
Hierarchical Spatial Decompositions Under Local

Differential Privacy

by

Ece Alptekin

A Dissertation Submitted to the

Graduate School of Sciences and Engineering

in Partial Fulfillment of the Requirements for

the Degree of

Master of Science

in

Computer Science and Engineering

October 3, 2024

Hierarchical Spatial Decompositions Under Local Differential Privacy

Koç University

Graduate School of Sciences and Engineering

This is to certify that I have examined this copy of a master’s thesis by

Ece Alptekin

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by the final

examining committee have been made.

Committee Members:

Assist. Prof. Dr. Mehmet Emre Gürsoy (Advisor)

Assoc. Prof. Dr. Alptekin Küpçü

Prof. Dr. Yücel Saygın

Date:

to Mother and Father

iii

ABSTRACT

Hierarchical Spatial Decompositions Under Local Differential Privacy

Ece Alptekin

Master of Science in Computer Science and Engineering

October 3, 2024

The popularity of smartphones, GPS-equipped devices, social networks, and con-

nected vehicles continues to increase the volume of spatial data available for collec-

tion and analysis. Spatial decompositions assist in handling big spatial data, and

they have been commonly used in the centralized differential privacy (DP) litera-

ture for range query answering, spatial indexing, count-of-counts histograms, data

summarization, and visualization. However, their applications under the emerging

local differential privacy (LDP) notion are relatively scarce.

In this thesis, we study the problem of building hierarchical spatial decomposi-

tions under LDP, focusing on two methods: quadtrees and kd-trees. We develop two

solutions for quadtrees: a baseline solution that is inspired by the centralized DP

literature, and a proposed solution that utilizes a single data collection step from

users, propagates density estimates to remaining nodes, and performs structural

corrections to the quadtree. Since kd-trees rely on node medians which are data-

dependent, we observe that it is not feasible to build kd-trees using a single data

collection step. We therefore propose an iterative solution that constructs kd-trees in

top-down fashion by utilizing a novel algorithm for estimating node medians at each

tree depth. We experimentally evaluate our quadtree and kd-tree algorithms using

four real-world spatial datasets, multiple utility metrics, varying privacy budgets,

and tree parameters. Results demonstrate that our algorithms enable the building

of accurate spatial decompositions that provide high utility in practice. Notably,

our quadtrees and kd-trees achieve substantially lower errors in answering spatial

density queries (up to 10-fold improvement) when compared with a state-of-the-art

method.

iv

ÖZETÇE

Lokal Diferansiyel Mahremiyet Korumalı Hiyerarşik Konumsal

Ayrışımlar

Ece Alptekin

Bilgisayar Mühendisliği, Yüksek Lisans

3 Ekim 2024

Akıllı telefonlar, GPS donanımlı cihazlar, sosyal ağlar ve bağlantılı araçların popüler-

liği, toplanması ve analiz edilmesi mümkün olan konumsal verinin hacmini arttırmaya

devam etmektedir. Konumsal ayrışımlar, büyük konumsal verilerin işlenmesine

yardımcı olur ve merkezi diferansiyel mahremiyet (DP) literatüründe aralık sorgusu

yanıtlama, konumsal dizinleme, sayım-histogramlar, veri özetleme ve görselleştirme

için sıklıkla kullanılmıştır. Ancak, yeni gelişen lokal diferansiyel mahremiyet (LDP)

kavramı altındaki uygulamaları nispeten azdır.

Bu tezde, hiyerarşik konumsal ayrışımların LDP altında oluşturulması problem-

ini inceleyerek, özellikle iki yönteme odaklanıyoruz: dördüzağaçlar ve kd-ağaçları.

Dördüzağaçlar için iki çözüm geliştiriyoruz: merkezi DP literatüründen esinlenen

bir temel çözüm ve kullanıcılardan tek bir veri toplama adımı kullanan, yoğunluk

tahminlerini diğer düğümlere ileten ve dördüzağaç üzerinde yapısal düzeltmeler

gerçekleştiren bir önerilen çözüm. Kd-ağaçları, veriye bağımlı olan düğüm medyan-

larına dayandığı için, tek bir veri toplama adımını kullanarak kd-ağaçları oluştur-

manın mümkün olmadığını gözlemliyoruz. Bu nedenle, her ağaç derinliğinde düğüm

medyanlarını kestirmek için yeni bir algoritma kullanan, üstten aşağıya doğru kd-

ağaçları oluşturan iteratif bir çözüm öneriyoruz. Dört gerçek konumsal veri kümesi,

çeşitli fayda ölçütleri, değişen mahremiyet bütçeleri ve ağaç parametreleri kulla-

narak dördüzağaç ve kd-ağacı algoritmalarımızı deneysel olarak değerlendiriyoruz.

Sonuçlar, algoritmalarımızın pratikte yüksek fayda sağlayan doğru konumsal ayrışım-

ların oluşturulmasını mümkün kıldığını göstermektedir. Özellikle, dördüzağaçlarımız

ve kd-ağaçlarımız mevcut bir yöntemle karşılaştırıldığında, konumsal yoğunluk sorgu-

larını yanıtlarken önemli ölçüde daha düşük hata oranlarına ulaşmaktadır (10 kata

kadar iyileşme).

v

ACKNOWLEDGMENTS

I would like to start by expressing my profound gratitude to my advisor and

mentor, Assist. Prof. Mehmet Emre Gürsoy, for his consistent guidance and support

during my degree. I owe my development as a researcher and the completion of this

thesis to his support.

I am grateful to Assoc. Prof. Dr. Alptekin Küpçü from Koç University and

Prof. Dr. Yücel Saygın from Sabancı University for participating in my thesis jury

committee. Their valuable comments and feedback helped me improve my thesis.

I would like to extend my thanks to Mom and Dad for their love and support

throughout my life. I want to convey my gratitude to the members of the SPADE

Lab and all other students and co-workers at Koç University with whom I had the

opportunity to collaborate. I particularly thank Efehan Güner and Berkay Kemal

Balioğlu for the support they provided during my time at Koç University.

Finally, this research was supported by The Scientific and Technological Research

Council of Turkiye (TUBITAK) under project number 121E303. I sincerely thank

TUBITAK for their support.

vi

TABLE OF CONTENTS

List of Tables ix

List of Figures x

Abbreviations xi

Chapter 1: Introduction 1

1.1 Contributions . 3

1.2 Thesis Organization . 4

Chapter 2: Related Work 5

2.1 LDP for Spatial Data . 5

2.2 Spatial Decompositions Under Centralized DP 6

2.3 Spatial Decompositions Under LDP 7

Chapter 3: Preliminaries 8

3.1 Data Model and Background . 8

3.2 Local Differential Privacy . 9

3.3 Quadtrees . 11

3.4 Kd-trees . 13

Chapter 4: Building Quadtrees under LDP 15

4.1 Quadtrees under Centralized DP . 15

4.2 Baseline Solution for Quadtrees . 16

4.3 Proposed Solution for Quadtrees . 19

Chapter 5: Building KD-trees under LDP 23

5.1 Overview of our Kd-tree Solution . 23

vii

5.2 Finding Medians . 25

5.3 Determining Child Densities . 29

Chapter 6: Experimental Evaluation 31

6.1 Experiment Setup . 31

6.2 Utility Metrics . 32

6.3 Results of Quadtree Algorithms . 34

6.4 Results of Kd-tree Algorithms . 37

6.5 Accuracy of LDP Median Computation 40

6.6 Comparison Against Prior Work . 42

Chapter 7: Conclusion 44

Bibliography 45

viii

LIST OF TABLES

6.1 AQE and TED quadtrees under different heights h∗ with threshold

θ = 10000. 36

6.2 NDD of quadtrees under different heights h∗ with threshold θ = 10000. 37

6.3 AQE of quadtrees with privacy budget ε = 1, varying h∗ and θ. . . . 38

6.4 AQE of kd-trees with threshold θ = 10000, varying ε and h∗. 39

6.5 AQE of kd-trees with the improved strategy, ε = 1.0 and h∗ = 4. θ

is varied between 5000 and 40000. 40

ix

LIST OF FIGURES

3.1 Sample users with their locations represented as points (on the left)

and the corresponding quadtree (on the right). 11

3.2 Sample users with their locations represented as points (on the left)

and the corresponding kd-tree (on the right). 13

5.1 Sample division of g(v) into α = 4 equi-sized buckets. Bounds xmin,

xmax, ymin, ymax shown in blue are for bucket 3. Since all buckets are

derived from node v, the owner of all buckets is v. 25

5.2 Illustration of computing the median of v and estimated densities of

two children vc1 , vc2 (Algorithm 6). 29

6.1 Results of our baseline vs proposed quadtree solutions with AQE,

TED and NDD metrics (one metric each row) on Brightkite, Gowalla,

Kaggle and Foursquare datasets (left to right). 34

6.2 ME of medians found using our LDP algorithm with varying ε and

datasets (order from left to right: Brightkite, Gowalla in the top row,

Kaggle, Foursquare in the bottom row). 41

6.3 Errors of quadtrees, kd-trees and ASDQ-LDP [Tire and Gursoy, 2024]

with varying ε and datasets (from left to right: Brightkite, Gowalla

in the top row, Foursquare, Kaggle in the bottom row). 43

x

ABBREVIATIONS

LDP Local Differential Privacy

DP Differential Privacy

OUE Optimized Unary Encoding

AQE Average Query Error

TED Tree Edit Distance

NDD Node Density Difference

xi

Chapter 1: Introduction 1

Chapter 1

INTRODUCTION

The rising popularity of smartphones, GPS-enabled mobile devices, social net-

works, connected vehicles, and the Internet of Vehicles all contribute to the ubiquity

of location-based services (LBSs) and applications. As a consequence, large volumes

of spatial data are nowadays available for collection, storage, and analysis. How-

ever, ensuring the privacy of spatial data is crucial because it contains sensitive

information about an individual’s movements, habits, and preferences, potentially

revealing personal details such as home and work addresses, frequented places, and

social relationships.

Local Differential Privacy (LDP) has recently emerged as a state-of-the-art pri-

vacy standard in academia and the industry [Cormode et al., 2018, Ding et al.,

2017, Erlingsson et al., 2014, Gursoy et al., 2019, Yang et al., 2020]. With the rising

adoption of LDP and the need to protect users’ location privacy, there is increas-

ing interest in applying LDP to spatial data. Indeed, LDP has been applied to

spatial data aggregation [Chen et al., 2016], LBS usage [Hong et al., 2021, Wang

et al., 2022], spatial query answering [Tire and Gursoy, 2024], trajectory collection

[Yang et al., 2022] and sharing [Cunningham et al., 2021, Du et al., 2023], as well

as indoor positioning [Kim et al., 2018, Navidan et al., 2022]. On the other hand,

spatial decompositions, which are a common approach to dealing with big spatial

data, have not received much attention under LDP. Spatial decompositions parti-

tion (decompose) the geographical space into smaller subspaces through the likes

of tree-based and grid-based data structures. They have been used in the central-

ized DP literature for range query answering [Cormode et al., 2012, Shaham et al.,

2022, Yan et al., 2020], spatial indexing and modeling [Niknami et al., 2020, Zhang

Chapter 1: Introduction 2

et al., 2016], count-of-counts histograms [Kuo et al., 2018], data summarization and

visualization [Bagdasaryan et al., 2022, Qardaji et al., 2013], as well as synthetic

data generation [Gursoy et al., 2020, Gursoy et al., 2018a, He et al., 2015]; however,

their applications in LDP are relatively scarce.

Motivated by the above, in this thesis, we study the problem of building hier-

archical spatial decompositions for spatial data under LDP. In particular, we focus

on two types of popular decompositions: quadtrees and kd-trees. For quadtrees, we

first propose a baseline solution inspired by a method from the centralized DP liter-

ature [Zhang et al., 2016] and adapt it to LDP by making modifications. However,

we observe that this baseline solution yields low utility in practice. This is because

the baseline solution divides the total ε privacy budget into several pieces, each

used for LDP estimation in one depth of the quadtree. Since the privacy budget

used per estimation is smaller, higher noise is added to satisfy LDP, which causes

noisy node densities and erroneous quadtree structures since estimation results also

affect whether an internal tree node should split (have children). To address these

weaknesses, we then develop a new, proposed solution which performs a single LDP

estimation. This single-step estimation is performed at the hypothetical leaves of the

quadtree and results in low noise, thereby enabling high-quality estimates to be ob-

tained at the leaves. Then, leaves’ densities are propagated upwards (in bottom-up

fashion) to populate the densities of remaining nodes. Finally, structural corrections

and consistency are achieved for the quadtree in a top-down manner.

For kd-trees, we observe that it is not possible to perform a single step of estima-

tion and then propagate the densities since kd-trees rely on node medians which are

data-dependent. Therefore, we propose a solution that iteratively constructs a kd-

tree in top-down fashion, which utilizes a novel algorithm for estimating the medians

of nodes at each depth of the kd-tree. Our algorithm bucketizes the geographical

regions covered by a kd-tree node, obtains LDP density estimates for each bucket,

and then finds which bucket contains the median value based on the estimates. To

determine the densities of children nodes, we propose two strategies: (i) our initial

strategy uses the LDP estimates obtained in the previous step, and (ii) our improved

strategy evenly divides the parent’s density. We experimentally observe that the im-

Chapter 1: Introduction 3

proved strategy, albeit simpler, provides higher accuracy than the initial strategy.

This is because our median estimation algorithm typically achieves high accuracy

in determining the median (higher than bucket-wise density estimation), therefore

evenly dividing based on the LDP median is effective.

We experimentally evaluate our quadtree and kd-tree algorithms using four real-

world spatial datasets, three utility metrics (AQE, TED, NDD), and typical privacy

budget values such as ε= 0.1, 0.5, 1, 2. For quadtrees, results show that the proposed

solution consistently outperforms the baseline solution in a variety of settings and

quadtree parameters. For kd-trees, results show that the improved strategy yields

lower error compared to the initial strategy in the majority of the experiments.

Furthermore, upon experimenting with our novel LDP median estimation method,

we observe that it can estimate LDP medians with generally ≤ 2% error (compared

to the true medians) when ε ≥ 0.5. Finally, we compare our quadtree and kd-

tree algorithms against a state-of-the-art work from the literature for answering

spatial density queries under LDP, abbreviated as ASDQ-LDP [Tire and Gursoy,

2024]. Comparison results show that our algorithms achieve substantially lower

errors under various datasets and ε values, offering up to 10-fold improvement in

some settings.

1.1 Contributions

In short, the contributions of this thesis can be summarized as follows:

1. We propose two solutions for building quadtrees under LDP: a baseline solution

inspired from the centralized DP literature, and a proposed solution which

relies on a single step of LDP data collection to address the iterative noise

accumulation in the baseline solution.

2. We propose a solution that iteratively constructs a kd-tree under LDP in

top-down fashion, which internally utilizes a novel algorithm for estimating

nodes’ medians at each depth. Furthermore, two strategies are proposed and

evaluated for determining the densities of children nodes in kd-trees.

3. We experimentally evaluate all algorithms and solutions using four real-world

Chapter 1: Introduction 4

spatial datasets, multiple ε values, multiple metrics, and parameters. Results

demonstrate that our algorithms are effective, and they result in accurate

spatial decompositions that can be used in practice.

4. Finally, we experimentally compare our quadtrees and kd-trees against ASDQ-

LDP [Tire and Gursoy, 2024], a state-of-the-art work for answering spatial den-

sity queries under LDP. Results show that our quadtrees and kd-trees achieve

substantially lower errors under various settings.

1.2 Thesis Organization

The rest of the thesis is organized as follows. In Chapter 2, we survey the related

work and highlight our main differences. In Chapter 3, we establish preliminaries

regarding the data model, LDP, quadtrees, and kd-trees. In Chapter 4, we provide

our algorithms for building quadtrees under LDP. In Chapter 5, we provide our

algorithms for building kd-trees under LDP. Experimental evaluations are reported

and experiment results are discussed in Chapter 6. Chapter 7 concludes this thesis.

Chapter 2: Related Work 5

Chapter 2

RELATED WORK

2.1 LDP for Spatial Data

LDP has gained widespread acceptance as a popular privacy notion in recent years,

and it has also been deployed in the industry [Apple, 2020, Cormode et al., 2018,

Ding et al., 2017, Erlingsson et al., 2014, Gursoy et al., 2019, Yang et al., 2020].

With the rising popularity of LDP, there is increasing interest in applying it to

spatial data, considering the ubiquity of location-based services (LBS) and the need

to protect users’ location privacy. Chen et al. [Chen et al., 2016] proposed a variant

of LDP, called personalized LDP, for spatial data aggregation. Hong et al. [Hong

et al., 2021] proposed a perturbation mechanism designed to reduce the error of each

perturbed location under LDP. Wang et al. [Wang et al., 2022] developed L-SRR (an

LDP version of Staircase Randomized Response) to privately collect users’ locations

while they remain useful for LBS applications such as traffic density estimation and

k-nearest neighbors. Yang et al. [Yang et al., 2022] studied the problem of collecting

location trajectories under LDP. Cunningham et al. [Cunningham et al., 2021]

proposed a technique that utilizes hierarchical n-grams for real-world trajectory

sharing with LDP. Du et al. [Du et al., 2023] proposed LDPTrace for synthesizing

realistic location trajectories using aggregate statistics collected with LDP. Kim et

al. [Kim et al., 2018] and Navidan et al. [Navidan et al., 2022] applied LDP to indoor

positioning data. Recently, Tire and Gursoy [Tire and Gursoy, 2024] studied the

problem of answering spatial density queries under LDP. Although these works apply

LDP to spatial data, they do not have the goal of building spatial decompositions.

Chapter 2: Related Work 6

2.2 Spatial Decompositions Under Centralized DP

Spatial decompositions have been relatively less studied under LDP, but there ex-

ist several works on building spatial decompositions under the centralized form of

differential privacy (DP). Xiao et al. [Xiao et al., 2010] presented a spatial decom-

position algorithm based on kd-trees for handling statistical queries (e.g., OLAP

queries) under DP. Cormode et al. [Cormode et al., 2012] proposed algorithms to

build hierarchical spatial decompositions such as quadtrees and kd-trees under DP.

Zhang et al. [Zhang et al., 2016] developed the PrivTree algorithm, which enabled

constructing a DP spatial decomposition without requiring a pre-defined recursion

limit (height). Grid-based decompositions under DP, which are a popular alterna-

tive to hierarchical decompositions, have been introduced by Qardaji et al. [Qardaji

et al., 2013] in the form of uniform and adaptive grids. They have later been used in

other works such as [Gursoy et al., 2018a, Gursoy et al., 2018b]. Hierarchical refer-

ence systems proposed by He et al. [He et al., 2015] employ hierarchically organized

grids with different granularities, ordered from coarse to fine-grained.

More recently, Niknami et al. [Niknami et al., 2020] proposed personalized DP

and personalized noise addition for indexing geometric objects in spatial databases.

Quadtrees and kd-trees are used as spatial indices. In the work of Li et al. [Li

et al., 2021], a data-dependent adaptive density grid decomposition is used at the

first layer, and then a quadtree decomposition is adopted for further splitting. Yan

et al. [Yan et al., 2020] proposed an unbalanced quadtree partitioning algorithm for

improving query accuracy in publishing spatial data with DP. Similarly, Liu et al.

[Liu et al., 2022] also proposed a quadtree algorithm for improving query accuracy

under DP, by balancing noise error and uniformity error. A new decomposition

structure called Homogeneous Tree Framework (HTF) was proposed by Shaham et

al. [Shaham et al., 2022], which shares similarities to kd-trees. All of these works

operate under the assumptions of centralized DP rather than LDP, hence they are

not comparable to our work.

Chapter 2: Related Work 7

2.3 Spatial Decompositions Under LDP

As stated above, although hierarchical spatial decompositions have been studied

under centralized DP, their applications to local DP (LDP) are novel. Our prior

work on this topic [Alptekin and Gursoy, 2023] proposed algorithms for building

quadtrees under LDP. In this thesis, we improve [Alptekin and Gursoy, 2023] by

proposing algorithms for kd-trees in addition to quadtrees, and by demonstrating

utility improvements compared to another state-of-the-art work [Tire and Gursoy,

2024].

Chapter 3: Preliminaries 8

Chapter 3

PRELIMINARIES

3.1 Data Model and Background

Let Ω denote the two-dimensional geographical space subject to decomposition, and

let U = {u1, u2, u3, ...} denote the set of users. The number of users is represented

by n = |U|. The true location of each user ui ∈ U is denoted by li, which is a tuple

consisting of latitude and longitude coordinates. By definition, li ∈ Ω for all ui. We

denote by li[x] the longitude of li (x-axis) and by li[y] the latitude of li (y-axis). It

is assumed that Ω itself is not sensitive but each user’s location li is sensitive. For

example, if users are from the city of Istanbul, then Ω corresponds to the geographic

boundaries of Istanbul, which is publicly known. However, each li corresponds to

specific GPS coordinates of user ui, which is privacy-sensitive.

A spatial decomposition decomposes the geographical space Ω into smaller sub-

spaces. There are mainly three types of spatial decompositions:

• Grid-based decompositions utilize uniform or data-adaptive grid structures to

divide Ω into cells.

• Hierarchical decompositions utilize tree-based data structures (such as kd-trees

or quadtrees) for dividing Ω into smaller regions, each represented using a tree

node.

• Hybrid decompositions use a mixture of grid-based and hierarchical approaches,

e.g., they organize the decomposition as a hierarchy of grids [He et al., 2015,

Mokbel et al., 2006].

In this thesis, we focus on hierarchical decompositions which have been commonly

used in the literature for purposes such as range query answering [Cormode et al.,

Chapter 3: Preliminaries 9

2012, Shaham et al., 2022, Yan et al., 2020], spatial indexing and modeling [Niknami

et al., 2020, Zhang et al., 2016], count-of-counts histograms [Kuo et al., 2018], data

summarization and visualization [Bagdasaryan et al., 2022, Qardaji et al., 2013],

and synthetic data generation [Gursoy et al., 2018b, He et al., 2015]. Among hier-

archical decompositions, we focus on two fundamental ones: quadtrees and kd-trees

[Cormode et al., 2012, Li et al., 2021, Samet, 1984]. We propose methods to build

quadtrees and kd-trees while protecting the privacy of each user’s location li using

local differential privacy (LDP).

3.2 Local Differential Privacy

Local Differential Privacy (LDP) has recently emerged as a state-of-the-art privacy

standard in academia and the industry [Cormode et al., 2018, Ding et al., 2017, Er-

lingsson et al., 2014, Thakurta et al., 2017, Xiong et al., 2020]. LDP enables each

user to locally perturb their true data on their own device using a randomized algo-

rithm Ψ and then send the perturbed output to the data collector (i.e., the server).

After the server collects perturbed data from many users, it performs estimation to

recover aggregate statistics pertaining to the general user population. In our con-

text, the sensitive data that needs to be protected using LDP is each user’s location.

Accordingly, we formalize LDP as follows.

Definition 1 (ε-LDP) A randomized algorithm Ψ satisfies ε-local differential pri-

vacy (ε-LDP), where ε > 0, if and only if for any two inputs li, l
∗
i , it holds that:

∀y ∈ Range(Ψ) :
Pr[Ψ(li) = y]

Pr[Ψ(l∗i) = y]
≤ eε (3.1)

where Range(Ψ) stands for the set of all possible outputs of the algorithm Ψ.

Given the perturbed output y, ε-LDP ensures that the server (or any other third

party who observes y) will not be able to distinguish between the user’s actual

location li and an incorrect location l∗i beyond the probability odds ratio controlled

by eε. The strength of the privacy protection is controlled by the parameter ε,

commonly known as the privacy budget. Lower ε yields stronger privacy.

Chapter 3: Preliminaries 10

LDP satisfies the sequential composition property [Dwork et al., 2014, Wang

et al., 2018, Ye et al., 2019], which enables the total ε budget to be spent in multiple

steps. This is beneficial in the construction of hierarchical spatial decompositions

since we can construct each step of the hierarchy with a portion of the privacy

budget, such that the overall summation satisfies ε-LDP by sequential composition.

Definition 2 (Sequential Composition) Consider m algorithms Ψ1,Ψ2, ...,Ψm

such that each Ψj satisfies εj-LDP. Then, the sequential execution of Ψ1(li),Ψ2(li), ...,

Ψm(li) satisfies (
∑m

j=1 εj)-LDP.

The popularity of LDP has led to the development of several LDP protocols

[Gursoy et al., 2022, Gursoy et al., 2019, Wang et al., 2017]. New systems and

applications often use these protocols as building blocks. In this thesis, we use the

Optimized Unary Encoding (OUE) protocol as our building block due to its higher

accuracy compared to many other protocols [Wang et al., 2017]. As in other proto-

cols, OUE consists of two main components: (i) user-side encoding and perturbation

to satisfy LDP on users’ devices, and (ii) server-side estimation after collecting per-

turbed data from the user population.

User-Side Perturbation in OUE: OUE assumes that the user’s data is en-

coded as a unary bitvector (vector of bits), i.e., only one position in the user’s

vector contains a 1 bit and all remaining positions contain 0 bits. Let Bi denote

user ui’s unary bitvector. The perturbation algorithm Ψ of OUE takes Bi as input

and outputs perturbed bitvector B′i as:

Pr
[
B′i[j] = Ψ(Bi[j]) = 1

]
=


1
2

if Bi[j] = 1

1
eε+1

if Bi[j] = 0

(3.2)

In other words, each position j ∈ [1, |Bi|] is considered independently from others,

and the bit that exists in Bi[j] is either kept or flipped according to the above

probabilities. After this perturbation is complete, ui sends the perturbed bitvector

B′i to the server.

Server-Side Estimation in OUE: The server receives perturbed bitvectors

from many users, collectively denoted by {B′1, B′2, ..., B′n}. Then, the server computes

Chapter 3: Preliminaries 11

Figure 3.1: Sample users with their locations represented as points (on the left) and
the corresponding quadtree (on the right).

the reported counts of each position j ∈ [1, |Bi|], which we denote by Ĉ(j):

Ĉ(j) =
n∑

i=1

B′i[j] (3.3)

Finally, the server computes the estimate for position j, i.e., how many users have 1

bit in the j’th position of their original bitvectors. This estimate, denoted by C̄(j),

is computed as:

C̄(j) =
2 ·

(
(eε + 1) · Ĉ(j)− |U|

)
eε − 1

(3.4)

3.3 Quadtrees

Quadtrees are a popular and well-known method for hierarchical spatial decompo-

sitions. A quadtree recursively divides the geographical space into four equi-sized

quadrants (top left, top right, bottom left, bottom right) at each step. A sample

quadtree is illustrated in Figure 3.1. The root corresponds to Ω as a whole. In the

next level of the tree, Ω is divided into four quadrants, each of which corresponds

to a child of the root node. The division of a node into four quadrants will keep

occurring recursively until: (i) the maximum height limit h∗ is reached, or (ii) the

current node contains fewer location points than a pre-defined threshold θ.

We establish some notation and terminology with the help of Figure 3.1. Let

Q denote a quadtree and let V = {v1, v2, v3, ...} denote the set of nodes (vertices)

in Q. The depth of a node v is denoted by h(v), e.g., in Figure 3.1, h(v1) = 1,

h(v2) = h(v3) = 2, h(v7) = 3. Nodes with the same h(v) are found at the same

depth of Q. Each node corresponds to a region of the geographical space as shown

Chapter 3: Preliminaries 12

in Figure 3.1, e.g., v1 corresponds to Ω, v2 corresponds to bottom left quadrant of

Ω, and so forth. We denote the geographical space corresponding to vertex v by

g(v). Furthermore, the number of data points located in the corresponding region

of v is called the density of v and it is denoted by d(v). In Figure 3.1, d(v1) = 20,

d(v2) = 2, d(v3) = 6, etc. By definition, the root node v1 has density d(v1) = n since

all users are assumed to be located within Ω.

We denote the children of a node v by c(v), e.g., according to Figure 3.1, c(v4) =

{v6, v7, v8, v9}. By definition of quadtrees, if a node has children, it will always have

exactly 4 children. If a node does not have children, then it is called a leaf node.

The parent of a node v is denoted by p(v), e.g., p(v6) = p(v8) = v4. In general, let

vi denote a node with set of children c(vi) = {vi1, vi2, vi3, vi4}. It holds that:

g(vi) = g(vi1) ∪ g(vi2) ∪ g(vi3) ∪ g(vi4) (3.5)

and the pairwise intersection g(vij)∩ g(vik) is empty for all j ̸= k. Furthermore, the

sum of densities of all children equals the density of the parent:

d(vi) = d(vi1) + d(vi2) + d(vi3) + d(vi4) (3.6)

One of the key applications of quadtrees is in answering spatial count (density)

queries [Cormode et al., 2012, Li et al., 2021, Zhang et al., 2016]. Consider a query

q. Initially, the answer of q is set to 0, i.e., ansq = 0. Then, starting from the root,

the quadtree is traversed in-top down fashion. For each node v that is visited:

1. If g(v) is disjoint from q, then v is ignored.

2. If g(v) is fully contained in q, then ansq is increased by d(v).

3. If g(v) partially intersects q and v is not a leaf node, then every child of v with

a region not disjoint from q must be visited.

4. If g(v) partially intersects q and v is a leaf node, then ansq is incremented by:

ansq = ansq + d(v)× ||g(v) ∩ q||
||g(v)||

Here, || · || denotes the size of a geographical region.

Chapter 3: Preliminaries 13

Figure 3.2: Sample users with their locations represented as points (on the left) and
the corresponding kd-tree (on the right).

We exemplify this process with the help of Figure 3.1. Let q be a query denoted

using the red rectangle. Starting from v1, we first find that g(v) intersects with v1,

therefore v1’s children must be visited. Since v2 and v3 have no intersection with q,

they are ignored. v5 has intersection with q and it is a leaf node, therefore ansq is

incremented by d(v5)× ||g(v5)∩q||||g(v5)|| . v4 has intersection with q but it is not a leaf node,

therefore v4’s children must be visited next. Among v4’s children, v6, v8 and v9 are

ignored. Since v7 intersects with q, ansq is incremented by d(v7)× ||g(v7)∩q||||g(v7)|| .

3.4 Kd-trees

Another fundamental and popular method for hierarchical spatial decompositions

is kd-trees (k-dimensional trees). At each step, a kd-tree alternates between the

x-axis and the y-axis, and divides the geographical space into two regions according

to the median of the chosen axis. Since the division is according to the median,

it is necessary to find the median in a data-dependent manner, and the resulting

child nodes may have different geographic sizes. This is different from quadtrees in

which the resulting child nodes have equal sizes. Similar to quadtrees, in kd-trees,

the division of a node into two regions will keep occurring recursively until: (i) the

maximum height limit h∗ is reached, or (ii) the current node contains fewer location

points than a pre-defined threshold θ.

A sample kd-tree is shown in Figure 3.2. The division at the root is performed

with respect to the x-axis, according to the median of the location points. Hence,

16 points initially in v1 are divided into v2 and v3 evenly. Note that the geographic

sizes g(v2) and g(v3) are indeed different – since there are more points on the right

Chapter 3: Preliminaries 14

compared to the left, the median is towards the right rather than the middle of the

x-axis. Next, the y-axis is used when dividing v2 and v3. Since the median of v2 is

found independently from the median of v3, the division of v2 into v4 and v5 results

in different sized nodes (g(v4) is small whereas g(v5) is large). In contrast, since

the median of v3 is towards the middle of the y-axis, the division results in similar

sized v6 and v7. This highlights the need for determining the median of each node

separately and in a data-dependent fashion.

For kd-trees, we inherit most of the notation established in Section 3.3 for

quadtrees. To differentiate between a kd-tree and a quadtree, we denote a kd-

tree by K. The nodes of K are denoted by V = {v1, v2, v3, ...}, the depth of node v

is denoted by h(v), the density of v is denoted by d(v), the geographic space of v is

denoted by g(v), children of v are denoted by c(v), and the parent of v is denoted

by p(v). In a kd-tree, a node can have no children or exactly two children. For node

vi and its children c(vi) = {vi1, vi2}, the following equation holds:

g(vi) = g(vi1) ∪ g(vi2) (3.7)

For kd-trees, we define two additional notations as follows: Let gx(v) denote the

longitude bounds (x-axis bounds) of node v and let gy(v) denote the latitude bounds

(y-axis bounds) of v. We denote by min(gx(v)) the minimum longitude, max(gx(v))

the maximum longitude, min(gy(v)) the minimum latitude, and max(gy(v)) the

maximum latitude of v.

Chapter 4: Building Quadtrees under LDP 15

Chapter 4

BUILDING QUADTREES UNDER LDP

In this chapter, we describe two solutions for building quadtrees for spatial data

under LDP. Our first solution is inspired by a differentially private quadtree building

algorithm from the centralized DP literature, which we modify in order to adapt to

LDP. We explain the centralized algorithm and the key modifications we need to

perform to adapt it to LDP in Section 4.1. Then, our baseline solution is given

in 4.2. We observe that although the iterative noise addition approach used in the

baseline solution satisfies LDP, it is not desirable in practice since it causes large

noise accumulation and therefore low utility. This motivates the proposal of our

new approach in Section 4.3, which yields higher utility than the baseline solution.

4.1 Quadtrees under Centralized DP

Consider the quadtree building algorithm presented in [Zhang et al., 2016], which

satisfies centralized DP. The algorithm starts by initializing quadtree Q with a root

node v1 such that g(v1) = Ω and marks v1 as unvisited. Then, the algorithm

proceeds iteratively, and at each iteration, it checks if there is any unvisited node

v ∈ Q. If there is an unvisited node, the algorithm computes the noisy density

of v. For this purpose, the Laplace mechanism of DP can be used [Dwork et al.,

2014]. The noisy density is determined as: d̂(v) = d(v) + Lap(λ), where Lap(λ) is

a Laplace random variable with mean 0 and scale λ. Afterwards, node v is checked

regarding whether it satisfies the splitting conditions, i.e., its noisy density is higher

than split threshold θ and depth of resulting children will not exceed max depth

limit h∗. Indeed, if d̂(v) ≥ θ and h(v) + 1 ≤ h∗, then v is split into four children,

the children are inserted to Q, and they are marked as unvisited. Otherwise, v is

not split and becomes a leaf node. At this point, v has been processed; it is marked

Chapter 4: Building Quadtrees under LDP 16

as visited and the algorithm proceeds to the next iteration (next unvisited node in

Q). When all nodes in Q eventually become visited, the algorithm terminates and

returns Q.

It can be shown that this algorithm satisfies ε-DP in the centralized setting when

λ ≥ h∗/ε. To verify this, let a new user with an arbitrary location be inserted (re-

moval of an arbitrary user is very similar). This insertion will impact the noisy

densities of nodes residing in exactly one root-to-leaf path in Q; since by properties

of quadtrees, nodes with the same depth do not have any intersection in their geo-

graphic coverages g(·). Then, since the number of nodes residing in one root-to-leaf

path in Q is at most h∗, adding Laplace noise calibrated to h∗/ε is sufficient to

achieve ε-DP.

Our baseline solution for building quadtrees with LDP adapts the aforementioned

algorithm from the centralized DP literature to LDP. Two key modifications are

needed in this adaptation. First, the above algorithm visits nodes one-by-one in

arbitrary order, as long as they are unvisited. In contrast, our baseline solution

visits nodes in breadth-first order, i.e., depth = 1 in the first iteration, depth = 2

in the second iteration, and so forth. Notice that this has no adverse impact on

utility or privacy (the aforementioned algorithm can be trivially modified to act in

breadth-first order), but it offers us an important convenience in LDP: It enables

us to estimate node densities with LDP iteratively such that in the first iteration

all nodes with depth = 1 are estimated, in the second iteration all nodes with

depth = 2 are estimated, and so forth. The second modification we perform is that

instead of adding Laplace noise, we execute an LDP protocol (OUE) to perform

node density estimation. While Laplace noise addition is a de facto mechanism to

achieve centralized DP, it is not directly applicable to LDP, therefore the usage of

an LDP protocol becomes necessary.

4.2 Baseline Solution for Quadtrees

Our baseline solution for building a quadtree under LDP is shown in Algorithm 1.

Given the total privacy budget ε, on line 1, the algorithm computes ε̂ = ε/(h∗− 1).

Chapter 4: Building Quadtrees under LDP 17

Algorithm 1: Baseline quadtree solution

Input : U , Ω, θ, h∗, ε

Output : Quadtree Q

1 ε̂← ε/(h∗ − 1)

2 Initalize quadtree Q with root node v1

3 Set g(v1) = Ω

4 i← 1 // current depth

5 while i ≤ h∗ do

// find densities at current depth

6 nodes← list of nodes in Q with depth = i

7 if |nodes| == 1 then

8 Set d(nodes[1]) = |U| // i = 1, root node only

9 else

10 estimates← Get Estimates(nodes,U , ε̂)

11 for j = 1 to |nodes| do

12 Set d(nodes[j]) = estimates[j]

// for each node at current depth, determine if it should

split or not

13 for j = 1 to |nodes| do

14 if d(nodes[j]) ≥ θ and i+ 1 ≤ h∗ then

15 Split nodes[j] into its four children and add the children to Q

16 else

17 Do not split nodes[j]

18 i← i+ 1

19 return Q

Here, considering that the algorithm will traverse the quadtree depth by depth and

h∗ is the max depth parameter, ε̂ is the privacy budget that the algorithm will

spend at each depth. Since the density of the root node is always equal to |U| and

the server can trivially know the size of the user population, no privacy budget

Chapter 4: Building Quadtrees under LDP 18

is spent at depth = 1 (only the root node exists at depth = 1). Thus, dividing

ε into h∗ − 1 pieces is sufficient. On lines 2-3, the algorithm initializes the root

node. Then, the main loop of the algorithm (lines 5-18) iterates depth-by-depth,

and at each iteration, it estimates the densities of nodes at the current depth. The

case where depth = 1 (only the root node exists) is handled between lines 7-8.

At every other depth value, nodes’ densities at that depth are computed with the

help of the GET ESTIMATES function (lines 10-12), which is explained in the

next paragraph. GET ESTIMATES satisfies ε̂-LDP, and note that Algorithm

1 invokes it at most h∗ − 1 times; thus, the overall algorithm satisfies ε-LDP by

sequential composition. Finally, lines 13-17 are devoted to checking which nodes

should split and which ones should not split. If and only if a node satisfies the

splitting conditions, i.e., its noisy density is ≥ θ and the height of its children will

not exceed h∗, then the node will split.

The GET ESTIMATES function, which is used by our baseline solution as

well as our proposed solution, is described in Algorithm 2. Its inputs are the list of

nodes N , list of users U , and privacy budget ε̂. It returns a list called estimates,

such that estimates[j] is the estimated noisy density of node N [j]. The execution

of the GET ESTIMATES function can be broken down into three steps. First,

the server sends N to each user. Second, on the user side, each user ui constructs a

bitvector Bi, where |Bi| = |N |. For each position j, Bi[j] is determined according

to whether ui’s real location li falls within the geographic boundaries of node N [j].

That is, if li falls within g(N [j]) then the j’th position of Bi is set to 1, otherwise

it is 0. After constructing the Bi, it must be perturbed probabilistically in order

to satisfy ε̂-LDP. To do so, the user-side perturbation process of the OUE protocol

is executed, as shown in Equation 3.2. The output of this process is the perturbed

bitvector B′i, which is sent to the server. Finally, the third step begins after the

server receives perturbed bitvectors from all users. The server initializes estimates

as an empty list. Afterwards, for j between 1 and |N |, the server first computes Ĉ(j)

and then uses Ĉ(j) to compute C̄(j) according to the equations on lines 8-9. C̄(j)

is appended to estimates in each iteration, and eventually, estimates is returned by

Algorithm 2.

Chapter 4: Building Quadtrees under LDP 19

Algorithm 2: Get Estimates function

Input : N , U , ε̂

Output: estimates

// Server-side

1 Server sends N to each user in U

// User-side

2 foreach ui ∈ U do

3 ui constructs his/her bitvector Bi with length |N | such that:

∀j ∈ [1, |N |] : Bi[j] =

1 if li ∈ g(N [j])

0 otherwise

4 ui perturbs Bi to satisfy ε̂-LDP according to Equation 3.2

5 ui sends resulting perturbed bitvector B′i to server

// Server-side

6 estimates← [] // initialize empty

7 for j = 1 to |N | do

8 Server computes reported count of position j as: Ĉ(j) =
|U|∑
i=1

B′i[j]

9 Server computes estimate C̄(j) as: C̄(j) =
2·
(
(eε̂+1)·Ĉ(j)−|U|

)
eε̂−1

10 Server appends C̄(j) to estimates

11 return estimates

4.3 Proposed Solution for Quadtrees

The main weakness of the baseline solution is that it divides the total ε privacy

budget into h∗ − 1 pieces, each to be used in one depth of estimation. Since the

privacy budget used per estimation is smaller, higher noise gets added to satisfy

privacy. This causes resulting node density estimations to contain large amounts of

noise. Excessively noisy densities are also used in the decision to split or not split a

node, further causing structural inaccuracies in the resulting quadtree, since a node

that should not be split according to its real density ends up being split due its noisy

Chapter 4: Building Quadtrees under LDP 20

density (or vice versa). Consequently, although ε-LDP is achieved, the quadtrees

built using our baseline solution can have low similarity in terms of structure and

node densities compared to a noise-free quadtree.

In order to address this problem, the key insight of our proposed solution is

that instead of dividing ε into h∗ − 1 pieces, it uses the whole ε in a single step.

This single-step estimation is performed at the leaves of the quadtree (depth = h∗)

and contains low noise, therefore the leaves contain high quality density estimates.

Then, leaves’ densities are propagated upwards (in bottom-up fashion) towards the

root, to populate the densities of remaining nodes. Finally, in top-down fashion,

corrections and refinements are made in the structure of the quadtree.

The pseudocode of our proposed solution is shown in Algorithm 3. Its inputs

and outputs are same as the baseline solution. It can be observed from Algorithm 3

that the proposed solution consists of four main steps, which are explained below.

Step 1: Construct initial, balanced quadtree with height = h∗. We

construct an initial quadtree Q that is fully-grown until height h∗. That is, we

let each node in the quadtree split into its four children until h∗ is reached. The

resulting Q is fully balanced. Note that the θ threshold is not taken into account in

constructing this initial Q.

Step 2: Density estimation for leaf nodes with LDP. In the second step,

we retrieve all leaf nodes in Q and obtain density estimates for each of them using the

full privacy budget ε. This is achieved by a single invocation of theGet Estimates

function with all leaves and full privacy budget ε. After this step is complete, for

each leaf node v ∈ Q, its density d(v) is determined.

Step 3: Bottom-up propagation of densities. While densities of the leaves

have been determined in step 2, densities of all remaining nodes (non-leaf nodes)

are unknown. In this step, densities of non-leaf nodes are determined in bottom-up

fashion. First, all nodes with depth h∗ − 1 are handled, then, all nodes with depth

h∗ − 2 are handled, ... until the root node. For each non-leaf node, recall from

Equation 3.6 that its density is equal to the sum of the densities of its four children.

Step 4: Top-down correction. The initial quadtree Q constructed in step

1 is fully-balanced rather than taking into account the density threshold θ. As a

Chapter 4: Building Quadtrees under LDP 21

Algorithm 3: Proposed quadtree solution

Input : U , Ω, θ, h∗, ε

Output: Quadtree Q

// Step 1: Construct initial tree

1 Initalize quadtree Q with root node v1

2 Set g(v1) = Ω

3 for i = 1 to h∗ − 1 do

4 foreach node v in Q with h(v) = i do

5 Split v into its four children and add the children to Q

// Step 2: Density estimation for leaf nodes with LDP

6 leaves← list of nodes in Q with depth = h∗

7 estimates← Get Estimates(leaves,U , ε)

8 for j = 1 to |leaves| do

9 Set d(leaves[j]) = estimates[j]

// Step 3: Bottom-up propagation of densities

10 for i = h∗ − 1 to 1 do

11 foreach node v in Q with h(v) = i do

12 Initialize d(v)← 0

13 for vchild ∈ c(v) do

14 d(v)← d(v) + d(vchild)

// Step 4: Top-down correction

15 for i = 1 to h∗ − 1 do

16 foreach node v in Q with h(v) = i do

17 if d(v) < θ then

18 Remove all children c(v) and all subtrees rooted at those children

from Q

19 return Q

result, it is possible that a node v which should not have children (because it fails

the d(v) ≥ θ condition) actually has children in Q. The goal of step 4 is to iterate

Chapter 4: Building Quadtrees under LDP 22

through Q in top-down fashion and fix such situations. To do so, the algorithm

starts at depth = 1 and moves down iteratively (depth = 2, depth = 3, ..., depth =

h∗ − 1). For each node at the current depth, if node v does not satisfy the d(v) ≥ θ

condition, its children along with the subtrees rooted at those children (i.e., if the

child has any descendants) are removed from Q.

Chapter 5: Building KD-trees under LDP 23

Chapter 5

BUILDING KD-TREES UNDER LDP

In this chapter, we describe our solution for building kd-trees for spatial data

under LDP. As opposed to quadtrees, we cannot perform a single step of estimation

and then propagate the densities upwards in kd-trees because the kd-tree requires

finding the medians of each node, which are node-dependent and data-dependent.

As a result, our solution learns medians from U in every depth of the kd-tree. We

describe our general solution approach in Section 5.1 and then describe its details

in Sections 5.2 and 5.3.

5.1 Overview of our Kd-tree Solution

Our proposed solution for building a kd-tree under LDP is shown in Algorithm 4.

On line 1, the algorithm divides the total ε budget into h∗ − 1 pieces, such that

each piece will be used in learning medians of nodes at depths 1, 2, ..., h∗ − 1. The

kd-tree is initialized with root node v1, and by definition of kd-trees, g(v1) = Ω and

d(v1) = |U|. Then, between lines 6-22, the algorithm iterates depth-by-depth, and

at each iteration, it estimates the medians and performs necessary node splits at

the current depth. Initially, the depth is set as i← 1 (line 4). Considering that the

kd-tree alternates between splitting the x-axis and y-axis, the initial axis for median

computation and node splitting is selected as x-axis (on line 5). Note that it is also

possible to select the y-axis as the initial axis by trivially modifying line 5.

The main loop of the algorithm (lines 6-22) iterates depth-by-depth. First, it

retrieves the nodes at the current depth (line 7). Then, for all nodes, it uses the

Find Medians function to retrieve the medians and densities of potential children

(line 8). More details regarding the Find Medians function are given in Section 5.2.

Afterward, between lines 9-17, each node v ∈ nodes is checked regarding whether it

Chapter 5: Building KD-trees under LDP 24

Algorithm 4: Proposed kd-tree solution

Input : U , Ω, θ, h∗, ε, α

Output : Kd-tree K

1 ε̂← ε/(h∗ − 1)

2 Initialize kd-tree K with root node v1

3 Set g(v1) = Ω and d(v1) = |U|

4 i← 1 // current depth

5 axis← “x” // alternate between x and y

6 while i ≤ h∗ do

7 nodes← list of nodes in K with depth = i

8 medians, c1 dens, c2 dens← Find Medians(nodes,U , ε̂, α, axis)

// for each node at depth i, determine if it should split

9 for j = 1 to |nodes| do

10 v ← nodes[j]

11 median← medians[j]

12 if d(v) ≥ θ and i+ 1 ≤ h∗ then

13 Split v into two children vc1 and vc2 according to median

14 Add vc1 and vc2 to K

15 Set densities of vc1 and vc2 // Sec 5.3

16 else

17 Do not split v

18 i← i+ 1

19 if axis = “x” then

20 axis← “y”

21 else

22 axis← “x”

23 return K

satisfies the splitting conditions, i.e., density ≥ θ and depth ≤ h∗ (line 12). If so, v

is split into its two children vc1 , vc2 according to its median, and the children are

Chapter 5: Building KD-trees under LDP 25

Figure 5.1: Sample division of g(v) into α = 4 equi-sized buckets. Bounds xmin,
xmax, ymin, ymax shown in blue are for bucket 3. Since all buckets are derived from
node v, the owner of all buckets is v.

added to K. For determining the densities of the children, it is possible to make use

of the children densities (c1 dens and c2 dens) returned by Find Medians. This is

done on line 15; we describe two alternative strategies for this part in Section 5.3.

Finally, between lines 18-22, the current depth i is advanced by 1, and the axis is

changed from x to y or y to x in order to alternate between them. On the last line,

the algorithm returns the final kd-tree K.

5.2 Finding Medians

The Find Medians function is a key component of our kd-tree solution. This

function takes as input a list of kd-tree nodes, user population U , allocated privacy

budget ε̂, bucket count parameter α, and the axis that will be split. It returns three

lists with sizes equal to the size of nodes: medians[j] stores the estimated (using

LDP) median of nodes[j], c1 dens[j] stores the first child’s estimated density, and

c2 dens[j] stores the second child’s estimated density. Its pseudocode is given in

Algorithm 5. We explain the algorithm in three main steps.

Step 1: Server-side computation of buckets. For finding the median of

a node v, we make use of buckets. Buckets divide the geographic space g(v) into

small pieces with respect to the axis. The number of buckets is determined by the

α parameter. Each bucket has an owner, i.e., if the bucket results from dividing v

into small pieces, then the owner of this bucket is v. An example of dividing v into

α = 4 buckets with respect to the x-axis is shown in Figure 5.1. We can observe

Chapter 5: Building KD-trees under LDP 26

Algorithm 5: Find Medians function
Input : nodes, U , ε̂, α, axis

Output: medians, c1 dens, c2 dens

// Step 1: Server-side computation of buckets

1 buckets← Initialize empty list

2 foreach v in nodes do

3 if axis = “x” then

// Splitting by x-axis

4 upperlim← max(gx(v))

5 lowerlim← min(gx(v))

6 else

// Splitting by y-axis

7 upperlim← max(gy(v))

8 lowerlim← min(gy(v))

9 size← (upperlim− lowerlim)/α

10 curr ← lowerlim

11 while curr + size ≤ upperlim do

12 if axis = “x” then

13 Create bucket with xmin = curr, xmax = curr + size, ymin = min(gy(v)) and

ymax = max(gy(v))

14 else

15 Create bucket with xmin = min(gx(v)), xmax = max(gx(v)), ymin = curr and

ymax = curr + size

16 Set owner of bucket as v

17 Append bucket to buckets

18 curr ← curr + size

// Step 2: Get LDP estimates for buckets from users

19 estimates← Get Estimates(buckets,U , ε̂)

20 for j = 1 to |buckets| do

21 Set density of buckets[j] as estimates[j]

// Step 3: Construct medians, c1 dens, and c2 dens

22 Initialize medians, c1 dens, c2 dens as empty lists

23 foreach v in nodes do

24 relbuckets← Retrieve those buckets for which owner = v

25 med, c1, c2← Calc Med(relbuckets, axis)

26 Append med to medians

27 Append c1 to c1 dens

28 Append c2 to c2 dens

29 return medians, c1 dens, c2 dens

that g(v) is split into 4 equal-sized buckets such that the horizontal axis (x-axis) is

divided into 4, and the bounds of the y-axis remain the same across all buckets. This

exemplifies the division of one v into 4 buckets; between lines 2-18 of Algorithm 5,

Chapter 5: Building KD-trees under LDP 27

this process is performed for all nodes v in nodes. All buckets are collectively stored

in a list named buckets. Variables upperlim, lowerlim, size used in Algorithm 5

are also exemplified in Figure 5.1.

Step 2: Get LDP estimates for buckets from users. Now consider that all

buckets have been created and stored in the list named buckets. To find medians,

we need to estimate the densities of all buckets according to users’ locations. We

make use of the Get Estimates function previously established in Algorithm 2

for this purpose. This function spends ε̂ and returns the density of each bucket in

buckets.

Step 3: Construct medians, c1 dens, and c2 dens. Now that we have

buckets and their densities, the goal of this step is to construct the three return values

of the Find Medians function: medians, c1 dens, and c2 dens. When computing

the median and densities of the two children of node v, Algorithm 5 retrieves the

relevant buckets (relbuckets) for this computation, i.e., those buckets for which the

owner of the bucket is v. Then, Algorithm 5 calls the Calc Med function, which

is formally described in Algorithm 6.

We explain Algorithm 6 using the illustration in Figure 5.2, which is a continu-

ation of the example in Figure 5.1. At the start of Algorithm 6, the relevant four

buckets have been identified and their densities have been estimated (written inside

the buckets in Figure 5.2). The goal is to find the median of g(v) and the densities

of the two resulting children if v was split according to this median. Algorithm

6 first computes the sum of the estimated densities (denoted by dsum), which is

dsum = 87 in Figure 5.2. Then, the algorithm searches which bucket the median

falls into, starting with the leftmost bucket. It keeps track of the sum of densities

observed in the variable currsum, e.g., after visiting bucket 1 currsum is 12; after

visiting bucket 2 currsum is 31; after visiting bucket 3 currsum is 47, etc. When

currsum becomes equal to or higher than dsum/2, then that means the most recently

visited bucket contains the median (line 11). In that case, the median is retrieved,

e.g., as the middle point of bucket 3 in Figure 5.2. Then, the density of the bucket

containing the median is distributed among the first child and second child of v.

Thus, in Figure 5.2 vc1 gets a total density of 12 + 19 + 26/2 = 44, whereas vc2

Chapter 5: Building KD-trees under LDP 28

Algorithm 6: Calc Med function

Input : relbuckets, axis

Output: med, c1, c2

1 dsum← Sum of densities of all buckets in relbuckets

2 if axis = “x” then

3 Sort relbuckets in increasing order of their xmin

4 else

5 Sort relbuckets in increasing order of their ymin

6 currsum← 0

7 for j = 1 to |relbuckets| do

8 bucket← relbuckets[j]

9 den← density of bucket

10 currsum← currsum+ den

11 if currsum ≥ dsum/2 then

// This is the bucket containing median

12 if axis = “x” then

13 Retrieve xmax and xmin of bucket

14 med← (xmax + xmin)/2

15 else

16 Retrieve ymax and ymin of bucket

17 med← (ymax + ymin)/2

18 break

19 c1← currsum− ⌊den/2⌋

20 c2← dsum− c1

21 return med, c1, c2

gets a total density of 87 - 44. These values are stored in the appropriate variables

in Algorithm 6 and returned (lines 19-21) to Algorithm 5.

Chapter 5: Building KD-trees under LDP 29

Figure 5.2: Illustration of computing the median of v and estimated densities of two
children vc1 , vc2 (Algorithm 6).

5.3 Determining Child Densities

Another key component of our kd-tree solution (Algorithm 4) is determining the

densities of children vc1 and vc2 . The densities of the children can be determined

directly using the results of LDP estimation, as described in the previous section

(Figure 5.2). That is, line 15 of Algorithm 4 is replaced by:

Set d(vc1)← c1 dens[j]

Set d(vc2)← c2 dens[j]

We call this our initial strategy.

On the other hand, we experimentally observed that our initial strategy can yield

erroneous densities since LDP estimations are noisy. Therefore, instead of using this

strategy, we developed a second strategy in which we utilize the key property of kd-

trees: since nodes are split according to their median, the resulting two children will

have equal or near-equal densities. Thus, the density of the parent can be directly

divided into two. Examples of this property were also shown in Figure 5.2. In this

case, line 15 of Algorithm 4 is replaced by:

Set d(vc1)←
d(v)

2

Set d(vc2)←
d(v)

2

We call this our improved strategy.

Chapter 5: Building KD-trees under LDP 30

There is the following trade-off between the initial strategy and the improved

strategy. If the median computed under LDP is close to the real median (and

therefore node v is split from the right location) then the two children will indeed

have equal or near-equal densities by definition of kd-trees. However, if the median

computed under LDP is far from the real median, then the kd-tree will contain

error. In contrast, the accuracy of the initial strategy relies on the correctness of

LDP estimations for bucket densities. Consequently, if median computation is less

noisy than bucket density estimation, one should choose the improved strategy over

the initial strategy. If vice versa is true, then one should choose the initial strategy

over the improved strategy. In practice, we observed that estimating the median

is less noisy under LDP since it is one numeric value, whereas bucket estimations

are a vector of numeric values that are more prone to LDP noise. In addition,

our experiment results also showed that our median computation strategy is quite

accurate. Hence, our improved strategy usually yields better results compared to

our initial strategy, and therefore, we recommend using our improved strategy in

practice.

Chapter 6: Experimental Evaluation 31

Chapter 6

EXPERIMENTAL EVALUATION

6.1 Experiment Setup

We implemented all algorithms in Python. In this chapter, we experimentally com-

pare them under varying ε, θ, h∗, and α parameters, as well as using multiple evalu-

ation metrics. We use four real-world location datasets in our experiments: Kaggle,

Brightkite, Gowalla, and Foursquare. We also perform an experimental comparison

against a state-of-the-art work for answering spatial density queries under LDP [Tire

and Gursoy, 2024] to demonstrate the practical benefits of our work and its superi-

ority in this task. Each experiment is repeated 10 times and the average results are

reported.

Kaggle: The Kaggle dataset contains trips of 442 taxis driving in the city of

Porto. The dataset was originally made public for the taxi service prediction com-

petition in ECML-PKDD; we downloaded it from Kaggle [ECML/PKDD,]. While

the dataset contains full taxi trips (multiple location readings per trip), we pre-

processed it by keeping only the starting location of each trip and treated the trip

starting locations as the current locations of users in the user population. At the end

of this processing, we ended up with 1,048,575 users and their latitude, longitude

locations.

Brightkite: The Brightkite dataset contains users’ location check-ins from a social

network service provider called Brightkite [Cho et al., 2011]. From the full dataset,

we extracted check-ins made in the United States, between longitudes -124.26 and

-71.87 and latitudes 25.45 and 47.44.

Gowalla: was also a location-based social network site where users contributed

their data by sharing their locations [Cho et al., 2011]. Similar to Brightkite, we

extracted check-ins made in the United States using the same latitude and longitude

Chapter 6: Experimental Evaluation 32

boundaries.

Foursquare: The Foursquare dataset contains location check-ins of users in

Tokyo, between the time period from 12 April 2012 to 16 February 2013 [Yang

et al., 2015]. We used this dataset without any pre-processing. It contains a total

of 573,703 location check-ins. The minimum latitude is 35.51, maximum latitude is

35.87, minimum longitude is 139.47, and maximum longitude is 139.91.

6.2 Utility Metrics

We define our utility metrics using quadtrees (Q and Q′), but for kd-trees one may

simply replace Q and Q′ by K and K ′ and the remaining definitions of the metrics

would stay the same. Let Q denote the noise-free quadtree that would be built

without privacy protection, and let Q′ denote the noisy quadtree built under ε-LDP.

We use three utility metrics to measure the difference between Q and Q′. Higher

the values of these metrics, higher the difference between Q and Q′, and therefore

higher the amount of utility loss.

Average Query Error (AQE): We generate N = 100 random queries and

compute their answers on Q and Q′, denoted by ansq and ans′q respectively. Then,

AQE measures the average error between ansq and ans′q across all queries as follows:

AQE =
1

N
∗

N∑
i=1

|ansqi − ans′qi |
max{ansqi , b}

where qi denotes the i’th query and b denotes a sanity bound that mitigates the

effect of queries with extremely high selectivities (extremely low answers) [Chen

et al., 2012, Gursoy et al., 2018a, Zhang et al., 2016]. We set the value of b as:

b = 2%× |U|.

Tree Edit Distance (TED): TED measures the structural difference between

Q and Q′. Consider that we want to measure TED between two subtrees rooted at

nodes v and v′, such that g(v) = g(v′). TED(v, v′) is defined recursively as follows:

Chapter 6: Experimental Evaluation 33

TED(v, v′) =



0 if |c(v)| = 0 and |c(v′)| = 0

num desc(v) if |c(v)| > 0 and |c(v′)| = 0

num desc(v′) if |c(v)| = 0 and |c(v′)| > 0∑
x∈c(v), x′∈c(v′)
s.t. g(x)=g(x′)

TED(x, x′) if |c(v)| > 0 and |c(v′)| > 0

where num desc(v) denotes the number of descendent nodes that v has (exclud-

ing itself). The rationale is as follows: If both v and v′ do not have any children,

then they have zero TED (no structural difference). If one of them has children but

the other does not, then all descendants must be counted as part of TED. If both v

and v′ have children, then their TED is computed recursively on pairs (x, x′) where

x and x′ have matching geographical regions, i.e., x′ in Q′ is the noisy counterpart

of x from Q.

Once TED between v and v′ is defined as above, it can be used to measure TED

between trees Q and Q′ as: TED(Q,Q′) = TED(vroot, v
′
root) where vroot is the root

node of Q and v′root is the root node of Q′.

Node Density Difference (NDD): NDD measures the difference between Q

and Q′ by computing the differences between corresponding nodes’ densities.

NDD(Q,Q′) =
∑
v∈Q

φ(v)

where:

φ(v) =

|d(v)− d(v′)| if ∃ v′ ∈ Q′ s.t. g(v) = g(v′)

d(v) otherwise

In other words, NDD iterates over each node v ∈ Q and checks if its counterpart

exists in Q′, i.e., v′ ∈ Q′ with g(v) = g(v′). If it exists, then the difference between

their densities is computed and added to NDD. However, due to structural differences

between Q and Q′, it is also possible that such a v′ does not exist. In that case,

d(v′) is assumed to be 0 and therefore d(v) is added directly to NDD.

Chapter 6: Experimental Evaluation 34

Figure 6.1: Results of our baseline vs proposed quadtree solutions with AQE,
TED and NDD metrics (one metric each row) on Brightkite, Gowalla, Kaggle and
Foursquare datasets (left to right).

6.3 Results of Quadtree Algorithms

We first evaluate our quadtree algorithms (baseline solution and proposed solution)

from Section 4. In the first set of experiments, we keep the h∗ and θ parameters

constant (h∗ = 4, θ = 10000) and vary the ε parameter to observe its impact.

The results are reported in Figure 6.1. Four popular (conventional) ε values are

used: ε = 0.1, 0.5, 1, 2. Across all datasets and metrics, we observe that: (i)

errors decrease as ε is increased, and (ii) the proposed solution yields lower errors

than the baseline solution. The prior is an intuitive result because as ε increases, the

noise caused by LDP decreases; therefore, it becomes possible to build more accurate

quadtrees. With regards to the latter, especially on Brightkite and Gowalla datasets,

the proposed solution makes remarkable improvement in terms of the AQE and NDD

metrics when ε is low. The difference between the two solutions is relatively lower

in terms of the TED metric. A similar observation holds for the Foursquare dataset

– while the difference between the baseline solution and the proposed solution is

high in terms of AQE and NDD metrics, it is relatively less pronounced in terms of

Chapter 6: Experimental Evaluation 35

the TED metric. The only exception in which the proposed solution yields higher

error than the baseline solution is the Kaggle dataset and the TED metric. The

reason behind this observation is the significant skew in the spatial distribution of

the Kaggle dataset. Users’ locations in this dataset are heavily accumulated within a

small range of latitude and longitude coordinates, and much fewer location readings

exist outside this range. Consequently, in the noise-free quadtree, there exist few

branches with high depth, whereas the remaining branches are shallow. However,

the proposed solution, which constructs a fully balanced quadtree first and then

performs top-down structural corrections in its final step, has a higher tendency

to end up with a more breadth-balanced quadtree than the noise-free version, thus

causing high TED.

Next, we fix θ = 10000 and vary the h∗ and ε parameters. The results are shown

in Table 6.1 and 6.2. We again observe that the proposed solution performs better

than the baseline solution. For both solutions, it seems that as we increase h∗,

errors tend to increase. For the baseline solution, this shows the ineffectiveness of

splitting the original ε budget into h∗ − 1 parts. Another interesting observation is

that TED results are good when h∗ is low, such as h∗ = 3. This shows that for the

first few levels of the quadtree (which are close to the root node), there is relatively

small structural error. For example, when h∗ = 3, TEDs are usually 0, meaning

that our LDP quadtrees have identical structure to noise-free quadtrees. However,

as we increase h∗ to 4 and 5, there is an increasing amount of structural inequality

as demonstrated by increasing TEDs. Overall, this shows that LDP quadtrees are

more likely to have structural errors towards their leaf nodes whereas their structure

close to the root node remains more accurate.

Finally, in Table 6.3, we fix ε = 1 and vary the h∗ and θ parameters. For low h∗

such as h∗ = 3, different values of θ do not seem to cause substantial changes in AQE

on Brightkite, Gowalla and Foursquare datasets. However, for h∗ = 4 and h∗ = 5,

changes to θ yield higher differences in terms of AQE. Usually, θ = 5000 or 10000

seem to be the ideal choice when h∗ = 4 and h∗ = 5 for the proposed solution. In

contrast, higher θ such as 10000 or 20000 seem to be better for the baseline solution.

This is because increasing θ decreases the risk of creating erroneous nodes caused by

Chapter 6: Experimental Evaluation 36

Table 6.1: AQE and TED quadtrees under different heights h∗ with threshold θ =
10000.

AQE TED

ε = 0.1 ε = 0.5 ε = 1 ε = 2 ε = 0.1 ε = 0.5 ε = 1 ε = 2

Brightkite

h∗ = 3
Baseline 0.317 0.056 0.028 0.014 0.0 0.0 0.0 0.0

Proposed 0.156 0.030 0.014 0.006 0.0 0.0 0.0 0.0

h∗ = 4
Baseline 0.941 0.189 0.095 0.046 18.8 6.0 2.4 2.0

Proposed 0.369 0.067 0.032 0.015 16.0 3.2 2.0 0.8

h∗ = 5
Baseline 1.924 0.423 0.213 0.092 105.2 66.8 41.2 19.2

Proposed 0.637 0.146 0.080 0.036 110.4 55.2 16.0 4.8

Gowalla

h∗ = 3
Baseline 0.292 0.053 0.026 0.011 0.0 0.0 0.0 0.0

Proposed 0.140 0.022 0.013 0.005 0.0 0.0 0.0 0.0

h∗ = 4
Baseline 1.015 0.201 0.108 0.057 18.4 4.0 1.2 0.0

Proposed 0.313 0.069 0.039 0.016 14.0 2.4 0.0 0.0

h∗ = 5
Baseline 2.076 0.436 0.215 0.094 118.4 68.8 40.0 17.6

Proposed 0.850 0.172 0.074 0.032 122.4 49.2 17.6 7.6

Kaggle

h∗ = 3
Baseline 0.396 0.058 0.025 0.011 4.0 1.2 0.0 0.0

Proposed 0.296 0.051 0.020 0.008 5.2 1.6 0.0 0.0

h∗ = 4
Baseline 1.302 0.155 0.085 0.039 12.0 6.4 0.4 0.0

Proposed 0.885 0.137 0.065 0.026 31.6 8.8 1.6 0.0

h∗ = 5
Baseline 3.823 0.562 0.145 0.064 52.0 31.2 4.0 0.0

Proposed 1.815 0.290 0.133 0.054 74.0 29.6 8.8 0.8

Foursquare

h∗ = 3
Baseline 0.373 0.062 0.038 0.019 0.0 0.0 0.0 0.0

Proposed 0.154 0.033 0.017 0.008 0.0 0.0 0.0 0.0

h∗ = 4
Baseline 1.085 0.249 0.128 0.060 21.6 11.6 6.0 4.8

Proposed 0.462 0.084 0.045 0.024 19.6 6.8 4.8 3.6

h∗ = 5
Baseline 2.334 0.455 0.207 0.098 94.8 58.4 44.0 22.4

Proposed 0.883 0.195 0.087 0.046 109.2 56.0 25.6 17.2

LDP noise. When θ is higher, it is less likely that LDP noise causes node densities to

erroneously increase to higher than θ and cause an erroneous split. Similarly, higher

θ implies shorter quadtrees for the baseline solution, which eliminates the creation

of deeper nodes that have higher risk of being dominated by LDP noise.

Chapter 6: Experimental Evaluation 37

Table 6.2: NDD of quadtrees under different heights h∗ with threshold θ = 10000.

ε = 0.1 ε = 0.5 ε = 1 ε = 2

Brightkite

h∗ = 3
Baseline 60.2 10.4 5.5 2.3

Proposed 30.1 5.2 2.5 1.2

h∗ = 4
Baseline 229.5 51.7 26.0 13.8

Proposed 94.1 18.5 9.7 4.0

h∗ = 5
Baseline 499.1 139.9 74.7 38.8

Proposed 258.3 58.6 27.3 11.7

Gowalla

h∗ = 3
Baseline 50.7 10.4 4.8 2.4

Proposed 24.8 4.8 2.5 1.1

h∗ = 4
Baseline 234.2 56.5 28.4 14.0

Proposed 95.9 20.9 9.5 4.3

h∗ = 5
Baseline 554.0 151.7 80.5 42.3

Proposed 285.5 62.1 29.6 13.0

Kaggle

h∗ = 3
Baseline 20.5 4.9 2.2 1.1

Proposed 17.8 3.4 1.5 0.6

h∗ = 4
Baseline 47.0 9.4 5.1 2.5

Proposed 37.2 7.4 3.2 1.4

h∗ = 5
Baseline 95.7 16.0 8.5 4.2

Proposed 73.0 14.7 7.6 2.8

Foursquare

h∗ = 3
Baseline 38.5 7.3 3.9 1.8

Proposed 19.5 3.5 1.8 0.8

h∗ = 4
Baseline 149.5 36.0 20.1 9.8

Proposed 65.8 14.4 8.0 3.8

h∗ = 5
Baseline 275.3 68.7 37.8 19.5

Proposed 146.2 38.4 17.7 8.9

6.4 Results of Kd-tree Algorithms

In this section, we evaluate our kd-tree algorithms from Chapter 5. In the first

set of experiments, we keep θ = 10000 constant and vary the ε budget and h∗

Chapter 6: Experimental Evaluation 38

Table 6.3: AQE of quadtrees with privacy budget ε = 1, varying h∗ and θ.

Baseline Proposed

θ 1000 5000 10000 20000 1000 5000 10000 20000

Brightkite

h∗ = 3 0.027 0.029 0.032 0.022 0.015 0.015 0.012 0.012

h∗ = 4 0.100 0.099 0.103 0.084 0.036 0.036 0.035 0.039

h∗ = 5 0.278 0.229 0.195 0.182 0.078 0.072 0.085 0.082

Gowalla

h∗ = 3 0.025 0.025 0.026 0.030 0.012 0.013 0.014 0.013

h∗ = 4 0.097 0.106 0.100 0.108 0.034 0.028 0.036 0.041

h∗ = 5 0.257 0.221 0.214 0.175 0.084 0.067 0.076 0.085

Kaggle

h∗ = 3 0.046 0.030 0.023 0.024 0.031 0.024 0.021 0.020

h∗ = 4 0.170 0.085 0.073 0.075 0.089 0.065 0.073 0.062

h∗ = 5 0.396 0.268 0.150 0.161 0.173 0.156 0.177 0.160

Foursquare

h∗ = 3 0.035 0.035 0.035 0.028 0.016 0.018 0.018 0.017

h∗ = 4 0.134 0.130 0.134 0.098 0.046 0.044 0.042 0.043

h∗ = 5 0.318 0.294 0.210 0.135 0.096 0.095 0.083 0.088

parameters. The results are shown in Table 6.4. First, recall that we had two

strategies for determining child densities in kd-trees: the initial strategy and the

improved strategy. Upon comparing them, we observe from Table 6.4 that the

improved strategy yields lower AQE in the majority of the experiments. This shows

that LDP median computation is indeed less noisy compared to LDP bucket density

estimation. Therefore, in general, using the improved strategy rather than the initial

strategy is preferable. Second, as ε increases, we observe that errors decrease both

for the initial and improved strategies. This aspect is similar to quadtrees and it

suits our expectations. Third, errors increase as h∗ increases from 3 to 5, which

is also similar to quadtrees. However, the speed of increase is slower in kd-trees

compared to quadtrees. For example, although AQEs in quadtrees are lower than

kd-trees when h∗ = 3, vice versa can be true when h∗ = 4 or 5. This shows that kd-

trees are less affected by the increase in error as h∗ increases. Fourth, we analyze the

Chapter 6: Experimental Evaluation 39

Table 6.4: AQE of kd-trees with threshold θ = 10000, varying ε and h∗.

ε = 0.1 ε = 0.5 ε = 1 ε = 2

Brightkite

h∗ = 3
Initial 0.378 0.139 0.077 0.073

Improved 0.236 0.087 0.017 0.012

h∗ = 4
Initial 0.685 0.178 0.091 0.058

Improved 0.383 0.148 0.046 0.060

h∗ = 5
Initial 1.158 0.324 0.169 0.104

Improved 0.534 0.188 0.181 0.079

Gowalla

h∗ = 3
Initial 0.324 0.093 0.079 0.077

Improved 0.244 0.051 0.021 0.007

h∗ = 4
Initial 0.593 0.200 0.161 0.157

Improved 0.343 0.139 0.083 0.076

h∗ = 5
Initial 0.972 0.288 0.213 0.167

Improved 0.491 0.193 0.159 0.122

Kaggle

h∗ = 3
Initial 0.308 0.081 0.046 0.032

Improved 0.095 0.023 0.015 0.012

h∗ = 4
Initial 0.614 0.129 0.081 0.050

Improved 0.253 0.056 0.032 0.028

h∗ = 5
Initial 1.029 0.167 0.118 0.081

Improved 0.465 0.090 0.061 0.040

Foursquare

h∗ = 3
Initial 0.391 0.099 0.042 0.021

Improved 0.166 0.031 0.022 0.011

h∗ = 4
Initial 0.637 0.193 0.096 0.051

Improved 0.377 0.107 0.059 0.032

h∗ = 5
Initial 1.419 0.301 0.184 0.092

Improved 0.645 0.205 0.097 0.065

errors across different datasets. Interestingly, kd-trees yield lower error on Kaggle

and Foursquare datasets, whereas these two datasets had the highest amount of error

in the case of quadtrees. This shows that datasets and data distributions that are

not handled well by quadtrees can be handled by kd-trees, and vice versa. Hence,

considering that they work well on different datasets, kd-trees and quadtrees can

complement each other in real-world tasks.

In the next set of experiments, we fix ε = 1 and h∗ = 4, and vary the θ parameter.

The results are shown in Table 6.5. We observe that there is no direct relationship

Chapter 6: Experimental Evaluation 40

Table 6.5: AQE of kd-trees with the improved strategy, ε = 1.0 and h∗ = 4. θ is
varied between 5000 and 40000.

θ = 5000 θ = 10000 θ = 20000 θ = 40000

Brightkite 0.098 0.046 0.104 0.100

Gowalla 0.083 0.083 0.094 0.078

Kaggle 0.036 0.032 0.029 0.021

Foursquare 0.056 0.059 0.065 0.067

between θ and AQE. For example, on the Brightkite dataset, AQE drops as θ is

increased from 5000 to 10000, then increases as θ is increased from 10000 to 20000,

and remains similar as θ is increased from 20000 to 40000. In contrast, on the

Kaggle dataset, AQE drops consistently as θ is increased from 5000 to 40000. On the

other hand, on the Foursquare dataset, AQE increases consistently as θ is increased

from 5000 to 40000. Hence, it is not possible to establish a consistent relationship

between the value of θ and AQE – the best value of θ can be different under different

conditions.

6.5 Accuracy of LDP Median Computation

Recall from Chapter 5 that a significant component of our kd-tree solution is to

find the medians of kd-tree nodes while satisfying LDP. In this section, we measure

the accuracy of our proposed LDP median computation method, by comparing the

medians found using our method versus the true medians. Let η denote the true

median that would be found if all data could be accessed in plaintext (no LDP),

and let η′ denote the median found using our method satisfying LDP. The Median

Error (ME) is defined as:

ME =
|η′ − η|

max−min
∗ 100% (6.1)

where max and min denote the bounds of the axis for which median is being com-

puted (x-axis or y-axis).

Chapter 6: Experimental Evaluation 41

20 40 60 80 100 120
0

2

4

6

8

10

M
E

=0.1
=0.5
=1.0
=2.0

20 40 60 80 100 120
0

2

4

6

8

10

M
E

=0.1
=0.5
=1.0
=2.0

20 40 60 80 100 120
0

2

4

6

8

10

M
E

=0.1
=0.5
=1.0
=2.0

20 40 60 80 100 120
0

2

4

6

8

10

M
E

=0.1
=0.5
=1.0
=2.0

Figure 6.2: ME of medians found using our LDP algorithm with varying ε and
datasets (order from left to right: Brightkite, Gowalla in the top row, Kaggle,
Foursquare in the bottom row).

The α parameter plays an important role in median estimation since it controls

the number of buckets. When there are few buckets, then the density of each bucket

is high (better signal-to-LDP-noise ratio) but median computation is coarse since

intra-bucket distributions cannot be known. In the extreme case, when α = 1, the

median is always computed as the middle point of gx(v) or gy(v), i.e., no benefit is

gained by data collection using LDP. On the other hand, when there are too many

buckets, then the density of each bucket is low (LDP noise may overwhelm the true

densities) but median computation is fine-grained since each bucket covers a small

region. To better understand which factor dominates and to choose a good α value

for practical use, it is valuable to experimentally study the utility impacts of α.

In Figure 6.2, we plot the MEs across varying α between 20 and 120 for different

ε values (0.1, 0.5, 1, 2) and datasets. It can be observed from Figure 6.2 that MEs

are usually quite low. We observe ME ≥ 4% only when ε = 0.1, but for other ε,

Chapter 6: Experimental Evaluation 42

MEs are generally ≤ 2%. Especially when ε is 1 or 2, we observe low MEs across all

α values. This shows that our median computation method works well in practice,

and enables accurate computation of the medians under LDP.

In the case of high ε values (such as 1 or 2), the impact of α on MEs is not

very high. However, when privacy is stricter (such as ε = 0.1), MEs are relatively

more impacted by the choice of α. In the low ε regimes, the change in ME across

α ∈ [20, 120] resembles a U-shaped curve. When α is low (such as α = 20), ME is

high. This is because a low number of buckets causes median computation to be too

coarse, and therefore even if our algorithm identifies the correct bucket, the precision

of the median computation is negatively affected. On the other hand, when α is high

(such as α = 100 or 120), we observe that MEs can also be high. This is because

few location points fall into each bucket, causing low bucket density. This hurts

the correctness of identifying the right bucket for the median, which increases ME.

Overall, to minimize error, our results and analyses show that instead of choosing

α values that are too low or too high, it is preferable to choose values towards the

middle, e.g., α = 60 or 80.

6.6 Comparison Against Prior Work

In this section, we perform an experimental comparison between our quadtree so-

lution (the “proposed” version), kd-tree solution (using the “improved” strategy),

and a state-of-the-art work for answering spatial density queries under LDP [Tire

and Gursoy, 2024], abbreviated as ASDQ-LDP. To perform the experimental com-

parison, we generate N = 600 random queries and compute their true answers and

noisy answers under LDP using each of the three approaches (our quadtree solution,

our kd-tree solution, and ASDQ-LDP [Tire and Gursoy, 2024]) separately.

In Figure 6.3, we plot the AQEs of each of the three approaches with different

ε values (0.1, 0.5, 1, 2) and datasets. We observe that our quadtree and kd-tree

solutions achieve substantially lower errors compared to ASDQ-LDP in all cases.

The improvements can be up to 10-fold in some settings. We further observe that

the errors of ASDQ-LDP are quite high when ε = 0.1 and 0.5, but improve when

Chapter 6: Experimental Evaluation 43

Figure 6.3: Errors of quadtrees, kd-trees and ASDQ-LDP [Tire and Gursoy, 2024]
with varying ε and datasets (from left to right: Brightkite, Gowalla in the top row,
Foursquare, Kaggle in the bottom row).

ε = 1 and 2. Our kd-tree and quadtree solutions also have relatively higher errors

under ε = 0.1, but their errors remain low for ε ≥ 0.5. These results from Figure 6.3

agree with the results in Figure 6.1, since we had also observed in Figure 6.1 that

errors decrease substantially as we move from ε = 0.1 to ε ≥ 0.5.

In addition to demonstrating the improvement achieved by our work compared

to [Tire and Gursoy, 2024], Figure 6.3 also enables us to compare quadtrees and kd-

trees with one another. When ε = 0.1, errors of quadtrees and kd-trees are usually

similar (apart from the Kaggle dataset on which kd-trees achieve much lower error).

For remaining ε values, errors of quadtrees are usually slightly lower compared to

kd-trees. Quadtrees achieve particularly low errors of ≤ 2.5% when ε = 2.

Chapter 7: Conclusion 44

Chapter 7

CONCLUSION

In this thesis, we studied the problem of building hierarchical spatial decompo-

sitions under LDP, focusing on two popular types of decompositions: quadtrees and

kd-trees. We proposed two solutions for quadtrees: a baseline solution that adapts

an iterative strategy inspired by the centralized DP literature and a newly proposed

solution that relies on a single LDP data collection step. Furthermore, we proposed

a solution for building kd-trees which relies on a novel algorithm for learning me-

dians from the user population in every depth of the kd-tree. Two variants of the

kd-tree algorithm were developed based on their strategies for determining children

nodes’ densities (“initial” and “improved” strategies).

We experimentally evaluated all algorithms using four real-world datasets, sev-

eral ε values, and metrics. Results showed the superiority of the proposed solution

compared to the baseline solution for quadtrees and the superiority of the improved

strategy over the initial strategy for kd-trees. We also validated that our median

computation method enables accurate estimation of nodes’ medians under LDP. Fi-

nally, we showed that both our quadtree and kd-tree solutions achieve substantial

utility improvement in answering spatial density queries under LDP, compared to a

state-of-the-art solution [Tire and Gursoy, 2024].

In future work, we plan to study other spatial decomposition methods, such as

octrees, grid-based decompositions (e.g., adaptive grids), and hybrid decompositions

under LDP. In addition, we plan to study the adaptation and application of our LDP

median computation method in alternative domains and more general data analysis

tasks.

Bibliography 45

BIBLIOGRAPHY

[Alptekin and Gursoy, 2023] Alptekin, E. and Gursoy, M. E. (2023). Building

quadtrees for spatial data under local differential privacy. In IFIP Annual Con-

ference on Data and Applications Security and Privacy, pages 22–39. Springer.

[Apple, 2020] Apple (2020). Learning with privacy at scale. https:

//machinelearning.apple.com/docs/learning-with-privacy-at-scale/

appledifferentialprivacysystem.pdf.

[Bagdasaryan et al., 2022] Bagdasaryan, E., Kairouz, P., Mellem, S., Gascón, A.,

Bonawitz, K., Estrin, D., and Gruteser, M. (2022). Towards sparse federated

analytics: Location heatmaps under distributed differential privacy with secure

aggregation. Proceedings on Privacy Enhancing Technologies, 4:162–182.

[Chen et al., 2012] Chen, R., Acs, G., and Castelluccia, C. (2012). Differentially

private sequential data publication via variable-length n-grams. In Proceedings

of the 2012 ACM Conference on Computer and Communications Security, pages

638–649.

[Chen et al., 2016] Chen, R., Li, H., Qin, A., Kasiviswanathan, S. P., and Jin, H.

(2016). Private spatial data aggregation in the local setting. In 2016 IEEE 32nd

International Conference on Data Engineering (ICDE), pages 289–300. IEEE.

[Cho et al., 2011] Cho, E., Myers, S. A., and Leskovec, J. (2011). Friendship and

mobility: User movement in location-based social networks. In Proceedings of

the 17th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, page 1082–1090, New York, NY, USA. Association for Computing

Machinery.

Bibliography 46

[Cormode et al., 2018] Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D.,

and Wang, T. (2018). Privacy at scale: Local differential privacy in practice. In

Proceedings of the 2018 International Conference on Management of Data, pages

1655–1658. ACM.

[Cormode et al., 2012] Cormode, G., Procopiuc, C., Srivastava, D., Shen, E., and

Yu, T. (2012). Differentially private spatial decompositions. In 28th IEEE Inter-

national Conference on Data Engineering, pages 20–31. IEEE.

[Cunningham et al., 2021] Cunningham, T., Cormode, G., Ferhatosmanoglu, H.,

and Srivastava, D. (2021). Real-world trajectory sharing with local differential

privacy. Proceedings of the VLDB Endowment, 14(11):2283–2295.

[Ding et al., 2017] Ding, B., Kulkarni, J., and Yekhanin, S. (2017). Collecting

telemetry data privately. In Advances in Neural Information Processing Systems,

pages 3571–3580.

[Du et al., 2023] Du, Y., Hu, Y., Zhang, Z., Fang, Z., Chen, L., Zheng, B., and

Gao, Y. (2023). Ldptrace: Locally differentially private trajectory synthesis.

Proceedings of the VLDB Endowment, 16(8):1897–1909.

[Dwork et al., 2014] Dwork, C., Roth, A., et al. (2014). The algorithmic founda-

tions of differential privacy. Foundations and Trends® in Theoretical Computer

Science, 9(3–4):211–407.

[ECML/PKDD,] ECML/PKDD. Taxi trajectory prediction dataset.

[Erlingsson et al., 2014] Erlingsson, Ú., Pihur, V., and Korolova, A. (2014). Rappor:

Randomized aggregatable privacy-preserving ordinal response. In Proceedings of

the 2014 ACM SIGSAC Conference on Computer and Communications Security,

pages 1054–1067. ACM.

[Gursoy et al., 2022] Gursoy, M. E., Liu, L., Chow, K.-H., Truex, S., and Wei, W.

(2022). An adversarial approach to protocol analysis and selection in local differen-

Bibliography 47

tial privacy. IEEE Transactions on Information Forensics and Security, 17:1785–

1799.

[Gursoy et al., 2018a] Gursoy, M. E., Liu, L., Truex, S., and Yu, L. (2018a). Dif-

ferentially private and utility preserving publication of trajectory data. IEEE

Transactions on Mobile Computing, 18(10):2315–2329.

[Gursoy et al., 2018b] Gursoy, M. E., Liu, L., Truex, S., Yu, L., and Wei, W.

(2018b). Utility-aware synthesis of differentially private and attack-resilient loca-

tion traces. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, pages 196–211.

[Gursoy et al., 2020] Gursoy, M. E., Rajasekar, V., and Liu, L. (2020). Utility-

optimized synthesis of differentially private location traces. In IEEE International

Conference on Trust, Privacy and Security in Intelligent Systems and Applications

(TPS-ISA), pages 30–39. IEEE.

[Gursoy et al., 2019] Gursoy, M. E., Tamersoy, A., Truex, S., Wei, W., and Liu, L.

(2019). Secure and utility-aware data collection with condensed local differential

privacy. IEEE Transactions on Dependable and Secure Computing.

[He et al., 2015] He, X., Cormode, G., Machanavajjhala, A., Procopiuc, C. M., and

Srivastava, D. (2015). Dpt: differentially private trajectory synthesis using hierar-

chical reference systems. Proceedings of the VLDB Endowment, 8(11):1154–1165.

[Hong et al., 2021] Hong, D., Jung, W., and Shim, K. (2021). Collecting geospatial

data with local differential privacy for personalized services. In 2021 IEEE 37th

International Conference on Data Engineering (ICDE), pages 2237–2242.

[Kim et al., 2018] Kim, J. W., Kim, D.-H., and Jang, B. (2018). Application of

local differential privacy to collection of indoor positioning data. IEEE Access,

6:4276–4286.

Bibliography 48

[Kuo et al., 2018] Kuo, Y. H., Chiu, C. C., Kifer, D., Hay, M., and Machanava-

jjhala, A. (2018). Differentially private hierarchical count-of-counts histograms.

Proceedings of the VLDB Endowment, 11(11):1509–1521.

[Li et al., 2021] Li, S., Geng, Y., and Li, Y. (2021). A differentially private hybrid

decomposition algorithm based on quad-tree. Computers & Security, 109:102384.

[Liu et al., 2022] Liu, G., Tang, Z., Wan, B., Li, Y., and Liu, Y. (2022). Differen-

tial privacy location data release based on quadtree in mobile edge computing.

Transactions on Emerging Telecommunications Technologies, 33(6):e3972.

[Mokbel et al., 2006] Mokbel, M. F., Chow, C.-Y., and Aref, W. G. (2006). The new

casper: Query processing for location services without compromising privacy. In

VLDB, volume 6, pages 763–774.

[Navidan et al., 2022] Navidan, H., Moghtadaiee, V., Nazaran, N., and Alishahi, M.

(2022). Hide me behind the noise: Local differential privacy for indoor location

privacy. In 2022 IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW), pages 514–523. IEEE.

[Niknami et al., 2020] Niknami, N., Abadi, M., and Deldar, F. (2020). A fully spa-

tial personalized differentially private mechanism to provide non-uniform privacy

guarantees for spatial databases. Information Systems, 92:101526.

[Qardaji et al., 2013] Qardaji, W., Yang, W., and Li, N. (2013). Differentially pri-

vate grids for geospatial data. In 2013 IEEE 29th International Conference on

Data Engineering (ICDE), pages 757–768.

[Samet, 1984] Samet, H. (1984). The quadtree and related hierarchical data struc-

tures. ACM Computing Surveys (CSUR), 16(2):187–260.

[Shaham et al., 2022] Shaham, S., Ghinita, G., Ahuja, R., Krumm, J., and Shahabi,

C. (2022). Htf: Homogeneous tree framework for differentially-private release of

Bibliography 49

large geospatial datasets with self-tuning structure height. ACM Transactions on

Spatial Algorithms and Systems.

[Thakurta et al., 2017] Thakurta, A. G., Vyrros, A. H., Vaishampayan, U. S.,

Kapoor, G., Freudinger, J., Prakash, V. V., Legendre, A., and Duplinsky, S.

(2017). Emoji frequency detection and deep link frequency. US Patent App.

15/640,266.

[Tire and Gursoy, 2024] Tire, E. and Gursoy, M. E. (2024). Answering spatial den-

sity queries under local differential privacy. IEEE Internet of Things Journal.

[Wang et al., 2022] Wang, H., Hong, H., Xiong, L., Qin, Z., and Hong, Y. (2022).

L-srr: Local differential privacy for location-based services with staircase random-

ized response. In Proceedings of the 2022 ACM SIGSAC Conference on Computer

and Communications Security, page 2809–2823, New York, NY, USA. Association

for Computing Machinery.

[Wang et al., 2017] Wang, T., Blocki, J., Li, N., and Jha, S. (2017). Locally differ-

entially private protocols for frequency estimation. In Proc. of the 26th USENIX

Security Symposium, pages 729–745.

[Wang et al., 2018] Wang, T., Li, N., and Jha, S. (2018). Locally differentially

private frequent itemset mining. In IEEE Symposium on Security and Privacy

(SP). IEEE.

[Xiao et al., 2010] Xiao, Y., Xiong, L., and Yuan, C. (2010). Differentially private

data release through multidimensional partitioning. In 7th VLDB Workshop on

Secure Data Management (SDM), pages 150–168. Springer.

[Xiong et al., 2020] Xiong, X., Liu, S., Li, D., Cai, Z., and Niu, X. (2020). A

comprehensive survey on local differential privacy. Security and Communication

Networks, 2020:1–29.

Chapter 7: Conclusion 50

[Yan et al., 2020] Yan, Y., Gao, X., Mahmood, A., Feng, T., and Xie, P. (2020).

Differential private spatial decomposition and location publishing based on un-

balanced quadtree partition algorithm. IEEE Access, 8:104775–104787.

[Yang et al., 2015] Yang, D., Zhang, D., Zheng, V. W., and Yu, Z. (2015). Modeling

user activity preference by leveraging user spatial temporal characteristics in lbsns.

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(1):129–142.

[Yang et al., 2022] Yang, J., Cheng, X., Su, S., Sun, H., and Chen, C. (2022). Col-

lecting individual trajectories under local differential privacy. In 2022 23rd IEEE

International Conference on Mobile Data Management (MDM), pages 99–108.

IEEE.

[Yang et al., 2020] Yang, M., Lyu, L., Zhao, J., Zhu, T., and Lam, K.-Y. (2020).

Local differential privacy and its applications: A comprehensive survey. arXiv

preprint arXiv:2008.03686.

[Ye et al., 2019] Ye, Q., Hu, H., Meng, X., and Zheng, H. (2019). Privkv: Key-

value data collection with local differential privacy. In 2019 IEEE Symposium on

Security and Privacy (SP), pages 317–331. IEEE.

[Zhang et al., 2016] Zhang, J., Xiao, X., and Xie, X. (2016). Privtree: A differ-

entially private algorithm for hierarchical decompositions. In Proceedings of the

2016 International Conference on Management of Data, pages 155–170.

