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ABSTRACT 

Master of Science 

FROM BLACK BOX TO TRANSPARENCY: ADVANCES IN AI-DRIVEN  

CO-CREATION IN ARCHITECTURAL DESIGN 

Sevda BAŞAR 
 

TOBB University of Economics and Technology 

Institute of Natural and Applied Sciences 

Department of Architecture 

 

Supervisor: Asst. Prof. Dr. Zelal Çınar 

Date: August 2024 

This thesis examines the integration of artificial intelligence (AI) into architectural 

design processes and explores the impact of these technologies on creative practices, 

while also addressing the limitations that arise from the "black box" nature of AI tools. 

AI technologies, particularly those using machine learning and deep learning 

algorithms, are increasingly being utilized in architecture, providing new tools for 

design generation, analysis, and optimization. However, the opaque nature of these 

technologies can make it challenging for users to understand and control these tools, 

creating barriers to their effective use as collaborative partners in the design process. 

As an alternative to this, a "gray box" approach is suggested. 

The research explores various AI-supported methods for both 2D and 3D production, 

including tools such as Stable Diffusion, Midjourney, ZoeDepth, GhPython, Blender, 

ChatGPT, Tripo AI, and Comfy UI. Experimental studies using these tools highlight 

their strengths, such as visualization and modeling capabilities, while also revealing 

weaknesses like lack of transparency and limited user interaction. The study provides 

an assessment of the current state of co-creation between AI and human designers in 

practice. It emphasizes the need for more interactive and explainable AI systems (XAI) 

to give architects a better understanding and influence over the outputs of AI tools, 

thus enabling a more effective co-creation process. 



x 

This work advocates for the development of AI tools specifically designed for 

architectural purposes and suggests that integrating methodologies like XAI could 

enhance transparency and user engagement, making AI more creatively useful within 

design workflows. XAI could increase trust by making AI systems' decision-making 

processes more understandable to architects and could enable AI to serve as a more 

effective co-creator in design processes. Additionally, the thesis explores the potential 

for AI to evolve from a passive tool to an active co-creator, where AI not only 

generates design options but also interacts dynamically with human designers in a 

feedback-driven process. 

Keywords: Artificial intelligence, Black box, Gray box, Explainability, Co-creation, 

2D/3D generation, Design tools. 
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ÖZET 

Yüksek Lisans 
 

KARA KUTUDAN ŞEFFAFLIĞA: MİMARİ TASARIMDA YAPAY ZEKA 
DESTEKLİ ORTAK YARATIMDAKİ İLERLEMELER 

Sevda BAŞAR 

 

TOBB Ekonomi ve Teknoloji Üniversitesi 

Fen Bilimleri Enstitüsü 

Mimarlık Anabilim Dalı 

 

Danışman: Dr.Öğr.Üyesi Zelal Çınar 

Tarih: Ağustos 2024 

Bu tez, yapay zekanın (AI) mimari tasarım süreçlerine entegrasyonunu ve bu 

teknolojilerin yaratıcı uygulamalar üzerindeki etkilerini incelerken, aynı zamanda 

yapay zeka araçlarının "kara kutu" doğasıyla ilgili ortaya çıkan sınırlamaları da ele 

almaktadır. Özellikle makine öğrenimi ve derin öğrenme algoritmaları kullanan yapay 

zeka teknolojileri, mimarlık alanında giderek artan bir şekilde kullanılmakta ve tasarım 

üretimi, analiz ve optimizasyon gibi alanlarda yeni araçlar sunmaktadır. Ancak, bu 

teknolojilerin opak yapısı, kullanıcıların bu araçları anlamasını ve kontrol etmesini 

zorlaştırmakta ve onları tasarım sürecinde etkin bir ortak olarak kullanmanın önünde 

engeller yaratmaktadır. Bu duruma bir alternatif olarak "gray box" yaklaşımı 

önerilmektedir. 

Araştırma, Stable Diffusion, Midjourney, ZoeDepth, GhPython, Blender, ChatGPT, 

Tripo AI ve Comfy UI gibi araçları içeren, hem 2D hem de 3D üretim için yapay zeka 

destekli çeşitli yöntemleri incelemektedir. Bu araçlar üzerinde yapılan deneysel 

çalışmalar, görselleştirme ve modelleme yetenekleri gibi güçlü yönleri vurgularken, 

aynı zamanda şeffaflık eksikliği ve sınırlı kullanıcı etkileşimi gibi zayıf yönleri de 

ortaya koymaktadır. Çalışma, AI ile insan tasarımcılar arasındaki ortak yaratımın 
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güncel durumuna dair bir değerlendirme sunmaktadır. Daha etkileşimli ve 

açıklanabilir yapay zeka sistemlerine (XAI) duyulan ihtiyacı vurgulayarak, mimarların 

yapay zeka araçlarının çıktıları üzerinde daha fazla anlayış ve etkiye sahip olmalarının 

sağlanması ve böylece daha etkili bir ortak yaratım sürecinin mümkün kılınması 

gerektiğini belirtmektedir. 

Bu çalışma, mimari amaçlar için özel olarak tasarlanmış yapay zeka araçlarının 

geliştirilmesini savunmakta ve XAI gibi metodolojilerin entegrasyonunun şeffaflığı ve 

kullanıcı katılımını artırarak yapay zekanın tasarım iş akışlarında daha yaratıcı bir 

şekilde kullanılmasını mümkün kılabileceğini öne sürmektedir. XAI, yapay zeka 

sistemlerinin karar verme süreçlerini mimarlara açıklayarak ve anlamalarını 

sağlayarak güveni artırabilir ve yapay zekanın tasarım süreçlerinde daha etkin bir ortak 

yaratıcı olarak yer almasını sağlayabilir. Tez ayrıca, yapay zekanın pasif bir araçtan 

aktif bir ortak yaratıcıya dönüştüğü bir rolü tartışmakta; bu senaryoda yapay zekanın 

yalnızca tasarım seçenekleri üretmekle kalmayıp, aynı zamanda insan tasarımcılarla 

dinamik ve geri bildirim odaklı bir etkileşim sürecine girebileceği vurgulanmaktadır. 

Anahtar Kelimeler: Yapay zeka, Kara kutu,Gri kutu, Açıklanabilirlik, Ortak yaratım, 

2D/3D üretim, Tasarım araçları 
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1 INTRODUCTION  

Since architects have been creating their designs in the digital environment, a new 

language has developed between the computer and the designer. Recently, architecture 

has entered a paradigm shift with the widespread use of artificial intelligence (AI) 

(Chaillou, 2020). This shift has led AI tools to develop a new language with designers 

as they move beyond simple automation and take on a more active role in the design 

process. These AI tools are referred to as "co-creators" (Gmeiner et al., 2023).   

According to Gordon Pask, co-creation is a process where humans and machines learn 

and develop together through continuous interaction (Pask, 1969). Pask envisioned a 

dynamic partnership in which both machines and humans engage in a reciprocal 

learning process, enhancing each other's knowledge and capabilities through active 

participation and feedback (Werner, 2019). However, current AI technologies have 

inherent limitations that restrict the depth and scope of co-creation, lacking the 

feedback loops necessary for deeper engagement. (Werner, 2019). 

While tools like DALL-E and Midjourney have advanced creative collaboration by 

generating consistent visual content from text or visual inputs, they still require human 

guidance to refine and improve outputs, highlighting the necessity for a collaborative 

approach in creative endeavors (S. Wang et al., 2024). The designer's involvement 

often remains limited to providing prompts, and the capacity to revise generated 

visuals is constrained, posing significant challenges to the co-creation process. 

Despite these constraints, AI continues to influence the design process significantly 

(Leach, 2022), prompting a reevaluation of many conventional beliefs in the design 

community. Understanding the changes AI brings to design thinking is crucial to 

unlocking the potential of co-creation. To achieve this, it is essential to address the 

concept of the "black box"—a metaphor for the opaque computational processes in 

architectural design (Fricker et al., 2020). These processes can obscure understanding 

and limit trust, making it challenging for designers to fully engage with AI tools. 
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To enhance transparency, various methods of model interpretation and visualization 

have been developed to clarify the decision-making processes of these models 

(McGovern et al., 2019). The "black box" nature of some computational tools can 

hinder innovation and experimentation, which Kotnik and Fricker (2020) argue is a 

significant issue. They suggest developing new tools and methods that provide 

architects with better understanding and control over the computational processes they 

use (Fricker et al., 2020). 

Current AI tools often function with an input-output logic that exacerbates the 'black 

box' effect, limiting user understanding and intervention. To address these issues, this 

thesis explores the 'black box' problem and introduces the "Gray Box" approach 

proposed by Prof. Andrew Witt (Witt, 2018), which involves integrating designers 

throughout the entire design process to improve output quality. 

To effectively collaborate with AI tools, designers must develop both participatory 

skills and technical competencies, becoming familiar with these tools as co-creators in 

the design process. Given the current limitations and the 'black box' nature of AI in 

architecture, this thesis seeks to evaluate how these tools can function as "co-creators" 

and what extent they can be used effectively as collaborative partners in design. 

Currently, many visualization tools generate outputs from text or image inputs without 

creating such a feedback loop, limiting co-creation. However, this scenario is rapidly 

evolving as new tools and methodologies are developed to facilitate more interactive 

and collaborative processes. 

Figure 1.1 shows a design schema proposal where the design control is maintained 

through intermediate stages rather than a single final product. In certain instances 

within these tool groups, the feedback loop has been optimized, thereby enhancing the 

co-creation process. 
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Figure 1.1: Feedback Loop (created by the author)  

Given this, it can be stated that the term "co-creation tools" is used to denote the 

various instruments and methodologies that facilitate production processes leveraging 

artificial intelligence. 

Explainability is a critical aspect of using AI tools, especially as these tools become 

more complex. Understanding the decision-making processes of AI systems is 

increasingly challenging, which raises concerns about safety, reliability, and bias. 

Explainable AI (XAI) aims to address these concerns by increasing transparency, 

helping users understand the underlying decision-making factors (Das & Rad, 2020). 

In architecture, XAI can provide architects with greater control over AI tools, 

enhancing their effectiveness and trustworthiness. However, XAI has not yet been 

widely applied to tools that generate visual outputs, indicating a significant area for 

future research and development. 

1.1 Problem Statement 

AI tools are increasingly being used to support design processes in the field of 

architecture. However, existing AI tools often function as "black boxes," meaning their 

internal workings are difficult for users to understand. This lack of transparency 

hinders architects' ability to effectively collaborate with AI tools and fully engage in 

the creative process. Additionally, while current AI tools have made significant strides 

in generating 2D images, the development of robust and reliable 3D modeling 

capabilities remains a work in progress, indicating that further advancements are 

necessary to achieve similarly high-quality outcomes in the 3D domain. 
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The opaque nature of these tools means that while text inputs can significantly alter 

outputs, direct modifications to the visuals are not possible. This limitation restricts 

the co-creation process, as designers cannot interactively refine generated visuals. This 

lack of transparency and control creates a barrier, making it difficult to achieve precise 

or desired outcomes. To enhance co-creation capabilities, more transparent and 

interactive interfaces are needed. 

1.2 Research Question 

Given the current limitations and the 'black box' nature of existing AI tools in 

architecture, this thesis seeks to answer the following research question: 

How can the capacity of existing black box tools (particularly in the context of 2D and 

3D generation) to function as "co-creators" in architectural design processes be 

evaluated, and to what extent can these tools be effectively used as collaborative 

partners in the design process? To what extent is co-creation possible with these black 

box tools? What are the limitations, potentials, and future development prospects of 

these tools?  

To address the research question above, this thesis examines the state of the art in AI 

tools in terms of their black box nature and co-creation potential. In this regard, this 

study provides insights for the development of future tools. 

1.3 Objectives and Scope 

This study aims to investigate the use of AI tools in architecture, focusing on 

transparency and explainability while examining the potential and limitations of these 

tools. The experiments conducted encourage architects to engage with AI tools, while 

also providing data scientists with a foundation for further research in this field. 

The primary goal is to evaluate AI's role as a co-creator in architectural design by 

exploring current tools and methodologies. Key objectives include identifying the 

limitations of existing AI tools, understanding the principles and applications of 

explainability, and proposing a framework for more effective integration of AI in the 

design process. Furthermore, the thesis delves into the potential of 2D and 3D AI tools 

to enhance collaboration and advance architectural practices. It also considers how the 
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concept of co-creation can be redefined with contemporary tools, examining AI's 

potential to become more explainable and collaborative in the future. This framework 

aims to provide insights into how AI tools can be more effectively used as 'co-creators' 

in architectural design, laying the groundwork for strategic recommendations that 

could be developed moving forward. 

1.4 Methodology 

This thesis employs a mixed-methods approach to explore the potential of AI tools in 

the field of architecture. The methodology involves both qualitative and quantitative 

analyses to comprehensively examine the capabilities and limitations of various AI-

driven methods in 2D and 3D content generation. The primary focus is on their 

applications in architectural design and the explainability of these tools. 

Data Collection and Analysis: The initial phase involves a comprehensive review of 

existing literature on AI and design, with a focus on machine learning, deep learning, 

and their applications in generation methods. This includes an examination of both 2D 

and 3D generation methods, as well as a discussion on the "black box" nature of deep 

learning models and the importance of explainability in AI tools. Additionally, datasets 

used for training 2D and 3D generation methods are collected to support the 

experimental framework. 

Experimental Framework: The second phase involves the selection and application 

of various 2D and 3D AI tools, including Stable Diffusion, Midjourney, ZoeDepth, 

Tripo AI, Blender, Grasshopper, and Comfy UI. These tools are chosen based on their 

relevance and capabilities in generating architectural visuals and models. Blender and 

Grasshopper are not AI tools, but in this process, ChatGPT was used as an assistant, 

allowing for an experience of the co-creation process. Many of the 2D tools selected 

are widely recognized and commonly utilized for text-to-image and image-to-image 

generation. Their performance is tested using consistent input text, and the resulting 

outputs are systematically compared to evaluate their capabilities. The 3D tools 

identified during the literature review are gaining popularity in sectors such as gaming. 

These tools include both text-to-3D and 2D-to-3D generation methods. Furthermore, 

due to the script-writing capabilities of ChatGPT, an AI-assisted workflow involving 

Blender and Grasshopper is explored. Although the current application of these tools 
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in architecture is limited, this study investigates their potential by conducting a series 

of experiments to assess their effectiveness and versatility in architectural design. 

Practical application of these tools involves generating 2D images and 3D models, and 

exploring the interconvertibility of text, 2D, and 3D methods. An iterative design loop 

process is employed where AI-generated outputs are reviewed, modified, and refined 

through user feedback. This process aims to understand the co-creation dynamics 

between AI tools and human designers. However, the design loop is implemented only 

with tools that allow for user input and interaction. 

Evaluation and Comparison: The third phase includes a detailed analysis of the 

outputs generated by the AI tools, focusing on their transparency and controllability. 

This includes examining the tools' ability to handle complex geometries, generate 

high-quality visuals, and produce detailed 3D models. Additionally, an assessment of 

the transparency and explainability of the AI tools is conducted, particularly focusing 

on the "black box" problem. This involves evaluating how the tools' internal 

mechanisms can be understood and controlled by architects. 

Discussion and Recommendations: The final phase identifies the key challenges and 

opportunities associated with the use of AI tools in architecture. This includes 

discussing the limitations of current tools and proposing potential solutions to enhance 

their effectiveness. Recommendations for future research and development in the field 

of AI-driven architectural design are provided, suggesting improvements in tool 

design, data collection, and the integration of explainable AI (XAI) methodologies. 

The thesis aims to offer a systematic overview of 2D and 3D generation methods and 

their applications in architecture, providing insights into the co-creation process 

between AI tools and human designers. By highlighting the current limitations of these 

tools and offering recommendations to enhance their potential, the thesis seeks to 

improve the collaborative capabilities of these technologies, ultimately contributing to 

the advancement of architectural design practices. 
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2  LITERATURE REVIEW 

The literature review aims to explore various facets of AI and its influence on design, 

with a particular focus on architecture. It considers the potential of AI to transform 

architectural practices, examining how new technologies might reshape creative 

processes and workflows. By covering topics like machine learning and deep learning, 

the review seeks to offer insights into the algorithms and models that drive AI tools, 

exploring their ability to generate, evaluate, and optimize architectural designs. 

The review also examines the "black box" nature of AI tools, which can obscure the 

processes behind specific outcomes. This lack of transparency has the potential to limit 

creative collaboration between architects and AI. Therefore, the review emphasizes 

the importance of methods that enhance transparency and explainability, such as 

Explainable AI (XAI), which aims to provide insights into the decision-making 

processes of AI systems. 

Additionally, the review looks into current AI applications in design, from generative 

design tools to predictive analytics that could support decision-making. It considers 

the practical implications of these technologies, discussing their advantages and 

limitations, and how they may influence the role of architects in the design process. 

By presenting an overview of AI's current involvement in design, the literature review 

identifies gaps in existing research and proposes future directions for potentially 

incorporating AI as a collaborative partner in architectural design. This approach could 

encourage a more interactive and iterative design process, where AI acts as an 

intelligent assistant, potentially enhancing the creativity and efficiency of architects. 

2.1 AI and Design 

Artificial intelligence (AI), first introduced in the 1940s, can generally be defined as 

the science of creating intelligent machines or computer programs that mimic human 

intelligence (Baduge et al., 2022). According to Russell and Norvig (Norvig & Russell, 

2016), studies consistently highlight AI as one of the most intriguing and fast-evolving 
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fields. AI expert Kai-Fu Lee suggests that AI could have a more profound impact than 

any other development in human history. Recently, artificial intelligence has made 

significant strides in various domains, such as computer vision, robotics, language 

translation, gaming, medical diagnosis, and generative design. 

In architecture, the application of AI is continuously expanding. As new applications 

emerge, designers are increasingly gaining a deeper understanding of AI's potential 

and limitations. This growing understanding is forming a clearer picture of how AI 

might affect and transform the field of architecture. According to Thomas Lane 

(Matoso, 2023), AI has the potential for up to 37% of the jobs currently performed by 

architects and engineers. Similarly, Chaillou (Chaillou, 2020), argues that AI may 

significantly enhance architects' daily practice in the near future. However, this 

automation is currently utilized to handle routine and less creative tasks, thereby 

allowing professionals to dedicate more time to the strategic and creative facets of their 

work. In the same way that Revit, CAD, or other 3D software do not replace architects 

but rather modify workflows and possibly enhance their creativity, the same can be 

said for artificial intelligence solutions. Additionally, AI has the potential to 

revolutionize the way architects operate. Tools such as Midjourney, DALL-E, and 

ChatGPT, widely recognized today, illustrate the advancements in AI language models 

and visualization models. However, these advancements are accelerating rapidly, with 

new capabilities continuously emerging.  

Primarily, all AI tools rely on data and machine learning algorithms to function 

effectively. In this context, conceptualizing AI as a design partner in a co-creative 

process, one of the potential avenues for enhancing our familiarity with this partner 

might be to explore the inner workings, production, and learning processes of these 

tools. Gaining this understanding could improve our ability to collaborate more 

effectively with AI in the design process. 

In the subsequent stages of this thesis, topics such as machine learning and deep 

learning are discussed to provide a better understanding of this paradigm and its inner 

mechanisms. Following this, the reasons why these tools often appear as a 'black box' 

to users are explored. 
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Figure 2.1: Machine learning, Deep learning, and AI relationship, redrawn by 
the author. (Kuntz & Wilson, 2022) 

Accordingly, deep learning models are a subset of machine learning models, which in 

turn are part of the broader field of artificial intelligence. This relationship can be 

likened to a set of Russian dolls, where each layer is nested within the other. 

Specifically, 'deep learning' is a subset of 'machine learning,' and 'machine learning' is 

encompassed within the broader domain of AI (Figure 2.1). This hierarchical structure 

illustrates the interconnected layers, where deep learning techniques represent a more 

specialized form of machine learning. Machine learning constitutes a subset of the 

broader field of artificial intelligence. (Leach, 2022). This nested structure highlights 

how advancements in deep learning contribute to the broader field of machine learning 

and AI as a whole. 

To comprehend the creative capabilities of AI in both 2D and 3D contexts, it is 

imperative to first address the concepts of machine learning and deep learning. As 

these tools are employed in a multitude of disciplines, their utilization in the field of 

architecture is set to extend beyond the mere inspiration of the design. For those 

working in the field of architecture, AI represents a new tool, which can be utilized in 

a ‘co-creative’ capacity. However, there is a possibility that we may not have a 

comprehensive understanding of this partner or be fully acquainted with its operational 

mechanisms. An understanding of the background and learning mechanisms of these 

tools can provide insight into their future evolution, highlighting both their strengths 

and limitations. 
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2.1.1 From data to design; ML/DL algorithms  

Machine learning and deep learning, as subfields of artificial intelligence, have the 

potential to revolutionize design. This section details the fundamental principles of 

these technologies, their applications in design, and the solutions they offer. 

Specifically, it addresses how these technologies transform design processes and 

enhance creative potential. The opportunities presented by machine learning and deep 

learning elucidate their role and future impact on architecture. 

Traditional programming involves a manual process where the programmer creates the 

program. This means that, besides programming the logic, the programmer must 

manually decide the rules or write the code. With traditional programming, we have 

input data, and the programmer writes the program or rules that use this data and 

executes it on a computer to generate the output or answer, as depicted in Figure 2.2 

(Hiran et al., 2021). In contrast, machine learning takes both the data and the desired 

output as inputs and produces the learning models as the output, as depicted in Figure 

2.2. This approach is of particular importance because it allows computers to learn and 

adapt new rules within complex and sophisticated environments that are challenging 

for humans to comprehend (Hiran et al., 2021). 

 

Figure 2.2: Traditional Programming vs. Machine Learning (Hiran et al., 
2021), redrawn by author.  
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According to Ford (2018), machine learning refers to the development of algorithms 

that can improve their own performance through data analysis. These algorithms 

autonomously enhance their performance by processing and learning from 

information, thereby becoming better at specific tasks. In the context of architecture, 

this capability offers immense potential for automating and optimizing various design 

processes. 

There are several types of learning in AI, including supervised learning, reinforcement 

learning, and unsupervised learning (Ford, 2018). Of these, supervised learning is the 

most widely used. This technique involves training an algorithm on carefully prepared, 

categorized, or labeled data, which helps the algorithm to understand the data (Ford, 

2018). For example, in the field of architectural design, supervised learning can be 

employed to identify and categorize a range of architectural styles or features within a 

substantial corpus of building images. By providing the system with a vast number of 

labeled images, ranging from thousands to millions, the system is able to learn to 

differentiate between images that contain specific architectural elements and those that 

exhibit different features. Once trained, the system is capable of evaluating new images 

and classifying architectural styles or features with a level of accuracy that may surpass 

that of the average human observer (Ford, 2018). 

The primary objective of reinforcement learning is to facilitate the acquisition of 

knowledge through practice or trial and error. Unlike supervised learning, where the 

correct outcomes are provided, reinforcement learning enables the system to identify 

solutions autonomously. Successful attempts are rewarded, similar to training a dog to 

sit and offering it a treat when it succeeds. However, a significant disadvantage is the 

considerable number of practice runs required for the algorithm to perform effectively 

(Ford, 2018). 

Conversely, unsupervised learning entails machines acquiring knowledge directly 

from unstructured data in their surrounding environment, akin to human learning 

(Ford, 2018). For example, children primarily acquire language through observation 

of their surroundings. While supervised and reinforcement learning also play roles in 

human learning, the human brain's exceptional capacity to learn through unsupervised 

interaction with the environment is particularly noteworthy.  
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In the context of architectural design, an understanding of and ability to leverage the 

various types of machine learning can significantly enhance the design process. The 

incorporation of machine learning algorithms enables architects to automate repetitive 

tasks and explore new design possibilities through data-driven insights. The 

integration of machine learning in architecture has the potential to facilitate the 

creation of more efficient, innovative, and sustainable designs, which could ultimately 

transform the field and expand the boundaries of what is possible in architectural 

design. 

Additionally, Deep learning, a subfield of machine learning that falls under the wider 

domain of AI, employs neural networks, particularly deep neural networks, to model 

and interpret intricate patterns in data (Ford, 2018). The term "deep" is used to describe 

the multitude of layers that are present within these neural networks, through which 

data is processed. 

Significant progress in artificial cognition can be attributed to recent advancements in 

deep learning and the exploitation of large datasets. The role of Graphics Processing 

Units (GPUs) has been crucial, along with the abundance of data available for training 

neural networks. This combination has dramatically sped up the training process, 

allowing neural networks to identify intricate patterns within vast datasets, marking a 

major leap in the field of artificial cognition (Siemens et al., 2022). 

Deep learning models are frequently viewed as "black boxes" because of the 

complexity and lack of transparency in their internal mechanisms (Fong & Vedaldi, 

2017). This perception stems from the difficulty in interpreting the decisions made by 

deep neural networks, particularly when they handle complex tasks or high-

dimensional data.  

AI models typically contain stochastic (random) elements that can lead to different 

outputs from the same input. Random factors are present during the training and 

operating phases of the model, resulting in different results each time. Models are 

trained on large datasets containing trillions of images and learn specific features and 

patterns from these datasets; however, they may form a different combination each 

time when selecting which images and features to use. Deep learning models navigate 

a high-dimensional latent space, and even small changes in this space can cause the 
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model to produce different results. The model can interpret the same input in different 

ways and produce different results by navigating different regions. In addition, the 

models' internal selection mechanisms and the complex network structures and 

weights that determine which data to use are learned automatically during training and 

cannot be tracked in detail. Therefore, the fact that different images are obtained from 

the same prompt is due to factors such as the stochastic nature of the model, the 

diversity of the dataset, the navigation in latent space, and the uncertainty of the 

internal selection mechanisms. Exactly how these processes work may be unclear even 

to those who develop the algorithms, and this is one of the main reasons why the model 

is referred to as a 'black box'.  

Generative Adversarial Networks (GANs), a subfield of deep learning, take this 

complexity and potential even further. GANs consist of two neural networks—the 

generator and the discriminator—that compete against each other. This competitive 

structure allows GANs to produce high-quality and realistic visual content. 

Understanding the fundamental mechanisms and decision-making processes of GANs 

can help elucidate how these deep learning models operate. 

2.1.2 AI-based generation methods 

With an understanding of the fundamental mechanisms and complexities of AI models, 

particularly in the context of deep learning, we can now delve into the various 

generation methods utilized in architectural design. These methods leverage the 

capabilities of AI to produce innovative and efficient design solutions, offering new 

possibilities in the field of architecture. This section explores different generation 

methods, highlighting their applications, benefits, and limitations in architectural 

practice. 

GANs are an integral part of deep learning. GANs are examined in this section due to 

their significant advancements in generating high-quality, realistic visual content, 

which is particularly valuable for architectural visual production. By leveraging the 

generative capabilities of GANs, architects can experiment with innovative design 

concepts and generate new architectural forms. This exploration aims to uncover the 

potential of AI not just as a tool, but also as an active partner in the creative process of 

architectural design. Specifically, examining the use of GANs in deep learning for 
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visual production can provide insights into their applications and benefits in 

architecture. 

Goodfellow et al. (2014) introduced the concept of GANs, a novel architecture 

comprising two competing neural networks. The first network, known as the generator, 

creates images, while the second network, called the discriminator, evaluates these 

images to determine whether they are real or generated by the first network. This 

adversarial process drives the generator to produce increasingly realistic images. Due 

to their effectiveness in reducing deceptive outcomes, GANs have become highly 

popular and have been applied across various fields, including creative practices. 

Karras et al. (2017) demonstrated that GANs are capable of creating photorealistic, 

high-resolution images of people who do not exist. Their capability to generate highly 

realistic visuals has made them valuable in areas such as graphic design, art, fashion, 

game development, and medical imaging, offering innovative solutions and enhancing 

the realism and significance of results. Also, Goodfellow and colleagues describe 

GANs as a type of generative neural network model used for unsupervised machine 

learning (Goodfellow et al., 2014). These models have garnered substantial attention 

in the arts and design sectors due to their capacity to learn and produce creations that 

are generally considered to be products of human creativity. 

Since their introduction by Goodfellow et al. in 2014. Initially, GANs gained attention 

due to their innovative approach, where two networks (a generator and a discriminator) 

compete to produce images indistinguishable from real ones (Figure 2.3).  

 

Figure 2.3: The basic architecture of GANs, comprising two competing 
networks: generator G and discriminator D. (Huang et al., 2021) 
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In architectural design, it has been found that GANs are particularly effective for 

generating 2D images, such as building facades and floor plans, due to the significantly 

higher computational demands involved in applying GANs to 3D model generation 

(Huang et al., 2021). However, despite these challenges, GANs can still be adapted to 

handle three-dimensional data representations, such as meshes and voxel grids, to 

create intricate 3D models. By utilizing techniques like mesh generation, GANs can 

generate detailed 3D models applicable in various domains, including architecture, 

gaming, and virtual reality. This capability to create both 2D and 3D content 

underscores the flexibility and strength of GANs in advancing digital content creation 

across multiple dimensions, despite the higher computational costs associated with 3D 

model generation.  

The following section presents AI methods relevant to generating 2D and 3D content, 

showcasing advancements in both areas. 

 

Figure 2.4: Collaborative exchange between the designer and AI. Redrawn by 
the author (Guida & Escobar, 2023).  

In this thesis, a co-creation process between AI and designers is envisioned, where 

text, 2D, and 3D methods are interconvertible. As illustrated in Figure 2.4, the process 

involves a collaborative exchange between the designer and AI, enabling iterative 

development. To better understand this dynamic, the thesis explores both 2D and 3D 

methodologies, investigating how they can be integrated and transformed within the 

co-creation framework. In this process, text can be transformed into images or 3D 

models using text-to-image or text-to-3D generation methods. Similarly, images can 
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be converted into 3D models or described textually, and 3D models can be generated 

from text descriptions or 2D images. The continuous interaction between the architect 

and AI allows for iterative refinement, where each type of data influences the others. 

This flexible integration demonstrates the potential of AI in architectural design, 

fostering a dynamic exchange of ideas and continuous improvements between the 

human designer and the AI system. 

2.1.2.1 2D generation methods 

In recent years, advancements in generative models for 2D content generation have 

steadily improved the capabilities for image creation and editing, leading to 

increasingly diverse and high-quality outcomes. Pioneering research on generative 

adversarial networks (GANs), variational autoencoders (VAEs), and autoregressive 

models has demonstrated impressive results (Li et al., 2024). Additionally, the advent 

of generative artificial intelligence (AI) and diffusion models has brought about a 

significant shift in image manipulation techniques, with tools like Stable Diffusion, 

Imagen, Midjourney, Copilot, and DALL-E 3 revolutionizing the field. These 

generative AI models can create and edit photorealistic or stylized images, and even 

videos, using minimal inputs such as text prompts. Consequently, they often produce 

imaginative content that transcends the boundaries of the real world, pushing the limits 

of creativity and artistic expression. With their newfound capabilities, these models 

have redefined what is possible in content generation, expanding the horizons of 

creativity and artistic expression. 

According to Patrick Schumacher of Zaha Hadid Architects states that text-to-image 

generation tools are now employed in almost every project during the early phases of 

concept creation (Barker, 2023). In addition, other prominent architectural firms have 

also adopted various generative technologies and have employed image-to-image 

generators developed within their own offices for conceptual design in recent years. 

Additionally, Hickock Cole has displayed a building designed using the text-to-text 

generator ChatGPT, This concept was later developed in conjunction with the 

Midjourney platform, which facilitates the generation of text-to-image outputs. 

(Barker, 2023). 
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Text-to-image generators have demonstrated significant promise for rendering and 

visualization. However, further experimentation is needed on prompt creation and the 

correlation between prompts and visual outputs. It has been proposed that the most 

effective utilization of AI frameworks in architectural design entails the training of 

these systems with architectural data by the architects themselves (Horvath & Pouliou, 

2024). Therefore, there is a necessity to explore how these tools can be specifically 

adapted for architectural design applications. 

In the context of GAN applications, it is evident that image-to-image translation 

models, such as CycleGAN, Pix2Pix, and GANimorph, exhibit a notable degree of 

variation. These models are designed to transfer features from one dataset to another, 

a process often referred to as style transfer. Recently, alternative approaches for image-

to-image translation, including Stable Diffusion models (Rombach et al., 2021), have 

gained importance. These methods aim to enhance the quality and flexibility of image 

transformation processes (Lataifeh et al., 2024). 

Text-to-image tools create visual representations of a written text, description, or 

keyword while preserving the semantic context of the text (Hanafy, 2023). These tools 

interpret the meaning of the input text to generate corresponding images accurately. 

Tools like Midjourney and DALL-E primarily utilize deep learning algorithms, 

specifically variations of GANs and transformer-based models. Although these tools 

can generate architectural visuals, their primary purpose was not specifically for 

architecture. Consequently, their internal workings are often unknown to users, 

limiting the extent to which architects can control the final output. Therefore, their use 

is typically restricted to providing inspiration rather than detailed design work. AI can 

generate architectural visuals using tools that convert text to image or image to image. 

These tools operate on an input-output system, where text-to-image tools create visual 

representations based on written descriptions, and image-to-image tools transform one 

image into another while maintaining the semantic context. 

However, despite involving the user in a co-creation process, the designer—

specifically the architect in the context of this thesis—has limited control over the final 

product. The designer is confronted with the “black box” nature of the tool. While the 

designer can modify the output by changing the input text, image, or other parameters, 
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they do not have a comprehensive understanding of the internal mechanisms that 

generate the output. This lack of transparency creates a barrier between the designer 

and the tool. 

To further investigate this issue, this thesis explores 3D tools and their applications. 

The subsequent chapters examine various 3D methods, their advancements, and their 

impact on the design process. 

2.1.2.2 3D generation methods 

The emergence of advanced neural representations and generative models is driving 

rapid development in the field of 3D content generation, enabling the creation of 

increasingly high-quality and diverse 3D models. However, this process is generally 

more complex than the creation of 2D content. Collecting two-dimensional image data 

is significantly more straightforward compared to acquiring three-dimensional assets. 

The creation of 3D assets typically necessitates a considerable investment of time and 

effort from 3D artists or designers utilizing specialized software (Li et al., 2024). 

Moreover, the diverse range of use cases and the individual creative styles of the asset 

creators result in considerable variation in the scale, quality, and style of these 3D 

assets, which in turn adds to the complexity of 3D data. In order to normalize this 

diverse 3D data and render it more suitable for production methods, it is necessary to 

establish specific guidelines. A large-scale, high-quality 3D dataset remains a highly 

sought-after resource in the field of 3D generation. Furthermore, an investigation into 

the extent to which 2D data can be employed in 3D generation may offer a potential 

solution to the shortage of 3D data. 
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Figure 2.5: Overview of 3D Representations,3D Generation Methods, Datasets 
and Applications (Li et al., 2024) 

In Figure 2.5 3D generation methods can be categorized into four types based on their 

algorithmic approaches: feedforward generation, optimization-based generation, 

procedural generation, and generative novel view synthesis (Li et al., 2024). 

According to the survey by Li et al. (2024) on Advances in 3D Generation, Figure 2.5 

provides an overview of 3D generation methods, datasets, and applications. This 

survey highlights that 3D representations serve as the backbone for 3D generation. It 

also offers a comprehensive review of the rapidly growing literature on generation 

methods, categorized by algorithmic paradigms such as feedforward generation, 

optimization-based generation, procedural generation, and generative novel view 

synthesis. Additionally, the survey discusses popular datasets and available 

applications in the field. 

This thesis explores 3D tools and their applications to further investigate this issue. 

The subsequent chapters examine various 3D methods, their advancements, and their 

impact on the design process. Over the past decade, 3D generation has achieved 

remarkable progress and has recently garnered considerable attention due to the 

success of generative AI in images and videos.  
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In Figure 2.6, based on the provided survey, here is an overview of the 3D generation 

methods:  

 

Figure 2.6: 3D Generation Methods 

3D-GAN (Generative Adversarial Networks): The system employs GANs to generate 

three-dimensional shapes from a latent space, thereby providing a framework for the 

creation of diverse and realistic three-dimensional models. 

DeepSDF (Signed Distance Functions): The employment of signed distance functions 

enables the representation of three-dimensional shapes, thereby facilitating high-

quality shape reconstruction and interpolation. 

DMTet (Differentiable Tetrahedral Meshes): A method for the generation of three-

dimensional tetrahedral meshes that supports differentiable rendering, thereby 

enabling optimization-based three-dimensional shape generation. 

EG3D (Explicit Geometric Representations): The combination of GANs with explicit 

geometric representations results in an improvement in the quality and realism of 

generated 3D models. 

DreamFusion (Diffusion Models): It employs a combination of diffusion models and 

three-dimensional generation, providing an innovative methodology for synthesizing 

three-dimensional content from noise via a progressive refinement process. 
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PointE (Point Clouds): This approach is geared towards generating three-dimensional 

point clouds, thereby enabling the creation of detailed and complex 3D shapes with 

fine-grained control over the underlying geometry. 

Zero-1to-3 (Zero-shot Learning): A zero-shot method that employs pre-trained models 

to generate three-dimensional content from two-dimensional inputs, obviating the 

necessity for supplementary three-dimensional data for training purposes. 

Instant3D (Real-time Algorithms): The utilisation of real-time algorithms enables the 

rapid generation of 3D models, making it an appropriate choice for interactive 

applications and fast prototyping. 

These developments illustrate the diverse methodologies and substantial 

advancements in the field of 3D content generation. The methodologies employed 

encompass the utilisation of GANs, diffusion models, and signed distance functions, 

in addition to point cloud generation and zero-shot learning. The objective is to address 

the challenges associated with the creation of 3D models by offering a range of 

techniques for the generation of high-quality, detailed, and diverse 3D assets. 

These methods are used in areas such as video games, movies, virtual characters, and 

immersive experiences, which typically require a wealth of 3D assets. However, it is 

also anticipated that tools utilizing these methods produce excellent results in the field 

of architecture.  
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Table 2.1: Summary of the 3D Generation Methods 

METHOD Generative 
Model 

Generation 
Space 

Reconstruction 
Space 

Rendering 
Technique Supervision 

DeepSDF Autoencoder SDF SDF Surface 
Rendering 3D 

3D-GAN GAN Voxel Grid Voxel Grid Voxel 
Rendering 3D 

DMTet Implicit Surface Hybrid 
Surface Mesh Mixed 

Rendering 2d and 3D 

EG3D Hybrid Explicit-
Implicit Tri-plane Tri-plan Mixed 

Rendering 2D 

DreamFusion Diffusion NeRF NeRF Volume 
Rendering Text 

Point-E Diffusion Point Cloud Point Cloud Point 
Rendering Text 

Zero-1-to-3 Diffusion Pixel Pixel Image-based Image 

 

Table 2.1 provides a summary of the methods. In the context of machine learning and 

artificial intelligence, “supervision” refers to the manner in which a model is trained. 

The type of supervision determines the characteristics of the data utilized during the 

model’s training phase. 

 

Figure 2.7 Overview of InstantMesh Framework (J. Xu et al., 2024) 

Figure 2.7 illustrates the InstantMesh model, which is capable of generating three-

dimensional representations from a single image. As stated by J. Xu et al. (2024), the 

InstantMesh framework employs a multi-view diffusion model to generate six novel 

views from a single input image at fixed camera positions. Subsequently, the images 
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are fed into a transformer-based sparse-view large reconstruction model, resulting in a 

high-quality 3D mesh within approximately 10 seconds (J. Xu et al., 2024). 

Figure 2.8 illustrates the 3D meshes generated by analogous algorithms. As this study 

was conducted by the InstantMesh developers, a comparison is provided between their 

results and those produced by other tools.  

 

Figure 2.8: InstantMesh Tools Comparison  (J. Xu et al., 2024) 

Similarly, image-to-3D and text-to-3D tools are advancing, as demonstrated in studies 

involving tools like Tripo AI, which is utilized as a case study in this research and can 

generate 3D models from visual or textual inputs.  

The illustrated example represents a sample model generated by Tripo AI using the 

prompt, "Cute little humanoid figure with raccoon ears and tail, cartoon style (Figure 

2.9). (Platform of Tripo AI, n.d.)" This tool demonstrates proficiency in creating 

animations with accurate textures, colors, and intricate details. Unlike traditional 2D 

image tools, Tripo AI employs a 3D prediction mechanism, enabling it to output a 

comprehensive point cloud representation of the model from various perspectives. 
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Figure 2.9: Prompt: "Cute little humanoid figure with raccoon ears and tail, 
cartoon style"  (https://www.tripo3d.ai/app?tab=create) Retrieved at: 
20.05.2024 

These tools are used for various applications, including quick prototyping and 

conceptual development in architectural projects. The Tripo AI provides a full set of 

tools for creating and manipulating 3D models. It comprises draft model generation 

for rapid prototyping from text or image inputs, refinement of draft models into high-

resolution versions, and automatic animation to bring static models to life. It also offers 

advanced stylization options, such as transforming models into Lego-style or voxel-

based versions, and format conversion to common formats such as USDZ or FBX, 

ensuring compatibility and versatility across several platforms and applications. These 

tools are not currently used for generating architectural models but can support the 

conceptual development processes in architectural projects through draft model 

creation. They also provide quick prototyping capabilities and highlight the potential 

of AI in architectural design (Platform of Tripo AI, n.d.). 

Another tool to be used in this study is ComfyUI. The ComfyUI is a node-based 

graphical user interface (GUI) designed specifically for use with Stable Diffusion. The 

software enables users to construct image generation workflows by connecting a 

variety of blocks, or nodes, in a network. The ComfyUI platform offers a range of 

features, including text-to-image, image-to-image, SDXL workflow, inpainting, and 

ComfyUI Manager for the management of custom nodes within the GUI (Andrew, 

2024).  

https://www.tripo3d.ai/app?tab=create
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Figure 2.10 depicts the default image-to-image workflow. In addition to the input 

image, positive and negative prompts can be used to make intermediate adjustments 

to the output. ComfyUI's workflow can be quite advanced, depending on the user's 

proficiency with the tool. For this, some workflows are presented in Figure 2.11. 

 

Figure 2.10: Image-to-image workflow (https://stable-diffusion-
art.com/comfyui/#What_is_ComfyUI) 

 
Figure 2.11: A workflow created with ComfyUI (Appendix1) 

https://stable-diffusion-art.com/comfyui/#What_is_ComfyUI
https://stable-diffusion-art.com/comfyui/#What_is_ComfyUI
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The image-to-image workflow represents a pivotal process in Stable Diffusion, 

whereby an image is generated based on both a prompt and an input image. The 

denoising strength may be adjusted to control the extent to which Stable Diffusion 

should adhere to the base image. 

The advancements in generative models, 3D representations, and algorithmic 

approaches have led to significant improvements in the quality and variety of 3D 

generation outcomes. The recent success of large-scale models in fields like natural 

language processing and image generation has brought considerable attention to 3D 

generation. Despite these advances, there are still many hurdles to overcome before 

3D models can achieve the high standards necessary for applications in video games, 

movies, and immersive digital experiences in VR/AR. This thesis examines some of 

the current challenges and explores potential future directions in this area, with a 

particular focus on their implications for architecture.  

In the following sections, case studies are conducted using tools that include these 

methods, and general assessments are made about the explainability, opacity, and 

usage conditions of the tools. Before these case studies, the literature review continues 

to focus on the concepts of black box and explainability to better classify the tools. 

2.2 Black Box to Gray Box 

The term "black box" is used to describe the lack of transparency in understanding 

how an algorithm arrives at its conclusions. This opacity can result in unintended 

outcomes, as algorithms often optimize based on their training data rather than the 

intended objectives, leading to results that lack clear, explainable logic  (Ahramovich, 

2023). When AI tools are used in architecture, it often means that architects do not 

understand how the AI reached a specific design solution. This absence of 

transparency can hinder the effectiveness and the ability to refine and improve design 

solutions. Therefore, it is important to develop the skills to critically evaluate and 

adjust AI outputs. Fundamentally, a significant portion of AI applications in the field 

of architecture follow a two-step approach. This involves inputting relevant data into 

an AI model and then receiving the final designs as output. This process causes 

architects to not fully understand the intermediate processes that support the creation 

of the designs. 
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A related definition of a "black box" is provided by Gmeiner and colleagues. Artificial 

intelligence (AI) tools employ a range of methodologies to develop designs by 

specified objectives and criteria. These include constraint-based solvers, style transfer, 

simulation and optimization, and genetic algorithms. These techniques are becoming 

increasingly accessible in commercial 3D CAD design software, including 

SolidWorks and Autodesk Fusion 360. A significant proportion of these tools operate 

in a manner that may be described as analogous to a 'black box'(Gmeiner et al., 2023). 

In this context, the designer inputs their objectives and then assesses the resulting 

designs. This process can obscure the tool's inner workings, making it challenging for 

designers to rapidly comprehend its functionality, which can impede their creative 

abilities. (Gmeiner et al., 2023) 

According to Kotnik and Fricker, the term "black box" metaphorically illustrates the 

opacity of certain automated systems, such as AI-enhanced design generators. While 

the inputs and outputs of these systems are visible, the internal processes remain 

largely obscure. This lack of transparency often leads to concerns about trust, 

accountability, and ethics in the deployment of AI. As architects, we are encouraged 

to focus on understanding these black boxes, aiming to enhance our intellectual 

knowledge to "open" them, thereby improving the interpretability and transparency of 

AI systems and further developing generative AI tools to benefit our field. (Kotnik & 

Fricker, 2024) 

Kotnik suggests that one way to address this issue is to develop new tools and methods 

that allow architects to better understand and control the computational processes that 

they are using (Fricker et al., 2020). Similarly, Kousoulas (2018) suggests that in 

today's digital era of architectural thinking, there's a common acceptance of a 

mysterious 'black box' (Kousoulas, 2018). This metaphorical box takes in digital inputs 

and produces the spatial outputs desired by architects.  

According to Zhi Chen, the capacity of deep neural networks (NNs) for image 

recognition represents a significant strength (Li et al., 2024). However, the opacity of 

the knowledge acquired in the hidden layers presents a challenge due to the intricate 

nature of NNs. The lack of interpretability in these networks not only renders them 

difficult to trust but also presents obstacles in terms of resolving any issues that may 

arise. 
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There are various definitions of the term ‘black box’. In his article, "Shattering the 

Black Box: In "Technicities of Architectural Manipulation," Stavros Kousoulas (2018) 

offers a critique of the commonly accepted view in architectural theory that treats 

architectural processes as a simple input-output system. This perspective reduces the 

architectural creation process to a mere input-output system, whereby design 

parameters are fed into a system and the resulting built environment is obtained 

(Kousoulas, 2018). 

Kousoulas presents a challenge to this deterministic view by proposing an alternative, 

more dynamic and manipulative approach to the discipline of architecture. In 

developing his argument, Kousoulas draws upon the theories of prominent 

philosophers, such as Simondon, Leroi-Gourhan, Deleuze and Guattari, in order to 

propose that architecture should be conceptualised as a reticular technicity. This 

approach emphasises the reciprocal relationship between technical objects and their 

users. 

In order to "shatter" the black box, Kousoulas proposes a shift away from the rigid 

input-output model and the adoption of an abductive heuristic approach. This approach 

emphasises the active and iterative engagement with materials and techniques 

throughout the design process. This enables a transformation in architectural practice 

from the mere translation of preconceived ideas into physical forms, to a more 

experimental and process-oriented methodology. 

In Bruno Latour's 1987 article "Opening Pandora’s Black Box," he explains that the 

term "black box" is used by cyberneticists to refer to a machine component or a set of 

commands that are too complex to fully understand. Instead, they simplify it to a small 

box, focusing only on its inputs and outputs. According to Latour, the black box is not 

inherently inaccessible but represents something that can be deciphered by experts 

(Latour 1987).  

Andrew Witt adds to this by stating that the black box's dubious epistemic reputation 

is inevitable due to the user's partial ignorance and lack of knowledge about its 

contents. Black boxes also serve as shortcuts to the effects of methods without 

requiring content knowledge. This makes them appealing because they can be used 

'unconsciously' as functional surrogates for the information they contain (Witt, 2018).  
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Within the scope of this thesis, the black box can be examined from two perspectives: 

one being the opacity of the tool's operation, and the other, which we can term 

"extending the black box." Prof. Andrew Witt has addressed this concept as the "Gray 

Box"(Chaillou, 2020). This approach contrasts with the traditional black box method, 

where user input is only considered at the beginning, and the machine generates design 

options independently, without further user involvement. The gray box method, 

however, keeps the designer engaged throughout the entire design process (Witt, 

2018). By maintaining the designer's continuous contribution and oversight, this 

approach ensures that the quality of the design is higher, as the designer can 

continually influence and refine the machine's outputs. This continuous interaction 

allows for a more dynamic and responsive design process, leading to outcomes that 

better meet the designer's intentions and standards. 

2.2.1 The Opaque Nature of the Tool (Black Box): 

When generating visuals from given text, the changes made to the text significantly 

alter the output, but direct modifications to the visual itself are not possible. This 

highlights the tool's opaque nature. Users do not have access to or understanding of 

the training dataset that underlies the visual creation process. The tool does not provide 

interfaces that allow for detailed intervention or adjustments in the design. As a result, 

the co-creation process is limited. 

This lack of transparency and control creates a barrier between the user and the tool, 

making it difficult to achieve precise or desired outcomes. The inability to understand 

or access the inner workings of the tool means that users cannot see how the tool 

processes input data to produce the final visual output. Consequently, the collaborative 

potential of these tools is significantly diminished, as users cannot engage in an 

iterative and interactive design process. 

Figure 2.12 exemplifies this situation. When the input text is highly detailed and the 

correct keywords are chosen, the tool produces better results. However, achieving 

these optimal outcomes often requires trial and error. We are unable to intervene 

directly with the tool or make modifications to the final output. One of the ways to use 

such tools effectively is through prompt engineering (J. Wang et al., 2023). The 

process of prompt engineering entails the creation of detailed and refined prompts that 
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direct the AI in the generation of the desired output. By developing this skill further, 

users can markedly enhance the quality of the results generated by these tools, thereby 

optimizing the process and increasing its efficiency and productivity. This approach 

has the potential to result in the generation of designs that are more accurate and of a 

higher quality. 

 

Figure 2.12: Text-to-Image Schema: The Black Box Nature of the Tool 

Exploring solutions to this limitation, such as developing more transparent and 

interactive interfaces, could enhance the co-creation capabilities of these tools, making 

them more effective and user-friendly for designers and other creative professionals. 

2.2.2 Gray Box Approach  

Using AI to optimize a set of variables doesn't fully leverage its potential. However, 

co-creating with AI, relying on it, and integrating it throughout the design process 

reveals its true capabilities and signifies a paradigm shift (Chaillou, 2020). As 

previously mentioned, it needs to provide more opportunities for feedback loops. 

In architecture, visualization tools, often used for inspiration, are evolving from 2D to 

3D capabilities. This evolution indicates that AI can make three-dimensional 

predictions. Yet, given the current state of development, we also encounter tools that 

do not yet produce consistently successful outcomes. I have conducted a study related 

to this topic. This study was carried out using ChatGPT (Figure 2.13) and ComfyUI 

(Figure 2.14).  
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ComfyUI, as an interface, offers more intervention capabilities compared to 2D tools. 

This can help to demystify the black box because it allows designers to track options 

and outcomes at each step of the design process. However, the 3D output quality in 

this tool is still insufficient. 

As demonstrated in the visuals, a 3D model was generated from a 2D image using 

ComfyUI. Yet, when examining other facades of the model, it becomes clear that while 

it does create a three-dimensional structure, its ability to accurately predict the details 

of the building's facades is not yet fully developed (Figure 2.15). 

Text: “Architectural photography of an ocean-side house into a landscape on the hill, 

overlooking the ocean, huge windows, curve-linear forms undulating roof, shape 

allows access from the building terrace, nature and architecture intimately 

interconnected, Highly textured, Color Grading, Ultra HD, wide angle, Global 

Illumination, octane rendering, hyperrealism, high resolution, rule of thirds, 

volumetric lighting, shadows, misty, intricate detail, photorealistic, cinematic lighting, 

4K.” 

 

Figure 2.13: Input image, created with ChatGPT 
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Figure 2.14: Comfy UI image creation process (Appendix2) 

 

Figure 2.15: View from each side of the created model 

This situation presents a significant challenge. When using an AI tool during the design 

phase, we lack control over the final output it produces. Additionally, since we cannot 

track the production stages of the generated output, we cannot fully utilize the tool as 

a co-creator. In this sense, architects will need to gain a deeper understanding of AI to 
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experiment with it and enhance their creative potential, thereby gaining more control 

over the design process. 

One strategy for enhancing the transparency of the black box is to incorporate 

explanation methods. This involves integrating techniques and approaches that allow 

for a more understandable and interpretable view of the decision-making processes of 

complex AI systems. 

2.3 Explainability  

In recent years, advancements in artificial intelligence have rendered explainability a 

necessity for data scientists, developers, and researchers to comprehend the models 

they create, extending beyond a mere requirement. The human-centered explainable 

AI framework seeks to address the question of what users require to be made aware of 

in order to understand AI systems. Explainability must extend beyond the mere 

technical descriptions of how an algorithm functions, as this narrow focus could 

compromise the consistency and accuracy of the generated content (Sun et al., 2022).   

To illustrate, conversational AI models such as ChatGPT have the potential to generate 

'hallucinations', whereby the model produces factually inaccurate outputs with a high 

degree of confidence, thereby undermining their reliability for critical decision-

making processes (Maslej et al., 2023). 

The term "explainability" was coined in 2004 by Van Lent to describe their system's 

ability to clarify how AI-controlled entities behave in simulation games (Van Lent et 

al., n.d.). Although the term is quite recent, the challenge of explainability dates to the 

mid-1970s when researchers were looking into explaining expert systems (Swartout 

and Moore 1988). However, progress in solving this challenge slowed down as AI 

made big leaps in machine learning. Since then, AI research has mainly focused on 

creating models and algorithms that are great at predicting outcomes, with less 

emphasis on explaining how decisions are made (Adadi & Berrada, 2018). 

As AI tools become increasingly complex and sophisticated, understanding how 

specific decisions are made becomes more challenging. In some cases, it is impossible 

to discern the internal workings of a neural network that results in a particular output. 

As AI systems take on more decision-making responsibilities, this opacity raises 
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concerns about safety, reliability, accountability, fairness, and bias. These issues are 

being tackled by a growing body of explainability research spanning multiple 

disciplines, including human-computer interaction, computer science, design 

informatics, ethics, and law. 'Black-box' models can erode trust in AI, particularly in 

fields where AI decision-making has significant real-world implications. 

It can be stated that explainability refers to the ability of an artificial intelligence 

system's decision-making processes and outcomes to be understood and traced. This 

is particularly important for architects, as understanding how AI tools work and how 

they arrive at specific results is crucial for the safe and effective use of these tools. As 

mentioned in the previous section, AI tools are driven by specific algorithms and are 

trained on specific datasets. However, as it is highlighted by Chaillou (2020), 

especially in the context of 3D production, the lack of sufficient 3D model inputs can 

pose a significant problem. To develop a good architectural production tool, it is 

essential to first establish a robust data pool. 

2.3.1 The Potential of Explainable Artificial Intelligence (XAI)  

Explainable AI has become a new research topic in the context of modern deep 

learning. Without completely new explanatory mechanisms, the output of today’s 

Deep Neural Networks (DNNs) cannot be explained, neither by the neural network 

itself, nor by an external explanatory component, and not even by the developer of the 

system. We know that there are different architectures of DNNs designed for different 

problem classes and input data, such as Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM). All of them 

have to be considered as black boxes - whose internal inference processes are neither 

known to the observer nor interpretable by humans (F. Xu et al., 2019). 

Das and Rad (2020) define XAI as a field within AI that supports a range of tools, 

techniques, and algorithms. The primary goal of XAI is to generate explanations for 

AI decisions that are not only of high quality but also interpretable, intuitive, and easily 

understandable for humans (Figure 2.16) (Das & Rad, 2020). 
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Figure 2.16: Accuracy versus interpretability for different machine learning 
models (Das & Rad, 2020) 

As shown in Figure 2.16, XAI is considerably more predictable compared to deep 

learning models in AI methods. This situation, in a way, helps break the 

unpredictability of the Black Box. By providing insights into decision-making 

processes, XAI aims to make AI models more transparent and understandable. This 

increased interpretability fosters trust, facilitates integration into applications, and 

allows for easier analysis and validation of model decisions. 

To help people trust and feel confident in AI decisions, it is important to explain how 

the algorithm works in a way that is easy to understand. This transparency ensures 

fairness and builds trust in the machine-learning system. In simpler terms, clear 

explanations make AI decisions more reliable and understandable for everyone (Das 

& Rad, 2020).  

Lately, AI researchers have been focusing on unveiling the inner workings of neural 

networks, transforming them from opaque structures into transparent systems. Figure 

2.17 illustrates two primary parts within Explainable AI: transparency design and post-

hoc explanation (F. Xu et al., 2019). 
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Figure 2.17: Two categories of Explainable AI: Transparency and post-hoc 
explanations (F. Xu et al., 2019). 

Transparency design reveals how a model works for developers, helping them 

understand the model's structure, individual components, and training algorithms. 

Post-hoc explanation, on the other hand, explains why a result is inferred for users, 

providing analytic statements, visualizations, and explanations through examples 

(Figure 2.17) (F. Xu et al., 2019). 

As it can be seen, XAI can play a crucial role in enhancing transparency and 

understanding in architectural design processes, fostering trust and acceptance. One 

effective strategy is "explainability by design," which involves integrating explanation 

features into the AI model early in its development. By incorporating XAI, architects 

gain a deeper understanding of AI-generated design recommendations, ensuring 

alignment with their expertise and intentions (Huynh, n.d.). This integration facilitates 

more informed and collaborative decision-making, ultimately improving the efficiency 

and quality of architectural design. The overall integration of XAI in architectural 

design holds significant potential, contributing to the development of AI-powered 

building design platforms that deliver optimal and compliant solutions in a shorter 

timeframe. In essence, XAI transforms and enhances the architectural design process 

by making AI-driven insights transparent, comprehensible, and in harmony with 

human expertise and intent. 

As studies in the field progress, a critical aspect of the investigation involves assessing 

the interpretability of products produced by AI tools, using the principles of 

Explainable AI (XAI). The examination of several tools has been a focal point of the 

research thus far, and a subset of these tools is presented below for reference. 
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Using XAI in generation tools can be seen as an innovative approach with the potential 

to fill existing research gaps and make the use of these tools more transparent. 

However, the success of this approach depends on the development of new 

methodologies and overcoming implementation challenges. Chapter 6 aims to provide 

insights into this development by analyzing current tools and their outputs. 

2.4 The Concept of Co-Creation 

Artificial intelligence systems like ChatGPT gather knowledge from the web and can 

interpret this information, engaging with humans on various levels, from addressing 

complex inquiries to simply having a conversation (Cooper, 2023). The relationship 

between an AI engine and a human is inherently asymmetrical. Humans see the 

outcome of the AI's processing but are often unaware of the specific inputs or 

reasoning that led to that outcome. Sometimes, the results may even surpass what the 

AI's creators anticipated. In contrast, the AI engine utilizes all the information 

provided to it to formulate solutions and continuously enhances its training and 

capabilities. 

Co-creation should be seen as a process where new technologies enable machines and 

humans to work together, pushing the limits of creativity as we currently understand 

it. This approach requires a new perspective on technology and different development 

models. To achieve these results, a new generation of AI technology that fosters a more 

balanced relationship between humans and AI is required. This would mean that just 

as knowledge is provided to AI, the system reciprocates by sharing what it has learned 

and the new methods it has developed for learning—facilitating a mutual co-creation 

process (Arbizzani et al., 2023). 

According to Candy et al. (2002), co-creativity involves multiple parties contributing 

to the creative process in an integrated manner. Unlike situations where tasks are 

divided and the outcome is merely the sum of individual efforts, co-creativity enables 

collaborative and synthetic contributions(Candy et al. 2002).  

As AI is integrated into architectural and design processes, the relationship between 

explainability and co-creation becomes increasingly important. Co-creation in AI-

enhanced design transcends simple collaboration; it represents a dynamic partnership 
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where humans and machines learn and adapt together. This process requires a high 

level of explainability, ensuring that human participants can fully understand and trust 

the AI systems they interact with. By fostering transparent interactions and continuous 

feedback loops, more robust and innovative design solutions can be developed, thereby 

the field of architecture will be advanced through integrated design cybernetics. 

Gordon Pask believed that co-creation goes beyond merely working together to create 

something; it is a collaborative partnership where humans and machines learn and 

evolve through their interactions. (Werner, 2019). The machine is designed to "learn" 

from its interactions, adapting its responses based on feedback from human 

participants, which in turn enhances the collaborative creativity process. (Werner, 

2019). In Gordon Pask's work, co-creation refers to a dynamic interaction between 

humans and machines. This interaction allows human participants to engage with the 

machine, which then adjusts and responds to their inputs. Such interaction creates a 

feedback loop where both humans and machines influence each other, resulting in a 

shared creative process. (Werner, 2019).  

Gordon Pask and Ranulph Glanville were instrumental in introducing a cybernetic 

perspective to architecture and design. Pask viewed architecture as a form of 

conversation, suggesting that there is a fundamental link between the two. Central to 

his work is the concept of learning environments, which involve humans as integral 

components of a resonant system interacting with the environment or tools. Glanville 

furthered Pask's ideas, asserting that cybernetics and design activities are essentially 

conversations. The integration of human feedback into intelligent digital systems 

represents the next advancement towards Integrated Design Cybernetics. 

Davis (2021) introduced the concept of human-computer co-creativity, which 

integrates a computer as an equal partner in the creative process. In this model, the 

computer collaborates with the user in various ways, adapting to user input and 

generating responses based on creative algorithms. This real-time improvisation 

between human and computer produces a creative product through their interaction, 

rather than through a distribution of labor. The contributions of both human and 

computer are mutually influential, reflecting true collaboration and improvisation 

(Davis, 2021). 
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Human-AI co-creativity, a subfield of computational creativity, focuses on the 

collaboration between humans and AI in creating shared creative outputs. This area of 

study is gaining importance as AI is increasingly utilized in various collaborative 

environments, such as music creation, design, and even healthcare, where AI functions 

as a virtual nurse(Rezwana & Maher, 2022). In many current co-creative systems, only 

humans can communicate with AI, typically through buttons, sliders, or other user 

interface components. However, in these systems, AI often lacks the ability to 

communicate back to users, which is crucial for AI to be regarded as a true partner in 

co-creativity. In human collaborations, partners exchange feedback and share 

information, a dynamic that should be mirrored in human-AI interactions (Rezwana & 

Maher, 2022). 

 

Figure 2.18: The Human-AI co-creation model (Davis, 2021) 

According to Davis, The “Human-AI Co-Creation Model” is a circular process model 

(Figure 2.18) including 6 major phases: perceiving, thinking, expressing, 

collaborating, building, and testing (Davis, 2021).  

The initial step is "perceive," during which human senses are enhanced by artificial 

intelligence through the analysis of vast data sets and the use of sensors. In addition to 

the conventional human senses, AI employs a multitude of sensors and networks to 

transform vast quantities of data into useful information and insights. This enables 

humans to gain a more comprehensive understanding from both perceptual and 

rational perspectives. 
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In the second phase, the "think" function of AI enables humans to engage in more 

profound and expansive forms of thought. The inspiration and exploration that AI 

offers extend beyond the limitations of the human mind, allowing for deeper and more 

comprehensive thinking. This collaboration has the potential to facilitate the 

overcoming of resource constraints, thereby enabling the achievement of innovative 

and unexpected outcomes. 

The third phase, known as the expression phase, enables people to explore and create 

with the help of AI quickly. Individuals from various backgrounds, equipped with 

diverse ideas, can discover the most effective ways to express themselves. This can be 

achieved through creative activities like painting, design, composing music, writing, 

performing, programming, or developing prototypes. The use of AI tools empowers 

individuals to express their creativity without being limited by a lack of skills or formal 

training. In this phase, creativity becomes more important than technical expertise. The 

fourth phase focuses on fostering collaboration between humans and AI, allowing both 

to harness their unique strengths to achieve greater outcomes. Individuals can work 

alongside AI, whether they are operating independently or as part of a group. It is of 

the utmost importance to gain an understanding of the respective strengths and 

limitations of both humans and AI to assign tasks optimally. The fifth and sixth phases 

entail the construction and examination of prototypes. The deployment of AI for 

simulation and analysis can facilitate the production of superior-quality items at a 

reduced cost. Rehearsing enables the anticipation of outcomes and the preparation for 

real-world scenarios. The detailed simulation and computation capabilities of AI 

facilitate more efficient and effective construction and testing processes. Throughout 

this creative process, humans and AI can be seen to complement each other, thereby 

unlocking the potential of both. Dai et al. (2023) also present a framework for human-

AI collaboration in the architectural design process. It combines the use of semantic 

AI models, 2D and 3D modeling, and neural networks. The users can iteratively 

explore and transform conceptual forms by combining prompts, 2D images, and 3D 

models utilizing the Rhinoceros/Grasshopper interface. The framework is validated 

through a case study involving early concept exploration for a museum, demonstrating 

its practical application in design scenarios. 
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Co-creation is utilized in various fields within the literature, including architectural 

design, where it is employed in collaboration with AI. The following section explores 

co-creation processes using different AI tools. It addresses the co-creative capacities 

of these tools in terms of their transparency and interpretability, as well as how the 

establishment of feedback loops can enhance the co-creation processes. 

Currently, many visualization tools (such as 2D image tools) generate one or several 

outputs from a text input without establishing a feedback loop, which limits our ability 

to fully engage in co-creation. While this situation is rapidly changing, it is still too 

early to reach the definition of co-creation as proposed by Pask. There are limitations 

in these tools that constrain the extent of co-creation possible. However, these 

experiments aim to serve as an introduction to co-creation, demonstrating early efforts 

in this collaborative process. 

In an environment lacking feedback, co-creation can be seen as a desired goal; 

however, it remains limited in its current form. While there is potential for humans and 

AI tools to collaborate, a true co-creation process has not yet been fully realized. AI 

can process human inputs and generate outputs, but due to the lack of mutual 

interaction and feedback, co-creation remains constrained. This represents a 

collaboration model that is aimed to be fully achieved in the future with more advanced 

tools. 

Next section involves experimenting with different tools to experience co-creation.  

Evaluation of these tools based on specific benchmarks, assessments of explainability, 

and user interaction analysis is provided. 
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3 EXPERIENCES AND FINDINGS 

In this study, various methods were employed to explore co-creation across different 

domains, including image-to-image, text-to-image, 2D to 3D, and text-to-3D (Figure 

3.1). Through these methods, experiments with AI tools for co-creation were 

conducted, and observations were shared based on the outputs. For 2D tools, well-

known and widely adopted options were selected. In contrast, for 3D tools, those that 

produce relatively higher quality outputs and have recently gained prominence were 

chosen. Tools with a higher level of user intervention were prioritized for this study. 

When selecting 3D tools, an attempt was made to identify a common design problem. 

However, imposing a single design problem on tools with different usage purposes 

may not yield optimal results and could hinder our understanding of each tool's 

potential. Focusing on one problem might overlook other possible applications of the 

tools. If the chosen problem is too narrow, the full contributions of some tools might 

not be realized. Therefore, different usage scenarios were determined to test each tool's 

potential and progress. 

 

Figure 3.1: Selected Tools 
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Figure 3.1 tools selected for use in this study from among the many tools that were 

tested using the trial-and-error method. 

3.1 2D Generation Tools  

By experimenting with tools like Stable Diffusion and Midjourney, various visuals 

were generated to explore AI's capabilities in design. Simple prompts were initially 

used, revealing that specific keywords like "lighting" and "photorealistic" significantly 

enhance the visual output. Comparing the same prompt across different tools showed 

distinct variations due to their unique algorithms and training data, highlighting each 

tool's strengths and weaknesses.  

The selected image acts as a reward to the AI, providing positive feedback. This 

positive reinforcement leads to the development of a specific visual language. Over 

time, our minds begin to synchronize with this evolving visual language. 

This process underscored the "black box" nature of these AI tools, where the internal 

workings are opaque to users. Designers mainly influence outcomes by adjusting 

prompts or input visuals, which requires a deep understanding of how different 

prompts affect results. Despite the limited control over the intermediate stages of the 

generation process, these tools demonstrate significant potential for creative 

exploration and design innovation. 

Figure 3.2 showcases the 2D production results using different tools. To enable 

comparison, they were generated using the same prompt. 

TEXT: Architectural photography of an ocean-side house into a landscape on the hill, 

overlooking the ocean, huge windows, curve-linear forms undulating roof, shape 

allows access from the building terrace, nature and architecture intimately 

interconnected, Highly textured, Color Grading, Ultra HD, wide angle, Global 

Illumination, octane rendering, hyperrealism, high resolution, rule of thirds, 

volumetric lighting, shadows, misty, intricate detail, photorealistic, cinematic lighting, 

4K.  
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The resulting images were as follows:  

   

                    Stable Diffusion                               Midjourney                 Bing created Copilot 

     

          Davinci                                    LookX                                   PromeAI 

Figure 3.2: Text-to-image tools outputs                   

The findings from this experiment show that, while opaque algorithms pose a 

challenge, they also open up previously unimaginable methods for creative expression. 

By learning how to use and manipulate prompt-based interactions with these AI tools, 

designers can push the boundaries of traditional design paradigms, developing a 

symbiotic relationship between human creativity and AI. This continual interaction 

between the user and the AI system, which requires prompt engineering, is critical for 

realizing the full potential of these tools in design creation. 

3.2 3D Generation Tools  

As AI tools for generating 3D models have advanced, their controllability has 

increased, allowing for more interactive co-creation beyond simple prompts. In this 

part of the study, it is demonstrated how designers can engage with 3D tools such as 

ZoeDepth, ChatGPT with GhPython, ChatGPT with Blender, TripoAI, and Comfy UI. 

These tools provide various levels of control and transparency, facilitating parametric 
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design and quick prototyping, thus enhancing the interactive co-creation process in 

architectural and visual design. 

When selecting these tools, an attempt was made to identify a common design 

problem. However, imposing a design problem on tools with different usage purposes 

may not yield good results and could affect our understanding of the tool's potential. 

Focusing on a single problem could overlook other potential applications of the tools. 

If the chosen problem is not broad enough, the contributions of some tools might not 

fully emerge. Therefore, different usage purposes were determined to test each tool's 

potential and progress. Table 3.1 shows the purposes of the tools and the specific areas 

in which they are used. 

Table 3.1: 3D Generation Tools Class and Purpose. 

TOOL CLASS PURPOSE 

ZoeDepth 3D Scene Reconstruction/ Depth 
Estimation 

Extracting depth maps from 2D 
images and 3D scene reconstruction 

ChatGPT with 
GhPython 

AI-Enhanced Procedural 
Generation 

Automating and speeding up 
architectural design and modeling 
processes 

ChatGPT with 
Blender AI-Enhanced 3D Modeling Guidance and automation in 3D 

modeling, and rendering processes 

TripoAI Generative Design Creating 3D models from images or 
text in seconds 

Comfy UI Node-based graphical user 
interface (GUI) Making AI tools more accessible 
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Figure 3.3: Co-Creation Scheme  

In Figure 3.3, the workflows of tools with potential for co-creation are illustrated. 

Some tools facilitate collaboration between different tools, while others establish a 

feedback loop, allowing for an interactive co-creation process between the user and 

AI. 

3.2.1 ZoeDepth 

ZoeDepth is an advanced deep learning model designed for metric depth estimation 

from single images, showcasing significant potential in the realm of 3D modeling and 

computer vision. Depth refers to the perception of the distance between objects and 

the viewer. It adds a sense of dimension, as well as realism, to a scene. While depth is 

inherent to three-dimensional rendering, achieving or replicating it in two-dimensional 

matte paintings or background plates can be challenging. To overcome this difficulty, 
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ZoeDepth addresses the issue by effectively calculating depth. This enables artists to 

transform two-dimensional backgrounds into realistic three-dimensional meshes. 

Figure 3.4 shows that the depth prediction is based on the given input image (Bhat et 

al., 2023).  

 

Figure 3.4 Top: Input RGB. Bottom: Predicted depth (Bhat et al., 2023) 

Accordingly, this tool has the ability to transform depth estimations into 3D mesh 

models, facilitating the transition from 2D imagery to 3D models. Additionally, 

ZoeDepth can convert 360-degree panoramas into comprehensive 3D representations, 

enhancing its utility across various applications. The demonstration of ZoeDepth's 

depth prediction capabilities underscores the transformative role of AI in creating 3D 

models from depth maps. 

Despite current limitations, particularly in accurately predicting the back facades of 

buildings, the model's ongoing development promises improvements in precision and 

reliability. This iterative enhancement reflects a broader trend in AI research where 

continuous refinements lead to progressively better performance, paving the way for 

more accurate and practical applications in fields such as architecture and virtual 

reality. As ZoeDepth evolves, it is expected to overcome its initial challenges, thereby 

solidifying its role as a crucial tool in the seamless integration of 2D and 3D digital 

environments. 

Figure 3.5 shows the image created using Stable Diffusion XL, and the given image 

was first reprocessed in the ZoeDepth tool for depth map estimation (Figure 3.6). In 

the subsequent stage (Figure 3.7), the 3D shape derived from the depth estimation is 

presented. 
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Figure 3.5: Image created with Stable Diffusion XL 

 

Figure 3.6: Depth map of the same image 
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Figure 3.7: 3D mesh reconstruction of the same image. That is a 3D model 
shown on one side. 

However, the three-dimensional effect achieved in this step is not entirely accurate. It 

provides an approach to transforming a 2D image into a 3D model. To compare the 

3D predictions of the final products, more examples have been included. From these 

examples, it can be inferred that the simpler the visual background, the cleaner the 

resulting 3D shape. Nevertheless, since the predictions are based solely on depth 

estimation, the visual backgrounds do not always translate into successful 3D 

productions. Despite this limitation, the tool demonstrates a method for converting 2D 

images into 3D models, offering insights into the future possibilities of 3D generation. 
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Figure 3.8: 2D to 3D Example 

 

Figure 3.9: 2D to 3D Example 

 

Figure 3.10: 3D Panorama to 3D 

In Figures 3.8, 3.9, 3.10 examples demonstrate a method employed by ZoeDepth for 

3D production. Unlike traditional 2D visuals, this method utilizes a panorama of a 

scene. Although ZoeDepth was not specifically designed for generating panoramic 

images, it handles depth estimation well, despite some expected projection errors. 
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Nonetheless, ZoeDepth performs effectively in 360-degree reconstructions, 

showcasing its capability in this domain. 

In this stage of the thesis, the outcomes derived from utilizing the Python coding 

capabilities of ChatGPT through different tools are examined. During this phase, 

Grasshopper’s GhPython and Blender’s scripting features are employed. Blender and 

Grasshopper are both powerful tools for 3D modeling and design, yet they serve 

different purposes and offer distinct APIs. 

Grasshopper is a visual programming plugin for Rhino, utilizing the GhPython 

component to integrate Python. GhPython provides access to Rhino. Geometry and 

RhinoScriptSyntax libraries, though it is not as comprehensive as Blender’s bpy API. 

Blender offers a fully integrated programming environment through its bpy API. The 

bpy library grants access to all Blender functionalities, allowing for direct control over 

complex 3D modeling processes. 

3.2.2 ChatGPT - Grasshopper’s Python interface 

In this study, specific scripts were generated using ChatGPT and then transferred to 

Grasshopper's Python Interface (GhPython), a graphical algorithm editor integrated 

with Rhino's 3D modeling tools, to create certain parametric shapes. This co-creation 

process was facilitated using Python code, written with the assistance of ChatGPT. 

The process began by instructing ChatGPT to write Python code to create a Torus 

Knot. A Torus Knot is a complex geometric shape that wraps around and through the 

central hole of a torus (a doughnut-shaped surface) without intersecting itself. This 

specific task was chosen to test the capabilities of AI-assisted design in generating 

intricate shapes. 

Once ChatGPT provided the code, it was pasted into the GhPython interface in 

Grasshopper (Figure 3.11). This integration allowed the script to be executed within 

the 3D modeling environment, resulting in the creation of the visual model of the Torus 

Knot (Figure 3.12).  
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Figure 3.11: GhPython in Grasshopper 

          

Figure 3.12: Torus Knot shape produced with Ghpython            

The generated shape was initially a basic representation, but its parameters could be 

adjusted directly within the script or through Grasshopper sliders, providing a flexible 

approach to modifying the design. Figure 3.13 illustrates the Torus Knot shapes after 

adjusting its parameters. This iterative process of adjusting parameters and rerunning 

the script highlighted the trial-and-error nature of working with AI-assisted design 

tools. Despite the designer's lack of coding knowledge, they were able to achieve the 

desired 3D model by utilizing ChatGPT as a co-creator to assist the process. By 

experimenting with different parameters and observing real-time changes, the designer 

successfully obtained the desired outcome. 
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 Figure 3.13: Torus Knot shape produced with Ghpython 

This experience demonstrated the potential of AI in assisting the design process, 

particularly in generating shapes without requiring extensive prior coding knowledge. 

AI showcased its capability as a co-creator, enabling designers to explore and realize 

designs effectively. However, despite the current integration's limitations in producing 

complex shapes, it highlighted the hope that AI's presence could simplify the design 

process. 

In this experiment, consistent success was not achieved while working with GhPython. 

For each encountered error, the reason was presented to ChatGPT to devise a solution, 

and the revised script was reprocessed. This created a design loop that continued until 

a successful outcome was achieved. 

Overall, the integration of ChatGPT with GhPython in Grasshopper presents a 

promising avenue for architectural and design innovation. By leveraging AI tools, 

designers can expand their creative capabilities and simplify the development of 

models, thereby enhancing the transparency of the design process. The design loop 

established in the AI co-creation process can lead to better results. 

3.2.3 ChatGPT- Blender 

In this part, an AI-assisted co-creation process using ChatGPT was employed to create 

a parametric 3D model in Blender. Initially, ChatGPT was asked to generate a 

parametric visual based on the following prompt (Figure 3.14). This design is the first 

step in guiding the creation of the model in Blender. 
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 TEXT: " Create an image of a structure that is an example of parametric design. The 

structure should be composed of repeating geometric units in white, capturing 

attention both visually and structurally. These units should be shaped like square 

prisms and arranged in a regular grid pattern, forming a curved surface. The curved 

form should be achieved using parametric data such as the radii and centers of 

curvature at specific points on the surface." 

 

Figure 3.14: The parametric image generated with ChatGPT. 

 Subsequently, I requested ChatGPT to write a Python code that could create this visual 

in Blender. The response from ChatGPT is as follows (See scripts in Appendix 3). 

ChatGPT: “Sure! Here is a Blender script that helps in creating a parametric design 

similar to the one shown in the image, using repeating geometric units. The script uses 

Blender's Python API to automate the creation of a grid of square prisms arranged on 

a curved surface.”(Figure 3.15). 

 

Figure 3.15 Grid of square prisms arranged on a curved surface obtained 
using a Blender script. 
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Subsequently, a duplication of the resulting shape was requested (Figure 3.16). Then, 

it was requested to add a circular opening in the center of one of the units (Figure 3.17). 

and then this modified shape was duplicated (Figure 3.18). 

 

Figure 3.16: Duplication of the previous stage 

 

Figure 3.17: requested to add a circular opening 
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Figure 3.18: Duplication of the previous stage 

The primary goal of this process was to design a parametric roof model by utilizing 

principles of parametric design. Initially, a basic script was developed using Blender's 

Python API to generate surfaces and geometries. This script allowed the model to be 

shaped based on user-defined parameters such as curvature, dimensions, and other 

relevant attributes.  

During the second phase, one corner of the model was parametrically elevated, and the 

location of the created void was adjusted to align with the center of the mass (Figure 

3.19). The script underwent continuous refinement and updates according to user 

feedback, ensuring the evolving model met the desired specifications. 

 

Figure 3.19: Elevated Mass 
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 In the third stage, columns were systematically added to the roof model at equal 

intervals, extending down to the ground level. Despite these efforts, the anticipated 

effect was not fully realized. This highlighted the limitations of the AI-assisted co-

creation process and emphasized our mastery over the design language crafted in 

collaboration with AI, underlining the importance of our experiential knowledge. 

It may be worth noting that prompt engineering is one of the important topics currently 

being discussed. The language we use with AI has its limitations in terms of words, 

and it is possible to describe a situation from many perspectives. For this reason, the 

design evolves by moving back and forth within a loop. 

Moving to the fourth stage, roofing and facade materials were applied (Figure 3.20); 

however, at this point, the entire model was assigned a glass material. As a result, a 

parametric roof model was successfully created through the AI-assisted co-creation 

process. However, it should be noted that the facade was not successfully obtained. 

This is because the AI treated all units as columns and lowered them to a plane 

designated as the ground level. While this did create a facade-like impression, it was 

formed independently of the intended design. 

  

Figure 3.20: Roofing and facade materials  

This journey provides valuable insights into how AI-assisted co-creation processes 

might function in the future. Although there are current limitations in effectively 

communicating with AI, it has demonstrated the ability to guide complex parametric 

design processes and swiftly integrate user inputs, thus enhancing the efficiency and 

creativity of the design process. This experience showcases the potential of AI in 3D 
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modeling and parametric design, suggesting a promising direction for future 

developments in collaborative design technologies. 

While creating this design, some results were not achieved on the first attempt. 

Specifically, when raising the roof parametrically from one point, it was necessary to 

emphasize to ChatGPT that this should be done by elevating the units along the z-axis 

rather than extending them along the z-axis. The outputs before making this 

clarification were as follows: 

ChatGPT: “We can revise the script to create an entrance by raising the units on one 

edge of the model. This involves increasing height from one side to the other, creating 

the entrance effect.” 

This included the information that the intention was to create an entrance by lifting 

one corner; however, the desired result was not achieved, as shown in Figure 3.21, this 

height increase was achieved by altering the height of the units at the desired corner. 

After clarifying that the units should be elevated along the z-axis rather than extended 

along the z-axis, the result is shown in Figure 3.19. 

 

Figure 3.21: Lifting one corner 

In this example (Figure 3.22), it was expected to randomly add 2 or 3 units on top of 

the existing units at specified locations. This allowed us to experience the tool's 
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capability to make random decisions and generate outputs. A total of 1725 objects 

were created in the model.    

 

Figure 3.22: Randomly adding 2 or 3 units 

Another example was tested, as shown in Figure 3.23, where design approaches to 

create a courtyard were explored using ChatGPT. This example demonstrates how the 

AI tool can be integrated into the architectural design process and facilitate more 

effective collaboration between the user and the AI. 
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Figure 3.23: creating a courtyard 

   

Figure 3.24: 100 icospheres of varying sizes 

In Figure 3.24, 100 icospheres of varying sizes and deformations were randomly 

positioned in Blender to create complex volumes. Additionally, each object was 

assigned a random color. A light source and a camera were added to the scene, which 

was then rendered. This process, similar to the previous example, was assisted by 

ChatGPT. 
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3.2.4 TripoAI 

Tripo AI is an online tool offering free features, utilizing the TripoSR model. TripoSR 

is a three-dimensional reconstruction model that employs transformer architecture for 

rapid feed-forward three-dimensional generation. It is capable of producing a three-

dimensional mesh from a single image in under 0.5 seconds (Tochilkin et al., 2024). 

The objective of TripoSR is to provide researchers, developers, and creative 

professionals with access to the most recent developments in 3D generative AI. 

In the example, AI was used to produce a 3D model following a similar logic used in 

ZoeDepth. The initial work involved using ChatGPT to process the desired image 

(Figure 3.25), which converted to 3D using TripoAI (Figure 3.26). 

Initially, the process started with providing a text description to ChatGPT, which 

generated an image based on the input. It has been found through experiments that 

TripoAI produces better results with images that have a simple background. 

Additionally, it has been observed that lighting and shadows that create depth in the 

image result in better outcomes on the model. Therefore, the text and image that 

yielded relatively better results among other experiments are as follows: 

Text: A modern, multi-story concrete building at night, composed of interlocking cubic 

structures. The building features large windows with warm, glowing lights inside, 

creating a stark contrast against the dark exterior. The design is complex, with various 

levels and cantilevered sections, showcasing an innovative architectural style. The 

surrounding area is dimly lit, highlighting the building as the focal point in an urban 

environment. (Figure 3.25) 
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Figure 3.25: Image created with ChatGPT 

 

  

Figure 3.26: 3D model created with Tripo AI 
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 Figure 3.26 served as the basis for creating a 3D model using TripoAI. TripoAI is 

equipped with advanced algorithms that can interpret 2D images and predict their 3D 

alternatives. The generated model was detailed and structurally coherent, displaying 

AI's capability to understand and extrapolate complex geometries from simple inputs. 

The patterns of voids on the facades of the obtained example, along with the mass and 

voids on the rear facades designed based on the input image, could indicate that AI has 

advanced one step further in 3D creation. In Figure 3.27, side views of the model are 

provided for a more detailed examination.  

  

   

Figure 3.27: Side views of the model 

The model obtained from TripoAI could be exported as a mesh, a collection of vertices, 

edges, and faces that define the 3D structure of the model. This mesh data could then 

be imported into design programs like Blender and Sketchup, making it open to further 

modifications. In these programs, users could refine the model, adjust parameters, and 

enhance details, allowing for greater customization and precision. The exports are 

available in formats such as GLB, OBJ, FBX, STL, and USD. 
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Figure 3.28: Model on Blender     

Figure 3.28 shows the images of the FBX output imported into Blender. It is possible 

to perform UV modeling and sculpting on the model. While the model output is 

successful and editable, there are still deficiencies. The points that make up the mesh 

units are not on the same plane, causing surfaces that appear flat to not be completely 

flat. It is anticipated that better output production and a more advanced knowledge of 

Blender can correct this issue. 
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3D model creation  (Figure 3.29) was also attempted using the prompt feature: 

Prompt: A large, organic architectural structure resembling a modern, abstract art 

form. The building has flowing, wavy surfaces with irregular openings and windows 

that blend seamlessly into the curvilinear facade. Its appearance mimics natural rock 

formations with smooth, undulating contours. The color palette is warm and earthy, 

with shades of beige and tan. Surrounding the building are minimalist landscape 

elements such as pathways, benches, and sparse vegetation. The structure is situated 

in an open, desert-like environment with distant hills in the background. The overall 

aesthetic is futuristic and harmonious, integrating natural and modern design 

elements.  

 

  

Figure 3.29: Tripo AI Experience 2 

Prompt: Create an image that features a highly contrasted organic architectural 

design for the front facade of a multi-story building. The facade includes bold, 

curvilinear forms and deeply shadowed surfaces, with brightly illuminated windows 

that create a drama. (Figure 3.30) 
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Figure 3.30: Tripo AI Experience 3 

TripoAI examples demonstrated AI's capability to predict 3D models and the 

importance of providing a user interface for editing these models, enhancing both 

explainability and controllability. The ability to export and modify the model in 

traditional design software bridges the gap between AI-generated concepts and 

practical, usable designs. It allows designers to retain control over the final output, 

making adjustments as needed based on their expertise and preferences. 

Since Tripo AI is not an architectural program, it does not generate controllable 

surfaces in its applications. However, it currently produces good outputs in terms of 

figure creation. When interpreted spatially, it creates areas with depth, but it should be 

remembered that it is not a tool designed specifically for architectural purposes. For it 

to produce designs that yield good results from an architectural perspective, it is 

necessary to incorporate architectural thinking into the design processes of these tools. 

Either the "black box" nature of these tools needs to become more transparent, or it 

will be necessary to work with tools specifically designed for architectural purposes. 
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3.2.5 Comfy UI 

In Figure 3.31, the same visual used in Tripo AI has been employed to obtain a 3D 

output. The resulting product is a 3D model, but the 3D estimation is weaker compared 

to Tripo AI. This could be due to the workflow used. More advanced workflows could 

be utilized. Although in ComfyUI, seeing some intermediate stages makes the process 

more transparent, it has not necessarily improved the final product in this specific 

example. 

 

Figure 3.31: Experience 1 (Appendix 3)  
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Figure 3.32: ComfyUI Experience 2 

Figure 3.32 demonstrates a workflow for creating a 3D model from a different object. 

The ComfyUI image creation process is designed to be both user-friendly and highly 

customizable. Users begin by entering a textual description or keywords to define the 

visual content they want. They can then modify parameters such as style, color palette, 

and resolution to influence the image generation. The tool uses natural language 

processing to interpret the input and employs deep learning models to produce an 

initial visual representation. 

After the preliminary image is generated, it is shown to the user for review. Users can 

provide feedback and iteratively adjust the text and parameters to refine the image. 

Advanced users have the option to fine-tune specific details using detailed controls 

and editing tools. Once the image meets the user’s expectations, it can be finalized and 

exported in various formats. 

Nevertheless, some reviews suggest that the node-based interface, despite its 

considerable versatility and robustness, may prove initially challenging for those new 

to the system, requiring a certain degree of familiarity with the manner in which 

different nodes connect and interact to form complex workflows (Andrew, 2024) . 
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Despite its extensive capabilities, users often encounter difficulties when initially 

setting up and configuring the system, particularly if they lack prior experience with 

similar systems. Nevertheless, the comprehensive documentation and active user 

community that accompany ComfyUI can mitigate these issues, gradually enhancing 

the tool's usability and accessibility. 

This process highlights Comfy UI’s comprehensive and user-centric approach, 

ensuring active user involvement throughout the image creation journey and 

enhancing the co-creation experience by effectively bridging user input and machine-

generated output. 
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4 CONCLUSION  

This mixed-method study, through comprehensive readings and hands-on tool 

experiences, has demonstrated that AI-based design processes hold significant 

potential in the field of architecture. The data collected from both research and 

practical applications indicate that AI tools substantially enhance architectural 

visualization and modeling capabilities, but also reveal some opacity issues that limit 

user understanding and control. The findings of this study emphasize the necessity of 

focusing on transparency and explainability to effectively integrate AI tools in 

architectural design. 

Table 4.1 evaluates the explainability levels and user interactions of tools used in 

architecture. Each tool has its strengths and weaknesses, offering various advantages 

and limitations in architectural applications. As seen, the explainability of 2D tools is 

opaquer in both process and output, with limited user interaction. This limitation 

hinders the full realization of the co-creation process. As Pask highlighted, tool groups 

that create a feedback loop enhance co-creation (Werner, 2019). The explanations 

provided to the user can currently remain as understandable text information from 

ChatGPT. In tools like ComfyUI, although familiarity with the tool is required, control 

at each stage makes it more explainable. 

Creating 3D content is more complex and time-consuming than creating 2D content. 

While 2D image data is easier to collect, 3D assets require significant effort from 

artists using specialized software. The diversity in use cases and creative styles leads 

to variations in the scale, quality, and style of 3D assets, adding to the complexity of 

managing 3D data. To standardize this diverse data and make it more suitable for 

production, specific guidelines need to be established. A large-scale, high-quality 3D 

dataset is still highly desired in the field of 3D generation. Additionally, exploring how 

2D data can be utilized in 3D generation might help address the shortage of 3D data. 

Therefore, the tools currently used for 3D creation are not yet highly advanced, but 

they do demonstrate the potential of these technologies. 
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  Table 4.1: Explainability of AI Tools. 

This research also demonstrates that by using ChatGPT as a translator and guide within 

AI's decision-making mechanism, a feedback loop is created that provides user 

feedback and strengthens the co-creation process. However, for designers to 

effectively utilize this shared language, they need to have at least a basic understanding 

of coding to interpret and guide the outputs. In design tools like ComfyUI, creating 

workflows requires users to gain experience and become familiar with the tool. In 

summary, AI is taking on a co-creative role as a new design partner, but for the 

architects to adapt to this paradigm shift in design language requires gaining 

experience in this language. 

Table 4.2 provides a general overview of these tools. Since their primary use is not in 

the field of architecture, the results produced by these tools come with both advantages 

and disadvantages. While their usage in many areas is currently limited, they also 

showcase numerous potentials. 

TOOL 
NAME 

LEVEL OF 
EXPLAINA

BILITY 

USER 
INTERACTION GENERAL EVALUATION 

2D TOOLS Low Limited Opaque process, limited user 
interaction 

ZOEDEPTH Medium Limited Generates depth maps but has limited 
detail and control  

COMFY UI High High 
Workflow-based stages are 
experienced by the user, but can be 
challenging to use. 

CHATGPT - 
BLENDER High High 

Providing more control and 
transparency through coding.   
Feedback loop, higher quality outputs 

CHATGPT - 
GHPYTHON High High Feedback loop, greater user 

involvement 
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 Table 4.2: Comprehensive Features and Applications of AI Tools 

Tool Name 
Application 

Area 
(for this experiment) 

Features Advantages Disadvantages Explanation 

2D TOOLS Visual 
Generation 

Text-to-
image 
generation 

High-
quality 
visuals 

Black box 
nature 

Generates high-quality 
visuals from text 
descriptions but 
operates as a black box 
with limited 
transparency. 

ZOEDEPTH 3D Model 
Generation 

Depth map 
generation 

Fast 3D 
modeling 

Limited back 
facade details 

Generates depth maps 
from images, useful for 
creating 3D models but 
lacks detail control for 
back facades. 

CHATGPT Text-Code 
Assistance 

Python 
integration 

Speeds up 
the coding 
process 

Limited for 
complex 
codes 

Assists in writing 
Python code, and 
streamlining the coding 
process, but may be 
limited for complex 
code generation. 

CHATGPT - 
GHPYTHON 

Parametric 
Design 

Parametric 
3D 
modeling 

Direct 
control over 
3D models 

Requires 
Python 
proficiency 

Enables detailed 
parametric design with 
Python scripts, offering 
high control over 3D 
shapes and models. 

CHATGPT - 
BLENDER 

Parametric 
Design 

3D model 
creation 
with code 

Complex 
shape 
generation 

Requires 
Blender 
proficiency 

Facilitates complex 
parametric designs 
using Python scripts in 
Blender, providing 
high control and 
transparency. 

TRIPO AI 3D Model 
Generation 

2D to 3D 
model 
conversion 

Quick 
prototyping 

Not optimized 
for 
architecture 
yet 

Converts 2D images to 
3D models, ideal for 
quick prototyping but 
lacks optimization for 
architectural purposes. 

COMFY UI 
2D-3D 
Generation, 
Workflows 

Interface 
Workflow 

Flexible 
creation Complex 

Offers an interface for 
generating visuals but 
requires advanced 
control for detailed 
adjustments. 

To briefly evaluate the tools used in the experiments, ZoeDepth, provides more input 

compared to 2D tools as it generates depth estimations. However, the quality and 

capacity of its productions are currently limited. ZoeDepth has current limitations in 
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accurately predicting the back facades of buildings, but ongoing development 

promises improvements. Similar to 2D tools, ZoeDepth does not allow for user 

interface intervention during the production process.  

Tripo AI is useful for quick prototyping and conceptual development in architectural 

projects. It supports the creation and manipulation of 3D models with advanced 

stylization options. This tool demonstrates significant potential in architectural design 

through draft model creation and rapid prototyping capabilities. 

Grasshopper and Blender, in contrast, offer higher levels of explainability and create 

a feedback loop, allowing greater user involvement in the process. While Blender and 

Grasshopper are both powerful tools for 3D modeling and design, they serve different 

purposes and offer distinct APIs. GhPython provides access to Rhino. Geometry and 

RhinoScriptSyntax libraries, though it is not as comprehensive as Blender’s bpy API. 

Therefore, the outputs generated using Blender were superior. More complex 

commands requested from Grasshopper often went unanswered. 

ComfyUI, operating through workflows, allows users to experience each stage of the 

process. However, the tool's structure can be challenging for those not familiar with 

this language. Nevertheless, there are many platforms available to learn how to use 

this tool. 

These tools have also been compared using specific benchmarks. Figure 4.1 provides 

a comparative evaluation of different AI tools based on usability, process time, detail 

level, algorithm success rate, and integration capacity with other tools. These values 

are derived from the author's experiences and observations during the experiments 

conducted, reflecting practical insights into the performance and capabilities of each 

tool. 
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Figure 4.1: Tools Benchmarks Comparison 
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Usability: Usability refers to how easily and effectively a tool can be used by a user. 

Tools like Stable Diffusion and ZoeDepth generally offer higher usability due to their 

accessibility on online platforms and user-friendly interfaces. In contrast, tools like 

Midjourney may present a more complex usage experience because they operate 

through external platforms (e.g., Discord) and require a subscription model, which can 

limit accessibility and ease of use. Tools used in conjunction with ChatGPT, which 

require interaction with script-based environments, demand more technical knowledge 

and skills, making them less user-friendly. Meanwhile, Comfy UI provides a more 

complex user experience because it requires all functionality to be built within its own 

interface. 

Processing Time: Processing time refers to the duration required for a tool to complete 

a specific task and can vary depending on the computing power of the hardware used. 

According to Figure 4.1, some tools offer shorter processing times, while those that 

generate 3D models and provide more detailed results may require longer processing 

times. For example, ChatGPT with Blender and Tripo AI have longer processing times 

compared to other tools because they produce more complex and detailed models. 

Detail Level: Detail level indicates the degree of detail in the content produced by the 

tools. 3D modeling tools generally have a higher level of detail due to the more 

complex structures they produce. For example, ChatGPT with Blender and Tripo AI 

demonstrate superior performance in 3D modeling with high levels of detail. 

Algorithm Success Rate: The algorithm success rate measures a tool's ability to 

produce the desired output. Tools that produce 2D content generally have high success 

rates; however, these tools can limit user interaction as they do not allow direct 

modification of the outputs. When a design loop is created with ChatGPT, successful 

outcomes have been achieved through user feedback and adjustments. However, this 

process also involves trial and error and the correction of errors that arise. As work in 

this area increases and usage practices are developed, it is expected that the success 

rate of the outputs will improve over time. Currently, the success of prompt or image-

based tools in generating the desired output is as shown in  Figure 4.1. 

Integration with Other Tools: Integration capacity with other tools reflects how well 

a tool can integrate with different software and platforms. 3D modeling tools generally 
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have more flexible integration capabilities. For instance, Tripo AI and ChatGPT with 

Blender have strong integration capabilities with various 3D tools, making them more 

versatile and functional. 

In conclusion, Figure 4.1 provides an overview of how AI tools perform across 

different criteria, helping users evaluate which tool is most suitable based on their 

needs and usage scenarios. 

The findings from this study reveal that, as previously discussed, AI tools have made 

significant strides in supporting creative tasks but often operate as "black boxes," 

limiting user understanding and control over the design process. This lack of 

transparency hinders architects' ability to fully engage and collaborate effectively with 

these tools. The study also shows that a more "Gray Box" approach is present in the 

co-creation process with AI, highlighting the importance of getting to know the co-

creation partner better. It underscores the need for more transparent and interactive 

interfaces that enhance co-creation capabilities, making AI tools more effective and 

user-friendly for designers. 

In this context, future research and development should focus on enhancing the 

explainability of AI tools to strengthen human-AI collaboration. The implementation 

of Explainable AI (XAI) methodologies holds significant promise in making AI-driven 

design processes more transparent and controllable. 

Additionally, the development of AI tools specifically tailored for architectural design 

will be crucial. These tools should incorporate user feedback mechanisms, allowing 

for iterative design loops that enhance the co-creation process. 

In conclusion, this study paves the way for future research and development aimed at 

overcoming current limitations and unlocking the full potential of AI as a co-creator 

in architectural design. 
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APPENDIX 

Appendix 1  Example script from ComfyUI 
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Appendix 2 Script from ComfyUI 
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Appendix 4 Script from ComfyUI 
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Appendix 3 Script from ChatGPT:  

import bpy 

import math 

 

# Function to create a single square prism (cube) with a material 

def create_square_prism(location, size, material): 

    bpy.ops.mesh.primitive_cube_add(location=location) 

    bpy.ops.transform.resize(value=(size, size, size)) 

    bpy.ops.object.transform_apply(scale=True) 

    bpy.context.object.data.materials.append(material) 

 

# Function to create a column under a square prism with a material 

def create_column(location, size, height, material): 

    bpy.ops.mesh.primitive_cube_add(location=location) 

    bpy.ops.transform.resize(value=(size, size, height / 2)) 

    bpy.ops.object.transform_apply(scale=True) 

    bpy.context.object.data.materials.append(material) 

 

# Function to generate parametric curved surface with square prisms (cubes) and 
columns 

def generate_parametric_surface_with_columns(rows, cols, size, curvature_x, 
curvature_y, global_offset_x=0, global_offset_y=0, hole_radius=7, 
create_hole=True, raise_height=5): 

    total_rows = rows * 2  # Since we are generating four surfaces, we consider 
double rows and cols 

    total_cols = cols * 2 

    max_distance = math.sqrt((total_rows - 1)**2 + (total_cols - 1)**2)  # Max 
distance for normalization 

    ground_level = -10  # Adjust the ground level as needed 

 

    # Create glass material 

    glass_material = bpy.data.materials.new(name="Glass") 

    glass_material.use_nodes = True 

    bsdf = glass_material.node_tree.nodes["Principled BSDF"] 
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    bsdf.inputs["Transmission"].default_value = 1 

    bsdf.inputs["Roughness"].default_value = 0 

    bsdf.inputs["IOR"].default_value = 1.45  # Index of Refraction for glass 

 

    for i in range(total_rows): 

        for j in range(total_cols): 

            # Calculate the distance from the top-left corner (0,0) 

            distance_to_corner = math.sqrt(i**2 + j**2) 

             

            # Calculate the position based on the curvature 

            x = i * size * 2 + global_offset_x 

            y = j * size * 2 + global_offset_y 

            z = math.sin(i * curvature_x) * math.cos(j * curvature_y) * size * 2 

             

            # Parametrically raise the corner 

            raise_factor = (max_distance - distance_to_corner) / max_distance  # 
Normalized distance 

            z += raise_factor * raise_height  # Ensure cubes touch each other 

             

            # Skip creating a prism if within the hole radius and if create_hole is True 

            distance_to_center = math.sqrt((i - total_rows // 2) ** 2 + (j - total_cols // 2) 
** 2) 

            if create_hole and distance_to_center < hole_radius: 

                continue 

 

            location = (x, y, z) 

            create_square_prism(location, size, glass_material) 

             

            # Create a column under the square prism 

            column_height = z - ground_level 

            column_location = (x, y, (z + ground_level) / 2) 

            create_column(column_location, size, column_height, glass_material) 
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# Parameters 

rows = 20  # Number of rows per surface 

cols = 20  # Number of columns per surface 

size = 0.5  # Size of each square prism (cube) 

curvature_x = 0.3  # Curvature factor in the x-direction 

curvature_y = 0.3  # Curvature factor in the y-direction 

hole_radius = 7  # Radius of the hole in the center, adjusted for a mid-sized hole 

raise_height = 5  # Maximum raise height for the corner 

 

# Generate the surfaces with raising effect applied to one corner and add columns 

generate_parametric_surface_with_columns(rows, cols, size, curvature_x, 
curvature_y, global_offset_x=0, global_offset_y=0, hole_radius=hole_radius, 
create_hole=True, raise_height=raise_height) 

 

# Adjust camera position 

bpy.data.objects['Camera'].location = (40, -40, 40) 

bpy.data.objects['Camera'].rotation_euler = (math.radians(60), 0, math.radians(45)) 

 

# Adjust light position 

bpy.data.objects['Light'].location = (40, -40, 60)   
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