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ABSTRACT 

INTEGRATION OF INERTIAL MEASUREMENT UNIT AND CAMERA 

FOR A VERTICAL LANDING AIRCRAFT ON A PATTERN  

BUSINGYE, Andrew 

Master of Science, Mechanical and Aeronautical Engineering 

Supervisor: Assist. Prof. Dr. Habib Kanberoglu 

[01/08/2024], 108 pages 

This thesis presents an integrated system for achieving robust relative navigation of 

a flying vehicle mostly at low altitudes vertical landing approach. The integration 

combines stereo cameras, an Inertial Measurement Unit (IMU), and an extended 

Kalman filter (EKF) to estimate navigation parameters (attitude, velocity, and 

position). 

The aim is to enhance the robustness and accuracy of the relative navigation system 

in an environment where inertial navigation system INS/GPS (Global Positioning 

System) integrations signals may not provide reliable navigation due to the external 

jamming signals. The integration of stereo cameras and IMU provides 

complementary strengthened information for relative navigation by estimating the 

velocity, position, and orientation of a flying vehicle relative to the known location 

of the pattern. 

The simulated results show the errors of system is highly unstable when navigating 

with the pure INS and this makes it not reliable for the real navigating. Based on the 

instability of error propagations with pure INS and having no control from the 

external signal sources make INS/GPS expensive and difficult system calibrations. 

Simulated results show that the integration of stereo cameras/INS using the extended 

Kalman filter provides real-time accurate estimates in the determination of flying 

vehicle orientation, velocity, and position for the relative navigation system since 

this integration causes stable error for relative navigation with respect to the pattern. 
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The stereo cameras provide visual information and direct measurements with respect 

to the target location which enhances collision avoidance and accurate position 

estimation. The IMU provides acceleration and angular velocity information of 

flying vehicles which are used for continuous position, velocity, and orientation 

vehicle estimation over time.  

The employment of the extended Kalman filter is to fuse the information from IMU 

and cameras for continuous dynamic state estimation based on the sensor 

measurements and accountability for bias and noise from the sensor data.  

Matlab simulated results show that the integration of stereo cameras and IMU using 

an extended Kalman filter provides a real and unbiased state estimation of a flying 

vehicle’s position, velocity, and orientation for it gives an inline output with nominal 

navigation for a relative navigation system. This makes an integration of a stereo 

camera and IMU for a vertical landing aircraft on a pattern reliable, accurate, and 

cheap calibration since it requires no external signal sources as GPS does.



ÖZ 

ATALETSEL NAVİGASYON SİSTEMİ VE KAMERA VERİLERİNİN 

TÜMLEŞTİRİLMESİ BİR DESEN ÜSTÜNE DİKEY İNİŞ YAPAN UÇAK 

İÇİN 

 BUSINGYE, Andrew 

Master of Science, Mechanical and Aeronautical Engineering 

Tez Yöneticisi: Doç. Dr. Habib Kanberoglu 

 [01/08/2024], 108 sayf 

Bu tez, çoğunlukla alçak irtifalarda dikey iniş yaklaşımında uçan bir aracın sağlam 

göreceli navigasyonunu sağlamak için entegre bir sistem sunmaktadır. Entegrasyon, 

navigasyon parametrelerini (tutum, hız ve konum) tahmin etmek için stereo 

kameraları, bir Atalet Ölçüm Birimi'ni (IMU) genişletilmiş bir Kalman filtresiyle 

(EKF) birleştirir. 

Amaç, ataletsel navigasyon sistemi INS/GPS (Küresel Konumlandırma Sistemi 

entegrasyon sinyallerinin harici karıştırma sinyalleri nedeniyle güvenilir navigasyon 

sağlayamadığı bir ortamda ilgili navigasyon sisteminin sağlamlığını ve doğruluğunu 

arttırmaktır. Stereo kameralar ve IMU entegrasyonu sağlar) Uçan bir aracın bilinen 

konum konumuna göre konumunu ve yönelimini tahmin ederek göreceli navigasyon 

için tamamlayıcı, güçlendirilmiş bilgi. 

Simüle edilen sonuçlar, saf INS ile navigasyon sırasında sistem hatalarının oldukça 

kararsız olduğunu ve bu durumun onu gerçek navigasyon için güvenilir kılmadığını 

göstermektedir. Saf INS ile hata yayılımının kararsızlığına bağlı olması ve harici 

sinyal kaynaklarından kontrolün olmaması INS/GPS'in sistem kalibrasyonlarını 

pahalı ve zor hale getirir. 

Simüle edilmiş sonuçlar, stereo kameraların/INS'nin genişletilmiş Kalman filtresini 

kullanan entegrasyonunun, ilgili navigasyon sistemi için uçan araç yöneliminin, 

hızının ve konumunun belirlenmesinde gerçek zamanlı doğru tahminler sağladığını 

vii 
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göstermektedir; çünkü bu entegrasyon, göreceli navigasyon için sabit hataya neden 

olur. desene. 

Stereo kameralar, çarpışmadan kaçınmayı ve doğru konum tahminini geliştiren, 

hedef konuma göre görsel bilgi ve doğrudan ölçümler sağlar. IMU, zaman içinde 

sürekli konum, hız ve araç yönelimi tahmini için kullanılan uçan araçların ivme ve 

açısal hız bilgilerini sağlar. 

Genişletilmiş Kalman filtresinin kullanılması, sensör ölçümlerine ve sensör 

verilerinden gelen yanlılık ve gürültüye ilişkin hesap verebilirliğe dayalı olarak 

sürekli dinamik durum tahmini için IMU ve kameralardan gelen bilgilerin 

birleştirilmesidir. 

Matlab benzetimli sonuçları, stereo kameraların ve IMU'nun genişletilmiş bir 

Kalman filtresi kullanılarak entegrasyonunun, uçan bir aracın konumu, hızı ve 

yönüne ilişkin gerçek ve tarafsız bir durum tahmini sağladığını ve ilgili bir 

navigasyon sistemi için INS/GPS navigasyonu ile hat içi çıktı verdiğini 

göstermektedir. . Bu, GPS'in yaptığı gibi herhangi bir harici sinyal kaynağı 

gerektirmediğinden, dikey iniş yapan bir uçak için stereo kamera ve IMU'nun 

güvenilir, doğru ve ucuz bir kalibrasyon modeli üzerinde entegrasyonunu sağlar. 
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CHAPTER 1 

INTRODUCTION 

Integration of an inertial measurement unit (IMU) and stereo camera for a vertical 

landing of a flying vehicle on a pattern improves the accuracy and robustness of 

navigation systems. The fusion of these sensors integration using the inertial 

measurement unit (IMU) and filtering the undesired noise by using the Kalman filter 

enhances the position and obstacle identification and the overall navigation 

performance including vehicle attitude. Stereo cameras enable depth perception and 

provide visual information. The use of an inertial measurement unit (IMU), for this 

system assists in providing the angular velocities and acceleration data to estimate 

the flying vehicles’ orientation. An IMU is composed of three-axis orthogonal 

gyroscopes and accelerometers. The inertial navigation system is said to be strap-

down INS when the IMU is directly installed to the vehicle’s body. INS is a real-

time algorithm to estimate the position, orientation, and velocity of a flying vehicle 

by integrating the signal rates given by an IMU [1]. To determine the position and 

velocity double integration of nongravitational and gravitational acceleration from a 

three-axis accelerometer is performed. These sensors are all subjected to errors and 

noises which result in unstable results. To make smooth output in attitude, position, 

and velocity calculated by the stereo cameras and IMU, the deployment of Kalman 

filter to estimate the system process is an essential activity in minimization of sensor 

errors and noises hence optimizing the system output accuracy. Combining data from 

multiple self-signal-reliant sensors provide the system an increasted accuracy and 

robustness compared to individual sensor or multiple sensors that depends signals 

from external sources. 
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1.1 Navigation Systems Background 

The navigation system is a method of determining and planning the movement from 

one place to another  (Chiella, 2019). Navigation is categorized as either absolute or 

relative navigation systems. In this thesis, the relative navigation system is the main 

concern. 

Navigation with relation to a local reference frame is referred to as relative 

navigation. We suggest that the local frame shift as the vehicle travels through its 

surroundings, creating a pose graph-based topological representation of the outside 

World [2], [3]. 

A relative navigation system that improves aircraft situational awareness during 

formation flying is detailed. A relative navigation system determines relative 

location and velocity by analyzing the disparity between signals from pairs of sensors 

installed on flying vehicles. The system is predicated on the global positioning 

system (GPS) and inertial navigation system (INS) navigation technologies that are 

widely used in aircraft. The method involves calibrating the relative INS position 

using relative GPS readings [3], [4]. 

In ancient times various methods of navigation were used. Among many,  is to utilize 

dead reckoning to calculate the present position based on starting position, speed, 

and direction measurements. Dead reckoning involves taking the last known position 

and time, recording the average speed and heading since then, and calculating the 

present time. To calculate velocity components north and east, the speed must be 

resolved using the heading angle. The change in position is calculated by multiplying 

each position by the time of the previous one. Finally, the position changes are added 

to the initial position to determine the current position. An equivalent process can be 

undertaken using inertial sensors  [1]. The inertial sensors are accelerometers and 

gyroscopes which can sense the translational and rotation movements relative to an 

inertial frame. Inertial navigation system has imapcted a lot as the main component 

for relative navigation system nevertheless the errors of the system has remarkebly 

identified over the time. As a solution to stablise those errors, the need of external 
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systems come into existitance. The INS integration with global positioning system 

(GPS) acted as a very good choice in many cases. In flying vehicles, the inertial 

navigation system (INS) and its integrations provide the attitude, velocity, and 

position of the vehicle accurately however the system requires other sources of 

information and this information is likely to be affected by environmental factors. 

This shows that an inertial navigation system is not a stand-alone navigation 

component but involves other signal source systems or units. Global positioning 

system signals depend upon the signal strength from the inline satellite signals. It 

was studied that the signals for global positioning systems to be reliable at least four 

satellite signals are to be received by GPS and the inertial measurement unit 

information/readings to be reliable depends upon gyroscopes and accelerometer 

calibration and installation accuracy of the component. INS with its intagration 

sensors, provides absolute information that must be transformed to the relative 

coordinates using the appropriate transformation matrix. The relative information is 

often required for formation control applications and coordination [5], [6]. 

Though the integration of global positioning system signals with inertial 

measurement unit has become the standard approach for position and attitude 

information display identification, it was found that the inertial navigation multi-

sensor fusion which involves global positioning system (GPS) and inertial 

measurement unit (IMU) is complex and expensive not suitable for some flying 

vehicles (Eric N. Johnson, 2007), [7], [8]. The [9], and [10] found that the 

implementation of a vision-based navigation system could be the way to enhance 

relative navigation system accuracy since the camera is a self-signal reliance. Vision-

based navigation method is adopted for navigation relative to the known fixed 

reference. The target's horizontal and vertical positions in the image plane are 

measured noisily by the camera in each of these methods, and the position and 

velocity of the aircraft in relation to the target are then estimated using an Extended 

Kalman Filter (EKF). Changes in the range from the camera to the target seems to 

be harder to determine due to the difficulty of depth perception with monocular 

vision [11]. The difference between successive image frames is tiny when the air 

vehicle is flying straight and blurry at low altitudes towards a non-accelerating target, 
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which leads to a poor estimate of the target's distance from the aircraft. Based on 

[12], [13] the mostly used navigation systems taking an example of inertial 

navigation systems (INS) with its integrations like global positioning(GPS), 

GLONASS a Russian global navigation system, and Galileo, which is all generalized 

as global navigation satellite systems (GNSS) are all external signal dependants, and 

these external signals are the environmental effects, the use of the signal self-reliant 

system could be the solution to this issues and hence the flying vehicle navigation 

safety achieved. The new algorithm of using a camera and inertial measurement unit 

(IMU),is expected enhencincing the orientation and attitude of a flying vehicle 

mainly at low altitudes. With the use of suitable signal filters like Kalman filters, will 

be helpful in state estimation of flying vehicles relative to the reference frame. 

Various state estimation methods are to be studied in order to choose the suitable 

method for air vehicles mostly at low altitudes. The integration of the inertial 

measurement unit and camera is expected to be the new reliable navigation system. 

1.2 State Estimation Methods 

In navigation systems mostly for flying vehicles, state estimate is a crucial aspect for 

providing accurate information about the aircraft's position, velocity, and attitude at 

a given time. This information is essential for safe and efficient flight, and also for 

various mission-critical tasks such as landing, and target tracking. There are several 

methods of state estimation. 

Least square estimation method: it is a method used to estimate the state space by 

minimizing the sum of the squares of the differences between the predicted and 

measured values. Least squares can be used in a wide variety of categorical 

applications, including curve fitting of data, parameter identification, and system 

model realization. Many examples from diverse fields fall under these categories, for 

instance determining the damping properties of a fluid-filled damper as a function of 

temperature identification of aircraft dynamic and static aerodynamic coefficients, 
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orbit and attitude determination, position determination using triangulation, and 

modal identification of vibratory system [14], [15]. 

Kalman filter (KF): The Kalman filter is the most used state estimation method in 

navigation systems. This combines sensor noisy measurements with a dynamic 

model of aerial vehicles’ motion to estimate the current dynamic state. Kalman filter 

is efficient for both linear and nonlinear time-varying systems using its variant 

classes like Extended Kalman filter (EKF), and Unscented Kalman filter(UKF). In 

navigation and positioning systems, filtering methods are derived from the 

measurement equation and the nonlinear equation of state. They work in distinct 

temporal intervals. With the help of measurements from the k-1th step, the Kalman 

filter can be used to estimate an object's error or status in the kth step. Utilizing data 

regarding the system's dynamics, Kalman filters [16], [17]. The extended Kalman 

filter (EKF) is used to linearize the object dynamics equations and observation 

equations in systems with nonlinear dynamics. Partial derivatives of nonlinear state 

functions or their Taylor series expansion are used to carry out linearization. 

Unscented Kalman Filter (UKF) is an alternative to the EKF. This filter is a recursive 

estimating filter, and it functions rather well on the statistical parameters of these 

models after they have undergone nonlinear transformations. Its properties satisfy 

the requirements of substantially nonlinear systems. The unscented transform (UT), 

on which UKF is based, transforms the state vector into a collection of weighted 

sigma points. The UKF algorithms then make use of these points. The UKF 

algorithm is a collection of formulas required for steps in prediction, invention, and 

correction. A different approach to the general filtering problem is based on the 

particle filter (PF), which draws sample particles and their weights from the 

probability density via sequential importance sampling [17]. 

1.3 Sensor Errors 

It has been demonstrated that correlation-based stereo systems work well for tasks 

like creating elevation maps and robot navigation. The researcher offers a thorough 

examination of the main causes of mistake for stereo system in the context of 
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vehicle's navigation. Found that there are three main categories of errors that are 

identified which are systematic error, misalignment error, and foreshortening error. 

Significant range errors result when the total disparity errors are greater than three-

tenths of a pixel. After gaining an understanding of these causes of errors  (Yalin 

Xiong). The demonstration of the stereo algorithm inaccuracy has to be eradicated. 

Stereo cameras can be combined with additional sensors, like Inertial Navigation 

Systems (INS), to provide a complete and accurate navigation system. Sensor fusion 

approaches can improve a system's overall resilience by mitigating individual 

sensors' limits. Using an inertial measurement unit (IMU) which is an INS 

component that uses accelerometers, and gyroscopes to estimate an vehicles’ 

orientation in space. IMU outputs include measurements of acceleration, angular 

rate, and attitude. IMU like many other sensors expericence some of the errors due 

to the accelerarion rate and angular velocities of IMU accererometer and gyroscope 

sensitivity. The most common IMU errors are misalignments, scale factor, 

accelerometer, and gyroscope bias [4], [12]. 

An integration of INS/GPS impacted a lot in the navigation system for flying vehicles 

however there are some errors encountered in GPS-based relative navigation systems 

that can significantly impact the accuracy and reliability of navigation data. These 

errors can be Satellite Clock Errors caused by imperfections in the satellite's onboard 

clock and could cause discrepancies in the timing of the GPS signals, leading to 

position errors, Orbital Errors could cause inaccuracies in the reported position of 

the GPS satellites that can result into misleading information about the satellite's 

location, causing errors in the calculated position of the receiver. Ionospheric Delays 

cause variations in the ionosphere's density can delay GPS signals and is likely to 

result in errors in the calculated distance between the satellite and the receiver, 

leading to position inaccuracies and changes in the troposphere's temperature, 

pressure, and humidity these can cause errors in the signal travel time, affecting 

position accuracy [12], [18]. 
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1.4 Calibraration Methods 

In navigation it is crusial for the sensors to be calibarated for the accurate and reliable 

readings. The calibration of sensor can be categorized into intrinsic or exntrisic 

parameter calibrations. In computer vision and photogrammetry, camera calibration 

is an essential procedure that entails determining the intrinsic and extrinsic properties 

of a camera. Extrinsic characteristics specify the location and orientation of the 

camera in the world coordinate system, whereas intrinsic parameters include focal 

length, optical center, and lens distortion. The camera calibration tackles on 

calibration of both intrinsic and extrinsic parameters [19], [20]. Chassebord camera 

calibration is the most common calibration method used for camera calibration 

because of its effectiveness and simplicity. This method is done following some 

procedures like a checkerboard pattern is printed and placed in different orientations 

in front of the camera, the camera captures multiple images of the checkerboard from 

different angles, corner detection algorithms identify the corners of the squares in 

each image, these detected corners are then used to solve for the camera’s intrinsic 

and extrinsic parameters and when distance sensor is fused with the camera, the 

distance sensor calibration depends on the camera calibrated data. They provide in 

real-time accurate range measurements in large angular fields at height above the 

ground and enable vehicles to perform a wide range of tasks by fusing image data 

from the camera mounted on vehicles. Calibration of a single image using known 

geometry, it is useful when a single image is available and the geometry of the scene 

is known. Self-calibration methods use multiple images of a scene without any 

special calibration object [10], [20], [21]. In order to effectively use the data from 

the camera and laser range sensor, it is important to know their relative position and 

orientation from each other, which affects the geometric interpretation of its 

measurements [19]. The sensors are always prone to the envirnomental factors which 

includes pressure and temperature for revolving sensor components. 
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1.5 Methodology  

Based on the performance and barriers that encounter the current INS navigation 

algorithms for relative navigation systems and their integrations, the integration of 

inertial measurement unit (IMU) and camera data fused by extended Kalman filter 

as a new navigation system for a vertical landing aircraft is expected to measure the 

attitude and altitude of the flying system with respect to the known pattern.  

By the use of MATLAB environment, algorithm programming and simulation test 

of this new system is used to identify the flying vehicle velocity, position, and 

orientation behaviors and accuracy in comparison to the nominal navigation 

parameters and currently in use real INS/GPS navigation based hence aiming to 

enhance navigation accuracy of the flying vehicle that is not depending on the 

external signal sources. 
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CHAPTER 2 

INERTIAL NAVIGATION SYSTEM 

The inertial navigation system (INS) is a system cable for locating and orienting the 

vehicles. INS is composed of three-axis accelerometers and gyroscopes enabling the 

system to calculate the position and attitude of a flying vehicles. INS could be a 

solution for relative navigation or absolute navigation systems. For this case, INS for 

the relative navigation system is the basis of the study. INS for relative navigation 

systems, is an algorithm that continuously computes the flying vehicles’ orientation, 

position, and velocity relative to the reference platform without external signal 

sources [4], [22], [2]. 

2.1 Inertial Navigation Systems Modeling 

 
Figure 2 1. INS Model Diagram (Joong‐hee Han 6 July 2020) 

The figure 2.1 shows the pure INS performance in deteeermination of vehicles’ 

orientation, position, and velocity by the use of system integrators that integrates 

inertial measurement unit (IMU) data. 

Relative navigation systems for flying vehicles is important for mission 

accomplishment. The common flying vehicle navigation algorithms for relative 

navigation involves an inertial navigation system ((INS) and its integrations as the 
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modern navigation system currently used. A pure INS works by integrating 

accelerometer data to calculate velocity and double integration accelerometer data to 

position a flying vehicle. Integrating the gyroscope data by INS the vehicle’s attitude 

is determined based on the initial orientation, position, and velocity. The algorithm 

update over time is prone to sensor biases and imperfect sensor output scaling all 

lead to inaccurate readings. Since the output of the system is a result of integrating 

accelerometer and gyroscope data, this small integration repetitive error leads to drift 

error [1]. The integrations of INS were introduced due to the increased errors of the 

system with respect to time. To smoothen the system errors the system was integrated 

with other sensors/systems such as the global positioning system (GPS) [23], [24]. 

INS/GPS integration has played an essential role in the navigation of flying vehicles 

and in various robot control systems. Even though the use of the INS/GPS became a 

reasonable idea, there are some environments where GPS cannot operate positively 

since it is an external signal dependent. The way to reduce errors resulted in poor 

satellite signals to the GPS receiver, and the IMU bias the deployment of the Kalman 

filter to linearize the nonlinearized data [6], [25] the Kalman filter is updated with 

the GPS. In the circumstances where GPS reception is spotty, this arrangement has 

an edge. When the observed number of satellite signals does not reach four, loosely 

coupled filters are unable to provide filters with accurate data. Enhancing navigation 

accuracy by limiting drift during the INS cycle and under poor GPS signal reception, 

is possible through the vehicle state extension to incorporate IMU biases [6]. 

Inertial navigation system plays a big role in aerospace navigation systems using 

inertial sensor measurements for continuous vehicle navigation applications. 

Acellerommeter for identification of vehicle acceleration and velocities, gyroscope 

for the angular velocity measurements. Although the errors of the INS have 

remarkeble identified with time. The INS intergtartion algorithm for linearisation 

and fuse data from the fore mentioned sensors have stabolised the errors and makes 

it happen to identify the attitude and altitude of flying vehicle. The inertial navigation 

system modeling approches require the kinematic modeling since it involves the 

motion system. The involvement of intagration measured accelaration to estimate 

position and accelaration and the involvement of measured angular velocities in 
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estimation of vehicle orientation. The system modeling considers also inertial 

navigation error modeling approach [13], [26]. Regardless of the current accuracy, 

the system encounters several errors like drift, bias, noises, and environmental 

factors, the approach to realizing error is aiming for accuracy enhancement for the 

more improved navigation system. Since the inertial navigation system is a not stand 

alone sensor system, the algorithm modeling approach is to be considered for multi-

sensor data fusion and state estimate linearization. In system modeling, the study of 

the environment modeling approach is among the crucial items for the system 

behavior anticipation and estimation of results in various environmental conditions. 

The modeling approaches are considered and studied aiming for improved system 

feedback accuracy [22], [13], [26]. 

2.2 Navigation Equation 

Navigation equations refer to algorithms and mathematical formulas for navigation 

systems to determine the altitude and attitude of a flying vehicle. The study’s 

concern here is the inertial navigation equations as the fundamental equations for 

navigation systems. inertial navigation equations rely on angular velocity and 

acceleration to determine vehicles’ orientation and position. Navigation algorithms 

involve various coordinate frames and the transformation of coordinates between 

them. For example, inertial sensors measure motion concerning an inertial 

frame which is resolved in the host platform’s body frame. This information is 

further transformed into a navigation frame. A global positioning system (GPS) 

receiver initially estimates the position and velocity of the satellite in an inertial 

orbital frame. Since the user wants the navigational information with respect to the 

Earth, the satellite’s position and velocity are transformed to an appropriate Earth-

fixed frame. Since measured quantities are required to be transformed between 

various reference frames during the solution of navigation equations, it 

is important to know about the reference frames and the transformation of 

coordinates between them [22], [26], [12]. İnertial navigation equations for flying 

vehicles are categorized into acceleration and angular velocities since the vehicle 
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involves motion. And also the Eulers equation for the orientation of the vehicle. This 

Euler equation depends on the translation and transformation matrices due to the 

yaw, pitch, and roll of the flying vehicle. Considering rotation between two frames, 

the general rotation matrix is C[1]. 

𝐶𝑏
𝑛 = [

cs 𝜃 cs𝜓 sn𝜙 sn 𝜃 cs𝜓 − cs𝜙 sn𝜓 sn𝜙 sn𝜓 + cs𝜙 sn 𝜃 cs𝜓
cs 𝜃 sn𝜓 cs𝜙 cs𝜓 + sn𝜙 sn𝜃 sn𝜓 cs𝜙 sn 𝜃 sn𝜓 − sn𝜙 cs𝜓
− sin 𝜃 sn𝜙 cs 𝜃 cs𝜙 cs 𝜃

] 
(2.1) 

Where cs, sn, ψ, 𝜃, 𝑎𝑛𝑑 𝜙 are cosine, sine, yaw, pitch, and roll angles respectively. 

𝐶𝑏
𝑛 is the rotation matrix of the body relative to the navigation frame. The rotation 

matrix of the navigation frame relative to the body frame is given by   𝐶𝑛
𝑏 = (𝐶𝑏

𝑛)′ 

The derivation Euler angles are calculated directly from the direction cosine matrix. 

The below formulas do not apply to an angle 90𝑜 pitch. 

ψ = arctan [
𝐶21

𝐶11
] 

𝜃 = arcsin[−𝐶31]   (2.2) 

𝜙 = 𝑎𝑟𝑐𝑡𝑎𝑛 [
𝐶32

𝐶33
]  

Taking into account the latitudes, longitude, and altitude, calculating the position 

vector is possible [27]. 

𝑟𝑒 = [

(𝑁 + ℎ)𝑐𝑜𝑠𝜑𝑐𝑜𝑠𝜆
(𝑁 + ℎ)𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆

(𝑁(1 − 𝑒2) + ℎ)𝑠𝑖𝑛𝜑

]  (2.3) 

Where 𝑟𝑒 =(xe,ye, ze) is the coordinate of the position vector in the earth frame. 𝜑 is 

latitude, 𝜆 is longtude and ℎ 𝑖𝑠 𝑎𝑙𝑡𝑖𝑡𝑢𝑑𝑒.   Knowing latitude at h=0, the below 

equations are a simple way to use in analytically find the latitude, longitude, and 

altitude hence easy to know the position of an object. 

Lattitude 𝜑0=tan−1(
ze

√𝑥𝑒
2+𝑦𝑒

2
(

1

1−𝑒2)) at h=0 
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[

𝜑
𝜆
ℎ
] =      

[
 
 
 
 
 
 tan

−1(
ze

√𝑥𝑒
2+𝑦𝑒

2
(1 +

𝑒2𝑁𝑠𝑖𝑛𝜍0

ze
))

tan−1 𝑦𝑒

𝑥𝑒

√𝑥𝑒
2+𝑦𝑒

2

𝑐𝑜𝑠𝜍0
− 𝑁 ]

 
 
 
 
 
 

  (2.4) 

where eccentricity e=√2𝑓 − 𝑓2  and flattening 𝑓 =
𝑅𝑒−𝑅𝑝

𝑅𝑒
, 

𝑅𝑒 𝑎𝑛𝑑 𝑅𝑝 𝑎𝑟𝑒 𝑒𝑞𝑢𝑎𝑡𝑜𝑟𝑖𝑎𝑙 𝑟𝑎𝑑𝑖𝑢𝑠 𝑎𝑛𝑑 𝑝𝑜𝑙𝑎𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑎𝑟𝑡ℎ 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 

The rotation matrix of the earth frame relative to the navigation frame is denoted by 

𝐶𝑒
𝑛 = [

−𝑐𝑜𝑠𝜆𝑠𝑖𝑛𝜑 −𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜆 𝑐𝑜𝑠𝜑
−𝑠𝑖𝑛𝜆 𝑐𝑜𝑠𝜆 0

−𝑐𝑜𝑠𝜆𝑐𝑜𝑠𝜑 −𝑐𝑜𝑠𝜑𝑠𝑖𝑛𝜆 −𝑠𝑖𝑛𝜑
]     (2.5) 

then the rotation matrix of the navigation frame relative to earth frame 𝐶𝑛
𝑒 = (𝐶𝑒

𝑛)′. 

İn the determination of the flying vehicles’ orientation and position, the angular 

velocity is to be considered. the angular velocity is denoted by omega (𝜔). The 

angular velocity of the navigation frame with respect to the earth frame is denoted 

by 

𝜔 𝑒𝑛
𝑛 = [

𝜆̇𝑐𝑜𝑠𝜑
𝜑̇

−𝜆̇𝑠𝑖𝑛𝜑

]  (2.6) 

The real general navigation equations are denoted by and where 𝜔𝑛𝑏
𝑏 = 𝜔𝑖𝑏

𝑏 - 𝐶𝑏
𝑛𝜔𝑛𝑏

𝑛  

𝜔𝑖𝑏
𝑏  is the output of gyroscope measurement readings. The angular velocity of a body 

relative to the navigation frame has three independent equations that can be solved 

as Θ̇=E(Θ)  𝜔𝑛𝑏
𝑏   for  Θ =  [

𝜙
𝜃
𝜓

] where Θ̇ is the Euler angular rates and Θ is Euler’s 

angles (roll, pitch, yaw) that is 123 series. at t=0 

 

𝑣̇𝑛  =  𝐶𝑏
𝑛𝑓𝑏 + 𝑔𝑛 − (𝜔𝑖𝑛

𝑛 + 2𝜔𝑖𝑒
𝑛 )𝜈𝑛 

𝑓𝑏 =  𝐶𝑛
𝑏[𝑣̇𝑛 − 𝑔𝑛 + (𝜔𝑒𝑛

𝑛 + 2𝜔𝑖𝑒
𝑛 )𝜈𝑛]   

(2.7) 
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where 𝜔𝑖𝑒
𝑛  =[

0
0
𝜔𝑒

]    

The position rate estimation is denoted by 

   𝑟̇ = 𝐷𝜈𝑛 

 𝜔𝑛𝑏
𝑏 = 𝜔𝑖𝑏

𝑏 −  𝐶𝑛
𝑏𝜔𝑖𝑛

𝑛   

(2.8) 

 

𝐷 = [

1

𝑅+ℎ
0 0

0
1

𝑅+ℎ
0

0 0 −1

]    

The vehicle state estimate is denoted by 𝑥̇=𝑓(𝑥, 𝑢). Where 𝑥 = [
Θ
𝜈𝑛

𝑃
]and 𝑢 = [

𝑓𝑏 

𝜔𝑏
] 

P= [
𝑥
𝑦
𝑧
] , Θ =  [

𝜙
𝜃
𝜓

], 𝜈𝑛 = [

𝑣𝑛

𝑣𝑒

𝑣𝑑

] , 𝑓𝑏 =  [

𝑓𝑥
𝑓𝑦
𝑓𝑧

], 𝑟̇ = [

𝜑̇

𝜆̇
ℎ̇

],and 𝜔𝑏 =  [

𝜔𝑥

𝜔𝑦

𝜔𝑧

] 

Accurate position, orientation, and translation of flying vehicles result in a safe flight 

navigation system which is the major item necessary for flying vehicles. 

2.3 INS Discretization 

To calculate the vehicle’s attitude, velocity, and position, the INS mechanization 

uses the inertial dynamic equation of mechanization. The four coordinate frame 

scripts are used. These are n- for navigation frame, e- for earth frame, b- for body 

frame, and i- for inertial frame (Wu, 2021). 
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Figure 2 2. INS block diagram (Young Yoon Jang 6 July 2020) 

When the IMU is installed on the vehicle incorporated with KF dynamic readings. 

Noise covariance estimation algorithm for INS /GNSS integrated navigation-based. 

The KF measurement vector is the difference in velocity between the GNSS 

observation and the INS prediction.  

Based on the real state estimation system of the INS model. 

𝑥̇ =  𝑓(𝑥, 𝑢, 𝑤)  (1) 

Where 𝑥̇, 𝑥, 𝑢, 𝑤 represent continuous real state space estimation, state vector, real 

system input vector, and system sensor noise respectively. The state vector is 

composed of position, velocity, and orientation vectors, 𝑢 is the input vector for the 

accelerometer and gyroscope readings and 𝑓 is a nonlinear function describing the 

dynamic system. 

In this context of an Inertial Navigation System (INS), discretization refers to the 

process of transforming continuous-time INS models into discrete-time models that 

may be used with digital computers. For real-time control and navigation 

applications, this is essential. To estimate location, velocity, and orientation, the 

method involves discretizing the state-space representation of the INS dynamics. 

Typically, this involves integrating accelerations and angular rates [1], [26]. 
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The state vector 𝑥𝑘, which normally consists of position, velocity, and orientation, is 

estimated by an INS using data from accelerometers and gyroscopes. The depiction 

of state-space in continuous time as: 

𝑥𝑘 =  𝐹(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) (2) 

To discretize the time continuous model, the approximation of the state evolution 

over discrete time steps.the discrete definition of time points Δ𝑡. 

Dynamic state discretization at the time step can be approximated using numerical 

integration methods which could be either the Euler method or the range Kutta 

method. 

Euler discretization method 

𝑥𝑘 = 𝑥𝑘−1 + Δ𝑡𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)  (3) 

Range Kutta method: 

𝑘1 =  𝑓(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) 

  

 𝑘2 = 𝑓(𝑥𝑘−1 +
Δ𝑡

2
𝑘1, 𝑢𝑘−1, 𝑤𝑘−1) 

𝑘3 = 𝑓(𝑥𝑘−1 +
Δ𝑡

2
𝑘2, 𝑢𝑘−1, 𝑤𝑘−1) 

𝑘4 = 𝑓(𝑥𝑘−1 + Δ𝑡𝑘3, 𝑢𝑘−1, 𝑤𝑘−1)  

 

 

(2.13) 

Therefore the general form is 

𝑥𝑘 = 𝑥𝑘−1 +
Δ𝑡

6
𝑓(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) 

𝑥𝑘−1 +
Δ𝑡

6
𝑓(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) = 𝐹(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1) 

𝑥𝑘 =  𝐹(𝑥𝑘−1, 𝑢𝑘−1, 𝑤𝑘−1)  (4) 

The INS measurement discretization involves measurement updates 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘  (5) 
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Where 𝑧𝑘, 𝐻𝑘, 𝑥𝑘 , and 𝑣𝑘 are the measurement vector, the measurement matrix, the 

INS prediction result at time k from the navigation, and the measurement zero-mean 

Gaussian noise respectively. 

Due to the double integration of accelerometer measurements to obtain location and 

the integration of gyroscope measurements to obtain orientation, the fundamental 

difficulty with an INS is that small sensor errors can accumulate and worsen over 

time. Covariance analysis and state-space models can be used to examine how these 

errors spread. 

Relative navigation errors from Inertial Navigation Systems (INS) can be modeled 

to see how they affect navigation accuracy. 

2.4 Inertial navigation system errors 

Inertial Navigation Systems (INS) are widely used in relative navigation systems due 

to their ability to provide continuous and independent position, velocity, and 

orientation information. However, INS are subject to various errors that can 

accumulate over time and degrade the accuracy of the navigation solution. Some of 

the errors, are: 

Sensor error s which could be a result of gyroscope and accelerometer bias, scale 

factor. The constant offset may cause orientation, velocity, and position errors. 

Alignment error involves inertial misalignment and drift errors in the initial 

alignment of the INS with the reference frame. This includes errors in the initial 

position, velocity, and orientation and gradual change in alignment over time due to 

sensor biases and other errors. 

Environmental errors occur due to the temperature effects leading to drift, bias, and 

magnetic interference in the case of the system with the magnetometer. And the 

additional INS error due to the integrated systems is an integration error. 

Mechanization errors arise from incorrect compensation for the Coriolis and 

centripetal forces in the mechanization equations [24], [1], [18]. 
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The accelerometers and gyroscopes and their gradual integration are the main causes 

of these inaccuracies. The difference between the real estimated state and the 

nominal state estimation analyzes the error state vector. 

𝑥̇𝑛 = 𝑓(𝑥𝑛, 𝑢𝑛)  

𝑥̇ = 𝑓(𝑥, 𝑢̃)  

𝑢̃ = 𝑢 − 𝑤  

 

 

(2.16) 

Where 𝑥𝑛̇ and 𝑥̇ are nominal and real system state estimates. 𝑢̃, u and w are real 

measured inertial measurement unit (IMU) measured output, real IMU input, and  

IMU noise respectively. 

by linearizing the state space equation to the nominal state, the error state equations 

at time step k are obtained as 

 Δ𝑥̇ = 𝑥̇ − 𝑥̇𝑛  

Δ𝑥̇ = 𝑓(𝑥𝑛, 𝑢𝑛) +
𝜕𝑓

𝜕𝑥
∆𝑥 +

𝜕𝑓

𝜕𝑢
∆𝑢 − 𝑓(𝑥𝑛, 𝑢𝑛)  

(6) 

For the above differential equation 𝑥 = 𝑥𝑛 and 𝑢 = 𝑢𝑛. 

 Δ𝑥̇ = 𝐴∆𝑥 + 𝐵𝑤 , 𝐴 =
𝜕𝑓

𝜕𝑥
|𝑥=𝑥𝑛
𝑢=𝑢𝑛

,  𝐵 =
𝜕𝑓

𝜕𝑢
|𝑥=𝑥𝑛
𝑢=𝑢𝑛

 

The above equation can be discretized as:  

∆𝑥𝑘 = 𝐹∆𝑥𝑘−1 + 𝐺𝑤𝑘−1  

𝐹 = 𝑒𝐴∆𝑡, 𝐺 = (∆𝑡𝐼 +
∆𝑡2

2
𝐴 +

∆𝑡3

3!
 𝐴2 + ⋯ +

∆𝑡𝑛

𝑛!
𝐴𝑛−1 + ⋯ ) 𝐵 

 

(7) 

  

The covariance matrix error  𝑃𝑘 propagation can be done by flowwing equation 

 𝑃𝑘 = 𝐹𝑃𝑘−1𝐹
𝑇+ 𝐺𝑄𝑘−1𝐺

𝑇 

 
(8) 

where: 

𝐹𝑘 is the state transition matrix obtained from the linearized error state model and 

𝑄𝑘−1 is the process noise covariance matrix of 𝑤𝑘−1. 
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The state transition matrix 𝐹 depends on the system dynamics and the errors being 

modeled. The process noise covariance matrix 𝑄𝐾 accounts for the sensor noise and 

biases. 

Based on the signal distortion and errors generated when using INS and INS/GPS 

integrations for relative navigation systems due to systematic and environmental 

factors, system calibration methods are to be taken into account for the reliable 

system output by calibrating system sensors and the development of the visual 

algorithm by integrating distance sensor cameras using IMU and Kalman filter is 

expected to be a solution mostly at low altitudes of flying vehicle approaching to 

land. 
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CHAPTER 3 

VISUAL NAVIGATION 

The camera plays a crucial role in computer vision by enabling us to capture the 

world around us and utilize the resulting images for a wide range of applications. 

Vision-based navigation is anticipated to serve as a practical navigation solution for 

relative navigation systems in aerial vehicles. Stereo cameras can be used for terrain 

mapping, visual odometry, and landmark recognition, among other applications that 

require the acquisition of comprehensive visual information about the surrounding 

environment. This data richness enables more dependable and accurate navigation. 

The pinhole model, which outlines the mathematical representation of projecting 

points in three dimensions onto an image plane, serves as the foundational camera 

model. This model is represented as the pinhole at which light rays pass through to 

form an image on the camera sensor [21]. 

 

Figure 3 1. Pinhole model (Hartley and Zisserman, 2003) 

The figure 3.1 shows a pinhole camera model on how camera image is formed. 

Taking a camera with its major axis parallel to the Z axis and its center of projection 
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O is seen in the above figure. Since the image plane is at focus, the focal length f is 

separated from O. On the image plane of the camera, a 3D point P = (X, Y, Z) is 

photographed at coordinate 

Pc = (u, v). The camera calibration matrix C, which converts 3D P to 2D Pc, will be 

located first. Similar triangles can be used to find Pc, as we have already 

demonstrated. 

 𝑓

𝑍
=

𝑢

𝑋
=

𝑣

𝑌
  (9) 

From this equation the projection image points 

 𝑢 =
𝑋𝑓

𝑍
  

𝑣 =
𝑓𝑌

𝑍
  

(10) 

Translation of Pc to the desired origin is required if the Z-axis intersection of the 

image plane and the origin of the 2D image coordinates system do not line up. Give 

(cx, cy) the definition for this translation. Therefore, at this moment (u, v) is 

 𝑢 =
𝑋𝑓

𝑍
+ 𝑐𝑥  

𝑣 =
𝑓𝑌

𝑍
+ 𝑐𝑦  

(11) 

When considering homogeneity equations (39) and (40) can be expressed as  

 

[
𝑢
𝑣
𝑤

] = [
𝑓 0 𝑐𝑥

0 𝑓 𝑐𝑦

0 0 1

] [
𝑋
𝑌
𝑍
]   (12) 

In both the u and v directions of the camera image coordinates, the resolution will be 

the same if the pixels are square. Nonetheless, we consider rectangle pixels with 

resolutions of 𝑢 and 𝑚𝑣 pixels in the u and v directions, respectively, for a more 

generic scenario. Thus, the u and v coordinates of Pc should be multiplied by 𝑚𝑢 and 

𝑚𝑣, respectively, to measure it in pixels [21]. Therefore the equations 

 𝑢 =
𝑋𝑓

𝑍
+ 𝑚𝑢𝑐𝑥  

𝑣 =
𝑓𝑌

𝑍
+ 𝑚𝑣𝑐𝑦  

(13) 
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[
𝑢
𝑣
𝑤

] = [
𝑓𝑚𝑢 0 𝑚𝑢𝑐𝑥

0 𝑓𝑚𝑣 𝑚𝑣𝑐𝑦

0 0 1

] [
𝑋
𝑌
𝑍
]  (14) 

 

𝛼𝑥 = 𝑓𝑚𝑢, 𝛼𝑦 =  𝑓𝑚𝑣, 𝑝𝑥 = 𝑚𝑢𝑐𝑥 𝑎𝑛𝑑 𝑝𝑦 = 𝑚𝑣𝑐𝑦  

Then the equation is expressed as  

 
[
𝑢
𝑣
𝑤

] = [
𝛼𝑥 0 𝑝𝑥

0 𝛼𝑦 𝑝𝑦

0 0 1

] [
𝑋
𝑌
𝑍
]  (15) 

 

From P=[
𝑋
𝑌
𝑍
] and K=[

𝛼𝑥 0 𝑝𝑥

0 𝛼𝑦 𝑝𝑦

0 0 1

], 

 
[
𝑢
𝑣
𝑤

] = 𝐾𝑃  (16) 

Where K is the intrinsic parameters of the camera (pixel, focal length).  

K= [

𝛼𝑥 𝑠 𝑝𝑥

0 𝛼𝑦 𝑝𝑦

0 0 1
] when it has skew parameters. 

This typically occurs when the axes that coordinate the image, u and v, are not 

orthogonal to one another. It should be noted that K is a 3 × 3 upper triangular matrix. 

This is typically referred to as the camera's intrinsic parameter matrix. 

To align the camera coordinate system with the setup shown in Figure 1, we must 

perform a rotation and translation if the camera's center of projection is not at (0, 0, 

0) and z is not perpendicular to the image plane. Let T (𝑇𝑥, 𝑇𝑦, 𝑇𝑧) represent the 

camera translation vector to the XYZ coordinate origin. Allow the rotation to be 

represented by a 3 × 3 rotation matrix R to align the primary and Z axes. The 3 × 4 

matrix is the result of applying translation and rotation in order to generate the matrix 

[10], [28]. 
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The rotation matrix R which represents 𝑅𝑥, 𝑅𝑦, 𝑎𝑛𝑑 𝑅𝑧 matrices. 

𝑅𝑥 = [
1 0 0
0 𝑐𝑜𝑠 𝛼 𝑠𝑖𝑛𝛼
0 −𝑠𝑖𝑛𝛼 𝑐𝑜𝑠 𝛼

]  

𝑅𝑦 = [
𝑐𝑜𝑠 𝛽 0 𝑠𝑖𝑛𝛽

0 1 0
−𝑠𝑖𝑛𝛽 0 𝑐𝑜𝑠 𝛽

]  

𝑅𝑧 = [
𝑐𝑜𝑠 𝜃 𝑠𝑖𝑛𝜃 0
−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠 𝜃 0

0 0 1
]  

 

 

 

 

(3.10) 

Where 𝛼, 𝛽, and 𝜃 are the rotation angles in the x,y, and z directions. In flying 

vehicles, these angles represent roll, pitch, and yaw. 

The extrinsic parameter matrix is 

𝐸 = [𝑅 𝑅𝑇]  (3.11) 

The camera transformation matrix is expressed by  

 K[𝑅 𝑅𝑇]  (17) 

Here the camera projection points is 

𝑃𝐶 = K[𝑅 𝑅𝑇]  (3.13) 

The camera calibration matrix C is 

 𝐶 = K[𝑅 𝑅𝑇] = 𝐾𝑅[𝐼 𝑇]  

 
(18) 

Therefore 𝑃𝐶 = 𝐶𝑃 

3.1 Visual Navigation With Stereo Cameras 

Navigation with stereo cameras involves two synchronized cameras with a known 

baseline to capture image points from different viewpoints. This allows the 3D depth 

perception environment reconstructions. The method of stereo camera-based 

navigation improves the ability of flying vehicles to detect obstacles and estimate the 

vehicles’ position and velocity relative to the known platform [3], [29][30].  
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Assuming that the two cameras' optical sensors are coplanar and have the same 

characteristics and parameters the stereo processing is achieved as shown below: 

3.1.1 Stereo camera processing 

Taking world points P=[X, Y, Z] projected into stereo cameras the projection points 

are identified 𝑃𝑐1 = [𝑥, 𝑦] and 𝑃𝑐2 = [𝑥′, 𝑦′] focusing at the same image point [30]. 

Knowing the baseline (b) between two cameras, and the image disparity (d) due to 

the two camera images, the altitude is determined by triangulation. 

      𝑍 =
𝑓𝑏

𝑑
    

 

(3.15) 

Where 𝑓 is the camera pixel and disparity d = |𝑥 − 𝑥′| 

Matching points by stereo cameras method obtain disparity. The position centers can 

be determined using the center coordinates. To measure the duration between frames, 

the speed computation makes use of the location centers to calculate the distance 

between nearby frame centers. All the object points are estimated to be 

approximately at the same distance from each camera. The extraction and object size 

is estimated when disparity detection is performed. 

Obtaining the rest of the image points are computed by 

𝑋 =
𝑥𝑍

𝑓
, 𝑌 =

𝑦𝑍

𝑓
  (3.16) 

Projecting 3D world coordinates to 2D image points is denoted by normalizing Z-

axis points. 

𝑥 =
𝑓𝑋

𝑍
, 𝑦 =

𝑓𝑌

𝑍
  (3.17) 

The three-dimensional homogenous expression by taking camera reference when 

disparity is obtainable and is denoted by  

 𝑃𝑐 = (𝑋, 𝑌, 𝑍, 1) 𝑇  (19) 
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This represents the transformation of world point to camera points when disparity is 

possible to be obtained. The matrix to convert 3D points from the local reference 

system of each camera to the world points centered in a pattern is determined by 

extrinsic parameters from each camera of the stereo camera system. 

3.1.2 Stereo Camera Feature Detection  

Stereo cameras are used in the visual navigation of flying vehicles to determine depth 

perception and feature detection by the triangulation principle. This principle is done 

by capturing the images using stereo cameras from different two viewpoints to 

determine object position and feature detection. Feature detection refers to the areal 

point justification in the reliable scene identified in both stereo cameras. Scale-

invariant transform (SIFT) and speed-up robust features (SURF) are the popular 

feature detection algorithms in visual navigation systems [2], [3]. 

The detection of features by the SIFT involves some parts that include scale-space 

extrema detection, keypoint localization, orientation assignment, and keypoint 

descriptor.   

Scale-space extrema detection (SSED) is to detect and identify the most reliable 

points that are invariant to scale. It detects key points by searching for the local 

extrema difference of Gaussian [4], [5]. 

The original image point of scale space representation 𝐼(𝑥, 𝑦) is Gaussian convolved 

of a different scale (𝜎) sigma to make blurred image series. 

𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎)𝐼(𝑥, 𝑦)  

𝐺(𝑥, 𝑦, 𝜎) =
1

2𝜋𝜎2 𝑒
−𝑥2+𝑦2

2𝜎2   

 

(3.19) 

The difference of Gaussian function convolved with the image, 𝐷(𝑥, 𝑦, 𝜎) can be 

calculated from the difference of two closest scales separated by a multiplicative 

constant factor 𝑘. This allows the efficient detection of stable positions of key points 

in space scale [4], [5]. 
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𝐷(𝑥, 𝑦, 𝜎) = (𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎))𝐼(𝑥, 𝑦)  

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎)  

 

(3.20) 

Where 𝑘 is the scale factor constant and  𝐷(𝑥, 𝑦, 𝜎) is the local extrema.  

The keypoint localization is identified as local extrema in the difference of 

Gaussian.  

Tylor expression of DoG  

𝐷(𝑥) = 𝐷 +
𝜕𝐷𝑇

𝜕𝑥
𝑥 +

1

2
𝑥𝑇 𝜕2𝐷

𝜕𝑥2 𝑥  
(3.21) 

Where 𝑥 = (𝑥, 𝑦, 𝜎)𝑇 is the detected keypoint offset, D is the difference 

of Gaussian, 
𝜕𝐷

𝜕𝑥
 is gradient of D, and 

𝜕2𝐷

𝜕𝑥2 is Hessian matrix. 

The localization of x is done where 𝐷(𝑥) has reached an extremum and x 

is iteratively refined. 

 

This makes the involvement of each point comparison in the scale space.  

Orientation key points: The orientation to each key point based on the local image 

for each key point was calculated using pixel differences as [5] 

𝑚(𝑥, 𝑦) = √(𝐿(𝑥 + 1, 𝑦) − 𝐿(𝑥 − 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1) − 𝐿(𝑥, 𝑦 − 1))2   

𝜃(𝑥, 𝑦) = 𝑡𝑎𝑛−1 (
𝐿(𝑥,𝑦+1)−𝐿(𝑥,𝑦−1)

𝐿(𝑥+1,𝑦)−𝐿(𝑥−1,𝑦)
)  

 

(3.21) 

Where 𝜃(𝑥, 𝑦) and 𝑚(𝑥, 𝑦) are orientation gradents assignment feature detection using the 

SIFT technique. 

The process of detecting features in SIFT starts with generating a scale space 

representation using Gaussian blurring, identification of key points as local extrema 

in the difference of Gaussian pyramid, and then giving the key points orientations 

based on gradient orientation, generation of descriptor for each key point and 

matching the descriptors for 3D image reconstruction and recognition. The 

orientation gradient and descriptor coordinates are rotated with respect to the 

keypoint orientation in order to ensure invariance orientation. 
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SIFT makes a descriptor by including the orientation and gradient with in 

neighborhound arround the main target. To perfprm this, vector decriptor 𝑉(𝑥, 𝜎) is 

calculated from the orientation gradient weighed by their position and magnitudes. 

𝑉(𝑥, 𝜎) = [∑ 𝑤(𝑃 − 𝑥, 𝜎)𝑃𝑃 𝑒
−

||𝑃−𝑥||2

2𝜎2   
(3.22) 

P represents local neighborhood points, 𝑤(𝑃 − 𝑥, 𝜎) is the weight function, and 𝜎 is 

the scale to where descriptor is calculated. 

The discriptor matching with SIFT , uses Euclidian distance to measure descriptors 

similarities. 

𝐷(𝑉1, 𝑉2) = √∑ (𝑉1𝑖 − 𝑉2𝑖)
2

𝑖   (3.23) 

The key matching process involves  the Euclidian distance between descriptors and 

SIFT to find the neighborhoods and match the closest matches on a ratio of 

𝑟𝑎𝑡𝑖𝑜 =
||𝑣1−𝑢||

||𝑣2−𝑢||
  (3.24) 

Where 𝑣1and 𝑣2 are the closest two descriptors from the second image, 𝑢 is the 

descriptor from the first image. 

The SIFT technique makes use of the difference of Gaussians, a Laplacian of 

Gaussian (LoG) approximation. The Gaussian difference is the distance between the 

Gaussian blurrying of different images. This procedure is carried out for the various 

image octaves in the Gaussian pyramid.  
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Figure 3 2. Image detection using the SIFT technique 

(https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html 15 july 2024) 

The fig 3.2 shows how the feature is detected by SIFT by using difference of 

Gaussian. 

The  working principles between SURF and SIFT are the same except that the SURF 

as the name implies, is faster and more robust to scale changes, and orientation. It 

uses image integral in speeding up filter calculations and approximates Gaussian 

derivatives using Haar wavelets. 

 

 

 

 

 

 

 

 

https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html
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CHAPTER 4  

ESTIMATION METHODS 

Modern navigation systems utilize state estimation techniques to efficiently process 

data from various sensors, advancing navigation and tracking technologies. State 

estimation methods provide the state estimate based on the available measurements 

and a known state-space model. According to  [16], and [32] the state estimation 

methods are categorized into exact, local, and global methods. Under which the exact 

methods have been typically designed for a set of linear models. For this set, the 

solution to the Bayesian recursive relations (BRRs) results in reproducible 

conditional probability density functions (PDFs), i.e. the conditional PDFs at 

subsequent time instants share the same distribution and, thus, recursive conditional 

PDF computation reduces to recursive computation of conditional PDF parameters 

only. The exact method is presented by Kalman Filter (KF). 

Local methods are based on two approximations; first, the joint conditional 

predictive state and measurement PDF is assumed to be Gaussian; second, the 

nonlinear functions are linearizeable. The former approximation results in a linear 

structure of a local filter with respect to the measurement, and together with the latter 

approximation, it allows the use of the (linear) KF design technique also for 

nonlinear models. For this method, the linearisation can be found in derivative-based 

and derivative-free. Derivative-based involves the extended Kalman filter (EKF). 

The global methods provide accurate and consistent estimates in the form of 

conditional probability density functions (PDFs) without any assumption of the 

conditional distribution family. Global methods are capable of estimating the state 

of a non-Gaussian or strongly nonlinear system usually at the cost of higher demand. 

This method can simultaneously involve an extended Kalman filter (EKF) and/or 

unscented Kalman filter (UKF) for system linearization of non-linear functions. 
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State estimation in navigation applications can be either linear or non-linear 

estimator. The linear estimator deals with the stochastic estimation system whereas 

the non-linear estimator deals with the various stages of nonlinear stochastic systems. 

The well-known linear estimator in navigation systems that is to be discussed is the 

standard/linear Kalman filter (KF). Nonlinear estimator includes Extended Kalman 

Filter (EKF), Unscented Kalman Filter (UKF), Particle filter (PF), and multiple 

model adaptive estimator (MMAE). Under which extended Kalman filter is 

discussed in this study as the system estimator. 

4.1 Least Square 

The least square method is used when there are many equations than the unknowns. 

The residual vector's sum of squares is minimized by the solution. Assume that there 

are n parameters in a vector x  wish to estimate from vector z of m measurement 

noise where m is greater than n [27], [33]. 

𝑧 = 𝐻𝑥 + 𝑣    (4.1) 

Where the matrix 𝐻𝑚×𝑛 is a known design matrix. 

When estimating vector x using the least squares approach, the sum of the squares 

of the components of the residual vector z- 𝐻𝑥 is minimized and is represented by 𝑥̂. 

Minimize  

∥ z −  𝐻𝑥̂ ∥𝑅
2= (z −  𝐻𝑥̂)1×𝑚

𝑇 𝑅−1(z −  𝐻𝑥̂1×𝑚)  

∥ z −  𝐻𝑥̂ ∥𝑅
2= 𝑧𝑇𝑅−1𝑧 − 𝑧𝑇𝑅−1𝐻𝑥̂ − 𝑧𝑅−1(𝐻𝑥̂)𝑇 + (𝐻𝑥̂)𝑇𝑅−1𝐻𝑥̂  

(4.2) 

Differentiating the equation with respect to the state estimate 𝑥̂ 

𝜕(∥z− 𝐻𝑥∥𝑅
2 )

𝜕𝑥̂
= 0 − 𝑧𝑇𝑅−1𝐻 − (𝐻𝑇𝑅−1𝑧)𝑇 + (𝐻𝑇𝑅−1𝐻𝑥̂)𝑇 + 𝑥̂𝑇𝐻𝑇𝑅−1𝐻  

𝜕(∥z− 𝐻𝑥∥𝑅
2 )

𝜕𝑥̂
= −2(𝑧𝑇𝑅−1𝐻 − 𝑥̂𝑇𝐻𝑇𝑅−1𝐻)  

 

 

(4.3) 
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Equating to zero derivatives for the minimization   

 
𝑧𝑇𝑅−1𝐻 − 𝑥̂𝑇𝐻𝑇𝑅−1𝐻 = 0  

𝑥̂𝑇 = 𝑧𝑇𝑅−1𝐻(𝐻𝑇𝑅−1𝐻)−1  

𝑥̂ = (𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1𝑧  

𝐶𝑜𝑣(𝑥̂) = 𝐾𝑅𝐾𝑇 , 𝐾 = (𝐻𝑇𝑅−1𝐻)−1𝐻𝑇𝑅−1 

 

 

 

 

(20) 

Where R is measurement covariance. Therefore the value of 𝑥̂ is deduced by 

differentiating ∥ z −  𝐻𝑥̂ ∥2 with respect to 𝑥̂ state estimate. 

4.2 Kalman Filter 

The development of the Kalman filter in the 1950s update has impacted the 

engineering field to more advancements in filtering and state estimations since it is 

a fundamental state estimate and control system tool that critically plays a big role 

in various applications including aerospace engineering, robotics, and many others 

makes it a more reliable tool. Kalman filter is an algorithm that uses a mathematical 

series of measurements observed with respect to time and results in accurate variable 

estimates. It generates a statistically optimum estimation of the underlying system 

state by operating recursively on streams of noisy input data. 

Filtering algorithms used for navigation systems of positioning are based on 

the nonlinear equation of state as well as the measurement equation. They operate in 

a discrete time. Kalman filter allows to estimation error or state of an object in the 

kth step based on measurements in the k-1th step. Kalman filters use information 

about the dynamics of the object system. 

Kalman filter is applied for both Gaussian and nonlinear systems. And is 

categorized in various forms including the Kalman filter (KF) which is a method 

that is based on recursive Bayesian filtering where the system is assumed to 
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be Gaussian, Extended Kalman filter (EKF) is an extension of KF that deals 

with nonlinear dynamic systems for linearized dynamic systems, Unscented Kalman 

filter (UKF) is an extension of EKF operates on the statistical parameters of these 

models subjected to the non-linear transformations. UKF is based on unscented 

transform (UT), which converts the state vector into a set of weighted sigma points. 

These points are then used in algorithms for UKF. The UKF algorithm is a set of 

equations that are necessary to do prediction, innovation, and correction steps 

[34][35], [36] 

Linear Kalman filter is the particular situation that allows the entire statistics of the 

probability density functions (pdfs) of interest to be expressed as a mean vector and 

covariance matrix, a unique property that is exploited by the linear Kalman filter. 

The linear Kalman filter consists of two distinct steps which are propagation of the 

mean and covariance between time and incorporation of a discrete observation. 

Under these conditions, the a posteriori pdf is guaranteed to be Gaussian. 

The system to be estimated in its steps is represented in terms of a state-space model 

comprising two equations which are categorized into a state transition equation and 

observation equation. 

State transition equation:  

 𝑥𝑘 = 𝐹𝑘𝑥𝑘 + 𝐺𝑘 𝑤𝑘, linear form   

𝐹𝑘 =
𝜕𝑓

𝜕𝑥
| 𝑤=0
 𝑥=𝑥̂𝑘−1

, 𝐺𝑘 =
𝜕𝑓

𝜕𝑤
| 𝑤=0
 𝑥=𝑥̂𝑘−1

,     
(21) 

Observation equation:  

 𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘. Linear form 

𝐸(𝑣) = 0, 𝐸(𝑣𝑣𝑡) = 𝑅  

 

(22) 

Where  𝑥𝑘 is the state at time step [𝑘], 𝐹𝑘  is the state transition matrix, 𝐺𝑘 is the 

disturbance matrix, 𝑤𝑘 is the process noise (assumed to be Gaussian with covariance 

matrix 𝑄𝐾 ), 𝑧𝑘 is the observation at time step [𝑘], 𝐻𝑘 is the observation matrix, 𝑣𝑘is 

the observation noise (assumed to be Gaussian with covariance matrix 𝑅𝑘) 



 

35 

After having the state space equations, the second filtering algorithm is to predict the 

next state which is predicted using two equations which are prediction equation and 

error prediction equation. 

State prediction equation:  

 𝑥𝑘
^− = 𝐹𝑘𝑥𝑘−1  

^ +𝐵𝑘 𝑢𝑘 (23) 

 

Error covariance prediction:  

 𝑃𝑘
− = 𝐹𝑘𝑃𝑘−1𝐹𝑘  

𝑇 +𝑄𝑘  (24) 

 

After the prediction step, the system correction and update are necessary. İn doing 

the system update, kalman gain is the critical factor in order to minimize the system 

errors. The below equations are used in the system correction and update step. 

Kalman gain:  

 𝐾𝑘 =𝑃𝑘
−𝐻𝑘 

𝑇(𝐻𝑘 . 𝑃𝑘 
− 𝐻𝑘 

𝑇 + 𝑅𝑘 )
−1     (25) 

 

State update estimation:  

 𝑥̂𝑘 = 𝑥𝑘
^− + 𝐾𝑘 ( 𝑧𝑘 − 𝐻𝑘 𝑥𝑘

^−)    (26) 

 

Covariance error update:  

 𝑃𝑘= (I- 𝐾𝑘  𝐻𝑘) 𝑃𝑘
− (27) 

 

While many systems are well-modeled by linear stochastic equations, most real-

world applications are nonlinear at some level. There are many types of 

nonlinearities to consider. Some examples include non-Gaussian noise sources, 

saturation effects, nonlinear dynamics or measurement models, and jump 

discontinuities. All of these effects ultimately result in the true conditional state pdfs 
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being non-Gaussian in nature, which violates the fundamental assumptions of the 

linear Kalman filter those are the effects of nonlinearities on the linear Kalman filter 

(KF)  (Veth)[17], [36]. 

4.3 Extended Kalman Filter (EKF) 

Acceptable results can be obtained with the extended Kalman filter (EKF) if the 

degree of nonlinearities is nearly minimal. The system and measurement models are 

linearized using a first-order Taylor series expansion to form the foundation of the 

EKF filter design[17], [37]. 

The EKF extends the Kalman filter to handle nonlinear system dynamics and 

measurement functions by linearizing them around the current estimate of the state 

[16], [32]. The state estimate and covariance matrix are updated using prediction and 

updating steps under the following functions: 

Prediction step:  

 x̂ₖ =  f(x̂𝑘−1, uₖ, 0)  

𝑃𝑘 = 𝐹𝑘𝑃𝑘−1𝐹𝑘
𝑇 + 𝑄  

𝐹𝑘 =
𝜕𝑓

𝜕𝑥
| 𝑤=0
 𝑥=𝑥̂𝑘−1

  

(28) 

   

Measurement  

𝑧𝑘 = ℎ𝑥𝑘 + 𝑣𝑘)  

𝐻 =
𝜕ℎ(𝑥)

𝜕𝑥
| 𝑥̂𝑘−1

  

Update step:   

 𝐾𝑘 = 𝑃𝑘𝐻
𝑇(𝐻𝑃𝑘𝐻

𝑇 + 𝑅)−1  

 𝑥̂𝑘 = 𝑥̂𝑘−1 + 𝐾𝑘(𝑧𝑘 − ℎ(𝑥̂𝑘−1))  

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻)𝑃𝑘−1  

 

(4.13) 
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Where, f (x̂ₖ₋₁, uₖ) is the nonlinear state transition function, Fₖ is the Jacobian matrix 

of the state transition function h(x̂ₖ), 𝑥̂𝑘 is state update, 𝑃𝑘 is coveriance update, 𝑥̂𝑘−1 

is predictated state, 𝑃𝑘 is predicted covariance. 

Although the EKF is very widely used in navigation applications 

First, the EKF is subject to linearization errors. These linearization errors result in 

incorrect state estimates and covariance estimates and can lead to unstable operation, 

known as filter divergence. EKFs can be extremely sensitive to this effect during 

periods of relatively high state uncertainty such as initialization and start-up. The 

second issue is the inherently unimodal assumption of the EKF. In cases where multi-

modal densities are known to exist, the EKF would not be a good choice  (Veth)[17]. 
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CHAPTER 5 

CALIBRATIONS  

Accurate sensor data is essential for reliable navigation obstacle avoidance and 

environmental mapping in the world especially for flying vehicles. The sensors 

provide data required to comprehend the environment around the flying vehicle. 

Nevertheless, accurate calibration is crucial to guarantee that the information from 

sensors is accurate and reliable. Sensor calibration is the process of matching sensor 

readings complying with the standards by modifying the outputs and inaccuracies 

due to systematic and environmental errors. Such errors include sensor bias, 

misalignment, scale factor, and signal distortion due to other signal sources. 

Various sensor calibration methods are required for the sensor to provide accurate 

outputs. Single-point calibration and multi-point calibration are the basic ways of 

sensor calibrations where calibration is performed referring to known standard point 

and dynamic calibration is another way of calibration that deals with the calibration 

of dynamic parameters like angular velocities. 

5.1 IMU Calıbratıon 

The inertial measurement unit model is categorized into accelerometer and 

gyroscope model. All the errors and calibrations are based on both the gyroscope and 

accelerometer. Accelerometer and gyroscope measurements can be illustrated 

mathematically as 

 𝒇𝒓  =   𝑺𝒂𝒂 + 𝒃𝒂    

𝝎𝒓 = 𝑺𝒈𝒈 + 𝒃𝒈   
(29) 

Where 𝒇𝒓, 𝑺𝒂, 𝒂, 𝒃𝒂 , 𝝎𝒓, 𝑺𝒈, 𝒈, and 𝒃𝒈 are raw acceleration measurement, 

acceleration scale factor, true acceleration vector, acceleration bais, raw gyroscope 

measurement, gyroscope scale factor, true gyroscope angular vector, and gyroscope 
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bias. The inertial measurement unit calibration procedure is done by reduction of 

bais, misalignment, and dynamic errors. 

Bias calibration for acceleration is done by placing an IMU in a static known position 

and orientation. Knowing the static position means the true acceleration vector is 

known and by measuring the raw acceleration, the acceleration bias is computed as: 

𝑏𝑎 = 𝑓𝑟 − 𝑎  (5.2) 

IMU calibration is to be done based on the dynamic calibrations due to the angular 

velocities measured by a gyroscope. The gyroscope measures rotation series at 

known angular velocities. For the complete calibration, computation of scale factor 

and misalignment calibration is achieved by using multiple known orientations. 

  𝑨𝒓 = 𝑺𝒂𝑨 + 𝑩𝒂      (30) 
 

 

where 𝑨𝒓 is the matrix of raw measurements, A is the matrix of true values, and 𝑩𝒂 

is the matrix of biases. Using the least square method solves the scale factor and 

misalignment issues. 

𝑺𝒂 = ( 𝑨𝑨𝑻)−𝟏𝑨𝑨𝒓
𝑻  (5.4) 

5.2 Camera Calibration 

The extraction of precise and trustworthy 3D metric information from photos 

requires accurate camera calibration and orientation techniques. If the primary 

distance, principal point offset, and lens distortion parameters are known, the camera 

is said to be calibrated. Only the focal length is recovered in many applications, 

particularly in computer vision, but all of the calibration parameters are typically 

used for accurate photogrammetric measurements. Photogrammetric measurement 

has always required camera calibration, and in the modern day, self-calibration is a 

crucial and frequently used process within photogrammetric triangulation, 

particularly in high-accuracy close-range measurement. However, there are 

numerous scenarios where the topology of the image network will not permit robust 

recovery of camera parameters by on-the-job calibration, despite the extremely rapid 
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development in the adoption of off-the-shelf digital cameras for a variety of novel 

3D measurement applications. The calibration of each of these geometric sensors can 

be decomposed into internal calibration parameters and external parameters. The 

external calibration parameters are the position and orientation of the sensor relative 

to some fiducial coordinate system. The internal parameters, such as the calibration 

matrix of a camera, affect how the sensor samples the scene. [19], [20]. 

The usual pinhole model can describe a camera. A projection from the world 

coordinates  𝑃 = [𝑋, 𝑌, 𝑍]𝑇 to the image coordinates 𝑃 = [𝑢, 𝑣]𝑇 can be represented 

As 

  𝑃 ≅ 𝐾(𝑅𝑃 + 𝑡)    

   𝐾 = [
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]  

𝑅 = [
𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

]    

 

 

(5.4) 

where 𝑓𝑥, 𝑓𝑦, 𝑐𝑥, and 𝑐𝑦 are focal lengths and coordinates of principal points in (x, y) 

direction respectively. 

where t is a 3-vector representing the camera's position, R is a 3 × 3 orthonormal 

matrix reflecting the camera's orientation, and K is the intrinsic matrix of the camera. 

Real-world situations may result in noticeable lens distortion on the camera; this can 

be represented as a 5-vector parameter made up of tangent and radial distortion 

coefficients 

vision-based camera calibration models have traditionally employed reference grids, 

the calibration matrix K being determined using images of a known object point array 

pattern 

Tsai’s calibration model assumes that some parameters of the camera are provided 

by the manufacturer, to reduce the initial guess of the estimation. It requires n 

features points (n > 8) per image and solves the calibration problem with a set of n 

linear equations based on the radial alignment constraint. A second order radial 
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distortion model is used while no decentring distortion terms are considered. The 

two-step method can cope with either a single image or multiple images of a 3D or 

planar calibration grid, but grid point coordinates must be known. (Fraser, 2006). 

A planar pattern must be positioned in several orientations in front of the camera for 

Zhang's calibrating approach to work. The presented technique computes a 

projective transformation between the image points of the n distinct images, up to a 

scale factor, using the extracted checkerboard pattern corner points. The camera's 

interior and exterior parameters are then recovered using a closed-form solution, 

while the third- and fifth-order radial distortion terms are recovered using a linear 

least-squares approach. All recovered parameters are refined through a final non-

linear minimization of the re-projection error, which is solved using the Levenberg-

Marquardt technique.  which necessitates at least five views of a planar 

Although the ideal Lens cameras do not involve any distortion in camera calibration, 

real lenses are likely to deviate from the projection rectilinearity. Having a real lens 

system requires a method that handles distortion in camera calibration 

have been working with ideal lenses that are free from any distortion. However, as 

seen before, real lenses can deviate from rectilinear projection, which requires more 

advanced methods. This section provides just a brief introduction to handling 

distortions. 

Often, distortions are radially symmetric because of the physical symmetry of the 

lens. 

5.3 Stereo Camera Calibration Using Checkerboard 

Traditionally, several existing approaches have consistently employed narrow-angle 

cameras to capture stereo pictures of black and white checkerboard patterns. 

Maintaining the pattern close to the stereo cameras is essential to achieve more 

accurate calibration results. There may be instances where this orientation reduces 

the amount of possible positions. Sometimes it is impossible to capture the entire 
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region of the checkerboard pattern. The use of wide-angle lenses is one potential fix 

for this occlusion issue. 

The stereo setup may not be able to fully capture images of the checkerboard pattern 

even if a wide-angle lens is used. We have trouble covering the entire checkerboard 

pattern at close range because of the stereo setup of a new checkerboard pattern 

which has been employed in place of the traditional black and white pattern. 

 

Figure 5 1: Checkerboard for stereo camera calibration ( Pathum Rathnayaka, 

Seung-Hae Baek, Soon-Yong Park   Pathum Rathnayaka, Seung-Hae Baek, Soon-

Yong Park 2017) 

An illustration demonstrating the variation in viewing angles between wide-angle 

and narrow-angle cameras. A larger coverage of the scene is provided by the wide-

angle camera on the left. The narrow-angle camera which may only captures a 

portion of the image on the right side. The narrow-angle camera shows a portion of 

the overall checkerboard design. 

https://www.semanticscholar.org/author/Pathum-Rathnayaka/2290466
https://www.semanticscholar.org/author/Seung-Hae-Baek/2450638
https://www.semanticscholar.org/author/Soon-Yong-Park/1763764
https://www.semanticscholar.org/author/Pathum-Rathnayaka/2290466
https://www.semanticscholar.org/author/Seung-Hae-Baek/2450638
https://www.semanticscholar.org/author/Soon-Yong-Park/1763764
https://www.semanticscholar.org/author/Soon-Yong-Park/1763764
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Wide-angle cameras have significant barrel distortions which is one of the 

drowbacks. Erroneous matrix calculations may result from stereo calibration that are 

performed without first addressing distortion. Thus two stereo calibration techniques 

are by first removing distortions from input wide and narrow-angle images to 

preserve the inner pattern. While shooting with a narrow lens and the outer pattern 

when shooting with a wide angle for mono camera calibration wherein separate 

calibrations are done wide and narrow-angle cameras. 

Calibration using two transformation matrices, the wide and narrow angles camera 

transformation matrices are multiplied in the stereo calibration method. After the 

cameras have been mono-calibrated independently, simultaneously record stereo 

image sequences of checkerboard pattern from both cameras. Maintain a close 

spacing between the cameras and the checkerboard pattern when taking images so 

that the wide-angle camera can view the entire pattern and the narrow-angle camera 

can view the entire inner pattern. According to this transformation matrices method, 

the origin of the initial outer checker pattern is the intersection point of the 

checkerboard pattern which is used as the global coordinate system. By simply 

adding the distance between the two origins, the inner pattern origin at the crossing 

point is relocated toward the outer pattern origin given that the inner and outer 

patterns are two distinct checkerboards. 

5.4 Camera Calibration With Respect to IMU 

Aligning the coordinate systems of both the camera and the Inertial Measurement 

Unit (IMU) is necessary for precise and reliable data fusion. This procedure is crucial 

for applications where merging visual and inertial data improves motion estimates 

and spatial awareness, like flying vehicles. 

Camera and inertial measurement unit calibration is done by extrinsic and intrinsic 

parameter calibrations and IMU coordinate system. Extrinsic calibration is 

determined by rotation and translation of the camera and IMU coordinate system. 

The intrinsic camera parameters like focal length (𝑓𝑥,𝑓𝑦), optical center (𝑐𝑥,𝑐𝑦), and 
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coefficient distortion. Ascertain which rotation, translation, and camera matrices are 

used to convert coordinates from the IMU frame to the camera frame. Usually, to do 

this, the estimated IMU posture is used to minimize the reprojection error between 

the projected points and the observed pattern points in the image. 

The relationship between 3D point 𝑃𝐼𝑀𝑈 in the IMU coordinate system and point, P 

in the camera coordinate system is as: 

 𝑃 = 𝐾(𝑅𝑐𝑎𝑚
𝐼𝑀𝑈𝑃𝐼𝑀𝑈 + 𝑡𝑐𝑎𝑚

𝐼𝑀𝑈)  

 
(31) 

Where 𝑅𝑐𝑎𝑚
𝐼𝑀𝑈 and 𝑡𝑐𝑎𝑚

𝐼𝑀𝑈 are rotation and translation from IMU to the camera 

coordinate frame, 𝐾 is camera intrinsic matrix. 

The camera calibration with respect to IMU is essential for accurate visual and initial 

data readings. 

To guarantee precise and trustworthy sensor readings, calibration is a necessary 

procedure. You may efficiently calibrate sensors to adjust for numerous faults and 

enhance measurement accuracy by being aware of the different calibration forms, 

adhering to systematic methods, and using mathematical models. Regular calibration 

and validation are essential for sensors to continue functioning as intended overtime. 
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CHAPTER 6  

SYSTEM MODEL IMPLEMENTATION 

This chapter discuses and shows how the stereo camera and inertial measurement 

unit (IMU) fused with kalman filter in implementation of the thesis new model for 

an aircraft vertical landing approach in the determination of attitude, velocity and 

position aof an aircraft. 

The system is composed of stereo camera and IMU to provide the aircraft orientation, 

position and velocity. 

 

Figure 6 1. Stereo camera/INS fused with extended Kalman filter (EKF). 

The figure 6 1 show the stereo camera/IMU system fused with extended kalman 

filter. Stereo camera detects features using scale-invariant feature transform (SIFT) 

techenique and match the detected features to the known pattern and by optimizing 

the stereo camera performance index equation (J) to determine position and attitude 

of an aircraft and an inertial measurement unit (IMU) does measure an aircraft 

position (Pos), orientation(Attit), and velocity (vel) by the optimizing equation (2.7-

2.8) of INS. Outputs from both sensors are fused by an extended Kalman filter for 

linearization, estimation and get unbiased system outputs. 
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IMU usually use three axes to measure angular rates and determine acceleration in 

three dimentions (X, Y, Z).by the use of gyroscope and accerelometer data the 

determination of attitude, position and velocity of an aircraft is identified with 

relation to the reference frame.  

Stereo camera may produce intricate 3D map below and surroundings of an aircraft 

by the use of stereo vision techniques. This is essential when flying at low altitudes 

where topographical precision information is critical for safe navigation. 

Fusing stereo cameras with IMU for relative navigation system enhances the ability 

of the navigation system. By the use of the synchranized stereo cameras with high 

resolution the prises detection of features and depth deception are anabled. There for 

the position of the flying vehicles is identified. IMU being composed gyroscope and 

accelerometer arranged in three axises. The velocity and orientation of flying vehicle 

is estimated. Since the sensors outputs are not linear, the deployment of extended 

Kalman filter for the linearized of the sensor output estimation. 

The computation of position navigation of flying vehicle in this study, using new 

way of stereo camera is shown below by 

 

Figure 6 2. Navigation with stereo camera. 

n-frame 

Cam1 
Cam 2 

Rj 

r12 



 

49 

Using own procedure, the position vector for each camera is calculated by 

 𝑟𝑗
𝑐𝑎𝑚1 = 𝑘𝑗(𝐶𝑛

𝑐𝑎𝑚1(𝑅𝐽 − 𝑅0))  

 𝑘𝑗
′𝑟𝑗

𝑐𝑎𝑚2 = 𝐶𝑐𝑎𝑚1
𝑐𝑎𝑚2𝐶𝑛

𝑐𝑎𝑚1(𝑅𝐽 − (𝑅0 + 𝐶𝑐𝑎𝑚1
𝑛 𝑟12)) 

(32) 

 

 𝑟𝑗
𝑐𝑎𝑚1 = 𝑘𝑗(𝐶𝑛

𝑐𝑎𝑚1(𝑅𝐽 − 𝑅0))  

𝐶2
1𝑟𝑗

𝑐𝑎𝑚2 = 𝑘𝑗
′(𝐶𝑛

𝑐𝑎𝑚1(𝑅𝐽 − 𝑅0) − 𝑟12)  

   

(33) 

The equation (6.2) gives the position 𝑅0 and orientation output 𝐶𝑛
𝑐𝑎𝑚1 . 

The performance index J is to be calculated so to optimize the system 

𝐽 = ∑ (𝑒𝑗1𝑒𝑗1
𝑇 ) + (𝑒𝑗2𝑒𝑗2

𝑇 )𝑛
𝐽=1   

𝑒𝑗1 = 𝑟𝑗
𝑐𝑎𝑚1 − 𝑘𝑗(𝐶𝑛

𝑐𝑎𝑚1(𝑅𝐽 − 𝑅0))  

𝑒𝑗2 = 𝐶2
1𝑟𝑗

𝑐𝑎𝑚2 − 𝑘𝑗
′(𝐶𝑛

𝑐𝑎𝑚1(𝑅𝐽 − 𝑅0) − 𝑟12)  

For 
𝜕𝑗

𝜕𝑘𝑗1
= 0,

𝜕𝑗

𝜕𝑘𝑗2
= 0,

𝜕𝑗

𝜕𝐶𝑛
𝑐𝑎𝑚1 = 0,

𝜕𝑗

𝜕𝑅0
= 0   

 

 

(6.3) 

 

The matrix 𝐶2
1 = [

𝑐𝑜𝑠𝜀 𝑠𝑖𝑛𝜀 0
−𝑠𝑖𝑛𝜀 𝑐𝑜𝑠𝜀 0

0 0 1
] is known . 

where 𝜀 is very small and 𝑟12 is a known distance between two cameras.  

𝐶2
1 = (𝐶1

2)𝑇 , 𝑎𝑛𝑑 𝐶𝑛
𝑐𝑎𝑚2 = 𝐶𝑐𝑎𝑚1

𝑐𝑎𝑚2𝐶𝑛
𝑐𝑎𝑚1 

 

Figure 6 3. Position update with stereo navigation. 
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Position update from the measurement equation 

 𝑧 = 𝐻𝑥 + 𝑣  (34) 

For position update the matrix 𝐻 = [0 0 𝐼3×3] and system estimate 𝑥 = [
Θ
𝑉

𝑃𝑜𝑠
] 

Therefore position update 𝑧 = [0 0 𝐼3×3] [
Θ
𝑉

𝑃𝑜𝑠
] 

For altitude update 𝐻 = [𝐼3×3 0 0] 

Altitude update 𝑧 = [𝐼3×3 0 0] [
Θ
𝑉

𝑃𝑜𝑠
] 

Fusing the updated and calibrated stereo camera with an IMU provides real-time 

robustness and accurate system output. An IMU is composed of three-axis 

gyroscopes and accelerometers.  

Stereo cameras fusing with data from an inertial measurement unit (IMU) using an 

extended Kalman filter improve the position and orientation accuracy estimation 

over time [10], [31]. 
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CHAPTER 7 

TEST AND RESULTS 

In this part the flying vehicle modeling has been simulated in MATLAB to evaluate 

the effectiveness and behavior output reliability of the algorithm of using stereo 

camera / IMU for the relative navigation system using an extended Kalman filter for 

estimate linearization. The applied flying vehicle simulation period is 60 seconds 

since the altitude is low up to 200m as the simulation altitude. The roll and pitch 

angles are conditioned not to exceed 15 degrees and the landing approach has to be 

verticle landing. The comparison of nominal and algorithm simulation results is 

shown in the figures below. 

It is composed of five sections. The first section includes the simulated results using 

INS/GPS (nominal) to test the orientation, velocity, and position propagation of a 

flying vehicle at low altitude and approaching to land at the known pattern. The 

second part provides the variations of the flying vehicle’s orientation, velocities, and 

position by using the INS/Stereo camera approaching to land at the known location. 

The third section is the comparison of the first two sections for the relative navigation 

system. The forth section is composed of the error analysis and comparison of results 

when using pure INS, stereo cameras/IMU and GPS/IMU. And the fifth section 

which is the last part of this chapter is the study the stereo cameras/IMU and 

GPS/IMU standard deviation propagation. 

7.1 Nominal simulation results 

The nominal simulation is the errorless simulation results for relative navigation 

systems is identified when INS/GPS has excellent satilitte signals and this serves as 

a good choice in navigation systems in various applications including aviation 

navigation systems. Using the Matlab environment the simulation using this 



 

52 

navigation system, the variations of flying vehicles were tested and the results were 

studied, and found that it has low inaccuracy and this makes it reliable regardless of 

the other factors that could affect its accuracy. 

 

Figure 7 1: Pattern points 

Figure 7.1 shows the pattern points of which an aircraft visual navigation detects 

and land on it vertically. 

 

Figure 7 2: Nominal roll of an aircraft 
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Figure 7.2, is a simulation nominal roll of an aircraft in 60 seconds. It shows 

uniform and stable sinusoidal formation.   

 

Figure 7 3. Nominal pitch of flying vehicle. 

Figure 7.3 shows the sinusoidal aircraft errorless (nominal) pich formation. The 

simulation results on pitch behavior shows stable propagation. 

 

Figure 7 4. Nominal yaw 
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Nominal yaw behavior of an aircfraft shown on figure 7.4 justfies that it decreases 

as time increases when the aircraft keeps on approaching to land. The nagative sign 

shows the direction of yaw (left yaw). 

The propagation of roll, pitch, and yaw nominal navigation shows the real-time 

propagation of flying vehicles during their maneuvering performance with in 60 

seconds time bound. 

 

Figure 7 5. Nominal north velocity 

The figure 7.5 shows the variation of north (x- direction) velocity in 60 seconds. 

Simulation shows that north velocity initial velocity is high which quickly reduced 

with in 6seconds and becomes stable at zero the rest of the simulation time.  
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Figure 7 6. Nominal east velocity 

Figure 7.7 shows the variation of east (y-diraction) velocity. Initially it increased 

for some few seconds (3 seconds) and gradually decreases uniformaly up to about 

30 seconds and non-uniformly variates the rest of the simulation time. This has no 

effect on accuracy since the whole simulation results are very very small ( near to 

zero). 

 

Figure 7 7. Nominal down (z-direction) velocity 
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This figure 7.8 shows the smooth gradual down velocity variation of an aircraft. 

Down velocity simulation shows that it decreases as the aircraft approaches landing 

time till it reaches to zero velocity. This makes it useable and reliable for flying 

vehicles in navigation systems. 

Looking at the propagation behavior of velocities in all three (north, east, and down) 

directions indicate that the nominal velocities in navigation systems on which the 

reference is taken.  

 

Figure 7 8. Nominal latitude 

 

Given the range period of time shown in figure7.10, by nominal navigation the 

latitude behavior of flying vehicle with respect to time is studied. The simulation 

shows the uniform horizontal variation as the time of flight goes to zero. Up to 10th 

second the latitude starts to decrease to zero. 
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Figure 7 9. Longitude nominal navigation against time 

Figure 7.11 shows that the nominal longitude keeps decreasing as the aircfrat 

aproaches to land. At the inital start, the longitude is high and goes down as the 

landing time approaches. 

 

 

Figure 7 10. Nominal altitude 
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Simulation shows the gradual decreas of nominal altitude as the aircraft goes down 

to land. Figure 7.12 shows the nominal altitude from 200meters to zero with in 

about 60 seconds. 

Based the propagation of simulated graphs showing changes of the flying vehicle in 

its nominal position variation with time, it is seen that the nominal navigation for 

relative navigation system gives accurate and reference readings  

 

Figure 7 11. Nominal vertical flight path. 

Figure 7.14 shows the nominal flight trajectory of an aircraft from 200m altitude to 

the ground. The graph shows that the latitude is inversely propotipnal to altitude. 

Latitude increases as the aircraft altitude decreases as it goes to the pattern.  

7.2 Test and Results Using Camera 

This section the flying vehicles attitude, velocities and position are tested using by 

integrating stereo camera for relative navigation system to check the variation 

behaviors accuracy of this vehicle approaching to the know pattern. The use of stereo 

cameras for relative navigation is expected to be more reliable in navigation systems 

since it only requires no external signal sources. Below are the simulated results 
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showing the attitude, velocity, position, and flight trajectory of the flying vehicle 

using the stereo camera.   

 

Figure 7 12. Stereo camera/IMU points 

The figure 7.15 shows the points of two calibrated cameras’ focus relative to one 

another. This provides the accuracy of image points by comparing the image point 

in camera one with respect to camera two. Both cameras view points from different 

view poses but at any point, each camera point is almost matched to one another 

camera. Hence both cameras have the same focus and this shows that the stereo 

camera is well calibrated. 
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Figure 7 13. Stereo camera/IMU roll 

Figure 7.16 shows the aircraft roll variation angles in 60 seconds where the 

simulation shows that the roll obeys uniform sinusoidal variation. At about 60th 

second roll angle is zero. The siimulation shows that aircraft rolls right- left 

manouver. 

 

 

Figure 7 14. Stereo camera/IMU aircraft pitch 
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Figure 7.17 shows the aircraft pitch variations. The sinusoidal form indicates that 

aircraft can maneuver both up and down. 

 

 

Figure 7 15. Camera/IMU aircraft yaw variation 

Figure 7.18 shows that the aircraft yaw using stereo camera/IMU navigation. 

Initially, the yaw angle was high in the left (left-right) direction which quickly 

reduced nearly to zero angle and linearly increased with time up to 0.005 degrees in 

almost 60seconds. 

The use of a stereo camera shows that it is a better choice for the relative navigation 

system in the determination of an aircraft attitude since this system’s signal 

dependency does not require any external signal source. This makes it reliable based 

on the accurate attitude behaviors of flying maneuvers. 
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Figure 7 16. North velocity (x-direction velocity) using the camera/IMU 

Figure 7.20 shows how the simulation results of north velocity decreases rapidly to 

zero within about 6 seconds and constitantly variate to zero with in the remaining 

time bound for the aircraft performs a vertical landing the variation of north 

velocity approaches to zero.  

 

Figure 7 17. East velocity using camera/IMU 
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Figure 7.21 shows the behavior of an aircraft’s east (y-direction) velocity against 

flying time approaching its vertical landing. Initially, east velocity increased up to 

0.016 m/s and gradually decreases to nearly zero. The simulation result shows that 

for vertical landing the variation of east velocity is small and keeps decreasing to 

zero. 

 

 

Figure 7 18. Stereo camera/IMU down velocity 

Figure 7.22 shows the simulated down (z-direction) velocity behavior when an 

aircraft approaches to have its verticle landing on a pattern. Down velocity shows 

parabolic decreas pattern as the aircraft approches the pattern vertically landing. 
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Figure 7 19. Stereo cam/IMU latitude variation 

Figure 7.24 shows the behavior of aircraft navigated latitude position when coming 

to the pattern vertically landing. The simulation graph shows the latitude is stable 

and uniform when an aircraft is at its cruising altitude and starts to decrease as the 

aircraft descends vertically toward the landing pattern. 

 

 

Figure 7 20. Stereo camera/IMU longitude variation. 
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The figure 7.25 shows that the simulation parameter (longitude) initially quickly 

increased and kept uniform throughout the landing time. 

 

 

Figure 7 21. Stereo camera/IMU  altitude variation 

The figure 7.26 shows the parabolic altitude decrease when navigating using stereo 

camera/IMU fused with extended kalman filter. The altitude is vertically decreased 

as the aircraft verticaly approaches the landing pattern. 

Based on the simulation results of aircraft position variation as it comes to land, 

shows the smooth and accurate variation towards the known location over time. This 

justifies that the use of cameras for relative navigation systems is a solution for 

vehicle position identification. 
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Figure 7 22. Stereo camera/IMU flight path 

 

The figure 7.27 shows how to use camera/IMU tracks the flight path of a flying 

vehicle. The trajectory path shows the cruising altitude of an aircraft and when it 

reaches 200 m the aircraft starts to descend and landed vertically on a pattern. 

7.3 Comparison Between nominal and Stereo Camera/IMU Navigation 

The below-simulated results provide the comparison between nominal navigation 

and stereo cameras/IMU for the relative navigation system. The results were studied 

and compared to come up with the new idea of using stereo cameras for relative 

navigation systems of flying vehicles mostly at low altitudes since cameras do not 

require external signals and GPS does require signals from the number of satellites. 
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Figure 7 23. Nominal and Camera/IMU aircraft trajectory 

 

The figure 7.28 shows the comparison aircraft trajectory between nominal and stereo 

camera/IMU. The simulation shows that navigation using camera/IMU is almost 

accurate as nominal. This proves that the cam/IMU could alternatively be used in 

flying vehicles’ navigation. 

 

Figure 7 24. Nominal and stereo camera/IMU orientation navigation comparison 
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The figure 7.29 shows the zoomed behavior nominal and stereo camera/IMU 

airacraft attitude navigation. It shows that there is a very small difference between 

errorless navigation and camera/IMU during the initial navigation which converges 

to become in-line with nominal orientation variations.  

Based on the simulated graph above indicates almost no differences in roll, pitch, 

and yaw propagation over time and maneuver when navigating using camera/IMU 

compared to errorless navigation state. This makes a stereo camera/IMU to be an 

alternative and a better choice in a navigation environment. 

 

 

 

Figure 7 25. comparison of nominal and stereo camera/IMU velocity. 

Figure 7.30 shows that for all nominal and stereo camera/IMU velocities (north, east, 

and down velocities) the propagation over time shows the same results. This means 

that by using the stereo camera/IMU for the relative navigation system, it is possible 

to get the same results hence the alternative solution in the navigation world. 
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Figure 7 26. Nominal and stereo/ IMU position comparison 

The simulation traces the behavior of a flying vehicle comparing camera/IMU 

position behavior as shown in figure 7.31 and the simulation shows the similarities 

variation for all aircraft position parameters (latitude, longitude, and altitude). 

Position with camera/IMU navigation being in line with that of nominal navigation 

for relative navigation shows that the integration of a stereo camera and IMU for 

relative navigation can work smoothly to provide reliable output at a low cost and 

altitudes since it does not require external signal sources. 

7.4  Error Propagation When Navigating With Pure INS and Stereo 

Cameras/IMU and GPS/IMU 

This section shows the error simulated behavior when using pure INS, stereo 

camera/IMU, and global positioning system (GPS)/IMU inertial measurement unit. 

These simulated error results helps in system error analysis in comparison to one 

another and hence coming up with the reliable system 
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7.4.1 Pure INS Error 

The study of error propagation when using pure INS in comparison with stereo 

camera/INS provides the chance to choose which system is to be considered most 

and the feasibility of the system. The below graphs show the error behaviors using 

INS. 

 

Figure 7 27. aircraft orientation errors. 

This figure 7.32 shows that when navigating with pure INS, the aircraft experiences 

unstable roll and pitch error propagation. The maximum errors are 0.0035 deg roll, 

0.0034deg pitch and 0.0086 deg yaw. This means that navigating with pure INS 

orientation errors and control is expensive. Depending on the pure INS navigation 

parameters is not good ideal since it exposed to unstable error varriations. 
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Figure 7 28: Position error using pure INS 

The figure 7.33 shows that the position error with pure INS navigation gradually 

increases over time. Using pure INS, the aircraft experiences very high altitude, 

longitude, and lattitude error variation. Pure INS is not system to be used for flying 

vehicle position identification. 

 

 

Figure 7 29: Pure INS velocity error 
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Figure 7.34 shows the unstable variation errors of aircraft velocities when navigating 

using a pure inertial navigation system. The gradual increase in variation error in 

aircraft north, east velocity, and unstable down velocity shows pure INS navigation 

is prone to high-velocity errors hence INS can not sustain navigation for flying 

vehicle alone. 

 

7.4.2 INS/Stereo Camera Errors 

This part shows the simulated error results when using the stereo camera for relative 

navigation system and compare them to that of pure INS so that the feasibility of the 

new system model. The more stable error output over time the easier and cheaper the 

calibration cost. 

 

Figure 7 30: Position error behavior with stereo Cameras/INS 

Figure 7.36 shows that the error variation when an aircraft navigating with stereo 

camera/IMU the position error is diminished and stable. This means that the position 

navigation output is reliable and cheap to mitigate resulting errors. 0.02m altitude, 

0.004m longitude, and 0.0014m latitude aircraft simulation errors were identified 

when navigating with stereo camera/INS  
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Figure 7 31: Orientation error behavior with stereo cameras/ INS (IMU) 

The figure 7.36 shows aircraft orientation errors when navigating with stereo 

camera/IMU  and shows 2.5 × 10−4𝑟𝑎𝑑𝑠, 7.6 × 10−5𝑟𝑎𝑑𝑠, and 6.3 × 10−6𝑟𝑎𝑑𝑠 

maximum error roll, pitch, and yaw respectively. The overall orientation errors are 

very very small and makes this new system accurate and reliable. 
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Figure 7 32: Velocity error behavior with stereo camera/INS (IMU) 

The simulation figure 7.37 shows that the velocity maximum error with stereo 

camera/INS is stable and converges to zero within few seconds from its initial none 

zerom errors. The maximum north, east, and down velocity errors simulated shows 

1.3 × 10−2𝑚/𝑠, 1.6 × 10−2𝑚/𝑠, and 3 × 10−4𝑚/𝑠 respectively. These errors are 

very small and has no effect on the system accuracy and control. 

Overall simulated error analyisis shows that pure INS provides unstable errors for all 

orientation, velocity and position parameters of flying vehicles. The integration of 

stereo camera/INS results to stable and deminished errors over time. Therefore the 

use of stereo cameras and IMU for relative navigation of flying vehicles is a very 

nice choice since the system require no external signal sources with less and stable 

errors. 

7.4.3 GPS/IMU Navigation Errors Propagation 

This section shows the orientation, velocity, and position error propagation when 

navigating with GPS/INS. It was seen that GPS/INS integration is an excellent choice 
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when the GPS recieves an interrupted signals from at least 4. The below figures 

shows error propagation in navigation while experiencing the real world including 

factors that affects GPS signals. 

 

Figure 7 33: Position error variation with GPS/IMU 

The figure 7.38 simulation results show that aircraft positioning when navigating 

with GPS/INS in real performance mostly at low altitudes is prone to small unstable 

errors. 0.01m, 0.0097m, and 0.028m are the latitude, longitude, and altitude 

simulated maximum errors respectively. Depending on the unstablity of error 

variation due to the signal distortion from sattelites, the mitigation control is almost 

imposible since the navigator has no action on sattelite relocation hence expensive 

to mitigate the errors of GPS at low and signal distructive envirnoment. 
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Figure 7 34: Velocity errors propagation with GPS/IMU 

The simulated velocity propagation in figure 7.39 shows that the maximum error 

variation occurs at its initial time (10 seconds) but converges approximately to nearly 

zero. The variation error shows less stable error variation for all north, east, and down 

velocity variations. The maximum errors down , east, and north velocity  identified 

are 0.0068m/s at 41second, 0.135m/s at 2second, and 0.08m/s at 3second 

respectively. Having been unstable errors when navigating with INS/GPS, makes it 

difficult to mitigate the resulted errors and this may lead the system to be unreliable 

mostly in an environment with less satellite signals to GPS. 
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Figure 7 35: Orientation errors 

The simulation results in fig 7.40, shows the less stable orientation errors are 

experienced in real GPS/IMU for relative navigation system. The less stable and 

converging roll,pich, and yaw degrees are resulted when simulating real GPS/IMU 

navigation. 

Table 1: Table showing system amaximum errors 

System Max roll 

error 

(radians) 

Max 

pitch 

error 

(radians) 

Max 

yaw 

error 

(radians) 

Max 

north 

velocity 

error 

(m/s) 

Max 

east 

velocity 

error 

(m/s) 

Max 

down 

velocity 

error 

(m/s) 

Max 

latitude 

error 

(m) 

Max 

longitude 

error (m) 

Max 

altitude 

error 

(m) 

Pure INS 0.003 0.0035 0.0086 2.12 2.17 0.044 74 60 4.5 

GPS/INS 0.003 5.45e-05 0.0038 0.853 0.136 0.034 0.69 0.86 0.308 

Cam/INS 0.00025 7.6e-05 6.3e-06 0.853 0.016 0.0003 0.01 0.0097 0.028 
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7.5 Standard Deviation 

This section shows the simulated results when navigating with stereo camera/IMU 

and the deviation when navigating with GPS/IMU. The standard deviation shows the 

capability of the system in which it can consistently maintain the standard 

measurement or deviate from the nominal standards. 

7.5.1 Stereo Cameras/IMU Navigation Standard Deviation Behavior 

System standard deviation simulation is done to determine the similarity and the 

dissimilarity level of the system output and to enhance the linear contrast in image 

processing. The blow graphs show the simulated standard deviation behaviors of 

various parameters of flying over time. 

 

Figure 7 36: Orientation standard deviation 

In the figure 7.41, the simulation shows that the orientation system deviation is very 

small and converges rapidly near to zero over time. The deviation is very less when 
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navigating with camera/INS and this justifies this new system being reliable and 

standardized system for aircraft orientation relative to known pattern at low altitude. 

Considering the simulation results, shows that the deviation with cam/IMU gradually 

converge with in short period of time. This makes the system orientation accuracy 

reliable and real time robustness. 

 

Figure 7 37: Velocity standard deviation (STD) behavior 

Figure 7.42 shows velocity standard deviation simulation results where initially a 

little bit higher deviation occurs in a very short period of time in few seconds at about 

5seconds and the deviation converge to approximately zero over time. This shows 

that the system noise and bias are very low over time and makes the system accuracy 

interruption to be very less. 
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Figure 7 38: Aircraft position standard deviation 

 

Based on fig 7.43, the simulated results show that all parameters give confidence in 

using stereo cameras/INS for relative navigation because of the in-range standard 

deviation propagation over time. Simulation shows that at the initial stage deviation 

is a litle bit high which stablely and quickly converges near to zero over time. 
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7.5.3 GPS/IMU Navigation Standard Deviation Behavior 

Real GPS/INS is exposed to tolerable system deviation from errorless standards. The 

simulation shows that the less and reducing to zero orientation, position, and velocity 

standard deviations are shown below 

 

Figure 7 39: Orientation STD navigating with GPS/IMU 

The fig 7.44 orientation simulation results show that real aircraft navigation with 

GPS/INS has less and in range standard deviations. 
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Figure 7 40: Velocity standard deviation 

The fig 7.45 shows that the deviation in down velocity is 0.001 m/s almost 

throughout the time interval but at the start, the variation of deviation has increased 

up to 0.0018m/s in the first 5 seconds. This simulation result shows that the overall 

standard deviation is in its normal range. 0.006m/s north and east velocity is the 

shown simulation result deviation when navigating with GPS/INS. 
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Figure 7 41: Position standard deviation with GPS/IMU 

Fig 7.46 shows that the simulated standard deviation of an aircraft position is a bit 

higher at its initial stage, converges quickly to nearly zero, and stably maintains the 

deviation frequency.   

The overall standard deviation simulated results show that the parameter variations 

are in the normal standard deviation range (±2) parameter unit. This justifies that 

when navigating with stereo camera/IMU or navigating GPS/IMU the deviation is in 

the normal range therefore the deviation does not affect the navigation accuracy and 

safety. 
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CHAPTER 8 

CONCLUSION AND RECOMMENDATION 

8.1 Conclusion 

Integration of inertial measurement units (IMU) and cameras for a vertical landing 

aircraft on a pattern offers a dependable and adaptable way to improve the precision 

and dependability of flying vehicles' relative navigation systems. Through the 

calculation of the difference between images taken from two separate views, stereo 

cameras enable real-time depth perception. Enabling the flying vehicle to safely 

navigate complicated terrain, this feature is essential for obstacle identification and 

avoidance. Stereo cameras are self signal reliance and are capable of performing 

navigation as much as the most useable sensors or systems like GPS. This makes 

stereo cameras less exposed to signal interference and less errors. Even though the 

calibration methods for stereo cameras which include extrinsic and intrinsic 

calibrations are complex, but could be achieved not like that of GPS where there is 

no action on satellite position and signals. 

Based on the system error analysis at 200m an altitude of aircraft in 60seconds of 

flying simulation, the simulation shows that the stereo camera and IMU fused with 

extended Kalman filter provides less standard deviation and stable errors for all 

navigation parameters (orientation, velocity, and position) estimation of the flying 

vehicle over simulation time at less pitch and roll angles (not exceeding 150). 

Apply advanced sensor fusion techniques, like the use of IMU and Kalman filtering 

approaches, to integrate stereo camera data with other sensors, ensuring a robust and 

accurate navigation solution. Integration of stereo cameras with INS can enhance 

navigation safety for flying vehicles at low cost where by sensor fusion approaches 

is able to improve the overall resilience of a system by mitigating the limitions of 

individual sensors. 
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In this study using a Matlab environment, the use of GPS, stereo camera, IMU, and 

extended Kalman filter were put into consideration. The form of landing considered 

in the study is the vertical landing of flying vehicles. At an altitude of 200 meters, 

the attitude of the flying vehicle was studied and compared to that treated as errorless 

(nominal) navigation parameters. The Matlab program and simulation comparison 

between INS/GPS and stereo camera/IMU was made to see the behaviors of flying 

vehicles in relation to nomial navigation parameters when landing on a known 

pattern at a given period of time. The time used when navigating with GPS/IMU and 

camera/IMU was all the same at the same latitude, longitude, and altitude. 

The simulation analysis showed that when navigating using the stereo camera/IMU 

for a relative navigation system provides almost the same results as that of nominal 

navigation with very less system errors. The simulation results of aircraft positioning 

errors when using a stereo camera/IMU show 0.01m altitude, 0.0014m latitude, and 

0.004m longitude which is a very very low error to the almost nominal and decrease 

over time while pure INS position errors keep on increasing over time. 

 The accuracy comparison with GPS/IMU and stereo camera/IMU navigation all 

showed that the use of the camera in the position of GPS could be more reliable when 

it does not require external signal sources in the identification of flying vehicle 

position, orientation, and velocity. 

Improved situational awareness and navigation accuracy can be achieved by 

integration of stereo cameras/IMU into flying vehicles for relative navigation 

systems. Flying vehicles can accomplish accurate and self-dependable navigation 

signals, which is necessary for autonomous operation in complex and dynamic 

settings, by utilizing the depth perception capabilities of stereo vision and combining 

it with data from other sensors like IMU. Stereo cameras/IMU simulation shows 

diminished errors and stable errors compared to pure inertial navigation system (INS) 

and global positioning system (GPS)/INS real navigation. The small standard 

deviation over time when navigating with stereo camera/IMU fusion with an 

extended Kalman filter which smoothens the system bias, makes this system reliable 

and accurate. Stereo camera/IMU having been the self-signal dependent and stable 
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parameter propagation over time makes it cheaper and hence reliable for relative 

navigation for all kinds of flying vehicles mostly at low altitudes.  

8.2 Recommendation 

The simulation using MATLAB was done and showed accurate results but the real 

field practical may show different parameter behaviors, it is in the same regard that 

the field practical is recommended. 

There are more advanced and accurate estimation methods over the extended Kalman 

filter which may fuse the system and result in more accurate aircraft navigation 

parameters the use of more advanced nonlinear state estimation methods is 

recommended for further research to evaluate and analyse the aircraft behavior when 

landing using camera/ inertial measurement unit. 

The simulation test was done in consideration of an aircraft at low altitudes and 

vertically landing and the results have proved the system's accuracy however the test 

of the system at higher altitudes and other landing stages of an aircraft is 

recommended for future research. 

The use of scale-invariant feature transform (SIFT) and speeded-up and robust 

(SURF) are the most used feature detection techniques in visual odometry however 

there are other advanced feature detection techniques like the Harris corner detector 

that could be used and show more navigation accuracy, study of advanced feature 

detection and processing is advised for future work. 
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