since the model takes the characteristics of modeling stakeholder as inputs, it
presents the similar demographics’ modeling practices based on the available survey data [77]
as a set of commonsense industrial modeling practices. By querying the similar demographics
in the survey database with the stakeholder’s input, the stakeholder learns as suggestions what
their competitors do in the same industrial sector while modeling. By this way, the stakeholder
gets answers to strategically important questions like the necessary modeling approaches,
languages, tools, etc. in this domain (RQ2.1) Notice that all these characteristics of this model
is implemented during the case studies, which will be presented in Chapter 5.

After finding out the current modeling pattern and culture, it is necessary to see all patterns
and cultures with their corresponding characteristics of a diagram in a single chart. To achieve
this, Figure 27 is depicted. Remember that there is no “maturity level” in this categorization
since different characteristics of software modeling might have an effective modeling
approach (See Section 2).

As seen from Figure 27, the characteristics of diagram development and usage are mapped to
the patterns and cultures. The “arrows” in the figure means that whenever the modeling
stakeholder goes in that direction, the value of a corresponding characteristic increases (e.g.,
in the upper cultures, modeling rigor, archivability & lifespan and code & model
correspondence are increasing). On the other hand, as mentioned, the upper pattern and culture
might have all below patterns and cultures’ characteristics, but not vice versa. For example, a
modeling stakeholder, whose pattern is 3.3, might have “communication” purpose while
modeling, besides “code generation”; however any modeling stakeholder, whose pattern is
1.1, cannot have any challenges related to tool or code generation. These mappable
characteristics make the analysis and further recommendation to the modeling stakeholder
easy and usable.

With the help of this chart, the modeling stakeholder can understand some relations between
characteristics (e.g., the possible benefits and challenges of modeling practices, if the current
pattern and culture are wanted to be changed). The part of this model provides a place to start
and a common language with the benefits of a modeling community’s prior experiences (via
survey, interview and empirical study results). In that sense, the model provides a roadmap for
software modeling practices improvement, if necessary (RQ2.2). Remember that, according
to the characteristics of a diagram, the stakeholder might not want to change its current
modeling pattern and culture (e.g., depending on the purpose of modeling).

59

wesBelp e Jo sonsus1orIeyd Buipuodseliod syl YIIM sainynd pue sulaned Buljapow usamiag suoleal ayl :/g ainbi4

poddns oo jadgjool
(stu=jsAs [EoRII-A}2ES 303 V1) WONEDHNIED SBAM3I05 MBS sy Jemdofeasp Jep0Yg IW T A(IYS
S5uEYD 0} o sisEY sy yEnEA03dun AEnd) dwupend)
sens sy purnsorad pus uonEzmidg JRgyido Aypqesnsy INIY
(speeu TNSQ &1 3[EsH seEENSuE] SWEPOJyY TN AJIqES0EI] eI AppgEEY EIRY
SEMDRIYOS) WOREPI[EA MOREOLIIZA [2POJ] AAPOX SSeWBANdSIIEISE] HIRL Amponposg poid
((s1oslosd =segip Wi S|P O™ SErEW SJEISE WS 03 40 &)} SWE B W uONEILI0ISUER [EPOJY SUEL] PO\ UONEIOGEJ 0D WIES [oDWEI] Appgepog J0q
({1 sSeurm pue saosdun ‘smseew Jopesd ‘ems sESwIEp 03407 21 AR[END [2pofy 1EndPoIy Ane1dmod sSsuspy dwmoyuepy
seniqeded Smpayd FPow 30 Yo | IYOWIET AP[IqEmEIWELY Jurepy
{uedmod sy w sspmdxE SWEPOJY adxy Apquedmod [Spot 3¢ PEIRIE SBY0s Smesjusreny | dmopuesens
SwiEangep [eas] [FPOW QI SER[OLINT | SAAPOINIIA SSmABS 1507 Suagiso) | Iysumeg
TORErEUEE 2P0 JNETOINE [k SER[MONTLT | WHIPOOIIA | Bueeq)
Smse] L I I TOREID03STER P dojsued]
B TEY I [HERES [EPOfY WISPOIY
UONEISHUL jup (Lq/gpy) uonessuss ased3se] 191X
e ojde(] 2 TONE[EISU a¥1 TOREIEUES UOREUSTINI0(] uRoq
uonsmemeydmy dwy US15Ep SuHE T o] saRoq
USISS(] SFEBMPOQ/STE}SAT s23qQ HESY D o)
IsAEUY sweisdg B el | SISA[EUY s58003d ssEmsng Uy 21as SurpusysIpun Js13pun) TONEIRU=S 2P0 uwanapo) | ssoding
BRONEAMqY
LE [peomuedeion | 0
swoN | €711 <L jidl powuediepeg | T° | QWeRed N
T
9°¢C SmppomjosEaEun | X
arl
g
SSAREMY [opmeEsL BN is@pun
noEanpy dmopmEpy ay SoEuy mwmo) | pemuoyRd Le (%4 0Py | T
BRssL
SumASRIYS
_ °poid SjuquRE (1=s)
Smmwer] « JdmEnd gigisl ToRnEg
adxg Smgiso) s°q el mos PRzIEmo] Tel 9'cl 2an%Rs | T
SRy esney
ssay | ‘aoerl WEI.
udgioor dupEnd ¥9c e cec S pRARIY | €
A
AAPOIN Vod «
ENQPOY dmpEnd S@POQ | pRATPIY €11 (71| eamdipse@ | T | (peseq | 2andwose@
EL “[Fpom)
duy padinsaig 681 Tcr | aandinserg | T | TOeREd
Le | (EeRT e IaNIosEaEny | X
q TONEJUSTIMIOP JOJSUEI]
JPOPBOFET o3 AB/Joq mSpoON
3q@ponERd dmopmerEny an mHved 9°¢ 9L ppmy | T
STEITPOIY (m2aip
wmpag RAUD 15319 19 I <3 | set TNSa -Fpom)
‘Rd¥idO. 2p02 30mos 307 v v w®0epon) PRERWRE CL 9 oy | T | TwEmEg
WROIPOOIA dmopuErEny -ony I°C1 FCI | TNSamM | £ sapdusaag
TIVHD Lix3g | SW¥0D | o1as [ARNY | wamv | %oon | savad 5) Bm e sine
7 2 amn) MarAIux fLavms wiapeg | preorddy
aSesn pue Juawdo[A3p welSeIp Jo SISIIB)IRIRYD Sumppoyy o o wped-qng urejy | Sumepopy

60

CHAPTER 5

APPLICATION OF THE CHARACTERIZATION MODEL

The goal of this chapter is to apply the characterization model, which finds out the modeling
patterns and cultures of embedded software development projects via case study strategy. The
empirical study reported here is based on multiple case studies, which included a series of both
structured and semi-structured one-to-one interviews to evaluate the model presented in
Chapter 4 by capturing detailed contextual description and observations. The study includes
two companies geographically distributed over two cities in Turkey. One of the companies has
two different organizations, which operates different subsectors of embedded software
industry; therefore, the research includes three cases (i.e., organizations) based on different
subsectors. The interviews were conducted over two months with 35 embedded software
professionals. The first section gives the research methodology, the second section presents
the research process and findings with its threats to its empirical validity. The results for each
case study with participants’ answers are presented in [82] as a technical report to record all
the data digitally (166 pages of raw data of all participants’ evaluations) besides their
corresponding case study database as all the actual documents and other evidences collected
on paper.

5.1 Research Methodology

The research methodology that is undertaken is the multiple case study, which provides
triangulation of both quantitative and qualitative data in accordance with empirical SE research
principles [38, 41, 83, 84].

5.1.1 Goal and Research Questions

The goal of these case studies is to apply and observe the usefulness of the model presented in
previous chapter, by identifying and defining the current modeling usage pattern and culture
based on the characteristics of diagram development and usage. It is also used to identify
stakeholder's modeling processes for commonsense practices in the multi-faceted industrial
context (e.g., in different industrial embedded sectors). In order to achieve this, the
characterization model and related artefacts are used to give recommendations to the
participants where the interviewer also acts as an evaluator, who analyzes the participants’
modeling characteristics and derived recommendations (e.g., commonsense and popular
modeling practices like languages, tools, etc.) from the matching demographics. Based on the
above goal, the following RQs and sub-RQs are raised and stated in Section 1.2 to test the
hypotheses in practice:

Note that as an initial input for the model, to understand the modeling stakeholder’s pattern
and culture, “interview questions” (questionnaire) was used to get the necessary characteristics
of a diagram (See APPENDIX D — Questionnaire used in multiple case studies). In this
guestionnaire, some questions were similar to the survey, and some of them were improvised
and detailed specifically during the interviews and after direct observations.

RQ3: Is the proposed model useful and generalizable?

RQ3.1. Does the model reflect stakeholder's current modeling pattern and culture?
RQ3.2. Is the model useful and conceptually insightful?

61

To address this RQ, an evaluation form (See APPENDIX F — Evaluation form template)
is used to evaluate the result of the model with respect to validation criteria [85] (Note
that this evaluation form includes the questions in Table 22, which will be detailed in
Section 5.2.4).

5.2 Research Process

Benbasat et al. argues that multiple case studies can be used when the aim of the research is
description, theory building or theory testing [40]. When conducting a case study, there are
five major processes: case study design, preparation for data collection, collecting evidence,
analysis of data and reporting [38]. On the other hand, by concentrating on multiple case
studies, both Runeson et al. [38] and Yin [41] illustrate how multiple case studies may be
conducted as in Figure 28.

Design Plan, collect Analyze, report
>, > @ — > e —
=g
|
[
1 | Write Draw cross
- Conduct 15t ol indhvidual L1 "1 cave
. Case study y case repon conciusons
(- Setoct L R — r————— - "
. 5 | cases | Concuct Wrae Moty
Fing/ | I ™ 2nd caso -4 Inchvdual 1 theary
Govelop ‘_ study Case repon
uﬂz_} | >
L L\cs'qn Gata | Develop
ook om»m o | policy
protocol | impiications
| [Conuat |! Write Y
Lol nthcase ied Inchvdual . Ty
study case report Write cross-
Caso repon

Figure 28: Example process for multiple case studies adapted from [38, 41]

Main phases of a multiple case study reported here have been applied to be detailed in the
corresponding sub-sections as shown in Table 13 [38, 41].

Table 13 Multiple case studies research process

According to [41] According to [38] In this study
Find/Develop High level design See Section 5.1.1.
Theory Goal Theoretical Framework (which was
RQs derived by previous findings)
Model
Design Data Detailed design and See Section 5.2.1
Collection Process preparation for data
= collection
‘3 Select Cases See Section 5.2.2
a
Conduct Case Study | Plan & Data See Section 5.2.3
S Collection
c =
S o
a O
& Analysis / Modify the model, if necessary See Section 5.2.4
5.5 | Reporting
S g
x

62

5.2.1 Design

The case study protocol in this study is “flexible” since it includes both structured and semi-
structured parts [38].

During the data collection, “the principal decisions on methods for data collection are defined
at design time for the case study, although detailed decisions on data collection procedures
are taken later” [38]. In this study, we use interviews mainly for two reasons: (1) to take
stakeholder’s demographics and software modeling practices to understand the characteristics
of diagram development and usage (which is the structured part); (2) to get personal experience
of the stakeholder after the responses to confirm and validate the responses via face-to-face in
depth analysis besides direct observations (which is the semi-structured part).

To prevent misinterpretations during data collection, a presentation on “Modeling patterns and
cultures of embedded software development projects” was designed to be given on the site as
the first step of the study including brief information about the study, terminology used, etc.

For data collection process design, we planned to apply the principles suggested by Verner et
al. [86]:

(1) Use multiple sources of data,
(2) Create a case study database and
(3) Validate data.

Questionnaires are used to fulfill the data collection need of the structured part of this research
[83]. Before the company visits, the data to be gathered is outlined as a questionnaire (See
APPENDIX D — Questionnaire used in multiple case studies), and there are “evaluator notes”
parts in it, which are filled out after the first round of the interview when the evaluator takes
notes on all given responses. By this way, the interview results have both closed-ended and
open-ended answers.

The questionnaire provides all necessary inputs to the model by taking necessary
characteristics of diagram development and usage (during first round of the interview). This
first part is answered individually by the participant without any interaction of the evaluator.
After the completion, these questionnaire forms are not collected until the second round, which
is conducted face-to-face. During this second part, the responses of the participants are
checked whether there is any misunderstanding or any missing critical information in the
questionnaire (e.g., wrong data for modeling practices, which is caused by “unawareness” of
modeling characteristics). In order to increase data consistency, besides the interviews, several
extra source of information about modeling practices (e.g., any written material, medium type
used) are planned to be used extensively during this process.

After the data collection process, all answers are analyzed and the model is applied to the
participant’s characteristics of a diagram during the break. After this stage, the evaluator send
two forms to the participants via email. The first form summarizes the interview results (See
APPENDIX E — Evaluator notes/observations & Results) and the second is used to evaluate
the model usefulness by the participants (See APPENDIX F — Evaluation form template). This
evaluation form, which addresses RQ3 was developed with an evaluation strategy, which was
adopted from [85, 87] for this study.

Accordingly, it has the following criteria given in Table 14:

63

Table 14 Validation criteria used in the evaluation strategy

Result “This criterion investigates the opinion of the potential stakeholders about the
Validation model” Specifically, does the model produce expected and relevant results?

It is concerned with the quality of the model with respect to its benefits
Utility “This criterion investigates whether the model is useful”’

Validation Specifically, does it produce helpful results so that the model becomes useful?
Comparison | “This criterion investigates whether the model provides a new insight and is
Validation better than what was available previously”. Specifically, it is related with
comparing & contrasting with alternative approaches (if any).

The last day on the site starts with a face-to-face meeting upon request to the participant, who
requested to elaborate on the results of the model and possible suggestions sent by email. The
availability of such an interview slot is announced to all participants and is performed
optionally upon the request.Then, after this session, which is conducted with individual
participants, all participants are kept together in the meeting room during the closing meeting.
In that session, all general results on the charts, which include all participants’ modeling
pattern and cultures, with the general recommendations (e.g., set of common industrial
practices) are planned to be presented.

The agenda template for all these planned processes is given in Table 15.

Table 15 Agenda for data collection, analysis and reporting process on the organization visit

~1 hour: Acquaintance and give presentation about *"Modeling Patterns and Cultures of
Embedded Software Development Projects” and terminology used
~ 30 minutes: Give the questionnaire separately, let them answer this structured part
individually; but after completion do not collect the forms
2 ~* hours (30 minutes per participant): Collect the forms by validating/confirming what
days | each participant gives as answers in the questionnaire.
Take notes in the questionnaire form, collect evidences
(In this semi-structured part, direct observations and improvisation play a critical role)
* For Case Study A: (17 participants) -> 8,5 hours

For Case Study B: (10 participants) -> 5 hours

For Case Study C: (8 participants) -> 4 hours

break

Aim: Analyze the answers, evaluate them and apply the model.

Subtaskl: Investigate the current (via observation and interview) and according to our model (via

model inputs) software modeling patterns and culture.

Subtask2: Give what the similar profiles are doing while modeling

Subtask3: Give recommendation for commonsense modeling practices.

Subtask4: E-mail the results and evaluation form to the participants to evaluate the model
~2 hour: Interview with the participants, who want to meet individually about the results.
~2 hour: Show the general results on the chart. Repeat validatory questions about the

3rd model and make them elaborate their answers for both individual and project results

day | =10 min: Thank you and complete the session

5.2.2 Selecting the Cases and Data

It was intended to have the cases, in which certain characteristics of the software modeling
may be considered to find variation points such as target domain (e.g., consumer electronics,
defense & aerospace), business model (e.g., market or contract driven), customer (e.g., private,
public, internal) [38, 40, 41, 83, 84, 88]. Therefore, based on differences instead of similarities,
we selected our three cases and data as in Table 16. Notice that the interviewees in the case
study are working in the same software development project with different SE roles.

64

Moreover, note that none of these interviewees participated in the previous interviews for this
study; however, it cannot be guaranteed whether any of them participated the survey or not
since the survey is completely anonymous.

Table 16 Case and data selection in multiple case studies

Case | Organiza | Target Project Business Interviewee Size
tion Sector Type Model / (Software project team
Customer distribution)
A Orgl Defense & Radar Contract- 17 | 10 software developer |
Aerospace software driven designer | architect
/ 3 software tester
Public 2 systems engineer
Private 1 project manager
1 quality assurance engineer
B Org2 Automotive & | Bus Contract- 10 | 6 software developer |
Transportation | software driven designer | architect
Market 2 software tester
/ 1 systems engineer
Public 1 project manager
Private
C Org3 Consumer TV Market 8 | 5 software developer |
Electronics software / designer | architect
Private 2 software tester

1 project manager

In the next sub-sections, brief information about these companies will be given.

5.2.2.1 About Orgl and Org2

Orgl and Org2 operate independently but within the umbrella of a larger organization in the
same company, whose product portfolio comprises communication and IT, radar and
electronic warfare systems, weapon systems, air defense and missile systems, command and
control systems, transportation, traffic and automation. The number of employees working in
R&D engineering roles in this company is more than 3000. Having a CMMI-3 certification,
both Orgl and Org2 are specialized in developing products with high-end software
development techniques like agile programming, software product lines and reusable
components.

As a specific target sector (i.e., defense & aerospace), Orgl is a global provider of advanced
radar systems serving both military and civilian markets. For this study, a radar software
project was chosen as Case Study A. The size of a typical software development team in Orgl,
which includes different SE roles is 15-25 people. In this study, Case Study A includes 17
interviewees, which covers all SE roles in this project.

The second case study (i.e., Case Study B) was also chosen from the same organization, but
from different target sector (i.e., automotive & transportation). Org2 designs, develops and
builds innovative custom solutions, subsystems & critical components for mobility of
platforms on railways, roads and public networks. The size of a typical software development
team in Org2, which includes different SE roles is 5-10 people and our case study includes 10
interviewees, which also covers all SE roles in this project. Among all other alternatives, bus
software project was seen one of the best choices for the case study, since both Case Study A
and B belongs to the same organization, but with different target sector, business model and
possibly different software modeling approaches and practices.

65

5.2.2.2 About Org3

Org3, as a subgroup of one of the largest manufacturing companies in Turkey, operates in
Consumer Electronics sector, which is a member of a consortium for several international
R&D projects and continuously participates in numerous programs and initiatives. The number
of employees working in R&D engineering roles in this company is about 800. For this study,
a TV software project, which is Org3's one of well-known products, was chosen as Case Study
C. The size of a typical software development team in Org3, which includes different SE roles
is 5-10 people and Case Study C includes eight interviewees, which covers all SE roles in this
project. This software group is mainly specialized in developing innovative and popular
products with agile programming techniques.

5.2.3 Collecting Evidence

As mentioned in Section 5.2.1, the agenda template, which is given in Table 15, was applied
in all three case studies. First of all, in order to give brief information about our model and get
rid of any misunderstanding on the terminology used in this study, before the interview
sessions, the presentation on “Modeling patterns and cultures of embedded software
development projects” was given on the company’s meeting room to all interviewees.
Moreover, the evaluator informed all interviewees about the research before the interviews to
gain initial trust and avoid unethical issues such as disclosing possible industrial secrets. This
session took ~1 hour 15 mins and included a question & answer session.

Then, the questionnaire, which is the main data collection source for the first part of the
interview, was distributed to the participants in order to obtain individual answers. The
participants filled out the questionnaire alone; this part took ~30 minutes. After the completion
of this first part, the forms were not collected.

After the lunch break, all forms were collected and one by one, semi-structured, face-to-face
part of this study was carried out. The aim of this session was validating/confirming the
participants’ answers in the case of misunderstanding or unawareness of something (e.g.,
unawareness of software modeling usage or DSL usage during SDLC). In order to increase
data consistency, besides the interviews, any extra source of information about modeling
practices (e.g., any written material, medium type used) are analyzed during this process.
Direct observation also helped to understand daily use of modeling and capture the details,
which were not taken and clarified by the first round. During this session, the evaluator took
notes on the questionnaire to collect evidence and found out some of the hidden characteristics
such as DSL usage or sketching as ad-hoc (See [82] for the evaluator notes on the original
guestionnaire). Thus, multiple sources and cross checking of these data (e.g., what the
evaluator observed and learnt during this semi-structured session) provided more robust
conclusions. Note that the interviews were performed without any voice recorder since there
are some confidentiality regulations for the first and second cases (i.e., in Orgl and Org2) and
the participants in the third case (i.e., in Org3) did not want to it to be used.

For Case Study A, as the first case study, after the analysis of collected data and reporting the
results, the evaluator sent the evaluation form (See APPENDIX F — Evaluation form template)
to the participants to evaluate the model usefulness with respect to evaluation criteria [85]. In
the email, which gave the results (i.e., the identification of modeling pattern and cultures and
the suggestions), the participants were requested to fill out these forms (with their handwriting,
if possible) before the closing meeting. However, since not all participants filled out this form
before this session, in the second and third case studies, besides sending this form within result
email, these forms were distributed as hard copy after the completion of the interview.
Therefore, the evaluation form distribution and collection procedure varied. Accordingly,

66

majority of the participants (i.e., 72%) filled these forms with their handwriting, then they
submitted these before the closing meeting session. Five of them (i.e., 14%) filled these forms
in digitally and sent them to the evaluator via email just before the closing meeting (i.e., they
did not use the form distributed by the evaluator). Minority of the participants (i.e., 14%), who
did not have enough time to fill these forms until the closing meeting. However, this difference
did not affect the overall evaluation for these participants since they elaborated their answers
based on the results sent via email during closing meeting, which became more like a a
brainstorming session since all participants were influenced by others’ opinions.

Note that all data (both questionnaires with evaluator’s notes and evaluation form of
participants) were saved in case study database as a paper repository and then were digitized
during the analysis when transcribed by taking the photo of each page (See [82]).

The analysis were done manually on all collected evidences (See [82]) during the break session
before the closing meeting (for Case Study: A, it took 2 days, for the other case studies, it took
one day). During the analysis, MAPforES was applied with the modeling stakeholder’s
characteristics to derive the modeling patterns and cultures both from the interview &
observations results and also according to what the model predicted. Moreover, by gquerying
these characteristics in the survey result database, MAPforES presented what the similar
demographics do as commonsense industrial modeling practices (e.g., according to SE role,
target sector, project size, etc., the model increased the awareness of commonsense practices
such as the modeling languages specific to the target sector like AADL, Markov Chain
Modeling Language) [82].

5.2.4 Results

Applying MAPTorES as seen from Table 17, all case study results are depicted according to
their ratio (as percentage values) by comparing with all prior works (i.e., survey and
interview). Note that a relation between software modeling practices versus target sector of
the products has already been identified; and this "target sector” is one of the characteristics
of diagram development and usage in the embedded software development (See Section 4.2).
According to [70], Defense & Aerospace sector is the most model-driven user sector; and
Automotive & Transportation is the second one. The result of this multiple case studies show
similar results when "target sector" of products are considered. Moreover, although the
participant numbers are different for survey, interview and case studies (i.e., 657, 53 and 35
respectively), the results provide insight for the modeling patterns and cultures in the
embedded software industry, which MAPforES identified.

The results also showed that there is a noticeable percentage of "unaware"s participants of
modeling or MDE (i.e., ~11%) in the embedded software community. These “unaware”s
results were identified during the direct observation or face-to-face semi-structured interview
via question & answer session (i.e., after the completion of structured part of the questionnaire
while taking the model parameters as input). In the following tables, all three case study results
are given in individual tables, in which these “unawares” are also depicted (Note that the
abbreviations used in the tables are given in Table 18).

67

w)d X' Ul S SIS(IpUD 4ay1inf L0 paadu ou ‘, Paipauss-0nD,, Ul 4D Wdy} O Jjv 22UlS NG [£E 40 7°F ‘['§ 421112 2qG JyB1 UAPDA X'E 4
"BSDDANUL BANYIND | PIZIDULIOL, PUD | PBULIOLDA, SoYDUL FNIDA SIL dIUBY ‘7T 40 [T 424112 3G JB1ut UdPDA X']

67 - oI - Lt g paouenadxa joN | 00 |8
(4]
LS 6T - - 01 - | 8% 8¢ 41! ¢L i [paowaLadxa peg | 170
LS ¢l 01 - 9% - | (@17 Buppow g0 sremenny | X7 | B
o
g
a
98 6T | sU . 01 = 8¢ *L'E Sy 00-pY | 11
M_
<1 ¢z 01 811 xC €L ocr | §
2 2anR3Rs | 71
g
<1t 4! 01 811 L e | B PAATPRIY | €]
0T T 0z 9LT <1 91 a B
98 €T 01 8¢ €11 LU aandmosaq | 17 [&
o &
@ 2
2 4]
: =g a
6T T 0T €T 681 TSt | @
= aanduasaig | 7T
LS «xSTI = %8S xxl '€ - | £ [(g€l 19 aango sreneun | x¢ m
o
LS - - 811 9°¢ 9L ,m PR | T'¢ m.m.
Pe Ls| SC -| 0¢ | or|Tse 8° e cL| SeT) m - 1s@wopy | vc |8
o
€71 < 0z 811 I°CI +S1 M-TSA WA | €€
(Sg) serpmyg (® (oD g (LD (€9) smsay | (L£9) synsaY
asE)) Ul o D ASED UI 0 | ISE)) WI 0 YV @se) ul o, AMIIAII)U] Wl 0 LaAang ut o saanjn)) 1 swisayjeg

sabejuaalad ainyjnd 7 uianed 01 198dsal Yum MalAIaiul pue ASAINS Yim uosiiedwod :Arewiwns synsal Apnis ased /T a|qeL

68

Table 18 Abbreviations used in Table 19, Table 20 and Table 21

Position Software Dev Systems Engineer | Sys Software Tstr
Developer/Programmer Tester
Software Designer Desg Project Manager PM
Software Architect Arch Quality Assurance | QA
Engineer
University | Computer Science CS Computer CENG Software SE
Degree Engineering Engineering
Electrical/Electronics EE Information IS Mechanical | ME
Engineering Systems Engineering

The results in Table 19 show that different stakeholders in the same SE roles may have
different patterns and cultures. Although participant#11, participant#12 and participant#13 are
in software tester role in the same project, their patterns and cultures are different.
Participant#11 tests Ul application modules of the radar software project and mainly writes Ul
test simulators in Java or C++, which he described the simulators to be developer as “low” in
terms of hardware closeness®’. He also used their own MDE tool (which is based on DSML)
to generate test cases as MBT. Therefore, he benefits from both UML diagrams besides DSL -
like diagrams during analysis, design and test phases of SDLC. Participant#12 tests the
communication protocol parts and message interfaces between middleware and DSP modules
of the radar software, which are deployed in the main processor card (hot in PC). She described
the simulators she developer as “medium” in terms of hardware closeness. She does not use
any model-driven techniques although she took some modeling languages courses during her
MSc in CENG. She benefits from sequence diagrams, use case diagrams and communication
diagrams during analysis and test phases of SDLC. On the other hand, participant#13, whose
academic background is different from other testers (i.e., he is an EE graduate and did not take
any SE courses on modeling) tests DSP algorithms and he does not use any programming
language directly related with modeling. Besides, he mentioned that he never uses any digital
medium (e.g., PC) while modeling although he limitedly uses some use case or sequence
diagrams just to communicate with other colleagues without archiving them (e.g., lifespan of
these diagrams are very less since they are soon discarded after conversation). As seen,
although participant#11, participantt#12 and participant#13 are in the same project with the
same SE role, since their task/responsibility are different (e.g., testing different modules of the
same software), their modeling characteristics, hence their modeling patterns are different.
Similar situations happened for the same SE roles (e.g., developers or systems engineers),
which shows the difference on modeling patterns is caused not only by project or role, but also
the tasks and responsibilities of that particular participant in that role.

Moreover, partipant#8 is at pattern 3.3 according to model, but during the second round of the
interview, face-to-face conversation revealed that he is one of the “unawares” of MDE (as
participant#28 in Case Study C). These “unawares” filled the questionnaire as they have
benefitted from automatic code generation or documentation generation with sketch and UML
usage. However, it was observed that they actually used DSL-like modeling languages, which
categorizes them as pattern 3.x. For further details of participants’ response, see [82].

17 what meant by hardware closeness is that firmware or DSP software is closer to hardware than Ul or
middleware software

69

48y ARA
SUON SUON 10 10 - 2 +01 +01 g9 2SI Aed S
pauIopisd pauIopisd {3 T gAg | 31qeandde joN 01-9 +01 g9 sg sig ¢
PpIZIewio g P3ZIewioq (4! 1 TN YIS | 31qeandde joN T 01-9 CEl >sd BSL €1
YsTH
PIZIewio g PpZiPwio g 1 1 TNN 9138 2 T T EEl °sd AR 14
PIATPRIV PIATRIY €1 €1 TN YAYS | 3iqeordde jJoN +01 +01 N 2SI Nd 91
Ys1H
PRATPIY PRATPIY €1 €1 TN 9138 2 ¢ 01-9 Gl 284 Aed <
TNdE | 319eendde joN
PRATPIY PRATPIY | 54 17 "TAIN YRN8 Tdd9 +01 +01 DONHED >SN YO LT
wnIpajy
pydinsarg paydusarg (44 (x4 TN T3S +D +01 +01 DONHED HY 2SN i a
YsTH
pydinsazg paydunsalg [[TN T3S 2 01-9 01-9 Gl 254 Ad 01
WP
payduosarg p3duosarg (& Tt TN T3S +0 D +01 +01 el °sd | 4@ L
WP 8sa(g
pydinsaig pydunsaig (414 T TNN 9138 D +01 +01 SI 39 2SI a2a I
PEIEIEEY *1Sa WP 8sa(g
pajeIsua3-ojny -omy e X€ TTNN YRS +HOD +01 +01 DONHED HH SN a2a 8
PpaleIauas TNSAS "GV ILVIN MoT
pajRIuRs-ony oy e e “TINN YRS GVILVIN 01-9 01-9 48 '°H4 OSIN s&g 14
Paleouas avILVIN ys1H
pajeIsuRs-ony oy e e TTNN YRS GVILVIN D 01-9 +01 39 2SIN Aed 6
ya1y
paierauad wnIpa ‘Bsaq
pajeIsua3-ojny -omny (43 (43 TN T3S +HOD +01 +01 DONHED HH SSIN a2a £
pa1eIaua3 MoT
pajeIuRs-oy -omy €e €¢ | 78d "TANN YIS +H ear(+01 +01 DNHFD 2SI BSL 1T
Iy
pale1auaid 18 “sayigoxd WP Bsag
pajeIuRs-ony oy €€ €€ | TNN "TNN 91338 BAR(“++D D +01 +01 SI'SD 2SN 22a 9
PPOIN MarAI)UY °PoI\ 03 AR1AIUY o g g
0} SUIpI0XDY | /UOREAISSqQ | SUIpioddy | /UOREAISqQ SurpPpoy S0 Aysrsamup) | apedy] B W
(s)eSenSue] SSamasopP MH (saeak ur) W. i &
2amyny) SurPPOTy wid)eg SUPPOI SurPpoIN ¥ suarradxy 3132 B &

108l0ud a1emyyos Jepey ‘10193s 92edsolay 7 asusje ‘Synsad W Apnis ased 6T 9|gel

70

In Case Study B, almost all results after observation/interviews are compatible with the model
found out except participant#21. This participant (i.e., PM, whose university degree is ME and
did not take any SE courses related to modeling) filled the questionnaire as “modeling
experience is “0” and “never” using software modeling (either informal or formalized).
However, after face-to-face interview and observations, it was noticed that he thought that
modeling is limited to formal UML diagrams; but in fact, he uses sketches on either paper and
whiteboard during the meetings with the systems and software teams. He mentioned that he
uses some sketches (via some boxes and lines) to understand a problem or process at an
abstract level. Therefore, he is one of the “unaware”s of modeling with a hidden pattern (i.e.,
pattern 1.x) [82].

The same “unawreness” of modeling occurred in Case Study C, in participant#32, who has
again PM role. After the interview, it was realized that he indeed uses sketching on whiteboard
in an ad-hoc pattern during analysis phase of SDLC [82].

As our AR project [5] showed that in the same software development project, different layers
of the software might use different programming languages (e.g., DSP team uses “C”,
middleware team uses “C++”, and Ul team uses “Java”) and their modeling practices are
different. We also previously found out that that software’s closeness to hardware affects
modeling rigor and its relevant practices (e.g., modeling languages, diagram types, etc.) via
programming language selection [75]. An interesting finding from all case studies is whenever
programming language used for modeling goes from high level to low level (e.g., from Java,
C++ to C, or not applicable), the use of modeling decreases (e.g., the relation between PL &
HW closeness column vs modeling patterns column). These case studies confirmed our
previous findings.

As to the relationships between university degrees and modeling cultures, there is not any
participant in “Auto-generated” culture, whose university degree does not include any
combinations of Computing Disciplines (e.g., CS, CENG, SE or IS) except participant#9 and
participant#28, who use MDE limitedly (e.g., without code generation or MBT) and graduated
from EE (e.g., participant#9 uses MATLAB for model simulation; and participant#28 uses
MDE for documentation generation [82]). We have already found out that educational skill set
affects where/how the stakeholder learned software modeling, hence modeling approaches and
its relevant practices through modeling experience. For example, a stakeholder, who graduated
from EE, have learned software modeling after graduation with formal corporate training, or
on his/her own; however any stakeholder who graduated from a Computing Discipline has
learned software modeling at the university from SE courses [75]. These case studies also
confirmed these findings since they showed there is a relation between the academic
background and the modeling approaches if the task/responsibility of the stakeholders does
not force him/her to do specific modeling practices.

71

a1puonsanb ay o uoyajduios s,1uuwdidiawd i) 121D MB1UBJUL dY] BULIND PEUIDIGO SDM UOUDILIONA S1Y] &y "2oUBLIBAXS UBUA0]2AZY 2.0MIOS Jo sawal £ ‘o]

qoTy AT
3uoN 3uoN. 00 00 -) - 4 g9 | 2sg | AL | &t
paumioyIRg paumioIzg 'l X ¥9IRS | Sqqeandde JoN 0= +01 TN | 89| Wd| 1T
YsTH
pazi[eunio g pazijeunio g (4! (4! TN 9IRS o) 01-9 +01 g3 | 89| @ | ¥t
YsTH
PRATRIY pRATRIY €1 €1 TAN 9IRS) $T 01-9 g3 | 89| @ | 9T
PRATRIY PRIy 1T 1T TAN YIS | S1qeardde joN $T 019 | ONED T | S s&g | 61
WP
pdinsarg paydusatg Tt Tt TN 9IRS i Sas®) 01-9 01-9 ONED | 28| Bs1|
waIp3N PRIy
payduasaig paydusaig Tt [TAIN 9IS +=+D D +01 +01 ONHD | 2SN | =@ | LT
PajeIauas MO0 yory
PajeIRuRs-ojny -ojny Te zE TAIN 9IRS +0 +01 07 | ONEO'HI | @ud | *d | 8I
Iy
~ pa1eI2uas (avsolnv)1sa WP 2
pajerduas-ony -ojny €€ €€ TN YRS +=+D D +01 +01 3S'SO | S | 4@ | 0T
R Pa1eIRUA3 @VSOLNY) WP\ saq
pajeIaua3-ojny -ojny €€ €€ | 1S TAN YIS +0 +01 +01 ONFD | SN | 2 | €T
BPOIN ARIAI)UY [PPo\ 03 ARIAR)UY o g -
0} SUIPIONIY | /WOREAIISQ(Q | SUIPIONDY | /HOREAIISqQO SurpPpoy A0\ Apsaoaruy) | apeay] L m.
(s)eSen3uey sseuasopP MH (saeas ur) 2 % m”
aImn;) SurPpoRy wisyeq SUIRPpOIy SurpPpo ¥1d dousLadxy 3B =

1093l01d a1emyjos sng ‘1019a8s uoleliodsuel] 7 aAIIOWOINY ‘Snsal g Apnis ase) 0z ajgel

72

a.unoysanh ay) [0 uoya)duio s, undiad aif] 2D UONDALBSGO 102410 40 MBIAIDIUL BYf] SULINPD PRUIDIGO SDM UOIDULIOLUT S14f] ©\
‘2ouUdl42dXD JUUdo]2ABP 24DMYOS Jo swal ¢ ‘\piof

3[qeorjdde

PIWIOpISd pauopsd | 3! X1 Eo i Y N = +01 g9 254 Nd [43
yary AR\

pazienuoq PIZIerIoy [1 TN 91338 o) T 01-9 EEl 259 Ad 133
2[qeordde

pRATRIY pRATpRIY €1 €1 TN 938 1IN §T 01-9 g9 284 ASL 143
YsTH

pRATRIY pRATPRIY | 4 | 4 TNN 935S o) 01-9 01-9 i3 259 A2d £
wnIpsN

paydunsarg paydusarg (x4 (x4 TN Y133 O 01-9 01 DONHD ‘HF OSIN A2d 67

wnIpsy PV

paydunsarg paydusarg (x4 (x4 TN 9138 +D +01 +01 ONHED 'SD OSIN A St

«(TRBAx0(g W3
paierauad pa1eI1auad wMo) TSa uoqiig yory
-omy oy | 53 X¢ | "INN TS ++D 01 +01 a9 SN aeag 87
(urey)

AONRR) | WPy
paierauad paieIauad 18a uoqiig

oy oy €t €€ | "INN T3S +=+DD +01 +01 ONHED 'SD ISIN BSL 0€

PPN AL I I PPOIN 03 MLy g)

0} SUIPI0YIY | / WOYEAIISQ() | SWIPI0NY | /UWOREAIdSqO SSOUAsO[d | SUIPPOJy | JI0A\ | Aysidamu[) | JIHAPEIY 2 5 w

(s)eBen3uey MH (sread un) g |®&

1)) SurpPpoy WId))eJ SUIPPOT\ Surpppoy »1d duaLdxy EERFETY | B s

10804d 81eM1Y0S AL ‘10198S $IIUOII8|T JaWNSU0) ‘Synsad O Apnis ase) Tz 9|qel

73

After the closing meeting, all evaluation forms (See APPENDIX F — Evaluation form
template) were analyzed. Note that this evaluation form (which is also given in Table 22) were
prepared to address RQ3 with respect to Table 14 criteria. Moreover, during the closing
meeting, all participants were influenced by others' opinions. In this process, some
stakeholders, who explicitly gave opinions about the model and their modeling practices,
indirectly encouraged other stakeholders to share their comments, complaints and also
challenges on this topic. This session became like a brainstorming on modeling patterns and
cultures of embedded software development projects.

Table 22 Evaluation questions to achieve validation criteria

| Question Addressed | Validation
RQ
1 | When you think about the presentation you took about "Modeling RQ3.1 Result &
patterns and cultures of embedded software development project"”, RQ3.2 Utility

does our model really reflect your current modeling pattern and
culture? In other words, did this produce expected and relevant
results for you?

2 | In that sense, do you think that the model is helpful? Please RQ3.1 Result &
elaborate your answer. RQ3.2 Utility
3 | Have you ever been experienced or used such a model before? In RQ3.2 Comparison

other words, do you think that this model is better than what was
available previously or not?

4| Do you think that learning what your competitors (i.e., similar RQ3.2 Utility
demographics) are doing while modeling might affect your future
modeling practices? Please elaborate your answer.

5 | Do you think that the recommendations, which our model gave you, | RQ3.2 Utility
is useful or not? Please elaborate your answer.

According to these evaluation forms collected from the participants, the model reflected the
expected, relevant and useful results with respect to validation criteria. All qualitative and
guantitative data gathered through these forms (which we will discuss for all questions) and
the attitudes of the participants during the closing meeting have shown that the model has been
useful in creating awareness and guidance on software modeling [82]. Therefore, MAPforES
enabled and guided the modeling stakeholder’s process and tool improvements by referencing
to a set of commonsense industrial practices.

Although the evaluation form is in English, four participants (~11%) answered in Turkish.
Note that if the participant’s answer is in English, the phrase is not corrected even if it might
be grammatically incorrect on the original forms. However, we have corrected these sentences
in this paper to improve their understandability with additional words added for clarity, when
necessary, shown in brackets. Due to space constraints, the selected evaluations to each
question with verbatim quotes taken from the original evaluation forms will be given in the
following (See [82] for all evaluation responses).

Evaluations for the first guestion: All responses mentioned that the model produced
expected and relevant results (which means that the results of RQs were satisfactory). One of
the evaluation form includes: “In fact, I really did not know whether I have been modeling;
but in fact, | now realized that | have been a sketcher for more than 10 years; yes | am a
modeler but part of a ‘performed’[culture] ”. A project manager indicated the presentation and
recommendations benefits by writing “Before presentation I didn't think modeling was
important for me; but now I can say that at least | will try to investigate [further] these
recommendations”. All participants explicitly stated that the model satisfied them in term of
proposed benefits [82].

Evaluations for the second guestion: The second question, which investigates the usefulness
of the model, reflected the benefits of the model. Almost every participant (94%) mentioned

74

about the necessity to understand different modeling patterns and cultures so that the model
might guide the modeling stakeholder to obtain commonsense modeling practices.
Accordingly, they think that the model provides a common language among modeling
stakeholders with the already achieved benefits of embedded software modeling community’s
experiences.

Depending on the modeling stakeholder position, the evaluations varied. For example, one of
the software developers in first case study states that “knowing the characteristics of what |
am modeling is helpful to put my modeling approaches into [perspective in terms of] embedded
software industry categorization. Learning the importance of DSL in embedded software
industry pushes me to nvestigate further a cost-effective and domain specific (defense)
solution”. Another participant (i.e., systems engineer) wrote on the evaluation form that “the
model is helpful to understand different modeling approaches of different roles such as sw
developers, systems engineers (such as me) and even PMs. As far as | understood, all of their
approaches might be the ‘best’, so there is no just one best! .

One of the benefits of the model is making the stakeholders aware about their modeling
practices. One of the software developer in the third case study said: “We now know that we
are using DSL in fact :)”. There are many participants (83%), who mentioned about that the
presentation given before the interview was very beneficial since knowing the relations
between the characteristics of a diagram would give practical benefits to modeling stakeholder.

Evaluations for the third guestion: All answers for the third question are “No ”. There is not
any participant, who has experienced such a model before and there is no alternative approach.
Therefore, the model provides a new insight.

Evaluations for the fourth guestion: As mentioned, the model (depending on survey result
data) presented a modeling practices set by querying the similar profiles’ modeling practices.
For example, a participant presented his/her characteristics of modeling (e.g., SE role, target
sector, project size, etc.) and the evaluator reported the similar profiles’ modeling practices to
increase the awareness of them (e.g., the modeling languages specific to the target sector such
as AADL, Markov Chain Modeling Language or modeling tools, which might be free (open
source)). By this way, the model guided process and tool improvements for modeling by
referencing to a set of commonsense industrial practices [82]. According to the majority of
participants (i.e., 74,2% of participants used “useful” explicitly in their evaluation forms), this
set is very useful so that their modeling practices might be affected according to these
suggestions. “Learning what the similarly profiled [embedded software practitioners] are
doing is useful to analyze the approaches [before embarking on a project with modeling]; it
will save time” or “Knowing alternative practices (for example modeling tools) might affect
our practices. If they are cheaper than what we use, we, of course, will use and apply these
practices in future” are some example quotes from the participants.

Although the attitudes towards these suggestions were always positive; some participants
mentioned about some organizational and managerial issues. One of the software developers
in the first case study states: “We have an organizational decision to use a modeling tool, |
don't know whether we can change this; but the managerial decision on that tool might be
affected if there are cheaper alternatives”. Another software architect in the same software
development team wrote in the evaluation form as “Of course, ‘stand on the shoulders of
giants’ 3). If some of their choices [in modeling approaches and tools] fit our organization,
why not? ”. One participant stated: “Yes, I believe that our competitors' modeling ways could
be a soruce for inspiration about future projects, but 1 am not sure about my managers’
possible concerns about what our competitors are doing; and they have the last word”.

75

The set of modeling languages used based on the stakeholder position was also appreciated by
the participants. One of the systems engineers stated: “In fact there are not many Systems
engineer in the industry, therefore it is very interesting to learn what they do. Specifically |
want to learn more about SysML ”. A software developer in the first case study also stated: “7
don’t know about such DSL usage in our industry, I should analyze some of them like MARTE
and EAST-ADL. ”. One of the project managers commented that “Being PM, learning the other
PMs’ modeling usage is very interesting; perhaps | should analyze some BPM diagrams to get
some benefits”.

Evaluations for the fifth question: Almost every participant’s answers (91%) satisfied utility
validation criteria for this question, which investigates whether the model is useful or not. By
using the derived chart for the modeling patterns and cultures with the corresponding
characteristics of a diagram and taking prior study results, the recommendations is useful for
commonsense modeling practices depending on the specific characteristics (e.g., motivation
and purpose).

One of test engineers states: “Developing company specific [domain specific] tool according
to our needs is always a planned action for our test department. Perhaps, [based on the
feedbacks] from this study, we can accelerate this process and fully automate all our testing
procedure. By this way, all testers might be in the same pattern according to your model ”.
One of the software developers, whose pattern is 2.2 (i.e., using prescriptive modeling but not
model-driven techniques) said: “The recommendations are useful with respect to [being aware
of] DSL and having own modeling tool. Perhaps, we can try model-driven techniques by
Comparing pros and cons”. A software developer in the second case study said: “I think they
[the recommendations] will be useful after analyzing the suggested modeling tools and DSLs
further (mainly on Papyrus, eclipse-based tools and automotive domain specific DSLs)”

Moreover, giving these recommendations explicitly (i.e., in a written format) made some
participants aware about an easy and straightforward modeling task to get practical benefits.
A project manager stated: “Just taking a photo of whiteboard screen and archiving it is a very
easy and effective solution. | am wondering why I did not do that until now”.

The same situation encountered in the answers to fourth questions’ responses about
organizational decision-making issue was also encountered here. “Yes, [the recommendations
are useful] but since I am not a decision maker, I will also forward your email to my manager”
or “After trying and experiencing the suggestions, | can [personally] use them, therefore it
might affect according [how we work] based on the results of their feasibility analysis; but for
my team, | should inform my technical lead ” are some example quotes about this challenge.

Qualitative data gathered through the evaluations has shown that the MAPforES model has
been useful in creating awareness and guidance on software modeling in embedded software
practitioners.

5.2.5 Threats to Validity

Validity and reliability of the research are important factors for qualitative research. “Quality
checks to ensure that the case study is done in a proper manner need to be performed to prevent
subjective interpretations” [38]. As suggested by [38], the draft case study design was
reviewed by two academicians and three embedded software professionals. By this way, Table
15 was modified and before the company visit, the agenda template was finalized. During the
interviews, the actual (performed) progress of the case study against the planned progress (i.e.,
the agenda) was reviewed to determine if there are any significant differences. Notice that this
agenda was almost always applied with some exceptions (See Section 5.2.3). Moreover, the

76

evaluator (during the second round of the interview) asked the interviewee to confirm and
validate what he/she gave as responses in the questionnaire. This helped to ensure that the
interview data provides a fair representation of the interviewee’s opinions with correct
answers.

Since the relation between the software and the hardware, which this software is running on,
is important in the embedded software development, we should note that these case studies do
not include any hardware, which is at architectural design or development stage (e.g., the
hardware is robust) and there is no specific challenges or problems due to these hardware
platforms.

In our study, the following aspects are addressed [38]:

Construct Validity: Construct validity is concerned with the correctness of the interpretation
and the theoretical constructs [71]. In this research, multiple sources of evidences were used
with case study strategy. All evidences were collected in questionnaires, written notes after
interviews and direct observations; and then were kept in a technical report [82]. As mentioned,
during the second round of the interview, the evaluator confirmed what the interviewee gave
as responses in the questionnaire, which ensured the correctness of collected data.

Internal Validity: In order to mitigate this threat [71], we focused on the study design and
checked whether the results are consistent with the data. The case studies reported here cannot
be considered as a controlled experiment; however the similar profiles and characteristics of
diagram development and usage might be used for pattern matching with further case studies
to eliminate any bias. During the first part of the interview, all participants filled out the
questionnaire individually and separately so that the interviewer prevented answers of a
participant to be influenced by others [89]. By this way, the interviewer avoided any
information sharing between interviewees. Note that awareness of modeling or MDE is critical
to feed the model with correct data. Since there is no culture difference in case of “pattern 3.x”
(i.e., “pattern 3.x” might be “pattern 3.1” or “pattern 3.3” in practice, but all of them are in
“auto-generated” culture), the model gives the relevant result for the corresponding culture.
However, in the case of “pattern 1.x”, if the input is “no modeling”, the corresponding pattern
would be incorrect. As seen, awareness of modeling, hence data quality, is critical to have
relevant results. Moreover, note that none of these software professionals in multiple case
studies participated in the previous interviews; however, it cannot be guaranteed whether any
of them participated the survey or not. Nevertheless, note that even if they have participated
in the survey, when the survey participant number is compared to the survey (e.g., ~5.5%), a
threat to internal validity would be limited.

External Validity: The generalizability of the results is focused to mitigate this threat [71]. The
limited size and complexity of the case studies restrict the generalizability of our results.
Although three cases and participants were selected intentionally (See Section 5.2.2) with
variation points (e.g., target domain, position, academic background, experience, hardware
closeness), it cannot be stated whether the software team was representative of other embedded
software development projects. However, all three cases have similar results and by applying
the model in more case studies and projects, the generalizability may be improved.

Reliability: Reliability focuses on replicability of the results by other researchers. This study
has a case study protocol and case study database, which were documented and archived
systematically so that the replicability and repeatability of the operation of the case study has
been ensured.

77

CHAPTER 6

CONCLUSION

This chapter presents the summary, contributions and future research directions of this study.
6.1 Summary and Concluding Remarks

This dissertation identified and defined different modeling patterns and cultures of
embedded software development projects. By understanding the current state-of-practice of
modeling and investigating the characteristics of modeling in the embedded software
development projects, this study found out the significant parameters to characterize modeling
patterns and cultures. In doing so, this study constructed a characterization model called
MAPforES, which identifies and defines the modeling patterns and cultures in embedded
software development by also guiding modeling stakeholders for a set of common industrial
practices while modeling.

Specifically, the goal of the study has been achieved as follows:

At the beginning of the research, a SLR is performed to understand the related work on
software modeling and its results were used in later phases of this study (e.g., during designing
survey questions and while creating the conceptual model for software modeling).

We then conducted a survey to determine the state-of the-practices of software modeling and
MDE in embedded software development with its achievements and challenges.

The survey data, which identifies to what degree, why and how software modeling and MDE
is used, was insufficient to answer some qualitative questions (e.g., why they do not use
software modeling or what are their specific modeling challenges) and there was a need to
conduct in-depth interviewing to capture some detailed, rich contextual analysis concerning
the everyday practical realities of software modeling in embedded industry to better
characterize modeling patterns and cultures. Therefore, significant characteristics of software
modeling were investigated. A conceptual model for the development and usage for software
modeling, which is enriched by expert opinions via semi-structured interviews was also
presented to better characterize these significant characteristics. These characteristics and the
relations between them would be an input to identify and define the modeling patterns.

After investigating the relations between these characteristics, the modeling patterns were
identified and categorized in two iterations. During this iterative process, firstly, a preliminary
model was created by using all prior findings with survey data analysis. Then, this preliminary
version was validated and improved with case studies via semi-structured interviews. After
grouping resultant patterns according to their characteristics, the modeling cultures in the
embedded software development projects were defined and further refined by expert opinions.

After identifying the patterns and cultures in the embedded software industry with their
characteristics based on prior findings (i.e., survey and interview results data), MAPforES
model was created. This model identifies and defines a modeling stakeholder’s pattern and
culture as commonsense practices by presenting what the similar profiles in the embedded

79

domain is doing while modeling. Note that the survey results were used to establish a
commonsense practices database (i.e., a set of common industrial practices on software
modeling). By this way, besides identifying and defining the current pattern and culture, this
model identifies the widespread modeling practices (e.g., process and tool) in embedded
software development projects by referencing to a set of commonsense industrial practices.

In order to observe the usefulness of MAPforES, we successfully applied this characterization
model for three cases (i.e., organizations) based on different subsectors of embedded software
industry. We observed that the industrial context reflects what we presented in the
characterization model. The results elaborated and validated our findings on modeling patterns
that focus on all significant characteristics of modeling (e.g., not only “modeling rigor” but
also “purpose”, “medium type used”, “stakeholder profile”, etc.) and fills the gap of what
constitutes “software modeling” (e.g., including DSLs and other formal languages beyond

UML usage).

As Heldal et al. says, different units within the same company might use different modeling
approaches [15]. One-step beyond what they said, we found that even in the same software
development project, the same SE roles, might use different modeling practices depending on
their tasks and responsibilities for different purposes in different phases of SDLC. We found
out that organizations may need different modelling patterns for different projects or even for
different individual roles within projects. MAPforES provides an approach to provide
feedback to modeling stakeholders thereby creating insight for individuals. The usage of the
model has the potential to overcome one of the most significant difficulties of top-down
organizational process improvement models; enabling everyone to contribute [90, 91].

We found out that the model is useful since the participants explicitly mentioned about their
satisfaction [92] in creating awareness and referencing to a set of commonsense industrial
modeling practices. Qualitative data gathered through the evaluations has shown that all
participants (100%) thought that the MAPforES is conceptually insightful and the majority
(i-e., 74.2%) used “useful” explicitly in their evaluation form.

MAPTorES can be applied with a moderate amount of effort (i.e., ~2 hour per the modeling
stakeholder) and its benefits will easily overweight its costs as the improvements in individual
processes will be accumulated in all the projects to be implemented after that point in time.

MAPTorES is a complementary model for process improvement approaches such as CMMi
and SPICE [93, 94]. Identifying modelling patterns of individuals and/or projects before an
organizational assessment of software modeling practices may be useful in pinpointing the
potential threats for institutionalization such as the diversity of techniques utilized. The results
would also be beneficial to identify the common techniques for different purposes used,
thereby to determine the best standardization approaches. Two organizations in the case
studies have CMMIi certification and the participants found the model useful, which has
increased both their awareness of their own and similar demographics’ modeling practices.

6.2 Contribution

The main contribution of this dissertation is the identification of modeling patterns and
cultures by investigating the significant characteristics of modeling in embedded software
development projects. In doing so, to utilize these identifications, a characterization model
(MAPforES) to identify and define modeling patterns and cultures in embedded software
development projects with a set of commonsense industrial modeling practices is defined and
implemented for software organizations.

80

Its theoretical contribution is lying in identifying the current state-of-the-practices of
modeling and MDE (e.g., with systematic review, survey results) and in characterizing
software modeling (e.g., conceptual model of development and usage of software modeling,
and the characteristics of modeling) in embedded software development projects.

For its practical contribution, the resulting artifacts of this thesis can be used by any modeling
stakeholder in the embedded software industry, with a variety of different SE roles from
software developer/programmer to tester, who would benefit from commonsense modeling
practices depending on their profiles to achieve an effective modeling approach.

Note that all case study stages in this dissertation (e.g., survey, interviews, etc.) were
conducted in both local and global scale with high number of practitioner participants by
focusing all aspects of software modeling usage and practices in the world-wide embedded
software industry, which is also important with respect to the novelty and validity of this
research.

The significance of this study is to being the first research in the literature, which defines and
characterizes the modeling patterns and cultures in the embedded software development
project by focusing on all significant characteristics of modeling and filling the gap of what
constitutes “software modeling” (e.g., including other formal languages beyond UML usage).
Additionally, the model presented here, MAPforES, is also known to be the first wide-
coverage model, which not only identifies patterns and cultures of the modeling stakeholder,
but also enables process and tool improvements for modeling by referencing to a set of
commonsense industrial practices in embedded software development projects.

6.3 Future Research Directions

The general validity of the conclusions were restricted by the limited number (i.e., three) of
case studies. This research can be enriched with more case studies with different characteristics
of software modeling. Such a further study could strengthen the validity of the model.

In the multiple case studies, to take the modeling characteristics of the participant, a
guestionnaire was used. A recommendation system using Al techniques might transform a
more-costly-to-implement technique such as a questionnaire into a virtual assistant for project
and program managers implementing policies on software modeling based on a model such as
MAPforES of community experience.

Based on the technology acceptance model (TAM) [95], there might be some reasons, which
cause people to accept or reject technologies and related practices. Davis et al., describes
perceived usefulness as “people tend to use or not use an application (technology or practice)
to the extent they believe it will help them perform their job better” [95]. They continue that
although the potential users think that this technology is useful, they might think that its
practices is too hard to use and that the benefits of usage are out-weighted by the effort of
using it [95]; which is determined by its perceived ease of use. Moreover, it is also claimed
that the limited adoption of modeling and MDE is due to a variety of social and technical
factors [20]. Throughout this study, during the semi-structured interviews, similar situations
were encountered in embedded software development projects for modeling (e.g., tools,
languages, stakeholders). It is planned to study these factors that influence the adoption of
various modeling patterns, specifically the effect of understandability and organizational
resistance [96].

81

MAPTOrES is the first wide-coverage model of software modeling characteristics for
embedded software sector built on extensive input from the industry. The work presented in
this article complements the model development effort by applying the MAPforES model
successfully in three embedded software projects from two organizations. We hope MAPforES
and its applications in the field will establish a useful baseline from which individual and
organizational process improvement studies in embedded systems modeling can grow from.

82

[1]

(2]

(3]

[4]

[5]

[6]

[7]

(8]

9]

[10]

REFERENCES

C. J. Ebert, Capers, "Embedded Software: Facts, Figures, and Future,” IEEE
Computer Society, vol. 42, pp. 42-52, 20009.

J. Schéuffele and T. Zurawka, Automotive Software Engineering: Principles,
Processes, Methods, and Tools: SAE International, 2005.

P. G. Paulin, C. Liem, M. Cornero, F. Nacabal, and G. Goossens, "Embedded software
in real-time signal processing systems: application and architecture trends,"
Proceedings of the IEEE, vol. 85, pp. 419-435, 1997.

M. Lettner, M. Tschernuth, and R. Mayrhofer, "A critical review of applied MDA for
embedded devices: Identification of problem classes and discussing porting efforts in
practice,” in 14th International Conference on Model Driven Engineering Languages
and Systems, MODELS 2011 vol. 6981 LNCS, ed, 2011, pp. 228-242.

D. Akdur and V. Garousi, "Model-Driven Engineering in Support of Development,
Test and Maintenance of Communication Middleware: An Industrial Case-Study," in
International Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2015.

M. A. Vega-Rodriguez, "Design space exploration of embedded systems: A view from
diverse domains," Journal of Systems Architecture, vol. 59, pp. 1113-1114, 2013.

B. Graaf, M. Lormans, and H. Toetenel, "Embedded software engineering: the state
of the practice," Software, IEEE, vol. 20, pp. 61-69, 2003.

M. Broy, "Challenges in automotive software engineering," presented at the
Proceedings of the 28th international conference on Software engineering, Shanghai,
China, 2006.

A. S. Krishna, E. Turkay, A. Gokhale, and D. C. Schmidt, "Model-driven techniques
for evaluating the QoS of middleware configurations for DRE systems,"” in Real Time
and Embedded Technology and Applications Symposium, 2005. RTAS 2005. 11th
IEEE, 2005, pp. 180-189.

C. Walls, Embedded Software, Second Edition ed. Oxford: Newnes, 2012.

83

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

N. Wang, C. D. Gill, D. C. Schmidt, A. Gokhale, B. Natarajan, J. P. Loyall, et al.,
"QoS-enabled Middleware," in Middleware for Communications, ed: Wiley, 2004.

E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche, "The impact of UML
documentation on software maintenance: an experimental evaluation,” Software
Engineering, IEEE Transactions on, vol. 32, pp. 365-381, 2006.

D. Thomas, "MDA: revenge of the modelers or UML utopia?," Software, IEEE, vol.
21, pp. 15-17, 2004.

W. J. Dzidek, E. Arisholm, and L. C. Briand, "A Realistic Empirical Evaluation of the
Costs and Benefits of UML in Software Maintenance,"” IEEE Transactions on
Software Engineering, vol. 34, pp. 407-432, 2008.

R. Heldal, P. Pelliccione, U. Eliasson, J. Lantz, J. Derehag, and J. Whittle,
"Descriptive vs prescriptive models in industry,” presented at the Proceedings of the
ACM/IEEE 19th International Conference on Model Driven Engineering Languages
and Systems, France, 2016.

M. Brambilla, J. Cabot, and M. Wimmer, "Model-driven software engineering in
practice," Synthesis Lectures on Software Engineering, vol. 1, 2012.

J. Cabot. (2009). Relationship between MDAMDD and MDE. Available:
http://modeling-languages.com/relationship-between-mdamdd-and-mde/

(2016). Career Award Talk - Bran Selic. Available:
https://www.youtube.com/watch?v=9qPbGksB3d4

"Diagram,"” ed: Cambridge Dictionary, 2017.

J. Hutchinson, J. Whittle, and M. Rouncefield, "Model-driven engineering practices
in industry: Social, organizational and managerial factors that lead to success or
failure," Science of Computer Programming, vol. 89, Part B, pp. 144-161, 2014.

P. Liggesmeyer and M. Trapp, "Trends in Embedded Software Engineering,"
Software, IEEE, vol. 26, pp. 19-25, 20009.

A. Gokhale, D. C. Schmidt, B. Natarajan, J. Gray, and N. Wang, "Model Driven
Middleware," in Middleware for Communications, ed: Wiley, 2004.

R. France and B. Rumpe, "Model-driven Development of Complex Software: A
Research Roadmap," presented at the Future of Software Engineering, 2007.

84

http://modeling-languages.com/relationship-between-mdamdd-and-mde/
http://www.youtube.com/watch?v=9qPbGksB3d4

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

G. Karsai, S. Neema, and D. Sharp, "Model-driven architecture for embedded
software: A synopsis and an example," Science of Computer Programming, vol. 73,
pp. 26-38, 2008.

H. Espinoza, D. Cancila, B. Selic, and S. Gérard, "Challenges in Combining SysML
and MARTE for Model-Based Design of Embedded Systems,” in Model Driven
Architecture - Foundations and Applications. vol. 5562, R. Paige, A. Hartman, and A.
Rensink, Eds., ed: Springer Berlin Heidelberg, 2009, pp. 98-113.

B. Hailpern, Tarr, P., "Model-driven development: The good, the bad, and the ugly,”
IBM System, vol. Vol 45, No 3, pp. 451-461, 2006.

G. M. Weinberg, Quality software management (Vol. 1): systems thinking: Dorset
House Publishing Co., Inc., 1992,

"pattern,” ed: Cambridge Dictionary, 2017.

(2017, 04/02/2017). Pattern. Available: https://www.merriam-
webster.com/dictionary/pattern

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software: Addison-Wesley, 1998.

B. P. Douglass, Real-Time Design Patterns : robust scalable architecture for Real-
time systems. Boston, MA: Addison-Wesley, 2003.

A. G. Kleppe, J. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise: Addison-Wesley Longman Publishing Co., Inc.,
2003.

M. Petre, "UML in practice,” in 35th International Conference on Software
Engineering (ICSE), 2013, pp. 722-731.

C. Kobryn, "Will UML 2.0 be agile or awkward?," Commun. ACM, vol. 45, pp. 107-
110, 2002.

J. Greenfield, K. Short, S. Cook, and S. Kent, Software Factories - Assembling
Application with Patterns, Models, Frameworks and Tools: Wiley Publishing, 2004.

P. Jarvinen, On Research Methods, 2001.

85

http://www.merriam-webster.com/dictionary/pattern
http://www.merriam-webster.com/dictionary/pattern

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

D. Budgen, A. J. Burn, O. P. Brereton, B. A. Kitchenham, and R. Pretorius, "Empirical
evidence about the UML.: a systematic literature review," Software: Practice and
Experience, vol. 41, pp. 363-392, 2011.

P. Runeson, M. Host, A. Rainer, and B. Regnell, Case Study Research in Software
Engineering: Guidelines and Examples: Wiley Publishing, 2012.

S. T. March and G. F. Smith, "Design and natural science research on information
technology,” Decision Support Systems, vol. 15, pp. 251-266, 1995/12/01/ 1995.

I. Benbasat, D. K. Goldstein, and M. Mead, "The case research strategy in studies of
information systems," MIS Quarterly, vol. 11(3):369, 1987.

R. K. Yin, Case Study Research: Design and Methods: SAGE Publications, 2003.

B. A. Kitchenham, T. Dyba, and M. Jergensen, "Evidence-based software
engineering,” presented at the Proceedings of the 26th International Conference on
Software Engineering,(ICSE’04), Washington DC, USA, 2004.

B. Kitchenham, R. Pretorius, D. Budgen, O. Pearl Brereton, M. Turner, M. Niazi, et
al., "Systematic literature reviews in software engineering — A tertiary study,"
Information and Software Technology, vol. 52, pp. 792-805, 2010/08/01/ 2010.

D. Akdur. (2017, Last accessed: July 01, 2017). Tertiary Study for MDE. Available:
https://docs.google.com/spreadsheets/d/1x81mp7pgd XzRAVOVhFLs8bV32gMbZG
040ZDofmk6lak/

M. Broy, S. Kirstan, H. Krcmar, and B. Schitz, "What is the benefit of a model-based
design of embedded software systems in the car industry?," in Emerging Technologies
for the Evolution and Maintenance of Software Models, ed, 2011, pp. 343-369.

L. T. W. Agner, I. W. Soares, P. C. Stadzisz, and J. M. Simao, "A Brazilian survey on
UML and model-driven practices for embedded software development,” Journal of
Systems and Software, vol. 86, pp. 997-1005, 2013.

G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, "Assessing the State-of-
Practice of Model-Based Engineering in the Embedded Systems Domain," in Model-
Driven Engineering Languages and Systems. vol. 8767, ed: Springer International
Publishing, 2014, pp. 166-182.

G. Liebel, N. Marko, M. Tichy, A. Leitner, and J. Hansson, "Model-based engineering
in the embedded systems domain: an industrial survey on the state-of-practice,”
Software & Systems Modeling, pp. 1-23, 2016.

86

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

M. Grossman, J. E. Aronson, and R. V. McCarthy, "Does UML make the grade?
Insights from the software development community,"” Inf. Softw. Technol., vol. 47, pp.
383-397, 2005.

B. Dobing and J. Parsons, "How UML is used," Commun. ACM, vol. 49, pp. 109-113,
2006.

C. F. J. Lange, M. R. V. Chaudron, and J. Muskens, "In practice: UML software
architecture and design description,” Software, IEEE, vol. 23, pp. 40-46, 2006.

J. Peneva, S. Ivanov, and G. Tuparov, "Utilization of UML in Bulgarian SME -
Possible Training Strategies," Communication and Cognition-Artificial Intelligence,
vol. 23, pp. 83 -88, 2006.

A. Nugroho and M. R. V. Chaudron, "A survey into the rigor of UML use and its
perceived impact on quality and productivity," presented at the Proceedings of the
Second ACM-IEEE international symposium on Empirical software engineering and
measurement, Kaiserslautern, Germany, 2008.

P. Fitsilis, V. C. Gerogiannis, and L. Anthopoulos, "Role of unified modelling
language in software development in Greece - results from an exploratory study,"
Software, IET, vol. 8, pp. 143-153, 2014.

A. Forward and T. C. Lethbridge, "Problems and opportunities for model-centric
versus code-centric software development: a survey of software professionals,” in
International workshop on Models in software engineering, Leipzig, Germany, 2008,
pp. 27-32.

J. Hutchinson, J. Whittle, M. Rouncefield, and S. Kristoffersen, "Empirical
assessment of MDE in industry," in 33rd International Conference on Software
Engineering, Waikiki, Honolulu, HI, USA, 2011, pp. 471-480.

M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio, "Preliminary Findings
from a Survey on the MD State of the Practice,” in Empirical Software Engineering
and Measurement (ESEM), 2011, pp. 372-375.

M. Torchiano, F. Tomassetti, F. Ricca, A. Tiso, and G. Reggio, "Relevance, benefits,
and problems of software modelling and model driven techniques—A survey in the
Italian industry," Journal of Systems and Software, vol. 86, pp. 2110-2126, 2013.

F. Shull, J. Singer, and D. I. K. Sjoberg, Guide to Advanced Empirical Software
Engineering: Springer-Verlag New York, Inc., 2007.

87

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

R. M. Groves, F. J. Fowler, M. P. Couper, J. M. Lepkowski, E. Singer, and R.
Tourangeau, Survey Methodology, Second ed.: John Wiley & Sons, 20009.

J. Linaker, S. M. Sulaman, R. Maiani de Mello, M. Host, and P. Runeson, "Guidelines
for Conducting Surveys in Software Engineering,” 2015.

V. C. Basili, G.; Rombach, D.H., "The Goal Question Metric Approach,” in
Encyclopedia of Software Engineering, ed: Wiley, 1994.

T. Punter, M. Ciolkowski, B. Freimut, and I. John, "Conducting on-line surveys in
software engineering,” in Proceedings of International Symposium on Empirical
Software Engineering, 2003, pp. 80-88.

T. R. Lunsford and B. R. Lunsford, "The Research Sample, Part I: Sampling," J.
Prosthetics and Orthotics, vol. 7, pp. 105-112, 1995.

V. Garousi, A. Coskuncay, A. Betin-Can, and O. Demirdrs, "A Survey of Software
Engineering Practices in Turkey," Journal of Systems and Software, vol. 108, pp. 148-
177, 2015.

D. A. Garvin, Managing quality: the strategic and competitive edge: Free Press, 1988.

D. Akdur, V. Garousi, and O. Demirdrs, "MDE in embedded software industry,
Technical Report," METU 11-TR-2015-55,
https://dx.doi.org/10.6084/m9.figshare.4262990, 2015, Last accessed: Nov. 27, 2016.

I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, "What Industry Needs
from Architectural Languages: A Survey," IEEE Transactions on Software
Engineering, vol. 39, pp. 869-891, 2013.

I. Sommerville, Software Engineering: Addison Wesley, 2010.

D. Akdur, V. Garousi, and O. Demirérs, "Cross-factor analysis of software modeling
practices versus practitioner demographics in the embedded software industry," in 6th
Mediterranean Conference on Embedded Computing (MECO), Montenegro, 2017.

C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering: Springer Berlin Heidelberg, 2012.

P.S. M. d. Santos and G. H. Travassos, "Action research use in software engineering:
An initial survey,” presented at the Proceedings of the International Symposium on
Empirical Software Engineering and Measurement, 2009.

88

[73]

[74]

(78]

[76]

[77]

[78]

[79]

(80]

[81]

(82]

(83]

[84]

S. Baltes and S. Diehl, "Sketches and diagrams in practice,” presented at the
Proceedings of ACM SIGSOFT International Symposium on Foundations of Software
Engineering, China, 2014.

N. A. Karagoz and O. Demirors, "Conceptual Modeling Notations and Techniques,"
in Conceptual Modeling for Discrete-Event Simulation, ed, 2010.

D. Akdur, O. Demirors, and V. Garousi, "Characterizing the development and usage
of diagrams in embedded software systems," in 43rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA), Vienna, Austria, 2017.

A. Nugroho and M. R. Chaudron, "A survey into the rigor of UML use and its
perceived impact on quality and productivity," in ACM-IEEE Empirical Software
Engineering and Measurement (ESEM), 2008, pp. 90-99.

D. Akdur, V. Garousi, and O. Demirérs, "MDE in embedded SW industry-Raw survey
data," https://dx.doi.org/10.6084/m9.figshare.4262972, 2015, Last accessed: Nov. 27,
2016.

V. Bolén-Canedo, N. Sanchez-Maroiio, A. Alonso-Betanzos, J. M. Benitez, and F.
Herrera, "A review of microarray datasets and applied feature selection methods,"
Information Sciences, vol. 282, pp. 111-135, 2014/10/20/ 2014.

(12/09/2016). RapidMiner: Data Science Platform. Available:
https://rapidminer.com/

M. Denscombe, The Good Research Guide: For Small-scale Social Research
Projects: McGraw-Hill Education, 2014.

E. Juliot, "Model Driven Software Development 2.0," in International Advanced
Topics in Software Engineering (ATSEN), Istanbul, Turkey, 2014.

D. Akdur and O. Demirérs, "Multiple Case Studies to Validate Modeling Patterns and
Cultures of Embedded Software Development Projects, Technical Report,”
METU2017.

C. Robson, Real world research, 2nd ed., 2002.

R. E. Stake, The Art of Case Study Research: SAGE Publications, 1995.

89

[85]

(86]

[87]

(88]

(89]

[90]

[91]

[92]

(93]

[94]

[95]

B. A. Kitchenham, S. Linkman, and D. Law, "DESMET: A Methodology for
Evaluating Software Engineering Methods and Tools," Computing and Control
Engineering Journal, 1997.

J. M. Verner, J. Sampson, V. Tosic, N. A. A. Bakar, and B. A. Kitchenham,
"Guidelines for industrially-based multiple case studies in software engineering. ,"
presented at the Third International Conference on Research Challenges in
Information Science, Morocco, 2009.

G. Kahraman and S. Bilgen, "A framework for qualitative assessment of domain-
specific languages,” Software & Systems Modeling, vol. 14, pp. 1505-1526, October
01 2015.

B. A. Kitchenham, L. M. Pickard, and S. Pfleeger, "Case studies for method and tool
evaluation," IEEE Software, vol. 12(4), pp. 52-62, 1995.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. Hoaglin, K. El
Emam, et al., "Preliminary guidelines for empirical research in software engineering,”
presented at the IEEE Transactions on Software Engineering, 2002.

A. Uskarci and O. Demirdrs, "Do staged maturity models result in organization-wide
continuous process improvement? Insight from employees," Computer Standards &
Interfaces, vol. 52, pp. 25-40, 2017/05/01/ 2017.

A. Dikici, O. Turetken, and O. Demirors, "Factors influencing the understandability
of process models: A systematic literature review," Information and Software
Technology, vol. 93, pp. 112-129, 2018.

D. Akdur, "Modeling Patterns and Cultures of Embedded Software Development
Projects," Thesis, Doctor of Philosophy (PhD), Information Systems, Middle East
Technical University (METU),
https://www.researchgate.net/publication/322701453 _Modeling_Patterns_and_Cult
ures_of Embedded Software Development Projects, February 1, 2018.

A. Dorling, "SPICE: Software process improvement and capability dEtermination,”
Information and Software Technology, vol. 35, pp. 404-406, 1993/06/01/ 1993.

(2018, 12/01/2018). CMMI Institute. Available: http://cmmiinstitute.com/

F. D. Davis, "Perceived usefulness, perceived ease of use, and user acceptance of
information technology,” MIS quarterly, pp. 319-340, 19809.

90

http://www.researchgate.net/publication/322701453_Modeling_Patterns_and_Cultures_of_Embedded_Software_Development_Projects
http://www.researchgate.net/publication/322701453_Modeling_Patterns_and_Cultures_of_Embedded_Software_Development_Projects
http://cmmiinstitute.com/

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

O. Kilig, B. Say, and O. Demirdrs, "An Experimental Study on the Cognitive
Characteristics of Modeling Notations,”" ed Advances in Dynamic and Static Media
for Interactive Systems: Communicability, Computer Science and Design, 2011.

F.b. D. Giraldo, S. Espana, and O. Pastor, "Analysing the concept of quality in model-
driven engineering literature: A systematic review," in Research Challenges in
Information Science (RCIS), 2014 IEEE Eighth International Conference on, 2014,
pp. 1-12.

A. Mehmood and D. N. Jawawi, "Aspect-oriented model-driven code generation: A
systematic mapping study," Information and Software Technology, vol. 55, pp. 395-
411, 2013.

S. Stavru, I. Krasteva, and S. llieva, "Challenges of Model-driven Modernization-An
Agile Perspective," in MODELSWARD, 2013, pp. 219-230.

S. B. Tajali, V. D. Radonjic, and J.-P. Corriveau, "Challenges of variability in model-
driven and transformational approaches: A systematic survey,” in 9th Working
IEEE/IFIP Conference on Software Architecture (WICSA), 2011, pp. 294-301.

P. K. Thalanki, "Classifying Research on UML model inconsistencies with Systematic
Mapping," Blekinge Institute of Technology, 2013.

B. Hoisl and S. Sobernig, "Consistency Rules for UML-based Domain-specific
Language Models: A Literature Review," Joint proceedings of ACES-MB 2015-
Model-based Architecting of Cyber-physical and Embedded Systems, p. 29, 2015.

J. Cabot and E. Teniente, "Constraint Support in MDA Tools: A Survey," in Model
Driven Architecture — Foundations and Applications: Second European Conference,
ECMDA-FA 2006, Bilbao, Spain, July 10-13, 2006. Proceedings, A. Rensink and J.
Warmer, Eds., ed Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 256-267.

P. Mohagheghi, V. Dehlen, and T. Neple, "Definitions and approaches to model
quality in model-based software development — A review of literature,” Information
and Software Technology, vol. 51, pp. 1646-1669, 2009.

K. Vanherpen, J. Denil, P. De Meulenaere, and H. Vangheluwe, "Design-Space
Exploration in Model Driven Engineering -An Initial Pattern Catalogue,” in 1st
International Workshop on Combining Modelling with Search- and Example-Based
Approaches, CMSEBA 2014 - Co-located with 17th International Conference on
Model Driven Engineering Languages and Systems, MODELS 2014, 2014, pp. 42-51.

P. G. Gadelha Queiroz and R. T. Vaccare Braga, "Development of Critical Embedded
Systems Using Model-Driven and Product Lines Techniques: A Systematic Review,"

91

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

in 8th Brazilian Symposium on Software Components, Architectures and Reuse,
SBCARS 2014, pp. 74-83.

D. Ameller, X. Burgués, O. Collell, D. Costal, X. Franch, and M. P. Papazoglou,
"Development of service-oriented architectures using model-driven development: A
mapping study,” Information and Software Technology, vol. 62, pp. 42-66, 6// 2015.

T. Kosar, S. Bohra, and M. Mernik, "Domain-Specific Languages: A Systematic
Mapping Study," Information and Software Technology, vol. 71, pp. 77-91, 2016.

A. M. Fernandez-Saez, M. Genero, and M. R. V. Chaudron, "Empirical studies
concerning the maintenance of UML diagrams and their use in the maintenance of
code: A systematic mapping study," Information and Software Technology, vol. 55,
pp. 1119-1142, 2013.

F. Siavashi and D. Truscan, "Environment modeling in model-based testing: concepts,
prospects and research challenges: a systematic literature review," in Proceedings of
the 19th International Conference on Evaluation and Assessment in Software
Engineering, 2015, p. 30.

A. Saeed, S. H. Ab Hamid, and M. B. Mustafa, "The experimental applications of
search-based techniques for model-based testing: Taxonomy and systematic literature
review," Applied Soft Computing, vol. 49, pp. 1094-1117, 2016.

P. H. Nguyen, M. Kramer, J. Klein, and Y. L. Traon, "An extensive systematic review
on the Model-Driven Development of secure systems," Information and Software
Technology, vol. 68, pp. 62-81, 12// 2015.

S. Sobernig, B. Hoisl, and M. Strembeck, "Extracting reusable design decisions for
UML-based domain-specific languages: A multi-method study," Journal of Systems
and Software, vol. 113, pp. 140-172, 2016/03/01/ 2016.

C. A. Gonzalez and J. Cabot, "Formal verification of static software models in MDE:
A systematic review," Information and Software Technology, vol. 56, pp. 821-838,
2014.

L. Shuang, "Formalizing UML State Machines Semantics for Formal Analysis—A
survey (PRELIMINARY VERSION)," 2014.

S. Hansson, Y. Zhao, and H. Burden, "How MAD are we? Empirical evidence for
model-driven agile development,” in 3rd Extreme Modeling Workshop, XM 2014, Co-
located with ACM/IEEE 17th International Conference on Model Driven Engineering
Languages and Systems, MoDELS 2014, 2014, pp. 2-11.

92

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

V. V. G. Neto, M. Guessi, L. B. R. Oliveira, F. Oquendo, and E. Y. Nakagawa,
"Investigating the Model-Driven Development for Systems-of-Systems," presented at
the Proceedings of the 2014 European Conference on Software Architecture
Workshops, Vienna, Austria, 2014.

R. Pretorius and D. Budgen, "A mapping study on empirical evidence related to the
models and forms used in the uml," presented at the Proceedings of the Second ACM-
IEEE international symposium on Empirical software engineering and measurement,
Kaiserslautern, Germany, 2008.

J. M. Perez, F. Ruiz, and M. Piattini, "MDE for BPM: a systematic review," in
Software and Data Technologies, ed: Springer, 2008, pp. 127-135.

H. Javed, N. M. Minhas, A. Abbas, and F. M. Riaz, "Model Based Testing for Web
Applications: A Literature Survey Presented,” JSW, vol. 11, pp. 347-361, 2016.

K. Wakil and D. N. Jawawi, "Model driven web engineering: A systematic mapping
study," e-Informatica Software Engineering Journal, vol. 9, pp. 107-142, 2015.

A. I. E. S. Eldein and H. H. Ammar, "Model-Driven Architecture for Cloud
Applications Development, A survey," 2015.

I. Santiago, A. Jiménez, J. M. Vara, V. De Castro, V. A. Bollati, and E. Marcos,
"Model-Driven Engineering as a new landscape for traceability management: A
systematic literature review," Information and Software Technology, vol. 54, pp.
1340-1356, 2012.

G. L. Casalaro and G. Cattivera, "Model-driven Engineering For Mobile Robot
Systems: A Systematic Mapping Study," 2015.

M. Genero, A. M. Fernandez-Saez, H. J. Nelson, G. Poels, and M. Piattini, "Research
review: a systematic literature review on the quality of UML models,"” Journal of
Database Management (JDM), vol. 22, pp. 46-70, 2011.

J. Jensen and M. G. Jaatun, "Security in model driven development: a survey," in
Availability, Reliability and Security (ARES), 2011 Sixth International Conference on,
2011, pp. 704-709.

A. Khalil and J. Dingel, "Supporting the evolution of UML models in model driven
software development: a survey," Tech. rep., School of Computing, Queen’s
University Kingston, Ontario, Canada2013.

93

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

H. Giese and S. Henkler, "A survey of approaches for the visual model-driven
development of next generation software-intensive systems,” Journal of Visual
Languages & Computing, vol. 17, pp. 528-550, 12// 2006.

M. Mussa, S. Ouchani, W. Al Sammane, and A. Hamou-Lhadj, "A survey of model-
driven testing techniques,” in Quality Software, 2009. QSIC'09. 9th International
Conference on, 2009, pp. 167-172.

F. Valles-Barajas, "A survey of UML applications in mechatronic systems,"
Innovations in Systems and Software Engineering, vol. 7, pp. 43-51, 2011.

J. A. McQuillan and J. F. Power, "A survey of UML-based coverage criteria for
software testing," Department of Computer Science. NUI Maynooth, Co. Kildare,
Ireland, 2005.

A. C. Dias Neto, R. Subramanyan, M. Vieira, and G. H. Travassos, "A survey on
model-based testing approaches: a systematic review," in Proceedings of the 1st ACM
international workshop on Empirical assessment of software engineering languages
and technologies: held in conjunction with the 22nd IEEE/ACM International
Conference on Automated Software Engineering (ASE) 2007, 2007, pp. 31-36.

M. Szvetits and U. Zdun, "Systematic literature review of the objectives, techniques,
kinds, and architectures of models at runtime," Software & Systems Modeling, vol. 15,
pp. 31-69, February 01 2016.

S. Tiwari and A. Gupta, "A systematic literature review of use case specifications
research,"” Information and Software Technology, vol. 67, pp. 128-158, 2015.

M. Nelson and M. Piattini, "A systematic literature review on the quality of uml
models," Innovations in Database Design, Web Applications, and Information
Systems Management, p. 310, 2012.

S. R. A. Meireles and A. C. Dias-Neto, "A Systematic Mapping on Model Based
Testing applied to Web Systems," SAST 2014, p. 51, 2013.

E. Batot, H. Sahraoui, E. Syriani, P. Molins, and W. Sbhoui, "Systematic mapping study
of model transformations for concrete problems,” in 2016 4th International
Conference on Model-Driven Engineering and Software Development
(MODELSWARD), 2016, pp. 176-183.

A. Kaur and V. Vig, "Systematic review of automatic test case generation by UML
diagrams,” in International Journal of Engineering Research and Technology, 2012.

94

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

E. Dominguez, B. Pérez, A. L. Rubio, and M. a. A. Zapata, "A systematic review of
code generation proposals from state machine specifications," Information and
Software Technology, vol. 54, pp. 1045-1066, 10// 2012.

T. H. Haug, "A systematic review of empirical research on model-driven development
with UML," 2007.

S. Hooda, S. Dalai, and K. Solanki, "A systematic review of model-based testing in
aspect-oriented software systems," in 2016 3rd International Conference on
Computing for Sustainable Global Development (INDIACom), 2016, pp. 2944-2949.

M. Shafique and Y. Labiche, "A systematic review of model based testing tool
support,” Carleton University, Canada, Tech. Rep. Technical Report SCE-10-04,
2010.

P. H. Nguyen, J. Klein, Y. Le Traon, and M. E. Kramer, "A Systematic Review of
Model-Driven Security," in Software Engineering Conference (APSEC, 2013 20th
Asia-Pacific, 2013, pp. 432-441.

G. Loniewski, E. Insfran, and S. Abrahdo, "A systematic review of the use of
requirements engineering techniques in model-driven development,” in Model driven
engineering languages and systems, ed: Springer, 2010, pp. 213-227.

S. S. Priya and P. Sheba, "Test Case Generation from UML models-A survey," in
Proc. International Conference on Information Systems and Computing (ICISC-
2013), INDIA, 2013.

M. Aggarwal and S. Sabharwal, "Test case generation from UML state machine
diagram: A survey,” in Computer and Communication Technology (ICCCT), 2012
Third International Conference on, 2012, pp. 133-140.

M. Rashid, M. W. Anwar, and A. M. Khan, "Toward the tools selection in model
based system engineering for embedded systems—A systematic literature review,"
Journal of Systems and Software, vol. 106, pp. 150-163, 2015.

D. Torre, Y. Labiche, and M. Genero, "UML consistency rules: a systematic mapping
study," in Proceedings of the 18th International Conference on Evaluation and
Assessment in Software Engineering, 2014, p. 6.

M. Misbhauddin and M. Alshayeb, "UML model refactoring: a systematic literature
review," Empirical Software Engineering, vol. 20, pp. 206-251, 2013.

95

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

V. Garousi and T. Varma, "A Replicated Survey of Software Testing Practices in the
Canadian Province of Alberta: What has Changed from 2004 to 2009?," Journal of
Systems and Software, vol. 83, pp. 2251-2262, 2010.

L. Wallace, M. Keil, and A. Rai, "Understanding software project risk: a cluster
analysis," Inf. Manage., vol. 42, pp. 115-125, 2004.

D. Akdur, V. Garousi, and O. Demirdrs, "MDE in embedded SW industry-Survey
Form (Questions)," https://dx.doi.org/10.6084/m9.figshare.4262978, 2015, Last
accessed: Nov. 27, 2016.

Project FP6-IP 511731 MODELWARE (MODELIing solution for softWARE
systems), "MDD Maturity Models,"
http://www.cin.ufpe.br/~bbm/files/D2.6%20MDD%20Maturity%20Model.pdf 2014,
Last accessed: Sept. 2016.

A. G. Kleppe, J. B. Warmer, and W. Bast, MDA Explained: The Model Driven
Architecture : Practice and Promise: Addison-Wesley Professional, 2003.

J. Kramer, "Is abstraction the key to computing?," Commun. ACM, vol. 50, pp. 36-42,
2007.

D. Dori, "Why significant UML change is unlikely," Commun. ACM, vol. 45, pp. 82-
85, 2002.

S. Akayama, S. Kuboaki, K. Hisazumi, T. Futagami, and T. Kitasuka, "Development
of a modeling education program for novices using model-driven development,”
presented at the Proceedings of the Workshop on Embedded and Cyber-Physical
Systems Education, Tampere, Finland, 2013.

M. Brandsteidl, K. Wieland, and C. Huemer, "Novel Communication Channels in
Software Modeling Education,” in Models in Software Engineering: Workshops and
Symposia at MODELS 2010, Oslo, Norway, October 2-8, 2010, Reports and Revised
Selected Papers, J. Dingel and A. Solberg, Eds., ed Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 40-54.

S. Flint, H. Gardner, and C. Boughton, "Executable/Translatable UML in computing
education,” presented at the Proceedings of the Sixth Australasian Conference on
Computing Education - Volume 30, Dunedin, New Zealand, 2004.

96

http://www.cin.ufpe.br/~bbm/files/D2.6%20MDD%20Maturity%20Model.pdf

APPENDICES

APPENDIX A — SYSTEMATIC LITERATURE REVIEW — TERTIARY STUDY

In order to investigate RQ1.1.1, the following RQs were raised for this sub-study:

SLRRQ1: How many secondary studies (i.e., survey, SM, SLR) were published on this topic?
SLRRQ2: Which purpose(s) of software modeling and MDE are being addressed, if any?
SLRRQ3: Which benefit(s) of software modeling and MDE are being addressed, if any?
SLRRQ4: Which challenge(s) of software modeling and MDE are being addressed, if any?

Note that the results of SLRRQ2, SLRRQ3 and SLRRQ4 are presented in Section 2.2.

During the search process, four digital libraries (Science Direct, IEEE Xplore, Google Scholar
and Scopus indexing systems) were used. Besides automated searches in these digital libraries,
manual search on referenced articles and personal web pages were performed. The original
RQI1 was “until February 2015”, when the need for RQ1.1.2, RQ1.1.3 and RQ1.1.4 were
arisen. After using its resulting set during survey design (i.e., after using them in our survey
guestions), we extended the publication period to “2017” for the tertiary study (Note that this
tertiary study is an input for the survey questions, hence for the conceptual model, which will
be given in Section 4.1). Notice that since the goal was to get RQ2, RQ3 and RQ4 sets for the
rest of the study (e.g., including survey and the characteristics of a diagram), the corresponding
results are given based on the finalized search strategy including search strings,
inclusion/exclusion criteria, which is given in Table 23.

Table 23 Tertiary Study Search Strategy

Databases searched |Search Engines (Science Direct, IEEE Xplore, Google Scholar, Elsevier Scopus)

Besides automated searches in 4 digital libraries, manual search on referenced
articles and personal web pages are performed.

(model driven OR model-driven OR MDE OR UML OR DSL OR DSML)

AND
(systematic mapping OR SM OR systematic review OR literature
Search Strings review OR SLR OR survey)
Topic Restriction Software + Computer Science
Metadata only (Abstract/Summary & Title Text and Indexing Terms/Keywords)
Search applied to — if not possible, full text was searched
Language Papers written in English

Publication period until 2017 (exclusive)

Accordingly, by using search strings, there were potentially 2436 relevant papers. Then, by
applying exclusion/inclusion criteria, removing duplicates and manually removing “personal
opinion survey” papers, there were 54 papers in the final pool for attribute identification. All
these processes is depicted in Figure 29.

97

Sdence Direct .)
' [

SCF’P” = Manually checking and removing for
"personal opinion survey" 1
Google Scholar 2 '

oms) 7 ey
197 paper / \ g
7/ «flows «flown \ B "

R o g R
'\ : «flow»/ /7
«flown {\ \l/ PI 261 papers // «flown

D = [£
. Application of
Potentially relevant p@)ers (2436) clusi::iinclusion citeriaj

7z N

! e \ «flows
.

IEEE Xplore

Attribute generalization and Initial attributes
iterative refinement

= i
N
1 papers !

Evaluating for Final Pool ’

Figure 29: Tertiary study search process and final map

Note that the data extraction procedure for quality and classification was undertaken at the
same time. Data extraction result table for final map is given in Table 24. (For further details
with respect to keywording, purposes, benefits, challenges in these secondary studies with

their RQs and number of primary studies, see [44]).

Table 24 Tertiary Study Final Map

Type of

secondary
Paper Title Reference study
“Analysing the concept of quality in model-driven engineering
literature: A systematic review” [97] SLR
“Aspect-oriented model-driven code generation: A systematic mapping
study ” [98] SM
“Challenges of Model-driven Modernization-An Agile Perspective ” [99] SLR
“Challenges of variability in model-driven and transformational
approaches: A systematic survey ” [100] Survey
“Classifying Research on UML model inconsistencies with Systematic
Mapping” [101] SM
“Consistency Rules for UML-based Domain-specific Language
Models: A Literature Review” [102] SLR
“Constraint Support in MDA Tools: A Survey” [103] Survey
“Definitions and approaches to model quality in model-based software
development — A review of literature ” [104] SLR
“Design-Space Exploration in Model Driven Engineering —An Initial
Pattern Catalogue ” [105] Survey
“Development of Critical Embedded Systems Using Model-Driven and
Product Lines Techniques- A Systematic Review ” [106] SLR
“Development of service-oriented architectures using model-driven
development: A mapping study ” [107] SLR
“Domain-Specific Languages: A Systematic Mapping Study ” [108] SM

98

Table 24 (continued)

“Empirical evidence about the UML: a systematic literature review” [37] SLR
“Empirical studies concerning the maintenance of UML diagrams and

their use in the maintenance of code: A systematic mapping study ” [109] SM
“Environment modeling in model-based testing: concepts, prospects

and research challenges: a systematic literature review ” [110] SLR
“The experimental applications of search-based techniques for model-

based testing: Taxonomy and systematic literature review ” [111] SLR
“An extensive systematic review on the Model-Driven Development of

secure systems” [112] SLR
“Extracting reusable design decisions for UML-based domain-specific

languages: A multi-method study ” [113] SLR
“Formal verification of static software models in MDE: A systematic

review” [114] SLR
“Formalizing UML State Machines Semantics for Formal Analysis—A

survey” [115] Survey
“How MAD are we? Empirical evidence for model-driven agile

development” [116] SLR
“Investigating the Model-Driven Development for Systems-of-Systems” | [117] SLR
“A Mapping Study on Empirical Evidence related to the Models and

Forms used in the UML” [118] SM
“MDE for BPM: a systematic review ” [119] SLR
“Model Based Testing for Web Applications: A Literature Survey

Presented ” [120] SLR
“Model driven web engineering: A systematic mapping study ” [121] SM
“Model-Driven Architecture for Cloud Applications Development, A

survey” [122] Survey
“Model-Driven Engineering as a new landscape for traceability

management: A systematic literature review” [123] SM
“Model-Driven Engineering for Mobile Robot Systems: A Systematic

Mapping Study ” [124] SM
“Research review: a systematic literature review on the quality of UML

models” [125] SLR
“Security in model driven development: a survey” [126] SLR
“Supporting the evolution of UML models in model driven software

development: a survey ” [127] Survey
“A survey of approaches for the visual model-driven development of

next generation software-intensive systems” [128] Survey
“A survey of model-driven testing techniques ” [129] Survey
“A survey of UML applications in mechatronic systems ” [130] Survey
“A survey of UML-based coverage criteria for software testing ” [131] Survey
“A survey on model-based testing approaches: a systematic review ” [132] SLR
“Systematic literature review of the objectives, techniques, kinds, and

architectures of models at runtime ” [133] SLR
“A systematic literature review of use case specifications research ” [134] SLR
“A systematic literature review on the quality of uml models” [135] SLR
“A Systematic Mapping on Model Based Testing applied to Web

Systems” [136] SM
“Systematic mapping study of model transformations for concrete

problems” [137] SM

99

Table 24 (continued)

“Systematic review of automatic test case generation by UML

diagrams” [138] SLR
“A systematic review of code generation proposals from state machine

specifications” [139] SLR
“A systematic review of empirical research on model-driven

development with UML ” [140] SLR
“A Systematic Review of Model-Based Testing in Aspect-Oriented

Software Systems” [141] SLR
“A systematic review of model based testing tool support” [142] SLR
“A Systematic Review of Model-Driven Security ” [143] SLR
“A systematic review of the use of requirements engineering techniques

in model-driven development” [144] SLR
“Test Case Generation from UML models-A survey” [145] Survey
“Test case generation from UML state machine diagram: A survey” [146] Survey
“Toward the tools selection in model based system engineering for

embedded systems—A systematic literature review ” [147] SLR
“UML consistency rules: a systematic mapping study ” [148] SM
“UML model refactoring: a systematic literature review ” [149] SLR

Answer to SLRRQ1: While designing survey questions (i.e., “until February 2015”), there
were 39 secondary studies, which were inputs for survey. When we extended the period, there
are 54 secondary studies, which were published until 2017. 12 of them are survey, 11 of them
are SM and 31 of them are SLR. The result for RQ1 based on published year, is presented in
Figure 30. It is seen that the empirical evidence papers on this area, i.e., trend on software
modeling and MDE, is increasing to fill the gap on this topic (Note that between 2 years, i.e.,
“until February 2015” and “until 2017”, 15 secondary studies were published, which show
this trend).

S 6 B

§ 5

B : I

& ; 1

L e HRHBHE

= P ean N

e

;t’ 2005|2006 | 2007 | 2008 | 2009 2010|2011 (2012 2013|2014 | 20152016
Survey| 1 2 1 2 1 2 2

uSM 1 1 4 1 2 2

SLR 2 1 1 2 3 3 4 4 6 5

Figure 30: The trend on software modeling for systematic review studies

Answer to SLRRQ2: There are 48 secondary studies, which explicitly mention about the
purposes of software modeling and MDE (i.e., 89% of final map). Since there were different
terminologies to indicate the same purpose, to get a common language and get a catalog,
similar purposes were combined in a single item. (See [44] for all data in specific paper). The
final modeling purpose set is given in Table 3.

Answer to SLRRQ3: There are 46 secondary studies, which explicitly mention about the
benefits of software modeling and MDE (i.e., 85% of final map). Similar benefits were

100

combined in a single item as in the case of purposes. (See [44] for all data in specific paper).
The final modeling benefit sets is given in Table 4.

Answer to SLRRQ4: There are 36 secondary studies, which explicitly mention about the
challenges of software modeling and MDE (i.e., 67% of final map). Similar challenges were
combined in a single item. (See [44] for all data in specific paper). The final modeling
challenge set is given in Table 5.

Apart from these four RQs, which are directly related with this study, in [44], RQ types (e.g.,
existence, description and classification, descriptive and comparative, frequency, descriptive
process, etc.), number of primary studies for each secondary studies, with their before and
after exclusion ratio are presented in details.

101

APPENDIX B — SURVEY DETAILS

Appendix B.1 — Survey design and execution

Sampling method

In this study, even though we wanted to use probabilistic sampling, it was not practically
doable to recruit a large pool of embedded software practitioners due to our limited resource
constraints. As in the survey guidelines (e.g., [61, 63, 64]), we thus used the ‘accidental non-
probabilistic’ sampling [61] and we targeted participants via our industry contacts,
professional social network sites such as LinkedIn, industry events, and forums. Moreover, the
survey was also promoted through SE and academic institutional mailing lists. Besides, we
also encouraged them to distribute the survey to their colleagues. After receiving this non-
probabilistic sampled data, one could possibly perform a-posteriori probability-based
sampling. However, this was also infeasible since survey data were fully anonymous.

The ‘unit’ of interest analysis is another issue in the survey design [60]. The units of analysis
in this survey might be anyone working in the embedded software domain, who individually
and anonymously participated in the survey. Therefore, for all the statistics and analysis that
were reported, these professionals are the unit of analysis and the implications shall be tied to
world-wide community under investigation and neither to companies nor projects. Note that
taking individual embedded professional as the unit of analysis has been considered a
generally acceptable approach in previous surveys reported in the literature (e.g., [150, 151]).

Designing survey questions

Surveys require special considerations [61]. In order to have a survey that would completely
cover the latest trends on software modeling, we benefitted from our tertiary study results,
reviewed the similar surveys, considered factors given in survey guidelines [61], and prepared
a draft set of questions. We conducted a round of peer reviews with nine industrial practitioners
from different industry, different software engineering roles, different experiences and five
different companies, in which our personal contacts have been working. All peer reviews were
conducted face to face and according to their results, we improved four questions (i.e., Q20,
Q25, Q26 and Q27). The final survey questionnaire consisted of four sections, each
corresponding to each of the study RQs, as shown Table 25. The entire survey are not
presented in this paper, but it can be found in an online source [152].

The introduction of the survey is written to attract respondents’ attention. Therefore, the survey
began with an informed consent, which contained the topic of the study, a confidentiality
statement, the expected time to complete the survey and a thank you statement so that the
potential respondents will decide whether or not to drop out of the questionnaire based solely
on the first page. By clicking through the consent statement and submitting the completed
survey, individuals are indicating their willingness to participate.

It is very important to have clear definitions and easy-to-follow instructions in the survey to
get high quality data [61]. The first part of the questionnaire gathered personal and
organizational demographic data. The 10" question investigated how often any informal or
formal software modeling (i.e., sketches and/or models) is used in SDLC by asking “How often
do you use software modeling in your software development life cycle? (informal or formal:
i.e., sketches or models)”. Since any informal usage of modeling was seen as “modeling usage”
in this survey, the aim of this question was to understand the ratio of participants, who did not
use any software modeling. After categorizing this group and made them complete the survey,

102

the questionnaire continued with modeling approaches questions, which aimed at
understanding informal usage of modeling, model-based and model-driven techniques. In
other words, this remaining part aimed at gathering RQ1.1. The terminology, which clearly
explained the difference between model-based and model-driven techniques was given so that
participants could consistently answer subsequent questions:

“Please read the following definitions before proceeding with the rest of the survey.

In terms of terminology, Model Driven Development (MDD) uses models as the primary
artifact of the development process. Usually, in MDD, the implementation is
automatically generated from the models.

Model Driven Engineering (MDE) is a superset of MDD since it encompasses other
tasks of a complete software engineering process like testing and maintenance (i.e.,
documentation).

On the other hand, Model Based Engineering (MBE) is a process, in which software
models still play an important role although they are not necessarily the key artifacts of
the development. For example, designers specify the models (i.e., by using paper or
modeling tool), but then these models are directly handed out to the programmers to
manually write the code (no auto generation).”

With the help of this terminology and given example, we assume that respondents, at least,
can understand the concept of “the automatic generation of an artifact”, i.e., code, or document.
Then, the survey asked about the degree of model-driven techniques in SDLC. In order to
prevent any misunderstanding and potential threat in this terminology, pilot study was applied.
After the pilot study, instead of asking “Do you use any model-driven techniques?”, we
modified this question into “When you write code, document or test, to what degree do you
use model driven techniques? ” by assuming that the respondent can answer whether there is
an automatic generation of some artifact or not.

For each question, the type of answers are also mentioned in Table 25, e.g., single answer from
a list, multiple answers, or a Likert scale (Details of the responses can be found in [152])

Table 25 List of the questions developed and used in the survey

RQ | Survey Questions (and Metrics) Vg2 @ ATSHES
Single Multiple Lik | Fre Likert
answer answers ert e scale
from a could be scal | text (Range
list chosen e fiel | value from
d Never to
Always)
Q1. Please choose the country that you X X
work in.
5 o Q2. What is your highest academic degree? X
é ‘g Q3. What is (are) your university degree(s) X X
=3 g in?
§’ 8 Q4. What is (are) your current position(s)? X X
£ g Q5. How many years of work experience do X
g ¢1 you have in software development?
& g Q11. How many years of modeling X
B9 experience do you have in software
£ & development?
& 9 Q12. Where/how did you learn modeling?
Q6. What is the type of the application(s)
developed in your company?

103

Table 25 (continued)

Q7. What is the target sector of the X X
product(s) developed?
Q8. What is the number of employees X
working in software engineering roles?
Q9. What is the size of your typical X
software development team?
Q10. How often do you use software X
modeling in your software development life
cycle? (informal sketches or formal models)
Q13. What medium do you use to create the X X
sketch or model?
Q14. Which modeling language(s) do you X X
use for modeling?
Q15. Which programming languages do you X X
use with the above modeling language(s)?
Q16. Which modeling environment/tool(s) X X
do you useg, if any?
Q17. When modeling, which diagrams do X X
you use?
Q18. In which phase(s) of software X
development life cycle do you use
modeling?

Q19. When you write code, document or X
test, to what degree do you use model driven
techniques?

Q20. What do you use software modeling X X
and MDE for?
Q21. What is the estimated effort (in X
person-month) of the most representative
MDE project in your company?

Q22. How would you describe your X
company’s maturity in terms of its MDE
usage?

Q23. What have been the motivations X X
(potential benefits) that your company has
considered for adopting MDE?

RQL.1.1

RQ1.1.2

Q24. Based on your experience, to what X X
degree has each of the above motivations
(potential benefits) been achieved?

Q25. What is (are) MDE challenge(s) in X X
your company?
Q26. To what extent do the following X X
problems apply to the MDE
environment/tool(s) that you have used?
Q27. Based on your experience, what do X X
you think about the following statements?

RQL.1.3

Survey piloting and execution

Performing a pilot study before distribution is an important step since it would help preventing
misinterpretations in large-scale data collection of the survey. Pilot studies are carried out by
using the same material and procedures but with a small number of participants from the target
population [61]. Before the pilot study, it was necessary to decide whom to use as participants.
It is recommended to select participants based on differences instead of similarities [38].
Therefore, the survey was firstly piloted by eight colleagues from different industries working
in different software engineering roles, with different experiences and from different nations
(four Turkish, two English, one French and one Taiwanese embedded software professionals).
This was done to ensure that the wording and terminology used is easily understandable and
well-formulated to get high quality data. In order to prevent misunderstandings, which could
lead to invalidity of conclusions, great importance was given to clarifying survey questions

104

and explanations. Given their feedback, the questionnaire was updated by modifying three
questions (i.e., Q10, Q19 and Q23), the terminology given at the beginning of 19" question,
and five pre-given answers set (i.e., Q14, Q23, Q25, Q26 and Q27). The revised survey was
reviewed a second time by five other colleagues with two colleagues, who were participated
in the first pilot study. Therefore, the final version of this survey was reviewed by 13 industry
professionals. After the revisions, the final version of the survey consisted of 27 questions, in
the form of multiple-choice (checkboxes), single-choice (radio buttons) and Likert-scale
answers. Where applicable, free-text areas for additional input were provided to respondents
as “Other”.

To design and execute the survey, we used the Google Forms tool. The ethics approval for the
survey was issued by the Human Subjects Ethics Committee of Middle East Technical
University (METU) in March 2015. The survey was then executed in the period of April-May
2015. The hyperlink of the survey has been distributed to embedded software professionals
via social networks as well as to our network of embedded software professionals working in
all around the world.

Pre-analysis Considerations and Data Validation

The last step of the survey process was to analyze the collected data. Although the title of the
survey, the protocol part of the survey, the invitations and forums entries are emphasizing on
“embedded”, some participants chose just “Desktop applications” or “Web applications” for
Q6 (What are the type of the applications developed in your company?). The answers, which
do not include any “Embedded applications”, were considered out of scope of this survey.
Some companies develop different kinds of applications (e.g., both embedded and desktop);
therefore any answer, which consisted of “Embedded”, was included in the sample. Apart from
that, there were no other criteria for inclusion or exclusion. By applying this criterion, 15
surveys were excluded. After the data validation phase, we had 627 acceptable responses from
27 different countries. To increase transparency, the raw survey data is made available online
[77] for other researchers to validate and replicate. Notice that to ease the analysis in [77], we
used abbreviations (i.e., Q18 asks “In which phase(s) of software development life cycle do
you use modeling?”, but in [77], we shortened the question and used “SDLC”); therefore, the
wording used in Table 25 is not the same as in [77]. Considering that no incentive was offered
to the participants, it is interesting to see that the number of participants is quite high in
comparison to previous related surveys.

Appendix B.2 — Results

In this part, a subset of the survey is reported. All other remaining answers in the survey are
accessible from the technical report [67].

Demographics

The first survey question asked respondent about their geographical location (Q1). The goal
was to reach out to as many countries as possible where there is a presence of embedded
software industry. The final dataset had respondents from 27 different countries distributed in
all the continents. Figure 31 shows the world heat-map, and also the distribution of responses
by continents, showing that most of the responses originating from Europe (66%), followed
by Asia (17%) and America (14%). Of course these data do not provide any information in
relation with relative sizes of the embedded software industry in different continents. Due to
researchers’ location (i.e., Turkey), the ratio of European respondents is higher than others.

105

nnnnnnn

nnnnn

Brazs

Europe Asia America Australia Africa

Figure 31: Survey — Countries and geographical distribution of respondents

Respondents were asked about their highest academic degrees (Q2). The result shows that 50%
and 11% of respondents have a Master’s and PhD’s degree respectively. 39% of respondents
have Bachelor’s degrees. Only three respondents (0.5%) reporting to have High school or
lower degree, denoting that the embedded software domain is demanding in terms of
background knowledge. Figure 32 shows that our dataset includes more PhD and MSc holders
than our expectation, perhaps denoting that the modeling in embedded software is demanding
more combination of academic disciplines (i.e., an embedded software engineer whose BSc is
in Electrical/Electronics Engineering and MSc is in SE).

PhD s 10,7%
MSc 49,9%
BSc 38,9%

High School or lower § 0,5%

Figure 32: Survey - Highest academic degrees

Q6, in which the type of the applications developed was asked, is the only question, which is
used for inclusion or exclusion of data points gathered from the respondents. In this multiple-
response question, multiple type of application could be chosen, e.g., a company can develop
both embedded and desktop applications. 77% of participants reported developing “Embedded
applications and 13% of participants both “Embedded” and “Desktop” applications. Some
participants used the free-text area as “Other” (10% of participants) to explicitly indicate their
type of applications developed in their company. Some responses (e.g., “Smart TV
applications™) are also counted to be in the embedded domain and included in our dataset.

To get a sense of the size of the companies, instead of asking the size of the company (in order
to eliminate non-engineering roles as technicians, office workers, etc.), the number of
employees in SE roles was asked as Q8. Results are shows in Figure 33. A good mixture of
participants from different ranges was also present in our survey pool. By this way, a wider
spectrum of inputs in terms of number of employees in SE roles in our analysis were covered.

106

60%

40%

20%

o —] —]

1-10 people 11-100 people 101-200 people 201-500 people 500+ people | don't know

Figure 33: Survey - Number of employees in SE roles

Software Modeling and MDE-related Questions

Q16 was a multiple-response question, in which modeling environments/tools were asked. As

seen in Figure 34, the majority of respondents use “Eclipse-based” tools, which is followed by

“Microsoft Visio”. About 7.2% of the respondents indicated that they do not use any modeling

environment or tool, which almost all came from users which reported not using PC-based

tools. Again, among the “Other” answers for this question, respondents mentioned modeling

tools such as: Papyrus, MaTelLo, argoUML, MetaEdit+, Astah, and Artop (For the details of
“Other” answers, please refer to [67]).

Eclipse-based tools

Microsoft Visio

Enterprise Architect

In-house tool

IBM Rational Family

MATLAB/Simulink/Stateflow

StarUML

Visual Paradigm

IBM WebSphere Business Modeler

Artisan Studio

ARIS Business Process Analysis Platform

None

Other

54,8%

Figure 34: Survey - Modeling tools

[46] stated that survey studies are needed to investigate the types of UML tools used in
practice. As a comparison, in the dataset of the survey reported in [47], the majority (%50)
used Matlab/Simulink/Stateflow, followed by Eclipse-based tools, Enterprise Architect, in-
house tools and IBM Rational Software Modeler.

Q19 investigates how often the participants use MDE. The participants, who mentioned not
using MDE at all, i.e., the “Never” option (59.5% of all participants) are either model-based
or sketch users; and the remaning (29.5% of all participants) are model-driven users. The
results are shown in Figure 35.

Most of the time (>75%)____ Always (100%)
5% 1%

Often (>=50%)

19%
Sometimes ~/' __ Never (0%)

9%

Figure 35: Survey - Degree of using MDE

The results shows that the MDE usage ratio is slightly more than the ratio reported in [46], in
which 15.8% of its participants reported knowing MDE and using it. This study reflects a

107

world-wide picture without limiting itself to specific region (e.g., Brazil) and includes more
participants from 27 different countries in five continents. Moreover, time has passed after
[46] was executed and most probably, the embedded software industry has gradually further
learned the MDE practices more and its usage ratio has increased. Therefore, this difference
might be explained with the participants’ demographics and the possible increasing popularity
in MDE practices in the embedded software industry.

Participants were then asked to describe their company’s maturity in its use of MDE (Q22).
We were aware of several existing maturity models for MDE, e.g., [153] and [154]. [153]
seems to be the most comprehensive maturity models in this context. In choosing a maturity
model to be used in the survey, there were two criteria: (1) using the maturity model should
not lead to having many questions which would negatively impact the response rate of our
survey, and (2) the maturity model should be comparable to existing measurements in the
reported surveys. Due to this, the maturity model was adopted as shown in Figure 36. The
majority of the participants (57%) are in the Level 4, indicating that they have completed
multiple MDE projects. 10% of participants reported that they have the first significant project
on MDE (just finished); whereas 6% are in initial exploration phase and 10% are in the
prototyping phase of MDE. On the other hand, 9% of participants reported an extensive
experience of MDE on many projects and/or over many years.

I don't know
Level 5: Extensive experience of MDE on many..
Level 4: Multiple projects completed
Level 3: First significant project
Level 2: Initial exploration
Level 1: Prototyping

57%

Figure 36: Survey - Maturity of MDE usage

According to [46], since it only focused on UML, 48% of the respondents reported its use as
an initial exploration of MDE with UML and only 21% confirmed the development of several
complete projects using UML, whereas the others mentioned its use as a first experimental use
(13%) and first significant project (17%). On the other hand, concerning the MBE experience
in [47], many participants (41%) are well experienced with more than 3 years of usage;
whereas 36% state that they have moderate experience and only 23% are new in the field of
MBE.

Since the terminologies used in these two studies are different from each other, we want to
categorize them in similar groups. According to that categorization, we assume that “initial
exploration” in [46] is in the same category in “new” in [47]; “first experimental use and first
significant project” in [46] is in the same category in “moderate experience” in [47]; and finally
“several complete projects” in [46] is in the same category in “well experienced” in [47]
(which is our both “multiple projects completed” and “extensive experience” categories). The
maturity level comparison depending on this categorization is depicted in Figure 37. As it can
be seen, we can say that maturity level has changed (and increased) depending on either time
or generalization of geographical area (i.e., [46] was executed at 2011 in Brazil and [47] was
very recent in Europe). Notice that, by no means, these data indicate that the popularity and
the usage of MDE have increased, but it gives an insight about its trends.

108

m This survey MBE experience in (Liebel et al., 2014) MDE with UML in (Agner et al., 2013)

Level 4 & Level 5: Multiple projects completed / Well %

experienced 21% 41%
Level 3: First experimental use & First significant project |EEEEE 10% 36
OR Moderate experience 30%
L. . I 16%
Level 1 & Level 2: Initial exploration OR New 23% o
48%

Figure 37: Survey - MDE/MBE maturity level comparing with related works

In Q26, as a both multiple-response and 5-point Likert-scale question, participants were asked
about the degree to which the given problems are applied to their MDE environment/tool. All
responses are given in Figure 38, whose x-axis indicates the response percentage (In the figure,
red and orange bars indicate the existence of such a problem; whereas green-based bars
indicate that there is no such an existence. On the other hand, neutral responses are depicted
with yellow bar, and “not applicable” answers are depicted with grey bar).

Notice that MDE environments/tools problems are directly related with what MDE is used for
(Q20) hence “not applicable” answers (e.g., for the respondents who use MDE for only
“documentation generation”, “difficulties with code generation capabilities” is not applicable).

Difficulties with model-level debugging | ; ; ; ; ; ; ; ; NotApplicable
Many usability issues in its editor
. T TR R E R I m Strongly
Lack of model checking capabilities | e — % Disagree
Difficulties in taking technical support | | ——— Disagree
High effort for training \
g eqe . 7 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Neutral
Back/Forward compatibility issues. | | | | | | | ‘ ‘ ‘
Difficulties with traceability support | | | | | | | | | ‘ Agree
Difficulties with version management I | | | | | | | | ‘ \
Difficulties with code generation capabilities , ‘ ‘ ‘ ‘ ‘ ‘ L IISAtroneg
T T T T T T T T T 1 gl’ee

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

Figure 38: Survey - Problems with MDE environments/tools

According to [47], tool-related problems were reported to be the followings: many usability
issues with the tools, difficulties with version management, difficulties of integration with
legacy code, impossible/difficult to customize the tools, lack of model checking capabilities
and difficulties with code generation capabilities. Such findings are quite similar to our results.

Q27 investigated the impacts of MDE on model-driven code generation and model-
based/driven testing as well as the complexity aspects of MDE. By applying a similar design
to [56]'s "paired questions", in which they aimed to explore the balance between the types of
positive and negative effects of MDE, participants were asked about the consequences of
MDE.

Due to the growing complexity of software, it is generally agreed that the only realistic way
to manage this complexity is using appropriate methods of abstraction with modeling [155]
and model-driven code generation is an important aspect to improve productivity in MDE [46].
However, an interesting result in [55] is that participants working on real-time systems agree
that their organizational culture does not endorse software modeling due to automatic code
generation. Similarly, as in [50], UML is too complex or according to [51], there are lots of
UML complexity problems as reported in previous studies (e.g., [13, 34, 156]). In this
question, to address the balance, for example, in model-driven code generation part, the first

109

statement mentions about

the possible positive consequences of MDE on “abstraction”,

whereas the second statement mentions about the possible negative consequences of MDE on

“abstraction”.

Similar approaches are applied for both model-based/driven testing and

complexity. As seen in Figure 39, all responses are depicted according to response percentage
(in y-axis) and the mean value is also presented with its corresponding color at the below of

each statement.

Model-driven Code Generation

The developer does not worry about

implementation details

with the appropriate level of abstraction

80%
70% +
60%
50%
40%

The developer loses the domination and
the control of the code, which might
decrease software engineering skills

80%
70%
60%
50%
40%
30%
20%
10% -

If code generation is synchronized with
other artifacts (i.e. document, test driver),
MDE benefits are maximized

80%
70% |
60% -
50%
0%
30%
20%
10%

L

i % ‘
%

30%
10%
DCﬁ:l:dy Yes Neutral No

Mean (I S O S |

Model-based/driven Testing

It makes easier to develop
and execute test cases

50% 50%

40% 40%
30% 30%
20% 20%
10%

%
Definitely yos Neutral No
Yes

Mean L 14 | |

Complexity

Modeling reduces the design
complexities

80%
70% |
60% |
50%

40%
30%

Dcﬁmtcly

It supports test automation

10% -+

Definitely voo Neutral No Pefinitely
Yes No

9% -
Definitely .
Yes

.

Definitely Neutral ~ No
Yes Yes Neutral

Definitely
No No

\ L ! 1 ! \

It helps to start test and
its design earlier

It requires significant additional

by generating test scripts time to model and validate them

50%
40%
30%

\
|
1 20%
| 10%
|

0%

Definitely yoo Neutral No Definitely yos Neutral No Definitely
Yes Yes No

{ I ™ E——

For the user of MDE tool, the goal should be
"visualization of models" without concerning about
the strict/formal notations of modeling languages

b

Modeling languages' notation (e.g. UML)
are too complex to learn and apply

80%
70%
60%
50% -
40%

20%
10%

80%
70%
60%
50%
40%
30%
20%
10%

20%

10%

0% :
Definitely yos Neutral No
Yes

Mean L gl | |

Definitely Yes:2 Yes:1

0% A 0%

Deﬁynitc]y Yes Neutral Deﬁmtely Yes
es

No Definitely
No

Neutral No Dcf"‘“d)’

Neutral:0 No:-1 Definitely No:-2

Figure 39: Survey - Consequences and complexity aspects of MDE

Summary
RQ1.1.1 - Summary of the

current state of modeling: Software modeling (either formal or

informal) is widely used by many embedded professionals (89%). Although there is a wide
spectrum in terms of the latest software modeling approaches, languages and tools used by
practitioners in different industrial sectors, the C programming language, UML (as the primary
modeling language), and Eclipse-based tools seem to be the most popular choices.

110

As expected, different engineers and companies use software modeling approaches in varying
degrees, which usually depends on their experience and project needs. Software modeling is
conducted from informal sketches (on paper or by using a modeling tool) to formal models
using sophisticated modeling tools.

The majority of respondents use UML. However, depending on the type of industrial sector, a
general-purpose modeling language such as UML is usually not sufficient to meet the specific
requirements and other modeling languages are used in those cases, e.g., the AUTOSAR
language (in “Automotive & Transportation”), models based on the Markov chains (in
“Consumer Electronics™), and various other DSLS (e.g., AADL for “Defense & Aerospace”).

A variety of modeling tools are used, the most popular ones being the “Eclipse-based” family
of tools, followed by “Microsoft Visio”, where the ratio of “Other” answers for this question
is ~18%.The respondents, who use UML, use different diagrams to varying levels. The most
used diagram types are sequence diagrams, state-machine diagram, and class diagram. The
majority of respondents use modeling in the systems/software design phase, followed by
implementation and requirements/systems analysis phases of SDLC.

RQ1.1.2 - Summary of the current state of MDE and its adoption: Notice that ~30% of all
participants use MDE approaches. The respondents reported that they use software modeling
and MDE for mostly documentation and code generation, and then for understanding and
analysis the problem domain at an abstract level.

To assess MDE maturity levels, we adopted from the literature a 5-level maturity model. Based
on that model, we found that the majority of the participants (57%) are in the Level 4,
indicating that they have completed multiple MDE projects. This is a generally good sign for
the embedded software industry. The other aspect that we explored in terms of the current state
of MDE and its adoption was the motivations for adopting MDE. The top motivators were

99 ¢ EEANTI

“cost savings”, “shorter development time”, “reusability” and “quality improvements”.

RQ1.1.3 - Summary of the achievements, challenges and consequences of using MDE: In
terms of achievements and benefits of MDE, “cost savings”, “ensuring source code & design
model compatibility”, and “shorter development time” were reported the most. In terms of
challenges, tool support, and more specifically difficulties with model-level debugging and
usability issues of tools were stated as the most impeding issues.

In terms of positive consequences and impacts, model-driven code generation was generally
reported to be a beneficial outcome of MDE. Many respondents believed that model-
based/driven testing makes it easier to develop and execute test cases by also supporting test
automation via test scripts; however, although it helps to start to test and its design earlier; it
requires significant additional upfront efforts to model and validate them. The embedded
software community largely believes that modeling reduces design complexities and modeling
languages are not that complex as reported in many studies.

Appendix B.3 — Implications for Practitioners, Researchers and Educators

Implications for practitioners:

MDE is popular in the embedded software industry and benefitting from what others are
doing: We found that software modeling is widely used (89% across the participants’
population), across a diverse range of embedded software industries to better handle the
growing complexity of their software-intensive products. Embedded software professionals

111

use different modeling languages, programming languages, modeling environments with
different motivations and face different challenges. By looking at the achievements and
challenges of MDE, this empirical evidence will help embedded software professionals, who
are thinking about adopting MDE in their projects, to know common practices other adopted
for their context. In other words, they can use modeling and MDE selectively according to
their needs (i.e., motivations or SDLC phases in which modeling is used)

There is a wide variety of practices, motivations and tools: Although we consulted with several
industrial practitioners and used our personal industrial experiences when designing the
closed-ended questions in the survey, we had a lot of “Other” answers than we expected (e.g..,
modeling language (See Q14), programming language (See Q15) or modeling tool (See Q16)).
This showed that there is a wide spectrum of in terms of the technology used for software
modeling and our results might also help software professionals to get awareness of these new
technologies.

Need for better tool support: Tool support is one of the most encountered MDE challenges
(See Q25). We have also observed several shortcomings in terms of tool support (See Q26).
Supporting MDE with appropriate tools increases modeling achievements. Therefore, we
suggest MDE tool vendors to invest more efforts in development and improvement of these
tools and including the features that practitioners mentioned in this survey (such as “model
verification /validation” and “model quality”).

Implications for researchers:

Need for more MDE techniques across all SDLC phases: In Q18, we found that the majority
of respondents use modeling in the systems/software design phase, implementation and
systems analysis phases. Modeling is used not that widely for integration and testing, although
there are lots of academic advances and novel techniques in these areas. This makes us think
whether there are issues which decrease the practical application of those techniques in
industrial settings. Researchers are encouraged to look into these issues.

Focusing on what industry uses the most: Documentation, code generation and understanding
of problems at higher abstract levels were reported to be the most popular reasons for using
MDE. Thus, it is recommended that researchers work on developing more industry-relevant
tools and techniques in these areas.

Addressing the MDE challenges: Tool support and modeling expertise in the companies were
the most encountered challenges. Researchers can work to develop better research-prototype
tools and also collaborate with industry to improve modeling expertise of engineers.

Implications for educators:

Improving the software modeling educations: Our results also have implications for software
modeling educations, e.g., [157-159], and educators. Our survey results suggest implications
for the way in which software modeling is taught (from Q12). Some respondents (especially
the electrical and electronics engineering graduates) reported that they have mostly learned
software modeling after getting the job or employment (i.e., after graduation, during the job
or with some training). Some respondents who were computer and software engineering
graduates also reported that they have learned some modeling techniques during their
undergraduate studies, but not at the application level in the industrial context.

MDE is not just the analysis and design phase: A typical university SE course teaches a top-
down fashion, in which models are first developed for analysis and then refined into design,

112

implementation and test phases of SDLC. In most software modeling courses, the students
study how to design and develop a software system using software modeling techniques, but
the focus is generally on the analysis and the design phases and there is a missing part while
translating these software models into executable code. Extensions of these courses could
focus on the important concepts in MDD, the state-of-the art and practices of MDE
approaches, and the corresponding challenges in software modeling projects. Therefore, we
believe that the given courses on modeling (or the curriculum) might be updated or enhanced
after a further analysis of the results in our survey, which suggest topics that could have been
widely covered or emphasized.

Appendix B.4 — Limitations and Threats to Validity

Construct validity: “Construct validities are concerned with the extent to which the objects of
study truly represents theory behind the study” [71]. In other words, did this survey measure
the real-world software modeling approaches in embedded software industry or not. Data were
collected from different sources (different countries, different industrial sectors, etc.) in order
to avoid mono-operation bias.

When people feel being evaluated based on what they think, they might deflect their answers.
In order to mitigate these, participants were informed prior to the survey that our motivation
was to take a snapshot of the embedded software industry and that we will not collect any
identifying information. Therefore, for the sake of objectiveness, the survey is completely
anonymous.

In the measurement strategy, what was done was common with other survey studies—counting
the votes for each question and then making statistical inferences. It is believed that results
based on such voting data can, to a certain extent, reflect the opinions of the majority of
embedded professionals.

Last but not the least is the issue and definitions of MDE vs. MBE as understood by that
participants. This threat was tried to be reduced by making sure the participants understood
and distinguished the terminologies by providing them the definitions mentioned by [16] (See
[152]). In order to prevent any misunderstanding and potential threat in this terminology a
pilot phase of the survey in which several practitioners filled the survey was conducted and
then we met with them to assess their common understanding of the terminologies regarding
MDE, MDD and MBE. However, the definition provided by [16] sadly still leave room for
subjectivity and we could not come up with better definitions at 2015, while designing survey
guestions. Thus, this issue stays as a potential threat, e.g., a given practitioner might in fact
use MBE, even though s/he stated to use MDE. Moreover, although there was no specific
feedback on the pre-given answer set for some items (i.e., “model checking capabilities”,
“M2M transformation”), as the terms have not been explicitly specified, there might be
different interpretations and we could not be sure that the all respondents have the same
understanding.

Internal validity: “Internal validity reflects whether all causal relations are studied or if
unknown factors affect the results” [71]. Using a pilot study improved instrumentation. The
survey took approximately 2-10 minutes to fill out depending on the modeling usage type (i.e.,
for no modeling usage, it takes ~2 minutes) and was intended to be filled out once by every
participant. This reduces the likelihood for learning effects. Moreover, since the wording and
terminology used in the survey should be easily understandable to get high quality data and to
prevent misunderstandings, which could lead to invalidity, the pilot includes embedded

113

software professionals with different native languages (English, Turkish, French and
Taiwanese), different software engineering roles and different experiences.

External validity: “External validity is concerned with the extent to which the results of this
study can be generalized” [71]. In order to decrease the effect of possible dominant participant
number in a specific sector due to authors’ previous and current work experiences’ network
(i.e., defense & aerospace, consumer electronics, academia), the survey has been distributed
to embedded software professionals via various social network sites in all around the world
for different industrial sectors. Therefore, we have done our best to reach the participants with
a variety of different demographics representative for the embedded software industry. The
sample size is quite high compared to previous surveys. While we did our best to achieve an
even geographical distribution, the samples were mostly based from Europe (66%), followed
by Asia (17%) and then the Americas (14%). Due to researchers’ location, ~40% of
respondents are from Turkey, which has may led to bias in the results. Nevertheless, note that
non-probabilistic sampling design was used and thus external validity is limited. To address
this, demographic information of the participants and companies were presented so that the
readers will be able to evaluate the applicability in different contexts.

Conclusion validity: “Conclusion validity of a study deals with whether correct conclusions
are reached through rigorous and repeatable treatment” [71]. This study was designed by
one author, who has both researcher and practitioner hat and two other researchers from two
different institutions; therefore the risk for “fishing” on the results is reduced. It was attempted
to conclude that the modeling approaches in embedded software industry have organizational
and economical aspects as well as purely technical ones. For each RQ, the bias by seeking
support from the statistical results was reduced. Thus, all the conclusions in this survey are
strictly traceable to data. Moreover, to increase transparency, the raw survey data is made
available online [77] for other researchers to validate and replicate. Furthermore, the reliability
of this study was improved by conducting pilot studies prior to the survey execution.

114

APPENDIX C — PRE-INVESTIGATED MODELING PATTERNS’ VISUALIZATIONS

In order to show the necessity of generating a new derived attribute on the existing survey
data, “modeling languages” vs “modeling languages set” is a good example. If the bars stacked
chart of “purposes set” and “modeling languages” is depicted, there are lots of combinations
of modeling languages as seen in Figure 40 (Notice that “purposes” were used to generate
“purposes set”, which includes four choices: model-driven with code generation or MBT,
model-driven without code generation or MBT, no model-driven with documenting design
and no model-driven without documenting design. See Section 4.3).

M ModelDrivenPurpose WithCodeGenOrMBT || NoModelDrivenPurpose WithDocumentingDesign
7] ModeIDrivenPurpose WithoutCodeGenOrMBT | | DrivenPurpose WithoutI ingDesign

Purpose(s) Set

0 10 20 30 40 S0 60 70 80 9 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

UML, Sketch/MNo formal modeling language
g QG%L

Donsin Specific Language (DSL) (provided by tool provider or yo.
UL Any Business Process Modeing (BPM) languages such
UML, Any UML extensions (profiles) such as Modeling and Analys..
UL, Any UML extensions (profiles) such as Modeling and Analys..
UML; Any LML extensions (profiles) such as Modeling and Analys..
UML, Any ML extensions (profiles) such as Modelin? and Analys.
UML, Doman Specmc,Lan%uage(L) c(xwvuded by fool provider .
UML, Any UML extensions (profiles) such as Modeling and Analys..
UML, Domain Specific Language L) (provided by fool provider ...
UML, Domain Specific Language (DSL. ovided by tool provider ..
UL, Any UML extens!ons?pfoﬂles such as Modeling and Analys.
UML, Any UL _extensions (profiles) such as _Modelln? and Analys...
UML, Domain Specific Language (DSL) (provided by fool provider ..
UM, Any LWL extensions%pmﬁles) such as Modeling and Analys
ML, Sketch/No formal modeling language, Systems Modeii...
UML, Domain Specific Language (DSL? (provided by locWﬁvngirDL
UML, Any LML extensions (profiles) such as Modeling and Analys..
UML, Any UML extensions (profiles) such as Modeling and Analrs...
UML, MATLAB modeling utiities
(ML Sketchio formal modelng langudge Any Business Proce
UNL, Any UL extensions (profiles) such as Modeling and Analys...
UML, Any UML extensions (profiles) such as Modeling and Analys .
SketchMNo ing languagé {

formal mo

UML, Any UML extensions spmﬁles such as Modeling and Analys...
UML! Any UML extensions (profiles) such as Modeling and Analys. -
UML, Domain Specific Language (DSL) (provided by fool provider ..

UL, Domain Specific Lanﬁuage DSL] {provided by tool provider ...

UnL, MATLAB modeling utilities, Sketch/Mo formal modeling language - I
UML, Markov Chain Markup Language

such as Modeling and Analys...

UM, Any UNL extensions (profiles) such as Modeling and Analys..-
L. Doman Specific Language (DSL) (provided by ool provider
Domain Specific Language (DSL) (provided by tool provider or yo...
cl formal modeling fanguage, Any iness Proce..

UML, Sketch/No formal modelln‘g‘language Service Orient...

UML, Any UNIL extensions (profiles) such as Mcdeiing and Analys...
UML, Any UL extensions (profiles) such as Modeling and Analys..
U Any UL extensions (profies) such as Iodeing and Analys. .
Any UML extensions (profies) such as Modeling and Analysis ...

UL, EMF
UML, Domain Specific Language }DSL} provided by tool provider ...
UNML, Domain Specific Language (DSL) (provided by tool provider .
UML, Any LML extensions as Modeling and Analys...
umL, Arﬁ‘ UL extensions (profiles) such as Modeling and Ana(!‘ys..
ML, SketchMo formal modeling language, Systems Model...

UML, Any UML extensions (pmﬁlesgssueh as elin? and Analys.
UML, Domain Specific Language (DSL) (govlded by fool provider ..
MATLAB modeling uities, Systems lodeling Language (SystiL)
Domain Specific Langua|ge [0S § rovided by tool provider or yo...

Modeling Language(s)

Any Business Process Mod M) languages such as Busine...
Domain Specific Language (D! provided by tool provider or yo..
Domain Specific Language (DSL) (provided by tool provider or yo...

UNL, Any DML extensions (profiles) such as Modeling and Analys..
UML, Domain Specific Language (DSL) (provided by tool provider ..

UL, 'Any UML extensions (profiles) such as Modeling and Analys_..
UML, Domain Specific Language (DSL) (provided b)r"?o i
UML, Domain Specific Language L

UML, Any ML extensions (profiles) such as Modeling and Analys..

such as Modeling and Analys...

ML, MATLAB modeling utilities, Sketch/No formal modeling languag.

UNL, Any UNIL extensions (profiles) such as Mcdelln? and Analys... {1
UL, Domain Specific Language (DSL) (provided by fool provider
Domain Specific Language (DSL) (provided bmol provider or yo..
UML, Any DML extensions (profiles; leling and Analys...
UML; Any UML extensions (profiles,
UML. Any UL extensions (profiles) such as Modeling and Analys
UML, Any UML extensions (profiles) such as Modeling and Analys... { il
UNL, MATLAB modeing s, Systems Iodeing Language (SysiiL

UL, Domain Specific le?’auage (DSL) (providéd by tool provider

suchash
such as Modeling and Analys. .

IL, Systems Modeling Lan?ualge (SysiL) 1l
UML, Domain Specific Lanlguage (DSL)’mwvlded by ool provider ...
MATLAB modeling utilities, Sketch/No formal modeling language
UML, Domain Specific Language (DSL. ovided by tool provider .

UML, Domain Specific Lanw DSL) (provided by tool provider
UML, MATLA mdelr\gmms,ﬁU}'Ogﬁ;
Y

UML, Domain Specific Langua e(DSL)(govided by tool provider ... {|@

UML, Service Oriented Architecture Modeling Language (Soahll)

UML, Arly UML extensions (profiles) such as Modeling and Analys
UML, Any UL extensions (profiles) such as Modeling and Analys...
UML, Any UML extensions (profiles) such as Modeling and Analys..

Figure 40: Bars Stacked Chart- “Purposes Set” vs “Modeling Languages”

However, whenever a derived attribute as a “modeling languages set” is used as a y-axis of
the previous bars stacked, the output is as in Figure 41.

115

[l ModeIDrivenPurpose WithCodeGenOrMBT || NoModelDrivenPurpose WithDocumentingDesign
I ModelDrivenPurpose WithoutCodeGenOrMBT I NoModelDrivenPurpose WithoutDocumentingDesign

Purpose(s) Set

0 10 20 30 40 S0 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270

Sketch/NoFormalModeling
+ UML

Only UML

Only DSL-like

+ DSL-like

Modeling Language(s) Set

Sketch/NoFormalModeling
+ UML
+ DSL-like

Only Sketch/NoFormalModeling

Sketch/NoFormalModeling
+ DSL-like

Figure 41: Bars Stacked Chart- “Purposes Set” vs “Modeling Languages Set”

After generating three derived attributes (i.e., for purposes, modeling languages and medium
types) as reported in Section 4.3, the scatter chart for modeling languages set versus medium
types set with purposes set color column is depicted as in Figure 42.

116

M ModelDrivenPurpose WithCodeGenOrMBT NoModelDrivenPurpose WithD ingDesign

[ModelDrivenPurpose WithoutCodeGenOrMBT I NoModelDrivenPurpose WithoutD: ingDesign
Purpose(s) Set
T
e ® ®
°
B o,
Sketch/NoFormalModeling S &00 [Ny .O
+ DSL-like % & z)' . ® 2
c 9
[} o
& Q
o o
P 50
o 'o:o: L0
Only Sketch/NoFormalModeling 2 ‘.. 00
b
s %o
® e
e
o %o
L3 °
Sketch/NoFormalModeling o0
+ UML ° 8% o
+ DSL-like 8 °
. Fop
& o @
z
)
S o°
E UML
S + DSL-like %
&
o
e
H
2 o
(e}
(=}
Only DSL-like
[}
e ©
0‘3
Only UML o 62
o
. o
. &
[}
[} °
o 7 e
o o ®
Sketch/NoFormalModeling Po e
+UML o *OoRR. 5
Cl ‘%0 . .
L é%oc ®
o
fo) a
Analog media usage == Digital media usage Only Analog media

Digital media usage > Analog media usage (paper or white/blackboard usage)

Medium Type(s) Set

Figure 42: Scatter Chart- “Modeling Languages Set” vs “Medium Types Set” with “Purposes Set”
color column

After the analysis on Figure 42, further investigation was done on “NoModelDrivenPurpose
WithDocumentingDesign” item on purposes set to differentiate descriptive and prescriptive
usage in these groups (i.e., ~38,5% of the survey data). Then, it was observed that the existence
of “Implementation” or “Testing” phases of SDLC sub-categorizes this item in the purpose set
as descriptive ones (13,7%) and prescriptive ones (24,9%). By this way, nine modeling
patterns were pre-investigated as reported in Section 4.3.

117

APPENDIX D — QUESTIONNAIRE USED IN MULTIPLE CASE STUDIES

Questionnaire — Part A: Modeling Stakeholder Demographics

1 | What is your highest academic degree? ' 'S 'S,

P
PhD MSc BSc High School or lower

[

What is (are) your umiversity degree(s)?

(Attribute: STAKH UNWVES)

r [
Computer Science Computer Engineering Software Engineering Information Systems
[. . . . [. . . [. . _—
Electrical/Electronics Engineering Industrial Engineering MechanicalMechatronics Engineering
3 Mathematics - Other: (Please specify)

3 | What s (are) your current position(s)?

(Atiribute: STAKH POSTN)

I -
Software Developer/Programmer Software Designer Software Architect
[I . - . .
Software Tester Systems Engineer Requirement Engineer
[. I . - . .
Business Analyst Project Manager Quality Assurance Engineer

4 | How many years of work experience do you have in software development?

i
Less than 2 years 2.3 years 6-10 years 10+ years

(Attribute: STAKH-EXPRN)

5 | How many years of modeling experience do you have in software development. if any?

-

(Attribute: STAKH EXPRN)

T L i L i,
None Less than 2 years 2-5 years 6-10 years 10+ years

Questionnaire — Part B: Company/Project Demographics

6 | What is the target sector of the product(s) develeped?

-

(Attribute: DOMN)

Automotive & Transportation Consumer Electronics = Defense & Aerospace

I I
Finance & Banking Healthcare & Biomedical IT & Telecommunications

What is the number of employees working in software engineering roles?

i i i i
1-10 people 11-100 people 101-200 people 201-500 people

(Attribute: STAKH-T_SIZE)

~
500+ people

8 | What is the size of your typical software development team in a project?

i i i i
1-4 people 5-9 people 10-19 people 20-50 people

(Attribute: STAKH-T SIZE)

~
50+ people

9 | Which programming languages do you use while modeling? (if applicable)

a Ada : c a C++ a C# a Delphi a Java a MATLAB

- Any programming language for BPM such as BPEL ™ Other: (Please specify)

(Attribute: PT.)

- r
Objective-C Smalltalk

-~
Not applicable

118

10 | How can you describe your developed software in terms of hardware closeness? (Attribute: PTL-HW CL)

i i
Very hugh (e.g., firmware or BSP applications) Medium (e.g.. communication/middleware applications)

T T T
High (e.g., DSP applications) Low (e.g., Ul applications) Mot applicable
11 | How often do you use software modeling in your software development life cycle? finformal or formalized: ie., sketches or
maodels) (Attribute: RIGOR)
- T L i L
Never Sometimes Often Most of the time Always
Evaluator Note:

Questionnaire — Part C: Modeling Practices (If'vou do NOT use any software modeling, you do NOT need to continue)

12 | Where/How did you learn modeling? (Attribute: STAKH W/H 1)

University (e.g., from software engineering, computer science courses) 2 Formal corporate training

[-
On your own (e.g., from books, in the job) Other: (Please specify)

13 | What medmm do you use to create the diagram? (Attribute: MEDM)

Never Sometimes Often Mostofthe time Always Tool?

PC (nsing software medeling tools) r T T r .
=
:E" Tablet/Smartphone r - - r .
=
Paper r T T r .
-4
T White/blackboard c c c c e
-
14 | Which modeling language(s) do you use for modeling? (Attribute: RIGOR-MT.)

~
Sketch/No formal modeling language (Free-format)

[[
UML Any UML extensions (profiles) such as MARTE

= Domain Specific Language (D5L) provided by the tool provider or your own design) (Please specify)

[I
Systems Modeling T angnage (SysML) Service Oriented Architecture Modeling Langnage (SoaML)

2 Any Business Process Modeling (BPM) languages such as Business Process Modeling Langunage (BPML)

— - Evaluator Note:
MATLAB modeling utilities Other: (Please specify)

15 | Do you archive your diagrams? (Attribute: MEDM-ARCHWV)

C T L g T
Never Sometimes Often Most of the time Always

Evaluator Note: archive mechanism, if any (e.g., analog vs digital?):

119

16 | Which diagrams do you use and in which SDLC phase(s)? (Attribute: SDLC)
(SDLC Phases: Preliminary/Systems Analysis | Business Process Analysis | Systems/Software Design | Implementation |
Testing | Integration | Installation & Deployment | Maintenance)
Never Sometimes Often Most of the time Always SDLC phase(s)
Sketch (free-format) C C C C C
Use Case Diagrams - C Lo - C
Communication Diagrams C C C C
Deployment Diagrams - C Lo - C
Flowcharts/Diagrams T T T T [
Sequence Diagrams C C C C C
Package Diagram « - - « C
State Machines/Charts T t‘"“ C T C
Activity Diagrams - C C - r
Class Diagrams T C C T C
Object Diagrams C C C C C
Diagrams based on DSL C C Lo - C
BPMMN/EPC - C T - C

Please read the following definitions before proceeding with the rest of questicnnaire
Terminology: Descriptive vs Prescriptive && Sketch/Model-based vs Model-driven

In terms of terminclogy. model-driven development (MDD) uses models as the primary artifact
of the development process. Usually, in MDD, the implementation is automatically generated
from the models. Model-driven engineering (MDE) is a superset of MDD since it encompasses
other tasks of a complete software engineering process like testing and maintenance (i.e.
documentation). On the other hand, model-based engineering (MBE) is a process, in which

MDE
software models still play an important role although they are not necessarily the key artifacts of A
Ty
.

MEBE

the development. For example, designers specify the models (ie. by using paper or modeling
tool), but then these models are directly handed out to the programmers to manually write the
code (no auto generation). Therefore, all model-driven processes are model-based but not the

other way round.

dltract & kgl el faledmnples - ©foreqver, if your modeling approaches includes

weak enforcement sirictenfaroement R b
e — Sofivre Modeling Rigar g ossrsnd both sketching and/or some selective UML elements
The "vansbie fsmality” shierof modeing usage in embeded software deseogment {e.g.,_ if you _d'o not obe_y any strict U-Ml' rules. but
[— e e ey W, wse it selectively and mformally with some UML
Deseriptive Madeling Preseriptive Modcling elements as causally), and you do not have any
| ' _‘ - B amtomatically generated artifact (e.g., source code,
sketch model-based nodehdriven uz_st driver, docum_ .mtation or si:_uulation}, you are
dhgarmally & csvally fie. e famaf & comerined LMY elameni still at the descriptive modeling side (e.g., #Etcmﬂg
bua inclvies some LML elemewis) or model-based) as seen from the “variable

formality™ slider of modeling usage.

17 | When you write code, document, test or simmlate, to what degree do you nse model driven technigques? [(Attribute: RIGOR)

T C C - -
Never Sometimes Often Most of the time Always

Evaluator Note:

120

13

What 15 (are) your motivation(s) and benefit(s) while modeling?
N . .

Manage complexity / Understanding a problem at an abstract level

Team collaboration / Communication

. r .
Shorter development time Cost savings
. [. .

Test effectiveness Model simulation
[.

Cuality Improvements
2 Productivity 2 Maintamability I Traceability 2 Feusability
™ Portability

Guaranteeing documentation and model compatibility

Guaranteeing source code / test driver and model compatibility

Evaluator Note:

(Attribute: FURFPS & BENFT)

2 Rehability

121

APPENDIX E — EVALUATOR NOTES/OBSERVATIONS & RESULTS

Any (formalized or informal) software
modeling usage in SDLC?

When writing code, document, test or
simulate, to what degree using model
driven techniques?

Medium type(s)?
Analog usage>=Digital usage?

Archivability

Modeling Language set?

SDLC

Modeling purpose set?

Results:

Current (Interview/Observation) According to the Model

Pattern Culture Pattern Culture

What similar profiles are doing

Recommendations

122

APPENDIX F - EVALUATION FORM TEMPLATE

When you think about the presentation you took about "Modeling patterns and cultures of
embedded software development project”, does our model really reflect your current
modeling pattern and culture? In other words, did this produce expected and relevant results
for you? Please elaborate your answer by indicating the differences and similarities.

In that sense, do you think that the model is helpful? Please elaborate your answer.

Have you ever been experienced or used such a model before? In other words, do you think
that this model is better than what was available previously or not?

Do you think that learning what your competitors (i.e., similar demographics) are doing
while modeling might affect your future modeling practices? Please elaborate your answer.

Do you think that the recommendations, which our model gave you, is useful or not? Please
elaborate your answer.

123

CURRICULUMVITAE

Personal Information

Deniz Akdur

Date of Birth: 12.02.1981

deniz.akdur@gmail.com
https://www.linkedin.com/pub/deniz-akdur/10/a90/865
https://www.researchgate.net/profile/Deniz_Akdur

Education
Degree Institution Year of Graduation = CGPA
PhD METU, Information Systems 2018 4.00/4.00
MSc METU, Information Systems 2009 3.70/4.00
BSc Bilkent University, Computer Science = 2004 3.62/4.00
High School Izmir Buca Anadolu Lisesi 1999 5.00/5.00
Experience
Year Organization Position
2009-Present =~ ASELSAN, Turkey Lead Software Engineer
2008-2009 VESTEL, Turkey Software Architect

2004-2008 Cabot Communications, UK & Turkey = Software Architect /
Senior Software Engineer

Specialties

Software Engineering

Embedded Systems & Software

Software Modeling

Industry-Academia Collaborations

Software Quality Management

Innovation Management & Entrepreneurship

AN NN Y NN

Languages

v Turkish (Native)
v" English (Full professional proficiency)
v French (Limited working proficiency)

125

mailto:deniz.akdur@gmail.com
https://www.linkedin.com/pub/deniz-akdur/10/a90/865

Publications

1 Akdur, D., Demirérs, O., & Garousi, V. (2017). Characterizing the development and usage
of diagrams in embedded software systems. Paper presented at the 43" Euromicro
Conference on Software Engineering and Advanced Applications (SEAA),
Vienna, Austria.

2 Akdur, D., Garousi, V., & Demirors, O. (2017). Cross-factor analysis of software modeling
practices versus practitioner demographics in the embedded software industry.
Paper presented at the 6™ Mediterranean Conference on Embedded Computing
(MECO), Montenegro.

3 Akdur, D., Ozpolat, E., & Basibilyiikk, T. (2017). Model Driven Engineering of
Communication Protocol Artifact with Design Pattern Usage in Distributed and
Real-Time Embedded Systems: An Industrial Experience. International Journal
of Engineering Science and Application (IJESA), 1(3), 91-98.

4 | Akdur, D., & Garousi, V. (2015, February 9-11, 2015). Model-Driven Engineering in
Support of Development, Test and Maintenance of Communication Middleware:
An Industrial Case-Study. Paper presented at the International Conference on
Model-Driven Engineering and Software Development (MODELSWARD).

5 Akdur, D., & Demirdrs, O. (2017). Multiple Case Studies to Validate Modeling Patterns
and Cultures of Embedded Software Development Projects, Technical Report:
METU.

6 Akdur, D., Garousi, V., & Demirors, O. (2015, Last accessed: Nov. 27, 2016a). MDE in
embedded software industry, Technical Report. METU [I-TR-2015-55,
https://dx.doi.org/10.6084/m9.figshare.4262990.

7 | Akdur, D., Garousi, V., & Demirors, O. (2016) Gomiilii Yazilim Endiistrisinde Kullanilan
Yazilim Modellemesi ve Model-Giidiimlii Tekniklerde Tiirkiye nin Diinyadaki Yeri.
Paper presented at the 10" Turkish National Software Engineering Symposium (In
Turkish: Ulusal Yazilim Miihendisligi Sempozyumu (UYMS)), Turkey.

8 | Akdur, D., Garousi, V., & Demirors, O. (2015) Gomiilii Sistem Miihendisliginde Kullanilan
Yazilim Modellemesi ve Model Giidiimlii Teknikler Anketi: Tiirkiye Sonuglar.
Paper presented at the 9™ Turkish National Software Engineering Symposium (In
Turkish: Ulusal Yazilim Miihendisligi Sempozyumu (UYMS)), Turkey.

9 Akdur, D., & Ozdemir, C. (2014) Gercek Zamanli Gomiilii Sistemlerde Yeniden
Kullanilabilir ve Yapilandirilabilir Yazilimlarin Kaliteye Etkisi: Radar Projeleri
Destek Kiitiiphaneleri. Paper presented at the 8" Turkish National Software
Engineering Symposium (In Turkish: Ulusal Yazilim Miihendisligi Sempozyumu
(UYMS)), Cyprus

126

