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Actuarial Sciences, Middle East Technical University

Date:



iv



I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Last Name: EMİNE EZGİ ALPTEKİN
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ABSTRACT

OPTION PRICING UNDER DELAY EFFECT

Alptekin, Emine Ezgi

Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Ömür Uğur

September 2024, 89 pages

In many fields like physics, ecology, biology, economics, engineering, and financial
mathematics, events often don’t have an immediate effect. Instead, they impact fu-
ture situations. To understand how these systems work and behave, we use stochastic
delay differential equations (SDDEs) which are obtained by adding information from
past events into stochastic differential equations (SDEs). Thus, SDDEs are gaining
attention because they can better reflect real-life situations. Some numerical methods
for SDDEs have been developed because it’s often very difficult, and sometimes im-
possible, to find exact solutions using stochastic calculus. The most known methods
are Euler Maruyama and Milstein methods. Recently, researchers in economics and
finance have been studying option pricing for systems with time delays, which can be
either random or fixed. We aim to understand the general structure of SDDEs while
solving them when the time delay is fixed and then use the delayed dynamics for
option pricing. The pricing of European vanilla, American vanilla, European foreign
exchange and European exchange options whenever underlying dynamics follow de-
layed geometric Brownian motion (GBM) and European vanilla where the asset price
follows the delayed Heston model are considered. Some numerical implementations
are carried out to see the effect of delay term on the pricing process.

Keywords: Stochastic delay differential equations, SDDE, option pricing with delay,
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delayed GBM, delayed Heston model
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ÖZ

GECİKME ETKİSİYLE OPSİYON FİYATLAMA

Alptekin, Emine Ezgi

Doktora, Finansal Matematik Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Eylül 2024, 89 sayfa

Fizik, ekoloji, biyoloji, ekonomi, mühendislik, finansal matematik gibi birçok alanda
olaylar genellikle anında etki göstermez. Bunun yerine, gelecekteki durumları etki-
lerler. Bu sistemlerin nasıl çalıştığını ve davrandığını anlamak için, stokastik diferan-
siyel denklemlere (SDE) geçmiş olaylardan gelen bilgileri ekleyerek elde edilen sto-
kastik gecikmeli diferansiyel denklemler (SDDE) kullanılır. Bu nedenle, SDDE’ler
gerçek hayatı daha iyi yansıtabildikleri için giderek daha fazla ilgi çekmektedir. Sto-
kastik kalkülüs kullanılarak tam çözümler bulmak genellikle çok zor ve bazen im-
kânsız olduğundan, SDDE’ler için bazı sayısal yöntemler geliştirilmiştir. En bilinen
yöntemler Euler Maruyama ve Milstein yöntemleridir. Son zamanlarda, ekonomi ve
finans alanında, zaman gecikmelerinin rastgele ya da sabit olabileceği sistemler için
opsiyon fiyatlandırması üzerine araştırmalar yapılmaktadır. Bu tez, sabit bir gecikme
süresi olduğunda SDDE’lerin genel formlarını anlamayı, bu denklemleri çözmeyi ve
daha sonra bu denklemleri opsiyon fiyatlandırması için kullanmayı amaçlamaktadır.
Gecikmeli geometrik Brown hareketini (GBM) takip eden dinamikler altında Avrupa
tipi vanilla, Amerikan tipi vanilla, Avrupa tipi döviz, Avrupa tipi takas opsiyonlarının
ve varlık fiyatının gecikmeli Heston modelini takip ettiği Avrupa tipi vanilla opsi-
yonlarının fiyatlandırılması ele alınmıştır. Ardından gecikme teriminin fiyatlandırma
sürecine etkisini görmek için bazı sayısal uygulamalar yapılmıştır.
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Anahtar Kelimeler: Stokastik gecikmeli differensiyal denklemler, SDDE, Gecikmeli
opsiyon fiyatlaması, gecikmeli geometrik Brown hareketi, gecikmeli Heston modeli
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CHAPTER 1

INTRODUCTION

The study of stochastic differential equations (SDEs) has become a crucial part of the

modeling of various phenomena in most fields, such as finance, biology, physics, etc.,

since it includes randomness compared to ordinary differential equations (ODEs). In

financial mathematics, SDEs are important in modeling underlying asset price dy-

namics. In such models, it is assumed that the system satisfies the principle of causal-

ity, which implies that the system’s future state is determined just by its current state,

without any dependence on past states [24]. Moreover, Mao states that the efficient

market hypothesis is a foundational assumption for asset pricing models. According

to this hypothesis, historical information is fully examined and already implemented

into the current stock price. Markets react immediately to new information about

underlying assets, resulting in random price movements.

However, real-world phenomena often show delays because of various factors such

as transaction lags, information dissemination delays, and other temporal effects not

captured by standard SDEs [35]. Transaction lags mean the time delay between ini-

tiating and completing a transaction. For example, after placing a trade order, there

can be a lag before it is executed because of market conditions, processing time or

other factors. The time delay between when new information (such as earnings re-

ports, news about underlying assets or economic data) becomes available and fully

reflected in market prices is known as information dissemination delay. This can hap-

pen because it takes time for the information to spread and be analyzed by all market

participants. Thus, the causality principle and efficient market hypothesis make the

model constructed by an SDE only an approximation of real situations. An additional
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term representing time delay derived from the system’s history can be incorporated

into the model to create a more realistic model. The stochastic delay differential equa-

tions (SDDEs) are constructed with this extension of SDEs. Actually, SDDEs com-

bine the randomness of SDEs with the memory effects of delay differential equations

(DDEs). The necessity of SDDEs is clear in modeling various scientific phenomena

where delays play a significant role such as modeling various financial instruments

and markets.

There are two main reasons for our study of SDDEs in the context of financial mod-

eling. First, SDDEs provide a more realistic representation of the temporal dynamics

of financial markets. Second, incorporating delay elements can lead to more real-

istic pricing and hedging financial derivatives, thereby improving risk management

strategies.

In Chapter 2, a general overview of SDDEs is provided. We then discuss how so-

lutions to SDDEs can be obtained, highlighting methods (namely Itô formula) and

challenges associated with these equations. To illustrate these concepts, we present

some examples. These examples demonstrate the impact of delays on the behavior

of stochastic processes and provide a basis for understanding more complex models.

For more detailed information and proofs, see [5, 7, 24, 29, 38, 2].

Chapter 3 is dedicated to some of the numerical methods to solve SDDEs. Because of

the complexity of SDDEs, analytical solutions are rarely obtained and so numerical

methods are essential. We focus on two widely used methods: the Euler Maruyama

and Milstein. Both methods are extensions of their counterparts used for standard

SDEs, adapted to handle the additional challenges posed by delays. For the detailed

information and proofs, we refer to [4, 5, 7, 8, 9, 25, 38, 33].

Chapter 4 focuses on applying SDDEs in financial modeling, specifically in option

pricing whenever stock price follows delayed GBM. We derive value formulas for

various European call options, including vanilla, foreign exchange and exchange op-

tions both with and without delays. These value formulas are crucial for understand-

ing how delays affect option prices and for developing effective pricing strategies.

[6, 30, 1, 3, 26, 28, 22] give more information.
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Chapter 5 provides the implementation of the option pricing models using Julia pro-

gramming. Julia is known for its high performance and ease of use. This implemen-

tation shows how the theoretical models discussed in Chapter 4 can be translated into

executable code. This chapter serves as a bridge between theoretical developments

and their applications. The effect of delay terms, initial paths, number of simulations,

and stock prices are examined in those applications.

Chapter 6 examines the Heston model with and without delay cases for the European

type option pricing. Since Heston model does not have analytical solution Monte

Carlo is considered for option pricing [18, 11, 37, 20, 36]. To see the effect of delay

and initial path on the valuation process some numerical implementations are consid-

ered.

In Chapter 7, we provide a conclusion and some future works.
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CHAPTER 2

STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

This chapter aims to provide a general overview of stochastic delay differential equa-

tions (SDDEs). SDDEs extend the framework of stochastic differential equations

(SDEs) by incorporating delays into the system, making them a powerful tool for

modeling processes where past states influence future dynamics. Thus, it will be

easier to understand the fundamental properties of SDDEs whenever the behavior of

SDEs understood. For more detailed information and proofs about SDEs, [15, 21, 24,

31] can be seen.

SDDEs combine the randomness of SDEs with the memory effects of delay differ-

ential equations (DDEs). This means that the future state of the system depends not

only on its current state and random perturbations but also on its past states. This ad-

dition of delay terms helps to create a more accurate representation of systems where

historical data has significant impacts on future behavior.

The analysis of SDDEs involves both theoretical and numerical approaches. Theoret-

ically, Itô’s lemma from stochastic calculus is used. Numerically, especially the Euler

Maruyama and Milstein methods for SDDEs are developed to approximate solutions.

Overall, SDDEs provide a more realistic framework for understanding and predicting

the behavior of complex systems influenced by both randomness and time delays.

This makes them invaluable in both theoretical research and practical applications

where delays and randomness cannot be ignored. For more detailed information and

proofs about SDDEs, see [5, 7, 24, 29, 38, 2].
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2.1 Genaral Framework for SDDEs

Let’s introduce a general form of SDDEs, starting with vector-valued SDDEs and

then focusing on real-valued SDDEs for simplicity.

Definition 2.1. We take an m-dimensional Wiener process W (t) on a complete prob-

ability space (Ω,F , P ) with filtration {Ft}t≥0. The following equation

dX(t) = f(t,X(t), X(t− τ))dt+ g(t,X(t), X(t− τ))dW (t), t ∈ [0, T ]

X(t) = φ(t), t ∈ [−τ, 0]
(2.1)

defines an SDDE where f and g are Rn and Rn×m valued functions, respectively. The

initial path φ is continuous Rn-valued F0-measurable function on [−τ, 0] where τ is

positive delay term.

We set n = m = 1 to work on the real-valued SDDEs in this thesis.

Remark 2.1. The stochastic integral form of (2.1) is

X(t) = φ(0) +

∫ t

0

f(u,X(u), X(u− τ))du+

∫ t

0

g(u,X(u), X(u− τ))dW (u).

Definition 2.2. If X(t) satisfies (2.1) almost surely, adapted (Ft)0≤t≤T -measurable

and continuous, then it is called a strong solution.

Definition 2.3. The functions f and g satisfy the local Lipschitz condition for a pos-

itive constant K if they satisfy

|f(t, x1, y1)−f(t, x2, y2)|+|g(t, x1, y1)−g(t, x2, y2)| ≤ K(|x1−x2|+|y1−y2|) (2.2)

for any x1, x2, y1, y2 ∈ R and any t ∈ R+.

Definition 2.4. The functions f and g satisfy the weakly Lipschitz condition if

|f(t, x, y1)− f(t, x, y2)|+ |g(t, x, y1)− g(t, x, y2)| ≤ K|y1 − y2|

is satisfied for a positive constant K, any y1, y2 ∈ R and any (t, x) ∈ R+ × R.

Definition 2.5. If the functions f and g satisfy

|f(t, x, y)|2 + |g(t, x, y)|2 ≤ L(1 + |x|2 + |y|2)

for a positive constant L and for all (t, x, y) ∈ R+ × R × R, they satisfy the linear

growth condition.
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After these definitions, we are ready for the existence and uniqueness theorem.

Theorem 2.1 (Existence and Uniqueness Theorem). If the local Lipschitz and linear

growth conditions are satisfied by the functions f and g,then (2.1) admits a pathwise

unique strong solution for all t ≥ −τ where τ, T > 0. Furthermore, the solution

satisfies

E
(
sup |X(t)|2

)
< ∞, t ∈ [−τ, T ].

The proof in [29] depends on the Picard iterations. We need to apply Itô formula to

find the solution after discussing the existence of solution.

Theorem 2.2 (Itô’s Lemma). Let X(t) be an Itô process defined by

dX(t) = f(t,X(t)) dt+ g(t,X(t)) dW (t)

where W (t) is a Brownian motion. Let F (t, x) be twice continuously differentiable

function in x and once continuously differentiable in t. The differential of F (t,X(t))

satisfies

dF (t,X(t)) =
∂F

∂t
dt+

∂F

∂x
dX(t) +

1

2

∂2F

∂x2
(dX(t))2

=

(
∂F

∂t
+ f(t,X(t))

∂F

∂x
+

1

2
g(t,X(t))2

∂2F

∂x2

)
dt

+ g(t,X(t))
∂F

∂x
dW (t).

Itô’s formula can be extended to functions of multiple Itô processes or to functions of

more than one variable.

Theorem 2.3 (Itô’s Lemma for two process). Let X(t) and Y (t) be Itô processes

defined by

dX(t) = fX(t,X(t), Y (t)) dt+ gX(t,X(t), Y (t)) dW1(t)

dY (t) = fY (t,X(t), Y (t)) dt+ gY (t,X(t), Y (t)) dW2(t)

where W1 and W2 are correlated Brownian motions with the correlation coefficient ρ.

Let F (t, x, y) be twice continuously differentiable in x and y, and once continuously

differentiable in t. Then, Itô’s formula is given by:

dF (t,X(t), Y (t)) =
∂F

∂t
dt+

∂F

∂x
dX(t) +

∂F

∂y
dY (t) +

1

2

∂2F

∂x2
(dX(t))2

+
∂2F

∂x∂y
dX(t)dY (t) +

1

2

∂2F

∂y2
(dY (t))2

7



where

∂2F

∂x∂y
dX(t)dY (t) = ρgX(t,X(t), Y (t))gY (t,X(t), Y (t))

∂2F

∂x∂y
dt.

To find the solution process, proceed step-by-step and apply Itô’s formula in intervals

of equal step-size τ starting from the initial point. To see the solution way better, we

consider the following example.

Example 2.1. We assume that trading occurs continuously over time and stock re-

turns respond to information received at a previous point τ . This means that the

trading asset depends on historical information. Thus the stock price process is mod-

eled by an SDDE, which is obtained by adding a linear delay into the most known

geometric Brownian motion (GBM) model;

dS(t) = (a0S(t) + a1S(t− τ) + a2) dt

+(b0S(t) + b1S(t− τ) + b2) dW (t), t ∈ [0, T ]

S(t) = φ1(t), t ∈ [−τ, 0]

(2.3)

where the delay term τ is positive fixed number and the coefficients are in R. Assume

that φ1(t) : [−τ, 0] → R is a continuous initial function on its domain. Let’s check

conditions of existence and uniqueness theorem where f(t, x, y) = a0x + a1y + a2

and g(t, x, y) = b0x+ b1y + b2.

• Lipschitz condition: Let’s define I1 and I2 as;

I1 = |f (t, x1, y1)− f (t, x2, y2)| = |a0 (x1 − x2) + a1 (y1 − y2)|

I2 = |g (t, x1, y1)− g (t, x2, y2)| = |b0 (x1 − x2) + b1 (y1 − y2)| .

Then, we get:

I1 + I2 ≤ (|a0|+ |b0|) |x1 − x2|+ (|a1|+ |b1|) |y1 − y2|

≤ K (|x1 − x2|+ |y1 − y2|)

for some K ≥ max {|a0|+ |b0| , |a1|+ |b1|}.

• Linear growth condition:

|f(t, x, y)|2 + |g(t, x, y)|2 =
(
a20 + b20

)
x2 +

(
a21 + b21

)
y2 +

(
a22 + b22

)
+ 2 (a0a1 + b0b1)xy + 2 (a0a2 + b0b2)x

+ 2 (a1a2 + b1b2) y.

8



Note that

(x− y)2 ≥ 0 ⇒ x2 + y2 ≥ 2xy

(x− 1)2 ≥ 0 ⇒ x2 + 1 ≥ 2x

(y − 1)2 ≥ 0 ⇒ y2 + 1 ≥ 2y.

Thus

2 (a0a1 + b0b1)xy ≤ (a0a1 + b0b1)
(
x2 + y2

)
2 (a0a2 + b0b2)x ≤ (a0a2 + b0b2)

(
x2 + 1

)
2 (a1a2 + b1b2) y ≤ (a1a2 + b1b2)

(
y2 + 1

)
.

Then

|f(t, x, y)|2 + |g(t, x, y)|2 ≤ (

C1︷ ︸︸ ︷
a20 + b20 + a0a1 + b0b1 + a0a2 + b0b2)x

2

+ (

C2︷ ︸︸ ︷
a21 + b21 + a0a1 + b0b1 + a1a2 + b1b2)y

2

+ (

C3︷ ︸︸ ︷
a22 + b22 + a0a2 + b0b2 + a1a2 + b1b2) 1

≤ C(1 + x2 + y2)

for some C ≥ max {C1, C2, C3}.

So, there exists pathwise unique solution to (2.3). To find the solution on [0, T ],

consider method of steps with step size τ .

• For t ∈ [0, τ ]; S(t − τ) = φ1(t − τ) since −τ ≤ t − τ ≤ 0. Thus, SDDE

becomes

dS(t) = (a0S(t) + a1φ1(t− τ) + a2) dt

+ (b0S(t) + b1 (φ1(t− τ) + b2) dW (t)

Then corresponding stochastic integral and solution are;

S(t) = S(0) +

∫ t

0

(a0S(u) + a1φ1(u− τ) + a2) du

+

∫ t

0

(b0S(u) + b1φ1(u− τ) + b2) dW (u)

:= φ2(t)

9



• For t ∈ [τ, 2τ ]; S(t−τ) = φ2(t−τ) since 0 ≤ t−τ ≤ τ. Thus, SDDE becomes

dS(t) = (a0S(t) + a1φ2(t− τ) + a2) dt+(b0S(t) + b1φ2(t− τ) + b2) dW (t)

Then corresponding stochastic integral and solution are;

S(t) = φ2(τ) +

∫ t

τ

(a0S(u) + a1φ2(u− τ) + a2)du

+

∫ t

τ

(b0S(u) + b1φ2(u− τ) + b2)dW (u)

:= φ3(t)

This procedure can be repeated on [iτ, (i + 1)τ ] for i = 2, 3, 4, . . . recursively and

construct the solution for this SDDE, which is called as method of steps.

Let’s find corresponding expected value of S(t) where the stochastic integral of S(t)

for any t ∈ [0, T ] is

S(t) = S(0) +

∫ t

0

f(u, S(u), S(u− τ))du+

∫ t

0

g(u, S(u), S(u− τ))dW (u) (2.4)

where

f (t, S(t), S(t− τ)) = a0S(t) + a1S(t− τ) + a2,

g (t, S(t), S(t− τ)) = b0S(t) + b1S(t− τ) + b2.

Taking the expectation of (2.4) and setting E(S(t)) = m(t), we get

E(S(t)) = E(S(0)) + E

(∫ t

0

f(u, S(u), S(u− τ))du

)
+ E

(∫ t

0

g(u, S(u), S(u− τ))dW (u)

)
,

m(t) = m(0) +

∫ t

0

(a0m(u) + a1m(u− τ) + a2)du,

since expectation satisfies the linearity property and
∫ t

0

g(u, S(u), S(u− τ))dW (u)

is martingale, its expectation is zero.

While using the Fundamental Theorem of Calculus, taking the derivative of that equa-

tion with respect to t, we obtain

m′(t) = a0m(t) + a1m(t− τ) + a2, t ∈ [0, T ],

m(t) = E(φ1(t)), t ∈ [−τ, 0].
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Taking a0 = −3, a1 = 2e−1, a2 = 3− 2e−1 and φ1(t) = 1 + e−t so that our example

is the extended version of Example 3.4 given in [38];

m′(t) = −3m(t) + 2e−1m(t− τ)− 2e−1 + 3, t ∈ [0, T ],

m(t) = e−t + 1, t ∈ [−τ, 0].
(2.5)

We solve (2.5) iteratively.

For t ∈ [0, τ ]: our equation becomes

m′(t) = −3m(t) + 3 + 2eτ−t−1,

m(0) = 2

and corresponding solution turns out to be

m(t) = e−3t(1− eτ−1) + eτ−t−1 + 1.

For t ∈ [τ, 2τ ]: the equation in (2.5) becomes

m′(t) = −3m(t) + 2e3τ−3t−1 − 2e4τ−3t−2 + 2e2τ−t−2 + 3,

m(τ) = e−3τ − e−2τ−1 + e−1 + 1,

where the solution is

m(t) = 1 + e2τ−t−2 + 2te−3t(e3τ−1 − e4τ−2) + e−3t(1 + e4τ−2(−1 + 2τ)

+ e3τ−1(1− 2τ)− eτ−1).

To sum up, the solution becomes

m(t) =


1 + e−t, t ∈ [−τ, 0],

e−3t(1− eτ−1) + eτ−t−1 + 1, t ∈ [0, τ ],

1 + e2τ−t−2 + 2te−3t(e3τ−1 − e4τ−2)

+e−3t(1 + e4τ−2(2τ − 1) + e3τ−1(−2τ + 1)− eτ−1), t ∈ [τ, 2τ ].

Setting T = 2 and τ = 1, the mean function becomes

m(t) = 1 + e−t, −1 ≤ t ≤ 2.

Finding a closed form solution to SDDE is not easy and generally not possible. Thus,

we need numerical methods to find an approximate solution.
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CHAPTER 3

NUMERICAL METHODS FOR STOCHASTIC DELAY

DIFFERENTIAL EQUATIONS

Finding analytical solutions for an SDDE is generally difficult because of their com-

plexity and the stochastic nature of these processes. Therefore, numerical methods

are important to find approximate solutions. Moreover, practitioners can simulate

and analyze the behavior of these stochastic systems with the help of such numeri-

cal methods. Euler Maruyama and Milstein are the most commonly used numerical

methods. For the detailed information and proofs [4, 7, 5, 8, 9, 25, 38, 33].

This chapter focuses on these numerical methods for SDDEs while providing some

definitions and an illustrative example.

We consider the general form of SDDE:

dX(t) = f(X(t), X(t− τ))dt+ g(X(t), X(t− τ))dW (t), t ∈ [0, T ],

X(t) = φ(t), t ∈ [−τ, 0].
(3.1)

To find an approximate solution, consider a partition of the time interval [0, T ], into

N pieces 0 = t0 < t1 < · · · < tN = T so that for any n = 0, 1, 2, . . . , N − 1, step

size for time is ∆tn+1 = tn+1 − tn and the increment of standard Brownian motion

is ∆Wn+1 = W (tn+1) − W (tn) = W (tn+1 − tn) = W (∆tn+1). Since W (t) is a

continuous process satisfing stationary increment, independent increment properties

and W (t) ∼ N(o, t). According to the Central Limit Theorem,

Wt −Wu = Wt−u ∼ N(0,
√
t− u)

13



for 0 ≤ u ≤ t. Therefore,

∆Wn+1 =
√

tn+1 − tnZn+1 =
√

∆tn+1Zn+1

for some random variable Zn+1 ∼ N(0, 1).

• Note that N -partition of the interval [0, T ] with equal length h means h = T/N

and tn = nh for all n = 0, 1, . . . , N .

• Nτ is a positive integer number such that Nτh = τ and thus we have (N+Nτ )-

partition of [−τ, T ].

• The increments of time and Brownian motion are:

∆tn+1 = h,

∆Wn+1 = ∆W (h) =
√
hZn+1,

for some Zn+1 ∼ N(0, 1) where n = 0, 1, 2, . . . , N − 1.

• Let X̃n be an approximation of the solution of (3.1), using a stochastic explicit

one step method where ϕ is an increment function, then it must satisfy:

X̃n+1 = X̃n + ϕ(h, X̃n, X̃n−Nτ ,∆Wn+1), 0 ≤ n ≤ N − 1,

X̃n−Nτ = φ(tn − τ), 0 ≤ n ≤ Nτ .
(3.2)

3.1 Euler Maruyama Method for SDDE

The increment function ϕ in (3.2) with uniform step size h is:

ϕ(h, X̃n, X̃n−Nτ ,∆Wn+1) = f(X̃n, X̃n−Nτ )h+ g(X̃n, X̃n−Nτ )∆Wn+1. (3.3)

The corresponding approximation of strong solution according to (3.2) for the Euler

Maruyama method is

X̃n+1 = X̃n + f(X̃n, X̃n−Nτ )h+ g(X̃n, X̃n−Nτ )∆Wn+1,

= X̃n + f(X̃n, X̃n−Nτ )h+ g(X̃n, X̃n−Nτ )
√
hZn+1,

where Zn+1 ∼ N(0, 1) and for all indices n−Nτ ≤ 0, we define X̃n−Nτ := φ(tn−τ).
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Theorem 3.1 (Theorem 7 in [4]). Let the functions f and g in (3.1) satisfy the condi-

tions of the existence and uniqueness theorem. Then the Euler Maruyama method is

consistent with order p1 = 2 in the mean and order p2 = 1 in the mean square sense.

The complete proof can be found in [4].

3.2 Milstein Method for SDDE

According to [33], the increment function ϕ in stochastic explicit one-step method for

Milstein with uniform step size h on the interval [−τ, T ] is:

ϕ(h, X̃n, X̃n−Nτ ,∆Wn+1) = f̃h+ g̃∆Wn +
1

2
g̃
∂g̃

∂X̃n

[(∆Wn)
2 − h]

+ g̃
∂g̃

∂X̃n−Nτ

∫ tn+1

tn

∫ s1

tn

dW (s2 − τ)dW (s1)

where f̃ = f(tn, X̃n, X̃n−Nτ ) and g̃ = g(tn, X̃n, X̃n−Nτ ). Then, the corresponding

Milstein scheme is

X̃n+1 = X̃n + f̃h+ g̃∆Wn +
1

2
g̃
∂g̃

∂X̃n

[(∆Wn)
2 − h]

+ g̃
∂g̃

∂X̃n−Nτ

∫ tn+1

tn

∫ s1

tn

dW (s2 − τ)dW (s1)

for all n − Nτ ≥ 0 and for all indices n − Nτ ≤ 0, we define X̃n−Nτ := φ(tn − τ)

where n = 0, 1, 2, . . . , N − 1.

We consider an example of applying numerical methods to simulate an approximate

solution.

Example 3.1. For the SDDE in Example 2.1, we take a0 = −3, a1 = 2e−1, a2 =

3 − 2e−1, b0 = b1 = b2 = 0.5, τ = 1, T = 2 and φ(t) = 1 + e−t. Then the

corresponding equation satisfied by the stock process in (2.3) becomes

dS(t) = (−3S(t) + 2e−1S(t− 1) + 3− 2e−1) dt

+0.5 (S(t) + S(t− τ) + 1) dW (t), t ∈ [0, 2],

S(t) = 1 + e−t, t ∈ [−1, 0];

(3.4)

and corresponding mean function in (2.5) satisfies

m′(t) = −3m(t) + 2e−1m(t− 1) + 3− 2e−1, t ∈ [0, 2],

m(t) = 1 + e−t, t ∈ [−1, 0].
(3.5)
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Solving this sample delayed ODE, we obtain

m(t) = 1 + e−t, t ∈ [−1, 2]. (3.6)

To simulate our solution process, we take the time step of dt = 0.01 and the number

of simulations as 1000. In Figure 3.1, sample paths to our SDDE are obtained

Figure 3.1: Sample path and its mean function with Euler Maruyama and Milstein
methods

by Euler Maruyama and Milstein methods while using the same random numbers.

Moreover, the expectation of this process using that numerical methods and exact

solution of mean function are obtained. The graphs are almost the same.

Figure 3.2: Difference in the exact solution of mean functions and its approximations
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When we consider the absolute error (difference) between the exact solution of mean

and approximate solutions in Figure 3.2, Euler Maruyama and Milstein methods fit

the model since the error is too small and close to zero. Since the mean function does

not include any randomness, its graphs obtained by numerical methods are the same.

Figure 3.3: Multi paths obtained by numerical methods

In Figure 3.3, 20 paths for S(t) are obtained by using these numerical methods.

Table 3.1: Mean value obtained with different methods
m(m(t)) m(SEM, 1000) m(SMil, 1000) m(EEM(S(t))) m(EMil(S(t)))

1.4324 1.4497 1.4496 1.4322 1.4322

In Table 3.1, the mean value is obtained with different methods. m(m(t)) represents

the mean value obtained from the exact solution of expectation in (3.6). m(SEM, 1000)

and m(SMil, 1000) represent the mean value obtained from simulation of 1000 paths

of S(t) in (3.4) with Euler Maruyama and Milstein methods while m(EEM(S(t))) and

m(EMil(S(t))) represent the mean value obtained from simulation of (3.5) with Euler

Maruyama and Milstein method. As it is seen from the table, Euler Maruyama and

Milstein’s methods for S(t) give approximate values to the real value m(m(t)) =

1.4324.

Now, use SDDEs and their numerical solutions for pricing options.
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CHAPTER 4

OPTION PRICING

Options are financial derivatives that give investors the right to buy or sell an under-

lying asset at a predetermined price within a predetermined time interval. The call

options give the right to buy, while the put options give the right to sell underlying

assets [19].

The pricing of options is influenced by several factors. The key components are the

underlying asset’s price, the strike price, time to expiration, volatility of the underly-

ing asset, interest rate and dividend yields. Several models and methods have been

developed to estimate the fair price of options. The most common one is the Black-

Scholes-Merton model, introduced by Fischer Black, Myron Scholes, and Robert

Merton in the early 1970s [6]. This model gives a framework for calculating the

theoretical price of European Vanilla options while assuming constant volatility and

interest rates where the underlying asset follows GBM. Apart from the analytical so-

lution of the Black-Scholes-Merton model, some numerical models like the Monte

Carlo method also give alternative approaches to pricing options [30, 1]. The divi-

dend yields, changing volatility, and changing interest rates can easily be incorporated

into this numerical model for more realistic situations.

In some phenomena where immediate execution or information is not guaranteed,

delay has an important impact. Thus, the delay must also be considered as one of the

main components of pricing the option [35]. The studies related to the delay effect try

to understand how delays in trading or receiving information affect the option’s value.

These delays can change risks and profits. Thus, pricing models must be adjusted to

account for the time delay. This adjustment helps provide a more accurate valuation
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as illustrated in [3, 26, 28, 22].

In this chapter, we consider some call options with and without delay effect where

stock price processes follow GBM, namely European Vanilla Options, American

Vanilla Options, European Foreign Exchange Options, and European Exchange op-

tions. The corresponding valuation formulas apart from American Vanilla Options

are provided.

4.1 European Vanilla Option Pricing with GBM

4.1.1 European Vanilla Option Pricing without Delay

The Black-Scholes-Merton Model assumes the price of the stock S follows GBM

with constant drift µ and volatility σ for the given maturity T , namely,

dS(t) = µS(t)dt+ σS(t)dW (t), t ∈ [0, T ]

S(0) = s0,

where W (t) is a standard Brownian motion and s0 is the given initial stock price. The

Black-Scholes-Merton model is a widely used option pricing model. It provides the

theoretical value of options using current stock prices s0, the option’s strike price K,

risk free rate r, time to maturity T and volatility σ under the following assumptions:

• It is a European-type option which can be exercised at maturity only,

• Market is efficient,

• There is no transaction cost,

• The risk free rate and volatility of the stock are known and constant,

• The returns of the underlying assets are normally distributed.

Theorem 4.1 (See [6]). If the stock price S satisfies the following equation

dS(t) = rS(t)dt+ σS(t)dW (t), t > 0, (4.1)

S(0) = s0,
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under risk neutral probability measure Q and conditions of Black-Scholes-Merton

Model, then the value of European call and put options, namely VC and VP respec-

tively, are given by

VC(S,K, t) = S(t)ϕ(d1)−Ke−r(T−t)ϕ(d2), (4.2)

VP (S,K, t) = Ke−r(T−t)ϕ(−d2)− S(t)ϕ(−d1), (4.3)

where

d1 =
ln(S(t)

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

,

d2 =
ln(S(t)

K
) + (r − σ2

2
)(T − t)

σ
√
T − t

and ϕ is the density of the standard normal distribution which is defined as

ϕ(x) =
1√
2π

∫ x

−∞
e−u2/2du, x ∈ R.

4.1.2 European Vanilla Option Pricing with Delay

European vanilla option pricing model with delayed GBM is examined to understand

the effect of delay in the determination of the price. We also consider single and

multi-delay in underlying assets and provide corresponding value formulas.

4.1.2.1 European Vanilla Option Pricing with a Single Delay

Arriojas et al. (2007) [3] have obtained the fair price formula of the European Vanilla

call option for any time t ≤ T while showing market is complete and arbitrage free.

We extend that work for the put option and show put-call parity is satisfied also under

delay effect.

The market includes a riskless asset B(t) and a single stock S(t) so that B(t) = ert

for the risk free rate r and the stock price satisfies:

dS(t) = µS(t− a)S(t)dt+ g(S(t− b))S(t)dW (t), t ∈ [0, T ],

S(t) = φ(t), t ∈ [−L, 0]
(4.4)
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where µ and T are positive real numbers, a and b are delay terms with L = max{a, b},

g is a continuous function and φ is F0-measurable initial path with φ(0) > 0.

Theorem 4.2 (Theorem 4 in [3]). Let the asset price S satisfies (4.4) with φ(0) > 0

and g(t) ̸= 0 whenever t ̸= 0. Let r be the positive risk free rate and Q be the risk

neutral probability measure. Then the value of European vanilla call option VC(t)

where K is the strike price, T is the maturity and l = min{a, b} is:

• For any t ∈ [T − l, T ] :

VC(t) = S(t)ϕ(β1(t))−Ke−r(T−t)ϕ(β2(t)), (4.5)

where

β1(t) =
log(S(t)

K
) +

∫ T

t
(r + 1

2
g(S(u− b))2)du√∫ T

t
g(S(u− b))2du

,

β2(t) =
log(S(t)

K
) +

∫ T

t
(r − 1

2
g(S(u− b))2)du√∫ T

t
g(S(u− b))2du

.

• For all T > l and t < T − l:

VC(t) = ertEQ

(
H

(
e−r(T−l)S(T − l),−1

2

∫ T

T−l
g(S(u− b))2du,∫ T

T−l
g(S(u− b))2du

)∣∣∣∣Ft

)
,

(4.6)

where

H(x,m, σ2) = xem+σ2/2ϕ(α1(x,m, σ))−Ke−rTϕ(α2(x,m, σ))

and

α1(x,m, σ) =
1

σ

[
log

( x

K

)
+ rT +m+ σ2

]
,

α2(x,m, σ) =
1

σ

[
log

( x

K

)
+ rT +m

]
,

for σ, x ∈ R+, m ∈ R.

The hedging strategy for t ∈ [T − l, T ] is given by

πS(t) = ϕ(β1(t)),

πB(t) = −Ke−r(T−t)ϕ(β2(t)).
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Detailed proof can be found in Appendix A.

Corollary 4.3. Assume that the conditions in Theorem 4.2 are satisfied. Let VP (t) be

the value of a European put option. Then the value of the put option is:

• For all t ∈ [T − l, T ]:

VP (t) = Ke−r(T−t)ϕ(−β2(t))− S(t)ϕ(−β1(t)) (4.7)

where β1 and β2 are the same as in Theorem 4.2.

• For all T > l and t < T − l:

VP (t) = ertEQ

(
H

(
e−r(T−l)S(T − l),−1

2

∫ T

T−l
g(S(u− b))2du,∫ T

T−l
g(S(u− b))2du

)∣∣∣∣Ft

)
,

(4.8)

where

H(x,m, σ2) = Ke−rTϕ(−α2(x,m, σ))− xem+σ2/2ϕ(−α1(x,m, σ))

and α1 and α2 are the same as in Theorem 4.2.

Proof. Actually, in this proof, we use the same ideas in the proof of Theorem 4.2

while considering the payoff function as hP (S(T )) = (K−S(T ), 0)+ = −hC(S(T )).

The solution of stock price S(t) which satisfies (4.4);

S̃(T ) = e−rtS(t)em+σy = S̃(t)em+σy

from (A.1) where σ2 :=

∫ T

t

g(S(u− b))2du and m :=
−1

2

∫ T

t

g(S(u− b))2du.

The corresponding value of the European put option is

VP (S(t), t) = ertEQ

[
(K − S(T ), 0)+

erT

∣∣∣∣ Ft

]
= ertEQ

[(
Ke−rT − S̃(T ), 0

)+ ∣∣∣Ft

]
= ertEQ

[(
Ke−rT − S̃(t)em+σy, 0

)+ ∣∣∣Ft

]
.
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For x := S̃(t), define the function H as

H(x,m, σ2) := EQ

[(
Ke−rT − xem+σY−, 0

)+ | FT−l

)
,

= EQ

[(
Ke−rT − xem+σY , 0

)+]
, since payoff is FT−l-measurable

=
1√
2π

∫ ∞

−∞

(
Ke−rT − xem+σy, 0

)+
e−y2/2dy,

where

Ke−rT − xem+σy > 0 so that y < −β2 := −
ln
(

x
K

)
+ rT +m

σ
.

Thus;

H(x,m, σ2) =
1√
2π

∫ −β2

−∞

(
Ke−rT − xem+σy

)
e−y2/2dy

=
1√
2π

∫ −β2

−∞
Ke−rT e−y2/2dy − 1√

2π

∫ −β2

−∞
xem+σy−y2/2dy

= Ke−rTϕ(−β2)− xϕ(−β1)

where β1 = σ + β2. Then, the value of the European put option under the Black-

Scholes-Merton setting with delay effect for any t ∈ [0, T ] is

VP (S, t) = ertEQ

[
H(x,m, σ2) | Ft

]
.

Case 1: When t ∈ [T − l, T ]; since H is FT−l-measurable and FT−l ⊂ Ft;

VP (t) = ertEQ

(
H(x,m, σ2) | Ft

)
= ertH(x,m, σ2)

= Ke−r(T−t)ϕ(−β2)− S(t)ϕ(−β1).

Case 2: When T > l and t < T − l, then consider to write S(T ) in terms of S(T − l);

VP (t) = ertEQ

(
H

(
S̃(T − l),−1

2

∫ T

T−l

g(S(u− b))2du,∫ T

T−l

g(S(u− b))2du

)∣∣∣Ft

)
where

H(x,m, σ2) = Ke−rTϕ(−α2(x,m, σ))− xem+σ2/2ϕ(−α1(x,m, σ)),

α1 =
ln
(

x
K

)
+m+ rT + σ2

σ
,

α2 =
ln
(

x
K

)
+m+ rT

σ
= α1 − σ.
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So, this completes the proof.

Corollary 4.4. Let the conditions in Theorem 4.2 be satisfied for the stock S with

strike price K. Then put-call parity is satisfied also under delay effect i.e.

VC(t)− VP (t) = S(t)−Ke−r(T−t).

Proof. From Theorem 4.2 and Corollary 4.3, pricing formulas are provided in two

cases. Thus, it also proves that parity is satisfied in both cases.

• When t ∈ [T − l, T ] (i.e. l > T );

VC(t) = S(t)ϕ(β1(t))−Ke−r(T−t)ϕ(β2(t)),

VP (t) = Ke−r(T−t)ϕ(−β2(t))− S(t)ϕ(−β1(t)).

Then,

VC(t)− VP (t) = S(t)ϕ(β1)−Ke−r(T−t)ϕ(β2)

−
[
Ke−r(T−t)ϕ(−β2)− S(t)ϕ(−β1)

]
= S(t) [ϕ(β1) + ϕ(−β1)]−Ke−r(T−t) [ϕ(β2) + ϕ(−β2)]

= S(t)−Ke−r(T−t)

since ϕ is the density of the standard normal distribution.

• When t < T − l (i.e. l < T );

VC(t) = ertEQ(xe
m+σ2/2ϕ(α1)−Ke−rTϕ(α2)|Ft),

= EQ(S(t)ϕ(α1)−Ke−r(T−t)ϕ(α2)|Ft),

VP (t) = ertEQ(Ke−rTϕ(−α2)− xem+σ2/2ϕ(−α1)|Ft)

= EQ(Ke−r(T−t)ϕ(−α2)− S(t)ϕ(−α1)|Ft),

since m = −σ2/2 and x = S̃(t). Then,

VC(t)− VP (t) = EQ(S(t)ϕ(α1)−Ke−r(T−t)ϕ(α2)|Ft)

− EQ(Ke−r(T−t)ϕ(−α2)− S(t)ϕ(−α1)|Ft)

= EQ(S(t)(ϕ(α1) + ϕ(−α1))

−Ke−r(T−t)(ϕ(α2) + ϕ(−α2))|Ft)

= EQ

(
S(t)−Ke−r(T−t)|Ft

)
= S(t)−Ke−r(T−t).
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So this completes the proof and using the same logic, one can also prove the put-call

parity for the other options namely FX and exchange options under delay effect.

4.1.2.2 European Vanilla Option Pricing with Multi-Delay

We are extending the study of Arriojas et al. [3] for the several delays while assuming

that the price process for the stock S(t) at time t satisfies the following SDDE:

dS(t) = f(St−a1 , St−a2 , ..., St−an)S(t)dt

+g(St−b1 , St−b2 , ..., St−bm)S(t)dW (t), t ∈ [0, T ]

S(t) = φ(t), t ∈ [−L, 0],

(4.9)

on a complete probability space (Ω,F , P ) with filtration {Ft}0≤t≤T .

• St−ai means S(t− ai) for any i = 1, 2, ..., n and St−bj means S(t− bj) for any

j = 1, 2, ...,m,

• ai’s and bj’s are positive fixed delays where L = max{a1, ..., an, b1, ...bm},

• g : Rm → R is a continuous function,

• W (t) is standard Wiener process,

• φ(t) : [−L, 0] → R+ is F0-measurable initial path so that φ(0) > 0 a.s.

We will show that the above model admits pathwise unique solutions.

Theorem 4.5. Assume that S(t) satisfies (4.9) and functions f and g satisfy the linear

growth and local Lipschitz conditions. Then (4.9) has a pathwise unique solution S

for the given initial path. Moreover, S(t) > 0 almost surely for all t ≥ 0 whenever the

initial path φ(t) > 0 for all t ∈ [−L, 0]. Furthermore, if φ(t) ≥ 0 a.s, then S(t) ≥ 0

for all t ≥ 0.

Proof. Let l := min{a1, a2, ..., an, b1, b2, ..., bm}. Then, when we rewrite the equation

for t ∈ [0, l], we get

dS(t) = S(t)f(φt−a1 , φt−a2 , ..., φt−an)dt

+S(t)g(φt−b1 , φt−b2 , ..., φt−bm)dW (t), t ∈ [0, l]

S(t) = φ(t), t ∈ [−L, 0]
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Define the semimartingale process for t ∈ [0, l] as

N(t) :=

∫ t

0

f(φu−a1 , φu−a2 , ..., φu−an)du+

∫ t

0

g(φu−b1 , φu−b2 , ..., φu−bm)dW (u),

where the quadratic variation of N is

[N,N ]t =

∫ t

0

g(φu−b1 , φu−b2 , ..., φu−bm)
2du.

Then, the SDDE becomes

dS(t) = S(t)dN(t), t ∈ [0, l],

S(t) = φ(t), t ∈ [−L, 0],

where the unique solution for any t ∈ [0, l] is obtained by Doléans Dade exponent as

S(t) = φ(0) exp

[
N(t)− 1

2
[N,N ]t

]
= φ(0) exp

[ ∫ t

0

f(φu−a1 , φu−a2 , ..., φu−an)du

+

∫ t

0

g(φu−b1 , φu−b2 , ..., φu−bm)dW (u)− 1

2

∫ t

0

g(φu−b1 , φu−b2 , ..., φu−bm)
2du

]
.

From this equation, it is easily seen that if φ(t) > 0 a.s, then S(t) > 0 for all t ∈ [0, l].

While using the induction method, one can find a solution for any t ∈ [kl, (k + 1)l]

where (k + 1)l ≤ T and show S(t) > 0 whenever φ(t) > 0.

Our purpose is to derive the fair price formula for the European Vanilla option written

on the stock S with exercise price K and maturity T with the assumption of no div-

idend and no transaction costs. Assume that S satisfies (4.9) while the riskless asset

B satisfies B(t) = ert where r is the rate of return and r > 0.

Theorem 4.6. We consider the market consisting of riskless asset B(t) and stock

S(t). Let r > 0 be the risk free rate and the asset price S satisfy (4.9) for φ(0) > 0

and g(t) ̸= 0 whenever t ̸= 0. Then, the market is arbitrage-free.

Proof. Let us find an equivalent martingale measure with the help of Girsanov’s the-

orem to show market is arbitrage free. Consider the discounted stock price for any
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t ∈ [0, T ], S̃(t) =
S(t)

B(t)
= e−rtS(t) and take derivative where S(t) satisfies (4.9)

dS̃(t) = −re−rtS(t)dt+ e−rtdS(t)

= −re−rtS(t)dt+ e−rt
[
f(St−a1 , St−a2 , ..., St−an)S(t)dt

+ g(St−b1 , St−b2 , ..., St−bm)S(t)dW (t)
]

= S̃(t)

[
(f(St−a1 , St−a2 , ..., St−an)− r) dt

+ g(St−b1 , St−b2 , ..., St−bm)dW (t)

]
. (4.10)

According to Theorem 4.5, g(St−b1 , St−b2 , . . . , St−bm) is different from zero since

φ(t) > 0 for all t ∈ [0, T ] and g(u) ̸= 0 whenever u = (u1, u2, . . . , um) ̸= 0. Define

Σ(t) := −f(St−a1 , St−a2 , ..., St−an)− r

g(St−b1 , St−b2 , ..., St−bm)
, for all t ∈ [0, T ]

which is Ft−l measurable predictable process such that
∫ T

0
|Σ(u)|2du < ∞. Define

QT := exp

{
−
∫ T

0

Σ(u)dW (u)− 1

2

∫ T

0

|Σ(u)|2du
}

so that EP (QT ) = 1. Then, according to Girsanov theorem there exists probability

measure Q defined by dQ = QTdP and standard Brownian motion W̃ under Q

defined by

W̃ (t) := W (t)−
∫ t

0

Σ(u)du for all t ∈ [0, T ];

or equivalently, we have

dW̃ (t) = dW (t)− Σ(t)dt,

which implies dW (t) = dW̃ (t) + Σ(t)dt. Arranging the discounted asset price pro-
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cess in (4.10) under the measure Q, we get

dS̃(t) = S̃(t) [(f(St−a1 , St−a2 , ..., St−an)− r) dt+ g(St−b1 , St−b2 , ..., St−bm)dW (t)]

= S̃(t)

[
(f(St−a1 , St−a2 , ..., St−an)− r) dt

+ g(St−b1 , St−b2 , ..., St−bm)(dW̃ (t) + Σ(t)dt)

]
= S̃(t)g(St−b1 , St−b2 , ..., St−bm)

[
f(St−a1 , St−a2 , ..., St−an)− r

g(St−b1 , St−b2 , ..., St−bm)
dt

+ dW̃ (t) + Σ(t)dt

]
= S̃(t)g(St−b1 , St−b2 , ..., St−bm)

[
−Σ(t)dt+ dW̃ (t) + Σ(t)dt

]
= S̃(t)g(St−b1 , St−b2 , ..., St−bm)dW̃ (t).

So, the discounted asset price S̃(t) is Q-martingale since drift term is zero which

implies that Q is an equivalent martingale (risk neutral) measure. Therefore, the

market is arbitrage free and the proof is completed.

Remark 4.1. Note that under the risk neutral measure Q, the stock price satisfies

dS(t) = rS(t)dt+ g(St−b1 , St−b2 , ..., St−bm)S(t)dW̃ (t). (4.11)

Theorem 4.7. If the market satisfies the conditions that are defined in Theorem 4.6,

then it is complete.

Proof. Consider the discounted asset price process under Q and apply Itô formula to

ln S̃(t):

ln S̃(t) = ln S̃(0) +

∫ t

0

1

S̃(u)
dS̃(u)− 1

2

∫ t

0

1

S̃2(u)
d[S̃, S̃]u

= lnφ(0) +

∫ t

0

g(Su−b1 , Su−b2 , ..., Su−bm)dW̃ (u)

− 1

2

∫ t

0

g2(Su−b1 , Su−b2 , ..., Su−bm)du

Thus, for any t ∈ [0, T ], it follows that

S̃(t) = φ(0) exp

[ ∫ t

0

g(Su−b1 , Su−b2 , ..., Su−bm)dW̃ (u)

− 1

2

∫ t

0

g2(Su−b1 , Su−b2 , ..., Su−bm)du

]
(4.12)
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Now, let X be any contingent claim which is an integrable non negative FS
t measur-

able random variable where FS
t = F S̃

t = FW̃
t = FW

t for any t ≥ 0 according to

definition of S̃ and W̃ . Consider Q-martingale process M(t) for any t ∈ [0, T ] which

is defined as

M(t) := EQ(e
−rTX | FS

t ) = EQ(e
−rTX | FW̃

t ).

Then there exists (FW̃
t ) predictable process h0 such that

∫ T

0

h2
0(u)du < ∞ and

M(t) = EQ(e
−rTX | FW̃

t ) = EQ(e
−rTX) +

∫ t

0

h0(u)dW̃ (u)

by Martingale Representation theorem. Define the hedging strategy by

πS(t) =
h0(t)

S̃(t)g(St−b1 , St−b2 , ..., St−bm)
,

πB(t) = M(t)− πS(t)S̃(t),

for a portfolio {(πS(t), πB(t)) | t ∈ [0, T ]} where πS(t) and πB(t) represent the

amount of stock and bond in the portfolio respectively. Then the value of the portfolio

at any time t ∈ [0, T ] is given by

V (t) = πB(t)e
rt + πS(t)S(t) = ertM(t).

This value process implies that

dV (t) = ertdM(t) +M(t)d(ert)

= πB(t)d(e
rt) + πS(t)dS(t);

in other words, {(πS(t), πB(t)) | t ∈ [0, T ]} is self-financing strategy and V (T ) =

erTM(T ) = X . Thus, X is attainable and market consisting of B(t) andS(t) is

complete.

Theorem 4.8. Let the asset price S satisfy (4.9) with φ(0) > 0 and g(t) ̸= 0 whenever

t ̸= 0. Let r > 0 be the risk free rate and Q be the risk neutral probability measure.

Assume that V (t) is the value of a European call option with maturity time T and

strike price K. Let ϕ be the standard normal distribution function so that

ϕ(x) =
1√
2π

∫ x

−∞
e−u2/2du, x ∈ R.

Then the value of the European option is
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• Case 1: If t ∈ [T − l, T ] with l := min{a1, a2, . . . , an, b1, b2, . . . , bm}:

V (t) = S(t)ϕ(β1(t))−Ke−r(T−t)ϕ(β2(t)), (4.13)

where

β1 =
log(S(t)

K
) +

∫ T

t
(r + 1

2
g2(Su−b1 , Su−b2 , ..., Su−bm)du√∫ T

t
g2(Su−b1 , Su−b2 , ..., Su−bm)du

,

β2 =
log(S(t)

K
) +

∫ T

t
(r − 1

2
g2(Su−b1 , Su−b2 , ..., Su−bm)du√∫ T

t
g2(Su−b1 , Su−b2 , ..., Su−bm)du

.

• Case 2: If T > l and t < T − l:

V (t) = ertEQ

(
H

(
e−r(T−l)S(T − l),−1

2

∫ T

T−l

g2(Su−b1 , Su−b2 , ..., Su−bm)du,∫ T

T−l

g2(Su−b1 , Su−b2 , ..., Su−bm)du

)∣∣∣∣Ft

)
(4.14)

where

H(x,m, σ2) = xem+σ2/2ϕ(α1(x,m, σ))−Ke−rTϕ(α2(x,m, σ))

and

α1(x,m, σ) =
1

σ

[
log

( x

K

)
+ rT +m+ σ2

]
,

α2(x,m, σ) =
1

σ

[
log

( x

K

)
+ rT +m

]
for σ, x ∈ R+, m ∈ R.

The hedging strategy for t ∈ [T − l, T ] is given by

πS(t) = ϕ(β1(t)),

πB(t) = −Ke−r(T−t)ϕ(β2(t)).

Proof. For any t ∈ [0, T ] define the following equalities

x := S̃(t)

m := −1

2

∫ T

t

g2(Su−b1 , Su−b2 , ..., Su−bm)du

σ2 :=

∫ T

t

g2(Su−b1 , Su−b2 , ..., Su−bm)du
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so that σ2 = −2m. Note that
∫ T

t
g(Su−b1 , Su−b2 , ..., Su−bm)dW̃u is normally dis-

tributed with mean zero and variance σ2 =
∫ T

t
g2(Su−b1 , Su−b2 , ..., Su−bm)du. So,

consider any Y ∼ N(0, 1) then∫ T

t

g(Su−b1 , Su−b2 , ..., Su−bm)dW̃u ∼ σY.

With these observations, discounted asset price at maturity T in terms of any time

t > 0 can be written as;

S̃(T ) = S̃(t) exp

[ ∫ T

t

g(Su−b1 , Su−b2 , ..., Su−bm)dW̃u

− 1

2

∫ T

t

g2(Su−b1 , Su−b2 , ..., Su−bm)du

]
= xem+σY .

Note that S̃(T ) is FT−l measurable where l := min{a1, a2, . . . , an, b1, b2, . . . , bm},

since t ≤ u ≤ T implies that

t− bi ≤ u− bi ≤ T − bi ≤ T − l for any i = 1, 2, . . . ,m.

Then the value of European call option at any time t ∈ [0, T ] with the pay off function

(S(T )−K)+ under the risk neutral probability measure Q is

V (t) = e−r(T−t)EQ

(
(S(T )−K)+ | Ft

)
= ertEQ

(
(S̃(T )−Ke−rT )+ | Ft

)
= ertEQ

(
EQ

(
(S̃(T )−Ke−rT )+ | FT−l

)
| Ft

)
, by Tower property

= ertEQ

(
EQ

(
(xem+σy −Ke−rT )+ | FT−l

)
| Ft

)
.

Now, define a new function H as H(x,m, σ2) := EQ

(
(xem+σy −Ke−rT )+ | FT−l

)
so that V (t) = ertEQ (H(x,m, σ2) | Ft). Then

H(x,m, σ2) = EQ

(
(S̃(T )−Ke−rT )+ | FT−l

)
= EQ

(
(S̃(T )−Ke−rT )+

)
since S̃(T ) is FT−l measurable

= EQ

(
(xem+σY −Ke−rT )+

)
=

1√
2π

∫ ∞

−∞
(xem+σy −Ke−rT )+e−y2/2dy.
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Finding y values so that xem+σy −Ke−rT > 0;

xem+σy −Ke−rT > 0 =⇒ xem+σy > Ke−rT

=⇒ lnx+m+ σy > lnK − rT

=⇒ ln
x

K
+m+ rT > −σy

=⇒ y > −
ln

x

K
+m+ rT

σ
.

Define

α2(x,m, σ) :=
ln

x

K
+m+ rT

σ

so that

(xem+σy −Ke−rT )+ =

xem+σy −Ke−rT , if y > −α2,

0, if y ≤ −α2.

Then,

H(x,m, σ2) =
1√
2π

∫ ∞

−∞
(xem+σy −Ke−rT )+e−y2/2dy

=
1√
2π

∫ ∞

−α2

(xem+σy −Ke−rT )e−y2/2dy

=
1√
2π

∫ ∞

−α2

xem+σy−y2/2dy −Ke−rT

∫ ∞

−α2

e−y2/2

√
2π

=
1√
2π

∫ ∞

−α2

xem+σy−y2/2e−σ2/2+σ2/2dy −Ke−rTϕ(α2)

= xem+σ2/2

∫ ∞

−α2

e−(y−σ)2/2

√
2π

dy −Ke−rTϕ(α2)

= xem+σ2/2

∫ ∞

−α2−σ

e−z2/2

√
2π

dz −Ke−rTϕ(α2), for y − σ = z

= xem+σ2/2ϕ(α2 + σ)−Ke−rTϕ(α2).

Define α1(x,m, σ) := α2(x,m, σ) + σ =
ln

x

K
+m+ rT + σ2

σ
. So, the function H

is defined as

H(x,m, σ2) = xem+σ2/2ϕ(α1)−Ke−rTϕ(α2).

We already know that V (t) = ertEQ(H(x,m, σ2) | Ft), where H is FT−l-measurable,

hence,
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• for t ∈ [T − l, T ];

V (t) = ertEQ(H(x,m, σ2) | Ft)

= ertH(x,m, σ2), since FT−l ⊂ Ft

= ert
(
xem+σ2/2ϕ(α1)−Ke−rTϕ(α2)

)
= S(t)ϕ(α1)−Ke−r(T−t)ϕ(α2),

• for t < T − l whenever T > l;

V (t) = ertEQ(H(x,m, σ2) | Ft)

= ertEQ(xe
m+σ2/2ϕ(α1)−Ke−rTϕ(α2) | Ft).

Using the parameters x,m and σ2, we can easily show that α1 = β1 and α2 = β2,

which completes the proof.

Proposition 4.9. Consider the stock price process S(t) which satisfies the multi delay

SDE in (4.11) under risk neutral probability measure Q. Let g(St−b1 , St−b2 , . . . , St−bm)

be equal to σ̃ for some positive constant. Then, the value formula for the stock price

((4.13)-(4.14)) and Black-Scholes-Merton formula with volatility term σ̃ > 0 in (4.2)

are the same.

Proof. Note that with that choice of function g, our equation in (4.11) becomes:

dS(t) = rS(t)dt+ σ̃S(t)dW (t), t ∈ [0, T ]

S(t) = φ(t), t ∈ [−L, 0],

and corresponding equations in ((4.13)-(4.14)) become:

Case 1: If t ∈ [T − l, T ] with l := min{a1, a2, . . . , an}:

V (t) = S(t)ϕ(β1(t))−Ke−r(T−t)ϕ(β2(t)), (4.15)

where

β1 =
log(S(t)

K
) + (r + 1

2
σ̃2)(T − t)

σ̃
√
T − t

,

β2 =
log(S(t)

K
) + (r − 1

2
σ̃2)(T − t)

σ̃
√
T − t

.

Note that d1 and d2 in (4.2) are exactly the same as β1 and β2 respectively.
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Case 2: If T > l and t < T − l:

V (t) = e−r(T−l−t)S(T − l)ϕ(α1)−Ke−r(T−t)ϕ(α2)

where

α1 =
1

σ̃
√
l

[
log

(
S(T − l)

K

)
+ (r +

1

2
σ̃2)l

]
,

α2 =
1

σ̃
√
l

[
log

(
S(T − l)

K

)
+ (r − 1

2
σ̃2)l

]
.

Using the Markov property of solution process S and rewrite the valuation formulas

in (4.2) as:

V (T − l) = S(T − l)ϕ(d1)−Ke−rlϕ(d2) (4.16)

d1 =
1

σ̃
√
l

[
log

(
S(T − l)

K

)
+ (r +

1

2
σ̃2)l

]
,

d2 =
1

σ̃
√
l

[
log

(
S(T − l)

K

)
+ (r − 1

2
σ̃2)l

]
.

Since the value of the option is martingale, at any time t > 0, equation in (4.16) can

be written as

V (t) = e−r((T−l)−t)EQ [V (T − l) | Ft]

= e−r((T−l)−t)EQ

[
S(T − l)ϕ(d1)−Ke−rlϕ(d2) | Ft

]
= e−r(T−l−t)S(T − l)ϕ(d1)−Ke−r(T−t)ϕ(d2).

Note that value formulas are exactly the same where d1 = α1 and d2 = α2.

To find the corresponding partial differential equation (PDE) of the SDDE in (4.11)

where S̃(t) = e−rtS(t), define the value and discounted value processes for any time

t ∈ [0, T ] as

V (t) := F (t, S(t)) = e−r(T−t)EQ((S(T )−K)+ | Ft)

Ṽ (t) = e−rtV (t) := F̃ (t, S̃(t)).
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Then, by derivation of the discounted value process, it follows that

dṼ (t) = dF̃ (t, S̃(t))

= −re−rtF (t, S(t))dt+ e−rtdF (t, S(t))

= −re−rtF (t, S(t))dt+ e−rt

[
∂F

∂t
dt+

∂F

∂St

dS(t) +
1

2

∂2F

∂S2
t

d[S, S]t

]
= −re−rtF (t, S(t))dt+ e−rt

[
∂F

∂t
dt+

∂F

∂St

rS(t)dt

+
∂F

∂St

S(t)g(St−b1 , St−b2 , ..., St−bm)dW̃t

+
1

2

∂2F

∂S2
t

S2(t)g2(St−b1 , St−b2 , ..., St−bm)dt

]
= e−rt

[
−rF +

∂F

∂t
+

∂F

∂St

rS(t) +
1

2

∂2F

∂S2
t

S2(t)g2(St−b1 , ..., St−bm)

]
dt

+ e−rt ∂F

∂St

S(t)g(St−b1 , St−b2 , ..., St−bm)dW̃t

Since F̃ (t, S̃(t)) is martingale under Q, drift term must be zero. So this implies

−rF +
∂F

∂t
+

∂F

∂St

rS(t) +
1

2

∂2F

∂S2
t

S2(t)g2(St−b1 , St−b2 , ..., St−bm) = 0

As a result, the corresponding PDE is:

∂F

∂t
= rF − ∂F

∂St

rS(t)− 1

2

∂2F

∂S2
t

S2(t)g2(St−b1 , St−b2 , ..., St−bm) (4.17)

F (T, S(T )) = (S(T )−K)+.

This PDE also includes delay terms and it can also be used for pricing.

4.2 American Vanilla Option Pricing with GBM

American options can be exercised at any time up to maturity. This feature makes

their pricing process more complex than the pricing European options, that can only

be exercised at maturity. In American options, we need to find the optimal time to

exercise. Because of this early exercise property, finding an analytical solution for

the value process is generally not possible. Thus, numerical methods are needed.

The commonly used method is the least square Monte Carlo method (LSMC) which

was developed by Longstaff and Schwartz (2001) [23]. This method depends on

the iteration procedure. First, one creates multiple paths of the underlying asset and
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then, for all these paths, applies least square regression in each step while consider-

ing backward in time to find the continuation value. Having the continuation value,

one determines whether the option is exercised or not. The detailed information and

application of the method can be found in [23, 12].

In our model, we consider the pricing of American call and put options whenever

asset price S satisfies GBM and delayed GBM which are

• for without delay case, S satisfies

dS(t) = rS(t)dt+ σS(t)dW (t), t > 0,

S(0) = s0,

• for with delay case, S satisfies

dS(t) = rS(t)dt+ g(S(t− τ))S(t)dW (t), t ∈ (0, T ],

S(t) = φ(t), t ∈ [−τ, 0].

4.3 Foreign Exchange Option Pricing with GBM

European foreign exchange (FX) options are financial derivatives that grant the holder

the right, but not the obligation, to exchange currency amounts at a predetermined

exchange rate on a specific date. These options are essential for hedging against

currency risk and speculating on currency movements. Related works are in [17, 14,

13].

4.3.1 Foreign Exchange Option Pricing without delay

Consider a European type FX option with F being the current exchange rate, that is,

the domestic currency price of one unit of foreign currency, K being the specified

exchange rate and T is the specified date. The terminal payoff function for the call

option is h(F,K, T ) = (F (T )−K, 0)+. Let the domestic and foreign money market

accounts be Md and Mf respectively, then these risk free assets and current exchange
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rate F satisfy the following equations:

dMd = rdMddt

dMf = rfMfdt

dF (t) = F (t)[µdt+ σdZF ]

(4.18)

where rd and rf are risk free rates for domestic and foreign money market accounts, µ

constant drift coefficient and σ constant volatility term. We consider Md as numeraire

and find the corresponding SDE for F under risk neutral measure Qd. First, we define

X(t) =
F (t)Mf (t)

Md(t)
,

where F (t)Mf (t) represents price in terms of domestic currency and X(t) represents

discounted price process for foreign exchange in terms of the domestic currency. We

find the corresponding martingale process for X(t) under Qd while specifying the

corresponding Brownian motion. For that purpose, corresponding SDE for 1/Md(t)

whit the help of Itô formula, (for 1/x) we find that

d

[
1

Md

]
=

−1

M2
d

dMd +
1

2

2

M3
d

d[Md,Md]t

=
−1

M2
d

Mdrddt+
1

M3
d

0dt

=
−rd
Md

dt.

Then corresponding SDE for X(t);

dX(t) =
1

Md

d (F (t)Mf (t)) + F (t)Mf (t)d

[
1

Md

]
+ d

[
FMf ,

1

Md

]
t

=
1

Md

[MfdF + FdMf ] + FMfd

[
1

Md

]
=

1

Md

[MfFµdt+MfFσdZF + FMfrfdt] + FMf
−rd
Md

dt

=
FMf

Md

[(µ+ rf − rd) dt+ σdZF ]

= Xσ

[(
µ+ rf − rd

σ

)
dt+ dZF

]
.

Note that for γ :=
µ+ rf − rd

σ
, dWd := γdt + dZF defines Brownian motion

according to Girsanov’s theorem under Qd. Thus, X(t) satisfies dX(t) = σXdWd

which implies its a martingale process and Qd is risk neutral measure. Now consider
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the corresponding SDE for F under Qd where dZF = dWd − γdt:

dF (t) = F (t) [µdt+ σdZF ]

= F (t) [µdt+ σ [dWd − γdt]]

= F (t) [(rd − rf ) dt+ σdWd] (4.19)

= F (t) [δFdt+ σdWd] for δF := (rd − rf )

Having found the governing SDE for F (t) under risk neutral measure Qd, we are

ready for finding solution for F (t) applying by Itô formula (for lnx)

lnF (T ) = lnF (t) +

∫ T

t

1

F (u)
dF (u) +

1

2

∫ T

t

−1

F 2(u)
d[F, F ]u

= lnF (t) +

∫ T

t

[δFdu+ σdWd(u)]−
1

2

∫ T

t

σ2du

= lnF (t) + δF (T − t) + σ(Wd(T )−Wd(t))−
σ2

2
(T − t)

= lnF (t) + δF t̃+ σWd(t̃)−
σ2

2
t̃ where t̃ := T − t

= lnF (t) +

(
δF − σ2

2

)
t̃++σWd(t̃).

Since Wd(t̃)
d
=

√
t̃Y for any Y ∼ N(0, 1) ;

F (T ) = F (t) exp

{(
δF − σ2

2

)
t̃+ σ

√
t̃y

}
. (4.20)

Theorem 4.10. Let the domestic and foreign money market accounts and current

exchange rate satisfies (4.18). Consider the European call foreign exchange option

where the payoff function is h(F,K, T ) = (F (T )−K, 0)+. For the choice of Md as

numeraire, the corresponding value of that option is

V (F,K, t) = F (t)e−rf (T−t)N (d1)−Ke−rd(T−t)N (d2) (4.21)

where

d1 =
ln
(

F (t)
K

)
+
(
rd − rf +

σ2

2

)
(T − t)

σ
√
T − t

d2 =
ln
(

F (t)
K

)
+
(
rd − rf − σ2

2

)
(T − t)

σ
√
T − t

= d1 − σ
√
T − t.

Proof. According to above computations, exchange rate satisfies (4.19) and then cor-

responding solution is like in (4.20) under the risk neutral measure Qd whenever Md
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is taken as numeraire. Then the corresponding option value is:

V (F,K, t) = Md(t)EQd

[
h(F,K, T )

Md(T )

∣∣∣∣ Ft

]
= e−rd(T−t)EQd

[h(F,K, T ) | Ft] since Md(t) = erdt

= e−rd t̃EQd

[
(F −K, 0)+ | Ft

]
for t̃ = T − t.

Use the ideas used in the proof of valuation formula for Black-Scholes-Merton;

V (F,K, t) = e−rd t̃EQd
[h(F,K, T ) | Ft]

=
e−rd t̃

√
2π

∫ ∞

−∞
h(F,K, T )e−y2/2dy

=
e−rd t̃

√
2π

∫ ∞

−d2

(F (T )−K)e−y2/2dy

=
e−rd t̃

√
2π

∫ ∞

−d2

F (t)e(δF−σ2

2
)t̃+σ

√
t̃ye−y2/2dy −Ke−rd t̃N (d2)

=
1√
2π

∫ ∞

−d2

F (t)e−rf t̃e
−1
2
(σ2 t̃−2σ

√
t̃y+y2)dy −Ke−rd t̃N (d2)

=
1√
2π

∫ −∞

σ
√
t̃+d2

F (t)e−rf t̃e−v2/2(−dv)−Ke−rd t̃N (d2)

=
1√
2π

∫ d1

−∞
F (t)e−rf t̃e−v2/2dv −Ke−rd t̃N (d2)

= Fte
−rf t̃N (d1)−Ke−rd t̃N (d2)

where v := σ
√
t̃− y, d1 := d2 + σ

√
t̃ and

d1 =
ln
(
F
K

)
+
(
rd − rf +

σ2

2

)
t̃

σ
√
t

d2 =
ln
(
F
K

)
+
(
rd − rf − σ2

2

)
t̃

σ
√
t

= d1 − σ
√

t̃.

The proof is completed with the back substitution of t̃ = T − t.

4.3.2 Foreign Exchange Option Pricing with delay

The work in [3] is extended for foreign exchange options with delay. Let domestic

money market account and foreign money market account namely Md and Mf satisfy
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the following equations;

dMd = Mdrddt so that Md(t) = erdt

dMf = Mfrfdt so that Mf (t) = erf t
(4.22)

where rd is the domestic risk free rate, and rf is the foreign risk free rate. Let the

exchange rate satisfies the following SDDE;

dF = F (f(t− a)dt+ g(F (t− b))dZF ), t ∈ [0, T ]

F (t) = φ(t), t ∈ [−L, 0]
(4.23)

on a complete probability space (Ω,F , P ) with filtration {Ft}0≤t≤T , for any positive

constant fixed delays a and b so that L = max(a, b), the functions f and g are contin-

uous, ZF is one dimensional standard Brownian motion and φ(t) : [−L, 0] → R+ is

F0-measurable initial path.

Theorem 4.11. Let the exchange rate F (t) satisfy (4.23) where the functions f and

g satisfy the linear growth and local Lipschitz conditions. Then, it has a pathwise

unique solution F for the given initial path. Moreover, F (t) > 0 almost surely for all

t ≥ 0 whenever the initial path φ(t) > 0 for all t ∈ [−L, 0].

Proof. Since linear growth and local Lipschitz conditions are satisfied, solution for

the given SDDE exists according to Existence and Uniqueness theorem. To find that

solution process, we consider step by step solution for any t ∈ [0, l] where l :=

min{a, b}. Writing the equation on that interval as

dF (t) = F (t)[f(φt−a)dt+ g(φt−b)dZF (t)], t ∈ [0, l]

F (t) = φ(t), t ∈ [−L, 0]

We define the semimartingale process N for t ∈ [0, l] to be

N(t) :=

∫ t

0

f(φu−a)du+

∫ t

0

g(φu−b)dZF (u)

so that the quadratic variation becomes

[N,N ]t =

∫ t

0

g(φu−b)
2du.

Consequently, the SDDE can be rewritten as

dF (t) = F (t)dN(t), t ∈ [0, l],

F (t) = φ(t), t ∈ [−L, 0],
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where the unique solution for any t ∈ [0, l] according to Doléans Dade exponent is

F (t) = φ(0) exp

[
N(t)− 1

2
[N,N ]t

]
= φ(0) exp

[∫ t

0

f(φu−a)du+

∫ t

0

g(φu−b)dZF (u)−
1

2

∫ t

0

g(φu−b)
2du

]
.

Since the exponential function is always positive if φ(t) > 0 a.s., then F (t) > 0 for

all t ∈ [0, l]. Hence using method of steps, solution for any t ∈ [kl, (k + 1)l] where

(k + 1)l ≤ T can be computed.

To find the fair price formula for the foreign exchange option, we need the corre-

sponding risk neutral probability measure, namely Qd, whenever Md is numeraire

while showing that the market is arbitrage-free.

Theorem 4.12. Let Md(t), and Mf (t) be riskless assets satisfying (4.22) and F (t) be

current exchange rate satisfying (4.23). If Md(t) is taken as numeraire with measure

Qd generated by Brownian motion Wd(t) which is equal to,

dWd = dZF +
f(F (t− a)) + rf − rd

g(F (t− b))
dt,

for a nonzero function g then Qd is risk neutral probability measure and thus, market

is arbitrage-free.

Proof. Define X(t) =
F (t)Mf (t)

Md(t)
, where F (t)Mf (t) represents price in terms of do-

mestic currency and X(t) represents discounted price process for foreign exchange in

terms of the domestic currency. Note that d
(

1

Md

)
=

−rd
Md

dt, then the corresponding
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SDDE of X(t) is

dX(t) =
1

Md(t)
d (F (t)Mf (t)) + F (t)Mf (t)d

(
1

Md(t)

)
+ d

[
FMf ,

1

Md

]
t

=
1

Md(t)
[Mf (t)dF (t) + F (t)dMf (t)] + F (t)Mf (t)d

(
1

Md(t)

)
=

1

Md(t)
[Mf (t)F (t)f(F (t− a))dt

+Mf (t)F (t)g(F (t− b))dZF (t) + F (t)Mf (t)rfdt]

+ F (t)Mf (t)
−rd
Md(t)

dt

=
F (t)Mf (t)

Md(t)
[(f(F (t− a)) + rf − rd) dt+ g(F (t− b))dZF (t)]

= X(t)g(F (t− b))

[(
f(F (t− a)) + rf − rd

g(F (t− b))

)
dt+ dZF (t)

]
.

Define γ(t) := −f(F (t− a)) + rf − rd
g(F (t− b))

for all t ∈ [0, T ] which is Ft−l measurable

predictable process so that
∫ T

0
|γ(u)|2du < ∞. Define

QT := exp

{
−
∫ T

0

γ(u)dZF (u)−
1

2

∫ T

0

|γ(u)|2du
}

so that EQ(QT ) = 1. Then, according to Girsanov theorem there exists probability

measure Qd defined by dQd = QTdQ and standard Brownian motion Wd under Qd

defined by

Wd(t) := ZF (t)−
∫ t

0

γ(u)du for all t ∈ [0, T ].

This means:

dWd(t) = dZF (t)− γ(t)dt = dZF +
f(F (t− a)) + rf − rd

g(F (t− b))
dt, (4.24)

so that X(t) satisfies the following equation under Qd:

dX(t) = X(t)g(F (t− b))dWd(t), (4.25)

which is a martingale process. Thus, Qd is a risk neutral measure, and the market is

arbitrage-free.

Arranging the SDDE satisfied by exchange rate F under Qd with

dZF = dWd −
f(F (t− a)) + rf − rd

g(F (t− b))
dt
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according to (4.24) we obtain

dF (t) = F (t) [f(F (t− a))dt+ g(F (t− b))dZF ]

= F (t)

[
f(F (t− a))dt+ g(F (t− b))

[
dWd −

f(F (t− a)) + rf − rd
g(F (t− b))

dt

]]
= F (t) [(rd − rf ) dt+ g(F (t− b))dWd]

= F (t) [δFdt+ g(F (t− b))dWd] (4.26)

for δF := (rd − rf ).

Theorem 4.13. If the market satisfies the conditions defined in Theorem 4.12, then it

is complete.

Proof. Let Y be any contingent claim which is an integrable nonnegative F F̃
t mea-

surable random variable where F̃ := FMf . Note that F F̃
t = FMd

t = FWd
t = FZF

t for

any t ≥ 0 by definition of F̃ and Wd. Consider Qd-martingale process M(t) for any

t ∈ [0, T ] which is defined as

M(t) := EQd
(e−rdTY | F F̃

t ) = EQd
(e−rdTY | FWd

t ).

Then there exists FWd
t predictable process h0 such that

∫ T

0

h2
0(u)du < ∞ and

M(t) = EQd
(e−rdTY | FWd

t ) = EQd
(e−rdTY ) +

∫ t

0

h0(u)dWd(u) (4.27)

by Martingale Representation theorem. Also, we can write the process M(t) as

M(t) = πF̃X(t) + πMd
, (4.28)

where πF̃ (t) and πMd
(t) represent the amount of F̃ and Md in a portfolio respectively.

Therefore, from (4.27), (4.28) and (4.25) we get

dM(t) = h0(t)dWd(t)

= πF̃dX(t)

= πF̃X(t)g(F (t− b))dWd(t).

This implies the hedging strategy for the portfolio {(πF̃ (t), πMd
(t)) | t ∈ [0, T ]} to

be

πF̃ (t) =
h0(t)

X(t)g(F (t− b))
,

πMd
(t) = M(t)− πF̃ (t)X(t).
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Hence, the value of the portfolio at any time t ∈ [0, T ] is given by

V (t) = πMd
(t)erdt + πF̃ (t)F̃ (t) = erdtM(t),

for which we have

dV (t) = erdtdM(t) +M(t)d(erdt)

= πMd
(t)d(erdt) + πF̃ (t)dF̃ (t),

so that {(πF̃ (t), πMd
(t)) | t ∈ [0, T ]} is self-financing strategy and

V (T ) = erdTM(T ) = erdT
Y

erdT
= Y.

Consequently, Y is attainable and the market consisting of Md(t) and F̃ (t) is com-

plete.

Before providing a valuation formula for the FX option under delay effect, we find a

solution for F (t) for any t ∈ [0, T ], using Itô formula, for lnx, which satisfies (4.26)

under risk neutral probability measure Qd :

lnF (T ) = lnF (t) +

∫ T

t

1

F (u)
dF (u) +

1

2

∫ T

t

−1

F 2(u)
d[F, F ]u

= lnF (t) +

∫ T

t

[δFdu+ g(F (u− b))dWd(u)]−
1

2

∫ T

t

g(F (u− b))2du

= lnF (t) + δF (T − t) +

∫ T

t

g(F (u− b))dW (u)

− 1

2

∫ T

t

g(F (u− b))2du.

Note that
∫ T

t

g(F (u− b))dWd(u) ∼ N

(
0,

∫ T

t

g(F (u− b))2du

)
. Defining

t̃ := T − t, m := −1

2

∫ T

t

g(F (u− b))2du, σ2 :=

∫ T

t

g(F (u− b))2du.

We see that,
∫ T

t

g(F (u− b))dWd(u)
d
= σY for any Y ∼ N(0, 1) and

F (T ) = F (t)eδF t̃em+σY . (4.29)
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Theorem 4.14. Consider a European call foreign exchange option under delay effect

where the current exchange rate, domestic money market account and foreign money

market account satisfy (4.22) and (4.23). For the predetermined exchange rate K

with the payoff function

h(F,K, T ) = (F (T )−K, 0)+,

the corresponding value of the option is:

• Case 1: for t ∈ [T − l, T ];

V (F,K, t) = F (t)e−rf (T−t)N (d1)−Ke−rd(T−t)N (d2) , (4.30)

where

d1 =
ln
(

x
K

)
−m+ rdT

σ

d2 =
ln
(

x
K

)
+m+ rdT

σ
= d1 − σ

x = F̃ (t)e−rf (T−t)

m = −1

2

∫ T

t

g(F (t− b))2du

σ2 =

∫ T

t

g(F (t− b))2du.

• Case 2: for T > l and t < T − l;

V (F,K, t) = erdtEQd

[
H

(
F̃ (T − l)e−rf τ ,−1

2

∫ T

T−l

g2du,

∫ T

T−l

g2du

)∣∣∣∣ Ft

]
,

(4.31)

where

H
(
γ, ω, σ2

)
= γN (d1)−Ke−rdTN (d2) ,

γ = F̃ (T − l)e−rf τ ,

ω = −1

2

∫ T

T−l

g(F (u− b))2du,

σ2 =

∫ T

T−l

g(F (u− b))2du,

d1 =
ln
(

γ
K

)
− ω + rdT

σ
,

d2 =
ln
(

γ
K

)
+ ω + rdT

σ
= d1 − σ.

46



Proof. Consider the value of this option with numeraire Md for any t ∈ [0, T ] using

(4.29), we calculate

V (F,K, t) = Md(t)EQd

[
h(F,K, T )

Md(T )

∣∣∣∣ Ft

]
= erdtEQd

[(
e−rdTF (T )− e−rdTK, 0

)+ | Ft

]
= erdtEQd

[
(e−rdTF (t)eδF t̃em+σy − e−rdTK, 0)+ | Ft

]
= erdtEQd

[(
xem+σy − e−rdTK, 0

)+ | F (t)
]

where t̃ = T − t and x = F (t)e−rdte−rf t̃. Note that F (T ) is FT−l measurable and

hence

H
(
x,m, σ2

)
:= EQd

((
e−rdTF (T )− e−rdTK, 0

)+ | FT−l

)
= EQd

((
e−rdTF (T )− e−rdTK, 0

)+)
= EQd

((
xem+σy − e−rdTK, 0

)+)
=

1√
2π

∫ ∞

−∞

(
xem+σy − e−rdTK, 0

)+
e−y2/2dy,

since

xem+σy − e−rdTK > 0 ⇒ lnx+m+ σy > −rdT + lnK

⇒ σy > − (lnx− lnK +m+ rdT )

⇒ y > −d2 := −
ln
(

x
K

)
+m+ rdT

σ
.

Therefore, further calculations yields:

H
(
x,m, σ2

)
=

1√
2π

∫ ∞

−d2

xe−
1
2(−2m+σy+y2)dy − 1√

2π

∫ ∞

−d2

e−rdTKe−y2/2dy

=
1√
2π

∫ ∞

−d2

xe−
1
2(−2m+σy+y2)dy −Ke−rdTN(d2)

=
1√
2π

∫ ∞

−d2

xe−
1
2(σ2+σy+y2)dy −Ke−rdTN(d2), for − 2m = σ2

=
1√
2π

∫ −∞

σ+d2

xe−v2/2(−dv)−Ke−rdTN(d2), forσ − y := v

=
1√
2π

∫ d1

−∞
xe−v2/2dv −Ke−rdTN (d2)

= xN (d1)−Ke−rdTN (d2) .
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Thus for any t ∈ [0, T ], the value of foreign exchange option under delay effect with

Md numeraire is;

V (F,K, t) = erdtEQd

[
EQd

(
xem+σy − erdTK

)+ |FT−l|Ft

]
.

= erdtEQd
[H(x,m, σ) | Ft] ,

where

H(x,m, σ2) = xN (d1)−Ke−rdTN (d2) ,

and

x = F (t)e−rdte−rf t̃ = F̃ (t)e−rf t̃

m = −1

2

∫ T

t

g(F (t− b))2du

σ2 =

∫ T

t

g(F (t− b))2du so that m =
−σ2

2

d1 =
ln
(

x
K

)
−m+ rdT

σ

d2 =
ln
(

x
K

)
+m+ rdT

σ
= d1 − σ.

Case 1: for t ∈ [T − l, T ]; since H is FT−l-measurable and FT−l ⊂ Ft, the valuation

formula becomes

V (F,K, t) = erdtEQd
(H(x,m, σ2) | Ft)

= erdtH
(
x,m, σ2

)
= erdt

[
xN (d1)−Ke−rdTN (d2)

]
= F (t)e−rf t̃N (d1)−Ke−rd t̃N (d2) .

Case 2: for T > l and t < T − l, we consider to write F (T ) in (4.29) in terms of

F (T − l), i.e., instead of t in that formula write T − l:

lnF (T ) = lnF (T − l) +

∫ T

T−l

1

F (u)
dF (u) +

1

2

∫ T

T−l

−1

F 2(u)
d[F, F ]u

= lnF (T − l) + δF (l) +

∫ T

T−l

g(F (u− b))dWd(u)

− 1

2

∫ T

T−l

g(F (u− b))2du
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Since
∫ T

T−l

g(F (u− b))dWd(u) ∼ N

(
0,

∫ T

T−l

g(F (u− b))2du

)
, we have

∫ T

T−l

g(F (u− b))dWd(u)
d
= σY

for any Y ∼ N(0, 1) where

ω := −1

2

∫ T

T−l

g(F (u− b))2du, σ2 :=

∫ T

T−l

g(F (u− b))2du.

Then,

F (T ) = F (T − l)eδF leω+σY .

Thus, corresponding value of option when T > l and t < T − l becomes

V (F,K, t) = erdtEQd

[
H

(
F̃ (T − l)e−rfτ ,−1

2

∫ T

T−l

g2du,

∫ T

T−l

g2du

)∣∣∣∣ Ft

]

where

H
(
γ, ω, σ2

)
= γN (d1)−Ke−rdTN (d2)

γ = F̃ (T − l)e−rf l

ω = −1

2

∫ T

T−l

g(F (u− b))2dU

σ2 =

∫ T

T−l

g(F (u− b))2du

d1 =
ln
(

γ
K

)
− ω + rdT

σ

d2 =
ln
(

γ
K

)
+ ω + rdT

σ
= d1 − σ.

The proof is completed.

4.4 European Exchange Option Pricing with GBM

Exchange options allow investors to exchange one asset for another at a predeter-

mined date. These options are crucial in managing risks and optimizing returns in

dynamic market conditions. The value formula for the exchange options without de-

lay under the setting of the Black-Scholes-Merton model was derived by William
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Margrabe in 1978 [27]. Some extensions of the work without delay can be found in

[10, 32]. To improve the model, delay terms are added to the system. As an extension

of Arriojas et al. [3], Lin et al. in [22] provide a value formula for exchange options

under delay effect where assets follow GBM.

4.4.1 Exchange Option Pricing without delay

Consider a European call exchange option with asset S1 and S2 so that exchange S2

with S1 at maturity T with the terminal payoff

h(S1, S2, T ) = (S1(T )− S2(T ), 0)
+.

Let the assets satisfy the following SDEs under risk neutral probability measure:

dS1 = S1[δS1dt+ σ1dW1], t ∈ [0, T ],

S1(0) = s1,

dS2 = S2[δS2dt+ σ2dW2], t ∈ [0, T ],

S2(0) = s2,

(4.32)

where δSi
= r− qi for i = 1, 2, r is risk free rate, q1, q2 are the divident yields, σ1, σ2

are constant volatility and the Wiener processes W1 and W2 are correlated with the

correlation coefficient ρ.

Theorem 4.15 (See [27]). Consider the European call exchange option with two as-

sets, S1 and S2, satisfying (4.32). Then the corresponding value of the option for any

t ∈ [0, T ] is

V (S1, S2, t) = e−q1 t̃S1(t)ϕ(d1)− e−q2 t̃S2(t)ϕ(d2), (4.33)

where

d1 =
ln S1(t)

S2(t)
+ (q2 − q1 +

σ2

2
)t̃

σ
√
t̃

,

d2 =
ln S1(t)

S2(t)
+ (q2 − q1 − σ2

2
)t̃

σ
√
t̃

= d1 − σ
√

t̃.

Proof. First, we define S = S1

S2
where the corresponding payoff function can be

rewritten

h(T ) = S2(T )

(
S1(T )

S2(T )
− 1, 0

)+

= S2(T ) (S(T )− 1, 0)+
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and the corresponding SDE turns to satisfy

dS(t) =
1

S2

dS1 + S1d

(
1

S2

)
+ d

[
S1,

1

S2

]
t

. (4.34)

Hence the corresponding SDE for 1/S2(t), using Itô formula for 1/x can be obtained

as follows:

1

S2(t)
=

1

S2(0)
+

∫ t

0

−1

S2
2(u)

dS2(u) +
1

2

∫ t

0

2

S3
2(u)

d [S2, S2]u ,

so that

d

(
1

S2(t)

)
=

−1

S2(t)
[δS2dt+ σ2dW2] +

1

S2(t)
σ2
2dt

=
1

S2(t)

[(
−δS2 + σ2

2

)
dt− σ2dW2

]
.

The SDE for S(t) = S1(t)/S2(t) according to (4.34) therefore satisfies:

dS(t) =
1

S2

S1[δS1dt+ σ1dW1] + S1
1

S2

[(−δS2 + σ2
2)dt− σ2dW2] + ρS1σ1

−σ2

S2

dt

= S[(δS1 − δS2 + σ2
2 − ρσ1σ2)dt+ σ1dW1 − σ2dW2]

= S[(δS + σ2
2 − ρσ1σ2)dt+ σ1dW1 − σ2dW2]

= S[δSdt+ σ1[(dW1 − ρσ2dt]− σ2[(dW2 − σ2dt]]

where δS := δS1 − δS2 = q2 − q1. To find the corresponding value formula, we

consider the change of numeraire according to [16]. Taking S2(t)e
q2t as numeraire

where

S2(t) = S2(0)e
(δS2

−−σ2
2

2
)t+σ2W2(t)

by analytic solution of GBM, we see that

dQ2

dQ
:=

S2(t)e
q2t

S2(0)
e−rt = e

−σ2
2

2
t+σ2W2(t)

is Radon Nikodym derivative where γ = −σ2 in Girsanov’s theorem and

dW̃1 := dW1 − ρσ2dt and dW̃2 := dW2 − σ2dt

are Brownian Motions under measure Q2 by Girsanov’s theorem. So S(t) satisfies

the following equation under Q2:

dS(t) = S[δSdt+ σ1dW̃1 − σ2dW̃2].
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Note that σ1dW̃1 − σ2dW̃2 ∼ N(0, σ2
1 + σ2

2 − 2ρσ1σ2). Then for any Wiener process

W

σ1dW̃1 − σ2dW̃2
d
= σdW

where σ2 := σ2
1 + σ2

2 − 2ρσ1σ2. So,

dS(t) = S(t)[δSdt+ σdW ], where δS = q2 − q1.

Furthermore, for S(T ), using Itô formula, we find that under Q2;

lnS(T ) = lnS(t) +

∫ T

t

1

S(u)
dS(u)− 1

2

∫ T

t

1

S2(u)
d [S, S]u

= lnS(t) +

∫ T

t

(δSdu+ σdW (u))− 1

2

∫ T

t

σ2du

= lnS(t) +

(
δS − σ2

2

)
(T − t) + σ (W (T )−W (t)) ,

where (W (T )−W (t)) ∼ N (0, T − t). Then defining t̃ := T − t, and Y ∼ N(0, 1)

we can write (W (T )−W (t))
d
=

√
t̃Y . Thus

lnS(T ) = lnS(t) +

(
δS − σ2

2

)
t̃+ σ

√
t̃Y,

S(T ) = S(t) exp

{(
δS − σ2

2

)
t̃+ σ

√
t̃Y

}
.

Therefore, the corresponding exchange option value with numeraire S2(t)e
q2t be-

comes

V (S1, S2, t) = S2(t)e
q2tEQ2

[
h(T )

S2(T )eq2T

∣∣∣∣ Ft

]
= S2(t)e

−q2 t̃EQ2

[
(S(T )− 1, 0)+ | Ft

]
.

Note also that

S(T )− 1 > 0 ⇒ S(t) exp

{(
δS − σ2

2

)
t̃+ σ

√
t̃Y

}
− 1 > 0

⇒ lnS(t) +

(
δS − σ2

2

)
t̃+ σ

√
t̃Y > ln 1 = 0

⇒ Y > −d2 := −
lnS(t) +

(
δS − σ2

2

)
t̃

σ
√
t̃

.
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Then, further calculations yields:

V (S1, S2, t) = S2(t)e
−q2 t̃

ert̃

ert̃
EQ2

[
(S(T )− 1, 0)+ | Ft

]
=

S2(t)e
δS2

t̃

ert̃

[
1√
2π

∫ ∞

−d2

(S(T )− 1)e−y2/2dy

]
=

S2(t)e
δS2

t̃

ert̃

[
1√
2π

∫ ∞

−d2

S(t)e(δS−
σ2

2
)t̃+σ

√
t̃ye−y2/2dy − ϕ (d2)

]
=

S2(t)e
δS2

t̃

ert̃

[
1√
2π

∫ ∞

−d2

S(t)eδS t̃e
−1
2
(σ2 t̃−2σ

√
t̃y+y2)dy − ϕ (d2)

]
=

S2(t)e
δS2

t̃

ert̃

[
1√
2π

∫ −∞

σ
√
t̃+d2

S(t)eδS t̃e−v2/2(−dv)− ϕ (d2)

]
=

S2(t)e
δS2

t̃

ert̃

[
1√
2π

∫ d1

−∞
S(t)eδS t̃e−v2/2dv − ϕ (d2)

]
=

S2(t)e
δS2

t̃

ert̃

[
S(t)eδS t̃ϕ(d1)− ϕ (d2)

]
= e−rt̃

[
S1(t)e

δS1
t̃ϕ(d1)− S2(t)e

δS2
t̃ϕ(d2)

]
= e−q1 t̃S1(t)ϕ(d1)− e−q2 t̃S2(t)ϕ(d2)

for the choice of v := σ
√
t̃− y and d1 := σ

√
t̃+ d2, where

d1 =
ln S1(t)

S2(t)
+ (δS1 − δS2 +

σ2

2
)t̃

σ
√
t̃

,

d2 =
ln S1(t)

S2(t)
+ (δS1 − δS2 − σ2

2
)t̃

σ
√
t̃

= d1 − σ
√
t̃.

The proof is completed for this t̃ = T − t.

Now, we consider adding the delay term to that model.

4.4.2 Exchange Option Pricing with delay

This section depends on the work in [22], which is deal with exchange option under

delay effect. We consider a market consisting of three assets B(t), S1(t) and S2(t),

where they represent the prices of risk free assets and two underlying assets at time t,

respectively. They satisfy the following:

dSi(t) = µiSi(t− ai)Si(t)dt+ gi(Si(t− bi))Si(t)dŴi(t), t ∈ (0, T ],

Si(t) = φi(t), t ∈ [−Li, 0],
(4.35)
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on a complete probability space (Ω,F , P ) with filtration Ft = {F1
t ,F2

t }0≤t≤T satis-

fing the usual conditions. The terms in the equations are:

• r is risk free rate,

• µi , ai and bi are positive constants, where Li = max{ai, bi} for i = 1, 2,

• ρ is the correlation coefficient between Wi’s,

• g : R+ → R+ is a continuous function,

• the ˆWi(t) are a one-dimensional standard Brownian motions for i = 1, 2,

• φi(t) : [−Li, 0] → R+ is F0-measurable random variables such that φi(0) > 0

a.s. for i = 1, 2.

According to Arrijoes [3], the equation in (4.35) has a unique solution

Si(t) = φi(0) exp

[ ∫ t

0

(µiSi(u− ai)−
1

2
g2i (Si(u− bi)))du

+

∫ t

0

gi(Si(u− bi))dŴi(u)

]
for any t ∈ [0, li] where li = min{ai, bi} for i = 1, 2. While using the induction

method, one can find a solution for any t ∈ [kli, (k+1)li] where (k+1)li ≤ T . From

this equation, it is easily seen that if φi(t) > 0 a.s, then Si(t) > 0 for all t ∈ [0, T ].

With the multi-dimensional Girsanov theorem, stock price processes in (4.35) can be

written as

dSi(t) = rSi(t)t+ gi(Si(t− bi))Si(t)dWi(t), t ∈ (0, T ],

Si(t) = φi(t), t ∈ [−Li, 0],
(4.36)

where the Wi are standard Brownian motion under the risk neutral measure Q with

correlation coefficient ρ.

Lemma 4.16. Let S1(t) and S2(t) be the prices of two underlying assets at time t

satisfying (4.36). If S2(t) is taken as a numeraire with the associated measure Q2

then
W̃1(t) = W1(t)− ρ

∫ t

0
g2(S2(u− b2))du,

W̃2(t) = W2(t)−
∫ t

0
g2(S2(u− b2))du,

(4.37)

define Brownian motions under Q2 equivalent to the risk neutral measure Q.
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The proof can be found in [22].

Defining S(t) = S1/S2 as the case in without delay and finding corresponding SDDE

as

dS(t) =
1

S2

dS1 + S1d

(
1

S2

)
+ d

[
S1,

1

S2

]
,

we calculate the corresponding SDDE for 1/S2(t) using Itô formula for 1/x as fol-

lows:

1

S2(t)
=

1

S2(0)
+

∫ t

0

−1

S2
2(u)

dS2(u) +
1

2

∫ t

0

2

S3
2(u)

d [S2, S2]u

d

(
1

S2(t)

)
=

−1

S2(t)
[rdt+ g2dW2] +

1

S2(t)
g22dt

=
1

S2(t)

[(
−r + g22

)
dt− g2dW2

]
for g1 = g1(S1(t− b1)) and g2 = g2(S2(t− b2)). Furthermore,

dS(t) =
1

S2

S1[rdt+ g1dW1] + S1
1

S2

[(−r + g22)dt− g2dW2] + ρ
S1g1(−g2)

S2

dt

= S[(r − r + g22 − ρg1g2)dt+ g1dW1 − g2dW2].

= S[g1[(dW1 − ρg2dt]− g2[(dW2 − g2dt]]

= S[g1dW̃1 − g2dW̃2],

where dW̃1 := dW1 − ρg2dt and dW̃2 := dW2 − g2dt are Brownian Motions under

Q2 according to Lemma 4.16.

g1dW̃1 − g2dW̃2 is normally distributed with mean 0 and variance g2 where g2 :=

g21 + g22 − 2ρg1g2. Hence,

dS(t) = S(t)gdW

for W ∼ N(0, 1) since g1dW̃1 − g2dW̃2
d
= gdW.

The solution S(T ) using Itô with lnx can be found as follows:

lnS(T ) = lnS(t) +

∫ T

t

1

S(u)
dS(u)− 1

2

∫ T

t

1

S2(u)
d[S, S]u

= lnS(t) +

∫ T

t

gdW (u)− 1

2

∫ T

t

g2du

so that

S(T ) = S(t) exp

{
−1

2

∫ T

t

g2du+

∫ T

t

gdW (u)

}
,
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where
∫ T

t
gdW (u) ∼ N

(
0,
∫ T

t
g2du

)
.

Define x := S(t), m := −1

2

∫ T

t

g2du and σ2 :=

∫ t

t

g2du so that σ2 = −2m and for

any Y ∼ N(0, 1),
∫ T

t

gdW (u)
d
= σY . Thus

S(T ) = xem+σY . (4.38)

Theorem 4.17. Consider the European call exchange option under delay effect with

two assets, S1 and S2, satisfying (4.36) with the payoff function

h(S1, S2, T ) = (S1(T )− S2(T ), 0)
+.

Then the corresponding value of option for any t ∈ [0, T ]:

• Case 1: for t ∈ [T − l, T ];

V (S1, S2, t) = S1(t)ϕ (d1)− S2(t)ϕ (d2) (4.39)

where

d1 =
lnx+m+ σ2

σ

d2 =
lnx+m

σ
= d1 − σ.

with x = S(t) , m = −1

2

∫ T

t

g2du and σ2 =

∫ t

t

g2du.

• Case 2: for T > l and t < T − l;

V (S1, S2, t) = S2(t)EQ2

[
H(S(T − l),−1

2

∫ T

T−l

g2du,

∫ T

T−l

g2du)

∣∣∣∣ Ft

]
(4.40)

where

H
(
γ, ω, σ2

)
= γϕ (β1)− ϕ (β2)

γ = S(T − l) =
S1(T − l)

S2(T − l)

β1 =
ln γ + ω + σ2

σ

β2 =
ln γ + ω

σ
= β1 − σ.
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Proof. Consider the value of that option with numeraire S2(t);

V (S1, S2, t) = S2(t)EQ2

[
h(T )

S2(T )

∣∣∣∣ Ft

]
= S2(t)EQ2

[
(S(T )− 1, 0)+|Ft

]
(4.41)

= S2(t)EQ2

[(
xem+σY − 1, 0

)+ ∣∣∣Ft

]
by (4.38) and note that h(T )

S2(T )
is FT−l measurable, where l = min{b1, b2}. We then

define:

H(x,m, σ2) := EQ2

((
xem+σY − 1, 0

)+|FT−l

)
= EQ2

((
xem+σY − 1, 0

)+)
=

1√
2π

∫ ∞

−∞

(
xem+σy − 1, 0

)+
e−y2/2dy

=
1√
2π

∫ ∞

−d2

(
xem+σy − 1

)
e−y2/2dy

=
1√
2π

∫ ∞

−d2

xem+σye−y2/2dy − 1√
2π

∫ ∞

−d2

e−y2/2dy

=
1√
2π

∫ ∞

−d2

xe−(σ2−2σy+y2)/2dy − ϕ(d2)) since m = −σ2/2

=
1√
2π

∫ −∞

(σ+d2)

xe−v2/2(−dv)− ϕ (d2) where v = σ − y

=
1√
2π

∫ d1

−∞
xe−v2/2dv − ϕ (d2) where d1 = σ + d2

= xϕ(d1)− ϕ(d2).

Therefore, the formula for the value of the option for any t ∈ (0, T ) can be calculated

as follows:

V (S1, S2, t) = S2(t)EQ2

[(
xem+σy − 1, 0

)+ |Ft

]
= S2(t)EQ2

[
EQ2

((
xem+σy − 1, 0

)+|FT−l

)
|Ft

]
= S2(t)EQ2

[
EQ2

((
xem+σy − 1, 0

)+)|Ft

]
= S2(t)EQ2

[
H(x,m, σ2)|Ft

]
= S2(t)EQ2 [(xϕ (d1)− ϕ (d2))|Ft] (4.42)

where x = S(t) = S1(t)
S2(t)

, m = −1

2

∫ T

t

g2du, σ2 =

∫ t

t

g2du, d1 =
lnx+m+ σ2

σ

and d2 =
lnx+m

σ
= d1 − σ.
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Case 1: for t ∈ [T − l, T ]; since H is FT−l-measurable and FT−l ⊂ Ft, (4.42) turns

to be

V (S1, S2, t) = S2(t)H(x,m, σ2)

= S2(t) [xϕ (d1)− ϕ (d2)]

where x = S(t) = S1(t)
S2(t)

and hence,

V (S1, S2, t) = S1(t)ϕ (d1)− S2(t)ϕ (d2) .

Case 2: for T > l and t < T − l, consider to write S(T ) in terms of S(T − l) in

(4.41) where

S(T ) = S(T − l) exp

{
−1

2

∫ T

T−l

g2du+

∫ T

T−l

gdW (u)

}
.

Defining the parameters

γ = S(T − l), ω =
1

2

∫ T

T−l

g2du, σ2 =

∫ T

T−l

g2du

we get:

V (S1, S2, t) = S2(t)EQ2

[
H(S(T − l),−1

2

∫ T

T−l

g2du,

∫ T

T−l

g2du)

∣∣∣∣ Ft

]
= S2(t)EQ2 [H

(
γ, ω, σ2

)∣∣ Ft],

where

H
(
γ, ω, σ2

)
= γϕ (β1)− ϕ (β2)

β1 =
ln γ + ω

σ
+ σ

β2 =
ln γ + ω

σ
.

This completes the proof.
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CHAPTER 5

NUMERICAL IMPLEMENTATIONS

For numerical implementations and simulations we use Julia programming. Julia

is a high-level, high-performance programming language designed for technical and

numerical computing. It combines the ease of use of languages like Python with

the speed of languages like C. It has a growing ecosystem of packages for various

applications, including finance, statistics, data science, machine learning and more.

Moreover, fortunately it also includes packages for solving complex mathematical

problems, including SDEs and SDDEs. The "DifferentialEquations.jl",

along with its specialized sub-packages like "StochasticDiffEq.jl" and

"StochasticDelayDiffEq.jl", provides robust tools for researchers and prac-

titioners in various fields.

In this chapter, we use "StochasticDelayDiffEq.jl" packages of Julia for the

implementations of our models that we provide in Chapter 4 for pricing the options

and compare values obtained from MC while considering the convergence of MC

method. The value formulas for European options under delay effect is provided in

two cases, either τ ≥ T or τ < T , where τ represents the maximum positive time

delay. When we examine those formulas, we have an exact solution actually whenever

τ ≥ T and the semi-closed formula for τ < T . In that semi-closed forms in equation

(4.14), (4.31) and (4.40) we need to apply Monte Carlo to compute expectation of

function H; create nsim1 number of paths in interval [0, T−l] and then for each path,

create nsim2 number of paths in the interval [T − l, T ] to obtain the corresponding

value. Thus, we use the Monte Carlo method from the very beginning whenever

τ < T . In our implementations, we check the effect of initial path and delay term to
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model.

5.1 Implementation of European Vanilla Call Option with Delayed GBM

According to the work of Arrijoes et. al. in [3], stock price under delay effect satisfies

the following SDDE;

dS(t) = rS(t)dt+ g(S(t− τ))S(t)dW (t), t ∈ (0, T ],

S(t) = φ(t), t ∈ [−τ, 0],
(5.1)

under the risk neutral measure Q. Take g(S(t − τ)) = σ + τ exp

{
−S(t− τ)

α

}
so

that whenever delay goes to zero, model turn to without delay case for some positive

constant α. We use the parameter α which is taken to be α = S(0) in most cases to

control the effect of large or small asset prices. To see the effect of the delay term in

our model, we consider the multiplication of τ with exp

{
−S(t− τ)

α

}
so that this

multiplier is bounded and not so big.

We simulate 214 = 16384 sample paths of the stock with the choice of r = 0.05, σ =

0.2, dt = 0.01, T = 1.0, K = 1.0 for the valuation of European vanilla call option

and search for the effect of delay term, stock price and initial path on the valuation

process.

In Table 5.1; we take delay terms as {0, 0.001, 0.1, 0.25, 0.5, 1.0, 1.25, 1.5, 2.0} and

initial paths as φ1(t) = et, φ2(t) = 2 − et and φ3(t) = 1.0. Note that initial paths

have different characteristics (increasing, decreasing and constant) but have the same

initial value, S(0) = 1.0. MCi represents the value obtained by using Monte Carlo

method, Vi represents formula price obtained from (4.13), P is the value of option for

the no-delay case and |CIi| represents the length of confidence interval for the initial

paths φi(t) for i = 1, 2, 3. We consider the change in Monte Carlo prices, formula

prices (whenever τ ≥ T ) and confidence intervals. It is seen that MCi is close to

Vi value whenever the valuation formula is applicable for i = 1, 2, 3. Moreover for

the decreasing delay terms, the values MCi’s are getting closer to P the case without

delay and for too small delay terms MCi values are almost same since in that case

initial paths don’t have much effect on the process. However, the difference between
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Table 5.1: Vanilla Call Option Values for Different Delays and Initial Paths

τ
M

C
1

V
1

M
C

2
V
2

M
C

3
V
3

P
|C

I 1
|

|C
I 2
|

|C
I 3
|

2.
0

0.
62

88
0.

23
34

0.
23

38
0.

19
10

0.
37

58
0.

28
15

-
0.

11
27

0.
01

40
0.

03
09

1.
5

0.
47

57
0.

40
89

0.
21

81
0.

18
81

0.
31

07
0.

26
85

-
0.

05
13

0.
01

26
0.

02
20

1.
25

0.
39

09
0.

34
28

0.
21

08
0.

18
24

0.
27

72
0.

24
22

-
0.

03
36

0.
01

20
0.

01
82

1.
0

0.
30

90
0.

27
94

0.
20

34
0.

17
65

0.
24

32
0.

21
56

-
0.

02
19

0.
01

13
0.

01
48

0.
5

0.
18

30
-

0.
16

79
-

0.
17

41
-

-
0.

00
94

0.
00

84
0.

00
88

0.
25

0.
14

03
-

0.
13

84
-

0.
13

93
-

-
0.

00
65

0.
00

64
0.

00
65

0.
1

0.
11

85
-

0.
11

84
-

0.
11

84
-

-
0.

00
52

0.
00

52
0.

00
52

0.
00

1
0.

10
51

-
0.

10
51

-
0.

10
51

-
-

0.
00

46
0.

00
46

0.
00

46
0.

0
0.

10
46

-
0.

10
46

-
0.

10
46

-
0.

10
45

0.
00

45
0.

00
45

0.
00

45

MCi values increases whenever the delay term increases because of the effect of ini-

tial paths. Similarly, |CIi| values are decreasing and getting almost equal to each

other with the decrease in delay terms.

In Figure 5.1, the price of the option for the different initial paths φi is obtained while

using the Monte Carlo method where delay terms are taken in [0, 2]. Note that al-

though φ2(t) ≥ φ3(t) ≥ φ1(t) for any t ∈ [−τ, 0], we have MC2 ≤ MC3 ≤ MC1

where MCi represents the Monte Carlo value in the path φi since φ1 is increasing, φ2

is decreasing and φ3 is constant functions.

In Figure 5.2, we consider the convergence of MC for the initial path φ(t) = 1.0. In
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Figure 5.1: European vanilla call option price change with respect to delay term for
the different choice of initial path

(a) τ = 1.5 > T (b) τ = 0.5 < T

(c) τ = 0.001 ≈ 0

Figure 5.2: Convergence of Monte Carlo for Vanilla Call Option

Figure 5.2a and Figure 5.2c, Monte Carlo method for τ = 1.5 and τ = 0.001 con-

verges to formula price V and exact value P without delay with shrinking confidence

intervals as the number of simulation increases {26, 27, · · · , 214}. In Figure 5.2b, MC

price converges to our reference price 0.172, which is the option’s value according to

the Monte Carlo method with 214 number of simulation.
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Similar results can also be obtained for the put options.

In Figure 5.3, the effect of the stock price on the put and call option is seen where the

Figure 5.3: European vanilla call/put option prices change with respect to stock price

delay is taken as 1.5 and the initial path is φ(t) = s0 for s0 ∈ [0.01, 2.0]. Note that

formula prices and MC prices are almost the same. Prices of the options are bigger

whenever there is a pronounced delay.

5.2 Implementation of American Vanilla Call Option with Delayed GBM

Like in the implementation of European vanilla call option with delay, stock price

satisfies (5.1) where g(S(t − τ)) = σ + τ exp

{
−S(t− τ)

α

}
. We simulate 214 =

16384 sample path of the stock with the choice of r = 0.05, σ = 0.2, dt = 0.01, T =

1.0, K = 1.0, α = S(0) for the valuation and search for the effect of delay term and

stock price on the valuation process for the initial path φ(t) = S(0).

(a) (b)

Figure 5.4: American vanilla call/put option prices change with respect to stock price
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From the Figure 5.4, the value of the options increases with the increase in delay term.

If the underlying asset does not pay dividends, the American call option will never be

exercised before expiration. That’s why its value is the same as the European call op-

tion. Since we take dividend yield q = 0 in our model, the American call option value

is equal to the European call option value for all stock prices in Figure 5.4a whenever

τ = 0. However, the American put value is greater than or equal to the European

put value for τ = 0 in Figure 5.4b because of the possibility of early exercise. If the

underlying asset price drops significantly, the put holder may prefer to sell it rather

than wait until expiration.

5.3 Implementation of European FX Call Option with Delayed GBM

According to the previous chapter current exchange rate F satisfies the following

SDDE under risk neutral probability measure Q;

dF (t) = F (t) [δFdt+ g(F (t− τ))dWd] , t ∈ [0, T ]

F (t) = φ(t), t ∈ [−τ, 0]

where δF = (rd − rf ). Again take g(F (t − τ)) = σ + τ exp

{
−F (t− τ)

α

}
and

simulate 214 = 16384 sample paths with the choice of rf = 0.05, rd = 0.06, σ =

0.2, dt = 0.01, T = 1.0, F (0) = 1.0, K = 1.0, α = F (0).

We examine the effect of delay term and initial path on the valuation process while

making different choices for them. Moreover, the convergence of the Monte Carlo

method is considered while increasing the number of simulations up to 214.

In Figure 5.5, the effect of the delay term and initial paths are seen. As in European

Vanilla call option implementation, delay terms are taken in [0, 2] and initial paths

are taken as φ1(t) = et, φ2(t) = 2 − et and φ3(t) = 1.0 which have different

characteristic but same initial value. It is seen that whenever the delay term gets

bigger, the difference between MC prices increases. Moreover, the characteristic of

the initial path in the interval [−τ, 0] affects the MC price characteristic in [0, T ].

In Figure 5.6, we consider the convergence of MC for the initial path φ(t) = S(0) =

1.0. In Figure 5.6a and Figure 5.6c, convergence of method for τ = 1.5 and τ =
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Figure 5.5: European FX call option price change with respect to delay term for the
different choice of initial path

(a) τ = 1.5 > T (b) τ = 0.5 < T

(c) τ = 0.001 ≈ 0

Figure 5.6: Convergence of Monte Carlo for FX Call Option

0.001 to formula price V and exact value P without delay respectively are shown

by drawing confidence intervals with different number of simulation. In Figure 5.6b,

convergence of the method is clear when number of simulation 214, the reference

price 0.148 is considered.
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5.4 Implementation of European Exchange Call Option with Delayed GBM

For the Exchange option, assets satisfy the following SDDEs:

dSi(t) = rSi(t)dt+ gi(Si(t− bi))Si(t)dŴi(t), t ∈ (0, T ],

Si(t) = φi(t), t ∈ [−Li, 0],

where Li = min{ai, bi} for i = 1, 2 under risk neutral probability measure Q. We

take gi(Si(t− bi)) = σi + bi exp

{
−Si(t− bi)

αi

}
so that whenever delay terms go to

zero diffusion term gi → σi and model turns to without delay case.

We simulate 214 = 16384 sample paths of the stock prices again while taking r =

0.05, σ1 = 0.2, σ2 = 0.21, ρ = 0, dt = 0.01, T = 1.0, S1(0) = 1.0, S2(0) =

1.0, α1 = S1(0), α2 = S2(0).

(a) φ1(t) = [et, et] (b) φ2(t) = [2− et, 2− et]

(c) φ3(t) = [1.0, 1.0]

Figure 5.7: European exchange call option price change with respect to delay term
for the different choice of initial path

In Figure 5.7, the price of the option for the different initial paths is obtained while

using the Monte Carlo method where delay terms are taken in [0, 2]× [0, 2] again. It

is seen that MC2 ≤ MC3 ≤ MC1 where MCi represents the Monte Carlo price in
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the path φi although φ1(t) ≤ φ3(t) ≤ φ2(t) for any t ∈ [−Li, 0].

(a) τ = [1.5, 1.5] > T (b) τ = [0.5, 0.5] < T

(c) τ = [0.001, 0.001] ≈ 0

Figure 5.8: Convergence of Monte Carlo for Exchange Call Option

In Figure 5.8, we consider the convergence of MC for the initial path φ3(t) = [1.0, 1.0].

The results are same as the other options, Monte Carlo method converges with the in-

crease in number of simulation. In Figure 5.8a and Figure 5.8c, MC prices converge

to the formula price V and value P without delay respectively. Moreover, in Fig-

ure 5.8b, MC price converges to the reference price 0.215.
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CHAPTER 6

HESTON MODEL FOR PRICING THE EUROPEAN VANILLA

OPTION

The Heston model is widely used for option pricing and financial derivatives. It im-

proves the Black-Schole-Merton model by allowing for stochastic volatility, better

capturing market phenomena such as volatility clustering and the volatility smile. It

considers the non-log normal distribution of the asset returns and the leverage effect.

Since there is no closed-form solution, option pricing requires numerical methods,

such as finite difference methods or Monte Carlo simulations. This section consid-

ers the stochastic volatility without delay and provides its partial differential equation

(PDE). Then, we consider adding delay terms into the model to see the effect of past

information, and also, their PDEs are provided. [18, 11, 37, 20, 36] are some refer-

ences.

6.1 European Vanilla Option Pricing without delay under Heston model

The Heston stochastic volatility model is defined by the following stochastic process:

dS(t) = µS(t)dt+
√

ν(t)S(t)dZ1(t),

dν(t) = K(θ − ν(t))dt+ σ
√
ν(t)dZ2(t),

dZ1(t)dZ2(t) = ρdt,

(6.1)

where

• Z1(t) is the standard Brownian motion of the asset price,

• Z2(t) is the standard Brownian motion of the asset’s price variance,
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• ρ is correlation coefficient,

• ν(t) is volatility of the asset price,

• σ is the volatility of the volatility ν(t),

• µ is a deterministic drift term,

• θ is the long-term price variance,

• K is the rate of reversion to the long-term price variance.

Note that the SDE in (6.1) is under any probability measure P . When we search the

corresponding partial differential equation (PDE) satisfied by (6.1), we firstly write

the system under risk neutral probability measure Q. In general, if X(t) satisfies the

following SDE under the probability measure P ;

dX(t) = f(t,X(t))dt+ g(t,X(t))dZ(t)

then the corresponding SDE under Q for the process X is

dX(t) = [f(t,X(t))− λg(t,X(t))]dt+ g(t,X(t))dW (t)

where λ is market price of risk, W is standard Brownian motion under Q. So, the

stock price process S(t) and volatility process ν(t) in (6.1) satisfy the following pro-

cesses under martingale measure Q;

dS(t) =
[
µS(t)− λ1

√
ν(t)S(t)

]
dt+

√
ν(t)S(t)dW1(t)

dν(t) =
[
K(θ − ν(t)),−λ2σ

√
ν(t)

]
dt+ σ

√
ν(t)dW2(t),

where W1(t), W2(t) are standard Brownian motion under Q and λ1, λ2 are market

price of risk. From the Black-Scholes-Merton model, it is known that λ1 =
µ− r√
ν(t)

by Girsanov’s theorem. Then the stock price process S(t) satisfies the following

process under Q;

dS(t) =

[
µS(t)− µ− r√

ν(t)

√
ν(t)S(t)

]
dt+

√
ν(t)S(t)dW1(t),

= rS(t)dt+
√

ν(t)S(t)dW1(t),
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where r is the risk free interest rate. So, our Heston model under risk neutral proba-

bility measure Q is

dS(t) = rS(t)dt+
√

ν(t)S(t)dW1(t),

dν(t) =
[
K(θ − ν(t))− λ2σ

√
ν(t)

]
dt+ σ

√
ν(t)dW2(t),

dW1(t)dW2(t) = ρdt.

(6.2)

The corresponding value of European call and put options with strike price K and

maturity T is given by

VC(t) = ertEQ

(
(S(T )−K, 0)+

erT

∣∣∣Ft

)
,

VP (t) = ertEQ

(
(K − S(T ), 0)+

erT

∣∣∣Ft

)
.

There is no closed-form solution of S(T ) using stochastic calculus; we cannot solve

this valuation process explicitly. So, our question is what is the PDE satisfied by

this system to solve this system explicitly and find the pricing formula using the PDE

approach. Let the fair price satisfied by this system be V (t, S, ν). Then the discounted

price under measure Q becomes Ṽ (t, S, ν) = e−rtV (t, S, ν) since discounted prices

are martingale under risk neutral measure. Then, with the help of Itô formula we

obtain

dṼ (t) = −re−rtV dt+ e−rtdV

= −re−rtV dt+ e−rt

[
∂V

∂t
dt+

∂V

∂S
dS +

∂V

∂ν
dν +

1

2

∂2V

∂S2
νS2d [S, S]

+
1

2

∂2V

∂ν2
d [ν, ν] +

∂2V

∂ν∂S
d[ν, S]

]
= e−rt

[
−rV +

∂V

∂t
+

1

2

∂2V

∂S2
νS2 +

1

2

∂2V

∂ν2
σ2ν +

∂2V

∂ν∂S
ρσνS

]
dt

+
∂V

∂S
dS +

∂V

∂ν
dν

= e−rt

[
− rV +

∂V

∂t
+

1

2

∂2V

∂S2
νS2 +

1

2

∂2V

∂ν2
σ2ν +

∂2V

∂ν∂S
ρσνS

+
∂V

∂S
rS +

∂V

∂ν
Kλ

]
dt+

∂V

∂S

√
νSdW1 +

∂V

∂ν

√
νσdW2

where Kλ := K(θ − ν)− λ2σ
√
ν(t) for simplicity. Since discounted asset price is a

martingale, we obtain the following equation:

∂V

∂t
+

∂V

∂S
rS +

1

2

∂2V

∂S2
νS2 +

∂V

∂ν
Kλ +

1

2

∂2V

∂ν2
σ2ν +

∂2V

∂ν∂S
ρσνS − rV = 0
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So, the corresponding PDE and boundary conditions of the equation (6.2) are:

∂V

∂t
+

∂V

∂S
rS +

1

2

∂2V

∂S2
νS2 +

∂V

∂ν
Kλ +

1

2

∂2V

∂ν2
σ2ν +

∂2V

∂ν∂S
ρσνS − rV = 0

V (T, S, ν) = (S −K)+

V (t, 0, ν) = 0

limS→∞
∂V

∂S
(t, S, ν) = 1

limν→∞ V (t, S, ν) = S

∂V (t, S, 0)

∂t
+

∂V (t, S, 0)

∂S
rS +

∂V (t, S, 0)

∂ν
Kλ +−rV (t, S, 0) = 0.

However, there is no analytical solution for this PDE, either.

Since no closed-form solutions exist, we will use numerical methods and the Monte

Carlo method to find the approximate value of the option.

6.2 European Vanilla Option Pricing with delay under Heston model

Let τ1 represents the time delay for the stock price S and τ2 represents the time delay

for the volatility of the asset price ν for the Heston model so that L = max{τ1, τ2}.

The terms r, κ, λ, σ, ρ, W1 and W2 are same as without delay case. gi’s are con-

tinuous functions, φ1(t) is initial path for S and φ2(t) is initial path for ν. More on

Heston model and its use in option pricing can be found in [36, 20]. We consider

the addition of delay into the diffusion term of the model in a multiplicative way,

like in delayed GBM, since the direct impact of delay in the drift is not seen under

risk neutral probability measure Q. Below, three different ways of adding delay are

considered:

• Delayed Heston Model-1: We create our delayed Heston model-1 while adding

stock price delay into stock price process and volatility delay into volatility pro-

cess. The processes satisfy the following SDDEs:

dS(t) = rS(t)dt+
√

ν(t)S(t)g1(S(t− τ1))dW1(t),

dν(t) =
[
κ(θ − ν(t))− λσ

√
ν(t)

]
dt+ σ

√
ν(t)g2(ν(t− τ2))dW2(t),

φ(t) = (φ1(t), φ2(t)), t ∈ [−L, 0]

dW1(t)dW2(t) = ρdt.

(6.3)

72



• Delayed Heston Model-2: Consider the addition of volatility delay into stock

price process and stock price delay into volatility process. The corresponding

processes satisfy the following SDDEs:

dS(t) = rS(t)dt+
√
ν(t)S(t)g2(ν(t− τ2))dW1(t),

dν(t) =
[
κ(θ − ν(t))− λσ

√
ν(t)

]
dt+ σ

√
ν(t)g1(S(t− τ1))dW2(t),

φ(t) = (φ1(t), φ2(t)), t ∈ [−L, 0]

dW1(t)dW2(t) = ρdt.

(6.4)

• Delayed Heston Model-3: Consider just one time delay, the addition of volatil-

ity delay into stock price process. The corresponding processes satisfy the fol-

lowing SDDEs:

dS(t) = rS(t)dt+
√
ν(t)S(t)g2(ν(t− τ2))dW1(t),

dν(t) =
[
κ(θ − ν(t))− λσ

√
ν(t)

]
dt+ σ

√
ν(t)dW2(t),

φ(t) = (φ1(t), ν(0)), t ∈ [−τ2, 0]

dW1(t)dW2(t) = ρdt.

(6.5)

Since it is not possible to obtain an analytical solution for S and the value process in

those three cases, we will use the Monte Carlo method to find the approximate value

of the option and the effect of delay terms in those models.

6.3 Numerical Implementation of Delayed Heston Model

Since there is no closed-form solution for the Heston model, we consider just the

Monte Carlo method to find the corresponding value for the different values of τ ’s.

We choose our parameters to be the same as the example without delay case in [34].

We simulate 214 path of the stock price and volatility for the choice of r = 0.03, κ =

5.0, θ = 0.05, σ = 0.5, λ2 = 0, ρ = −0.8, T = 0.5, S(0) = 100.0, ν(0) =

0.05, K = 100.0, dt = 0.001 and different values of τ ’s in [0, 1.0]× [0, 1.0].

In Figure 6.1, we see the effect of the initial path and delay terms for pricing if the

processes satisfy (6.3). Whenever delay terms get bigger, the difference between

option prices with different initial paths differs. Like in the European vanilla call
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(a) φ1(t) = [S(0)et, ν(0)et] (b) φ2(t) = [S(0)(2− et), ν(0)(2− et)]

(c) φ3(t) = [S(0), ν(0)]

Figure 6.1: European vanilla call option price change with respect to delay term for
the different choice of initial path with delayed Heston model-1

option with delayed GBM, the price of the option is highest whenever the initial path

is increasing Figure 6.1a.

(a) Heston model-1 (b) Heston model-2

Figure 6.2: European vanilla call option price with delayed Heston model-1 and
model-2 change with respect to delay term for the constant initial path φ(t) =

[S(0), ν(0)].

In Figure 6.2, we see the effect of model and delay terms for pricing. In both models,

the MC prices increase with the increase in τ1 and τ2. The surface in Figure 6.2a
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shows the nearly linear trend in the increasing prices, which implies a less volatile

response to changes in delay. However, the MC price surface in Figure 6.2b has more

varied curvature. The surface is not as smooth as in Figure 6.2a which implies more

sensitivity to changes in delay.

We take increasing initial path φ1(t) = [S(0)et, ν(0)et], decreasing initial path φ2(t) =

Figure 6.3: European vanilla call option price change with respect to delay term for
the different choice of initial path with delayed Heston model-3

[S(0)(2−et), ν(0)(2−et)] and constant initial path φ3(t) = [S(0), ν(0)] in Figure 6.3

for the delayed Heston model-3 in (6.5). The difference between MC prices decreases

whenever the delay term decreases. Moreover, the characteristic of the initial path

gets more important if the delay term is bigger since the effect of it is seen more in

that case.

The length of confidence intervals is getting smaller with the increase in a number of

simulations in Figure 6.4, which verifies the convergence of the Monte Carlo method.
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(a) τ = 1.5 > T (b) τ = 0.5 < T

(c) τ = 0.001 ≈ 0

Figure 6.4: Convergence of Monte Carlo for Heston Model-1 Call Option
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CHAPTER 7

CONCLUSION

This thesis aims to contribute to the growing body of knowledge on SDDEs and their

applications in financial modeling.

In Chapter 2, the general form of equations under delay effect, conditions for ex-

istence and uniqueness of the solution, and the way of solving these equations are

considered.

Because of the difficulty in finding analytical solutions, numerical methods, namely

Euler Maruyama and Milstein methods, are considered in Chapter 3. Moreover, to

see the effectiveness of these methods, an example is provided.

In Chapter 4, option pricing with delayed GBM, which is our motivation to work

with SDDE, is examined for European and American call types of vanilla options,

European foreign exchange options, and European exchange options with and without

delays.

In Chapter 5, implementations of these models using Julia programming are consid-

ered. A comparison of option prices for the different delays is made, and convergence

in the Monte Carlo method while considering confidence intervals is examined.

In Chapter 6, we consider the Heston model with and without delay cases. Since it

does not have closed form solution, numerical methods are considered for the pricing

of European Vanilla call option.

For future works, parameter estimation can be a challenging work for practitioners to

mimic the market parameters in question for more realistic applications.
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APPENDIX A

PROOF OF SOME THEOREMS

Theorem A.1 (Theorem 4 in [3]). Assume that the stock price S satisfies equation

(4.4) with conditions φ(0) > 0 and g(u) ̸= 0 whenever u ̸= 0. Let r > 0 be the

risk free rate and Q be the risk neutral probability measure. Let V (t) be the pricing

formula of a European call option which is written on the stock S with strike price K

and maturity time T . Then there exist two cases for the value of the option:

• For all t ∈ [T − l, T ] for l = min{a, b}:

V (t) = S(t)ϕ(β1(t))−Ke−r(T−t)ϕ(β2(t)),

where

β1 =
log(S(t)

K
) +

∫ T

t
(r + 1

2
g(S(u− b))2)du√∫ T

t
g(S(u− b))2du

,

β2 =
log(S(t)

K
) +

∫ T

t
(r − 1

2
g(S(u− b))2)du√∫ T

t
g(S(u− b))2du

.

• For all T > l and t < T − l:

V (t) = ertEQ

(
H

(
e−r(T−l)S(T − l),−1

2

∫ T

T−l

g(S(u− b))2du,∫ T

T−l

g(S(u− b))2du

)∣∣∣Ft

)
,

where

H(x,m, σ2) = xem+σ2/2ϕ(α1(x,m, σ))−Ke−rTϕ(α2(x,m, σ)),

and

α1(x,m, σ) =
1

σ

[
log

( x

K

)
+ rT +m+ σ2

]
,
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α2(x,m, σ) =
1

σ

[
log

( x

K

)
+ rT +m

]
for σ, x ∈ R+, m ∈ R.

The hedging strategy for t ∈ [T − l, T ] is given by

πS(t) = ϕ(β1(t)),

πB(t) = −Ke−r(T−t)ϕ(β2(t)).

Proof. The corresponding equation of (4.4) under risk neutral probability measure Q

is:

dS(t)

S(t)
= rdt+ g(S(t− b))dW (t), 0 < t ≤ T

S(t) = φ(t) t ∈ [−L, 0]

where L = max{a, b}. According to Itô formula for lnx corresponding solution is;

f(S(t)) = f(S(0)) +

∫ t

0

∂f

∂S
dS(u) +

1

2

∫ t

0

∂2f

∂S2
d [S, S]u

lnS(t) = lnS(0) +

∫ t

0

1

S(u)
S(u) [rdu+ g(S(u− b))dW (u)]

+
1

2

∫ t

0

−1

S2(u)
S2(u)g(S(u− b))2du.

Thus, we find the corresponding solution as

S(t) = S(0) exp

[∫ t

0

rdu+

∫ t

0

g(S(u− b))dW (u)− 1

2

∫ t

0

g(S(u− b))2du

]
.

Using Markow property, it can be written as

S(T ) = S(t) exp

[∫ T

t

rdu+

∫ T

t

g(S(u− b))dW (u)− 1

2

∫ T

t

g(S(u− b))2du

]
= S(t)er(T−t) exp

[∫ T

t

g(S(u− b))dW (u)− 1

2

∫ T

t

g(S(u− b))2du

]
.

Since
∫ T

t

g(S(u− b))dW (u) ∼ N

(
0,

∫ T

t

g(S(u− b))2du

)
, we define

t̃ := T − t, σ2 :=

∫ T

t

g(S(u− b))2du and m :=
−1

2

∫ T

t

g(S(u− b))2du.
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Thus, for any Y ∼ N(0, 1), we get
∫ T

t

g(S(u− b))dW (u)
d
= σY . So,

S(T ) = S(t)ert̃em+σy

e−rTS(T ) = e−rT ert̃S(t)em+σy

S̃(T ) = e−rtS(t)em+σy = S̃(t)em+σy. (A.1)

We consider the corresponding value of the European call option with the risk free

asset, B(t) = ert, as numeraire ;

V (S(t), t) = B(t)EQ

[
(S(T )−K, 0)+

B(T )

∣∣∣∣ Ft

]
= ertEQ

[
(S(T )−K, 0)+

erT

∣∣∣∣ Ft

]
= ertEQ

[(
S̃(T )− e−rTK, 0

)+ ∣∣∣Ft

]
= ertEQ

[(
S̃(t)em+σy −Ke−rT , 0

)+ ∣∣∣Ft

]
.

The discounted payoff function
(S(T )−K, 0)+

erT
=

(
S̃(T )−Ke−rT , 0

)+

is always

FT−l measurable, since t ∈ [0, T ] implies t − b ∈ [−b, T − b] ⊂ [−b, T − l] where

l = min{a, b}. So, for x := S̃(t)

H(x,m, σ2) := EQ

[(
xem+σY −Ke−rT , 0

)+ | FT−l

)
= EQ

[(
xem+σY −Ke−rT , 0

)+]
=

1√
2π

∫ ∞

−∞

(
xem+σy −Ke−rT , 0

)+
e−y2/2dy

where

xem+σy −Ke−rT > 0 ⇒ xem+σy > Ke−rT

⇒ lnx+m+ σy > lnK − rT

⇒ y > −β2 := −
ln
(

x
K

)
+ rT +m

σ
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This implies

H(x,m, σ2) =
1√
2π

∫ ∞

−β2

(
xem+σy −Ke−rT

)
e−y2/2dy

=
1√
2π

∫ ∞

−β2

xem+σy−y2/2dy − 1√
2π

∫ ∞

−β2

Ke−rT e−y2/2dy

=
1√
2π

∫ ∞

−β2

xe
−(σ−y)2

2 dy −Ke−rTϕ(β2) since m = −σ2/2

=
1√
2π

∫ −∞

σ+β2

xe−u2/2(−du)−Ke−rTϕ(β2) for u = σ − y

=
1√
2π

∫ β1

−∞
xe−u2/2du−Ke−rTϕ(β2) for β1 = σ + β2

= xϕ(β1)−Ke−rTϕ(β2).

Therefore, the value of the European call option under the Black-Scholes-Merton

setting for any t ∈ [0, T ] with delay effect is;

V (S, t) = ertEQ

[(
S̃(T )−Ke−rT , 0

)+ ∣∣∣Ft

]
= ertEQ

[
EQ

[(
S̃(T )−Ke−rT , 0

)+ ∣∣∣FT−l

] ∣∣∣Ft

]
, by Tower property

= ertEQ

[
EQ

[(
S̃(T )−Ke−rT , 0

)+
] ∣∣∣Ft

]
= ertEQ

[
H(x,m, σ2) | Ft

]
where

H(x,m, σ2) = xϕ (β1)−Ke−rTϕ (β2)

x = S̃(t)

m = −1

2

∫ T

t

g2(S(u− b))du

σ2 =

∫ T

t

g2(S(u− b))du so that m = −σ2/2

β1 =
ln
(

x
K

)
+m+ rT + σ2

σ

β2 =
ln
(

x
K

)
+m+ rT

σ
= β1 − σ.
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Case 1: When t ∈ [T − l, T ]; since H is FT−l-measurable and FT−l ⊂ Ft turn to;

V (t) = ertEQ

(
H(x,m, σ2) | Ft

)
= ertH(x,m, σ2)

= ert
[
S̃(t)ϕ (β1)−Ke−rTϕ (β2)

]
= S(t)ϕ (β1)−Ke−rt̃ϕ (β2) .

Case 2: when T > l and t < T − l, then consider to write S(T ) in terms of S(T − l);

S̃(T ) = S̃(T − l) exp

[∫ T

T−l

g(S(u− b))dW (u)− 1

2

∫ T

T−l

g(S(u− b))2du

]
V (t) = ertEQ

(
H

(
S̃(T − l),−1

2

∫ T

T−l

g(S(u− b))2du,

∫ T

T−l

g(S(u− b))2du

) ∣∣∣Ft

)
H

(
x,m, σ2

)
= xϕ (β1)−Ke−rTϕ (β2)

x = S̃(T − l)

m =
−1

2

∫ T

T−l

g2(S(u− b))du

σ2 =

∫ T

T−l

g2S(u− b))du st m = −σ2/2.

α1 =
ln
(

x
K

)
+m+ rT + σ2

σ

α2 =
ln
(

x
K

)
+m+ rT

σ
= β1 − σ.

This completes the proof.
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