

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

SAMPLE-EFFICIENT DEEP LEARNING METHODS
FOR

AUTONOMOUS SYSTEMS

M.Sc. THESIS

Yunus BİÇER

Department of Aeronautics and Astronautics Engineering

Aeronautics and Astronautics Engineering Programme

JUNE, 2019

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

SAMPLE-EFFICIENT DEEP LEARNING METHODS
FOR

AUTONOMOUS SYSTEMS

M.Sc. THESIS

Yunus BİÇER
(511161155)

Department of Aeronautics and Astronautics Engineering

Aeronautics and Astronautics Engineering Programme

Thesis Advisor: Asst. Prof. Dr. Nazım Kemal ÜRE

JUNE, 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

OTONOM SİSTEMLER
İÇİN

VERİMLİ ÖRNEKLEMELİ DERİN ÖĞRENME YÖNTEMLERİ

YÜKSEK LİSANS TEZİ

Yunus BİÇER
(511161155)

Uçak ve Uzay Mühendisliği Anabilim Dalı

Uçak ve Uzay Mühendisliği Programı

Tez Danışmanı: Asst. Prof. Dr. Nazım Kemal ÜRE

HAZİRAN, 2019

Yunus BİÇER, a M.Sc. student of ITU Graduate School of Science Engineering and
Technology 511161155 successfully defended the thesis entitled “SAMPLE-EFFICIENT
DEEP LEARNING METHODS FOR AUTONOMOUS SYSTEMS”, which he/she
prepared after fulfilling the requirements specified in the associated legislations, before
the jury whose signatures are below.

Thesis Advisor : Asst. Prof. Dr. Nazım Kemal ÜRE
Istanbul Technical University

Jury Members : Asst. Prof. Dr. Emre KOYUNCU
Istanbul Technical University

Dr. Umut GENÇ
University of Cambridge, Eatron Technologies

..............................

Date of Submission : 3 May 2019
Date of Defense : 13 June 2019

v

vi

To my family,

vii

viii

FOREWORD

First of all, I want to give special thanks to my supervisor Assist Prof. Dr. N. Kemal
ÜRE for his guidance and support. Also, thanks to Ali Alizadeh for his help. Finally,
I would like to say thank you to my family for their love and support.

June, 2019 Yunus BİÇER

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xiii
SYMBOLS... xv
LIST OF TABLES ..xvii
LIST OF FIGURES .. xix
SUMMARY ... xxi
ÖZET ...xxiii
1. INTRODUCTION .. 1
2. METHODOLOGY ... 5

2.1 Deep Neural Networks ... 5
2.2 Imitation Learning .. 6
2.3 DAgger ... 6
2.4 SafeDAgger .. 7
2.5 Selective SafeDAgger Algorithm ... 8

3. EXPERIMENTS... 11
3.1 Visual Landing of an F-16 Aircraft .. 11

3.1.1 Aircraft model & Airsim .. 11
3.1.2 Automatic path planning and landing... 11
3.1.3 Initial dataset(D0) collection .. 12
3.1.4 Data preprocessing ... 13
3.1.5 CNN architecture.. 14
3.1.6 Training initial policy π̂1 .. 15
3.1.7 Visualization ... 16
3.1.8 Evaluation... 16

3.1.8.1 Neural network prediction ... 16
3.1.8.2 Neural network control .. 18
3.1.8.3 Results and analysis... 20

3.2 Steering and Speed Prediction for Self-Driving Cars..................................... 22
3.2.1 Driving policies .. 22
3.2.2 Network architecture .. 23
3.2.3 System setup... 27

3.2.3.1 Simulator.. 27
3.2.3.2 Data preprocessing... 28
3.2.3.3 Expert policy ... 29

3.2.4 Training .. 30
3.2.5 Results .. 32

xi

4. CONCLUSIONS... 37
REFERENCES.. 39
CURRICULUM VITAE... 41

xii

ABBREVIATIONS

NN : Neural Network
CNN : Convolutional Neural Network
LSTM : Long Short-Term Memory
FCN : Fully Connected Neurons
ROI : Region of Interest

xiii

xiv

SYMBOLS

π∗ : Expert Policy
πi : Trained Policy
π̂sa f e,0 : Classifier
ci : Class ID
S : State Space

xv

xvi

LIST OF TABLES

Page

Table 2.1 : Algorithm 1. .. 7
Table 2.2 : Algorithm 2. .. 8
Table 2.3 : Algorithm 3. .. 9
Table 3.1 : Loss values for the three sub-dataset... 15
Table 3.2 : Threshold values in labeling process. ... 25
Table 3.3 : Coefficient of weakness for each class.. 31
Table 3.4 : Query to expert.. 33
Table 3.5 : Mean l2-norm on unseen test tracks.. 34

xvii

xviii

LIST OF FIGURES

Page

Figure 2.1 : Deep neural networks... 5
Figure 3.1 : Approach geometry. ... 12
Figure 3.2 : Block diagram of data collection framework. 13
Figure 3.3 : Extracting region of interest from frames. 14
Figure 3.4 : CNN architecture.. 15
Figure 3.5 : Test set predictions (rad). ... 15
Figure 3.6 : Visualization of first two convolutional layer activations. 17
Figure 3.7 : Neural network prediction performance for the heading angle........ 18
Figure 3.8 : Neural network feedback control framework................................... 18
Figure 3.9 : Neural network control performance for the heading angle. 19
Figure 3.10 : Triple camera.. 20
Figure 3.11 : Mean squared error over test flight for each DAgger iteration. 20
Figure 3.12 : Test tracks... 21
Figure 3.13 : Sample-efficient Selective SafeDAgger model. 26
Figure 3.14 : Train set track. .. 27
Figure 3.15 : 3 camera view with an α angle. ... 28
Figure 3.16 : Region of Interest. .. 29
Figure 3.17 : Expert policy. ... 29
Figure 3.18 : Convergence rate of the proposed model; It shows the

improvement of the model as the number of dataset aggregation
iterations increases. ... 30

Figure 3.19 : Performance of the Selective SafeDAgger algorithm for all
classes at each aggregation iteration. .. 33

Figure 3.20 : l2-Norm of prediction and ground truth over 10000 samples at
each iteration... 34

Figure 3.21 : Geometry of test tracks. ... 34

xix

xx

SAMPLE-EFFICIENT DEEP LEARNING METHODS
FOR

AUTONOMOUS SYSTEMS

SUMMARY

Machine learning technology has got popularity in autonomous systems in recent years
because of the huge improvements at deep learning methods. Imitating a controller
using deep learning methods to take actions in complex environments became one of
the main research area for autonomous systems. One way to learn a controller is using
imitation learning which uses expert demonstrations. An end-to-end deep learning
method which takes raw demonstrations comes from an expert and outputs a control
signal can be used as a controller. End-to-end imitation learning is a popular method
for performing autonomous system tasks. The objective of this work is to develop a
sample efficient end-to-end deep learning method for an autonomous system, where
we attempt to increase the value of the information extracted from samples, through
selective analysis obtained from each call to expert policy. The standard approach
relies on collecting pairs of inputs and outputs from an expert policy and fitting a
deep neural network to this data to learn the task. Although this approach had some
successful demonstrations in the past, learning a good policy might require a lot of
samples from the expert policy, which might be resource-consuming. In this work,
we develop a novel framework based on the Safe Dataset Aggregation (SafeDAgger)
approach, where the current learned policy is automatically segmented into different
classes, and the algorithm identifies classes with the weak performance at each step.
Once the weak classes are identified, the sampling algorithm focuses on calling the
expert policy only on these classes, which improves the convergence rate. Firstly,
DAgger algorithm implemented to the problem of estimation of the aircraft states
during the landing in order to show performance of data aggregation methods in
autonomous system tasks. After that, the proposed framework verified on autonomous
driving tasks and the presented simulation results showed that the proposed approach
can yield significantly better performance compared to the standard Safe DAgger
algorithm while using the same amount of samples from the expert.

xxi

xxii

OTONOM SİSTEMLER
İÇİN

VERİMLİ ÖRNEKLEMELİ DERİN ÖĞRENME YÖNTEMLERİ

ÖZET

Son yıllarda, makine öğrenmesi teknolojisinin otonom sistemlerde kullanılması,
bilgisayar donanımların güçlenmesi ve derin öğrenme yöntemlerindeki gelişmeler
nedeniyle önem kazanmıştır. Derin öğrenmedeki gelişme ve araştırmalara paralel
olarak, otonom sistem görevlerinde yöntem olarak derin öğrenme yöntemlerinin
kullanılması ve araştırılması akademide artmıştır.

Otonom sistemler için derin öğrenmedeki ana araştırma alanlarından biri, standart
kontrolcülerin başarısız olacağı karmaşık ortamlarda öngörülerde bulunabilecek ve
kontrolörün yerini tutabilecek bir sinir ağı eğitmektir. Bir uzmanı veya ana
kontrolcüyü taklit ederek bir sinir ağı eğitmek, günümüzde bir kontrolcünün
görevlerini öğrenmenin ana yollarından biridir

Derin öğrenmenin otonom sistemlerde temel kullanım alanlarından biri, kendi
kendini süren araba teknolojilerinde görülebilir. Özellikle, otonom sürüş algoritması
oluşturmak için görüntü temelli yöntemlerin kullanılması, geniş bir araştırmacı
kitlesinin ilgisini çekmiştir ve çeşitli öğrenme ve kontrol mimarilerinin gelişmesine
yol açmıştır. Bu yöntemler kabaca klasik yöntemler ve uçtan uca derin öğrenme
diye ikiye ayrılabilir. Klasik yöntemler, otonom sürüş sorununu üç aşamada ele
alır; algılama, planlama ve kontrol. Algılama aşamasında, otoyol üzerindeki şerit
işaretlerini tespit etmek için renk ayırma, kenar algılama vb. gibi öznitelik çıkarma
ve görüntü işleme teknikleri uygulanır. Planlama aşamasında, algılama aşamasında
tespit edilen şerit işaretlerine göre otomobilin gitmesi gereken yolun planlaması yapılır.
Kontrol bölümünde ise, otomobil için direksiyon, hız vb. kontrol eylemlerini bir
kontrol algoritması kullanarak belirlemek için planlama ve algılama aşamalarınden
gelen yol ve rota bilgisi kullanılır. Klasik yöntemlerin performansı büyük ölçüde
algılama aşamasının performansına bağlıdır ve bu aşamada kullanılan sub-optimal
yöntemler sebebiyle belirlenen otonom sürüş algoritması optimal olmayabilir. Klasik
yöntemlerin sıralı yapısı sebebiyle algılama aşamasındaki bir hata büyüyerek son
aşamaya kadar gider ve önlenemez hatalara yol açar.

Öte yandan, uçtan uca derin öğrenme yöntemleri, uzman bir sürücünün sürüş
verisinden elde edilen örneklerden bir fonksiyon öğrenir. Öğrenilen fonksiyon, kontrol
girişlerini doğrudan görüş verilerinden üreterek klasik kontrol sekansının üç katmanını
tek bir adımda birleştirir. Şimdiye kadar, uçtan uca derin öğrenme yöntemleri ile
otonom sürüş algoritması üretmede en popüler yaklaşım sinir ağları(NN) kullanmaktır.
CNN, LSTM yapısındaki ağlarda diğer kullanılan yöntemler arasında sayılabilir.

Uçtan uca derin öğrenme yöntemleri, gösterilen veri ile sınırlıdır ve uzmandan
toplanan veriler ile eğitilen yada öğrenilen fonksiyonun tahminlerinde hatalar düşük
olsa da uzun vade de öğrenilen otonom sürüş algoritması zayıf performans gösterebilir.
Bu performans kaybı, kısmen, öğrenilmiş otonom sürüş algoritmasının, eğitim

xxiii

aşamasında kullanlan verilerin dağılımına benzer ya da ait olmayan durumları
gözlemlemesinden kaynaklanmaktadır.

DAgger algoritması, bu konuyu hem uzmandan hem de eğitilen sinir ağından
tekrar eğitimde kullanmak üzere yeni veri toplayarak çözer. DAgger’ın ana fikri,
öğrenilen otonom görev algoritmasını geliştirmek için uzmandan aktif olarak daha
fazla örnek almaktır. Bu durum için ilk olarak DAgger algoritmasının otonom
sistemlerde uygulanabilirliği incelenmiştir. F-16 savaş uçağının otonom iniş sırasında
baş istikameti açısını iniş pistine bakan kameradan gelen görüntüye bakarak tahmin
etmek üzere DAgger algoritması yöntemleri kullanılarak bir sinir ağı eğitildi. Aynı
zamanda karşılaştırma yapabilmek için standart uçtan uca derin öğrenme yöntemleri
kullanarak başka bir referans sinir ağı eğitildi. Eğitilen sinir ağları aynı durumlar
için test edildiğinde standart yöntemler ile eğitilen sinir ağı zayıf performans
göstermiştir ve simülasyon sonucunda kaza kaçınılmaz olmuştur. Bunun yanında
DAgger algoritması yöntemleri kullanılarak eğitilen sinir ağı test aşamasında daha iyi
performans göstererek sorunsuz bir şekilde piste inişi gerçekleştirmiştir. DAgger daha
iyi otonom görev performansı elde etmesine rağmen, uzmandan çok fazla örnek alması
ile sonuçlanabilir ve bu da zaman ve kaynak kaybına yol açabilir.

Derin öğrenme yöntemlerini yüksek boyutlarda eğri uydurma gibi düşünürsek
eğer, kullanılan datanın gözlemlenen uzay içindeki yeri önem arzeder. Derin
öğrenme yöntemlerinin tahmin performansını arttırmak için, tahminlerin kötü olduğu
alt-uzaydan daha fazla data toplanıp sinir ağı tekrar bu data kullanılarak eğitildiğinde
performansta artış meydana gelecektir. DAgger’ın bir diğer versiyonu olan
SafeDAgger algoritması hem uzmana yapılan çağrıyı azaltmak hem de yapılan
çağırılardan elde edilen verinin kalitesini arttırmak için, öğrenilen otonom sürüş
algoritmasının tahminlerinin güvensiz olduğu durumları tahmin ederek uzmana
yalnızca bu gibi durumlarda çağrı yapar.

SafeDAgger algoritması her ne kadar iyi performans gösterse de veri toplama
aşamasında sadece verilerin güvenli yada güvensiz olma durumlarına bakmaktadır.
Güvensiz olarak seçilen durumların sınıflandırmasını yapmamaktadır. Bu durum sıralı
karar verme süreci içeren otonom görevlerde, verimli örnek toplama bağlamında etkili
bir yöntem değildir. Sıralı karar verme süreci gerektiren otonom görevlerde bir önceki
karar bir sonraki gözlem uzayını etkiler. Verilen karar içinde bulunduğu anda küçük
bir miktar hatalı olur ise sonrasındaki gözlem uzayına bakarak verilen kararların doğru
olandan sapma ihtimali artar. Tüm bunların önüne geçmek için sorunlu gözlem uzayını
başlangıçtan itibaren çözmek gerekir.

Bu çalışmada, Selective SafeDAgger adlı ve SafeDAgger algoritmasına kıyasla,
örneklem verimli olan yeni bir veri toplama methodu önerilmektedir. Önerilen
algoritma, öğrenilen otonom sürüş algoritması tarafından yürütülen sorunlu durumların
güvenli ve güvensiz bölümlerini sınıflandırır. Sınıflandırma işleminden sonra
belirlenen en sorunlu sınıftan örnek almaya odaklanmaktadır. Sorunlu sınıftan
alınan örnekler ile sinir ağı yeniden eğitilerek tahmin performansının arttırılması
amaçlanmıştır. Böylece problem kaynağından çözülerek sonraki gözlem uzayına etkisi
azaltmak mümkündür. Özetlemek gerekirse, bu çalışma ile literatüre asıl katkımız,
uzman sürüş verisinden en efektif örnekleri alan ve aynı zamanda uzmana yapılan
çağrıları sınırlandırıp SafeDAgger yönteminden daha iyi performans elde etmeyi
sağlayan bir taklit öğrenme yöntemi geliştirmektir.

xxiv

Selective SafeDAgger algoritmasının performasını SafeDAgger algoritması ile
karşılaştırmak amacıyla bir otonom araç simülasyonu oluşturulmuştur. Simülasyonun
amacı araç önüne konulan bir kameradan gelen görüntülere bakarak aracın gitmesi
gereken hızı ve direksiyon açısını tahmin etmektir. Bu amaçla iki algoritma da
aynı ortamda derin öğrenme metodu kullanarak eğitilmiştir. Eğitilen sinir ağları
test senaryoları ile karşılaştırılmıştır. Karşılaştırma sonucunda Selective SafeDAgger
algoritmasının verimli örnekleme ve uzmana yapılan çağrı sayısı bakımından
SafeDAgger algoritmasına üstünlüğü gösterilmiştir.

xxv

xxvi

1. INTRODUCTION

In last decades, the machine learning technology gained importance in autonomous

systems due to the improvement of the computational power in hardwares and deep

learning which is one the methods for machine learning is got more advancement due

to the parallel computation ability on GPUs. In parallel with developments in deep

learning, research for deep learning in autonomous systems tasks also increased in

academia.

One of the main research areas in deep learning for autonomous systems is learning

a controller to make predictions in complex environments which standard controllers

will fail in those environments. Imitation learning is one way to learn a controller with

using expert demonstrations and use of deep learning in imitation learning became a

state-of-the-art method, nowadays.

One of the main usages of deep learning can be seen self-driving car technologies.

In particular, the use of vision-based methods to generate driving policies has been

of interest to a wide body of researchers, resulting in a variety of different learning

and control architectures. These methods can be roughly classified into classical

and end-to-end methods. Classical methods approach the problem of autonomous

driving in three stages; perception, path planning, and control [1]. In the perception

stage, feature extraction and image processing techniques such as color enhancement,

edge detection, etc. are applied to image data to detect lane markings. In path

planning, reference and the current path of the car are determined based on the detected

features in perception. In the control part, control actions for the car such as steering,

speed, etc. are calculated from reference and the current path with an appropriate

control algorithm. The performance of the classical methods heavily depends on the

performance of the perception stage and this performance can be sub-optimal because

of the manually defined features and rules in this stage [2]. Sequential structure of the

classical methods might also lead to the non-robustness against errors, as an error in

feature extraction can result in an inaccurate final decision.

1

On the other hand, end-to-end learning methods learn a function from the samples

obtained from an expert driving policy. The learned function can generate the control

inputs directly from the vision data, combining the three layers of the classical control

sequence into a single step. By far, the most popular approach for representing the

mapping from images to controls in end-to-end driving is using neural networks (NN).

ALVINN by Pomerleau [3] is one of the initial works in this area, which uses a

feedforward neural network that maps frames of the front-facing camera to steering

input. Researchers from Nvidia utilized convolutional neural networks (CNN) [4]

in order to automatize the feature extraction process and predict steering input. An

FCN-LSTM architecture [5] is proposed to increase learning performance with scene

segmentation. In [6], a visual attention model used to highlight some important regions

of frames for better prediction. Although the steering input prediction in an end-to-end

manner is a well-studied problem in the literature, the steering input alone is not

sufficient for fully autonomous driving. In [7] a CNN-LSTM network is proposed

to predict the speed and steering inputs synchronously.

Pure end-to-end learning policies are limited to the demonstrated performance, and

although the training and validation loss on the data collected from the expert might be

low, errors accumulated from the execution of the learned driving policy might lead to

poor performance in the long run. This performance loss is partly due to the fact that

learned driving policy is likely to observe states that do not belong to the distribution of

the original expert demonstration data. DAgger [8] algorithm addresses this issue by

iteratively collecting training data from both expert and trained policies. The main idea

behind DAgger is to actively obtain more samples from the expert in order to improve

the learned policy. Even though DAgger achieves better driving performance, it might

end up obtaining a lot of samples from the expert, which can be time and resource

consuming in many real-life scenarios. SafeDAgger [9] algorithm, an extension of

DAgger, attempts to minimize the number of calls to the expert by predicting the

unsafe trajectories of the learned driving policy and only calls the expert on such

cases. Another extension of DAgger, EnsembleDAgger [10], predicts the variance of

the decisions by using multiple models, also it takes the variance as additional safety

criteria like SafeDAgger.

2

In this work, we propose a novel framework which is sample-efficient compared to

the SafeDAgger algorithm (state-of-the-art data aggregation method), named Selective

SafeDAgger. The proposed algorithm classifies the problematic observations executed

by the learned policy to safe and multiple classes of unsafe segments. After the

prediction, the model focuses on obtaining the expert policy samples primarily from

the identified unsafe segment classes.

Our main contribution is an imitation learning algorithm that obtains the most

promising samples from the expert policy, which enables outperforming the

SafeDAgger method while limited to the same number of calls to the expert.

This paper is organized as follows. Definitions of the used terms and algorithms and

details of the new proposed algorithm, Selective SafeDAgger, are provided in section

II. In section III, experimental verification of algorithm and discussion about results

are given. The conclusion is given in section IV.

3

4

2. METHODOLOGY

In this section, definitions of some fundamentals have given for ease of understanding

for algorithms and detail of proposed algorithm is provided.

2.1 Deep Neural Networks

Neural networks can be defined as a set of algorithms that helps to devise patterns in

dataset. Deep learning is composition of several neural networks or layers.

Neurons are the main elements of the layers. All computations occur in the neurons. It

has two part, the first part scales the input data by multiplying with a weight and in the

second part these weighted inputs are added to each other and the total collection of

weighted inputs are passed to the activation function to decide whether signal should

continue through the network or not.

Deep neural networks are constructed with using layers with a defined amount of

neurons. At the first stage, data is given to input layer. After that at hidden layers,

multiplications and summations are done. In the output layer, mapping from input to

output is done as shown in Fig. 2.1.

Figure 2.1 : Deep neural networks.

Deep learning, generally, used for mapping inputs to outputs by finding correlations.

It can learn to approximate an unknown function between input and output. During

the learning, neural network tries to find the right weights to predict output by using

feed-forward, back-propagation and an optimization algorithm to minimize differences

5

between predicted output and ground truth. In this manner, we can say that deep

learning tries to fit a curve between input and output in high dimension with using

nonlinear tools.

2.2 Imitation Learning

Training a policy to make decisions using demonstrations can be definition of the

imitation learning. It is a kind of supervised learning but with a difference which

predictions are made sequentially.

There are 5 key elements of the imitation learning. First one is a demonstrator to

imitate labeled data of this demonstrator. Demonstrator can be a driver, pilot or even a

controller. Second one is an environment which labeled data comes from observations

of this environment. Third one is a policy class that predicts the actions of the

demonstrator. It is popular to use deep neural networks to perform this task. Fourth one

a loss function to quantify differences between the action of our policy demonstrator.

And the last one is a learning algorithm to minimize loss function problem. It is usually

variant of gradient-descent optimization algorithm.

2.3 DAgger

It is well-known that the prediction performance for the imitation learning policies

is limited with the collected dataset. In sequential decision-making problems, error

accumulation of trained policy can lead to low performance in the long term. DAgger

[8] handles this problem by aggregation of training data from both controller and

trained policies. The basic idea behind DAgger is to collecting data from policy when

it is in action. In parallel controller labels a recovery commands for new observation.

Initial dataset and new observations are used to train the new policy as shown in

algorithm 1.

βi =
N +1− i

N
(2.1)

6

Table 2.1 : Algorithm 1.

DAgger Algorithm
1 Initialize D0← /0
2 Train π̂1 over set D0
3 for i = 1 to N do
4 Let πi = βiπ

∗+(1−βi)π̂i
5 Sample T-step trajectories using πi
6 Get dataset Di = {(s,π∗(s))} of visited states by πi and ground

truths given by π∗

7 Aggregate datasets: Di← Di∪Di−1
8 Train π̂i+1 over set Di

9 end
10 return best π̂i on validation

Algorithm starts with collecting initial dataset D0 and train initial policy π̂1 over D0.

A dummy policy(πi) is defined as a weighted sum of initial policy and controller with

a parameter of βi which is defined in equation 2.1. At the beginning of the DAgger

iterations π̂1 have poor performance and by weighting with 1− βi we can eliminate

any chance of a crash. With using πi in parallel with controller (π∗) for T-step time,

a new dataset Di is collected. This dataset has labels coming from the controller. A

new policy (π̂i+1) is trained with using the union of the initial and new dataset. This

iterative loop continues for N times.

2.4 SafeDAgger

The prediction performance of a neural network dramatically increases with use of

DAgger algorithm but it comes with a cost. A large number of calls to expert policy

needed for training of policy and calls for the expert policy can be costly, especially

in case of human operator as a expert policy . Another disadvantages of using human

operator is mislabeling problem. Human operator cannot feel the actual feedback of

the their actions, since weighted sum of expert policy and trained policy applied to the

system. As a result, human operator overreacts for some states and it cause the wrong

labeling for that states.

SafeDAgger [9] which is an extension of DAgger, tries to minimize calls for the expert

policy by looking a safety rule. By training a safety policy, algorithm tries to predict

probability of deviation from the expert policy. If predicted probability becomes bigger

7

than a threshold, expert policy takes full control of the system. By using a safety

strategy, number of calls to expert policy significantly decreases and since expert policy

takes full control, mislabeling problem automatically solved.

Table 2.2 : Algorithm 2.

SafeDAgger Algorithm
1 Initialize D0← /0
2 Initialize Dsa f e← /0
3 Train π̂1 over set D0
4 Train π̂sa f e,0 over set Dsa f e
5 for i = 1 to N do
6 Collect Di using safety strategy for π̂1 and π̂sa f e,0
7 Aggregate datasets: Di← Di∪Di−1
8 Train π̂i+1 over set Di
9 Train π̂sa f e,i+1 over set Dsa f e

10 end
11 return best π̂i on validation

The Algorithm which is shown in table 2.2, starts with collecting initial dataset D0

and train initial policy π̂1 over D0 as in DAgger. In addition to π̂1, a network π̂sa f e,0

is trained over D0 to predict probability of deviation from the expert policy. With

using safety rule for the control of the system for T-step time, a new dataset Di is

collected. This dataset has labels coming from the expert policy. New policies (π̂i+1)

and π̂sa f e,i+1 are trained with using the union of the initial and new dataset. This

iterative loop continues for N times.

2.5 Selective SafeDAgger Algorithm

Even though, DAgger and SafeDAgger solves the problem of imitation learning for

some level by aggregating new dataset, this method still suffers from large number of

calls to expert policy and aggregation of efficient training data. To enhance existing

methods we have proposed a new dataset aggregation method which is called Selective

SafeDAgger.

Main idea behind Selective SafeDAgger is to classify unsafe observations and

collecting new dataset from most problematic class of observations. Unlike

SafeDAgger which collects all unsafe dataset, Selective SafeDAgger tries to solve

problem of unsafe observations from the roots. Some of the unsafe observations are the

8

result of the previous unsafe observations and if we solve the first unsafe observations

we can get rid of following unsafe observations.

Table 2.3 : Algorithm 3.

Selective SafeDAgger
1 Collect D0 using π∗

2 π0 = argminπ lsupervised(π,π
∗,D0)

3 for i = 1:N do
4 ci← Define unsafe classes over D0
5 D′← []
6 while k ≤ T do
7 φk← φ(s)
8 cφk ← classifier output of πi(φk)
9 if cφk ∈ ci then

10 use π∗(φk)

11 D
′ ← [φk]

12 k = k+1
13 else
14 use πi(φk)
15 end
16 end
17 Di = Di−1∪D

′

18 πi+1 = argminπ lsupervised(π,π
∗,Di)

19 end
20 return best πi over validation set

∗Blue fonts distinguishes the difference between Selective SafeDAgger and SafeDAgger.

Algorithm 3 describes the proposed method in detail, which takes the expert policy π∗

as an input and gives πi as an output. The primary dataset D0 is collected by using

π∗ which is then utilized in training a primary policy π0 by a supervised learning

method. Having the π0 at hand, ci, the unsafe classes of D0 for the trained policy πi

are determined. An observation φk taken from environment φ(s) is evaluated by πi to

find its class cφk . If cφk is an element of ci, π∗ takes over the control of the car and φk

is appended to D
′
. Otherwise, πi continues to command the car until it encounters an

unsafe class. As depicted in lines 6-16, the algorithm continues to append data to D
′

for T number of iterations. The appended dataset D
′

is aggregated into Di−1 to create

Di and πi+1 is trained on Di. This loop is repeated for N times as shown in lines 3-18.

In the end, the algorithm returns the best πi over the validation set.

9

10

3. EXPERIMENTS

To analyze and verify the proposed algorithms, two experiment are established. First

one is heading angle prediction for an F-16 aircraft during landing by using Dagger

algorithm. Second one is reference steering and speed prediction for a self-driving

cars by using front facing camera images.

3.1 Visual Landing of an F-16 Aircraft

We developed a Convolutional Neural Network (CNN) that can learn from

demonstrations and estimate the aircraft states. The main aim is to perform the

autonomous landing for an aircraft model in various possible system failures. In this

section, we first introduce the aircraft model and a sketch of the guidance and control

loops that are used in both training and testing the agent.

3.1.1 Aircraft model & Airsim

In this work, a nonlinear high-fidelity model of the F-16 aircraft [11] is used. The

model parameters and aerodynamic data tables are taken from [12]. Furthermore, the

standard atmosphere model that is used and 6-DOF equations can be found in the

literature [13], [14]. The observed state vector is as follows

xT = [VT ,γ,χ,µ,α,β ,φ ,θ ,ψ,P,Q,R, pn, pe,h] (3.1)

here, we assume the full-sate measurement to be used in the feedback law.

3.1.2 Automatic path planning and landing

Landing of any aircraft can be divided into three phases; approach, glide, and flare.

During the approach, the aircraft maneuvers in order to align the nose and the velocity

vector with the runway. From initial position x0,y0 the guidance logic calculates the

glide initiation point xg,yg and forms a straight line which is to be followed. Figure

3.1 shows the planar geometry of approach. In the glide phase, the aircraft follows

a prefixed flight path angle (generally -3o) towards the runway. Flare is performed

11

Figure 3.1 : Approach geometry.

40 ft above the runway to land without inflicting structural damage to the aircraft by

pitching the nose up slightly to reduce the vertical speed.

Automatic path planning logic for landing has been taken from [15]. The algorithm

calculates glide and flare initiation points given the initial position. A straight line

between initial position x0,y0 and glide initiation point xg,yg is to tracked in approach.

Likewise, the path to be followed in a glide is a straight line between xg,yg and the flare

initiation point. To capture the decrease in vertical speed, flare path is an appropriate

exponential between the flare initiation point and a desired point on the runway.

3.1.3 Initial dataset(D0) collection

An autolanding aircraft simulation has been created with a low-level controller taken

from [16] and a guidance logic taken from [15]. Guidance logic outputs reference

altitude and heading angle to the low-level controller, which uses reference inputs

to calculate control surface deflections. The low-level controller is designed using

dynamic inversion and includes a separate lateral and longitudinal controller.

Visualization of the aircraft simulation has been achieved with Airsim which an Unreal

game engine based plugin that works in the unreal editor and provides photo-realistic

simulation environment. Airsim also has built-in API for communicating with Python

scripts. A custom Python script receives state information of aircraft from Simulink

over UDP network and sends to the Unreal environment with using Airsim API’s.

At the same time script captures screenshots of simulation at desired time steps and

12

labels the captured screenshot with the state information. Hence a pool of training

images with desired size and amount from any phase of flight can be collected with

this structure. Block diagram of the dataset collection framework is shown in Figure

3.2.

Figure 3.2 : Block diagram of data collection framework.

3.1.4 Data preprocessing

The recorded frames of the flight simulator were labeled with corresponding measured

heading angle from the dataset. The total simulation time for 10 flights was 277.24

seconds and 27724 images were collected with the step size of 0.01 seconds. Dataset

was split into three sub-dataset with the ratio of 0.7, 0.2 and 0.1 as training, validation,

and test sets respectively. The resolution of images was down-sampled to 512×288×3

(RGB) in order to reduce computational cost. Horizontal flip of images just changes

the sign of labels. This doubles the dataset size, so we end up with 44350 labeled data.

To prevent neural network model looking on irrelevant features in the environment a

Region of Interest (ROI) was defined in images with the size of 512×160 as shown in

Fig. 3.3. Each image was normalized to the range [0,1] by dividing to 255. In addition,

in order to eliminate the time-series correlation of the dataset, we shuffled the labeled

data. This prevents the network from forgetting the past experiences.

13

Figure 3.3 : Extracting region of interest from frames.

3.1.5 CNN architecture

Designed CNN architecture is mainly based on NVIDIA’s [4] network which was

designed to predict steering angles for cars from frame inputs. The network takes

frames which have the size of 512×160×3 as input and it comprises 5 convolutional

and 5 densely connected layers as shown in Fig. 3.4. The first 3 layers of convolutional

layers have kernel size of 5 with the stride of 2 and following convolutional layers has

kernel size of 3 with the stride of 1. The number of filters in the convolutional layers

is 24,36,48,64 and 64, respectively. Additionally, after first 3 convolutional layers

average poling with a pool size of 3 is added. The network is flattened after last

convolutional layer to prepare inputs of the dense layers. Densely connected layers

have 200,100,50,10 and 1 neurons, respectively. For all layers except in the last layer,

Rectified Linear Unit (ReLU) was used as the activation layer. In total network has

1,281,571 parameters to train.

14

Figure 3.4 : CNN architecture.

3.1.6 Training initial policy π̂1

Nesterov Adam Optimizer (Nadam) was used as an optimizer for the training of the

network with the initial learning rate of 10−5 and moment of 0.99. The learning rate

was scaled with 0.5 when validation loss stuck in the plateau for 5 epoch. Labels of the

images were heading angle in radian and values were relatively small for regression

type networks. For that reason, a low value was chosen as initial learning rate and

training was continued for 200 epoch with the batch size of 32 in order to decrease

training and validation losses which are defined in equation 3.2 as mean square error

for the single batch. At the end of the training best result obtained at 188th epoch which

loss values are given in table 3.1. Some of the prediction can be seen in Fig. 3.5

MSE =
1
n

n

∑
n=1

(yi− ŷi)
2 (3.2)

Table 3.1 : Loss values for the three sub-dataset.

Training Loss Validation Loss Test Loss
9.11e-07 9.73e-07 1.69e-06

Figure 3.5 : Test set predictions (rad).

15

3.1.7 Visualization

Visualizing intermediate activations is a useful technique for analysis of CNN filters

and it can give the first idea about the learned features of initial policy π̂1. Since higher

layers activations contain less information about input features, only activations of the

first and second convolution layer filters plotted and they can be seen in Fig. 3.6.

It can be seen that in the figure, some of the runways features extracted in filters. It

may be said that Convolution0 filters behave like runway detector and convolution1

filters find the orientation of the runway.

3.1.8 Evaluation

Two different scenarios were planned for the evaluation of the network. In the first

scenario, the network predicts the heading angles throughout the landing flight but

predictions were not given to controller as feedback on the other hand in the second

scenario controller uses prediction as a feedback signal.

3.1.8.1 Neural network prediction

For the first scenario, frames of a prerecorded landing flight were used in time order

and results are given in Fig. 3.7. It can be seen that for the approach and glide phases of

landing, predictions are noisy according to flare phases. Training data set was collected

from 10 different landing cases and for all landing cases, flight path converges to the

same path for the flare phase. This means that the training contains more flare phases

of data relative to the approach and glide phases. Therefore, the predictions in this

phase are more accurate than the other phases.

16

Convolution0

Convolution1

Figure 3.6 : Visualization of first two convolutional layer activations.

17

Figure 3.7 : Neural network prediction performance for the heading angle.

3.1.8.2 Neural network control

In the second scenario, the signal connection from the heading measurement sensor to

the model has been replaced by the prediction of the network. The prediction scheme

is fed a downscaled screenshot from the Unreal environment which is used as an input

to a pre-trained DNN. Network predicts the heading angle and outputs the prediction

to the model, closing the loop as shown in Fig. 3.8

Figure 3.8 : Neural network feedback control framework.

18

Figure 3.9 : Neural network control performance for the heading angle.

In can be seen in Fig. 3.9 that at the start of the glide, trained policy shows poor

performance and at the end crash occurs. We know that to achieve given desired

heading angle, aircraft performs both roll and yaw maneuvers. In our aircraft model,

roll maneuver more effective than the yaw maneuver to correct any error in heading

angle. When the trained model predicts the heading angle with some error, aircraft

directly starts to rolling motion in order to compensate the error which leads to a

significant change in the deviation of the future observation. This is a kind of sequential

decision-making problem that current prediction effects the future observations. If the

future observation deviates from the trained dataset, the performance of the policy

reduces. We know that initial policy is a suboptimal policy because it is trained on

a flight dataset that created by using a controller. The controller always stays in the

correct flight path and never sees the significant changes in deviation of observations.

So, when the policy deviates from nominal conditions it cannot recover since dataset

does not have any recovery conditions. To be able to solve deviations on observations

we used a dataset aggregation algorithm. Additionally, during the data aggregation to

imitate rolling like maneuver, 2 more cameras added to the simulator with angles of

±20 degree bank angle as shown in Fig. 3.10. Since all three cameras directed to

19

the same heading angle corresponding labels for new cameras will be the same as the

middle camera.

Figure 3.10 : Triple camera.

Figure 3.11 : Mean squared error over test flight for each DAgger iteration.

3.1.8.3 Results and analysis

Three different test track defined to evaluate the performance of the trained model as

shown in Fig. 3.12

20

Fi
gu

re
3.

12
:T

es
tt

ra
ck

s.

At the beginning of the approach phase guidance algorithm calculates the initial desired

heading angle according to the initial position and simulation starts with calculated

orientation. Because of that reason error between desired and current heading angle

is zero at the starting of simulations. Desired heading angle does not change until the

start of the glide phase. Trajectory differences at approach phase are mainly due to

the prediction error of the neural network and since there is no roll maneuver at this

phase performance of neural network stays in reasonable range. At the glide phase

guidance algorithm starts change desired heading angle which leads to rolling roll

maneuver. Performance of neural network decreases at that stage but still remains in a

suitable range. For the flare phase, guidance algorithm tries to compensate trajectory

differences in long-term and neural network follows the path. In the final stage frames,

the runway is closer and bigger. So the performance of the convolution filters slightly

reduces and after zero point trajectory diverges. Since there is no touchdown scenario

in dataset this is an expected result.

3.2 Steering and Speed Prediction for Self-Driving Cars

3.2.1 Driving policies

We begin with giving definitions of the used terms in order to explain driving policies

in detail.

A set of states S for the car in this paper is an environment model and s ∈ S is one

of the states for the car in that environment. Observation of the state s is defined as

φ(s)∈Φ(S) where Φ(S) is the observation set for all states. a(s)∈A(S) will be driving

action at observation φ(s) where A(S) is the set of all possible actions.

A set of driving policies Π is defined as:

Π : Φ(S)→ A(S) (3.3)

which is a mapping from state observations φ(s) to driving actions a(s) such as

steering, throttle, brake, etc.

Two distinct driving policies are defined throughout the paper. The first one is a

reference/expert policy π∗ ∈ Π that drives the car with a reasonable performance that

22

we want to imitate. A reference policy in an autonomous driving scenario is usually

chosen as actions of a human driver. Variants of DAgger algorithms, however, have

mislabeling problem in case of the human driver, since drivers do not have feedback

feelings from their actions and they can give incorrect reactions to the given states. In

order to overcome the mislabeling problem, we have used a rule-based controller which

contains speed and steering controllers, as a reference/expert policy in this paper. The

second policy is a primary policy π0 ∈ Π that is trained to drive a car. This policy is

a sub-optimal policy according to the reference/expert policy since it is trained on a

subset of observation set Φ(S).

Training a primary policy to mimic a reference policy is called imitation learning or

learning by demonstration. One of the most common methods for imitation learning is

based on supervised learning techniques. The loss function for the supervised learning

is [9]:

lsupervised(π,π
∗,D0) =

1
N

N

∑
i=1
||π(φ(si))−π

∗(φ(si))||2 (3.4)

wherelsupervised refers to l2-Norm between trained and reference policy actions.

A primary policy is defined as a policy that minimizes the supervised l2-Norm equation

as follows.

π0 = argmin
π

lsupervised(π,π
∗,D0) (3.5)

Minimization of the loss function can be challenging since it is known that the relation

between image frames and driving actions is highly nonlinear. So, we have used a deep

neural network architecture to find an optimal solution for the primary policy.

3.2.2 Network architecture

The earlier works in end-to-end learning for self-driving cars focus on computing only

the steering angle from a single image or a sequence of images. In order to reach

a higher level of autonomy in the end-to-end framework, the longitudinal control

component is also required. In this work, we utilize the multi-task model proposed

in [7] as our baseline, which is capable of generating both longitudinal and lateral

23

control inputs for the car. In addition, we utilize a speed controller rather than the

classical throttle/brake commands for the longitudinal control. The steering action

is predicted from the raw image inputs taken from the cameras located in front of

the vehicle through convolution layers, and the speed is predicted from a sequence

of speed profiles through a Long-Short Term Memory (LSTM) layer. There exists

a single-direction coupling between the longitudinal controller (speed controller) and

the lateral steering actions. In particular, the speed of the vehicle has a significant

impact on the prediction model, since entering a turn with low speed represents

different dynamics for the lateral controller when compared to a high-speed maneuver.

Moreover, the straight trajectory dominates the whole other trajectory types (e.g. turn

left, turn right), therefore, the trained network will be biased toward the straight

trajectory. In order to recover from this issue, we decided to define various trajectory

types including all major maneuvers such as straight, turn left, turn right and low and

high-speed scenarios, by which the devised model will learn the other less-occurring

maneuvers.

The model architecture is shown in Fig 3.13. It takes the current observation and

the past speed profile and returns steering action, speed action and the class of the

trajectory segment. The multi-task network predicts the steering angle through a

visual encoder using a stack of convolution and fully-connected layers. In the first two

convolution layers (Conv1 and Conv2), large kernel size is adopted in order to better

capture the environment features, which is suitable for the front-view camera. Inputs

and kernels of the each convolution layer is denoted by "#channels@input height ×

input width" and "kernel height×kernel width×#channels" and each fully connected

layer is denoted by "FC − size of neurons". The speed and trajectory class are

predicted through a concatenation of visual encoder and feedback speed features. The

speed features are extracted by an LSTM layer followed by fully-connected layers.

ReLU (Rectified Linear Unit) is used as the activation function for all layers. Mean

absolute error is the loss function for both speed and steering angle predictions as

regression problems. On the other hand, the cross-entropy applies to the trajectory

classifier as a classification problem.

The multi-class classifier highlighted in Fig. 3.13 extends the safeDAgger method to a

novel algorithm devised in this paper. The trajectory classes are defined as follows:

24

c(π,φ(s)) =



1, Safe Trajectories
2, Unsafe LL
3, Unsafe HL
4, Unsafe LR
5, Unsafe HR
6, Unsafe LS
7, Unsafe HS

(3.6)

where X in "Unsafe XY " refers to Low(L) and High(H) speeds and Y refers to going

Straight(S), Left(L) and Right(R) turns, respectively. Low and high speeds with

combinations of left, straight and right turns covers almost all unsafe trajectories. Same

combinations also applicable for safe trajectories but since it is not needed to call expert

policy in safe trajectories, we define only one class for the safe trajectories.

The multi-class classifier takes the partial observation of the state φ(s) which contains

the visual perception and the past speed profile and returns a label indicating in which

part of the trajectory the policy will likely to deviate from the reference policy π∗.

The labels for training the model was generated through one-hot-encoding method,

defined by sequential decisions; first, it was decided whether the policy is safe by

measuring its distance from the reference policy through l2-Norm metric, which is as

follows:

csa f e(π,φ(s)) =

{
0, ||π(φ(s))−π∗(φ(s))||> τsa f e

1, otherwise
(3.7)

where τsa f e is a predefined threshold and can be chosen arbitrarily. Furthermore,

in order to distinguish between low-speed and high-speed turn trajectories, steering

threshold τturn, speed thresholds for turn maneuver τspeed,turn and straight trajectory

τspeed,straight are defined heuristically based on the response of the car dynamics in

these trajectories. The threshold values for this work is depicted in Table 3.2.

Table 3.2 : Threshold values in labeling process.

Parameter Threshold value
τsa f e 0.5
τturn 0.25◦

τspeed,turn 10 m/s
τspeed,straight 13.75 m/s

25

Figure 3.13 : Sample-efficient Selective SafeDAgger model.

26

where τsa f e as 0.5 yields 0.25◦ for the steering angle and 1m/s for the speed difference

between the network prediction and expert/reference policy output.

3.2.3 System setup

3.2.3.1 Simulator

AirSim is used in this work, which is an Unreal Engine Plugin based simulator

for drones and cars established by Microsoft to create a platform for AI studies

to develop and test new deep learning, computer vision and reinforcement learning

algorithms for autonomous vehicles with photo-realistic graphs in simulations [17].

It has built-in APIs for interfacing with Python coding language which is one of the

dominant coding languages of AI research. It is suitable also to be used for deep

learning approaches in car perception algorithms since simulator has a photo-realistic

environment. Furthermore, custom environments or scenarios can be created by using

the engine editor.

The road track for the training process of the algorithm is devised in a way to capture

all defined scenarios in this work. The geometry of the custom created training track

is shown in Fig. 3.14, in which all the trajectory classes are illustrated.

Figure 3.14 : Train set track.

27

Representative power of the training set can be increased by collecting data from

unseen observations. With that reason, 2 additional cameras were added to the

front-facing camera with an angle of α to imitate turning-like maneuvers as shown

in Fig. 3.10. Airsim APIs provide ground truth labels for the front-facing camera

frames, but ground truth labels for the left and right cameras should be adjusted with a

threshold as in Eqn. 3.8.

[
Ll
Lr

]
=

[
Lcsteering +α Lcspeed − pspeed
Lcsteering−α Lcspeed − pspeed

]
(3.8)

where Ll , Lr, Lcsteering and Lcspeed refer to the ground truth for the left and right cameras,

center camera steering and speed actions respectively. In the turning case, the ground

truth speed of the vehicle is adjusted by a parameter pspeed which is chosen as 4 m/s

heuristically.

Figure 3.15 : 3 camera view with an α angle.

3.2.3.2 Data preprocessing

A couple of techniques were utilized in the preprocessing phase. In order to reduce the

computational cost, the input raw image was down-sampled to the size of 144 256 3

(RGB) and a Region of Interest (ROI) defined with the size of 59 255 to cover almost

the entire road and ignore the features above the horizon. Moreover, to improve the

28

convergence rate and robustness of the neural network model, the processed image was

normalized to the range [0,1] and augmented by randomly changing the brightness of

the image with a scale of 0.4. The normalization was done by dividing all image pixels

by 255. Also, the brightness change was done by transforming the image from RGB

to HSV space and transform back to RGB space with the scaled value.

Figure 3.16 : Region of Interest.

3.2.3.3 Expert policy

In order to automatize the data collection part of the algorithm, a rule-based expert

policy is defined as follows (see Fig. 3.17):

Figure 3.17 : Expert policy.

29

For the steering action, T1 is a tangent line to the road spline at the position of the

car and P1 is a point on road spline with lre f distance along spline from that positions.

Tangent line at P1 according to road spline is T2. Angle between T1 and T2 which is α

will be expert steering action as shown in equation 3.9.

asteering = α = arccos
(

T1 ·T2

‖T1‖‖T2‖

)
(3.9)

For the speed action, P2 is a point on the road spline with a distance lP2 as shown in

equation 3.10 from the position of the car along the road spline,

lP2 = lre fVcurrentksteering (3.10)

where Vcurrent is current speed and ksteering is a fine tuned constant. Tangent line at P2

according to the road spline is T3. Expert speed action will be: be

aspeed =Vcruise−βkspeed (3.11)

where Vcruise is a pre-defined cruise speed, kspeed is a fine tuned gain and β is an angle

between T2 and T3.

For our implementation, the parameters are chosen as lre f = 1 m, ksteering = 5, Vcruise =

13.8 m/s and kspeed = 10.

3.2.4 Training

Figure 3.18 : Convergence rate of the proposed model; It shows the improvement of
the model as the number of dataset aggregation iterations increases.

For the training of the primary policy π0 in the algorithm, dataset D0 which contains

2800 image data were collected by using expert policy π∗. Nesterov Adam Optimizer

30

(Nadam) was used as an optimizer for the training of the network with the initial

learning rate of 10−5 and moment of 0.99. The Training was continued for 10 epochs

with the batch size of 32.

Trained primary policy π0 is tested on the pre-collected dataset to classify trajectories

and calculate the l2-Norm of each sample in the dataset. Weakness of the network over

trajectory segments is determined by a coefficient of weakness which is defined as in

equation 3.12,

ci =
NL2i

Ni
×µL2,i (3.12)

where µ , σ are mean and standard deviations for the l2-Norm of the samples for classi.

NL2i is the total number of samples in classi that l2-Norm of samples fall in the region

of one σ away from the mean µ . Ni is the total number of samples in classi.

Once the weakness coefficients are calculated, trajectory classes are sorted according

to their weakness coefficients and the two of the most dominant unsafe classes will

be chosen for data aggregation as shown in Table 3.3. Additionally, the classes with

the mean l2-Norm lower than 1, will be chosen as allowable classes other than the

dominant 2 classes.

In Table 3.3 it can be seen that weakness coefficients for the class LS and HS are quite

low and never chosen as weak classes. The initial dataset for the training of the policies

is biased toward LS and HS classes and l2-Norms in those classes are low, which lead

to low weakness coefficients. Moreover, training track does not have many samples

from class LR so that weakness coefficients for the class LR is also low.

Table 3.3 : Coefficient of weakness for each class.

Iter. LL HL LR HR LS HS
1 0.004 0.321 0.019 0.694 0.002 0.010
2 0.505 0.122 0.037 0.278 0.001 0.023
3 0.635 0.264 0.028 0.607 0.001 0.062
4 0.751 0.515 0.046 0.646 0.001 0.010
5 0.018 0.678 0.034 0.755 0.001 0.010
6 0.009 0.752 0.039 0.849 0.000 0.006
7 0.717 0.790 0.038 0.780 0.001 0.004
8 0.028 0.787 0.017 0.794 0.001 0.006
9 0.670 0.634 0.011 0.713 0.001 0.005

10 0.012 0.768 0.020 0.809 0.001 0.003

31

After determination of the weak and allowable classes, the data aggregation phase

begins. In the phase of data aggregation, policy πi drives the car in order to collect 10

batches of data in dominant classes. If policy faces with dominant classes, the expert

policy takes control of the car and samples are taken in that time labeled and reserved

for aggregation. If policy πi faces with allowable classes which are actually unsafe

classes, it continues to drive the car. For all the other unsafe classes, the expert policy

takes control of the car with the query limit of 10 batch-size. When the number of

query reaches that limit or 10 batches of data is collected, data aggregation freezes and

training starts with the new aggregated dataset Di.

After the training, πi becomes πi+1 and determination of dominant weak classes on the

pre-collected data are repeated and relevant data will be collected. This process will be

repeated for 10 iterations. As shown in Fig. 3.18, in the dataset aggregation iteration

number 1, a big fraction of dataset is unsafe, and as it proceeds to recover from the

most problematic cases, the model error converges. The progress of this process can

be seen from iteration number 1 to 10.

3.2.5 Results

In Fig. 3.19, we present the performance of the Selective SafeDAgger with using

metric of l2-Norm in each class during the training process. For the first iteration, HR

and HL are chosen as weak classes and data for new dataset comes from those classes

by querying expert policy. İt is clearly seen that in the second iteration l2-Norms drops

for all classes by using aggregated dataset. It should be noted that the performance

of the policy for the other classes is also increased without querying expert policy for

those classes which are not the case for the SafeDAgger. Sequential decision making

is the main idea behind this behavior. In SafeDAgger, when policy shifts from nominal

conditions, the expert policy is called and the new dataset is collected until the safety

criterion is met which leads to an unnecessary query of the expert policy. On the other

hand, Selective SafeDAgger tries to solve the problem from the beginning by finding

problematic classes. In addition, it can be seen that after the seventh iteration norm

of all classes drops below the allowable threshold which means that resultant dataset

covers almost all trajectory classes as seen in Fig. 3.18.

32

Figure 3.19 : Performance of the Selective SafeDAgger algorithm for all classes at
each aggregation iteration.

Table 3.4 : Query to expert.

Selective SafeDAgger SafeDAgger
LL HL LR HR LS HS unsafe

Iteration 1 0 127 38 155 0 0 320
Iteration 2 0 44 0 228 0 48 320
Iteration 3 19 63 0 238 0 0 320
Iteration 4 27 12 0 281 0 0 320
Iteration 5 0 165 0 155 0 0 320
Iteration 6 31 189 0 100 0 0 320
Iteration 7 0 93 0 227 0 0 320
Iteration 8 2 162 0 156 2 5 320
Iteration 9 83 0 0 237 0 0 320

Iteration 10 0 205 0 115 0 0 320
Total 3200 3200

The trained model is tested at each iteration by taking 10000 samples from the

environment and mean l2-Norms are calculated, accordingly. Fig. 3.20 shows

that selective SafeDAgger method has better performance in all iterations than the

SafeDAgger method even though both methods have the same amount of query to the

expert as seen Table 3.4.

33

Figure 3.20 : l2-Norm of prediction and ground truth over 10000 samples at each
iteration.

Figure 3.21 : Geometry of test tracks.

Table 3.5 : Mean l2-norm on unseen test tracks.

Selective SafeDAgger SafeDAgger
1. Test Track 0.4794 0.5518
2. Test Track 0.3295 0.4986
3. Test Track 0.3254 0.3632

In order to evaluate the generalization performance of the proposed method, 3 unseen

test tracks were devised and used to test the proposed method. The generalization

performance of the Selective SafeDAgger is depicted in Table 3.5, which shows its

superiority over SafeDAgger method. The selective property of the proposed algorithm

34

will define the unsafe cases that dominate all other classes, which results in faster

convergence of the model error compared to other other dataset aggregation methods.

35

36

4. CONCLUSIONS

In this work, we implemented a Selective SafeDAgger algorithm which is

sample-efficient in the selection of dataset aggregation samples. The proposed

algorithm evaluates the performance of the trained policy and determines the weakness

of the policy over different observation classes and recovers the policy from those

specific observation classes. Verification of algorithm done with two experiments

which are steering and speed prediction for self-driving cars and visual landing of

an F-16 aircraft. Result of those two experiments showed that our method outperforms

the SafeDAgger algorithms in term of sample-efficiency and convergence rate.

37

38

REFERENCES

[1] Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G. and
...Karaman, S. (2008). A perception-driven autonomous urban vehicle,
Journal of Field Robotics, 25(10), 727–774.

[2] Chen, Z. and Huang, X. (2017). End-to-end learning for lane keeping of
self-driving cars, 2017 IEEE Intelligent Vehicles Symposium (IV), IEEE,
pp.1856–1860.

[3] Pomerleau, D.A. (1989). Alvinn: An autonomous land vehicle in a neural network,
Advances in neural information processing systems, pp.305–313.

[4] Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P.
and ...Zhang, J. (2016). End to end learning for self-driving cars, arXiv
preprint arXiv:1604.07316.

[5] Xu, H., Gao, Y., Yu, F. and Darrell, T. (2017). End-to-end learning of
driving models from large-scale video datasets, Proceedings of the IEEE
conference on computer vision and pattern recognition, pp.2174–2182.

[6] Kim, J. and Canny, J. (2017). Interpretable learning for self-driving cars
by visualizing causal attention, Proceedings of the IEEE international
conference on computer vision, pp.2942–2950.

[7] Yang, Z., Zhang, Y., Yu, J., Cai, J. and Luo, J. (2018). End-to-end Multi-Modal
Multi-Task Vehicle Control for Self-Driving Cars with Visual Perceptions,
2018 24th International Conference on Pattern Recognition (ICPR), IEEE,
pp.2289–2294.

[8] Ross, S., Gordon, G.J. and Bagnell, J.A. (2011). A Reduction of Imitation
Learning and Structured Prediction to No-Regret Online Learning,
AISTATS.

[9] Zhang, J. and Cho, K. (2017). Query-Efficient Imitation Learning for End-to-End
Simulated Driving, AAAI.

[10] Menda, K., Driggs-Campbell, K.R. and Kochenderfer, M.J. (2018). Ensem-
bleDAgger: A Bayesian Approach to Safe Imitation Learning, CoRR,
abs/1807.08364.

[11] Thomas, S., Kwatny, H.G. and Chang, B.C. (2004). Nonlinear reconfiguration
for asymmetric failures in a six degree-of-freedom f-16, American
Control Conference, 2004. Proceedings of the 2004, volume 2, IEEE,
pp.1823–1828.

39

[12] Nguyen, L.T., Ogburn, M.E., Gilbert, W.P., Kibler, K.S., Brown, P.W. and
Deal, P.L. (1979). Simulator study of stall/post-stall characteristics of a
fighter airplane with relaxed longitudinal static stability.[F-16].

[13] Stevens, B.L., Lewis, F.L. and Johnson, E.N. (2015). Aircraft control and
simulation: dynamics, controls design, and autonomous systems, John
Wiley & Sons.

[14] Napolitano, M.R. (2012). Aircraft dynamics: From modeling to simulation, J.
Wiley.

[15] Singh, S. and Padhi, R. (2009). Automatic path planning and control design for
autonomous landing of UAVs using dynamic inversion, American Control
Conference, 2009. ACC’09., IEEE, pp.2409–2414.

[16] Pashilkar, A.A., Ismail, S., Ayyagari, R. and Sundararajan, N. (2013).
Design of a nonlinear dynamic inversion controller for trajectory following
and maneuvering for fixed wing aircraft, Computational Intelligence for
Security and Defense Applications (CISDA), 2013 IEEE Symposium on,
IEEE, pp.64–71.

[17] Shah, S., Dey, D., Lovett, C. and Kapoor, A. (2018). Airsim: High-fidelity
visual and physical simulation for autonomous vehicles, Field and service
robotics, Springer, pp.621–635.

40

CURRICULUM VITAE

Name Surname: Yunus BICER

Place and Date of Birth: Adiyaman - 13/03/1992

E-Mail: biceryu@itu.edu.tr

EDUCATION:

• B.Sc.: 2016, Istanbul Technical University, Faculty of Aeronautics and
Astronautics, Aeronautical Engineering Department

• M.Sc.: 2019, Istanbul Technical University, Faculty of Aeronautics and
Astronautics, Aeronautics and Astronautics Engineering

PROFESSIONAL EXPERIENCE AND REWARDS:

• 2019 - Present, Research Assistant at Faculty of Aeronautics and Astronautics,
Istanbul Technical University.

PUBLICATIONS, PRESENTATIONS AND PATENTS ON THE THESIS:

• Bicer, Y., Moghadam, M., Sahin, C., Eroglu, B., Ure, N.K. ”Vision-based UAV
Guidance for Autonomous Landing with Deep Neural Networks.” 2019 AIAA
Science and Technology Forum and Exposition (AIAA SciTech 2019), San Diego,
California, USA, January 7-11 2019

• Bicer, Y., Alizadeh, A., Ure, N.K., Erdogan, A., Kizilirmak, O. ”Sample Efficient
Interactive End-to-End Deep Learning for Self-Driving Cars with Selective
Multi-Class Safe Dataset Aggregation.” 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS 2019)

41

