
FOURIER ANALYSIS BASED TESTING OF FINITE
STATE MACHINES

A Dissertation Submitted to
the Graduate School of Engineering and Sciences of

İzmir Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in Computer Engineering

by
Savaş TAKAN

March 2019
İZMİR

We approve the thesis of Savaş TAKAN
Examining Committee Members:

Assoc. Prof. Tolga AYAV
Department of Computer Engineering
İzmir Institute of Technology

Assoc. Prof. Tuğkan TUĞLULAR
Department of Computer Engineering
İzmir Institute of Technology

Asst. Prof. Dr. Şebnem BORA
Department of Computer Engineering
Ege University

Asst. Prof. Dr. Selma TEKİR
Department of Computer Engineering
İzmir Institute of Technology

Asst. Prof. Dr. Mutlu BEYAZIT
Department of Computer Engineering
Yaşar University

25 March 2019

Assoc. Prof. Dr. Tolga AYAV
Supervisor, Department of Computer Engineering
İzmir Institute of Technology

Assoc. Prof. Dr. Tolga AYAV Prof. Dr. Aysun SOFUOĞLU
Head of the Department of Dean of the Graduate School of
Computer Engineering Engineering and Sciences

To Duygu

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Tolga AYAV, who helped me during my

doctoral dissertation study, for his interest and knowledge.

Also, I would like to thank Dr. Tuğkan TUĞLULAR, Dr. Şebnem BORA, Dr.

Selma TEKİR and Dr. Mutlu BEYAZIT for their valuable contributions to this work.

Finally, I would like to express my gratitude to my dear mother, father, sister and

my wife, Duygu ERGÜN TAKAN, for their support, patience and dedication until the

completion of this work.

ABSTRACT

FOURIER ANALYSIS BASED TESTING OF FINITE STATE MACHINES

Finite state machine (FSM) is a widely used modeling technique for circuit and

software testing. FSM testing is a well-studied topic in the literature and there are several

test case generation methods such as W, Wp, UIO, UIOv, DS, HSI and H. Despite the

existing methods, there is still a need for alternative techniques with better performance

in terms of test suite size, fault detection ratio and test generation time. In this thesis,

two new test case generation methods, F and Fw have been proposed. The proposed test

generation methods are based on Fourier analysis of Boolean functions. Fourier transfor-

mations have been studied extensively in mathematics, computer science and engineering.

The proposed F method only tests outputs whereas Fw method also tests the next state with

the outputs. In this context, the proposed methods are compared with UIO and W methods

in terms of characteristic, cost, fault detection ratio and effectiveness. The evaluation data

are analyzed using T-Test and Hedges’ g. Results show that F and Fw methods outperform

the existing methods in terms of the fault detection ratio per test.

v

ÖZET

SONLU DURUM MAKİNELERİNİN FOURIER ANALİZİ TABANLI TESTİ

Sonlu durum makinesi (FSM), devre ve yazılım testlerinde yaygın kullanıma

sahip bir modelleme tekniğidir. FSM testi iyi çalışılmış bir konudur ve literatürde W,

Wp, UIO, UIOv, DS, HSI ve H gibi test üretim yöntemleri vardır. FSM’lerin testi için lit-

eratürde çeşitli yöntemler bulunmakla birlikte, modellerin büyümesi sonucu test kümesinin

büyüklüğü, hata yakalama oranı ve test üretim süresi gibi konularda yüksek başarıma

sahip alternatif test yöntemlerine ihtiyaç duyulmaktadır. Bu çalışmada, F ve Fw isimli iki

yeni test üretme yöntemi önerilmiştir. Önerilen yöntemler diğer test üretme yöntemlerinden

farklı olarak, Boolean fonksiyonlarının Fourier analizine dayanmaktadır. Boolean fonksiy-

onlarının Fourier dönüşümü matematik, bilgisayar bilimi ve mühendislik alanlarında yoğun

olarak incelenmiştir. F yöntemi yalnızca çıktıları test ederken; Fw yöntemi, çıktılar ile

birlikte sonraki durumu da test etmektedir. Bu bağlamda, önerilen yöntemler, karak-

teristik, maliyet, hata yakalama oranı ve başarım bakımından UIO ve W metotları ile

karşılaştırılmıştır. Elde edilen sonuçlar, T-Test ve Hedges’ g ile analiz edilmiştir. Sonuçlar

önerilen F ve Fw yöntemlerinin mevcut yöntemlerden daha başarılı olduğunu göstermiştir.

vi

TABLE OF CONTENTS

LIST OF FIGURES . ix

LIST OF TABLES . x

CHAPTER 1. INTRODUCTION . 1

1.1. Goal and Objectives . 2

1.2. Organization of Thesis . 3

CHAPTER 2. RELATED WORK . 4

CHAPTER 3. TESTING FINITE STATE MACHINES . 9

3.1. Finite State Machines . 9

3.1.1. Finite State Recognizer . 9

3.1.1.1. Deterministic Finite State Machine . 10

3.1.1.2. Nondeterministic Finite State Machine . 11

3.1.2. Output Generating State Machine Models . 12

3.1.2.1. Moore Machine . 12

3.1.2.2. Mealy Machine . 13

3.1.3. Features of The Finite State Machine . 13

3.1.4. Eliminate Incompletely Specified Problem . 14

3.1.5. Reduction of Finite State Machine . 15

3.2. Testing Methods . 17

3.2.1. Some Definitions . 17

3.2.2. Unique Input Output Sequence . 18

3.2.3. Characterization Set . 19

3.2.3.1. Construct K-equivalence Partitions . 20

3.2.3.2. Obtain Characterization Sequence For Each Pair of States 22

3.2.4. Creating of Transition Cover Set . 23

CHAPTER 4. FOURIER ANALYSIS-BASED TESTING OF FINITE STATE MA-

CHINE . 25

vii

4.1. Fourier Expansion . 25

4.2. Construction of F-set . 28

4.3. Test Suite Generation Using F-set . 32

4.4. Complexity Analysis . 34

CHAPTER 5. EVALUATIONS . 35

5.1. Performance Metrics . 35

5.2. Generating FSMs . 35

5.3. Analysis Results . 36

5.3.1. Reset Numbers . 36

5.3.2. Average Test Case Length . 41

5.3.3. Test Suite Length . 46

5.3.4. Fault Detection Ratio . 51

5.3.5. Killed Mutant / Test Suite Size . 56

CHAPTER 6. THREATS TO VALIDITY . 62

CHAPTER 7. CONCLUSIONS . 64

APPENDIX A. STATISTICAL EVALUATION . 71

A.1.1. Reset and State . 71

A.1.2. Reset and Input . 74

A.1.3. Reset and Output . 76

A.2.1. Average Test Case Length and State . 79

A.2.2. Average Test Case Length and Input . 81

A.2.3. Average Test Case Length and Output . 83

A.3.1. Test Suite Length and State . 86

A.3.2. Test Suite Length and Input . 89

A.3.3. Test Suite Length and Output . 91

A.4.1. Fault Detection Ratio and State . 94

A.4.2. Fault Detection Ratio and Input . 96

A.4.3. Fault Detection Ratio and Output . 98

A.5.1. Killed Mutant / Test Suite Size and State . 100

A.5.2. Killed Mutant / Test Suite Size - Input . 102

A.5.3. Killed Mutant / Test Suite Size - Output . 104

viii

LIST OF FIGURES

Figure Page

Figure 1.1. Test Case With State Verification . 2

Figure 3.1. Transition Diagram . 11

Figure 3.2. The Example FSM . 14

Figure 3.3. UIO Tree . 20

Figure 3.4. The Transition Cover Tree . 24

Figure 4.1. The eight spectral components of a 3-input Boolean function 27

Figure 5.1. State and Reset Relation Representation . 37

Figure 5.2. Input and Reset Relation Representation . 38

Figure 5.3. Output and Reset Relation Representation . 40

Figure 5.4. States and Average Test Case Length Relation Representation 41

Figure 5.5. Input and Average Test Case Length Relation Representation 43

Figure 5.6. Output and Average Test Case Length Relation Representation 44

Figure 5.7. State and Test Suite Length Relation Representation . 46

Figure 5.8. Input and Test Suite Length Relation Representation . 48

Figure 5.9. Output and Test Suite Length Relation Representation 50

Figure 5.10. Operation Error, Transfer Error, Extra State Error, Missing State Error . 52

Figure 5.11. State and Fault Detection Ratio Relation Representation 53

Figure 5.12. Input and Fault Detection Ratio Relation Representation 54

Figure 5.13. Output and Fault Detection Ratio Relation Representation 55

Figure 5.14. State and Killed Mutant / Test Suite Size Relation Representation 57

Figure 5.15. Input and Killed Mutant / Test Suite Size Relation Representation 59

Figure 5.16. Output and Killed Mutant / Test Suite Size Relation Representation 60

ix

LIST OF TABLES

Table Page

Table 3.1. Created Test Scenarios . 20

Table 3.2. FSM Table . 21

Table 3.3. P1 Table . 22

Table 3.4. P2 Table . 22

Table 4.1. Truth table for function f = a+ bc . 27

Table 4.2. FSM Normal Form . 28

Table 4.3. Converted To Binary Form . 29

Table 4.4. After all coefficients are applied . 30

Table 5.1. T-Test and Hedge’s g results . 38

Table 5.2. T-Test and Hedge’s g results . 39

Table 5.3. T-Test and Hedge’s g results . 41

Table 5.4. T-Test and Hedge’s g results . 42

Table 5.5. T-Test and Hedge’s g results . 44

Table 5.6. T-Test and Hedge’s g results . 45

Table 5.7. T-Test and Hedge’s g results . 47

Table 5.8. T-Test and Hedge’s g results . 49

Table 5.9. T-Test and Hedge’s g results . 51

Table 5.10. T-Test and Hedge’s g results . 53

Table 5.11. T-Test and Hedge’s g results . 55

Table 5.12. T-Test and Hedge’s g results . 56

Table 5.13. T-Test and Hedge’s g results . 58

Table 5.14. T-Test and Hedge’s g results . 59

Table 5.15. T-Test and Hedge’s g results . 61

x

CHAPTER 1

INTRODUCTION

The development of tests using formal methods is one of the important issues for

software testing [40] [18]. These kinds of tests are used in many areas, from user inter-

face design to aircraft software and real-time systems [10]. Tests using formal methods

show whether the model meets the requirements. In the field of software, models can be

expressed in many ways (Finite state machines (FSM), Petri nets, UML, etc.). FSM was

chosen as the technique in this project. There are various ways of creating test suites using

FSMs. The most common of these are Transition Tour [44], W [11], Wp [22], UIO [57],

UIOv[68], DS [26], HSI[52] [51] [70] and H [16] [15]. In this project, two new methods,

F and Fw, have been developed using Fourier analysis of Boolean functions.

The Transition Tour performs an output test. With the exception of the Transition

Tour, most of the above methodologies perform (next) state verification and the output

test. The most common methods used in (next) state verification are input and output se-

quence, distinguishing sequence and characterization sequence. However, these methods

have some deficiencies. For example, the problem is that some methods such as Unique

input-output sequence and Distinguishing sequence may not be found in the FSM. Also,

most of them produce too many test cases which is the main problem of the methods.

Figure 1.1 shows the creation of tests in methods using (next) state verification.

As shown in this graph, the transfer sequence, reset sequence, and the state transition

under the test are the same for all methods using state verification. The basic difference

takes place in the state verification sequence. Therefore, the proposed methods and other

methods such as W and UIO was compared in the state verification sequence.

When creating a test, there are two important situations. The first is the control

of the outputs. The second is the control of the next state. The reason that two differ-

ent methods are proposed in this study is to develop methods for both cases. From this

point on, two types of methods have been identified to create the test. The first method

(F method) performs only the output test, such as the transition tour. In the other rec-

ommended method (Fw method), the output test and the state verification test are used

together. In this study, the main focus of both methods is output verification. For this

1

Figure 1.1. Test Case With State Verification

purpose, the transitions that affect the output most were selected. This allowed shorter

test cases to be created. Thus less time and place were used.

The contribution of this study to the literature is to prioritize the output tests in

FSM according to the most influential transitions and to identify potentially problematic

pathways. This can be similar to the fact that the braking system and the door handle of a

vehicle are not of the same importance for passenger safety. Similarly, the purpose of this

proposed method is not to capture all errors, but to detect and control the points that are

very likely to cause errors. Thus, without a serious drop in the rate of error detection, the

test is aimed at reducing the amount of the suite. This will save time and space.

1.1. Goal and Objectives

W and UIO are among the most commonly used methods [42]. In this project,

W and UIO methods are implemented. The general feature of these methods is that they

scan all transitions and states (output and state verification). These methods do not

use any priority calculation when scanning them. However, while some of the paths are

very important, some of the paths are not important in terms of fault detection capability.

2

Based on this situation, it was considered appropriate to prioritize the state and transition.

Thus, in this study, a priority calculation was used in terms of states and transitions. When

selecting roads, instead of focusing on all states and transitions, the most used ones are

detected. By determining the most commonly used routes, it is aimed to obtain more high

performance tests by using less power.

The technique uses the Fourier transform on binary functions. Fourier transforma-

tion is studied in a wide range of fields in mathematics, computer science and engineering

[48]. Each coefficient in the Fourier transform shows the effect on the function of the

variations of the variables [64]. In the project, the variables with high effect in the func-

tion are chosen. The transitions were selected by looking at the changes in the variables.

Then, the test suite was obtained with the greedy algorithm which combines transitions.

The new method was compared with earlier methods by mutation analysis.

1.2. Organization of Thesis

In the chapter 2, the studies on the subject from the past to the present are men-

tioned. In Chapter 3, the subject is deepened with the definitions and research about

Testing Finite State Machines. In this context, first of all necessary information about

Finite States Machines is given. Subsequently, Testing Methods are described. In Chap-

ter 4, Fourier Expansion and F-method are explained. In Chapter 5, there are graphical

and statistical evaluations. In Chapter 7, the final results are discussed.

3

CHAPTER 2

RELATED WORK

A lot of research has been done in recent years about FSM testing [5] [18] [19]

[2] [21] [12]. There are many surveys among the mentioned research [40] [37] [30]

[14] [18]. The most common research topic of FSM testing is choosing test suites. The

most important point of choosing test suites is the conformance between specification and

application. The formal definition of this problem, called the conformance test, is found

in many articles [58] [9].

Test generation methods are the main topic of the conformance test. Test gener-

ation methods aim to find all the errors in the given domain. Some methods require a

reduced specification; others are valid only for deterministic models. However, the and/or

model properties are typically used to effectively implement methods to find errors in a

particular domain. In this way, it is possible to make assumptions about errors. Thus, it

can be proven that all the faults in a domain are found with the test sets.

The proof in the FSM is dependant on the connection between application and

specification. This means that all assumptions need to be met so that the test set can

prove equivalence between specification and application. Test creation techniques are

derived from a number of assumptions. The first one is that there exists a dependable

procedure that gets the machine returning to its initial state. A second assumption is

that the application is abstract and represented with a model. Another is that the tester

knows the upper limit of the states in the application. The last assumption is reduced

specifications. This situation is expected to be met by most of the test generation methods.

These assumptions are needed by many techniques when you look at the literature [66]

[11] [22] [41] [17] [63]. The W-set is the source of these methods.

The W-set uses the transition cover set to reach the states, while the characteri-

zation set is used to identify the states. In other methods, different algorithms have been

developed to identify the state. Examples of these algorithms include identification sets

[22] and separation families [41]. The length of the test suite is the main criterion in the

performance of test methods. For this reason, research focuses on shortening test suites

without reducing performance. The experimental results on this subject are in many stud-

4

ies [18][14]. These studies show that traditional methods can produce many short test

cases; current methods produce less and longer test cases to reduce the test set. Current

methods related to the subject are based on defining differential test cases with less effect

on the test dimension. This strategy is called on-the-fly strategy [17] [31] [62]. In addi-

tion, current methods attempted to remove some of the assumptions [28] [26] [61] [55].

However, many test set creation methods have different limitations. Examples include

strongly connected and reduced FSMs.

It is possible to say that Gonenc [26] inspired other methods using DS to construct

test cases, with his work in 1970. Gonenc creates test cases by manipulating two types

of sequences in his method. The first sequence aims to identify all the states. The second

sequence is created to test transitions. However, the prevalence of the W set has eliminated

the use of DS [55]. The W set can be applied to all reduced FSMs [24] [55]. Nevertheless,

the amount of sequences when you look at the W set causes the control sequence to

increase exponentially.

Most discussions are about deterministic FSMs. In addition, non-deterministic

FSMs were discussed in a small number of articles. There are two situations that bring

about non-determinism [71] [29] [52]. The first is that a state reacts differently to the

same input. The second case is that the internal transitions are found and the machine

switches to a different state without any output [71]. Non-determinism often precludes

deciding which one is next. For this reason, the input sequences used for deterministic

FMS are replaced by test strategies. These test techniques in many cases are described

as trees. Inputs that may or may not be used are indicated by tree transitions. After

a certain output, which input will be applied, is determined by the transition of trees.

Cheung and Zhang [71] investigated some optimization problems about identifying and

reaching the states. Hierons [29] provides an algorithm that generates a test case under

the input / output sequences already observed in each case. Hierons’ adaptive algorithm

aims to reduce the size of the test package in non-deterministic FSMs. The test case is

additionally accepted as a tree. Yevtushenko and Petrenko [53] suggest an algorithm for

generating test cases in non-deterministic FSM. Researchers define the assumptions that

need to be taken into consideration. In doing so, they guarantee that all the faults in the

given domain can be found, as in the methods of deterministic FSMs.

Almost all test case production methods are based on a reduced specification. A

variety of algorithms have been proposed to increase the flexibility of test generation

methods and to manipulate simpler models in a redundant state in order to eliminate re-

5

dundancy in the FSMs [27] [50]. Most minimization algorithms identify and remove

unnecessary states and transitions [27] [50]. What’s more, doing so preserves the equiva-

lence between the original and the modified FSM. As a result, a reduced FSM is created.

Getting a simplified model is one of the unwanted and difficult to solve situations. Un-

specified entries in a state are assumed to be of the ”do not care” type by the mentioned

minimization algorithms [41]. This hypothesis does not exist in the majority of real life

systems. Unspecified inputs often mean that an input is not active. As a result, the imple-

mentation of traditional FSM minimization causes some test cases to fail. In such cases,

additional operations can be performed on the model. Thus, the necessary conditions are

met. The realization of these operations requires the use of heuristic methods. As a result,

the error detection power of test sets may be weak.

It is important that the maximum amount of states in the application is defined

because this information affects the error detection power. Some techniques utilize this to

catch more errors when creating tests. The excess of the error results from the contradic-

tions of the amount of states in the application, in the test model.

State-Counting [52] can be applied to non-reduced and reduced models. State-

Counting also gives similar results with traditional methods in terms of test capture. As

far as we know, State-Counting is the only method in the literature that provides these two

properties. State-Counting also works the same way as conventional methods when ap-

plied to reduced specifications. The difference of SC from other methods is that it can be

applied directly to non-reduced FSMs. On the other hand, SC has some scalability issues

because the strategy used to separate states produces rapidly growing test sets according

to the number of test cases. As a result, large, non-practical test suits can be obtained

from models.

In this work, Fourier expansions of boolean functions are used in the selection

phase of test cases. Moving from this, when looking at the Fourier expansions of boolean

functions, they have been used for many years [69]. One of the most important situations

in the Fourier expansion is that Boleen functions take real values. Walsh, one of the

earliest researchers on Fourier expansion, has established a complete orthonormal basis

for L2([0, 1]), which consists of fixed, +1,-1 valued functions at dyadic intervals. The first

major work on Walsh functions was performed by Paley [49]. In his work, Paley achieved

strong results in shortening Lp norms of the Walsh series. The next major development

of the Walsh series is the work that Vilenkin [67] and Fine [20] did independently of

each other. In these studies, a more natural view of Walsh functions was introduced as a

6

discrete group (Zn
2) characterization. In the 1950s and 60s important studies were carried

out. These studies are based on the arrangement of Walsh and Rademacher functions

using binary expansions. On the other hand, Bonami [8] and Kiener [36], in their work

on the subject, interpret the bits symmetrically and arrange the fourier characters using

— s — instead of max (s). In addition, Bonomi got the earliest hypercontractivity results

for Boolean cubes. Bonomi’s research is considered an important tool for the analysis of

Boolean functions.

In Boolean functions and Computer Science, in research on ”switching functions,”

the use of Boolean logic dates back to the late 1930s. It is also seen that the idea was

mostly contributed to by Nakashima [45], Shannon [59] and Shestakov [60]. Muller

[43] is the first person to use Fourier coefficients in the research of Boolean functions.

Muller suggests that when classifying all functions according to certain equations, they

are calculated. Ninomiya [46] is one of the most important people publishing the Fourier

coefficients of binary functions. In his studies, Ninomiya expanded the use of Muller’s

fourier coefficients in the categorization of Boolean functions according to different iso-

morphisms. On the other hand, Golomb [25] worked independently on the same project.

What is more, he is the earliest person to discover the relation to the Wash series.

From the beginning of the 1960s, ”Fourier-Walsh analysis” has begun to be used

in Boolean functions. With reference to the works of Lechner [38] and Karpovsky [34],

many symposiums were held in the 1970s in relation to the applications of Walsh func-

tions. However, until the work of Kahn, Kalai and Linial [33] in 1988, the use of Boolean

analysis in theoretical computer science had decreased. The original analysis for the lin-

earity test of Blum, Luby and Rubinfeld [7] is a combinatorial. Essentially, the essence

of the analysis emerged in the work of Roth [56] in 1953. Besides Bellare and his

friends, Kaufman, Litsyn, and Xie [35] are among those who have improved the results of

Roth’s analysis. The sortedness function was developed by Ambainis, [3] and the hemi-

icosahedron function was developed by Kushilevitz [47]. Furthermore, the fast algorithm

for calculating Fourier transform was developed by Lechner [39].

In this article, the F and Fw method was used to create test generation. An impor-

tant point of the F-method is that the assumptions used are more flexible than the other

methods. In addition, the length of test suites can be changed with parameters used in the

F-method. What’s more, transitions cover can also be added to the F-method as W uses.

The F-method uses Fourier expansions of binary functions during the test selec-

tion phase. The transitions that affect the function most are determined by the Fourier

7

expansions of the binary functions. This ensures that the most effective transition to the

function is achieved. That is, critical transitions are achieved. So, the most critical transi-

tions are tested.

The main purpose of this work is to find the points that have the greatest effect on

the function and to create tests for the errors that may occur at those points, because the

slightest change in the points that have the most effect on the function causes the fault.

While creating the test, it is expected that prioritizing these points will increase the critical

performance.

8

CHAPTER 3

TESTING FINITE STATE MACHINES

Finite State Machine (FSM), as a formal modelling technique to represent both

circuits and software, has been widely used in testing. FSM testing is a well-studied

subject and there are several test generation methods like W, Wp, UIO, UIOv, DS, HSI

and H in the literature. However, the current increase in the demand for pervasive and

safety critical systems as well as the increase in software size calls for more rigorous

methods that can produce better test suites, particularly in terms of test suite size, test case

lengths, time spent for test generation, fault detection ratio and fault exposing potential.

3.1. Finite State Machines

The finite state machine (FSM) model is a mathematical model with discrete in-

puts and outputs. This model is used for modeling hardware and software systems. Ex-

amples of software and hardware systems are the text editor, compilers and synchronous

sequential circuits. Even digital computers can be seen as suitable systems for this model.

Therefore, the finite state machine model for computer science and engineering is an im-

portant model.

There are many types of finite state machines and it is possible to classify as finite

state recognizer and output generating state machine models. Each of these classes has

their own subclass. However, when we say finite state machine in short, the basic model,

the deterministic finite state recognizer model, is understood.

9

3.1.1. Finite State Recognizer

3.1.1.1. Deterministic Finite State Machine

In the basic model, deterministic finite state machine is defined as follows:

DFA =< Q,Σ, δ, q0, F > (3.1)

• Q is a set of finite number states,

• Σ is input alphabet with finite number of input symbols,

• δ is state transition function,

• q0 is the initial state,

• F is the set of final states.

With the state transition function, each current state and the input symbols can be

said to match the next state in the deterministic finite state machine.

Transition Diagram For the definition of the transition function, a so-called transition

diagram is often used. In the example (Figure 3.1), the arrows refer to the transitions, and

the circles refer to states. The state referred to by start is the start state. Double circle is

the output state. The numbers on the transitions refer to the inputs.

Set of Strings Recognized by DFA Depending on the model described, an input symbol

is applied to the input of the DFA each time. Each input symbol causes the DFA to move

the next state. The DFA maintains its state until a new input symbol is applied.

Regardless of the number of input symbols applied, the model works because it

is deterministic. Initially in the case of q0, the DFA reaches a certain state after a string

of a certain number of input symbols is applied. The relationship between q0, w and qi
(reached state) can be used by using the state transition function as follows:

δ(q0, w) = qi (3.2)

10

Figure 3.1. Transition Diagram

Starting from the q0 state and reaching the qi state after the introduction of the w

input string, the DFA recognizes the w input string if the qi is an exit state. The input

alphabet S = I1, I2, I3........Ik is an infinite set of input strings that can be applied to a

DFA. Each string of finite or infinite lengths of symbols in the input alphabet is contained

in this set. Some of the strings of symbols in the input alphabet are recognized by DFA,

while others are unrecognized strings. At this stage, it is possible to define a set of strings

recognized by a finite state machine (M) as follows:

T (M) = w|δ(q0, w) = qiεF (3.3)

3.1.1.2. Nondeterministic Finite State Machine

Due to the difficulty of use of the deterministic model, a non-deterministic model

is developed which is easier and more flexible to use. Non-deterministic finite state ma-

chine (NFA) is defined as follows:

11

NFA =< Q,Σ, δ, q0, F > (3.4)

In this definition, the meanings of Q, Σ, q0 and F are the same as those of the

deterministic model. The only difference between the two models is in the definition of

the transition function.

In the deterministic model, the transition function is defined as a mapping from (

Q x Σ) to Q, whereas in the non-deterministic model the transition relation is defined as a

mapping to subsets of Q from (Q x Σ).

3.1.2. Output Generating State Machine Models

The output generating model is a model that generates an output string in response

to an input string. In this respect, it is also possible to see the output generating output

model as a model that converts input strings into output strings. Thus, two main types of

finite state machine can be characterized as recognizers and transducers. In fact, it can be

thought that the recognizers produced output. From this point of view, the output gener-

ating finite state machine model can be seen as a wider model, including the recognizer

model.

There are two types of output generating state machine called Moore and Mealy

Machine. While the Moore machine is a model that produces state-level output, the Mealy

machine is a model that produces output at the state transition level.

3.1.2.1. Moore Machine

Moore Machine is defined as

M =< Q,Σ,∆, δ, λ, q0 > (3.5)

• Q is set of finite states,

• Σ is set of input symbols,

• ∆ is set of output symbols,

12

• δ is state transition function (A mapping from (Q x Σ) to Q),

• λ is output function (A mapping from Q to ∆),

• q0 is the initial state.

The Moore machine can be seen as the generalization of the DFA model. In other

words, the DFA model can be considered as a special Moore machine.

3.1.2.2. Mealy Machine

Like the Moore machine, the Mealy machine is also defined as M =< Q,Σ,∆, δ, λ, q0 >.

The definition of the 5 elements other than the output function is the same as in the

Moore machine. In other words, the only difference between Moore and Mealy machines

is the output function. The output function, defined as a mapping from Q to ∆ for Moore

machines, is defined as a mapping from (Q x Σ) to ∆ for Mealy machines.

3.1.3. Features of The Finite State Machine

The basic features of the FSM are as follows:

• Completely Specified: An FSM M is said to be completely specified if the behavior

of the FSM is specified for every state and every valid input.

• Deterministic: An FSM M is said to be deterministic if

1. for each input a ε I there is at most one state transition defined at each state of

M

2. there is no internal event causing state transitions in the FSM. A timeout is an

example of internal events that can cause a state transition.

• Strongly Connected: An FSM M is said to be strongly connected if any state is

reachable from any other state.

13

• Distinguishable States: To distinguish between the S1 and S2 states of the M

machine, if an input sequence of at least n length is required, these are called n-

distinguishable states. If the S1 and S2 states can be n-distinguishable, then these

two states are (n-1) -equivalence.

• Machine Equivalent: If there is an equivalent state in the M2 machine for every

state of the M1 machine, and vice versa, the M1 and M2 machines are equivalent.

• Machine Minimization: Reduction or simplification of a machine M means find-

ing a machine M-reduced, equivalent to M, with the smallest number of states.

An example FSM is shown in Figure 3.2. There are 4 states, 2 inputs and 2 outputs.

It is completely specified, deterministic, reduced, and strongly connected. This FSM will

be used in the examples.

Figure 3.2. The Example FSM

3.1.4. Eliminate Incompletely Specified Problem

Some parts in FSMs are not filled or forgotten because these parts in FSMs are

considered unnecessary. Such machines are called Incompletely Specified. FSMs with

14

such features are a problem for FSM testing tools, because FSM tests use each input

variation of states. In this case, the lack of some variations creates problems. That is,

knowing which state to pass from a state is of great importance in FSM tests.

Some FSM tests have solved the Incompletely Specified problem. HSI is an ex-

ample. But the important thing for us in HSI is that there was no change in the character-

ization set. The main change in HSI is the presence of spanning tree and topological sort

operations on it before the characterization set is applied in FSM. HSI then combines the

result of the characterization set and topological sort.

For FSMs with an incompletely specified problem, a new state is added to the

FSM to solve this problem. The state added to the FSM returns to its next states without

output. All missing values in the FSM are filled with the new state without output. Once

these conditions are created, only the outputs are missing. This problem is solved by

accepting the outputs as a new variable. An example solution is given in the Table 3.1.4

and Table 3.1.4.

Current
State

Next
State,

Output
x y

S1 S3,0 -
S2 S2,1 S4,0
S3 S2,1 S3,1
S4 - S4,0

Current
State

Next
State,

Output
x y

S1 S3,0 S5,-
S2 S2,1 S4,0
S3 S2,1 S3,1
S4 S5,- S4,0
S5 S5,- S5,-

15

3.1.5. Reduction of Finite State Machine

Multiple models have been defined so far in terms of finite state machine such

as the recognizer model and output generating model. In both the recognizer model and

output generating model, the complexity of the defined finite state machine is directly

proportional to the number of states. Therefore, when a finite state machine is given, the

reduction of this finite state machine can be important. The reduction or simplification of

a finite state machine is the equivalent of this finite state machine, with the least number

of finite states.

Let’s assume that M Machine has {S1, S2,, Si} states and 0,1 inputs expressed

by x. S2 is the x-successor of S1 if switching from S1 to S2 with x input symbol in M.

If the machine switches from the S1, S2,, and Si states to the Sj state with the x input

symbol, the x-precedence of the Sj state is {S1, S2,, Si} in M.

When the machine M is in either states S1 and S2, whichever input symbol is

applied, if the machine always produces the same output symbol, these are called 1-

equivalent states. When the M machine is in any of the S1 and S2 states, regardless

of which input string is used, the length of which is n or less, if the machine always

produces the same output string, these conditions are called n-equivalent states. When

the machine M is in either states S1 and S2, regardless of its length, no matter which

input string is applied, if the machine always produces the same output string, it is called

equivalent states.

In order to differentiate the S1 and S2 states of the machine, if an input string of at

least n length is required, these are called n-distinguishable states. If the S1 and S2 states

are n-distinguishable, these two conditions are equal to n-1 equivalent.

When an M machine is given, the reduction or simplification of this machine

means that the smallest number of states is found from machines equivalent to this ma-

chine.

Equivalence partitions are used for the reduction of finite state machine. For an

M machine, the k-equivalence partition indicated by Pk is a division in which the k-

equivalent states are located in the same section.

P0, P1, P2,... is found in order to find the equivalence partitioning of the machine

until Pk+1 = Pk is obtained. When Pk+1 = Pk is reached, it is understood that the equiva-

lence partition is P = Pk and the derivation is finished. The states in the same section are

merged as single state. After this process, reduced FSM is obtained. The main formula

16

for equivalence partitioning is below.

• S1 and S2 must be equivalent (Pm must be in the same section in the equivalence

partition).

• For all x input symbols, the x-successors of the S1 and S2 states must also be equiv-

alent ((Pm must be in the same section in the equivalence partition).

3.2. Testing Methods

Assume the design of an FSM model called M, which consists of the requirements

of the system. Conformance testing is used to check whether the implementation of M

meets all the requirements. The general features of conformance testing are as follows:

• To obtain a sequences of state transitions and output functions from M,

• Transformation of each sequence of state transitions and output functions into a test

sequence,

• Testing of M’s implementation by the obtained test sequences,

• Finally, test the result using enough test sequences.

FSM design has state transition and output function. There are methods that only

test the output function (transition tour method). Methods that only test the output func-

tion are easy to test because the FSM designs produce output. But in FSM, when it goes

from one state to another, it is difficult to understand the next state. Hence, it doesn’t

produce any output. Many methodologies have been developed to do this such as unique

input output sequence and characterizing sequence.

These methods are generally applied by the general procedure. This procedure

first goes to the place to be tested. Then, test input is confirmed. Next, this test input

confirms the next state. Finally, it returns to the beginning.

3.2.1. Some Definitions

The following are some definitions of test, test case, and test suite.

17

Test Case: A set of a string developed to verify a particular feature or functionality

for FSM.

Test: A set of one or more test cases.

Test Suite: A set of several test cases for a system under test to verify that it has

some specified set of behaviours.

FSM testing: A nonfunctional testing technique which validates whether the

model meets standards or not. The basic processes of FSM testing are as follows.

Two basic tests will be explained in this section : unique input output sequence

and characterization Set.

3.2.2. Unique Input Output Sequence

The method will be briefly explained here, and details can be consulted in the

literature [23] [9]. The FSM must have certain properties to use the UIO sequence. These

are completely specified, deterministic, reduced, and strongly connected.

It consists of two phases. The first stage is to create the UIO tree, and the second

stage is to get the results from the tree according to the priority order. The algorithm for

creating a UIO tree is given in Algorithm 1.

An input output sequence y/λ(si, y) is said to be a UIO sequence for state si if

and only if y/λ(si, y) 6= y/λ(sj, y), i 6= j,∀sjin M.

Input: FSM
Output: UIO tree

1 Create an initial path matrix (PM);
2 while Find a nonterminal PM ε UIO Tree do
3 New path vector(PM’) is created with a given PM and an input - output (x

/ y) pair.;
4 Add PM’ to UIO Tree.;
5 if PV’ satisfies termination condition C1 or C2 then
6 Mark PV’ as a terminal node.;
7 end
8 end

Algorithm 1: Generation of UIO Tree

• C1: If there is only one state within the path vector, it is called singleton matrix. If

multiple states are connected to the same state in the tail, it is called homogeneous

matrix.

18

• C2: On the path from the initial vector to PM, there exists PM” such that PM ′ ⊆
PM ′′.

Firstly, the path matrix structure is created in an FSM. This structure consists of

the head and tail parts. The head contains the initial states. The tail defines the cur-

rently available states
head− >

tail− >

[
x y z t

x y z t

]
. Head cover all states in the FSM. In

the beginning of the Algorithm 1, the head and tail states are equal to each other. The

path Matrix

[
x y z t

k p s r

]
indicates that the FSM is going from x to k, from y to p,

from z to s, and from t to r. Paths between path matrices are determined by inputs and

outputs

[
x y z t

f g h k

]
input/output
−−−−−−−−−→

[
x y z t

y s m r

]
. A new path matrix is created with a

given path matrix and an input - output (x / y) pair. When x input and y output is given,

we can find the new states. In this way, using new states, the new path matrix is created

in UIO Tree.

[
x y z t

y s m r

]
is node and input/output

−−−−−−−−−→
is arrow in UIO Tree. This con-

tinues until singleton or homogeneous state is found. If there is only one state within the

path matrix, it is called singleton matrix

[
x

y

]
. If multiple states are connected to the same

state in the tail, it is called homogeneous matrix

[
x y z t

a a a a

]
. If the path vector, which

isn’t the singleton or homogeneous vector, is located in the upper branches of the tree, it

is terminated again.

For example, UIO sequence is applied to example FSM:

Firstly, all states are selected as root in UIO sequence. Then the states are deter-

mined according to which input value they will go to. For example, from x / 0, only 3

to 2 states are possible. Thus, when x / 1, y / 0, y / 1 is found, the first level is finished

(Figure 3.3). The algorithm uses breadth first search. There are two situations that prevent

branching. The first one is that there are one or more same states. The other is that the

same states are found above in UIO tree. Branching is done using the above rules (Algo-

rithm 1). At the end of the branching, the states from the top to the bottom are selected.

As an example, 3 and 2 is selected in the first section, 4 in the second section and 1 in the

third section. As a result, x, y, yy, yxx tests are created(Table 3.1).

19

Figure 3.3. UIO Tree

Table 3.1. Created Test Scenarios

States Input Output
S1 YXX 011
S2 Y 1
S3 X 0
S4 YY 00

3.2.3. Characterization Set

Let machine M be a minimal and complete. Characterization set (W-set) is any

states qi and qj , W-set contains a string s (input sequences that distinguishes every two

different states) such that O(qi, s) 6= O(qj, s). For each complete reduced FSM, there

always exists a distinguishably(characterization) set W.

20

Input: FSM table
Output: W-set

1 Construct k-equivalence partitions: P1, P2, ...Pm (Explained in
Section 3.2.3.1);

2 Traverse the k-equivalence partitions in reverse order to obtain distinguishing
sequence for each pair of states(Explained in Section 3.2.3.2);

Algorithm 2: The Construction of W-set

3.2.3.1. Construct K-equivalence Partitions

First, to find the W-set, equivalence partitions are found. In Mearly machines,

for equivalence partitions, groups are created first by using outputs. The new groups are

then derived from these groups until we don’t have any new groups. When all states are

separated into groups, the algorithm terminates. These processes always converge. If the

FSM is a minimum, all states are separated.

When creating the first table below, the states in an FSM are written in the current

states. Then, output and next state values are written according to x and y. This table

specifies which output is to be taken when the input value is given. At the same time,

according to the input value, we can see which one is next state.

To give an example, the first separation was made using the outputs. When per-

forming this separation process, these values are also taken into account if the separation

occurs with more than one input value. For example, in the following table, there is sepa-

ration according to x and y. The first one is separated, and then the others. In the example,

all values except S1 and S4 are separated from each other.

Table 3.2. FSM Table

Current
State

Output Next
State

x y x y
S1 1 0 S3 S2

S2 1 1 S2 S4

S3 0 0 S2 S3

S4 1 0 S3 S4

After separating the states using the outputs, P1 is obtained. This is achieved by

writing each separated state to different groups in the table. The states in the Next state

table are represented by group indexes. For example, the state S2 of the second group

21

goes to S4 with the y input. Since S4 input belongs to group 1, it is written as S41. The

last number indicates the which group belongs to S4.

Table 3.3. P1 Table

Group Current
State

Next
State

x y
1 S1 S33 S22
2 S2 S22 S41
3 S3 S22 S33
1 S4 S33 S41

After P1 values are found, other P values are obtained by looking at group differ-

ences of states. This process ends when all states are separated. Another important point

is that the total amount of P cannot be greater than the number of states.

The values of the P2 table are given in Table 3.4. When these values in the table

are considered, it is seen that all the states are separated. If the FSM was not a minimum,

it would not have been separated. Therefore, this is the minimum requirement for this

algorithm. On the other hand, the number of P’s are equal to the maximum input length

in the generated test set. So in this example, since the last P is P2, the maximum input

length is 2 in test suite.

Table 3.4. P2 Table

Group Current
State

Next
State

x y
1 S1 S33 S22
2 S2 S22 S44
3 S3 S22 S33
4 S4 S33 S44

3.2.3.2. Obtain Characterization Sequence For Each Pair of States

All states in the FSM are selected in pairs. We look whether the selected pair

is in the same group in Pi and in different groups in Pi+1. When this is detected, it is

22

found that the Pi table has the separating input. The separating input is saved. The pair

corresponding to this input is detected. With these new pairs found, the algorithm is run

again. The algorithm terminates when it reaches the FSM table.

For example, looking at the pair S4 and S1, Pi is equal to P1; Pi+1 is equal to P2.

It is understood that the value separating them is y. When y is applied to the states, the

pair S2 and S4 are obtained. For the pair S2 and S4, the Pi is equal to P1, so the FSM

table is checked. As a result, it is seen that it is separated by the y value. This value

is combined with the y value previously found. Then, it is rewritten backwards and the

characterization sequence is found for these two values. Then, the algorithm is run again

for other pairs. The algorithm terminates when all pairs are finished [42][14][65].

• S1,S2 = y

• S2,S3 = y

• S3,S4 = x

• S4,S1 = yy

• S1,S3 = x

• S2,S4 = y

• W-set = {yy,y,x}

3.2.4. Creating of Transition Cover Set

To visit all transitions, the transition cover set is created. The algorithm used to

create the Transition cover set is given below.

• Let’s assume that the test tree has been created up to the k level. k + 1 level is as

follows.

• n node in k level is selected. If n node is in any level from 1 to k, then n is the node.

In this case, n is not further expanded. If n is not a leaf node, ie not in any level

from 1 to k, then new branches are added between nodes and n.

• This applies to all nodes in k level.

23

• When there is no more new branching, the transition cover set is created by finding

all the paths starting from root and ending on any node.

The tree generated according to the above algorithm is as Figure 3.4.

Figure 3.4. The Transition Cover Tree

The transition cover set created from the above tree:

• Transition cover set = {x, y, xx, xy, yx, yy, yyx, yyy}

24

CHAPTER 4

FOURIER ANALYSIS-BASED TESTING OF FINITE

STATE MACHINE

Finite state machine (FSM) is a widely used modeling technique for circuit and

software testing. The FSM test is a well-studied topic, and in the literature there are

several test production methods, such as W [11], Wp [22], UIO [57], UIOv[68], DS [26],

HSI[52] [51] [70] and H [16] [15]. Although there are various methods in the literature

for the testing of FSMs, there is a need for alternative test methods with high performance

in subjects, such as the size of the test suite and fault detection ratio.

In this study, two new test production methods, F and Fw, have been proposed. The

proposed test creation methods are based on the Fourier analysis of Boolean functions,

unlike other test generation methods. With the Fourier analysis of Boolean functions,

discrete structures can be converted into polynomials. Thus, how much input combina-

tions affect output can be found. Fourier transformations have been studied extensively

in mathematics, computer science and engineering.

The proposed methods differ in terms of the points tested. The F method only tests

outputs; the Fw method also tests the next state with the outputs. To create an F method,

first, FSM is converted to a binary form. This is because the Fourier transform function

accepts input in binary form. For example, State A is 00, state B is 01, X is 0, and Y is 1.

Using Fourier transform function, coefficients are calculated. The coefficients show us the

powers of input and state combinations to influence the output. The obtained coefficients

are listed. The input combination of the highest coefficient is then taken according to

the given parameter. After this operation, appropriate transitions are taken to the selected

input combination. Selected transitions are combined with the greedy algorithm to create

tests.

To create the Fw method, the state verification part of the W method is taken. The

output of the F method with the state verification part of the W method is combined with

the Cartesian product. Thus, with the outputs, the next state is tested.

25

4.1. Fourier Expansion

In this section, the basic concepts of Fourier analysis of binary functions are intro-

duced. Although Fourier analysis of boolean functions has been a subject of great inter-

esting in the field of mathematics and engineering over the past decade, it has of yet very

few practical applications. Boolean functions are usually expressed as Bn → B where

B = {True, False}. As a requirement of Fourier analysis of boolean functions, instead

of True and False, 1 and -1 will be used as false and true values (f : {−1, 1}n → {−1, 1}).
Definitions and theorems are given below without proof. Further explanations, examples

and theorems can be found in the work of O’Donnell [48] and Wolf [13].

Theorem 4.1.1 (Fourier expansion) Every function f : {−1, 1}n → R can be uniquely

expressed with a Fourier expansion,

f(x) =
∑

S⊆[n] cS
∏

i∈S xi

where cS is the Fourier coefficients and
∏

i∈S xi is parity function.

Inner product inner product can be found by

< f, g >=
∑

x∈{−1,1}n f(x)g(x)

2n

The Fourier coefficients can be calculated by

f̂(S) =< f, xs >

In the Fourier analysis of Boolean functions, the Boolean function is composed

of spectral components. Each spectral component is assigned a coefficient. Note that the

use of {-1, + 1} in real valued functions instead of {true, false} makes the exclusive-or

operation a simple multiplication. Figure 4.1 shows the eight components of a 3-input

Boolean function. Hereby, the spectral components with more than one variable depict

X-or operation. For example, the component ac actually means a⊕ c, and the component

abc means a⊕ b⊕ c.
Here is how the Fourier expansion is calculated using a simple binary function in

the Table 4.1. Our function is:

f = a+ bc

It can be easily seen that the accuracy of f is as follows:

[F F F T T T T T]

26

Figure 4.1. The eight spectral components of a 3-input Boolean function

Table 4.1. Truth table for function f = a+ bc

a b c f : Bn 7→ B f : Bn 7→ R
F F F F 1
F F T F 1
F T F F 1
F T T T -1
T F F T -1
T F T T -1
T T F T -1
T T T T -1

The general structure of the Fourier expansion is:

f = f̂(∅) + f̂(1)a+ f̂(2)b+ f̂(3)ab+ f̂(4)c+ f̂(5)ac+ f̂(6)bc+ f̂(7)abc

according to Definition 4.1, the first Fourier coefficient f̂(∅) is calculated as follows:

f̂(∅) =
1

23
(1 + 1 + 1− 1− 1− 1− 1− 1) = 0.25

Similarly, the second coefficient is found as follows:

f̂(1) =
1

23
(1 · 1 + 1 · 1 + 1 · 1− 1 · 1− 1 · −1− 1 · −1− 1 · −1− 1 · −1) = 0.75

Similarly, the third coefficient is found as follows:

f̂(2) =
1

23
(1 · 1 + 1 · 1− 1 · 1− 1 · −1 + 1 · −1 + 1 · −1− 1 · −1− 1 · −1) = 0.25

Similarly, the fourth coefficient is found as follows:

f̂(3) =
1

23
(1·1·1+1·1·1+1·−1·1+1·−1·−1−1·1·−1−1·1·−1−1·−1·−1−1·−1·−1) = 0.25

Similarly, the fifth coefficient is found as follows:

f̂(4) =
1

23
(1 · 1− 1 · 1 + 1 · 1− 1 · −11 · −1− 1 · −11 · −1− 1 · −1) = 0.25

27

Similarly, the sixth coefficient is found as follows:

f̂(5) =
1

23
(1·1·1+1·−1·1+1·1·1+1·−1·−1−1·1·−1−1·−1·−1−1·1·−1−1·−1·−1) = 0.25

Similarly, the seventh coefficient is found as follows:

f̂(6) =
1

23
(1·1·1+1·−1·1−1·1·1−1·−1·−1+1·1·−1+1·−1·−1−1·1·−1−1·−1·−1) = 0.25

Similarly, the eighth coefficient is found as follows:

f̂(7) =
1

23
(1 · 1 · 1 · 1 + 1 · 1 · −1 · 1 + 1 · −1 · 1 · 1 + 1 · −1 · −1 · −1

− 1 · 1 · 1 · −1− 1 · 1 · −1 · −1− 1 · −1 · 1 · −1− 1 · −1 · −1 · −1) = 0.25

When all coefficients are calculated, the Fourier expansion is obtained as follows:

f = 0.25 + 0.75a+ 0.25b+ 0.25ab+ 0.25c+ 0.25ac− 0.25bc− 0.25abc

4.2. Construction of F-set

The normal form is FSM tables that can be encoded with any character. The

binary form is FSM tables which can only be encoded in binary. For example, a case can

be written as S1, S2... in normal form, while the same is expressed in Binary form as 01,

00, 10... Because the Fourier Transform requires a binary form, FSM are transformed into

a binary form. This conversion is shown in Table 4.2 and Table 4.3:

Table 4.2. FSM Normal Form

S X S O
S1 x S3 1
S1 y S2 0
S2 x S2 1
S2 y S4 1
S3 x S2 0
S3 y S3 0
S4 x S3 1
S4 y S4 0

The states in the above table are converted to two digits, as can be seen in the

following table. For example, “S1 is converted to 00; S2 is converted to 01”. The input

values x and y are converted to 1 and 0 respectively.

28

Table 4.3. Converted To Binary Form

S1 S2 Input S1 S2 Output
0 0 1 1 0 1
0 0 0 0 1 0
0 1 1 0 1 1
0 1 0 1 1 1
1 0 1 0 1 0
1 0 0 0 0 0
1 1 1 1 0 1
1 1 0 1 1 0

The output function is shown in Equation 4.1. It shows that the output function is

dependent upon the inputs and the states.

O = S̄1S̄2X + S̄1S2X + S̄1S2X̄ + S1S2X (4.1)

The truth table is obtained using the output function. Truth table, inputs and states

are used together to get Fourier coefficients. The example is given in Equation 4.2:

O = 0− 0.5S1 + 0.5S2 + 0 + 0.5X + 0 + 0 + 0.5S1S2X (4.2)

As you can see in the example, some values are low. Therefore, the effect of these

values on function is weak. Removing these values with low effect reduces the test set

size. This reduces the cost. For this reason, low values have been removed by using a

threshold. Two types of parameters are used to determine threshold in the project.

In the first parameter, the coefficients are sorted according to their importance.

The user enters the parameter of how much of the coefficients to take. For example, 1/2,

1/4, 1/6. Starting with the highest value, the user selects the scale coefficients determined

by the parameter.

In the second parameter, after the coefficients are determined according to the first

parameter, the maximum number of transitions for each coefficient is regulated by the

parameter.

By applying a certain threshold to these coefficients, the values with little or no

effect are subtracted from the Fourier coefficients. The example is given in Equation 4.3.

O = −05S1 + 0.5S2 + 0.5X + 0.5S1S2X (4.3)

As shown in Equation 4.3, after selecting the coefficients, appropriate transitions

29

are selected. As is known, Fourier transform measures change. In order to measure the

change, it must contain the new x values, as can be seen in Equation 4.3. However, as can

be seen in the table 4.3, the input value does not exist after the change. For this reason, a

table containing new input values is arranged. The edited version of the table is given in

Table 4.4.

Table 4.4. After all coefficients are applied

S1 S2 X S1 S2 Output
0 0 1 1 0 1
0 1 0 1 1 1
1 0 0 0 0 0
0 0 0 0 1 0
1 1 1 1 0 1
1 0 1 0 1 0

After obtaining the Table 4.4, an algorithm was developed to select appropriate

transitions with Fourier coefficients shown in Algorithm 3. There are three entries accord-

ing to this algorithm such as coefficients, transitions and the two parameter values. The

output of this algorithm is transitions selected by the coefficients. The maximum num-

ber of transitions that are suitable for the coefficients is determined by the transitionsSize

variable. The algorithm looks at the suitability of each transition for each coefficient. This

is done with the check algorithm.

As for the algorithm of check, the algorithm takes the Fourier variables as a pattern

(For example, S1S2X is 111 as pattern and If combination is S2X , pattern is 011). It is

checked through a pattern to see if transition is suitable. If the pattern is one and there is

no change, the program will return false; otherwise, it will return true. On the other hand,

if the pattern is zero and there is a change, the program again returns false; otherwise, it

returns true in Algorithm 4 .

After the transitions are selected, they are combined using the Greedy algorithm.

To do this, the first transition is considered a solution. The following transitions are always

attempted to be added to the previous solutions. Transition that is not included in existing

solutions is considered a new solution shown in Algorithm 5.

After the greedy algorithm was applied, sequences were formed.

• {S2S4S3, S1S3S2, S3S1S2}

30

Input: Transitions, Terms, TransitionsSize, TermsSize
Output: the most important transitions are selected with using

TransitionsSize and TermsSize parameters
Transitions : is list of Transition which consists of edges from one state

to another (the next state) with input and output
Terms : is list of Term which consists of the fourier coefficient and

parity function)
TransitionsSize: is maximum transitions size given from user
TermsSize : is maximum terms size given from user

1 Sort Terms;
2 n = 0;
3 for i← termSize to 0 do
4 Get last Term in Terms and remove it from Terms;
5 if Fourier coefficient of Term isn’t equal to 0 then
6 foreach Transition in Transitions do
7 if check(term, Transition) then
8 . Check if Transition is suitable for

selected transitions or not
9 Add transition to selected transitions;

10 if selected transitions size is equal to TransitionsSize then
11 return selected transitions;
12 end
13 Add coefficient to selected coefficients;
14 end
15 end
16 end
17 if selected coefficients size is equal to TermsSize then
18 return selected transitions;
19 end
20 end
21 return selected transitions;

Algorithm 3: Pseudo-code that give the selected transitions

In order to link with the root of the FSM, a transfer sequence is added to each se-

quence obtained after applying the Greedy algorithm. For example, the transfer sequence

of the sequence S2S4S3 is S1S2. The transfer sequence of each sequence varies according

to the FSM root distance of that array. Once the transfer sequence has been detected, this

transfer sequence is added to the previously obtained sequences. The resulting array is

defined as the F-set sequence. In the above example, the F-set sequence is S1S2S4S3. The

F-set sequences of the arrays obtained after the Greedy algorithm are combined with the

transfer sequences are as follows.

• {S1S2S4S3, S1S3S2, S1S3S1S2}

• F − set(Output) = yyx, xx, xyy

31

Input: Transition, Term
Output: if Transition is suitable for selected transitions or not
Transition: Consists of edges from one bitwise encoded state to bitwise

encoded another (the next state) with input and output
Term : Consists of the fourier coefficient and parity function (bitwise

variables)

1 for i← 0 to bit length of the bitwise encoded state of Transition do
2 if i’th variable of term is equal to ’1’ then
3 if i’th bit of the bitwise encoded state of transition is equal to i’th bit

of the bitwise encoded next state of transition then
4 return false;
5 end
6 else
7 if i’th bit of the bitwise encoded state of transition isn’t equal to i’th

bit of the encoded next state of transition then
8 return false;
9 end

10 end
11 end
12 return true;

Algorithm 4: Check(...) Pseudo-Code

4.3. Test Suite Generation Using F-set

In the F and Fw methods, if you want to use the output and state verification test

at the same time, any state verification sequence can be added at the end of the output

test. In this case, the F-set is replaced by the state transition under the test section. If

the state verification sequence is not added to the end of the output test, only the output

test is performed, such as the Transition Tour. Consequently, to create a test, transitions

that highly affect the output are selected. In both cases, the F and Fw methods allows the

creation of shorter test suites without a significant reduction in the rate of error detection.

Thus, less time and space are used.

For example, the F-set sequences, which are combined with the transfer sequences

after the Greedy algorithm is applied, also form the F-method.

• F-set = F = {yyx, xx, xyy}

To create the FW method, the state verification part of the W method is taken.

The state-verification part of the W method and the F-set are combined with the Cartesian

product. Thus, with the outputs, the next situation is tested. The F method with the W

32

Input: Transitions
Output: Solutions
Transitions: is list of Transition which consists of edges from one state to

another (the next state) with input and output
Solutions : is hash table where value is solution which consists of list of

Transition, key is id of solution

1 foreach transition in transitions do
2 if size of solutions is equal to zero then
3 Add transition as first solution in solutions;
4 else
5 assign check to true . check says whether there is a

new solution or not
6 ;
7 foreach solution in solutions do
8 if the bitwise encoded next state of last transition of solution is

equal to the bitwise encoded state of transition then
9 add transition to end of solution;

10 check is equal to false;
11 else if the bitwise encoded state of first transition of solution is

equal to the bitwise encoded next state of transition then
12 add transition to begin of solution;
13 check is equal to false;
14 end
15 if check is equal to true then
16 add transition to new solution;
17 end
18 end
19 end
20 return temp;

Algorithm 5: FindSolutions(...) Pseudo-Code

method was run on the same sample FSM. As a result, W set was found as yy, y, x. The

combination of the W set and the F set with the Cartesian product is as follows:

Fw = Fset×Wset = {yyx, xx, xyy} × {yy, y, x}

= {yyxyy, yyxy, yyxx, xxyy, xxy, xxx, xyyyy, xyyy, xyyx}

Transition cover set = {x, y, xx, xy, yx, yy, yyx, yyy}
Above, the W-set with the F-set is combined with the Cartesian product. If, as

above, the F method was not used, the F method would be combined with the transition

cover set and the W set Cartesian product instead. This result is shown below for an

understanding of the difference.

33

W = TransitionCoverSet×Wset = {x, y, xx, xy, yx, yy, yyx, yyy}×{yy, y, x} =

{xyy, xy, xx, yyy, yy, yx, xxyy, xxy, xxx, xyyy, xyy, xyx, yxyy, yxy, yxx, yyyy, yyy, yyx,

yyxyy, yyxy, yyxx, yyyyy, yyyy, yyyx}

4.4. Complexity Analysis

Binary encoded S states results inm bits such that S = 2m. The Fourier expansion

consists of 2m terms. The maximum number of transitions in a FSM is S(S − 1). The

complexity of Fourier transformation is given as O(2m). The complexity of the whole

algorithm can be expressed as O(2m + 2m · S(S − 1) ·m+ S(S − 1))=O(S + S · S(S −
1) · log2 S + S(S − 1))=O(S3).

Complexity is polynomial in terms of the number of states. However, when the

values are calculated on the fly, there is a significant increase in performance. In the

case studies, the method was up to about 32350 states with an Intel i7 processor and a

16gb ram computer. There was no optimization in the algorithm. Therefore, with more

optimization, better performance is possible.

Test execution generally takes more time than test generation. Hence, once the

test suite has been created, it is applied to a large number of systems. In the proposed

methods, the test execution time is significantly reduced depending on the test suite size

even though the test generation time is expected to be longer.

34

CHAPTER 5

EVALUATIONS

In Chapter 5, there are graphical and statistical evaluations. In making these eval-

uations, four methods were used. The methods used during the evaluation are UIO Se-

quence, characterization set, F and Fw methods. These methods were examined in terms

of characteristic, cost and effectiveness. Input, output and state parameters are used dur-

ing the examination. Then, statistical differences were examined. For this, basic statistical

information and T-Test were applied.

5.1. Performance Metrics

In this section, methods are studied in terms of characteristic, cost, effectiveness.

The number of resets and the length of the test determines the characteristic of the test

suite. To calculate the cost, the test suite length has been looked at. To see which method

is effective, the error capture rate is checked. These values have examined the interaction

with state, input, and output. There are a total of 3 types of configurations used for each

one in each chart:

1. input is variable, output 4-valued, state 4-valued

2. output is variable, input 4-valued, state 4-valued

3. state is variable, input 4-valued, output 4-valued

5.2. Generating FSMs

A built-in tool called Genstate was used to create FSM [1] [54]. Genstate has

the parameters such as the number of inputs, the number of outputs, and the number of

transitions. Genstate also has many different parameters that are not used in this study.

35

This tool makes deterministic and accessibility controls while creating FSM. This ensures

that FSM is deterministic and all states are accessible.

Software usage:

Genstate -i n -o n -t n [filename]

If you want to print the output of the program to file, file name must be added to

[filename]. Genstate produces output in KISS file format.

When it comes to system features, the processor in the system is Intel Core i7 7th

generation. Nvidia Geforce 940mx is the graphics card of the system. The memory of the

system is 16gb. The programs used in the system are Microsoft Visual Studio 2017 and

Windows operating system. Also the program was tested with Ubuntu 18.10 and gcc.

5.3. Analysis Results

5.3.1. Reset Numbers

The target in Figure 5.1 is that the reset remains low while the state increases.

When the graph is examined for this purpose, it is seen that the highest reset values belong

to UIO method. This is not intended. Furthermore, the reset value of the UIO method

continued to increase throughout the graph. The UIO method has reset values in the

last state range, well above the other methods, as in the beginning. In this respect, the

UIO method has the lowest success rate in all of the reset-state graph compared to other

methods.

When we look at the W method, it is seen that the UIO method started to graph at

almost the same reset values. In addition, the reset values of the W method continued to

increase in all of the graphs similar to the UIO method. However, the W method rise is

lower than the UIO method. In the last state range, the W method’s reset values are lower

than the UIO method. On the other hand, W method’s reset values are much higher than

the F and Fw methods. In this case, the W method’s performance seems to be close to the

UIO method. However, the W method has a higher performance compared to the UIO

method.

When the Fw method is examined, it is seen that the graph has much lower reset

36

Figure 5.1. State and Reset Relation Representation

values than W and UIO methods. In general, the Fw method ’s reset values have increased

as other methods have. However, the increase value of the Fw method is lower than the

UIO and W methods. On the other hand, the increase value of the Fw method is slightly

faster than the F method. At the end of the graph, the reset value of the Fw method is

much lower than the UIO and W methods. This trends does’nt change from the beginning

to the end of the graph. This is closer to the intended situation. Accordingly, it is possible

to say that Fw method gives better results in terms of reset-state than W and UIO method.

The F method has much lower reset values than the other methods at the begin-

ning, and end of the graph. The reset values of the Fw method are close to the F method’s

reset values. In the graph, there is a significant difference between the F and Fw methods

and the W and UIO methods in the maintenance of the reset values. This difference in-

creased further at the end of the graph. The reset values of the F method slightly increased

throughout the graph. The highest performance according to the reset-state graph belongs

to the F method. After F method, the best performance belongs to Fw method.

In Table 5.1, the highest performance according to the T-Test and Hedge’s g values

belongs to the F method. The F method follows the Fw method in terms of performance

37

Table 5.1. T-Test and Hedge’s g results

W UIO
F is lower than lower than
Fw is lower than lower than

rate. The performance of F and Fw methods yielded better results than W and UIO meth-

ods. See Section A.1.1 in Appendix for more information.

Figure 5.2. Input and Reset Relation Representation

The target in the Figure 5.2 is that the reset remains low while the input increases.

When the graph is examined for this purpose, UIO and W methods are close to each other

at the beginning of the graph. Then, the reset values of the UIO and W methods continued

to rise rapidly in a similar manner. At the end of the graph, the UIO method whose Reset

values increased rapidly in all of the graph reached high Reset values. This is far above the

intended value. In general, the UIO method is close to the W method, but it has reached

higher reset values. In this respect, the lowest performance compared to all other methods

belongs to the UIO method.

The W method has similar values to the UIO method from the beginning to the

38

end of the graph. The values of the W method are similar to those of the UIO method

across the graph. However, these values are slightly lower than the UIO method. At the

end of the graph, the W method was at the same reset values as the UIO method. In this

respect, the W method’s performance is very close to the UIO method but slightly higher

than the UIO method.

At the beginning of the graph, the Fw method has a much lower reset value than

the UIO and W methods. In contrast to the UIO and W methods, the reset values of the Fw

method did not increase. It is even possible to say that the values of the Fw method have

decreased. In this respect, Fw method performance is higher than UIO and W methods,

but it is lower than F method.

The F method has started at the lowest reset values. The graph continued with

slight fluctuations. However, it retained the initial reset values throughout the graph. So

the F method’s reset values did not increase. This is the desired result. The F values of the

method are similar to those of the Fw method. However, the F method gave better results

than the Fw method. On the other hand, UIO method and W method have much higher

values than F method and Fw method. In this case, it is seen that the highest performance

belongs to F method.

Table 5.2. T-Test and Hedge’s g results

W UIO
F is lower than lower than
Fw is lower than lower than

In Table 5.2, the highest performance according to the T-Test and Hedge’s g values

belongs to the F method. The Fw method follows the F method in terms of performance.

The performance of F and Fw methods in Reset-Input yielded better results than W and

UIO methods. See Section A.1.2 in Appendix for more information.

The target in the Figure 5.3 is that the reset remains low while the output increases.

When the graph is examined for this purpose, it is seen that the UIO method starts to

graph at the highest reset values. In the continuation of the graph, the reset values of

the UIO method decreased slowly, then rapidly. In the average output time, the values

are balanced. From the middle of the graph, the values of the UIO method have become

stable. Until the end of the graph, the UIO method retained the reset values reached in the

middle of the graph.

The W method also proceeded in a similar manner to the UIO method. However,

39

Figure 5.3. Output and Reset Relation Representation

the W method started with a slightly lower reset value than the UIO method. The char-

acteristic of the W method curve is similar to that of the UIO method. Starting from the

initial values, the slow and then rapidly falling W method values progressed at the same

reset values from the middle of the graph. At the end of the graph, these reset values were

maintained. The W method was combined with the same reset values as the UIO method

after the first quarter of the graph. Until the end of the graph, the UIO method and W

method proceeded at the same reset values.

At the beginning of the graph, the Fw method has a much lower reset value than

the UIO and W methods. Similar to the UIO and W methods, the Reset values of the Fw

method decreased in the graph. Similar to the UIO and W methods, the Fw method also

met the same reset values as the F method in half of the graph. In this respect, Fw method

performance is higher than UIO and W methods, but it is lower than F method.

The F method has started at the lowest reset values. In the continuation of the

graph, it proceeded with very slight fluctuations. On the whole, however, it retained the

initial reset values. That is, the values of the F method have not increased. This is the

desired result. The F values of the method are similar to those of the Fw method. However,

40

the F method gave better results than the Fw method. On the other hand, UIO method and

W method have much higher values than F method and Fw method. In this case, it is seen

that the highest performance belongs to F method.

Table 5.3. T-Test and Hedge’s g results

W UIO
F is lower than lower than
Fw is lower than lower than

In Table 5.3, the highest performance with respect to T-Test and Hedge’s g values

belongs to the Fw method. In other words, the performance of F and Fw methods in Reset-

Output yielded better results than W and UIO methods. See Section A.1.3 in Appendix

for more information.

5.3.2. Average Test Case Length

Figure 5.4. States and Average Test Case Length Relation Representation

41

The goal in the Figure 5.4 is that when the states increase, the Average Test Case

Length remains high. Looking at the graph above, it is noteworthy that the UIO and W

method started at similar values. On the other hand, the Average Test Case Length values

of F and Fw methods are higher than the other methods. The UIO method started at a

very low value in contrast to the target in the Average Test Case Length - States graph.

However, the UIO method showed a significant increase in the graph and completed the

graph at the highest values.

When looking at the W method, it is seen that at the beginning, the UIO is located

very close to the method. The W method also started with a very low Average Test Case

Length value as UIO method. The W method was increased in the same way as the

UIO method. However, the acceleration of the W method is slightly lower than the UIO

method. As a result, the W method completed the graph with a lower Average Test Case

Length value than the UIO method.

The Fw method at the beginning of the graph is at the highest Average Test Case

Length values. In the continuation of the graph, Average Test Case Length values of the

Fw method progressed with zigzags. In the average States period, the values started to be

more balanced. From the middle of the graph, the values of the Fw method have become

more stable. At the end of the graph, the Fw method maintained approximately the reset

values reached in the middle of the graph.

The F method was lower than the Fw method, but UIO and W methods were higher

than the Average Test Case Length values. The progress of the F method is characteristic

of the Fw method. F method has also progressed with zigzags such as Fw method. From

half of the graph, the F method values are less fluctuated. At the end of the graph, the F

method preserved approximately the reset values reached in the middle of the graph.

Table 5.4. T-Test and Hedge’s g results

W UIO
F is same with lower than
Fw is higher than same with

As a result, in Table 5.4, the highest performance according to the T-Test and

Hedge’s g values belongs to the Fw method. See Section A.2.1 in Appendix for more

information.

The target in the Figure 5.5 is that the Average Test Case Length remains high

while the input increases. When the graph is examined for this purpose, it is seen that

42

Figure 5.5. Input and Average Test Case Length Relation Representation

UIO and W methods proceed in a similar way. On the other hand, the UIO method, in

contrast to its intended use, has remained at low average values. In detail, it is seen that

UIO method starts to graph on average values. However, the values of the UIO method

have dropped rapidly in a very short Input range. From the first quarter of the graph, the

average value of the UIO method is fixed. Until the end of the graph, the UIO method

was at low average values.

The W method has started at a lower average than the UIO method. Initially, the

W method, which had the lowest average values, dropped rapidly until the first quarter of

the graph. The W method has the same values as the UIO method from the first quarter

of the graph. Like the UIO method, the W method also retained its value until the end of

the graph. Thus, the W method has the lowest performance compared to the graph.

It appears that the Fw method starts graphing at the highest Average Test Case

Length. In the continuation of the graph, Average Test Case Length values of the Fw

method were progressed by zigzags. The values of the Fw method decreased even slightly

in the continuation of the graph. However, the Fw method has achieved the highest values

in all of the graphs compared to other methods.

The F method is lower than the Fw method at the beginning of the graph; however,

43

it has higher Average Test Case Length values than UIO and W methods. The progress

of the F method is characteristic of the Fw method. F method has also progressed with

zigzags such as Fw method. The values of the F method have fallen, albeit slightly, in the

continuation of the graph. At the end of the graph, and in general, the F method has a

lower average value than the Fw method but higher than the UIO and W methods. In this

regard, the F method has the best performance after the Fw method.

Table 5.5. T-Test and Hedge’s g results

W UIO
F is higher than higher than
Fw is higher than higher than

As a result, in Table 5.5, the highest performance F method according to T-Test

and Hedge’s g values belongs to Fw method. In other words, the performance of F and

Fw methods in Average Test Case Length -Input yielded better results than W and UIO

methods. See Section A.2.2 in Appendix for more information.

Figure 5.6. Output and Average Test Case Length Relation Representation

In the Figure 5.6, it is aimed to keep the Average Test Case Length high while

44

the output increases. When the graph is examined for this purpose, the starting point

of the UIO method is the same as the F method in average. The average of the UIO

method, however, declined rapidly in the first quarter of the graph. At the end of the

graph, the UIO method has an average stability. From the first quarter of the graph, the

UIO method has progressed to stable values. The UIO method maintained approximately

stable progressive average values at the end of the graph.

The W method has the lowest average value at the starting point. The average

values of the W method are approximately the same across the entire graph. The W

method has stable values except for very small ups and downs. Approximately half of the

graph approached the values of the UIO method to the same values as the W method. As

a result, from almost half of the graph, the values of the UO method and the W method

proceeded in line with each other. At the same time, these values are the lowest average

values according to other methods. Therefore, the performance of W and UIO methods is

low.

On the other hand, Fw method has the highest values in average and output relation

compared to other methods. The Fw method progressed along the graph with zigzags.

However, the Fw method also completed the graph at the highest average point. The Fw

method showed the average curve over all other methods in the graph. Thus, in terms of

the relationship between average and output, the Fw method performed better than other

methods.

The F method has lower Average Test Case Length values than the Fw method but

higher than the UIO and W methods. The progress of the F method is characteristic of the

Fw method. F method has also progressed with zigzags such as Fw method. At the end

of the graph, the F method retained the reset values that the graph had overall. Thus, in

terms of the average and output relationship, the F method has the best performance after

the Fw method.

Table 5.6. T-Test and Hedge’s g results

W UIO
F is higher than higher than
Fw is higher than higher than

As a result, in Table 5.6, the highest performance according to T - Test and

Hedge’s g values belongs to Fw method. The F method follows the Fw method in terms

of performance. Therefore, the performance of Fw and F methods in Average Test Case

45

Length - Output yielded better results than W and UIO methods. See Section A.2.3 in

Appendix for more information.

5.3.3. Test Suite Length

Figure 5.7. State and Test Suite Length Relation Representation

The target in the Figure 5.7 is that the Test suite Length remains low while the

state increases. When the graph is examined for this purpose, it is seen that the highest

Test Suite Length value belongs to UIO method. This is not intended. Furthermore, the

reset value of the UIO method continued to increase in the entire graph. The UIO method

has higher Test Suite Length values at the end of the graph than the other methods. In this

respect, the UIO method has the lowest performance in the entire Test Suite Length -state

graph compared to other methods.

When we look at the W method, it is seen that the UIO method starts to graph

almost the same Test Suite Length value. In addition, the x values of the W method

continued to rise in the graph as similar to the UIO method. However, the W method rise

46

is lower than the UIO method. In the last state range, the W method is lower than the

UIO method but with the Fw method much higher than the F methods. In this case, the

W method’s performance seems to be close to the UIO method. However, the W method

has a higher performance than the UIO method.

When the Fw method is examined, it is seen that the graph has a much lower Test

Suite Length value than the W and UIO methods. In the overall graph, the Test Suite

Length value of the Fw method increased as well as other methods. However, the increase

value of the Fw method is lower than the UIO and W methods. On the other hand, the

increase value of the Fw method is slightly faster than the F method. At the end of the

graph, the Test Suite Length values of the Fw method are much lower than the UIO and

W methods. According to the F method is high. This order has never changed from the

beginning to the end of the graph. This is closer to the intended situation. Accordingly,

it is possible to say that the Fw method gives better results in terms of Test Suite Length

-state than W and UIO method.

The F method has much lower Test Suite Length values than the other methods at

the beginning and end of the graph. The method closest to the Test Suite Length value

of the F method belongs to the Fw method. In the graph, there is a significant difference

between the F and Fw methods and the W and UIO methods in the maintenance of Test

Suite Length values. This difference was further increased at the end of the graph. The

Test Suite Length value of the F method was slightly increased until the end of the graph.

According to the Test Suite Length -state graph, the highest performance belongs to the F

method. Fw method follows F method in terms of performance.

Table 5.7. T-Test and Hedge’s g results

W UIO
F is lower than lower than
Fw is lower than lower than

As a result, in Table 5.7 the highest performance according to T-Test and Hedge’s

g values belongs to F method. The Fw method follows the F method in terms of perfor-

mance rate. Therefore, the performance of F and Fw methods in Test Suite length - States

yielded better results than W and UIO methods. See Section A.3.1 in Appendix for more

information.

The target in the Figure 5.8 is that while the input increases, Test Suite Length

remains low. When the graph is examined for this purpose, it is seen that UIO and W

47

Figure 5.8. Input and Test Suite Length Relation Representation

methods start to graph near each other. Subsequently, the Test Suite Length values of

UIO and W methods increased rapidly in a similar manner. At the end of the graph, the

UIO method, whose Test Suite Length values increased rapidly, reached very high values.

This is far above the intended value. In general, the UIO method reached close to the

W method but higher than it reached the Test Suite Length. In this respect, the lowest

performance compared to all other methods belongs to the UIO method.

The W method has similar values to the UIO from beginning to end of the graph.

In general, the W method has progressed at similar Test Suite Length values with the UIO

method. However, W method has lower values than UIO method with little difference. At

the end of the graph, the W method was at the same Test Suite Length value as the UIO

method. In this respect, the W method’s performance is very close to the UIO method but

slightly higher than the UIO method.

Fw method, in contrast to UIO and W methods, has started to graph at much lower

Test Suite Length values. In contrast to the UIO and W methods, the Test Suite Length

values of the Fw method did not increase. It is even possible to say that the decrease. In

this respect, Fw method performance is higher than UIO and W methods, but it is lower

48

than F method.

The F method has started at the lowest Test Suite Length values. The graph con-

tinued with slight fluctuations. However, in the entire graph, the initial Test Suite Length

value was maintained. That is, the Test Suite Length values of the F method have not

increased. This is the desired result. The Test Suite Length values of the F method are

similar to those of the Fw method. However, the F method gave better results than the Fw

method. On the other hand, UIO method and W method have much higher values than F

method and Fw method. In this case, it is seen that the highest performance belongs to F

method.

Table 5.8. T-Test and Hedge’s g results

W UIO
F is lower than lower than
Fw is lower than lower than

As a result, in Table 5.8, the highest performance according to T - Test and

Hedge’s g values belongs to the F method. The F method follows the Fw method in

terms of performance rate. Therefore, the performance of F and Fw methods in Test Suite

Length - Input yielded better results than W and UIO methods. See Section A.3.2 in

Appendix for more information.

Targeted in the Figure 5.9 is that Test Suite Length is low while output increases.

When the graph is examined for this purpose, it is seen that UIO method starts to graph at

the highest Test Suite Length value. In the continuation of the graph, the Test Suite Length

values of the UIO method decreased slowly, then quickly. In the average output time, the

values of the UIO method are balanced. From the middle of the graph, the values of the

UIO method have become stable. Until the end of the graph, the UIO method retained its

Test Suite Length values in the middle of the graph.

W method also showed similar progress in UIO method. However, the W method

has started at a slightly lower Test Suite Length value than the UIO method. The charac-

teristic of the W method curve is similar to that of the UIO method. From the start value,

the slow, then rapidly falling W method progressed at the same Test Suite Length values

from the middle of the graph. At the end of the graph, it maintained its Test Suite Length

value. The W method was combined with the same Test Suite Length values as the UIO

method after the first quarter of the graph. Until the end of the graph, the UIO method

and W method proceeded at the same Test Suite Length values.

49

Figure 5.9. Output and Test Suite Length Relation Representation

At the beginning of the graph, the Test Suite Length values of the Fw method are

much lower, as opposed to UIO and W methods. Similarly to the UIO and W methods,

the Test Suite Length values of the Fw method decreased. Similar to the UIO and W

methods, the Fw method met the F method at near Test Suite Length values in the half of

the graph. In this respect, Fw method performance is higher than UIO and W methods,

but it is lower than F method.

The F method has started at the lowest Test Suite Length values. The chart con-

tinued with slight fluctuations. However, it retained the initial Test Suite Length value in

the entire graph. That is, the Test Suite Length values of the F method did not show a sig-

nificant increase. This is the desired result. From half of the graph, the F values of the F

method are similar to those of the Fw method. However, the F method gave better results

than the Fw method. On the other hand, UIO method and W method have much higher

values than F method and Fw method. In this case, it is seen that the highest performance

belongs to F method.

As a result, in Table 5.9, the highest performance according to the T-Test and

Hedge’s g values belongs to the F method. The Fw method follows the F method in terms

50

Table 5.9. T-Test and Hedge’s g results

W UIO
F is lower than lower than
Fw is lower than lower than

of performance. Therefore, the performance of F and Fw methods in Test Suite Length -

Output yielded better results than W and UIO methods. See Section A.3.3 in Appendix

for more information.

5.3.4. Fault Detection Ratio

Mutant analysis was used to determine the effectiveness of the method. In muta-

tion analysis, mutants were created using the four categories such as operation, transfer,

extra state and missing state errors. Four methodologies run with these mutants and their

results were evaluated [32][4][6].

Mutation Analysis is a powerful technique for assessment of the goodness test of

tests. It provides a set of strong criteria for test assessment and enhancement. Since the

determination of the complete requirement is not possible in the normal way, mutants

have been established according to certain criteria. Mutant is the pattern of the model

distorted by certain criteria. Tests were run on possible created faults (mutants). The

number of mutants caught determines the performance of the test set.

The error model applied for the FSM is shown in Figure 5.10. This fault model

consists of four categories:

1. Operation Error: Output errors that occur during the transition are entered into

this category. This error is shown in the second FSM in the figure. Output 0 instead

of 1 in FSM.

2. Transfer Error: Errors that occur when changing from one state to another into

this category. This error is shown in the third FSM in the figure. The FSM went q0

to q1 instead of q0 to q0.

3. Extra State Error: Errors that occur when FSM adds a new state are in this cate-

gory. This error is shown in the fourth FSM in the figure. FSM added an extra q2

state.

51

4. Missing State Error: If the state is deleted, the errors will occur in this category.

This error is shown on the fifth FSM in the figure.

Figure 5.10. Operation Error, Transfer Error, Extra State Error, Missing State Error

In the Figure 5.11, the goal is to keep the Fault Detection Ratio high while the

state increases. At the beginning of the graph, all methods are in the same Fault Detection

Ratio values. The UIO method initially retained its Fault Detection Ratio value until the

end of the graph. Furthermore, no change was observed in the Fault Detection Ratio

values of the UIO method in all of the graph.

A similar characteristic is observed with the UIO method. The W method has also

retained the value of Fault Detection Ratio, which the UIO method started, to the end of

the graph. That is, the Fault Detection Ratio values of the W method remained stable

throughout the graph. This shows that the W method has the same performance as the

UIO method.

Similarly, the Fw method initially has the same Fault Detection Ratio value as the

other methods. However, the F method did not progress with constant values in contrast

to UIO and W methods. In general, the Fault Detection Ratio values of the F method

fluctuated, albeit slightly. In the graph, the performance of Fw method is similar to UIO

and W methods.

52

Figure 5.11. State and Fault Detection Ratio Relation Representation

The F method has started to graph from the same point as other methods. However,

the F method progressed with zigzags across the graph. The Fault Detection Ratio values

of the F method fluctuated. This progression is in the direction of decreasing the Fault

Detection Ratio values, albeit slightly. Although the Fault Detection Ratio values of the F

method continued to fluctuate in the last quarter of the graph, they made linear progress.

Table 5.10. T-Test and Hedge’s g results

W UIO
F is lower than lower than
Fw is lower than lower than

As a result, in Table 5.10, the highest performance according to the T - Test and

Hedge’s g values belongs to the W method. The W method is followed by the UIO method

in terms of performance. However, it is necessary to underline that the values of all four

methods are very close to each other in terms of Fault Detection Ratio - State values. See

Section A.4.1 in Appendix for more information.

In the Figure 5.12, Fault Detection Ratio is expected to remain high while the

input increases. When the graph is analyzed, it is noteworthy that all three methods start

53

Figure 5.12. Input and Fault Detection Ratio Relation Representation

at similar values. Similarly, it is seen that all three methods are stable from their initial

values to the last input range. The UIO method retained its initial Fault Detection Ratio

value until the end of the graph. Furthermore, there was no change in the Fault Detection

Ratio values of the UIO method in the entire graph.

A similar characteristic is observed with the UIO method. The W method has also

retained the value Fault Detection Ratio as the UIO method, until the end of the graph.

That is, the Fault Detection Ratio values of the W method remained stable throughout the

graph. This shows that the W method has the same performance as the UIO method.

Similarly, the Fw method initially has the same Fault Detection Ratio value as the

other methods. Moreover, the F method has progressed with fixed values such as UIO

and W methods. The Fault Detection Ratio values of the F method across the graph are

stable. In the graph, the Fw method’s performance is exactly the same as the UIO and W

methods.

The F method, unlike other methods, started with a low Fault Detection Ratio

value. However, when approaching the first quarter of the graph, the F method rapidly

increased and reached the same Fault Detection Ratio value as the other methods. The

Fault Detection Ratio values of the F method have the same characteristics as the other

54

methods starting from the first quarter. Thus, Fw, W and UIO methods gave the same

Fault Detection Ratio -Input result. The F method gave the same Fault Detection Ratio

-Input result as the other methods except for the first quarter of the graph.

Table 5.11. T-Test and Hedge’s g results

W UIO
F is lower than lower than
Fw is same with same with

As a result, in Table 5.11, we can say that the highest performance belongs to Fw,

W and UIO methods. In terms of performance, the F method is slightly behind these three

methods. However, it is necessary to underline that the values of all four methods are very

close to each other in terms of Fault Detection Ratio - Input values. See Section A.4.2 in

Appendix for more information.

Figure 5.13. Output and Fault Detection Ratio Relation Representation

In the Figure 5.13, Fault Detection Ratio is expected to remain high while the

output increases. At the beginning of the graph, all methods except the F method are

in the same Fault Detection Ratio values. The UIO method maintained the initial Fault

55

Detection Ratio value to almost half of the graph. The Fault Detection Ratio values of the

UIO method then proceeded with sharp zigzags.

The W method also has similar characteristics with the UIO method. The W

method has also retained its initial Fault Detection Ratio values, such as the UIO method,

to almost half of the graph. The Fault Detection Ratio values of the W method then

proceeded with sharp zigzags. According to the Fault Detection Ratio -output graph, the

W method and the UIO method are almost identical.

Similarly, the Fw method initially has the same Fault Detection Ratio value as the

other methods. However, the Fault Detection Ratio value of the F method has changed

earlier than the UIO and W methods. In the graph, the F method has also progressed with

zigzags, like all other methods. In the graph, the performance of Fw method is similar

with UIO, W and F methods.

The F method did not start from the same point as the other methods. However,

the F method also progressed with zigzags across the graph, like other methods. This

fluctuation occurred from the beginning of the graph, unlike other methods. In the last

quarter of the graph, very similar ups and downs were observed in all methods. Hence, all

methods have similar performances compared to the Fault Detection Ratio -output graph.

Table 5.12. T-Test and Hedge’s g results

W UIO
F is same with same with
Fw is same with same with

As a result, in Table 5.12 the performances of the Fw and UIO methods are the

same. According to the Fault Detection Ratio - Output graph, we can say that the perfor-

mance of the four methods is exactly the same. See Section A.4.3 in Appendix for more

information.

5.3.5. Killed Mutant / Test Suite Size

The target in the Figure 5.14 is that the Killed Mutant / Test Suite Size remains

high while the states increase. When the graph is examined for this purpose, it is seen

that UIO method starts to graph at the lowest Killed Mutant / Test Suite Size value. In the

continuation of the graph, the Killed Mutant / Test Suite Size values of the UIO method

56

Figure 5.14. State and Killed Mutant / Test Suite Size Relation Representation

decreased regularly. This decline continued until the end of the graph. The decrease in

the Killed Mutant / Test Suite Size values of the UIO method is quite fast. Thus, the UIO

method has the lowest performance among the methods in terms of Killed Mutant / Test

Suite Size -State.

W method also showed similar progress in UIO method. However, at the begin-

ning of the graph, W method is found at slightly higher Killed Mutant / Test Suite Size

values than UIO method. The characteristic of the W method curve is similar to that of

the UIO method. In the continuation of the graph, the Killed Mutant / Test Suite Size val-

ues of the W method dropped regularly, such as the UIO method. However, the decrease

in the Killed Mutant / Test Suite Size values of the W method was slower than the UIO

method.

At the beginning of the graph, the Fw method is found at higher Killed Mutant /

Test Suite Size values than the UIO and W methods. In the rest of the graph, the Killed

Mutant / Test Suite Size values of the Fw method did not decrease, as opposed to UIO and

W methods. The Fw method has almost the same Killed Mutant / Test Suite Size values

in the entire graph. In this respect, Fw method performance is higher than UIO and W

methods, but it is lower than F method.

57

The F method started at the highest Killed Mutant / Test Suite Size values. The

F method proceeded in the graph with very slight fluctuations. On the other hand, the

Killed Mutant / Test Suite Size values of the F method increased in the continuation of

the graph. In other words, F method has the highest Killed Mutant / Test Suite Size values

in the graph. This is the desired result. The Killed Mutant / Test Suite Size values of the F

method are similar to those of the Fw method. However, the F method gave better results

than the Fw method. On the other hand, UIO method and W method have much lower

values than F method and Fw method. In this case, it is seen that the highest performance

belongs to F method.

Table 5.13. T-Test and Hedge’s g results

W UIO
F is higher than higher than
Fw is higher than higher than

As a result, in Table 5.13, the highest performance according to the T-Test and

Hedge’s g values belongs to the F method. The Fw method follows the F method in terms

of performance. Therefore, the performance of F and Fw methods in Killed Mutant / Test

Suite Size - State yielded much better results than W and UIO methods. See Section A.5.1

in Appendix for more information.

In the Figure 5.15, the target is that the Killed Mutant / Test Suite Size values

remain high while the input increases. When the graph is examined for this purpose, it

is seen that initially UIO and W methods are close to each other. Although there are

similarities between UIO and W method, the UIO method has the lowest Killed Mutant

/ Test Suite Size values. In the continuation of the graph, the Killed Mutant / Test Suite

Size values of UIO and W methods were not increased. In this respect, the UIO method

has the lowest performance compared to the graph.

The W method has similar values to the UIO method from the beginning to the end

of the graph. The W method, which proceeds at similar Killed Mutant / Test Suite Size

values with the UIO method throughout the graph, has higher values than the UIO method

with little difference. At the end of the graph, the W method has the same Killed Mutant

/ Test Suite Size value as the UIO method. In this respect, the W method’s performance

is very close to the UIO method but slightly higher than the UIO method.

At the beginning of the graph, the Fw method has a higher Killed Mutant / Test

Suite Size value than the UIO and W methods. In contrast to the UIO and W methods,

58

Figure 5.15. Input and Killed Mutant / Test Suite Size Relation Representation

the Killed Mutant / Test Suite Size values of the Fw method continued to increase. The

Killed Mutant / Test Suite Size values of the Fw method increased rapidly and regularly

throughout the graph. In this respect, Fw method performance is higher than UIO and W

methods, but it is lower than F method.

The F method started at the highest Killed Mutant / Test Suite Size level. Similar

to the Fw method, the F method’s Killed Mutant / Test Suite Size values continued to

increase. The Killed Mutant / Test Suite Size values of the Fw method increased rapidly

and regularly throughout the graph. This is the desired result. The Killed Mutant / Test

Suite Size values of the F method are similar to those of the Fw method. However, the F

method gave better results than the Fw method. On the other hand, UIO method and W

method have much lower values than F method and Fw method. In this case, it is seen that

the highest performance belongs to F method.

Table 5.14. T-Test and Hedge’s g results

W UIO
F is higher than higher than
Fw is higher than higher than

59

As a result, in Table 5.14, the performance of the four methods can be considered

the same by T-Test. See Section A.5.2 in Appendix for more information.

Figure 5.16. Output and Killed Mutant / Test Suite Size Relation Representation

In the Figure 5.16, the target is that the Killed Mutant / Test Suite Size remains at

high values while the output increases. When the graph is examined for this purpose, it is

seen that the UIO method starts to graph the lowest Killed Mutant / Test Suite Size. In the

continuation of the graph, the Killed Mutant / Test Suite Size values of the UIO method

increased rapidly first. It has stabilized from half of the graph. In other words, the values

of the UIO method are balanced in half of the graph. Until the end of the graph, the UIO

method retained the Killed Mutant / Test Suite Size values reached in the middle of the

graph.

The W method also proceeded in a similar manner to the UIO method. However,

at the beginning of the graph, W method is found at Killed Mutant / Test Suite Size values

slightly higher than UIO method. The characteristic of the W method curve is similar

to that of the UIO method. After the initial value, the lightweight W method, which

increased rapidly, proceeded at the same Killed Mutant / Test Suite Size value from the

middle of the graph. At the end of the graph, this Killed Mutant / Test Suite Size value

was maintained. The W method has been combined with the same Killed Mutant / Test

60

Suite Size values as the UIO method from almost half of the graph. The UIO method and

W method proceeded at the same Killed Mutant / Test Suite Size values until the end of

the graph.

In contrast to UIO and W methods, the Fw method has started to graph much

higher Killed Mutant / Test Suite Size. Similar to the UIO and W methods, the Fw

method’s Killed Mutant / Test Suite Size values increased. Similar to the UIO and W

methods, the Fw method also met the F method at close Killed Mutant / Test Suite Size

with half of the graph. In this respect, Fw method performance is higher than UIO and W

methods, but it is lower than F method.

The F method started at the highest Killed Mutant / Test Suite Size values. The

graph continued with slight fluctuations. However, in the entire graph, the initial Killed

Mutant / Test Suite Size value was maintained. That is, the T method values of the F

method proceeded approximately stable. This is the desired result. The Killed Mutant /

Test Suite Size values of the F method are similar to those of the Fw method. However,

the F method gave better results than the Fw method. On the other hand, UIO method and

W method have much lower values than F method and Fw method. In this case, it is seen

that the highest performance belongs to F method.

Table 5.15. T-Test and Hedge’s g results

W UIO
F is higher than higher than
Fw is higher than higher than

As a result, in Table 5.15, the highest performance according to the T-Test and

Hedge’s g values belongs to the F method. The Fw method follows the F method in

terms of performance. Therefore, the performance of F and Fw methods in Killed Mutant

/ Test Suite Size - Output yielded much better results than W and UIO methods. See

Section A.5.3 in Appendix for more information.

61

CHAPTER 6

THREATS TO VALIDITY

FSMs were randomly generated using certain criteria to prevent the results from

being biased. These criteria were created by changing the state, output and input numbers

of the FSM separately. Thus, it is examined how the algorithm produces the results ac-

cording to the change of the criteria. The investigated features are the average length of

test cases, length of test suites, fault detection ratio, reset amount and performance.

The number of randomly generated FSMs is about 640 for 15 graphs. Looking at

the literature, this number seems to be sufficient for research. Algorithms were running

four times to test the graphs. That is, the study has been investigated with about 2560

random FSMs in order to generalize the results.

While analyzing the subject, many similar academic papers have been investi-

gated. Methods of these academic papers were adopted in the study. The algorithm

created within the scope of the research is examined in light of these methods. In addi-

tion, the algorithm is written by a programmer who has known the subject, so the error

rate of the program has been tried to be reduced. After the program has been written,

the program has been run with manually created FSMs during the test phase. Thus, the

program was checked for consistency with the calculated results.

W and UIO algorithms are used for comparison. Therefore, the result of the cre-

ated algorithm is limited by these two algorithms compared. However, there are many

algorithms in this area. Since it is not possible to compare with all of the existing algo-

rithms, the most basic algorithms have been chosen for comparison. Most of the methods

come from the W UIO method. What’s more, there is little difference between W UIO

and other methods.

This study focuses on output testing. The state verification part is taken from W

method in Fw. Hence, verification part in W or UIO is little effect on test suite. For exam-

ple, in the state verification part of the UIO, the test cases are parallel to the state number.

However, Using fourier transform of boolean function instead of State verification part in

W, UIO, the transitions may be reduced. This need to be checked.

The recommended method is determining the paths that most affect the outcome.

62

However, it should not be forgotten that the importance of a path that has low affect the

outcome may be high.

In this study, it is recommended to reduce a test suite in accordance with the

specific target. However, there may be cases where this reduction in the test suite cannot

yield the desired result. In other words, the concept of ”the path that affects the function

most is important” may not be valid in all cases. On the other hand, the deficiencies of the

system can be eliminated by means of specific addons that can be added to the proposed

system. With the parts taken from other models, the proposed method can be improved.

Thus, better results can be achieved.

As a result, the proposed method uses the specific approach. Therefore, although

there may cases where the approach is not covered, it can possible to say that the devel-

oped method has achieved the desired success.

63

CHAPTER 7

CONCLUSIONS

In this study, two new test production methods F and Fw have been proposed. The

proposed test creation methods are based on the Fourier analysis of Boolean functions,

unlike other test generation methods. With the Fourier analysis of Boolean functions,

discrete structures were converted into polynomials. Thus, how much input combinations

affect output can be found.

The proposed methods differ in terms of the points tested. The F method only

tests outputs; The Fw method also tests the next state with the outputs. In this context,

the proposed methods are compared with UIO and W methods in terms of ”characteristic,

cost, fault detection ratio and performance”. The results were analyzed by T-Test and

Hedges’ g.

As a result, the highest of performance per test was determined as F method. The

F method for performance per test is followed by Fw, W and UIO methods, respectively.

According to the results, the Fw method has a higher performance than the F method in

terms of fault detection ratio. The fault detection ratio of the Fw method is very close to

the W and UIO methods.

As a result, with the proposed methods, the test suite length is shortened signifi-

cantly and high performance have been obtained.

64

REFERENCES

[1] KISS Generator 0.8. https://ddd.fit.cvut.cz/prj/Circ Gen/index.php?page=kiss,

Accessed: 2019-04-03.

[2] Mahsa Abbasian. On efficiency and effectiveness of model-based test case

generation techniques by applying the HIS method. 2016.

[3] Andris Ambainis. Polynomial degree vs. quantum query complexity. In

Foundations of Computer Science, 2003. Proceedings. 44th Annual IEEE

Symposium on, pages 230–239. IEEE, 2003.

[4] Fevzi Belli and Mutlu Beyazit. A formal framework for mutation testing. pages

121–130, 2010.

[5] Fevzi Belli, Mutlu Beyazıt, Andre Takeshi Endo, Aditya Mathur, and Adenilso

Simao. Fault domain-based testing in imperfect situations: a heuristic approach and

case studies. Software Quality Journal, 23(3):423–452, 2015.

[6] Fevzi Belli, Mutlu Beyazit, Tomohiko Takagi, and Zengo Furukawa. Model-based

mutation testing using pushdown automata. IEICE TRANSACTIONS on

Information and Systems, 95(9):2211–2218, 2012.

[7] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with

applications to numerical problems. Journal of computer and system sciences,

47(3):549–595, 1993.

[8] Aline Bonami. Ensembles λ (p) dans le dual de d. Ann. Inst. Fourier,

18(2):193–204, 1968.

[9] Bengt ve Katoen Joost-Pieter ve Leucker Martin ve Pretschner Alexander Broy,

Manfred ve Jonsson. Model-Based Testing of Reactive Systems. 2005.

[10] B.S.Ainapure. Software testing and quality assurance. 2009.

65

[11] Tsun S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE

Transactions on Software Engineering, SE-4(3):178–187, may 1978.

[12] Paulo Cesar ve Simao Adenilso Damasceno, Carlos Diego Nascimento ve Masiero.

Evaluating test characteristics and effectiveness of fsm-based testing methods on

rbac systems. Proceedings of the 30th Brazilian Symposium on Software

Engineering - SBES ’16, 2016.

[13] Ronald De Wolf. A brief introduction to fourier analysis on the boolean cube.

Theory of Computing, Graduate Surveys, 1(1-20):15, 2008.

[14] Khaled ve Maag Stephane ve Cavalli Ana R. ve Yevtushenko Nina Dorofeeva, Rita

ve El-Fakih. Fsm-based conformance testing methods: A survey annotated with

experimental evaluation. Information ve Software Technology, 2010.

[15] Margarita Dorofeeva and Irina Koufareva. Novel modification of the w-method.

Bulletin of the Novosibirsk Computing Center. Series: Computer Science,

(18):69–80, 2002.

[16] R Dorofeeva, K El-Fakih, and N Yevtushenko. An improved fsm-based

conformance testing method. In Proc. of the IFIP 25th International Conference on

Formal Methods for Networked and Distributed Systems, pages 204–218.

[17] Rita Dorofeeva, Khaled El-Fakih, and Nina Yevtushenko. An improved

conformance testing method. In International Conference on Formal Techniques

for Networked and Distributed Systems, pages 204–218. Springer, 2005.

[18] Adenilso Endo, Andre Takeshi ve Simao. Evaluating test suite characteristics, cost,

and effectiveness of fsm-based testing methods. Information and Software

Technology, 2013.

[19] A.T. Endo and A. Simao. Experimental comparison of test case generation methods

for finite state machines. Proceedings - IEEE 5th International Conference on

Software Testing, Verification and Validation, ICST 2012, pages 549–558, 2012.

[20] Nathan Jacob Fine. On the walsh functions. Transactions of the American

Mathematical Society, 65(3):372–414, 1949.

66

[21] Vanderson Hafemann Fragal, Adenilso Simao, Mohammad Reza Mousavi, and

Uraz Cengiz Turker. Extending HSI Test Generation Method for Software Product

Lines. The Computer Journal, 2018.

[22] Susumu Fujiwara, G v Bochmann, Ferhat Khendek, Mokhtar Amalou, and

Abderrazak Ghedamsi. Test selection based on finite state models. IEEE

Transactions on software engineering, 17(6):591–603, 1991.

[23] Angelo Gargantini. 4 Conformance Testing. Springer, 2005.

[24] Arthur Gill. Introduction to the theory of finite-state machines. McGraw-Hill, New

York, 1962.

[25] Solomon Golomb. On the classification of boolean functions. IRE transactions on

circuit theory, 6(5):176–186, 1959.

[26] Guney Gonenc. A method for the design of fault detection experiments. IEEE

transactions on Computers, 100(6):551–558, 1970.

[27] Antonio Grasselli and Fabrizio Luccio. A method for minimizing the number of

internal states in incompletely specified sequential networks. IEEE Transactions on

Electronic Computers, (3):350–359, 1965.

[28] FC Hennine. Fault detecting experiments for sequential circuits. In Switching

Circuit Theory and Logical Design, 1964 Proceedings of the Fifth Annual

Symposium on, pages 95–110. IEEE, 1964.

[29] Robert M Hierons. Testing from a nondeterministic finite state machine using

adaptive state counting. IEEE Transactions on Computers, 53(10):1330–1342,

2004.

[30] Robert M. Hierons, Paul Krause, Gerald Lüttgen, Anthony J. H. Simons, Sergiy

Vilkomir, Martin R. Woodward, Hussein Zedan, Kirill Bogdanov, Jonathan P.

Bowen, Rance Cleaveland, John Derrick, Jeremy Dick, Marian Gheorghe, Mark

Harman, and Kalpesh Kapoor. Using formal specifications to support testing. ACM

Computing Surveys, 41(2):1–76, feb 2009.

[31] Robert M Hierons and Hasan Ural. Optimizing the length of checking sequences.

IEEE Transactions on Computers, 55(5):618–629, 2006.

67

[32] Yue Jia and Mark Harman. An analysis and survey of the development of mutation

testing. IEEE transactions on software engineering, 37(5):649–678, 2011.

[33] Jeff Kahn, Gil Kalai, and Nathan Linial. The influence of variables on Boolean

functions. IEEE, 1988.

[34] MG Karpovsky. Finite orthogonal series in the design of digital devices

(monograph), 1976.

[35] Tali Kaufman, Simon Litsyn, and Ning Xie. Breaking the e-soundness bound of the

linearity test over gf (2). SIAM Journal on Computing, 39(5):1988–2003, 2010.

[36] Konrad Kiener. Uber Produkte von quadratisch integrierbaren Funktionen

endlicher Vielfalt. PhD thesis, Dissertation, Universität Innsbruck, 1969.

[37] R. Lai. A survey of communication protocol testing. Journal of Systems and

Software, 62(1):21–46, may 2002.

[38] Robert J Lechner. Harmonic analysis of switching functions. In Recent

developments in switching theory, pages 121–228. Elsevier, 1971.

[39] Robert Joseph Lechner. Affine equivalence of switching functions. PhD thesis,

Harvard University, 1963.

[40] Mihalis Lee, David ve Yannakakis. Principles ve methods of testing finite state

machines, 1996.

[41] Gang Luo, Alexandre Petrenko, and Gregor v Bochmann. Selecting test sequences

for partially-specified nondeterministic finite state machines. In Protocol Test

Systems, pages 95–110. Springer, 1995.

[42] Aditya P. Mathur. Foundations of software testing. 2005.

[43] DE Muller. Boolean algebras in electric circuit design. The American

Mathematical Monthly, 61(7):27–28, 1954.

[44] Sachio Naito and Masahiro Tsunoyama. Fault detection for sequential machines by

transitions tours. 1981.

[45] Akira Nakashima. The theory of relay circuits composition. Nippon Electrical

Communication Engineers, (3), 1936.

68

[46] Ichizo Ninomiya. A theory of the coordinate representation of switching functions.

1960.

[47] Noam Nisan and Avi Wigderson. On rank vs. communication complexity.

Combinatorica, 15(4):557–565, 1995.

[48] Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press,

2014.

[49] REAC Paley. A remarkable series of orthogonal functions. Proc. London Math.

Soc, 34:241–264, 1931.

[50] Jorge M Pena and Arlindo L Oliveira. A new algorithm for exact reduction of

incompletely specified finite state machines. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 18(11):1619–1632,

1999.

[51] Alexandre Petrenko. Nondeterministic state machine in protocol conformance

testing. Protocol Test Systems, pages 363–378, 1994.

[52] Alexandre Petrenko and Nina Yevtushenko. Testing from partial deterministic fsm

specifications. IEEE Transactions on Computers, 54(9):1154–1165, 2005.

[53] Alexandre Petrenko and Nina Yevtushenko. Adaptive testing of nondeterministic

systems with fsm. In High-Assurance Systems Engineering (HASE), 2014 IEEE

15th International Symposium on, pages 224–228. IEEE, 2014.

[54] Codrin Pruteanu and Cristian-gyözö Haba. GenFSM: A finite state machine

generation tool. Proc. 9th Int. Conf. Dev. Applicat. Syst, pages 165–168, 2008.

[55] Ali Rezaki and Hasan Ural. Construction of checking sequences based on

characterization sets. Computer Communications, 18(12):911–920, 1995.

[56] Klaus F Roth. On certain sets of integers. Journal of the London Mathematical

Society, 1(1):104–109, 1953.

[57] Krishan Sabnani and Anton Dahbura. A protocol test generation procedure.

Computer Networks and ISDN systems, 15(4):285–297, 1988.

[58] Sven Sandberg. 1 homing and synchronizing sequences. In Model-based testing of

reactive systems, pages 5–33. Springer, 2005.

69

[59] Claude E Shannon. A symbolic analysis of relay and switching circuits. Electrical

Engineering, 57(12):713–723, 1938.

[60] VI Shestakov. Some mathematical methods for construction and simplificaton of

two terminal electrical networks of class a. Dissertation, Lomonosov State Univ.,

Moscow, 1938.

[61] Deepinder P. Sidhu and T-K Leung. Formal methods for protocol testing: A

detailed study. IEEE transactions on software engineering, 15(4):413–426, 1989.

[62] Adenilso Simao and Alexandre Petrenko. Checking completeness of tests for finite

state machines. IEEE Transactions on Computers, 59(8):1023–1032, 2010.

[63] Adenilso Simão, Alexandre Petrenko, and Nina Yevtushenko. Generating reduced

tests for fsms with extra states. In Testing of Software and Communication Systems,

pages 129–145. Springer, 2009.

[64] Sam Spiro. Fourier analysis of boolean functions. 2014.

[65] H. Ural. Formal methods for test sequence generation, 1992.

[66] MP Vasilevskii. Failure diagnosis of automata. Cybernetics, 9(4):653–665, 1973.

[67] Naum Vilenkin. On a class of complete orthonormal systems. Izvestiya Rossiiskoi

Akademii Nauk. Seriya Matematicheskaya, 11(4):363–400, 1947.

[68] Son T Vuong. The uiov-method for protocol test sequence generation. In Proc. 2nd

IFIP Int. Workshop on Protocol Test Systems (IWPTS’89), pages 161–175, 1989.

[69] Joseph L Walsh. A closed set of normal orthogonal functions. American Journal of

Mathematics, 45(1):5–24, 1923.

[70] N Yevtushenko and A Petrenko. Test derivation method for an arbitrary

deterministic automaton, automatic control and computer sciences, 1990.

[71] Fan Zhang and To-yat Cheung. Optimal transfer trees and distinguishing trees for

testing observable nondeterministic finite-state machines. IEEE Transactions on

Software Engineering, 29(1):1–14, 2003.

70

APPENDIX A

STATISTICAL EVALUATION

The equality of variance is examined before starting the T-Test. For this, Levene’s

Test for Equality of Variances is used. Here, the null hypothesis refers to the equality

of variances. The alternative hypothesis is that the variances are not equal. If the null

hypothesis is accepted, the first line of the T-Test is checked. If the null hypothesis is

not accepted, the second line is looked at. In order to accept the null hypothesis, the

significance level should be greater than 0.05. Otherwise, the alternative hypothesis is

accepted.

After looking at Levene’s Test for Equality of Variances, it is understood which

line should be directed. Once the line is checked, the ”t-test for Equality of Means”

section of that line is examined.

In the T-Test, the null hypothesis is that the averages are equal. The alternative

hypothesis is that the averages are different. If the sig. (2-tailed) value is greater than

0.05, the null hypothesis is accepted. If the value of Sig. (2-tailed) is less than 0.05, the

Alternative hypothesis is accepted.

If the alternative hypothesis is accepted, the Hedges’ g value is activated. Hedges’

g value indicates how different averages are. Hedges’ g is about 0.2, which is too small to

be seen with the naked eye. Hedges’ g is around 0.5, which means that there is a moderate

difference. Hedges’ g value greater than 0.8 indicates the differences that can easily be

seen with the naked eye.

A.1. Reset Numbers

A.1.1. Reset and State

According to Table A.1, the average value of W method is 273,213. The average

value of the F method is 6,503. The average Fw method is 24,131. The average of UIO

71

Table A.1. General Statistics

Mean N Std.
Deviation

W 273,213 29 150,349
F 6,503 29 1,817
Fw 24,131 29 9,112
UIO 717,124 29 544,305

method is 717,124. According to these results, the highest average value belongs to UIO

method. The lowest average value belongs to the F method. Moreover, there is a huge

difference between the highest average and the lowest average. Thus, the UIO method

has the lowest performance. The F method has clearly the highest performance.

Table A.2. T-Test for W and F methods at Reset-State

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 94,258 0 9,552 56 0 266,710 27,921 210,777 322,643

Equal variances
not assumed 9,552 28 0 266,710 27,921 209,516 323,903

When examined closely, the T-Test results of the F method and the W method

showed that there was a significant difference between the two methods (Table A.2). On

the other hand, Hedge’s g value (2.508) also supports this difference. As a result of this

difference, the F method has a significantly higher performance than the W method.

Table A.3. T-Test for UIO and F methods at Reset-State

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 81,340 0 7,030 56 0 710,620 101,075 508,141 913,099

Equal variances
not assumed 7,030 28 0 710,620 101,075 503,576 917,664

When we look at the T-Test values of the UIO method with the F method, there

is also a significant difference between the two methods(Table A.3). Hedge’s g value

72

(1.846), on the other hand, supports this difference. As a result of this difference, the F

method’s performance is significantly higher than the UIO method.

Table A.4. T-Test for Fw and F methods at Reset-State

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 41,491 0 10,215 56 0 17,627 1,725 14,170 21,084

Equal variances
not assumed 10,215 30,225 0 17,627 1,725 14,104 21,150

When the T-Test values of the Fw method were examined by F method, a signif-

icant difference was found between the two methods (Table A.4). On the other hand,

Hedge’s g value (2.683) also supports this difference. As a result of this difference, F

method performance is significantly higher than the Fw method.

Table A.5. T-Test for W and Fw methods at Reset-State

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 85,195 0 -8,905 56 0 -249,082 27,970 -305,114 -193,051

Equal variances
not assumed -8,905 28,205 0 -249,082 27,970 -306,358 -191,806

A significant difference was also found between the T-Test values of the W and

Fw methods (Table A.5). On the other hand, Hedge’s g value (2.338) also supports this

difference. As a result of this difference, Fw method performance is significantly higher

than W method.

Table A.6. T-Test for UIO and Fw methods at Reset-State

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 79,189 0 -6,855 56 0 -692,993 101,089 -895,499 -490,487

Equal variances
not assumed -6,855 28,015 0 -692,993 101,089 -900,059 -485,926

73

A significant difference was found between the two methods in the T-Test val-

ues of the UIO and Fw methods (Table A.5). On the other hand, the Hedge’s g values

(1,800) supports this difference. As a result of this difference, Fw method performance is

significantly higher than UIO method.

As a result, the highest performance in the Reset-State graph according to the T-

Test and Hedge’s g values belongs to the F method. The F method follows the Fw method

in terms of performance rate. The performance of F and Fw methods yielded better results

than W and UIO methods.

A.1.2. Reset and Input

Table A.7. General Statistics

Mean N Std.
Deviation

W 297,6 7 345,239
F 2,571 7 0,390
Fw 5,457 7 1,129
UIO 358,142 7 392,537

According to Table A.7, the average value of W method is 297,6000. The average

value of the F method is 2,5714. The average of Fw method is 5,4571. The average UIO

method is 358,1429. According to these results, the highest average value belongs to UIO

method. The lowest average value belongs to the F method. Moreover, there is a huge

difference between the highest average and the lowest average. Thus, the UIO method

has the lowest performance. The F method has clearly the highest performance.

Table A.8. T-Test for W and F methods at Reset-Input

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 14,460 0,002 -2,260 12 0,043 -295,028 -295,028 -579,338 -10,719

Equal variances
not assumed -2,260 6 0,064 -295,028 -295,028 -614,321 24,264

74

When examined closely, it was seen that there was a difference between T-test

values of F and W methods. On the other hand, Hedge’s g value (2.208) also supports this

difference. As a result of this difference, we can say that the performance of the F method

is higher than the W method.

Table A.9. T-Test for UIO and F methods at Reset-Input

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 15,063 0,002 -2,396 12 0,033 -355,571 148,365 -678,831 -32,311

Equal variances
not assumed -2,396 6 0,053 -355,571 148,365 -718,607 7,464

When we look at the T-Test values of the UIO and F method, there is also a

significant difference between the two methods. On the other hand, the Hedge’s g value

(1.281) supports this difference. As a result of this difference, we can say that the F

method’s performance is significantly higher than the UIO method.

Table A.10. T-Test for Fw and F methods at Reset-Input

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 4,794 0,049 -6,387 12 0 -2,885 0,451 -3,870 -1,901

Equal variances
not assumed -6,387 7,412 0 -2,885 0,451 -3,942 -1,829

When the T-Test values of the Fw and F methods were examined, a significant

difference was found between the two methods. On the other hand, the hedge’s g value

(3.416) supports this difference. As a result of this difference, we can say that the F

method’s performance is significantly higher than the Fw method.

In the T-Test results of the W and Fw methods, it was seen that there was a differ-

ence between the reset-input values of both methods. On the other hand, the Hedge’s g

value (1.196) of the Fw and W methods also supports this difference. As a result of this

difference, we can say that the performance of Fw method is higher than W method.

The T-Test values of the UIO and Fw methods differed between the reset-input

values of both methods. On the other hand, the Hedge’s g value (1.270) also supports

75

Table A.11. T-Test for W and Fw methods at Reset-Input

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 14,401 0,002 -2,238 12 0,044 -292,142 130,488 -576,453 -7,831

Equal variances
not assumed -2,238 6 0,066 -292,142 130,488 -611,436 27,150

Table A.12. T-Test for UIO and Fw methods at Reset-Input

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 15,009 0,002 -2,377 12 0,034 -352,685 148,365 -675,946 -29,424

Equal variances
not assumed -2,377 6 0,054 -352,685 148,365 -715,721 10,350

this difference. As a result of this difference, we can say that Fw method performance is

higher than UIO method.

As a result, the highest performance in the Reset-Input graph according to the T-

Test and Hedge’s g values belongs to the F method. The Fw method follows the F method

in terms of performance. The performance of F and Fw methods in Reset-Input yielded

better results than W and UIO methods.

A.1.3. Reset and Output

Table A.13. General Statistics

Mean N Std.
Deviation

W 18,064 31 5,637
F 2,541 31 0,194
Fw 2,858 31 0,893
UIO 19,141 31 9,178

According to Table A.13, the average value of W method is 18,0645. The average

76

value of F method is 2,5419. The average of Fw method is 2,8581. The average of the

UIO method is 19,6516. According to these results, the highest average value belongs

to UIO method. The lowest average value belongs to the F method. Moreover, there is

a huge difference between the highest average and the lowest average. Thus, the UIO

method has the lowest performance. The F method has clearly the highest performance.

Table A.14. T-Test for W and F methods at Reset-Output

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 17,460 0 -15,322 60 0 -15,522 1,013 -17,548 -13,496

Equal variances
not assumed -15,322 30,071 0 -15,522 1,013 -17,591 -13,453

In close examination, T-Test results of the W and F methods showed a significant

difference between the reset-output values of both methods. On the other hand, Hedge’s g

value (3.892) also supports this difference. As a result of this difference, we can say that

the performance of the F method is much higher than the W method.

Table A.15. T-Test for UIO and F methods at Reset-Output

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 14,586 0 -10,067 60 0 -16,6 1,648 -19,898 -13,301

Equal variances
not assumed -10,067 30,026 0 -16,6 1,648 -19,967 -13,232

When looking at the T-Test values of the UIO and F methods, a significant differ-

ence was found between the reset-output values of both methods. The Hedge’s g value

(2.557) of the F and UIO methods also supports this difference. As a result of this dif-

ference, we can say that the performance of the F method is significantly higher than the

UIO method.

When the T-Test values of the F and Fw methods were considered, no difference

was found between the reset-output values of the methods. Therefore, there is no need to

refer to the Hedge’s g value. As a result, we can say that there is no significant difference

between F method performance and Fw method performance.

77

Table A.16. T-Test for Fw and F methods at Reset-Output

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 7,329 0,008 -1,925 30 0,058 -0,316 0,164 -0,644 0,012

Equal variances
not assumed -1,925 32,839 0,062 -0,316 0,164 -0,650 0,017

Table A.17. T-Test for W and Fw methods at Reset-Output

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 13,541 0 -14,834 60 0 -15,206 1,025 -17,256 -13,155

Equal variances
not assumed -14,834 31,505 0 -15,206 1,025 -17,295 -13,117

In the T-Test results of the W and Fw methods, a significant difference was deter-

mined between the reset-output values of both methods. On the other hand, the Hedge’s

g value (3,767) of the Fw and W methods also supports this difference. As a result of this

difference, we can say that Fw method performance is quite high compared to W method.

Table A.18. T-Test for UIO and Fw methods at Reset-Output

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 12,508 0 -9,831 60 0 -16,283 1,656 -19,596 -12,970

Equal variances
not assumed -9,831 30,568 0 -16,283 1,656 -19,663 -12,903

The T-Test values of the UIO and Fw methods differed between the reset-output

values of both methods. Similarly, Hedge’s g value (2.497) supports this difference. As

a result of this difference, we can say that Fw method performance is higher than UIO

method.

As a result, in the Reset-Output graph, the highest performance with respect to

T-Test and Hedge’s g values belongs to the Fw method. In other words, the performance

78

of F and Fw methods in Reset-Output yielded better results than W and UIO methods.

A.2. Average Test Case Length

A.2.1. Average Test Case Length and State

Table A.19. General Statistics

Mean N Std.
Deviation

W 3,939 29 0,432
F 3,922 29 0,315
Fw 4,922 29 0,315
UIO 4,817 29 0,730

According to Table A.19, the average value of W method is 3,9394. The average

value of the F method is 3,9229. The average of Fw method is 4,9229. The average UIO

method is 4,8172. According to these results, the highest average value belongs to Fw

method. The lowest average value belongs to the F method. However, there is no big

difference between the highest average and the lowest average. Thus, the Fw method has

the highest performance.

Table A.20. T-Test for W and F methods at Average Test Case Length-State

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 3,933 0,052 -0,166 56 0,868 -0,016 0,099 -0,215 0,182

Equal variances
not assumed -0,166 51,239 0,868 -0,016 0,099 -0,216 0,182

According to the T-Test results of W and F methods, no significant difference was

found between the Average Test Case Length-State values of both methods. Therefore,

there is no need to refer to the Hedge’s g value. As a result of this situation, we can say

that there is no significant difference between F and W methods performance.

79

Table A.21. T-Test for UIO and F methods at Average Test Case Length-State

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 17,526 0 -6,053 56 0 -0,894 0,147 -1,190 -0,598

Equal variances
not assumed -6,053 38,098 0 -0,894 0,147 -1,193 -0,595

The T-Test values of the F and UIO methods showed a slight difference between

the Average Test Case Length-State values of both methods. The Hedge’s g value (1.591)

of the F and UIO methods also supports this difference. As a result of this difference, we

can say that the performance of the UIO method is slightly higher than the F method.

Table A.22. T-Test for Fw and F methods at Average Test Case Length-State

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 0 1 -12,068 56 0 -1 0,082 -1,165 -0,834

Equal variances
not assumed -12,068 56 0 -1 0,082 -1,165 -0,834

When the T-Test values of the F and Fw methods were considered, a difference was

found between the Average Test Case Length-State values of the methods. The Hedge’s

g value (3.169) of the F and Fw methods also supports this difference. As a result of this

situation, we can say that Fw method performance is higher than F method.

Table A.23. T-Test for W and Fw methods at Average Test Case Length-State

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 3,933 0,052 9,896 56 0 0,983 0,099 0,784 1,182

Equal variances
not assumed 9,896 51,239 0 0,983 0,099 0,784 1,182

In the T-Test results of the W and Fw methods, a significant difference was found

between the Average Test Case Length-State values of both methods. On the other hand,

80

the Hedge’s g value (2.600) of the Fw and W methods supports this difference. As a result

of this difference, we can say that Fw method performance is quite high compared to W

method.

Table A.24. T-Test for UIO and Fw methods at Average Test Case Length-State

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 17,526 0 0,715 56 0,477 0,105 0,147 -0,190 0,401

Equal variances
not assumed 0,715 38,098 0,478 0,105 0,147 -0,193 0,404

No significant difference was found between the UIO and Fw methods in the T-

Test values. Therefore, there is no need to refer to the Hedge’s g value. As a result of this

situation, we can say that there is no significant difference between Fw and UIO methods

performance.

As a result, in the Average Test Case Length -State graph, the highest performance

according to the T-Test and Hedge’s g values belongs to the Fw method.

A.2.2. Average Test Case Length and Input

Table A.25. General Statistics

Mean N Std.
Deviation

W 2,864 7 0,221
F 3,6 7 0,350
Fw 4,6 7 0,350
UIO 2,920 7 0,342

According to Table A.25, the average value of the W method is 2,8643. The

average value of the F method is 3,6000. The average of the Fw method is 4,6000. The

average of the UIO method is 2,9206. According to these results, the highest average

value belongs to Fw method. The lowest average value belongs to the W method. Thus,

the W method has the lowest performance. The Fw method has the highest performance.

81

Table A.26. T-Test for F and W methods at Average Test Case Length-Input

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 0,914 0,357 4,694 12 0 0,735 0,156 0,394 1,077

Equal variances
not assumed 4,694 10,122 0 0,735 0,156 0,387 1,084

When examined closely, the T-Test results of W and F methods significantly dif-

fered between Average Test Case Length -Input values of both methods. On the other

hand, Hedge’s g value (2.514) supports this difference. As a result of this difference, we

can say that the F method’s performance is quite high compared to the W method.

Table A.27. T-Test for UIO and F methods at Average Test Case Length-Input

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 0,021 0,885 3,666 12 0 0,679 0,185 0,275 1,083

Equal variances
not assumed 3,666 11,993 0 0,679 0,185 0,275 1,083

When the T-Test values of the F and UIO methods were examined, a difference

was found between the Average Test Case Length -Input values of both methods. The

Hedge’s g value (1.965) of the F and UIO methods also supports this difference. As

a result of this difference, we can say that the F method’s performance is significantly

higher than the UIO method.

Table A.28. T-Test for Fw and F methods at Average Test Case Length-Input

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 0 1 -5,335 12 0 -1 0,187 -1,408 -0,591

Equal variances
not assumed -5,335 12 0 -1 0,187 -1,408 -0,591

When the T-Test values of the F and Fw methods were examined, a difference was

82

found between the Average Test Case Length -Input values of the methods. Hedge’s g

value of F and Fw methods (2.857) also supports this difference. As a result, we can say

that the F method has a higher performance than the Fw method.

Table A.29. T-Test for W and Fw methods at Average Test Case Length-Input

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 0,914 0,357 11,076 12 0 1,735 0,156 1,394 2,077

Equal variances
not assumed 11,076 10,122 0 1,735 0,156 1,387 2,084

In the T-Test results of the Fw and W methods, a significant difference was found

between the Average Test Case Length -Input values of both methods. On the other hand,

the Hedge’s g value (5.931) of the Fw and W methods also supports this difference. As a

result of this difference, we can say that Fw method performance is quite high compared

to W method.

Table A.30. T-Test for UIO and Fw methods at Average Test Case Length-Input

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 0,021 0,885 9,064 12 0 1,679 0,185 1,275 2,083

Equal variances
not assumed 9,064 11,993 0 1,679 0,185 1,275 2,083

The T-Test values of the Fw and UIO methods also differed between the Average

Test Case Length -Input values of both methods. Similarly, Hedge’s g value (4.855)

also supports this difference. As a result of this difference, we can say that Fw method

performance is higher than UIO method.

As a result, in the Average Test Case Length -Input chart, the highest performance

F method according to T-Test and Hedge’s g values belongs to Fw method. In other words,

the performance of F and Fw methods in Average Test Case Length -Input yielded better

results than W and UIO methods.

83

A.2.3. Average Test Case Length and Output

Table A.31. General Statistics

Mean N Std.
Deviation

W 2,938 31 0,058
F 4,027 31 0,317
Fw 5,027 31 0,317
UIO 2,965 31 0,139

According to Table A.31, the average value of W method is 2,9387. The average

value of the F method is 4.0280. The average Fw method is 5.0280. The average of the

UIO method is 2,9652. According to these results, the highest average value belongs to

Fw method. The lowest average value belongs to the W method. On the other hand, there

is no big difference between the highest average and the lowest average. Thus, the W

method has the lowest performance. The Fw method has the highest performance.

Table A.32. T-Test for W and F methods at Average Test Case Length-Output

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 36,195 0 18,794 60 0 1,089 0,057 0,973 1,205

Equal variances
not assumed 18,794 32,054 0 1,089 0,057 0,971 1,207

In close examination, the T-Test results of W and F methods differed between

Average Test Case Length - Output values of both methods. On the other hand, Hedge’s g

value (4.783) also supports this difference. As a result of this difference, we can say that

the performance of the F method is much higher than the W method.

Considering the T-Test values of the F and UIO methods, a significant difference

was found between the two methods. Hedge’s g value (4.343) also supports this dif-

ference. As a result of this difference, we can say that the F method’s performance is

significantly higher than the UIO method.

When the T-test values of the F and Fw methods were considered, a difference

was found between the Average Test Case Length - Output values of both methods. The

84

Table A.33. T-Test for UIO and F methods at Average Test Case Length-Output

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 19,697 0 17,064 60 0 1,062 0,062 0,938 1,187

Equal variances
not assumed 17,064 41,243 0 1,062 0,062 0,937 1,188

Table A.34. T-Test for Fw and F methods at Average Test Case Length-Output

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 0 1 -12,408 60 0 -1 0,080 -1,161 -0,838

Equal variances
not assumed -12,408 60 0 -1 0,080 -1,161 -0,838

Hedge’s g value (3.154) also supports this difference. As a result of this difference, we

can say that the Fw method’s performance is slightly higher than the F method.

Table A.35. T-Test for W and Fw methods at Average Test Case Length-Output

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 36,195 0 36,048 60 0 2,089 0,057 1,973 2,205

Equal variances
not assumed 36,048 32,054 0 2,089 0,057 1,971 2,207

In the T-Test results of the Fw and W methods, there was a significant difference

between the Average Test Case Length - Output values of both methods. On the other

hand, the Hedge’s g value (9.171) of the Fw and W methods supports this difference. As a

result of this difference, we can say that the performance of the Fw method is much higher

than the W method.

A significant difference was found between the Average Test Case Length - Output

values of both methods in T - Test values of Fw and UIO method. On the other hand,

the Hedge’s g value (8.428) of the UIO method with the Fw method also supports this

85

Table A.36. T-Test for UIO and Fw methods at Average Test Case Length-Output

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 19,697 0 33,119 60 0 2,062 0,062 1,938 2,187

Equal variances
not assumed 33,119 41,243 0 2,062 0,062 1,937 2,188

difference. As a result of this difference, we can say that Fw method performance is quite

high compared to UIO method.

As a result, in the Average Test Case Length - Output graph, the highest perfor-

mance according to T - Test and Hedge’s g values belongs to Fw method. The F method

follows the Fw method in terms of performance. Therefore, the performance of Fw and

F methods in Average Test Case Length - Output yielded better results than W and UIO

methods.

A.3. Test Suite Length

A.3.1. Test Suite Length and State

Table A.37. General Statistics

Mean N Std.
Deviation

W 1136,744 29 693,191
F 24,931 29 6,246
Fw 116,179 29 42,097
UIO 3795,441 29 3135,607

According to Table A.37, the average value of W method is 1136,7448. The

average value of the F method is 24,9310. The average of Fw method is 116,1793. The

average of the UIO method is 1268,3241. According to these results, the highest average

value belongs to UIO method. The lowest average value belongs to the F method. On

86

the other hand, there is a huge difference between the highest average and the lowest

average. Thus, the UIO method has the lowest performance. The F method has the

highest performance.

Table A.38. T-Test for W and F methods at Test Suite Length-State

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 93,934 0 -8,636 56 0 -1111,813 128,727 -1369,686 -853,941

Equal variances
not assumed -8,636 28,004 0 -1111,813 128,727 -1375,498 -848,129

When examined closely, in the T-Test results of the W and F methods, a significant

difference is observed between the Test Suite length-States values of both methods. The

Hedge’s g value (2.2681), on the other hand, supports this difference. As a result of this

difference, we can say that the performance of the F method is much higher than the W

method.

Table A.39. T-Test for UIO and F methods at Test Suite Length-State

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 82,174 0 -6,475 56 0 -3770,510 582,268 -4936,934 -2604,085

Equal variances
not assumed -6,475 28 0 -3770,510 582,268 -4963,233 -2577,787

Considering the T-Test values of the F and UIO methods, a significant difference

was found between the two methods. On the other hand, the Hedge’s g value (1,700)

supports this difference. As a result of this difference, we can say that the F method’s

performance is significantly higher than the UIO method.

When the T-Test values of the F and Fw methods were examined, a difference was

found between the Test Suite length - States values of both methods. The Hedge’s g value

(3.032) also supports this difference. As a result of this difference, we can say that the F

method’s performance is higher than the Fw method.

In the T-Test results of the Fw and W methods, it was seen that there was a differ-

ence between the Test Suite length-States values of both methods. On the other hand, the

87

Table A.40. T-Test for Fw and F methods at Test Suite Length-State

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 50,646 0 -11,546 56 0 -91,248 7,902 -107,079 -75,416

Equal variances
not assumed -11,546 29,232 0 -91,248 7,902 -107,405 -75,090

Table A.41. T-Test for W and Fw methods at Test Suite Length-State

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 84,323 0 -7,913 56 0 -1020,565 128,959 -1278,902 -762,228

Equal variances
not assumed -7,913 28,206 0 -1020,565 128,959 -1284,640 -756,490

Hedge’s g value (2.078) of the Fw and W methods also supports this difference. As a re-

sult of this difference, we can say that the Fw method performance is quite high compared

to W method.

Table A.42. T-Test for UIO and Fw methods at Test Suite Length-State

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 80,317 0 -6,318 56 0 -3679,262 582,320 -4845,789 -2512,734

Equal variances
not assumed -6,318 28,010 0 -3679,262 582,320 -4872,071 -2486,452

The T-Test values of the Fw and UIO methods also differed between the Test Suite

length-States values of both methods. On the other hand, the Hedge’s g value (1.659)

of the UIO method with the Fw method also supports this difference. As a result of this

difference, we can say that the Fw method performance is higher than UIO method.

As a result, the highest performance according to T-Test and Hedge’s g values

belongs to F method. The Fw method follows the F method in terms of performance rate.

Therefore, the performance of F and Fw methods in Test Suite length - States yielded

88

better results than W and UIO methods.

A.3.2. Test Suite Length and Input

Table A.43. General Statistics

Mean N Std.
Deviation

W 820,914 7 947,131
F 9,285 7 1,692
Fw 25,114 7 5,494
UIO 989,314 7 1075,243

According to Table A.25, the average value of W method is 820,9143. The average

value of F method is 9,2857. The average of Fw method is 25,1143. The average of UIO

method is 989,3143. According to these results, the highest average value belongs to

UIO method. The lowest average value belongs to the F method. Also, there is a huge

difference between the highest average and the lowest average. Thus, the UIO method

has the lowest performance. The F method has the highest performance.

Table A.44. T-Test for W and F methods at Test Suite Length-Input

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 14,480 0,002 -2,267 12 0,042 -811,628 357,982 -1591,605 -31,651

Equal variances
not assumed -2,267 6 0,063 -811,628 357,982 -1687,578 64,321

In close examination of the T-Test results of W and F method, significant differ-

ence is observed between Test Suite Length - Input values of both methods. The Hedge’s

g value (1.211), on the other hand, supports this difference. As a result of this difference,

we can say that the performance of the F method is higher than the W method.

Considering the T-Test values of the F and UIO method, a significant difference

was found between the two methods. On the other hand, Hedge’s g value (1.288) also

supports this difference. As a result of this difference, we can say that the performance of

the F method is significantly higher than the UIO method.

89

Table A.45. T-Test for UIO and F methods at Test Suite Length-Input

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 15,114 0,002 -2,411 12 0,032 -980,028 406,404 -1865,507 -94,549

Equal variances
not assumed -2,411 6 0,052 -980,028 406,404 -1974,462 14,405

Table A.46. T-Test for Fw and F methods at Test Suite Length-Input

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 7,267 0,019 -7,284 12 0 -15,828 2,172 -20,562 -11,094

Equal variances
not assumed -7,284 7,128 0 -15,828 2,172 -20,947 -10,709

When the T-Test values of the F and Fw methods were considered, a difference

was found between the Test Suite Length - Input values of both methods. In addition,

Hedge’s g value (3,894) also supports this difference. As a result of this difference, we

can say that the performance of F method is higher than Fw method.

Table A.47. T-Test for W and Fw methods at Test Suite Length-Input

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 14,366 0,002 -2,222 12 0,046 -795,8 357,987 -1575,788 -15,811

Equal variances
not assumed -2,222 6 0,067 -795,8 357,987 -1671,750 80,150

In the T-Test results of the Fw and W method, there was a difference between the

Test Suite Length - Input values of both methods. On the other hand, the Hedge’s g value

(1.188) of the Fw and W methods supports this difference. As a result of this difference,

we can say that the performance of Fw method is higher than W method.

The T-Test values of the Fw and UIO methods were also different between the

Test Suite Length-Input values of both methods. On the other hand, the Hedge’s g value

90

Table A.48. T-Test for UIO and Fw methods at Test Suite Length-Input

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 15,011 0,002 -2,372 12 0,035 -964,2 406,409 -1849,689 -78,710

Equal variances
not assumed -2,372 6 0,055 -964,2 406,409 -1958,634 30,234

(1.268) of the UIO method with the Fw method supports this difference. As a result of

this difference, we can say that the Fw method’s performance is quite high compared to

the UIO method.

As a result, in the Test Suite Length - Input graph, the highest performance ac-

cording to T - Test and Hedge’s g values belongs to the F method. The F method follows

the Fw method in terms of performance rate. Therefore, the performance of F and Fw

methods in Test Suite Length - Input yielded better results than W and UIO methods.

A.3.3. Test Suite Length and Output

Table A.49. General Statistics

Mean N Std.
Deviation

W 53,212 31 17,098
F 10 31 0,572
Fw 14,148 31 4,326
UIO 57,903 31 33,589

According to Table A.31, the average value of W method is 53,2129. The average

value of the F method is 10,0000. The average of the Fw method is 14,1484. The average

of UIO method is 57,9032. According to these results, the highest average value belongs

to UIO method. The lowest average value belongs to the F method. There is also a notable

difference between the highest average and the lowest average. Thus, the UIO method has

the lowest performance. The F method has the highest performance.

A close examination showed that there was a significant difference between the

Test Suite Length - Output values of both methods in the T - Test results of W and F

91

Table A.50. T-Test for W and F methods at Test Suite Length-Output

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 17,570 0 -14,063 60 0 -43,212 3,072 -49,359 -37,066

Equal variances
not assumed -14,063 30,067 0 -43,212 3,072 -49,487 -36,938

method. On the other hand, Hedge’s g value (3.572) also supports this difference. As a

result of this difference, we can say that the performance of the F method is much higher

than the W method.

Table A.51. T-Test for UIO and F methods at Test Suite Length-Output

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 13,031 0 -7,939 60 0 -47,903 6,033 -59,972 -35,833

Equal variances
not assumed -7,939 30,017 0 -47,903 6,033 -60,225 -35,580

Considering the T-Test values of the F and UIO method, a significant difference

was found between the two methods. On the other hand, Hedge’s g value (2.016) also

supports this difference. As a result of this difference, we can say that the performance of

the F method is significantly higher than the UIO method.

Table A.52. T-Test for Fw and F methods at Test Suite Length-Output

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 12,438 0 -5,292 60 0 -4,148 0,783 -5,716 -2,580

Equal variances
not assumed -5,292 31,051 0 -4,148 0,783 -5,746 -2,549

When the T-test values of the F and Fw methods were considered, a difference was

found between the Test Suite Length - Output values of both methods. In addition, the

92

Hedge’s g value (1.344) also supports this difference. As a result of this difference, we

can say that the performance of F method is higher than Fw method.

Table A.53. T-Test for W and Fw methods at Test Suite Length-Output

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 10,140 0,002 -12,332 60 0 -39,064 3,167 -45,400 -32,728

Equal variances
not assumed -12,332 33,825 0 -39,064 3,167 -45,503 -32,625

In the T-Test results of the Fw and W method, there was a difference between the

Test Suite Length - Output values of both methods. On the other hand, the Hedge’s g value

(3.132) of the Fw and W methods supports this difference. As a result of this difference,

we can say that the performance of the Fw method is much higher than the W method.

Table A.54. T-Test for UIO and Fw methods at Test Suite Length-Output

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 9,932 0,002 -7,193 60 0 -43,754 6,082 -55,922 -31,587

Equal variances
not assumed -7,193 30,995 0 -43,754 6,082 -56,160 -31,349

The T-Test values of the Fw and UIO methods also differed between the Test Suite

Length - Output values of both methods. In addition, the Hedge’s g value (1.827) of the

UIO method with the Fw method supports this difference. As a result of this difference,

we can say that the Fw method’s performance is higher than the UIO method.

As a result, in the Test Suite Length - Output graph, the highest performance

according to the T-Test and Hedge’s g values belongs to the F method. The Fw method

follows the F method in terms of performance. Therefore, the performance of F and Fw

methods in Test Suite Length - Output yielded better results than W and UIO methods.

93

A.4. Fault Detection Ratio

A.4.1. Fault Detection Ratio and State

Table A.55. General Statistics

Mean N Std.
Deviation

W 1 29 0
F 0,816 29 0,100
Fw 0,979 29 0,017
UIO 0,999 29 0,001

According to Table A.55, the average value of W method is 1,0000. The average

value of the F method is 0,8161. The average of Fw method is 0.9795. The average of

the UIO method is 0.9488. According to these results, the highest average value belongs

to W method. The lowest average value belongs to the F method. On the other hand,

the difference between the highest average and the lowest average is quite low. However,

according to these results, the highest performance belongs to W method.

Table A.56. T-Test for W and F methods at Fault Detection Ratio-State

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 74,156 0 -9,841 56 0 -0,183 0,018 -0,221 -0,146

Equal variances
not assumed -9,841 28 0 -0,183 0,018 -0,222 -0,145

When examined closely, the difference between the T-test values of F and UIO

methods is remarkable. On the other hand, since the std. deviation of the W method

is zero (0), the Hedge’s g value cannot be calculated. However, according to the T-Test

values, we can say that the performance of the W method, with little difference, is higher

than the F method.

When the T-test values of F and UIO methods were examined, there was a dif-

ference between the two methods. On the other hand, Hedge’s g value (2.587) of F and

94

Table A.57. T-Test for UIO and F methods at Fault Detection Ratio-State

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 73,128 0 -9,825 56 0 -0,183 0,018 -0,221 -0,146

Equal variances
not assumed -9,825 28,013 0 -0,183 0,018 -0,221 -0,145

UIO methods supports this difference. As a result of this difference, we can say that the

performance of the F method is lower than the UIO method.

Table A.58. T-Test for Fw and F methods at Fault Detection Ratio-State

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 49,808 0 -8,616 56 0 -0,163 0,018 -0,201 -0,125

Equal variances
not assumed -8,616 29,704 0 -0,163 0,018 -0,202 -0,124

When the T-Test values of the F and Fw methods were examined, a difference was

found between the Fault Detection Ratio - State values of both methods. In addition, the

Hedge’s g value (2,272) also supports this difference. As a result of this difference, we

can say that the Fw method performance is higher than F method.

Table A.59. T-Test for W and Fw methods at Fault Detection Ratio-State

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 50,621 0 -6,272 56 0 -0,020 0,003 -0,026 -0,013

Equal variances
not assumed -6,272 28 0 -0,020 0,003 -0,027 -0,013

In the T-Test results of the Fw and W methods, it was seen that there was a differ-

ence between the Fault Detection Ratio - State values of both methods. On the other hand,

since the std. deviation of the W method is zero (0), the Hedge’s g value cannot be calcu-

lated. However, according to T-Test values, we can say that the W method performance

95

is higher than the Fw method with little difference.

Table A.60. T-Test for UIO and Fw methods at Fault Detection Ratio-State

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 45,781 0 -6,160 56 0 -0,020 0,003 -0,026 -0,013

Equal variances
not assumed -6,160 28,434 0 -0,020 0,003 -0,026 -0,013

The T-Test values of the Fw and UIO methods also differed between the Fault

Detection Ratio - State values of both methods. In addition, the Hedge’s g value (1.660)

of the UIO method with Fw method supports this difference. As a result of this difference,

we can say that the performance of the UIO method is slightly higher than the F method.

As a result, in the Fault Detection Ratio - State graph, the highest performance

according to the T - Test and Hedge’s g values belongs to the W method. The W method

is followed by the UIO method in terms of performance. However, it is necessary to

underline that the values of all four methods are very close to each other in terms of Fault

Detection Ratio - State values.

A.4.2. Fault Detection Ratio and Input

Table A.61. General Statistics

Mean N Std.
Deviation

W 1 7 0
F 0,992 7 0,018
Fw 1 7 0
UIO 1 7 0

According to Table A.61, the average value of the W method is 1,0000. The

average value of the F method is 0.9929. The average Fw method is 1,0000. The average

of the UIO method is 1,0000. According to these results, the average of each of the four

methods is very close to each other. Even, except for the F method, the Fault Detection

Ratio - Input averages of the other three methods are exactly the same.

96

Table A.62. T-Test for W and F methods at Fault Detection Ratio-Input

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 5,759 0,033 -1 12 0,337 -0,007 0,007 -0,022 0,008

Equal variances
not assumed -1 6 0,355 -0,007 0,007 -0,024 0,010

A close examination reveals a slight difference between the T-Test results of W

and F methods. On the other hand, since the std. deviation of the W method is zero (0),

the Hedge’s g value cannot be calculated. However, according to the T-Test values, the

performance of the W method, with little difference, is higher than the F method.

When the T-test values of the F and UIO methods were considered, a slight dif-

ference was found between the two methods. On the other hand, since the std. deviation

of the UIO method is zero (0), the Hedge’s g value cannot be calculated. However, ac-

cording to the T-Test values, the performance of the UIO method, with little difference, is

higher than the F method.

When the T-Test values of the F and Fw methods were considered, a slight differ-

ence was found between the Fault Detection Ratio - Input values of both methods. On the

other hand, since the std. deviation of the Fw method is zero (0), the Hedge’s g value can-

not be calculated. However, according to the T-Test values, the Fw method’s performance

is slightly higher than the F method, with little difference.

Since the values of both the Fw and W methods are exactly the same and std.

deviation is zero (0), the T-Test values are zero (0). For the same reason Hedge’s g values

cannot be calculated. This means that the Fw method and the W method’s Fault Detection

Ratio-Input values are exactly the same.

Since the values of both the Fw and UIO method are exactly the same and the std.

deviation is zero (0), the T-Test values are zero (0). For the same reason Hedge’s g values

cannot be calculated. This means that the Fw method and the W method’s Fault Detection

Ratio-Input values are exactly the same.

As a result, according to the Fault Detection Ratio - Input graph, we can say that

the highest performance belongs to Fw, W and UIO methods. In terms of performance,

the F method is slightly behind these three methods. However, it is necessary to underline

that the values of all four methods are very close to each other in terms of Fault Detection

97

Ratio - Input values.

A.4.3. Fault Detection Ratio and Output

Table A.63. General Statistics

Mean N Std.
Deviation

W 0,988 31 0,030
F 0,975 31 0,031
Fw 0,972 31 0,043
UIO 0,988 31 0,030

According to Table A.63, the average value of W method is 0.9883. The average

value of the F method is 0.9750. The average of Fw method is 0.9726. The average of

UIO method is 0.9883. According to these results, the highest average value belongs to W

and UIO methods. The lowest average value belongs to the Fw method. However, there

is no significant difference between the highest average and the lowest average.

Table A.64. T-Test for Fw, F and UIO, F methods at Fault Detection Ratio-Output

W-F
UIO-F

Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 2,5109 0,118 -1,687 60 0,096 -0,013 0,007 -0,029 0,002

Equal variances
not assumed -1,687 59,983 0,096 -0,013 0,007 -0,029 0,002

When examined closely, no significant difference was found in the T-Test results

of W and F method in terms of Fault Detection Ratio - Output values. Therefore, there is

no need to refer to the Hedge’s g value. As a result, we can say that the performances of

the F and W methods are the same.

In the T-Test results of the F and UIO method, there was no significant difference

between the Fault Detection Ratio-Output values of both methods. Therefore, there is no

need to refer to the Hedge’s g value. As a result, we can say that the performance of the F

method and the performance of the UIO method are the same.

98

Table A.65. T-Test for Fw and F methods at Fault Detection Ratio-Output

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 2,527 0,117 0,250 60 0,802 0,002 0,009 -0,016 0,021

Equal variances
not assumed 0,250 54,353 0,802 0,002 0,009 -0,016 0,021

The same is also available in the T-Test results of the Fw and F methods. There was

no significant difference between Fault Detection Ratio - Output values of both methods.

Therefore, there is no need to refer to the Hedge’s g value. As a result, we can say that

the performances of the Fw and F methods are the same.

Table A.66. T-Test for W, Fw and UIO, Fw methods at Fault Detection Ratio-Output

W-Fw

UIO-Fw

Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 6,800 0,011 -1,637 60 0,106 -0,015 0,009 -0,034 0,003

Equal variances
not assumed -1,637 53,877 0,106 -0,015 0,009 -0,034 0,003

In the T-Test results of the Fw and W methods, there was no significant difference

between the Fault Detection Ratio - Output values of both methods. Therefore, there is

no need to refer to the Hedge’s g value. As a result, the performances of the Fw and W

methods are the same.

The same is also present in the T-Test results of the Fw and UIO methods. We can

say that there was no significant difference between Fault Detection Ratio - Output values

of both methods. Therefore, there is no need to refer to the Hedge’s g value.

As a result, the performances of the Fw and UIO methods are the same. As a result,

according to the Fault Detection Ratio - Output graph, we can say that the performance

of the four methods is exactly the same.

99

A.5. Killed Mutant / Test Suite Size

A.5.1. Killed Mutant / Test Suite Size and State

Table A.67. General Statistics

Mean N Std.
Deviation

W 0,076 29 0,029
F 2,152 29 0,412
Fw 0,588 29 0,097
UIO 0,034 29 0,028

According to Table A.67, the average value of W method is 0,0770. The average

value of the F method is 2,1523. The Fw method has an average of 0.5883. The average of

the UIO method is 0.0346. According to these results, the highest average value belongs

to the F method. The lowest average value belongs to the UIO method. Thus, the UIO

method has the lowest performance. The F method has the highest performance.

Table A.68. T-Test for W and F methods at Killed Mutant / Test Suite Size-State

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 61,445 0 27,012 56 0 2,075 0,076 1,921 2,229

Equal variances
not assumed 27,012 28,283 0 2,075 0,076 1,917 2,232

When the T-test results of W and F methods are examined closely, significant

difference is observed between Killed Mutant / Test Suite Size - State values of both

methods. On the other hand, Hedge’s g value (7.104) supports this difference. As a result

of this difference, we can say that the performance of the F method is much higher than

the W method.

Considering the T-Test values of the F and UIO methods, a significant difference

was found between the Killed Mutant / Test Suite Size - State values of both methods.

100

Table A.69. T-Test for UIO and F methods at Killed Mutant / Test Suite Size-State

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 61,891 0 27,566 56 0 2,117 0,076 1,963 2,271

Equal variances
not assumed 27,566 28,276 0 2,117 0,076 1,960 2,274

Hedge’s g value (7.253) also supports this difference. As a result of this difference, we

can say that the performance of the F method is significantly higher than the UIO method.

Table A.70. T-Test for Fw and F methods at Killed Mutant / Test Suite Size-State

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 38,464 0 19,864 56 0 1,563 0,078 1,406 1,721

Equal variances
not assumed 19,864 31,094 0 1,563 0,078 1,403 1,724

When the T-Test values of the F and Fw methods were examined, a difference was

found between the Killed Mutant / Test Suite Size - State values of both methods. The

Hedge’s g value (5.225) also supports this difference. As a result of this difference, we

can say that the performance of F method is higher than Fw method.

Table A.71. T-Test for W and Fw methods at Killed Mutant / Test Suite Size-State

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 42,954 0 27,129 56 0 0,511 0,018 0,473 0,549

Equal variances
not assumed 27,129 33,070 0 0,511 0,018 0,473 0,549

In the T-Test results of the Fw and W methods, a great difference is observed

between the Killed Mutant / Test Suite Size - State values of both methods. On the other

hand, the Hedge’s g value (7.137) of the Fw and W methods supports this big difference.

As a result of this difference, we can say that the performance of the Fw method is much

101

higher than the W method.

Table A.72. T-Test for UIO and Fw methods at Killed Mutant / Test Suite Size-State

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 44,180 0 29,410 56 0 0,553 0,018 0,516 0,591

Equal variances
not assumed 29,410 32,947 0 0,553 0,018 0,515 0,592

The T-Test values of the Fw and UIO methods significantly differed between the

Killed Mutant / Test Suite Size - State values of both methods. In addition, the Hedge’s g

value (7.760) of the UIO method with the Fw method also supports this huge difference.

As a result of this difference, we can say that the Fw method’s performance is quite high

compared to the UIO method.

As a result, in the Killed Mutant / Test Suite Size - State graph, the highest per-

formance according to the T-Test and Hedge’s g values belongs to the F method. The Fw

method follows the F method in terms of performance. Therefore, the performance of F

and Fw methods in Killed Mutant / Test Suite Size - State yielded much better results than

W and UIO methods.

A.5.2. Killed Mutant / Test Suite Size - Input

Table A.73. General Statistics

Mean N Std.
Deviation

W 0,167 7 0,0190
F 17,812 7 23,882
Fw 6,900 7 10,229
UIO 0,132 7 0,0248

According to Table A.73, the average value of the W method is 0,1672. The

average value of the F method is 17,8128. The average of Fw method is 6,9003. The

average of the UIO method is 0,1330. According to these results, the highest average

value belongs to the F method. The lowest average value belongs to the UIO method.

102

Therefore, the UIO method has the lowest performance. The F method has the highest

performance.

Table A.74. T-Test for W and F methods at Killed Mutant / Test Suite Size-Input

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 14,265 0,002 1,954 12 0,074 17,645 9,026 -2,022 37,313

Equal variances
not assumed 1,954 6 0,098 17,645 9,026 -4,442 39,733

When the T-test results of W and F method were examined closely, there was no

significant difference between Killed Mutant / Test Suite Size-Input values. Therefore,

there is no need to refer to the Hedge’s g value. As a result, the performance of the

method F and W can be considered the same.

Table A.75. T-Test for UIO and F methods at Killed Mutant / Test Suite Size-Input

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 14,260 0,002 1,958 12 0,073 17,679 9,026 -1,988 37,347

Equal variances
not assumed 1,958 6 0,097 17,679 9,026 -4,408 39,767

In the T-Test results of the F and UIO method, there was no significant difference

between the Killed Mutant / Test Suite Size - Input values of both methods. Therefore,

there is no need to refer to the Hedge’s g value. As a result of this, the performance of the

F and UIO method can be considered the same.

The same is also available in the T-Test results of the Fw and F method. There was

no significant difference between Killed Mutant / Test Suite Size - Input values of both

methods. Therefore, there is no need to refer to the Hedge’s g value. As a result, the Fw

and F method’s performance is the same.

In the T-Test results of the Fw and W method, there was no significant difference

between the Killed Mutant / Test Suite Size - Input values of both methods. Therefore,

there is no need to refer to the Hedge’s g value. As a result, the performance of the Fw

and W method can be considered the same.

103

Table A.76. T-Test for Fw and F methods at Killed Mutant / Test Suite Size-Input

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 4,162 0,063 1,111 12 0,288 10,912 9,820 -10,483 32,308

Equal variances
not assumed 1,111 8,129 0,298 10,912 9,820 -11,669 33,494

Table A.77. T-Test for Fw and W methods at Killed Mutant / Test Suite Size-Input

W-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 9,318 0,010 1,741 12 0,107 6,733 3,866 -1,690 15,156

Equal variances
not assumed 1,741 6 0,132 6,733 3,866 -2,727 16,193

The same is also present in the T-Test results of the Fw and UIO method. There

was no significant difference between Killed Mutant / Test Suite Size - Input values of

both methods. Therefore, there is no need to refer to the Hedge’s g value. As a result, the

performance of the Fw and UIO method can be considered the same.

As a result, according to the Killed Mutant / Test Suite Size - Input graph, the

performance of the four methods can be considered the same.

A.5.3. Killed Mutant / Test Suite Size - Output

According to Table A.79, the average value of W method is 0.3153. The average

value of the F method is 1,5431. The average of Fw method is 1,1499. The average of UIO

method is 0,3105. According to these results, the highest average value belongs to the F

method. The lowest average value belongs to the UIO method. Thus, the UIO method

has the lowest performance. The F method has the highest performance.

In the T-test results of W and F methods, significant difference is observed be-

tween Killed Mutant / Test Suite Size - Output values. On the other hand, the Hedge’s g

value (14.431) also supports this huge difference. As a result of this difference, we can

104

Table A.78. T-Test for Fw and UIO methods at Killed Mutant / Test Suite Size-Input

UIO-Fw
Levene’s Test for

Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 9,308 0,010 1,750 12 0,105 6,767 3,866 -1,656 15,191

Equal variances
not assumed 1,750 6 0,130 6,767 3,866 -2,692 16,227

Table A.79. General Statistics

Mean N Std.
Deviation

W 0,315 31 0,051
F 1,543 31 0,109
Fw 1,149 31 0,202
UIO 0,310 31 0,064

say that the performance of the F method is much higher than the W method.

When the T-test results of F and UIO methods are examined, a significant differ-

ence is found between Killed Mutant / Test Suite Size - Output values. On the other hand,

the Hedge’s g value (13,795) supports this big difference. As a result of this difference,

we can say that the performance of the F method is significantly higher than the UIO

method.

When the T-test values of the F and Fw methods were considered, a difference

was found between the Killed Mutant / Test Suite Size - Output values of both methods.

In addition, the Hedge’s g value (2.427) also supports this difference. As a result of this

difference, we can say that the performance of F method is higher than Fw method.

In the T-Test results of Fw and W methods, there is a great difference between

Killed Mutant / Test Suite Size - Output values of both methods. On the other hand, the

Hedge’s g value (5.661) of the Fw and W methods supports this difference. As a result of

this difference, we can say that the performance of the Fw method is much higher than the

W method.

A significant difference was found between the Killed Mutant / Test Suite Size-

Output values of both methods in T-Test values of Fw and UIO methods. In addition, the

Hedge’s g value (5.599) of the UIO method with the Fw method supports this difference.

As a result of this difference, we can say that the Fw method’s performance is quite high

105

Table A.80. T-Test for W and F methods at Killed Mutant / Test Suite Size-Output

W-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 17,145 0 56,639 60 0 1,227 0,021 1,184 1,271

Equal variances
not assumed 56,639 42,776 0 1,227 0,021 1,184 1,271

Table A.81. T-Test for UIO and F methods at Killed Mutant / Test Suite Size-Output

UIO-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 10,669 0,001 54,083 60 0 1,232 0,022 1,187 1,278

Equal variances
not assumed 54,083 48,812 0 1,232 0,022 1,187 1,278

compared to the UIO method.

As a result, in the Killed Mutant / Test Suite Size - Output graph, the highest

performance according to the T-Test and Hedge’s g values belongs to the F method. The

Fw method follows the F method in terms of performance. Therefore, the performance of

F and Fw methods in Killed Mutant / Test Suite Size - Output yielded much better results

than W and UIO methods.

106

Table A.82. T-Test for Fw and F methods at Killed Mutant / Test Suite Size - Output

Fw-F Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 3,308 0,073 9,520 60 0 0,393 0,041 0,310 0,475

Equal variances
not assumed 9,520 46,073 0 0,393 0,041 0,310 0,475

Table A.83. T-Test for Fw and W methods at Killed Mutant / Test Suite Size - Output

Fw-W Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 15,120 0 22,242 60 0 0,834 0,037 0,759 0,909

Equal variances
not assumed 22,242 33,880 0 0,834 0,037 0,758 0,910

Table A.84. T-Test for Fw and UIO methods at Killed Mutant / Test Suite Size - Output

Fw-UIO Levene’s Test for
Equality of Variances t-test for Equality of Means

95% Confidence Interval
of the Difference

F Sig. t df Sig.
(2-tailed)

Mean
Difference

Std. Error
Difference Lower Upper

Equal variances
assumed 12,504 0 21,987 60 0 0,839 0,0381 0,763 0,915

Equal variances
not assumed 21,987 36,080 0 0,839 0,0381 0,761 0,916

107

VITA

Savaş Takan received the BSc degree (2009) in Computer Engineering from İzmir

Institute of Technology, Turkey. From 2009 to 2019 he worked as a research assistant at

İzmir Institute of Technology. He received the MS degree (2012) in Computer Engineer-

ing from İzmir Institute of Technology. His research interests include Formal Methods

for Software Testing, Bioinformatics, Robotics, and Dependable Systems.

Permanent Address: İZMİR

