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SAMPLE-EFFICIENT DEEP LEARNING METHODS
FOR
AUTONOMOUS SYSTEMS

SUMMARY

Machine learning technology has got popularity in autonomous systems in recent years
because of the huge improvements at deep learning methods. Imitating a controller
using deep learning methods to take actions in complex environments became one of
the main research area for autonomous systems. One way to learn a controller is using
imitation learning which uses expert demonstrations. An end-to-end deep learning
method which takes raw demonstrations comes from an expert and outputs a control
signal can be used as a controller. End-to-end imitation learning is a popular method
for performing autonomous system tasks. The objective of this work is to develop a
sample efficient end-to-end deep learning method for an autonomous system, where
we attempt to increase the value of the information extracted from samples, through
selective analysis obtained from each call to expert policy. The standard approach
relies on collecting pairs of inputs and outputs from an expert policy and fitting a
deep neural network to this data to learn the task. Although this approach had some
successful demonstrations in the past, learning a good policy might require a lot of
samples from the expert policy, which might be resource-consuming. In this work,
we develop a novel framework based on the Safe Dataset Aggregation (SafeDAgger)
approach, where the current learned policy is automatically segmented into different
classes, and the algorithm identifies classes with the weak performance at each step.
Once the weak classes are identified, the sampling algorithm focuses on calling the
expert policy only on these classes, which improves the convergence rate. Firstly,
DAgger algorithm implemented to the problem of estimation of the aircraft states
during the landing in order to show performance of data aggregation methods in
autonomous system tasks. After that, the proposed framework verified on autonomous
driving tasks and the presented simulation results showed that the proposed approach
can yield significantly better performance compared to the standard Safe DAgger
algorithm while using the same amount of samples from the expert.
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OTONOM SISTEMLER
ICIN
VERIMLI ORNEKLEMELI DERIN OGRENME YONTEMLERI

OZET

Son yillarda, makine Ogrenmesi teknolojisinin otonom sistemlerde kullanilmasi,
bilgisayar donanimlarin giiclenmesi ve derin 6grenme yontemlerindeki gelismeler
nedeniyle onem kazanmistir. Derin 6grenmedeki gelisme ve arastirmalara paralel
olarak, otonom sistem gorevlerinde yontem olarak derin 68renme yoOntemlerinin
kullanilmasi ve arastirilmasi akademide artmistir.

Otonom sistemler i¢in derin 0grenmedeki ana arastirma alanlarindan biri, standart
kontrolciilerin basarisiz olacagi karmagsik ortamlarda ongoriilerde bulunabilecek ve
kontroloriin yerini tutabilecek bir sinir ag1 egitmektir. ~ Bir uzmani veya ana
kontrolciiyli taklit ederek bir sinir ag1 egitmek, giiniimiizde bir kontrolciiniin
gorevlerini 0grenmenin ana yollarindan biridir

Derin 68renmenin otonom sistemlerde temel kullanim alanlarindan biri, kendi
kendini siiren araba teknolojilerinde goriilebilir. Ozellikle, otonom siiriis algoritmasi
olusturmak i¢in goriintii temelli yontemlerin kullanilmasi, genis bir arastirmaci
kitlesinin ilgisini ¢ekmistir ve cesitli 6grenme ve kontrol mimarilerinin gelismesine
yol agcmistir. Bu yontemler kabaca klasik yontemler ve ucgtan uca derin 6grenme
diye ikiye ayrilabilir. Klasik yontemler, otonom siiriis sorununu ii¢ asamada ele
alir; algilama, planlama ve kontrol. Algilama asamasinda, otoyol lizerindeki serit
isaretlerini tespit etmek i¢in renk ayirma, kenar algilama vb. gibi 6znitelik ¢ikarma
ve gorlintli igleme teknikleri uygulanir. Planlama agamasinda, algilama asamasinda
tespit edilen serit isaretlerine gbre otomobilin gitmesi gereken yolun planlamasi yapilir.
Kontrol boliimiinde ise, otomobil i¢in direksiyon, hiz vb. kontrol eylemlerini bir
kontrol algoritmas1 kullanarak belirlemek i¢in planlama ve algilama asamalarinden
gelen yol ve rota bilgisi kullanilir. Klasik yontemlerin performansi biiyiik olgiide
algilama asamasinin performansmna baghdir ve bu asamada kullanilan sub-optimal
yontemler sebebiyle belirlenen otonom siiriis algoritmasi optimal olmayabilir. Klasik
yontemlerin sirali yapisi sebebiyle algilama asamasindaki bir hata biiyiiyerek son
asamaya kadar gider ve dnlenemez hatalara yol agar.

Ote yandan, uctan uca derin O6grenme yontemleri, uzman bir siiriiciiniin siiriis
verisinden elde edilen 6rneklerden bir fonksiyon dgrenir. Ogrenilen fonksiyon, kontrol
girislerini dogrudan goriis verilerinden iireterek klasik kontrol sekansinin ii¢ katmanini
tek bir adimda birlestirir. Simdiye kadar, ugtan uca derin 6grenme yontemleri ile
otonom siiriis algoritmasi iretmede en popiiler yaklagim sinir aglari(NN) kullanmaktir.
CNN, LSTM yapisindaki aglarda diger kullanilan yontemler arasinda sayilabilir.

Uctan uca derin 68renme yontemleri, gosterilen veri ile sinirhidir ve uzmandan
toplanan veriler ile egitilen yada 68renilen fonksiyonun tahminlerinde hatalar diisiik
olsa da uzun vade de 6grenilen otonom siiriig algoritmasi zay1f performans gosterebilir.
Bu performans kaybi, kismen, 68renilmis otonom siiriiy algoritmasinin, egitim
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asamasinda kullanlan verilerin dagilimina benzer ya da ait olmayan durumlari
gozlemlemesinden kaynaklanmaktadir.

DAgger algoritmasi, bu konuyu hem uzmandan hem de egitilen sinir agindan
tekrar egitimde kullanmak {izere yeni veri toplayarak ¢ozer. DAgger’in ana fikri,
Ogrenilen otonom gorev algoritmasini gelistirmek i¢cin uzmandan aktif olarak daha
fazla ornek almaktir. Bu durum i¢in ilk olarak DAgger algoritmasinin otonom
sistemlerde uygulanabilirligi incelenmistir. F-16 savas ucaginin otonom inis sirasinda
bas istikameti agisini inig pistine bakan kameradan gelen goriintiilye bakarak tahmin
etmek lizere DAgger algoritmasi yontemleri kullanilarak bir sinir ag1 egitildi. Aym
zamanda karsilastirma yapabilmek i¢in standart uctan uca derin 6grenme yontemleri
kullanarak bagka bir referans sinir ag1 egitildi. Egitilen sinir aglar1 ayn1 durumlar
icin test edildiginde standart yontemler ile egitilen sinir ag1 zayif performans
gostermistir ve simiilasyon sonucunda kaza kaginilmaz olmustur. Bunun yaninda
DAgger algoritmas1 yontemleri kullanilarak egitilen sinir ag1 test asamasinda daha iyi
performans gostererek sorunsuz bir sekilde piste inisi gerceklestirmistir. DAgger daha
1yl otonom gorev performansi elde etmesine ragmen, uzmandan ¢ok fazla 6rnek almasi
ile sonuglanabilir ve bu da zaman ve kaynak kaybina yol acabilir.

Derin 0grenme yontemlerini yiiksek boyutlarda egri uydurma gibi diisliniirsek
eger, kullanilan datanin gozlemlenen uzay icindeki yeri onem arzeder. Derin
O0grenme yontemlerinin tahmin performansini arttirmak icin, tahminlerin koétii oldugu
alt-uzaydan daha fazla data toplanip sinir ag1 tekrar bu data kullanilarak egitildiginde
performansta artis meydana gelecektir. ~ DAgger’in bir diger versiyonu olan
SafeDAgger algoritmasi hem uzmana yapilan c¢agriy1 azaltmak hem de yapilan
cagirilardan elde edilen verinin kalitesini arttirmak i¢in, G8renilen otonom siiriis
algoritmasinin tahminlerinin giivensiz oldugu durumlari tahmin ederek uzmana
yalnizca bu gibi durumlarda ¢agr yapar.

SafeDAgger algoritmast her ne kadar iyi performans gosterse de veri toplama
asamasinda sadece verilerin giivenli yada giivensiz olma durumlarina bakmaktadir.
Giivensiz olarak secilen durumlarin siniflandirmasini yapmamaktadir. Bu durum sirali
karar verme siireci iceren otonom gorevlerde, verimli 6rnek toplama baglaminda etkili
bir yontem degildir. Sirali karar verme siireci gerektiren otonom gorevlerde bir 6nceki
karar bir sonraki gézlem uzayim etkiler. Verilen karar i¢inde bulundugu anda kiiciik
bir miktar hatali olur ise sonrasindaki gozlem uzayina bakarak verilen kararlarin dogru
olandan sapma ihtimali artar. Ttim bunlarin 6niine gegmek icin sorunlu gdzlem uzayini
baslangictan itibaren ¢cozmek gerekir.

Bu calismada, Selective SafeDAgger adli ve SafeDAgger algoritmasina kiyasla,
orneklem verimli olan yeni bir veri toplama methodu onerilmektedir. Onerilen
algoritma, 6grenilen otonom siiriis algoritmasi tarafindan yiiriitiilen sorunlu durumlarin
giivenli ve giivensiz bolimlerini smiflandirir. Siniflandirma  igleminden sonra
belirlenen en sorunlu smiftan 6rnek almaya odaklanmaktadir. Sorunlu smiftan
alinan Ornekler ile sinir ag1 yeniden egitilerek tahmin performansinin arttirilmasi
amaclanmistir. Boylece problem kaynagindan ¢oziilerek sonraki gozlem uzayina etkisi
azaltmak miimkiindiir. Ozetlemek gerekirse, bu calisma ile literatiire asil katkimiz,
uzman siiriis verisinden en efektif ornekleri alan ve ayni zamanda uzmana yapilan
cagrilar1 smurlandirip SafeDAgger yonteminden daha iyi performans elde etmeyi
saglayan bir taklit 9grenme yontemi gelistirmektir.
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Selective SafeDAgger algoritmasinin performasini SafeDAgger algoritmast ile
karsilastirmak amaciyla bir otonom ara¢ simiilasyonu olusturulmustur. Simiilasyonun
amac1 ara¢ Oniine konulan bir kameradan gelen goriintiilere bakarak aracin gitmesi
gereken hizi ve direksiyon acisini tahmin etmektir. Bu amacgla iki algoritma da
ayni ortamda derin 6grenme metodu kullanarak egitilmistir. Egitilen sinir aglari
test senaryolart ile kargilastinlmistir. Karsilagtirma sonucunda Selective SafeDAgger
algoritmasinin verimli Ornekleme ve uzmana yapilan c¢agri sayis1 bakimindan
SafeDAgger algoritmasina iistiinliigii gosterilmisgtir.
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1. INTRODUCTION

In last decades, the machine learning technology gained importance in autonomous
systems due to the improvement of the computational power in hardwares and deep
learning which is one the methods for machine learning is got more advancement due
to the parallel computation ability on GPUs. In parallel with developments in deep
learning, research for deep learning in autonomous systems tasks also increased in

academia.

One of the main research areas in deep learning for autonomous systems is learning
a controller to make predictions in complex environments which standard controllers
will fail in those environments. Imitation learning is one way to learn a controller with
using expert demonstrations and use of deep learning in imitation learning became a

state-of-the-art method, nowadays.

One of the main usages of deep learning can be seen self-driving car technologies.
In particular, the use of vision-based methods to generate driving policies has been
of interest to a wide body of researchers, resulting in a variety of different learning
and control architectures. These methods can be roughly classified into classical
and end-to-end methods. Classical methods approach the problem of autonomous
driving in three stages; perception, path planning, and control [1]. In the perception
stage, feature extraction and image processing techniques such as color enhancement,
edge detection, etc. are applied to image data to detect lane markings. In path
planning, reference and the current path of the car are determined based on the detected
features in perception. In the control part, control actions for the car such as steering,
speed, etc. are calculated from reference and the current path with an appropriate
control algorithm. The performance of the classical methods heavily depends on the
performance of the perception stage and this performance can be sub-optimal because
of the manually defined features and rules in this stage [2]. Sequential structure of the
classical methods might also lead to the non-robustness against errors, as an error in

feature extraction can result in an inaccurate final decision.



On the other hand, end-to-end learning methods learn a function from the samples
obtained from an expert driving policy. The learned function can generate the control
inputs directly from the vision data, combining the three layers of the classical control
sequence into a single step. By far, the most popular approach for representing the
mapping from images to controls in end-to-end driving is using neural networks (NN).
ALVINN by Pomerleau [3] is one of the initial works in this area, which uses a
feedforward neural network that maps frames of the front-facing camera to steering
input. Researchers from Nvidia utilized convolutional neural networks (CNN) [4]
in order to automatize the feature extraction process and predict steering input. An
FCN-LSTM architecture [5] is proposed to increase learning performance with scene
segmentation. In [6], a visual attention model used to highlight some important regions
of frames for better prediction. Although the steering input prediction in an end-to-end
manner is a well-studied problem in the literature, the steering input alone is not
sufficient for fully autonomous driving. In [7] a CNN-LSTM network is proposed

to predict the speed and steering inputs synchronously.

Pure end-to-end learning policies are limited to the demonstrated performance, and
although the training and validation loss on the data collected from the expert might be
low, errors accumulated from the execution of the learned driving policy might lead to
poor performance in the long run. This performance loss is partly due to the fact that
learned driving policy is likely to observe states that do not belong to the distribution of
the original expert demonstration data. DAgger [8] algorithm addresses this issue by
iteratively collecting training data from both expert and trained policies. The main idea
behind DAgger is to actively obtain more samples from the expert in order to improve
the learned policy. Even though DAgger achieves better driving performance, it might
end up obtaining a lot of samples from the expert, which can be time and resource
consuming in many real-life scenarios. SafeDAgger [9] algorithm, an extension of
DAgger, attempts to minimize the number of calls to the expert by predicting the
unsafe trajectories of the learned driving policy and only calls the expert on such
cases. Another extension of DAgger, EnsembleDAgger [10], predicts the variance of
the decisions by using multiple models, also it takes the variance as additional safety

criteria like SafeDAgger.



In this work, we propose a novel framework which is sample-efficient compared to
the SafeDAgger algorithm (state-of-the-art data aggregation method), named Selective
SafeDAgger. The proposed algorithm classifies the problematic observations executed
by the learned policy to safe and multiple classes of unsafe segments. After the
prediction, the model focuses on obtaining the expert policy samples primarily from

the identified unsafe segment classes.

Our main contribution is an imitation learning algorithm that obtains the most
promising samples from the expert policy, which enables outperforming the

SafeDAgger method while limited to the same number of calls to the expert.

This paper is organized as follows. Definitions of the used terms and algorithms and
details of the new proposed algorithm, Selective SafeDAgger, are provided in section
IL. In section III, experimental verification of algorithm and discussion about results

are given. The conclusion is given in section I'V.






2. METHODOLOGY

In this section, definitions of some fundamentals have given for ease of understanding

for algorithms and detail of proposed algorithm is provided.

2.1 Deep Neural Networks

Neural networks can be defined as a set of algorithms that helps to devise patterns in

dataset. Deep learning is composition of several neural networks or layers.

Neurons are the main elements of the layers. All computations occur in the neurons. It
has two part, the first part scales the input data by multiplying with a weight and in the
second part these weighted inputs are added to each other and the total collection of
weighted inputs are passed to the activation function to decide whether signal should

continue through the network or not.

Deep neural networks are constructed with using layers with a defined amount of
neurons. At the first stage, data is given to input layer. After that at hidden layers,
multiplications and summations are done. In the output layer, mapping from input to

output is done as shown in Fig. 2.1.

Input
Layer
Hidden
Layers
Qutput
Layer

%

——
\
ons

—— /,
L]
Weights Neurt

Figure 2.1 : Deep neural networks.

Deep learning, generally, used for mapping inputs to outputs by finding correlations.
It can learn to approximate an unknown function between input and output. During
the learning, neural network tries to find the right weights to predict output by using

feed-forward, back-propagation and an optimization algorithm to minimize differences
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between predicted output and ground truth. In this manner, we can say that deep
learning tries to fit a curve between input and output in high dimension with using

nonlinear tools.

2.2 Imitation Learning

Training a policy to make decisions using demonstrations can be definition of the
imitation learning. It is a kind of supervised learning but with a difference which

predictions are made sequentially.

There are 5 key elements of the imitation learning. First one is a demonstrator to
imitate labeled data of this demonstrator. Demonstrator can be a driver, pilot or even a
controller. Second one is an environment which labeled data comes from observations
of this environment. Third one is a policy class that predicts the actions of the
demonstrator. It is popular to use deep neural networks to perform this task. Fourth one
a loss function to quantify differences between the action of our policy demonstrator.
And the last one is a learning algorithm to minimize loss function problem. It is usually

variant of gradient-descent optimization algorithm.

2.3 DAgger

It is well-known that the prediction performance for the imitation learning policies
is limited with the collected dataset. In sequential decision-making problems, error
accumulation of trained policy can lead to low performance in the long term. DAgger
[8] handles this problem by aggregation of training data from both controller and
trained policies. The basic idea behind DAgger is to collecting data from policy when
it is in action. In parallel controller labels a recovery commands for new observation.
Initial dataset and new observations are used to train the new policy as shown in

algorithm 1.

_ N+1-—i

Bi 2.1



Table 2.1 : Algorithm 1.

DAgger Algorithm

1 Initialize Do < 0
2 Train 7} over set Dy
3 fori=1toNdo
4 Let ;, = Biﬂ'* + (1 — ﬁ,‘)ﬁ?i
5 Sample T-step trajectories using 7;
6 | Getdataset D; = {(s,n*(s))} of visited states by 7; and ground
truths given by 7*

7 Aggregate datasets: D; <— D;UD;_
8 Train 7; | over set D;

9 end
10 return best 7; on validation

Algorithm starts with collecting initial dataset Dy and train initial policy &; over Dy.
A dummy policy(7;) is defined as a weighted sum of initial policy and controller with
a parameter of f; which is defined in equation 2.1. At the beginning of the DAgger
iterations I} have poor performance and by weighting with 1 — 3; we can eliminate
any chance of a crash. With using 7; in parallel with controller (7*) for T-step time,
a new dataset D; is collected. This dataset has labels coming from the controller. A
new policy (7;41) is trained with using the union of the initial and new dataset. This

iterative loop continues for N times.

2.4 SafeDAgger

The prediction performance of a neural network dramatically increases with use of
DAgger algorithm but it comes with a cost. A large number of calls to expert policy
needed for training of policy and calls for the expert policy can be costly, especially
in case of human operator as a expert policy . Another disadvantages of using human
operator is mislabeling problem. Human operator cannot feel the actual feedback of
the their actions, since weighted sum of expert policy and trained policy applied to the
system. As a result, human operator overreacts for some states and it cause the wrong

labeling for that states.

SafeDAgger [9] which is an extension of DAgger, tries to minimize calls for the expert
policy by looking a safety rule. By training a safety policy, algorithm tries to predict

probability of deviation from the expert policy. If predicted probability becomes bigger



than a threshold, expert policy takes full control of the system. By using a safety
strategy, number of calls to expert policy significantly decreases and since expert policy

takes full control, mislabeling problem automatically solved.

Table 2.2 : Algorithm 2.

SafeDAgger Algorithm

1 Initialize Dy < 0

2 Initialize Dy, r, < 0

3 Train 7] over set Dy

a Train g,z o over set Dy,
sfori=1toNdo

6 Collect D; using safety strategy for & and &g,z 0
7 Aggregate datasets: D; <— D;UD,;_
8 Train 7;1 | over set D;

9 Train A fe i1 Over set Dy, .

10 end

11 return best 7; on validation

The Algorithm which is shown in table 2.2, starts with collecting initial dataset Dy
and train initial policy #; over Dy as in DAgger. In addition to 71, a network . r. 0
is trained over Dy to predict probability of deviation from the expert policy. With
using safety rule for the control of the system for T-step time, a new dataset D; is
collected. This dataset has labels coming from the expert policy. New policies (7;11)
and fly,fey1 are trained with using the union of the initial and new dataset. This

iterative loop continues for N times.

2.5 Selective SafeDAgger Algorithm

Even though, DAgger and SafeDAgger solves the problem of imitation learning for
some level by aggregating new dataset, this method still suffers from large number of
calls to expert policy and aggregation of efficient training data. To enhance existing
methods we have proposed a new dataset aggregation method which is called Selective

SafeDAgger.

Main idea behind Selective SafeDAgger is to classify unsafe observations and
collecting new dataset from most problematic class of observations.  Unlike
SafeDAgger which collects all unsafe dataset, Selective SafeDAgger tries to solve

problem of unsafe observations from the roots. Some of the unsafe observations are the
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result of the previous unsafe observations and if we solve the first unsafe observations

we can get rid of following unsafe observations.

Table 2.3 : Algorithm 3.

Selective SafeDAgger

1 Collect D using 7*
Ty — arg minﬂ lsupervised(ﬂ:y TT* 5 DO)
fori=1:Ndo

2
3

4 c¢; < Define unsafe classes over Dy
5 | D <+ ]

6 while £k < T do

7 P < 9 (s)

8 cg, < classifier output of 7;(¢y)
9 if cy, € c; then

10 use ()

u D'« [¢]

12 k=k+1

13 else

14 | use (k)

15 end

16 end

7 | Di=Di_UD

18 i1 = argming lypervisea (70, T, D;)
19 end

20 return best m; over validation set

*Blue fonts distinguishes the difference between Selective SafeDAgger and SafeDAgger.

Algorithm 3 describes the proposed method in detail, which takes the expert policy 7*
as an input and gives 7; as an output. The primary dataset Dy is collected by using
m* which is then utilized in training a primary policy 7y by a supervised learning
method. Having the 7y at hand, ¢;, the unsafe classes of Dy for the trained policy 7;
are determined. An observation ¢ taken from environment ¢ (s) is evaluated by 7; to
find its class cg,. If cg, is an element of ¢;, r* takes over the control of the car and ¢
is appended to D'. Otherwise, ; continues to command the car until it encounters an
unsafe class. As depicted in lines 6-16, the algorithm continues to append data to D
for T number of iterations. The appended dataset D is aggregated into D;_; to create
D; and m;, | is trained on D;. This loop is repeated for N times as shown in lines 3-18.

In the end, the algorithm returns the best 7; over the validation set.






3. EXPERIMENTS

To analyze and verify the proposed algorithms, two experiment are established. First
one is heading angle prediction for an F-16 aircraft during landing by using Dagger
algorithm. Second one is reference steering and speed prediction for a self-driving

cars by using front facing camera images.

3.1 Visual Landing of an F-16 Aircraft

We developed a Convolutional Neural Network (CNN) that can learn from
demonstrations and estimate the aircraft states. The main aim is to perform the
autonomous landing for an aircraft model in various possible system failures. In this
section, we first introduce the aircraft model and a sketch of the guidance and control

loops that are used in both training and testing the agent.

3.1.1 Aircraft model & Airsim

In this work, a nonlinear high-fidelity model of the F-16 aircraft [11] is used. The
model parameters and aerodynamic data tables are taken from [12]. Furthermore, the
standard atmosphere model that is used and 6-DOF equations can be found in the

literature [13], [14]. The observed state vector is as follows

X =V, VX1, o, B,9,0,W, PO, R, py, pe, ] (3.1)

here, we assume the full-sate measurement to be used in the feedback law.

3.1.2 Automatic path planning and landing

Landing of any aircraft can be divided into three phases; approach, glide, and flare.
During the approach, the aircraft maneuvers in order to align the nose and the velocity
vector with the runway. From initial position xg,yo the guidance logic calculates the
glide initiation point xg,y, and forms a straight line which is to be followed. Figure
3.1 shows the planar geometry of approach. In the glide phase, the aircraft follows

a prefixed flight path angle (generally -3°) towards the runway. Flare is performed
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Figure 3.1 : Approach geometry.

40 ft above the runway to land without inflicting structural damage to the aircraft by

pitching the nose up slightly to reduce the vertical speed.

Automatic path planning logic for landing has been taken from [15]. The algorithm
calculates glide and flare initiation points given the initial position. A straight line
between initial position xg, yo and glide initiation point x,, y, is to tracked in approach.
Likewise, the path to be followed in a glide is a straight line between x,, y, and the flare
initiation point. To capture the decrease in vertical speed, flare path is an appropriate

exponential between the flare initiation point and a desired point on the runway.

3.1.3 Initial dataset(D) collection

An autolanding aircraft simulation has been created with a low-level controller taken
from [16] and a guidance logic taken from [15]. Guidance logic outputs reference
altitude and heading angle to the low-level controller, which uses reference inputs
to calculate control surface deflections. The low-level controller is designed using

dynamic inversion and includes a separate lateral and longitudinal controller.

Visualization of the aircraft simulation has been achieved with Airsim which an Unreal
game engine based plugin that works in the unreal editor and provides photo-realistic
simulation environment. Airsim also has built-in API for communicating with Python
scripts. A custom Python script receives state information of aircraft from Simulink
over UDP network and sends to the Unreal environment with using Airsim API’s.

At the same time script captures screenshots of simulation at desired time steps and
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labels the captured screenshot with the state information. Hence a pool of training
images with desired size and amount from any phase of flight can be collected with

this structure. Block diagram of the dataset collection framework is shown in Figure

3.2.

Landing High-Level | Low Level | Control | Hi-Fi Aircraft States Python States -
1 T e . | E—— —  Airsim
Guidance | Commands  Controller | Surfaces Model (UDP Network) Script (Airsim API)

‘Labels States

e ver—
s T
E -
PELLCLLC

UNREAL

ENGINE

Figure 3.2 : Block diagram of data collection framework.

3.1.4 Data preprocessing

The recorded frames of the flight simulator were labeled with corresponding measured
heading angle from the dataset. The total simulation time for 10 flights was 277.24
seconds and 27724 images were collected with the step size of 0.01 seconds. Dataset
was split into three sub-dataset with the ratio of 0.7, 0.2 and 0.1 as training, validation,
and test sets respectively. The resolution of images was down-sampled to 512 x 288 x 3
(RGB) in order to reduce computational cost. Horizontal flip of images just changes
the sign of labels. This doubles the dataset size, so we end up with 44350 labeled data.
To prevent neural network model looking on irrelevant features in the environment a
Region of Interest (ROI) was defined in images with the size of 512 x 160 as shown in
Fig. 3.3. Each image was normalized to the range [0,1] by dividing to 255. In addition,
in order to eliminate the time-series correlation of the dataset, we shuffled the labeled

data. This prevents the network from forgetting the past experiences.
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Figure 3.3 : Extracting region of interest from frames.

3.1.5 CNN architecture

Designed CNN architecture is mainly based on NVIDIA’s [4] network which was
designed to predict steering angles for cars from frame inputs. The network takes
frames which have the size of 512 x 160 x 3 as input and it comprises 5 convolutional
and 5 densely connected layers as shown in Fig. 3.4. The first 3 layers of convolutional
layers have kernel size of 5 with the stride of 2 and following convolutional layers has
kernel size of 3 with the stride of 1. The number of filters in the convolutional layers
is 24,36,48,64 and 64, respectively. Additionally, after first 3 convolutional layers
average poling with a pool size of 3 is added. The network is flattened after last
convolutional layer to prepare inputs of the dense layers. Densely connected layers
have 200,100,50,10 and 1 neurons, respectively. For all layers except in the last layer,
Rectified Linear Unit (ReLU) was used as the activation layer. In total network has

1,281,571 parameters to train.
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Figure 3.4 : CNN architecture.

3.1.6 Training initial policy 7;

Nesterov Adam Optimizer (Nadam) was used as an optimizer for the training of the
network with the initial learning rate of 107> and moment of 0.99. The learning rate
was scaled with 0.5 when validation loss stuck in the plateau for 5 epoch. Labels of the
images were heading angle in radian and values were relatively small for regression
type networks. For that reason, a low value was chosen as initial learning rate and
training was continued for 200 epoch with the batch size of 32 in order to decrease
training and validation losses which are defined in equation 3.2 as mean square error
for the single batch. At the end of the training best result obtained at 188" epoch which

loss values are given in table 3.1. Some of the prediction can be seen in Fig. 3.5

n

1 .
MSE = p Y (i—9)? (3.2)
n=1

Table 3.1 : Loss values for the three sub-dataset.

Training Loss Validation Loss Test Loss
9.11e-07 9.73e-07 1.69¢e-06

Actuoal,Predicted,Error =[-0.06981317],[-0.06396489],[-0.00584828]

AcguaI,Predicted,Error =[0.034906591,[0.0343774],[0.00052919]

R 4
50 50

100 100 1

150 A
0 500 0

150

Figure 3.5 : Test set predictions (rad).
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3.1.7 Visualization

Visualizing intermediate activations is a useful technique for analysis of CNN filters
and it can give the first idea about the learned features of initial policy ;. Since higher
layers activations contain less information about input features, only activations of the

first and second convolution layer filters plotted and they can be seen in Fig. 3.6.

It can be seen that in the figure, some of the runways features extracted in filters. It
may be said that ConvolutionO filters behave like runway detector and convolutionl

filters find the orientation of the runway.

3.1.8 Evaluation

Two different scenarios were planned for the evaluation of the network. In the first
scenario, the network predicts the heading angles throughout the landing flight but
predictions were not given to controller as feedback on the other hand in the second

scenario controller uses prediction as a feedback signal.

3.1.8.1 Neural network prediction

For the first scenario, frames of a prerecorded landing flight were used in time order
and results are given in Fig. 3.7. It can be seen that for the approach and glide phases of
landing, predictions are noisy according to flare phases. Training data set was collected
from 10 different landing cases and for all landing cases, flight path converges to the
same path for the flare phase. This means that the training contains more flare phases
of data relative to the approach and glide phases. Therefore, the predictions in this

phase are more accurate than the other phases.
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Figure 3.6 : Visualization of first two convolutional layer activations.
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Figure 3.7 : Neural network prediction performance for the heading angle.

3.1.8.2 Neural network control

In the second scenario, the signal connection from the heading measurement sensor to
the model has been replaced by the prediction of the network. The prediction scheme
is fed a downscaled screenshot from the Unreal environment which is used as an input
to a pre-trained DNN. Network predicts the heading angle and outputs the prediction

to the model, closing the loop as shown in Fig. 3.8

Guidance States

N Control | Hi-FiAircraft | // _______ Python States Airsim
Commands Model Script (Airsim API)
Controller

Labels States

— ST

Neural Data Frames
g ram

. bata

State
Estimations

UNREAL

ENGINE

Figure 3.8 : Neural network feedback control framework.
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Figure 3.9 : Neural network control performance for the heading angle.

In can be seen in Fig. 3.9 that at the start of the glide, trained policy shows poor
performance and at the end crash occurs. We know that to achieve given desired
heading angle, aircraft performs both roll and yaw maneuvers. In our aircraft model,
roll maneuver more effective than the yaw maneuver to correct any error in heading
angle. When the trained model predicts the heading angle with some error, aircraft
directly starts to rolling motion in order to compensate the error which leads to a
significant change in the deviation of the future observation. This is a kind of sequential
decision-making problem that current prediction effects the future observations. If the
future observation deviates from the trained dataset, the performance of the policy
reduces. We know that initial policy is a suboptimal policy because it is trained on
a flight dataset that created by using a controller. The controller always stays in the
correct flight path and never sees the significant changes in deviation of observations.
So, when the policy deviates from nominal conditions it cannot recover since dataset
does not have any recovery conditions. To be able to solve deviations on observations
we used a dataset aggregation algorithm. Additionally, during the data aggregation to
imitate rolling like maneuver, 2 more cameras added to the simulator with angles of

420 degree bank angle as shown in Fig. 3.10. Since all three cameras directed to
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the same heading angle corresponding labels for new cameras will be the same as the

middle camera.

il

Figure 3.10 : Triple camera.

MSE over Test Flight
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Figure 3.11 : Mean squared error over test flight for each DAgger iteration.

3.1.8.3 Results and analysis

Three different test track defined to evaluate the performance of the trained model as

shown in Fig. 3.12
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At the beginning of the approach phase guidance algorithm calculates the initial desired
heading angle according to the initial position and simulation starts with calculated
orientation. Because of that reason error between desired and current heading angle
is zero at the starting of simulations. Desired heading angle does not change until the
start of the glide phase. Trajectory differences at approach phase are mainly due to
the prediction error of the neural network and since there is no roll maneuver at this
phase performance of neural network stays in reasonable range. At the glide phase
guidance algorithm starts change desired heading angle which leads to rolling roll
maneuver. Performance of neural network decreases at that stage but still remains in a
suitable range. For the flare phase, guidance algorithm tries to compensate trajectory
differences in long-term and neural network follows the path. In the final stage frames,
the runway is closer and bigger. So the performance of the convolution filters slightly
reduces and after zero point trajectory diverges. Since there is no touchdown scenario

in dataset this is an expected result.

3.2 Steering and Speed Prediction for Self-Driving Cars

3.2.1 Driving policies

We begin with giving definitions of the used terms in order to explain driving policies

in detail.

A set of states S for the car in this paper is an environment model and s € S is one
of the states for the car in that environment. Observation of the state s is defined as
¢ (s) € P(S) where D(S) is the observation set for all states. a(s) € A(S) will be driving

action at observation ¢ (s) where A(S) is the set of all possible actions.

A set of driving policies IT is defined as:

I1: &(S) — A(S) (3.3)

which is a mapping from state observations ¢ (s) to driving actions a(s) such as

steering, throttle, brake, etc.

Two distinct driving policies are defined throughout the paper. The first one is a

reference/expert policy 7* € I that drives the car with a reasonable performance that
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we want to imitate. A reference policy in an autonomous driving scenario is usually
chosen as actions of a human driver. Variants of DAgger algorithms, however, have
mislabeling problem in case of the human driver, since drivers do not have feedback
feelings from their actions and they can give incorrect reactions to the given states. In
order to overcome the mislabeling problem, we have used a rule-based controller which
contains speed and steering controllers, as a reference/expert policy in this paper. The
second policy is a primary policy 7y € II that is trained to drive a car. This policy is
a sub-optimal policy according to the reference/expert policy since it is trained on a

subset of observation set ®(S).

Training a primary policy to mimic a reference policy is called imitation learning or
learning by demonstration. One of the most common methods for imitation learning is
based on supervised learning techniques. The loss function for the supervised learning

is [9]:

[|7( (s:)) — (o (s:))|[> (3.4)

M=

1
lsupervised(ﬂ:aﬂ:*aDO) o N 1

i

wherelg,pervisea Tfers to I2-Norm between trained and reference policy actions.

A primary policy is defined as a policy that minimizes the supervised />-Norm equation

as follows.

o = argminlsupervised(nvTC*aDO) (35)
T

Minimization of the loss function can be challenging since it is known that the relation
between image frames and driving actions is highly nonlinear. So, we have used a deep

neural network architecture to find an optimal solution for the primary policy.

3.2.2 Network architecture

The earlier works in end-to-end learning for self-driving cars focus on computing only
the steering angle from a single image or a sequence of images. In order to reach
a higher level of autonomy in the end-to-end framework, the longitudinal control
component is also required. In this work, we utilize the multi-task model proposed

in [7] as our baseline, which is capable of generating both longitudinal and lateral
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control inputs for the car. In addition, we utilize a speed controller rather than the
classical throttle/brake commands for the longitudinal control. The steering action
is predicted from the raw image inputs taken from the cameras located in front of
the vehicle through convolution layers, and the speed is predicted from a sequence
of speed profiles through a Long-Short Term Memory (LSTM) layer. There exists
a single-direction coupling between the longitudinal controller (speed controller) and
the lateral steering actions. In particular, the speed of the vehicle has a significant
impact on the prediction model, since entering a turn with low speed represents
different dynamics for the lateral controller when compared to a high-speed maneuver.
Moreover, the straight trajectory dominates the whole other trajectory types (e.g. turn
left, turn right), therefore, the trained network will be biased toward the straight
trajectory. In order to recover from this issue, we decided to define various trajectory
types including all major maneuvers such as straight, turn left, turn right and low and
high-speed scenarios, by which the devised model will learn the other less-occurring

maneuvers.

The model architecture is shown in Fig 3.13. It takes the current observation and
the past speed profile and returns steering action, speed action and the class of the
trajectory segment. The multi-task network predicts the steering angle through a
visual encoder using a stack of convolution and fully-connected layers. In the first two
convolution layers (Convl and Conv2), large kernel size is adopted in order to better
capture the environment features, which is suitable for the front-view camera. Inputs
and kernels of the each convolution layer is denoted by "#channels @input height x
input width" and "kernel height x kernel width x #channels" and each fully connected
layer is denoted by "FC — size of neurons". The speed and trajectory class are
predicted through a concatenation of visual encoder and feedback speed features. The
speed features are extracted by an LSTM layer followed by fully-connected layers.
ReLU (Rectified Linear Unit) is used as the activation function for all layers. Mean
absolute error is the loss function for both speed and steering angle predictions as
regression problems. On the other hand, the cross-entropy applies to the trajectory

classifier as a classification problem.

The multi-class classifier highlighted in Fig. 3.13 extends the safeDAgger method to a

novel algorithm devised in this paper. The trajectory classes are defined as follows:
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( 1, Safe Trajectories

2, Unsafe LL

3, Unsafe HL

c(m,¢(s)) = ¢4, Unsafe LR (3.6)
5, Unsafe HR

6, Unsafe LS

7, Unsafe HS

\
where X in "Unsafe XY" refers to Low(L) and High(H) speeds and Y refers to going
Straight(S), Left(L) and Right(R) turns, respectively. Low and high speeds with
combinations of left, straight and right turns covers almost all unsafe trajectories. Same
combinations also applicable for safe trajectories but since it is not needed to call expert

policy in safe trajectories, we define only one class for the safe trajectories.

The multi-class classifier takes the partial observation of the state ¢ (s) which contains
the visual perception and the past speed profile and returns a label indicating in which

part of the trajectory the policy will likely to deviate from the reference policy 7*.

The labels for training the model was generated through one-hot-encoding method,
defined by sequential decisions; first, it was decided whether the policy is safe by
measuring its distance from the reference policy through /2-Norm metric, which is as

follows:

0, [lm(e(s)) — 7 (@ (DI > Tsase

3.7
1, otherwise S

Csafe(T0: §(s)) = {

where Ty, r. 1s a predefined threshold and can be chosen arbitrarily. Furthermore,
in order to distinguish between low-speed and high-speed turn trajectories, steering
threshold 7, speed thresholds for turn maneuver T,eeq 14 and straight trajectory
Tspeed straigh: are defined heuristically based on the response of the car dynamics in

these trajectories. The threshold values for this work is depicted in Table 3.2.

Table 3.2 : Threshold values in labeling process.

Parameter Threshold value
Tsafe 0.5
Tturn 0.25°
Tspeed turn 10 m/s
Tspeed,straight 13.75 I’I’l/S
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Figure 3.13 : Sample-efficient Selective SafeDAgger model.



where Ty, 7 as 0.5 yields 0.25° for the steering angle and 1m/s for the speed difference

between the network prediction and expert/reference policy output.

3.2.3 System setup

3.2.3.1 Simulator

AirSim is used in this work, which is an Unreal Engine Plugin based simulator
for drones and cars established by Microsoft to create a platform for Al studies
to develop and test new deep learning, computer vision and reinforcement learning
algorithms for autonomous vehicles with photo-realistic graphs in simulations [17].
It has built-in APIs for interfacing with Python coding language which is one of the
dominant coding languages of Al research. It is suitable also to be used for deep
learning approaches in car perception algorithms since simulator has a photo-realistic
environment. Furthermore, custom environments or scenarios can be created by using

the engine editor.

The road track for the training process of the algorithm is devised in a way to capture
all defined scenarios in this work. The geometry of the custom created training track

is shown in Fig. 3.14, in which all the trajectory classes are illustrated.
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Figure 3.14 : Train set track.
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Representative power of the training set can be increased by collecting data from
unseen observations. With that reason, 2 additional cameras were added to the
front-facing camera with an angle of o to imitate turning-like maneuvers as shown
in Fig. 3.10. Airsim APIs provide ground truth labels for the front-facing camera
frames, but ground truth labels for the left and right cameras should be adjusted with a

threshold as in Eqn. 3.8.

|:Ll:| — |:Lcsteering ta Lcspeed _pS[JEEd (3 8)
Lr Lcﬂee’ing - Lcspeed — Pspeed

where L;, L,, L and L., ,,, refer to the ground truth for the left and right cameras,

Csteering
center camera steering and speed actions respectively. In the turning case, the ground
truth speed of the vehicle is adjusted by a parameter p,,..q Which is chosen as 4 m/s

heuristically.

Figure 3.15 : 3 camera view with an o angle.

3.2.3.2 Data preprocessing

A couple of techniques were utilized in the preprocessing phase. In order to reduce the
computational cost, the input raw image was down-sampled to the size of 144 256 3
(RGB) and a Region of Interest (ROI) defined with the size of 59 255 to cover almost

the entire road and ignore the features above the horizon. Moreover, to improve the
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convergence rate and robustness of the neural network model, the processed image was
normalized to the range [0,1] and augmented by randomly changing the brightness of
the image with a scale of 0.4. The normalization was done by dividing all image pixels
by 255. Also, the brightness change was done by transforming the image from RGB

to HSV space and transform back to RGB space with the scaled value.

Image with sample ROI

T —

1440
0 50 100 150 200 250

Figure 3.16 : Region of Interest.

3.2.3.3 Expert policy

In order to automatize the data collection part of the algorithm, a rule-based expert

policy is defined as follows (see Fig. 3.17):

Figure 3.17 : Expert policy.
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For the steering action, 77 is a tangent line to the road spline at the position of the
car and P; is a point on road spline with /. ¢ distance along spline from that positions.
Tangent line at P; according to road spline is 7;. Angle between 77 and 7> which is o

will be expert steering action as shown in equation 3.9.

AR D)
ine — O = arcCoS | —————— >
Qgteering (HTIHHTQH) o

For the speed action, P, is a point on the road spline with a distance /p, as shown in

equation 3.10 from the position of the car along the road spline,
le = lre f chrrentksteering (3.10)

where Veypren; is current speed and kgeering 1 a fine tuned constant. Tangent line at P>

according to the road spline is 73. Expert speed action will be: be

Aspeed = Veruise ,Bkspeed (3.1D

where V,,yise is a pre-defined cruise speed, kqpecq is a fine tuned gain and B is an angle

between T, and T3.

For our implementation, the parameters are chosen as [,y = 1 m, Kyeering = 5, Veruise =

13.8 m/s and kgpeeq = 10.

3.2.4 Training

Iteration #1 Iteration #5 Iteration #10

AN

\%\/\“s \'\SV\S

I unsafe High Speed Tum Right Unsafe High Speed Turn Left Unsafe Low Speed Straight
I unsafe Low Speed Turn Right Il Unsafe Low Speed Turn Left Unsafe High Speed Straight

Il Safe classes

Figure 3.18 : Convergence rate of the proposed model; It shows the improvement of
the model as the number of dataset aggregation iterations increases.

For the training of the primary policy 7y in the algorithm, dataset Dy which contains

2800 image data were collected by using expert policy 7*. Nesterov Adam Optimizer
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(Nadam) was used as an optimizer for the training of the network with the initial
learning rate of 10> and moment of 0.99. The Training was continued for 10 epochs

with the batch size of 32.

Trained primary policy 7 is tested on the pre-collected dataset to classify trajectories
and calculate the />-Norm of each sample in the dataset. Weakness of the network over
trajectory segments is determined by a coefficient of weakness which is defined as in
equation 3.12,

N,

ci = N X U2 (3.12)

where U, ¢ are mean and standard deviations for the I2-Norm of the samples for class;.

Npo, 1s the total number of samples in class; that [2-Norm of samples fall in the region

of one o away from the mean u. N; is the total number of samples in class;.

Once the weakness coefficients are calculated, trajectory classes are sorted according
to their weakness coefficients and the two of the most dominant unsafe classes will
be chosen for data aggregation as shown in Table 3.3. Additionally, the classes with
the mean [2-Norm lower than 1, will be chosen as allowable classes other than the

dominant 2 classes.

In Table 3.3 it can be seen that weakness coefficients for the class LS and HS are quite
low and never chosen as weak classes. The initial dataset for the training of the policies
is biased toward LS and HS classes and /2-Norms in those classes are low, which lead
to low weakness coefficients. Moreover, training track does not have many samples

from class LR so that weakness coefficients for the class LR is also low.

Table 3.3 : Coefficient of weakness for each class.

# Iter. LL HL LR HR LS HS

1 0.004 0.321 0.019 0.694 0.002 0.010
2 0.505 0.122 0.037 0.278 0.001 0.023
3 0.635 0.264 0.028 0.607 0.001 0.062
4 0.751 0.515 0.046 0.646 0.001 0.010
5 0.018 0.678 0.034 0.755 0.001 0.010
6 0.009 0.752 0.039 0.849 0.000 0.006
7 0.717 0.790 0.038 0.780 0.001 0.004
8 0.028 0.787 0.017 0.794 0.001 0.006
9 0.670 0.634 0.011 0.713 0.001 0.005
10 0.012 0.768 0.020 0.809 0.001 0.003
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After determination of the weak and allowable classes, the data aggregation phase
begins. In the phase of data aggregation, policy 7; drives the car in order to collect 10
batches of data in dominant classes. If policy faces with dominant classes, the expert
policy takes control of the car and samples are taken in that time labeled and reserved
for aggregation. If policy m; faces with allowable classes which are actually unsafe
classes, it continues to drive the car. For all the other unsafe classes, the expert policy
takes control of the car with the query limit of 10 batch-size. When the number of
query reaches that limit or 10 batches of data is collected, data aggregation freezes and

training starts with the new aggregated dataset D;.

After the training, ; becomes 7;; and determination of dominant weak classes on the
pre-collected data are repeated and relevant data will be collected. This process will be
repeated for 10 iterations. As shown in Fig. 3.18, in the dataset aggregation iteration
number 1, a big fraction of dataset is unsafe, and as it proceeds to recover from the
most problematic cases, the model error converges. The progress of this process can

be seen from iteration number 1 to 10.

3.2.5 Results

In Fig. 3.19, we present the performance of the Selective SafeDAgger with using
metric of /2-Norm in each class during the training process. For the first iteration, HR
and HL are chosen as weak classes and data for new dataset comes from those classes
by querying expert policy. It is clearly seen that in the second iteration />-Norms drops
for all classes by using aggregated dataset. It should be noted that the performance
of the policy for the other classes is also increased without querying expert policy for
those classes which are not the case for the SafeDAgger. Sequential decision making
is the main idea behind this behavior. In SafeDAgger, when policy shifts from nominal
conditions, the expert policy is called and the new dataset is collected until the safety
criterion is met which leads to an unnecessary query of the expert policy. On the other
hand, Selective SafeDAgger tries to solve the problem from the beginning by finding
problematic classes. In addition, it can be seen that after the seventh iteration norm
of all classes drops below the allowable threshold which means that resultant dataset

covers almost all trajectory classes as seen in Fig. 3.18.
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Figure 3.19 : Performance of the Selective SafeDAgger algorithm for all classes at
each aggregation iteration.

Table 3.4 : Query to expert.

Selective SafeDAgger SafeDAgger
LL HL LR HR LS HS unsafe
Iteration 1 0 127 38 155 0 0 320
Iteration 2 0 44 0 228 0 48 320
Iteration 3 19 63 0 238 0 0 320
Iteration 4 27 12 0 281 0 0 320
Iteration 5 0 165 0 155 0 0 320
Iteration 6 31 189 0 100 0 0 320
Iteration 7 0 93 0 227 0 0 320
Iteration 8 2 162 0 156 2 5 320
Iteration 9 83 0 0 237 0 0 320
Iteration 10 0 205 0 115 0 0 320
Total 3200 3200

The trained model is tested at each iteration by taking 10000 samples from the
environment and mean [>-Norms are calculated, accordingly. Fig. 3.20 shows
that selective SafeDAgger method has better performance in all iterations than the
SafeDAgger method even though both methods have the same amount of query to the

expert as seen Table 3.4.
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Figure 3.20 : />-Norm of prediction and ground truth over 10000 samples at each
iteration.
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Figure 3.21 : Geometry of test tracks.

Table 3.5 : Mean [%-norm on unseen test tracks.

Selective SafeDAgger SafeDAgger

1. Test Track 0.4794 0.5518
2. Test Track 0.3295 0.4986
3. Test Track 0.3254 0.3632

In order to evaluate the generalization performance of the proposed method, 3 unseen
test tracks were devised and used to test the proposed method. The generalization
performance of the Selective SafeDAgger is depicted in Table 3.5, which shows its

superiority over SafeDAgger method. The selective property of the proposed algorithm
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will define the unsafe cases that dominate all other classes, which results in faster

convergence of the model error compared to other other dataset aggregation methods.
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4. CONCLUSIONS

In this work, we implemented a Selective SafeDAgger algorithm which is
sample-efficient in the selection of dataset aggregation samples. The proposed
algorithm evaluates the performance of the trained policy and determines the weakness
of the policy over different observation classes and recovers the policy from those
specific observation classes. Verification of algorithm done with two experiments
which are steering and speed prediction for self-driving cars and visual landing of
an F-16 aircraft. Result of those two experiments showed that our method outperforms

the SafeDAgger algorithms in term of sample-efficiency and convergence rate.
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