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OZET

KAYMA DEFORMASYONLU FONKSIYONEL DERECELENDIRILMIS
NANOKIRISLERIN YEREL OLMAYAN SONLU ELEMANLAR
FORMULASYONU IiLE MEKANIK ANALIZLERI

Hayri Metin NUMANOGLU
Doktora Tezi, insaat Miihendisligi Anabilim Dal
Damsman: Prof. Dr. Omer CIVALEK
Ekim 2024; 204 sayfa

Son 20 yillik dénemde nano ve mikro 6l¢ek teknolojisindeki gelismelerin dikkat
cekmesinden dolay1 bu dlgekteki yap1 ve sistemlerin tasarimi 6nem kazanmistir. Nano ve
mikro Olgekli yapilarin mekanik davraniglari, yapmin karakteristik i¢ uzunluklar
nedeniyle klasik elastisite teorileri ile anlasilamamaktadir ve bu sorunun ¢6zlimii igin
yapimin boyut etkisine bagli cesitli yiiksek mertebeden siirekli ortam formiilasyonlari
geligtirilmistir. Ayrica, yapisal elemanlarda kayma etkisine dayanan c¢oziimleme
sonuclarinin yapimin mekanik davranisi hakkinda daha gergek¢i sonuglar verdigi
bilinmektedir. Bu diislinceyle, bu tez calismasi tek dogrultulu, kiiciik olcekli ve
fonksiyonel dereceli yapilarin kayma etkisine ve yerel olmayan elastisite teorisine
dayanan titresim davranislarini arastirmaktadir.

Ik olarak, nano &lgekli fonksiyonel dereceli kirislerin temel kayma etkisini
aciklayan Timoshenko kiris teorisine gore yerel olmayan titresim analizi konu alinmistir.
Ardindan, eksenel ¢ubuklarda kayma etkisini g6z oniine alan Love-Bishop ¢ubuk teorisi
kullanilarak bahsi edilen yapisal eleman modelinin boyuna serbest titresimi ¢calisilmistir.
Bahsi edilen yapisal elemanlarin sicaklik ve/veya elastik zemin gibi ¢evresel etkiler
altinda oldugu varsayilmistir. Bunlara ek olarak, egilme etkileri kayma deformasyonuna
dayanan fonksiyonel derecelendirilmis nanodlgekli cergevelerin serbest titresimi de
incelenmistir. Mekanik davranisin daha dogru belirlenebilmesi igin fonksiyonel
derecelendirilmis nanoyapinin tarafsiz ekseni de goz 6nitinde bulundurulmustur.

Mekanik analizlerin tamaminda yonetici denklemler varyasyon cebrine dayali
elde edilmistir. Probleme etkiyen parametrelerin oldukca fazla olmasi analitik ¢6ziimii
zorlastirdigindan, bir sonlu eleman formiilasyonu gelistirilmistir ve mekanik analizin
¢oziimiinde kullanilmigtir. Genel sonlu eleman analizi bazi yerel olmayan titresim
analizlerinde uygun olmayan sonuglar verdiginden modifiye edilmistir.

Sayisal uygulamalar i¢in, bahsi edilen atomik 6l¢ekli yap1 modellerinin serbest
titresim frekanslar farkli parametreler altinda tablo ve grafikler ile sunulmustur. Sayisal
sonuglarin detayli tartismalar1 verilmistir ve son olarak elde edilen en genel sonuglar
siralanmugtir. Ozellikle tez kapsaminda gelistirilmis sonlu eleman formiilasyonlarmin
analitik ¢oziimler ve dnceki literatiir aragtirmalari ile kiyaslamalar1 yapildiginda oldukca
basarili sonuglar verdigi gozlemlenmistir. Bu tez ¢aligsmasi ile nano ve mikro 6lcekli cihaz
ve sistemlerin konfiglirasyonunda rol oynayan tek dogrultulu kompozit yapilarin farklh



etkiler altindaki mekanik davranislarinin sayisal bir modelleme araciligiyla anlagilmasi
amaglanmstir.

ANAHTAR KELIMELER: Fonksiyonel derecelendirilmis malzeme, Kiris, Sonlu
elemanlar, Titresim, Yerel olmayan elastisite.
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ABSTRACT

MECHANICAL ANALYSES OF SHEAR DEFORMABLE FUNCTIONALLY
GRADED NANOBEAMS BY USING NONLOCAL FINITE ELEMENT
FORMULATION

Hayri Metin NUMANOGLU
PhD Thesis in Civil Engineering
Supervisor: Prof. Dr. Omer CIVALEK
October 2024; 204 pages

In the last 20 years, the design of structures and systems at this scale has gained
importance since the developments at the nano/micro scale technology remarked. The
mechanical behaviours of nano and micro scaled structures are not understood by using
classical elasticity theory due to characteristic internal lengths of structure. Therefore,
various higher-order continuum mechanics formulations depending on the size-effect of
nano/micro structure are developed. Additionally, it is known that the results of analysis
based on the shear effect in the structural elements present more realistic results about the
mechanical behavior of structure. With this in motivation, this thesis study has
investigated the shear-dependent and atomic size-dependent vibrational behavior of one-
dimensional, small-scaled, and functionally graded structures. The nonlocal elasticity
theory has been formulated to consider the atomic size dependency.

Firstly, nonlocal vibration analysis of functionally graded nanobeams according
to Timoshenko beam theory, which is fundamental shear deformable beam theory, has
been examined. Then, the longitudinal free vibration of related structural element model
has been studied by employing the Love-Bishop rod theory that considers the shear effect
in the axial rods. It is assumed that the related structural element model subjected to a
thermal and/or elastic environment. In addition to these, free vibration of functionally
graded nanoframes whose bending effects are based on fundamental shear deformation
have been also investigated. In order to determine the mechanical behavior more
accurately, the neutral axis of the functionally graded nanostructure has also been
considered.

In the whole of mechanical analyses, the governing equations have been obtained
based on the variational algebra. Since the large number of parameters affecting the
problem complicates the analytical solution, a finite element formulation has been
developed and used in the solution of mechanical analysis. The general formulation of
finite element analysis has been modified since it gives inappropriate results for some
nonlocal mechanical analysis problems.

For the numerical applications, free vibration frequencies of related structures
have been presented with tables and graphics under different parameters. Detailed
discussions of numerical results are given and finally, the most general results are
outlined. When the comparisons are performed with analytical solutions and previous
literature research, it has been observed that the finite element formulations developed



within the scope of thesis has attained very successful results. With this thesis study, it is
aimed to understand the mechanical behavior under different effects of one-dimensional
composite structures that play a role in the configuration of nano and micro-scale devices
and systems by means of a numerical modelling.

KEYWORDS: Beam, Finite elements, Functionally graded material, Nonlocal elasticity,
Vibration.
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ONSOZ

Insanlarin kullanima aldiklar1 cihaz ve sistemler giinden giine boyut olarak
kiiciiliirken biiyiik islemci hizlarina ve kapasitelerine ulagsmaktadir. Biitiin bu teknolojik
kazanimlarin  arkasinda nano-elektro-mekanik sistem (NEMS) teknolojisinin
caligmalarinin bulundugu reddedilemez bir gergektir. Bir veya iki boyutlu nano 6lg¢ekli
bilesenler bu sistemlerin temel yapitaslarini teskil ederler. Ornegin atomik kuvvet
mikroskobu, gaz sensorii, rezonator, transistor, elektronik devresi gibi bir¢ok sistemde,
sistemin belirlenmis gorevini yapmasini saglayan nanotiip, nanotel, nanogubuk,
nanoplaka gibi esas bilesenlerle karsilasilir. Bu sistemlerin islevselligi i¢in, maruz kalinan
cesitli dis etmenler gozetilerek sistemin dogru bir tasariminin yapilabilmesi, bunun igin
dogru bir mekanik modelle analiz edilebiliyor olmasi elzemdir.

Atomik 6l¢ekli yapilarin mekanik davranislarimin 6lglimii igin gergeklestirilen
deney ve simiilasyonlarin verimsiz siire¢lere sebep olmasi, arastirmacilart teorik
arastirmalara yoneltmistir. Buna gore bilimsel literatiirde yiiksek mertebeden elastisite
teorileri olarak anilan atomik boyut etkili mekanik analiz yaklagimlar1 kullanilarak ¢esitli
nano malzemelerin gok ¢esitli mekanik davraniglari ¢oziimlenebilmistir.

Birden fazla malzemeden olusan ve kendini olusturan malzemelerin tek basina
kullanimina kiyasla ¢esitli avantajlar saglayan kompozit malzeme teknolojisi gliniimiize
degin hizla ilerleyen bir diger miihendislik disiplinidir. Kompozit malzemelerin makro
anlamda birgok basarili uygulamaya sahip olmasinin devaminda, nano olgekteki bazi
kullanim 6rnekleri nedeniyle buinlarin mekanik analizleri ilgi ¢ekmis olup, bu husus
yaklagik son on yillik siirecte bilimsel literatiirde biiyiik bir yer edinmistir.

Fonksiyonel degisimli malzemeler, bir yap1 elemaninin en az bir dogrultusunda
Ozellikleri siirekli bigimde degisen bir kompozit malzeme modeli olarak tanimlanabilir.
1970°’1i yillarin hemen basinda bazi polimerik malzemeler hakkindaki aragtirmalar
esnasinda fikirsel temeli ortaya atilan bu malzemelerin fiziksel agidan gelisim macerasi
1980’11 yillar itibariyle bir dizi havacilik ¢calismalar1 kapsaminda Japonya’da baslamistir.
Uretim prosesi iizerindeki arastirmalarin  hiz  kazanmasinin  ardindan  cesitli
uygulamalariyla fonksiyonel derecelendirilmis malzemeler giinlimiizde Onemi bir
kompozit tiirevi konumunda bulunmaktadir.

Yukaridaki agiklamalar dogrultusunda, bu doktora tezinde fonksiyonel
derecelendirilmis malzemeden imal edilen nano 6lgekli yapisal sistemlerin atomik boyut
etkisine dayanan ve yapisal kayma deformasyonunu da gbzeten serbest titresim analizleri
sayisal olarak incelenmistir. Buna gore, nanokiris, nanogubuk ve nanogerceve seklindeki
ti¢ farkli nanoyapt modelinin yerel olmayan serbest titresimlerinin hareket denklemleri
analitik olarak ¢oziilmiis ve buna bir alternatif ¢6ziim olarak sonlu eleman prosediirleri
gelistirilmistir. Nanoyapilarin sicaklik ve elastik etkilerin oldugu bir ¢evrede yer aldigi
varsayilarak NEMS’lerin genel ortami da diisiiniilmiis, boylece gercekei bir mekanik
davranig arastirmasi planlanmistir. Cesitli sayisal uygulamalar ve tartismalar
gerceklestirilerek kompozit nanoyapilarin titresim davranisinin  anlasilmasina ve
nanomekanik analizde sonlu elemanlar yonteminin kullanim faydalarinin agiklanmasina
calisilmigtir. Tez kapsaminda elde edilen sonuglarin kompozit nanoyapilarin mekanigi ile
ilgili bilimsel literatiirdeki bosluklar1 dolduracak makalelere evrilmesi planlanarak bu
yapilarin tasarim siireglerine 6ncii olmasi timit edilmektedir.



Son olarak, ¢ok degerli biiyiiklerimin ve ¢ok degerli arkadaslarimin lisansiistii
egitim siirecimde bana 6nemli katkilarda bulunduklarini belirtmek isterim. Bu baglamda,
akademik desteklerini, tecriibelerini ve insani hosgoriilerini benden higbir zaman
esirgemeyen danisman hocam sayin Prof. Dr. Omer CIVALEK ’e, Akdeniz Universitesi
Insaat Miihendisligi Boliimii Mekanik Anabilim Dalindaki 6gretim iiyesi hocalarima,
gorev yapmakta oldugum Giresun Universitesi Insaat Miihendisligi Boliimiindeki ¢ok
degerli hocalarima, ¢ok degerli mesai arkadaslarima, bugiinlere gelmemdeki en biiyiik
emek ve destegi gosteren aileme ¢ok biiyiik tesekkiir ve saygilarimi sunuyorum.
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SIMGELER VE KISALTMALAR

Simgeler

a : Nanoyapz i¢ karakteristik uzunlugu

A . Kesit alan, Fonksiyonel derecelendirilmis kesit alt yiizeyi

A; : Nanokiris mod sekli diferansiyel denklem katsayilari (i = 1 — 4)

Ay Basit eksenel ¢ubuk rijitligi

b Dikdortgen kesit kalinligi

B Egilme rijitligi

B, : Nanokiris i¢ tesir diferansiyel denklem ve ¢6ziim katsayilari (i = 1 — 8)

¢, G : Nanokiris dogal frekans hesabi katsayilari (i =1 =3, =1 —11)

Ciju : Dordiincii mertebeden elastisite tansorii

d . Adi tiirev operatorii

d : Sonlu eleman diigiim deplasmani vektorii

d,ddp Ug diigiimlii eksenel sonlu elemani diigiim deplasmanlari

d, : Bilinmeyen seri katsayisi

D; : Kayma deformasyonlu nanogubuk mod sekli ve i¢ tesir diferansiyel
denklem katsayilar1 (i = 1, 2, 3)

D : Kinematik operator

Dr : Sicaklik kaynakli rijitlik

D . Sapma yiizdesi

ey : Atomik malzeme sabiti

E . Elastisite modiilii

E;, F; : Kayma deformasyonlu nanogubuk mod sekli ve i¢ tesir ¢6ziim katsayilari
(i=1-4)

f : Mlgili kiris yiik vektorii

f : Enine dis tahrik



); . Atomik yapi kiitlesel kuvveti
G : Kayma modiilii, Geometrik agirlik merkezi
G, G, : Basit nanocubuk mod sekli ve i¢ tesir diferansiyel denklem ve ¢oziim
katsayilari
h : Dikdortgen kesit yiiksekligi, Agirliklandirma fonksiyonu
ho : Fonksiyonel derecelendirilmis kesit merkezleri aras1 mesafe
H; : Kritik sicaklik hesap katsayilart (i = 1 — 7)
I : Ortalama agirlikli kalinti
1 : Egilme atalet momenti
Ip : Polar atalet momenti
Ig : Yanal kiitle ataleti
Ly . y- Ekseni birim yanal kiitle ataleti
Ly : z- Ekseni birim yanal kiitle ataleti
I . Sifirmner kiitle ataleti
I, : Ikinci kiitle ataleti
I, . y- Ekseni yanal kiitle ataleti
I, . z- Ekseni yanal kiitle ataleti
i ! Kompleks say1 (i = vV—1)
i . Titresim mod sayist
kyy Eksenel elastik ortam rijitligi
kp Pasternak elastik zemin rijitligi
ky Winkler elastik zemin rijitligi
- Kelvin
: Ilgili rijitlik matrisi
i : Genel eksende ilgili rijitlik matrisi girdisi (i, j = 1 — 6)
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: Modifiye edilmis Bessel fonksiyonu

: Modifiye edilmis ilgili rijitlik matrisi

: Sonlu eleman uzunlugu

: Nanoyapi dis karakteristik uzunlugu

. Lineer diferansiyel operatorii

: Egilme momenti, Ilgili kiitle matrisi, Malzeme merkezi

. Basit kiitle matrisi

. Yiiksek mertebeden kiitle matrisi

: Genel eksende ilgili basit kiitle matrisi girdisi (i, j = 1 — 6)
: Genel eksende ilgili yiiksek mertebeden kiitle matrisi girdisi (i, j = 1 — 6)
: Modifiye edilmis ilgili kiitle matrisi

: Sonlu eleman sayis1

. Eksenel normal kuvvet

: Termal eksenel kuvvet

: Toplam eksenel kuvvet

: Fonksiyonel derecelenme gii¢ indeksi

: Fonksiyonel derecelendirilmis malzeme efektif 6zelligi, Toplam yanal

kuvvet

: Ilgili eksenel gubuk yiik vektorii
. Eksenel dis tahrik
: Yap kiitlesel kuvveti (i = x, y, z)

: Kalinti
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Wp

Wi, W]

: Klasik eksenel gerilme (i = x, y, z)

: Klasik gerilme tansorii (4, j = x, y, z)

......

......

......

......

: Zaman

: Klasik kayma gerilmesi (i,j = x, y, z; i #))

: Harmonik ¢6ziim, Kinetik enerji, Transformasyon matrisi

: Kritik sicaklik

: Atomik yap1 genel deplasman vektori

: Nanoyapinin sirasiyla eksenel, enine ve yanal deplasman bilesenleri
: Nanoyapinin sirasiyla eksenel, enine ve yanal deplasman vektorleri
. Saf eksenel deplasman

: I¢ sekil degistirme enerjisi, Eksenel nanogubugun statik deplasmani,

Fonksiyonel derecelendirilmis kesit iist yiizeyi

: Hacim, Kesme kuvveti, Fonksiyonel derecelenme hacim fraksiyonu
: Toplam kesme kuvveti

: Egilme deplasmani

. Iki diigiimlii egilme sonlu eleman: diigiim enine deplasmanlari

: Kesme deplasmani

: Nanokirisin statik deplasmani, D1s kuvvetin is potansiyel enerjisi

. Statik egilme deplasmant
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W, : Statik kesme deplasmani

X . Atomik yap1 i¢in referans noktasi
x’ : Atomik yapida bir nokta
X : Konum bileseni
X,V Z : Nanoyapinin sirasiyla eksenel, enine ve yanal koordinatlari
Yor 20 : Fonksiyonel derecelendirilmis dikddrgen kesitin sirasiyla yatay ve diisey
eksenleri
a . Yerel olmayan modiil, Termal genlesme katsayisi, Yonlenme agist
0; . Sinir sartlara bagl seri ¢6ziim katsayisi
B : Modifikasyon (degsitrme) parametresi
v : Kayma sekil degistirmesi (i, j = x, y, z; i £J)
r . L-Sekilli nanogergeve
) : Dirac fonksiyonu, Birinci varyasyon
0y . Kronecker-o sembolii
A : Degisim (fark)
& : Eksenel sekil degistirme (i = x, y, z)
&ij . Sekil degistirme tansorii
n : Boyutsuz atomik parametre
% : Faz agis1
0;, 0; : Iki diigiimlii egilme sonlu eleman1 diigiim dénmeleri
A u : Lamé sabitleri
A . V-Sekillli nanogergeve
) : Poisson orani
: Sonlu eleman boyutsuz deplasmant
IT . Portal-sekilli nanogerceve

Xiv



p . Birim hacim agirlig

o . Yerel olmayan gerilme tansorii

T . Yerel olmayan kayma gerilmesi (i, j = x, y, z; i #)
7 : Kesit donmesi

¢ : Sekil fonksiyonu

0} : Dogal frekans

@ : Boyutsuz frekans parametresi

0 : Kismi tiirev operatorii

QX : Konuma gore birinci tiirev (¢)' = d(*)/dx

(*)" . Konuma gore ikinci tiirev (+)" = d*(+)/dx*

()" . Konuma gdre tigiincii tiirev (+)"” = d*(+)/dx’

(o)™ : Konuma gére n. mertebeden tiirev ()™ = d™()/dx™
(*) . Zamana gore ikinci tirev (*) = d*(+)/d7

(*) . Zamana gore ikinci tirev (+) = d*(+)/d¢*

(2[.])* : Ilgili indirgenmis kiiresel matris

Bu tez ¢calismasinda sayilarin ondalik kismini ayirmak i¢in nokta isareti (.) kullanilmistir.

Kisaltmalar
C-C : Clamped-clamped (iki ucu tutulu nanogubuk, iki ucu ankastre nanokiris)
C-F : Clamped-free (Bir ucu tutulu diger ucu serbest nanogubuk, bir ucu

ankastre diger ucu serbest nanokiris)

C-G : Clamped-guided (Bir ucu tutulu diger ucu kilavuz kayicit mesnetli
nanokiris)

C-S : Clamped-simply supported (Bir ucu ankastre diger ucu basit mesnetli
nanokiris)
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GIRIS H.M. NUMANOGLU

1. GIRIS

I¢ veya yiizey yapisinin dis boyutlar1 nano élgekte yani metrenin milyonda biri
kadar olan malzemeler nanomalzeme smifin1 teskil etmektedir. 1950’lerin sonunda bilim
diinyasindaki yolculuguna baslayan nanoteknolojinin giiniimiize kadar 6nemli doniim
noktalarin1 yagamasi, nanomalzeme kavraminin 6énemini ve dolayisi ile bu alandaki
caligmalar1 artirmistir. Glinlimiize degin ¢alismalar, nanomalzemelerin elektronik, enerji,
tip, hava-uzay, otomotiv sanayii, savunma sanayii ilk akla gelenler olmak {izere bir¢ok
disiplini etkilemiesini ve bu suretle inovatif yonii yiiksek malzemelerin ortaya ¢ikmasini
saglamistir.

Ote yandan, kompozit malzeme, 6zellikleri birbirinden farkl1 olan iki veya daha
fazla malzemenin gesitli islemlerle bir araya getirilmesi sonucunda daha farkl 6zelliklere
sahip yenilik¢i bir malzemedir. Burada amag¢ yeni malzemenin hedeflenen yonlerden
daha giiclii 6zelliklere sahip olmasidir. Kompozit malzemeler daha yiiksek mekanik
sandvig, tabakali veya fonksiyonel derecelendirilmis gibi farkli kompozit malzeme
tiirevleri, mithendisligin farkli disiplinlerinde oldukg¢a genis bir kullanima sahiptir.

Teknolojinin ¢ok hizli ilerlemesi sonucunda giintimiizde kullanima sunulan bir¢ok
cihaz ve sistem, boyut, hiz, islem kapasitesi gibi yonlerden onciillerine kiyasla ¢ok daha
iyi konumdadirlar. Bu tiir sistemler genel olarak nano-elektro-mekanik sistemler (NEMS)
teknolojisinin birer ¢iktilaridir. NEMS yapilari, farkli geometrilere sahip olabilen nano
Olcekli malzemelerden (bilesenlerden) meydana gelen sistemlerdir. NEMS
organizasyonlari elektrik-elektronik, elektrokimya, biyoteknoloji, genetik basta olmak
izere bircok disiplinde Onemli uygulamalarda gorev almaktadir. Nanoteknolojik
calismalardaki hizli ilerlemeler, bu bilesenlerin mekanik davraniglarindaki aragtirmalarin
yapilmasina sebep olmustur. Ciinkii mekanik davranigin dogru belirlenmesi, NEMS’lerin
dogru tasarim i¢in Oncelikli bir husustur.

Nanomalzemelerin mekanik davraniglar1 {izerine arastirmalar kapsaminda
yiiriitiilen deneyler ve bilgisayar ortamlarinda yiiriitiilen simiilasyonlar genel olarak
maliyet, siire¢ ve ileri uzmanlik bilgisi gibi gerekgelerle efektif olamamistir. Ayrica,
deneysel ¢aligmalar nanoyapiya inildiginde klasik fizik 6gretilerinin, dolayis: ile klasik
elastisite 0gretisinin gegersiz oldugunu gostermektedir. Biitiin bu sonuglar bir arada
diistiniildiigiinde, bilim insanlarinca nano 6l¢ekli malzemelerin mekanik davraniglarinin
yenilenmis mekanik yap1 modelleri ile ele alinmasi fikrinin tizerine gidilmistir. Bu fikrin
esas felsefesi, klasik mekanik denklemlerinin atomik boyut etkisiyle birlestirilmesine
dayanmaktadir. Giiniimiizde, nanoyapilarin bir ve iki boyutlu yap1 modellerinin boyut
etkili mekanik davranig aragtirmalar1 hakkinda c¢ok biiyiik bir yol katedildigi mutlaka
belirtilmelidir. Ote yandan, bilindigi iizere bir kat1 mekanigi analizinde temel etkilere
ilave olunan deformasyon bilesenleri bazi durumlarda 6nem kazanabilmektedir. Bu ilave
etmenler ¢cogu zaman bir kayma etkisini isaret eder. Bunlara ek olarak, konuya iliskin
bilimsel literatiiriin ¢ok bilyiik bir kisminda, nanoyapilarin ¢evresel etkilere de (piezo,
manyetik, elektrik, ortam sicakligi, ortam nemi vb.) maruz kaldig: diisiiniilerek, ¢evresel
etkilerin mekanik modelleri {izerinden NEMS’lerin ¢alisma diizenleri simiile edilmistir.
Giiniimiizde gelinen nokta itibariyle nano 6lgekli yapilarin mekanik davranislari tizerinde
boyut etkisinin, kayma deformasyonunun ve dis gevresel olgularin ¢ok 6nemli etkiler
oldugu iyi bilinmektedir.
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Cesitli NEMS yapilarinin insanoglunun hayatinda giin gectikge daha fazla yer
almas1 ve nanomalzeme kavrami igerisinde nanokompozitlerin varligi nedenleriyle
kompozitlerin de yapisal tasarimlarinin biliniyor olmasinin 6nem arz ettigi belirtilmelidir.
NEMS organizasyonlarinda kompozit bilesenlerin homojen bilesenlere goére daha
inovatif bir kullanim saglayabilecegi de bu baglamda eklenebilir. Biitiin bu anlatilanlar
1s181nda, tek dogrultulu kompozit nanoyapi elemanlarinin atomik boyut etkisine dayanan
kayma deformasyonlu serbest titresim analizleri bu tez ¢alismasinin genel konusudur.
Nanoyapinin bir kompozit malzeme olan fonksiyonel derecelendirilmis malzemeden imal
edildigi varsayilmaktadir ve malzeme homojenizasyonu i¢in klasik karigim kurali
kullanilmaktadir. Atomik boyut etkisi konuyla ilgili bilimsel literatiirden oldukga iyi
bilinen Eringen’in yerel olmayan elastisite teorisinin biinye denklemi ile g6z Oniinde
bulundurulmaktadir. Buna gore, varyasyonel cebre dayanilarak tiiretilen nanoyapilarin
kiris, eksenel gubuk ve ¢er¢ceve modellerinin yerel olmayan kayma deformasyonlu serbest
titresim hareket denklemlerinin analitik ¢ozlimleri yapilmaktadir ve bu ¢oziimlerin
uygulamadaki kisitlh durumlarini agsmak icin c¢esitli sonlu elemanlar formiilasyonlari
gelistirilmektedir. Ayrica, gevresel etkileri analize yansitabilmek amaciyla yerel olmayan
nanokiriste termo-elastik gevre ve yerel olmayan nanogubukta elastik ortam etkileri de
gozetilmektedir.

Tez kapsaminda gelistirilen sonlu eleman formiilasyonlar: kullanilarak, atomik
boyut etkisi, nanoyapi boyutlari, gii¢ indeksi, elastik zemin/ortam rijitlikleri, ortam
sicakhigl degisimi gibi gesitli parametreler altinda hesaplanan sayisal uygulamalar ve
bunlarin detayli tartigmalartyla, NEMS’lerin mekanik bileseni olabilecek tek dogrultulu
fonksiyonel derecelendirilmis nanoyapilarin titresim davranislarinin anlasilabilmesi ve
bunlarin dogru tasarim siireglerine 151k tutulabilmesi hedeflenmektedir.
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2. KAYNAK TARAMASI

Bu boliimde, oncelikle tez ¢aligmasinin yakin baglantili oldugu cesitli kavramlara
detaya girmeksizin sadece tanitim amagli deginilecektir ve ardindan tez ¢alismasina
teorik inceleme itibariyle yakin olan bilimsel c¢aligmalardan kisa ozetler halinde
bahsedilecektir.

2.1. Nanoteknoloji Bilimi

Nanoteknolojiyi tanimlamadan 6nce nanobilimin tanimin1 yapmak gerekir. Buna
gore nanobilim, maddenin nano Glgekte kontrol edilmesi ve bu 6lgekte 6zelliklerinin
anlasilmasina yonelik bir bilim dalidir (Singh vd. 2017). Burada “nano 6lgek™ ile temel
uzunluk birimi olan metrenin (m) milyonda bire béliinmesini tanimlayan nanometre (nm)
mertebesi kastedilir (1 nm = 10~ m). Ote yandan, nanoteknoloji i¢in ilk olarak oldukca
kisa bir tanim “atomik hassasiyette miihendislik ve teknoloji” seklinde yapilmaktadir
(Nasrollahzadeh vd. 2019). Bu ifade edilenler baglaminda, 6l¢iileri nanometre dlgegi ile
ifade edilen madde ve maddesel her tiirlii sistemdeki atomlarin diziliminin incelenmesi,
dizilimin diizenlenmesi, bu dlgege inildiginde varilan yeni malzeme 6zelligi kesifleri,
yeni Ozelliklerin klasik disiplinlerle birlestirilerek daha inovatif teknolojilere varilmasi
nanoteknolojiyi tanimlamaktadir. Birim nanometre 6lgeginin bir sag telinin yiiz binde biri
kadar oldugu bilgisi (Perker 2010) altinda, nanoteknolojinin ne kadar kii¢iik bir 6lgekte
calistig1 tahayyiil edilebilir. Nanobilim ve nanoteknolojide teknik olarak 1-100 nm
araligindaki madde ve sistemlerle ilgilenilmektedir (Subramani vd. 2019; Civalek ve
Numanoglu 2020).

Bilindigi iizere giinlimiizde kullanilmakta olan bir¢ok elektro-mekanik cihaz veya
sistem Onclillerine gore daha yiiksek mekanik dayanima, yiiksek fiziksel dayanikliliga,
daha giiclii elektriksel ve optik 6zelliklere, daha biiyiik veri igsleme hizlarina, bunlarin
belki de en 6nemlisi ¢ok daha kiiciik boyutlara sahiptir. Akla gelen en basit 6rnege gore,
Eskiden bir oda hacmindeki bilgisayar sistemlerinde bu devasa biiylikliige ragmen
elektronik veri depolama hacmi oldukga kisitli kalmistir. Yine gok eski yillarda elektronik
ortamda yapilan arastirmalar islem hizlar1 nedeniyle giinlerce siirmiistiir. Is siireglerinde
bliylik performans kayiplar1 yasamamak i¢in mesai disinda calistirilan bilgisayarlar
bilinmektedir. Elbette bu durum mali zararlar veya ¢alisana yansiyan negatif etki gibi
baska sorunlar1 ortaya ¢ikarmistir. Bunlara ek olarak, eski zamanlardan bilinen disket gibi
harici veri depolama birimleri en fazla 1.44 megabyte veri depolayabilmektedir (Getz
1991). Nano-elektro-mekanik sistemler (NEMS) teknolojisindeki 6nemli ¢aligmalarin
sonucunda, Ornegin giiniimiizde bilgisayar boyutlar1 kiiciilmiis, bilgisayar devre
pargalarindan olan ¢iplerin boyutsal kiiglilmesine ek olarak islemci hizlari artirilmas,
harici veri depolama anlaminda harici bellek teknolojisi gelistirilerek bilisim
teknolojilerinde resmen bir ¢ag kapanmis, yeni bir ¢ag acilmistir. Elbette NEMS
teknolojisi bilisimle sinirli degildir, 6rnegin kimya ve biyoloji gibi fenni alanlarda da
elektro-mekanik devrelerin ¢ok ¢esitli uygulamalart mevcuttur.

Tabi nanoteknoloji iizerine giris seviyesinde arastirmalar yapildiginda akla gelen
ilk 6rnekler NEMS teknolojisi iizerine olsa da, malzeme karakterizasyonu (Zhou vd.
2007), biyomedikal (Holm vd. 2002; Ramos vd. 2017), genetik (Seeman 1998; Condon
2006; Shen vd. 2021), havacilik (Meyyapan 2000; Kausar vd. 2017), savunma
teknolojileri (Kumar ve Dixit 2019; Singh vd. 2023), otomotiv sanayii (Tomar 2012;
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Mathew vd. 2019), insaat malzemesi (Norharsi vd. 2017; Chakraborty vd. 2020,
Mohajerani vd. 2019; Bozsaky 2016), kimya endiistrisi (Zhao vd. 2003; Adams ve
Barbante 2015; Soni vd. 2022) gibi ¢ok farkli dallarda nanoteknolojinin olduk¢a 6nemli
uygulamalarina rastlanmaktadir.

2.2. NEMS Teknolojisi

Insan yasantisindaki bazi belirli ihtiyaglarn elektro-mekanik tabanli
giderilebilmesi gorevini goéren ve nano Ol¢ekli malzemelerle organize edilen yap1 ve
cihazlar genel olarak nano-elektro-mekanik sistemleri (NEMS) tanimlamaktadir.
Elektriksel ve mekaniksel ilke ve proseslere dayanarak calisan bu sistemler birgok
biyolojik, kimyasal, genetik, optik, termal ilk akla gelenler olmak iizere ¢esitli alanlardaki
fonksiyonel olarak gorev yapmaktadir. Nanoteknolojinin bir hedef noktast da NEMS
grubu yapi ve cihazlarin imalat1 ve iizerindeki ileri ¢alismalarla daha da gelistirilmesidir.
NEMS teknolojisi i¢in genel bir tanim ve gesitli 6rnekler Numanoglu (2019) tarafindan
sunulmustur.

Bir onceki paragrafin hemen basinda, NEMS organizasyonlarin nano 6lgekli
malzemelerle olusturuldugu belirtilmisti. “Nano 6l¢ekli malzeme” kavrami, giiniimiizde
varlig1 deneysel olarak bilinen, fen ve miihendislik 6zellikleri tizerinde ¢esitli aragtirmalar
yapilan nanometre Slgiilerine sahip malzemeler olarak agiklanabilir. Nanomalzemelerin
cesitli siniflart mevcuttur. Nanotiip, nanotel, nanogubuk gibi tek dogrultulu yapilar ve
nanoplaka gibi iki dogrultulu nanoyapilar bu siniflar1 belirtir. 1950’lerin sonunda
baslayan ve giliniimiize kadar ¢ok biiylik doniim noktalarin1 yasayan nanoteknoloji
biliminde, bugiin karbon nanotiip (lijima 1991; lijima ve Ichihashi 1993; Bethune vd.
1993; Dresselhaus vd. 1998; Rueckes vd. 2000; Kriiger vd. 2001; Popov 2004; Wang
2005; Rafaelle vd. 2005), bor nitrit nanotiip (Chopra ve Zettl 1997; Loiseau vd. 1998;
Radosavljevic vd. 2003; Jhi ve Kwon 2004; Bai vd. 2007; Zhang vd. 2009; Zhi vd. 2010;
Ghassemi ve Yassar 2010; Mukhopadhyay vd. 2011; Merlo vd. 2018), silikon karbit
nanotiip (Pham-Huu vd. 2001; Gao 2004; Taguchi vd. 2005; Elyassi vd. 2007), ¢inko
nanotel (Zheng vd. 2002; Wang 2004; Xing vd. 2005; Fan ve Lu 2006; Desai ve Haque
2007; Liu vd. 2007; Wang vd. 2007), grafen plaka (Sharma vd. 2013; Zang vd. 2015;
Khan vd. 2017; Foo ve Gopinath 2017; Chen vd. 2017), silisen plaka (Nakano ve Ikuno
2016; Lin vd. 2021; Wang vd. 2022), borofen plaka (Abdi vd. 2022; Hou vd. 2022;
Sharma vd. 2023) gibi malzemeler NEMS organizasyonlarinin temel yapitaglari olarak
bilinir. Yani insanoglu giiniimiizde yasadig1 teknolojik devrimi bu malzemelerin kesfine
borgludur.

NEMS organizasyonlari i¢in atomik kuvvet mikroskobu (Binnig vd. 1986; Meyer
1992, Hanley and Gray 1995; Blanchard 1996; Giessibl 2003; Wojcikiewicz vd. 2004;
Seo ve Jhe 2007; Michels ve Rangelow 2014; Alsteens vd. 2017), alan etkili transistorler
(Braga ve Horowitz 2009; Cheng vd. 2015; Ahmad vd. 2018; Wadhera vd. 2019; Bushra
ve Prasad 2022), gaz sensorleri (Kawano vd. 2007; Cobianu vd. 2009; Bargatin 2012;
Jousseaume vd. 2018), basing sensorleri (Greenwood ve Satchell 1988; Eaton ve Smith
1997; Kinnell and Craddock 2009; Luo vd. 2014; Xie vd. 2015), nanoaktivatorler (Lu ve
Pancapakesan 2006; Lee ve Cho 2007; Soroush vd. 2010; Kanygin ve Bahreyni 2021),
nanokonsollar (Drechsler 2003; Wee vd. 2005; Chakraborty ve Luo 2006; Li vd. 2007;
Kacem vd. 2010; Datar vd. 2011; Kilinc vd. 2014), nanorezonatorler (Xu vd. 2010; Wang
ve Arash 2014; Kazmi vd. 2017; Yang vd. 2017), nanoanahtarlar (Tian vd. 2007; Ranallo
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vd. 2016; Patino vd. 2019; Huo vd. 2022; Socrier ve Steinem 2023), radyo-frekans
anahtarlar (Luo vd. 2014; Chaudhary ve Mudimela 2022) temel 6rneklerdir.

Bir ve iki boyutlu bazi nanomalzemelerin temel karakteristik Ozellikleri ve
geometrik yapilar1 hakkinda Numanoglu (2019) tarafindan ¢esitli bilgiler verilmistir. Bu
referansa ek olarak, genel bir NEMS organizasyonunu da temsil ettigi diistiniilerek, bir
radyo-frekans nano-elektro-mekanik sistem (RF-NEMS) ve ¢ift rezonatorlii basing
sensoriiniin 6rnek semalar1 Sekil 2.1°de sunulmaktadir.

Metal gergeve

NEMS rezonator
Substrat

Elektrik baglantis
Elektrik kaynag1

Taban

Ayak (Lehim)

()

Cevirici elektrot

Rezonatér

Merkez kiris

Cam kaplama ..
Yan kirig

Yastik Algilama elektrodu

Cihaz tabani Cergeve

(b)

Sekil 2.1. Bazi nano-elektro-mekanik sistem organizasyonlari; @) RF-NEMS; b) Cift
rezonant basing sensorii

Bu orneklerden rezonant basing sensoriiniin genel islevi, rezonans frekansi
altindaki kirige eksenel gerinim uygulanarak deformasyon 6l¢gmektir (Xie vd. 2015). Bu
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sensorler diger sensorlere gore yliksek tekrarlanabilirlik, ¢oziiniirliik ve hassasiyet saglar
(Ikeda vd. 1990). Ayrica, RF-NEMS anahtari sinyal yonlendirme, empedans eslestirme,
sinyal anahtarlama gibi gorevler gérmektedir (Jaafar vd. 2014; Feng vd. 2022). Bu
sistemler geleneksel anahtarlara gore daha diisiik calisma voltaji, iyilestirilmis
acma/kapama orani, diisiik akim ve yiiksek anahtarlama hiz1 gibi faydalar saglamaktadir
(Loh ve Espinosa 2012).

2.3. Fonksiyonel Dereceli Malzemeler

Yap1 miithendisligi ve mekanigi biliminde malzeme kavrami biiyiik bir 6neme
sahiptir. Malzeme sinifi igerisinde, diinyada yaygin kullanildigindan beton, ¢elik, ahsap,
aliminyum gibi homojen malzemeler ilk olarak akla gelmektedir. Ancak, homojen
malzemelere gore daha iistiin 6zelliklere sahip olan ve kompozit malzeme olarak bilinen
bir malzeme smifi daha mevcuttur. Tez konusu her ne kadar fonksiyonel dereceli
malzeme de olsa, bu kavrami taimadan 6nce detayina girmeksizin kompozit malzemeyi
tanimakta fayda vardir. Kompozit malzeme, en az iki malzemenin fiziksel veya kimyasal
metotlarla bir araya getirilerek bunlardan herhangi birine veya bir homojen malzemeye
gore daha istiin 6zellikler saglayan malzemedir. Kompozit malzemelerde karakteristik
olarak, birbirinden farkli 6zelliklere sahip matris ve takviye adinda iki bilesen bulunur.
Burada takviye tasiyici olarak gorev yaparken matris takviye malzemesini bir aderans
(sar1lma) gostererek tutma ve destekleme gorevlerini iistlenir. Bilinen en yaygin malzeme
beton ve celikten olusan betonarmedir. Bunun gibi ornekler fiber takviyeli kompozit
malzeme olarak bilinir. Bunun haricinde, en az iki farkl1 malzemenin katmanlar halinde
bir araya getirilmesiyle de iiretilen kompozitler mevcuttur. Sandvi¢ kompozitler ve
laminatlar bunun en yaygin 6rnegidir. Kompozit paneller, alasimlar, otomobil lastikleri,
kopiikler, karbon fiber takviyeli polimerler, kontraplaklar kompozit malzemelere 6rnek
verilebilir. Kompozit malzemeler, genel olarak ucak-uzay, denizcilik, otomotiv,
savunma, insaat, biyomedikal, kimya gibi bir¢ok alanda kullanilimaktadir. Kompozit
malzemelerin bir kullanim alani1 i¢in Parveez vd. (2022)’den incelenen Boeing 787 yolcu
ucaginin malzeme yapisi Sekil 2.2°de resmedilmektedir.

|| Karbon laminat kompozit I Fiberglas B Atiminyum

. Karbon sandvi¢ kompozit D Aliminyum/Celik/Titanyum

Sekil 2.2. Boeing 787 yolcu u¢aginin malzeme yapist
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Kompozit malzeme sinifinin ¢ok énemli bir iiyesi de fonksiyonel degisimli (veya
derecelendirilmis) malzemelerdir. Teknik tanim konu geregi {iglincii boliimde verilecektir
ancak burada ana hatlar ile bir aciklama yapilmasi uygun olacaktir. Fiziksel veya
mithendislik 6zellikleri en az bir belli dogrultuda degisen malzeme fonksiyonel
derecelendirilmis malzemeyi (FDM) tanimlamaktadir.

Mahammood ve Akinlabi (2017), miihendisligin kendi problemlerini ¢6zmek i¢in
siirekli olarak dogaya yoneldigini, FDM’lerin de bunun bir sonucu oldugunu
belirtmislerdir. Doganin kendisinin sagladigi ahsap ve bambu gibi aga¢ endiistrisi
malzemelerin (Hon 2001; Amada vd. 1996; Ray vd. 2004) yani sira insan disi ve kemigi
gibi organizma dokular1 da (Low ve Mahmood 2004; Bartel vd. 2006) FDM o6rnegi
sergilemektedir. Doganin bu malzemeleri maruz kaldigi hizmet kosullarini diisiinerek
tasarladig1 belirtilmistir. Ote yandan, insan disinin mine ad1 verilen dis tabakasimnin
asinmaya kars1 direncli oldugu ve i¢ kisimlarinin bir amortisor goérevi gordiigii, bu
tasarimin dislerin yorulma Omriinii artirarak siinek hale getirdigi belirtilmis, buna benzer
sekilde insan kemiginin de gormesi gereken hizmet geregi tasarlandigi ifade edilmistir.

Miihendislikte malzeme derecelendirilmesi fikri genel olarak ilk defa 1972’de
kompozit polimerler i¢in ortaya ¢ikt1 (Bever ve Duvez 1972; Shen ve Bever 1972). Bu
kapsamda malzeme bilesimindeki filaman polimer fraksiyonlari i¢in ¢esitli modeller ve
potansiyel uygulamalar 6ne siiriildii. Ancak 1980°1i yillara kadar bu malzemelerin
tasarim, iiretim ve uygulama konularinda somut bir aragtirma mevcut degildi (Miyamoto
vd. 1999). Bunun devaminda, 1980’lerin ortalarinda Japonya’da bir grup arastirmacinin
bir uzay projesinde ¢ok yiiksek sicaklik degisimlerine dayanmasi istenen kompozit
ihtiyacina haiz bir problem esnasinda FDM fikri ortaya atild1 (Niino vd. 1987; Koizumi
ve Niino 1995). Buna gore malzemenin bir tarafinin yaklasik 2000 K sicakliga maruz
kalmasi ve bu sicakligin bir diger tarafa iletilmemesi gerekmekteydi. Ucak gdvdesinde,
ucak ici ve dis1 arasinda yaklasik 1000 K kadar bir sicaklik farkina dayanabilecek bir
kompozit malzeme ihtiyact vardi. Proje kapsamindaki deneylerde geleneksel laminat
kompozitler basarisiz oldu. Deneylerde farkli kompozitler kullanilmasina ragmen
basarisizlik modlarinin benzer oldugu anlasilmistir. Genel olarak bu basarisizlik,
delaminasyon da denilen, laminat kompozitin bilesenlerinin birlestigi noktalardan
ayrigsmasi ile gézlemlenmistir. Bu sinir bolgede, bilesenlerin birbiriyle termal genlesme
yoniinden uyumsuz olmalar1 nedeniyle yliksek gerilme yigilmalar1 s6z konusu olmustur.
Arastirmacilar, bilesenler arasindaki bu keskin gecisi kaldirabilirlerse sorunu
cozebileceklerini diisiinmiislerdir. Buna gore, iki malzemenin de tamami birbirine
yaklastirilarak keskin arayiliz sorunu kademeli degisken arayiiz ile ¢oziilmiistiir ve yeni
malzeme yiiksek termal yiiklere dayanabilmistir (Mahammood ve Akinlabi 2017).
Boylece FDM’lerin gelisiminin yolu acildi. FDM’ler ilk olarak havacilik yapilar1 ve
fiizyon reaktorlerinde termal bariyer tasarimi igin gelistirildi (Koizumi 1997; Hirai ve
Chen 1999; Chan 2001).

Geleneksel kompozit malzemeler, 6zellikle ugak-uzay endiistrisi ve miithendislik
disiplinlerinde yiiksek mukavemet/agirlik ve rijitlik/agirlik oranlart sunmaktadirlar ve
bunlar bu disiplinlerde oldukg¢a basarili olmaktadirlar. Geleneksel kompozitlerdeki metal
malzemesi yiiksek mukavemet ve tokluk 6zellikleri ile miithendislik alaninda yillardir 6ne
cikmaktadir. Ancak sicaklik artisina karsilik metalin mukavemeti azalmaktadir, dolayisi
ile kompozit malzemenin yiiksek sicakliklarda kullanimi miimkiin olmamaktadir. Buna
karsilik seramigin 1s1l direnci miikemmel bir seviyededir. Fakat seramigin miihendislik
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uygulamalar diisiik tokluk nedeniyle kisithdir (Shen 2009). Iki bilesenin fonksiyonel
derecelenme diisiincesiyle bir araya getirilmesi ile yiliksek sicakliklara dayanim
saglanabilmektedir. Burada seramik yiiksek sicakliklara dayanirken metal seramige
destek gorevi goriir, bu durum performans: artmaya ve delaminasyon ihtimalini
azaltmaya yardimci olur (Mahammood ve Akinlabi 2017).

Fonksiyonel derecelendirilmis ve tabakali kompozit malzeme konfigiirasyonlar1
Sekil 2.3’te resmedilmektedir. Buna gore, tabakali malzemede ozellikleri P ile
simgelenen farkli NV adet tabaka (N > 2) st iiste birleserek malzemeyi olusturmaktayken,
FDM semasinda malzeme 6zellikleri en alt ylizeyden en iist yiizeye dogru siirekli olarak
degismektedir. FDM ’nin sonsuz sayida tabakanin bir araya getirilip yapistirtlmasiyla elde
edildigi sadece bir ideallestirme olarak diistiniilebilir. Ancak bu benzesimde katmanlar
birbirinden oldukga farkli bir malzeme degildir, yapmnin en alt ve en ist yiizeyindeki
malzemelerin belirli fraksiyonlarina (hacim oranlarina) bagl olarak 6zellikleri degisen
ara malzemelerdir. Ayrica, FDM’ler i¢in metal-seramik modeli olduk¢a yaygindir. Buna
gore malzemenin alt ylizeyi %100 metal faziyken iist yiizeyi %100 seramik fazindan
meydana gelir. Bu malzeme modelinin mithendislik 6zelliklerinin yani sira makro ve
nano/mikro diizeyde kat1 mekanigi analizleri yaygin bir arastirma konusu olmustur.

Py

Py Tabaka - N
Py, Tabaka - (N— 1)

P, Tabaka - 4
Tabaka - 3
Tabaka - 2
Tabaka - 1

Py

(a) (b)

Sekil 2.3. Bazi kompozit malzeme semalari; a) Tabakali kompozit; b) Stirekli
fonksiyonel derecelendirilmis kompozit

Bu anlatilanlardan ¢ikarilacak en 6nemli sonucun, FDM’nin geleneksel tabakali
kompozit malzemelerde yasanan arayiiz sorunlarini kaldirmakta oldugu anlasilmaktadir.
Ote yandan, Niino vd. (1987) FDM kavrami ile young modiilii, gekme mukavemeti ve
asinma direnci gibi Ozellikler agisindan daha {istlin malzeme tasarimlarinin
gelistirilmesine  yol acildigin1  ifade etmislerdir. Ayrica, malzemenin elastik
ozelliklerindeki kontrollii bir degisim asmmmaya karsit direncin ve kirilmaya karsi
toklugunun artmasina yardimci olmaktadir (Suresh 2001).

FDM malzemeleri genel olarak; evaporasyon tabanli, piiskiirtme tabanli ve
plazma spreyi gibi fiziksel buhar biriktirme yontemlerle ve kimyasal buhar biriktirme
yontemleriyle imal edilebilmektedir. Bu yontemlerin detayli bilgisi i¢in Mahammood ve
Akinlabi (2017)’nin ¢alismasi incelenebilir. FDM yapilari, uzay (Nath vd. 2019),
otomotiv (Tosi¢ vd. 2022), biyomedikal (Pompe vd. 2003), savunma (Sharma ve
Bhandari 2018), elektrik-elektronik (Kurimoto vd. 2010), enerji (Miiller vd. 2003),
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denizcilik (Chandrasekaran ve Hari 2022), optoelektronik (Wosko vd. 2005), disgilik
(Watari vd. 1997; Mehrali vd. 2013; Hedia ve Foud 2013), ortopedi (Sola vd. 2016) gibi
bircok alanda kullanima sahiptir.

2.4. Atomik Boyut Etkisine Dayal Siirekli Ortam Mekanigi

NEMS organizasyonlarinda yer alan bilesenlerin optimum tasarimi, mekanik
davranigin eksiksiz olarak belirlenebilmesine baglidir. Nanoteknoloji ¢alismalari
icerisinde, bu bilesenlerin mekanik davranist nanomekanik biliminin konusudur. Bu
anlamda nanoyapilar {izerindeki deneysel calismalarin oldukg¢a kisitli yOntemlere
dayanmasi ve zahmetli olmas1 mekanik davranisin 6grenilebilmesine engeldir. Mekanik
davranig1 6grenebilmek adina bilim adamlart ilk olarak atomik diizeydeki simiilasyon
yontemlerine bagvurmuslardir. Bu simiilasyonlardan en iyi bilinen ikisi molekiiler
dinamik simiilasyonu ve Monte Carlo Simiilasyonudur (Gopalakrishnan ve Narendar
2013). Molekiiler dinamikte, nanoyap1 atomlarinin ve bunlar arasindaki baglarin zamana
kars1 davraniglart Newton deterministik dinamigi (hareket denklemleri) ve Langevin-tipi
stokastik dinamigi ile sayisal olarak modellenir. Atomlar arasindaki kuvvetler ve
potansiyel enerji, mekanik kuvvet alanlar1 tarafindan tanimlanmaktadir (Karli¢i¢ vd.
2015). Atomlar arasindaki bu etkilesimden faydalanilarak her atom {izerindeki net kuvvet,
net kuvvet tizerinden de atomlarin hiz ve konumlari elde edilmektedir (Numanoglu 2019).
Molekiiler dinamik simiilasyonu, yliksek maliyet, uzun islem siire¢leri, yliksek hesaplama
hacmi ve ileri uzmanlik bilgisi gibi bilyiik zahmetler barindirmaktadir (Liu vd. 2004;
Murmu ve Adhikari 2012; Numanoglu ve Civalek 2019a, 2022; Civalek ve Numanoglu
2020; Numanoglu vd. 2021).

Nanoyapilarin mekanik analizleri i¢in belirtilen bu sorunlar, arastirmacilari teorik
formiilasyon kullanimina yoneltmistir. Temel nanoteknolojik deneylerin sonucu olarak
nanoyapiya inildiginde klasik fizik kurallar1 gegersiz olmaktadir. Bu sonug, nanomekanik
icin de klasik elastisite teorisi ile yaklasimin gecersiz olacagini isaret etmektedir.
Deneysel sonuglarin, nanoyapiya etkiyen kuvvetlerin yapinin karakteristik i¢ boyutlariyla
(baglariyla) baglantili oldugunu ortaya ¢ikarmasi da bu diisiinceyi dogrulamistir. 1960’1
yillarda gelistirilmeye baslanan siireklilik teorilerinin 2000’11 yillarin basinda atomik
Ol¢ekli yapilara uyarlanmasina baglanmistir ve bu suretle atomik yapilarin mekanik
davraniglar1 giinlimiize kadar yogun bir sekilde aragtirilmistir. Kat1 cisimler mekanigi
biliminde, yliksek mertebeden siirekli ortam teorileri denilen bu yeni simif, klasik
elastisite teorisinin atomik boyut etkisi ile modifiye edilmesi felsefesi ile varlik halinde
olmustur. Bilimsel ¢aligmalarda yaygin olarak bir ve iki boyutlu nanomalzemeler bu
yaklasimlarla mekanik analize konu edilmistir. S6z konusu formiilasyonlardan giiniimiize
degin yaygin bilinenleri, yerel olmayan elastisite teorisi, degistirilmis gerilme c¢ifti
elastisite teorisi, degistirilmis sekil degistirme elastisite teorisi, ylizey enerjisi elastisite
teorisi, esil mekanigi elastisite teorisi olarak zikredilebilir. Bu teorilerden bazilarinin
zamanla yliksek mertebeli yeni varyasyonlar1 da 6nerilmistir (Numanoglu 2019).

2.5. Sonlu Elemanlar Yontemi

Miihendislik problemlerinde analitik (kesin) ¢oziime dayanan matematiksel
modelleme esasen oldukca temel bir islemdir yani basit problemlere kolaylikla
uygulanabilmektedir. Ancak cesitli sebepler analitik ¢oziimiin kullaniminin 6niinii keser.
Tez kapsami geregince kat1 cisimler mekanigi diisiiniilecek olursa, yap1 kinematiginin
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karmasiklagmasi, yiikleme durumunun karmasiklagsmasi, sinir sartlarin karmasiklagsmasi,
tek dogrultulu ¢ubuk yerine iki dogrultulu yiizeysel yapi elemani modellemesi,
malzemenin homojen olmamasi, kesitin sabit olmamasi, yapida hasar yer almasi vb. gibi
durumlar buna Ornektir ve bu Ornekler rahatlikla g¢ogaltilabilmektedir. Bu tiir
problemlerde, miithendislik siirecinin ilk kismi olan analizin gergeklestirilmesi, analitik
yontemin alternatifi olan yaklagitk matematiksel yontemler vasitasiyla yiritiiliir.
Giliniimlizde yaklagik matematiksel yontemler cok cesitlidir ve bu yontemler cesitli
miihendislik problemlerine uygulanarak elde edilen sonuglardan sonra ¢iktiya yani iiriine
gecis saglanabilmektedir.

Sonlu elemanlar yontemi, bu matematiksel yontemler sinifinin belki de en 6nemli
iyesi konumundadir. Temeli 1940’larin hemen basina dayanan sonlu elemanlar
yonteminin temel felsefesine gore, probleme esas sistem ufak birimlere (alt alanlara)
boliintir, bu alt alanlarin fiziksel etkilesimi matematiksel denklemlere doniistiiriiliir ve
denklemlerin ¢6ziimii ile analiz siireci tamamlanmig olur. Sonlu elemanlar yonteminin
uygulama alani oldukca genistir ve bu yontem giiniimiiz diinyasinin miihendislik hizmet
talebinin biiylikliigiine paralel olarak elektronik ortamda programlama ile oldukga biiyiik
bir is birligi icerisinde ¢aligmaktadir. Buna gore, giinlimiizde gesitli bilgisayar yazilimlar
sayesinde, baslicalar1 yapisal analiz, akis analizi, termal analiz, havacilik, geoteknik
miihendisligi, elektro-manyetizma, otomotiv, discilik, biyomekanik olmak {izere bircok
alanda sonlu eleman analizleri ¢ok yogun bir sekilde kullanim halindedir. Tez
kapsaminda, makro o6l¢egin aksine nano Olcekli katilarin sonlu eleman analizleri
inceleneceginden yontem hakkinda detay bilginin verilmemesi tercih edilmistir. Yontem
hakkinda temel bilgiler, tarihge, dayanak esaslar1 ve genel uygulamalar gibi yonleri ele
alan ¢esitli ¢alismalara agik bilimsel literatiirden rahatlikla ulasilabilmektedir.

Sonlu elemanlar yonteminin makro diizeyli problemlerde genis bir uygulama alani
ve ¢Ozlimleme i¢in biiyiikk bir basarisinin olmasinin yam sira, nano 6lcekli yapilar
iizerinde gecmisi heniiz yaklasik on bes yil 6ncesine dayanan uygulamalarinin mevcut
oldugu da tez konusu g6z Oniine alinarak kesinlikle ifade edilmelidir. Bahsi edilen
donemde tek dogrultulu nanogubuk yapilarinin temel kinematik kuramlarina dayanan
yani kapsami oldukga kisith problemlerle incelenmesine baslanan atomik boyut etkili
sonlu elemanlar analizi, giiniimiize degin giderek artan basili ¢alismalarla biiyiik bir yol
kat etmistir. Bir sonraki alt baslikta bu anlatilan mevzu igin bazi referanslar ornek
gosterilmis ve bazi1 kaynak taramalarina da yer verilmistir.

2.6. Bilimsel Literatiir Ozeti

1960’larin hemen basinda macerasina basglayan nanoteknolojik ¢alismalarin
gittikce hiz kazanmasi ve bunun sonucunda nano-elektro-mekanik-sistem teknolojisi
iizerindeki ¢aligmalarin ilgi ¢gekmesi, bu sistemlerin uygun yapisal tasarim mevzusunu
one ¢ikarmistir. Atomik dlgekli yapinin tasarimi 6ncesinde bunun bagli oldugu mekanik
davranisinin anlasilmasini konu edinen simiilasyon tabanli ¢alismalarin getirdigi yiikler
nedeniyle bu konuda bilim camiasinin boyut etkisine dayanan yiiksek mertebeden siirekli
ortam teorilerini gelistirerek atomik 6l¢ekli yapilarin mekanigini bu teorik yaklasimlar
tizerinden ¢6ziimlemeye calistig1 yaklasik son yirmi yillik siiregte ¢ok iyi bilinmektedir.
Boyut etkisini gz Oniine alan teorik yaklasimlardan birisi de Eringen’in yerel olmayan
elastisite teorisi olup, bu teori konu hakkindaki bilimsel literatiirde biiylik bir popiilariteye
sahiptir.
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Ik donemlerde nanoyapilarin homojen malzemeden imal edilme ve yapi
kinematiginde temel etkileri gozetme gibi temel durumlarini géz Oniine alan temel
calismalar olduk¢a yaygin olsa da kompozit malzeme teknolojisindeki gelismeler
zamanla nanomekanik alanina da 6nemli etkilerde bulunmustur. Bu nedenle, tez konusu
da distiniilerek bu alt baslikta ¢ogunlukla fonksiyonel degisimli malzemeden imal edilen
nanoyapilarin yerel olmayan mekanigi hakkindaki secilmis c¢aligmalardan kisaca
bahsedilecektir.

Yerel olmayan elastisite teorisi esasen matematiksel fizik denklemlerine dayanir
(Numanoglu 2017, 2019). Bu konuda Gurtin (1965) ve Kunin (1969) tarafindan yapilan
temel calismalarin ardindan A.C. Eringen ve arkadaglari tarafindan gergeklestirilen
calismalarla (Eringen 1972, 1973, 1977, 1978, 1983, 1984, 2002; Eringen ve Edelen
1972; Eringen ve Kim 1977; Ari ve Eringen 1983) yerel olmayan elastisite teorisi kati
cisimler mekaniginde bir temele oturtulmustur. Yerel olmayan teorinin elastik katilardaki
ilk uygulamalar1 ise 2000’li yillarin basinda ¢ogunlukla Euler-Bernoulli nanokirisleri
tizerinde gergeklestirilen egilme (Peddieson vd. 2003; Wang ve Liew 2007), burkulma
(Sudak 2003; Wang vd. 2006) ve titresim analizleri (Wang ve Varadan 2006) ile olmustur.
Nanokiris analizlerini kinematik acidan daha kapsamli inceleyen ¢aligmalara da
rastlanmistir (Reddy 2007; Reddy ve Pang 2008). Ote yandan, basit (elemanter) eksenel
nanogubuk titresimleri (Aydogdu 2009, 2012) hakkinda incelemeler de yapilmistir.
Yaklasik ilk alt1 yillik siirecteki bu temel calismalarda ¢ogunlukla karbon nanotiip,
nanoyapt malzemesi olarak disilintilmiistiir. Homojen malzemeyi goz oOniine alan
nanokiriglerde yerel olmayan analizlerin kapsami izleyen siirecte olduk¢a genislemistir
ancak tez konusu da diisiiniildiigiinde bu alt baslik kapsaminda bu ¢alismalara daha fazla
girilmemesi tercih edilmistir. Bu konuda Numanoglu (2019) tarafindan verilen literatiir
taramasi incelenerek bilgi alinabilir.

Elbette yerel olmayan mekanik analizler iizerine temel calismalar analitik
¢Oziimlemelere dayanmaktadir. Fakat zamanla incelenen problemler daha da karmasik
bir yapida oldugundan ¢esitli sayisal yaklasimlar nanomekanik literatiirii i¢erisinde yerini
almistir. Bunlarin igerisinde yerel olmayan sonlu eleman formiilasyonu 6nemli bir
yerdedir. Bu konuda, Euler-Bernoulli kiriglerinin mekanigi (Pradhan ve Phadikar 2010;
Alshorbagy vd. 2013; Eltaher vd. 2013a; Eptaimeros vd. 2016; Dingkal 2016; Demir ve
Civalek 2016, 2017; Khodabakshi ve Reddy 2015; Demir vd. 2018; Eptaimeros vd. 2018;
Uzun vd. 2018; Numanoglu vd. 2019; Numanoglu 2020), basit ¢ubuk titresimleri
(Narendar 2012; Adhikari vd. 2013a, 2013b; Demir ve Civalek 2013; Chang 2013; Li vd.
2016; Uzun vd. 2020; Numanoglu ve Civalek 2022), burulma titresimleri (Lim vd. 2015;
Numanoglu ve Civalek 2019a), Timoshenko kirisinin mekanigi (Pradhan 2012; Pradhan
ve Mandal 2013; Alotta 2014; Numanoglu vd. 2021; Numanoglu vd. 2022; Fakher ve
Hosseini-Hashemi  2022), yiikksek mertebeden kayma deformasyonlu egrisel
nanokirislerin mekanigi (Ganapathi vd. 2018; Polit vd. 2018), kaymali (Poisson etkili)
eksenel ¢ubuk titresimleri (Civalek ve Numanoglu 2020) ve ayrik nanoyapilarin serbest
titresimleri (Numanoglu ve Civalek 2019b, 2024; Russillo vd. 2021; Hozhabrossadati vd.
2022) gibi ¢aligmalar 6rneklenebilir.

Tez konusu goz Oniine alindigi zaman homojen kayma deformasyonlu
nanokiriglerin yerel olmayan mekanik analizleri hakkinda secilmis ¢aligmalara izleyen
sayfadan itibaren deginilmektedir.
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Nanokirislerin sicaklik etkisi altinda yerel olmayan titresimi Benzair vd. (2008)
tarafindan formiile edilmistir. Timoshenko kiris teorisine gore kayma deformasyonu ve
sicakliktan kaynakli eksenel kuvvete gore hareket denklemi elde edilmis olup, uygulama
olarak iki ucu basit mesnetli tek duvarli karbon nanotiiplerin yerel olmayan frekanslari
iizerinde atomik parametre, ortam sicakligr ve narinlik oraninin etkileri grafiksel olarak
ele alinmistir.

Ansari vd. (2011) Winkler zeminine oturan tek duvarli karbon nanotiiplerin termal
burkulmasini ¢alismislardir. S6z konusu mekanik analizin yonetici denklemini ¢6zmek
icin genellestirilmis diferansiyel kuadratiir metodu kullanilmistir. Ug farkli smir sarth
nanokiriglerin burkulma modlarinin kritik sicakliklari tizerinde mod sayis1, narinlik orani
ve atomik parametrenin etkileri aragtirilmistir.

Shen vd. (2012) ugta kiiresel biyonesne eklentili ¢ok duvarli karbon nanotiipiin
konsol kiris modelinin (biyonsensdr modeli) yerel olmayan serbest titresimini transfer
fonksiyonlar1 yontemi vasitasiyla incelemislerdir. Ug eklentisinin donel ataletinin ihmal
veya dahil edilmesi durumlari altinda eklenti gapinin degisimine gére boyutsuz frekanslar
mukayese edilmistir. Bir benzer ¢aligmaya gore, ucta nanoparcacik eklentili daralan
nanokirisin serbest titresimi transfer fonksiyon metodu ve pertiirbasyon metodu ile Tang
vd. (2014) tarafindan g¢alisilmistir. Daralma profili lineer olarak diistiniilmiistiir. Daralma
orani, mod sayisi, eklenti kiitlesi ve narinlik oraninin etkileri tartigilmistir.

Ke vd. (2009) Winkler zeminine oturan ¢ift duvarli karbon nanotiiplerin yerel
olmayan lineer olmayan enine serbest titresimini arastirmislardir. Lineer olmama durumu
von Karman tipi sekil degistirme-deplasman iliskisi ile diisiniilmiistiir. Ayrica nanoyapi
duvarlar1 arasindaki van der Waals etkilesimi de dikkate alinmustir. Titresimin
diferansiyel kuadratiir ¢6zlimiine gore, ti¢ farkli sinir sartli nanokirisin frekans oranlari ve
mod sekilleri izerinde atomik parametre ve yap1 boyutlarinin etkisi irdelenmistir.

Ansari vd. (2015a) nanokirislerin yerel olmayan lineer olmayan zorlanmis
titresiminde manyetik-elektrik-termal etkileri diferansiyel kuadratiir ¢ozimi ile
arastirmislardir. Manyetik ve elektrik etkiler Maxwell esitligine ve lineer olmayan sekil
degistirmeler von Karman esitligine gore formiile edilmistir. Ug¢ farkli sinir sarth
nanokirislerin genlikleri iizerinde frekans orani, boyutsuz atomik parametre, sicaklik
degisimi ve manyetik potansiyel gibi farkli parametrelerin etkileri ele alinmistir.

Tek duvarli karbon nanotiiplerin yerel olmayan lineer olmayan burkulma ve
burkulma sonras1 analizleri igin diferansiyel kuadratiir ¢oziimii Ansari vd. (2015b)
tarafindan yapilmistir. von Karman tipi lineer olmama durumu da analize katilmistir. Ug
farkli sinir sarth nanokirisin yerel olmayan kritik burkulma yiikii oranlar1 ve burkulma
deformasyonlari lizerinde nanotiip geometrik boyutlarinin etkileri incelenmistir.

Torabi ve Dastgerdi (2012) kayma deformasyonlu nanokiriglerin yerel olmayan
serbest titresiminde yapisal catlak etkisini incelemislerdir. Nanokirigin burulma yayiyla
modellenmis tek bir catlaga sahip oldugu diistiniilmiistiir. Céziim analitik olarak elde
edilen hareket denklemleri ve smir sartlara ek olarak catlak noktasindaki uygunluk
sartlarinin uygulanmas iizerinden gergeklestirilmistir. Iki farkli sinir sartli nanokirisin
frekanslar1 {lizerinde kayma deformasyonunun, yerel olmayan parametrenin, catlak
siddetinin ve ¢atlak konumunun etkileri ele alinmstir.
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Lei vd. (2013) yerel olmayan nanokirislerin soniimlii titresimini incelemislerdir.
Soniimiin matematiksel modeli olarak Kelvin-Voigt viskoelastisite tanim1 kullanilmaistir.
Mekanik analizin ¢dziimii i¢in transfer fonksiyonu metodundan faydalanilmistir. Ug
farkli smir sartli nanokirislerin soniimsiiz ve sOniimlii serbest titresim boyutsuz
frekanslar1 karsilastirilmis, frekanslar tizerinde viskoelastik soniim ve boyutsuz atomik
parametrenin etkileri arastirilmistr.

Tuna ve Kirca (2016) egilme analizinde paradoks yasanan ankastre mesnetli
nanokiris modellerinin dogru ¢oziimii i¢in Laplace doniisiimiine bagl bir yaklasim
Onermistir. Yaklasim kullanilarak iki farkli sinir sartli ankastre mesnetli nanokirislerin
deplasman degerlerine kayma deformasyonunun ve yap1 boyutlarinin etkisi ele alinmistir.

Pradhan (2012), Timoshenko nanokirislerinin statik, titresim ve burkulma
analizleri igin sonlu elemanlar formiilasyonlarini sunmustur. Sonlu eleman prosediirii
Galerkin ¢dziimii ile elde edilmistir. Iki ucu basit mesnetli nanokirislerin deplasman,
kritik burkulma yiikii ve temel mod dogal frekanslarinin boyutsuz formlar1 dogrulanmis
ve bunlar tizerinde atomik parametrenin etkileri arastirilmistir. Ayrica bu sonlu elemanlar
formiilasyonu kullanilarak kayma deformasyonlu nanokirislerin termo-mekanik
analizleri de Pradhan ve Mandal (2013) tarafindan ¢alisilmustir.

Winkler zeminine oturan nanokiriglerin yerel olmayan burkulmasi Wu ve Liou
(2016) tarafindan Reissner’in karisik varyasyon teorisi yaklagimiyla formiile edilmistir.
Analizde von Karman tipi lineer olmama durumu da goézetilmistir. Dort farkli sinir sart
icin elde edilen kritik burkulma parametreleri dogrulanmistir ve burkulma yiikleri
tizerinde mod sayisinin ve atomik parametrenin etkileri incelenmistir.

Wu ve Lai (2015) ¢ift parametreli elastik zemine oturan nanokirisin yerel olmayan
serbest titresimini Reissner’in karigik varyasyon teorisi lizerinden c¢aligmiglardir. Dort
farkli sinir sarth nanokirisin boyutsuz frekanslar1 kesin sonuglarla karsilagtirilmistir ve
frekanslar tizerinde yap1 boyutlar1 ve zemin parametrelerinin etkileri tartigilmistir.

Numanoglu vd. (2021), termo-elastik bir ortamda yer alan yerel olmayan
Timoshenko nanokirislerinin serbest titresimi i¢in agirlikli kalintt metoduna dayali sonlu
elemanlar formiilasyonunu vermiglerdir. Buna gore, birlestirilmis bir yaklasim ile elde
edilen hareket denklemi, iki diiglimlii sonlu eleman kinematigine dayali olarak bir
0zdeger problemine doniistiiriilmistiir. Dort farkli sinir sartli nanokiriglerin frekanslari
icin yerel olmayan parametre, sicaklik ve elastik zemin etkileri ele alinmistir.

Numanoglu vd. (2022), kayma deformasyonsuz nanokirislere (Euler-Bernoulli
kirisi) ek olarak Timoshenko ve Rayleigh nanokiriglerinin termal serbest titresimi igin
yerel olmayan sonlu elemanlar formiilasyonunu agiklamislardir. Dort farkli sinir sarth
nanokiriglerin yerel olmayan boyutsuz frekanslar1 {izerinde sicaklik degisimi ve narinlik
orani degisiminin etkileri tizerinden kayma deformasyonunun 6nemi arastirilmistir.

De Rosa vd. (2021) ugta kiitle ve elastik yay eklentili daralan nanokirisin titresim
analizini ele almistir. Nanokiris i¢in lineer daralma profili diistiniilmiistiir. Hareket
denkleminin ¢6ziimii diferansiyel kuadratiir metoduna bagli olarak verilmistir. Farkli
daralma oranlar1 i¢in temel mod boyutsuz frekanslari karsilastirilarak ¢oziim dogrulanmis
ve frekans oranlarinin degisimine daralma oraninin etkilerinden bahsedilmistir.
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Kiiresel nanoparcacikla birlesik iki ucu ankastre nanokirigin serbest titresimi
Ceballes vd. (2022) tarafindan analitik olarak formiile edilmistir. Parcacigin kiitlesel bir
eklenti oldugu ve nanokiris lizerinde serbestce dolasabildigi diistiniilmiistiir. Uygulama
olarak parcacik konumunun dogal frekanslar tizerindeki etkileri incelenmistir.

Numanoglu (2022), iki ucu basit mesnetli nanokirislerin kayma deformasyonlu
cokmeleri lizerinde kesit alan etkisini ele almigtir. Tekil ve yayili yiik altindaki iki ucu
basit mesnetli nanokirigin analitik ¢oziimle elde edilen ¢okmeleri dort farklh kesit sekli
icin hesaplanmis olup, sonuglar iizerinde kesit seklinin, kiris uzunlugunun ve yiik
siddetinin ve boyutsuz atomik parametrenin etkileri arastirilmistir.

Abdullah vd. (2023) catlakl1 yerel olmayan Timoshenko kiriglerinin termal serbest
titresimini arastirmiglardir. Catlak donel yay ile modellenmistir ve termal yiik Poisson
etkili eksenel bir kuvvet olarak formiile edilmistir. Sonuglar lizerinde boyutsuz atomik
parametrenin, ¢atlak siddetinin ve sicaklik degisiminin etkileri tartigilmistr.

Nanokiris veya nanogubuk gibi diiz eksenli mekanik katilardan farkli olarak
halkasal nanoyapilarda da kayma deformasyonu etkisinin ele alindig1 gozlemlenmektedir.
Moosavi vd. (2011), yiiksek mertebeden kayma deformasyonuna dayanan nanohalkalarin
diizlem i¢i yerel olmayan serbest titresimini analitik olarak formiile etmislerdir. Sonugclar
izerinde atomik parametrenin ve nanohalka ¢apinin etkileri incelenmistir.

Bunlarin diginda, yerel olmayan elastisite kapsaminda kayma deformasyonu
diizlemsel ayrik sistemler icin de gozetilmistir. Buna gore, Numanoglu ve Civalek
(2024b), egilme etkileri Timoshenko kiris teorisine dayanan diizlemsel nanogercevelerin
yerel olmayan serbest titresim analizi i¢in sonlu eleman ¢6ziimii tabanli bir matris
deplasman formiilasyonu sunmuslardir. Bu formiilasyon tizerinden farkli tip geometrilere
sahip nanocgercevelerin boyutsuz frekanslari lizerinde atomik parametre ve gergeve
geometrisinin etkileri incelenmistir.

Ote yandan, fonksiyonel degisimli malzemelerin (FDM) nanomekanikteki ilk
uygulamalar1t 2010’lu yillarin baglarinda gozlemlenmektedir. FDM nanogubuklari
hakkindaki ilk ¢alismalarda malzeme igin en alt yiizeyde %100 gelik-en list yiizeyde
%100 aliiminyum diisiiniilmiis ve malzemenin klasik karisim kurali ile modellenmistir.
Ayrica ilk galismalarda mekanik analiz ¢6ziimiinde sonlu elemanlar formiilasyonlarindan
faydalanildig: gozlemlenmektedir. FDM’lerin yerel olmayan mekanigi hakkinda kaynak
taramalari bu alt bagligin buradan itibaren devam eden kisminda verilmektedir.

Euler-Bernoulli nanokirislerinin titresim analizleri Eltaher vd. (2013b) tarafindan
sunulmustur. Dort farkli sinir sarta sahip nanokirislerin ilk bes mod boyutsuz frekanslari
iizerinde yerel olmayan parametre ve narinlik oraninin etkileri arastirilmistir. Sonuglar,
yerel olmayan frekanslar {izerinde FDM gii¢ indeksinin énemli oldugunu gostermistir.
Malzeme ve kinematik yonlerinden ayni nanoyapt modelinin egilme ve burkulma
analizleri de Eltaher vd. (2013c¢) tarafindan ¢alisilmustir.

Yerel olmayan nanokirisler tizerindeki yukarida anlatilan ilk ¢alismalarda, kesitin
geometrik merkezi ayni zamanda malzeme merkezi olarak diisiiniilmiistiir yani homojen
malzemenin geometrik ekseni ayni zamanda FDM’nin nétr eksenidir. Ancak izleyen
caligmalarda, geometrik eksenle arasinda kiigiik deplasman yaklagimindan kaynaklanan
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bir fark olusan notr eksen etkisini hesaba katan calismalara da rastlanilistir. ilk defa
Eltaher vd. (2013b)’nin Euler-Bernoulli nanokiriglerinin serbest titresimini buna gore
modelledigi anlagilmistir. Calismada geometrik merkez ile malzeme merkezi arasindaki
mesafe formiile edilmistir. Gii¢ indeksinin bu mesafe {izerindeki etkisinin yani sira iki
ucu basit mesnetli nanokirislerin boyutsuz frekanslari tizerinde gii¢ indeksi, notr eksen ve
malzeme oram1 gibi cesitli faktorler gozetilmistir. Yazarlar, notr eksen etkisinin
frekanslarda belirli durumlar icin %10’un iizerinde sapmaya neden oldugunu ve bu
nedenle FDM nanokirigler tizerinde 6nemli etkisi oldugunu vurgulamislardir.

Timoshenko nanokirislerinin titresimi iizerinde notr eksen etkisi Eltaher vd.
(2014a) tarafindan calisilmistir. Ilgili analiz yerel olmayan sonlu elemanlar hakkindaki
ilk ¢alismalardan farkli olarak ti¢ diiglimlii bir sonlu eleman kinematigine dayanmaktadir.
Ug farkl sinir sarta sahip nanokirislerin ilk ii¢ mod frekanslar1 geometrik ve notr eksenler
icin karsilastirilmistir. Yine ti¢ diiglimlii bir sonlu eleman modeline dayanan Timoshenko
nanokiriglerinin notr eksen etkisiyle egilmesi ve burkulmasi Eltaher vd. (2014b)
tarafindan incelenmistir.

Rahmani ve Pedram (2014) ¢elik-aliimina FDM nanokirisin Timoshenko teorisine
gore serbest titresimini analitik olarak formiile etmislerdir. Malzeme rijitlik ve kiitle
hesaplarinda notr eksen etkisi ihmal edilmistir. iki ucu basit mesnet sinir sartin1 gozeterek
nanokiriglerin boyutsuz frekanslar1 iizerinde kiris boyutlarinin, boyutsuz atomik
parametrenin ve gii¢ indeksinin etkileri arastirilmistir.

Simsek ve Yurtcu (2013) FDM nanokiriglerin yerel olmayan statik ve stabilite
davraniglarini incelemislerdir. Elde edilen hareket denklemleri uygun seri agilimlar ile
coziilerek iki ucu basit mesnetli nanokirislerin boyutsuz frekans ve burkulma yiikii
degerleri lizerinde kayma deformasyonunun, atomik parametrenin, gii¢ indeksinin ve
narinlik oraninin etkileri a¢iklanmistir.

Ebrahimi ve Salari (2015a) termal etkiler altindaki FDM Euler-Bernoulli
nanokirislerin serbest titresimini analitik ve diferansiyel transformasyon metotlar1 ile
incelemisglerdir. Malzeme 6zellikleri i¢in Touloukian (1967) tarafindan Onerilen
sicakligin lineer olmayan fonksiyonu kullanilmistir. Klasik karisim kuralina gore
modellenen Al,05;-SUS304 malzemesinin ti¢ farkli sinir sarth kirisin boyutsuz frekanslar
tizerinde boyutsuz atomik parametre, giic indeksi ve ortam sicakliginin etkileri
incelenmistir. Buna ek olarak, Si;N,-SUS304 malzeme modelinin Timoshenko teorisine
dayanan yerel olmayan serbest titresim ve burkulma analizleri de analitik ve diferansiyel
transformasyon ¢oztimleri ile Ebrahimi ve Salari (2015b) tarafindan arastirilmistir.

Avria ve Friswell (2019) yerel olmayan FDM Timoshenko nanokirislerinin serbest
titresim ve burkulma analizi i¢in on serbestlikli bir sonlu eleman ¢6zlimii gelistirmislerdir.
Onceki galisma 6zetlerinde bahsedilen FDM nanokirislerin ndtr eksen hesabr rijitlik ve
kiitle 6zelligini etkilemektedir fakat bu c¢alismada notr eksenin malzeme efektif
ozelliklerine de dahil edilmis olmasi dikkat ¢gekmistir. Buna gore ti¢ farkli sinir sarta sahip
nanokiriglerin frekans ve burkulma yiik parametreleri iizerinde kiris boyutlari, atomik
parametre ve gii¢ indeksinin etkileri incelenmistir. Ote yandan, bu calismaya konu sonlu
eleman modeli Aria vd. (2019) tarafindan piiriiz fonksiyonel derecelendirilmis
malzemeden imal edilmis kayma deformasyonlu nanokirigin yerel olmayan termo-elastik
titresim ve burkulmasina da uygulanmistir.

15



KAYNAK TARAMASI H.M. NUMANOGLU

Hosseini ve Rahmani (2016) egrisel FDM nanokirislerin yerel olmayan termal
titresimini ¢aligmiglardir. Egrisel nanokirisin kinematiginde Euler-Bernoulli teorisi
gozetilmis, malzeme modellemesinde ise klasik karisim kurali ve lineer olmayan sicaklik
dagilim1 goz oniine alinmigtir ancak nétr eksen etkisi géz ardi edilmistir. Analitik olarak
elde edilen yerel olmayan hareket denklemleri seri agilimlari ile ¢6ziilmiis olup, iki ucu
basit mesnetli nanokirisin frekanslari lizerinde boyutsuz atomik parametre, gii¢ indeksi,
sicaklik, egrilik agis1 gibi faktorler ele alinmistir.

Yiiksek mertebeden bir kayma deformasyon teorisi olan Reddy kiris teorisine
(liglincii mertebeden kiris teorisi) dayanan ve ¢ift parametreli elastik zemine oturan FDM
nanokiriglerin yerel olmayan termal titresimi Ebrahimi ve Barati (2016) tarafindan
incelenmistir. Malzeme homojenizasyonunda Mori-Tanaka modeli (Mori ve Tanaka
1973), efektif malzeme 6zellikleri i¢in sicakligin lineer olmayan fonksiyonu ve sicaklik
degisimi i¢in ti¢ farkli dagilim modeli g6z 6niine alinmistir. Elde edilen hareket denklemi
uygun seri acilimlar ile ¢oziilmiistiir. Boyutsuz frekanslar iizerinde atomik parametre,
gii¢c indeksi ve termo-elastik parametrelerin etkileri arastirilmistir.

Rahmani ve Jandaghian (2015), iiclincii mertebeden kiris teorisi ile FDM
nanokirislerin yerel olmayan burkulmasini arastirmislardir. Iki ucu basit mesnetli kiris
icin hareket denklemlerine seri acgilimi ve dort tiir sinir sart i¢in enerji denklemlerine
Rayleigh-Ritz ¢dziimiiniin uygulanmasiyla kritik burkulma yiikleri elde edilmistir.

FDM Timoshenko nanokirislerinin piezo-elektrik ve termal etkiler altindaki
burkulma analizi Ebrahimi ve Salari (2015c) tarafindan sunulmustur. Elde edilen yonetici
denklemler iki ucu basit mesnetli nanokiris i¢in seri agilimlari ile ¢ozlilmiistiir ve ¢esitli
parametreler altinda kritik burkulma sicakliklar1 verilmistir.

Nazemnezhad ve Hosseini-Hashemi (2014) von Karman tipi lineer olmayan FDM
nanokiriglerin yerel olmayan titresimini Euler-Bernoulli teorisi ile arastirmiglardir.
Mekanik analiz iki tip sinir sartin sekil fonksiyonu igin Galerkin metodu ile ¢6ziilmiistiir.
Kirislerin gesitli parametreler igin lineer olmayan frekanslar1 elde edilmistir.

Hamed vd. (2016), sigmoid dagilima sahip FDM nanokirislerin yerel olmayan
serbest titresimini bir sonlu eleman ¢oziimiiyle arastirmiglardir. Kirig kinematiginde
kayma deformasyonu ihmal edilmistir. 1ki ucu basit mesnetli nanokirislerin boyutsuz
frekanslari farkli parametreler altinda hesaplanmistir.

Soltanpour vd. (2017) elastik zemine oturan c¢atlakli FDM Timoshenko
nanokiriglerinin yerel olmayan serbest titresimini analitik olarak arastirmiglardir. Kirigte
catlak hasar1 dénel yayla temsil edilmistir. iki farkli sinir sartina sahip nanokirisin
frekanslar1 lizerinde cesitli parametrelerin etkisi incelenmistir.

Refainejad vd. (2017) cift parametreli elastik zemine oturan yiliksek mertebeden
kayma deformasyonlu FDM nanokirislerin yerel olmayan egilme, burkulma ve serbest
titresim problemlerini ele almiglardir. Nanokiris kinematigi i¢in dokuz farkl yiliksek
mertebeden kayma deformasyonlu kiris teorisi gozetilmistir. Problemlerin yonetici
denklemleri varyasyon cebriyle elde edildikten sonra iki ucu basit mesnetli nanokirisler
icin uygun seri agilimlariyla ¢oziilmiistiir. Nanokirisin statik ¢cokme, burkulma yiikii ve
titresim frekanslar iizerinde ¢esitli parametrelerin etkisi detayli olarak tartigilmistir.
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Lal ve Dangi (2019) birinci mertebeden kayma deformasyonlu lineer daralan
FDM nanokirisin termal titresimini diferansiyel kuadratiir ¢6ziimii {izerinden
arastirmislardir. Iki ucu basit mesnetli nanokirislerin cesitli parametreler altinda boyutsuz
frekanslar1 ve mod sekilleri sunulmustur.

Fang vd. (2020), donen FDM nanokirislerin termal titresim ve burkulma
problemlerini ele almislardir. Analizde kayma deformasyonlar1 ihmal edilmis ve von
Karman tipi lineer olmayan sekil degistirme gozetilmistir. Elde edilen hareket
denklemleri iki farkli sinir sart i¢in Galerkin yontemiyle ¢oziime kavusturulmustur.
Nanokirislerin kritik sicakliklar1 ve boyutsuz frekanslar1 hesaplanmistir.

Civalek vd. (2022) uglart hem basit hem de elastik yay mesnetli FDM
nanokirislerin Euler-Bernoulli teorisine goére burkulma analizini c¢alismislardir.
Burkulmanin yonetici denklemi Stokes doniisiimii vasitasiyla gerceklestirilmistir. S6z
konusu nanokiris yapisinin farkli parametrelere gore kritik burkulma yiikleri verilmistir.

Uzun vd. (2023) Winkler zeminine oturan FDM Euler-Bernoulli nanokirislerin
yerel olmayan serbest titresimi i¢in sonlu eleman formiilasyonunu gelistirmiglerdir. Ug
farkli siir sartli nanokirisin gesitli parametrelere gore dogal frekanslar1 hesaplanmistir.

El-Borgi vd. (2015) lineer olmayan elastik zemine oturan FDM Euler-Bernoulli
nanokirigininin yerel olmayan serbest ve zorlanmis titresim analizlerini islemislerdir.
Ayrica lineer olmayan sekil degistirme de hesaba katilmistir. S6z konusu hareket
denklemleri varyasyonel iterasyon ve ¢oklu dlcek ydntemleri ile ¢oziilmiistiir. iki ucu
basit mesnetli nanokirislerin farkli parametreler altinda lineer olmayan frekanslari ve
frekans cevaplari elde edilmistir.

Avrefi ve Zenkour (2017a) manyetik ve elektrik etkiler altinda ve visko-Pasternak
zeminine oturan FDM Timoshenko kirislerinin dalga yaymim analizini sunmuslardir.
Hareket denklemi birlesik bir Hooke yasasi-Lame sabitleri ile temellendirilmistir.
Varyasyon cebri lizerinden elde edilen hareket denklemi harmonik esitlikler vasitasiyla
coziilerek nanokirislerin ¢esitli dogrultularinin dalga yayinim hizlarina ulagilmistir.

Lei vd. (2019) eksenel yonde fonksiyonel derecelendirilmis nanokirisin
burkulmasinda termal etkileri aragtirmislardir. Kiris kinematigi olarak siniizoidal kayma
deformasyonu (Touratier 1991) gozetilmistir. Ayrica sicaklik dagilimi da siniis
fonksiyonu ile modellenmistir. Hareket denkleminin Chebyshev polinomlar ile ¢éziimii
tizerinden iki ucu basit mesnetli nanokirislerin burkulma ytikleri hesaplanmistir.

Belarbi vd. (2021) parabolik kayma deformasyonu yaklasimina dayanan Kiris
kinematigi iizerinden FDM nanokirisin yerel olmayan egilme ve burkulma analizleri
hakkinda iki diigtimlii-sekiz serbestlikli bir sonlu eleman ¢6ziimii gelistirmislerdir. S6z
konusu formiilasyon iizerinden nanokiris yapisinin gesitli parametrelere gére boyutsuz
¢okme ve burkulma yiikii degerleri elde edilmistir.

Ote yandan, FDM’den imal edilmis kayma deformasyonlu nanokirislerin, ikinci
bir boyut etkisiyle birlestirilmis yerel olmayan yaklagima (yerel olmayan sekil degistirme
degisimi elastisite teorisi) dayanan mekanik analizleri de (Barretta vd. 2016;
Norouzzadeh vd. 2018; She vd. 2018; Jalaei vd. 2019; Jalaei ve Civalek 2019; Ghoulipour
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ve Ghayesh, 2020; Karami vd. 2020; Thang vd. 2021; Tang vd. 2021; Yue vd. 2021;
Faghidian vd. 2022; Trabelssi ve El-Borgi 2022) de bilimsel literatiirde yogun ¢alisilan
bir konudur.

Atomik Ol¢ekli nanogubuklarin da FDM modelleri tizerinden yerel olmayan
burulmali ve eksenel titresim olgulariin ele alindig1 bilimsel literatiirden bilinmektedir.
Bunun yan sira, bu tiir gubuklarin homojen olma ve FDM’den imal edilme durumlari igin
farkl1 kinematik etkiler de goOzetilmistir. Dahasi, yerel olmayan sonlu elemanlar
formiilasyonlar1 ile nanogubuklarin ¢esitli titresimi incelemeleri gerceklestirilmistir.
Biitiin bu anlatilanlar diisiiniilerek, bu altbaghigin kalaninda giincelligi bulunan
calismalardan asagida kisaca bahsedilmektedir. ilk olarak homojen nanogubuklar
hakkinda agiklamalar yapilmaktadir.

Demir ve Civalek (2013), nanogubuklarin basit eksenel ve burulmali titresimleri
icin yerel olmayan sonlu elemanlar formiilasyonunu agiklamiglardir. Hareket
denklemlerine ortalama agirlikli kalintinin uygulanmast ile elde edilen 6zdeger denklemi
coziilerek hesaplanan boyutsuz frekanslar analitik sonuglarla mukayese edilerek
formiilasyon dogrulanmistir. Nanogubuklarin burulmali ve eksenel titresim frekanslari ve
dalga yaymim hizlari {izerinde boyutsuz atomik parametrenin etkileri incelenmistir.

Ecsedi ve Baksa (2017) Rayleigh teorisine dayanan ve eksenel ortama gomiilii
nanogubuklarin serbest titresimini analitik ¢oziim ile incelemislerdir. Iki farkli sinir sarth
nanogubugun yerel olmayan frekanslariin oranlari iizerinde ¢gubuk uzunlugunun, elastik
ortam parametresinin ve mod sayisinin etkileri aragtirilmastir.

Lim vd. (2015) nanogubuklarin yerel olmayan statik ve dinamik burulmasi i¢in
sonlu eleman formiilasyonunu vermislerdir. iki farkl1 smir sartli nanogubugun farkl tork
yiikleri altindaki statik deformasyonlari ve serbest titresim frekanslar1 analitik sonuglarla
mukayese edilmis ve sonuglar iizerinde atomik boyut etkisi arastirilmistir.

Nazemnezhad ve Kamali (2018a) kalin nanogubuklarin eksenel titresimini
analitik olarak incelemistir. Kalin nanogubuklarin kinematigi yanal deformasyon etkili
(veya Poisson etkili) eksenel gubuk kurami olan Bishop teorisine dayanmaktadir. Iki
farkli smir sartlh nanogubuklar i¢in tiiretilen frekans denklemleri kullanilarak dogal
frekanslar {iizerinde yanal atalet etkisi, ¢ubuk uzunlugu ve atomik parametrenin
etkilerinden bahsedilmistir. Bu ¢gubuk modelinin elastik yay eklentili uglara sahip olmasi
durumu i¢in Stokes doniisiimleri ile yerel olmayan dogal frekans hesaplart da Uzun vd.
(2020) tarafindan sunulmustur.

Karli¢i¢ vd. (2018) Bishop ¢ubuklarinin yerel olmayan eksenel titresimini analitik
ve sonlu farklar ¢oziimleri ile ¢alismislardir. Ayrica bu ¢dziim, liyeleri birbiri ile elastik
etkilesimde olan birlesik nanogubuk sistemine de uygulanmistir. Ug tiir sinir sartl eksenel
nanogubuklarin ve birlesik nanogubuk sisteminin dogal frekanslar elde edilmistir.

Numanoglu ve Civalek (2019a) eksenel ortama gémiilii homojen nanogubuklarin
yerel olmayan burulmali titresimi i¢in sonlu elemanlar ¢oziimiinii ele almislardir.
Burulmali titresime agirlikli kalintinin  uygulanmasiyla elde edilen formiilasyon
tizerinden, ikisi genel ve ikisi elastik yay eklentili olmak {izere dort farkli sinir sartl
nanogubugun yerel olmayan burulma frekanslar1 farkli parametreler igin hesaplanmuistir.
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Civalek ve Numanoglu (2020) Bishop ¢ubuk teorisi iizerinden eksenel ortama
gomiilii homojen nanogubuklarin yerel olmayan eksenel serbest titresimi hakkinda bir
sonlu eleman modelini agiklamiglardir. Sonlu eleman modeli i¢in li¢ diiglimlii eksenel
eleman kullanilmistir. Hareket denkleminin agirlikli kalinti ile ¢oziilmesi ile elde edilen
frekanslarin analitik sonuglara yakinsama ¢alismalari {izerinden ¢6ziim dogrulanmus, iki
farkli smir sartlh nanogubugun frekanslari iizerinde cesitli parametrelerin etkileri
incelenmistir.

Homojen Bishop nanogubugunun yerel olmayan sekil degistirme elastisite teorisi
ile eksenel titresimi Gul ve Aydogdu (2022) tarafindan sunulmustur. Nanoyapinin enerji
denklemleri iizerinden gergeklestirilen Ritz ¢oziimiiniin sonucunda iki farkli sinir sarta
sahip nanogubuklarin dogal frekanslari cesitli etkilere gére hesaplanmistir.

Nazemnezhad vd. (2023) Bishop nanogubuklarinin serbest titresimini iki fazli
yerel/yerel olmayan elastisite yaklasimi ile calismislardir. Varyasyon cebri tizerinden elde
edilen hareket denklemi genellestirilmis diferansiyel kuadratiir yontemi ile ¢ozlilmiistiir
ve iki tlir smir sartli nanogubuklarin dogal frekanslar1 lizerinde cesitli parametrelerin
etkileri arastirilmistir.

Numanoglu ve Civalek (2022) tek catlakli basit eksenel nanogubuklarin yerel
olmayan serbest titresim davranigini bir sonlu elemanlar formiilasyonu ile agiklamiglardir.
sonlu eleman olarak disiinilmistiir. Bazi mukayese calismalari ile formiilasyon
dogrulanmis ve cesitli parametrelere gore ¢atlakli nanogubuklarin boyutsuz frekanslari
elde edilmistir.

Burulmali nanogubuklarda dairesel olmayan Kesitler, ¢arpilma nedeniyle bir
kayma etkisi meydana getirmektedir. Bu baglamda, eliptik (Khosravi vd. 2020a),
ticgensel (Khosravi vd. 2020b) ve dikdortgensel (Khosravi vd. 2020c) kesitli
nanogubuklarin yerel olmayan burulma titresim analizleri de analitik ¢dziimlemeler
yardimi ile verilmistir. Calismalar kapsamindaki sayisal analizler dairesel kesitli olmayan
nanogubuklarin yerel olmayan burulmasinda ¢arpilmanin frekanslart 6nemli Olciide
etkiledigini ortaya koymaktadir. Bunlara ek olarak, eliptik ve tiggensel kesitli negatif
Poisson etkili nanogubuklarin iki farkli sinir sart modelinin yerel olmayan serbest titresim
frekanslar1 da Seyfi vd. (2021) tarafindan sunulmustur.

Ote yandan, yerel olmayan FDM nanogubuklar hakkinda secilmis ¢alismalar da
bu altbashigin kalaninda kisa dzetler halinde anlatilmaktadir. Ilk olarak, Simsek (2012)
daralan FDM nanogubuklarin eksenel titresim analizi i¢in Galerkin ¢6ziimiinii sunmustur.
Cubuk kinematigi basit ¢ubuk, fonksiyonel derecelendirilme gradyani eksenel yon ve
daralma profili lineer daralma olarak gozetilmistir. Iki farkli smir sarta sahip
nanogubuklarin dogal frekanslar1 lizerinde mod sayisi, boyutsuz atomik parametre, gii¢
indeksi, malzeme orani ve daralma oraninin etkileri ele alinmstir.,

Uzun ve Yayli (2020) eksenel ve enine fonksiyonel derecelendirilmis basit
nanocubuklarin yerel olmayan titresimleri i¢in sonlu elemanlar formiilasyonunu ele
almislardir. Tlgili formiilasyon iizerinden séz konusu nanogubuklarin boyutsuz frekanslar
tizerinde gii¢ indeksi ve mod sayisinin etkileri incelenmistir.
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Bahrami vd. (2019) ugta kiitle ve lincer olmayan yay eklentili daralan kesitli FDM
basit nanocubuk modelinin serbest titresimini harmonik bir fonksiyon yardimiyla
incelemislerdir. Eksenel derecelenen malzemenin ve kesit alanin {istel olarak degistigi
varsayllmistir. Yerel olmayan frekans degerleri iizerinde ¢esitli parametrelerin etkisi

arastirilmistir.

Nazemnezhad ve Kamali (2018b) eksenel yonde FDM Bishop nanogubugunun
serbest titresim analizini aragtirmiglardir. Malzeme homojenizasyonu klasik karisim
kuralina gore belirlenmistir. Elde edilen hareket denklemi harmonik diferansiyel
kuadratiir metoduyla ¢oziilerek iki ucu tutulu nanogubuklarin ¢esitli parametreler altinda
dogal frekanslar1 hesaplanmistir.

Arefi (2016) manyetik-elektrik etkiler altindaki FDM Bishop nanogubugunun
birlestirilmis bir yerel olmayan elastisite yaklasimiyla (yerel olmayan sekil degistirme
elastisite teorisi) dalga yayinim analizini sunmustur. Malzeme homojenizasyonu igin
klaisk karisim kurali goz dniine alinmugtir. Tlgili manyetik-elektrik tansérlerini temel alan
ve varyasyonel cebre gore tiiretilen hareket denklemleri uygun dalga denklemleriyle
¢oziilerek faz hizlarinin gergek ve sanal kisimlart hesaplanmistir. Buna benzer bir ¢alisma
da, Arefi ve Zenkour (2017b) tarafindan sunulan piezo-elektrik FDM Love-Bishop
nanogubuklarinin yiizey enerjisini gdzeten dalga yayimmim analizleridir.

Arda (2021) eksenel FDM Bishop nanocubugunun yerel olmayan eksenel
titresimini Ritz metoduyla islemistir. Iki farkli sinir sarta sahip nanogubuklarin frekanslari
tizerinde Poisson etkisi ve gesitli parametrelerin boyutsuz frekans ve genliklere etkisi
incelenmistir. Benzer bir ¢alismada ise, ayni nanocubuk modelinin boyuna dalga
yaymimi Haar dalgacik yaklasimi kullanilarak Arda vd. (2024) tarafindan sunulmustur.

Mohammadian ve Hosseini (2022) daralan geometrili ve karbon nanotiip y1giliml
FDM nanogubugun eksenel titresimini incelemislerdir. Nanoyapinin boyut etkili
kinematigi Bishop teorisi yerel olmayan sekil degistirme degisimi elastisite teorisi ile
yapilandirilmistir. Malzeme homojenizasyonu i¢in Mori-Tanaka modeli géz Oniinde
bulundurulmustur. Elde edilen hareket denklemi kuadratiir eleman metodu ile
¢oziilmiistiir. Iki farkli sinir sartli nanogubugun boyutsuz frekanslari iizerinde farkli
parametrelerin etkileri arastirilmistir.

Uzun vd. (2023) uglar1 elastik yaylarla desteklenmis piiriz FDM Bishop
cubugunun yerel olmayan eksenel titresimini konu almiglardir. Hareket denklemi i¢in bir
Stokes doniisiimii gergeklestirilmistir. Ilgili nanogubuk modelinin dogal frekanslar1 igin
pliriizitenin etkileri ele alinmugtir.

FDM nanogubuklarin eksenel titresiminin yani sira burulmali titresimlerinin de
yerel olmayan elastisite cercevesinde incelendigi belirtilebilir. Iki ucu elastik yay eklentili
FDM nanogubuklarin yerel olmayan burulma titresimi i¢in Stokes doniistimii Civalek vd.
(2022) tarafindan formiile edilmistir. Zarezadeh vd. (2020) manyetik alan altinda ve
elastik ortama gomiili FDM nanogubuklarin yerel olmayan burulma titresimini
genellestirilmis diferansiyel kuadratiir metodu ile incelemislerdir.
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3. MATERYAL VE METOT

Bu bolimde, atomik 6l¢ekli kayma deformasyonlu fonksiyonel derecelendirilmis
nanoyapilarin egilme cubugu (kiris), eksenel cubuk ve c¢ergeve modellerinin yerel
olmayan elastisite teorisine dayanan serbest titresim analizleri degiskenlere ayirma
tabanli analitik ¢6ziim ve ortalama agirlikli kalint1 tabanli sonlu elemanlar metodu ile
formiile edilecektir. Bunun igin, ilk olarak mekanik analizin temeli olan yerel olmayan
elastisite teorisi tanitilacaktir.

3.1. Yerel Olmayan Elastisite Teorisi

Atomik yapilarin mekanik davranislariin klasik elastisite teorisi kullanilarak
aragtirtlmasinin gercekei olmadigr deneysel yontemlerin bir sonucudur ve bu gergek
ozellikle 2000°1i yillarin basindan beri bilimsel literatiirde belirtilmektedir. Klasik
elastisite teorilerine gore mekanik analize esas teskil edecek denklemler kati cismin
tamamu icin gecerlidir. Ancak, atomik yapinin mekanik olaydaki yer degistirmelerinden
ileri gelen ilave gerilmeler ve sekil degistirmeler sonsuzda deger aldigindan yapinin enerji
ifadeleri de sonsuza gider. Bunun sonucunda mekanik analiz gergekg¢i sonuglar ortaya
koyamaz.

Ayrica, atomik yapinin bir unsuru olan karakteristik i¢ uzunluklarin yapinin maruz
kaldig1 dis gevresel etmenlerle (mekanik kuvvet, ortam sicakligi, ortam nemi, piezo-
manyetik-elektrik etmenler, elastik ortam/zemin, vb.) etkilesimlere giriyor olmasi,
deneysel calismalarin énemli bir sonucudur. Gerek bu ¢ikarim gerekse deneysel ve
simiilatif yontemlerin nano/mikro mekanik davranigin arastirilmasi {izerinde cesitli
zorluklar c¢ikarmasi, konuyla ilgilenen arastirmacilari “klasik teorilerin géz Oniine
almadig1 atomik 6l¢egi mekanik analize dahil etme” fikrine yoneltmistir. Bu durumun
sonucu olarak klasik teorileri gelistirmek {izerine yapilan caligmalar ¢esitli yiiksek
mertebeden siirekli ortam teorilerini ortaya g¢ikarmistir ve “yerel olmayan elastisite
teorisi” bu anilan yeni siirekli ortam teorisi sinifinin énemli bir {iyesi, belki de bilimsel
literatlir genelinde en bilinen iiyesi konumundadir. Yerel olmayan elastisite teorisi
kullanilarak, yukaridaki paragrafta bahsedilen atomik yapinin mekanik analizindeki
¢Oziimlenme sorunlari ortadan kaldirilir.

Yerel olmayan elastisite teorisinin ana fikri, atomik yapiin bir noktasindaki
gerilme ve sekil degistirmelerin, o noktanin biitiin komsuluklarindaki gerilme ve sekil
degistirmelerine bagl olmasidir (Tepe 2007; Isik 2011; Numanoglu 2017). Teoriyi 6ne
siren A.C. Eringen tarafindan atomik yapi1 dengesi asagidaki denklemle agiklanir
(Eringen 1983):

oy +p(f,—1;)=0 (3.1)

burada o; yerel olmayan gerilme tansoriinli, p nanoyapi birim hacim agirhigmi, ];

nanoyapi kiitlesel kuvvetini ve ii; = dzuj/ df? hareketin zamana gore ikinci tiirevini

(ivmesini) tanimlamaktadir. Buna ek olarak, atomik yapidaki bir x’ noktasinda yapi
kinematigi agagidaki gibi ifade edilir (Eringen 1983):
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() =2 (U, () +uy, (X)) =3 Lauéix') . auéix’)J 2

i i

o (X') = J.a(|X—X'|,77) ijkl €ij dV( ) (3.3)

\

burada ¢;; yerel olmayan sekil degistirme tansorii, u; Ve u; deplasman bilesenleri, x; Ve x;
konuma gore tiirev operatorleri, o yerel olmayan modiil, nanoyapidaki referans noktasi x
olmak iizere [x — x| Oklidyen formda uzaklik, Cj;; dordiincii dereceden elastisite tansorti

ve ¥ nanoyapinin uzayda kapladig1 hacimdir. Ote yandan klasik gerilme tansérii asagidaki
sekilde tanimlanir:

S (X) =Cyagy (X) = e, (X') 5 + ey (X) (3.4)

burada ¢;; Kronecker Delta semboliidiir. 4 ve u Lamé sabitleri olarak bilinir ve asagidaki
gibi ac;lklamr.

B Ev _E
T (Wro)(1-20) X T 2 0) (35)

burada E, u ve v sirasiyla elastisite modiiliinii, kayma modiiliinii ve Poisson oranini
belirtir. Denklem (3.3)’lin, Denklem (3.1)’de kullanimi ile asagidaki neticeye
ulasiimalidir:

oa , oa ,
asij( ):_a_x;s”( )
2 s, ()] ) o), (6, () A ()
+Ia x=X1)s;; (x')dA(x')+p(fj—U'j):O (3.6)

Sonug denklemde goriilen birinci integral A ylizey alani i¢in ylizey gerilmelerini
ifade eder. Boylece yerel olmayan teorinin klasik teoriden farkli olarak yiizey fizigini de
kapsadig belirtilebilir. Denklemler (3.2) ve (3.4), Denklem (3.6)’da yerine yazilirsa

_I a(|x—x’|)[}tu” (x') +,u(u”. (x')+u;; (x ))] (X )dA(X) +
ov
—Ia [(/1+,u)ui d (X)) + 20 (x ]dV +p(f —U. ) 0 (3.7)
Vv
elde edilir. Uygun sinir ve baslangic kosullarinin burada kullanimi ile deplasman vektorii

u=u(x, t)’ye ulasilabilmektedir. Tabi baslangic kosullar1 yerel olmayan gerilme
tansoriine bagldir. Ongoriilen sinir ifadesi ise
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TN = On); (3.8)

olarak aciklanir (Eringen 1983).
Denklem (3.3)’teki # parametresi boyutsuz atomik parametre olarak bilinir:

— e0a

n L (3.9)
burada ¢, atomik yapiya 6zgili olan ve deneysel belirlenen bir sabit, a i¢ karakteristik
uzunluk ve L dis karakteristik uzunluktur. Atomik malzeme sabiti e, maksimum degerine
x = x’ konumundayken ulasir. Bu durumda |x — x| parametresinin degerine bagli olarak
atomik malzeme sabitinin degeri azalir. Ote yandan, Eringen (1983) tarafindan
aciklandig tlizere,

e Boyutsuz atomik parametre 7, 0’a yakinsarsa yerel olmayan modil «, Dirac
Fonksiyonu o’ya yakinsar.

e Boyutsuz atomik parametre 7, 1’e yakinsarsa yerel olmayan modiil a, kafes dinamigi
(lattik model) olarak bilinen ve nanoyapidaki atomlari birbirine elastik bagl varsayan
bir modele gore hesaplanir.

Eringen (1983) tarafindan, Denklem (3.4)’te yer alan yerel olmayan modiiliin
dalga yaymim egrilerinin kafes dinamigi modeli yayinim egrileri ile eslestirilerek
belirlenebilecegi belirtilmistir. Bu hususta bazi ¢alismalar yerel olmayan modiil hakkinda
su denklemleri sunmaktadir (Eringen 1972; Eringen ve Ari 1983). Buna gore ilk olarak
bir boyutlu yerel olmayan modeller

i(l—ﬁj x| <e,a ise

a(jx.7)=1eal” ea (3.10)
0 x| >eja ise
1 K
a(Mm)=geze ™ (3.11)
1 e
“(|X|’77)=me - (3.12)
0
olarak aciklanirken iki boyutlu modiil
1 VXX
X, n)= K 3.13
a(| | 77) 272'(e0 )2 0{ eoa ] ( )
1 e
(Mn)=ge ™ (3.14)
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denklemleri ile verilir. Denklem (3.13)’teki K, modifiye edilmis Bessel fonksiyonudur
ve asagidaki gibi ifade edilir (Haberman 2013):

Ky (X) =% | L g (3.15)

SoNXE+ 277

Ayrica, ti¢ boyutlu yerel olmayan modiil ¢esitleri de asagidaki gibidir:

X-X

1 “Leoa
a(leln)=me L (3.16)
0
a(|x.n)= e (3.17)

4r(8,a)" J(x-x)

Yukarida tanitilan yerel olmayan modiil tanimlari icerisinde Denklem (3.10) ile
verilenin analizde kullanilmasi ile, kafes dinamiginin Born-Karman modeli ve bir boyutlu
diizlem dalga yayilim egrisi arasinda miikemmel bir uyumu ortaya cikardigi ifade
edilebilir. Ek olarak, Denklem (3.13) ile yazilan iki boyutlu yerel olmayan modiil
tizerinden analizde maksimum hata %1.2 kadardir (Ari ve Eringen 1983). Diger yerel
olmayan modiillerin atomik dalga yayilim modelleri ile iyi bir uyum saglamasi i¢in
atomik malzeme sabiti ayrica se¢ilmelidir (Eringen 1978).

Boyutsuz atomik parametrenin sifira yakinsamasi durumu igin yerel olmayan
modiiliin Dirac fonksiyonuna yakinsadigi belirtilmisti. Bu durum yerel olmayan modiiliin
Green fonksiyonunun lineer diferansiyel operatorii olmasi kosulu ile

Loex (jx = X],77) = 5 (|]x—x]) (3.18)

seklinde belirtilir (Eringen 1983). Burada L lineer diferansiyel operatdriinii tanimlar. &
ise Dirac-o fonksiyonu olarak bilinir. Yukaridaki denklem asagidaki sekilde ifade edilir:

LOO'U. = Sij (319)
burada lineer diferansiyel operatorii
82 . 82 .
L) =1 T8 g (gap 20 320

olarak tanimlanir. Bu denklemin Denklem (3.19)’da kullanilmasiyla
2 0°
1-(e,a) =7 1%1=% (3.21)

ifadesine ulasilir. Bu denklem iizerinden yerel olmayan elastisite i¢in lineer, izotropik ve
elastik katilarin sirastyla eksenel ve kayma gerilme-sekil degistirme biinye bagimtilar:
asagidaki sekilde tanimlanir (Numanoglu 2019):
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0o
G _(eoa)2 872“ =s; = Eg; (3.22)
2 622'”
7, —(&2) pe =t; = 2Gy, (3.23)

burada i, j = x, y, z eksenlerini temsil etmek suretiyle, o;; yerel olmayan eksenel gerilmeyi,
t; yerel olmayan kayma gerilmesini, ¢; eksenel sekil degistirmeyi, Vi kayma sekil

degistirmesini, s;; Klasik eksenel gerilmeyi, #; klasik kayma gerilmesini, E elastisite
modiiliinii ve G kayma modiiliinii ifade eder.

3.2. Problemin Co6ziim Prosediirii
3.2.1. Analitik ¢6ziim

Stirekli sistemlerin mekanigi, diferansiyel denklemler aracilifiyla mekanik bir
olaydan matematiksel bir probleme doniistliriilmektedir. Burada diferansiyel denklemin
sekli (adi-kismi, homojen-homojen degil, sabit katsayili-degisken katsayili, tek tiirevli
adi-¢ok tiirevli adi) ¢éziimii etkilemektedir. Titresim analizleri, olayda rol alan temel
parametreler olan konum ve zaman nedeniyle deplasmanin bu ikisine bagh kismi bir
diferansiyel denklemini teskil eder. Sayet dinamik analizde dis tahrik varsa (zorlanmis
titresim hali) kismi diferansiyel denklem homojen olmayan, dig tahrik yoksa (serbest
titresim hali) kismi diferansiyel denklem homojen bir haldedir. Bu tez kapsaminda serbest
titresim analizleri ele alinacaktir. Serbest titresimin diferansiyel denklemi genel formda
asagidaki gibi ifade edilir:

Onyd +0,,d =0 (3.24)

burada ¢ kismi diferansiyel operatoriidiir. d = d(x, f) tiirevlenebilir bir fonksiyon olup
titresim analizi i¢in deplasmandir. x ve ¢ tiirevleme degiskenleri olup, sirasiyla konum ve
zamani temsil eder. n ise tiirevleme miktaridir. O halde homojen ve kismi diferansiyel
denklem ¢oziimiiyle ilgilenilmesi gerekmektedir. Bu tiir diferansiyel denklemler
“degiskenlere ayirma metodu” ile ¢oziilebilmektedir:

d(x,t)=S(x)T(t) (3.25)

burada S = S(x) ve T = T(¢) sirastyla modal ¢6ziim (statik deplasman) ve harmonik ¢6ziim
olarak belirtilmektedir. C6ziim, Denklem (3.25)’in Denklem (3.24)’te yerine yazilmasi
suretiyle, dinamik deplasmanin kismi bir diferansiyel denkleminin statik deplasmanin adi
bir diferansiyel denklemine doniistiiriilmesi ile baslamaktadir. Ardindan ilgili kismi
diferansiyel denklem karakteristik polinomlar ile incelenerek ¢oziim devam ettirilir.
Coziim sonucunda mod denklemi elde edilmektedir. Sabitlere bagli olan mod
denkleminde sinir sartlar yerine yazilarak bir asikar ¢oziime ulasilir ve bu ¢6ziimiin
sonucu mekaniksel olarak dogal frekans anlamina gelir.
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Uygulanisi oldukg¢a kolay ve anlasilir olan degiskenlere ayirma metodunun
kisitlandig haller de mevcuttur ve agik¢ast mithendislik mekanigindeki birgok titresim
problemi bu metodun uygulanabilecegi kadar basit degildir. Sinir sartlarin sayisinin fazla
olabilmesi, matematiksel yapi itibariyle karmasik olabilmesi veya problemin yeterince
sinir sart tanimlayamamasi gibi baglica sebeplerden dolay1 degiskenlere ayirma ¢oziimii
kullanilamaz bir vaziyette olabilir. Bdyle durumlarda, karmasiklagsacak hesabin
iistesinden gelmek icin ilk olarak siirekli sistemin en azindan geometrik sinir sartlarini
saglayan bir seri ¢6zlimii ile aranir. Bu tiir durumlarda formiile edilmesi gereken Fourier
seri ifadesi asagidaki gibidir:

d (x,t):idnsin(aix)sin(a)t—e) (3.26)

n=1

burada d, bilinmeyen seri katsayisi, o; sistemin geometrik davranigini belirten bir katsayi,
o dogal frekans, t zaman ve 0 faz agis1 olarak tamimlanir. Ormek verilecek olursa, L
uzunluklu eksenel ¢ubuklarda, bir ucu tutulu diger ucu serbest ve iki ucu tutulu sinir
sartlar i¢in sirasiyla «; = ir/L ve a; = (2i — 1)m/2L olarak belirtilirken bu iki katsay1 ayni
zamanda egilme ¢ubugu (kiris) yapilarinda sirasiyla iki ucu basit mesnetli ve bir ucu
ankastre diger ucu kilavuz (donmeyen diiseyde kayici) mesnetli sinir sartlarini yansitir.

3.2.2. Hareket denkleminin tiiretilmesi

Bir 6nceki alt baglikta da ifade edildigi bir titresim analizi, aslinda fiziksel bir olay
olan titresimin matematiksel anlamda bir diferansiyel denkleme yani hareket denklemine
doniismesi ve bunun tanimli kosullara gore ¢ozlilmesi suretiyle ¢iktilarinin (mod sekli,
frekans, periyot) hesaplanmasi siirecini kapsar. Dolayisi ile burada hareket denkleminin
tiiretilebilmesinin baslica bir gereklilik oldugu anlasilmaktadir. Burada hareket denklemi,
hareketin konum ve zaman degiskenlerine gore diferansiyellenebilen ifadelerinden olusan
bir denklemdir ve analize giren i¢ (kiitle ataletleri) ve dis (tahrik, soniim, elastik ¢evre,
termal ¢evre, piezo-manyetik-elektrik etkiler, ortam nemi vb.) faktorlere gore tanimli
olmaktadir. Hareket denklemi siirekli yapt mekaniginde yap1 kinematigi agisindan basit
problemler (sifirdan farkli tek deformasyon bileseni gibi) i¢in denge denklemleri ile elde
edilebilirken yap1 kinematiginin karmasiklastig1 (sifirdan farkli birden ¢ok deformasyon
bileseninin rol oynadigi) problemlerde Lagrange denklemi veya varyasyon cebri gibi
matematik analiz yaklasimlar1 ile belirlenmektedir. Kayma deformasyonlu eksenel
nanokiris ve nanogubuk titresimi gibi problemlerin, gerek sifirdan farkli birden ¢ok
deformasyon bileseni icermesi, lstiine bir de yerel olmayan gerilme nedeniyle ek
tiiretimlere ihtiya¢ duymasi nedeniyle bu tiir titresim analizleri denge yaklagimina kars1
matematiksel yaklagimlarin kullanimini 6ne ¢ikarmaktadir.

Ote yandan ifade edilmelidir ki, hareket denklemleri tiiretilse bile sinir sartlarin
karmasik olmasi, diis gevresel etmenler ve nanodlgekte boyut etkisinin probleme dahil
olmasi baslicalar1 olmak iizere bircok durumda titresim c¢iktisi elde edilememektedir. Bu
acidan hareket denklemi {izerinden kurulabilecek sayisal bir yaklasim formiilasyonu veya
algoritmasi tizerinden yaklasik ¢oziim elde edilebilmektedir. Biitiin bu agiklamalar,
titresim analizi icin hareket denkleminin bilinmesinin olmazsa olmaz oldugunu
vurgulamaktadir.
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Tekrar kayma deformasyonlu nanoyapilarin hareket denklemi eldesine donitilecek
olursa, bu anlamda varyasyonel cebrin kullanimi ¢ok biiyiikk bir oneme sahiptir.
Varyasyon cebri, titresim analizinde Hamilton Ilkesi ile kendisini gosterir. Bu ilkeye gore,
bir katinin (¢, #,) zaman araliginda potansiyel enerjisinin birinci varyasyonu sifirdir.
Yani,

éH:jz[u ~(T+W)]dt=0 (3.27)

4

burada 0 varyasyon sembolii, U i¢ gerilme ve sekil degistirmeden dogan i¢ sekil
degistirme enerjisi, 7 deformasyon bilesenlerinden dogan toplam kinetik enerji ve W dis
kuvvetin yap1 lizerinde is yapabilme kabiliyeti yani is potansiyel enerjisidir. Enerji
ifadelerinin farkli deformasyon bilesenlerinin varyasyonlarina gore gerekli formlari
hesaplanip isleme alindiktan sonra, bu deformasyon bilesenlerinin varyasyonlarin ¢esitli
durumlarina gore sonuglari, bir dizi matematiksel islem {izerinden birlestirilir ve siirecin
sonunda hareket denklemi ve sinir sartlar problemin yapisina uygun olarak formiile
edilmis olur. Tez kapsamindaki hareket denklemi tiiretimleri Hamilton ilkesiyle
gerceklestirilecektir.

3.2.3. Agirhikh kalint1 tabanh sonlu eleman formiilasyonu

Denklem (3.26)’daki seri ¢oziimii anlasilacagi tizere her smir sart igin
kullanilamaz. Analitik ¢6ziim de yetersizse bdyle durumlar artik sayisal (yaklasik)
¢oziimlerin kullanimini gerektirmektedir. Miihendislik mekanigi analizlerinde cesitli
sayisal yontemlerin varligindan ve bunlardan birinin de sonlu elemanlar ydntemi
oldugundan bahsedilmisti. Bu yontemin temelinde bir agirliklandirma islemi mevcuttur.
Buna gore agirlikli ortalama kalinti, siirekli yapida ilgili mekanik analizi idare eden
denklemin agirliklandirilmasiyla elde edilen toplam kalintiyr sifira esitler. Mekanik
analizi idare eden denklem ve agirliklandirma islemleri sonlu eleman kinematigi
tarafindan gergeklestirilmektedir. Boylece, ortalama agirlikli kalinti asagidaki gibi
tanimlanmaktadir (Kwon ve Bang 2000):

| = j hRdx (3.28)

burada % ve R sirasiyla agirliklandirma ve kalintidir. Agirlikli kalint1 tabanli sonlu eleman
¢oziimiine gore sekil fonksiyonunun transpozu agirliklandirmay1 ve nanoyapinin serbest
titresim hareket denklemi de kalintiy1 tanimlar.

Ortalama agirlikli kalint1 islemi sonucunda, serbest titresim problemi igin bir
sonlu elemana ait kiitle ve rijitlik matrisleri ortaya ¢ikar. Detayina girilmeksizin, kiitle ve
rijitlik matrislerinin yapi1 serbestlikleri dogrultusunda toplanmasi ve geometrik sinir
sartlar dogrultusunda elimine edilmesi suretiyle yine detayr verilmeksizin ulagilan
0zdeger problemi olan
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det(i[K]—a}lzn’;[M]}:O (3.29)

n=1

denkleminin ¢oziimii gergeklestirilir. Burada [K] ve [M] yapidaki negatif ve pozitif
strastyla rijitlik ve kiitle bilesenlerinin toplamlarini yansitan sirastyla indirgenmis kiiresel
rijitlik ve indirgenmis kiiresel kiitle matrisidir.

Sonlu eleman analizinde bir sonlu elemanin rijitlik ve kiitle matrislerinin ifade
edilmesi, temel olarak sonlu eleman kinematigi ile iligkilidir. Sonlu eleman kinematigi
ise sonlu eleman geometrisine baghidir. Bilindigi lizere tek dogrultulu (¢ubuk), iki
dogrultulu (yiizey) ve li¢ dogrultulu (hacim) sonlu elemanlari, yap1 mekaniginde siklikla
karsilasilan modellerdir. Ayrica sonlu eleman kinematigi, bir de elemanin
diigiimlendirilme yapisina baglidir. Bundan kasit, sonlu elemanin diigiim sayis1 ve diigiim
konumlarinin belirlenmesidir. Genel olarak sonlu eleman modellerinden, ¢ubuk sonlu
eleman kullanimi1 oldukga pratik ve analiz i¢in oluk¢a temel bir yapidadir. Bunlar, birisi
sol ve digeri sag ucunda olmak tizere asgari iki diigiimlii olmalidir. Daha hassas analiz
ihtiyaci veya iki diigiimiin matematiksel anlamda yetersizligi gibi sebeplerle diigiim sayisi
artirllarak daha yiiksek mertebeden bir gubuk sonlu eleman teskil edilerek problemde
kullanilabilmektedir. Cubuk sonlu elemanlarin elbette problemlere uygulanisi genel
olarak sinirh bir diizeydedir ve karmasik problemler igin uygun olmamaktadir. Genellikle
cubuk sonlu eleman ile eksenel ¢ubuk, kiris, kafes ve ¢erceve gibi yapilarin serbest
titresim davraniglar1 arastirilabilmektedir. Bu tez, nanoyapilarin egilme ¢ubugu (kiris),
eksenel cubuk ve ¢erceve modellerini yapisal anlamda kapsamina aldigindan esas olarak
bu yapilarin sonlu eleman kinematiklerini de olusturmak gerekmektedir. Cesitli eksenel
ve egilme ¢ubugu sonlu elemanlarinin kinematikleri hakkinda detaya girilmeyecek olup
bu konuda Numanoglu (2019) tarafindan agiklanan bilgiler incelenebilir.

3.3. Kayma Deformasyonlu Fonksiyonel Derecelenmis Cubuklarin Yerel Olmayan
Mekanigi

Tez konusu itibariyle fonksiyonel derecelendirilmis nanoyapi modellerinin kayma
deformasyonlu yerel olmayan ¢ubuk ve kiris teorileri iizerinden serbest titresim hareket
denklemleri iizerinde ¢alisilacaktir ancak oOncesinde fonksiyonel derecelendirilmis
malzeme modelinin tanitilmas1 gerekmektedir. Bir tanima gore, “mekanik ve fiziksel
ozellikleri, belirli matematiksel modellere dayali olan ve homojen yapilara gore daha
gliglii performansa sahip olan malzeme” (Numanoglu ve Civalek 2019a) kompozit
malzemeler smifinin bir iiyesi olan fonksiyonel derecelendirilmis malzemeyi belirtir.
Tabi bu tanima bir ekleme yapilmalidir. Burada matematiksel modelin siirekli bir
denklemle karakterize edildigi belirtilebilir. Ornegin malzeme 6zelligi uzunluk boyunca,
kesit yiiksekligi boyunca, kesit kalinlig1 boyunca veya bu fligiinden birka¢1 boyunca
degismelidir. Kesikli degiskenlik gosteren malzeme tabakali kompozit konfigiirasyonunu
akla getirir. O halde fonksiyonel derecelendirilmis malzeme sonsuz sayida tabakanin bir
araya getirilmesi ile olusturulan tabakali bir kompozit gibi diistiniilebilir. Tezde incelenen
nanoyapinin dikdortgensel kesite sahip diiz bir cubuk oldugu, sadece kesit yiiksekligi
boyunca siirekli degisime sahip fonksiyonel derecelendirilmis malzemeden imal edildigi
kabul edilecektir.
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3.3.1. Fonksiyonel derecelendirilmis eleman modeli

S6z konusu fonksiyonel derecelendirilmis dikdortgen kesitli nanoyapir modeli
Sekil 3.1°de resmedilmektedir. Burada L, b ve & sirasiyla nanoyapinin uzunlugu, kesit
kalinligr ve kesit yiiksekligidir. Buna gore nanoyapinin kesit yiiksekligi boyunca
malzeme Ozellikleri farkli olmaktadir. “4” ve “U” alt indisleri sirasiyla fonksiyonel
derecelendirilmis malzemenin alt ve iist yiizeylerinin ilgili mekanik 6zelliklerini temsil
etmek iizere, malzemenin elastisite modiilleri £, ve Ey, Poisson oranlart v, ve vy
(boylece kayma modilleri G,= E,;/2(1 +v,) ve Gy = Ey/2(1 +vy), birim hacim
agirliklari p , ve p , termal genlesme katsayilari a4 ve oy olarak belirtilir. Tez kapsaminda
tiiretilecek formiilasyonlarda basitlik i¢in Poisson orani sabit varsayilacaktir (v4 = vy)).

Ey, vy py 0

b
E }
X h ——y
Eyvapy oy j_
- V4

|
- L =

| |
z

Sekil 3.1. Fonksiyonel derecelendirilmis yatay nanoyapi elemani modeli

Fonksiyonel derecelendirilmis malzemeler, mekanik davranigin belirlenebilmesi
amactyla cesitli karigim kurallarina gore matematiksel olarak modellenmektedirler.
Matematiksel modellemenin fiziksel anlam1 malzeme homojenizasyonudur ve bunun igin
cesitli yaklasimlar mevcuttur. Bunlardan en yaygin bilineni klasik karisim kuralidir. Bu
kurala gore, yiikseklik dogrultusundaki bir koordinatin malzeme 6zelliginin malzeme alt
ve list ylizeyinin belli fraksiyonlar1 (hacim oranlari) nispetinde tayin edildigi ve hacim
fraksiyonlarinin toplamlarinin 1’e esit oldugu kabulii yapilmaktadir:

P(2)=PaVa+RyVy (3.30)
Va4V, =1 (3.31)

burada bir z koordinati igin P efektif malzeme 6zelligi, P, ve Py sirastyla malzeme alt ve
ist yiizeylerinin ilgili malzeme 6zelligi (elastisite modiilii, kayma modiilii, Poisson orani,
birim hacim agirligi, termal genlesme katsayisi, atomik malzeme sabiti, vb.) olarak
tanimlanir. V', ve Vy; sirasiyla malzeme alt ve {ist yiizeylerinin hacim fraksiyonlar1 olup

asagidaki gibi agiklanir:
1 z\° 1 z\°
Va=l=+—| My =1-|=+—-| . 3.32
g (2 hj ’ (2 hj 53

burada p fonksiyonel derecelendirilmis malzeme gii¢ indeksi (veya sadece gii¢c indeksi)
olarak tanimlanir ve gii¢ indeksinin degeri negatif olamaz.

Dikdortgen kesit yiiksekligi dogrultusundaki boyutsuz koordinata karsi gelen alt
ve list ylizey malzemesi hacim fraksiyonlari, secilmis cesitli gii¢ indeksi degerleri i¢in
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Sekil 3.2°de verilmektedir. Goriildiigli lizere gii¢ indeksi arttikca alt yiizeyin hacim
fraksiyonu kendi bolgesi disiiniildiigiinde artmakta ve aym sekilde iist yiizeyin hacim
fraksiyonu kendi bolgesi diisiiniildiigiinde diisiis gostermektedir. Elde edilen bu sonuglar,
giic indeksi 0’a yaklastikca fonksiyonel degisimli malzemenin tamamen {ist ylizey
ozelliklerine gore ve ayni sekilde gii¢ indeksi sonsuza yaklastik¢ca fonksiyonel degisimli
malzemenin tamamen alt yiizey 6zelliklerine gore davrandigi anlagilir.

z/h

o

2aNv=oo

o

z/h

(b)

Sekil 3.2. Klasik karigim kurali ile modellenen fonksiyonel derecelendirilmis dikdortgen
Kesitli yap1 elemani i¢in hacim fraksiyonlarmin degisimleri; a) Alt yiizey; b) Ust yiizey
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Denklem (3.32)’nin Denklem (3.30)’da kullanimindan sonra efektif malzeme
Ozelligi sadece alt ylizey hacim fraksiyonuna gore yazilirsa, fonksiyonel
derecelendirilmis malzemenin Sekil 3.1°deki 6zellikleri asagidaki denklemlerle ifade
edilir:

E(z):AE(%+%j +E, (3.33)
G(z):AG(%+%jp+GA (3.34)
p(Z)zAp[%+% p+pA (3.35)
a(z)=Aa(%+%jp+aA (3.36)

burada A ilgili 6zelligin alt ve list yiizeydeki degerleri arasindaki farkini tanimlamaktadir
(AE=E,; — Ey, AG=G,— Gy, Ap=p, —p,, Ve Aa = ay — ay). Bir sonraki bdliimde,
kayma deformasyonlu fonksiyonel derecelendirilmis nanoyapilarin yerel olmayan serbest
titresimi hakkindaki sayisal sonuglar ve bunlarin tartismalar1 sunulmaktadir. Boliimiin
hemen girisinde malzeme 6zellikleri detayli olarak tanitilmaktadir. S6z konusu nanoyapi
icin o kisimda detayl olarak yazilan su malzeme 6zellikleri goz 6niine alinarak, se¢ilmis
cesitli giic indeksi degerlerine ve alt yiizey hacim fraksiyonunun artigina gore ilgili
malzeme Ozelliginin degisimleri Sekil 3.3’te betimlenmektedir: Elastisite modiilleri
E =70 GPa ve Ey; =380 GPa, birim hacim agirliklar1 p , =2702 kg/m? ve py = 3960

kg/m? ve termal genlesme katsayilari oy = 2.31x 107° K™ ve ay = 6.8269x107° K",
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Sekil 3.3. Klasik karisim kurali ile modellenen fonksiyonel derecelendirilmis dikdortgen
kesitli yap1 elemani i¢in malzeme 6zelliklerinin degisimi; a) Elastisite modiilii; b) Birim
hacim agirligi; ¢) Termal genlesme katsayisi (Devami arkada)
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Sekil 3.3. Klasik karisim kural1 ile modellenen fonksiyonel derecelendirilmis dikdortgen
kesitli yap1 elemani i¢in malzeme 6zelliklerinin degisimi; a) Elastisite modiilii; b) Birim
hacim agirligi; ¢) Termal genlesme katsayisi

Dérdiincii boliimiin konusu sayisal uygulamalarda g6z 6niine alinan fonksiyonel
derecelendirilmis malzemede klasik karigim kurali goz oniine alinarak elastisite modiilii,
birim hacim agirligi ve termal genlesme katsayilarinin kesitin boyutsuz yiikseklik
koordinatina gore degisimleri gii¢ indeksinin farkli degerleri altinda Sekil 3.3’te
verilmektedir. Sekil 3.2°de yapilan agiklamalara benzer olarak, burada da gii¢ indeksi 0’a
yaklastik¢a ilgili malzemenin efektif 6zellik degerinin iist ylizey malzemesinin ilgili
ozellik degerine yaklagsmakta oldugu ve giic indeksi sonsuza yaklastikca ayni sekilde
malzeme efektif 6zelliginin alt ylizey malzemesinin degerine yakinsadig: anlagilmaktadir.

Egilme zorlar1 altinda ¢alisan bir fonksiyonel derecelendirilmis kati cisimde
efektif malzeme ozelligi hesaplarini agirlik merkezine gore gerceklestirmek kesin
dogruluktaki sonuclarin elde edilmesinin 6niine geger. Clinkii kesitin tarafsiz ekseni (notr
eksen veya rijitlik ekseni olarak da anilabilir), malzeme homojen olmadigindan geometrik
eksenle cakismaz. Bu durum Sekil 3.4’te resmedilmistir. Buna gore fonksiyonel
derecelendirilmis kirigin dikdortgen kesitinde kesitin agirlik merkezi G noktasindan
gegen yz- eksen takimi geometrik eksen takimi ve malzeme rijitlik merkezi olan yzo-
eksen takimi tarafsiz eksen takimi olarak betimlenir. Burada diisey eksenler z ve z,
cakigirken yatay eksenler y ve y, ¢akismaz, bu ikisinin arasindaki mesafe h, kadardir.
Davranis1 dogru belirlemek igin 4, mesafesinin bilinmesi gerekmektedir. Kirislerde
kiiglik deplasman varsayimi (Eltaher vd. 2013b) kullanilarak bu mesafe hesaplanabilir.
Tabi oncelikle diisey eksenler arasindaki koordinat doniisiimii yazilmalidir. Buna gore,
Sekil 3.4’teki dikdortgen kesitin kose koordinatlar1 goz oniine alinarak:

2,=2-h, (337)

bagintis1 kurulabilir.
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Sekil 3.4. Fonksiyonel derecelendirilmis yap1 elemant i¢in dikdortgen kesit

Kiiciik deplasman varsayimi yapi elemani lizerindeki net eksenel kuvvetin sifira
esit oldugunu ifade eder. Eksenel kuvvetten eksenel gerilmeye gecilerek

A

denklemi kurulabilir. Eksenel gerilme, elastisite modiilii fonksiyonu gbz oniine alinarak
o =E(2g) & (3.39)

seklinde ifade edilebilir. Ayrica kirisin kinematigi geregince eksenel deplasman

Uy (X, Zg,t) =g (X, t)— 7, awg((t) (3.40)

seklindedir. Burada u, = u,(x, zy, t) nihai eksenel deplasman, uy = uy(x, f) saf eksenel
deplasman ve w=w(x, ) enine deplasmandir. Temel egilmede saf eksenel deplasman
ug = 0 kabul edilerek, Denklem (3.40)’1n eksenel sekil degistirmede kullanimiyla

au o°w
Ex = 8XX = _ZO 87 (341)

sonucuna varilir. Denklem (3.41) Denklem (3.39)’da yerine yazilirsa eksenel gerilme

o*w
ow=—E(2))2y—5

— (3.42)

olarak elde edilir. Diferansiyel alan elemani i¢in d4 = bdz, tanimmin ve Denklem
(3.42)’nin Denklem (3.38)’de kullanilmas1 sonucunda
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22w h/2-h, h/2—hy
-b— j E(zy)zodz, =0 veya I E(z9)zodzy =0. (3.43)
X —h/2-h, ~h/2-hy

esitligi ortaya ¢ikar. Burada Denklem (3.37) elastisite modiilii hari¢ kullanilip, integral
sinirlart s6z konusu koordinat doniisiimiine gore diizenlenirse

h/2

| E(z)(z-hy)dz=0 (3.44)

-h/2

ifadesine ulasilir. Burada ¢ok Onemli bir basitlik kabuliiniin yapilmasi gerekmektedir.
Elastisite modiilii igerisinde de koordinat doniisimii yapilarak E(z — k) ifadesi
kullanilirsa %, hesabi el ile yiiriitilememekte, yiiksek giic indeksi degerleri igin A
dikdortgen kesit disina tasarak fiziksel bir anlamsizlig1 ortaya ¢ikarmakta ve ¢ok daha
yiiksek gii¢ indeksleri igin bu mesafe farkinin hesap siiresi asir1 uzamakta veya mesafe
farki hi¢ hesaplanamamaktadir. Bu nedenle hesaplarda basitlestirme yapilarak elastisite
modiilii i¢in Denklem (3.33) ile tanimlanan elastisite modiiliiniin z eksenine gore degisimi
kullanilacaktir. Denklemin diizenlenmesi ile /4, mesafesine asagidaki gibi ulasilir (Eltaher
vd. 2013c; Eltaher vd. 2014a; Eltaher vd. 2014b; Ebrahimi ve Salari 2015d):

h/2
J E(z)zdz
ho__h/z y phAE
-~ h2 “2(p+1 2
J' E(Z)dZ (p+ )(p+ )

—h/2

(3.45)

Burada tarafsiz ve geometrik eksen farkliliginin fonksiyonel derecelendirilmis
malzemenin elastisite modiilii farki, gii¢ indeksi ve dikdortgen kesitin yiiksekligine gore
degisecegi dikkat cekmektedir.

Bilimsel literatiirde konuyla ilgili bazi ¢alismalarda (Simsek 2016; Aria ve
Friswell 2019), Denklemler (3.33)-(3.36) ile goriilen fonksiyonel derecelendirilmis
efektif malzeme ozelliklerinin yiiksekligin boyutsuz koordinati olan z/A ifadesinin
(z + hy)/h olarak degistirilmesi suretiyle yeniden tanimlandigi goriilmektedir. Ancak bu
tanimlamada baz1 soru isaretlerinin mevcut oldugu diisiiniilmektedir. Oncelikle, Sekil
3.1°de resmedilen fonksiyonel derecelendirilmis dikdortgen Kesit incelenirse, sirasiyla en
iist ve en alt yiizeylerin koordinatlari z;; = — z/h ve z4, = z/h igin ilgili ylizeyin malzeme
ozelliklerine ulasilamamakta, yani fonksiyonel derecelendirilmis malzeme tanimi en
basindan celigkili bir hal almaktadir. Ayrica, bu yeni model diisiiniilerek, bu tez
kapsaminda sayisal hesaplarin test agamasinda elde edilen titresim sonuglari, gii¢
indeksinin p =1 degeri hari¢ Aria ve Friswell (2019) ile hi¢bir uyum goéstermemistir.
Buna ek olarak, Aria ve Friswell (2019)’'un mukayese calismalarinda aldiklar
referanslarda efektif malzeme o6zelliginin ndtr eksene gore yapilandirilmadig
gozlemlenmistir. Kisacasi fonksiyonel derecelendirilmis malzeme i¢in bu yeni tanimlama
hakkinda bazi anlasilamayan durumlar olustugundan Denklemler (3.33)-(3.36) ile verilen
temel malzeme homojenizasyonu diisiiniilecektir ancak yapinin egilme kinematiginden
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dogan ve 6zellikle nanokiris enerji denklemlerinde, bunun sonucu olarak da ¢esitli rijitlik
ve kiitle tamimlarinda kendisini gOsterecek olan /&, mesafesi mutlaka g6z Oniine
aliacaktir.

3.3.2. Kayma deformasyonlu kirisler

Cift parametreli elastik zemine oturan ve termal etkiler altindaki fonksiyonel
derecelendirilmis atomik Olgekli kirislerin yerel olmayan elastisite teorisine ve
Timoshenko kirig teorisine dayanan serbest titresim analizi bu alt baglikta formiile
edilecektir.

Hatirlatilacak olursa, kiris davranisi lizerine kuramlar kayma deformasyonunu ele
alip almamasina gore ayrilir. Kayma deformasyonunun niteligine gore teorinin kapsami
farklilasir. Bu nedenle, giiniimiize degin Timoshenko, parabolik, istel, trigonometrik,
siniizoidal, ¢cok bilinmeyenli, zenginlestirilmis gibi kayma deformasyonlu kiris teorileri
ortaya atilmistir. Bunlardan Timoshenko teorisi, kayma deformasyonunu temel diizeyde
ele aldigindan birinci dereceden kayma deformasyonlu kiris teorisi olarak bilinir. Diger
teoriler yiiksek mertebeli terimleri analize dahil etmektedir. Ote yandan, Euler-Bernoulli
kiris teorisi ise kayma deformasyonunu temelden reddetmektedir. Euler-Bernoulli kiris
teorisi her ne kadar genel uygulanabilirlik ve davranis anlama agilarindan pratik bir
yaklagim olsa da kisa agiklik, yiiksek kesit ve tekil yiikleme gibi durumlarin bir veya
birka¢inin problemde 6ne ¢ikmasi nedeniyle gercekci olmaz ve kayma deformasyonlu
kiris teorileri bu noktada devreye girer. Bilimsel literatiirde, genel olarak uzunlugun
yiikseklige oraninin 20’den biiyiik oldugu kirisler i¢in Euler-Bernoulli teorisinin
kullanilabilecegi ve bu smirin alti i¢in kayma deformasyonlu teorilerin goz Oniinde
bulundurulmasi gerektigi ifade edilmektedir.

Hareket Denkleminin Tiiretilmesi: Analize konu nanokiris yapist Sekil 3.5’te
verilmekte olup, alt ve {ist yilizeyin malzeme 6zellikleri de sekilde goriilmektedir. Ayrica,
sekildeki diger parametrelerden &y, ve kp sirasiyla Winkler (lineer tabaka) ve Pasternak
(kayma tabakasi) zeminlerinin rijitliklerini, A7 ortam sicaklig1 degisimini ve f=f(x, f)
nanokiris yapisina etkiyen enine dis dinamik zoru (tahrik) belirtir.

AT AT

o
Euupy v Wm b

H
Eyppyoy : i )
 EEEEEEEEEEEEERENE RN "N '
- L kaP:}
Y

z

Sekil 3.5. Termo-elastik cevrede bulunan fonksiyonel derecelendirilmis nanokirigin
titresim analizi i¢in nanoyap1 modeli
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Hareket denklemini tiiretmek amaciyla Hamilton ilkesini tanitan Denklem
(3.27)’nin kullanilabilmesi i¢in en dnce nanokirisin kinematik iligkilerinin olusturulmasi
gerekmektedir. Bunun igin ilk adim olan kayma deformasyonlu bir kiris yapisinin
deplasman bilesenleri

ux(x,z,t):u(x,t)—Z(p(x,t):u—z%, u, (xz,t)=v(xt)=v=0,

U, (X, 2,t) =w(x,t)=w=w, +Ww. (3.46)

seklindedir. Burada u,, u,, Ve u, sirasiyla eksenel, yanal ve enine deplasman bilegenlerini
belirtir. Eksenel deplasman bileseni i¢in u saf eksenel deplasman ve ¢ kesit donme agisi,
v yanal deplasman ve enine deplasman bileseni i¢in w toplam enine deplasman, w;, egilme
deplasmani ve w, kayma deplasmanidir. Saf eksenel deplasman temel olarak ihmal
edilmektedir (z=0). Bu kiris teorisini kayma deformasyonsuz kuram olan Euler-
Bernoulli kiris teorisinden ayiran niians ¢’nin karakteristiginde gizlidir. Buna gore, Euler-
Bernoulli kiris teorisi bu parametreyi ihmal ederken (¢ = 0) Timoshenko kiris teorisine
gore bunun degeri kesit boyunca sabittir.

Kinematik iligkilerin olusturulmasmna sekil degistirme tansorii ile devam
edilmelidir. Buna gore, fonksiyonel derecelendirilmis kesitin tarafsiz ekseni diisiiniilerek
sekil degistirme bilesenleri

ou
A :1[5% +8UXJ: 8;; :—(z—ho)é—(o, £y :1(6&+_Vj:o,

2\ ox  oX OX 2 oy oX

& :1 Oy +% :1[@_¢j c :1 a&Jr% -0

“ 2loz ox ) 2\ éox W o2l ey oy ’
g L[y ou ) g, :l(ﬁuer%j:o. (3.47)
o2l ez oy “ o2lar &z

seklinde formiile edilebilir. Burada ., &y, Ve &, ilgili eksenlerin eksenel sekil degistirme
bilesenleriyken e¢,,, ¢, Ve ¢, kayma sekil degistirme bilesenleridir. Euler-Bernoulli kirig
teorisinde sifirdan farkl tek sekil degistirme bileseni ¢, iken burada buna ilaveten e,,
bileseninin sifirdan farkli oldugu dikkat ¢ekmektedir. Buradan fonksiyonel
derecelendirilme durumu da g6z 6niinde bulundurularak Klasik gerilme bilesenlerine

0
S = E(2) 60 =—E(2)(2-19) 22, 5, =2G(2)8,, =0,
ow
S, =2G(2) &y, _G(Z)(&_(Dj’ s,y =E(2)&,, =0,
Syz=2(3(2)8yz=0, SZZ=E(Z)6‘ZZ=O. (3.48)

olarak gecilir. Burada s, s,, Ve s.. ilgili eksenlerin eksenel gerilme bilesenlerini ve s,,,
sy Ve sy, kayma sekil degistirme bilesenlerini gosterir.

37



MATERYAL VE METOT H.M. NUMANOGLU

Hamilton ilkesi denklemine esas teskil etmesi gereken enerji ifadeleri asagidaki
gibi kurulur:

1
U=— > I(Gxxgxx +O W&y + 0,8, +20, 8 +20,,6y +20,,€, )dV
\

1k 15 (owY
+Ejkww2dx+§£kp(&j dx
j: (8—W— j X+EJL. ky W +k (@T dx (3.49)
) ax ax 7)) TR
T=1j,0(2) (6ij2+ ou, 2+(6uzj2 dV=1T | (@JZH (a—ﬂz dx  (3.50)
23 ot ot ot 231 %at) Pl '

L L ow 2
W = ! fdx + l N, (&J dx (3.51)

burada i¢ sekil degistirme enerjisi U’nun sonucunda M ve V sirasiyla egilme momenti ve
kesme kuvveti i¢ tesirlerini belirtir. Kinetik enerji 7°nin sonucunda yer alan olan /; ve I,
sirastyla fonksiyonel derecelendirilmis dikddrtgen kesitin sifirinc1 ve ikinci kiitle
ataletlerini tanimlar:

hy/2
lo—jp 2)dA=b | p( (3.52)
2

hy/2

= p(2)(z—t)’dA=D [ p(z)(z-hy)’dz (3.53)
A —h/2

Ote yandan W dis kuvvetlerin is enerjisi (is yapabilme potansiyeli) olarak adlandirtlir.
Bunun igerisinde yer alan N termal eksenel kuvvettir ve asagidaki gibi yazilir:

hy/2

N; = [E(2)a(2)ATAA=bAT [ E(z)a(z)dz=DrAT (3.54)
A —h/2

burada D; sicakliktan kaynaklanan ve yapiya etkisi negatif bir rijitliktir. Ote yandan,
analizin ilerleyen safhasinda nanoyapi i¢in klasik egilme momenti ve kesme kuvveti i¢
tesirlerine ihtiya¢ duyulacak olup bunlar asagida formiile edilmektedir:

2 0@ oW
Mc::[Sxx(z_ho)dA:_:[E(Z)(z_hO) &dA:_B 5‘X2b (3.55)
oW,
ey (3.56)
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burada & kayma diizeltme faktoriidiir. Ayrica, B ve S kayma deformasyonlu fonksiyonel
derecelendirilmis nanokirisin sirasiyla egilme ve kayma rijitlikleri olarak tanimlanmakta
olup soyle agiklanirlar:

h/2
B=b [ E(z)(z-hy)’dz (3.57)
—h/2
h/2
S=b | G(z)z (3.58)
—h/2

Denklem (3.45) kullanilarak, kayma deformasyonlu nanokirigin muhtelif kiitle
ataleti ve rijitlik bilesenleri, bir dizi kismi integral hesabi sonucunda asagidaki gibi
tiiretilmis olur:

Ap
I, =bh| == ,
0 [p+1+pAJ (3.59)

A phyAp
1, =bh hz(—p+p ]+h(_o—+
2 { p+1 )L (p+D)(p+2)

(p2+p+2)A,o Pa

3.60
4(p+1)(p+2)(p+3) 12 (360)
AE ph,AE
B =bh hz(—+E j+h SR kel
{0 p+1 " ( (p+1)(p+2)
2
p°+p+2)AE
( ) +Ea (3.61)
4(p+1)(p+2)(p+3) 12
AG
S=bh| == 4G
(6 .6,) as
AEAa o AE+E,Acx
—bh A A E
Or (2p+1+ p+1 i AaAJ (3.63)

......

sirastyla alt ve {ist yiizeylerin kayma modiillerinin su sekilde goz oniine alinacagi da not
edilmelidir:

Gp= ) Gy = ) . (3.64)
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Buraya kadar gerekli ara bilgiler tanimlandigindan tekrardan varyasyon
hesaplarina doniilebilir. Denklemler (3.49)-(3.51) ile olusturulan enerji denklemlerinin
birinci varyasyonlarimin Denklem (3.27)’de kullanilmasi1 gerektiginden s6z konusu
varyasyon ifadeleri

tzl_
op ow oW . oW
oudt = Mo —+VS6——-Vop+Kk,WoW+Kk, —— dxdt
tJ; {J.[ OX P P ox ax)d (3.65)

OX

t, L
j5Tdt—”(l0§5a aa(t”a%t—wjdxdt (3.66)
jawdt = ” f5vvdxdt+”DTAT—§(aWjdxdt (3.67)

40

seklinde verilir. Burada goriilen bazi1 varyasyonlar gerekli integrasyon sinirlari igerisinde
kismi integrasyon islemine tabi tutularak

L L L L
op, L (oM oW, L oV
!lvlé&dx =M g, —I&&pdx, jva—dx =V ow|; —!55\/\/(1

k oW E Ke @m —jk —5de
6x OX a

t2 th

jloaw5awdtzloa—wéw —jlo—évvdt
ot ot ot

op dp. _ Op . I 2p
j|2555dx_|255 —j|2 =L Syt

t 4

L
OW . OW ow
AT — 5 —dx = AT—cSw AT—5de 3.68
-([DT OX OX Dr OX IDT ox? ( )

denklemleri ortaya g¢ikar. Bu ifadeler Denklemler (3.65)-(3.67)’de yerine yazildiktan
sonra elde edilen ifade diizenlenirse asagidaki sonuca varilir:
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t) L thL 2 2
[ 2y, Ty (pdxdt+” —ﬁ+k ko Tty AT I
2 ot? OX OX ox?

tLL 2 2
o%w 2 *w | o*w
+1g - [owdxdt [ [| - == +k, w—kp ——f AT— waxdt
° ot J ”( o TR Tz~ T Dr Oatzjg
L L
dt+f(—l28—¢jc5w
0 0 ot

dt = (3.69)

Y

ty

+J2‘(—M )5@‘;dt +

4[ pra ]aw

burada cift integralli ifadelere dikkat edilirse, dp # 0 ve ow # 0 durumlari i¢in sirasiyla

(V+kP2—W—DTAT?j5W dt
X X

o e 5T

I’}

oM %
=V =—pl =~ 3.70
o Pl = (3.70)
o*w o*w
——kWW+(DTAT ke )a——f Aat— (3.71)

elde edilir. Bu iki denklem, kayma deformasyonlu fonksiyonel derecelendirilmis
Timoshenko nanokirisinin yerel olmayan titresiminin hareket denklemini tiiretmek i¢in
esas teskil etmektedir. Buna gore, Denklemler (3.22), (3.23), (3.55)-(3.58) gbz oniinde
bulundurularak eksenel gerilmenin momenti ve kayma gerilmesinin kesit alan iizerinden
integrasyonlar1 {lizerinden sirasiyla egilme momenti ve kesme kuvveti i¢ tesirlerinin
klasik-yerel olmayan elastisite bagintilari

20°M _ g 0p_ 0w,

M —(e,a 3.72

(&2) ox? OX ox? (3.72)
2 0V ow oW,

V —(e,a) —=kS| — -0 |= S 3.73

(&3) x> (ax goj OX 3.73)

olarak sunulur. ilk olarak Denklem (3.70)’in x’e gore birinci tiirevinde Denklem (3.73)’iin
yerine yazilmasiyla elde edilen momentin ikinci tiirevi Denklem (3.72)’da kullanilirsa
egilme momenti, ardindan Denklem (3.71)’in x’e gore birinci tiirevi Denklem (3.73)’te
kullanilirsa kesme kuvveti i¢ tesiri, deplasman bilesenlerinin de agik yazilmasiyla
asagidaki gibi elde edilir:

2 2
M =-B 0 VZb +(e0a)2 Ky (W +Ws)+(e0a)2 (D;AT —kp)a(wb—jws)
OX OX
0% (W, +W, o* (W, +w,
—(eoa)2 f Jr(eoa)2 Io%—(eoa)2 IZ% (3.74)
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oW, o(W, +W, 3 (We +W
V =kS 6)(3 +(epa)’” kw(z—xs)+(eoa)z(DTAT—kp) (at;@ ;)
of o (W, +W
_(eoa)2&+(eoa)2|o—(axbat2 ) (3.75)

burada formiilasyon tiiretiminin devam ettirilebilmesi i¢in egilme ve kesme deplasmani
bilesenleri arasinda bir iliskinin kurulmasi gerekmektedir. Buna gére Denklemler (3.74)
ve (3.75)’in Denklem (3.70)’te kullanilmasi ile bu iliski

64
—1, 2% 4 (ega)’ I, —szj (3.76)

seklinde ortaya ¢ikartilmis olur. Anlagilacak oldugu tiizere bu denklem kesme
deplasmanin1 egilme deplasmanina doniistiiriir. Bu bagintinin Denklemler (3.74) ve
(3.75)’te ayr1 ayr1 kullanilmasi ile ilgili i¢ tesirlerin nihai hallerine asagidaki sekilde
ulagilir:

0w,

M =— +(e0a)2(DTAT _kP)J 2

(e0a)* (D AT —kp ) B 0*w, s (epa)* ky B
kS ox* kS

+(e0a)2 Ky Wg +

2 2
e.a) 1,1, o*w e.a) kyl, | 62w
(0 zs 0l2 at"'b +[(eoa)2|0+( 0 ?(SW 2} ath

- (eoa)2 I,

(e0a)” (D AT —Kp) 1, 2wy N (ea)" 1B
kS ox*ot? kS

N (eoa)2 (DrAT —kp) 1, ~ (eoa)4 ko 1o | 0%w, ~ (eoa)4 loly 0%w, (e a)2 f
< kS |adat? kS adatt

(e a)Z(DTAT—k )B &°w (e a)zk B 2 o*w,
V=" < F 8X5b+ —B—Ok—SW+(eoa) (Dr AT —kp) ax3b

Jr(eoa)2 Ky (eoa)2 l,

ow, (808)" (DrAT —kp )1, 0wy, N (ea)" 1B
ox kS ox°ot? kS

Jr((eoa)2 Iy + 1,

+(e0a)2(DTAT—kP)I2_(eoa)4kWI2 ow,
kS kS ox’ot’

2 4 2
+(e0a) kWIZJ o°wy, (&a) loly o'w, +(e0a) lol, 0w, —(eoa)za]c

kS oxot2 kS oxdat kS  oxot? x

(3.78)
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bunlardan kesme kuvveti i¢ tesirinin Denklem (3.71)’de yazilmasindan sonra yine
Denklem (3.76)’nin kullanimi sonucunda hareket denklemine asagidaki gibi ulasilmig
olur:

_(e2)" (DrAT —kp ) B 8w, . _B_(eoa)2 kuB _ (DrAT —k;)B
kS ox® kS kS

4 2
+(epa)” (DrAT - kp)) 58)\(/Zb +(k‘£’—f+(e0a)2 ky —(Dr AT —kp )j aa)‘(’gb

kW — 7 | lot 2 64
kS ot kS ) ot kS ox°ot

_(eoa)2 1B 2(eoa)” (D AT —kp ) 1, (ea)1,— (e0a)" ky Iz] o%w,

kS kS kS ox’ot?

2
2(epa) ky I, LLoB
kS kS

(eoa)2 lg+1, -

(DrAT =kp )1, | 6%w,
kS ox2ot?

4 8 2 6 2
_(e2) lolo wp2(e6a)" lol, 8w, (eoa)22+f=o (3.79)

kS  oxtet? kS ox%ot* OX

Bu denklemin sadece egilme deplasmaninin tiirevlerine bagh bir diferansiyel denklem
olarak goriindiigiine dikkat edilmelidir. Bilindigi ilizere bir siirekli yapinin mekanik
davranig1 sinir sartlarin hareket denklemine uygulanmasi ile belirlenebilir. Geometrik
sinir sartlar Denklem (3.69)’da verilen w ve ¢ gibi varyasyon sinirlaridir ve ug tiirlerinden
kolaylikla belirlenebilir. Ote yandan, dinamik sinir sartlari ise, egilme dénmesinin
varyasyonu op(0, £) =ow,' (0,£) #0 velveya Jp(L,t)=ow,'(L,t)#0 durumu igin
Denklem (3.77) ile belirlenen

M =0 (3.80)

siir sartinin yani sira deplasmanin varyasyonu ow(0, ) # 0 ve/veya ow(L, t) # 0 durumu
icin Denklem (3.78)’in Denklem (3.69)’dan yazilabilecek

O (W, + W )

- (3.81)

V =(DrAT —kp)

ifadesine esitlenmesi sonucunda tiiretilen
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kS ox° -

_(eoa) (DTAT _kP)B 0" Wy +(—B (eOaLSkWB +(eoa)2(DTAT —kp)

—k 3
il p)Bjaangb ((e02) ko~ (DyAT ke )) 2

(eoa)2 I,

(ea)" (DrAT —kp) 1, d'w, N (e2) 1B
kS ox°ot’ kS

+ +((e0a)2 lg+1,

2(e0a)2 (DrAT —kp) 1, (eoa)4 ko 15 | &°w,
kS kS ox’ot?

+(eoa)2 ko 1 _(DTAT_kP)I2] o*w, _(eoa)4 lol, 8'w,

kS kS OXot? kS oxiat?
2
(eoa) |0|2 85Wb 2 of
+ —(e,a) — =0 3.82
kS  oxott (&2) X (3.82)

siir sarti olarak agiklanabilmektedir. Denklem (3.82) yeri geldiginde “toplam kesme
kuvveti” olarak anilacak olup,

V' =0 (3.83)
ile sembolize edilecektir.

Hareket Denkleminin Céziimii: Tez ¢alismast mekanik agidan bir serbest titresim
analizini kapsadigindan ilk olarak Denklem (3.79)’da /=0 alindiktan sonra denkleme
uygulanacak degiskenlere ayirma ifadesi

W, (X,t) =W, (x)sin (wt - 6) (3.84)

seklinde ifade edilir. Denklem (3.84), Denklem (3.79)’da yerine yazilirsa ve devaminda
harmonik fonksiyon olan sinilis fonksiyonu denklemden sadelestirilirse kismi bir
diferansiyel denklem olan hareket denklemi asagidaki gibi adi bir diferansiyel denklem
olan mod denklemine donlismektedir:

d*W, (x)

dx®

dW, ()

dx*

d*W, (x)
dx?

A +A, + A + AW, (x)=0 (3.85)

burada asagidaki tanimlar gecerlidir:
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Ay = B{—l+%(DTAT ke —(&53)  ky )}+(e0a)2(DTAT —kp)

e WNeoa)z I, {“%(_Z(DTAT ~ke )+ (&) ky )ﬂ
4 _ (eOa)4 lol,
(4] _TJ'

Ay =l 2+ e (08T i 07| 1o -2

~(ea)’|
+l, [—1+ %((DTAT —kp)—(&a) ky )ﬂmél[%]

A, =—ky +w2[|0+kw'2]+w4(—ﬂj. (3.86)

kS kS

bunlara ek olarak, mekanik sinir sartlar olan egilme momenti (Denklem (3.77)) ve toplam
kesme kuvveti (Denklem (3.82)), Denklem (3.84)’nin idaresinde

d*w dw
M = b 1 B b+ B.W, 3.87
% dx*  Zdx® " (3.87)
. dw dw dw
V' =B b, B b ,g. —2b 3.88
YA de ° odx (388)

seklinde formiilize edilebilir. Burada gerekli tanimlar yeri geldiginde verilecektir.

Denklem (3.85) altinct dereceden, adi, sabit katsayili ve homojen bir diferansiyel
denklem teskil etmektedir. Her ne kadar diferansiyel denklemin ¢dziimiinde ortaya ¢ikan
karakteristik polinomun altinc1 dereceden oldugu bilinse de bu denklemde A4,’{in varligi
nedeniyle karakteristik polinomun ¢6ziimiinden mod denklemine el hesabiyla gecis ¢cok
zordur. Dolayist ile sinir sartlarin uygulanmasi manasiz kalacaktir. Dahasi, karakteristik
polinom ¢oziilebilecek olsa dahi alti adet sinir sarta ihtiyag olacagini gosterir. Elbette
sicaklik ve/veya Pasternak zemini problemde rol almazsa ¢oziim gerceklestirilebilecektir.
Ote yandan, Euler-Bernoulli kiris teorisi ile yapilan serbest titresim ¢dziimiinde dort adet
mod ¢ozliimii sabiti mevcuttur, geometrik ve mekanik sinir sartlar da dort adet oldugundan
¢oziimiin duydugu ihtiya¢ karsilanmis olur. Ancak burada kayma deformasyonsuz
teoriden farkli olarak sicaklik ve/veya Pasternak zeminin yerel olmayan parametre,
kayma diizeltme carpani ve kayma modiilii ile birlikte etki gdstermesi daha yiiksek
mertebeden bir diferansiyel denklemi meydana getirmis olup, asikar sonuca sebebiyet
vermeyecek iki sinir sarta daha ihtiya¢ duyulmaktadir. Euler-Bernoulli kiris teorisinden
farkli olarak Timoshenko kiris teorisinin bu ilave sinir sart1 geometrik yapida bir sinir sart
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olan kayma deplasmani ile karsilanabilmektedir. Buna gore, bu defa kayma deplasmanini
da idare eden

W (X,1) =W; (x)sin (et —0) (3.89)

seklindeki degiskenlere ayirma ifadesinin Denklem (3.84) ile beraber Denklem (3.76)’ya
uygulanmasi

dw,
W, = B7 W + BBWb (390)

S

neticesini vermektedir. Denklemler (3.87), (3.88) ve (3.90) ile tanimlanan sinir sartlarda
goriilen B; (i = 1 — 8) katsayilar1

B, =B, =~

(e2)” (DyAT —kp ) B +a){(eoa)“(DTAT k) |2J
kS kS ’

eoa)2 1,B y

B, = B[l(eoi%}(eoa)z(DTAT —kp )+ @ {( v
() o[ 14 (08T ke )+ () ) | o [_—(60325'0'2}

B, = (&oa)’ ky + @ {—(eoa)2 I _(eoal%}r o' ((eoai%} :

B =8| 1+ (-(DraT k) (&) Ky )+ (62" (DraT )

kS

. _(eoa)4I0|2J

+ P MN&@)Z 1, {1+ %(_Z(DTAT —kp) +(e02) )ﬂ

+®
kS

Bs =—(DrAT _kP)+(e0a)2 ky + @ [_(eoa)2 lo+1; {—“%(DTAT —kKp

—(&0)" Ky )ﬂ +o [—(eoai‘; IOIZJ,

e,a) |
B7:_ES+0)2( 0 ) 2, Bgz—a)zl—z. (3.91)

olarak ifade edilmektedir.
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Stnir Sartlar: Termo-elastik ¢evrede yer alan yerel olmayan Timoshenko kirisinin
mod ¢oziimlemesine dair denklemin elle edilmesi ¢ok zor oldugundan alt1 adet sinir
sartin1 uygulamanin bir anlam1 yoktur ancak tezde ele alinan nanokiris tiplerinin sinir
sartlarinin tanitilmasi gerekmektedir. Zira bu kapsamdaki bazi agiklamalar mekaniksel ve
matematiksel olarak birka¢ 6nemli ¢ikarim saglayacaktir.

1- Basit Mesnet (S): Yari rijit baglant1 olarak da adlandirilan bu ug tiiriiniin geometrik
olarak ¢cokmedigi ve mekanik olarak egilme momenti almadigi miithendislik mekaniginde
yaygin bilinen bir bilgidir. Buna ek olarak, ilave sinir sarti olarak tanitilan kesme
deplasmaninin da olmamasi gerekmektedir. Bu anlatilanlar Denklemler (3.69), (3.87) ve
(3.90) i¢in sirasiyla

W, =0, BW,*) + B\W,” + By, =0, BW," + BW, =0. (3.92)
denklemleri ile ifade edilir. Burada ilk olarak, egilme deplasmani smir sarti kayma

deplasmani1 sinir sartinda yerine yazildiktan sonra elde edilen netice yine egilme
deplasmani ile beraber egilme momenti sinir sartinda yerine yazilirsa,

W, =0, W," =0, W, ¥ =0. (3.93)

neticeleri elde edilir ve bunun mod ¢6ziimii siirecinde dolayli olarak 6nemli bir bulguyu
sagladigindan yeri geldiginde soz edilecektir.

2- Ankastre Mesnet (C): Tam rijit baglanti1 olarak adlandirilan bu ug tiiriinde geometrik
olarak hicbir harekete izin verilmez, yani ¢cokme ve donme olmaz. Teorik formiilasyon

geregince bunun anlami, egilme ve kesme deplasmanlarinin yani sira egilme donmesinin
sifira esit olmasidir.

W, =0, W, =0, BW," +BgW, =0. (3.94)
sonug olarak sinir sartlarin nihai hali sdyle siralanir:
W, =0, W, =0, W," =0, (3.95)

3- Serbest U¢ (F): Herhangi bir mesnetlenme veya 6zel bir kisitlama bulunmadigindan
yani rijit hareket goriileceginden i¢ tesir olusmaz. Buna ek olarak kiris kinematigi
geregince geometrik olarak sadece kesme deplasmani yoktur. Dolayisi ile Denklemler
(3.87), (3.88) ve (3.90)’a gore sirasiyla

BW, ) + BMW," + B, =0, BMW,®) + BW,” + BW, =0,
BW," +BgW, =0. (3.96)

seklinde sinir sartlar agiklanir.
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4- Kilavuz Mesnet (G): Teknik tabirle diiseyde kayici ama donmeyen mesnet yukarida
aciklanan diger {i¢ ug tiiriine gore nispeten az karsilasilan ug tiiriidiir ancak mekanik
davranisin kapsamli arastirilmasi i¢in analize dahil olmasi tercih edilmistir. Burada
kilavuz ug yar1 ankastre bir mesnet gibidir yani ankastre gibi donmemekte ancak ¢izgisel
hareket yapabilmektedir. Bu nedenle egilme donmesinin olmadigi ve ¢izgisel hareket
serbestligi nedeniyle toplam kesme kuvvetinin de olmayacagi anlasilmakta, bu ikisine ek
olarak ucun kinematigi geregince kesme donmesinin de olmayacagi belirtilmektedir.
Sonug itibariyle kilavuz mesnet

m "

W, =0, BW,®) +BW," +BW, =0, BW,"” +ByW, =0. (3.97)
denklemleri ile ifade edilir. Burada ilk olarak egilme donmesinin kesme donmesinde
yerine yazilmasiyla elde edilen sonu¢ yine egilme donmesi ile beraber toplam kesme

kuvvetinde kullanilirsa su sonuca varilir:
W, =0, W,” =0, w5 =o0. (3.98)

Uygulamalar: Siir sartlar iizerinden dinamik davranisin arastirilmasinda el
hesabinin verimsiz siireclere yol acacagi durumlarda kullanilacak seri agilimdan Denklem
(3.26) sunularak bahsedilmisti. Timoshenko Kkiris teorisi i¢in goriildiigli lizere, simir
sartlarin uygulanacagi mod denklemi ilgili diferansiyel denklemin yapisi itibariyle elde
edilememekteydi. Bu arada, buraya kadar ele alinan nanokiris analizi kayma
deformasyonunu gozetmeseyedi yani Euler-Bernoulli kurami kullanilsaydi mod
cozlimiine ulagilabilecek ve siir sartlarin uygulanmasi ile frekans analizi el ¢oziimiiyle
veya elektronik ortamda programlama ile bir sekilde gerceklestirilebilecekti (Numanoglu
2019). Ote yandan, Timoshenko teorisi i¢in ilgili diferansiyel denklemin ¢dziimii, sicaklik
ve Pasternak zemin parametrelerinin thmaliyle elde edilse bile buna yonelik bir analiz tez
kapsamini eksik ifade edecektir. Buna gore, analitik ¢6ziim hususunda dogrudan elde
edilemeyen mod ¢6ziimii igin bir seri agilimindan bahsedilecektir. Seri agilimi eger kirisin
biitlin sinir sartlarini saglarsa hareket denklemini teskil eden adi diferansiyel denklemde
kullanilarak frekans hesabina gegilebilmektedir. Buna gore, Denklemler (3.92)-(3.98)’in
degerlendirilmesi sonucunda, iki ucu basit mesnetli (S-S) ve bir ucu basit diger ucu
kilavuz mesnetli (S-G) seklinde sinir sartlara sahip kayma deformasyonlu fonksiyonel
derecelendirilmis yerel olmayan nanokirislerin

S-S Nanokirisi: W, (0)=0, W," (0)=0, W,*) (0) =0,
W, (L)=0, W,"(L)=0, W, (L)=0. (3.99)

S-G Nanokirisi: W, (0)=0, W," (0)=0, w, (@) (0)=0,
W, (L)=0, W,"(L)=0, W,®(L)=0. (3.100)

ile verilen sinir sartlarini1 saglayan asagidaki seri acilimlar1 kullanilarak serbest titresim
davraniglar1 arastirilabilir:
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S-S Nanokirisi: W, ( Zwbnsm( jsm(a)t 0) (3.101)

1
S-G Nanokirisi: W, ( ZanSIn( 2L)7[Xj8in(a)t_9) (3.102)

bu serinin hareket denklemine uygulanisi iki sinir sart tipi i¢in de ayni olup, érnek olmasi
adina sadece iki ucu basit mesnetli nanokirisin hesabi agiklanmaktadir. Buna gore seri
aciliminin Denklem (3.79)’da kullanimindan sonra harmonik fonksiyon sadelestirilirse

iz)° iz)' iz )
AL ealT] -alf) ane N

elde edilir. Burada Denklem (3.86) kullanildiktan sonra sonug denklem w?, w? ve sabite
bagli polinom olarak diizenlenirse, polinom kokleri w;> ve w,> olacak sekilde bunlar
sOyle formiile edilir:

6012 - -C, + sz —4C,Cq w2 = Al C22 —46C, (3.104)
2C, » @2 2C, '

burada asagidaki tanimlar gegerlidir:

o 4 = 2 . 6 o 4 o 2
C =c1(|£) +C (zj +C,, C,=c¢C (zj +C (zj +C (zj +C,,
1 L 2 L 3 2 4 L 5 L 6 L 7
C;=¢ (iﬁfﬂ: (iﬁj4+cl (iﬁjzﬂ:l . (3.105)
3 8 L 9 L 0 L 1 .

bu ifadeler de goriildiigi lizere asagidakilere baglidir:

C1=—M c =—M o —_Jola =_(e0a)4(DTAT—kP)|2
ks 12 kS 13 kS ' ¥4 kS

¢, :M+(eoa)2 B [1+%(—2(DTAT —kp )+(e0a)" ky )}

kS
cezlo(%+(e0a) j+|2[1+—((DTAT k) +2(ega)’ kw)]
K 1 (ep2)* (DyAT —kp)B

G=lot g &= kS |
0o =8| -1 g (~(DrT ko )+ (6 ko ) [ (o) (PraT k)
Co = Ky (‘%_(eo )2j+ Dr AT —kp, ¢y =Ky - (3.106)
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Denklemler (3.105) ve (3.106) ile verilen tanimlar geregince, problemin yerel
olmayan parametre, ortam sicaklifi, elastik zemin rijitlikleri gibi temel olmayan
faktorlerinin degerleri ekstrem olmadig stirece C; > 0, C, > 0 ve C5 < 0 oldugu anlasilir.
Bu sonu¢ da ;> >0 ve w,?> <0 olacagma isaret eder. Boylece ele alinan problemde
fiziksel olarak sadece w; frekansinin uygun oldugu, Sonug¢ olarak i. titresim modunun
dogal frekansinin

a}lz

2C,

ile hesaplanmasi gerektigi ifade edilebilir.
3.3.3. Kayma deformasyonlu eksenel ¢ubuklar

Kayma deformasyonuna (teknik agidan “yanal atalet” veya ‘“Poisson etkisi”
ifadeleriyle zikredilmesi de dogrudur) sahip ve elastik bir ortama gomiilii eksenel
nanocubuklarin fonksiyonel derecelendirilmis malzemeden imal edildigi g6z Oniine
alinarak yerel olmayan eksenel serbest titresim analizi bu alt baglikta irdelenmektedir.
Ayrica, ilerideki bir alt baslhiga konu olan nanogerceve yapilarinda eksenel davranis
kayma deformasyonunun ihmal edilmesiyle diisiinlileceginden buna dair ¢ikarimlar da
detaya girmeksizin sunulacaktir.

Kati bir cisimde eksenel yani ¢ubuk ekseni yoniinde gerceklesen bir hareket
Poisson etkileri nedeniyle ¢ubuk eksenine dik yonlerde yanal sekil degisimlerine sebep
olur ve bunun sonucunda yanal deplasmanlar gergeklesir. Tabi, sekil degisiminin oldugu
yerde gerilmelerin varligi da akla gelmektedir. iste Poisson etkisine sahip ¢ubuklarda
kayma yoOnlerinde meydana gelen bu durum kirisler i¢in kayma deformasyonlu teorileri
akla getirir. Eksenel yatay yap1 elemanlarinda kayma etkileri temel olarak Rayleigh ve
Love-Bishop (veya sadece Bishop olarak da anilmaktadir) teorileri ile incelenmektedir.
Rayleigh teorisi yanal ataletin etkisini sadece kiitleye dahil ederken rijitlikte bir degisim
olmaz. Buna karsin Love-Bishop teorisi bir adim daha kapsamlidir, buna gore yanal atalet
hem kiitlede hem rijitlikte bir etki gostermektedir. Tabi bu anlatilana paralel olarak,
kirisler i¢in de bir Rayleigh teorisi mevcuttur. Ayrica belirtilebilir ki, yanal ataletin
tiimiiyle reddedildigi ¢ubuk davranisi elemanter (“basit” veya “kaymasiz” olarak da
zikredilebilir) ¢ubuk teorisi ile ele alinir. Bu teoride tiim sekil degisimi eksenel yondedir,
cubugun diger yonlerinde hicbir sekil degisimi olmadigi kabul edilir. Diisiik ¢ubuk
uzunluklart ve yiiksek kesit yiikseklikleri gibi durumlar basit ¢ubuk ve Love-Bishop
cubugu arasindaki davranigi farklilastirir. Sonug olarak biitiin bu anlatilanlardan, basit
cubugun Euler-Bernoulli kirisiyle ve Love-Bishop c¢ubugunun Timoshenko kirisiyle
benzerlik gosterdigi anlagilir.

Hareket Denkleminin Tiiretilmesi: S6z konusu serbest titresim analizinin rol
modeli Sekil 3.6’da betimlenmektedir. Burada alt ve iist yiizeyin malzeme 6zellikleri de

......

ve ¢ = g(x, t) nanogubuk yapisinin maruz kaldig1 dis eksenel tahrik olarak tanimlanir.
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Evipy~00 0 i W0 g i i i o e i o i g o i i T"*’"
q=qx, 1)
Epp, X —_— - ——— jh_ y
/KkM z

Sekil 3.6. Elastik ortama gomiilii fonksiyonel derecelendirilmis nanogubugun eksenel
titresimi i¢cin nanoyap1 modeli

Nanokirislerde oldugu gibi hareket denklemine ulagsmak i¢in Denklem (3.27)’nin
diizenlenebilmesi nanogubuk kinematigine baglidir. Buna gore ilk olarak hareket
bilesenleri

U (X, z,t)=u(x,t)=u, u,(x,2,t)=v(x1t)= v——uyg—l:(
u, (x,z,t) =W(X,t):W=—UZZ—l)J(. (3.108)

olarak yazilir. Burada u, eksenel, u, yanal ve u, enine deplasman bilesenleridir. v Poisson
oranidir ve nanokiriglerde oldugu gibi sabit kabul edilecektir. Burada basit ¢ubuk ve
Love-Bishop ¢ubugu arasindaki farklilik matematiksel olarak da gézlemlenebilir. Buna
gdre, basit gubukta yanal ve enine deplasman bilesenleri sifira esittir. Ote yandan, Love-
Bishop ¢ubugunda goriildiigii lizere yanal ve enine deplasman bilesenleri Poisson orani
nedeniyle eksenel hareketten dogmaktadir. Bu ifadelere gore sekil degistirme bilesenleri

1(ou,  du)_du 1(éu, Ouy 1 o4
gXX Xy:_ +— :_—Uy_z,
2 ax ox ) ox 2 oy ox 2 70X
1(ou, ou,)_ 1 o 1(0ou, ou, au
Eyq == =—-Ul—, y=7| —+—— |="0v_
2\ oz ax 2 oX 2\ oy oy ax
1(duy Loy, 1(ou, , ou, ou
—=1=0,¢&,== -v—. 1
“ye = 2( oz oy J “u 2( oz oz j Vo (3.109)

seklinde formiile edilebilir. Burada e,,, ¢,, Ve ¢.. ilgili eksenlerin eksenel sekil degistirme
bilesenlerini ve ¢, ¢,. Ve ¢, kayma sekil degistirme bilesenlerini belirtir. Fonksiyonel
derecelendirilmis malzeme i¢in Klasik gerilme bilesenleri de

au &%
S =E(2) 6 = E(z)&, w =2G(2) &, —Guya >
o
S, =2G(2) &y 2_60267’ s,y =E(2)e,, =0,
s, =2G(z)¢,, =0, 5, =E(2)s,, =0. (3.110)
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seklinde tammlamir. Burada s, s, Ve s., ilgili eksenlerin eksenel gerilme bilesenlerini ve
Sy Sxz V€ 5, kayma sekil degistirme bilegenlerini agiklar. Her ne kadar sifirdan farkli
oldugu dusunulse de gubuk teorisinin bir diger kabuliine gore s, ve s, gerilmeleri ihmal
edilmektedir.

Love-Bishop c¢ubugunda yerel olmayan gerilme bilesenleri Timoshenko
nanokirisinde oldugu gibi dogrudan tanimlamadigindan klasik-yerel olmayan gerilme
bagntis1 kurulamaz ¢iinkii yerel olmayan gerilmeler Poisson etkisi nedeniyle birbirine
bagimlidir. Bu durum, dinamik denge iizerinden (Rao 2007; Karli¢i¢ vd. 2018; Civalek
ve Numanoglu 2020), nano Olgekli kat1 cisme etkiyen diger dis kuvvetler (bunlar s6z
konusu analiz diisiintildiigiinde sadece eksenel dis tahrik ve elastik ortam tepkisidir) ve
fonksiyonel derecelendirilmis malzeme diistiniilerek asagidaki gibi yazilir:

60 80‘ 8(7 azu ~ k

a):x+ Y azxz :p(z)ﬁ— (z)qx+%u (3.111)
oo o%v ~
axxy =P(Z)¥— (z)q, (3.112)
oo o*w ~
x PPt -

burada o;; notasyonu ile gosterilen gerilme tansoriiniin biitiin bilesenleri ilgili eksenel
veya kayma yOniiniin yerel olmayan gerilmesini tanimlar. Yukarida goriilen

~ qx q ~ qy 1 qZ
qX= = , q = :0’ qZ= =O
p(z2)A p(z)A" "

(3.114)

ifadelerinde g , Z]y ve g_ kiitlesel kuvvetleri (birim uzunluga diisen kiitleye diisen yayih

yiik) temsil etmekte olup, s6z konusu analizde dis tahrik sadece eksenel yonde
resmedilerek formiilasyona katilacagindan éy =g, =0 olmahdir.

Gerekli bilgiler sunulduguna gore enerji ifadeleri su sekilde tanimlanabilir:

U =%j(6 Ey +(T Eyy +0,&, +26XYEXY +26XZ€XZ +20y28yz)dv
Ll
0
1 L
:_I N_—P— dx (3.115)
2 0 ox?
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21 ou, 2 ou, 2 au, 2 _1L ou 22 2
R R e (NI P Yy

W = j qudx (3.117)

burada i¢ sekil degistirme enerjisi U’nun diizenlenmesiyle ortaya ¢ikan N eksenel normal
kuvveti ve P toplam yanal kuvveti tanimlar. Kinetik enerji 7”nin sonucunda goriilen 7,
nanokiriste oldugu gibi Denklem (3.52) ile formiile edilmis sifirinci kiitle ataletiyken ve
I yanal atalettir:

Is = [ p(2)0° (y* + 22 JdA =01, + V%1, (3.118)
A

burada 7;, ve I,, sirasiyla y- Ve z- eksenleri igin yanal kiitle ataletleri olup, bunlar igin
sirastyla d4 = dydz ve d4 = bdz tanimlari kullanilarak

b/2 h/2 b3
L = [ p(2)y?dA= [ ¥ | p(2)izdy =1- 140 (3.119)
A —b/2  -h/2
h/2
|22=Ip(z)zsz=b j p(z)z°dz=bl,, (3.120)
A -h/2

denklemlerine ulagilir. Burada goriilen I, ve I sirasiyla y- ve z- eksenleri i¢in birim
yanal kiitle ataletleri olarak agiklanabilir. Bu iki yeni ifade hesaplanip, 6nce ilgili yanal
kiitle ataletlerinde yerine koyilduktan sonra elde edilenler sonra Denklem (3.118)’de
kullanilirsa fonksiyonel derecelendirilmis nanogubugun yanal ataleti nihai olarak
asagidaki gibi yazilir:

b2 ( Ap ol Ap 1 1 2 P
ls =v’bh| —| == h S £A ,
s=Y {12(p+1+ij+ l:p+1 2 pr2 (pe2)(p+d) ) 12 || G

Bunlara ek olarak Denklem (3.115)’te goriilen toplam yanal kuvvet i¢ tesiri
asagidaki gibi verilebilir:

P=0[(oyy+0,2)dA (3.122)
A

Gerekli ara bilgiler tanimlandigina gore tekrardan varyasyon hesaplarina

doniilebilir. Buna gore Denklemler (3.115)-(3.117) ile yazilan enerji ifadelerinin birinci
varyasyonlari

53



MATERYAL VE METOT H.M. NUMANOGLU

I&Udt-”(N&——PéTdedH”k usudxdt (3.123)
& 2L au sou BRY

jﬂdt_jj(loat Y Isﬁéﬁdedt (3.124)
t 40

th L
j oWt = [ [ qoudxdt (3.125)

seklinde olusturulur. Buradaki bazi ifadelerin kismi integrasyon iglemine tabi tutulmasi
gerekmekte olup, bu amagla yazilan

L
jN5 dx = Néul; - ja—Néudx,
OX Oax

to

jl a—u5a—udt—l —5u jl 5udt
1
IPéid _ps —a—Pa j—audx
ox? OX|g 0
L L 8 I
” Méﬁd —j S o —jls 5u0dt
j T 4at Sudxdt. (3.126)

t, 0

denklemleri de kullanilarak Denklem (3.27) s6z konusu nanoyapi ig¢in su sekilde
diizenlenir:

ON  0°P o°u o'u
— =+ ky,u+l —1 —( |oudxdt
” ox o2 M % axlet? qj

dx

& oP % -
+[|N+=—+Is— |ou
OX oxot 0

o°u ) .éu &
oxot ot

o]

ty
dt+ J.( Ioéuj u
6 0 ot

X
1’1

t
dt + J (-P) au
Y

dx=0 (3.127)

burada ilk olarak, en bastaki ¢ift integralli ifadede ou # 0 durumu i¢in yazilabilecek
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ON 0°P o%u o'u

— 4+ ——ku—1 +1 +0=0 3.128
x ok MUTlomz Tispanz T (3.128)

denklemi kayma deformasyonlu fonksiyonel derecelendirilmis yerel olmayan eksenel
nanogubugun dinamik dengesini agiklamakta ve hareket denkleminin temelini
olusturmaktadir. Buna gore islemlerin devam ettirilebilmesi i¢in Denklemler (3.22),
(3.23) ve (3.110) g6z oOniine almarak klasik-yerel olmayan gerilme bagntilarinin
kurulmas1 gerekmektedir:

0 ou
(1—(e0a)2 y]% = E(z)& (3.129)
0 o’u
1-(ga)’ 7 |oy =82y (3.130)
0 ou
1—(e0a)2y 0, =-6(2)vz— (3.131)

Denklem (3.112) ve (3.113) sirastyla Denklemler (3.130) ve (3.131)’de kullanilirsa yerel
olmayan kayma gerilmeleri

o'u o°u
O-xy =—(eoa)2p(z)uym— (Z)U y (3132)
o, = (ea) p(2)uz-2" G (2)uz LY (3.133)
XZ 0 ox2ot? Ox?

seklinde tiretilir. Ayrica, Denklem (3.111)’in konuma gore bir defa tiirevi alinip yalniz
birakilan yerel olmayan eksenel gerilmenin konuma goére ikinci tiirevi Denklem
(3.129)’da yerlestirilirse yerel olmayan eksenel gerilmeye

o aq k, ou
Oy =(e0a)2 (1+ ZU)p(Z)W—(eoa)Zp(z) acj(x +(e0a)2 TM&

N E(z)g—i (3.134)

olarak ulasilir. Ote yandan, Denklemler (3.132) ve (3.133) ile sunulan yerel olmayan
kayma gerilmelerinin Denklem (3.122)’da kullanilmasiyla, Denklem (3.118) ile verilen
yanal atalet tanimi1 da hatirlanarak toplam yanal kuvvet formiile edilebilir:

4 2
o'u Sau

_ 3.135
Soxtot®? " ox? ( )

P=—(ga)’l
burada S, yanal rijitliktir ve asagidaki gibi tanimlanir:
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S, = [G(2)v?(y* + 22 JHA =078}, +07S,, (3.136)
A

burada kesit eksenleri i¢in yapilan yanal kiitle ataleti tanimlarina benzer olak S;, ve S,
ifadeleri de sirasiyla y- ve z- eksenleri i¢in yanal rijitlikler olup, bunlar i¢in de sirasiyla
d4 = dydz ve d4 = bdz tanimlar1 yardimiyla yazilabilen

b/2 h/2
Sp=[G(2)y’dA= [ y* [ G(z )dzdy (3.137)
A b2 -hj2
Sy, = [G(2)2°dA=b j )z%dz =bS,, (3.138)
A —h/2

denklemlerinin yanal atalet hesabina benzer sekilde yanal rijitlikte kullanimi sonucunda

b%( AG AG (1 1 2 G
S, =v’bh == +G, |+h A _
{ (p+1+ A]+ {p+1£4 0+2 (p+2)(p+3)J+1ZH (3.139)

ifadesi ortaya cikar. Sirasiyla Denklemler (3.137) ve (3.138)’de goriilen S,, ve S
sirastyla y- ve z- eksenleri i¢in birim yanal rijitlikler olarak tanimlanir.

Ote yandan, hareket denkleminin kurulabilmesi maksadiyla diger i¢ tesir olan
eksenel normal kuvveti elde etmek i¢in Denklem (3.134) ile tanitilmig yerel olmayan
eksenel gerilmeyi kesit alan iizerinden integre etmek yeterlidir:

o’u

0 ou ou
N = (ea)" (1+20) by = = —(ea) A4 (ea) K THAS (3140)

OX

burada A eksenel rijitliktir ve esasen basit gubuk teorisinin temel bir bilesenidir. d4 = bdz
esitligi kullanilarak eksenel rijitlik

A, = jE z)dA = bh(p—++EUj (3.141)

olarak hesaplanir.

Nihayetinde, sirasyla Denklemler (3.140) ve (3.135) ile elde edilmis eksenel
normal kuvvet ve toplam yanal kuvvetin Denklem (3.128)’de yerine koyulmasi ile
titresimin hareket denklemi formiile edilmis olur:
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a4u 2 azu azu 2 aeu
S, 87_[% +(eoa) Ky }67+ Ky U+ I0¥+(e0a) lg poe
2 64u 2 82q
_[|S +(ea) (1+20) IO}—ﬁxzﬁtz +(ea) 27 -a=0 (3.142)

Tabi mekanik davranisin belirlenmesi hareket denklemi veya onun ¢oziimiiniin elde
edilmesi ile yeterli olmamaktadir. Buna gore nanokirislerde de bahsedildigi gibi sinir
sartlarin elde edilmesi gerekmektedir. Denklem (3.127)’nin yapisi gz oniine alindiginda,
geometrik smir sartlarin u ve u' oldugu, mekanik sinir sartlarin ise ou(0, 7) # 0 ve/veya
ou(L, t) # 0 durumu i¢in belirlenen

oP o’u
N=—_| 3.143
X oxot (3.143)

ifadesinde Denklemler (3.135) ve (3.140)’n kullanilmasiyla elde edilecek olan

o%u au o°u
Sy —53—('% +(6a)” ky )&Jr(eoa)z Is W_(IS
2 ou 2 q
— —= 144
+(e9a)° (1+20) I S rt(ea) 2=0 (3.144)

ifadesini sembolize eden ve toplam eksenel kuvvet olarak adlandirilan
N"=0 (3.145)

sinir sart1 ve yine Denklem (3.127)’deki ou'(0, £) # 0 velveya ou'(L, t) # 0 durumu igin
toplam yanal kuvveti isaret eden

P=0 (3.146)
sinir sart1 oldugu anlagilir.

Hareket Denkleminin (Coziimii: Yine bir serbest titresim calismast konu
oldugundan hareket denklemini tanimlayan Denklem (3.128)’de, ¢ = 0 alinmasiyla kalan
denkleme uygulanmasi gereken degiskenlere ayirma denklemi

u(x,t)=U (x)sin(wt—-6) (3.147)

olarak verilir. Bu denklemin hareket denkleminde yerine yazilmasindan sonra nanokiris
¢oziimiinde oldugu gibi hareket denklemi kismi diferansiyel denklem seklinden asagidaki
adi diferansiyel denkleme doniisiir:

4 2
UG, p, P9, by (x)=0 (3.148)

D
Lo dx

57



MATERYAL VE METOT H.M. NUMANOGLU

burada goriilen katsayilar asagida tanimlanir:

D, =S, —*(ga)’ Is,
D, =—A - (€08)" kuy +w2[ls +(ea) (1+20) Io} , Dy =ky —@ly.  (3.149)
Ayrica, mekanik sinir sartlar olan ve sirasiyla Denklemler (3.144) ve (3.135) ile

sunulan toplam eksenel kuvvet ve toplam yanal kuvvet, Denklemler (3.147) ve (3.149)
kullanilarak

. d*u du
N =D, —+D, — 3.150
Yaxd 2 dx ( )
d°U
p-p Y 3.151
b x? (3.151)

olarak yazilmaktadir.
Hareket denklemini ifade eden diferansiyel denklem olan Denklem (3.148)’in

yapisi nedeniyle analitik olarak ¢oziilmesi yani nanogubugun mod denkleminin elde
edilmesi miimkiindiir. Buna gore,

U (x)=Ee* (3.152)
ifadesinin Denklem (3.148)’de yerine yazilmasiyla elde edilen karakteristik polinom
Dk*+D,k* +D; =0 (3.153)
seklinde olmaktadir. Burada asagida tanimlanan
k? =K (3.154)

dontisimii sayesinde Denklem (3.153), K’ye bagl ikinci dereceden bir denklem
oldugundan kdokleri

(= DetyD=4DD; DDy -4DD; (g

v 2D, S 2D,

olarak verilir. Burada s6z konusu denklemin diskriminanti A = D22 — 4D, D5 olmak iizere
oncelikle bu ifadenin pozitif tanimli olmasi gerekir. Yerel olmayan parametre eya ve
(3.149)’deki parametreler hakkinda D; >0, D, <0 ve D; <0 ¢ikarimi yapilabilir ve
boylece K; >0 ve K, <0 oldugu tespit edilir. Bu nedenle Denklem (3.154) geregince
Denklem (3.153)’iin iki reel ve iki sanal kokii vardir ve bunlar
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seklinde belirtilir. Boylece Denklem (3.152) ile verilen sablon

U (x) = EeVR% + B, VX 4 EelVTHox 4 oKX (3.157)

olarak Denklem (3.148)’in ¢oziimiinii belirtir. Ancak ¢Oziimiin bu formu smir sart
uygulamalari i¢in kullanighi olmadigindan Euler doniisiimleri vasitasiyla ¢oziim tekrar
diizenlenecektir:

e’ =cos@+isin@, e'? =cos@—ising,
e? =cosh@+sinh @, e? =cosh&—sinhg. (3.158)

bu denklemlerin Denklem (3.157)’de kullanimi ile mod denkleminin nihai haline ulasilir:
U(x)=F cos( —sz)+ F, sin( —sz)+ F; COSh(\/K—]_X)-F F, sinh(\/K—lx) (3.159)

burada F; (i = 1 — 4) ¢6ziim sabitleridir ve nanogubugun sinir sartlarindan belirlenmekte
olup, buradan itibaren bu husus ele alinmaktadir.

Stnmir Sartlar: Mod denkleminin dort tane ¢6ziim sabitine sahip olmasi, nanogubuk
icin dort adet smir sarta ihtiyag oldugunu ifade eder. Yerel olmayan kayma
deformasyonlu nanogubugun sinir sartlari, eksenel deplasman ve Denklem (3.127)
geregince bunun tiirevine bagli yanal deplasman gibi geometrik ve toplam eksenel normal
kuvvet ve toplam yanal kuvvet gibi dinamik yapidaki sinir sartlarini belirtir. Bu gubugun
yaygin bilinen ug tipleri agagida tanitilmaktadir.

1- Tutulu Ug (C): Tutulu bir ug¢ tamamen rijittir yani bu ugta bir hareket olmamalidir. O
halde eksenel ve yanal deplasmanlar gézlemlenmemelidir:

U=0,U'=0. (3.160)
2- Serbest U¢ (F): Mesnetlenmemis bir ugta deplasmanlar goriilecegine gore kayma
deformasyonlu nanogubuk i¢in bunun anlami toplam eksenel kuvvet ve toplam yanal
kuvvetin olmamasidir. Buna gore Denklemler (3.150) ve (3.151) diisiiniilerek sirasiyla

DU”+D,U'=0, DU"=0. (3.161)

denklemleri yazilabilir. Denklem (3.149)’daki D, sifira esit olamayacagina gore, toplam
yanal kuvvet sinir sart1 i¢in,

Uu"=0 (3.162)
ifadesi kurulabilir. Sonug olarak sinir sartlar asagidaki gibi verilir:

DU"+D,U’=0, U"=0. (3.163)

59



MATERYAL VE METOT H.M. NUMANOGLU

3- Yumusak Tutulu Ug (S): Tutulu u¢ tamamen rijittir ancak bazi tutulu ug tiirleri yar1
rijit davranmaktadir. Yari rijit ug tlirlerinden olan yumusak tutulu ugta eksenel deplasman
goriilmeyecegi gibi toplam yanal kuvvet olugsmaz:

U=0,U"=0. (3.164)
seklinde sinir sartlar agiklanir.

4- Kavrayicl Tutulu Ug (G): Diger bir yart rijit ug tiirii olan kavrayici tutulu ug, toplam
eksenel kuvvet ve yanal deplasmanin olusmayacagini ifade eder. Buna gore:

DU"+DU'=0, U'=0. (3.165)
burada yanal deplasman toplam eksenel kuvvette yerine yazilirsa
DU" =0 veya U"=0. (3.166)

elde edilir. Sonug itibariyle sinir sartlar asagidaki gibi yazilir:
Uu'=0,U"=0. (3.167)

Uygulamalar: Yeri geldiginde daha detayli ele alinacaktir ama burada kisaca
deginmek gerekirse, kaymasiz yani basit ¢ubuk teorisinde Love-Bishop ¢ubuguna gore
yOnetici diferansiyel denklemin mertebesinin diisiik ve sinir sartlarin daha sade yapida ve
az sayida olmasi nedenleriyle ¢6ziim daha kolay olabilmektedir. Love-Bishop ¢ubuk
teorisinde ise bu belirtilen durumlar nedeniyle ¢6ziim bircok durumda el hesabr ile
gerceklestirilemez. Bu hususta seri ¢oziimii, bilgisayarda sembolik programlama veya
sayisal yontemler tercih edilmektedir ancak bu husus yeri geldiginde incelenecektir. Bu
nedenle uygulamalar kapsaminda, el ¢6ziimiine uygun olan bir adet sinir sartli nanogubuk
ve bazi seri agilimlari ile ¢oziimler incelenecektir.

Iki ucu yumusak tutulu (S-S) kayma deformasyonlu fonksiyonel derecelendirilmis
nanoc¢ubugun modal analiz hesabi1 el ¢ozlimiine uygundur. Denklem (3.164) g6z Oniine
aliarak, L uzunluklu ¢ubugun sinir sartlari

U (0)=0, U"(0)=0, U(L)=0, U"(L)=0. (3.168)

seklinde yazilir. Burada ilk iki sinir sartin Denklem (3.159)’a uygulanmasi neticesinde,
detayina girilmeksizin

F=FK=0 (3.169)
elde edilir. Bu sonucun mod denkleminde yerine yazilmasindan sonra, tglincii ve

dordiincii sinir sartlarin mod denklemine uygulanmasi neticesinde elde edilen denklemler
lineer cebrik yapida s0yle yazilabilir:
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(3.170)

sin( —KZL) sinh(\/EL) {Cz}
‘—Kzsin( “K,L) Kysinh(\[K, L)
[A]

C,
{C}

burada asikar ¢6ziim i¢in katsayilar matrisi [4]’nin determinanti sifira esit olmalidir:

(K, +Kg)sin(y=K, L )sinh({/K;L) =0 (3.172)

burada soyle bir inceleme yapilabilir. Ilk olarak, (K; + K,) = 0 olmas1 Denklem (3.155)’e
istinaden D, = 0 anlamina gelir ve Denklem (3.149)’da tanimlanan D, parametresi géz
oniine alindiginda bu durum periyodik bir ¢dziimii vermez. Ikinci olarak sinh/K,;L =0

icin K; =0 olmahdir ve Denklem (3.153)’iin K degiskenine bagl ikinci dereceden
denklem formunun bir negatif bir de pozitif kokii oldugu tespit edildiginden bu durum da
gecerli olmaz. Son olarak

sin (=K, L) =0 (3.172)

durumunda asagida yazilan periyodik bir ¢6ziim mevcut olur:

2
K, = (fj (3.173)

burada i=1,2,3, - i € Z" ile tanimlanan bir tamsay1 olmak {izere mod numarasini
belirtir. Denklem (3.173)’iin Denklem (3.155)’te kullanilmasi sonucunda elde edilen
denklem bir miktar diizenlenerek

. 4 . \2
Dl(%j D, (%) +D,=0 (3.174)

sonucuna varilir. Denklem (3.149)’da verilenlerin burada kullanimi ile i. modun dogal
titresim frekansi

S, ('I’_[T + Ay +(e98) Ky }('Z)Z Ky

2

(e0a)’ I ('I’_ZT +| (e0a)” (1+20) 1o+ IS}(IQ +1,

w= (3.175)

seklinde hesaplanmaktadir.
Ote yandan, hesaplari verilmeksizin bir ucu yumusak tutulu diger ucu kavrayici

tutulu (S-G) nanogubugun sinir sartlari Denklemler (3.164) ve (3.167)’ye istinaden
asagidaki gibi siralanabilir:

61



MATERYAL VE METOT H.M. NUMANOGLU

U(0)=0,U"(0)=0,U’(L)=0,U"(L)=0. (3.176)
Boylece S-S ve S-G nanokiriglerinin biitlin sinir sartlarini saglayan asagidaki seri

acilimlari, statik mod denklemi iizerinde smir sart uygulamasi yapmaksizin dinamik
analiz i¢in kullanilabilir:

S-S Nanogubugu: U (X,t) ZU sm( jsm(a)t 0) (3.177)

S-G Nanogubugu: U (x,t) ZU sm( t) XJsin(wt—é’) (3.178)

burada Denklem (3.177)’nin Denklem (3.142)’da kullaniminin sonucu Denklem (3.174)
olarak ortaya ¢ikar. O halde kayma deformasyonlu fonksiyonel derecelendirilmis S-G
nanoc¢ubugunun yerel olmayan dogal frekanslar

N s, ((2"1)”J +[A0 +(e,a)’ kMJL(Z'Z_Ll)”j Ky -

(e2)’ I ((2'211)”}4 +| (e0a)’ (1+20) 1o +1s J[(Z'Z_Ll)”}z 1

olarak elde edilir.

S-S ve S-G nanogubuklarinin davranislar1 tespit edilebilse bile siirekli
nanoyapilarin genel mekanik davranigini arastirmak igin esasen tam tutulu ve serbest ug
gibi smir sartlarindan olusan nanoyapilar1 bilmek elzemdir. Islem detay1 verilmeksizin,
homojen Love-Bishop nanogubuklarindan yola ¢ikilarak (Karli¢i¢ vd. 2018; Civalek ve
Numanoglu 2020) kayma deformasyonlu fonksiyonel derecelendirilmis bir ucu tutulu
diger ucu serbest ve iki ucu tutulu Love-Bishop nanogubuklarinin frekans denklemleri

C-F Nanogubugu: 2( ]cos(\/_ L)cosh( /K, L)~

L\/:—\/:Jsm (V=K L)sinh({/K;L)=0  (3.180)

C-C Nanogubugu:  2-2cos 1/ L cosh(\/_ )

[\/: \/:]sm slnh(\/_L)zO (3.181)

seklindedir. Buna gore, kayma deformasyonlu C-F ve C-C nanogubuklarinin frekans
denkleminin sonuglart sirasiyla S-G ve S-S nanogubuklariyla ayni olmaktadir (Civalek
ve Numanoglu 2020). Zira, tam tutulu ve yumusak tutulu uglarin eslestirilmesinde
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geometrik siir sartlar deplasman yoniinden ayn1 olmakta, deplasmanin birinci tiirevi tam
tutululugun yumusak tutulu olma haline kiyasla yiiksek rijiditesi geregi kayma etkisinin
getirdigi bir fark olarak ortaya ¢ikmaktadir. Ote yandan, kavrayici tutulu ve serbest
uglarin eslestirilmesinde, mekanik (dinamik) sinir sartlar agisindan toplam eksenel kuvvet
siir sart1 ayni olmakta, kavrayici tutulu ugta serbest uca gore yanal deplasman seklindeki
geometrik sart yine kayma etkisinin getirdigi bir fark olarak gézlemlenmektedir. Sonug
itibariyle, kayma deformasyonlu fonksiyonel derecelendirilmis C-F ve C-C ¢ubuklarinin
yerel olmayan mekanik davranislarinin sirasiyla S-G ve S-S cubuklar ile ayni oldugu
kabul edilebilir.

Poisson Etkisinin [hmal Edilmesi: Esasen bu alt baslikta kayma deformasyonlu
nanogubuklar incelenmistir ancak bu bdliimiin ilerleyen alt bagsliklarindan olan ve
nanoyapilarin yerel olmayan sonlu eleman analizlerinden birisi olan kayma
deformasyonlu fonksiyonel derecelendirilmis nanogerceve formiilasyonunda yapinin
eksenel serbestliklerini Love-Bishop formiilasyonu ile ifade etmek maalesef miimkiin
olmayacagindan kayma etkisi eksenel serbestlikler igin ihmal edilecek olup, bunun yerine
basit cubuk teorisi kullanilacaktir. Bu tercih, yeri geldiginde gerekgeleriyle daha detayli
olarak aciklanacaktir. ilgili konunun teorik formiilasyonunun altyapisini hazirlamak
maksadiyla, basit ¢ubuk teorisi hakkinda detaya girmeden temel bilgilerden burada
bahsedilecektir. Matematiksel olarak, yanal deformasyon etkili bir eksenel ¢ubuk kurami
ile formiile edilen cubukta Poisson oraninin sifirlanmasi ile gubuk teorisinin basit ¢ubuga
indirgendigi ifade edilebilir. Buna gore temel olarak cubugun kinematik iligkileri
(swrastyla deplasman, sekil degistirme ve klasik gerilme bilesenleri) asagida
aciklanmaktadir:

u, (x,z,t)=u(xt)=u, uy(x,z,t =v(x,t)=v=0,

u, (x,z,t)=w(x,t)=w=0. (3.182)
1(ou, ou ou
ou
Sw = E(2) 64 :—E(z)&, Syy =Sz =Sy, =Sy, =8y, =0. (3.184)

goriildiigii izere Poisson oraninin sifirlanmasiyla yanal deplasmanlar olusmamakta ve
sadece eksenel deplasman var olmaktadir. Bunun sonucu olarak sifirdan farkli bir tek
boylamsal yondeki sekil degistirme ve gerilme bilesenleri ile karsilasilmaktadir. Basit
cubuk ve Love-Bishop ¢ubuklari arasindaki bu temel ayrim, toplam yanal kuvvet P, yanal
kiitle ataleti /¢ ve yanal rijitlik S, parametrelerini titresim analizinden diislirecegi i¢in
varyasyon cebri hesaplar1 sonucunda, du # 0 durumu i¢in dinamik denge denklemi ve
ou(0, t) # 0 velveya ou(L, t) # 0 durumu i¢in mekanik sinir sartlar sirasiyla asagidaki gibi
ifade edilmelidir:

ON o%u
N=0 (3.186)



MATERYAL VE METOT H.M. NUMANOGLU

Ayrica, bu ¢ubuk kuraminda yerel olmayan serbest titresimin sadece Denklem
(3.129) ile idare edilmesi gerekecektir. Gerilme denkleminin iki tarafinin kesit alana gore
integre edilmesi ile ulasilan normal kuvvetten yola ¢ikilarak yerel olmayan hareket
denklemi

2 o%u o%u 2 ol
82
—(eoa)zﬁw =0 (3.187)

olarak tiiretilirken problemde rol oynayan mekanik (dinamik) yapidaki tek sinir sart olan
eksenel normal kuvvet

N = (A +(e0a)" ky )—X+(e0a)2 o —7~(e0a) ) (3.188)

seklinde agiklanir. Serbest titresim analizinde degiskenlere ayirma ¢éziimiiniin kullanimi
sayesinde, sirasiyla hareket denklemi ve mekanik sinir sart i¢in ulasilan

d?U

Gl—2+GZU =0 (3.189)
dx
du
N=G —— 3.190
1 dx ( )
denklemlerinde
Gy = A +(ga) ky —@?(8ga)” Iy, Gy =—ky +@l,. (3.191)

olarak verilir. Denklem (3.152)’nin Denklem (3.189)’da kullanilmasi ile karakteristik
polinoma sdyle ulagilir:

Gk?+G, =0 (3.192)

burada problemin temel olmayan parametreleri &, ve eya’nin ekstrem olmayan degerleri
icin G| > 0 ve G, > 0 oldugundan denklemin iki kokii de sanal sayidir:

.G .
k =i—=%, k,=—i—%.
Y 2 G, (3.193)
boylece mod ¢oziimii
Gy _Gay
U(x)=Ee® +E,e (3.194)
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olarak yazilir ve burada Denklem (3.158)’deki Euler denklemlerinden gerekli olanlarin
kullanim1 sonucunda

@] (x): F]_COS(%XJ-F F, sin(%xj (3.195)

1 1

esitligine varilmis olur. Coziim sabitlerini belirleyecek sinir sartlar:

Tutulu Ug (C): U =0, Serbest U¢ (F): N=GU' veya U'=0. (3.196)

seklinde tanitilir. Basit ¢ubuk Love-Bishop ¢ubuguna gore diisiikk mertebeli bir ¢ubuk
teorisi oldugundan sinir sartlarin daha az sayida oldugu, yani yanal deplasman
(matematiksel olarak eksenel deplasmanin birinci tiirevi) ve toplam yanal kuvvet gibi
yiiksek mertebeli sinir sartlarin burada yer almadigi dikkat ¢ekmektedir.

3.4. Yerel Olmayan Sonlu Elemanlar Formiilasyonu

Bu altbaghik itibariyle, daha ©nceden analitik ¢dziimleri anlatilmis kayma
deformasyonlu fonksiyonel derecelendirilmis nanokiris ve nanogubuk yapilarin atomik
Olgekli serbest titresim analizlerinin tez konusu da olmasi itibariyle yerel olmayan sonlu
elemanlar formiilasyonu ile ¢oziimleri sunulacaktir. Bunlara ek olarak, kayma
deformasyonlu fonksiyonel derecelendirilmis ayrik {yelerden olusan yapilarin
nanogergeve modellerinin de serbest titresim analizi formiile edilecektir.

3.4.1. Nanokirisler

Sonlu Eleman Kinematigi: Agirlhikli kalinti ile ¢oziilmesi gereken hareket
denklemi Denklem (3.79)’da goriilmektedir. Hatirlanacak olursa denklem sadece egilme
deplasman1 w;, cinsinden olusturulmustur. O halde sonlu elemanin egilme deplasmani
formiile edilmelidir. Buna gore bir egilme sonlu elemaninin toplam hareketi

w, = ¢d (3.197)

denklemi ile tanimlanir. Burada d sonlu eleman ug diigiimlerinin hareket serbestliklerini
tanimlarken ¢ kiris sekil fonksiyonunu ifade etmekte olup, bu ikisi,

47T [ 1-3£7 4288 w
o | |L(-&-28+&) 0
= = = ) 3.198
- a2 | |w -
2l (-8 0,

seklinde agiklanir. Burada I, sonlu eleman uzunlugunu ifade etmek tlizere &= x/I,
boyutsuz koordinat olarak bilinir. Sonlu eleman digiimleri i ve j olmak tizere w; ve w;

bunlarin deplasmanlarini, 6; ve ¢; bunlarin dénmelerini belirtir.
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Sonlu Eleman Hareket Denklemi: Probleme etkiyen parametrelerin sonlu eleman
formiilasyonuna nasil bir katki koyacagini ayr1 ayr tespit etmek maksadiyla, hareket
denkleminin bilesenleri agik yazilarak, formiilasyona esas teskil etmesi gereken kalinti
ifadesi, tiirev mertebeleri (yliksekten algaga), tiirev bilesenleri (6nce konum sonra zaman)
ve yerel olmayan parametreyi igerip-icermeme (Once klasik sonra yerel olmayan

......

sadece kiitle ataletlerini i¢eren terimlerin siralanmasiyla

o'w, 1B 3w, (e2)" 1B °w, kB &%w, . (e02)" ky B 0w,

R=B
ox* kS oxPot? kS ox*at? kS ox? kS ox*
_DiATB o', (e2) DrATB o, koB o'w, _(68) keB 0w,
kS ox? kS oax® kS ot kS ox®8
2
2 0wy kyl, 22w, 2(&a) kyl, 0w,
+kyy W, —(&pa + -
= (202" 2 kS ot kS ox2ot?
N (e0a) kyl, O°w, 4Dy AT o*w, _(e,a)’ DyAT o*w, , DraTl, o*w,
kS  ox‘ot? xe o kS  ox2ot?
_2(603)2 DrATI, 8w, +(e0a)4 DrATI, w, _k o*w,
kS ax‘ot? kS aéatt ¢ ox?
2 4
) TP axd kS ox%ot? kS ax‘ot? kS  oxbot?
o%w, 2wy g1, 0%, 2(ea) ol APw,
+|0—2_(eoa) lo——~5 4 244
at oxot: kS ot kS  oxet
4
(ga) lol, d®w, o*w, 2 2w, 2 0% f
+ —1 +(e,a)’ I, —2 —(e,a)  ——f =0 (3.199)
kS axtatt 2 oxlot? (&2)" 1 7 (%2) G

ox‘ot

seklinde yazilir. Boylece agirlikli kalintinin su sekilde yazilmas: gerekir.
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I—Iih b 10B 0w, (003)° 1B 2°w,  kyB 2w,
. | ox* ks oxlet? kS ox*ot> kS ox?

.\ (e0a)’ ky B 0*w, _ DrATB d*w, . (e0a)” Dy ATB 66wb kpB 0w,

kS ox* kS ox* kS 8x6 kS ox*
(e)’k Baewb Kl 2w,
W,
kS Ky —(ea) kW X 2 kS ot?
2
2(e,a I, &* ea) kyl, 8° 2
(o)kw252Wb2+(o) w2 a4Wb2+DTATaV\2,b
kS ox“ot kS ox"“ot OX
4 2(e,a)’ D ATI, &°
~(ea)’ DTAT , DraATl, azwb _ 2(ega)” DrATI, a4wb2
kS  oxot? kS ox"ot
(e0a)" DTAT|2 ®w, o*w, 2, 0'w, Kkpl, 0w,
+ —k +(e,a) k -
kS axbott T ox? (&8)" ke x* kS ox%et?
2(e2) kpl, 3w, (802) kpl, Bwy, 0w, 2. 0w,
q 4y2 6 4+|0 2 _(eOa) o 202
kS ox ot kS ox° ot ot ox“ot
lol, 0*w, 2(e0a)2IOI2 o°w, (eoa)4I0I2 o®w, o'w,
+ 4 PP 4 4_|2 22
kS ot kS ox“ot kS ox ot ox“ot
2w 2 0% f
+(e,a) I, —=2 —(e,a) —— f |dx 3.200
() 1o S S o (3200

Burada integralin 33 farkli bileseni mevcuttur ve bunlarin ¢ogu kismi integrasyona tabi
tutulmalidir. Agirlikli ortalama kalintt bilesenlerinin tiimii kismi integrasyona tabi
tutulanlarin sonuglar1 da yazilmak kaydiyla asagidaki gibi listelenir:

2 le le
,[ _Bha 3 _Bz_ha .[ 2
0 x|, X OX° 0
'le o'y |Bha3wbe_jlosa_ha3wb
2 kS PR oxat?|, 3 kS ox oxat?

Iy le
'Je- ga)’ | 0B, o°w, ix _ (&2 )ZIOBh o°w, | (e0a)’ 1oB oh &*w, |
0

8x48t2 kS ox3ot? ‘0 kS  ox oxot? ‘0

' (eoa)2 IOB 62h 64Wb
+,[ 7 A2~ 20K
5 kS OX~ ox“ot

| jkWBhazwbd thawb
Yl ks T oax? kS ox |

ljkWBa_ha\Nb
kS ox ox
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Ie
(epa)* ky B oh azwb|
kS  ox ox \0

Ie
L 'j (eoa)2 ky B " a4wbdx _ (eoa)2 ky B " o*w,
> S ox* kS x°

0

*I( 0a) kyB o%h 82Wbd

5 kS ox% ox°

Ie
| I D;ATB 0w, g DrATB o°wy | D;ATB oh 6w,
6= - 4

b ks ¢ kS o] kS ax o

e

0

I DTATB d%h *w,
x> ox?

I le
- lf ()" DrATB b O, dx = (e,2)° Dy ATB h a5Wb| _(e3)° DrATB 0h 84Wb|
0

kS ox®8 kS ox5 kS ox ox*

b b

Ie
. (e03)° D ATB 2% 2w | IJ &) DTATB o o',

kS ox> ox® ‘0 g ox® ox’

Ie

lje-kB oty kpB, O, keB o0 0w, " 'jik oB 0%h O*w,

s ks ot ks | ks ox ox? | ox ox®
0 0

|

o () KB M (e B, Ow| (0) keB oh o'wy
0

kS ox® kS ox° \O KS  ox ox’ \0

, (e02) koB &% 83wb|le _'f(eoa) pB 6 owy
kS ox? ox® ‘0 . ks o o
ly ly |e I aW
lio = [ Ky, 1y = [ (epa)” ky h—dx (e0a)” ky h— j a)’k a—d
0 0 0

lz_J.kWIZh bd
b ks o

I 3 R
'13=.[ 2(epa)’ kwlz awbd _ 2(ep2 )kl awb‘ -[2 €a) k\,\,lzaha\,\/bﬁI
0

kS ox2ot? kS axétz‘ : Ox oxt?

ly le
o ) ey Py (@) Kty o[ (o) el 0 Ot
14 kS ox*ot? kS 8x38t2‘ KS  ox ox2ot? \0

I, 4
(R e 0 T,
kS ox% ox2ot?

0
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| 2 |
¢ 0w, aw g ch ow,
I = [ D, ATh S Mgy — o ATh b AT ——2d
o !DT P oA 0 IDT x ox
| 4 3 le 2 le
g oW, o°W, oh 0°w,
. = | (e,a)” Dy ATh Zbdx = (e AThZ D ATE
16 '([(O)DT ox* (& )DT axo( )DT axaxo
le 21h A2
0 h 0w,
AT——dx,
I( ) Or ox2 ox?

0

17_J-DTATI2h o*w, ix _DTAlehawb2
kS ax8t

e

DTATI2 oh o°w,
j >ax
X oxet

Ie
j‘z &d) DTATIZ h oW, dx _ 2(e2 )’ DrATI, h "W, |
0

ox*ot? kS ox3ot? \
Ie
 2(e,a)’ DrATI, oh o | II DTATI2 o%h o'w,
kS ox 6x26t2‘0 ) ox2 ox2ot?

Ie
| _If( ) DTl %w, (e0@)'DraTl, - o'w, |
s kS oot kS o]

0

Ie
(e02)" DrATI, 0%h 2w, |

Ie
(e02)" DrATI, 6h 88w,
- — +
kS X2 8x38t2‘0

kS X ox*ot? ,

_Ij(eoa)A DraTI, 0°%h 0w,
kS ox3 oxot?
Iy

0

e oh ow,
Lo = [k h—d Ke h— Kp — —2dx,
20 I X= I ax ax
| 2 le
¢ o*w, 2 ow, 2, ohow
I,y = ? kph——dx = kh—b— Kp — —
21 !(eoa) PN X =(esa) Kp 3 i (&a) P X o
t 2, 0%h 0%w,
+_([(e0a) kpyydx,
'fk oy O Kely, Oy Ie_'jikplzﬁaswb |
0

S ol ks oxot’|, o kS ox axat?

I, le
= o ks ox3ot2 \0 kS X ox2ot? \0

+Ij2 2(e0a)2 kel 0°h 0%w,
kS ox? ox2ot?

69



MATERYAL VE METOT H.M. NUMANOGLU

Ie 4 7 Ie 4kl 6 |e
I24:J-( 0a)’ kpl2h 8wbd _(e02) kF,I2h o'w, | (&a) kepl, oh 5Wb|

kS adat? ks aca’| ks oxox‘ar’|

IE
(e0d) kol 2% 3w, | '%(eoa) kpl, 8°h O%w,
+ 2 Au3~p2 _,[ 3 732 0%
kS OX~ ox°ot kS Ox> ox°ot

o O

L At o Aw | L ah dw
{ ox“ot? oxot? | ! Ox oxot”
Iy 4
l7 = IOI2 ha—vxd
5 kS ot
Ie
| k2(epa )'°2hawbd 2(e )|02hawb _'ez(eoa)z|0|2@a5wbd
28_,[ 244 4 ,[ 4 X
5 kS ox“ot kS oxot . 0 kS OX Oxot

le le
| _'j(eoa)“lobh Fw, o (2) loly | T | (62)" loly o0 0w, |
2ok adat ks ottt ks axadat|

0

IJ‘ eo |0|2 8 h aGWb

X,
ox? ox2ot?

0

|30_j| AT I,h

©koon o,
Ek

oxot? 8X8t2 ox 8X8t2
ol o '“a—?t (et Z—“f—vavt
+I(eoa)2 I Z—:%dx,
- :Ihf Pl I(eoa)z hZZTIdX =(&a)’ h%t _II (e0a)’ %%dx (3.201)

buradaki integral ifadeleri Denklem (3.199)’da yerine yazildiktan sonra olusan ifadede
cesitli kisimlar toplu olarak 0’a esittir ancak denklemi uzatarak karmasaya yol agmamak
maksadiyla sonlu eleman analizine esas kisim asagida verilmektedir:
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Ie

o%h &2 wb 1,B oh &®w, . %(ea)’ 1,B 6%h o'y o HhyB ohow, o
[B j ——odx+ | >~ j
ox2 kS ox oxat kS ox? oxPot? kS ox ox

0 0 0

If &)’ kyB o%h o w, IDTATB o*h oy, I(eoa) D;ATB o°h &', |,
k

: ox2 ox? ox% ox? : S ox® ox®
HA:F hazwb f kBah@wb " " 2. ohow,
+ dx + | ky, hw,dx + | (eya — —2dXx
IkSaxzax j o o {W ° g(O)Waxax

I|<W|2 ha Wbd +iZ(eOa) kulp oh &%w, dx+lje(e°a)4 k1, 3% o*w,

X
kS kS OX OXot? kS ox? ox’ot?

0 0

8hawb w, II

2 3

~[DraT = a)’ D, AT

JDT o T S e 1Tk ox anet?
_'iz(eoa) DrATI, °h o', o Je(eoa)4 DrATl, % w, Ijk oh ow
k
0

S ox? ox2ot? kS ox® 8x38t2 x ax

0

[ 21 A2 [ 3 [ 2 4

e 2 22(ea) kol

+fe 2k8hawbdx+'[ka2@8Wbdx+J-(0) ply 8°h 0'w,
0

P ox? ox? KS 0Ox oxot? kS X2 8x28t2

| | |

e k I e 2 e 3
+j 2 O 83Wb2d jloh—da i x+j(e0a)2 |Oa—h—o|a U gy 4 [ Lol h—da
0 ox3 ox3ot ot OX OXot kS ot
+Ii2 |028hawb I Ilzahawb lf 8h63wb

: ox oxet* g o oot 22 ox oxat?

| 2 4 | lo

e, 0%h o'w e o oh of
+(e,a)’ I, — —"2dx—|(eja) ———[hfdx=0

R e (G e I

(3.202)

Egilme sonlu elemani hakkinda asagida yazilan tanimlar, sonlu eleman
formiilasyonunun ifade edilebilmesi i¢in gerekmektedir:

h=¢', B= D¢—6¢22(¢) BTa(;/:I( =Bd,

2

0w, _Bd, Wb

14 a
2 B'd,
OX ox®

4
o _ 4, _562’}) g4 (3.203)

burada % hatirlanacak oldugu iizere agirliklandirma fonksiyonu olup, matematiksel tanimi1
goriildiigii iizere sekil fonksiyonunun transpozudur. Ote yandan D, kinematik operatorii
belirtir. Denklem (3.202) diistiniildiigiinde, agirliklandirma fonksiyonu ve deplasmanin
konum ve zamana gore goriilen tiirev mertebeleri goz Oniine alinarak gerekli tanimlar
Denklem (3.203)’te yapilmistir. Denklem (3.203)’tin Denklem (3.202)’de yerine
yazilmastyla
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IJgB(B'TB')ddx+TE(BTB)ddX+T%(B'TB')ddx+TKﬁ’—SB(BTB)ddX
0 0 0

+If (B'T )ddx—lfM(B'TB')ddx—TM(B"TB"WX
) S kS

e 2 g

+|IkP_B(B’TB’) x+| flea) kB (B"TB")ddx+ljkW (47¢)dox

0 k 0 kS 0

R 2

+'£ o (BB i jkW'2(¢ o) {W(BTB)MX

+If kWIZ(B’TB)ddx IDTAT(BT ) dx - jeo “ Dy AT (B'7B') ddlx

0

D ATI .o 22(epa) DrATI, (v
_lDT Z(BTB)ddx—£ eoaks 2 (B7B")
(e2)" DrATI, (B"TB”)adx+lka (BTB)ddx+I_e[(e0a)2 ke (BTB)dx
0 0

A 2 h 4
ke l, (BTB)ddx+}%(B’TB’)HdX+}%(B”TB")ddx
0 0

+|:[I (¢ ¢)ddx+j ea) IO(BT )ddx I_([I—S(gs ¢)ddx

+I2(2%(BT )ddx+J%(B’TB’)ddx+J‘ 1,(B"B)ddx

+[ (e00)" 1, (B'TB") ddx - jeo )BTf - j¢ fdx=0 (3.204)
0

ifadesine ulasilmis olur. Bu denklemin matris notasyonu ile
(EK)d+(IM)d+(SMH)d=3¢ (3.205)

seklinde sembolize edilmesi suretiyle burada =K, =M°, =M ve =f ifadeleri bir sonlu
eleman i¢in sirasiyla toplam rijitlik matrisini, toplam basit kiitle matrisini, toplam yiiksek
mertebeden kiitle matrisini ve toplam yiik vektoriinii ifade eder. Bu ifadeler Numanoglu
(2019)’daki kayma deformasyonlu homojen yerel olmayan nanokirisler i¢in agiklananlara
benzer olarak soyle yazilmaktadir:
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Z K=K, + Kw,c + Kw,m + KP,C + KP,nI + KW,R,C + KW,R,nI + KP,R,c
+K K KT,nI - KT,R,c - KT,R,nI (3.206)

PR~ N1 ™

ZMO :MA,C+MA,nI +M|,c+M|,n| +MA,R,C+MA,R,n| +M|,W,c

+ MI,W,nI + MI,P,c + MI,P,nI - Ml,T,c - MI,T,nI + MI,W,HO—nI

+M, oot =M1 oo (3.207)
Z M*=M rRe Y Miga + M g hoon (3.208)
Zf :fc +fn| (3209)

Burada ilk olarak rijitlik matrisinin bilesenleri asagidaki gibi verilmektedir:

¢i”
Ie Ie w.”
’ ’ I n 4 4 "
K, = [B(B"B )dx =B "[ﬂ o b ¢1PX
0 0 ¢j
¢j”
(12 6l, -12 6l |
B|6l, 4% -6l 22
T3 -12 -6, 12 -6, (3.210)
6, 21,5 -6, 417
4
| |
f f &;
Kw.c :Ikw (¢T¢)dx :jkw & [¢| o 9 ]dX
0 0 J

156 22, 54 13l
k. |22, 42 13, 317

T 420] 54 13, 156 -22I,
13, -312 -221, 417

(3.211)

73



MATERYAL VE METOT

H.M. NUMANOGLU

Ky = IE(eoa)2 Ky (BTB)dx = Ij(eoa)2 K,y

36 3l

B (eoa)2 k, | 3l

30l |-36

—6l

e

472

0 9,

-36 3l
.
36 -3l
412

|:¢| ’ gpi ' ¢J ’

~12 6l
—6l

—6l
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? [¢.' o o co,-'JdX

(3.212)

(3.213)

¢j” } dX

(3.214)
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Ku s !"W—S (B"B)dx = j

36
3. 4,
-36
3l

__k/B
~ 30KSl,

e e

Ie

WRnI J.

0

ea kWB B’TB )dx_

12

_(eoa)szB 6l,
ksl® |12

6l

e

6l
412
—6l,

21

12
_k.B|6l, 47
CkSI| 12 -6l

6l, 21°

e e

4
?
¢
?;

[(;5{’ o 4

|: ¢| ’ ¢i ’ ¢j ’

-12
—6l

—6l
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(oi’ ¢j’ (Pj'i|dx

o } i

¢jll de

(3.215)
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¢IW
I 2 | 2 m
e(eoa) kPB nTpn e(eOa) kPB ®;
K =|———(B"'B |7 =
P,R,nl _! kS ( ﬁx E[ ks ¢jm
¢jlﬂ
4 2, -4 2
36(ea)’k.B|2, 17 -2, 17
~ kSL? 4 21 4 -2l
2, 12 -2, 12
¢II
I I (p-'
K;. = [ D;AT (B'B)ix = [ D;AT 1 ™
0 0 ¢j'
(01"

36 3, -36 3,

DAT| 3, 42 -3, -I?
T30 |36 -3, 36 -3,
3, 12 -3, 417

e e e e

KT,nI =

O 5

0 ¢

12 6, -12 6l

_(e,2)'D,AT| 6l, 412 -8l 217
R -12 -6, 12 -6l
6, 217 -6l 412

e
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[ ¢I m ¢I m

|:¢|' (pi’ ¢j'

¢J m ¢J " de

(3.218)

(3.219)

le X
(eoa)Z DTAT (BrTBrﬁX _ I(eoa)Z DTAT (% |:¢I” (Di” ¢j” (Dj"j|dx

(3.220)
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¢I”
le 4
KTYR’C :£ D kASTB (B,TB )d J‘D ATB :" [ﬂ” (Di” ¢j” (Dj”i|dx
]
(Pj”

12 6l, -12 o6l

_ D,ATB| 6l, 47 -6l 27
kSl |12 -6l 12 -6l

e e

6l 212 -6l 41

e e

(3.221)

¢IW
| n
< e a D ATB T n e a D ATB @, m m m m
T Bl .[ B TB )j J. )kS 4 |:¢' (0' ¢j (Dj :|dx
0 ¢j
¢jw
4 2 -4 2
36(ea)’ D,ATB| 2, 12 -2, 7
4 kSl,® 4 21 4 -2l
2, 12 =21, 12

Ardindan basit kiitle matrisinin bilesenleri asagidaki yazilmaktadir:

y
=[lo(Folx=[117[4 o 4 o

P
156 22l 54 13l

e

11|22 42 131 -31°?

_ lole e e e e

420 54 13 156 22l
~13l, -312 -221, 412

e
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¢I!
| | '
f f (Di i ' ' i
Mn = [(62)° 1, (B™B)dx = [ (e,2)° I, ,[¢, o 4 (ijdX
0 0 9,
§0j,
36 3, -36 3l
(@) ly| 31, 4 -3, -l
30, |-36 -3, 36 -3l
3, -2 -3 412
¢II
Ie Ie ¢_,
M, = [1,(BTBYx=[1,1"" [44 o ¢ (Dj’JdX
0 0 ¢j
(01"
36 3, -36 3l
B PR < | K R
30|36 -3, 36 -3l
3, -2 -3 412

12

_(eoa)zl2 6l,
1> |-12

6l

—6l

~12 6l
-6, 217
12 -6l
61, 417
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¢I!
| | '
_eIOB T eIOB ¢i ! ’ ! !
MA,R,C__([k_(B B)dx__([g ¢_, [¢| b, ¢j ¢ji|dx
J
gaj’
36 3 -36 3l
1B |3, 4 -3, -7
30kSI | -36 -3, 36 -3l
A, -2 -3, 412
¢i”
| 2 | 2 "
e(e a) I B e(e a) I B (0 " " " "
M = 0 0 B!TBI — 0 0 1 |: ) ) :|dX
ARl '([ kS ( yj _([ k ¢j" ¢| ; ¢J ¢J
¢j”
12 6l -12 6l
(ea)’1,B| 6l, 47 -6l 2
kSl [-12 -6l, 12 -6l
o, 212 -6l 412
¢.
e
Miw,e = ) jks ¢ [¢| % ¢j (Dj:IdX
?;
156 221, 54 13l
kbl | 221, 4l 13, 317
T 420kS| 54 13, 156 22l
~131, -312 221, 4I°
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¢II
| | !
62 ea I e2 ea L, | o '
M = kW BB)dXZ_[ kw ,[ﬂ [ @j}dx

0 0 ¢j

§0j,
36 3, -36 3l
() kyly| 3, 47 -3, -l
~15kSl, |36 -3, 36 -3l
3, -2 -3 412

36 3, -36 3l
kb, |3, 4 -3, L7

30kl |-36 -3, 36 -3l
3, -2 -3l 412
¢I"

| |

e2 ea kl ’ e2 ea kl ¢i " " "
M e _[ pz BTB)dXZ ) o [¢| o9

0

?;
12 6l -12 6l
2(e,@)’kel, | B, 47 -6l 2
ksl |-12 -6, 12 -6l
6, 212 -6l 41>
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¢j” de
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(3.231)
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D;ATI,

I
ITc I
0

36 3,
_DATL| 3, 4L
- 30kSI, |-36 -3l
3, -2

Ie

ITnI J.
0

2(e,a)” D ATI, : (878 f

12 6l

_ 2(e,a)’ D,ATL, | 61, 417
kS 2 ~12 -6l,

6l, 2I?2

Mo o = jea kWI B’TB)d Iea kWI2

0

12 6l

2(ea) k1, | 6l 41
kSl  |-12 -6l,

6l, 217

2 (BB j

~12 6l
—6l, 217
12 -6l
—6l, 417

81

¢I’
DATI gpil ! ! ! !
, [ﬂ o 9 @ de
¢,
(Pj’
36 3,
2

=3l . (3.233)

36 -3,

3l 417

¢I”

e a D ATI @i” " " " "
) [¢| % ¢j ;i de
kS ¢.ﬂ

J
¢j"
12 6,
6l 212
12 -6,
6l 412

(3.234)

"

14

(%
¢J 14
P

|:¢I" ¢i” ¢j” ¢j” :|dX

(3.235)
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¢ilﬂ
_Ie (eoa)4 kPIZ Tpn _Ie (eOa)4 kPIZ ¢im m m " m d
MI,P,HO—nI _E[ kS (B B )dx__([ kS ¢_m |:¢I ¢i ¢J (DJ :| X
|
¢j”l
4 2, -4 2
36(ea) kel, |2, 12 =21, 12
o ksI® 4 21 4 -2l
2, 17 -2, 172
(3.236)
1 4
t(e,a) D ATI i
MI,T,HO—nI i (O)k—STZ(B B )dX
0
¢IW
| 4 "
rle,a D ATI (Di m m m m
:J(o)k% [¢5. o 4" o, }dx
0 ¢J
¢jl”
4 2 -4 21,
_36(e2) DATL |2, 17 -2, L (3.237)
kSle5 -4 -2l 4 -2,
2, 12 -2, 12

Ayrica, yiiksek mertebeden kiitle matrisinin bilesenleri de asagida yazilmaktadir:

¢
“lol, S, | @
MI,R,c:!: kS (¢ ¢)dX=.!K ¢j [¢| &; ¢j (oj:ldx
?;
156 221, 54 13l
Ll 221, 4l 131, 3817

- (3.238)
420kS| 54 13, 156 —22I

~13l, -312 -221, 412
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¢II
2(ea)" 1,1, “2(e@) 1o, |0 P o
M, rm = J kS (B B)dxz_([ kS " |:¢i| o 9 9 de
i
¢j,
36 3, -36 3l
2
_(ea) 1ol,| 3, 4> -3, I (3.239)
15ksl, |-36 -3, 36 -3l
3, -1 -3 42
¢I”
I 14
e a I I ’ e a I I §0i " ” "n ”
M g ool = I 02 BTB)d I zsoz ,, [¢. 7 de
0 ¢j
wj"

12 6, -12 #l,

e

_(eoa)4|0|2 6l, 41" -6l 2° (3.240)
~ ksl |12 -6l, 12 -6l

e e

6l, 212 -6l 41

e e

Son olarak, toplam yiik vektoriiniin bilesenleri agagidaki gibi ifade edilebilir:

) 6
| 1
: PO I |
f.=|¢ fdx=|f ' tdx=-2f< ¢ 3.241
£¢ ! 6 12 |6 (3:241)
?; =,
¢ )
l ¢_’ O
f, I(e a)’ B f'dx= Iea frott dx = (e,a)’ ' . (3.242)
0 P
J! 0
?;

Buradaki matrislerin sayica ¢oklugu nedeniyle sadece alt indislerin tanimlanmasi tercih
edilmektedir. Buna gore, ilgili matris bileseninin alt indisinde W Winkler zemininin, P

............

parametrelerinden en az birinin bulunmas1 durumunun, ¢ Klasik elastisitenin ve yerel
olmayan elastisite igin »/ alt indisi (epa)” ifadesinin ve bunun daha yiiksek yiiksek
mertebesi olan Ho — nl alt indisi (eoa)4 ifadesinin bilesen olarak yer almasindan dolay1
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adlandirmada kullanildigin1 belirtir. Ote yandan f, klasik yiik vektoriinii ve f,; yerel
olmayan yiik vektoriinii tanimlar.

Frekanslarin Hesaplanmast. Serbest titresimde f.=f,;=0 alinip, Denklem
(3.25)’de tanimlanan degiskenlere ayirma bu defa diigiim deplasmanlari i¢in yazilirsa,

de{[zn:[K]ej* -’ (E[M °]j +m,4(zn“[|v|1]ej*} =0 (3.243)

e=1 e=1

seklindeki 6zdeger denklemine ulasilir. Denklemin sayisal yontemlerle veya bilgisayarda
programlama vasitasiyla ¢oziimii ile 6zdegerler yani i. modun dogal frekansi w; elde
edilir. Burada X _[K],, Zi_ [M"] ve =i_,[M'], ilgili kiiresel matrisi tammlar ve
bunlarin indirgenerek 6zdeger analizine girmesi gereken nihai matrisler (teknik adiyla
indirgenmis kiiresel matrisler) (Z[-"])* gosterimiyle sembolize edilmektedir.

Kiiresel Matrislerin Indirgenmesi: Bilindigi iizere kiiresel matrisler sistemdeki n
sayidaki sonlu elemanin serbestlik dogrultularina gore toplanarak kurulur. Yani sonlu
elemanlarin ilgili matrisleri terim terime toplanmaz. Sonlu elemanlar yonteminin teknigi
geregince sonlu elemanlarin ortak diigiimiindeki serbestlikler birbiri ile toplanacagindan
(2n +2)x(2n +2) boyutunda kiiresel matrisler olusur. Ardindan bu kiiresel matrisler
indirgenir yani sonlu eleman aginda geometrik sinir sart1 adresleyen ilgili serbestlige denk
gelen satir ve siitunlar kiiresel matrislerden silinir.

3.4.2. Nanogubuklar

Sonlu Eleman Kinematigi: Baglamadan 6nce muhakkak belirtilmelidir ki, eksenel
cubuklar sonlu eleman analizinde ¢ogunlukla iki diiglimlii sonlu elemanla modellenirler
ciinkii formiilasyonda g6z oniine alinan basit gubugun kinematigi basit olarak bu eleman
tipinin kullanimin1t miimkiin kilar. Ancak Love-Bishop ¢ubugunda iki diigiimlii elemanin
kullanim1 miimkiin degildir ¢iinkii cubuk kinematigi yliksek mertebeden tiirevli terimleri
ortaya ¢ikartir. Bu durum bu alt baslika incelenecek formiilasyonda yeri geldiginde
gosterilecektir. Sonug itibariyle, kayma deformasyonlu fonksiyonel derecelendirilmis
eksenel nanogubugun yerel olmayan sonlu eleman analizi en az ti¢ diiglimlii (Numanoglu
2019; Civalek ve Numanoglu 2020; Numanoglu ve Sen 2022) sonlu eleman iizerinden
yiiriitiilmelidir. Tlk olarak, nanokirise benzer sekilde {iyenin toplam eksenel deplasmani

u=g¢d (3.244)

olarak ifade edilir. Burada sekil fonksiyonu ve diigiim deplasmanlart,

T

4" [282-3¢+1) d
p=1¢,t =4 -ag+ag ! d=1d,!. (3.245)
% 26°-¢ d,

ile verilir. Burada ¢ boyutsuz koordinat iken d;, d; ve dj sonlu eleman diigiimlerinin
eksenel deplasmanlarini tanimlar.
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Sonlu Eleman Hareket Denklemi: Bu defa kalinti, her bir parametrenin 6zdeger
¢cozlimiine katkilarinin ayr1 ayr1 belirlenebilmesi maksadiyla

ou o%u » ol o%u P
R=S,—-A —-(62a) ky —+kyu+1l,—+(ea) I
" ox A"axz (e2) Max2 ™M 042 (&2) S oxda
o'u 2 o'u 2 6%
| —(e,a) (1+20) 1, ——— +(e,a) =—-qg=0 (3.246)
Saxzatz ( 0 ) ( ) 06X26t2 ( 0 ) 8X2 q

bi¢iminde tanimlanir. Ardindan ortalama agirlikli kalint1 agagidaki gibi ifade edilir:

le 4 2 2 2 6
8 o°u 2 o°u o°u 2 o°u
0 6x OX OX ot ox ot

o*u 2 o‘u 2 8%
_IS W—(eoa) (1+20)|0W+(eoa) 87_(:] dx (3247)

burada goriilen integraller agagidaki sekilde ifade edilir:

I, 4 3 |k 2 |l
|:.[s h—udx=s houl g dhaou —d
1 r 4 r raxaz

0

o°h ou
-[ " ox? ox?

ox®

0

J' oh du

0

——dx,
% OX OX

! h—d = Abh—x

0

o'u o’u
> dX = (eoa)z (1+ 21)) Ioh W

ox*ot

1+21) I,h

o '-—,m—

0

I 3
oh o°u
— ?(1+20 l, ———dx,

0

I 2 I I
f 2, 0Q 2, 0q ( 2 0h 0q f

o= (ea) h o dx=(ea)h - [(ea)' = = dx, 1y = I hadx.  (3.248)

0 o

Bu ifadelerin Denklem (3.247)’de yazilmasindan sonra sadece belirli integraller bir araya
getirilirse
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(s &hou ohou , oh éu

S, — 5 k, ——dx+ [k, hud
-([rc’ﬂx J.AO ~!(°) M ox ox +-|. o

le 2 le 4 le 3

o°u 2. 0°h d"u oh o°u

- (R e

le 3 le

2 och o°u 20hoq

+-([(e0a) (1+ 21))'0 &de—}[(e(}a) ox ox dX J‘hqu O (3249)

ifadesine ulasilir. Bu denklemin diizenlenmesi i¢in, Denklem (3.244)’¢ ek olarak gerekli
tanimlar

o4 oh :
h=¢", B=D"¢=-—"—, —=(¢") =BT,
¢ ¢ OX OX (¢)
2 2
M _gd, -, Te-gd, (3.250)
OX ox? ot

seklinde verilir. Denklem (2.249), Denklemler (2.244) ve (2.250) vasitasiyla
Ijsr (B"B’)ddx+ Ij A, (|3T|3)o|o|x+Ij(eoa)2 K,, (BTB)ddx+ljkM (47¢)dax
0 0 0 0
+Ij I (¢T¢)<5|dx+If(eoa)2 I (B'TB')ddx+lj |5 (B"B)ddx
0 0 0
+Ij(e0a)2 (1+20)1,(B"B)ddx —ii(eoa)2 B'q'dx - Ij'qﬁqux =0 (3.251)
0 0 0
olarak diizenlenir. Bu denklem matris notasyonu gésterimi soyle yazilir:
(Y K)d+(2M)d=>f (3.252)

burada K toplam rijitlik matrisini, M° toplam kiitle matrisini ve Ef toplam yiik
vektortnii belirtir. Bu tanimlar

D K=K, +K, +K, +K, (3.253)
ZM :MA,C+MA,nI+MI,c+MI,nI (3254)
Zq :qc +qn| (3255)

seklinde agiklanir. Burada toplam rijitlik matrisinin bilesenleri olarak K, eksenel rijitlik
matrisi, K; yanal atalet rijitlik matrisi, K, eksenel ortam klasik rijitlik matrisi ve K,
eksenel ortam yerel olmayan rijitlik matrisi olarak adlandirilir. Ayrica, toplam kiitle
matrisinin bilesenleri olarak M, . klasik kiitle matrisini, M, ,; yerel olmayan kiitle
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matrisini, M; . klasik yanal kiitle ataleti matrisini ve M, yerel olmayan yanal kiitle ataleti
matrisini tanimlar. Ek olarak, q_ ve q , sirasiyla klasik ve yerel olmayan yiik vektorleridir.
Bu ifadeler asagida formiile edilmektedir:

!

, L 7 -8 1
K, =[ A (B'B)dx=[ A {4 [¢1' 4, ¢3'de=$ 8 16 -8| (3.256)
0 © |y ‘11 -8 7
. i 16 -32 16
K, =[5, (BB )k~ j s [0 o oot a2 e a2 @asy)
0 ¢3n 116 -32 16
! (4 MERE
Kue = [k (9'8)x= [k 1[4 & alox="2 2 16 2| (3259
0 > g 12 4
. ’ &
Kum = [ (&8) ky (B™B)dx= [ (e,2)" ky 16 [¢1 4, ¢3J
° ° ¢
, [7 -8 1
:M -8 16 -8 (3.259)
I PR
. (4 42 2
M, =j|0(¢ p)ix=[110, [ ¢ 4] ko 16 2| (3260)
0 0 g, 12 4
. . ¢
M on = [ (&) (1+20) 1, (B"B)dx= [ (a)° (L+20) I, | ¢ [¢1’ 4 ¢3'}dx
° ° ¢
) 7 -8 1
_(ed) (I+20)l| o o g (3.261)
3, 1 -8 7
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. L [T 8
Ml,c ZJIS(BTB)dXZIIS ¢2I [¢1! ¢2l ¢3':|dX:3—IS -8 16 -8 (3'262)
0 "l ‘11 -8 7
3
| | ¢
M= (eoa)2IS(B,TB,)dxz_[(eoa)zls (152” [¢1” ¢2" ¢3”de
0 0 "
¢,
., [16 32 16
:% 32 64 —32 (3.263)
° |16 -32 16
I, I, ¢ ql 1
q. = |4 adx=[asg, dx =14 (3.264)
0 0
¢,
¢l(
e ' , e,a)’ g’
A, = ] (e,2) BTq'dx = [ (ea) o'y 4, dx=(°,J 4 (3.265)
0 0 e
¢ 3

Frekanslarin Hesaplanmast: Sirasiyla kiiresel toplam rijitlik ve kiitle matrisleri
olan X7 - | [K], ve X, - [M], kurulduktan ve indirgendikten sonra

detHZn:[K]e j &’ (g[m ]” -0 (3.266)

e=1

seklinde yazilmasi gereken 6zdeger denkleminin ¢oziilmesiyle w; 6zdegerleri yani i.
modun dogal frekans1 hesaplanmaktadir.

Kiiresel Matrislerin Indirgenmesi: Ug diigiimlii eksenel elemanlarin ug diigiimleri
iizerinden yapilacak birlestirmeler sonucunda kiiresel matrisler # sayida sonlu eleman i¢in
(2n + 1)x(2n + 1) boyutunda hesaplanmalidir. Denklem (2.244) geregince sonlu eleman
kinematigi sadece eksenel deplasman iizerinden olusturuldugundan bu ¢ubuk tiiriinde
geometrik sinir sart sadece eksenel deplasmandir. Ornegin tutulu u¢ durumunda, tutulu
ucun denk geldigi diigiimii isaret eden satir ve siitun ilgili kiiresel matrislerden silinerek
olusan ifadeler 6zdeger denklemine girer.

Basit Nanocubuk Igin Yerel Olmayan Sonlu Eleman Formiilasyonu: Hareket
denkleminin formiilizasyonu sunulurken, ileride ele alinacak kayma deformasyonlu
nanogerceveler de tez kapsaminda formiile edileceginden ve eksenel yonde kayma
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deformasyonunu hesaba katmak matematiksel olarak miimkiin olamayacagindan eksenel
yonde Poisson etkisinin ihmal edilecegi belirtilmis, bu nedenle Poisson etkisinin ihmali
hakkinda kisa bir anlatimda bulunulmustu. Hatirlanacak olursa bir 6nceki alt baslikta
deginilen nanokirisler i¢in iki diiglimlii eleman, kayma deformasyonu ile analize izin
vermektedir ¢linkii Denklem (3.245)’te verilen sekil fonksiyonu, Denklemler (3.248) ile
verilen belirli integrallerdeki maksimum tiirevler derecesi olan {i¢ defa tiirev
alinabilmesini miimkiin kilmaktadir. Ancak bu alt baslikta da deginildigi gibi, Denklem
(3.248)’deki 1, ve Iy integralleri iki defa tiirev icerdiginden ve iki digimli sekil
fonksiyonu bu tiirevler igin yetersiz kalacagindan Love-Bishop ¢gubugunun analizi i¢in en
az l¢ diglimli elemanin kullaniminin gerekli oldugu anlasilmaktadir. Buna gore,
Denklem (3.245)’teki sekil fonksiyonu iki defa tiirevleme islemini saglayabilmektedir.
Bu boliimiin son kismi olan bir sonraki alt bagliga konu nanoyapt modelini tanimlayan
nanocergevelerin sonlu eleman formiilasyonunun eksenel davranisla ilgili kismi i¢in bu
alt baslikta, basit nanogubuk ic¢in yerel olmayan sonlu eleman analizine kisaca
deginilecektir.

[lk olarak, iki diigiimlii eksenel sonlu elemanin kinematigi asagidaki denklemlerle

aciklanir:
RN L L R L !
¢_{¢J} _{ S } _{ x/L } ’d_{dj}. (5207

o¢ oh ou o’u .
h=¢', B=D*¢p=-—"2, —= =BT, —=Bd, — =¢d. 3.268
4 ¢ OX ' OX (¢) X o’ 4 ( )

burada sonlu elemanin sekil fonksiyonlarinin birinci dereceden denklemlerle ifade
edildigine dikkat edilmelidir. Ote yandan, Denklem (3.187) ile verilen hareket denklemi
kalintiy1 belirttiginden, agirlikli ortalama kalinti

A az a2u o dhu
2
(e,a) 2_2 +q] i (3.269)
X

ile ifade edilebilir. Bu denklem, Denklem (3.248)’de goriilen I,, 15, 14, Is, Is (v = 0 oldugu
da hatirlatilarak), Iy ve I, integrallerinin sonuglari kullanilarak

M@a_udx'I 2y ahau

o dx jk hudx+j|

0
I, I,

le
2 2 6h aq
- dx hgqdx =0
{ ax 8x8t2 ! j q (3.270)

olarak yazilir. Burada Denklemler (2.267) ve (2.268) yardimiyla
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A, (BTB)ddx+ [ (,a)" k,, (B'B)dc+ [k, (¢7¢)ddx+ [ 1, (¢#7¢)dox

O ey

I le I,
+[(ea)" 1,(B"B)ddx - [ (e,2)° BTq'dx— [ ¢"qdx =0 (3.271)
0 0

0

ifadesi ortaya ¢ikar. Denklem (3.252)’deki matris notasyonu bu defa

D K=K, + Ky o+ Ky (3.272)
2M=M +M, (3.273)
Zq = qc +qn| (3274)

denklemleri ile kurulur. Buradaki tanmimlar Love-Bishop c¢ubugu i¢in formiilasyon
tiretilirken yapilmistir. Sadece kiitle bilesenleri i¢in notasyon degisikligi yapilmis olup,
M, ve M,,; kayma deformasyonsuz eksenel nanogubugun sirasiyla klasik ve yerel olmayan
kiitlelerini ifade eder. Boylece, fonksiyonel derecelendirilmis kayma deformasyonsuz
nanogubugun yerel olmayan sonlu elemanlar formiilasyonunun bilesenleri asagidaki gibi
aciklanir:

Kaepb(BTB)dfoo{@,}[@' ¢2’}dx=li{_ll ﬂ (3.275)

h e

I, ; I, " K1 [2 1
KM,C=£|<M(¢ ¢)dX=£kM{¢Z}[¢l AL L 2} (3.276)

o=fieari @aloc s 4 fs o
0 0 ¢2I
_ m{ 1 ‘1} (3.277)
I, -1 1
 (saVax— 1[4 I, [2 1 |
Mc:£IO(¢ ¢)dx:£|0{¢2}[¢l ¢, |dx = . L 2} (3.278)

_(&a)'lo [ 1 ‘1} (3.279)
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IR S I N B A
qc—£¢ qu—lq{%}dX— > {1} (3.280)

le

0. = [ (e2) BTg'dx= [ (e,a) q'{@ }dx = w{_l} (3.281)

0 0 ¢2’ e 1

Kisa bir inceleme yapilacak olursa, yerel olmayan basit eksenel nanogubuk
ataleti M;. ve yerel olmayan kiitle ataleti M;,; matrislerinin analizde yer almadif
gozlemlenmektedir. Ote yandan, yukaridaki ifadelerin kullanimi iizerinden olusturulacak
kiiresel matrislerin indirgenmesiyle ilgili 6zdeger denkleminin ¢6ziimii sonucunda dogal
frekanslar hesaplanmis olur ancak konunun bu olmadigi, burada nanogergeve modeli igin
yerel olmayan sonlu elemanlar analizinin ilgili kisminin kurulmasinin amaglandigi not
edilmelidir.

3.4.3. Kayma deformasyonlu fonksiyonel derecelenmis ayrik nano sistemler

Bu boliimde son olarak, fonksiyonel derecelendirilmis malzemeden imal edilmis
diizlem nanogerceve yapilarinin kayma deformasyonuna dayanan yerel olmayan serbest
titresim analizinden bahsedilecektir. Bilindigi iizere, ¢erceve yapilar, en basit anlamda,
en az iki tane iiyeye sahip ayrik yapilar olarak tanimlanabilmektedir. Burada bir iiye
mekaniksel ve geometrik olarak diger iiyelerden bagimsiz olarak kendi basina
tanimlanabildiginden bu tiir yapilar ayrik sistem olarak bilinir. Hatirlatilacak olursa,
yaygin bilinen diger ayrik yap1 ¢esidi olan kafes sistemlerde iiyeler sadece eksenel etkiler
altinda calisirken cergeve yapilarinda tiyeler, biitiin serbestlik dogrultularinda (eksenel,
burulma, enine, donme) hareket gosterirler ve bu dogrultulardaki i¢ tesirlerle karakterize
edilmektedirler. Tabi ¢erceve yapilarinda burulma etkisi ¢cogunlukla analizde yer almaz,
diger etkilere gore mekanik analiz formiile edilmektedir.

Nano ve mikro-elektro-mekanik sistemlerin yapisal mekanik davranislarinin
arastirilmasinda genel olarak eksenel cubuk, kiris, kabuk ve plak gibi mekanik
modellerinin géz Oniine alindigr bilimsel literatiirden bilinmektedir. Ancak, bazi
nano/mikro 6lgekli yapisal sistemler, farkli yonelimli birden ¢ok elemana (Que vd. 2001,
Piazza vd. 2006; Kinnell ve Craddock 2009; Xie vd. 2015; Chaudhary ve Mudimela 2022)
sahip oldugundan bu sistemleri siirekli yap1 gibi modellemek makul gériinmeyebilir. Bu
tiir kiigiik olgekli yapilara ayrik mekanik sistem modeli (Numanoglu ve Civalek 2019b,
2024) ile yaklasilmalidir.

Diizlemsel g¢ergeve yapilarin statik, dinamik ve burkulma gibi temel mekanik
analizleri ¢ogunlukla matris deplasman metodu ile gergeklestirilmektedir ve ¢éziimiin
teorigi yapt mekanigi bilimi ile ilgilenenlerce iyi bilinmektedir. Her ne kadar teorik
altyap1 bilinse de nano mekanik alaninda boyut etkili siirekli ortam teorileri kullanilarak
ayrik yapilarin analizleri heniiz oldukga kisith bir mevzu oldugundan ve metodolojinin
mantigini yerel olmayan parametreden kaynakli terimlere de uygulayarak teorik altyapiyi
tam anlamiyla agiklayabilmek maksadiyla, serbest titresim analizi i¢in sonlu eleman
tabanli matris deplasman metodu burada detayli olarak aktarilacaktir. Matris deplasman
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analizinde ayrik yapinin her bir tiyesi tek basina sonlu eleman olabilecegi gibi sonlu
elemanlara boliinebilmektedir. Literatiirde ¢cogunlukla her bir iiyenin kendi basina bir
sonlu eleman olarak hesaba katildig1 bilinmektedir. Zira diger tiirlii yani her {iyenin sonlu
elemanlara boliinmesi belki hesap hassasiyetini artiracaktir ancak islem siiresini oldukca
uzatacaktir. Bu agiklananlar baglaminda, analize konu diizlem nanogergevenin bir iiyesi
Sekil 3.7°de tasvir edilmektedir. Cerceve iiyesinin uzunlugu /, olmak iizere, konu geregi
iiyelerin fonksiyonel derecelenmis malzemeden imal edildigi varsayilarak, malzemenin
alt ve lst ylizey ozellikleri de sekilde gozlemlenmektedir.

y Hareket Kuvvet
Bilesenleri Bilesenleri

Sekil 3.7. Fonksiyonel derecelendirilmis diizlem egilme iiyesinin serbestlikleri

Nanogergeve tyesinin yer aldigi ve yatayina goére a olarak sembolize edilen
yonelim agis1 kadar yonlendigi xy diizlemi genel eksen takimi ve iiye eksenini yatay
olarak baz alan x'y’ diizlemi yerel eksen takimini ifade etmektedir. Buna gore, liyenin ug
diigtimlerinin serbestlikleri igin, yerel takima gore d;, ve d,; eksenel deplasman, d;, ve
d,, enine deplasman, d,; ve d,; donme yonlerindeki serbestlikleri; genel takima gore u;;
ve u,; eksenel deplasman, u;, ve u,, enine deplasman, w5 ve u,; dénme yonlerindeki
serbestlikleri belirtir. Buna benzer olarak, serbestlik yoniindeki ig tesirlerden yerel eksen
takimi igin p,, ve p,, eksenel kuvveti, p,, ve p,, kesme kuvvetini, p . ve p,. egilme
momentlerini; genel takima gore f, Ve f,, eksenel kuvveti, f,, ve f,, kesme kuvvetini, £, ,

ve f,, egilme momentlerini gosterir.

Stirekli yap1 mekaniginde eksenel ve egilme titresimlerinin ayr1 ayn
incelenebilmesi, ger¢evelerin matris deplasman analizi i¢in de bir temel olusturmaktadir.
Buna gore, Sekil 3.7 {izerinde verilen hareket ve donme bilesenleri tizerinden ilk olarak
eksenel titresime esas bir formiilasyon elde edilmelidir. Eksenel titresim her ne kadar
cubuk ekseninde goriilse de sadece eksenel etkiler altinda calistig1 bilinen kafes yapilarin
ayrik iiyelerden olusmasi yani her bir liyenin cisim ekseninin farkli olmasi ayrik yap:
hareketinin sadece bir yonde degil, o yone dik dogrultuda da gerceklesmesi gerektigini
ortaya koyar. Bilindigi {izere kafes yapilar1 ug¢ birlesimlerinde donme hareketi
yapmadigindan egilme momenti i¢ tesiri almazlar. Bu nedenle, simdilik iiyenin donme
hareketleri diisiiniilmeksizin, genel ve yerel eksen takimlarinda deplasman ve bunlarin
yoniindeki i¢ tesirlerinin kendi arasindaki bagimntilar, sirasiyla su denklemlerle izah
edilmektedir:
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d, =u,cosa+u,sina, d, =-u,Sina+u, CoSa
d,, =U, COSa+UySina, d,, =—U, Sina+U,, COSx . (3.282)

f,=p,c0sa+p,sina, f,=—p,sSina+p,Ccosa,

f, = p,Cosa+p,sina, f,=—p,sina+p,,cosa. (3.283)

bu ifadeler
d=Tu (3.284)
f=Tp (3.285)

seklinde temsil edilmek suretiyle

d, cosa sina 0 0 Uy,
d, —Sina  cosax 0 0 U,
d,, "o 0 cosa sina ||uy (3.286)
d,, 0 0 —sina cosa ||uy,
f, cosa sina 0 0 i
> —sina  cosax 0 0 P,
f, o 0 cosa sina||p, (3:287)
f,, 0 0 —sina cosa||p,,

olarak yazilan bagintilarda d ve u sirasiyla yerel ve genel eksen takimlarinin deplasman
vektorlerini ve buna benzer bigimde f ve p sirasiyla yerel ve genel eksen takimlarinin
kuvvet vektorlerini belirtirken bunlarin arasindaki iliskiyi kuran 7"transformasyon matrisi
olarak bilinir:

cosa  Sina 0 0
T- —Sin  Ccosa 0 0 (3.288)
0 0 cosa  Sina
0 0 -sina cosa

burada transformasyon islemi genel bilesenleri yerele doniistirmektedir. Ancak, bu
doniisiim mantig1 sonlu eleman hesabinin esasina terstir ¢iinkii hesap siirecinin sonunda
kiiresel matrislerin biitin sistem genelinde yazilmasi gerekmektedir. Bununla ilgili
mantik, tam da geometrik bagintilara ek olarak mekaniksel bagintinin da formiile edilmesi
gereken su agamada aktarilacaktir. Geometrik bagintilara ek olarak mekaniksel bagintinin
da formiile edilmesi gerekmektedir. Bu sdylenen,

f =kd (3.289)
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olarak belirtilen Hooke denklemi iizerinden temellendirilir. Burada mantiken & iiyenin
¢linkii bir tiye kendi basina enine rijit cisim hareketi yapamaz. O halde, fonksiyonel
derecelendirilmis basit eksenel ¢ubuk diisiiniilerek Denklem (3.275)’in Denklem
(3.289)’a uyarlanmasiyla yerel takimdaki kuvvet bilesenleri ve deplasman serbestlikleri
distintilerek

f, 1 0 -1 0}(d,
0 A0 0O 0 O d,,
=— 2
fy L|-1 0 1 0]|dy, (3.290)
0 0O 0 0 0f(dy,
denklemine, buradan da
1 0 -1 0
0 0 0 O
k=l .
L|-1 0 1 O (3.291)
0 0 0 O

neticesine varilmaktadir. Tamamen eksenel etkiler altindaki ayrik nanoyapida titresimin
diger iki bileseni klasik ve yerel olmayan kiitle matrisleridir. Bunlarin dayanagina gore,
Newton’un ikinci hareket kanunu olan

f=md (3.292)

geregince hareket iki yonde gozlemleneceginden, Denklemler (3.278) ve (3.279)
dogrultusunda, kiitle matrisleri

2 010
m —dole| 0 2 01 (3.293)
6|1 020
01 0 2
1 0 -1 0
2
m :m 0 1 0 - (3.294)
" L |-1 0 1 o0 '
0 -1 0 1

olarak tespit edilir. Simdi transformasyon matrisinin rijitlik ve kiitle doniistimleri igin
mantig1 belirlenebilir. Buna gore ilk olarak Denklemler (3.284) ve (3.285)’in Denklem
(3.289)’da kullanimu ile

Tp=KkTu (3.295)
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denklemi olusturulabilir. Burada transformasyon matrisinin ortogonalite (7" = 7~ 1)
ozelliginden faydalanilabilir. Buna gore, transformasyon matrisinin tersi denklemin iki
tarafiyla soldan ¢arpildiktan sonra ve ¢arpmanin etkisiz elemani olarak da bilinen birim
matris I tanimmin kullanilmasi suretiyle, Hooke Denkleminin bu defa genel eksen
takiminda g6z oniline alinmasi yani

p=Ku (3.296)

denkleminin sonucunda
TkT =K (3.297)
bagintisina ulasilmis olur. Burada K genel eksen takimi i¢in rijitlik matrisidir. Boylece

transformasyon islemi, yerel takimindaki bir tiyenin rijitligini genel eksende ifade etmis
olur. Benzer sekilde sirasiyla klasik ve yerel olmayan kiitle bilesenleri i¢in

T™mT =M, (3.298)
TTm,T=M, (3.299)

esitlikleri de kurulabilir. Denklemler (3.275), (3.278), (3.279) ve (3.288)’in Denklemler
(3.297), (3.298) ve (3.299)’da kullanimlari, fonksiyonel derecelendirilmis tiye igin genel
eksen takiminda sirasiyla rijitlik, klasik kiitle ve yerel olmayan kiitle matrislerini ortaya
cikartir:

cos’a cosdsina —cos’a —cosasina
A, | cosOsina siff¢ —cos@sinag -sin‘a
K=-2 ) : ) _ (3.300)
I, | —cosa  —cosOsina CoS“a cosasina
—cosfsine —sin‘a cosasina sin‘a
2 010
v |0 201 501
" 6l1 020 (3.301)
01 0 2
1 0 -1 O
2
() 1,0 1 0 -1
M, =~/ 0 .302
" L |-1 0 1 0 (3:302)
0 -1 0 1

burada kiitle matrislerinin iiye yoneliminden etkilenmedigi anlagilmaktadir.

Buraya kadar ayrik yapilarin sadece eksenel yonlerindeki titresimleri formiile
edilmistir. Yani bu formiilasyon egilme ve donme hareketlerinden izole bir titresim

95



MATERYAL VE METOT H.M. NUMANOGLU

analizini agiklamaktadir. Eksenel titresime dair bu matris tiiretimleri yerel olmayan
nanogercgeveyi ilgilendirmemekte olup, esasen nanogergeve hesabinin temel dayanagi
hakkinda bir altyap1 olusturulmasi amaglanmaktadir. Cerceve yapilarinda iiyeler biitlin
serbestlikler yoniinden hareket ve i¢ tesir bilesenlerine sahip oldugundan egilme ve
donme hareketleri de diisiiniilmelidir. Bu baglamda, egilme ve donme hareketleri de goz
Online alindiktan sonra formiilasyon buraya kadar elde edilen eksenel titresimle
birlestirilerek yerel olmayan serbest titresimin genel matris deplasman formiilasyonuna
ulagilir. Bu suretle formiilasyon tiiretim siirecinin basinda, Sekil 3.7 gbz Oniine alinarak
Denklemler (3.282) ve (3.283)’te deginilmeyen nanoyapi tiyesinin donme serbestlik ve i¢
tesir bilesenlerinin yerel ve genel takimlar arasindaki iligkileri bulunmaktadir:

d13 =U;, d23 =Uy. (3-303)
f13 = Pis f23 = Pos- (3-304)

O halde, bu defa yerel takimdaki hareket ve i¢ tesir bilesenleri, yukaridaki iliskiler
transformasyon islemine dahil edilerek

d,] [cosa sina 0 O 0 0]fuy
d, —sine cosa O 0 0 O0||u,
d 0 0O 1 0 0 Of|u
Bl _ v (3.305)
d,, 0 0 0 cosa sina 0f|u,
d,, 0 0 0 -sina cosa O0/[|u,
dy] | O 0O 0 O 0 1]|uy
f,] [cosa sina 0 0 0 0]fp,
f, —sina cosa 0 0 0 Of|py
f 0 0 1 0 0 O
Bl= . P (3.306)
f,, 0 0 0 cosa sina 0f|py
f,, 0 0 0 —sina cosa O0f|p,
f] | O 0 0 0 0 1]|ps
seklinde iliskilendirilir. Boylece transformasyon matrisi nanogergeve iiyesi igin
[ cosa sina 0 0 0 ]
—sine cosa O 0 0
0 0O 1 0 0
T= (3.307)

0 0 0 cosa Sina
0 0 0 -sina cosa
0 0 0 0 0

R O O O O O

ile ifade edilmektedir.
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Bilimsel literatiirde diizlem g¢ergevelerin matris deplasman formiilasyonunda
genellikle kayma deformasyonunun ihmal edildigi yani Euler-Bernoulli kiris teorisi
tabanli hesaplama yapildig1 ¢ok iyi bilinmektedir. Buradan, yerel olmayan elastisite
disiiniildiginde bir nanogergeve icin rijitlik, klasik kiitle ve yerel olmayan kiitle
matrislerinin serbest titresim analizi i¢in yeterli olabilecegi sonucuna varilmaktadir.
Ancak bu tez calismasinda fonksiyonel derecelendirilmis nanoyapilarin kinematigi
kayma deformasyonu ile incelenmekte oldugundan buna dair formiilasyon sunulacaktir.
[lk olarak, Timoshenko kiris teorisi nedeniyle Denklem (3.46) dogrultusunda, bu defa saf
deplasman ihmal edilmeksizin ancak Poisson etkileri ihmal edilerek egilme iiyesinin
deplasman bilesenleri

ux=u—z(p=u—z%,uy:v:O,uZ:w:wb+ws. (3.308)

seklinde ifade edilebilir. Poisson etkileri distiniildiigiinde u, ve u, bilesenleri sirasiyla
—vyou/ox ve —vzou/ox ilave edilerek yapilandirilmaliydi ancak hatirlanacak olursa
eksenel yonde Poisson etkisinin ihmal edilecegi daha onceden belirtilmisti. Yine
hatirlanacak olursa, nanogubuklarin eksenel titresimi i¢cin Love-Bishop ¢ubuk teorisi
diistintilerek gelistirilen yerel olmayan sonlu elemanlar formiilasyonunda yanal
deplasmanlarin getirdigi yliksek mertebeden terimler nedeniyle iki diigiimli elemanin is
goremedigi, bunun yerine li¢ diigimlii bir elemanin kullanilmas1 gerektigi ifade edilmis,
formiilasyon tiiretim siireci bunun {izerinden yapilandirilmisti. Tezde {i¢ diigiimli bir
egilme sonlu eleman1 oldukg¢a kapsamli islem siireglerini barindirdigindan Timoshenko
teorisi i¢in formiile edilmemistir ve nanokirislerin sonlu eleman analizi iki diigiimlii
elemanla agiklanmistir. Buna ek olarak, eksenel titresimde basit yani Poisson etkisini
thmal eden ¢ubuk teorisinin de iki diiglimlii elemanla yiiriitiilebildigi anlasildigindan
sonug itibariyle nanocercevelerin egilme tiyesi i¢in genel manada Poisson etkisi thmal
edilerek matris deplasman formiilasyonu gelistirilecektir. Artik buradan itibaren cergeve
tiyesinin mekanik analize esas yani malzeme oOzelliklerini ilgilendiren matrisleri elde
edilebilir. Timoshenko kiris teorisi i¢in, yerel olmayan sonlu elemanlar formiilasyonunda
termo-elastik ortamin ihmal edilmesinden geriye kalan matrislere gore islem yapilmalidir.
Nanoyapi tiyesinin yerel takimi i¢in rijitlik, basit kiitle ve yiiksek mertebeden kiitle
matrisleri sirastyla soyle agiklanabilir:

D k=k, (3.309)
z m° = My +Myp +M +My G +Myg My (3-310)
zml =M gt My g My g oo (3-311)

Ilgili matrisler incelendiginde bu matrislerin, Sekil 3.7, Denklemler (3.275), (3.278) ve
(3.279) goz oOniine alinarak eksenel titresimi ilgilendiren bilesenlerle ilave edilmesi
sonucunda
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kA 0 0 ki 0 0

K = 3.312
kX 0 0 ki¥ 0 O (3.312)
0 ky ks 0 k3 ks,
0 ky ky 0k kg
'm& 0 0 my, 0 0]
0 my my’ 0 myp o my
m° = Oa my  myy Oa my  mpy (3313)
m, O 0 m, O 0
0 my’ my 0 my my
[0 m? om0 mg my
0 0 0 0O 0 0]
0 my my 0 my my
0 mbl mb,l 0 mb,l mb,l
L @310
0 my my 0 my my
0 mgt om0 mg mgg |

ile temsil edilecegi agiklanmaktadir (Numanoglu ve Civalek 2024). Burada matris
girdilerinde « ve b st indisleri, sirasiyla basit eksenel ve kayma deformasyonlu egilme
titresimleri temel alinarak girdi belirlenecegini belirtmektedir. Yerel takimin rijitlik
matrisinin bilesenleri Denklemler (3.210) ve (3.275) kaynak alinarak olusturulmaktadir.
Yerel takimin basit kiitle matrisinde egilme bilesenleri Denklemler (3.223)-(3.228) ile
hesaplanan matrislerin toplamindan ve buna ek olarak eksenel bilesenler Denklemler
(3.278) ve (3.279)’un toplamindan gelmektedir. Son olarak, kayma deformasyonu
nedeniyle ortaya c¢ikan ve Denklemler (3.238)-(3.240)’in toplamiyla hesaplanan
bilesenler yerel takimin yiiksek mertebeden kiitle matrisinin sadece egilme bilesenlerini
tayin eder, basit ¢ubuk teorisi bu hususta bir bilesene sahip degildir ¢linkii egilme
serbestligine atif yapan bilesenler Denklem (3.243) uyarinca dogal frekansin dordiincii
kuvveti ile dolayli olarak 6zdeger problemine girdiklerinden ve basit ¢ubuk teorisinde
frekansin ikiden yiiksek mertebeli terimi bulunmadigindan yiiksek mertebeden kiitle
matrisinde eksenel serbestlik girdisi yer almaz. O halde, Denklemler (3.297)-(3.299)’a
benzer bigimde nanogergeve tliyesinin yerel takim matrisleri genel takima

K=TTKT (3.315)
MO =T™m°T (3.316)
ML =T™m'T (3.317)
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ile donustiiriiliir. Boylece, Denklemler (3.307) ve (3.312)-(3.314), Denklemler (3.315)-
(3.317)’de kullanilarak genel takimin mekanik analize esas matrislerine ulasilabilir. Ilk
olarak rijitlik girdileri yazilmaktadir (Numanoglu ve Civalek 2019b, 2024):

K, =K, =—cosza+l|2—38$in2a, Ky, = K, :[;ﬁ_llszjcosasina,

e e e e

sin‘a

K = Ky :—?—?sina, K. :—Iicosza—llzaB

K=K, :(—i+1|2—38jcosasina , Ky, =Ky =;isin2a+1|2—38cosza,

e

Ko = Ky :@COSOL Kas :_%Sinza_lzaB cos’a, Kg; = Kgg :A;_Bv

K, =Ky :?—?sina, K = Kgg :—?—E;cow, K :2|_B. (3.318)

€ € e

Ardindan basit kiitle matrisinin girdileri soyle elde edilebilir:

2 2
ea) | ea) |
M101:Mf1)4:£—lole +—( o) 0}0052a+[1?;§|6 +§[( ) by FE IOBJ

3 l, 50 1, | kSl
2 2
ga) | e,a) 1,B
+12 (0 )3 2+( 0 ) 30 Sinza,
l, ksl,
2 2
g —mg | (B8 6L L)yl (0] )
105 5L 5|1 kSl I
2
ea) 1,B
+M cosasina,
ksl,
11,l° 1 2 1,B eall, (eallB)l.
l\/llos{— 2](-)0 —E((eoa) |0+|2+|2_Sj_6{( 0|)2 2+( okS)|20 sina
2 2
My, = bl _ (€68)" o | ooz [ Oloke 6 (&3) 1o 1, 1B
6 l, 3B 5 | . kSl
2 2
-12 (eOa) |2+(eoa) IoB Sinza
E ksl,® !
2 2
M105:M§4: _19|ole+( 0 ) 0+§ p_|+£ +12 (0 Z 2
54 5, 5( 1, kSl .
2
e,a) 1,B
+M cosasinea,
ksl,
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131,07 1 2 1,BY [(e2)°1, (&a)1,B]|.
M2 = 0e _ ~l(ea) |l +1, +-2—|-6] -2 2410 O |lsina,
15 { 420 10(( ) Lo+, ksj [ | 2 KSI.2 ¢

2 2

g,a) | ea) |

MSZ:MSSZ ﬁq_w Sin2a+ 13|0|e+§ (0 ) 0+|_2+£
3 l, 3% 5 | l, kS,
(e,2) 1, (&a) I,B
+12| 2224220 ||cos’ a,
Ie ksl,
11117 1 2 1,BY . [ (ea) 1, (&) 1,B
My = =22+ —| (8a) lo+1, + 2= |+ 6] =22+ """ | cosa,

) {210 10((0) C ij [ |’ kSI,?

e

2 2
M§5= IO_IE_M Sin2a+ 9|Ole_g (eoa) |o+|_2+£
- 3 5 1, I kS,

|2 ksl,®
1317 1 2 1,BY [(&a) 1, (ea)1,B
MY ==L 4 —l(ega) I, +1,+-2= |+6] ~ 2224221 0" ||cosa,
& { 210 10((0) - ksj [ 2 kS.2 “
2 2 ’ 1,BI (62)° 1, (8a)° 1,B
MZ =My =-2+—I(ga) Il +1 I +2—=|+4 - 2224227 0 |
B 7% 105 15£(°) Y & ksj I, kSl
1317 1 2 I,El (82)° 1, (&a)° I,El')]| .
MY ==t 4 —I(ea) l,+1,+>— |+6| 22242121 0 sina,
* [ 210 10(( @) lotl 70 j [ |2 kS 2 “
13112 1 2 1,B (e,a) 1, (&a) I,B
M =| =2 _—|(ga) l,+1,+°=|-6| ~ 2224+ _C ||cosa,
* [ 420 10(( 8) lo+ 1 ij ( .2 k3.2 “
s ea)l, (ea)l,B
M§6=—£—i((eoa)2Iole+lzle+IoB|E)+2 (82) 2+( ) Ly ,
140 30 kS 1, kSl,
1002 1 2 1,BY [(&a) 1, (ea)1,B]].
M2 = 0e + —l(ea) |+, +2= |+6| 221 24290 9" |iging,
& [ 210 10[( 08) o+, ij ( K ks1.2 “

e

1112 1 2 1,BY [(&a) 1, (ea)°1,B
M == _—l(ea) | ,+1,+-2—|-6|~22L 242971 0 licosy.
56 [ 210 10((") ot ksj [ 12 kS 2 “
(3.319)

Ayrica, yiiksek mertebeden kiitle matrisinin girdilerine de su sekilde ulasilmis
olur:
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12(ea)’ 1.1, 12(e.a) I I
Mz =z = Blalel,  12(ea)" ol | 12(e, )3 o2 lsint o
35kS 5kSL kS,

2 4
X _[_13|0|2|e_12(e0a) Iolz_12(eoa)3|0|2Jcosasina,

ML =ML =
12 45 35kS 5kSL kSIe
c 1m0 (ea) ol 6(e@) gl |
g - - . sina,
210kS 5kS kS,
2 4
1 9,lyl, _12(e2) Tol, 12(ea) lol, sin’a
M 70kS 5kSI, kSI,® ’
12(ea)" 1,1, 12(ea)’ I,
ML =ML = _9|0|2|e+ (&2) 02, (& )3 22 lcosasina,
70kS 5kSI, kSI,
c (131,12 (a) 11, 6(8a) I, | .
- _ - - sina,
420kS 5kS kS,

ML =ML =
2 55 35kS 5kSI, kS,

4 4
' _[13|0|2|e+12(eoa) |0|2+12(e0a)3|0|2]cosza’
) 4
1 :[11|0|2|92+(eoa) IO|2+6(€08) IOIZJCOSOZ,

2| 210kS 5kS kSl 2

2 4
[9lo.2.e_12 %3) lol, _12(€:2) '°'2]coSza,

70kS 5KkSI, kSI,®
131,112 ea)2I0I2+6(eOa)4IOI2 coser
420kS 5kS kSI,2 ’

2 4
ML ML |O|2|_3+4(e0a) IOI2L+4(eOa) I,
% % 105kS 5kS kSL

2 4
. :[_13|0|2|j+(e0a) lol, |, 6(82) Z'O'Z},ina,

3 420kS 5kS kSl,
C (181,12 (ea) 11, 6(ea)" Il,
s = — — 3 COSx ,
420kS 5kS kSl,
- I,0,1.° _(eoa)2 I, 1,1, s 2(e0a)4 I,l,

%7 7140ks 15KS ksl,
2 4
1 (ll|o|2|e2+(e0a) |0|2+6(e0a) IOIZ}SinO(,

“ | 210kS 5kS kSl ?

56 -

2 4
. 11,1,17  (ga) Iol, 6(ea) I,
| _ - cosc . 3.320
{ 210kS 5kS kSl ? “ ( )
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Her bir iiye i¢in genel takima gore rijitlik, basit kiitle ve yiiksek mertebeden kiitle
matrisleri hesaplandiktan sonra nanogercevenin genel takimdaki serbestlikleri
dogrultusunda hesaplanan kiiresel matrisleri mesnetlenme kosullar altinda indirgenmeli
ve agagidaki 6zdeger denklemi ¢oziilmelidir:

*

de{[zn:[K]e) —a)iz(i[w]jm;f(en [Mljn =0 (3.321)

e=1 e=1 =1

burada ¢6ziim sonucunda dogal frekanslar elde edilmis olur. Cerceve yapilar igin
geometrik sinir sartlar eksenel ¢ubuk ve kiriste ifade edilenlerin birlesimi olarak ilgili
eksenel, enine ve donme serbestlikleridir.

Bunlarin haricinde, her nasil ki nanogubuk ve nanokiris gibi siirekli sistemlerde
ne kadar ¢ok sonlu eleman kullanilirsa o kadar ¢ok sayida modun dogal frekansina
ulagiliyorsa, ayn1 sekilde nanogergeve liyeleri de birer sonlu elemanla degil birden fazla
sonlu elemanlara boliinerek matris deplasman analizi yapilirsa, nanogergevenin ¢ok
yiiksek modlarinin da yerel olmayan dogal frekanslarinin hesaplanabilecek oldugu not
edilmelidir.

Son olarak, sayisal uygulamalarin ilgili kesitinde géz oniine alinan nanogerceve
yapilart ve bunlarin iiye basina tek sonlu elemanli modelleri Sekil 3.8’de sunulmaktadir.
Sayisal uygulamalarda iiyeler fazla sayida sonlu elemana boliinecekse, her elemanin esit
sayida boliinecegi kabul edilecektir. Ote yandan, fonksiyonel derecelendirilme
konfiglirasyonu, malzeme alt yiizeyinin yapinin i¢ine ve iist yiizeyinin yapinin disina
bakacak sekilde ve her bir tiyenin dikdortgen kesit yliksekligi (%), genel takim diizlemi
icinde kalacak sekilde varsayilacaktir. Bunlardan Sekil 3.8(a)’da resmedilen TI-tip
nanocgerceve uzunluklar esit iki diisey ve bir yatay liyeden olusan portal cerceveyi, Sekil
3.8(b)’de resmedilen A-tip nanogergeve uzunluklart ve egim agilar1 esit iki iiyeli bent-
kiris yapisin1 ve Sekil 3.8(c)’de resmedilen I'-tip nanogergeve esit uzunluklu biri egimli
ve digeri yatay elemanli nanogerceveyi tanitmaktadir. II-Tip nanogercevenin diisey
iiyelerinin, A-tip nanocgercevenin iki iiyesinin ve I'-tip nanogercevenin sadece egimli
ilyesinin ayaklarimin ankastre mesnetli olacagi ve sadece I'-tip nanogergevenin yatay
iiyesinin birlesimsiz ucunun (sag ucunun) su yedi farkli mesnetlenmeye sahip olacagi
varsayilacaktir: T'1: Bos (Mesnetsiz), I'2: Sabit, I'3: Ankastre, I'4: Diiseyde kayici, I'S:
Yatayda kayici, I'6: Diiseyde kilavuz, I'7: Yatayda kilavuz. Kayicinin kilavuzdan farkina
gore, kayicilar donme hareketi yaparken yani yar1 sabit mesnet gibiyken kilavuzlar donme
hareketi yapmazlar yani yar1 ankastre mesnet gibidirler.
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Sekil 3.8. Sayisal uygulamalar i¢in kayma deformasyonlu fonksiyonel derecelendirilmis
nanogerceve yapilari ve sonlu eleman modelleri; @) IT-Tip; b) A-Tip; ¢) [-Tip
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4. BULGULAR VE TARTISMA

Kayma deformasyonuna sahip fonksiyonel derecelendirilmis nanoyapilarin kiris,
eksenel ¢ubuk ve cergeve modellerinin serbest titresim analizleri igin yerel olmayan
elastisite teorisi ¢ercevesinde gelistirilen analitik ¢6ziim ve sonlu eleman formiilasyonu
kullanilarak elde edilen s6z konusu analiz sonuglar1 ve bunlarin analizlere etki eden
parametrelere gore tartigsmalar: bu boliimde sunulmustur. Sonuglarin elde edilmesi igin
analitik yontem ve yerel olmayan sonlu elemanlar formiilasyonu MATLAB'da
programlanmistir. Programlarin kosturulmasi neticesinde ilgili nanoyapinin boyutsuz
frekans parametreleri hesaplanmuistir.

4.1. Analizlerde Kullanilan Parametreler

e

Sayisal hesaplamalarda g6z Oniine alinan temel denklemler (boyutsuzlastirma
— 2 [PUA (—
(a)b)i:(a)b)il_ 25 (@) =

parametreleri) asagida verilmektedir:
) L vy
Byl TR,

(@), (o) 128 @1

>

burada titresim mod numarasi i olmak tizere; y, w, Ve wyifadeleri sirasiyla kiris, eksenel
cubuk ve gergeve yapisinin igin serbest titresim dogal frekanslarini ve @, @, ve @y
bunlarin boyutsuz formlarin ifade eder. L nanokiris ve eksenel nanogubuk uzunlugu ve
L; nanogergeve uzunluk parametresidir. Ayrica, fonksiyonel derecelendirilmis atomik
yapinin diger malzeme 6zellikleri asagidaki gibi ifade edilmektedir:

1

1 {GAvGU}:m{EA’EU}' (4.2)

burada # boyutsuz atomik parametreyi tanimlar. Sayisal hesaplamalarda, aksi
belirtilmedigi siirece, goz Oniine alinan malzeme, alt yiizeyi aliiminyum (Al) ve iist ylizeyi
aliimina seramik (Al,O5) olarak se¢ilmistir. Buna gore malzeme 6zellikleri su sekildedir:
Alt ylizey malzemesini “4” ve lst yilizey malzemesini “U” alt indisleri temsil etmek
suretiyle, fonksiyonel derecelendirilmis malzemenin elastisite modiilleri £, = 70 GPa ve
E; =380 GPa, Poisson orant sabit ve 0=0.3, kayma modilleri G,=
E /2(1 +v) =26.9231 GPa ve Gy= Ey/2(1 +v) =146.1538 GPa, birim hacim
agirliklart p, =2702 kg/m* ve p,=3960 kg/m’ (Aria ve Friswell 2019), termal
genlesme katsayilart ay = 231x107°K™! (Zenkour ve Abouelregal 2016) ve
oy = 6.8269x10 ¢ K ™! (Ebrahimi ve Salari 2015a) olarak verilmektedir. Boylece gii¢
indeksi p =0 alindiginda nanoyapi tamamen aliimina seramik ve p =oo alindiginda
nanoyap1 tamamen aliiminyum malzemesine doniismektedir. Ayrica, sayisal sonuglarda
homojen nanoyapi durumu p = 0 olarak kabul edilmistir.

Ek olarak, nanogubuk ve nanokiris yapisinin kapsaminda yer aldig elastik ortam
asagidaki sekilde formiile edilmektedir:
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Ky, L° L4 ke L2
U Eu

E,A’
burada eksenel nanogubuklar i¢in K, boyutsuz eksenel elastik ortam rijitligini belirtirken
nanokirisler i¢in Ky, boyutsuz Winkler elastik zemin rijitligini ve Kp boyutsuz Pasternak
elastik zemin rijitligini tanimlar. / egilme eksenine gore atalet momentini ve 4 eleman
enkesit alanini ifade eder.

M 4.3)

Ote yandan, nanogubuk ve nanokirislerin titresim analizlerinde yerel olmayan
sonlu elemanlar formiilasyonunun dogruluguna dair tartismalarda kullanilacak olan
sapma (hata) ytizdelert,

_ ONLFEM — @Analitik

D- x100% (4.4)
2]

@ Analitik
denklemi ile hesaplanmustir.

Aksi belirtilmedigi siirece, kiris geometrik boyutlari, uzunluk: L =20 nm,
dikdortgen kesit yiiksekligi # = 1 nm ve kalinlig1 » = 2 nm olarak alinmistir. Dolayisiyla

kesit alan 4=hh=2nm? ve atalet momenti /= bh’/12 =0.1667 nm* seklinde
hesaplanmaktadir. Ek olarak dikdortgen kesit igin kayma diizeltme katsayist k= 5/6
olarak kullanilmigtir. Yerel olmayan boyutsuz parametre # =0 — 0.5 araligindaki
degerler olarak alinmis olup, sonuglarin tartisilmasini miimkiin oldugunca saglikli bir
sekilde gerceklestirebilmek adina boyutsuz yerel olmayan parametrenin biiyiikligii icin
tez kapsaminda bir standart da tanimlanmistir. Buna gore, # =0 (veya eya =0 nm)
durumunun klasik elastisite teorisini ifade ettigi de hatirlatilarak, 0 <# < 0.1 aralig1 “cok
disiik™, 0.1 < <0.2 araligr “diisiik”, 0.2 <5 <0.3 aralig1 “orta”, 0.3 <7 <0.4 aralig
“yiiksek” ve 0.4 <5 <0.5 aralig1 “¢ok yliksek” biiyiikliikte boyutsuz yerel olmayan
parametre olarak adlandirilmistir. Ayrica, ¢izelge ve sekil basliklarinda nanoyapinin
mekanik kinematigi ve malzeme homojenitesi acisindan ayni ifadeleri tekrarlamamak
icin nanoyap: kayma deformasyonlu homojen ise “KDH” ve kayma deformasyonlu
fonksiyonel derecelendirilmis ise “KDFD” kisaltmalar1 kullanilmistir.

Nanokiriglerin simnir sartlar1 i¢in, S: Basit mesnetli, C: Ankastre mesnetli, F:
Serbest ve G: Kilavuz mesnetli (Donmeyen diiseyde kayici) ug tiplerini sembolize
ederken eksenel nanogubuklar i¢in, C: Tutulu ve F: Serbest ug tiplerini tanimlar.

4.2. Sayisal Sonuclar ve Tartismalar

Ik olarak, kayma deformasyonlu fonksiyonel derecelendirilmis nanokirislerin
serbest titresim analiz sonuglar1 Cizelgeler 4.1-4.21 ve Sekiller 4.1-4.13 vasitasiyla
sunulmakta ve bunlarin tartismalar1 yapilmaktadir.
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Cizelge 4.1. Iki farkli smir sarth KDH nanokirislerin farkli boyutsuz yerel olmayan
parametre degerlerine gére boyutsuz frekanslarinin karsilastirilmasi

Sinir epa (nm) Aria ve Trabelssi vd. (2019) Bu Tez

Sart Friswell (2019) DQM MMS

S-S 0 9.8679 9.8679 9.8590 9.8679
0.5 9.6331 9.6331 9.6244 9.6331
1 9.4143 9.4143 9.4058 9.4143
15 9.2097 9.2097 9.2014 9.2097
2 9.0180 9.0180 9.0098 9.0180
2.5 8.8377 8.8377 8.8297 8.8377
3 8.6678 8.6678 8.6600 8.6678

C-C 0 - 22.3578 22.3578 22.3686
0.5 - 21.6995 21.6995 21.7092
1 - 21.0946 21.0946 21.1034
15 - 20.5364 20.5364 20.5444
2 - 20.0193 20.0193 20.0266
25 - 19.5385 19.5385 19.5453
3 - 19.0901 19.0901 19.0963

Oncelikle, analitik hesaplamalari dogrulamak adina kayma deformasyonlu
homojen nanokirislerin yerel olmayan serbest titresim boyutsuz frekanslarinin
karsilastirilmas: hakkinda bir ¢alisma Cizelge 4.1°de sunulmaktadir. Buna gore, yerel
olmayan parametrenin artisina karsilik iki ucu basit mesnetli (S-S) ve iki ucu ankastre
mesnetli (C-C) nanokirislerin temel mod boyutsuz frekans parametreleri tez kapsaminda
formiile edilen analitik yontem ile hesaplanmis olup, Aria ve Friswell (2019) tarafindan
sonlu elemanlar yontemi (FEM) ve Trabelssi vd. (2019) tarafindan diferansiyel kuadratiir
yontemi (DQM) ve ¢oklu olgek yontemi (MMS) kullanilarak elde edilen sonuglarla
karsilagtirilmaktadir. Nanokiris uzunlugu L =10nm ve kesit yiiksekligi 2= 0.1 nm
olarak alinmigtir. Sonuglar ¢izelge biitlinlinde genel olarak uyumlu olmakla beraber S-S
nanokirisleri i¢in elde edilen sonuglar Aria ve Friswell (2019) ve Trabelssi vd. (2019)’un
DQM sonuglari ile birebir ayni iken atomik parametre arttikca Trabelssi vd. (2019)’un
MMS sonuglarindan bir miktar uzaklagsmaktadir. Ek olarak, C-C nanokirisleri igin tezde
elde edilen sonuglarin karsilastirilmas: hakkinda da ayni ¢ikarim yapilabilir. Ancak
sonuglarin farkliliklar1 olduk¢a diisiiktiir. Neticede ilgili mukayesede goz Oniine alinan
caligma bir yaklasik yonteme dayanmaktadir. Bu ¢izelge icin yapilabilecek mekanik
acidan tartigmalar Cizelge 4.2’yi de kapsayacagindan ilgili tartigmalarin orada yapilmasi
tercih edilmistir. Netice olarak, analitik ¢6zlim i¢in formiilasyonun ilk olarak homojen
nanokirigler yoniinden dogru kuruldugu ve hesaplarin giivenilir oldugu anlagilmistir.
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Cizelge 4.2. Farkli smir sarth KDH nanokirislerin farkli boyutsuz yerel olmayan
parametre degerlerine gore ilk iic mod boyutsuz frekanslari

Siur Sart Mod n=0 7 =0.05 n=0.1 n=0.15 n=0.2
S-S 1 9.8281 9.7091 9.3763 8.8904 8.3218
2 38.8299 37.0448 32.8786 28.2576 24.1785
3 85.6619 77.4891 62.33850 49.4685 40.1454
C-F 1 3.5153 3.5190 3.5302 3.5494 3.5773
2 21.8674 21.5053 20.5025 19.0596 17.3973
3 60.3413 57.0775 49.7560 42.0919 35.7172
C-S 1 15.3428 15.1249 14.5218 13.6571 12.6677
2 49.0773 46.6106 40.9747 34.9036 29.6806
3 100.3422 90.1415 71.7554 56.5819 45.7881
Cc-C 1 22.2568 21.9139 20.9710 19.6331 18.1220
2 60.5026 57.19671 49.7762 41.9709 35.3954
3 116.1726 103.6136 81.5929 63.9312 51.5995
S-G 1 2.4648 2.4572 2.4349 2.3991 2.3515
2 21.9987 21.4123 19.8998 17.9639 16.0090
3 60.1281 55.9674 47.2871 38.9106 32.2906
C-G 1 5.5860 5.5645 5.5014 5.4008 5.2685
2 29.9119 29.0190 26.7533 23.9280 21.1530
3 72.6349 67.2226 56.2119 45.8996 37.9286

Altr farkli sinir sarth kayma deformasyonlu homojen nanokirislerin ilk ti¢ mod
boyutsuz frekanslar1 boyutsuz yerel olmayan parametrenin bes farkli degerine gore
Cizelge 4.2°de listelenmektedir. Bu cizelgede oldugu gibi izleyen cizelgelerde de
mekanik davranis ¢ogunlukla klasik elastisite ve ¢ok diisiik ve diisiik boyutsuz yerel
olmayan parametre durumlari altinda arastirilacaktir. Bu tezde mevzubahis her ne kadar
fonksiyonel derecelendirilmis nanokirisler de olsa, nanoyapinin mekanik davranisini
temelden anlayabilmek adina bu ¢izelgenin verilmesinde fayda goriilmiistiir. Sinir sartlar
ele alinmadan 6nce, atomik parametrenin boyutsuz frekanslar1 diisliren bir etmen oldugu,
boyutsuz yerel olmayan parametre arttikca bu dislisiin daha da fazla oldugu, bu
parametrenin etkisinin yiiksek modlarda yine daha fazla hesaplandig: bir ucu ankastre
mesnetli diger ucu serbest nanokiriglerin (C-F) temel modu hari¢ yani ¢izelgenin biiyiik
bir ¢ogunlugunda goézlemlenir. C-F nanokirisi i¢in bu durum bilimsel literatiirde yaygin
bilinen bir paradoksu isaret eder. Paradoksu agmak icin ¢esitli yaklagimlar literatiirde
yerini almistir ve bu durum Numanoglu (2019) tarafindan yazilan ve farkli egilme
kuramlarina dayanan homojen nanokirislerin dinamigi hakkinda sonuglar1 inceleyen
yiiksek lisans tez calismasinda da acgiklanmistir. Dahasi, bahsi edilen tez ¢aligmasinda
gelistirilen sonlu eleman ¢6ziimii sonuglarinin paradoksu ¢6zen bir yontemin sonuglariyla
biliylik uyuma sahip oldugu goézlemlenmistir. Tabi bu durumun incelenmesi su anki
tartismanin konusu olmayip yeri geldiginde kisaca ele alinacaktir. Sonug olarak boyutsuz
atomik parametrenin frekanslar diisiiren bir etmen olmasi, yerel olmayan elastisitenin
nanoyapinin mekanik zorlara kars1 tepki giiciinii azaltan bir mevcudiyet oldugunu gosterir
ve bodylece nanomekanik biliminde boyut etkisinin mutlaka diisiiniilmesi gerektigi
anlagilir.
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Ayrica siir sartlar hakkinda bir inceleme yapilacak olursa, ankastre mesnet en
rijit u¢ baglant1 tlirii oldugundan C-C nanokirislerinin boyutsuz frekanslar1 en yliksek
olarak hesaplanmaktadir. Dolayzisi ile bir ucu ankastre diger ucu basit mesnetli nanokirisin
(C-S) boyutsuz frekans parametreleri bir ara durum olarak géze ¢arpmaktadir. Ayrica,
basit mesnet kilavuz mesnetten daha rijit oldugundan iki ucu basit mesnetli nanokirisin
frekanslar1 kilavuz mesnetli kirislerden daha yiiksek olarak hesaplanmaktadir. Buna
benzer nedenle bir ucu ankastre diger ucu kilavuz mesnetli nanokirisin (C-G) boyutsuz
frekanslar1 bir ucu basit diger ucu kilavuz mesnetli nanokirislerden (S-G) daha fazla
olarak hesaplanmaktadir. Son olarak, bu ¢izelgeden ulasilabilecek baska bir 6nemli
sonucun atomik parametrenin daha rijit sistemlerde daha etkin oldugudur.

Cizelge 4.3. iki ucu basit mesnetli KDFD nanokirislerin farkl1 yerel olmayan parametre
ve glic indeksi degerlerine gore farkli kesit eksenleri gbz Oniline alinarak hesaplanan
boyutsuz frekanslarinin karsilastirilmasi

(eqa) Eksen Mod p=0.1 p=1 p=10
(nm?) Eltaher vd. Bu Tez Eltaher vd. Bu Tez Eltaher vd. Bu Tez
(2014b) (2014b) (2014b)
0 GE 1 11.7680 11.7680 15.9014 15.9014 17.6845 17.6845
2 44.8369 44.8369 60.8179 60.8179 67.8750 67.8751
3 94.1060 94.1060 128.2739  128.2739 143.8072  143.8072
TE 1 11.4468 11.4468 14,5787 14.5787 17.5542 17.5542
2 43.6782 43.6782 56.0022 56.0022 67.4009 67.4009
3 91.8552 91.8553 118.8006 ~ 118.8006 142.8763  142.8764
4 GE 1 9.9643 9.9643 13.4643 13.4643 14.9741 14.9741
2 27.9189 27.9189 37.8699 37.8699 42.2642 42.2642
3 44.1028 44.1028 60.1155 60.1155 67.3952 67.3952
TE 1 9.6924 9.6924 12.3443 12.3443 14.8637 14.8637
2 27.1974 27.1974 34.8713 34.8713 41.9690 41.9690
3 43.0479 43.0480 55.6759 55.6759 66.9590 66.9590

Cizelge 4.4. iki ucu ankastre mesnetli KDFD nanokirislerin farkli yerel olmayan
parametre ve gii¢ indeksi degerlerine gore farkli kesit eksenleri gz Oniine alinarak
hesaplanan boyutsuz frekanslarinin karsilastiritlmasi

(eqa)” Eksen Mod p=0.1 p=1 p=10
(nm?) Eltaher vd. Bu Tez Eltaher vd. Bu Tez Eltaher vd. Bu Tez
(2014b) (2014b) (2014b)
0 GE 1 25.3233 26.5733 34.3946 35.9182 38.4204 39.9570
2 64.6011 69.4364 88.2648 94.2442 99.1291 105.2386
3 116.2792  126.8513 159.7296  173.0111 180.2945  194.0581
TE 1 24.6965 25.8514 31.7561 32.9425 38.1596 39.6637
2 63.1663 67.6621 82.1099 86.8503 98.5206 104.5106
3 113.9596  123.8620 149.6266 ~ 160.3731 179.2979  192.8161
4 GE 1 20.7676 21.3738 28.1890 28.9280 31.4736 32.2194
2 38.5758 39.6062 52.6183 53.8913 59.0173 60.3186
3 53.3385 54.4295 73.1033 74.4698 82.3624 83.7780
TE 1 20.2439 20.8035 25.9957 26.5704 31.2571 31.9872
2 37.6759 38.6313 48.8033 49.8066 58.6416 59.9169
3 52.1953 53.2113 68.1948 69.2869 81.8805 83.2697
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Kayma deformasyonlu fonksiyonel derecelendirilmis nanokirislerin farkli atomik
parametre ve fonksiyonel derecelendirilme gii¢ indeksi (izleyen tartigsmalarda sadece gii¢
indeksi olarak anilacaktir) degerlerine gore ilk iic mod boyutsuz frekanslarinin Eltaher
vd. (2014b) ile karsilastirilmast S-S nanokirisleri i¢in Cizelge 4.3°te ve C-C nanokirisleri
icin Cizelge 4.4’te verilmektedir. Teorik altyapida da aktarildig1 iizere fonksiyonel
derecelendirilmis bir nanokirisin malzeme tarafsiz merkezi ile geometrik merkezi
birbirinden farklidir. Fonksiyonel derecelendirilmis malzeme rijitligi ve Kkiitle
ataletlerinde integrasyon hesab1 esnasinda malzeme ekseninin varlig1 kiigiik deplasman
yaklasimi nedeniyle (Eltaher vd. 2013b) ortaya ¢ikar. Buna gére, malzeme merkezi
hesapta mutlaka dikkate alinmalidir ve Cizelge 4.3’te geometrik eksen (GE) ve malzeme
tarafsiz ekseni (TE) goz Oniine alinarak elde edilen boyutsuz frekanslar1 ayri ayri
gosterilir. Oncelikle, mukayese igin dikkate alinan Eltaher vd. (2014b)’nin calismasinda
malzemenin elastisite modiilleri £, =70 GPa ve E; =393 GPa, kayma modiilleri

G,=26GPa ve G;=157GPa ve birim hacim agirliklar p,=2700 kg/m? ve
py = 3960 kg/m? olarak verilmistir. Yazarlar tarafindan nanokirisin geometrik
ebatlariin sayisal degerleri belirtilmese bile, yazarlarin kendi mukayeselerindeki
referans calismalar incelendiginde, hesaplarda uzunlugun L =10nm ve yiiksekligin
h =1 nm olarak alindig1 sonucuna varilmistir. Sonuglara gore, genel olarak gii¢ indeksi
arttikga boyutsuz frekanslar artmaktadir. Fakat bu, izleyen ¢izelgelere gore aksi bir
durumdur. Bunun sebebi, yazarlarin boyutsuz frekans hesabinda Denklem (4.1)’de
tanimlanan boyutsuz frekans parametresinde kullanilan {ist yiizeyin aksine dogrudan
belirtmeseler bile alt yilizeyin malzeme 6zelliklerini kullandiklarinin anlagiimasidir. Bu
nedenle mukayeseler bu ¢ikarima gore yapilmistir. Sayisal verilerin incelenmesine
gelince, S-S nanokirisi i¢in sonuglar referans ile birebir uyumlu iken C-C nanokirisinde
sonuclar bir miktar farklidir ancak farklilik temel modda oldukca diisiikken yiiksek
modlarda farklilik artis gostermektedir. Farkliligin siddeti yerel olmayan elastisite ile
hesapta genel olarak olduke¢a diisiiktiir. Bu ¢ikarim tezdeki hesaplarin en azindan
giivenilirligini gostermek i¢in yeterlidir. Son olarak, malzeme tarafsiz ekseninin goz
Oniine alinmasiyla hesaplanan frekanslar geometrik eksenin géz oniine alindig1 duruma
gore dusiiktiir ve bu c¢ikarim kayma deformasyonlu fonksiyonel derecelendirilmis
nanokirislerin gergek titresim davranisini 6grenmek igin tarafsiz eksenin ihmal
edilemeyecegini agikga ortaya koymaktadir. Bu konuda genel tartismalar Cizelgeler 4.6-
4.8 ile verilecek olup, su asamada tartismanin kalabaliklastirilmamasi tercih edilmistir.

Cizelge 4.5. Farkli smir sartlh KDFD nanokirislerin farkli boyutsuz yerel olmayan
parametre ve gii¢ indeksi degerlerine gére temel mod boyutsuz frekanslari

p Sinur Sart n=0 7 =0.05 n=0.1 n=20.15 n=0.2

2 S-S 6.9059 6.8222 6.5884 6.2470 5.8474
C-F 2.4690 24717 2.4796 2.4931 2.5127
C-S 10.7814 10.6283 10.2047 9.5973 8.9023
C-C 15.6401 15.3996 14.7380 13.7989 12.7380
S-G 1.7315 1.7262 1.7106 1.6854 1.6519
C-G 3.9243 3.9092 3.8649 3.7942 3.7014

10 S-S 6.3745 6.2973 6.0815 5.7663 5.3975
C-F 2.2815 2.2839 2.2911 2.3036 2.3216
C-S 9.9503 9.8087 9.4172 8.8559 8.2137
C-C 14.4335 14.2103 13.5968 12.7267 11.7446
S-G 1.5995 1.5946 1.5801 1.5568 1.5259
C-G 3.6248 3.6108 3.5698 3.5045 3.4186
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Kayma deformasyonlu fonksiyonel derecelendirilmis nanokiriglerin farkli
boyutsuz yerel olmayan parametre ve giic indeksi degerleri altinda hesaplanan temel mod
boyutsuz frekans parametreleri Cizelge 4.5’te sunulmaktadir. Buna gore p = 0 durumunu
aciklayan Cizelge 4.2’deki temel mod boyutsuz frekans sonuclar1 dikkate alindiginda,
giic indeksinin artis1 ile boyutsuz frekanslarin azalmasi ilk ¢ikarim olarak goze
carpmaktadir. Ayrica, gii¢ indeksi artisinin frekanslar diisiirme orani genel olarak biitiin
sinir sartla i¢in birbirine yakindir ancak daha rijit nanokirislerin frekanslar1 sayisal olarak

(fark olarak) daha fazla azalmaktadir.

Cizelge 4.6. iki ucu basit mesnetli KDFD nanokirislerin farkli boyutsuz yerel olmayan
parametre ve giic indeksi degerlerine gore geometrik eksen gz Oniine alinarak

hesaplanan ilk bes mod boyutsuz frekanslar1

n Mod p=0.01 p=0.1 p=1 p=2 p=10
0 1 9.7908 9.4901 8.2458 7.9064 6.8272
2 38.6835 37.5030 32.5781 31.2012 26.8889
3 85.3425 82.7634 71.8700 68.7095 59.0349
4 147.8392 143.4262 124.4941 118.7548 101.6538
5 223.9662 217.3741 188.5889 179.4477 152.9736
0.1 1 9.3407 9.0539 7.8667 7.5430 6.5133
2 32.7546 31.7550 27.5850 26.4191 22.7677
3 62.1061 60.2292 52.3017 50.0018 42.9613
4 92.0560 89.3082 77.5196 73.9459 63.2975
5 120.2764 116.7362 101.2778 96.3687 82.1513
0.2 1 8.2902 8.0356 6.9820 6.6946 5.7808
2 24.0873 23.3523 20.2857 19.4283 16.7431
3 39.9958 38.7871 33.6818 32.2007 27.6667
4 54.6558 53.0244 46.0252 43.9034 37.5812
5 67.9322 65.9327 57.2018 54.4291 46.3991

Cizelge 4.7. iki ucu basit mesnetli KDFD nanokirislerin farkli boyutsuz yerel olmayan
parametre ve gii¢c indeksi degerlerine gore tarafsiz eksen géz oniine alinarak hesaplanan

ilk bes mod boyutsuz frekanslar

7 Mod p=0.01 p=0.1 p=1 p=2 p=10
0 1 9.7906 9.4690 7.5688 6.9059 6.3745
2 38.6826 37.4211 29.9405 27.3075 25.1364
3 85.3405 82.5873 66.1789 60.3228 55.2899
4 147.8358 143.1312 114.9170 104.6714 95.4279
5 223.9614 216.9447 174.5687 158.8772 143.9841
0.1 1 9.3405 9.0337 7.2208 6.5884 6.0815
2 32.7538 31.6856 25.3516 23.1222 21.2838
3 62.1046 60.1010 48.1602 43.8986 40.2360
4 92.0540 89.1245 71.5562 65.1765 59.4208
5 120.2738 116.5056  93.7485 85.3217 77.3237
0.2 1 8.2900 8.0178 6.4087 5.8474 5.3975
2 24.0868 23.3012 18.6433 17.0038 15.6518
3 39.9948 38.7045 31.0147 28.2703 25.9116
4 54.6546 52.9153 42.4846 38.6968 35.2795
5 67.9307 65.8025 52.9492 48.1898 43.6725

111



BULGULAR VE TARTISMA H.M. NUMANOGLU

Cizelge 4.8. iki ucu basit mesnetli KDFD nanokirislerin farkli boyutsuz yerel olmayan
parametre ve gii¢c indeksi degerlerine gore tarafsiz eksen gdz Oniine alinarak hesaplanan
ilk bes mod boyutsuz frekanslarmin geometrik eksen goz oOniine alinarak hesaplanan
boyutsuz frekanslardan sapma yiizdeleri

n Mod p=0.01 p=0.1 p=1 p=2 p=10
0 1 0.0020 0.2223 8.2102 12.6543 6.6308
2 0.0023 0.2184 8.0962 12.4793 6.5176
3 0.0023 0.2128 7.9186 12.2060 6.3437
4 0.0023 0.2057 7.6928 11.8592 6.1246
5 0.0021 0.1975 7.4343 11.4632 5.8765
0.1 1 0.0021 0.2231 8.2106 12.6554 6.6295
2 0.0024 0.2185 8.0964 12.4792 6.5176
3 0.0024 0.2129 7.9185 12.2060 6.3436
4 0.0022 0.2057 7.6928 11.8592 6.1246
5 0.0022 0.1975 7.4343 11.4633 5.8765
0.2 1 0.0024 0.2215 8.2111 12.6550 6.6306
2 0.0021 0.2188 8.0963 12.4792 6.5179
3 0.0025 0.2130 7.9185 12.2059 6.3437
4 0.0022 0.2058 7.6927 11.8592 6.1246
5 0.0022 0.1975 7.4344 11.4632 5.8764

Iki ucu basit mesnetli ve KDFD nanokirislerin ilk bes mod boyutsuz frekans
parametreleri, farkli boyutsuz yerel olmayan parametre ve gii¢c indeksi degerlerine gore
geometrik eksen diistiniilerek Cizelge 4.6’da ve tarafsiz eksen diistiniilerek Cizelge 4.7°de
sunulmakta olup, bunlarin arasindaki sapma ylizdelerini gosteren sonucglar da Cizelge
4.8°de verilmektedir. Buna goére sapma yiizdeleri su sekilde hesaplanmaktadir:

= DCE " WTE L 100% (4.5)

D3
®GE

E

burada wgg Ve oty sirayla geometrik ve tarafsiz eksenler g6z oniine alinarak hesaplanan
boyutsuz frekans parametreleridir. Tartigmalar sapma yiizdeleri gbz Oniine alinarak
yapilmaktadir. Buna gore, sapma yilizdesinin gii¢ indeksinin p =0.01-2 araligindaki
degerleri icin siirekli arttig1, bu araliktan sonra p = 10 degeri i¢in azaldig1 anlasilmistir.
Ayrica yiiksek modlarda sapma yiizdeleri daha diisiiktiir. Yerel olmayan parametrenin
sapma yiizdeleri iizerinde bir etkisi olmadig1 da varilan bagka bir ¢ikarimdir. Sonuglar
genel olarak fonksiyonel derecelendirilmis nanoyapilarda tarafsiz eksenin g6z Oniine
alinmasi gerektigini bir kez daha ifade etmektedir.
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Cizelge 4.9. Cift parametreli elastik zemine oturan iki ucu basit mesnetli KDFD
nanokiriglerin farkli boyutsuz elastik zemin parametresi, boyutsuz yerel olmayan
parametre ve gii¢ indeksi degerlerine gore temel mod boyutsuz frekanslari

Ky Kp n p=0 p=001 p=0.1 p=1 p=2 p=10
0 0 0 9.8281 9.7906 9.4690 7.5688 6.9059 6.3745
0.1 9.3763 9.3405 9.0337 7.2208 6.5884 6.0815
0.2 8.3218 8.2900 8.0178 6.4087 5.8474 5.3975

1 0 10.3171 10.2828 9.9903 8.3063 7.7577 13.1380

0.1 9.8876 9.8552 9.5787 7.9905 7.4765 12.9739

0.2 8.8939 8.8659 8.6271 7.2649 6.8326 12.6138

10 0 13.9674 13.9521 13.8235 13.2047 13.1380 13.3821

0.1 13.6533 13.6401 13.5290 13.0084 12.9739 13.2450

0.2 12.9518 12.9434 12.8729 12.5757 12.6138 12.9452

1 0 0 9.8788 9.8416 9.5232 7.6467 6.9969 6.4836
0.1 9.4294 9.3939 9.0904 7.3025 6.6837 6.1957
0.2 8.3815 8.3502 8.0816 6.5006 5.9547 5.5259
1 0 10.3653 10.3314 10.0416 8.3774 7.8389 7.4754
0.1 9.9379 9.9059 9.6322 8.0644 7.5607 7.2271
0.2 8.9499 8.9222 8.6865 7.3461 6.9246 6.6619
10 0 14.0031 13.9880 13.8606 13.2495 13.1861 13.4344
0.1 13.6898 13.6767 13.5670 13.0539 13.0226 13.2978
0.2 12.9902 12.9820 12.9127 12.6228 12.6639 12.9993

100 0 0 14.0139 13.9988 13.8719 13.2631 13.2007 13.4502
0.1 13.7008 13.6878 13.5785 13.0677 13.0374 13.3139

0.2 13.0019 12.9937 12.9248 12.6371 12.6791 13.0157

1 0 14.3610 14.3474 14.2328 13.6974 13.6656 13.9554

0.1 14.0557 14.0441 13.9470 13.5082 13.5080 13.8240

0.2 13.3753 13.3685 13.3114 13.0921 13.1625 13.5371

10 0 17.1722 17.1690 17.1422 17.1169 17.2967 17.8705

0.1 16.9177 16.9164 16.9057 16.9659 17.1724 17.7681

0.2 16.3568 16.3598 16.3853 16.6365 16.9019 17.5457

Cizelge 4.9’da iki ucu basit mesnetli KDFD nanokirislerin yerel olmayan
boyutsuz frekanslar1 ilizerinde ¢ift parametreli elastik zemin etkisi listelenmektedir.
Oncelikle elastik zemin parametrelerinin boyutsuz frekans degerlerini yiikseltmekte
oldugu rahatlikla ifade edilebilir. Ayrica, elastik zemin parametrelerinin frekanslar
yiikselten etkisi yiiksek gilic indeksine sahip nanokirislerde daha fazladir. Cizelgenin en
iistlinde yer alan ve elastik zemine oturmayan nanokirisleri ilgilendiren sonuglardan genel
olarak boyutsuz yerel olmayan parametrenin frekans indirgeme etkisinin elastik zemin
parametreleri arttikga azaldigi sonucuna varilir. Son olarak, Pasternak zeminin boyutsuz
frekanslar tizerindeki etkisinin Winkler zeminine gore daha yiiksek oldugu da ¢izelgedeki
neticelerden anlagilabilir.
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Cizelge 4.10. iki ucu basit mesnetli KDFD nanokirislerin farkli ortam sicaklik degisimi,
boyutsuz yerel olmayan parametre ve gii¢ indeksi degerlerine gore temel mod boyutsuz
frekanslarinin karsilastirtlmasi (L = 10 nm, 2 = 0.5 nm)

(coa)? p AT=10K AT=30K
(nm?) Ebrahimi ve Bu Tez Ebrahimi ve Bu Tez
Salari (2015b) Salari (2015b)

0 0.2 7.7964 7.7812 7.6211 7.4997
1 5.7717 5.7264 5.6105 5.4622
5 4.6925 4.5906 4.5363 4.3427

2 0.2 7.0932 7.0860 6.8996 6.7757
1 5.2445 5.2098 5.0654 49179
5 4.2593 4.1734 4.0852 3.8990

4 0.2 6.5427 6.5423 6.6319 6.2048
1 4.8313 4.8054 4.6354 4.4873
5 3.9193 3.8465 3.7283 3.5469

Sicaklik degisimi etkisi altindaki iki ucu basit mesnetli KDFD nanokirislerin
farkli ortam sicaklig1 degerlerine gore temel mod boyutsuz frekanslarit Ebrahimi ve Salari
(2015b) tarafindan verilen sonuglar ile Cizelge 4.10’da karsilastirilmaktadir. Referansta
KDFD nanokirisin alt ve iist yilizeyi sirasiyla paslanmaz ¢elik (SUS304) ve silisyum nitrit
(SizN4) olarak segilmistir ve bunlarin elastisite modiilleri £, =201.04 GPa ve
E;;=348.43 GPa, Poisson oranlar1 v, = 0.3262 ve v, = 0.24 (bdylece kayma modiilleri
G,= E /2(1 +vy) =75.7955 GPa ve Gy= Ey/2(1 +oy) =140.4960 GPa), birim
hacim agirliklar1 p , = 8166 kg/ m’ ve p y = 2370 kg/ m? ve termal genlesme katsayilart

0,=1233x107°K™! ve ay;=5.8723x10"°K™! olarak verilmektedir. Referans
caligmada kiris kinematigi olarak her ne kadar Timoshenko kiris teorisi gozetilse de
sicaklik degisimi bu tezden farkli olarak Touloukian (1967) tarafindan formiile edilen
ortam sicakliginin lineer olmayan bir fonksiyonuna ve Kiani ve Eslami (2013) tarafindan
belirtilen ve p=1 i¢in klasik karisim kuralina uyan bir lineer sicaklik dagilimina
dayanmaktadir. Bu nedenle mukayese edilen sonuglar arasinda bir farklilik olusacaktir.
Sonuglar genel olarak degerlendirildiginde farkliligin diisiik bir diizeyde oldugu
belirtilebilir. Ancak atomik parametre ve sicaklik degisiminin artis1 ile farklilik
yiikselmektedir.

Cizelge 4.11°de Winkler zeminine oturan iki ucu basit mesnetli KDFD nanokiris
sicakligl degisimi ve gii¢ indeksinin etkisi verilmektedir. Elastik zeminin ihmal edildigi
sonuclara gore ortam sicakliginin nanokirisin frekanslarini diistirdiigii, sicaklik arttikca
frekanslardaki diisiis oraninin daha fazla oldugu ve sicaklik yiikseldikce yerel olmayan
parametrenin frekanslar1 daha fazla diistirdiigii tespit edilmistir. Ayrica, yiiksek sicaklik
degisimi degerlerinde gii¢ indeksi degisiminin frekanslarin azalmasi lizerindeki etkisi
daha biiyiiktiir. Dahasi, AT =100 K sicaklik degisimi i¢in p =1 ve daha biiyiik giic
indeksi degerlerine sahip nanokirislerin diisiik boyutsuz atomik parametre durumunda
boyutsuz frekanslar1 yoktur yani nanokiris temel modda titresim hareketi
gosterememistir. Bu sonuclarin fonksiyonel derecelendirilmis nanoyapilarin dis ¢cevreyle
etkilesimi agisindan dikkat cekici oldugu belirtilebilir. Ote yandan, boyutsuz elastik
zemin parametresi arttikga boyutsuz atomik parametre ve giic indeksine ek olarak
sicakligin da frekanslarin azalmasi tizerindeki etkisi azalmistir.
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Cizelge 4.11. Winkler zeminine oturan ve sicaklik etkisi altindaki iki ucu basit mesnetli
KDFD nanokirislerin farkli boyutsuz elastik zemin parametresi, ortam sicaklik degisimi,
boyutsuz yerel olmayan parametre ve gii¢ indeksi degerlerine gore temel mod boyutsuz
frekanslari

Ky AT (K) 7 p=0 p=001 p=0.1 p=1 p=2 p=10
0 25 0 9.4085 9.3614 8.9673 6.8111 6.1134 5.6764
01  8.9355 8.8896 8.5063 6.4223 5.7523 5.3452

0.2  7.8218 7.7785 7.4185 5.4934 4.8862 4.5520

50 0 8.9693 8.9116 8.4357 5.9580 5.2015 4.8794

01  8.4719 8.4146 7.9440 5.5092 4.7720 4.4899

0.2  7.2876 7.2308 6.7663 4.3912 3.6820 3.5082

100 0 8.0191 7.9358 7.2567 3.7025 2.5339 2.6426

0.1  7.4585 7.3734 6.6787 2.9262 1.4617 1.8257

0.2  6.0800 5.9872 5.2232 0.0000 0.0000 0.0000

1 25 0 9.4614 9.4147 9.0244 6.8977 6.2160 5.7987
0.1 8.9912 8.9457 8.5665 6.5140 5.8613 5.4749

0.2 7.8854 7.8426 7.4874 5.6003 5.0140 4.7035

50 0 9.0248 8.9676 8.4964 6.0567 5.3218 5.0211

0.1 8.5306 8.4739 8.0084 5.6158 4.9028 4.6434

0.2 7.3558 7.2997 6.8418 4.5243 3.8500 3.7028

100 0 8.0811 7.9986 7.3272 3.8594 2.7724 2.8959

0.1 7.5251 7.4409 6.7552 3.1223 1.8445 2.1762

0.2 6.1615 6.0702 5.3206 0.0000 0.0000 0.0000

100 25 0 13.7229 13.7021 13.5344 12.8459 12.8039 13.1338
0.1 13.4030 13.3842 13.2335 12.6440 12.6355 12.9941

0.2 12.6877 12.6735 12.5619 12.1984 12.2655 12.6884

50 0 13.4256 13.3988 13.1882 12.4146 12.3945 12.8095

0.1 13.0985 13.0736 12.8792 12.2056 12.2204 12.6662

0.2 12.3656 12.3449 12.1881 11.7434 11.8374 12.3524

100 0 12.8103 12.7707 12.4670 11.5036 11.5320 12.1350

0.1 12.4670 12.4290 12.1397 11.2777 11.3447 11.9836

0.2 11.6946 11.6601 11.4039 10.7758 10.9311 11.6515

Cizelge 4.12. Iki ucu basit mesnetli KDFD nanokirislerin yerel olmayan serbest titresimi
icin farkli boyutsuz yerel olmayan parametre ve gii¢ indeksi degerlerine gore ilk bes mod
kritik sicakliklari (K)

n Mod p=0.01 p=0.1 p=1 p=2 p=10

0 1 291.5488 242.3125 131.4576 115.5574 120.7524
2 1144.3703  951.5334 517.4914  454.8068 472.5420
3 2496.9508 2077.6548 1134.3730  996.6401 1026.1556
4 4258.6834 3546.8073  1946.4906 1709.4203  1739.3872
5 6323.8743 52724620 2911.1522 2555.2928  2564.3705

0.1 1 265.3589 220.5456 119.6487 105.1769 109.9052
2 820.4640 682.2083 371.0190 326.0768 338.7922
3 1322.3523  1100.2987  600.7490 527.8075 543.4385
4 1651.2050 1375.1917  754.7063 662.7878 674.4068
5 1823.8081 1520.5803  839.5776 736.9476 739.5656

0.2 1 209.0279 173.7276 94.2494 82.8497 86.5743
2 443.7028 368.9348 200.6452 176.3407 183.2171
3 548.4119 456.3208 249.1453 218.8947 225.3772
4 582.0619 484.7652 266.0395 233.6376 237.7334
5 581.7943 485.0648 267.8250 235.0861 235.9212
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Cizelge 4.12’de iki ucu basit mesnetli KDFD nanokirislerin yerel olmayan serbest
titresiminin ilk bes modu icin kritik sicaklik degerleri hesaplanmaktadir. Kati
mekaniginde temel olarak bilinmektedir ki ortam sicakliginin artis1 yapinin mekanik
dayanimini diigiirdiiginden yapinin titresim frekanslar1 azalir. Benzer sekilde yapinin
burkulma yiikii degerleri de azalirken yapacagi deformasyonlar yiikselir. Bu tez ¢aligsmasi
da dahil olmak {izere, nanokiris yapilarinda yerel olmayan parametrenin varlig1 altinda
ayn1 sicaklik degisimi i¢in klasik elastisite teorisine kiyasla ¢ok daha diisiik bir dogal
frekans elde edilir (Pradhan ve Mandal 2013; Ebrahimi ve Salari 2015a, 2015b; Ebrahimi
ve Barati 2016; Demir ve Civalek 2017; Numanoglu 2019, 2020; Numanoglu vd. 2021;
Numanoglu vd. 2022). Klasik kiris titresiminde oldugu gibi yerel olmayan kiris titresim
analizinde de sicaklik degisiminin dyle bir degeri vardir ki, o deger altinda dogal frekans
sifira esittir. Iste bu deger kritik sicaklik degisimini ifade eder. Kritik degerden itibaren
daha yiiksek sicaklik degisimleri i¢in dogal frekanslar reel say1 olmaktan ¢ikar, reel kismi
sifira esit ve imajiner kismi sifirdan farkli bir kompleks say1 olarak hesaplanir. Sicaklik
degisimi yiikseldik¢e imajiner kisim artar ancak tabii ki de reel say1 olmayan frekanslarin
mekanik bir anlami yoktur. Hatirlanacak olursa fonksiyonel derecelendirilmis
Timoshenko nanokirislerinin i. modunun dogal frekanslari su sekilde hesaplanir:

\/—CZ +,Jc-4cC, @6

2C,

a)i:

burada C,, C, ve C; Denklemler (3.105) ve (3.106) ile belirlenmektedir. Buna gére dogal
frekansin sifira esit olmasi i¢in

CC,=0 (4.7)
esitligi gerceklesmelidir. Boylece
C,=0 velveya C, =0. (4.8)

durumlarina ulagilir. Burada C; =0 durumu hem dogal frekansi tanimsiz hale
getireceginden hem de Denklem (3.106) nedeniyle sifira esit olamayacak olan kiitle
ataletlerini igerdiginden uygun degildir. O halde geriye kalan C;=0 durumu
incelenmelidir. Buna gére Denklem (3.106)’da goriilen ifadeler C; =0 denkleminde

yerine yazildiktan sonra buradan i. modun kritik sicaklik degisimi asagidaki sekilde elde
edilebilir:

6 4 2
H,e;” +H,o" +Hye" +H,

AT, ). =
(AT, )' H.a’ +H' +H,0

(4.9)

burada iki ucu basit mesnetli KDFD nanokiris i¢in asagidaki tanimlar gegerlidir:
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2
e,a) k,B 1 2 2
le%, H2:{1+E(kp+(eoa) kW)}B+(e0a) Ko,
2
B ea) DB
H3=k“l/(v_s+(eoa)2kw+kp’H4:kW’H5=(O )kS ! !
B i
H6=(E+(eoa)2]DT, H, =D, ai:%' (4.10)

Cizelge 4.12°deki degerler hesaplanirken elastik zemin ihmal edilmektedir.
Sonuglarin incelenmesine gelince, oncelikle yliksek modlarda daha yiiksek bir kritik
sicaklik degisimi elde edilir. Boyutsuz yerel olmayan parametrenin kritik sicaklik
degisimlerini disiirmekte oldugu da anlasilmistir. Ek olarak, boyutsuz yerel olmayan
parametre, yiiksek modlarin kritik sicaklik degisimini daha fazla etkilemektedir. Ote
yandan, gii¢ indeksi yiikseldikge, kritik sicaklik degisimi degerlerinin azaldig1 sonucuna
varilir. Sonug olarak yiiksek gili¢ indeksine sahip fonksiyonel derecelendirilmis yerel
olmayan nanokirislerin sicaklia karsi dayanimlari homojen nanokirislere gére daha
diisiiktiir ve yerel olmayan parametre arttik¢a bu dayanim daha da diiger.

Cizelge 4.13. iki ucu basit mesnetli KDFD nanokirislerin farkli boyutsuz yerel olmayan
parametre ve gii¢c indeksi degerlerine gore yerel olmayan sonlu elemanlar
formiilasyonuyla hesaplanan temel mod boyutsuz frekanslarinin karsilastirilmasi

(eoa)2 p Rahmani ve Ebrahimi ve Uzun Bu Tez Bu Tez (NL-FEM)
(10%xnm?) Pedram (2014) Salari (2015b) (2023) (Analitik) n=15 »n=10 n=5
0 1 6.9917 6.99174004 6.99172  6.9917 6.9917 6.9918 6.9925
5 5.9389 5.93894397 593893  5.9389 59390 5.9390 5.9396
2 1  6.3895 6.38950303 6.38949  6.3895 6.3895 6.3895 6.3902
5 54274 5.42739007 5.42738  5.4274 5.4274 54274 5.4280
4 1 5.9201 5.92013713 592012 5.9201 5.9201 5.9202 5.9208
5 5.0287 5.02869994 5.02869  5.0287 5.0287 5.0287 5.0292

Yerel olmayan KDFD nanokiriglerin serbest titresim analizi i¢in tez kapsaminda
gelistirilen yerel olmayan sonlu elemanlar formiilasyonunun (NL-FEM) uygulamalar
Cizelgeler 4.13-4.21 ile sunulmaktadir. Ilk olarak iki ucu basit mesnetli nanokirislerin
temel mod boyutsuz frekanslari i¢in yerel olmayan parametrenin ve gii¢ indeksinin farkl
degerlerine gore ii¢ farkli referans baz alinarak bir karsilastirma calismasi Cizelge 4.13
ile verilmektedir. Ilgili referanslardan Rahmani ve Pedram (2014) diisiiniilerek,
fonksiyonel derecelendirilmis malzemenin 6zellikleri, alt ve {ist ylizey malzemesi sirayla
celik ve aliimina oksit olmak {izere, bunlarin elastisite modiilleri £, =210 GPa ve
E; =390 GPa, Poisson oranlar1 v, = 0.30 ve v;; = 0.24 (boylece kayma modilleri G, =
E /2(1 +vy) =80.7692 GPa ve Gy = E;/2(1 +vy) =157.2581 GPa), birim hacim
agirhiklart p , = 7800 kg/m? ve Py =3960 kg/m? ve kayma deformasyonlu nanokirisin
boyutlari, uzunluk Z = 10000 nm, kalinlik » = 1000 nm ve yiikseklik 2 =200 nm olarak
secilmistir. Oncelikle, tez kapsaminda yapilan analitik hesaplamalarinin yazarlarla birebir
ayni oldugu, ozellikle n = 15 adet eleman igin yerel olmayan sonlu eleman sonuglarinin
oldukca yiiksek bir yakinsakliga sahip oldugu neticesine varilir. Yalniz bu noktada 6nemli
bir hususa deginilmelidir. Tez kapsaminda elde edilen sonuglarda fonksiyonel
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derecelendirilmis malzemenin tarafsiz ekseni dikkate alinmistir. Ancak, Rahmani ve
Pedram (2014) ve Ebrahimi ve Salari (2015b)’de sunulan teorik altyapmin dikkatlice
incelenmesine ragmen, titresim analizinin kesitin geometrik eksenine gore aciklandigi,
tarafsiz eksen ve bunun fonksiyonel derecelendirilmis malzemeye etkisinden
bahsedilmedigi gdzlemlenmektedir. Ote yandan Uzun (2023) tarafindan gergeklestirilen
caligmada malzeme tarafsiz ekseni goz Oniinde bulundurulmustur. Yerel olmayan sonlu
elemanlar formiilasyonunun KDFD nanokirislerin titresim analizindeki basarisi
hakkindaki detayli tartigmalarin izleyen ¢izelgelere konu olmasi tercih edilmistir.

Cizelge 4.14. iki ucu basit mesnetli KDFD nanokirislerin farkli boyutsuz yerel olmayan
parametre ve giic indeksi degerlerine gore yerel olmayan sonlu elemanlar
formiilasyonuyla hesaplanan ilk bes mod boyutsuz frekanslarinin karsilastirilmasi

p Mod #=0 7n=0.2
Analitik NL-FEM Sonuglari Analitik ~ NL-FEM Sonuglari
n=15 n=10 n=>5 n=15 n=10 n=>5
0.1 1 9.4690 9.4691 9.4691 9.4701 8.0178 8.0178 8.0178 8.0186
2 37.4211  37.4219  37.4251  37.4830 23.3012 233017 23.3037  23.3383
3 82.5873 825961  82.6314  83.2408 38.7045  38.7084  38.7238  38.9806
4 143.1312 143.1792 143.3680 146.3995 529153 529311  52.9922  53.9108
5 216.9447 217.1206 217.7986 240.6699 65.8025  65.8469  66.0139  71.4699
1 1 7.5688 7.5688 7.5688 7.5696 6.4087 6.4087 6.4088 6.4094
2 29.9405  29.9412  29.9438  29.9901 18.6433  18.6437  18.6452  18.6730
3 66.1789  66.1860 66.2142  66.7028 31.0147  31.0178  31.0302  31.2369
4 1149170 114.9556 115.1072 117.5430 424846  42.4974 425468  43.2906
5 1745687 174.7102 175.2560 193.6701 52,9492 529854  53.1215  57.5737
2 1 6.9059 6.9059 6.9059 6.9066 5.8474 5.8474 5.8475 5.8480
2 27.3075 273081  27.3104  27.3527 17.0038  17.0041  17.0055  17.0308
3 60.3228  60.3293  60.3551  60.8003 28.2703  28.2732  28.2844  28.4725
4 104.6714 104.7065 104.8446 107.0630 38.6968  38.7084  38.7533  39.4287
5 158.8772 159.0061 159.5030 176.2663 48.1898  48.2226  48.3459  52.3785

Iki ucu basit mesnetli KDFD nanokirislerin ilk bes mod boyutsuz frekanslarinin
karsilagtirilmalart Cizelge 4.14’te belirtilmektedir. Buna gore, ilk olarak sonlu eleman
sayisinin artigi ile elde edilen boyutsuz frekanslarin analitik sonuglara oldukca yakin
oldugu anlasilmaktadir. Yakinsaklik yiiksek modlarda daha fazladir. Ayrica, sonlu
elemanlar formiilasyonunun kullaniminda, yerel olmayan elastisite (7 = 0.2) igin elde
edilen sonuglarin klasik elastisiteye (7 = 0) kiyasla analitik sonuglara daha yakin sonuglar
verdigi goézlemlenir ve bilimsel literatiirde konuyla ilgili caligmalardan da bu ¢ikarim
yapilabilmektedir (Pradhan 2012; Demir ve Civalek 2013; Numanoglu 2019; Numanoglu
ve Civalek 2019a, 2020, 2022; Numanoglu vd. 2021; Numanoglu vd. 2022). Sonug olarak
atomik Olcekli kiriglerin yerel olmayan serbest titresim analizi i¢in sonlu eleman
yaklagiminin kullanim1 6nemli bir fayda ortaya koymaktadir. Ayrica, sonuglardaki
sapmanin daha da diisiiriilmesi yiiksek sayida sonlu eleman kullanimi ile miimkiin
olmaktadir ancak belirtilmelidir ki tez kapsaminda nanokirigler ig¢in gelistirilen yerel
olmayan sonlu elemanlar formiilasyonuna dayali program kodlarinin ¢alisma siireleri,
ozellikle 15 elemanda sonra oldukca yiikselmektedir. Bunun nedeninin Denklem
(3.243)’te de goriildiigi iizere, kayma deformasyonlu kiris teorisinden kaynaklanan ve
yiiksek mertebeden kiitleleri teskil eden bilesenlere bagli olarak frekansin dordiincii
mertebesini iceren bir O6zdeger probleminin ¢oziilmekte olmasi diistiniilmektedir.
Numanoglu (2019) tarafindan yapilan c¢alismada yiiksek mertebeden kiitle ihmal
edildiginden ¢ok yiiksek sayida sonlu eleman i¢in kayma deformasyonlu homojen
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nanokirislerin frekanslari elde edilebilmis ve sonuglarda genel olarak problemli bir durum
tespit edilmemistir. Cizelge 4.14’te listelenen sonuglar bir biitiin olarak degerlendirilecek
olursa, yerel olmayan sonlu elemanlar formiilasyonu ile serbest titresim analizi igin ¢ok
yiiksek modlar arastirilmadigi siirece 15 eleman kullaniminin gayet basarili oldugu ifade
edilebilir. Bu nedenle yerel olmayan sonlu eleman analizleri genel olarak 15 elemanla
yiiriitiilmiis olup izleyen c¢izelgeler cogunlukla bu bilgiyle sunulmaktadir.

Cizelge 4.15. Cift parametreli elastik zemine oturan ve sicaklik etkisi altindaki iki ucu
basit mesnetli KDFD nanokirislerin farkli termo-elastik ortam parametreleri, boyutsuz
yerel olmayan parametre ve giic indeksi degerlerine gore yerel olmayan sonlu elemanlar
formiilasyonuyla hesaplanan ilk {i¢ mod boyutsuz frekanslari (n = 15)

n p Mod Ky=1K,=0 Ky =100, Kp=0 Ky =100, Kp = 10
AT=0K AT=100K AT=0K AT=100K AT=0K AT=100K
0 01 1 95232  7.3272 13.8719  12.4670 17.1422  16.0266
2 37.4355  35.4154 38.7631  36.8159 436573  41.9380
3 82.6022  80.5906 83.2071  81.2104 88.4492  86.5735
11 7.6467  3.8594 13.2631  11.5036 17.1169  15.7928
2 29.9609  26.9152 31.8490  29.0023 38.4677  36.1460
3 66.1948  63.2113 67.0623  64.1192 743950  71.7533
2 1 6.9969  2.7724 13.2006 115320 17.2967  16.0594
2 27.3311  24.1460 295201  26.5985 36.9825  34.6951
3 60.3396  57.2342 61.3517  58.3003 69.7792  67.1121
02 01 1 8.0816  5.3176 12.9248  11.4025 16.3834  15.2133
2 23.3236  19.8938 253998  22.2918 32.3491  30.0053
3 38.7215  34.1260 39.9955  35.5651 49.8647  46.5247
11 6.5006  0.0000 12,6371  10.7706 16.6344  15.2696
2 18.6753  13.1054 215748  16.9841 30.4714  27.5027
3 31.0367  23.5276 32.8463  25.8679 45.8419  41.5001
2 1 5.9547  0.0000 12,6791  10.9212 16.8995  15.6319
2 17.0410  10.9178 20.3678  15.6086 30.1389  27.3042
3 28.2951  19.7464 30.3937  22.6486 44.8543  40.6649

Termo-elastik ¢cevrede yer alan iki ucu basit mesnetli KDFD nanokiriglerin ilk ii¢
mod boyutsuz frekanslar1 yerel olmayan sonlu elemanlar formiilasyonu ile hesaplanmis
olup bunlar Cizelge 4.15’te verilmektedir. Buradaki sonuglardan sadece temel mod
boyutsuz frekanslarinin mukayesesi i¢in Cizelgeler 4.9 ve 4.11°deki 1ilgili kisimlar
incelenebilir. Elastik zeminin goz oniine alindigi ve ortam sicakligi degisiminin ihmal
edildigi analizlerde 15 eleman kullanimui ile analitik sonuglarla birebir ayni1 degerler elde
edilmistir. Buna ek olarak, sicaklik degisimi altinda klasik titresim sonuglar1 da analitik
sonuglarla birebir ayni iken yerel olmayan titresim sonuglarinin analitik neticelerin bir
miktar altina diistiigli belirtilebilir. Tabi hesaplamalarda g6z oniine alinan fonksiyonel
derecelendirilmis malzemenin termal genlesme katsayilariin yliksek degerlere sahip
olmasi ve segilen sicaklik degisiminin yiiksek bir deger olmasi nedenleriyle, yerel
olmayan sonlu elemanlar formiilasyonunun olusturdugu analitik degerlerin altinda
sonugtan dogan miktar olarak olduk¢a az bir sapma ihmal edilebilir diizeydedir. Boyutsuz
elastik zemin parametrelerinin K, = 1 ve Kp = 0 degerleri i¢in AT = 100 K degerinde bir
sicaklik degisimi altinda yiiksek gii¢c indeksine sahip nanokirislerin temel mod boyutsuz
frekanslarinin bulunmadig: da tartismaya eklenebilir.
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Cizelge 4.16. Farkli smir sarth KDFD nanokirislerin farkli boyutsuz yerel olmayan
parametre degerlerine gore yerel olmayan sonlu elemanlar formiilasyonuyla hesaplanan
ilk ti¢ mod boyutsuz frekanslarinin karsilastiriimasi (p = 2)

Smir g 1. Mod 2. Mod 3. Mod

Sart n=15 n=10 n=>5 n=15 n=10 n=>5 n=15 n=10 n=>5

S-S 0 6.9058 6.9059 6.9066 27.3081 27.3104 27.3527 60.3292 60.3551 60.8003
0.1 6.5884 6.5884  6.5891 23.1226 23.1246 23.1598 439031 43.9211 44.2259
0.2 5.8474  5.8475 5.8480 17.0041 17.0055 17.0308 28.2731 28.2844 28.4725

C-F O 2.4653 2.4653 2.4653 15.2822 15.2825 15.2895 42.0725 42.0806 42.2147
0.1 2.4098 2.4098 2.4098 13.2938 13.2941 13.2986 31.8672 31.8720 31.9509
0.2 2.2620 2.2620  2.2620 10.1497 10.1499 10.1526 215651 215683 21.6228

CS 0 10.7814 10.7815 10.7842 345186 34.5232 34.6082 70.6807 70.7221 71.4200
0.1 10.2047 10.2048 10.2074 28.8232 28.8273 28.8974 50.5576 50.5870 51.0538
0.2 89023 8.9025  8.9047 20.8815 20.8846 20.9383 32.2675 32.2872 32.5921

cC O 15.6402 15.6407 15.6487 425591 425680 42.7258 81.8463 81.9108 82.9390
0.1 147381 14.7384 14.7461 35.0252 35.0329 35.1613 57.5195 57.5661 58.2184
0.2 127381 12.7386 12.7462 249142 249206 25.0236 36.3903 36.4234 36.8722

S-G 0 17315 1.7315 1.7316 154633 15.4633 15.4714 423137 423137 424782
0.1 17106 1.7106  1.7106 13.9880 13.9883 13.9883 33.2771 33.2839 33.2839
0.2 16519 16519  1.6519 11.2531 11.2534 11.2534 22.7237 22.7282 22.7282
CG O 3.9242  3.9243  3.9244 21.0273 21.0283 21.0477 51.1223 51.1378 51.4093
0.1 3.8649 3.8649  3.8650 18.8082 18.8092 18.8266 39.5711 39.5832 39.7864
0.2 3.7013 3.7014  3.7014 14.8726 14.8734 14.8880 26.7048 26.7135 26.8561

Cizelge 4.16°da gli¢ indeksinin p = 2 degeri gdz oniline alinarak farkli sinir sartl
KDFD nanokirislerin ilk i¢ mod boyutsuz frekanslar1 yerel olmayan sonlu elemanlar
formiilasyonu ile hesaplanmistir. Buradaki degerlerden temel moda ait olanlar Cizelge
4.5’te verilen ilgili degerlerle mukayese edilebilir. Mukayeseler genel olarak yerel
olmayan sonlu eleman analizinin uygun neticeler verdigini gosterir. Yakinsaklik temel
modda yiiksek iken yiiksek modlarda azalir. Ayrica yerel olmayan parametre arttikca
sapmanin azaldigi gozlemlenmistir. Yeri gelmisken, C-F nanokirisinin yerel olmayan
elastisite i¢in bir paradoksa sahip oldugu bu noktada hatirlatilabilir. C-F nanokiriginin
temel modu igin yerel olmayan sonlu eleman sonuglarinin paradoksun aksine beklenen
bir davranisgi sergiledigi anlagilmistir. Numanoglu (2019) tarafindan yapilan ¢aligsmada,
kayma deformasyonsuz homojen C-F nanokiriglerinin yerel olmayan sonlu elemanlar
sonuglarmin, Challamel vd. (2014)’nin paradoksu ¢ozen bir yerel olmayan elastisite
yaklagimini kullanarak elde ettigi sonuglarla dogrulandigi, bu nedenle yerel olmayan
sonlu elemanlar sonuglarinin giivenilir neticeler verdiginden bir kez daha s6z edilebilir.

Ote yandan, yine bu alt1 farkli sinir sartli KDFD nanokirislerin temel, ikinci ve
iciinci mod boyutsuz yerel olmayan frekanslari lizerinde gii¢ indeksinin etkisi sirayla
Cizelgeler 4.17-4.19 ile ele alinmaktadir. Oncelikle, KDFD nanokirislerde gii¢ indeksinin
frekanslar1 diisirme orani hem klasik hem de yerel olmayan elastisitede genel olarak
aynidir. Gii¢ indeksi artis1 nedeniyle boyutsuz frekans azalmasi genelde C-C nanokirisleri
icin en fazla olarak hesaplanir. Benzer sekilde gii¢ indeksinin her degerinde yerel olmayan
parametre C-C nanokiriginin frekanslarin1 diger smir sartlara kiyasla daha fazla
indirgemektedir. Bu sonuglar atomik parametre ve fonksiyonel derecelendirilmenin en
fazla C-C nanokirisleri iizerinde etkili oldugunu gosterir. Nano-elektro-mekanik
sistemlerde iki ucu ankastre baglanti modellemesi bilinen bir uygulama oldugundan
(Maeashi vd. 2007; Lupan vd. 2007; Lassagne vd. 2008; Khaderbad vd. 2011; Chen vd.
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2011; Gutruf vd. 2015; Kambali vd. 2017; Numanoglu vd. 2018; Numanoglu ve Civalek
2019a; Cai ve Xu 2022; Abouelregal vd. 2023) bu sonug dikkat ¢ekicidir.

Cizelge 4.17. Farkli smir sarthh KDFD nanokirislerin farkli boyutsuz yerel olmayan

parametre ve gig¢

indeksi

degerlerine gore yerel
formiilasyonuyla hesaplanan temel mod boyutsuz frekanslari (n = 15)

olmayan

sonlu elemanlar

Sinir Sart n p=0.01 p=0.1 p=1 p=2 p=10
S-S 0 9.7906 9.4691 7.5688 6.9059 6.3745
0.1 9.3405 9.0337 7.2208 6.5884 6.0815
0.2 8.2900 8.0178 6.4087 5.8474 5.3975
C-F 0 3.4956 3.3807 2.7017 2.4653 2.2768
0.1 3.4169 3.3046 2.6409 2.4098 2.2255
0.2 3.2074 3.1019 2.4790 2.2620 2.0891
C-S 0 15.2843 14.7825 11.8165 10.7813 9.9503
0.1 14.4664 13.9916 11.1847 10.2047 9.4172
0.2 12.6194 12.2054 9.7574 8.9023 8.2138
Cc-C 0 22.1719 21.4442 17.1421 15.6402 14.4336
0.1 20.8911 20.2060 16.1540 14.7381 13.5969
0.2 18.0531 17.4619 13.9631 12.7381 11.7447
S-G 0 2.4554 2.3746 1.8976 1.7315 1.5995
0.1 2.4256 2.3458 1.8745 1.7106 1.5801
0.2 2.3425 2.2654 1.8103 1.6519 1.5259
C-G 0 5.5646 5.3815 4.3005 3.9242 3.6247
0.1 5.4804 5.3001 4.2355 3.8649 3.5698
0.2 5.2484 5.0758 4.0563 3.7013 3.4186

Cizelge 4.18. Farkli simir sarth KDFD nanokiriglerin farkli boyutsuz yerel olmayan

parametre ve gug

indeksi

degerlerine gore yerel

olmayan

sonlu elemanlar

formiilasyonuyla hesaplanan ikinci mod boyutsuz frekanslari (n = 15)

Sinir Sart 7 p=0.01 p=0.1 p=1 p=2 p=10
S-S 0 38.6834 37.4219 29.9412 27.3081 25.1369
0.1 32.7545 31.6863 25.3522 23.1226 21.2842
0.2 24.0872 23.3017 18.6436 17.0041 15.6522
C-F 0 21.6522 20.9449 16.7542 15.2822 14.0760
0.1 18.8372 18.2213 14.5735 13.2938 12.2495
0.2 14.3845 13.9135 11.1258 10.1497 9.3578
C-S 0 48.8928 47.2996 37.8484 34.5186 31.7646
0.1 40.8209 39.4920 31.6056 28.8233 26.5126
0.2 29.5694 28.6079 22.8987 20.8815 19.1988
Cc-C 0 60.2765 58.3135 46.6662 42.5591 39.1532
0.1 49.5908 47.9801 38.4111 35.0252 32.1882
0.2 35.2643 34.1219 27.3266 24.9142 22.872
S-G 0 21.9150 21.1974 16.9505 15.4633 14.2567
0.1 19.8241 19.1750 15.3332 13.9880 12.8965
0.2 15.9481 15.4259 12.3353 11.2531 10.3750
C-G 0 29.7983 28.8232 23.0503 21.0273 19.3820
0.1 26.6519 25.7802 20.6184 18.8082 17.3326
0.2 21.0728 20.3842 16.3048 14.8725 13.7011
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Cizelge 4.19. Farkli smir sarth KDFD nanokirislerin farkli boyutsuz yerel olmayan
parametre ve giic indeksi degerlerine gore yerel olmayan sonlu elemanlar
formiilasyonuyla hesaplanan ii¢iincli mod boyutsuz frekanslari (n = 15)

Sinir Sart n p=0.01 p=0.1 p=1 p=2 p=10
S-S 0 85.3497 82.5961 66.1859 60.3293 55.2959
0.1 62.1110 60.1072 48.1651 43.9031 40.2401
0.2 39.9988 38.7084 31.0178 28.2731 25.9142
C-F 0 59.5388 57.6134 46.1512 42.0725 38.5960
0.1 45.1127 43.6494 34.9506 31.8672 29.2704
0.2 30.5340 29.5421 23.6496 21.5651 19.8198
C-S 0 99.9808 96.7584 77.5460 70.6807 64.7583
0.1 71.4976 69.1982 55.4752 50.5576 46.2814
0.2 45.6242 44,1591 35.4088 32.2675 29.5217
c-C 0 115.7606 112.0329 89.7998 81.8463 74.9620
0.1 81.3059 78.7008 63.1268 57.5195 52.5778
0.2 51.4200 49.7776 39.9445 36.3903 33.2241
S-G 0 59.904 57.9603 46.4066 42.3137 38.8726
0.1 47.1110 45.5822 36.4959 33.2771 30.5709
0.2 32.1703 31.1263 24.9217 22.7237 20.8757
C-G 0 72.3665 70.0202 56.0697 51.1223 46.9483
0.1 56.0046 54.1917 43.4046 39.5711 36.3171
0.2 37.7891 36.5675 29.2941 26.7048 24.4959

Cizelge 4.20. Winkler zeminine oturan farkli sinir sarth KDFD nanokirislerin farkli
boyutsuz yerel olmayan parametre, boyutsuz elastik zemin parametresi ve gii¢ indeksi
degerlerine gore yerel olmayan sonlu elemanlar formiilasyonuyla hesaplanan temel mod
boyutsuz frekanslari (n = 15)

Sinir n p=0.1 p=1 p=10
Sart Ky=10 Kp=100 Ky=10 Ky=100 Ky=10 Kp=100
S-S 0 9.9970 13.8719 8.3156 13.2631 7.3934 13.4502
0.1 9.5857 13.5785 8.0001 13.0677 7.1423 13.3139
0.2 8.6349 12.9248 7.2756 12.6371 6.5697 13.0157
C-F 0 4.6601 10.6913 4.3790 11.2276 4.3850 12.0678
0.1 4.6052 10.6676 4.3417 11.2132 4.3587 12.0583
0.2 4.4621 10.6067 4.2452 11.1764 4.2907 12.0341
C-S 0 15.1260  17.9236 12.3081 16.0691 10.6316  15.4671
0.1 14.3540  17.2765 11.7027 15.6095 10.1343  15.1286
0.2 12.6190  15.8633 10.3469 14.6190 9.0265 14.4080
C-C 0 21.6824  23.7169 17.4845  20.3081 149114  18.6690
0.1 20.4584  22.6039 16.5166 19.4791 141026 ~ 18.0270
0.2 17.7530  20.1853 14.3806 17.7001 12.3259  16.6683
S-G 0 3.9133 10.4192 3.9348 11.0643 4.0756 11.9616
0.1 3.9743 10.4127 3.9237 11.0604 4.0680 11.9591
0.2 3.9274 10.3949 3.8935 11.0497 4.0473 11.9520
C-G 0 6.2651 11.4835 5.5113 11.7174 5.2143 12.3952
0.1 6.1953 11.4453 5.4607 11.6934 5.1762 12.3790
0.2 6.0043 11.3264 5.3228 11.6291 5.0729 12.3554
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Cizelge 4.20°de Winkler zemine oturan farkli sinir sarth KDFD nanokirislerin
zemin rijitliginin farkli boyutsuz degerlerine ve gii¢ indeksinin artigina gore temel mod
boyutsuz frekans parametreleri listelenmektedir. Temel mod sonuglarinin dogrulugu i¢in
Cizelge 4.9’a g6z atilabilir. Buna gore, yerel olmayan sonlu eleman sonuglarinin analitik
sonuglar ile birebir ayni elde edildigi anlasilir. Ayrica, buradaki degerler incelendiginde
sinir sartlarin tamaminda elastik zemin parametresi arttik¢a yerel olmayan parametre ve
giic indeksinin frekanslar iizerindeki etkilerinin azaldig1 sdylenebilir. Ozellikle gii¢

......

tizerinde daha fazla etkili oldugu gozlemlenir. Uglar1 ankastre veya basit gibi sinir
sartlarindan olusan nanokirislere kiyasla diisiik rijitlikli nanokirislerden olan C-F
nanokirisinin nanoteknolojideki uygulamalar1 (Drechsler 2003; Wojcikiewicz vd. 2004,
Li vd. 2007; Seo ve Jhe 2008; Kacem vd. 2010; Michels ve Rangelow 2014; Alsteens vd.
2017; Numanoglu vd. 2018; Setiono vd. 2019; Numanoglu ve Civalek 2019a; Civalek ve
Numanoglu 2020) gz 6niine alindiginda bu sonucun dikkat c¢ektigi belirtilmelidir.

Cizelge 4.21. Sicaklik etkisi altinda farkli sinir sartli KDFD nanokirislerin farkli boyutsuz
yerel olmayan parametre, ortam sicaklik degisimi ve gii¢c indeksi degerlerine gore yerel
olmayan sonlu elemanlar formiilasyonuyla hesaplanan temel mod boyutsuz frekanslari
(n=15)

Sinir n p=0.1 p=1 p=10
Sart AT=50K AT=100K AT=50K AT=100K AT=50K AT=100K
S-S 0 8.4357 7.2567 5.9580 3.7025 4.8794 2.6427
0.1 7.9440 6.6786 5.5092 2.9257 4.4898 1.8244
0.2 6.7659 5.2201 4.3899 0.0000 3.5050 0.0000
C-F 0 1.4757 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 1.3551 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.9927 0.0000 0.0000 0.0000 0.0000 0.0000
C-S 0 14.0277 13.2271 10.6773  9.3912 8.8981 7.6934
0.1 13.1222 12.1882 9.8654 8.3302 8.1971 6.7494
0.2 11.0330  9.7126 7.9437 5.5143 6.5235 0.5283
C-C 0 20.8890  20.3173 16.3160 15.4415 13.6696 12.8560
0.1 19.4627 18.6883 15.0427 13.8378 12.5677 11.4404
0.2 13.2367 14.8968 12.0969  9.7919 9.9977 3.3814
S-G 0 1.0031 0.0000 0.0000 0.0000 0.0000 0.0000
0.1 0.9330 0.0000 0.0000 0.0000 0.0000 0.0000
0.2 0.7069 0.0000 0.0000 0.0000 0.0000 0.0000
C-G 0 4.8095 4.1516 3.4059 2.1318 2.7931 1.5248
0.1 4.6750 3.9441 3.2509 1.7399 2.6528 1.0875
0.2 4.2952 3.3261 2.7948 0.0000 2.2343 0.0000

Sicaklik degisimi etkisindeki KDFD nanokirislerin atomik boyut etkili serbest
titresimi lizerinde yerel olmayan sonlu elemanlar formiilasyonunun uygulamalar1 Cizelge
4.21 ile ele alinmaktadir. Buradaki sonug¢lardan iki ucu basit mesnetli nanokirislerin temel
modu i¢in kiyaslamalar Cizelge 4.11°deki ilgili kisim baz alinarak yapilabilir. Genel
olarak klasik elastisite ve ¢ok diislik atomik parametre i¢in sonuglarin uyumlu oldugu,
ancak yiiksek sicaklik ve diisiik atomik parametre degeri icin sonuglarin analitik
neticelerin biraz altina indigi anlasilmistir. Bunlarin haricinde, sinir sartlar bakimindan
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rijitligi diisiik olan sistemlerin yerel olmayan parametre, ortam sicaklik degisimi veya gii¢
indeksi gibi parametrelerin degerlerinin yilikselmesi durumunda titresim hareketi
gosteremedigi de varilan bir diger sonugtur.

Buradan itibaren tez konusu olan kayma deformasyonlu fonksiyonel
derecelendirilmis nanoyapilarin boyutsuz frekans hesaplari i¢in ¢esitli grafiksel sonuglara
deginilecektir ama tartigmalara gegmeden dnce onemli bir bilgi verilmelidir. Grafiksel
sonuglar ¢ogunlukla gii¢ indeksinin artisin1 konu almaktadir. Ancak, gii¢ indeksinin
artistyla esasen glic indeksi p’nin kendisinin degil, 10 tabanindaki logaritmasi igin
secilmis logp = — 2, 2 degerleri ve bunlarin arasindaki artig1 géz oniline alinmaktadir.
Gili¢ indeksinin aritmetik artisinin yerel olmayan davranmisin dogru yorumlanmasini
zorlastirdig1 diisiiniilmektedir ¢ilinkii glic indeksinin ondalikl1 sayilarin farkli mertebeleri
arasindaki artiglarinin boyutsuz frekanslar tizerindeki etkileri farkli olmaktadir. Tabi
grafiksel sonuclardaki bu tercih homojen nanoyapilari barindiramaz ancak gii¢ indeksi
icin se¢ilen minimum deger olan p =0.01 degerinin sonuglar1 ¢ogunlukla homojen
nanoyapilarin sonuclarina olduk¢a yakin hesaplanmaktadir. Bu nedenle homojen
nanoyapilarin sonuglarinin ihmal edilmesinde bir sakinca bulunmadigi mutlaka
belirtilmelidir.
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Sekil 4.1. Iki ucu basit mesnetli KDFD nanokirislerin gii¢ indeksinin artigina gore
boyutsuz frekanslarinin degisimi; a) 1. Mod; b) 2. Mod; c¢) 3. Mod; d) 4. Mod
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Sekil 4.2. iki ucu ankastre mesnetli KDFD nanokirislerin gii¢ indeksinin artisina gore
boyutsuz frekanslarinin degisimi; a) 1. Mod; b) 2. Mod; c) 3. Mod; d) 4. Mod

Kayma deformasyonlu fonksiyonel derecelendirilmis nanokirislerin ilk dért mod
yerel olmayan boyutsuz frekanslarinin gii¢ indeksinin artigina gore degisimleri iki ucu
basit mesnetli nanokirisler i¢in Sekil 4.1 ve iki ucu ankastre mesnetli nanokirisler igin
Sekil 4.2 ile verilmektedir. Gii¢ indeksinin boyutsuz frekanslar1 siirekli olarak azalttig
ilk olarak gozlemlenmektedir. Hem klasik hem de yerel olmayan titresim durumunda,
genellikle gii¢ indeksinin p = 0.01 — 1 araliginda daha etkin oldugu ifade edilebilir. Yerel
olmayan parametre de frekanslarin diistisii konusunda bu aralikta daha hakimdir. Giig
indeksinin p=1—10 araliginda etkinligi olduk¢a azalsa bile p=10— 100 araligt
arasinda gii¢ indeksi frekanslar diisiisiinde biraz daha etkin olmaktadir. Ote yandan, gii¢
indeksinin frekanslar iizerindeki etkisi boyutsuz atomik parametre arttik¢a azalmaktadir.
Ek olarak, iki sinir sartta da boyutsuz frekanslarin gii¢ indeksi nedeniyle diisiis oranlari
yaklasik olarak ayni goriinmektedir. Sonuglar diistik gii¢ indeksine sahip nanoyapilarda
yerel olmayan elastisitenin daha etkin oldugunu vurgulamaktadir ancak gii¢ indeksinin
yiiksek degerlerinde de frekanslarin atomik parametre tarafindan kayda deger bir
seviyede azaldig1 kesinlikle goz ard1 edilemeyecek bir ¢cikarimdir.
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Sekil 4.3. Winkler zeminine oturan iki ucu basit mesnetli KDFD nanokirislerin boyutsuz
zemin rijitliginin artisina gore temel mod boyutsuz frekanslarinin degisimi; a) p = 0;

b)p=10

Iki ucu basit mesnetli kayma deformasyonlu nanokirislerin yerel olmayan temel
mod boyutsuz frekanslar: tizerinde Winkler zeminin etkisi Sekil 4.3 ile sunulmaktadir.
Burada homojen ve fonksiyonel derecelendirilmis nanokirisler ayr1 ayr1 ele alinmaktadir.
Winkler zemininin boyutsuz frekanslar1 artiran bir etmen oldugu anlasilmaktadir. Gerek
homojen, gerekse kompozit nanoyapilarda Winkler zemin parametresi arttik¢ca yerel
olmayan elastisitenin frekanslar lizerindeki etkisi azalmaktadir. Winkler zemininin yerel
olmayan KDFD nanokirisler tizerinde daha fazla bir etkiye sahip oldugu da sdylenebilir.
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Sekil 4.4. Sicaklik etkisi altindaki iki ucu basit mesnetli KDFD nanokirislerin ortam
sicakliginin artigina gore temel mod boyutsuz frekanslarinin degisimi; a) p = 0; b) p =10

Sekil 4.4’te, iki ucu basit mesnetli KDFD nanokirislerin ortam sicakliginin artist
altinda yerel olmayan temel mod boyutsuz frekanslarinin degisimleri gosterilmektedir.
Oncelikle, Sekil 4.4(a)’da resmedilen kilavuzdan da anlasilacagi iizere, boyutsuz
frekanslarin azaldiktan sonra yatay eksende degdigi sifir noktasinin kritik sicaklik oldugu,
kritik sicakliga kadarki boyutsuz frekanslarin reel ve kritik sicakliktan sonraki boyutsuz
frekanslarin kompleks say1r olarak hesaplandigi, kompleks sayr olarak hesaplanan
boyutsuz frekanslarin reel kisminin olmadigi mutlaka ifade edilmelidir. Elbette kompleks
say1 olarak hesaplanan boyutsuz frekanslarin fiziksel bir anlam1 bulunmamaktadir ancak
bunlar en azindan yerel olmayan parametre ve gii¢c indeksinin etkinligi ag¢isindan kisaca
ele almacaktir. Ik olarak homojen nanokirislerde reel kismin tartisilmasina bakilacak
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olursa, ortam sicakligi arttikca boyutsuz frekanslarin daha fazla azaldigi agikca
gozlemlenmektedir. Dahasi, yerel olmayan parametrenin yiiksek sicakliklarda daha fazla
etkin oldugu, bu etkinligin yerel olmayan parametrenin artisiyla daha da belirginlestigi
kesinlikle ifade edilebilir. Orta degerli yerel olmayan parametreye kadar kritik sicaklik
esigi goriilmezken, bu seviyedeki yerel olmayan parametrelerden itibaren verilen
analizlerde atomik parametre arttikga diisen bir kritik sicaklik esigi mevcuttur. Kritik
sicaklik degerlerinden itibaren hesaplanan kompleks degerli boyutsuz frekanslara
gelince, atomik parametrenin bu bolgede artisina karsilik etkinliginin  azaldigi
anlasilmaktadir. Ote yandan, kayma deformasyonlu nanokirislerde klasik elastisite de
dahil olmak {iizere biitiin analizlerde kritik bir sicaklik esigi elde edilmekte, dahasi bu
kritik sicaklik esikleri homojen nanoyapiya gore daha da azalmaktadir. Tam da bu
noktada kritik sicakliklar hakkinda daha detayl bir tartismaya girilmektedir. Buna gore
Sekil 4.5’te iki ucu basit mesnetli KDFD nanokiriglerin yerel olmayan termal serbest
titresimi igin gii¢ indeksinin artisina karsilik kritik sicaklik esiklerinin degisimleri ilk iki
mod i¢in ¢izdirilmektedir. Buna gore, ilk olarak gii¢ indeksinin cogunlukla kritik sicaklik
esiklerini distirdiigii anlasilir ancak bu diisiis giic indeksinin yiizde birler mertebesi
kisminda stirekli olarak gézlemlenmektedir. Bu aralik sona erdikten sonra kritik sicaklik
esikleri yiiksek ve ¢ok yiiksek degerli boyutsuz yerel olmayan parametre hari¢ az da olsa
bir miktar yiikselmekte ve daha sonra yine azalmaktadir. Ote yandan, yerel olmayan
parametrenin kritik sicaklik esiklerini daha da azalttigi mutlaka sdylenmelidir. Yerel
olmayan parametrenin gii¢ indeksi diisitk KDFD nanokirislerin kritik sicakliklarin1 daha
fazla azalttig1 goriilmektedir. Son olarak, yiiksek modda kritik sicaklik degerlerinin arttig1
ve yerel olmayan parametrenin bu modda daha etkin oldugu da eklenebilir.

Iki ucu basit mesnetli KDFD nanokirislerin gii¢ indeksinin artis1 altinda boyutsuz
frekanslarinin dikdortgensel kesitin farkli eksenlerine gore degerlerinin sapma yiizdeleri
iki farkli mod sayis1 i¢in Sekil 4.6’da sunulmaktadir. Burada boyutsuz frekanslarin ilgili
sapma yiizdesiyle kastedilen tanim Denklem (4.5) ile verilmekte olup, bununla 1lgili baz1
cizelge sonuglar da sunularak tartisilmisti. Hatirlatilacak olursa, sapma ylizdesi geometrik
eksen baz alinarak hesaplanan boyutsuz frekanslarin tarafsiz eksen baz alinarak
hesaplanan boyutsuz frekanslardan yilizdesel olarak uzaklagsma miktarini ifade etmektedir.
Oncelikle, yerel olmayan boyutsuz parametrenin sapma yiizdelerini hicbir sekilde
degistirmedigi muhakkak belirtilmelidir. Gii¢ indeksinin yiizde birler mertebesinde
sapma yiizdeleri oldukc¢a diisiik iken onda birler mertebesinde sapma ytizdelerinin giderek
yiikseldigi ve onlar mertebesindeki aralikta sapmanin en yiiksek degerine ulastigi
gozlemlenir. Yani bu deger araliginda fonksiyonel derecelendirilmis nanoyapida tarafsiz
eksenin onemi ¢ok biiyiiktiir ve tarafsiz eksen yerel olmayan titresim analizinde mutlaka
g6z oOnline alinmalidir. Gli¢ indeksinin onlar mertebesinden itibaren sapma yiizdeleri
giderek azalir. Ayrica, sapma ylizdeleri yiiksek modda genel olarak azalmistir. Bir
titresim analizinde ilk gozlemlenecek olan temel mod oOncelikli olarak dneme sahip
oldugundan, burada elde edilen sonuglarin yerel olmayan davranis icin dikkat c¢ektigi
ifade edilebilir.
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Sekil 4.5. iki ucu basit mesnetli KDFD nanokirislerin gii¢ indeksinin artisina gdre temel
mod kritik sicakliklarinin degisimi; a) 1. Mod; b) 2. Mod
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Sekil 4.6. iki ucu basit mesnetli KDFD nanokirislerin gii¢ indeksinin artisina gore tarafsiz
eksen gbz Oniine alinarak hesaplanan frekanslarinin geometrik eksen géz oniine alinarak
hesaplanan frekanslardan sapma yiizdelerinin degisimi; a) 1. Mod; b) 5. Mod

KDFD nanokirislerin yerel olmayan serbest titresim analizleri buradan itibaren
daha kapsamli gerceklestirileceginden, ilgili analizlerin yerel olmayan sonlu elemanlar
metodu ile hesaplanmasi tercih edilmistir. Yerel olmayan sonlu elemanlar
formiilasyonunun uygulamalari hakkinda Cizelgeler 4.13 ve 4.14’teki analizlerde 10
sonlu elemanin gayet yeter dogrulukta sonuclar verdigi disiiniilerek, KDFD
nanokirislerin buradan itibaren yapilan analizlerinde 10 sonlu eleman kullanilmaistir.
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Sekil 4.7. Iki ucu basit mesnetli KDFD nanokirislerin gii¢ indeksi ve boyutsuz atomik
parametre degerlerinin artigina gore ilk dort boyutsuz frekanslarinin degisimi

Iki ucu basit mesnetli KDFD nanokirislerin ilk dért mod boyutsuz frekanslarinin
degisimleri lizerinde gii¢ indeksinin ve boyutsuz atomik parametrenin artigini inceleyen
yiizeyler Sekil 4.7 ile tasvir edilmektedir. Gii¢ indeksinin atomik parametrenin diistik
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degerlerinde ve yiiksek modlarda frekanslarin diismesi i¢in daha biiyiik bir etkiye sahip
oldugu gozlemlenmektedir. Tabi diisiik giic indeksi degerlerinde frekanslarin daha fazla
azaldig1 yine anlasilmaktadir.
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Sekil 4.8. Iki ucu basit mesnetli KDFD nanokirislerin gii¢ indeksi ve uzunluk/yiikseklik
orani degerlerinin artigina gore boyutsuz frekanslarinin degisimi; a) 1. Mod; b) 2. Mod
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Sekil 4.9. Iki ucu ankastre mesnetli KDFD nanokirislerin giic indeksi ve
uzunluk/yiikseklik oran1 degerlerinin artigina gore boyutsuz frekanslarmin degisimi; a) 1.
Mod; b) 2. Mod

Iki ucu basit ve iki ucu ankastre mesnetli KDFD nanokirislerin gii¢ indeksi
uzunluk/yiikseklik oran1 (veya “narinlik oran1” olarak da zikredilebilir) parametrelerinin
artisina gore ilk iki mod boyutsuz frekanslarmin degisimleri sirayla Sekiller 4.8 ve 4.9 ile
verilmektedir. Oncelikle analizlerde dikdortgen kesit yiiksekliginin sabit ve 4 =1nm
alindig1 bildirilmektedir. Dolayis1 ile nanokiris dis karakteristik uzunlugu degiskenlik
gostermekte, klasige ek olarak secilmis iki farkli i¢ karakteristik uzunluk degeri goz
Ontine alinarak boyutsuz frekans degisim yiizeyleri elde edilmektedir. Buna gore, narinlik
orani arttik¢a frekanslar yiikselmektedir. Bilindigi iizere, dinamik analizde kayma
deformasyonlu kiris teorilerinin kayma deformasyonsuz teorilerle arasindaki en belirgin
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ayrim kisa nanokirislerde gézlemlenir. Ayrica, kayma deformasyonsuz nanokirislerin
boyutsuz frekanslari, narinlik oranindan etkilenmez. Nanokiris uzunlugu arttikca
boyutsuz frekanslar yiikselir ve bu yiikselme sonucunda boyutsuz frekanslar kayma
deformasyonsuz kiris teorisi ile elde edilen boyutsuz frekans degerlerine yakinsar
(Numanoglu 2019; Numanoglu vd. 2022). Kiigiik uzunluklu kirislerin yerel olmayan
boyutsuz frekans yiizeyleri arasindaki farkliliklar dikkate alindiginda, kayma
deformasyonunun yerel olmayan nanokiriglerin mekanik davranisi i¢in olduk¢a énemli
oldugu anlagilir. Ote yandan, gii¢ indeksinin de diisiik uzunluklu nanokirisler iizerinde
daha fazla etkili oldugu anlasilir ancak bu etki atomik uzunluk arttik¢a azalir.
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Sekil 4.10. Winkler zeminine oturan iki ucu basit mesnetli KDFD nanokirislerin gii¢

......

degisimi; a) 1. Mod; b) 2. Mod
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Sekiller 4.10 ve 4.11°de elastik zemine oturan sirayla iki ucu basit ve iki ucu
ankastre mesnetli KDFD nanokiriglerin boyutsuz frekanslar iizerinde gii¢ indeksi ve
boyutsuz Winkler zemini rijitliginin etkileri sunulmaktadir. Genel olarak gili¢ indeksi
yiikseldikge Winkler zemininin frekanslar tizerinde daha etkin oldugu goriiliir. Dahasi, bu
etki yerel olmayan parametrenin degeri yiikseldikce daha da artar. Ote yandan, Winkler
zemininin frekans ylikseltme etkisi iki ucu basit mesnetli KDFD nanokirisler i¢in iki ucu
ankastre mesnetliye gore daha fazladir.
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Sekil 4.12. Sicaklik etkisi altindaki iki ucu basit mesnetli KDFD nanokirislerin giig
indeksi ve ortam sicakligi degerlerinin artisina gére boyutsuz frekanslarinin degisimi,
a) 1. Mod; b) 2. Mod
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Sekil 4.13. Sicaklik etkisi altindaki iki ucu ankastre mesnetli KDFD nanokirislerin giig

indeksi ve ortam sicaklig1 degerlerinin artisina gore boyutsuz frekanslarinin degisimi;
a) 1. Mod; b) 2. Mod

Sicaklik etkisi altindaki iki ucu basit mesnetli ve iki ucu ankastre mesnetli KDFD
nanokirislerin gii¢c indeksi ve ortam sicaklig1 degisiminin artisina gore boyutsuz frekans
degisim yiizeyleri sirayla Sekiller 4.12 ve 4.13’te betimlenmektedir. Oncelikle, iki ucu
basit mesnetli KDFD nanokirisin temel modunda, gii¢ indeksinin secilmis arali§inin en
yiiksek kismi olan yiizler mertebesinde ve oldukga yiiksek ortam sicakligi degerlerinde
yerel olmayan bazi boyutsuz frekanslarin reel say1 olarak hesaplanmadigi, bunlarin
davranisinin imajiner degerler iizerinden verilmesinin grafikte karmasaya sebebiyet
verecegi diisiincesiyle bu durumlarin boyutsuz frekansi sifir olarak gosterilmistir.
Sicaklik etkisi, gli¢ indeksi yliksek nanokirislerde daha fazla olmaktadir ve bu etki yerel
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olmayan parametre arttik¢a siddetlenmektedir. Winkler zemininde oldugu gibi, ortam
sicakligr artist da iki ucu basit mesnetli KDFD nanokirislerin boyutsuz frekanslari
tizerinde iki ucu ankastre mesnetliye gore daha etkili olmaktadir.

Kayma deformasyonlu fonksiyonel derecelendirilmis eksenel nanogubuklarin
yerel olmayan serbest titresim davranisi hakkindaki arastirmalar Cizelgeler 4.22-4.37 ve
Sekiller 4.14-4.24 ve bunlarin tartigmalari ile yapilmaktadir.

Cizelge 4.22. Farkl1 sinir sartli KDH nanogubuklarin farkli narinlik orani degerlerine gore
ilk ti¢ mod boyutsuz frekans oranlar1 i¢in bir karsilastirma ¢alismasi (7 = 0.1)

Ty Mod C-F C-C
Livd. (2017) BuTez Livd. (2017) BuTez
0.01 1 0.9832 0.9832 0.9373 0.9373
2 0.8734 0.8734 0.8025 0.8025
3 0.7325 0.7325 0.6676 0.6676
0.1 1 0.9829 0.9829 0.9363 0.9363
2 0.8714 0.8714 0.7995 0.7995
3 0.7285 0.7285 0.6627 0.6627
0.3 1 0.9807 0.9807 0.9285 0.9285
2 0.8565 0.8565 0.7778 0.7778
3 0.7011 0.7011 0.6309 0.6309

Cizelge 4.22°de, Li vd. (2017) tarafindan Love-Bishop nanogubugunun boyut
etkili serbest titresim ve dalga yayinim analizi i¢in gelistirilen hibrit bir yerel olmayan
stireklilik teorisinin (yerel olmayan sekil degistirme degisimi elastisite teorisi) uygulama
sonuglar1 kapsaminda, yazarlarin nanogubugun geometrik parametrelerini kullanarak

tanimladiklari r, = /I p/ AL* = D/2\2L seklindeki bir narinlik oraninin degisimine gore

nanogubugun yerel olmayan boyutsuz frekans orani olarak tammlanan @;/y,
parametrelerinin karsilastirilmasi verilmistir. Burada D i¢i dolu daire kesitin ¢ap1 olmak
iizere Ip=nD"/32 veA=nD?/4 ifadeleri nanogubuk kesitinin sirayla polar atalet
momentini ve kesit alanin1 tanimlar. Yazarlar tarafindan frekans orani olarak tanimlanan
parametrede ise @, i. modun boyutsuz frekansi iken iki ucu tutulu gubuk igin y, = i ve
bir ucu tutulu diger ucu serbest gubuk igin y, =(2i — 1)x/2 olarak gz 6niine alinmustir.
Ayrica, yazarlar s6z konusu analizde boyut etkisini sadece yerel olmayan elastisite teorisi
ile #=0.1 olarak diisinmiiglerdir yani hibrit siireklilik teorisinden kaynaklanan diger
boyut Olgek parametresi ihmal edilmistir. Frekans oranimmin paydasinda yer alan y,
parametresi, sadece, bir tam say1 olan mod numarasindan etkilendiginden, dolayisiyla
yazarlara gore bir degisiklik gostermediginden ve cizelgenin genelinde elde edilen
sonuglar yazarlarla birebir ayn1 oldugundan tez kapsaminda elde edilen analitik frekans
hesabinin homojen nanogubuklar i¢in dogru oldugu neticesine varilir. Bu arada
nanogubuk kesitinin ¢api, nanogubuk uzunlugu L ve narinlik orani r,’ye bagli olarak
secilirse, nanocubuk uzunlugunun artisinin sonuglar1 degistirmedigi belirtilmelidir.
Ciinkii teorik altyapi aktarilirken agiklanan iki ucu tutulu nanogubuk i¢in R; =ix/L ve bir
ucu tutulu diger ucu serbest nanogubuk igin R; =(2i — 1)z/2L ¢arpanlar1 ayn1 oranda
azalsa bile buna karsilik olarak atalet momenti ve kesit alan ayni oranda artis
gostermektedir.
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Tabi sonuglarin mekanik anlamda da bir tartismasi yapilmalidir. Ancak burada
yerel olmayan parametrenin farkli degerleri analizde goézetilmediginden detayli bir
tartisma yapilamaz, sadece kayma deformasyonunun 6nemi vurgulanabilir. Buna gore
Ilgili narinlik oran1 parametresinin artisi, sabit dig karakteristik uzunluk igin kesit ¢apinin
artis1 veya sabit kesit ¢ap1 i¢in uzunlugun azalmasi anlamina gelmektedir. Bu belirtilen
iki durum nanoyapilarda zaten kayma deformasyonunu oOnemli hale getirmektedir.
Dolayist ile kesit yiiksekligi veya c¢apmin artist veya bunlar sabitken nanogubuk
uzunlugunun azalmasi frekanslari diigiiren bir faktordiir. Sonug¢ olarak cizelgede
frekanslarin  narinlik oranmnin artisi altinda azalmasi bu nedenledir. Kayma
deformasyonunun daha rijit sistemlerde daha fazla etkili oldugu da yerel olmayan
nanokirislerle ilgili tartismada ifade edilmisti. Buna paralel olarak narinlik orani iki ucu
tutulu kayma deformasyonlu nanogubuklarda daha etkili olmaktadir.

Tez konusuyla ilgili olarak bilimsel literatiir {izerinde yapilan arastirmalar
sonucunda, eksenel nanogubuklarin fonksiyonel derecelendirilmesini goz Oniine alan
caligmalarin ¢ogunlugunda fonksiyonel derecelendirilmenin eksenel yon olarak goz
oniine alindig1 (Simsek 2012; Nazemnezhad ve Kamali 2018b; Bahrami vd. 2019; Arda
2021; Arda vd. 2024), buna ek olarak Love-Bishop ¢ubugunun Mori-Tanaka karisim
kurali goz oniine alinarak fonksiyonel derecelendirildigi (Mohammadian ve Hosseini
2022) ve bunlarin haricinde eksenel ¢ubuklarin kesit yiiksekligi dogrultusunda klasik
karisim kuralina gore fonksiyonel derecelendirildigi ¢ok az sayida ¢alismanin (Arefi
2016; Arefi ve Zenkour 2017b; Uzun ve Yayli 2020) bulundugu anlagilmistir. Arefi
(2016) ve Arefi ve Zenkour (2017b) tarafindan verilen ¢aligmalar her ne kadar yap1
kinematigini Love-Bishop teorisine de dayandirsa da bu caligmalar esasen nanoyapinin
dalga yaymimi tizerinde manyetik, elektrik ve piezo gibi dis ¢cevresel olgularin etkilerini
konu edinmistir. Dolayisi ile, kesit kalinlig1 dogrultusunda klasik karisim kuralina gore
fonksiyonel derecelendirilmis malzemeden imal edilen nanocubuklarda kesme etkisi
hakkinda bu tez kapsaminda verilen biitlin sonug¢larin bilimsel literatiir i¢in bir yenilik
oldugu kesinlikle ifade edilmelidir.

Cizelge 4.23. Farkli siir sarth KDH nanogubuklarin farkli boyutsuz yerel olmayan
parametre degerlerine gore ilk bes mod boyutsuz frekanslari

Sinir Sart Mod =0 7 =0.05 n=0.1 n=0.15 n=0.2
C-F 1 1.5707 1.5630 1.5406 1.5053 1.4597
2 4.7094 4.5133 4.0457 3.5113 3.0272
3 7.8401 7.0230 5.5649 4.3719 3.5277
4 10.9576 9.0023 6.4055 4.7444 3.7139
5 14.0569 10.4951 6.8790 4.9253 3.7974
C-C 1 3.1407 3.0805 2.9188 2.6979 2.4589
2 6.2761 5.8330 4.9146 4.0350 3.3437
3 9.4008 8.0783 6.0470 4.5938 3.6407
4 12.5098 9.8039 6.6746 4.8497 3.7631
5 15.5983 11.0892 7.0363 4.9808 3.8218

Iki farkli smir sartl kayma deformasyonlu homojen nanogubuklarin bes farkli
boyutsuz yerel olmayan parametre altinda ilk bes mod boyutsuz frekanslar1 Cizelge
4.23’te gosterilmektedir. Oncelikle, daha rijit oldugundan her iki ucu tutulu (C-C)
nanogubuklarin boyutsuz frekanslarin bir ucu tutulu diger ucu serbest (C-F)
nanogubuklara gore daha yiiksek oldugu gozlemlenir. Atomik boyut etkili mekanik
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acisindan, nanokirislerde oldugu gibi nanocubuklarda da yerel olmayan parametrenin
frekanslar1 azalttigi ve bu azalmanin oransal olarak mod sayisinin yiikselmesiyle
yiikseldigi belirtilebilir. Dahasi, C-C nanogubugunun boyutsuz frekanslarmin C-F
nanoc¢ubuguna gore daha fazla azaldig1 gézlemlenmistir yani yerel olmayan parametre
yine daha rijit sistemlerin frekanslarinin azalmasinda daha fazla etkindir. Netice olarak
elde edilen degerler eksenel nanogubuklarin titresim davranisi {izerinde yerel olmayan
elastisitenin goz ardi edilemez bir gergek oldugunu gosterir. Tezin konusu geregi
nanogubuklar i¢in fonksiyonel derecelendirilme hali gozetileceginden homojen nanoyap1
hakkindaki bu sonuglar iizerinde tartismanin daha fazla genisletilmemesi tercih edilmistir.

Cizelge 4.24. Bir ucu tutulu diger ucu serbest KDFD nanogubuklarin farkli boyutsuz yerel
olmayan parametre ve gii¢c indeksi degerlerine gore ilk bes mod boyutsuz frekanslar

n Mod p=0.01 p=0.1 p=1 p=2 p=10
0 1 1.5668 1.5336 1.3178 1.1949 0.9467
2 4.6977 4.5983 3.9511 3.5825 2.8386
3 7.8207 7.6551 6.5778 5.9642 4.7257
4 10.9305 10.6991 9.1934 8.3359 6.6051
5 14.0221 13.7253 11.7937 10.6938 8.4739
0.1 1 1.5368 1.5042 1.2925 1.1719 0.9286
2 4.0356 3.9502 3.3943 3.0776 2.4385
3 5.5511 5.4336 4.6689 4.2334 3.3543
4 6.3897 6.2544 5.3742 4.8730 3.8612
5 6.8620 6.7167 5.7715 5.2333 4.1470
0.2 1 1.4561 1.4252 1.2247 1.1104 0.8798
2 3.0197 2.9558 2.5398 2.3029 1.8247
3 3.5189 3.4444 2.9597 2.6836 2.1264
4 3.7047 3.6262 3.1159 2.8253 2.2387
5 3.7880 3.7078 3.1860 2.8889 2.2892

Cizelge 4.25. iki ucu tutulu KDFD nanocubuklarin farkli boyutsuz yerel olmayan
parametre ve gii¢ indeksi degerlerine gore ilk bes mod boyutsuz frekanslar

n Mod p=0.01 p=0.1 p=1 p=2 p=10
0 1 3.1329 3.0666 2.6350 2.3892 1.8930
2 6.2605 6.1280 5.2656 4.7744 3.7829
3 9.3775 9.1790 7.8872 7.1515 5.6666
4 12.4789 12.2147 10.4957 9.5168 7.5410
5 15.5597 15.2303 13.0869 11.8665 9.4034
0.1 1 2.9115 2.8499 2.4488 2.2204 1.7593
2 4.9024 4.7987 4.1233 3.7387 2.9623
3 6.0321 5.9044 5.0734 4.6002 3.6450
4 6.6581 6.5171 5.6000 5.0777 4.0236
5 7.0189 6.8702 5.9034 5.3530 4.2419
0.2 1 2.4528 2.4009 2.0630 1.8705 1.4821
2 3.3354 3.2648 2.8053 2.5436 2.0154
3 3.6317 3.5548 3.0546 2.7697 2.1946
4 3.7538 3.6743 3.1572 2.8628 2.2685
5 3.8124 3.7316 3.2065 2.9076 2.3041

Fonksiyonel derecelendirilmis Love-Bishop nanocubuklarinin gii¢ indeksinin
farkl1 degerlerine gore ilk bes mod boyutsuz frekans parametreleri, C-F ve C-C
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nanogubuklart i¢in sirayla Cizelgeler 4.24 ve 4.25 ile sunulmaktadir. Gii¢ indeksinin
nanogubuklarin boyutsuz frekanslarini azaltmakta oldugu ilk gozlemlenendir. Yerel
olmayan parametre arttikca nanogubuklar arasindaki frekans farkliligi azalmaktadir.
Yiiksek gii¢ indeksinde bir de yerel olmayan parametre nedeniyle frekanslarin azalmasi
nanokirislerde oldugu gibi nanogubuklarda da fonksiyonel derecelenmenin Onemli
oldugunu ortaya koyar. Kayma deformasyonlu nanokirislerin yerel olmayan titresim
hesaplamalar tartisilirken 6zellikle iki ucu ankastre ve bir ucu ankastre diger ucu serbest
nanokirislerin nanoteknolojideki bir¢ok uygulamaya mekanik model olabilecegi vurgusu
ile, basta yerel olmayan parametre ve fonksiyonel derecelendirilme gibi nanoyapilarin
dinamik dayanimimi diistiren faktorlerin O6nemli oldugu neticesine varilmisti.
Nanoyapilarin mekanik modelinde sadece enine titresim degil eksenel titresim olgusu da
diistintildiigiinde, C-C ve C-F nanogubuklarinda yerel olmayan parametre ve fonksiyonel
derecelendirilmenin dinamik davranig acgisindan 6neme sahip oldugu kesinlikle
sOylenmelidir.

Cizelge 4.26. Elastik ortama gémiilii KDFD nanocubuklarin farkli boyutsuz elastik ortam
parametresi, boyutsuz yerel olmayan parametre ve gii¢ indeksi degerlerine gore ilk ii¢
mod boyutsuz frekanslari

Smir Ky 7 1. Mod 2. Mod 3. Mod
Sart p =0 p=0.01 p=10 p =0 p=0.01 p=10 p =0 p=001 p=10
CF O 0 15707 1.5668  0.9467 47094 46977  2.8386 7.8401 7.8207  4.7257
0.1 15406 15368 0.9286 4.0457 4.0356  2.4385 55649 55511 3.3543
0.2 14597 14561 0.8798 3.0272  3.0197  1.8247 3.5277 35189 2.1264
1 0 1.8619 1.8595 1.5172 48142 48031 3.0758 7.9032 7.8842 48714
0.1 1.8327 1.8304 1.4993 41554 41460 2.6855 5.6372 5.6238 3.5200
0.2 1.7548 1.7526  1.4519 3.1532  3.1464 2.1034 3.6252  3.6170  2.3458
10 O 3.5305 3.5333 3.8670 56708 5.6639  4.6999 8.4504  8.4342  6.0259
0.1 34970 3.4997 3.8366 5.0366 5.0314 4.3129 6.2504  6.2402  4.7581
0.2 3.4084 3.4112 3.7567 41171 41145 3.7785 44073 44028 3.7861
cC o0 0 3.1407 3.1329  1.8930 6.2761 6.2605  3.7829 9.4008 9.3775 5.6666
0.1 29188 29115 1.7593 49146 49024  2.9623 6.0470 6.0321  3.6450
0.2 24589 24528 14821 3.3437 3.3354 2.0154 3.6407 3.6317  2.1946
1 0 3.2959 3.2890 2.2335 6.3549 6.3398  3.9637 9.4534  9.4304 5.7883
0.1 3.0769 3.0705 2.1043 5.0005 4.9889  3.1581 6.1108 6.0961 3.7915
0.2 26269 2.6217 1.8432 3.4510  3.4433  2.2555 3.7326  3.7241  2.4017
10 O 44559 44539  4.1989 7.0251 7.0135 5.3215 9.9143 9.8938 6.7863
0.1 4.2426 4.2411  4.0527 5.7162 5.7081  4.5559 6.6570  6.6452 4.9174
0.2 3.8194 3.8190 3.7691 42981 4.2943  3.7838 44752 44703  3.7866

Cizelge 4.26°da eksenel elastik ortama gomiilii iki farkli sinir sartli KDFD eksenel

nanocubuklarin ilk tic mod boyutsuz frekanslari, boyutsuz atomik parametre, gii¢ indeksi
ve boyutsuz elastik ortam parametresinin farkli degerlerine gore hesaplanmaktadir. Buna
gore, elastik ortamin gubuk rijitligini artirdigindan frekanslar {izerinde artirici bir etkisi
bulunmaktadir. Ek olarak, elastik ortam parametresinin daha az rijit olan C-F
nanocubuklarinin frekanslarim1 daha fazla ytikselttigi goriilmistiir. Cok 6nemli bir
cikarima gore, elastik ortam parametresi yiikseldik¢e yerel olmayan parametrenin ve gii¢
indeksinin frekanslar {izerindeki diisiiriicii etkisi azalmaktadir. Burada elde edilen
sonuglar genel olarak nanokirislerdeki ¢ikarimlarla paralellik gostermektedir. Nano-
elektro-mekanik sistem uygulamalarinda yer alan ve C-C, C-F gibi sinir sartlarla ve
kirig/cubuk gibi mekanik yap1 elemaniyla modellenebilen nanoyapinin oturdugu veya
gomiildiigli bolgenin elastik zemin veya ortam gibi modellenebilecegi (Numanoglu 2019,
Numanoglu ve Civalek 2019a, Civalek ve Numanoglu 2020) diisiiniildiigiinde, burada
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elde edilen sonuglar nanoyapilarin dinamik karakteristiklerini anlayabilmek agisindan
dikkat ¢ekicidir.

Cizelge 4.27. Iki ucu tutulu KDFD nanogubuklarin yerel olmayan sonlu elemanlar
formiilasyonuyla hesaplanan ilk bes mod boyutsuz frekanslarinin karsilastirilmasi (p = 1)

n Mod  Analitik  NL-FEM Sonuglar D (%)
n=15 n=10 n=>5 n=15 n=10 n=>5
0 1 2.6350 2.6350 2.6350 2.6353 0.0000 0.0000 0.0114
2 5.2656 5.2653 5.2659 5.2737 -0.0057  0.0057 0.1538
3 7.8872 7.8867 7.8903 7.9436 -0.0063  0.0393 0.7151
4 10.4957  10.4957 10.5092  10.7031 0.0000 0.1286 1.9760
5 13.0869  13.0895 13.1273  13.1836 0.0199 0.3087 0.7389
0.1 1 2.4488 2.4488 2.4488 2.4490 0.0000 0.0000 0.0082
2 41233 4.1233 4.1236 4.1273 0.0000 0.0073 0.0970
3 5.0734 5.0736 5.0745 5.0887 0.0039 0.0217 0.3016
4 5.6000 5.6004 5.6026 5.6319 0.0071 0.0464 0.5696
5 5.9034 5.9037 5.9081 5.9095 0.0051 0.0796 0.1033
0.2 1 2.0630 2.0630 2.0630 2.0631 0.0000 0.0000 0.0048
2 2.8053 2.8053 2.8054 2.8066 0.0000 0.0036 0.0463
3 3.0546 3.0541 3.0547 3.0581 -0.0164  0.0033 0.1146
4 3.1572 3.1539 3.1570 3.1633 -0.1045  -0.0063  0.1932
5 3.2065 3.1943 3.2050 3.2062 -0.3805  -0.0468  -0.0094
0.5 1 1.1848 1.1848 1.1848 1.1848 0.0000 0.0000 0.0000
2 1.2858 1.2840 1.2856 1.2859 -0.1400 -0.0156  0.0078
3 1.3069 1.2901 1.3043 1.3071 -1.2855  -0.1989  0.0153
4 1.3138 1.2903 1.3071 1.3139 -1.7887  -0.5100  0.0076
5 1.3162 1.2904 1.3076 1.3156 -1.9602  -0.6534  -0.0456

Iki ucu tutulu KDFD nanogubuklarin secilmis bir gii¢ indeksi degeri igin ilk bes
mod yerel olmayan boyutsuz frekanslarinin yerel olmayan sonlu elemanlar metodu ile
hesaplanan degerlerle karsilastirilmasi Cizelge 4.27 ile sunulmaktadir. Klasik elastisite
ile ¢ok diisiik ve diisiik boyutsuz yerel olmayan parametre degerleri i¢in boyutsuz frekans
degerleri Cizelge 4.25 ile verilmisti. Oncelikle bu degerler hakkindaki karsilastirmalar ele
aliacaktir. n =5 gibi diisiik sonlu eleman sayis1 ile analizdeki sonucglarin ¢ogunlukla
uygun oldugu ve atomik parametre arttikca sapmanin diismekte oldugu ifade edilebilir.
Ancak burada diisiik bir boyutsuz atomik parametre degeri olarak tanimlanan # = 0.2 i¢in
besinci modun yakinsakligi negatif bir deger olarak elde edilmistir. Nanokirislerde
negatif yakinsaklik, termal ¢evreden kaynaklanan oldukcga yliksek sicakliklarin ekstrem
bir durum olmas1 nedeniyle goz ardi edilmisti. Ancak burada dis ortamsiz yani esasinda
temel bir mekanik davranisin incelenmesi s6z konusudur. Temel bir mekanik davranisin
sayisal yontemlerle incelenmesi esnasinda elde edilen ve soruna sebebiyet verecek
sonuclar davranisin dogru olarak 6grenilmesini kesinlikle engeller. Diisiik boyutsuz yerel
olmayan parametre altinda diger yiiksek modlar ve diisiik modlarda degeri yiikselen
boyutsuz yerel olmayan parametre gibi durumlar altinda sonlu eleman analizi ile yine
sorunlu sonuglarin elde edilecegi kuvvetle muhtemeldir. Ayrica, bu durumlar
diisiiniilmese bile, ¢izelgede tanimlanan durumlarda sonlu eleman sayisinin artisi olan
n =10 i¢in negatif hata mutlak degerce artmakta ve negatif hata diisiik modlara sirayet
etmektedir. Dahasi, hatanin vaziyetini kapsamli olarak gorebilmek i¢in Cizelge 4.25’ten
farkli olarak burada verilen ve bir ekstrem durum olan ¢ok yiiksek boyutsuz atomik
parametre degeri olarak tanimlanan # = 0.5 degeri i¢in elde edilen sapmalar temel mod
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hari¢ ¢ogunlukla uygun goriinmemektedir. Ek olarak belirtilmelidir ki, daha yiiksek
modlarda negatif sapmanin mutlak degerce giderek artacagi barizdir. Burada ele alinan
temel nanomekanik analiz belki elle ¢oziilebildiginden sonlu eleman sonuglar1 dikkate
alinmayabilir ancak el ¢oziimiine miisait olmayan ve elektronik ortamda sembolik
programlamayla dahi analitik ¢O6ziimiiniin neticelerine ulagilamayan, sonu¢ olarak
yaklagik yontemlere ihtiya¢ duyulan bir mekanik analizde bu durum ciddi bir problemi
ortaya ¢ikaracaktir. Bu nedenle nanomekanik davranisin 6grenilebilmesi adina sayisal
sonuclarin kapsamli tartismasindan 6nce yerel olmayan sonlu elemanlar metodundaki
problemli sonuglarin kaynagina inilmelidir. Buradaki arastirmalarin, mekanik agidan da
anlamli olarak adim adim yapilmasi gerektigi diisiiniildiigiinden ilk olarak kayma
deformasyonlu homojen ¢ubuklar ele alinacaktir ve bu konudaki sonuglar izleyen ¢izelge
ile verilmektedir.

Cizelge 4.28. iki ucu tutulu KDH eksenel nanogubuklarin farkli boyutsuz yerel olmayan
parametre degerlerine gore yerel olmayan sonlu elemanlar formiilasyonuyla hesaplanan
ilk bes mod boyutsuz frekanslarinin karsilastirilmasi

n Mod  Analitik  NL-FEM Sonuglari Dg (%)
n=15 n=10 n=>5 n=15 n=10 n=>5
0 1 3.1407 3.1407 3.1407 3.1410 0.0000 0.0000 0.0096
2 6.2761 6.2758 6.2765 6.2857 -0.0048  0.0064 0.1530
3 9.4008 9.4002 9.4045 9.4679 -0.0064  0.039%4 0.7138
4 125098 125098 12.5259  12.7570 0.0000 0.1287 1.9761
5 155983  15.6014  15.6465  15.7136 0.0199 0.3090 0.7392
0.1 1 2.9188 2.9187 2.9188 2.9190 -0.0034  0.0000 0.0069
2 4.9146 4.9146 4.9149 4.9193 0.0000 0.0061 0.0956
3 6.0470 6.0473 6.0483 6.0653 0.0050 0.0215 0.3026
4 6.6746 6.6752 6.6777 6.7126 0.0090 0.0464 0.5693
5 7.0363 7.0366 7.0419 7.0435 0.0043 0.0796 0.1023
0.2 1 2.4589 2.4589 2.4589 2.4501 0.0000 0.0000 0.0081
2 3.3437 3.3437 3.3438 3.3452 0.0000 0.0030 0.0449
3 3.6407 3.6402 3.6409 3.6450 -0.0137  0.0055 0.1181
4 3.7631 3.7592 3.7628 3.7703 -0.1036  -0.0080  0.1913
5 3.8218 3.8073 3.8201 3.8214 -0.3794  -0.0445  -0.0105
0.5 1 1.4121 1.4121 1.4121 1.4122 0.0000 0.0000 0.0071
2 1.5326 1.5304 1.5323 1.5327 -0.1435  -0.0196  0.0065
3 1.5577 1.5376 1.5546 1.5579 -1.2904  -0.1990  0.0128
4 1.5659 1.5379 1.5579 1.5660 -1.7881  -0.5109  0.0064
5 1.5688 1.5380 1.5586 1.5680 -1.9633  -0.6502  -0.0510

Cizelge 4.28°de, iki ucu tutulu ve KDH eksenel nanogubuklarin farkli boyutsuz
atomik parametre altinda yerel olmayan sonlu elemanlar formiilasyonu kullanilarak
hesaplanan ilk bes mod boyutsuz frekans degerlerinin analitik degerlere yakinsama
calismast verilmektedir. Sapma ylizdeleri g6z Oniine alindiginda, bunlarin genellikle
mutlak degerce oldukga diisiik oldugu goriilmektedir. Ancak, agikgasi yaklasik metotlarla
bir mekanik problemin analizinde mutlak degerce sapma yiizdeleri miithendislik yorumu
acisindan yeterli bir gosterge degildir. Dolayisiyla daha detayli bir inceleme yapilmalidir.
Buna gore, formiilasyon Cizelge 4.27 nin tartismalar1 esnasinda da deginildigi gibi bazi
durumlarda oldukg¢a basarili olmaktadir ancak negatif sapma yiizdelerinin hesaplandigi
durumlarda basarinin diistiigli ifade edilmelidir. 5 ve 10 eleman kullanilarak yapilan
analizlerde, ¢ok diisiik ve diisiik boyutsuz atomik parametre degerleri i¢in analiz
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sonuglarinda genel olarak 6nemli bir basarinin saglandig1 yine ifade edilebilir. Bu kisim
ele alinacak olursa, genel olarak sonlu eleman sayisinin artisi ile analitik sonuca
yakinsaklik artmistir. Ancak mod sayis1 yiikseldikge yakinsakligin azaldigi
gozlemlenmektedir. Ek olarak, boyutsuz yerel olmayan parametre arttikca yakinsaklik
her modda artmistir. Yerel olmayan analizde bir basarinin yakalandigi yine ilk olarak akla
gelebilir ancak yiiksek boyutsuz yerel olmayan parametre degeri ile hesaplamada
yakinsaklik orani negatife donmiistiir yani sonlu elemanlar sonucu analitik sonucun altina
diismiistiir. Ayrica, mod sayisit arttik¢a analitik sonuglarin zaten altinda olan degerler
giderek analitik sonugtan uzaklasmaktadir. Bu sonuglar, sonlu elemanlar analizinin
kayma deformasyonlu nanocubuklarda yerel olmayan parametre igin bir siiphe
barindirdigin1 gostermektedir. Bir sliphenin oldugundan kesin bicimde emin olmak
amactyla incelenmis olan daha yiliksek sayida elemanli yani 15 elemanli analizler ¢ok
daha basarisiz degerler vermektedir. Burada temel modda bile negatif sapma yiizdesinin
elde edildigi bir durum gézlemlenmektedir. Ayrica, 15 elemanli analizlerde daha klasik
elastisitede bile dikkat ¢eken negatif sapma degerleri mevcuttur. Bir ilave inceleme
yapilarak 20 elemanin kullanildig1 analizlerde klasik temel mod frekanslart da analitik
neticelerin altina inmistir ancak tartismayi kalabaliklastirmamak icin bunun detayi
verilmeyecektir. Sonug¢ olarak sonlu eleman analizindeki problem dikkate degerdir.
Cizelgeler 4.27 ve 4.28 gostermistir ki, sonlu eleman sayisinin daha da yiikseltilmesi
durumunda, yiiksek olmayan degerli boyutsuz yerel olmayan parametrelerde bile oldukca
basarisiz sonuglar alinacagi diistiniilmektedir. Sorunun ¢6ziimii i¢in formiilasyonda bir
diizenlemeye gidilerek sonuglarin karsilastiriimasi bu ¢alismanin kapsamindadir ancak su
asamada sorunun kokenine inilmedigi hatirlatilmalidir. Simdi buna ugrasilacaktir.

Yerel olmayan sonlu elemanlar formiilasyonunda yapilacak diizenlemenin ilk
adimu siiphelerin eksiksiz olarak tespit edilmesidir. Buraya kadar yapilan tartismada
yiiksek sonlu eleman sayilariyla klasik sonlu eleman analizinden diisiik modlar i¢in
negatif sapma elde edildigi goriilmiis, sonlu eleman sayis1 daha da yiikseltilirse temel
modun bile negatif sapma verdigi aciklanmisti. Bilindigi {izere tez ¢alismasinin eksenel
cubuklarla ilgili kism1 kayma deformasyonlu eksenel cubuk kuramini yani yerel olmayan
Love-Bishop ¢ubuk teorisini ele almistir. Bu konuda, yerel olmayan sonlu eleman analizi
cercevesinde yapilan ¢alismalarda (Demir ve Civalek 2013; Numanoglu ve Civalek
2022), kayma deformasyonunun (veya yanal deformasyon, Poisson etkisi) ihmal edildigi
kuram olan basit ¢ubuk formiilasyonuna dayali yerel olmayan serbest titresimde yiiksek
sonlu eleman i¢in formiilasyondan beklenen basarinin yakalandigi ifade edilmelidir. Yani
klasik elastisitede temel modda ve 6zellikle yiiksek boyutsuz yerel olmayan parametre
degeri altinda 6zellikle yiiksek modlarda da sapmalarin uygun olmasi ve sonlu eleman
sayisiin artigi icin yiiksek yakinsakligin genel olarak saglanmasi bu ifade edilende
kastedilmektedir. Sonug olarak ilk slipheler, kayma deformasyonlu homojen ¢ubuklarin
Klasik serbest titresimi iizerindedir. Siiphelerin kesinlestirilmesi amaciyla, homojen ve
kayma deformasyonsuz eksenel nanogubuklarin klasik ve yerel olmayan serbest titresim
analizlerinde sonlu eleman formiilasyonunun yakinsakliklar1 hesaplanmis olup bunlar
izleyen ¢izelgede verilmektedir.
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Cizelge 4.29. iki ucu tutulu kayma deformasyonsuz homojen eksenel nanogubuklarmn
farkl1 boyutsuz atomik parametre degerlerine gore yerel olmayan sonlu elemanlar
formiilasyonuyla hesaplanan ilk bes mod boyutsuz frekanslarinin karsilastirilmasi

n Mod  Analitik  NL-FEM Sonuglari Dg (%)
n=15 n=10 n=>5 n=15 n=10 n=>5
0 1 3.1416 3.1416 3.1416 3.1419 0.0000 0.0000 0.0095
2 6.2832 6.2833 6.2839 6.2932 0.0016 0.0111 0.1592
3 9.4248 9.4258 9.4297 9.4947 0.0106 0.0520 0.7417
4 125664 125705 125865  12.8242 0.0326 0.1600 2.0515
5 15,7080 15.7204 15.7669 15.8114 0.0789 0.3750 0.6583
0.1 1 2.9972 2.9972 2.9972 2.9975 0.0000 0.0000 0.0100
2 5.3202 5.3203 5.3206 5.3263 0.0019 0.0075 0.1147
3 6.8587 6.8591 6.8606 6.8855 0.0058 0.0277 0.3907
4 7.8248 7.8258 7.8296 7.8859 0.0128 0.0613 0.7809
5 8.4356 8.4376 8.4447 8.4515 0.0237 0.1079 0.1885
0.2 1 2.6601 2.6601 2.6601 2.6603 0.0000 0.0000 0.0075
2 3.9124 3.9124 3.9126 3.9148 0.0000 0.0051 0.0613
3 4.4169 4.4170 44174 4.4241 0.0023 0.0113 0.1630
4 4.6458 4.6460 4.6468 4.6584 0.0043 0.0215 0.2712
5 4.7645 4.7648 4.7661 4.7673 0.0063 0.0336 0.0588
0.5 1 1.6871 1.6871 1.6871 1.6872 0.0000 0.0000 0.0059
2 1.9058 1.9058 1.9058 1.9061 0.0000 0.0000 0.0157
3 1.9564 1.9564 1.9565 1.9571 0.0000 0.0051 0.0358
4 1.9751 1.9752 1.9752 1.9761 0.0051 0.0051 0.0506
5 1.9840 1.9840 1.9841 1.9842 0.0000 0.0050 0.0101

Yerel olmayan basit cubuk teorisine (Aydogdu 2008, 2012) gore formiile edilen
yani kayma deformasyonsuz iki ucu tutulu nanogubugun Cizelge 4.29°daki sonuglari
yerel olmayan sonlu elemanlar formiilasyonundan beklenen davranisi ve formiilasyonun
kullanim faydalarini fazlasiyla ortaya koymaktadir. Bu analiz tez kapsamina girmedigi
icin kisaca bahsetmek adina, genel olarak formiilasyonun ¢ok yiiksek bir yakinsaklik
saglama basarisina sahip oldugu ifade edilebilir. Tabi yliksek modlarda sapma yiizdesi
artmaktadir. Artan sapmay1 diisiirmek sonlu eleman sayisinin yiikseltilmesiyle miimkiin
olmustur. Ote yandan, yerel olmayan parametre yiikseldikce sapma yiizdeleri diismiistiir.
Bu durum, sonlu elemanlar formiilasyonunun yerel olmayan mekanik analiz
problemlerinde kesinlikle bir yarar saglayacagini gostermektedir. Burada elde edilen
sonuglara istinaden, klasik teoriyle hesaplanan bazi sonuglarin yakinsakliginda bile bir
problem oldugundan kayma deformasyonlu homojen ¢ubuklarin kayma deformasyonsuz
homojen gubuklara gore ilave mekanik davranis matrisleri olan ve sirasityla Denklemler
(3.257) ve (3.262) ile tanitilan yanal atalet K; ve klasik kiitle ataleti A/; . matrislerinden
stiphelenilmektedir. Bunlara ek olarak, diisiik ve yliksek degerli boyutsuz yerel olmayan
parametrenin yiikksek modlarinda sapma yiizdelerinin negatif olmasi ve mod sayisi
arttikca negatif sapmalarin mutlak degerce yiikselmesi nedeniyle Denklem (3.263) ile
formiile edilen ve yerel olmayan kiitle ataleti matrisini tanimlayan M; ,; ifadesi de siipheli
durumdadir. Kayma deformasyonsuz yerel olmayan eksenel nanogubuklarin serbest
titresiminin sonlu eleman analizlerinde herhangi bir problemli sonug tespit edilmedigi
yukarida belirtildiginden, yerel olmayan kiitle matrisi M, ifadesi iizerinde herhangi bir
diizenleme islemine gerek yoktur. Ayrica, ilgili analizde elastik ortam ihmal edildiginden
bununla ilgili su agsamada bir fikir yiiriitilmeyecektir.
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Yerel olmayan sonlu eleman formiilasyonunda s6z konusu siipheye yol acan
durum, olmasi gerekenden daha diisiik hesaplanan sayisal degerlerdir. S6z konusu
siipheye istinaden, sonlu elemanlar formiilasyonunun sembolize edilmis genel denklemi
olan (K — w*M)=0 denkleminde indirgenmis kiiresel rijitlik matrisi K’nin olmasi
gerekenden diislik veya indirgenmis kiiresel kiitle matrisi M nin olmas1 gerekenden fazla
oldugu, ya da ikisinin birlikte bulundugu anlasiimaktadir. ki durumun bir arada
bulundugu diistiniilerek, siipheli durumdaki matrislerden ilk olarak klasik olanlar yani
yanal kiitle ataleti M, . matrisleri lizerinde bir diizenleme 6nerilmektedir. Buna gore,
olmast gerekenden yiiksek veya diisiik olan matrisleri olmasi gereken diizeye
yakinlastirabilmek suretiyle,

n

f=——o (4.11)

n+l

matrislerinin asagidaki gibi degistirilerek Denklem (3.266)’da verilen sonlu eleman
analizine tekrar girmesi yani teknik tabirle sonlu elemanlar analizinin modifiye edilmesi
sayisal analizler kapsaminda ele alinacaktir:

[ -2 18 ]
232 64 -32 (4.12)
©|16 -32 16

K, =(1+B)K, =(1+,B)

|78 1]
M,’C*:(l—ﬂ)MLC:(l—ﬂ)i -8 16 -8 (4.13)
‘l1 -8 7

Denklem (4.11)’de S degistirme (modifikasyon) parametresi olarak tanimlanir ve n sonlu
eleman sayisidir.

Buradan itibaren, yukarida anlatildigi iizere ve bundan sonra modifiye edilmis
yerel olmayan sonlu elemanlar metodu olarak anilacak yeni bir ¢oziimiin kayma
deformasyonlu ¢ubuklar tizerindeki uygulamalar1 verilmektedir.
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Cizelge 4.30. Iki ucu tutulu KDH nanogubuklarin farkli boyutsuz yerel olmayan
parametre degerlerine gére modifiye edilmis (ilk defa) yerel olmayan sonlu elemanlar
formiilasyonuyla hesaplanan ilk bes mod boyutsuz frekanslarinin karsilastirilmasi

n Mod NL-FEM Sonuglar1 Dg (%)
n=15 n=10 n=>5 n=15 n=10 n=>5
0 1 3.1424 3.1425 3.1427 0.0541 0.0573 0.0637
2 6.2898 6.2905 6.2988 0.2183 0.2294 0.3617
3 9.4475 9.4517 9.5119 0.4968 0.5414 1.1818
4 12.6214 12.6371 12.8636 0.8921 1.0176 2.8282
5 15.8180 15.8624 15.9363 1.4085 1.6931 2.1669
0.1 1 2.9202 2.9202 2.9204 0.0480 0.0480 0.0548
2 49224 4.9227 4,9266 0.1587 0.1648 0.2442
3 6.0642 6.0654 6.0809 0.2844 0.3043 0.5606
4 6.7026 6.7053 6.7377 0.4195 0.4600 0.9454
5 7.0765 7.0809 7.0884 0.5713 0.6339 0.7404
0.2 1 2.4599 2.4599 2.4600 0.0407 0.0407 0.0447
2 3.3472 3.3473 3.3485 0.1047 0.1077 0.1436
3 3.6475 3.6479 3.6511 0.1868 0.1978 0.2857
4 3.7739 3.7746 3.7801 0.2870 0.3056 0.4518
5 3.8374 3.8386 3.8406 0.4082 0.4396 0.4919
0.5 1 1.4125 1.4125 1.4125 0.0283 0.0283 0.0283
2 1.5336 1.5336 1.5337 0.0652 0.0652 0.0718
3 1.5597 1.5599 1.5601 0.1284 0.1412 0.1541
4 1.5692 1.5695 1.5700 0.2107 0.2299 0.2618
5 1.5737 1.5741 1.5751 0.3123 0.3378 0.4016

Ik olarak kayma deformasyonlu homojen cubuklar hakkinda modifiye edilmis
yerel olmayan sonlu elemanlar formiilasyonu kullanilarak yapilan analiz sonuglari
Cizelge 4.30’da sunulmaktadir. Yeni elde edilen sonucglarin, Cizelge 4.28’de detayli
olarak bahsedilen biitiin problemli durumlart kaldirdigi seklinde bir Ongoriide
bulunulabilir. Buna gore ¢ogu durumda kars1 karsiya kalinan negatif sapmalar ortadan
kaldirilmakta, sonlu elemanlar prosediiriiniin genel karakteristikleri yeni sonuclarda da
gozlemlenmektedir. Genel olarak, yiiksek modlarda yakinsaklik diismekte, yerel olmayan
parametre arttik¢a yakinsaklik artmaktadir. Ancak, modifiye edilmis yerel olmayan sonlu
elemanlar formiilasyonuna gore temel modda daha yiiksek bir sapma yiizdesi elde
edilmektedir. Sapma yiizdeleri burada bir biitiin olarak incelenecek olursa sonuglarin
olduk¢a uygun oldugu ifade edilebilir. Normalde, su asamada Cizelge 4.29 tartisilirken
stipheli durumda oldugu ifade edilen yerel olmayan kiitle ataleti matrisi M ,; lizerinde bir
diizeltmeye gerek kalmadig: diisiiniilebilir. Ancak, tez kapsaminda elastik ortama gomiilii
iki ucu tutulu fonksiyonel derecelendirilmis kayma deformasyonlu nanogubuklarin
Denklemler (4.11)-(4.13)’e dayanilarak modifiye edilen formiilasyon kullanilarak
n=0.2, K);=10 ve p =10 degerleri altindaki analizinde {i¢iincii modda dikkate deger
negatif sapmalar hesaplanmistir ve bunun atomik parametre, mod sayis1 ve sonlu eleman
sayisinin ~ yikselmesi durumunda daha biiyiik sorunlara sebebiyet verecegi
diisiiniilmektedir. S6z konusu analiz sonuglar1 Cizelge 4.31°in orta bolmesinde
verilmekte olup, analizde segilen mekanik parametrelerin ekstrem degil, aksine gayet
olagan seviyelerde oldugu ifade edilmelidir. Sonu¢ olarak Onerilen formiilasyonun
basaris1 kisitli kalmisg olup, Onerilen formiilasyon davranisi anlamak ig¢in yeterli
olmayacaktir. Bu nedenle, yerel olmayan sonlu elemanlar formiilasyonu, Denklemler
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(4.11)-(4.13)’e ek olarak, Denklem (3.263) ile tanitilan yerel olmayan yanal kiitle ataleti
matrisi  M;,,’nin asagidaki sekilde diizenlenmesi suretiyle ikinci defa modifiye
edilecektir:

e a)2| 16 -32 16
M,’n,*:(l—ﬁ)M,’n,:(l—,B)O—aS 32 64 -32 (4.14)
16 -32 16

Ikinci kez modifiye edilmis formiilasyonun uygulamasi Cizelge 4.31’in alt
bolmesinde verilmektedir.

Cizelge 4.31. Elastik ortama gomiilii iki ucu tutulu KDFD nanogubuklarin yerel olmayan
sonlu elemanlar formiilasyonuyla hesaplanan ilk bes mod boyutsuz frekanslarinin
karsilastirilmasi (7 = 0.2, K, = 10, p = 10)

Islem Mod NL-FEM Sonuglari D (%)
n=15 n=10 n=5 n=15 n=10 n=5
Modifikasyon 1 3.6011 3.7060 3.7682 -4.4573 -1.6741 -0.0239
Onerisiz (Orijinal 2 3.6013 3.7062 3.7737 -4.8232 -2.0508 -0.2669
Formiilasyon) 3 3.6014 3.7062 3.7741 -4.8909 -2.1233 -0.3301
4 3.6014 3.7062 3.7742 -4.8256 -2.0560 -0.2590
5 3.6015 3.7062 3.7742 -4.6794 -1.9083 -0.1085
[k Defa 1 3.6685  3.7379  3.7699 -2.6691 -0.8278 0.0212
Modifikasyon 2 3.6687  3.7379  3.7816 -3.0419 -1.2131 -0.0581
3 3.6687  3.7379  3.7827 -3.1136 -1.2861 -0.1030
4 3.6687  3.7379  3.7830 -3.0470 -1.2183 -0.0264
5 3.6687  3.7379  3.7830 -2.9008 -1.0693 0.1244
Ikinci Defa 1 3.7705 3.7705 3.7705 0.0371 0.0371 0.0371
Modifikasyon 2 3.7881  3.7882 3.7884 0.1136  0.1163 0.1216
3 3.7953  3.7955  3.7959 0.2298 0.2350 0.2456
4 3.7985  3.7987  3.7992 0.3832 0.3885 0.4017
5 3.8001 3.8003 3.8092 0.5770 0.5823 0.8178
1. Mod 2. Mod 3. Mod 4. Mod 5. Mod
Analitik 3.7691 3.7838 3.7866 3.7840 3.7783

Fonksiyonel derecelendirilmis Love-Bishop nanogubuklarinin serbest eksenel
titresim davranigint miimkiin oldugunca dogru anlamak maksadiyla, ilk defa modifiye
edilmis yerel olmayan sonlu elemanlar formiilasyonunun sonuglarini mantiksiz bir
duruma diistirdiigii Cizelge 4.30 tartisilirken ifade edilen mekanik parametreler altinda,
ikinci kez modifiye edilmis yerel olmayan sonlu elemanlar formiilasyonunun sonuglari
Cizelge 4.31 ile sunulmaktadir. Oncelikle yerel olmayan sonlu elemanlar formiilasyonu
tizerinde bir degistirme islemine olan ihtiyaci bir kez daha vurgulamak i¢in ¢izelgenin tist
bolmesindeki sonuclar verilmektedir. Gerek negatif sapma degerlerinin elde edilmesi,
gerek sonlu eleman sayisi artttkca sapmanin biiylimesi, gerekse mod sayisina gore
frekanslarin degismemesi nedeniyle (¢izelgenin en altindaki analitik sonuglarda boyle bir
durum olmadig1 gozlemlenmektedir) sonuglardan nanomekanik davranis hakkinda higbir
sey Ogrenilemeyecegi ve bu mekanik analiz probleminde s6z konusu sayisal yaklagimin
kullanilamayacagi gayet aciktir. {1k defa modifiye edilmis formiilasyonun basarili oldugu
her ne kadar Cizelge 4.30°daki analizlerde gozlemlense bile incelenen problemin bu
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boyutunda oOnerilen formiilasyon orijinal formiilasyon gibi davranmis olup netice
itibariyle maalesef basarisiz kalmistir. Bu nedenle yerel olmayan sonlu elemanlar
formiilasyonu tizerinde ilkine ek olarak ikinci bir modifikasyon yapilmis olup, nihayetiyle
bu sekilde onerilen formiilasyon kullanilarak elde edilen sonuglar olduk¢a uygun
goriinmektedir. Tam bu noktada dnemli bir parantez agilmasi oldukea elzemdir. ilk defa
modifiye edilmis formiilasyonun kullanilamayacaginin anlasildig1 bu analiz 6nceki sonlu
eleman analizlerinden farkli olarak bir dis etmeni, elastik ortam rijitligini igerir. Bu
asamada, modifikasyonu ilk defa nerilen formiilasyonun elastik ortam nedeniyle sorunlu
bir hal alabilecegi, bu nedenle orijinal ¢6ziim prosediiriine sirasiyla Denklemler (3.258)
ve (3.259) ile katilan elastik ortamin klasik ve yerel olmayan rijitlikleri olan K, . ve K,
matrislerinin bir sorun olusturabilecegi siiphesi akla gelmektedir. Elastik ortamla ilgili bir
fikir yiirtitiilmeyecegi burada tekrar belirtilmektedir. Bunun birinci sebebi, Numanoglu
(2019) tarafindan sunulan yiiksek lisans tez calismasinda incelenen kayma
deformasyonsuz homojen nanogubuklarda elastik ortam altindaki sonlu eleman
analizlerinde higbir sorun olmamasi, ikincisi ise elastik ortamin gozetildigi Cizelgeler
4.33-4.35 ile verilen sonuglardan ikinci kez modifiye edilmek suretiyle nihai halini almig
yeni yerel olmayan sonlu elemanlar formiilasyonunun kullanilabilirliginin goriilecek
olmasidir.

Ote yandan, Cizelge 4.31°de analitik degerlerden besinci modun boyutsuz
frekansinin dordiincli moddan ve dordiincii modun boyutsuz frekansinin {i¢iincii moddan
diisiik oldugu gozlemlenmistir. Denklem (3.175) ile hesaplanan dogal frekansin pay ve
paydasinda, smir sarta bagli olarak Fourier serilerinden gelen carpanlar ve titresim
analizine dahil olan parametrelerin ekstrem durumlarinin bir arada bulunmasi nedeniyle
boyle bir durum gerceklesebilmektedir. Hatta, analizdeki mekanik parametreler dyle
ekstrem diizeylerde olabilir ki heniiz temel moddan itibaren mod say1s1 arttik¢a frekans
digebilir. Dahasi, mekanik parametrelerin  bazi ekstrem durumlarinda C-F
nanogubugunun yiikksek mod frekanslarinin C-C nanogubugunun yiiksek modlarini
gectigi bile literatiirdeki bazi hesaplarin sonucudur (Civalek ve Numanoglu 2020). Bir
titresim probleminin sonlu eleman analizinde standart 6zdeger ¢oziimiiniin verecegi
degerler (dogal frekanslar) temel moddan itibaren siralandiginda bir modun dogal
frekans1 onceki modun c¢ogunlukla iistiinde hesaplanir, yani frekanslar dnceki modun
kesinlikle altina diismez ve bu durum sonlu eleman c¢oziimiiniin degismez bir
karakteristigidir. Artik nihayet diizenleme siirecinin sonuna getirilebilmis olan yerel
olmayan sonlu elemanlar formiilasyonunun basarisinin bu paragrafta agiklandigr gibi
zuhur edebilen durumlardan muaf tutulmas: gerektigi diistiniilmektedir.

Kayma deformasyonlu homojen nanocgubuklarin yerel olmayan serbest titresim
analizi i¢in, sonlu eleman formiilasyonundaki modifikasyon siireci nedeniyle Cizelge
4.30°da verilen sonuglar gegersiz oldugundan ikinci kez modifikasyon isleminin sonuglari
Cizelge 4.32°de verilmektedir. Burada genel olarak sapma degerleri Cizelge 4.30°da
goriilenlerden yliksektir ancak olusan farklilik dikkate deger bir diizeyde degildir. Her ne
kadar tez konusu olmasa da kayma deformasyonsuz homojen nanogubuklarin yerel
olmayan sonlu eleman analizi hakkinda Cizelge 4.29°da yapilan mekanik davranisin
sayisal metotlarla tartisilmast sonucundaki ¢ikarimlarin hepsinin Love-Bishop
nanocubuklari i¢in de gecerli oldugu rahatlikla ifade edilebilir.
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Cizelge 4.32. iki ucu tutulu KDH nanogubuklarin farkli boyutsuz yerel olmayan
parametre degerlerine gére modifiye edilmis (ikinci defa) yerel olmayan sonlu elemanlar
formiilasyonuyla hesaplanan ilk bes mod boyutsuz frekanslarinin karsilastirilmasi

7 Mod NL-FEM Sonuglar1 Dg (%)
n=15 n=10 n=>5 n=15 n=10 n=>5
0.1 1 2.9203 2.9203 2.9205 0.0514 0.0514 0.0582
2 4.9237 4.9243 4.9283 0.1852 0.1974 0.2788
3 6.0690 6.0716 6.0873 0.3638 0.4068 0.6664
4 6.7125 6.7188 6.7525 0.5678 0.6622 1.1671
5 7.0914 7.1029 7.1297 0.7831 0.9465 1.3274
0.2 1 2.4600 2.4601 2.4602 0.0447 0.0488 0.0529
2 3.3484 3.3491 3.3505 0.1406 0.1615 0.2034
3 3.6500 3.6520 3.6563 0.2554 0.3104 0.4285
4 3.7771 3.7807 3.7891 0.3720 0.4677 0.6909
5 3.8408 3.8459 3.8669 0.4971 0.6306 1.1801
0.5 1 1.4126 1.4127 1.4127 0.0354 0.0425 0.0425
2 1.5338 1.5342 1.5347 0.0783 0.1044 0.1370
3 1.5599 1.5605 1.5618 0.1412 0.1798 0.2632
4 1.5694 1.5700 1.5716 0.2235 0.2618 0.3640
5 1.5738 1.5745 1.5865 0.3187 0.3633 1.1283

Sonlu eleman analizi hakkinda heniiz ilk tartigmalardan itibaren ifade edildigi
tizere (yani heniiz modifikasyon 6nerileri ele alinmamisken), analizde sonlu eleman sayisi
arttikca negatif sapma yiizdelerinin giderek yiikselmesi, karsilastirmali sonuglarda goze
carpan bir diger basarisizlik durumuydu. Bu nedenle Onerilen nihai yaklagimin
kullanilabilirligini incelemek amaciyla, Cizelge 4.32’deki boyutsuz atomik parametreler
altinda 50 elemanin kullanildig: bir ilave analiz daha gerceklestirilmis olup, herhangi bir
sorun gozlemlenmemis, sonuglar dogal olarak biraz daha yakinsak elde edilmistir. Sayisal
sonugclar ve tartigma boliimiiniin kalabaliklagacag diisiincesiyle ilave analiz sonug¢larinin
burada verilmemesi tercih edilmistir.

Buradan itibaren yerel olmayan sonlu elemanlar formiilasyonun modifikasyon
stirect hakkinda “ilk defa” veya “ikinci defa” ifadeleri zikredilmeyecek olup, onerilen
yaklasim tekrardan “modifiye edilmis sonlu elemanlar formiilasyonu” ismiyle anilacaktir.

Cizelge 4.33. Elastik ortama gémiilii iki ucu tutulu KDH nanoc¢ubuklarin farkli boyutsuz

......

formiilasyonuyla hesaplanan ilk bes mod klasik boyutsuz frekanslarinin karsilastirilmasi

Ky Mod Analitik NL-FEM Sonuglari
n=15 n=10 n=>5

1 1 3.2959 3.2977 3.2977 3.2979
2 6.3549 6.3688 6.3695 6.3777
3 9.4534 9.5003 9.5045 9.5643
4 12.5492 12.6609 12.6766 12.9023
5 15.6296 15.8495 15.8938 15.9675

10 1 4.4559 4.4580 4.4581 4.4581
2 7.0251 7.0399 7.0404 7.0476
3 9.9143 9.9625 9.9663 10.0231
4 12.8977 13.0111 13.0263 13.2456
5 15.9085 16.1306 16.1739 16.2458
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Cizelge 4.34. Elastik ortama gomiilii iki ucu tutulu KDH nanogubuklarin farkli boyutsuz

......

edilmis yerel olmayan sonlu elemanlar formiilasyonuyla hesaplanan ilk bes mod boyutsuz
yerel olmayan frekanslarinin karsilastirilmasi

Ky Mod 5=0.1 7=02
Analitik  NL-FEM Sonuglar Analitik  NL-FEM Sonuglar
n=15 n=10 n=35 n=15 n=10 n=>5
1 1 3.0769 3.0784  3.0785 3.0786 2.6269 2.6280 2.6281 2.6282
2 5.0005 5.0097 5.0103 5.0142 3.4510 3.4559 3.4565 3.4578
3 6.1108 6.1329 6.1355 6.1509 3.7326 3.7420 3.7440 3.7481
4 6.7286 6.7667 6.7729 6.8061 3.8488 3.8632 3.8667 3.8748
5 7.0851 7.1406 7.1519 7.1785 3.9044 3.9240 3.9289 3.9494
10 1 42426  4.2445 42445 < 4.2446 3.8194 3.8209 3.8209 3.8209
2 5.7162 5.7261 5.7266 5.7296 42981 43038  4.3043  4.3050
3 6.6570 6.6803 6.6826 6.6957 44752  4.4863  4.4879  4.4906
4 7.1962 7.2361 7.2418 7.2709 45481 45656  4.5683  4.5740
5 7.5104  7.5683 7.5789 7.6033 45809 4.6057 4.6094  4.6265

Cizelge 4.35. Elastik ortama gomiilii iki ucu tutulu KDH nanogubuklarin farkli boyutsuz

edilmis yerel olmayan sonlu elemanlar formiilasyonuyla hesaplanan ilk bes mod boyutsuz
frekanslarinin sapma ylizdeleri

Ky Mod =0 n=0.1 n=02
n=15 n=10 n=5 n=15 n=10 n=>5 n=15 n=10 n=>5

1 1 0.0546 0.0546 0.0607 0.0488 0.0520 0.0553 0.0419 0.0457 0.0495
2 0.2187 0.2297 0.3588 0.1840 0.1960 0.2740 0.1420 0.1594 0.1970
3 0.4961 0.5405 1.1731 0.3617 0.4042 0.6562 0.2518 0.3054 0.4153
4 0.8901 1.0152 2.8137 0.5662 0.6584 1.1518 0.3741 0.4651 0.6755
5 14069 1.6904 2.1619 0.7833 0.9428 1.3183 0.5020 0.6275 1.1525

10 1 0.0471 0.0494 0.0494 0.0448 0.0448 0.0471 0.0393 0.0393 0.0393
2 0.2107 0.2178 0.3203 0.1732 0.1819 0.2344 0.1326 0.1442 0.1605
3 0.4862 0.5245 1.0974 0.3500 0.3846 0.5813 0.2480 0.2838 0.3441
4 0.8792 0.9971 2.6974 0.5545 0.6337 1.0380 0.3848 0.4441 0.5695
5 1.3961 1.6683 2.1203 0.7709 0.9121 1.2370 0.5414 0.6221 0.9954

Elastik ortama gdmiilii KDH ¢ubuklarin boyutsuz elastik ortam rijitliginin farkl
degerleri icin modifiye edilmis yerel olmayan sonlu eleman formiilasyonu ile analizleri
Cizelgeler 4.33-4.35 ile verilmektedir. Buna goére nanogubuklarin ilk bes mod
frekanslarinin klasik elastisiteye gore yakinsama calismalar1 Cizelge 4.33’te, yerel
olmayan elastisiteye gore yakisama ¢alismalar1 Cizelge 4.34’te ve bu iki analizin sapma
yiizdeleri toplu olarak Cizelge 4.35°te listelenmektedir. Bu analizlerin 6ncelikli amaci
onerilen sonlu eleman formiilasyonunun elastik rijit ortamin dahil oldugu yerel olmayan
serbest eksenel titresim probleminde kullanilabilirliginin vurgulanmasidir. Sapma
yiizdeleri elastik ortama gémiilii gubuklarda formiilasyonun kullanilabilecegini agik bir
sekilde gostermektedir. Dolayisi ile sirasiyla Denklemler (3.258) ve (3.259) ile ifade
yerel olmayan nanogubuklarin sonlu eleman analizinde oldugu gibi kullanilabilecegi
anlasilir. Elastik ortam parametresi arttikca sonlu eleman analizinin yakinsakliginin
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yiikseldigi ve bu yakinsakligin yerel olmayan parametre arttik¢a arttigi gézlemlenir. Bu
sonugclar 6nerilen formiilasyonun oldukca basarili oldugunu ortaya koyar.

Cizelge 4.36. iki ucu tutulu KDFD nanogubuklarin farkli boyutsuz yerel olmayan
parametre ve gli¢ indeksi degerlerine gore modifiye edilmis yerel olmayan sonlu
elemanlar formiilasyonuyla hesaplanan ilk bes mod boyutsuz frekanslarinin
karsilastirilmast

P Mod #=0.1 7=02
Analitik  NL-FEM Sonuglar Analitik  NL-FEM Sonuglar
n=15 n=10 n=>5 n=15 n=10 n=>5
001 1 29115 29130 2.9131 2.9133 2.4528 24539 24540  2.4541
2 49024 49115 49121  4.9160 3.3354 33401  3.3408 3.3422
3 6.0321 6.0540 6.0566 6.0722 3.6317  3.6409  3.6429 3.6472
4 6.6581  6.6959 6.7021 6.7357 3.7538  3.7677  3.7714  3.7798
5 7.0189 7.0739 7.0853 7.1120 3.8124  3.8313  3.8363 3.8573
1 1 24488  2.4501 2.4501 2.4503 2.0630 2.0640 2.0640  2.0641
2 41233 41309  4.1315  4.1348 2.8053 2.8093  2.8098 2.8110
3 5.0734  5.0919 5.0941 5.1072 3.0546  3.0623  3.0640 3.0676
4 5.6000 5.6317 5.6370  5.6653 3.1572  3.1689  3.1720 3.1791
5 5.9034 59497 59593  5.9818 3.2065  3.2224  3.2267 3.2443
10 1 1.7593 1.7602 1.7602 1.7603 1.4821 1.4828 1.4828 1.4829
2 2.9623  2.9678 2.9683 2.9707 2.0154 2.0183  2.0187 2.0196
3 3.6450 3.6584  3.6601  3.6696 2.1946 2.2001  2.2013 2.2041
4 4.0236  4.0464  4.0505  4.0710 2.2685 2.2767  2.2790  2.2843
5 42419 42749  4.2823  4.3000 2.3041 2.3150  2.3182 2.3322

Iki ucu tutulu KDFD nanogubuklarin ilk bes mod boyutsuz frekans parametreleri,
yerel olmayan boyutsuz parametre ve gii¢ indeksinin farkli degerlerine gore analitik ve
sonlu eleman ¢6ziimleri ile hesaplanmis olup bunlar Cizelge 4.36’da karsilastirilmaktadir.
Sonuglara biitiin olarak g6z atildiginda sonlu eleman sonuglarinin olduk¢a uygun oldugu
gozlemlenir. Dolayisi ile yerel olmayan Love-Bishop cubuklarmin serbest eksenel
titresimi hakkinda onerilen formiilasyonun fonksiyonel derecelendirilmis malzemeden
imal edilen nanogubuklar i¢in de kullanilabilir oldugu sonucuna varilir.
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Cizelge 4.37. Elastik ortama gomiilii KDFD nanogubuklarin farkli boyutsuz elastik ortam
parametresi, boyutsuz yerel olmayan parametre ve gii¢ indeksi degerlerine goére modifiye
edilmis yerel olmayan sonlu elemanlar formiilasyonuyla hesaplanan ilk i¢ mod boyutsuz

frekanslar1 (n = 15)

Smir Ky 7 1. Mod 2. Maod 3. Mod
Sart »=0 p=001 p=10 » =0 p=001 p=10 » =0 p=00l p=10
CF O 0 15709 15670 0.9468 47152 47035 2.8421 7.8670  7.8475  4.7422
0.1 15408 15370 0.9287 4.0501 4.0401 2.4412 55799 55661 3.3635
0.2 14599 1.4562 0.8799 3.0300 3.0225 1.8263 3.5346  3.5258  2.1305
1 0 1.8622 1.8597 15174 48200 4.8089  3.0795 7.9303 7.9112 4.8882
0.1 1.8330 1.8306 1.4995 41599 41505 2.6884 5.6523 5.6389  3.5294
0.2 17550 1.7528 1.4520 3.1560 3.1492  2.1052 3.6323  3.6241  2.3503
10 0 35309 35337 3.8674 5.6773 5.6704  4.7049 8.4786  8.4624  6.0452
0.1 3.4973 35001 3.8370 5.0417 5.0365 4.3170 6.2665 6.2563  4.7696
0.2 3.4088 3.4116 3.7571 41205 41179 3.7812 44155 44110 3.7925
CcC O 0 3.1424 31346  1.8941 6.2898 6.2742  3.7913 9.4475 9.4241  5.6952
0.1 29203 29130 1.7602 49237 49115 2.9678 6.0690 6.0540  3.6584
0.2 24600 24539 1.4828 3.3484 33401 2.0183 3.6500 3.6409  2.2001
1 0 32977 32907 2.2346 6.3688  6.3537  3.9724 9.5003 9.4772 5.8172
0.1 3.0784 3.0721 2.1053 5.0097 4.9980 3.1638 6.1329 6.1182  3.8052
0.2 2.6280 2.6228 1.8440 3.4559  3.4481  2.2586 3.7420  3.7335  2.4077
10 0 44580 4.4561 4.2009 7.0399 7.0282 5.3321 9.9625 9.9418  6.8182
0.1 4.2445 42431 4.0545 57261 57180 4.5633 6.6803 6.6685  4.9336
0.2 3.8209 3.8205  3.7705 43038 43000 3.7881 4.4863 44814  3.7953

KDFD nanogubuklarin yerel olmayan eksenel serbest titresim analizleri i¢in son
olarak elastik ortama gomiilii ¢ubuklar {izerinde sonlu eleman formiilasyonunun
uygulamalar1 Cizelge 4.35 ile sunulmaktadir. Burada boyutsuz elastik ortam rijitligi,
boyutsuz atomik parametre ve gii¢c indeksinin farkli degerleri icin ilk tic mod boyutsuz
frekans parametreleri listelenmektedir. Sonuclarin mukayesesi i¢in Cizelge 4.26
incelenmelidir. Buna gore analitik sonuglar, 6nerilen sonlu eleman ¢oziimii ile oldukca
yiiksek bir uyuma sahiptir. Bu arada, tez kapsaminda ele alinmis olan yerel olmayan sonlu
elemanlar formiilasyonunun modifikasyon siirecinde ilk defa modifiye edilmis
formiilasyon son olarak bu ¢izelgeye uygulandiginda, Cizelge 4.31’in de islenme sebebi
olan #=0.2, K;,= 10 ve p =10 parametreleri altinda iki simnir sartin sonuglar1 analitik
sonuglarin altindaydi ve negatif sapma ihmal edilemez bir diizeydeydi. Atomik
parametrenin degerinin ylikselmesi veya yiiksek sonlu eleman sayilar1 ile analizde
sorunun giderek biiyliyeceginden gayet tabii olarak siiphelenilmistir. Bu nedenle yerel
olmayan sonlu elemanlar formiilasyonu hakkinda ikinci bir modifikasyon siirecine
gidilmis olup, nihai formiilasyon kayma deformasyonlu fonksiyonel derecelendirilmis
nanogubuklarin yerel olmayan eksenel serbest titresim analizi i¢in biiyiik bir alternatif
¢Oziim olabilecegini ¢esitli analizlerdeki basarisi ile gostermistir.

Buradan itibaren KDFD eksenel nanocubuklarin yerel olmayan serbest titresimi
hakkinda grafiksel sonuglar ve tartismalar1 sunulmaktadir. Ilk olarak, giic indeksinin
artigina gore ilk iki mod boyutsuz frekanslarin degisimi bir ucu tutulu diger ucu serbest
nanogubuk i¢in Sekil 4.14’te ve iki ucu tutulu nanogubuk i¢in Sekil 4.15°te verilmektedir.
KDFD nanokirislerin sonuglarina benzer olarak, gii¢ indeksinin boyutsuz frekanslar
azalttig1r gozlemlenir. Gii¢ indeksinin yilizde birler mertebesindeki artisi icin frekanslar
cok fazla etkilenmezken bu mertebe sona erdikten sonra gili¢ indeksinin artist igin
frekanslar daha fazla azalir ve onlar mertebesinin sonunda frekanslardaki azalmanin
siddeti azalir. Gii¢ indeksinin frekanslar lizerindeki etkisi yerel olmayan parametre
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azaldikca azalmaktadir. Ayrica, gili¢ indeksinin yiiksek modda daha fazla etkili oldugu
gdzlemlenmistir. Ote yandan, 6zellikle yerel olmayan analizde, gii¢ indeksi bir ucu tutulu
diger ucu serbest nanogubukta iki ucu tutulu nanogubuga gore daha etkindir. Elde edilen
degerler, kompozit nanogubuklarin mekanik davranigsinda boyut etkisinin mutlaka g6z
Oniine alinmasi gerektigini vurgular.
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Sekil 4.14. Bir ucu tutulu diger ucu serbest KDFD nanogubuklarin gii¢ indeksinin artisina
gore boyutsuz frekanslarinin degisimi; a) 1. Mod; b) 2. Mod
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Sekil 4.15. iki ucu tutulu KDFD nanogubuklarin gii¢ indeksinin artisina goére boyutsuz
frekanslarinin degisimi; a) 1. Mod; b) 2. Mod
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Sekil 4.16. Elastik ortama gomiilii bir ucu tutulu diger ucu serbest KDFD nanogubuklarin
boyutsuz elastik ortam rijitliginin artisina goére temel mod boyutsuz frekanslarinin
degisimi; @) p=0; b) p=10
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Sekil 4.17. Elastik ortama gomiilii iki ucu tutulu KDFD nanogubuklarin boyutsuz elastik
ortam rijitliginin artisina gore temel mod boyutsuz frekanslarmin degisimi; a) p = 0;
b) p=10

Sekiller 4.16 ve 4.17°de, eksenel tam elastik ortama gémiilii sirayla bir ucu tutulu
diger ucu serbest ve iki ucu tutulu kayma deformasyonlu nanogubuklarin boyutsuz elastik
ortam rijitliginin artisina karsilik boyutsuz frekanslarinin degisimleri homojen ve
fonksiyonel derecelendirilmis malzeme i¢in ayr1 ayr1 resmedilmektedir. Buna gore, ilk
olarak elastik ortamin frekanslar1 yiikseltmekte olan bir faktor oldugu goézlemlenmistir.
Elastik ortam genel olarak bir ucu tutulu diger ucu serbest nanogubugun frekanslarini
daha fazla artirmakta, dahasi yerel olmayan parametre arttik¢a elastik ortamin frekans
yiikseltme kabiliyeti artmaktadir. KDFD nanogubukta, boyutsuz frekanslar arasindaki
farklilik elastik ortam rijitliginin yiiksek degerlerinde belirginlesirken homojen
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nanogubuk i¢in bdyle bir c¢ikarim yapilamaz. Bu sonuglar, KDFD nanogubuklarin
bulunabilecegi elastik ortamin da atomik boyut etkili mekanik davranis iizerinde 6nemli
bir etkisinin oldugunu ortaya koyar.
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Sekil 4.18. Elastik ortama gomiilii iki ucu tutulu KDFD nanogubuklarin sonlu eleman

sayisinin artigina gore boyutsuz frekanslarinin sapma yiizdelerinin degisimi (y = 0.3,
Ky =5,p=75);a) 1. Mod; b) 4. Mod

Buradan itibaren verilen grafik sonu¢larda KDFD eksenel nanogubuklarin yerel
olmayan serbest titresim analizleri yerel olmayan sonlu elemanlar formiilasyonu ile
yiirlitiilmiis olup, analizlerde 10 eleman kullamilmistir. Hatirlatilacak olursa, yerel
olmayan sonlu elemanlar formiilasyonunun kayma deformasyonlu homojen eksenel
nanogubuklarin serbest titresim analizlerinde birtakim basarisiz sonuglar verdigi tespit
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edildiginden, Cizelgeler 4.27-4.35 {izerinden, belirli bir teknik izlenmek suretiyle ¢esitli
aragtirmalar yapilarak KDFD eksenel nanogubuklar i¢in kullanislilign miimkiin
oldugunca yiiksek bir formiilasyonun eldesine ugrasilmisti. Bu kapsamda modifiye
edilmis nihai yerel olmayan sonlu elemanlar formiilasyonunun sonuglari verilerek
yaklagimin kullanilabilirligi gosterilmisti. Bu defa, modifiye edilmis yerel olmayan sonlu
elemanlar formiilasyonu hakkinda, secilmis bir boyutsuz yerel olmayan parametre
diistintilerek formiilasyonun analitik neticelerden sapma yiizdelerini gdsteren bir ¢aligma
Sekil 4.18 ile verilmektedir. Buna gore, formiilasyonda herhangi bir diizeltme islemi
bulunmayan (orijinal formiilasyon), Denklemler (4.11)-(4.13) {izerinden ilk defa
modifiye edilen ve bu denklemlere ek olarak Denklem (4.14) lizerinden ikinci defa
modifiye edilerek nihai haline kavusturulan ti¢ farkli yerel olmayan sonlu eleman analizi
gozetilerek, sonlu eleman sayisinin artisina gore hesaplanan sapma yiizdelerinin
degisimleri temel ve dordiincii mod i¢in verilmektedir. Burada formiilasyonun basarisinin
tespiti agisindan yiiksek bir modun verilmesi tercih edilmistir. Sonuglarin incelenmesine
gelince, gorildiigl lizere sonlu eleman sayisi arttik¢a, orijinal formiilasyonun negatif
sapmalar nedeniyle giderek artan bir basarisizligi mevcuttur. ilk defa modifiye edilen
formiilasyonun s6z konusu mekanik analizde negatif sapmalar1 diisiirdiigii, ancak bu
sapmalarin sonlu eleman sayisi arttik¢a arttigi yine gozlemlenmistir. Son olarak, nihai
halini almis formiilasyonun sifira olduk¢a yakin sapma degerleri sundugu rahatlikla ifade
edilebilir. Tabi, glic indeksi ve elastik ortam parametrelerinin yiiksek veya ekstrem
degerleri altinda onerilen formiilasyonun basarisinin diisebilecegi not edilmelidir. Yerel
olmayan sonlu elemanlar formiilasyonunun modifiye edilerek bir nevi rehabilite edilmesi
siirecindeki esas amacin, miimkiin oldugunca diigiik hata igerisinde, KDFD eksenel
nanocubuklarin analitik ¢6ziimii zor hatta imkansiz mekanik analizleri icin
basvurulabilecek ve mekanik davranisinin dogru anlasilmasina araci olabilecek bir
yaklagimin elde edilmesi oldugu vurgulanmalidir.

[ 1. Mod E02. Mod [_13. Mod 4. Mod] \

Boyutsuz frekans

log p N

Sekil 4.19. Bir ucu tutulu diger ucu serbest KDFD nanogubuklarin gii¢ indeksi ve
boyutsuz atomik parametre degerlerinin artigina gore ilk dért mod boyutsuz frekanslarinin
degisimi
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Sekil 4.20. iki ucu tutulu KDFD nanogubuklarin gii¢ indeksi ve boyutsuz atomik
parametre degerlerinin artigina gore ilk dort mod boyutsuz frekanslarinin degisimi

Yerel olmayan boyutsuz parametre ve giic indeksinin artigina karsilik bir ucu
tutulu diger ucu serbest ve iki ucu tutulu KDFD nanogubuklarin boyutsuz frekanslarinin
degisim ylizeyleri ilk dért mod igin sirasiyla Sekiller 4.19 ve 4.20’de betimlenmektedir.
Yiiksek modlara ait yiizeylerden daha belirgin goriilecegi lizere, gii¢c indeksi genellikle
klasik nanogubuk iizerinde daha etkili olmakta ve bu etki yerel olmayan parametrenin
artigt ile azalmaktadir. Ayrica yerel olmayan parametre gibi gii¢ indeksi de iki ucu tutulu
nanogubuklarin boyutsuz frekanslarini bir ucu tutulu diger ucu serbest nanogubuga gore
daha fazla indirgemektedir.

Sekiller 4.21 ve 4.22°de, sirasiyla bir ucu tutulu diger ucu serbest ve iki ucu tutulu
KDFD nanogubuklarin ilk iki mod boyutsuz frekanslarinin narinlik orani ve giic
indeksinin artig1 altinda degisimlerini ifade eden ylizeyler ¢izdirilmektedir. Nanokirislerin
ilgili analizlerinde oldugu gibi bu analizlerde de kesit yiiksekligi sabit ve 2 = 1 nm olarak
diisiiniilmistlir. Narinlik oraninin genellikle klasik boyutsuz frekanslar1 etkilemedigi
anlagilmaktadir. Yerel olmayan nanocubuklarda ise, narinlik orani arttik¢a frekanslarin
yiikseldigi gozlemlenir. Frekanslarin bu artisi, gii¢ indeksi arttik¢a azalir. Tabi boyutsuz
frekanslardaki yiikselme narinlik orani arttik¢ca azalir ¢iinkii daha yiiksek artiglar i¢in
boyutsuz frekanslar tizerinde nanogubugun kayma deformasyonunun (veya yanal atalet
veya Poisson etkisi) etkisi azalir. Bu durumda davranis basit (kayma deformasyonsuz)
cubuk teorisine yakinsamaktadir. Bunlarin haricinde, diisiik uzunluklu nanocgubuklarda
klasige gore frekans azalmasi daha fazladir ¢iinkii i¢ karakteristik uzunluk dis
karakteristik uzunluga oldukca yakindir. Ayrica, gii¢ indeksinin frekans diisiirme etkisi
yiiksek uzunluklu nanogubuklarda daha fazla olarak gézlemlenmektedir.
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Sekil 4.21. Bir ucu tutulu diger ucu serbest KDFD nanocubuklarin gii¢ indeksi ve
uzunluk/yiikseklik oran1 degerlerinin artigina gore boyutsuz frekanslarinin degisimi; a) 1.
Mod; b) 2. Mod
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Sekil 4.22. iki ucu tutulu KDFD nanogubuklarm gii¢ indeksi ve uzunluk/yiikseklik oran

degerlerinin artigina gore boyutsuz frekanslarinin degisimi; a) 1. Mod;

b) 2. Mod
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Sekil 4.23. Elastik ortama gémiilii bir ucu tutulu diger ucu serbest KDFD nanogubuklarin
giic indeksi ve boyutsuz elastik ortam rijitligi degerlerinin artisina gore boyutsuz

frekanslarinin degisimi; a) 1. Mod; b) 2. Mod
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degisimi; a) 1. Mod; b) 2. Mod

KDFD eksenel nanogubuklarin atomik boyut etkili serbest titresim davraniglari
hakkindaki son arastirmalar, elastik ortama gémiilii bir ucu tutulu diger ucu serbest ve iki
ucu tutulu siir sartlar1 i¢in sirasiyla Sekiller 4.23 ve 4.24’te verilen ve boyutsuz
frekanslar lizerinde boyutsuz elastik ortam parametresi ve gili¢ indeksinin artiglarinin
etkisinin ele alinmast iizerinedir. Oncelikle, elastik ortam parametresinin ¢ok diisiik deger
araligindaki bir artisa karsilik frekanslarin daha fazla ytikseldigi ve bu durumun yiiksek
gii¢ indeksine sahip nanocubuklarda daha belirgin oldugu gozlemlenir. Elastik ortam
parametresi ve gili¢ indeksi yiikseldikge yerel olmayan parametre boyutsuz frekanslar
daha fazla azaltmaktadir. Ayrica, ¢ok yiiksek elastik ortam parametreleri i¢in gii¢
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indeksinin artisina karsilik frekanslarin ¢ogunlukla yiikseldigi ilgi ¢eken bir sonugtur. EK
olarak, boyutsuz atomik parametrenin #=0.1 degerinde, gii¢ indeksinin onlar
mertebesine kadar yiikselen frekanslarin bu mertebede tekrar azaldigi gozlemlenir. Son
olarak, elastik ortamin bir ucu tutulu diger ucu serbest nanogubugu, gii¢ indeksinin iki
ucu tutulu nanogubugu daha fazla etkiledigi bir kez daha anlasilir.

Son olarak, bu boliimiin kalan kismi1 kayma deformasyonuna sahip ve fonksiyonel
derecelendirilmis ayrik egilme yapilarinin (nanogergevelerin) serbest titresim analizi
hakkindaki sayisal sonuglar ve bunlarin tartismalari iizerine olacaktir.

Cizelge 4.38. II-Tipteki cercevelerin klasik serbest titresiminin ilk {ic mod dogal
frekanslar1 (Hz) i¢in bir yakinsama ¢aligmasi

Mod Mei (2012) Bu Tez (FEM)

n=15 n=12 n=9 n==6 n=>3
1 93.8 93.9413 93.941 93.9435 93.9523 94.0519
2 275.2 275.7400 275.8276 276.1414 277.8348 350.7990
3 611.5 613.3124 613.7613 615.3430 626.2932 832.8680

Cizelge 4.39. T'l-Tipteki cercevelerin klasik serbest titresiminin ilk bes mod dogal
frekanslar1 (Hz) i¢in bir yakinsama calismasi

Mod  Mustapha  Mei Bu Tez (FEM)

(2020) (2012) n=10 n=3_ n==6 n=4 n=2
1 14.05 141 14.0514 14.0515 14.0515 14.0519 14.0570
2 38.24 38.3 38.2584 38.2588 38.2602 38.2682 38.3678
3 188.46 188.5 188.4361 188.5018 188.7243 189.7280 226.0899
4 275.51 275.5 276.0980 276.2985  276.9747 279.2162  584.5972
5 599.60 599.6 600.8070 602.7060 607.9055  681.7369 2248.3749

IT ve I'l isimleri ile sembolize edilen diizlem cerceve yapilarin dogal frekanslar
bilimsel literatiirden bulunmus bazi ¢alismalarla mukayese edilmis olup bunlar sirasiyla
Cizelgeler 4.38 ve 4.39 ile sunulmaktadir. Burada mukayeselerin amaci nanogergevelerin
serbest titresim analizi i¢in hazirlanmis yerel olmayan sonlu eleman formiilasyonunun
klasik kisminin dogrulugunun kontrol edilmesidir. Mukayeselere konu referans
caligmalar kisaca su sekilde Ozetlenmektedir: Mei (2012), diisey elemani ankastre
mesnetli-yatay eleman1 serbest uglu bir I'-tipi ger¢evenin ve diisey elemanlari ankastre
mesnetli bir [I-tipi yani portal ¢ercevenin dinamik analizlerini bir dalga yayinim, yansima
ve iletim modeli iizerinden gerceklestirmistir. Buna ek olarak, Mustapha (2020),
mikrokiris ve mikrogubuk modellerinin yani sira birisi de Mei (2012)’de ele alinan I'-tipi
olmak tizere cesitli diizlem mikrogergevelerin degistirilmis sekil degistirme elastisite
teorisine (Lam vd. 2003; Kong vd. 2009) dayanan serbest titresimi igin bir sonlu eleman
¢oziimiinii gelistirmistir. ki referansta da Timoshenko Kkiris teorisine dayanan kayma
deformasyonlari hesaba katilmistir. Mei (2012) gercevenin eksenel yondeki davranigini
kayma deformasyonsuz (basit, temel veya Poisson etkisiz) teori ile diisliniirken Mustapha
(2020) eksenel titresimi Rayleigh teorisine dayanarak incelemistir. Hatirlatilacak olursa
eksenel titresimde Rayleigh teorisinin Love-Bishop teorisinden farki Rayleigh teorisinin
yanal atalet rijitligini (> GIp) ihmal etmesidir, bu ataletten kaynakl kiitle (2pI,) ve yerel

olmayan kiitle ((eoa)zvzplp) iki formiilasyonda da gecerlidir. Tabi tez kapsaminda
nanogercgeveler icin gelistirilen yerel olmayan sonlu elemanlar formiilasyonunda eksenel
serbestlikler icin basit ¢cubuk kinematigi diisiinilmiistii. Bunun nedeni olarak kayma
deformasyonunu diisiinen yiiksek mertebeli eksenel cubuk teorilerinin asgari ii¢ diigiimlii
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elemana ihtiya¢ duyuyor olmasi gosterilmisti. Bunlarin haricinde, referans ¢alismalardan
alinan geometrik ve mekanik parametreler, iki ¢cerceve tipi i¢in de gegerli olmak suretiyle,
yapt Uyelerinin elastisite modiilleri esit ve £ =206 GPa, Poisson oranlari esit ve v = 0.29
(boylece kayma modiilleri esit ve G=E/2(1 +v) =79.8450 GPa), birim hacim
agirliklar esit ve p = 7800 kg/m?, iiyeler kare kesitli ve kesit boyutlar1 b =/4=1.27 cm
ve kayma diizeltme Kkatsayisi k=(10+ 100)/(12 + 11v) =0.8492, II-tipindeki
cercevenin yatay liye uzunlugu L, = 0.4 m, diisey liye uzunluklar1 esit ve L, =0.3 m, I'-
tipindeki ¢ercevenin iiye uzunluklart esit ve L, =L, =0.5 m olarak disiinilmiistiir.
Sonuglar1 incelemeden once sonlu eleman analizleri hakkinda bir bilgi verilmelidir.
Analizde biitiin liyeler esit sayida elemana boliinmekte olup, ¢izelgelerin yakinsama
sonuglarinda yer alan sonlu eleman sayilar1 nanoyapidaki toplam sonlu eleman sayisidir.
Ornegin her iiye tek sonlu eleman olarak belirlenmisse bunlar Cizelge 4.38 ve 4.39°da
sirasiyla n =3 ve n =2 olarak verilir. Sonuglar toplu degerlendirilecek olursa, 6zellikle
yiiksek sonlu elemana boliinmiis ¢ercevelerin dogal frekanslar1 referans sonuglarla ¢cok
biliyiik bir uyum gostermektedir. Diigiik sonlu eleman sayilarinda yiiksek modlarin
referanslarla farkliligi ¢ok yiiksek bir diizeydedir ve sonlu eleman sayisinin artisi ile
yilksek modlar referans c¢alismalara ¢ok hizli yakinsamaktadir. Bunlarin haricinde,
Cizelge 4.39°daki sonuglar Mustapha (2020)’nin ¢alismasinda gozetilen eksenel gubuk
kinematigi ile bu tezde gozetilenin farkliliginin agik¢asi 6nemsiz oldugunu gosterir. Yani
cergevelerin analizinde egilme titresiminin baskin geldigi diisiiniilebilir. Nihayetinde,
tezde formiile edilmis yerel olmayan sonlu elemanlar ¢oziimiiniin simdilik klasik
elastisite icin dogru oldugu goriiliir ama analizlerin her iiyenin en azindan iki veya ii¢
elemana boliinmesi suretiyle gerceklestirilmesinin atomik dlgekli mekanik davranisin
anlasilabilmesi i¢in daha saglikli olacagi da mutlaka not edilmelidir.

Ug farkl: tip nanogergevenin homojen malzemeden olma durumu igin ilk ii¢ mod
boyutsuz frekanslar1 Cizelge 4.40’ta karsilastiriimaktadir. Oncelikle, referans calismada
nanocergevenin egilme formiilasyonunun kayma deformasyonlarini ihmal eden Euler-
Bernoulli kiris teorisine (EBBT) gore yapilandirildig, tezde ise egilme serbestlikleri igin
temel kayma deformasyonlu kiris teorisi olan Timoshenko kiris teorisi (TBT) goz oniine
alindigindan sonuclarin arasinda bir farklilik olugsmasinin beklendigi belirtilmelidir.
Ayrica, referansta ii¢ ¢cerceve tipi i¢in de gegerli olmak suretiyle, ¢ergeve tiye uzunluklari
esit ve L=20nm ve iyelerin kesiti i¢i dolu daire ve kesit ¢apt D=5 nm olarak
diistiniilmiistiir. Daire kesit kullanildigindan analizde bu durum kesme diizeltme katsayisi
k=0.877 (Reddy ve Pang 2008) ile g6z ontine alinmistir. Ek olarak, yine yerel olmayan
sonlu elemanlar formiilasyonunu kullanan referans caligmada her nanogercevede biitiin
tiyeler tek basina sonlu eleman olarak diisliniilmiistiir. Acikcasi, ayrik nanosistemlerin
mekanik davraniglar1 {izerine bilimsel literatiirde halen ¢ok biiyiik bosluklar mevcuttur.
Kayma deformasyonlu atomik 6l¢ekli ¢ergevelerin baska bir metodoloji kullanilarak
dinamik analizi hakkinda bilimsel literatiirde ¢alisma tespit edilemediginden burada
mukayeseler dogrudan degil dolayli olarak yapilabilmektedir. Dolayisiyla bu teze konu
formiilasyonun {irettigi sonuglarin en azindan mantikli bir konumda olup olmadigini
anlamak acisindan bdyle bir mukayese tercih edilmistir. Bilindigi {izere, kayma
deformasyonlu titresim analizinde frekanslarin kayma deformasyonunu ihmal eden
analize gore daha diisiik hesaplanmasi beklenir. Gerek bu bilginin analizler sonucunda
referansa gore dogrulanmasi, gerekse atomik parametre arttikca boyutsuz frekanslarin
diismesi nedeniyle formiilasyonun uygun oldugu ifade edilebilir. Mekaniksel tartismalar
ise izleyen ¢izelgelerin konusu olacaktir.
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Cizelge 4.40. Farkli tipteki kayma deformasyonsuz ve kayma deformasyonlu homojen
nanocercevelerin farkli boyutsuz yerel olmayan parametre degerlerine gore ilk ii¢ mod
boyutsuz frekanslarinin karsilastirilmasi

Cergeve 7 Mod EBBT (Numanoglu ve TBT (Bu Tez)
Civalek 2019)
T 0 1 3.17908 3.1470
2 12.89036 12.4401
3 22.02454 21.4796
0.05 1 3.17344 3.1410
2 12.80304 12.3302
3 21.86525 21.3221
0.15 1 3.12934 3.0940
2 12.12118 11.4961
3 20.70377 20.1279
A 0 1 16.96067 16.4209
(o =45°) 2 19.50052 19.3413
3 30.12516 26.9431
0.05 1 16.84658 16.2553
2 19.42487 19.2622
3 29.37241 26.3484
0.15 1 15.94442 14.9769
2 18.84978 18.6639
3 25.11296 23.0736
I'l 0 1 1.20664 1.1536
(o =90°) 2 3.30368 3.1183
3 17.10463 14.6451
0.05 1 1.20340 1.1506
2 3.29167 3.1085
3 16.74960 14.3515
0.15 1 1.17289 1.1281
2 3.20116 3.0338
3 14.30896 12.4314

Buradan itibaren goriilen cizelgelerde kayma deformasyonlu fonksiyonel
derecelendirilmis nanogerceve yapilarinin boyutsuz frekanslari verilmektedir. Analize
konu nanogergevenin biitlin {yelerinin ilicer sonlu elemana boliinmesi suretiyle
hesaplamalar gerceklestirilmistir. Ayrica, iiyelerin alt yiizey malzemelerinin yapinin
siirlandirdigi bolgeye dogru yani yapinin i¢ine dogru baktigi mutlaka belirtilmelidir.
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Cizelge 4.41. Farkli tipteki KDFD nanogergevelerin farkli boyutsuz yerel olmayan
parametre ve gii¢ indeksi degerlerine gore ilk ic mod boyutsuz frekanslar

Cergeve 7 Mod p=0.01 p=0.1 p=1 p=2 p=10
I 0 1 3.1887 3.0838 2.4643 2.2488 2.0771
2 12.5033 12.0941 9.6730 8.8253 8.1345
3 20.4579 19.7873 15.8206 14.4337 13.3132
0.1 1 3.1664 3.0622 24471 2.2331 2.0626
2 11.8924 11.5030 9.1993 8.3931 7.7379
3 18.9717 18.3500 14.6720 13.3855 12.3450
0.2 1 3.1022 3.0002 2.3976 2.1878 2.0208
2 10.4821 10.1386 8.1068 7.3964 6.8215
3 15.8978 15.3771 12.2958 11.2173 10.3432
A 0 1 15.2680 14.7678 11.8095 10.7747 9.9349
(o =45°) 2 22.0569 21.3378 17.0785 15.5807 14.3365
3 49.1440 47.5586 38.1259 34.7670 31.8524
0.1 1 14.4615 13.9877 11.1849 10.2047 9.4106
2 20.8220 20.1427 16.1193 14.7053 13.5354
3 41.2573 39.9200 31.9731 29.1566 26.7696
0.2 1 12.6311 12.2170 9.7682 8.9120 8.2199
2 18.0581 17.4685 13.9760 12.7493 11.7402
3 29.9979 29.0237 23.2365 21.1890 19.4714
2 0 1 15.3063 14.8040 11.8345 10.7977 9.9638
(o =45°) 2 21.0485 20.3864 16.4234 14.9753 13.5711
3 49.6367 48.0219 38.4386 35.0559 31.2114
0.1 1 14.4889 14.0135 11.2027 10.2212 9.4313
2 20.0556 19.4199 15.6233 14.2469 12.9515
3 41.4364 40.0886 32.0876 29.2623 26.9071
0.2 1 12.6424 12.2277 9.7755 8.9188 8.2285
2 17.6772 17.1095 13.7307 12.5227 11.4485
3 30.0301 29.0540 23.2573 21.2081 19.4958

Uye ayaklari ankastre mesnetli olan ii¢ farkli tipteki kayma deformasyonlu
fonksiyonel derecelendirilmis nanogercevelerin ilk {ic mod yerel olmayan boyutsuz
frekans parametreleri, giic indeksinin farkli degerlerine gore hesaplanmis olup bunlar
Cizelge 4.41°de listelenmektedir. Bu ve kalan analizlerin tamami bu sekilde bir
yapilandirmay1 gbz onilinde bulunduracaktir. Sonuglara gore, boyutsuz frekanslarin yerel
olmayan parametre degerleri altinda azalmakta oldugu ve bu azalmanin yiiksek modlarda
daha fazla oldugu gdzlemlenir. Ote yandan, fonksiyonel derecelendirilme giic indeksi
arttikca boyutsuz frekanslarin diismekte oldugu, giic indeksi arttikga bu diisiisiin
siddetlendigi de bir diger ¢ikarimdir. Ayrica, ayni uzunluk ve kesite sahip daha fazla tiyesi
bulundugundan en diisiik boyutsuz frekanslar portal cergevede elde edilir ¢linkii sistemin
agirlik artisi rijitlik artisina gore baskin geldiginden frekanslar diigser. Bu cercevede yatay
iiyenin mesnetli olmadigi da hatirlanmalidir. Ote yandan, ¢ok bilyiik bir farklilik
olmamakla beraber I'-tip ¢ergevenin boyutsuz frekanslarinin A-tip g¢er¢evelerden yiiksek
hesaplandig1 goriiliir. Bunun sebebinin I'-tip ¢ergevede bir liye yatayken A-tip ¢ercevede
bir iiyenin daha yataya gore yonelimli olmasi oldugu belirtilebilir ¢iinkii yonelim
nedeniyle rijitlik az da olsa bir miktar azalmaktadir. Ayrica yerel olmayan parametre
portaldan daha rijit olan bu iki sistemi portal gerceveye gore daha fazla etkilemistir.
Sonuglar nanocgergevelerde atomik boyut etkisinin mutlaka hesaba katilmas1 gerektigini
belirttigi gibi, fonksiyonel derecelendirilmis sistemlerde gili¢ indeksinin de énemli bir
etmen oldugunu ortaya koyar.
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Cizelge 4.42. I'-Tipteki farkli sinir sartlh KDFD nanogergevelerin farkli boyutsuz yerel
olmayan parametre ve gii¢ indeksi degerlerine gore temel mod boyutsuz frekanslari
(a=90°)

Cerceve n p=0.01 p=0.1 p=1 p=2 p=10
I'1l 0 1.1662 1.1278 0.9012 0.8224 0.7597
0.1 1.1543 1.1163 0.8921 0.8140 0.7520
0.2 1.1205 1.0837 0.8660 0.7902 0.7300
2 0 15.2679 14.7678 11.8095 10.7747 9.9349
0.1 14.4615 13.9876 11.1849 10.2047 9.4106
0.2 12.6311 12.2170 9.7682 8.9120 8.2199
I3 0 11.3991 11.0256 8.8164 8.0439 7.4181
0.1 10.8560 10.5001 8.3958 7.6602 7.0651
0.2 9.5966 9.2819 7.4210 6.7708 6.2462
r4 0 2.2823 2.2072 1.7637 1.6095 1.4868
0.1 2.2713 2.1965 1.7552 1.6017 1.4797
0.2 2.2391 2.1654 1.7304 1.5790 1.4587
rs 0 2.4521 2.3714 1.8954 1.7294 1.5970
0.1 2.4078 2.3286 1.8611 1.6982 1.5681
0.2 2.2874 2.2122 1.7681 1.6133 1.4898
r'e6 0 2.3852 2.3067 1.8433 1.6820 1.5538
0.1 2.3744 2.2963 1.8350 1.6745 1.5468
0.2 2.3427 2.2656 1.8105 1.6521 1.5262
r7 0 4.0925 3.9580 3.1636 2.8867 2.6652
0.1 4.0373 3.9046 3.1209 2.8478 2.6293
0.2 3.8841 3.7565 3.0024 2.7397 2.5296

[-Tipteki KDFD nanogergevelerin yatay elemaninin bos ucundan yedi farkli
mesnetlenme durumu i¢in yerel olmayan temel mod boyutsuz frekans parametreleri
Cizelge 4.42 ile verilmektedir. Burada iki iiyesi de ankastre mesnetlendiginden en rijit
sistem olan I'2°nin boyutsuz frekanslar1 atomik parametre tarafindan oransal olarak daha
fazla indirgenir ve gii¢ indeksi bu sistemlerin frekansini fark olarak daha fazla azaltir. Ote
yandan I'4-I'5 ve T'6-I'7 nanogergeveleri kendi i¢lerinde kiyaslandiklarinda, eksenel
hareketi engellenmis uca sahip sistemlerin frekanslarinin daha yiiksek hesaplandig
gozlemlenir. I'7 nanogergevesinin yatay liyesinin ucunun dénmesi engellenmisken I'5
nanogercgevesinde s6z konusu mesnetlenme durumu i¢in bu gegerli degildir. Bu nedenle
I'7’nin boyutsuz frekanslari I'5’ten yiiksektir ve bdylece bu sistemlerin atomik
parametreden daha fazla etkiledigi sonucuna varilir.

Cizelge 4.43’te, A-Tipteki KDFD nanogercevelerin liyelerinin farkli yonelimleri
icin yerel olmayan temel mod boyutsuz frekanslar1 tizerinde giic indeksinin etkisi
sunulmaktadir. Oncelikle, ydnelim agisinin boyutsuz frekanslar1 az da olsa diisiirdiigii
gozlemlenir. Gii¢ indeksi arttik¢a yonelim agisinin boyutsuz frekanslar {izerinde etkisi
azalir. Ek olarak, yonelim agis1 arttikca atomik parametrenin boyutsuz frekanslar tizerinde
biraz daha fazla 6nem kazandig1 da anlasilmaktadir.

I'-Tipteki KDFD nanocercevelerin diisey iiyelerinin farkli yonelim agilar1 ve giig
indeksi degerlerine gore temel mod boyutsuz frekans parametreleri, yatay iiye ucunun
bosta olmasi durumu icin Cizelge 4.44°te, ankastre mesnetli olmasi durumu i¢in Cizelge
4.45’te ve sabit mesnetli olma durumu i¢in Cizelge 4.46°da verilmektedir. Yerel olmayan
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parametrenin I'2 nanogercevesinde daha fazla etkili olmasina ek olarak, yonelim agis1 ve
giic indeksi gibi parametreler de bu sistemlerin frekanslarinin daha fazla azalmasina
sebep olmaktadir.

Cizelge 4.43. A-Tipteki KDFD nanogergevelerin farkli yonelim agisi, boyutsuz yerel
olmayan parametre ve gii¢c indeksi degerlerine gore temel mod boyutsuz frekanslari

a (°) n p=0.01 p=0.1 p=1 p=2 p=10
15 0 15.3109 14.8083 11.8375 10.8004 9.9672
0.1 14.4921 14.0166 11.2049 10.2232 9.4337
0.2 12.6437 12.2290 9.7764 8.9196 8.2295
30 0 15.2987 14.7969 11.8296 10.7932 9.9581
0.1 14.4835 14.0084 11.1993 10.2180 0.4272
0.2 12.6402 12.2256 9.7741 8.9175 8.2268
45 0 15.2680 14.7678 11.8095 10.7747 9.9349
0.1 14.4615 13.9877 11.1849 10.2047 9.4106
0.2 12.6311 12.2170 9.7682 8.9120 8.2199
60 0 15.1754 14.6805 11.7492 10.7189 0.8649
0.1 14.3950 13.9249 11.1416 10.1647 9.3603
0.2 12.6034 12.1909 9.7501 8.8953 8.1990
75 0 14.6688 14.2021 11.4185 10.4134 0.4821
0.1 14.0217 13.5726 10.8991 9.9406 9.0768
0.2 12.4415 12.0384 9.6458 8.7989 8.0751

Cizelge 4.44. T'1-Tipteki KDFD nanogergevelerin farkli yonelim agisi, boyutsuz yerel
olmayan parametre ve gii¢ indeksi degerlerine gore temel mod boyutsuz frekanslar

a (%) 7 p=0.01 p=0.1 p=1 p=2 p=10
15 0 0.8818 0.8528 0.6814 0.6218 0.5745
0.1 0.8766 0.8478 0.6774 0.6182 0.5711
0.2 0.8616 0.8333 0.6659 0.6076 0.5613
30 0 0.9020 0.8723 0.6970 0.6361 0.5876
0.1 0.8965 0.8670 0.6928 0.6322 0.5840
0.2 0.8805 0.8515 0.6804 0.6209 0.5736
45 0 0.9372 0.9064 0.7243 0.6609 0.6106
0.1 0.9310 0.9004 0.7195 0.6565 0.6065
0.2 0.9131 0.8831 0.7056 0.6439 0.5949
60 0 0.9900 0.9574 0.7650 0.6981 0.6449
0.1 0.9827 0.9503 0.7594 0.6930 0.6402
0.2 0.9617 0.9300 0.7432 0.6782 0.6265
75 0 1.0643 1.0293 0.8225 0.7505 0.6933
0.1 1.0552 1.0205 0.8155 0.7442 0.6874
0.2 1.0293 0.9954 0.7955 0.7259 0.6705
90 0 1.1662 1.1278 0.9012 0.8224 0.7597
0.1 1.1543 1.1163 0.8921 0.8140 0.7520
0.2 1.1205 1.0837 0.8660 0.7902 0.7300
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Cizelge 4.45. I'2-Tipteki KDFD nanogergevelerin farkli yonelim agisi, boyutsuz yerel
olmayan parametre ve gii¢ indeksi degerlerine gore temel mod boyutsuz frekanslari

a (%) n p=0.01 p=0.1 p=1 p=2 p=10
15 0 13.8932 13.5398 11.3220 10.2907 8.6198
0.1 13.6737 13.3243 11.1322 10.1190 8.4886
0.2 12.6445 12.2297 9.7769 8.9201 8.1239
30 0 15.3109 14.8083 11.8375 10.8004 9.9673
0.1 14.4921 14.0166 11.2049 10.2231 9.4337
0.2 12.6437 12.2290 9.7764 8.9196 8.2295
45 0 15.3063 14.8040 11.8345 10.7977 9.9638
0.1 14.4889 14.0135 11.2028 10.2212 9.4313
0.2 12.6424 12.2277 9.7755 8.9188 8.2285
60 0 15.2988 14.7969 11.8296 10.7932 9.9581
0.1 14.4835 14.0084 11.1993 10.2180 9.4272
0.2 12.6402 12.2256 9.7741 8.9175 8.2268
75 0 15.2870 14.7858 11.8219 10.7861 9.9492
0.1 14.4751 14.0004 11.1938 10.2129 9.4209
0.2 12.6367 12.2223 9.7718 8.9154 8.2242
90 0 15.2679 14.7678 11.8095 10.7747 9.9349
0.1 14.4615 13.9877 11.1849 10.2047 9.4106
0.2 12.6311 12.2170 9.7682 8.9120 8.2199

Cizelge 4.46. I'3-Tipteki KDFD nanogergevelerin farkli yonelim agisi, boyutsuz yerel
olmayan parametre ve gii¢ indeksi degerlerine gore temel mod boyutsuz frekanslari

a(°) n p=0.01 p=0.1 p=1 p=2 p=10
15 0 10.3097 10.0052 8.1451 7.4210 6.5546
0.1 9.9536 9.6554 7.8410 7.1453 6.3464
0.2 9.0286 8.7502 7.0713 6.4464 5.7922
30 0 11.2402 10.8761 8. 7153 7.9503 7.2947
0.1 10.7217 10.3738 8.3102 7.5809 6.9611
0.2 9.5067 9.1972 7.3633 6.7175 6.1769
45 0 11.3548 10.9838 8.7879 8.0176 7.3841
0.1 10.8174 10.4638 8.3709 7.6372 7.0355
0.2 9.5689 9.2558 7.4031 6.7543 6.2250
60 0 11.3882 11.0153 8.8094 8.0375 7.0498
0.1 10.8457 10.4904 8.3892 7.6541 7.0572
0.2 9.5880 9.2738 7.4154 6.7657 6.2396
75 0 11.3992 11.0256 8.8165 8.0440 7.4181
0.1 10.8553 10.4995 8.3954 7.6598 7.0646
0.2 9.5951 9.2805 7.4200 6.7699 6.2450
90 0 11.3991 11.0256 8.8164 8.0439 7.4181
0.1 10.8560 10.5001 8.3958 7.6602 7.0651
0.2 9.5966 9.2819 7.4210 6.7708 6.2462
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Sekil 4.27. I'3-Tipteki KDFD nanogergevelerin gii¢ indeksinin artigina gére boyutsuz
frekanslarinin degisimi (o = 90°); a) 1. Mod; b) 2. Mod

Bu boliimiin kalan kisminda, secilmis birkag tipteki KDFD nanogergevelerin yerel
olmayan serbest titresim sonuglari ve tartismalari grafikler vasitasiyla verilmektedir. I1-,
I'1- ve I'3-Tipteki (e =90°) nanogergeve yapilar1 analizlere konu olup, bunlarin biitiin
tiyeleri bu analizlerde de ii¢ sonlu elemana boliinmiistiir. Ik olarak, gii¢ indeksinin
artigina gore nanogergevelerin ilk iki mod yerel olmayan boyutsuz frekanslarinin degisimi
Sekiller 4.25-4.27°de resmedilmektedir. Nanokiris ve nanogubuklarda oldugu gibi
nanogergeve yapilarinda da gii¢ indeksinin artis1 altinda boyutsuz frekanslar diismektedir.
Genel olarak boyutsuz frekanslar gii¢ indeksinin yiizde birler mertebesindeki artiglari igin
daha diisiik oranda azalmakta ancak onda birler mertebesindeki artiglar icin bunlarin
diisiisii hizlanmakta, gii¢ indeksinin yiizler mertebesindeki artiglari i¢in diisiis oran1 yine
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azalmaktadir. Tabi yerel olmayan parametre gii¢ indeksinin yiizde birler ve onda birler
mertebesinde biraz daha etkin olmaktadir. Genel yorumlardan yap1 6zelindeki yorumlara
gecilecek olursa, ikisinin de mesnetleri ankastre olan yapilardan daha fazla liyeye sahip
I1-tipteki nanogergevenin boyutsuz frekanslar1 I'3-tipinden diisiiktiir ¢linkii hatirlanacak
olursa I'3-tipinin iki tiyesi vardir ve mesnetlenmemis elemani yoktur, IT -tipinin ti¢ tiyesi
vardir yani sisteme I'3-tipine gore ilave bir kiitle getirmektedir ve liyelerden yatay olani
mesnetsizdir. I'3-Tipinin iki mesnedi ankastre, I'1-tipinin diisey iiyesi ankastre ve yatay
iyesi bos uclu oldugundan I"3-tipinin frekanslari I'1 tipinden yiiksektir. Bu yapilar icinde
atomik parametrenin yani sira gii¢ indeksinin de I'3-tipinde en etkin oldugu s6éylenebilir
ancak gii¢ indeksinin etkinligi atomik parametrenin azalmasiyla azalmaktadir.
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Sekil 4.28. I'1-Tipteki KDFD nanogergevelerin gii¢ indeksi ve uzunluk/yiikseklik orani

degerlerinin artigina gére boyutsuz frekanslariin degisimi (o =90°); a) 1. Mod; b) 2.
Mod
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Sekil 4.29. I'3-Tipteki KDFD nanogergevelerin gii¢ indeksi ve uzunluk/yiikseklik orani

degerlerinin artisina gore boyutsuz frekanslarmin degisimi (o = 90°); a) 1. Mod; b) 2.
Mod

I'l- ve I'3-Tipteki (a=90°) KDFD nanogercevelerin narinlik orani ve gii¢
indeksinin artisina gore ilk iki mod boyutsuz frekanslari sirasiyla Sekiller 4.28 ve 4.29 ile
verilmektedir. Arastirma konusu diger nanoyapilarin narinlik oranini ilgilendiren s6z
konusu analizlerinde oldugu gibi burada da biitiin {iyelerin yiiksekligi esit ve 4 =1 nm
olarak diistiniilmektedir. Dolayisi ile narinlik oran1 degisiminde biitiin iiyelerin esit olan
uzunluklar1 artmaktadir. Uzunluk artis1 sistemde kiitle artis1 olusturdugundan dogal
frekans haliyle azalir ancak boyutsuz frekans parametresinde uzunluktaki artis dogal
frekanstaki azalistan yiiksek oldugundan dolay1 boyutsuz frekans parametreleri yiikselir.
Atomik parametre diger nanoyapilarda oldugu gibi diisiik uzunluklu nanogercevelerin de
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boyutsuz frekanslarii daha fazla etkiler ve atomik parametrenin genel etkisi yiiksek
modda daha fazla olmaktadir. Uye uzunluklar arttik¢a atomik parametrenin etkisi diiser.
Bu baglamda, o6zellikle yiiksek liye uzunluklarinda ve yiiksek gii¢ indekslerinde I'1-
tipindeki ¢ergevenin frekanslari birbirine oldukca yakinken I'3-tipinde boyle bir
cikarimdan bahsedilemez, buna gore yerel olmayan parametrenin bu bolgedeki etkisi I'3-
tipinde oldukea belirgindir. Ote yandan, gii¢c indeksi genel olarak yiiksek iiye uzunluklu
nanogercgeveleri daha fazla etkilemektedir. Ek olarak, yerel olmayan parametre diisiik gii¢
indeksine sahip nanocercevelerde daha etkin goriinmektedir.
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Sekil 4.30. I'1-Tipteki KDFD nanogergevelerin gii¢ indeksi ve yonelim agist degerlerinin
artigina gore boyutsuz frekanslarinin degisimi; a) 1. Mod; b) 2. Mod
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Sekil 4.31. I'3-Tipteki KDFD nanogergevelerin gii¢ indeksi ve yonelim agisi degerlerinin
artigina gore boyutsuz frekanslarinin degisimi; a) 1. Mod; b) 2. Mod

Son olarak, I'1- ve I'3-tipindeki KDFD nanogergevelerin diisey iiye yonelim agisi
ve gii¢ indeksinin artis1 altinda elde edilen ilk iki mod boyutsuz frekans degisim yiizeyleri
sirastyla Sekiller 4.30 ve 4.31°de sunulmaktadir. Oncelikle I'1-tipindeki nanogergevenin
ikinci modunda grafigin goriintlisiiniin davranisin anlagilmasini zorlastirmasi nedeniyle
gii¢ indeksi ve yonelim acisinin eksenleri degistirilmistir. Ek olarak, yonelim agisinin
o =5°,85° ve arasindaki degerleri analize konu olmaktadir. Buna gore, yonelim agis1
cogunlukla boyutsuz frekanslar1 yiikselten bir faktor iken I'l1-Tipindeki nanogergevenin
ikinci modunda tam tersi bir etki gozlemlenmektedir. I'3-Tipindeki nanocger¢ceveden
gbzlemlenebilecegi lizere yonelim agisinin ¢ok diisiik degerleri boyutsuz frekanslar1 daha

fazla yiikseltmekte, yonelim acisinin daha yiiksek degerleri bu anlamda bir etkiye sahip
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olmamaktadir. Gii¢ indeksinin yiiksek yonelim agisina sahip yani dik nanogergevelerin
boyutsuz frekanslarini daha fazla indirgediginden s6z edilebilir. Ayrica yerel olmayan
parametrenin de dik nanogergevelerde daha etkin oldugu ifade edilmelidir.
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5. SONUCLAR

Nanoteknoloji bilimindeki hizli gelismeler nedeniyle bir ve iki boyutlu homojen
nanomalzemelerin temel bilesen oldugu NEMS sistemlerinin mekanik analizlerinin bilim
insanlarinin biiyiik ilgisini toplamasiyla beraber, nanokompozit uygulamalar1 cesitli
kompozit malzeme konfigiirasyonlarina sahip yapilarin da mekanik modellerine bir
ilginin yonelmesine sebep olmustur. Bu kapsamda, fonksiyonel derecelendirilmis
nanoyapilarin atomik boyut etkisine dayanan mekanik modelleri ve analizleri yogun
calisilan bir konu olarak bilimsel literatiirde yerini almistir.

Bu baglamda, FDM nanoyapilarin egilme ¢ubugu (kiris), eksenel cubuk ve egilme
cergevesi modellerinin kayma deformasyonunu igeren kinematik kuramlarla birlikte
atomik boyut etkisine dayanan yiiksek mertebeli siirekli ortam teorilerinden olan yerel
olmayan elastisite teorisi g¢ercevesinde serbest titresimleri hakkinda sonlu eleman
analizleri bu doktora tezi ile sunulmustur. NEMS’lerin genel ¢alisma ortami disiiniilerek
sicaklik degisimi ve elastik ortam etkileri, kayma deformasyonlu yerel olmayan nanoyapi
modellerinde gbzetilmistir. Buna gore, serbest titresim analizlerinde cesitli parametreler
altinda nanoyapilarin boyutsuz frekanslari cizelgeler ve grafiklerle verilerek bunlarin
detayl tartigsmalar1 da gerceklestirilmistir.

Tez galismasini nihayetine ve amacina ulastirabilmek maksadiyla tartigmalardan
cikarilabilecek sonuclar ve bazi Oneriler asagida sunulmaktadir. Ilk olarak KDFD
nanokiris yapilardan bahsedilmektedir:

* Boyut etkisini ifade eden yerel olmayan parametre arttik¢a nanokirislerin frekanslari
azalmaktadir.

* Yerel olmayan parametre ankastre mesnetten dolayr uclari daha rijit sistemlerde
frekanslar1 azalmasi i¢in daha etkindir.

* Yiiksek modlarda yerel olmayan parametre frekanslar1 daha fazla indirgemektedir.

= Fonksiyonel derecelendirilme gii¢ indeksi arttik¢a nanokiris frekanslar1 azalmaktadir.
Genellikle gii¢ indeksinin onda birler ve onlar mertebesindeki artiglar1 i¢in bu azalis
diger mertebelere gore daha hizli olmaktadir.

» Yerel olmayan parametrenin frekanslar lizerindeki etkinligi gii¢ indeksinin kiigtik
degerleri i¢in daha fazladir.

» Nanokiriglerin frekanslari iizerinde n6tr eksen de 6nemli bir etkiye sahiptir. Buna gore
malzeme tarafsiz ekseni hesaba katilirsa frekanslar ihmal edilemeyecek 6l¢iide azalir.
Gli¢ indeksinin onlar mertebesinde ndtr eksen etkisi en yiiksektir.

» Kayma deformasyonsuz nanokiriglerin serbest titresim frekanslarinin karakteristik dis
boyutlardan etkilenmedigi bilinmektedir (Reddy 2007; Pradhan 2012). Ancak kayma
deformasyonlu nanokirislerde diisiik uzunluk i¢in derin kiris etkisi belirginlestiginden
frekanslar oldukca diisiik hesaplanmistir.

* Yerel olmayan parametre etkisi kisa nanokiriglerde ytiksektir.
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Elastik zeminler nanokiris frekanslarini artirici etkiye sahiptir. Elastik zemin
parametreleri arttikca yerel olmayan parametrenin frekans diisiirme hizi azalir.
Dahasi, elastik zeminler FDM nanokirislerin frekanslarini daha fazla yiikseltir.

Sicaklik nanokiris frekanslarini azaltmaktadir. Yerel olmayan parametre arttikca
frekanslarin disiisii hizlanmaktadir. Bunlara ek olarak, sicaklik artttkca FDM
nanokiriglerin frekanslar1 daha hizli diiger.

Ayrica yerel olmayan sonlu elemanlar yaklagimmin KDFD nanokiris titresim
analizinde bliyiik bir basariya sahip oldugu gézlemlenmektedir. Gerekli dogrulama
caligmalarinin sonucunda yeteri yakinsakliklarin elde edildigi, 6zellikle termo-elastik
ortam altinda analitik ¢6ziimii alinamayan smir sartli KDFD nanokirislerin
frekanslarina ulasilabildigi ve boyutsuz atomik parametre arttik¢a frekanslardaki
sapmalarin genel olarak azaldigi tespit edilmistir.

Ote yandan, yanal atalet etkili KDFD eksenel nanogubuklarin yerel olmayan

serbest titresim analizlerinin tartisilmasi sonucunda asagidaki ¢ikarimlara ulagilmaktadir.

Boyut etkisi, eksenel nanogubuklarin frekanslarini diisiirmektedir. Yerel olmayan
parametre nanogubuklarin da yiiksek modlarinda daha etkindir.

Yerel olmayan parametre, nanokirislere benzer sekilde, daha rijit bir sistem
oldugundan iki ucu tutulu nanogubuklarda daha etkindir.

Yine nanokirislerde oldugu gibi gii¢ indeksinin onda birler ve onlar mertebesindeki
artislar1 nanogubuk frekanslarinin daha ¢ok azalmasina sebebiyet verir.

Agirlikli kalintiya gore yapilandirilan ve nanokiris analizlerinde hatali sonug
vermedigi anlasilan sonlu eleman ¢Oziimiiniin, yanal atalet etkili eksenel
nanog¢ubuklarda kullanimiyla bazi hatali sonuglara ulasilmistir. Bu nedenle, hatanin
kaynaklandig1 nedenler ¢esitli sayisal uygulamalarla tespit edilerek hatay: tetikleyen
sonlu eleman matematiksel bilesenleri tizerinde bir islem yapilarak modifiye edilmis
sonlu elemanlar ¢dziimleri sunulmustur. ilgili yakinsaklik analizleri sonucunda
onerilen yaklasimin, probleme etkiyen parametrelerin ekstrem durumlari haricinde
basarili oldugu sonucuna varilmistir.

Eksenel elastik ortam, nanogubuklarin frekanslarini yiikseltir. Nanokiris sonuglarina

......

azalir ve bu durumda FDM nanogubuklarin frekanslar1 daha ¢ok artar.

Nanokiriglere benzer bi¢imde, diisiikk uzunluklu eksenel nanogubuklarda yerel
olmayan parametre daha biiyiik bir etkiye sahiptir.

Bunlara ek olarak, KDFD nanogerceveler i¢in yapilan ¢ikarimlar da asagidaki gibi

verilebilir:

Yerel olmayan sonlu elemanlar formiilasyonu, atomik boyut etkisi ihmal edilen
cerceveler i¢in literatiirdeki bazi caligmalar iizerinden dogrulanmaistir.
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» Yerel olmayan parametrenin varhig altinda nanocgercevelerin de frekanslari
diismektedir ve yiiksek mod boyutsuz frekanslar1 bu parametreden daha fazla oranda
etkilenmektedir.

= Kayma deformasyonu, nanogergevelerin de frekanslarini azaltmaktadir. Diisiik iiye
uzunluklu nanogergevelerde bu etki daha belirgindir ve yerel olmayan parametre
diisiik tiye uzunluklu nanogergevelerde daha etkindir.

= Nanokirislere ve nanogubuklara benzer sekilde, gii¢c indeksi KDFD nanogercevelerin
frekanslarint indirgemektedir. Buna gore, giic indeksinin onda birler ve onlar
mertebesindeki artislari i¢in frekans azalma hizi1 daha fazladir.

» Yonelim agis1 arttikga yani geometrik manada nanoyapr diklestikce KDFD
nanogergevelerin frekanslari artmaktadir. Genel olarak dik KDFD nanogergeveler giig
indeksi artisindan daha fazla etkilenmektedir.

Biitin bu sonuclar, atomik oOlgekli fonksiyonel derecelendirilmis yapilarin
mekanik davranislari i¢in kayma deformasyonu, boyutsuz atomik parametre, gii¢ indeksi
ve termo-elastik ¢evre parametrelerinin mutlaka gz oniine alinmasi gerektigini ortaya
koymaktadir. Ayrica, tez kapsaminda gelistirilen yerel olmayan sonlu elemanlar
formiilasyonunun, frekanslari analitik ¢dziimle hesaplanamayan nanoyapilar igin bir
alternatif oldugu mutlaka belirtilmelidir. Bu baglamda, yerel olmayan sonlu eleman
formiilasyonlari, nano-elektro-mekanik sistemlerde g¢esitli gorevler {istlenebilecek
kompozit nanoyapilarin mekanik tabanli kesin tasarim stireclerine yol gdsterebilecektir.
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