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ÖZET 

KAYMA DEFORMASYONLU FONKSİYONEL DERECELENDİRİLMİŞ 

NANOKİRİŞLERİN YEREL OLMAYAN SONLU ELEMANLAR 

FORMÜLASYONU İLE MEKANİK ANALİZLERİ 

Hayri Metin NUMANOĞLU 

Doktora Tezi, İnşaat Mühendisliği Anabilim Dalı 

Danışman: Prof. Dr. Ömer CİVALEK 

Ekim 2024; 204 sayfa 

Son 20 yıllık dönemde nano ve mikro ölçek teknolojisindeki gelişmelerin dikkat 

çekmesinden dolayı bu ölçekteki yapı ve sistemlerin tasarımı önem kazanmıştır. Nano ve 

mikro ölçekli yapıların mekanik davranışları, yapının karakteristik iç uzunlukları 

nedeniyle klasik elastisite teorileri ile anlaşılamamaktadır ve bu sorunun çözümü için 

yapının boyut etkisine bağlı çeşitli yüksek mertebeden sürekli ortam formülasyonları 

geliştirilmiştir. Ayrıca, yapısal elemanlarda kayma etkisine dayanan çözümleme 

sonuçlarının yapının mekanik davranışı hakkında daha gerçekçi sonuçlar verdiği 

bilinmektedir. Bu düşünceyle, bu tez çalışması tek doğrultulu, küçük ölçekli ve 

fonksiyonel dereceli yapıların kayma etkisine ve yerel olmayan elastisite teorisine 

dayanan titreşim davranışlarını araştırmaktadır.  

İlk olarak, nano ölçekli fonksiyonel dereceli kirişlerin temel kayma etkisini 

açıklayan Timoshenko kiriş teorisine göre yerel olmayan titreşim analizi konu alınmıştır. 

Ardından, eksenel çubuklarda kayma etkisini göz önüne alan Love-Bishop çubuk teorisi 

kullanılarak bahsi edilen yapısal eleman modelinin boyuna serbest titreşimi çalışılmıştır. 

Bahsi edilen yapısal elemanların sıcaklık ve/veya elastik zemin gibi çevresel etkiler 

altında olduğu varsayılmıştır. Bunlara ek olarak, eğilme etkileri kayma deformasyonuna 

dayanan fonksiyonel derecelendirilmiş nanoölçekli çerçevelerin serbest titreşimi de 

incelenmiştir. Mekanik davranışın daha doğru belirlenebilmesi için fonksiyonel 

derecelendirilmiş nanoyapının tarafsız ekseni de göz önünde bulundurulmuştur. 

Mekanik analizlerin tamamında yönetici denklemler varyasyon cebrine dayalı 

elde edilmiştir. Probleme etkiyen parametrelerin oldukça fazla olması analitik çözümü 

zorlaştırdığından, bir sonlu eleman formülasyonu geliştirilmiştir ve mekanik analizin 

çözümünde kullanılmıştır. Genel sonlu eleman analizi bazı yerel olmayan titreşim 

analizlerinde uygun olmayan sonuçlar verdiğinden modifiye edilmiştir. 

Sayısal uygulamalar için, bahsi edilen atomik ölçekli yapı modellerinin serbest 

titreşim frekansları farklı parametreler altında tablo ve grafikler ile sunulmuştur. Sayısal 

sonuçların detaylı tartışmaları verilmiştir ve son olarak elde edilen en genel sonuçlar 

sıralanmıştır. Özellikle tez kapsamında geliştirilmiş sonlu eleman formülasyonlarının 

analitik çözümler ve önceki literatür araştırmaları ile kıyaslamaları yapıldığında oldukça 

başarılı sonuçlar verdiği gözlemlenmiştir. Bu tez çalışması ile nano ve mikro ölçekli cihaz 

ve sistemlerin konfigürasyonunda rol oynayan tek doğrultulu kompozit yapıların farklı 
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etkiler altındaki mekanik davranışlarının sayısal bir modelleme aracılığıyla anlaşılması 

amaçlanmıştır. 

ANAHTAR KELİMELER: Fonksiyonel derecelendirilmiş malzeme, Kiriş, Sonlu 

elemanlar, Titreşim, Yerel olmayan elastisite. 

JÜRİ: Prof. Dr. Ömer CİVALEK 

Prof. Dr. Mehmet AVCAR  

 Prof. Dr. Hakan ERSOY 

 Prof. Dr. Mustafa Özgür YAYLI 

 Doç. Dr. Bekir AKGÖZ 
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ABSTRACT 

MECHANICAL ANALYSES OF SHEAR DEFORMABLE FUNCTIONALLY 

GRADED NANOBEAMS BY USING NONLOCAL FINITE ELEMENT 

FORMULATION 

Hayri Metin NUMANOĞLU 

PhD Thesis in Civil Engineering 

Supervisor: Prof. Dr. Ömer CİVALEK 

October 2024; 204 pages 

In the last 20 years, the design of structures and systems at this scale has gained 

importance since the developments at the nano/micro scale technology remarked. The 

mechanical behaviours of nano and micro scaled structures are not understood by using 

classical elasticity theory due to characteristic internal lengths of structure. Therefore, 

various higher-order continuum mechanics formulations depending on the size-effect of 

nano/micro structure are developed. Additionally, it is known that the results of analysis 

based on the shear effect in the structural elements present more realistic results about the 

mechanical behavior of structure. With this in motivation, this thesis study has 

investigated the shear-dependent and atomic size-dependent vibrational behavior of one-

dimensional, small-scaled, and functionally graded structures. The nonlocal elasticity 

theory has been formulated to consider the atomic size dependency. 

Firstly, nonlocal vibration analysis of functionally graded nanobeams according 

to Timoshenko beam theory, which is fundamental shear deformable beam theory, has 

been examined. Then, the longitudinal free vibration of related structural element model 

has been studied by employing the Love-Bishop rod theory that considers the shear effect 

in the axial rods. It is assumed that the related structural element model subjected to a 

thermal and/or elastic environment.
 
In addition to these, free vibration of functionally 

graded nanoframes whose bending effects are based on fundamental shear deformation 

have been also investigated.
 

In order to determine the mechanical behavior more 

accurately, the neutral axis of the functionally graded nanostructure has also been 

considered. 

In the whole of mechanical analyses, the governing equations have been obtained 

based on the variational algebra. Since the large number of parameters affecting the 

problem complicates the analytical solution, a finite element formulation has been 

developed and used in the solution of mechanical analysis. The general formulation of 

finite element analysis has been modified since it gives inappropriate results for some 

nonlocal mechanical analysis problems. 

For the numerical applications, free vibration frequencies of related structures 

have been presented with tables and graphics under different parameters. Detailed 

discussions of numerical results are given and finally, the most general results are 

outlined. When the comparisons are performed with analytical solutions and previous 

literature research, it has been observed that the finite element formulations developed 
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within the scope of thesis has attained very successful results. With this thesis study, it is 

aimed to understand the mechanical behavior under different effects of one-dimensional 

composite structures that play a role in the configuration of nano and micro-scale devices 

and systems by means of a numerical modelling. 

KEYWORDS: Beam, Finite elements, Functionally graded material, Nonlocal elasticity, 

Vibration. 

COMMITTEE: Prof. Dr. Ömer CİVALEK 

  Prof. Dr. Mehmet AVCAR  

  Prof. Dr. Hakan ERSOY 

  Prof. Dr. Mustafa Özgür YAYLI 

  Assoc. Prof. Dr. Bekir AKGÖZ   
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ÖNSÖZ 

  İnsanların kullanıma aldıkları cihaz ve sistemler günden güne boyut olarak 

küçülürken büyük işlemci hızlarına ve kapasitelerine ulaşmaktadır. Bütün bu teknolojik 

kazanımların arkasında nano-elektro-mekanik sistem (NEMS) teknolojisinin 

çalışmalarının bulunduğu reddedilemez bir gerçektir. Bir veya iki boyutlu nano ölçekli 

bileşenler bu sistemlerin temel yapıtaşlarını teşkil ederler. Örneğin atomik kuvvet 

mikroskobu, gaz sensörü, rezonatör, transistör, elektronik devresi gibi birçok sistemde, 

sistemin belirlenmiş görevini yapmasını sağlayan nanotüp, nanotel, nanoçubuk, 

nanoplaka gibi esas bileşenlerle karşılaşılır. Bu sistemlerin işlevselliği için, maruz kalınan 

çeşitli dış etmenler gözetilerek sistemin doğru bir tasarımının yapılabilmesi, bunun için 

doğru bir mekanik modelle analiz edilebiliyor olması elzemdir.  

Atomik ölçekli yapıların mekanik davranışlarının ölçümü için gerçekleştirilen 

deney ve simülasyonların verimsiz süreçlere sebep olması, araştırmacıları teorik 

araştırmalara yöneltmiştir. Buna göre bilimsel literatürde yüksek mertebeden elastisite 

teorileri olarak anılan atomik boyut etkili mekanik analiz yaklaşımları kullanılarak çeşitli 

nano malzemelerin çok çeşitli mekanik davranışları çözümlenebilmiştir.  

Birden fazla malzemeden oluşan ve kendini oluşturan malzemelerin tek başına 

kullanımına kıyasla çeşitli avantajlar sağlayan kompozit malzeme teknolojisi günümüze 

değin hızla ilerleyen bir diğer mühendislik disiplinidir. Kompozit malzemelerin makro 

anlamda birçok başarılı uygulamaya sahip olmasının devamında, nano ölçekteki bazı 

kullanım örnekleri nedeniyle buınların mekanik analizleri ilgi çekmiş olup, bu husus 

yaklaşık son on yıllık süreçte bilimsel literatürde büyük bir yer edinmiştir.  

Fonksiyonel değişimli malzemeler, bir yapı elemanının en az bir doğrultusunda 

özellikleri sürekli biçimde değişen bir kompozit malzeme modeli olarak tanımlanabilir. 

1970’li yılların hemen başında bazı polimerik malzemeler hakkındaki araştırmalar 

esnasında fikirsel temeli ortaya atılan bu malzemelerin fiziksel açıdan gelişim macerası 

1980’li yıllar itibariyle bir dizi havacılık çalışmaları kapsamında Japonya’da başlamıştır. 

Üretim prosesi üzerindeki araştırmaların hız kazanmasının ardından çeşitli 

uygulamalarıyla fonksiyonel derecelendirilmiş malzemeler günümüzde önemi bir 

kompozit türevi konumunda bulunmaktadır. 

Yukarıdaki açıklamalar doğrultusunda, bu doktora tezinde fonksiyonel 

derecelendirilmiş malzemeden imal edilen nano ölçekli yapısal sistemlerin atomik boyut 

etkisine dayanan ve yapısal kayma deformasyonunu da gözeten serbest titreşim analizleri 

sayısal olarak incelenmiştir. Buna göre, nanokiriş, nanoçubuk ve nanoçerçeve şeklindeki 

üç farklı nanoyapı modelinin yerel olmayan serbest titreşimlerinin hareket denklemleri 

analitik olarak çözülmüş ve buna bir alternatif çözüm olarak sonlu eleman prosedürleri 

geliştirilmiştir. Nanoyapıların sıcaklık ve elastik etkilerin olduğu bir çevrede yer aldığı 

varsayılarak NEMS’lerin genel ortamı da düşünülmüş, böylece gerçekçi bir mekanik 

davranış araştırması planlanmıştır. Çeşitli sayısal uygulamalar ve tartışmalar 

gerçekleştirilerek kompozit nanoyapıların titreşim davranışının anlaşılmasına ve 

nanomekanik analizde sonlu elemanlar yönteminin kullanım faydalarının açıklanmasına 

çalışılmıştır. Tez kapsamında elde edilen sonuçların kompozit nanoyapıların mekaniği ile 

ilgili bilimsel literatürdeki boşlukları dolduracak makalelere evrilmesi planlanarak bu 

yapıların tasarım süreçlerine öncü olması ümit edilmektedir. 
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Son olarak, çok değerli büyüklerimin ve çok değerli arkadaşlarımın lisansüstü 

eğitim sürecimde bana önemli katkılarda bulunduklarını belirtmek isterim. Bu bağlamda, 

akademik desteklerini, tecrübelerini ve insani hoşgörülerini benden hiçbir zaman 

esirgemeyen danışman hocam sayın Prof. Dr. Ömer CİVALEK’e, Akdeniz Üniversitesi 

İnşaat Mühendisliği Bölümü Mekanik Anabilim Dalındaki öğretim üyesi hocalarıma, 

görev yapmakta olduğum Giresun Üniversitesi İnşaat Mühendisliği Bölümündeki çok 

değerli hocalarıma, çok değerli mesai arkadaşlarıma, bugünlere gelmemdeki en büyük 

emek ve desteği gösteren aileme çok büyük teşekkür ve saygılarımı sunuyorum. 
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tij : Klasik kayma gerilmesi (i, j = x, y, z; i ≠ j) 

T : Harmonik çözüm, Kinetik enerji, Transformasyon matrisi 

Tcr : Kritik sıcaklık 

u : Atomik yapı genel deplasman vektörü 

u, v, w  : Nanoyapının sırasıyla eksenel, enine ve yanal deplasman bileşenleri 

ux, uy, uz : Nanoyapının sırasıyla eksenel, enine ve yanal deplasman vektörleri 

u0 : Saf eksenel deplasman 

U : İç şekil değiştirme enerjisi, Eksenel nanoçubuğun statik deplasmanı, 

Fonksiyonel derecelendirilmiş kesit üst yüzeyi 

V : Hacim, Kesme kuvveti, Fonksiyonel derecelenme hacim fraksiyonu  

V * : Toplam kesme kuvveti 

wb : Eğilme deplasmanı  

wi, wj : İki düğümlü eğilme sonlu elemanı düğüm enine deplasmanları  

ws : Kesme deplasmanı 

W : Nanokirişin statik deplasmanı, Dış kuvvetin iş potansiyel enerjisi 

Wb : Statik eğilme deplasmanı 
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Ws : Statik kesme deplasmanı 

x : Atomik yapı için referans noktası 

x' : Atomik yapıda bir nokta 

x : Konum bileşeni 

x, y, z : Nanoyapının sırasıyla eksenel, enine ve yanal koordinatları 

y
0
, z0 : Fonksiyonel derecelendirilmiş dikdörgen kesitin sırasıyla yatay ve düşey 

eksenleri 

α : Yerel olmayan modül, Termal genleşme katsayısı, Yönlenme açısı 

αi : Sınır şartlara bağlı seri çözüm katsayısı 

β : Modifikasyon (değşitrme) parametresi 

γ
ij
 : Kayma şekil değiştirmesi (i, j = x, y, z; i ≠ j) 

Г : L-Şekilli nanoçerçeve 

δ : Dirac fonksiyonu, Birinci varyasyon 

δij : Kronecker-δ sembolü 

∆ : Değişim (fark) 

εii : Eksenel şekil değiştirme (i = x, y, z) 

εij : Şekil değiştirme tansörü 

η : Boyutsuz atomik parametre 

θ : Faz açısı 

θi, θj : İki düğümlü eğilme sonlu elemanı düğüm dönmeleri 

λ, μ : Lamé sabitleri 

Ʌ : V-Şekillli nanoçerçeve 

υ : Poisson oranı 

ξ : Sonlu eleman boyutsuz deplasmanı 

Π : Portal-şekilli nanoçerçeve 



 

xv 

 

ρ : Birim hacim ağırlığı 

σij : Yerel olmayan gerilme tansörü 

τij : Yerel olmayan kayma gerilmesi (i, j = x, y, z; i ≠ j) 

φ : Kesit dönmesi 

ϕ : Şekil fonksiyonu 

ω : Doğal frekans 

ω : Boyutsuz frekans parametresi 

∂ : Kısmi türev operatörü 

(•)' : Konuma göre birinci türev (•)' = d(•) dx⁄  

(•)'' : Konuma göre ikinci türev (•)'' = d
2
(•) dx

2⁄  

(•)''' : Konuma göre üçüncü türev (•)''' = d
3
(•) dx

3⁄  

(•)
(n)

 : Konuma göre n. mertebeden türev (•)
(n) = d

(n)
(•) dx

(n)⁄  

(•)̈  : Zamana göre ikinci türev (•)̈  = d
2
(•) dt

2⁄  

(•)⃜ : Zamana göre ikinci türev (•)⃜ = d
4
(•) dt

4⁄  

(Σ[•])
*
 : İlgili indirgenmiş küresel matris 

 

Bu tez çalışmasında sayıların ondalık kısmını ayırmak için nokta işareti (.) kullanılmıştır. 

 

Kısaltmalar 

C-C : Clamped-clamped (İki ucu tutulu nanoçubuk, iki ucu ankastre nanokiriş) 

C-F : Clamped-free (Bir ucu tutulu diğer ucu serbest nanoçubuk, bir ucu 

ankastre diğer ucu serbest nanokiriş) 

C-G : Clamped-guided (Bir ucu tutulu diğer ucu kılavuz kayıcı mesnetli 

nanokiriş) 

C-S : Clamped-simply supported (Bir ucu ankastre diğer ucu basit mesnetli 

nanokiriş) 
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EBBT : Euler-Bernoulli beam theory (Euler-Bernoulli kiriş teorisi) 

FDM : Fonksiyonel derecelendirilmiş malzeme 

GE : Geometrik eksen 

GPa : Gigapascal 

HO-nl : Higher-order nonlocal (Yüksek mertebeden yerel olmayan) 

kg : Kilogram 

KDFD : Kayma deformasyonlu fonksiyonel derecelenmiş 

KDH : Kayma deformasyonu homojen 

m : Metre 

nm : Nanometre 

NEMS : Nano elektro mekanik sistem 

NL-FEM : Nonlocal finite element method (Yerel olmayan sonlu elemanlar metodu) 

RF : Radyo frekans 

S-G : Simply supported-guided supported (Bir ucu basit diğer ucu kılavuz kayıcı 

mesnetli nanokiriş)  

S-S : Simply supported-simply supported (İki ucu basit mesnetli nanokiriş) 

TBT : Timoshenko beam theory (Timoshenko kiriş teorisi) 

TE : Tarafsız eksen 

TPa : Terapascal 
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1. GİRİŞ 

İç veya yüzey yapısının dış boyutları nano ölçekte yani metrenin milyonda biri 

kadar olan malzemeler nanomalzeme sınıfını teşkil etmektedir. 1950’lerin sonunda bilim 

dünyasındaki yolculuğuna başlayan nanoteknolojinin günümüze kadar önemli dönüm 

noktalarını yaşaması, nanomalzeme kavramının önemini ve dolayısı ile bu alandaki 

çalışmaları artırmıştır. Günümüze değin çalışmalar, nanomalzemelerin elektronik, enerji, 

tıp, hava-uzay, otomotiv sanayii, savunma sanayii ilk akla gelenler olmak üzere birçok 

disiplini etkilemiesini ve bu suretle inovatif yönü yüksek malzemelerin ortaya çıkmasını 

sağlamıştır.  

Öte yandan, kompozit malzeme, özellikleri birbirinden farklı olan iki veya daha 

fazla malzemenin çeşitli işlemlerle bir araya getirilmesi sonucunda daha farklı özelliklere 

sahip yenilikçi bir malzemedir. Burada amaç yeni malzemenin hedeflenen yönlerden 

daha güçlü özelliklere sahip olmasıdır. Kompozit malzemeler daha yüksek mekanik 

rijitliğe ve çevresel dış etmenlere karşı daha yüksek dayanıma sahiptir. Bu nedenle 

sandviç, tabakalı veya fonksiyonel derecelendirilmiş gibi farklı kompozit malzeme 

türevleri, mühendisliğin farklı disiplinlerinde oldukça geniş bir kullanıma sahiptir.  

Teknolojinin çok hızlı ilerlemesi sonucunda günümüzde kullanıma sunulan birçok 

cihaz ve sistem, boyut, hız, işlem kapasitesi gibi yönlerden öncüllerine kıyasla çok daha 

iyi konumdadırlar. Bu tür sistemler genel olarak nano-elektro-mekanik sistemler (NEMS) 

teknolojisinin birer çıktılarıdır. NEMS yapıları, farklı geometrilere sahip olabilen nano 

ölçekli malzemelerden (bileşenlerden) meydana gelen sistemlerdir. NEMS 

organizasyonları elektrik-elektronik, elektrokimya, biyoteknoloji, genetik başta olmak 

üzere birçok disiplinde önemli uygulamalarda görev almaktadır. Nanoteknolojik 

çalışmalardaki hızlı ilerlemeler, bu bileşenlerin mekanik davranışlarındaki araştırmaların 

yapılmasına sebep olmuştur. Çünkü mekanik davranışın doğru belirlenmesi, NEMS’lerin 

doğru tasarım için öncelikli bir husustur.  

Nanomalzemelerin mekanik davranışları üzerine araştırmalar kapsamında 

yürütülen deneyler ve bilgisayar ortamlarında yürütülen simülasyonlar genel olarak 

maliyet, süreç ve ileri uzmanlık bilgisi gibi gerekçelerle efektif olamamıştır. Ayrıca, 

deneysel çalışmalar nanoyapıya inildiğinde klasik fizik öğretilerinin, dolayısı ile klasik 

elastisite öğretisinin geçersiz olduğunu göstermektedir. Bütün bu sonuçlar bir arada 

düşünüldüğünde, bilim insanlarınca nano ölçekli malzemelerin mekanik davranışlarının 

yenilenmiş mekanik yapı modelleri ile ele alınması fikrinin üzerine gidilmiştir. Bu fikrin 

esas felsefesi, klasik mekanik denklemlerinin atomik boyut etkisiyle birleştirilmesine 

dayanmaktadır. Günümüzde, nanoyapıların bir ve iki boyutlu yapı modellerinin boyut 

etkili mekanik davranış araştırmaları hakkında çok büyük bir yol katedildiği mutlaka 

belirtilmelidir. Öte yandan, bilindiği üzere bir katı mekaniği analizinde temel etkilere 

ilave olunan deformasyon bileşenleri bazı durumlarda önem kazanabilmektedir. Bu ilave 

etmenler çoğu zaman bir kayma etkisini işaret eder. Bunlara ek olarak, konuya ilişkin 

bilimsel literatürün çok büyük bir kısmında, nanoyapıların çevresel etkilere de (piezo, 

manyetik, elektrik, ortam sıcaklığı, ortam nemi vb.) maruz kaldığı düşünülerek, çevresel 

etkilerin mekanik modelleri üzerinden NEMS’lerin çalışma düzenleri simüle edilmiştir. 

Günümüzde gelinen nokta itibariyle nano ölçekli yapıların mekanik davranışları üzerinde 

boyut etkisinin, kayma deformasyonunun ve dış çevresel olguların çok önemli etkiler 

olduğu iyi bilinmektedir.  



GİRİŞ               H.M. NUMANOĞLU 

2 

 

Çeşitli NEMS yapılarının insanoğlunun hayatında gün geçtikçe daha fazla yer 

alması ve nanomalzeme kavramı içerisinde nanokompozitlerin varlığı nedenleriyle 

kompozitlerin de yapısal tasarımlarının biliniyor olmasının önem arz ettiği belirtilmelidir. 

NEMS organizasyonlarında kompozit bileşenlerin homojen bileşenlere göre daha 

inovatif bir kullanım sağlayabileceği de bu bağlamda eklenebilir. Bütün bu anlatılanlar 

ışığında, tek doğrultulu kompozit nanoyapı elemanlarının atomik boyut etkisine dayanan 

kayma deformasyonlu serbest titreşim analizleri bu tez çalışmasının genel konusudur. 

Nanoyapının bir kompozit malzeme olan fonksiyonel derecelendirilmiş malzemeden imal 

edildiği varsayılmaktadır ve malzeme homojenizasyonu için klasik karışım kuralı 

kullanılmaktadır. Atomik boyut etkisi konuyla ilgili bilimsel literatürden oldukça iyi 

bilinen Eringen’in yerel olmayan elastisite teorisinin bünye denklemi ile göz önünde 

bulundurulmaktadır. Buna göre, varyasyonel cebre dayanılarak türetilen nanoyapıların 

kiriş, eksenel çubuk ve çerçeve modellerinin yerel olmayan kayma deformasyonlu serbest 

titreşim hareket denklemlerinin analitik çözümleri yapılmaktadır ve bu çözümlerin 

uygulamadaki kısıtlı durumlarını aşmak için çeşitli sonlu elemanlar formülasyonları 

geliştirilmektedir. Ayrıca, çevresel etkileri analize yansıtabilmek amacıyla yerel olmayan 

nanokirişte termo-elastik çevre ve yerel olmayan nanoçubukta elastik ortam etkileri de 

gözetilmektedir. 

Tez kapsamında geliştirilen sonlu eleman formülasyonları kullanılarak, atomik 

boyut etkisi, nanoyapı boyutları, güç indeksi, elastik zemin/ortam rijitlikleri, ortam 

sıcaklığı değişimi gibi çeşitli parametreler altında hesaplanan sayısal uygulamalar ve 

bunların detaylı tartışmalarıyla, NEMS’lerin mekanik bileşeni olabilecek tek doğrultulu 

fonksiyonel derecelendirilmiş nanoyapıların titreşim davranışlarının anlaşılabilmesi ve 

bunların doğru tasarım süreçlerine ışık tutulabilmesi hedeflenmektedir.  
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2. KAYNAK TARAMASI 

 Bu bölümde, öncelikle tez çalışmasının yakın bağlantılı olduğu çeşitli kavramlara 

detaya girmeksizin sadece tanıtım amaçlı değinilecektir ve ardından tez çalışmasına 

teorik inceleme itibariyle yakın olan bilimsel çalışmalardan kısa özetler halinde 

bahsedilecektir. 

 2.1. Nanoteknoloji Bilimi 

Nanoteknolojiyi tanımlamadan önce nanobilimin tanımını yapmak gerekir. Buna 

göre nanobilim, maddenin nano ölçekte kontrol edilmesi ve bu ölçekte özelliklerinin 

anlaşılmasına yönelik bir bilim dalıdır (Singh vd. 2017). Burada “nano ölçek” ile temel 

uzunluk birimi olan metrenin (m) milyonda bire bölünmesini tanımlayan nanometre (nm) 

mertebesi kastedilir (1 nm =  10
−9

 m). Öte yandan, nanoteknoloji için ilk olarak oldukça 

kısa bir tanım “atomik hassasiyette mühendislik ve teknoloji” şeklinde yapılmaktadır 

(Nasrollahzadeh vd. 2019). Bu ifade edilenler bağlamında, ölçüleri nanometre ölçeği ile 

ifade edilen madde ve maddesel her türlü sistemdeki atomların diziliminin incelenmesi, 

dizilimin düzenlenmesi, bu ölçeğe inildiğinde varılan yeni malzeme özelliği keşifleri, 

yeni özelliklerin klasik disiplinlerle birleştirilerek daha inovatif teknolojilere varılması 

nanoteknolojiyi tanımlamaktadır. Birim nanometre ölçeğinin bir saç telinin yüz binde biri 

kadar olduğu bilgisi (Perker 2010) altında, nanoteknolojinin ne kadar küçük bir ölçekte 

çalıştığı tahayyül edilebilir. Nanobilim ve nanoteknolojide teknik olarak 1-100 nm 

aralığındaki madde ve sistemlerle ilgilenilmektedir (Subramani vd. 2019; Civalek ve 

Numanoğlu 2020). 

Bilindiği üzere günümüzde kullanılmakta olan birçok elektro-mekanik cihaz veya 

sistem öncüllerine göre daha yüksek mekanik dayanıma, yüksek fiziksel dayanıklılığa, 

daha güçlü elektriksel ve optik özelliklere, daha büyük veri işleme hızlarına, bunların 

belki de en önemlisi çok daha küçük boyutlara sahiptir. Akla gelen en basit örneğe göre, 

Eskiden bir oda hacmindeki bilgisayar sistemlerinde bu devasa büyüklüğe rağmen 

elektronik veri depolama hacmi oldukça kısıtlı kalmıştır. Yine çok eski yıllarda elektronik 

ortamda yapılan araştırmalar işlem hızları nedeniyle günlerce sürmüştür. İş süreçlerinde 

büyük performans kayıpları yaşamamak için mesai dışında çalıştırılan bilgisayarlar 

bilinmektedir. Elbette bu durum mali zararlar veya çalışana yansıyan negatif etki gibi 

başka sorunları ortaya çıkarmıştır. Bunlara ek olarak, eski zamanlardan bilinen disket gibi 

harici veri depolama birimleri en fazla 1.44 megabyte veri depolayabilmektedir (Getz 

1991). Nano-elektro-mekanik sistemler (NEMS) teknolojisindeki önemli çalışmaların 

sonucunda, örneğin günümüzde bilgisayar boyutları küçülmüş, bilgisayar devre 

parçalarından olan çiplerin boyutsal küçülmesine ek olarak işlemci hızları artırılmış, 

harici veri depolama anlamında harici bellek teknolojisi geliştirilerek bilişim 

teknolojilerinde resmen bir çağ kapanmış, yeni bir çağ açılmıştır. Elbette NEMS 

teknolojisi bilişimle sınırlı değildir, örneğin kimya ve biyoloji gibi fenni alanlarda da 

elektro-mekanik devrelerin çok çeşitli uygulamaları mevcuttur. 

Tabi nanoteknoloji üzerine giriş seviyesinde araştırmalar yapıldığında akla gelen 

ilk örnekler NEMS teknolojisi üzerine olsa da, malzeme karakterizasyonu (Zhou vd. 

2007), biyomedikal (Holm vd. 2002; Ramos vd. 2017), genetik (Seeman 1998; Condon 

2006; Shen vd. 2021), havacılık (Meyyapan 2000; Kausar vd. 2017), savunma 

teknolojileri (Kumar ve Dixit 2019; Singh vd. 2023), otomotiv sanayii (Tomar 2012; 
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Mathew vd. 2019), inşaat malzemesi (Norharsi vd. 2017; Chakraborty vd. 2020, 

Mohajerani vd. 2019; Bozsaky 2016), kimya endüstrisi (Zhao vd. 2003; Adams ve 

Barbante 2015; Soni vd. 2022) gibi çok farklı dallarda nanoteknolojinin oldukça önemli 

uygulamalarına rastlanmaktadır.  

2.2. NEMS Teknolojisi 

İnsan yaşantısındaki bazı belirli ihtiyaçların elektro-mekanik tabanlı 

giderilebilmesi görevini gören ve nano ölçekli malzemelerle organize edilen yapı ve 

cihazlar genel olarak nano-elektro-mekanik sistemleri (NEMS) tanımlamaktadır. 

Elektriksel ve mekaniksel ilke ve proseslere dayanarak çalışan bu sistemler birçok 

biyolojik, kimyasal, genetik, optik, termal ilk akla gelenler olmak üzere çeşitli alanlardaki 

fonksiyonel olarak görev yapmaktadır. Nanoteknolojinin bir hedef noktası da NEMS 

grubu yapı ve cihazların imalatı ve üzerindeki ileri çalışmalarla daha da geliştirilmesidir. 

NEMS teknolojisi için genel bir tanım ve çeşitli örnekler Numanoğlu (2019) tarafından 

sunulmuştur. 

Bir önceki paragrafın hemen başında, NEMS organizasyonların nano ölçekli 

malzemelerle oluşturulduğu belirtilmişti. “Nano ölçekli malzeme” kavramı, günümüzde 

varlığı deneysel olarak bilinen, fen ve mühendislik özellikleri üzerinde çeşitli araştırmalar 

yapılan nanometre ölçülerine sahip malzemeler olarak açıklanabilir. Nanomalzemelerin 

çeşitli sınıfları mevcuttur. Nanotüp, nanotel, nanoçubuk gibi tek doğrultulu yapılar ve 

nanoplaka gibi iki doğrultulu nanoyapılar bu sınıfları belirtir. 1950’lerin sonunda 

başlayan ve günümüze kadar çok büyük dönüm noktalarını yaşayan nanoteknoloji 

biliminde, bugün karbon nanotüp (Iijima 1991; Iijima ve Ichihashi 1993; Bethune vd. 

1993; Dresselhaus vd. 1998; Rueckes vd. 2000; Krüger vd. 2001; Popov 2004; Wang 

2005; Rafaelle vd. 2005), bor nitrit nanotüp (Chopra ve Zettl 1997; Loiseau vd. 1998; 

Radosavljevic vd. 2003; Jhi ve Kwon 2004; Bai vd. 2007; Zhang vd. 2009; Zhi vd. 2010; 

Ghassemi ve Yassar 2010; Mukhopadhyay vd. 2011; Merlo vd. 2018), silikon karbit 

nanotüp (Pham-Huu vd. 2001; Gao 2004; Taguchi vd. 2005; Elyassi vd. 2007), çinko 

nanotel (Zheng vd. 2002; Wang 2004; Xing vd. 2005; Fan ve Lu 2006; Desai ve Haque 

2007; Liu vd. 2007; Wang vd. 2007), grafen plaka (Sharma vd. 2013; Zang vd. 2015; 

Khan vd. 2017; Foo ve Gopinath 2017; Chen vd. 2017), silisen plaka (Nakano ve Ikuno 

2016; Lin vd. 2021; Wang vd. 2022), borofen plaka (Abdi vd. 2022; Hou vd. 2022; 

Sharma vd. 2023) gibi malzemeler NEMS organizasyonlarının temel yapıtaşları olarak 

bilinir. Yani insanoğlu günümüzde yaşadığı teknolojik devrimi bu malzemelerin keşfine 

borçludur.  

NEMS organizasyonları için atomik kuvvet mikroskobu (Binnig vd. 1986; Meyer 

1992, Hanley and Gray 1995; Blanchard 1996; Giessibl 2003; Wojcikiewicz vd. 2004; 

Seo ve Jhe 2007; Michels ve Rangelow 2014; Alsteens vd. 2017), alan etkili transistörler 

(Braga ve Horowitz 2009; Cheng vd. 2015; Ahmad vd. 2018; Wadhera vd. 2019; Bushra 

ve Prasad 2022), gaz sensörleri (Kawano vd. 2007; Cobianu vd. 2009; Bargatin 2012; 

Jousseaume vd. 2018), basınç sensörleri (Greenwood ve Satchell 1988; Eaton ve Smith 

1997; Kinnell and Craddock 2009; Luo vd. 2014; Xie vd. 2015),  nanoaktivatörler (Lu ve 

Pancapakesan 2006; Lee ve Cho 2007; Soroush vd. 2010; Kanygin ve Bahreyni 2021), 

nanokonsollar (Drechsler 2003; Wee vd. 2005; Chakraborty ve Luo 2006; Li vd. 2007; 

Kacem vd. 2010; Datar vd. 2011; Kilinc vd. 2014), nanorezonatörler (Xu vd. 2010; Wang 

ve Arash 2014; Kazmi vd. 2017; Yang vd. 2017), nanoanahtarlar (Tian vd. 2007; Ranallo 
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vd. 2016; Patino vd. 2019; Huo vd. 2022; Socrier ve Steinem 2023), radyo-frekans 

anahtarlar (Luo vd. 2014; Chaudhary ve Mudimela 2022) temel örneklerdir. 

Bir ve iki boyutlu bazı nanomalzemelerin temel karakteristik özellikleri ve 

geometrik yapıları hakkında Numanoğlu (2019) tarafından çeşitli bilgiler verilmiştir. Bu 

referansa ek olarak, genel bir NEMS organizasyonunu da temsil ettiği düşünülerek, bir 

radyo-frekans nano-elektro-mekanik sistem (RF-NEMS) ve çift rezonatörlü basınç 

sensörünün örnek şemaları Şekil 2.1’de sunulmaktadır.  

 

Şekil 2.1. Bazı nano-elektro-mekanik sistem organizasyonları; a) RF-NEMS; b) Çift 

rezonant basınç sensörü 

 Bu örneklerden rezonant basınç sensörünün genel işlevi, rezonans frekansı 

altındaki kirişe eksenel gerinim uygulanarak deformasyon ölçmektir (Xie vd. 2015). Bu 
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sensörler diğer sensörlere göre yüksek tekrarlanabilirlik, çözünürlük ve hassasiyet sağlar 

(Ikeda vd. 1990). Ayrıca, RF-NEMS anahtarı sinyal yönlendirme, empedans eşleştirme, 

sinyal anahtarlama gibi görevler görmektedir (Jaafar vd. 2014; Feng vd. 2022). Bu 

sistemler geleneksel anahtarlara göre daha düşük çalışma voltajı, iyileştirilmiş 

açma/kapama oranı, düşük akım ve yüksek anahtarlama hızı gibi faydalar sağlamaktadır 

(Loh ve Espinosa 2012). 

2.3. Fonksiyonel Dereceli Malzemeler 

Yapı mühendisliği ve mekaniği biliminde malzeme kavramı büyük bir öneme 

sahiptir. Malzeme sınıfı içerisinde, dünyada yaygın kullanıldığından beton, çelik, ahşap, 

alüminyum gibi homojen malzemeler ilk olarak akla gelmektedir. Ancak, homojen 

malzemelere göre daha üstün özelliklere sahip olan ve kompozit malzeme olarak bilinen 

bir malzeme sınıfı daha mevcuttur. Tez konusu her ne kadar fonksiyonel dereceli 

malzeme de olsa, bu kavramı taımadan önce detayına girmeksizin kompozit malzemeyi 

tanımakta fayda vardır. Kompozit malzeme, en az iki malzemenin fiziksel veya kimyasal 

metotlarla bir araya getirilerek bunlardan herhangi birine veya bir homojen malzemeye 

göre daha üstün özellikler sağlayan malzemedir. Kompozit malzemelerde karakteristik 

olarak, birbirinden farklı özelliklere sahip matris ve takviye adında iki bileşen bulunur. 

Burada takviye taşıyıcı olarak görev yaparken matris takviye malzemesini bir aderans 

(sarılma) göstererek tutma ve destekleme görevlerini üstlenir. Bilinen en yaygın malzeme 

beton ve çelikten oluşan betonarmedir. Bunun gibi örnekler fiber takviyeli kompozit 

malzeme olarak bilinir. Bunun haricinde, en az iki farklı malzemenin katmanlar halinde 

bir araya getirilmesiyle de üretilen kompozitler mevcuttur. Sandviç kompozitler ve 

laminatlar bunun en yaygın örneğidir. Kompozit paneller, alaşımlar, otomobil lastikleri, 

köpükler, karbon fiber takviyeli polimerler, kontraplaklar kompozit malzemelere örnek 

verilebilir. Kompozit malzemeler, genel olarak uçak-uzay, denizcilik, otomotiv, 

savunma, inşaat, biyomedikal, kimya gibi birçok alanda kullanılımaktadır. Kompozit 

malzemelerin bir kullanım alanı için Parveez vd. (2022)’den incelenen Boeing 787 yolcu 

uçağının malzeme yapısı Şekil 2.2’de resmedilmektedir. 

 

Şekil 2.2. Boeing 787 yolcu uçağının malzeme yapısı 

Karbon laminat kompozit Fiberglas Alüminyum 

Karbon sandviç kompozit Alüminyum/Çelik/Titanyum 
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Kompozit malzeme sınıfının çok önemli bir üyesi de fonksiyonel değişimli (veya 

derecelendirilmiş) malzemelerdir. Teknik tanım konu gereği üçüncü bölümde verilecektir 

ancak burada ana hatları ile bir açıklama yapılması uygun olacaktır. Fiziksel veya 

mühendislik özellikleri en az bir belli doğrultuda değişen malzeme fonksiyonel 

derecelendirilmiş malzemeyi (FDM) tanımlamaktadır.  

Mahammood ve Akinlabi (2017), mühendisliğin kendi problemlerini çözmek için 

sürekli olarak doğaya yöneldiğini, FDM’lerin de bunun bir sonucu olduğunu 

belirtmişlerdir. Doğanın kendisinin sağladığı ahşap ve bambu gibi ağaç endüstrisi 

malzemelerin (Hon 2001; Amada vd. 1996; Ray vd. 2004) yanı sıra insan dişi ve kemiği 

gibi organizma dokuları da (Low ve Mahmood 2004; Bartel vd. 2006) FDM örneği 

sergilemektedir. Doğanın bu malzemeleri maruz kaldığı hizmet koşullarını düşünerek 

tasarladığı belirtilmiştir. Öte yandan, insan dişinin mine adı verilen dış tabakasının 

aşınmaya karşı dirençli olduğu ve iç kısımlarının bir amortisör görevi gördüğü, bu 

tasarımın dişlerin yorulma ömrünü artırarak sünek hale getirdiği belirtilmiş, buna benzer 

şekilde insan kemiğinin de görmesi gereken hizmet gereği tasarlandığı ifade edilmiştir. 

Mühendislikte malzeme derecelendirilmesi fikri genel olarak ilk defa 1972’de 

kompozit polimerler için ortaya çıktı (Bever ve Duvez 1972; Shen ve Bever 1972). Bu 

kapsamda malzeme bileşimindeki filaman polimer fraksiyonları için çeşitli modeller ve 

potansiyel uygulamalar öne sürüldü. Ancak 1980’li yıllara kadar bu malzemelerin 

tasarım, üretim ve uygulama konularında somut bir araştırma mevcut değildi (Miyamoto 

vd. 1999). Bunun devamında, 1980’lerin ortalarında Japonya’da bir grup araştırmacının 

bir uzay projesinde çok yüksek sıcaklık değişimlerine dayanması istenen kompozit 

ihtiyacına haiz bir problem esnasında FDM fikri ortaya atıldı (Niino vd. 1987; Koizumi 

ve Niino 1995). Buna göre malzemenin bir tarafının yaklaşık 2000 K sıcaklığa maruz 

kalması ve bu sıcaklığın bir diğer tarafa iletilmemesi gerekmekteydi. Uçak gövdesinde, 

uçak içi ve dışı arasında yaklaşık 1000 K kadar bir sıcaklık farkına dayanabilecek bir 

kompozit malzeme ihtiyacı vardı. Proje kapsamındaki deneylerde geleneksel laminat 

kompozitler başarısız oldu. Deneylerde farklı kompozitler kullanılmasına rağmen 

başarısızlık modlarının benzer olduğu anlaşılmıştır. Genel olarak bu başarısızlık, 

delaminasyon da denilen, laminat kompozitin bileşenlerinin birleştiği noktalardan 

ayrışması ile gözlemlenmiştir. Bu sınır bölgede, bileşenlerin birbiriyle termal genleşme 

yönünden uyumsuz olmaları nedeniyle yüksek gerilme yığılmaları söz konusu olmuştur. 

Araştırmacılar, bileşenler arasındaki bu keskin geçişi kaldırabilirlerse sorunu 

çözebileceklerini düşünmüşlerdir. Buna göre, iki malzemenin de tamamı birbirine 

yaklaştırılarak keskin arayüz sorunu kademeli değişken arayüz ile çözülmüştür ve yeni 

malzeme yüksek termal yüklere dayanabilmiştir (Mahammood ve Akinlabi 2017). 

Böylece FDM’lerin gelişiminin yolu açıldı. FDM’ler ilk olarak havacılık yapıları ve 

füzyon reaktörlerinde termal bariyer tasarımı için geliştirildi (Koizumi 1997; Hirai ve 

Chen 1999; Chan 2001).   

Geleneksel kompozit malzemeler, özellikle uçak-uzay endüstrisi ve mühendislik 

disiplinlerinde yüksek mukavemet/ağırlık ve rijitlik/ağırlık oranları sunmaktadırlar ve 

bunlar bu disiplinlerde oldukça başarılı olmaktadırlar. Geleneksel kompozitlerdeki metal 

malzemesi yüksek mukavemet ve tokluk özellikleri ile mühendislik alanında yıllardır öne 

çıkmaktadır. Ancak sıcaklık artışına karşılık metalin mukavemeti azalmaktadır, dolayısı 

ile kompozit malzemenin yüksek sıcaklıklarda kullanımı mümkün olmamaktadır. Buna 

karşılık seramiğin ısıl direnci mükemmel bir seviyededir. Fakat seramiğin mühendislik 
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uygulamaları düşük tokluk nedeniyle kısıtlıdır (Shen 2009). İki bileşenin fonksiyonel 

derecelenme düşüncesiyle bir araya getirilmesi ile yüksek sıcaklıklara dayanım 

sağlanabilmektedir. Burada seramik yüksek sıcaklıklara dayanırken metal seramiğe 

destek görevi görür, bu durum performansı artmaya ve delaminasyon ihtimalini 

azaltmaya yardımcı olur (Mahammood ve Akinlabi 2017).  

Fonksiyonel derecelendirilmiş ve tabakalı kompozit malzeme konfigürasyonları 

Şekil 2.3’te resmedilmektedir. Buna göre, tabakalı malzemede özellikleri P ile 

simgelenen farklı N adet tabaka (N ≥ 2) üst üste birleşerek malzemeyi oluşturmaktayken, 

FDM şemasında malzeme özellikleri en alt yüzeyden en üst yüzeye doğru sürekli olarak 

değişmektedir. FDM’nin sonsuz sayıda tabakanın bir araya getirilip yapıştırılmasıyla elde 

edildiği sadece bir idealleştirme olarak düşünülebilir. Ancak bu benzeşimde katmanlar 

birbirinden oldukça farklı bir malzeme değildir, yapının en alt ve en üst yüzeyindeki 

malzemelerin belirli fraksiyonlarına (hacim oranlarına) bağlı olarak özellikleri değişen 

ara malzemelerdir. Ayrıca, FDM’ler için metal-seramik modeli oldukça yaygındır. Buna 

göre malzemenin alt yüzeyi %100 metal fazıyken üst yüzeyi %100 seramik fazından 

meydana gelir. Bu malzeme modelinin mühendislik özelliklerinin yanı sıra makro ve 

nano/mikro düzeyde katı mekaniği analizleri yaygın bir araştırma konusu olmuştur. 

 

Şekil 2.3. Bazı kompozit malzeme şemaları; a) Tabakalı kompozit; b) Sürekli 

fonksiyonel derecelendirilmiş kompozit 

Bu anlatılanlardan çıkarılacak en önemli sonucun, FDM’nin geleneksel tabakalı 

kompozit malzemelerde yaşanan arayüz sorunlarını kaldırmakta olduğu anlaşılmaktadır. 

Öte yandan, Niino vd. (1987) FDM kavramı ile young modülü, çekme mukavemeti ve 

aşınma direnci gibi özellikler açısından daha üstün malzeme tasarımlarının 

geliştirilmesine yol açıldığını ifade etmişlerdir. Ayrıca, malzemenin elastik 

özelliklerindeki kontrollü bir değişim aşınmaya karşı direncin ve kırılmaya karşı 

tokluğunun artmasına yardımcı olmaktadır (Suresh 2001).  

FDM malzemeleri genel olarak; evaporasyon tabanlı, püskürtme tabanlı ve 

plazma spreyi gibi fiziksel buhar biriktirme yöntemlerle ve kimyasal buhar biriktirme 

yöntemleriyle imal edilebilmektedir. Bu yöntemlerin detaylı bilgisi için Mahammood ve 

Akinlabi (2017)’nin çalışması incelenebilir. FDM yapıları, uzay (Nath vd. 2019), 

otomotiv (Tošić vd. 2022), biyomedikal (Pompe vd. 2003), savunma (Sharma ve 

Bhandari 2018), elektrik-elektronik (Kurimoto vd. 2010), enerji (Müller vd. 2003), 

. 

. 

. 

Tabaka - 1 
Tabaka - 2 
Tabaka - 3 
Tabaka - 4 

Tabaka - (N − 1) 
Tabaka - N 

. 

. 

. 

P1 
P2 
P3 
P4 

PN−1 
PN 

PA 

PU 

(a)         (b) 



KAYNAK TARAMASI             H.M. NUMANOĞLU 

9 

 

denizcilik (Chandrasekaran ve Hari 2022), optoelektronik (Wośko vd. 2005), dişçilik 

(Watari vd. 1997; Mehrali vd. 2013; Hedia ve Foud 2013), ortopedi (Sola vd. 2016) gibi 

birçok alanda kullanıma sahiptir. 

2.4. Atomik Boyut Etkisine Dayalı Sürekli Ortam Mekaniği 

NEMS organizasyonlarında yer alan bileşenlerin optimum tasarımı, mekanik 

davranışın eksiksiz olarak belirlenebilmesine bağlıdır. Nanoteknoloji çalışmaları 

içerisinde, bu bileşenlerin mekanik davranışı nanomekanik biliminin konusudur. Bu 

anlamda nanoyapılar üzerindeki deneysel çalışmaların oldukça kısıtlı yöntemlere 

dayanması ve zahmetli olması mekanik davranışın öğrenilebilmesine engeldir. Mekanik 

davranışı öğrenebilmek adına bilim adamları ilk olarak atomik düzeydeki simülasyon 

yöntemlerine başvurmuşlardır. Bu simülasyonlardan en iyi bilinen ikisi moleküler 

dinamik simülasyonu ve Monte Carlo simülasyonudur (Gopalakrishnan ve Narendar 

2013). Moleküler dinamikte, nanoyapı atomlarının ve bunlar arasındaki bağların zamana 

karşı davranışları Newton deterministik dinamiği (hareket denklemleri) ve Langevin-tipi 

stokastik dinamiği ile sayısal olarak modellenir. Atomlar arasındaki kuvvetler ve 

potansiyel enerji, mekanik kuvvet alanları tarafından tanımlanmaktadır (Karličić vd. 

2015). Atomlar arasındaki bu etkileşimden faydalanılarak her atom üzerindeki net kuvvet, 

net kuvvet üzerinden de atomların hız ve konumları elde edilmektedir (Numanoğlu 2019). 

Moleküler dinamik simülasyonu, yüksek maliyet, uzun işlem süreçleri, yüksek hesaplama 

hacmi ve ileri uzmanlık bilgisi gibi büyük zahmetler barındırmaktadır (Liu vd. 2004; 

Murmu ve Adhikari 2012; Numanoğlu ve Civalek 2019a, 2022; Civalek ve Numanoğlu 

2020; Numanoğlu vd. 2021).  

Nanoyapıların mekanik analizleri için belirtilen bu sorunlar, araştırmacıları teorik 

formülasyon kullanımına yöneltmiştir. Temel nanoteknolojik deneylerin sonucu olarak 

nanoyapıya inildiğinde klasik fizik kuralları geçersiz olmaktadır. Bu sonuç, nanomekanik 

için de klasik elastisite teorisi ile yaklaşımın geçersiz olacağını işaret etmektedir. 

Deneysel sonuçların, nanoyapıya etkiyen kuvvetlerin yapının karakteristik iç boyutlarıyla 

(bağlarıyla) bağlantılı olduğunu ortaya çıkarması da bu düşünceyi doğrulamıştır. 1960’lı 

yıllarda geliştirilmeye başlanan süreklilik teorilerinin 2000’li yılların başında atomik 

ölçekli yapılara uyarlanmasına başlanmıştır ve bu suretle atomik yapıların mekanik 

davranışları günümüze kadar yoğun bir şekilde araştırılmıştır. Katı cisimler mekaniği 

biliminde, yüksek mertebeden sürekli ortam teorileri denilen bu yeni sınıf, klasik 

elastisite teorisinin atomik boyut etkisi ile modifiye edilmesi felsefesi ile varlık halinde 

olmuştur. Bilimsel çalışmalarda yaygın olarak bir ve iki boyutlu nanomalzemeler bu 

yaklaşımlarla mekanik analize konu edilmiştir. Söz konusu formülasyonlardan günümüze 

değin yaygın bilinenleri, yerel olmayan elastisite teorisi, değiştirilmiş gerilme çifti 

elastisite teorisi, değiştirilmiş şekil değiştirme elastisite teorisi, yüzey enerjisi elastisite 

teorisi, eşil mekaniği elastisite teorisi olarak zikredilebilir. Bu teorilerden bazılarının 

zamanla yüksek mertebeli yeni varyasyonları da önerilmiştir (Numanoğlu 2019).  

2.5. Sonlu Elemanlar Yöntemi 

Mühendislik problemlerinde analitik (kesin) çözüme dayanan matematiksel 

modelleme esasen oldukça temel bir işlemdir yani basit problemlere kolaylıkla 

uygulanabilmektedir. Ancak çeşitli sebepler analitik çözümün kullanımının önünü keser. 

Tez kapsamı gereğince katı cisimler mekaniği düşünülecek olursa, yapı kinematiğinin 
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karmaşıklaşması, yükleme durumunun karmaşıklaşması, sınır şartların karmaşıklaşması, 

tek doğrultulu çubuk yerine iki doğrultulu yüzeysel yapı elemanı modellemesi, 

malzemenin homojen olmaması, kesitin sabit olmaması, yapıda hasar yer alması vb. gibi 

durumlar buna örnektir ve bu örnekler rahatlıkla çoğaltılabilmektedir. Bu tür 

problemlerde, mühendislik sürecinin ilk kısmı olan analizin gerçekleştirilmesi, analitik 

yöntemin alternatifi olan yaklaşık matematiksel yöntemler vasıtasıyla yürütülür. 

Günümüzde yaklaşık matematiksel yöntemler çok çeşitlidir ve bu yöntemler çeşitli 

mühendislik problemlerine uygulanarak elde edilen sonuçlardan sonra çıktıya yani ürüne 

geçiş sağlanabilmektedir.    

Sonlu elemanlar yöntemi, bu matematiksel yöntemler sınıfının belki de en önemli 

üyesi konumundadır. Temeli 1940’ların hemen başına dayanan sonlu elemanlar 

yönteminin temel felsefesine göre, probleme esas sistem ufak birimlere (alt alanlara) 

bölünür, bu alt alanların fiziksel etkileşimi matematiksel denklemlere dönüştürülür ve 

denklemlerin çözümü ile analiz süreci tamamlanmış olur. Sonlu elemanlar yönteminin 

uygulama alanı oldukça geniştir ve bu yöntem günümüz dünyasının mühendislik hizmet 

talebinin büyüklüğüne paralel olarak elektronik ortamda programlama ile oldukça büyük 

bir iş birliği içerisinde çalışmaktadır. Buna göre, günümüzde çeşitli bilgisayar yazılımları 

sayesinde, başlıcaları yapısal analiz, akış analizi, termal analiz, havacılık, geoteknik 

mühendisliği, elektro-manyetizma, otomotiv, dişçilik, biyomekanik olmak üzere birçok 

alanda sonlu eleman analizleri çok yoğun bir şekilde kullanım halindedir. Tez 

kapsamında, makro ölçeğin aksine nano ölçekli katıların sonlu eleman analizleri 

inceleneceğinden yöntem hakkında detay bilginin verilmemesi tercih edilmiştir. Yöntem 

hakkında temel bilgiler, tarihçe, dayanak esasları ve genel uygulamalar gibi yönleri ele 

alan çeşitli çalışmalara açık bilimsel literatürden rahatlıkla ulaşılabilmektedir. 

Sonlu elemanlar yönteminin makro düzeyli problemlerde geniş bir uygulama alanı 

ve çözümleme için büyük bir başarısının olmasının yanı sıra, nano ölçekli yapılar 

üzerinde geçmişi henüz yaklaşık on beş yıl öncesine dayanan uygulamalarının mevcut 

olduğu da tez konusu göz önüne alınarak kesinlikle ifade edilmelidir. Bahsi edilen 

dönemde tek doğrultulu nanoçubuk yapılarının temel kinematik kuramlarına dayanan 

yani kapsamı oldukça kısıtlı problemlerle incelenmesine başlanan atomik boyut etkili 

sonlu elemanlar analizi, günümüze değin giderek artan basılı çalışmalarla büyük bir yol 

kat etmiştir. Bir sonraki alt başlıkta bu anlatılan mevzu için bazı referanslar örnek 

gösterilmiş ve bazı kaynak taramalarına da yer verilmiştir. 

2.6. Bilimsel Literatür Özeti 

1960’ların hemen başında macerasına başlayan nanoteknolojik çalışmaların 

gittikçe hız kazanması ve bunun sonucunda nano-elektro-mekanik-sistem teknolojisi 

üzerindeki çalışmaların ilgi çekmesi, bu sistemlerin uygun yapısal tasarım mevzusunu 

öne çıkarmıştır. Atomik ölçekli yapının tasarımı öncesinde bunun bağlı olduğu mekanik 

davranışının anlaşılmasını konu edinen simülasyon tabanlı çalışmaların getirdiği yükler 

nedeniyle bu konuda bilim camiasının boyut etkisine dayanan yüksek mertebeden sürekli 

ortam teorilerini geliştirerek atomik ölçekli yapıların mekaniğini bu teorik yaklaşımlar 

üzerinden çözümlemeye çalıştığı yaklaşık son yirmi yıllık süreçte çok iyi bilinmektedir. 

Boyut etkisini göz önüne alan teorik yaklaşımlardan birisi de Eringen’in yerel olmayan 

elastisite teorisi olup, bu teori konu hakkındaki bilimsel literatürde büyük bir popülariteye 

sahiptir. 
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İlk dönemlerde nanoyapıların homojen malzemeden imal edilme ve yapı 

kinematiğinde temel etkileri gözetme gibi temel durumlarını göz önüne alan temel 

çalışmalar oldukça yaygın olsa da kompozit malzeme teknolojisindeki gelişmeler 

zamanla nanomekanik alanına da önemli etkilerde bulunmuştur. Bu nedenle, tez konusu 

da düşünülerek bu alt başlıkta çoğunlukla fonksiyonel değişimli malzemeden imal edilen 

nanoyapıların yerel olmayan mekaniği hakkındaki seçilmiş çalışmalardan kısaca 

bahsedilecektir. 

Yerel olmayan elastisite teorisi esasen matematiksel fizik denklemlerine dayanır 

(Numanoğlu 2017, 2019). Bu konuda Gurtin (1965) ve Kunin (1969) tarafından yapılan 

temel çalışmaların ardından A.C. Eringen ve arkadaşları tarafından gerçekleştirilen 

çalışmalarla (Eringen 1972, 1973, 1977, 1978, 1983, 1984, 2002; Eringen ve Edelen 

1972; Eringen ve Kim 1977; Ari ve Eringen 1983) yerel olmayan elastisite teorisi katı 

cisimler mekaniğinde bir temele oturtulmuştur. Yerel olmayan teorinin elastik katılardaki 

ilk uygulamaları ise 2000’li yılların başında çoğunlukla Euler-Bernoulli nanokirişleri 

üzerinde gerçekleştirilen eğilme (Peddieson vd. 2003; Wang ve Liew 2007), burkulma 

(Sudak 2003; Wang vd. 2006) ve titreşim analizleri (Wang ve Varadan 2006) ile olmuştur. 

Nanokiriş analizlerini kinematik açıdan daha kapsamlı inceleyen çalışmalara da 

rastlanmıştır (Reddy 2007; Reddy ve Pang 2008). Öte yandan, basit (elemanter) eksenel 

nanoçubuk titreşimleri (Aydoğdu 2009, 2012) hakkında incelemeler de yapılmıştır. 

Yaklaşık ilk altı yıllık süreçteki bu temel çalışmalarda çoğunlukla karbon nanotüp, 

nanoyapı malzemesi olarak düşünülmüştür. Homojen malzemeyi göz önüne alan 

nanokirişlerde yerel olmayan analizlerin kapsamı izleyen süreçte oldukça genişlemiştir 

ancak tez konusu da düşünüldüğünde bu alt başlık kapsamında bu çalışmalara daha fazla 

girilmemesi tercih edilmiştir. Bu konuda Numanoğlu (2019) tarafından verilen literatür 

taraması incelenerek bilgi alınabilir.   

Elbette yerel olmayan mekanik analizler üzerine temel çalışmalar analitik 

çözümlemelere dayanmaktadır. Fakat zamanla incelenen problemler daha da karmaşık 

bir yapıda olduğundan çeşitli sayısal yaklaşımlar nanomekanik literatürü içerisinde yerini 

almıştır. Bunların içerisinde yerel olmayan sonlu eleman formülasyonu önemli bir 

yerdedir. Bu konuda, Euler-Bernoulli kirişlerinin mekaniği (Pradhan ve Phadikar 2010; 

Alshorbagy vd. 2013; Eltaher vd. 2013a; Eptaimeros vd. 2016; Dinçkal 2016; Demir ve 

Civalek 2016, 2017; Khodabakshi ve Reddy 2015; Demir vd. 2018; Eptaimeros vd. 2018; 

Uzun vd. 2018; Numanoğlu vd. 2019; Numanoğlu 2020), basit çubuk titreşimleri 

(Narendar 2012; Adhikari vd. 2013a, 2013b; Demir ve Civalek 2013; Chang 2013; Li vd. 

2016; Uzun vd. 2020; Numanoğlu ve Civalek 2022), burulma titreşimleri (Lim vd. 2015; 

Numanoğlu ve Civalek 2019a), Timoshenko kirişinin mekaniği (Pradhan 2012; Pradhan 

ve Mandal 2013; Alotta 2014; Numanoğlu vd. 2021; Numanoğlu vd. 2022; Fakher ve 

Hosseini-Hashemi 2022), yüksek mertebeden kayma deformasyonlu eğrisel 

nanokirişlerin mekaniği (Ganapathi vd. 2018; Polit vd. 2018), kaymalı (Poisson etkili) 

eksenel çubuk titreşimleri (Civalek ve Numanoğlu 2020) ve ayrık nanoyapıların serbest 

titreşimleri (Numanoğlu ve Civalek 2019b, 2024; Russillo vd. 2021; Hozhabrossadati vd. 

2022) gibi çalışmalar örneklenebilir.  

Tez konusu göz önüne alındığı zaman homojen kayma deformasyonlu 

nanokirişlerin yerel olmayan mekanik analizleri hakkında seçilmiş çalışmalara izleyen 

sayfadan itibaren değinilmektedir. 
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Nanokirişlerin sıcaklık etkisi altında yerel olmayan titreşimi Benzair vd. (2008) 

tarafından formüle edilmiştir. Timoshenko kiriş teorisine göre kayma deformasyonu ve 

sıcaklıktan kaynaklı eksenel kuvvete göre hareket denklemi elde edilmiş olup, uygulama 

olarak iki ucu basit mesnetli tek duvarlı karbon nanotüplerin yerel olmayan frekansları 

üzerinde atomik parametre, ortam sıcaklığı ve narinlik oranının etkileri grafiksel olarak 

ele alınmıştır.  

Ansari vd. (2011) Winkler zeminine oturan tek duvarlı karbon nanotüplerin termal 

burkulmasını çalışmışlardır. Söz konusu mekanik analizin yönetici denklemini çözmek 

için genelleştirilmiş diferansiyel kuadratür metodu kullanılmıştır. Üç farklı sınır şartlı 

nanokirişlerin burkulma modlarının kritik sıcaklıkları üzerinde mod sayısı, narinlik oranı 

ve atomik parametrenin etkileri araştırılmıştır.  

Shen vd. (2012) uçta küresel biyonesne eklentili çok duvarlı karbon nanotüpün 

konsol kiriş modelinin (biyonsensör modeli) yerel olmayan serbest titreşimini transfer 

fonksiyonları yöntemi vasıtasıyla incelemişlerdir. Uç eklentisinin dönel ataletinin ihmal 

veya dahil edilmesi durumları altında eklenti çapının değişimine göre boyutsuz frekanslar 

mukayese edilmiştir. Bir benzer çalışmaya göre, uçta nanoparçacık eklentili daralan 

nanokirişin serbest titreşimi transfer fonksiyon metodu ve pertürbasyon metodu ile Tang 

vd. (2014) tarafından çalışılmıştır. Daralma profili lineer olarak düşünülmüştür. Daralma 

oranı, mod sayısı, eklenti kütlesi ve narinlik oranının etkileri tartışılmıştır.  

Ke vd. (2009) Winkler zeminine oturan çift duvarlı karbon nanotüplerin yerel 

olmayan lineer olmayan enine serbest titreşimini araştırmışlardır. Lineer olmama durumu 

von Kármán tipi şekil değiştirme-deplasman ilişkisi ile düşünülmüştür. Ayrıca nanoyapı 

duvarları arasındaki van der Waals etkileşimi de dikkate alınmıştır. Titreşimin 

diferansiyel kuadratür çözümüne göre, üç farklı sınır şartlı nanokirişin frekans oranları ve 

mod şekilleri üzerinde atomik parametre ve yapı boyutlarının etkisi irdelenmiştir. 

Ansari vd. (2015a) nanokirişlerin yerel olmayan lineer olmayan zorlanmış 

titreşiminde manyetik-elektrik-termal etkileri diferansiyel kuadratür çözümü ile 

araştırmışlardır. Manyetik ve elektrik etkiler Maxwell eşitliğine ve lineer olmayan şekil 

değiştirmeler von Kármán eşitliğine göre formüle edilmiştir. Üç farklı sınır şartlı 

nanokirişlerin genlikleri üzerinde frekans oranı, boyutsuz atomik parametre, sıcaklık 

değişimi ve manyetik potansiyel gibi farklı parametrelerin etkileri ele alınmıştır. 

Tek duvarlı karbon nanotüplerin yerel olmayan lineer olmayan burkulma ve 

burkulma sonrası analizleri için diferansiyel kuadratür çözümü Ansari vd. (2015b) 

tarafından yapılmıştır. von Kármán tipi lineer olmama durumu da analize katılmıştır. Üç 

farklı sınır şartlı nanokirişin yerel olmayan kritik burkulma yükü oranları ve burkulma 

deformasyonları üzerinde nanotüp geometrik boyutlarının etkileri incelenmiştir. 

Torabi ve Dastgerdi (2012) kayma deformasyonlu nanokirişlerin yerel olmayan 

serbest titreşiminde yapısal çatlak etkisini incelemişlerdir. Nanokirişin burulma yayıyla 

modellenmiş tek bir çatlağa sahip olduğu düşünülmüştür. Çözüm analitik olarak elde 

edilen hareket denklemleri ve sınır şartlara ek olarak çatlak noktasındaki uygunluk 

şartlarının uygulanması üzerinden gerçekleştirilmiştir. İki farklı sınır şartlı nanokirişin 

frekansları üzerinde kayma deformasyonunun, yerel olmayan parametrenin, çatlak 

şiddetinin ve çatlak konumunun etkileri ele alınmıştır. 
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Lei vd. (2013) yerel olmayan nanokirişlerin sönümlü titreşimini incelemişlerdir. 

Sönümün matematiksel modeli olarak Kelvin-Voigt viskoelastisite tanımı kullanılmıştır. 

Mekanik analizin çözümü için transfer fonksiyonu metodundan faydalanılmıştır. Üç 

farklı sınır şartlı nanokirişlerin sönümsüz ve sönümlü serbest titreşim boyutsuz 

frekansları karşılaştırılmış, frekanslar üzerinde viskoelastik sönüm ve boyutsuz atomik 

parametrenin etkileri araştırılmıştır. 

Tuna ve Kirca (2016) eğilme analizinde paradoks yaşanan ankastre mesnetli 

nanokiriş modellerinin doğru çözümü için Laplace dönüşümüne bağlı bir yaklaşım 

önermiştir. Yaklaşım kullanılarak iki farklı sınır şartlı ankastre mesnetli nanokirişlerin 

deplasman değerlerine kayma deformasyonunun ve yapı boyutlarının etkisi ele alınmıştır. 

Pradhan (2012), Timoshenko nanokirişlerinin statik, titreşim ve burkulma 

analizleri için sonlu elemanlar formülasyonlarını sunmuştur. Sonlu eleman prosedürü 

Galerkin çözümü ile elde edilmiştir. İki ucu basit mesnetli nanokirişlerin deplasman, 

kritik burkulma yükü ve temel mod doğal frekanslarının boyutsuz formları doğrulanmış 

ve bunlar üzerinde atomik parametrenin etkileri araştırılmıştır. Ayrıca bu sonlu elemanlar 

formülasyonu kullanılarak kayma deformasyonlu nanokirişlerin termo-mekanik 

analizleri de Pradhan ve Mandal (2013) tarafından çalışılmıştır. 

Winkler zeminine oturan nanokirişlerin yerel olmayan burkulması Wu ve Liou 

(2016) tarafından Reissner’in karışık varyasyon teorisi yaklaşımıyla formüle edilmiştir. 

Analizde von Kármán tipi lineer olmama durumu da gözetilmiştir. Dört farklı sınır şart 

için elde edilen kritik burkulma parametreleri doğrulanmıştır ve burkulma yükleri 

üzerinde mod sayısının ve atomik parametrenin etkileri incelenmiştir. 

Wu ve Lai (2015) çift parametreli elastik zemine oturan nanokirişin yerel olmayan 

serbest titreşimini Reissner’in karışık varyasyon teorisi üzerinden çalışmışlardır. Dört 

farklı sınır şartlı nanokirişin boyutsuz frekansları kesin sonuçlarla karşılaştırılmıştır ve 

frekanslar üzerinde yapı boyutları ve zemin parametrelerinin etkileri tartışılmıştır.   

Numanoğlu vd. (2021), termo-elastik bir ortamda yer alan yerel olmayan 

Timoshenko nanokirişlerinin serbest titreşimi için ağırlıklı kalıntı metoduna dayalı sonlu 

elemanlar formülasyonunu vermişlerdir. Buna göre, birleştirilmiş bir yaklaşım ile elde 

edilen hareket denklemi, iki düğümlü sonlu eleman kinematiğine dayalı olarak bir 

özdeğer problemine dönüştürülmüştür. Dört farklı sınır şartlı nanokirişlerin frekansları 

için yerel olmayan parametre, sıcaklık ve elastik zemin etkileri ele alınmıştır. 

Numanoğlu vd. (2022), kayma deformasyonsuz nanokirişlere (Euler-Bernoulli 

kirişi) ek olarak Timoshenko ve Rayleigh nanokirişlerinin termal serbest titreşimi için 

yerel olmayan sonlu elemanlar formülasyonunu açıklamışlardır. Dört farklı sınır şartlı 

nanokirişlerin yerel olmayan boyutsuz frekansları üzerinde sıcaklık değişimi ve narinlik 

oranı değişiminin etkileri üzerinden kayma deformasyonunun önemi araştırılmıştır. 

De Rosa vd. (2021) uçta kütle ve elastik yay eklentili daralan nanokirişin titreşim 

analizini ele almıştır. Nanokiriş için lineer daralma profili düşünülmüştür. Hareket 

denkleminin çözümü diferansiyel kuadratür metoduna bağlı olarak verilmiştir. Farklı 

daralma oranları için temel mod boyutsuz frekansları karşılaştırılarak çözüm doğrulanmış 

ve frekans oranlarının değişimine daralma oranının etkilerinden bahsedilmiştir. 
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Küresel nanoparçacıkla birleşik iki ucu ankastre nanokirişin serbest titreşimi 

Ceballes vd. (2022) tarafından analitik olarak formüle edilmiştir. Parçacığın kütlesel bir 

eklenti olduğu ve nanokiriş üzerinde serbestçe dolaşabildiği düşünülmüştür. Uygulama 

olarak parçacık konumunun doğal frekanslar üzerindeki etkileri incelenmiştir.  

Numanoğlu (2022), iki ucu basit mesnetli nanokirişlerin kayma deformasyonlu 

çökmeleri üzerinde kesit alan etkisini ele almıştır. Tekil ve yayılı yük altındaki iki ucu 

basit mesnetli nanokirişin analitik çözümle elde edilen çökmeleri dört farklı kesit şekli 

için hesaplanmış olup, sonuçlar üzerinde kesit şeklinin, kiriş uzunluğunun ve yük 

şiddetinin ve boyutsuz atomik parametrenin etkileri araştırılmıştır. 

Abdullah vd. (2023) çatlaklı yerel olmayan Timoshenko kirişlerinin termal serbest 

titreşimini araştırmışlardır. Çatlak dönel yay ile modellenmiştir ve termal yük Poisson 

etkili eksenel bir kuvvet olarak formüle edilmiştir. Sonuçlar üzerinde boyutsuz atomik 

parametrenin, çatlak şiddetinin ve sıcaklık değişiminin etkileri tartışılmıştır. 

Nanokiriş veya nanoçubuk gibi düz eksenli mekanik katılardan farklı olarak 

halkasal nanoyapılarda da kayma deformasyonu etkisinin ele alındığı gözlemlenmektedir. 

Moosavi vd. (2011), yüksek mertebeden kayma deformasyonuna dayanan nanohalkaların 

düzlem içi yerel olmayan serbest titreşimini analitik olarak formüle etmişlerdir. Sonuçlar 

üzerinde atomik parametrenin ve nanohalka çapının etkileri incelenmiştir.  

Bunların dışında, yerel olmayan elastisite kapsamında kayma deformasyonu 

düzlemsel ayrık sistemler için de gözetilmiştir. Buna göre, Numanoğlu ve Civalek 

(2024b), eğilme etkileri Timoshenko kiriş teorisine dayanan düzlemsel nanoçerçevelerin 

yerel olmayan serbest titreşim analizi için sonlu eleman çözümü tabanlı bir matris 

deplasman formülasyonu sunmuşlardır. Bu formülasyon üzerinden farklı tip geometrilere 

sahip nanoçerçevelerin boyutsuz frekansları üzerinde atomik parametre ve çerçeve 

geometrisinin etkileri incelenmiştir.  

Öte yandan, fonksiyonel değişimli malzemelerin (FDM) nanomekanikteki ilk 

uygulamaları 2010’lu yılların başlarında gözlemlenmektedir. FDM nanoçubukları 

hakkındaki ilk çalışmalarda malzeme için en alt yüzeyde %100 çelik-en üst yüzeyde 

%100 alüminyum düşünülmüş ve malzemenin klasik karışım kuralı ile modellenmiştir. 

Ayrıca ilk çalışmalarda mekanik analiz çözümünde sonlu elemanlar formülasyonlarından 

faydalanıldığı gözlemlenmektedir. FDM’lerin yerel olmayan mekaniği hakkında kaynak 

taramaları bu alt başlığın buradan itibaren devam eden kısmında verilmektedir. 

Euler-Bernoulli nanokirişlerinin titreşim analizleri Eltaher vd. (2013b) tarafından 

sunulmuştur. Dört farklı sınır şarta sahip nanokirişlerin ilk beş mod boyutsuz frekansları 

üzerinde yerel olmayan parametre ve narinlik oranının etkileri araştırılmıştır. Sonuçlar, 

yerel olmayan frekanslar üzerinde FDM güç indeksinin önemli olduğunu göstermiştir. 

Malzeme ve kinematik yönlerinden aynı nanoyapı modelinin eğilme ve burkulma 

analizleri de Eltaher vd. (2013c) tarafından çalışılmıştır.  

Yerel olmayan nanokirişler üzerindeki yukarıda anlatılan ilk çalışmalarda, kesitin 

geometrik merkezi aynı zamanda malzeme merkezi olarak düşünülmüştür yani homojen 

malzemenin geometrik ekseni aynı zamanda FDM’nin nötr eksenidir. Ancak izleyen 

çalışmalarda, geometrik eksenle arasında küçük deplasman yaklaşımından kaynaklanan 
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bir fark oluşan nötr eksen etkisini hesaba katan çalışmalara da rastlanılıştır. İlk defa 

Eltaher vd. (2013b)’nin Euler-Bernoulli nanokirişlerinin serbest titreşimini buna göre 

modellediği anlaşılmıştır. Çalışmada geometrik merkez ile malzeme merkezi arasındaki 

mesafe formüle edilmiştir. Güç indeksinin bu mesafe üzerindeki etkisinin yanı sıra iki 

ucu basit mesnetli nanokirişlerin boyutsuz frekansları üzerinde güç indeksi, nötr eksen ve 

malzeme oranı gibi çeşitli faktörler gözetilmiştir. Yazarlar, nötr eksen etkisinin 

frekanslarda belirli durumlar için %10’un üzerinde sapmaya neden olduğunu ve bu 

nedenle FDM nanokirişler üzerinde önemli etkisi olduğunu vurgulamışlardır. 

Timoshenko nanokirişlerinin titreşimi üzerinde nötr eksen etkisi Eltaher vd. 

(2014a) tarafından çalışılmıştır. İlgili analiz yerel olmayan sonlu elemanlar hakkındaki 

ilk çalışmalardan farklı olarak üç düğümlü bir sonlu eleman kinematiğine dayanmaktadır. 

Üç farklı sınır şarta sahip nanokirişlerin ilk üç mod frekansları geometrik ve nötr eksenler 

için karşılaştırılmıştır. Yine üç düğümlü bir sonlu eleman modeline dayanan Timoshenko 

nanokirişlerinin nötr eksen etkisiyle eğilmesi ve burkulması Eltaher vd. (2014b) 

tarafından incelenmiştir. 

Rahmani ve Pedram (2014) çelik-alümina FDM nanokirişin Timoshenko teorisine 

göre serbest titreşimini analitik olarak formüle etmişlerdir. Malzeme rijitlik ve kütle 

hesaplarında nötr eksen etkisi ihmal edilmiştir. İki ucu basit mesnet sınır şartını gözeterek 

nanokirişlerin boyutsuz frekansları üzerinde kiriş boyutlarının, boyutsuz atomik 

parametrenin ve güç indeksinin etkileri araştırılmıştır. 

Şimşek ve Yurtcu (2013) FDM nanokirişlerin yerel olmayan statik ve stabilite 

davranışlarını incelemişlerdir. Elde edilen hareket denklemleri uygun seri açılımları ile 

çözülerek iki ucu basit mesnetli nanokirişlerin boyutsuz frekans ve burkulma yükü 

değerleri üzerinde kayma deformasyonunun, atomik parametrenin, güç indeksinin ve 

narinlik oranının etkileri açıklanmıştır. 

Ebrahimi ve Salari (2015a) termal etkiler altındaki FDM Euler-Bernoulli 

nanokirişlerin serbest titreşimini analitik ve diferansiyel transformasyon metotları ile 

incelemişlerdir. Malzeme özellikleri için Touloukian (1967) tarafından önerilen 

sıcaklığın lineer olmayan fonksiyonu kullanılmıştır. Klasik karışım kuralına göre 

modellenen Al2O3-SUS304 malzemesinin üç farklı sınır şartlı kirişin boyutsuz frekansları 

üzerinde boyutsuz atomik parametre, güç indeksi ve ortam sıcaklığının etkileri 

incelenmiştir. Buna ek olarak, Si3N4-SUS304 malzeme modelinin Timoshenko teorisine 

dayanan yerel olmayan serbest titreşim ve burkulma analizleri de analitik ve diferansiyel 

transformasyon çözümleri ile Ebrahimi ve Salari (2015b) tarafından araştırılmıştır.  

Aria ve Friswell (2019) yerel olmayan FDM Timoshenko nanokirişlerinin serbest 

titreşim ve burkulma analizi için on serbestlikli bir sonlu eleman çözümü geliştirmişlerdir. 

Önceki çalışma özetlerinde bahsedilen FDM nanokirişlerin nötr eksen hesabı rijitlik ve 

kütle özelliğini etkilemektedir fakat bu çalışmada nötr eksenin malzeme efektif 

özelliklerine de dahil edilmiş olması dikkat çekmiştir. Buna göre üç farklı sınır şarta sahip 

nanokirişlerin frekans ve burkulma yük parametreleri üzerinde kiriş boyutları, atomik 

parametre ve güç indeksinin etkileri incelenmiştir. Öte yandan, bu çalışmaya konu sonlu 

eleman modeli Aria vd. (2019) tarafından pürüz fonksiyonel derecelendirilmiş 

malzemeden imal edilmiş kayma deformasyonlu nanokirişin yerel olmayan termo-elastik 

titreşim ve burkulmasına da uygulanmıştır.  
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Hosseini ve Rahmani (2016) eğrisel FDM nanokirişlerin yerel olmayan termal 

titreşimini çalışmışlardır. Eğrisel nanokirişin kinematiğinde Euler-Bernoulli teorisi 

gözetilmiş, malzeme modellemesinde ise klasik karışım kuralı ve lineer olmayan sıcaklık 

dağılımı göz önüne alınmıştır ancak nötr eksen etkisi göz ardı edilmiştir. Analitik olarak 

elde edilen yerel olmayan hareket denklemleri seri açılımları ile çözülmüş olup, iki ucu 

basit mesnetli nanokirişin frekansları üzerinde boyutsuz atomik parametre, güç indeksi, 

sıcaklık, eğrilik açısı gibi faktörler ele alınmıştır. 

Yüksek mertebeden bir kayma deformasyon teorisi olan Reddy kiriş teorisine 

(üçüncü mertebeden kiriş teorisi) dayanan ve çift parametreli elastik zemine oturan FDM 

nanokirişlerin yerel olmayan termal titreşimi Ebrahimi ve Barati (2016) tarafından 

incelenmiştir. Malzeme homojenizasyonunda Mori-Tanaka modeli (Mori ve Tanaka 

1973), efektif malzeme özellikleri için sıcaklığın lineer olmayan fonksiyonu ve sıcaklık 

değişimi için üç farklı dağılım modeli göz önüne alınmıştır. Elde edilen hareket denklemi 

uygun seri açılımları ile çözülmüştür. Boyutsuz frekanslar üzerinde atomik parametre, 

güç indeksi ve termo-elastik parametrelerin etkileri araştırılmıştır. 

Rahmani ve Jandaghian (2015), üçüncü mertebeden kiriş teorisi ile FDM 

nanokirişlerin yerel olmayan burkulmasını araştırmışlardır. İki ucu basit mesnetli kiriş 

için hareket denklemlerine seri açılımı ve dört tür sınır şart için enerji denklemlerine 

Rayleigh-Ritz çözümünün uygulanmasıyla kritik burkulma yükleri elde edilmiştir. 

FDM Timoshenko nanokirişlerinin piezo-elektrik ve termal etkiler altındaki 

burkulma analizi Ebrahimi ve Salari (2015c) tarafından sunulmuştur. Elde edilen yönetici 

denklemler iki ucu basit mesnetli nanokiriş için seri açılımları ile çözülmüştür ve çeşitli 

parametreler altında kritik burkulma sıcaklıkları verilmiştir. 

Nazemnezhad ve Hosseini-Hashemi (2014) von Kármán tipi lineer olmayan FDM 

nanokirişlerin yerel olmayan titreşimini Euler-Bernoulli teorisi ile araştırmışlardır. 

Mekanik analiz iki tip sınır şartın şekil fonksiyonu için Galerkin metodu ile çözülmüştür. 

Kirişlerin çeşitli parametreler için lineer olmayan frekansları elde edilmiştir. 

Hamed vd. (2016), sigmoid dağılıma sahip FDM nanokirişlerin yerel olmayan 

serbest titreşimini bir sonlu eleman çözümüyle araştırmışlardır. Kiriş kinematiğinde 

kayma deformasyonu ihmal edilmiştir. İki ucu basit mesnetli nanokirişlerin boyutsuz 

frekansları farklı parametreler altında hesaplanmıştır. 

Soltanpour vd. (2017) elastik zemine oturan çatlaklı FDM Timoshenko 

nanokirişlerinin yerel olmayan serbest titreşimini analitik olarak araştırmışlardır. Kirişte 

çatlak hasarı dönel yayla temsil edilmiştir. İki farklı sınır şartına sahip nanokirişin 

frekansları üzerinde çeşitli parametrelerin etkisi incelenmiştir. 

Refainejad vd. (2017) çift parametreli elastik zemine oturan yüksek mertebeden 

kayma deformasyonlu FDM nanokirişlerin yerel olmayan eğilme, burkulma ve serbest 

titreşim problemlerini ele almışlardır. Nanokiriş kinematiği için dokuz farklı yüksek 

mertebeden kayma deformasyonlu kiriş teorisi gözetilmiştir. Problemlerin yönetici 

denklemleri varyasyon cebriyle elde edildikten sonra iki ucu basit mesnetli nanokirişler 

için uygun seri açılımlarıyla çözülmüştür. Nanokirişin statik çökme, burkulma yükü ve 

titreşim frekansları üzerinde çeşitli parametrelerin etkisi detaylı olarak tartışılmıştır. 
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Lal ve Dangi (2019) birinci mertebeden kayma deformasyonlu lineer daralan 

FDM nanokirişin termal titreşimini diferansiyel kuadratür çözümü üzerinden 

araştırmışlardır. İki ucu basit mesnetli nanokirişlerin çeşitli parametreler altında boyutsuz 

frekansları ve mod şekilleri sunulmuştur.  

Fang vd. (2020), dönen FDM nanokirişlerin termal titreşim ve burkulma 

problemlerini ele almışlardır. Analizde kayma deformasyonları ihmal edilmiş ve von 

Kármán tipi lineer olmayan şekil değiştirme gözetilmiştir. Elde edilen hareket 

denklemleri iki farklı sınır şart için Galerkin yöntemiyle çözüme kavuşturulmuştur. 

Nanokirişlerin kritik sıcaklıkları ve boyutsuz frekansları hesaplanmıştır.  

Civalek vd. (2022) uçları hem basit hem de elastik yay mesnetli FDM 

nanokirişlerin Euler-Bernoulli teorisine göre burkulma analizini çalışmışlardır. 

Burkulmanın yönetici denklemi Stokes dönüşümü vasıtasıyla gerçekleştirilmiştir. Söz 

konusu nanokiriş yapısının farklı parametrelere göre kritik burkulma yükleri verilmiştir. 

Uzun vd. (2023) Winkler zeminine oturan FDM Euler-Bernoulli nanokirişlerin 

yerel olmayan serbest titreşimi için sonlu eleman formülasyonunu geliştirmişlerdir. Üç 

farklı sınır şartlı nanokirişin çeşitli parametrelere göre doğal frekansları hesaplanmıştır.  

El-Borgi vd. (2015) lineer olmayan elastik zemine oturan FDM Euler-Bernoulli 

nanokirişininin yerel olmayan serbest ve zorlanmış titreşim analizlerini işlemişlerdir. 

Ayrıca lineer olmayan şekil değiştirme de hesaba katılmıştır. Söz konusu hareket 

denklemleri varyasyonel iterasyon ve çoklu ölçek yöntemleri ile çözülmüştür. İki ucu 

basit mesnetli nanokirişlerin farklı parametreler altında lineer olmayan frekansları ve 

frekans cevapları elde edilmiştir.  

Arefi ve Zenkour (2017a) manyetik ve elektrik etkiler altında ve visko-Pasternak 

zeminine oturan FDM Timoshenko kirişlerinin dalga yayınım analizini sunmuşlardır. 

Hareket denklemi birleşik bir Hooke yasası-Lame sabitleri ile temellendirilmiştir. 

Varyasyon cebri üzerinden elde edilen hareket denklemi harmonik eşitlikler vasıtasıyla 

çözülerek nanokirişlerin çeşitli doğrultularının dalga yayınım hızlarına ulaşılmıştır.  

Lei vd. (2019) eksenel yönde fonksiyonel derecelendirilmiş nanokirişin 

burkulmasında termal etkileri araştırmışlardır. Kiriş kinematiği olarak sinüzoidal kayma 

deformasyonu (Touratier 1991) gözetilmiştir. Ayrıca sıcaklık dağılımı da sinüs 

fonksiyonu ile modellenmiştir. Hareket denkleminin Chebyshev polinomları ile çözümü 

üzerinden iki ucu basit mesnetli nanokirişlerin burkulma yükleri hesaplanmıştır.  

Belarbi vd. (2021) parabolik kayma deformasyonu yaklaşımına dayanan kiriş 

kinematiği üzerinden FDM nanokirişin yerel olmayan eğilme ve burkulma analizleri 

hakkında iki düğümlü-sekiz serbestlikli bir sonlu eleman çözümü geliştirmişlerdir. Söz 

konusu formülasyon üzerinden nanokiriş yapısının çeşitli parametrelere göre boyutsuz 

çökme ve burkulma yükü değerleri elde edilmiştir.  

Öte yandan, FDM’den imal edilmiş kayma deformasyonlu nanokirişlerin, ikinci 

bir boyut etkisiyle birleştirilmiş yerel olmayan yaklaşıma (yerel olmayan şekil değiştirme 

değişimi elastisite teorisi) dayanan mekanik analizleri de (Barretta vd. 2016; 

Norouzzadeh vd. 2018; She vd. 2018; Jalaei vd. 2019; Jalaei ve Civalek 2019; Ghoulipour 
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ve Ghayesh, 2020; Karami vd. 2020; Thang vd. 2021; Tang vd. 2021; Yue vd. 2021; 

Faghidian vd. 2022; Trabelssi ve El-Borgi 2022) de bilimsel literatürde yoğun çalışılan 

bir konudur. 

Atomik ölçekli nanoçubukların da FDM modelleri üzerinden yerel olmayan 

burulmalı ve eksenel titreşim olgularının ele alındığı bilimsel literatürden bilinmektedir. 

Bunun yanı sıra, bu tür çubukların homojen olma ve FDM’den imal edilme durumları için 

farklı kinematik etkiler de gözetilmiştir. Dahası, yerel olmayan sonlu elemanlar 

formülasyonları ile nanoçubukların çeşitli titreşimi incelemeleri gerçekleştirilmiştir. 

Bütün bu anlatılanlar düşünülerek, bu altbaşlığın kalanında güncelliği bulunan 

çalışmalardan aşağıda kısaca bahsedilmektedir. İlk olarak homojen nanoçubuklar 

hakkında açıklamalar yapılmaktadır. 

Demir ve Civalek (2013), nanoçubukların basit eksenel ve burulmalı titreşimleri 

için yerel olmayan sonlu elemanlar formülasyonunu açıklamışlardır. Hareket 

denklemlerine ortalama ağırlıklı kalıntının uygulanması ile elde edilen özdeğer denklemi 

çözülerek hesaplanan boyutsuz frekanslar analitik sonuçlarla mukayese edilerek 

formülasyon doğrulanmıştır. Nanoçubukların burulmalı ve eksenel titreşim frekansları ve 

dalga yayınım hızları üzerinde boyutsuz atomik parametrenin etkileri incelenmiştir.  

Ecsedi ve Baksa (2017) Rayleigh teorisine dayanan ve eksenel ortama gömülü 

nanoçubukların serbest titreşimini analitik çözüm ile incelemişlerdir. İki farklı sınır şartlı 

nanoçubuğun yerel olmayan frekanslarının oranları üzerinde çubuk uzunluğunun, elastik 

ortam parametresinin ve mod sayısının etkileri araştırılmıştır.  

Lim vd. (2015) nanoçubukların yerel olmayan statik ve dinamik burulması için 

sonlu eleman formülasyonunu vermişlerdir. İki farklı sınır şartlı nanoçubuğun farklı tork 

yükleri altındaki statik deformasyonları ve serbest titreşim frekansları analitik sonuçlarla 

mukayese edilmiş ve sonuçlar üzerinde atomik boyut etkisi araştırılmıştır. 

Nazemnezhad ve Kamali (2018a) kalın nanoçubukların eksenel titreşimini 

analitik olarak incelemiştir. Kalın nanoçubukların kinematiği yanal deformasyon etkili 

(veya Poisson etkili) eksenel çubuk kuramı olan Bishop teorisine dayanmaktadır. İki 

farklı sınır şartlı nanoçubuklar için türetilen frekans denklemleri kullanılarak doğal 

frekanslar üzerinde yanal atalet etkisi, çubuk uzunluğu ve atomik parametrenin 

etkilerinden bahsedilmiştir. Bu çubuk modelinin elastik yay eklentili uçlara sahip olması 

durumu için Stokes dönüşümleri ile yerel olmayan doğal frekans hesapları da Uzun vd. 

(2020) tarafından sunulmuştur. 

Karličić vd. (2018) Bishop çubuklarının yerel olmayan eksenel titreşimini analitik 

ve sonlu farklar çözümleri ile çalışmışlardır. Ayrıca bu çözüm, üyeleri birbiri ile elastik 

etkileşimde olan birleşik nanoçubuk sistemine de uygulanmıştır. Üç tür sınır şartlı eksenel 

nanoçubukların ve birleşik nanoçubuk sisteminin doğal frekansları elde edilmiştir.  

Numanoğlu ve Civalek (2019a) eksenel ortama gömülü homojen nanoçubukların 

yerel olmayan burulmalı titreşimi için sonlu elemanlar çözümünü ele almışlardır. 

Burulmalı titreşime ağırlıklı kalıntının uygulanmasıyla elde edilen formülasyon 

üzerinden, ikisi genel ve ikisi elastik yay eklentili olmak üzere dört farklı sınır şartlı 

nanoçubuğun yerel olmayan burulma frekansları farklı parametreler için hesaplanmıştır. 
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Civalek ve Numanoğlu (2020) Bishop çubuk teorisi üzerinden eksenel ortama 

gömülü homojen nanoçubukların yerel olmayan eksenel serbest titreşimi hakkında bir 

sonlu eleman modelini açıklamışlardır. Sonlu eleman modeli için üç düğümlü eksenel 

eleman kullanılmıştır. Hareket denkleminin ağırlıklı kalıntı ile çözülmesi ile elde edilen 

frekansların analitik sonuçlara yakınsama çalışmaları üzerinden çözüm doğrulanmış, iki 

farklı sınır şartlı nanoçubuğun frekansları üzerinde çeşitli parametrelerin etkileri 

incelenmiştir.  

Homojen Bishop nanoçubuğunun yerel olmayan şekil değiştirme elastisite teorisi 

ile eksenel titreşimi Gul ve Aydogdu (2022) tarafından sunulmuştur. Nanoyapının enerji 

denklemleri üzerinden gerçekleştirilen Ritz çözümünün sonucunda iki farklı sınır şarta 

sahip nanoçubukların doğal frekansları çeşitli etkilere göre hesaplanmıştır. 

Nazemnezhad vd. (2023) Bishop nanoçubuklarının serbest titreşimini iki fazlı 

yerel/yerel olmayan elastisite yaklaşımı ile çalışmışlardır. Varyasyon cebri üzerinden elde 

edilen hareket denklemi genelleştirilmiş diferansiyel kuadratür yöntemi ile çözülmüştür 

ve iki tür sınır şartlı nanoçubukların doğal frekansları üzerinde çeşitli parametrelerin 

etkileri araştırılmıştır. 

Numanoğlu ve Civalek (2022) tek çatlaklı basit eksenel nanoçubukların yerel 

olmayan serbest titreşim davranışını bir sonlu elemanlar formülasyonu ile açıklamışlardır. 

Formülasyonda, çatlak çubuk rijitliğinden düşük rijitlikli fakat uzunluksuz ve kütlesiz bir 

sonlu eleman olarak düşünülmüştür. Bazı mukayese çalışmaları ile formülasyon 

doğrulanmış ve çeşitli parametrelere göre çatlaklı nanoçubukların boyutsuz frekansları 

elde edilmiştir. 

Burulmalı nanoçubuklarda dairesel olmayan kesitler, çarpılma nedeniyle bir 

kayma etkisi meydana getirmektedir. Bu bağlamda, eliptik (Khosravi vd. 2020a), 

üçgensel (Khosravi vd. 2020b) ve dikdörtgensel (Khosravi vd. 2020c) kesitli 

nanoçubukların yerel olmayan burulma titreşim analizleri de analitik çözümlemeler 

yardımı ile verilmiştir. Çalışmalar kapsamındaki sayısal analizler dairesel kesitli olmayan 

nanoçubukların yerel olmayan burulmasında çarpılmanın frekansları önemli ölçüde 

etkilediğini ortaya koymaktadır. Bunlara ek olarak, eliptik ve üçgensel kesitli negatif 

Poisson etkili nanoçubukların iki farklı sınır şart modelinin yerel olmayan serbest titreşim 

frekansları da Seyfi vd. (2021) tarafından sunulmuştur.  

Öte yandan, yerel olmayan FDM nanoçubuklar hakkında seçilmiş çalışmalar da 

bu altbaşlığın kalanında kısa özetler halinde anlatılmaktadır. İlk olarak, Şimşek (2012) 

daralan FDM nanoçubukların eksenel titreşim analizi için Galerkin çözümünü sunmuştur. 

Çubuk kinematiği basit çubuk, fonksiyonel derecelendirilme gradyanı eksenel yön ve 

daralma profili lineer daralma olarak gözetilmiştir. İki farklı sınır şarta sahip 

nanoçubukların doğal frekansları üzerinde mod sayısı, boyutsuz atomik parametre, güç 

indeksi, malzeme oranı ve daralma oranının etkileri ele alınmıştır. 

Uzun ve Yaylı (2020) eksenel ve enine fonksiyonel derecelendirilmiş basit 

nanoçubukların yerel olmayan titreşimleri için sonlu elemanlar formülasyonunu ele 

almışlardır. İlgili formülasyon üzerinden söz konusu nanoçubukların boyutsuz frekansları 

üzerinde güç indeksi ve mod sayısının etkileri incelenmiştir.   



KAYNAK TARAMASI             H.M. NUMANOĞLU 

20 

 

Bahrami vd. (2019) uçta kütle ve lineer olmayan yay eklentili daralan kesitli FDM 

basit nanoçubuk modelinin serbest titreşimini harmonik bir fonksiyon yardımıyla 

incelemişlerdir. Eksenel derecelenen malzemenin ve kesit alanın üstel olarak değiştiği 

varsayılmıştır. Yerel olmayan frekans değerleri üzerinde çeşitli parametrelerin etkisi 

araştırılmıştır. 

Nazemnezhad ve Kamali (2018b) eksenel yönde FDM Bishop nanoçubuğunun 

serbest titreşim analizini araştırmışlardır. Malzeme homojenizasyonu klasik karışım 

kuralına göre belirlenmiştir. Elde edilen hareket denklemi harmonik diferansiyel 

kuadratür metoduyla çözülerek iki ucu tutulu nanoçubukların çeşitli parametreler altında 

doğal frekansları hesaplanmıştır. 

Arefi (2016) manyetik-elektrik etkiler altındaki FDM Bishop nanoçubuğunun 

birleştirilmiş bir yerel olmayan elastisite yaklaşımıyla (yerel olmayan şekil değiştirme 

elastisite teorisi) dalga yayınım analizini sunmuştur. Malzeme homojenizasyonu için 

klaisk karışım kuralı göz önüne alınmıştır. İlgili manyetik-elektrik tansörlerini temel alan 

ve varyasyonel cebre göre türetilen hareket denklemleri uygun dalga denklemleriyle 

çözülerek faz hızlarının gerçek ve sanal kısımları hesaplanmıştır. Buna benzer bir çalışma 

da, Arefi ve Zenkour (2017b) tarafından sunulan piezo-elektrik FDM Love-Bishop 

nanoçubuklarının yüzey enerjisini gözeten dalga yayınım analizleridir.  

Arda (2021) eksenel FDM Bishop nanoçubuğunun yerel olmayan eksenel 

titreşimini Ritz metoduyla işlemiştir. İki farklı sınır şarta sahip nanoçubukların frekansları 

üzerinde Poisson etkisi ve çeşitli parametrelerin boyutsuz frekans ve genliklere etkisi 

incelenmiştir. Benzer bir çalışmada ise, aynı nanoçubuk modelinin boyuna dalga 

yayınımı Haar dalgacık yaklaşımı kullanılarak Arda vd. (2024) tarafından sunulmuştur. 

Mohammadian ve Hosseini (2022) daralan geometrili ve karbon nanotüp yığılımlı 

FDM nanoçubuğun eksenel titreşimini incelemişlerdir. Nanoyapının boyut etkili 

kinematiği Bishop teorisi yerel olmayan şekil değiştirme değişimi elastisite teorisi ile 

yapılandırılmıştır. Malzeme homojenizasyonu için Mori-Tanaka modeli göz önünde 

bulundurulmuştur. Elde edilen hareket denklemi kuadratür eleman metodu ile 

çözülmüştür. İki farklı sınır şartlı nanoçubuğun boyutsuz frekansları üzerinde farklı 

parametrelerin etkileri araştırılmıştır. 

Uzun vd. (2023) uçları elastik yaylarla desteklenmiş pürüz FDM Bishop 

çubuğunun yerel olmayan eksenel titreşimini konu almışlardır. Hareket denklemi için bir 

Stokes dönüşümü gerçekleştirilmiştir. İlgili nanoçubuk modelinin doğal frekansları için 

pürüzitenin etkileri ele alınmıştır.  

FDM nanoçubukların eksenel titreşiminin yanı sıra burulmalı titreşimlerinin de 

yerel olmayan elastisite çerçevesinde incelendiği belirtilebilir. İki ucu elastik yay eklentili 

FDM nanoçubukların yerel olmayan burulma titreşimi için Stokes dönüşümü Civalek vd. 

(2022) tarafından formüle edilmiştir. Zarezadeh vd. (2020) manyetik alan altında ve 

elastik ortama gömülü FDM nanoçubukların yerel olmayan burulma titreşimini 

genelleştirilmiş diferansiyel kuadratür metodu ile incelemişlerdir. 
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3. MATERYAL VE METOT 

Bu bölümde, atomik ölçekli kayma deformasyonlu fonksiyonel derecelendirilmiş 

nanoyapıların eğilme çubuğu (kiriş), eksenel çubuk ve çerçeve modellerinin yerel 

olmayan elastisite teorisine dayanan serbest titreşim analizleri değişkenlere ayırma 

tabanlı analitik çözüm ve ortalama ağırlıklı kalıntı tabanlı sonlu elemanlar metodu ile 

formüle edilecektir. Bunun için, ilk olarak mekanik analizin temeli olan yerel olmayan 

elastisite teorisi tanıtılacaktır. 

3.1. Yerel Olmayan Elastisite Teorisi 

Atomik yapıların mekanik davranışlarının klasik elastisite teorisi kullanılarak 

araştırılmasının gerçekçi olmadığı deneysel yöntemlerin bir sonucudur ve bu gerçek 

özellikle 2000’li yılların başından beri bilimsel literatürde belirtilmektedir. Klasik 

elastisite teorilerine göre mekanik analize esas teşkil edecek denklemler katı cismin 

tamamı için geçerlidir. Ancak, atomik yapının mekanik olaydaki yer değiştirmelerinden 

ileri gelen ilave gerilmeler ve şekil değiştirmeler sonsuzda değer aldığından yapının enerji 

ifadeleri de sonsuza gider. Bunun sonucunda mekanik analiz gerçekçi sonuçlar ortaya 

koyamaz.  

Ayrıca, atomik yapının bir unsuru olan karakteristik iç uzunlukların yapının maruz 

kaldığı dış çevresel etmenlerle (mekanik kuvvet, ortam sıcaklığı, ortam nemi, piezo-

manyetik-elektrik etmenler, elastik ortam/zemin, vb.) etkileşimlere giriyor olması, 

deneysel çalışmaların önemli bir sonucudur. Gerek bu çıkarım gerekse deneysel ve 

simülatif yöntemlerin nano/mikro mekanik davranışın araştırılması üzerinde çeşitli 

zorluklar çıkarması, konuyla ilgilenen araştırmacıları “klasik teorilerin göz önüne 

almadığı atomik ölçeği mekanik analize dahil etme” fikrine yöneltmiştir. Bu durumun 

sonucu olarak klasik teorileri geliştirmek üzerine yapılan çalışmalar çeşitli yüksek 

mertebeden sürekli ortam teorilerini ortaya çıkarmıştır ve “yerel olmayan elastisite 

teorisi” bu anılan yeni sürekli ortam teorisi sınıfının önemli bir üyesi, belki de bilimsel 

literatür genelinde en bilinen üyesi konumundadır. Yerel olmayan elastisite teorisi 

kullanılarak, yukarıdaki paragrafta bahsedilen atomik yapının mekanik analizindeki 

çözümlenme sorunları ortadan kaldırılır.  

Yerel olmayan elastisite teorisinin ana fikri, atomik yapının bir noktasındaki 

gerilme ve şekil değiştirmelerin, o noktanın bütün komşuluklarındaki gerilme ve şekil 

değiştirmelerine bağlı olmasıdır (Tepe 2007; Işık 2011; Numanoğlu 2017). Teoriyi öne 

süren A.C. Eringen tarafından atomik yapı dengesi aşağıdaki denklemle açıklanır 

(Eringen 1983): 

  , 0ij i j jf u     (3.1) 

 

burada σij yerel olmayan gerilme tansörünü, ρ nanoyapı birim hacim ağırlığını, f
j
 

nanoyapı kütlesel kuvvetini ve üj =  d2
uj dt2⁄  hareketin zamana göre ikinci türevini 

(ivmesini) tanımlamaktadır. Buna ek olarak, atomik yapıdaki bir x' noktasında yapı 

kinematiği aşağıdaki gibi ifade edilir (Eringen 1983): 
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      , dij ijkl ij

V

C V      x x x x  (3.3) 

 

burada εij yerel olmayan şekil değiştirme tansörü, ui ve uj deplasman bileşenleri, xi ve xj 

konuma göre türev operatörleri, α yerel olmayan modül, nanoyapıdaki referans noktası x 

olmak üzere |x − x'| Öklidyen formda uzaklık, Cijkl dördüncü dereceden elastisite tansörü 

ve V nanoyapının uzayda kapladığı hacimdir. Öte yandan klasik gerilme tansörü aşağıdaki 

şekilde tanımlanır: 

        ij ijkl ij rr ij ijs C         x x x x  (3.4) 

 

burada δij Kronecker Delta sembolüdür. λ ve μ Lamé sabitleri olarak bilinir ve aşağıdaki 

gibi açıklanır:  
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burada E, μ ve υ sırasıyla elastisite modülünü, kayma modülünü ve Poisson oranını 

belirtir. Denklem (3.3)’ün, Denklem (3.1)’de kullanımı ile aşağıdaki neticeye 

ulaşılmalıdır: 
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(3.6) 

 

 Sonuç denklemde görülen birinci integral A yüzey alanı için yüzey gerilmelerini 

ifade eder. Böylece yerel olmayan teorinin klasik teoriden farklı olarak yüzey fiziğini de 

kapsadığı belirtilebilir. Denklemler (3.2) ve (3.4), Denklem (3.6)’da yerine yazılırsa  
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(3.7) 

 

elde edilir. Uygun sınır ve başlangıç koşullarının burada kullanımı ile deplasman vektörü 

u = u(x, t)’ye ulaşılabilmektedir. Tabi başlangıç koşulları yerel olmayan gerilme 

tansörüne bağlıdır. Öngörülen sınır ifadesi ise 
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  ij i n j
n   (3.8) 

 

olarak açıklanır (Eringen 1983). 

Denklem (3.3)’teki η parametresi boyutsuz atomik parametre olarak bilinir: 

 0e a

L
   (3.9) 

 

burada e0 atomik yapıya özgü olan ve deneysel belirlenen bir sabit, a iç karakteristik 

uzunluk ve L dış karakteristik uzunluktur. Atomik malzeme sabiti e0, maksimum değerine 

x = x' konumundayken ulaşır. Bu durumda |x − x'| parametresinin değerine bağlı olarak 

atomik malzeme sabitinin değeri azalır. Öte yandan, Eringen (1983) tarafından 

açıklandığı üzere, 

 Boyutsuz atomik parametre η, 0’a yakınsarsa yerel olmayan modül α, Dirac 

Fonksiyonu δ’ya yakınsar. 

 Boyutsuz atomik parametre η, 1’e yakınsarsa yerel olmayan modül α, kafes dinamiği 

(lattik model) olarak bilinen ve nanoyapıdaki atomları birbirine elastik bağlı varsayan 

bir modele göre hesaplanır.  

 Eringen (1983) tarafından, Denklem (3.4)’te yer alan yerel olmayan modülün 

dalga yayınım eğrilerinin kafes dinamiği modeli yayınım eğrileri ile eşleştirilerek 

belirlenebileceği belirtilmiştir. Bu hususta bazı çalışmalar yerel olmayan modül hakkında 

şu denklemleri sunmaktadır (Eringen 1972; Eringen ve Ari 1983). Buna göre ilk olarak 

bir boyutlu yerel olmayan modeller 
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olarak açıklanırken iki boyutlu modül 
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denklemleri ile verilir. Denklem (3.13)’teki K0 modifiye edilmiş Bessel fonksiyonudur 

ve aşağıdaki gibi ifade edilir (Haberman 2013): 
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Ayrıca, üç boyutlu yerel olmayan modül çeşitleri de aşağıdaki gibidir: 
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 Yukarıda tanıtılan yerel olmayan modül tanımları içerisinde Denklem (3.10) ile 

verilenin analizde kullanılması ile, kafes dinamiğinin Born-Karman modeli ve bir boyutlu 

düzlem dalga yayılım eğrisi arasında mükemmel bir uyumu ortaya çıkardığı ifade 

edilebilir. Ek olarak, Denklem (3.13) ile yazılan iki boyutlu yerel olmayan modül 

üzerinden analizde maksimum hata %1.2 kadardır (Ari ve Eringen 1983). Diğer yerel 

olmayan modüllerin atomik dalga yayılım modelleri ile iyi bir uyum sağlaması için 

atomik malzeme sabiti ayrıca seçilmelidir (Eringen 1978). 

 Boyutsuz atomik parametrenin sıfıra yakınsaması durumu için yerel olmayan 

modülün Dirac fonksiyonuna yakınsadığı belirtilmişti. Bu durum yerel olmayan modülün 

Green fonksiyonunun lineer diferansiyel operatörü olması koşulu ile 

    0 ,L      x x x x  (3.18) 

 

şeklinde belirtilir (Eringen 1983). Burada L0 lineer diferansiyel operatörünü tanımlar. δ 

ise Dirac-δ fonksiyonu olarak bilinir. Yukarıdaki denklem aşağıdaki şekilde ifade edilir: 

 0 ij ijL s   (3.19) 

 

burada lineer diferansiyel operatörü  
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olarak tanımlanır. Bu denklemin Denklem (3.19)’da kullanılmasıyla 

  
2
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0 2
1 ij ije a s

x
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 
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ifadesine ulaşılır. Bu denklem üzerinden yerel olmayan elastisite için lineer, izotropik ve 

elastik katıların sırasıyla eksenel ve kayma gerilme-şekil değiştirme bünye bağıntıları 

aşağıdaki şekilde tanımlanır (Numanoğlu 2019): 
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burada i, j = x, y, z eksenlerini temsil etmek suretiyle, σii yerel olmayan eksenel gerilmeyi, 

τij yerel olmayan kayma gerilmesini, εii eksenel şekil değiştirmeyi, γ
ij
 kayma şekil 

değiştirmesini, sii klasik eksenel gerilmeyi, tij klasik kayma gerilmesini, E elastisite 

modülünü ve G kayma modülünü ifade eder. 

3.2. Problemin Çözüm Prosedürü 

3.2.1. Analitik çözüm 

 Sürekli sistemlerin mekaniği, diferansiyel denklemler aracılığıyla mekanik bir 

olaydan matematiksel bir probleme dönüştürülmektedir. Burada diferansiyel denklemin 

şekli (adi-kısmi, homojen-homojen değil, sabit katsayılı-değişken katsayılı, tek türevli 

adi-çok türevli adi) çözümü etkilemektedir. Titreşim analizleri, olayda rol alan temel 

parametreler olan konum ve zaman nedeniyle deplasmanın bu ikisine bağlı kısmi bir 

diferansiyel denklemini teşkil eder. Şayet dinamik analizde dış tahrik varsa (zorlanmış 

titreşim hali) kısmi diferansiyel denklem homojen olmayan, dış tahrik yoksa (serbest 

titreşim hali) kısmi diferansiyel denklem homojen bir haldedir. Bu tez kapsamında serbest 

titreşim analizleri ele alınacaktır. Serbest titreşimin diferansiyel denklemi genel formda 

aşağıdaki gibi ifade edilir: 

    
0

n x n t
d d     (3.24) 

 

burada ∂ kısmi diferansiyel operatörüdür. d = d(x, t) türevlenebilir bir fonksiyon olup 

titreşim analizi için deplasmandır. x ve t türevleme değişkenleri olup, sırasıyla konum ve 

zamanı temsil eder. n ise türevleme miktarıdır. O halde homojen ve kısmi diferansiyel 

denklem çözümüyle ilgilenilmesi gerekmektedir. Bu tür diferansiyel denklemler 

“değişkenlere ayırma metodu” ile çözülebilmektedir: 

      ,d x t S x T t  (3.25) 

 

burada S = S(x) ve T = T(t) sırasıyla modal çözüm (statik deplasman) ve harmonik çözüm 

olarak belirtilmektedir. Çözüm, Denklem (3.25)’in Denklem (3.24)’te yerine yazılması 

suretiyle, dinamik deplasmanın kısmi bir diferansiyel denkleminin statik deplasmanın adi 

bir diferansiyel denklemine dönüştürülmesi ile başlamaktadır. Ardından ilgili kısmi 

diferansiyel denklem karakteristik polinomlar ile incelenerek çözüm devam ettirilir. 

Çözüm sonucunda mod denklemi elde edilmektedir. Sabitlere bağlı olan mod 

denkleminde sınır şartlar yerine yazılarak bir aşikâr çözüme ulaşılır ve bu çözümün 

sonucu mekaniksel olarak doğal frekans anlamına gelir.  
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 Uygulanışı oldukça kolay ve anlaşılır olan değişkenlere ayırma metodunun 

kısıtlandığı haller de mevcuttur ve açıkçası mühendislik mekaniğindeki birçok titreşim 

problemi bu metodun uygulanabileceği kadar basit değildir. Sınır şartların sayısının fazla 

olabilmesi, matematiksel yapı itibariyle karmaşık olabilmesi veya problemin yeterince 

sınır şart tanımlayamaması gibi başlıca sebeplerden dolayı değişkenlere ayırma çözümü 

kullanılamaz bir vaziyette olabilir. Böyle durumlarda, karmaşıklaşacak hesabın 

üstesinden gelmek için ilk olarak sürekli sistemin en azından geometrik sınır şartlarını 

sağlayan bir seri çözümü ile aranır. Bu tür durumlarda formüle edilmesi gereken Fourier 

seri ifadesi aşağıdaki gibidir: 

      
1

, sin sinn i

n

d x t d x t  




   (3.26) 

 

burada dn bilinmeyen seri katsayısı, αi sistemin geometrik davranışını belirten bir katsayı, 

ω doğal frekans, t zaman ve θ faz açısı olarak tanımlanır. Örnek verilecek olursa, L 

uzunluklu eksenel çubuklarda, bir ucu tutulu diğer ucu serbest ve iki ucu tutulu sınır 

şartlar için sırasıyla αi = iπ L⁄  ve αi = (2i − 1)π 2L⁄  olarak belirtilirken bu iki katsayı aynı 

zamanda eğilme çubuğu (kiriş) yapılarında sırasıyla iki ucu basit mesnetli ve bir ucu 

ankastre diğer ucu kılavuz (dönmeyen düşeyde kayıcı) mesnetli sınır şartlarını yansıtır.  

3.2.2. Hareket denkleminin türetilmesi 

Bir önceki alt başlıkta da ifade edildiği bir titreşim analizi, aslında fiziksel bir olay 

olan titreşimin matematiksel anlamda bir diferansiyel denkleme yani hareket denklemine 

dönüşmesi ve bunun tanımlı koşullara göre çözülmesi suretiyle çıktılarının (mod şekli, 

frekans, periyot) hesaplanması sürecini kapsar. Dolayısı ile burada hareket denkleminin 

türetilebilmesinin başlıca bir gereklilik olduğu anlaşılmaktadır. Burada hareket denklemi, 

hareketin konum ve zaman değişkenlerine göre diferansiyellenebilen ifadelerinden oluşan 

bir denklemdir ve analize giren iç (kütle ataletleri) ve dış (tahrik, sönüm, elastik çevre, 

termal çevre, piezo-manyetik-elektrik etkiler, ortam nemi vb.) faktörlere göre tanımlı 

olmaktadır. Hareket denklemi sürekli yapı mekaniğinde yapı kinematiği açısından basit 

problemler (sıfırdan farklı tek deformasyon bileşeni gibi) için denge denklemleri ile elde 

edilebilirken yapı kinematiğinin karmaşıklaştığı (sıfırdan farklı birden çok deformasyon 

bileşeninin rol oynadığı) problemlerde Lagrange denklemi veya varyasyon cebri gibi 

matematik analiz yaklaşımları ile belirlenmektedir. Kayma deformasyonlu eksenel 

nanokiriş ve nanoçubuk titreşimi gibi problemlerin, gerek sıfırdan farklı birden çok 

deformasyon bileşeni içermesi, üstüne bir de yerel olmayan gerilme nedeniyle ek 

türetimlere ihtiyaç duyması nedeniyle bu tür titreşim analizleri denge yaklaşımına karşı 

matematiksel yaklaşımların kullanımını öne çıkarmaktadır.  

Öte yandan ifade edilmelidir ki, hareket denklemleri türetilse bile sınır şartların 

karmaşık olması, dıiş çevresel etmenler ve nanoölçekte boyut etkisinin probleme dahil 

olması başlıcaları olmak üzere birçok durumda titreşim çıktısı elde edilememektedir. Bu 

açıdan hareket denklemi üzerinden kurulabilecek sayısal bir yaklaşım formülasyonu veya 

algoritması üzerinden yaklaşık çözüm elde edilebilmektedir. Bütün bu açıklamalar, 

titreşim analizi için hareket denkleminin bilinmesinin olmazsa olmaz olduğunu 

vurgulamaktadır. 
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Tekrar kayma deformasyonlu nanoyapıların hareket denklemi eldesine dönülecek 

olursa, bu anlamda varyasyonel cebrin kullanımı çok büyük bir öneme sahiptir. 

Varyasyon cebri, titreşim analizinde Hamilton İlkesi ile kendisini gösterir. Bu ilkeye göre, 

bir katının (t1, t2) zaman aralığında potansiyel enerjisinin birinci varyasyonu sıfırdır. 

Yani, 

  
2

1

d 0

t

t

U T W t        (3.27) 

 

burada δ varyasyon sembolü, U iç gerilme ve şekil değiştirmeden doğan iç şekil 

değiştirme enerjisi, T deformasyon bileşenlerinden doğan toplam kinetik enerji ve W dış 

kuvvetin yapı üzerinde iş yapabilme kabiliyeti yani iş potansiyel enerjisidir. Enerji 

ifadelerinin farklı deformasyon bileşenlerinin varyasyonlarına göre gerekli formları 

hesaplanıp işleme alındıktan sonra, bu deformasyon bileşenlerinin varyasyonların çeşitli 

durumlarına göre sonuçları, bir dizi matematiksel işlem üzerinden birleştirilir ve sürecin 

sonunda hareket denklemi ve sınır şartlar problemin yapısına uygun olarak formüle 

edilmiş olur. Tez kapsamındaki hareket denklemi türetimleri Hamilton İlkesiyle 

gerçekleştirilecektir. 

3.2.3. Ağırlıklı kalıntı tabanlı sonlu eleman formülasyonu 

 Denklem (3.26)’daki seri çözümü anlaşılacağı üzere her sınır şart için 

kullanılamaz. Analitik çözüm de yetersizse böyle durumlar artık sayısal (yaklaşık) 

çözümlerin kullanımını gerektirmektedir. Mühendislik mekaniği analizlerinde çeşitli 

sayısal yöntemlerin varlığından ve bunlardan birinin de sonlu elemanlar yöntemi 

olduğundan bahsedilmişti. Bu yöntemin temelinde bir ağırlıklandırma işlemi mevcuttur. 

Buna göre ağırlıklı ortalama kalıntı, sürekli yapıda ilgili mekanik analizi idare eden 

denklemin ağırlıklandırılmasıyla elde edilen toplam kalıntıyı sıfıra eşitler. Mekanik 

analizi idare eden denklem ve ağırlıklandırma işlemleri sonlu eleman kinematiği 

tarafından gerçekleştirilmektedir. Böylece, ortalama ağırlıklı kalıntı aşağıdaki gibi 

tanımlanmaktadır (Kwon ve Bang 2000): 

 I d

j

i

x

x

hR x   (3.28) 

 

burada h ve R sırasıyla ağırlıklandırma ve kalıntıdır. Ağırlıklı kalıntı tabanlı sonlu eleman 

çözümüne göre şekil fonksiyonunun transpozu ağırlıklandırmayı ve nanoyapının serbest 

titreşim hareket denklemi de kalıntıyı tanımlar.  

 Ortalama ağırlıklı kalıntı işlemi sonucunda, serbest titreşim problemi için bir 

sonlu elemana ait kütle ve rijitlik matrisleri ortaya çıkar. Detayına girilmeksizin, kütle ve 

rijitlik matrislerinin yapı serbestlikleri doğrultusunda toplanması ve geometrik sınır 

şartlar doğrultusunda elimine edilmesi suretiyle yine detayı verilmeksizin ulaşılan 

özdeğer problemi olan 
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denkleminin çözümü gerçekleştirilir. Burada [K] ve [M] yapıdaki negatif ve pozitif 

sırasıyla rijitlik ve kütle bileşenlerinin toplamlarını yansıtan sırasıyla indirgenmiş küresel 

rijitlik ve indirgenmiş küresel kütle matrisidir.  

 Sonlu eleman analizinde bir sonlu elemanın rijitlik ve kütle matrislerinin ifade 

edilmesi, temel olarak sonlu eleman kinematiği ile ilişkilidir. Sonlu eleman kinematiği 

ise sonlu eleman geometrisine bağlıdır. Bilindiği üzere tek doğrultulu (çubuk), iki 

doğrultulu (yüzey) ve üç doğrultulu (hacim) sonlu elemanları, yapı mekaniğinde sıklıkla 

karşılaşılan modellerdir. Ayrıca sonlu eleman kinematiği, bir de elemanın 

düğümlendirilme yapısına bağlıdır. Bundan kasıt, sonlu elemanın düğüm sayısı ve düğüm 

konumlarının belirlenmesidir. Genel olarak sonlu eleman modellerinden, çubuk sonlu 

eleman kullanımı oldukça pratik ve analiz için olukça temel bir yapıdadır. Bunlar, birisi 

sol ve diğeri sağ ucunda olmak üzere asgari iki düğümlü olmalıdır. Daha hassas analiz 

ihtiyacı veya iki düğümün matematiksel anlamda yetersizliği gibi sebeplerle düğüm sayısı 

artırılarak daha yüksek mertebeden bir çubuk sonlu eleman teşkil edilerek problemde 

kullanılabilmektedir. Çubuk sonlu elemanların elbette problemlere uygulanışı genel 

olarak sınırlı bir düzeydedir ve karmaşık problemler için uygun olmamaktadır. Genellikle 

çubuk sonlu eleman ile eksenel çubuk, kiriş, kafes ve çerçeve gibi yapıların serbest 

titreşim davranışları araştırılabilmektedir. Bu tez, nanoyapıların eğilme çubuğu (kiriş), 

eksenel çubuk ve çerçeve modellerini yapısal anlamda kapsamına aldığından esas olarak 

bu yapıların sonlu eleman kinematiklerini de oluşturmak gerekmektedir. Çeşitli eksenel 

ve eğilme çubuğu sonlu elemanlarının kinematikleri hakkında detaya girilmeyecek olup 

bu konuda Numanoğlu (2019) tarafından açıklanan bilgiler incelenebilir.   

3.3. Kayma Deformasyonlu Fonksiyonel Derecelenmiş Çubukların Yerel Olmayan 

Mekaniği 

 Tez konusu itibariyle fonksiyonel derecelendirilmiş nanoyapı modellerinin kayma 

deformasyonlu yerel olmayan çubuk ve kiriş teorileri üzerinden serbest titreşim hareket 

denklemleri üzerinde çalışılacaktır ancak öncesinde fonksiyonel derecelendirilmiş 

malzeme modelinin tanıtılması gerekmektedir. Bir tanıma göre, “mekanik ve fiziksel 

özellikleri, belirli matematiksel modellere dayalı olan ve homojen yapılara göre daha 

güçlü performansa sahip olan malzeme” (Numanoğlu ve Civalek 2019a) kompozit 

malzemeler sınıfının bir üyesi olan fonksiyonel derecelendirilmiş malzemeyi belirtir. 

Tabi bu tanıma bir ekleme yapılmalıdır. Burada matematiksel modelin sürekli bir 

denklemle karakterize edildiği belirtilebilir. Örneğin malzeme özelliği uzunluk boyunca, 

kesit yüksekliği boyunca, kesit kalınlığı boyunca veya bu üçünden birkaçı boyunca 

değişmelidir. Kesikli değişkenlik gösteren malzeme tabakalı kompozit konfigürasyonunu 

akla getirir. O halde fonksiyonel derecelendirilmiş malzeme sonsuz sayıda tabakanın bir 

araya getirilmesi ile oluşturulan tabakalı bir kompozit gibi düşünülebilir. Tezde incelenen 

nanoyapının dikdörtgensel kesite sahip düz bir çubuk olduğu, sadece kesit yüksekliği 

boyunca sürekli değişime sahip fonksiyonel derecelendirilmiş malzemeden imal edildiği 

kabul edilecektir. 
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3.3.1. Fonksiyonel derecelendirilmiş eleman modeli 

 Söz konusu fonksiyonel derecelendirilmiş dikdörtgen kesitli nanoyapı modeli 

Şekil 3.1’de resmedilmektedir. Burada L, b ve h sırasıyla nanoyapının uzunluğu, kesit 

kalınlığı ve kesit yüksekliğidir. Buna göre nanoyapının kesit yüksekliği boyunca 

malzeme özellikleri farklı olmaktadır. “A” ve “U” alt indisleri sırasıyla fonksiyonel 

derecelendirilmiş malzemenin alt ve üst yüzeylerinin ilgili mekanik özelliklerini temsil 

etmek üzere, malzemenin elastisite modülleri EA ve EU, Poisson oranları νA ve νU 

(böylece kayma modülleri GA = EA 2(1 + νA)⁄  ve GU = EU 2(1 + νU)⁄ , birim hacim 

ağırlıkları ρ
A
 ve ρ

U
, termal genleşme katsayıları αA ve αU olarak belirtilir. Tez kapsamında 

türetilecek formülasyonlarda basitlik için Poisson oranı sabit varsayılacaktır (νA = νU). 

 

Şekil 3.1. Fonksiyonel derecelendirilmiş yatay nanoyapı elemanı modeli 

 Fonksiyonel derecelendirilmiş malzemeler, mekanik davranışın belirlenebilmesi 

amacıyla çeşitli karışım kurallarına göre matematiksel olarak modellenmektedirler. 

Matematiksel modellemenin fiziksel anlamı malzeme homojenizasyonudur ve bunun için 

çeşitli yaklaşımlar mevcuttur. Bunlardan en yaygın bilineni klasik karışım kuralıdır. Bu 

kurala göre, yükseklik doğrultusundaki bir koordinatın malzeme özelliğinin malzeme alt 

ve üst yüzeyinin belli fraksiyonları (hacim oranları) nispetinde tayin edildiği ve hacim 

fraksiyonlarının toplamlarının 1’e eşit olduğu kabulü yapılmaktadır: 

   A A U UP z P V P V   (3.30) 

   

 1A UV V   (3.31) 

   

burada bir z koordinatı için P efektif malzeme özelliği, PA ve PU sırasıyla malzeme alt ve 

üst yüzeylerinin ilgili malzeme özelliği (elastisite modülü, kayma modülü, Poisson oranı, 

birim hacim ağırlığı, termal genleşme katsayısı, atomik malzeme sabiti, vb.) olarak 

tanımlanır. VA ve VU sırasıyla malzeme alt ve üst yüzeylerinin hacim fraksiyonları olup 

aşağıdaki gibi açıklanır: 

 
1
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z
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h

 
  
 

, 
1

1
2

p

U

z
V

h

 
   

 
. (3.32) 

 

burada p fonksiyonel derecelendirilmiş malzeme güç indeksi (veya sadece güç indeksi) 

olarak tanımlanır ve güç indeksinin değeri negatif olamaz.  

 Dikdörtgen kesit yüksekliği doğrultusundaki boyutsuz koordinata karşı gelen alt 

ve üst yüzey malzemesi hacim fraksiyonları, seçilmiş çeşitli güç indeksi değerleri için 

z 

y h 

b EU, νU, ρ
U

, αU 

EA, νA, ρ
A
, αA 

L 

z 

x 
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Şekil 3.2’de verilmektedir. Görüldüğü üzere güç indeksi arttıkça alt yüzeyin hacim 

fraksiyonu kendi bölgesi düşünüldüğünde artmakta ve aynı şekilde üst yüzeyin hacim 

fraksiyonu kendi bölgesi düşünüldüğünde düşüş göstermektedir. Elde edilen bu sonuçlar, 

güç indeksi 0’a yaklaştıkça fonksiyonel değişimli malzemenin tamamen üst yüzey 

özelliklerine göre ve aynı şekilde güç indeksi sonsuza yaklaştıkça fonksiyonel değişimli 

malzemenin tamamen alt yüzey özelliklerine göre davrandığı anlaşılır. 

 

(a) 

 

(b) 

Şekil 3.2. Klasik karışım kuralı ile modellenen fonksiyonel derecelendirilmiş dikdörtgen 

kesitli yapı elemanı için hacim fraksiyonlarının değişimleri; a) Alt yüzey; b) Üst yüzey 
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 Denklem (3.32)’nin Denklem (3.30)’da kullanımından sonra efektif malzeme 

özelliği sadece alt yüzey hacim fraksiyonuna göre yazılırsa, fonksiyonel 

derecelendirilmiş malzemenin Şekil 3.1’deki özellikleri aşağıdaki denklemlerle ifade 

edilir: 

  
1

2

p

A

z
E z E E

h

 
    

 
 (3.33) 
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burada Δ ilgili özelliğin alt ve üst yüzeydeki değerleri arasındaki farkını tanımlamaktadır 

(ΔE = EA − EU, ΔG = GA − GU, Δρ = ρ
A

− ρ
U

 ve Δα = αA − αU). Bir sonraki bölümde, 

kayma deformasyonlu fonksiyonel derecelendirilmiş nanoyapıların yerel olmayan serbest 

titreşimi hakkındaki sayısal sonuçlar ve bunların tartışmaları sunulmaktadır. Bölümün 

hemen girişinde malzeme özellikleri detaylı olarak tanıtılmaktadır. Söz konusu nanoyapı 

için o kısımda detaylı olarak yazılan şu malzeme özellikleri göz önüne alınarak, seçilmiş 

çeşitli güç indeksi değerlerine ve alt yüzey hacim fraksiyonunun artışına göre ilgili 

malzeme özelliğinin değişimleri Şekil 3.3’te betimlenmektedir: Elastisite modülleri 

EA = 70 GPa ve EU = 380 GPa, birim hacim ağırlıkları ρ
A
 = 2702 kg m3⁄  ve ρ

U
 = 3960 

kg m3⁄  ve termal genleşme katsayıları αA = 2.31×10
−5 K−1 ve αU = 6.8269×10

−6 K−1. 
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(a) 

 

(b) 

Şekil 3.3. Klasik karışım kuralı ile modellenen fonksiyonel derecelendirilmiş dikdörtgen 

kesitli yapı elemanı için malzeme özelliklerinin değişimi; a) Elastisite modülü; b) Birim 

hacim ağırlığı; c) Termal genleşme katsayısı (Devamı arkada) 
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(c) 

Şekil 3.3. Klasik karışım kuralı ile modellenen fonksiyonel derecelendirilmiş dikdörtgen 

kesitli yapı elemanı için malzeme özelliklerinin değişimi; a) Elastisite modülü; b) Birim 

hacim ağırlığı; c) Termal genleşme katsayısı 

 Dördüncü bölümün konusu sayısal uygulamalarda göz önüne alınan fonksiyonel 

derecelendirilmiş malzemede klasik karışım kuralı göz önüne alınarak elastisite modülü, 

birim hacim ağırlığı ve termal genleşme katsayılarının kesitin boyutsuz yükseklik 

koordinatına göre değişimleri güç indeksinin farklı değerleri altında Şekil 3.3’te 

verilmektedir. Şekil 3.2’de yapılan açıklamalara benzer olarak, burada da güç indeksi 0’a 

yaklaştıkça ilgili malzemenin efektif özellik değerinin üst yüzey malzemesinin ilgili 

özellik değerine yaklaşmakta olduğu ve güç indeksi sonsuza yaklaştıkça aynı şekilde 

malzeme efektif özelliğinin alt yüzey malzemesinin değerine yakınsadığı anlaşılmaktadır. 

 Eğilme zorları altında çalışan bir fonksiyonel derecelendirilmiş katı cisimde 

efektif malzeme özelliği hesaplarını ağırlık merkezine göre gerçekleştirmek kesin 

doğruluktaki sonuçların elde edilmesinin önüne geçer. Çünkü kesitin tarafsız ekseni (nötr 

eksen veya rijitlik ekseni olarak da anılabilir), malzeme homojen olmadığından geometrik 

eksenle çakışmaz. Bu durum Şekil 3.4’te resmedilmiştir. Buna göre fonksiyonel 

derecelendirilmiş kirişin dikdörtgen kesitinde kesitin ağırlık merkezi G noktasından 

geçen yz- eksen takımı geometrik eksen takımı ve malzeme rijitlik merkezi olan y
0
z0- 

eksen takımı tarafsız eksen takımı olarak betimlenir. Burada düşey eksenler z ve z0 

çakışırken yatay eksenler y ve y
0
 çakışmaz, bu ikisinin arasındaki mesafe h0 kadardır. 

Davranışı doğru belirlemek için h0 mesafesinin bilinmesi gerekmektedir. Kirişlerde 

küçük deplasman varsayımı (Eltaher vd. 2013b) kullanılarak bu mesafe hesaplanabilir. 

Tabi öncelikle düşey eksenler arasındaki koordinat dönüşümü yazılmalıdır. Buna göre, 

Şekil 3.4’teki dikdörtgen kesitin köşe koordinatları göz önüne alınarak: 

 0 0z z h   (3.37) 
 

bağıntısı kurulabilir.  
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Şekil 3.4. Fonksiyonel derecelendirilmiş yapı elemanı için dikdörtgen kesit  

 Küçük deplasman varsayımı yapı elemanı üzerindeki net eksenel kuvvetin sıfıra 

eşit olduğunu ifade eder. Eksenel kuvvetten eksenel gerilmeye geçilerek 

 
0xF   veya d 0xx

A

A  . 
(3.38) 

 

denklemi kurulabilir. Eksenel gerilme, elastisite modülü fonksiyonu göz önüne alınarak 

  0xx xxE z   (3.39) 

 

şeklinde ifade edilebilir. Ayrıca kirişin kinematiği gereğince eksenel deplasman 

    
 
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w x t
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şeklindedir. Burada ux = ux(x, z0, t) nihai eksenel deplasman, u0 = u0(x, t) saf eksenel 

deplasman ve w = w(x, t) enine deplasmandır. Temel eğilmede saf eksenel deplasman 

u0 = 0 kabul edilerek, Denklem (3.40)’ın eksenel şekil değiştirmede kullanımıyla 
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x
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u w
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 (3.41) 

 

sonucuna varılır. Denklem (3.41) Denklem (3.39)’da yerine yazılırsa eksenel gerilme 

  
2

0 0 2xx
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 (3.42) 

 

olarak elde edilir. Diferansiyel alan elemanı için dA = bdz0 tanımının ve Denklem 

(3.42)’nin Denklem (3.38)’de kullanılması sonucunda 

G  

M  
h 2⁄  

h 2⁄  

h0 

z 

z0 

 y
0
 

 y 

EU, νU, ρ
U

, αU 

EA, νA, ρ
A
, αA 

 z = h 2⁄  

 z0 = h 2⁄ − h0 

 z = − h 2⁄  

 z0 = − h 2⁄ − h0 
 

b 
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eşitliği ortaya çıkar. Burada Denklem (3.37) elastisite modülü hariç kullanılıp, integral 

sınırları söz konusu koordinat dönüşümüne göre düzenlenirse  

   
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h

h
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ifadesine ulaşılır. Burada çok önemli bir basitlik kabulünün yapılması gerekmektedir. 

Elastisite modülü içerisinde de koordinat dönüşümü yapılarak E(z − h0) ifadesi 

kullanılırsa h0 hesabı el ile yürütülememekte, yüksek güç indeksi değerleri için h0 

dikdörtgen kesit dışına taşarak fiziksel bir anlamsızlığı ortaya çıkarmakta ve çok daha 

yüksek güç indeksleri için bu mesafe farkının hesap süresi aşırı uzamakta veya mesafe 

farkı hiç hesaplanamamaktadır. Bu nedenle hesaplarda basitleştirme yapılarak elastisite 

modülü için Denklem (3.33) ile tanımlanan elastisite modülünün z eksenine göre değişimi 

kullanılacaktır. Denklemin düzenlenmesi ile h0 mesafesine aşağıdaki gibi ulaşılır (Eltaher 

vd. 2013c; Eltaher vd. 2014a; Eltaher vd. 2014b; Ebrahimi ve Salari 2015d): 
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 (3.45) 

 

Burada tarafsız ve geometrik eksen farklılığının fonksiyonel derecelendirilmiş 

malzemenin elastisite modülü farkı, güç indeksi ve dikdörtgen kesitin yüksekliğine göre 

değişeceği dikkat çekmektedir. 

Bilimsel literatürde konuyla ilgili bazı çalışmalarda (Şimşek 2016; Aria ve 

Friswell 2019), Denklemler (3.33)-(3.36) ile görülen fonksiyonel derecelendirilmiş 

efektif malzeme özelliklerinin yüksekliğin boyutsuz koordinatı olan z h⁄  ifadesinin 

(z + h0) h⁄  olarak değiştirilmesi suretiyle yeniden tanımlandığı görülmektedir. Ancak bu 

tanımlamada bazı soru işaretlerinin mevcut olduğu düşünülmektedir. Öncelikle, Şekil 

3.1’de resmedilen fonksiyonel derecelendirilmiş dikdörtgen kesit incelenirse, sırasıyla en 

üst ve en alt yüzeylerin koordinatları zU = − z h⁄  ve zA = z h⁄  için ilgili yüzeyin malzeme 

özelliklerine ulaşılamamakta, yani fonksiyonel derecelendirilmiş malzeme tanımı en 

başından çelişkili bir hal almaktadır. Ayrıca, bu yeni model düşünülerek, bu tez 

kapsamında sayısal hesapların test aşamasında elde edilen titreşim sonuçları, güç 

indeksinin p = 1 değeri hariç Aria ve Friswell (2019) ile hiçbir uyum göstermemiştir. 

Buna ek olarak, Aria ve Friswell (2019)’un mukayese çalışmalarında aldıkları 

referanslarda efektif malzeme özelliğinin nötr eksene göre yapılandırılmadığı 

gözlemlenmiştir. Kısacası fonksiyonel derecelendirilmiş malzeme için bu yeni tanımlama 

hakkında bazı anlaşılamayan durumlar oluştuğundan Denklemler (3.33)-(3.36) ile verilen 

temel malzeme homojenizasyonu düşünülecektir ancak yapının eğilme kinematiğinden 
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doğan ve özellikle nanokiriş enerji denklemlerinde, bunun sonucu olarak da çeşitli rijitlik 

ve kütle tanımlarında kendisini gösterecek olan h0 mesafesi mutlaka göz önüne 

alınacaktır. 

3.3.2. Kayma deformasyonlu kirişler 

Çift parametreli elastik zemine oturan ve termal etkiler altındaki fonksiyonel 

derecelendirilmiş atomik ölçekli kirişlerin yerel olmayan elastisite teorisine ve 

Timoshenko kiriş teorisine dayanan serbest titreşim analizi bu alt başlıkta formüle 

edilecektir.  

Hatırlatılacak olursa, kiriş davranışı üzerine kuramlar kayma deformasyonunu ele 

alıp almamasına göre ayrılır. Kayma deformasyonunun niteliğine göre teorinin kapsamı 

farklılaşır. Bu nedenle, günümüze değin Timoshenko, parabolik, üstel, trigonometrik, 

sinüzoidal, çok bilinmeyenli, zenginleştirilmiş gibi kayma deformasyonlu kiriş teorileri 

ortaya atılmıştır. Bunlardan Timoshenko teorisi, kayma deformasyonunu temel düzeyde 

ele aldığından birinci dereceden kayma deformasyonlu kiriş teorisi olarak bilinir. Diğer 

teoriler yüksek mertebeli terimleri analize dahil etmektedir. Öte yandan, Euler-Bernoulli 

kiriş teorisi ise kayma deformasyonunu temelden reddetmektedir. Euler-Bernoulli kiriş 

teorisi her ne kadar genel uygulanabilirlik ve davranış anlama açılarından pratik bir 

yaklaşım olsa da kısa açıklık, yüksek kesit ve tekil yükleme gibi durumların bir veya 

birkaçının problemde öne çıkması nedeniyle gerçekçi olmaz ve kayma deformasyonlu 

kiriş teorileri bu noktada devreye girer. Bilimsel literatürde, genel olarak uzunluğun 

yüksekliğe oranının 20’den büyük olduğu kirişler için Euler-Bernoulli teorisinin 

kullanılabileceği ve bu sınırın altı için kayma deformasyonlu teorilerin göz önünde 

bulundurulması gerektiği ifade edilmektedir. 

Hareket Denkleminin Türetilmesi: Analize konu nanokiriş yapısı Şekil 3.5’te 

verilmekte olup, alt ve üst yüzeyin malzeme özellikleri de şekilde görülmektedir. Ayrıca, 

şekildeki diğer parametrelerden kW ve kP sırasıyla Winkler (lineer tabaka) ve Pasternak 

(kayma tabakası) zeminlerinin rijitliklerini, ∆T ortam sıcaklığı değişimini ve f = f (x, t) 

nanokiriş yapısına etkiyen enine dış dinamik zoru (tahrik) belirtir.  

 

Şekil 3.5. Termo-elastik çevrede bulunan fonksiyonel derecelendirilmiş nanokirişin 

titreşim analizi için nanoyapı modeli 

z 

y h 
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kP kW 

f = f (x,t) 
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Hareket denklemini türetmek amacıyla Hamilton ilkesini tanıtan Denklem 

(3.27)’nin kullanılabilmesi için en önce nanokirişin kinematik ilişkilerinin oluşturulması 

gerekmektedir. Bunun için ilk adım olan kayma deformasyonlu bir kiriş yapısının 

deplasman bileşenleri 
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(3.46) 

 

şeklindedir. Burada ux, uy ve uz sırasıyla eksenel, yanal ve enine deplasman bileşenlerini 

belirtir. Eksenel deplasman bileşeni için u saf eksenel deplasman ve φ kesit dönme açısı, 

v yanal deplasman ve enine deplasman bileşeni için w toplam enine deplasman, wb eğilme 

deplasmanı ve ws kayma deplasmanıdır. Saf eksenel deplasman temel olarak ihmal 

edilmektedir (u = 0). Bu kiriş teorisini kayma deformasyonsuz kuram olan Euler-

Bernoulli kiriş teorisinden ayıran nüans φ’nin karakteristiğinde gizlidir. Buna göre, Euler-

Bernoulli kiriş teorisi bu parametreyi ihmal ederken (φ = 0) Timoshenko kiriş teorisine 

göre bunun değeri kesit boyunca sabittir.  

 Kinematik ilişkilerin oluşturulmasına şekil değiştirme tansörü ile devam 

edilmelidir. Buna göre, fonksiyonel derecelendirilmiş kesitin tarafsız ekseni düşünülerek 

şekil değiştirme bileşenleri 
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(3.47) 

 

şeklinde formüle edilebilir. Burada εxx, εyy ve εzz ilgili eksenlerin eksenel şekil değiştirme 

bileşenleriyken εxy, εxz ve εyz kayma şekil değiştirme bileşenleridir. Euler-Bernoulli kiriş 

teorisinde sıfırdan farklı tek şekil değiştirme bileşeni εxx iken burada buna ilaveten εxz 

bileşeninin sıfırdan farklı olduğu dikkat çekmektedir. Buradan fonksiyonel 

derecelendirilme durumu da göz önünde bulundurularak klasik gerilme bileşenlerine  
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(3.48) 

 

olarak geçilir. Burada sxx, syy ve szz ilgili eksenlerin eksenel gerilme bileşenlerini ve sxy, 

sxz ve syz  kayma şekil değiştirme bileşenlerini gösterir.  
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 Hamilton ilkesi denklemine esas teşkil etmesi gereken enerji ifadeleri aşağıdaki 

gibi kurulur: 
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burada iç şekil değiştirme enerjisi U’nun sonucunda M ve V sırasıyla eğilme momenti ve 

kesme kuvveti iç tesirlerini belirtir. Kinetik enerji T’nin sonucunda yer alan olan I0 ve I2  

sırasıyla fonksiyonel derecelendirilmiş dikdörtgen kesitin sıfırıncı ve ikinci kütle 

ataletlerini tanımlar: 
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Öte yandan W dış kuvvetlerin iş enerjisi (iş yapabilme potansiyeli) olarak adlandırılır. 

Bunun içerisinde yer alan NT termal eksenel kuvvettir ve aşağıdaki gibi yazılır: 
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burada DT sıcaklıktan kaynaklanan ve yapıya etkisi negatif bir rijitliktir. Öte yandan, 

analizin ilerleyen safhasında nanoyapı için klasik eğilme momenti ve kesme kuvveti iç 

tesirlerine ihtiyaç duyulacak olup bunlar aşağıda formüle edilmektedir: 
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burada k kayma düzeltme faktörüdür. Ayrıca, B ve S kayma deformasyonlu fonksiyonel 

derecelendirilmiş nanokirişin sırasıyla eğilme ve kayma rijitlikleri olarak tanımlanmakta 

olup şöyle açıklanırlar: 
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Denklem (3.45) kullanılarak, kayma deformasyonlu nanokirişin muhtelif kütle 

ataleti ve rijitlik bileşenleri, bir dizi kısmi integral hesabı sonucunda aşağıdaki gibi 

türetilmiş olur: 
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 Bu arada, kayma rijitliği hesabı için Poisson oranı sabit kabul edildiğinden 

sırasıyla alt ve üst yüzeylerin kayma modüllerinin şu şekilde göz önüne alınacağı da not 

edilmelidir: 

 
 2 1

A
A

E
G





, 

 2 1

U
U

E
G





. (3.64) 



MATERYAL VE METOT            H.M. NUMANOĞLU 

40 

 

 Buraya kadar gerekli ara bilgiler tanımlandığından tekrardan varyasyon 

hesaplarına dönülebilir. Denklemler (3.49)-(3.51) ile oluşturulan enerji denklemlerinin 

birinci varyasyonlarının Denklem (3.27)’de kullanılması gerektiğinden söz konusu 

varyasyon ifadeleri 
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şeklinde verilir. Burada görülen bazı varyasyonlar gerekli integrasyon sınırları içerisinde 

kısmi integrasyon işlemine tabi tutularak 
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(3.68) 

 

denklemleri ortaya çıkar. Bu ifadeler Denklemler (3.65)-(3.67)’de yerine yazıldıktan 

sonra elde edilen ifade düzenlenirse aşağıdaki sonuca varılır: 
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(3.69) 

 

burada çift integralli ifadelere dikkat edilirse, δφ ≠ 0 ve δw ≠ 0 durumları için sırasıyla  
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 (3.70) 

   

  
2 2

2 2W T P

V w w
k w D T k f A

x x t


  
     

  
 (3.71) 

  

elde edilir. Bu iki denklem, kayma deformasyonlu fonksiyonel derecelendirilmiş 

Timoshenko nanokirişinin yerel olmayan titreşiminin hareket denklemini türetmek için 

esas teşkil etmektedir. Buna göre, Denklemler (3.22), (3.23), (3.55)-(3.58) göz önünde 

bulundurularak eksenel gerilmenin momenti ve kayma gerilmesinin kesit alan üzerinden 

integrasyonları üzerinden sırasıyla eğilme momenti ve kesme kuvveti iç tesirlerinin 

klasik-yerel olmayan elastisite bağıntıları  
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olarak sunulur. İlk olarak Denklem (3.70)’in x’e göre birinci türevinde Denklem (3.73)’ün 

yerine yazılmasıyla elde edilen momentin ikinci türevi Denklem (3.72)’da kullanılırsa 

eğilme momenti, ardından Denklem (3.71)’in x’e göre birinci türevi Denklem (3.73)’te 

kullanılırsa kesme kuvveti iç tesiri, deplasman bileşenlerinin de açık yazılmasıyla 

aşağıdaki gibi elde edilir: 
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(3.74) 
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(3.75) 

 

burada formülasyon türetiminin devam ettirilebilmesi için eğilme ve kesme deplasmanı 

bileşenleri arasında bir ilişkinin kurulması gerekmektedir. Buna göre Denklemler (3.74) 

ve (3.75)’in Denklem (3.70)’te kullanılması ile bu ilişki  
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şeklinde ortaya çıkartılmış olur. Anlaşılacak olduğu üzere bu denklem kesme 

deplasmanını eğilme deplasmanına dönüştürür. Bu bağıntının Denklemler (3.74) ve 

(3.75)’te ayrı ayrı kullanılması ile ilgili iç tesirlerin nihai hallerine aşağıdaki şekilde 

ulaşılır: 

     
   

 
 

 
 

     
 

     

2 24 2
20 0

04 2

2 24 2
2 20 0 2 0 2

0 0 04 2

2 26
20 2 0 0

0 24 2

2 4

0 2 0 2

Wb b

Wb b
W B

b

W

T P
T P

T P

T P

e a B e a k Bw w
M B e a

kS kSx x

e a I I e a k Iw w
e a k w e a I

kS kSt t

e a I e a I Bw
e a I

kS kSx t

e a I e a k I

kS kS

D T k
D T k

D T k

D T k

  
      
  
 

  
    
  
 


   
 



 

 
 

 

   
 

44 6
20 0 2

02 2 2 4

b b
e a I Iw w

e a f
kSx t x t

 
  
    


 

  (3.77) 
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bunlardan kesme kuvveti iç tesirinin Denklem (3.71)’de yazılmasından sonra yine 

Denklem (3.76)’nın kullanımı sonucunda hareket denklemine aşağıdaki gibi ulaşılmış 

olur: 

 

       

       

   

     

2 26
0 0

6

4 2
2 2

0 04 2

44 2 8
0 20 2 2

04 2 6 4

2 2

0 0 0 22

Wb

b W b
W

b W b b
W

T P T P

T P T

T P

T

b

P

P

e a B e a k B Bw
B

kS kS kSx

w k B w
e a e a k

kSx x

e a II I w k I w w
k w

D T k D T k

D T

I
kS kS kSt t x t

e a I B e a I

k

k D T k

D T k

D T k

S kS


    



  
    

  

   
     

    

  

   

   

 

 
  

 

 
 

 

   
 

4 6
2 0 2

0 2 4 2

2 4
20 2 20

0 0 2 2 2

4 28 6 2
20 0 2 0 0 2

04 4 2 4 2

2

2
0

W b

W b

b b

T P

e a k I w
e a I

kS x t

e a k I II B w
e a I I

kS kS kS x t

e a I I e a I Iw w f
e a f

kS kSx t x t x

D T k

  
 
   
 

  
     
   
 

  
   

   







 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.79) 

 

Bu denklemin sadece eğilme deplasmanının türevlerine bağlı bir diferansiyel denklem 

olarak göründüğüne dikkat edilmelidir. Bilindiği üzere bir sürekli yapının mekanik 

davranışı sınır şartların hareket denklemine uygulanması ile belirlenebilir. Geometrik 

sınır şartlar Denklem (3.69)’da verilen w ve φ gibi varyasyon sınırlarıdır ve uç türlerinden 

kolaylıkla belirlenebilir. Öte yandan, dinamik sınır şartları ise, eğilme dönmesinin 

varyasyonu δφ(0, t) = δwb' (0, t) ≠ 0 ve/veya δφ(L, t) = δwb' (L, t) ≠ 0 durumu için 

Denklem (3.77) ile belirlenen  

 0M   (3.80) 

 

sınır şartının yanı sıra deplasmanın varyasyonu δw(0, t) ≠ 0 ve/veya δw(L, t) ≠ 0 durumu 

için Denklem (3.78)’in Denklem (3.69)’dan yazılabilecek  
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ifadesine eşitlenmesi sonucunda türetilen 
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(3.82) 

 

sınır şartı olarak açıklanabilmektedir. Denklem (3.82) yeri geldiğinde “toplam kesme 

kuvveti” olarak anılacak olup,  

 * 0V   (3.83) 

 

ile sembolize edilecektir. 

 Hareket Denkleminin Çözümü: Tez çalışması mekanik açıdan bir serbest titreşim 

analizini kapsadığından ilk olarak Denklem (3.79)’da f = 0 alındıktan sonra denkleme 

uygulanacak değişkenlere ayırma ifadesi 

      , sinb bw x t W x t    (3.84) 

 

şeklinde ifade edilir. Denklem (3.84), Denklem (3.79)’da yerine yazılırsa ve devamında 

harmonik fonksiyon olan sinüs fonksiyonu denklemden sadeleştirilirse kısmi bir 

diferansiyel denklem olan hareket denklemi aşağıdaki gibi adi bir diferansiyel denklem 

olan mod denklemine dönüşmektedir: 
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burada aşağıdaki tanımlar geçerlidir: 
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(3.86) 

 

bunlara ek olarak, mekanik sınır şartlar olan eğilme momenti (Denklem (3.77)) ve toplam 

kesme kuvveti (Denklem (3.82)), Denklem (3.84)’nin idaresinde 
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şeklinde formülize edilebilir. Burada gerekli tanımlar yeri geldiğinde verilecektir. 

 Denklem (3.85) altıncı dereceden, adi, sabit katsayılı ve homojen bir diferansiyel 

denklem teşkil etmektedir. Her ne kadar diferansiyel denklemin çözümünde ortaya çıkan 

karakteristik polinomun altıncı dereceden olduğu bilinse de bu denklemde A4’ün varlığı 

nedeniyle karakteristik polinomun çözümünden mod denklemine el hesabıyla geçiş çok 

zordur. Dolayısı ile sınır şartların uygulanması manasız kalacaktır. Dahası, karakteristik 

polinom çözülebilecek olsa dahi altı adet sınır şarta ihtiyaç olacağını gösterir. Elbette 

sıcaklık ve/veya Pasternak zemini problemde rol almazsa çözüm gerçekleştirilebilecektir. 

Öte yandan, Euler-Bernoulli kiriş teorisi ile yapılan serbest titreşim çözümünde dört adet 

mod çözümü sabiti mevcuttur, geometrik ve mekanik sınır şartlar da dört adet olduğundan 

çözümün duyduğu ihtiyaç karşılanmış olur. Ancak burada kayma deformasyonsuz 

teoriden farklı olarak sıcaklık ve/veya Pasternak zeminin yerel olmayan parametre, 

kayma düzeltme çarpanı ve kayma modülü ile birlikte etki göstermesi daha yüksek 

mertebeden bir diferansiyel denklemi meydana getirmiş olup, aşikâr sonuca sebebiyet 

vermeyecek iki sınır şarta daha ihtiyaç duyulmaktadır. Euler-Bernoulli kiriş teorisinden 

farklı olarak Timoshenko kiriş teorisinin bu ilave sınır şartı geometrik yapıda bir sınır şart 
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olan kayma deplasmanı ile karşılanabilmektedir. Buna göre, bu defa kayma deplasmanını 

da idare eden  

      , sins sw x t W x t    (3.89) 

 

şeklindeki değişkenlere ayırma ifadesinin Denklem (3.84) ile beraber Denklem (3.76)’ya 

uygulanması 
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x
  (3.90) 

 

neticesini vermektedir. Denklemler (3.87), (3.88) ve (3.90) ile tanımlanan sınır şartlarda 

görülen Bi (i = 1 − 8) katsayıları 
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(3.91) 

 

olarak ifade edilmektedir.  
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 Sınır Şartlar: Termo-elastik çevrede yer alan yerel olmayan Timoshenko kirişinin 

mod çözümlemesine dair denklemin elle edilmesi çok zor olduğundan altı adet sınır 

şartını uygulamanın bir anlamı yoktur ancak tezde ele alınan nanokiriş tiplerinin sınır 

şartlarının tanıtılması gerekmektedir. Zira bu kapsamdaki bazı açıklamalar mekaniksel ve 

matematiksel olarak birkaç önemli çıkarım sağlayacaktır.  

1- Basit Mesnet (S): Yarı rijit bağlantı olarak da adlandırılan bu uç türünün geometrik 

olarak çökmediği ve mekanik olarak eğilme momenti almadığı mühendislik mekaniğinde 

yaygın bilinen bir bilgidir. Buna ek olarak, ilave sınır şartı olarak tanıtılan kesme 

deplasmanının da olmaması gerekmektedir. Bu anlatılanlar Denklemler (3.69), (3.87) ve 

(3.90) için sırasıyla  

 0bW  , 
 

2
4

1 3 0b b bBW B W B W   , 7 8 0b bB W B W   . (3.92) 

 

denklemleri ile ifade edilir. Burada ilk olarak, eğilme deplasmanı sınır şartı kayma 

deplasmanı sınır şartında yerine yazıldıktan sonra elde edilen netice yine eğilme 

deplasmanı ile beraber eğilme momenti sınır şartında yerine yazılırsa,  

 0bW  , 0bW   , 
 4

0bW  . (3.93) 

 

neticeleri elde edilir ve bunun mod çözümü sürecinde dolaylı olarak önemli bir bulguyu 

sağladığından yeri geldiğinde söz edilecektir. 

2- Ankastre Mesnet (C): Tam rijit bağlantı olarak adlandırılan bu uç türünde geometrik 

olarak hiçbir harekete izin verilmez, yani çökme ve dönme olmaz. Teorik formülasyon 

gereğince bunun anlamı, eğilme ve kesme deplasmanlarının yanı sıra eğilme dönmesinin 

sıfıra eşit olmasıdır. 

 0bW  , 0bW   , 7 8 0b bB W B W   . (3.94) 

 

sonuç olarak sınır şartların nihai hali şöyle sıralanır: 

 0bW  , 0bW   , 0bW   . (3.95) 

 

3- Serbest Uç (F): Herhangi bir mesnetlenme veya özel bir kısıtlama bulunmadığından 

yani rijit hareket görüleceğinden iç tesir oluşmaz. Buna ek olarak kiriş kinematiği 

gereğince geometrik olarak sadece kesme deplasmanı yoktur. Dolayısı ile Denklemler 

(3.87), (3.88) ve (3.90)’a göre sırasıyla 

 

 
2

4
1 3 0b b bBW B W B W   , 

 
4 5 6

5
0b b bB W B W B W    , 

7 8 0b bB W B W   . 

 

 

(3.96) 

 

şeklinde sınır şartlar açıklanır.  
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4- Kılavuz Mesnet (G): Teknik tabirle düşeyde kayıcı ama dönmeyen mesnet yukarıda 

açıklanan diğer üç uç türüne göre nispeten az karşılaşılan uç türüdür ancak mekanik 

davranışın kapsamlı araştırılması için analize dâhil olması tercih edilmiştir. Burada 

kılavuz uç yarı ankastre bir mesnet gibidir yani ankastre gibi dönmemekte ancak çizgisel 

hareket yapabilmektedir. Bu nedenle eğilme dönmesinin olmadığı ve çizgisel hareket 

serbestliği nedeniyle toplam kesme kuvvetinin de olmayacağı anlaşılmakta, bu ikisine ek 

olarak ucun kinematiği gereğince kesme dönmesinin de olmayacağı belirtilmektedir. 

Sonuç itibariyle kılavuz mesnet 

 0bW   , 
 

4 5 6
5

0b b bB W B W B W    , 7 8 0b bB W B W   . (3.97) 

 

denklemleri ile ifade edilir. Burada ilk olarak eğilme dönmesinin kesme dönmesinde 

yerine yazılmasıyla elde edilen sonuç yine eğilme dönmesi ile beraber toplam kesme 

kuvvetinde kullanılırsa şu sonuca varılır: 

 0bW   , 0bW   , 
 5

0bW  . (3.98) 

 

 Uygulamalar: Sınır şartlar üzerinden dinamik davranışın araştırılmasında el 

hesabının verimsiz süreçlere yol açacağı durumlarda kullanılacak seri açılımdan Denklem 

(3.26) sunularak bahsedilmişti. Timoshenko kiriş teorisi için görüldüğü üzere, sınır 

şartların uygulanacağı mod denklemi ilgili diferansiyel denklemin yapısı itibariyle elde 

edilememekteydi. Bu arada, buraya kadar ele alınan nanokiriş analizi kayma 

deformasyonunu gözetmeseyedi yani Euler-Bernoulli kuramı kullanılsaydı mod 

çözümüne ulaşılabilecek ve sınır şartların uygulanması ile frekans analizi el çözümüyle 

veya elektronik ortamda programlama ile bir şekilde gerçekleştirilebilecekti (Numanoğlu 

2019). Öte yandan, Timoshenko teorisi için ilgili diferansiyel denklemin çözümü, sıcaklık 

ve Pasternak zemin parametrelerinin ihmaliyle elde edilse bile buna yönelik bir analiz tez 

kapsamını eksik ifade edecektir. Buna göre, analitik çözüm hususunda doğrudan elde 

edilemeyen mod çözümü için bir seri açılımından bahsedilecektir. Seri açılımı eğer kirişin 

bütün sınır şartlarını sağlarsa hareket denklemini teşkil eden adi diferansiyel denklemde 

kullanılarak frekans hesabına geçilebilmektedir. Buna göre, Denklemler (3.92)-(3.98)’in 

değerlendirilmesi sonucunda, iki ucu basit mesnetli (S-S) ve bir ucu basit diğer ucu 

kılavuz mesnetli (S-G) şeklinde sınır şartlara sahip kayma deformasyonlu fonksiyonel 

derecelendirilmiş yerel olmayan nanokirişlerin  

 
S-S Nanokirişi:  0 0bW  ,   00bW   , 

   4
00bW  ,  

  0bW L  ,   0bW L  , 
   4

0bW L  . 

 
 

(3.99) 

   

 
S-G Nanokirişi:  0 0bW  ,   00bW   , 

   4
00bW  ,  

  0bW L  ,   0bW L  , 
   5

0bW L  . 

 
 

(3.100) 

 

ile verilen sınır şartlarını sağlayan aşağıdaki seri açılımları kullanılarak serbest titreşim 

davranışları araştırılabilir:  
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 S-S Nanokirişi:    ,

1

, sin sinb b n

n

i x
W x t W t

L


 





 
  

 
  (3.101) 

   

 S-G Nanokirişi:  
 

 ,

1

2 1
, sin sin

2
b b n

n

i x
W x t W t

L


 





 
  

 
  (3.102) 

 

bu serinin hareket denklemine uygulanışı iki sınır şart tipi için de aynı olup, örnek olması 

adına sadece iki ucu basit mesnetli nanokirişin hesabı açıklanmaktadır. Buna göre seri 

açılımının Denklem (3.79)’da kullanımından sonra harmonik fonksiyon sadeleştirilirse  
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 (3.103) 

 

elde edilir. Burada Denklem (3.86) kullanıldıktan sonra sonuç denklem ω4, ω2 ve sabite 

bağlı polinom olarak düzenlenirse, polinom kökleri ω1
2 ve ω2

2 olacak şekilde bunlar 

şöyle formüle edilir: 
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 . (3.104) 

 

burada aşağıdaki tanımlar geçerlidir: 
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(3.105) 

 

bu ifadeler de görüldüğü üzere aşağıdakilere bağlıdır: 
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Denklemler (3.105) ve (3.106) ile verilen tanımlar gereğince, problemin yerel 

olmayan parametre, ortam sıcaklığı, elastik zemin rijitlikleri gibi temel olmayan 

faktörlerinin değerleri ekstrem olmadığı sürece C1 > 0, C2 > 0 ve C3 < 0 olduğu anlaşılır. 

Bu sonuç da ω1
2 > 0 ve ω2

2 < 0 olacağına işaret eder. Böylece ele alınan problemde 

fiziksel olarak sadece ω1 frekansının uygun olduğu, sonuç olarak i. titreşim modunun 

doğal frekansının 

 
2

2 2 1 3

1

4

2
i

C C C C

C


  
  (3.107) 

 

ile hesaplanması gerektiği ifade edilebilir.  

3.3.3. Kayma deformasyonlu eksenel çubuklar 

 Kayma deformasyonuna (teknik açıdan “yanal atalet” veya “Poisson etkisi” 

ifadeleriyle zikredilmesi de doğrudur) sahip ve elastik bir ortama gömülü eksenel 

nanoçubukların fonksiyonel derecelendirilmiş malzemeden imal edildiği göz önüne 

alınarak yerel olmayan eksenel serbest titreşim analizi bu alt başlıkta irdelenmektedir. 

Ayrıca, ilerideki bir alt başlığa konu olan nanoçerçeve yapılarında eksenel davranış 

kayma deformasyonunun ihmal edilmesiyle düşünüleceğinden buna dair çıkarımlar da 

detaya girmeksizin sunulacaktır. 

 Katı bir cisimde eksenel yani çubuk ekseni yönünde gerçekleşen bir hareket 

Poisson etkileri nedeniyle çubuk eksenine dik yönlerde yanal şekil değişimlerine sebep 

olur ve bunun sonucunda yanal deplasmanlar gerçekleşir. Tabi, şekil değişiminin olduğu 

yerde gerilmelerin varlığı da akla gelmektedir. İşte Poisson etkisine sahip çubuklarda 

kayma yönlerinde meydana gelen bu durum kirişler için kayma deformasyonlu teorileri 

akla getirir. Eksenel yatay yapı elemanlarında kayma etkileri temel olarak Rayleigh ve 

Love-Bishop (veya sadece Bishop olarak da anılmaktadır) teorileri ile incelenmektedir. 

Rayleigh teorisi yanal ataletin etkisini sadece kütleye dahil ederken rijitlikte bir değişim 

olmaz. Buna karşın Love-Bishop teorisi bir adım daha kapsamlıdır, buna göre yanal atalet 

hem kütlede hem rijitlikte bir etki göstermektedir. Tabi bu anlatılana paralel olarak, 

kirişler için de bir Rayleigh teorisi mevcuttur. Ayrıca belirtilebilir ki, yanal ataletin 

tümüyle reddedildiği çubuk davranışı elemanter (“basit” veya “kaymasız” olarak da 

zikredilebilir) çubuk teorisi ile ele alınır. Bu teoride tüm şekil değişimi eksenel yöndedir, 

çubuğun diğer yönlerinde hiçbir şekil değişimi olmadığı kabul edilir. Düşük çubuk 

uzunlukları ve yüksek kesit yükseklikleri gibi durumlar basit çubuk ve Love-Bishop 

çubuğu arasındaki davranışı farklılaştırır. Sonuç olarak bütün bu anlatılanlardan, basit 

çubuğun Euler-Bernoulli kirişiyle ve Love-Bishop çubuğunun Timoshenko kirişiyle 

benzerlik gösterdiği anlaşılır. 

 Hareket Denkleminin Türetilmesi: Söz konusu serbest titreşim analizinin rol 

modeli Şekil 3.6’da betimlenmektedir. Burada alt ve üst yüzeyin malzeme özellikleri de 

görülmektedir. Öte yandan, kM çubuğun gömüldüğü eksenel tam elastik ortamın rijitliği 

ve q = q(x, t) nanoçubuk yapısının maruz kaldığı dış eksenel tahrik olarak tanımlanır. 
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Şekil 3.6. Elastik ortama gömülü fonksiyonel derecelendirilmiş nanoçubuğun eksenel 

titreşimi için nanoyapı modeli 

Nanokirişlerde olduğu gibi hareket denklemine ulaşmak için Denklem (3.27)’nin 

düzenlenebilmesi nanoçubuk kinematiğine bağlıdır. Buna göre ilk olarak hareket 

bileşenleri 

 

   , , ,xu x z t u x t u  ,    , , ,y

u
u x z t v x t v y

x



   


, 

   , , ,z

u
u x z t w x t w z

x



   


. 

 

 

(3.108) 

 

olarak yazılır. Burada ux eksenel, uy yanal ve uz enine deplasman bileşenleridir. υ Poisson 

oranıdır ve nanokirişlerde olduğu gibi sabit kabul edilecektir. Burada basit çubuk ve 

Love-Bishop çubuğu arasındaki farklılık matematiksel olarak da gözlemlenebilir. Buna 

göre, basit çubukta yanal ve enine deplasman bileşenleri sıfıra eşittir. Öte yandan, Love-

Bishop çubuğunda görüldüğü üzere yanal ve enine deplasman bileşenleri Poisson oranı 

nedeniyle eksenel hareketten doğmaktadır. Bu ifadelere göre şekil değiştirme bileşenleri 
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(3.109) 

 

şeklinde formüle edilebilir. Burada εxx, εyy ve εzz ilgili eksenlerin eksenel şekil değiştirme 

bileşenlerini ve εxy, εxz ve εyz kayma şekil değiştirme bileşenlerini belirtir. Fonksiyonel 

derecelendirilmiş malzeme için klasik gerilme bileşenleri de  
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şeklinde tanımlanır. Burada sxx, syy ve szz ilgili eksenlerin eksenel gerilme bileşenlerini ve 

sxy, sxz ve syz  kayma şekil değiştirme bileşenlerini açıklar. Her ne kadar sıfırdan farklı 

olduğu düşünülse de çubuk teorisinin bir diğer kabulüne göre syy ve szz gerilmeleri ihmal 

edilmektedir.  

 Love-Bishop çubuğunda yerel olmayan gerilme bileşenleri Timoshenko 

nanokirişinde olduğu gibi doğrudan tanımlamadığından klasik-yerel olmayan gerilme 

bağıntısı kurulamaz çünkü yerel olmayan gerilmeler Poisson etkisi nedeniyle birbirine 

bağımlıdır. Bu durum, dinamik denge üzerinden (Rao 2007; Karličić vd. 2018; Civalek 

ve Numanoğlu 2020), nano ölçekli katı cisme etkiyen diğer dış kuvvetler (bunlar söz 

konusu analiz düşünüldüğünde sadece eksenel dış tahrik ve elastik ortam tepkisidir) ve 

fonksiyonel derecelendirilmiş malzeme düşünülerek aşağıdaki gibi yazılır: 
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burada σij notasyonu ile gösterilen gerilme tansörünün bütün bileşenleri ilgili eksenel 

veya kayma yönünün yerel olmayan gerilmesini tanımlar. Yukarıda görülen 
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ifadelerinde q̃
x
, q̃

y
 ve q̃

z
 kütlesel kuvvetleri (birim uzunluğa düşen kütleye düşen yayılı 

yük) temsil etmekte olup, söz konusu analizde dış tahrik sadece eksenel yönde 

resmedilerek formülasyona katılacağından q̃
y
 = q̃

z
 = 0 olmalıdır.  

 Gerekli bilgiler sunulduğuna göre enerji ifadeleri şu şekilde tanımlanabilir:  
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0

d

L

W qu x   (3.117) 

 

burada iç şekil değiştirme enerjisi U’nun düzenlenmesiyle ortaya çıkan N eksenel normal 

kuvveti ve P toplam yanal kuvveti tanımlar. Kinetik enerji T’nin sonucunda görülen I0 

nanokirişte olduğu gibi Denklem (3.52) ile formüle edilmiş sıfırıncı kütle ataletiyken ve 

IS yanal atalettir: 
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12 22dS
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burada I12 ve I22 sırasıyla y- ve z- eksenleri için yanal kütle ataletleri olup, bunlar için 

sırasıyla dA = dydz ve dA = bdz tanımları kullanılarak 
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denklemlerine ulaşılır. Burada görülen Iy0 ve Iz0 sırasıyla y- ve z- eksenleri için birim 

yanal kütle ataletleri olarak açıklanabilir. Bu iki yeni ifade hesaplanıp, önce ilgili yanal 

kütle ataletlerinde yerine koyılduktan sonra elde edilenler sonra Denklem (3.118)’de 

kullanılırsa fonksiyonel derecelendirilmiş nanoçubuğun yanal ataleti nihai olarak 

aşağıdaki gibi yazılır:  
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 (3.121) 

 

 Bunlara ek olarak Denklem (3.115)’te görülen toplam yanal kuvvet iç tesiri 

aşağıdaki gibi verilebilir: 

  dxy xz

A

P y z A     (3.122) 

 

 Gerekli ara bilgiler tanımlandığına göre tekrardan varyasyon hesaplarına 

dönülebilir. Buna göre Denklemler (3.115)-(3.117) ile yazılan enerji ifadelerinin birinci 

varyasyonları  
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şeklinde oluşturulur. Buradaki bazı ifadelerin kısmi integrasyon işlemine tabi tutulması 

gerekmekte olup, bu amaçla yazılan 
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(3.126) 

 

denklemleri de kullanılarak Denklem (3.27) söz konusu nanoyapı için şu şekilde 

düzenlenir: 
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burada ilk olarak, en baştaki çift integralli ifadede δu ≠ 0 durumu için yazılabilecek 
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denklemi kayma deformasyonlu fonksiyonel derecelendirilmiş yerel olmayan eksenel 

nanoçubuğun dinamik dengesini açıklamakta ve hareket denkleminin temelini 

oluşturmaktadır. Buna göre işlemlerin devam ettirilebilmesi için Denklemler (3.22), 

(3.23) ve (3.110) göz önüne alınarak klasik-yerel olmayan gerilme bağıntılarının 

kurulması gerekmektedir: 
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Denklem (3.112) ve (3.113) sırasıyla Denklemler (3.130) ve (3.131)’de kullanılırsa yerel 

olmayan kayma gerilmeleri 
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şeklinde türetilir. Ayrıca, Denklem (3.111)’in konuma göre bir defa türevi alınıp yalnız 

bırakılan yerel olmayan eksenel gerilmenin konuma göre ikinci türevi Denklem 

(3.129)’da yerleştirilirse yerel olmayan eksenel gerilmeye 
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(3.134) 

 

olarak ulaşılır. Öte yandan, Denklemler (3.132) ve (3.133) ile sunulan yerel olmayan 

kayma gerilmelerinin Denklem (3.122)’da kullanılmasıyla, Denklem (3.118) ile verilen 

yanal atalet tanımı da hatırlanarak toplam yanal kuvvet formüle edilebilir: 
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burada Sr yanal rijitliktir ve aşağıdaki gibi tanımlanır: 
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burada kesit eksenleri için yapılan yanal kütle ataleti tanımlarına benzer olak S12 ve S22 

ifadeleri de sırasıyla y- ve z- eksenleri için yanal rijitlikler olup, bunlar için de sırasıyla 

dA = dydz ve dA = bdz tanımları yardımıyla yazılabilen 
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denklemlerinin yanal atalet hesabına benzer şekilde yanal rijitlikte kullanımı sonucunda  
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 (3.139) 

 

ifadesi ortaya çıkar. Sırasıyla Denklemler (3.137) ve (3.138)’de görülen Sy0 ve Sz0 

sırasıyla y- ve z- eksenleri için birim yanal rijitlikler olarak tanımlanır. 

 Öte yandan, hareket denkleminin kurulabilmesi maksadıyla diğer iç tesir olan 

eksenel normal kuvveti elde etmek için Denklem (3.134) ile tanıtılmış yerel olmayan 

eksenel gerilmeyi kesit alan üzerinden integre etmek yeterlidir: 
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burada A0 eksenel rijitliktir ve esasen basit çubuk teorisinin temel bir bileşenidir. dA = bdz 

eşitliği kullanılarak eksenel rijitlik 
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olarak hesaplanır. 

 Nihayetinde, sırasyla Denklemler (3.140) ve (3.135) ile elde edilmiş eksenel 

normal kuvvet ve toplam yanal kuvvetin Denklem (3.128)’de yerine koyulması ile 

titreşimin hareket denklemi formüle edilmiş olur: 
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(3.142) 

 

Tabi mekanik davranışın belirlenmesi hareket denklemi veya onun çözümünün elde 

edilmesi ile yeterli olmamaktadır. Buna göre nanokirişlerde de bahsedildiği gibi sınır 

şartların elde edilmesi gerekmektedir. Denklem (3.127)’nin yapısı göz önüne alındığında, 

geometrik sınır şartların u ve u' olduğu, mekanik sınır şartların ise δu(0, t) ≠ 0 ve/veya 

δu(L, t) ≠ 0 durumu için belirlenen  

 
3

2S

P u
N I

x x t

 
  

  
 (3.143) 

 

ifadesinde Denklemler (3.135) ve (3.140)’ın kullanılmasıyla elde edilecek olan  
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(3.144) 

 

ifadesini sembolize eden ve toplam eksenel kuvvet olarak adlandırılan  

 * 0N   (3.145) 

 

sınır şartı ve yine Denklem (3.127)’deki δu'(0, t) ≠ 0 ve/veya δu'(L, t) ≠ 0 durumu için 

toplam yanal kuvveti işaret eden 

 0P   (3.146) 

 

sınır şartı olduğu anlaşılır.  

 Hareket Denkleminin Çözümü: Yine bir serbest titreşim çalışması konu 

olduğundan hareket denklemini tanımlayan Denklem (3.128)’de, q = 0 alınmasıyla kalan 

denkleme uygulanması gereken değişkenlere ayırma denklemi 

      , sinu x t U x t    (3.147) 

 

olarak verilir. Bu denklemin hareket denkleminde yerine yazılmasından sonra nanokiriş 

çözümünde olduğu gibi hareket denklemi kısmi diferansiyel denklem şeklinden aşağıdaki 

adi diferansiyel denkleme dönüşür: 

 
   

 
4 2

41 2 2 3

d d
0

d d

U x U x
D D D U x

x x
    (3.148) 
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burada görülen katsayılar aşağıda tanımlanır: 

 
 

22
1 0r SD S e a I  , 

     
2 22

2 0 0 0 01 2M SD A e a k I e a I       
 

, 
2

3 0MD k I  . 

 
 

(3.149) 

 

Ayrıca, mekanik sınır şartlar olan ve sırasıyla Denklemler (3.144) ve (3.135) ile 

sunulan toplam eksenel kuvvet ve toplam yanal kuvvet, Denklemler (3.147) ve (3.149) 

kullanılarak 

 *
1

3

23

d d

dd

U U
N D D

xx
   (3.150) 

   

 
2

1 2

d

d

U
P D

x
  (3.151) 

 

olarak yazılmaktadır.  

 Hareket denklemini ifade eden diferansiyel denklem olan Denklem (3.148)’in 

yapısı nedeniyle analitik olarak çözülmesi yani nanoçubuğun mod denkleminin elde 

edilmesi mümkündür. Buna göre,   

   kxU x Ee  (3.152) 

 

ifadesinin Denklem (3.148)’de yerine yazılmasıyla elde edilen karakteristik polinom 

 
4 2

1 2 3 0D k D k D    (3.153) 

 

şeklinde olmaktadır. Burada aşağıda tanımlanan 

 2k K  (3.154) 

 

dönüşümü sayesinde Denklem (3.153), K’ye bağlı ikinci dereceden bir denklem 

olduğundan kökleri 

 
2

2 2 1 3
1

1

4

2

D D D D
K

D

  
 , 

2
2 2 1 3

2

1

4

2

D D D D
K

D

  
  . (3.155) 

  

olarak verilir. Burada söz konusu denklemin diskriminantı Δ = D2
2 − 4D1D3 olmak üzere 

öncelikle bu ifadenin pozitif tanımlı olması gerekir. Yerel olmayan parametre e0a ve 

elastik dış ortam rijitliği kM’nin ekstrem olmayan değerleri düşünüldüğünde Denklem 

(3.149)’deki parametreler hakkında D1 > 0, D2 < 0 ve D3 < 0 çıkarımı yapılabilir ve 

böylece K1 > 0 ve K2 < 0  olduğu tespit edilir. Bu nedenle Denklem (3.154) gereğince 

Denklem (3.153)’ün iki reel ve iki sanal kökü vardır ve bunlar 
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 11 1k K , 12 1k K  , 21 2k K i , 22 2k K  i  (3.156) 

 

şeklinde belirtilir. Böylece Denklem (3.152) ile verilen şablon 

   1 1 2 2

1 2 3 4
K x K x K x K x

U x E e E e E e E e
   

   
i i

 (3.157) 

 

olarak Denklem (3.148)’in çözümünü belirtir. Ancak çözümün bu formu sınır şart 

uygulamaları için kullanışlı olmadığından Euler dönüşümleri vasıtasıyla çözüm tekrar 

düzenlenecektir:  

 
cos sine    i

i , cos sine     i
i , 

cosh sinhe    , cosh sinhe      . 

 
 

(3.158) 

 

bu denklemlerin Denklem (3.157)’de kullanımı ile mod denkleminin nihai haline ulaşılır: 

         1 2 2 2 3 1 4 1cos sin cosh sinhU x F K x F K x F K x F K x       (3.159) 

 

burada Fi (i = 1 − 4)  çözüm sabitleridir ve nanoçubuğun sınır şartlarından belirlenmekte 

olup, buradan itibaren bu husus ele alınmaktadır. 

 Sınır Şartlar: Mod denkleminin dört tane çözüm sabitine sahip olması, nanoçubuk 

için dört adet sınır şarta ihtiyaç olduğunu ifade eder. Yerel olmayan kayma 

deformasyonlu nanoçubuğun sınır şartları, eksenel deplasman ve Denklem (3.127) 

gereğince bunun türevine bağlı yanal deplasman gibi geometrik ve toplam eksenel normal 

kuvvet ve toplam yanal kuvvet gibi dinamik yapıdaki sınır şartlarını belirtir. Bu çubuğun 

yaygın bilinen uç tipleri aşağıda tanıtılmaktadır. 

1- Tutulu Uç (C): Tutulu bir uç tamamen rijittir yani bu uçta bir hareket olmamalıdır. O 

halde eksenel ve yanal deplasmanlar gözlemlenmemelidir: 

 0U  , 0U   . (3.160) 

 

2- Serbest Uç (F): Mesnetlenmemiş bir uçta deplasmanlar görüleceğine göre kayma 

deformasyonlu nanoçubuk için bunun anlamı toplam eksenel kuvvet ve toplam yanal 

kuvvetin olmamasıdır. Buna göre Denklemler (3.150) ve (3.151) düşünülerek sırasıyla 

 1 2 0DU D U   , 1 0DU   . (3.161) 

 

denklemleri yazılabilir. Denklem (3.149)’daki D1 sıfıra eşit olamayacağına göre, toplam 

yanal kuvvet sınır şartı için, 

 0U    (3.162) 

 

ifadesi kurulabilir. Sonuç olarak sınır şartlar aşağıdaki gibi verilir: 

 1 2 0DU D U   , 0U   . (3.163) 
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3- Yumuşak Tutulu Uç (S): Tutulu uç tamamen rijittir ancak bazı tutulu uç türleri yarı 

rijit davranmaktadır. Yarı rijit uç türlerinden olan yumuşak tutulu uçta eksenel deplasman 

görülmeyeceği gibi toplam yanal kuvvet oluşmaz: 

 0U  , 0U   . (3.164) 

 

şeklinde sınır şartlar açıklanır.  

4- Kavrayıcı Tutulu Uç (G): Diğer bir yarı rijit uç türü olan kavrayıcı tutulu uç, toplam 

eksenel kuvvet ve yanal deplasmanın oluşmayacağını ifade eder. Buna göre: 

 1 2 0DU D U   , 0U   . (3.165) 

 

burada yanal deplasman toplam eksenel kuvvette yerine yazılırsa 

 1 0DU    veya 0U   . (3.166) 

 

elde edilir. Sonuç itibariyle sınır şartlar aşağıdaki gibi yazılır: 

 0U   , 0U   . (3.167) 

 

 Uygulamalar: Yeri geldiğinde daha detaylı ele alınacaktır ama burada kısaca 

değinmek gerekirse, kaymasız yani basit çubuk teorisinde Love-Bishop çubuğuna göre 

yönetici diferansiyel denklemin mertebesinin düşük ve sınır şartların daha sade yapıda ve 

az sayıda olması nedenleriyle çözüm daha kolay olabilmektedir. Love-Bishop çubuk 

teorisinde ise bu belirtilen durumlar nedeniyle çözüm birçok durumda el hesabı ile 

gerçekleştirilemez. Bu hususta seri çözümü, bilgisayarda sembolik programlama veya 

sayısal yöntemler tercih edilmektedir ancak bu husus yeri geldiğinde incelenecektir. Bu 

nedenle uygulamalar kapsamında, el çözümüne uygun olan bir adet sınır şartlı nanoçubuk 

ve bazı seri açılımları ile çözümler incelenecektir. 

 İki ucu yumuşak tutulu (S-S) kayma deformasyonlu fonksiyonel derecelendirilmiş 

nanoçubuğun modal analiz hesabı el çözümüne uygundur. Denklem (3.164) göz önüne 

alınarak, L uzunluklu çubuğun sınır şartları 

  0 0U  ,  0 0U   ,   0U L  ,   0U L  . (3.168) 

 

şeklinde yazılır. Burada ilk iki sınır şartın Denklem (3.159)’a uygulanması neticesinde, 

detayına girilmeksizin 

 1 3 0F F   (3.169) 

 

elde edilir. Bu sonucun mod denkleminde yerine yazılmasından sonra, üçüncü ve 

dördüncü sınır şartların mod denklemine uygulanması neticesinde elde edilen denklemler 

lineer cebrik yapıda şöyle yazılabilir: 
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   

   
 
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4
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sin sinh
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CK K L K K L

            

 
(3.170) 

 

burada aşikâr çözüm için katsayılar matrisi [A]’nın determinantı sıfıra eşit olmalıdır: 

      1 2 2 1sin sinh 0K K K L K L    (3.171) 

 

burada şöyle bir inceleme yapılabilir. İlk olarak, (K1 + K2) = 0 olması Denklem (3.155)’e 

istinaden D2 = 0 anlamına gelir ve Denklem (3.149)’da tanımlanan D2 parametresi göz 

önüne alındığında bu durum periyodik bir çözümü vermez. İkinci olarak sinh √K1L  = 0 

için K1 = 0 olmalıdır ve Denklem (3.153)’ün K değişkenine bağlı ikinci dereceden 

denklem formunun bir negatif bir de pozitif kökü olduğu tespit edildiğinden bu durum da 

geçerli olmaz. Son olarak 

  2sin 0K L   (3.172) 

 

durumunda aşağıda yazılan periyodik bir çözüm mevcut olur: 

 

2

2

i
K

L

 
   

 
 (3.173) 

 

burada i = 1, 2, 3, ⋯ i ∈  Z+ ile tanımlanan bir tamsayı olmak üzere mod numarasını 

belirtir. Denklem (3.173)’ün Denklem (3.155)’te kullanılması sonucunda elde edilen 

denklem bir miktar düzenlenerek 

 

4 2

1 2 3 0
i i

D D D
L L

    
     

   
 (3.174) 

 

sonucuna varılır. Denklem (3.149)’da verilenlerin burada kullanımı ile i. modun doğal 

titreşim frekansı 
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

             
              

 (3.175) 

 

şeklinde hesaplanmaktadır.  

 Öte yandan, hesapları verilmeksizin bir ucu yumuşak tutulu diğer ucu kavrayıcı 

tutulu (S-G) nanoçubuğun sınır şartları Denklemler (3.164) ve (3.167)’ye istinaden 

aşağıdaki gibi sıralanabilir: 
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  0 0U  ,  0 0U   ,   0U L  ,   0U L  . (3.176) 

 

Böylece S-S ve S-G nanokirişlerinin bütün sınır şartlarını sağlayan aşağıdaki seri 

açılımları, statik mod denklemi üzerinde sınır şart uygulaması yapmaksızın dinamik 

analiz için kullanılabilir: 

 S-S Nanoçubuğu:    
1

, sin sinn

n

i x
U x t U t

L


 





 
  

 
  (3.177) 

   

 S-G Nanoçubuğu:  
 

 
1

2 1
, sin sin

2
n

n

i x
U x t U t

L


 





 
  

 
  (3.178) 

 

burada Denklem (3.177)’nin Denklem (3.142)’da kullanımının sonucu Denklem (3.174) 

olarak ortaya çıkar. O halde kayma deformasyonlu fonksiyonel derecelendirilmiş S-G 

nanoçubuğunun yerel olmayan doğal frekansları 
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               

 (3.179) 

 

olarak elde edilir.   

 S-S ve S-G nanoçubuklarının davranışları tespit edilebilse bile sürekli 

nanoyapıların genel mekanik davranışını araştırmak için esasen tam tutulu ve serbest uç 

gibi sınır şartlarından oluşan nanoyapıları bilmek elzemdir. İşlem detayı verilmeksizin, 

homojen Love-Bishop nanoçubuklarından yola çıkılarak (Karličić vd. 2018; Civalek ve 

Numanoğlu 2020) kayma deformasyonlu fonksiyonel derecelendirilmiş bir ucu tutulu 

diğer ucu serbest ve iki ucu tutulu Love-Bishop nanoçubuklarının frekans denklemleri  

 

C-F Nanoçubuğu: 
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(3.180) 

   

 

 C-C Nanoçubuğu: 
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(3.181) 

 

şeklindedir. Buna göre, kayma deformasyonlu C-F ve C-C nanoçubuklarının frekans 

denkleminin sonuçları sırasıyla S-G ve S-S nanoçubuklarıyla aynı olmaktadır (Civalek 

ve Numanoğlu 2020). Zira, tam tutulu ve yumuşak tutulu uçların eşleştirilmesinde 
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geometrik sınır şartlar deplasman yönünden aynı olmakta, deplasmanın birinci türevi tam 

tutululuğun yumuşak tutulu olma haline kıyasla yüksek rijiditesi gereği kayma etkisinin 

getirdiği bir fark olarak ortaya çıkmaktadır. Öte yandan, kavrayıcı tutulu ve serbest 

uçların eşleştirilmesinde, mekanik (dinamik) sınır şartlar açısından toplam eksenel kuvvet 

sınır şartı aynı olmakta, kavrayıcı tutulu uçta serbest uca göre yanal deplasman şeklindeki 

geometrik şart yine kayma etkisinin getirdiği bir fark olarak gözlemlenmektedir. Sonuç 

itibariyle, kayma deformasyonlu fonksiyonel derecelendirilmiş C-F ve C-C çubuklarının 

yerel olmayan mekanik davranışlarının sırasıyla S-G ve S-S çubukları ile aynı olduğu 

kabul edilebilir.  

 Poisson Etkisinin İhmal Edilmesi: Esasen bu alt başlıkta kayma deformasyonlu 

nanoçubuklar incelenmiştir ancak bu bölümün ilerleyen alt başlıklarından olan ve 

nanoyapıların yerel olmayan sonlu eleman analizlerinden birisi olan kayma 

deformasyonlu fonksiyonel derecelendirilmiş nanoçerçeve formülasyonunda yapının 

eksenel serbestliklerini Love-Bishop formülasyonu ile ifade etmek maalesef mümkün 

olmayacağından kayma etkisi eksenel serbestlikler için ihmal edilecek olup, bunun yerine 

basit çubuk teorisi kullanılacaktır. Bu tercih, yeri geldiğinde gerekçeleriyle daha detaylı 

olarak açıklanacaktır. İlgili konunun teorik formülasyonunun altyapısını hazırlamak 

maksadıyla, basit çubuk teorisi hakkında detaya girmeden temel bilgilerden burada 

bahsedilecektir. Matematiksel olarak, yanal deformasyon etkili bir eksenel çubuk kuramı 

ile formüle edilen çubukta Poisson oranının sıfırlanması ile çubuk teorisinin basit çubuğa 

indirgendiği ifade edilebilir. Buna göre temel olarak çubuğun kinematik ilişkileri 

(sırasıyla deplasman, şekil değiştirme ve klasik gerilme bileşenleri) aşağıda 

açıklanmaktadır: 

 
   , , ,xu x z t u x t u  ,    , , , 0yu x z t v x t v   , 

   , , , 0zu x z t w x t w   . 

 

 

(3.182) 
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x x
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x x x
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   
   

   
, 0yy zz xy xy yz         . (3.183) 

   

    xx xx

u
s E z E z

x



  


, 0yy zz xy xz yzs s s s s     . (3.184) 

 

görüldüğü üzere Poisson oranının sıfırlanmasıyla yanal deplasmanlar oluşmamakta ve 

sadece eksenel deplasman var olmaktadır. Bunun sonucu olarak sıfırdan farklı bir tek 

boylamsal yöndeki şekil değiştirme ve gerilme bileşenleri ile karşılaşılmaktadır. Basit 

çubuk ve Love-Bishop çubukları arasındaki bu temel ayrım, toplam yanal kuvvet P, yanal 

kütle ataleti IS ve yanal rijitlik Sr parametrelerini titreşim analizinden düşüreceği için 

varyasyon cebri hesapları sonucunda, δu ≠ 0 durumu için dinamik denge denklemi ve 

δu(0, t) ≠ 0 ve/veya δu(L, t) ≠ 0 durumu için mekanik sınır şartlar sırasıyla aşağıdaki gibi 

ifade edilmelidir: 

 
2
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0M

N u
k u I q

x t

 
   

 
 (3.185) 

   

 0N   (3.186) 
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Ayrıca, bu çubuk kuramında yerel olmayan serbest titreşimin sadece Denklem 

(3.129) ile idare edilmesi gerekecektir. Gerilme denkleminin iki tarafının kesit alana göre 

integre edilmesi ile ulaşılan normal kuvvetten yola çıkılarak yerel olmayan hareket 

denklemi 
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(3.187) 

 

olarak türetilirken problemde rol oynayan mekanik (dinamik) yapıdaki tek sınır şart olan 

eksenel normal kuvvet 

       
3

2 2 2

0 0 0 0 02M

u u q
N A e a k e a I e a

x xx t

  
   

  
 (3.188) 

 

şeklinde açıklanır. Serbest titreşim analizinde değişkenlere ayırma çözümünün kullanımı 

sayesinde, sırasıyla hareket denklemi ve mekanik sınır şart için ulaşılan  

 
2

1 22

d
0

d

U
G G U

x
   (3.189) 

   

 1

d

d

U
N G

x
  (3.190) 

 

denklemlerinde 

    
2 22

1 0 0 0 0MG A e a k e a I   , 
2

2 0MG k I   . (3.191) 

 

olarak verilir. Denklem (3.152)’nin Denklem (3.189)’da kullanılması ile karakteristik 

polinoma şöyle ulaşılır:  

 
2

1 2 0G k G   (3.192) 

 

burada problemin temel olmayan parametreleri kM ve e0a’nın ekstrem olmayan değerleri 

için G1 > 0 ve G2 > 0 olduğundan denklemin iki kökü de sanal sayıdır: 
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1

1

G
k

G
 i , 2
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G
k

G
 i . (3.193) 

 

böylece mod çözümü  

  
2 2

1 1
1 2

G G
x x

G GU x E e E e
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(3.194) 
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olarak yazılır ve burada Denklem (3.158)’deki Euler denklemlerinden gerekli olanların 

kullanımı sonucunda 

   2 2
1 2

1 1

cos sin
G G

U x F x F x
G G

   
    

   
 (3.195) 

 

eşitliğine varılmış olur. Çözüm sabitlerini belirleyecek sınır şartlar: 

 Tutulu Uç (C): 0U  , Serbest Uç (F): 1N G U   veya 0U   . (3.196) 

 

şeklinde tanıtılır. Basit çubuk Love-Bishop çubuğuna göre düşük mertebeli bir çubuk 

teorisi olduğundan sınır şartların daha az sayıda olduğu, yani yanal deplasman 

(matematiksel olarak eksenel deplasmanın birinci türevi) ve toplam yanal kuvvet gibi 

yüksek mertebeli sınır şartların burada yer almadığı dikkat çekmektedir.  

3.4. Yerel Olmayan Sonlu Elemanlar Formülasyonu 

 Bu altbaşlık itibariyle, daha önceden analitik çözümleri anlatılmış kayma 

deformasyonlu fonksiyonel derecelendirilmiş nanokiriş ve nanoçubuk yapıların atomik 

ölçekli serbest titreşim analizlerinin tez konusu da olması itibariyle yerel olmayan sonlu 

elemanlar formülasyonu ile çözümleri sunulacaktır. Bunlara ek olarak, kayma 

deformasyonlu fonksiyonel derecelendirilmiş ayrık üyelerden oluşan yapıların 

nanoçerçeve modellerinin de serbest titreşim analizi formüle edilecektir. 

3.4.1. Nanokirişler 

 Sonlu Eleman Kinematiği: Ağırlıklı kalıntı ile çözülmesi gereken hareket 

denklemi Denklem (3.79)’da görülmektedir. Hatırlanacak olursa denklem sadece eğilme 

deplasmanı wb cinsinden oluşturulmuştur. O halde sonlu elemanın eğilme deplasmanı 

formüle edilmelidir. Buna göre bir eğilme sonlu elemanının toplam hareketi  

 

 bw  d  (3.197) 

 

denklemi ile tanımlanır. Burada d sonlu eleman uç düğümlerinin hareket serbestliklerini 

tanımlarken ϕ kiriş şekil fonksiyonunu ifade etmekte olup, bu ikisi, 
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d . (3.198) 

 

şeklinde açıklanır. Burada le sonlu eleman uzunluğunu ifade etmek üzere  ξ = x le⁄  

boyutsuz koordinat olarak bilinir. Sonlu eleman düğümleri i ve j olmak üzere wi ve wj 

bunların deplasmanlarını, θi ve θj bunların dönmelerini belirtir.  
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 Sonlu Eleman Hareket Denklemi: Probleme etkiyen parametrelerin sonlu eleman 

formülasyonuna nasıl bir katkı koyacağını ayrı ayrı tespit etmek maksadıyla, hareket 

denkleminin bileşenleri açık yazılarak, formülasyona esas teşkil etmesi gereken kalıntı 

ifadesi, türev mertebeleri (yüksekten alçağa), türev bileşenleri (önce konum sonra zaman) 

ve yerel olmayan parametreyi içerip-içermeme (önce klasik sonra yerel olmayan 

parametre) durumları göz önüne alınarak önce rijitliği, sonra çevresel faktörleri ve en son 

sadece kütle ataletlerini içeren terimlerin sıralanmasıyla  
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(3.199) 

 

şeklinde yazılır. Böylece ağırlıklı kalıntının şu şekilde yazılması gerekir. 
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(3.200) 

 

Burada integralin 33 farklı bileşeni mevcuttur ve bunların çoğu kısmi integrasyona tabi 

tutulmalıdır. Ağırlıklı ortalama kalıntı bileşenlerinin tümü kısmi integrasyona tabi 

tutulanların sonuçları da yazılmak kaydıyla aşağıdaki gibi listelenir: 
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buradaki integral ifadeleri Denklem (3.199)’da yerine yazıldıktan sonra oluşan ifadede 

çeşitli kısımlar toplu olarak 0’a eşittir ancak denklemi uzatarak karmaşaya yol açmamak 

maksadıyla sonlu eleman analizine esas kısım aşağıda verilmektedir: 
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 (3.202) 

  

 Eğilme sonlu elemanı hakkında aşağıda yazılan tanımlar, sonlu eleman 

formülasyonunun ifade edilebilmesi için gerekmektedir: 
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(3.203) 

 

burada h hatırlanacak olduğu üzere ağırlıklandırma fonksiyonu olup, matematiksel tanımı 

görüldüğü üzere şekil fonksiyonunun transpozudur. Öte yandan Dk kinematik operatörü 

belirtir. Denklem (3.202) düşünüldüğünde, ağırlıklandırma fonksiyonu ve deplasmanın 

konum ve zamana göre görülen türev mertebeleri göz önüne alınarak gerekli tanımlar 

Denklem (3.203)’te yapılmıştır. Denklem (3.203)’ün Denklem (3.202)’de yerine 

yazılmasıyla 
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(3.204) 

 

ifadesine ulaşılmış olur. Bu denklemin matris notasyonu ile  

      0 1K M M     d d d f  (3.205) 

 

şeklinde sembolize edilmesi suretiyle burada ΣK, ΣM 0, ΣM 1 ve Σf ifadeleri bir sonlu 

eleman için sırasıyla toplam rijitlik matrisini, toplam basit kütle matrisini, toplam yüksek 

mertebeden kütle matrisini ve toplam yük vektörünü ifade eder. Bu ifadeler Numanoğlu 

(2019)’daki kayma deformasyonlu homojen yerel olmayan nanokirişler için açıklananlara 

benzer olarak şöyle yazılmaktadır: 
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, , , , , ,I R c I R nl I R HO nlM M M M     (3.208) 

   

 c nl  f f f  (3.209) 

 

 

Burada ilk olarak rijitlik matrisinin bileşenleri aşağıdaki gibi verilmektedir: 
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Ardından basit kütle matrisinin bileşenleri aşağıdaki yazılmaktadır: 
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Ayrıca, yüksek mertebeden kütle matrisinin bileşenleri de aşağıda yazılmaktadır: 
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Son olarak, toplam yük vektörünün bileşenleri aşağıdaki gibi ifade edilebilir: 
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Buradaki matrislerin sayıca çokluğu nedeniyle sadece alt indislerin tanımlanması tercih 

edilmektedir. Buna göre, ilgili matris bileşeninin alt indisinde W Winkler zemininin, P 

Pasternak zemininin, T ortam sıcaklığının, R kayma rijitliği (kS) ve eğilme rijitliği (B) 

parametrelerinden en az birinin bulunması durumunun, c klasik elastisitenin ve yerel 

olmayan elastisite için nl alt indisi (e0a)
2
 ifadesinin ve bunun daha yüksek yüksek 

mertebesi olan Ho − nl alt indisi (e0a)
4
 ifadesinin bileşen olarak yer almasından dolayı 
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adlandırmada kullanıldığını belirtir. Öte yandan fc klasik yük vektörünü ve fnl yerel 

olmayan yük vektörünü tanımlar. 

Frekansların Hesaplanması: Serbest titreşimde fc = fnl = 0 alınıp, Denklem 

(3.25)’de tanımlanan değişkenlere ayırma bu defa düğüm deplasmanları için yazılırsa,  

  
* * *
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    (3.243) 

 

şeklindeki özdeğer denklemine ulaşılır. Denklemin sayısal yöntemlerle veya bilgisayarda 

programlama vasıtasıyla çözümü ile özdeğerler yani i. modun doğal frekansı ωi elde 

edilir. Burada Σe = 1
n [K]

e
, Σe = 1

n [M 0]
e
 ve Σe = 1

n [M 1]
e
 ilgili küresel matrisi tanımlar ve 

bunların indirgenerek özdeğer analizine girmesi gereken nihai matrisler (teknik adıyla 

indirgenmiş küresel matrisler) (Σ[⋯])
*
 gösterimiyle sembolize edilmektedir.  

 Küresel Matrislerin İndirgenmesi: Bilindiği üzere küresel matrisler sistemdeki n 

sayıdaki sonlu elemanın serbestlik doğrultularına göre toplanarak kurulur. Yani sonlu 

elemanların ilgili matrisleri terim terime toplanmaz. Sonlu elemanlar yönteminin tekniği 

gereğince sonlu elemanların ortak düğümündeki serbestlikler birbiri ile toplanacağından 

(2n + 2)×(2n + 2) boyutunda küresel matrisler oluşur. Ardından bu küresel matrisler 

indirgenir yani sonlu eleman ağında geometrik sınır şartı adresleyen ilgili serbestliğe denk 

gelen satır ve sütunlar küresel matrislerden silinir.  

3.4.2. Nanoçubuklar  

 Sonlu Eleman Kinematiği: Başlamadan önce muhakkak belirtilmelidir ki, eksenel 

çubuklar sonlu eleman analizinde çoğunlukla iki düğümlü sonlu elemanla modellenirler 

çünkü formülasyonda göz önüne alınan basit çubuğun kinematiği basit olarak bu eleman 

tipinin kullanımını mümkün kılar. Ancak Love-Bishop çubuğunda iki düğümlü elemanın 

kullanımı mümkün değildir çünkü çubuk kinematiği yüksek mertebeden türevli terimleri 

ortaya çıkartır. Bu durum bu alt başlıka incelenecek formülasyonda yeri geldiğinde 

gösterilecektir. Sonuç itibariyle, kayma deformasyonlu fonksiyonel derecelendirilmiş 

eksenel nanoçubuğun yerel olmayan sonlu eleman analizi en az üç düğümlü (Numanoğlu 

2019; Civalek ve Numanoğlu 2020; Numanoğlu ve Şen 2022) sonlu eleman üzerinden 

yürütülmelidir. İlk olarak, nanokirişe benzer şekilde üyenin toplam eksenel deplasmanı 

 u  d  (3.244) 

 

olarak ifade edilir. Burada şekil fonksiyonu ve düğüm deplasmanları, 
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ile verilir. Burada ξ boyutsuz koordinat iken di, dj ve dk sonlu eleman düğümlerinin 

eksenel deplasmanlarını tanımlar. 
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 Sonlu Eleman Hareket Denklemi: Bu defa kalıntı, her bir parametrenin özdeğer 

çözümüne katkılarının ayrı ayrı belirlenebilmesi maksadıyla 
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(3.246) 
 

 

biçiminde tanımlanır. Ardından ortalama ağırlıklı kalıntı aşağıdaki gibi ifade edilir: 
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(3.247) 
 

 

burada görülen integraller aşağıdaki şekilde ifade edilir: 
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(3.248) 

 

Bu ifadelerin Denklem (3.247)’de yazılmasından sonra sadece belirli integraller bir araya 

getirilirse 
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(3.249) 

 

ifadesine ulaşılır. Bu denklemin düzenlenmesi için, Denklem (3.244)’e ek olarak gerekli 

tanımlar 
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(3.250) 

 

şeklinde verilir. Denklem (2.249), Denklemler (2.244) ve (2.250) vasıtasıyla 
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(3.251) 

 

olarak düzenlenir. Bu denklem matris notasyonu gösterimi şöyle yazılır: 

    K M   d d f  (3.252) 

 

burada ΣK toplam rijitlik matrisini, ΣM 0 toplam kütle matrisini ve Σf toplam yük 

vektörünü belirtir. Bu tanımlar 

 , ,a I M c M nlK K K K K     (3.253) 

   

 , , , ,A c A nl I c I nlM M M M M     (3.254) 

   

 c nl q q q  (3.255) 

 

şeklinde açıklanır. Burada toplam rijitlik matrisinin bileşenleri olarak Ka eksenel rijitlik 

matrisi, KI yanal atalet rijitlik matrisi, KM,c eksenel ortam klasik rijitlik matrisi ve KM,nl 

eksenel ortam yerel olmayan rijitlik matrisi olarak adlandırılır. Ayrıca, toplam kütle 

matrisinin bileşenleri olarak MA,c klasik kütle matrisini, MA,nl yerel olmayan kütle 
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matrisini, MI,c klasik yanal kütle ataleti matrisini ve MI,nl yerel olmayan yanal kütle ataleti 

matrisini tanımlar. Ek olarak, q
c
 ve q

nl
 sırasıyla klasik ve yerel olmayan yük vektörleridir. 

Bu ifadeler aşağıda formüle edilmektedir: 
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(3.259) 
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(3.261) 

   



MATERYAL VE METOT            H.M. NUMANOĞLU 

88 

 

  
1

T

, 2 1 2 3

0 0

3

7 8 1

d d 8 16 8
3

1 8 7

e el l

S
I c S S

e

I
M I x I x

l



   



 
  

               
       

 B B  (3.262) 

   

 

     

 

1

2 2T

, 0 0 2 1 2 3

0 0

3

2

0

3

d d

16 32 16

32 64 32

16 32 16

e el l

I nl S S

S

e

M e a I x e a I x

e a I

l



   



 
 
          
 

  

 
 

  
 
  

 B B

 

 

 

 

 

 

(3.263) 
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Frekansların Hesaplanması: Sırasıyla küresel toplam rijitlik ve kütle matrisleri 

olan Σe = 1
n [K]

e
 ve Σe = 1

n [M]
e
 kurulduktan ve indirgendikten sonra  
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şeklinde yazılması gereken özdeğer denkleminin çözülmesiyle ωi özdeğerleri yani i. 

modun doğal frekansı hesaplanmaktadır. 

 Küresel Matrislerin İndirgenmesi: Üç düğümlü eksenel elemanların uç düğümleri 

üzerinden yapılacak birleştirmeler sonucunda küresel matrisler n sayıda sonlu eleman için 

(2n + 1)×(2n + 1) boyutunda hesaplanmalıdır. Denklem (2.244) gereğince sonlu eleman 

kinematiği sadece eksenel deplasman üzerinden oluşturulduğundan bu çubuk türünde 

geometrik sınır şart sadece eksenel deplasmandır. Örneğin tutulu uç durumunda, tutulu 

ucun denk geldiği düğümü işaret eden satır ve sütun ilgili küresel matrislerden silinerek 

oluşan ifadeler özdeğer denklemine girer.  

 Basit Nanoçubuk İçin Yerel Olmayan Sonlu Eleman Formülasyonu: Hareket 

denkleminin formülizasyonu sunulurken, ileride ele alınacak kayma deformasyonlu 

nanoçerçeveler de tez kapsamında formüle edileceğinden ve eksenel yönde kayma 
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deformasyonunu hesaba katmak matematiksel olarak mümkün olamayacağından eksenel 

yönde Poisson etkisinin ihmal edileceği belirtilmiş, bu nedenle Poisson etkisinin ihmali 

hakkında kısa bir anlatımda bulunulmuştu. Hatırlanacak olursa bir önceki alt başlıkta 

değinilen nanokirişler için iki düğümlü eleman, kayma deformasyonu ile analize izin 

vermektedir çünkü Denklem (3.245)’te verilen şekil fonksiyonu, Denklemler (3.248) ile 

verilen belirli integrallerdeki maksimum türevler derecesi olan üç defa türev 

alınabilmesini mümkün kılmaktadır. Ancak bu alt başlıkta da değinildiği gibi, Denklem 

(3.248)’deki I1 ve I6 integralleri iki defa türev içerdiğinden ve iki düğümlü şekil 

fonksiyonu bu türevler için yetersiz kalacağından Love-Bishop çubuğunun analizi için en 

az üç düğümlü elemanın kullanımının gerekli olduğu anlaşılmaktadır. Buna göre, 

Denklem (3.245)’teki şekil fonksiyonu iki defa türevleme işlemini sağlayabilmektedir. 

Bu bölümün son kısmı olan bir sonraki alt başlığa konu nanoyapı modelini tanımlayan 

nanoçerçevelerin sonlu eleman formülasyonunun eksenel davranışla ilgili kısmı için bu 

alt başlıkta, basit nanoçubuk için yerel olmayan sonlu eleman analizine kısaca 

değinilecektir.  

 İlk olarak, iki düğümlü eksenel sonlu elemanın kinematiği aşağıdaki denklemlerle 

açıklanır: 
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burada sonlu elemanın şekil fonksiyonlarının birinci dereceden denklemlerle ifade 

edildiğine dikkat edilmelidir. Öte yandan, Denklem (3.187) ile verilen hareket denklemi 

kalıntıyı belirttiğinden, ağırlıklı ortalama kalıntı 
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(3.269) 

 

ile ifade edilebilir. Bu denklem, Denklem (3.248)’de görülen I2, I3, I4, I5, I8 (υ = 0 olduğu 

da hatırlatılarak), I9 ve I10 integrallerinin sonuçları kullanılarak 
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(3.270) 

 

olarak yazılır. Burada Denklemler (2.267) ve (2.268) yardımıyla 
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(3.271) 

 

ifadesi ortaya çıkar. Denklem (3.252)’deki matris notasyonu bu defa  

 , ,a M c M nlK K K K    (3.272) 

   

 c nlM M M   (3.273) 

   

 c nl q q q  (3.274) 

 

denklemleri ile kurulur. Buradaki tanımlar Love-Bishop çubuğu için formülasyon 

türetilirken yapılmıştır. Sadece kütle bileşenleri için notasyon değişikliği yapılmış olup, 

Mc ve Mnl kayma deformasyonsuz eksenel nanoçubuğun sırasıyla klasik ve yerel olmayan 

kütlelerini ifade eder. Böylece, fonksiyonel derecelendirilmiş kayma deformasyonsuz 

nanoçubuğun yerel olmayan sonlu elemanlar formülasyonunun bileşenleri aşağıdaki gibi 

açıklanır: 
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 Kısa bir inceleme yapılacak olursa, yerel olmayan basit eksenel nanoçubuk 

analizinde Poisson etkisi ihmal edildiğinden, yanal atalet rijitliği KI, klasik yanal kütle 

ataleti MI,c ve yerel olmayan kütle ataleti MI,nl matrislerinin analizde yer almadığı 

gözlemlenmektedir. Öte yandan, yukarıdaki ifadelerin kullanımı üzerinden oluşturulacak 

küresel matrislerin indirgenmesiyle ilgili özdeğer denkleminin çözümü sonucunda doğal 

frekanslar hesaplanmış olur ancak konunun bu olmadığı, burada nanoçerçeve modeli için 

yerel olmayan sonlu elemanlar analizinin ilgili kısmının kurulmasının amaçlandığı not 

edilmelidir. 

3.4.3. Kayma deformasyonlu fonksiyonel derecelenmiş ayrık nano sistemler 

 Bu bölümde son olarak, fonksiyonel derecelendirilmiş malzemeden imal edilmiş 

düzlem nanoçerçeve yapılarının kayma deformasyonuna dayanan yerel olmayan serbest 

titreşim analizinden bahsedilecektir. Bilindiği üzere, çerçeve yapılar, en basit anlamda, 

en az iki tane üyeye sahip ayrık yapılar olarak tanımlanabilmektedir. Burada bir üye 

mekaniksel ve geometrik olarak diğer üyelerden bağımsız olarak kendi başına 

tanımlanabildiğinden bu tür yapılar ayrık sistem olarak bilinir. Hatırlatılacak olursa, 

yaygın bilinen diğer ayrık yapı çeşidi olan kafes sistemlerde üyeler sadece eksenel etkiler 

altında çalışırken çerçeve yapılarında üyeler, bütün serbestlik doğrultularında (eksenel, 

burulma, enine, dönme) hareket gösterirler ve bu doğrultulardaki iç tesirlerle karakterize 

edilmektedirler. Tabi çerçeve yapılarında burulma etkisi çoğunlukla analizde yer almaz, 

diğer etkilere göre mekanik analiz formüle edilmektedir.  

 Nano ve mikro-elektro-mekanik sistemlerin yapısal mekanik davranışlarının 

araştırılmasında genel olarak eksenel çubuk, kiriş, kabuk ve plak gibi mekanik 

modellerinin göz önüne alındığı bilimsel literatürden bilinmektedir. Ancak, bazı 

nano/mikro ölçekli yapısal sistemler, farklı yönelimli birden çok elemana (Que vd. 2001; 

Piazza vd. 2006; Kinnell ve Craddock 2009; Xie vd. 2015; Chaudhary ve Mudimela 2022) 

sahip olduğundan bu sistemleri sürekli yapı gibi modellemek makul görünmeyebilir. Bu 

tür küçük ölçekli yapılara ayrık mekanik sistem modeli (Numanoğlu ve Civalek 2019b, 

2024) ile yaklaşılmalıdır. 

 Düzlemsel çerçeve yapıların statik, dinamik ve burkulma gibi temel mekanik 

analizleri çoğunlukla matris deplasman metodu ile gerçekleştirilmektedir ve çözümün 

teoriği yapı mekaniği bilimi ile ilgilenenlerce iyi bilinmektedir. Her ne kadar teorik 

altyapı bilinse de nano mekanik alanında boyut etkili sürekli ortam teorileri kullanılarak 

ayrık yapıların analizleri henüz oldukça kısıtlı bir mevzu olduğundan ve metodolojinin 

mantığını yerel olmayan parametreden kaynaklı terimlere de uygulayarak teorik altyapıyı 

tam anlamıyla açıklayabilmek maksadıyla, serbest titreşim analizi için sonlu eleman 

tabanlı matris deplasman metodu burada detaylı olarak aktarılacaktır. Matris deplasman 
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analizinde ayrık yapının her bir üyesi tek başına sonlu eleman olabileceği gibi sonlu 

elemanlara bölünebilmektedir. Literatürde çoğunlukla her bir üyenin kendi başına bir 

sonlu eleman olarak hesaba katıldığı bilinmektedir. Zira diğer türlü yani her üyenin sonlu 

elemanlara bölünmesi belki hesap hassasiyetini artıracaktır ancak işlem süresini oldukça 

uzatacaktır. Bu açıklananlar bağlamında, analize konu düzlem nanoçerçevenin bir üyesi 

Şekil 3.7’de tasvir edilmektedir. Çerçeve üyesinin uzunluğu le olmak üzere, konu gereği 

üyelerin fonksiyonel derecelenmiş malzemeden imal edildiği varsayılarak, malzemenin 

alt ve üst yüzey özellikleri de şekilde gözlemlenmektedir. 

 

 

 

Şekil 3.7. Fonksiyonel derecelendirilmiş düzlem eğilme üyesinin serbestlikleri 

 Nanoçerçeve üyesinin yer aldığı ve yatayına göre α olarak sembolize edilen 

yönelim açısı kadar yönlendiği xy düzlemi genel eksen takımı ve üye eksenini yatay 

olarak baz alan x'y' düzlemi yerel eksen takımını ifade etmektedir. Buna göre, üyenin uç 

düğümlerinin serbestlikleri için, yerel takıma göre d11 ve d21 eksenel deplasman, d12 ve 

d22 enine deplasman, d13 ve d23 dönme yönlerindeki serbestlikleri; genel takıma göre u11 

ve u21 eksenel deplasman, u12 ve u22 enine deplasman, u13 ve u23 dönme yönlerindeki 

serbestlikleri belirtir. Buna benzer olarak, serbestlik yönündeki iç tesirlerden yerel eksen 

takımı için p
11

 ve p
21

 eksenel kuvveti, p
12

 ve p
22

 kesme kuvvetini, p
13

 ve p
23

 eğilme 

momentlerini; genel takıma göre f
11

 ve f
21

 eksenel kuvveti, f
12

 ve f
22

 kesme kuvvetini, f
13

 

ve f
23

 eğilme momentlerini gösterir.  

Sürekli yapı mekaniğinde eksenel ve eğilme titreşimlerinin ayrı ayrı 

incelenebilmesi, çerçevelerin matris deplasman analizi için de bir temel oluşturmaktadır. 

Buna göre, Şekil 3.7 üzerinde verilen hareket ve dönme bileşenleri üzerinden ilk olarak 

eksenel titreşime esas bir formülasyon elde edilmelidir. Eksenel titreşim her ne kadar 

çubuk ekseninde görülse de sadece eksenel etkiler altında çalıştığı bilinen kafes yapıların 

ayrık üyelerden oluşması yani her bir üyenin cisim ekseninin farklı olması ayrık yapı 

hareketinin sadece bir yönde değil, o yöne dik doğrultuda da gerçekleşmesi gerektiğini 

ortaya koyar. Bilindiği üzere kafes yapıları uç birleşimlerinde dönme hareketi 

yapmadığından eğilme momenti iç tesiri almazlar. Bu nedenle, şimdilik üyenin dönme 

hareketleri düşünülmeksizin, genel ve yerel eksen takımlarında deplasman ve bunların 

yönündeki iç tesirlerinin kendi arasındaki bağıntılar, sırasıyla şu denklemlerle izah 

edilmektedir: 
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11 11 12cos sind u u   , 

12 11 12sin cosd u u     

21 21 22cos sind u u   , 
22 21 22sin cosd u u    . 

 

(3.282) 

   

 
11 11 12cos sinf p p   , 

12 11 12sin cosf p p    , 

21 21 22cos sinf p p   , 
22 21 22sin cosf p p    . 

 

(3.283) 

 

bu ifadeler 

 Td u  (3.284) 

   

 Tf p  (3.285) 

 

şeklinde temsil edilmek suretiyle 
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 (3.287) 

 

olarak yazılan bağıntılarda d ve u sırasıyla yerel ve genel eksen takımlarının deplasman 

vektörlerini ve buna benzer biçimde f ve p sırasıyla yerel ve genel eksen takımlarının 

kuvvet vektörlerini belirtirken bunların arasındaki ilişkiyi kuran T transformasyon matrisi 

olarak bilinir: 
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0 0 cos sin
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 (3.288) 

 

burada transformasyon işlemi genel bileşenleri yerele dönüştürmektedir. Ancak, bu 

dönüşüm mantığı sonlu eleman hesabının esasına terstir çünkü hesap sürecinin sonunda 

küresel matrislerin bütün sistem genelinde yazılması gerekmektedir. Bununla ilgili 

mantık, tam da geometrik bağıntılara ek olarak mekaniksel bağıntının da formüle edilmesi 

gereken şu aşamada aktarılacaktır. Geometrik bağıntılara ek olarak mekaniksel bağıntının 

da formüle edilmesi gerekmektedir. Bu söylenen,  

 kf d  (3.289) 
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olarak belirtilen Hooke denklemi üzerinden temellendirilir. Burada mantıken k üyenin 

yerel takımdaki rijitliği olmalıdır. Bilindiği üzere eksenel bir çubuğun enine rijitliği olmaz 

çünkü bir üye kendi başına enine rijit cisim hareketi yapamaz. O halde, fonksiyonel 

derecelendirilmiş basit eksenel çubuk düşünülerek Denklem (3.275)’in Denklem 

(3.289)’a uyarlanmasıyla yerel takımdaki kuvvet bileşenleri ve deplasman serbestlikleri 

düşünülerek 
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 (3.290) 

 

denklemine, buradan da  
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neticesine varılmaktadır. Tamamen eksenel etkiler altındaki ayrık nanoyapıda titreşimin 

diğer iki bileşeni klasik ve yerel olmayan kütle matrisleridir. Bunların dayanağına göre, 

Newton’un ikinci hareket kanunu olan 

 mf d  (3.292) 

 

gereğince hareket iki yönde gözlemleneceğinden, Denklemler (3.278) ve (3.279) 

doğrultusunda, kütle matrisleri 
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olarak tespit edilir. Şimdi transformasyon matrisinin rijitlik ve kütle dönüşümleri için 

mantığı belirlenebilir. Buna göre ilk olarak Denklemler (3.284) ve (3.285)’in Denklem 

(3.289)’da kullanımı ile 

 T kTp u  (3.295) 
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denklemi oluşturulabilir. Burada transformasyon matrisinin ortogonalite (TT = T−1) 

özelliğinden faydalanılabilir. Buna göre, transformasyon matrisinin tersi denklemin iki 

tarafıyla soldan çarpıldıktan sonra ve çarpmanın etkisiz elemanı olarak da bilinen birim 

matris I tanımının kullanılması suretiyle, Hooke Denkleminin bu defa genel eksen 

takımında göz önüne alınması yani 

 Kp u  (3.296) 

 

denkleminin sonucunda 

 TT kT K  (3.297) 

 

bağıntısına ulaşılmış olur. Burada K genel eksen takımı için rijitlik matrisidir. Böylece 

transformasyon işlemi, yerel takımındaki bir üyenin rijitliğini genel eksende ifade etmiş 

olur. Benzer şekilde sırasıyla klasik ve yerel olmayan kütle bileşenleri için  

 
T

c cT m T M  (3.298) 

   

 
T

nl nlT m T M  (3.299) 

 

eşitlikleri de kurulabilir. Denklemler (3.275), (3.278), (3.279) ve (3.288)’in Denklemler 

(3.297), (3.298) ve (3.299)’da kullanımları, fonksiyonel derecelendirilmiş üye için genel 

eksen takımında sırasıyla rijitlik, klasik kütle ve yerel olmayan kütle matrislerini ortaya 

çıkartır: 
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burada kütle matrislerinin üye yöneliminden etkilenmediği anlaşılmaktadır.  

 Buraya kadar ayrık yapıların sadece eksenel yönlerindeki titreşimleri formüle 

edilmiştir. Yani bu formülasyon eğilme ve dönme hareketlerinden izole bir titreşim 
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analizini açıklamaktadır. Eksenel titreşime dair bu matris türetimleri yerel olmayan 

nanoçerçeveyi ilgilendirmemekte olup, esasen nanoçerçeve hesabının temel dayanağı 

hakkında bir altyapı oluşturulması amaçlanmaktadır. Çerçeve yapılarında üyeler bütün 

serbestlikler yönünden hareket ve iç tesir bileşenlerine sahip olduğundan eğilme ve 

dönme hareketleri de düşünülmelidir. Bu bağlamda, eğilme ve dönme hareketleri de göz 

önüne alındıktan sonra formülasyon buraya kadar elde edilen eksenel titreşimle 

birleştirilerek yerel olmayan serbest titreşimin genel matris deplasman formülasyonuna 

ulaşılır. Bu suretle formülasyon türetim sürecinin başında, Şekil 3.7 göz önüne alınarak 

Denklemler (3.282) ve (3.283)’te değinilmeyen nanoyapı üyesinin dönme serbestlik ve iç 

tesir bileşenlerinin yerel ve genel takımlar arasındaki ilişkileri bulunmaktadır: 

 13 13d u , 23 23d u . (3.303) 

   

 13 13f p , 
23 23f p . (3.304) 

 

O halde, bu defa yerel takımdaki hareket ve iç tesir bileşenleri, yukarıdaki ilişkiler 

transformasyon işlemine dahil edilerek  
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 (3.305) 
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 (3.306) 

 

şeklinde ilişkilendirilir. Böylece transformasyon matrisi nanoçerçeve üyesi için 
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 (3.307) 

 

ile ifade edilmektedir.  
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 Bilimsel literatürde düzlem çerçevelerin matris deplasman formülasyonunda 

genellikle kayma deformasyonunun ihmal edildiği yani Euler-Bernoulli kiriş teorisi 

tabanlı hesaplama yapıldığı çok iyi bilinmektedir. Buradan, yerel olmayan elastisite 

düşünüldüğünde bir nanoçerçeve için rijitlik, klasik kütle ve yerel olmayan kütle 

matrislerinin serbest titreşim analizi için yeterli olabileceği sonucuna varılmaktadır. 

Ancak bu tez çalışmasında fonksiyonel derecelendirilmiş nanoyapıların kinematiği 

kayma deformasyonu ile incelenmekte olduğundan buna dair formülasyon sunulacaktır. 

İlk olarak, Timoshenko kiriş teorisi nedeniyle Denklem (3.46) doğrultusunda, bu defa saf 

deplasman ihmal edilmeksizin ancak Poisson etkileri ihmal edilerek eğilme üyesinin 

deplasman bileşenleri  

 b
x

w
u u z u z

x



   


, 0yu v  , 

z b su w w w   . (3.308) 

 

şeklinde ifade edilebilir. Poisson etkileri düşünüldüğünde uy ve uz bileşenleri sırasıyla 

−νy ∂u ∂x⁄  ve −νz ∂u ∂x⁄  ilave edilerek yapılandırılmalıydı ancak hatırlanacak olursa 

eksenel yönde Poisson etkisinin ihmal edileceği daha önceden belirtilmişti. Yine 

hatırlanacak olursa, nanoçubukların eksenel titreşimi için Love-Bishop çubuk teorisi 

düşünülerek geliştirilen yerel olmayan sonlu elemanlar formülasyonunda yanal 

deplasmanların getirdiği yüksek mertebeden terimler nedeniyle iki düğümlü elemanın iş 

göremediği, bunun yerine üç düğümlü bir elemanın kullanılması gerektiği ifade edilmiş, 

formülasyon türetim süreci bunun üzerinden yapılandırılmıştı. Tezde üç düğümlü bir 

eğilme sonlu elemanı oldukça kapsamlı işlem süreçlerini barındırdığından Timoshenko 

teorisi için formüle edilmemiştir ve nanokirişlerin sonlu eleman analizi iki düğümlü 

elemanla açıklanmıştır. Buna ek olarak, eksenel titreşimde basit yani Poisson etkisini 

ihmal eden çubuk teorisinin de iki düğümlü elemanla yürütülebildiği anlaşıldığından 

sonuç itibariyle nanoçerçevelerin eğilme üyesi için genel manada Poisson etkisi ihmal 

edilerek matris deplasman formülasyonu geliştirilecektir. Artık buradan itibaren çerçeve 

üyesinin mekanik analize esas yani malzeme özelliklerini ilgilendiren matrisleri elde 

edilebilir. Timoshenko kiriş teorisi için, yerel olmayan sonlu elemanlar formülasyonunda 

termo-elastik ortamın ihmal edilmesinden geriye kalan matrislere göre işlem yapılmalıdır. 

Nanoyapı üyesinin yerel takımı için rijitlik, basit kütle ve yüksek mertebeden kütle 

matrisleri sırasıyla şöyle açıklanabilir: 

 bk k  (3.309) 

   

 
0

, , , , , , , ,A c A nl I c I nl A R c A R nlm m m m m m m       (3.310) 

   

 
1

, , , , , ,I R c I R nl I R HO nlm m m m     (3.311) 

 

İlgili matrisler incelendiğinde bu matrislerin, Şekil 3.7, Denklemler (3.275), (3.278) ve 

(3.279) göz önüne alınarak eksenel titreşimi ilgilendiren bileşenlerle ilave edilmesi 

sonucunda 
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 (3.312) 
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 (3.313) 
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 (3.314) 

 

ile temsil edileceği açıklanmaktadır (Numanoğlu ve Civalek 2024). Burada matris 

girdilerinde a ve b üst indisleri, sırasıyla basit eksenel ve kayma deformasyonlu eğilme 

titreşimleri temel alınarak girdi belirleneceğini belirtmektedir. Yerel takımın rijitlik 

matrisinin bileşenleri Denklemler (3.210) ve (3.275) kaynak alınarak oluşturulmaktadır. 

Yerel takımın basit kütle matrisinde eğilme bileşenleri Denklemler (3.223)-(3.228) ile 

hesaplanan matrislerin toplamından ve buna ek olarak eksenel bileşenler Denklemler 

(3.278) ve (3.279)’un toplamından gelmektedir. Son olarak, kayma deformasyonu 

nedeniyle ortaya çıkan ve Denklemler (3.238)-(3.240)’ın toplamıyla hesaplanan 

bileşenler yerel takımın yüksek mertebeden kütle matrisinin sadece eğilme bileşenlerini 

tayin eder, basit çubuk teorisi bu hususta bir bileşene sahip değildir çünkü eğilme 

serbestliğine atıf yapan bileşenler Denklem (3.243) uyarınca doğal frekansın dördüncü 

kuvveti ile dolaylı olarak özdeğer problemine girdiklerinden ve basit çubuk teorisinde 

frekansın ikiden yüksek mertebeli terimi bulunmadığından yüksek mertebeden kütle 

matrisinde eksenel serbestlik girdisi yer almaz. O halde, Denklemler (3.297)-(3.299)’a 

benzer biçimde nanoçerçeve üyesinin yerel takım matrisleri genel takıma 

 TK T kT  (3.315) 

   

 0 T 0M T m T  (3.316) 

   

 1 T 1M T m T  (3.317) 



MATERYAL VE METOT            H.M. NUMANOĞLU 

99 

 

ile dönüştürülür. Böylece, Denklemler (3.307) ve (3.312)-(3.314), Denklemler (3.315)-

(3.317)’de kullanılarak genel takımın mekanik analize esas matrislerine ulaşılabilir. İlk 

olarak rijitlik girdileri yazılmaktadır (Numanoğlu ve Civalek 2019b, 2024): 
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(3.318) 

 

Ardından basit kütle matrisinin girdileri şöyle elde edilebilir: 
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(3.319) 

Ayrıca, yüksek mertebeden kütle matrisinin girdilerine de şu şekilde ulaşılmış 

olur: 



MATERYAL VE METOT            H.M. NUMANOĞLU 

101 

 

   
2 4

0 0 2 0 0 21 1 20 2
11 44 3

12 1213
sin

35 5

e

e

e a I I e a I II I l
M M

kS kSL kSl


 
    

 
 

, 

   
2 4

0 0 2 0 0 21 1 0 2
12 45 3

12 1213
cos sin

35 5

e

e

e a I I e a I II I l
M M

kS kSL kSl
 

 
     

 
 

, 

   
2 42

0 0 2 0 0 21 0 2
13 2

611
sin

210 5

e

e

e a I I e a I II I l
M

kS kS kSl


 
    
 
 

, 

   
2 4

0 0 2 0 0 21 20 2
14 3

12 129
sin

70 5

e

e e

e a I I e a I II I l
M

kS kSl kSl


 
   
 
 

, 

   
2 4

0 0 2 0 0 21 1 0 2
15 24 3

12 129
cos sin

70 5

e

e e

e a I I e a I II I l
M M

kS kSl kSl
 

 
     

 
 

, 

   
2 42

0 0 2 0 0 21 0 2
16 2

613
sin

420 5

e

e

e a I I e a I II I l
M

kS kS kSl


 
   
 
 

, 

   
2 4

0 0 2 0 0 21 1 20 2
22 55 3

12 1213
cos

35 5

e

e e

e a I I e a I II I l
M M

kS kSl kSl


 
    

 
 

, 

   
2 42

0 0 2 0 0 21 0 2
23 2

611
cos

210 5

e

e

e a I I e a I II I l
M

kS kS kSl


 
   
 
 

, 

   
2 4

0 0 2 0 0 21 20 2
25 3

12 129
cos

70 5

e

e e

e a I I e a I II I l
M

kS kSl kSl


 
   
 
 

, 

   
2 42

0 0 2 0 0 21 0 2
26 2

613
cos

420 5

e

e

e a I I e a I II I l
M

kS kS kSl


 
    
 
 

, 

   
2 43

0 0 2 0 0 21 1 0 2
33 66

4 4

105 5

e a I I L e a I II I L
M M

kS kS kSL
    , 

   
2 42

0 0 2 0 0 21 0 2
34 2

613
sin

420 5

e

e

e a I I e a I II I l
M

kS kS kSl


 
    
 
 

, 

   
2 42

0 0 2 0 0 21 0 2
35 2

613
cos

420 5

e

e

e a I I e a I II I l
M

kS kS kSl


 
   
 
 

, 

   
2 43

0 0 2 0 0 21 0 2
36

2

140 15

ee

e

e a I I l e a I II I l
M

kS kS kSl
    , 

   
2 42

0 0 2 0 0 21 0 2
46 2

611
sin

210 5

e

e

e a I I e a I II I l
M

kS kS kSl


 
   
 
 

, 

 
   

2 42
0 0 2 0 0 21 0 2

56 2

611
cos

210 5

e

e

e a I I e a I II I l
M

kS kS kSl


 
    
 
 

. (3.320) 



MATERYAL VE METOT            H.M. NUMANOĞLU 

102 

 

 Her bir üye için genel takıma göre rijitlik, basit kütle ve yüksek mertebeden kütle 

matrisleri hesaplandıktan sonra nanoçerçevenin genel takımdaki serbestlikleri 

doğrultusunda hesaplanan küresel matrisleri mesnetlenme koşulları altında indirgenmeli 

ve aşağıdaki özdeğer denklemi çözülmelidir: 

  
* * *

2 0 4 1

1 1 1

det 0
n n n

i ie e e
e e e

K M M 
  

      
              

       
    (3.321) 

 

burada çözüm sonucunda doğal frekanslar elde edilmiş olur. Çerçeve yapılar için 

geometrik sınır şartlar eksenel çubuk ve kirişte ifade edilenlerin birleşimi olarak ilgili 

eksenel, enine ve dönme serbestlikleridir.  

Bunların haricinde, her nasıl ki nanoçubuk ve nanokiriş gibi sürekli sistemlerde 

ne kadar çok sonlu eleman kullanılırsa o kadar çok sayıda modun doğal frekansına 

ulaşılıyorsa, aynı şekilde nanoçerçeve üyeleri de birer sonlu elemanla değil birden fazla 

sonlu elemanlara bölünerek matris deplasman analizi yapılırsa, nanoçerçevenin çok 

yüksek modlarının da yerel olmayan doğal frekanslarının hesaplanabilecek olduğu not 

edilmelidir. 

Son olarak, sayısal uygulamaların ilgili kesitinde göz önüne alınan nanoçerçeve 

yapıları ve bunların üye başına tek sonlu elemanlı modelleri Şekil 3.8’de sunulmaktadır. 

Sayısal uygulamalarda üyeler fazla sayıda sonlu elemana bölünecekse, her elemanın eşit 

sayıda bölüneceği kabul edilecektir. Öte yandan, fonksiyonel derecelendirilme 

konfigürasyonu, malzeme alt yüzeyinin yapının içine ve üst yüzeyinin yapının dışına 

bakacak şekilde ve her bir üyenin dikdörtgen kesit yüksekliği (h), genel takım düzlemi 

içinde kalacak şekilde varsayılacaktır. Bunlardan Şekil 3.8(a)’da resmedilen Π-tip 

nanoçerçeve uzunlukları eşit iki düşey ve bir yatay üyeden oluşan portal çerçeveyi, Şekil 

3.8(b)’de resmedilen Ʌ-tip nanoçerçeve uzunlukları ve eğim açıları eşit iki üyeli bent-

kiriş yapısını ve Şekil 3.8(c)’de resmedilen Г-tip nanoçerçeve eşit uzunluklu biri eğimli 

ve diğeri yatay elemanlı nanoçerçeveyi tanıtmaktadır. Π-Tip nanoçerçevenin düşey 

üyelerinin, Ʌ-tip nanoçerçevenin iki üyesinin ve Г-tip nanoçerçevenin sadece eğimli 

üyesinin ayaklarının ankastre mesnetli olacağı ve sadece Г-tip nanoçerçevenin yatay 

üyesinin birleşimsiz ucunun (sağ ucunun) şu yedi farklı mesnetlenmeye sahip olacağı 

varsayılacaktır: Г1: Boş (Mesnetsiz), Г2: Sabit, Г3: Ankastre, Г4: Düşeyde kayıcı, Г5: 

Yatayda kayıcı, Г6: Düşeyde kılavuz, Г7: Yatayda kılavuz. Kayıcının kılavuzdan farkına 

göre, kayıcılar dönme hareketi yaparken yani yarı sabit mesnet gibiyken kılavuzlar dönme 

hareketi yapmazlar yani yarı ankastre mesnet gibidirler. 
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(a) 

 

 
(b) 

 

 
(c) 

Şekil 3.8. Sayısal uygulamalar için kayma deformasyonlu fonksiyonel derecelendirilmiş 

nanoçerçeve yapıları ve sonlu eleman modelleri; a) Π-Tip; b) Ʌ-Tip; c) Г-Tip 
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4. BULGULAR VE TARTIŞMA 

 Kayma deformasyonuna sahip fonksiyonel derecelendirilmiş nanoyapıların kiriş, 

eksenel çubuk ve çerçeve modellerinin serbest titreşim analizleri için yerel olmayan 

elastisite teorisi çerçevesinde geliştirilen analitik çözüm ve sonlu eleman formülasyonu 

kullanılarak elde edilen söz konusu analiz sonuçları ve bunların analizlere etki eden 

parametrelere göre tartışmaları bu bölümde sunulmuştur. Sonuçların elde edilmesi için 

analitik yöntem ve yerel olmayan sonlu elemanlar formülasyonu MATLAB'da 

programlanmıştır. Programların koşturulması neticesinde ilgili nanoyapının boyutsuz 

frekans parametreleri hesaplanmıştır. 

4.1. Analizlerde Kullanılan Parametreler 

 Sayısal hesaplamalarda göz önüne alınan temel denklemler (boyutsuzlaştırma 

parametreleri) aşağıda verilmektedir: 

 

    2 U
b b ii

U

A
L

E I


  ,     U

r r ii
U

L
E


  ,  

    2 U
f f fii

U

A
L

E I


  . 

 

 

(4.1) 

burada titreşim mod numarası i olmak üzere; ωb, ωr ve ωf ifadeleri sırasıyla kiriş, eksenel 

çubuk ve çerçeve yapısının için serbest titreşim doğal frekanslarını ve ω̅b, ω̅r ve ω̅f 

bunların boyutsuz formlarını ifade eder. L nanokiriş ve eksenel nanoçubuk uzunluğu ve 

Lf nanoçerçeve uzunluk parametresidir. Ayrıca, fonksiyonel derecelendirilmiş atomik 

yapının diğer malzeme özellikleri aşağıdaki gibi ifade edilmektedir: 

 0e a

L
  ,    

1
, ,

2 2
A U A UG G E E





. (4.2) 

burada η boyutsuz atomik parametreyi tanımlar. Sayısal hesaplamalarda, aksi 

belirtilmediği sürece, göz önüne alınan malzeme, alt yüzeyi alüminyum (Al) ve üst yüzeyi 

alümina seramik (Al2O3) olarak seçilmiştir. Buna göre malzeme özellikleri şu şekildedir: 

Alt yüzey malzemesini “A” ve üst yüzey malzemesini “U” alt indisleri temsil etmek 

suretiyle, fonksiyonel derecelendirilmiş malzemenin elastisite modülleri EA = 70 GPa ve 

EU = 380 GPa, Poisson oranı sabit ve υ = 0.3, kayma modülleri GA = 

EA 2(1 + υ)⁄  = 26.9231 GPa ve GU = EU 2(1 + υ)⁄  = 146.1538 GPa, birim hacim 

ağırlıkları ρ
A
 = 2702 kg m3⁄  ve ρ

U
 = 3960 kg m3⁄  (Aria ve Friswell 2019), termal 

genleşme katsayıları αA = 2.31×10
−5 K−1 (Zenkour ve Abouelregal 2016) ve 

αU = 6.8269×10
−6 K−1 (Ebrahimi ve Salari 2015a) olarak verilmektedir. Böylece güç 

indeksi p = 0 alındığında nanoyapı tamamen alümina seramik ve p = ∞ alındığında 

nanoyapı tamamen alüminyum malzemesine dönüşmektedir. Ayrıca, sayısal sonuçlarda 

homojen nanoyapı durumu p = 0 olarak kabul edilmiştir.  

Ek olarak, nanoçubuk ve nanokiriş yapısının kapsamında yer aldığı elastik ortam 

aşağıdaki şekilde formüle edilmektedir: 
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burada eksenel nanoçubuklar için KM boyutsuz eksenel elastik ortam rijitliğini belirtirken 

nanokirişler için KW boyutsuz Winkler elastik zemin rijitliğini ve KP boyutsuz Pasternak 

elastik zemin rijitliğini tanımlar. I eğilme eksenine göre atalet momentini ve A eleman 

enkesit alanını ifade eder.  

Öte yandan, nanoçubuk ve nanokirişlerin titreşim analizlerinde yerel olmayan 

sonlu elemanlar formülasyonunun doğruluğuna dair tartışmalarda kullanılacak olan 

sapma (hata) yüzdeleri, 

 
NLFEM Analitik

Analitik

100%D


 




   (4.4) 

denklemi ile hesaplanmıştır.  

Aksi belirtilmediği sürece, kiriş geometrik boyutları, uzunluk: L = 20 nm, 

dikdörtgen kesit yüksekliği h = 1 nm ve kalınlığı b = 2 nm olarak alınmıştır. Dolayısıyla 

kesit alan A = bh = 2 nm2 ve atalet momenti  I = bh
3

12⁄  = 0.1667 nm4 şeklinde 

hesaplanmaktadır. Ek olarak dikdörtgen kesit için kayma düzeltme katsayısı  k = 5 6⁄  

olarak kullanılmıştır. Yerel olmayan boyutsuz parametre η = 0 − 0.5 aralığındaki 

değerler olarak alınmış olup, sonuçların tartışılmasını mümkün olduğunca sağlıklı bir 

şekilde gerçekleştirebilmek adına boyutsuz yerel olmayan parametrenin büyüklüğü için 

tez kapsamında bir standart da tanımlanmıştır. Buna göre, η = 0 (veya e0a = 0 nm) 

durumunun klasik elastisite teorisini ifade ettiği de hatırlatılarak, 0 < η ≤ 0.1 aralığı “çok 

düşük”, 0.1 < η ≤ 0.2 aralığı “düşük”, 0.2 < η ≤ 0.3 aralığı “orta”, 0.3 < η ≤ 0.4 aralığı 

“yüksek” ve 0.4 < η ≤ 0.5 aralığı “çok yüksek” büyüklükte boyutsuz yerel olmayan 

parametre olarak adlandırılmıştır. Ayrıca, çizelge ve şekil başlıklarında nanoyapının 

mekanik kinematiği ve malzeme homojenitesi açısından aynı ifadeleri tekrarlamamak 

için nanoyapı kayma deformasyonlu homojen ise “KDH” ve kayma deformasyonlu 

fonksiyonel derecelendirilmiş ise “KDFD” kısaltmaları kullanılmıştır.  

Nanokirişlerin sınır şartları için, S: Basit mesnetli, C: Ankastre mesnetli, F: 

Serbest ve G: Kılavuz mesnetli (Dönmeyen düşeyde kayıcı) uç tiplerini sembolize 

ederken eksenel nanoçubuklar için, C: Tutulu ve F: Serbest uç tiplerini tanımlar.  

4.2. Sayısal Sonuçlar ve Tartışmalar 

İlk olarak, kayma deformasyonlu fonksiyonel derecelendirilmiş nanokirişlerin 

serbest titreşim analiz sonuçları Çizelgeler 4.1-4.21 ve Şekiller 4.1-4.13 vasıtasıyla 

sunulmakta ve bunların tartışmaları yapılmaktadır. 
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Çizelge 4.1. İki farklı sınır şartlı KDH nanokirişlerin farklı boyutsuz yerel olmayan 

parametre değerlerine göre boyutsuz frekanslarının karşılaştırılması 

Sınır 

Şart 
e0a (nm) Aria ve 

Friswell (2019) 

Trabelssi vd. (2019) Bu Tez 

DQM MMS 

S-S 0 9.8679 9.8679 9.8590 9.8679 

 0.5 9.6331 9.6331 9.6244 9.6331 

 1 9.4143 9.4143 9.4058 9.4143 

 1.5 9.2097 9.2097 9.2014 9.2097 

 2 9.0180 9.0180 9.0098 9.0180 

 2.5 8.8377 8.8377 8.8297 8.8377 

 3 8.6678 8.6678 8.6600 8.6678 
      

C-C 0 - 22.3578 22.3578 22.3686 

 0.5 - 21.6995 21.6995 21.7092 

 1 - 21.0946 21.0946 21.1034 

 1.5 - 20.5364 20.5364 20.5444 

 2 - 20.0193 20.0193 20.0266 

 2.5 - 19.5385 19.5385 19.5453 

 3 - 19.0901 19.0901 19.0963 

 

Öncelikle, analitik hesaplamaları doğrulamak adına kayma deformasyonlu 

homojen nanokirişlerin yerel olmayan serbest titreşim boyutsuz frekanslarının 

karşılaştırılması hakkında bir çalışma Çizelge 4.1’de sunulmaktadır. Buna göre, yerel 

olmayan parametrenin artışına karşılık iki ucu basit mesnetli (S-S) ve iki ucu ankastre 

mesnetli (C-C) nanokirişlerin temel mod boyutsuz frekans parametreleri tez kapsamında 

formüle edilen analitik yöntem ile hesaplanmış olup, Aria ve Friswell (2019) tarafından 

sonlu elemanlar yöntemi (FEM) ve Trabelssi vd. (2019) tarafından diferansiyel kuadratür 

yöntemi (DQM) ve çoklu ölçek yöntemi (MMS) kullanılarak elde edilen sonuçlarla 

karşılaştırılmaktadır. Nanokiriş uzunluğu L = 10 nm ve kesit yüksekliği h = 0.1 nm 

olarak alınmıştır. Sonuçlar çizelge bütününde genel olarak uyumlu olmakla beraber S-S 

nanokirişleri için elde edilen sonuçlar Aria ve Friswell (2019) ve Trabelssi vd. (2019)’un 

DQM sonuçları ile birebir aynı iken atomik parametre arttıkça Trabelssi vd. (2019)’un 

MMS sonuçlarından bir miktar uzaklaşmaktadır. Ek olarak, C-C nanokirişleri için tezde 

elde edilen sonuçların karşılaştırılması hakkında da aynı çıkarım yapılabilir. Ancak 

sonuçların farklılıkları oldukça düşüktür. Neticede ilgili mukayesede göz önüne alınan 

çalışma bir yaklaşık yönteme dayanmaktadır. Bu çizelge için yapılabilecek mekanik 

açıdan tartışmalar Çizelge 4.2’yi de kapsayacağından ilgili tartışmaların orada yapılması 

tercih edilmiştir. Netice olarak, analitik çözüm için formülasyonun ilk olarak homojen 

nanokirişler yönünden doğru kurulduğu ve hesapların güvenilir olduğu anlaşılmıştır.  
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Çizelge 4.2. Farklı sınır şartlı KDH nanokirişlerin farklı boyutsuz yerel olmayan 

parametre değerlerine göre ilk üç mod boyutsuz frekansları 

Sınır Şart Mod  η = 0 η = 0.05 η = 0.1 η = 0.15 η = 0.2 

S-S 1 9.8281 9.7091 9.3763 8.8904 8.3218 

 2 38.8299 37.0448 32.8786 28.2576 24.1785 

 3 85.6619 77.4891 62.33850 49.4685 40.1454 
       

C-F 1 3.5153 3.5190 3.5302 3.5494 3.5773 

 2 21.8674 21.5053 20.5025 19.0596 17.3973 

 3 60.3413 57.0775 49.7560 42.0919 35.7172 
       

C-S 1 15.3428 15.1249 14.5218 13.6571 12.6677 

 2 49.0773 46.6106 40.9747 34.9036 29.6806 

 3 100.3422 90.1415 71.7554 56.5819 45.7881 
       

C-C 1 22.2568 21.9139 20.9710 19.6331 18.1220 

 2 60.5026 57.19671 49.7762 41.9709 35.3954 

 3 116.1726 103.6136 81.5929 63.9312 51.5995 
       

S-G 1 2.4648 2.4572 2.4349 2.3991 2.3515 

 2 21.9987 21.4123 19.8998 17.9639 16.0090 

 3 60.1281 55.9674 47.2871 38.9106 32.2906 
       

C-G 1 5.5860 5.5645 5.5014 5.4008 5.2685 

 2 29.9119 29.0190 26.7533 23.9280 21.1530 

 3 72.6349 67.2226 56.2119 45.8996 37.9286 

 

Altı farklı sınır şartlı kayma deformasyonlu homojen nanokirişlerin ilk üç mod 

boyutsuz frekansları boyutsuz yerel olmayan parametrenin beş farklı değerine göre 

Çizelge 4.2’de listelenmektedir. Bu çizelgede olduğu gibi izleyen çizelgelerde de 

mekanik davranış çoğunlukla klasik elastisite ve çok düşük ve düşük boyutsuz yerel 

olmayan parametre durumları altında araştırılacaktır. Bu tezde mevzubahis her ne kadar 

fonksiyonel derecelendirilmiş nanokirişler de olsa, nanoyapının mekanik davranışını 

temelden anlayabilmek adına bu çizelgenin verilmesinde fayda görülmüştür. Sınır şartlar 

ele alınmadan önce, atomik parametrenin boyutsuz frekansları düşüren bir etmen olduğu, 

boyutsuz yerel olmayan parametre arttıkça bu düşüşün daha da fazla olduğu, bu 

parametrenin etkisinin yüksek modlarda yine daha fazla hesaplandığı bir ucu ankastre 

mesnetli diğer ucu serbest nanokirişlerin (C-F) temel modu hariç yani çizelgenin büyük 

bir çoğunluğunda gözlemlenir. C-F nanokirişi için bu durum bilimsel literatürde yaygın 

bilinen bir paradoksu işaret eder. Paradoksu aşmak için çeşitli yaklaşımlar literatürde 

yerini almıştır ve bu durum Numanoğlu (2019) tarafından yazılan ve farklı eğilme 

kuramlarına dayanan homojen nanokirişlerin dinamiği hakkında sonuçları inceleyen 

yüksek lisans tez çalışmasında da açıklanmıştır. Dahası, bahsi edilen tez çalışmasında 

geliştirilen sonlu eleman çözümü sonuçlarının paradoksu çözen bir yöntemin sonuçlarıyla 

büyük uyuma sahip olduğu gözlemlenmiştir. Tabi bu durumun incelenmesi şu anki 

tartışmanın konusu olmayıp yeri geldiğinde kısaca ele alınacaktır. Sonuç olarak boyutsuz 

atomik parametrenin frekansları düşüren bir etmen olması, yerel olmayan elastisitenin 

nanoyapının mekanik zorlara karşı tepki gücünü azaltan bir mevcudiyet olduğunu gösterir 

ve böylece nanomekanik biliminde boyut etkisinin mutlaka düşünülmesi gerektiği 

anlaşılır. 
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Ayrıca sınır şartlar hakkında bir inceleme yapılacak olursa, ankastre mesnet en 

rijit uç bağlantı türü olduğundan C-C nanokirişlerinin boyutsuz frekansları en yüksek 

olarak hesaplanmaktadır. Dolayısı ile bir ucu ankastre diğer ucu basit mesnetli nanokirişin 

(C-S) boyutsuz frekans parametreleri bir ara durum olarak göze çarpmaktadır. Ayrıca, 

basit mesnet kılavuz mesnetten daha rijit olduğundan iki ucu basit mesnetli nanokirişin 

frekansları kılavuz mesnetli kirişlerden daha yüksek olarak hesaplanmaktadır. Buna 

benzer nedenle bir ucu ankastre diğer ucu kılavuz mesnetli nanokirişin (C-G) boyutsuz 

frekansları bir ucu basit diğer ucu kılavuz mesnetli nanokirişlerden (S-G) daha fazla 

olarak hesaplanmaktadır. Son olarak, bu çizelgeden ulaşılabilecek başka bir önemli 

sonucun atomik parametrenin daha rijit sistemlerde daha etkin olduğudur. 

Çizelge 4.3. İki ucu basit mesnetli KDFD nanokirişlerin farklı yerel olmayan parametre 

ve güç indeksi değerlerine göre farklı kesit eksenleri göz önüne alınarak hesaplanan 

boyutsuz frekanslarının karşılaştırılması 

(e0a)
2
 Eksen Mod p = 0.1  p = 1  p = 10 

(nm2)   Eltaher vd. 

(2014b) 

Bu Tez  Eltaher vd. 

(2014b) 

Bu Tez  Eltaher vd. 

(2014b) 

Bu Tez 

0 GE 1 11.7680 11.7680  15.9014 15.9014  17.6845 17.6845 

  2 44.8369 44.8369  60.8179 60.8179  67.8750 67.8751 

  3 94.1060 94.1060  128.2739 128.2739  143.8072 143.8072 

 TE 1 11.4468 11.4468  14.5787 14.5787  17.5542 17.5542 

  2 43.6782 43.6782  56.0022 56.0022  67.4009 67.4009 

  3 91.8552 91.8553  118.8006 118.8006  142.8763 142.8764 
           

4 GE 1 9.9643 9.9643  13.4643 13.4643  14.9741 14.9741 

  2 27.9189 27.9189  37.8699 37.8699  42.2642 42.2642 

  3 44.1028 44.1028  60.1155 60.1155  67.3952 67.3952 

 TE 1 9.6924 9.6924  12.3443 12.3443  14.8637 14.8637 

  2 27.1974 27.1974  34.8713 34.8713  41.9690 41.9690 

  3 43.0479 43.0480  55.6759 55.6759  66.9590 66.9590 

  

Çizelge 4.4. İki ucu ankastre mesnetli KDFD nanokirişlerin farklı yerel olmayan 

parametre ve güç indeksi değerlerine göre farklı kesit eksenleri göz önüne alınarak 

hesaplanan boyutsuz frekanslarının karşılaştırılması 

(e0a)
2
 Eksen Mod p = 0.1  p = 1  p = 10 

(nm2)   Eltaher vd. 

(2014b) 

Bu Tez  Eltaher vd. 

(2014b) 

Bu Tez  Eltaher vd. 

(2014b) 

Bu Tez 

0 GE 1 25.3233 26.5733  34.3946 35.9182  38.4204 39.9570 

  2 64.6011 69.4364  88.2648 94.2442  99.1291 105.2386 

  3 116.2792 126.8513  159.7296 173.0111  180.2945 194.0581 

 TE 1 24.6965 25.8514  31.7561 32.9425  38.1596 39.6637 

  2 63.1663 67.6621  82.1099 86.8503  98.5206 104.5106 

  3 113.9596 123.8620  149.6266 160.3731  179.2979 192.8161 
           

4 GE 1 20.7676 21.3738  28.1890 28.9280  31.4736 32.2194 

  2 38.5758 39.6062  52.6183 53.8913  59.0173 60.3186 

  3 53.3385 54.4295  73.1033 74.4698  82.3624 83.7780 

 TE 1 20.2439 20.8035  25.9957 26.5704  31.2571 31.9872 

  2 37.6759 38.6313  48.8033 49.8066  58.6416 59.9169 

  3 52.1953 53.2113  68.1948 69.2869  81.8805 83.2697 
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 Kayma deformasyonlu fonksiyonel derecelendirilmiş nanokirişlerin farklı atomik 

parametre ve fonksiyonel derecelendirilme güç indeksi (izleyen tartışmalarda sadece güç 

indeksi olarak anılacaktır) değerlerine göre ilk üç mod boyutsuz frekanslarının Eltaher 

vd. (2014b) ile karşılaştırılması S-S nanokirişleri için Çizelge 4.3’te ve C-C nanokirişleri 

için Çizelge 4.4’te verilmektedir. Teorik altyapıda da aktarıldığı üzere fonksiyonel 

derecelendirilmiş bir nanokirişin malzeme tarafsız merkezi ile geometrik merkezi 

birbirinden farklıdır. Fonksiyonel derecelendirilmiş malzeme rijitliği ve kütle 

ataletlerinde integrasyon hesabı esnasında malzeme ekseninin varlığı küçük deplasman 

yaklaşımı nedeniyle (Eltaher vd. 2013b) ortaya çıkar. Buna göre, malzeme merkezi 

hesapta mutlaka dikkate alınmalıdır ve Çizelge 4.3’te geometrik eksen (GE) ve malzeme 

tarafsız ekseni (TE) göz önüne alınarak elde edilen boyutsuz frekansları ayrı ayrı 

gösterilir. Öncelikle, mukayese için dikkate alınan Eltaher vd. (2014b)’nin çalışmasında 

malzemenin elastisite modülleri EA = 70 GPa ve EU = 393 GPa, kayma modülleri 

GA = 26 GPa ve GU = 157 GPa ve birim hacim ağırlıkları ρ
A
 = 2700 kg m3⁄  ve 

ρ
U

 = 3960 kg m3⁄  olarak verilmiştir. Yazarlar tarafından nanokirişin geometrik 

ebatlarının sayısal değerleri belirtilmese bile, yazarların kendi mukayeselerindeki 

referans çalışmalar incelendiğinde, hesaplarda uzunluğun L = 10 nm ve yüksekliğin 

h = 1 nm olarak alındığı sonucuna varılmıştır. Sonuçlara göre, genel olarak güç indeksi 

arttıkça boyutsuz frekanslar artmaktadır. Fakat bu, izleyen çizelgelere göre aksi bir 

durumdur. Bunun sebebi, yazarların boyutsuz frekans hesabında Denklem (4.1)’de 

tanımlanan boyutsuz frekans parametresinde kullanılan üst yüzeyin aksine doğrudan 

belirtmeseler bile alt yüzeyin malzeme özelliklerini kullandıklarının anlaşılmasıdır. Bu 

nedenle mukayeseler bu çıkarıma göre yapılmıştır. Sayısal verilerin incelenmesine 

gelince, S-S nanokirişi için sonuçlar referans ile birebir uyumlu iken C-C nanokirişinde 

sonuçlar bir miktar farklıdır ancak farklılık temel modda oldukça düşükken yüksek 

modlarda farklılık artış göstermektedir. Farklılığın şiddeti yerel olmayan elastisite ile 

hesapta genel olarak oldukça düşüktür. Bu çıkarım tezdeki hesapların en azından 

güvenilirliğini göstermek için yeterlidir. Son olarak, malzeme tarafsız ekseninin göz 

önüne alınmasıyla hesaplanan frekanslar geometrik eksenin göz önüne alındığı duruma 

göre düşüktür ve bu çıkarım kayma deformasyonlu fonksiyonel derecelendirilmiş 

nanokirişlerin gerçek titreşim davranışını öğrenmek için tarafsız eksenin ihmal 

edilemeyeceğini açıkça ortaya koymaktadır. Bu konuda genel tartışmalar Çizelgeler 4.6-

4.8 ile verilecek olup, şu aşamada tartışmanın kalabalıklaştırılmaması tercih edilmiştir. 

Çizelge 4.5. Farklı sınır şartlı KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre temel mod boyutsuz frekansları 

p Sınır Şart η = 0 η = 0.05 η = 0.1 η = 0.15 η = 0.2 

2 S-S 6.9059 6.8222 6.5884 6.2470 5.8474 

 C-F 2.4690 2.4717 2.4796 2.4931 2.5127 

 C-S 10.7814 10.6283 10.2047 9.5973 8.9023 

 C-C 15.6401 15.3996 14.7380 13.7989 12.7380 

 S-G 1.7315 1.7262 1.7106 1.6854 1.6519 

 C-G 3.9243 3.9092 3.8649 3.7942 3.7014 
       

10 S-S 6.3745 6.2973 6.0815 5.7663 5.3975 

 C-F 2.2815 2.2839 2.2911 2.3036 2.3216 

 C-S 9.9503 9.8087 9.4172 8.8559 8.2137 

 C-C 14.4335 14.2103 13.5968 12.7267 11.7446 

 S-G 1.5995 1.5946 1.5801 1.5568 1.5259 

 C-G 3.6248 3.6108 3.5698 3.5045 3.4186 
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Kayma deformasyonlu fonksiyonel derecelendirilmiş nanokirişlerin farklı 

boyutsuz yerel olmayan parametre ve güç indeksi değerleri altında hesaplanan temel mod 

boyutsuz frekans parametreleri Çizelge 4.5’te sunulmaktadır. Buna göre p = 0 durumunu 

açıklayan Çizelge 4.2’deki temel mod boyutsuz frekans sonuçları dikkate alındığında, 

güç indeksinin artışı ile boyutsuz frekansların azalması ilk çıkarım olarak göze 

çarpmaktadır. Ayrıca, güç indeksi artışının frekansları düşürme oranı genel olarak bütün 

sınır şartla için birbirine yakındır ancak daha rijit nanokirişlerin frekansları sayısal olarak 

(fark olarak) daha fazla azalmaktadır. 

Çizelge 4.6. İki ucu basit mesnetli KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre geometrik eksen göz önüne alınarak 

hesaplanan ilk beş mod boyutsuz frekansları 

η Mod  p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

0 1 9.7908 9.4901 8.2458 7.9064 6.8272 

 2 38.6835 37.5030 32.5781 31.2012 26.8889 

 3 85.3425 82.7634 71.8700 68.7095 59.0349 

 4 147.8392 143.4262 124.4941 118.7548 101.6538 

 5 223.9662 217.3741 188.5889 179.4477 152.9736 
       

0.1 1 9.3407 9.0539 7.8667 7.5430 6.5133 

 2 32.7546 31.7550 27.5850 26.4191 22.7677 

 3 62.1061 60.2292 52.3017 50.0018 42.9613 

 4 92.0560 89.3082 77.5196 73.9459 63.2975 

 5 120.2764 116.7362 101.2778 96.3687 82.1513 
       

0.2 1 8.2902 8.0356 6.9820 6.6946 5.7808 

 2 24.0873 23.3523 20.2857 19.4283 16.7431 

 3 39.9958 38.7871 33.6818 32.2007 27.6667 

 4 54.6558 53.0244 46.0252 43.9034 37.5812 

 5 67.9322 65.9327 57.2018 54.4291 46.3991 

 

Çizelge 4.7. İki ucu basit mesnetli KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre tarafsız eksen göz önüne alınarak hesaplanan 

ilk beş mod boyutsuz frekansları 

η Mod  p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

0 1 9.7906 9.4690 7.5688 6.9059 6.3745 

 2 38.6826 37.4211 29.9405 27.3075 25.1364 

 3 85.3405 82.5873 66.1789 60.3228 55.2899 

 4 147.8358 143.1312 114.9170 104.6714 95.4279 

 5 223.9614 216.9447 174.5687 158.8772 143.9841 
       

0.1 1 9.3405 9.0337 7.2208 6.5884 6.0815 

 2 32.7538 31.6856 25.3516 23.1222 21.2838 

 3 62.1046 60.1010 48.1602 43.8986 40.2360 

 4 92.0540 89.1245 71.5562 65.1765 59.4208 

 5 120.2738 116.5056 93.7485 85.3217 77.3237 
       

0.2 1 8.2900 8.0178 6.4087 5.8474 5.3975 

 2 24.0868 23.3012 18.6433 17.0038 15.6518 

 3 39.9948 38.7045 31.0147 28.2703 25.9116 

 4 54.6546 52.9153 42.4846 38.6968 35.2795 

 5 67.9307 65.8025 52.9492 48.1898 43.6725 
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Çizelge 4.8. İki ucu basit mesnetli KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre tarafsız eksen göz önüne alınarak hesaplanan 

ilk beş mod boyutsuz frekanslarının geometrik eksen göz önüne alınarak hesaplanan 

boyutsuz frekanslardan sapma yüzdeleri 

η Mod  p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

0 1 0.0020 0.2223 8.2102 12.6543 6.6308 

 2 0.0023 0.2184 8.0962 12.4793 6.5176 

 3 0.0023 0.2128 7.9186 12.2060 6.3437 

 4 0.0023 0.2057 7.6928 11.8592 6.1246 

 5 0.0021 0.1975 7.4343 11.4632 5.8765 
       

0.1 1 0.0021 0.2231 8.2106 12.6554 6.6295 

 2 0.0024 0.2185 8.0964 12.4792 6.5176 

 3 0.0024 0.2129 7.9185 12.2060 6.3436 

 4 0.0022 0.2057 7.6928 11.8592 6.1246 

 5 0.0022 0.1975 7.4343 11.4633 5.8765 
       

0.2 1 0.0024 0.2215 8.2111 12.6550 6.6306 

 2 0.0021 0.2188 8.0963 12.4792 6.5179 

 3 0.0025 0.2130 7.9185 12.2059 6.3437 

 4 0.0022 0.2058 7.6927 11.8592 6.1246 

 5 0.0022 0.1975 7.4344 11.4632 5.8764 

 

İki ucu basit mesnetli ve KDFD nanokirişlerin ilk beş mod boyutsuz frekans 

parametreleri, farklı boyutsuz yerel olmayan parametre ve güç indeksi değerlerine göre 

geometrik eksen düşünülerek Çizelge 4.6’da ve tarafsız eksen düşünülerek Çizelge 4.7’de 

sunulmakta olup, bunların arasındaki sapma yüzdelerini gösteren sonuçlar da Çizelge 

4.8’de verilmektedir. Buna göre sapma yüzdeleri şu şekilde hesaplanmaktadır: 

 
GE TE

,E
GE

100%D


 




   (4.5) 

burada ωGE ve ωTE sırayla geometrik ve tarafsız eksenler göz önüne alınarak hesaplanan 

boyutsuz frekans parametreleridir. Tartışmalar sapma yüzdeleri göz önüne alınarak 

yapılmaktadır. Buna göre, sapma yüzdesinin güç indeksinin p = 0.01-2 aralığındaki 

değerleri için sürekli arttığı, bu aralıktan sonra p = 10 değeri için azaldığı anlaşılmıştır. 

Ayrıca yüksek modlarda sapma yüzdeleri daha düşüktür. Yerel olmayan parametrenin 

sapma yüzdeleri üzerinde bir etkisi olmadığı da varılan başka bir çıkarımdır. Sonuçlar 

genel olarak fonksiyonel derecelendirilmiş nanoyapılarda tarafsız eksenin göz önüne 

alınması gerektiğini bir kez daha ifade etmektedir.  
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Çizelge 4.9. Çift parametreli elastik zemine oturan iki ucu basit mesnetli KDFD 

nanokirişlerin farklı boyutsuz elastik zemin parametresi, boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre temel mod boyutsuz frekansları 

KW KP η p = 0 p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

0 0 0 9.8281 9.7906 9.4690 7.5688 6.9059 6.3745 

   0.1 9.3763 9.3405 9.0337 7.2208 6.5884 6.0815 

   0.2 8.3218 8.2900 8.0178 6.4087 5.8474 5.3975 

 1 0 10.3171 10.2828 9.9903 8.3063 7.7577 13.1380 

  0.1 9.8876 9.8552 9.5787 7.9905 7.4765 12.9739 

  0.2 8.8939 8.8659 8.6271 7.2649 6.8326 12.6138 

 10 0 13.9674 13.9521 13.8235 13.2047 13.1380 13.3821 

   0.1 13.6533 13.6401 13.5290 13.0084 12.9739 13.2450 

   0.2 12.9518 12.9434 12.8729 12.5757 12.6138 12.9452 
         

1 0 0 9.8788 9.8416 9.5232 7.6467 6.9969 6.4836 

   0.1 9.4294 9.3939 9.0904 7.3025 6.6837 6.1957 

   0.2 8.3815 8.3502 8.0816 6.5006 5.9547 5.5259 

 1 0 10.3653 10.3314 10.0416 8.3774 7.8389 7.4754 

  0.1 9.9379 9.9059 9.6322 8.0644 7.5607 7.2271 

  0.2 8.9499 8.9222 8.6865 7.3461 6.9246 6.6619 

 10 0 14.0031 13.9880 13.8606 13.2495 13.1861 13.4344 

   0.1 13.6898 13.6767 13.5670 13.0539 13.0226 13.2978 

   0.2 12.9902 12.9820 12.9127 12.6228 12.6639 12.9993 
         

100 0 0 14.0139 13.9988 13.8719 13.2631 13.2007 13.4502 

   0.1 13.7008 13.6878 13.5785 13.0677 13.0374 13.3139 

   0.2 13.0019 12.9937 12.9248 12.6371 12.6791 13.0157 

 1 0 14.3610 14.3474 14.2328 13.6974 13.6656 13.9554 

  0.1 14.0557 14.0441 13.9470 13.5082 13.5080 13.8240 

  0.2 13.3753 13.3685 13.3114 13.0921 13.1625 13.5371 

 10 0 17.1722 17.1690 17.1422 17.1169 17.2967 17.8705 

   0.1 16.9177 16.9164 16.9057 16.9659 17.1724 17.7681 

   0.2 16.3568 16.3598 16.3853 16.6365 16.9019 17.5457 

 

Çizelge 4.9’da iki ucu basit mesnetli KDFD nanokirişlerin yerel olmayan 

boyutsuz frekansları üzerinde çift parametreli elastik zemin etkisi listelenmektedir. 

Öncelikle elastik zemin parametrelerinin boyutsuz frekans değerlerini yükseltmekte 

olduğu rahatlıkla ifade edilebilir. Ayrıca, elastik zemin parametrelerinin frekansları 

yükselten etkisi yüksek güç indeksine sahip nanokirişlerde daha fazladır. Çizelgenin en 

üstünde yer alan ve elastik zemine oturmayan nanokirişleri ilgilendiren sonuçlardan genel 

olarak boyutsuz yerel olmayan parametrenin frekans indirgeme etkisinin elastik zemin 

parametreleri arttıkça azaldığı sonucuna varılır. Son olarak, Pasternak zeminin boyutsuz 

frekanslar üzerindeki etkisinin Winkler zeminine göre daha yüksek olduğu da çizelgedeki 

neticelerden anlaşılabilir.  
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Çizelge 4.10. İki ucu basit mesnetli KDFD nanokirişlerin farklı ortam sıcaklık değişimi, 

boyutsuz yerel olmayan parametre ve güç indeksi değerlerine göre temel mod boyutsuz 

frekanslarının karşılaştırılması (L = 10 nm, h = 0.5 nm) 

(e0a)
2
 p ∆T = 10 K  ∆T = 30 K 

(nm2)  Ebrahimi ve 

Salari (2015b) 

Bu Tez 

 

Ebrahimi ve 

Salari (2015b) 

Bu Tez 

0 0.2 7.7964 7.7812  7.6211 7.4997 

 1 5.7717 5.7264  5.6105 5.4622 

 5 4.6925 4.5906  4.5363 4.3427 
       

2 0.2 7.0932 7.0860  6.8996 6.7757 

 1 5.2445 5.2098  5.0654 4.9179 

 5 4.2593 4.1734  4.0852 3.8990 
       

4 0.2 6.5427 6.5423  6.6319 6.2048 

 1 4.8313 4.8054  4.6354 4.4873 

 5 3.9193 3.8465  3.7283 3.5469 

 

Sıcaklık değişimi etkisi altındaki iki ucu basit mesnetli KDFD nanokirişlerin 

farklı ortam sıcaklığı değerlerine göre temel mod boyutsuz frekansları Ebrahimi ve Salari 

(2015b) tarafından verilen sonuçlar ile Çizelge 4.10’da karşılaştırılmaktadır. Referansta 

KDFD nanokirişin alt ve üst yüzeyi sırasıyla paslanmaz çelik (SUS304) ve silisyum nitrit 

(Si3N4) olarak seçilmiştir ve bunların elastisite modülleri EA = 201.04 GPa ve 

EU = 348.43 GPa, Poisson oranları υA = 0.3262 ve υU = 0.24 (böylece kayma modülleri 

GA = EA 2(1 + υA)⁄  = 75.7955 GPa ve GU = EU 2(1 + υU)⁄  = 140.4960 GPa), birim 

hacim ağırlıkları ρ
A
 = 8166 kg m3⁄  ve ρ

U
 = 2370 kg m3⁄  ve termal genleşme katsayıları 

αA = 1.233×10
−5 K−1 ve αU = 5.8723×10

−6 K−1 olarak verilmektedir. Referans 

çalışmada kiriş kinematiği olarak her ne kadar Timoshenko kiriş teorisi gözetilse de 

sıcaklık değişimi bu tezden farklı olarak Touloukian (1967) tarafından formüle edilen 

ortam sıcaklığının lineer olmayan bir fonksiyonuna ve Kiani ve Eslami (2013) tarafından 

belirtilen ve p = 1 için klasik karışım kuralına uyan bir lineer sıcaklık dağılımına 

dayanmaktadır. Bu nedenle mukayese edilen sonuçlar arasında bir farklılık oluşacaktır. 

Sonuçlar genel olarak değerlendirildiğinde farklılığın düşük bir düzeyde olduğu 

belirtilebilir. Ancak atomik parametre ve sıcaklık değişiminin artışı ile farklılık 

yükselmektedir.  

Çizelge 4.11’de Winkler zeminine oturan iki ucu basit mesnetli KDFD nanokiriş 

yapısının yerel olmayan boyutsuz frekans parametreleri üzerinde zemin rijitliği, ortam 

sıcaklığı değişimi ve güç indeksinin etkisi verilmektedir. Elastik zeminin ihmal edildiği 

sonuçlara göre ortam sıcaklığının nanokirişin frekanslarını düşürdüğü, sıcaklık arttıkça 

frekanslardaki düşüş oranının daha fazla olduğu ve sıcaklık yükseldikçe yerel olmayan 

parametrenin frekansları daha fazla düşürdüğü tespit edilmiştir. Ayrıca, yüksek sıcaklık 

değişimi değerlerinde güç indeksi değişiminin frekansların azalması üzerindeki etkisi 

daha büyüktür. Dahası, ∆T = 100 K sıcaklık değişimi için p = 1 ve daha büyük güç 

indeksi değerlerine sahip nanokirişlerin düşük boyutsuz atomik parametre durumunda 

boyutsuz frekansları yoktur yani nanokiriş temel modda titreşim hareketi 

gösterememiştir. Bu sonuçların fonksiyonel derecelendirilmiş nanoyapıların dış çevreyle 

etkileşimi açısından dikkat çekici olduğu belirtilebilir. Öte yandan, boyutsuz elastik 

zemin parametresi arttıkça boyutsuz atomik parametre ve güç indeksine ek olarak 

sıcaklığın da frekansların azalması üzerindeki etkisi azalmıştır.  
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Çizelge 4.11. Winkler zeminine oturan ve sıcaklık etkisi altındaki iki ucu basit mesnetli 

KDFD nanokirişlerin farklı boyutsuz elastik zemin parametresi, ortam sıcaklık değişimi, 

boyutsuz yerel olmayan parametre ve güç indeksi değerlerine göre temel mod boyutsuz 

frekansları 

KW ∆T (K) η p = 0 p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

0 25 0 9.4085 9.3614 8.9673 6.8111 6.1134 5.6764 

   0.1 8.9355 8.8896 8.5063 6.4223 5.7523 5.3452 

   0.2 7.8218 7.7785 7.4185 5.4934 4.8862 4.5520 

 50 0 8.9693 8.9116 8.4357 5.9580 5.2015 4.8794 

  0.1 8.4719 8.4146 7.9440 5.5092 4.7720 4.4899 

  0.2 7.2876 7.2308 6.7663 4.3912 3.6820 3.5082 

 100 0 8.0191 7.9358 7.2567 3.7025 2.5339 2.6426 

   0.1 7.4585 7.3734 6.6787 2.9262 1.4617 1.8257 

   0.2 6.0800 5.9872 5.2232 0.0000 0.0000 0.0000 
         

1 25 0 9.4614 9.4147 9.0244 6.8977 6.2160 5.7987 

   0.1 8.9912 8.9457 8.5665 6.5140 5.8613 5.4749 

   0.2 7.8854 7.8426 7.4874 5.6003 5.0140 4.7035 

 50 0 9.0248 8.9676 8.4964 6.0567 5.3218 5.0211 

  0.1 8.5306 8.4739 8.0084 5.6158 4.9028 4.6434 

  0.2 7.3558 7.2997 6.8418 4.5243 3.8500 3.7028 

 100 0 8.0811 7.9986 7.3272 3.8594 2.7724 2.8959 

   0.1 7.5251 7.4409 6.7552 3.1223 1.8445 2.1762 

   0.2 6.1615 6.0702 5.3206 0.0000 0.0000 0.0000 
         

100 25 0 13.7229 13.7021 13.5344 12.8459 12.8039 13.1338 

   0.1 13.4030 13.3842 13.2335 12.6440 12.6355 12.9941 

   0.2 12.6877 12.6735 12.5619 12.1984 12.2655 12.6884 

 50 0 13.4256 13.3988 13.1882 12.4146 12.3945 12.8095 

  0.1 13.0985 13.0736 12.8792 12.2056 12.2204 12.6662 

  0.2 12.3656 12.3449 12.1881 11.7434 11.8374 12.3524 

 100 0 12.8103 12.7707 12.4670 11.5036 11.5320 12.1350 

   0.1 12.4670 12.4290 12.1397 11.2777 11.3447 11.9836 

   0.2 11.6946 11.6601 11.4039 10.7758 10.9311 11.6515 

 

Çizelge 4.12. İki ucu basit mesnetli KDFD nanokirişlerin yerel olmayan serbest titreşimi 

için farklı boyutsuz yerel olmayan parametre ve güç indeksi değerlerine göre ilk beş mod 

kritik sıcaklıkları (K) 

η Mod  p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

0 1 291.5488 242.3125 131.4576 115.5574 120.7524 

 2 1144.3703 951.5334 517.4914 454.8068 472.5420 

 3 2496.9508 2077.6548 1134.3730 996.6401 1026.1556 

 4 4258.6834 3546.8073 1946.4906 1709.4203 1739.3872 

 5 6323.8743 5272.4620 2911.1522 2555.2928 2564.3705 
       

0.1 1 265.3589 220.5456 119.6487 105.1769 109.9052 

 2 820.4640 682.2083 371.0190 326.0768 338.7922 

 3 1322.3523 1100.2987 600.7490 527.8075 543.4385 

 4 1651.2050 1375.1917 754.7063 662.7878 674.4068 

 5 1823.8081 1520.5803 839.5776 736.9476 739.5656 
       

0.2 1 209.0279 173.7276 94.2494 82.8497 86.5743 

 2 443.7028 368.9348 200.6452 176.3407 183.2171 

 3 548.4119 456.3208 249.1453 218.8947 225.3772 

 4 582.0619 484.7652 266.0395 233.6376 237.7334 

 5 581.7943 485.0648 267.8250 235.0861 235.9212 
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Çizelge 4.12’de iki ucu basit mesnetli KDFD nanokirişlerin yerel olmayan serbest 

titreşiminin ilk beş modu için kritik sıcaklık değerleri hesaplanmaktadır. Katı 

mekaniğinde temel olarak bilinmektedir ki ortam sıcaklığının artışı yapının mekanik 

dayanımını düşürdüğünden yapının titreşim frekansları azalır. Benzer şekilde yapının 

burkulma yükü değerleri de azalırken yapacağı deformasyonlar yükselir. Bu tez çalışması 

da dahil olmak üzere, nanokiriş yapılarında yerel olmayan parametrenin varlığı altında 

aynı sıcaklık değişimi için klasik elastisite teorisine kıyasla çok daha düşük bir doğal 

frekans elde edilir (Pradhan ve Mandal 2013; Ebrahimi ve Salari 2015a, 2015b; Ebrahimi 

ve Barati 2016; Demir ve Civalek 2017; Numanoğlu 2019, 2020; Numanoğlu vd. 2021; 

Numanoğlu vd. 2022). Klasik kiriş titreşiminde olduğu gibi yerel olmayan kiriş titreşim 

analizinde de sıcaklık değişiminin öyle bir değeri vardır ki, o değer altında doğal frekans 

sıfıra eşittir. İşte bu değer kritik sıcaklık değişimini ifade eder. Kritik değerden itibaren 

daha yüksek sıcaklık değişimleri için doğal frekanslar reel sayı olmaktan çıkar, reel kısmı 

sıfıra eşit ve imajiner kısmı sıfırdan farklı bir kompleks sayı olarak hesaplanır. Sıcaklık 

değişimi yükseldikçe imajiner kısım artar ancak tabii ki de reel sayı olmayan frekansların 

mekanik bir anlamı yoktur. Hatırlanacak olursa fonksiyonel derecelendirilmiş 

Timoshenko nanokirişlerinin i. modunun doğal frekansları şu şekilde hesaplanır: 

 
2

2 2 1 3

1

4

2
i

C C C C

C


  
  (4.6) 

burada C1, C2 ve C3 Denklemler (3.105) ve (3.106) ile belirlenmektedir. Buna göre doğal 

frekansın sıfıra eşit olması için 

 1 3 0C C   (4.7) 

eşitliği gerçekleşmelidir. Böylece  

 1 0C   ve/veya 3 0C  . (4.8) 

durumlarına ulaşılır. Burada C1 = 0 durumu hem doğal frekansı tanımsız hale 

getireceğinden hem de Denklem (3.106) nedeniyle sıfıra eşit olamayacak olan kütle 

ataletlerini içerdiğinden uygun değildir. O halde geriye kalan C3 = 0 durumu 

incelenmelidir. Buna göre Denklem (3.106)’da görülen ifadeler C3 = 0 denkleminde 

yerine yazıldıktan sonra buradan i. modun kritik sıcaklık değişimi aşağıdaki şekilde elde 

edilebilir: 
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burada iki ucu basit mesnetli KDFD nanokiriş için aşağıdaki tanımlar geçerlidir: 



BULGULAR VE TARTIŞMA            H.M. NUMANOĞLU 

117 

 

 

 
2

0

1

Pe a k B
H

kS
 ,     

2 2

2 0 0

1
1 P W PH k e a k B e a k

kS

 
    
 

, 

 
2

3 0
W

W P

k B
H e a k k

kS
   , 4 WH k , 

 
2

0

5

Te a D B
H

kS
 , 

 
2

6 0 T

B
H e a D

kS

 
  
 

, 
7 TH D , i

i

L


  . 

 

 

 

 

 

 

(4.10) 
 

  

Çizelge 4.12’deki değerler hesaplanırken elastik zemin ihmal edilmektedir.  

Sonuçların incelenmesine gelince, öncelikle yüksek modlarda daha yüksek bir kritik 

sıcaklık değişimi elde edilir. Boyutsuz yerel olmayan parametrenin kritik sıcaklık 

değişimlerini düşürmekte olduğu da anlaşılmıştır. Ek olarak, boyutsuz yerel olmayan 

parametre, yüksek modların kritik sıcaklık değişimini daha fazla etkilemektedir. Öte 

yandan, güç indeksi yükseldikçe, kritik sıcaklık değişimi değerlerinin azaldığı sonucuna 

varılır. Sonuç olarak yüksek güç indeksine sahip fonksiyonel derecelendirilmiş yerel 

olmayan nanokirişlerin sıcaklığa karşı dayanımları homojen nanokirişlere göre daha 

düşüktür ve yerel olmayan parametre arttıkça bu dayanım daha da düşer. 

Çizelge 4.13. İki ucu basit mesnetli KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan temel mod boyutsuz frekanslarının karşılaştırılması 

(e0a)
2
 

(106×nm2) 

p Rahmani ve 

Pedram (2014) 

Ebrahimi ve 

Salari (2015b) 

Uzun 

(2023) 

Bu Tez 

(Analitik)  

Bu Tez (NL-FEM) 

n = 15 n = 10 n = 5 

0 1 6.9917 6.99174004 6.99172 6.9917 6.9917 6.9918 6.9925 

 5 5.9389 5.93894397 5.93893 5.9389 5.9390 5.9390 5.9396 
         

2 1 6.3895 6.38950303 6.38949 6.3895 6.3895 6.3895 6.3902 

 5 5.4274 5.42739007 5.42738 5.4274 5.4274 5.4274 5.4280 
         

4 1 5.9201 5.92013713 5.92012 5.9201 5.9201 5.9202 5.9208 

 5 5.0287 5.02869994 5.02869 5.0287 5.0287 5.0287 5.0292 

 

Yerel olmayan KDFD nanokirişlerin serbest titreşim analizi için tez kapsamında 

geliştirilen yerel olmayan sonlu elemanlar formülasyonunun (NL-FEM) uygulamaları 

Çizelgeler 4.13-4.21 ile sunulmaktadır. İlk olarak iki ucu basit mesnetli nanokirişlerin 

temel mod boyutsuz frekansları için yerel olmayan parametrenin ve güç indeksinin farklı 

değerlerine göre üç farklı referans baz alınarak bir karşılaştırma çalışması Çizelge 4.13 

ile verilmektedir. İlgili referanslardan Rahmani ve Pedram (2014) düşünülerek, 

fonksiyonel derecelendirilmiş malzemenin özellikleri, alt ve üst yüzey malzemesi sırayla 

çelik ve alümina oksit olmak üzere, bunların elastisite modülleri EA = 210 GPa ve 

EU = 390 GPa, Poisson oranları υA = 0.30 ve υU = 0.24 (böylece kayma modülleri GA = 

EA 2(1 + υA)⁄  = 80.7692 GPa ve GU = EU 2(1 + υU)⁄  = 157.2581 GPa), birim hacim 

ağırlıkları ρ
A
 = 7800 kg m3⁄  ve ρ

U
 = 3960 kg m3⁄  ve kayma deformasyonlu nanokirişin 

boyutları, uzunluk L = 10000 nm, kalınlık b = 1000 nm ve yükseklik h = 200 nm olarak 

seçilmiştir. Öncelikle, tez kapsamında yapılan analitik hesaplamalarının yazarlarla birebir 

aynı olduğu, özellikle n = 15 adet eleman için yerel olmayan sonlu eleman sonuçlarının 

oldukça yüksek bir yakınsaklığa sahip olduğu neticesine varılır. Yalnız bu noktada önemli 

bir hususa değinilmelidir. Tez kapsamında elde edilen sonuçlarda fonksiyonel 
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derecelendirilmiş malzemenin tarafsız ekseni dikkate alınmıştır. Ancak, Rahmani ve 

Pedram (2014) ve Ebrahimi ve Salari (2015b)’de sunulan teorik altyapının dikkatlice 

incelenmesine rağmen, titreşim analizinin kesitin geometrik eksenine göre açıklandığı, 

tarafsız eksen ve bunun fonksiyonel derecelendirilmiş malzemeye etkisinden 

bahsedilmediği gözlemlenmektedir. Öte yandan Uzun (2023) tarafından gerçekleştirilen 

çalışmada malzeme tarafsız ekseni göz önünde bulundurulmuştur. Yerel olmayan sonlu 

elemanlar formülasyonunun KDFD nanokirişlerin titreşim analizindeki başarısı 

hakkındaki detaylı tartışmaların izleyen çizelgelere konu olması tercih edilmiştir. 

Çizelge 4.14. İki ucu basit mesnetli KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan ilk beş mod boyutsuz frekanslarının karşılaştırılması 

p Mod η = 0  η = 0.2 

  Analitik NL-FEM Sonuçları  Analitik NL-FEM Sonuçları 

   n = 15 n = 10 n = 5   n = 15 n = 10 n = 5 

0.1 1 9.4690 9.4691 9.4691 9.4701  8.0178 8.0178 8.0178 8.0186 

 2 37.4211 37.4219 37.4251 37.4830  23.3012 23.3017 23.3037 23.3383 

 3 82.5873 82.5961 82.6314 83.2408  38.7045 38.7084 38.7238 38.9806 

 4 143.1312 143.1792 143.3680 146.3995  52.9153 52.9311 52.9922 53.9108 

 5 216.9447 217.1206 217.7986 240.6699  65.8025 65.8469 66.0139 71.4699 
           

1 1 7.5688 7.5688 7.5688 7.5696  6.4087 6.4087 6.4088 6.4094 

 2 29.9405 29.9412 29.9438 29.9901  18.6433 18.6437 18.6452 18.6730 

 3 66.1789 66.1860 66.2142 66.7028  31.0147 31.0178 31.0302 31.2369 

 4 114.9170 114.9556 115.1072 117.5430  42.4846 42.4974 42.5468 43.2906 

 5 174.5687 174.7102 175.2560 193.6701  52.9492 52.9854 53.1215 57.5737 
           

2 1 6.9059 6.9059 6.9059 6.9066  5.8474 5.8474 5.8475 5.8480 

  2 27.3075 27.3081 27.3104 27.3527  17.0038 17.0041 17.0055 17.0308 

  3 60.3228 60.3293 60.3551 60.8003  28.2703 28.2732 28.2844 28.4725 

 4 104.6714 104.7065 104.8446 107.0630  38.6968 38.7084 38.7533 39.4287 

 5 158.8772 159.0061 159.5030 176.2663  48.1898 48.2226 48.3459 52.3785 

 

İki ucu basit mesnetli KDFD nanokirişlerin ilk beş mod boyutsuz frekanslarının 

karşılaştırılmaları Çizelge 4.14’te belirtilmektedir. Buna göre, ilk olarak sonlu eleman 

sayısının artışı ile elde edilen boyutsuz frekansların analitik sonuçlara oldukça yakın 

olduğu anlaşılmaktadır. Yakınsaklık yüksek modlarda daha fazladır. Ayrıca, sonlu 

elemanlar formülasyonunun kullanımında, yerel olmayan elastisite (η = 0.2) için elde 

edilen sonuçların klasik elastisiteye (η = 0) kıyasla analitik sonuçlara daha yakın sonuçlar 

verdiği gözlemlenir ve bilimsel literatürde konuyla ilgili çalışmalardan da bu çıkarım 

yapılabilmektedir (Pradhan 2012; Demir ve Civalek 2013; Numanoğlu 2019; Numanoğlu 

ve Civalek 2019a, 2020, 2022; Numanoğlu vd. 2021; Numanoğlu vd. 2022). Sonuç olarak 

atomik ölçekli kirişlerin yerel olmayan serbest titreşim analizi için sonlu eleman 

yaklaşımının kullanımı önemli bir fayda ortaya koymaktadır. Ayrıca, sonuçlardaki 

sapmanın daha da düşürülmesi yüksek sayıda sonlu eleman kullanımı ile mümkün 

olmaktadır ancak belirtilmelidir ki tez kapsamında nanokirişler için geliştirilen yerel 

olmayan sonlu elemanlar formülasyonuna dayalı program kodlarının çalışma süreleri, 

özellikle 15 elemanda sonra oldukça yükselmektedir. Bunun nedeninin Denklem 

(3.243)’te de görüldüğü üzere, kayma deformasyonlu kiriş teorisinden kaynaklanan ve 

yüksek mertebeden kütleleri teşkil eden bileşenlere bağlı olarak frekansın dördüncü 

mertebesini içeren bir özdeğer probleminin çözülmekte olması düşünülmektedir. 

Numanoğlu (2019) tarafından yapılan çalışmada yüksek mertebeden kütle ihmal 

edildiğinden çok yüksek sayıda sonlu eleman için kayma deformasyonlu homojen 
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nanokirişlerin frekansları elde edilebilmiş ve sonuçlarda genel olarak problemli bir durum 

tespit edilmemiştir. Çizelge 4.14’te listelenen sonuçlar bir bütün olarak değerlendirilecek 

olursa, yerel olmayan sonlu elemanlar formülasyonu ile serbest titreşim analizi için çok 

yüksek modlar araştırılmadığı sürece 15 eleman kullanımının gayet başarılı olduğu ifade 

edilebilir. Bu nedenle yerel olmayan sonlu eleman analizleri genel olarak 15 elemanla 

yürütülmüş olup izleyen çizelgeler çoğunlukla bu bilgiyle sunulmaktadır.  

Çizelge 4.15. Çift parametreli elastik zemine oturan ve sıcaklık etkisi altındaki iki ucu 

basit mesnetli KDFD nanokirişlerin farklı termo-elastik ortam parametreleri, boyutsuz 

yerel olmayan parametre ve güç indeksi değerlerine göre yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan ilk üç mod boyutsuz frekansları (n = 15) 

η p Mod KW = 1, KP = 0  KW = 100, KP = 0  KW = 100, KP = 10 

   ∆T = 0 K ∆T = 100 K  ∆T = 0 K ∆T = 100 K  ∆T = 0 K ∆T = 100 K 

0 0.1 1 9.5232 7.3272  13.8719 12.4670  17.1422 16.0266 

  2 37.4355 35.4154  38.7631 36.8159  43.6573 41.9380 

  3 82.6022 80.5906  83.2071 81.2104  88.4492 86.5735 

 1 1 7.6467 3.8594  13.2631 11.5036  17.1169 15.7928 

  2 29.9609 26.9152  31.8490 29.0023  38.4677 36.1460 

  3 66.1948 63.2113  67.0623 64.1192  74.3950 71.7533 

 2 1 6.9969 2.7724  13.2006 11.5320  17.2967 16.0594 

  2 27.3311 24.1460  29.5201 26.5985  36.9825 34.6951 

  3 60.3396 57.2342  61.3517 58.3003  69.7792 67.1121 
           

0.2 0.1 1 8.0816 5.3176  12.9248 11.4025  16.3834 15.2133 

  2 23.3236 19.8938  25.3998 22.2918  32.3491 30.0053 

  3 38.7215 34.1260  39.9955 35.5651  49.8647 46.5247 

 1 1 6.5006 0.0000  12.6371 10.7706  16.6344 15.2696 

  2 18.6753 13.1054  21.5748 16.9841  30.4714 27.5027 

  3 31.0367 23.5276  32.8463 25.8679  45.8419 41.5001 

 2 1 5.9547 0.0000  12.6791 10.9212  16.8995 15.6319 

  2 17.0410 10.9178  20.3678 15.6086  30.1389 27.3042 

  3 28.2951 19.7464  30.3937 22.6486  44.8543 40.6649 

 

Termo-elastik çevrede yer alan iki ucu basit mesnetli KDFD nanokirişlerin ilk üç 

mod boyutsuz frekansları yerel olmayan sonlu elemanlar formülasyonu ile hesaplanmış 

olup bunlar Çizelge 4.15’te verilmektedir. Buradaki sonuçlardan sadece temel mod 

boyutsuz frekanslarının mukayesesi için Çizelgeler 4.9 ve 4.11’deki ilgili kısımlar 

incelenebilir. Elastik zeminin göz önüne alındığı ve ortam sıcaklığı değişiminin ihmal 

edildiği analizlerde 15 eleman kullanımı ile analitik sonuçlarla birebir aynı değerler elde 

edilmiştir. Buna ek olarak, sıcaklık değişimi altında klasik titreşim sonuçları da analitik 

sonuçlarla birebir aynı iken yerel olmayan titreşim sonuçlarının analitik neticelerin bir 

miktar altına düştüğü belirtilebilir. Tabi hesaplamalarda göz önüne alınan fonksiyonel 

derecelendirilmiş malzemenin termal genleşme katsayılarının yüksek değerlere sahip 

olması ve seçilen sıcaklık değişiminin yüksek bir değer olması nedenleriyle, yerel 

olmayan sonlu elemanlar formülasyonunun oluşturduğu analitik değerlerin altında 

sonuçtan doğan miktar olarak oldukça az bir sapma ihmal edilebilir düzeydedir. Boyutsuz 

elastik zemin parametrelerinin KW = 1 ve KP = 0 değerleri için ∆T = 100 K değerinde bir 

sıcaklık değişimi altında yüksek güç indeksine sahip nanokirişlerin temel mod boyutsuz 

frekanslarının bulunmadığı da tartışmaya eklenebilir.  



BULGULAR VE TARTIŞMA            H.M. NUMANOĞLU 

120 

 

Çizelge 4.16. Farklı sınır şartlı KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre değerlerine göre yerel olmayan sonlu elemanlar formülasyonuyla hesaplanan 

ilk üç mod boyutsuz frekanslarının karşılaştırılması (p = 2) 

Sınır η 1. Mod  2. Mod  3. Mod 

Şart  n = 15 n = 10 n = 5  n = 15 n = 10 n = 5  n = 15 n = 10 n = 5 

S-S 0 6.9058 6.9059 6.9066  27.3081 27.3104 27.3527  60.3292 60.3551 60.8003 

 0.1 6.5884 6.5884 6.5891  23.1226 23.1246 23.1598  43.9031 43.9211 44.2259 

 0.2 5.8474 5.8475 5.8480  17.0041 17.0055 17.0308  28.2731 28.2844 28.4725 
             

C-F 0 2.4653 2.4653 2.4653  15.2822 15.2825 15.2895  42.0725 42.0806 42.2147 

 0.1 2.4098 2.4098 2.4098  13.2938 13.2941 13.2986  31.8672 31.8720 31.9509 

 0.2 2.2620 2.2620 2.2620  10.1497 10.1499 10.1526  21.5651 21.5683 21.6228 
             

C-S 0 10.7814 10.7815 10.7842  34.5186 34.5232 34.6082  70.6807 70.7221 71.4200 

 0.1 10.2047 10.2048 10.2074  28.8232 28.8273 28.8974  50.5576 50.5870 51.0538 

 0.2 8.9023 8.9025 8.9047  20.8815 20.8846 20.9383  32.2675 32.2872 32.5921 
             

C-C 0 15.6402 15.6407 15.6487  42.5591 42.5680 42.7258  81.8463 81.9108 82.9390 

 0.1 14.7381 14.7384 14.7461  35.0252 35.0329 35.1613  57.5195 57.5661 58.2184 

 0.2 12.7381 12.7386 12.7462  24.9142 24.9206 25.0236  36.3903 36.4234 36.8722 
             

S-G 0 1.7315 1.7315 1.7316  15.4633 15.4633 15.4714  42.3137 42.3137 42.4782 

 0.1 1.7106 1.7106 1.7106  13.9880 13.9883 13.9883  33.2771 33.2839 33.2839 

 0.2 1.6519 1.6519 1.6519  11.2531 11.2534 11.2534  22.7237 22.7282 22.7282 
             

C-G 0 3.9242 3.9243 3.9244  21.0273 21.0283 21.0477  51.1223 51.1378 51.4093 

 0.1 3.8649 3.8649 3.8650  18.8082 18.8092 18.8266  39.5711 39.5832 39.7864 

 0.2 3.7013 3.7014 3.7014  14.8726 14.8734 14.8880  26.7048 26.7135 26.8561 

 

Çizelge 4.16’da güç indeksinin p = 2 değeri göz önüne alınarak farklı sınır şartlı 

KDFD nanokirişlerin ilk üç mod boyutsuz frekansları yerel olmayan sonlu elemanlar 

formülasyonu ile hesaplanmıştır. Buradaki değerlerden temel moda ait olanlar Çizelge 

4.5’te verilen ilgili değerlerle mukayese edilebilir. Mukayeseler genel olarak yerel 

olmayan sonlu eleman analizinin uygun neticeler verdiğini gösterir. Yakınsaklık temel 

modda yüksek iken yüksek modlarda azalır. Ayrıca yerel olmayan parametre arttıkça 

sapmanın azaldığı gözlemlenmiştir. Yeri gelmişken, C-F nanokirişinin yerel olmayan 

elastisite için bir paradoksa sahip olduğu bu noktada hatırlatılabilir. C-F nanokirişinin 

temel modu için yerel olmayan sonlu eleman sonuçlarının paradoksun aksine beklenen 

bir davranışı sergilediği anlaşılmıştır. Numanoğlu (2019) tarafından yapılan çalışmada, 

kayma deformasyonsuz homojen C-F nanokirişlerinin yerel olmayan sonlu elemanlar 

sonuçlarının, Challamel vd. (2014)’nin paradoksu çözen bir yerel olmayan elastisite 

yaklaşımını kullanarak elde ettiği sonuçlarla doğrulandığı, bu nedenle yerel olmayan 

sonlu elemanlar sonuçlarının güvenilir neticeler verdiğinden bir kez daha söz edilebilir.  

Öte yandan, yine bu altı farklı sınır şartlı KDFD nanokirişlerin temel, ikinci ve 

üçüncü mod boyutsuz yerel olmayan frekansları üzerinde güç indeksinin etkisi sırayla 

Çizelgeler 4.17-4.19 ile ele alınmaktadır. Öncelikle, KDFD nanokirişlerde güç indeksinin 

frekansları düşürme oranı hem klasik hem de yerel olmayan elastisitede genel olarak 

aynıdır. Güç indeksi artışı nedeniyle boyutsuz frekans azalması genelde C-C nanokirişleri 

için en fazla olarak hesaplanır. Benzer şekilde güç indeksinin her değerinde yerel olmayan 

parametre C-C nanokirişinin frekanslarını diğer sınır şartlara kıyasla daha fazla 

indirgemektedir. Bu sonuçlar atomik parametre ve fonksiyonel derecelendirilmenin en 

fazla C-C nanokirişleri üzerinde etkili olduğunu gösterir. Nano-elektro-mekanik 

sistemlerde iki ucu ankastre bağlantı modellemesi bilinen bir uygulama olduğundan 

(Maeashi vd. 2007; Lupan vd. 2007; Lassagne vd. 2008; Khaderbad vd. 2011; Chen vd. 
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2011; Gutruf vd. 2015; Kambali vd. 2017; Numanoğlu vd. 2018; Numanoğlu ve Civalek 

2019a; Cai ve Xu 2022; Abouelregal vd. 2023) bu sonuç dikkat çekicidir.  

Çizelge 4.17. Farklı sınır şartlı KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan temel mod boyutsuz frekansları (n = 15) 

Sınır Şart η p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

S-S 0 9.7906 9.4691 7.5688 6.9059 6.3745 

 0.1 9.3405 9.0337 7.2208 6.5884 6.0815 

 0.2 8.2900 8.0178 6.4087 5.8474 5.3975 
       

C-F 0 3.4956 3.3807 2.7017 2.4653 2.2768 

 0.1 3.4169 3.3046 2.6409 2.4098 2.2255 

 0.2 3.2074 3.1019 2.4790 2.2620 2.0891 
       

C-S 0 15.2843 14.7825 11.8165 10.7813 9.9503 

 0.1 14.4664 13.9916 11.1847 10.2047 9.4172 

 0.2 12.6194 12.2054 9.7574 8.9023 8.2138 
       

C-C 0 22.1719 21.4442 17.1421 15.6402 14.4336 

 0.1 20.8911 20.2060 16.1540 14.7381 13.5969 

 0.2 18.0531 17.4619 13.9631 12.7381 11.7447 
       

S-G 0 2.4554 2.3746 1.8976 1.7315 1.5995 

 0.1 2.4256 2.3458 1.8745 1.7106 1.5801 

 0.2 2.3425 2.2654 1.8103 1.6519 1.5259 
       

C-G 0 5.5646 5.3815 4.3005 3.9242 3.6247 

 0.1 5.4804 5.3001 4.2355 3.8649 3.5698 

 0.2 5.2484 5.0758 4.0563 3.7013 3.4186 

 

Çizelge 4.18. Farklı sınır şartlı KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan ikinci mod boyutsuz frekansları (n = 15) 

Sınır Şart η p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

S-S 0 38.6834 37.4219 29.9412 27.3081 25.1369 

 0.1 32.7545 31.6863 25.3522 23.1226 21.2842 

 0.2 24.0872 23.3017 18.6436 17.0041 15.6522 
       

C-F 0 21.6522 20.9449 16.7542 15.2822 14.0760 

 0.1 18.8372 18.2213 14.5735 13.2938 12.2495 

 0.2 14.3845 13.9135 11.1258 10.1497 9.3578 
       

C-S 0 48.8928 47.2996 37.8484 34.5186 31.7646 

 0.1 40.8209 39.4920 31.6056 28.8233 26.5126 

 0.2 29.5694 28.6079 22.8987 20.8815 19.1988 
       

C-C 0 60.2765 58.3135 46.6662 42.5591 39.1532 

 0.1 49.5908 47.9801 38.4111 35.0252 32.1882 

 0.2 35.2643 34.1219 27.3266 24.9142 22.872 
       

S-G 0 21.9150 21.1974 16.9505 15.4633 14.2567 

 0.1 19.8241 19.1750 15.3332 13.9880 12.8965 

 0.2 15.9481 15.4259 12.3353 11.2531 10.3750 
       

C-G 0 29.7983 28.8232 23.0503 21.0273 19.3820 

 0.1 26.6519 25.7802 20.6184 18.8082 17.3326 

 0.2 21.0728 20.3842 16.3048 14.8725 13.7011 
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Çizelge 4.19. Farklı sınır şartlı KDFD nanokirişlerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan üçüncü mod boyutsuz frekansları (n = 15) 

Sınır Şart η p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

S-S 0 85.3497 82.5961 66.1859 60.3293 55.2959 

 0.1 62.1110 60.1072 48.1651 43.9031 40.2401 

 0.2 39.9988 38.7084 31.0178 28.2731 25.9142 
       

C-F 0 59.5388 57.6134 46.1512 42.0725 38.5960 

 0.1 45.1127 43.6494 34.9506 31.8672 29.2704 

 0.2 30.5340 29.5421 23.6496 21.5651 19.8198 
       

C-S 0 99.9808 96.7584 77.5460 70.6807 64.7583 

 0.1 71.4976 69.1982 55.4752 50.5576 46.2814 

 0.2 45.6242 44.1591 35.4088 32.2675 29.5217 
       

C-C 0 115.7606 112.0329 89.7998 81.8463 74.9620 

 0.1 81.3059 78.7008 63.1268 57.5195 52.5778 

 0.2 51.4200 49.7776 39.9445 36.3903 33.2241 
       

S-G 0 59.904 57.9603 46.4066 42.3137 38.8726 

 0.1 47.1110 45.5822 36.4959 33.2771 30.5709 

 0.2 32.1703 31.1263 24.9217 22.7237 20.8757 
       

C-G 0 72.3665 70.0202 56.0697 51.1223 46.9483 

 0.1 56.0046 54.1917 43.4046 39.5711 36.3171 

 0.2 37.7891 36.5675 29.2941 26.7048 24.4959 

 

Çizelge 4.20. Winkler zeminine oturan farklı sınır şartlı KDFD nanokirişlerin farklı 

boyutsuz yerel olmayan parametre, boyutsuz elastik zemin parametresi ve güç indeksi 

değerlerine göre yerel olmayan sonlu elemanlar formülasyonuyla hesaplanan temel mod 

boyutsuz frekansları (n = 15) 

Sınır  η p = 0.1  p = 1  p = 10 

Şart  KW = 10 KW = 100  KW = 10 KW = 100  KW = 10 KW = 100 

S-S 0 9.9970 13.8719  8.3156 13.2631  7.3934 13.4502 

 0.1 9.5857 13.5785  8.0001 13.0677  7.1423 13.3139 

 0.2 8.6349 12.9248  7.2756 12.6371  6.5697 13.0157 
          

C-F 0 4.6601 10.6913  4.3790 11.2276  4.3850 12.0678 

 0.1 4.6052 10.6676  4.3417 11.2132  4.3587 12.0583 

 0.2 4.4621 10.6067  4.2452 11.1764  4.2907 12.0341 
          

C-S 0 15.1260 17.9236  12.3081 16.0691  10.6316 15.4671 

 0.1 14.3540 17.2765  11.7027 15.6095  10.1343 15.1286 

 0.2 12.6190 15.8633  10.3469 14.6190  9.0265 14.4080 
          

C-C 0 21.6824 23.7169  17.4845 20.3081  14.9114 18.6690 

 0.1 20.4584 22.6039  16.5166 19.4791  14.1026 18.0270 

 0.2 17.7530 20.1853  14.3806 17.7001  12.3259 16.6683 
          

S-G 0 3.9133 10.4192  3.9348 11.0643  4.0756 11.9616 

 0.1 3.9743 10.4127  3.9237 11.0604  4.0680 11.9591 

 0.2 3.9274 10.3949  3.8935 11.0497  4.0473 11.9520 
          

C-G 0 6.2651 11.4835  5.5113 11.7174  5.2143 12.3952 

 0.1 6.1953 11.4453  5.4607 11.6934  5.1762 12.3790 

 0.2 6.0043 11.3264  5.3228 11.6291  5.0729 12.3554 
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Çizelge 4.20’de Winkler zemine oturan farklı sınır şartlı KDFD nanokirişlerin 

zemin rijitliğinin farklı boyutsuz değerlerine ve güç indeksinin artışına göre temel mod 

boyutsuz frekans parametreleri listelenmektedir. Temel mod sonuçlarının doğruluğu için 

Çizelge 4.9’a göz atılabilir. Buna göre, yerel olmayan sonlu eleman sonuçlarının analitik 

sonuçlar ile birebir aynı elde edildiği anlaşılır. Ayrıca, buradaki değerler incelendiğinde 

sınır şartların tamamında elastik zemin parametresi arttıkça yerel olmayan parametre ve 

güç indeksinin frekanslar üzerindeki etkilerinin azaldığı söylenebilir. Özellikle güç 

indeksi ve elastik zeminin rijitliği değerleri yükseldikçe, sınır şartlar arasındaki frekans 

farklılığı azalır. Yani elastik zeminin genel olarak düşük rijitliğe sahip nanokirişler 

üzerinde daha fazla etkili olduğu gözlemlenir. Uçları ankastre veya basit gibi sınır 

şartlarından oluşan nanokirişlere kıyasla düşük rijitlikli nanokirişlerden olan C-F 

nanokirişinin nanoteknolojideki uygulamaları (Drechsler 2003; Wojcikiewicz vd. 2004; 

Li vd. 2007; Seo ve Jhe 2008; Kacem vd. 2010; Michels ve Rangelow 2014; Alsteens vd. 

2017; Numanoğlu vd. 2018; Setiono vd. 2019; Numanoğlu ve Civalek 2019a; Civalek ve 

Numanoğlu 2020) göz önüne alındığında bu sonucun dikkat çektiği belirtilmelidir.  

Çizelge 4.21. Sıcaklık etkisi altında farklı sınır şartlı KDFD nanokirişlerin farklı boyutsuz 

yerel olmayan parametre, ortam sıcaklık değişimi ve güç indeksi değerlerine göre yerel 

olmayan sonlu elemanlar formülasyonuyla hesaplanan temel mod boyutsuz frekansları 

(n = 15) 

Sınır  η p = 0.1  p = 1  p = 10 

Şart  ∆T = 50 K ∆T = 100 K  ∆T = 50 K ∆T = 100 K  ∆T = 50 K ∆T = 100 K 

S-S 0 8.4357 7.2567  5.9580 3.7025  4.8794 2.6427 

 0.1 7.9440 6.6786  5.5092 2.9257  4.4898 1.8244 

 0.2 6.7659 5.2201  4.3899 0.0000  3.5050 0.0000 
          

C-F 0 1.4757 0.0000  0.0000 0.0000  0.0000 0.0000 

 0.1 1.3551 0.0000  0.0000 0.0000  0.0000 0.0000 

 0.2 0.9927 0.0000  0.0000 0.0000  0.0000 0.0000 
          

C-S 0 14.0277 13.2271  10.6773 9.3912  8.8981 7.6934 

 0.1 13.1222 12.1882  9.8654 8.3302  8.1971 6.7494 

 0.2 11.0330 9.7126  7.9437 5.5143  6.5235 0.5283 
          

C-C 0 20.8890 20.3173  16.3160 15.4415  13.6696 12.8560 

 0.1 19.4627 18.6883  15.0427 13.8378  12.5677 11.4404 

 0.2 13.2367 14.8968  12.0969 9.7919  9.9977 3.3814 
          

S-G 0 1.0031 0.0000  0.0000 0.0000  0.0000 0.0000 

 0.1 0.9330 0.0000  0.0000 0.0000  0.0000 0.0000 

 0.2 0.7069 0.0000  0.0000 0.0000  0.0000 0.0000 
          

C-G 0 4.8095 4.1516  3.4059 2.1318  2.7931 1.5248 

 0.1 4.6750 3.9441  3.2509 1.7399  2.6528 1.0875 

 0.2 4.2952 3.3261  2.7948 0.0000  2.2343 0.0000 

 

Sıcaklık değişimi etkisindeki KDFD nanokirişlerin atomik boyut etkili serbest 

titreşimi üzerinde yerel olmayan sonlu elemanlar formülasyonunun uygulamaları Çizelge 

4.21 ile ele alınmaktadır. Buradaki sonuçlardan iki ucu basit mesnetli nanokirişlerin temel 

modu için kıyaslamalar Çizelge 4.11’deki ilgili kısım baz alınarak yapılabilir. Genel 

olarak klasik elastisite ve çok düşük atomik parametre için sonuçların uyumlu olduğu, 

ancak yüksek sıcaklık ve düşük atomik parametre değeri için sonuçların analitik 

neticelerin biraz altına indiği anlaşılmıştır. Bunların haricinde, sınır şartlar bakımından 
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rijitliği düşük olan sistemlerin yerel olmayan parametre, ortam sıcaklık değişimi veya güç 

indeksi gibi parametrelerin değerlerinin yükselmesi durumunda titreşim hareketi 

gösteremediği de varılan bir diğer sonuçtur.  

Buradan itibaren tez konusu olan kayma deformasyonlu fonksiyonel 

derecelendirilmiş nanoyapıların boyutsuz frekans hesapları için çeşitli grafiksel sonuçlara 

değinilecektir ama tartışmalara geçmeden önce önemli bir bilgi verilmelidir. Grafiksel 

sonuçlar çoğunlukla güç indeksinin artışını konu almaktadır. Ancak, güç indeksinin 

artışıyla esasen güç indeksi p’nin kendisinin değil, 10 tabanındaki logaritması için 

seçilmiş log p  = − 2, 2 değerleri ve bunların arasındaki artışı göz önüne alınmaktadır. 

Güç indeksinin aritmetik artışının yerel olmayan davranışın doğru yorumlanmasını 

zorlaştırdığı düşünülmektedir çünkü güç indeksinin ondalıklı sayıların farklı mertebeleri 

arasındaki artışlarının boyutsuz frekanslar üzerindeki etkileri farklı olmaktadır. Tabi 

grafiksel sonuçlardaki bu tercih homojen nanoyapıları barındıramaz ancak güç indeksi 

için seçilen minimum değer olan p = 0.01 değerinin sonuçları çoğunlukla homojen 

nanoyapıların sonuçlarına oldukça yakın hesaplanmaktadır. Bu nedenle homojen 

nanoyapıların sonuçlarının ihmal edilmesinde bir sakınca bulunmadığı mutlaka 

belirtilmelidir. 

  
(a) (b) 

  
(c) (d) 

Şekil 4.1. İki ucu basit mesnetli KDFD nanokirişlerin güç indeksinin artışına göre 

boyutsuz frekanslarının değişimi; a) 1. Mod; b) 2. Mod; c) 3. Mod; d) 4. Mod 
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(a) (b) 

  
(c) (d) 

Şekil 4.2. İki ucu ankastre mesnetli KDFD nanokirişlerin güç indeksinin artışına göre 

boyutsuz frekanslarının değişimi; a) 1. Mod; b) 2. Mod; c) 3. Mod; d) 4. Mod 

 Kayma deformasyonlu fonksiyonel derecelendirilmiş nanokirişlerin ilk dört mod 

yerel olmayan boyutsuz frekanslarının güç indeksinin artışına göre değişimleri iki ucu 

basit mesnetli nanokirişler için Şekil 4.1 ve iki ucu ankastre mesnetli nanokirişler için 

Şekil 4.2 ile verilmektedir. Güç indeksinin boyutsuz frekansları sürekli olarak azalttığı 

ilk olarak gözlemlenmektedir. Hem klasik hem de yerel olmayan titreşim durumunda, 

genellikle güç indeksinin p = 0.01 − 1 aralığında daha etkin olduğu ifade edilebilir. Yerel 

olmayan parametre de frekansların düşüşü konusunda bu aralıkta daha hâkimdir. Güç 

indeksinin p = 1 − 10 aralığında etkinliği oldukça azalsa bile p = 10 − 100 aralığı 

arasında güç indeksi frekanslar düşüşünde biraz daha etkin olmaktadır. Öte yandan, güç 

indeksinin frekanslar üzerindeki etkisi boyutsuz atomik parametre arttıkça azalmaktadır. 

Ek olarak, iki sınır şartta da boyutsuz frekansların güç indeksi nedeniyle düşüş oranları 

yaklaşık olarak aynı görünmektedir. Sonuçlar düşük güç indeksine sahip nanoyapılarda 

yerel olmayan elastisitenin daha etkin olduğunu vurgulamaktadır ancak güç indeksinin 

yüksek değerlerinde de frekansların atomik parametre tarafından kayda değer bir 

seviyede azaldığı kesinlikle göz ardı edilemeyecek bir çıkarımdır. 
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(a) 

 
(b) 

Şekil 4.3. Winkler zeminine oturan iki ucu basit mesnetli KDFD nanokirişlerin boyutsuz 

zemin rijitliğinin artışına göre temel mod boyutsuz frekanslarının değişimi; a) p = 0;           

b) p = 10 

 İki ucu basit mesnetli kayma deformasyonlu nanokirişlerin yerel olmayan temel 

mod boyutsuz frekansları üzerinde Winkler zeminin etkisi Şekil 4.3 ile sunulmaktadır. 

Burada homojen ve fonksiyonel derecelendirilmiş nanokirişler ayrı ayrı ele alınmaktadır. 

Winkler zemininin boyutsuz frekansları artıran bir etmen olduğu anlaşılmaktadır. Gerek 

homojen, gerekse kompozit nanoyapılarda Winkler zemin parametresi arttıkça yerel 

olmayan elastisitenin frekanslar üzerindeki etkisi azalmaktadır. Winkler zemininin yerel 

olmayan KDFD nanokirişler üzerinde daha fazla bir etkiye sahip olduğu da söylenebilir. 
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(a) 

 
(b) 

Şekil 4.4. Sıcaklık etkisi altındaki iki ucu basit mesnetli KDFD nanokirişlerin ortam 

sıcaklığının artışına göre temel mod boyutsuz frekanslarının değişimi; a) p = 0; b) p = 10 

 Şekil 4.4’te, iki ucu basit mesnetli KDFD nanokirişlerin ortam sıcaklığının artışı 

altında yerel olmayan temel mod boyutsuz frekanslarının değişimleri gösterilmektedir. 

Öncelikle, Şekil 4.4(a)’da resmedilen kılavuzdan da anlaşılacağı üzere, boyutsuz 

frekansların azaldıktan sonra yatay eksende değdiği sıfır noktasının kritik sıcaklık olduğu, 

kritik sıcaklığa kadarki boyutsuz frekansların reel ve kritik sıcaklıktan sonraki boyutsuz 

frekansların kompleks sayı olarak hesaplandığı, kompleks sayı olarak hesaplanan 

boyutsuz frekansların reel kısmının olmadığı mutlaka ifade edilmelidir. Elbette kompleks 

sayı olarak hesaplanan boyutsuz frekansların fiziksel bir anlamı bulunmamaktadır ancak 

bunlar en azından yerel olmayan parametre ve güç indeksinin etkinliği açısından kısaca 

ele alınacaktır. İlk olarak homojen nanokirişlerde reel kısmın tartışılmasına bakılacak 

Tcr 
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olursa, ortam sıcaklığı arttıkça boyutsuz frekansların daha fazla azaldığı açıkça 

gözlemlenmektedir. Dahası, yerel olmayan parametrenin yüksek sıcaklıklarda daha fazla 

etkin olduğu, bu etkinliğin yerel olmayan parametrenin artışıyla daha da belirginleştiği 

kesinlikle ifade edilebilir. Orta değerli yerel olmayan parametreye kadar kritik sıcaklık 

eşiği görülmezken, bu seviyedeki yerel olmayan parametrelerden itibaren verilen 

analizlerde atomik parametre arttıkça düşen bir kritik sıcaklık eşiği mevcuttur. Kritik 

sıcaklık değerlerinden itibaren hesaplanan kompleks değerli boyutsuz frekanslara 

gelince, atomik parametrenin bu bölgede artışına karşılık etkinliğinin azaldığı 

anlaşılmaktadır. Öte yandan, kayma deformasyonlu nanokirişlerde klasik elastisite de 

dahil olmak üzere bütün analizlerde kritik bir sıcaklık eşiği elde edilmekte, dahası bu 

kritik sıcaklık eşikleri homojen nanoyapıya göre daha da azalmaktadır. Tam da bu 

noktada kritik sıcaklıklar hakkında daha detaylı bir tartışmaya girilmektedir. Buna göre 

Şekil 4.5’te iki ucu basit mesnetli KDFD nanokirişlerin yerel olmayan termal serbest 

titreşimi için güç indeksinin artışına karşılık kritik sıcaklık eşiklerinin değişimleri ilk iki 

mod için çizdirilmektedir. Buna göre, ilk olarak güç indeksinin çoğunlukla kritik sıcaklık 

eşiklerini düşürdüğü anlaşılır ancak bu düşüş güç indeksinin yüzde birler mertebesi 

kısmında sürekli olarak gözlemlenmektedir. Bu aralık sona erdikten sonra kritik sıcaklık 

eşikleri yüksek ve çok yüksek değerli boyutsuz yerel olmayan parametre hariç az da olsa 

bir miktar yükselmekte ve daha sonra yine azalmaktadır. Öte yandan, yerel olmayan 

parametrenin kritik sıcaklık eşiklerini daha da azalttığı mutlaka söylenmelidir. Yerel 

olmayan parametrenin güç indeksi düşük KDFD nanokirişlerin kritik sıcaklıklarını daha 

fazla azalttığı görülmektedir. Son olarak, yüksek modda kritik sıcaklık değerlerinin arttığı 

ve yerel olmayan parametrenin bu modda daha etkin olduğu da eklenebilir. 

İki ucu basit mesnetli KDFD nanokirişlerin güç indeksinin artışı altında boyutsuz 

frekanslarının dikdörtgensel kesitin farklı eksenlerine göre değerlerinin sapma yüzdeleri 

iki farklı mod sayısı için Şekil 4.6’da sunulmaktadır. Burada boyutsuz frekansların ilgili 

sapma yüzdesiyle kastedilen tanım Denklem (4.5) ile verilmekte olup, bununla ilgili bazı 

çizelge sonuçlar da sunularak tartışılmıştı. Hatırlatılacak olursa, sapma yüzdesi geometrik 

eksen baz alınarak hesaplanan boyutsuz frekansların tarafsız eksen baz alınarak 

hesaplanan boyutsuz frekanslardan yüzdesel olarak uzaklaşma miktarını ifade etmektedir. 

Öncelikle, yerel olmayan boyutsuz parametrenin sapma yüzdelerini hiçbir şekilde 

değiştirmediği muhakkak belirtilmelidir. Güç indeksinin yüzde birler mertebesinde 

sapma yüzdeleri oldukça düşük iken onda birler mertebesinde sapma yüzdelerinin giderek 

yükseldiği ve onlar mertebesindeki aralıkta sapmanın en yüksek değerine ulaştığı 

gözlemlenir. Yani bu değer aralığında fonksiyonel derecelendirilmiş nanoyapıda tarafsız 

eksenin önemi çok büyüktür ve tarafsız eksen yerel olmayan titreşim analizinde mutlaka 

göz önüne alınmalıdır. Güç indeksinin onlar mertebesinden itibaren sapma yüzdeleri 

giderek azalır. Ayrıca, sapma yüzdeleri yüksek modda genel olarak azalmıştır. Bir 

titreşim analizinde ilk gözlemlenecek olan temel mod öncelikli olarak öneme sahip 

olduğundan, burada elde edilen sonuçların yerel olmayan davranış için dikkat çektiği 

ifade edilebilir. 
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(a) 

 

(b) 

Şekil 4.5. İki ucu basit mesnetli KDFD nanokirişlerin güç indeksinin artışına göre temel 

mod kritik sıcaklıklarının değişimi; a) 1. Mod; b) 2. Mod 
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(a) (b) 

Şekil 4.6. İki ucu basit mesnetli KDFD nanokirişlerin güç indeksinin artışına göre tarafsız 

eksen göz önüne alınarak hesaplanan frekanslarının geometrik eksen göz önüne alınarak 

hesaplanan frekanslardan sapma yüzdelerinin değişimi; a) 1. Mod; b) 5. Mod 

 KDFD nanokirişlerin yerel olmayan serbest titreşim analizleri buradan itibaren 

daha kapsamlı gerçekleştirileceğinden, ilgili analizlerin yerel olmayan sonlu elemanlar 

metodu ile hesaplanması tercih edilmiştir. Yerel olmayan sonlu elemanlar 

formülasyonunun uygulamaları hakkında Çizelgeler 4.13 ve 4.14’teki analizlerde 10 

sonlu elemanın gayet yeter doğrulukta sonuçlar verdiği düşünülerek, KDFD 

nanokirişlerin buradan itibaren yapılan analizlerinde 10 sonlu eleman kullanılmıştır. 

 

Şekil 4.7. İki ucu basit mesnetli KDFD nanokirişlerin güç indeksi ve boyutsuz atomik 

parametre değerlerinin artışına göre ilk dört boyutsuz frekanslarının değişimi 

 İki ucu basit mesnetli KDFD nanokirişlerin ilk dört mod boyutsuz frekanslarının 

değişimleri üzerinde güç indeksinin ve boyutsuz atomik parametrenin artışını inceleyen 

yüzeyler Şekil 4.7 ile tasvir edilmektedir. Güç indeksinin atomik parametrenin düşük 
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değerlerinde ve yüksek modlarda frekansların düşmesi için daha büyük bir etkiye sahip 

olduğu gözlemlenmektedir. Tabi düşük güç indeksi değerlerinde frekansların daha fazla 

azaldığı yine anlaşılmaktadır.  

 
(a) 

 
(b) 

Şekil 4.8. İki ucu basit mesnetli KDFD nanokirişlerin güç indeksi ve uzunluk/yükseklik 

oranı değerlerinin artışına göre boyutsuz frekanslarının değişimi; a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.9. İki ucu ankastre mesnetli KDFD nanokirişlerin güç indeksi ve 

uzunluk/yükseklik oranı değerlerinin artışına göre boyutsuz frekanslarının değişimi; a) 1. 

Mod; b) 2. Mod 

  İki ucu basit ve iki ucu ankastre mesnetli KDFD nanokirişlerin güç indeksi 

uzunluk/yükseklik oranı (veya “narinlik oranı” olarak da zikredilebilir) parametrelerinin 

artışına göre ilk iki mod boyutsuz frekanslarının değişimleri sırayla Şekiller 4.8 ve 4.9 ile 

verilmektedir. Öncelikle analizlerde dikdörtgen kesit yüksekliğinin sabit ve h = 1 nm 

alındığı bildirilmektedir. Dolayısı ile nanokiriş dış karakteristik uzunluğu değişkenlik 

göstermekte, klasiğe ek olarak seçilmiş iki farklı iç karakteristik uzunluk değeri göz 

önüne alınarak boyutsuz frekans değişim yüzeyleri elde edilmektedir. Buna göre, narinlik 

oranı arttıkça frekanslar yükselmektedir. Bilindiği üzere, dinamik analizde kayma 

deformasyonlu kiriş teorilerinin kayma deformasyonsuz teorilerle arasındaki en belirgin 
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ayrım kısa nanokirişlerde gözlemlenir. Ayrıca, kayma deformasyonsuz nanokirişlerin 

boyutsuz frekansları, narinlik oranından etkilenmez. Nanokiriş uzunluğu arttıkça 

boyutsuz frekanslar yükselir ve bu yükselme sonucunda boyutsuz frekanslar kayma 

deformasyonsuz kiriş teorisi ile elde edilen boyutsuz frekans değerlerine yakınsar 

(Numanoğlu 2019; Numanoğlu vd. 2022). Küçük uzunluklu kirişlerin yerel olmayan 

boyutsuz frekans yüzeyleri arasındaki farklılıklar dikkate alındığında, kayma 

deformasyonunun yerel olmayan nanokirişlerin mekanik davranışı için oldukça önemli 

olduğu anlaşılır. Öte yandan, güç indeksinin de düşük uzunluklu nanokirişler üzerinde 

daha fazla etkili olduğu anlaşılır ancak bu etki atomik uzunluk arttıkça azalır. 

 

(a) 

 
(b) 

Şekil 4.10. Winkler zeminine oturan iki ucu basit mesnetli KDFD nanokirişlerin güç 

indeksi ve boyutsuz zemin rijitliği değerlerinin artışına göre boyutsuz frekanslarının 

değişimi; a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.11. Winkler zeminine oturan iki ucu ankastre mesnetli KDFD nanokirişlerin güç 

indeksi ve boyutsuz zemin rijitliği değerlerinin artışına göre boyutsuz frekanslarının 

değişimi; a) 1. Mod; b) 2. Mod 

 Şekiller 4.10 ve 4.11’de elastik zemine oturan sırayla iki ucu basit ve iki ucu 

ankastre mesnetli KDFD nanokirişlerin boyutsuz frekansları üzerinde güç indeksi ve 

boyutsuz Winkler zemini rijitliğinin etkileri sunulmaktadır. Genel olarak güç indeksi 

yükseldikçe Winkler zemininin frekanslar üzerinde daha etkin olduğu görülür. Dahası, bu 

etki yerel olmayan parametrenin değeri yükseldikçe daha da artar. Öte yandan, Winkler 

zemininin frekans yükseltme etkisi iki ucu basit mesnetli KDFD nanokirişler için iki ucu 

ankastre mesnetliye göre daha fazladır. 
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(a) 

 
(b) 

Şekil 4.12. Sıcaklık etkisi altındaki iki ucu basit mesnetli KDFD nanokirişlerin güç 

indeksi ve ortam sıcaklığı değerlerinin artışına göre boyutsuz frekanslarının değişimi;       

a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.13. Sıcaklık etkisi altındaki iki ucu ankastre mesnetli KDFD nanokirişlerin güç 

indeksi ve ortam sıcaklığı değerlerinin artışına göre boyutsuz frekanslarının değişimi;        

a) 1. Mod; b) 2. Mod 

 Sıcaklık etkisi altındaki iki ucu basit mesnetli ve iki ucu ankastre mesnetli KDFD 

nanokirişlerin güç indeksi ve ortam sıcaklığı değişiminin artışına göre boyutsuz frekans 

değişim yüzeyleri sırayla Şekiller 4.12 ve 4.13’te betimlenmektedir. Öncelikle, iki ucu 

basit mesnetli KDFD nanokirişin temel modunda, güç indeksinin seçilmiş aralığının en 

yüksek kısmı olan yüzler mertebesinde ve oldukça yüksek ortam sıcaklığı değerlerinde 

yerel olmayan bazı boyutsuz frekansların reel sayı olarak hesaplanmadığı, bunların 

davranışının imajiner değerler üzerinden verilmesinin grafikte karmaşaya sebebiyet 

vereceği düşüncesiyle bu durumların boyutsuz frekansı sıfır olarak gösterilmiştir. 

Sıcaklık etkisi, güç indeksi yüksek nanokirişlerde daha fazla olmaktadır ve bu etki yerel 
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olmayan parametre arttıkça şiddetlenmektedir. Winkler zemininde olduğu gibi, ortam 

sıcaklığı artışı da iki ucu basit mesnetli KDFD nanokirişlerin boyutsuz frekansları 

üzerinde iki ucu ankastre mesnetliye göre daha etkili olmaktadır. 

Kayma deformasyonlu fonksiyonel derecelendirilmiş eksenel nanoçubukların 

yerel olmayan serbest titreşim davranışı hakkındaki araştırmalar Çizelgeler 4.22-4.37 ve 

Şekiller 4.14-4.24 ve bunların tartışmaları ile yapılmaktadır. 

Çizelge 4.22. Farklı sınır şartlı KDH nanoçubukların farklı narinlik oranı değerlerine göre 

ilk üç mod boyutsuz frekans oranları için bir karşılaştırma çalışması (η = 0.1) 

rg Mod  C-F C-C 

 Li vd. (2017) Bu Tez Li vd. (2017) Bu Tez 

0.01 1 0.9832 0.9832 0.9373 0.9373 

 2 0.8734 0.8734 0.8025 0.8025 

 3 0.7325 0.7325 0.6676 0.6676 
      

0.1 1 0.9829 0.9829 0.9363 0.9363 

 2 0.8714 0.8714 0.7995 0.7995 

 3 0.7285 0.7285 0.6627 0.6627 
      

0.3 1 0.9807 0.9807 0.9285 0.9285 

 2 0.8565 0.8565 0.7778 0.7778 

 3 0.7011 0.7011 0.6309 0.6309 

 

Çizelge 4.22’de, Li vd. (2017) tarafından Love-Bishop nanoçubuğunun boyut 

etkili serbest titreşim ve dalga yayınım analizi için geliştirilen hibrit bir yerel olmayan 

süreklilik teorisinin (yerel olmayan şekil değiştirme değişimi elastisite teorisi) uygulama 

sonuçları kapsamında, yazarların nanoçubuğun geometrik parametrelerini kullanarak 

tanımladıkları rg = √IP AL2⁄  = D 2√2L⁄  şeklindeki bir narinlik oranının değişimine göre 

nanoçubuğun yerel olmayan boyutsuz frekans oranı olarak tanımlanan ω̅i ψ
i

⁄  

parametrelerinin karşılaştırılması verilmiştir. Burada D içi dolu daire kesitin çapı olmak 

üzere IP = πD4 32⁄  ve A = πD2 4⁄  ifadeleri nanoçubuk kesitinin sırayla polar atalet 

momentini ve kesit alanını tanımlar. Yazarlar tarafından frekans oranı olarak tanımlanan 

parametrede ise ω̅i, i. modun boyutsuz frekansı iken iki ucu tutulu çubuk için ψ
i
 = iπ ve 

bir ucu tutulu diğer ucu serbest çubuk için ψ
i
 = (2i − 1)π 2⁄  olarak göz önüne alınmıştır. 

Ayrıca, yazarlar söz konusu analizde boyut etkisini sadece yerel olmayan elastisite teorisi 

ile η = 0.1 olarak düşünmüşlerdir yani hibrit süreklilik teorisinden kaynaklanan diğer 

boyut ölçek parametresi ihmal edilmiştir. Frekans oranının paydasında yer alan ψ
i
 

parametresi, sadece, bir tam sayı olan mod numarasından etkilendiğinden, dolayısıyla 

yazarlara göre bir değişiklik göstermediğinden ve çizelgenin genelinde elde edilen 

sonuçlar yazarlarla birebir aynı olduğundan tez kapsamında elde edilen analitik frekans 

hesabının homojen nanoçubuklar için doğru olduğu neticesine varılır. Bu arada 

nanoçubuk kesitinin çapı, nanoçubuk uzunluğu L ve narinlik oranı rg’ye bağlı olarak 

seçilirse, nanoçubuk uzunluğunun artışının sonuçları değiştirmediği belirtilmelidir. 

Çünkü teorik altyapı aktarılırken açıklanan iki ucu tutulu nanoçubuk için Ri = iπ L⁄  ve bir 

ucu tutulu diğer ucu serbest nanoçubuk için Ri = (2i − 1)π 2L⁄  çarpanları aynı oranda 

azalsa bile buna karşılık olarak atalet momenti ve kesit alan aynı oranda artış 

göstermektedir. 
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Tabi sonuçların mekanik anlamda da bir tartışması yapılmalıdır. Ancak burada 

yerel olmayan parametrenin farklı değerleri analizde gözetilmediğinden detaylı bir 

tartışma yapılamaz, sadece kayma deformasyonunun önemi vurgulanabilir. Buna göre 

İlgili narinlik oranı parametresinin artışı, sabit dış karakteristik uzunluk için kesit çapının 

artışı veya sabit kesit çapı için uzunluğun azalması anlamına gelmektedir. Bu belirtilen 

iki durum nanoyapılarda zaten kayma deformasyonunu önemli hale getirmektedir. 

Dolayısı ile kesit yüksekliği veya çapının artışı veya bunlar sabitken nanoçubuk 

uzunluğunun azalması frekansları düşüren bir faktördür. Sonuç olarak çizelgede 

frekansların narinlik oranının artışı altında azalması bu nedenledir. Kayma 

deformasyonunun daha rijit sistemlerde daha fazla etkili olduğu da yerel olmayan 

nanokirişlerle ilgili tartışmada ifade edilmişti. Buna paralel olarak narinlik oranı iki ucu 

tutulu kayma deformasyonlu nanoçubuklarda daha etkili olmaktadır. 

Tez konusuyla ilgili olarak bilimsel literatür üzerinde yapılan araştırmalar 

sonucunda, eksenel nanoçubukların fonksiyonel derecelendirilmesini göz önüne alan 

çalışmaların çoğunluğunda fonksiyonel derecelendirilmenin eksenel yön olarak göz 

önüne alındığı (Şimşek 2012; Nazemnezhad ve Kamali 2018b; Bahrami vd. 2019; Arda 

2021; Arda vd. 2024), buna ek olarak Love-Bishop çubuğunun Mori-Tanaka karışım 

kuralı göz önüne alınarak fonksiyonel derecelendirildiği (Mohammadian ve Hosseini 

2022) ve bunların haricinde eksenel çubukların kesit yüksekliği doğrultusunda klasik 

karışım kuralına göre fonksiyonel derecelendirildiği çok az sayıda çalışmanın (Arefi 

2016; Arefi ve Zenkour 2017b; Uzun ve Yaylı 2020) bulunduğu anlaşılmıştır. Arefi 

(2016) ve Arefi ve Zenkour (2017b) tarafından verilen çalışmalar her ne kadar yapı 

kinematiğini Love-Bishop teorisine de dayandırsa da bu çalışmalar esasen nanoyapının 

dalga yayınımı üzerinde manyetik, elektrik ve piezo gibi dış çevresel olguların etkilerini 

konu edinmiştir. Dolayısı ile, kesit kalınlığı doğrultusunda klasik karışım kuralına göre 

fonksiyonel derecelendirilmiş malzemeden imal edilen nanoçubuklarda kesme etkisi 

hakkında bu tez kapsamında verilen bütün sonuçların bilimsel literatür için bir yenilik 

olduğu kesinlikle ifade edilmelidir. 

Çizelge 4.23. Farklı sınır şartlı KDH nanoçubukların farklı boyutsuz yerel olmayan 

parametre değerlerine göre ilk beş mod boyutsuz frekansları 

Sınır Şart Mod  η = 0 η = 0.05 η = 0.1 η = 0.15 η = 0.2 

C-F 1 1.5707 1.5630 1.5406 1.5053 1.4597 

 2 4.7094 4.5133 4.0457 3.5113 3.0272 

 3 7.8401 7.0230 5.5649 4.3719 3.5277 

 4 10.9576 9.0023 6.4055 4.7444 3.7139 

 5 14.0569 10.4951 6.8790 4.9253 3.7974 
       

C-C 1 3.1407 3.0805 2.9188 2.6979 2.4589 

 2 6.2761 5.8330 4.9146 4.0350 3.3437 

 3 9.4008 8.0783 6.0470 4.5938 3.6407 

 4 12.5098 9.8039 6.6746 4.8497 3.7631 

 5 15.5983 11.0892 7.0363 4.9808 3.8218 

 

İki farklı sınır şartlı kayma deformasyonlu homojen nanoçubukların beş farklı 

boyutsuz yerel olmayan parametre altında ilk beş mod boyutsuz frekansları Çizelge 

4.23’te gösterilmektedir. Öncelikle, daha rijit olduğundan her iki ucu tutulu (C-C) 

nanoçubukların boyutsuz frekansların bir ucu tutulu diğer ucu serbest (C-F) 

nanoçubuklara göre daha yüksek olduğu gözlemlenir. Atomik boyut etkili mekanik 
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açısından, nanokirişlerde olduğu gibi nanoçubuklarda da yerel olmayan parametrenin 

frekansları azalttığı ve bu azalmanın oransal olarak mod sayısının yükselmesiyle 

yükseldiği belirtilebilir. Dahası, C-C nanoçubuğunun boyutsuz frekanslarının C-F 

nanoçubuğuna göre daha fazla azaldığı gözlemlenmiştir yani yerel olmayan parametre 

yine daha rijit sistemlerin frekanslarının azalmasında daha fazla etkindir. Netice olarak 

elde edilen değerler eksenel nanoçubukların titreşim davranışı üzerinde yerel olmayan 

elastisitenin göz ardı edilemez bir gerçek olduğunu gösterir. Tezin konusu gereği 

nanoçubuklar için fonksiyonel derecelendirilme hali gözetileceğinden homojen nanoyapı 

hakkındaki bu sonuçlar üzerinde tartışmanın daha fazla genişletilmemesi tercih edilmiştir.  

Çizelge 4.24. Bir ucu tutulu diğer ucu serbest KDFD nanoçubukların farklı boyutsuz yerel 

olmayan parametre ve güç indeksi değerlerine göre ilk beş mod boyutsuz frekansları 

η Mod  p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

0 1 1.5668 1.5336 1.3178 1.1949 0.9467 

 2 4.6977 4.5983 3.9511 3.5825 2.8386 

 3 7.8207 7.6551 6.5778 5.9642 4.7257 

 4 10.9305 10.6991 9.1934 8.3359 6.6051 

 5 14.0221 13.7253 11.7937 10.6938 8.4739 
       

0.1 1 1.5368 1.5042 1.2925 1.1719 0.9286 

 2 4.0356 3.9502 3.3943 3.0776 2.4385 

 3 5.5511 5.4336 4.6689 4.2334 3.3543 

 4 6.3897 6.2544 5.3742 4.8730 3.8612 

 5 6.8620 6.7167 5.7715 5.2333 4.1470 
       

0.2 1 1.4561 1.4252 1.2247 1.1104 0.8798 

 2 3.0197 2.9558 2.5398 2.3029 1.8247 

 3 3.5189 3.4444 2.9597 2.6836 2.1264 

 4 3.7047 3.6262 3.1159 2.8253 2.2387 

 5 3.7880 3.7078 3.1860 2.8889 2.2892 

 

Çizelge 4.25. İki ucu tutulu KDFD nanoçubukların farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre ilk beş mod boyutsuz frekansları 

η Mod  p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

0 1 3.1329 3.0666 2.6350 2.3892 1.8930 

 2 6.2605 6.1280 5.2656 4.7744 3.7829 

 3 9.3775 9.1790 7.8872 7.1515 5.6666 

 4 12.4789 12.2147 10.4957 9.5168 7.5410 

 5 15.5597 15.2303 13.0869 11.8665 9.4034 
       

0.1 1 2.9115 2.8499 2.4488 2.2204 1.7593 

 2 4.9024 4.7987 4.1233 3.7387 2.9623 

 3 6.0321 5.9044 5.0734 4.6002 3.6450 

 4 6.6581 6.5171 5.6000 5.0777 4.0236 

 5 7.0189 6.8702 5.9034 5.3530 4.2419 
       

0.2 1 2.4528 2.4009 2.0630 1.8705 1.4821 

 2 3.3354 3.2648 2.8053 2.5436 2.0154 

 3 3.6317 3.5548 3.0546 2.7697 2.1946 

 4 3.7538 3.6743 3.1572 2.8628 2.2685 

 5 3.8124 3.7316 3.2065 2.9076 2.3041 

 

Fonksiyonel derecelendirilmiş Love-Bishop nanoçubuklarının güç indeksinin 

farklı değerlerine göre ilk beş mod boyutsuz frekans parametreleri, C-F ve C-C 
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nanoçubukları için sırayla Çizelgeler 4.24 ve 4.25 ile sunulmaktadır. Güç indeksinin 

nanoçubukların boyutsuz frekanslarını azaltmakta olduğu ilk gözlemlenendir. Yerel 

olmayan parametre arttıkça nanoçubuklar arasındaki frekans farklılığı azalmaktadır. 

Yüksek güç indeksinde bir de yerel olmayan parametre nedeniyle frekansların azalması 

nanokirişlerde olduğu gibi nanoçubuklarda da fonksiyonel derecelenmenin önemli 

olduğunu ortaya koyar. Kayma deformasyonlu nanokirişlerin yerel olmayan titreşim 

hesaplamaları tartışılırken özellikle iki ucu ankastre ve bir ucu ankastre diğer ucu serbest 

nanokirişlerin nanoteknolojideki birçok uygulamaya mekanik model olabileceği vurgusu 

ile, başta yerel olmayan parametre ve fonksiyonel derecelendirilme gibi nanoyapıların 

dinamik dayanımını düşüren faktörlerin önemli olduğu neticesine varılmıştı. 

Nanoyapıların mekanik modelinde sadece enine titreşim değil eksenel titreşim olgusu da 

düşünüldüğünde, C-C ve C-F nanoçubuklarında yerel olmayan parametre ve fonksiyonel 

derecelendirilmenin dinamik davranış açısından öneme sahip olduğu kesinlikle 

söylenmelidir.  

Çizelge 4.26. Elastik ortama gömülü KDFD nanoçubukların farklı boyutsuz elastik ortam 

parametresi, boyutsuz yerel olmayan parametre ve güç indeksi değerlerine göre ilk üç 

mod boyutsuz frekansları 

Sınır 

Şart 
KM η 1. Mod   2. Mod   3. Mod 

p  = 0 p = 0.01 p = 10   p  = 0 p = 0.01 p = 10   p  = 0 p = 0.01 p = 10 

C-F 0 0 1.5707 1.5668 0.9467  4.7094 4.6977 2.8386  7.8401 7.8207 4.7257 

   0.1 1.5406 1.5368 0.9286  4.0457 4.0356 2.4385  5.5649 5.5511 3.3543 

   0.2 1.4597 1.4561 0.8798  3.0272 3.0197 1.8247  3.5277 3.5189 2.1264 

 1 0 1.8619 1.8595 1.5172  4.8142 4.8031 3.0758  7.9032 7.8842 4.8714 

  0.1 1.8327 1.8304 1.4993  4.1554 4.1460 2.6855  5.6372 5.6238 3.5200 

  0.2 1.7548 1.7526 1.4519  3.1532 3.1464 2.1034  3.6252 3.6170 2.3458 

 10 0 3.5305 3.5333 3.8670  5.6708 5.6639 4.6999  8.4504 8.4342 6.0259 

   0.1 3.4970 3.4997 3.8366  5.0366 5.0314 4.3129  6.2504 6.2402 4.7581 

   0.2 3.4084 3.4112 3.7567  4.1171 4.1145 3.7785  4.4073 4.4028 3.7861 
              

C-C 0 0 3.1407 3.1329 1.8930  6.2761 6.2605 3.7829  9.4008 9.3775 5.6666 

   0.1 2.9188 2.9115 1.7593  4.9146 4.9024 2.9623  6.0470 6.0321 3.6450 

   0.2 2.4589 2.4528 1.4821  3.3437 3.3354 2.0154  3.6407 3.6317 2.1946 

 1 0 3.2959 3.2890 2.2335  6.3549 6.3398 3.9637  9.4534 9.4304 5.7883 

  0.1 3.0769 3.0705 2.1043  5.0005 4.9889 3.1581  6.1108 6.0961 3.7915 

  0.2 2.6269 2.6217 1.8432  3.4510 3.4433 2.2555  3.7326 3.7241 2.4017 

 10 0 4.4559 4.4539 4.1989  7.0251 7.0135 5.3215  9.9143 9.8938 6.7863 

   0.1 4.2426 4.2411 4.0527  5.7162 5.7081 4.5559  6.6570 6.6452 4.9174 

   0.2 3.8194 3.8190 3.7691  4.2981 4.2943 3.7838  4.4752 4.4703 3.7866 

 

Çizelge 4.26’da eksenel elastik ortama gömülü iki farklı sınır şartlı KDFD eksenel 

nanoçubukların ilk üç mod boyutsuz frekansları, boyutsuz atomik parametre, güç indeksi 

ve boyutsuz elastik ortam parametresinin farklı değerlerine göre hesaplanmaktadır. Buna 

göre, elastik ortamın çubuk rijitliğini artırdığından frekanslar üzerinde artırıcı bir etkisi 

bulunmaktadır. Ek olarak, elastik ortam parametresinin daha az rijit olan C-F 

nanoçubuklarının frekanslarını daha fazla yükselttiği görülmüştür. Çok önemli bir 

çıkarıma göre, elastik ortam parametresi yükseldikçe yerel olmayan parametrenin ve güç 

indeksinin frekanslar üzerindeki düşürücü etkisi azalmaktadır. Burada elde edilen 

sonuçlar genel olarak nanokirişlerdeki çıkarımlarla paralellik göstermektedir. Nano-

elektro-mekanik sistem uygulamalarında yer alan ve C-C, C-F gibi sınır şartlarla ve 

kiriş/çubuk gibi mekanik yapı elemanıyla modellenebilen nanoyapının oturduğu veya 

gömüldüğü bölgenin elastik zemin veya ortam gibi modellenebileceği (Numanoğlu 2019, 

Numanoğlu ve Civalek 2019a, Civalek ve Numanoğlu 2020) düşünüldüğünde, burada 
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elde edilen sonuçlar nanoyapıların dinamik karakteristiklerini anlayabilmek açısından 

dikkat çekicidir. 

Çizelge 4.27. İki ucu tutulu KDFD nanoçubukların yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan ilk beş mod boyutsuz frekanslarının karşılaştırılması (p = 1) 

η Mod  Analitik NL-FEM Sonuçları  Dω̅ (%) 

   n = 15 n = 10 n = 5  n = 15 n = 10 n = 5 

0 1 2.6350 2.6350 2.6350 2.6353  0.0000 0.0000 0.0114 

  2 5.2656 5.2653 5.2659 5.2737  -0.0057 0.0057 0.1538 

  3 7.8872 7.8867 7.8903 7.9436  -0.0063 0.0393 0.7151 

 4 10.4957 10.4957 10.5092 10.7031  0.0000 0.1286 1.9760 

 5 13.0869 13.0895 13.1273 13.1836  0.0199 0.3087 0.7389 
          

0.1 1 2.4488 2.4488 2.4488 2.4490  0.0000 0.0000 0.0082 

  2 4.1233 4.1233 4.1236 4.1273  0.0000 0.0073 0.0970 

  3 5.0734 5.0736 5.0745 5.0887  0.0039 0.0217 0.3016 

 4 5.6000 5.6004 5.6026 5.6319  0.0071 0.0464 0.5696 

 5 5.9034 5.9037 5.9081 5.9095  0.0051 0.0796 0.1033 
          

0.2 1 2.0630 2.0630 2.0630 2.0631  0.0000 0.0000 0.0048 

 2 2.8053 2.8053 2.8054 2.8066  0.0000 0.0036 0.0463 

 3 3.0546 3.0541 3.0547 3.0581  -0.0164 0.0033 0.1146 

 4 3.1572 3.1539 3.1570 3.1633  -0.1045 -0.0063 0.1932 

 5 3.2065 3.1943 3.2050 3.2062  -0.3805 -0.0468 -0.0094 
          

0.5 1 1.1848 1.1848 1.1848 1.1848  0.0000 0.0000 0.0000 

  2 1.2858 1.2840 1.2856 1.2859  -0.1400 -0.0156 0.0078 

  3 1.3069 1.2901 1.3043 1.3071  -1.2855 -0.1989 0.0153 

 4 1.3138 1.2903 1.3071 1.3139  -1.7887 -0.5100 0.0076 

 5 1.3162 1.2904 1.3076 1.3156  -1.9602 -0.6534 -0.0456 

 

İki ucu tutulu KDFD nanoçubukların seçilmiş bir güç indeksi değeri için ilk beş 

mod yerel olmayan boyutsuz frekanslarının yerel olmayan sonlu elemanlar metodu ile 

hesaplanan değerlerle karşılaştırılması Çizelge 4.27 ile sunulmaktadır. Klasik elastisite 

ile çok düşük ve düşük boyutsuz yerel olmayan parametre değerleri için boyutsuz frekans 

değerleri Çizelge 4.25 ile verilmişti. Öncelikle bu değerler hakkındaki karşılaştırmalar ele 

alınacaktır. n = 5 gibi düşük sonlu eleman sayısı ile analizdeki sonuçların çoğunlukla 

uygun olduğu ve atomik parametre arttıkça sapmanın düşmekte olduğu ifade edilebilir. 

Ancak burada düşük bir boyutsuz atomik parametre değeri olarak tanımlanan η = 0.2 için 

beşinci modun yakınsaklığı negatif bir değer olarak elde edilmiştir. Nanokirişlerde 

negatif yakınsaklık, termal çevreden kaynaklanan oldukça yüksek sıcaklıkların ekstrem 

bir durum olması nedeniyle göz ardı edilmişti. Ancak burada dış ortamsız yani esasında 

temel bir mekanik davranışın incelenmesi söz konusudur. Temel bir mekanik davranışın 

sayısal yöntemlerle incelenmesi esnasında elde edilen ve soruna sebebiyet verecek 

sonuçlar davranışın doğru olarak öğrenilmesini kesinlikle engeller. Düşük boyutsuz yerel 

olmayan parametre altında diğer yüksek modlar ve düşük modlarda değeri yükselen 

boyutsuz yerel olmayan parametre gibi durumlar altında sonlu eleman analizi ile yine 

sorunlu sonuçların elde edileceği kuvvetle muhtemeldir. Ayrıca, bu durumlar 

düşünülmese bile, çizelgede tanımlanan durumlarda sonlu eleman sayısının artışı olan 

n = 10 için negatif hata mutlak değerce artmakta ve negatif hata düşük modlara sirayet 

etmektedir. Dahası, hatanın vaziyetini kapsamlı olarak görebilmek için Çizelge 4.25’ten 

farklı olarak burada verilen ve bir ekstrem durum olan çok yüksek boyutsuz atomik 

parametre değeri olarak tanımlanan η = 0.5 değeri için elde edilen sapmalar temel mod 
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hariç çoğunlukla uygun görünmemektedir. Ek olarak belirtilmelidir ki, daha yüksek 

modlarda negatif sapmanın mutlak değerce giderek artacağı barizdir. Burada ele alınan 

temel nanomekanik analiz belki elle çözülebildiğinden sonlu eleman sonuçları dikkate 

alınmayabilir ancak el çözümüne müsait olmayan ve elektronik ortamda sembolik 

programlamayla dahi analitik çözümünün neticelerine ulaşılamayan, sonuç olarak 

yaklaşık yöntemlere ihtiyaç duyulan bir mekanik analizde bu durum ciddi bir problemi 

ortaya çıkaracaktır. Bu nedenle nanomekanik davranışın öğrenilebilmesi adına sayısal 

sonuçların kapsamlı tartışmasından önce yerel olmayan sonlu elemanlar metodundaki 

problemli sonuçların kaynağına inilmelidir. Buradaki araştırmaların, mekanik açıdan da 

anlamlı olarak adım adım yapılması gerektiği düşünüldüğünden ilk olarak kayma 

deformasyonlu homojen çubuklar ele alınacaktır ve bu konudaki sonuçlar izleyen çizelge 

ile verilmektedir. 

Çizelge 4.28. İki ucu tutulu KDH eksenel nanoçubukların farklı boyutsuz yerel olmayan 

parametre değerlerine göre yerel olmayan sonlu elemanlar formülasyonuyla hesaplanan 

ilk beş mod boyutsuz frekanslarının karşılaştırılması 

η Mod  Analitik NL-FEM Sonuçları  Dω̅ (%) 

   n = 15 n = 10 n = 5  n = 15 n = 10 n = 5 

0 1 3.1407 3.1407 3.1407 3.1410  0.0000 0.0000 0.0096 

  2 6.2761 6.2758 6.2765 6.2857  -0.0048 0.0064 0.1530 

  3 9.4008 9.4002 9.4045 9.4679  -0.0064 0.0394 0.7138 

 4 12.5098 12.5098 12.5259 12.7570  0.0000 0.1287 1.9761 

 5 15.5983 15.6014 15.6465 15.7136  0.0199 0.3090 0.7392 
          

0.1 1 2.9188 2.9187 2.9188 2.9190  -0.0034 0.0000 0.0069 

  2 4.9146 4.9146 4.9149 4.9193  0.0000 0.0061 0.0956 

  3 6.0470 6.0473 6.0483 6.0653  0.0050 0.0215 0.3026 

 4 6.6746 6.6752 6.6777 6.7126  0.0090 0.0464 0.5693 

 5 7.0363 7.0366 7.0419 7.0435  0.0043 0.0796 0.1023 
          

0.2 1 2.4589 2.4589 2.4589 2.4591  0.0000 0.0000 0.0081 

 2 3.3437 3.3437 3.3438 3.3452  0.0000 0.0030 0.0449 

 3 3.6407 3.6402 3.6409 3.6450  -0.0137 0.0055 0.1181 

 4 3.7631 3.7592 3.7628 3.7703  -0.1036 -0.0080 0.1913 

 5 3.8218 3.8073 3.8201 3.8214  -0.3794 -0.0445 -0.0105 
          

0.5 1 1.4121 1.4121 1.4121 1.4122  0.0000 0.0000 0.0071 

  2 1.5326 1.5304 1.5323 1.5327  -0.1435 -0.0196 0.0065 

  3 1.5577 1.5376 1.5546 1.5579  -1.2904 -0.1990 0.0128 

 4 1.5659 1.5379 1.5579 1.5660  -1.7881 -0.5109 0.0064 

 5 1.5688 1.5380 1.5586 1.5680  -1.9633 -0.6502 -0.0510 

 

 Çizelge 4.28’de, iki ucu tutulu ve KDH eksenel nanoçubukların farklı boyutsuz 

atomik parametre altında yerel olmayan sonlu elemanlar formülasyonu kullanılarak 

hesaplanan ilk beş mod boyutsuz frekans değerlerinin analitik değerlere yakınsama 

çalışması verilmektedir. Sapma yüzdeleri göz önüne alındığında, bunların genellikle 

mutlak değerce oldukça düşük olduğu görülmektedir. Ancak, açıkçası yaklaşık metotlarla 

bir mekanik problemin analizinde mutlak değerce sapma yüzdeleri mühendislik yorumu 

açısından yeterli bir gösterge değildir. Dolayısıyla daha detaylı bir inceleme yapılmalıdır. 

Buna göre, formülasyon Çizelge 4.27’nin tartışmaları esnasında da değinildiği gibi bazı 

durumlarda oldukça başarılı olmaktadır ancak negatif sapma yüzdelerinin hesaplandığı 

durumlarda başarının düştüğü ifade edilmelidir. 5 ve 10 eleman kullanılarak yapılan 

analizlerde, çok düşük ve düşük boyutsuz atomik parametre değerleri için analiz 
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sonuçlarında genel olarak önemli bir başarının sağlandığı yine ifade edilebilir. Bu kısım 

ele alınacak olursa, genel olarak sonlu eleman sayısının artışı ile analitik sonuca 

yakınsaklık artmıştır. Ancak mod sayısı yükseldikçe yakınsaklığın azaldığı 

gözlemlenmektedir. Ek olarak, boyutsuz yerel olmayan parametre arttıkça yakınsaklık 

her modda artmıştır. Yerel olmayan analizde bir başarının yakalandığı yine ilk olarak akla 

gelebilir ancak yüksek boyutsuz yerel olmayan parametre değeri ile hesaplamada 

yakınsaklık oranı negatife dönmüştür yani sonlu elemanlar sonucu analitik sonucun altına 

düşmüştür. Ayrıca, mod sayısı arttıkça analitik sonuçların zaten altında olan değerler 

giderek analitik sonuçtan uzaklaşmaktadır. Bu sonuçlar, sonlu elemanlar analizinin 

kayma deformasyonlu nanoçubuklarda yerel olmayan parametre için bir şüphe 

barındırdığını göstermektedir. Bir şüphenin olduğundan kesin biçimde emin olmak 

amacıyla incelenmiş olan daha yüksek sayıda elemanlı yani 15 elemanlı analizler çok 

daha başarısız değerler vermektedir. Burada temel modda bile negatif sapma yüzdesinin 

elde edildiği bir durum gözlemlenmektedir. Ayrıca, 15 elemanlı analizlerde daha klasik 

elastisitede bile dikkat çeken negatif sapma değerleri mevcuttur. Bir ilave inceleme 

yapılarak 20 elemanın kullanıldığı analizlerde klasik temel mod frekansları da analitik 

neticelerin altına inmiştir ancak tartışmayı kalabalıklaştırmamak için bunun detayı 

verilmeyecektir. Sonuç olarak sonlu eleman analizindeki problem dikkate değerdir. 

Çizelgeler 4.27 ve 4.28 göstermiştir ki, sonlu eleman sayısının daha da yükseltilmesi 

durumunda, yüksek olmayan değerli boyutsuz yerel olmayan parametrelerde bile oldukça 

başarısız sonuçlar alınacağı düşünülmektedir. Sorunun çözümü için formülasyonda bir 

düzenlemeye gidilerek sonuçların karşılaştırılması bu çalışmanın kapsamındadır ancak şu 

aşamada sorunun kökenine inilmediği hatırlatılmalıdır. Şimdi buna uğraşılacaktır. 

Yerel olmayan sonlu elemanlar formülasyonunda yapılacak düzenlemenin ilk 

adımı şüphelerin eksiksiz olarak tespit edilmesidir. Buraya kadar yapılan tartışmada 

yüksek sonlu eleman sayılarıyla klasik sonlu eleman analizinden düşük modlar için 

negatif sapma elde edildiği görülmüş, sonlu eleman sayısı daha da yükseltilirse temel 

modun bile negatif sapma verdiği açıklanmıştı. Bilindiği üzere tez çalışmasının eksenel 

çubuklarla ilgili kısmı kayma deformasyonlu eksenel çubuk kuramını yani yerel olmayan 

Love-Bishop çubuk teorisini ele almıştır. Bu konuda, yerel olmayan sonlu eleman analizi 

çerçevesinde yapılan çalışmalarda (Demir ve Civalek 2013; Numanoğlu ve Civalek 

2022), kayma deformasyonunun (veya yanal deformasyon, Poisson etkisi) ihmal edildiği 

kuram olan basit çubuk formülasyonuna dayalı yerel olmayan serbest titreşimde yüksek 

sonlu eleman için formülasyondan beklenen başarının yakalandığı ifade edilmelidir. Yani 

klasik elastisitede temel modda ve özellikle yüksek boyutsuz yerel olmayan parametre 

değeri altında özellikle yüksek modlarda da sapmaların uygun olması ve sonlu eleman 

sayısının artışı için yüksek yakınsaklığın genel olarak sağlanması bu ifade edilende 

kastedilmektedir. Sonuç olarak ilk şüpheler, kayma deformasyonlu homojen çubukların 

klasik serbest titreşimi üzerindedir. Şüphelerin kesinleştirilmesi amacıyla, homojen ve 

kayma deformasyonsuz eksenel nanoçubukların klasik ve yerel olmayan serbest titreşim 

analizlerinde sonlu eleman formülasyonunun yakınsaklıkları hesaplanmış olup bunlar 

izleyen çizelgede verilmektedir. 
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Çizelge 4.29. İki ucu tutulu kayma deformasyonsuz homojen eksenel nanoçubukların 

farklı boyutsuz atomik parametre değerlerine göre yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan ilk beş mod boyutsuz frekanslarının karşılaştırılması 

η Mod  Analitik NL-FEM Sonuçları  Dω̅ (%) 

   n = 15 n = 10 n = 5  n = 15 n = 10 n = 5 

0 1 3.1416 3.1416 3.1416 3.1419  0.0000 0.0000 0.0095 

  2 6.2832 6.2833 6.2839 6.2932  0.0016 0.0111 0.1592 

  3 9.4248 9.4258 9.4297 9.4947  0.0106 0.0520 0.7417 

 4 12.5664 12.5705 12.5865 12.8242  0.0326 0.1600 2.0515 

 5 15.7080 15.7204 15.7669 15.8114  0.0789 0.3750 0.6583 
          

0.1 1 2.9972 2.9972 2.9972 2.9975  0.0000 0.0000 0.0100 

  2 5.3202 5.3203 5.3206 5.3263  0.0019 0.0075 0.1147 

  3 6.8587 6.8591 6.8606 6.8855  0.0058 0.0277 0.3907 

 4 7.8248 7.8258 7.8296 7.8859  0.0128 0.0613 0.7809 

 5 8.4356 8.4376 8.4447 8.4515  0.0237 0.1079 0.1885 
          

0.2 1 2.6601 2.6601 2.6601 2.6603  0.0000 0.0000 0.0075 

 2 3.9124 3.9124 3.9126 3.9148  0.0000 0.0051 0.0613 

 3 4.4169 4.4170 4.4174 4.4241  0.0023 0.0113 0.1630 

 4 4.6458 4.6460 4.6468 4.6584  0.0043 0.0215 0.2712 

 5 4.7645 4.7648 4.7661 4.7673  0.0063 0.0336 0.0588 
          

0.5 1 1.6871 1.6871 1.6871 1.6872  0.0000 0.0000 0.0059 

  2 1.9058 1.9058 1.9058 1.9061  0.0000 0.0000 0.0157 

  3 1.9564 1.9564 1.9565 1.9571  0.0000 0.0051 0.0358 

 4 1.9751 1.9752 1.9752 1.9761  0.0051 0.0051 0.0506 

 5 1.9840 1.9840 1.9841 1.9842  0.0000 0.0050 0.0101 

 

Yerel olmayan basit çubuk teorisine (Aydoğdu 2008, 2012) göre formüle edilen 

yani kayma deformasyonsuz iki ucu tutulu nanoçubuğun Çizelge 4.29’daki sonuçları 

yerel olmayan sonlu elemanlar formülasyonundan beklenen davranışı ve formülasyonun 

kullanım faydalarını fazlasıyla ortaya koymaktadır. Bu analiz tez kapsamına girmediği 

için kısaca bahsetmek adına, genel olarak formülasyonun çok yüksek bir yakınsaklık 

sağlama başarısına sahip olduğu ifade edilebilir. Tabi yüksek modlarda sapma yüzdesi 

artmaktadır. Artan sapmayı düşürmek sonlu eleman sayısının yükseltilmesiyle mümkün 

olmuştur. Öte yandan, yerel olmayan parametre yükseldikçe sapma yüzdeleri düşmüştür. 

Bu durum, sonlu elemanlar formülasyonunun yerel olmayan mekanik analiz 

problemlerinde kesinlikle bir yarar sağlayacağını göstermektedir. Burada elde edilen 

sonuçlara istinaden, klasik teoriyle hesaplanan bazı sonuçların yakınsaklığında bile bir 

problem olduğundan kayma deformasyonlu homojen çubukların kayma deformasyonsuz 

homojen çubuklara göre ilave mekanik davranış matrisleri olan ve sırasıyla Denklemler 

(3.257) ve (3.262) ile tanıtılan yanal atalet KI ve klasik kütle ataleti MI,c matrislerinden 

şüphelenilmektedir. Bunlara ek olarak, düşük ve yüksek değerli boyutsuz yerel olmayan 

parametrenin yüksek modlarında sapma yüzdelerinin negatif olması ve mod sayısı 

arttıkça negatif sapmaların mutlak değerce yükselmesi nedeniyle Denklem (3.263) ile 

formüle edilen ve yerel olmayan kütle ataleti matrisini tanımlayan MI,nl ifadesi de şüpheli 

durumdadır. Kayma deformasyonsuz yerel olmayan eksenel nanoçubukların serbest 

titreşiminin sonlu eleman analizlerinde herhangi bir problemli sonuç tespit edilmediği 

yukarıda belirtildiğinden, yerel olmayan kütle matrisi Mnl ifadesi üzerinde herhangi bir 

düzenleme işlemine gerek yoktur. Ayrıca, ilgili analizde elastik ortam ihmal edildiğinden 

bununla ilgili şu aşamada bir fikir yürütülmeyecektir. 
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Yerel olmayan sonlu eleman formülasyonunda söz konusu şüpheye yol açan 

durum, olması gerekenden daha düşük hesaplanan sayısal değerlerdir. Söz konusu 

şüpheye istinaden, sonlu elemanlar formülasyonunun sembolize edilmiş genel denklemi 

olan (K − ω2M) = 0 denkleminde indirgenmiş küresel rijitlik matrisi K’nin olması 

gerekenden düşük veya indirgenmiş küresel kütle matrisi M’nin olması gerekenden fazla 

olduğu, ya da ikisinin birlikte bulunduğu anlaşılmaktadır. İki durumun bir arada 

bulunduğu düşünülerek, şüpheli durumdaki matrislerden ilk olarak klasik olanlar yani 

sırasıyla Denklemler (3.257) ve (3.262) ile formüle edilen yanal atalet rijitliği KI ve klasik 

yanal kütle ataleti MI,c matrisleri üzerinde bir düzenleme önerilmektedir. Buna göre, 

olması gerekenden yüksek veya düşük olan matrisleri olması gereken düzeye 

yakınlaştırabilmek suretiyle,  

  
1

n

n
 


 (4.11) 

ile verilen bir parametre doğrultusunda, yanal atalet rijitliği ve klasik kütle ataleti 

matrislerinin aşağıdaki gibi değiştirilerek Denklem (3.266)’da verilen sonlu eleman 

analizine tekrar girmesi yani teknik tabirle sonlu elemanlar analizinin modifiye edilmesi 

sayısal analizler kapsamında ele alınacaktır:  
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 (4.13) 

Denklem (4.11)’de β değiştirme (modifikasyon) parametresi olarak tanımlanır ve n sonlu 

eleman sayısıdır.  

 Buradan itibaren, yukarıda anlatıldığı üzere ve bundan sonra modifiye edilmiş 

yerel olmayan sonlu elemanlar metodu olarak anılacak yeni bir çözümün kayma 

deformasyonlu çubuklar üzerindeki uygulamaları verilmektedir.  
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Çizelge 4.30. İki ucu tutulu KDH nanoçubukların farklı boyutsuz yerel olmayan 

parametre değerlerine göre modifiye edilmiş (ilk defa) yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan ilk beş mod boyutsuz frekanslarının karşılaştırılması 

η Mod  NL-FEM Sonuçları  Dω̅ (%) 

  n = 15 n = 10 n = 5  n = 15 n = 10 n = 5 

0 1 3.1424 3.1425 3.1427  0.0541 0.0573 0.0637 

  2 6.2898 6.2905 6.2988  0.2183 0.2294 0.3617 

  3 9.4475 9.4517 9.5119  0.4968 0.5414 1.1818 

 4 12.6214 12.6371 12.8636  0.8921 1.0176 2.8282 

 5 15.8180 15.8624 15.9363  1.4085 1.6931 2.1669 
         

0.1 1 2.9202 2.9202 2.9204  0.0480 0.0480 0.0548 

  2 4.9224 4.9227 4.9266  0.1587 0.1648 0.2442 

  3 6.0642 6.0654 6.0809  0.2844 0.3043 0.5606 

 4 6.7026 6.7053 6.7377  0.4195 0.4600 0.9454 

 5 7.0765 7.0809 7.0884  0.5713 0.6339 0.7404 
         

0.2 1 2.4599 2.4599 2.4600  0.0407 0.0407 0.0447 

 2 3.3472 3.3473 3.3485  0.1047 0.1077 0.1436 

 3 3.6475 3.6479 3.6511  0.1868 0.1978 0.2857 

 4 3.7739 3.7746 3.7801  0.2870 0.3056 0.4518 

 5 3.8374 3.8386 3.8406  0.4082 0.4396 0.4919 
         

0.5 1 1.4125 1.4125 1.4125  0.0283 0.0283 0.0283 

  2 1.5336 1.5336 1.5337  0.0652 0.0652 0.0718 

  3 1.5597 1.5599 1.5601  0.1284 0.1412 0.1541 

 4 1.5692 1.5695 1.5700  0.2107 0.2299 0.2618 

 5 1.5737 1.5741 1.5751  0.3123 0.3378 0.4016 

 

 İlk olarak kayma deformasyonlu homojen çubuklar hakkında modifiye edilmiş 

yerel olmayan sonlu elemanlar formülasyonu kullanılarak yapılan analiz sonuçları 

Çizelge 4.30’da sunulmaktadır. Yeni elde edilen sonuçların, Çizelge 4.28’de detaylı 

olarak bahsedilen bütün problemli durumları kaldırdığı şeklinde bir öngörüde 

bulunulabilir. Buna göre çoğu durumda karşı karşıya kalınan negatif sapmalar ortadan 

kaldırılmakta, sonlu elemanlar prosedürünün genel karakteristikleri yeni sonuçlarda da 

gözlemlenmektedir. Genel olarak, yüksek modlarda yakınsaklık düşmekte, yerel olmayan 

parametre arttıkça yakınsaklık artmaktadır. Ancak, modifiye edilmiş yerel olmayan sonlu 

elemanlar formülasyonuna göre temel modda daha yüksek bir sapma yüzdesi elde 

edilmektedir. Sapma yüzdeleri burada bir bütün olarak incelenecek olursa sonuçların 

oldukça uygun olduğu ifade edilebilir. Normalde, şu aşamada Çizelge 4.29 tartışılırken 

şüpheli durumda olduğu ifade edilen yerel olmayan kütle ataleti matrisi MI,nl üzerinde bir 

düzeltmeye gerek kalmadığı düşünülebilir. Ancak, tez kapsamında elastik ortama gömülü 

iki ucu tutulu fonksiyonel derecelendirilmiş kayma deformasyonlu nanoçubukların 

Denklemler (4.11)-(4.13)’e dayanılarak modifiye edilen formülasyon kullanılarak 

η = 0.2, KM = 10 ve p = 10 değerleri altındaki analizinde üçüncü modda dikkate değer 

negatif sapmalar hesaplanmıştır ve bunun atomik parametre, mod sayısı ve sonlu eleman 

sayısının yükselmesi durumunda daha büyük sorunlara sebebiyet vereceği 

düşünülmektedir. Söz konusu analiz sonuçları Çizelge 4.31’in orta bölmesinde 

verilmekte olup, analizde seçilen mekanik parametrelerin ekstrem değil, aksine gayet 

olağan seviyelerde olduğu ifade edilmelidir. Sonuç olarak önerilen formülasyonun 

başarısı kısıtlı kalmış olup, önerilen formülasyon davranışı anlamak için yeterli 

olmayacaktır. Bu nedenle, yerel olmayan sonlu elemanlar formülasyonu, Denklemler 
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(4.11)-(4.13)’e ek olarak, Denklem (3.263) ile tanıtılan yerel olmayan yanal kütle ataleti 

matrisi MI,nl’nin aşağıdaki şekilde düzenlenmesi suretiyle ikinci defa modifiye 

edilecektir: 
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 İkinci kez modifiye edilmiş formülasyonun uygulaması Çizelge 4.31’in alt 

bölmesinde verilmektedir. 

Çizelge 4.31. Elastik ortama gömülü iki ucu tutulu KDFD nanoçubukların yerel olmayan 

sonlu elemanlar formülasyonuyla hesaplanan ilk beş mod boyutsuz frekanslarının 

karşılaştırılması (η = 0.2, KM = 10, p = 10) 

İşlem Mod NL-FEM Sonuçları  Dω̅ (%) 

  n = 15 n = 10 n = 5  n = 15 n = 10 n = 5 

Modifikasyon 1 3.6011 3.7060 3.7682  -4.4573 -1.6741 -0.0239 

Önerisiz (Orijinal 2 3.6013 3.7062 3.7737  -4.8232 -2.0508 -0.2669 

Formülasyon) 3 3.6014 3.7062 3.7741  -4.8909 -2.1233 -0.3301 

 4 3.6014 3.7062 3.7742  -4.8256 -2.0560 -0.2590 

 5 3.6015 3.7062 3.7742  -4.6794 -1.9083 -0.1085 
         

İlk Defa 1 3.6685 3.7379 3.7699  -2.6691 -0.8278 0.0212 

Modifikasyon 2 3.6687 3.7379 3.7816  -3.0419 -1.2131 -0.0581 

 3 3.6687 3.7379 3.7827  -3.1136 -1.2861 -0.1030 

 4 3.6687 3.7379 3.7830  -3.0470 -1.2183 -0.0264 

 5 3.6687 3.7379 3.7830  -2.9008 -1.0693 0.1244 
         

İkinci Defa  1 3.7705 3.7705 3.7705  0.0371 0.0371 0.0371 

Modifikasyon 2 3.7881 3.7882 3.7884  0.1136 0.1163 0.1216 

 3 3.7953 3.7955 3.7959  0.2298 0.2350 0.2456 

 4 3.7985 3.7987 3.7992  0.3832 0.3885 0.4017 

 5 3.8001 3.8003 3.8092  0.5770 0.5823 0.8178 
         

 1. Mod 2. Mod 3. Mod 4. Mod 5. Mod 

Analitik 3.7691 3.7838 3.7866 3.7840 3.7783 

 

Fonksiyonel derecelendirilmiş Love-Bishop nanoçubuklarının serbest eksenel 

titreşim davranışını mümkün olduğunca doğru anlamak maksadıyla, ilk defa modifiye 

edilmiş yerel olmayan sonlu elemanlar formülasyonunun sonuçlarını mantıksız bir 

duruma düşürdüğü Çizelge 4.30 tartışılırken ifade edilen mekanik parametreler altında, 

ikinci kez modifiye edilmiş yerel olmayan sonlu elemanlar formülasyonunun sonuçları 

Çizelge 4.31 ile sunulmaktadır. Öncelikle yerel olmayan sonlu elemanlar formülasyonu 

üzerinde bir değiştirme işlemine olan ihtiyacı bir kez daha vurgulamak için çizelgenin üst 

bölmesindeki sonuçlar verilmektedir. Gerek negatif sapma değerlerinin elde edilmesi, 

gerek sonlu eleman sayısı arttıkça sapmanın büyümesi, gerekse mod sayısına göre 

frekansların değişmemesi nedeniyle (çizelgenin en altındaki analitik sonuçlarda böyle bir 

durum olmadığı gözlemlenmektedir) sonuçlardan nanomekanik davranış hakkında hiçbir 

şey öğrenilemeyeceği ve bu mekanik analiz probleminde söz konusu sayısal yaklaşımın 

kullanılamayacağı gayet açıktır. İlk defa modifiye edilmiş formülasyonun başarılı olduğu 

her ne kadar Çizelge 4.30’daki analizlerde gözlemlense bile incelenen problemin bu 
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boyutunda önerilen formülasyon orijinal formülasyon gibi davranmış olup netice 

itibariyle maalesef başarısız kalmıştır. Bu nedenle yerel olmayan sonlu elemanlar 

formülasyonu üzerinde ilkine ek olarak ikinci bir modifikasyon yapılmış olup, nihayetiyle 

bu şekilde önerilen formülasyon kullanılarak elde edilen sonuçlar oldukça uygun 

görünmektedir. Tam bu noktada önemli bir parantez açılması oldukça elzemdir. İlk defa 

modifiye edilmiş formülasyonun kullanılamayacağının anlaşıldığı bu analiz önceki sonlu 

eleman analizlerinden farklı olarak bir dış etmeni, elastik ortam rijitliğini içerir. Bu 

aşamada, modifikasyonu ilk defa önerilen formülasyonun elastik ortam nedeniyle sorunlu 

bir hal alabileceği, bu nedenle orijinal çözüm prosedürüne sırasıyla Denklemler (3.258) 

ve (3.259) ile katılan elastik ortamın klasik ve yerel olmayan rijitlikleri olan KM,c ve KM,nl 

matrislerinin bir sorun oluşturabileceği şüphesi akla gelmektedir. Elastik ortamla ilgili bir 

fikir yürütülmeyeceği burada tekrar belirtilmektedir. Bunun birinci sebebi, Numanoğlu 

(2019) tarafından sunulan yüksek lisans tez çalışmasında incelenen kayma 

deformasyonsuz homojen nanoçubuklarda elastik ortam altındaki sonlu eleman 

analizlerinde hiçbir sorun olmaması, ikincisi ise elastik ortamın gözetildiği Çizelgeler 

4.33-4.35 ile verilen sonuçlardan ikinci kez modifiye edilmek suretiyle nihai halini almış 

yeni yerel olmayan sonlu elemanlar formülasyonunun kullanılabilirliğinin görülecek 

olmasıdır.  

Öte yandan, Çizelge 4.31’de analitik değerlerden beşinci modun boyutsuz 

frekansının dördüncü moddan ve dördüncü modun boyutsuz frekansının üçüncü moddan 

düşük olduğu gözlemlenmiştir. Denklem (3.175) ile hesaplanan doğal frekansın pay ve 

paydasında, sınır şarta bağlı olarak Fourier serilerinden gelen çarpanlar ve titreşim 

analizine dahil olan parametrelerin ekstrem durumlarının bir arada bulunması nedeniyle 

böyle bir durum gerçekleşebilmektedir. Hatta, analizdeki mekanik parametreler öyle 

ekstrem düzeylerde olabilir ki henüz temel moddan itibaren mod sayısı arttıkça frekans 

düşebilir. Dahası, mekanik parametrelerin bazı ekstrem durumlarında C-F 

nanoçubuğunun yüksek mod frekanslarının C-C nanoçubuğunun yüksek modlarını 

geçtiği bile literatürdeki bazı hesapların sonucudur (Civalek ve Numanoğlu 2020). Bir 

titreşim probleminin sonlu eleman analizinde standart özdeğer çözümünün vereceği 

değerler (doğal frekanslar) temel moddan itibaren sıralandığında bir modun doğal 

frekansı önceki modun çoğunlukla üstünde hesaplanır, yani frekanslar önceki modun 

kesinlikle altına düşmez ve bu durum sonlu eleman çözümünün değişmez bir 

karakteristiğidir. Artık nihayet düzenleme sürecinin sonuna getirilebilmiş olan yerel 

olmayan sonlu elemanlar formülasyonunun başarısının bu paragrafta açıklandığı gibi 

zuhur edebilen durumlardan muaf tutulması gerektiği düşünülmektedir. 

Kayma deformasyonlu homojen nanoçubukların yerel olmayan serbest titreşim 

analizi için, sonlu eleman formülasyonundaki modifikasyon süreci nedeniyle Çizelge 

4.30’da verilen sonuçlar geçersiz olduğundan ikinci kez modifikasyon işleminin sonuçları 

Çizelge 4.32’de verilmektedir. Burada genel olarak sapma değerleri Çizelge 4.30’da 

görülenlerden yüksektir ancak oluşan farklılık dikkate değer bir düzeyde değildir. Her ne 

kadar tez konusu olmasa da kayma deformasyonsuz homojen nanoçubukların yerel 

olmayan sonlu eleman analizi hakkında Çizelge 4.29’da yapılan mekanik davranışın 

sayısal metotlarla tartışılması sonucundaki çıkarımların hepsinin Love-Bishop 

nanoçubukları için de geçerli olduğu rahatlıkla ifade edilebilir.  
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Çizelge 4.32. İki ucu tutulu KDH nanoçubukların farklı boyutsuz yerel olmayan 

parametre değerlerine göre modifiye edilmiş (ikinci defa) yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan ilk beş mod boyutsuz frekanslarının karşılaştırılması 

η Mod  NL-FEM Sonuçları  Dω̅ (%) 

  n = 15 n = 10 n = 5  n = 15 n = 10 n = 5 

0.1 1 2.9203 2.9203 2.9205  0.0514 0.0514 0.0582 

  2 4.9237 4.9243 4.9283  0.1852 0.1974 0.2788 

  3 6.0690 6.0716 6.0873  0.3638 0.4068 0.6664 

 4 6.7125 6.7188 6.7525  0.5678 0.6622 1.1671 

 5 7.0914 7.1029 7.1297  0.7831 0.9465 1.3274 
         

0.2 1 2.4600 2.4601 2.4602  0.0447 0.0488 0.0529 

 2 3.3484 3.3491 3.3505  0.1406 0.1615 0.2034 

 3 3.6500 3.6520 3.6563  0.2554 0.3104 0.4285 

 4 3.7771 3.7807 3.7891  0.3720 0.4677 0.6909 

 5 3.8408 3.8459 3.8669  0.4971 0.6306 1.1801 
         

0.5 1 1.4126 1.4127 1.4127  0.0354 0.0425 0.0425 

  2 1.5338 1.5342 1.5347  0.0783 0.1044 0.1370 

  3 1.5599 1.5605 1.5618  0.1412 0.1798 0.2632 

 4 1.5694 1.5700 1.5716  0.2235 0.2618 0.3640 

 5 1.5738 1.5745 1.5865  0.3187 0.3633 1.1283 

 

Sonlu eleman analizi hakkında henüz ilk tartışmalardan itibaren ifade edildiği 

üzere (yani henüz modifikasyon önerileri ele alınmamışken), analizde sonlu eleman sayısı 

arttıkça negatif sapma yüzdelerinin giderek yükselmesi, karşılaştırmalı sonuçlarda göze 

çarpan bir diğer başarısızlık durumuydu. Bu nedenle önerilen nihai yaklaşımın 

kullanılabilirliğini incelemek amacıyla, Çizelge 4.32’deki boyutsuz atomik parametreler 

altında 50 elemanın kullanıldığı bir ilave analiz daha gerçekleştirilmiş olup, herhangi bir 

sorun gözlemlenmemiş, sonuçlar doğal olarak biraz daha yakınsak elde edilmiştir. Sayısal 

sonuçlar ve tartışma bölümünün kalabalıklaşacağı düşüncesiyle ilave analiz sonuçlarının 

burada verilmemesi tercih edilmiştir.  

Buradan itibaren yerel olmayan sonlu elemanlar formülasyonun modifikasyon 

süreci hakkında “ilk defa” veya “ikinci defa” ifadeleri zikredilmeyecek olup, önerilen 

yaklaşım tekrardan “modifiye edilmiş sonlu elemanlar formülasyonu” ismiyle anılacaktır. 

Çizelge 4.33. Elastik ortama gömülü iki ucu tutulu KDH nanoçubukların farklı boyutsuz 

elastik ortam rijitliği değerlerine göre modifiye edilmiş yerel olmayan sonlu elemanlar 

formülasyonuyla hesaplanan ilk beş mod klasik boyutsuz frekanslarının karşılaştırılması 

KM Mod  Analitik NL-FEM Sonuçları 

   n = 15 n = 10 n = 5 

1 1 3.2959 3.2977 3.2977 3.2979 

  2 6.3549 6.3688 6.3695 6.3777 

  3 9.4534 9.5003 9.5045 9.5643 

 4 12.5492 12.6609 12.6766 12.9023 

 5 15.6296 15.8495 15.8938 15.9675 
      

10 1 4.4559 4.4580 4.4581 4.4581 

 2 7.0251 7.0399 7.0404 7.0476 

 3 9.9143 9.9625 9.9663 10.0231 

 4 12.8977 13.0111 13.0263 13.2456 

 5 15.9085 16.1306 16.1739 16.2458 
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Çizelge 4.34. Elastik ortama gömülü iki ucu tutulu KDH nanoçubukların farklı boyutsuz 

yerel olmayan parametre ve boyutsuz elastik ortam rijitliği değerlerine göre modifiye 

edilmiş yerel olmayan sonlu elemanlar formülasyonuyla hesaplanan ilk beş mod boyutsuz 

yerel olmayan frekanslarının karşılaştırılması 

KM Mod η = 0.1  η = 0.2 

 Analitik NL-FEM Sonuçları  Analitik NL-FEM Sonuçları 

  n = 15 n = 10 n = 5   n = 15 n = 10 n = 5 

1 1 3.0769 3.0784 3.0785 3.0786  2.6269 2.6280 2.6281 2.6282 

 2 5.0005 5.0097 5.0103 5.0142  3.4510 3.4559 3.4565 3.4578 

 3 6.1108 6.1329 6.1355 6.1509  3.7326 3.7420 3.7440 3.7481 

 4 6.7286 6.7667 6.7729 6.8061  3.8488 3.8632 3.8667 3.8748 

 5 7.0851 7.1406 7.1519 7.1785  3.9044 3.9240 3.9289 3.9494 
           

10 1 4.2426 4.2445 4.2445 4.2446  3.8194 3.8209 3.8209 3.8209 

  2 5.7162 5.7261 5.7266 5.7296  4.2981 4.3038 4.3043 4.3050 

  3 6.6570 6.6803 6.6826 6.6957  4.4752 4.4863 4.4879 4.4906 

 4 7.1962 7.2361 7.2418 7.2709  4.5481 4.5656 4.5683 4.5740 

 5 7.5104 7.5683 7.5789 7.6033  4.5809 4.6057 4.6094 4.6265 

 

Çizelge 4.35. Elastik ortama gömülü iki ucu tutulu KDH nanoçubukların farklı boyutsuz 

yerel olmayan parametre ve boyutsuz elastik ortam rijitliği değerlerine göre modifiye 

edilmiş yerel olmayan sonlu elemanlar formülasyonuyla hesaplanan ilk beş mod boyutsuz 

frekanslarının sapma yüzdeleri 

KM Mod η = 0   η = 0.1   η = 0.2 

 n = 15 n = 10 n = 5   n = 15 n = 10 n = 5   n = 15 n = 10 n = 5 

1 1 0.0546 0.0546 0.0607  0.0488 0.0520 0.0553  0.0419 0.0457 0.0495 

 2 0.2187 0.2297 0.3588  0.1840 0.1960 0.2740  0.1420 0.1594 0.1970 

 3 0.4961 0.5405 1.1731  0.3617 0.4042 0.6562  0.2518 0.3054 0.4153 

 4 0.8901 1.0152 2.8137  0.5662 0.6584 1.1518  0.3741 0.4651 0.6755 

 5 1.4069 1.6904 2.1619  0.7833 0.9428 1.3183  0.5020 0.6275 1.1525 
              

10 1 0.0471 0.0494 0.0494  0.0448 0.0448 0.0471  0.0393 0.0393 0.0393 

  2 0.2107 0.2178 0.3203  0.1732 0.1819 0.2344  0.1326 0.1442 0.1605 

 3 0.4862 0.5245 1.0974  0.3500 0.3846 0.5813  0.2480 0.2838 0.3441 

 4 0.8792 0.9971 2.6974  0.5545 0.6337 1.0380  0.3848 0.4441 0.5695 

 5 1.3961 1.6683 2.1203  0.7709 0.9121 1.2370  0.5414 0.6221 0.9954 

 

Elastik ortama gömülü KDH çubukların boyutsuz elastik ortam rijitliğinin farklı 

değerleri için modifiye edilmiş yerel olmayan sonlu eleman formülasyonu ile analizleri 

Çizelgeler 4.33-4.35 ile verilmektedir. Buna göre nanoçubukların ilk beş mod 

frekanslarının klasik elastisiteye göre yakınsama çalışmaları Çizelge 4.33’te, yerel 

olmayan elastisiteye göre yakışama çalışmaları Çizelge 4.34’te ve bu iki analizin sapma 

yüzdeleri toplu olarak Çizelge 4.35’te listelenmektedir. Bu analizlerin öncelikli amacı 

önerilen sonlu eleman formülasyonunun elastik rijit ortamın dahil olduğu yerel olmayan 

serbest eksenel titreşim probleminde kullanılabilirliğinin vurgulanmasıdır. Sapma 

yüzdeleri elastik ortama gömülü çubuklarda formülasyonun kullanılabileceğini açık bir 

şekilde göstermektedir. Dolayısı ile sırasıyla Denklemler (3.258) ve (3.259) ile ifade 

edilen klasik ve yerel olmayan elastik ortam rijitliği matrislerinin kayma deformasyonlu 

yerel olmayan nanoçubukların sonlu eleman analizinde olduğu gibi kullanılabileceği 

anlaşılır. Elastik ortam parametresi arttıkça sonlu eleman analizinin yakınsaklığının 
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yükseldiği ve bu yakınsaklığın yerel olmayan parametre arttıkça arttığı gözlemlenir. Bu 

sonuçlar önerilen formülasyonun oldukça başarılı olduğunu ortaya koyar. 

Çizelge 4.36. İki ucu tutulu KDFD nanoçubukların farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre modifiye edilmiş yerel olmayan sonlu 

elemanlar formülasyonuyla hesaplanan ilk beş mod boyutsuz frekanslarının 

karşılaştırılması 

p Mod η = 0.1  η = 0.2 

 Analitik NL-FEM Sonuçları  Analitik NL-FEM Sonuçları 

  n = 15 n = 10 n = 5   n = 15 n = 10 n = 5 

0.01 1 2.9115 2.9130 2.9131 2.9133  2.4528 2.4539 2.4540 2.4541 

  2 4.9024 4.9115 4.9121 4.9160  3.3354 3.3401 3.3408 3.3422 

  3 6.0321 6.0540 6.0566 6.0722  3.6317 3.6409 3.6429 3.6472 

 4 6.6581 6.6959 6.7021 6.7357  3.7538 3.7677 3.7714 3.7798 

 5 7.0189 7.0739 7.0853 7.1120  3.8124 3.8313 3.8363 3.8573 
             

1 1 2.4488 2.4501 2.4501 2.4503  2.0630 2.0640 2.0640 2.0641 

  2 4.1233 4.1309 4.1315 4.1348  2.8053 2.8093 2.8098 2.8110 

  3 5.0734 5.0919 5.0941 5.1072  3.0546 3.0623 3.0640 3.0676 

 4 5.6000 5.6317 5.6370 5.6653  3.1572 3.1689 3.1720 3.1791 

 5 5.9034 5.9497 5.9593 5.9818  3.2065 3.2224 3.2267 3.2443 
             

10 1 1.7593 1.7602 1.7602 1.7603  1.4821 1.4828 1.4828 1.4829 

  2 2.9623 2.9678 2.9683 2.9707  2.0154 2.0183 2.0187 2.0196 

  3 3.6450 3.6584 3.6601 3.6696  2.1946 2.2001 2.2013 2.2041 

 4 4.0236 4.0464 4.0505 4.0710  2.2685 2.2767 2.2790 2.2843 

 5 4.2419 4.2749 4.2823 4.3000  2.3041 2.3150 2.3182 2.3322 

 

İki ucu tutulu KDFD nanoçubukların ilk beş mod boyutsuz frekans parametreleri, 

yerel olmayan boyutsuz parametre ve güç indeksinin farklı değerlerine göre analitik ve 

sonlu eleman çözümleri ile hesaplanmış olup bunlar Çizelge 4.36’da karşılaştırılmaktadır. 

Sonuçlara bütün olarak göz atıldığında sonlu eleman sonuçlarının oldukça uygun olduğu 

gözlemlenir. Dolayısı ile yerel olmayan Love-Bishop çubuklarının serbest eksenel 

titreşimi hakkında önerilen formülasyonun fonksiyonel derecelendirilmiş malzemeden 

imal edilen nanoçubuklar için de kullanılabilir olduğu sonucuna varılır.  

 

 

 

 

 

 

 

 



BULGULAR VE TARTIŞMA            H.M. NUMANOĞLU 

152 

 

Çizelge 4.37. Elastik ortama gömülü KDFD nanoçubukların farklı boyutsuz elastik ortam 

parametresi, boyutsuz yerel olmayan parametre ve güç indeksi değerlerine göre modifiye 

edilmiş yerel olmayan sonlu elemanlar formülasyonuyla hesaplanan ilk üç mod boyutsuz 

frekansları (n = 15) 

Sınır 

Şart 
KM η 1. Mod   2. Mod   3. Mod 

p  = 0 p = 0.01 p = 10   p  = 0 p = 0.01 p = 10   p  = 0 p = 0.01 p = 10 

C-F 0 0 1.5709 1.5670 0.9468  4.7152 4.7035 2.8421  7.8670 7.8475 4.7422 

   0.1 1.5408 1.5370 0.9287  4.0501 4.0401 2.4412  5.5799 5.5661 3.3635 

   0.2 1.4599 1.4562 0.8799  3.0300 3.0225 1.8263  3.5346 3.5258 2.1305 

 1 0 1.8622 1.8597 1.5174  4.8200 4.8089 3.0795  7.9303 7.9112 4.8882 

  0.1 1.8330 1.8306 1.4995  4.1599 4.1505 2.6884  5.6523 5.6389 3.5294 

  0.2 1.7550 1.7528 1.4520  3.1560 3.1492 2.1052  3.6323 3.6241 2.3503 

 10 0 3.5309 3.5337 3.8674  5.6773 5.6704 4.7049  8.4786 8.4624 6.0452 

   0.1 3.4973 3.5001 3.8370  5.0417 5.0365 4.3170  6.2665 6.2563 4.7696 

   0.2 3.4088 3.4116 3.7571  4.1205 4.1179 3.7812  4.4155 4.4110 3.7925 
              

C-C 0 0 3.1424 3.1346 1.8941  6.2898 6.2742 3.7913  9.4475 9.4241 5.6952 

   0.1 2.9203 2.9130 1.7602  4.9237 4.9115 2.9678  6.0690 6.0540 3.6584 

   0.2 2.4600 2.4539 1.4828  3.3484 3.3401 2.0183  3.6500 3.6409 2.2001 

 1 0 3.2977 3.2907 2.2346  6.3688 6.3537 3.9724  9.5003 9.4772 5.8172 

  0.1 3.0784 3.0721 2.1053  5.0097 4.9980 3.1638  6.1329 6.1182 3.8052 

  0.2 2.6280 2.6228 1.8440  3.4559 3.4481 2.2586  3.7420 3.7335 2.4077 

 10 0 4.4580 4.4561 4.2009  7.0399 7.0282 5.3321  9.9625 9.9418 6.8182 

   0.1 4.2445 4.2431 4.0545  5.7261 5.7180 4.5633  6.6803 6.6685 4.9336 

   0.2 3.8209 3.8205 3.7705  4.3038 4.3000 3.7881  4.4863 4.4814 3.7953 

 

KDFD nanoçubukların yerel olmayan eksenel serbest titreşim analizleri için son 

olarak elastik ortama gömülü çubuklar üzerinde sonlu eleman formülasyonunun 

uygulamaları Çizelge 4.35 ile sunulmaktadır. Burada boyutsuz elastik ortam rijitliği, 

boyutsuz atomik parametre ve güç indeksinin farklı değerleri için ilk üç mod boyutsuz 

frekans parametreleri listelenmektedir. Sonuçların mukayesesi için Çizelge 4.26 

incelenmelidir. Buna göre analitik sonuçlar, önerilen sonlu eleman çözümü ile oldukça 

yüksek bir uyuma sahiptir. Bu arada, tez kapsamında ele alınmış olan yerel olmayan sonlu 

elemanlar formülasyonunun modifikasyon sürecinde ilk defa modifiye edilmiş 

formülasyon son olarak bu çizelgeye uygulandığında, Çizelge 4.31’in de işlenme sebebi 

olan η = 0.2, KM = 10 ve p = 10 parametreleri altında iki sınır şartın sonuçları analitik 

sonuçların altındaydı ve negatif sapma ihmal edilemez bir düzeydeydi. Atomik 

parametrenin değerinin yükselmesi veya yüksek sonlu eleman sayıları ile analizde 

sorunun giderek büyüyeceğinden gayet tabii olarak şüphelenilmiştir. Bu nedenle yerel 

olmayan sonlu elemanlar formülasyonu hakkında ikinci bir modifikasyon sürecine 

gidilmiş olup, nihai formülasyon kayma deformasyonlu fonksiyonel derecelendirilmiş 

nanoçubukların yerel olmayan eksenel serbest titreşim analizi için büyük bir alternatif 

çözüm olabileceğini çeşitli analizlerdeki başarısı ile göstermiştir.  

Buradan itibaren KDFD eksenel nanoçubukların yerel olmayan serbest titreşimi 

hakkında grafiksel sonuçlar ve tartışmaları sunulmaktadır. İlk olarak, güç indeksinin 

artışına göre ilk iki mod boyutsuz frekansların değişimi bir ucu tutulu diğer ucu serbest 

nanoçubuk için Şekil 4.14’te ve iki ucu tutulu nanoçubuk için Şekil 4.15’te verilmektedir. 

KDFD nanokirişlerin sonuçlarına benzer olarak, güç indeksinin boyutsuz frekansları 

azalttığı gözlemlenir. Güç indeksinin yüzde birler mertebesindeki artışı için frekanslar 

çok fazla etkilenmezken bu mertebe sona erdikten sonra güç indeksinin artışı için 

frekanslar daha fazla azalır ve onlar mertebesinin sonunda frekanslardaki azalmanın 

şiddeti azalır. Güç indeksinin frekanslar üzerindeki etkisi yerel olmayan parametre 
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azaldıkça azalmaktadır. Ayrıca, güç indeksinin yüksek modda daha fazla etkili olduğu 

gözlemlenmiştir. Öte yandan, özellikle yerel olmayan analizde, güç indeksi bir ucu tutulu 

diğer ucu serbest nanoçubukta iki ucu tutulu nanoçubuğa göre daha etkindir. Elde edilen 

değerler, kompozit nanoçubukların mekanik davranışında boyut etkisinin mutlaka göz 

önüne alınması gerektiğini vurgular. 

 
(a) 

 
(b) 

Şekil 4.14. Bir ucu tutulu diğer ucu serbest KDFD nanoçubukların güç indeksinin artışına 

göre boyutsuz frekanslarının değişimi; a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.15. İki ucu tutulu KDFD nanoçubukların güç indeksinin artışına göre boyutsuz 

frekanslarının değişimi; a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.16. Elastik ortama gömülü bir ucu tutulu diğer ucu serbest KDFD nanoçubukların 

boyutsuz elastik ortam rijitliğinin artışına göre temel mod boyutsuz frekanslarının 

değişimi; a) p = 0; b) p = 10 
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(a) 

 
(b) 

Şekil 4.17. Elastik ortama gömülü iki ucu tutulu KDFD nanoçubukların boyutsuz elastik 

ortam rijitliğinin artışına göre temel mod boyutsuz frekanslarının değişimi; a) p = 0;          

b) p = 10 

 Şekiller 4.16 ve 4.17’de, eksenel tam elastik ortama gömülü sırayla bir ucu tutulu 

diğer ucu serbest ve iki ucu tutulu kayma deformasyonlu nanoçubukların boyutsuz elastik 

ortam rijitliğinin artışına karşılık boyutsuz frekanslarının değişimleri homojen ve 

fonksiyonel derecelendirilmiş malzeme için ayrı ayrı resmedilmektedir. Buna göre, ilk 

olarak elastik ortamın frekansları yükseltmekte olan bir faktör olduğu gözlemlenmiştir. 

Elastik ortam genel olarak bir ucu tutulu diğer ucu serbest nanoçubuğun frekanslarını 

daha fazla artırmakta, dahası yerel olmayan parametre arttıkça elastik ortamın frekans 

yükseltme kabiliyeti artmaktadır. KDFD nanoçubukta, boyutsuz frekanslar arasındaki 

farklılık elastik ortam rijitliğinin yüksek değerlerinde belirginleşirken homojen 
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nanoçubuk için böyle bir çıkarım yapılamaz. Bu sonuçlar, KDFD nanoçubukların 

bulunabileceği elastik ortamın da atomik boyut etkili mekanik davranış üzerinde önemli 

bir etkisinin olduğunu ortaya koyar.   

 
(a) 

 
(b) 

Şekil 4.18. Elastik ortama gömülü iki ucu tutulu KDFD nanoçubukların sonlu eleman 

sayısının artışına göre boyutsuz frekanslarının sapma yüzdelerinin değişimi (η = 0.3, 

KM = 5, p = 5); a) 1. Mod; b) 4. Mod 

Buradan itibaren verilen grafik sonuçlarda KDFD eksenel nanoçubukların yerel 

olmayan serbest titreşim analizleri yerel olmayan sonlu elemanlar formülasyonu ile 

yürütülmüş olup, analizlerde 10 eleman kullanılmıştır. Hatırlatılacak olursa, yerel 

olmayan sonlu elemanlar formülasyonunun kayma deformasyonlu homojen eksenel 

nanoçubukların serbest titreşim analizlerinde birtakım başarısız sonuçlar verdiği tespit 
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edildiğinden, Çizelgeler 4.27-4.35 üzerinden, belirli bir teknik izlenmek suretiyle çeşitli 

araştırmalar yapılarak KDFD eksenel nanoçubuklar için kullanışlılığı mümkün 

olduğunca yüksek bir formülasyonun eldesine uğraşılmıştı. Bu kapsamda modifiye 

edilmiş nihai yerel olmayan sonlu elemanlar formülasyonunun sonuçları verilerek 

yaklaşımın kullanılabilirliği gösterilmişti. Bu defa, modifiye edilmiş yerel olmayan sonlu 

elemanlar formülasyonu hakkında, seçilmiş bir boyutsuz yerel olmayan parametre 

(η = 0.3), boyutsuz elastik ortam rijitliği (KM = 5) ve güç indeksi (p = 5) değerleri 

düşünülerek formülasyonun analitik neticelerden sapma yüzdelerini gösteren bir çalışma 

Şekil 4.18 ile verilmektedir. Buna göre, formülasyonda herhangi bir düzeltme işlemi 

bulunmayan (orijinal formülasyon), Denklemler (4.11)-(4.13) üzerinden ilk defa 

modifiye edilen ve bu denklemlere ek olarak Denklem (4.14) üzerinden ikinci defa 

modifiye edilerek nihai haline kavuşturulan üç farklı yerel olmayan sonlu eleman analizi 

gözetilerek, sonlu eleman sayısının artışına göre hesaplanan sapma yüzdelerinin 

değişimleri temel ve dördüncü mod için verilmektedir. Burada formülasyonun başarısının 

tespiti açısından yüksek bir modun verilmesi tercih edilmiştir. Sonuçların incelenmesine 

gelince, görüldüğü üzere sonlu eleman sayısı arttıkça, orijinal formülasyonun negatif 

sapmalar nedeniyle giderek artan bir başarısızlığı mevcuttur. İlk defa modifiye edilen 

formülasyonun söz konusu mekanik analizde negatif sapmaları düşürdüğü, ancak bu 

sapmaların sonlu eleman sayısı arttıkça arttığı yine gözlemlenmiştir. Son olarak, nihai 

halini almış formülasyonun sıfıra oldukça yakın sapma değerleri sunduğu rahatlıkla ifade 

edilebilir. Tabi, güç indeksi ve elastik ortam parametrelerinin yüksek veya ekstrem 

değerleri altında önerilen formülasyonun başarısının düşebileceği not edilmelidir. Yerel 

olmayan sonlu elemanlar formülasyonunun modifiye edilerek bir nevi rehabilite edilmesi 

sürecindeki esas amacın, mümkün olduğunca düşük hata içerisinde, KDFD eksenel 

nanoçubukların analitik çözümü zor hatta imkânsız mekanik analizleri için 

başvurulabilecek ve mekanik davranışının doğru anlaşılmasına aracı olabilecek bir 

yaklaşımın elde edilmesi olduğu vurgulanmalıdır. 

 

Şekil 4.19. Bir ucu tutulu diğer ucu serbest KDFD nanoçubukların güç indeksi ve 

boyutsuz atomik parametre değerlerinin artışına göre ilk dört mod boyutsuz frekanslarının 

değişimi 
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Şekil 4.20. İki ucu tutulu KDFD nanoçubukların güç indeksi ve boyutsuz atomik 

parametre değerlerinin artışına göre ilk dört mod boyutsuz frekanslarının değişimi 

 Yerel olmayan boyutsuz parametre ve güç indeksinin artışına karşılık bir ucu 

tutulu diğer ucu serbest ve iki ucu tutulu KDFD nanoçubukların boyutsuz frekanslarının 

değişim yüzeyleri ilk dört mod için sırasıyla Şekiller 4.19 ve 4.20’de betimlenmektedir. 

Yüksek modlara ait yüzeylerden daha belirgin görüleceği üzere, güç indeksi genellikle 

klasik nanoçubuk üzerinde daha etkili olmakta ve bu etki yerel olmayan parametrenin 

artışı ile azalmaktadır. Ayrıca yerel olmayan parametre gibi güç indeksi de iki ucu tutulu 

nanoçubukların boyutsuz frekanslarını bir ucu tutulu diğer ucu serbest nanoçubuğa göre 

daha fazla indirgemektedir.  

 Şekiller 4.21 ve 4.22’de, sırasıyla bir ucu tutulu diğer ucu serbest ve iki ucu tutulu 

KDFD nanoçubukların ilk iki mod boyutsuz frekanslarının narinlik oranı ve güç 

indeksinin artışı altında değişimlerini ifade eden yüzeyler çizdirilmektedir. Nanokirişlerin 

ilgili analizlerinde olduğu gibi bu analizlerde de kesit yüksekliği sabit ve h = 1 nm olarak 

düşünülmüştür. Narinlik oranının genellikle klasik boyutsuz frekansları etkilemediği 

anlaşılmaktadır. Yerel olmayan nanoçubuklarda ise, narinlik oranı arttıkça frekansların 

yükseldiği gözlemlenir. Frekansların bu artışı, güç indeksi arttıkça azalır. Tabi boyutsuz 

frekanslardaki yükselme narinlik oranı arttıkça azalır çünkü daha yüksek artışlar için 

boyutsuz frekanslar üzerinde nanoçubuğun kayma deformasyonunun (veya yanal atalet 

veya Poisson etkisi) etkisi azalır. Bu durumda davranış basit (kayma deformasyonsuz) 

çubuk teorisine yakınsamaktadır. Bunların haricinde, düşük uzunluklu nanoçubuklarda 

klasiğe göre frekans azalması daha fazladır çünkü iç karakteristik uzunluk dış 

karakteristik uzunluğa oldukça yakındır. Ayrıca, güç indeksinin frekans düşürme etkisi 

yüksek uzunluklu nanoçubuklarda daha fazla olarak gözlemlenmektedir.  
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(a) 

 
(b) 

Şekil 4.21. Bir ucu tutulu diğer ucu serbest KDFD nanoçubukların güç indeksi ve 

uzunluk/yükseklik oranı değerlerinin artışına göre boyutsuz frekanslarının değişimi; a) 1. 

Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.22. İki ucu tutulu KDFD nanoçubukların güç indeksi ve uzunluk/yükseklik oranı 

değerlerinin artışına göre boyutsuz frekanslarının değişimi; a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.23. Elastik ortama gömülü bir ucu tutulu diğer ucu serbest KDFD nanoçubukların 

güç indeksi ve boyutsuz elastik ortam rijitliği değerlerinin artışına göre boyutsuz 

frekanslarının değişimi; a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.24. Elastik ortama gömülü iki ucu tutulu KDFD nanoçubukların güç indeksi ve 

boyutsuz elastik ortam rijitliği değerlerinin artışına göre boyutsuz frekanslarının 

değişimi; a) 1. Mod; b) 2. Mod 

KDFD eksenel nanoçubukların atomik boyut etkili serbest titreşim davranışları 

hakkındaki son araştırmalar, elastik ortama gömülü bir ucu tutulu diğer ucu serbest ve iki 

ucu tutulu sınır şartları için sırasıyla Şekiller 4.23 ve 4.24’te verilen ve boyutsuz 

frekanslar üzerinde boyutsuz elastik ortam parametresi ve güç indeksinin artışlarının 

etkisinin ele alınması üzerinedir. Öncelikle, elastik ortam parametresinin çok düşük değer 

aralığındaki bir artışa karşılık frekansların daha fazla yükseldiği ve bu durumun yüksek 

güç indeksine sahip nanoçubuklarda daha belirgin olduğu gözlemlenir. Elastik ortam 

parametresi ve güç indeksi yükseldikçe yerel olmayan parametre boyutsuz frekansları 

daha fazla azaltmaktadır. Ayrıca, çok yüksek elastik ortam parametreleri için güç 
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indeksinin artışına karşılık frekansların çoğunlukla yükseldiği ilgi çeken bir sonuçtur. Ek 

olarak, boyutsuz atomik parametrenin η = 0.1 değerinde, güç indeksinin onlar 

mertebesine kadar yükselen frekansların bu mertebede tekrar azaldığı gözlemlenir. Son 

olarak, elastik ortamın bir ucu tutulu diğer ucu serbest nanoçubuğu, güç indeksinin iki 

ucu tutulu nanoçubuğu daha fazla etkilediği bir kez daha anlaşılır. 

 Son olarak, bu bölümün kalan kısmı kayma deformasyonuna sahip ve fonksiyonel 

derecelendirilmiş ayrık eğilme yapılarının (nanoçerçevelerin) serbest titreşim analizi 

hakkındaki sayısal sonuçlar ve bunların tartışmaları üzerine olacaktır.  

Çizelge 4.38. Π-Tipteki çerçevelerin klasik serbest titreşiminin ilk üç mod doğal 

frekansları (Hz) için bir yakınsama çalışması 

Mod Mei (2012) Bu Tez (FEM) 

n = 15 n = 12 n = 9 n = 6 n = 3 

1 93.8 93.9413 93.941 93.9435 93.9523 94.0519 

2 275.2 275.7400 275.8276 276.1414 277.8348 350.7990 

3 611.5 613.3124 613.7613 615.3430 626.2932 832.8680 

 

Çizelge 4.39. Г1-Tipteki çerçevelerin klasik serbest titreşiminin ilk beş mod doğal 

frekansları (Hz) için bir yakınsama çalışması 

Mod Mustapha  

(2020) 

Mei 

(2012) 

Bu Tez (FEM) 

n = 10 n = 8 n = 6 n = 4 n = 2 

1 14.05 14.1 14.0514 14.0515 14.0515 14.0519 14.0570 

2 38.24 38.3 38.2584 38.2588 38.2602 38.2682 38.3678 

3 188.46 188.5 188.4361 188.5018 188.7243 189.7280 226.0899 

4 275.51 275.5 276.0980 276.2985 276.9747 279.2162 584.5972 

5 599.60 599.6 600.8070 602.7060 607.9055 681.7369 2248.3749 
 

Π ve Г1 isimleri ile sembolize edilen düzlem çerçeve yapıların doğal frekansları 

bilimsel literatürden bulunmuş bazı çalışmalarla mukayese edilmiş olup bunlar sırasıyla 

Çizelgeler 4.38 ve 4.39 ile sunulmaktadır. Burada mukayeselerin amacı nanoçerçevelerin 

serbest titreşim analizi için hazırlanmış yerel olmayan sonlu eleman formülasyonunun 

klasik kısmının doğruluğunun kontrol edilmesidir. Mukayeselere konu referans 

çalışmalar kısaca şu şekilde özetlenmektedir: Mei (2012), düşey elemanı ankastre 

mesnetli-yatay elemanı serbest uçlu bir Г-tipi çerçevenin ve düşey elemanları ankastre 

mesnetli bir Π-tipi yani portal çerçevenin dinamik analizlerini bir dalga yayınım, yansıma 

ve iletim modeli üzerinden gerçekleştirmiştir. Buna ek olarak, Mustapha (2020), 

mikrokiriş ve mikroçubuk modellerinin yanı sıra birisi de Mei (2012)’de ele alınan Г-tipi 

olmak üzere çeşitli düzlem mikroçerçevelerin değiştirilmiş şekil değiştirme elastisite 

teorisine (Lam vd. 2003; Kong vd. 2009) dayanan serbest titreşimi için bir sonlu eleman 

çözümünü geliştirmiştir. İki referansta da Timoshenko kiriş teorisine dayanan kayma 

deformasyonları hesaba katılmıştır. Mei (2012) çerçevenin eksenel yöndeki davranışını 

kayma deformasyonsuz (basit, temel veya Poisson etkisiz) teori ile düşünürken Mustapha 

(2020) eksenel titreşimi Rayleigh teorisine dayanarak incelemiştir. Hatırlatılacak olursa 

eksenel titreşimde Rayleigh teorisinin Love-Bishop teorisinden farkı Rayleigh teorisinin 

yanal atalet rijitliğini (ν2GIP) ihmal etmesidir, bu ataletten kaynaklı kütle (ν2ρIP) ve yerel 

olmayan kütle ((e0a)
2
ν2ρIP) iki formülasyonda da geçerlidir. Tabi tez kapsamında 

nanoçerçeveler için geliştirilen yerel olmayan sonlu elemanlar formülasyonunda eksenel 

serbestlikler için basit çubuk kinematiği düşünülmüştü. Bunun nedeni olarak kayma 

deformasyonunu düşünen yüksek mertebeli eksenel çubuk teorilerinin asgari üç düğümlü 
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elemana ihtiyaç duyuyor olması gösterilmişti. Bunların haricinde, referans çalışmalardan 

alınan geometrik ve mekanik parametreler, iki çerçeve tipi için de geçerli olmak suretiyle, 

yapı üyelerinin elastisite modülleri eşit ve E = 206 GPa, Poisson oranları eşit ve υ = 0.29 

(böylece kayma modülleri eşit ve  G = E 2(1 + υ)⁄  = 79.8450 GPa), birim hacim 

ağırlıkları eşit ve  ρ = 7800 kg m3⁄ , üyeler kare kesitli ve kesit boyutları b = h = 1.27 cm 

ve kayma düzeltme katsayısı  k = (10 + 10υ) (12 + 11υ) ⁄ = 0.8492, Π-tipindeki 

çerçevenin yatay üye uzunluğu Lh = 0.4 m, düşey üye uzunlukları eşit ve Lv = 0.3 m, Г-

tipindeki çerçevenin üye uzunlukları eşit ve Lv = Lh = 0.5 m olarak düşünülmüştür. 

Sonuçları incelemeden önce sonlu eleman analizleri hakkında bir bilgi verilmelidir. 

Analizde bütün üyeler eşit sayıda elemana bölünmekte olup, çizelgelerin yakınsama 

sonuçlarında yer alan sonlu eleman sayıları nanoyapıdaki toplam sonlu eleman sayısıdır. 

Örneğin her üye tek sonlu eleman olarak belirlenmişse bunlar Çizelge 4.38 ve 4.39’da 

sırasıyla n = 3 ve n = 2 olarak verilir. Sonuçlar toplu değerlendirilecek olursa, özellikle 

yüksek sonlu elemana bölünmüş çerçevelerin doğal frekansları referans sonuçlarla çok 

büyük bir uyum göstermektedir. Düşük sonlu eleman sayılarında yüksek modların 

referanslarla farklılığı çok yüksek bir düzeydedir ve sonlu eleman sayısının artışı ile 

yüksek modlar referans çalışmalara çok hızlı yakınsamaktadır. Bunların haricinde, 

Çizelge 4.39’daki sonuçlar Mustapha (2020)’nin çalışmasında gözetilen eksenel çubuk 

kinematiği ile bu tezde gözetilenin farklılığının açıkçası önemsiz olduğunu gösterir. Yani 

çerçevelerin analizinde eğilme titreşiminin baskın geldiği düşünülebilir. Nihayetinde, 

tezde formüle edilmiş yerel olmayan sonlu elemanlar çözümünün şimdilik klasik 

elastisite için doğru olduğu görülür ama analizlerin her üyenin en azından iki veya üç 

elemana bölünmesi suretiyle gerçekleştirilmesinin atomik ölçekli mekanik davranışın 

anlaşılabilmesi için daha sağlıklı olacağı da mutlaka not edilmelidir.  

Üç farklı tip nanoçerçevenin homojen malzemeden olma durumu için ilk üç mod 

boyutsuz frekansları Çizelge 4.40’ta karşılaştırılmaktadır. Öncelikle, referans çalışmada 

nanoçerçevenin eğilme formülasyonunun kayma deformasyonlarını ihmal eden Euler-

Bernoulli kiriş teorisine (EBBT) göre yapılandırıldığı, tezde ise eğilme serbestlikleri için 

temel kayma deformasyonlu kiriş teorisi olan Timoshenko kiriş teorisi (TBT) göz önüne 

alındığından sonuçların arasında bir farklılık oluşmasının beklendiği belirtilmelidir. 

Ayrıca, referansta üç çerçeve tipi için de geçerli olmak suretiyle, çerçeve üye uzunlukları 

eşit ve L = 20 nm ve üyelerin kesiti içi dolu daire ve kesit çapı D = 5 nm olarak 

düşünülmüştür. Daire kesit kullanıldığından analizde bu durum kesme düzeltme katsayısı 

k = 0.877 (Reddy ve Pang 2008) ile göz önüne alınmıştır. Ek olarak, yine yerel olmayan 

sonlu elemanlar formülasyonunu kullanan referans çalışmada her nanoçerçevede bütün 

üyeler tek başına sonlu eleman olarak düşünülmüştür. Açıkçası, ayrık nanosistemlerin 

mekanik davranışları üzerine bilimsel literatürde halen çok büyük boşluklar mevcuttur. 

Kayma deformasyonlu atomik ölçekli çerçevelerin başka bir metodoloji kullanılarak 

dinamik analizi hakkında bilimsel literatürde çalışma tespit edilemediğinden burada 

mukayeseler doğrudan değil dolaylı olarak yapılabilmektedir. Dolayısıyla bu teze konu 

formülasyonun ürettiği sonuçların en azından mantıklı bir konumda olup olmadığını 

anlamak açısından böyle bir mukayese tercih edilmiştir. Bilindiği üzere, kayma 

deformasyonlu titreşim analizinde frekansların kayma deformasyonunu ihmal eden 

analize göre daha düşük hesaplanması beklenir. Gerek bu bilginin analizler sonucunda 

referansa göre doğrulanması, gerekse atomik parametre arttıkça boyutsuz frekansların 

düşmesi nedeniyle formülasyonun uygun olduğu ifade edilebilir. Mekaniksel tartışmalar 

ise izleyen çizelgelerin konusu olacaktır. 
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Çizelge 4.40. Farklı tipteki kayma deformasyonsuz ve kayma deformasyonlu homojen 

nanoçerçevelerin farklı boyutsuz yerel olmayan parametre değerlerine göre ilk üç mod 

boyutsuz frekanslarının karşılaştırılması 

Çerçeve η Mod EBBT (Numanoğlu ve 

Civalek 2019) 

TBT (Bu Tez) 

Π 0 1 3.17908 3.1470 

  2 12.89036 12.4401 

  3 22.02454 21.4796 

 0.05 1 3.17344 3.1410 

  2 12.80304 12.3302 

  3 21.86525 21.3221 

 0.15 1 3.12934 3.0940 

  2 12.12118 11.4961 

  3 20.70377 20.1279 
     

Ʌ 0 1 16.96067 16.4209 

(α = 45°)  2 19.50052 19.3413 

  3 30.12516 26.9431 

 0.05 1 16.84658 16.2553 

  2 19.42487 19.2622 

  3 29.37241 26.3484 

 0.15 1 15.94442 14.9769 

  2 18.84978 18.6639 

  3 25.11296 23.0736 
     

Г1 0 1 1.20664 1.1536 

(α = 90°)  2 3.30368 3.1183 

  3 17.10463 14.6451 

 0.05 1 1.20340 1.1506 

  2 3.29167 3.1085 

  3 16.74960 14.3515 

 0.15 1 1.17289 1.1281 

  2 3.20116 3.0338 

  3 14.30896 12.4314 

 

Buradan itibaren görülen çizelgelerde kayma deformasyonlu fonksiyonel 

derecelendirilmiş nanoçerçeve yapılarının boyutsuz frekansları verilmektedir. Analize 

konu nanoçerçevenin bütün üyelerinin üçer sonlu elemana bölünmesi suretiyle 

hesaplamalar gerçekleştirilmiştir. Ayrıca, üyelerin alt yüzey malzemelerinin yapının 

sınırlandırdığı bölgeye doğru yani yapının içine doğru baktığı mutlaka belirtilmelidir. 
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Çizelge 4.41. Farklı tipteki KDFD nanoçerçevelerin farklı boyutsuz yerel olmayan 

parametre ve güç indeksi değerlerine göre ilk üç mod boyutsuz frekansları 

Çerçeve η Mod p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

Π 0 1 3.1887 3.0838 2.4643 2.2488 2.0771 

  2 12.5033 12.0941 9.6730 8.8253 8.1345 

  3 20.4579 19.7873 15.8206 14.4337 13.3132 

 0.1 1 3.1664 3.0622 2.4471 2.2331 2.0626 

  2 11.8924 11.5030 9.1993 8.3931 7.7379 

  3 18.9717 18.3500 14.6720 13.3855 12.3450 

 0.2 1 3.1022 3.0002 2.3976 2.1878 2.0208 

  2 10.4821 10.1386 8.1068 7.3964 6.8215 

  3 15.8978 15.3771 12.2958 11.2173 10.3432 
        

Ʌ 0 1 15.2680 14.7678 11.8095 10.7747 9.9349 

(α = 45°)  2 22.0569 21.3378 17.0785 15.5807 14.3365 

  3 49.1440 47.5586 38.1259 34.7670 31.8524 

 0.1 1 14.4615 13.9877 11.1849 10.2047 9.4106 

  2 20.8220 20.1427 16.1193 14.7053 13.5354 

  3 41.2573 39.9200 31.9731 29.1566 26.7696 

 0.2 1 12.6311 12.2170 9.7682 8.9120 8.2199 

  2 18.0581 17.4685 13.9760 12.7493 11.7402 

  3 29.9979 29.0237 23.2365 21.1890 19.4714 
        

Г2 0 1 15.3063 14.8040 11.8345 10.7977 9.9638 

(α = 45°)  2 21.0485 20.3864 16.4234 14.9753 13.5711 

  3 49.6367 48.0219 38.4386 35.0559 31.2114 

 0.1 1 14.4889 14.0135 11.2027 10.2212 9.4313 

  2 20.0556 19.4199 15.6233 14.2469 12.9515 

  3 41.4364 40.0886 32.0876 29.2623 26.9071 

 0.2 1 12.6424 12.2277 9.7755 8.9188 8.2285 

  2 17.6772 17.1095 13.7307 12.5227 11.4485 

  3 30.0301 29.0540 23.2573 21.2081 19.4958 

 

Üye ayakları ankastre mesnetli olan üç farklı tipteki kayma deformasyonlu 

fonksiyonel derecelendirilmiş nanoçerçevelerin ilk üç mod yerel olmayan boyutsuz 

frekans parametreleri, güç indeksinin farklı değerlerine göre hesaplanmış olup bunlar 

Çizelge 4.41’de listelenmektedir. Bu ve kalan analizlerin tamamı bu şekilde bir 

yapılandırmayı göz önünde bulunduracaktır. Sonuçlara göre, boyutsuz frekansların yerel 

olmayan parametre değerleri altında azalmakta olduğu ve bu azalmanın yüksek modlarda 

daha fazla olduğu gözlemlenir. Öte yandan, fonksiyonel derecelendirilme güç indeksi 

arttıkça boyutsuz frekansların düşmekte olduğu, güç indeksi arttıkça bu düşüşün 

şiddetlendiği de bir diğer çıkarımdır. Ayrıca, aynı uzunluk ve kesite sahip daha fazla üyesi 

bulunduğundan en düşük boyutsuz frekanslar portal çerçevede elde edilir çünkü sistemin 

ağırlık artışı rijitlik artışına göre baskın geldiğinden frekanslar düşer. Bu çerçevede yatay 

üyenin mesnetli olmadığı da hatırlanmalıdır. Öte yandan, çok büyük bir farklılık 

olmamakla beraber Г-tip çerçevenin boyutsuz frekanslarının Ʌ-tip çerçevelerden yüksek 

hesaplandığı görülür. Bunun sebebinin Г-tip çerçevede bir üye yatayken Ʌ-tip çerçevede 

bir üyenin daha yataya göre yönelimli olması olduğu belirtilebilir çünkü yönelim 

nedeniyle rijitlik az da olsa bir miktar azalmaktadır. Ayrıca yerel olmayan parametre 

portaldan daha rijit olan bu iki sistemi portal çerçeveye göre daha fazla etkilemiştir. 

Sonuçlar nanoçerçevelerde atomik boyut etkisinin mutlaka hesaba katılması gerektiğini 

belirttiği gibi, fonksiyonel derecelendirilmiş sistemlerde güç indeksinin de önemli bir 

etmen olduğunu ortaya koyar. 
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Çizelge 4.42. Г-Tipteki farklı sınır şartlı KDFD nanoçerçevelerin farklı boyutsuz yerel 

olmayan parametre ve güç indeksi değerlerine göre temel mod boyutsuz frekansları 

(α = 90°) 

Çerçeve η p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

Г1 0 1.1662 1.1278 0.9012 0.8224 0.7597 

 0.1 1.1543 1.1163 0.8921 0.8140 0.7520 

 0.2 1.1205 1.0837 0.8660 0.7902 0.7300 
       

Г2 0 15.2679 14.7678 11.8095 10.7747 9.9349 

 0.1 14.4615 13.9876 11.1849 10.2047 9.4106 

 0.2 12.6311 12.2170 9.7682 8.9120 8.2199 
       

Г3 0 11.3991 11.0256 8.8164 8.0439 7.4181 

 0.1 10.8560 10.5001 8.3958 7.6602 7.0651 

 0.2 9.5966 9.2819 7.4210 6.7708 6.2462 
       

Г4 0 2.2823 2.2072 1.7637 1.6095 1.4868 

 0.1 2.2713 2.1965 1.7552 1.6017 1.4797 

 0.2 2.2391 2.1654 1.7304 1.5790 1.4587 
       

Г5 0 2.4521 2.3714 1.8954 1.7294 1.5970 

 0.1 2.4078 2.3286 1.8611 1.6982 1.5681 

 0.2 2.2874 2.2122 1.7681 1.6133 1.4898 
       

Г6 0 2.3852 2.3067 1.8433 1.6820 1.5538 

 0.1 2.3744 2.2963 1.8350 1.6745 1.5468 

 0.2 2.3427 2.2656 1.8105 1.6521 1.5262 
       

Г7 0 4.0925 3.9580 3.1636 2.8867 2.6652 

 0.1 4.0373 3.9046 3.1209 2.8478 2.6293 

 0.2 3.8841 3.7565 3.0024 2.7397 2.5296 

 

Г-Tipteki KDFD nanoçerçevelerin yatay elemanının boş ucundan yedi farklı 

mesnetlenme durumu için yerel olmayan temel mod boyutsuz frekans parametreleri 

Çizelge 4.42 ile verilmektedir. Burada iki üyesi de ankastre mesnetlendiğinden en rijit 

sistem olan Г2’nin boyutsuz frekansları atomik parametre tarafından oransal olarak daha 

fazla indirgenir ve güç indeksi bu sistemlerin frekansını fark olarak daha fazla azaltır. Öte 

yandan Г4-Г5 ve Г6-Г7 nanoçerçeveleri kendi içlerinde kıyaslandıklarında, eksenel 

hareketi engellenmiş uca sahip sistemlerin frekanslarının daha yüksek hesaplandığı 

gözlemlenir. Г7 nanoçerçevesinin yatay üyesinin ucunun dönmesi engellenmişken Г5 

nanoçerçevesinde söz konusu mesnetlenme durumu için bu geçerli değildir. Bu nedenle 

Г7’nin boyutsuz frekansları Г5’ten yüksektir ve böylece bu sistemlerin atomik 

parametreden daha fazla etkilediği sonucuna varılır. 

Çizelge 4.43’te, Ʌ-Tipteki KDFD nanoçerçevelerin üyelerinin farklı yönelimleri 

için yerel olmayan temel mod boyutsuz frekansları üzerinde güç indeksinin etkisi 

sunulmaktadır. Öncelikle, yönelim açısının boyutsuz frekansları az da olsa düşürdüğü 

gözlemlenir. Güç indeksi arttıkça yönelim açısının boyutsuz frekanslar üzerinde etkisi 

azalır. Ek olarak, yönelim açısı arttıkça atomik parametrenin boyutsuz frekanslar üzerinde 

biraz daha fazla önem kazandığı da anlaşılmaktadır. 

Г-Tipteki KDFD nanoçerçevelerin düşey üyelerinin farklı yönelim açıları ve güç 

indeksi değerlerine göre temel mod boyutsuz frekans parametreleri, yatay üye ucunun 

boşta olması durumu için Çizelge 4.44’te, ankastre mesnetli olması durumu için Çizelge 

4.45’te ve sabit mesnetli olma durumu için Çizelge 4.46’da verilmektedir. Yerel olmayan 
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parametrenin Г2 nanoçerçevesinde daha fazla etkili olmasına ek olarak, yönelim açısı ve 

güç indeksi gibi parametreler de bu sistemlerin frekanslarının daha fazla azalmasına 

sebep olmaktadır.   

Çizelge 4.43. Ʌ-Tipteki KDFD nanoçerçevelerin farklı yönelim açısı, boyutsuz yerel 

olmayan parametre ve güç indeksi değerlerine göre temel mod boyutsuz frekansları 

α (°) η p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

15 0 15.3109 14.8083 11.8375 10.8004 9.9672 

 0.1 14.4921 14.0166 11.2049 10.2232 9.4337 

 0.2 12.6437 12.2290 9.7764 8.9196 8.2295 
       

30 0 15.2987 14.7969 11.8296 10.7932 9.9581 

 0.1 14.4835 14.0084 11.1993 10.2180 9.4272 

 0.2 12.6402 12.2256 9.7741 8.9175 8.2268 
       

45 0 15.2680 14.7678 11.8095 10.7747 9.9349 

 0.1 14.4615 13.9877 11.1849 10.2047 9.4106 

 0.2 12.6311 12.2170 9.7682 8.9120 8.2199 
       

60 0 15.1754 14.6805 11.7492 10.7189 9.8649 

 0.1 14.3950 13.9249 11.1416 10.1647 9.3603 

 0.2 12.6034 12.1909 9.7501 8.8953 8.1990 
       

75 0 14.6688 14.2021 11.4185 10.4134 9.4821 

 0.1 14.0217 13.5726 10.8991 9.9406 9.0768 

 0.2 12.4415 12.0384 9.6458 8.7989 8.0751 

 

Çizelge 4.44. Г1-Tipteki KDFD nanoçerçevelerin farklı yönelim açısı, boyutsuz yerel 

olmayan parametre ve güç indeksi değerlerine göre temel mod boyutsuz frekansları 

α (°) η p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

15 0 0.8818 0.8528 0.6814 0.6218 0.5745 

 0.1 0.8766 0.8478 0.6774 0.6182 0.5711 

 0.2 0.8616 0.8333 0.6659 0.6076 0.5613 
       

30 0 0.9020 0.8723 0.6970 0.6361 0.5876 

 0.1 0.8965 0.8670 0.6928 0.6322 0.5840 

 0.2 0.8805 0.8515 0.6804 0.6209 0.5736 
       

45 0 0.9372 0.9064 0.7243 0.6609 0.6106 

 0.1 0.9310 0.9004 0.7195 0.6565 0.6065 

 0.2 0.9131 0.8831 0.7056 0.6439 0.5949 
       

60 0 0.9900 0.9574 0.7650 0.6981 0.6449 

 0.1 0.9827 0.9503 0.7594 0.6930 0.6402 

 0.2 0.9617 0.9300 0.7432 0.6782 0.6265 
       

75 0 1.0643 1.0293 0.8225 0.7505 0.6933 

 0.1 1.0552 1.0205 0.8155 0.7442 0.6874 

 0.2 1.0293 0.9954 0.7955 0.7259 0.6705 
       

90 0 1.1662 1.1278 0.9012 0.8224 0.7597 

 0.1 1.1543 1.1163 0.8921 0.8140 0.7520 

 0.2 1.1205 1.0837 0.8660 0.7902 0.7300 
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Çizelge 4.45. Г2-Tipteki KDFD nanoçerçevelerin farklı yönelim açısı, boyutsuz yerel 

olmayan parametre ve güç indeksi değerlerine göre temel mod boyutsuz frekansları 

α (°) η p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

15 0 13.8932 13.5398 11.3220 10.2907 8.6198 

 0.1 13.6737 13.3243 11.1322 10.1190 8.4886 

 0.2 12.6445 12.2297 9.7769 8.9201 8.1239 
       

30 0 15.3109 14.8083 11.8375 10.8004 9.9673 

 0.1 14.4921 14.0166 11.2049 10.2231 9.4337 

 0.2 12.6437 12.2290 9.7764 8.9196 8.2295 
       

45 0 15.3063 14.8040 11.8345 10.7977 9.9638 

 0.1 14.4889 14.0135 11.2028 10.2212 9.4313 

 0.2 12.6424 12.2277 9.7755 8.9188 8.2285 
       

60 0 15.2988 14.7969 11.8296 10.7932 9.9581 

 0.1 14.4835 14.0084 11.1993 10.2180 9.4272 

 0.2 12.6402 12.2256 9.7741 8.9175 8.2268 
       

75 0 15.2870 14.7858 11.8219 10.7861 9.9492 

 0.1 14.4751 14.0004 11.1938 10.2129 9.4209 

 0.2 12.6367 12.2223 9.7718 8.9154 8.2242 
       

90 0 15.2679 14.7678 11.8095 10.7747 9.9349 

 0.1 14.4615 13.9877 11.1849 10.2047 9.4106 

 0.2 12.6311 12.2170 9.7682 8.9120 8.2199 

 

Çizelge 4.46. Г3-Tipteki KDFD nanoçerçevelerin farklı yönelim açısı, boyutsuz yerel 

olmayan parametre ve güç indeksi değerlerine göre temel mod boyutsuz frekansları 

α (°) η p = 0.01 p = 0.1 p = 1 p = 2 p = 10 

15 0 10.3097 10.0052 8.1451 7.4210 6.5546 

 0.1 9.9536 9.6554 7.8410 7.1453 6.3464 

 0.2 9.0286 8.7502 7.0713 6.4464 5.7922 
       

30 0 11.2402 10.8761 8. 7153 7.9503 7.2947 

 0.1 10.7217 10.3738 8.3102 7.5809 6.9611 

 0.2 9.5067 9.1972 7.3633 6.7175 6.1769 
       

45 0 11.3548 10.9838 8.7879 8.0176 7.3841 

 0.1 10.8174 10.4638 8.3709 7.6372 7.0355 

 0.2 9.5689 9.2558 7.4031 6.7543 6.2250 
       

60 0 11.3882 11.0153 8.8094 8.0375 7.0498 

 0.1 10.8457 10.4904 8.3892 7.6541 7.0572 

 0.2 9.5880 9.2738 7.4154 6.7657 6.2396 
       

75 0 11.3992 11.0256 8.8165 8.0440 7.4181 

 0.1 10.8553 10.4995 8.3954 7.6598 7.0646 

 0.2 9.5951 9.2805 7.4200 6.7699 6.2450 
       

90 0 11.3991 11.0256 8.8164 8.0439 7.4181 

 0.1 10.8560 10.5001 8.3958 7.6602 7.0651 

 0.2 9.5966 9.2819 7.4210 6.7708 6.2462 
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(a) 

 
(b) 

Şekil 4.25. Π-Tipteki KDFD nanoçerçevelerin güç indeksinin artışına göre boyutsuz 

frekanslarının değişimi; a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.26. Г1-Tipteki KDFD nanoçerçevelerin güç indeksinin artışına göre boyutsuz 

frekanslarının değişimi (α = 90°); a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.27. Г3-Tipteki KDFD nanoçerçevelerin güç indeksinin artışına göre boyutsuz 

frekanslarının değişimi (α = 90°); a) 1. Mod; b) 2. Mod 

Bu bölümün kalan kısmında, seçilmiş birkaç tipteki KDFD nanoçerçevelerin yerel 

olmayan serbest titreşim sonuçları ve tartışmaları grafikler vasıtasıyla verilmektedir. Π-, 

Г1- ve Г3-Tipteki (α = 90°) nanoçerçeve yapıları analizlere konu olup, bunların bütün 

üyeleri bu analizlerde de üç sonlu elemana bölünmüştür. İlk olarak, güç indeksinin 

artışına göre nanoçerçevelerin ilk iki mod yerel olmayan boyutsuz frekanslarının değişimi 

Şekiller 4.25-4.27’de resmedilmektedir. Nanokiriş ve nanoçubuklarda olduğu gibi 

nanoçerçeve yapılarında da güç indeksinin artışı altında boyutsuz frekanslar düşmektedir. 

Genel olarak boyutsuz frekanslar güç indeksinin yüzde birler mertebesindeki artışları için 

daha düşük oranda azalmakta ancak onda birler mertebesindeki artışlar için bunların 

düşüşü hızlanmakta, güç indeksinin yüzler mertebesindeki artışları için düşüş oranı yine 
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azalmaktadır. Tabi yerel olmayan parametre güç indeksinin yüzde birler ve onda birler 

mertebesinde biraz daha etkin olmaktadır. Genel yorumlardan yapı özelindeki yorumlara 

geçilecek olursa, ikisinin de mesnetleri ankastre olan yapılardan daha fazla üyeye sahip 

Π-tipteki nanoçerçevenin boyutsuz frekansları Г3-tipinden düşüktür çünkü hatırlanacak 

olursa Г3-tipinin iki üyesi vardır ve mesnetlenmemiş elemanı yoktur, Π -tipinin üç üyesi 

vardır yani sisteme Г3-tipine göre ilave bir kütle getirmektedir ve üyelerden yatay olanı 

mesnetsizdir. Г3-Tipinin iki mesnedi ankastre, Г1-tipinin düşey üyesi ankastre ve yatay 

üyesi boş uçlu olduğundan Г3-tipinin frekansları Г1 tipinden yüksektir. Bu yapılar içinde 

atomik parametrenin yanı sıra güç indeksinin de Г3-tipinde en etkin olduğu söylenebilir 

ancak güç indeksinin etkinliği atomik parametrenin azalmasıyla azalmaktadır.  

 
(a) 

 
(b) 

Şekil 4.28. Г1-Tipteki KDFD nanoçerçevelerin güç indeksi ve uzunluk/yükseklik oranı 

değerlerinin artışına göre boyutsuz frekanslarının değişimi (α = 90°); a) 1. Mod; b) 2. 

Mod 
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(a) 

 
(b) 

Şekil 4.29. Г3-Tipteki KDFD nanoçerçevelerin güç indeksi ve uzunluk/yükseklik oranı 

değerlerinin artışına göre boyutsuz frekanslarının değişimi (α = 90°); a) 1. Mod; b) 2. 

Mod 

Г1- ve Г3-Tipteki (α = 90°) KDFD nanoçerçevelerin narinlik oranı ve güç 

indeksinin artışına göre ilk iki mod boyutsuz frekansları sırasıyla Şekiller 4.28 ve 4.29 ile 

verilmektedir. Araştırma konusu diğer nanoyapıların narinlik oranını ilgilendiren söz 

konusu analizlerinde olduğu gibi burada da bütün üyelerin yüksekliği eşit ve h = 1 nm 

olarak düşünülmektedir. Dolayısı ile narinlik oranı değişiminde bütün üyelerin eşit olan 

uzunlukları artmaktadır. Uzunluk artışı sistemde kütle artışı oluşturduğundan doğal 

frekans haliyle azalır ancak boyutsuz frekans parametresinde uzunluktaki artış doğal 

frekanstaki azalıştan yüksek olduğundan dolayı boyutsuz frekans parametreleri yükselir. 

Atomik parametre diğer nanoyapılarda olduğu gibi düşük uzunluklu nanoçerçevelerin de 
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boyutsuz frekanslarını daha fazla etkiler ve atomik parametrenin genel etkisi yüksek 

modda daha fazla olmaktadır. Üye uzunlukları arttıkça atomik parametrenin etkisi düşer. 

Bu bağlamda, özellikle yüksek üye uzunluklarında ve yüksek güç indekslerinde Г1-

tipindeki çerçevenin frekansları birbirine oldukça yakınken Г3-tipinde böyle bir 

çıkarımdan bahsedilemez, buna göre yerel olmayan parametrenin bu bölgedeki etkisi Г3-

tipinde oldukça belirgindir. Öte yandan, güç indeksi genel olarak yüksek üye uzunluklu 

nanoçerçeveleri daha fazla etkilemektedir. Ek olarak, yerel olmayan parametre düşük güç 

indeksine sahip nanoçerçevelerde daha etkin görünmektedir. 

 
(a) 

 
(b) 

Şekil 4.30. Г1-Tipteki KDFD nanoçerçevelerin güç indeksi ve yönelim açısı değerlerinin 

artışına göre boyutsuz frekanslarının değişimi; a) 1. Mod; b) 2. Mod 
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(a) 

 
(b) 

Şekil 4.31. Г3-Tipteki KDFD nanoçerçevelerin güç indeksi ve yönelim açısı değerlerinin 

artışına göre boyutsuz frekanslarının değişimi; a) 1. Mod; b) 2. Mod 

 Son olarak, Г1- ve Г3-tipindeki KDFD nanoçerçevelerin düşey üye yönelim açısı 

ve güç indeksinin artışı altında elde edilen ilk iki mod boyutsuz frekans değişim yüzeyleri 

sırasıyla Şekiller 4.30 ve 4.31’de sunulmaktadır. Öncelikle Г1-tipindeki nanoçerçevenin 

ikinci modunda grafiğin görüntüsünün davranışın anlaşılmasını zorlaştırması nedeniyle 

güç indeksi ve yönelim açısının eksenleri değiştirilmiştir. Ek olarak, yönelim açısının 

α = 5°, 85° ve arasındaki değerleri analize konu olmaktadır. Buna göre, yönelim açısı 

çoğunlukla boyutsuz frekansları yükselten bir faktör iken Г1-Tipindeki nanoçerçevenin 

ikinci modunda tam tersi bir etki gözlemlenmektedir. Г3-Tipindeki nanoçerçeveden 

gözlemlenebileceği üzere yönelim açısının çok düşük değerleri boyutsuz frekansları daha 

fazla yükseltmekte, yönelim açısının daha yüksek değerleri bu anlamda bir etkiye sahip 
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olmamaktadır. Güç indeksinin yüksek yönelim açısına sahip yani dik nanoçerçevelerin 

boyutsuz frekanslarını daha fazla indirgediğinden söz edilebilir. Ayrıca yerel olmayan 

parametrenin de dik nanoçerçevelerde daha etkin olduğu ifade edilmelidir. 
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5. SONUÇLAR 

Nanoteknoloji bilimindeki hızlı gelişmeler nedeniyle bir ve iki boyutlu homojen 

nanomalzemelerin temel bileşen olduğu NEMS sistemlerinin mekanik analizlerinin bilim 

insanlarının büyük ilgisini toplamasıyla beraber, nanokompozit uygulamaları çeşitli 

kompozit malzeme konfigürasyonlarına sahip yapıların da mekanik modellerine bir 

ilginin yönelmesine sebep olmuştur. Bu kapsamda, fonksiyonel derecelendirilmiş 

nanoyapıların atomik boyut etkisine dayanan mekanik modelleri ve analizleri yoğun 

çalışılan bir konu olarak bilimsel literatürde yerini almıştır.  

Bu bağlamda, FDM nanoyapıların eğilme çubuğu (kiriş), eksenel çubuk ve eğilme 

çerçevesi modellerinin kayma deformasyonunu içeren kinematik kuramlarla birlikte 

atomik boyut etkisine dayanan yüksek mertebeli sürekli ortam teorilerinden olan yerel 

olmayan elastisite teorisi çerçevesinde serbest titreşimleri hakkında sonlu eleman 

analizleri bu doktora tezi ile sunulmuştur. NEMS’lerin genel çalışma ortamı düşünülerek 

sıcaklık değişimi ve elastik ortam etkileri, kayma deformasyonlu yerel olmayan nanoyapı 

modellerinde gözetilmiştir. Buna göre, serbest titreşim analizlerinde çeşitli parametreler 

altında nanoyapıların boyutsuz frekansları çizelgeler ve grafiklerle verilerek bunların 

detaylı tartışmaları da gerçekleştirilmiştir.  

Tez çalışmasını nihayetine ve amacına ulaştırabilmek maksadıyla tartışmalardan 

çıkarılabilecek sonuçlar ve bazı öneriler aşağıda sunulmaktadır. İlk olarak KDFD 

nanokiriş yapılardan bahsedilmektedir: 

 Boyut etkisini ifade eden yerel olmayan parametre arttıkça nanokirişlerin frekansları 

azalmaktadır.  

 

 Yerel olmayan parametre ankastre mesnetten dolayı uçları daha rijit sistemlerde 

frekansları azalması için daha etkindir.  

 

 Yüksek modlarda yerel olmayan parametre frekansları daha fazla indirgemektedir.  

 

 Fonksiyonel derecelendirilme güç indeksi arttıkça nanokiriş frekansları azalmaktadır. 

Genellikle güç indeksinin onda birler ve onlar mertebesindeki artışları için bu azalış 

diğer mertebelere göre daha hızlı olmaktadır. 

 

 Yerel olmayan parametrenin frekanslar üzerindeki etkinliği güç indeksinin küçük 

değerleri için daha fazladır. 

 

 Nanokirişlerin frekansları üzerinde nötr eksen de önemli bir etkiye sahiptir. Buna göre 

malzeme tarafsız ekseni hesaba katılırsa frekanslar ihmal edilemeyecek ölçüde azalır. 

Güç indeksinin onlar mertebesinde nötr eksen etkisi en yüksektir. 

 

 Kayma deformasyonsuz nanokirişlerin serbest titreşim frekanslarının karakteristik dış 

boyutlardan etkilenmediği bilinmektedir (Reddy 2007; Pradhan 2012). Ancak kayma 

deformasyonlu nanokirişlerde düşük uzunluk için derin kiriş etkisi belirginleştiğinden 

frekanslar oldukça düşük hesaplanmıştır.  

 

 Yerel olmayan parametre etkisi kısa nanokirişlerde yüksektir.  
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 Elastik zeminler nanokiriş frekanslarını artırıcı etkiye sahiptir. Elastik zemin 

parametreleri arttıkça yerel olmayan parametrenin frekans düşürme hızı azalır. 

Dahası, elastik zeminler FDM nanokirişlerin frekanslarını daha fazla yükseltir. 

 Sıcaklık nanokiriş frekanslarını azaltmaktadır. Yerel olmayan parametre arttıkça 

frekansların düşüşü hızlanmaktadır. Bunlara ek olarak, sıcaklık arttıkça FDM 

nanokirişlerin frekansları daha hızlı düşer.  

 

 Ayrıca yerel olmayan sonlu elemanlar yaklaşımının KDFD nanokiriş titreşim 

analizinde büyük bir başarıya sahip olduğu gözlemlenmektedir. Gerekli doğrulama 

çalışmalarının sonucunda yeteri yakınsaklıkların elde edildiği, özellikle termo-elastik 

ortam altında analitik çözümü alınamayan sınır şartlı KDFD nanokirişlerin 

frekanslarına ulaşılabildiği ve boyutsuz atomik parametre arttıkça frekanslardaki 

sapmaların genel olarak azaldığı tespit edilmiştir. 

Öte yandan, yanal atalet etkili KDFD eksenel nanoçubukların yerel olmayan 

serbest titreşim analizlerinin tartışılması sonucunda aşağıdaki çıkarımlara ulaşılmaktadır. 

 Boyut etkisi, eksenel nanoçubukların frekanslarını düşürmektedir. Yerel olmayan 

parametre nanoçubukların da yüksek modlarında daha etkindir. 

 

 Yerel olmayan parametre, nanokirişlere benzer şekilde, daha rijit bir sistem 

olduğundan iki ucu tutulu nanoçubuklarda daha etkindir. 

 

 Yine nanokirişlerde olduğu gibi güç indeksinin onda birler ve onlar mertebesindeki 

artışları nanoçubuk frekanslarının daha çok azalmasına sebebiyet verir. 

 

 Ağırlıklı kalıntıya göre yapılandırılan ve nanokiriş analizlerinde hatalı sonuç 

vermediği anlaşılan sonlu eleman çözümünün, yanal atalet etkili eksenel 

nanoçubuklarda kullanımıyla bazı hatalı sonuçlara ulaşılmıştır. Bu nedenle, hatanın 

kaynaklandığı nedenler çeşitli sayısal uygulamalarla tespit edilerek hatayı tetikleyen 

sonlu eleman matematiksel bileşenleri üzerinde bir işlem yapılarak modifiye edilmiş 

sonlu elemanlar çözümleri sunulmuştur. İlgili yakınsaklık analizleri sonucunda 

önerilen yaklaşımın, probleme etkiyen parametrelerin ekstrem durumları haricinde 

başarılı olduğu sonucuna varılmıştır. 

 

 Eksenel elastik ortam, nanoçubukların frekanslarını yükseltir. Nanokiriş sonuçlarına 

benzer şekilde elastik ortam rijitliği yükseldikçe boyutsuz atomik parametrenin etkisi 

azalır ve bu durumda FDM nanoçubukların frekansları daha çok artar. 

 

 Nanokirişlere benzer biçimde, düşük uzunluklu eksenel nanoçubuklarda yerel 

olmayan parametre daha büyük bir etkiye sahiptir. 

Bunlara ek olarak, KDFD nanoçerçeveler için yapılan çıkarımlar da aşağıdaki gibi 

verilebilir: 

 Yerel olmayan sonlu elemanlar formülasyonu, atomik boyut etkisi ihmal edilen 

çerçeveler için literatürdeki bazı çalışmalar üzerinden doğrulanmıştır. 
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 Yerel olmayan parametrenin varlığı altında nanoçerçevelerin de frekansları 

düşmektedir ve yüksek mod boyutsuz frekansları bu parametreden daha fazla oranda 

etkilenmektedir. 

 

 Kayma deformasyonu, nanoçerçevelerin de frekanslarını azaltmaktadır. Düşük üye 

uzunluklu nanoçerçevelerde bu etki daha belirgindir ve yerel olmayan parametre 

düşük üye uzunluklu nanoçerçevelerde daha etkindir. 

 

 Nanokirişlere ve nanoçubuklara benzer şekilde, güç indeksi KDFD nanoçerçevelerin 

frekanslarını indirgemektedir. Buna göre, güç indeksinin onda birler ve onlar 

mertebesindeki artışları için frekans azalma hızı daha fazladır. 

 

 Yönelim açısı arttıkça yani geometrik manada nanoyapı dikleştikçe KDFD 

nanoçerçevelerin frekansları artmaktadır. Genel olarak dik KDFD nanoçerçeveler güç 

indeksi artışından daha fazla etkilenmektedir. 

 Bütün bu sonuçlar, atomik ölçekli fonksiyonel derecelendirilmiş yapıların 

mekanik davranışları için kayma deformasyonu, boyutsuz atomik parametre, güç indeksi 

ve termo-elastik çevre parametrelerinin mutlaka göz önüne alınması gerektiğini ortaya 

koymaktadır. Ayrıca, tez kapsamında geliştirilen yerel olmayan sonlu elemanlar 

formülasyonunun, frekansları analitik çözümle hesaplanamayan nanoyapılar için bir 

alternatif olduğu mutlaka belirtilmelidir. Bu bağlamda, yerel olmayan sonlu eleman 

formülasyonları, nano-elektro-mekanik sistemlerde çeşitli görevler üstlenebilecek 

kompozit nanoyapıların mekanik tabanlı kesin tasarım süreçlerine yol gösterebilecektir. 
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