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Bu tez dort boliimden olugmaktadir.
Ik boliim giris kismina ayrilmistir.

Ikinci boliimde, tezin ilerleyen boliimlerinde kullanacagimiz bazi temel tanimlara
yer verilmigtir.

Uctincii boliimde, kuaterniyonlar icin kutupsal form incelenmis, bazi temsil metot-
larina yer verilmig ve yaprak parametresi tanimlanmigtir.

Son boliimde ise hibrit sayilarin genel 6zellikleri verilmis ve hibrit sayilar i¢in yaprak
parametresi kavramina yer verilmistir. Ayrica hibrit sayilar icin yeni bir polar form
elde edilmistir.
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Master Thesis
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This thesis consists of four chapters.
In the first chapter is devoted to the introduction.

The second chapter, some fundamental concepts which are going to be used in the
following parts were explained.

In the third chapter, for quaternions, the polar form has been examined and some
representative methods are included and the Leaf parameter is defined.

In the last chapter, the general properties of hybrid numbers are given and the
concept of leaf parameter is given for hybrid numbers. Furthermore, a new polar
form is obtained for hybrid numbers.
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1. GIRIiS

1830’ larda kompleks sayilardaki carpma islemine benzer bir carpma R3 reel vektor
uzayinin iicliileri igin William Rowan Hamilton tarafindan aragtirildi, fakat bu ¢arp-
mada normun korunmasi miimkiin olmuyordu. 1843 yilinda Hamilton bu fikrin R3
uzayinda degil, R* reel vektor uzayinda miimkiin olabilecegini farketti ve reel ku-
aterniyonlar1 tanimladi (Lancsoz 1967). Bu tamimlamadan sonra ise R® reel vektor
uzayinda Cayley sayilari ile kompleks sayilar arasinda benzer iligkiler aragtirilmigtir.
Cayley sayilar tizerinde tanimlanan ¢arpma igleminin, birlesme ve degisme 6zellik-
lerini saglamadig1 goriilmiistiir. Kuaterniyonlar, kinematikte hareketlerin incelen-

mesi bakimindan ¢nemli bir rol oynamaktadir.

Split kuaterniyonlar ise 1849 yilinda James Cockie tarafindan ortaya atilmistir.
Hamilton ve Cockie, carpim operatorleri ile belirlenmis dort boyutlu reel vektor
uzay1 olusturmuslardir. Kuaterniyonlardan farkli olarak split kuaterniyonlar sifir
bolenli olabilmektedirler (Soydag 2003). Dual sayilar 1873 yilinda William Clifford
tarafindan tanimlanmigtir. Dual sayilar kuantum mekanigi ve klasik vida mekanigi
gibi bircok alanda kullanilmaktadir. Reel ve dual kuaterniyonlar ile sagladiklar:
ozellikler Hacisalihoglu tarafindan "Hareket Geometrisi ve Kuaterniyonlar Teorisi"
kitabinda ayrmtili bir gekilde yer almaktadir (Hacisalihoglu 1983). Ayrica, birim

dual kuaterniyonlardan faydalanarak kayma ve dénme operatorleri tanimlanabilir.

Kuaterniyonlarin temsil bigimlerinden birisi de polar temsilidir. Polar temsiller
bir¢ok problemin coziimiinde kolaylik saglamaktadir. Son yillarda Sangwine ve Le
Bihan (Sangwine ve Le Bihan 2010) ile Ali Atasoy (Atasoy vd 2017) ve arkadaslar
kuaterniyonlarin bazi yeni polar temsillerini ifade etmis, bazi karakterisazyonlar
vermiglerdir. Bir kuaterniyonu sirali ikililerle ifade etmek miimkiin olabildigi gibi

yaprak gosterimleri ile sirali iigliilerle de ifade etmek miimkiindiir.

Pfaff (Pfaff 2000), kuaterniyon garpimini kullanarak ii¢ boyutlu reel vektor uza-
yinda say1 tigliillerinin degismeli ¢arpiminin bazi 6zelliklerini vermistir ve yaprak

parametresinden bahsetmistir. Kula ve Yayh (Kula ve Yayh 2006) ise dual kuater-
1



niyonlar iizerindeki ¢arpma igleminden yararlanarak dual say1 tigliilerinin degismeli
carpimini ifade etmislerdir ve bu ¢arpimin yeni bir temsilini matris gosterimi ile elde

etmislerdir.

Mustafa Ozdemir (Ozdemir 2018) degismeli olmayan yeni bir say1 sistemi tanimladi
ve tamimladigi bu sayilar cebirsel olarak kompleks, dual ve hiperbolik sayilarin kom-
binasyonlarini igerdigi i¢in "Hibrit Sayilar" olarak adlandirildi. Ayni ¢alismada bu

sayilarin cebirsel ve geometrik 6zelliklerini inceledi.

Biz bu calismada, kuaterniyonlar iizerine yapilan bu tanimlamalar1 ve temsil bigim-
lerini kapsamli bir gekilde ele alacagiz. Ayrica yaprak paremetrisazyonu ile bili-
nen kuaterniyonlarin yaprak temsillerini (siral iicliiler) verecegiz. Bununla birlikte
yaprak temsillerinin hibrit sayilar i¢inde incelenmesi yapilmigtir. Konularin daha

anlagilir bir hale gelmesi i¢in tiim bu kavramlar érneklerle desteklenmistir.



2. TEMEL KAVRAMLAR

Bu boliim, tezin 2., 3. ve 4. boliimlerinde kullanilacak olan kavramlarin agikla-

malarina ayrilmigtir.

Tanim 2.1 (Kompleks Say1) a,d € R olmak iizere (a,d) siral ikililerine

kompleks say1 denir. Burada a, z kompleks sayisinin reel kismi, ve d, z kompleks
sayisinin imajiner kismidir,

Rez=a

ve

Imz=4d

seklinde gosterilmektedir. Kompleks sayilar ciimlesi iizerinde temel islemler asagi-
daki gibi tamimlanmaktadir. ay, as, di, do € R olmak iizere

Esitlik: (a1,d1) = (ag,d2) <= a1 = ag, dy = ds

Toplama: (ay,d;) + (az,dz) = (a1 + ag, dy + ds)

Carpma: (ay,dq) (ag,ds) = (a1ae — dids, ards + dyas)

Buna gore z = (a,d) kompleks sayisi
= (a,d) = (a,0)+ (0,
= (a,0)+(0,1)(d, 0); i = (0,1)
= a+1d

olarak ifade edilebilir.

Kompleks sayilar kiimesi
C= {a+id:a,dER, P2 = —1}

ile gosterilir. Geometrik olarak bir z = a + di kompleks sayisim R? diizlemi veya zoy
diizleminde bir (a, d) noktasi ile egleyebiliriz. Bu durumda zoy diizlemine kompleks
diizlem, a eksenine reel eksen ve d eksenine imajiner eksen denir.

Eslenik: Herhangibir z = a + di kompleks sayisinin eslenigi Z ile ifade edilir ve

di

Z =

a —
3



olarak tanimlanir. z ve Z sayilar1 x eksenine gore simetrik olmaktadir.

Modiil: Herhangibir z = a + di kompleks sayisinin modiilii |z| ile ifade edilir ve
|z| = Va? + d?

ile hesaplanir. Yani bir kompleks sayinin modiilii z = (a, d) noktasinin orijine olan
uzakhgidir.

Polar Form: z = a + di kompleks sayisinin pozitif reel eksenle yapmig oldugu ag1 @
a

ve sinw = olup buradan

la + di| la + di

olsun. cosw =
z = |z| (cosw + isinw)

polar formu elde edilir. Burada r = |z| olmak tizere a = rcosw ve d = rsinw
oldugu agiktir. Bu takdirde w acisina a + di kompleks sayisinin argiimenti denir

ve arg z ile gosterilir.

imajiner Eksen
4

=(r,wx)

» Reel Eksen

a*+dP=r?

Sekil 1.1 Kompleks Argiiment

Euler Formiilii: = € R olmak iizere

e =cosw +isinw

formiiliine Euler formiilii denir. Euler formiilii yardimiyla z kompleks sayisi

2z =|z|(cosw +isinw) = r (cosw + isinw) = re'®

4



seklinde yazilir.

Bir Kompleks Sayinin Tersi: z = a + di kompleks sayisinin tersi 2! ile gosterilir

ve

1 a —d
° (a2+d2’a2+d2> (2 70)
ile hesaplanir (Churchill ve Brown 1984).

Kompleks Sayilarin Matris Gosterimi: z = a + id kompleks sayisinin matris gos-

terimi

a d
a+di «——
—d a

0 1
seklindedir. Ayrica kompleks birim ¢ «— dir. Kompleks sayilar i¢in Euler

-1 0
formiillerini matris gosterimleri ile ifade edecek olursak;

o 0 w cosw sinw
COS T + 1 SINw — exp =
—w 0 —sinw cosw

seklindedir. Ayrica bu matris Oklid diizlemindeki donme matrisine karsilik gelmek-
tedir (Kisil 2013).

Tanim 2.2 (Dual Say1) d,d* € R olmak iizere (d, d*) sirali ikilileri seklinde tanim-

lanan R x R ctimlesi D ile gosterilsin,
D ={(d,d"): d,d* € R}

climlesi tizerinde d, d*, e, e* € R olmak tizere temel iglemler agagidaki gibi tanim-
lanmagtir.

Esitlik: (d,d*) = (e,e*) <= d=e, d" =¢*

Toplama: (d,d*) + (e,e*) = (d+e,d* + e*)

Carpma: (d,d*) (e, e*) = (de,de* + d*e)

Bu sekilde tamimlanmig I ciimlesine dual sayilar sistemi ve V (d, d*) € D elemanina

da bir dual say1 denir. Dual sayilar ciimlesi
}D):{d—i—gd*:d,d* e R, &2 :0}

ile gosterilir.



Eslenik: Herhangibir z = d + ed* dual sayisinin eslenigi 7 ile gosterilir ve
Z=d—ed"

olarak tamimlanir.

Modiil: Herhangibir z = d + ed* dual sayisinin modiilii |z| ile gosterilir ve
2| = [d|

ile hesaplanir. Bu tanim I ciimlesinde bir metrik olugturmaz.

Dual Sayilarin Tersi: Herhangibir z = d + ed* = (d, d*) dual sayisinin tersi 2! ile
gosterilir ve
- \d’ d?
olarak tanimlanir.
Fuler Formiilii: @ € R olmak iizere
e =1+cw
dual sayilar icin Euler formiilii olarak bilinir.
Dual Sayilarin Matris Gosterimleri: z = d 4 ed* dual sayisinin matris gosterimi
d d*
d+ed —
0 d
seklindedir. Ayrica dual birim € «— dir. Dual sayilar i¢in Euler formiillerini
00
matrisle ifade edecek olursak;
0 w 1 @
14+ ecw =exp =
0 0 0 1

seklindedir. Ayrica bu matris Galile diizlemindeki donme matrisine kargilik gelmek-

tedir (Hacisalihoglu 1983).

Tamim 2.3 e = cosw + isinw ve e % = cosw — isinw esitliklerinden yararla-

narak, her w reel sayisi icin

eiw + efiw eiw + efiw
—X———— Ve COSstW = ——mMm——
21 2

6
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denklemleri saglanmaktadir. Benzer gekilde bu esitlikleri cosh @ ve sinh w igin

. er —e ¥ e’ +e @
sinhw = —5 ve coshw = —

seklinde tanimlanmaktadir (Speiegel vd 2009).

Tanim 2.4 Bir u vektorii igin eger (u,u) < 0, (u,u) > 0, ve (u,u) = 0 ise, u

vektoriine, sirasiyla, timelike, spacelike ve lightlike vektor denir (O’ Neill 1983).

Tanmim 2.5 (Hiperbolik Say1) a,d € R olmak iizere (a, d) swral ikilileri iizerinde
tanimlanan,

H={(a,d): a,d € R}

climlesi tizerinde ay, a9, di, dy € R olmak {izere temel iglemler asagidaki gibi tanim-
lanmagtir.

Esitlik: (a1,d1) = (ag,d2) <= a1 = ag,dy = ds

Toplama: (ay,dy) + (az,ds) = (a1 + ag, dy + da)

Carpma: (aq,d) (ag,ds) = (a1as + dids, ards + dyaz)

Bu sekilde tanimlanmis H ciimlesine hiperbolik say1 sistemi denir. Hiperbolik
sayilar ctimlesi

H:{a+hd:a,d€R,h2:1}

ile gosterilir. Bir hiperbolik sayinin a reel sayisina hiperbolik say1 i¢in reel kismi
ve d reel sayisina hiperbolik sayimin hiperbolik kism denir.

Eslenik: Bir z = a 4 dh hiperbolik sayisinin eglenigi 7 ile ifade edilir ve
zZ=a—dh

olarak tanimlanir. z ve Z sayilar1 x eksenine gore simetrik olmaktadir.

Modiil: Bir z = a + dh hiperbolik sayisinin modiilii |z| ile ifade edilir ve

2| = Vla? = 2|

ile hesaplanir.

Hiperbolik Sayilarin Tersi: 2z = a + dh hiperbolik sayisinin tersi 27! ile ifade edilir

ve
_ z a d
l= 2 = — h

|z|2_a2—d2 a2 — d2

7




ile hesaplanir. Hiperbolik sayilarin tersi a? — d? # 0 durumunda tanimhdir.
Polar Form: z = a + dh hiperbolik sayisinin pozitif reel eksenle yapmis oldugu agi

o olsun.

z = % |z| (coshw + hsinh w)

polar formu elde edilmis olur. r = |z| olmak iizere a = £rcoshw ve d = £rsinhw
oldugu agiktir. Bu takdirde w agisina a + dh hiperbolik sayisinin argiimenti denir

ve arg hz ile gosterilir.

b a*-d*=r*

Ll !

Sekil 1.2 Hiperbolik Argiiment

Euler Formiilii: z = a + dh hiperbolik sayisi i¢in |z| =r, w = arg hz ve

ke {l,—1,h,—h} icin

z = kr (coshw + hsinh @) = kre"™

dir.

Hiperbolik Sayilarin Matris Gosterimleri: z = a + dh hiperbolik sayisinin matris

gosterimi

a+ dh «——



01
seklindedir. Ayrica hiperbolik birim A «+— dir. Hiperbolik sayilar i¢in Euler
10

formiillerini matris gosterimleri ile ifade edecek olursak;

) 0 w coshw sinhw
cosh @ + hsinhw = exp =

w 0 sinhw coshw

seklindedir. Ayrica bu matris Lorentz diizlemindeki donme matrisine karsilik gelmek-

tedir (Qakir 2017).

Tanmim 2.6 (Reel Kuaterniyonlar)

Q= {p = pol + p1i + p2j + psk : po,p1, P2, p3s € R: i = j* = k* = —1}

seklinde tanimlanan () ctimlesini goz oniine alalim. Boylece bir reel kuaterniyon

P = pol + pit + paj + p3k

seklinde ifade edilebilir.

P = pol +p1i+p2g +p3k ve ¢ = qol + q1t + q27 + g3k olmak {izere reel kuaterniyonlar
iizerinde temel iglemler agagidaki gibi tanimhdir.

Esitlik: p = ¢ <= po = qo, 1 = ¢1, P2 = G2, P3 = 43

Toplama: p+q = (po+qo) + (p1 + @) i+ (p2+q2)j+ (ps +a3) k

Skaler Ile Carpma: Ap = A\pg + Ap1i + Apoj + Apsk

Reel Kuaterniyonlarin Carpimi: p = pol + p1i+paj + p3k ve ¢ = qol + q1i + q27 + g3k

iki reel kuaterniyon olmak iizere bu kuaterniyonlarin garpimm asagida verilen

{1,1, 7, k} birimlerinin ¢izelgesi yardimiyla hesaplanirsa

pq = (pol + pii+ paj + p3k) (ol + qui + g2 + q3k)
= poqo + Poq1 + pog2j + pogsk
+p1got — P11 + P1gek — P1g3]
+P2q0] — P2q1k — P2g2 + P2qst
+P3qok + P3q1) — P3det — Psqs

elde edilir. Asagidaki gizelgede {1, 1, j, k} birimlerinin kuaterniyon ¢arpimi goriilmek-
tedir.



Cizelge 1.1 Kuaterniyon Carpimi

Jljl=k|=1]4
Elk| | —i| -1

Eslenik: Bir reel kuaterniyon p = pgl + p1i + p2j + p3k olsun. h kuaterniyonunun

eslenigi h ile ifade edilir ve

h = pol — p1i — paj — p3k

ile hesaplanir.

Norm: Bir reel kuaterniyon p = pgl + p1t + paj + p3k olsun. p kuaterniyonunun

normu N (p) ile ifade edilir ve

N(p)Z\/p%va?wLp%er%

ile hesaplanir. Ayrica burada N, = p3 + p? + p3 + p3 dir.
Bir Reel Kuaterniyonun Tersi: Bir reel kuaterniyon p = pgl 4 p17 + p2j + psk olsun.

p kuaterniyonunun kuaterniyon carpimina gore tersi p~! ile ifade edilir ve

ile hesaplanir.

Birim Kuaterniyon ve Normlama: Normu 1 olan kuaterniyona birim kuater-

niyon denir. Birim kuaterniyon genellikle p, ile gosterilir. Bu sebeble vektor-
lerdeki mantikla benzer olarak sifirdan farkl herhangi bir reel kuaterniyon normunun
karekokiine boliinerek birim kuaterniyona doniigtiiriilebilir. p = pol+ p1i+ poj + psk

olmak iizere

olarak ifade edilebilir. Bu P, birim kuaterniyonu

H
P, = cosf + Sy sin 6
10



Po g Vpi+pi+
2 2 R Sy = 2 2 2 2 ve
VDR + P2+ P2 VPR + P} + P+ P

seklindedir (Kuipers 2002).

olarak yazabiliriz. Burada cosf =

T _ pit + paj + p3k

So 2 2 2
VP +DP1+ D3

Polar Form: p = pol + p1i + p2j + psk reel kuaterniyonu igin cosf =

VD3 + D3+ p3
V Np

Do

VN,

ve

sinf = olmak iizere polar formu

q= \/Np(cos(9+5—>bsin9)

seklinde ifade edilebilir.
Burada S—S _ Dt paj + psk

VPE + pi+ v

Reel Kuaterniyonlarin Matris Gosterimleri: p bir reel kuaterniyon olsun. Sol ¢arpim

olup birim vektordiir (Hacisalihoglu 1983).

fonksiyonunu

Tp: T, (@) — pq

bigiminde tammlayalim. R* reel vektor uzayinda 7T, doniisiimii R* reel vektor uza-

yindan R* reel vektoér uzayma bir lineer doniisiim belirtir. Bu lineer déniistime

karsilik gelen matris temsili

Po —P1 —P2 —DP3
Pr Po —P3 D2
P2 Ps3 Po —M

b3 —Pp2 D1 Po

seklindedir. Bu sekilde tanimlanan lineer doniisiim bir izomorfizm belirtmektedir

(Hacisalihoglu 1983).
Tanim 2.7 (Split Kuaterniyonlar)
Q = {h = ho + h1i + hyj + hsk : ho, h1, ha, hs € R}

ciimlesini ele alahm. Burada {1, 4, j, k} birimlerinin ¢arpimi reel kuaterniyon ¢arpimin-

dan farkh olarak asagidaki tabloda verilmistir.
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Cizelge 1.2 Split Kuaterniyon Carpimi

Jl=k|1] =i
Lkl g il 1

@ nin her bir elemanma bir split kuaterniyon denir (Kula 2003).
h:h0+hll+h2J+h3k

split kuaterniyonunun skalar kismi S, ve vektorel kism \7;: olmak {izere iki kisma

ayrilir.

il
h:Sh+Vh

olmak iizere

SN
Sh = ho ve Vh = h12+h2]+h3k

dir.
Toplama: h = ho+hii+hoj+hsk ve p = pg+p1i+p2j + psk split kuaterniyonlarinin

toplami
h+p = (Sh+Sp)+<‘7h)+Vp>>
= (ho+po)+ (h1 +p1)i+ (he +p2)j + (hs + p3)k

olarak tamimlanir.

Skaler ile Carpma: A € R ve h = hol + hyi + hej + hgk olmak tizere \h iglemi

A = (Aho) + (A1) i+ (Aha) j + (Ahg) &

olarak tamimlanir.

Split Kuaterniyonlarinin Carpimi: h = hg + hyt + hoj + hsk ve

P = po + p1t + p2J + psk iki split kuaterniyon olmak tizere

X : @X@—>C§
(h,p) — hxp=hp
12



seklinde bir islem olup

—

— — - = =
=55, -9 (Vi V) + iV, + SV, + Vi AT,
olarak tamimlanir. Burada
g Im@ X Im@ — R
— — — —
(Vh> Vp) — g <Vh; Vp) = —hip1 + hopa + hsps

dir. Bu carpma islemiyle birlikte QV ciimlesine split kuaterniyon cebiri denir

(Kula 2003).
Eslenik: Herhangi bir split kuaterniyon h = hg + hii + hoj + hsk olsun. h split

kuaterniyonunun esglenigi 4 ile ifade edilir ve
h = hg — hyi — hoj — hsk

ile hesaplanir (Kula 2003).
Norm: Bir split kuaterniyon h = hg + hyi + haj + hsk olsun. N, = h2 +h? —h3 —h3
olmak iizere h split kuaterniyonunun normu |A| ile ifade edilir ve

bl = /11 + B — b3 — b3 = V/I,

ile hesaplanir (Kula 2003).

Bir Split Kuaterniyonun Tersi: Bir split kuaterniyon h = hg+ hqt + hoj + hsk olsun.

h split kuaterniyonunun tersi h~! ile ifade edilir ve

h
71 _
o= —Nh,|h|7é0

ho — hui — haj — hak
|h§ — hi — h3 — h3]

ile hesaplanir (Kula 2003).

Polar Form: Split kuaterniyonlarda, kuaterniyonun spacelike veya timelike olmasi,
bununla birlikte timelike kuaterniyonlarda vektorel kismin timelike veya spacelike
olmasi polar formu degistirmektedir. Yani split kuaterniyonlarin polar formu icgin

farkli durumlar incelenecektir .
1. h=ho+ hit+ hoj + hsk € @ bir spacelike kuaterniyon ise polar form

h = |h| (sinh ¢ + Zg cosh )
13



v —hi+ h}+h3
Al

ho

7]

seklinde ifade edilebilir. Burada sinh ¢ =

ve g = d
V—h? + h3 + h3

, cosh p =

1.

2. h=ho+hyi+hoj+ hsk € @ vektorel kismi spacelike olan bir timelike birim

kuaterniyon ise polar form

h = |h| (cosh ¢ + g sinh ¢)

V—h? + h3 + h3
Al

L)

Id

seklinde ifade edilebilir. Burada cosh ¢ =

N hii + hoj + h3k
ve g = ir.

VR RS

, sinh p =

3. h="ho+hyi+ hoj+ hsk € @ vektorel kisma timelike olan bir timelike birim

kuaterniyon ise polar form
h = |h| (cos  + £¢ sin @)

B2 — 13— I3
1]

h
seklinde ifade edilebilir. Burada cos ¢ = —0, sin o =

A
—  hyi+ hoj + hsk
ve €g = dir.

TR

4. Vektorel kism lightlike olan tiim split kuaterniyonlar i¢in polar form
g=1+7%

seklindedir. Burada &g lightlike bir vektordiir (Ozdemir ve Ergin 2006).

14



3. KUATERNIYONLAR ICIN YENI TEMSIL METOTLARI VE
YAPRAK PARAMETRELENDIRMESI

3.1 Yaprak Parametrelendirmesi

Dérdiincii bilegeni sifir olan X = x1 4 yi + 25 + 0k kuaterniyonlarin ciimlesini g6z
oniine alalim. Bu kesilmis kuaterniyonlarin ciimlesi, kuaterniyonlarin ti¢ boyutlu alt
vektor uzaym olugturur. O halde (z,y, z,0) dortliisii yerine ona eg olan (x,y, 2)

tigliistinii yazabiliriz. Boylece
1=(1,0,0), i =(0,1,0), j = (0,0,1)
olup X kuaterniyonunu yeniden yazarsak
X=zl+yi+zj

elde edilir. Artik X kuaterniyonu icin "ticlii", "vektor" ve "kesilmis kuaterniyon"
terimlerini kullanabiliriz. Tiim diizlemlerin ciimlesini diigiinelim. z eksenini iceren
alt uzayda (x, 0, 0) vektorii z-ekseni tizerinde yer almaktadir ve U = (0, y, z) vektorii,
yoz diizlemindedir. (z,0,0) ve U = (0, v, z) uzayda bir diizlem belirler. Bu diizlem
yaprak olarak adlandirilmaktadir. Her yaprak (y, z) diizlemi ile kesigim dogrusu
veya egdeger olarak bu dogru boyunca (y, z) diizlemindeki sifirdan farkli herhangibir
U vektorii boyunca belirlenir. Bununla birlikte {icliilerin ¢arpimlar1 kuaterniyon
carpmasina gore kapali degildir. Fakat ticliilerin aym yaprak {izerindeki ¢arpimlar:

kapali, birlegsmeli ve degismelidir (Pfaff 2000).
3.1.1 Bir yaprak iizerinde ¢carpma

p= (a1, bi,c1) = ay+brit+crj, g = (az, ba, ca) = as+bayi+coj iki tane kesilmig kuater-
niyon olmak iizere burada byve ¢; (by ve ¢s) sifirdan farkl olsun. Amacimiz kesilmis
kuaterniyonlar icin kapali ve degismeli bir carpma tamimlamaktir. pq ¢arpimini

hesaplarsak

pPq = (a1a2 — ble — 0102)1 -+ (a162 + bl(lg) 7 + (a102 + Cla,g)j + (b1€2 — Clbg) k
15



dir.
Kesilmis kuaterniyonlarin ¢carpma islemine gore kapali olmasi i¢in k bileseninin sifir

olmasi gerekir. Bu durumda

1 C2

a2 R
b =, M E \ {0}

olmalidir. Buradan

p=(a1,0,0) + (0,b1,¢1) = (a1,0,0) + U,

ve

q = (a27070) + (Oa b2702) = (a27070> + Uq

olup burada U, ve U, sifirdan farkh vektoérlerdir. O halde U, = nU, olup
U, = (0,mb1,ncy) oldugu kolayca goriilmektedir.
O halde

pq = (a1as — nb — ne}) 1 + (naiby + bias) i + (naicy + craz) j
elde edilir (Pfaff 2000). Bu ¢arpim agagidaki ¢zelliklere sahiptir.

1. Aym yaprakta yer alan p ve ¢ kesilmis kuaterniyonlarinin ¢arpimi olan pq yine

ayni yaprakta yer alir ve bu ¢arpim kapalidir.
2. Degisme ozelligine sahiptir.
3. Birlesme ve dagilma ozelligine sahiptir.

4. q = ay + b1t + c¢1j kesilmis kuaterniyonu ile eglenigi olan ¢* = ay — b1i — cq¢

kesilmig kuaterniyonu aym yapraktadir ve
* 2
qq" = (a® + 0>+ ) 1 = |q]

dir.

5. ¢ kuaterniyonunun tersi olan g1 = q—|2 kesilmig kuaterniyonu ¢ kuaterniyonu

ile ayn1 yapraktadir .

6. Sifirdan farkh her ticliiniin tek bir tersi oldugundan sifir béleni yoktur.
16



7. Aym yaprak iizerindeki p ve r iicliileri i¢in pg = r denklemi p ve r kesilmis
kuaterniyonlarmin olusturdugu yaprakta ¢ = p~lr seklinde tek bir c¢oziime

sahiptir.
3.1.2 Yaprak iizerinde kompleks yapi

Bir yaprak yoz diizleminde ¢ yonii ile pozitif yonlii ¢, birim vektorii ile belirlenir.

Bu vektore gore bir reel kuaterniyon

i, = (cos )i+ (singp)j

seklinde ifade edilebilir. Burada ii = —1 olur. p yaprakta sifirdan farkl bir iiclii
olsun. Bu yaprak 1 ve i, birim kuaterniyonu tarafindan tiretilmektedir. O halde
bu vektorler boyunca p reel kuaterniyonunu yeniden yazabiliriz. p kuaterniyonunun

yapraktaki (1,0,0) ile yaptig1 pozitif yonlii ag1 & olmak iizere

p = Ipl((cos&) 1 + (sin&)iy)

*

elde edilir. Ayrica e = {(cos€) 1 + (sin€)i,} olup burada p = |p|€'#¢, |p|* = p.p
ve £ = arg p esitlikleri gerceklenir.
p ile aymi yaprakta reel birim (1,0, 0) vektorii ile pozitif yonlii 7 agisini yapan vektor

q = (ag, by, co) olmak iizere q = |q| ™" olup

pg = lpllal e'+*e™" = |p| |q| e+

elde edilir. Burada [pq| = |p||q| ve arg (pq) = argp + argq esitlikleri gerceklenir.

Kuaterniyonun eglenigi

"= lple "
ve tersi
—1 1 ¢
p o =—ec "
|

dir (Pfaff 2000).
3.1.3 Farkli yapraklar iizerinde ¢carpma

Farkli yapraklar {izerindeki tigliilerin ¢arpimi asagidaki adimlardaki gibi tanimlan-

maktadir (Pfaff 2000).
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Sekil 3.1 Farkl Yapraklar Uzerinde Carpma

1. p ve q ile belirlenen diizlem ile (x,y) diizlemi sekilde gosterildigi gibi pozitif
x yonii ile # agisini yapan ve orijinden gecen dogru iizerinde kesisir. Burada

0<0 < dir.

2. p ve q diizlemi z etrafinda dondiiriiliip ve (z,y) diizlemi ile kesisimi = ekseni
tizerine getirilir ve p ile ¢ vektorleri sekilde gosterildigi gibi p’ ve ¢ vektorleri

iizerine tasinir.

3. p' ve ¢ vektorlerinin olusturdugu diizlem bir yaprak belirtir. Artik bu vektorler
ayni yaprak tizerinde yer aldigindan bir yaprak {izerinde ¢arpma metotunu

uygulayabiliriz. Bu durumda
r=pq, ‘7’/’ = ‘p,’ )q/‘ veargr = argp + argq
elde edilir.

4. 2. adimda kullanilan dénmenin tersini kullanarak p ile ¢ orijinal diizlemine
tekrar dondiiriiliir. Bu dénme sirasiyla p/ ile ¢ vektorlerini p ve ¢ vektorlerine
doniistiiriir. Bu durumda

r=p®q
18



dir.

lp % q| = |p| |q| ve arg(p x q) = argp + argq

olup tamimlagimiz bu ¢arpma islemi degismelidir. Bu 6zellik ortagonal doniisiim-

lerden etkilenmez.

6. Sifirdan farkli p ve r ticliileri i¢in zoz diizleminde r = p x ¢ denklemini saglayan

bir tek ¢ vardir.

3.2 Kuaterniyonlar I¢in Yeni Polar Gosterimler

Her kuaterniyon

g = AeP
seklindeki polar form ile ifade edilebilmektedir. Burada a,b,c,d € R olmak iizere
A = a+1bve B = c+di iki kompleks sayidir. A degisme 6zelligine sahip olmadigin-
dan bu yazilimda siralama ¢nemlidir. Tki kompleks sayiya dayanan bu kutupsal form

ile bir kuaterniyonun Cayley-Dickson formu arasindaki iligki
g=(a+bi)+ (c+di)j=a+bi+cj+dk

seklindedir. Cayley-Dickson formunda ilk kompleks say1 kartezyen formdaki kuater-
niyonun ilk iki kismi olup reel ve imajiner kisimlara sahiptir. Benzer gekilde ikinci
kompleks say1 ise kuaterniyonun {iciincii ve dordiincii kismi olup reel ve imajiner
kisimlara sahiptir. Kompleks sayilar, carpma iglemi ile donatilmig iki boyutlu vektor-
ler olarak kullanilabildigi gibi sadece iki boyutlu kompleks sayiy1 degil dort boyutlu

bir kuaterniyonu olugturmak icin de kullanilabilir (Sangwine ve Le Bihan 2010).

Lemma 3.1 Bj = (c¢+di)j = ¢j + dk seklinde keyfi bir kuaterniyon verildiginde
iistel formu

. B
eBi = cos |B| + Esinﬂi’\ = a1+ [y + 01k

bigimindedir (Sangwine ve Le Bihan 2010).
Ispat. Bj = (¢ + di) j = ¢j + dk olmak iizere

B
|Bi
19
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seklindedir. Ispat1 tamamlamak icin e’ = cos@ + nsind seklindeki klasik polar
formu goz oniinde bulundurmamiz yeterlidir. Burada »n birim kuaterniyondur ve

B
— ile tamimlanabilir. Ayrica |B| reel olup 6 ile tanmimlanabilmektedir. Boylece

| B

d
ap =cos|B|, [, = (é) sin |B| ve §; = (E) sin | B|

elde edilmig olur. m

Teorem 3.1 ¢ = w+xt+yj + zk seklindeki biitiin kuaterniyonlar A, B € C olmak
lizere

qg= AeP

seklinde ifade edilebilir (Sangwine ve Le Bihan 2010).
Ispat. Eger ¢ = AeP ise |¢| = |A| kolaylikla goriilebilir. Klasik polar formda
oldugu gibi B 6nemsizdir; ¢iinkii ‘ij | = 1 gerceklenir. Bu nedenle, eger ¢ = 0 ise

A = 0 olmak zorundadir.
q=Ae’ = (a+ib) (a1 + B1j + 61k) = acy + bayi + (aBy, — bdy) j + (ady + bB,) k

a # 0 (eP7 nin reel kismi) olmak iizere amacimiz ¢ = aa; +bayi ve A = % seklinde
bir kompleks say1 olugturmaktir. ¢ kompleks sayisinin reel ve imajiner kisminin,
sirasiyla, sifir oldugu A =i ve A = 1 6zel durumlar1 vardir. Bu 6zel durumlarda ve
genel durumda bir igaret belirsizligi de vardir. « sayisinin isaretini bilmedigimiz i¢in
A ya da —A sayisi tam olarak belirlenemez. Bu belirsizligin dogal oldugu aciktir;
¢linkii A = a + bi kompleks sayisinin negatifinin alinmasi oy + 3,j + 01k degerinin
ihmal edilmesi ile telafi edilebilir. &« = 0 durumunda ¢ reel kuaterniyonunun birinci
ve ikinci bilesenleri sifir olacaktir. Bu nedenle ¢, yj + zk bicimindedir ve a = 1 ve
b = 0 alabiliriz. a 4 bi kompleks sayisin1 belirledikten sonra a + bi sayisinin eslenigi
ile soldan garparak a; + (3,7 + 01k kesilmig kuaterniyonu elde edilir. Daha sonra
dogal logaritma alarak Bj = In(a; + 5,7 + d1k) degeri olugturulur. Bj degerinin

¢j + dk formunda olmasi gerekir. Bu nedenle B = ¢ + di olup
Bj=(c+di)j=cj+dk

elde edilir. m
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Teorem 3.2 ¢ = a+ bi+ c¢j+ dk (a,b,c¢,d € R) geklindeki her birim kuaterniyon
qg=AX = ¢eein¥

seklinde ifade edilebilir. Burada A bir kompleks say1 ve X kesilmig bir kuaterniyon-

dur. Ayrica
, { (ac+ bd) ” (ad — be) }
7 =
. \/a2+b2\/02+d2] Va2 + b2v/c2 + d?
span (j, k) diizleminde bir birim vektordiir ve i, i, = —1 gergeklenir.

Ispat. ¢ = a + bi + ¢j + dk bir birim kuaterniyon olsun. ¢ kuaterniyonunu yeniden

yazacak olursak

q:(a+M)Oﬂ— c L k)

ar b’ Tarm

(a+ bi) L
q= Toae — (\/@2 + b2+ Va2 +b2A7 1 (cj + dk:))
bi I 1
= ((;;_+Zl))2 <\/CL2 + b2 - \/CL2 + b2a T bi V c? < dQ—W (Cj + dk))
(a + bi) ( (ac+ bd) , (ad — be)
= ———= (V2 + P+ VE+ P + k
g a? + b? . \/a2+b2\/02—|—d2j Va2 + b2/ c2 + d?
elde edilir. Burada A = \(/% ve X = Va2+b + Ve + d?%i,, seklindedir.
Ayrica |2'<p1‘ = 1 olup iy, 1,, = —1 gergeklenir. Sonug olarak ¢ kuaterniyonun polar

formu

qg=AX = ¢e¥eie¥

seklinde ifade edilebilir. m
Bu teoremde en 6nemli nokta bir kuaterniyonun kompleks bir say1 ve kesilmis bir
kuaterniyon carpimi ile ifade edilmis olmasidir. Ayrica, burada énemli bir nokta da

kuaterniyonun polar formunun iki Euler agis1 yardimiyla verilmesidir.

Ornek 3.1 ¢ = \/L:To + \/%i + \/%T] Jj+ %Tok birim kuaterniyonunu gtz ¢niine alalim.

q kuaterniyonunu asagidaki gibi yeniden ifade edecek olursak

1 2 1 3 4
q:(75+_%0<1+fr_77«%3+_%@>
NETIRERVET] Tz Ve TV
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olup burada A = \/ig + \/lgz ve iy, = \[J — 5\[16 olup X = \/ié + \/%z'% elde edilir.

A kompleks say1 ve X kesilmis kuaterniyon olmak iizere
qg=AX = eein¥

seklinde ifade edilebilir. Burada 6 = arccos ( ) ve 1) = arccos (%) oldugu acikca

gosterilebilir.

Lemma 3.2 Bk = (c+ dj) k = di + ck seklinde keyfi bir kuaterniyon verildiginde
iistel formu

B
eP* = cos |B| + Esm]ﬂ = g + P91 + 02k

bicimindedir.

Ispat. Bk = (¢ +dj) k = di + ck olmak iizere

B = =B
|B|

seklindedir. Ispat1 tamamlamak icin e’ = cos@ + 71sinf seklindeki klasik polar
formu goz oniinde bulundurmamiz yeterlidir. Burada n birim kuaterniyondur ve

ile tanimlanabilir. Ayrica |B| reel olup @ ile tanimlanabilmektedir. Boylece

1B|

d
ay =cos|BJ, By = <®) sin |B| ve 09 = <é) sin | B

elde edilmis olur. m

Teorem 3.3 ¢ = w + i + yj + zk seklindeki biitiin kuaterniyonlar
q= AePk

seklinde ifade edilebilir. Burada A, B € C olmak iizere 6zel olarak A = a + ¢j ve
B =c+dj dir.

Ispat. Eger ¢ = AeP* ise |q| = |A| dir. Klasik polar formda oldugu gibi B énem-
sizdir ¢tinkii ‘eBk‘ = 1 gergeklenir. Bu nedenle eger ¢ = 0 ise A = 0 olmak zorun-

dadir.

q = AeP* = (a4 cj) (ag + Byi + 02k) = aa + (afy + ¢b3) i + canj + (ady + —cBy) k
22



a # 0 (eP* nin reel kismi) olmak tizere amacimiz ¢ = acy +caj ve A = |—g| seklinde
bir kompleks say1 olusturmaktir. ¢ kompleks sayisinin reel ve imajiner kisminin,
sirasiyla, sifir oldugu A = j ve A = 1 6zel durumlar: vardir. Bu 6zel durumlarda ve
genel durumda bir igaret belirsizligi de vardir. « sayisinin isaretini bilmedigimiz i¢in
A ya da — A sayis1 tam olarak belirlenemez. o = 0 durumunda ¢ reel kuaterniyonun
birinci ve iiciincii bilegenleri sifir olacaktir. Bu nedenle ¢, zi 4+ zk bicimindedir
ve a = 1 ve ¢ = 0 alabiliriz. a + ¢j kompleks sayisim1 belirledikten sonra a + cj

kompleks sayisini eslenigi ile soldan carparak as + (5¢ + 02k kesilmis kuaterniyonu

elde edilebilir. Daha sonra dogal logaritma alarak
Bk = In(ag + Byi + 02k)

elde edilir. Bk sayisimin di + ck formunda olmas: gerekir. Bu nedenle B = ¢ + dj
olup
Bk = (c+dj)k =di+ ck

elde edilir. m
Teorem 3.4 ¢ =a+ bi+ c¢j+ dk (a,b,c,d € R) seklindeki her birim kuaterniyon
g=AX = ell¢le¥

seklinde ifade edilebilir. Burada A bir kompleks say1 ve X kesilmig bir kuaterniyon-

dur. Ayrica
b—cd d+ cb
%2:{ (ab — cd) i (ad + cb) k:}
Va2 + VR + & Va2 + AV + &P
span (i, k) diizleminde bir birim vektordiir ve i,,i,, = —1 dir.

Ispat. ¢ = a + bi + ¢j + dk bir birim kuaterniyon olsun. ¢ kuaterniyonunu yeniden

yazacak olursak
b d
= ) (1 ) k
g (a—i—cy)( +a+cjz+a+cj )
(a+ cj)

= ———~ (Va2 + 2+ Va2 + A (bi+dk

(a+ cj) (\/2
=——= (Va++Va®+ : ——
1= ot a+cj Vi + &

(a+cj) ( > { (ab — cd) , (ad + cb) })
= + 2+ Vb2 + d? + k
L/ vart ey NN - AN

elde edilir. Burada A = ve X = vVa?+ 2 + Vb + d?i,, seklindedir.
23
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Ayrica |2’¢2‘ = 1 olup iy,1,, = —1 gergeklenir. Sonug olarak ¢ kuaterniyonun polar

formu

g=AX = ell¢le¥

seklinde ifade edilibilir. =

Ornek 3.2 ¢ = \/%3—0 + \/L:Toi + \/i:To Jj+ \/igfok: birim kuaterniyonunu goz ¢niine alalim.

q kuaterniyonu agagidaki gibi yeniden ifade edecek olursak

0= (s + ) (1+1T(r rk;))

\/*-‘r\/*ﬂ
( 1 3 )
\/7 \/T)] + \[ 30 Z_ % k
L f V3 ) L2 1 V2
V3 V33 V3.3

olup burada A = \/% + \/%3 ve iy, = f. \[k olup X = f + ?z% elde edilir.

O halde A kompleks say1 ve X kesilmis kuaterniyon olmak iizere ¢ reel kuaterniyonu
qg=AX = eleie2?
seklinde ifade edilebilir. Burada 6 = arccos ( 10) ve 1) = arccos ( ) dir.

Lemma 3.3 Bi = (¢c+dk)i = ci + dj seklinde keyfi bir kuaterniyon verildiginde

iistel formu

B
ESIIILB‘ = (O3 +,63Z+(53]

P = cos |B| +
bicimindedir.
Ispat. Bi = (¢ + dk)i = ci + dj olmak iizere

B = =B
|B|

seklindedir. Ispat1 tamamlamak icin € = cosf + nsinf seklindeki klasik polar
formu goz oniinde bulundurmamiz yeterlidir. Burada n birim pure kuaterniyondur

B
ve E ile tamimlanabilir. Ayrica |B| reel olup 6 ile tanimlanabilmektedir. Boylece

d
agzcos\Bl,53:<|B|)sm|B| ve 03 = <|B‘)sm\Bl

elde edilmis olur. m
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Teorem 3.5 ¢ =w+zi+yj+ zk (w,z,y, z € R) seklindeki biitiin kuaterniyonlar
g = AeP

seklinde ifade edilebilir. Burada A, B € C olmak iizere 6zel olarak A = a + dk ve
B = c+ dk dur.
Ispat. Eger ¢ = AeP’ ise |q| = |A| dir. Klasik polar formda oldugu gibi B énemsizdir

¢linkii }eBi’ = 1 gerceklenir. Bu nedenle eger ¢ = 0 ise A = 0 olmak zorundadir.

q= AP = (a + dk) (as + Bai + 03)) = aas + (aB; — db3) i + (ads + dfBs) j + dask
¢

a # 0 (eP" nin reel kismi) olmak tizere amacimz ¢ = aaz + dask ve A = i
seklinde bir kompleks say1 olugturmaktir. ¢ reel ve imajiner reel ve imajiner kisminin,
sirastyla, sifir oldugu A = k ve A = 1 6zel durumlar1 vardir. Bu 6zel durumlarda ve
genel durumda bir igaret belirsizligi de vardir. « sayisinin isaretini bilmedgimiz i¢in
A ya da —A sayis1 tam olarak belirlenemez. @ = 0 durumunda ¢ kuaterniyonunun
birinci ve dordiincii bilegenleri sifir olacaktir. Bu nedenle ¢, xi 4+ yj bicimindedir
ve a = 1 ve d = 0 alabiliriz. a + dk kompleks sayisin1 belirledikten sonra a + dk
sayisinin eslenigi ile soldan carparak as + (3¢ + 037 yi elde edebiliriz. Daha sonra

dogal logaritma alarak

Bj = In(as + B4i + d3))

seklinde elde edilir. Bi sayisinin c¢i + dj formunda olmasi gerekir. Bu nedenle
B = ¢+ dk olup
Bi=(c+dk)i=ci+dj

elde edilir. m
Teorem 3.6 ¢ = a+ bi + ¢j + dk seklindeki birim her kuaterniyon
g=AX = eMeies?

seklinde ifade edilebilir. Burada A bir kompleks say1 ve X kesilmig bir kuaterniyon-

dur. Ayrica

L { (ab+ cd) . (ac — db) }

“T Vet BVETE | Vet VR &
span (i, j) diizleminde bir birim vektordiir ve iy, i,, = —1 gerceklenir.
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Ispat. ¢ = a + bi + ¢j + dk birim bir kuaterniyon olsun. ¢ kuaterniyonunu a + dk

parantezinde yeniden yazacak olursak

b C
—(a+db) (1 : '
g=(a+ )<+a+dk‘+a+dk3)
.- (a+ dk) (\/a2+d2+\/a2+d214_1 (bi—i—cj))

Vit 2
1 1
Vb2 + 02—2 (bt + cj))

(a+ cj) ( .
= —= (Ve +d+Va®+d?
= arae\Y Vet N

(a + dk) < 5 { (ad + cd) , (ac — db) })
= ——— + &+ V0t P -
1T VEr & va b VET PR LR VRt BVE L &

dk
elde edilir. Burada A = \(/aa—;—le ve X = Va?+d? + Vb + iy, seklindedir.
Ayrica |i¢3‘ = 1 olup i,,i,, = —1 gergeklenir. Sonug olarak bir kuaterniyonun polar

formu

g=AX = Meies¥

seklindedir. m

Ornek 3.3 ¢ = \/L:To + \/ig—oi + \/isT) Jj+ \/%k birim kuaterniyonunu goz ¢niine alalim.

q kuaterniyonun yeniden ifade edecek olursak

_ 1 4 1 2F 3
1= <¢_36+¢_33k) (1+—L+Lk (ﬁ”ﬁﬂ))

1 4
(75 7) <@+@{ B, _ })

1= 17 V30 | V30 | var 13 ' Vit 13/
V30 V30 v/30 /30 v/30
olup burada A = % + %k ve iy, = MT‘?i — %?j olup X = % + %iwg elde

edilir. O halde A kompleks say1 ve X kesilmig kuaterniyon olmak iizere
g=AX = eMeies?

seklinde ifade edilebilir. Burada 6 = arccos (ﬁ) ve 1) = arccos ( ;g) elde edilir.

i
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3.3 Split Kuaterniyonlar igin Yeni Polar Gosterimler

Her split kuaterniyon

g = AeP

seklindeki polar form ile ifade edilebilmektedir. Burada A = a + ib ve B = ¢ + di
seklinde iki kompleks say1 olup a,b,c,d € R dir. Oncelikle €57 nin ne tiir bir split
kuaterniyon oldugunu behrleyehm Burada Bj = (¢+di)j = ¢j + dk oldugunu

biliyoruz. Ayrica Bj = |B | 2) qur., et

| B

goz oniinde bulundurursak burada v birim piir split kuaterniyondur ve v =

= cos f+vsin 0 seklindeki klasik polar formu

B
| B
ile tanimlanabilir. Ayrica 6 acis1 yerine de kompleks sayinin modiiliinii alabiliriz.

Diger yandan Bj = cj + dk spacelike bir vektordiir. O halde 5’ kism spacelike
vektor kismi ile split bir kuaterniyondur. Bu nedenle iki durumda incelememiz
gerekmektedir (Atasoy vd 2017).

Durum 1 : Eger ¢P/ spacelike bir kuaterniyon ise;

. B
eBl = sinh |B|+ |_Bj| cosh | B| (3.1)
h|B|+ h|B|+ N h|B]|
= sin cos cos
!B | | Bl
= a1+ Sy +nk
. d
burada oy = sinh |B|, 8, = |B\ cosh |B|, v, = Bl cosh | B| dur.
Durum 2 : Eger %/ spacelike vektorel kismu ile birlikte timelike bir kuater-
niyon ise;
eB9 = cosh|B| + smh |B| |B| (3.2)
h\B|—|— h|B|+ — dk h|B|
= cos sin sin
!B | B

=+ [By) + 75k

d
— sinh | B| dir.

burada ag = cosh |B|, 8y = B

é sinh |B], 74 =
Teorem 3.7 ¢ =w + xi+yj + zk (w,x,y, z € R) seklindeki her split kuaterniyon
A, B € C olmak iizere
g = AeP
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seklinde ifade edilebilir (Atasoy vd 2017).
Ispat. Eger ¢ = AeP7 ise |q| = |A| dir. Klasik polar formda oldugu gibi B énem-
sizdir ¢iinkii |ij ‘ = 1 gergeklenir. Bu nedenle eger ¢ = 0 ise A = 0 olmak zorun-

dadir. 3.1 ve 3.2 egitliklerinden

q= A’ = (a+ib) (a + ) + k) = aa + bai + (aff — by) j + (ay + bB) k

¢

a # 0 (P9 nin reel kismi) olmak iizere amacimiz ¢ = ax + bai ve A = i seklinde
bir kompleks say1 olugsturmaktir. { kompleks sayisinin reel ve imajiner kisminin sifir
oldugu, sirasiyla, A = i ve A = 1 6zel durumlar vardir. @« = 0 durumunda ¢ reel
kuaterniyonunun birinci ve ikinci bilegenleri sifir olacaktir. Bu nedenle ¢, yj + zk
bigimindedir ve a = 1 ve b = 0 alabiliriz. a + bz kompleks sayisini belirledikten
sonra a + bi sayisinin eglenigi ile soldan carparak o + 55 + vk yi elde edebiliriz. Bj
olugturmak i¢in ise agagidaki durumlar: incelememiz yeterli olacaktir.

Durum 1: Eger ¢ spacelike bir kuaterniyon ise ¢/ = A~!q da spacelike bir
kuaterniyon olur ve

eP = sinh @ + p1cosh @

Btk

dir. Bj = pf denkleminden yararlanarak sinhf = o, y = m ve
J T

cosh @ = |3j + vk| oldugunu kolayca gorelebiliriz.
Durum 2 : Eger ¢ timelike bir kuaterniyon ise e’/ = A~!q spacelike vektorel

kistml bir timelike kuaterniyon olur ve

ePl = cosh @ + pisinh @

Btk

dir. Bj = pf denkleminden yararlanarak coshf = a, u = m ve
JT7

sinh @ = |37 4+ vk| oldugunu kolayca gorelebiliriz. m
Teorem 3.8 ¢ = a+ bi + ¢j + dk seklindeki her split birim kuaterniyon
g =AX = eVl

seklinde ifade edilebilir. Burada A bir kompleks say1 ve X kesilmig bir kuaterniyon-
dur. Ayrica

, { (ac+ bd) ‘ (ad — be) }
iy = J+ k
Va2 + b2/ c2 + d? Vaz + b2/ + d?
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span (j, k) diizleminde bir birim vektordiir ve 7,4, = £1 dir.
Ispat. ¢ = a+bi+cj + dk (a,b,c,d € R) birim bir kuaterniyon olsun. ¢ kuaterni-

yonunu yeniden yazacak olursak

q:m+M)Q+-C 4 @

at b’ atbi
bi
q= M (\/@2 + b2 + \/&2 + b2A—1 (Cj + dk))

va? + b2
1
vVt + d2—d2 (cj+ dk))

(a + bi) ( 5
= ——= + 0% + Va? + b2 :
1= /= T2 Va va a+bi 2+

(a + bi) ( - { (ac+ bd) , (ad — be) })
= ——= + 0%+ V2 + d? + k

¢ va?+b? va ve \/CLQ—i-bQ\/CQ—i-dT7 Va2 + b2y c2 + d?

(a + bi)

. B e 5 1 .
elde edilir. Burada A = —\/m ve X = Va?+ b2+ + d?i, dir. Ayrica i, =1

olup iy, = 1 gergeklenir. Sonug olarak bir split kuaterniyonun polar formu

q=AX = eeiv?
seklindedir. m

Ornek 3.4 ¢ = \/Lg i \/ng + \/lg j+ \/igk spacelike kuaterniyon olmak iizere ¢ split

kuaterniyonunu yeniden ifade edersek

1= 7
3
1,1
_ VBTV [va v 2 1
=5 <w¥%ﬂ4y¢y{ﬂj+¢¥}>
3
Weasvill VO 3
_ V33 2 5) 1 . _ 3
=5\ BTy Yok
V3 V3 3
dir. Burada A = \/Li + \%2 ve X = Lg + Lgiw olup X spacelikedir. Ayrica
iy = %]’ — %gk’ olup i, | = 1 ve i, i, = —1 gergeklenir. Buna gore § = % ve

¢:kg(¢%jﬁ)dmnﬁma

Ornek 3.5 ¢ = \/Lg + \%i—i— \/Lg J+ \/igk vektorel kism timelike olan bir timelike

kuaterniyon olmak iizere ¢ split kuaterniyonunu yeniden ifade edersek

2

— =1

1
BB (VB B 1
1= (B + 547 {5+ Hh})




oo|§oo|»—l
o

1,2
_ V3 VE (V5 v2) 1
Q—T<f+f{rﬂ ’f})
V3
dir. Burada A = 75—1—\/52 ve X = ? % 2, dir. Ayrica i, = %j—Lk olup

li, | = 1 ve i, i, =1 gerceklenir. Buna gore 6 = arccos ( ) ve 1) = log <3f*ﬁﬁ>

elde edilir.
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4. HIBRIT SAYILAR

Hibrit sayilar ctimlesi kompleks, dual, hiperbolik sayilar olmak iizere bu ii¢ say1
ciimlesinin birlesimini icermektedir. Hibrit sayilara karsihk gelen geometri Oklid,
Minkowski ve Galilean geometrilerinin yani sira bunlarin kombinasyonlarini igeren
en genel geometridir. Bu geometri "hibrit diizlem" geometrisi olarak adlandirilir,
eliptik, hiperbolik ve parabolik olarak siniflandirihip hibrit sayinin tiiriine gére ayri
ayr1 incelenir. Ayrica bu diizlem R* reel vektor uzaymm iki boyutlu bir alt uzayidir.
Bu béliimde hibrit sayilarla ilgili temel tanim ve teoremler 2018 yilinda Ozdemir
tarafindan yaymmlanan "Introduction to Hybrid Numbers" makalesinden faydali-
narak verilecektir (Ozdemir 2018). Bazi teoremler ispatlariyla birlikte bazi teorem-
ler ise ispatsiz bir gekilde yer alacaktir. Ayrica hibrit sayilar i¢in yeni polar form ve

yaprak parametrelendirmesi kavramlar: ele alinacaktir.
4.1 Hibrit Sayilarin Genel Ozellikleri

2018 yilinda Mustafa Ozdemir (Ozdemir 2018) tarafindan tamimlanan olmak iizere
H:{x+yi+za+wh:x,y,z,w eER*=—1,e2=0, h’=1, e+i= —hi:ih}

H ciimlesini goz 6niine alalim. Burada sirasiyla reel, kompleks, dual ve hiperbolik

birimler
1 = (1707070)7 E:: (0707170)7 h: (0707071)7 Z: (0717070)

seklinde olup bu birimler "hibrit birim" olarak adlandirilmaktadir. Bu sekilde
tanimlanan H ciimlesine hibrit sayilar ciimlesi ve bu ciimlenin her bir elemanina da

hibrit say1 denir. Bir hibrit say1
p=1x+yi+ ze +wh

olmak {izere reel kismi S(p) = z ve vektorel kismu V' (p) = yi + ze + wh olmak iizere
iki kisma ayrilir ve
p=>5(p)+Vi(p)

seklinde ifade edilir.
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Bu tamimda kompleks, hiperbolik ve dual birimler arasindaki iliskinin nasil bulun-
dugu veya bu denklemlerin neden tercih edildigi diisiiniilebilir. Bu esitlikler hibrit
sayilar ve 2 x 2 lik matrisler arasinda kurulan izomorfizm yardimiyla elde edilmistir.
Yani 6nce matris izomorfizmi tanimlanip daha sonra bu izomorfizme uygun hib-
rit sayilar belirlenmigtir. Bununla birlikte bu izomorfizm kompleks ve hiperbolik
sayilarin matris temsilleriyle ortiismektedir ve bu sekilde hibrit say1 sistemi olugtu-
rulmaktadir.

Esitlik: p; = 21 + y1t + 216 + w1 h ve py = 23 4 Yot + 226 + wyh herhangi iki hibrit

say1 olmak iizere iki hibrit sayiin esitligi
pL =P = X1 = T2, Y1 = Y2, 21 = 22, W1 = W

seklinde tanimlanir.
Toplama: p; = 1 + Y11 + 216 + w1 h ve py = X2 + Yot + 22€ + wyh herhangi iki hibrit

say1 olmak tizere iki hibrit sayinin toplami
pr+py = (T1+22) 14 (g1 +y2) i + (21 + 22) € + (w1 +w2) b

seklinde tanimlanir.
Qarpma: p; = 21 + Y11 + 216 + w1rh ve py = 2 + Yot + 226 + woh herhangi iki hibrit
say1 olmak {izere iki hibrit sayinin ¢arpimai ayri ayri bilesenlerinin ¢arpimi agagidaki

cizelge yardimu ile
p1Py = (1 + y1i + 216 + wrh) (2 + Yot + 226 + wrh)

elde edilir.
Hibrit sayilar ciimlesi iizerinde carpma islemi degismeli degildir fakat birlesme

ozelligine sahiptir. Agagidaki tablo iizerinden ¢arpma iglemini kolaylikla gorebiliriz.
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Cizelge 4.1 Hibrit sayilarin ¢arpimi

1 1 € h
171 1 € h
1|1 -1 1—h|e+1
ele| h+1 0 —
h|lh|—c—1 € 1

Eslenik: p = x + yi + ze + wh hibrit sayisinin eslenigi p ile gosterilmek iizere
p=25(p)=Vip) =z —yi—ze—wh

seklindedir. Burada pp = pp esitligi saglanmaktadir.
Bir p hibrit sayisinin karakteri C'(p) ile gosterilir ve

Clp) =22 + (y — 2)2 = 22 — u?

ile hesaplanir. Ayirca bir p hibrit sayisi i¢in sirasiyla eger C (p) < 0, C'(p) > 0 ve
C'(p) = 0 ise hibrit say1 spacelike, timelike ve lightlike olur. Diger taraftan

C'(p1p2) = C (p1) C (p)
esitligi gerceklenir (Ozdemir 2018).

Tanim 4.1 (Hibrit Sayilarin Vektorel Gosterimi) p = = + yi + ze + wh bir

hibrit say1 olmak {izere
VP = (QJ, (y - Z),’LU)
seklindeki gosterime hibrit sayilarin vektorel gosterimi denir. Ayrica
Clp)=pp=pp=2"+(y—2)" =2 —w’ ==V, V,)g

olarak da yazabilir (Ozdemir 2018).

Tanim 4.2 (Norm) +/|C (p)| sayisina p hibrit sayismin normu denir ve |p| ile

gosterilir. Ayrica

ol = Vgl = VIC (p)] = V]a? + (y = 2)? = 22 — w?
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ile tammlanir (Ozdemir 2018).

Tanim 4.3 (Hibrit Vektor) p =z + yi + ze + wh bir hibrit say1 olmak iizere

&= ((y—2),2w)
vektoriine p hibrit sayisinin hibrit vektorii denir. Ayrica

Celp) =—(y—2)* + 2" +w’ = (g, 5p)m

1
3

ile hesaplanir. Bir p hibrit saysi1 i¢in sirasiyla eger , C.(p) > 0, C.(p) < 0 ve
C:(p) = 0 ise hiperbolik, eliptik ve parabolik olur. C.(p) sayis1 hibrit sayinin tipini
belirler. \/|C-(p)| hibrit vektsriin normudur ve NV (p) ile gosterilir (Ozdemir 2018).
Split kuaterniyonlarda oldugu gibi hibrit sayinin, hibrit vektorii spacelike, timelike
veya null olabilir.

Herhangi bir hibrit say1 kartezyen koordinat sistemindeki gibi iki boyutlu bir koor-
dinat sisteminde gosterilebilir. Bu koordinat sistemi reel eksen ve hibrit eksenden
olugsmaktadir. Bu amagla hibrit saymnin reel kismi, reel eksen ve /[C.(p)| = N (p)
vektor kismi da hibrit eksen olarak belirlenmistir. Yani; bir hibrit sayinin reel kis-
minin degeri x ekseni veya apsis, \/m degeri y ekseni veya ordinat olarak ad-
landirihir (Ozdemir 2018).

Hibrit Eksen

r s

N(p) | 1 p=(a,N(p))

+ Reel Eksen

Sekil 4.1 Hibrit Koordinat Sistemi
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Bu sekilde taniml koordinat sistemine hibrit koordinat sistemi adi verilir. Buna

gore p = x + yi + ze + wh hibrit sayisi

p=<%v¢%y—@”+%+wﬂ)
ikilisi ile ifade edilebilir (Ozdemir 2018).

Tamim 4.4 (Bir Hibrit Saymin Tersi) p = = + yi + ze + wh , hibrit sayisinin

tersi

P

ile tammmlanmaktadir. Lightlike hibrit sayilarm tersi meveut degildir (Ozdemir 2018).

Tanim 4.5 (Hibrit Sayilarm I¢ Carpimi) p, = 2, + y1i + 216 + wih ve

Py = To + Yot + 22 + woh herhangi iki hibrit say1 olmak {izere bu iki hibrit sayimin

i¢ carpimi asagidaki gibi tanimlanir.

g(p1.pp) + HxH-—R

P1P2 + P2p1
2

Hibrit sayilarin i¢ carpimlar1 kompleks, hiperbolik ve dual say1 sistemleri i¢in

g (p1: o) = T1%2 + Y1Y2 — Y122 — Y221 — W1W3

genellestirilmig bir i¢ carpimdir (Ozdemir 2018).

Tanim 4.6 (Hibrit Sayilarin Vektorel Carpimi) p, = z1 + y1i + 216 + wih ve
Py = To + Yot + 22 + woh herhangi iki hibrit say1 olmak {izere bu iki hibrit sayimin
vektorel carpimu Cizelge 4.2 yardimu ile asagidaki gibi tanmmlanir (Ozdemir 2018).

X : HxH-—H
P1P2 — P2P1
2

Agagidaki tablo iizerinden vektorel garpma iglemini kolaylikla gorebiliriz.

P1L X Py =

(izelge 4.2 Hibrit sayilarin vektorel carpimi




4.2 Hibrit Sayilarin Matris Temsilleri

Hibrit sayilarin matris gosterimleri ozellikle hibrit sayilarin ¢arpimini kolaylastir-
mas1 acisindan oldukca onemlidir. 2 x 2 lik matrisler ve hibrit sayilar arasinda bir
izomorfizm tanimlayarak hibrit sayilar1 kolayca carpabilir ve 6zelliklerinin ¢ogunu
ispatlayabiliriz. Hibrit sayilar1 2 x 2 lik matrise kargilik gelen karakteristik denklemin

diskriminant1 ve determinant1 acisindan siiflanir.

Teorem 4.1 H hibrit sayilar halkas: reel sayilar halkasinin 2 x 2 lik Mo matrisine
izomorftur (Ozdemir 2018).

Ispat. p = = + yi + ze 4+ wh bir hibrit say1 olmak iizere
) T+ 2z y—z+w o
f o H— Mo, f(z+yi+z2e+wh) = bir izomorfizm
z—ytw Tr—z
belirtmektedir. Onceden tanimlanmis olan hibrit sayilar icin toplama ve carpma
islemleri goz oniine alindiginda agagidaki egitliklerin saglandigi kolayca goriilmekte-
dir.
f(p1p2) = [ (p1) [ (p2)

f(p1+p2) = f(p1)+ f(pa)

f birebir ve ortendir. Ayrica p; = x1 + Y11 + 216 +wih ve py = To + yoi + 206 + woh
icin

f(p1) = [ (ps)
ise iki matrisin egitliginden z; = 29, 1 = T2, Y1 = Yo, w1 = woy dir. Diger taraftan

2 x 2 lik reel matris

x
A=|""7
zZ W
olmak {izere p = (x;—w) + <x—|—y—#> 1+ (x ; w> e+ <yT—i-z> h olup
f(2) = A elde edilir. f halka izomorfizmi olur. =
Yukaridaki izomorfizme gore
0 . 0 1 1 -1 0 1
f(]'): 7f<Z): ) €)= 7f(h):
0 -1 0 1 -1 10



dir. Bu dort matris 2 x 2 lik matrislerin vektoér uzaymin bazlaridir. Bu durumda
her 2 x 2 lik matris birim dual, kompleks ve hiperbolik sayilarin birlesimi olarak

yazilabilir.

Teorem 4.2 p hibrit sayisina kargilik gelen matris A olmak tizere agagidaki egitlikler

saglanmaktadir (Ozdemir 2018).

lp| = /|det A| ve C'(p) = det A

B trA —4det A

C: (p) 1

Sonug 4.1 p € H hibrit sayisinin tersi olabilmesi i¢in <= det f (p) # 0 olmasidir
(Ozdemir 2018).

Sonug 4.2 A, 2 x 2 lik bir reel matris olmak iizere Ay = (trA)2 — 4 det A karak-

A
teristik polinomun diskriminantidir ve C; (p) = TAdir.

f(p) = A, p hibrit sayisina karsilik gelen matris olmak iizere A matrisine gore z

hibrit sayisin1 simiflandirabiliriz.

C(p) =det A ve C. (p) = w

esitliklerinden goriildiigii iizere p hibrit sayisinin tiirii ve karakteri matrisin deter-
minant ve izine baghdir. A matrisi i¢in sirasiyla , det A > 0, det A < 0 ve det A =0
ise timelike, spacelike ve lightlike olur.

Ayrica p = x+yi+ ze +wh hibrit sayisina kargilik gelen f (p) matrisinin 6z degerleri

ve 0z vektorleri sirasiyla

)\:xi\/T(p)vev: (p—l—JT(p),z—y%—w)

seklindedir. Ay = (trA)> — 4det A ile hibrit saymin tipini belirleyebiliriz. z hibrit
sayisi i¢in sirasiyla , Ay > 0, Ay < 0ve Ay = 0 ise, hiperbolik, eliptik ve parabolik
olur (Ozdemir 2018).

4.3 Hibrit Sayilarin Kutupsal Gosterimleri

e p=2x+yi+ ze + wh bir eliptik hibrit say1 olmak {iizere hibrit vektorii
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g, = ((y — 2),2z,w) € R?® olur. Tiim eliptik hibrit sayilar timelike olup e, timelike
vektordiir. Yani C.(p) = —(y—2)2+22+w? < 0ve C(p) = 224+ (y—2)*—22—w? > 0
dir. Boylece

Il = Va2 + (y—2)2—22—w? ve N (p) = /(y— 2)2 + 22+ w? olur.O halde p

eliptik hibrit sayinin kutupsal gosterimi

p = |p| (cosf + V;sin )

Vi)
N (p)

olup burada V = ve V& = —1 olur.
e p=1x+yi+ ze + wh bir hiperbolik hibrit say1 olmak iizere hibrit vektorii

g, = ((y—2),2,w) € R? olur. Hiperbolik hibrit sayilarda, hibrit vektor spacelike

olur. Yani C.(p) = —(y—2)*+2*+w? > 0ve N (p) = \/—(y — 2)% + 22 + w? seklinde-
dir. Diger taraftan hibrit sayimin karakteri spacelike, timelike ve lightlike olabilir.

O halde ii¢ durumda incelememiz gerekmektedir.

1. Eger p spacelike hiperbolik hibrit say1 ise C'(p) < 0 ve

Ipl = /=22 — (y — 2)® + 22 + w? olur. O halde kutupsal gésterimi
p = |p| (sinh 6 + V{ cosh 0)
seklinde ifade edilir.

2. Eger p timelike hiperbolik hibrit say1 ise C'(p) > 0 ve

Ip| = /22 + (y — 2)2 — 22 — w? olur. O halde kutupsal gosterimi

p = |p| (cosh 0 + V; sinh 6)

seklinde ifade edilir.

3. Eger p lightlike hiperbolik hibrit say: ise C(p) = 0 ve |p| = 0 olur. Bu
durumda N (p) = a olup kutupsal gosterimi

p=a(l+Vp)

seklinde ifade edilir.
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e p=1x+yi+ ze +wh bir parabolik hibrit say1 olmak iizere hibrit vektorii

e, = ((y — 2),z,w) € R® dir. Parabolik hibrit sayilarda hibrit vektor lightlike olur.

Yani C.(p) = 0 ve |p| = 0 dir. O halde p parabolik hibrit sayisinin kutupsal gosterimi

p=lpl(e+ Vo)

Vip)
Pl

4.4 Hibrit Sayilar Icin Euler Formiilleri

olup burada Vj = ve V2 =0, e = sgn (S(p)) dir (Ozdemir 2018).

Ustel, trigonometrik ve hiperbolik fonksiyonlarn seri acilimlarimi kullanarak hibrit
sayllar icin Euler formiillerini agagidaki gibi ifade edebiliriz (Ozdemir 2018).
(izelge 4.3 Hibrit sayilar i¢in Euler formiilleri

p=e"? =cosf + Vsinb p eliptik

p=¢e"? =coshf + Vsinh timelike hiperbolik
P

p=VeY? =sinhf + V coshf | p spacelike hiperbolik

p=¢e""=(c+V), e=sgnS () p parabolik

Bu formiiller kompleks, dual ve hiperbolik sayilarin i¢in bilinen Euler formiillerinin

genellestirilmesidir.
4.5 Hibrit Sayilarin Yaprak Uzerindeki Cebirsel Yapisi

Pfaff (Pfaff 2000) dérdiincii bilegeni sifir olan reel kuaterniyonlarin bir alt ciimlesini
ele almigtir. Tiim bu kuaterniyonlarin ciimlesi, reel kuaterniyonlarin ii¢ boyutlu bir
alt vektor uzayim olusturan kesilmis reel kuaterniyonlar olarak adlandirilir. Bu alt
uzay 1, ¢ ve j elemanlar tarafindan iiretilmektedir. Buradan hareketle bir kesilmig
kuaterniyon ¢ = a + bi 4+ ¢j olarak gosterilebilir. Bu alt uzayin ¢arpma iglemine
gore kapal olmadigr agiktir. Bununla birlikte Pfaff (Pfaff 2000) bu {igliilerin kapali

oldugu bir ciimle tanimlamigtir.

Biz de bu makaledeki benzer fikirleri kullanarak hibrit sayilarin dért boyutlu uzayini
diisiinelim. Dordiincii bilegeni sifir olan hibrit sayilarin ctimlesini ele alalim. Tiim

bu hibrit sayilarin kiimesi hibrit sayilarin ii¢ boyutlu alt vektor uzayini olusturur
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ve kesilmig hibrit sayilar olarak adlandirihir. Bu durumda bir kesilmis hibrit say1
p = a + bi + ce ile gosterilir. Kesilmig hibrit sayilar ctimlesi yaprak diizleminde yer
almaktadir ayrica hibrit sayilarin ¢arpma islemine gore kapali ve degigsmeli degildir.

Bununla birlikte bu tigliilerin kapali ve degismeli oldugu bir carpma tanimlayabiliriz.
4.5.1 Hibrit sayilarin yaprak iizerindeki degismeli ¢arpim

p = (ay,b1,¢1) = a1 + byi + c16 ve ¢ = (ag, by, c2) = as + bai + co¢ iki tane kesilmig
hibrit say1 olmak iizere burada b;ve ¢; (by ve ¢g) sifirdan farkl olsun. Amacimiz ke-
silmig hibrit sayilar icin kapali ve degismeli bir carpma tanimlamaktir. pq carpimini

hesaplarsak
pq = (alag + Clbg — blbg)l i (alag a4 blag) 1+ (alcg + Clag) €+ (Clbg — blcg) h

Kesilmig kuaterniyonlarin ¢arpma iglemine gore kapali olmasi igin h bilegeninin sifir

olmasi gerekir. Bu durumda

C1 Co

g R\ {0
b, 1€ \ {0}

olmalidir. Buradan
b= (ala 07 0) + (Oa b17 Cl) = (ala Oa O) + Up

ve

q= ((127070) + (07 b2762) - (a27070> + Uq

olup burada U, ve U, sifirdan farkh vektoérlerdir. O halde U, = nU, olup
U, = (0,mb1,nc1) oldugu kolayca goriilmektedir.
O halde

pq = (araz + nb? + 2nbicr) 1+ (nasby + brag) i + (naycy + craz)
elde edilir. Bu carpim agagidaki 6zelliklere sahiptir.

1. Ayni yaprakta yer alan p ve g kesilmis hibrit sayilarinin ¢arpimi olan pq yine

ayn1 yaprakta yer alir. Bu yiizden hibrit sayilarin ¢carpma iglemi kapalidir.

2. Degisme 6zelligine sahiptir.
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3. Aymi yaprakta yer alan vektorler bu carpma birlesme ve degisme 6zellgine

sahiptir. Ciinkii hibrit sayilarda ¢arpma isleminin ¢zel bir halidir.

4. p = a; + byt + c1) kesilmig hibrit sayisi ile eglenigi olan p = a1 — b1i — cyi ile
aym yapraktadir ve pp = (a® + (b — ) — A1=| p||? esitligi gerceklenir.

5. p nin tersi olan p~! = ﬁ kesilmis hibrit sayisi p ile ayn1 yapraktadir.
p

Ornek 4.1 p=1+i+e vew =3+ 2i + ¢ iki kesilmis hibrit say1 olmak iizere
p=1+i+e=(1,0,0)+(0,1,1) = (1,0,0) + U,

ve
w=34+2i+¢e¢=(3,0,0)+(0,2,1) = (1,0,0) + U,

icin

pw=(1+i+¢e)(3+2i+¢e)=4+5i+4c+h ve

wp=(34+2i+¢e)(1+i+e¢e)=443i+2e—h olup pw # wp oldugundan bu kesilmis

hibrit sayilarin carpimi degismeli degildir. Ayrica kapal da degildir.

Ornek 4.2 p=1+i+4e vew =5+ 2i + 2¢ iki kesilmig hibrit say1 olmak iizere
p=1+i4+e=(1,0,0)+(0,1,1) = (1,0,0) + U,

ve

w=5+2+e=(500)+(0,2,2) = (1,0,0) + U,

icin pw=(14+i+¢)(54+2i+2)=T7+Ti+ Tec ve
wp = (5+2i+2¢)(1+i+¢e) =7+ Ti+ Te olmak tizere U, = 2U, oldugundan bu

kesilmig hibrit sayilarin ¢arpimi degismeli ve kapalidir.
4.5.2 Kesilmis hibrit sayilarin yaprak iizerindeki kompleks yapisi

p = a+ bi + ce, i yoniinde ac1 yapan ve span{1,e} diizleminde i, birim vektorii
tarafindan belirlenen yaprakta sifirdan farkli kesilmis bir hibrit say1 olsun. Yaprak 1
ve i, birim vektorleri tarafindan tiretildigi icin p hibrit say1sin1 agagidaki gibi yeniden

yazabiliriz.
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p = (a,0,0)+U

U
= a(1,0,0) +U+——
1U]]

= a(1,0,0)+ Ui,

U .
_ Hp||<H (L0 o>+mz@)

= peied

burada i, = ve 1,0, = £1 dir.

U
[l
Asgagidaki 6rneklerde yaprak parametresi cinsinden kesilmis hibrit sayilarin kutupsal

formlar1 incelenmistir.

3 3
Ornek 4.3 p = £ + \/7_ + %_5 birim eliptik kesilmis hibrit sayidir. Ciinkii

1
lpl =1, C(p) =1 >0 ve Cep) = Y 0 dir. p hibrit says1 {1,i,} bazina gore

yeniden yazilacak olursa

p = cost +i,sind

V3 1.

= _+§Z¢

3 3
elde edilir. Burada i, = V3i+ ~¢ ve = arccos — olur. Ayrica iyi, = —1 elde

edilir.

Ornek 4.4 p = 2+ i+ 3¢ birim hiperbolik spacelike kesilmis hibrit sayidir. Ciinkii
lpl =1, C(p) = =1 < 0 ve C.(p) =5 > 0 dir. p hibrit says1 {1,4,} bazina gore

yeniden yazilacak olursa

p = sinhf + i, cosh@

= 2+ 56,
V5. 35

elde edilir. Burada i, = 3 —i+ T&T ve § = In (2 + \/5) olur. Ayrica iyi, = 1 elde
edilir.

Ornek 4.5 p =3+ i+ ¢ hiperbolik timelike kesilmis hibrit sayidir. Ciinkii
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C(p) =8 > 0ve C(p) =1 > 0 dir. p hibrit sayis1 {1,,} bazina gére yeniden

yazilacak olursa

p = cosh@ +i,sinh6
2 1

4+ —
2v/2  2v2 7

elde edilir. Burada i, = ¢ + ¢ ve i,i, = —1 elde edilir.

Ornek 4.6 p = 2 + 2i + ¢ parabolik kesilmis hibrit sayidir. Ciinkii C(p) = 4 > 0
ve C.(p) = 0 dur. p hibrit sayis1 {1,4,} bazna gore yeniden yazilacak olursa

ﬁ = €+1i,
= 144,
elde edilir. Burada e =1, i, =i + 58 ve 1,0, = —1 elde edilir.

4.6 Hibrit Sayilarin Yaprak Uzerindeki Yeni Kutupsal Formu

Lemma 4.1 Bi = (c+dh)i = (¢ —d)i — de bi¢imindeki herhangibir hibrit say:

goz oniine alindiginda iistel formu i¢in ii¢ durum sz konusudur.

i) Eger eP! kesilmig eliptik hibrit say1 (tiim eliptik sayilar timelike) ise bu

durumda
Bi B . .
—d)sin |B
seklindedir. Burada B = ¢+ dh (¢,d € R), a; = cos|B|, 3, = %
—dsin |B| .
= —— dir.
1 |B| ir

ii) Eger eP' kesilmis spacelike hiperbolik hibrit sayi ise bu durumda

. B
P! = sinh |B| + — cosh |B| = ag + Byi + 7o¢

| B|
—d h|B
seklindedir. Burada B = ¢+ dh (c,d € R), ap = sinh|BJ, 3, = ‘ \);TS =
—dcosh |B]| .
71 |B| 1
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iii) Eger P! kesilmig timelike hiperbolik hibrit say1 ise bu durumda

4 B
eP = cosh |B| + — sinh | B| = a3 + B30 + v4¢

| B|
— d)sinh |B
seklindedir. Burada B = ¢+ dh (c,d € R), a5 = cosh|B|, fy = - |)f;1|rl =
—dsinh |B| .
= ——"1"1 dir.
3 | B

Teorem 4.3 ¢ = a + bi + ce + dh seklindeki biitiin hibrit sayillar A = a + bh ve
B = ¢+ dh iki hiperbolik say1 olmak iizere ¢ = Ae®? olarak ifade edilebilir.

Ispat. Eger ¢ = AeP ise |¢| = |A| olur. Klasik polar formda oldugu gibi B
onemsizdir ¢iinkii ‘eBi| = 1 gerceklenir. Bu nedenle eger ¢ = 0 ise A = 0 olmak
zorundadir.

Yukaridaki Lemmadan yararlanarak hibrit sayiy1 yeniden ifade edecek olursak
q = AeP' = (a+bh) (a+ Bi+~e) = aa + (aB — bB) i + (ay + by — bB) e + bah

dir.
a = 0 alirsak ¢ hibrit say1s1 ¢ = ye + zh formundadir. Diger yandan o # 0 (!

nin reel kismi ) ve £ = aa + bah olarak alirsak A = olur. Oyleyse asagidaki

€l
durumlar: incelemeliyiz.

Durum 1: Eger ¢ spacelike bir hibrit sayi ise e?* = A~1¢ da spacelike bir hibrit
say1 olur ve

eP" = sinh 6 + 11 cosh 6

_ Bitne

dir. Bi = pf denkleminden yararlanarak sinh = o, p = W ve
1+ e

cosh 0 = |Bi + ve| oldugunu kolayca gorebiliriz.
Durum 2 : Eger ¢ timelike bir hibrit say1 ise e?’ = A~!q spacelike vektorel

kistml bir timelike hibrit say1 olur ve

eBI = cosh @ + p1sinh 6

_ Bite

dir. Bi = pf denkleminden yararlanarak coshf = «, p = W ve
i+ e

sinh § = |Bi + ~ve| oldugunu kolayca gorebiliriz.
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Durum 3 : Eger ¢ eliptik bir hibrit say1 ise e’ = A~!q eliptik bir hibrit say1

olur ve
Bj _ .
e?) =cosf + pusind

Bi+ e

dir. Bi = puf denkleminden yararlanarak cosf = a, p = W ve
i+ e

sin @ = | i + ve| oldugunu kolayca gorebiliriz. m

Teorem 4.4 ¢ = x + yi + ze + wh seklindeki birim her hibrit say1
g=AX = eMeie?

seklinde ifade edilebilir. Burada A hiperbolik bir say1 ve X kesilmig bir hibrit sayidir
(xy + yw) i (xz + yw — zw)

7Span{i7€}
Vi +y?/(y —2) +w2 Va2 + 2/ (y — 2)° — &2

diizleminde birim vektordiir.

Ayrica i, =

Ispat. ¢ = x+yi+ ze+wh birim hibrit say1 olsun. ¢ hibrit sayismi yeniden yazarsak

q= (‘T i wh) (1 :1:+th + m+wh )

(z+wh)

= V01?2 —w?| + /]2? — w?| AL yH—zs)

_(ztwh)

Vi)

= s (VI V= - i 29)

w2 _|_ \/ — Z — 2 Ty+yw)i (xztyw—zw)e
‘ ‘{\/962+92\/y 2)?+w? \/x2+y2\/y 2)?—d?

Burada A = % ve X = /|z?2 +w?| + \/‘(y . 22i,, olarak ele almrsa g
hibrit saymin kutupsal formu ¢ = A.X = e"e¥i¢ olur. Ayrica ||i || = 1 ve iyi, = £1

gerceklenir. m
Burada en 6nemli nokta bir hibrit sayinin hiperbolik bir say1 ve kesilmis bir kuater-

niyon carpimi olarak fade edilmesidir.

Ornek 4.7 ¢ = s + 30+ 3¢ + h hibrit sayism ele alahm. ¢, C.(¢q) = 2 > 0,

5
1
C(q) = —1 < 0 ve |g| = 1 oldugundan hiperbolik spacelike bir hibrit sayidir ¢ hibrit
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sayisini yeniden yazacak olursak

N

1 1
+h)Z - 2(;+h)€:|

N = N[ =

+ h) {1+2(
V3 3

(
_ G
-

burada A = ( 7 \/h> X = ‘[ + 7,¢ ve i, = V3i + 5 olarak ele alinirsa ¢

| —

2+ BA7 (Li+ Le)]

ban) [ -1 {vaie )]

S s

3

hibrit sayis1 ¢ = A.X biciminde yazilabilmektedir. Burada kolayca gosterilebilir ki
i ]| = 1 ve iyi, = —1 dir. Buna gore § = +1In+/3 ve ¢ = —% icin A hiperbolik
sayl ve X kesilmis bir hibrit say1 olmak tizere polar formlar sirasiyla e ve ei?
seklindedir. Sonuc olarak ¢ = e"?.e?¥ olup say1 iki Euler parametresi cinsinden
ifade edilmis olur.

Diger yandan hibrit sayilarin matris temsillerini kullanarak ¢ hibrit sayisinin matris
formunu A ve X sayilarinin matris formlar1 yardimiyla ifade edecek olursak

f+ H— Msys izomorfizmi ile

1

= [ (A) F(X)

Sl Sl
S-Sk

7
2
V3

H
S
S s

elde edilir.

Ornek 4.8 ¢ = \% + \/igz + \%8 + \/igh hibrit sayisi ele alahm. ¢, C.(q) = % >0,
C(q) =1 > 0 ve |g| = 1 oldugundan hiperbolik timelike bir hibrit sayidir. ¢ hibrit

sayisini yeniden yazacak olursak

burada A = < , X = [M — L } ve i, = 12*[@—1— 7‘f5 olarak ele alinirsa

BT )
¢ hibrit sayis1 ¢ = A.X biciminde de yazilabilmektedir Burada kolayca gosterilebilir
ki [|liy]| = 1 ve iyi, = —1 dir. Buna gore § = +/3 ve ¢ = (M) icin A
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hiperbolik say1 ve X kesilmig bir hibrit say1 olmak tizere polar formlar sirasiyla e’
ve e'*¥ geklindedir. Yani g = e .e¥ dir.

Diger yandan hibrit sayilarin matris temsillerini kullanarak ¢ hibrit sayisinin matris
formunu A ve X sayilarimin matris formlar1 yardimiyla ifade edecek olursak

f+ H — Msys izomorfizmi ile

V5 2 3 1 15 5
_ V5| _|V8 VB| | vas Vm| _
f(q) ;o N f(A) f(X)
VB i VBl L vm Vm

elde edilir.

Ornek 4.9 ¢ = \/lg + \/iéi + \/Lgé + \/iéh hibrit sayisim ele alahm. ¢, C.(q) = —% <0
C(q) =1 > 0 ve |g| = 1 oldugundan eliptik timelike bir hibrit sayidir. ¢ hibrit

say1sini yeniden yazacak olursak

|
burada A = (%ﬁ + ‘/?gh), X = [\% + %z}p] ve i, = 3i + %6 olarak ele alinirsa ¢
hibrit sayis1 ¢ = A.X bigiminde de yazilabilmektedir. Burada kolayca goriilmektedir
ki ||i,]| =1 ve iyi, = —1 dir.
Buna gore § = +1n (\/3) ve 1 = % igcin A hiperbolik say1 ve X kesilmis bir hibrit
say1 olmak iizere polar formlar sirasiyla e’ ve e¢¥ seklindedir. Yani ¢ = e .e'¥
dir.
Diger yandan hibrit sayilarin matris temsillerini kullanarak ¢ hibrit sayisinin matris
formunu A ve X sayilarinin matris formlar1 yardimiyla ifade edecek olursak

f: H — Msys izomorfizmi ile

E 23 V3 W2 52

_ 6 6 _ | 3 3 6 6 o

fla) = 1 o3| |8 2v3| |52 _ 2 = /(A F(X)
/6 V6 3 3 6 NG

elde edilir.



Ornek 4.10 ¢ = 3 + 7i — 4e + v/2h hibrit sayisin ele alalim. g, C(qg) =9>0,
C(q) = 0 oldugundan hiperbolik lightlike bir hibrit sayidir ¢ hibrit sayisin yeniden

yazacak olursak

¢ = (3+V2n) [1+ g Ti+ oime]
= B VT4 TAT (7i - )]
_ 3+/2h 214+7V2 ;| 11/2-12
= BB [T V05 { 2402 4 ez ]

burada A = (%); X = [\/7+ \ 105%] ve i, = 214:}\72 + 11\([ 122 olarak ele

alimirsa ¢ hibrit sayis1 ¢ = A.X biciminde de yazilabilmektedir. Burada kolayca

gosterilebilir ki [|i, || =1 ve i i, = —1 dir.

Buna gore 6 = In (3?[) igin A hiperbolik say1 ve X kesilmig bir hibrit say1 olmak
tizere polar formlar sirasiyla €™ ve e¥% seklindedir. Yani ¢ = e"?.e%? dir.

Diger yandan hibrit sayilarin matris temsillerini kullanarak ¢ hibrit sayisinin matris

formunu A ve X sayilarinin matris formlar1 yardimiyla ifade edecek olursak

f+ H — Msys izomorfizmi ile

3 V2 1943v2  9+4V2
P20 IR A I A B B g Yo
—3+v2 o -l i ol T T

elde edilir.

Ornek 4.11 ¢ =1+ 18i + 8 + 6A hibrit sayismi ele alalim. ¢, C.(¢) = 0

C(q) = 1 > 0 oldugundan parabolik timelike bir hibrit sayidir. ¢ hibrit sayisim

yeniden yazacak olursak

18i + 8¢

g = (1+6h) [1—1— Tieh
— o [\/3_ — /35471 (18i+8e)]

. (1+6h) 21
= R VI o { Fi + 5]

21 34 |
burada A = <\ﬁ \ﬁ) [\/_ 6{ Z+3\ﬁ H Vezw—\ﬁz—kg\ﬁ
olarak ele alinirsa ¢ hibrit sayis1 ¢ = A.X bigiminde de yazilabilmektedir. Kolayla

gosterilebilir ki ||i,|| = 1 ve i,i, = —1 i¢in § = FIn ( > ve 1) = In (6 &= v/35) dir.

O halde A hiperbolik say1 ve X kesilmig bir hibrit say1 olmak {iizere polar formlar

sirasiyla €™ ve ¥ geklindedir. Yani ¢ = e"?e?¥dir.
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Diger yandan hibrit sayilarin matris temsillerini kullanarak ¢ hibrit sayisinin matris
formunu A ve X sayilarimin matris formlar1 yardimiyla ifade edecek olursak

f+ H — Msys izomorfizmi ile

9 16 1L 6 _ 33 _ 58
o) = - |TE T R s
A B v v 3 B v S

elde edilir.
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5. TARTISMA VE SONU(C

Kuaterniyonlar kinematikte hareketlerin incelenmesi bakimindan énemli rol oyna-
maktadir. Bu tezde 6ncelikle kuaterniyonlar i¢in polar form tanimlanmig sonrasinda
ise reel ve split kuaterniyonlar igin yeni bir polar formlar elde edilmigtir. Bu polar
formlarin daha iyi anlasilabilmesi i¢in teori 6rneklerle desteklenmistir. Bununla bir-
likte yaprak parametresi kavrami tanitilmig ve kuaterniyonlarin yaprak parametresi
cinsinden temsillerine yer verilmisgtir. Diger kuaterniyon cesitleri bu yeni polar form
cinsinden incelenmemis olup kuaterniyonlar iizerine ¢aligan arastirmacilar i¢in yeni

calisma alanlar1 yaratabilir.

Hibrit sayilar kompleks, dual ve hiperbolik sayilarin kombinasyonlarini iceren bir say1
sistemidir. Bu tezde Ozdemir tarafindan bir yayimla verilen hibrit sayilarm cebirsel
ve geometrik ozellikleri incelenmigtir. Ayrica, hibrit sayilar i¢in yeni bir polar form
tanimlanmigtir. Bununla birlikte hibrit sayilar i¢in yaprak parametresi kavramina
yer verilmigtir. Burada dikkat cekilecek noktalardan biri ise ¢ = a + bi + ce + dh
bir hibrit sayisin1 sadece (a + dh) parantezine alindiginda igeride bir yaprak yapisi
tanmimlanmis olmasidir. Hibrit sayilar farkli say1 sistemlerinin kombinasyonlarimi
icermesi acisindan aragtirmacilar i¢in yeni say1 sistemleri tanimlarken giizel bir fikir

olusturulabilir.
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