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ABSTRACT

JOINT LEARNING OF GRAPH PROCESSES AND GRAPH TOPOLOGIES
FOR TIME VERTEX SIGNAL ESTIMATION

Yaldız, Berkay

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Elif Vural

August 2024, 84 pages

In recent years, the analysis of data that evolves over time and across interconnected

entities has gained significant interest. Such data, often represented as time-vertex

graph signals, encapsulate the dynamic nature of various real-world systems, includ-

ing social networks, sensor networks, and traffic systems. Traditional methods that

separately handle temporal and network dependencies without considering network

correctness often fall short in capturing the full complexity of these datasets. To ad-

dress this, in this thesis, we use a parametric statistical modelling approach called

Auto-Regressive Moving Average (ARMA) jointly wide sense stationarity in order

to analyze the joint time-vertex behavior of time-varying graph random processes,

while we also aim to improve the partially known network topology via the graph

Laplacian. We explore ARMA graph process models, where our primary objective is

to develop a comprehensive framework that integrates ARMA modeling with graph

learning techniques to enhance the analysis of time-varying signals characterized by

both temporal and network dependencies. Our study introduces a novel approach

where the joint power spectral density derived from the graph ARMA model is used

to estimate the covariance matrix of the process. This matrix provides a basis for
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our graph learning algorithm, which iteratively refines both the joint process and the

graph Laplacian. By integrating the dynamic characteristics of ARMA models with

graph learning techniques, the proposed method facilitates the discovery of underly-

ing structures and relationships within time-varying graph signals. Simulations and

real-world experiments are conducted to validate the effectiveness of the framework,

demonstrating its potential for time-vertex signal analysis. The results indicate im-

provements in capturing spatiotemporal dependencies for network data with a time-

varying structure.

Keywords: Graph Signal Processing, Time-Vertex Signal Processing, Stationary Graph

Signal Processing, Graph Laplacian Matrix Learning, Spatiotemporal Signal Process-

ing
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ÖZ

ZAMAN-DÜĞÜM SİNYAL KESTİRİMİ İÇİN ÇİZGE SÜREÇLERİ VE
ÇİZGE TOPOLOJİLERİNİN ORTAK ÖĞRENİMİ

Yaldız, Berkay

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Elif Vural

Ağustos 2024 , 84 sayfa

Son yıllarda, hem zamanda hem de bir ağ yapısı üzerinde degişim gösteren verile-

rin analizi önemli ölçüde ilgi gören bir konu olmuştur. Zaman-düğüm çizge sinyal-

leri olarak temsil edilen bu tür veriler, sosyal ağlar, sensör ağları ve trafik sistem-

leri gibi çeşitli sistemlerin dinamik yapısından etkilenmektedir. Bağımlılıkları ayrı

ayrı ele alan ve ağ doğruluğunu hesaba katmayan geleneksel yöntemler, genellikle bu

veri kümelerinin karmaşıklığını yakalamakta yetersiz kalmaktadır. Bu tezde zamanla

değişen çizge rastgele süreçlerinin zaman-düğüm noktası davranışını birlikte analiz

etmek için ortak geniş anlamda durağanlık adı verilen bir parametrik istatistiksel mo-

delleme yaklaşımı olan Otoregresif Hareketli Ortalama (ARMA) modelleme kulla-

nılmış, aynı zamanda kısmen bilinen Laplacian matrisi aracılığıyla topolojinin de öğ-

renilmesi hedeflenmiştir. ARMA çizge süreç modelleri incelenmiş; öncelikli olarak

hem zamansal hem de ağ bağımlılıklarıyla karakterize edilen zamanda değişen sin-

yallerin analizi geliştirmek için ARMA modellemesini çizge öğrenme teknikleriyle

bütünleştiren kapsamlı bir yöntem geliştirilmesi hedeflenmiştir. Çalışmamız, sürecin

kovaryans matrisini tahmin etmek için çizge ARMA modelinden türetilen ortak güç
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spektral yoğunluğunun kullanıldığı yeni bir yaklaşım sunmaktadır. Kestirilen kovar-

yans matrisi, hem ortak süreci hem de çizge Laplacian matrisini yinelemeli olarak

iyileştiren çizge öğrenme algoritmamız için bir temel sağlar. ARMA modellerinin

dinamik özelliklerini çizge öğrenme teknikleriyle bütünleştirerek önerilen yöntem,

zamanda değişen çizge sinyalleri içindeki temel yapıların ve ilişkilerin keşfedilme-

sini kolaylaştırır. Önerilen yöntemin etkinliğini doğrulamak ve zaman-düğüm sinyal

analizindeki potansiyelini göstermek için sentetik ve gerçek veriler üzerinde deneyler

yapılmıştır. Sonuçlar, zamanda değişen bir yapıya sahip ağ verileri için zamansal-

ağsal bağımlılıkların yakalanmasında ilerleme kaydedilebileceğini göstermektedir.

Anahtar Kelimeler: Çizge Sinyal İşleme, Zaman-Nod Sinyal İşleme, Durağan Çizge

Sinyal İşleme, Çizge Laplacian Matris Öğrenimi, Uzay-Zamansal Düzgünlük
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Classical signal processing excels at analyzing data defined on regular domains like

time or space. However, many real-world phenomena naturally exhibit relationships

that cannot be captured by these rigid structures, for which Graph Signal Processing

(GSP) tools provide useful solutions. GSP leverages the power of graphs to repre-

sent complex interactions between data points. Graphs are flexible structures that

can model intricate relationships between entities, making them ideal for analyzing

data arising from social networks, sensor networks, transportation systems, biological

systems, and more. These networks can be effectively represented as graphs, where

nodes represent entities and edges depict the connections between them.

GSP seeks to extend traditional signal processing techniques to the analysis of signals

defined on graphs. [1, 2]. GSP has a wide range of applications, such as classification

[3], image processing [4], interpolation and denoising [5], optimal power flow [6] and

smoothing [7].

In traditional signal processing, wide-sense stationarity assumption has a wide range

of applications due to its easier applicability to real-world scenarios and it has been

classically defined for regular domains. In the recent years, a notion of stationar-

ity for random graph signals has been proposed via the definitions of Graph Fourier

Transform (GFT), graph filtering and Power Spectral Density (PSD) in the works

[8, 9]. On the other hand, the statistical properties of data may depend not only on

the relationships between nodes but also on the specific time instances; therefore,

time-varying graph signal models play a vital role in understanding and analyzing
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phenomena occurring over complex network structures. Thus, modelling the col-

lected measurements as an ARMA jointly wide-sense stationary (JWSS) time-vertex

process on a known graph can help capturing the structural dynamics and interactions

better [10, 11].

The covariance structure of the JWSS time-vertex processes can be used in signal

interpolation, forecasting and filtering. Assuming the model is a joint time-vertex

stationary ARMA process, its Joint Power Spectral Density (JPSD) can be found in

terms of the ARMA parameters [11]. Although modelling the data as JWSS has

many benefits, most of the current methods assume that the graph topology is per-

fectly known. In practice, knowing the graph topology is hard and information that

appears on the surface at first glance might be misleading. For instance, in a sen-

sor network structure, one common expectation is that nearest sensors should have

higher correlations but due to environmental conditions this might not be always the

case. Similarly, in a social network friendship connections registered between dif-

ferent users may be out-of-date, as there may be no active communication anymore

between two friends in a social network. In order to improve the performance, learn-

ing a graph that represents the data better can yield better performance [12]. In this

thesis, we aim to learn both the parametric ARMA model and the graph Laplacian

matrix together iteratively to achieve better signal inference accuracy.

1.2 Proposed Methods and Models

We consider the problem of jointly learning the JPSD of an ARMA modeled JWSS

time-vertex process along with the approximately known graph topology. Although

we demonstrate our approach in spatio-temporal interpolation problems, it can be

potentially used in various applications such as denoising, forecasting and filtering.

Firstly, we assume that the graph Laplacian matrix is approximately known initially

and the observed data is composed of realizations of a JWSS time-vertex process.

This assumption can be considered realistic in a variety of scenarios. For exam-

ple, when studying the spread of a pandemic, nodes represent countries or cities

and edges represent potential transmission routes or physical proximity; hence, a k-

nearest neighborhood (k-NN) graph can be constructed. Although we do not restrict

2



ourselves to find a graph that preserves the adjacency relations, which corresponds to

changing only the edge weight values, we do not try to find a graph that is completely

different than the initial one in terms of edge locations.

We fit a joint time-vertex stationary ARMA graph process model to the initial esti-

mate of the JPSD. We then compute the initial JPSD from the covariance matrix with

the Joint Fourier Transform (JFT), where the initial estimate of the covariance matrix

is obtained with an unbiased sample covariance estimator based on a set of realiza-

tions of the process. Next, we obtain the parameters of the graph ARMA process

through an optimization problem such that the resulting JPSD is coherent with the

initial JPSD estimate at hand. The resulting formulation for learning a parametric

ARMA graph process model leads to a non-convex optimization problem [9]. Hence,

a convex relaxation is applied in order to put it in a more tractable form [11]. After

calculating the graph ARMA process model, which yields a refined estimation of the

JPSD, the covariance matrix of this ARMA graph process is also refined through the

Inverse Joint Fourier Transform (IJFT) based on the improved JPSD estimate. We

finally use this covariance matrix for learning the graph Laplacian. However, due to

the nature of the time-vertex process, the dimension of the graph Laplacian is lower

than that of the process covariance matrix. Hence, a sub-matrix of this covariance

matrix, restricted to a single time instant, which corresponds to the covariance matrix

for a vertex stationary process alone, is used effectively. The selection of this covari-

ance sub-matrix is determined from synthetic-data experiments. Then, the stochastic

Gaussian Markov Random Field (GMRF) [13, 12] approach is used to fit a valid

undirected graph to the estimated covariance matrix. This approach corresponds to

the maximum-likelihood estimation of the precision matrix for a GMRF from sam-

pled data, which is the Laplacian matrix. Then this Laplacian matrix is used to fit an

ARMA graph process model again to increase the estimation performance.

1.3 Contributions

The primary objective of this thesis is to develop a method for learning stochastic

process models from realizations of time-vertex processes in a scenario where the

graph topology is not perfectly known. The key contributions include:
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• An empirical analysis of jointly learning a time-varying graph ARMA models

and the graph Laplacian.

• An algorithm for iteratively learning time-varying graph ARMA models and

graph structures.

• Validation of the algorithm through synthetic and real-world data sets, demon-

strating its potential, as well as its shortcomings, regarding its practical appli-

cability.

1.4 The Outline of the Thesis

In Chapter 2, we provide a review of the existing literature. It begins with an introduc-

tion to the fundamentals of graph signal processing. Graph structures, the definition

of a graph signal, the GFT and graph filters are mentioned. Then, the concepts of

joint time-vertex graph signal processing, JFT, JPSD and ARMA processes are cov-

ered. The chapter then reviews traditional methods of graph construction, followed

by modern data-driven approaches. We review different kinds of approaches in time-

vertex signal modelling and graph learning in Chapter 2. Finally, the challenges faced

in real-world scenarios are discussed.

In Chapter 3, our proposed method for learning time-vertex graph ARMA processes

jointly with the graph Laplacian matrix is explained. The definitions of stationarity

for time-vertex graph signals and the ARMA graph process model are presented.

Subsequently, in Section 3.3.4, we overview the result that learning the Laplacian

matrix from data actually corresponds to learning a precision matrix for a Gaussian

Markov Random Field (GMRF), in which the probability density of the data is a zero

mean n-variate Gaussian distribution [13].

In Chapter 4, we assess the performance of the given algorithm using real-time and

synthetic time-vertex data sets.

In Chapter 5, we summarize the findings, potential applications, and directions for

future research.
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CHAPTER 2

RELATED WORK

In Section 2.1, we provide a review of Graph Signal Processing. Then, in Section

2.2, we discuss joint time-vertex signal processing concepts. In Section 2.3, we cover

wide-sense stationary processes for both graph and time-varying graph signals. In

Section 2.4, we explore graph learning approaches. Finally, in Section 2.5, we in-

tegrate these aforementioned concepts and discuss time-vertex signal models, graph

networks, and their applications.

2.1 Fundamentals of Graph Signal Processing

2.1.1 Graph Basics and Notation

A graph G = (V , E ,W) consists of a set of vertices V (or nodes), a set of edges E that

connect pairs of vertices, and a weight matrix W ∈ RN×N . The number of vertices is

denoted by N = |V|. Each edge e = (u, v) ∈ E can be either undirected or directed,

depending on the nature of the relationship between the nodes u and v. For undirected

graphs, each edge e = (v, u) is also included in E .

In the context of spectral graph theory, undirected graphs have a well-defined notion

of frequency. The adjacency matrix A ∈ RN×N of a graph G indicates the pres-

ence of an edge between nodes i and j with Aij , making it a binary matrix. For

unweighted graphs, the weight matrix and the adjacency matrix are identical. For

weighted graphs, the weight matrix W assigns a real value, which may be different

than 1, to these edges, indicating the strength of the connection between correspond-

ing nodes. Figure 2.1 provides an example of a graph signal.
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Graph Signal with Edge Weights
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Figure 2.1: Weighted graph signal

To construct a weight matrix, the k-NN algorithm and the Gaussian kernel in (2.1)

can be used. We start by defining the weight between each pair of nodes based on

their distance. For nodes i and j with positions pi and pj in some feature space,

the distance between these nodes can be computed as dist(i, j) = ∥pi − pj∥2, where

the ∥.∥2 operator represents the ℓ2 norm. The weight matrix W is then formed by

applying a Gaussian kernel to these distances. Specifically, the weight between nodes

i and j is given by:

Wij = exp

(
−dist(i, j)2

2σ2

)
, (2.1)

where σ ∈ R is a scaling parameter that controls the width of the Gaussian function.

This weight matrix W captures the similarity between nodes, with larger weights as-
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signed to pairs of nodes that are closer together in the feature space. The use of Gaus-

sian weights ensures that the influence of distant nodes is exponentially suppressed,

leading to a more localized and realistic representation of the graph structure.

2.1.2 Graph Laplacian

Given a graph, the combinatorial Laplacian matrix LG ∈ RN×N is defined as [1]

LG = D−W (2.2)

whereas the symmetrically normalized graph Laplacian is defined as

LG = D−1/2(D−W)D−1/2 (2.3)

where D ∈ RN×N is the diagonal degree matrix, defined as

Dii =
∑
j∈V(i)

Wij (2.4)

and V(i) denotes the set of neighbors of node i. This formulation ensures that the

Laplacian matrix LG is symmetric and positive semi-definite, meaning all its eigen-

values are non-negative and real.

The eigenvalues and eigenvectors of the Laplacian matrix provide valuable insight

into the graph’s structure. The eigenvalues λ0, λ1, . . . , λN−1 satisfy

0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1. (2.5)

The smallest eigenvalue λ0 is always 0, with the corresponding eigenvector being the

constant vector 1 ∈ RN (assuming the graph is connected). The multiplicity of the

zero eigenvalue indicates the number of connected components in the graph.

2.1.3 Graph Signals

A graph signal x is a function that assigns a scalar value xi to each node i in the

graph, represented as a vector x ∈ RN . For example, in a social network, xi could

represent the activity level of user i.
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2.1.4 Connection to Classical Signal Processing

In classical continuous signal processing, the Laplacian operator ∇2 is a second-order

differential operator. For a function f(x, y), the Laplacian is defined as

∇2f =
∂2f

∂x2
+

∂2f

∂y2
. (2.6)

This operator measures the divergence of the gradient of a function, which can be in-

terpreted as the difference between the value at a point and the average value around it

[14]. It is used in various applications, including solving partial differential equations

and analyzing heat flow.

In the discrete graph domain, the graph Laplacian serves a similar purpose. For a

graph signal x ∈ RN , the graph Laplacian applied to x is given by

LGx = Dx−Wx. (2.7)

For a node i:

(LGx)i = Diixi −
∑
j∈V(i)

Wijxj. (2.8)

This expression measures the difference between the signal value at node i and the

weighted average of the signal values at its neighboring nodes.

In the context of graph signal processing, the gradient operator measures the differ-

ence between signal values at connected nodes. For an edge (i, j) ∈ E of a non-

normalized Laplacian, the gradient of the signal x along the edge is given by [15]

∇ijx =
√

Wij (xi − xj). (2.9)

The divergence operator, which is the (negative) adjoint of the gradient operator, ag-

gregates these differences at each node. For a signal x, the divergence at node i can

be expressed as [16]

(divx)i =
∑
j∈V(i)

(xi − xj). (2.10)

Combining these, the graph Laplacian can be viewed as the composition of the diver-

gence and gradient operators [16]

LGx = div(∇x). (2.11)
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2.1.5 Graph Fourier Transform

The Graph Fourier Transform (GFT) generalizes the concept of the Fourier transform

to graphs. It leverages the eigendecomposition of the graph Laplacian. Let LG =

UGΛGUG , where UG ∈ RN×N is the matrix of eigenvectors and ΛG ∈ RN×N is the

diagonal matrix of eigenvalues. The GFT and the inverse GFT of a graph signal x are

defined as [17]

x̂ = U⊺
Gx, (2.12)

x = UGx̂. (2.13)

2.1.6 Graph Filters

In classical signal processing, the basic building block of filters is time shift or delay

[18]. On the other hand, shifting a graph signal in GSP involves redistributing the

signal values according to the structure of the graph. This operation is analogous to

time-shifting in classical signal processing, but it respects the topology of the graph

[19]. The shift operator S can be defined in several ways, but a common choice is the

Laplacian matrix LG itself and the shifted graph signal is given by LGx. The primary

reason for using the graph Laplacian is that it integrates both adjacency information

and node degrees, offering a unique perspective on signal redistribution during the

shift operation.

This idea of shifting can be extended to graph filters as [20]

ȳ = g(LG)x = UGg(ΛG)UG
⊺x. (2.14)

where g : {0} ∪ R+ → R denotes a filter kernel, g(LG) ∈ RN×N is a graph filter.

Filter kernels can be defined in polynomial form to define polynomial graph filters

[21]

g(LG) =
K−1∑
k=0

gkLk
Gx = g0x+ g1LGx+ g2L2

Gx+ · · ·+ gK−1LK−1
G x (2.15)

where gk for k = 0, 1, · · ·K − 1 are polynomial coefficients.
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Additionally, a graph filter H ∈ RN×N can be expressed as a function of the Laplacian

eigenvalues in the spectral domain

H = g(LG) = UGg(ΛG)U
⊺
G, (2.16)

where g(LG) ∈ RN×N is the graph filter and g(ΛG) ∈ RN×N is the diagonal matrix

with the filter function applied to each eigenvalue λi.

Applying the graph filter to a signal x, we get the filtered signal y ∈ RN

y = Hx = UGg(ΛG)U
⊺
Gx. (2.17)

The shift operation is linear for any two signals x and y, and scalars α and β:

S(αx+ βy) = αSx+ βSy (2.18)

The shift operation is shift invariant. Applying the shift operator multiple times corre-

sponds to multiplying the shift matrix multiple times. For instance, shifting the signal

twice when S = A is

S2x = A2x. (2.19)

Consider a simple graph with three nodes and the following adjacency matrix

A =


0 1 0

1 0 1

0 1 0

 .

For a graph signal x =


x1

x2

x3

, the shifted signal Ax is

Sx = Ax =


0 1 0

1 0 1

0 1 0



x1

x2

x3

 =


x2

x1 + x3

x2

 .

In this example, the signal value at node 1 is shifted to node 2, the value at node 2 is

distributed to nodes 1 and 3, and the value at node 3 is shifted to node 2.
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2.2 Joint Time-Vertex Signal Processing

2.2.1 Joint Laplacian Matrix

Time-varying graph signal processing is a framework that extends the classical signal

processing to handle data that varies over both time and graph structures. The joint

Laplacian matrix is the essential tool that we use for the analysis of time-varying

graph signals, as it allows for the simultaneous consideration of both the temporal and

graph domains. It extends the concept of the Laplacian matrix, which traditionally

captures the structure of a static graph, to handle the additional complexity introduced

by temporal variations.

The temporal Laplacian matrix LT is constructed to reflect the connectivity between

consecutive time steps, capturing the temporal relationships. Matrix AT corresponds

to the adjacency matrix of a cyclic graph with T time steps, and it is given by [22, 23]

AT =



0 1 0 · · · 0 1

1 0 1 · · · 0 0

0 1 0 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 0 1

1 0 0 · · · 1 0


. (2.20)

The corresponding temporal Laplacian matrix LT is defined as

LT = DT −AT (2.21)

where DT is the degree matrix of the cyclic graph for which each node has degree 2,

so DT is

DT =



2 0 0 · · · 0 0

0 2 0 · · · 0 0

0 0 2 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 2 0

0 0 0 · · · 0 2


. (2.22)
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Thus, the temporal Laplacian matrix LT for a cyclic graph is

LT =



2 −1 0 · · · 0 −1

−1 2 −1 · · · 0 0

0 −1 2 · · · 0 0
...

...
... . . . ...

...

0 0 0 · · · 2 −1

−1 0 0 · · · −1 2


. (2.23)

To incorporate both the graph and time domains, we construct a joint graph-time

matrix. The joint Laplacian matrix LJ is defined as [24]

LJ = LT ⊕ LG = LT ⊗ IN + IT ⊗ LG (2.24)

where LG is the graph Laplacian, LT is the temporal Laplacian, ⊕ denotes the Kro-

necker sum, ⊗ denotes the Kronecker product, and IT ∈ RT×T and IN ∈ RN×N are

identity matrices respectively.

The Kronecker product ⊗ combines the network and temporal components, ensur-

ing that the joint Laplacian captures interactions both within the graph and across

time. The term IT ⊗LG ensures that the graph relationships are maintained across all

time instances, while LT ⊗ IN ensures that the temporal relationships are maintained

independently for each node in the graph.

2.2.2 Time-Varying Graph Signals

A time-varying graph signal is represented as X ∈ RN×T . It is a signal defined on the

nodes of a graph G at each time instance t. This signal can be viewed as a sequence

of graph signals,
[
x1 x2 · · · xT

]
where xt is the graph signal at time t.

2.2.3 Joint Fourier Transform

The Discrete Fourier Transform (DFT) is used to analyze the time-domain character-

istics of a signal. For a time signal x(t), the Discrete Fourier Transform is [25]

x̂(m) =
1√
T

T−1∑
t=0

x(t)e−j2πmt/T , m = 0, 1, . . . , T − 1. (2.25)
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In the context of time-varying graph signals, since each row is a time signal, temporal

DFT can be found by [24]

DFT{X} = Xconj(UT ) (2.26)

where conj represents the element-wise conjugate of a matrix and, UT is the conju-

gate of the normalized DFT matrix given by

UT (t, τ) =
ejωτ t

√
T
, ωτ =

2π(τ − 1)

T
for t, τ = 1, · · · , T. (2.27)

Indeed, UT in (2.27) contains the eigenbasis of the cyclic graph LT and its eigenval-

ues are [23]

ΛT (τ, τ) = 2(1− cosωτ ). (2.28)

Thus, LT can be written as

LT = UTΛTU
H
T (2.29)

where (·)H denotes the Hermitian (transpose complex-conjugate) of a matrix.

The eigendecomposition of the joint Laplacian matrix LJ can also be written in terms

of the eigenbases of the graph Laplacian LG and cyclic Laplacian LT [23]

LJ = (UT ⊗UG)(ΛT ⊕ ΛG)(UT ⊗UG)
H . (2.30)

Moreover, if X is considered as a series of T graph signals organized in its columns,

the GFT of these signals can be computed as

GFT{X} = U⊺
GX. (2.31)

The Joint Fourier Transform (JFT) combines the GFT and DFT to analyze signals in

both domains simultaneously.

For a time-varying graph signal x(t), the JFT is defined as [23]

X̂(l, k) =
1√
T

N∑
n=1

T∑
t=1

X(n, t)u⊺
l (n)e

−jωkt (2.32)

where l and k represent the indices of the graph and temporal frequencies, respec-

tively. The expression above can be conveniently reformulated in matrix notation as

[23]

X̂ = DFT{GFT{X}} = GFT{DFT{X}} = U⊺
GXconj(UT ) (2.33)
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which is equal to in matrix vector multiplication form [23]

ˆ̄x = (UJ)
H x̄ (2.34)

where UJ = UT ⊗ UG and x̄ = vec (X) and, vec is an operator that transforms a

matrix into a column vector by vertically stacking the columns of the matrix.

2.2.4 Joint Filtering of Time-Vertex Signals

Similar to (2.16), we can define the joint graph filter for time-vertex signals. For

a joint graph filter g(LJ), the connection between the input and output time-vertex

signals, X and Y, can be described using their column-wise vectorized forms as

follows

ȳ = g(LJ)x̄ = UJ g(ΛG,Ω) (UJ)
H x̄. (2.35)

Here, g(ΛG,Ω) ∈ RNT×NT represents the vectorized form of the joint kernel matrix

[10]

g(ΛG,Ω) = diag

vec



g(λ1, ω1) · · · g(λ1, ωT )

... . . . ...

g(λN , ω1) · · · g(λN , ωT )



 (2.36)

where diag(·) returns a square diagonal matrix with the elements of the input vector

on the main diagonal.

2.3 Wide-Sense Stationary Processes

2.3.1 Wide-Sense Stationary of Time Signals

In the analysis of time signals, the concept of stationarity plays a crucial role in sim-

plifying and understanding the underlying properties of the signal. A time signal is

said to be stationary if its statistical properties do not change over time. Specifically,

wide-sense stationarity (WSS) is a less stringent form of stationarity that focuses on

the first two statistical moments, the mean and the autocovariance function [26]. Let

t be a one-dimensional time variable, and let x(t) be a real-valued stochastic process.

Then, wide-sense stationarity of this process depends on two features:
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1. Constant Mean: The mean E[x(t)] of the signal is constant and does not de-

pend on time t.

E[x(t)] = µ, ∀t

where E[·] denotes the expectation operator and µ is a constant.

2. Autocovariance Function Depends Only on Time Difference: The autoco-

variance function Cx(t1, t2) depends only on the time difference τ = t2 − t1,

not on the specific times t1 and t2.

Cx(t1, t2) = E[(x(t1)− µ)(x(t2)− µ)] = Cx(τ) where τ = t2 − t1.

The autocovariance function measures the linear dependence between two observa-

tions separated by a time lag τ . In a WSS signal, the autocovariance only depends on

the lag and not on the specific time instances chosen.

Wide-sense stationarity implies that the behavior of the signal is predictable to some

extent because its statistical properties are invariant over time. This invariance sim-

plifies the analysis and processing of the signal. For example:

• Power Spectral Density (PSD): For a WSS signal, the power spectral den-

sity, which provides a frequency-domain representation of the signal’s power

distribution, can be defined and analyzed more easily.

• Filtering: When a WSS signal is passed through a linear time-invariant (LTI)

system, the output remains WSS, which allows an easier analysis of the impact

of the system on the signal.

• Estimation and Prediction: WSS properties enable more effective estimation

and prediction techniques, such as using the autocovariance function to design

optimal filters.

White Noise: A common example of a WSS signal is white noise, where the mean is

zero and the autocovariance function is an impulse function (indicating no correlation

between different time instances).

Cx(τ) = σ2δ(τ)

where σ2 ∈ R is the variance of the noise and δ(τ) is the Dirac delta function.
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2.3.2 Wide-Sense Stationary in Graph Processes

Wide-sense stationarity (WSS) in graph processes extends the classical concept of

stationarity to the realm of graph signal processing. A graph process is a collection

of random variables defined on the nodes of a graph, where the graph structure intro-

duces dependencies among these variables. A graph process is said to be wide-sense

stationary if its statistical properties, specifically the mean and the covariance, are

invariant under the shift operator defined by the graph Laplacian or adjacency matrix.

A graph process x = {xi}i∈V defined on a graph G = (V , E ,W) with N nodes is

wide-sense stationary if the following two conditions are satisfied [8]:

1. Constant Mean: The mean E[xi] of the signal is constant over the vertex set

and does not depend on a specific node i.

E[xi] = µ ∀i ∈ V

where E[·] denotes the expectation operator and µ ∈ R is a constant.

2. Covariance as a Graph Filter: The covariance between two nodes i and j is

the result of localizing a graph kernel. If the graph shift operator is the LG , then

an unbiased estimate of the empirical covariance matrix of the graph process

can be written as

Σx = g(LG)

where the covariance matrix Σx ∈ SN
+ is an element of the N × N dimen-

sional symmetric positive semidefinite cone and g is a non-negative function

that represents the power spectral density.

For a WSS graph process, the covariance matrix Σx can be diagonalized by the eigen-

basis of the LG

Σx = UGg(ΛG)U
⊺
G. (2.37)

This implies that the covariance function is invariant under the graph shift and de-

pends only on the eigenvalues of the graph Laplacian, making the process WSS in the

graph spectral domain.
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The power spectral density of a WSS graph process provides a spectral representation

and is defined as

h(LG) = U⊺
GΣxUG. (2.38)

The first condition is similar to classical signal processing; the mean of each ran-

dom variable on the vertex set V is constant and the same. On the other hand, the

second condition requires more explanation since there is no straightforward way to

define a vertex shift, which substitutes the time shift in classical signal processing, on

graph structures. To address this, the second condition uses graph filters to express

covariance stationarity. Specifically, it requires that the covariance between samples

at two nodes on the graph be described by how a graph filter, centered at one node,

responds at the other node. The nature of this graph filter then defines the covariance

structure of the graph process [8]. It enables the design of graph filters, spectral esti-

mation methods, and other signal processing tools that leverage the underlying graph

structure.

2.3.3 Jointly Wide-Sense Stationary Processes

A graph process is said to be JWSS if its first two statistical properties, which are

mean and covariance, are invariant under the joint time-vertex shift operator. This

extends the concept of wide-sense stationarity to both temporal and graph domains,

making it suitable for analyzing time-varying graph signals.

A time-varying graph signal x̄ = vec (X) is JWSS if and only if the following condi-

tions are satisfied [10]:

1. Constant Mean: The first moment of the process is constant.

E[x̄] = c1NT (2.39)

where c ∈ R is the constant mean value and 1NT ∈ RNT represents the vector

whose elements consist of ones.

2. Covariance as a Joint Filter: The covariance matrix of the process can be

written as a joint filter of the joint Laplacian LJ .

Σx̄ = h(LJ) = h(LG,LT ) = UJh(ΛG,Ω)UJ
H (2.40)

17



where Σx̄ ∈ SNT
+ and h(ΛG,Ω) is the matrix that represents the two dimen-

sional JPSD.

2.3.4 Autoregressive Moving Average Time-Vertex Processes

The extension of ARMA filters from classical signal processing to graph domains

has been explored in various studies [27, 28]. A JWSS time-vertex process X can be

represented as an ARMA graph process if it is derived by applying an ARMA graph

filter to a zero-mean white process. Specifically, consider an input white process

wt ∼ N (0, IN), where the instances wt at different time points t are independent.

The graph process xt at time t is then related to its past values xt−p and the input

process wt as follows [28]

xt = −
P∑

p=1

ap(LG)xt−p +

Q∑
q=0

bq(LG)wt−q, (2.41)

where ap(LG) and bq(LG) are graph filters. If these filters are polynomials of the form

ap(LG) =
∑

k apkLk
G and bq(LG) =

∑
m bqmLm

G , where Lk
G represents the k-th power

of the graph Laplacian, the ARMA process model on the graph becomes [27, 28]:

xt = −
P∑

p=1

K∑
k=0

apkLk
Gxt−p +

Q∑
q=0

M∑
m=0

bqmLm
G wt−q. (2.42)

In this model, apk and bqm are the coefficients of the ARMA graph filters. Given

that the input process wt is Gaussian, the resulting process xt is also Gaussian. By

applying the JFT to the process X, the spectral domain representation of the graph

filter in (2.42) can be expressed as [28]:

H(λn, ωτ ) =

∑Q
q=0

∑M
m=0 bqmλ

m
n e

−jωτ q

1 +
∑P

p=1

∑K
k=0 apkλ

k
ne

−jωτp
. (2.43)

2.4 Graph Learning Approaches

Graph learning aims to uncover the hidden structure of a graph from observed data.

This involves estimating the adjacency matrix A or the graph Laplacian LG from the

observations. This is essential for applications where the underlying graph structure
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is not explicitly given but must be learned to effectively model, analyze, and process

data.

2.4.1 Introduction to Graph Learning

To determine the optimal graph topology that best represents the relationships be-

tween data points, estimating the weight matrix or the graph Laplacian is the key ap-

proach [12, 13, 29, 30, 31, 32]. These matrices encode the connections and weights

between the nodes. The learned graph structure can then be used for various tasks

such as clustering, semi-supervised learning, and estimation tasks.

The sparse inverse covariance estimation method [13, 30, 31] is based on the idea

that the precision matrix (inverse of the covariance matrix) of a multivariate Gaus-

sian distribution, parametrized with a positive semidefinite precision matrix Θ ∈ SN
+

defining a Gaussian-Markov Random Field (GMRF), can be used to infer the graph

structure. The non-zero entries in the precision matrix correspond to the edges in the

graph, which represent the partial correlations between corresponding random vari-

ables given all the other random variables in the data set. Formally, given a graph

signal data matrix X ∈ RN×R where N is the number of nodes and R is the number

of observations, whose columns xi for i = 1, . . . , R are independent and identically

distributed samples with N (0,Σ) from a GMRF, the unbiased estimation of the co-

variance matrix Σ is given as

Σ ≈ 1

NR− 1
XX⊺. (2.44)

The precision matrix LG = Θ = Σ−1 is then estimated by solving the following

optimization problem [13]

L∗
G = argmin

LG
(Tr(ΣLG)− log |LG|)

subject to LG = LG
⊺,

LG ⪰ 0,

LG1 = 0,

(LG)ij ≤ 0, if (A)ij = 1

(LG)ij = 0 if (A)ij = 0 for i ̸= j

(2.45)
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where operator Tr(. ) represents the trace operation, |.| denotes the pseudo-determinant

(multiplication of the all non-zero eigenvalues of a square matrix), the fourth and the

fifth constraints impose the non-positivity of non-diagonal elements of the Laplacian

matrix (i.e., nonnegativity of edge weights). The constraints in (2.45) actually state

that LG is a singular symmetric, positive-semi definite matrix whose first eigenvalue

is 0 and first eigenvector is the 1 vector. The graph learning problem in (2.45) can

be probabilistically formulated as a parameter estimation problem for GMRF’s from

data. The likelihood of a candidate graph Laplacian LG can be written as

R∏
i=1

p(xi | LG) = (2π)−
RN
2 |L†

G|
−R

2

R∏
i=1

exp

(
−1

2
xi

⊺LGxi

)
(2.46)

where (.)† represents the pseudo-inverse. The maximization of the likelihood function

in (2.46) can be equivalently formulated as the minimization of the negative log-

likelihood, that is [13]

L∗
GML =argmin

LG

{
−R

2
log |LG|+

1

2

R∑
i=1

Tr (xi
⊺LGxi)

}
=argmin

LG
{Tr(LGΣ)− log |LG|}

(2.47)

where L∗
GML denotes the maximum likelihood estimate of LG .

Another approach that can be used for learning a graph is that it is often assumed that

the signals are smooth over the graph [1, 7, 2, 33, 34]. A smooth signal on a graph

varies slowly between connected nodes, meaning that adjacent nodes have similar

signal values [1]. Mathematically, the smoothness of a signal x on a graph can be

quantified using the quadratic form of the Laplacian matrix x⊺LGx which is equal to∑
(i,j)∈E

Wij(xi − xj)
2 (2.48)

where xi and xj are the signal values at nodes i and j, respectively. The smoothness

indicator comes from equation (2.48). If the large differences between the signal

values of adjacent nodes with higher weights are penalized, then an optimization

problem can be formulated as [35, 36]

L∗
G = argmin

LG
x⊺LGx+ α∥LG∥2F (2.49)

where α ∈ R+ is a regularization parameter and ∥ · ∥F denotes the Frobenius norm.
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The same constraints can be applied to equation (2.49) as in equation (2.45). Learning

the graph Laplacian from only the observed data samples is not always the case. Prior

information for the graph Laplacian is sometimes available. In these scenarios, we

may add the term β∥LG − LG0∥2F , where β ∈ R+ is a regularization parameter and

LG0 is an initial guess or prior for the Laplacian.

Although learning or improving the graph Laplacian may potentially increase the per-

formance, there are key points that need to be addressed. The optimization problem in

equation (2.45) mainly relies on the covariance matrix of the observed samples and if

the number of realizations is low then the new learned Laplacian L∗
G can yield worse

performance because of the bad estimation of the covariance matrix. Although the

optimization problem in equation (2.49) may not suffer from the covariance estima-

tion, it may suffer from high noise, and this may guide the algorithm wrongly. Also

the α∥LG∥2F term does not necessarily have a direct relation to sparsity. Moreover,

learning large-scale graphs can be computationally intensive. Also, dependencies be-

tween random variables may extinguish if the regularization parameters are not cho-

sen properly due to sparsity-promoting terms, so parameter tuning can be challenging

for some data sets.

2.5 Time-Vertex Signals and Graph Learning

Although the methods in Section 2.4 have achieved some success, they all ignore

the characteristics of signals in the time domain. Therefore, more recent works have

focused on graph learning with time-varying graph signals. For example, Liu et al.

[37] propose estimating a graph from temporal weighted difference signals, where the

temporal dynamics are captured by the proposed time-varying graph signal model. Li

et al. [38] derive a representation that promotes the smoothness property of the joint

graph signal. By decoupling the joint graph, they formulate the graph learning frame-

work as a joint optimization problem that includes signal denoising and the simulta-

neous learning of time and vertex graphs. Javaheri et al. [39] consider the problem of

semi-blind recovery of time-varying graph signals where the underlying graph model

is unknown. They assume the Laplacian GMRF model for the temporal difference

of the time-vertex signal by using spatio-temporal smoothness [40]. Kadambari et
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al. [41] propose a framework for estimating the graph Laplacian matrices of the fac-

tors of the product graph from the multidomain training data. They assume that the

product graph is constructed from the Cartesian graph product of two smaller factor

graphs and the problem of learning the product graph is transformed into the task of

estimating the Laplacian matrices of the factor graphs.

2.6 Graph Neural Networks and Graph Attention Networks

2.6.1 Introduction to Graph Neural Networks (GNNs)

A different approach for processing graph signals is inspired from the Convolutional

Neural Networks (CNN). Graph Neural Networks (GNNs) are a class of deep learning

methods designed to perform inference on data described by graphs. These networks

leverage the graph structure to capture the dependencies between nodes, making them

particularly powerful for tasks such as node classification, link prediction, and graph

classification. GNNs typically involve the propagation of node features through the

graph, updating each node’s representation based on its neighbors’ features.

One of the foundational works in this field is the Graph Convolutional Network

(GCN) introduced by Kipf and Welling [42]. GCN extends the concept of convo-

lution neural networks to graph-structured data by aggregating feature information

from the neighbors of a node. This approach allows the network to learn topological

dependencies in the graph, which are crucial for many graph-based tasks. Hamilton

et al. proposed GraphSAGE, which learns node embeddings by sampling and aggre-

gating features from the local neighborhood neighborhoods of nodes [43]. Xu et al.

proposed GIN, which is powerful enough to distinguish different graph structures and

thus improves the discriminative capability of GNNs [44].

2.6.2 Graph Attention Networks (GAT)

Graph Attention Networks (GAT) extend GNNs by incorporating an attention mech-

anism that allows the model to assign different importance values to different nodes

in a neighborhood. This mechanism helps the model to focus on the most relevant
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parts of the graph, improving performance in tasks where some connections are more

important than others.

The architecture of GAT consists of multiple attention heads, which can be aggre-

gated to form the final node representation. Velickovic et al. introduced the GAT

model, demonstrating its effectiveness on several benchmark tasks [45]. By comput-

ing attention coefficients for each pair of connected nodes, GATs can dynamically

weight the influence of neighbors during the message-passing process. Abu-El-Haija

et al. proposed an attention mechanism that models random walks over the graph to

capture more global context [46].

2.6.3 Graph Inference and Estimation Problems

GNNs and GATs can address a variety of graph inference and estimation problems.

Common tasks include node classification, where the goal is to predict the label of

each node, and link prediction, where the objective is to infer missing edges in the

graph. Other problems include community detection and graph clustering, which

involve identifying groups of closely related nodes.

These tasks are typically formulated as optimization problems, where the network

learns to minimize a loss function based on the observed data. For example, in node

classification, where GNNs are used to classify nodes in a graph based on their fea-

tures and the graph structure [42], the loss function may measure the difference be-

tween the predicted and true labels of the nodes. In link prediction, GNNs can predict

the existence of edges between pairs of nodes, which is useful in social networks and

recommender systems [47]. In such applications, the loss function may measure the

likelihood of observing the existing edges given the learned embeddings of the nodes.

2.6.4 Graph Learning with GNNs

Graph learning involves using GNNs to learn useful representations of graphs and

their components. This can include learning embeddings for nodes, edges, or entire

graphs, which can be used for downstream tasks such as clustering or classification.
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GNNs can also be used to generate new graphs or to optimize existing graph structures

to improve performance on specific tasks.

Advanced techniques in this area include self-supervised learning, where the network

learns to generate labels based on the structure of the graph itself, and the integration

of GNNs into other machine learning models to enhance their capabilities. For in-

stance, Veličković et al. proposed the method DGI (Deep Graph Infomax) for learning

node representations using self-supervised learning from unlabeled data [48]. Grover

et al. proposed the method Graph Embeddings for learning low-dimensional repre-

sentations of nodes or entire graphs for various tasks [49]. You et al. proposed the

method Graphrnn using deep auto-regressive models which an be applied in fields

like drug discovery [50].
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CHAPTER 3

PROPOSED METHOD

This chapter describes the proposed method for jointly learning a graph ARMA pro-

cess and a graph Laplacian matrix LG from time-vertex signals. In Section 3.1, we

demonstrate our process model along with the assumptions. In Section 3.2, we de-

scribe the problem and how we aim to solve, detailing the objectives. In Section 3.3,

we give the details of the proposed method and each step of the algorithm. In Sec-

tion 3.4, we show an application of how the proposed method can be used for the

spatiotemporal interpolation problem.

3.1 Process Model

In this section, we present the process model and preliminaries necessary for under-

standing the proposed method, which aims to jointly learn an ARMA graph process

model, a andb coefficients to construct the JPSD h, and the graph Laplacian matrix

LG . We begin with the signal model and the assumptions underlying our approach.

3.1.1 Signal Model

We consider a time-vertex signal X ∈ RN×T that is observed on a graph G =

(V , E ,W). We assume that the random time-vertex signal X is a JWSS process

whose properties are described in the Section 2.3.3. Furthermore, we model this

JWSS time-vertex process as an ARMA graph process as in Section 2.3.4.
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3.1.2 Laplacian Matrix

The Laplacian matrix LG of the graph G is modeled as deterministic. We assume that

there exists an initial guess for LG , that is LG0 . LG0 is used to construct an ARMA

graph process model initially. Then, we use the approach in equation (2.47) to update

LG based on our estimation of the ARMA graph process model.

3.2 Problem Formulation

The primary objective of this work is to jointly learn an ARMA graph process model

and the graph Laplacian matrix such that the estimated model and the Laplacian ma-

trix accurately represent the observed JWSS time-vertex process. We aim to enhance

our modeling of data dependencies by representing the observed data as a JWSS

ARMA graph process. Additionally, we refine the Laplacian matrix LG to gain a

deeper understanding of the underlying dynamics, thereby enabling more accurate

estimations and predictions.

3.2.1 A priori Information

1. Available Realizations: In this work, we consider a scenario where L real-

izations {Xl}Ll=1 of the time-vertex process X are available. Each realization

Xl ∈ RN×T is assumed to be fully observed, although our algorithm can also

be used in a scenario where only partial observations of the realizations are

available. The motivation behind the full observation assumption of the avail-

able realizations is that we aim to learn both the graph topology and the process

parameters, so training the model on fully available observations is expected to

improve the model estimation accuracy.

2. Initial Erroneous Laplacian Matrix: In this work, we assume that an initial

Laplacian matrix LG0 , although it might be erroneous, is available.
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3.2.2 Objective

The primary objective of this work is to learn an ARMA graph process model and its

underlying graph structure through the graph Laplacian matrix LG jointly. Given the

fully observed realizations of the time-vertex process {Xl}Ll=1, our goal is to refine

the Laplacian matrix LG to better understand the inherent structure of the graph, and

accurately model the dependencies in the data by fitting an ARMA graph process.

Let X̂(a,b,LG) denote the modeled process. Fitting X to X̂(a,b,LG) is a jointly

non-convex optimization problem. Although learning the ARMA model and the

graph Laplacian jointly is challenging, it is a rewarding task. We can express our

learning task in form of a general optimization problem as follows

min
{a,b,LG}

f
(
a,b,LG, Σ̃x̄

)
+ r(a,b,LG) (3.1)

where f(.) represents a data fidelity term and r(.) represents a regularization term.

Optimizing the functions in (3.1) is difficult. The objective function exhibits a fourth-

order dependency when fitting the parameters a and b to the initial estimate of the

JPSD, as discussed in [11]. Moreover, the optimization problem involves powers

of the eigenvalues of LG , making the objective function dependent on LG in a non-

convex manner. Hence, we propose to split the parts learning the ARMA coefficients

a and b, and learning the Laplacian matrix LG . In this case, the optimization problem

can be reformulated as follows

min
{a,b,LG}

f1

(
a,b,LG, Σ̃x̄

)
+ r1(a,b)

+ f2 (LG,Σx̄(a,b)) + r2(LG).

(3.2)

The term f1

(
a,b,LG, Σ̃x̄

)
captures the coherence between the process parameters

a, b and the data statistics for a given graph topology, while r1(a,b) serves as the

regularization term in ARMA graph process fitting. Similarly, f2 (LG,Σx̄(a,b)) rep-

resents the data fidelity component related to the learning of the graph Laplacian

matrix LG , with r2(LG) acting as its corresponding regularization term. We give the

explicit forms of these terms in Section 3.3.
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3.3 The Overall Algorithm

The joint learning of the two components in equation (3.2) can be achieved via an

iterative algorithm. In the first step, the f1 and r1 functions are minimized together

to update the ARMA coefficients while LG is fixed. In this step, we always fix the

covariance matrix to its initial value Σ̃x̄ calculated from the data. In the second step,

when minimizing f2 and r2, an updated version of the covariance matrix Σx̄(a,b)

is calculated according to the coefficient vectors a and b, which are fixed to their

values learnt in the first step. This updated version of the covariance matrix is used

in the optimization of LG . Then f2 and r2 can be minimized together to update the

LG matrix. This optimized LG is then used in subsequent iterations instead of the

initial guess to update the parameters of the graph ARMA process. These steps can

be repeated until a predetermined number of iterations is reached. We call this method

Graph Learning JS-ARMA (GL-JS-ARMA).

Algorithm 1 Iterative ARMA Graph Process and Laplacian Matrix Optimization.

GL-JS-ARMA
Inputs: Initial Laplacian matrix LG0 , initial covariance matrix Σ̃x̄

Set iteration counter k = 1

WHILE k is smaller than maximum iteration number

DO

Update ARMA coefficients: Fix LG = LGk .

(ak,bk) = argmin
a,b

f1
(
a,b,LG , Σ̃x̄

)
+ r1(a,b)

Calculate the new covariance matrix: Using the updated ak, bk, calculate the covariance matrix Σx̄(a,b)

via equations (2.40) and (3.14).

Update Laplacian matrix: Fix a = ak and b = bk.

LGk+1 = argmin
LG

f2

(
LG ,Σx̄(a,b)

)
+ r2(LG)

k = k + 1

ENDWHILE

Output: Optimized Laplacian matrix LG , optimized ARMA coefficients a and b

In each iteration of the optimization, we alternate between fixing {a,b} and optimiz-

ing LG , and fixing LG and optimizing {a,b}. Between these two steps, we calculate

the Σx̄(a,b) according to the updated values of the coefficient vectors {a,b}.
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matrix LG

and ARMA

coefficients

a and b

Figure 3.1: The flow chart of GL-JS-ARMA algorithm in 1

Each step in Algorithm 1 is elaborated upon in the following subsections. We begin

with Subsection 3.3.1, where the calculation of the initial covariance matrix Σ̃x̄ is

explained. This is followed by Subsection 3.3.2, which details the computation of

the graph ARMA process parameters, a and b. The algorithm subsections conclude

with the computation of the matrix Σx̄(a,b), followed by the learning of the graph

Laplacian matrix.

3.3.1 Initial Covariance Matrix and JPSD

We recall from Chapter 2 that a time-vertex stochastic process modeled as a graph

ARMA process (2.42) is also JWSS, as described in the equations (2.39) and (2.40).

Thus, the process x̄ has a constant mean, and its covariance matrix Σx̄ can be jointly

diagonalized with the joint Laplacian LJ . Consequently, the spectral domain repre-

sentation of the graph filter is in the form of (2.43).

The covariance matrix Σx̄ of a zero-mean time-vertex process X is given by

Σx̄ = E[x̄x̄⊺] =


Σ1,1 Σ1,2 · · · Σ1,T

Σ2,1 Σ2,2 · · · Σ2,T

...
... . . . ...

ΣT,1 ΣT,2 · · · ΣT,T

 (3.3)

where Σt,u = E[xt x
⊺
u] stands for the covariance matrix of the values of the process

at time instants t and u. When X is a JWSS process, the covariance matrix Σx̄ has a
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special property that simplifies its estimation. Each covariance matrix Σt,u is a graph

filter Σt,u = gt,u(LG), which depends only on the time difference t − u. This results

in a block-Toeplitz structure in Σx̄ [10]. Given that any graph filter g(LG) must be

symmetric, and that the overall covariance matrix Σx̄ is also symmetric, it follows that

Σt,u = Σu,t. Therefore, estimating Σx̄ reduces to estimating the smaller matrices

Σ̃∆ ∈ RN×N for ∆ = 0, 1, . . . , T − 1, where Σ̃t,u = Σ̃∆ with ∆ = |t − u|. We

estimate the covariance matrix Σx̄ based on the estimation of the smaller covariance

matrices Σ̃∆’s. The unbiased covariance estimate Σ̃∆ for ∆ = τ with circular shift

for a zero mean time-vertex JWSS process is given by

Σ̃τ (i, j) =
1

RT − 1

R∑
r=1

T∑
t=1

Xr(i, t)Xr(j, (t+ τ) mod T )

for τ = 0, 1, . . . , T − 1

(3.4)

where Xr(i, t) is the value of the time-vertex signal at node i, time t, and realization

r. The circular shift reorders the time series while preserving the intrinsic structure

of the JWSS processes. The initial estimate h̃(λn, ωτ ) of the JPSD can be calculated

by extracting the diagonal entries of the matrix

h̃(ΛG,Ω) = UH
J Σ̃x̄UJ . (3.5)

Another estimation of the JPSD, which is based on the Wiener-Khinchin theorem

[51], is given by

h̃(λn, ωτ ) =
1

R

R∑
r=1

|X̂r(n, τ)|2 (3.6)

where X̂r(n, τ) is the JFT of the rth realization of X, R is the number of realizations,

and h̃(λn, ωτ ) is the estimate of JPSD of the time-vertex process X. The reason why

we select equation (3.4) for the calculation of Σ̃x̄ is justified in the results in Table

3.1. A synthetic data set is studied with the parameters N = 33, T = 30, P = 1, K =

1, Q = 1,M = 0 with different numbers of realizations. The graph is constructed

from a sensor network from the GSP toolbox [52]. The resulting PSD can be seen

below.
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Figure 3.2: Low-Pass PSD: h(λ, ω)

Here, λ denotes the graph eigenvalues and ω denotes the time frequencies. The first

column of this figure represents the DC frequency in the spectral domain and due

to symmetric property of the DFT we can observe the symmetry between columns

2, 3, · · · , T
2

and (T
2
+2), · · · , T . We compare the normalized errors of the estimation

methods in (3.4) and (3.6) against the ground truth covariance matrix. The normalized

estimation error is defined as
∥Σ̃x̄ −Σx̄∥F

∥Σx̄∥F
(3.7)

where Σ̃x̄ represents the estimated covariance matrix from the observed realizations

and Σx̄ represents the ground truth covariance matrix of the time-vertex process. We

vary the number of realizations in order to observe its effect over the estimation error
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and report the results in Table 3.1. The same parameters are used for each realization.

Normalized Covariance Estimation Error for N = 33, T = 30

Number of Realizations Equation (3.6) is used Equation (3.4) is used

R = 50 0.151 0.141

R = 150 0.0789 0.0752

R = 1e4 0.0122 0.0114

R = 5e4 0.00492 0.00457

Table 3.1: Normalized covariance estimation errors for different realizations using

different estimation methods

The advantage of the covariance estimate in (3.4) over (3.6) can be seen from Table

3.1, where the unbiased circular covariance estimator performs better than the JFT

approach.

3.3.2 Updating the ARMA Coefficients

This part of the algorithm makes use of the work of Guneyi et al which we call Joint

Spectra-ARMA (JS-ARMA), [11]. We fit the initial JPSD (3.5) to the JPSD of an

ARMA graph process and learn the parameters a and b. We first rewrite the filter

spectrum in (2.43) as

H(λn, ωτ ) =
bHun,τ

1 + aHvn,τ

(3.8)

where the vectors a ∈ RP (K+1)×1 and b ∈ R(Q+1)(M+1)×1 respectively consist of the

filter coefficients apk and bqm as

a = [a10 a11 · · · apk · · · aPK ]
H

b = [b00 b01 · · · bqm · · · bQM ]H .
(3.9)

The vectors vn,τ ∈ CP (K+1)×1 and un,τ ∈ C(Q+1)(M+1)×1 consist of the constant

coefficients

vn,τ = [λ0
ne

jωτ1 λ1
ne

jωτ1 · · · λk
ne

jωτp · · · λK
n e

jωτP ]H

un,τ = [λ0
ne

jωτ0 λ1
ne

jωτ0 · · · λm
n e

jωτ q · · · λM
n ejωτQ]H

(3.10)
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where λk
n denotes the k-th power of the n-th graph eigenvalue λn, and the frequency

variables ωτ are as defined in (2.27).

The JPSD of the process is equal to the magnitude square of the filter spectrum [8],

h(λn, ωτ ) = |H(λn, ωτ )|2 =
∣∣∣∣ bHun,τ

1 + aHvn,τ

∣∣∣∣2 . (3.11)

Then, the estimation of the ARMA graph process model parameters from the initially

estimated JPSD can be expressed as

min
a,b

N∑
n=1

T∑
τ=1

∣∣∣∣∣
∣∣∣∣ bHun,τ

1 + aHvn,τ

∣∣∣∣2 − h̃(λn, ωτ )

∣∣∣∣∣
2

. (3.12)

The optimization problem in (3.12) is nonconvex with non-unique minima, and hence

difficult to solve. If the equation (2.43) is reformulated as

H(λn, ωτ ) =

∑Q
q=0

∑M
m=0 bqmλ

m
n e

−jωτ q∑P
p=0

∑K
k=0 apkλ

k
ne

−jωτp
. (3.13)

where the coefficients are set as a00 = 1 and a0k = 0 for k = 1, 2, · · · , K, then the

JPSD of the process has a simpler form

h(λn, ωτ ) =

∣∣∣∣bHun,τ

ãH ṽn,τ

∣∣∣∣2 . (3.14)

The vectors ã ∈ R(P+1)(K+1)×1 and ṽn,τ ∈ C(P+1)(K+1)×1 are defined to be aug-

mented versions of a and vn,τ as [11]

ã = [a00 a01 · · · apk · · · aPK ]
H

ṽn,τ = [λ0
ne

jωτ0 λ1
ne

jωτ0 · · · λk
ne

jωτp · · · λK
n e

jωτP ]H .
(3.15)

In addition to this change of variables, the term in the denominator is removed as

proposed in [11] and the final form of the optimization problem becomes

min
ã,b

N∑
n=1

T∑
τ=1

∣∣∣uH
n,τbb

Hun,τ − ṽH
n,τ ãã

H ṽn,τ h̃(λn, ωτ )
∣∣∣2 . (3.16)

The objective function in (3.16) acts as an alternative to the one in (3.12), though they

typically produce different solutions. However, if the denominator term in (3.12) does

not become arbitrarily small, indicating that the spectrum has a bounded magnitude,

minimizing (3.16) is likely to provide a satisfactory estimate for the solution of (3.12).

On the other hand, the optimization function is still nonconvex because of the vectors
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ã and b. Therefore, the study in [11] proposes using matrices A and B, defined as

A ≜ ããH and B ≜ bbH . For these definitions to hold, the matrices A and B must

be rank-1 and positive semidefinite. Thus, the optimization problem becomes

min
A,B

N∑
n=1

T∑
τ=1

η(λn, ωτ )
∣∣∣uH

n,τBun,τ − ṽH
n,τAṽn,τ h̃(λn, ωτ )

∣∣∣2
subject to rank(A) = 1, rank(B) = 1,

A ∈ S(P+1)(K+1)
+ , B ∈ S(Q+1)(M+1)

+ ,

a00 = 1, a0k = 0 for k = 1, 2, · · · , K

(3.17)

where η(·, ·) stands for an optional weight function for adaptively penalizing the er-

ror at particular zones of the joint spectrum, which can be chosen as µ(λn, ωτ ) = 1

under no priors. It can be chosen so as to guide the optimization problem such that

the resulting graph ARMA process has a low-pass JPSD, which is a realistic assump-

tion for most applications. The rank one constraints are nonconvex, so instead of

directly applying the rank one constraints the positive semidefinite matrices A and

B can be pushed to be low-rank by minimizing the sums of their singular values, or

equivalently, their traces Tr(A) and Tr(B) as in the work [11]. The final form of the

optimization problem is obtained as

min
A,B

N∑
n=1

T∑
τ=1

η(λn, ωτ )
∣∣∣uH

n,τBun,τ − ṽH
n,τAṽn,τ h̃(λn, ωτ )

∣∣∣2
+ µA Tr(A) + µB Tr(B), subject to A ∈ S(P+1)(K+1)

+ ,

B ∈ S(Q+1)(M+1)
+ , a00 = 1, a0k = 0 for k = 1, 2, · · · , K

(3.18)

where µA and µB are non-negative weight parameters. The objective function in

(3.18) is quadratic and jointly convex in A and B. Therefore, the f1 term in equation

(3.2) can be expressed as
∑N

n=1

∑T
τ=1 η(λn, ωτ )

∣∣∣uH
n,τBun,τ − ṽH

n,τAṽn,τ h̃(λn, ωτ )
∣∣∣2,

and the r1 term can be written as µA Tr(A) + µB Tr(B).

The constraint set consists of linear equality constraints, and the positive semidefinite-

ness of the A and B matrices. Hence, (3.18) is a convex problem that can be solved

using convex optimization techniques [53, 54] relying on semidefinite quadratic lin-

ear programming [55]. Once the matrices A and B are computed by solving (3.18),

the ARMA model parameter vectors a and b can be recovered through rank-1 de-

compositions of A and B.
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3.3.3 Calculation of the Covariance Matrix Σx̄(a,b)

The covariance matrix Σx̄(a,b) is determined as a result of solving the optimization

problem (3.18). Once the coefficients a and b are obtained, the JPSD of the process

is computed using equation (3.14). Following this, Σ̃x̄(a,b) can be derived from

equation (2.40). This intermediate covariance matrix is then used in Section 3.3.4.

For a fixed time t in an ARMA graph process, the covariance matrix of the process

corresponds to Σ∆ with ∆ = 0. Thus, we utilize the first N × N block of the

covariance matrix Σx̄(a,b).

3.3.4 Updating the Laplacian Matrix

This part of the algorithm builds on the work of Egilmez et al, [13]. In order to update

the graph Laplacian LG coherently with the learned graph ARMA process, the sparse

inverse covariance estimation method in Section 2.4.1 is used. The graph Laplacian

matrix LG can be updated via equation (2.45), with the addition of a regularization

term as [13]

L⋆
G = argmin

LG

(
Tr(Σ̃0LG)− log |LG|+ ∥LG ⊙ F∥1

)
subject to LG = LG

⊺,

LG ⪰ 0,

LG1 = 0,

(LG)ij ≤ 0, if (A)ij = 1

(LG)ij = 0 if (A)ij = 0 for i ̸= j

(3.19)

where ∥LG ⊙F∥1 is the sparsity promoting weighted ℓ1-regularization term multiply-

ing LG and F element-wise. F ∈ RN×N is a symmetric regularization matrix and the

sparsity promoting term can be compactly written as

∥LG ⊙ F∥1 = Tr(LGF). (3.20)

In this work, the Laplacian LG is modeled as deterministic. As a side note, in previous

studies relying on a Bayesian approach [13, 31], the sparsity-promoting regularization

term has been shown to provide the following insightful interpretation: The maximum

35



a posteriori (MAP) estimate of LG has been obtained in these works by incorporating

the prior knowledge about LG into a prior distribution p(LG) as

L̂GMAP = argmin
LG

{
Tr(Σ̃0LG)− log |LG| − log(p(LG))

}
. (3.21)

For example, the following M -variate exponential prior distribution is chosen to pro-

mote the sparsity of the edge weight vector w

(2α)M exp(−2α1⊤w) for w ≥ 0, (3.22)

then the log-likelihood of w is captured by the term 2α∥w∥1 = α∥LG∥1,off where

∥.∥1,off denotes the ℓ1 norm of the vectorized form of a square matrix by excluding its

diagonal elements. In this case, (3.21) can be written as follows

L̂GMAP = argmin
LG

{
Tr(LGΣ̃0)− log |LG|+ α∥LG∥1,off

}
. (3.23)

Therefore, the f2 term in equation (3.2) can be expressed as Tr(LGΣ̃0) − log |LG|,
and the r2 term can be written as α∥LG∥1,off. The standard ℓ1 regularization term with

a parameter α can be written as

α∥LG∥1,off = Tr(LGF), F = α(2I− 11⊺) (3.24)

where α can be regarded as a non-negative regularization parameter that controls the

sparsity of the Laplacian (precision) matrix.

In order to solve the optimization problem in (3.19), some reformulation steps are

applied as in the work [13]. Since the operator Tr is linear, the problem in (3.19) can

be rewritten as

argmin
LG

{Tr(LGK)− log |LG|} whereK = Σ̃0 + F. (3.25)

Since the graph Laplacian matrix LG is a rank deficient matrix whose determinant is

0, the term log |LG| leads to an inconvenience for the problem (3.25). To cope with

this difficulty, the optimization problem can be reformulated as

L⋆
G = argmin

LG
(Tr(LG(K+ J))− log det(LG + J))

subject to LG = LG
⊺,

LG ⪰ 0,

LG1 = 0,

(LG)ij ≤ 0, if (A)ij = 1

(LG)ij = 0 if (A)ij = 0 for i ̸= j

(3.26)
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where J = u1u1
⊺ = (1/N)11⊺ such that u1 is the eigenvector corresponding to the

zero eigenvalue of the combinatorial graph Laplacian matrix. The optimization prob-

lem in (3.26) is convex and can be solved by an iterative block-coordinate descent

algorithm [13, 56]. The prior knowledge about the graph structure is built into the

choice of the adjacency matrix A, determining the structural constraints. For exam-

ple, the edges of a LG0 and the highly correlated indices of Σ̃0 can be used to guide

the connectivity structure of LG along with the parameter α until the desired level of

sparsity is achieved. These structural constraints guide the algorithm by defining the

permissible edges, which is a crucial detail for determining the edge places.

3.3.5 Complexity Analysis

In this subsection, we analyze the computational complexity of the algorithm, focus-

ing on the distinct complexities of learning the graph ARMA model and the graph

Laplacian matrix. The ARMA model involves solving for the coefficients a and b,

calculating the joint eigenbasis UJ , and estimating the covariance matrix Σ̃x̄. The

complexity depends on factors such as the model order, the time series length T ,

the node dimension N , and the number of realizations R. First, computing the esti-

mated covariance matrix Σ̃x̄ has a complexity of O(N2TR) due to its block-Toeplitz

structure. Next, calculating the joint eigenbasis UJ involves computing UG with

a complexity of O(N3), and the Kronecker product with UT incurs an additional

complexity of O(N2T 2). To solve equation (3.18), the initial JPSD h̃ must be cal-

culated, which has a complexity of O(N3T 3). Assuming that the model parameters

P,K,Q,M are significantly smaller than N and T , the optimization problem (3.18)

can be solved using the HKM algorithm [11, 55], with a complexity of O(NT ).

Therefore, the overall complexity of learning the graph ARMA coefficients, assuming

the model parameters are much smaller than the process dimensions, is O(N3T 3).

The learning of the graph Laplacian matrix in this work employs a block-coordinate

descent algorithm, as described in [13, 56]. The computational complexity of this

algorithm is generally O(N3), where N represents the number of nodes in the graph.

This cubic complexity arises from the fact that in each iteration, the algorithm updates

one block (or subset) of the inverse of the LG’s variables, solving for the optimal

37



Laplacian matrix based on the current estimates of the other variables. However, the

actual complexity can be significantly reduced depending on the sparsity of the graph

structure. If the graph is sparse, meaning that each node is connected to only a few

other nodes, the complexity of the algorithm scales with the maximum number of

edges connected to any node. In such cases, the complexity is reduced to O(s3),

where s is the maximum degree of a node, i.e., the largest number of edges incident

to any single node in the graph. Since in many real-world applications, graphs tend

to be sparse (with s ≪ N ), the computational cost of learning the graph Laplacian

can be considerably lower than the worst-case O(N3) scenario. This sparsity-based

optimization allows the algorithm to be scalable and more efficient for large-scale

graphs, where only a fraction of the possible edges are present.

A single iteration of the proposed method has a computational complexity of O(N3T 3).

This complexity arises from the steps involved in calculating the joint spectral ba-

sis, the covariance matrices, and solving for the ARMA coefficients and the graph

Laplacian. Given that the method typically involves multiple iterations, the overall

computational complexity scales with the total number of iterations. Thus, if L repre-

sents the maximum number of iterations, the total complexity of the algorithm can be

expressed as O(N3T 3L). In practice, L is generally much smaller than the number

of nodes or the time series length, but it still contributes to the overall runtime of the

method.

3.4 Application of the Proposed Algorithm in Spatiotemporal Interpolation

Problems

In this section, we demonstrate the usage of our algorithm proposed in Section 3.3 in

spatiotemporal signal interpolation applications. After jointly optimizing the ARMA

graph process coefficients a and b along with the Laplacian matrix LG , we use these

parameters to estimate the missing entries of a partially observed process. An im-

proved estimate of Σ̃x̄, denoted as Σ⋆
x̄, is obtained using the fitted parameters a, b and

the eigenvalues of the optimized Laplacian L⋆
G . This is achieved by firstly calculating

the improved JPSD estimate h⋆(λn, ωτ ) by (3.14). Then, h⋆(ΛG,Ω) is constructed as
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in (2.36). Lastly, Σ⋆
x̄ is calculated as

Σ⋆
x̄ = U⋆

J h
⋆(ΛG,Ω) (U

⋆
J)

H (3.27)

where U⋆
J is the matrix containing the joint eigenbasis that is constructed from the

optimized Laplacian L⋆
G and the cyclic Laplacian LT with equation (2.30). Our setting

for the interpolation application is as follows.

We consider a scenario where L realizations {Xl}Ll=1 of the time-vertex process X

are available for training, and R− L realizations {Xl}Rl=L+1 are available for testing.

During the training phase, we apply the proposed method to learn the vectors a and

b and optimize the graph Laplacian matrix LG . Each realization Xl ∈ RN×T is fully

observed, although the algorithm can also handle scenarios with partial observations,

in which case the covariance matrix Σ̃x̄ in equation (3.4) can still be calculated by

ignoring the missing values in the observations. The motivation behind assuming

fully observed realizations is to separate the training and learning phase from the

estimation and prediction phase, allowing us to accurately learn a large number of

parameters.

We use 80% of the training realizations for learning and 20% for validation. The

validation realizations, while known, are used for calculating the validation error.

This error is utilized for tuning the parameters µA, µB, and α of the proposed method.

Then, the performance of the proposed method is evaluated at test realizations. For a

realization l, the known samples of a time-vertex graph signal can be represented by

the set Il. Specifically, let Il = {(i, t) | Xl(i, t) is observed} denote the index set of

the available entries in realization l, for l = 1, 2, ..., R. Similarly, the complement of

this set, Īl = {(i, t) | Xl(i, t) is missing} denotes the index set of the missing entries

in realization l, for l = 1, ..., R.

Let x̄l be the vectorized form of the realization l for the time-vertex signal Xl. Let

ȳl and z̄l vectors be the known and missing entries of x̄l respectively, i.e., the sample

values in the sets Il and Īl. The vector of missing process values z̄l can then be

estimated with minimum mean square error (MMSE) estimation approach, which is

the same as the linear MMSE (LMMSE) estimate since ȳl and z̄l are jointly Gaussian

[8]

(z̄l)
⋆ = (Σz̄lȳl

)⋆ ((Σȳl
)⋆)−1 ȳl. (3.28)

39



Here (Σz̄lȳl
)⋆ and (Σȳl

)⋆ respectively denote the estimates of the cross-covariance

matrix of z̄l and ȳl, and the covariance matrix of ȳl. These matrices can be formed by

extracting the corresponding entries of Σ⋆
x̄ for each realization Xl. The normalized

mean of the error is calculated as

NME =

(
1

L

L∑
l=1

∥(z̄l)⋆ − (z̄l)∥22
∥(z̄l)∥22

) 1
2

. (3.29)

We express our parameter selection method in Appendix A.
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CHAPTER 4

EXPERIMENTS

In this chapter, we evaluate the performance of the proposed method. We begin by

conducting a series of experiments on synthetic data to assess the accuracy of the

model calculations. These experiments also allow us to examine the impact of var-

ious parameters on the model’s accuracy. Following this, we perform comparative

experiments on real data sets to further validate our approach. We conduct 8 experi-

ments and present the average errors for each subsection.

4.1 Synthetic data set Experiments

To thoroughly assess the model computation accuracy of our algorithm, we present

results using a synthetically generated ARMA graph process. The underlying graph

topology is derived from a sensor network by using the GSP toolbox [52]. Using

this topology, we synthetically generate realizations of an ARMA graph process as

described in (2.42). In each experiment, different realizations of the graph ARMA

process are generated by using the parameters described below.

The synthetic data experiments aim to evaluate the accuracy of the proposed algo-

rithm in learning the model parameters a and b, as well as the graph Laplacian matrix

LG . Therefore, we perturb the weights of LG to generate a noisy observation LG0 of

the graph Laplacian, provide LG0 as input to our algorithm, and measure the accuracy

of the model parameters across different SNR levels. We assess the model’s accuracy

by comparing four different estimated parameters which are the JPSD h(λn, ωτ ), a,
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b and LG . The estimation error of JPSD is calculated as

∥h⋆(λn, ωτ )− h(λn, ωτ )∥F
∥h(λn, ωτ )∥F

(4.1)

where h⋆(λn, ωτ ) represents the estimated JPSD matrix, h(λn, ωτ ) represents the

ground truth JPSD matrix, and ∥.∥F denotes the Frobenius norm. The errors for

the parameters a and b are calculated as follows

∥a⋆ − a∥
∥a∥

(4.2)

∥b⋆ − b∥
∥b∥

(4.3)

where a⋆ and b⋆ represent the estimated vectors for the parameters a and b, respec-

tively. The operator ∥.∥ stands for the ℓ2-norm. We compare the estimation errors

of these three methods with the approach described in [11] as we call it JS-ARMA,

which does not account for the error in LG . Our focus is on the impact of LG’s accu-

racy on the model parameters and how precisely we estimate both the parameters and

LG . The error of LG is calculated as follows

∥L⋆
G − LG∥F
∥LG∥F

(4.4)

where L⋆
G is the estimated graph Laplacian matrix.

We begin by observing the effect of the number of iterations on the estimation per-

formance in Section 4.1.1. As we will see in Section 4.1.1, the estimation error of

the model parameters and LG tend to start increasing or destabilize after the second

iteration. Hence, we select the maximum number of iterations as 3 and do not process

further after 2. Then, we move on to analyze the impact of the noise on LG on the

performance. We consider two scenarios. In Section 4.1.2, the graph ARMA process

realizations are produced according to a ground truth W but the proposed method

only has access to perturbed weight matrix, WNoisy. We only perturb the existing

edges of the weight matrix W without adding or removing any edges. In Section

4.1.3, we allow for both the addition and removal of edges, as well as perturbations to

existing edges in the weight matrix W. We conduct these experiments for different

SNR values. The SNR in dB is defined as

20 log10

(
∥W∥F

∥WNoisy −W∥F

)
(4.5)
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where WNoisy is the perturbed weight matrix.

In Section 4.1.4, we examine how the number of realizations impacts estimation per-

formance. We assume the presence of noise in both the observed signals and W, as

our focus is on evaluating the algorithm’s performance under these noisy conditions,

particularly with respect to the noise in W. We do not address model complexity and

mismatch effects, as these factors have already been explored in the work by Guneyi

et al. [11] where we expect to observe similar findings. We describe the experiment

environment and parameters as follows.

We select number of nodes and time length as N = 30 and T = 25, respectively.

We use P = 1, K = 1, Q = 1, M = 0 as our graph ARMA process parameters

and set the parameter vectors as a =
[
1 −0.5 0 0.5

]H and b =
[
0.5 0.5

]H . In

these experiments, the ground truth values for P , K, Q and M are provided to the

algorithm. The regularization parameters µA, µB and α are found by the validation

procedure described in Appendix A. The resulting JPSD can be seen in Figure 4.1.
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Figure 4.1: Synthetic data set JPSD

It exhibits low-pass characteristics in both the time and node domains; therefore, the

generated realizations are expected to vary smoothly across the graph and over time.

4.1.1 Performance Analysis Across Iterations

In this section, we study the behavior of the algorithm in terms of the estimated JPSD,

the parameters a and b of the graph ARMA process, and the graph Laplacian matrix.

We generate R = 200 realizations and keep the observations noise-free. The SNR of

the weight matrix is 10 dB.
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1. JPSD Estimation:
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Figure 4.2: Variation of the JPSD estimation error with iterations

In Figure 4.2, after the second iteration, the accuracy of the estimated JPSD begins to

deteriorate. While the first two iterations contribute to aligning the estimated JPSD

with the ground truth, subsequent iterations introduce errors that result in an overfit-

ting effect. This overfitting is likely due to the model attempting to fit to noise rather

than capturing the true underlying structure of the time-vertex process.
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2. Graph ARMA Parameters a and b:
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Figure 4.3: Variation of the estimation error of parameter a with iterations
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Figure 4.4: Variation of the estimation error of parameter b with iterations

In Figures 4.3 and 4.4, the errors in estimating the parameters a and b show a consis-

tent pattern of improvement during the first two iterations. However, after the second

iteration, the optimization procedure appears to become unstable, leading to fluctua-

tions in the parameter estimates. This instability suggests that the model parameters

are becoming increasingly sensitive to minor inaccuracies in the estimation process,

potentially causing them to diverge from the true values. As mentioned in Section 3.2,

our primary goal is to minimize the function f1 + r1 + f2 + r2. However, since this

is a challenging task, we take an iterative approach by first minimizing the function

f1 + r1 by optimizing variables a and b, and then minimizing the function f2 + r2

by optimizing LG . This choice is due to the fact that the overall cost function is not
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jointly convex with respect to the variables we aim to optimize. As a result, even

reaching a local minimum can be challenging, if not impossible. In addition, the pa-

rameters a and b are approximated using a convex relaxation procedure, as described

in equation (3.18). While this relaxation provides initial estimates for the parameters,

the approximation starts to deviate from the ground truth values after the second it-

eration. This divergence indicates that the approximated solutions lose accuracy in

representing the underlying model, which could be due to the inherent non-convexity

of the original optimization problem. Therefore, although the convex relaxation of-

fers some computational advantages, its accuracy tends to degrade as the optimization

progresses. Furthermore, a fundamental issue here arises when calculating the Lapla-

cian matrix LG by minimizing f2+ r2, as we ignore the dependency of the f1 term on

LG . Ideally, we should be minimizing f1+f2+r2 together. However, the dependency

of f1 on LG is quite complex as f1 involves polynomials of its eigenvalues, which we

ignore for the sake of ease of computation. This approach can lead to inconsistent

behavior, where the algorithm may fail to converge towards a solution over iterations.

It is highly likely that this assumption disrupts the algorithm’s convergence behavior,

preventing it from stabilizing on a consistent solution.
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3. Graph Laplacian Matrix LG:
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Figure 4.5: Variation of the estimation error of parameter LG with iterations

In Figure 4.5, the estimation of the graph Laplacian matrix LG also suffers from in-

stability after the second iteration. Initially, the algorithm successfully refines LG

to better reflect the underlying graph structure. However, as with the JPSD and the

ARMA parameters, further iterations result in the introduction of noise into the graph

structure, leading to a less accurate Laplacian matrix that can negatively impact the

overall model.
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General Observations: The instability observed after the second iteration suggests

that while the algorithm is effective in the early stages of optimization, it may be

prone to overfitting as the iterations progress. This highlights the need for potential

safeguards, such as early stopping after the second iteration as we did.

4.1.2 Effect of Perturbation of Edge Weights with Edge Preservation

The results obtained from the experiments provide an analysis of the proposed method’s

performance in estimating the JPSD, the parameters of the graph ARMA process a,

b and the graph Laplacian matrix LG . We start by adding zero-mean white Gaus-

sian noise to W. Since in this section we aim to preserve the edges, we assign

ϵ = 2.2204e−10 to any of the weights that become non-positive due to noise addition.

Then, R = 50 process realizations Xl are generated by filtering the realizations of a

zero-mean white Gaussian time-vertex process.
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1. JPSD Estimation:
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Figure 4.6: Variation of the estimation error of JPSD with SNR under edge preserva-

tion

In Figure 4.6, we present the variation of the JPSD estimation error with the SNR

of the graph topology. The JPSD estimation results reveal the accuracy of the pro-

posed method in capturing the spectral characteristics of the time-vertex signals. The

comparison between the estimated and ground truth JPSD matrices demonstrates that

our method effectively reconstructs the joint spectrum, even under noisy conditions

for LG . The JS-ARMA method [11], which does not attempt to learn a new LG but

instead estimates the parameters a and b from the initial, possibly noisy, Laplacian
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matrix, serves as the baseline for our comparisons. As illustrated in Figure 4.6, the

estimation error of the JPSD decreases over iterations, aligning with the results dis-

cussed in Section 4.1.1.

2. Parameters of Graph ARMA Process a and b:
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Figure 4.7: Variation of the estimation error of parameter a with SNR under edge

preservation
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Figure 4.8: Variation of the estimation error of parameter b with SNR under edge

preservation

The estimation errors for the parameters a and b of the graph ARMA process in Fig-

ures 4.7 and 4.8, obtained through the iterative optimization procedure, consistently

decrease with increasing SNR as expected.. These parameters directly influence the

accuracy of the signal reconstruction and JPSD estimation, and the results indicate

that the proposed method achieves lower JPSD error compared to the baseline method

JS-ARMA. This confirms the effectiveness of our approach in capturing the temporal

and spatial dependencies of the graph signals by taking into account the possible de-

viation between the observed graph topology and the actual graph topology.
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3. Graph Laplacian Matrix LG:
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Figure 4.9: Variation of the estimation error of LG with SNR under edge preservation

In Figure 4.9, we present the variation of the estimation error of the graph topol-

ogy with SNR. The optimization of the graph Laplacian matrix plays a critical role

in the overall performance of the method. The iterative updates to LG ensure that

the learned graph structure is well-aligned with the underlying data characteristics.

The experiments demonstrate that the resulting LG successfully captures the essential

connections between nodes, leading to better estimation performance. The adaptabil-

ity of LG to varying levels of noise further highlights the robustness of the proposed

method.
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In conclusion, the experiments confirm that the proposed method improves the esti-

mation accuracy of both the process parameters and the graph structure. The joint

learning of the JPSD, a, b, and LG leads to a more precise representation of time-

vertex graph signals, making the method effective for practical applications in signal

processing and data analysis.

4.1.3 Effect of Noise on Possibly All Edges of LG

In this subsection, we analyze the effect of introducing noise to the weight matrix

W, where noise is applied not only to the existing edges but also to potential edges

that were initially non-existent. We explore how this noise impacts the SNR and

consequently the estimation performance of the proposed algorithm.

SNR Degradation: The introduction of noise to the weight matrix W significantly

impacts the SNR, particularly when noise is allowed to affect all possible edges, in-

cluding those with zero initial weights. This setting creates a scenario where the

underlying graph structure becomes increasingly perturbed, leading to a reduction in

the SNR, which takes much lower values than those in Section 4.1.2. The decrease in

the SNR correlates with a decline in the algorithm’s ability to accurately estimate the

graph Laplacian matirx LG .
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1. JPSD Estimation:
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Figure 4.10: Variation of the JPSD estimation error under noise with possibility of

edge modification of W

In Figure 4.10, we present the variation of the JPSD estimation error with SNR. The

noisy weight matrix scenario with the possibility of edge modification results in a

degradation in the accuracy of the estimated JPSD. In this challenging setting, it is

relatively difficult to differentiate between signal and noise, especially when noise

is introduced to edges that do not correspond to any actual connections in the graph.

The JPSD estimation error in this setting is seen to be higher than that in Section 4.1.2

by more than 10%. This leads to an inaccurate representation of the JPSD, due to the

reduced SNR.
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2. Graph ARMA Parameters a and b:
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Figure 4.11: Variation of the a estimation error under noise with possibility of edge

modification of W
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Figure 4.12: Variation of the b estimation error under noise with possibility of edge

modification of W

The estimation of the graph ARMA parameters a and b is also affected by the low

SNR values in this setting. as they can be seen in Figures 4.11 and 4.12. The presence

of noise across all edges creates additional challenges in accurately estimating these

parameters. As a result, the parameters a and b exhibit greater variability, and their

estimated values are less reliable, compared to the setting with higher SNR in Section

4.1.2. For example, for the parameter a, the error is calculated to be at least 10%

higher. The noise introduces inconsistencies in the optimization process, leading to

less accurate parameter estimates.

58



3. Graph Laplacian Matrix LG:
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Figure 4.13: Variation of the LG estimation error under noise with possibility of edge

modification of W

The noisy weight matrix significantly impacts the accuracy of the estimated graph

Laplacian matrix LG as it can be seen in Figure 4.13. As the noise is spread across

both existing and non-existing edges, the estimated LG becomes less reflective of

the true underlying graph structure. The introduction of noise on non-existent edges

leads to spurious connections in the graph, which ultimately degrades the model’s

performance.
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General Observations:

Overall, the experiments demonstrate that when noise is introduced to the weight

matrix, particularly when it affects all possible edges, the SNR decreases signifi-

cantly. This reduction in SNR adversely affects the accuracy of the estimated JPSD,

the ARMA parameters, and the graph Laplacian matrix. The results emphasize that

the initially known graph topology should not be too far from the actual graph topol-

ogy in order to ensure reliable estimation of graph-based models.

4.1.4 Impact of the Number of Realizations on Estimation Performance

In this section, we analyze the impact of the number of realizations on the estimation

performance of our proposed method. The performance metrics are evaluated for an

SNR of 5 dB for the weight matrix W. Moreover, we also add zero-mean white

Gaussian noise to the observations which yields an SNR of 12 dB for realizations.

Observation SNR in dB scale for a realization l is calculated as

20 log10

(
∥Xl∥F

∥Xl −XlNoisy∥F

)
. (4.6)
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1. JPSD Estimation:
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Figure 4.14: Variation of the LG estimation error under noise with possibility of edge

modification of W

In Figure 4.14, as the number of realizations increases, the estimation errors for the

JPSD decrease, reflecting the improved accuracy of the spectral representation of the

time-vertex signal. This trend is evident in Figure 4.14, where the estimated JPSD

becomes increasingly closer to the ground truth with more realizations, confirming

the effectiveness of the iterative method in capturing the joint time-vertex spectral

properties of the process.
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2. Graph ARMA Parameters a and b:
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Figure 4.15: Variation of the LG estimation error under noise with possibility of edge

modification of W
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Figure 4.16: Variation of the LG estimation error under noise with possibility of edge

modification of W

The estimation errors for the parameters a and b exhibit a consistent decline as the

number of realizations increases, as shown in Figures 4.15 and 4.16. With a limited

number of realizations, the errors in these parameters are relatively high, reflecting

the challenges in capturing the underlying dynamics of the process. However, as the

number of realizations increases, the estimation errors decrease, indicating that the

additional data provides better information for learning these parameters.

The iterative optimization process leverages the additional information provided by

the increasing number of realizations to refine the parameter estimates, leading to

improved model accuracy. This is crucial for ensuring that the graph ARMA process
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model accurately captures the underlying dynamics of the time-vertex signal.

3. Graph Laplacian Matrix LG:
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Figure 4.17: Variation of the LG estimation error under noise with possibility of edge

modification of W

The graph Laplacian matrix LG also benefits from improved estimation accuracy with

more realizations, as illustrated in Figure 4.17. This trend highlights the importance

of sufficient data for accurately capturing the graph topology and, consequently, for

improving the overall model performance.
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General Observations:

Overall, the results demonstrate that increasing the number of realizations signifi-

cantly enhances the estimation performance across all key components of the model,

including the JPSD, the parameters a and b, and the graph Laplacian matrix LG . This

underscores the importance of utilizing sufficient realizations in practical applications

to achieve robust and accurate model estimation.

4.2 Sensivity Analysis of α

To determine the appropriate range for the regularization parameter α, which de-

termines the sparsity of the graph topology by weighting the ℓ1 norm of the graph

Laplacian matrix, we conduct a sensitivity analysis. The aim is to identify the val-

ues of α that optimize the performance of the algorithm across different range of

values and COVID-19 data set is used for this purpose. In Table 4.1, we report the

NME obtained at different values of the α parameter for missing observation ratios

10%, 50% and 80%, to observe the effect of the choice of α in different scenarios.

The analysis indicates that choosing α within the range [10−7, 10−4] is particularly

effective in achieving optimal results. This range was selected based on its consis-

tent performance in minimizing the NME, as shown in Table 4.1. The results suggest

that α values within this range provide a good balance between the sparsity of LG

and dependencies between nodes, ensuring that the algorithm remains stable while

effectively capturing the underlying structure of the data. The optimal values for α

decrease as the ratio of missing observations increases, indicating that a denser graph

better captures dependencies and leads to improved estimation results.
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α VALUES 10% is missing 50% is missing 80% is missing

0 0.131 0.166 0.295

1.00e-09 0.128 0.154 0.258

1.00e-08 0.120 0.154 0.254

1.00e-07 0.115 0.151 0.252

1.00e-06 0.114 0.151 0.264

1.00e-05 0.112 0.147 0.264

1.00e-04 0.103 0.148 0.271

1.00e-03 0.104 0.150 0.273

1.00e-02 0.107 0.152 0.274

Table 4.1: NME for different α values across missing data scenarios

4.3 Comparative Experiments

In this section, we evaluate the performance of our method for two different time-

vertex data sets. The first dataset is the Molène weather dataset. This experiment

uses hourly weather measurements collected in the Brittany region of France during

January 2014 [57]. We focus on temperature measurements taken from N = 37

different weather stations, each represented as a graph node. A 10-NN graph with

Gaussian edge weights given in equation (2.1) is constructed to model the connec-

tions between the stations. Each 24-hour measurement sequence is treated as one

realization of a time-vertex graph process X with a graph size of N = 37 and a time

length of T = 24, resulting in a total of R = 31 realizations.

The second dataset is related to the COVID-19 pandemic. This experiment is con-

ducted using data on the number of daily new cases per country between February

15, 2020, and July 5, 2021 [58]. We include the N = 37 most populous European

countries in the experiment, where each country is treated as a graph node. A 4-NN

graph is constructed with Gaussian edge weights based on a hybrid distance mea-

sure that considers both geographical proximities and the number of flights (sourced

from [59]) between countries. The number of daily new cases is normalized by each

country’s population and smoothed using a moving average filter over a 7-day win-
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Dataset Time Stationarity Vertex Stationarity Time-Vertex Stationarity

Molène 0.8955 0.9365 0.9203

COVID-19 0.9963 0.7608 0.7525

Table 4.2: Stationarity ratios of the data sets

dow. The time length of the process is taken as T = 21 days (three weeks), and the

experiments are conducted on R = 23 realizations of the process.

We study the signal estimation problem in a scenario where missing observations

occur at randomly and independently selected time-vertex pairs. The performances

of the algorithms are compared with respect to the normalized mean error (NME) of

the estimates of the missing observations as defined in equation (3.29). Since real

data already has some natural deviation from the process model considered in our

study, no extra noise is added to the data.

To better interpret our estimation results, we begin by analyzing the joint time-vertex

stationarity, vertex stationarity, and time stationarity of each dataset. As noted in

(3.5), the covariance matrix of a time-vertex stationary process must be diagonaliz-

able with the eigenvectors of the joint Laplacian. We therefore compute the time-

vertex stationarity ratio for each dataset as ∥diag(h̃(ΛG,Ω))∥/∥h̃(ΛG,Ω)∥F . The ver-

tex stationarity ratio and time stationarity ratio are calculated similarly, by restricting

the covariance matrix to the vertex or time domain in (3.5) and substituting the eigen-

vector matrix with UG or UT , respectively. The stationarity ratios for each dataset

are presented in Table 4.2.

The proposed method is compared with several established methods in the literature.

The first of these methods is the AR time process models method [26], which is em-

ployed for modeling univariate time series and predicts future values based on the

past values of the series itself individually at each node. Then, the study compares

against the Vector Autoregressive (VAR) process models method [60], which is a mul-

tivariate time series approach that models the dynamic relationships between multiple

variables, generating predictions based on the past values of each variable. The Graph

Vector Autoregressive Moving Average Recursions (G-VARMA) and the Graph Poly-

nomial Vector Autoregressive Recursions (GP-VAR) methods [28] leverage the con-
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cept of time-vertex stationarity and use the model in equation (2.42), where the the

GP-VAR method drops the MA part. The JWSS method [24] uses a non-parametric

JPSD estimator that corresponds to the initial estimate of the JPSD in our approach.

The JS-ARMA method [11] uses a parametric JPSD estimator that corresponds to

first block of our method in Figure 3.1, which does not learn a new LG .
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Figure 4.18: NME of COVID-19 data set
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Figure 4.19: NME of Molène data set

In the COVID-19 data set, we use the model parameters P = 1, K = 1, Q = 0,

M = 1, µA = 0.1, µB = 0.1. Motivated by our findings in Section 4.2, we adapt

the parameter α to the ratio of missing observations, such that it takes the values[
10−4 10−4 10−6 10−6 10−6 10−7 10−7 10−7

]
as the ratio of missing obser-

vations varies between 0.1 and 0.8. In the Molène data set, we use the model param-

eters P = 2, K = 2, Q = 1, M = 0, µA = 10−3, µB = 0. The parameter α is again

adapted to the ratio of missing observations as in the COVID-19 dataset, taking the

values
[
10−3 10−3 10−5 10−5 10−5 10−5 10−6 10−6

]
.

We find that the proposed GL-JS-ARMA method delivers the best estimation perfor-

mance among the methods that utilize stochastic process models. Generally, graph
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process models outperform the VAR and AR models, which do not account for graph

topology. However, an interesting exception arises with the COVID-19 dataset, where

the AR and VAR methods surpass the graph-based GP-VAR method. This outcome

aligns with the high time stationarity and weaker vertex or time-vertex stationarity ob-

served in the COVID-19 dataset. Notably, the proposed GL-JS-ARMA method, JS-

ARMA method and the JWSS method, which leverage the time-vertex joint spectrum

of the process, consistently outperform G-VARMA, GP-VAR, AR, and VAR, which

do not utilize this information. This holds true even for the COVID-19 dataset, un-

derscoring that the joint time-vertex spectrum of a time-varying graph signal reveals

critical characteristics that cannot be captured by vertex-only or time-only frequency

analysis. Moreover, the proposed GL-JS-ARMA method consistently outperforms

the JS-ARMA method at nearly every point, except for the case of the 80% missing

ratio in the Molène dataset. This result highlights the crucial role that the underly-

ing graph structure plays in capturing essential information and dependencies within

a dataset. Learning a new graph Laplacian matrix L⋆
G with the proposed method

provides better performance than the JS-ARMA method, which uses the fixed topol-

ogy of the initial LG0 and only learns the graph ARMA process parameters a and

b once. The parameter α plays a crucial role in the GL-JS-ARMA method, as it

directly influences the sparsity level of the learned Laplacian matrix, LG . As the

missing observation ratio changes, the sparsity of LG significantly impacts the NME.

For both datasets, the parameter α consistently decreases with the increasing missing

ratio of observations, leading to a denser graph in the GL-JS-ARMA method as stated

in Section 4.2. A denser graph topology tends to impose the dependencies between

the observed and unobserved samples in a stricter way, which turns out to be advan-

tageous at higher ratios of missing observations by facilitating the diffusion of the

available information to other nodes under severe lack of data.
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CHAPTER 5

CONCLUSION

In this thesis, we have proposed an iterative method for jointly learning a time-vertex

graph ARMA processes and graph topologies from observations of the process. Our

approach begins by obtaining an empirical estimate of the JPSD of the process, lever-

aging the block-Toeplitz structure of its covariance matrix through an unbiased circu-

lar covariance matrix estimator. We propose to jointly learn the process parameters

and the graph topology in an alternating manner. We formulate the learning of graph

ARMA process parameters as an optimization problem, with the objective of mini-

mizing the error between the parametric JPSD and its empirical estimate. Although

this initial problem is non-convex, a relaxation is applied so that a convex objective

function is obtained by expressing the graph ARMA process parameters in terms of

low-rank positive semi-definite matrices. After estimating the process parameters, we

update the covariance matrix of the process to further optimize the graph Laplacian

matrix LG . This iterative method continues until a predetermined number of iterations

is reached. The proposed method estimates the optimum parameters a and b with the

graph Laplacian matrix LG in this manner, which can potentially be used in several

time-vertex inference tasks. In our study, we apply the learnt model for the task of

estimating the unavailable observations of a time-vertex process using the LMMSE

approach.

The proposed method has been evaluated on both synthetic and real-world data sets.

Our experiments demonstrate that the enhanced graph ARMA process model, com-

bined with an optimized graph Laplacian matrix LG , improves the estimation per-

formance. Specifically, our method consistently outperforms existing models, par-

ticularly in scenarios where the graph topology plays a critical role in capturing the
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underlying dependencies of the data. The results validate the effectiveness of our iter-

ative approach in learning both the graph structure and the ARMA model parameters

simultaneously, leading to more accurate and robust signal estimation.

In this thesis, we demonstrate that enhancing the graph ARMA process model with

an optimized graph topology can improve estimation performance in real-world data

sets. For future work, conducting more extensive experiments on diverse real-world

data sets may be helpful for further exploring the advantages of modeling time-

varying graph signals as JWSS ARMA graph process models. While this study lever-

ages the covariance matrix of the graph ARMA process, a promising direction for

future research is to investigate optimizing the graph Laplacian matrix LG in relation

to the graph ARMA filter, which is inherently a function of LG . As an example, the

methodology proposed by Egilmez et al. in [31] can be adapted to time-vertex sig-

nals, where they aim to learn the graph structure alongside the graph filter for vertex

signals. By refining the graph structure with consideration of the filter, it is possible to

obtain a more accurate estimate of LG , ultimately leading to improved model parame-

ters and enhanced estimation performance, particularly to reduce the impact of noisy

weight matrices with edge modifications. Furthermore, an important area for future

research involves exploring scenarios where the graph topology changes dynamically

over time. Current models often assume a static graph structure, which may not ad-

equately capture real-world phenomena where the relationships or interactions stem

from an evolving graph. By extending the model to accommodate time-varying graph

topologies, we can better capture the dynamics of the underlying processes. An in-

triguing avenue for another future research path is to explore scenarios where the

statistical properties of the processes change over time or across different regions of

the graph. Current models typically assume stationary or uniform statistical proper-

ties, which may not fully capture the complexity of processes that exhibit temporal or

spatial variability. A key area for another future research involves developing adap-

tive signal processing solutions for scenarios where data arrives sequentially rather

than all at once. Traditional signal processing methods often assume batch process-

ing, which may not be suitable for real-time or streaming data environments where

the data is received incrementally.
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[48] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm,

“Deep graph infomax,” 2018.

[49] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,”

in Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’16, (New York, NY, USA), p. 855–864,

Association for Computing Machinery, 2016.

77



[50] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “Graphrnn: Gener-

ating realistic graphs with deep auto-regressive models,” 2018.

[51] A. Papoulis and S. Pillai, Probability, Random Variables, and Stochastic Pro-

cesses. McGraw-Hill series in electrical engineering: Communications and sig-

nal processing, McGraw-Hill, 2002.

[52] N. Perraudin, J. Paratte, D. Shuman, L. Martin, V. Kalofolias, P. Vandergheynst,

and D. K. Hammond, “GSPBOX: A toolbox for signal processing on graphs,”

ArXiv e-prints, Aug. 2014.

[53] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex program-

ming, version 2.1,” Mar. 2014.

[54] M. Grant and S. Boyd, “Graph implementations for nonsmooth convex pro-

grams,” in Recent Advances in Learning and Control, pp. 95–110, Springer-

Verlag Limited, 2008.

[55] K. Toh, R. Tutuncu, and M. Todd, “On the implementation of sdpt3 (version 3.1)

- a matlab software package for semidefinite-quadratic-linear programming,” in

2004 IEEE International Conference on Robotics and Automation (IEEE Cat.

No.04CH37508), pp. 290–296, 2004.

[56] S. J. Wright, “Coordinate descent algorithms,” Math. Program., vol. 151,

p. 3–34, jun 2015.

[57] B. Girault, “Stationary graph signals using an isometric graph translation,” in

2015 23rd European Signal Processing Conference (EUSIPCO), pp. 1516–

1520, 2015.

[58] “COVID-19 coronavirus pandemic data.”

[59] “Eurostat: An official website of the European Union.”

[60] H. Lütkepohl, New introduction to multiple time series analysis. Springer, 2005.

78



APPENDIX A

VALIDATION PROCEDURE FOR THE SELECTION OF ALGORITHM

HYPERPARAMETERS

In this section, the selection of the regularization parameters µA, µB and α is in-

spected. Although various search methods can be employed to find the optimal pa-

rameters, we use a strategy similar to a greedy search. In our approach, the model

parameters P , K, Q, and M of f1, along with the regularization terms µA and µB of

r1, are searched jointly, while the regularization term α of r2 is searched separately.

This search method is employed because the two blocks in Figure 3.1 can be viewed

as distinct optimization problems. The parameter α is determined by evaluating a

range of values, as discussed in the sensitivity analysis in Section 4.2, and selecting

the one with the lowest validation error. On the other hand, choosing the parameters

P , K, Q, M , µA, and µB requires a more sophisticated approach due to the high

dimensionality involved.

We search for optimal values of µA and µB by testing them with specific combina-

tions of P , K, Q, and M , recording the lowest possible validation error. Once the

best possible set of P , K, Q, and M values is identified, we fix these values for the

remaining iterations and we only search for the optimal µA and µB parameters. The

search method of µA and µB is as follows.

At each step, we fix a specific value of µA and increase µB by 10 times and record

the validation error. The first step where the validation error starts to increase is

recorded. At this point, two scenarios are possible, the error may continue to rise, or

it may decrease up to a certain point and start to increase again. If the error continues

to increase, the search is terminated, and the parameters corresponding to the lowest

error are saved. If the error decreases, the search continues until another increase
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is detected. At that point, the two local minima are compared, and the parameters

corresponding to the lowest error are selected. The same approach is then applied by

every possible value of µA, which increased 10 times at each step. This search method

is faster than brute-force search in terms of time complexity and yields better results

than the greedy search. Additionally, it can be parallelized to further accelerate the

search process. To illustrate this process, a couple of scenarios are presented below.
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Figure A.1: Monotonic decrease scenario

In Figure A.1, the decision mechanism continues up to the highest parameter value in

the set because the validation error decreases monotonically.
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Figure A.2: Monotonic increase scenario

In Figure A.2, the decision mechanism selects the smallest parameter value in the

set because the validation error increases monotonically. It continues although the

error increases because there may be a sharp decrease in the error at some parameter

values that has not been tried yet. The parameter value with the first local minimum

is selected.
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Figure A.3: Decrease and increase scenario

In Figure A.3, the validation error increases up to a point, then decreases and starts to

increase again. Since a second increase occurs in the error at larger parameter values,

the decision mechanism terminates at that point, compares the two local minima and

decides the parameter value that corresponds to the first local minimum.
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Figure A.4: Decrease and increase scenario - 2

Figures A.3 and A.4 are very similar except that the second local minimum is smaller

than the first. Hence, the parameter value corresponding to the second local minimum

is selected.
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Figure A.5: Decrease and increase scenario - 3

In Figure A.5, the decision mechanism stops at the second increase step and misses

the parameter with the third local minimum. It selects the parameter corresponding

to the second local minimum.
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