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Bu tez dört bölümden oluşmaktadır.

İlk bölüm giri̧s kısmına ayrılmı̧stır.

İkinci bölümde, tezin ilerleyen bölümlerinde kullanacağımız bazı temel tanımlara
yer verilmi̧stir.

Üçüncü bölümde, kuaterniyonlar için kutupsal form incelenmi̧s, bazıtemsil metot-
larına yer verilmi̧s ve yaprak parametresi tanımlanmı̧stır.

Son bölümde ise hibrit sayıların genel özellikleri verilmi̧s ve hibrit sayılar için yaprak
parametresi kavramına yer verilmi̧stir. Ayrıca hibrit sayılar için yeni bir polar form
elde edilmi̧stir.
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This thesis consists of four chapters.

In the first chapter is devoted to the introduction.

The second chapter, some fundamental concepts which are going to be used in the
following parts were explained.

In the third chapter, for quaternions, the polar form has been examined and some
representative methods are included and the Leaf parameter is defined.

In the last chapter, the general properties of hybrid numbers are given and the
concept of leaf parameter is given for hybrid numbers. Furthermore, a new polar
form is obtained for hybrid numbers.
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1. GİRİŞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. TEMEL KAVRAMLAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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1. GİRİŞ

1830’larda kompleks sayılardaki çarpma i̧slemine benzer bir çarpma R3 reel vektör

uzayının üçlüleri için William Rowan Hamilton tarafından araştırıldı, fakat bu çarp-

mada normun korunmasımümkün olmuyordu. 1843 yılında Hamilton bu fikrin R3

uzayında değil, R4 reel vektör uzayında mümkün olabileceğini farketti ve reel ku-

aterniyonlarıtanımladı(Lancsoz 1967). Bu tanımlamadan sonra ise R8 reel vektör

uzayında Cayley sayılarıile kompleks sayılar arasında benzer ili̧skiler araştırılmı̧stır.

Cayley sayılarıüzerinde tanımlanan çarpma i̧sleminin, birleşme ve deği̧sme özellik-

lerini sağlamadı̆gıgörülmüştür. Kuaterniyonlar, kinematikte hareketlerin incelen-

mesi bakımından önemli bir rol oynamaktadır.

Split kuaterniyonlar ise 1849 yılında James Cockie tarafından ortaya atılmı̧stır.

Hamilton ve Cockie, çarpım operatörleri ile belirlenmi̧s dört boyutlu reel vektör

uzayı oluşturmuşlardır. Kuaterniyonlardan farklı olarak split kuaterniyonlar sıfır

bölenli olabilmektedirler (Soydaş 2003). Dual sayılar 1873 yılında William Clifford

tarafından tanımlanmı̧stır. Dual sayılar kuantum mekaniği ve klasik vida mekaniği

gibi birçok alanda kullanılmaktadır. Reel ve dual kuaterniyonlar ile sağladıkları

özellikler Hacısalihoğlu tarafından "Hareket Geometrisi ve Kuaterniyonlar Teorisi"

kitabında ayrıntılıbir şekilde yer almaktadır (Hacısalihoğlu 1983). Ayrıca, birim

dual kuaterniyonlardan faydalanarak kayma ve dönme operatörleri tanımlanabilir.

Kuaterniyonların temsil biçimlerinden birisi de polar temsilidir. Polar temsiller

birçok problemin çözümünde kolaylık sağlamaktadır. Son yıllarda Sangwine ve Le

Bihan (Sangwine ve Le Bihan 2010) ile Ali Atasoy (Atasoy vd 2017) ve arkadaşları

kuaterniyonların bazı yeni polar temsillerini ifade etmi̧s, bazı karakterisazyonlar

vermi̧slerdir. Bir kuaterniyonu sıralı ikililerle ifade etmek mümkün olabildiği gibi

yaprak gösterimleri ile sıralıüçlülerle de ifade etmek mümkündür.

Pfaff (Pfaff 2000), kuaterniyon çarpımını kullanarak üç boyutlu reel vektör uza-

yında sayı üçlülerinin deği̧smeli çarpımının bazı özelliklerini vermi̧stir ve yaprak

parametresinden bahsetmi̧stir. Kula ve Yaylı(Kula ve Yaylı2006) ise dual kuater-
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niyonlar üzerindeki çarpma i̧sleminden yararlanarak dual sayıüçlülerinin deği̧smeli

çarpımınıifade etmi̧slerdir ve bu çarpımın yeni bir temsilini matris gösterimi ile elde

etmi̧slerdir.

Mustafa Özdemir (Özdemir 2018) deği̧smeli olmayan yeni bir sayısistemi tanımladı

ve tanımladı̆gıbu sayılar cebirsel olarak kompleks, dual ve hiperbolik sayıların kom-

binasyonlarınıiçerdiği için "Hibrit Sayılar" olarak adlandırıldı. Aynıçalı̧smada bu

sayıların cebirsel ve geometrik özelliklerini inceledi.

Biz bu çalı̧smada, kuaterniyonlar üzerine yapılan bu tanımlamalarıve temsil biçim-

lerini kapsamlı bir şekilde ele alacağız. Ayrıca yaprak paremetrisazyonu ile bili-

nen kuaterniyonların yaprak temsillerini (sıralıüçlüler) vereceğiz. Bununla birlikte

yaprak temsillerinin hibrit sayılar içinde incelenmesi yapılmı̧stır. Konuların daha

anlaşılır bir hale gelmesi için tüm bu kavramlar örneklerle desteklenmi̧stir.
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2. TEMEL KAVRAMLAR

Bu bölüm, tezin 2., 3. ve 4. bölümlerinde kullanılacak olan kavramların açıkla-

malarına ayrılmı̧stır.

Tanım 2.1 (Kompleks Sayı) a, d ∈ R olmak üzere (a, d) sıralıikililerine

kompleks sayıdenir. Burada a, z kompleks sayısının reel kısmı, ve d, z kompleks

sayısının imajiner kısmıdır,

Re z = a

ve

Im z = d

şeklinde gösterilmektedir. Kompleks sayılar cümlesi üzerinde temel i̧slemler aşağı-

daki gibi tanımlanmaktadır. a1, a2, d1, d2 ∈ R olmak üzere

Eşitlik: (a1, d1) = (a2, d2) ⇐⇒ a1 = a2, d1 = d2

Toplama: (a1, d1) + (a2, d2) = (a1 + a2, d1 + d2)

Çarpma: (a1, d1) (a2, d2) = (a1a2 − d1d2, a1d2 + d1a2)

Buna göre z = (a, d) kompleks sayısı

z = (a, d) = (a, 0) + (0, d)

= (a, 0) + (0, 1)(d, 0); i = (0, 1)

= a+ id

olarak ifade edilebilir.

Kompleks sayılar kümesi

C =
{
a+ id : a, d ∈ R, i2 = −1

}
ile gösterilir. Geometrik olarak bir z = a+di kompleks sayısınıR2 düzlemi veya xoy

düzleminde bir (a, d) noktasıile eşleyebiliriz. Bu durumda xoy düzlemine kompleks

düzlem, a eksenine reel eksen ve d eksenine imajiner eksen denir.

Eşlenik: Herhangibir z = a+ di kompleks sayısının eşleniği z ile ifade edilir ve

z = a− di
3



olarak tanımlanır. z ve z sayılarıx eksenine göre simetrik olmaktadır.

Modül: Herhangibir z = a+ di kompleks sayısının modülü |z| ile ifade edilir ve

|z| =
√
a2 + d2

ile hesaplanır. Yani bir kompleks sayının modülü z = (a, d) noktasının orijine olan

uzaklı̆gıdır.

Polar Form: z = a+ di kompleks sayısının pozitif reel eksenle yapmı̧s olduğu açı$

olsun. cos$ =
a

|a+ di| ve sin$ =
d

|a+ di| olup buradan

z = |z| (cos$ + i sin$)

polar formu elde edilir. Burada r = |z| olmak üzere a = r cos$ ve d = r sin$

olduğu açıktır. Bu takdirde $ açısına a + di kompleks sayısının argümenti denir

ve arg z ile gösterilir.

Şekil 1.1 Kompleks Argüment

Euler Formülü: $ ∈ R olmak üzere

ei$ = cos$ + i sin$

formülüne Euler formülü denir. Euler formülü yardımıyla z kompleks sayısı

z = |z| (cos$ + i sin$) = r (cos$ + i sin$) = rei$
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şeklinde yazılır.

Bir Kompleks Sayının Tersi: z = a + di kompleks sayısının tersi z−1 ile gösterilir

ve

z−1 =

(
a

a2 + d2
,
−d

a2 + d2

)
, (z 6= 0)

ile hesaplanır (Churchill ve Brown 1984).

Kompleks Sayıların Matris Gösterimi: z = a + id kompleks sayısının matris gös-

terimi

a+ di←→

 a d

−d a


şeklindedir. Ayrıca kompleks birim i←→

 0 1

−1 0

 dir. Kompleks sayılar için Euler
formüllerini matris gösterimleri ile ifade edecek olursak;

cos$ + i sin$ = exp

 0 $

−$ 0

 =
 cos$ sin$

− sin$ cos$


şeklindedir. Ayrıca bu matris Öklid düzlemindeki dönme matrisine kaŗsılık gelmek-

tedir (Kisil 2013).

Tanım 2.2 (Dual Sayı) d, d? ∈ R olmak üzere (d, d?) sıralıikilileri şeklinde tanım-

lanan R× R cümlesi D ile gösterilsin,

D = {(d, d?) : d, d? ∈ R}

cümlesi üzerinde d, d?, e, e? ∈ R olmak üzere temel i̧slemler aşağıdaki gibi tanım-

lanmı̧stır.

Eşitlik: (d, d?) = (e, e?) ⇐⇒ d = e, d? = e?

Toplama: (d, d?) + (e, e?) = (d+ e, d? + e?)

Çarpma: (d, d?) (e, e?) = (de, de? + d?e)

Bu şekilde tanımlanmı̧s D cümlesine dual sayılar sistemi ve ∀ (d, d?) ∈ D elemanına

da bir dual sayıdenir. Dual sayılar cümlesi

D =
{
d+ εd? : d, d? ∈ R, ε2 = 0

}
ile gösterilir.
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Eşlenik: Herhangibir z = d+ εd? dual sayısının eşleniği z ile gösterilir ve

z = d− εd?

olarak tanımlanır.

Modül: Herhangibir z = d+ εd? dual sayısının modülü |z| ile gösterilir ve

|z| = |d|

ile hesaplanır. Bu tanım D cümlesinde bir metrik oluşturmaz.

Dual Sayıların Tersi: Herhangibir z = d + εd? = (d, d?) dual sayısının tersi z−1 ile

gösterilir ve

z−1 =

(
1

d
,
d?

d2

)
olarak tanımlanır.

Euler Formülü: $ ∈ R olmak üzere

eε$ = 1 + ε$

dual sayılar için Euler formülü olarak bilinir.

Dual Sayıların Matris Gösterimleri: z = d+ εd? dual sayısının matris gösterimi

d+ εd? ←→

d d?

0 d



şeklindedir. Ayrıca dual birim ε←→

0 1

0 0

 dir. Dual sayılar için Euler formüllerini
matrisle ifade edecek olursak;

1 + ε$ = exp

0 $

0 0

 =
1 $

0 1


şeklindedir. Ayrıca bu matris Galile düzlemindeki dönme matrisine kaŗsılık gelmek-

tedir (Hacısalihoğlu 1983).

Tanım 2.3 ei$ = cos$ + i sin$ ve e−i$ = cos$ − i sin$ eşitliklerinden yararla-

narak, her $ reel sayısıiçin

sin$ =
ei$ + e−i$

2i
ve cos$ =

ei$ + e−i$

2
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denklemleri sağlanmaktadır. Benzer şekilde bu eşitlikleri cosh$ ve sinh$ için

sinh$ =
e$ − e−$

2
ve cosh$ =

e$ + e−$

2

şeklinde tanımlanmaktadır (Speiegel vd 2009).

Tanım 2.4 Bir u vektörü için eğer 〈u, u〉 < 0, 〈u, u〉 > 0, ve 〈u, u〉 = 0 ise, u

vektörüne, sırasıyla, timelike, spacelike ve lightlike vektör denir (O’Neill 1983).

Tanım 2.5 (Hiperbolik Sayı) a, d ∈ R olmak üzere (a, d) sıralıikilileri üzerinde

tanımlanan,

H = {(a, d) : a, d ∈ R}

cümlesi üzerinde a1, a2, d1, d2 ∈ R olmak üzere temel i̧slemler aşağıdaki gibi tanım-

lanmı̧stır.

Eşitlik: (a1, d1) = (a2, d2) ⇐⇒ a1 = a2, d1 = d2

Toplama: (a1, d1) + (a2, d2) = (a1 + a2, d1 + d2)

Çarpma: (a1, d1) (a2, d2) = (a1a2 + d1d2, a1d2 + d1a2)

Bu şekilde tanımlanmı̧s H cümlesine hiperbolik sayısistemi denir. Hiperbolik

sayılar cümlesi

H =
{
a+ hd : a, d ∈ R, h2 = 1

}
ile gösterilir. Bir hiperbolik sayının a reel sayısına hiperbolik sayıiçin reel kısmı

ve d reel sayısına hiperbolik sayının hiperbolik kısmıdenir.

Eşlenik: Bir z = a+ dh hiperbolik sayısının eşleniği z ile ifade edilir ve

z = a− dh

olarak tanımlanır. z ve z sayılarıx eksenine göre simetrik olmaktadır.

Modül: Bir z = a+ dh hiperbolik sayısının modülü |z| ile ifade edilir ve

|z| =
√
|a2 − d2|

ile hesaplanır.

Hiperbolik Sayıların Tersi: z = a+ dh hiperbolik sayısının tersi z−1 ile ifade edilir

ve

z−1 =
z

|z|2
=

a

a2 − d2 −
d

a2 − d2h

7



ile hesaplanır. Hiperbolik sayıların tersi a2 − d2 6= 0 durumunda tanımlıdır.

Polar Form: z = a + dh hiperbolik sayısının pozitif reel eksenle yapmı̧s olduğu açı

$ olsun.

z = ± |z| (cosh$ + h sinh$)

polar formu elde edilmi̧s olur. r = |z| olmak üzere a = ±r cosh$ ve d = ±r sinh$

olduğu açıktır. Bu takdirde $ açısına a+ dh hiperbolik sayısının argümenti denir

ve arg hz ile gösterilir.

Şekil 1.2 Hiperbolik Argüment

Euler Formülü: z = a+ dh hiperbolik sayısıiçin |z|=r, $ = arg hz ve

k ∈ {1,−1, h,−h} için

z = kr (cosh$ + h sinh$) = kreh$

dır.

Hiperbolik Sayıların Matris Gösterimleri: z = a + dh hiperbolik sayısının matris

gösterimi

a+ dh←→

a d

d a


8



şeklindedir. Ayrıca hiperbolik birim h←→

0 1

1 0

 dir. Hiperbolik sayılar için Euler
formüllerini matris gösterimleri ile ifade edecek olursak;

cosh$ + h sinh$ = exp

 0 $

$ 0

 =
cosh$ sinh$

sinh$ cosh$


şeklindedir. Ayrıca bu matris Lorentz düzlemindeki dönmematrisine kaŗsılık gelmek-

tedir (Çakır 2017).

Tanım 2.6 (Reel Kuaterniyonlar)

Q =
{
p = p01 + p1i+ p2j + p3k : p0, p1, p2, p3 ∈ R : i2 = j2 = k2 = −1

}
şeklinde tanımlanan Q cümlesini göz önüne alalım. Böylece bir reel kuaterniyon

p = p01 + p1i+ p2j + p3k

şeklinde ifade edilebilir.

p = p01+p1i+p2j+p3k ve q = q01+ q1i+ q2j+ q3k olmak üzere reel kuaterniyonlar

üzerinde temel i̧slemler aşağıdaki gibi tanımlıdır.

Eşitlik: p = q ⇐⇒ p0 = q0, p1 = q1, p2 = q2, p3 = q3

Toplama: p+ q = (p0 + q0) + (p1 + q1) i+ (p2 + q2) j + (p3 + q3) k

Skaler İle Çarpma: λp = λp0 + λp1i+ λp2j + λp3k

Reel Kuaterniyonların Çarpımı: p = p01+p1i+p2j+p3k ve q = q01+q1i+q2j+q3k

iki reel kuaterniyon olmak üzere bu kuaterniyonların çarpımı aşağıda verilen

{1, i, j, k} birimlerinin çizelgesi yardımıyla hesaplanırsa

pq = (p01 + p1i+ p2j + p3k) (q01 + q1i+ q2j + q3k)

= p0q0 + p0q1i+ p0q2j + p0q3k

+p1q0i− p1q1 + p1q2k − p1q3j

+p2q0j − p2q1k − p2q2 + p2q3i

+p3q0k + p3q1j − p3q2i− p3q3

elde edilir. Aşağıdaki çizelgede {1, i, j, k} birimlerinin kuaterniyon çarpımıgörülmek-

tedir.
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Çizelge 1.1 Kuaterniyon Çarpımı

× 1 i j k

1 1 i j k

i i −1 k −j

j j −k −1 i

k k j −i −1

Eşlenik: Bir reel kuaterniyon p = p01 + p1i + p2j + p3k olsun. h kuaterniyonunun

eşleniği h ile ifade edilir ve

h = p01− p1i− p2j − p3k

ile hesaplanır.

Norm: Bir reel kuaterniyon p = p01 + p1i + p2j + p3k olsun. p kuaterniyonunun

normu N(p) ile ifade edilir ve

N (p) =
√
p20 + p21 + p22 + p23

ile hesaplanır. Ayrıca burada Np = p20 + p21 + p22 + p23 dir.

Bir Reel Kuaterniyonun Tersi: Bir reel kuaterniyon p = p01+ p1i+ p2j+ p3k olsun.

p kuaterniyonunun kuaterniyon çarpımına göre tersi p−1 ile ifade edilir ve

p−1 =
p

Np

ile hesaplanır.

Birim Kuaterniyon ve Normlama: Normu 1 olan kuaterniyona birim kuater-

niyon denir. Birim kuaterniyon genellikle p
0
ile gösterilir. Bu sebeble vektör-

lerdeki mantıkla benzer olarak sıfırdan farklıherhangi bir reel kuaterniyon normunun

kareköküne bölünerek birim kuaterniyona dönüştürülebilir. p = p01+p1i+p2j+p3k

olmak üzere

p
0
=

p√
Np

olarak ifade edilebilir. Bu p
0
birim kuaterniyonu

p
0
= cos θ +

−→
S0 sin θ

10



olarak yazabiliriz. Burada cos θ =
p0√

p20 + p21 + p23
, sin θ =

√
p21 + p22 + p23√

p20 + p21 + p22 + p23
ve

−→
S0 =

p1i+ p2j + p3k√
p20 + p21 + p22

şeklindedir (Kuipers 2002).

Polar Form: p = p01 + p1i + p2j + p3k reel kuaterniyonu için cos θ =
p0√
Np

ve

sin θ =

√
p21 + p22 + p23√

Np

olmak üzere polar formu

q =
√
Np(cos θ +

−→
S0 sin θ)

şeklinde ifade edilebilir.

Burada
−→
S0 =

p1i+ p2j + p3k√
p20 + p21 + p22

olup birim vektördür (Hacısalihoğlu 1983).

Reel Kuaterniyonların Matris Gösterimleri: p bir reel kuaterniyon olsun. Sol çarpım

fonksiyonunu

Tp : Tp (q) −→ pq

biçiminde tanımlayalım. R4 reel vektör uzayında Tp dönüşümü R4 reel vektör uza-

yından R4 reel vektör uzayına bir lineer dönüşüm belirtir. Bu lineer dönüşüme

kaŗsılık gelen matris temsili

Tp =


p0 −p1 −p2 −p3
p1 p0 −p3 p2

p2 p3 p0 −p1
p3 −p2 p1 p0


şeklindedir. Bu şekilde tanımlanan lineer dönüşüm bir izomorfizm belirtmektedir

(Hacısalihoğlu 1983).

Tanım 2.7 (Split Kuaterniyonlar)

Q̃ = {h = h0 + h1i+ h2j + h3k : h0, h1, h2, h3 ∈ R}

cümlesini ele alalım. Burada {1, i, j, k} birimlerinin çarpımıreel kuaterniyon çarpımın-

dan farklıolarak aşağıdaki tabloda verilmi̧stir.
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Çizelge 1.2 Split Kuaterniyon Çarpımı

. 1 i j k

1 1 i j k

i i −1 k −j

j j −k 1 −i

k k j i 1

Q̃ nin her bir elemanına bir split kuaterniyon denir (Kula 2003).

h = h0 + h1i+ h2j + h3k

split kuaterniyonunun skalar kısmıSh ve vektörel kısmı
−→
Vh olmak üzere iki kısma

ayrılır.

h = Sh +
−→
Vh

olmak üzere

Sh = h0 ve
−→
Vh = h1i+ h2j + h3k

dır.

Toplama: h = h0+h1i+h2j+h3k ve p = p0+p1i+p2j+p3k split kuaterniyonlarının

toplamı

h+ p = (Sh + Sp ) +
(−→
Vh +

−→
Vp

)
= (h0 + p0) + (h1 + p1) i+ (h2 + p2)j + (h3 + p3)k

olarak tanımlanır.

Skaler ile Çarpma: λ ∈ R ve h = h01 + h1i+ h2j + h3k olmak üzere λh i̧slemi

λh = (λh0) + (λh1) i+ (λh2) j + (λh3) k

olarak tanımlanır.

Split Kuaterniyonlarının Çarpımı: h = h0 + h1i+ h2j + h3k ve

p = p0 + p1i+ p2j + p3k iki split kuaterniyon olmak üzere

× : Q̃× Q̃ −→ Q̃

(h, p) −→ h× p = hp

12



şeklinde bir i̧slem olup

hp = ShSp − g
(−→
Vh,
−→
Vp

)
+ Sh

−→
Vp + Sh

−→
Vq +

−→
Vh ∧

−→
Vp

olarak tanımlanır. Burada

g : Im Q̃× Im Q̃ −→ R(−→
Vh,
−→
Vp

)
−→ g

(−→
Vh,
−→
Vp

)
= −h1p1 + h2p2 + h3p3

dır. Bu çarpma i̧slemiyle birlikte Q̃ cümlesine split kuaterniyon cebiri denir

(Kula 2003).

Eşlenik: Herhangi bir split kuaterniyon h = h0 + h1i + h2j + h3k olsun. h split

kuaterniyonunun eşleniği h ile ifade edilir ve

h = h0 − h1i− h2j − h3k

ile hesaplanır (Kula 2003).

Norm: Bir split kuaterniyon h = h0+h1i+h2j+h3k olsun. Nh = h20+h
2
1−h22−h23

olmak üzere h split kuaterniyonunun normu |h| ile ifade edilir ve

|h| =
√
|h20 + h21 − h22 − h23| =

√
Nh

ile hesaplanır (Kula 2003).

Bir Split Kuaterniyonun Tersi: Bir split kuaterniyon h = h0+h1i+h2j+h3k olsun.

h split kuaterniyonunun tersi h−1 ile ifade edilir ve

h−1 =
h

Nh

, |h| 6= 0

=
h0 − h1i− h2j − h3k
|h20 − h21 − h22 − h23|

ile hesaplanır (Kula 2003).

Polar Form: Split kuaterniyonlarda, kuaterniyonun spacelike veya timelike olması,

bununla birlikte timelike kuaterniyonlarda vektörel kısmın timelike veya spacelike

olmasıpolar formu deği̧stirmektedir. Yani split kuaterniyonların polar formu için

farklıdurumlar incelenecektir .

1. h = h0 + h1i+ h2j + h3k ∈ Q̃ bir spacelike kuaterniyon ise polar form

h = |h| (sinhϕ+−→ε0 coshϕ)
13



şeklinde ifade edilebilir. Burada sinhϕ =
h0
|h| , coshϕ =

√
−h21 + h22 + h23
|h|

ve −→ε0 =
h1i+ h2j + h3k√
−h21 + h22 + h23

dir.

2. h = h0+h1i+h2j+h3k ∈ Q̃ vektörel kısmıspacelike olan bir timelike birim

kuaterniyon ise polar form

h = |h| (coshϕ+−→ε0 sinhϕ)

şeklinde ifade edilebilir. Burada coshϕ =
h0
|h| , sinhϕ =

√
−h21 + h22 + h23
|h|

ve −→ε0 =
h1i+ h2j + h3k√
−h21 + h22 + h23

dir.

3. h = h0+ h1i+ h2j + h3k ∈ Q̃ vektörel kısmıtimelike olan bir timelike birim

kuaterniyon ise polar form

h = |h| (cosϕ+−→ε0 sinϕ)

şeklinde ifade edilebilir. Burada cosϕ =
h0
|h| , sinϕ =

√
h21 − h22 − h23
|h|

ve −→ε0 =
h1i+ h2j + h3k√
h21 − h22 − h23

dir.

4. Vektörel kısmılightlike olan tüm split kuaterniyonlar için polar form

q = 1 +−→ε0

şeklindedir. Burada −→ε0 lightlike bir vektördür (Özdemir ve Ergin 2006).
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3. KUATERNİYONLAR İÇİN YENİ TEMSİL METOTLARI VE

YAPRAK PARAMETRELENDİRMESİ

3.1 Yaprak Parametrelendirmesi

Dördüncü bileşeni sıfır olan X = x1 + yi + zj + 0k kuaterniyonların cümlesini göz

önüne alalım. Bu kesilmi̧s kuaterniyonların cümlesi, kuaterniyonların üç boyutlu alt

vektör uzayınıoluşturur. O halde (x, y, z, 0) dörtlüsü yerine ona eş olan (x, y, z)

üçlüsünü yazabiliriz. Böylece

1 = (1, 0, 0) , i = (0, 1, 0) , j = (0, 0, 1)

olup X kuaterniyonunu yeniden yazarsak

X = x1 + yi+ zj

elde edilir. Artık X kuaterniyonu için "üçlü", "vektör" ve "kesilmi̧s kuaterniyon"

terimlerini kullanabiliriz. Tüm düzlemlerin cümlesini düşünelim. x eksenini içeren

alt uzayda (x, 0, 0) vektörü x-ekseni üzerinde yer almaktadır ve U = (0, y, z) vektörü,

yoz düzlemindedir. (x, 0, 0) ve U = (0, y, z) uzayda bir düzlem belirler. Bu düzlem

yaprak olarak adlandırılmaktadır. Her yaprak (y, z) düzlemi ile kesi̧sim doğrusu

veya eşdeğer olarak bu doğru boyunca (y, z) düzlemindeki sıfırdan farklıherhangibir

U vektörü boyunca belirlenir. Bununla birlikte üçlülerin çarpımları kuaterniyon

çarpmasına göre kapalıdeğildir. Fakat üçlülerin aynıyaprak üzerindeki çarpımları

kapalı, birleşmeli ve deği̧smelidir (Pfaff 2000).

3.1.1 Bir yaprak üzerinde çarpma

p = (a1, b1, c1) = a1+b1i+c1j, q = (a2, b2, c2) = a2+b2i+c2j iki tane kesilmi̧s kuater-

niyon olmak üzere burada b1ve c1 (b2 ve c2) sıfırdan farklıolsun. Amacımız kesilmi̧s

kuaterniyonlar için kapalı ve deği̧smeli bir çarpma tanımlamaktır. pq çarpımını

hesaplarsak

pq = (a1a2 − b1b2 − c1c2)1 + (a1b2 + b1a2) i+ (a1c2 + c1a2) j + (b1c2 − c1b2) k
15



dır.

Kesilmi̧s kuaterniyonların çarpma i̧slemine göre kapalıolmasıiçin k bileşeninin sıfır

olmasıgerekir. Bu durumda

c1
b1
=
c2
b2
= η, η ∈ R\ {0}

olmalıdır. Buradan

p = (a1, 0, 0) + (0, b1, c1) = (a1, 0, 0) + Up

ve

q = (a2, 0, 0) + (0, b2, c2) = (a2, 0, 0) + Uq

olup burada Up ve Uq sıfırdan farklıvektörlerdir. O halde Uq = ηUp olup

Uq = (0, ηb1, ηc1) olduğu kolayca görülmektedir.

O halde

pq =
(
a1a2 − ηb21 − ηc21

)
1 + (ηa1b1 + b1a2) i+ (ηa1c1 + c1a2) j

elde edilir (Pfaff 2000). Bu çarpım aşağıdaki özelliklere sahiptir.

1. Aynıyaprakta yer alan p ve q kesilmi̧s kuaterniyonlarının çarpımıolan pq yine

aynıyaprakta yer alır ve bu çarpım kapalıdır.

2. Deği̧sme özelliğine sahiptir.

3. Birleşme ve dağılma özelliğine sahiptir.

4. q = a1 + b1i + c1j kesilmi̧s kuaterniyonu ile eşleniği olan q∗ = a1 − b1i − c1i

kesilmi̧s kuaterniyonu aynıyapraktadır ve

qq∗ =
(
a2 + b2 + c2

)
1 = |q|2

dir.

5. q kuaterniyonunun tersi olan q−1 =
q∗

|q|2
kesilmi̧s kuaterniyonu q kuaterniyonu

ile aynıyapraktadır .

6. Sıfırdan farklıher üçlünün tek bir tersi olduğundan sıfır böleni yoktur.
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7. Aynıyaprak üzerindeki p ve r üçlüleri için pq = r denklemi p ve r kesilmi̧s

kuaterniyonlarının oluşturduğu yaprakta q = p−1r şeklinde tek bir çözüme

sahiptir.

3.1.2 Yaprak üzerinde kompleks yapı

Bir yaprak yoz düzleminde i yönü ile pozitif yönlü iϕ birim vektörü ile belirlenir.

Bu vektöre göre bir reel kuaterniyon

iϕ = (cosϕ) i+ (sinϕ) j

şeklinde ifade edilebilir. Burada i2ϕ = −1 olur. p yaprakta sıfırdan farklıbir üçlü

olsun. Bu yaprak 1 ve iϕ birim kuaterniyonu tarafından üretilmektedir. O halde

bu vektörler boyunca p reel kuaterniyonunu yeniden yazabiliriz. p kuaterniyonunun

yapraktaki (1, 0, 0) ile yaptı̆gıpozitif yönlü açıξ olmak üzere

p = |p| ((cos ξ) 1 + (sin ξ) iϕ)

elde edilir. Ayrıca eiϕξ = {(cos ξ) 1 + (sin ξ) iϕ} olup burada p = |p| eiϕξ, |p|2 = p.p∗

ve ξ = arg p eşitlikleri gerçeklenir.

p ile aynıyaprakta reel birim (1, 0, 0) vektörü ile pozitif yönlü η açısınıyapan vektör

q = (a2, b2, c2) olmak üzere q = |q| eiϕη olup

pq = |p| |q| eiϕξeiϕη = |p| |q| eiϕ(ξ+η)

elde edilir. Burada |pq| = |p| |q| ve arg (pq) = arg p + arg q eşitlikleri gerçeklenir.

Kuaterniyonun eşleniği

p∗ = |p| e−iϕξ

ve tersi

p−1 =
1

|p|e
−iϕξ

dir (Pfaff 2000).

3.1.3 Farklıyapraklar üzerinde çarpma

Farklıyapraklar üzerindeki üçlülerin çarpımıaşağıdaki adımlardaki gibi tanımlan-

maktadır (Pfaff 2000).
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Şekil 3.1 FarklıYapraklar Üzerinde Çarpma

1. p ve q ile belirlenen düzlem ile (x, y) düzlemi şekilde gösterildiği gibi pozitif

x yönü ile θ açısınıyapan ve orijinden geçen doğru üzerinde kesi̧sir. Burada

0 ≤ θ < π dir.

2. p ve q düzlemi z etrafında döndürülüp ve (x, y) düzlemi ile kesi̧simi x ekseni

üzerine getirilir ve p ile q vektörleri şekilde gösterildiği gibi p′ ve q
′
vektörleri

üzerine taşınır.

3. p′ ve q
′
vektörlerinin oluşturduğu düzlem bir yaprak belirtir. Artık bu vektörler

aynı yaprak üzerinde yer aldı̆gından bir yaprak üzerinde çarpma metotunu

uygulayabiliriz. Bu durumda

r
′
= p′q

′
,
∣∣∣r′∣∣∣ = ∣∣∣p′∣∣∣ ∣∣∣q′∣∣∣ ve arg r′ = arg p′ + arg q′

elde edilir.

4. 2. adımda kullanılan dönmenin tersini kullanarak p ile q orijinal düzlemine

tekrar döndürülür. Bu dönme sırasıyla p′ ile q
′
vektörlerini p ve q vektörlerine

dönüştürür. Bu durumda

r = p⊗ q
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dır.

5.

|p× q| = |p| |q| ve arg (p× q) = arg p+ arg q

olup tanımlağımız bu çarpma i̧slemi deği̧smelidir. Bu özellik ortagonal dönüşüm-

lerden etkilenmez.

6. Sıfırdan farklıp ve r üçlüleri için xoz düzleminde r = p×q denklemini sağlayan

bir tek q vardır.

3.2 Kuaterniyonlar İçin Yeni Polar Gösterimler

Her kuaterniyon

q = AeBj

şeklindeki polar form ile ifade edilebilmektedir. Burada a, b, c, d ∈ R olmak üzere

A = a+ ib ve B = c+di iki kompleks sayıdır. A deği̧sme özelliğine sahip olmadı̆gın-

dan bu yazılımda sıralama önemlidir. İki kompleks sayıya dayanan bu kutupsal form

ile bir kuaterniyonun Cayley-Dickson formu arasındaki ili̧ski

q = (a+ bi) + (c+ di) j = a+ bi+ cj + dk

şeklindedir. Cayley-Dickson formunda ilk kompleks sayıkartezyen formdaki kuater-

niyonun ilk iki kısmıolup reel ve imajiner kısımlara sahiptir. Benzer şekilde ikinci

kompleks sayı ise kuaterniyonun üçüncü ve dördüncü kısmıolup reel ve imajiner

kısımlara sahiptir. Kompleks sayılar, çarpma i̧slemi ile donatılmı̧s iki boyutlu vektör-

ler olarak kullanılabildiği gibi sadece iki boyutlu kompleks sayıyıdeğil dört boyutlu

bir kuaterniyonu oluşturmak için de kullanılabilir (Sangwine ve Le Bihan 2010).

Lemma 3.1 Bj = (c+ di) j = cj + dk şeklinde keyfi bir kuaterniyon verildiğinde

üstel formu

eBj = cos |B|+ B

|B| sin |B| = α1 + β1j + δ1k

biçimindedir (Sangwine ve Le Bihan 2010).

İspat. Bj = (c+ di) j = cj + dk olmak üzere

B =
B

|B| |B|
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şeklindedir. İspatı tamamlamak için eηθ = cos θ + η sin θ şeklindeki klasik polar

formu göz önünde bulundurmamız yeterlidir. Burada η birim kuaterniyondur ve
B

|B| ile tanımlanabilir. Ayrıca |B| reel olup θ ile tanımlanabilmektedir. Böylece

α1 = cos |B| , β1 =
(

c

|B|

)
sin |B| ve δ1 =

(
d

|B|

)
sin |B|

elde edilmi̧s olur.

Teorem 3.1 q = w+xi+ yj+ zk şeklindeki bütün kuaterniyonlar A,B ∈ C olmak

üzere

q = AeBj

şeklinde ifade edilebilir (Sangwine ve Le Bihan 2010).

İspat. Eğer q = AeBj ise |q| = |A| kolaylıkla görülebilir. Klasik polar formda

olduğu gibi B önemsizdir; çünkü
∣∣eBj∣∣ = 1 gerçeklenir. Bu nedenle, eğer q = 0 ise

A = 0 olmak zorundadır.

q = AeBj = (a+ ib) (α1 + β1j + δ1k) = aα1 + bα1i+ (aβ1 − bδ1) j + (aδ1 + bβ1) k

α 6= 0 (eBj nin reel kısmı) olmak üzere amacımız ζ = aα1+ bα1i ve A =
ζ

|ζ| şeklinde

bir kompleks sayıoluşturmaktır. ζ kompleks sayısının reel ve imajiner kısmının,

sırasıyla, sıfır olduğu A = i ve A = 1 özel durumlarıvardır. Bu özel durumlarda ve

genel durumda bir i̧saret belirsizliği de vardır. α sayısının i̧saretini bilmediğimiz için

A ya da −A sayısıtam olarak belirlenemez. Bu belirsizliğin doğal olduğu açıktır;

çünkü A = a + bi kompleks sayısının negatifinin alınmasıα1 + β1j + δ1k değerinin

ihmal edilmesi ile telafi edilebilir. α = 0 durumunda q reel kuaterniyonunun birinci

ve ikinci bileşenleri sıfır olacaktır. Bu nedenle q, yj + zk biçimindedir ve a = 1 ve

b = 0 alabiliriz. a+ bi kompleks sayısınıbelirledikten sonra a+ bi sayısının eşleniği

ile soldan çarparak α1 + β1j + δ1k kesilmi̧s kuaterniyonu elde edilir. Daha sonra

doğal logaritma alarak Bj = ln(α1 + β1j + δ1k) değeri oluşturulur. Bj değerinin

cj + dk formunda olmasıgerekir. Bu nedenle B = c+ di olup

Bj = (c+ di) j = cj + dk

elde edilir.
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Teorem 3.2 q = a+ bi+ cj + dk (a, b, c, d ∈ R) şeklindeki her birim kuaterniyon

q = AX = eiθeiϕ1ψ

şeklinde ifade edilebilir. Burada A bir kompleks sayıve X kesilmi̧s bir kuaterniyon-

dur. Ayrıca

iϕ1 =

{
(ac+ bd)√

a2 + b2
√
c2 + d2

j +
(ad− bc)√

a2 + b2
√
c2 + d2

k

}
span (j, k) düzleminde bir birim vektördür ve iϕ1iϕ1 = −1 gerçeklenir.

İspat. q = a+ bi+ cj + dk bir birim kuaterniyon olsun. q kuaterniyonunu yeniden

yazacak olursak

q = (a+ bi)

(
1 +

c

a+ bi
j +

d

a+ bi
k

)
q =

(a+ bi)√
a2 + b2

(√
a2 + b2 +

√
a2 + b2A−1 (cj + dk)

)
q =

(a+ bi)√
a2 + b2

(√
a2 + b2 +

√
a2 + b2

1

a+ bi

√
c2 + d2

1√
c2 + d2

(cj + dk)

)
q =

(a+ bi)√
a2 + b2

(√
a2 + b2 +

√
c2 + d2

{
(ac+ bd)√

a2 + b2
√
c2 + d2

j +
(ad− bc)√

a2 + b2
√
c2 + d2

k

})
elde edilir. Burada A =

(a+ bi)√
a2 + b2

ve X =
√
a2 + b2 +

√
c2 + d2iϕ1 şeklindedir.

Ayrıca
∣∣iϕ1∣∣ = 1 olup iϕ1iϕ1 = −1 gerçeklenir. Sonuç olarak q kuaterniyonun polar

formu

q = AX = eiθeiϕ1ψ

şeklinde ifade edilebilir.

Bu teoremde en önemli nokta bir kuaterniyonun kompleks bir sayıve kesilmi̧s bir

kuaterniyon çarpımıile ifade edilmi̧s olmasıdır. Ayrıca, burada önemli bir nokta da

kuaterniyonun polar formunun iki Euler açısıyardımıyla verilmesidir.

Örnek 3.1 q = 1√
30
+ 2√

30
i+ 3√

30
j + 4√

30
k birim kuaterniyonunu göz önüne alalım.

q kuaterniyonunu aşağıdaki gibi yeniden ifade edecek olursak

q =
(

1√
30
+ 2√

30
i
)(

1 + 1
1√
30
+

2√
30
i

(
3√
30
j + 4√

30
k
))

q =

(
1√
30
+

2√
30
i

)
1√
6

(
1√
6
+ 5√

30

{
11
30

1√
6

5√
30

j −
2
30

1√
6

5√
30

k

})
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olup burada A = 1√
5
+ 2√

5
i ve iϕ1 =

11
5
√
5
j − 2

5
√
5
k olup X = 1√

6
+ 5√

30
iϕ1 elde edilir.

A kompleks sayıve X kesilmi̧s kuaterniyon olmak üzere

q = AX = eiθeiϕ1ψ

şeklinde ifade edilebilir. Burada θ = arccos
(
1√
5

)
ve ψ = arccos

(
1√
6

)
olduğu açıkca

gösterilebilir.

Lemma 3.2 Bk = (c+ dj) k = di + ck şeklinde keyfi bir kuaterniyon verildiğinde

üstel formu

eBk = cos |B|+ B

|B| sin |B| = α2 + β2i+ δ2k

biçimindedir.

İspat. Bk = (c+ dj) k = di+ ck olmak üzere

B =
B

|B| |B|

şeklindedir. İspatı tamamlamak için eηθ = cos θ + η sin θ şeklindeki klasik polar

formu göz önünde bulundurmamız yeterlidir. Burada η birim kuaterniyondur ve
B

|B| ile tanımlanabilir. Ayrıca |B| reel olup θ ile tanımlanabilmektedir. Böylece

α2 = cos |B| , β2 =
(
d

|B|

)
sin |B| ve δ2 =

(
c

|B|

)
sin |B|

elde edilmi̧s olur.

Teorem 3.3 q = w + xi+ yj + zk şeklindeki bütün kuaterniyonlar

q = AeBk

şeklinde ifade edilebilir. Burada A,B ∈ C olmak üzere özel olarak A = a + cj ve

B = c+ dj dir.

İspat. Eğer q = AeBk ise |q| = |A| dır. Klasik polar formda olduğu gibi B önem-

sizdir çünkü
∣∣eBk∣∣ = 1 gerçeklenir. Bu nedenle eğer q = 0 ise A = 0 olmak zorun-

dadır.

q = AeBk = (a+ cj) (α2 + β2i+ δ2k) = aα2 + (aβ2 + cδ2) i+ cα2j + (aδ2 +−cβ2) k
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α 6= 0 (eBk nin reel kısmı) olmak üzere amacımız ζ = aα2+cα2j ve A =
ζ

|ζ| şeklinde

bir kompleks sayıoluşturmaktır. ζ kompleks sayısının reel ve imajiner kısmının,

sırasıyla, sıfır olduğu A = j ve A = 1 özel durumlarıvardır. Bu özel durumlarda ve

genel durumda bir i̧saret belirsizliği de vardır. α sayısının i̧saretini bilmediğimiz için

A ya da −A sayısıtam olarak belirlenemez. α = 0 durumunda q reel kuaterniyonun

birinci ve üçüncü bileşenleri sıfır olacaktır. Bu nedenle q, xi + zk biçimindedir

ve a = 1 ve c = 0 alabiliriz. a + cj kompleks sayısınıbelirledikten sonra a + cj

kompleks sayısınıeşleniği ile soldan çarparak α2 + β2i + δ2k kesilmi̧s kuaterniyonu

elde edilebilir. Daha sonra doğal logaritma alarak

Bk = ln(α2 + β2i+ δ2k)

elde edilir. Bk sayısının di + ck formunda olmasıgerekir. Bu nedenle B = c + dj

olup

Bk = (c+ dj) k = di+ ck

elde edilir.

Teorem 3.4 q = a+ bi+ cj + dk (a, b, c, d ∈ R) şeklindeki her birim kuaterniyon

q = AX = ejθeiϕ2ψ

şeklinde ifade edilebilir. Burada A bir kompleks sayıve X kesilmi̧s bir kuaterniyon-

dur. Ayrıca

iϕ2 =

{
(ab− cd)√

a2 + c2
√
b2 + d2

i+
(ad+ cb)√

a2 + c2
√
b2 + d2

k

}
span (i, k) düzleminde bir birim vektördür ve iϕ2iϕ2 = −1 dir.

İspat. q = a+ bi+ cj + dk bir birim kuaterniyon olsun. q kuaterniyonunu yeniden

yazacak olursak

q = (a+ cj)

(
1 +

b

a+ cj
i+

d

a+ cj
k

)
q =

(a+ cj)√
a2 + c2

(√
a2 + c2 +

√
a2 + c2A−1 (bi+ dk)

)
q =

(a+ cj)√
a2 + c2

(√
a2 + c2 +

√
a2 + c2

1

a+ cj

√
b2 + d2

1√
b2 + d2

(bi+ dk)

)
q =

(a+ cj)√
a2 + c2

(√
a2 + c2 +

√
b2 + d2

{
(ab− cd)√

a2 + c2
√
b2 + d2

i+
(ad+ cb)√

a2 + c2
√
b2 + d2

k

})
elde edilir. Burada A =

(a+ cj)√
a2 + c2

ve X =
√
a2 + c2 +

√
b2 + d2iϕ2 şeklindedir.
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Ayrıca
∣∣iϕ2∣∣ = 1 olup iϕ2iϕ2 = −1 gerçeklenir. Sonuç olarak q kuaterniyonun polar

formu

q = AX = ejθeiϕ2ψ

şeklinde ifade edilibilir.

Örnek 3.2 q = 1√
30
+ 2√

30
i+ 3√

30
j + 4√

30
k birim kuaterniyonunu göz önüne alalım.

q kuaterniyonu aşağıdaki gibi yeniden ifade edecek olursak

q =
(

1√
30
+ 3√

30
j
)(

1 + 1
1√
30
+

3√
30
j

(
2√
30
i+ 4√

30
k
))

q =

(
1√
30
+

3√
30
j

)
1√
3

(
1√
3
+
√
2√
3

{
− 10
30

1√
3

√
2√
3

i−
10
30

1√
3

√
2√
3

k

})
olup burada A = 1√

10
+ 3√

10
j ve iϕ2 = −

1√
2
i− 1√

2
k olup X = 1√

3
+
√
2√
3
iϕ2 elde edilir.

O halde A kompleks sayıve X kesilmi̧s kuaterniyon olmak üzere q reel kuaterniyonu

q = AX = ejθeiϕ2ψ

şeklinde ifade edilebilir. Burada θ = arccos
(

1√
10

)
ve ψ = arccos

(
1√
3

)
dır.

Lemma 3.3 Bi = (c+ dk) i = ci + dj şeklinde keyfi bir kuaterniyon verildiğinde

üstel formu

eBi = cos |B|+ B

|B| sin |B| = α3 + β3i+ δ3j

biçimindedir.

İspat. Bi = (c+ dk) i = ci+ dj olmak üzere

B =
B

|B| |B|

şeklindedir. İspatı tamamlamak için eηθ = cos θ + η sin θ şeklindeki klasik polar

formu göz önünde bulundurmamız yeterlidir. Burada η birim pure kuaterniyondur

ve
B

|B| ile tanımlanabilir. Ayrıca |B| reel olup θ ile tanımlanabilmektedir. Böylece

α3 = cos |B| , β3 =
(

c

|B|

)
sin |B| ve δ3 =

(
d

|B|

)
sin |B|

elde edilmi̧s olur.
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Teorem 3.5 q = w + xi+ yj + zk (w, x, y, z ∈ R) şeklindeki bütün kuaterniyonlar

q = AeBi

şeklinde ifade edilebilir. Burada A,B ∈ C olmak üzere özel olarak A = a + dk ve

B = c+ dk dır.

İspat. Eğer q = AeBi ise |q| = |A| dır. Klasik polar formda olduğu gibiB önemsizdir

çünkü
∣∣eBi∣∣ = 1 gerçeklenir. Bu nedenle eğer q = 0 ise A = 0 olmak zorundadır.

q = AeBi = (a+ dk) (α3 + β3i+ δ3j) = aα3 + (aβ3 − dδ3) i+ (aδ3 + dβ3) j + dα3k

α 6= 0 (eBi nin reel kısmı) olmak üzere amacımız ζ = aα3 + dα3k ve A =
ζ

|ζ|
şeklinde bir kompleks sayıoluşturmaktır. ζ reel ve imajiner reel ve imajiner kısmının,

sırasıyla, sıfır olduğu A = k ve A = 1 özel durumlarıvardır. Bu özel durumlarda ve

genel durumda bir i̧saret belirsizliği de vardır. α sayısının i̧saretini bilmedğimiz için

A ya da −A sayısıtam olarak belirlenemez. α = 0 durumunda q kuaterniyonunun

birinci ve dördüncü bileşenleri sıfır olacaktır. Bu nedenle q, xi + yj biçimindedir

ve a = 1 ve d = 0 alabiliriz. a + dk kompleks sayısınıbelirledikten sonra a + dk

sayısının eşleniği ile soldan çarparak α3 + β3i + δ3j yi elde edebiliriz. Daha sonra

doğal logaritma alarak

Bj = ln(α3 + β3i+ δ3j)

şeklinde elde edilir. Bi sayısının ci + dj formunda olması gerekir. Bu nedenle

B = c+ dk olup

Bi = (c+ dk) i = ci+ dj

elde edilir.

Teorem 3.6 q = a+ bi+ cj + dk şeklindeki birim her kuaterniyon

q = AX = ekθeiϕ3ψ

şeklinde ifade edilebilir. Burada A bir kompleks sayıve X kesilmi̧s bir kuaterniyon-

dur. Ayrıca

iϕ3 =

{
(ab+ cd)√

a2 + d2
√
b2 + c2

i+
(ac− db)√

a2 + d2
√
b2 + c2

j

}
span (i, j) düzleminde bir birim vektördür ve iϕ3iϕ3 = −1 gerçeklenir.

25



İspat. q = a + bi + cj + dk birim bir kuaterniyon olsun. q kuaterniyonunu a + dk

parantezinde yeniden yazacak olursak

q = (a+ dk)

(
1 +

b

a+ dk
i+

c

a+ dk
j

)
q =

(a+ dk)√
a2 + d2

(√
a2 + d2 +

√
a2 + d2A−1 (bi+ cj)

)
q =

(a+ cj)√
a2 + d2

(√
a2 + d2 +

√
a2 + d2

1

a+ dk

√
b2 + c2

1√
b2 + c2

(bi+ cj)

)
q =

(a+ dk)√
a2 + d2

(√
a2 + d2 +

√
b2 + c2

{
(ad+ cd)√

a2 + d2
√
b2 + c2

i+
(ac− db)√

a2 + d2
√
b2 + c2

j

})
elde edilir. Burada A =

(a+ dk)√
a2 + d2

ve X =
√
a2 + d2 +

√
b2 + c2iϕ3 şeklindedir.

Ayrıca
∣∣iϕ3∣∣ = 1 olup iϕ3iϕ3 = −1 gerçeklenir. Sonuç olarak bir kuaterniyonun polar

formu

q = AX = ekθeiϕ3ψ

şeklindedir.

Örnek 3.3 q = 1√
30
+ 2√

30
i+ 3√

30
j + 4√

30
k birim kuaterniyonunu göz önüne alalım.

q kuaterniyonun yeniden ifade edecek olursak

q =
(

1√
30
+ 4√

30
k
)(

1 + 1
1√
30
+

4√
30
k

(
2√
30
i+ 3√

30
j
))

q =

(
1√
30
+

4√
30
k

)
√
17√
30

(
√
17√
30
+
√
13√
30

{
14
30√
17√
30

13√
30

i−
5
30√
17√
30

13√
30

j

})
olup burada A =

√
17√
30
+
√
13√
30
k ve iϕ3 =

14
√
17

221
i − 5

√
17

221
j olup X =

√
17√
30
+
√
13√
30
iϕ3 elde

edilir. O halde A kompleks sayıve X kesilmi̧s kuaterniyon olmak üzere

q = AX = ekθeiϕ3ψ

şeklinde ifade edilebilir. Burada θ = arccos
(

1√
17

)
ve ψ = arccos

(√
17√
30

)
elde edilir.
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3.3 Split Kuaterniyonlar İçin Yeni Polar Gösterimler

Her split kuaterniyon

q = AeBj

şeklindeki polar form ile ifade edilebilmektedir. Burada A = a + ib ve B = c + di

şeklinde iki kompleks sayıolup a, b, c, d ∈ R dir. Öncelikle eBj nin ne tür bir split

kuaterniyon olduğunu belirleyelim. Burada Bj = (c+ di) j = cj + dk olduğunu

biliyoruz. Ayrıca Bj = |B| Bj|B| dır. e
νθ = cos θ+ν sin θ şeklindeki klasik polar formu

göz önünde bulundurursak burada ν birim pür split kuaterniyondur ve ν =
B

|B|
ile tanımlanabilir. Ayrıca θ açısıyerine de kompleks sayının modülünü alabiliriz.

Diğer yandan Bj = cj + dk spacelike bir vektördür. O halde eBj kısmıspacelike

vektör kısmı ile split bir kuaterniyondur. Bu nedenle iki durumda incelememiz

gerekmektedir (Atasoy vd 2017).

Durum 1 : Eğer eBj spacelike bir kuaterniyon ise;

eBj = sinh |B|+ Bj

|B| cosh |B| (3.1)

= sinh |B|+ cj

|B| cosh |B|+
dk

|B| cosh |B|

= α1 + β1j + γ1k

burada α1 = sinh |B|, β1 =
c

|B| cosh |B| , γ1 =
d

|B| cosh |B| dır.

Durum 2 : Eğer eBj spacelike vektörel kısmıile birlikte timelike bir kuater-

niyon ise;

eBj = cosh |B|+ sinh Bj|B| |B| (3.2)

= cosh |B|+ cj

|B| sinh |B|+
dk

|B| sinh |B|

= α2 + β2j + γ2k

burada α2 = cosh |B|, β2 =
c

|B| sinh |B| , γ2 =
d

|B| sinh |B| dır.

Teorem 3.7 q = w + xi+ yj + zk (w, x, y, z ∈ R) şeklindeki her split kuaterniyon

A,B ∈ C olmak üzere

q = AeBj
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şeklinde ifade edilebilir (Atasoy vd 2017).

İspat. Eğer q = AeBj ise |q| = |A| dır. Klasik polar formda olduğu gibi B önem-

sizdir çünkü
∣∣eBj∣∣ = 1 gerçeklenir. Bu nedenle eğer q = 0 ise A = 0 olmak zorun-

dadır. 3.1 ve 3.2 eşitliklerinden

q = AeBj = (a+ ib) (α + βj + γk) = aα + bαi+ (aβ − bγ) j + (aγ + bβ) k

α 6= 0 (eBj nin reel kısmı) olmak üzere amacımız ζ = aα + bαi ve A =
ζ

|ζ| şeklinde

bir kompleks sayıoluşturmaktır. ζ kompleks sayısının reel ve imajiner kısmının sıfır

olduğu, sırasıyla, A = i ve A = 1 özel durumlarıvardır. α = 0 durumunda q reel

kuaterniyonunun birinci ve ikinci bileşenleri sıfır olacaktır. Bu nedenle q, yj + zk

biçimindedir ve a = 1 ve b = 0 alabiliriz. a + bi kompleks sayısınıbelirledikten

sonra a+ bi sayısının eşleniği ile soldan çarparak α+ βj + γk yi elde edebiliriz. Bj

oluşturmak için ise aşağıdaki durumlarıincelememiz yeterli olacaktır.

Durum 1: Eğer q spacelike bir kuaterniyon ise eBj = A−1q da spacelike bir

kuaterniyon olur ve

eBj = sinh θ + µ cosh θ

dır. Bj = µθ denkleminden yararlanarak sinh θ = α, µ =
βj + γk

|βj + γk| ve

cosh θ = |βj + γk| olduğunu kolayca görelebiliriz.

Durum 2 : Eğer q timelike bir kuaterniyon ise eBj = A−1q spacelike vektörel

kısımlıbir timelike kuaterniyon olur ve

eBj = cosh θ + µ sinh θ

dır. Bj = µθ denkleminden yararlanarak cosh θ = α, µ =
βj + γk

|βj + γk| ve

sinh θ = |βj + γk| olduğunu kolayca görelebiliriz.

Teorem 3.8 q = a+ bi+ cj + dk şeklindeki her split birim kuaterniyon

q = AX = eiθeψiϕ

şeklinde ifade edilebilir. Burada A bir kompleks sayıve X kesilmi̧s bir kuaterniyon-

dur. Ayrıca

iϕ =

{
(ac+ bd)√

a2 + b2
√
c2 + d2

j +
(ad− bc)√

a2 + b2
√
c2 + d2

k

}
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span (j, k) düzleminde bir birim vektördür ve iϕiϕ = ±1 dir.

İspat. q = a+ bi+ cj + dk (a, b, c, d ∈ R) birim bir kuaterniyon olsun. q kuaterni-

yonunu yeniden yazacak olursak

q = (a+ bi)

(
1 +

c

a+ bi
j +

d

a+ bi
k

)
q =

(a+ bi)√
a2 + b2

(√
a2 + b2 +

√
a2 + b2A−1 (cj + dk)

)
q =

(a+ bi)√
a2 + b2

(√
a2 + b2 +

√
a2 + b2

1

a+ bi

√
c2 + d2

1√
c2 + d2

(cj + dk)

)
q =

(a+ bi)√
a2 + b2

(√
a2 + b2 +

√
c2 + d2

{
(ac+ bd)√

a2 + b2
√
c2 + d2

j +
(ad− bc)√

a2 + b2
√
c2 + d2

k

})
elde edilir. Burada A =

(a+ bi)√
a2 + b2

ve X =
√
a2 + b2+

√
c2 + d2iϕ dir. Ayrıca |iϕ| = 1

olup iϕiϕ = ±1 gerçeklenir. Sonuç olarak bir split kuaterniyonun polar formu

q = AX = eiθeiϕψ

şeklindedir.

Örnek 3.4 q = 1√
3
+ 1√

3
i + 2√

3
j + 1√

3
k spacelike kuaterniyon olmak üzere q split

kuaterniyonunu yeniden ifade edersek

q =
1√
3
+
1√
3
i

√
2√
3

(√
2√
3
+
√
2√
3
A−1

{
2√
3
j + 1√

3
k
})

q =
1√
3
+
1√
3
i

√
2√
3

(
√
2√
3
+
√
2√
3

1
1√
3
+
1√
3
i

{
2√
3
j + 1√

3
k
})

q =
1√
3
+
1√
3
i

√
2√
3

(
√
2√
3
+
√
5√
3

{
1√
10√
3

j −
1
3√
10√
3

k

})
dır. Burada A = 1√

2
+ 1√

2
i ve X =

√
2√
3
+
√
5√
3
iϕ olup X spacelikedır. Ayrıca

iϕ = 3
√
2

2
√
5
j − 2

2
√
5
k olup |iϕ | = 1 ve iϕ iϕ = −1 gerçeklenir. Buna göre θ = π

4
ve

ψ = log
(√

6+
√
15

3

)
elde edilir.

Örnek 3.5 q = 1√
3
+ 2√

3
i+ 1√

3
j+ 1√

3
k vektörel kısmıtimelike olan bir timelike

kuaterniyon olmak üzere q split kuaterniyonunu yeniden ifade edersek

q =
1√
3
+
2√
3
i

√
5√
3

(√
5√
3
+
√
5√
3
A−1

{
1√
3
j + 1√

3
k
})

q =
1√
3
+
2√
3
i

√
5√
3

(
√
5√
3
+
√
5√
3

1
1√
3
+
2√
3
i

{
1√
3
j + 1√

3
k
})
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q =
1√
3
+
2√
3
i

√
5√
3

(
√
5√
3
+
√
2√
3

{
1√
10
3

j −
1
3√
10
3

k

})
dır. Burada A = 1√

5
+ 1√

5
i ,ve X =

√
5√
3
+
√
2√
3
iϕ dır. Ayrıca iϕ = 3√

10
j − 1√

10
k olup

|iϕ | = 1 ve iϕ iϕ = 1 gerçeklenir. Buna göre θ = arccos
(
1√
5

)
ve ψ = log

(
3+
√
19√
10

)
elde edilir.
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4. HİBRİT SAYILAR

Hibrit sayılar cümlesi kompleks, dual, hiperbolik sayılar olmak üzere bu üç sayı

cümlesinin birleşimini içermektedir. Hibrit sayılara kaŗsılık gelen geometri Öklid,

Minkowski ve Galilean geometrilerinin yanısıra bunların kombinasyonlarınıiçeren

en genel geometridir. Bu geometri "hibrit düzlem" geometrisi olarak adlandırılır,

eliptik, hiperbolik ve parabolik olarak sınıflandırılıp hibrit sayının türüne göre ayrı

ayrıincelenir. Ayrıca bu düzlem R4 reel vektör uzayının iki boyutlu bir alt uzayıdır.

Bu bölümde hibrit sayılarla ilgili temel tanım ve teoremler 2018 yılında Özdemir

tarafından yayımlanan "Introduction to Hybrid Numbers" makalesinden faydalı-

narak verilecektir (Özdemir 2018). Bazıteoremler ispatlarıyla birlikte bazıteorem-

ler ise ispatsız bir şekilde yer alacaktır. Ayrıca hibrit sayılar için yeni polar form ve

yaprak parametrelendirmesi kavramlarıele alınacaktır.

4.1 Hibrit Sayıların Genel Özellikleri

2018 yılında Mustafa Özdemir (Özdemir 2018) tarafından tamımlanan olmak üzere

H =
{
x+ yi+ zε+ wh : x, y, z, w ∈ R i2 = −1, ε2 = 0, h2 = 1, ε+ i = −hi = ih

}
H cümlesini göz önüne alalım. Burada sırasıyla reel, kompleks, dual ve hiperbolik

birimler

1 = (1, 0, 0, 0) , ε = (0, 0, 1, 0) , h = (0, 0, 0, 1) , i = (0, 1, 0, 0)

şeklinde olup bu birimler "hibrit birim" olarak adlandırılmaktadır. Bu şekilde

tanımlanan H cümlesine hibrit sayılar cümlesi ve bu cümlenin her bir elemanına da

hibrit sayıdenir. Bir hibrit sayı

ρ = x+ yi+ zε+ wh

olmak üzere reel kısmıS(ρ) = x ve vektörel kısmıV (ρ) = yi+ zε+wh olmak üzere

iki kısma ayrılır ve

ρ = S (ρ) + V (ρ)

şeklinde ifade edilir.
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Bu tanımda kompleks, hiperbolik ve dual birimler arasındaki ili̧skinin nasıl bulun-

duğu veya bu denklemlerin neden tercih edildiği düşünülebilir. Bu eşitlikler hibrit

sayılar ve 2×2 lik matrisler arasında kurulan izomorfizm yardımıyla elde edilmi̧stir.

Yani önce matris izomorfizmi tanımlanıp daha sonra bu izomorfizme uygun hib-

rit sayılar belirlenmi̧stir. Bununla birlikte bu izomorfizm kompleks ve hiperbolik

sayıların matris temsilleriyle örtüşmektedir ve bu şekilde hibrit sayısistemi oluştu-

rulmaktadır.

Eşitlik: ρ1 = x1 + y1i + z1ε + w1h ve ρ2 = x2 + y2i + z2ε + w2h herhangi iki hibrit

sayıolmak üzere iki hibrit sayının eşitliği

ρ1 = ρ2 ⇐⇒ x1 = x2, y1 = y2, z1 = z2, w1 = w2

şeklinde tanımlanır.

Toplama: ρ1 = x1 + y1i+ z1ε+w1h ve ρ2 = x2 + y2i+ z2ε+w2h herhangi iki hibrit

sayıolmak üzere iki hibrit sayının toplamı

ρ1 + ρ2 = (x1 + x2) 1 + (y1 + y2) i+ (z1 + z2) ε+ (w1 + w2)h

şeklinde tanımlanır.

Çarpma: ρ1 = x1 + y1i+ z1ε+w1h ve ρ2 = x2 + y2i+ z2ε+w2h herhangi iki hibrit

sayıolmak üzere iki hibrit sayının çarpımıayrıayrıbileşenlerinin çarpımıaşağıdaki

çizelge yardımıile

ρ1ρ2 = (x1 + y1i+ z1ε+ w1h) (x2 + y2i+ z2ε+ w2h)

elde edilir.

Hibrit sayılar cümlesi üzerinde çarpma i̧slemi deği̧smeli değildir fakat birleşme

özelliğine sahiptir. Aşağıdaki tablo üzerinden çarpma i̧slemini kolaylıkla görebiliriz.
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Çizelge 4.1 Hibrit sayıların çarpımı

. 1 i ε h

1 1 i ε h

i i −1 1− h ε+ i

ε ε h+ 1 0 −ε

h h −ε− i ε 1

Eşlenik: ρ = x+ yi+ zε+ wh hibrit sayısının eşleniği ρ ile gösterilmek üzere

ρ = S(ρ)− V (ρ) = x− yi− zε− wh

şeklindedir. Burada ρρ = ρρ eşitliği sağlanmaktadır.

Bir ρ hibrit sayısının karakteri C(ρ) ile gösterilir ve

C(ρ) = x2 + (y − z)2 − z2 − w2

ile hesaplanır. Ayırca bir ρ hibrit sayısıiçin sırasıyla eğer C (ρ) < 0, C (ρ) > 0 ve

C (ρ) = 0 ise hibrit sayıspacelike, timelike ve lightlike olur. Diğer taraftan

C (ρ1ρ2) = C (ρ1)C (ρ2)

eşitliği gerçeklenir (Özdemir 2018).

Tanım 4.1 (Hibrit Sayıların Vektörel Gösterimi) ρ = x + yi + zε + wh bir

hibrit sayıolmak üzere

Vρ = (x, (y − z), w)

şeklindeki gösterime hibrit sayıların vektörel gösterimi denir. Ayrıca

C(ρ) = ρρ = ρρ = x2 + (y − z)2 − z2 − w2 = −〈Vρ,Vρ〉E24

olarak da yazabilir (Özdemir 2018).

Tanım 4.2 (Norm)
√
|C (ρ)| sayısına ρ hibrit sayısının normu denir ve |ρ| ile

gösterilir. Ayrıca

|ρ| =
√
|ρρ| =

√
|C (ρ)| =

√
|x2 + (y − z)2 − z2 − w2|
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ile tanımlanır (Özdemir 2018).

Tanım 4.3 (Hibrit Vektör) ρ = x+ yi+ zε+ wh bir hibrit sayıolmak üzere

ερ = ((y − z) , z, w)

vektörüne ρ hibrit sayısının hibrit vektörü denir. Ayrıca

Cε(ρ) = −(y − z)2 + z2 + w2 = 〈ερ, ερ〉E13

ile hesaplanır. Bir ρ hibrit sayısı için sırasıyla eğer , Cε(ρ) > 0, Cε (ρ) < 0 ve

Cε(ρ) = 0 ise hiperbolik, eliptik ve parabolik olur. Cε(ρ) sayısıhibrit sayının tipini

belirler.
√
|Cε(ρ)| hibrit vektörün normudur ve N (ρ) ile gösterilir (Özdemir 2018).

Split kuaterniyonlarda olduğu gibi hibrit sayının, hibrit vektörü spacelike, timelike

veya null olabilir.

Herhangi bir hibrit sayıkartezyen koordinat sistemindeki gibi iki boyutlu bir koor-

dinat sisteminde gösterilebilir. Bu koordinat sistemi reel eksen ve hibrit eksenden

oluşmaktadır. Bu amaçla hibrit sayının reel kısmı, reel eksen ve
√
|Cε(ρ)| = N (ρ)

vektör kısmıda hibrit eksen olarak belirlenmi̧stir. Yani; bir hibrit sayının reel kıs-

mının değeri x ekseni veya apsis,
√
|Cε(ρ)| değeri y ekseni veya ordinat olarak ad-

landırılır (Özdemir 2018).

Şekil 4.1 Hibrit Koordinat Sistemi
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Bu şekilde tanımlıkoordinat sistemine hibrit koordinat sistemi adıverilir. Buna

göre ρ = x+ yi+ zε+ wh hibrit sayısı

ρ =
(
x,
√
|−(y − z)2 + z2 + w2|

)
ikilisi ile ifade edilebilir (Özdemir 2018).

Tanım 4.4 (Bir Hibrit Sayının Tersi) ρ = x + yi + zε + wh , hibrit sayısının

tersi

ρ−1 =
ρ

C (ρ)
, |ρ| 6= 0

ile tanımlanmaktadır. Lightlike hibrit sayıların tersi mevcut değildir (Özdemir 2018).

Tanım 4.5 (Hibrit Sayıların İç Çarpımı) ρ1 = x1 + y1i+ z1ε+ w1h ve

ρ2 = x2 + y2i + z2ε + w2h herhangi iki hibrit sayıolmak üzere bu iki hibrit sayının

iç çarpımıaşağıdaki gibi tanımlanır.

g (ρ1, ρ2) : H×H −→ R

g (ρ1, ρ2) =
ρ1ρ2 + ρ2ρ1

2
= x1x2 + y1y2 − y1z2 − y2z1 − w1w2

Hibrit sayıların iç çarpımlarıkompleks, hiperbolik ve dual sayısistemleri için

genelleştirilmi̧s bir iç çarpımıdır (Özdemir 2018).

Tanım 4.6 (Hibrit Sayıların Vektörel Çarpımı) ρ1 = x1 + y1i+ z1ε+ w1h ve

ρ2 = x2 + y2i + z2ε + w2h herhangi iki hibrit sayıolmak üzere bu iki hibrit sayının

vektörel çarpımıÇizelge 4.2 yardımıile aşağıdaki gibi tanımlanır (Özdemir 2018).

× : H×H −→ H

ρ1 × ρ2 =
ρ1ρ2 − ρ2ρ1

2

Aşağıdaki tablo üzerinden vektörel çarpma i̧slemini kolaylıkla görebiliriz.

Çizelge 4.2 Hibrit sayıların vektörel çarpımı

× 1 i ε h

1 0 −i −ε −h

i i 0 h −ε− i

ε ε −h 0 ε

h h ε+ i −ε 0
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4.2 Hibrit Sayıların Matris Temsilleri

Hibrit sayıların matris gösterimleri özellikle hibrit sayıların çarpımınıkolaylaştır-

masıaçısından oldukça önemlidir. 2 × 2 lik matrisler ve hibrit sayılar arasında bir

izomorfizm tanımlayarak hibrit sayılarıkolayca çarpabilir ve özelliklerinin çoğunu

ispatlayabiliriz. Hibrit sayıları2×2 lik matrise kaŗsılık gelen karakteristik denklemin

diskriminantıve determinantıaçısından sınıflanır.

Teorem 4.1 H hibrit sayılar halkasıreel sayılar halkasının 2×2 likM2×2 matrisine

izomorftur (Özdemir 2018).

İspat. ρ = x+ yi+ zε+ wh bir hibrit sayıolmak üzere

f : H −→M2×2, f (x+ yi+ zε+ wh) =

 x+ z y − z + w

z − y + w x− z

 bir izomorfizm
belirtmektedir. Önceden tanımlanmı̧s olan hibrit sayılar için toplama ve çarpma

i̧slemleri göz önüne alındı̆gında aşağıdaki eşitliklerin sağlandı̆gıkolayca görülmekte-

dir.

f (ρ1ρ2) = f (ρ1) f (ρ2)

f (ρ1 + ρ2) = f (ρ1) + f (ρ2)

f birebir ve örtendir. Ayrıca ρ1 = x1+ y1i+ z1ε+w1h ve ρ2 = x2+ y2i+ z2ε+w2h

için

f (ρ1) = f (ρ2)

ise iki matrisin eşitliğinden z1 = z2, x1 = x2, y1 = y2, w1 = w2 dir. Diğer taraftan

2× 2 lik reel matris

A =

x y

z w


olmak üzere ρ =

(
x+ w

2

)
+

(
x+ y − z − w

2

)
i +

(
x− w
2

)
ε +

(
y + z

2

)
h olup

f(z) = A elde edilir. f halka izomorfizmi olur.

Yukarıdaki izomorfizme göre

f (1) =

1 0

0 1

 , f (i) =
 0 1

−1 0

 , f (ε) =
1 −1
1 −1

 , f (h) =
0 1

1 0


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dir. Bu dört matris 2 × 2 lik matrislerin vektör uzayının bazlarıdır. Bu durumda

her 2 × 2 lik matris birim dual, kompleks ve hiperbolik sayıların birleşimi olarak

yazılabilir.

Teorem 4.2 ρ hibrit sayısına kaŗsılık gelen matrisA olmak üzere aşağıdaki eşitlikler

sağlanmaktadır (Özdemir 2018).

|ρ| =
√
|detA| ve C (ρ) = detA

Cε (ρ) =
trA− 4 detA

4

Sonuç 4.1 ρ ∈ H hibrit sayısının tersi olabilmesi için ⇐⇒ det f (ρ) 6= 0 olmasıdır

(Özdemir 2018).

Sonuç 4.2 A, 2 × 2 lik bir reel matris olmak üzere 4A = (trA)
2 − 4 detA karak-

teristik polinomun diskriminantıdır ve Cε (ρ) =
4A

4
dir.

f (ρ) = A, ρ hibrit sayısına kaŗsılık gelen matris olmak üzere A matrisine göre z

hibrit sayısınısınıflandırabiliriz.

C (ρ) = detA ve Cε (ρ) =
trA− 4 detA

4

eşitliklerinden görüldüğü üzere ρ hibrit sayısının türü ve karakteri matrisin deter-

minant ve izine bağlıdır. A matrisi için sırasıyla , detA > 0, detA < 0 ve detA = 0

ise timelike, spacelike ve lightlike olur.

Ayrıca ρ = x+yi+zε+wh hibrit sayısına kaŗsılık gelen f (ρ) matrisinin öz değerleri

ve öz vektörleri sırasıyla

λ = x±
√
Cε (ρ) ve v =

(
ρ+

√
Cε (ρ), z − y + w

)
şeklindedir. 4A = (trA)

2 − 4 detA ile hibrit sayının tipini belirleyebiliriz. z hibrit

sayısıiçin sırasıyla ,4A > 0,4A < 0 ve4A = 0 ise , hiperbolik, eliptik ve parabolik

olur (Özdemir 2018).

4.3 Hibrit Sayıların Kutupsal Gösterimleri

• ρ = x+ yi+ zε+ wh bir eliptik hibrit sayıolmak üzere hibrit vektörü
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ερ = ((y − z) , z, w) ∈ R3 olur. Tüm eliptik hibrit sayılar timelike olup εz timelike

vektördür. Yani Cε(ρ) = −(y−z)2+z2+w2 < 0 ve C(ρ) = x2+(y−z)2−z2−w2 > 0

dır. Böylece

|ρ| =
√
x2 + (y − z)2 − z2 − w2 ve N (ρ) =

√
(y − z)2 + z2 + w2 olur.O halde ρ

eliptik hibrit sayının kutupsal gösterimi

ρ = |ρ| (cos θ + V0 sin θ)

olup burada V0 =
V (ρ)

N (ρ) ve V
2
0 = −1 olur.

• ρ = x+ yi+ zε+ wh bir hiperbolik hibrit sayıolmak üzere hibrit vektörü

ερ = ((y − z) , z, w) ∈ R3 olur. Hiperbolik hibrit sayılarda, hibrit vektör spacelike

olur. Yani Cε(ρ) = −(y−z)2+z2+w2 > 0 veN (ρ) =
√
−(y − z)2 + z2 + w2 şeklinde-

dir. Diğer taraftan hibrit sayının karakteri spacelike, timelike ve lightlike olabilir.

O halde üç durumda incelememiz gerekmektedir.

1. Eğer ρ spacelike hiperbolik hibrit sayıise C(ρ) < 0 ve

|ρ| =
√
−x2 − (y − z)2 + z2 + w2 olur. O halde kutupsal gösterimi

ρ = |ρ| (sinh θ + V0 cosh θ)

şeklinde ifade edilir.

2. Eğer ρ timelike hiperbolik hibrit sayıise C(ρ) > 0 ve

|ρ| =
√
x2 + (y − z)2 − z2 − w2 olur. O halde kutupsal gösterimi

ρ = |ρ| (cosh θ + V0 sinh θ)

şeklinde ifade edilir.

3. Eğer ρ lightlike hiperbolik hibrit sayıise C(ρ) = 0 ve |ρ| = 0 olur. Bu

durumda N (ρ) = a olup kutupsal gösterimi

ρ = a(1 + V0)

şeklinde ifade edilir.
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• ρ = x+ yi+ zε+ wh bir parabolik hibrit sayıolmak üzere hibrit vektörü

ερ = ((y − z) , z, w) ∈ R3 dır. Parabolik hibrit sayılarda hibrit vektör lightlike olur.

Yani Cε(ρ) = 0 ve |ρ| = 0 dır. O halde ρ parabolik hibrit sayısının kutupsal gösterimi

ρ = |ρ| (ε+ V0)

olup burada V0 =
V (ρ)

|ρ| ve V 2
0 = 0, ε = sgn (S(ρ)) dir (Özdemir 2018).

4.4 Hibrit Sayılar İçin Euler Formülleri

Üstel, trigonometrik ve hiperbolik fonksiyonların seri açılımlarınıkullanarak hibrit

sayılar için Euler formüllerini aşağıdaki gibi ifade edebiliriz (Özdemir 2018).

Çizelge 4.3 Hibrit sayılar için Euler formülleri

ρ = eV θ = cos θ + V sin θ ρ eliptik

ρ = eV θ = cosh θ + V sinh θ ρ timelike hiperbolik

ρ = V eV θ = sinh θ + V cosh θ ρ spacelike hiperbolik

ρ = eV θ = (ε+ V ), ε = sgnS (z) ρ parabolik

Bu formüller kompleks, dual ve hiperbolik sayıların için bilinen Euler formüllerinin

genelleştirilmesidir.

4.5 Hibrit Sayıların Yaprak Üzerindeki Cebirsel Yapısı

Pfaff (Pfaff 2000) dördüncü bileşeni sıfır olan reel kuaterniyonların bir alt cümlesini

ele almı̧stır. Tüm bu kuaterniyonların cümlesi, reel kuaterniyonların üç boyutlu bir

alt vektör uzayınıoluşturan kesilmi̧s reel kuaterniyonlar olarak adlandırılır. Bu alt

uzay 1, i ve j elemanlarıtarafından üretilmektedir. Buradan hareketle bir kesilmi̧s

kuaterniyon q = a + bi + cj olarak gösterilebilir. Bu alt uzayın çarpma i̧slemine

göre kapalıolmadı̆gıaçıktır. Bununla birlikte Pfaff (Pfaff 2000) bu üçlülerin kapalı

olduğu bir cümle tanımlamı̧stır.

Biz de bu makaledeki benzer fikirleri kullanarak hibrit sayıların dört boyutlu uzayını

düşünelim. Dördüncü bileşeni sıfır olan hibrit sayıların cümlesini ele alalım. Tüm

bu hibrit sayıların kümesi hibrit sayıların üç boyutlu alt vektör uzayınıoluşturur
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ve kesilmi̧s hibrit sayılar olarak adlandırılır. Bu durumda bir kesilmi̧s hibrit sayı

p = a + bi + cε ile gösterilir. Kesilmi̧s hibrit sayılar cümlesi yaprak düzleminde yer

almaktadır ayrıca hibrit sayıların çarpma i̧slemine göre kapalıve deği̧smeli değildir.

Bununla birlikte bu üçlülerin kapalıve deği̧smeli olduğu bir çarpma tanımlayabiliriz.

4.5.1 Hibrit sayıların yaprak üzerindeki deği̧smeli çarpımı

p = (a1, b1, c1) = a1 + b1i + c1ε ve q = (a2, b2, c2) = a2 + b2i + c2ε iki tane kesilmi̧s

hibrit sayıolmak üzere burada b1ve c1 (b2 ve c2) sıfırdan farklıolsun. Amacımız ke-

silmi̧s hibrit sayılar için kapalıve deği̧smeli bir çarpma tanımlamaktır. pq çarpımını

hesaplarsak

pq = (a1a2 + c1b2 − b1b2)1 + (a1a2 + b1a2) i+ (a1c2 + c1a2) ε+ (c1b2 − b1c2)h

Kesilmi̧s kuaterniyonların çarpma i̧slemine göre kapalıolmasıiçin h bileşeninin sıfır

olmasıgerekir. Bu durumda

c1
b1
=
c2
b2
= η η ∈ R\ {0}

olmalıdır. Buradan

p = (a1, 0, 0) + (0, b1, c1) = (a1, 0, 0) + Up

ve

q = (a2, 0, 0) + (0, b2, c2) = (a2, 0, 0) + Uq

olup burada Up ve Uq sıfırdan farklıvektörlerdir. O halde Uq = ηUp olup

Uq = (0, ηb1, ηc1) olduğu kolayca görülmektedir.

O halde

pq =
(
a1a2 + ηb21 + 2ηb1c1

)
1 + (ηa1b1 + b1a2) i+ (ηa1c1 + c1a2) ε

elde edilir. Bu çarpım aşağıdaki özelliklere sahiptir.

1. Aynıyaprakta yer alan p ve q kesilmi̧s hibrit sayılarının çarpımıolan pq yine

aynıyaprakta yer alır. Bu yüzden hibrit sayıların çarpma i̧slemi kapalıdır.

2. Deği̧sme özelliğine sahiptir.
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3. Aynı yaprakta yer alan vektörler bu çarpma birleşme ve deği̧sme özellğine

sahiptir. Çünkü hibrit sayılarda çarpma i̧sleminin özel bir halidir.

4. p = a1 + b1i + c1j kesilmi̧s hibrit sayısıile eşleniği olan p = a1 − b1i − c1i ile

aynıyapraktadır ve pp =
(
a2 + (b− c)2 − c2

)
1 = ‖p‖2 eşitliği gerçeklenir.

5. p nin tersi olan p−1 =
p

‖p‖2
kesilmi̧s hibrit sayısıp ile aynıyapraktadır.

Örnek 4.1 ρ = 1 + i+ ε ve w = 3 + 2i+ ε iki kesilmi̧s hibrit sayıolmak üzere

ρ = 1 + i+ ε = (1, 0, 0) + (0, 1, 1) = (1, 0, 0) + Uρ

ve

w = 3 + 2i+ ε = (3, 0, 0) + (0, 2, 1) = (1, 0, 0) + Uw

için

ρw = (1 + i+ ε) (3 + 2i+ ε) = 4 + 5i+ 4ε+ h ve

wρ = (3 + 2i+ ε) (1 + i+ ε) = 4+3i+2ε−h olup ρw 6= wρ olduğundan bu kesilmi̧s

hibrit sayıların çarpımıdeği̧smeli değildir. Ayrıca kapalıda değildir.

Örnek 4.2 ρ = 1 + i+ ε ve w = 5 + 2i+ 2ε iki kesilmi̧s hibrit sayıolmak üzere

ρ = 1 + i+ ε = (1, 0, 0) + (0, 1, 1) = (1, 0, 0) + Uρ

ve

w = 5 + 2i+ ε = (5, 0, 0) + (0, 2, 2) = (1, 0, 0) + Uw

için ρw = (1 + i+ ε) (5 + 2i+ 2ε) = 7 + 7i+ 7ε ve

wρ = (5 + 2i+ 2ε) (1 + i+ ε) = 7 + 7i + 7ε olmak üzere Uw = 2Uρ olduğundan bu

kesilmi̧s hibrit sayıların çarpımıdeği̧smeli ve kapalıdır.

4.5.2 Kesilmi̧s hibrit sayıların yaprak üzerindeki kompleks yapısı

ρ = a + bi + cε, i yönünde açıyapan ve span {1, ε} düzleminde iϕ birim vektörü

tarafından belirlenen yaprakta sıfırdan farklıkesilmi̧s bir hibrit sayıolsun. Yaprak 1

ve iϕ birim vektörleri tarafından üretildiği için p hibrit sayısınıaşağıdaki gibi yeniden

yazabiliriz.
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ρ = (a, 0, 0) + U

= a (1, 0, 0) + U
U

‖U‖
= a (1, 0, 0) + Uiϕ

= ‖ρ‖
(

a

‖ρ‖ (1, 0, 0) +
U

‖ρ‖iϕ
)

= ρeiϕθ

burada iϕ =
U

‖U‖ ve iϕiϕ = ±1 dir.

Aşağıdaki örneklerde yaprak parametresi cinsinden kesilmi̧s hibrit sayıların kutupsal

formlarıincelenmi̧stir.

Örnek 4.3 ρ =

√
3

2
+

√
3

2
i +

√
3

6
ε birim eliptik kesilmi̧s hibrit sayıdır. Çünkü

|ρ| = 1, C(ρ) = 1 > 0 ve Cε(ρ) = −
1

4
< 0 dır. ρ hibrit sayısı{1, iϕ} bazına göre

yeniden yazılacak olursa

ρ = cos θ + iϕ sin θ

=

√
3

2
+
1

2
iϕ

elde edilir. Burada iϕ =
√
3i +

√
3

3
ε ve θ = arccos

√
3

2
olur. Ayrıca iϕiϕ = −1 elde

edilir.

Örnek 4.4 ρ = 2+ i+3ε birim hiperbolik spacelike kesilmi̧s hibrit sayıdır. Çünkü

|ρ| = 1, C(ρ) = −1 < 0 ve Cε(ρ) = 5 > 0 dır. ρ hibrit sayısı{1, iϕ} bazına göre

yeniden yazılacak olursa

ρ = sinh θ + iϕ cosh θ

= 2 +
√
5iϕ

elde edilir. Burada iϕ =

√
5

5
i+

3
√
5

5
ε ve θ = ln

(
2 +
√
5
)
olur. Ayrıca iϕiϕ = 1 elde

edilir.

Örnek 4.5 ρ = 3 + i+ ε hiperbolik timelike kesilmi̧s hibrit sayıdır. Çünkü
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C(p) = 8 > 0 ve Cε(p) = 1 > 0 dır. p hibrit sayısı{1, iϕ} bazına göre yeniden

yazılacak olursa

p = cosh θ + iϕ sinh θ

=
2

2
√
2
+

1

2
√
2
iϕ

elde edilir. Burada iϕ = i+ ε ve iϕiϕ = −1 elde edilir.

Örnek 4.6 ρ = 2 + 2i + ε parabolik kesilmi̧s hibrit sayıdır. Çünkü C(ρ) = 4 > 0

ve Cε(ρ) = 0 dır. ρ hibrit sayısı{1, iϕ} bazına göre yeniden yazılacak olursa

ρ

|ρ| = ε+ iϕ

= 1 + iϕ

elde edilir. Burada ε = 1, iϕ = i+
1

2
ε ve iϕiϕ = −1 elde edilir.

4.6 Hibrit Sayıların Yaprak Üzerindeki Yeni Kutupsal Formu

Lemma 4.1 Bi = (c+ dh) i = (c− d) i − dε biçimindeki herhangibir hibrit sayı

göz önüne alındı̆gında üstel formu için üç durum söz konusudur.

i) Eğer eBi kesilmi̧s eliptik hibrit sayı (tüm eliptik sayılar timelike) ise bu

durumda

eBi = cos |B|+ B

|B| sin |B| = α1 + β1i+ γ1ε

şeklindedir. Burada B = c + dh (c, d ∈ R), α1 = cos |B| , β1 =
(c− d) sin |B|

|B|
γ1 =

−d sin |B|
|B| dir.

ii) Eğer eBi kesilmi̧s spacelike hiperbolik hibrit sayıise bu durumda

eBi = sinh |B|+ B

|B| cosh |B| = α2 + β2i+ γ2ε

şeklindedir. Burada B = c + dh (c, d ∈ R), α2 = sinh |B| , β2 =
(c− d) cosh |B|

|B|
γ1 =

−d cosh |B|
|B| dir.
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iii) Eğer eBi kesilmi̧s timelike hiperbolik hibrit sayıise bu durumda

eBi = cosh |B|+ B

|B| sinh |B| = α3 + β3i+ γ3ε

şeklindedir. Burada B = c + dh (c, d ∈ R), α3 = cosh |B| , β3 =
(c− d) sinh |B|

|B|
γ3 =

−d sinh |B|
|B| dir.

Teorem 4.3 q = a + bi + cε + dh şeklindeki bütün hibrit sayılar A = a + bh ve

B = c+ dh iki hiperbolik sayıolmak üzere q = AeBi olarak ifade edilebilir.

İspat. Eğer q = AeBi ise |q| = |A| olur. Klasik polar formda olduğu gibi B

önemsizdir çünkü
∣∣eBi∣∣ = 1 gerçeklenir. Bu nedenle eğer q = 0 ise A = 0 olmak

zorundadır.

Yukarıdaki Lemmadan yararlanarak hibrit sayıyıyeniden ifade edecek olursak

q = AeBi = (a+ bh) (α + βi+ γε) = aα + (aβ − bβ) i+ (aγ + bγ − bβ) ε+ bαh

dir.

α = 0 alırsak q hibrit sayısıq = yε + zh formundadır. Diğer yandan α 6= 0 (eBi

nin reel kısmı) ve ξ = aα + bαh olarak alırsak A =
ξ

|ξ| olur. Öyleyse aşağıdaki

durumlarıincelemeliyiz.

Durum 1: Eğer q spacelike bir hibrit sayıise eBi = A−1q da spacelike bir hibrit

sayıolur ve

eBi = sinh θ + µ cosh θ

dır. Bi = µθ denkleminden yararlanarak sinh θ = α, µ =
βi+ γε

|βi+ γε| ve

cosh θ = |βi+ γε| olduğunu kolayca görebiliriz.

Durum 2 : Eğer q timelike bir hibrit sayı ise eBi = A−1q spacelike vektörel

kısımlıbir timelike hibrit sayıolur ve

eBj = cosh θ + µ sinh θ

dır. Bi = µθ denkleminden yararlanarak cosh θ = α, µ =
βi+ γε

|βi+ γε| ve

sinh θ = |βi+ γε| olduğunu kolayca görebiliriz.
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Durum 3 : Eğer q eliptik bir hibrit sayıise eBi = A−1q eliptik bir hibrit sayı

olur ve

eBj = cos θ + µ sin θ

dır. Bi = µθ denkleminden yararlanarak cos θ = α, µ =
βi+ γε

|βi+ γε| ve

sin θ = |βi+ γε| olduğunu kolayca görebiliriz.

Teorem 4.4 q = x+ yi+ zε+ wh şeklindeki birim her hibrit sayı

q = A.X = ehθeiϕψ

şeklinde ifade edilebilir. Burada A hiperbolik bir sayıve X kesilmi̧s bir hibrit sayıdır

Ayrıca iϕ =

 (xy + yw) i√
x2 + y2

√
(y − z)2 + w2

+
(xz + yw − zw) ε√
x2 + y2

√
(y − z)2 − d2

, span {i, ε}
düzleminde birim vektördür.

İspat. q = x+yi+zε+wh birim hibrit sayıolsun. q hibrit sayısınıyeniden yazarsak

q = (x+ wh)
(
1 + y

x+wh
i+ z

x+wh
ε
)

= (x+wh)√
|x2−w2|

(√
|x2 − w2|+

√
|x2 − w2|A−1(yi+ zε)

)

= (x+wh)√
|x2−w2|

(√
|x2 − w2|+

√
|x2 − w2| 1

x+wh

√∣∣(y − z)2 − z2∣∣ 1√
|(y−z)2−z2|

(yi+ zε)

)

= (x+wh)√
|x2−w2|

(√
|x2 − w2|+

√∣∣(y − z)2 − z2∣∣ { (xy+yw)i√
x2+y2

√
(y−z)2+w2

+ (xz+yw−zw)ε√
x2+y2

√
(y−z)2−d2

})

Burada A = (x+wh)√
|x2−w2|

ve X =
√
|x2 + w2|+

√∣∣(y − z)2 − z2∣∣iϕ olarak ele alınırsa q
hibrit sayının kutupsal formu q = A.X = ehθeψiϕ olur. Ayrıca ‖iϕ‖ = 1 ve iϕiϕ = ±1

gerçeklenir.

Burada en önemli nokta bir hibrit sayının hiperbolik bir sayıve kesilmi̧s bir kuater-

niyon çarpımıolarak fade edilmesidir.

Örnek 4.7 q = 1
2
+ 1

2
i + 1

2
ε + h hibrit sayısını ele alalım. q, Cε(q) =

5
4
> 0 ,

C(q) = −1 < 0 ve |q| = 1 olduğundan hiperbolik spacelike bir hibrit sayıdır q hibrit
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sayısınıyeniden yazacak olursak

q =
(
1
2
+ h
) [
1 + 1

2( 12+h)
i+ 1

2( 12+h)
ε

]
=

(
1
2
+h
)

√
3
2

[√
3
2
+
√
3
2
A−1

(
1
2
i+ 1

2
ε
)]

=
(
1√
3
+ 2√

3
h
) [√

3
2
− 1

2

{√
3i+

√
3
3
ε
}]

burada A =
(
1√
3
+ 2√

3
h
)
, X =

√
3
2
+ 1

2
iϕ ve iϕ =

√
3i +

√
3
3
ε olarak ele alınırsa q

hibrit sayısıq = A.X biçiminde yazılabilmektedir. Burada kolayca gösterilebilir ki

‖iϕ‖ = 1 ve iϕiϕ = −1 dir. Buna göre θ = ± ln
√
3 ve ψ = −π

6
için A hiperbolik

sayıve X kesilmi̧s bir hibrit sayıolmak üzere polar formlar sırasıyla ehθ ve eiϕψ

şeklindedir. Sonuç olarak q = ehθ.eiϕψ olup sayı iki Euler parametresi cinsinden

ifade edilmi̧s olur.

Diğer yandan hibrit sayıların matris temsillerini kullanarak q hibrit sayısının matris

formunu A ve X sayılarının matris formlarıyardımıyla ifade edecek olursak

f : H −→M2×2 izomorfizmi ile

f (q) =

1 1

1 0

 =
 1√

3
2√
3

2√
3

1√
3

 1√
3
− 1√

3

1√
3

2√
3

 = f (A) f (X)

elde edilir.

Örnek 4.8 q = 3√
5
+ 3√

5
i+ 2√

5
ε+ 1√

5
h hibrit sayısınıele alalım. q, Cε(q) = 4

5
> 0 ,

C(q) = 1 > 0 ve |q| = 1 olduğundan hiperbolik timelike bir hibrit sayıdır. q hibrit

sayısınıyeniden yazacak olursak

q =
(
3√
5
+ 1√

5
h
)[
1 + 3

√
5

(
3√
5
+
1√
5
h

)i+ 2
√
5

(
3√
5
+
1√
5
h

)ε
]

=

(
3√
5
+ 1√

5
h
)

2
√
2
5

[
2
√
2
5
+ 2

√
2
5
A−1

(
3√
5
i+ 2√

5
ε
)]

=
(
3√
8
+ 1√

8
h
) [

2
√
2
5
− 1√

5

{
12
√
8

8
i+ 7

√
8
8
ε
}]

burada A =
(
3√
8
+ 1√

8
h
)
, X =

[
2
√
2
5
− 1√

5
iϕ

]
ve iϕ = 12

√
8

8
i+ 7

√
8
8
ε olarak ele alınırsa

q hibrit sayısıq = A.X biçiminde de yazılabilmektedir Burada kolayca gösterilebilir

ki ‖iϕ‖ = 1 ve iϕiϕ = −1 dir. Buna göre θ = ±
√
3 ve ψ = ln

(
2
√
10±
√
15

5

)
için A
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hiperbolik sayıve X kesilmi̧s bir hibrit sayıolmak üzere polar formlar sırasıyla ehθ

ve eiϕψ şeklindedir. Yani q = ehθ.eiϕψ dir.

Diğer yandan hibrit sayıların matris temsillerini kullanarak q hibrit sayısının matris

formunu A ve X sayılarının matris formlarıyardımıyla ifade edecek olursak

f : H −→M2×2 izomorfizmi ile

f (q) =

√5 2√
5

0 1√
5

 =
 3√

8
1√
8

1√
8

3√
8

 15√
40

5√
40

− 5√
40

1√
40

 = f (A) f (X)

elde edilir.

Örnek 4.9 q = 2√
6
+ 3√

6
i+ 1√

6
ε+ 1√

6
h hibrit sayısınıele alalım. q, Cε(q) = −1

3
< 0

C(q) = 1 > 0 ve |q| = 1 olduğundan eliptik timelike bir hibrit sayıdır. q hibrit

sayısınıyeniden yazacak olursak

q =
(
2√
6
+ 1√

6
h
)[
1 + 3

√
6

(
2√
6
+
1√
6
h

)i+ 1
√
6

(
2√
6
+
1√
6
h

)ε
]

=

(
2√
6
+ 1√

6
h
)

1√
2

[
1√
2
+ 1√

2
A−1

(
3√
6
i+ 1√

6
ε
)]

=
(
2
√
3
3
+
√
3
3
h
) [

1√
2
+ 1√

2

{
3i+ 4

3
ε
}]

burada A =
(
2
√
3
3
+
√
3
3
h
)
, X =

[
1√
2
+ 1√

2
iϕ

]
ve iϕ = 3i + 4

3
ε olarak ele alınırsa q

hibrit sayısıq = A.X biçiminde de yazılabilmektedir. Burada kolayca görülmektedir

ki ‖iϕ‖ = 1 ve iϕiϕ = −1 dir.

Buna göre θ = ± ln
(√
3
)
ve ψ =

π

4
için A hiperbolik sayıve X kesilmi̧s bir hibrit

sayıolmak üzere polar formlar sırasıyla ehθ ve eiϕψ şeklindedir. Yani q = ehθ.eiϕψ

dir.

Diğer yandan hibrit sayıların matris temsillerini kullanarak q hibrit sayısının matris

formunu A ve X sayılarının matris formlarıyardımıyla ifade edecek olursak

f : H −→M2×2 izomorfizmi ile

f (q) =

 3√
6

3√
6

− 1√
6

3√
6

 =
2√33 √

3
3

√
3
3

2
√
3
3

 7
√
2
6

5
√
2
6

−5
√
2
6
− 2√

6

 = f (A) f (X)

elde edilir.
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Örnek 4.10 q = 3 + 7i − 4ε +
√
2h hibrit sayısınıele alalım. q, Cε(q) = 9 > 0 ,

C(q) = 0 olduğundan hiperbolik lightlike bir hibrit sayıdır q hibrit sayısınıyeniden

yazacak olursak

q =
(
3 +
√
2h
) [
1 + 1

3+
√
2h
7i+ 1

3+
√
2h
4ε
]

= 3+
√
2h√
7

[√
7 +
√
7A−1 (7i− 4ε)

]
= 3+

√
2h√
7

[√
7 +
√
105

{
21+7

√
2√

7
i+ 11

√
2−12√
7

ε
}]

burada A =
(
3+
√
2h√
7

)
, X =

[√
7 +
√
105iϕ

]
ve iϕ = 21+7

√
2√

7
i + 11

√
2−12√
7

ε olarak ele

alınırsa q hibrit sayısı q = A.X biçiminde de yazılabilmektedir. Burada kolayca

gösterilebilir ki ‖iϕ‖ = 1 ve iϕiϕ = −1 dir.

Buna göre θ = ln
(
3±
√
2√
7

)
. için A hiperbolik sayıve X kesilmi̧s bir hibrit sayıolmak

üzere polar formlar sırasıyla ehθ ve eψiϕ şeklindedir. Yani q = ehθ.eψiϕ dir.

Diğer yandan hibrit sayıların matris temsillerini kullanarak q hibrit sayısının matris

formunu A ve X sayılarının matris formlarıyardımıyla ifade edecek olursak

f : H −→M2×2 izomorfizmi ile

f (q) =

 7 3 +
√
2

−3 +
√
2 −1

 =
 3√

7

√
2√
7√

2√
7

3√
8

 19+3
√
2√

7
9+4
√
2√

7

−9−4
√
2√

7
−5−3

√
2√

7

 = f (A) f (X)

elde edilir.

Örnek 4.11 q = 1 + 18i+ 8ε+ 6h hibrit sayısınıele alalım. q, Cε(q) = 0

C(q) = 1 > 0 olduğundan parabolik timelike bir hibrit sayıdır. q hibrit sayısını

yeniden yazacak olursak

q = (1 + 6h)
[
1 + 1

1+6h
18i+ 1

1+6h
8ε
]

= (1+6h)√
35

[√
35−

√
35A−1 (18i+ 8ε)

]
= (1+6h)√

35

[√
35− 6

{
21√
35
i+ 34

3
√
35
ε
}]

burada A =
(

1√
35
+ 6√

35
h
)
, X =

[√
35− 6

{
21√
35
i+ 34

3
√
35
ε
}]

ve iϕ = 21√
35
i + 34

3
√
35
ε

olarak ele alınırsa q hibrit sayısıq = A.X biçiminde de yazılabilmektedir. Kolayla

gösterilebilir ki ‖iϕ‖ = 1 ve iϕiϕ = −1 için θ = ∓ ln
(√

35
5

)
ve ψ = ln

(
6±
√
35
)
dir.

O halde A hiperbolik sayıve X kesilmi̧s bir hibrit sayıolmak üzere polar formlar

sırasıyla ehθ ve eiϕψ şeklindedir. Yani q = ehθeiϕψdir.
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Diğer yandan hibrit sayıların matris temsillerini kullanarak q hibrit sayısının matris

formunu A ve X sayılarının matris formlarıyardımıyla ifade edecek olursak

f : H −→M2×2 izomorfizmi ile

f (q) =

 9 16

−4 −7

 =
 1√

35
6√
35

6√
35

1√
35

− 33√
35
− 58√

35

58√
35

103√
35

 = f (A) f (X)

elde edilir.
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5. TARTIŞMA VE SONUÇ

Kuaterniyonlar kinematikte hareketlerin incelenmesi bakımından önemli rol oyna-

maktadır. Bu tezde öncelikle kuaterniyonlar için polar form tanımlanmı̧s sonrasında

ise reel ve split kuaterniyonlar için yeni bir polar formlar elde edilmi̧stir. Bu polar

formların daha iyi anlaşılabilmesi için teori örneklerle desteklenmi̧stir. Bununla bir-

likte yaprak parametresi kavramıtanıtılmı̧s ve kuaterniyonların yaprak parametresi

cinsinden temsillerine yer verilmi̧stir. Diğer kuaterniyon çeşitleri bu yeni polar form

cinsinden incelenmemi̧s olup kuaterniyonlar üzerine çalı̧san araştırmacılar için yeni

çalı̧sma alanlarıyaratabilir.

Hibrit sayılar kompleks, dual ve hiperbolik sayıların kombinasyonlarınıiçeren bir sayı

sistemidir. Bu tezde Özdemir tarafından bir yayınla verilen hibrit sayıların cebirsel

ve geometrik özellikleri incelenmi̧stir. Ayrıca, hibrit sayılar için yeni bir polar form

tanımlanmı̧stır. Bununla birlikte hibrit sayılar için yaprak parametresi kavramına

yer verilmi̧stir. Burada dikkat çekilecek noktalardan biri ise q = a + bi + cε + dh

bir hibrit sayısınısadece (a+ dh) parantezine alındı̆gında içeride bir yaprak yapısı

tanımlanmı̧s olmasıdır. Hibrit sayılar farklı sayı sistemlerinin kombinasyonlarını

içermesi açısından araştırmacılar için yeni sayısistemleri tanımlarken güzel bir fikir

oluşturulabilir.
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