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Future massive internet of thing (IoT) networks will enable the vision of smart cities,
where it is anticipated that a massive number of sensor devices, in the order of tens of
millions devices, ubiquitously deployed to monitor the environment. Main challenges in
such a network are how to improve the network lifetime and design an efficient data ag-
gregation process. To improve the lifetime, using low-power passive sensor devices have
recently shown great potential. Ambient backscattering is a novel technology which
provides low-power long-range wireless communication expanding the network lifetime
significantly. On the other hand, in order to collect the sensed data from sensor devices
deployed over a wide area, unmanned aerial vehicles (UAVs) has been considered as a
promising technology, by leveraging the UAV’s high mobility and line-of-sight (LOS)
dominated air-ground channels. The UAV can act as data aggregator collecting sensed
data from all sensors.

In this thesis, we consider medium-access control (MAC) policies for two sensor data
collection scenarios. First, the objective is to collect individual sensor data from the
field. The challenge in this case is to determine how a large number of sensors should
access the medium so that data aggregation process performed in a fast and reliable

fashion. Utilizing conventional orthogonal medium access schemes (e.g., time-division
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multiple access (TDMA) and frequency-division multiple access (FDMA)), is highly en-
ergy consuming and spectrally inefficient. Hence, we employ non-orthogonal multiple
access (NOMA) which is envisaged as an essential enabling technology for 5G wireless
networks especially for uncoordinated transmissions. In Chapter 2, we develop a frame-
work where the UAV is used as a replacement to conventional terrestrial data collectors
in order to increase the efficiency of collecting data from a field of passive backscatter
sensors, and simultaneously it acts as a mobile RF carrier emitter to activate backscatter
sensors. In the MAC layer, we employ uplink power-domain NOMA scheme to effectively
serve a large number of passive backscatter sensors. Our objective is to optimize the
path, altitude, and beamwidth of the UAV such that the network throughput is maxi-
mized. In Chapter 3, we consider the scenario where there are a separate data collector
and RF carrier emitter such that the former is a gateway on the ground and the latter is
a single UAV hovering over the field of backscatter sensors. Secondly, we consider a case
where only a function of sensed data is of interest rather than individual sensor values. A
new challenge arises where the problem is to design a communication policy to improve
the accuracy of the estimated function. Recently, over-the-air computation (AirComp)
has emerged to be a promising solution to enable merging computation and communi-
cation by utilizing the superposition property of wireless channels, when a function of
measurements are desired rather than individual in massive IoT sensor networks. One
of the key challenges in AirComp is to compensate the effects of channel. Motivated by
this, in Chapter 4, we propose a UAV assisted communication framework to tackle this

problem by a simple to implement sampling-then-mapping mechanism.
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Chapter 1

Fundamentals

1.1 Overview

Machine type communication (MTC) is one of the enabling technologies of 5G net-
works. The transmission in MTC network is uplink-dominant and usually requires low
data rates. The forecasted huge surge in MTC devices induced the nuisance of massive
access at the base station (BS). According to the literature, up to 20 billion IoT devices
will be in connected through machine-to-machine (M2M) by the end of 2020. The 5G
enabled IoT will connect a large number of IoT devices and make contributions to meet
market demand for wireless services. The new requirements of applications in the future
IoT and the evolving of 5G wireless technology are two significant trends driving the
5G enabled IoT. Hence, envisioning the future internet of thing (IoT) networks where
an enormous number of sensors ubiquitously deployed, will require novel techniques to

aggregate the sensed data quickly.

1.1.1 UAV-Assisted Data Collection

Unmanned aerial vehicles (UAVs), also commonly known as drones, have gained wide
popularity in the recent years for a variety of applications, such as cargo delivery and
aerial imaging [1]. Extensive research efforts from the academia have also been devoted
to employing UAVs as different types of wireless communication platforms, such as
aerial mobile base stations (BSs), and mobile relays. In particular, employing UAVs as
aerial base stations is envisioned as a promising solution to improve the performance
of the terrestrial wireless networks [2]. Similarly, there has been a growing research

interest in using UAVs for data collection and dissemination in wireless networks, in
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order to provide a faster and reliable data collection, longer network lifetime, and real-
time data transmission [3], [4]. UAVs have great potential to be employed in long-range
backscatter networks to both support more devices and increase the network efficiency
and reliability. Consequently, optimizing the 3-D location of the data collecting UAV
is very critical in order to provide reliable communication for backscatter devices which

operate in the presence of very low power radio frequency (RF) signals.

1.1.2 Over-the-Air Modulation (Ambient Backscattering)
1.1.2.1 Overview

Ambient backscatter communication technology is a promising candidate for self-
sustainable wireless communication systems in which there is no external power sup-
ply [5]. By utilizing the existing radio frequency (RF) signal, ambient backscattering
technology can support low-power sensor-type devices in the internet of things (IoT)
paradigm [6]. In order to support a long-range backscatter communication link the

following are needed:

e A backscatter transmitter (tag),
e A backscatter receiver (reader, data collector),

e One (or multiple) carrier emitter (RF energy source).

It should be noted that the emitter may be collocated with the receiver [7]. This novel
technology allows to leverage the existing receiver for generating the carrier signal. The
state-of-the art backscatter technology involves the design of a novel backscatter tag
that modulates the carrier signal providing long-distance communication while consum-
ing only Ws of power. For instance, the architectures proposed in [8] and [5] promise a
long-range backscatter communication. Specifically, [9] achieves a range beyond 3.4 km
when operating in the 868 MHz band, and 225 m when operating in the 2.4 GHz band
which is a significant improvement over the contemporary in backscatter communica-
tions. Hence, through the utilization of designs such as those described in [8] and [9],
wide-area communication is enabled by new passive backscatter IoT devices.
Backscatter communications systems can be classified into three main types based

on their architectures [7]:

1. Monostatic Backscatter Communications Systems: In this type of backscatter sys-
tems which can also be considered as Radio-Frequency IDentification (RFID) sys-

tem, there are two main components: a backscatter transmitter, e.g., an RFID tag,



Chapter 1. Fundamentals 3

—> Unmodulated carrier signals ———> Modulated ambient RF signals — — 3 Backscattered signals
7 D
(7~
() (( )) Ambient
Carrier RF source
Read emitter
eader
Backscatter Legacy
’)) transmitter receiver
(¢ Backscatter
- ;
e J e — — - l-] receiver Backscatter
))) transmitter ; Transceiver B Transceiver A
e————*.: = O 1
Monostatic backscatter Bistatic backscatter Ambient backscatter

(@) (b) (©

FIGURE 1.1: Types of Backscatter Systems [7].

and a reader as shown in FIGURE 1.1(a). The reader consists of, in the same
device, an RF source and a backscatter receiver. The RF source generates RF sig-
nals to activate the tag. Then, the backscatter transmitter modulates and reflects
the RF signals sent from the RF source to transmit its data to the backscatter
receiver. As the RF source and the backscatter receiver are placed on the same
device, i.e., the tag reader, the modulated signals may suffer from a round-trip

path loss.

2. Bistatic Backscatter Communications Systems: Different from Monostatic system,
in this type of systems the RF source, i.e., the carrier emitter, and the backscatter
receiver are separated as shown in FIGURE 1.1(b). As such, the Bistatic sys-
tem can avoid the roundtrip path loss as in Monostatic systmes. Additionally, its
performance can be improved dramatically by placing carrier emitters at optimal
locations. Specifically, one centralized backscatter receiver can be located in the
field while multiple carrier emitters are well placed around backscatter transmit-
ters. Consequently, the overall field coverage can be expanded. Moreover, the
doubly near-far problem can be mitigated as backscatter transmitters can derive
unmodulated RF signals sent from nearby carrier emitters to harvest energy and
backscatter data. Although carrier emitters are bulky and their deployment is
costly, the manufacturing cost for carrier emitters and backscatter receivers of
Bistatic is cheaper than that of Monostatic backscatter systems due to the simple

design of the components.

3. Ambient Backscatter Communications Systems: As illusterated in FIGURE 1.1(c),
similar to Bistatic system, carrier emitters in this type of systems are also sepa-
rated from backscatter receivers. However, different from Bistatic systems, carrier
emitters in these systems are available ambient RF sources, e.g., TV towers, cellu-

lar base stations, and Wi-Fi access pointss instead of using dedicated RF sources



Chapter 1. Fundamentals 4

as in Bistatic systems. As a result, Ambient backscatter systems have some ad-
vantages compared with Bistatic systems. First, because of using already-available
RF sources, there is no need to deploy and maintain dedicated RF sources, thereby
reducing the cost and power consumption. Second, by utilizing existing RF signals,
there is no need to allocate new frequency spectrum, and the spectrum resource
utilization can be improved. However, because of using modulated ambient sig-
nals for backscatter communications, there are some disadvantages in Ambient
systems compared with Bistatic systems. First, modulated ambient RF signals
are unpredictable and dynamic, and act as direct interference to backscatter re-
ceivers, which largely limits the performance of an Ambient backscatter system,
unlike unmodulated ones of the Bistatic system, which can easily be eliminated
before backscattered signal detection. Second, since ambient RF sources are not
controllable, e.g., transmission power and locations, the design and deployment
of an Ambient backscatter system to achieve optimal performance are often more

complicated than those of an Bistatic system [7].

1.1.2.2 Long-Range LoRa Backscatter Communications

Nowadays, as wireless applications are dynamically expanding their scale, there is
a demand for wide area backscatter communications. Hence, Tella et al. [8] introduce
a backscatter communication system enabling long-range transmissions, namely LoRa.
Specifically, LoRa uses the chirp spread spectrum (CSS) modulation which represents
a bit ‘0’ as a continuous chirp that increases linearly with frequency, while a bit ‘1’ is
a chirp that is cyclically shifted in time. The CSS modulation has several advantages
for long-range communications such as achieving high sensitivity and resilient to fading,
Doppler, and interference. However, the CSS modulation requires continuously changing
the frequency as a function of time. Thus, the authors propose a hybrid digital analog
backscatter design which uses digital components to create a frequency plan for the
continuously varying CSS signals and map it to analog components by using a low-power
digital-to-analog converter (DAC). Furthermore, the authors introduce a backscatter
harmonic cancellation mechanism to reduce the interference and improve the system
performance. The key idea of this mechanism is adding voltage levels to approximate
the sinusoidal signals and obtain a cleaner frequency spectrum. The experimental results
show that LoRa can operate at the distance between the RF source and the backscatter
receiver up to 475 meters. Additionally, the authors deploy LoRa in different scenarios,
i.e., a 446 m? house spread across three floors, a 1210 m? office area covering 41 rooms,
and a one-acre 4046 m? vegetable farm, and demonstrate that LoRa backscatter can

achieve reliable coverage.
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1.1.3 Non-orthogonal Multiple Access (NOMA) Protocol

Recently, non-orthogonal multiple access (NOMA) is envisaged as an essential en-
abling technology for 5G wireless networks especially for uncoordinated transmissions
[10]. NOMA exploits the difference in the channel gain among users for multiplexing.
By allowing multiple users to be served in the same resource block (to be decoded using
successive interference cancellation (SIC)), NOMA may greatly improve the spectrum
efficiency and may outperform traditional orthogonal multiple access schemes in many
scenarios [11]. Moreover, it can support massive connectivity, since a large number of
users can be served simultaneously [12]. Also Due to the simultaneous transmission na-
ture, a user does not need go through a scheduled time slot to transmit its information,
and hence, it experiences lower latency. NOMA can also maintain user-fairness and
diverse quality of service by flexible power control between the strong and weak users;
particularly, as more power is allocated to a weak user, NOMA offers higher cell-edge
throughput and thus enhances the cell-edge user experience. Basically, NOMA can be

categorized into two major types:

1. Power-domain NOMA: In this type of NOMA, at the transmitter, different sig-
nals generated by different devices are directly superimposed on each other after
conventional channel coding and modulation. Multiple devices share the same
time-frequency resources, and then are decoded at the receivers using SIC. As a
result, the spectral efficiency can be improved at the cost of an increased receiver
complexity compared to conventional orthogonal multiple access (OMA). Addi-
tionally, it is widely recognized based on information theory that non-orthogonal
multiplexing using superposition coding at the transmitter and SIC at the receiver
not only outperforms classic orthogonal multiplexing, but it is also optimal from
the perspective of achieving the capacity region of the downlink broadcast channels

[13]. In this thesis, the uplink power-domain NOMA is employed.

2. Code-domain NOMA: The concept of code-domain NOMA is inspired by the classic
code-division multiple access (CDMA) systems, in which multiple users share the
same time-frequency resources, but adopt unique user-specific spreading sequences.
However, the key difference compared to CDMA is that the spreading sequences

are restricted to sparse sequences or non-orthogonal low cross-correlation sequences

in NOMA [13].

As illustrated in FIGURE 1.2, in uplink NOMA, the idea is that the nodes with
strong channel gains (channel between node and the base station (BS)) transmit their

data with high power level; hence, the node with the strongest channel gain has that
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highest transmission power, and the weakest node has the lowest power. On the other
side, in downlink NOMA, the transmitted signal from the BS to the node with strongest
channel gain has the lowest power while to the node weakest channel gain, it has the
highest power, as illustrated in FIGURE 1.3.

1.1.4 Over-the-Air Computation (AirComp)

The future IoT network is anticipated to connect an enormous number of sensors (e.g.,
billions). For instance, the future cellular 5G systems is expected to connect more than
1 trillion devices [15]. As a result, this makes the conventional data aggregation pol-
icy of aggregate-then-compute an impractical multiple access scheme for networks with
massive number of devices since it has high delay performance [16]. To overcome this
challenge, a promising technique called over-the-air function computation (AirComp)
was proposed which utilizes the superposition property of wireless channel to compute
functions via concurrent transmission over a multiple access channel (MAC) [17]. In
fact, AirComp is a wireless system that allows a collection of sensors to transmit their
data concurrently such that the receiver receives over the medium a nomographic func-
tion of the sensors’ data. The well-known nomographic fuctions are listed in TABLE
1.1. The idea of AirComp can be tracked back to the pioneer work studying functional
computation in sensor networks [18]. In [18], structured codes (e.g., lattice codes) are
designed for reliably computing at an access pont (AP) a function of distributed sensing
values transmitted over a MAC. The significance of the work lies in its counter-intuitive
finding that “interference” can be harnessed to help computing. Subsequently, it was
proved that the simple analog transmission without coding, where transmitted signals

are scaled versions of sensing values, can achieve the minimum functional distortion



Chapter 1. Fundamentals

TABLE 1.1: Nomographic Functions

Name Function
Arithmetic Mean | f = % £(=1 dg,
Weighted Mean | f = Z,ﬁil widy

Geometric MEan

f= (I, d) ¥

Polynomial

f= Zszl wde’“

Euclidean Norm

f= oK, &

achievable by any scheme [19]. On the other hand, coding can be still useful for other
settings such as sensing correlated Gaussian sources [20]. The satisfactory performance
(with optimality in certain cases) of simple analog AirComp have led to an active area
focusing on designing and implementing techniques for receiving a desired function of
concurrent signals, namely a targeted coherent combination of the signal waveforms
[17],[21].

The implementation of AirComp faces several practical issues. One is the synchro-
nization of all active sensors required for coherent combining at the AP. To cope with
synchronization errors, a solution, called AirShare, was developed in [22] for synchro-
nizing sensors by broadcasting a reference-clock signal and its effectiveness was demon-
strated using a prototype. AirShare is a simple low-overhead system that synchronizes
nodes by transmitting the reference clock over the air, providing a tool for generic dis-
tributed physical layer (PHY) protocols.

To put it in nutshell, the underlying basics and major assumptions in AirComp can

be summarized as follows:

e AirComp is targeted towards large and dense sensor networks, which incur a high
overhead from collecting individual sensor measurements from all the sensors, and
can therefore obtain significant benefit from over-the-air aggregation of these mea-

surements.

e Sensors can transmit their data coherently (i.e., synchronized in time and phase).
Sensors can do so using recently developed synchronization techniques such as
AirShare [22].

1.2 Background

In the literature, there are many studies on optimizing the 3-D location of the aerial

base stations under various scenarios. For instance, in [23], the authors aim to optimize
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the UAV’s altitude and antenna beamwidth for throughput maximization in three differ-
ent communication models without considering the impact of altitude and beamwidth
on the flight time. In [24], a particle swarm optimization algorithm is proposed to find
an efficient 3D placement of a UAV that minimizes the total transmit power required to
cover the indoor users without discussing the outage performance and its dependency
on the UAV’s altitude. The impact of the altitude on the coverage range of UAVs was
studied in [25]. In [26], an optimum placement of multiple UAVs for maximum number
of covered users is investigated. In [27], the authors aimed to find the optimal altitude
which maximizes the reliability and coverage range. They consider the dependence of
the path-loss exponent and multi-path fading on the height and angle of the UAV:; how-
ever, similar to the previous works, they do not consider the impact of UAV’s altitude
on its flight time. Another drawback of the previous approaches is the lack of discussion
on the control of ground networks with limited or no energy supplies. In this work, we
consider passive devices which have no power supply, and investigate how their passive
nature can impact the network performance.

In addition, in [3] and [4], the authors consider a scenario where an UAV collects
data from a set of sensors. In particular, in [3], they jointly optimize the scheduling pol-
icy and UAV’s trajectory to minimize the maximum energy consumption of all sensors,
while ensuring that the required amount of data is collected reliably from each node.
In [4], the authors investigate the flight time minimization problem for completing the
data collection mission in a one-dimensional sensor network. The objective is to mini-
mize the UAV’s total flight time from a starting point to a destination while allowing
each sensor to successfully upload a certain amount of data using a given amount of
energy. However, in these works, all the ground nodes are active devices which access
the channel based on the conventional medium access control (MAC) protocols.

In [28], the authors investigate the applicability of NOMA for UAV-assisted commu-
nication systems. It is shown that the performance of NOMA scheme is far better than
the orthogonal multiple access scheme under a number of different scenarios. Further-
more, in [29], a NOMA-based terrestrial backscatter network is studied where the results
suggest that NOMA has a good potential for being employed in backscatter communi-
cations.

On the other hand, when it comes to collect and compute a function sensed data
rather than individual sensed data, there few works on the literature which basically
employ AirComp concept to achieve this goal. For instance, in [30-32], the authors aim
at developing multiple-input-multiple output (MIMO) AirComp such that the objective
is to find the optimal beamforming design for compensating the nonuniform fading. In
order to compensate the non-uniform fading of different sensors, they propose a novel
uniform-forcing transceiver design for over-the-air function computation, and a min-max

optimization problem is formulated to minimize the accuracy of the computation which
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is measured by mean squared error. Moreover, considering analog AirComp, in [33], an
analog function computation scheme was proposed which was robust against synchro-
nization errors utilizing random sequences. Power control at sensors was also optimized
in [21, 34], the computation rate (defined as the number of functional values computed
per time slot) analyzed in [34], and the effect of channel estimation error characterized
in [35]. More recently, in [36], a multi-antenna UAV-enabled AirComp is studied where
UAV acts both as data collector and wireless power transmitter. The objective in this
work was to jointly design an optimal power allocation, energy beamforming and Air-
Comp equalization to minimize the MSE. However, the mobility of the UAV was not

taken into account in improving the MSE performance.

1.3 Motivation and Contribution

In future massive internet of thing (IoT) networks, e.g., smart cities, it is anticipated
that an enormous number of sensor devices, e.g. tens of millions, ubiquitously will be
deployed to measure various parameters. The main challenges in such a networks are
how to improve the network lifetime and design an efficient data aggregation process.
To improve the lifetime, using low-power passive sensor devices have recently shown
great potential. Ambient backscattering is a novel technology which provides low-power
long-range wireless communication expanding the network lifetime significantly. On the
other side, in order to collect the sensed data from sensor devices in a wide area, most
recently UAVs has been considered as a promising technology which expands network
coverage and enhances system throughput, by leveraging the UAV’s high mobility and
line-of-sight (LOS) dominated air-ground channels. Depending on the application, the
data collector (UAV) can whether collect sensed data from all sensors individually or
collect a function of sensed data. In each case, several challenges comes up which require
novel techniques to employ.

To be more precise, when the objective is to collect individual sensed data from sen-
sors, the main challenge is how efficiently these massive number of sensors should access
the medium so that data aggregation process performed in a fast and reliable fashion.
Utilizing conventional orthogonal medium access schemes (e.g., time-division multiple
access (TDMA) and frequency-division multiple access(FDMA)), will be highly energy
consuming and spectrally inefficient. Hence, employing an efficient scheme is critical
to serve a large number of sensors. Recently, non-orthogonal multiple access (NOMA)
is envisaged as an essential enabling technology for 5G wireless networks especially for
uncoordinated transmissions. It has been shown that NOMA may greatly improve the
spectrum efficiency and may outperform traditional orthogonal multiple access schemes

in many scenarios since a large number of users can be served simultaneously. Motivated
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by this, in Chapter 2, we develop a framework where the UAV is used as a replacement
to conventional terrestrial data collectors in order to increase the efficiency of collecting
data from a field of passive backscatter sensors, and simultaneously it acts as a mobile
RF carrier emitter to activate backscatter sensors. In the MAC layer, we employ uplink
power-domain NOMA scheme to effectively serve a large number of passive backscatter
sensors. Our objective is to optimize the mobility of the UAV such that the network
throughput is maximized. Moreover, in Chapter 3, we consider a separate data collector
and RF carrier emitter such that the former is a gateway on the ground and the latter
is a single UAV hovering hover the field of backscatter sensors.

In the second case, where a function of sensed data is desired to be collected and
computed, a new challenge comes to the picture and it is that how to design a communi-
cation policy to improve the accuracy of the estimated function. Recently, over-the-air
computation (AirComp) has emerged to be a promising solution to enable merging com-
putation and communication by utilizing the superposition property of wireless channels,
when a function of measurements are desired rather than individual in massive IoT sen-
sor networks. One of the key challenges in AirComp is to compensate the effects of
channel. Motivated by this, in Chapter 4, we propose a UAV assisted communication
framework to tackle this problem by a simple sampling-then-mapping mechanism.

To put it in a nutshell, our main objective in this thesis, is to optimally utilize the mo-
bility of the UAV as its main advantage, in order to tackle the aforementioned challenges
in collecting the sensed data from a massive low-power passive devices, and improve the

network performance.

1.4 Thesis Outline

The rest of the thesis is organized as follows. In Chapter 2, we study the network
throughput performance of a UAV-assisted NOMA backscatter network where the UAV
acts both as carrier emitter and data collector. In Chapter 3, we describe a NOMA
backscatter network model where the carrier emitter and data collector are considered
to be separate. We proceed with studying UAV-assisted AirComp backscatter sensor
networks in Chapter 4, where the network performance metric is also evaluated. Finally,

Chapter 6 concludes this thesis.



Chapter 2

Data Collection in UAV-Assisted
NOMA Backscatter Networks

2.1 System Model

In this chapter, we consider a UAV-assisted NOMA backscatter network where N
BNs are distributed independently and uniformly (i.e., binomial point process) in a area
of size A m? with density p = % BNs/m?. As shown in FIGURE 2.1, we assume that
there is a single UAV equipped with a directional antenna with adjustable beamwidth
f, which acts both as RF carrier emitter and data sink. The UAV hovers over the
target area for a fixed duration 7'y while continuously broadcasting a single carrier RF
signal with fixed power P, to BNs on the ground that utilize the received RF signal
to backscatter their data to the UAV, simultaneously, based on power-domain NOMA
scheme. We also assume that the target area is sufficiently large such that it can be

partitioned into
W=—Vi=1,...,W, (2.1)

sub-regions with hexagonal shapes where A; is the coverage area of the UAV when it
hovers over sub-region s; at altitude H with beamwidth 6 and radius r = H tan% as
illustrated in FIGURE 2.2. Thus, the average number of BNs covered by the UAV at

sub-region s; is given by

0
= 3\2/ng2 tan? -

Ny 5 (2.2)

The number of sub-regions W implies that the UAV’s total flight time, T, is divided
into W sub-slots where each sub-slot has the same duration of T', ie., Ty > ZYZI T.

11
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R Sub-region
Target area

Trajectory Plan

F1GURE 2.1: Network model: Target area with hexagonal sub-regions.

Furthermore, we assume that the UAV’s flying speed is sufficiently high, i.e.,
Tr(0,H) =~ W(0,H)T. (2.3)

FIGURE 2.1 illustrates the geometry of dividing the target area into sub-regions. The
BNs backscatter to the UAV at most only once since each BN switches to sleep mode
until the end of UAV’s flight time after backscattering its data. For simplicity, we assume
that the azimuth and elevation half-power beamwidths of the UAV antenna are equal,
which are both denoted as 6, with § € (0, 5). Moreover, the corresponding antenna gain

in direction (O, ®) is approximately modeled as

(%))5, if0<O<Aand 0< P <0,
2

G= (2.4)

g, otherwise,

where Gy ~ 2.2846, © and ¢ denote the azimuth and elevation angles, respectively. Also,
g is the channel gain outside the beamwidth of the antenna and satisfies 0 < g < (%)g

2
In this work, for simplify, we consider g = 0.

2.1.1 Channel Model

We consider a path-loss model in which the channel power gain of the link between the
UAV and BN ¢, i =1,..., N, is defined as hBNidg‘j‘\,i where hpn, = 109?% denotes the
shadowing effect following a log-normal distribution. Let gy, be a Normal distributed
random variable with variance o2, and d;‘fvi denotes the distance-dependent attenuation

in which « is the path-loss exponent and dgy; is the distance between BN ¢ and the
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'v’ UAV: mobile carrier emitter

~— and data collector

===p== Backscattered signal
—p— Ambient RF signal

FI1GURE 2.2: Backscattering setup in one sub-region when the UAV is at an altitude
H with an effective illumination angle or beamwidth 6, serving BNs simultaneously.

UAV. Let (z,y, H) be the 3-D coordinates of the UAV. Thus, the distances between the
UAV and any BN can be calculated as

dpN; = \/H2 + (zBN;, —2)* + (yBN, — ¥), (2.5)

where zpy, and ygn, are the coordinates of BN 7. In this work, we assume that the
UAV knows the exact location of the BNs. In the following, we discuss the ambient

backscattering and power domain NOMA scheme which are employed in this work.

2.1.2 Ambient Backscattering

Upon receiving RF signal from the UAV, the BNs use a modulation scheme (e.g.
FSK) to map their data bits to the received RF signal and then backscatter them to
the UAV, simultaneously, for a duration of T time units. After the transmission, BN
switches to the sleep mode and remains at this mode until the end of the UAV’s total

flight time. The received power at BN i can be written as

P, = GPuhpn,dgs,. (2.6)
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The probability density function of this slowly varying received power by the BN 7 is

given by
1 In(v) —am 4
_ N _am 2.7
) = o exp —(H (27)
where a = 1111% and m = éln(GPudg?vi) is the logarithmic received mean power ex-

pressed in decibels (dB), which is related to the path-loss and o is the (logarithmic)
standard deviation of the mean received signal due to the shadowing.
Let (pn, be the reflection coefficient of BN 4. Thus, the power of the backscattered

signal at each BN is determined as,

Moreover, according to the Shannon capacity formula, the achievable data rate of BN;

can be expressed as
Rpn, = Blogy(1 + SINRpy;,) bits/s, for all, i = 1,..., N, (2.9)

where B is the allocated bandwidth for BNs to backscatter their data and SINRpy; is
the the signal-to-interference-plus-noise ratio (SINR) of BN; which will be defined in the
following section. Depending on whether the BNs have perfect channel state information
(CSI) or not, the outage is likely to happen. Hence, in this thesis, we study the both
cases including:1) BNs with no CSI knowledge meaning that the outage is likely to
happen, 2) BNs with CSI knowledge meaning that there is no outage.

2.1.3 Power-Domain NOMA Protocol

In this work, we consider a power-domain NOMA scheme as the uplink MAC protocol.
In order for NOMA scheme to be able to successfully decode the incoming signals, the
difference of the channel gains on the same spectrum resource must be sufficiently large.
Thus, it is assumed that the channel power gains of BNs in each sub-region are distinct
and can be ordered based on a fixed order, which is a common assumption in the uplink
NOMA scenario. Note that by fixed-order, we mean that there is only one possible way
of ordering channel power gains at each sub-region which is determined based on the
acquired statistical CSI by the UAV. Also, note that this order will not change until
the end of backscattering time since the large scale fading effect remains constant when

the BNs and UAV are not moving during this time. Hence, under this assumption, the
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product of uplink and downlink channel power gains can be ordered as

—2 -2
& 2y, > - > delahiNl, (2.10)
where k() € {BNy,...,BNy} such that ki,...,ky, represent the BNs in sub-region s;,
Il =1,...,W, and N; is the number of BNs in sub-region s; such that N = Z}Zl Nj.
Moreover, to make the difference of channel gains more pronounced and obtain a diverse
set of received powers, all BNs at each sub-region backscatter their data to the UAV

simultaneously with different reflection coefficients,
1> Gy >0 > Qry, > 0. (2.11)

Note that with fixed-order SIC employed at the UAV, the successful retrieval and decod-
ing of the BNs’ signals become possible. In order to assign reflection coefficients to BNs,
the following approach is adopted by the UAV: Since the UAV knows the exact location
of BNs and also it knows the statistical CSI of each channel before broadcasting the RF
carrier signal to the BNs, it assigns the reflection coefficients to the BNs based on the
determined fixed-order channel power gains (Eq.(2.10)). Hence, at each sub-region, the
UAYV assigns the highest reflection coefficient to the BN with the highest channel power
gain, i.e., k1, and, in a descending order, assigns the lowest reflection coefficient to the
BN with the lowest channel power gain, i.e., ky,. Note that we assume the time for CSI
acquisition and assigning reflection coefficients is negligible compared to the backscat-
tering time 7.

The best performance of NOMA scheme is achieved when the data rate of each BN
is greater that the target rate R. Thus, we have

Blogy(1+SINR;,) > R, foralli=1,..., N, (2.12)

This implies that SINR for each one of the backscattered signals at the UAV is greater

than a given SINR threshold ~ necessary for successful decoding. Hence,

GPyCi b2 d %
SINRy, = —x S b >y, (2.13)
Sy GPuGh2 d > + N
GPulr,hi, dp >
SINRk, = —x G S > A, (2.14)
2 jms GPuGrihy di ™ + N
GPuiy h2 di >
SINRyy, = NZN Mk (2.15)
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where v = 9% — 1 and N is the noise power. Note that the backscattered signal by k; is
the strongest signal at each sub-region and gets decoded at the UAV first; on the other
hand, kn,’s signal is considered to be the weakest one and gets decoded after all the

stronger signals are decoded.

2.1.4 UAV Mobility Model

In order to improve the number of successfully decoded bits, the UAV may need to
lower its altitude to get closer to BNs. Hence, only a portion of the target area can be
illuminated by the RF carrier signal, and the target area is divided into W sub-regions
as given in FIGURE 2.1. Consequently, the total flight time will be divided into W
sub-slots. Furthermore, the UAV’s trajectory plan is modeled as: Given the number
of sub-regions W which is obtained at any altitude and beamwith value as discussed
above, the UAV moves from the origin of each sub-region as its 2-D location over each
sub-region, i.e., (z,y), to adjacent sub-region as illustrated in FIGURE 2.1. Note that
the 2-D location of the UAV over each sub-region is assumed to be the origin point of
each sub-region. According to (2.3), since we assume that the flying time from each
origin to adjacent one is negligible compared to the flight time over each sub-region, it

does not matter from which sub-region the UAV starts to hover.

2.2 Problem Formulation

Our objective is to maximize the total number of successfully decoded bits while
minimizing its flight time, by finding the optimal UAV altitude H* and beamwidth 6*,
and backscattering reflection coefficients ¢, i = 1,..., N;. Note that by finding optimal
H and 0, the optimal number of sub-regions W* and the trajectory plan of the UAV are
also obtained. Let the network throughput C(6, H,(i,...,(n,) be the ratio of the total
number of successfully decoded bits during all time sub-slots (i.e., in all sub-regions) to

the total flight time:

Zlmz/ge’H) 27{\21 02(97 H’ Cl? ey CNZ)
T(0,H) ’

C0,H,(i,...,¢N,) = (2.16)

where C;(0, H, (1, ...,(n,) is the number of successfully decoded bits of BN k; at sub-
region s;, [ = 1,...,W. Depending on whether the BNs have perfect CSI knowledge or
not, C;(0, H,(1,...,(n,) is defined as follows:

e BNs Without CSI Knowledge: In this case, we need to consider the outage

probability since it is possible that the achievable backscattering rate is less than
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the target rate; hence, we have

Ci(0,H,¢r,....Cn) =TR(1— P (6,H,¢1,....Cx)), (2.17)

out,k;

where PV (0,H,(1,...,CN,) where ¢ = 1,..., Nj, is the outage probability cor-

out,k;

responding to BN k;, which is determined as’

PG, =1—Pr(SINREY > ), (2.18)
P =1 Pr(SINRSY > ~,SINRYY > ), (2.19)
Pl = 1= Pr(SINRLY > 5, SINRY) > ), (2.20)

By using (2.10), (2.11) and (2.13), we have

G PGy iy ;2% > G PGy, dy 2y
N
-2
+7 > GPuGyhi, di > + AN
j=3
N
~7 Y GP.Gyhi, d,;]?a +N. (2.21)
j=3
This approximation holds due to the distinct channel power gains and reflection co-
efficients as stated in (2.11) and (2.13), respectively. Consequently, GPuCklhzl d,;fa >
GPuCth%Qd,;ZO‘y assuming v < 1, and thus, GPuCthsz,;fo‘ has infinitesimal ef-
fect on Pr(SINRg, > «) compared to 72?[:13 G Py, hzj d,;fa. Hence, the events
SINRg, > 7 and SINRj, > v are approximately independent. The same argument
can be applied to argue that

Pr(SINRy, > 7|SINRy,, > ) ~ Pr(SINRy, > ), (2.22)

for any i < ¢’ where ¢ > 2. Therefore, (2.18)-(2.20) can be approximated as

i
PG~ 1= T Pr(SINREY > ), foralli =1,..., Ny, (2.23)
j=1
Define z; = Ckihiid]:fo‘, 1 =1,..., Ny, which is a log-normal distributed random

variable since the product of two log-normal distributed random variables is also

log-normal with mean p,, = ln(Ckid,ja) and variance o2, = 4a?0? where a = 1111(1)0'
n order to simplify the notation, from now on we will not show the (8, H, (1, ..., ¢n;) dependence

explicitly; for instance, we will use C instead of C(0, H, (1, ..., (n;)-
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Then, we have from (2.13)

2

N . N
> iiv1%i + GE

Pr(SINR{™" > ) = Pr( > ). (2.24)

To make the problem tractable, we assume that the thermal noise is negligible and
it is only taken into account when there is no interference (i.e., in calculating the

SINR of the weakest BN at each sub-region SINRy, ). Thus

Pr(=z—2>7), foralli# N,

Pr(SINR(Y > ) = iz (2.25)
Pr(&- > 1), for all i = ;.
GPy

The distribution of Zjvzll 41 %j has no closed-form expression, but it can be rea-
sonably approximated by another log-normal distribution A; at the right tail.
Its probability density function at the neighborhood of 0 does not resemble any
log-normal distribution. In the following section, we will discuss a well-known

approximation method to approximate this distribution.

Theorem 2.1. (Fenton-Wilkinson (FW) Approximation) A random vari-
able U is log-normal, i.e. U ~ LN (pu,0?), if and only if m(U) ~ N(u,0?). A

log-normal random variable has PDF

1 —(Inu — p)?
exp( 5
uvV2mo? 20

for any 0? > 0. The expected value of U E(U) + exp(u + 0.502) and the variance
of U is Var(U) = (exp(c?) — 1)exp(2u + 02). If U ~ LN(u,0?), then bU ~
LN(u + In(b), 0?) where b > 0. Conveniently, then, we can find a PDF for a
U ~ LN(ut,0?%) as a convolution of X ~ LN(0,0?) as follows:

fuu) = ), u >0, (2.26)

fo(u) = (1) exp(p)).fx ((1/ exp(p)).u) (2.27)

Consider the sum of Q i.i.d. log-normal random variables, U, such that U = Uy +
Us + ---+ Uy where each Uy ~ LN(,qu, aUq) with the expected value and variance
described above. The expected value and variance of U are E(U) = Q.E(Uy)
and Var(U) = Q.Var(Uy). The FW approzimation is a log-normal PDF with
parameters py and of; such that exp(uy + 0.50%) = Q.E(U,) and (exp(o?) —
1).exp(2uy + 0%) = Q.Var(Uy,). Solving for uy and o gives

pr = In(Q. exp(uv)) + 0.5(0f;, — ofr), (2.28)
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and

o = mm +1). (2.29)

Hence, using the aforementioned FW method, the following approximation for
the distribution of ZJ L

another log-normal distribution as

zj is obtained by matching the mean and variance of

Ny agj a20124
=] Hzjt— | ¢ 2.
pa = | H e 5 (2.30)
_j—erl
_ZNZ' 6(2112.7'4‘0'%)(603]- _ 1)
o} =In | ZI=H = +1|. (2.31)

N 25—
L (Z]lz—‘,-leuj 2 )

Thus, SINRgE‘;\),< , can be approximated by a log-normal random variable defined as

Y]é‘j{,)” with mean py; | and variance 012/( ) which can be calculated as

e — g4, forall i N,
o = (2.32)
Lo, — ln(GlPu), for all i = N,

and

o2 +a%0%, foralli# Ny,
o2 ={"" Ai # M (2.33)

o2 for all i = IV;.

Z5?

Hence, the outage probability corresponding to sub-region s; can be determined

as

azlt)k Nl_HPr Y > )

i
1 1 101 — Uy,

:]_—H 7—*61‘f( OglO(ﬁy) MYJ) ,fOI‘&Hi:l,...,Nl
2 2 oy, V2

Jj=1

e BNs With Perfect CSI Knowledge: In this case, the number of successfully

decoded bits of BN k; at sub-region s; is expressed as

C; = TBlogy(1 + SINR™), (2.34)
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2.2.1 Optimization Problem

Finally, the optimization problem can be expressed as follows where we aim to max-
imize the network throughput by jointly finding an optimal resource allocation policy,
UAV altitude, and beamwidth,

G,H,Cﬁéiékm C (2.35a)
s.t. Hyin < H < Hypas, (2.35b)

Omin < 0 < Onmaa, (2.35¢)

Chy, <+ < Qg foralll=1,.... W (2.35d)

0< (<1, foralli=1,..., N (2.35€)

In this thesis, we assume that the backscattering reflection coefficients are pre-defined

and given such that they are allocated as

CkNl = Cmina
A ) (Cmax - Cmin)
CkNl—l - len + Nl 1 ;
o 4 2(<ma.x - Cmin)
CkNl_Q — len + Nl 1 y
Ckl = Cmax; (2.36)

foralll=1,...,W, and 0 < (nin < Cmax < 1,

where (nin and (ax are the reflection coefficients assigned to the weakest and strongest

BN, respectively. Hence, the optimization problem is expressed as

max C (2.37a)
0,H

s.t. Hmin < H < Hmaa:a (237b)

emin S 0 S Hma:v; . (2370)

(2.35) is a fractional programming (FP) problem with non-differentiable fractional ob-
jective function; hence, the problem is intractable. We noticed that in this case, it is
very challenging to even approximate the problem with a convex problem. Since the car-
dinality of the set of altitudes and beamwidths that a UAV can hover over are finite, and
the locations of BNs are known a priori, we use exhaustive search method to determine
the optimal UAV altitude and beamwidth for a pre-defined given set of backscattering

reflection coefficients.
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TABLE 2.1: Simulation Parameters

Parameter Value
Density of BNs (p) 1 BNs/m?
UAV transmit power (F,) 20 dBm
Bandwidth (B) 10 MHz
Noise power (N) —70 dBm
Radius of target area (Rcoy) 100 m
SINR threshold (7) —10 dB
Path-loss exponent («) 2.7
Altitude range (H) [10,60] m
Beamwidth range (6) [20, 90]°
Reflection coefficient range (¢) [0.1,0.99]
Log-normal shadowing variance (%) 9 dB

2.3 Simulation Results

In this section, we evaluate the throughput C' with respect to the UAV altitude
and beamwidth of the UAV for the case that BNs have no perfect CSI knowledge,
under various considerations of network parameters including the SINR threshold ~
and backscattering reflection coefficients. We also analyze the effect of the density of
BNs on the ground, on the throughput. Moreover, the dependency of the network
throughput on the number of BNs is investigated for two different channel thresholds.
The outage performance of three strongest BNs at each sub-region, i.e., k1, ko, and ks, is
also evaluated with respect to the number of BNs in each sub-region. Unless otherwise
stated, in all experiments we use the parameters given in TABLE 2.1. In FIGURE 2.3,
the throughput is plotted with respect to H for v = —11.5, —10.5, and —10 dB. The
figure illustrates that with lower SINR, thresholds, there exists an optimal altitude where
the throughput is maximized, and as the sensitivity of the SIC decoder at the UAV
increases, the throughput increases as well. When the altitude is high, the number of
BNs backscattering is also high, but the received power from each backscatter signal is
small. This in turn reduces the probability of correct decoding. However, if the altitude
is low, then even if there are fewer incoming transmissions from the BNs, the total flight
time of the UAV is high, reducing the throughput. In FIGURE 2.3, we also examine the
performance of the network throughput with respect to UAV’s altitude H with different
BN reflection coefficients. The figure shows that the way the reflection coefficients are
selected has a significant impact on the throughput (the network parameters used for

FIGURE 2.3 are given in TABLE 2.1). When the reflection coefficients assigned to BNs
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Ficure 2.3: Throughput performance with respect to UAV altitude H, for two dif-
ferent ways of selecting the selection of reflection coefficients ¢ and for three different
SINR thresholds v (8 = 60°, p = 1 BNs/m?).

Throughput, C' (b/s)

FIGURE 2.4: Throughput performance with respect to the beamwidth 6 and altitude
H (y=—11.5dB, p = 1 BNs/m?).

at each sub-region are in the range [0.1,0.99] with equal intervals, i.e.,

(0.99 — 0.1) 2(0.99 — 0.1)

CkNl = 0'17CkNl—1 =01+ Nl 1 7CkNl—2 =0.1+ Nl 1 -

.Gy = 0.99,
(2.38)

the throughput improves by more than 40% compared to the case when all the reflection
coefficients are the same, for v = —11.5 dB. When the reflection coefficient values are

apart from each other, the received powers of the backscattered signals get further apart,
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FicUure 2.5: Throughput performance with respect to UAV altitude H, for three
different density of BNs p on the target area (v = —10.5 dB,6 = 60°).

and thus, the SIC decoder makes fewer decoding errors. Note that when (i, = --- = (i Ny
the actual values of Ck(_) does not matter due to the fact that, when the background noise
is omitted in (16), the (y , values in the numerator and denominator will cancel each
other.

Furthermore, in FIGURE 2.4, we evaluate the performance of the network through-
put with respect to the beamwidth 6, and altitude H. The figure implies that there
exists an optimal set of beamwidth and altitude where the throughput is maximized. To
be more precise, the maximum throughput is achieved when the UAV operates with its
highest beamwidth, § = 45°, and at an altitude H = 27 m since in this case more number
of BNs can be served at a lower altitude which means lower path-loss effect. It can also
be seen that at any fixed beamwidth (or altitude), there is always an optimal altitude
(or beamwidth) at which the throughput is maximized. In FIGURE 2.5, we examine
how the density p of BNs on the target area can effect the optimal altitude where the
throughput is maximized. When the density is p = 1 BNs/m?, the optimal altitude is
H* = 24 m. However, as the density gets lower to p = 0.2 BNs/m?, in order to achieve
the same maximum throughput, the UAV needs to operate at a higher altitude H* = 54
m covering more BNs. Moreover, in FIGURE 2.7, we evaluate the effect of the number
of BNs covered at each sub-region N; on the network throughput under two different
SINR thresholds v = —10.5 and —10 dB. We observe that when the UAV operates with
a fixed beamwidth, there exists an optimal average number of BNs that can be covered
by the UAV in each sub-region such that the network throughput is maximized. Also,
when a lower SINR threshold is employed, approximately 260 more BNs can be served
in each sub-region at the optimal altitude where the network throughput is maximized.

Finally, in FIGURE 2.7, we investigate the dependency of the outage probability
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FIGURE 2.6: Throughput performance with respect to the number BNs at each sub-
region N; (0 = 60°, p = 1 BNs/m?).

-
e
o

Outage Probability, P,
S

-
S
IS

=y-BNy,
10° 3
—4—BNj,

=»—BNj,

106 I I I I I
500 1000 1500 2000 2500 3000

Ny

FIGURE 2.7: Outage performance of three strong BNs 6 with respect to the number
BNs at each sub-region N; (v = —10 dB, 6 = 60°, p = 1 BNs/m?).

of three strong BNs in each sub-region kj,k2, and k3 such that d,;lzo‘hil > d,;fo‘hé >
d,;fahig. The figure states that as the UAV moves to a higher altitude, and thus, covers
more number of BNs in each sub-region, the outage probability of decoding the data
bits of each BN increases monotonically which is due to a significant increase in amount
of interference and path-loss effect. Also, it shows that the outage performance of the
strongest BN, i.e., k1, is always better than weaker BNs since it has a better channel
chain with the highest reflection coefficient compared to other BNs, it gets decoded first
which is independent of decoding of other BNs. This figure shows that when the number
of BNs at each sub-region is N; = 170, the outage probability of the strongest BN is
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Pout gy < 10~* which means that the SIC decoder can decode the backscatter signal of
BN k; with very a low probability of error assuming that v = —10 dB.



Chapter 3

Data Collection in Hybrid
Terrestrial and Aerial NOMA

Backscatter Networks

In chapter 2, we discussed a backscatter wireless network where the data collector
and RF transmitter are co-located at the UAV. In this chapter, however, we consider a
separate data collector and RF carrier emitter such that the former is a gateway on the
ground and the latter is a single UAV hovering hover the target area. The system model,

problem formulation, and numerical results are discussed in the following sections.

3.1 System Model

As shown in Fig. 3.1, in this scenario, we consider a single-cell UAV-assisted NOMA
backscatter network where M backscatter nodes (BNs) are distributed independently
and uniformly (i.e., binomial point process) in a area of size A m? with density p = %
BNs/m? and different from the previous work, there is a single UAV acting only as a
mobile power transmitter, and there is a separate data collector (DC) located on the
ground in order to collect data from BNs. Similar to previous work, we assume that
the UAV is equipped with a directional antenna with adjustable beamwidth 6 and it
hovers over the target area for a fixed duration while continuously broadcasting a single
carrier RF signal with fixed power P, to all BNs on the ground. On the ground side,
the BNs become active and employ the received RF signal to backscatter their data to

DC simultaneously based on power-domain NOMA scheme.

Furthermore, we assume that the coverage area of the UAV when it hovers at altitude

26
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. —» Ambient RF signal v’

~— N
------- »---- Backscattered signal

— —»— — Feedback channel ~

H;

FI1GURE 3.1: System Model.

H with beamwidth 6 is a circle with radius r = H tan %. Thus, the average number of
BNs covered by the UAV is given by

N = %ngQtalfg. (3.1)
Moreover, by receiving the RF signal from the UAV, the BNs map their data bits to the
received RF signal and then backscatter them to the UAV, simultaneously, for a fixed
time duration T'.

For simplicity, we also assume that the azimuth and elevation half-power beamwidths
of the UAV antenna are equal, which are both denoted as 6, with 6 € (0, 7). Moreover,
the corresponding antenna gain in direction (O, ®) is approximately modeled same as
that of in chapter 2, Eq. (2.4).

3.1.1 Channel Model

The channel between the UAV and BN 74 is modeled by free-space path-loss model as

dl_??\fi’ where dppy, denotes the distance between the UAV and BN ¢ determined as

dpN, = \/H2+($BNZ~ —l‘)Q-I-(yBNi — )2, (3.2)

where xpn, and ypn, are the coordinates of BN; and (x,y, H) is the 3-D coordinate of
UAV over the target area. Moreover, the channel power gain of the link between the

DC and BN; is denoted by dé?vi’hB N, |, where ‘ZE%?\Q denotes the free-space path-loss for
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the BN; located d BN, away from the DC which is calculated as

dpn, = \/(HTBNi —zpc)? + (BN, — ypc)? (3.3)

where (zpc, ypc) represents the coordinates of the DC. Furthermore, |hpy;,| represents
the small scale Rayleigh fading channel power gain such that \/FM follows a complex
Gaussian distribution with zero mean and unit variance.

Hence, the received power at BN;, PEENZ,, can be written as Eq.(2.6). Let (gn, be the
reflection coefficient of BN; for the purpose of backscattering signal to the DC. Since all
the BN are transmitting simultaneously on the same spectrum, thus the power of the

backscattered signal of BN; is determined as
Py, = Condpy. |hen,| PRy, foralli=1,... N, (3.4)

Note that similar to chapter 2, we also assume that the data rate for each BN is the
Shannon-rate Eq.(2.12).

Let upn, = Cp Nidgﬁvim B N¢|PExNi to denote the instantaneous channel power gain of
the link between UAV-to-BN;-to-DC where ¢ = 1,..., N. Then, the random variable
upn;, is exponentially distributed with parameter Agy,. Hence, the probability density

function (PDF) of upy, can be formulated as

fupy,(0) = Apn,e BN, for all i =1,..., N, (3.5)
where
gy = — (3.6)

where E[.] represents the expected value. In the following section, we discuss the problem

formulation and the power-domain NOMA scheme as employed in this work.

3.2 Problem Formulation

3.2.1 NOMA Protocol

Similar to chapter 2, in this work, we also consider a power domain NOMA scheme
as the uplink MAC protocol. However, in this chapter, we consider two different SIC
decoding schemes according to the order of the channel power gains including dynamic-

order and fixed-order, based on the large-scale term (i.e., the average path-loss) and
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small-scale term (i.e., Rayleigh fading) of the received power of each BN, respectively.

In the following two section, we discuss these approaches in details.

3.2.2 Dynamic-ordered Channel Power Gains

For the dynamic-ordered channel power gains, the channel state information (CSI) is
assumed to be perfectly known at the DC and accordingly, the UAV. Before the decoding,
the DC determines the decoding order based on the instantaneous received signal power
of each BN. The instant decoding order can be represented by a permutation denoted
by 1. According to this order 1, the BNS are decoded in sequence of [, Yy, - - -, Yy ]

with the instantaneous channel power gain relation:

dyt ¢k1| hig | >+ > dy? dwk g 1 (3.7)

where k() € {BN1,..., BNy} and Y, represents the BN k() under the decoding order
. When decoding the signal of the BN ¢, i = (1,..., N), the SIC receiver should first
decode all the prior stronger (i — 1) BNs’ signals, then after subtracting those strong
signals from the superimposed received signal, the signal of the BN k; get decoded. Note
that, the rest of (N — i) BNs’ signals are regarded as the interference. By applying the
dynamic-ordered decoding scheme, the instant decoding order can be determined by the
instantaneous received signal power of each BN.

On the other hand, to make the difference of channel gains more significant and
improve the performance of NOMA scheme, all active BNs backscatter their data to
the DC simultaneously with different reflection coefficients. In order to assign reflection
coefficients to BNs, the following approach is adopted by the UAV: Upon receiving
the BNs’ CSI and accordingly, the decoding order v, from the DC through the feedback

channel, the UAV assigns the backscattering reflection coefficients in the following order:
1> Gy >0 > Gy, >0, (3.8)

hence,
Uy, >0 > Uy (3.9)

This order implies that the highest reflection coefficient is assigned to the BN with the
highest instantaneous channel power gain, i.e., ¥5,. On the other hand, the lowest
coefficient is assigned to the BN 3, which has the lowest instantaneous channel power
gain. In this chapter, we assume that the BNs have no CSI knowledge; Hence, since
the channel condition may get worse and the received SINR at the DC may be lower

than the decoding threshold, the outage is more likely to happen. Hence, we first define
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the received SINR of the BN k;, i = 1,..., N, given the channel power gain order (or

decoding order) 1, i.e., ¥, , as follows

SINR,, ) = — 3.10
kil — ZN Uw + N’ ( . )

j=2 Y,

Unpy,

SINRy, | = ZNU—M (3.11)

7=3 kj

u

SINRy,, |,y = ?\krN (3.12)

Based on these received SINR values each BN, the corresponding outage probabilities

can be formulated as

Poutky|p = 1 — Pr(Blogy(1 + SINRy, ) > R), (3.13)

Pyut kol = 1 — Pr(Blogy(1 + SINRy, |, > R, Blogy(1 + SINRy, |, > R), (3.14)

Pout,kNW =

1 — Pr(Blogy(1 + SINRy, |, > R, Blogy(1+ SINRy,, > R, ..., Blogy(1 + SINR, |y > R).
(3.15)

Note that given the channel power gain order 1, the signal received from of the BN ky
is the strongest one and gets decoded first at the DC. On the other hand, the signal
received from of the BN ky is the weakest and gets decoded after all BNs’ signal decoded.
Based on the following Lemma 1, we can reasonably approximate the conditional outage
probability of the BN k;.

Lemma 1. The outage probability of the BN k; under a given decoding order v is

determined as

%
Pty = 1 — [ Pr(SINRy,y, > 7), foralli=1,..., N, (3.16)
j=1

where v = 9% — 1 and B is the allocated bandwidth to BNs.

Proof. Given the the channel power gain order 1, the backscattered signal of BN k; is
N
successfully decoded at the DC when Uy = YUy, + ’yzjzg Uy, + vN. Due to the
distinct channels power gains and reflection coefficients stated in (3.7) and (3.8), respec-
tively, we have uy, > yuy,,. Thus, uy, —has infinitesimal effect on Pr(SINRy, |, > v)
2
compared to Zjvzg Uy, +yN. Therefore, the events SINRy, |, > v and SINRy,,,, > 7 are
J
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approximately independent. The same argument can be applied to argue that

for any ¢ < i’ where 7,7/ = 1,..., N. Hence, the conditional outage probability of the
BN k; can be approximated as Eq.(3.16). O

The channel power gain order (or decoding order) can change with the instantaneous
received power at the DC. Hence, if we define W as the set of all possible channel power
gain orders when the dynamic-ordered SIC receiver is considered, the outage probability

of k; can be calculated as

Poutk, = Y PpPout gy for alli =1,..., N, (3.18)
Pew

where Py is the probability of the channel power gain order ¢ which is given by the

following Lemma 2.

Lemma 2. The probability of the decoding order 1 in the set of all possible decoding

order ¥ is determined as

N
|| )\wki
N i :
Hz’:2(2j:1 )‘wkj)

Py = (3.19)

Proof. As discussed earlier, according to the dynamic-ordered approach, when the order
is 1), the instantaneous channel power gains are ordered in the sequence as Eq.(3.7).

Hence, the decoding order probability can be derived as below

Pl/’ = / .. / f(u@bk1 s ud,kQ, Ceey U¢kN)dU¢k1 duka . dU¢kN
o'}

A U
TN Mk
_/o Ay, € duy, X x/u

o0

Vg ud)kQ
N
R W
= NHMZ» o (3.20)
Hi:Q(Zj:l )‘mj)
O
Following the definition of the conditional probability, we can write
Pr(SINRy, > ~,%
PE(SINRy > 7) — O Rw 2708 (3.21)

Py

To make the problem tractable, we assume that the thermal noise is negligible and

it is only taken into account when there is no interference (i.e., in calculating the SINR

A, Uiy A, U
)‘1/)1@2 e 2 2 dU¢k2 X )\¢k1 e 1 1 duwk1
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of the weakest BN: SINR;, |;). Thus, when i = N, i.e., the last decoded BN, Eq.(3.21)

can be calculated as

Pr(SINRy 1y = 7) = Pruy, > YN, uy, > > uy, )

OO Ay, o Ui - — Ay, Uy
= )\wkNe kn PN dU¢kN X X )‘1/% e ky ¥k duwkl
AN “ka
(N N
M0, )
= N (3.22)
szz >i—1 )‘wkt
On the other hand, when ¢ # N, we have
N
Pr(SINRy, > v,9) = Pr(uy, >v > U, V). (3.23)
j=it+1

Depending on the value of the SINR threshold «, we can find the joint probability as

follows

e When v > 1:
In this case, the probability of Pr(u,, > ’VZj‘V:Z‘-H Uy, %) can be calculated
% J

based on the following Lemma 3.

Lemma 3. When + > 1, the solution of the joint probability
N L
Pr(uwki > Zj:i+1 Uy, 1) is given by

N
Pr(udlki 2y Z Uy > V) =
j=it1

N
Hj:? )\wki
H;‘:Q(Zizl >‘¢kt) H;V:i—i—l(zg:i-i-l )\wkt + (3 — i)y Ein:l >\1/ka)

(3.24)

Proof. When v > 1, we can claim that Z;V:Z 1 Uy, > Uy always holds since
the both hand sides are positive and Z;V:l +1 Uy, > Uy, Hence, based on this
inequality and the given channel power gain order 1, i.e., Uy > w00 > Uy the

joint probability can be determined as
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N
Pr(uwki 27 Z uwkj7¢)
j=i+1

_/.../f(ud,kl,...,U¢ki,uki+1,kai+2,...,U¢kN)dka1...dulpkN
oo

o0
Ay, Uy =AUy
= kny “VeN cee kip1 kipa
/O' A¢k (& dU¢k X X /u )\’l/)ki+1 & 7 i duwki+l

1'/”%‘+2

Ay, U Ay, U
T, Y Ty g
X/ )\d,kie i zdud,ki X x/ A¢kle 1 1du7¢,k1

N
S u Uu.
2 =it Yk Vkg

e When v < 1:

In this case, the joint probability Pr(umi >y Z;V:H_l Uy 1) seems to be diffi-
cult to solve and thus, finding a closed-form expression for the outage probability
is a difficult task. Hence, in this work, we only consider the case when v > 1;
however, as an extension of this work, in the future work, we will aim to consider

this case as well.

3.2.3 Fixed-order Channel Power Gains

According this approach, the the SIC receiver at the DC decodes the BNs’ signals
in an fixed ordered which is determined by only considering the statistical CSI meaning

that the BNs’ channel power gains are ordered based on their distance to the UAV and
DC, i.e.,

5-2 3-2  5-2 -2 7—2 ;-2
d2dy? > d2d? > - > di2dg? (3.26)

where k7 is assumed to have the shortest distance from the UAV-to-BN-to-DC; hence,
its backscattered signal is strongest and gets decoded first at the DC. On the other
hand, the signal received from kjy is considered to be the weakest since the distance of
UAV-to-BN-to-DC is the longest for kx. In this scheme also, the reflection coefficients
are assigned to the BNs based on the similar approach discussed for the dynamic-ordered
scheme. By receiving the BNs’ statistical CSI form the DC through the feedback channel,

the UAV assigns the backscattering reflection coefficients in the following order:

1>y > >Chy >0, (3.27)
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where the highest reflection coefficient is assigned to the BN k; and the lowest coefficient
is assigned to the BN ky which have the lowest and highest average path-loss affect,
respectively.

In order to find a closed-form expression for the outage probability of BN k; when the
decoding order is fixed, we first define the received SINR of BNs at the DC as follows

g,
SINRg, = ——+—, (3.28)

' Z;\f:2 Uk + N

Uk

SINRy, = —>——, (3.29)

’ Zj\f:3 Uk; + N

ug,
SINRy,, = WN (3.30)
Then, we have
N

Pr(SINRy, > v) = Pr(ug, >~ Z ug; +YN). (3.31)

j=it1

To make the problem tractable, we assume that the thermal noise is negligible and
it is only taken into account when there is no interference (i.e., in calculating the SINR

value of the weakest BN, (Pr(SINRg, > ~)). Hence, Eq.(3.31) can be written as

N .
Pr(uki > ’)/Ej:i-H uk’j)? i#F N

Pr(SINRy, > ) = (3.32)
IDT(uk‘Z Z’YN)a i =N,
where
N [o.¢] o
PT(Uki > Z ukj) —/ AkNe_)\kNukNdukN X -ee X / )\kie_)"%‘ukiduki
j=i+1 0 ’Y(E;'V:wrl uk]-)
N 1
= I — (3.33)
j=i+1 1+ ’Y,\k;
and
(o @]
Pr(ugy, > N) :/ Ay € NN duy = e NN, (3.34)
AN

3.2.4 Optimization Problem

In this chapter, our objective is to maximize the total average number of successfully
decoded bits by the UAV by finding an optimal UAV altitude H* and beamwidth 6*.
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TABLE 3.1: Simulation Parameters

Parameter Value
Density of BNs (p) 0.1 BNs/m?
UAV transmit power (F,) 20 dBm
Noise power (N) —70 dBm
Bandwidth (B) 10 MHz
SINR threshold () -7 dB,0 dB
Altitude range (H) [10,40] m
Beamwidth range (6) [20, 90]°
Reflection coefficient range (¢) [0.1,0.99]

Note that by finding optimal H* and 8*, the optimal number of BNs N* that are served
by the UAV can be achieved. Hence, we define the network throughput C(6, H) as the

average number of successfully decoded bits per second (i.e., the average sum rate)

N(0,H)
C(0,H)= > R(1— Py, (0,H)). (3.35)
i=1
Hence, based on the closed-form expression derived for the outage probability of k; either
in the case of considering dynamic or fixed ordered decoding approaches discussed in

the previous section, the optimization problem can be formulated as

rg’%xC (3.36)
s.t.

Hpin < H < Hpga, (3.37)
Ormin < 0 < Opnaz- (3.38)

Note that (3.36) is a non-convex problem and since the cardinality of the set of altitudes
and beamwidths that a UAV can hover over is finite, and the locations of BNs are known

a priori, we use exhaustive search method to determine the optimal solution.

3.3 Numerical Results

In this section, we analyze the throughput C performance of the proposed single cell
UAV-assisted NOMA backscatter network with UAV altitude H and beamwidth 6 for
both fixed and dynamic-ordered channel power gains. We also examine the dependency
of the throughput on the selection of backscattering reflection coefficients ¢ and SINR
threshold . The outage performance of the stronger BNs including ki,ke,k3, is also
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FiGUrE 3.3: Throughput performance considering dynamic-ordered decoding scheme
with respect to the UAV altitude H (y =0 dB).

investigated with respect to the number of BNs N. Unless otherwise stated, in all ex-
periments we use the parameters given in TABLE 3.1.

In FIGURE 3.2, the throughput is plotted with respect to H considering the fixed-
ordered decoding scheme for v = —7, 0, and 3 dB. The figure illustrates that with lower
SINR thresholds, there exists an optimal UAV altitude where the throughput is max-
imized, and as the sensitivity of the SIC decoder at the DC increases, the throughput
increases as well. As the altitude is high, the number of BNs N backscattering is also
high, but the received power from each are close. This reduces the probability of correct

decoding. However, if the altitude is low, there are fewer incoming transmissions from
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Throughput, C (b/s)

FIGURE 3.4: Throughput performance considering fixed-ordered decoding scheme re-
spect to the UAV altitude H and beamwidth 6. (y = —7 dB).

Throughput, C (b/s)

FiGURE 3.5: Throughput performance considering dynamic-ordered decoding scheme
respect to the UAV altitude H and beamwidth ¢ (v = 0 dB).

the BNs reducing the throughput. In FIGURE 3.2, we also investigate the performance
of the network throughput with respect to UAV altitude H with different BN reflection
coefficients. Similar to the results of chapter 2, the figure shows that the way the re-
flection coefficients are selected has a significant impact on the throughput. When the
reflection coefficients assigned to the BNs are in the range [0.1,0.99] with equal intervals
(i Gy = 0.1,Coy, = 0.1 4 L9201 ¢ — 0.1 4 2099200 ¢ = 0.99), the
throughput improves by more than 40% compared to the case when all the reflection
coefficients are the same, for v = —7 dB. When the reflection coefficient values are apart

from each other, the received powers of the backscattered signals get further apart, and
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F1cURE 3.6: Outage performance of three most strong BNs considering fixed-ordered
decoding scheme, with respect to the number BNs N (y = —7 dB).

thus, the SIC decoder makes fewer decoding errors. Note that when (;, = --- = (j,, the
actual values of Ck(_) does not matter due to the fact that, when the background noise
is omitted in Eq.(3.33), the Ck, values will cancel each other.

Similarly, in FIGURE 3.3, we investigate the performance of throughput with respect
to UAV altitude H when the dynamic-ordered decoding scheme is considered. It can be
seen that in this case, as the UAV moves to higher altitudes, the throughput decreases
monotonically. This is because the number of BNs increase as altitude increase and since
the SINR threshold employed at the SIC receiver requires to be more than 0 dB, the SIC
receiver decodes correctly. Hence, we observe that to achieve a high performance in the
backscatter networks which usually operate in low powers (in this work: 20 dB), with
far away and separate receiver (the DC) and RF carrier emitter (the UAV), utilizing
SIC decoders lower SINR thresholds is very critical. FIGURE 3.3 also shows that by
using reflection coefficients apart from each other, similar to the case discussed above,
the throughput improves due to the same reason as discussed above for fixed-ordered
case.

Furthermore, in FIGURE 3.4 and 3.5, we evaluate the performance of the network
throughput with respect to the beamwidth 6, and altitude H for both fixed and dynamic-
ordered decoding schemes, respectively. The figure implies that there exists an optimal
set of beamwidth and altitude where the throughput is maximized.To be more precise,
in FIGURE 3.4, it can also be seen that at any fixed beamwidth (or altitude), there
is always an optimal altitude (or beamwidth) at which the throughput is maximized.
In FIGURE 3.5, when the UAV operates at lower altitudes, the dependency of the
throughput on the UAV beamwidth, 6, is very low since in this case more number of

BNs are served by the UAV, with lower path-loss effect. Hence, when the 6 is low,
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although the number of BNs decrease, the antenna gain increases which surpasses this
reduction. On the other hand, when the 0 is high, we observe a decreases in antenna gain
which is surpassed by the increase in the number of BNs. Moreover, to achieve higher
throughput when the UAV operates at higher altitudes, the UAV is better to operate
with a low beamwidth to overcome the path-loss effect by increasing the antenna gain.
The figure states that the sum-rate of NOMA increases as the altitude grows since the
number of BNs in the UAV’s hovering area increase as well; however, after an optimal
altitude, the sum-rate degrades dramatically due to excessive amount of interference
and path-loss effect. Moreover, the selection of reflection coefficients can increase the
distinction of received powers from BNs improving the NOMA performance. The figure
shows that when more BNs are covered, distinct reflection coefficient assignment im-
proves the sum-rate significantly.

Finally, in FIGURE 3.6, the outage performance of three most strong BNs including
k1,ko,ks, is plotted with respect the number of BNs in the target area considering the
fixed-orderd decoding scheme. Note that k; has the strongest signal and sequentially,
ko and k3 have weaker signals. As expected, the outage performance of k; is better
compared to ki and ko, since its channel gain is better and get decoded independent
of the rest of BNs. Moreover, the high number of BNs which is achieved as the UAV
operates in higher altitudes, results in worse outage performance of each BN due to the

high path-loss effect and excessive amount of interference.



Chapter 4

Data Collection via Over-the-Air
Computation in Backscatter
Networks

4.1 System Model

In this chapter, we propose a UAV mobility-assisted communication framework to
tackle the challenge of compensating the channel effect in AirComp systems. To be
more precise, a sampling-then-mapping mechanism is introduced such that the UAV
first takes samples to obtain the sum of channel gains at different locations and then
collects sensed data and computes a linear combination of sensed data. By optimizing the

linear coefficients, the UAV aims to improve the mean square error (MSE) performance.

4.1.1 Overall Network Model

As illustrated in FIGURE 4.1, We consider a wireless sensor network with N
backscatter devices distributed independently and uniformly randomly over a circular
target area with radius R..,. Fach node is equipped with a single sensor measuring an
environmental parameter such as temperature, humidity, atmospheric pressure, etc. The
node is equipped with an RF antenna receiving RF signal and then emitting a modulated
backscatter signal. The UAV has a collocated bi-static reader and acts both as a data
collector and a carrier emitter. UAV employs two separate antennas for transmission
and reception operating at different frequency bands to avoid self-interference. UAV

follows a given and fixed flight path at an altitude of H meters, and a finite number,

40
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FIGURE 4.1: Network Model.

K of stop-over positions (zk,yr), K = 1,... K over each of which it hovers for a finite
duration of time.

In a basic backscatter channel, there are two links: Forward (power-up) link from the
UAV to a sensor node, and backscatter link from the sensor to the UAV. Most air-to-
ground channel measurements and statistical models focus on large-scale statistics such
as mean path-loss [37]. In this work, we assume that there is no obstruction between
the ground sensors and the UAV, and thus, the channels between the sensors and the
UAV are assumed to be independent and identically distributed (iid) free-space path-loss
channels.

At each stop-over location, k, UAV broadcasts a carrier signal S(t), with power P

over the forward channel, i.e.,
S(t) = Re{V/Pel @It} (4.1)

Let B(t) be the received signal at sensor i, i.e.,

J/Pei@rfet)

Bi(t) = Re{L b T Ob (4.2)

where go is the channel gain at a reference distance 1 m [50], D;(k) is the distance

between the sensor ¢ and UAV when it is at location k, and n(t) is the additive white
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. . - 2p .
noise. The received power at sensor ¢ is Pg, = Each sensor node reflects a portion
1

HON
of the receiver signal over the backscatter channel. At the UAV, the received signal from

Sensor ¢ 1s

go/G Pel (2 fet)
D} (k)

Zi(t) = Ref ), (4.3)

RBVPG 2
Di(k) ) -
In the rest of the letter, we drop the t notation in order to avoid any confusion.

where (; is the backscatter reflection coefficient. The received power is Péi = (

Hence, the overall channel power gain between the sensor ¢ and UAV when UAV is at

location k, is

2
90 .
h; = =1,...,N 4.4
z(ajk) 2 (ka _ xi)2 yi27 ? ) 34V, ( )

where (x;,y;) is the coordinate of the sensor i.

4.1.2 Over-the-air functional computation

Over-the-air functional computation uses the summation property of MAC where
the sensors transmit simultaneously and coherently such that the receiver obtains a
commutable nomographic function of data. In this work, our proposed method is suitable
for a polynomial function of observations as the target nomographic function such as

the one given as:

N
1=1

where w() and v, are positive constants.

In conventional applications of Aircomp, the coherent combination of multiple re-
ceived data in the nomographic function is ensured thanks to the individual transmis-
sions amplified with a precoding gain that is reciprocal of instantaneous channel gain.
Here, we do not assume the availability of channel gains, and thus, there is no precoding
of the individual sensor transmissions. Instead, we utilize the mobility UAVs to provide
a form of channel diversity. Specifically, our proposed Aircomp method has two phases.
In the first phase, UAV collects reference signals from multiple stop-over locations. Note
that a reference signal collected by the UAV is the sum aggregate of backscatter reflec-
tions from all sensor nodes and provides sum channel gains at the respective locations.

In the second phase, UAV visits the same locations, but this time each backscatter node
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transmits their measured sensor value. The UAV is tasked to combine the measure-
ments made in the second phase by assigning a linear coefficient to each based on its

sum channel gain measurements obtained in the first phase.

4.1.3 Sampling Phase

In the first phase, UAV takes K noisy samples at different predefined locations (z, yx)
with a pilot signal, i.e., all backscatter sensors simultaneously transmit a unit value.
Hence, at sample location k, UAV receives SN | %e{% +n/(t)}, from which
it determines the sum channel gain at location k as Zfi 1 9i(zk, yr) + nj,, where nj_ is a

Gaussian distributed sampling noise with zero-mean and variance ai, , and
k

9i(zk, k) = /G Phi(zk, yk)- (4.6)

4.1.4 Mapping Phase

In the second step, the UAV starts to collect K samples at the same location (xg, yx)
with actual sensor data, i.e., d; for sensor i, ¢ = 1,..., N. We assume that sensor data
come from a Gaussian source such that d; ~ N(Mdi,a?li). Hence, after coherent and
simultaneous transmissions, the sampled data at the UAV at sample k can be written

as

N
Czkzzgi(xkayk)di+”k7 Vk=1,.... K, (4.7)
i=1

2

where ny, is a zero-mean Gaussian noise with variance o, .

Definition 4.1. Let define the estimated function d as a function of sampled data as

follows

d= f(dy,dy,...,dg), (4.8)

where f is defined as a mapping function in order to perform channel-inversion to com-

pensate the channel effect.

In this work, we consider f as a linear combination of observations such that
K N
d=>"Be(D gilwr, yr)di + ni), (4.9)

k=1 i=1
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where S,k =1,..., K, are positive linear mapping coefficients determined by the UAV.
Comparing the target function (4.5) with the estimated one (4.9), the computaion er-
ror which quantifies the AirComp performance, is measured by the mean-squared-error
(MSE) defined as

=3 a2 Z Brgi(er,yr))” + wi Var(d)")

=1 k=1

K
20> Brgi(zr, ye)wiB[d) ]
k=1

— w;B[d;"] Zﬁkgz Tk, Yk)og,) sz E[d;"]) -I-Zﬂ T (4.10)

k=1
where E[.] and Var(.) are expected and variance values, respectively. For a spacial
case where w; = 1 and v; = 1, ¢ = 1,..., N, the target function becomes the sum of

observations and the MSE can be expressed as

N

K
MSE (d, d) Zo’i Zﬁkgz Tk yr))? — 2(2 Brgi(Ths yi)wi

K
— Wikld Zﬁkgz Tk, yr)) + 1) Zud +Y  Bion,- (4.11)
k=1

k=1
4.2 Problem Formulation

Moreover, since in practical scenarios usually the exact location of sensors are un-
known, in this letter, we also assume that only the statistics of the sensor locations are
known for the UAV.

Considering the polynomial function of observations (Eq. (4.5)) as the target function,
our objective is to minimize MSE, i.e., improving the AirComp performance, by design-

ing optimal linear sampling coefficients 3 for a given UAV trajectory plan {(xx, yx) } ;.
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Thus, the optimization problem can be formulated as

N K
min By, [Z U?li ( Z Brgi(zr, yk))2 + w; Var(d;")
{ﬁk}i{:l i=1 k=1
K
—2(> " Brgi(xr, ye)wiB[dy ]
k=1
K N
—wiBd)'] Y Brgi(xr, yr)od,) + O wiBld}])?
k=1 i=1
K
+2_Bion] (4.12a)
k=1
K
S't'Z/Bk < /807 (4.12b)
k=1

where constraint (4.12b) ensures that the sum of linear mapping coefficients does not

exceed a upper bound since they are indeed power-type coefficients.

4.2.1 Solution of Optimization Problem

It is noticed the problem is not tractable in this form; however, for a special case, the

problem is convex such that optimal solution can be calculated according to Theorem 1.

Theorem 1. For the case that 5 = --- = Sk, the optimal solution of Eq. (4.19a) is

N K i i K
5= S ElgwEd T + swio Bld}"] Y, Elg,]
o

. 4.13
>z o ( Yoieq Var(g) + (31 Elgi])?) + Yhey 02, (419

where the channel gain statistics can be determined as E[g;] = [ ¢;f4(gi)dg;i, Var(g;) =
E[g7] - E[gi]*.

If the target function is considered as the sum of the observations, i.e., w; = 1,v; = 1,

we have
g = Ezj\il Ui Zszl E[gi] (4.14)
- N K K K ’ :
dim Ui (Xopmr Var(gi) + (=1 Elgi))?) + 20, o2,
2 I
Proof. 1t is noticed that w > 0, hence, the problem (4.19a) is a convex

problem with respect to 5 and can be solved by using Lagrangian method. Let £(5,7)



Chapter 4. Data Collection via Over-the-Air Computation in Backscatter Networks 46

be the Lagrangian function expressed as

N K
) = Z U?zﬁQE[(Z 9i)*) +w; Var(d}")
j =1

K K
2(BwE[d] Z — BwiE[d}"]o3, Y Elg))
N k= k=1
+ (O wEB[d]) +6220nk (KB — fo), (4.15)

=1

where 7 is the Lagrangian multiplier. Following the KKT conditions, i.e.,

9L(B,y) _
—5 =0 (4.16)
(KB — Bo) =0, (4.17)

the optimal solution, when v = 0, can be determined as Eq. (4.13). Note that we also
employ the definition of variance, Var(z) = E[2?] — E[2]? to simplify the expression.

4.2.2 Heuristic Approach

Due to the high complexity of calculating the expectation over the channel power
gains, the problem is not tractable; hence, we introduce a heuristic approach to solve the
problem. We assume that at each sampling step, the channel gains can be approximated

as follows

ag .
9i(Tks yr) ~ ﬁk,vi,k, (4.18)

hence, the optimization problem can be transformed as

min Zad Zﬁk ak —l—szar(d”’)

{Bk}k 1 4=1
ak K ag
Zﬂk dvl+1] wZE[d;’Z] ; /Bkﬁaflz)
K

+ (Z wB[d])? + > Bz, (4.19a)

=1 k=1

K

k=1

Since the problem is convex with respect to S, we can use Lagrangian method

and apply Karush-Kuhn-Tucker (KKT) conditions to solve this problem and obtain a
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sub-optimal solution as

N ;41 ;1 9 K Qs N 2
— WE[d] — wiE[d|of — > B D il 05
Bk _ szl i [ ) ] 4 [ ) ] d; ]\%Qk #k PE TN szl d17 k. (420)
ng

ag SN 2
sz‘:10’di+ n

To obtain an independent 3; value, we assume that Zk,;ék Brrag = (K — 1)Brag, we

have

N v;+1 Vi1 2
1 wE|d" —w;E|d;" |07
By = 2t N[U ] 9;"log, , Vk. (4.21)

ap gV 2 N g yae N o0
N 2ui=194; o N 2ui=194;

Moreover, for the case that the linear mapping coefficients are considered to be the same

at each sampling step, i.e., 1 = --- = Bk, we have

Yily wiBld ] — wiB[d}]od,

ﬂ = I 5 y
1 K N o | NXjpoi03,
~ 1 Q 05 t+—=x — =

N Zk_l k Zz_l d; SE  ak

Vk. (4.22)

4.3 Simulation Results

In this section, we evaluate the MSE performance considering the sum of observations
as the target function, i.e., w; = 1, v; = 1, with respect to the number of samples N
in which the UAV takes along z-axis, and also the number of backscatter sensors K
covered by the UAV. In FIGURE 4.2, the MSE performance is plotted with respect to
N. The figure illustrates that when the linear mapping coefficients G, k£ = 1,..., K,
are not chosen wisely to compensate the channel effect according to the summation of
channel gains and channel statistics, there is around 10 dB reduction in the MSE value
compared to the case that no channel inversion is performed. Moreover, as the number
of samples N increases the MSE degrades dramatically and becomes almost fixed after
some number of sampling numbers. It is also observed that noise have a significant effect
on the performance of MSE such that when K = 5, there is up to 5 dB reduction in MSE
trend. The network parameters that are considered in this experiment are as P = 30
dBm, 02 = —70 dBm, H =4 m, R.p, =4 m, K =5, N = 50, and ¢ = 0.99. Moreover,
since backscatter systems mainly operate at f = 868 MHz, we consider gg = 0.0275
(90 = 57)-

To examine the performance of the MSE with respect to the number of backscatter
sensors K, FIGURE 4.3 is plotted. It can be seen that with the increase of the number
of ToT backscatter sensors the decreasing rate of is the same for both of cases where
linear mapping coefficients are considered to be equal or are selected individually. The
network parameters that are considered in this experiment are as P = 30 dBm, cr% =
—70 dBm, H = 4 m, R,y = 4 m, K =5, N = 50, and ¢ = 0.99. Moreover, since
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- (without noise): Eq.(18)

—~ . (with noise): Eq.(18)
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FIGURE 4.2: MSE performance vs. the number of samples K (N = 50, go = 0.0275,
H=4m, R.,, =4 m, P =30 dBm).
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FIGURE 4.3: MSE performance vs. the number of sensors N (K = 5, go = 0.0275,
H=4m, R.p, =4 m, P =30 dBm).

backscatter systems mainly operate at f = 868 MHz, we consider gy = 0.0275 (g9 =
ﬁ). Furthermore, in FIGURE 4.2 and 4.3, considering the carrier frequency to
be f = 868 KHz, we evaluate the MSE performance with respect to the number of
samples K and the number of sensors NV, respectively. The network parameters that
are considered in these experiments are as P = 20 dBm, o2 = —70 dBm, H = 75 m,
Reow =50 m, K =5, N =50, ¢ =0.99, and gy = 27.5037. It can be seen that when
the backscatter sensors operate at lower frequencies, noise has negligible effect on the
received signal and accordingly the MSE performacne. Moreover, a large area can be

also covered by this consideration while UAV hovers at high altitudes.
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FIGURE 4.4: MSE performance vs. the number of samples K (N = 50, go = 27.5037,
H =75m, Rep, =50 m, P =20 dBm).
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FIGURE 4.5: MSE performance vs. the number of sensors N (K = 5, go = 27.5037,
H =75 m, R.p, =50 m, P =20 dBm).



Chapter 5

Summary

The main contributions of this thesis are summarized as following.

In Chapter 2, we develop a framework where the UAV is used as a replacement to
conventional terrestrial data collectors in order to increase the efficiency of collecting
data from a field of passive backscatter sensors, and simultaneously it acts as a mobile
RF carrier emitter to activate backscatter sensors. In the MAC layer, we employ uplink
power-domain NOMA scheme to effectively serve a large number of passive backscatter
sensors. Our objective is to optimize the path, altitude, and beamwidth of the UAV
such that the network throughput is maximized. Moreover, in Chapter 3, we consider a
separate data collector and RF carrier emitter such that the former is a gateway on the
ground and the latter is a single UAV hovering hover the field of backscatter sensors.
In both these chapters, an optimization framework is presented to identify the trade-off
between numerous network parameters, such as UAV’s altitude and beamwidth, num-
ber of backscatter devices, and backscatter coefficients. Numerical results show that an
optimal altitude and beamwidth is computable for various network setups and that the
impact of backscattering reflection coefficients on the maximum network throughput is
significant. Based on this optimal altitude and beamwidth, we also show that an optimal
trajectory plan is achievable.

In Chapter 4, we utilize the mobility of UAV in order to take sample reference mea-
surements of sum channel gains from a number of different locations. Specifically, a
sample-then-map mechanism is proposed, wherein UAV takes two flight round over the
network. In the first round, UAV transmits RF signal and backscatter sensor nodes re-
turn back reference values, which in turn provides UAV the sum channel gains at various
different locations over the area of coverage. In the second round of flight, UAV trans-
mits RF signal, and this time backscatter nodes return their actual sensor measurements.
UAV calculates linear coefficients based on the measured sum channel gains, to mini-

mize the mean square error (MSE) of a linear mapping of the over-the-air-computation

50
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measurements obtained at these various network locations. The performance of the pro-
posed communication mechanism as a simple to implement channel-inversion technique
to compensate the channel effect in AirComp systems is analyzed. For polynomial class
of functions, a general closed-form expression for the mean squared error (MSE) is also
derived. Due to the complexity of the expression, the optimization problem is solved for
a special scenario. Moreover, a heuristic approach is also suggested with an acceptable
performance. Finally, our results demonstrate that under realistic channel conditions,
with a network of 50 sensor nodes, MSE of the proposed scheme is below 2dB, when

UAV samples the network at over 12 equally spaced locations.



Chapter 6

Conclusions and Future Works

In Chapter 2 and 3, we studied the performance of a novel network model where a
NOMA-based long-range backscatter network. Specifically, in Chapter 2, the UAV acts
as both aerial power station and data collector where the channels are modeled as path-
loss. However, in Chapter 3, the UAV only acts as a power station and a separate ground
device is considered for collecting the data. In both Chapter 2 and 3, our objective was
to investigate the relationship between the optimal altitude and beamwidth of the UAV
and the total number of successfully decoded bits and the UAV’s flight time. To the
best of the author’s knowledge, this is the first work in the literature which studies the
UAV-enabled backscatter networks where the objective is to maximize the number of
successfully decoded bits while minimizing the flight time by finding the UAV’s optimal
altitude. The results show that for a selection of parameters, there exist an optimal
altitude where the ratio of the number of successfully decoded bits to the flight time
is maximized. The limitations of our model include: 1) Availability of perfect location
information of BNs; 2) static assignment of reflection coefficients. Moreover, the design
framework can also be extended to the multi-UAV scenario, where the UAV-BN associ-
ation and co-channel interference should be taken into account.

Moreover, in Chapter 4, the major contribution is the introduction of an UAV
mobility-assisted sampling-then-mapping mechanism as a simple channel-inversion tech-
nique to compensate the channel effect in AirComp systems. The proposed approach
improves the AirComp performance significantly in terms of MSE. As a future work, we
will consider joint optimization of UAV location, backscattering reflection coefficient al-
location, and linear sampling coefficient allocation policies with the aim of minimization
of the MSE under UAV mobility and backscattering constraints. Another direction is

to aim to find an optimal channel-inversion function such that MSE is minimized.
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