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ABSTRACT

JOINT LEARNING OF GRAPH PROCESSES AND GRAPH TOPOLOGIES
FOR TIME VERTEX SIGNAL ESTIMATION

Yaldiz, Berkay
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Elif Vural

August 2024, [84] pages

In recent years, the analysis of data that evolves over time and across interconnected
entities has gained significant interest. Such data, often represented as time-vertex
graph signals, encapsulate the dynamic nature of various real-world systems, includ-
ing social networks, sensor networks, and traffic systems. Traditional methods that
separately handle temporal and network dependencies without considering network
correctness often fall short in capturing the full complexity of these datasets. To ad-
dress this, in this thesis, we use a parametric statistical modelling approach called
Auto-Regressive Moving Average (ARMA) jointly wide sense stationarity in order
to analyze the joint time-vertex behavior of time-varying graph random processes,
while we also aim to improve the partially known network topology via the graph
Laplacian. We explore ARMA graph process models, where our primary objective is
to develop a comprehensive framework that integrates ARMA modeling with graph
learning techniques to enhance the analysis of time-varying signals characterized by
both temporal and network dependencies. Our study introduces a novel approach
where the joint power spectral density derived from the graph ARMA model is used

to estimate the covariance matrix of the process. This matrix provides a basis for



our graph learning algorithm, which iteratively refines both the joint process and the
graph Laplacian. By integrating the dynamic characteristics of ARMA models with
graph learning techniques, the proposed method facilitates the discovery of underly-
ing structures and relationships within time-varying graph signals. Simulations and
real-world experiments are conducted to validate the effectiveness of the framework,
demonstrating its potential for time-vertex signal analysis. The results indicate im-
provements in capturing spatiotemporal dependencies for network data with a time-

varying structure.

Keywords: Graph Signal Processing, Time-Vertex Signal Processing, Stationary Graph
Signal Processing, Graph Laplacian Matrix Learning, Spatiotemporal Signal Process-

ing
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0z

ZAMAN-DUGUM SINYAL KESTIRIMi iCiN CIZGE SURECLERI VE
CiZGE TOPOLOJILERININ ORTAK OGRENIMI

Yaldiz, Berkay
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi Boliimii
Tez Yoneticisi: Dog. Dr. Elif Vural

Agustos 2024 ,[84] sayfa

Son yillarda, hem zamanda hem de bir ag yapis1 lizerinde degisim gosteren verile-
rin analizi 6nemli Olciide ilgi goren bir konu olmustur. Zaman-dii§iim ¢izge sinyal-
leri olarak temsil edilen bu tiir veriler, sosyal aglar, sensor aglar1 ve trafik sistem-
leri gibi gesitli sistemlerin dinamik yapisindan etkilenmektedir. Bagimliliklar1 ayri
ayr1 ele alan ve ag dogrulugunu hesaba katmayan geleneksel yontemler, genellikle bu
veri kiimelerinin karmagikligin1 yakalamakta yetersiz kalmaktadir. Bu tezde zamanla
degisen cizge rastgele siireclerinin zaman-diigiim noktas1 davranisim birlikte analiz
etmek i¢in ortak genis anlamda duraganlik adi verilen bir parametrik istatistiksel mo-
delleme yaklagimi olan Otoregresif Hareketli Ortalama (ARMA) modelleme kulla-
nilmis, ayn1 zamanda kismen bilinen Laplacian matrisi araciliiyla topolojinin de 68-
renilmesi hedeflenmistir. ARMA cizge siire¢ modelleri incelenmis; 6ncelikli olarak
hem zamansal hem de ag bagimliliklariyla karakterize edilen zamanda degisen sin-
yallerin analizi gelistirmek icin ARMA modellemesini ¢izge 6grenme teknikleriyle
biitiinlestiren kapsamli bir yontem gelistirilmesi hedeflenmistir. Calismamiz, siirecin

kovaryans matrisini tahmin etmek i¢in ¢izge ARMA modelinden tiiretilen ortak giic
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spektral yogunlugunun kullanildig1 yeni bir yaklasim sunmaktadir. Kestirilen kovar-
yans matrisi, hem ortak siireci hem de cizge Laplacian matrisini yinelemeli olarak
iyilestiren ¢izge 6grenme algoritmamiz icin bir temel saglar. ARMA modellerinin
dinamik ozelliklerini ¢izge 68renme teknikleriyle biitiinlestirerek Onerilen yontem,
zamanda degisen ¢izge sinyalleri i¢indeki temel yapilarin ve iligkilerin kesfedilme-
sini kolaylagtirir. Onerilen yontemin etkinligini dogrulamak ve zaman-diigiim sinyal
analizindeki potansiyelini gostermek i¢in sentetik ve gercek veriler lizerinde deneyler
yapilmistir. Sonuglar, zamanda degisen bir yapiya sahip ag verileri i¢in zamansal-

agsal bagimliliklarin yakalanmasinda ilerleme kaydedilebilecegini gostermektedir.

Anahtar Kelimeler: Cizge Sinyal isleme, Zaman-Nod Sinyal isleme, Duragan Cizge

Sinyal Isleme, Cizge Laplacian Matris Ogrenimi, Uzay-Zamansal Diizgiinliik

viii



To my family

X



ACKNOWLEDGMENTS

This thesis would not have been possible without the support of many individuals.
First and foremost, I am deeply grateful to my thesis advisor, Assoc. Prof. Dr.
Elif Vural, for her invaluable guidance, unwavering support, and immense patience
throughout this journey. Her insights and encouragement have been instrumental in

shaping this work.

I would also like to express my gratitude to Eylem Tugce Giineyi, whose collaboration

during our graduate studies on graph signal processing has been greatly enriching.

A special thanks to Abdullah Canbolat for his illuminating perspectives on problem-

solving, which have inspired me throughout this process.

I am also thankful to my colleagues at Meteksan Defence for their understanding and
support over the past few months, allowing me to balance both my professional and

academic commitments.

This thesis is supported by the TUBITAK Scientist Support Programs Presidency
(BIDEB) and the 2211-Domestic Postgraduate Scholarship Program under grant 120E246.



TABLE OF CONTENTS

ABSTRACTI. . . . . . e e e v
OZ . . . vii
ACKNOWLEDGMENTSI. . . . . . ... ... o o .. X
TABLE OF CONTENTS| . . . . . . .. . . xi
................................ XV
................................ xvi

LIST OF ABBREVIATIONS

CHAPTERS
1 INTRODUCTION| . . . . . . oo e 1
(LI __Motivation and Problem Defimition| . . . . ... ... ... ... .. 1
(1.2 Proposed Methods and Models|. . . . . .. ... ... ........ 2
(L3 Contributions| . . . . . . . . ... 3
(L4 The Outline of the Thestsl. . . . . . ... ... ... ... .. 4
2 RELATED WORKI . . ... ... o 5
2.1~ Fundamentals of Graph Signal Processing| . . . . . . ... ... ... 5
[2.1.1 Graph Basics and Notation| . . . . . .. ... ... .. .... 5
2.1.2 Graph Laplacian|. . . . . .. ... ... ... ... ... ... 7
[2.1.3 Graph Signals| . . . . .. ... ... o 0oL 7

xi



[2.1.4  Connection to Classical Signal Processing| . . . . . ... ... 8

[2.1.5 Graph Fourter Transform| . . . . . . ... .. ... ... ... 9
2.1.6  GraphFilters] . . . ... ... .. ... ... ......... 9
[2.2 Joint Time-Vertex Signal Processing| . . . . . .. ... ... ... .. 11
2.2.1 Joint Laplacian Matrix| . . . .. ... ... ... .. ..... 11
[2.2.2 Time-Varying Graph Signals| . . . . ... .. ... ... ... 12
223  JomtFourter Transform! . . . . . . .. ... ... ... .... 12
[2.2.4  Joint Filtering of Time-Vertex Signals| . . . . ... ... ... 14
[2.3  Wide-Sense Stationary Processes| . . . ... .. .. ... ...... 14
[2.3.1 Wide-Sense Stationary of Time Signals|. . . . . ... ... .. 14
[2.3.2  Wide-Sense Stationary in Graph Processes| . . . . . .. .. .. 16
[2.3.3  Jointly Wide-Sense Stationary Processes| . . . . . . .. .. .. 17
[2.3.4  Autoregressive Moving Average Time-Vertex Processes| . . . . 18
2.4 Graph Learning Approaches| . . . . . . ... .. ... ... ..... 18
[2.4.1 Introduction to Graph Learning| . . . . . . .. ... ... ... 19
[2.5  Time-Vertex Signals and Graph Learning| . . . . .. ... ... ... 21
[2.6  Graph Neural Networks and Graph Attention Networks|. . . . . . . . 22
[2.6.1 Introduction to Graph Neural Networks (GNNs)[ . . . . . . .. 22
[2.6.2  Graph Attention Networks (GAT)(. . . . . .. ... ... ... 22
[2.6.3 Graph Inference and Estimation Problems| . . . . . . ... .. 23
[2.6.4  Graph Learning with GNNs|. . . . ... ... ... ... ... 23

3 PROPOSED METHOD 25

xii



[3.1.1 Signal Model| . . . . ... ... ... .. .. ... .. ... 25

[(3.1.2 LaplactanMatrix| . . . ... ... ... ... ......... 26
3.2 Problem Formulationl . . . . . . ... ... ... ... ........ 26
[3.2.1 A priort Information|. . . . . ... ... o000 26
[3.2.2  Objective] . . . ... .. . . ... 27
(3.3 The Overall Algorithm| . . . . . ... ... ... ... ........ 28
1 Initial riance Matrix and JPSDI. . . . . ..o o0 oL L 29

[3.3.2  Updating the ARMA Coefficients|. . . . . .. ... ...... 32
[3.3.3  Calculation of the Covariance Matrix Xz(a,b)| . . ... ... 35
[3.3.4  Updating the Laplacian Matrix| . . . . ... ... ... .. .. 35
[3.3.5 Complexity Analysis| . . . . .. ... ... ... ... ... 37

[3.4  Application of the Proposed Algorithm 1n Spatiotemporal Interpola- |

.............................. 38

4 EXPERIMENTS|. . . . .. 0000 oo 41
4.1 Synthetic data set Experiments| . . . . . . . ... ... ... ... 41
4.1.1 Performance Analysis Across Iterations| . . . ... ... ... 44

4.1.2  Effect of Perturbation of Edge Weights with Edge Preservation| 50

4.1.3  Effect of Noise on Possibly All Edgesof Lg| . . . . . ... .. 55

4.1.4  Impact of the Number of Realizations on Estimation Perfor- |

[ mancel . . . . . ... 60
4.2 Sensivity Analysisof of. . . . . ..o 65
4.3 Comparative Experiments| . . . .. ... ... ............ 66

5> CONCLUSIONI . . . ... 71
R RENCES| . . . . . o 73



APPENDICES

A_VALIDATION PROCEDURE FOR THE SELECTION OF ALGORITHM |

| HYPERPARAMETERS| . . . . . . ... ... o o . 79

X1V



LIST OF TABLES

TABLES

Table 3.1 Normalized covariance estimation errors for different realizations |

| using different estimation methods| . . . . . . . ... ... oL L. 32
Table 4.1 NME for different o values across missing data scenarios| . . . . . . 66
Table 4.2 Stationarity ratios of the datasets| . . . . . . ... ... ... .... 67

XV



LIST OF FIGURES

FIGURES

Figure[2.1 Weighted graphsignal| . . . . .. ... ... .. ......... 6
Figure 3.1 The flow chart of GL-JS-ARMA algorithm |1} . . .. ... .. 29
Figure[3.2  Low-Pass PSD: h(A,w) . . . . . .. ... ... . . ... ... 31
Figure 4.1 SyntheticdatasetJPSD| . . . . .. ..o 0000 44
Figure 4.2 Variation of the JPSD estimation error with iterations| . . . . . . 45
Figure 4.3 Variation of the estimation error of parameter a with iterations| . 46
Figure 4.4  Variation of the estimation error of parameter b with iterations| . 47
Figure 4.5 Variation of the estimation error of parameter Lg with iterations|. 49
Figure 4.6 Variation of the estimation error of JPSD with SNR under edge |
| Preservation] . . . . . . . ... . e e e e e e e e e e e e 51
Figure 4.7 Variation of the estimation error of parameter a with SNR under [
| edge preservation| . . . . . . ... ... 52
Figure 4.8 Variation of the estimation error of parameter b with SNR under [
| edge preservation] . . . . . ... ... e 53
Figure 4.9 Variation of the estimation error of Lg with SNR under edge [
| Preservation| . . . . . . ... . e e e e e e e e e e e 54

Figure 4.10  Variation of the JPSD estimation error under noise with possi-

| bility of edge modificationof W| . . . . . . ... .. .. ... ... 56

Xvi



Figure 4.11

Variation of the a estimation error under noise with possibility

| of edge modificationof W| . . . . . .. .. ... oo L. 57

Figure 4.12  Variation of the b estimation error under noise with possibility

| of edge modificationof W| . . . . . . ... ... ... ... 58
Figure(4.13  Variation of the L estimation error under noise with possibility

| of edge modificationof W| . . . . . ... ... ... ... .. L. 59
Figured.14  Variation of the L estimation error under noise with possibility

| of edge modificationof W| . . . . . .. .. .00 61
Figure4.15  Variation of the L estimation error under noise with possibility

| of edge modificationof W| . . . . . . ... ... ... L. 62
Figurei4.16  Variation of the L estimation error under noise with possibility |
[ of edge modificationof W| . . . . . . ... .. ... L. 63
Figurei4.17  Variation of the L estimation error under noise with possibility |
[ of edge modificationof W| . . . . . .. .. ... oL 64
Figure .18  NME of COVID-19dataset| . . . . . ... ... ......... 68
Figure4.19 NME of Molene dataset|. . . . . . ... ... ... ....... 69
Figure|/A.1  Monotonic decrease scenario| . . . . . . . . . . ... ... ... 80
Figure[A.2  Monotonic increase scenario| . . . . . . . . . . . . . ... ... 81
Figure|A.3  Decrease and increase scenario| . . . . . . . . . ... ... ... 82
Figure|A.4  Decrease and increase scenarto-2| . . . . ... ... ... ... 83
Figure[A.5  Decrease and increase scenario-3| . . . .. ... ... ..... 84

Xvil



ABBREVIATIONS

AR
ARMA
FT
CNN
DFT
FIR
GFT
GSP
GNN
GAN
GCN
GIN
CNN
GMRF

G-VARMA

GP-VAR
IGFT
IIR
IGFT
JPSD
JFT

JWSS

LIST OF ABBREVIATIONS

Autoregressive

Autoregressive Moving Average
Fourier Transform
Convolutional Neural Networks
Discrete Fourier Transform
Finite Impulse Response Filters
Graph Fourier Transform

Graph Signal Processing

Graph Neural Networks

Graph Attention Networks
Graph Convolutional Network
Graph Isomorphism Network
Convolutional Networks
Gaussian Markov Random Field

Graph Polynomial Vector Autoregressive Moving Average Re-

cursions

Graph Polynomial Vector Autoregressive Recursions
Inverse Graph Fourier Transform

Infinite Impulse Response Filters

Inverse Graph Fourier Transform

Joint Power Spectral Density

Joint Fourier Transform

Joint Time-Vertex Wide Sense Stationary

xXviii



kE-NN
LMMSE
NMSE
PSD

SNR

VAR
VARMA
MAP
JS-ARMA

GL-JS-ARMA

k nearest neighbors

Linear Minimum Mean Square Error
Normalized Mean Square Error

Power Spectral Density
Signal-to-Noise Ratio

Vector Autoregressive

Vector Autoregressive Moving Average
Maximum a posteriori

Joint Spectra-ARMA

Graph Learning-JS-ARMA

Xix






CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Classical signal processing excels at analyzing data defined on regular domains like
time or space. However, many real-world phenomena naturally exhibit relationships
that cannot be captured by these rigid structures, for which Graph Signal Processing
(GSP) tools provide useful solutions. GSP leverages the power of graphs to repre-
sent complex interactions between data points. Graphs are flexible structures that
can model intricate relationships between entities, making them ideal for analyzing
data arising from social networks, sensor networks, transportation systems, biological
systems, and more. These networks can be effectively represented as graphs, where

nodes represent entities and edges depict the connections between them.

GSP seeks to extend traditional signal processing techniques to the analysis of signals
defined on graphs. [1,2]. GSP has a wide range of applications, such as classification
[3]], image processing [4], interpolation and denoising [S]], optimal power flow [6] and

smoothing [7].

In traditional signal processing, wide-sense stationarity assumption has a wide range
of applications due to its easier applicability to real-world scenarios and it has been
classically defined for regular domains. In the recent years, a notion of stationar-
ity for random graph signals has been proposed via the definitions of Graph Fourier
Transform (GFT), graph filtering and Power Spectral Density (PSD) in the works
[8, 9]. On the other hand, the statistical properties of data may depend not only on
the relationships between nodes but also on the specific time instances; therefore,

time-varying graph signal models play a vital role in understanding and analyzing
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phenomena occurring over complex network structures. Thus, modelling the col-
lected measurements as an ARMA jointly wide-sense stationary (JWSS) time-vertex
process on a known graph can help capturing the structural dynamics and interactions

better [|10} [11]].

The covariance structure of the JWSS time-vertex processes can be used in signal
interpolation, forecasting and filtering. Assuming the model is a joint time-vertex
stationary ARMA process, its Joint Power Spectral Density (JPSD) can be found in
terms of the ARMA parameters [[11]. Although modelling the data as JWSS has
many benefits, most of the current methods assume that the graph topology is per-
fectly known. In practice, knowing the graph topology is hard and information that
appears on the surface at first glance might be misleading. For instance, in a sen-
sor network structure, one common expectation is that nearest sensors should have
higher correlations but due to environmental conditions this might not be always the
case. Similarly, in a social network friendship connections registered between dif-
ferent users may be out-of-date, as there may be no active communication anymore
between two friends in a social network. In order to improve the performance, learn-
ing a graph that represents the data better can yield better performance [12]]. In this
thesis, we aim to learn both the parametric ARMA model and the graph Laplacian

matrix together iteratively to achieve better signal inference accuracy.

1.2 Proposed Methods and Models

We consider the problem of jointly learning the JPSD of an ARMA modeled JWSS
time-vertex process along with the approximately known graph topology. Although
we demonstrate our approach in spatio-temporal interpolation problems, it can be
potentially used in various applications such as denoising, forecasting and filtering.
Firstly, we assume that the graph Laplacian matrix is approximately known initially
and the observed data is composed of realizations of a JWSS time-vertex process.
This assumption can be considered realistic in a variety of scenarios. For exam-
ple, when studying the spread of a pandemic, nodes represent countries or cities
and edges represent potential transmission routes or physical proximity; hence, a k-

nearest neighborhood (k-NN) graph can be constructed. Although we do not restrict
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ourselves to find a graph that preserves the adjacency relations, which corresponds to
changing only the edge weight values, we do not try to find a graph that is completely

different than the initial one in terms of edge locations.

We fit a joint time-vertex stationary ARMA graph process model to the initial esti-
mate of the JPSD. We then compute the initial JPSD from the covariance matrix with
the Joint Fourier Transform (JFT), where the initial estimate of the covariance matrix
is obtained with an unbiased sample covariance estimator based on a set of realiza-
tions of the process. Next, we obtain the parameters of the graph ARMA process
through an optimization problem such that the resulting JPSD is coherent with the
initial JPSD estimate at hand. The resulting formulation for learning a parametric
ARMA graph process model leads to a non-convex optimization problem [9]. Hence,
a convex relaxation is applied in order to put it in a more tractable form [11]. After
calculating the graph ARMA process model, which yields a refined estimation of the
JPSD, the covariance matrix of this ARMA graph process is also refined through the
Inverse Joint Fourier Transform (IJFT) based on the improved JPSD estimate. We
finally use this covariance matrix for learning the graph Laplacian. However, due to
the nature of the time-vertex process, the dimension of the graph Laplacian is lower
than that of the process covariance matrix. Hence, a sub-matrix of this covariance
matrix, restricted to a single time instant, which corresponds to the covariance matrix
for a vertex stationary process alone, is used effectively. The selection of this covari-
ance sub-matrix is determined from synthetic-data experiments. Then, the stochastic
Gaussian Markov Random Field (GMRF) [[13} [12] approach is used to fit a valid
undirected graph to the estimated covariance matrix. This approach corresponds to
the maximume-likelihood estimation of the precision matrix for a GMRF from sam-
pled data, which is the Laplacian matrix. Then this Laplacian matrix is used to fit an

ARMA graph process model again to increase the estimation performance.

1.3 Contributions

The primary objective of this thesis is to develop a method for learning stochastic
process models from realizations of time-vertex processes in a scenario where the

graph topology is not perfectly known. The key contributions include:



e An empirical analysis of jointly learning a time-varying graph ARMA models

and the graph Laplacian.

e An algorithm for iteratively learning time-varying graph ARMA models and

graph structures.

e Validation of the algorithm through synthetic and real-world data sets, demon-
strating its potential, as well as its shortcomings, regarding its practical appli-

cability.

1.4 The Outline of the Thesis

In Chapter[2] we provide a review of the existing literature. It begins with an introduc-
tion to the fundamentals of graph signal processing. Graph structures, the definition
of a graph signal, the GFT and graph filters are mentioned. Then, the concepts of
joint time-vertex graph signal processing, JFT, JPSD and ARMA processes are cov-
ered. The chapter then reviews traditional methods of graph construction, followed
by modern data-driven approaches. We review different kinds of approaches in time-
vertex signal modelling and graph learning in Chapter 2] Finally, the challenges faced

in real-world scenarios are discussed.

In Chapter [3| our proposed method for learning time-vertex graph ARMA processes
jointly with the graph Laplacian matrix is explained. The definitions of stationarity
for time-vertex graph signals and the ARMA graph process model are presented.
Subsequently, in Section [3.3.4] we overview the result that learning the Laplacian
matrix from data actually corresponds to learning a precision matrix for a Gaussian
Markov Random Field (GMRF), in which the probability density of the data is a zero

mean n-variate Gaussian distribution [[13]].

In Chapter 4] we assess the performance of the given algorithm using real-time and

synthetic time-vertex data sets.

In Chapter [5| we summarize the findings, potential applications, and directions for

future research.



CHAPTER 2

RELATED WORK

In Section 2.1} we provide a review of Graph Signal Processing. Then, in Section
[2.2] we discuss joint time-vertex signal processing concepts. In Section[2.3] we cover
wide-sense stationary processes for both graph and time-varying graph signals. In
Section [2.4] we explore graph learning approaches. Finally, in Section [2.5] we in-
tegrate these aforementioned concepts and discuss time-vertex signal models, graph

networks, and their applications.

2.1 Fundamentals of Graph Signal Processing

2.1.1 Graph Basics and Notation

A graph G = (V, €, W) consists of a set of vertices )V (or nodes), a set of edges £ that
connect pairs of vertices, and a weight matrix W € RY*¥_ The number of vertices is
denoted by N = |V|. Each edge e = (u,v) € & can be either undirected or directed,
depending on the nature of the relationship between the nodes v and v. For undirected

graphs, each edge e = (v, u) is also included in £.

In the context of spectral graph theory, undirected graphs have a well-defined notion
of frequency. The adjacency matrix A € RY*Y of a graph G indicates the pres-
ence of an edge between nodes ¢ and j with A;;, making it a binary matrix. For
unweighted graphs, the weight matrix and the adjacency matrix are identical. For
weighted graphs, the weight matrix W assigns a real value, which may be different
than 1, to these edges, indicating the strength of the connection between correspond-

ing nodes. Figure[2.1| provides an example of a graph signal.
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Graph Signal with Edge Weights
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Figure 2.1: Weighted graph signal

To construct a weight matrix, the k-NN algorithm and the Gaussian kernel in (2.1])
can be used. We start by defining the weight between each pair of nodes based on
their distance. For nodes 7 and j with positions p; and p; in some feature space,
the distance between these nodes can be computed as dist(, j) = ||p; — p;l|,, where
the ||.||, operator represents the ¢, norm. The weight matrix W is then formed by
applying a Gaussian kernel to these distances. Specifically, the weight between nodes

7 and j is given by:

dist(z, 5)?
W,; = exp (—%) , @.1)

where o € R is a scaling parameter that controls the width of the Gaussian function.

This weight matrix W captures the similarity between nodes, with larger weights as-
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signed to pairs of nodes that are closer together in the feature space. The use of Gaus-
sian weights ensures that the influence of distant nodes is exponentially suppressed,

leading to a more localized and realistic representation of the graph structure.

2.1.2 Graph Laplacian

Given a graph, the combinatorial Laplacian matrix L5 € RY*" is defined as [1]]
Le=D-W (2.2)
whereas the symmetrically normalized graph Laplacian is defined as
Lg =D D -W)D /2 (2.3)
where D € RV*¥ is the diagonal degree matrix, defined as

D;= Y W, (2.4)

and V(i) denotes the set of neighbors of node i. This formulation ensures that the
Laplacian matrix Lg is symmetric and positive semi-definite, meaning all its eigen-

values are non-negative and real.

The eigenvalues and eigenvectors of the Laplacian matrix provide valuable insight

into the graph’s structure. The eigenvalues Ay, A, ..., Ay_1 satisfy
0:/\0§>‘1§~-<)\N—1- (25)

The smallest eigenvalue )\, is always 0, with the corresponding eigenvector being the
constant vector 1 € R” (assuming the graph is connected). The multiplicity of the

zero eigenvalue indicates the number of connected components in the graph.

2.1.3 Graph Signals

A graph signal x is a function that assigns a scalar value x; to each node 7 in the
graph, represented as a vector x € RY. For example, in a social network, x; could

represent the activity level of user .



2.1.4 Connection to Classical Signal Processing

In classical continuous signal processing, the Laplacian operator V2 is a second-order

differential operator. For a function f(z,y), the Laplacian is defined as

2 2

VQfI%-i-g—yé. (2.6)
This operator measures the divergence of the gradient of a function, which can be in-
terpreted as the difference between the value at a point and the average value around it
[14]]. Tt is used in various applications, including solving partial differential equations

and analyzing heat flow.

In the discrete graph domain, the graph Laplacian serves a similar purpose. For a

graph signal x € R" the graph Laplacian applied to x is given by

Lgx = Dx — Wx. 2.7
For a node i:
(Lgx)i = Dyx; — Z Wiix;. (2.8)
JEV(i)

This expression measures the difference between the signal value at node ¢ and the

weighted average of the signal values at its neighboring nodes.

In the context of graph signal processing, the gradient operator measures the differ-
ence between signal values at connected nodes. For an edge (i,j) € £ of a non-

normalized Laplacian, the gradient of the signal x along the edge is given by [[15]

vin = \/Wij (Xi — Xj). (29)

The divergence operator, which is the (negative) adjoint of the gradient operator, ag-
gregates these differences at each node. For a signal x, the divergence at node 7 can

be expressed as [16]
(divx); = Y (x; — x;). (2.10)

Jev(i)
Combining these, the graph Laplacian can be viewed as the composition of the diver-

gence and gradient operators [16]
Lgx = div(Vx). (2.11)
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2.1.5 Graph Fourier Transform

The Graph Fourier Transform (GFT) generalizes the concept of the Fourier transform
to graphs. It leverages the eigendecomposition of the graph Laplacian. Let L5 =
UgAgUg, where Ug € RY*¥ is the matrix of eigenvectors and Ag € RV*¥ is the
diagonal matrix of eigenvalues. The GFT and the inverse GFT of a graph signal x are

defined as [[17]]
X = Ug;x, (2.12)

x = Ugk. (2.13)

2.1.6 Graph Filters

In classical signal processing, the basic building block of filters is time shift or delay
[18]]. On the other hand, shifting a graph signal in GSP involves redistributing the
signal values according to the structure of the graph. This operation is analogous to
time-shifting in classical signal processing, but it respects the topology of the graph
[19]. The shift operator S can be defined in several ways, but a common choice is the
Laplacian matrix Lg itself and the shifted graph signal is given by Lgx. The primary
reason for using the graph Laplacian is that it integrates both adjacency information
and node degrees, offering a unique perspective on signal redistribution during the

shift operation.

This idea of shifting can be extended to graph filters as [20]
¥y =9(Lg)x = Ugg(Ag)Ug™x. (2.14)

where g : {0} UR* — R denotes a filter kernel, g(Lg) € RY*Y is a graph filter.

Filter kernels can be defined in polynomial form to define polynomial graph filters

[21]

K-1
9(Lg) = Z gkﬁéx = gox + g1 Lgx + gzﬁéx +- gK,lﬁg_lx (2.15)
k=0

where g, for £k =0,1,--- K — 1 are polynomial coefficients.
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Additionally, a graph filter H € RY*¥ can be expressed as a function of the Laplacian

eigenvalues in the spectral domain
H = g(Lg) = Ugg(Ag)Ug, (2.16)

where g(Lg) € RY*N is the graph filter and g(Ag) € RV*Y is the diagonal matrix

with the filter function applied to each eigenvalue \;.

Applying the graph filter to a signal x, we get the filtered signal y € RY

y = Hx = Ugg(Ag)Ulx. (2.17)

The shift operation is linear for any two signals x and y, and scalars « and (3:

S(ax + fy) = aSx + Sy (2.18)

The shift operation is shift invariant. Applying the shift operator multiple times corre-
sponds to multiplying the shift matrix multiple times. For instance, shifting the signal

twice when S = A is

S*x = A%x. (2.19)
Consider a simple graph with three nodes and the following adjacency matrix

010
A=110 1
010

T

For a graph signal x = | 2, |, the shifted signal Ax is

T3
010 I X2
Sx=Ax=|[1 0 1 To | = | v1 + 23
010 T3 T2

In this example, the signal value at node 1 is shifted to node 2, the value at node 2 is

distributed to nodes 1 and 3, and the value at node 3 is shifted to node 2.
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2.2 Joint Time-Vertex Signal Processing

2.2.1 Joint Laplacian Matrix

Time-varying graph signal processing is a framework that extends the classical signal
processing to handle data that varies over both time and graph structures. The joint
Laplacian matrix is the essential tool that we use for the analysis of time-varying
graph signals, as it allows for the simultaneous consideration of both the temporal and
graph domains. It extends the concept of the Laplacian matrix, which traditionally
captures the structure of a static graph, to handle the additional complexity introduced

by temporal variations.

The temporal Laplacian matrix L is constructed to reflect the connectivity between
consecutive time steps, capturing the temporal relationships. Matrix A corresponds

to the adjacency matrix of a cyclic graph with 7" time steps, and it is given by [22, [23]]

010 0 1
1 01 0 0
T R (2.20)
0O 00 - 01
1 00 1 0

The corresponding temporal Laplacian matrix L is defined as

Lr=Dr—Arp (2.21)

where D is the degree matrix of the cyclic graph for which each node has degree 2,

so D is
200 ---00
020 0 0
T R e.2)
0 00 20
000 0 2
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Thus, the temporal Laplacian matrix L1 for a cyclic graph is

2 -1 0 --- 0 -1
-1 2 -1 0 0
o R (2.23)
0 0 0 2 -1
-1 0 0 - -1 2

To incorporate both the graph and time domains, we construct a joint graph-time

matrix. The joint Laplacian matrix £ is defined as [24]]
EJ:»CT@EQZET@IN—FIT@»CQ (224)

where Lg is the graph Laplacian, L is the temporal Laplacian, & denotes the Kro-
necker sum, ® denotes the Kronecker product, and I € R™*7 and Iy € RV*Y are

identity matrices respectively.

The Kronecker product ® combines the network and temporal components, ensur-
ing that the joint Laplacian captures interactions both within the graph and across
time. The term I ® Lg ensures that the graph relationships are maintained across all
time instances, while £ ® I ensures that the temporal relationships are maintained

independently for each node in the graph.

2.2.2 Time-Varying Graph Signals

A time-varying graph signal is represented as X € RY*T It s a signal defined on the
nodes of a graph G at each time instance ¢. This signal can be viewed as a sequence

of graph signals, [xl Xg v XT] where x; is the graph signal at time ¢.

2.2.3 Joint Fourier Transform

The Discrete Fourier Transform (DFT) is used to analyze the time-domain character-

istics of a signal. For a time signal x(t), the Discrete Fourier Transform is [25]]

x(t)e 2T =0,1,...,T — 1. (2.25)
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In the context of time-varying graph signals, since each row is a time signal, temporal

DFT can be found by [24]]
DFT{X} = Xconj(Ur) (2.26)

where conj represents the element-wise conjugate of a matrix and, Uy is the conju-

gate of the normalized DFT matrix given by

elert 2m(1T — 1)
) Wr = —F—F——

JT T

Indeed, U7 in (2.27) contains the eigenbasis of the cyclic graph L7 and its eigenval-

IjT(t7 T) =

fort,7 =1,---,T. (2.27)

ues are [23]]

Ap(7,7) = 2(1 — cosw,). (2.28)

Thus, £ can be written as

Ly =UpArU% (2.29)

where ()H denotes the Hermitian (transpose complex-conjugate) of a matrix.

The eigendecomposition of the joint Laplacian matrix £ can also be written in terms

of the eigenbases of the graph Laplacian Lg and cyclic Laplacian L1 [23]
L; = (Ur @ Ug)(Ar @ Ag)(Ur @ Ug)™. (2.30)

Moreover, if X is considered as a series of 7" graph signals organized in its columns,

the GFT of these signals can be computed as
GFT{X} =UjX. (2.31)

The Joint Fourier Transform (JFT) combines the GFT and DFT to analyze signals in

both domains simultaneously.

For a time-varying graph signal x(t), the JFT is defined as [23]

N T

X(1, k) = % DD X(n, t)uf (n)e 7! (2.32)
n=1 t=1

where [ and k represent the indices of the graph and temporal frequencies, respec-
tively. The expression above can be conveniently reformulated in matrix notation as

(23]
X = DFT{GFT{X}} = GFT{DFT{X}} = Ul Xconj(Uy) (2.33)
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which is equal to in matrix vector multiplication form [23]]
%= (U,)"x (2.34)

where U; = Uy ® Ug and X = vec (X) and, vec is an operator that transforms a

matrix into a column vector by vertically stacking the columns of the matrix.

2.2.4 Joint Filtering of Time-Vertex Signals

Similar to (2.16), we can define the joint graph filter for time-vertex signals. For
a joint graph filter g(L,), the connection between the input and output time-vertex
signals, X and Y, can be described using their column-wise vectorized forms as
follows

¥ = g(L)x = U, g(Ag, Q) (U, x. (2.35)

Here, g(Ag, Q) € RNT*NT represents the vectorized form of the joint kernel matrix
[10]
9A,wi) e g(Awr)
g(Ag, Q) = diag | vec : . (2.36)
9w w1) -+ g(An,wr)
where diag(-) returns a square diagonal matrix with the elements of the input vector

on the main diagonal.

2.3 Wide-Sense Stationary Processes

2.3.1 Wide-Sense Stationary of Time Signals

In the analysis of time signals, the concept of stationarity plays a crucial role in sim-
plifying and understanding the underlying properties of the signal. A time signal is
said to be stationary if its statistical properties do not change over time. Specifically,
wide-sense stationarity (WSS) is a less stringent form of stationarity that focuses on
the first two statistical moments, the mean and the autocovariance function [26]. Let
t be a one-dimensional time variable, and let z(¢) be a real-valued stochastic process.

Then, wide-sense stationarity of this process depends on two features:
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1. Constant Mean: The mean E|[x(t)] of the signal is constant and does not de-
pend on time ?.
Ela(t)] =p, WVt

where F[-| denotes the expectation operator and y is a constant.

2. Autocovariance Function Depends Only on Time Difference: The autoco-
variance function C,(t1,t2) depends only on the time difference 7 = 5 — 11,

not on the specific times ¢; and ¢,.

Cu(ty,ta) = E[(z(t1) — p)(x(te) — p)] = Cx(7) where 7 =1ty —t;.

The autocovariance function measures the linear dependence between two observa-
tions separated by a time lag 7. In a WSS signal, the autocovariance only depends on

the lag and not on the specific time instances chosen.

Wide-sense stationarity implies that the behavior of the signal is predictable to some
extent because its statistical properties are invariant over time. This invariance sim-

plifies the analysis and processing of the signal. For example:

e Power Spectral Density (PSD): For a WSS signal, the power spectral den-
sity, which provides a frequency-domain representation of the signal’s power

distribution, can be defined and analyzed more easily.

e Filtering: When a WSS signal is passed through a linear time-invariant (LTT)
system, the output remains WSS, which allows an easier analysis of the impact

of the system on the signal.

o Estimation and Prediction: WSS properties enable more effective estimation
and prediction techniques, such as using the autocovariance function to design

optimal filters.

White Noise: A common example of a WSS signal is white noise, where the mean is
zero and the autocovariance function is an impulse function (indicating no correlation

between different time instances).
Co(1) = 0%6(7)
where 0 € R is the variance of the noise and 6(7) is the Dirac delta function.
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2.3.2 Wide-Sense Stationary in Graph Processes

Wide-sense stationarity (WSS) in graph processes extends the classical concept of
stationarity to the realm of graph signal processing. A graph process is a collection
of random variables defined on the nodes of a graph, where the graph structure intro-
duces dependencies among these variables. A graph process is said to be wide-sense
stationary if its statistical properties, specifically the mean and the covariance, are

invariant under the shift operator defined by the graph Laplacian or adjacency matrix.

A graph process x = {z;};cy defined on a graph G = (V, £, W) with N nodes is

wide-sense stationary if the following two conditions are satisfied [8]:

1. Constant Mean: The mean F[x;| of the signal is constant over the vertex set

and does not depend on a specific node 1.
Ex]=p Yiey
where E[-] denotes the expectation operator and 1 € R is a constant.

2. Covariance as a Graph Filter: The covariance between two nodes ¢ and j is
the result of localizing a graph kernel. If the graph shift operator is the Lg, then
an unbiased estimate of the empirical covariance matrix of the graph process

can be written as

iy = g(ﬁg)

where the covariance matrix X, € Sf is an element of the N x N dimen-
sional symmetric positive semidefinite cone and ¢ is a non-negative function

that represents the power spectral density.

For a WSS graph process, the covariance matrix 3« can be diagonalized by the eigen-
basis of the Lg
¥, = Ugg(Ag)Ug. (2.37)

This implies that the covariance function is invariant under the graph shift and de-
pends only on the eigenvalues of the graph Laplacian, making the process WSS in the

graph spectral domain.
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The power spectral density of a WSS graph process provides a spectral representation
and is defined as
h(Lg) = U;3Ug. (2.38)

The first condition is similar to classical signal processing; the mean of each ran-
dom variable on the vertex set V is constant and the same. On the other hand, the
second condition requires more explanation since there is no straightforward way to
define a vertex shift, which substitutes the time shift in classical signal processing, on
graph structures. To address this, the second condition uses graph filters to express
covariance stationarity. Specifically, it requires that the covariance between samples
at two nodes on the graph be described by how a graph filter, centered at one node,
responds at the other node. The nature of this graph filter then defines the covariance
structure of the graph process [8]. It enables the design of graph filters, spectral esti-
mation methods, and other signal processing tools that leverage the underlying graph

structure.

2.3.3 Jointly Wide-Sense Stationary Processes

A graph process is said to be JWSS if its first two statistical properties, which are
mean and covariance, are invariant under the joint time-vertex shift operator. This
extends the concept of wide-sense stationarity to both temporal and graph domains,

making it suitable for analyzing time-varying graph signals.

A time-varying graph signal X = vec (X) is JWSS if and only if the following condi-
tions are satisfied [[10]:
1. Constant Mean: The first moment of the process is constant.
E[)_(] == C]-NT (239)

where ¢ € R is the constant mean value and 17 € R™7 represents the vector

whose elements consist of ones.

2. Covariance as a Joint Filter: The covariance matrix of the process can be

written as a joint filter of the joint Laplacian L ;.
Y = h(Ly) = h(Lg, Lr) = U h(Ag, QU (2.40)
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where ¥z € SY7T and h(Ag, Q) is the matrix that represents the two dimen-

sional JPSD.

2.3.4 Autoregressive Moving Average Time-Vertex Processes

The extension of ARMA filters from classical signal processing to graph domains
has been explored in various studies [27, 28]. A JWSS time-vertex process X can be
represented as an ARMA graph process if it is derived by applying an ARMA graph
filter to a zero-mean white process. Specifically, consider an input white process
w; ~ N (0, Iy), where the instances w; at different time points ¢ are independent.
The graph process x; at time ¢ is then related to its past values x,_,, and the input

process w; as follows [28]

P Q
X == Z ap(Lg)Xi—p + Z be(Lg)Wi—g, (2.41)
p=1

q=0
where a,(Lg) and b,(Lg) are graph filters. If these filters are polynomials of the form
ap(Lg) = Y1 apiLl and by(Lg) = >, ben L, Where L represents the k-th power
of the graph Laplacian, the ARMA process model on the graph becomes [27, 28]:

P K Q M
Xp=— 3 > apliXipy+ Y > bgmLdwWi_. (2.42)

p=1 k=0 q=0 m=0
In this model, a,; and b, are the coefficients of the ARMA graph filters. Given
that the input process w; is Gaussian, the resulting process x; is also Gaussian. By
applying the JFT to the process X, the spectral domain representation of the graph
filter in (2.42) can be expressed as [28]:

Q M m,—jwrq

H<)\n7 WT) = =7 ) .
1+ 25:1 Zf:o aprApe—IerP

(2.43)

2.4 Graph Learning Approaches

Graph learning aims to uncover the hidden structure of a graph from observed data.
This involves estimating the adjacency matrix A or the graph Laplacian Lg from the

observations. This is essential for applications where the underlying graph structure
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is not explicitly given but must be learned to effectively model, analyze, and process

data.

2.4.1 Introduction to Graph Learning

To determine the optimal graph topology that best represents the relationships be-
tween data points, estimating the weight matrix or the graph Laplacian is the key ap-
proach [12} [13) 29,130, 31} 32]. These matrices encode the connections and weights
between the nodes. The learned graph structure can then be used for various tasks

such as clustering, semi-supervised learning, and estimation tasks.

The sparse inverse covariance estimation method [13} 30, 31] is based on the idea
that the precision matrix (inverse of the covariance matrix) of a multivariate Gaus-
sian distribution, parametrized with a positive semidefinite precision matrix & € Sﬂ\:
defining a Gaussian-Markov Random Field (GMRF), can be used to infer the graph
structure. The non-zero entries in the precision matrix correspond to the edges in the
graph, which represent the partial correlations between corresponding random vari-
ables given all the other random variables in the data set. Formally, given a graph
signal data matrix X € R™¥*f where N is the number of nodes and R is the number
of observations, whose columns x; forz = 1,..., R are independent and identically
distributed samples with N'(0, X) from a GMREF, the unbiased estimation of the co-

variance matrix 3 is given as

1

Y —
NR -1

XXT. (2.44)

The precision matrix £Lg = © = X! is then estimated by solving the following

optimization problem [13]]
L; = arg min (Tr(XLg) — log |Lg|)
g

subjectto Lg = LgT,

—
Fo =0 (2.45)
Lg1 =0,
(Lg)ij <0, if(A); =1
(Lg)ij =0 if (A);; = Ofori # j
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where operator Tr(. ) represents the trace operation, |.| denotes the pseudo-determinant
(multiplication of the all non-zero eigenvalues of a square matrix), the fourth and the
fifth constraints impose the non-positivity of non-diagonal elements of the Laplacian
matrix (i.e., nonnegativity of edge weights). The constraints in (2.43) actually state
that Lg is a singular symmetric, positive-semi definite matrix whose first eigenvalue
is 0 and first eigenvector is the 1 vector. The graph learning problem in (2.45) can
be probabilistically formulated as a parameter estimation problem for GMRF’s from
data. The likelihood of a candidate graph Laplacian Lg can be written as

R R
Hp(Xz’ | Lg) = (270_%‘58_% geXP (_%XiT‘CQXi) (2.40)

i=1
where (.) represents the pseudo-inverse. The maximization of the likelihood function

in (2.46) can be equivalently formulated as the minimization of the negative log-

likelihood, that is [13]]

R
R 1
£ZML =arg rrﬁugn {—E lOg ‘ﬁg‘ + 5 Z Tr (XiTﬁgXi>}

i=1

(2.47)
= arg nﬁlin {Tr(LgX) —log |Lg|}
g

where Lz, . denotes the maximum likelihood estimate of Lg.

Another approach that can be used for learning a graph is that it is often assumed that
the signals are smooth over the graph [1, [7, 2, 33 34]. A smooth signal on a graph
varies slowly between connected nodes, meaning that adjacent nodes have similar
signal values [1]]. Mathematically, the smoothness of a signal x on a graph can be

quantified using the quadratic form of the Laplacian matrix xTLgx which is equal to

where z; and x; are the signal values at nodes 7 and j, respectively. The smoothness
indicator comes from equation (2.48)). If the large differences between the signal
values of adjacent nodes with higher weights are penalized, then an optimization

problem can be formulated as [35, 36]
L = arg nzin XTLox + al|Lg |5 (2.49)
g
where o € R, is a regularization parameter and || - || » denotes the Frobenius norm.
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The same constraints can be applied to equation (2.49) as in equation (2.43). Learning
the graph Laplacian from only the observed data samples is not always the case. Prior
information for the graph Laplacian is sometimes available. In these scenarios, we
may add the term 3||Lg — Lg,||%, where 3 € R, is a regularization parameter and

Lg, is an initial guess or prior for the Laplacian.

Although learning or improving the graph Laplacian may potentially increase the per-
formance, there are key points that need to be addressed. The optimization problem in
equation (2.45) mainly relies on the covariance matrix of the observed samples and if
the number of realizations is low then the new learned Laplacian £ can yield worse
performance because of the bad estimation of the covariance matrix. Although the
optimization problem in equation (2.49) may not suffer from the covariance estima-
tion, it may suffer from high noise, and this may guide the algorithm wrongly. Also
the a||Lg||% term does not necessarily have a direct relation to sparsity. Moreover,
learning large-scale graphs can be computationally intensive. Also, dependencies be-
tween random variables may extinguish if the regularization parameters are not cho-
sen properly due to sparsity-promoting terms, so parameter tuning can be challenging

for some data sets.

2.5 Time-Vertex Signals and Graph Learning

Although the methods in Section [2.4] have achieved some success, they all ignore
the characteristics of signals in the time domain. Therefore, more recent works have
focused on graph learning with time-varying graph signals. For example, Liu et al.
[37] propose estimating a graph from temporal weighted difference signals, where the
temporal dynamics are captured by the proposed time-varying graph signal model. Li
et al. [38]] derive a representation that promotes the smoothness property of the joint
graph signal. By decoupling the joint graph, they formulate the graph learning frame-
work as a joint optimization problem that includes signal denoising and the simulta-
neous learning of time and vertex graphs. Javaheri et al. [39] consider the problem of
semi-blind recovery of time-varying graph signals where the underlying graph model
is unknown. They assume the Laplacian GMRF model for the temporal difference

of the time-vertex signal by using spatio-temporal smoothness [40]. Kadambari et
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al. [41] propose a framework for estimating the graph Laplacian matrices of the fac-
tors of the product graph from the multidomain training data. They assume that the
product graph is constructed from the Cartesian graph product of two smaller factor
graphs and the problem of learning the product graph is transformed into the task of

estimating the Laplacian matrices of the factor graphs.

2.6 Graph Neural Networks and Graph Attention Networks

2.6.1 Introduction to Graph Neural Networks (GNNs)

A different approach for processing graph signals is inspired from the Convolutional
Neural Networks (CNN). Graph Neural Networks (GNNs) are a class of deep learning
methods designed to perform inference on data described by graphs. These networks
leverage the graph structure to capture the dependencies between nodes, making them
particularly powerful for tasks such as node classification, link prediction, and graph
classification. GNNs typically involve the propagation of node features through the

graph, updating each node’s representation based on its neighbors’ features.

One of the foundational works in this field is the Graph Convolutional Network
(GCN) introduced by Kipf and Welling [42]. GCN extends the concept of convo-
lution neural networks to graph-structured data by aggregating feature information
from the neighbors of a node. This approach allows the network to learn topological
dependencies in the graph, which are crucial for many graph-based tasks. Hamilton
et al. proposed GraphSAGE, which learns node embeddings by sampling and aggre-
gating features from the local neighborhood neighborhoods of nodes [43]]. Xu et al.
proposed GIN, which is powerful enough to distinguish different graph structures and

thus improves the discriminative capability of GNNs [44].

2.6.2 Graph Attention Networks (GAT)

Graph Attention Networks (GAT) extend GNNs by incorporating an attention mech-
anism that allows the model to assign different importance values to different nodes

in a neighborhood. This mechanism helps the model to focus on the most relevant
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parts of the graph, improving performance in tasks where some connections are more

important than others.

The architecture of GAT consists of multiple attention heads, which can be aggre-
gated to form the final node representation. Velickovic et al. introduced the GAT
model, demonstrating its effectiveness on several benchmark tasks [45]. By comput-
ing attention coefficients for each pair of connected nodes, GATs can dynamically
weight the influence of neighbors during the message-passing process. Abu-El-Haija
et al. proposed an attention mechanism that models random walks over the graph to

capture more global context [46]].

2.6.3 Graph Inference and Estimation Problems

GNNs and GAT's can address a variety of graph inference and estimation problems.
Common tasks include node classification, where the goal is to predict the label of
each node, and link prediction, where the objective is to infer missing edges in the
graph. Other problems include community detection and graph clustering, which

involve identifying groups of closely related nodes.

These tasks are typically formulated as optimization problems, where the network
learns to minimize a loss function based on the observed data. For example, in node
classification, where GNNs are used to classify nodes in a graph based on their fea-
tures and the graph structure [42], the loss function may measure the difference be-
tween the predicted and true labels of the nodes. In link prediction, GNNs can predict
the existence of edges between pairs of nodes, which is useful in social networks and
recommender systems [47]]. In such applications, the loss function may measure the

likelihood of observing the existing edges given the learned embeddings of the nodes.

2.6.4 Graph Learning with GNNs

Graph learning involves using GNNs to learn useful representations of graphs and
their components. This can include learning embeddings for nodes, edges, or entire

graphs, which can be used for downstream tasks such as clustering or classification.
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GNNs can also be used to generate new graphs or to optimize existing graph structures

to improve performance on specific tasks.

Advanced techniques in this area include self-supervised learning, where the network
learns to generate labels based on the structure of the graph itself, and the integration
of GNNs into other machine learning models to enhance their capabilities. For in-
stance, Veli¢kovic et al. proposed the method DGI (Deep Graph Infomax) for learning
node representations using self-supervised learning from unlabeled data [48]]. Grover
et al. proposed the method Graph Embeddings for learning low-dimensional repre-
sentations of nodes or entire graphs for various tasks [49]]. You et al. proposed the
method Graphrnn using deep auto-regressive models which an be applied in fields

like drug discovery [50].
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CHAPTER 3

PROPOSED METHOD

This chapter describes the proposed method for jointly learning a graph ARMA pro-
cess and a graph Laplacian matrix L£g from time-vertex signals. In Section we
demonstrate our process model along with the assumptions. In Section [3.2] we de-
scribe the problem and how we aim to solve, detailing the objectives. In Section [3.3]
we give the details of the proposed method and each step of the algorithm. In Sec-
tion [3.4] we show an application of how the proposed method can be used for the

spatiotemporal interpolation problem.

3.1 Process Model

In this section, we present the process model and preliminaries necessary for under-
standing the proposed method, which aims to jointly learn an ARMA graph process
model, aand b coefficients to construct the JPSD h, and the graph Laplacian matrix

Lg. We begin with the signal model and the assumptions underlying our approach.

3.1.1 Signal Model

We consider a time-vertex signal X € RY*T that is observed on a graph G =
(V,E,W). We assume that the random time-vertex signal X is a JWSS process
whose properties are described in the Section [2.3.3] Furthermore, we model this

JWSS time-vertex process as an ARMA graph process as in Section [2.3.4]
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3.1.2 Laplacian Matrix

The Laplacian matrix Lg of the graph G is modeled as deterministic. We assume that
there exists an initial guess for Lg, that is Lg,. Lg, is used to construct an ARMA
graph process model initially. Then, we use the approach in equation to update
Lg based on our estimation of the ARMA graph process model.

3.2 Problem Formulation

The primary objective of this work is to jointly learn an ARMA graph process model
and the graph Laplacian matrix such that the estimated model and the Laplacian ma-
trix accurately represent the observed JWSS time-vertex process. We aim to enhance
our modeling of data dependencies by representing the observed data as a JWSS
ARMA graph process. Additionally, we refine the Laplacian matrix Lg to gain a
deeper understanding of the underlying dynamics, thereby enabling more accurate

estimations and predictions.

3.2.1 A priori Information

1. Available Realizations: In this work, we consider a scenario where L real-
izations {X'}L | of the time-vertex process X are available. Each realization
X! € RV*T is assumed to be fully observed, although our algorithm can also
be used in a scenario where only partial observations of the realizations are
available. The motivation behind the full observation assumption of the avail-
able realizations is that we aim to learn both the graph topology and the process
parameters, so training the model on fully available observations is expected to

improve the model estimation accuracy.

2. Initial Erroneous Laplacian Matrix: In this work, we assume that an initial

Laplacian matrix Lg,, although it might be erroneous, is available.
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3.2.2 Objective

The primary objective of this work is to learn an ARMA graph process model and its
underlying graph structure through the graph Laplacian matrix Lg jointly. Given the
fully observed realizations of the time-vertex process {X'}% |, our goal is to refine
the Laplacian matrix Lg to better understand the inherent structure of the graph, and

accurately model the dependencies in the data by fitting an ARMA graph process.

Let X(a, b, Lg) denote the modeled process. Fitting X to X(a, b, £g) is a jointly
non-convex optimization problem. Although learning the ARMA model and the
graph Laplacian jointly is challenging, it is a rewarding task. We can express our

learning task in form of a general optimization problem as follows

min (a.b, £g, 3¢ + r(a, b, Lg) (3.1)
where f(.) represents a data fidelity term and 7(.) represents a regularization term.
Optimizing the functions in (3.1) is difficult. The objective function exhibits a fourth-
order dependency when fitting the parameters a and b to the initial estimate of the
JPSD, as discussed in [11]. Moreover, the optimization problem involves powers
of the eigenvalues of Lg, making the objective function dependent on Lg in a non-
convex manner. Hence, we propose to split the parts learning the ARMA coefficients
a and b, and learning the Laplacian matrix Lg. In this case, the optimization problem

can be reformulated as follows

min fl (aaba‘cgaii> + 7"1(3_, b)
{a,b,Lg} (32)

+ f2 (ﬁg, E,—((a, b)) + Tg(ﬁg).

The term f; <a, b, Lg, > ,—c) captures the coherence between the process parameters
a, b and the data statistics for a given graph topology, while 7 (a, b) serves as the
regularization term in ARMA graph process fitting. Similarly, f5 (Lg, ¥x(a, b)) rep-
resents the data fidelity component related to the learning of the graph Laplacian
matrix Lg, with ro(Lg) acting as its corresponding regularization term. We give the

explicit forms of these terms in Section
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3.3 The Overall Algorithm

The joint learning of the two components in equation (3.2)) can be achieved via an
iterative algorithm. In the first step, the f; and r; functions are minimized together
to update the ARMA coefficients while Ly is fixed. In this step, we always fix the
covariance matrix to its initial value 3 ¢ calculated from the data. In the second step,
when minimizing f, and 5, an updated version of the covariance matrix X3 (a, b)
is calculated according to the coefficient vectors a and b, which are fixed to their
values learnt in the first step. This updated version of the covariance matrix is used
in the optimization of L. Then f; and ry can be minimized together to update the
Lg matrix. This optimized Lg is then used in subsequent iterations instead of the
initial guess to update the parameters of the graph ARMA process. These steps can
be repeated until a predetermined number of iterations is reached. We call this method

Graph Learning JS-ARMA (GL-JS-ARMA).

Algorithm 1 Iterative ARMA Graph Process and Laplacian Matrix Optimization.
GL-JS-ARMA

Inputs: Initial Laplacian matrix Lg,, initial covariance matrix >

Set iteration counter k = 1

WHILE £ is smaller than maximum iteration number
DO

Update ARMA coefficients: Fix Lg = Lg, .

(akabk) = a'rgmiglfl (a7b,ﬁg,2,—() +T1(a7 b)

Calculate the new covariance matrix: Using the updated aj, by, calculate the covariance matrix X (a, b)

via equations (2.40) and (3.14).

Update Laplacian matrix: Fix a = a; and b = by.

Lgy;, = argmin f> (C@ 3x(a, b)) +72(Lg)
g

k=k+1
ENDWHILE

Output: Optimized Laplacian matrix Lg, optimized ARMA coefficients a and b

In each iteration of the optimization, we alternate between fixing {a, b} and optimiz-
ing Lg, and fixing L and optimizing {a, b}. Between these two steps, we calculate

the 3z (a, b) according to the updated values of the coefficient vectors {a, b}.
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Figure 3.1: The flow chart of GL-JS-ARMA algorithm in

Each step in Algorithm [1]is elaborated upon in the following subsections. We begin
with Subsection where the calculation of the initial covariance matrix X is
explained. This is followed by Subsection [3.3.2] which details the computation of
the graph ARMA process parameters, a and b. The algorithm subsections conclude
with the computation of the matrix 3x(a, b), followed by the learning of the graph

Laplacian matrix.

3.3.1 Initial Covariance Matrix and JPSD

We recall from Chapter 2 that a time-vertex stochastic process modeled as a graph

ARMA process (2.42)) is also JWSS, as described in the equations (2.39) and (2.40).

Thus, the process X has a constant mean, and its covariance matrix 5 can be jointly
diagonalized with the joint Laplacian £;. Consequently, the spectral domain repre-

sentation of the graph filter is in the form of (2.43).

The covariance matrix 35 of a zero-mean time-vertex process X is given by

Yo X o X
Sy=Exx)= |00 T T (3.3)
| Y71 XYre o0 X

where ¥; , = E[x; x]] stands for the covariance matrix of the values of the process

at time instants ¢t and u. When X is a JWSS process, the covariance matrix Y5 has a
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special property that simplifies its estimation. Each covariance matrix ¥, ,, is a graph
filter X;,, = ¢+..(Lg), which depends only on the time difference ¢ — u. This results
in a block-Toeplitz structure in 35 [10]. Given that any graph filter g(Lg) must be
symmetric, and that the overall covariance matrix Y5 is also symmetric, it follows that
3w = X, Therefore, estimating 3¢ reduces to estimating the smaller matrices
Ya € RYN for A = 0,1,...,T — 1, where ,, = X with A = |t — u|. We
estimate the covariance matrix X5 based on the estimation of the smaller covariance
matrices 3 A’S. The unbiased covariance estimate )y A for A = 7 with circular shift
for a zero mean time-vertex JWSS process is given by

< 1
200 = gr—q

D) X (i,t) X, (j, (t+ 7) mod T)
=1 =1 (3.4)

forr=0,1,...., 7T —1

where X,.(7,t) is the value of the time-vertex signal at node 7, time ¢, and realization
r. The circular shift reorders the time series while preserving the intrinsic structure
of the JWSS processes. The initial estimate iL(/\n, w,) of the JPSD can be calculated

by extracting the diagonal entries of the matrix
h(Ag, Q) = U, U,. (3.5)

Another estimation of the JPSD, which is based on the Wiener-Khinchin theorem

[S1], is given by

B wr) = = 37 1Ko (0, 7) (3.6)

where )/(\T(n, 7) is the JFT of the r'" realization of X, R is the number of realizations,
and l~1(/\n, w,) is the estimate of JPSD of the time-vertex process X. The reason why
we select equation (3.4) for the calculation of X is justified in the results in Table
A synthetic data set is studied with the parameters N = 33,7 =30, P =1, K =
1, = 1, M = 0 with different numbers of realizations. The graph is constructed
from a sensor network from the GSP toolbox [52]. The resulting PSD can be seen

below.
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Figure 3.2: Low-Pass PSD: h(\, w)

Here, )\ denotes the graph eigenvalues and w denotes the time frequencies. The first
column of this figure represents the DC frequency in the spectral domain and due
to symmetric property of the DFT we can observe the symmetry between columns
2,3, % and (% +2),---,T. We compare the normalized errors of the estimation
methods in (3.4) and (3.6) against the ground truth covariance matrix. The normalized

estimation error is defined as

s — Zxlr

1= S

where X5 represents the estimated covariance matrix from the observed realizations
and X5 represents the ground truth covariance matrix of the time-vertex process. We

vary the number of realizations in order to observe its effect over the estimation error
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and report the results in Table 3.1. The same parameters are used for each realization.

Normalized Covariance Estimation Error for NV = 33,7 =30

Number of Realizations | Equation (3.0) is used | Equation (3.4) is used
R=50 0.151 0.141
R =150 0.0789 0.0752
R=1e4 0.0122 0.0114
R =>5e4 0.00492 0.00457

Table 3.1: Normalized covariance estimation errors for different realizations using

different estimation methods

The advantage of the covariance estimate in (3.4)) over (3.6) can be seen from Table
[3.1] where the unbiased circular covariance estimator performs better than the JFT

approach.

3.3.2 Updating the ARMA Coefficients

This part of the algorithm makes use of the work of Guneyi et al which we call Joint
Spectra-ARMA (JS-ARMA), [11]. We fit the initial JPSD (3.5) to the JPSD of an
ARMA graph process and learn the parameters a and b. We first rewrite the filter

spectrum in (2.43) as

H
b7 u, -

H s or) = 7 —

(3.8)

where the vectors a € RPE+Dx1 apnd b € R@FDM+1)x1 regpectively consist of the

filter coefficients a,, and by, as

a = [alo a‘ll "'apk "'CLPK}H

b = [boo bos - ---bQM]H.

(3.9)

The vectors v,,, € CPEFDXL and u,,, € C@HDMHFDXL congist of the constant

coefficients

Var = R ALkl L Aol . NS giorT]
(3.10)

u,, = [)\geijO )\1116ij0 coe AMederd )\gfewaQ]H

)
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where \¥ denotes the k-th power of the n-th graph eigenvalue ), and the frequency

variables w, are as defined in (2.27).

The JPSD of the process is equal to the magnitude square of the filter spectrum [8]],

H 2
b"u,

—_— 3.11
1+ aflv, , @11

B 0n) = [H Oy, = ‘

Then, the estimation of the ARMA graph process model parameters from the initially

estimated JPSD can be expressed as

— h(An, wr) (3.12)

The optimization problem in (3.12) is nonconvex with non-unique minima, and hence

difficult to solve. If the equation ([2.43) is reformulated as

M _
o bgm AT eI
H(Ap,w;) = Eoo X : (3.13)

szo o AppAbe I

where the coefficients are set as agop = 1 and ag, = 0 for k = 1,2,--- | K, then the

JPSD of the process has a simpler form

h(An,w,) =

(3.14)

The vectors & € RPHDEFIXT and v, - € CHFDEFDXL are defined to be aug-

mented versions of a and v, ; as [11]

a— [a00 Qpr * -+ Qpi aPK]H
4 . . 4 (3.15)
Vinr = [Nl \Ledwrl o \Reiwrp o \KgiwrPIH
In addition to this change of variables, the term in the denominator is removed as
proposed in [11] and the final form of the optimization problem becomes

N T
111111 E E
a,b

" on=11=1

~ 2
u/ bb"u,, — v aa"v, . h(\, w,)| . (3.16)

The objective function in (3.16)) acts as an alternative to the one in (3.12)), though they
typically produce different solutions. However, if the denominator term in (3.12)) does
not become arbitrarily small, indicating that the spectrum has a bounded magnitude,
minimizing (3.16) is likely to provide a satisfactory estimate for the solution of (3.12).

On the other hand, the optimization function is still nonconvex because of the vectors
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a and b. Therefore, the study in [11] proposes using matrices A and B, defined as
A £ 3a” and B £ bb”. For these definitions to hold, the matrices A and B must
be rank-1 and positive semidefinite. Thus, the optimization problem becomes

N T
min Z Zn An, Wr)

T op=1 =1

~ 2
H ~H >
'I'L,TB Up,r — Vn,TA Vn,r h()‘TH wT)

subjectto  rank(A) =1, rank(B) =1, (3.17)

A€ SSFP—H)(K—H) Be S(+Q+1)(M+1)’

Y

ago =1, app =0fork=1,2, --- | K

where 7(+, -) stands for an optional weight function for adaptively penalizing the er-
ror at particular zones of the joint spectrum, which can be chosen as pu(\,,w,) = 1
under no priors. It can be chosen so as to guide the optimization problem such that
the resulting graph ARMA process has a low-pass JPSD, which is a realistic assump-
tion for most applications. The rank one constraints are nonconvex, so instead of
directly applying the rank one constraints the positive semidefinite matrices A and
B can be pushed to be low-rank by minimizing the sums of their singular values, or
equivalently, their traces Tr(A) and Tr(B) as in the work [11]]. The final form of the

optimization problem is obtained as

T
mm E (An, wr)

. 2
H “H A o
w, Bu,, — v, Av, . h(\,,w:)

3.18
+ pa Tr(A) + pp Tr(B), subjectto A € S PH(EH) G-18)

B¢ SSFQH)(MH), agp =1, apr =0fork =1,2,--- K

where p14 and pp are non-negative weight parameters. The objective function in

(3.18)) is quadratic and jointly convex in A and B. Therefore, the f; term in equation
2

(32) canbe expressed as 3, 37 (M, wy) [uf B, — VE AV, h(M\,w;)]
and the r; term can be written as p14 Tr(A) + pp Tr(B).

The constraint set consists of linear equality constraints, and the positive semidefinite-
ness of the A and B matrices. Hence, (3.18)) is a convex problem that can be solved
using convex optimization techniques [53) 154 relying on semidefinite quadratic lin-
ear programming [55]. Once the matrices A and B are computed by solving (3.18),
the ARMA model parameter vectors a and b can be recovered through rank-1 de-

compositions of A and B.
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3.3.3 Calculation of the Covariance Matrix 33 (a, b)

The covariance matrix X5 (a, b) is determined as a result of solving the optimization
problem (3.18)). Once the coefficients a and b are obtained, the JPSD of the process
is computed using equation (3.14). Following this, X4 (a, b) can be derived from
equation (2.40). This intermediate covariance matrix is then used in Section [3.3.4]
For a fixed time ¢ in an ARMA graph process, the covariance matrix of the process
corresponds to X with A = 0. Thus, we utilize the first N x N block of the

covariance matrix Xx(a, b).

3.3.4 Updating the Laplacian Matrix

This part of the algorithm builds on the work of Egilmez et al, [13]]. In order to update
the graph Laplacian Lg coherently with the learned graph ARMA process, the sparse
inverse covariance estimation method in Section is used. The graph Laplacian
matrix Lg can be updated via equation (2.43)), with the addition of a regularization

term as [[13]]
6= argrréijn (Tr(f]oﬁg) —log|Lg| + ||Lg ® F||1>

subjectto Lg = L7,

—
Lo =0, (3.19)
Lg1 =0,
(Lg)ij <0, if (A);; =1
(Lg)ij =0 if (A);; = Ofori # j

where | Lg © F||; is the sparsity promoting weighted ¢;-regularization term multiply-
ing Lg and F element-wise. F € RV*" is a symmetric regularization matrix and the

sparsity promoting term can be compactly written as
|1Lg ©F||y = Tr(LgF). (3.20)

In this work, the Laplacian Lg is modeled as deterministic. As a side note, in previous
studies relying on a Bayesian approach [13}31], the sparsity-promoting regularization

term has been shown to provide the following insightful interpretation: The maximum
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a posteriori (MAP) estimate of Lg has been obtained in these works by incorporating

the prior knowledge about Lg into a prior distribution p(Lg) as

Loyap = I I%in {Tr(igﬁg) —log |Lg| — log(p(ﬁg))} : (3.21)
g
For example, the following M -variate exponential prior distribution is chosen to pro-
mote the sparsity of the edge weight vector w
(2a)M exp(—2al'w) forw >0, (3.22)

then the log-likelihood of w is captured by the term 2a|w||; = «||Lgl|1.0r Where
I|-]| 1.0 denotes the ¢4 norm of the vectorized form of a square matrix by excluding its

diagonal elements. In this case, (3.21)) can be written as follows
Lo = argmin { Tr(Lg50) — log|Lg| + allLolion} . (3:23)
g

Therefore, the f, term in equation (3.2) can be expressed as Tr(LgXq) — log |Lg),
and the ry term can be written as «||Lg||1 or. The standard ¢; regularization term with

a parameter « can be written as
al|Lgllor = Tr(LgF), F =a(2I—117) (3.24)

where « can be regarded as a non-negative regularization parameter that controls the

sparsity of the Laplacian (precision) matrix.

In order to solve the optimization problem in (3.19), some reformulation steps are
applied as in the work [13]]. Since the operator Tr is linear, the problem in (3.19) can

be rewritten as
arg n%in {Tr(LgK) — log|Lg|} where K = 3 + F. (3.25)
g
Since the graph Laplacian matrix Lg is a rank deficient matrix whose determinant is

0, the term log |Lg| leads to an inconvenience for the problem (3.23). To cope with

this difficulty, the optimization problem can be reformulated as

L; = arg n%in (Tr(Lg(K + J)) — logdet(Lg + J))
g

subjectto Lg = LgT,

—
Loz 0, (3.26)
L1 =0,
(Lg)i <0, if(A); =1

36



where J = uju;T = (1/N)117 such that u; is the eigenvector corresponding to the
zero eigenvalue of the combinatorial graph Laplacian matrix. The optimization prob-
lem in (3.26) is convex and can be solved by an iterative block-coordinate descent
algorithm [[13} 56]. The prior knowledge about the graph structure is built into the
choice of the adjacency matrix A, determining the structural constraints. For exam-
ple, the edges of a Lg, and the highly correlated indices of 3, can be used to guide
the connectivity structure of Lg along with the parameter « until the desired level of
sparsity is achieved. These structural constraints guide the algorithm by defining the

permissible edges, which is a crucial detail for determining the edge places.

3.3.5 Complexity Analysis

In this subsection, we analyze the computational complexity of the algorithm, focus-
ing on the distinct complexities of learning the graph ARMA model and the graph
Laplacian matrix. The ARMA model involves solving for the coefficients a and b,
calculating the joint eigenbasis U, and estimating the covariance matrix >.. The
complexity depends on factors such as the model order, the time series length 7',
the node dimension N, and the number of realizations R. First, computing the esti-
mated covariance matrix X has a complexity of O(N?T R) due to its block-Toeplitz
structure. Next, calculating the joint eigenbasis U; involves computing Ug with
a complexity of O(N?), and the Kronecker product with Uy incurs an additional
complexity of O(N?T?). To solve equation (3.18), the initial JPSD % must be cal-
culated, which has a complexity of O(N3T?). Assuming that the model parameters
P, K, (), M are significantly smaller than N and 7', the optimization problem (3.18))
can be solved using the HKM algorithm [11} [55]], with a complexity of O(NT).
Therefore, the overall complexity of learning the graph ARMA coefficients, assuming

the model parameters are much smaller than the process dimensions, is O(N3T?).

The learning of the graph Laplacian matrix in this work employs a block-coordinate
descent algorithm, as described in [13} 56]. The computational complexity of this
algorithm is generally O(N?3), where N represents the number of nodes in the graph.
This cubic complexity arises from the fact that in each iteration, the algorithm updates

one block (or subset) of the inverse of the Lg’s variables, solving for the optimal
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Laplacian matrix based on the current estimates of the other variables. However, the
actual complexity can be significantly reduced depending on the sparsity of the graph
structure. If the graph is sparse, meaning that each node is connected to only a few
other nodes, the complexity of the algorithm scales with the maximum number of
edges connected to any node. In such cases, the complexity is reduced to O(s?),
where s is the maximum degree of a node, i.e., the largest number of edges incident
to any single node in the graph. Since in many real-world applications, graphs tend
to be sparse (with s < ), the computational cost of learning the graph Laplacian
can be considerably lower than the worst-case O(N?) scenario. This sparsity-based
optimization allows the algorithm to be scalable and more efficient for large-scale

graphs, where only a fraction of the possible edges are present.

A single iteration of the proposed method has a computational complexity of O(N3T3).
This complexity arises from the steps involved in calculating the joint spectral ba-
sis, the covariance matrices, and solving for the ARMA coefficients and the graph
Laplacian. Given that the method typically involves multiple iterations, the overall
computational complexity scales with the total number of iterations. Thus, if L repre-
sents the maximum number of iterations, the total complexity of the algorithm can be
expressed as O(N3T3L). In practice, L is generally much smaller than the number
of nodes or the time series length, but it still contributes to the overall runtime of the

method.

3.4 Application of the Proposed Algorithm in Spatiotemporal Interpolation

Problems

In this section, we demonstrate the usage of our algorithm proposed in Section [3.3]in
spatiotemporal signal interpolation applications. After jointly optimizing the ARMA
graph process coefficients a and b along with the Laplacian matrix Lg, we use these
parameters to estimate the missing entries of a partially observed process. An im-
proved estimate of >, denoted as 3%, is obtained using the fitted parameters a, b and
the eigenvalues of the optimized Laplacian L. This is achieved by firstly calculating
the improved JPSD estimate h*(\,,,w,) by (3.14). Then, h*(Ag, 2) is constructed as
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in (2.36). Lastly, 3% is calculated as
2 = U h*(Ag, Q) (UH)H (3.27)

where U’ is the matrix containing the joint eigenbasis that is constructed from the
optimized Laplacian £ and the cyclic Laplacian £ with equation (2.30). Our setting

for the interpolation application is as follows.

We consider a scenario where L realizations {X;}/, of the time-vertex process X
are available for training, and R — L realizations {X,}{%, , are available for testing.
During the training phase, we apply the proposed method to learn the vectors a and
b and optimize the graph Laplacian matrix Lg. Each realization X; € R¥*7 is fully
observed, although the algorithm can also handle scenarios with partial observations,
in which case the covariance matrix X5 in equation (3.4) can still be calculated by
ignoring the missing values in the observations. The motivation behind assuming
fully observed realizations is to separate the training and learning phase from the
estimation and prediction phase, allowing us to accurately learn a large number of

parameters.

We use 80% of the training realizations for learning and 20% for validation. The
validation realizations, while known, are used for calculating the validation error.
This error is utilized for tuning the parameters 14, 115, and « of the proposed method.
Then, the performance of the proposed method is evaluated at test realizations. For a
realization [, the known samples of a time-vertex graph signal can be represented by
the set Z;. Specifically, let Z, = {(i,t) | X;(i,t)is observed} denote the index set of
the available entries in realization [, for [ = 1,2, ..., R. Similarly, the complement of
this set, Z; = {(i,t) | X;(i,t) is missing} denotes the index set of the missing entries

in realization [, for [ =1, ..., R.

Let X; be the vectorized form of the realization [ for the time-vertex signal X;. Let
y; and z; vectors be the known and missing entries of X; respectively, i.e., the sample
values in the sets Z; and Z;. The vector of missing process values z; can then be
estimated with minimum mean square error (MMSE) estimation approach, which is
the same as the linear MMSE (LMMSE) estimate since y; and z; are jointly Gaussian
(8]

(Z1) = (Za5)" (5)") " 30 (3.28)



Here (3,5,)" and (Xg,)* respectively denote the estimates of the cross-covariance
matrix of z; and y;, and the covariance matrix of y;. These matrices can be formed by
extracting the corresponding entries of 3% for each realization X;. The normalized

mean of the error is calculated as

( Z” Z’ Zl ”2> . (3.29)

We express our parameter selection method in Appendix
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CHAPTER 4

EXPERIMENTS

In this chapter, we evaluate the performance of the proposed method. We begin by
conducting a series of experiments on synthetic data to assess the accuracy of the
model calculations. These experiments also allow us to examine the impact of var-
ious parameters on the model’s accuracy. Following this, we perform comparative
experiments on real data sets to further validate our approach. We conduct 8 experi-

ments and present the average errors for each subsection.

4.1 Synthetic data set Experiments

To thoroughly assess the model computation accuracy of our algorithm, we present
results using a synthetically generated ARMA graph process. The underlying graph
topology is derived from a sensor network by using the GSP toolbox [52]]. Using
this topology, we synthetically generate realizations of an ARMA graph process as
described in (2.42)). In each experiment, different realizations of the graph ARMA

process are generated by using the parameters described below.

The synthetic data experiments aim to evaluate the accuracy of the proposed algo-
rithm in learning the model parameters a and b, as well as the graph Laplacian matrix
Lg. Therefore, we perturb the weights of L to generate a noisy observation Lg, of
the graph Laplacian, provide Lg, as input to our algorithm, and measure the accuracy
of the model parameters across different SNR levels. We assess the model’s accuracy

by comparing four different estimated parameters which are the JPSD h(\,,w,), a,
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b and Lg. The estimation error of JPSD is calculated as

| 2*(Ans wr) — B(An, wr) || 7
[A(An; wr)|lF

where h*(\,,w,) represents the estimated JPSD matrix, h(\,,w,) represents the

4.1)

ground truth JPSD matrix, and ||.||» denotes the Frobenius norm. The errors for

the parameters a and b are calculated as follows
4.2)

[b* — b
bl

where a* and b* represent the estimated vectors for the parameters a and b, respec-

4.3)

tively. The operator ||.|| stands for the ¢,-norm. We compare the estimation errors
of these three methods with the approach described in [11] as we call it JS-ARMA,
which does not account for the error in Lg. Our focus is on the impact of Lg’s accu-
racy on the model parameters and how precisely we estimate both the parameters and
Lg. The error of Lg is calculated as follows
1£5 = Lol
1£6]l7

where L7 is the estimated graph Laplacian matrix.

4.4)

We begin by observing the effect of the number of iterations on the estimation per-
formance in Section 4.1.1l As we will see in Section {.1.1] the estimation error of
the model parameters and Lg tend to start increasing or destabilize after the second
iteration. Hence, we select the maximum number of iterations as 3 and do not process
further after 2. Then, we move on to analyze the impact of the noise on Lg on the
performance. We consider two scenarios. In Section[4.1.2] the graph ARMA process
realizations are produced according to a ground truth W but the proposed method
only has access to perturbed weight matrix, Wyeisy. We only perturb the existing
edges of the weight matrix W without adding or removing any edges. In Section
M.1.3] we allow for both the addition and removal of edges, as well as perturbations to
existing edges in the weight matrix W. We conduct these experiments for different
SNR values. The SNR in dB is defined as

Wl
201 4.5
%810 (HWNoisy —Wiir ()
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where Wy 18 the perturbed weight matrix.

In Section 4.1.4] we examine how the number of realizations impacts estimation per-
formance. We assume the presence of noise in both the observed signals and W, as
our focus is on evaluating the algorithm’s performance under these noisy conditions,
particularly with respect to the noise in W. We do not address model complexity and
mismatch effects, as these factors have already been explored in the work by Guneyi
et al. [11] where we expect to observe similar findings. We describe the experiment

environment and parameters as follows.

We select number of nodes and time length as N = 30 and 7' = 25, respectively.
Weuse P =1, K =1, Q = 1, M = 0 as our graph ARMA process parameters
H H
|7 andb = [05 0.5]

these experiments, the ground truth values for P, K, () and M are provided to the

and set the parameter vectors as a = [1 —-05 0 05 . In

algorithm. The regularization parameters 14, pp and « are found by the validation

procedure described in Appendix [A] The resulting JPSD can be seen in Figure {.1]
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Figure 4.1: Synthetic data set JPSD

It exhibits low-pass characteristics in both the time and node domains; therefore, the

generated realizations are expected to vary smoothly across the graph and over time.

4.1.1 Performance Analysis Across Iterations

In this section, we study the behavior of the algorithm in terms of the estimated JPSD,
the parameters a and b of the graph ARMA process, and the graph Laplacian matrix.
We generate R = 200 realizations and keep the observations noise-free. The SNR of

the weight matrix is 10 dB.
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1. JPSD Estimation:
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Figure 4.2: Variation of the JPSD estimation error with iterations

In Figured.2] after the second iteration, the accuracy of the estimated JPSD begins to
deteriorate. While the first two iterations contribute to aligning the estimated JPSD
with the ground truth, subsequent iterations introduce errors that result in an overfit-
ting effect. This overfitting is likely due to the model attempting to fit to noise rather

than capturing the true underlying structure of the time-vertex process.
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2. Graph ARMA Parameters a and b:

a Estimation Performance
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Figure 4.3: Variation of the estimation error of parameter a with iterations
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b Estimation Performance
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Figure 4.4: Variation of the estimation error of parameter b with iterations

In Figures |4.3|and the errors in estimating the parameters a and b show a consis-
tent pattern of improvement during the first two iterations. However, after the second
iteration, the optimization procedure appears to become unstable, leading to fluctua-
tions in the parameter estimates. This instability suggests that the model parameters
are becoming increasingly sensitive to minor inaccuracies in the estimation process,
potentially causing them to diverge from the true values. As mentioned in Section[3.2]
our primary goal is to minimize the function f; + r; + f> 4+ r. However, since this
is a challenging task, we take an iterative approach by first minimizing the function
f1 + r1 by optimizing variables a and b, and then minimizing the function f; + 79

by optimizing Lg. This choice is due to the fact that the overall cost function is not
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jointly convex with respect to the variables we aim to optimize. As a result, even
reaching a local minimum can be challenging, if not impossible. In addition, the pa-
rameters a and b are approximated using a convex relaxation procedure, as described
in equation (3.18)). While this relaxation provides initial estimates for the parameters,
the approximation starts to deviate from the ground truth values after the second it-
eration. This divergence indicates that the approximated solutions lose accuracy in
representing the underlying model, which could be due to the inherent non-convexity
of the original optimization problem. Therefore, although the convex relaxation of-
fers some computational advantages, its accuracy tends to degrade as the optimization
progresses. Furthermore, a fundamental issue here arises when calculating the Lapla-
cian matrix L£¢g by minimizing f; + r, as we ignore the dependency of the f; term on
Lg. Ideally, we should be minimizing f; + f5 4o together. However, the dependency
of f1 on Lg is quite complex as f; involves polynomials of its eigenvalues, which we
ignore for the sake of ease of computation. This approach can lead to inconsistent
behavior, where the algorithm may fail to converge towards a solution over iterations.
It is highly likely that this assumption disrupts the algorithm’s convergence behavior,

preventing it from stabilizing on a consistent solution.
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3. Graph Laplacian Matrix Lg:

Lg Estimation Performance
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Figure 4.5: Variation of the estimation error of parameter Lg with iterations

In Figure [4.5] the estimation of the graph Laplacian matrix Lg also suffers from in-
stability after the second iteration. Initially, the algorithm successfully refines Lg
to better reflect the underlying graph structure. However, as with the JPSD and the
ARMA parameters, further iterations result in the introduction of noise into the graph
structure, leading to a less accurate Laplacian matrix that can negatively impact the

overall model.
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General Observations: The instability observed after the second iteration suggests
that while the algorithm is effective in the early stages of optimization, it may be
prone to overfitting as the iterations progress. This highlights the need for potential

safeguards, such as early stopping after the second iteration as we did.

4.1.2 Effect of Perturbation of Edge Weights with Edge Preservation

The results obtained from the experiments provide an analysis of the proposed method’s
performance in estimating the JPSD, the parameters of the graph ARMA process a,
b and the graph Laplacian matrix £g. We start by adding zero-mean white Gaus-
sian noise to W. Since in this section we aim to preserve the edges, we assign
e = 2.2204e—10 to any of the weights that become non-positive due to noise addition.
Then, R = 50 process realizations X; are generated by filtering the realizations of a

zero-mean white Gaussian time-vertex process.
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1. JPSD Estimation:
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Figure 4.6: Variation of the estimation error of JPSD with SNR under edge preserva-

tion

In Figure [4.6] we present the variation of the JPSD estimation error with the SNR
of the graph topology. The JPSD estimation results reveal the accuracy of the pro-
posed method in capturing the spectral characteristics of the time-vertex signals. The
comparison between the estimated and ground truth JPSD matrices demonstrates that
our method effectively reconstructs the joint spectrum, even under noisy conditions
for Lg. The JS-ARMA method [11], which does not attempt to learn a new Lg but

instead estimates the parameters a and b from the initial, possibly noisy, Laplacian
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matrix, serves as the baseline for our comparisons. As illustrated in Figure .6} the
estimation error of the JPSD decreases over iterations, aligning with the results dis-

cussed in Section 4. 111

2. Parameters of Graph ARMA Process a and b:
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Figure 4.7: Variation of the estimation error of parameter a with SNR under edge

preservation
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b Estimation Performance
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Figure 4.8: Variation of the estimation error of parameter b with SNR under edge

preservation

The estimation errors for the parameters a and b of the graph ARMA process in Fig-
ures and obtained through the iterative optimization procedure, consistently
decrease with increasing SNR as expected.. These parameters directly influence the
accuracy of the signal reconstruction and JPSD estimation, and the results indicate
that the proposed method achieves lower JPSD error compared to the baseline method
JS-ARMA. This confirms the effectiveness of our approach in capturing the temporal
and spatial dependencies of the graph signals by taking into account the possible de-

viation between the observed graph topology and the actual graph topology.
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3. Graph Laplacian Matrix Lg:
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Figure 4.9: Variation of the estimation error of L£g with SNR under edge preservation

In Figure we present the variation of the estimation error of the graph topol-
ogy with SNR. The optimization of the graph Laplacian matrix plays a critical role
in the overall performance of the method. The iterative updates to Lg ensure that
the learned graph structure is well-aligned with the underlying data characteristics.
The experiments demonstrate that the resulting L£g successfully captures the essential
connections between nodes, leading to better estimation performance. The adaptabil-
ity of Lg to varying levels of noise further highlights the robustness of the proposed
method.
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In conclusion, the experiments confirm that the proposed method improves the esti-
mation accuracy of both the process parameters and the graph structure. The joint
learning of the JPSD, a, b, and Lg leads to a more precise representation of time-
vertex graph signals, making the method effective for practical applications in signal

processing and data analysis.

4.1.3 Effect of Noise on Possibly All Edges of Lg

In this subsection, we analyze the effect of introducing noise to the weight matrix
W, where noise is applied not only to the existing edges but also to potential edges
that were initially non-existent. We explore how this noise impacts the SNR and

consequently the estimation performance of the proposed algorithm.

SNR Degradation: The introduction of noise to the weight matrix W significantly
impacts the SNR, particularly when noise is allowed to affect all possible edges, in-
cluding those with zero initial weights. This setting creates a scenario where the
underlying graph structure becomes increasingly perturbed, leading to a reduction in
the SNR, which takes much lower values than those in Section[d.1.2] The decrease in
the SNR correlates with a decline in the algorithm’s ability to accurately estimate the

graph Laplacian matirx Lg.
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1. JPSD Estimation:
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Figure 4.10: Variation of the JPSD estimation error under noise with possibility of

edge modification of W

In Figure [4.10] we present the variation of the JPSD estimation error with SNR. The
noisy weight matrix scenario with the possibility of edge modification results in a
degradation in the accuracy of the estimated JPSD. In this challenging setting, it is
relatively difficult to differentiate between signal and noise, especially when noise
is introduced to edges that do not correspond to any actual connections in the graph.
The JPSD estimation error in this setting is seen to be higher than that in Section4.1.2]
by more than 10%. This leads to an inaccurate representation of the JPSD, due to the

reduced SNR.
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2. Graph ARMA Parameters a and b:
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Figure 4.11: Variation of the a estimation error under noise with possibility of edge

modification of W
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b Estimation Performance
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Figure 4.12: Variation of the b estimation error under noise with possibility of edge

modification of W

The estimation of the graph ARMA parameters a and b is also affected by the low
SNR values in this setting. as they can be seen in Figures and[4.12] The presence
of noise across all edges creates additional challenges in accurately estimating these
parameters. As a result, the parameters a and b exhibit greater variability, and their
estimated values are less reliable, compared to the setting with higher SNR in Section
@ For example, for the parameter a, the error is calculated to be at least 10%
higher. The noise introduces inconsistencies in the optimization process, leading to

less accurate parameter estimates.
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3. Graph Laplacian Matrix Lg:
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Figure 4.13: Variation of the £ estimation error under noise with possibility of edge

modification of W

The noisy weight matrix significantly impacts the accuracy of the estimated graph
Laplacian matrix Lg as it can be seen in Figure As the noise is spread across
both existing and non-existing edges, the estimated L£; becomes less reflective of
the true underlying graph structure. The introduction of noise on non-existent edges
leads to spurious connections in the graph, which ultimately degrades the model’s

performance.
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General Observations:

Overall, the experiments demonstrate that when noise is introduced to the weight
matrix, particularly when it affects all possible edges, the SNR decreases signifi-
cantly. This reduction in SNR adversely affects the accuracy of the estimated JPSD,
the ARMA parameters, and the graph Laplacian matrix. The results emphasize that
the initially known graph topology should not be too far from the actual graph topol-

ogy in order to ensure reliable estimation of graph-based models.

4.1.4 Impact of the Number of Realizations on Estimation Performance

In this section, we analyze the impact of the number of realizations on the estimation
performance of our proposed method. The performance metrics are evaluated for an
SNR of 5 dB for the weight matrix W. Moreover, we also add zero-mean white
Gaussian noise to the observations which yields an SNR of 12 dB for realizations.

Observation SNR in dB scale for a realization [ is calculated as

Xl
201 . 4.6
Oglo ( | ’ X'l F XlNoisy F ( )
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1. JPSD Estimation:
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Figure 4.14: Variation of the Lg estimation error under noise with possibility of edge

modification of W

In Figure @], as the number of realizations increases, the estimation errors for the
JPSD decrease, reflecting the improved accuracy of the spectral representation of the
time-vertex signal. This trend is evident in Figure [4.14] where the estimated JPSD
becomes increasingly closer to the ground truth with more realizations, confirming
the effectiveness of the iterative method in capturing the joint time-vertex spectral

properties of the process.
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2. Graph ARMA Parameters a and b:
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Figure 4.15: Variation of the L¢ estimation error under noise with possibility of edge

modification of W
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b Estimation Performance
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Figure 4.16: Variation of the Lg estimation error under noise with possibility of edge

modification of W

The estimation errors for the parameters a and b exhibit a consistent decline as the
number of realizations increases, as shown in Figures i.15| and 4.16] With a limited
number of realizations, the errors in these parameters are relatively high, reflecting
the challenges in capturing the underlying dynamics of the process. However, as the
number of realizations increases, the estimation errors decrease, indicating that the

additional data provides better information for learning these parameters.

The iterative optimization process leverages the additional information provided by
the increasing number of realizations to refine the parameter estimates, leading to

improved model accuracy. This is crucial for ensuring that the graph ARMA process
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model accurately captures the underlying dynamics of the time-vertex signal.

3. Graph Laplacian Matrix Lg:
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Figure 4.17: Variation of the Lg estimation error under noise with possibility of edge

modification of W

The graph Laplacian matrix Lg also benefits from improved estimation accuracy with
more realizations, as illustrated in Figure This trend highlights the importance
of sufficient data for accurately capturing the graph topology and, consequently, for

improving the overall model performance.
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General Observations:

Overall, the results demonstrate that increasing the number of realizations signifi-
cantly enhances the estimation performance across all key components of the model,
including the JPSD, the parameters a and b, and the graph Laplacian matrix Lg. This
underscores the importance of utilizing sufficient realizations in practical applications

to achieve robust and accurate model estimation.

4.2 Sensivity Analysis of o

To determine the appropriate range for the regularization parameter o, which de-
termines the sparsity of the graph topology by weighting the ¢; norm of the graph
Laplacian matrix, we conduct a sensitivity analysis. The aim is to identify the val-
ues of « that optimize the performance of the algorithm across different range of
values and COVID-19 data set is used for this purpose. In Table we report the
NME obtained at different values of the o parameter for missing observation ratios
10%, 50% and 80%, to observe the effect of the choice of « in different scenarios.
The analysis indicates that choosing « within the range [10~7,10~%] is particularly
effective in achieving optimal results. This range was selected based on its consis-
tent performance in minimizing the NME, as shown in Table[d.1] The results suggest
that « values within this range provide a good balance between the sparsity of Lg
and dependencies between nodes, ensuring that the algorithm remains stable while
effectively capturing the underlying structure of the data. The optimal values for «
decrease as the ratio of missing observations increases, indicating that a denser graph

better captures dependencies and leads to improved estimation results.
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o VALUES | 10% is missing | 50% is missing | 80% is missing

0 0.131 0.166 0.295
1.00e-09 0.128 0.154 0.258
1.00e-08 0.120 0.154 0.254
1.00e-07 0.115 0.151 0.252
1.00e-06 0.114 0.151 0.264
1.00e-05 0.112 0.147 0.264
1.00e-04 0.103 0.148 0.271
1.00e-03 0.104 0.150 0.273
1.00e-02 0.107 0.152 0.274

Table 4.1: NME for different o values across missing data scenarios

4.3 Comparative Experiments

In this section, we evaluate the performance of our method for two different time-
vertex data sets. The first dataset is the Molene weather dataset. This experiment
uses hourly weather measurements collected in the Brittany region of France during
January 2014 [S7]. We focus on temperature measurements taken from N = 37
different weather stations, each represented as a graph node. A 10-NN graph with
Gaussian edge weights given in equation is constructed to model the connec-
tions between the stations. Each 24-hour measurement sequence is treated as one
realization of a time-vertex graph process X with a graph size of N = 37 and a time

length of T = 24, resulting in a total of R = 31 realizations.

The second dataset is related to the COVID-19 pandemic. This experiment is con-
ducted using data on the number of daily new cases per country between February
15, 2020, and July 5, 2021 [58]. We include the N = 37 most populous European
countries in the experiment, where each country is treated as a graph node. A 4-NN
graph is constructed with Gaussian edge weights based on a hybrid distance mea-
sure that considers both geographical proximities and the number of flights (sourced
from [59]) between countries. The number of daily new cases is normalized by each

country’s population and smoothed using a moving average filter over a 7-day win-
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Dataset Time Stationarity | Vertex Stationarity | Time-Vertex Stationarity
Moléne 0.8955 0.9365 0.9203
COVID-19 0.9963 0.7608 0.7525

Table 4.2: Stationarity ratios of the data sets

dow. The time length of the process is taken as 7" = 21 days (three weeks), and the

experiments are conducted on R = 23 realizations of the process.

We study the signal estimation problem in a scenario where missing observations
occur at randomly and independently selected time-vertex pairs. The performances
of the algorithms are compared with respect to the normalized mean error (NME) of
the estimates of the missing observations as defined in equation (3.29). Since real
data already has some natural deviation from the process model considered in our

study, no extra noise is added to the data.

To better interpret our estimation results, we begin by analyzing the joint time-vertex
stationarity, vertex stationarity, and time stationarity of each dataset. As noted in
(3.9), the covariance matrix of a time-vertex stationary process must be diagonaliz-
able with the eigenvectors of the joint Laplacian. We therefore compute the time-
vertex stationarity ratio for each dataset as ||diag(h(Ag, Q))||/||2(Ag, Q)| . The ver-
tex stationarity ratio and time stationarity ratio are calculated similarly, by restricting
the covariance matrix to the vertex or time domain in (3.3) and substituting the eigen-
vector matrix with Ug or Uy, respectively. The stationarity ratios for each dataset

are presented in Table 4.2

The proposed method is compared with several established methods in the literature.
The first of these methods is the AR time process models method [26]], which is em-
ployed for modeling univariate time series and predicts future values based on the
past values of the series itself individually at each node. Then, the study compares
against the Vector Autoregressive (VAR) process models method [60]], which is a mul-
tivariate time series approach that models the dynamic relationships between multiple
variables, generating predictions based on the past values of each variable. The Graph
Vector Autoregressive Moving Average Recursions (G-VARMA) and the Graph Poly-

nomial Vector Autoregressive Recursions (GP-VAR) methods [28]] leverage the con-
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cept of time-vertex stationarity and use the model in equation (2.42), where the the
GP-VAR method drops the MA part. The JWSS method [24] uses a non-parametric
JPSD estimator that corresponds to the initial estimate of the JPSD in our approach.
The JS-ARMA method [[11] uses a parametric JPSD estimator that corresponds to

first block of our method in Figure [3.1] which does not learn a new Lg.
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Figure 4.18: NME of COVID-19 data set
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In the COVID-19 data set, we use the model parameters P = 1, K = 1, Q = 0,
M =1, ua = 0.1, up = 0.1. Motivated by our findings in Section 4.2 we adapt

the parameter
[107% 1074

vations varies

eters P=2, K =2,Q =1, M =0, us = 1073, ug = 0. The parameter « is again
adapted to the ratio of missing observations as in the COVID-19 dataset, taking the

values [10—3

We find that the proposed GL-JS-ARMA method delivers the best estimation perfor-

mance among

Ratio of missing observations

Figure 4.19: NME of Molene data set

a to the ratio of missing observations, such that it takes the values
1076 1076 1076 10~7 107 1077] as the ratio of missing obser-

between 0.1 and 0.8. In the Molene data set, we use the model param-

1073 107 107 107° 1075 10~¢ 1079

the methods that utilize stochastic process models. Generally, graph
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process models outperform the VAR and AR models, which do not account for graph
topology. However, an interesting exception arises with the COVID-19 dataset, where
the AR and VAR methods surpass the graph-based GP-VAR method. This outcome
aligns with the high time stationarity and weaker vertex or time-vertex stationarity ob-
served in the COVID-19 dataset. Notably, the proposed GL-JS-ARMA method, JS-
ARMA method and the JWSS method, which leverage the time-vertex joint spectrum
of the process, consistently outperform G-VARMA, GP-VAR, AR, and VAR, which
do not utilize this information. This holds true even for the COVID-19 dataset, un-
derscoring that the joint time-vertex spectrum of a time-varying graph signal reveals
critical characteristics that cannot be captured by vertex-only or time-only frequency
analysis. Moreover, the proposed GL-JS-ARMA method consistently outperforms
the JS-ARMA method at nearly every point, except for the case of the 80% missing
ratio in the Molene dataset. This result highlights the crucial role that the underly-
ing graph structure plays in capturing essential information and dependencies within
a dataset. Learning a new graph Laplacian matrix £ with the proposed method
provides better performance than the JS-ARMA method, which uses the fixed topol-
ogy of the initial Lg, and only learns the graph ARMA process parameters a and
b once. The parameter « plays a crucial role in the GL-JS-ARMA method, as it
directly influences the sparsity level of the learned Laplacian matrix, L£g. As the
missing observation ratio changes, the sparsity of Lg significantly impacts the NME.
For both datasets, the parameter « consistently decreases with the increasing missing
ratio of observations, leading to a denser graph in the GL-JS-ARMA method as stated
in Section[4.2] A denser graph topology tends to impose the dependencies between
the observed and unobserved samples in a stricter way, which turns out to be advan-
tageous at higher ratios of missing observations by facilitating the diffusion of the

available information to other nodes under severe lack of data.

70



CHAPTER 5

CONCLUSION

In this thesis, we have proposed an iterative method for jointly learning a time-vertex
graph ARMA processes and graph topologies from observations of the process. Our
approach begins by obtaining an empirical estimate of the JPSD of the process, lever-
aging the block-Toeplitz structure of its covariance matrix through an unbiased circu-
lar covariance matrix estimator. We propose to jointly learn the process parameters
and the graph topology in an alternating manner. We formulate the learning of graph
ARMA process parameters as an optimization problem, with the objective of mini-
mizing the error between the parametric JPSD and its empirical estimate. Although
this initial problem is non-convex, a relaxation is applied so that a convex objective
function is obtained by expressing the graph ARMA process parameters in terms of
low-rank positive semi-definite matrices. After estimating the process parameters, we
update the covariance matrix of the process to further optimize the graph Laplacian
matrix Lg. This iterative method continues until a predetermined number of iterations
is reached. The proposed method estimates the optimum parameters a and b with the
graph Laplacian matrix Lg in this manner, which can potentially be used in several
time-vertex inference tasks. In our study, we apply the learnt model for the task of
estimating the unavailable observations of a time-vertex process using the LMMSE

approach.

The proposed method has been evaluated on both synthetic and real-world data sets.
Our experiments demonstrate that the enhanced graph ARMA process model, com-
bined with an optimized graph Laplacian matrix Lg, improves the estimation per-
formance. Specifically, our method consistently outperforms existing models, par-

ticularly in scenarios where the graph topology plays a critical role in capturing the
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underlying dependencies of the data. The results validate the effectiveness of our iter-
ative approach in learning both the graph structure and the ARMA model parameters

simultaneously, leading to more accurate and robust signal estimation.

In this thesis, we demonstrate that enhancing the graph ARMA process model with
an optimized graph topology can improve estimation performance in real-world data
sets. For future work, conducting more extensive experiments on diverse real-world
data sets may be helpful for further exploring the advantages of modeling time-
varying graph signals as JWSS ARMA graph process models. While this study lever-
ages the covariance matrix of the graph ARMA process, a promising direction for
future research is to investigate optimizing the graph Laplacian matrix Lg in relation
to the graph ARMA filter, which is inherently a function of £g. As an example, the
methodology proposed by Egilmez et al. in [31] can be adapted to time-vertex sig-
nals, where they aim to learn the graph structure alongside the graph filter for vertex
signals. By refining the graph structure with consideration of the filter, it is possible to
obtain a more accurate estimate of Lg, ultimately leading to improved model parame-
ters and enhanced estimation performance, particularly to reduce the impact of noisy
weight matrices with edge modifications. Furthermore, an important area for future
research involves exploring scenarios where the graph topology changes dynamically
over time. Current models often assume a static graph structure, which may not ad-
equately capture real-world phenomena where the relationships or interactions stem
from an evolving graph. By extending the model to accommodate time-varying graph
topologies, we can better capture the dynamics of the underlying processes. An in-
triguing avenue for another future research path is to explore scenarios where the
statistical properties of the processes change over time or across different regions of
the graph. Current models typically assume stationary or uniform statistical proper-
ties, which may not fully capture the complexity of processes that exhibit temporal or
spatial variability. A key area for another future research involves developing adap-
tive signal processing solutions for scenarios where data arrives sequentially rather
than all at once. Traditional signal processing methods often assume batch process-
ing, which may not be suitable for real-time or streaming data environments where

the data is received incrementally.
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APPENDIX A

VALIDATION PROCEDURE FOR THE SELECTION OF ALGORITHM
HYPERPARAMETERS

In this section, the selection of the regularization parameters 14, p and « is in-
spected. Although various search methods can be employed to find the optimal pa-
rameters, we use a strategy similar to a greedy search. In our approach, the model
parameters P, K, ), and M of f,, along with the regularization terms p4 and pp of
r1, are searched jointly, while the regularization term « of 7, is searched separately.
This search method is employed because the two blocks in Figure[3.1]can be viewed
as distinct optimization problems. The parameter « is determined by evaluating a
range of values, as discussed in the sensitivity analysis in Section and selecting
the one with the lowest validation error. On the other hand, choosing the parameters
P, K, Q, M, s, and pup requires a more sophisticated approach due to the high

dimensionality involved.

We search for optimal values of ;14 and pp by testing them with specific combina-
tions of P, K, (), and M, recording the lowest possible validation error. Once the
best possible set of P, K, (), and M values is identified, we fix these values for the
remaining iterations and we only search for the optimal ;14 and pp parameters. The

search method of 114 and pp is as follows.

At each step, we fix a specific value of 114 and increase pp by 10 times and record
the validation error. The first step where the validation error starts to increase is
recorded. At this point, two scenarios are possible, the error may continue to rise, or
it may decrease up to a certain point and start to increase again. If the error continues
to increase, the search is terminated, and the parameters corresponding to the lowest

error are saved. If the error decreases, the search continues until another increase
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is detected. At that point, the two local minima are compared, and the parameters
corresponding to the lowest error are selected. The same approach is then applied by
every possible value of 114, which increased 10 times at each step. This search method
is faster than brute-force search in terms of time complexity and yields better results
than the greedy search. Additionally, it can be parallelized to further accelerate the

search process. To illustrate this process, a couple of scenarios are presented below.
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Figure A.1: Monotonic decrease scenario

In Figure[A.T] the decision mechanism continues up to the highest parameter value in

the set because the validation error decreases monotonically.
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Validation Error vs Independent Parameter
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Figure A.2: Monotonic increase scenario

In Figure [A.2] the decision mechanism selects the smallest parameter value in the
set because the validation error increases monotonically. It continues although the
error increases because there may be a sharp decrease in the error at some parameter
values that has not been tried yet. The parameter value with the first local minimum

1s selected.
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Figure A.3: Decrease and increase scenario

In Figure[A.3] the validation error increases up to a point, then decreases and starts to
increase again. Since a second increase occurs in the error at larger parameter values,
the decision mechanism terminates at that point, compares the two local minima and

decides the parameter value that corresponds to the first local minimum.
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Figure A.4: Decrease and increase scenario - 2

Figures[A.3|and[A.4]are very similar except that the second local minimum is smaller
than the first. Hence, the parameter value corresponding to the second local minimum

is selected.
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Figure A.5: Decrease and increase scenario - 3

In Figure [A.5] the decision mechanism stops at the second increase step and misses
the parameter with the third local minimum. It selects the parameter corresponding

to the second local minimum.
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