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OZET

Bu galismada Lie donigim gruplarinin yapisi, 6zellikleri, Lie nokia donigimleri
Lie degme donigimleri ve Lie-Backlund donigimleri incelenmis ve bazi mihen-
dislik problemlerine uygulanmigtir.

Birinci bolimde, oncelikle cebirsel bir yapi iizerinde kurulan Lie doniigim

gruplannin Ozellikleri, bunlarla olugturulan sonsuz kiigiik déntigiimleri, bunlarn
iiretegleri ve Lie’nin birinci temel teoremi verilmigtir. Bir x* = X(x; €) doniigimi
altinda verilen bir F(x) fonksiyonunun degigmezligi aragtinlmig ve yine x* =
X(x; €) Lie doniigim grubu igin kanonik y = (w1, v, ..., ¥ ) koordinatlan yardi-
miyla g = 4,4, = ¢yn +€,¢ = 1,2,..,n — 1 doniigim grubuna dénigtirildigi
gosterilmigtir. Bir x noktasimin x* = X(x; €) doniigiimi altinda x* = x oldugunda
degismez bir nokta; bir F(z,y) = 0 egrisinin z* = X(z,y; ¢),
y* = Y(z,y;€) doniigimi altinda F(z*, y*) = 0 oldugunda bir degigmesz egri ve
F(x) = 0 ylizeyinin ayni x* doniigimi altinda F(x*) = 0 oldugunda degigmez
bir yizey oldugu gosterilmigtir. r-parametreli x* = X(x;¢€) , € = (€1, €25, €r)
dontgiim grubunun X, ireteglerinin olugturdugu vektdr uzayinin, baz kogullar
sagladiginda bir £ Lie cebri olugturdugu gésterilmigtir. Bir Lie cebrinin bir ide-
ali yardimiyla tanimlanan ¢éziilebilir Lie cebri kavrami diferansiyel denklemlerin
¢oziiminde onemli kolayliklar saglamaktadir.

Ikinci botimde verilen bir diferansiyel denklemin, bir Lie grubunu kabul etmesi”
ve bu grup altinda degigmezligi ele alindr. ¥ = f(z,y) seklinde verilen bir dife-
ransiyel denklem z* = X(z,y;¢),y* = Y(z,y;¢) doniigim grubu altinda (7, 3)
kanonik koordinat donigiimi ile indirgenerek genel ¢oztimi bulundu. gy, =
f(z, 9,91, ..., yo—1) diferansiyel denklemi igin kanonik koordinatlar yardimiyla mer-
tebesinin bir basamak diigiirilebildigi gorildi. n inci mertebeden bir adi diferan-
siyel denklemin kabul ettigi sonsuz kiigiik doniigiimler i¢in belirleyici denklemler
elde edilerek denklemin kabul ettigi simetriler bulundu. Ayrica n inci mertebeden
bir denklemin kabul ettigi doniigim grubu r-parametreli ise ve bunun olugtﬁrdugu
r-boyutlu Lie cebri, ¢ozillebilir ise, denklemin mertebesinin r defa diigiriilebilecegi
kamtlandi. Ugiincii b5liimde Degme donigimleri incelenerek % = 0 denkleminin
degme simetrileri elde edildi. Son bélimde Noether teoremi ile genellegtirilmig
Lie-Backlund simetrileri ele ahindi, verilen bir fiziksel sistem icin korunum ku-
rallan verildi ve son olarak genellegtirilmig Lie-Bicklund simetrileri yardimiyla
Burgers denkleminin kabul ettigi simetriler elde edildi.



SUMMARY

SYMMETRY ANALYSIS OF DIFFERENTIAL EQUATIONS

In this study, structures of Lie Groups of transformations, their properties,
Lie point , contact transformations and Lie-Béacklund transformations are inves-
tigated ; also they are applied to some Engineering problems.

In the first chapter, the properties of Lie group of transformations constructed
over an algebraic structure, infinitesimal generators and Lie’s first fundamental
theorem are given. Invariance of a function F(x) = O under a given trans-
formation x* = X(x;€) is investigated. For any Lie group of transformations
x* = X(x; €) there exists a set of canonical coordinates

Y =(y1,%2 - ¥n)

such that
x* = X(x;€)

is equivalent to

o= y,1=12.n-1
Yo = Uate

A point X is an invariant point for the Lie Group of transformations x* = X(x; ¢€)
if and only if x* = x under x* = X(x;¢). A curve

Flz,y)=0
is an invariant curve for a one-parameter Lie Group of transformations

= X(z,y€) =2+ ef(z,y) + O(*)
¥ = Y(z,9,¢) =y + enfz,y) + O(e*)

with infinitesimal generator
3 3
X = €a,0) 2 + 15 9
if and only if F(z*, y*) = 0 when F(z,y) = 0. A surface

F(x)=0
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is an invariant surface for a one-parameter Lie Group of transformations x* =
X(x;¢€) if and only if F(x*) = 0 when F(x) =0.

It is shown that if 4 = (u',u® ..,e™) and & = (21,22, ...,Zs) denote re-
spectively m-dependent and n-independent variables, the transformation group
z* = X(z,u;¢),v* = U(z,u;¢€) in the (z,u) -space can be extended to transfor-
mations group

z* = X(z,u;¢€)
wt = Ulz,u;€)
" U(z,u, u;€)
1 1 1

v = Uz, v, u,..,u;€)
k 1 k

in the (z,u, u, ..., u }-space:
1 k

The total derivative operator is defined by

D _0 iwlinli 4 9 4
Dm_é‘:r ylay y23y1 yn+1ayn

In the case of one dependent and one independent variables, the kth extension of
the one-parameter Lie Group of tranformations

" =X(z,4,6),y" =Y(z,9¢)
is given by

z* = X(z,y¢),

¥ = Y(z,y¢),
DYi1

= V o) == D =
y: - x($’ y, yl’ "’Yy"e) - DX!xx’y;elit - 1) 2’ “')k
Dz

where Yy = Y(z,y;¢) . The one-parameter Lie Group of tranformations

z* = X(z,y;¢) = 7 + €(z,9) + O(¢?)
¥y = Y(z,y;¢) =y+enz,y)+ 0(62)

acting on (z, y) -space with corresponding infinitesimal generator

8 )
X = {(z, y)a—x- + 7(z, y)g;
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The kth extension of this group of transformations is given by

z* X(z,y;€) =z + eb(z,9) + O(e?) ‘
Y(z,y;€) =y + en(z, y) + O(e?)
¥ = Yi(z,5;6) =y + enNz,y,) + O(¢)

I

‘Q-i
it

yg = Yk(x;y, Yis e Yk 6) =Y + €77(k)(37; Y, 41, “’)yk') + 0(62) J

and its infinitesimal generator is

) e, 5 5
®) — 9 9 LW AT () -l
X €(x,y)ax + 7(z, y)ay + 'z, y, yl)ayl + .. + 1z, 4,11, ,y:c)&,y}c

In studying invariance properties of a kth order partial differential equation with
dependent variable v and independent variable z = (z1, 23, ..., #n) With u = u(z)
we are naturally led to the problem of finding the extension of transformations

on (z,u)-space to (2, u, u, ..., v) ~space where u represents all kth derivatives of
‘ 12 k k

# with respect to z.

In the same way, one-dependent and one-independent case transformations act-
ing on (z,u) -space can be extended to (z,u, u,..., u) -space. Their infinitesimal
1.k ‘

generators are given by obtaining extended infinitesimal transformations.

A one-parameter Lie group of transformations acting on the space of indepen-
dent and dependent variables is naturally extended to a one-parameter Lie group
of transformations acting on any enlarged space which includes all derivatives of
the dependent variables up to a fixed finite order.

The study of multi-parameter Lie groups of transformations reduces to the
study of infinitesimal generators of one-parameter subgroups. The infinitesimal
generators form a vector space called a Lie Algebra which is closed under an
additional operation (commutation). For our purposes of constructing solutions
to differential equations, a multi-parameter Lie group of transformations is com-
pletely characterized by its Lie Algebra. The structure (commutator table) of
a multi-parameter group‘s Lie Algebra will play an essential role in applaying
infinitesimal transformations to differential equations.

In the second chapter, if a given ordinary differential equation admits a one-
parameter Lie group of transformations then its order can be reduced construc-
tively by one by the use of canonical coordinates or differential invariants. More-
over the solution of the given ordinary differential equation is found by quadrature
after solving the reduced ordinary differential equation. Knowing the invariance
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of a first order ordinary differential equation under a nontrivial one-parameter
Lie Group of transformations is equivalent to finding an integrating factor for the
ordinary differential equation.

Every first order ordinary differential equation admits a nontrivial infinite-
paramater Lie Group of transformations. A second order ordinary differen-
tial equation admits at most an eight-parameter Lie Group of iransformations
whereas an nth order ordinary differential equation (n > 3) admits at most an
(n+4)-parameter group. Olver (1986) showed that if an nth order ordinary dif-
ferential equation admits an r-parameter solvable Lie Group of transformations
(n > r) then it can be reduced to an (n-r)th order ordinary differential equation
plus r quadratures.

If an ordinary differential equation admits a one-parameter Lie group of trans-
formations then special solutions called invariant solutions {which are also in-
variant curves of the group) can be constructed. For a second or higher order
ordinary di’{'ferentia,l equation such invariant solutions can be found without ex-
plicitly soléing the given ordinary differential equation. If a first order ordinary
differential equation admits a nontrivial one-parameter Lie group of transforma-
tions then corresponding invariant solutions can be determined without solving
any ordinary differential equation.

In the third chapter, we examined Lie group of contact transformations and
found the contact transformations of ¥’ =0 .

In the forth chapter, we generalized Lie Group of peint transformations to
Lie-Backlund transformations which are defined by infinitesimals depending on
a finite number of derivatives of the dependent variables. We showed that a Lie-
Backlund symmetry admitted by an action integral, i.e. a variational symmetry,
leads to a conservations law.

If a nonlinear differential equation admits a Lie-Backlund symmetry not equiv-
alent to a point symmetry or contact symmetry, then usually it admits an infi-
nite sequence of Lie-Backlund symmetries. We can always compute Lie-Backlund
symmetries of a given partial differential equation by a simple generalization of
Lie’s algorithm. Since every Lie-Biacklund symmetry is equivalent to one which
leaves the independent variables invariant, we only need to compute infinitesi-
mal generator of Lie-Backlund symmetries which do not operate on independent
variables. For systems arising from a Lagrangian formulation, it is given a fun-
damental theorem due to Noether. She proved that for every infinitesimal trans-
formation which is admitted by the action integral of a Lagrangian system one
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can find a conservation law.

In general a global Lie-Backlund transformation acts on infinite-dimensional
space which includes all derivatives of dependent variables. This space becomes
finite-dimensional if and only if the Lie-Backlund tranformation is equivalent to
a point transformation or a contact transformation.

Finally as an example, we constructed a conservation law for a physical system
and we found symmetries of Burgers equation admitting generalized symmetries,
Lie-Backlund symmetries.



BOLUM 1 LIE DONUSUM GRUPLARI ve SONSUZ
KUCUK DONUSUMLER

1.1 Lie Doniigim Gruplar:
1.1.1 Grup

Tanim. Bir G grubu, ¢ islemiyle birlikte;
(i)(kapalihk) G nin her a,b eleman i¢in ¢{a, b) G nin elemamdir;

(ii)(Birlesme) G nin her @, b, ¢ elemani igin

#a, §(b, ) = H(Ha, b), c);

(iii)(Birim) G nin bir e birim eleman: vardir 6yleki her a eleman: igin

&{a,) = #e,a) = a
(iv)(Ters) G nin her a elemani igin dyle bir a! eleman: vardir yleki
Ha,a™t) = Ha"t,a) = ¢;
aksiyomlarini saglayan elemanlar kiimesidir.

Abelyen grup. Her a,b elemani igin

#(a,b) = ¢(b, a)

oluyorsa G ye Abelyen grup denir .

Alt grup. Gnin elemanlannin bir alt ciimlesi iizerinde ayn: ¢ iglemi ile tanimh
bir gruba alt grup denir .

1.1.2 Doniigiim Gruplar

Tantm. x = (21,23, ...,2,) D C R* de tanimh bir nokta olsun. Eger D de
tanimb her x igin, § C R climlesine ait bir ¢ parametresine bagh ve S deki ¢, 4§

parametreleri arasimnda ¢(¢, 8} iglemli

x* = X(x;¢€) (1.1)



doniigimler ciimlesi ;

(i) S deki her ¢ parametresi igin dontgiimler birebir ve lizerinedir ve x* D iizerindedir.
(i1) (8, ¢) bir G grubu olusturur.

(iit) € = e ise x* = x dir, yani

X(x,e)=x

(iv) x* = X(x, €),x* = X(x*, §) ise bu durumda

X = X(x, (¢, 6))

sartlarini saglarsa D tzerinde bir déniigiimler grubu olugturur.

1.1.3 Bir-Parametreli Lie Doniisim Gruplar:

Tanim. . Bir doniigim grubu, grup aksiyomlarina ek olarak su aksiyomlar
saglarsa bir Lie dontgum grubu tanumlar.

(v) € siirekli bir parametredir yani S cimlesi R de bir araliktir.

Genelligi bozmaksizin € = 0, e birim elemanina kars: gelir.

(vi) X,D de x e gbre sonsuz diferansiyellenebilirdir ve S, € nun

analitik bir fonksiyonudur.

(vii) €, & € 5 olmak tzere ¢(e, §), € ve § nin

analitik bir fonksiyonudur.

Eger ¢ zaman degigkeni, x ise uzay degigkeni olarak diigiiniliirse bu durumda
bir-parametreli Lie doniigiim grubu sabit bir akig tamimlar.

X(x;G) (1.2)

G nin biitin elemanlarn fizerinde x in evrimini tanimlasin. Bu ise 7y, gseklinde bir

egri tanimlar.

Simdi y = X(x;¢), 11 tzerinde bir noktayr gostersin. Bu durumda z** =
X(y,8) = X(x,#(¢, §)) , 71 fizerinde bulunmahdir. Bununla birlikte kendini kesen
vz egrisinin, (1.2) ile tanimlanan evolisyonu ifade etmeyecegine dikkat edilmelidir.

1.2 Sonsuz Kiiciik Dontigiimler

Birim eleman e = 0, birlesim kurali ¢ olan
x* = X(x;¢€) (1.3)
Lie déniigiim grubunu ele alahm. (1.3) i € = 0 avannda

X
Oe?

. 8X €2
x* = x4+ e(%-;(X; €) le=o +(5)( (%;€) le=o +...



= x+ e(%—)f-(x; €)) le=o +O(e?) . (1.4)

serisine agalim.
6x) = To(x;e) (1.5)
eV’ »
olsun. x+¢f(x) déniigimine (1.3) Lie doniigim grubunun sonsuz kigik doniigiimi,
§(x) in bilegenlerine de x* = X(x;¢) Lie doniigim grubunun sonsuz kiugikleri

denir.

Once agagidaki lemmay verelim.
Lemma 1.2.1.

X(x;e+ Ae) = X(X(x;¢€); (7Y, e + Ae)) (1.6)
ispat.

X(X(x);¢(e L e+ A€)) = X(x;é(¢, (e}, € + A€)))
= X(5 486 € 1), + A6))
= X(x;0, € + Ae))
= X(x;{c+ Ag)).

Teorem 1.2.1.(Lie‘nin birinci temel teoremi): x* = X(x;¢) Lie dénugim
grubunun

=) (1)

r=0,x"=x (1.8)

birinci mertebeden diferansiyel denklem sistemi ile verilen baglangig deger prob-
lemine denk oldugu bir 7(€) parametrelemesi vardur.
Ozel olarak

I(e) = 8¢(a b)

l(a,b)=(c=1,¢) (1.9)
T(0) = 1 “ (1.10)

olmak tzere

€
r(e) = f I(¢')de (1.11)
0
dir.
ispat. Once (1.6) da goriinen X(x; € + Ac) ve (™1, e + Ae) u Ae = 0 civannda

seriye agarsak

8X(x €)

X(x; €+ A€) = x* + Z——""Ae 4+ O((A€)?) (1.12)



et e+ Ae) = Ple, e )+ ¢( )Ae+ o((ae)?)
= T'(e)Ae+ O((AE) )] (1.13)

buluruz. (1.6) nin sag tarafini da Ae = 0 civarinda seriye agtigimizda

X(x; €+ Ae) X(x; ¢, e + Ac))
= X(x;T(e)Ae+ O((Ae)z))

= X(x;0)+ Ad"(e) (x §) ls=o +0((A€)%)

= X" 4+ D(e)é(x*)Ae + O((Ae) ) (1.14)
elde ederiz. (1.12) ile (1.14) i egitledigimizde x* = X(x;¢) doniigimiiniin
dx
= D¢ (x") (1.15)
X'=x,e=0 (1.16)

diferansiyel denklem sistemi ile verilen baglangi¢ deger problemini sagladigim
goriiriiz, (1.4) den I'(0) = 1 qikar ve 7(€) = f5 ['(e")de
parametrelemesi (1.7-8) ifadelerini verir.

gf‘f(x),z’ = 1,2, ..., n, surekli oldugundan dolays, birinci mertebeden diferansiyel
denklem sistemi icin baglangic deger probleminin varlik ve teklik teoreminden
(1.7-8) ve de (1.15-16) nin ¢éziimleri vardir ve tektir. Bu gdzimde (1.3) olmahdr.
Lie‘nin birinci temel teoremi gosteriyor ki ; bir-parametreli Lie dontigiim grubunu
belirlerken, sonsuz kigiik doniigimler 6nemli bilgiler igerir. Verilen bir grup, n
ve 73 parametreleri ¢ iglemini (7, 72) = 71 + 72 haline getirecek gekilde yeniden
parametrelendirilebilir. Lie‘nin birinci temel teoremi gostermektedir ki; (1.3) Lie
doniigimler grubu (1.7-8) ile tanimlanan sabit bir akig tanimlar, iistelik herhangi
bir (1.7-8) sabit akigi bir-parametreli Lie doniigim grubu tanimlar.

1.3 Sonsuz Kiiciik ﬁretegler

Lie‘nin birinci temel teoremine gore genelligi bozmaksizin bir-parametreli Lie
doniigimler grubu, ¢(a,b) = a + b iglemi ! = —¢ ve I'(€) = 1 olacak gekilde
parametrelendirilebilir. Bdylece §(x) sonsuz kiigliklerine gore (1.3) Lie doniigtimler

grubu
dx* .
o = () (117)
X = x,e=0 (1.18)

haline gelir.
Tanmim . x* = X(x;¢) bir-parametreli Lie doniiglimler grubunun sonsuz kigiik



ureteci

i 3
X =X(x)=¢x).V = Zﬁ,-(x)—(,;; (1.19)
=1 :
seklinde bir operatordiir. Burada V
d 8 )
8z, 8z’ 7 8z,
gradyent operatdri; F(x) = F(z1, %2, ..., z») diferansiyellenebilen fonksiyonu icin

8F(x)

V= ( (1.20)

XF(x)= f(X)VF(X)‘Z«E()

=1

dir. Xx = §(x) olduguna dikkat edelim.

Lie‘nin birinci temel teoreminden kendi sonsuz kiigik dontugimiine denk olan
bir-parametreli Lie déntgiim grubu, ayn1 zamanda kendi sonsuz kiigiik dretecine
denktir. Asagidaki teorem gosterirki; (1.19) sonsuz kiigik iiretecinin kullanima,
{1.17-18) baglangic deger probleminin ¢oziimini bulmada bir algoritma verir.
Teorem 1.3.1 Bir-parametreli Lie donigimler grubu

x* =e¥x = x+eXx+§X2x+...
62
= [1+eX+~2—X2+...]x

E k,X" (1.21)

k=0

]

ifadesine denktir, burada X = X(x) operatori (1.19) ile tanimlanir ve X* =
XX* 1k =1,2,..; ozel olarak X* F(x) fonksiyonu, X operatoriind X*~1F(x) ,
k=12, .., X"F(x) = F(x) , fonksiyonuna uygulamakla elde edilir:

ispat.

X =X(x)= Zcz(x) EY (1.22)
=1
ve
X(x*) = z:lez(x*) 3 (1.23)

olsun. Taylor Teoreminden, (1.3) i € = 0 civarinda seriye agarsak

s" 8"X 8" X(x;¢) e e" dkx

k=D

buluruz. Herhangi bir F(x) diferansiyellenebilen fonksiyonu igin,

P60 =3 FEITE S e ) B - xeoyree) (129)

=1



olur. Buradan

‘i = X(x*)x* (1.26)
d?x* d  dx* 2/ wrn
ez T d_E(_d_f*)_ Xo(x*)x (1.27)
ve genel halde
k %
‘2; = XHx )X k=1,2,.. (1.28)
Sonugta (1.21) i veren
drx* ; :
"d'—e‘k—-]g:o =X"(x)x=X*x,k=1,2,... (1.29)

egitligini elde ederiz.

Boylece, (1.3) Lie doniigiimler grubu tanimlayan bir X (x; €) fonksiyonunun
¢ = 0 avanndaki seriye agilimi, O{¢) teriminin katsayisi olan Z5(x; €)].o = £(x)
sonsuz kigiigtiyle belirlenir.

Bir-parametreli Lie doniigiimler grubunu, sonsuz kiigiik déniigiimiinden elde
etmek igin iki yol vardir:
(1) Grubu, Lie serisi denen ve (1.19) sonsuz kiigiik fireteciyle elde edilen (1.21)
kuvvet serisi ile ifade etmek;
(ii) (1.17-18) baglangic deger problemini ¢6zmek.
Sonug Teorem . F(x) sonsuz diferansiyellenebilen bir fonksiyon ise (1.22)
tretecli x* = X(x;€) Lie doniigiimler grubu igin

F(x*) = F(e*x) = X F(x) (1.30)

1.4 Degismez Fonksiyonlar

Tanim . Sonsuz diferansiyellenebilen bir F(x) fonksiyonu ancak ve ancak her-
hangi bir (1.3) déniigim grubu igin

F(x*) = F(x) (1.31)

oldugunda Lie donfisim grubunun degigmez bir fonksiyonudur, F(x) e bu donii-
gimiin degismezi denir.
Teorem 1.4.1. Lie déniigiim grubu altinda F(x), ancak ve ancak

XFP(x)=0 (1.32)



oldugunda degigmezdir.
ispat.
*y — X _oofkrkF = 7 >4 €2X2F
F(x*)= e F(x) = ,;,FA (x) = F(x) + eX F(x) t5 (x) +

P(x*) = F(x) ise (1.33) den X F(x) = 0 oldugu ¢ikar.

Tersine F(x), X F(x) = 01 saglayan bir fonksiyon olsun. Buradan
X"F(x) = 0,n=1,2,... ve F(x*) = F(x) bulunur.

Teorem 1.4.2. Bir Lie déniigim grubu igin
FP(x"Y=Fx)+ece XFP(x)=1.
ispat. F(x); F(x*) = F(x) + € 6zdegligini saglayan bir fonksiyon ise
F(x)+ €= F(x)+eXF(x) + —ngF(x) +

Buradan X F(x) = 1 elde edilir.

Tersine; X F(x) = 1 saglansa X"F(x) = 0,n=2,3,..., dir ve

F(x*) = X F(x) = F(x)+ ¢XF(x) = F(x) + ¢

bulunur.

1.5 Kanonik Koordinatlar

Uygun bir bdlge ilizerinde, strekli diferansiyellenebilen ve birebir

¥y =Y (x) = (5u(®), 92(2), ., yn(2))

koordinat doniigiimii olsun. Bir-parametreli (1.3) Lie doniigiim grubu

.. (1.33)

(1.34)

icin X =

(1, %2, ..., n) koordinatlarina gore X = Y i g(x)a% sonsuz kugiik ureteci yeni

koordinatlar y = (y1, %2, ..., ¥n) olmak tzere
n 8
Y = (Y )=
; )z,
gekline doniigir. Ayn: grup etkisini elde etmek icin ¥ = X olmahdur.

natlarina gére sonsuz kiigiik iireteg

wWy) = (m(y), m(y), .. m(y)) =Yy

dir.
Teorem 1.5.1. n{y) = Xy dir.

(1.35)

y koordi-



ispat. Zincir kuralim kullanarak

- 83/_,()()5_"‘_?__,

X = ;E,(X)-——; 2%_;1 £i(x) bz; Oy ;’71(}’)8% =
elde edilir. Burada 7;(y) = .04 ,(x)-a—‘g%{il =Xy;,5=1,2,...,n dir.
Teorem 1.5.2. y = (11(z), %(z), ..., ¥a(z)) koordinatlarna gore (1.3) Lie déni-
gim grubu

v =eYy (1.36)

geklini alr.
ispat. F(x*) = e**F(x) ve y = (31(2), ¥2(2), ..., yn(2)) den hemen y* = Y(x*) =
eXY(x) = eXY = ¢¥y bulunur.
Tanim. Bir y = (41(2), v2(), ..., Yo ()) koordinat donigimi, x* = X(x;¢)
Lie dontigimler grubu icin, eger déniigim grubu bu gekildeki koordinatlara gore

¥ o= y,1=12..,n—1

Yo = Ynte
haline geliyorsa bir kanonik koordinatlar kiimesi tanmimlar.
Teorem 1.5.3. x* = X(x;¢) Lie doniigiim grubu icin

o

¥, =y, t=1,2.,n-1
Yn = Ynte
donigiim grubuna denk y = (1,92, ..., ¥ ) kanonik koordinatlar ciimlesi vardar.

ispat.Teorem (1.4.1.) den 4} = %(x*) = %(x) kalmasi ancak ve ancak
Xyi{x) =0, i=1,2,...,n-1 olmasiyla saglanir.

Xu(x) = fl(x)%'i-fz()i)% fotE (1.37)

birinci mertebeden homogen kismi diferansiyel denklemin (n-1) fonksiyonel ba-
gimsiz ¢ozimi vardir. Bu ¢ozlimler

dz; dxz dz,,

—_— o ——

§1 §2 res = gn

karakteristik denkleminden elde edilen birinci mertebeden adi diferansiyel denk-
lem sisteminin genel ¢dziimiinden ortaya gikan (y1(z), y2(%), ..., Yn-1(=)) (n-1)
tane temel sabittir. Bu ¢Oziimler 3} = ,¢ = 1,2,..,n — 1 i saglayan (n-1)

(1.38)

tane koordinat: verir.

Teorem (1.4.2.) ye gore y,(x) kanonik koordinat: igin
= yn(X*) = yn(X) + € & Xyn(x) = 1 gegerlidir.



Béylece v(x) = yn(x) alinirsa, v(x)
Ju v v
Xy(x) = §1(x)5;—1- + fg(X)g;; + ...+ §n(x)5;; =1 (1.39)

homogen olmayan lineer diferansiyel denklem sisteminin bir dzel ¢oziimidir ve-

dv

;1? =1
dx
i £(x)

(n-1) tane adi diferansiyel denklemden olugan karakteristik sistemin bir ozel
¢Oziimini belirleyerek bulunur.

Teorem 1.5.4. Hethangi bir y = (1,92, ..., ¥n) kanonik koordinatlar ciimlesi
igin (1.3) Lie doniigim grubunun sonsuz kiigik ireteci

_ 9
= 290

Y (1.40)

dir.
ispat. Y = ¥, m(y)5; kanonik koordinatlara gore

¥ = y(x") =w(x) ¢ Xu(x)=0
ve

Y =t(X") = (X)) +e o Xyn(x) =1

ifadelerinden

ni(y)=Xy;=0;1=12,..,n~1
M(y)=Xyn =1

buradan da ¥ = 58"- bulunur.

1.6 Degigmez Yiizeyler, Degismez Egriler,
Degismez Noktalar.

Tanim. Bir F(x) = 0 yiizeyi ancak ve ancak, F(x) = 0 iken F(x*) = 0 oluyorsa
bir- parametreli Lie doniigiim grubu altinda bir degigmez yiizeydir.
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Tanim. Bir F{z,y) = O egrisi ancak ve ancak, F(z,y) = 0 iken F(z*,y4*) =0
oluyorsa X = §(z,y)2 + n(z, y)—é% iretegli

* = X(z,y;€) = 7+ ef(z,y) + O(€®) (1.41)
¥ = Y(z,y¢) =y +enz,y) + O(¢) (1.42)

Lie dontgim grubu i¢in degismez bir egridir.

Teorem 1.6.1.(1) F(x) = £, — f(z1,2Z3,...,2n) = 0 geklinde yazilmis bir yizey,
ancak ve ancak F(x) = 0 iken X F(x) = 0 oldugunda Lie d6éniigim grubu igin bir
degismez yiizeydir.

(11) F(z,y) = y — f(z) = 0 geklinde yazilmg bir egri,ancak ve ancak

Plz,y) = y— f(z) = 0 iken XF(z,y) = 7(z,y) — é(z,9)f'(z) = 0 oldugunda
(1.41-42) igin degismez bir egridir. [1]

Tanmim. Bir x noktas, ancak ve ancak (1.3) Lie doniigim grubu altinda
x* = x oluyorsa doniigiim grubu igin bir degismez noktadir.

Teorem 1.6.2. Bir x noktasi x* = X{(x;¢) Lie déniigiim grubu icin
ancak ve ancak ¢(x) = 0 oluyorsa degigsmez noktadir.

Geometrik olarak bir adi diferansiyel denklemin genel ¢oziimi bir egri ailesiyle,
bir kismi diferansiyel denklemin genel ¢ozlimi ise bir ylizey ailesiyle ifade edilir.
Bir dontigim grubu bir diferansiyel denklemin bir ¢éziim egrisini bagka bir ¢oziim
egrisine donigtiriiyorsa bu denklem tarafindan kabul ediliyor denir. Ozel olarak
bir diferansiyel denklem tarafindan kabul edilen bir déniigim grubu,
¢ozim egrilerini degigmez birakmak zorundadir.

Tanim. w(x) = sabit = ¢ yiizey ailesiyle ancak ve ancak w(x) = ¢ iken
w(x*) = ¢* = sabit oldugunda degigmez bir yiizey ailesidir.

Tanim. w(z,y) = sabit = c egri ailesiyle ancak ve ancak w(z,y) = ¢ iken
w(z*,y*) = ¢* oluyorsa

z* = X(z,y;€) = z + eé(z,y) + O(€?)
v = Yo, =y+erfz,y) + O(e)

doniigim grubu igin degigmez bir egri ailesidir.

Bu tamimlardan hareketle, € parametresi ve ¢ nin C gibi bir fonksiyonu igin
¢* = C(c, €) bulunur. Genelligi bozmaksizin ¢* # ¢ kabul edelim aksi takdirde
herbir yiizeyin kendisi bir degigmez yiizeydir.

Teorem 1.6.3.(1) w(x) = sabit = ¢ yiizey ailesi ancak ve ancak sonsuz
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diferansiyellenebilen bir ©(w) fonksiyonu igin
Xw = Qw) (1.43)
oldugunda degigmez bir yiizey ailesidir.

(ii) w(z,y) = sabit = ¢ egri ailesi ancak ve ancak sonsuz diferansiyellenebilen
bir (w) fonksiyonu igin

Sw Jw
Xw = {(z, Vgt ’7(«’5:?)5; = Yw) (1.44)
oldugunda
g* = X(z,y;¢) =z + (z,y) + O(?)
v = Y(z,y€) =y +en(z,y) + O(?)

donigiimi icin degigmez bir egri ailesidir.
ispat. w(x) = ¢, Lie doniigiim grubu igin degismez bir yiizey ailesi olsun. Bu
durumda.

w(x*) = e“Fuw(x)
2 .
= w(x)+ eXw(x) + %X%}(x) + ..
= ¢ =C(ce)
bulunur. Boylece bir (w) fonksiyonu igin w(x) = ¢ iken

Xw(x) = Q{w) olur. Buna ek olarak X%w = Q'(w)Xw = (w)w) yazlabilir.

Tersine, sonsuz diferansiyellenebilen bir Q(w) fonksiyonu igin Xw = Q(w)
oldugunu kabul edelim. Bu durumda bir f,(w) ,n=1,2,..., fonksiyonu icin X%w =
Q'(w)Uw) ve X"w = fo(w) yamlabilir. Sonug olarak eger w(x) = c ise buradan

w(x*) = eFu(x)

2
w(x) + eXw(x) + %—sz(x) + .

!

= w(x)+i§j"—§;}—(§zl

n=1

i
1>
]
=2
i
o

elde edilir.

Bir Lie donugiim grubu icin degigmez egri (yiizey) ailelerini bulmak igin genelligi
bozmaksizin Q(w) = 1 alabiliriz. Buradan da w(x) = ¢ degismez bir egri ailesi
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ise, herhangi bir F' fonksiyonu igin F{w(c)) = F(¢) dit. XF(w(x)) = Fl(w)Xw =
Flw)w) da F'(w) = 5(1;5 konursa X F(w) = 1 bulunur. Burada Q(w) # 0 kabul
ettik, aksitakdirde degismez ylizey ailesindeki herbir yizey, Lie donigim grubu
igin bir degigmez yuzeydir.

1.7 Genigletilmig Doniigiimler (Uzanimlar)

Sonraki bolumlerde verilen bir 5 diferansiyel denklem sistemi tarafindan kabul
edilen bir-parametreli Lie doniigim gruplarini belirlemeye galigacagiz. Boyle bir
donugum grubu

z* = X(z,u;¢€)

w* = Ulz,u;¢€) (1.45)

seklindedir, ve (n+m) degigkenli z = (71, 23, ..., 2, ), % = (ul,4?, ..., 4") uzayinda
bulunur. z , n bagumsiz degigkeni; 4 ise m bagiml degigkeni gosterir.

v = f(z) = (f (), F(=), ..., [*(z)) (1.46)

S tarafindan kabul edilen, sistemin bir ¢éziimini gosterir. £* = X(z,u;¢€), v* =
U(z,u; €) seklindeki bir Lie dontigiimler grubu ; (i) S deki bir v = f(z) ¢éziimini
S in diger bir ¢bziimine gorintiler; (il) doniigmis (z*, u*) degigkenlerine gore §
sistemini degigmez birakir; geklinde birbirine egdeger ozelliklere sahiptir.

z* = X(z,u; ¢),v* = U(z, u; ) Lie dénigimler grubu igin » bagimh degigkeninin
z bagimsiz degikenine gore tirevleri, bir v = f(z) forksiyonu icin degme gartlarmi
koruyacak sekilde déniigtiiriilir. [2]

% ile 4 nun z e gbre biitin birinci mertebeden kismi tirevlerini gosterelim:

((%1 dut  Oul Bu? 8u? Au? ™ Su™ )
Oz 8z’ Bxzy 8xy By’ T Bz, Oz’ Bz

4
1
bilegeni vardir.

Genel halde » , & > 1 igin # nun z e gore biitin k inc1 mertebeden kismi
k

. . . . . e . . “ — Suk . v .
turevlerini gostersin, ?: ya gore bir koordinat uj;, ; = EET R T ile gosterilir,

p=12..,m;5; =12 .,n9 =12 ..,k

Bagimh degigkenlerin tirevierinin ‘dogal’ dénigimi, z* = X(z,u;¢), v* =
U(z,u;€) Lie doniigim gruplannn dogal uzanimlarini verecegi agiktir. Verilen
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bir S diferansiyel denklem sistemi igin k, S deki en ytksek mertebeden tiirev
olacaktir. Bu durumda (1.45) doniigim grubunun sonsuz kiigik donigimi,

{(z,u, 4, u,.., v) uzayinda bulunan sonsuz kiigiik doniigime genigletilir.
1 2 k

Simdi bir S diferansiyel denklemi tarafindan kabul edilen z* = X{(z, u; €),
u* = U(z,u; €) Lie doniigim grubunun bulunmasi problemini inceleyelim :

1.7.1 Genigletilmis Donitgum Gruplar:
Bir Bagimsiz ve Bir Bagimh Degigken

z bagimsiz, v bagunh degigkenli k 1nc1 mertebeden adi diferansiyel denklemlerin
degigmezlik 6zelliklerini incelemek tzere, bu denklem tarafindan kabul edilen bir-
parametreli

Tt = X(-’tyy;e)} (1.47)

¥y = Y(z,y5¢)
geklinde Lie doniigiim gruplarini bulmaya ¢ahgacagiz. (1.47) Lie doniigiim grubu
i¢in

x* = (2%¢) =X(x;¢) = (X(=z,4;¢),Y(z,y;€)
= X(z,y;¢) = (X(x;€), Y(x;¢€))
gosterimini kullanacagz.
Yp = Y = g;% , k=1,2,... olsun. z* = X(z,y;¢),¥* = Y(z,y;¢€) donigimini
k

(2,9, 9,..., ¥) uzayina, z*, y* donigiminin dz, dy, di, ... diferansiyelleriyle iligkili
1k

dy = yldm: m:dyk - yk-;-ldx,k = 1,2,

degme gartlarm saglayacak gekilde genigletelim. (1.47) de donigmis {y}},
k=1,2 .. tirevleri
dy* = yjdz*
dy; = Yr 402"

ile tanimlanir. Buradan

) 4 Y
dy* = dY(x;¢) = EE(X; e)dz + @(x; €)dy

. N _9X, ax,
dz* = dX(x;¢€) = P (x; €)dz + 39 (x; €)dy
bulunur. Sonugta ¥}
oYy

oy SOX, ax,
'é;_—(x: 6)d$ + "5;()(1 e)dy = yl[”'a';(x: €)d$ + _53—1—()(’ 6)dy] (1'48)
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esitligini saglar. dy = ydr ifadesini (1.48) de yerine yazarsak

(% 6) + nE(x;¢)
Lo +n(xe)

v ="(z,y,0,¢=
oldugunu goéririz.

Teorem 1.7.1. (z,y) uzayinda bulunan z* = X(z,y;¢€),y* = Y(z,y;¢) Lie
doniigiim grubu, (z, ¥, 31 ) uzayindaki

" = X{(z,y;¢€)

¥ =Y(z,y;¢)
y{ = H(.’L’, ¥, Y15 E)
bir-parametreli Lie doniigiim grubuna genigler.
ispat. Kapahlik zelliginin z* = X(=z,y;¢), y* = Y(z,y; ¢) doniigiminiin birinci
uzaniminda korundugunu gostererek ispatlayacagz :

Bir-parametreli Lie doniiglimler grubunun diger ozellikleri, birinci uzanimdan
hemen sonra elde edilebilir.

#(€,6) , € ile § arasinda bir iglem tanimlasin ve 2** = X(z*;6) clsun. Bu
durumda z* = X(z,y;¢), y* = Y(z,y; €) grubunun kapalilik zelliginden
T** = X(z;4(¢,8)) qikar. Ayrica y3* , dy™ = y*dz™* esitligini saglar. Sonugta

06 K<, ) + n (% 4c, )
S e ) + 5 (% 4c, 6))

yr* = },1(:5) Y, 4, ¢(6) 5)) =

bulunur.
Teorem 1.7.2. 2* = X(z,y;¢),y* = Y(z,y; ¢) Lie dénigim grubu, (z,y, 1, ¥3)
uzayinda bulunan

8
Il

* X(z,y; €),
¥ = Y(z,y¢),
Y1 = YI(;I: Y, Y1, E):

oYy Yy oYy
5z T 9 By +y26‘y1

Lx0)+ (x5

vy = Yoz, y,u1,1;6) =

ikinci uzanmimna genigler.
Teorem 1.7.3. 2* = X(z,y;¢€),y* = Y(z, y; €) Lie donigim grubu, (z,y, v, ..., Y )
uzayindaki k nci uzanimi & > 2

L3

* = X(z,ye€),
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v = Y(z,y¢),
y’{ = Y1(.’L‘, Y, Y1 f):

i el

(x €)+ y1 oX(x;€)

y;; = }’k(ﬂ?,y,yl,.-»,yk;e)—

olan Lie déniigim grubuna genigler, burada Y1 = Yi_1{z, ¥, w1, ..., %x; €) dir.
Déniiglimler grubu olmas: gerekmeyen herhangi bir
= X(z,y)

y' =Y(z,y)

birebir doniiglimler ciimlesini, (, y) uzaymn bir D bdlgesinden (!, y!) uzayindaki
bir D' bolgesine genisletebiliriz, burada X(z,y) ve Y(z,y) , D de k defa diferan-
siyellenebilen fonksiyonlardir. zt,y' déniigimleri; dy = wdz, ..., dy = yrade
degme sartlan korunacak gekilde (#,y,41,...,¥x) uzayina genigletilebilir:

dyt = yldﬂif d?!k = ?/h+1d$ k=1,2,.

(£,9,%1, ..., ) uzayindan (z',y, oi, .., y}) uzayina k defa genigletilmisg doniigiim

H__’_
|

X(z,y)
y' = Y(z,y)
vy = Yi(z,y,91)

aYk Lty 61’;- Y31

4 + .. +yk6yk_1
Ta?(x; E) + ?}1 By (SL‘, 6)

y}: = Yk(x;y;yl;"‘:yk)"

. .y g (x;v) i'yl (1:,3{)
— - EX 3
ile verilir, burada ¥; = Yi{z,y, 1) = LA pv a:( p dir.

Tamim.(Toplam Tiirev Operatorii)
Toplam tirev operatori

D g a ad
o ~ ~ oo 71 — ces 1.49
+y26y1+ +?}+1ayn+ ( )

geklinde tanimlanir ve verilen bir F(z,y, 41, ..., ;) diferansiyellenebilir fonksiyonu
icin D
b}F(xr Y Y, "”yl) = F; + yle + y2Fy1 +. yl+1Fya

dir. Toplam tiirev operatoriine gore Teorem (1.7.3.) i tekrar ifade edersek :
Teorem 1.7.4. z* = X(z,y,¢),y" = Y(z,y;¢), bir-parametreli Lie déniigim
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grubunun k inci uzammi, Yy = Y(z, y; €) olmak iizere

*

¥ = Y(z,y¢),
DY

?f: = Yi("gry,yh '*-}yi§5)= 'f)')_fg_‘—' g‘:w):%"'—‘l)z: ;k
Dz

ile verilebilir.

1.7.2 Genigletilmis Sonsuz Kiicitk Doniisimler
Bir Bagimsiz ve Bir Bagimh Degigken

(,y) uzayinda verilmis bir-parametreli Lie doniigimler grubu

T = X(.'L’, Y e) =+ 55(3;; y) + O(EZ) } (150)

v = Y(z,46) =y +en(z,y) + O()

olsun. Bu grubun sonsuz kigiigi {(x) = (é(z, ¥), n(z, y)) olmak iizere
X = {=z,9)2 + (=, y)gé;~ sonsuz kiigiik uretecine sahiptir. (1.50) nin k ma
uzanimi

= X(z,y€) =7z +ef{z,y) + O(?)

¥ Y(z,y:€) =y + en(z,y) + O(?)
v = Yaiz,y¢) =+ ez, 9, 1) + O(€?) (1.51)

i

o= Y&y, 6 =y + ez, y, 0, ) + O(2)

seklindedir ve &(z,y),n(z, %), ™z, 9, 3), .. 192, 0,91, - e ) B = 1,2, ..
sonsuz kiigiigi olmak tizere

8 8 8 ¥
") = el I ) B T ) o Y e
X €(z, 9)&, + n(z, y)ay + 7'M (z, v, yi)ay1 + .+ Nz, y, 1, ,yk)ayk

sonsuz kiigik retecine sahiptir.
Teorem 1.7.5. 79 = 5(z,y) olmak iizere

Dyf¢-1) Dé(z,y)
(k) = — ! = ese
?7 (x)y)yl) vy yk) Dm yk DfL‘ Ik 1}2)

dir.

ispat.
DYy

y:k = Y;(SU, Yy, o ¥ E) = f_%;ﬁfxz =12, .., k
(1.51) ve toplam tirev operatoril tanimindan

DY,y Dlyr-_1+en®*~V+0(*))
c e — Dy - Dz
Y@, 9091094 €) = DRG) = ~PEEHA O]

Dz Dz
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g+ €250 ~ Dn*-Y  Df(z,y)
- u+é5%ﬂ]+ok)_y”+d Dz "% py 110

=y + en®) 4+ O(¢?)
Teorem (1.7.5) den {r{")} acik ifadeleri gikanlabilir. Ornegin;

7 M + (ny = &)pn — ()’

7)(2) = ez + 2y — Eoo )t + (Myy — 262X (01 )2 = §p(n )3
+{(ny ~ 262 )y2 — 3E31 92,

1 = e+ (3Nzoy — Loz )yt + 3(Meyy — Ezay Yt )2
+(Myyy — 3Eoyy )31 )3 = &y )4
+3(Ney — Eo2)yz + 3y — 3Eey)11p
—6€,y () vz — 36, ()" +
(ny — 3&)ys — 4,195,

hemen elde edilebilir ve {#‘¥)} mn su Szellikleri gozlenebilir:

(i) 7% | 4 ya gore lineerdir, k=2,3,...

(i) #* | katsapilan, (&(z,%),7(z,v)) ye gore k mnci mertebeye kadar kismi
turevleri igeren ¥y, ¥2, ..., Y& mn lineer homogen polinomu geklindedir.

1.7.8 Genigletilmig Doniigiimler
Bir Bagimh ve n Bagimsiz Degigken

u bagimh degigkenli, # = (£1,%3,...,2,) bagimsiz degigkenli k. mertebeden
bir diferansiyel denklemin degigmezlik ozelliklerini incelerken, (z, %) uzayindaki

dontigimlerin (z, 4, u, ..., #) uzayina genigletilmesi problemiyle karsilagiriz.
1 k

Oncelikle zt = X(z, u), u! = U(z, ) nokta déniigiimler ciimlesinin genigletilmis
dontgimlerini ele alalm. (X({z, %), U(z,u)) bir D bolgesinde k defa diferansiyel-
lenebilen fonksiyonlar olmak iizere, zf, ut doniigiimleri, D de birebir kabul edilir.

z!,u! dontigiimleri, (,4, u, ..., ¥) uzayindaki bir D bolgesinde
.A 1k
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‘ 1 t c . .. .
degme sartlarim ancak ve ancak (z!,u!, % , ..., u ) uzayindaki bir D' bélgesinde
1 k

1
dul = u dz!
1
1 t
du =u dz!
k-1 k

degme gartlarini sagladig: takdirde, saglar.

= Qv gt o Ot 9T
Ui = 53U = zir = 3x; olsun. Buradan itibaren tekrarli indis lizerinde
toplam oldugunu varsayacagiz. Yani du = udz esitligi du = u,dz;
1

du = udrise du; i, i | = Yiigeip 8550 =1,2,..,n,0=1,2,...,k — 1 denk-
k-1 %

lemler ciimlesini temsil edecektir. Benzer gosterimler dut,d u " ifadeleri iginde
k-1

gegerlidir.
D 8 8 el 3

—_—

D; = Doz + S + ”‘fa_ui + Ak u,-,lézn_in_é_;__—_

1129...8n

+..,0=12,..,n

toplam tiirev operatorleri, diferansiyellenebilen bir F(z, %, , ..., u) fonksiyonuna
1 !

uygulanacak olursa

oF aF aF aF .
D;‘F(f&', u, ;‘; ) Il;) = 'é‘z',':"" 28 +u zja +oot Uiy, zza irini; +.,t=1,2,.,n
egitligi yazilabilir.

Simdi u} =Ui(z,u,u),7 =1,2,..,n genigletilmis dénligimiini belirlemek igin
1

du! = u;ldz;! korunmug degme sartini ele alahm. z' = X(z,u),s! = U(z,v)
doniigiimlerinden du! = (D;U)dz; ve dz;' = (D;X,)dzi, 4,5 = 1,2,..,n elde
edilir. (D;X j)ﬂ; = D;U,t+=1,2,...,n bulunur. A matrisi

DXy ... DX,

A= : : ve A1 varolsun.
Dn.X]_ “ . Dan
Bu durumda
uJ{ Uy U
.f
% U, DU
Pl P =ar| 7 (1.52)

u Uy, DU



19

Bu bize (z,u, ) uzayindaki genigletilmig
1

' = X(z,u)
' = U(z,u)
o = Uz, u, u)
1 1 1

dontigimind verir. (z,%, %, ..., ») uzayina genigletilmig doniigiim ise

1 k
t = X{(z,u)
i = Ulz,u)
1.
v = U(zx,u,u)
1 1 1
.r.
v = Uz,u,u,.,u)
k k 1 k
. - 1 . .
geklinde verilir. Burada u nin bilegenleri
k
¥ - -
uiliz---ik-—ﬂ Uzlzz...zk_ll DIUzlzz...zk_l
Biigod 12 | | Vinaediog2 o4 DoUsis. s
i . L
%5152---2;,.-_173 Untz...%k_ln DﬂUutz...zk_l

0 =12.,nl=12.,k-1k=23,.. ;olmak lzere ve U(z,u,u), (1.52)
1 1

esgitligiyle verilir.

gt = X(z,u),u! = U(z,u) dénigimleri, (z,v) uzayimda z* = X(z,u; e)u* =
U(z,u; €) geklinde bir-parametreli Lie doniigtimler grubu tanimlarsa,

z* = X(z,u;¢€) ‘

u* = Uz, u;e)

a U(z,u, u;e)

t ! ! (1.53)
u = Ulz,u, u,..,u;¢€)

k k 1 k
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donigimleri (z, %, %, ..., # ) uzayina geniglemisi olan bir-parametreli Lie dontgimler
1 k

grubu tammlar. (1.53) de

'd; U1 D1U
Uy U, DU
2 _
‘=] T l=A1) 7 . (1.54)
uy, U, DU
* .. . .. R
uiﬁz...ik_ll U2132--~3k~11 Dlelzg...zk_l
* .. . .. .
findpo12 | Umz--.u_ﬁ - A“l D2Uzazz---u_1 (1 55)
* .. . .. .
uz‘liz...z',,_ln Uglzﬁv--zk—ln DnUzlzz...z,c~1
. * - - *
dir, burada {uf = U} , v = U in; {u},, ; . =Uii._;}ise v =U nm
1 1 k k

bilegenleridir.

1.7.4 Genigletilmis Sonsuz Kuciuk Donusimler
Bir Bagimli ve n Bagimsiz Degigken

(z,u) uzayinda verilen

! = Xi(z,uj€) = z; + ebi(z,u) + O(e?)

2

u* = U(.’B,‘IL; E) =4 + 677(58)“) + 0(62)

geklindeki bir-parametreli Lie doniigiimler grubunun sonsuz kiigiik ireteci,
X = &=, “)a%; + 7(z, u)% seklindedir. 2}, u* doniigimlerinin k 1nc1 uzanimi ise

x;»' = Xi(fﬂ',ﬂ-; E) =z;+ 565(1”; u) + 0(62)
u* = U(z,u;e)=u+ en(z,u) + O()

wl = Ufz,u,u5¢) =u +enf(z,u,u) + O(e?) (1.56)
1 1
u;?li%uik = Uiliz...ik(‘w) u) l‘]":‘) ‘y ’;‘:; E)
= Wi + eﬂz(fz)z...i,,(‘fx Uy sy B) + 0(62) (1.57)
1 k

dir, burada ¢t =1,2,...,n;6 =1,2,..,n;1 =1,2,.. k; k=12, ... olmak izere

o a 0 o
X®) = ¢ - T 4g L 4g® T k=12 .
68(:83 U)a.’f:, +n($) u)au +7?z (17, u? ?)aué + +nz1zz...zg. auiliz...ik ! k 1) 2)



21

fireteghi, k defa genigletilmig (£(z,w), 7z, u, ), ..., """ (z,u,u, ..., u)) sonsuz
1 1k

kigigine sahiptir.

Teorem 1.7.6.

n = Din— (Dig)uyi=1,2,..,n

nz(fi)g...ik = D;knf‘fi;_l}ékhl —_ (D,;,c E isig iyt = 1,20, 0 =1,2, ..k k=23,..
dir. ’
ispat.
DXy ... DhX,
a=| i L (1.59)

DX, ... DX,
ve g} = Xi(z,u;€) = z; + e€i(z, u) + O(€?) esitliklerinden

[ Di(z1+ €61) Di(za+eba) ... Di(zn +ebn)
Day(z1 + €€1) Doz +€€2) ... Da(zn + €bn)
A = : : + O(€?)

| Dn(z1+ €61) Dn(zatebs) ... Dp(n +€n) |
= I+eB+ 0(62)

buluruz. Burada I,n x n lik birim matris, B ise

le]_ ca D]_gn
B=| { .. (1.59)
Dpé ... Dpéy
geklindedir. Bu durumda
Al =TI —¢B + O(%) (1.60)

olarak elde edilir.

(1.54), u* = Uz, u; €) = u + en(z,v) + O(¢?),
ur = Ui(z,u, u;¢) = u,~+en§1)(x, %, 4)+O(e?), B matrisi ve A"} = [ —eB+O(e?)

1 1
esitliklerinden
%1 + er;&l) t, +eDin
(1)
Ug 4+ € g + D
2T _p—eBy| T | o)

4, + end) Un + €Dp7
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ve buradan da 7 ( ) = D, i — (Dinjus, e = 1,2,...,n ifadesini veren

i Din Uy

(1) D -
=" _p|™ (1.61)

?7,(11) Dy Un

esitligini buluruz. {1.55-60) esitliklerini kullanarak

L (k) . (k-1)
Yiyiy. gy 1 T 2 NPT | Uisig..dp_s1 + 60177»122 R
Uisin..d +e(k Uiriy..ip_ 2 + €Dt -1)

812208512 72:1:2...:,‘._12 _ (I EB) $190.8 12 2772132,‘_%_1 +O(62)

(k) L (k-1)
u*ltz Bp—17t + 67};1:2 RINIRE ) uzlzz...sk_ln + EDnﬂzlgz Bl
ve sonugta
(k) (k1) L
n&izz A1 D 77;112 Apt Yigin byl
k
?}3132--“&—12 . D27)z132...zk_1 B uiiiZ-'~ik—12
(") (k 1), y
Thtg.ip_in Dn’? 1820t 1 Uiyin.dp_1n
u=12.,nl=12.,k-1k=23,.
1 3 b] Y !
k k~1 o VT o
,(1,)2 i = D,kn,(m ),k_ — (D3 &) 41455, _, 5, esitligi ispatlanmig olur.

Teorem (1.7.6) y1, bir bagimh iki bagimsiz degigkene indirgeyerek ifade ettigi-
mizde genellegtirilmig bir-parametreli Lie donigim grubu

z7 = Xi(x1,%2,u;€) = 2; + €21, T2, u) + o) =1,2
u* U(z1,22,u;€) = 6 + en(z1, T3, 'u) + O(€?)
u} Uiz, 22,0, 11, uz) €) = 4; + € )(xl,xz,u #1,u3) + O(e?)i = 1,2
uy U1, 72,9, ¥1, U2, U411, Y12, U22; €)
= u;+ eng)(a:l,xz, u, ¥y, Uz, 11, Y12, U22) + O(ez),z' =1,2
geklindedir.

Bu doénigim grubunun genellegtirilmig sonsuz kigiikleri agagidaki gibidir:

M _ ég+[3?? % 8¢, % , 06

" 1 Bu 6:1;1] 1 5:;;“2—“{-9;“1_51;1‘1“2’
- Py T e,
- 229 12”222 2aigu}“% 31%2'& trtia = g%“
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6262 2 661

398 963 23 2
- ”8'&7‘“1“2" B = Ui — 3 S UaU11 — 5;“1%12,
2 = 8%y &n 9% Jus + [ 8% 3¢ Jus %
n 6:6‘13352 332137.& 63)1133}2 2 axgau a:na.'.&‘z 6$1 2

an 9 I 9t 32&2 2
LR Vil vl v LRl et Rl POF T

iy

!

#n 84 8%t 8% 3252 86,
* 307~ 3aiu ~ Bmpow T axzau“ — Gurtiny g a
o Ie} d a8
- 2 652'“2%12 - 2'5'1"“1“  Rand ‘51':"“2“11 - '5%%1%22;
2 2
@ _ 9n 9 __352 361 ___2352 _ %
B = Gl 2 il e g, ~2g,,vn — 25,,"
P 3¢, C3) & €2 3261
+ 5z "23x23u1“22"2ax23u“1“2 R w L
bS] a é
- 35%%2%22 — -‘éﬁ%].’ugz - 2-5%-%22512.

1.8 Lie Cebirleri

)
X = (Z1,%3, ..., T,) ve parametreler € = (e, €3, ..., € ) olmak iizere r-parametreli
x* = X(x, €) doniiglim grubunu ele alahm. Parametrelerin ¢ birlegim iglemi

Me, 8) = (d1(c, 6), ba(e, 8), s br(€, 6)), 6 = (61, 62, -, 6:)

ile gosterilir. ¢(e, &) iglemi € = 0 igin €, = €2 = ... = & = 0 birim elemanina karg1
gelen grup aksiyomlarin: saglar. ¢(e, §) , tanim bolgesinde analitiksir.

Tanim. r-parametreli x* = X(x,¢) Lie doniigim grubunun e, parametresine
karg: gelen X, sonsuz kigik iireteci,

Xy = Zéa}(x) ,a=1,2,. (1.62)

geklindedir. r-parametreli x* = X(x, e) Lie doniigiim grubunun hem x* =
e 2eamitXax hem de x* = [[h.; e ¥ex = et1ignds owXrx déniglimlerine
egdeger oldugu  kolayca gosterilebilir.

Aynca X = 3} 1 0aXe = Ty Cj(x)gg-j— sonsuz kiigiik iireteciyle elde edilen
bir-parametreli x* = e“¥x = g¢2u=1%2X=x Lie doniiglim grubu, r-parametreli
doniigiim grubunun bir-parametreli bir altgrubunu tanimlar. Burada o4, 02, ..., 0r

reel sabitler ve (;(x) = ¥, 0€aj(x),7 = 1,2, ..., 2 dir.

Tanim . (1.62) ifadesiyle tanimlanmig { Xo}, & = 1,2, ..., 7 firetegli, r-parametreli
X* = X(x,€) , Lie doniigim grubu olsun. X, ve X operatorlerinin komitatord

[XmXﬁ] = XoXp— XpXo= E[(*fon(x)a Wégs(x )33)

t,9=1
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(fﬁz(x)a )(£QJ(X)3$ Zfb( )

J=1

geklinde birinci mertebeden bir operatérdir. Burada 7;(x)

() = 3 M) X2 g Pl

=1 G.Z',

dir. [Xe, Xp] = ~[Xg, X} olacags hemen goriilebilir.

Teorem (Lie‘nin Ikinci Temel Teoremi) Bir 1-parametreli Lie doniigiim
grubunun herhangi iki sonsuz kiiciik iiretecinin komiitatdri, yine sonsuz kicik
bir operatérdir. [X,, Xp] = CleXy a,8,7=1,2,..,r; burada Cgs katsayilarina
yapi sabitleri denir. '

Herhangi X, X3, X, sonsuz kiigiik #iretecleri igin

[Xou [Xﬁ: X’Y]] + [Xﬁ) [X’)" XQ’H + [X')') [Xm Xﬁ]] =0 (1'63)

Jacobi ozdesligi gegerlidir.

Teorem (Lie‘nin Ugiincii Temel Teoremi) [X,, Xp] = CJz X, bagmtilanyla
tanimlanan yapi sabitleri,

ChsCl + CH.CL, + CF

5
¥ per O:Cpﬁ =0

denklemlerini saglar. [3]

Tamim . Bir £ Lie cebri, F cismi iizerinde [X., X3} = apXy ve Jacobi
ozde§hgm1 saglayan toplamaya gore kapali olan bir vektdr uzayidir.
Ozel olarak, r-parametreli Lie doniigiim grubunun {X,},a = 1,2,...,r sonsuz
kiigik iiretegleri R cismi tzerinde bir r-boyutlu £ Lie cebri olugturur eger,
XoyXg, X, € £,a,b€ Rigin
(DaX, + bXg € £7;
b ()Xo + Xp = Xp + Xa;
(U)X + (Xp + Xy) = (Xa + Xp)+ Xy
(v} Xa, Xgl € £7;
(V)[Xe Xp] = —~[Xp, Xa;
(Vi)[Xm {Xﬁ: X’Y}] + [Xﬂ) [X"n Xa’]] + [ 7 [Xm Xﬁ}] =0
(Vil)[(aX o + bXp), X3] = o[ Xo, X,] + 8 X, X,].

Gy, r-parametreli Lie doniigim grubu olsun. G, nin herhangi bir-parametreli
altgrubunun, £” de bulunan sonsuz kiigiik bir #ireteci vardir.
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Teorem. X{), g‘) ; Xo, Xp sonsuz kiciik ireteclerinin k inci mertebeden
genigletilmis sonsuz kiicik iretegleri ve [X,, Xp](k ) ise [Xa, X5] komiitatorinin
genigletilmig sonsuz kugik treteci olsun.

[Xa, Xg](k) =[x (), Xg‘)], k =1,2,.. elde edilir, bu durumda eger [Xq, Xp] = X,
ise [X(), X = X0 k = 1,2, .. dir.

Tanim. Herhangi Xo, Xp € I igin [X,, Xg] € I oluyorsa I C £ altuzayina £ Lie
cebrinin altcebri denir.

1.8.1 Cozulebilir Lie Cebirleri

Sonraki bolimde r-parametreli Lie doniigiim grubunu kabul eden n. mertebeden
adi diferansiyel denklemleri ele alacagiz. Gosterilecegi tzere r = 1 ise, denklemin
mertebesi bir basamak diigirilebilir, n > 2 ve r = 2 oldugunda mertebe iki
basamak diigiriilebilir, n > 3 ve r = 3 ise mertebe ikiden fazla digirilemeyebilir.
Bununla birlikte kabul edilen r-parametreli grubun sonsuz kugik treteglerinin r-
boyutlu Lie cebrinin, g-boyutlu ¢ozilebilir bir altcebri varsa bu durumda difer-
ansiyel denklemin mertebesi q defa digiirilebilir..

Tanim. Herhangi X € I,Y € £ igin [X,Y] € I oluyorsa I C £ altcebrine £
nin bir ideali veya normal altcebri denir.

Tanim. £F) k-boyutlu Lie cebri, £F-Vk = 1,2,..., ¢ £®) nin bir ideali ve
L0 c 2D c L)) o £@ = po

seklinde altcebirler zinciri varsa, £9, g-boyutlu ¢bzilebilir bir Lie cebridir.

Tanim. Herhangi X,, X € £ igin [X,, Xg] = 0 oluyorsa £ ye degigmeli Lie
cebri denir.

Teorem. Her degismeli Lie cebri, ¢ozilebilir bir Lie cebridir.

Teorem. Her iki-boyutlu Lie cebri, ¢ozilebilirdir.
ispat. £ iki-boyutlu Lie cebrinin X;, X5 sonsuz kiigiik iireteglerini baz vektorleri
olarak alalim ve [X3, X5] = aX1,bX; =Y olsun. Eger ; Xi + ¢2 X3 € £ ise

{Y, 61X1 + CzXz] = 01[},, X1] + CQ[Y, Xg]
= Clb[)(g, XI] + Cza[Xl, X2]
= (csa — c1b)Y

bulunur, buradan da Y, £ nin bir-boyutlu idealidir.



BOLUM 2 ADI DIFERANSIYEL DENKLEMLERIN
DEGISMEZLIGI

Bu bdlimde sonsuz kigik déniigimleri n inci mertebeden

Yn = f(x7y7 yl:"’xyn-l) (21)

seklindeki adi diferansiyel denklemlere uygulayacagiz. Burada & = 1,2,...,n ol-
. ar N .
mak lzere y; = I dir ve yn = f(%,4,%, -, ¥n-1) , (2,9, %1, -, ¥) uzayinda bir
yiizey tammlar.
Tanim. z* = X(z,y;¢),y = Y(z,y;¢) bir-parametreli Lie doniigim grubu
ancak ve ancak grubun n inci geniglemesi (2.1) yiizeyini degigmez birakiyorsa
Y = f(2,94, %, ..., Yn-1) denklemini degigmez birakir.
(2.1) denkleminin y = ©(z) ¢oziim egrisi, 8™ = f(z, ©(z), 8M)(z),..., 8"~V(z))
esitligini saglar ve (2.1) yiizeyi tizerindedir. Lie doniigiim grubunun n inci genigle-
mesi altinda (2.1) yizeyinin degigmezligi, grup etkisi altinda (2.1)in herhangi bir
y = O(z) ¢oziim egrisinin bagka bir y = ¢(z; €) ¢oztimiine déniigmesi anlamna
gelir.

Aynica eger, z*,y* doniigimi y, = f(z,9, %, ..., Yu-1) denkleminin herhangi
bir y = ©(z) ¢oztimiinit bagka bir y = ¢(z;¢) ¢dzimine dénigtiriyorsa bu
durumda,

F ;€
Y = ——%(;;c—-—)—,k =1,2,..,n

olmak izere (2.1) yiizeyi bu doniigim altinda degigmezdir. Buradan hemen
(2.1) diferansiyel denklemi z*, y* d6nigtimini kabul ediyorsa denklemin ¢oziim
egrilerinin ailesi bu doniigim altinda degigmez oldugu sonucu cikar.

Teorem (1) z* = X(z,y;¢),¥* = Y(z,y;¢) doniigimiinin sonsuz kicik
ireteci

3 8
X ={(=,9)5- + (=, y)——ay (2.2)
ve
8 8
) — R R
X £(@,9)5, +1(,9) 3y +
) )
) 9. (n) s
Nz, 9,m) F™ F o+ 2y, Y0) o (2.3)

bu diretecin k 1nci uzanimi olsun. Burada ") (z,y, 41, .., ¥n)

D n-1) D z,
7T, 1, Y1y ooy Un) = ’7;3: — i()xy)
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seklindedir.

X(n)(yn - f(CU, Y, 91 yn—l)) =0
yani-
ﬂ(n)(f‘?; YY1, yn) = X(n~1)f(z7 PN PRTH yn—l) (2~4)

oldugunda z* = X(z,y;¢€),y* = Y{(z,y; ¢) grubu diferansiyel denklem tarafindan
kabul edilir, daha genel olarak ifade edilirse F{z,y,%1,...,%,) = 0 geklinde bir
diferansiyel denklem ancak ve ancak F(z,¥, 41, ..., Yn) = 0 iken

X(n)F(x) YiYls -y yﬂ) =0
oluyorsa z*, y* doniigiimind kabul eder. [4]

Bir adi diferansiyel denklemin degismezligi icin verilen bu kriterin, diferan-
siyel denklemin kabul ettigi (é(z, y), 7(z, y)) sonsuz kiigiklerinin belirlenmesinde
bir algoritma sagladigin: gosterecegiz. Daha da onemlisi, bir-parametreli bir Lie
doniigiim grubu bir adi diferansiyel denklem tarafindan kabul edilirse bu durumda
denklemin mertebesinin bir basamak digirilebilecegidir.

Birinci mertebeden denklemler igin bu ifade integral alma iglemine karg: gelir. Bu
mertebe diugtirme iglemi, kanonik koordinatlar kullanilarak yapilabilir.

Daha yiksek mertebeden (n > 2) diferansiyel denklemler igin mertebenin in-
dirgenmesi diferansiyel degigmezler kullanilarak ¢ozilir. Ayrica eger denklem,
Lie cebri ¢oziilebilir r-parametreli doniigim grubu altmmda degigmez ise bu du-
rumda mertebe r defa digtrilebilir.

2.1 Kanonik Koordinatlar

z* = X(z,y;€) = z + €€(z,y) + O(?) } (2.5)

¥ =Y(z,46) =y +en(z,y) + O(c*)
bir-parametreli Lie donigim grubu icin Xr = 0 ve Xs = 1 denklemlerinin
¢oziimi olan (r(z,y), s(z,y)) kanonik koordinatlar vardir oyle ki koordinat de-
gigiminden sonra (2.5) doniigimi

s*=s+¢

r=r } (2.6)

oteleme grubuna dénigir. ¥ = f(z,y) seklindeki denklem kanonik koordinatlara

gore

ds sz+syy’~

as Szt syf(xx y)
dr - Ty +7'yy' - F(r75) B

s + 1y f(2,y) 27



haline gelir. ¥ = f(z,y) ve (2.7) denklemlerinin (2.6) doniigiimii altinda degis-
mezligi, F(r, s) nin s ye bagh olmadig anlamina gelir. Boylece (2.7) denklemi

ds 5 + 5yf(2,9)
G( ) T$+?':f($,y) .

seklindedir.

Sonug olarak, ¥ = f{z,y) denkleminin genel ¢oziimii, C sabit olmak fizere
s(z,y) = [7Y G(p)dp + C ile verilir.

2.2 integrasyon Carpam

¥y = f(z,y) adi diferansiyel denklemi
M(z,y)dz + N(z,y)dy = 0 (2.8)

seklinde yazlabilir, burada f(z,y) = —-%—gf} dir. Eger w(z,y) = sabit
y' = f(z,y) denkleminin genel ¢oziimii ise

8w Sw
;?E - Ma_y =0 (2.9)

dir. y = f(z,y) denkleminin bir-parametreli bir Lie ddniigiim grubu kabul
ettigini varsayalim. Bu durumda (2.5) dénigimi, w(z,y) = C ¢oziim egrileri
ailesini degigmez birakir. (2.5) déniigim grubunun, w(z,y) = C ¢oziim egrilerinin
degigmez egriler olmayacak gekilde bir grup oldugunu varsayalim. Bu halde
genelligi bozmaksizin w(z, y) = C ¢bziim egrileri ailesi, X = {(z,y)L + (=, y)g%
sonsuz kugik ireteci igin

e/ Sw
Xw= 6("7"1 y)"a% + f'(x, y)é‘g =1 (210)

esitligini saglar. (2.9) ve (2.10) sisteminden 2 ve ‘g‘;’ tiirevleri,

Bw M 8w N

oz M§+Nn6y M¢ + Nq

geklinde ¢ozilebilir. Ayrnica dw = %:fdz + %;‘idy bir tam diferansiyeldir. Buradan
wz,y) = HEI?-T\?E denklemin bir integrasyon garpanidir. Tersine agagidaki teoremi
verebiliriz:

Teorem 2.2.1 Eger u(z,y) birinci mertebeden bir diferansiyel denklemin bir
integrasyon garpani ise bu durumda u(z,y) = ’EZ‘%W yt saglayan herhangi bir
(é(z,v),n(=,v)) , ¥ = f(z,y) denklemi tarafindan kabul edilen
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X = §(z,9) % + n(«,y) 2 sonsuz kiigik fretecini tanimlar.

Teorem 2.2.2 Herhangi bir {(z, y) fonksiyonu icin

X = f(a )l + (o, o] (211)

tiretegli bir-parametreli Lie dontigim grubu, ¥’ = f(z,y) denkleminin her ¢6zim
egrisini degismez birakir.

ispat. y = ©(z), ¥ = f(z,y) nin bir ¢éziim egrisi olsun. Bu durumda
y' = 0'(z) = f(z,©(z)) olur. (2.11) ile verilen iireteci ele alalm.
X(y —©(2)) =&z, 9)lf (2,9) — @'(2)]; y = ©() ise

X(y — 8(z)) = &z, ¥a)) (=, 9(=)) — ©'(z)] =0

bulunur. Sonug clarak y — ©(z) = 0, bir-parametreli Lie déniigim grubu icin
degigmez bir egridir.

2.2.1 1ki ve Daha Yiiksek Mertebeden Diferansiyel
Denklemler
¥y = f(z,9,9, .., 4" D) veya
Yn = f($> Y9, yﬂ~1) (212)

geklindeki diferansiyel denklemlere sonsuz kiigiik donigimlerin uygulamalarini
ele alahm. Burada n > 2 ve ¢f*) = 4 = %,k =1,2 ..,%

y =y ¢ =43 . dir

(2.12) denkleminin, X = §(=z, y)g"’; + (=, y)% tiretecli

(2.13)

z* = X(z,y;€) = z + ¢€(z,y) + O(e?)
v =Y(z,5¢) =y +en(z,y) + O(e*)

bir-parametreli Lie doniigiim grubunu kabul ettigini varsayalim.

Yn = F(, 9, %1, ) Yn-1)

denkleminin bu doniigim altinda kanonik koordinatlar veya diferansiyel degismezler
yardimiyla bir mertebe digiiriilebilecegini gosterecegiz.
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2.3 Kanonik Koordinatlar Yardimyla Mertebe indirgeme

Teorem 2.3.1 Trivial olmayan X = f(m,y)a—a; + n(z, y)% dretegli bir-para-
metreli Lie doniigim grubunun (n > 2) olan (2.12) denklemi tarafindan kabul
edildigini varsayahm. (r(z,y), s(z,y)) , Xr = 0, Xs = 1 denklemlerini saglayan
kanonik koordinatlar olsun. Bu durumda n inci mertebeden (2.12) denklemini
¢bzme problemi (n-1) inci mertebeden

a1z dz &2z
drn-1 G(r 2, dr’ dr""2)

(2.14)
denkleminin gozilmesi problemine indirgenir. Burada g% = z dir.[5]
ispat. (7, s) kanonik koordinatlarina gore

ds s+ 3yy

= 2.15
dr  rp 41y (2.15)

yazip ¥ ye gore ¢ozersek, Fo(r, s, dr) herhangi bir fonksiyon olmak tzere
y' = Fo(r, s, ds) buluruz. (2.13) doniigimi non-trivial oldugundan

ry +ryy #0

oldugu agiktir. Yani y, = f(=,%,v1,.., Yn—1) denkleminin keyfi bir y = 6(z)
¢ozimi igin % # Y = ©/(z) dir. Herhangi bir fi(r, s, &) fonksiyonu igin

d2s d(sz—Jrf,s;’“T) §yTp — 8gT ds
_E“' 7’+‘yy‘ yf[ yr'z & %]+f1(r’5’ _)
dr dr (re: +ry¥) dr
ve buradan da Gy(r, s, 2 dr = —f1F} ve Fi(r, s, 3: = gs:’%f”s—zg— olmak iizere
d?s ds ds
= Zi_;z‘Fl(r: 8, E;) + G1(7”, s, &;)

gseklindedir, (r, s) kanonik koordinatlar oldugundan syr; — s;ry # 0 yazihr. Bu
gekilde devam edilerek herhangi bir fi_1(r, s, %—j—, vy g;{—i%) fonksiyonu igin

\

d's Ty — 8T ds  dF1s
drk [( y; f)ki—ll.{-fk 1(7", 8, == d b ’d?’k 1) (2-16)
TyY
bulunur. Gy(r, s, dr, ,-g—;é% = —fr-1F_1 ve Fr_y(r, s, dr) = % olmak
izere & b1,
Y = . ka——l(Tas’ dr )+Glc 1(1” 3, drk- 1)

elde edilir.
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Boylece (r(z, y), s(2, y)) kanonik koordinatlanna gore (2.12) denklemi

ds d*ls
F('T', 3, &;, cony ar'—n—_—l-)
herhangi bir fonksiyon olmak tzere %% = F(r, s, '3_:,-‘“: %_ii) geklinde yazilabilir.
Bu denklem r* = r,s* = s + ¢ grubunu kabul eder ve F in s den bagimsz
oldugu gikar. Sonug olarak y, = f(z,¥,¥1,..., Yn-1) denklemi (2.14) denklemine
indirgenir.

(2.14) denkleminin genel ¢ézimi z = ¢(r; C1,Cs ..., Cn-1) geklindeyse bu
durumda y» = f(%,¥, 91, ..., Yn—1) denkleminin genel ¢dziimii Cy, Cy, ..., Cn ler
integrasyon sabitleri olmak uzere, s(z,y) = [ rizw) #(p; C1,C2; ..., Cn1)dp + Cr
seklindedir.

Bir-parametreli Lie doniigiim grubu altinda ¥, = f(z,y, %1, ..., ¥n-1) denkle-
minin degigmezligi, (n-1) inci mertebeden bir diferansiyel denklemin ¢oztimine
indirgenir.

2.4 Diferansiyel Degismezler Yardimiyla
Mertebe Indirgeme

n inci mertebeden

.7:‘(.7}, Y, Y1,y - yﬂ) =Yn — f(ﬂ?, YY1, -0 y”&-1) =0 (2‘17)
adi diferansiyel denklemi
2" = X(2,9;€) = & + e€(z,) + O(¢*)
¥ =Y(z,y;¢) = y + en(z,y) + O(¢")

déniigiim grubunu ancak ve ancak F = 0 iken X(®)F = 0 oluyorsa kabul eder.
Béylece F fonksiyonu, Xu(z,y) = 0, X®uu(z, 9, v1, .-, %) = 0; %y‘if #0,
k =1,2,..,n gartlarini saglayan

w(z, Y), vi(Z, ¥, Y1)y o V{2, ¥, Y1, s Yk ) (2.18)
degigmeszlerinin bir fonksiyonudur.
g” = X(z,9;€) = 7 + ef(3,y) + O(€%)
y* =Y(z,y;€) = y + en(z,y) + O(*)
doniigiim grubunun n inci geniglemesi i¢in u* = u, v} = v,k = 1,2,...,n ¢kar;

’U}c(.’L‘, Y., yk)
dz dy din dyi

—

{"(z,y) B 77('7"7 y) B 77(1)(55, Y yl) e 77(1‘)(3’; Y, gla"')yk)
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karakteristik denklemlerinin integrasyon sabitidir. (2.18) degigmezlerinin her-
hangt bir kiimesi i¢in (2.17) denklemi, G herhangi bir fonksiyon olmak iizere

G(u,v1,v2,...,9,) =0 (2.19)

haline gelir. s(z,y) kanonik koordinatin hesaplamaksizin, (2.18) degigmezlerinin
her zaman elde edilebilecegini gosterelim:
XM birinci uzaniminn u(z, y), v1(&, v, y1) degismezleri

dz _ dy _ din
&z,y)  wzy) 0+ (my— &) — Elm)

karakteristik denklemlerinin integrasyon sabitleridir. u(z,y) acik olarak belir-

lenebilirse v(z, ¥, 1) nin hesaplanmasi, bir integral alma iglemine indirgenir.

u(z,y) ve v(Z,y, 1), =*,¥* dénigimlerinin k 1nc1 geniglemeleri altinda degigmez

dyn\* __ dvt __ dy v e e
olduklarindan ve (£) = Z% = &,k > 1 den hareketle £, bu doniigim

grubunun (k+1) inci geniglemesi altinda degigmez bir gruptur. Bu sekilde de-
vam edildiginde, %, —;%%, vry é‘%‘,}f—'{ lerin z* y* donigiimlerinin n inci geniglemesi
altinda degismez olduklar: goriilir. Bu degismezlere z*, y* doniisiimlerinin n inci
mertebeden genigletilmiy grubunun diferansiyel degismezleri denir. Ayrica boyle

diferansiyel degigmezler, £* ¢* doniigimlerinin birinci mertebeden genigletilmig

Sy,
Oy1

Bu durumda, gi1(z,y, %) herhangi bir fonksiyon olmak izere,

grubunun herhangi w(z, y), v(z, ¥, 91), 5 #-0] degismez segimiile olugturulabilir.
dv _ Gt t v
du g_% + /51 %

= v7,9,%1,%2)

3y

By1

¥ ||+ alz v )
[%+w%} -

f

dir. Bu gekilde devam edilerek ; g(#,y, %1, ..., yx) olmak iizere £ =1,2,...,n
d*v

g = (@908 0 Yer)

Jy

-

= Yr+1 [(au +?; P k] +gk($:y:y1$“'3yk)
5z 13y

elde edilir. Sonug olarak {vi(z,y, v, ..., )}, k = 2,3, ..., n degigmezleri diferan-
siyel degigmezler olarak olugturulur. Burada
du Suk
& tug)
Alz,y, 1) = ﬁ*@-—?‘g—*,B}c = —Agr, k=1,2,..,n—1.
dyr

olmak tizere

dfu

Yet1 = zﬁAk(fﬂ, yyn)+ Bz, v, o %)
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oldugu gérﬁlmeﬁdir.

Boylece diferansiyel degismezlere gore indirgenmis (2.19) denklemi, herhangi
bir H(x, v, du, . %};;) fonksiyonu igin

&y dv a2y
dun—l"H ’ EE""’dun—z)

bigiminde (n-1) inci mertebeden bir adi diferansiyel denklemdir.

(2.20)

Aynca C1,Cy, ..., Ch_y ler keyfi sabitler olmak iizere v = ¢(u; Cy, Ca, ..., Cn1)
(2.20) denkleminin genel ¢éziimidir ve bu durumda (2.17) denkleminin genel
¢ozumi, birinci mertebeden

’U(Zb’,y, yl) = ¢(U(.’L‘, y); Cl) C?) vy Cn—-l)

diferansiyel denklemini ¢ézerek bulunur.

2.5 n inci Mertebeden Adi Diferansiyel
Denklemlerin Sonsuz Kiigitk Doniigiimleri
icin Belirleyici Denklemler

Teorem (1) e gore n inci mertebeden

Yn = f(x)yy Y1, “'ayn-l) (221)

seklinde bir denklemin
g a
X = (2,95 + (=, y)g; (2.22)

uretegli, bir-parametreli Lie d6niigiim grubunu kabul etmesi ancak ve ancak
~ H(z,9,91, 1 Yn-1) = 0 iken

X(n)[yn - f(.’L’, Y4, .- yn—l)]— =0 (223)

ise miimkiindiir. Burada X iireteci

o d 8 8
(n) — 2 9 LW < (n)( 2
X £(z, y)&t + (=, y)ay + \(z, y,m)ay1 + oo + 90z, y, 11, ""y”)ay,,

seklinde, X in n inci uzammdir. Buradan (2.23) ifadesi

L

of o (r—1
n ayn_l

0 = (6L 42 e 2L

135+ 15, (2.24)

haline gelir.



34

flz,y, y.l, Yn-1), Y1, Y2, ..., Yn-1 lere gore polinom ise bu durumda (2.24); kat-
sayilar, (£(z, ), 7(z,y)) ve bunlarin n inci mertebeye kadar tiirevlerine gore lineer
homogen olan, y1,¥2,.., yn—1 lere gore polinom seklinde bir denklemdir. Her-
hangi bir adi diferansiyel denklem igin belli bir z degeri igin herbir y, 41, ..., ¥n-1
e keyfi degerler atanabileceginden (2.24) deki polinomda her terimin katsayis
sifir olmahdir. Bu ise (£(z,y),n(z,y)) i¢in bir lineer homogen kismi diferansiyel
denklem sistemi verir. Bu lineer sistem, y» = f(z, ¥, %, ..., Yn-1) tarafindan kabul
edilen sonsuz kigiikler igin belirleyici denklemler climlesini tanimlar. Eger denk-
lem sayis1, § ve n bilinmeyen sayisindan fazla ise bu kiimeye agir1 belirlenmis
sistem denir. t

f(=: 9,91, -¥n-1) , Y1, 92, .-, Yn—1 lere gore polinom geklinde degilse, (2.24) deki
Y1, Y2, -, Yn—1 degigkenlerinin bagimsizhigi izerine kurulmug belirleyici denklem-
lere kargl gelen bir kiime elde edilebilir. ikinci mertebeden bir adi diferansiyel
denklemin en fazla 8-parametreli bir Lie doniigiim grubu; n > 2 olmak iizere n
inci mertebeden bir denklemin ise en fazla (n+4)-parametreli Lie ddniigiim grubu

kabul edecegi gosterilebilir,
r

Adi diferansiyel denklemler tarafindan kabul edilen sonsuz kiigiik iireteglerin
formlar: hakkinda baz teoremler verecegiz. Bu teoremler uygulamalarda ortaya
cikan birgok adi diferansiyel denklemi kapsamaktadir.

Teorem 2.5.1 n > 3 olmak lizere n inci mertebeden

Yn = g(xs Y, yl)yn——l + h(x: YY1y Yn2) (2-25)

adi diferansiyel denklemi X = §(z, y) 2 +1(7,y)Z iretecini kabul ederse ¢, = 0
dir.

Teorem 2.5.2 n > 3 olmak iizere n inci mertebeden

Yn = g(a:, y)yn-l + h(.’L‘, Y, yl: ~:~,9n—2)

adi diferansiyel denklemi X = {(z, y)g% + 7(z, y)-a% iretecini kabul ederse
€, =0,ny =0dir

Teorem 2.5.3 -
‘ v2 = g(z, ¥)n + h(z,y) ?

I
geklindeki bir adi diferansiyel denklem ¢, = 0 olan X = £(:z:,y)§; + n(z, y)-é%
iretecini kabul ederse 7, = 0 dir.
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2.6 Blasius Denkleminin Kabul Ettigi Simetriler

¥+ :}yy” = 0 denklemi X = {(=z, y)% + (=, y)(—% tiretegli bir Lie dontigim
grubu kabul etsin. £(z,y), 7(z,y) sonsuz kigiklerini bulahm:

7] d a 3 7]
XO) =2 pp— gD D )
Bty t T oy T e T oy,
uzanimint denkleme uygularsak; ’
(3)1, /1 L 1y 1 {(2) (3) "t 1
XOW" + 5y = Sy"n + Syn™ +0° = 0,4" = —yy'. (2.26a)

v

1 = noe + Moy — Exa )y + (Myy — 2§zy)(y')2 - fvy(?}')s + (g — 26:)y" — 3,y
1% = fioog + (BNooy — Eoce )y + 3(ayy — frxy)(?/y + (hyyy ~ 3oy ')’ — fyyy(?»"')4
+3(N1cy — €z )y + 3(nhyy ~ 3 )y 66y (¥ )y —38(y") + (my — 36 )" — 46,0/ y"

ifadelerini kullanirsak (2.26a) denklemi,

1 1
{7)::3:5: + Eyﬂxx] + [377.rxy ~€rzz + Yoy — §y€xx]y!

1

9y = ¥l = oy = 3oy = 296 l(¥') — )"

+[3773:yy - 3§z$y +

1 1 ' 1
+[37zy — 36z + Eyfx + En]y” + [37y — 9y + §y§y]g'y”
—68u,(y)'y" ~ 36,(y")’ =0 (2.26b)

seklinde y' ye gore diizenlendiginde polinom yapisinda bir denklemdir. Buradan
&(z,y), n(z,y) sonsuz kiigikleri igin belirleyici denklemler

1

Nezs + Eynx: =0 (2.260)

1
3Nezy — Eroz + Yoy — Eyﬁzx =0 (2.26d)

1
3Ny = 3ooy — Yoy + 5Yhy = 0 (2.26¢)

1
3'Et$y + Eyfw — Nyyy =0 (2.26f)
§ywy =0 (2~269)
1 1
3niey = 3es + 5¥e +5m =0 (2.26h)
1 .

Styy — ey + Eyﬁy =0 (2.261)

=20 (2~26j)
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£, =0 (2.26k)

seklinde elde edilir.
Hemen goriilebilir ki (2.26k) saglandiginda £ = £(z) ve (2.26g-}) ve (2.261) den
(2.26e-1) saglanacak gekilde

Ny = Q (2.26m)

buluruz. (2.26d) de y ye gore, (2.26h) da ise z ve y ye gore tiirev alirsak
Ny =§' =0 (2.26n)
gtkar, (2.26n) de bulunanlar (2.26d) denklemini de saglar. Bu durumda

&z) =a+ Bz }

7z, y) =1y + &) (2.26)

bulunur.(2.26h) dan

2B+ in=3(yP +r1y+a(s)) =0
a(z) = 0 ve v = —f elde edilir. Bdylece Blasius denklemi sadece iki-parametreli
bir Lie dontigim grubu kabul eder ve buna karg: gelen sonsuz kiigiikler

¢ =a+pfs

n= —ﬂyao‘aﬂ = sabit

geklindedir. Dontligimiun dretecleri ise X = 3@; ve Xy = xaa—z - y% dir.
2.6.1 y”" =0 Denkleminin Simetriler
y" = 0 denkleminin degigmezlik kriteri

ay” ayll 6ylf '}

A = ot bt R ¢ bt AR )] ! Vo
XYl = &z, )5 + 7= v) g T (w,y,y’)ay, + 1%z, 5,9,y )8y” 0
y" = 0 oldugunda #® =0

olmasidir. Buradan (¢(=, %), 7(z,%)) ,
1% = tee + (200y — £}y + (myy — 26 )(¥)’ — E(¥)’ =0 (2.27a)

denklemini saglar. Bu denklem % niin 3 fincii dereceden bir polinomu geklindedir.
Denklemin katsayilarini sifira egitlersek

€y =0 (2:27h)

Nz =0 (2.27¢)
yy — 2oy =0 (2.27d)
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oo — 2Ny =0 (2.27¢)
belirleyici denklem kiimesini elde ederiz. (2.27b) ve (2.27c) denklemlerinden

é(z,y) = o(z)y + b(=)

(2, y) = c(y)z + dy)
ve buradan da (2.27d) ve (2.27¢) denklemlerinden

zc(y) + d"(y) —-2d(g) =0 (2.27f)

ya'(z) + b'(z) =~ 2c(y) =0 (2.27g)

buluruz. (2.27f) nin z e gore, (2.27g) nin y ye gore tirevini alarak ¢"(y) = a"(z) =
0, ve integre ederek

a(z) = anx + a3, (y) = a3y + o
elde ederiz. Benzer gekilde
d'(y) = 2d(z) = 2a1,V"'(z) = 2¢(y) = 2as3
den
d(y) = 1y’ + asy + as, Hz) = a3z’ + vz + 05

bulunur. Boylece ¥’ = 0 denklemi
§(z,9) = a1z’ + apzy + a3z + agy + as

z,y) = a1xy + a2y’ + a6z + ary + ag

ai, Qy,...,ag ler keyfi sabitler olmak izere sekiz-parametreli bir Lie donigiim
grubu kabul eder. Bu sonsuz kiigiiklere karg: gelen tretegler ise

a a a3 3 o Pe]
=zt — — = —_— 2 = L— = Y-
Xi=z 8zx+$y8y’X2 $y8$+y 8y,X3 Iaa:,Xq‘ ya’b’

X5 = %,Xs =$%,X7 = y-(%,Xs = %
geklinde bulunur. Bu sekiz iiretecli vektor uzay: bir £2 Lie cebri olugturur. £®
Lie cebrinin komiitatorlerini komitator tablosu yardimiyla gostermek uygun ola-
caktir. [Xo, Xg] = ~[Xp, X,] oldugundan kdsegen iizerindeki butiin elemanlar

sifirdir.

X, X X3 Xe X5 Xs X7 Xg
Xy 0 0 ~-X; -X> -2X3 - X7 0 0 -Xg
X, 0 1] 0 0 ~Xa ~-X: ~-X2 ~X3-2X>
X3 X1 0 0 -X4 ~-X Xs 0 i}
X X; 0 Xy 0 0 X7-X3 ~Xa ~X
X5 | 2X3 4+ X7 Xs X5 0 0 Xy 0 [i}
Xs 9 X1 ~Xs X3-X7 - X3 0 Xs Q
X7 0 Xa 0 Xy 0 -Xs 9 ~-Xs
X3 X5 X3 +2X7 0 X 0 0 X3 0
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2.7 Verilen Bir Grup Altinda Degigsmez Olan n.
Mertebeden Adi Diferansiyel Denklemlerin
Belirlenmesi

Verilen bir-parametreli bir Lie doniigim grubunu kabul eden n inci mertebeden
adi diferansiyel denklemlerin bulunmas: problemini ele alahm. (2.21) denkle -
minin (2.22) tretegli bir Lie dontigimler grubunu kabul ettigini varsayahm. iki
sekilde hareket edebiliriz:

(i) Kanonik Degigkenler Metodu

X ==L + (=, y)-a% iiretecine kargi gelen (r(z,y), s(z,y)) kanonik koor-
dinatlar1 Xr = 0 ve Xs = 1 denklemlerini saglayacakiir. y, = f(z,¥, %1, ) ¥n-1)
denklemi tarafindan kabul edilen grup , simdi

r=rs=s5+c¢ (2.28)
dir ve bu grup altinda degigmezler g-;,f—, k=1,2,..n seklindedir.

(2.15-16) esitlikleri yardimiyla bu degismezler z,y, v/, oy lere gore ifade
edilebilir ve (2.22) yi kabul eden en genel n inci mertebeden adi diferansiyel
denklem G(r, g—j, g;%, n) 3:—:—%) argimanlarmin keyfi bir fonksiyonu olmak iizere
% ye gore (n-1) inci mertebeden

d"s ds d%s 41

d?" ( ’d d?"z’ )drn 1) (2‘29)

ile verilebilir.
(ii) Diferansiyel Degigmezler Metodu

Burada ilk olarak u(:z y), v(%, v, 11 ) degigmezlerini bulahim ve x, y, 1, ..., yn lere
gore ifade edilebilen 4% d 24k =1,2,...,n—1 diferansiyel degigmezlerini hesaplayalim.

X =z,9)2 p +77(a:, y) 3; ¥i kabul eden en genel n inci mertebeden adi diferan-

siyel denklem; H(u,v ,W) argumarlarmln keyfi bir fonksiyonu olmak

’du”

Yy dv a2y
dt = A0 G o Gs)

seklinde ifade edilebilir. Bu denklemin mertebesi (n-1) dir.

uzere
(2.30)
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2.8 Cok-parametreli Gruplar Altinda Adi
Diferansiyel Denklemlerin Degigsmezligi

Bu kisimda r-parametreli bir Lie dontigim grubu altinda,2 < r < n, n ind
mertebeden bir adi diferansiyel denklemin degismezligini inceleyecegiz. Eger
r-boyutlu Lie cebri ¢oziilebilir ise bu durumda verilen bir n inci mertebeden
diferansiyel denklemin (n-r) inci mertebeden bir denkleme indirgenebilecegini
gosterecegiz. Herhangi iki-boyutlu Lie cebrinin ¢ozilebilir oldugunu géstermistik.
R" deki her gift-boyutlu Lie cebrinin bir iki-boyutlu altcebir igerdigini séyleyebi-
liriz.

2.8.1 Iki-parametreli Bir Grup Altinda Ikinci Mertebeden
Bir Adi Diferansiyel Denklemin Degigmezligi

Iki-parametreli bir Lie déniigim grubunu kabul eden

y” = f(zyya y’) (2‘31)

seklindeki bir diferansiyel denklemin mertebesinin iki defa dugiiriilerek denklemin
genel ¢oziminiin bulunabilecegini gosterecegiz.

Xy ve X, , verilen iki-parametreli Lie doniigim grubunun Lie cebrinin baz
v . k I o . vy . .
operatorleri ve Xf ), X; operatorlerinin k 1inc1 uzanimi olsun. Her iki-boyutlu Lie
cebrinin ¢oziilebilir oldugu teoreminden hareketle

[X1, Xa2] = A X1, A = sabit
kabul edebiliriz. u(z,y) ve v(z,y,1), X?) nin
Xw=0XxMy=0
olacak gekilde degigmezleri olsun. Bu durumda j—z diferansiyel degigmezi
dv

=0
du

denklemini saglar ve herhangi bir H(w,v) fonksiyonu igin (2.31) denklemi

dv
T = H(u,v) (2.32)

denklemine indirgenir, buradan da

x?

X1 Xou = XoXiu+ A X1u =0
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cikar. Boylece herhangi bir a(u) fonksiyonu igin
Xou = alu) (2.33)

elde edilir. Benzer sekilde yukaridaki teoremden

xPxPu =0, xPxPX _ o
du
bulunur. Béylece herhangi bir §(u,v) fonksiyonu igin
XMy = B(u, v) (2.34)

¢ikar. (2.31) denklemi X; yi kabul ettiginden £ = H(u,v) olmak iizere
(@, _ _
X3 (du H({u,v))=0
bulunur. (2.33-34) den Xél) , (8, v) koordinatlarinda

Io} a3
Xél) = a(u)g{&— + ﬂ(u,v)%

haline gelir, bu sonsuz kiigitk iireteg, (2.32) tarafindan kabul edilir.

(B(u,v), 5(u,v)) ,
XPR=0, XP5=1

denklemlerini saglayan kanonik koordinatlar olsun. Bu durumda (R(u,v), S(u, v))

JR

)5, =0

a(u)%? + B(u, v
a5 a8
a(u)é—; + B(u, v)% =1

denklemlerini saglar; boylece

" =£ } (2.35)

S*=54+¢

| bir-parametreli Lie d6éniigimler grubu, (2.32) tarafindan kabul edilir. Dolayisiyla
(2.32) denklemi I(R) , R nin herhangi bir fonksiyonu olmak iizere

ds
-5 = I(R) (2.36)

bagintisini saglar. Bu denklemi integre ederek Cy keyfi bir sabit olmak iizere
R{u,v)
5(u,v) = f I(R)dR + C,

bulunur.

I(R)dR + Cy

R(u(z,y)w(z.y9'))
S(u(z,y),0(z,9,9) = [
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diferansiyel denklemi X; i kabul eder ve
X 17 = 0, X 1§=1

denklemlerini saglayacak gekilde belirlendikten sonra kanonik koordinatlar yard:-
miyla integral alma iglemine indirgenir.

Sonug olarak, iki-parametreli Lie doniigimler grubunu kabul eden herhangi bir
adi diferansiyel denklem, bir integral alma iglemine indirgenir.

2.8.2 Iki-Parametreli Bir Grup Altinda n inci Mertebeden Bir Adi
Diferansiyel Denklemin Degigmezligi

n incl mertebeden
Yn = F(2,9, 91, s Yn-1) (2.37)

adi diferansiyel denklemini ele alalim ve bu diferansiyel denklemin; n > 3 ve keyfi
bir A sabiti igin [X1, X3] = AX; olacak gekilde X, X, tiretecli, iki-parametreli bir
Lie doniigiim grubu altinda degigmez oldugunu kabul edelim. u(z,y), (=, ¥, 1),
X{z) nin degismezleri olsun. Bu durumda v = gf; olmak iizere X{¥% = 0 dir ve
(2.37) denklemi, herhangi bir

dv dv=2y

H(“: v, 3‘,{;: o0y W)
fonksiyonu igin )
"y dv  d" %
W = H(“:'”) '@'; cevy W) (2.38)

indirgenir.
(XD, X = axD k=12,

oldugundan herhangi a(%), (%, v}, ¥(u, v, 9) fonksiyonlar: i¢in
Xou = alu),

XMy = B(u, ),
X6 = (u,v,9),

elde edilir. Bu durumda birinci uzanim

@ = au).2 3 A2
X3V = a(u)au +ﬂ(u,v)av +7(u, v, 'u)a?}f

olan 5 s
(1 2. —_—
X3 = a(u)au + B(u, v)av

iireteci (2.38) tarafindan kabul edilir.
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Ulu,v) ve V(u,v,9),
xPu =0, xPv=0
denklemlerini saglasmn. Bu durumda

av
au

dir, buradan (2.37) ve (2.38) denklemlerinin, I{U, V, %, ey 3’1}—;3_%-) , argimanlan-
nin herhangi bir fonksiyonu olmak lizere

Xg") =0

AR (ARl (2.39)
denklemine indirgendigi gorilir. Eger
V =¢(U;C1,Ca ..., Cna)
bu denklemin genel ¢oziimd ise birinci mertebeden
V(x,v, %) = U (u,v); C1, Ca, ... Caus) (2.40)

denklemi X{ = a{u)Z + B(u,v)2 yi kabul eder. Boylece (2.40) denklemi
v = ¢(u; C1, Cay ..y Cra, Crc1)
kuadratiire i‘ndirgenir. Fakat birinci mertebeden
wz,4,Y) = ¥(u(z,y);, C1, Cs, ..., Croz, Cnr) (2.41)
adi diferansiyel denklemi X i simetri grubu olarak kabul eder ve sonugta (2.41),

kuadratiire indirgenir; (2.37) nin genel ¢bziimii elde edilir. [6]

2.8.3 r-Parametreli Bir Grup Altinda n inci Mertebeden
Bir Adi Diferansiyel Denklemin Degigsmezligi

Eger r-parametreli (r > 3) bir Lie grubu n inci mertebeden bir adi diferansiyel
denklem tarafindan kabul edilirse, her zaman denklemi (n — r) inci mertebeye
indirgeyemeyiz. Fakat £7 Lie cebri ¢oziilebilir ise miimkiindir, bu durumda £

Lie cebri =
]-—
X, X]=Y.CkXy ,1Li<j ,5=2,3,..,r (2.42)
k=1
gartlanim saglayan {Xi,..., X;} baz ciimlesine sahiptir. Dolayisiyla {Xj(m)} op-
eratorleri
i-1
XM, XM =S cExf™ 1<i<i 5 =2,3,.,r (2.43)

k=1
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Simdi )

yn = Fulz, 9,01, -, Y1) (2.44)
denklemini ele alalim, burada F, argiimanlarinin verilen bir fonksiyonudur. (2.44)
denkleminin, sonsuz kigik iretegleri, ¢ozilebilir bir Lie cebri olugturan r-pa-
rametreli bir Lie doniigimler grubu kabul ettigini varsayalim ve genelligi boz-
maksizin (2.44) denklemi (2.42) yi kabul etsin. z()(z,y) ve yu)(z, v, 1),

Xizay=0 x{ )?/(1)

denklemlerini saglayacak gekilde fonksiyonlar olsun. Bu durumda

&
xPWEH o0 f=12 01

—yﬂl degigmezine ygy, diyelim : yay = %?;?l , k=1,2..,n—1X{ nin
sy (1)

Z(1), Yy ve {yayu} diferansiyel degigmezlerine gore (2.44) denklemi (n ~ 1) inci
mertebeden
Y1 = Fro1{zqy, ¥y, Yyt - Yn-2 (2.45)

denklemine indirgenir. Burada F,_y, x ") nin degigmezlerinin herhangi bir fonk-
siyonudur {2.42) ve (2.43) den
sz(l) = cn(x(l))
XPyay = Bulzqy uy)
Xy = nlzay v, vol)

yazlir, a1, f1, 11 argimanlannin fonksiyonlanidir. Boylece birinci uzanimi

8
X8 = X 3wz, yn,
3 Y21y Yoy Y ) B

olan
Xél) = Oq(:’L‘(l))

aJ d
+ Zi1y,
" Bi(zqy, Ya)y) I

ireteci (2.45) tarafindan kabul edilir. ztg)(a:(l), Yy Y ( Ty Yy Yayr)
olacak gekilde fonksiyonlar olsun. Bu durumda

Xmmi%n k=1,2..n-2
T(2)
denklemi saglanir.
dk'!!(z)
p
dz(y)

= Y2)k» k= 1,2, vy 2= 2
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olsun. Xé"’ nin 29y, Y2y, {Yep} » k=1, 2, ., 0 =2 degismezlerine gore (bunlar
ayn: zamanda X{") nin de degigmezleridir) (2.45) denklemi

Yo)n—2 = Fr-2(Z(2): Y2)) Y2)1s - Y2)m-3) (2.47)

haline gelir, F,,_,, X{") ve X{™ nin degigmezlerinin herhangi bir fonksiyonudur.
(2.42) ve (2.43) den

XPxPem = 0 (2.48)
xPxPzy = o (2.49)

Burada (2.48) den
XP sy = Alzq), yy)- (2.50)

Ay, y1y) herhangi bir fonksiyondur. (2.49) dan ise
XD Aoy, yay) =0
gikar. Boylece (2.46) dan ay(z()) herhangi bir fonksiyon olmak iizere
X§z(3) = Az, yny) = aalem)

bulunur. Benzer gekilde §; ve 72 argiimanlarinin fonksiyonlar: olmak iizere

ng)y(z) = 52(93(2); y(z))
Xga)?!(zn = v2{®@2), Y2) Yo3)

ctkar, buradan da birinci uzanim

X§3) = X§2) + 2% (2), Y2), Yean)

a31(2)1
olan
8 3
X2 = ay(z + Ba(z(2y,
3 3(2(2y) 2 Bz 2y, Y2)) B9

treteci (2.47) denklemi tarafindan kabul edilir. Bu durumda, z@sy(z(), %))

?1(3)(55(2), Y2y 9(2)1) ,
XPzg =0 , XPyg =0

olacak gekilde fonksiyonlar olsun. Sonugta

) ,
Xymd%ﬂzm k=1,2.,n~3
drfy) |

gikar,
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olsun. X ) nin T(3), Y3)» ¥} degismezlerine gore (2.47) denklemi ve dolayisiyla
(2.44) denklemi (n — 3) finci mertebeden

Yaym-3 = I n—3(~"7(3)7 Y(3): Y(3)15 - y(s)n~4) (2.51)

denklemine indirgenir.

Ardigik olarak devam edilsin ve ¢ = 3,...,m , m <r icin Z()(T(g-1)s Ye-1) )
Yio) (T (g-1)) Yg—1)» Y(g-1)1) Tonksiyonlan

Xé?—l)z(g) =0 , Xéq)y(g) =0 , p= 12, wes @
dk
X(Q'Fk)__yT(Q_)_:O; k=1,2,...,n—q, 1<p<Lg

d .. - . dky A o
enklemlerini saglayacak gekilde olsun, —d—;(é—)l =Yg, k=1,2,..,n — ¢ boylece
e

(2.44) denklemi (n — m) inci mertebeden

Ymn—m = n~m($(m); Y(mys Ym)ry - y(m)n*m—l) (2'52)

denklemine indirgenir. Burada Fy_p,, X, X&) . x{M x{ jreteclerinin

degigsmezlerinin herhangi bir fonksiyonudur. Daha sonra indiiksiyonla m inci
adimdan {m + 1) inci adima gegig gosterilebilir.

2.9 Degismez Coziimler

X = £, 052 + (o v)y (259)

sonsuz kiigiik iretegli bir-parametreli Lie doniigim grubunu kabul eden adi dife
ransiyel denklem

y(”) = f(z, 9,9, ..., y(""l)) (2.54)

olsun.

Tanim. y = ¢(z) ancak ve ancak
(1) ¥y = ¢(z) , (2.53) iin degigmez bir egrisidir,
(ii) y = ¢(z) , (2.54) iin gozimidir ,
sartlan sagladigimda 4™ = f(z,9,¢/, ..., ¥"V) in kabul ettigi (2.53) iiretecine
karg: gelen ™) = f(z,y, ¢/, ..., 4"~ 1) denkleminin bir degigmez ¢dziimidir.

y = ¢{x) in ancak ve ancak

{(z, )¢ = n(z, ¢); (2.55)
¢ = f(z, 6,8, ..., 6" D) (2.56)
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sartlanni sagladiginda, (2.53) ireteci altinda degismez oldugundan, (2.54) iin bir
degismez ¢oziimi oldugu ortaya gikar.

Daha genel ifade edilirse ®(z,y) = 0, (2.54) in (2.53) altinda bir degigmesz
¢ozimiuniu tanimlar ancak ve ancak
(1) ®(z,y) = 0, (2.53) nin degigmez bir egrisidir,

(ii) ®(z,y) =0, y™ = f(z,9,¢, ...,y V) in ¢coziimidiir.

(2.54) denkleminin degigmez ¢oziimlerini bulmak igin en uygun yol; ¢ = Ei(x—;’%
denklemini ¢ozerek bunun g¢(z,y,C) = O genel ¢6ziimiini elde etmektir. C
degerleri, bu genel ¢oziimi (2.54) de yerine yazarak belirlenir. Béyle C = C*
degerlerinin herbiri, (2.54) denkleminin &(z,y) = g(z,y; C*) = 0 seklindeki bir
degigmez ¢ozumiini belirler.

Simdi ispatlayacagimiz teoreme gore (2.54) iin degigmez ¢dziimlerini bulmak
igin y = %Z% denklemini veya bir bagka diferansiyel denklemi ¢6zmeye gerek
yoktur:

Teorem 2.9.1 y = f(z,y,v, ..., 4"~ diferansiyel denkleminin

3 3
X = (=, y)a + n(z, y)g;

uretecini kabul ettigini varsayahm Genellig’i bozmaksizin § # 0 kabul edelim.

Y = 55; + gg%)lg/ ve ¥(z,y) = f(x y) "zd) olsun. g = YE Y k = 1,2,..,n olmak

izere

Q(.’L’, Y) = Yn — (&, 9,91, Yn1) = Yn—l"i[) - f("’:: nY, Yy, .. Yn—2¢) (2'57)

ile tanimlanan Q(z,y) cebirsel ifadesini ele alahm. Q(z,y) = 0 cebirsel denklemi
igin g hal sézkonusudur:

(1) Q(z,y) = 0 ; 2y -uzayinda egriler tanimlamaz;

(i) Q(z,y) = 0 ; her z,y degeri icin ozdes olarak saglanir;

(iii) Q(=,y) = 0 ; zy diizleminde egriler tammlar.

(1) halinde, (2.54) denkleminin (2.53) sonsuz kiigiik iireteci altindaki degismez-
liginden ¢ikan degismez ¢bziimler yoktur.

(i1) halinde, ¢ = 'YE%,_:% denkleminin herhangi bir ¢oziimi (2.54) denkleminin

degigmez bir ¢ozimidir.

(iii) halinde ise, (2.53) altinda degigmez olan (2.54) in bir ¢ézlimi, Q(z,y) =0
denklemini saglamalidir, tersine de Q(z,y) = 0 1saglayan herhangi bir egri, (2.54)
denkleminin (2.53) iireteci altinda degigmez olan , bir degigmez ¢oziimidiir.
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ispat. w1 =y =% = Yise yp = y® = Yilg k = 1,2,..,n dir. Boylece
X = €z, y)g,a; + n(z,y)-e% tireteci altinda degismez olan (2.54) iin herhangi bir
coziimi Q(z,y) = O cebirsel denklemini saglar. Buradan, (i) @(z,y) =0, zy-
uzayinda egri tanimlamazsa bu durumda (2.54) denkleminin degigmez bir ¢éziimi
olmadig ve (ii) bitin z,y ler igin Q(z,y) = Oisey’ = % nin herhangi bir ¢dziimi,
(2.54) iin bir degigmez ¢oziimii oldugu sonuglan gikar.

(iii) halinde Q(z,y) = O denklemini saglayan herhangi bir egriyi ele alalim.
Eger;
Q:+Q yy’ =0
Y e e e 3 . . _ 8 8
y = —(—J-l denklemini ¢ozerse; bu egri, X = {(z,y)5 + n(%, y) 3y altinda {2.54)

&(z.y)
denkleminin degigmez bir ¢dzimidir. @ = 0 iken Y@ = 0 ise bu ifade dogrudur.

Simdi Q = 0 iken Y Q = 0 oldugunu gosterelim:
¥y = flz,9,9,..,y" V) denklemi X = &(z,9)Z + n(z, y)% iiretecini kabul

ettiginden ,

of 3f of of
(r) = ¢2L 71 (n-1) 24 2.58
M =l t gy T gt T g (2.58)

degismezlik denklemi,
— H(2,9, 91, %n-1) =0 (2.59)
denklemini saglayan biitiin (z,y, %1, ..., ¥» ) degerleri i¢in gerceklenmelidir. Burada

7 ve n®) lar, £ toplam tiirev operatoril ile

D (k 1) Dé
7 — D ykD 3 =430

geklinde tanimlanir. ¥ = Y" Y,k =1,2,...,n olsun . Bu durumda
y™ — f(z,9,91,.,Yn—1) = O denklemi Q = 0, toplam operatorii ise —,% =Y
haline gelir.

Boylece
M = Yn—yY¢
= Y({y) - 9Y¢
= {Yy
olur, bu gekilde devam edildiginde ,
7* =Y k=1,2,..,n
oldugu gosterilebilir. Eger 7B} = £YEe) ise
p#) = yn® — (Y)Y E)

= Y(EY*y) — (Yry)YE)
£Yk+1¢
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elde edilir ve sonug olarak (2.54) denklemi (2.53) iiretecini kabul ederse (2.58) den
, Q(z,y) = 0 1 saglayan herhangi bir egriigin, (€ £0) e =Y* Y,k =1,2,...,n
degerine karg:

n af ﬂaf n-1
Y=t T ¢) + (Y ’/’)a (2.60)
elde ederiz. Fakat (2.57) den y; = Y*~1¢,k = 1,2, ..., n degerine kars1
o= Q.+ 70, =y -l + 1 vyl )2 o)

bulunur. (2.49) yardimiyla @ = 0 igin YQ = 0 oldugunu gostermis oluruz.



BOLUM 3 DEGME DONUSUMLERI ; DEGME
SIMETRILERI

3.1 Degme Doniigiimleri

Bir Degme doniigimi,

x;r = ¢j(x:u:¥) (3'1)

o' = o(z,u,u) (3.2)
1

ul = ¥z, u, ) (3.3)

J=1,2,..,n, seklinde (z, s, ) uzayinn bir D bolgesinde birebir ve dut =
1
u}dx} degme kogullarimi saglayan bir doniigimdir. {¢;, %} nin u e bagh oldugu
1
kabul edilir. (Aksi takdirde bir degme doniigimi, nokta doniigimiidiir).

R .8 .8
D; = 8z; + Uizg + uzJau,- ve

Di¢gy Di¢s ... Didn
D3y Dags ... Dady

A= . - -
Dnéy Dpgs ... D

olmak iizere A~! mevcut olsun. Bu durumda yukaridaki déniigim eger,

(i) {’Ql’;’(.’lf,‘l&, 7{)} )

] Dy
Yo | | DY
b D

denklemini saglar ve,
(i) a—f;—;(A"nggb) =0,3,7,k =1,2,...,n ise bir degme doniglimi tanimlar.
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Teorem 3.1 (3.1-3) doniigimi ancak ve ancak {¢:, ¥, %},

9¢;
“37‘;—%5; =0 (3.4)
&% % _ . Ob O
:9—5:;-1.&'61@ T %(637; + o Su (3:8)

ifadelerini sagladifinda bir degme doniigliimidir. Bu teoremden; (3.4) veya (3.5)
denklem sisteminden herhangi birisi {¢;} yi belirlemede kullanilabilir, diger denk-
lemler kiimesi {¢;,%} nin saglamasi gereken sartlan belirler ve boylece (3.1-3)
degme doniigimind elde ederiz.

Z,u,U,.., ) uzayina emgletllnn§ degme donu§umlen, nokta donu§umlermde
g g
1 k

oldugu gibi elde edilebilir.

Tanim. Bir-parametreli Lie degme déntgiimler grubu

z; = z;+ebi(z,u, u) + O() (3.6)
1
vt = u+ en(z,u, u)+ Of) (3.7
1
) = uj+ e (z,u,u)+ () (38)
1

J =1,2,.., n geklindedir ve bu grubun

. a a @) Ie)
fj(x,u, 715)"8‘5; + 77(37:“) ?)% + "'7]' (.’D,'d, ?)8%]‘ ‘ (3'9)

sonsuz kigik iireteci, de§me gart: korunacak sekilde tanymlanir.

D6y Dile ... Dikn

B ‘D%ﬁl D?ﬁz D?fn

Dnel Dn£2 PP Dnén

olmak iizere degme gartlarinin korunumu

7 Dyn uy
G I el I
) Dy | g

seklinde verilir yani 7}§~1) = Din—~(Dié)ur,7 = 1,2,...,n dir.
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Teorem 3.2 (3.6-8) denklemleri ancak ve ancak {¢;,7}

an 8¢ :
-égl—i —_— 5‘2';7:“-7 = O;Z = 1,2, vesy n (3.10)

‘denklemini sagladiginda bir-parametreli Lie degme donigimler grubu tanimlar.

ispat.
w_©On o  on  O& &  O& . . _
o= 8«7;_7 + auuj + 8’&,‘?‘” [a$] u u; + GUiuzj]Uk,] 1L,2,...,n.

(1
3.6-8) denklemleri ancak ve ancak %— =0,¢7,k=1,2,...,n oldugu zaman bir-
Ouys g

parametreli bir Lie degme déniigiimii tanimlar. Bu ise (3.10) denklemini verir.

W karakteristik fonksiyonunu
W ={u;~1 (3.11)

geklinde tanimlayalim. Bu durumda agagidaki teoremi verebiliriz:

Teorem 3.3 (3.9), bir-parametreli bir Lie degme ddnigimler grubunun son-
suz kiugik ireteci olsun. W = §;u; — n karakteristik fonksiyonuna gore sonsuz

kugukler
(W
3 au]_’
oW
ﬂ—“i'—a—gi——w)
m_ W W
5 91, i 50 1=12,.n

ifadeleriyle verilir. [7]

Teorem 3.4 W(z,u, u)% sonsuz kigik turetecli herhangi bir Lie-Backlund
1

donugitmi,

A a 2, ), 3
fﬁ(‘”:“:"l‘)azj +n(m’u’?)8u + 0 (2, "1‘) (3.12)

Bu;

sonsuz kiigiik iiretecli bir degme doniigiimine denktir, burada §;,7 ve 71?) ler

oW

& = Bu;’ (3.13)
ow
aw oW

W o= - (3.15)



7 =1,2,..n seklinde tanimhdair.
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ispat. 7 ve £, (3.13-14) i saglasin. Bu durumda

271_8W+u W HW_u‘a?W % e .
3’(1»2' - 8%2' A]E)uzau_, 31;,2 - ']auiauj - Jauz! T Ay ey
dir. Buradan (3.10) denkleminin saglandig: gorilir. Ayrica
oW . oW
nnéjuj =’£62—8_u‘2‘-m/ “-'Uj"é"z;;'_—w’
a g 36, O¢
o on 9%k Ok
g Oz + auuj {83:3' Su usu
= ow clid + U ———-—82W u%
T 'Oz;0u; Bz | oudu; 7 du
2w 2w W oW

g 5u; t Buge M = a8 "W

oldugu ¢ikar. Boylece (3.12) ve (3.13-15) ifadeleri W(z, u, u )g% ya denk bir degme
1
doniigiima grubu tanimlar.

Sonug olarak

a
77(3:7?1'1 ?)% (3'16)

geklindeki herhangi bir Lie-Backlund ireteci, n{z,u, u) karakteristik fonksiyon
1
olmak iizere bir degme doniigim grubunun sonsuz kiigiik tiretecine denktir.
Teorem 3.5 5(z,u, u);% seklindeki bir tdreteg ancak ve ancak,
1

&y
Ju;Ou 7

=0;4,7=12,...,n

oldugu takdirde bir Lie nokta doniigiimler grubunun sonsuz kigiik iiretecine denk-
tir.

Tanim. Bir diferansiyel denklemin bir Proper Lie-Backlund simetrisi, bir nokta
simetrisi ve degme simetrisine denk olmayan bir Lie-Backlund simetrisidir.
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3.2 3" = 0 Denkleminin Degme Simetrileri

y" = 0 denkleminin degme simetrilerini bulalim. Bunur igin W karakteristik
fonksiyonunu belirlemeliyiz. W fonksiyonuyla yazilan

0

X = -—Wp—a-;-l-

g é]
(W~ pr)gz; + (W +PWy)‘é;

tiretecinin G¢iinci uzanimi

d
10

el
o

olduguna gore belirleyici denklem
(XOy o = 7V = 0

seklindedir bu ise

")+ Wy =0 (3.17)
; (y,,)z i Wyp + Wepp + pWypp = 0 (3.18)
(¥") © Wy + Wagp + pWyy + 20Woyp + p*Wyyp = 0 (3.19)
(")’ + Wess + 3Wesy + 3p*Wayy + Wy =0 (3.20)

denklem sistemine aynigir. Bu denklem sistemini gozelim. (3.17) den integre
ederek W(z,y,p) = A(z,y)p* + B(z,y)p + C(z,y). Bu W fonksiyonunu (3.18)
denkleminde yazarsak; '

4pAy + By + 2A; = 0; p ye gore lineer bir denklem oldgundan A, = 0 ve B, +
24; = 0 saglanmahdir. 4, = 0 dan A(z,y) = A(z) ve B, + 24; = 0 dan
B(z,y) = —2A'(z)y + D{(z) bulunur.

W(z,y,p) = A(z)p? + p(—24(z)y + D(z)) + C(x)
W(z,y,p) y1 (3.19) da yazahm:
Wesp @ 2pA"(z) — 2yA"(z) + D"(z)
pWyy : pCyy
PWyyp : 0
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p(Cyy ~ 4A"(z)) + Coy + D"(z) — 2yA"(2) = 0

Cyy —44"(z) = 0 (3.21)
Coy +D"(z) = 0O (3-22)
A"z) = 0 . (3.23)

olmahdir. (3.23) denkleminden A(z) = ¢12? + ¢2% 4 ¢3 ; (3.21) de yerine yazarak
Clz,y) = 4ay® + E(z)y + F(z) bulunur. (3.22) denklemi kullanilarak £'(z) +
D"(z) = 0 elde edilit. W y1 tekrar yazahin: '

W(z,y,p) = p(c1z’ +caz+es3)+p(—2y(2c1z+¢3)+ D(2)) +{4e1y* + Bz )y + F(z))

gimdi W yi (3.20) denklemine uygulayalim:

Wese @ pD"(z) +yE"(z) + F"(z)
. 3pWeoy : 3pE"(z)
3p2Wx$y : 0 ‘
PWyy : 0

p(Dm(:c) + SEU(x)) + yE"’(a:) + F’”(x) =0

D"(z)+3yE"(z) = 0‘ (3.24)
E™z) = 0 (3.25)
F(z) = 0 (3.26)

(3.25) den E(z) = c42® + c57 + ¢ , (3.26) dan F(z) = c72® + ¢z + ¢5 bulunur.
(3.22) denkleminden elde ettigimiz D"(z) + E'(z) = 0 denkleminde tiirev alarak
cozersek;

D"(z)+3E"(z)=0

Dtll(x) + E”(.’L') — 0

denklemlerinden D"(z) = 0 ve D(z) = ¢102? + ¢112 + €12 bulunur.
D"(z) + E"(z) = 0 den 2¢10 + 2¢sx + ¢5 = 0 ; ¢10 = %, ¢4 = 0 bulunur
D(.’B) = —-%—.Z‘z + €117 + ¢12 elde edilir.

Sonugta W karakteristik fonksiyonu
W(z;y,p) = p’leiz® + caz + 3] + p[—2(2¢17 + ¢3) + (-——‘;i:r:2 + c11z + c12)]

+{4e1® + (esz + co)y(erz® + cax + ¢9))]



55

seklindedir diizenlenmig halde ise
W(z,y,p) = c1 + 2z + ¢53° + cayy + csp + czp + co(a’p — 22y) + cop?

+C9($P2 - 2yp) + 610(132}72 —4zyp + 4y2)

olarak yazilir. Boylece "' = 0 denklemi on-parametreli bir Lie degme doniigtimler
grubu kabul eder.



BOLUM 4 NOETHER TEOREMI ve LIE-BACKLUND
SIMETRILERI

4.1 GIRIS

Onceki bélimlerde diferansiyel denklemlerin Lie nokta doniigiim gruplannn be-
lirlenmesi igin bir algoritma olusturduk. Bu simetrileri kullanarak diferansiyel
denklemleri ¢6zmek igin metodlar geligtirdik. Bu bolimde ise simetrilerin fiziksel
problemlere uygulamalarindan biri olan korunum yasalarnna de§inecegiz.

t,2,y,z bafimsiz degigkenleri ve v = u(t,z,y, 2) bagunh defigkeni sistemin
durum fonksiyonunu gostermek izere bir fiziksel sistemin korunum yasasi

divf =Dif* + D f + DyfP + D, fi=0

seklinde bir denklemdir. Buradaki f fonksiyonu ¢,z,y,2,%,4,...,% degis-
1 k

kenlerine bagh f = f(f1, f2, 7%, f*) seklinde bir vektor fonksiyondur. Ayrica
buradaki Dy, D;, Dy, D, toplam tiirev operatorlerini gostermektedir.

Fiziksel oiurak bir korunum yasasy; ”bir uzay bolgesi igindeki f! in degigim
miktan, bolgeyi gevreleyen yizey boyunca (f?, 2, f*) akisina egit olmahdir” an-
lamina gelmektedir. ¢ zaman degigkeninin tek bagimsiz degigken oldugu klasik
mekanikte ortaya ¢ikan sistemler igin korunum yasasi

fol =0,

buradan da f! hareket sabiti olur. Her bir hareket sabiti, sistemin hareketini
kisitlar ve sistemin serbeslik derecesini bir diigiirmede kullamilir. Ashinda bir
sistemin korunum yasasmi bulmak, onun ¢dziimiinii bulmada ilk adimdir. Ne
kadar fazla korunum yasas: bulunursa tam ¢o6ziime o kadar yaklagilir .

Genellikle verilen bir sistem igin korunum yasalarini olugturmak zordur. Bununla
birlikte bir Lagrangian formulasyonundan ortaya gikan sistemler icin Emmy Noether
{Noether(1918)] tarafindan verilen bir teorem vardir. Noether, bir Lagrangian
sistemin etki integrali tarafindan kabul edilen her sonsuz kii¢ik déniigiim igin ko-
runum yasasinin bulunabilecegini ispatladi. Noether'in ispati, kabul edilen her-
hangi bir sonsuz kiigiik doniiglim igin korunum yasas: inga etmede bir algoritma
verir. Burada onemli olan, Euler-Lagrange denklemlerinin degigmezlik dzellikle-
rini inceliyerek bu gekildeki biitiin déntgimlerin bulunabilmesidir; yani buradaki



Euler-Lagrange denklemleri bir etki integralinin degigim formulasyonundan or-
taya ¢ikan denklemlerdir.

- Noether tarafindan ele alinan sonsuz kiigik doniigimler daha once inceledi-
gimiz Lie nokta déniigiim gruplarindan daha geneldir. Noether { ve 7 sonsuz

kiiciiklerinin = ve u dan bagka u, ,...turevlerine de bagl oldugunu ifade etti.
1 2

Ne Lie ne de Backlund bu tir dontigumleri ele almadiklar: halde bu donistimler
genellikle Lie-Backlund déniigimleri olarak anihirlar. (Nokta simetrilerinin énemli
ozelliklerinden higbiri, Lie-Backlund déntigimleri tarafindan kullanilmaz. Ozel-
likle Lie-Backlund tipindeki bir sonsuz kigik doénusiim, karakteristikler metodu
yardimiyla bir global déniigime integre edilemez). Fakat sonsuz kigik Lie-
Bécklund doniigimleri, korunum yasalarini ve degismez ¢oziimleri olugturmada
kullanilir. Ayrica verilen bir diferansiyel denklem sistemi igin kabul edilen sonsuz
kiigiik nokta simetrilerinin bulunmasinda, Lie algoritmasinin basit bir geniglemesi
yardimiyla kabul edilen sonsuz kigitk Lie-Backlund doniigimleri bulunabilir .

4.2 Noether Teoremi
Fizigin pek ¢ok problemi bir varyasyonel formulasyonla ifade edilebilir:

z = (&1, Z2,...,%n) uzayindaki bir & bolgesinde tamimlanmig bir

L{z,u,u,u,...,u)
12 k
fonksiyonu verildiginde
J[u]:/ z,u,u,...,u)dz (4.1)
2 1 k

integralinin extramumuna karg: gelen u(z) fonksiyonlarinin bulunmas: . L fonk-
siyonuna Lagrangian, J[u] integraline de etki integrali denir .

u(z) = (u!(z), v*(2), . ,um(:r))

fonksiyonu sistemin durumunu tanimlar ve genellikle 2 bolgesinin 92 sinirindaki
-simir kogullan ile belirlenir. Eger u(z) (4.1) in bir extramumu ise bu durumda
sinir kogullarimi degistirmeyen herhangi bir u(z) — u(z) + ev(z) sonsuz kiigik
degigimin J[u] iizerinde bir etkisi olmamalidir. Bir sistemin korunum yasast;

‘f(:v,u,'llt(a:),...,'t:(x))=(f1,f2,.,.,f")
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bir vektor fonksiyon olmak uzere
divf =D, f =0 (4.2)

seklinde tanimlanir. (4.2) denklemi (4.1) in extramumu olan her »(z) fonksiyonu
igin gegerli olmalidir. Ayrica (4.2) den z uzayindaki herhangi bir kapali yuzey
boyunca f nin net akisinin sifir oldugu sonucu ¢ikar. Bundan dolay: f vektoriine
bir "korunmus aki”(conserved flux) denir .

Noether incelemelerinde keyfi £ igin J[u] etki integralini degigsmez birakan

zt = r+el(z,uu,u,. .., u)+ O(?)

1 2 p

4.3

v = uten(z,u,u,u,...,u)+ O(?) (43)
1 2 ]

geklindeki donugtmleri ele aldi ve £ , 5 sonsuz kiigiikleri ile korunmus f akisi
arasinda bir iligki kurdu .

Noether Teoremini olugturmak icin once degisim problemleriyle ilgili temel

denklemleri gikaracagiz ve daha sonra Noether Teoreminin ispatini verecegiz.

4.3 Euler-Lagrange Denklemleri

u nun u(z) — u(zr) + ev(z) seklinde sonsuz kiigiik degigimini dikkate alalim.
Buna karg) gelen L deki degigim :

§L = L{z,utev,u+tev,...,u+ev)—Lizu,u,. . .,u)=
1

1 k k 1 k
oL oL
= (_~v’y 7+ +_—_ : 4 )+O( ) (44)
o du] % oul, i 12tk
dir . Burada ¢ indisleri iizerinde toplam vardir .
E =9 Dl—?—+D'D'—6;+ + (=1 D;, D,,...D; 0 (4.5)
T Sy “ou ‘ Toul T TR gy Y 6 i ST
Euler operatoruni kullanmak faydali olacaktir .
; 8L _ oL
Wiu,v] = [auy +...+ (_1)}: IDZID,‘.‘,...D,,‘ 1_3*7“—]
118000
b2 dL
+ (D v )[(9 7+ ...+ (=1)""Di Di,.. Dy - 1) 3.7

zlz 11822.. z(k 1)

oL
+ ...+ (Z)Z'1 Diz tp1 ¥ )(—9—1}——4— (46)

11831t



olsun. Bu durumda parga parca integrasyonla
6L = e[E(LY" + D,W*[u,v]] + O(€?) (4.7)

oldugu gorilir . Burada E,(L),

a

3
E\ (L) = a - azﬂ+D2D}-a—u7+...+(~1)"DilDi2...D . (4.8)

d
%67

212'1 BN

dir. Yukaridaki (4.7) bagintisini ikinci mertebeden

Lz, y,u,v,u, v, Uy, Uy, oz, Vg, Uy, Vzy, Uyy, Uyy )

Lagrangian’ iizerinde gosterelim. u — u + €, v = v + €f artimlanini verelim.
Ldeki degigim :

6L = L(:c,y,u+e97,v+e§,u+ery,v+e§,u +en, v +€f)
1 11 1 2 2 2 2

- Lz,y,u,v,u,v,u,v)

11 2 2

oL 8 L JL oL

= gy Bu +§ fz %8 i dv +nm8um
oL 8L 8L 6L 8L

3:3: & ZY N P " O 2
+ ¢ +77y6 +§y3%y+ﬂyy8uyy+§yyavyy]+ (€*)

Burada parga parca integrasyon yapalim.
oL oL JL 8 L AL 8L

T = 7?5;'*‘5:9“—7? ~¢D x UDyé‘""nya +D$(773 )
8L
+ Dileg)+ Dyn 2k )+Dy<5—)+wﬂa
UYrr
3L
+ * B, N ou 5) = De(nD: 8um)
aL BL oL 8L
+ x(ﬁx ) Dy( +¢D. D,
Ty Ty
8L 8L oL
+ ﬂDyDy% + nyD 3 + D:c(’?ya )

3 JL
Txy) — Dy(¢D, “‘) + Dy(ny 37%*)

oL oL
- D, —_ 2y
Dy(n y@uw) + Dy(gy 3%?/) Dy(ﬁDya yy)

n ve £ leri sitasiyla B, ve E, ile gruplandiracak olursak

L oL 8L L 8L oL
Bu= gy = Deg” = Dy + DoDeg = 4 Do Dy VBury + DDz
E__@_DaL_DaL+DszaL+DD3L L

z = ey — +
v O, Y v, v, v Ovyy vy vy,
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elde olunur. D, ve D, parantezindeki ifadeleri de

8L 0L oL oL oL aL dL aL

W, v] = —_— - —-nD. —£D, y
o] =g G e gy o gy, e gy e g g g
oL ,dL aL oL oL 8L oL ~ OL
v e BT St —¢D, - —¢D. 22
W, " ou, +§8vy 7D Bu,, ¢D B,y 1 Buy, Dy Buyy & B, ¢Dy By,
ile gosterdigimizde
6L

—= nEy + EE, + DWW (u,v,n,€) + D,W¥(u, v, 1,€) + Oe)

oldugunu kolayca goririz .

Tekrar genel hale donersek; (4.7) ifadesini ¢ikarirken u(z) iizerindeki simir
kogullarini kullanmadigimizdan, (4.6) ve (4.8) deki tirevler varoldugu sirece bu

denklemler, keyfi u(x) ve v(z) fonksiyonlar igin gegerlidir.

Simdi u(z) fonksiyonunun extramum olmasi igin gereken kogullan belirleyelim.
(4.7) ve Diverjans Teoremini de kullanarak J[u] nun degisimini inceleyelim:

§Ju] = J[u+ev]—][u]=L5Ld:r

¢ 1B + DIl wllds + O()

6{]{2 E(Lywdz + /aa W'ilu, vln;do] + O(e?) (4.9)

i

Burada f; , 2 nin sinir yuzeyi 9§ iizerindeki birim vektorini gostermek izere
J[u] nun u(z) ekstremal fonksiyonu igin §J[u] nun O(¢) terimi sifir olmahdir:

/ E(Lydz +/ [u, v]n;do = (4.10)

v(z) igin verilen kosul, u(x) in kogullarini degigtirmediginden dolay: genelligi boz-
maksizin Wiy, v]deki v(z) ve tiirevlerini sifir varsayalim. Dolayisiyla W'lu,v],
v(z) ve tirevlerine lineer bagh oldugundan (4.10) daki hacim integrali, verilen
horhogen sinir kogullarini saglayan her v(#) igin sifir olmalidir . »(z) in Q igindeki
davranig: keyfi oldugundan, u(z) ekstramumu,

oL oL oL v, oL |
E’7= ou? —-D a 7D ]a ’7 +. +(—1)kDi1Dizy tka ?1;2 i ‘—-0, (411)

v =1,2,...,m denklemini saglar. (4.11) denklemlerine J{u) nun bir u(z) ekstra-
mumu igin Euler-Lagrange Denklemleri denir. Sonucu su teoremle ozetleyebiliriz
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Bir u(z) dizgin fonksiyonunun J[u] = [y L(z,u, u, ..., u)dzr etki integralinin
1 k

ekstramumu olmasi igin gerek kosul (4.11) denklemlerinin saglanmasidir. (8]

Ornek 1:(Sine-Gordon Denklemi)

L= —éulm + Cosu (4.12)
olsun. Buna karg: gelen Euler-Lagrange denklemi
oL _p 0L o )

Ju Suq Qus
g 1 1
—~2NYU - Dl(—§%2) - Dz(—-é“lh) = 0
i — Stnuy = O (4.14)

Bu son denklem Sine-Gordon denklemidir .

Ornek 2: 1 L "

olsun. Buna karg: gelen Euler-Lagrange denklemleri ,

gL L aL
— =D - D =0
Sul 18u11 26u21
AL 8L 8L
du? D18u12 B D28u22 *

dir . Buradan uza' + uylun? + upn? = Ojup' — 4% = 0 denklemleri cikar. Bu

denklemlerde u? yi yokedersek
w12' + ulen' + unnt =0 (4.15)

denklemine indirgenir. £ = 21,1 = Z3,w = u1'notasyonu ile (4.15) denklemi

Sw Sw &

a5 =0 (4.16)
Korteweg-de Vries denklemine déniigiir. Teorem (2.1.2) (4.5) ile tamimli E, Eu-
ler operatorit ve iki defa siirekli diferansiyellenebilir F(z,u,u,...,u) fonksiyonu
1 i
igin
E\DiF(z,u,u,...,u)=0,y=1,2,...,m;i=1,..,n (4.17)

1 ¢

ozdesglikleri gecerlidir. Bu teoremin sonucu olarak asagidaki teoremler verilebilir:
Teorem (2.1.3) Bir L Lagrangian’ i¢in Euler-Lagrange Denklemleri, eger

L = D;F'(z,u,u,...,u)
1 !



diverjans formunda yazilabiliyorsa, Szdeg olarak sifirdir .

Teorem (2.1.4) Bir A(z,u,u,...,u) = (A, A% .., 4") vektori igin L — L=
1 !

dww A ise, L ve L' Lagrangian’leri ayni Euler-Lagrange denklemleri kimesine sahip-

tir.

4.4 Degisim Simetrileri ve Korunum Kurallari;
Boyer Formiilasyonu

Euler-Lagrange Denklemleri birgok fiziksel sistemlerin biinye denklemleri oldu-
gundan korunum kurallarinin, dogrudan bu denklemlerin 6zelliklerinden gikmas:
beklenebilir. Bununla birlikte korunum kurallarini bulmak icin Noether
Ju] = fo L{z,u,u,...,u)dz etki integralini degismez birakan donigimleri in-

1 k
celemenin daha faydali olacagini gosterdi ve korunum kurallariyla bu gekildeki
degigmerzler arasinda dogrudan bir baglanti kurdu. Noether‘in ele aldigi dontigimler,
€ ve n nin ¥ nun tirevlerine bagh oldugu

¥ = :c+£§(:r,u,u,u,...,u)-{—O(e:’)}

1 2 p

4.18

ut = u+en($,u,u,u,...,u)+0(62)I ( )
1 2 P

genel formundadir. z in degismez kaldigi daha basit bir doniistim elde edilebildigini
diigiinerek Boyer, (4.18) doniigiimleri yerine

* T

v o= uten(z,u,u,8,...,%)+ O(?) (4.19)
1 2 r

formundaki doniigimleri kullanabilecegini farketti. §imdi Boyer formilasyonundan
Noether Teoremi‘ni elde edecegiz :
(4.19) icin genigletilmis doniigiimler

u* = u; + eDin + O(€?); (420)

;" = i+ eD;Din 4 0(62)
geklinde verilir ve buna karg: gelen sonsuz kiigitk iiretecin k 1nct uzaninu
Nij..s = D;D;... Dy’ olmak tizere
I} 0 3 12,
k) . .
U( ) - 7}7 au'y + 7)‘76,&;7 + n’J’Yauz + o + nzlzg.,.zk’yau;ylzz“.ik (4'21)

formundadir. (4.19-20) doniigiimleri altinda L Lagrangianinin degigimi

6L = eUBL 4 O(e?)



kadardar.
Tanium . Bir u(z) fonksiyonu igin
UEL = DA ~ (4.22)

olacak sekilde bir A(z,u, 4, u,...,u) = (A, A%, ..., A™) vektor fonksiyonu varsa
1 2 k

(4.19) d6niigimu, J[u] etki integralinin degigim simetrisidir. Bu simetrilere Noether

Simetrileri de denir.

Simdi keyfi u ve v fonksiyonlar: i¢in saglanan (4.7) esitligine bakalim.
v=1,0 =7, =17, ... dersek 8L = elU/FIL 4 O(e?) den

UBL = BEJ(L)y" + D,W[u, ] (4.23)
gikar. (4.22) ve (4.23) i kargilagtirdigimizda (4.19) degigim simetrisi igin
E(LY 4+ D;W'lu,v] = D, A® (4.24)

ifadesini elde ederiz. Eger u(z) agagidaki Euler-Lagrange denklemlerinin bir
goziimi ise yani E,(L) = 0,7 = 1,2, ..., m oluyorsa (4.24) ifadesi
D(W* — A*) = 0 geklinde bir korunum kurah verir ve bunu su teoremle ifade

ederiz.
Teorem (2.2.1) (Noether Teoreminin Boyer Formiilasyonu)

U= n’% (4.19) doniisiimlerinin sonsuz kiigiik iireteci ve U onun k e
uzanimi olsun. Eger U, herhangi bir «(z) fonksiyonu igin UB L = D; A* esitligini
saglayacak gekilde (4.1) etki integralinin bir degigim simetrisinin sonsuz kiigitk
ireteci ise bu durumda E,(L) = 0 Euler-Lagrange denklemlerini saglayan her
u(z) fonksiyonu igin D,(W*[u,n] — A') = 0 korunum kurali gergeklenir.
¥v=1,2,...,m.

Noether Teoremi yardimiyla korunum kurallarni elde etmek icin W*lu, n]
i =1,2,...,n agik ifadeleri gerekecektir. Bazen (4.23) formundaki UL ifadesini
yeniden diizenleyerek daha kolay elde edilebilir. érnegin

L =—3(u11)2 —_ (U1)3 - 3%1'&2
Lagrangianini ele alirsak,

vy = 6u11(D1)277 — 3(u1)2Dm — 3us Dy — 3u1Dyy
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her terimi parga parga integre edersek,

v11(D1)’n = Di(unuDin) — vinDin

= Di(vnDin — vian) + vunn

(“1)21317) = Dl((m)zn)-—Qulunn

#2D17

Dl(’l&zﬂ) — %120

urDanp = Dz(um)—um

elde ederiz. Sonug olarak

UdL =
B(L) =
Wia,n] =
Wiu,n] =

E(L)n + D1Wu, 7] + D2W?[u,
6[u1111 + v1%11 + B3],

6[u31( D1 ) — w11 D7) — 3[(w1)*n + var]
~3u1n

bulunur. U = (z,u1 — 21)55% Hretecinin L igin bir degigim simetrisi ve Al =
z2[3(u11)? — (u1)° = 3u1u3], A% = 3u olduguna gore Noether Teoreminden

D1(W1 - AI) + Dg(W2 — A2) = 0

Da(z2[3(u11)? ~ 2(1)® — 6uru111] — 6611 + 6318111 + 3z1[(w1)® + wal)

+Dz(3{-$2(’u1)2 + 191 — 'd}) = 0

korunum kuralini elde ettik .
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4.5 Lie—BﬁckIuhd Doniistimlerinin Denklik Siniflan,
Lie-Backlund Simetrileri

Noether'in
z* = z+eb(z,u,u,4,...,u)+ O(c)
1 2 p
4.25
v = u+tep(z,u,u,u,...,u)+ O() (4.25)
1 2 r

geklindeki déniigim gruplan, € ve n kigikleri ayni zamanda , «, ..., ¢ turevlerine
1 2 r

de baglioldugundan Lie nokta doniigimlerinden daha geneldir. (4.25) dontigimlerinin

nzanimlar:

w* = u; + fnz(l) + O(€*),

* k

uz'm'z...ik = Uiy +€n§13‘)2‘--2‘k’

dir. Burada
ot = Din— (Diki)u;,
P k -
ﬂz(lz')g...z‘k = Dz‘k_mz(ﬂ)z...ik — (D& isineinys > F=1,2,...

gostermektedir. Sonsuz kigik iretecin k 1nct uzanimi ise

8 J 5]
(ky _ ¢ Y v Y
U —fzau;,-!-nam-i-?}z au;,+.~+17

0y 9
118285 au:ylwu

ile verilir.

Verilen bir 4 = f(z) fonksiyonunun (4.25) doniigiimii altinda nasil dénisgtigini
inceledigimizde, bu donigimin onemli bir 6zelligi ortaya cikar. Gergekten
2 = f(z) 1 Noether donigiminde yerlegtirirsek

£ = ot ef(e f@) f@), f2) o FE) O (20)
W = (@) +en(s, (@), f(z), Fa),..., F@)+ O()  (427)
1 2 P

elde olunur. »* 1n z* a baghhg, f(z) in f*(z*) gorintisini tanimlar. f*(2*)1
elde etmek igin (4.26-27) den z in yokedilmesi gerekir. (4.26) dan z i ¢dzelim:

R GV CON(COF(CORMF(CORRC (4.28)
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(4.28)1(4.27) de yerine koyarsak

frlamy = fz")+elnlz” f(27), J(27).. .., f(z7))

1 p

= U e fat, ) FEHOE) (4.29)

*
Jz, 1 v

elde ederiz. (4.29) da 2* yerine z kondugunda, (4.25) donigimu altinda f(z) in
goruntisi

friz) fz) + €e[nlz, f(=), {(:r), o fz))

p

P

olur, buradan ayni f*(z) in

*® —_ T

v = u4en(z,u,u,...,u)—uwl(z,u,u,..u)]+ O(e) l (4.31)
1 E 1 r

doniigimii ile elde edilecegi gortlir. Boylece (4.25) ve (4.31) donugumleri fonk-
siyonlar tizerinde ayn: etkiyi gosterir :

Teorem (2.3-1) v = f(x) p-defa diferansiyellenebilen bir fonksiyon olsun.

5 = z4ef(z,u,u,u,...,u)+ O(?)

1 2 D
v = u+en(z,u,u,u,...,u)+ O(2) (4.32)
1 2 P
ve
* —
w o= u+telnplzu,u, . u)—wbi(z,u, u, ., u)] + O(e2) (4.33)
1 p 1 P .

doniigimleri f(z) 1 (4.30) ile verilen aym1 f*(z) fonksiyonuna dontigtiirmesi an-
laminda egdegerdir. Bu anlamda

e) 3

U = @(m,u,?lt,...,1;)5:—8?+m(x,u,?f,...,?;)% (4.34)
U = 7 (z,u,u, .., u)—u,"&(z,u, u, ... 'u)—8~ (4.35)
3y ? b 3 i 3 H 1 8’0,7
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uretegleri de birbirine egdegerdir.

Geometrik olarak bir fonksiyon, (4.33) dontisumi altinda vatay olarak goriun-
tilenirken (4.32) dontigimiyle dikey olarak goriintilenir. Boylece

= z l
w* = u+en(m,u,u,‘..,u)+O(ei’)J (4.36)
1 r
formundaki dontsumleri veya
a
7 R T P 37
n(a:,u,’clt, 42)&, (4.37)

formundaki sonsuz kugiik tiretecleri dikkate almak kafidir.

Boyer formiulasyonundan {4.32) formilasyonuna gegis tek tirli degildir. Boyer
formilasyonundaki # nmin

He, v, vy, 8) = 0T, 8, U,..., U)— wilz,u,u, ..., u) (4.38)
1 7 1 P 1 P

seklindeki bir ayriliimn bu formilasyona denk olan bir 2 = z + €f + O(€%)

u* = u + ¢f) + O(e?) doniglimi verecegi gosterilebilir. Bagka bir deyisle (4.37) ye
denk sonsuz sayida sonsuz kiigiik arete¢ ve her doniigimun farkli yatay bilegenler
climlesi vardir. Bu ise (4.34) seklindeki bir sonsuz kiicik iiretecin tek olmadig
anlamina gelir.

(4.38) e gore U = 2 ~2u Slgme operatori U =(-2u —zu;)2 operatoriine

denktir ve U/ da u, sifir olmamak sartiyla U = %5% —a:uzc.% operatorune denktir.
7 — ;€ = ugp — v = 0 oldugundan dolayi, toplam tirev operatori
0 3}
Dy= — 4+ up—
g Jdz; + Fou

U = 0 operatériine denktir. Geometrik olarak D operatoru noktalari, sadece

verilen bir u = f(m) egrisi boyunca tasir.

Diferansiyel denklemin bir simetrisi, bu denklemin bir ¢oziimiini yine ayn
denklemin bir bagka ¢6zimiine dontstiren bir doniigim olarak tanimlanmigti. Bu
agidan degerlendiginde, diferansiyel denklernlerin simetri kavramini Lie-Béacklund
donugimlerine genigletmek kolaydir. Doéniigimin kendisi ¢oziim donfigimini
ifade ettiginden dolay: sadece u da degigiklikler iceren doniigimler icin formiilasyon
basit hale gelir: Eger
= z

w* = u+en(z,u,u,.., u)+ O(?) (4.39)
1 p



dontgimu

Folz,u,u,...,u) = 0,0=1,2,..,m (4.40)
1 2

kismi diferansiyel denklem sisteminin bir simetrisini iiretirse, (4.40) in herhangi
bir u(z) ¢6ziimi icin (4.39) ile tanimlanan u*(z) de (4.40) in bir ¢oziimi olmak
zorundadir. {9]

Tanim . U = 5752 iiretecine sahip (4.39) dénigimi
QuY P

Folz,u,u,...,u)=0, ¢=1,2,...m
1 g

denklem sistemini saglayan herhangi bir u(z) igin

UDP (s u,u,...,u)=0, 6=1,2.m (4.41)
1 g

denklemi saglandiginda (4.40) n bir Lie-Backlund simetrisini tanimlar.

Verilen bir diferansiyel denklem sistemi tarafindan kabul edilen Lie-Backlund
simetrilerinin belirlenmesi iglemi, temelde nokia simetrilerinde yapilanlarin ben-
zeridir. Kiigik fark U F? = 0 denklemlerinin « nun (p+q) uncu mertebeye
kadar tirevler icermesidir ve bu da F? = 0 min

D;F° =0, D;D;F° =0, D;D;D,F° =0,... . (4.42)
diferansiyel sonuglarinin kullanilmasini gerektirir.

(4.42) denklemleri, ,u, u;, i;, ... degigkenleri tarafindan saglanmas: gereken
sartlardir. (4.40) ve (4.42) bagmtilarindan bir bagimsiz degigken secimi, UD F7 =
0 denklemlerini pargalara ayinr, bu ise 7 ya gore F° = 0 denklemlerinin Lie-
Backlund simetrileri i¢in belirleyici denklemler sistemini olugturan bir lineer kismi
diferansiyel denklemler sistemi verir.

4.6 Burgers Denkleminin Lie-Backlund
Simetrileri

Ugr — YUz — U =0 (4.43)

Denkleminde u, igin w1 ; %, icin #g ; %0 igin u3 kullanacagiz. Bu durumda
(4.43) denklemi
Uy — UUL — Uy = 0 (4.44)
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haline gelir. Bu durumda diferansiyel sonuglar ise
U3z — VUg — (u1)2 — U1y = 0

Ug — U3 — 3%1’&2 — Uy = 0

seklindedir. Bagumsiz degigkenler olarak z,t, 4, u1, %2, ... ler alinirsa « nun ¢ ye
gore biitin tirevleri bu degigenlere gore ifade edilebilir.

Simdi Burgers denklemi tarafindan kabul edilen ”
T* = z,u* = u + en(z, t, 4, u1, uz, u3) + O(¢?) (4.45)

geklindeki Lie-Backlund simetrilerini aragtiralim. Bu gekildeki bir doniigimin
tretecinin genel formu

0 8 el 0
k
U =g+ Wy Mgy ¥+ Mini gy —

2132...8.;‘,
geklindedir.
Burgers denklemi igin yazildiginda ise

olur. (4.44) denkleminin (4.45) formundaki simetrisi
UD(ug — wwy ~ w) = (Dg)’n— uDon— un— Din'=0 (4.46)
denklemini saglar.

Do = 0o+ b1+ Ty 82 + Tuy Uz + MusUs
D (D.m)

Nez + Nout1 + Nowy U2 + Touy U3 + News Ys + V2

U1 + Tuuts + Nuuy B2 + Thu, B3 + Tuug Ba) + 837,

U Tuyz + Thyutl + Tuyu B2 + Tugua 83 + Tuyus ta) + Ualy,
©3(Thiao + Thizut + Tuzuy U3 + Tugup U3 + Tugus Be) + YsThs
Ba(Muge + MuguBl + Tugur B2 + Tugup 43 + Thugus Ua)

T+ Duth + Nuy Y1t + Ty Bt + Tuz U

+ + + +

Din
Bu ifadeler ve (4.44) in diferansiyel sonuglari (4.46) da yerine kondugunda,

Ba[TugusBa + 2Mugus 3 + 2Muius 82 + 2Muus 81 + 2rus]

U3[Tuzus 83 + 2%y 0242 + 2Muuy ¥1 + 270y, ]

YTy uy B2 + 200,81 + 200u,] + ¥1[uutis + 2704]

[Mes — 7et — 1781 = 7 + Thay (82)” + 3thu 0102

4n,,uqt3 + 30y (uz)’] =0 (4.47)

+ + + +
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(4.47) denklemi z,t,u, %1, u2, 3, us lerin bitun degerleri igin gergeklenmelidir.
n , u4 e bagh olmadigindan dolay: (4.47) deki uy ve (u4)® nin katsayilan sifi
olmahidir:

Thizuz = 0 (4:.48)
Tugus ¥3 F+ Tuyug B2 + Tuus U1 + Npug] = O (4.49)

(4.48) denkleminden = a(z, t, 4, ¥y, va)us + &z, , 4, vy, u2) bulunur. 7 y1(4.49)
denkleminde yerine koyalim.

30y, + VaQu, + %10y + 0 =0
katsayilan tek tek sifira egitlersek
ay, = 0,0y, =0,a, =0,0;, =0
denklemlerinden a = at) gikar.
n = aft)us + Mz, t,u, uy, ug) (4.50)

Burada a ve b, argiimanlanimin belirlenmemis fonksiyonlandar.
(4.50) yi (4.47) de yerine koyup u3 ve (u3)’ nin katsayilarin sifira egitleyelim:

walBuguz s + 2buyuy¥2 + 2buuy U1 + 2bru;]
4+ ofbu,u, 2 + 2y, B1 + 2boy, | + ur[buu 1 + 2524]
+ [bes — ub, — ui(aus + b) — o'uz — by + (1) by,
+ 3uitoby, + dususa + 3(uz)’a] =0

(’C&3)2 : b‘uzuz =0 (4.51)
'£L3 : 2%267_‘11;2 + 2’“‘163!‘2 + 2bzu2 - ula - a' + 4“1& = 0 (4‘52)

(4.51) denkleminden b = C(z,t,u, u1)us + D(z, ¢, 4, u1), (4.52) denkleminden ise
41(2buuy + 3@) + 202by,u; + (2beu, — ') = 0 bulunur.

by, =0 = Cy, = 0= C = C(z,t,u)
3 3
2btnt2 +3a=0=C, = —EC{ == —Ea(t)u + A(.’L’, t)

?
by, —a' =0= C. -.—.%—:}A-_-

Buradan b 3 ,
a
b=[- Eq(t)u + —2—z + B()uz + D(z,t, 4, u1).

n = at)us + [—%a(t)u + %:x + B(t)]uz + D(z,t,u,u1) (4.53)
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B ve D, argiimanlannin keyfi fonksiyonlardir.
(4.53) 1 (4.47) de yerine koyup u3 ve (faz)2 nin katsayilarini sifira egitleyelim:

wafus0 + 2us0 + zug(—g’-a(t)) + 2(%a'(t))]

uz[’“2Du1u1 + 2“1Duu1 + 2Dxu1] + ul[alpuu + 2D$u]

Dys — u(—12—cx’(t)u2 + D,) — waa(t)us + (—ga(t)u + —21~a'(t)z’
A(t))uz + D] — [o(t)us + (—g'a'(t)“ + %a"(t)-’r + B'(t))uz + Dy
(u1) D, + 3u1u2(—§a(t)u + /(i) + (1))

duyuza(t) + 3(uz)’a(t) = 0

+ + + + +

(43)® : Dypu, +3e(t) =0 (4.54)
(u2) : 2u1f(t) + zura(t) — Buuia(t) + uwa'(t) + 2u1Dyy,

2D, — %xa"(t) —B(t) =0 (4.55)
(ua)y @ (1) (Du, + D) + 61(2Deu ~ D) — 4D + Deg — Dy = 0 (4.56)

(4.54) denkleminden D = —3a(t)ui + E(z,t,v)us + F(z,t,4) bulunur. D yi
(4.56) da. yerine koyalim:

3
wi(=3a(thur + E + 1By + Fuu) + 41(2u1 B2y + 2F;0 + —2-a(t)u§ -4, — F)

“'u(uIE.c + Fs:) + U1 Fer + Frc + ga’(t)u% —u By~ Fy =0

uy e gore bir polinom geklinde diizenlersek

3

(1)’ : —3a(t)+ Euu + Ea(t) =0 (4.57)
() : E+Fu+2Eu~E+ -g-oz’(t) =0 (4.58)
(w1)' : 2Fpy~F ~uE; =0 (4.59)

(4.57) den
By = %a(t) = E(z,t,u) = -z-az(z)u2 + G(z,t)s + H(z, 1)
bulunur. D de yerine konursa
D= —-ga(t)'a"{ + [%or(t)u2 + G(z,t)u + H(z, )]uy + F(z,t,u)
elde edilir. Bunu (4.55) de yazalim.

u1(2B(2) + 36/(t) + 2G(z, 1)) + ua’ + 206Gy + 2H, — %a:a”(t) ~ B'(t) =0
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11 e gore polinomik bir denklem,
26(t) + 5/(8) + 2G(z,1) = 0 = Gz, ) = ~(550 + (1))
kalam sifira egitleyelim:
wal(£) + 2u(~3a/(1) + 2H — 53/(8) = B(2) = 0
H, = oal() + %ﬁ’(t)

H(z,1) = 52°(8) + 558(5) +1(0)

D(z,t,u,u1) = —~§a(t)u% + [z—uza(t) - (%xa'(t) + B(t))u

+ Loa(t) + So8(0) +1(00n + Fla,t0)

7 = elimat [~Sua(t) + Zz0/(t) + H(Hluz — Salw? +
[ -u a(t) — (—-:ca'(t)—l—ﬁ(t))u + 3:2 "(¢)
+ -2~$ﬂ @)+ y(D}ur + F(z,t,u)
n y1 (4.47) denkleminde yerine koyup 42 ve u; in katsayilarni sifira ‘egitleyelim:

ualis(~50(8)2) + 2 Gua(t) ~ zral(t) ~ A1) + 2~ sue(8) + Foa(t)+

SN + wilua(e) + P + A= + oo
39(0) + Fao = ulzuna(t) - Sumnd () + Joue’ (1) +508(0) + F)
~wifa(tyus +[~Sua(s) + z30/(5) + BBz — Sathi+
[zuza(t) ~ (%za'(t) + 8(t))u + %mza"(t) + %xﬂ’(t) +7()us + F(z,t,u)}
~{al(B)us + [ Juel(8) + 53(5) + F(E)]ua — S (el
Cutal(t) = (Gaol(t) + B0 + 2ea"() + 226°(t) + 7()us + B}
+ud{— §2ula(t) + [ua(t) ~ (5oa/(s) + Bt + —;—:rza"(t) + -z—a:ﬂ’(t) + (0]
+3ural~2va(t) + 50a/(8) + B(0)] + 4uawsals) + Sulat) = 0

Fuu + ~oz’(t) 0 (4.60)
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é‘ﬂ'W”Fm» F — 20l(t) + goua’(s) + 30(t)

- ~x 2aM(t) — x,@"(t) -4 (t)=0 (4.61)

(4.60) dan F,, = —1a/(t) = F(z,t,u) = —}u?a/(t) + K(z, t)u + L(z, 1)
F' yi (4.61) de yerine koyalim :

%ﬂ’(t) + 2K, —uK(z,t) — L{z,t) + zll—xua"(t) + ia"(t) _ %—.’Bzam(t)
~ 358" = 7(t) =
u(%ﬂ’(t) — K(z,t) + %xa"(t)) + 2K, — I(z,t) + ;}a"(t) - %xza”’(t)

558"} =7(t) = 0

|
o

——ﬁ’(t) K(z,t) + *a:a”(t) 0= K(z,8)= -3:a"(t) + - ﬁ (t)

2K, — L(a, 1) + 3a(8) = 870(8) = 528(2) ~ 7/(t) = 0
K{z,t) yi yerme koyalim.

L(z,t) = —a"(t) za"(t) - xﬁ"(t)'-'v'(t)
Bu durumda F{z,t,u) ,

F(a,t,0) = — 1w (5 + 720 (6)+ S8(0)]u+ 50/ (1) 520" (8)~ 338" ()~1'(0)

olarak bulunur. Son olarak F yi n da yerine koyup 7 y1 belirleyici denklemde
yazalim ve 42, 4!, 4® 1n katsayilanin: sifira esitleyelim:

2u1u3(—-2—a(t)) + 2us( -2—a' (t)) + uofus(—3a(?)) + 2u1(~2-a(t)u - B(t) - %a’(t)x)+
2(_%a'(t)u+-}ia"(t)x+%ﬁ’(z))]wl[m(g-a(t)ux— %a’(t))+2(~%a’(t)u+%a”(t))]
(%a"(t}ul - —i—a"’(t)) - u(%a'(t)'ug - %a’(t)uul + i—a"(t):wl + %ﬂ’(t)u1+
390 ~ 36"(8)3 = ZF°(8)) = 1173, v, 1, 0z, 50) — L (Buat
[~Sa/(t)e + Sa(t)s + H(Blus = Sol(8)ad + [T/ (80 = (F0) + Sa"(t)a )+
lam(t)xz + %ﬁ"(t)x + 71],“1 - %a"(t)‘uz + (i_am(t)‘z + %ﬁ"(t))u-}-
"'(t) ""(t)$ ﬁ'"(?)z = 7"(1)} + uil-3a(t)ur + Z‘Of(t)‘u2 - B(t)u

-Ea'mzu + 20 + A0 +2(0)] + Bumal—Sa(e + Sal(t)e + A+



4u1u;’:a(t) + 3uZa(t) = 0

3
u? ga(t)ufzo

yl : 0=0
uo . __am(t)_*_ $2 Illl(t)+ .’Eﬁm(t)-l-’)‘”(t)—' 0

&"(6) = 0,8"(8) = 0,7'(t) ~ &”(1) =0
a"(t) = 0= a(t) = pst’® + pat® + pit + po
¥'(t) = a"(t) = 6ps = (t) = 3pst® + 11t + 10
B7(t) =0=> B(t) = gt + @t + o

bulunur. Burada po, p1, P2, P3, g0, 1, Yo, 71 keyfl sabitlerdir. go, g1, g2, 70, 1 sabit-
lerine karsi gelen sonsuz kugik uretegler:

I} Ie} d
Uy = ‘dlég,Ug = (’ltz - uul)—&;,U_g = [Qt(UQ - uul) + zuq + u]&;,

, 7] a
U4 = [t2(u2 - uul) + t(a:ul + ’U,) F SE]—(’%, U5 = [tul — 1]5;

Bu iireteglerde us yerine u; +uwu; koyup , n = — ;71 esitligini kullanirsak, Burg-
ers‘ denklemi tarafindan kabul edilen Lie nokta simetrilerinin areteclerini buluruz:

o) J aJ ad d
X1=é;,X-—a X3—.’17a +2ta _u%

2] 5 0 o g
X4—$t‘3——+t -é;-l—(x—-tﬂ) Xy = t@ +5§

Po, P1, P2, P3 € karsi gelen sonsuz kiigiik iiretegler, Burgers‘ denleminin nokta simetri-
lerine denk olmayan yiiksek mertebeden simetrilere karg: gelir :
2 2 0
Us = [dus — 6uns — 6(u1)" + 3%‘%1]—5&,

el

Uz = [4tus + (22 — 6tu)us — 6t(u1)2 + (3tu2 — 2zu)uy — u2]~6—1;,

a
Ug = [4t%uz+ (4t~ 6t2u)ur—6t2(u1) + (3t%u? — dtzu + 2% )uq — 2tw” +2xu+6]a ,

Us = [4t%u3 + (6% — 66%u)us — 6t3(u1)” + (3% — 6%zu + 3t2? + 12t )uy — 3t%u?

+6tzu — 3% —~ 6t]—8%. ;&



SONUCLAR

Bu ¢aliymada Lie dénugim gruplarinin yapisini, ézelliklerini ve adi diferan-
siyel denklermlerin ¢oziminde nasil kullamldig: izerinde durduk. ozellikle nokta
donugumi ile Blasius denkleminin, degme dénisgimi ile ¥ = 0 denkleminin
simetrilerini elde ettik. Ayrica son bolimde Lie-Backlund donisiimi ile Burgers
denkleminin kabul ettigi simetrileri bulduk.

Diferansiyel denklemlerin kabul ettigi simetrilerin olugturdugu vektér uzay:
bazi kogullarla birlikte Lie Cebri olugturursa, bu taktirde diferansiyel denklemin
mertebesi, Lie cebirinin boyutu kadar indirgenir. Béylece diferansiyel denklemin

¢oziimini daha digik mertebeli bir diferansiyel denklemin ¢6ztimiine indirgemis
olduk.

Kismi tirevli bir diferansiyel denklemin kabul ettigi Lie grup déniigimleri ile
degismez gozimleri inga edilebilir ve bu, sumir deger problemlerine uygulanabilir.

Lie donigim gruplan altinda Degigim problemlerinden ortaya ¢ikan korunum
kurallar ile Euler-Lagrange denklemlerinin degigsmezligi arasindaki iligki daha
ayrintili bir gekilde incelenerek, yeni korunum yasalarn elde olunabilir.
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