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ABSTRACT

INTEGRATION OF INERTIAL MEASUREMENT UNIT AND CAMERA
FOR A VERTICAL LANDING AIRCRAFT ON A PATTERN

BUSINGYE, Andrew
Master of Science, Mechanical and Aeronautical Engineering
Supervisor: Assist. Prof. Dr. Habib Kanberoglu

[01/08/2024], 108 pages

This thesis presents an integrated system for achieving robust relative navigation of
a flying vehicle mostly at low altitudes vertical landing approach. The integration
combines stereo cameras, an Inertial Measurement Unit (IMU), and an extended
Kalman filter (EKF) to estimate navigation parameters (attitude, velocity, and

position).

The aim is to enhance the robustness and accuracy of the relative navigation system
in an environment where inertial navigation system INS/GPS (Global Positioning
System) integrations signals may not provide reliable navigation due to the external
jamming signals. The integration of stereo cameras and IMU provides
complementary strengthened information for relative navigation by estimating the
velocity, position, and orientation of a flying vehicle relative to the known location

of the pattern.

The simulated results show the errors of system is highly unstable when navigating
with the pure INS and this makes it not reliable for the real navigating. Based on the
instability of error propagations with pure INS and having no control from the

external signal sources make INS/GPS expensive and difficult system calibrations.

Simulated results show that the integration of stereo cameras/INS using the extended
Kalman filter provides real-time accurate estimates in the determination of flying
vehicle orientation, velocity, and position for the relative navigation system since

this integration causes stable error for relative navigation with respect to the pattern.



The stereo cameras provide visual information and direct measurements with respect
to the target location which enhances collision avoidance and accurate position
estimation. The IMU provides acceleration and angular velocity information of
flying vehicles which are used for continuous position, velocity, and orientation

vehicle estimation over time.

The employment of the extended Kalman filter is to fuse the information from IMU
and cameras for continuous dynamic state estimation based on the sensor

measurements and accountability for bias and noise from the sensor data.

Matlab simulated results show that the integration of stereo cameras and IMU using
an extended Kalman filter provides a real and unbiased state estimation of a flying
vehicle’s position, velocity, and orientation for it gives an inline output with nominal
navigation for a relative navigation system. This makes an integration of a stereo
camera and IMU for a vertical landing aircraft on a pattern reliable, accurate, and

cheap calibration since it requires no external signal sources as GPS does.
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Oz

ATALETSEL NAVIGASYON SIiSTEMi VE KAMERA VERILERININ
TUMLESTIRILMESI BiR DESEN USTUNE DIKEY INIS YAPAN UCAK
iCiN

BUSINGYE, Andrew
Master of Science, Mechanical and Aeronautical Engineering

Tez Yoneticisi: Dog. Dr. Habib Kanberoglu
[01/08/2024], 108 sayf

Bu tez, ¢ogunlukla algak irtifalarda dikey inig yaklasiminda ucan bir aracin saglam
goreceli navigasyonunu saglamak i¢in entegre bir sistem sunmaktadir. Entegrasyon,
navigasyon parametrelerini (tutum, hiz ve konum) tahmin etmek igin stereo
kameralar1, bir Atalet Ol¢iim Birimi'ni (IMU) genisletilmis bir Kalman filtresiyle
(EKF) birlestirir.

Amag, ataletsel navigasyon sistemi INS/GPS (Kiiresel Konumlandirma Sistemi
entegrasyon sinyallerinin harici karistirma sinyalleri nedeniyle giivenilir navigasyon
saglayamadig bir ortamda ilgili navigasyon sisteminin saglamligini ve dogrulugunu
arttirmaktir. Stereo kameralar ve IMU entegrasyonu saglar) Ugan bir aracin bilinen
konum konumuna gére konumunu ve yonelimini tahmin ederek goreceli navigasyon
i¢in tamamlayici, gliclendirilmis bilgi.

Simiile edilen sonuglar, saf INS ile navigasyon sirasinda sistem hatalarinin oldukg¢a
kararsiz oldugunu ve bu durumun onu gercek navigasyon i¢in giivenilir kilmadigini
gostermektedir. Saf INS ile hata yayiliminin kararsizligina bagli olmasi ve harici
sinyal kaynaklarindan kontroliin olmamasi INS/GPS'in sistem kalibrasyonlarini
pahal1 ve zor hale getirir.

Simiile edilmis sonuclar, stereo kameralarin/INS'nin genisletilmis Kalman filtresini
kullanan entegrasyonunun, ilgili navigasyon sistemi igin ucan ara¢ yoneliminin,

hizinin ve konumunun belirlenmesinde gercek zamanli dogru tahminler sagladigini
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gostermektedir; ¢lnkii bu entegrasyon, goreceli navigasyon icin sabit hataya neden
olur. desene.

Stereo kameralar, carpismadan kagimmmayi ve dogru konum tahminini gelistiren,
hedef konuma gore gorsel bilgi ve dogrudan dlgiimler saglar. IMU, zaman iginde
stirekli konum, hiz ve ara¢ yonelimi tahmini i¢in kullanilan ugan araglarin ivme ve
acisal hiz bilgilerini saglar.

Genisletilmis Kalman filtresinin kullanilmasi, sensor Olgiimlerine ve sensor
verilerinden gelen yanlilik ve giiriiltiiye iliskin hesap verebilirlige dayali olarak
strekli dinamik durum tahmini icin IMU ve kameralardan gelen bilgilerin
birlestirilmesidir.

Matlab benzetimli sonuglari, stereo kameralarin ve IMU'nun genisletilmis bir
Kalman filtresi kullanilarak entegrasyonunun, ucan bir aracin konumu, hizi ve
yoniine iliskin gercek ve tarafsiz bir durum tahmini sagladigimi ve ilgili bir
navigasyon sistemi i¢in INS/GPS navigasyonu ile hat ic¢i ¢ikti verdigini
gostermektedir. . Bu, GPS'in yaptigi gibi herhangi bir harici sinyal kaynagi
gerektirmediginden, dikey inis yapan bir ucak i¢in stereo kamera ve IMU'nun

giivenilir, dogru ve ucuz bir kalibrasyon modeli lizerinde entegrasyonunu saglar.
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CHAPTER 1

INTRODUCTION

Integration of an inertial measurement unit (IMU) and stereo camera for a vertical
landing of a flying vehicle on a pattern improves the accuracy and robustness of
navigation systems. The fusion of these sensors integration using the inertial
measurement unit (IMU) and filtering the undesired noise by using the Kalman filter
enhances the position and obstacle identification and the overall navigation
performance including vehicle attitude. Stereo cameras enable depth perception and
provide visual information. The use of an inertial measurement unit (IMU), for this
system assists in providing the angular velocities and acceleration data to estimate
the flying vehicles’ orientation. An IMU is composed of three-axis orthogonal
gyroscopes and accelerometers. The inertial navigation system is said to be strap-
down INS when the IMU is directly installed to the vehicle’s body. INS is a real-
time algorithm to estimate the position, orientation, and velocity of a flying vehicle
by integrating the signal rates given by an IMU [1]. To determine the position and
velocity double integration of nongravitational and gravitational acceleration from a
three-axis accelerometer is performed. These sensors are all subjected to errors and
noises which result in unstable results. To make smooth output in attitude, position,
and velocity calculated by the stereo cameras and IMU, the deployment of Kalman
filter to estimate the system process is an essential activity in minimization of sensor
errors and noises hence optimizing the system output accuracy. Combining data from
multiple self-signal-reliant sensors provide the system an increasted accuracy and
robustness compared to individual sensor or multiple sensors that depends signals

from external sources.



1.1 Navigation Systems Background

The navigation system is a method of determining and planning the movement from
one place to another (Chiella, 2019). Navigation is categorized as either absolute or
relative navigation systems. In this thesis, the relative navigation system is the main

concern.

Navigation with relation to a local reference frame is referred to as relative
navigation. We suggest that the local frame shift as the vehicle travels through its
surroundings, creating a pose graph-based topological representation of the outside
World [2], [3].

A relative navigation system that improves aircraft situational awareness during
formation flying is detailed. A relative navigation system determines relative
location and velocity by analyzing the disparity between signals from pairs of sensors
installed on flying vehicles. The system is predicated on the global positioning
system (GPS) and inertial navigation system (INS) navigation technologies that are
widely used in aircraft. The method involves calibrating the relative INS position

using relative GPS readings [3], [4].

In ancient times various methods of navigation were used. Among many, is to utilize
dead reckoning to calculate the present position based on starting position, speed,
and direction measurements. Dead reckoning involves taking the last known position
and time, recording the average speed and heading since then, and calculating the
present time. To calculate velocity components north and east, the speed must be
resolved using the heading angle. The change in position is calculated by multiplying
each position by the time of the previous one. Finally, the position changes are added
to the initial position to determine the current position. An equivalent process can be
undertaken using inertial sensors [1]. The inertial sensors are accelerometers and
gyroscopes which can sense the translational and rotation movements relative to an
inertial frame. Inertial navigation system has imapcted a lot as the main component
for relative navigation system nevertheless the errors of the system has remarkebly

identified over the time. As a solution to stablise those errors, the need of external



systems come into existitance. The INS integration with global positioning system
(GPS) acted as a very good choice in many cases. In flying vehicles, the inertial
navigation system (INS) and its integrations provide the attitude, velocity, and
position of the vehicle accurately however the system requires other sources of
information and this information is likely to be affected by environmental factors.
This shows that an inertial navigation system is not a stand-alone navigation
component but involves other signal source systems or units. Global positioning
system signals depend upon the signal strength from the inline satellite signals. It
was studied that the signals for global positioning systems to be reliable at least four
satellite signals are to be received by GPS and the inertial measurement unit
information/readings to be reliable depends upon gyroscopes and accelerometer
calibration and installation accuracy of the component. INS with its intagration
sensors, provides absolute information that must be transformed to the relative
coordinates using the appropriate transformation matrix. The relative information is

often required for formation control applications and coordination [5], [6].

Though the integration of global positioning system signals with inertial
measurement unit has become the standard approach for position and attitude
information display identification, it was found that the inertial navigation multi-
sensor fusion which involves global positioning system (GPS) and inertial
measurement unit (IMU) is complex and expensive not suitable for some flying
vehicles (Eric N. Johnson, 2007), [7], [8]. The [9], and [10] found that the
implementation of a vision-based navigation system could be the way to enhance
relative navigation system accuracy since the camera is a self-signal reliance. Vision-
based navigation method is adopted for navigation relative to the known fixed
reference. The target's horizontal and vertical positions in the image plane are
measured noisily by the camera in each of these methods, and the position and
velocity of the aircraft in relation to the target are then estimated using an Extended
Kalman Filter (EKF). Changes in the range from the camera to the target seems to
be harder to determine due to the difficulty of depth perception with monocular
vision [11]. The difference between successive image frames is tiny when the air

vehicle is flying straight and blurry at low altitudes towards a non-accelerating target,
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which leads to a poor estimate of the target's distance from the aircraft. Based on
[12], [13] the mostly used navigation systems taking an example of inertial
navigation systems (INS) with its integrations like global positioning(GPS),
GLONASS a Russian global navigation system, and Galileo, which is all generalized
as global navigation satellite systems (GNSS) are all external signal dependants, and
these external signals are the environmental effects, the use of the signal self-reliant
system could be the solution to this issues and hence the flying vehicle navigation
safety achieved. The new algorithm of using a camera and inertial measurement unit
(IMU),is expected enhencincing the orientation and attitude of a flying vehicle
mainly at low altitudes. With the use of suitable signal filters like Kalman filters, will
be helpful in state estimation of flying vehicles relative to the reference frame.
Various state estimation methods are to be studied in order to choose the suitable
method for air vehicles mostly at low altitudes. The integration of the inertial

measurement unit and camera is expected to be the new reliable navigation system.

1.2 State Estimation Methods

In navigation systems mostly for flying vehicles, state estimate is a crucial aspect for
providing accurate information about the aircraft's position, velocity, and attitude at
a given time. This information is essential for safe and efficient flight, and also for
various mission-critical tasks such as landing, and target tracking. There are several

methods of state estimation.

Least square estimation method: it is a method used to estimate the state space by

minimizing the sum of the squares of the differences between the predicted and

measured values. Least squares can be used in a wide variety of categorical
applications, including curve fitting of data, parameter identification, and system
model realization. Many examples from diverse fields fall under these categories, for
instance determining the damping properties of a fluid-filled damper as a function of

temperature identification of aircraft dynamic and static aerodynamic coefficients,



orbit and attitude determination, position determination using triangulation, and

modal identification of vibratory system [14], [15].

Kalman filter (KF): The Kalman filter is the most used state estimation method in
navigation systems. This combines sensor noisy measurements with a dynamic
model of aerial vehicles’ motion to estimate the current dynamic state. Kalman filter
is efficient for both linear and nonlinear time-varying systems using its variant
classes like Extended Kalman filter (EKF), and Unscented Kalman filter(UKF). In
navigation and positioning systems, filtering methods are derived from the
measurement equation and the nonlinear equation of state. They work in distinct
temporal intervals. With the help of measurements from the k-1" step, the Kalman
filter can be used to estimate an object's error or status in the k™ step. Utilizing data
regarding the system's dynamics, Kalman filters [16], [17]. The extended Kalman
filter (EKF) is used to linearize the object dynamics equations and observation
equations in systems with nonlinear dynamics. Partial derivatives of nonlinear state
functions or their Taylor series expansion are used to carry out linearization.
Unscented Kalman Filter (UKF) is an alternative to the EKF. This filter is a recursive
estimating filter, and it functions rather well on the statistical parameters of these
models after they have undergone nonlinear transformations. Its properties satisfy
the requirements of substantially nonlinear systems. The unscented transform (UT),
on which UKF is based, transforms the state vector into a collection of weighted
sigma points. The UKF algorithms then make use of these points. The UKF
algorithm is a collection of formulas required for steps in prediction, invention, and
correction. A different approach to the general filtering problem is based on the
particle filter (PF), which draws sample particles and their weights from the

probability density via sequential importance sampling [17].

1.3 Sensor Errors

It has been demonstrated that correlation-based stereo systems work well for tasks
like creating elevation maps and robot navigation. The researcher offers a thorough

examination of the main causes of mistake for stereo system in the context of
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vehicle's navigation. Found that there are three main categories of errors that are
identified which are systematic error, misalignment error, and foreshortening error.
Significant range errors result when the total disparity errors are greater than three-
tenths of a pixel. After gaining an understanding of these causes of errors (Yalin
Xiong). The demonstration of the stereo algorithm inaccuracy has to be eradicated.
Stereo cameras can be combined with additional sensors, like Inertial Navigation
Systems (INS), to provide a complete and accurate navigation system. Sensor fusion
approaches can improve a system's overall resilience by mitigating individual
sensors' limits. Using an inertial measurement unit (IMU) which is an INS
component that uses accelerometers, and gyroscopes to estimate an vehicles’
orientation in space. IMU outputs include measurements of acceleration, angular
rate, and attitude. IMU like many other sensors expericence some of the errors due
to the accelerarion rate and angular velocities of IMU accererometer and gyroscope
sensitivity. The most common IMU errors are misalignments, scale factor,

accelerometer, and gyroscope bias [4], [12].

An integration of INS/GPS impacted a lot in the navigation system for flying vehicles
however there are some errors encountered in GPS-based relative navigation systems
that can significantly impact the accuracy and reliability of navigation data. These
errors can be Satellite Clock Errors caused by imperfections in the satellite's onboard
clock and could cause discrepancies in the timing of the GPS signals, leading to
position errors, Orbital Errors could cause inaccuracies in the reported position of
the GPS satellites that can result into misleading information about the satellite's
location, causing errors in the calculated position of the receiver. lonospheric Delays
cause variations in the ionosphere's density can delay GPS signals and is likely to
result in errors in the calculated distance between the satellite and the receiver,
leading to position inaccuracies and changes in the troposphere's temperature,
pressure, and humidity these can cause errors in the signal travel time, affecting

position accuracy [12], [18].



1.4 Calibraration Methods

In navigation it is crusial for the sensors to be calibarated for the accurate and reliable
readings. The calibration of sensor can be categorized into intrinsic or exntrisic
parameter calibrations. In computer vision and photogrammetry, camera calibration
is an essential procedure that entails determining the intrinsic and extrinsic properties
of a camera. Extrinsic characteristics specify the location and orientation of the
camera in the world coordinate system, whereas intrinsic parameters include focal
length, optical center, and lens distortion. The camera calibration tackles on
calibration of both intrinsic and extrinsic parameters [19], [20]. Chassebord camera
calibration is the most common calibration method used for camera calibration
because of its effectiveness and simplicity. This method is done following some
procedures like a checkerboard pattern is printed and placed in different orientations
in front of the camera, the camera captures multiple images of the checkerboard from
different angles, corner detection algorithms identify the corners of the squares in
each image, these detected corners are then used to solve for the camera’s intrinsic
and extrinsic parameters and when distance sensor is fused with the camera, the
distance sensor calibration depends on the camera calibrated data. They provide in
real-time accurate range measurements in large angular fields at height above the
ground and enable vehicles to perform a wide range of tasks by fusing image data
from the camera mounted on vehicles. Calibration of a single image using known
geometry, it is useful when a single image is available and the geometry of the scene
is known. Self-calibration methods use multiple images of a scene without any
special calibration object [10], [20], [21]. In order to effectively use the data from
the camera and laser range sensor, it is important to know their relative position and
orientation from each other, which affects the geometric interpretation of its
measurements [19]. The sensors are always prone to the envirnomental factors which

includes pressure and temperature for revolving sensor components.



1.5 Methodology

Based on the performance and barriers that encounter the current INS navigation
algorithms for relative navigation systems and their integrations, the integration of
inertial measurement unit (IMU) and camera data fused by extended Kalman filter
as a new navigation system for a vertical landing aircraft is expected to measure the

attitude and altitude of the flying system with respect to the known pattern.

By the use of MATLAB environment, algorithm programming and simulation test
of this new system is used to identify the flying vehicle velocity, position, and
orientation behaviors and accuracy in comparison to the nominal navigation
parameters and currently in use real INS/GPS navigation based hence aiming to
enhance navigation accuracy of the flying vehicle that is not depending on the

external signal sources.



CHAPTER 2

INERTIAL NAVIGATION SYSTEM

The inertial navigation system (INS) is a system cable for locating and orienting the
vehicles. INS is composed of three-axis accelerometers and gyroscopes enabling the
system to calculate the position and attitude of a flying vehicles. INS could be a
solution for relative navigation or absolute navigation systems. For this case, INS for
the relative navigation system is the basis of the study. INS for relative navigation
systems, is an algorithm that continuously computes the flying vehicles’ orientation,
position, and velocity relative to the reference platform without external signal
sources [4], [22], [2].

2.1 Inertial Navigation Systems Modeling

IMU

N Convert to
Accelerometers -1 | navigation frame

T

Gyroscopes

1

Figure 2 1. INS Model Diagram (Joong-hee Han 6 July 2020)

The figure 2.1 shows the pure INS performance in deteeermination of vehicles’
orientation, position, and velocity by the use of system integrators that integrates

inertial measurement unit (IMU) data.

Relative navigation systems for flying vehicles is important for mission
accomplishment. The common flying vehicle navigation algorithms for relative

navigation involves an inertial navigation system ((INS) and its integrations as the



modern navigation system currently used. A pure INS works by integrating
accelerometer data to calculate velocity and double integration accelerometer data to
position a flying vehicle. Integrating the gyroscope data by INS the vehicle’s attitude
is determined based on the initial orientation, position, and velocity. The algorithm
update over time is prone to sensor biases and imperfect sensor output scaling all
lead to inaccurate readings. Since the output of the system is a result of integrating
accelerometer and gyroscope data, this small integration repetitive error leads to drift
error [1]. The integrations of INS were introduced due to the increased errors of the
system with respect to time. To smoothen the system errors the system was integrated
with other sensors/systems such as the global positioning system (GPS) [23], [24].
INS/GPS integration has played an essential role in the navigation of flying vehicles
and in various robot control systems. Even though the use of the INS/GPS became a
reasonable idea, there are some environments where GPS cannot operate positively
since it is an external signal dependent. The way to reduce errors resulted in poor
satellite signals to the GPS receiver, and the IMU bias the deployment of the Kalman
filter to linearize the nonlinearized data [6], [25] the Kalman filter is updated with
the GPS. In the circumstances where GPS reception is spotty, this arrangement has
an edge. When the observed number of satellite signals does not reach four, loosely
coupled filters are unable to provide filters with accurate data. Enhancing navigation
accuracy by limiting drift during the INS cycle and under poor GPS signal reception,

is possible through the vehicle state extension to incorporate IMU biases [6].

Inertial navigation system plays a big role in aerospace navigation systems using
inertial sensor measurements for continuous vehicle navigation applications.
Acellerommeter for identification of vehicle acceleration and velocities, gyroscope
for the angular velocity measurements. Although the errors of the INS have
remarkeble identified with time. The INS intergtartion algorithm for linearisation
and fuse data from the fore mentioned sensors have stabolised the errors and makes
it happen to identify the attitude and altitude of flying vehicle. The inertial navigation
system modeling approches require the kinematic modeling since it involves the
motion system. The involvement of intagration measured accelaration to estimate

position and accelaration and the involvement of measured angular velocities in
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estimation of vehicle orientation. The system modeling considers also inertial
navigation error modeling approach [13], [26]. Regardless of the current accuracy,
the system encounters several errors like drift, bias, noises, and environmental
factors, the approach to realizing error is aiming for accuracy enhancement for the
more improved navigation system. Since the inertial navigation system is a not stand
alone sensor system, the algorithm modeling approach is to be considered for multi-
sensor data fusion and state estimate linearization. In system modeling, the study of
the environment modeling approach is among the crucial items for the system
behavior anticipation and estimation of results in various environmental conditions.
The modeling approaches are considered and studied aiming for improved system
feedback accuracy [22], [13], [26].

2.2 Navigation Equation

Navigation equations refer to algorithms and mathematical formulas for navigation
systems to determine the altitude and attitude of a flying vehicle. The study’s
concern here is the inertial navigation equations as the fundamental equations for
navigation systems. inertial navigation equations rely on angular velocity and
acceleration to determine vehicles’ orientation and position. Navigation algorithms
involve various coordinate frames and the transformation of coordinates between
them. For example, inertial sensors measure motion concerning an inertial
frame which is resolved in the host platform’s body frame. This information is
further transformed into a navigation frame. A global positioning system (GPS)
receiver initially estimates the position and velocity of the satellite in an inertial
orbital frame. Since the user wants the navigational information with respect to the
Earth, the satellite’s position and velocity are transformed to an appropriate Earth-
fixed frame. Since measured quantities are required to be transformed between
various reference frames during the solution of navigation equations, it
is importantto know about the reference frames and the transformation of
coordinates between them [22], [26], [12]. Inertial navigation equations for flying

vehicles are categorized into acceleration and angular velocities since the vehicle

11



involves motion. And also the Eulers equation for the orientation of the vehicle. This
Euler equation depends on the translation and transformation matrices due to the
yaw, pitch, and roll of the flying vehicle. Considering rotation between two frames,
the general rotation matrix is C[1].

csfcsyp sngsnbcsyPy—csgsny sngsnyp +cspsnbcsy (2.1)

C)=|csOsny cspcsyp+snpsnfsny cspsnfsny —snpcsy
—sin@ sn¢gcsf cs¢pcsb

Where cs, sn, Uy, 8, and ¢ are cosine, sine, yaw, pitch, and roll angles respectively.
C}' is the rotation matrix of the body relative to the navigation frame. The rotation

matrix of the navigation frame relative to the body frame is given by C? = (C}")’
The derivation Euler angles are calculated directly from the direction cosine matrix.
The below formulas do not apply to an angle 90° pitch.

— t P—
Y = arc an[C ]

11

6 = arcsin[—C3,] (2.2)

c
¢ = arctan [ﬁ]
Cs3

Taking into account the latitudes, longitude, and altitude, calculating the position

vector is possible [27].

(N + h)cosgcosA
r¢ =| (N + h)cosgsini (2.3)
(N(1 — e?) + h)sing
Where ¢ =(xe,ye, ze) is the coordinate of the position vector in the earth frame. ¢ is
latitude, A is longtude and h is altitude. Knowing latitude at h=0, the below
equations are a simple way to use in analytically find the latitude, longitude, and

altitude hence easy to know the position of an object.

1
1—e?2

Lattitude ¢y=tan ! (———(

Jxe+vE

)) at h=0
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where  eccentricity  e=,/2f — f2 and  flattening ~ f =2

Ry '
R, and R, are equatorial radius and polar radius of the earth respectively.
The rotation matrix of the earth frame relative to the navigation frame is denoted by
—cosAsing —sing@sind  cos@

C} = —sinA cosA 0 (2.5)
—cosAcosp —cos@sind  —sing

then the rotation matrix of the navigation frame relative to earth frame C¢ = (C}')'.

In the determination of the flying vehicles’ orientation and position, the angular
velocity is to be considered. the angular velocity is denoted by omega (w). The

angular velocity of the navigation frame with respect to the earth frame is denoted

by

Acosg
oh=| ¢ (2.6)
—Asing

The real general navigation equations are denoted by and where w2, = w?,- Clw?,
w?, is the output of gyroscope measurement readings. The angular velocity of a body

relative to the navigation frame has three independent equations that can be solved

¢

9] where @ is the Euler angular rates and © is Euler’s

Y
angles (roll, pitch, yaw) that is 123 series. at t=0

as O=E(0) wk, for © =

v = CPHP + g™ — (Wl + 200, )V (2.7)
fb

Calo™ — g™ + (win + 203 )V"]

13



0
where w}, :[ 0 ]
we

The position rate estimation is denoted by

7 = Dv" (2.8)

b _ ,b b, n
Wypp = Wip — anin

— 0 0
R+h
D= 0 1 0
R+h
0 0 -1
0 £
The vehicle state estimate is denoted by x=f(x,u). Where x = \vn]and u= [a) ]
P b
X ¢ Un fx [ Wy
P: lyl'@: Hl’vn:[ve],fb — fy "f': A ,andwb: [(Uy]
z (0 ] A h Wy

Accurate position, orientation, and translation of flying vehicles result in a safe flight

navigation system which is the major item necessary for flying vehicles.
2.3 INS Discretization

To calculate the vehicle’s attitude, velocity, and position, the INS mechanization
uses the inertial dynamic equation of mechanization. The four coordinate frame
scripts are used. These are n- for navigation frame, e- for earth frame, b- for body

frame, and i- for inertial frame (Wu, 2021).
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Figure 2 2. INS block diagram (Young Yoon Jang 6 July 2020)

When the IMU is installed on the vehicle incorporated with KF dynamic readings.

Noise covariance estimation algorithm for INS /GNSS integrated navigation-based.

The KF measurement vector is the difference in velocity between the GNSS

observation and the INS prediction.

Based on the real state estimation system of the INS model.

x= f(x,u,w) 1)

Where x, x, u, w represent continuous real state space estimation, state vector, real
system input vector, and system sensor noise respectively. The state vector is
composed of position, velocity, and orientation vectors, u is the input vector for the
accelerometer and gyroscope readings and f is a nonlinear function describing the

dynamic system.

In this context of an Inertial Navigation System (INS), discretization refers to the
process of transforming continuous-time INS models into discrete-time models that
may be used with digital computers. For real-time control and navigation
applications, this is essential. To estimate location, velocity, and orientation, the
method involves discretizing the state-space representation of the INS dynamics.

Typically, this involves integrating accelerations and angular rates [1], [26].

15



The state vector x;,, which normally consists of position, velocity, and orientation, is
estimated by an INS using data from accelerometers and gyroscopes. The depiction

of state-space in continuous time as:

Xk = F(xg—1,Ug—1, Wk—-1) (2)

To discretize the time continuous model, the approximation of the state evolution

over discrete time steps.the discrete definition of time points At.

Dynamic state discretization at the time step can be approximated using numerical
integration methods which could be either the Euler method or the range Kutta

method.
Euler discretization method

Xk = Xg—1 + Atf (Xp—1, Ug—1, Wk—1) (3)

Range Kutta method:

ki = f(xk—1, Ug—1, Wk—-1)

A
ky = f (et + 5 ko Ui—g, Wie—1) (2.13)

At
ks = f(xp—1 + 7k2fuk—1fwk—1)

ky = f(Xp-1 + Atks, up_1, Wi—1)

Therefore the general form is
At
xk = xk_1 + Ef(kl + 2k2 + 2k3 + k4)

At
Xp-1 T Ef(lﬁ + 2ky + 2k3 + ky) = F (Xg—1, Ug—1, Wk—1)
X = F(Xg—1, Up—1, Wi—1) 4)
The INS measurement discretization involves measurement updates

Zy = Hkxk + Vi (5)
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Where z,, Hy, x;, and v, are the measurement vector, the measurement matrix, the
INS prediction result at time k from the navigation, and the measurement zero-mean

Gaussian noise respectively.

Due to the double integration of accelerometer measurements to obtain location and
the integration of gyroscope measurements to obtain orientation, the fundamental
difficulty with an INS is that small sensor errors can accumulate and worsen over
time. Covariance analysis and state-space models can be used to examine how these

errors spread.

Relative navigation errors from Inertial Navigation Systems (INS) can be modeled

to see how they affect navigation accuracy.

2.4 Inertial navigation system errors

Inertial Navigation Systems (INS) are widely used in relative navigation systems due
to their ability to provide continuous and independent position, velocity, and
orientation information. However, INS are subject to various errors that can
accumulate over time and degrade the accuracy of the navigation solution. Some of

the errors, are:

Sensor error s which could be a result of gyroscope and accelerometer bias, scale

factor. The constant offset may cause orientation, velocity, and position errors.

Alignment error involves inertial misalignment and drift errors in the initial
alignment of the INS with the reference frame. This includes errors in the initial
position, velocity, and orientation and gradual change in alignment over time due to

sensor biases and other errors.

Environmental errors occur due to the temperature effects leading to drift, bias, and
magnetic interference in the case of the system with the magnetometer. And the

additional INS error due to the integrated systems is an integration error.

Mechanization errors arise from incorrect compensation for the Coriolis and

centripetal forces in the mechanization equations [24], [1], [18].
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The accelerometers and gyroscopes and their gradual integration are the main causes
of these inaccuracies. The difference between the real estimated state and the

nominal state estimation analyzes the error state vector.

X" = f O, uy)

x = f(x, i)

T=u—w (2.16)
Where x,, and x are nominal and real system state estimates. i, u and w are real
measured inertial measurement unit (IMU) measured output, real IMU input, and

IMU noise respectively.

by linearizing the state space equation to the nominal state, the error state equations

at time step k are obtained as

A% = % — %,

Ax = f(x,,up) + Z—ﬁAx + Z—{LAu — (%, Uyn) ©
For the above differential equation x = x,, and u = u,,.
Ax = AAx + Bw , A = %lﬁiﬁﬁ’ B= %'fjﬁiﬁ
The above equation can be discretized as:
Ax) = FAxp_1 + Gwy_4 7)

AA At® t* 5 A
F=e"  G=(otl+—A+— A2+ +—4" 1+ |B
2 3! n!

The covariance matrix error P, propagation can be done by flowwing equation

Py = FP_1FT+ GQy_1G”
8

where:

F,, is the state transition matrix obtained from the linearized error state model and

Qy—1 1s the process noise covariance matrix of w,_;.
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The state transition matrix F depends on the system dynamics and the errors being
modeled. The process noise covariance matrix Q, accounts for the sensor noise and

biases.

Based on the signal distortion and errors generated when using INS and INS/GPS
integrations for relative navigation systems due to systematic and environmental
factors, system calibration methods are to be taken into account for the reliable
system output by calibrating system sensors and the development of the visual
algorithm by integrating distance sensor cameras using IMU and Kalman filter is
expected to be a solution mostly at low altitudes of flying vehicle approaching to

land.
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CHAPTER 3

VISUAL NAVIGATION

The camera plays a crucial role in computer vision by enabling us to capture the
world around us and utilize the resulting images for a wide range of applications.
Vision-based navigation is anticipated to serve as a practical navigation solution for
relative navigation systems in aerial vehicles. Stereo cameras can be used for terrain
mapping, visual odometry, and landmark recognition, among other applications that
require the acquisition of comprehensive visual information about the surrounding
environment. This data richness enables more dependable and accurate navigation.
The pinhole model, which outlines the mathematical representation of projecting
points in three dimensions onto an image plane, serves as the foundational camera
model. This model is represented as the pinhole at which light rays pass through to

form an image on the camera sensor [21].

.Y
P(X.Y.Z)
Pe (wv)—]

0 NS
Center of v Principal Axis 7
Projection Image Plane

X

Figure 3 1. Pinhole model (Hartley and Zisserman, 2003)

The figure 3.1 shows a pinhole camera model on how camera image is formed.

Taking a camera with its major axis parallel to the Z axis and its center of projection
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O is seen in the above figure. Since the image plane is at focus, the focal length f is
separated from O. On the image plane of the camera, a 3D point P = (X, Y, Z) is
photographed at coordinate

Pc = (u, v). The camera calibration matrix C, which converts 3D P to 2D P, will be

located first. Similar triangles can be used to find Pc, as we have already

demonstrated.
f
Z=x=¥ ©)

From this equation the projection image points

=Y
(10)
i
VA

Translation of Pc to the desired origin is required if the Z-axis intersection of the
image plane and the origin of the 2D image coordinates system do not line up. Give

(cx, cy) the definition for this translation. Therefore, at this moment (u, v) is

_ Xf

u = 7 + Cy
v (12)
V= 7 + Cy
When considering homogeneity equations (39) and (40) can be expressed as
u f 0 c][X
H = [0 ool (12)
w 0 0 1.LZ

In both the u and v directions of the camera image coordinates, the resolution will be
the same if the pixels are square. Nonetheless, we consider rectangle pixels with
resolutions of u and m,, pixels in the u and v directions, respectively, for a more
generic scenario. Thus, the u and v coordinates of Pc should be multiplied by m,, and

m,,, respectively, to measure it in pixels [21]. Therefore the equations

u= X7f + myCy
p (13)
v="t1myey
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u fm, 0 myc][X
vl :[ 0 fm, muc||Y (14)
w 0 0 1 Z
ay = fmy, ay = fmy, px = myc, and by = myCy
Then the equation is expressed as
u a, 0 p1X
l l =0 a, pyll|Y (15)
w 0 0 1117
X ay 0 py
FromP=Y|and K=| 0 a, p,],
Z 0 0 1
u
vl = KP (16)
w

Where K is the intrinsic parameters of the camera (pixel, focal length).

ax S px
K=|0 a, py|whenithasskew parameters.
0 0 1

This typically occurs when the axes that coordinate the image, u and v, are not
orthogonal to one another. It should be noted that K is a 3 x 3 upper triangular matrix.

This is typically referred to as the camera's intrinsic parameter matrix.

To align the camera coordinate system with the setup shown in Figure 1, we must
perform a rotation and translation if the camera’s center of projection is not at (0, 0,
0) and z is not perpendicular to the image plane. Let T (Ty,T,,T,) represent the
camera translation vector to the XYZ coordinate origin. Allow the rotation to be
represented by a 3 x 3 rotation matrix R to align the primary and Z axes. The 3 x 4
matrix is the result of applying translation and rotation in order to generate the matrix
[10], [28].
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The rotation matrix R which represents R,, R,,, and R, matrices.

1 0 0
R,=1|0 cosa sina
0 —sina cos al
rcosff 0 sinf
R, = 0 1 0
[—sinf 0 cos [

[cos @ sinf O
R, =|—sin@ cos@ 0
0 0 1

Where a, B, and 6 are the rotation angles in the x,y, and z directions. In flying

(3.10)

vehicles, these angles represent roll, pitch, and yaw.
The extrinsic parameter matrix is

E=[R RT] (3.11)

The camera transformation matrix is expressed by

K[R RT] (17)
Here the camera projection points is

P;. = K[R RT] (3.13)

The camera calibration matrix C is

C=K[R RT)=KR[I T] (18)

Therefore P, = CP

3.1 Visual Navigation With Stereo Cameras

Navigation with stereo cameras involves two synchronized cameras with a known
baseline to capture image points from different viewpoints. This allows the 3D depth
perception environment reconstructions. The method of stereo camera-based
navigation improves the ability of flying vehicles to detect obstacles and estimate the

vehicles’ position and velocity relative to the known platform [3], [29][30].
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Assuming that the two cameras' optical sensors are coplanar and have the same

characteristics and parameters the stereo processing is achieved as shown below:

3.1.1 Stereo camera processing

Taking world points P=[X, Y, Z] projected into stereo cameras the projection points

are identified P, = [x,y] and P, = [x', y'] focusing at the same image point [30].

Knowing the baseline (b) between two cameras, and the image disparity (d) due to

the two camera images, the altitude is determined by triangulation.

7 =1 (3.15)
d

Where f is the camera pixel and disparity d = |x — x/|

Matching points by stereo cameras method obtain disparity. The position centers can
be determined using the center coordinates. To measure the duration between frames,
the speed computation makes use of the location centers to calculate the distance
between nearby frame centers. All the object points are estimated to be
approximately at the same distance from each camera. The extraction and object size

is estimated when disparity detection is performed.

Obtaining the rest of the image points are computed by

x=2y="2 (3.16)
f f
Projecting 3D world coordinates to 2D image points is denoted by normalizing Z-
axis points.
x=% - (3.17)
VA VA

The three-dimensional homogenous expression by taking camera reference when

disparity is obtainable and is denoted by

P=& Y, Z1DT (19)
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This represents the transformation of world point to camera points when disparity is
possible to be obtained. The matrix to convert 3D points from the local reference
system of each camera to the world points centered in a pattern is determined by

extrinsic parameters from each camera of the stereo camera system.

3.1.2 Stereo Camera Feature Detection

Stereo cameras are used in the visual navigation of flying vehicles to determine depth
perception and feature detection by the triangulation principle. This principle is done
by capturing the images using stereo cameras from different two viewpoints to
determine object position and feature detection. Feature detection refers to the areal
point justification in the reliable scene identified in both stereo cameras. Scale-
invariant transform (SIFT) and speed-up robust features (SURF) are the popular

feature detection algorithms in visual navigation systems [2], [3].

The detection of features by the SIFT involves some parts that include scale-space
extrema detection, keypoint localization, orientation assignment, and keypoint

descriptor.

Scale-space extrema detection (SSED) is to detect and identify the most reliable
points that are invariant to scale. It detects key points by searching for the local

extrema difference of Gaussian [4], [5].

The original image point of scale space representation /(x, y) is Gaussian convolved

of a different scale (o) sigma to make blurred image series.

L(x,y,0) = G(x,y,0)I(x,y)
—x2+y? (3.19)

e 202

G(x, Vs 7) = 2mo?

The difference of Gaussian function convolved with the image, D(x,y, o) can be
calculated from the difference of two closest scales separated by a multiplicative
constant factor k. This allows the efficient detection of stable positions of key points

in space scale [4], [5].
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D(x'% 0) = (G(X'J’: kO') - G(x'yr U))I(XIY)
D(x,y,0) = L(x,y,ka) — L(x,y,0) (3.20)

Where k is the scale factor constant and D(x, y, o) is the local extrema.

The keypoint localization is identified as local extrema in the difference of

Gaussian.

Tylor expression of DoG

D49 1 r o (3:21)
D(x)—D+axx X oS X

Where x = (x,y,0)T is the detected keypoint offset, D is the difference
2
of Gaussian, Z—z is gradient of D, and ZTZ is Hessian matrix.

The localization of x is done where D (x) has reached an extremum and X
is iteratively refined.

This makes the involvement of each point comparison in the scale space.

Orientation key points: The orientation to each key point based on the local image

for each key point was calculated using pixel differences as [5]

m(x,y) =L+ 1,y) —L(x — 1,y))? + (L(x,y + 1) — L(x,y — 1))?

_ —1 (LOy+1D)-L(x,y—1) (3.21)
H(X, y) = tan (L(x+1,y)—L(x—1,y))

Where 6(x, y) and m(x, y) are orientation gradents assignment feature detection using the
SIFT technique.

The process of detecting features in SIFT starts with generating a scale space
representation using Gaussian blurring, identification of key points as local extrema
in the difference of Gaussian pyramid, and then giving the key points orientations
based on gradient orientation, generation of descriptor for each key point and
matching the descriptors for 3D image reconstruction and recognition. The
orientation gradient and descriptor coordinates are rotated with respect to the

keypoint orientation in order to ensure invariance orientation.
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SIFT makes a descriptor by including the orientation and gradient with in
neighborhound arround the main target. To perfprm this, vector decriptor V(x, o) is

calculated from the orientation gradient weighed by their position and magnitudes.

V(t,0) = [Spw(P —x,0)P e 3" (3.22)

P represents local neighborhood points, w(P — x, o) is the weight function, and o is

the scale to where descriptor is calculated.

The discriptor matching with SIFT , uses Euclidian distance to measure descriptors

similarities.

D(Vy,V5) = y2i(Vay — Voi)? (3.23)
The key matching process involves the Euclidian distance between descriptors and

SIFT to find the neighborhoods and match the closest matches on a ratio of

ratio = vl (3.24)

[lvz—ul|
Where v,and v, are the closest two descriptors from the second image, u is the

descriptor from the first image.

The SIFT technique makes use of the difference of Gaussians, a Laplacian of
Gaussian (LoG) approximation. The Gaussian difference is the distance between the
Gaussian blurrying of different images. This procedure is carried out for the various

image octaves in the Gaussian pyramid.

28



Scale @%
oon, |

octave)

Scale
(first
octave)

Difference of
Gaussian Gaussian (DOG)

Figure 3 2. Image detection using the SIFT technique
(https://docs.opencv.org/4.x/da/df5/tutorial_py_sift_intro.html 15 july 2024)

The fig 3.2 shows how the feature is detected by SIFT by using difference of
Gaussian.

The working principles between SURF and SIFT are the same except that the SURF
as the name implies, is faster and more robust to scale changes, and orientation. It
uses image integral in speeding up filter calculations and approximates Gaussian

derivatives using Haar wavelets.
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CHAPTER 4

ESTIMATION METHODS

Modern navigation systems utilize state estimation techniques to efficiently process
data from various sensors, advancing navigation and tracking technologies. State
estimation methods provide the state estimate based on the available measurements
and a known state-space model. According to [16], and [32] the state estimation
methods are categorized into exact, local, and global methods. Under which the exact
methods have been typically designed for a set of linear models. For this set, the
solution to the Bayesian recursive relations (BRRs) results in reproducible
conditional probability density functions (PDFs), i.e. the conditional PDFs at
subsequent time instants share the same distribution and, thus, recursive conditional
PDF computation reduces to recursive computation of conditional PDF parameters
only. The exact method is presented by Kalman Filter (KF).

Local methods are based on two approximations; first, the joint conditional
predictive state and measurement PDF is assumed to be Gaussian; second, the
nonlinear functions are linearizeable. The former approximation results in a linear
structure of a local filter with respect to the measurement, and together with the latter
approximation, it allows the use of the (linear) KF design technique also for
nonlinear models. For this method, the linearisation can be found in derivative-based

and derivative-free. Derivative-based involves the extended Kalman filter (EKF).

The global methods provide accurate and consistent estimates in the form of
conditional probability density functions (PDFs) without any assumption of the
conditional distribution family. Global methods are capable of estimating the state
of a non-Gaussian or strongly nonlinear system usually at the cost of higher demand.
This method can simultaneously involve an extended Kalman filter (EKF) and/or

unscented Kalman filter (UKF) for system linearization of non-linear functions.
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State estimation in navigation applications can be either linear or non-linear
estimator. The linear estimator deals with the stochastic estimation system whereas
the non-linear estimator deals with the various stages of nonlinear stochastic systems.
The well-known linear estimator in navigation systems that is to be discussed is the
standard/linear Kalman filter (KF). Nonlinear estimator includes Extended Kalman
Filter (EKF), Unscented Kalman Filter (UKF), Particle filter (PF), and multiple
model adaptive estimator (MMAE). Under which extended Kalman filter is

discussed in this study as the system estimator.

4.1 Least Square

The least square method is used when there are many equations than the unknowns.
The residual vector's sum of squares is minimized by the solution. Assume that there
are n parameters in a vector x wish to estimate from vector z of m measurement

noise where m is greater than n [27], [33].

z=Hx+v (4.1)

Where the matrix H,, ., is a known design matrix.

When estimating vector x using the least squares approach, the sum of the squares
of the components of the residual vector z- Hx is minimized and is represented by X.
Minimize
lz— HX "12?: (z— Hf)'{me_l(Z — HXym) (4-2)
lz— HR |3=z"TR™'z — zTR™*HX — zR™Y(HX)" + (H®)TR™'H%

Differentiating the equation with respect to the state estimate X

W k) _ o — ;TR=1H — (HTR-'2)T + (HTR-HZ)T + 2THTR-'H (49
ox

iz Hk) _ _p(,TR-1H — #THTR'H)
ox
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Equating to zero derivatives for the minimization

zTR™'H — 2THTR™1H = 0
2T = zZTR-'H(HTR™*H)™!

£ = (HTR'H) 'HTR 1z

20
Cov(®) = KRKT , K = (HTR"H)"1HTR™1 (20)

Where R is measurement covariance. Therefore the value of X is deduced by

differentiating Il z — HZX II* with respect to  state estimate.

4.2 Kalman Filter

The development of the Kalman filter in the 1950s update has impacted the
engineering field to more advancements in filtering and state estimations since it is
a fundamental state estimate and control system tool that critically plays a big role
in various applications including aerospace engineering, robotics, and many others
makes it a more reliable tool. Kalman filter is an algorithm that uses a mathematical
series of measurements observed with respect to time and results in accurate variable
estimates. It generates a statistically optimum estimation of the underlying system

state by operating recursively on streams of noisy input data.

Filtering algorithms used for navigation systems of positioning are based on
the nonlinear equation of state as well as the measurement equation. They operate in
a discrete time. Kalman filter allows to estimation error or state of an object in the
kth step based on measurements in the k-1th step. Kalman filters use information

about the dynamics of the object system.

Kalman filteris applied for both Gaussian and nonlinear systems. And is
categorized in various forms including the Kalman filter (KF) which is a method

that is based on recursive Bayesian filtering where the system is assumed to
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be Gaussian, Extended Kalman filter (EKF)is an extension of KF that deals
with nonlinear dynamic systems for linearized dynamic systems, Unscented Kalman
filter (UKF) is an extension of EKF operates on the statistical parameters of these
models subjected to the non-linear transformations. UKF is based on unscented
transform (UT), which converts the state vector into a set of weighted sigma points.
These points are then used in algorithms for UKF. The UKF algorithm is a set of
equations that are necessary to do prediction, innovation, and correction steps
[34][35], [36]

Linear Kalman filter is the particular situation that allows the entire statistics of the
probability density functions (pdfs) of interest to be expressed as a mean vector and
covariance matrix, a unique property that is exploited by the linear Kalman filter.
The linear Kalman filter consists of two distinct steps which are propagation of the
mean and covariance between time and incorporation of a discrete observation.

Under these conditions, the a posteriori pdf is guaranteed to be Gaussian.

The system to be estimated in its steps is represented in terms of a state-space model
comprising two equations which are categorized into a state transition equation and

observation equation.
State transition equation:

X, = Fix) + G Wy, linear form
of G, =L (21)

k— 7| w=0 , =~ w=0 ,
0x xsz—l ow xsz—l

Observation equation:

Zx = Hyxy, + vy. Linear form
E(w)=0,E(vvY) =R (22)

Where x,, is the state at time step [k], Fy is the state transition matrix, G, is the
disturbance matrix, wy, is the process noise (assumed to be Gaussian with covariance
matrix Qg), z, is the observation at time step [k], Hj, is the observation matrix, vyis

the observation noise (assumed to be Gaussian with covariance matrix Ry,)
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After having the state space equations, the second filtering algorithm is to predict the
next state which is predicted using two equations which are prediction equation and

error prediction equation.
State prediction equation:

X~ = Fyxp_q B uy (23)

Error covariance prediction:

Py = FyPy_1F{ +Q (24)

After the prediction step, the system correction and update are necessary. In doing
the system update, kalman gain is the critical factor in order to minimize the system

errors. The below equations are used in the system correction and update step.
Kalman gain:

Ky =P H (Hy . P¢ Hg + Ri)™ (25)

State update estimation:

X = X~ + Ky (2 — Hy x7) (26)

Covariance error update:

Pi=(I- K Hy) P (27)

While many systems are well-modeled by linear stochastic equations, most real-
world applications are nonlinear at some level. There are many types of
nonlinearities to consider. Some examples include non-Gaussian noise sources,
saturation effects, nonlinear dynamics or measurement models, and jump

discontinuities. All of these effects ultimately result in the true conditional state pdfs
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being non-Gaussian in nature, which violates the fundamental assumptions of the
linear Kalman filter those are the effects of nonlinearities on the linear Kalman filter
(KF) (Veth)[17], [36].

4.3 Extended Kalman Filter (EKF)

Acceptable results can be obtained with the extended Kalman filter (EKF) if the
degree of nonlinearities is nearly minimal. The system and measurement models are
linearized using a first-order Taylor series expansion to form the foundation of the
EKF filter design[17], [37].

The EKF extends the Kalman filter to handle nonlinear system dynamics and
measurement functions by linearizing them around the current estimate of the state
[16], [32]. The state estimate and covariance matrix are updated using prediction and

updating steps under the following functions:
Prediction step:

ﬁk = f()?k—l’ Uk, O)

Py = FePeoiF +Q (28)
_9f
Fk = ox x\i};ko_l
Measurement

Zy = hxk + Uk)

_ 9h(x)
H= 0x l’?k—l
Update step:

Kk - PkHT(HPkHT + R)_l
Rk = Xy—1 + K (2 — h(Zg-1)) (4.13)
P, = (I —KyH)P_q
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Where, f (Xi-1, uk) is the nonlinear state transition function, Fy is the Jacobian matrix
of the state transition function h(X), X, is state update, P, is coveriance update, Xj_,

is predictated state, P, is predicted covariance.
Although the EKF is very widely used in navigation applications

First, the EKF is subject to linearization errors. These linearization errors result in
incorrect state estimates and covariance estimates and can lead to unstable operation,
known as filter divergence. EKFs can be extremely sensitive to this effect during
periods of relatively high state uncertainty such as initialization and start-up. The
second issue is the inherently unimodal assumption of the EKF. In cases where multi-

modal densities are known to exist, the EKF would not be a good choice (Veth)[17].
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CHAPTER 5

CALIBRATIONS

Accurate sensor data is essential for reliable navigation obstacle avoidance and
environmental mapping in the world especially for flying vehicles. The sensors
provide data required to comprehend the environment around the flying vehicle.
Nevertheless, accurate calibration is crucial to guarantee that the information from
sensors is accurate and reliable. Sensor calibration is the process of matching sensor
readings complying with the standards by modifying the outputs and inaccuracies
due to systematic and environmental errors. Such errors include sensor bias,

misalignment, scale factor, and signal distortion due to other signal sources.

Various sensor calibration methods are required for the sensor to provide accurate
outputs. Single-point calibration and multi-point calibration are the basic ways of
sensor calibrations where calibration is performed referring to known standard point
and dynamic calibration is another way of calibration that deals with the calibration

of dynamic parameters like angular velocities.

5.1 IMU Calibration

The inertial measurement unit model is categorized into accelerometer and
gyroscope model. All the errors and calibrations are based on both the gyroscope and
accelerometer. Accelerometer and gyroscope measurements can be illustrated
mathematically as
fr = Saa+b,
(29)
w,.=S,9+b,
Where f,, S,, a, b, , w,, Sg4, g, and b, are raw acceleration measurement,
acceleration scale factor, true acceleration vector, acceleration bais, raw gyroscope

measurement, gyroscope scale factor, true gyroscope angular vector, and gyroscope
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bias. The inertial measurement unit calibration procedure is done by reduction of

bais, misalignment, and dynamic errors.

Bias calibration for acceleration is done by placing an IMU in a static known position
and orientation. Knowing the static position means the true acceleration vector is

known and by measuring the raw acceleration, the acceleration bias is computed as:

ba=f—a (5.2)
IMU calibration is to be done based on the dynamic calibrations due to the angular
velocities measured by a gyroscope. The gyroscope measures rotation series at
known angular velocities. For the complete calibration, computation of scale factor

and misalignment calibration is achieved by using multiple known orientations.

A.=S,A+ B, (30)
where A,. is the matrix of raw measurements, A is the matrix of true values, and B,
is the matrix of biases. Using the least square method solves the scale factor and

misalignment issues.

S, = (AAT)™ 144, (5.4)

5.2 Camera Calibration

The extraction of precise and trustworthy 3D metric information from photos
requires accurate camera calibration and orientation techniques. If the primary
distance, principal point offset, and lens distortion parameters are known, the camera
Is said to be calibrated. Only the focal length is recovered in many applications,
particularly in computer vision, but all of the calibration parameters are typically
used for accurate photogrammetric measurements. Photogrammetric measurement
has always required camera calibration, and in the modern day, self-calibration is a
crucial and frequently used process within photogrammetric triangulation,
particularly in high-accuracy close-range measurement. However, there are
numerous scenarios where the topology of the image network will not permit robust

recovery of camera parameters by on-the-job calibration, despite the extremely rapid
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development in the adoption of off-the-shelf digital cameras for a variety of novel
3D measurement applications. The calibration of each of these geometric sensors can
be decomposed into internal calibration parameters and external parameters. The
external calibration parameters are the position and orientation of the sensor relative
to some fiducial coordinate system. The internal parameters, such as the calibration

matrix of a camera, affect how the sensor samples the scene. [19], [20].

The usual pinhole model can describe a camera. A projection from the world

coordinates P = [X,Y, Z]T to the image coordinates P = [u, v]” can be represented

As
P=K(RP+1t)
X O Cx
K=10 f o (5.4)
0O 0 1
rll r12 r13
R=1|r21 r22 7123

r31 r32 133
where f, f, cx, and ¢, are focal lengths and coordinates of principal points in (X, y)

direction respectively.

where t is a 3-vector representing the camera's position, R is a 3 x 3 orthonormal
matrix reflecting the camera’s orientation, and K is the intrinsic matrix of the camera.
Real-world situations may result in noticeable lens distortion on the camera; this can
be represented as a 5-vector parameter made up of tangent and radial distortion

coefficients

vision-based camera calibration models have traditionally employed reference grids,
the calibration matrix K being determined using images of a known object point array

pattern

Tsai’s calibration model assumes that some parameters of the camera are provided
by the manufacturer, to reduce the initial guess of the estimation. It requires n
features points (n > 8) per image and solves the calibration problem with a set of n

linear equations based on the radial alignment constraint. A second order radial

41



distortion model is used while no decentring distortion terms are considered. The
two-step method can cope with either a single image or multiple images of a 3D or

planar calibration grid, but grid point coordinates must be known. (Fraser, 2006).

A planar pattern must be positioned in several orientations in front of the camera for
Zhang's calibrating approach to work. The presented technique computes a
projective transformation between the image points of the n distinct images, up to a
scale factor, using the extracted checkerboard pattern corner points. The camera's
interior and exterior parameters are then recovered using a closed-form solution,
while the third- and fifth-order radial distortion terms are recovered using a linear
least-squares approach. All recovered parameters are refined through a final non-
linear minimization of the re-projection error, which is solved using the Levenberg-

Marquardt technique. which necessitates at least five views of a planar

Although the ideal Lens cameras do not involve any distortion in camera calibration,
real lenses are likely to deviate from the projection rectilinearity. Having a real lens

system requires a method that handles distortion in camera calibration

have been working with ideal lenses that are free from any distortion. However, as
seen before, real lenses can deviate from rectilinear projection, which requires more
advanced methods. This section provides just a brief introduction to handling

distortions.

Often, distortions are radially symmetric because of the physical symmetry of the

lens.

5.3 Stereo Camera Calibration Using Checkerboard

Traditionally, several existing approaches have consistently employed narrow-angle
cameras to capture stereo pictures of black and white checkerboard patterns.
Maintaining the pattern close to the stereo cameras is essential to achieve more
accurate calibration results. There may be instances where this orientation reduces

the amount of possible positions. Sometimes it is impossible to capture the entire
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region of the checkerboard pattern. The use of wide-angle lenses is one potential fix

for this occlusion issue.

The stereo setup may not be able to fully capture images of the checkerboard pattern
even if a wide-angle lens is used. We have trouble covering the entire checkerboard
pattern at close range because of the stereo setup of a new checkerboard pattern

which has been employed in place of the traditional black and white pattern.

General black-white
' checkerboard pattern

Wide-angle

camera view
Narrow-angle
camera view

Wide-angle

camera
Narrow-angle

camera

Figure 5 1: Checkerboard for stereo camera calibration ( Pathum Rathnayaka,
Seung-Hae Baek, Soon-Yong Park e Pathum Rathnayaka, Seung-Hae Baek, Soon-

Yong Park 2017)

An illustration demonstrating the variation in viewing angles between wide-angle
and narrow-angle cameras. A larger coverage of the scene is provided by the wide-
angle camera on the left. The narrow-angle camera which may only captures a
portion of the image on the right side. The narrow-angle camera shows a portion of

the overall checkerboard design.
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Wide-angle cameras have significant barrel distortions which is one of the
drowbacks. Erroneous matrix calculations may result from stereo calibration that are
performed without first addressing distortion. Thus two stereo calibration techniques
are by first removing distortions from input wide and narrow-angle images to
preserve the inner pattern. While shooting with a narrow lens and the outer pattern
when shooting with a wide angle for mono camera calibration wherein separate

calibrations are done wide and narrow-angle cameras.

Calibration using two transformation matrices, the wide and narrow angles camera
transformation matrices are multiplied in the stereo calibration method. After the
cameras have been mono-calibrated independently, simultaneously record stereo
image sequences of checkerboard pattern from both cameras. Maintain a close
spacing between the cameras and the checkerboard pattern when taking images so
that the wide-angle camera can view the entire pattern and the narrow-angle camera
can view the entire inner pattern. According to this transformation matrices method,
the origin of the initial outer checker pattern is the intersection point of the
checkerboard pattern which is used as the global coordinate system. By simply
adding the distance between the two origins, the inner pattern origin at the crossing
point is relocated toward the outer pattern origin given that the inner and outer

patterns are two distinct checkerboards.

5.4 Camera Calibration With Respect to IMU

Aligning the coordinate systems of both the camera and the Inertial Measurement
Unit (IMU) is necessary for precise and reliable data fusion. This procedure is crucial
for applications where merging visual and inertial data improves motion estimates

and spatial awareness, like flying vehicles.

Camera and inertial measurement unit calibration is done by extrinsic and intrinsic
parameter calibrations and IMU coordinate system. Extrinsic calibration is
determined by rotation and translation of the camera and IMU coordinate system.

The intrinsic camera parameters like focal length (f.f, ), optical center (c,,c,), and
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coefficient distortion. Ascertain which rotation, translation, and camera matrices are
used to convert coordinates from the IMU frame to the camera frame. Usually, to do
this, the estimated IMU posture is used to minimize the reprojection error between

the projected points and the observed pattern points in the image.

The relationship between 3D point PV in the IMU coordinate system and point, P
in the camera coordinate system is as:

P = K(RUSP™ + t12% o
Where RMU and t!MU are rotation and translation from IMU to the camera

coordinate frame, K is camera intrinsic matrix.

The camera calibration with respect to IMU is essential for accurate visual and initial

data readings.

To guarantee precise and trustworthy sensor readings, calibration is a necessary
procedure. You may efficiently calibrate sensors to adjust for numerous faults and
enhance measurement accuracy by being aware of the different calibration forms,
adhering to systematic methods, and using mathematical models. Regular calibration

and validation are essential for sensors to continue functioning as intended overtime.
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CHAPTER 6

SYSTEM MODEL IMPLEMENTATION

This chapter discuses and shows how the stereo camera and inertial measurement
unit (IMU) fused with kalman filter in implementation of the thesis new model for
an aircraft vertical landing approach in the determination of attitude, velocity and
position aof an aircraft.

The system is composed of stereo camera and IMU to provide the aircraft orientation,
position and velocity.

ejl — T}_ﬂﬂml _ kj(cgaml(RJ _ Rﬂ))
e = C3rfam2 — i (CEO™H(R; — Ry) — 112)

Figure 6 1. Stereo camera/INS fused with extended Kalman filter (EKF).

The figure 6 1 show the stereo camera/IMU system fused with extended kalman
filter. Stereo camera detects features using scale-invariant feature transform (SIFT)
techenique and match the detected features to the known pattern and by optimizing
the stereo camera performance index equation (J) to determine position and attitude
of an aircraft and an inertial measurement unit (IMU) does measure an aircraft
position (Pos), orientation(Attit), and velocity (vel) by the optimizing equation (2.7-
2.8) of INS. Outputs from both sensors are fused by an extended Kalman filter for

linearization, estimation and get unbiased system outputs.

47



IMU usually use three axes to measure angular rates and determine acceleration in
three dimentions (X, Y, Z).by the use of gyroscope and accerelometer data the
determination of attitude, position and velocity of an aircraft is identified with
relation to the reference frame.

Stereo camera may produce intricate 3D map below and surroundings of an aircraft
by the use of stereo vision techniques. This is essential when flying at low altitudes
where topographical precision information is critical for safe navigation.

Fusing stereo cameras with IMU for relative navigation system enhances the ability
of the navigation system. By the use of the synchranized stereo cameras with high
resolution the prises detection of features and depth deception are anabled. There for
the position of the flying vehicles is identified. IMU being composed gyroscope and
accelerometer arranged in three axises. The velocity and orientation of flying vehicle
is estimated. Since the sensors outputs are not linear, the deployment of extended

Kalman filter for the linearized of the sensor output estimation.

The computation of position navigation of flying vehicle in this study, using new

way of stereo camera is shown below by

Caml Cam 2

2

Figure 6 2. Navigation with stereo camera.
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Using own procedure, the position vector for each camera is calculated by

,r)_caml — kj(Cﬁaml(R] _ RO))
kjrfem? = CEmECRe™ (Ry — (Ro + ClimaT12))

r}caml — kj(Cﬁaml(R] _ RO))
C211,}_cam2 — k;(Cﬁaml(R] — RO) —115)

The equation (6.2) gives the position R, and orientation output C54™*

The performance index J is to be calculated so to optimize the system

] — Z?:l(ejle]"q) + (ejZe]"I;)
ej; = r}_caml _ kj(Cﬁaml(R] _ RO))

€j2 = Czlrjcam2 - kf(Cﬁaml(Rj - Ro) —T12)

aj .~ 0j _ aj o 9j _
For okj; O’aka i O’ac,gam1 =0, Ry 0

cose sine 0
—sine cose 0] is known .
0 0 1

The matrix €} =

where ¢ is very small and r;, is a known distance between two cameras.

1 _ 2\T cam2 _ r~cam2-~caml
CZ - (Cl) ) and Cn — Ycamil Cn

Feature

matching

Optimization

algorithm

Eqgn (6.2)

Pattern
point’s —

calculation

Figure 6 3. Position update with stereo navigation.
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Position update from the measurement equation

z=Hx+v (34)
C]
For position update the matrix H = [0 0 I343] and system estimate x = | V
Pos
0
Therefore positionupdate z = [0 0 I3x3]| V
Pos

For altitude update H = [I3x3 0 0]

0
Altitude update z = [I3x3 O O][ %4 ]
Pos
Fusing the updated and calibrated stereo camera with an IMU provides real-time
robustness and accurate system output. An IMU is composed of three-axis

gyroscopes and accelerometers.

Stereo cameras fusing with data from an inertial measurement unit (IMU) using an
extended Kalman filter improve the position and orientation accuracy estimation
over time [10], [31].
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CHAPTER 7

TEST AND RESULTS

In this part the flying vehicle modeling has been simulated in MATLAB to evaluate
the effectiveness and behavior output reliability of the algorithm of using stereo
camera / IMU for the relative navigation system using an extended Kalman filter for
estimate linearization. The applied flying vehicle simulation period is 60 seconds
since the altitude is low up to 200m as the simulation altitude. The roll and pitch
angles are conditioned not to exceed 15 degrees and the landing approach has to be
verticle landing. The comparison of nominal and algorithm simulation results is

shown in the figures below.

It is composed of five sections. The first section includes the simulated results using
INS/GPS (nominal) to test the orientation, velocity, and position propagation of a
flying vehicle at low altitude and approaching to land at the known pattern. The
second part provides the variations of the flying vehicle’s orientation, velocities, and
position by using the INS/Stereo camera approaching to land at the known location.
The third section is the comparison of the first two sections for the relative navigation
system. The forth section is composed of the error analysis and comparison of results
when using pure INS, stereo cameras/IMU and GPS/IMU. And the fifth section
which is the last part of this chapter is the study the stereo cameras/IMU and
GPS/IMU standard deviation propagation.

7.1 Nominal simulation results

The nominal simulation is the errorless simulation results for relative navigation
systems is identified when INS/GPS has excellent satilitte signals and this serves as
a good choice in navigation systems in various applications including aviation

navigation systems. Using the Matlab environment the simulation using this
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navigation system, the variations of flying vehicles were tested and the results were
studied, and found that it has low inaccuracy and this makes it reliable regardless of

the other factors that could affect its accuracy.
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Figure 7 1: Pattern points

Figure 7.1 shows the pattern points of which an aircraft visual navigation detects

and land on it vertically.
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Figure 7 2: Nominal roll of an aircraft
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Figure 7.2, is a simulation nominal roll of an aircraft in 60 seconds. It shows
uniform and stable sinusoidal formation.
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Figure 7 3. Nominal pitch of flying vehicle.

Figure 7.3 shows the sinusoidal aircraft errorless (nominal) pich formation. The

simulation results on pitch behavior shows stable propagation.
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Figure 7 4. Nominal yaw
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Nominal yaw behavior of an aircfraft shown on figure 7.4 justfies that it decreases
as time increases when the aircraft keeps on approaching to land. The nagative sign

shows the direction of yaw (left yaw).

The propagation of roll, pitch, and yaw nominal navigation shows the real-time
propagation of flying vehicles during their maneuvering performance with in 60

seconds time bound.
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Figure 7 5. Nominal north velocity

The figure 7.5 shows the variation of north (x- direction) velocity in 60 seconds.
Simulation shows that north velocity initial velocity is high which quickly reduced

with in 6seconds and becomes stable at zero the rest of the simulation time.
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Figure 7 6. Nominal east velocity

Figure 7.7 shows the variation of east (y-diraction) velocity. Initially it increased

for some few seconds (3 seconds) and gradually decreases uniformaly up to about
30 seconds and non-uniformly variates the rest of the simulation time. This has no
effect on accuracy since the whole simulation results are very very small ( near to

zZero).
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Figure 7 7. Nominal down (z-direction) velocity
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This figure 7.8 shows the smooth gradual down velocity variation of an aircraft.
Down velocity simulation shows that it decreases as the aircraft approaches landing
time till it reaches to zero velocity. This makes it useable and reliable for flying

vehicles in navigation systems.

Looking at the propagation behavior of velocities in all three (north, east, and down)
directions indicate that the nominal velocities in navigation systems on which the

reference is taken.
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Figure 7 8. Nominal latitude

Given the range period of time shown in figure7.10, by nominal navigation the
latitude behavior of flying vehicle with respect to time is studied. The simulation
shows the uniform horizontal variation as the time of flight goes to zero. Up to 10"

second the latitude starts to decrease to zero.
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Figure 7 9. Longitude nominal navigation against time

Figure 7.11 shows that the nominal longitude keeps decreasing as the aircfrat
aproaches to land. At the inital start, the longitude is high and goes down as the

landing time approaches.
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Simulation shows the gradual decreas of nominal altitude as the aircraft goes down
to land. Figure 7.12 shows the nominal altitude from 200meters to zero with in

about 60 seconds.

Based the propagation of simulated graphs showing changes of the flying vehicle in
its nominal position variation with time, it is seen that the nominal navigation for

relative navigation system gives accurate and reference readings
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Figure 7 11. Nominal vertical flight path.

Figure 7.14 shows the nominal flight trajectory of an aircraft from 200m altitude to
the ground. The graph shows that the latitude is inversely propotipnal to altitude.

Latitude increases as the aircraft altitude decreases as it goes to the pattern.

7.2 Test and Results Using Camera

This section the flying vehicles attitude, velocities and position are tested using by
integrating stereo camera for relative navigation system to check the variation
behaviors accuracy of this vehicle approaching to the know pattern. The use of stereo
cameras for relative navigation is expected to be more reliable in navigation systems

since it only requires no external signal sources. Below are the simulated results
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showing the attitude, velocity, position, and flight trajectory of the flying vehicle

using the stereo camera.
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Figure 7 12. Stereo camera/IMU points

The figure 7.15 shows the points of two calibrated cameras’ focus relative to one
another. This provides the accuracy of image points by comparing the image point
in camera one with respect to camera two. Both cameras view points from different
view poses but at any point, each camera point is almost matched to one another
camera. Hence both cameras have the same focus and this shows that the stereo

camera is well calibrated.
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Figure 7 13. Stereo camera/IMU roll

Figure 7.16 shows the aircraft roll variation angles in 60 seconds where the
simulation shows that the roll obeys uniform sinusoidal variation. At about 60th
second roll angle is zero. The siimulation shows that aircraft rolls right- left

manouver.
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Figure 7 14. Stereo camera/IMU aircraft pitch
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Figure 7.17 shows the aircraft pitch variations. The sinusoidal form indicates that

aircraft can maneuver both up and down.
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Figure 7 15. Camera/IMU aircraft yaw variation

Figure 7.18 shows that the aircraft yaw using stereo camera/IMU navigation.
Initially, the yaw angle was high in the left (left-right) direction which quickly
reduced nearly to zero angle and linearly increased with time up to 0.005 degrees in

almost 60seconds.

The use of a stereo camera shows that it is a better choice for the relative navigation
system in the determination of an aircraft attitude since this system’s signal
dependency does not require any external signal source. This makes it reliable based

on the accurate attitude behaviors of flying maneuvers.
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Figure 7 16. North velocity (x-direction velocity) using the camera/IMU

Figure 7.20 shows how the simulation results of north velocity decreases rapidly to
zero within about 6 seconds and constitantly variate to zero with in the remaining
time bound for the aircraft performs a vertical landing the variation of north

velocity approaches to zero.
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Figure 7 17. East velocity using camera/IMU
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Figure 7.21 shows the behavior of an aircraft’s east (y-direction) velocity against
flying time approaching its vertical landing. Initially, east velocity increased up to
0.016 m/s and gradually decreases to nearly zero. The simulation result shows that
for vertical landing the variation of east velocity is small and keeps decreasing to

ZEro.
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Figure 7 18. Stereo camera/IMU down velocity

Figure 7.22 shows the simulated down (z-direction) velocity behavior when an
aircraft approaches to have its verticle landing on a pattern. Down velocity shows

parabolic decreas pattern as the aircraft approches the pattern vertically landing.
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Figure 7 19. Stereo cam/IMU latitude variation

Figure 7.24 shows the behavior of aircraft navigated latitude position when coming
to the pattern vertically landing. The simulation graph shows the latitude is stable
and uniform when an aircraft is at its cruising altitude and starts to decrease as the

aircraft descends vertically toward the landing pattern.
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Figure 7 20. Stereo camera/IMU longitude variation.
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The figure 7.25 shows that the simulation parameter (longitude) initially quickly

increased and kept uniform throughout the landing time.

250 T T T T

200 .

150 - .

100

Cam/IMU al/c altitude (m)

50 .

0 1 1 1 I s -
0 10 20 30 40 50 60

Time(sec)

Figure 7 21. Stereo camera/IMU altitude variation

The figure 7.26 shows the parabolic altitude decrease when navigating using stereo
camera/IMU fused with extended kalman filter. The altitude is vertically decreased

as the aircraft verticaly approaches the landing pattern.

Based on the simulation results of aircraft position variation as it comes to land,
shows the smooth and accurate variation towards the known location over time. This
justifies that the use of cameras for relative navigation systems is a solution for

vehicle position identification.

65



200

150

100

Altitude (m) cam/IMU nav

50

Latitude

Figure 7 22. Stereo camera/IMU flight path

The figure 7.27 shows how to use camera/IMU tracks the flight path of a flying
vehicle. The trajectory path shows the cruising altitude of an aircraft and when it

reaches 200 m the aircraft starts to descend and landed vertically on a pattern.

7.3 Comparison Between nominal and Stereo Camera/IMU Navigation

The below-simulated results provide the comparison between nominal navigation
and stereo cameras/IMU for the relative navigation system. The results were studied
and compared to come up with the new idea of using stereo cameras for relative
navigation systems of flying vehicles mostly at low altitudes since cameras do not

require external signals and GPS does require signals from the number of satellites.
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Figure 7 23. Nominal and Camera/IMU aircraft trajectory

The figure 7.28 shows the comparison aircraft trajectory between nominal and stereo
camera/IMU. The simulation shows that navigation using camera/IMU is almost
accurate as nominal. This proves that the cam/IMU could alternatively be used in

flying vehicles’ navigation.
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Figure 7 24. Nominal and stereo camera/IMU orientation navigation comparison

67



The figure 7.29 shows the zoomed behavior nominal and stereo camera/IMU
airacraft attitude navigation. It shows that there is a very small difference between
errorless navigation and camera/IMU during the initial navigation which converges

to become in-line with nominal orientation variations.

Based on the simulated graph above indicates almost no differences in roll, pitch,
and yaw propagation over time and maneuver when navigating using camera/IMU
compared to errorless navigation state. This makes a stereo camera/IMU to be an

alternative and a better choice in a navigation environment.
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Figure 7 25. comparison of nominal and stereo camera/IMU velocity.

Figure 7.30 shows that for all nominal and stereo camera/IMU velocities (north, east,
and down velocities) the propagation over time shows the same results. This means
that by using the stereo camera/IMU for the relative navigation system, it is possible

to get the same results hence the alternative solution in the navigation world.
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Figure 7 26. Nominal and stereo/ IMU position comparison

The simulation traces the behavior of a flying vehicle comparing camera/IMU
position behavior as shown in figure 7.31 and the simulation shows the similarities
variation for all aircraft position parameters (latitude, longitude, and altitude).
Position with camera/IMU navigation being in line with that of nominal navigation
for relative navigation shows that the integration of a stereo camera and IMU for
relative navigation can work smoothly to provide reliable output at a low cost and

altitudes since it does not require external signal sources.

7.4 Error Propagation When Navigating With Pure INS and Stereo
Cameras/IMU and GPS/IMU

This section shows the error simulated behavior when using pure INS, stereo
camera/IMU, and global positioning system (GPS)/IMU inertial measurement unit.
These simulated error results helps in system error analysis in comparison to one

another and hence coming up with the reliable system
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7.4.1 Pure INS Error

The study of error propagation when using pure INS in comparison with stereo
camera/INS provides the chance to choose which system is to be considered most
and the feasibility of the system. The below graphs show the error behaviors using

INS.
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Figure 7 27. aircraft orientation errors.

This figure 7.32 shows that when navigating with pure INS, the aircraft experiences
unstable roll and pitch error propagation. The maximum errors are 0.0035 deg roll,
0.0034deg pitch and 0.0086 deg yaw. This means that navigating with pure INS
orientation errors and control is expensive. Depending on the pure INS navigation

parameters is not good ideal since it exposed to unstable error varriations.
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Figure 7 28: Position error using pure INS

The figure 7.33 shows that the position error with pure INS navigation gradually
increases over time. Using pure INS, the aircraft experiences very high altitude,
longitude, and lattitude error variation. Pure INS is not system to be used for flying

vehicle position identification.
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Figure 7 29: Pure INS velocity error
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Figure 7.34 shows the unstable variation errors of aircraft velocities when navigating
using a pure inertial navigation system. The gradual increase in variation error in
aircraft north, east velocity, and unstable down velocity shows pure INS navigation
is prone to high-velocity errors hence INS can not sustain navigation for flying

vehicle alone.

7.4.2 INS/Stereo Camera Errors

This part shows the simulated error results when using the stereo camera for relative
navigation system and compare them to that of pure INS so that the feasibility of the
new system model. The more stable error output over time the easier and cheaper the

calibration cost.
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Figure 7 30: Position error behavior with stereo Cameras/INS

Figure 7.36 shows that the error variation when an aircraft navigating with stereo
camera/IMU the position error is diminished and stable. This means that the position
navigation output is reliable and cheap to mitigate resulting errors. 0.02m altitude,
0.004m longitude, and 0.0014m latitude aircraft simulation errors were identified

when navigating with stereo camera/INS
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Figure 7 31: Orientation error behavior with stereo cameras/ INS (IMU)

The figure 7.36 shows aircraft orientation errors when navigating with stereo
camera/IMU and shows 2.5 X 10™*rads, 7.6 x 10 5rads, and 6.3 x 10~ °rads
maximum error roll, pitch, and yaw respectively. The overall orientation errors are

very very small and makes this new system accurate and reliable.
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Figure 7 32: Velocity error behavior with stereo camera/INS (IMU)

The simulation figure 7.37 shows that the velocity maximum error with stereo
camera/INS is stable and converges to zero within few seconds from its initial none
zerom errors. The maximum north, east, and down velocity errors simulated shows
1.3 X 107%m/s, 1.6 X 107%2m/s, and 3 x 10~*m/s respectively. These errors are

very small and has no effect on the system accuracy and control.

Overall simulated error analyisis shows that pure INS provides unstable errors for all
orientation, velocity and position parameters of flying vehicles. The integration of
stereo camera/INS results to stable and deminished errors over time. Therefore the
use of stereo cameras and IMU for relative navigation of flying vehicles is a very
nice choice since the system require no external signal sources with less and stable

errors.

7.4.3 GPS/IMU Navigation Errors Propagation

This section shows the orientation, velocity, and position error propagation when

navigating with GPS/INS. It was seen that GPS/INS integration is an excellent choice
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when the GPS recieves an interrupted signals from at least 4. The below figures
shows error propagation in navigation while experiencing the real world including

factors that affects GPS signals.
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Figure 7 33: Position error variation with GPS/IMU

The figure 7.38 simulation results show that aircraft positioning when navigating
with GPS/INS in real performance mostly at low altitudes is prone to small unstable
errors. 0.01m, 0.0097m, and 0.028m are the latitude, longitude, and altitude
simulated maximum errors respectively. Depending on the unstablity of error
variation due to the signal distortion from sattelites, the mitigation control is almost
imposible since the navigator has no action on sattelite relocation hence expensive

to mitigate the errors of GPS at low and signal distructive envirnoment.
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Figure 7 34: Velocity errors propagation with GPS/IMU

The simulated velocity propagation in figure 7.39 shows that the maximum error
variation occurs at its initial time (10 seconds) but converges approximately to nearly
zero. The variation error shows less stable error variation for all north, east, and down
velocity variations. The maximum errors down , east, and north velocity identified
are 0.0068m/s at 4lsecond, 0.135m/s at 2second, and 0.08m/s at 3second
respectively. Having been unstable errors when navigating with INS/GPS, makes it
difficult to mitigate the resulted errors and this may lead the system to be unreliable

mostly in an environment with less satellite signals to GPS.
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Figure 7 35: Orientation errors

The simulation results in fig 7.40, shows the less stable orientation errors are
experienced in real GPS/IMU for relative navigation system. The less stable and

converging roll,pich, and yaw degrees are resulted when simulating real GPS/IMU

navigation.
Table 1: Table showing system amaximum errors
System Max roll Max Max Max Max Max Max Max Max
error pitch yaw north east down latitude longitude altitude
(radians)  error error velocity velocity velocity  error  error (m)  error
(radians) (radians)  error error error (m) (m)
(m/s) (m/s) (m/s)
Pure INS  0.003 0.0035 0.0086 212 217 0.044 74 60 4.5

GPS/INS  0.003  5.45e-05 0.0038 0.853 0.136 0.034 0.69 0.86 0.308
Cam/INS 0.00025 7.6e-05 6.3e-06  0.853 0.016 0.0003 0.01 0.0097 0.028
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7.5 Standard Deviation

This section shows the simulated results when navigating with stereo camera/IMU
and the deviation when navigating with GPS/IMU. The standard deviation shows the
capability of the system in which it can consistently maintain the standard

measurement or deviate from the nominal standards.

7.5.1 Stereo Cameras/IMU Navigation Standard Deviation Behavior

System standard deviation simulation is done to determine the similarity and the
dissimilarity level of the system output and to enhance the linear contrast in image
processing. The blow graphs show the simulated standard deviation behaviors of

various parameters of flying over time.
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Figure 7 36: Orientation standard deviation

In the figure 7.41, the simulation shows that the orientation system deviation is very

small and converges rapidly near to zero over time. The deviation is very less when
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navigating with camera/INS and this justifies this new system being reliable and

standardized system for aircraft orientation relative to known pattern at low altitude.

Considering the simulation results, shows that the deviation with cam/IMU gradually
converge with in short period of time. This makes the system orientation accuracy

reliable and real time robustness.
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Figure 7 37: Velocity standard deviation (STD) behavior

Figure 7.42 shows velocity standard deviation simulation results where initially a
little bit higher deviation occurs in a very short period of time in few seconds at about
5seconds and the deviation converge to approximately zero over time. This shows
that the system noise and bias are very low over time and makes the system accuracy

interruption to be very less.
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Figure 7 38: Aircraft position standard deviation

Based on fig 7.43, the simulated results show that all parameters give confidence in
using stereo cameras/INS for relative navigation because of the in-range standard
deviation propagation over time. Simulation shows that at the initial stage deviation

is a litle bit high which stablely and quickly converges near to zero over time.
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7.5.3 GPS/IMU Navigation Standard Deviation Behavior

Real GPS/INS is exposed to tolerable system deviation from errorless standards. The
simulation shows that the less and reducing to zero orientation, position, and velocity

standard deviations are shown below
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Figure 7 39: Orientation STD navigating with GPS/IMU

The fig 7.44 orientation simulation results show that real aircraft navigation with

GPS/INS has less and in range standard deviations.
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Figure 7 40: Velocity standard deviation

The fig 7.45 shows that the deviation in down velocity is 0.001 m/s almost
throughout the time interval but at the start, the variation of deviation has increased
up to 0.0018m/s in the first 5 seconds. This simulation result shows that the overall
standard deviation is in its normal range. 0.006m/s north and east velocity is the

shown simulation result deviation when navigating with GPS/INS.
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Figure 7 41: Position standard deviation with GPS/IMU

Fig 7.46 shows that the simulated standard deviation of an aircraft position is a bit
higher at its initial stage, converges quickly to nearly zero, and stably maintains the

deviation frequency.

The overall standard deviation simulated results show that the parameter variations
are in the normal standard deviation range (+2) parameter unit. This justifies that
when navigating with stereo camera/IMU or navigating GPS/IMU the deviation is in
the normal range therefore the deviation does not affect the navigation accuracy and

safety.
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CHAPTER 8

CONCLUSION AND RECOMMENDATION

8.1 Conclusion

Integration of inertial measurement units (IMU) and cameras for a vertical landing
aircraft on a pattern offers a dependable and adaptable way to improve the precision
and dependability of flying vehicles' relative navigation systems. Through the
calculation of the difference between images taken from two separate views, stereo
cameras enable real-time depth perception. Enabling the flying vehicle to safely
navigate complicated terrain, this feature is essential for obstacle identification and
avoidance. Stereo cameras are self signal reliance and are capable of performing
navigation as much as the most useable sensors or systems like GPS. This makes
stereo cameras less exposed to signal interference and less errors. Even though the
calibration methods for stereo cameras which include extrinsic and intrinsic
calibrations are complex, but could be achieved not like that of GPS where there is

no action on satellite position and signals.

Based on the system error analysis at 200m an altitude of aircraft in 60seconds of
flying simulation, the simulation shows that the stereo camera and IMU fused with
extended Kalman filter provides less standard deviation and stable errors for all
navigation parameters (orientation, velocity, and position) estimation of the flying

vehicle over simulation time at less pitch and roll angles (not exceeding 15°).

Apply advanced sensor fusion techniques, like the use of IMU and Kalman filtering
approaches, to integrate stereo camera data with other sensors, ensuring a robust and
accurate navigation solution. Integration of stereo cameras with INS can enhance
navigation safety for flying vehicles at low cost where by sensor fusion approaches
is able to improve the overall resilience of a system by mitigating the limitions of

individual sensors.
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In this study using a Matlab environment, the use of GPS, stereo camera, IMU, and
extended Kalman filter were put into consideration. The form of landing considered
in the study is the vertical landing of flying vehicles. At an altitude of 200 meters,
the attitude of the flying vehicle was studied and compared to that treated as errorless
(nominal) navigation parameters. The Matlab program and simulation comparison
between INS/GPS and stereo camera/IMU was made to see the behaviors of flying
vehicles in relation to nomial navigation parameters when landing on a known
pattern at a given period of time. The time used when navigating with GPS/IMU and

camera/IMU was all the same at the same latitude, longitude, and altitude.

The simulation analysis showed that when navigating using the stereo camera/IMU
for a relative navigation system provides almost the same results as that of nominal
navigation with very less system errors. The simulation results of aircraft positioning
errors when using a stereo camera/IMU show 0.01m altitude, 0.0014m latitude, and
0.004m longitude which is a very very low error to the almost nominal and decrease

over time while pure INS position errors keep on increasing over time.

The accuracy comparison with GPS/IMU and stereo camera/IMU navigation all
showed that the use of the camera in the position of GPS could be more reliable when
it does not require external signal sources in the identification of flying vehicle

position, orientation, and velocity.

Improved situational awareness and navigation accuracy can be achieved by
integration of stereo cameras/IMU into flying vehicles for relative navigation
systems. Flying vehicles can accomplish accurate and self-dependable navigation
signals, which is necessary for autonomous operation in complex and dynamic
settings, by utilizing the depth perception capabilities of stereo vision and combining
it with data from other sensors like IMU. Stereo cameras/IMU simulation shows
diminished errors and stable errors compared to pure inertial navigation system (INS)
and global positioning system (GPS)/INS real navigation. The small standard
deviation over time when navigating with stereo camera/IMU fusion with an
extended Kalman filter which smoothens the system bias, makes this system reliable

and accurate. Stereo camera/IMU having been the self-signal dependent and stable
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parameter propagation over time makes it cheaper and hence reliable for relative

navigation for all kinds of flying vehicles mostly at low altitudes.

8.2 Recommendation

The simulation using MATLAB was done and showed accurate results but the real
field practical may show different parameter behaviors, it is in the same regard that

the field practical is recommended.

There are more advanced and accurate estimation methods over the extended Kalman
filter which may fuse the system and result in more accurate aircraft navigation
parameters the use of more advanced nonlinear state estimation methods is
recommended for further research to evaluate and analyse the aircraft behavior when

landing using camera/ inertial measurement unit.

The simulation test was done in consideration of an aircraft at low altitudes and
vertically landing and the results have proved the system's accuracy however the test
of the system at higher altitudes and other landing stages of an aircraft is

recommended for future research.

The use of scale-invariant feature transform (SIFT) and speeded-up and robust
(SURF) are the most used feature detection techniques in visual odometry however
there are other advanced feature detection techniques like the Harris corner detector
that could be used and show more navigation accuracy, study of advanced feature

detection and processing is advised for future work.
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