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ABSTRACT

OPTION PRICING UNDER DELAY EFFECT

Alptekin, Emine Ezgi
Ph.D., Department of Financial Mathematics

Supervisor : Prof. Dr. Omiir Ugur

September 2024, 89| pages

In many fields like physics, ecology, biology, economics, engineering, and financial
mathematics, events often don’t have an immediate effect. Instead, they impact fu-
ture situations. To understand how these systems work and behave, we use stochastic
delay differential equations (SDDEs) which are obtained by adding information from
past events into stochastic differential equations (SDEs). Thus, SDDEs are gaining
attention because they can better reflect real-life situations. Some numerical methods
for SDDEs have been developed because it’s often very difficult, and sometimes im-
possible, to find exact solutions using stochastic calculus. The most known methods
are Euler Maruyama and Milstein methods. Recently, researchers in economics and
finance have been studying option pricing for systems with time delays, which can be
either random or fixed. We aim to understand the general structure of SDDEs while
solving them when the time delay is fixed and then use the delayed dynamics for
option pricing. The pricing of European vanilla, American vanilla, European foreign
exchange and European exchange options whenever underlying dynamics follow de-
layed geometric Brownian motion (GBM) and European vanilla where the asset price
follows the delayed Heston model are considered. Some numerical implementations
are carried out to see the effect of delay term on the pricing process.

Keywords: Stochastic delay differential equations, SDDE, option pricing with delay,
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0z

GECIKME ETKISIYLE OPSiYON FiYATLAMA

Alptekin, Emine Ezgi
Doktora, Finansal Matematik Boliimii

Tez Yoneticisi : Prof. Dr. Omiir Ugur

Eyliil 2024, 89 sayfa

Fizik, ekoloji, biyoloji, ekonomi, miithendislik, finansal matematik gibi bircok alanda
olaylar genellikle aninda etki gostermez. Bunun yerine, gelecekteki durumlar etki-
lerler. Bu sistemlerin nasil calistigini ve davrandigini anlamak icin, stokastik diferan-
siyel denklemlere (SDE) gecmis olaylardan gelen bilgileri ekleyerek elde edilen sto-
kastik gecikmeli diferansiyel denklemler (SDDE) kullanilir. Bu nedenle, SDDE’ler
gercek hayati daha iyi yansitabildikleri i¢in giderek daha fazla ilgi cekmektedir. Sto-
kastik kalkiiliis kullanilarak tam coziimler bulmak genellikle ¢cok zor ve bazen im-
kansiz oldugundan, SDDE’ler i¢in bazi sayisal yontemler gelistirilmistir. En bilinen
yontemler Euler Maruyama ve Milstein yontemleridir. Son zamanlarda, ekonomi ve
finans alaninda, zaman gecikmelerinin rastgele ya da sabit olabilecegi sistemler i¢in
opsiyon fiyatlandirmasi lizerine arastirmalar yapilmaktadir. Bu tez, sabit bir gecikme
stiresi oldugunda SDDE’lerin genel formlarin1 anlamayi, bu denklemleri ¢6zmeyi ve
daha sonra bu denklemleri opsiyon fiyatlandirmasi icin kullanmay1 amag¢lamaktadir.
Gecikmeli geometrik Brown hareketini (GBM) takip eden dinamikler altinda Avrupa
tipi vanilla, Amerikan tipi vanilla, Avrupa tipi doviz, Avrupa tipi takas opsiyonlarinin
ve varlik fiyatinin gecikmeli Heston modelini takip ettigi Avrupa tipi vanilla opsi-
yonlariin fiyatlandirilmasi ele alinmigtir. Ardindan gecikme teriminin fiyatlandirma
sirecine etkisini gdormek icin bazi sayisal uygulamalar yapilmistir.
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Anahtar Kelimeler: Stokastik gecikmeli differensiyal denklemler, SDDE, Gecikmeli
opsiyon fiyatlamasi, gecikmeli geometrik Brown hareketi, gecikmeli Heston modeli
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CHAPTER 1

INTRODUCTION

The study of stochastic differential equations (SDEs) has become a crucial part of the
modeling of various phenomena in most fields, such as finance, biology, physics, etc.,
since it includes randomness compared to ordinary differential equations (ODEs). In
financial mathematics, SDEs are important in modeling underlying asset price dy-
namics. In such models, it is assumed that the system satisfies the principle of causal-
ity, which implies that the system’s future state is determined just by its current state,
without any dependence on past states [24]. Moreover, Mao states that the efficient
market hypothesis is a foundational assumption for asset pricing models. According
to this hypothesis, historical information is fully examined and already implemented
into the current stock price. Markets react immediately to new information about

underlying assets, resulting in random price movements.

However, real-world phenomena often show delays because of various factors such
as transaction lags, information dissemination delays, and other temporal effects not
captured by standard SDEs [35]]. Transaction lags mean the time delay between ini-
tiating and completing a transaction. For example, after placing a trade order, there
can be a lag before it is executed because of market conditions, processing time or
other factors. The time delay between when new information (such as earnings re-
ports, news about underlying assets or economic data) becomes available and fully
reflected in market prices is known as information dissemination delay. This can hap-
pen because it takes time for the information to spread and be analyzed by all market
participants. Thus, the causality principle and efficient market hypothesis make the

model constructed by an SDE only an approximation of real situations. An additional



term representing time delay derived from the system’s history can be incorporated
into the model to create a more realistic model. The stochastic delay differential equa-
tions (SDDEs) are constructed with this extension of SDEs. Actually, SDDEs com-
bine the randomness of SDEs with the memory effects of delay differential equations
(DDEs). The necessity of SDDEs is clear in modeling various scientific phenomena
where delays play a significant role such as modeling various financial instruments

and markets.

There are two main reasons for our study of SDDEs in the context of financial mod-
eling. First, SDDEs provide a more realistic representation of the temporal dynamics
of financial markets. Second, incorporating delay elements can lead to more real-
istic pricing and hedging financial derivatives, thereby improving risk management

strategies.

In Chapter 2, a general overview of SDDEs is provided. We then discuss how so-
lutions to SDDEs can be obtained, highlighting methods (namely It6 formula) and
challenges associated with these equations. To illustrate these concepts, we present
some examples. These examples demonstrate the impact of delays on the behavior
of stochastic processes and provide a basis for understanding more complex models.

For more detailed information and proofs, see [J3, 7, 24, 29, 38, 2]

Chapter 3 is dedicated to some of the numerical methods to solve SDDEs. Because of
the complexity of SDDEs, analytical solutions are rarely obtained and so numerical
methods are essential. We focus on two widely used methods: the Euler Maruyama
and Milstein. Both methods are extensions of their counterparts used for standard
SDEs, adapted to handle the additional challenges posed by delays. For the detailed
information and proofs, we refer to [4, 15, 7, 8,9, 25/ 38, [33].

Chapter 4 focuses on applying SDDE:s in financial modeling, specifically in option
pricing whenever stock price follows delayed GBM. We derive value formulas for
various European call options, including vanilla, foreign exchange and exchange op-
tions both with and without delays. These value formulas are crucial for understand-
ing how delays affect option prices and for developing effective pricing strategies.

[6, 130, 1}, 13, 26, 28, 22] give more information.



Chapter 5 provides the implementation of the option pricing models using Julia pro-
gramming. Julia is known for its high performance and ease of use. This implemen-
tation shows how the theoretical models discussed in Chapter 4 can be translated into
executable code. This chapter serves as a bridge between theoretical developments
and their applications. The effect of delay terms, initial paths, number of simulations,

and stock prices are examined in those applications.

Chapter 6 examines the Heston model with and without delay cases for the European
type option pricing. Since Heston model does not have analytical solution Monte
Carlo is considered for option pricing [18} 11} 37, 20, 136l]. To see the effect of delay
and initial path on the valuation process some numerical implementations are consid-

ered.

In Chapter 7, we provide a conclusion and some future works.






CHAPTER 2

STOCHASTIC DELAY DIFFERENTIAL EQUATIONS

This chapter aims to provide a general overview of stochastic delay differential equa-
tions (SDDEs). SDDEs extend the framework of stochastic differential equations
(SDEs) by incorporating delays into the system, making them a powerful tool for
modeling processes where past states influence future dynamics. Thus, it will be
easier to understand the fundamental properties of SDDEs whenever the behavior of
SDEs understood. For more detailed information and proofs about SDEs, [15, 21} 24,

31]] can be seen.

SDDEs combine the randomness of SDEs with the memory effects of delay differ-
ential equations (DDEs). This means that the future state of the system depends not
only on its current state and random perturbations but also on its past states. This ad-
dition of delay terms helps to create a more accurate representation of systems where

historical data has significant impacts on future behavior.

The analysis of SDDEs involves both theoretical and numerical approaches. Theoret-
ically, Itd6’s lemma from stochastic calculus is used. Numerically, especially the Euler

Maruyama and Milstein methods for SDDEs are developed to approximate solutions.

Overall, SDDEs provide a more realistic framework for understanding and predicting
the behavior of complex systems influenced by both randomness and time delays.
This makes them invaluable in both theoretical research and practical applications
where delays and randomness cannot be ignored. For more detailed information and

proofs about SDDEs, see [, 7, 124, 29, 138, 2].



2.1 Genaral Framework for SDDEs

Let’s introduce a general form of SDDEs, starting with vector-valued SDDEs and

then focusing on real-valued SDDEs for simplicity.

Definition 2.1. We take an m-dimensional Wiener process W (¢) on a complete prob-
ability space (2, F, P) with filtration {F;}+>0. The following equation

AX () = F(t, X (£), X(t — 7))dt + g(t, X (), X (t — 7))dW (1), t € [0,7]

X(t) = o(t), t € [-7,0]

(2.1

defines an SDDE where f and g are R” and R"*™ valued functions, respectively. The
initial path ¢ is continuous R"-valued Fy-measurable function on [—7, 0] where 7 is

positive delay term.

We set n = m = 1 to work on the real-valued SDDEs in this thesis.

Remark 2.1. The stochastic integral form of (2.1) is

X(t)ch(0)+/0 f(u,X(u),X(u—T))du+/0 g(u, X (u), X (u —7))dW (u).

Definition 2.2. If X (¢) satisfies (2.1)) almost surely, adapted (F;)o<:<r-measurable

and continuous, then it is called a strong solution.

Definition 2.3. The functions f and g satisfy the local Lipschitz condition for a pos-

itive constant /K if they satisfy
|f(t o, y10) = f(E 2o, y2) | +g(t, 21, 91) —g(t, 22, 2) | < K(Jo1—2a|+|y1—y2l) (2.2)
for any x1, 22,41, y2 € Rand any ¢ € R™.
Definition 2.4. The functions f and g satisfy the weakly Lipschitz condition if
[f &z 1) = f(E @, m2)] + |g(t 2, 91) — gt @,02)] < Klyr — v
is satisfied for a positive constant K, any vy, y» € R and any (¢, 2) € R x R.
Definition 2.5. If the functions f and g satisfy
[f(t 2 9))* + gt 2, y)I* < L1+ |2 + [y]*)

for a positive constant L and for all (¢,z,y) € RT x R x R, they satisfy the linear

growth condition.



After these definitions, we are ready for the existence and uniqueness theorem.

Theorem 2.1 (Existence and Uniqueness Theorem). If the local Lipschitz and linear
growth conditions are satisfied by the functions f and g,then (2.1)) admits a pathwise
unique strong solution for all t > —1 where 7, T" > 0. Furthermore, the solution
satisfies

E (sup | X (t)]) < o0, t € [-7,T).

The proof in [29] depends on the Picard iterations. We need to apply Itd formula to

find the solution after discussing the existence of solution.
Theorem 2.2 (It6’s Lemma). Let X (t) be an It6 process defined by
AX () = £(t, X(6)) dt + g(t, X(2)) AW (t)

where W (t) is a Brownian motion. Let F(t,x) be twice continuously differentiable

function in x and once continuously differentiable in t. The differential of F(t, X (t))

satisfies
dF(t, X (1)) = %—fdt + g—idX(t) + %%(dX(t))Q
= (554 st X @) + St X0F ST ) a
gl X(0) W (1)

[td’s formula can be extended to functions of multiple Itd processes or to functions of

more than one variable.

Theorem 2.3 (Itd6’s Lemma for two process). Let X (t) and Y (t) be Ité processes
defined by

dX (1)

Sx (6, X(8),Y (1)) dt + gx (8, X (), Y ()) dWi(t)
dY (t) = fy(t, X(t),Y (1)) dt + gy (¢, X (t),Y (t)) dW>(t)

where W1 and Wy are correlated Brownian motions with the correlation coefficient p.
Let F(t,x,y) be twice continuously differentiable in x and y, and once continuously

differentiable in t. Then, It6’s formula is given by:

OF OF OF 10°F
dF(t, X(t),Y (1)) = Edt + %dX(t) + a—de(t) + iw(dX(t))Q

O*F 10*F
P 8de (t)dY (t) + =

i 20y

(dY'(t))*



where

gjng(t)dY(t) = pgx (t, X (), Y (£))gy (t, X (1), Y (t)) O°F

dt.
0x 0y

To find the solution process, proceed step-by-step and apply Itd’s formula in intervals
of equal step-size 7 starting from the initial point. To see the solution way better, we

consider the following example.

Example 2.1. We assume that trading occurs continuously over time and stock re-
turns respond to information received at a previous point 7. This means that the
trading asset depends on historical information. Thus the stock price process is mod-
eled by an SDDE, which is obtained by adding a linear delay into the most known
geometric Brownian motion (GBM) model;

dS(t) = (apS(t) + a1 S(t — 1) + aq2) dt

+ (boS(t) + b1S(t — 7) + by) dW (L), t € [0,T] (2.3)

S(t) = @i(t), t € [-7,0]
where the delay term 7 is positive fixed number and the coefficients are in R. Assume
that ¢4 (¢) : [—7,0] — R is a continuous initial function on its domain. Let’s check
conditions of existence and uniqueness theorem where f(¢,z,y) = apr + a1y + as

and g(t, z,y) = bozx + bry + ba.

e Lipschitz condition: Let’s define /; and /5 as;
L=tz y) — f (6 22,92)] = lao (210 — 22) + a1 (Y1 — y2)]
Iy =g (t,x1,31) — g (t,12,92)| = [bo (v1 — 22) + b1 (Y1 — o) -
Then, we get:
Iy + I < (Jao| + [bol) |21 — @a| + (lax| + [01]) [y1 — o
< K (o — z2| + |th — 1))
for some K > max {|ao| + |bo|, |a1]| + |b1]}
e Linear growth condition:
f(t 2, y)|” + gt 2, y)[ = (af + b5) 2* + (ai +07) y* + (a5 + b))
+ 2 (apay + boby) xy + 2 (apas + bobs)
+ 2 (a1a2 + blbg) Y.



Note that
(z—y)? > 0= 2 +y* > 2y
(r—-12>0=2>4+1>22

(y—1°>0=y*+1>2y.

Thus
2 (apay + boby) xy < (aga; + boby) (x2 + y2)
2 (agaz + bobs) x < (apas + boba) (2° + 1)
2 (aras + biba) y < (ajag + bybs) (y2 + 1) )
Then

Cy

|f(tx,y))? + gt z,y)|* < (ag + b + aoar + boby + agas + bobs)z?
Co

+ (a% + b% + apq + bobl + a1a9 + ble)y2
Cs

+ (a% + bg + apas + bobg + ajas + blbg) 1

<C(+2" +97)

for some C' > max {C, Cy, Cs3}.

So, there exists pathwise unique solution to (2.3). To find the solution on [0, 77,

consider method of steps with step size 7.

e Fort € [0,7]; S(t —7) = ¢1(t — 7) since —7 < t — 7 < 0. Thus, SDDE
becomes

dS(t) = (agS(t) + arp1(t — 7) + ag) dt

Then corresponding stochastic integral and solution are;
t
S(t) =S(0) + / (apS(u) + a1 (u — 7) + as) du
0
t
+ / (boS(U) + 61901<u — 7') + bg) dW(u)
0

= po(t)



e Fort € [1,27]; S(t—7) = pa(t—7) since 0 < t—7 < 7. Thus, SDDE becomes
dS(t) = (apS(t) + arpa(t — 7) + ag) dt + (bgS(t) + bypa(t — 7) + by) dW ()
Then corresponding stochastic integral and solution are;
50 = ) + [ (@) + anpatu—7) + )i
+ /t(boS(u) + brpa(u — 7) + be)dW (u)
210
This procedure can be repeated on [iT, (i + 1)7| for i = 2,3,4, ... recursively and

construct the solution for this SDDE, which is called as method of steps.

Let’s find corresponding expected value of S(t) where the stochastic integral of S(t)

forany ¢t € [0,71] is
S(t) = S(0) +/0 flu, S(u), S(u— T))du+/0 g(u, S(u), S(u—7))dW(u) (2.4)
where

FSH), St — 7)) = apS(Ht) + arS(t — 7) + as,

Taking the expectation of (2.4)) and setting E(S(t)) = m(t), we get
t
B(s(0) = B0+ B ([ 7500, 50~ 1))
0
t
+FE (/ g(u, S(u), S(u— T))dW(u)) :
0
t
m(t) = m(0) + / (agm(u) + aym(u — 7) + ag)du,
0
t
since expectation satisfies the linearity property and / g(u, S(u), S(u—7))dW (u)
1s martingale, its expectation is zero. "

While using the Fundamental Theorem of Calculus, taking the derivative of that equa-

tion with respect to ¢, we obtain

m/(t) = agm(t) + aym(t — 7) + aq, t € [0, 7],
m(t) = E(gi(t)), t € [-7,0].

10



Taking ag = —3,a; = 2e ', a3 = 3 — 2¢~ ! and @, (t) = 1 + e * so that our example
is the extended version of Example 3.4 given in [38]];
m/(t) = =3m(t) + 2e'm(t — 7) — 2e71 + 3, t € [0, T1, 2.5)
m(t)=et+1,te[-T0]. .

We solve (12.5) iteratively.

For ¢ € [0, 7]: our equation becomes

m'(t) = —3m(t) + 3+ 271
m(0) =2

and corresponding solution turns out to be

m(t) =e (1 —e )+ 1L

For ¢ € [r,27]: the equation in (2.5]) becomes

m/(t) r —Sm(t) + 2637’—375—1 . 2647’—315—2 + 2627’—16—2 + 37

m(r) =e?" —e g et 41,
where the solution is

m(t) =14+ 627—t—2 + 2t€—3t(€37—1 o 64T_2) + 6_3t(1 + €4T_2<—1 + 27_)

+ e N1 —27) —e™h).

To sum up, the solution becomes

(

1+et, te[-T,0],
e 31 —e™ ) Tt 41, te0,7],
1+ 627'—15—2 + Zte—?)t(e?n'—l _ 647'—2)

+e (1 +e 227 — 1)+ =27+ 1) —e™ ), t € [1,27].

m(t) =

\

Setting 7' = 2 and 7 = 1, the mean function becomes

mt)=1+e" 1<t <2
Finding a closed form solution to SDDE is not easy and generally not possible. Thus,
we need numerical methods to find an approximate solution.

11






CHAPTER 3

NUMERICAL METHODS FOR STOCHASTIC DELAY
DIFFERENTIAL EQUATIONS

Finding analytical solutions for an SDDE is generally difficult because of their com-
plexity and the stochastic nature of these processes. Therefore, numerical methods
are important to find approximate solutions. Moreover, practitioners can simulate
and analyze the behavior of these stochastic systems with the help of such numeri-
cal methods. Euler Maruyama and Milstein are the most commonly used numerical
methods. For the detailed information and proofs [4, [7, 5, 18, 19, 25, 138} 33]].

This chapter focuses on these numerical methods for SDDEs while providing some

definitions and an illustrative example.

We consider the general form of SDDE:

dX(t) = f(X(t), X(t —7))dt + g(X(t), X (t — 7))dW (t), t € [0,T], 3.1
X(t) =p(t), t € [-1,0].

To find an approximate solution, consider a partition of the time interval [0, T'], into
N pieces 0 =ty < t; < --- <ty =T sothatforanyn = 0,1,2,..., N — 1, step
size for time is At,,, = t,+1 — t, and the increment of standard Brownian motion
is AWy = W(tht1) — W(tn) = W(tns1 — tn) = W(At,4q1). Since W (t) is a
continuous process satisfing stationary increment, independent increment properties

and W (t) ~ N(o,t). According to the Central Limit Theorem,

Wt—Wu:Wt_uNN(O,\/t—u)
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for 0 < u < t. Therefore,
AVVn—f—l = tn—i—l - thn—i—l = Atn—&—IZn—s—l

for some random variable Z,,;, ~ N(0,1).

e Note that N-partition of the interval [0, 7] with equal length » means h = T'/N
and t, = nhforalln=20,1,..., N.

e NN, is a positive integer number such that N, h = 7 and thus we have (N + N, )-

partition of [—7, T'].
e The increments of time and Brownian motion are:

Atn+1 = h7
AWpi1 = AW (h) = VhZnia,

for some Z,,.; ~ N(0,1) wheren =0,1,2,..., N — 1.

e Let X,, be an approximation of the solution of (3.1)), using a stochastic explicit

one step method where ¢ is an increment function, then it must satisfy:

Xpi1 = Xn + 0(h, X0, Xon, , AWppq), 0 <n < N — 1, 32)
Xo-n, =ty —7),0<n < N,. .

3.1 Euler Maruyama Method for SDDE

The increment function ¢ in (3.2) with uniform step size h is:

¢<h> Xn; Xn—NT; AVVn—&-l) = f(Xna Xn—NT)h + Q(Xn, Xn—N,—)AWn—i—l' (33)

The corresponding approximation of strong solution according to (3.2)) for the Euler

Maruyama method is

Xn + f(Xna anNq—)h + g(Xna anN.,—)AWnJrla
X + f(Xnu anNT)h + g(Xnu anNT)\/EZnJrl;

XnJrl

where Z,, .1 ~ N(0, 1) and for all indices n— N, < 0, we define )N(n_NT = (t,—T).
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Theorem 3.1 (Theorem 7 in [4]). Let the functions f and g in (3.1)) satisfy the condi-
tions of the existence and uniqueness theorem. Then the Euler Maruyama method is

consistent with order p1 = 2 in the mean and order p, = 1 in the mean square sense.

The complete proof can be found in [4].

3.2 Milstein Method for SDDE

According to [33]], the increment function ¢ in stochastic explicit one-step method for

Milstein with uniform step size h on the interval [—7’ T is:

39

d(h, X, X~ s AWni1) = fh+ AW, + [(AWn)2 — h)

29

tn+1
dW (sg — 7)dW (s
9% NT/ / ? ()

where f = f(tn,Xn,Xn_NT) and § = g(tn,Xn,Xn_NT). Then, the corresponding

Milstein scheme is

£ 1_0g
Xoi1 = X+ fh+ GAW, + 298_[(AW) — h]

tn+1
dW (sg — 7)dW (s
aAXV'rL NT/7 / ’ ( 1)

for all n — N, > 0 and for all indices n — N, < 0, we define Xn_NT = @(t, — 1)
where n =0,1,2,..., N — 1.

We consider an example of applying numerical methods to simulate an approximate

solution.

Example 3.1. For the SDDE in Example we take g = —3, a; = 2e71, ay =
3—2e 1 by =b =0by=057=1T=2and p(t) = 1+ e '. Then the
corresponding equation satisfied by the stock process in (2.3]) becomes
dS(t) = (=35(t) +2e7'S(t — 1) +3 —2e7 1) dt
+0.5(S(t)+ S(t—7)+1)dW(t), t €]0,2], (3.4)
Sty=1+4¢€" te[-1,0]
and corresponding mean function in (2.5)) satisfies
m/(t) = =3m(t) + 2e'm(t — 1) + 3 —2e71, t € [0,2],

(3.5)
m(t)=1+e"* te[-1,0].
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Solving this sample delayed ODE, we obtain

m(t)=1+e" te[-1,2). (3.6)

To simulate our solution process, we take the time step of d¢ = 0.01 and the number

of simulations as 1000. In Figure [3.1) sample paths to our SDDE are obtained

A SDDE with EM
f SDDE with Milstein
\ ' Mean with EM
4+ I Mean with Milstein
r N Exact value of mean

m(t)

S(t) and E(S(t))

)
2.0

L 1
1.0 1.5

0.0 U:S
Figure 3.1: Sample path and its mean function with Euler Maruyama and Milstein

methods

by Euler Maruyama and Milstein methods while using the same random numbers.
Moreover, the expectation of this process using that numerical methods and exact

solution of mean function are obtained. The graphs are almost the same.
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Figure 3.2: Difference in the exact solution of mean functions and its approximations
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When we consider the absolute error (difference) between the exact solution of mean
and approximate solutions in Figure [3.2] Euler Maruyama and Milstein methods fit
the model since the error is too small and close to zero. Since the mean function does

not include any randomness, its graphs obtained by numerical methods are the same.

Paths obtained by Euler Maruyama
Paths obtained by Milstein

0.0 0.5 1.0 1.5 2.0

Figure 3.3: Multi paths obtained by numerical methods

In Figure 20 paths for S(t) are obtained by using these numerical methods.

Table 3.1: Mean value obtained with different methods
m(m(t)) | m(Sem, 1000) | m(Swmi, 1000) | m(Eem(S(t))) | m(Emu(S(¢)))
1.4324 1.4497 1.4496 1.4322 1.4322

In Table the mean value is obtained with different methods. m(m(t)) represents
the mean value obtained from the exact solution of expectation in (3.6). 7(Sgm, 1000)
and m(Swii, 1000) represent the mean value obtained from simulation of 1000 paths
of S(t) in (3.4) with Euler Maruyama and Milstein methods while m(Egm(S(t))) and
m(Ewmi(S(t))) represent the mean value obtained from simulation of (3.5)) with Euler
Maruyama and Milstein method. As it is seen from the table, Euler Maruyama and
Milstein’s methods for S(¢) give approximate values to the real value m(m(t)) =

1.4324.

Now, use SDDESs and their numerical solutions for pricing options.
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CHAPTER 4

OPTION PRICING

Options are financial derivatives that give investors the right to buy or sell an under-
lying asset at a predetermined price within a predetermined time interval. The call
options give the right to buy, while the put options give the right to sell underlying
assets [19]].

The pricing of options is influenced by several factors. The key components are the
underlying asset’s price, the strike price, time to expiration, volatility of the underly-
ing asset, interest rate and dividend yields. Several models and methods have been
developed to estimate the fair price of options. The most common one is the Black-
Scholes-Merton model, introduced by Fischer Black, Myron Scholes, and Robert
Merton in the early 1970s [6]. This model gives a framework for calculating the
theoretical price of European Vanilla options while assuming constant volatility and
interest rates where the underlying asset follows GBM. Apart from the analytical so-
lution of the Black-Scholes-Merton model, some numerical models like the Monte
Carlo method also give alternative approaches to pricing options [30, [1]]. The divi-
dend yields, changing volatility, and changing interest rates can easily be incorporated

into this numerical model for more realistic situations.

In some phenomena where immediate execution or information is not guaranteed,
delay has an important impact. Thus, the delay must also be considered as one of the
main components of pricing the option [35]]. The studies related to the delay effect try
to understand how delays in trading or receiving information affect the option’s value.
These delays can change risks and profits. Thus, pricing models must be adjusted to

account for the time delay. This adjustment helps provide a more accurate valuation
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as illustrated in [3, 26, 28, [22]].

In this chapter, we consider some call options with and without delay effect where
stock price processes follow GBM, namely European Vanilla Options, American
Vanilla Options, European Foreign Exchange Options, and European Exchange op-
tions. The corresponding valuation formulas apart from American Vanilla Options

are provided.

4.1 European Vanilla Option Pricing with GBM

4.1.1 European Vanilla Option Pricing without Delay

The Black-Scholes-Merton Model assumes the price of the stock S follows GBM

with constant drift ;2 and volatility o for the given maturity 7', namely,

dS(t) = pS(t)dt + o S(t)dW (t), t € [0,T]

where W (t) is a standard Brownian motion and sy is the given initial stock price. The
Black-Scholes-Merton model is a widely used option pricing model. It provides the
theoretical value of options using current stock prices sg, the option’s strike price K,
risk free rate r, time to maturity 7" and volatility o under the following assumptions:

e [t is a European-type option which can be exercised at maturity only,

e Market is efficient,

e There is no transaction cost,

e The risk free rate and volatility of the stock are known and constant,

e The returns of the underlying assets are normally distributed.

Theorem 4.1 (See [6]). If the stock price S satisfies the following equation

dS(t) = rS(t)dt + o S(t)dW (1), t > 0, 4.1)
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under risk neutral probability measure () and conditions of Black-Scholes-Merton
Model, then the value of European call and put options, namely Vi and Vp respec-

tively, are given by

Ve(S, K, t) = S(t)o(dy) — Ke " 9¢(dy), (4.2)
Vp(S, K, t) = Ke " Dp(—dy) — S(t)p(—dy), (4.3)
where
0 In(5) + (r + ST — 1)
ovT —t ’
0 In(38) + (r — )T —t)
ovT —t

and ¢ is the density of the standard normal distribution which is defined as
1 v 2
= —u2g R
x @ u, r € .
o) =—= [

4.1.2 European Vanilla Option Pricing with Delay

European vanilla option pricing model with delayed GBM is examined to understand
the effect of delay in the determination of the price. We also consider single and

multi-delay in underlying assets and provide corresponding value formulas.

4.1.2.1 European Vanilla Option Pricing with a Single Delay

Arriojas et al. (2007) [3] have obtained the fair price formula of the European Vanilla
call option for any time ¢ < 7" while showing market is complete and arbitrage free.
We extend that work for the put option and show put-call parity is satisfied also under

delay effect.

The market includes a riskless asset B(t) and a single stock S(t) so that B(t) = e"

for the risk free rate r and the stock price satisfies:

dS(t) = uS(t —a)S(t)dt + g(S(t — b))S(t)dW(t), t € [0,T],
S(t) = ¢(t), t € [-L,0]

4.4)
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where . and T are positive real numbers, a and b are delay terms with . = max{a, b},

g is a continuous function and ¢ is Fy-measurable initial path with ¢(0) > 0.

Theorem 4.2 (Theorem 4 in [3]]). Let the asset price S satisfies (4.4) with ©(0) > 0
and g(t) # 0 whenever t # 0. Let r be the positive risk free rate and () be the risk
neutral probability measure. Then the value of European vanilla call option Vi (t)

where K is the strike price, T is the maturity and | = min{a, b} is:

o Foranyte [T —1,T):

Velt) = S(8((0) - KeT00(5a(0) 4s)
where » 2
pi(t) = log (%) + ft r+39(S(u—10)) )du7
\/ft S(u—b))?du
o) = 228G )i (r — ba(S(u — b)),

\/ft S(u —b))2du
o forallT >landt <T —1:
Vo(t) = e Eq (H (e—NT—l)S(T —1),-1 ff_l g(S(u — b))?du,

Jo_, 9(S(u — b))Qdu) E), (4.6)

where
H(z,m,0%) = 2e™ 2p(ar(z,m,0)) — Ke " Td(as(z, m, o))

and

aj(z,m,o) =

Q|+

[log<K>+rT+m+a],

1
ag(x,m,o) = p [log <K> +rT + m} ,
foro,x € RT, m e R.
The hedging strategy fort € [T — 1, T) is given by

ms(t) = ¢(Bu(t)),
mp(t) = —Ke T Dg(By(t)).
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Detailed proof can be found in Appendix

Corollary 4.3. Assume that the conditions in Theorem 4.2 are satisfied. Let Vp(t) be

the value of a European put option. Then the value of the put option is:

e Forallt € [T —1,T):
Vp(t) = Ke " 0¢(=pa(t)) — S(t)p(—pi(t)) 4.7)
where (31 and 35 are the same as in Theorem4.2)
o ForallT >landt <T —I:

Vp(t) = e Eq (H (G‘T(T‘”S@ — 1), =% [y, 9(S(u — b))*du,

S 9(S(u— b))2du> ft> | (4.8)

where
H(‘Ta m, 02) = KG_TTqb(—OéQ((L’, m, U)) R xem+02/2¢(_a1 ('T7 m, 0))

and o and o are the same as in Theorem 4.2}

Proof. Actually, in this proof, we use the same ideas in the proof of Theorem {4.2]
while considering the payoff function as hp(S(T')) = (K—S(T),0)* = —hc(S(T)).
The solution of stock price S(¢) which satisfies (4.4);

S(T) = e "t S(t)e™ ¥ = S(t)em+ov

T 1 /T

from (A1) where 02 := / g(S(u—10b))%du and m := 5 g(S(u — b))?du.

t

= " Ey i(Ke_rT _ g(T),o>+ ‘ Ft:|

+

t
The corresponding value of the European put option is

(K - 8(T7),0)"

erT

VP(S(t), t) = ertEQ

=" Fqg (Ke’TT — S(t)emtoy, 0)
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For x := S(t), define the function H as
H(x,m,0?) := Eg [(KG_TT — xeer"Y—,O)Jr | FT_z) )
= FEqg [(K e — gemtoY O)T , since payoff is Fp_;-measurable

1 o T2
= — Ke ™ — gemtov 0) eV 2dy
=/ , ,

where

ln(%)—i—rTij
. )

Ke ™ — ze™™¥ > (so thaty < —f, := —

Thus;

1 —h2 2
H(z,m,0?) = — (Ke ™ — zemto¥) e ¥ 2dy
7 V 2m /—oo

= L /_52 Ke_TTe_yQ/Zdy — L /_52 a:em+ay_y2/2dy
V21 Jooo V21 J oo
= Ke™T¢(—s) — x¢(—P1)
where 31 = o + (5. Then, the value of the European put option under the Black-
Scholes-Merton setting with delay effect for any ¢ € [0, T is

Vp(S,t) = "' Eg [H(z,m,0%) | F] .

Case 1: When t € [T — [, T]; since H is F'r_;-measurable and Fr_; C Fj;
Vp(t) = e"Eq (H(z,m,0%) | F)
= e" H(x,m,o?)

= Ke " 09(=f) — S(1)o(= ).

Case 2: When 7" > [ and ¢t < T'—, then consider to write S(T’) in terms of S(7"—1);

Vi(t) = €™ Eq (H (S(T ), —% /T Tl o(S(u — b))2du,
/T i g(S(u— b))?du) Ft>

H(z,m,0%) = Ke " T¢(—as(z,m, o)) — 2™ 2p(—ay (z, m, o)),

In (L) +m+rT +o?
Q= p )
OQZIH(R) tm—i_TT:al—a.

where
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So, this completes the proof. [

Corollary 4.4. Let the conditions in Theorem be satisfied for the stock S with

strike price K. Then put-call parity is satisfied also under delay effect i.e.

Ve(t) — Vp(t) = S(t) — Ke"T0,

Proof. From Theorem .2 and Corollary 4.3] pricing formulas are provided in two

cases. Thus, it also proves that parity is satisfied in both cases.

e Whent e [T —1,7T] (i.e. | > T);

Ve(t) = S(t)e(Bi(t) — Ke " T Do(By(1)),
Vp(t) = Ke " 0g(—Ba(t)) — S(t)p(—Bi(t)).

Then,

Vo(t) — Vp(t) = S(t)s(B1) — Ke " T g (3,)

— [KeT" T (—B2) — S(t)(—51)]
() [(B1) + (=B1)] = Ke 7T [6(82) + ¢(—f2)]
(t) — Ke 7@

S
S

since ¢ is the density of the standard normal distribution.
e Whent < T —1(ie. I <T);
Vo(t) = e Eq(ze™ 7 2p(an) — Ke ™ p(an)| F),
= Eq(S(t)g(ar) — Ke " Vg(ay)| F),
Vo (t) = € Eq(Ke ™ ¢(—az) — xe™ " g(—an)| F)
= Eq(Ke " " g(—az) — S(t)p(—a)|F),
since m = —¢?/2 and z = S(t). Then,
Vo(t) = Ve(t) = Eq(S(t)g(ar) — Ke T g(as)|F)
— Eo(Ke " T Yg(—as) = S(t)p(—an)|F)
= Eq(S(t)(¢(an) + ¢(—ar))
— KT (g(as) + d(—a2))|F)
= Fo (S(t) — Ke " T F,)
= S(t) — Ke "I,
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So this completes the proof and using the same logic, one can also prove the put-call

parity for the other options namely FX and exchange options under delay effect. [

4.1.2.2 European Vanilla Option Pricing with Multi-Delay

We are extending the study of Arriojas et al. [3] for the several delays while assuming

that the price process for the stock S(t) at time ¢ satisfies the following SDDE:

dS(t) = f(Stfap Stfaga ceey St,an>5(t)dt
£(Ss—p, s Sectys oo Sicy, VSH)AW (1), t € [0,T] (4.9)
S(t) =e(t), tel-L,0]

on a complete probability space (2, F, P) with filtration {F; }o<i<r.

® S;_o means S(t —a;) forany i = 1,2, ...,n and S;_,, means S(t — b;) for any

i=1,2,..,m,

a;’s and b;’s are positive fixed delays where L = max{ay, ..., @y, b1, ...0;, },

e g:R™ — Ris a continuous function,

W (t) is standard Wiener process,

e o(t): [-L,0] - R* is Fy-measurable initial path so that ¢ (0) > 0 a.s.

We will show that the above model admits pathwise unique solutions.

Theorem 4.5. Assume that S(t) satisfies (4.9) and functions f and g satisfy the linear
growth and local Lipschitz conditions. Then (A.9) has a pathwise unique solution S
for the given initial path. Moreover, S(t) > 0 almost surely for all t > 0 whenever the
initial path p(t) > 0 forall t € [—L,0]. Furthermore, if o(t) > 0 a.s, then S(t) > 0
forallt > 0.

Proof. Letl := min{ay, as, ..., an, by, ba, ..., by, }. Then, when we rewrite the equation
fort € [0, 1], we get
dS(t) = S@)f(gpt*al y Pt—ags -+ (ptfan>dt

+S () G(Pr—bys Pt—bys -er Prby, )AW (L), t € [0,]]
S(t) = (t), t € [-L,0]
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Define the semimartingale process for ¢ € [0, (] as

t t
N(t) ::/ f(goual,gpua2,...,gouan)du+/ I(Pu—bys Pu—bys o> Pu—by, ) AW (1),
0 0

where the quadratic variation of N is

¢
[N7 N]t = / g((pu—bu Pu—bagy -++s Spu—bm)2du'
0
Then, the SDDE becomes

dS(t) = SHAN(H), t € [0,1],
S(t> = Qp(t% te [_L>O]>

where the unique solution for any ¢ € [0, /] is obtained by Doléans Dade exponent as

1

5(0) = 9(O) exp |N(0) = 31V,

t
= @(0) eXp |:/ f(QOU*ULN Spu*azv ct @ufan)du
0

t 1 t
+ / g(QOufbp Pu—bgs -+ @u,bm)dW('U) - 5 / g(%pu—bla Pu—bgs -+ QOu,bm)2dU, .
0 0

From this equation, it is easily seen that if ¢(¢) > 0 a.s, then S(¢) > O forall ¢ € [0, [].
While using the induction method, one can find a solution for any ¢ € [k, (k + 1)]]
where (k + 1)! < T and show S(t) > 0 whenever ¢(t) > 0. O

Our purpose is to derive the fair price formula for the European Vanilla option written
on the stock S with exercise price K and maturity 7" with the assumption of no div-
idend and no transaction costs. Assume that .S satisfies (4.9) while the riskless asset

B satisfies B(t) = e where r is the rate of return and r > 0.

Theorem 4.6. We consider the market consisting of riskless asset B(t) and stock
S(t). Let r > 0 be the risk free rate and the asset price S satisfy @.9) for ©(0) > 0
and g(t) # 0 whenever t # 0. Then, the market is arbitrage-free.

Proof. Let us find an equivalent martingale measure with the help of Girsanov’s the-

orem to show market is arbitrage free. Consider the discounted stock price for any
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t €[0,7], S(t) = == = e "S5(t) and take derivative where S(t) satisfies (@.9)

dS(t) = —re " S(t)dt + e "dS(t)
= —re "SO)dt + e[ f(Si—ars Si—ags s St—a, ) S (t)dt
+ g(St_bl, St_bZ, ey St_bm)S(t>dW(t)]

=S| (f(Si—ay, Si—agy s Si—a, ) — ) dt

+ g(St_bl, St_bQ, ceny St_bm)dW(t) . (410)

According to Theorem 9(Si_py, St—bys - - -, Sip, ) is different from zero since
@(t) > 0forall t € [0,7] and g(u) # 0 whenever u = (uy, ug, . .., up) # 0. Define

f(St,al, St,a2, - 22h) St,an) -T
g(St—b17 St—bza teey St—bm) ’

X(t) = — forallt € [0, T

which is F;_; measurable predictable process such that fOT |¥(u)[2du < oo. Define

ari=ew{= [ swav) - [ mwpa)

so that Ep(Qr) = 1. Then, according to Girsanov theorem there exists probability
measure () defined by dQQ = QpdP and standard Brownian motion W under Q
defined by

W(t) :=Wi(t) — /OtE(u)du forallt € [0,T7;

or equivalently, we have

AW (t) = dW (t) — S(t)dt,

which implies dW (t) = dW (t) + X(t)dt. Arranging the discounted asset price pro-
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cess in (.10]) under the measure @), we get
dS(t) = S(t) [(f(St*lIl? St*aza X St*an) - T) dt + g(“gt*bl? St*bzﬂ i St*bm)dw(t)]

= S)| (f(Si—ays Si—ays s Si—a, ) — 1) dt

+ g(Si—bys Si—pys rs Sep, V(AW (1) + Z(t)dt)}

f(St—ala St—az; seey St—an) -
g(St—bla St—b27 LY} St—bm>

+dW (t) + E(t)dt]

= S(t)g(st—bn St—bza sy St—bm) |: dt

— S()g(Su_brs Sitys s Sis) [—E(t)dt AW () + z(t)dt]
= S()9(St—by, Si—pas -, St—p, JAW ().
So, the discounted asset price S (t) is @-martingale since drift term is zero which

implies that () is an equivalent martingale (risk neutral) measure. Therefore, the

market is arbitrage free and the proof is completed. [

Remark 4.1. Note that under the risk neutral measure (), the stock price satisfies
dS(t) = rS(t)dt + g(Si—p,, St—bys s St—p, )S()dW (t). (4.11)

Theorem 4.7. If the market satisfies the conditions that are defined in Theorem

then it is complete.

Proof. Consider the discounted asset price process under () and apply Itd formula to

In S(t):

InS(t) =1InS(0) + S— dS(u ——/

d[S, S].,

5’2

t
:1Il<,0(0> / ( u— b17 u—bgy ey S"LL bm)dW(u)
0

1

— 5/ 92<Su bl,Su,bz,...,Su,bm)du

Thus, for any ¢ € [0, T, it follows that

S(t) = ¢(0) exp {/0 G(Subys Subys s Su_s, )AW (1)

1

t
-3 / G (Subys Su_btyy -, Su_sp,, )du| (4.12)
0
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Now, let X be any contingent claim which is an integrable non negative F;° measur-
able random variable where F5 = F° = FV = FW for any ¢ > 0 according to
definition of S and TW. Consider Q-martingale process M (t) for any ¢ € [0, T] which
is defined as

M(t) == Eq(e ™" X | FS) = Eq(e ™" X | F)V).

i T
Then there exists (F}V) predictable process hg such that / h(u)du < oo and
0

M(®) = Bole "X | F) = Eole™ X) + [ ho(wai¥(w

by Martingale Representation theorem. Define the hedging strategy by

ms(t) = z holt) :
S<t>g(st—b17 St—bgv oY) St—bm)

ma(t) = M(t) - 7s(H)5(8),

for a portfolio {(7wg(t),75(t)) | t € [0,7]} where 7s(t) and 7 () represent the
amount of stock and bond in the portfolio respectively. Then the value of the portfolio

at any time ¢ € [0, 7] is given by
V(t)=mpt)e™ + ms(t)S(t) = e M(t).
This value process implies that
dV (t) = e dM(t) + M(t)d(e™)
= 7mp(t)d(e") + ms(t)dS(t);

in other words, {(7s(t), 75(t)) | t € [0,T]} is self-financing strategy and V' (T') =
e M(T) = X. Thus, X is attainable and market consisting of B(t)and S(t) is

complete. [

Theorem 4.8. Let the asset price S satisfy @d.9) with ¢(0) > 0and g(t) # 0 whenever
t # 0. Let r > 0 be the risk free rate and () be the risk neutral probability measure.
Assume that V (t) is the value of a European call option with maturity time T and

strike price K. Let ¢ be the standard normal distribution function so that

1 v 2
o(x) = E/_@e‘“ du, z € R.

Then the value of the European option is
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e Case I:Ift € [T — I, T| withl := min{ay, as,...,an,b1,b2, ..., by}:

V(t) = St)e(51(t) — Ke " 0e(Ba(t)), (4.13)
where
5 = log( +ft r+ 293 (Su- bl,Su_bQ,...,Su_bm)du’
\/ft Subys Su—byy eey Su—b,, )du
4 log(%2) + [T(r — 1g%(S.- b Sty s Suct )t

\/ft u b17 u— bz,...,Su_bm)dU,

o Case2:If T >landt <T —I:

1 T
V(t) =" Fq (H (e‘T(T‘l)S(T —1),—= / G (Su_pys Supys ey Sup, )du,

2 T-1
)

T
/ g2(Sufb17 Susz, oo Subm)dlb)

T-1
(4.14)
where
H(x,m,0?) = xem+”2/2¢(a1(q:, m,o)) — Ke " g(as(x,m, o))
and
aj(z,m,o) = 1 [log( > +rT+m+o }
Y ) 0_ K Y
(r.m.0) = * [1og () ++T + m]
az(z,m,0) = — |log (7= ) +rT +m

foro,x € R, meR.

The hedging strategy fort € [T — 1, T is given by

ws(t) = o(Bi(1)),
mp(t) = —Ke " T Dg(By(t)).

Proof. For any t € [0, T] define the following equalities

= 5(1)

1

T
m = _5/ 92(Su—b1’8u—b27 oy Su—by, )
¢

T
02 = / 92<Su—b17 Su—bz; ) SU—bm)du
t
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so that 0> = —2m. Note that LTg(Su bs Subys s Su_p,, )AWu is normally dis-
tributed with mean zero and variance o ft Su—bys Su—bys s Su—b,, )du. So,

consider any Y ~ N(0, 1) then

T
/ g(Su_bl, Su_bZ, ceey Su_bm)dVVu ~ Y.
t

With these observations, discounted asset price at maturity 7' in terms of any time

t > 0 can be written as;

T
S(T) = S’(t) exp {/ G(Su—bys Su_bys - Su,bm)qu
t

T
- = / g2(Su,bl, Sufbw ceny Su,bm)du
t

Note that S(T) is Fr_; measurable where [ := min{ay,as,...,an, b1,b2, ..., },

since t < u < 7' implies that
t—b;<u—b;<T—-b<T-1 forany i=1,2,...,m.

Then the value of European call option at any time ¢ € [0, T'] with the pay off function
(S(T) — K)™ under the risk neutral probability measure @ is

V(?f)*6 "B, ((S(T) )| F)

< Ke )" | ]_—t)
=e"Fqg <EQ < — Ke ™) | Fr_ l> | ]-"t) , by Tower property
_ ertEQ (EQ ( weeroy rT)+ ’ FT*Z) ’E) )

Now, define a new function H as H(z,m,0?) := Eq ((ze™™V — Ke™"")" | Fr_;)
so that V (t) = e" Eg (H(x,m,c?) | F;). Then
H(x,m,0%) = Eq ((g(T) — Ke ™)t | ]:T_l)
= Eg <(§(T) - Ke_”T)*) since S(T') is Fy_; measurable
— EQ ((fEeerUY _ K67TT>+)

zemtoy _ Ke_rT)+€_y2/2dy.

vk
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Finding y values so that ze™™¥ — Ke™"T > 0;

ze™V — KeTT >0 = 2™ > Ke T
= lnz+m+oy>InK —rT

— ln%+m+rT>—ay

In z +m+rT
— > 12
o
Define
In z +m+1rT
(6% (.T, m, 0) =
o
so that
m+toy __ —rT : il
(2em+oY _ KTy = xe Ke™, ify > —ao,
0, ify < —ay
Then,
1 o 2
H(z,m,o%) = — (we™ Y — Ke ™) Te ¥ /Qdy
V2T J oo
1 o 2
= (we™ Y — Ke ™)e ™V /2dy
V2T J_a
1 ~ 2/2 r [T eV
= — xe™ToYTY 2 dy — Ke ™" /
V2T J s Y —as V2T
1 o0
— 27T $€m+oy_y2/2€_02/2+02/2dy - KG_TT¢(Q2)
vV o
oo ,—(y—0)?/2
_ x€m+a2/2 eﬁdy _ KeirT(b(Oég)
s
) 0o 6—22/2
= gt /? N dz — Ke ™ ¢(a), fory — o = 2
—ag—0
= 2™ G (g + 0) — Ke T p(a).
In = +m+7rT + o?
Define oy (z,m,0) := az(x,m,0) + o = K . So, the function H

g
is defined as

H(CL’, m, 02) = Ji€m+02/2¢(0é1) - Ke_rTqb(oQ)'

We already know that V' (¢) = " Eq(H (x,m,0?) | F;), where H is Fr_,-measurable,

hence,
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o fort € [T'—1,T];

V(t) = ertEQ(H(x,m,J2) | F)
= ¢"H(x,m,0?), since Fr_;C F
— ert <$€m+g2/2¢(041) o K€_TT¢(052))

= S(t)p(an) — K(T(Tft%(az),
e fort <1 — [ whenever T > [;

V(t) = e"Eq(H(z,m,o?) | F)
= " Eg(ae™ " ¢(ar) — Ke T p(as) | ).

Using the parameters x, m and o2, we can easily show that oy = f; and ay, = fs,

which completes the proof. ]

Proposition 4.9. Consider the stock price process S(t) which satisfies the multi delay
SDE in (4.11)) under risk neutral probability measure Q). Let g(S;_p,, St—py, - - -y St—b,,)
be equal to ¢ for some positive constant. Then, the value formula for the stock price
([@.13)-(4.14)) and Black-Scholes-Merton formula with volatility term 6 > 0 in (4.2)

are the same.

Proof. Note that with that choice of function g, our equation in (4.11]) becomes:
dS(t) =rS(t)dt +aS(t)dW(t), tel0,T]
S(t) = ¢(t), te[-L,0],

and corresponding equations in ((4.13)-(4.14))) become:
Case 1: If t € [T — [, T] with [ := min{ay, as,...,a,}:

V(t) = S(t)p(Bi(t) — Ke " T (Bs(1)), (4.15)
where
5 log (32 + (r + 152)(T — t)
b VT —1 ’
8, — log(%) +(r — %&2)(T —t)

oV —t

Note that d; and d; in (4.2)) are exactly the same as (3; and 3, respectively.
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Case2: If T'>land t < T — I:
V(t)=e T IS(T — g(ar) — Ke " Dg(ay)

where

Using the Markov property of solution process S and rewrite the valuation formulas

in (4.2) as:

V(T =1) = S(T — D)g(dr) — Ke "¢(ds) (4.16)

S(T
dy = aL\/Z [log (@) + (r + 52)l] :

o [ (320 1 L]

Since the value of the option is martingale, at any time ¢t > 0, equation in (4.16) can

N = N —

be written as

V(t) = e TDDEG V(T — 1) | F
= e (TD0EG [S(T = )é(dr) — Ke™"'(da) | F]
= ¢ T TOS(T — Dp(dy) — Ke " T Dp(dy).

Note that value formulas are exactly the same where d; = a4 and dy = aw. ]
To find the corresponding partial differential equation (PDE) of the SDDE in (4.11])

where S (t) = e S(t), define the value and discounted value processes for any time

t€[0,7] as

V() = F(t,S(t) = e "I E((S(T) - K)* | o)



Then, by derivation of the discounted value process, it follows that

AV (t) = dF(t, S(t))
= —re "F(t,S(t))dt + e "dF(t, S(t))

oF oF 10%F
_ —rt 2 - -
— e R(L S(1)dE e {&ﬁ+a&%ﬁﬂd8$ﬂ&ﬂi
oF oF
Tt —rt| 27 -
= —re (¢, S(t))dt + e bﬂﬁv&ﬂwﬁ
oF -
+ —S(t)g(St_bl, St_bz, ceey St—bm)th
0S;
10%F
+ 58_515252 (t)g2(St,bl, Stsza ceny Stbm)dt:|
oF OF 10?F
_ -t | il il - 2 2
—e rF + T + asfs(t) + 28535 (t)g (St_bl,...,St_bm)} dt
—rt aF Y
+ e _S(t)g<st—b17 St_b2, ceey St—bm)th
0S;

Since F'(t, S(t)) is martingale under @, drift term must be zero. So this implies

OF OF 10°F
P T al
T +aStrS(t)+2aSt2

S*(1)9*(Si—bys St—by» s St—b,,) =0
As a result, the corresponding PDE is:

S2(1)g*(Se—pys St—pys s Stp,, ) 4.17)

F(T, 8(T)) = (S(T) — K)*.

This PDE also includes delay terms and it can also be used for pricing.

4.2 American Vanilla Option Pricing with GBM

American options can be exercised at any time up to maturity. This feature makes
their pricing process more complex than the pricing European options, that can only
be exercised at maturity. In American options, we need to find the optimal time to
exercise. Because of this early exercise property, finding an analytical solution for
the value process is generally not possible. Thus, numerical methods are needed.
The commonly used method is the least square Monte Carlo method (LSMC) which
was developed by Longstaff and Schwartz (2001) [23]. This method depends on

the iteration procedure. First, one creates multiple paths of the underlying asset and
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then, for all these paths, applies least square regression in each step while consider-
ing backward in time to find the continuation value. Having the continuation value,
one determines whether the option is exercised or not. The detailed information and

application of the method can be found in [23}12].

In our model, we consider the pricing of American call and put options whenever

asset price S satisfies GBM and delayed GBM which are

o for without delay case, S satisfies

dS(t) = rS(t)dt + o S(t)dW (1), t > 0,
S(O) = Sy,

e for with delay case, S satisfies

dS(t) =rS(t)dt + g(S(t —7))S(t)dW (t), t € (0,T],
S(t) = (t), tel-7,0].

4.3 Foreign Exchange Option Pricing with GBM

European foreign exchange (FX) options are financial derivatives that grant the holder
the right, but not the obligation, to exchange currency amounts at a predetermined
exchange rate on a specific date. These options are essential for hedging against
currency risk and speculating on currency movements. Related works are in [[17, (14,

13].

4.3.1 Foreign Exchange Option Pricing without delay

Consider a European type FX option with /' being the current exchange rate, that is,
the domestic currency price of one unit of foreign currency, /K being the specified
exchange rate and 7' is the specified date. The terminal payoff function for the call
optionis h(F, K,T) = (F(T) — K,0)*. Let the domestic and foreign money market

accounts be M, and M respectively, then these risk free assets and current exchange
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rate F' satisfy the following equations:

de = Tdedt
de = ’I"fodt (418)
dF(t) = F(t)[udt + odZy]

where rq and r are risk free rates for domestic and foreign money market accounts, p
constant drift coefficient and o constant volatility term. We consider M,; as numeraire
and find the corresponding SDE for F' under risk neutral measure (). First, we define
X - FOM(0)
Ma(t)

where F'(t)M(t) represents price in terms of domestic currency and X (¢) represents
discounted price process for foreign exchange in terms of the domestic currency. We
find the corresponding martingale process for X (¢) under (); while specifying the
corresponding Brownian motion. For that purpose, corresponding SDE for 1/M,(t)
whit the help of 1td formula, (for 1/z) we find that

1 2

1
d| 55| = Tt 53

My
—1

1
M2 MdT’ddt == WOdt

S
My

—=d[Mg, Mg

Then corresponding SDE for X (¢);

ax0) = a0 + Foaga[ 2] +a[p )

1
[MﬂF+HMM+FMﬂ[M}
d

= —_— F _

[MfF,udt—{-MfFUdZ —l-FMfT’fdﬂ—i—FMf dt
M, M,
_ FMy
M,

— Xy KM) deZF]

g

[(+7rp—ry)dt +0dZp]

Note that for v := w, dWy = ~dt + dZp defines Brownian motion
g

according to Girsanov’s theorem under ();. Thus, X (¢) satisfies dX (t) = o XdWj

which implies its a martingale process and () is risk neutral measure. Now consider
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the corresponding SDE for F' under (), where dZp = dW, — ~vdt:

dF(t) = F(t) [pdt + 0dZF]
= F(t) [pdt + o [dWy — ~dt]]
= F(t)[(ra — r¢) dt + od Wy (4.19)
= F(t) [0pdt + cdWy| for Op := (rg—r1y)

Having found the governing SDE for F'(¢) under risk neutral measure )y, we are

ready for finding solution for F'(¢) applying by It6 formula (for In x)

In F(T) = In F(t) + /t F(lu)dF(u)Jr% /t - (1)d[F Fl,

T 1 T
=InF(t)+ / [0pdu + odW4(u)] — 5/ o’du
t t

—InF(t) + 6p(T — t) + o(Wa(T) — Wy(t)) — %(T — 1)

2
:lnF(t)—|—6Ff+aWd(f)—%f where ¢:=T7T —1t

2

Since Wy(f) £ VIY forany Y ~ N(0,1) ;

F(T) = F(t) exp { (5F - 0;) i+ a\/?y} . (4.20)

Theorem 4.10. Let the domestic and foreign money market accounts and current
exchange rate satisfies (.18). Consider the European call foreign exchange option
where the payoff function is h(F, K,T) = (F(T) — K,0)*. For the choice of M, as

numeraire, the corresponding value of that option is

V(F, K, t)=Ft)e " "TYN (dy) — Ke TN (d) (4.21)
where
0 ln<$> + (Td—rf‘i‘%Q) (T —1t)
oVT —t
. n (59) + (ra—r; = %) (T =) Iy —

oV —t

Proof. According to above computations, exchange rate satisfies (4.19) and then cor-

responding solution is like in (4.20) under the risk neutral measure (); whenever M,
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is taken as numeraire. Then the corresponding option value is:

V(F, K, t) = My(t)Eg, {M’ Ft]

My(T)
— ¢ raTDE, [W(F,K,T) | F)] since My(t) = e"
= e Ey, [(F— K,00" | F}] forf =T —t.
Use the ideas used in the proof of valuation formula for Black-Scholes-Merton;

V(F,K,t)=e " Eq, [W(F,K,T) | F]

e_TdE o 2
= h(F,K,T)e ¥ 2dy
V2T J o
e_rdi o 7y2/2
= D (F(T)— K)e dy
—a2
e*T‘df oo

= F(t)e(‘SF_%)er”\/;ye_yZﬂdy — Ke "N (dy)
. / F<t)6—rffe_71(025—20\/§y+y2)dy i Ke—rdi (dg)

= —/ F(t)e e "2 (—dv) — Ke "N (dy)

27 Vitds
1 [ - ;
= —2/ F(t)e e 2dy — Ke ™ N (dy)
T J—-c0

where v == oV — Yy, di:=dy+ oVt and
(%) + (ra=rr+%) 7
o/t

ln( )+ Td—T’f—ﬁ tN -
dy = <g\/g 2> —dy — Vi

dy =

=

The proof is completed with the back substitution of t = T — ¢. [

4.3.2 Foreign Exchange Option Pricing with delay

The work in [3] is extended for foreign exchange options with delay. Let domestic

money market account and foreign money market account namely M, and M satisfy
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the following equations;

dMy = Myrydt sothat My(t) = e"d
@ alt) (4.22)
de = Mf?“fdt so that Mf(t) = e"ft
where r, is the domestic risk free rate, and r is the foreign risk free rate. Let the

exchange rate satisfies the following SDDE;

dF = F(f(t — a)dt + g(F(t — b))dZp), t € [0,T] w2
F(t) = (1), t € [-L.0] |
on a complete probability space (€2, F, P) with filtration {F; }o<;<7, for any positive
constant fixed delays a and b so that L = max(a, b), the functions f and g are contin-
uous, Zp is one dimensional standard Brownian motion and ¢(t) : [-L,0] — R" is

Fo-measurable initial path.

Theorem 4.11. Let the exchange rate F(t) satisfy @.23) where the functions [ and
g satisfy the linear growth and local Lipschitz conditions. Then, it has a pathwise
unique solution F for the given initial path. Moreover, F(t) > 0 almost surely for all
t > 0 whenever the initial path p(t) > 0 forall t € [—L,0].

Proof. Since linear growth and local Lipschitz conditions are satisfied, solution for
the given SDDE exists according to Existence and Uniqueness theorem. To find that
solution process, we consider step by step solution for any ¢ € [0,!] where [ :=

min{a, b}. Writing the equation on that interval as

dF(t) = F(t)[f(¢i—a)dt + g(r—p)dZp(t)], t€0,]]
F(t) = ¢(t), te[-L,0]

We define the semimartingale process N for ¢ € [0, ] to be
t t
Nt = [ fowadu+ [ glunazew
0 0

so that the quadratic variation becomes

[N,N], = /Otg(tpub)Qdu.

Consequently, the SDDE can be rewritten as

dF(t) = F(t)dN(t), te 0,1,
F(t) =(t), tel-L,0]
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where the unique solution for any ¢ € [0, [] according to Doléans Dade exponent is

F(t) = ¢(0)exp | N(0) ~ 5, N1,

=¢mmmL[fwwwm+lbw%wwﬂw—élbwwwm]

Since the exponential function is always positive if ¢(¢) > 0 a.s., then F'(t) > 0 for
all t € [0,1]. Hence using method of steps, solution for any ¢ € [kl, (k + 1)l] where
(k + 1)l < T can be computed. O

To find the fair price formula for the foreign exchange option, we need the corre-
sponding risk neutral probability measure, namely (),;, whenever M, is numeraire

while showing that the market is arbitrage-free.

Theorem 4.12. Let M,(t), and M(t) be riskless assets satisfying and F(t) be
current exchange rate satisfying (@.23). If My(t) is taken as numeraire with measure

Qq generated by Brownian motion Wy(t) which is equal to,

f(F({t—a))+rf—r4
g(F(t—1))

AW, = dZp + dt,

for a nonzero function g then Q)4 is risk neutral probability measure and thus, market

is arbitrage-free.

F(t)My(t)
Ma(t)
mestic currency and X (¢) represents discounted price process for foreign exchange in

Proof. Define X (t) = , where F'(t)M(t) represents price in terms of do-

1 —
terms of the domestic currency. Note that d (M) = ﬂdt, then the corresponding
d d
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SDDE of X (t) is

X () = Mi(t)d (F()M;(8)) + F(£)M;(1)d ( Mj(t)> +d lFMf, MLJ
1 1
= L@ [My(t)dF (t) + F(t)dM(t)] + F(t)Mg(t)d (m)
= i MO FOLE( = a)
+ Mp(t)F(t)g(F(t — b))dZp(t) + F(t) My(t)rpdt]
+ F(t)M;(t) ]\Zé)dt
= PAP A = a) vy = vy + (P = )]

JUF(t—a))+ry—r4
g(F(t —0))

= X()g(F(t — b)) K ) dt + dZF(t)] .

f(F{t—a)+rf—r

g(F(t —b))
predictable process so that fOT |7(u)|*du < oo. Define

ari=ew{ ["awazs - 5 [ i)

so that Eg(Qr) = 1. Then, according to Girsanov theorem there exists probability

Define y(t) := — 4 for all ¢t € [0,T] which is F,_, measurable

measure (), defined by dQ)y = Q7d(Q and standard Brownian motion W, under @,
defined by

t
Wy(t) == Zp(t) —/ v(u)du forallt € [0,T].
0
This means:

f(F(t—a))+ry—r4

=d/ — =dZ 4.24
dWy(t) = dZp(t) — ~(t)dt = dZp + J(Ft—D)) dt, (4.24)

so that X (t) satisfies the following equation under )4:
dX(t) = X(t)g(F(t — b))dWy(t), (4.25)

which is a martingale process. Thus, ()4 is a risk neutral measure, and the market is

arbitrage-free. [

Arranging the SDDE satisfied by exchange rate /' under (), with

fF(t—a))+ry—r14
g(F(t —0))
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according to (4.24)) we obtain

dF(t) = F(t) [f(F(t — a))dt + g(F(t - b))dZp]

_ _a _ St —a)+rp—r4
= F(t) | F(F(t — a))dt + g(F(t — b)) |dW, ST a”

= F(t)[(ra — 7f) dt + g(F(t — b))dW,]
= F(t) [5pdt + g(F(t — b))dW,] (4.26)
for 5F = (Td — Tf).

Theorem 4.13. If the market satisfies the conditions defined in Theorem then it

is complete.

Proof. Let Y be any contingent claim which is an integrable nonnegative ftF mea-
surable random variable where F := FM 7. Note that .7-"f = FMi = FlVe = F7F for
any ¢ > 0 by definition of F’ and W. Consider Q -martingale process M (t) for any
t € [0, T] which is defined as

M(t) := Eg,(e ™Y | FF) = Eg, (e "TY | F}'4).

T
Then there exists F, * predictable process hq such that / hi(u)du < oo and
0

M(t) = EQd(e_”TY | fth) = EQd(e_”TY) + /t ho(u)dWa(u) (4.27)
0
by Martingale Representation theorem. Also, we can write the process M (t) as
M(t) = mpX(t) + 7y, (4.28)
where 7 (t) and 7y, (t) represent the amount of £ and My in a portfolio respectively.
Therefore, from (4.27)), (4.28)) and (@.25)) we get
dM (t) = ho(t)dW,(t)
= mpdX (1)
= mp X ()g(F(t —0))dWa(t).
This implies the hedging strategy for the portfolio {(7z(t), mas,(t)) | t € [0,T]} to

be

ho(t)
0 = X9 R b))

Ty (t) = M(t) = 7() X (1),
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Hence, the value of the portfolio at any time ¢ € [0, T is given by
V(t) = ma, (t)e " + mp(t)F(t) = e M(2),
for which we have

dV () = e"tdM(t) + M(t)d(e"")

= g, (t)d(e™) 4+ mp(t)dF (t),
so that {(7z(t), mar,(t)) | t € [0, 7]} is self-financing strategy and

V(T) = e " M(T) = et Xy

erdT

Consequently, Y is attainable and the market consisting of M(t)and F(t) is com-
plete. [

Before providing a valuation formula for the FX option under delay effect, we find a
solution for F'(¢) for any ¢ € [0, T'], using It6 formula, for In z, which satisfies

under risk neutral probability measure () :

InF(T) =InF(t) + /t F(lu)dF(u)Jr% /t F;—(lu)d[F,F]u

=InF(t) + /t [0pdu + g(F(u — b))dWy(u)] — % /t g(F(u—b))*du

=InF(t)+6p(T —1t) + /tTg(F(u —b))dW (u)

- %/t g(F(u — b))*du.

1

t:=T—t, m:= —§/t g(F(u —b))*du, o* ::/t g(F(u — b))*du.

T
We see that, / g(F(u—0b))dWy(u) 2 5Y for any Y ~ N(0,1) and
t

F(T) = F(t)e’rtem+oY . (4.29)
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Theorem 4.14. Consider a European call foreign exchange option under delay effect
where the current exchange rate, domestic money market account and foreign money
market account satisfy 4.22) and (@.23). For the predetermined exchange rate K
with the payoff function

hF,K,T)=(F(T)—- K,0)*,

the corresponding value of the option is:

e Casel: fortec [T —1,T);

V(F,K,t) = F(t)e " TYN (dy) — Ke " T=YN (dy), (4.30)
where
In (%) —m+ryl
dy =
o
In (& T
dQZH(K)+m+Td :dl—O'
o

L — ﬁ’(t)e_rf(T_t)
17 )
m=- g(F(t —b))"du
. t
o? = / g(F(t —b))*du.
t
e Case2: forT >landt <T —1;

3 1 (T T
V(F, K, t)=¢e""Eqg, [H (F(T— l)e_’"fT,—§/ deu,/ gzdu)‘ Ft} ,

T-1 T-1

(4.31)

where

1 T
w=—1+ / g(F(u— b))du,
2 Jry
T
o= [ gP(u= )2,
T—1
In (%) —w+r T
dl == 5
g
In (2L T
d2: H(K)+W+Td :dl—g.
g

46



Proof. Consider the value of this option with numeraire M, for any ¢ € [0, 7] using

#@.29), we calculate

V(F, K, t) = My(t)Eg, {MJ\Z—Z)T)‘ Ftl

— "By, [(e T F(T) — e K, 0) " | Ft}

= e”tEQd _(e_’“dTF(t)e‘stem’L”y —e K, 0)* | Ft}

_ erthQd _(x€m+ay _ e-?"dTK’ 0)4— ’ F(t):|

where f = T — t and z = F(t)e "¢ "', Note that F(T) is Fr_, measurable and

hence
H (z,m,0%) := Eg, ((e—’”dTF(T) — K 0)T | Froy)
— EQd <( rdTF o efrdTK’ 0)+>
= Ey, ((xem+”y e T 0) )
1 ~ Tty _ —’I‘dT + 4?2
— K., 0 vred
\/ﬂ r ) ) € Y,
since

$em+0y_€_rdTK>0:>1D$+m+0y> —TdT+an
=oy>—(Inz—InK +m+ryT)

ln( )+m+rdT
. )

= Y > —d2 = —
Therefore, further calculations yields:

H(a:,m,a ge~ 2 (-2mtovty )dy— 12 / e_TdTKe_yz/2dy
da

7L

re” 2 —2m—+oy+y? )dy Ke—rdTN(dQ)

“

5 (P route?) gy Ke " N(dy), for — 2m = o*

xe
\/ 2T /d2

e 2 (—dv) — Ke T N(dy), foro —y :==v
V 27T /0+d2

\/%/ ze " Pdv — Ke " TN (dy)

=aN (d)) — Ke "N (dy).
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Thus for any ¢ € [0, T, the value of foreign exchange option under delay effect with

M numeraire is;
V(F, K,t) = e Eg, [EQd (zemtoy — e T K) | By Ft] :
=e""Eg, [H(x,m,o0) | F],
where
H(xz,m,0%) =xN (dy) — Ke """ N (dy),
and
v = F(t)e et = F(t)e

= —%/t G(F(t - b))2du

_ 2

. g
o = / g(F(t —b))*du sothat m = —g
t

In (%) —m+r

d1: o
In (&) +m+rT
d2: n(K> i Id :dl—O'.
g

Case 1: fort € [T — [, T]; since H is Fr_;-measurable and Frr_; C F}, the valuation

formula becomes

V(F,K,t) =" Eq,(H(z,m,o?) | F})
="' [ (x, m, 02)
=" [xN (di) — Ke """ N (dy)]
= F(t)e N (dy) — Ke "N (dy).

Case 2: for " > [ and t < T — [, we consider to write F'(T") in (4.29) in terms of
F(T —1),i.e., instead of ¢ in that formula write 7" — I:

lnF(T):lnF(T—l)+/T ! dF(u)+1/T _—1d[F, F,

71 F(u) 2 Jry F2(u)
=InF(T—-1)+dr(l) + /Tl g(F(u—b))dWy(u)
-5 ] otP—vya
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T

Since / () dW(u) ~ N (0, /

T-1 T-1

g(F(u— b))Qdu), we have

/ o(F(u — 0)dWa(u) L oY

T-I1

forany Y ~ N(0,1) where

W= 1 /T g(F(u—b))*du, o?:= /T g(F(u — b))*du.

2 T—1 T—1
Then,
F(T) = F(T — )e’Flev oY,

Thus, corresponding value of option when 7" > [ and t < T' — [ becomes

B 1 T T
V(F, K, t) =" Eqg, [H (F(T— l)e_TfT,—ﬁ/ ggdu,/ g2du)‘ Ft}

T-1 T-1

where

H (v,w,0%) =N (di) — Ke""' N (dy)
v = F(T — l)e_’"fl

w— —1/ o(F(u — b))2dU

T-1

0% = / ' g(F(u — b))du

T—1
ln(%)—w—l—rdT
dy = .
2
dQZID(K)+w+rdT:d1_U
o

The proof is completed.

4.4 European Exchange Option Pricing with GBM

Exchange options allow investors to exchange one asset for another at a predeter-

mined date. These options are crucial in managing risks and optimizing returns in

dynamic market conditions. The value formula for the exchange options without de-

lay under the setting of the Black-Scholes-Merton model was derived by William
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Margrabe in 1978 [27]. Some extensions of the work without delay can be found in
[10L32]. To improve the model, delay terms are added to the system. As an extension
of Arriojas et al. [3]], Lin et al. in [22] provide a value formula for exchange options

under delay effect where assets follow GBM.

4.4.1 Exchange Option Pricing without delay
Consider a European call exchange option with asset S; and S5 so that exchange S,
with S} at maturity 7" with the terminal payoff
h(S1, S, T) = (S1(T) — So(T),0)*.
Let the assets satisfy the following SDEs under risk neutral probability measure:

dS; = 51[551dt + aldWﬂ, te [O,T],

51(0) = 51,

(4.32)
dSQ = 52[552dt - O'QdWQ], te [O,T],
SQ(O) = 89,

where 0g, = r —q; fori = 1, 2, r is risk free rate, q;, ¢ are the divident yields, o4, o9
are constant volatility and the Wiener processes 1/, and W5 are correlated with the

correlation coefficient p.

Theorem 4.15 (See [27]]). Consider the European call exchange option with two as-
sets, S1 and S, satisfying (4.32)). Then the corresponding value of the option for any
te[0,T)is

V(S1, 8o, t) = e 5 (1) p(dy) — e~ 288, (8)d(do), (4.33)
where
p In 28 +(e—a+3)i
1= = ;
oVi
In S8 + (2 — 1 — )1 -
dg = S2() — ! 2 = d1 — O'\/l_f.
Vi
Proof. First, we define S = g—; where the corresponding payoff function can be
rewritten

) = 5u(r) (34 - 1,0) = (1) (1) - 1.0y

50



and the corresponding SDE turns to satisfy
1 1
ds(t) = S—dSl + S1d <—) +d [Sl, —} . (4.34)
2

Hence the corresponding SDE for 1/S5(t), using Itd formula for 1/x can be obtained

as follows:

1 1 b1 L[t 2
50”50 0 ), s

—1 1
d (m) = %[55’26%: + O'Qde] + %

1
= 52<t> [(—(552 + O';) dt — O'QdWQ] .

so that

—_

oadt

—~

The SDE for S(t) = S1(t)/S2(t) according to (4.34) therefore satisfies:

1 1 -
dS(t) = —Si[0s,dt + o1dWi] + Sy —[(—0s, + o2)dt — oodWs] + pSion—2dt
SQ SQ 52

= S[((SSI - 55’2 43 0'5 - pO'lO'Q)dt + aldVVl — O'QdWQ]
= S[(és + O'g — ,00'10'2)dt + UldW1 F— O'QdWQ]
— S[agdt + 01[(dW1 — pO'th] — O'Q[(dWQ — O'th]]

where 0g := s, — ds, = ¢2 — ¢1. To find the corresponding value formula, we
consider the change of numeraire according to [16]. Taking Ss(t)e?! as numeraire
where

Sa(t) = 52(0)6(552*%%)””2W2(t)

by analytic solution of GBM, we see that

dQ ‘: So(t)et . _ e’T"%HagWg(t)
dQ 52(0)
is Radon Nikodym derivative where v = —o5 in Girsanov’s theorem and

dWl = dW1 — pO'gdt anddWQ = dW2 — O'th

are Brownian Motions under measure ()2 by Girsanov’s theorem. So S(t) satisfies

the following equation under ()5:
dS(t) = S[0gdt + o dWy — oodWs)].
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Note that O'ldWI — O'QdWQ ~ N(0, Jf + O'% — 2poy109). Then for any Wiener process
W
O'ldwl - O'QdWQ i odW

2. 2 2
where 0 := 0] + 05 — 2p0102. So,

dS(t) = S(t)[0sdt + cdW], where &5 =q — q.

Furthermore, for S(7T'), using It6 formula, we find that under (;

In S(T) = m S(t) + /t %dsm) _ % /t SQL(u)d 5. 9],
=1InS(t) + /T (0sdu + odW (u)) — %/T o2du

=InS(t) + <55 v %) (T =t)+ o (W(T) - W(t)),

where (W(T) — W (t)) ~ N (0,T —t). Then defining ¢ := T — ¢, and Y ~ N(0, 1)
we can write (W (T') — W (t)) < V1Y Thus
2

InS(T)=1InS(t) + <(55 — %) t+ O'\/;Y,

S(T) = S(t) exp { (55 - %2) it a\/?Y} .

Therefore, the corresponding exchange option value with numeraire Ss(¢)e?' be-
hT)

Sa(T)ee™ Ft}
= Sy(t)e #'Eq, [(S(T) = 1,0)" | Fy].

comes

V(Sl, SQ, t) = SQ(t)@qztEQz |:

Note also that

2

S(T)—1>o:>5(t)exp{(5s—%)£+a\/§1/}—1>o

2
= InS(t) + (55—%) i+oVIY >Inl=0

In S(t) + (55 - 7) i
oVt '

:>Y>—d222—
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Then, further calculations yields:

_ort
V(81 S2.1) = Salt)e ™ o, [(S(T) = 1.0)" | F]

. SQ (t)€652f

o o [ s - ey

_ Sy(t)ets [ 1 (65— 2)itoViy —y2/2
B ert LV 27 /d2 e ’ W o)
A0 Y .
== |75 /d2 S(t)e’ste dy — ¢ (d2)
So(t)e’s2t [ 1 o St —v2)2
== | /a\/ﬂ@ S(t)e’s'e (—dv) — ¢ (d2)
Sy (t)e%s2t

1 “ St —v2/2
== \/%/_OO S(t)e’ste dv — ¢(d2):|

RN -
= 2O [stwersiod) - o (4)]

= e [Si(e™o(dr) — Salt)e"™ o (d)]
= e 1S (1)p(dy) — e~ 288, (1) p(ds)

for the choice of v 1= oV/T — yand d; := 0\/Z~+ ds, where

S o2N\T
In S;Eg - (551 = (552 + 7)t

dl = = )
oVi
In S8 + (0s, — 05, — 0—2)2? -
d2 = 52(0) = 2 = dl - U\/g.
oVi
The proof is completed for this £ = T — t. O

Now, we consider adding the delay term to that model.

4.4.2 Exchange Option Pricing with delay

This section depends on the work in [22], which is deal with exchange option under
delay effect. We consider a market consisting of three assets B(t), S;(t) and Sy(t),
where they represent the prices of risk free assets and two underlying assets at time ¢,

respectively. They satisfy the following:

dSi(t) = Hn’S@'(t - ai)si(t)dt + gi(Si(t - bi))Si(t)dWi(t% te (07 T]»
Si(t) = wi(t), t € [ L3, 0],

(4.35)
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on a complete probability space (€2, F, P) with filtration F;, = {F}, F? }o<i<7 satis-

fing the usual conditions. The terms in the equations are:

e 7 is risk free rate,

e 1i; , a; and b; are positive constants, where L; = max{a;, b;} fori = 1, 2,
e pis the correlation coefficient between W;’s,

e g:R" — R* is a continuous function,

o the W, (t) are a one-dimensional standard Brownian motions for i = 1,2,

o ©,(t): [-L;,0] — R* is Fy-measurable random variables such that ¢;(0) > 0

a.s. fori =1, 2.

According to Arrijoes [3], the equation in (4.33)) has a unique solution
t
1
50 = 0o | [ (- ) = 35~ b))
0

n / 0:(Si(u — by))dWi(u)

for any ¢ € [0,l;] where [; = min{a;, b;} for i = 1,2. While using the induction
method, one can find a solution for any ¢ € [kl;, (k+ 1)l;] where (k+1); < T'. From
this equation, it is easily seen that if ¢;(¢) > 0 a.s, then S;(¢) > 0 forall t € [0, T].

With the multi-dimensional Girsanov theorem, stock price processes in ({.33)) can be

written as

dSi(t) = rSi(t)t + gi(Si(t — b;))Si(t)dWi(t), t e (0,77, (4.36)
Sit) = @ilt), t € [~Li0], |
where the IW; are standard Brownian motion under the risk neutral measure () with

correlation coefficient p.

Lemma 4.16. Ler S1(t) and Ss(t) be the prices of two underlying assets at time t
satisfying @.36). If So(t) is taken as a numeraire with the associated measure Q3
then
Wi(t) = Wi(t) = p fy 92(Ss(u = bo))du,
Wa(t) = Wa(t) = fy 92(Sa(u = bs))du,

define Brownian motions under (o equivalent to the risk neutral measure ().

(4.37)
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The proof can be found in [22]].

Defining S(t) = S;/Ss as the case in without delay and finding corresponding SDDE

as

1 1
dS( ) - S_Qd51 +51d (52) ‘|‘d |:Sl,—:| 5

we calculate the corresponding SDDE for 1/55(¢) using Ité6 formula for 1/z as fol-

lows:

1 1 t 1 t 9
5(t) 52(0) +/ S2(u )dSQ( u) + / S3(u )d[S%SQ]
Lt god V] 4 —— g2t

t) SQ(t) Sg(t)
1 2
= 5 (=7 +g3) dt — g2dW.
Sy(t) [( 92) g2 2}
for g1 = g1(S1(t — b)) and go = g2(S2(t — b2)). Furthermore,
1 1 S ar (—
dS(t) = = Si[rdt + g1dWh] + S1 = [(—7 + g3)dt — g2dWo] + p_lgl( 92) 4
SQ SQ SQ

=S[(r—r+ gg — pg1ge)dt + g1dWy — godWs).
= Sg1[(dW1 — pgadt] — go[(dWy — godt]]
= S[gidWy — god W],

where dWl = dW; — pgodt and dW2 := dWy — godt are Brownian Motions under
(22 according to Lemma

¢1dW; — godW, is normally distributed with mean 0 and variance ¢* where g2 :=

g2 + g3 — 2pgig2. Hence,
dS(t) = S(t)gdW

for W ~ N(0, 1) since G dWy — godWs 4 gdW.

The solution S(7") using It with In x can be found as follows:

I S(T) = m S(t) + /t %dsm)-% /t 521( 1S, 5],

T 1 /T
=1InS(¢) +/ gdW (u) — 5/ g*du
t t

so that



where ftT gdW (u) ~ N (0, ftT deu).
1 T t
Define z := S(t), m := —5/ g*du and 0* := / g*du so that 02> = —2m and for
t t
T
any Y ~ N(0,1), / gdW (u) £ 5Y. Thus
t
S(T) = ze™ Y, (4.38)

Theorem 4.17. Consider the European call exchange option under delay effect with
two assets, Sy and Ss, satisfying with the payoff function

h(S1, Sa,T) = (Sy(T) — So(T),0)".

Then the corresponding value of option for any t € [0,T]:

e Casel: fort € [T —1,T);

where
2
d, = Inz+m-+o
o
g, = mrEm

g

1 T t
withx = S(t), m = ~3 / g*du and 0* = / g*du.
t t

e Case2: forT >landt <T —I;

V (S, Sa,t) = Sa(t) Eg, {H(S(T—l),—%/T g*du, /T g*du)

T-1 T-1

3

(4.40)

where

H (y,w,0%) =7 (81) — ¢ (82)

Si(T —1)
—S(T—1) =222 """
Blzln’y+w+02
g
Invy 4+ w
b= 5 0
g
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Proof. Consider the value of that option with numeraire S(t);

V(S1,S2,t) = Sa(t)Eq, [%' Ftl
= Sy(t)Eq, [(S(T) —1,0)"|F] (4.41)

= S,()EQs | (we™ ™ —1,0)"

/|

by [@38) and note that L is F._, measurable, where | = min{b;,b,}. We then

Sa(T)
define:
H(x,m,o?) := Eg, <(mem+"y -1, 0)+|FT_1)

I€m+UY . 1, 0>+>

|
O
&
/N
—~

8

(a:em+ay -1, O)Jr 6_3’2/2dy

83

(memJ’”y — 1) e_yQ/Qdy

1 e
xem+(’ye_y2/2dy — —/ eV 2dy
V2T J_d,

ze~ T2ty — 6(dy))  since m = —02/2

3

e

1= 5= 5151515
3 ) ) ) 3 3

\b

ze 2 (—dv) — ¢ (dy) where v=0—y

ze 2 dy — ¢ (ds) where dy =o0+dy

—00

— ¢(da).

I
5
=
D

1

Therefore, the formula for the value of the option for any ¢ € (0,7") can be calculated

as follows:
V(S1,82,t) = $2(t) Ea, | (we™ 7 = 1,0) " |
= Sy(t)Eg, _EQQ <($em+"y - 1,0)+|FT—Z)’Ft}

)
VEo, :EQ2 ((:vem+°y -1, O)+) \Ft]
)
)

= Sy(t)Eq, [H(z,m,0”)|F}]

= S(t) B, (20 (dh) — ¢ (d2))| F} (442)
1 T t 1 2
where 7 = S(t) = S0, — _5/ Fdu. 02:/ Gdu, dy = T
t t
1
anddg = M :dl — 0.
o
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Case 1: for ¢t € [T — [, T]; since H is Fr_;-measurable and Frr_; C F,, #.42) turns
to be

V(Sy, Sy, t) = Sy(t)H(z,m, 0%)
= 55(t) [x¢ (d1) — & (da)]

where x = S(t) = g;gg and hence,

V(51, 52,t) = 51(1)¢ (di) — Sa2(t)¢ (d) -

Case 2: for T" > land t < T — [, consider to write S(7') in terms of S(7' — [) in

#@.47)) where
1 (T T
S(T) = S(T —1) exp{——/ gzdu+/ gdW(u)}.
2 Jr T-1
Defining the parameters
1 T T
’y:S(T—l),w:—/ g*du, 02:/ g*du
2 Jr T-1
we get:

V(S1, S.1) = Sa(t) Eo, [H(S(T—l),—%/T P du, /T o2du)

T—I1 T-1

3

= Ss(t)Eq,[H (v,w,0%)| F,

where
H (/77 w, 02) - ryqb (ﬂl) - (b (62)
Iny+w
B = ! +o
o
Iny+w
fr= -1
o
This completes the proof. ]
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CHAPTER 5

NUMERICAL IMPLEMENTATIONS

For numerical implementations and simulations we use Julia programming. Julia
is a high-level, high-performance programming language designed for technical and
numerical computing. It combines the ease of use of languages like Python with
the speed of languages like C. It has a growing ecosystem of packages for various
applications, including finance, statistics, data science, machine learning and more.
Moreover, fortunately it also includes packages for solving complex mathematical
problems, including SDEs and SDDEs. The "DifferentialEquations. j1",
along with its specialized sub-packages like "StochasticDiffEqg. j1" and

"StochasticDelayDiffEqg. j1", provides robust tools for researchers and prac-

titioners in various fields.

In this chapter, we use "St ochasticDelayDiffEq. j1" packages of Julia for the
implementations of our models that we provide in Chapter {| for pricing the options
and compare values obtained from MC while considering the convergence of MC
method. The value formulas for European options under delay effect is provided in
two cases, either 7 > T or 7 < T, where 7 represents the maximum positive time
delay. When we examine those formulas, we have an exact solution actually whenever
7 > T and the semi-closed formula for 7 < T'. In that semi-closed forms in equation

#.14), @.31) and #.40) we need to apply Monte Carlo to compute expectation of

function H; create nsim, number of paths in interval [0, 7' — (] and then for each path,
create nsims number of paths in the interval [T' — [, T] to obtain the corresponding
value. Thus, we use the Monte Carlo method from the very beginning whenever

7 < T'. In our implementations, we check the effect of initial path and delay term to
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model.

5.1 Implementation of European Vanilla Call Option with Delayed GBM

According to the work of Arrijoes et. al. in [3]], stock price under delay effect satisfies

the following SDDE;

dS(t) =rS(t)dt + g(S(t — 7))S(t)dW(t), t € (0,T], 5.0)
S(t) = o(t), t € [-7,0], '

under the risk neutral measure (). Take g(S(t — 7)) = 0 + Texp {M} SO
that whenever delay goes to zero, model turn to without delay case for SOI‘?IC positive
constant «. We use the parameter o which is taken to be & = S(0) in most cases to
control the effect of large or small asset prices. To see the effect of the delay term in
our model, we consider the multiplication of 7 with exp {#} so that this

multiplier is bounded and not so big.

We simulate 2!4 = 16384 sample paths of the stock with the choice of = 0.05, o =
0.2, dt = 0.01, T = 1.0, K = 1.0 for the valuation of European vanilla call option
and search for the effect of delay term, stock price and initial path on the valuation

process.

In Table we take delay terms as {0,0.001,0.1,0.25,0.5,1.0,1.25,1.5,2.0} and
initial paths as ¢y (t) = €', pa(t) = 2 — €' and ¢3(t) = 1.0. Note that initial paths
have different characteristics (increasing, decreasing and constant) but have the same
initial value, S(0) = 1.0. MC; represents the value obtained by using Monte Carlo
method, V; represents formula price obtained from (4.13)), P is the value of option for
the no-delay case and |C'I;| represents the length of confidence interval for the initial
paths ;(t) for i = 1,2,3. We consider the change in Monte Carlo prices, formula
prices (whenever 7 > T') and confidence intervals. It is seen that M C; is close to
V; value whenever the valuation formula is applicable for + = 1, 2, 3. Moreover for
the decreasing delay terms, the values M C;’s are getting closer to P the case without
delay and for too small delay terms M C; values are almost same since in that case

initial paths don’t have much effect on the process. However, the difference between

60



Table 5.1: Vanilla Call Option Values for Different Delays and Initial Paths
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M C; values increases whenever the delay term increases because of the effect of ini-
tial paths. Similarly, |C'I;| values are decreasing and getting almost equal to each
other with the decrease in delay terms.

In Figure[5.1] the price of the option for the different initial paths ¢; is obtained while
using the Monte Carlo method where delay terms are taken in [0,2]. Note that al-
though oo (t) > @3(t) > ¢i(t) for any t € [—7,0], we have MCy < MC3 < MC)
where M C; represents the Monte Carlo value in the path ¢; since ¢ is increasing, o
is decreasing and 3 is constant functions.

In Figure we consider the convergence of MC for the initial path ¢(¢) = 1.0. In
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Figure 5.1: European vanilla call option price change with respect to delay term for
the different choice of initial path
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Figure 5.2: Convergence of Monte Carlo for Vanilla Call Option

Figure [5.2a] and Figure Monte Carlo method for 7 = 1.5 and 7 = 0.001 con-
verges to formula price V' and exact value P without delay with shrinking confidence
intervals as the number of simulation increases {26,27, - - - , 214}, In Figure[5.2b) MC
price converges to our reference price 0.172, which is the option’s value according to

the Monte Carlo method with 2'* number of simulation.
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Similar results can also be obtained for the put options.

In Figure[5.3] the effect of the stock price on the put and call option is seen where the

——— MC Call Price (r=1.5)
Formula Call Price (r = 1.5)
1.00 Call Price (=0} s
~ = = Call Payoff s
MC Put Price (r - 1.5) e
Formula Put Price (r— 1.5) Sy
Put Price (= = 0) S
0.75 | Put Payoff S,

0.50

Put-Call Price

0.25

Dou L 1 1 ' 1 1
0.0 0.5 1.0 1.5 2.0
Stock Price

Figure 5.3: European vanilla call/put option prices change with respect to stock price

delay is taken as 1.5 and the initial path is ¢(t) = s¢ for s € [0.01,2.0]. Note that
formula prices and MC prices are almost the same. Prices of the options are bigger

whenever there is a pronounced delay.

5.2 Implementation of American Vanilla Call Option with Delayed GBM

Like in the implementation of European vanilla call option with delay, stock price
—S(t —
satisfies (3.1) where g(S(t — 7)) = 0 + Texp {M . We simulate 2'* =
«

16384 sample path of the stock with the choice of r = 0.05, 0 = 0.2, dt = 0.01, T' =
1.0, K = 1.0, a = S(0) for the valuation and search for the effect of delay term and

stock price on the valuation process for the initial path ¢(t) = S(0).

American Put Price (r - 1.5)
American Put Price (r - 0.5)
American Put Price = — 0.0)
European Put Price (r - 0)

American Call Price (- 1.5)
American Call Frice {r - 0.5)

American Call Price -~ 0.0) /
European Call Price ( — i)

Call Price
AN
Put Price
°
g

Stock Price Stock Price

(a) (b)
Figure 5.4: American vanilla call/put option prices change with respect to stock price
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From the Figure[5.4] the value of the options increases with the increase in delay term.
If the underlying asset does not pay dividends, the American call option will never be
exercised before expiration. That’s why its value is the same as the European call op-
tion. Since we take dividend yield ¢ = 0 in our model, the American call option value
is equal to the European call option value for all stock prices in Figure [5.4al whenever
7 = 0. However, the American put value is greater than or equal to the European
put value for 7 = 0 in Figure [5.4b|because of the possibility of early exercise. If the
underlying asset price drops significantly, the put holder may prefer to sell it rather

than wait until expiration.

5.3 Implementation of European FX Call Option with Delayed GBM

According to the previous chapter current exchange rate ' satisfies the following

SDDE under risk neutral probability measure ();

2
o

=

S~—
|

F(t) [0pdt + g(F(t —7))dWy], t € [0,T]
F(t) = ¢(t), t € [-T,0]

_F(t —
where dp = (rq — ry). Again take g(F(t — 7)) = 0 + Texp {M} and
(0]
simulate 2'* = 16384 sample paths with the choice of 7y = 0.05, 74 = 0.06, 0 =
0.2, dt = 0.01, T = 1.0, F(0) = 1.0, K = 1.0, a = F(0).

We examine the effect of delay term and initial path on the valuation process while
making different choices for them. Moreover, the convergence of the Monte Carlo
method is considered while increasing the number of simulations up to 2'4.

In Figure [5.5] the effect of the delay term and initial paths are seen. As in European
Vanilla call option implementation, delay terms are taken in [0, 2] and initial paths
are taken as ¢y (t) = €', po(t) = 2 — €' and @3(t) = 1.0 which have different
characteristic but same initial value. It is seen that whenever the delay term gets
bigger, the difference between MC prices increases. Moreover, the characteristic of

the initial path in the interval [—7, 0] affects the MC price characteristic in [0, T7].

In Figure we consider the convergence of MC for the initial path p(t) = S(0) =
1.0. In Figure and Figure convergence of method for 7 = 1.5 and 7 =
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Figure 5.5: European FX call option price change with respect to delay term for the
different choice of initial path
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Figure 5.6: Convergence of Monte Carlo for FX Call Option

0.001 to formula price V' and exact value P without delay respectively are shown

by drawing confidence intervals with different number of simulation. In Figure [5.6b]

convergence of the method is clear when number of simulation 24, the reference

price 0.148 is considered.
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5.4 Implementation of European Exchange Call Option with Delayed GBM

For the Exchange option, assets satisfy the following SDDE:s:

dS;(t) = rSi(t)dt + gi(Si(t — b)) Si(H)dWi(t), t € (0,7,
Si(t) = @i(t), t € [=Li, 0],

where L; = min{a;, b;} for i = 1,2 under risk neutral probability measure (). We

take g;(Si(t — b;)) = o; + b; exp { so that whenever delay terms go to

i
zero diffusion term g; — o; and model turns to without delay case.

We simulate 2'* = 16384 sample paths of the stock prices again while taking r =
0.05, 01 = 02,09 = 0.21,p = 0,dt = 0.01, T = 1.0, S1(0) = 1.0, S(0) =
1.0, an = 51(0), az = S2(0).

0.300
0.7 0.275
0.250
0.225

0.200

MC Price

0.175

0.150

0.125
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Figure 5.7: European exchange call option price change with respect to delay term
for the different choice of initial path

In Figure [5.7] the price of the option for the different initial paths is obtained while
using the Monte Carlo method where delay terms are taken in [0, 2] x [0, 2] again. It

is seen that MCy < MC3 < MCY where MC; represents the Monte Carlo price in
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the path ; although ¢1(t) < p3(t) < o(t) forany ¢t € [—L;, 0].

or \ @ MC Price with 7 [L5, 15 o5

| |
Formula Price of Exchange Call option

@ MC Price with = — [0.5,0.5]

Price is 0.215

0.4+

]}}}Ei | l{}{}i;

Price, CI
e
o
Price, CI
o
w

e
S

02+

a
N

0.1

L] 8 10 12 14 L] 8 10 12 14
Number of Simulation — 2" Number of Simulation — 2"

@7=[1515>T (b) 7 =1[0.5,0.5] < T

025 @ MC Price with 7 [0.001, 0.001]
Price of Exchange Option without delay

Price, CI
o
o
]

}{}iii

6 8

10 12 14
Number of Simulation — 2°

(c) T = [0.001,0.001] ~ 0

Figure 5.8: Convergence of Monte Carlo for Exchange Call Option

In Figure[5.8] we consider the convergence of MC for the initial path ¢5(¢) = [1.0, 1.0].
The results are same as the other options, Monte Carlo method converges with the in-
crease in number of simulation. In Figure [5.8a) and Figure MC prices converge
to the formula price V' and value P without delay respectively. Moreover, in Fig-

ure [5.8b] MC price converges to the reference price 0.215.
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CHAPTER 6

HESTON MODEL FOR PRICING THE EUROPEAN VANILLA
OPTION

The Heston model is widely used for option pricing and financial derivatives. It im-
proves the Black-Schole-Merton model by allowing for stochastic volatility, better
capturing market phenomena such as volatility clustering and the volatility smile. It
considers the non-log normal distribution of the asset returns and the leverage effect.
Since there is no closed-form solution, option pricing requires numerical methods,
such as finite difference methods or Monte Carlo simulations. This section consid-
ers the stochastic volatility without delay and provides its partial differential equation
(PDE). Then, we consider adding delay terms into the model to see the effect of past
information, and also, their PDEs are provided. [18, 11} (37} 20, 36]] are some refer-

ences.

6.1 European Vanilla Option Pricing without delay under Heston model

The Heston stochastic volatility model is defined by the following stochastic process:

dS(t) = pS(t)dt + /v ()S(t)dZy(t),
dv(t) = K(0 — v(t))dt + o\/v(t)dZs(t), 6.1)
dZ,(t)dZs(t) = pdt,

where

e 7, (t) is the standard Brownian motion of the asset price,

e 7,(t) is the standard Brownian motion of the asset’s price variance,
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e pis correlation coefficient,

e v(t) is volatility of the asset price,

e 0o is the volatility of the volatility v(t),

e i is a deterministic drift term,

e 0 is the long-term price variance,

e [{ is the rate of reversion to the long-term price variance.
Note that the SDE in (6.1)) is under any probability measure P. When we search the
corresponding partial differential equation (PDE) satisfied by (6.1)), we firstly write

the system under risk neutral probability measure (). In general, if X (¢) satisfies the

following SDE under the probability measure P;
dX(t) = f(t, X(t))dt + g(t, X(t))dZ(t)
then the corresponding SDE under () for the process X is
dX(t) = [f(t, X (1)) = Ag(t, X (t))]dt + g(t, X (t))dW ()

where \ is market price of risk, W is standard Brownian motion under (). So, the
stock price process S(t) and volatility process v(t) in (6.1)) satisfy the following pro-

cesses under martingale measure ();

dS(t) = [MS(t) - Am/u(tw(t)] dt + /v () S(£)dW, (1)
du(t) = [K(e — (1)), —Ago—\/u(t)} dt + o /(D) dWs(t),
where Wy (t), Wy(t) are standard Brownian motion under () and \;, Ay are market

w—=r
v(t)

by Girsanov’s theorem. Then the stock price process S(t) satisfies the following

price of risk. From the Black-Scholes-Merton model, it is known that \; =

process under ();

dt + /v ()S(t)dW, (1),

ds(t) = [uS(t) - %\/uw(w
= rS()dt + /() S(t)dWi(t),
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where 7 is the risk free interest rate. So, our Heston model under risk neutral proba-

bility measure () is

dS(t) = rS(t)dt + /v () S(t)dWi(t),
dv(t) = [K(e () — )\Qaw/y(t)] dt + /v dWs (1), (6.2)

The corresponding value of European call and put options with strike price K and

)
)

There is no closed-form solution of S(7") using stochastic calculus; we cannot solve

maturity 7" is given by

Vo(t) = e Eg (<S(T) e

(K = 5(7),0)"

rT

Vp(t) = " Eg (

(&

this valuation process explicitly. So, our question is what is the PDE satisfied by
this system to solve this system explicitly and find the pricing formula using the PDE
approach. Let the fair price satisfied by this system be V (¢, .S, v). Then the discounted
price under measure () becomes f/(t, S,v) = e "V (t,5,v) since discounted prices
are martingale under risk neutral measure. Then, with the help of Itd formula we

obtain

dV(t) = —re "Vdt +e " dV

oV oV oV 1 0%V
Tt —rt |77 i i - 2
— —re "Vt + e [8tdt+asds+aydwwSzySd[S,S]

+ %a;TZd v, v] + %d[u, S]}
_ ot |:—7“V i %_‘t/ + %%VSQ + %?;TZGQV + aaj(;/spauS} dt
+ Z—‘S/ds + Z—Zdy
=T [ —rV + 88—‘; + %%VSQ + %ZQTZJQV + aa;‘;spm/s
+ g_grs + g—‘:KA dt + g—gﬁdel + g—‘:ﬁasz

where K := K (0 — v) — A\y0+/v(t) for simplicity. Since discounted asset price is a
martingale, we obtain the following equation:

8_V + a_VTS + 182_‘/”52 + a_VK + 182_‘/02” + aQV
ot ' 9S 2082 o202 ovdS

povS —rV =0
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So, the corresponding PDE and boundary conditions of the equation (6.2)) are:

ooV APV, OV % Pei%

A T - K 52y — =
or Tas TS T Tz guasrovS — TV =0
V(T,S,v) = (S — K)*

V(t,0,v) =0

. ov

limg oo %(t, Sv)=1

lim, o, V(t,S,v) =S

ov(t,S,0) 0V (t,S,0) oV (t,S,0)
R R »

However, there is no analytical solution for this PDE, either.

Ky+—rV(t,S,0) = 0.

Since no closed-form solutions exist, we will use numerical methods and the Monte

Carlo method to find the approximate value of the option.

6.2 European Vanilla Option Pricing with delay under Heston model

Let 71 represents the time delay for the stock price .S and 7, represents the time delay
for the volatility of the asset price v for the Heston model so that L = max{r, 7»}.
The terms r, k, A, o, p, Wi and W, are same as without delay case. g;’s are con-
tinuous functions, ¢ (t) is initial path for S and ¢, (t) is initial path for v. More on
Heston model and its use in option pricing can be found in [36} 20]. We consider
the addition of delay into the diffusion term of the model in a multiplicative way,
like in delayed GBM, since the direct impact of delay in the drift is not seen under
risk neutral probability measure (). Below, three different ways of adding delay are

considered:

e Delayed Heston Model-1: We create our delayed Heston model-1 while adding

stock price delay into stock price process and volatility delay into volatility pro-

cess. The processes satisfy the following SDDEs:

dS(t) = rS(t)dt + \/ t)S(t)g1(S(t — Tl))dwl( );
dv(t) = [ (60— — AoV } dt + o+/v(t)ga(v(t — 72))dWs(t),
p(t) = (901(?5)7902(15))7 te[-L,0]
dWi(t)dWs(t) = pdt.
(6.3)
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e Delayed Heston Model-2: Consider the addition of volatility delay into stock

price process and stock price delay into volatility process. The corresponding

processes satisfy the following SDDE:s:

dS(t) = rS(t)dt + /v()S(t)g2(v(t — 72))dWi (1),
dv(t) = [m(@ — () = Aoy /V(t)] dt + /v (®)g1(S(t — 1)) dWa(t),
o(t) = (pa(t), a(t)), t € [-L,0]
AW, (£)dWa(t) = pdt.
(6.4)

e Delayed Heston Model-3: Consider just one time delay, the addition of volatil-

ity delay into stock price process. The corresponding processes satisfy the fol-

lowing SDDEs:

AS(t) = rS()dt + \/UDS () galw(t — 7)) AW (1),
du(t) = [H(e — () - )\a\/y(t)} dt + o /v D dWs(t),
e(t) = (¢1(t),1(0)), t € [-7,0]

AW, (£)dWs(t) = pdt.

(6.5)

Since it is not possible to obtain an analytical solution for S and the value process in
those three cases, we will use the Monte Carlo method to find the approximate value

of the option and the effect of delay terms in those models.

6.3 Numerical Implementation of Delayed Heston Model

Since there is no closed-form solution for the Heston model, we consider just the
Monte Carlo method to find the corresponding value for the different values of 7’s.

We choose our parameters to be the same as the example without delay case in [34].

We simulate 2! path of the stock price and volatility for the choice of r = 0.03, k =
5.0,0 = 0.05,0 = 0.5, Ay = 0,p = =08, T = 0.5, S(0) = 100.0, »(0) =
0.05, K = 100.0, dt = 0.001 and different values of 7’s in [0, 1.0] x [0, 1.0].

In Figure [6.1] we see the effect of the initial path and delay terms for pricing if the
processes satisfy (6.3). Whenever delay terms get bigger, the difference between

option prices with different initial paths differs. Like in the European vanilla call
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Figure 6.1: European vanilla call option price change with respect to delay term for
the different choice of initial path with delayed Heston model-1

option with delayed GBM, the price of the option is highest whenever the initial path
is increasing Figure [6.1a]
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Figure 6.2: European vanilla call option price with delayed Heston model-1 and
model-2 change with respect to delay term for the constant initial path o(t) =

5(0), v(0)].

In Figure[6.2] we see the effect of model and delay terms for pricing. In both models,

the MC prices increase with the increase in 7 and 75. The surface in Figure [6.24]
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shows the nearly linear trend in the increasing prices, which implies a less volatile
response to changes in delay. However, the MC price surface in Figure [6.2blhas more
varied curvature. The surface is not as smooth as in Figure [6.2a which implies more
sensitivity to changes in delay.

We take increasing initial path ¢y (t) = [S(0)e, v(0)e!], decreasing initial path o (t) =

MC Price with ¥, y
MC Price with S
MC Price with ] /

MC Price

0.00 0.25 0.50 0.75 1.00
Ta

Figure 6.3: European vanilla call option price change with respect to delay term for
the different choice of initial path with delayed Heston model-3

[S(0)(2—€"), v(0)(2—e")] and constant initial path ¢3(¢) = [S(0), v(0)] in Figure[6.3]
for the delayed Heston model-3 in (6.5)). The difference between MC prices decreases
whenever the delay term decreases. Moreover, the characteristic of the initial path
gets more important if the delay term is bigger since the effect of it is seen more in

that case.

The length of confidence intervals is getting smaller with the increase in a number of

simulations in Figure [6.4] which verifies the convergence of the Monte Carlo method.
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CHAPTER 7

CONCLUSION

This thesis aims to contribute to the growing body of knowledge on SDDEs and their

applications in financial modeling.

In Chapter 2, the general form of equations under delay effect, conditions for ex-
istence and uniqueness of the solution, and the way of solving these equations are

considered.

Because of the difficulty in finding analytical solutions, numerical methods, namely
Euler Maruyama and Milstein methods, are considered in Chapter 3. Moreover, to

see the effectiveness of these methods, an example is provided.

In Chapter 4, option pricing with delayed GBM, which is our motivation to work
with SDDE, is examined for European and American call types of vanilla options,
European foreign exchange options, and European exchange options with and without

delays.

In Chapter 5, implementations of these models using Julia programming are consid-
ered. A comparison of option prices for the different delays is made, and convergence

in the Monte Carlo method while considering confidence intervals is examined.

In Chapter 6, we consider the Heston model with and without delay cases. Since it
does not have closed form solution, numerical methods are considered for the pricing

of European Vanilla call option.

For future works, parameter estimation can be a challenging work for practitioners to

mimic the market parameters in question for more realistic applications.
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APPENDIX A

PROOF OF SOME THEOREMS

Theorem A.1 (Theorem 4 in [3l]). Assume that the stock price S satisfies equation
@.4) with conditions p(0) > 0 and g(u) # 0 whenever v # 0. Let r > 0 be the
risk free rate and () be the risk neutral probability measure. Let V (t) be the pricing
formula of a European call option which is written on the stock S with strike price K

and maturity time 'I'. Then there exist two cases for the value of the option:

e Forallt € [T —1,T] for | = min{a, b}:

V(t) = S(t)p(Bi(t) — Ke " T (Bs(1)),

where
8, — log( )+ ft r+ 29(S(u —b))*)du
\/ft S(u—b))2du 7
g — log(%) + J, (r — 59(S(u — b))*)du

\/ft S(u —b))2du

o forallT >landt <T —1:

V(t)=e"Eq (H (e""(T‘”S(T —1), —% / ' 9(S(u — b))?du,

T-1
).

/TZ g(S(u — b))zdu)

H(z,m,0?) = 2™ 2¢(oy (z,m, 0)) — Ke T p(ag(x, m, o)),

where

and

S

ar(z,m,o) = [log (%) + 7T +m+ 2|,
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1
ag(x,m,o) = — [log (K) + 1T+ m}
o

foro,xr € RT, meR.

The hedging strategy fort € [T — 1, T) is given by

ms(t) = ¢(Bi(t)),
mp(t) = —Ke " T 9(By(1)).

Proof. The corresponding equation of (#.4) under risk neutral probability measure )

is:

%_rdtJrg(S(t—b))dW() 0<t<T

S(t
S(t) =) tel-L,0]
where L = max{a, b}. According to It6 formula for In = corresponding solution is;
sy =sso)+ [ Lastw+ [ SLalss),
InS(t) =1In S(0) + /0 %U)S(u) [rdu + g(S(u—0))dW (u)]
I e 2
+ 5/0 52<u>5 (u)g(S(u — b)) du.

Thus, we find the corresponding solution as

S(t exp[/rdu—i—/ S(u— b)) ()—%/Otg(S(u—b))Qdu]

Using Markow property, it can be written as

1

1 /t L (S b))2du]

S(T) = S(t) exp MT rdu + /tTg(S(u )W ()

= S(t)e" T exp MTg(S(u —))dW (u) — % /tTg(S(u — b))Qdu} :
Since /t L (S — D)W () ~ N (0, /t " (S b))Qdu), we define

T _ T
=Tt ot [ oS- bPde and mi= [ glSte- b
t t
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T
Thus, for any Y ~ N(0,1), we get / g(S(u—10))dW (u) 2 5Y. So,
t

S(T) = S(t)etem*ov
e—rTs(T) — e—rTerfs(t>em+Jy
S(T) = e S (t)e™ Y = S(t)e™ V. (A.1)

We consider the corresponding value of the European call option with the risk free

asset, B(t) = €', as numeraire ;

visio.0 = B)Eg | SO |
. (S(T) - K,0)"

=€ tEQ orT Ft
. +

= ¢E <S(T) e TK, o) ‘ Ft}
. +

= " (S(t)emw K —’“T,0> Ft} .
_ + ~ +

The discounted payoff function (5(T) TK’ 0) = (S (T) — Ke™T| O) is always

67’

Fr_; measurable, since ¢ € [0, 7] impliest — b € [—b,T — b] C [-b,T — ] where
| = min{a, b}. So, for z := S(t)

H(z,m,o0?) = Eg [(xemﬂ’y — Ke*TT,O)Jr | FT_l)

= Eq [(xeerUY — Ke™T, 0) +]

1 00
— _27T / (Iem—i—ay . Kve—'rT’ 0)"‘ €_y2/2dy
where

2™t — Ke T > 0= ze™tY > Ke T

=hez+m+oy>InK —1rT
In (L) +rT+m
o

:>y>—6212—
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This implies

1 o 2
H(z,m,o?) = Nor /5 (ze™toY — Ke’TT) eV 2dy
—pP2

Therefore, the value of the European call option under the Black-Scholes-Merton

Ke’rTe’yz/Qdy

1 /OO 1
V21 J g, V2 J g,
]_ /OO —(0—9)2 —rT . 2
= — re~ 2z dy— Ke " ¢(fy) since m=—0"/2
V21—,

2
pemtoy—y /2dy _

= \/% /_OO xe*u2/2(_du) _ K€7TT¢(B2> for u=o — y
T Joip,
o™
= E/ xe v /Qdu o KB_TT¢(/B2) for Bl ot 52
=2¢(81) — Ke " ¢(5).

setting for any ¢ € [0, T] with delay effect is;

V(S,t) =

e Eg _(S(T) - Ke_TT,O)+ Ft}

N +
=e"Eg | Eg {(S(T) — Ke T, 0) ’FT_Z] ‘Ft} , by Tower property

where

¢ Eq | Eq [(S(T) ~ KeT,0) T

" Eg [H(z,m,0%) | F]

g

m:—g/t g*(S(u — b))du

T
o? = / g*(S(u — b))du so that m = —o?/2
t

In (L) +m+rT +0?
B =

g

52: ln(?) %(—jm—H"T:ﬁl_a.
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Case 1: When t € [T — [, T]; since H is Frp_;-measurable and Fr_; C F; turn to;
V(t)=e"Eq (H(z,m,0%) | F)
= e H(x,m,0?)
=" S0 (8) = Ke ™o (3)]
= S(1)6 (B1) — Ke "0 (8a) .

Case 2: when 7' > [ and t < T'— [, then consider to write S(7") in terms of S(T" —1);

S(T) = S5(T — 1) exp UT g(S(u —b)dW (u) — l/T g(S(u — b))gdu}

T-1 2 T-1

V(t) = e Eq (H (S(T ), —% /T a(S(u - b))?du,/T o(S(u— b))?du>

)

T—1 T-I
H (z,m,0%) = z¢ (B1) — Ke ¢ ()
x=S8(T -1
-1 [T )
m= — 9 (S(u —b))du
2 Jro

T
02:/ ¢@*S(u—0b))du st m=—0c?/2.

T—1

ln(%) +m+rT + o2
o =

o

In(%)+m-+rT

g — (K) = 51 — 0.
o

This completes the proof. U
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