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ABSTRACT

SERVICE VIRTUALIZATION USING RECORDED

INTERACTIONS

Today’s enterprise software systems are much more complicated than the past.

Increasing number of dependent applications and heterogeneous technologies makes

testing of such systems challenging due to multiple reasons including unavailability of

components, high cost of using services and conflicting schedules of different develop-

ment teams. Therefore in such software systems, it may be more convenient to use

virtual components instead of the real ones. Service virtualization is a technique to

mimic the behavior of a real component. Services are classified into two groups namely;

stateful and stateless services. In this thesis, we introduce techniques for creating vir-

tual copies of both stateful and stateless services. To the best of our knowledge, this

is the first work to create virtual services for stateful services. We employ bioinfor-

matics and machine learning algorithms in developing our solutions. We demonstrate

the validity of our approaches on data sets collected from real life services and obtain

promising results.



v

ÖZET

KAYITLI ETKİLEŞİMLERİ KULLANARAK SERVİS

SANALLAŞTIRMA

Günümüzde yazılım sistemleri geçmişe göre çok daha karmaşık bir hale gelmiştir.

Birbirine bağımlı uygulamaların, birbirinden farklı teknolojilerin aynı anda kullanıldığı

yazılım sistemlerinin test edilmesi bir çok farklı nedenden dolayı zordur. Bu neden-

ler, bağımlı bileşenlerin ulaşılamaz olması, üçünü parti servisleri kullanmanın yüksek

maliyeti ve farklı takımların takvimlerinin çakışması gibi sıralanabilir. Bu sebeplerden

dolayı, bu tür yazılım sistemlerinde gerçek bileşen yerine sanal bir kopyayı kullanmak

kolaylık sağlayabilmektedir. Servis sanallaştırma verilen bir bileşenin davranışlarını

taklit etmeye yarayan bir tekniktir. Servisler durumsal ve durumsal olmayan olmak

üzere iki sınıfa ayrılır. Bu tezde, hem durumsal hem de durumsal olmayan servis-

lerin sanallaştırılması için yeni teknikler önerilmiştir. Bizim bilgimize göre bu çalışma

durumsal servislerin sanallaştırılmasını konu alan ilk çalışmadır. Bu çalışmada bioin-

formatik ve makine öğrenmesi algoritmaları kullanılmıştır ve çalışmamızın geçerliliği

gerçek servislerden toplanan verilerle test edilmiştir.
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1. INTRODUCTION

Today’s enterprise software systems have higher number of interconnected com-

ponents, interdependent teams and heterogeneous technologies than the past due to

increasing number of composite applications in software systems. Multi-layered and

interdependent architectures of such applications like Service Oriented Architectures

(SOA) provide a lot of benefits but at the same time they increase the complexity and

introduce new constraints. In such complicated software systems, developers would

spend considerable amount of time to access a component e.g mainframe or doing data

set up instead of development or testing because of the conditions below:

• Still evolving or uncompleted services.

• Limited capacity or availability of services at inconvenient times.

• Services that are controlled by a third-party that grants restricted or costly access.

• Services that are needed simultaneously by different test teams with various set

up and requirements.

Therefore software development sometimes requires test doubles that allows devel-

opers to decouple the application from the dependencies when testing the application

under test (AUT).

The most common test doubles used in practice are stubs and mocks. Stubs return

hard-coded responses that are tightly coupled to the test suites. They are suitable for

personal use or sharing with testers. Wider sharing can cause issues related with

software platform and deployment infrastructure dependencies. Mocks are most useful

when you have a large test suite where stubs will not be adequate since each test case

requires a different data set up. Mock objects are also shareable between testers but

wider sharing is limited. Therefore, stubs and mocks do not provide the re-usability

to move projects forward. An alternative to these options is service virtualization

(emulation). Service Virtualization is a practice to create virtual copies of a dependent

component. Virtual services are suitable for sharing within a team and across teams.
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Figure 1.1. Overview of service virtualization.

They can simulate performance and data characteristics of the real component. Also,

service virtualization is suitable for complex and very large legacy software that has

many dependencies. [1, 2]

A good service virtualization solution creates virtual services that [3]:

• Simulate the behavior of the real component

• Synthesize responses with realistic data

• Synthesize responses with configurable throughput

The fundamental process of service virtualization practice can be abstracted into

three phases; capture, model and simulate. First, the required information to virtualize

a service is captured and a model is constructed using the captured data. This model

corresponds to the core of a virtual service. Last, the virtual service is deployed to

development environment and employed instead of the real one.
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There are mainly two automated methods to create virtual services [3]. The first

method uses detailed knowledge of the target service’s protocol and message structure

such as Web Service Definition (WSDL). This method guarantees to generate a valid

response for an incoming request. However, this method is not suitable when specifi-

cations are not available, e.g third party services. The second method, which we also

employ, observes the system in action and records request and response messages be-

tween the system to be tested and the service to be virtualized. A general outline can

be seen in Figure 1.1. Recorded messages are kept in a transaction repository (capture)

to train a model to simulate the response behavior of the real component (model). Ap-

plication under test sends requests to the virtual service when the real service is not

available for some reason (simulate). This is a more comprehensive approach.

Services can be examined in two groups: the ones that keep state information

(stateful services) and the ones that do not (stateless services). An example stateful

service can be a service which a client can create, read, update or delete calendar events.

The service keeps track of the state information to return the true response when a

calendar event is requested. An example of stateless service can be a service which

returns the capital city of the given country in the request. In this case, the state of

the service does not change with the requests. Current service virtualization solutions

have limited accuracy and performance and they are not applicable to services that

have a stateful behavior. Virtualization of stateful services is a harder task since state

behavior of the service has to be simulated.

Our main contributions in this thesis are as follows:

• We propose automated service virtualization approaches that can handle services

with stateful and stateless behavior.

• Our solution can handle messages with arbitrary message format for each of the

stateful and stateless services.

• We employ bioinformatics and machine learning techniques to obtain a virtual

service from recording of request response pairs.

• We implement our techniques in a tool and validate our approach on real services.
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In Chapter 2 we describe the related work and in Chapter 3 we provide the necessary

background. Chapter 4 and Chapter 5 explain and evaluate the techniques introduced

for virtualizing stateless and stateful services in order. Last, in Chapter 6 we conclude

our research and discuss future work.
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2. LITERATURE SURVEY

In this chapter, we introduce studies that are related to the topic of this work.

Service virtualization is a relatively new practice. Thus, there are very few studies that

brings a solution to the challenges encountered while virtualizing services.

In [3, 4], the authors describes the basics of service virtualization. They also ex-

plain the benefits, capabilities and best practices of service virtualization. Nizamic et

al. [5] presents a case study of using virtual services by creating a simulation environ-

ment for a Dutch law for supporting people that have a chronic disease or disability.

The latest studies that are related to service virtualization are in [6–10]. Those

works employ some bioinformatics algorithms to virtualize a service. The latest one

of these studies, namely [10] improves all previous results and presents a technique

called Opaque Service Virtualization (OSV). OSV consists of two phases: analysis and

runtime. In analysis phase, they record transactions between the client and the service.

Then recorded requests are clustered and a prototype for each cluster is obtained where

each prototype refers to a request type. In runtime phase, a given request is matched

to the closest prototype and a synthetic response is generated. OSV performs best if

the messages have a fixed length or the length info is encoded in the message [11]. In

addition to that OSV technique can not virtualize stateful services. In this work, we

address these limitations.

Newly emerged containerization tools like Docker [12] are orthogonal to service

virtualization. For example, a virtual service can be ran in a container.

Leading software companies such as IBM, HP, CA, SmartBear, and Parasoft are

also provide various commercial service virtualization tools. These tools are compared

and evaluated in reports [13, 14]. A recent survey of service virtualization vendors

conducted on real users can be found in [15].
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One of the goals of this work is bringing a solution to stateful service virtualization

problem. In other words, we want to simulate the state behavior of the service to be

virtualized. Therefore, we surveyed studies in the field of black-box model inference

[16–33] which builds models by observing executions. There are numerous works that

infer model by relying on event ordering in the execution and/or data attached to

them.

K-tails [16] is the most basic and well-known algorithm for black-box model infer-

ence. It serves as a basis for many model inference algorithms [17–22]. These algorithms

(1) extend k-tail to achieve higher precision or recall [17,19–22], (2) enhance the models

with information about event probabilities [18].

Lorenzoli et al. [22] propose GK-tails which is also an extension of K-tails. It

enhances K-tails by combining the program state and method parameters information

together with event types (method invocations) to state machine construction. GK-

tails produces much more comprehensive models. However, it relies on a good range

of data for each event type to construct correct models [23].

Walkinshaw et al. [23] also combine the information of event ordering and data

values of events. They use data values to predict the next event by employing a

classification algorithm.

Dallmeir et al. [24] introduce ADABU to infer correct program behavior. They

observe actual program executions to construct state machines, called object behavior

models. In ADABU program states are abstracted using predicates. However, these

predicates are predetermined (e.g., ADABU abstracts integers only as negative, zero,

or positive).

Synoptic [26], CSight [27], and Perfume [28] use the CEGAR [34] approach to

create a coarse initial model, and then refine it using counterexamples that falsify

temporal invariants.
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Krka et al. [29], divide dynamic model inference strategies into four classes

namely, traces only [16], invariants only [25], invariant-enhanced-traces [22] and trace-

enhanced-invariants [30]. They introduce one technique for each strategy and compare

these techniques. They show that their algorithm in trace-enhanced-invariants class

works best for several popular Java libraries.

None of these black-box model inference techniques are dedicated to predict the

outcome (response) of a specific event (request). Their motivation to construct a state

model includes making debugging and documentation easier [28, 29], automatic test

case generation [22] and reverse engineering [23].

State machine extraction is also studied in neural networks field. Especially recur-

rent neural networks are used in the literature for model extraction [31–33]. However,

state models extracted in these works do not focus on predicting outcomes of specific

events.
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3. BACKGROUND

This section provides the background necessary for the rest of this thesis. First,

we make necessary definitions used throughout the thesis, then we present Needlman-

Wunsch and ClustalW algorithms. Last, we introduce a modified version of k-nearest

neighbour algorithm.

3.1. Definitions

Let Req,Res, Treq, Tres, CReq, CRes be a finite set of requests, responses, request

types, response types, request contents, response contents, respectively.

A request, req ∈ Req is a 2-tuple (type, content), where type ∈ Treq and content ∈

Creq. A response, res ∈ Res is also a 2-tuple (type, content), where type ∈ Tres and

content ∈ Cres.

An interaction is defined as a request response pair: (req, res) with req ∈ Req and

res ∈ Res. We define an interaction trace, it ∈ IT as a finite sequence of interactions

observed during the execution of the service; (req1, res1), (req2, res2), . . . , (reqn, resn).

A Interaction Repository (IR) keeps all recorded interaction traces.

Given an interaction trace it, we define the history, h, of a request reqi, as the

following: hreqi = (req1, res1), . . . , (reqi−1, resi−1), (reqi), that is, the trace ends with

reqi and the corresponding response is absent. Similarly, the k history of a request reqi

is shown as: hkreqi = (reqi−k, resi−k), (reqi−k+1, resi−k+1), . . . , (reqi). The set of all

histories for all requests in all interaction traces is denoted by H, whereas the set of

all k histories of all requests in all interaction traces is denoted by Hk.

We divide the services into two classes; stateless and stateful services. A stateful

service, StatefulS : H → Res, is a function from the set of histories to the set of

responses. Hence, given the history of a reqi we can determine its response respi.
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A stateless service, StatelessS : Req → Res, on the other hand, is a function

from the set of requests to the set of responses. The response of a request can solely be

determine from the request itself. Informally, in a stateless service, a request’s response

is not dependent on the request’s history. We describe sample stateless and stateful

services in later chapters.

A virtual service, V S : Hk → Ressyn is a function where Hk is k histories of

all requests, Ressyn is a finite set of synthesized responses, where k equals to 1 for a

stateless service. On the other hand, k is specified by the user for a stateful service. A

synthesized response is an artificial response which is the same with the actual response

in the perfect case.

3.2. Needleman-Wunsch (NW) Algorithm

Needleman-Wunsch (NW) algorithm [35] is a dynamic programming algorithm

for aligning two sequences that is originally developed in bioinformatics. The algorithm

finds the globally optimal pairwise alignment defined by the chosen scoring function

in O(m.n) time, where m and n are the lengths of the sequences. The scoring func-

tion gives a score for every possible alignment between two sequences by calculating

matches, mismatches, and gaps in each alignment and chooses the alignment with the

best score.

Below, there is an example of pairwise alignment. Sequences are taken from Table

4.1 which is an interaction repository that consists of recorded transactions. Consider

requests with id 2 and 5 when wrapped with necessary content names (i.e. type, user-

name) and other other characters to form JSON [36] format:

{type:searchuser, username:---the-popularuser}

{type:searchuser, username:anotherpopularone-}

Figure 3.1. Pairwise alignment of two requests.



10

“-” characters show the gaps inserted in favor of matches during the alignment

to maximize the score. We use NW algorithm in both off-line and on-line phases of

our method to calculate the distances between messages. We do not use the exact

score produced by the algorithm to measure the distance. Instead we normalize them

by dividing the number of matching characters to the length of the alignment and

subtract the normalized value from 1.

3.3. ClustalW Algorithm

ClustalW [37] is a multiple sequence alignment (MSA) algorithm which is shown

to be an NP-complete problem [38]. ClustalW is a heuristic algorithm that is origi-

nally used for aligning multiple genes and it produces successful results for most cases.

ClustalW consists of three steps:

• Pairwise alignment: A distance matrix is constructed by aligning each pair. We

use NW pairwise alignment algorithm in our implementation.

• Guide Tree Construction: The trees used to guide the final multiple alignment

process are calculated from the distance matrix of step 1 using the Neighbor-

Joining method [39].

• Progressive Alignment: The basic procedure at this stage is to use a series of

pairwise alignments to align larger and larger groups of sequences, following the

branching order in the guide tree.

Below there is an example of multiple sequence alignment. Consider the requests

with id 2, 3, and 5 in Table 4.1 when wrapped with necessary content names (i.e. type,

username) and other other characters to form JSON format. According to ClustalW,

we first make a pairwise alignment between id 2 and 5 as shown above. Then we align

this pair with id 3 using several heuristics.
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{type:searchuser, username:thenonexisting-user}

{type:searchuser, username:----the-popularuser}

{type:searchuser, username:an-otherpopularone-}

Figure 3.2. An example multiple sequence alignment of three requests.

3.4. Modified K-Nearest Neighbour (kNN) for Clustering

Typically clustering algorithms require the number of clusters that will be gen-

erated as an input. In our case, we want to automate this step and not require this

number as an input parameter. For this purpose, we modify the well-known k-Nearest

Neighbour (kNN) classification algorithm [40] and employ it to cluster the recorded

data. Figure- 3.3 details our technique.

1: Require < : A list of requests or responses.

τ : Cluster separation threshold.

K : K parameter.

2: Ensure D : A dictionary whose keys are requests or responses and values are

cluster labels.

3: clusterLabel ← 0

4: C[<[0]]← clusterLabel {The first element gets its label.}

5: clusteredMessages.append(<[0])

6: for each r in < do

7: distances, labels← findKNearestNeighbour(K,r,clusteredMessages)

8: if min(distances)> τ then

9: clusterLabel = clusterLabel + 1 {Create a new cluster.}

10: D[r]← clusterLabel

11: else

12: D[r] ← getMostOccurringLabel(labels) {Most occurring label.}

13: end if

14: clusteredMessages.append(r)

15: end for

Figure 3.3. Modified k-Nearest Neighbour
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We assign requests or responses to clusters one by one. In Lines 3,4 and 5 we

start with only one cluster with one element in it. For each request and response, we

find k closest neighbours in the already clustered messages (Line 7). We choose k=1

in this work. We measure closeness by the distance calculation mentioned in NW.

Then we check whether the minimum of the distances for the request or response is

larger than the cluster separation threshold τ , given as an input. If yes (Line 8), then

this data point is located far from the other points. Therefore we put it into a new

cluster (Line 9). If no (Line 11), then we just assign the most occurring cluster label

of all nearest neighbours (Line 12). In Line 14 we append the current message to the

clusteredMessages list.

3.5. Artificial Neural Networks, Recurrent Neural Networks and

Long-Short Term Memories

Artificial neural networks (ANN) that are inspired by human brain are intro-

duced to simulate the incredible abilities of human brain in applications such as vision,

speech recognition and learning [41]. An artificial neural network consists of layers of

perceptrons and edges connecting them. However, traditional neural networks have a

major shortcoming. Humans build their thinking on top of previous information that

they have, rather than start their thinking from scratch every moment. ANNs do not

consider historical data when producing outputs as shown in Figure 3.4.

A A

xtxt

htht

(a) (b)

Figure 3.4. Given, A is a chunk of neural network, Xt is input and ht is output, (a)

shows the architecture of a traditional neural network and (b) shows the outline of

RNNs.
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Recurrent neural networks (RNN) can address this issue with a recurrent link in

the network as shown in Figure 3.4, allowing them to carry an information from one step

to the next one. However, sometimes we need to carry an information for further steps.

For example, ten requests before the current request can affect the expected response

of the current request. Traditional RNNs have limited ability to carry an information

for further steps. A special form of RNNs, namely, Long-Short Term Memory (LSTM)

networks [42] are used for this task. The LSTM’s strength is learning on data with long

range temporal dependencies [43]. LSTM networks are more complex than traditional

neural networks and RNNs.
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4. STATELESS SERVICE VIRTUALIZATION

In this chapter we introduce a technique named FancyMock to learn the function

V S defined earlier for virtulization of services that do no keep state information. Figure

5.1 demonstrates the general overview of FancyMock technique. It consists of two main

phases: Off-line analysis and Response Generation Engine (RGE). In the first phase

recorded interactions are mined and the information that is necessary for producing

responses is learned. This information is used in formation of RGE which is the second

phase. RGE simulates the behavior of the real service when it is not available. We now

present an example stateless service, then describe the details of Off-line Analysis as

well as Response Generation Engine shown in Figure 5.1. Last, we evaluate FancyMock.

3.Simulate

Service

Request

Response

Recorder

1.Capture

Request
2.Model

Virtual Service

Learn
Interaction
Repository

Synthetic
Response

Application
Under

Test

Offline
Analysis RGE

RGE: Response Generation Engine

Templates
contentDict

Figure 4.1. Overview of stateless service virtualization.

4.1. A Sample Stateless Service

In this section, we demonstrate a sample stateless service where a user can search

for users or songs by providing the necessary content. A response includes correspond-

ing information about the song or the user searched.
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Consider the interactions demonstrated in Table 4.1. For the first request, the

client searches a song with name somesong by somesinger. The corresponding response

includes the name of the song somesong and also the url someurl. Assume that mes-

sage exchange is done in JSON [36] format in this service. Thus, when wrapped with

the necessary field names the first request and the first response are shown in figure

below:

{type:searchsong, title:somesong, singer:somesinger}

{type:searchsongresponse, title:somesong, streamurl:someurl}

Figure 4.2. The first request and the first response in JSON format.

For the second request, the client searches for a user by providing the username

thepopularuser. The response includes the first name and the last name of the user

searched. It is shown in figure below in JSON message format:

{type:searchuser, username:thepopularuser}

{type:searchuserresponse, fname:John, lname:Doe}

Figure 4.3. The second request and the second response in JSON format.

The third and the fourth requests are replied with error messages. The fifth and

the last ones are similar to first two ones.

4.2. Off-line Analysis

In this phase, we generate templates of request and response messages using the

recorded interactions. The response generation phase will make use of templates to

generate a valid response to a request that does not occur in the recording. In case the

request occurs in the set of recorded requests the response is simply the response of

the recorded request. Also we make a content analysis that is used in generating more

diverse responses.
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Table 4.1. An artificial transaction repository consisting of two different request

types. Requests and responses with the same IDs correspond to each other.

Requests Responses

Type Content Type Content

1 searchsong somesong, somesinger searchsongresponse somesong, someurl

2 searchuser thepopularuser searchuserresponse John, Doe

3 searchuser thenonexistinguser searchuserresponse Not found

4 searchuser anothernonexistinguser searchuserresponse Not found

5 searchuser anotherpopularone searchuserresponse Jane, Roe

6 searchsong anothersong, somesinger searchsongresponse anothersong, anotherurl

We start with clustering of recorded messages that is necessary step for extraction

of templates. Then we explain the details of template extraction procedure. Last, we

present content analysis step.

4.2.1. Clustering of Messages

A naive way to generate a response for an incoming request that does not exist

in the interaction repository is to check the distance between the incoming request and

all the requests in the repository then finding the closest request’s response. However,

performing this check for a large repository can be time consuming. Instead, we first

put requests/responses within a distance threshold in the same cluster. This threshold

value is set to 0.8 based on experiments. In the perfect case each cluster refers to

a request or a response type. For example, we expect that all searchsong requests

are collected into the same cluster. Then we generate a template for each cluster.

When an incoming request that does not exist in the interaction repository arrives we

simply calculate the distance between this request and all templates. This allows us to

quickly return a response. We generate two sets of clusters, one for requests and one

for responses. A possible set of clusters for the interaction repository in Table 1 with

two request clusters and three response clusters is as follows. Each cluster contains ids

of requests or responses.
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Request Clusters: {µ1:{1, 6}, µ2:{2, 3, 4, 5}}

Response Clusters: {ν1:{1, 6}, ν2:{2, 5}, ν3:{3, 4}}

After clustering, we need to find correspondences between request and response

clusters. This is because responses of messages in the same request cluster can be in

different response clusters. For example, request messages 2 and 3 are in request cluster

µ2, whereas their responses are in response clusters ν2 and ν3. We find which request

types are replied with which response types in the interaction repository. The response

generation process takes these found correspondences into account to synthesize more

realistic responses. We refer to this process as cluster mapping.

Although clustering helps improve response generation time and needs to be

done only once, even generating the clusters can be costly because during clustering,

the distance between all pairs of requests/responses is calculated. The resulting set

of clusters contains all requests/responses in the interaction repository. In order to

improve performance, we use a simple solution where during clustering we put a bound

on the number of elements in each cluster. In this case although we have the same

number of clusters as before, we now reduce the number of alignments because of cluster

bound, hence we obtain a speed up as will be shown in experiments. The number of

alignments decreases from quadratic to linear. We call this approach pre-sampling.

For example, if we apply pre-sampling with cluster bound three, µ2 above could be as

follows: µ2:{2, 3, 4}.

4.2.2. Template Extraction

We use ClustalW, a multiple sequence alignment (MSA) algorithm to generate a

template for every cluster, where a template is a representative of that cluster. We

apply this process for both request and response clusters. After MSA is constructed

for each cluster we check for consistency of the alignment. If there is no consistency

between the characters at the same index of alignment, we put a wild-card character

to that index at the template.
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We define consistency as a consensus higher than a threshold. In our model 80%

of the characters need to be the same to form a consensus. If there is a consensus on

a character we put it to the corresponding index of the template. According to this

definition, the template of the request cluster µ2 is is shown in figure below:

{type:searchuser, username:#######}

Figure 4.4. Template of the request cluster µ2.

Note that, in µ2’s template searchuser field is not replaced by wild-card charac-

ters. This is because all characters at the same index throughout the cluster alignment

are the same. This approach preserves essential parts of traces, while filling contents

with wild-card characters ’#’.

We choose the wildcard characters outside of the character set of the interac-

tion repository. Therefore there can be no match, for this reason we basically ignore

mismatches with wildcard characters while calculating distances with templates. Our

teamplate extraction technique is based on the prototype extraction in [10].

4.2.3. Content Analysis

Previous works have a limited ability to generate realistic responses [7,8,10]. We

aim to generate diverse and thus realistic synthetic responses. In this step we find

each content of each recorded response. To find the contents of a response message, we

align the message with the template of the cluster that it belongs to. The characters

of the response message that are matched with wildcard characters of the template are

assumed to be contents. These fields are then kept in a dictionary. An example of how

the contents are extracted is shown in figure below:

{type:searchsongresponse, title:somesong, streamurl:someurl}

{type:searchsongresponse, title:########, streamurl:#######}

Figure 4.5. Alignment for content extraction.
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By considering the alignment between the response (the first line) and its template

(the second line) shown above, we see that somesong and someurl are contents of this

response. We apply this procedure to all response messages in all response clusters

and store them in a dictionary called contentDict. An example contentDict is shown

in Table 4.2.

Table 4.2. Keys and values of contentDict for Table 1 are shown. For example (2,1)

stands for the first content of the responses in the second response cluster.

Key Value

(1,1) [somesong, anothersong, ...]

(1,2) [someurl, anotherurl, ...]

(2,1) [John, Jane, ...]

(2,2) [Doe, Roe, ...]

4.3. Response Generation Engine (RGE)

Response Generation Engine (RGE) is the part that is responsible for generating

valid, logical and diverse responses by using the information gathered in off-line phase.

At the end of the off-line phase we have templates for each cluster and a contentDict.

The process of RGE consists of 3 main steps:

(i) Select base messages (Base Message Selection):

• Find the nearest request cluster template.

• Find and select one of the possible response clusters.

• Pick a base response from the selected response cluster. Find the corre-

sponding base request.

(ii) Apply Identical Field Replacement (IFR) procedure:

• Find indices of the identical contents between base request and base response.

• Apply the identical field replacement procedure for the incoming request and

the base response by replacing its corresponding fields.

(iii) Replace the rest of the contents using contentDict (Diversification).
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Figure 4.6. Three of the requests are replied with responses from Response Cluster 1

(Type 1) and two of them are replied with responses from Response Cluster 2 (Type

2). In this case, response type of an incoming request which is close to Request

Cluster 1 will be in Type 1 with 3
5

probability and in Type 2 with 2
5

probability.

4.3.1. Base Message Selection

First, we align the incoming request with each request cluster template and find

the closest one. Since the same type of requests may be replied with different types of

responses, we can select one of the possible response clusters that we find in off-line

phase. Figure 4.6 shows a case of cluster mapping and the probabilities of selecting

response clusters. After selecting a response cluster, we randomly pick one of its

elements as the base response and pick the corresponding request as the base request.

The generated response will be the modified version of base response. Modifications

are done in IFR and Diversification steps.

4.3.2. Identical Field Replacement (IFR)

For this step, we find the identical contents between the base response and base

request. An example is shown below. In this example somesong is an identical content

between the base request and the base response. However, searchsong is not considered

as an identical content because this field is a fixed field of the template (it is common

to all messages in the cluster shown earlier).
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Base request:

{type:searchsong, title:somesong, singer:somesinger}

Base response:

{type:searchsongresponse, title:somesong, streamurl:someurl}

This example shows us that the first content of base request and the first content

of base response are identical. Next, we replace the first content of base response

with the first content of incoming request. Remember that incoming request and base

request belong to the same cluster and the base response is selected form one of the

possible clusters. Unlike [7], we consider the identicality between contents instead of

each character. Also, notice that if the inserted content is longer than the one in

base response then we extend the field, if shorter we shrink it. If there is no identical

content, this step will be skipped.

4.3.3. Diversification

The rest of the content of base response are chosen randomly from the relevant

key value pair of contentDict. In this way, we diversify the generated responses while

preserving identical fields between request and response. From a tester’s perspective

more diverse responses lead to higher coverage. An example for this step is shown in

figure below. Synthesized response’s streamurl field is chosen from contentDict.

{type:searchsong, title:asong, singer:coolsinger}

{type:searchsongresponse, title:asong, streamurl:randomurl1}

Figure 4.7. Incoming request and synthesized response (modified base response)

4.4. Evaluation

In this section, we present experiments conducted to evaluate our approach which

we implemented in FancyMock tool. We, first describe the subject services that are

virtualized and then explain our evaluation setup and last, demonstrate the results.
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Table 4.3. Datasets

Name Format #Request Type #Traces

RIQS XML 4 1200

SoundCloud API JSON 3 1200

WeatherUgrnd API JSON 1 1200

4.4.1. Subject Services

We tested our approach on three different datasets collected from live systems

for realistic results. The first dataset was collected from a Resident Information Query

System (RIQS). In this system, one can query a person with an ID or a full name.

The expected response consists of detailed information including the date of birth,

place of birth, and address. Interactions collected from RIQS correspond to previous

queries sent from a dependant application. No policy followed while selecting per-

sons for query. The second dataset was collected from SoundCloud API for songs.

SoundCloud provides a RESTful API and message exchange is done in JSON format.

We implemented a Python script that can connect to the API, then send and receive

messages. We sent requests to the SoundCloud API with totally random parameters.

Those parameters include track id, user id etc. Finally, we collected historical weather

data from WeatherUnderground API, again a RESTful service where messages are in

JSON format. Again, we implemented a Python script for collecting data from the

API. We chose ten cities around the world and specified various dates throughout the

year for the parameters of the requests that we sent to WeatherUnderground API.

Table 4.3 shows the number of request types and traces for each dataset.

4.4.2. Evaluation Setup

4.4.2.1. Metrics. To evaluate our approach, we measured four metrics in experiments.

The validity of response messages, average distance between generated responses (di-

versity), off-line phase running time, and average response generation time. Also, we

conducted experiments to show the effect of pre-sampling on template extraction.
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A message can be invalid in two ways: either the produced response does not

satisfy the message format (JSON, XML, etc.) or the produced response does not

belong to the expected response cluster, for example a searchuser response is produced

while searchsong is expected.

Diversity is defined as the dissimilarity between generated valid responses. We

aim to generate diverse responses in favor of coverage. We calculate diversity by finding

the distance between each pair of same type of responses e.g two searchuser responses.

Then, we take the average of the distances calculated for each response type.

Off-line phase running time refers to the time passed during off-line analysis phase.

The average response generation time refers to the average time passed between the

arrival of the request and the generation of the response. Ideally, the real service’s

average response time should be an upper bound on this time. Nevertheless, this is not

always possible. We consider an average response generation time acceptable, if it is

less than the maximum measured response time of the real service. One can also put a

lower bound for response generation upon specific needs. However this is a trivial task

that can be achieved by adding delay.

4.4.2.2. Experimental Design. We compared our approach with a baseline approach

denoted by Baseline. The Baseline approach is our implementation of the algorithm

in [10] which does not include pre-sampling, content analysis and diversification, it

includes a simpler version of IFR and employs a different clustering algorithm as de-

scribed in [10]. We shuffled each dataset and recorded 60% of each in the interaction

repository for training and the rest are set for testing, in the experiments. Experiments

were run on a server with 32 GB memory and Intel Xeon E5520 2.27GHz CPU.
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Table 4.4. Validity rates of generated responses.

Name Baseline FancyMock

RIQS 48.6% 94.8%

SoundCloud API 18.3% 76.1%

WeathrUndrgrnd API 21.2% 100%

Table 4.5. Average distances between pairs of generated responses.

Name Baseline FancyMock

RIQS 0.21 0.71

SoundCloud API 0.09 0.66

WeathrUndrgrnd API 0.11 0.43

4.4.3. Evaluation Results

4.4.3.1. Validity Evaluation. Table 4.4 shows our validity evaluation results. This

table shows that FancyMock can generate valid responses in a protocol-independent

fashion and preserves the message format. Most of the responses generated by Fancy-

Mock are valid while that is not the case for Baseline.

4.4.3.2. Diversity Evaluation. Table 4.5 shows that responses generated by Baseline

have limited ability to generate diverse responses. FancyMock, on the other hand,

synthesizes responses which are different from each other.

4.4.3.3. Performance Evaluation of Off-line Analysis. In this case, we measured the

time passed during off-line analysis. We compare FancyMock with Baseline, which

does not use pre-sampling and instead calculates the distance for each pair of elements

in the interaction repository. We conducted this experiment with datasets of different

sizes, including 400, 800, and 1200 traces so that we can see the performance change

with the increase in interaction repository size. Table 4.6 shows the results. We can

see that our pre-sampling and clustering techniques are helpful when dataset is large

(800 or 1200) which is typically the case.



25

Table 4.6. Off-line Analysis Phase Running Times (hh:mm:ss)

Baseline FancyMock

400 800 1200 400 800 1200

RIQS 01:53:03 08:47:17 20:11:08 01:22:07 02:37:08 03:54:12

SoundCloud API 00:08:47 00:16:03 00:41:06 00:18:23 00:35:12 00:52:34

WeathrUndrgrnd API 00:10:30 00:39:43 01:24:34 00:16:04 00:32:58 00:52:12

Table 4.7. Average Response Time (seconds)

Baseline FancyMock Real Service

Min Max Avg Min Max Avg Min Max Avg

RIQS 1.42 1.91 1.68 2.50 3.92 3.09 0.02 8.94 0.61

SoundCloud API 0.47 0.91 0.72 0.33 1.22 0.86 0.10 0.54 0.45

WeathrUndrgrnd API 0.69 0.84 0.74 0.57 1.31 0.66 0.05 0.96 0.63

Another factor that affects running time is the average message length. For

SoundCloud case our approach did not outperform the Baseline technique since the

requests are very short for this dataset. FancyMock makes a difference when the

message length gets longer.

4.4.3.4. Average Response Generation Time. Table 4.7 presents our average response

generation time results. For this experiment we also show results for the real service.

From the table we observe that synthesizing responses takes longer time with our ap-

proach in general. This is due to the extra steps that we include in RGE in order to

generate a diverse and logical response (Diversification and IFR). There is an excep-

tion in WeatherUnderground API. In this case FancyMock generates responses faster

than Baseline on the average. This is because there are no identical contents between

the requests and the responses. Therefore FancyMock goes directly to Diversification

step by skipping IFR. However, Baseline takes identicality of characters into account.

Therefore for this case FancyMock skips IFR step but Baseline makes replacements.
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Table 4.8. Effect of pre-sampling on correct template extraction.

Cluster Bound Correctness Rate (%)

5 82.5

10 92.5

20 95.0

25 95.0

Whole Cluster 95.0

4.4.3.5. Effect of Presampling on Correct Template Extraction. Finally, we present how

pre-sampling affects the correctness of the template extracted. In a correct template,

we expect that essential parts are preserved and all contents are filled with wild-card

characters unless those fields are common throughout the cluster. An example of cor-

rect template is shown in figure below:

{type:searchsong, title:########, streamurl:#######}

Figure 4.8. An example of correct template.

The two templates shown below are examples of incorrect templates. The first

one’s title field does not consist of purely wild-card characters. The problem with the

second one is that an essential part is replaced with wild-cards.

{type:searchsong, title:####s###, streamurl:#######}

{type:searchsong, t##le:########, streamurl:#######}

Figure 4.9. Examples of incorrect templates.

This measurement is independent of the dataset and whether it is a request or

response. Therefore we used only requests of RIQS. We compared cluster bounds

including 5, 10, 20, 25 and the whole cluster. Number of elements in the whole cluster

changes for each request type in RIQS. We conducted the measurement 10 times for

each bound and took the average of correct templates.
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Table 4.8 shows our results. From the table, we see that correctness rate increases

with the number of elements in the cluster. However, it reaches a saturation at bound

20. Thus if we keep the cluster bound large enough, we gain speed-up while not

sacrificing from accuracy since the number of distance calculations decreases.

4.4.4. Limitations

We note that the clustering algorithm that we applied in this work relies on

choosing a proper threshold value. One can adapt more advanced clustering algorithms

like DBSCAN [44] or OPTICS [45] from machine learning domain to create more robust

virtual services. Our tool is not be suitable for services requiring very short response

generation time such as less than a second. Because, experiments showed that our

response generation time exceeds one second for given datasets. Also, currently we do

not handle messages that are encoded but a potential solution is to use a decoder in

case it is available.
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5. STATEFUL SERVICE VIRTUALIZATION

In this section we introduce two different approaches to learn the function V S

defined earlier for virtualization of stateful services. In the first technique named

Classification Based Virtualization (CBV), we turn the response generation problem

into a classification problem. In the second technique named Sequence-to-Sequence

Based Virtualization (SSBV), we employ sequence-to-sequence models which is a deep

learning algorithm used in transformation of sequences from one form to another form.

3.Simulate
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Response

Recorder
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Request
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Figure 5.1. Overview of stateful service virtualization.

We now present an example stateful service, then describe the details of CBV as

well as SSBV. Last, we evaluate the techniques introduced.

5.1. A Sample Stateful Service

We provide a sample stateful service where a client can create events, update

events, and get the latest information on events.
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createEvent updateEvent getEvent updateEvent getEvent

‘event1’    16/01/18               `event1’                 16/02/18                 `event1’

it1:    12/02/18  ------------  ------------  ------------  ------------

------------ success success success success

success 200, OK                  ‘event1’                 200, OK                   ‘event1’

200, OK                                                 16/01/18                                                1 6/02/18

200, OK 200, OK

createEvent updateEvent getEvent updateEvent getEvent

‘event1’    12/03/18               ‘event1’                 12/14/18                ‘event1’

it2:    12/02/18       ------------  ------------  ------------  ------------

------------ success success fail                          success

success 200, OK                  ‘event1’                 400, Not                 ‘event1’

200, OK                                                  12/03/18 a valid date.           12/03/18

200, OK 200, OK

1

Figure 5.2. Two sample interaction traces are shown in figure. Request types (bold)

and request contents are shown above dashed line. Response types (bold) and

response contents are shown below dashed line.

Consider sample interaction traces shown in Figure 5.2. For these sample traces,

requests are shown above the dashed lines with request types denoted in bold char-

acters (createEvent, updateEvent and getEvent) and the contents following the types.

Similarly, responses are shown below the dashed lines with request types denoted in

bold characters (success, fail) and the response contents following the types.

These traces show that, for a stateful service, the history of a request has to be

considered instead of only the current request to predict the correct response, since the

current request’s response can be affected by one of the previous interactions.

5.2. Classification Based Virtualization (CBV)

Classification is a supervised learning method in pattern recognition where the

task is to learn the mapping from the input to the output [41]. An example classification

problem can be assigning of customers to two classes: low-risk and high-risk. The

information about a customer such as the income and savings form the input to the

classifier whose task is to map the input to one of the two classes.
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In a stateful service, a request’s response is affected by previous interactions in

the history. Therefore, in our case we have to train a model that learns the mapping

between hreqi and the response resi for each reqi. Specifically we use the k history

of requests rather than the full history. Both hreqi and resi show characteristics of

categorical data thus we employ one-hot encoding in our approach. Figure 5.3 shows

the inputs and the outputs of an example trace. Note that although we use one-

hot encoding for our input data, however the prediction of the classifier, which is the

response of the request can be enumerated. In classification, outputs are only class

labels, therefore ordinality is not the case. Hence, during training we keep a set of all

contents to be predicted seen so far. This set contains, event1, 12/02/18, 16/01/18,

16/02/18, 12/03/18, 12/14/18, 200 OK and 400, Not a valid date for the example

traces. Outputs are the enumerated values of the elements in this set.

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … … … 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 ]  --- [ 1, 6, 8 ]

createEvent event1 12/02/18 200, OK getEvent event1

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … … … 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 ]  --- [ 2, 6, 8 ]

createEvent event2 12/02/18 200, OK getEvent event2

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … … … 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 ]  --- [ 3, 7, 8 ]

createEvent event2 12/02/18 200, OK getEvent event3

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 … … … 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 ]  --- [ 4, 7, 8 ]

createEvent event4 12/02/18 200, OK getEvent event4

[

[

[

[

Attributes Outputs

Figure 5.3. The figure shows an example datapoint that will provided for training of

a classifier.

If there are more than one class is to be predicted, and those classes can possibly

be assigned to more than two types of labels, this is called multioutput-multiclass

classification [46]. For example, for the first data point in Figure 5.3 we want to

predict three fields: the event’s label, the event’s date and result type. Each field has

various number of possible values to take.

We employ Repeated Incremental Pruning to Produce Error Reduction (RIP-

PER) which is a pure rule based classification algorithm proposed in [47]. RIPPER

produces a set of IF-THEN rules for separation. Note that, response prediction can be

handled by defining appropriate decisions. An example decision would be, if the re-

sponse of updateEvent request is not 200, OK then ignore it, assuming a failed request

does not imply changes in responses in the future. Therefore, a rule based classification

technique perfectly fit in response prediction in this case. Other advantages of using

RIPPER include interpretability of the resulting rules and shorter training times.
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After training the classifier it is ready to predict responses for a given request.

When a request arrives, we encode its history and give the encoding as the input to the

classifier. The classifier predicts the corresponding response. If the incoming request

contains a feature that is not seen in training data, it is encoded in a way that is

different from all other features in the training data. Also note that, this technique

requires parsing the interactions to find request types, parameters and the response to

be encoded.

5.3. Sequence-to-Sequence Based Virtualization (SSBV)

In this section, we describe another approach for virtualization of stateful services.

We will train a sequence-to-sequence model to learn the function V S for this approach.

This approach can be used for services using custom message formats for performance

and security purposes. Whereas, the classification based approach assumes a well-

defined format such as JSON or XML.

Sequence-to-sequence models were previously employed in problems requiring to

consider whole history of input such as language translation [43] or automatic chat-bot

creation [48,49] and demonstrated successful results. Sequence-to-sequence models use

a special form of Recurrent neural networks (RNNs), namely, Long Short Term Memory

(LSTM) [42]. LSTMs allow the usage of historical data in several steps in the future.

This is crucial because stateful services use historical data. The basic architecture of

a sequence-to-sequence model is depicted in Figure 5.4. The architecture consists of

two LSTM networks [50]; an Encoder (with embedding phase) that processes the input

sequence and a Decoder that produces the output sequence, which are both LSTM

networks. We use [51] for sequence-to-sequence learning.

We start with creating a vocabulary from the corpus, IR in our case. Previous

works [43,48] add each unique word in the corpus to the vocabulary since their aim is

to find the correspondences between the words and the sentences.
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Embedding

how             are you? 

I am fine

Encoder Decoder

1 2 3 4 5 6

Figure 5.4. The general outline of sequence-to-sequence models consisting of an

encoder and a decoder. The sequence how are you? is transformed to sequence I am

fine in the figure.

Table 5.1. The inputs and the outputs corresponding to interactions of an example

trace used in training. Spaces are put for clarity here, for actual training we do not

put spaces if it is not included in data itself.

Input Output

createEvent event1 12/02/18 200, OK

createEvent event1 12/02/18 200, OK updateEvent 12/03/18 200, OK

createEvent event1 12/02/18 200, OK updateEvent 12/03/18 200, OK getEvent event1 event1 12/03/18 200, OK

In our case we assume that we can not parse the interactions (they come from

a custom format). Therefore, we create a vocabulary with the letters and characters

in IR. Then the elements in the vocabulary are enumerated. In the embedding phase

the input sequence is transformed to a list with enumeration IDs of the letters in the

input. The transformed input is given to an encoder network. The encoder learns to

encode an input sequence into a vector and the decoder learns to decode this vector

back to the output sequence.

In training our sequence-to-sequence model, we use prefixes of interaction traces,

hence the model is learned iteratively. For example, Table 5.1 represents the inputs

and the outputs for an example interaction trace. Our experience showed that this

way of training makes the model learn the mappings faster.
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5.4. Evaluation

In this section we demonstrate the experiments to evaluate our approaches. We

used our approaches to virtualize three real services. Also, we compared the accuracy,

micro-average and macro-average F1-scores of our approaches with the technique in-

troduced in [23]. First, we describe the services used in evaluation. Then we explain

the setup and goals of our evaluation and present the evaluation results.

5.4.1. Subject Services

We used two services in evaluation, namely, a proprietary Airline Ticketing Ser-

vice (ATS) and an open source Google Calendar API (Calendar). Calendar uses the

JSON format, whereas ATS uses a custom format for messaging.

Interactions collected from ATS corresponds to previous ticketing operations for

testing purposes. For Calendar, we implemented a script in Python that sends random

requests to the API and saves the responses. We collected 400 traces each with 10

interactions for these particular services. Our experiences showed that 400 traces are

adequate for training of both CBV and SSBV methods. We also note that ATS data

includes 26 different request types, whereas Calendar API data includes 5 request types.

5.4.2. Evaluation Setup

5.4.2.1. Metrics. We evaluated the techniques proposed in this work in terms of per-

formance and correctness. Performance refers to the training time of the models. For

correctness of CBV, we calculate two correctness scores, namely, exact matching ratio

(accuracy) [52] and subset matching ratio. For correctness of SSBV, we use accuracy.

The difference is because CBV predicts response classes, whereas SSBV predicts the

responses themselves.
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We now define the metrics used in correctness. Let E be the expected outputs, P

be the predicted outputs, n the number of tests in validation phase, and p the number

outputs predicted for each test, (which is three in the example datapoints shown in

Figure 5.3 ( e.g. 1, 5 and 8)). The set C = {c1, c2, . . . , cn} is the set of all classes to

be predicted. There are eight different classes to be predicted in the example shown in

Figure 5.3.

1 denotes a slightly modified version of indicator function. 1 of a set A and set

X is a function

1A : X → {0, 1}

defined as

1A(x) :=

1, if x = A

0, if x 6= A

ExactMatchRatio =
1

n

n∑
i=1

1Ei
(Pi)

Clearly, a disadvantage of this measure is that it doesn’t distinguish between

complete incorrect and partially correct predictions which can be considered as harsh

for some cases. Therefore we define subset matching ratio:

SubsetMatchRatio =
1

np

n∑
i=1

p∑
j=1

1Eij
(Pij)
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The higher SubsetMatchRatio values are the better. We expect that we will have

more optimistic results with subset matching ratio measurement.

We also calculate macro and micro averaged f-scores for evaluation of CBV

method. In macro average, metrics are calculated for each label, and their unweighted

mean is found. In micro average, metrics are calculated globally. F-score is originally

defined for binary classification, however, an extension is proposed for multi-label clas-

sification. We modify macro and micro averaged f-score calculations proposed for

multi-label classification [52] as follows:

F c
macro =

2
∑n

i=1

∑p
j=1 Y

c
ijZ

c
ij∑n

i=1 Z
c
i +

∑n
i=1 Y

c
i

Fmacro =
1

|C|

|C|∑
k=1

F ck
macro

Fmicro =
2
∑|C|

k=1

∑p
j=1

∑n
i=1 Y

ck
ij Z

ck
ij∑|C|

k=1

∑p
j=1

∑n
i=1 Z

ck
ij +

∑|C|
k=1

∑p
j=1

∑n
i=1 Y

ck
ij

where

Y ck
ij =

1, if ck is actually at Yij

0, otherwise

Zck
ij =

1, if ck is correctly predicted at Zij

0, otherwise
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In SSBV we use accuracy for evaluation. Accuracy in SSBV is defined as follows.

Let the real service to be virtualized be RS and the virtual service be VS. If, for a

given request history, the outputs of the real service to be virtualized and its virtual

service are the same, then the response predicted by the virtual service is an accurate

response.

5.4.2.2. Research Questions. We describe the research problems that we evaluated

with the results of our experiments. We look for the answers of the research questions

given below:

RQ1: How successful are the techniques introduced in this work in replacing real

services in terms correctness?

RQ2: How effective are the techniques introduced in this work in terms of performance?

5.4.2.3. Experimental Design. Parameters selected in experiments are depicted in Ta-

ble 5.2. Our primary concern in choosing those parameters is maximizing the correct-

ness of the models.

For each of technique we created models with history sizes of k ∈ 1, 5, 10. For

k = 1, we use the last interactions. For k = 5 (k = 10) we use the last 5 (10)

interactions recorded including the incoming request.

For CBV method, we use Weka [53] implementation of RIPPER. Weka is a library

of machine learning algorithms for data mining tasks. For SSBV method, we created

models using Tensorflow [51] implementation of sequence-to-sequence model with his-

tory sizes k ∈ 1, 5, 10. There are other implementations of sequence-to-sequence models

are available in several deep learning frameworks.
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Table 5.2. Parameters selected in experiments.

Method Parameters

CBV (RIPPER) minNo = 1

SSBV (Tensorflow)

hidden size = 25

batch size = 128

layers = 2

epochs = 1

iteration = 1000

EFSM Tool (J48) default

A more comprehensive comparison between deep learning frameworks can be

found in [54]. We employed Keras [55] for running Tensorflow framework which is a

high-level neural-network API running on top of Tensorflow. EFSM tool presented

in [23] can be found in [56]. We used J48 option [53] for classification. This option

generates C4.5 [57] decision trees.

In the experiments, for each service, we performed three steps: (1) collect inter-

actions from real services, (2) learn models using the collected interactions, and (3)

measure the correctness and performance. We employed 5-fold cross validation for

CBV and EFSM Tool where we use 80% of the data for training and 20% of the data

for validation for each fold. Experiments were run on a server with 16 GB memory

and Intel Xeon E5-2630L v2 2.40GHz CPU.

5.4.3. Evaluation Results

We now present and discuss the results of the experiments. First, we evaluate

correctness and then we evaluate performance of the methods mentioned in this paper.

We present the results of the experiments in Table 5.3 and Table 5.4. The results

demonstrated in these tables are achieved with parameters shown in Table 5.2.
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5.4.3.1. RQ1: Correctness Results. We achieve the highest accuracy, exact matching

ratio and subset matching ratio with a history size of 10 for both ATS and Calendar

API. We observed that matching ratios obtained from CBV method are slightly higher

than those for EFSM Tool, since both of them are classification based techniques. How-

ever EFSM Tool does not consider the history while predicting a response. Therefore

we obtain higher values with CBV for most of the experiments. Also Fmicro and Fmacro

scores support results achieved in exact and subset match ratios. The highest Fmicro

and Fmacro are close to 0.9 which is satisfying for.

We also employed statistical tests to learn if the difference in correctness between

CBV and EFSM Tool are significant or not. First, we applied Shapiro-Wilk test to learn

if our samples are distributed normally. Our samples consist of EMR and SMR results

and f-score ratios of each fold in our 5-fold cross validation process. We consider only

k=10 history of correctness results which are the highest among all k values. According

to the results of Shapiro-Wilk test our samples are distributed normally for EMR, SMR

and f-score metrics for CBV and EFSM Tool. Since normality assumption is achieved,

we performed one sided two sample t-test to check whether the difference in results

between CBV and EFSM Tool are statistically significant or not. Results showed that

true difference in correctness is not equal to 0 with 95% confidence interval for EMR,

SMR and f-scores. This means that EMR, SMR and f-score results are higher for CBV

compared to EFSM Tool with 95% confidence. Note that these statistical tests are

performed for both of ATS and Calendar API data separately.

When we look at the traces in detail, we observed that there can be responses

which are not possible to predict using automated methods like CBV or SSBV. An

example of such a response can be a response including today’s date which is not

possible to predict using CBV or SSBV. However, these kind of interactions can be

handled with a small manual effort in practice. Also we observe that, we achieve higher

match ratios for ATS when compared to Calendar API. This is because ATS has limited

type of request and response contents, however in Calendar there are extensive types

of request and response contents.
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Table 5.3. Correctness results of CBV, SSBV and EFSM Tool. EMR stands for

Exact Matching Ratio, SMR stands for Subset Matching Ratio.

Service k CBV EFSM Tool SSBV

EMR(%) SMR(%) Fmacro Fmicro EMR(%) SMR(%) Fmacro Fmicro Accuracy (%)

ATS 1 76.6 79.6 0.781 0.767 78.1 80.6 0.803 0.783 92.1

Calendar 1 70.3 78.5 0.757 0.741 70.7 76.0 0.721 0.715 93.2

ATS 5 82.7 84.3 0.813 0.798 80.0 83.7 0.806 0.786 96.5

Calendar 5 81.1 84.1 0.843 0.825 71.5 77.1 0.753 0.741 97.3

ATS 10 82.7 84.3 0.813 0.798 80.0 83.7 0.806 0.786 96.5

Calendar 10 82.0 88.5 0.871 0.866 72.1 78.0 0.767 0.751 99.3

In summary, we find that virtual services created using SSBV technique are accu-

rate enough to replace the real services when 90% or more accuracy is needed. Virtual

services created using CBV technique can replace the real services when an exact match

is not required and a high subset match is enough.

5.4.3.2. RQ2: Performance Results. In CBV method, virtual services are created much

faster than the SSBV technique. The training time of RIPPER in CBV method is in

minutes, however, the training time of SSBV takes hours. Note that we conducted our

experiments on a CPU and deep learning algorithms can run faster with GPUs.

The training time of the EFSM tool is shorter than SSBV method, however, longer

than CBV method. If time is not important SSBV method can be used to virtualize

a service since SSBV is the most successful method for generating correct responses.

If time is limited it would be logical to use CBV method instead of EFSM Tool since

again correctness in CBV is higher than EFSM Tool and also CBV runs faster. One

advantage of EFSM Tool over CBV and SSBV is the model inferred. EFSM tool is

originally designed for reverse engineering [23] and can extract behavioral models of

the systems as EFSMs.
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Table 5.4. Performance results of CBV, SSBV and EFSM Tool. Training time in

format (hh:mm).

Service k SSBV CBV EFSM Tool

ATS 1 01:42 00:01 00:06

Calendar 1 02:21 00:01 00:06

ATS 5 08:51 00:03 00:11

Calendar 5 09.54 00:03 00:14

ATS 10 14:42 00:04 00:18

Calendar 10 16:19 00:04 00:19

5.4.4. Threats To Validity

In this section, we discuss threats to our evaluation’s validity.

5.4.4.1. Internal validity. The selected services in this work do not imply any bias.

They are taken from different business areas and also their message format are different

from each other.

Interactions from Calendar API are, in part, manually collected such that the

parameters to requests are manually specified. This may bias the evaluation results.

To mitigate this threat, we created a set for each parameter field and randomly chose

one element from each set for each request. This makes a huge number of combinations

of parameters for each request and prevent any bias for the results. Interactions from

ATS are collected during testing of a dependent component, therefore we do not expect

ATS data bias the results.

Some of the requests in ATS have only one type of response. Thus all the tech-

niques mentioned in this work can predict correct responses for such requests which

makes overall correctness higher. However, ATS is in use in real life. This demonstrates

us that there can be such cases in the industry. Therefore we do not expect that this

threats our validity.
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The algorithms used in this work can produce different results according to the

parameters given. We use the best achieving parameters for all tools to prevent any

bias in evaluation.

5.4.4.2. External Validity. Subject services in this work are selected from real life

services. Additionally, the custom message format of ATS and the standard JSON

message format of Calendar API make a good combination in terms of evaluation of

techniques. Also, the techniques proposed in this work can easily be implemented.

Thus, we say that our results are generalizable. However, these approaches would not

work if interactions are encrypted.

5.4.4.3. Construct Validity. The metrics specified in this work are performance and

correctness which are the main concerns in service virtualization. We measure the

correctness of SSBV with accuracy. On the other hand, we define exact matching and

subset matching ratios for CBV to evaluate its success in detail. Also, we measure

micro and macro averaged f-scores, since sometimes raw results of classification do not

tell the whole story.

5.4.5. Limitations

Results show that SSBV takes hours of training time when the dataset is large.

This would be limitation when an urgent use is needed. On the other hand, CBV

is a pretty fast technique. When performance is the concern CBV can be employed.

However, we note that CBV requires that the messages to be parsed. This is a drawback

when the services use a custom message format in requests and responses.



42

6. CONCLUSIONS

In multi-layered and service oriented architecture based software systems testing

or development can be painful because of interdependent nature of such systems. This

thesis studied how to overcome the dependency issue by creating virtual services. Re-

cent studies [8–10] proposed techniques to create test doubles namely virtual services.

However, there is still room for improvement in this field. Current works suffer from

limited accuracy and performance. Also they can not simulate the state behavior of

real services. In this work, we presented bioinformatics and machine learning based

novel methods to create virtual services namely FancyMock, CBV and SSBV. Fancy-

Mock is specialized for virtualization of stateless services. Stateless services do not

require to keep record of interaction histories. FancyMock makes use of pairwise and

multiple sequence alignment algorithms to produce a valid response. CBV and SSBV

are specialized for virtualization of services keeping state. CBV transforms response

prediction problem into a classification problem and in SSBV we employ sequence-to-

sequence models. CBV and SSBV are designed to reflect the state behavior of the

service to be virtualized.

Our evaluations demonstrate that the techniques introduced in this thesis are

successful in terms of the defined metrics. In stateless service virtualization Fancy-

Mock outperforms the baseline technique in terms of validity and training time. Also

FancyMock generates more diverse responses. However, it takes longer time to generate

response in FancyMock. In stateful service virtualization, virtual services trained by

CBV technique significantly outperform the other methods in terms of training time.

On the other hand, virtual services trained by SSBV model produce the most accurate

responses. Our results highlight the importance of the trace size in training where

longer traces result in more accurate responses. In addition, our research shows that

methods proposed in this work are better in predicting responses than the technique

presented in [23].
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In future, we will work on generating responses faster in FancyMock. Also, for

stateful service virtualization, we plan to reduce training time of models while pre-

serving correctness as high as SSBV’s correctness. This can be achieved using faster

neural networks or GPUs. Last, we plan to infer the state model of a service using

recorded requests and responses. State models can also be used in debugging and

documentation.
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