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ABSTRACT

Master of Science
FROM BLACK BOX TO TRANSPARENCY: ADVANCES IN AI-DRIVEN
CO-CREATION IN ARCHITECTURAL DESIGN
Sevda BASAR

TOBB University of Economics and Technology
Institute of Natural and Applied Sciences

Department of Architecture

Supervisor: Asst. Prof. Dr. Zelal Cinar
Date: August 2024

This thesis examines the integration of artificial intelligence (Al) into architectural
design processes and explores the impact of these technologies on creative practices,
while also addressing the limitations that arise from the "black box" nature of Al tools.
Al technologies, particularly those using machine learning and deep learning
algorithms, are increasingly being utilized in architecture, providing new tools for
design generation, analysis, and optimization. However, the opaque nature of these
technologies can make it challenging for users to understand and control these tools,
creating barriers to their effective use as collaborative partners in the design process.

As an alternative to this, a "gray box" approach is suggested.

The research explores various Al-supported methods for both 2D and 3D production,
including tools such as Stable Diffusion, Midjourney, ZoeDepth, GhPython, Blender,
ChatGPT, Tripo Al, and Comfy Ul. Experimental studies using these tools highlight
their strengths, such as visualization and modeling capabilities, while also revealing
weaknesses like lack of transparency and limited user interaction. The study provides
an assessment of the current state of co-creation between Al and human designers in
practice. It emphasizes the need for more interactive and explainable Al systems (XAI)
to give architects a better understanding and influence over the outputs of Al tools,

thus enabling a more effective co-creation process.



This work advocates for the development of AI tools specifically designed for
architectural purposes and suggests that integrating methodologies like XAI could
enhance transparency and user engagement, making Al more creatively useful within
design workflows. XAI could increase trust by making Al systems' decision-making
processes more understandable to architects and could enable Al to serve as a more
effective co-creator in design processes. Additionally, the thesis explores the potential
for Al to evolve from a passive tool to an active co-creator, where Al not only
generates design options but also interacts dynamically with human designers in a

feedback-driven process.

Keywords: Artificial intelligence, Black box, Gray box, Explainability, Co-creation,
2D/3D generation, Design tools.



OZET

Yiiksek Lisans

KARA KUTUDAN SEFFAFLIGA: MIMARI TASARIMDA YAPAY ZEKA
DESTEKLI ORTAK YARATIMDAKI ILERLEMELER

Sevda BASAR

TOBB Ekonomi ve Teknoloji Universitesi
Fen Bilimleri Enstitiisii

Mimarlik Anabilim Dali

Danigman: Dr.Ogr.Uyesi Zelal Cinar
Tarih: Agustos 2024

Bu tez, yapay zekanin (AI) mimari tasarim siireclerine entegrasyonunu ve bu
teknolojilerin yaratict uygulamalar iizerindeki etkilerini incelerken, ayni zamanda
yapay zeka araglarinin "kara kutu" dogasiyla ilgili ortaya ¢ikan sinirlamalart da ele
almaktadir. Ozellikle makine dgrenimi ve derin 6grenme algoritmalari kullanan yapay
zeka teknolojileri, mimarlik alaninda giderek artan bir sekilde kullanilmakta ve tasarim
iretimi, analiz ve optimizasyon gibi alanlarda yeni araglar sunmaktadir. Ancak, bu
teknolojilerin opak yapisi, kullanicilarin bu araglar1 anlamasimi ve kontrol etmesini
zorlagtirmakta ve onlar1 tasarim siirecinde etkin bir ortak olarak kullanmanin 6niinde
engeller yaratmaktadir. Bu duruma bir alternatif olarak "gray box" yaklasimi

Onerilmektedir.

Aragtirma, Stable Diffusion, Midjourney, ZoeDepth, GhPython, Blender, ChatGPT,
Tripo Al ve Comfy UI gibi aracglari i¢ceren, hem 2D hem de 3D iiretim i¢in yapay zeka
destekli cesitli yontemleri incelemektedir. Bu araglar iizerinde yapilan deneysel
calismalar, gorsellestirme ve modelleme yetenekleri gibi gliglii yonleri vurgularken,
ayni1 zamanda seffaflik eksikligi ve siirl kullanici etkilesimi gibi zayif yonleri de

ortaya koymaktadir. Calisma, Al ile insan tasarimcilar arasindaki ortak yaratimin

Xi



giincel durumuna dair bir degerlendirme sunmaktadir. Daha etkilesimli ve
aciklanabilir yapay zeka sistemlerine (XAI) duyulan ihtiyaci vurgulayarak, mimarlarin
yapay zeka araclarinin ¢iktilari lizerinde daha fazla anlayis ve etkiye sahip olmalarinin
saglanmas1 ve boOylece daha etkili bir ortak yaratim siirecinin miimkiin kilinmasi

gerektigini belirtmektedir.

Bu caligma, mimari amaglar i¢in 6zel olarak tasarlanmis yapay zeka araglarmin
gelistirilmesini savunmakta ve XAl gibi metodolojilerin entegrasyonunun seffafligi ve
kullanic1 katilimini artirarak yapay zekanin tasarim is akislarinda daha yaratici bir
sekilde kullanilmasini miimkiin kilabilecegini 6ne siirmektedir. XAl, yapay zeka
sistemlerinin karar verme siireclerini mimarlara aciklayarak ve anlamalarim
saglayarak gliveni artirabilir ve yapay zekanin tasarim siireglerinde daha etkin bir ortak
yaratici olarak yer almasini saglayabilir. Tez ayrica, yapay zekanin pasif bir aragtan
aktif bir ortak yaraticitya doniistiigli bir rolii tartigmakta; bu senaryoda yapay zekanin
yalnizca tasarim segenekleri iiretmekle kalmayip, ayn1 zamanda insan tasarimcilarla

dinamik ve geri bildirim odakli bir etkilesim siirecine girebilecegi vurgulanmaktadir.

Anahtar Kelimeler: Yapay zeka, Kara kutu,Gri kutu, A¢iklanabilirlik, Ortak yaratim,

2D/3D firetim, Tasarim araglari
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1 INTRODUCTION

Since architects have been creating their designs in the digital environment, a new
language has developed between the computer and the designer. Recently, architecture
has entered a paradigm shift with the widespread use of artificial intelligence (AI)
(Chaillou, 2020). This shift has led Al tools to develop a new language with designers
as they move beyond simple automation and take on a more active role in the design

process. These Al tools are referred to as "co-creators" (Gmeiner et al., 2023).

According to Gordon Pask, co-creation is a process where humans and machines learn
and develop together through continuous interaction (Pask, 1969). Pask envisioned a
dynamic partnership in which both machines and humans engage in a reciprocal
learning process, enhancing each other's knowledge and capabilities through active
participation and feedback (Werner, 2019). However, current Al technologies have
inherent limitations that restrict the depth and scope of co-creation, lacking the

feedback loops necessary for deeper engagement. (Werner, 2019).

While tools like DALL-E and Midjourney have advanced creative collaboration by
generating consistent visual content from text or visual inputs, they still require human
guidance to refine and improve outputs, highlighting the necessity for a collaborative
approach in creative endeavors (S. Wang et al., 2024). The designer's involvement
often remains limited to providing prompts, and the capacity to revise generated

visuals is constrained, posing significant challenges to the co-creation process.

Despite these constraints, Al continues to influence the design process significantly
(Leach, 2022), prompting a reevaluation of many conventional beliefs in the design
community. Understanding the changes Al brings to design thinking is crucial to
unlocking the potential of co-creation. To achieve this, it is essential to address the
concept of the "black box"—a metaphor for the opaque computational processes in
architectural design (Fricker et al., 2020). These processes can obscure understanding

and limit trust, making it challenging for designers to fully engage with Al tools.



To enhance transparency, various methods of model interpretation and visualization
have been developed to clarify the decision-making processes of these models
(McGovern et al., 2019). The "black box" nature of some computational tools can
hinder innovation and experimentation, which Kotnik and Fricker (2020) argue is a
significant issue. They suggest developing new tools and methods that provide
architects with better understanding and control over the computational processes they

use (Fricker et al., 2020).

Current Al tools often function with an input-output logic that exacerbates the 'black
box' effect, limiting user understanding and intervention. To address these issues, this
thesis explores the 'black box' problem and introduces the "Gray Box" approach
proposed by Prof. Andrew Witt (Witt, 2018), which involves integrating designers

throughout the entire design process to improve output quality.

To effectively collaborate with Al tools, designers must develop both participatory
skills and technical competencies, becoming familiar with these tools as co-creators in
the design process. Given the current limitations and the 'black box' nature of Al in
architecture, this thesis seeks to evaluate how these tools can function as "co-creators"

and what extent they can be used effectively as collaborative partners in design.

Currently, many visualization tools generate outputs from text or image inputs without
creating such a feedback loop, limiting co-creation. However, this scenario is rapidly
evolving as new tools and methodologies are developed to facilitate more interactive

and collaborative processes.

Figure 1.1 shows a design schema proposal where the design control is maintained
through intermediate stages rather than a single final product. In certain instances
within these tool groups, the feedback loop has been optimized, thereby enhancing the

co-creation process.
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Figure 1.1: Feedback Loop (created by the author)

Given this, it can be stated that the term "co-creation tools" is used to denote the
various instruments and methodologies that facilitate production processes leveraging

artificial intelligence.

Explainability is a critical aspect of using Al tools, especially as these tools become
more complex. Understanding the decision-making processes of Al systems is
increasingly challenging, which raises concerns about safety, reliability, and bias.
Explainable AI (XAI) aims to address these concerns by increasing transparency,
helping users understand the underlying decision-making factors (Das & Rad, 2020).
In architecture, XAI can provide architects with greater control over Al tools,
enhancing their effectiveness and trustworthiness. However, XAl has not yet been
widely applied to tools that generate visual outputs, indicating a significant area for

future research and development.

1.1 Problem Statement

Al tools are increasingly being used to support design processes in the field of
architecture. However, existing Al tools often function as "black boxes," meaning their
internal workings are difficult for users to understand. This lack of transparency
hinders architects' ability to effectively collaborate with Al tools and fully engage in
the creative process. Additionally, while current Al tools have made significant strides
in generating 2D images, the development of robust and reliable 3D modeling
capabilities remains a work in progress, indicating that further advancements are

necessary to achieve similarly high-quality outcomes in the 3D domain.



The opaque nature of these tools means that while text inputs can significantly alter
outputs, direct modifications to the visuals are not possible. This limitation restricts
the co-creation process, as designers cannot interactively refine generated visuals. This
lack of transparency and control creates a barrier, making it difficult to achieve precise
or desired outcomes. To enhance co-creation capabilities, more transparent and

interactive interfaces are needed.

1.2 Research Question

Given the current limitations and the 'black box' nature of existing Al tools in

architecture, this thesis seeks to answer the following research question:

How can the capacity of existing black box tools (particularly in the context of 2D and
3D generation) to function as "co-creators" in architectural design processes be
evaluated, and to what extent can these tools be effectively used as collaborative
partners in the design process? To what extent is co-creation possible with these black
box tools? What are the limitations, potentials, and future development prospects of

these tools?

To address the research question above, this thesis examines the state of the art in Al
tools in terms of their black box nature and co-creation potential. In this regard, this

study provides insights for the development of future tools.

1.3 Objectives and Scope

This study aims to investigate the use of Al tools in architecture, focusing on
transparency and explainability while examining the potential and limitations of these
tools. The experiments conducted encourage architects to engage with Al tools, while

also providing data scientists with a foundation for further research in this field.

The primary goal is to evaluate Al's role as a co-creator in architectural design by
exploring current tools and methodologies. Key objectives include identifying the
limitations of existing Al tools, understanding the principles and applications of
explainability, and proposing a framework for more effective integration of Al in the
design process. Furthermore, the thesis delves into the potential of 2D and 3D Al tools

to enhance collaboration and advance architectural practices. It also considers how the



concept of co-creation can be redefined with contemporary tools, examining Al's
potential to become more explainable and collaborative in the future. This framework
aims to provide insights into how Al tools can be more effectively used as 'co-creators'
in architectural design, laying the groundwork for strategic recommendations that

could be developed moving forward.

1.4 Methodology

This thesis employs a mixed-methods approach to explore the potential of Al tools in
the field of architecture. The methodology involves both qualitative and quantitative
analyses to comprehensively examine the capabilities and limitations of various Al-
driven methods in 2D and 3D content generation. The primary focus is on their

applications in architectural design and the explainability of these tools.

Data Collection and Analysis: The initial phase involves a comprehensive review of
existing literature on Al and design, with a focus on machine learning, deep learning,
and their applications in generation methods. This includes an examination of both 2D
and 3D generation methods, as well as a discussion on the "black box" nature of deep
learning models and the importance of explainability in Al tools. Additionally, datasets
used for training 2D and 3D generation methods are collected to support the

experimental framework.

Experimental Framework: The second phase involves the selection and application
of various 2D and 3D Al tools, including Stable Diffusion, Midjourney, ZoeDepth,
Tripo Al, Blender, Grasshopper, and Comfy UI. These tools are chosen based on their
relevance and capabilities in generating architectural visuals and models. Blender and
Grasshopper are not Al tools, but in this process, ChatGPT was used as an assistant,
allowing for an experience of the co-creation process. Many of the 2D tools selected
are widely recognized and commonly utilized for text-to-image and image-to-image
generation. Their performance is tested using consistent input text, and the resulting
outputs are systematically compared to evaluate their capabilities. The 3D tools
identified during the literature review are gaining popularity in sectors such as gaming.
These tools include both text-to-3D and 2D-to-3D generation methods. Furthermore,
due to the script-writing capabilities of ChatGPT, an Al-assisted workflow involving

Blender and Grasshopper is explored. Although the current application of these tools



in architecture is limited, this study investigates their potential by conducting a series
of experiments to assess their effectiveness and versatility in architectural design.
Practical application of these tools involves generating 2D images and 3D models, and
exploring the interconvertibility of text, 2D, and 3D methods. An iterative design loop
process is employed where Al-generated outputs are reviewed, modified, and refined
through user feedback. This process aims to understand the co-creation dynamics
between Al tools and human designers. However, the design loop is implemented only

with tools that allow for user input and interaction.

Evaluation and Comparison: The third phase includes a detailed analysis of the
outputs generated by the Al tools, focusing on their transparency and controllability.
This includes examining the tools' ability to handle complex geometries, generate
high-quality visuals, and produce detailed 3D models. Additionally, an assessment of
the transparency and explainability of the Al tools is conducted, particularly focusing
on the "black box" problem. This involves evaluating how the tools' internal

mechanisms can be understood and controlled by architects.

Discussion and Recommendations: The final phase identifies the key challenges and
opportunities associated with the use of AI tools in architecture. This includes
discussing the limitations of current tools and proposing potential solutions to enhance
their effectiveness. Recommendations for future research and development in the field
of Al-driven architectural design are provided, suggesting improvements in tool

design, data collection, and the integration of explainable AI (XAI) methodologies.

The thesis aims to offer a systematic overview of 2D and 3D generation methods and
their applications in architecture, providing insights into the co-creation process
between Al tools and human designers. By highlighting the current limitations of these
tools and offering recommendations to enhance their potential, the thesis seeks to
improve the collaborative capabilities of these technologies, ultimately contributing to

the advancement of architectural design practices.



2 LITERATURE REVIEW

The literature review aims to explore various facets of Al and its influence on design,
with a particular focus on architecture. It considers the potential of Al to transform
architectural practices, examining how new technologies might reshape creative
processes and workflows. By covering topics like machine learning and deep learning,
the review seeks to offer insights into the algorithms and models that drive Al tools,

exploring their ability to generate, evaluate, and optimize architectural designs.

The review also examines the "black box" nature of Al tools, which can obscure the
processes behind specific outcomes. This lack of transparency has the potential to limit
creative collaboration between architects and Al. Therefore, the review emphasizes
the importance of methods that enhance transparency and explainability, such as
Explainable Al (XAI), which aims to provide insights into the decision-making

processes of Al systems.

Additionally, the review looks into current Al applications in design, from generative
design tools to predictive analytics that could support decision-making. It considers
the practical implications of these technologies, discussing their advantages and
limitations, and how they may influence the role of architects in the design process.
By presenting an overview of Al's current involvement in design, the literature review
identifies gaps in existing research and proposes future directions for potentially
incorporating Al as a collaborative partner in architectural design. This approach could
encourage a more interactive and iterative design process, where Al acts as an

intelligent assistant, potentially enhancing the creativity and efficiency of architects.

2.1 Al and Design

Artificial intelligence (Al), first introduced in the 1940s, can generally be defined as
the science of creating intelligent machines or computer programs that mimic human
intelligence (Baduge et al., 2022). According to Russell and Norvig (Norvig & Russell,
2016), studies consistently highlight Al as one of the most intriguing and fast-evolving



fields. Al expert Kai-Fu Lee suggests that Al could have a more profound impact than
any other development in human history. Recently, artificial intelligence has made
significant strides in various domains, such as computer vision, robotics, language

translation, gaming, medical diagnosis, and generative design.

In architecture, the application of Al is continuously expanding. As new applications
emerge, designers are increasingly gaining a deeper understanding of Al's potential
and limitations. This growing understanding is forming a clearer picture of how Al
might affect and transform the field of architecture. According to Thomas Lane
(Matoso, 2023), Al has the potential for up to 37% of the jobs currently performed by
architects and engineers. Similarly, Chaillou (Chaillou, 2020), argues that Al may
significantly enhance architects' daily practice in the near future. However, this
automation is currently utilized to handle routine and less creative tasks, thereby
allowing professionals to dedicate more time to the strategic and creative facets of their
work. In the same way that Revit, CAD, or other 3D software do not replace architects
but rather modify workflows and possibly enhance their creativity, the same can be
said for artificial intelligence solutions. Additionally, Al has the potential to
revolutionize the way architects operate. Tools such as Midjourney, DALL-E, and
ChatGPT, widely recognized today, illustrate the advancements in Al language models
and visualization models. However, these advancements are accelerating rapidly, with

new capabilities continuously emerging.

Primarily, all Al tools rely on data and machine learning algorithms to function
effectively. In this context, conceptualizing Al as a design partner in a co-creative
process, one of the potential avenues for enhancing our familiarity with this partner
might be to explore the inner workings, production, and learning processes of these
tools. Gaining this understanding could improve our ability to collaborate more

effectively with Al in the design process.

In the subsequent stages of this thesis, topics such as machine learning and deep
learning are discussed to provide a better understanding of this paradigm and its inner
mechanisms. Following this, the reasons why these tools often appear as a 'black box'

to users are explored.
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Figure 2.1: Machine learning, Deep learning, and Al relationship, redrawn by

the author. (Kuntz & Wilson, 2022)
Accordingly, deep learning models are a subset of machine learning models, which in
turn are part of the broader field of artificial intelligence. This relationship can be
likened to a set of Russian dolls, where each layer is nested within the other.
Specifically, 'deep learning' is a subset of 'machine learning,' and 'machine learning' is
encompassed within the broader domain of Al (Figure 2.1). This hierarchical structure
illustrates the interconnected layers, where deep learning techniques represent a more
specialized form of machine learning. Machine learning constitutes a subset of the
broader field of artificial intelligence. (Leach, 2022). This nested structure highlights
how advancements in deep learning contribute to the broader field of machine learning

and Al as a whole.

To comprehend the creative capabilities of Al in both 2D and 3D contexts, it is
imperative to first address the concepts of machine learning and deep learning. As
these tools are employed in a multitude of disciplines, their utilization in the field of
architecture is set to extend beyond the mere inspiration of the design. For those
working in the field of architecture, Al represents a new tool, which can be utilized in
a ‘co-creative’ capacity. However, there is a possibility that we may not have a
comprehensive understanding of this partner or be fully acquainted with its operational
mechanisms. An understanding of the background and learning mechanisms of these
tools can provide insight into their future evolution, highlighting both their strengths

and limitations.



2.1.1 From data to design; ML/DL algorithms

Machine learning and deep learning, as subfields of artificial intelligence, have the
potential to revolutionize design. This section details the fundamental principles of
these technologies, their applications in design, and the solutions they offer.
Specifically, it addresses how these technologies transform design processes and
enhance creative potential. The opportunities presented by machine learning and deep

learning elucidate their role and future impact on architecture.

Traditional programming involves a manual process where the programmer creates the
program. This means that, besides programming the logic, the programmer must
manually decide the rules or write the code. With traditional programming, we have
input data, and the programmer writes the program or rules that use this data and
executes it on a computer to generate the output or answer, as depicted in Figure 2.2
(Hiran et al., 2021). In contrast, machine learning takes both the data and the desired
output as inputs and produces the learning models as the output, as depicted in Figure
2.2. This approach is of particular importance because it allows computers to learn and
adapt new rules within complex and sophisticated environments that are challenging

for humans to comprehend (Hiran et al., 2021).

BATIS = scsacehr TRADITIONAL TElT
PROGRAM N PROGRAMMING (ANSWERS)
(RULES)
TRADITIONAL PROGRAMMING
DATA o MACHINE PROGRAM
LEARNING S

OUTPUT  gurrreeeep
(ANSWERS)

MACHINE LEARNING

Figure 2.2: Traditional Programming vs. Machine Learning (Hiran et al.,
2021), redrawn by author.
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According to Ford (2018), machine learning refers to the development of algorithms
that can improve their own performance through data analysis. These algorithms
autonomously enhance their performance by processing and learning from
information, thereby becoming better at specific tasks. In the context of architecture,
this capability offers immense potential for automating and optimizing various design

Processces.

There are several types of learning in Al, including supervised learning, reinforcement
learning, and unsupervised learning (Ford, 2018). Of these, supervised learning is the
most widely used. This technique involves training an algorithm on carefully prepared,
categorized, or labeled data, which helps the algorithm to understand the data (Ford,
2018). For example, in the field of architectural design, supervised learning can be
employed to identify and categorize a range of architectural styles or features within a
substantial corpus of building images. By providing the system with a vast number of
labeled images, ranging from thousands to millions, the system is able to learn to
differentiate between images that contain specific architectural elements and those that
exhibit different features. Once trained, the system is capable of evaluating new images
and classifying architectural styles or features with a level of accuracy that may surpass

that of the average human observer (Ford, 2018).

The primary objective of reinforcement learning is to facilitate the acquisition of
knowledge through practice or trial and error. Unlike supervised learning, where the
correct outcomes are provided, reinforcement learning enables the system to identify
solutions autonomously. Successful attempts are rewarded, similar to training a dog to
sit and offering it a treat when it succeeds. However, a significant disadvantage is the
considerable number of practice runs required for the algorithm to perform effectively

(Ford, 2018).

Conversely, unsupervised learning entails machines acquiring knowledge directly
from unstructured data in their surrounding environment, akin to human learning
(Ford, 2018). For example, children primarily acquire language through observation
of their surroundings. While supervised and reinforcement learning also play roles in
human learning, the human brain's exceptional capacity to learn through unsupervised

interaction with the environment is particularly noteworthy.
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In the context of architectural design, an understanding of and ability to leverage the
various types of machine learning can significantly enhance the design process. The
incorporation of machine learning algorithms enables architects to automate repetitive
tasks and explore new design possibilities through data-driven insights. The
integration of machine learning in architecture has the potential to facilitate the
creation of more efficient, innovative, and sustainable designs, which could ultimately
transform the field and expand the boundaries of what is possible in architectural

design.

Additionally, Deep learning, a subfield of machine learning that falls under the wider
domain of Al, employs neural networks, particularly deep neural networks, to model
and interpret intricate patterns in data (Ford, 2018). The term "deep" is used to describe
the multitude of layers that are present within these neural networks, through which

data is processed.

Significant progress in artificial cognition can be attributed to recent advancements in
deep learning and the exploitation of large datasets. The role of Graphics Processing
Units (GPUs) has been crucial, along with the abundance of data available for training
neural networks. This combination has dramatically sped up the training process,
allowing neural networks to identify intricate patterns within vast datasets, marking a

major leap in the field of artificial cognition (Siemens et al., 2022).

Deep learning models are frequently viewed as "black boxes" because of the
complexity and lack of transparency in their internal mechanisms (Fong & Vedaldi,
2017). This perception stems from the difficulty in interpreting the decisions made by
deep neural networks, particularly when they handle complex tasks or high-

dimensional data.

Al models typically contain stochastic (random) elements that can lead to different
outputs from the same input. Random factors are present during the training and
operating phases of the model, resulting in different results each time. Models are
trained on large datasets containing trillions of images and learn specific features and
patterns from these datasets; however, they may form a different combination each
time when selecting which images and features to use. Deep learning models navigate

a high-dimensional latent space, and even small changes in this space can cause the
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model to produce different results. The model can interpret the same input in different
ways and produce different results by navigating different regions. In addition, the
models' internal selection mechanisms and the complex network structures and
weights that determine which data to use are learned automatically during training and
cannot be tracked in detail. Therefore, the fact that different images are obtained from
the same prompt is due to factors such as the stochastic nature of the model, the
diversity of the dataset, the navigation in latent space, and the uncertainty of the
internal selection mechanisms. Exactly how these processes work may be unclear even
to those who develop the algorithms, and this is one of the main reasons why the model

is referred to as a 'black box'.

Generative Adversarial Networks (GANs), a subfield of deep learning, take this
complexity and potential even further. GANs consist of two neural networks—the
generator and the discriminator—that compete against each other. This competitive
structure allows GANs to produce high-quality and realistic visual content.
Understanding the fundamental mechanisms and decision-making processes of GANs

can help elucidate how these deep learning models operate.

2.1.2 Al-based generation methods

With an understanding of the fundamental mechanisms and complexities of Al models,
particularly in the context of deep learning, we can now delve into the various
generation methods utilized in architectural design. These methods leverage the
capabilities of Al to produce innovative and efficient design solutions, offering new
possibilities in the field of architecture. This section explores different generation
methods, highlighting their applications, benefits, and limitations in architectural

practice.

GAN:S are an integral part of deep learning. GANs are examined in this section due to
their significant advancements in generating high-quality, realistic visual content,
which is particularly valuable for architectural visual production. By leveraging the
generative capabilities of GANSs, architects can experiment with innovative design
concepts and generate new architectural forms. This exploration aims to uncover the
potential of Al not just as a tool, but also as an active partner in the creative process of

architectural design. Specifically, examining the use of GANs in deep learning for
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visual production can provide insights into their applications and benefits in

architecture.

Goodfellow et al. (2014) introduced the concept of GANSs, a novel architecture
comprising two competing neural networks. The first network, known as the generator,
creates images, while the second network, called the discriminator, evaluates these
images to determine whether they are real or generated by the first network. This
adversarial process drives the generator to produce increasingly realistic images. Due
to their effectiveness in reducing deceptive outcomes, GANs have become highly
popular and have been applied across various fields, including creative practices.
Karras et al. (2017) demonstrated that GANs are capable of creating photorealistic,
high-resolution images of people who do not exist. Their capability to generate highly
realistic visuals has made them valuable in areas such as graphic design, art, fashion,
game development, and medical imaging, offering innovative solutions and enhancing
the realism and significance of results. Also, Goodfellow and colleagues describe
GAN:Ss as a type of generative neural network model used for unsupervised machine
learning (Goodfellow et al., 2014). These models have garnered substantial attention
in the arts and design sectors due to their capacity to learn and produce creations that

are generally considered to be products of human creativity.

Since their introduction by Goodfellow et al. in 2014. Initially, GANs gained attention
due to their innovative approach, where two networks (a generator and a discriminator)

compete to produce images indistinguishable from real ones (Figure 2.3).

latent
space
random
noise

! rea

training
dataset

Figure 2.3: The basic architecture of GANs, comprising two competing
networks: generator G and discriminator D. (Huang et al., 2021)
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In architectural design, it has been found that GANs are particularly effective for
generating 2D images, such as building facades and floor plans, due to the significantly
higher computational demands involved in applying GANs to 3D model generation
(Huang et al., 2021). However, despite these challenges, GANSs can still be adapted to
handle three-dimensional data representations, such as meshes and voxel grids, to
create intricate 3D models. By utilizing techniques like mesh generation, GANs can
generate detailed 3D models applicable in various domains, including architecture,
gaming, and virtual reality. This capability to create both 2D and 3D content
underscores the flexibility and strength of GANSs in advancing digital content creation
across multiple dimensions, despite the higher computational costs associated with 3D

model generation.

The following section presents Al methods relevant to generating 2D and 3D content,

showcasing advancements in both areas.

ARCHITECT

TEXT IMAGE 3D MODEL

TEXT IMAGE 3D MODEL
Al

Figure 2.4: Collaborative exchange between the designer and Al. Redrawn by

the author (Guida & Escobar, 2023).
In this thesis, a co-creation process between Al and designers is envisioned, where
text, 2D, and 3D methods are interconvertible. As illustrated in Figure 2.4, the process
involves a collaborative exchange between the designer and Al, enabling iterative
development. To better understand this dynamic, the thesis explores both 2D and 3D
methodologies, investigating how they can be integrated and transformed within the
co-creation framework. In this process, text can be transformed into images or 3D

models using text-to-image or text-to-3D generation methods. Similarly, images can
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be converted into 3D models or described textually, and 3D models can be generated
from text descriptions or 2D images. The continuous interaction between the architect
and Al allows for iterative refinement, where each type of data influences the others.
This flexible integration demonstrates the potential of Al in architectural design,
fostering a dynamic exchange of ideas and continuous improvements between the

human designer and the Al system.

2.1.2.1 2D generation methods

In recent years, advancements in generative models for 2D content generation have
steadily improved the capabilities for image creation and editing, leading to
increasingly diverse and high-quality outcomes. Pioneering research on generative
adversarial networks (GANSs), variational autoencoders (VAEs), and autoregressive
models has demonstrated impressive results (Li et al., 2024). Additionally, the advent
of generative artificial intelligence (Al) and diffusion models has brought about a
significant shift in image manipulation techniques, with tools like Stable Diffusion,
Imagen, Midjourney, Copilot, and DALL-E 3 revolutionizing the field. These
generative Al models can create and edit photorealistic or stylized images, and even
videos, using minimal inputs such as text prompts. Consequently, they often produce
imaginative content that transcends the boundaries of the real world, pushing the limits
of creativity and artistic expression. With their newfound capabilities, these models
have redefined what is possible in content generation, expanding the horizons of

creativity and artistic expression.

According to Patrick Schumacher of Zaha Hadid Architects states that text-to-image
generation tools are now employed in almost every project during the early phases of
concept creation (Barker, 2023). In addition, other prominent architectural firms have
also adopted various generative technologies and have employed image-to-image
generators developed within their own offices for conceptual design in recent years.
Additionally, Hickock Cole has displayed a building designed using the text-to-text
generator ChatGPT, This concept was later developed in conjunction with the
Midjourney platform, which facilitates the generation of text-to-image outputs.

(Barker, 2023).
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Text-to-image generators have demonstrated significant promise for rendering and
visualization. However, further experimentation is needed on prompt creation and the
correlation between prompts and visual outputs. It has been proposed that the most
effective utilization of Al frameworks in architectural design entails the training of
these systems with architectural data by the architects themselves (Horvath & Pouliou,
2024). Therefore, there is a necessity to explore how these tools can be specifically

adapted for architectural design applications.

In the context of GAN applications, it is evident that image-to-image translation
models, such as CycleGAN, Pix2Pix, and GANimorph, exhibit a notable degree of
variation. These models are designed to transfer features from one dataset to another,
aprocess often referred to as style transfer. Recently, alternative approaches for image-
to-image translation, including Stable Diffusion models (Rombach et al., 2021), have
gained importance. These methods aim to enhance the quality and flexibility of image

transformation processes (Lataifeh et al., 2024).

Text-to-image tools create visual representations of a written text, description, or
keyword while preserving the semantic context of the text (Hanafy, 2023). These tools

interpret the meaning of the input text to generate corresponding images accurately.

Tools like Midjourney and DALL-E primarily utilize deep learning algorithms,
specifically variations of GANs and transformer-based models. Although these tools
can generate architectural visuals, their primary purpose was not specifically for
architecture. Consequently, their internal workings are often unknown to users,
limiting the extent to which architects can control the final output. Therefore, their use
is typically restricted to providing inspiration rather than detailed design work. Al can
generate architectural visuals using tools that convert text to image or image to image.
These tools operate on an input-output system, where text-to-image tools create visual
representations based on written descriptions, and image-to-image tools transform one

image into another while maintaining the semantic context.

However, despite involving the user in a co-creation process, the designer—
specifically the architect in the context of this thesis—has limited control over the final
product. The designer is confronted with the “black box” nature of the tool. While the

designer can modify the output by changing the input text, image, or other parameters,
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they do not have a comprehensive understanding of the internal mechanisms that
generate the output. This lack of transparency creates a barrier between the designer

and the tool.

To further investigate this issue, this thesis explores 3D tools and their applications.
The subsequent chapters examine various 3D methods, their advancements, and their

impact on the design process.

2.1.2.2 3D generation methods

The emergence of advanced neural representations and generative models is driving
rapid development in the field of 3D content generation, enabling the creation of
increasingly high-quality and diverse 3D models. However, this process is generally
more complex than the creation of 2D content. Collecting two-dimensional image data
is significantly more straightforward compared to acquiring three-dimensional assets.
The creation of 3D assets typically necessitates a considerable investment of time and
effort from 3D artists or designers utilizing specialized software (Li et al., 2024).
Moreover, the diverse range of use cases and the individual creative styles of the asset
creators result in considerable variation in the scale, quality, and style of these 3D
assets, which in turn adds to the complexity of 3D data. In order to normalize this
diverse 3D data and render it more suitable for production methods, it is necessary to
establish specific guidelines. A large-scale, high-quality 3D dataset remains a highly
sought-after resource in the field of 3D generation. Furthermore, an investigation into
the extent to which 2D data can be employed in 3D generation may offer a potential

solution to the shortage of 3D data.
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Figure 2.5: Overview of 3D Representations,3D Generation Methods, Datasets
and Applications (Li et al., 2024)
In Figure 2.5 3D generation methods can be categorized into four types based on their
algorithmic approaches: feedforward generation, optimization-based generation,

procedural generation, and generative novel view synthesis (Li et al., 2024).

According to the survey by Li et al. (2024) on Advances in 3D Generation, Figure 2.5
provides an overview of 3D generation methods, datasets, and applications. This
survey highlights that 3D representations serve as the backbone for 3D generation. It
also offers a comprehensive review of the rapidly growing literature on generation
methods, categorized by algorithmic paradigms such as feedforward generation,
optimization-based generation, procedural generation, and generative novel view
synthesis. Additionally, the survey discusses popular datasets and available

applications in the field.

This thesis explores 3D tools and their applications to further investigate this issue.
The subsequent chapters examine various 3D methods, their advancements, and their
impact on the design process. Over the past decade, 3D generation has achieved
remarkable progress and has recently garnered considerable attention due to the

success of generative Al in images and videos.
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In Figure 2.6, based on the provided survey, here is an overview of the 3D generation

methods:
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Figure 2.6: 3D Generation Methods

3D-GAN (Generative Adversarial Networks): The system employs GANs to generate
three-dimensional shapes from a latent space, thereby providing a framework for the

creation of diverse and realistic three-dimensional models.

DeepSDF (Signed Distance Functions): The employment of signed distance functions
enables the representation of three-dimensional shapes, thereby facilitating high-

quality shape reconstruction and interpolation.

DMTet (Differentiable Tetrahedral Meshes): A method for the generation of three-
dimensional tetrahedral meshes that supports differentiable rendering, thereby

enabling optimization-based three-dimensional shape generation.

EG3D (Explicit Geometric Representations): The combination of GANs with explicit
geometric representations results in an improvement in the quality and realism of

generated 3D models.

DreamFusion (Diffusion Models): It employs a combination of diffusion models and
three-dimensional generation, providing an innovative methodology for synthesizing

three-dimensional content from noise via a progressive refinement process.
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PointE (Point Clouds): This approach is geared towards generating three-dimensional
point clouds, thereby enabling the creation of detailed and complex 3D shapes with

fine-grained control over the underlying geometry.

Zero-1to-3 (Zero-shot Learning): A zero-shot method that employs pre-trained models
to generate three-dimensional content from two-dimensional inputs, obviating the

necessity for supplementary three-dimensional data for training purposes.

Instant3D (Real-time Algorithms): The utilisation of real-time algorithms enables the
rapid generation of 3D models, making it an appropriate choice for interactive

applications and fast prototyping.

These developments illustrate the diverse methodologies and substantial
advancements in the field of 3D content generation. The methodologies employed
encompass the utilisation of GANSs, diffusion models, and signed distance functions,
in addition to point cloud generation and zero-shot learning. The objective is to address
the challenges associated with the creation of 3D models by offering a range of

techniques for the generation of high-quality, detailed, and diverse 3D assets.

These methods are used in areas such as video games, movies, virtual characters, and
immersive experiences, which typically require a wealth of 3D assets. However, it is
also anticipated that tools utilizing these methods produce excellent results in the field

of architecture.
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Table 2.1: Summary of the 3D Generation Methods

Generative Generation | Reconstruction | Rendering -
METHOD Model Space Space Technique Supervision
DeepSDF Autoencoder | SDF SDF SUETSD 3D
Rendering
3D-GAN  |GAN Voxel Grid | Voxel Grid | vox¢l 3D
Rendering
DMTet Implicit Surface LEBfie Mesh ibhIEE . 2d and 3D
Surface Rendering
Hybrid Explicit- . . Mixed
EG3D Tmplicit Tri-plane Tri-plan Rendering 2D
DreamFusion | Diffusion NeRF NeRF Volume' Text
Rendering
. B . . Point
Point-E Diffusion Point Cloud | Point Cloud . Text
Rendering
Zero-1-to-3 | Diffusion Pixel Pixel Image-based Image

Table 2.1 provides a summary of the methods. In the context of machine learning and
artificial intelligence, “supervision” refers to the manner in which a model is trained.
The type of supervision determines the characteristics of the data utilized during the

model’s training phase.
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Figure 2.7 Overview of InstantMesh Framework (J. Xu et al., 2024)

Figure 2.7 illustrates the InstantMesh model, which is capable of generating three-
dimensional representations from a single image. As stated by J. Xu et al. (2024), the
InstantMesh framework employs a multi-view diffusion model to generate six novel

views from a single input image at fixed camera positions. Subsequently, the images
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are fed into a transformer-based sparse-view large reconstruction model, resulting in a

high-quality 3D mesh within approximately 10 seconds (J. Xu et al., 2024).

Figure 2.8 illustrates the 3D meshes generated by analogous algorithms. As this study
was conducted by the InstantMesh developers, a comparison is provided between their

results and those produced by other tools.
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Figure 2.8: InstantMesh Tools Comparison (J. Xu et al., 2024)
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Similarly, image-to-3D and text-to-3D tools are advancing, as demonstrated in studies
involving tools like Tripo Al, which is utilized as a case study in this research and can

generate 3D models from visual or textual inputs.

The illustrated example represents a sample model generated by Tripo Al using the
prompt, "Cute little humanoid figure with raccoon ears and tail, cartoon style (Figure
2.9). (Platform of Tripo Al, n.d.)" This tool demonstrates proficiency in creating
animations with accurate textures, colors, and intricate details. Unlike traditional 2D
image tools, Tripo Al employs a 3D prediction mechanism, enabling it to output a

comprehensive point cloud representation of the model from various perspectives.
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Figure 2.9: Prompt: "Cute little humanoid figure with raccoon ears and tail,

cartoon style" (https://www.tripo3d.ai/app?tab=create) Retrieved at:

20.05.2024
These tools are used for various applications, including quick prototyping and
conceptual development in architectural projects. The Tripo Al provides a full set of
tools for creating and manipulating 3D models. It comprises draft model generation
for rapid prototyping from text or image inputs, refinement of draft models into high-
resolution versions, and automatic animation to bring static models to life. It also offers
advanced stylization options, such as transforming models into Lego-style or voxel-
based versions, and format conversion to common formats such as USDZ or FBX,
ensuring compatibility and versatility across several platforms and applications. These
tools are not currently used for generating architectural models but can support the
conceptual development processes in architectural projects through draft model
creation. They also provide quick prototyping capabilities and highlight the potential
of Al in architectural design (Platform of Tripo AL n.d.).

Another tool to be used in this study is ComfyUI. The ComfyUI is a node-based
graphical user interface (GUI) designed specifically for use with Stable Diffusion. The
software enables users to construct image generation workflows by connecting a
variety of blocks, or nodes, in a network. The ComfyUI platform offers a range of
features, including text-to-image, image-to-image, SDXL workflow, inpainting, and
ComfyUI Manager for the management of custom nodes within the GUI (Andrew,

2024).
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Figure 2.10 depicts the default image-to-image workflow. In addition to the input
image, positive and negative prompts can be used to make intermediate adjustments
to the output. ComfyUI's workflow can be quite advanced, depending on the user's

proficiency with the tool. For this, some workflows are presented in Figure 2.11.
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Figure 2.10: Image-to-image workflow (https://stable-diffusion-
art.com/comfyui/#What is ComfyUI)
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Figure 2.11: A workflow created with ComfyUI (Appendix1)
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The image-to-image workflow represents a pivotal process in Stable Diffusion,
whereby an image is generated based on both a prompt and an input image. The
denoising strength may be adjusted to control the extent to which Stable Diffusion

should adhere to the base image.

The advancements in generative models, 3D representations, and algorithmic
approaches have led to significant improvements in the quality and variety of 3D
generation outcomes. The recent success of large-scale models in fields like natural
language processing and image generation has brought considerable attention to 3D
generation. Despite these advances, there are still many hurdles to overcome before
3D models can achieve the high standards necessary for applications in video games,
movies, and immersive digital experiences in VR/AR. This thesis examines some of
the current challenges and explores potential future directions in this area, with a

particular focus on their implications for architecture.

In the following sections, case studies are conducted using tools that include these
methods, and general assessments are made about the explainability, opacity, and
usage conditions of the tools. Before these case studies, the literature review continues

to focus on the concepts of black box and explainability to better classify the tools.

2.2 Black Box to Gray Box

The term "black box" is used to describe the lack of transparency in understanding
how an algorithm arrives at its conclusions. This opacity can result in unintended
outcomes, as algorithms often optimize based on their training data rather than the
intended objectives, leading to results that lack clear, explainable logic (Ahramovich,
2023). When Al tools are used in architecture, it often means that architects do not
understand how the Al reached a specific design solution. This absence of
transparency can hinder the effectiveness and the ability to refine and improve design
solutions. Therefore, it is important to develop the skills to critically evaluate and
adjust Al outputs. Fundamentally, a significant portion of Al applications in the field
of architecture follow a two-step approach. This involves inputting relevant data into
an Al model and then receiving the final designs as output. This process causes
architects to not fully understand the intermediate processes that support the creation

of the designs.
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A related definition of a "black box" is provided by Gmeiner and colleagues. Artificial
intelligence (Al) tools employ a range of methodologies to develop designs by
specified objectives and criteria. These include constraint-based solvers, style transfer,
simulation and optimization, and genetic algorithms. These techniques are becoming
increasingly accessible in commercial 3D CAD design software, including
SolidWorks and Autodesk Fusion 360. A significant proportion of these tools operate
in a manner that may be described as analogous to a 'black box'(Gmeiner et al., 2023).
In this context, the designer inputs their objectives and then assesses the resulting
designs. This process can obscure the tool's inner workings, making it challenging for
designers to rapidly comprehend its functionality, which can impede their creative

abilities. (Gmeiner et al., 2023)

According to Kotnik and Fricker, the term "black box" metaphorically illustrates the
opacity of certain automated systems, such as Al-enhanced design generators. While
the inputs and outputs of these systems are visible, the internal processes remain
largely obscure. This lack of transparency often leads to concerns about trust,
accountability, and ethics in the deployment of Al. As architects, we are encouraged
to focus on understanding these black boxes, aiming to enhance our intellectual
knowledge to "open" them, thereby improving the interpretability and transparency of
Al systems and further developing generative Al tools to benefit our field. (Kotnik &
Fricker, 2024)

Kotnik suggests that one way to address this issue is to develop new tools and methods
that allow architects to better understand and control the computational processes that
they are using (Fricker et al., 2020). Similarly, Kousoulas (2018) suggests that in
today's digital era of architectural thinking, there's a common acceptance of a
mysterious 'black box' (Kousoulas, 2018). This metaphorical box takes in digital inputs

and produces the spatial outputs desired by architects.

According to Zhi Chen, the capacity of deep neural networks (NNs) for image
recognition represents a significant strength (Li et al., 2024). However, the opacity of
the knowledge acquired in the hidden layers presents a challenge due to the intricate
nature of NNs. The lack of interpretability in these networks not only renders them
difficult to trust but also presents obstacles in terms of resolving any issues that may

arise.
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There are various definitions of the term ‘black box’. In his article, "Shattering the
Black Box: In "Technicities of Architectural Manipulation," Stavros Kousoulas (2018)
offers a critique of the commonly accepted view in architectural theory that treats
architectural processes as a simple input-output system. This perspective reduces the
architectural creation process to a mere input-output system, whereby design
parameters are fed into a system and the resulting built environment is obtained

(Kousoulas, 2018).

Kousoulas presents a challenge to this deterministic view by proposing an alternative,
more dynamic and manipulative approach to the discipline of architecture. In
developing his argument, Kousoulas draws upon the theories of prominent
philosophers, such as Simondon, Leroi-Gourhan, Deleuze and Guattari, in order to
propose that architecture should be conceptualised as a reticular technicity. This
approach emphasises the reciprocal relationship between technical objects and their

users.

In order to "shatter" the black box, Kousoulas proposes a shift away from the rigid
input-output model and the adoption of an abductive heuristic approach. This approach
emphasises the active and iterative engagement with materials and techniques
throughout the design process. This enables a transformation in architectural practice
from the mere translation of preconceived ideas into physical forms, to a more

experimental and process-oriented methodology.

In Bruno Latour's 1987 article "Opening Pandora’s Black Box," he explains that the
term "black box" is used by cyberneticists to refer to a machine component or a set of
commands that are too complex to fully understand. Instead, they simplify it to a small
box, focusing only on its inputs and outputs. According to Latour, the black box is not
inherently inaccessible but represents something that can be deciphered by experts

(Latour 1987).

Andrew Witt adds to this by stating that the black box's dubious epistemic reputation
is inevitable due to the user's partial ignorance and lack of knowledge about its
contents. Black boxes also serve as shortcuts to the effects of methods without
requiring content knowledge. This makes them appealing because they can be used

'unconsciously' as functional surrogates for the information they contain (Witt, 2018).
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Within the scope of this thesis, the black box can be examined from two perspectives:
one being the opacity of the tool's operation, and the other, which we can term
"extending the black box." Prof. Andrew Witt has addressed this concept as the "Gray
Box"(Chaillou, 2020). This approach contrasts with the traditional black box method,
where user input is only considered at the beginning, and the machine generates design
options independently, without further user involvement. The gray box method,
however, keeps the designer engaged throughout the entire design process (Witt,
2018). By maintaining the designer's continuous contribution and oversight, this
approach ensures that the quality of the design is higher, as the designer can
continually influence and refine the machine's outputs. This continuous interaction
allows for a more dynamic and responsive design process, leading to outcomes that

better meet the designer's intentions and standards.

2.2.1 The Opaque Nature of the Tool (Black Box):

When generating visuals from given text, the changes made to the text significantly
alter the output, but direct modifications to the visual itself are not possible. This
highlights the tool's opaque nature. Users do not have access to or understanding of
the training dataset that underlies the visual creation process. The tool does not provide
interfaces that allow for detailed intervention or adjustments in the design. As a result,

the co-creation process is limited.

This lack of transparency and control creates a barrier between the user and the tool,
making it difficult to achieve precise or desired outcomes. The inability to understand
or access the inner workings of the tool means that users cannot see how the tool
processes input data to produce the final visual output. Consequently, the collaborative
potential of these tools is significantly diminished, as users cannot engage in an

iterative and interactive design process.

Figure 2.12 exemplifies this situation. When the input text is highly detailed and the
correct keywords are chosen, the tool produces better results. However, achieving
these optimal outcomes often requires trial and error. We are unable to intervene
directly with the tool or make modifications to the final output. One of the ways to use
such tools effectively is through prompt engineering (J. Wang et al., 2023). The

process of prompt engineering entails the creation of detailed and refined prompts that
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direct the Al in the generation of the desired output. By developing this skill further,
users can markedly enhance the quality of the results generated by these tools, thereby
optimizing the process and increasing its efficiency and productivity. This approach
has the potential to result in the generation of designs that are more accurate and of a

higher quality.

Creating images using ChatGPT

INPUT

TEXT: Create an anchitectural pavilion nestled within
a serene natural landscape. The pavilion should
feature a sleek, moderm design with a combination of
glass and wood elements. The structure should have
an open, airy feel with large floor-to-ceiling windows
that offer panommic wiews of the surounding
emvironment.  Incorporate  sustainable  design e
principles, such as a green mof and solar panels,
seambessly integrated into the overall aesthetic. The
pavilion should include an expansive, open interior
space with minimalistic fumishings. allowing fior

flexible use. Outside, a wooden deck should extend ' =

around the pavilion, blending harmonioushy with the - .

natural setting. Soft, warm lighting both inside and e ‘HH‘"‘ "'"'."';':.f-ﬂh'
outside the pavilion should create an inviting . - - .
atrnosphere, Ensure the design feels innovative yet '

harmonizes with natune, offering a tranquil retreat,

BELACKBOX

Figure 2.12: Text-to-Image Schema: The Black Box Nature of the Tool

Exploring solutions to this limitation, such as developing more transparent and
interactive interfaces, could enhance the co-creation capabilities of these tools, making

them more effective and user-friendly for designers and other creative professionals.

2.2.2 Gray Box Approach

Using Al to optimize a set of variables doesn't fully leverage its potential. However,
co-creating with Al, relying on it, and integrating it throughout the design process
reveals its true capabilities and signifies a paradigm shift (Chaillou, 2020). As

previously mentioned, it needs to provide more opportunities for feedback loops.

In architecture, visualization tools, often used for inspiration, are evolving from 2D to
3D capabilities. This evolution indicates that AI can make three-dimensional
predictions. Yet, given the current state of development, we also encounter tools that
do not yet produce consistently successful outcomes. I have conducted a study related
to this topic. This study was carried out using ChatGPT (Figure 2.13) and ComfyUI
(Figure 2.14).
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ComfyUIL as an interface, offers more intervention capabilities compared to 2D tools.
This can help to demystify the black box because it allows designers to track options
and outcomes at each step of the design process. However, the 3D output quality in

this tool is still insufficient.

As demonstrated in the visuals, a 3D model was generated from a 2D image using
ComfyUL Yet, when examining other facades of the model, it becomes clear that while
it does create a three-dimensional structure, its ability to accurately predict the details

of the building's facades is not yet fully developed (Figure 2.15).

Text: “Architectural photography of an ocean-side house into a landscape on the hill,
overlooking the ocean, huge windows, curve-linear forms undulating roof, shape
allows access from the building terrace, nature and architecture intimately
interconnected, Highly textured, Color Grading, Ultra HD, wide angle, Global
[llumination, octane rendering, hyperrealism, high resolution, rule of thirds,

volumetric lighting, shadows, misty, intricate detail, photorealistic, cinematic lighting,

4K.”

Figure 2.13: Input image, created with ChatGPT
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Figure 2.14: Comfy Ul image creation process (Appendix2)
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Figure 2.15: View from each side of the created model

This situation presents a significant challenge. When using an Al tool during the design
phase, we lack control over the final output it produces. Additionally, since we cannot
track the production stages of the generated output, we cannot fully utilize the tool as

a co-creator. In this sense, architects will need to gain a deeper understanding of Al to
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experiment with it and enhance their creative potential, thereby gaining more control

over the design process.

One strategy for enhancing the transparency of the black box is to incorporate
explanation methods. This involves integrating techniques and approaches that allow
for a more understandable and interpretable view of the decision-making processes of

complex Al systems.

2.3 Explainability

In recent years, advancements in artificial intelligence have rendered explainability a
necessity for data scientists, developers, and researchers to comprehend the models
they create, extending beyond a mere requirement. The human-centered explainable
Al framework seeks to address the question of what users require to be made aware of
in order to understand Al systems. Explainability must extend beyond the mere
technical descriptions of how an algorithm functions, as this narrow focus could

compromise the consistency and accuracy of the generated content (Sun et al., 2022).

To illustrate, conversational Al models such as ChatGPT have the potential to generate
'hallucinations', whereby the model produces factually inaccurate outputs with a high
degree of confidence, thereby undermining their reliability for critical decision-

making processes (Maslej et al., 2023).

The term "explainability" was coined in 2004 by Van Lent to describe their system's
ability to clarify how Al-controlled entities behave in simulation games (Van Lent et
al., n.d.). Although the term is quite recent, the challenge of explainability dates to the
mid-1970s when researchers were looking into explaining expert systems (Swartout
and Moore 1988). However, progress in solving this challenge slowed down as Al
made big leaps in machine learning. Since then, Al research has mainly focused on
creating models and algorithms that are great at predicting outcomes, with less

emphasis on explaining how decisions are made (Adadi & Berrada, 2018).

As Al tools become increasingly complex and sophisticated, understanding how
specific decisions are made becomes more challenging. In some cases, it is impossible
to discern the internal workings of a neural network that results in a particular output.

As Al systems take on more decision-making responsibilities, this opacity raises
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concerns about safety, reliability, accountability, fairness, and bias. These issues are
being tackled by a growing body of explainability research spanning multiple
disciplines, including human-computer interaction, computer science, design
informatics, ethics, and law. 'Black-box' models can erode trust in Al, particularly in

fields where Al decision-making has significant real-world implications.

It can be stated that explainability refers to the ability of an artificial intelligence
system's decision-making processes and outcomes to be understood and traced. This
is particularly important for architects, as understanding how Al tools work and how
they arrive at specific results is crucial for the safe and effective use of these tools. As
mentioned in the previous section, Al tools are driven by specific algorithms and are
trained on specific datasets. However, as it is highlighted by Chaillou (2020),
especially in the context of 3D production, the lack of sufficient 3D model inputs can
pose a significant problem. To develop a good architectural production tool, it is

essential to first establish a robust data pool.

2.3.1 The Potential of Explainable Artificial Intelligence (XAI)

Explainable Al has become a new research topic in the context of modern deep
learning. Without completely new explanatory mechanisms, the output of today’s
Deep Neural Networks (DNNs) cannot be explained, neither by the neural network
itself, nor by an external explanatory component, and not even by the developer of the
system. We know that there are different architectures of DNNs designed for different
problem classes and input data, such as Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM). All of them
have to be considered as black boxes - whose internal inference processes are neither

known to the observer nor interpretable by humans (F. Xu et al., 2019).

Das and Rad (2020) define XAI as a field within Al that supports a range of tools,
techniques, and algorithms. The primary goal of XAl is to generate explanations for
Al decisions that are not only of high quality but also interpretable, intuitive, and easily

understandable for humans (Figure 2.16) (Das & Rad, 2020).
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Figure 2.16: Accuracy versus interpretability for different machine learning
models (Das & Rad, 2020)
As shown in Figure 2.16, XAl is considerably more predictable compared to deep
learning models in AI methods. This situation, in a way, helps break the
unpredictability of the Black Box. By providing insights into decision-making
processes, XAl aims to make Al models more transparent and understandable. This
increased interpretability fosters trust, facilitates integration into applications, and

allows for easier analysis and validation of model decisions.

To help people trust and feel confident in Al decisions, it is important to explain how
the algorithm works in a way that is easy to understand. This transparency ensures
fairness and builds trust in the machine-learning system. In simpler terms, clear
explanations make Al decisions more reliable and understandable for everyone (Das

& Rad, 2020).

Lately, Al researchers have been focusing on unveiling the inner workings of neural
networks, transforming them from opaque structures into transparent systems. Figure
2.17 illustrates two primary parts within Explainable Al: transparency design and post-

hoc explanation (F. Xu et al., 2019).
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Figure 2.17: Two categories of Explainable Al: Transparency and post-hoc
explanations (F. Xu et al., 2019).
Transparency design reveals how a model works for developers, helping them
understand the model's structure, individual components, and training algorithms.
Post-hoc explanation, on the other hand, explains why a result is inferred for users,
providing analytic statements, visualizations, and explanations through examples

(Figure 2.17) (F. Xu et al., 2019).

As it can be seen, XAl can play a crucial role in enhancing transparency and
understanding in architectural design processes, fostering trust and acceptance. One
effective strategy is "explainability by design," which involves integrating explanation
features into the Al model early in its development. By incorporating XAlI, architects
gain a deeper understanding of Al-generated design recommendations, ensuring
alignment with their expertise and intentions (Huynh, n.d.). This integration facilitates
more informed and collaborative decision-making, ultimately improving the efficiency
and quality of architectural design. The overall integration of XAI in architectural
design holds significant potential, contributing to the development of Al-powered
building design platforms that deliver optimal and compliant solutions in a shorter
timeframe. In essence, XAl transforms and enhances the architectural design process
by making Al-driven insights transparent, comprehensible, and in harmony with

human expertise and intent.

As studies in the field progress, a critical aspect of the investigation involves assessing
the interpretability of products produced by Al tools, using the principles of
Explainable Al (XAI). The examination of several tools has been a focal point of the

research thus far, and a subset of these tools is presented below for reference.
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Using XAl in generation tools can be seen as an innovative approach with the potential
to fill existing research gaps and make the use of these tools more transparent.
However, the success of this approach depends on the development of new
methodologies and overcoming implementation challenges. Chapter 6 aims to provide

insights into this development by analyzing current tools and their outputs.

2.4 The Concept of Co-Creation

Artificial intelligence systems like ChatGPT gather knowledge from the web and can
interpret this information, engaging with humans on various levels, from addressing
complex inquiries to simply having a conversation (Cooper, 2023). The relationship
between an Al engine and a human is inherently asymmetrical. Humans see the
outcome of the Al's processing but are often unaware of the specific inputs or
reasoning that led to that outcome. Sometimes, the results may even surpass what the
Al's creators anticipated. In contrast, the Al engine utilizes all the information
provided to it to formulate solutions and continuously enhances its training and

capabilities.

Co-creation should be seen as a process where new technologies enable machines and
humans to work together, pushing the limits of creativity as we currently understand
it. This approach requires a new perspective on technology and different development
models. To achieve these results, a new generation of Al technology that fosters a more
balanced relationship between humans and Al is required. This would mean that just
as knowledge is provided to Al, the system reciprocates by sharing what it has learned
and the new methods it has developed for learning—facilitating a mutual co-creation

process (Arbizzani et al., 2023).

According to Candy et al. (2002), co-creativity involves multiple parties contributing
to the creative process in an integrated manner. Unlike situations where tasks are
divided and the outcome is merely the sum of individual efforts, co-creativity enables

collaborative and synthetic contributions(Candy et al. 2002).

As Al is integrated into architectural and design processes, the relationship between
explainability and co-creation becomes increasingly important. Co-creation in Al-

enhanced design transcends simple collaboration; it represents a dynamic partnership
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where humans and machines learn and adapt together. This process requires a high
level of explainability, ensuring that human participants can fully understand and trust
the Al systems they interact with. By fostering transparent interactions and continuous
feedback loops, more robust and innovative design solutions can be developed, thereby

the field of architecture will be advanced through integrated design cybernetics.

Gordon Pask believed that co-creation goes beyond merely working together to create
something; it is a collaborative partnership where humans and machines learn and
evolve through their interactions. (Werner, 2019). The machine is designed to "learn"
from its interactions, adapting its responses based on feedback from human
participants, which in turn enhances the collaborative creativity process. (Werner,
2019). In Gordon Pask's work, co-creation refers to a dynamic interaction between
humans and machines. This interaction allows human participants to engage with the
machine, which then adjusts and responds to their inputs. Such interaction creates a
feedback loop where both humans and machines influence each other, resulting in a

shared creative process. (Werner, 2019).

Gordon Pask and Ranulph Glanville were instrumental in introducing a cybernetic
perspective to architecture and design. Pask viewed architecture as a form of
conversation, suggesting that there is a fundamental link between the two. Central to
his work is the concept of learning environments, which involve humans as integral
components of a resonant system interacting with the environment or tools. Glanville
furthered Pask's ideas, asserting that cybernetics and design activities are essentially
conversations. The integration of human feedback into intelligent digital systems

represents the next advancement towards Integrated Design Cybernetics.

Davis (2021) introduced the concept of human-computer co-creativity, which
integrates a computer as an equal partner in the creative process. In this model, the
computer collaborates with the user in various ways, adapting to user input and
generating responses based on creative algorithms. This real-time improvisation
between human and computer produces a creative product through their interaction,
rather than through a distribution of labor. The contributions of both human and

computer are mutually influential, reflecting true collaboration and improvisation

(Davis, 2021).
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Human-Al co-creativity, a subfield of computational creativity, focuses on the
collaboration between humans and Al in creating shared creative outputs. This area of
study is gaining importance as Al is increasingly utilized in various collaborative
environments, such as music creation, design, and even healthcare, where Al functions
as a virtual nurse(Rezwana & Mabher, 2022). In many current co-creative systems, only
humans can communicate with Al, typically through buttons, sliders, or other user
interface components. However, in these systems, Al often lacks the ability to
communicate back to users, which is crucial for Al to be regarded as a true partner in
co-creativity. In human collaborations, partners exchange feedback and share
information, a dynamic that should be mirrored in human-Al interactions (Rezwana &

Maher, 2022).

Simulate & Explore More

analyze with Al Rapidly with Al

Figure 2.18: The Human-AlI co-creation model (Davis, 2021)

According to Davis, The “Human-Al Co-Creation Model” is a circular process model
(Figure 2.18) including 6 major phases: perceiving, thinking, expressing,

collaborating, building, and testing (Davis, 2021).

The initial step is "perceive," during which human senses are enhanced by artificial
intelligence through the analysis of vast data sets and the use of sensors. In addition to
the conventional human senses, Al employs a multitude of sensors and networks to
transform vast quantities of data into useful information and insights. This enables
humans to gain a more comprehensive understanding from both perceptual and

rational perspectives.
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In the second phase, the "think" function of Al enables humans to engage in more
profound and expansive forms of thought. The inspiration and exploration that Al
offers extend beyond the limitations of the human mind, allowing for deeper and more
comprehensive thinking. This collaboration has the potential to facilitate the
overcoming of resource constraints, thereby enabling the achievement of innovative

and unexpected outcomes.

The third phase, known as the expression phase, enables people to explore and create
with the help of AI quickly. Individuals from various backgrounds, equipped with
diverse ideas, can discover the most effective ways to express themselves. This can be
achieved through creative activities like painting, design, composing music, writing,
performing, programming, or developing prototypes. The use of Al tools empowers
individuals to express their creativity without being limited by a lack of skills or formal
training. In this phase, creativity becomes more important than technical expertise. The
fourth phase focuses on fostering collaboration between humans and Al, allowing both
to harness their unique strengths to achieve greater outcomes. Individuals can work
alongside Al, whether they are operating independently or as part of a group. It is of
the utmost importance to gain an understanding of the respective strengths and
limitations of both humans and Al to assign tasks optimally. The fifth and sixth phases
entail the construction and examination of prototypes. The deployment of Al for
simulation and analysis can facilitate the production of superior-quality items at a
reduced cost. Rehearsing enables the anticipation of outcomes and the preparation for
real-world scenarios. The detailed simulation and computation capabilities of Al
facilitate more efficient and effective construction and testing processes. Throughout
this creative process, humans and Al can be seen to complement each other, thereby
unlocking the potential of both. Dai et al. (2023) also present a framework for human-
Al collaboration in the architectural design process. It combines the use of semantic
Al models, 2D and 3D modeling, and neural networks. The users can iteratively
explore and transform conceptual forms by combining prompts, 2D images, and 3D
models utilizing the Rhinoceros/Grasshopper interface. The framework is validated
through a case study involving early concept exploration for a museum, demonstrating

its practical application in design scenarios.

40



Co-creation is utilized in various fields within the literature, including architectural
design, where it is employed in collaboration with Al. The following section explores
co-creation processes using different Al tools. It addresses the co-creative capacities
of these tools in terms of their transparency and interpretability, as well as how the

establishment of feedback loops can enhance the co-creation processes.

Currently, many visualization tools (such as 2D image tools) generate one or several
outputs from a text input without establishing a feedback loop, which limits our ability
to fully engage in co-creation. While this situation is rapidly changing, it is still too
early to reach the definition of co-creation as proposed by Pask. There are limitations
in these tools that constrain the extent of co-creation possible. However, these
experiments aim to serve as an introduction to co-creation, demonstrating early efforts

in this collaborative process.

In an environment lacking feedback, co-creation can be seen as a desired goal;
however, it remains limited in its current form. While there is potential for humans and
Al tools to collaborate, a true co-creation process has not yet been fully realized. Al
can process human inputs and generate outputs, but due to the lack of mutual
interaction and feedback, co-creation remains constrained. This represents a
collaboration model that is aimed to be fully achieved in the future with more advanced

tools.

Next section involves experimenting with different tools to experience co-creation.
Evaluation of these tools based on specific benchmarks, assessments of explainability,

and user interaction analysis is provided.
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3 EXPERIENCES AND FINDINGS

In this study, various methods were employed to explore co-creation across different
domains, including image-to-image, text-to-image, 2D to 3D, and text-to-3D (Figure
3.1). Through these methods, experiments with Al tools for co-creation were
conducted, and observations were shared based on the outputs. For 2D tools, well-
known and widely adopted options were selected. In contrast, for 3D tools, those that
produce relatively higher quality outputs and have recently gained prominence were

chosen. Tools with a higher level of user intervention were prioritized for this study.

When selecting 3D tools, an attempt was made to identify a common design problem.
However, imposing a single design problem on tools with different usage purposes
may not yield optimal results and could hinder our understanding of each tool's
potential. Focusing on one problem might overlook other possible applications of the
tools. If the chosen problem is too narrow, the full contributions of some tools might
not be realized. Therefore, different usage scenarios were determined to test each tool's

potential and progress.

ARCHITECT -------------- TEXT IMAGE 3D MODEL
Al TEXT IMAGE 3D MODEL
; v
ChatGPT Midjourney ZoeDepth

Stable Diffusion CompyUl
Copilot ChatGPT with GhPython
Davinci ChatGPT with Blender
DALL-E TripoAl
PromeAl
LOOKX
ControlNet
CompyUl

Figure 3.1: Selected Tools
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Figure 3.1 tools selected for use in this study from among the many tools that were

tested using the trial-and-error method.

3.1 2D Generation Tools

By experimenting with tools like Stable Diffusion and Midjourney, various visuals
were generated to explore Al's capabilities in design. Simple prompts were initially
used, revealing that specific keywords like "lighting" and "photorealistic" significantly
enhance the visual output. Comparing the same prompt across different tools showed
distinct variations due to their unique algorithms and training data, highlighting each

tool's strengths and weaknesses.

The selected image acts as a reward to the Al, providing positive feedback. This
positive reinforcement leads to the development of a specific visual language. Over

time, our minds begin to synchronize with this evolving visual language.

This process underscored the "black box" nature of these Al tools, where the internal
workings are opaque to users. Designers mainly influence outcomes by adjusting
prompts or input visuals, which requires a deep understanding of how different
prompts affect results. Despite the limited control over the intermediate stages of the
generation process, these tools demonstrate significant potential for creative

exploration and design innovation.

Figure 3.2 showcases the 2D production results using different tools. To enable

comparison, they were generated using the same prompt.

TEXT: Architectural photography of an ocean-side house into a landscape on the hill,
overlooking the ocean, huge windows, curve-linear forms undulating roof, shape
allows access from the building terrace, nature and architecture intimately
interconnected, Highly textured, Color Grading, Ultra HD, wide angle, Global
Illumination, octane rendering, hyperrealism, high resolution, rule of thirds,

volumetric lighting, shadows, misty, intricate detail, photorealistic, cinematic lighting,

4K.
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The resulting images were as follows:

Davinci LookX PromeAl

Figure 3.2: Text-to-image tools outputs

The findings from this experiment show that, while opaque algorithms pose a
challenge, they also open up previously unimaginable methods for creative expression.
By learning how to use and manipulate prompt-based interactions with these Al tools,
designers can push the boundaries of traditional design paradigms, developing a
symbiotic relationship between human creativity and Al. This continual interaction
between the user and the Al system, which requires prompt engineering, is critical for

realizing the full potential of these tools in design creation.

3.2 3D Generation Tools

As Al tools for generating 3D models have advanced, their controllability has
increased, allowing for more interactive co-creation beyond simple prompts. In this
part of the study, it is demonstrated how designers can engage with 3D tools such as
ZoeDepth, ChatGPT with GhPython, ChatGPT with Blender, TripoAl, and Comfy UI.

These tools provide various levels of control and transparency, facilitating parametric
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design and quick prototyping, thus enhancing the interactive co-creation process in

architectural and visual design.

When selecting these tools, an attempt was made to identify a common design
problem. However, imposing a design problem on tools with different usage purposes
may not yield good results and could affect our understanding of the tool's potential.
Focusing on a single problem could overlook other potential applications of the tools.
If the chosen problem is not broad enough, the contributions of some tools might not
fully emerge. Therefore, different usage purposes were determined to test each tool's
potential and progress. Table 3.1 shows the purposes of the tools and the specific areas

in which they are used.

Table 3.1: 3D Generation Tools Class and Purpose.

TOOL CLASS PURPOSE

3D Scene Reconstruction/ Depth | Extracting depth maps from 2D

ZoeDepth Estimation images and 3D scene reconstruction

Automating and speeding up

ChatGPT with Al-Enhanced Procedural architectural desien and modelin

GhPython Generation & g
processes

ChatGPT with Guidance and automation in 3D

Al-Enhanced 3D Modeling

Blender modeling, and rendering processes

TripoAl Generative Design Cregtlng 3D models from images or
text in seconds

Comfy Ul IS d L T Making Al tools more accessible

interface (GUI)

46



text i
\NPUTO....G.X....b CHATGPT Oul.r-r:?.g_e" [ T p OUTPUT
DepthMap/

3D Mesh Reconstruction

ZoeDepht

FEEDBACK LOGP

INPUT o= CHATGPT FEEDBACK GRASSHOPPER » QUTPUT
3D shapes

script

FEEDBACK LOOP

text

R
FEEDBACK BLENDER G

3D model

INPUT o CHATGPT CHATGPT

script

CHATGPT iag2 TRIPO Al o BLENDER Geesernssp OUTPUT

3D mesh

INPUT Orssnsanss ComfyUl SXTCRITEN » OUTPUT
image image
text 30

text-to-image,

image-to-image,

SDXL workflow,
inpainting

the use of LoRAs

Figure 3.3: Co-Creation Scheme

In Figure 3.3, the workflows of tools with potential for co-creation are illustrated.
Some tools facilitate collaboration between different tools, while others establish a
feedback loop, allowing for an interactive co-creation process between the user and

Al

3.2.1 ZoeDepth

ZoeDepth is an advanced deep learning model designed for metric depth estimation
from single images, showcasing significant potential in the realm of 3D modeling and
computer vision. Depth refers to the perception of the distance between objects and
the viewer. It adds a sense of dimension, as well as realism, to a scene. While depth is
inherent to three-dimensional rendering, achieving or replicating it in two-dimensional

matte paintings or background plates can be challenging. To overcome this difficulty,



ZoeDepth addresses the issue by effectively calculating depth. This enables artists to
transform two-dimensional backgrounds into realistic three-dimensional meshes.
Figure 3.4 shows that the depth prediction is based on the given input image (Bhat et
al., 2023).

Figure 3.4 Top: Input RGB. Bottom: Predicted depth (Bhat et al., 2023)

Accordingly, this tool has the ability to transform depth estimations into 3D mesh
models, facilitating the transition from 2D imagery to 3D models. Additionally,
ZoeDepth can convert 360-degree panoramas into comprehensive 3D representations,
enhancing its utility across various applications. The demonstration of ZoeDepth's
depth prediction capabilities underscores the transformative role of Al in creating 3D

models from depth maps.

Despite current limitations, particularly in accurately predicting the back facades of
buildings, the model's ongoing development promises improvements in precision and
reliability. This iterative enhancement reflects a broader trend in Al research where
continuous refinements lead to progressively better performance, paving the way for
more accurate and practical applications in fields such as architecture and virtual
reality. As ZoeDepth evolves, it is expected to overcome its initial challenges, thereby
solidifying its role as a crucial tool in the seamless integration of 2D and 3D digital

environments.

Figure 3.5 shows the image created using Stable Diffusion XL, and the given image
was first reprocessed in the ZoeDepth tool for depth map estimation (Figure 3.6). In
the subsequent stage (Figure 3.7), the 3D shape derived from the depth estimation is

presented.
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Figure 3.5: Image created with Stable Diffusion XL

Figure 3.6: Depth map of the same image
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Image to 30

Image to 3D mesh

Converta single 2D image to a 3D mesh

Figure 3.7: 3D mesh reconstruction of the same image. That is a 3D model

shown on one side.
However, the three-dimensional effect achieved in this step is not entirely accurate. It
provides an approach to transforming a 2D image into a 3D model. To compare the
3D predictions of the final products, more examples have been included. From these
examples, it can be inferred that the simpler the visual background, the cleaner the
resulting 3D shape. Nevertheless, since the predictions are based solely on depth
estimation, the visual backgrounds do not always translate into successful 3D
productions. Despite this limitation, the tool demonstrates a method for converting 2D

images into 3D models, offering insights into the future possibilities of 3D generation.
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Image to 3D

Image to 3D mesh

Converta single 2D image to a 30 mesh

Figure 3.8: 2D to 3D Example

Imageto 3D

Image to 3D mesh

Converta single 2D image to a 30 mesh

Figure 3.9: 2D to 3D Example

360 Panorama to 3D

Panorama to 3D mesh
Convert a 360 spherical panorama to a 3D mesh

ZoeDepth was not trained on panoramic images. It doesn’t know anything about panoramas or spherical projection. Here, we just treat the estimated depth as radius and some projection errors are expected. Nonetheless,

ZoeDepth still works surprisingly well on 360 reconstruction.

Figure 3.10: 3D Panorama to 3D

In Figures 3.8, 3.9, 3.10 examples demonstrate a method employed by ZoeDepth for
3D production. Unlike traditional 2D visuals, this method utilizes a panorama of a
scene. Although ZoeDepth was not specifically designed for generating panoramic

images, it handles depth estimation well, despite some expected projection errors.
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Nonetheless, ZoeDepth performs effectively in 360-degree reconstructions,

showcasing its capability in this domain.

In this stage of the thesis, the outcomes derived from utilizing the Python coding
capabilities of ChatGPT through different tools are examined. During this phase,
Grasshopper’s GhPython and Blender’s scripting features are employed. Blender and
Grasshopper are both powerful tools for 3D modeling and design, yet they serve
different purposes and offer distinct APIs.

Grasshopper is a visual programming plugin for Rhino, utilizing the GhPython
component to integrate Python. GhPython provides access to Rhino. Geometry and
RhinoScriptSyntax libraries, though it is not as comprehensive as Blender’s bpy API.
Blender offers a fully integrated programming environment through its bpy API. The
bpy library grants access to all Blender functionalities, allowing for direct control over

complex 3D modeling processes.

3.2.2 ChatGPT - Grasshopper’s Python interface

In this study, specific scripts were generated using ChatGPT and then transferred to
Grasshopper's Python Interface (GhPython), a graphical algorithm editor integrated
with Rhino's 3D modeling tools, to create certain parametric shapes. This co-creation

process was facilitated using Python code, written with the assistance of ChatGPT.

The process began by instructing ChatGPT to write Python code to create a Torus
Knot. A Torus Knot is a complex geometric shape that wraps around and through the
central hole of a torus (a doughnut-shaped surface) without intersecting itself. This
specific task was chosen to test the capabilities of Al-assisted design in generating

intricate shapes.

Once ChatGPT provided the code, it was pasted into the GhPython interface in
Grasshopper (Figure 3.11). This integration allowed the script to be executed within
the 3D modeling environment, resulting in the creation of the visual model of the Torus

Knot (Figure 3.12).
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Figure 3.11: GhPython in Grasshopper

i

Figure 3.12: Torus Knot shape produced with Ghpython

The generated shape was initially a basic representation, but its parameters could be
adjusted directly within the script or through Grasshopper sliders, providing a flexible
approach to modifying the design. Figure 3.13 illustrates the Torus Knot shapes after
adjusting its parameters. This iterative process of adjusting parameters and rerunning
the script highlighted the trial-and-error nature of working with Al-assisted design
tools. Despite the designer's lack of coding knowledge, they were able to achieve the
desired 3D model by utilizing ChatGPT as a co-creator to assist the process. By
experimenting with different parameters and observing real-time changes, the designer

successfully obtained the desired outcome.
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Figure 3.13: Torus Knot shape produced with Ghpython

This experience demonstrated the potential of Al in assisting the design process,
particularly in generating shapes without requiring extensive prior coding knowledge.
Al showcased its capability as a co-creator, enabling designers to explore and realize
designs effectively. However, despite the current integration's limitations in producing
complex shapes, it highlighted the hope that Al's presence could simplify the design

process.

In this experiment, consistent success was not achieved while working with GhPython.
For each encountered error, the reason was presented to ChatGPT to devise a solution,
and the revised script was reprocessed. This created a design loop that continued until

a successful outcome was achieved.

Overall, the integration of ChatGPT with GhPython in Grasshopper presents a
promising avenue for architectural and design innovation. By leveraging Al tools,
designers can expand their creative capabilities and simplify the development of
models, thereby enhancing the transparency of the design process. The design loop

established in the Al co-creation process can lead to better results.

3.2.3 ChatGPT- Blender

In this part, an Al-assisted co-creation process using ChatGPT was employed to create
a parametric 3D model in Blender. Initially, ChatGPT was asked to generate a
parametric visual based on the following prompt (Figure 3.14). This design is the first

step in guiding the creation of the model in Blender.
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TEXT: " Create an image of a structure that is an example of parametric design. The
structure should be composed of repeating geometric units in white, capturing
attention both visually and structurally. These units should be shaped like square
prisms and arranged in a regular grid pattern, forming a curved surface. The curved
form should be achieved using parametric data such as the radii and centers of

curvature at specific points on the surface.”
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Figure 3.14: The parametric image generated with ChatGPT.

Subsequently, I requested ChatGPT to write a Python code that could create this visual
in Blender. The response from ChatGPT is as follows (See scripts in Appendix 3).

ChatGPT: “Sure! Here is a Blender script that helps in creating a parametric design
similar to the one shown in the image, using repeating geometric units. The script uses
Blender's Python API to automate the creation of a grid of square prisms arranged on

a curved surface.”(Figure 3.15).

Figure 3.15 Grid of square prisms arranged on a curved surface obtained
using a Blender script.

55



Subsequently, a duplication of the resulting shape was requested (Figure 3.16). Then,
it was requested to add a circular opening in the center of one of the units (Figure 3.17).

and then this modified shape was duplicated (Figure 3.18).

Figure 3.16: Duplication of the previous stage

V44

b4y
b4 4

Figure 3.17: requested to add a circular opening
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Figure 3.18: Duplication of the previous stage

The primary goal of this process was to design a parametric roof model by utilizing
principles of parametric design. Initially, a basic script was developed using Blender's
Python API to generate surfaces and geometries. This script allowed the model to be
shaped based on user-defined parameters such as curvature, dimensions, and other

relevant attributes.

During the second phase, one corner of the model was parametrically elevated, and the
location of the created void was adjusted to align with the center of the mass (Figure
3.19). The script underwent continuous refinement and updates according to user

feedback, ensuring the evolving model met the desired specifications.

Figure 3.19: Elevated Mass
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In the third stage, columns were systematically added to the roof model at equal
intervals, extending down to the ground level. Despite these efforts, the anticipated
effect was not fully realized. This highlighted the limitations of the Al-assisted co-
creation process and emphasized our mastery over the design language crafted in

collaboration with Al underlining the importance of our experiential knowledge.

It may be worth noting that prompt engineering is one of the important topics currently
being discussed. The language we use with Al has its limitations in terms of words,
and it is possible to describe a situation from many perspectives. For this reason, the

design evolves by moving back and forth within a loop.

Moving to the fourth stage, roofing and facade materials were applied (Figure 3.20);
however, at this point, the entire model was assigned a glass material. As a result, a
parametric roof model was successfully created through the Al-assisted co-creation
process. However, it should be noted that the facade was not successfully obtained.
This is because the Al treated all units as columns and lowered them to a plane
designated as the ground level. While this did create a facade-like impression, it was

formed independently of the intended design.
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Figure 3.20: Roofing and facade materials

This journey provides valuable insights into how Al-assisted co-creation processes
might function in the future. Although there are current limitations in effectively
communicating with Al, it has demonstrated the ability to guide complex parametric
design processes and swiftly integrate user inputs, thus enhancing the efficiency and

creativity of the design process. This experience showcases the potential of Al in 3D
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modeling and parametric design, suggesting a promising direction for future

developments in collaborative design technologies.

While creating this design, some results were not achieved on the first attempt.
Specifically, when raising the roof parametrically from one point, it was necessary to
emphasize to ChatGPT that this should be done by elevating the units along the z-axis
rather than extending them along the z-axis. The outputs before making this

clarification were as follows:

ChatGPT: “We can revise the script to create an entrance by raising the units on one
edge of the model. This involves increasing height from one side to the other, creating

the entrance effect.”

This included the information that the intention was to create an entrance by lifting
one corner; however, the desired result was not achieved, as shown in Figure 3.21, this
height increase was achieved by altering the height of the units at the desired corner.
After clarifying that the units should be elevated along the z-axis rather than extended

along the z-axis, the result is shown in Figure 3.19.

Figure 3.21: Lifting one corner

In this example (Figure 3.22), it was expected to randomly add 2 or 3 units on top of

the existing units at specified locations. This allowed us to experience the tool's
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capability to make random decisions and generate outputs. A total of 1725 objects

were created in the model.
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Figure 3.22: Randomly adding 2 or 3 units

Another example was tested, as shown in Figure 3.23, where design approaches to
create a courtyard were explored using ChatGPT. This example demonstrates how the
Al tool can be integrated into the architectural design process and facilitate more

effective collaboration between the user and the Al.
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Figure 3.24: 100 icospheres of varying sizes

In Figure 3.24, 100 icospheres of varying sizes and deformations were randomly
positioned in Blender to create complex volumes. Additionally, each object was
assigned a random color. A light source and a camera were added to the scene, which
was then rendered. This process, similar to the previous example, was assisted by

ChatGPT.
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3.2.4 TripoAl

Tripo Al is an online tool offering free features, utilizing the TripoSR model. TripoSR
is a three-dimensional reconstruction model that employs transformer architecture for
rapid feed-forward three-dimensional generation. It is capable of producing a three-
dimensional mesh from a single image in under 0.5 seconds (Tochilkin et al., 2024).
The objective of TripoSR is to provide researchers, developers, and creative

professionals with access to the most recent developments in 3D generative Al

In the example, Al was used to produce a 3D model following a similar logic used in
ZoeDepth. The initial work involved using ChatGPT to process the desired image
(Figure 3.25), which converted to 3D using TripoAl (Figure 3.26).

Initially, the process started with providing a text description to ChatGPT, which
generated an image based on the input. It has been found through experiments that
TripoAl produces better results with images that have a simple background.
Additionally, it has been observed that lighting and shadows that create depth in the
image result in better outcomes on the model. Therefore, the text and image that

yielded relatively better results among other experiments are as follows:

Text: A modern, multi-story concrete building at night, composed of interlocking cubic
structures. The building features large windows with warm, glowing lights inside,
creating a stark contrast against the dark exterior. The design is complex, with various
levels and cantilevered sections, showcasing an innovative architectural style. The
surrounding area is dimly lit, highlighting the building as the focal point in an urban

environment. (Figure 3.25)

62



Figure 3.26: 3D model created with Tripo Al
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Figure 3.26 served as the basis for creating a 3D model using TripoAl. TripoAl is
equipped with advanced algorithms that can interpret 2D images and predict their 3D
alternatives. The generated model was detailed and structurally coherent, displaying

Al's capability to understand and extrapolate complex geometries from simple inputs.

The patterns of voids on the facades of the obtained example, along with the mass and
voids on the rear facades designed based on the input image, could indicate that Al has
advanced one step further in 3D creation. In Figure 3.27, side views of the model are

provided for a more detailed examination.

Figure 3.27: Side views of the model

The model obtained from TripoAl could be exported as a mesh, a collection of vertices,
edges, and faces that define the 3D structure of the model. This mesh data could then
be imported into design programs like Blender and Sketchup, making it open to further
modifications. In these programs, users could refine the model, adjust parameters, and
enhance details, allowing for greater customization and precision. The exports are

available in formats such as GLB, OBJ, FBX, STL, and USD.
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Figure 3.28: Model on Blender

Figure 3.28 shows the images of the FBX output imported into Blender. It is possible
to perform UV modeling and sculpting on the model. While the model output is
successful and editable, there are still deficiencies. The points that make up the mesh
units are not on the same plane, causing surfaces that appear flat to not be completely
flat. It is anticipated that better output production and a more advanced knowledge of

Blender can correct this issue.
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3D model creation (Figure 3.29) was also attempted using the prompt feature:

Prompt: A large, organic architectural structure resembling a modern, abstract art
form. The building has flowing, wavy surfaces with irregular openings and windows
that blend seamlessly into the curvilinear facade. Its appearance mimics natural rock
formations with smooth, undulating contours. The color palette is warm and earthy,
with shades of beige and tan. Surrounding the building are minimalist landscape
elements such as pathways, benches, and sparse vegetation. The structure is situated
in an open, desert-like environment with distant hills in the background. The overall
aesthetic is futuristic and harmonious, integrating natural and modern design

elements.

Figure 3.29: Tripo Al Experience 2

Prompt: Create an image that features a highly contrasted organic architectural
design for the front facade of a multi-story building. The facade includes bold,
curvilinear forms and deeply shadowed surfaces, with brightly illuminated windows

that create a drama. (Figure 3.30)
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Figure 3.30: Tripo Al Experience 3

TripoAl examples demonstrated Al's capability to predict 3D models and the
importance of providing a user interface for editing these models, enhancing both
explainability and controllability. The ability to export and modify the model in
traditional design software bridges the gap between Al-generated concepts and
practical, usable designs. It allows designers to retain control over the final output,

making adjustments as needed based on their expertise and preferences.

Since Tripo Al is not an architectural program, it does not generate controllable
surfaces in its applications. However, it currently produces good outputs in terms of
figure creation. When interpreted spatially, it creates areas with depth, but it should be
remembered that it is not a tool designed specifically for architectural purposes. For it
to produce designs that yield good results from an architectural perspective, it is
necessary to incorporate architectural thinking into the design processes of these tools.
Either the "black box" nature of these tools needs to become more transparent, or it

will be necessary to work with tools specifically designed for architectural purposes.
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3.2.5 Comfy Ul

In Figure 3.31, the same visual used in Tripo Al has been employed to obtain a 3D
output. The resulting product is a 3D model, but the 3D estimation is weaker compared
to Tripo Al This could be due to the workflow used. More advanced workflows could
be utilized. Although in ComfyUI, seeing some intermediate stages makes the process
more transparent, it has not necessarily improved the final product in this specific

example.
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Figure 3.31: Experience 1 (Appendix 3)
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Figure 3.32: ComfyUI Experience 2

Figure 3.32 demonstrates a workflow for creating a 3D model from a different object.

The ComfyUI image creation process is designed to be both user-friendly and highly
customizable. Users begin by entering a textual description or keywords to define the
visual content they want. They can then modify parameters such as style, color palette,
and resolution to influence the image generation. The tool uses natural language
processing to interpret the input and employs deep learning models to produce an

initial visual representation.

After the preliminary image is generated, it is shown to the user for review. Users can
provide feedback and iteratively adjust the text and parameters to refine the image.
Advanced users have the option to fine-tune specific details using detailed controls
and editing tools. Once the image meets the user’s expectations, it can be finalized and

exported in various formats.

Nevertheless, some reviews suggest that the node-based interface, despite its
considerable versatility and robustness, may prove initially challenging for those new
to the system, requiring a certain degree of familiarity with the manner in which

different nodes connect and interact to form complex workflows (Andrew, 2024) .
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Despite its extensive capabilities, users often encounter difficulties when initially
setting up and configuring the system, particularly if they lack prior experience with
similar systems. Nevertheless, the comprehensive documentation and active user
community that accompany ComfyU]I can mitigate these issues, gradually enhancing

the tool's usability and accessibility.

This process highlights Comfy UI’s comprehensive and user-centric approach,
ensuring active user involvement throughout the image creation journey and
enhancing the co-creation experience by effectively bridging user input and machine-

generated output.
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4 CONCLUSION

This mixed-method study, through comprehensive readings and hands-on tool
experiences, has demonstrated that Al-based design processes hold significant
potential in the field of architecture. The data collected from both research and
practical applications indicate that AI tools substantially enhance architectural
visualization and modeling capabilities, but also reveal some opacity issues that limit
user understanding and control. The findings of this study emphasize the necessity of
focusing on transparency and explainability to effectively integrate Al tools in

architectural design.

Table 4.1 evaluates the explainability levels and user interactions of tools used in
architecture. Each tool has its strengths and weaknesses, offering various advantages
and limitations in architectural applications. As seen, the explainability of 2D tools is
opaquer in both process and output, with limited user interaction. This limitation
hinders the full realization of the co-creation process. As Pask highlighted, tool groups
that create a feedback loop enhance co-creation (Werner, 2019). The explanations
provided to the user can currently remain as understandable text information from
ChatGPT. In tools like ComfyU]I, although familiarity with the tool is required, control

at each stage makes it more explainable.

Creating 3D content is more complex and time-consuming than creating 2D content.
While 2D image data is easier to collect, 3D assets require significant effort from
artists using specialized software. The diversity in use cases and creative styles leads
to variations in the scale, quality, and style of 3D assets, adding to the complexity of
managing 3D data. To standardize this diverse data and make it more suitable for
production, specific guidelines need to be established. A large-scale, high-quality 3D
dataset is still highly desired in the field of 3D generation. Additionally, exploring how
2D data can be utilized in 3D generation might help address the shortage of 3D data.
Therefore, the tools currently used for 3D creation are not yet highly advanced, but

they do demonstrate the potential of these technologies.
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Table 4.1: Explainability of Al Tools.

LEVEL OF

TOOL USER
NAME EXPLAINA INTERACTION GENERAL EVALUATION
BILITY
2D TOOLS Low Limited .Opaque. process, limited user
interaction
ZOEDEPTH Medium Limited Generates depth maps but has limited

detail and control

Workflow-based stages are
COMFY Ul High High experienced by the user, but can be
challenging to use.

Providing more control and

gfﬁ;rggg ) High High transparency through coding.

Feedback loop, higher quality outputs
CHATGPT - . . Feedback loop, greater user
GHPYTHON st i involvement

This research also demonstrates that by using ChatGPT as a translator and guide within
Al's decision-making mechanism, a feedback loop is created that provides user
feedback and strengthens the co-creation process. However, for designers to
effectively utilize this shared language, they need to have at least a basic understanding
of coding to interpret and guide the outputs. In design tools like ComfyUlI, creating
workflows requires users to gain experience and become familiar with the tool. In
summary, Al is taking on a co-creative role as a new design partner, but for the
architects to adapt to this paradigm shift in design language requires gaining

experience in this language.

Table 4.2 provides a general overview of these tools. Since their primary use is not in
the field of architecture, the results produced by these tools come with both advantages
and disadvantages. While their usage in many areas is currently limited, they also

showcase numerous potentials.
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Table 4.2: Comprehensive Features and Applications of Al Tools

Application
Tool Name Area Features | Advantages | Disadvantages Explanation
(for this experiment)
Generates high-quality
. visuals from text
Visual Text-to- | High- Black box descriptions but
2D TOOLS ] image quality
Generation . . nature operates as a black box
generation | visuals e
with limited
transparency.
Generates depth maps
. from images, useful for
ZOEDEPTH éD Model -} Depth map | Fast 3D Limited back | o o0 37y 1o dels but
eneration generation | modeling facade details .
lacks detail control for
back facades.
Assists in writing
o Python code, and
Text-Code Python Speeds up Limited for streamlining the coding
CHATGPT . . . the coding | complex
Assistance integration process, but may be
process codes ..
limited for complex
code generation.
Enables detailed
CHATGPT - | Parametric Parametric | Direct Requires parametrlc.demgn w¥th
GHPYTHON | Desien 3D control over | Python Python scripts, offering
& modeling | 3D models | proficiency high control over 3D
shapes and models.
Facilitates complex
. parametric designs
CHATGPT - | Parametric 3D model Complex Requires using Python scripts in
. creation shape Blender .
BLENDER | Design . . . Blender, providing
with code | generation | proficiency .
high control and
transparency.
- Converts 2D images to
2D to 3D . Not optimized 3D models, ideal for
3D Model Quick for . .
TRIPO Al G . model . . quick prototyping but
eneration . prototyping | architecture L
conversion of lacks optimization for
y architectural purposes.
Offers an interface for
2D-3D . generating visuals but
COMFY UI | Generation, &fiﬁfw frlzztli)lz Complex requires advanced
Workflows control for detailed
adjustments.

To briefly evaluate the tools used in the experiments, ZoeDepth, provides more input
compared to 2D tools as it generates depth estimations. However, the quality and

capacity of its productions are currently limited. ZoeDepth has current limitations in
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accurately predicting the back facades of buildings, but ongoing development
promises improvements. Similar to 2D tools, ZoeDepth does not allow for user

interface intervention during the production process.

Tripo Al is useful for quick prototyping and conceptual development in architectural
projects. It supports the creation and manipulation of 3D models with advanced
stylization options. This tool demonstrates significant potential in architectural design

through draft model creation and rapid prototyping capabilities.

Grasshopper and Blender, in contrast, offer higher levels of explainability and create
a feedback loop, allowing greater user involvement in the process. While Blender and
Grasshopper are both powerful tools for 3D modeling and design, they serve different
purposes and offer distinct APIs. GhPython provides access to Rhino. Geometry and
RhinoScriptSyntax libraries, though it is not as comprehensive as Blender’s bpy API.
Therefore, the outputs generated using Blender were superior. More complex

commands requested from Grasshopper often went unanswered.

ComfyUI, operating through workflows, allows users to experience each stage of the
process. However, the tool's structure can be challenging for those not familiar with
this language. Nevertheless, there are many platforms available to learn how to use

this tool.

These tools have also been compared using specific benchmarks. Figure 4.1 provides
a comparative evaluation of different Al tools based on usability, process time, detail
level, algorithm success rate, and integration capacity with other tools. These values
are derived from the author's experiences and observations during the experiments
conducted, reflecting practical insights into the performance and capabilities of each

tool.
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Usability Processing Time Detail Level

(seconds)
0 0 0
Comfy Ul Comfy Ul ZoeDepth
Midjourney Stable Diffusion Midjourney
ChatGPT with Blender Midjourney Stable Diffusion
ChatGPT with GhPython ChatGPT with GhPython ChatGPT with GhPython
ZoeDepth ZoeDepth Comfy Ul
Tripo Al ChatGPT with Blender ChatGPT with Blender
Stable Diffusion Tripo Al = Tripo Al
10
Algorithm Success Rate Integration with Other Tools
0 0
ZoeDepth ZoeDepth
ChatGPT with GhPython Midjourney
ChatGPT with Blender Stable Diffusion
Comfy Ul
Comfy Ul
Tripo Al
ChatGPT with GhPython
Midjourney

ChatGPT with Blender

Stable Diffusion
= == Tripo Al

10 10

Figure 4.1: Tools Benchmarks Comparison



Usability: Usability refers to how easily and effectively a tool can be used by a user.
Tools like Stable Diffusion and ZoeDepth generally offer higher usability due to their
accessibility on online platforms and user-friendly interfaces. In contrast, tools like
Midjourney may present a more complex usage experience because they operate
through external platforms (e.g., Discord) and require a subscription model, which can
limit accessibility and ease of use. Tools used in conjunction with ChatGPT, which
require interaction with script-based environments, demand more technical knowledge
and skills, making them less user-friendly. Meanwhile, Comfy UI provides a more
complex user experience because it requires all functionality to be built within its own

interface.

Processing Time: Processing time refers to the duration required for a tool to complete
a specific task and can vary depending on the computing power of the hardware used.
According to Figure 4.1, some tools offer shorter processing times, while those that
generate 3D models and provide more detailed results may require longer processing
times. For example, ChatGPT with Blender and Tripo Al have longer processing times

compared to other tools because they produce more complex and detailed models.

Detail Level: Detail level indicates the degree of detail in the content produced by the
tools. 3D modeling tools generally have a higher level of detail due to the more
complex structures they produce. For example, ChatGPT with Blender and Tripo Al

demonstrate superior performance in 3D modeling with high levels of detail.

Algorithm Success Rate: The algorithm success rate measures a tool's ability to
produce the desired output. Tools that produce 2D content generally have high success
rates; however, these tools can limit user interaction as they do not allow direct
modification of the outputs. When a design loop is created with ChatGPT, successful
outcomes have been achieved through user feedback and adjustments. However, this
process also involves trial and error and the correction of errors that arise. As work in
this area increases and usage practices are developed, it is expected that the success
rate of the outputs will improve over time. Currently, the success of prompt or image-

based tools in generating the desired output is as shown in Figure 4.1.

Integration with Other Tools: Integration capacity with other tools reflects how well

a tool can integrate with different software and platforms. 3D modeling tools generally
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have more flexible integration capabilities. For instance, Tripo Al and ChatGPT with
Blender have strong integration capabilities with various 3D tools, making them more

versatile and functional.

In conclusion, Figure 4.1 provides an overview of how Al tools perform across
different criteria, helping users evaluate which tool is most suitable based on their

needs and usage scenarios.

The findings from this study reveal that, as previously discussed, Al tools have made
significant strides in supporting creative tasks but often operate as "black boxes,"
limiting user understanding and control over the design process. This lack of
transparency hinders architects' ability to fully engage and collaborate effectively with
these tools. The study also shows that a more "Gray Box" approach is present in the
co-creation process with Al highlighting the importance of getting to know the co-
creation partner better. It underscores the need for more transparent and interactive
interfaces that enhance co-creation capabilities, making Al tools more effective and

user-friendly for designers.

In this context, future research and development should focus on enhancing the
explainability of Al tools to strengthen human-Al collaboration. The implementation
of Explainable Al (XAI) methodologies holds significant promise in making Al-driven

design processes more transparent and controllable.

Additionally, the development of Al tools specifically tailored for architectural design
will be crucial. These tools should incorporate user feedback mechanisms, allowing

for iterative design loops that enhance the co-creation process.

In conclusion, this study paves the way for future research and development aimed at
overcoming current limitations and unlocking the full potential of Al as a co-creator

in architectural design.
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APPENDIX

Appendix 1 Example script from ComfyUI
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Appendix 2 Script from ComfyUI

® TripoSR Model Loader
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Appendix 4 Script from ComfyUI

# TripoSR Model Loader
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Appendix 3 Script from ChatGPT:
import bpy

import math

# Function to create a single square prism (cube) with a material

def create square prism(location, size, material):
bpy.ops.mesh.primitive _cube add(location=location)
bpy.ops.transform.resize(value=(size, size, size))
bpy.ops.object.transform_apply(scale=True)

bpy.context.object.data.materials.append(material)

# Function to create a column under a square prism with a material

def create column(location, size, height, material):
bpy.ops.mesh.primitive _cube add(location=location)
bpy.ops.transform.resize(value=(size, size, height / 2))
bpy.ops.object.transform_apply(scale=True)

bpy.context.object.data.materials.append(material)

# Function to generate parametric curved surface with square prisms (cubes) and
columns

def generate parametric_surface with columns(rows, cols, size, curvature X,
curvature y, global offset x=0, global offset y=0, hole radius=7,
create hole=True, raise height=5):

total rows =rows * 2 # Since we are generating four surfaces, we consider
double rows and cols

total cols = cols * 2

max_distance = math.sqrt((total rows - 1)**2 + (total cols - 1)**2) # Max
distance for normalization

ground level =-10 # Adjust the ground level as needed

# Create glass material
glass material = bpy.data.materials.new(name="Glass")
glass material.use nodes = True

bsdf = glass material.node_tree.nodes["Principled BSDF"]
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bsdf.inputs["Transmission"].default value =1
bsdf.inputs["Roughness"].default value =0
bsdf.inputs["IOR"].default value = 1.45 # Index of Refraction for glass

for i in range(total _rows):
for j in range(total _cols):
# Calculate the distance from the top-left corner (0,0)

distance to corner = math.sqrt(i**2 + j**2)

# Calculate the position based on the curvature
X =1 * size * 2 + global offset x
y =] * size * 2 + global offset y

z = math.sin(i * curvature x) * math.cos(j * curvature y) * size * 2

# Parametrically raise the corner

raise_factor = (max_distance - distance to corner) / max_distance #
Normalized distance

z +=raise_factor * raise_height # Ensure cubes touch each other

# Skip creating a prism if within the hole radius and if create hole is True

distance to center = math.sqrt((i - total rows // 2) ** 2 + (j - total cols // 2)

if create_hole and distance to center < hole radius:

continue

location = (x, y, z)

create_square prism(location, size, glass material)

# Create a column under the square prism
column_height = z - ground_level
column_location = (x, y, (z + ground_level) / 2)

create_column(column_location, size, column_height, glass material)
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# Parameters

rows = 20 # Number of rows per surface

cols =20 # Number of columns per surface

size = 0.5 # Size of each square prism (cube)

curvature x = 0.3 # Curvature factor in the x-direction

curvature y = 0.3 # Curvature factor in the y-direction

hole radius =7 # Radius of the hole in the center, adjusted for a mid-sized hole

raise_height =5 # Maximum raise height for the corner

# Generate the surfaces with raising effect applied to one corner and add columns

generate_parametric_surface with _columns(rows, cols, size, curvature Xx,
curvature y, global offset x=0, global offset y=0, hole radius=hole radius,
create_hole=True, raise height=raise_height)

# Adjust camera position
bpy.data.objects['Camera'].location = (40, -40, 40)

bpy.data.objects['Camera'].rotation _euler = (math.radians(60), 0, math.radians(45))

# Adjust light position
bpy.data.objects['Light'].location = (40, -40, 60)
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