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ABSTRACT

Investigating Attacks on RSA Cryptographic Algorithm With Machine Learning

Techniques
Ahmet GURDAL

MSc Thesis in Computer Engineering
Supervisor: Asst. Prof. Dr. Murat AK
October 2024, 74 pages

This thesis examined the application of machine learning models for factorizing semi-
prime numbers to address the RSA cryptanalysis problem. Across three bit-lengths, ten
datasets were trained on seven different neural network topologies, resulting in a total
of 165 models. Despite extensive efforts, the models struggled to predict the outputs
accurately, highlighting the inherent difficulty of factorizing semi-prime numbers and the
robust security of RSA encryption. An analysis of bit frequency distributions revealed no
discernible patterns, further demonstrating the complexity of prime factor distributions in
semi-primes.

Experiments with low-bit-length datasets indicated that increasing the dataset size
and training epochs could improve prediction accuracy. Additionally, as bit lengths grow,
the need for custom-designed neural networks tailored to this specific problem becomes
crucial to optimize both accuracy and training efficiency. Although the results did not
meet initial expectations, they provide valuable insights into cryptanalysis methodolo-
gies. The findings emphasize the importance of refining machine learning techniques,
expanding datasets, and adopting interdisciplinary approaches to advance cryptanalysis

and strengthen digital communication security.

KEYWORDS: Binary Approach, Cryptanalysis, Encryption, Machine Learning, Neural

Network
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OZET

RSA Kriptografik Algoritma Saldirilarinin Makine Ogrenimi Teknikleri ile

Arastirllmasi
Ahmet GURDAL

Yiiksek Lisans Tezi, Bilgisayar Miihendisligi Anabilim Dah
Damsman: Dr. Ogr. Uyesi Murat AK

Ekim 2024, 74 Sayfa

Bu tez, yari-asal sayilarin ¢carpanlara ayrilmasi ve RSA kriptanalizine yonelik makine
ogrenimi modellerinin uygulanmasim incelemistir. Ug farkli bit uzunlugu boyunca, on
veri seti yedi farkli sinir ag1 topolojisiyle egitilmis ve toplamda 165 model olusturulmus-
tur. Yogun c¢alismalara ragmen modellerin, ¢iktilart dogru bir sekilde tahmin edememesi,
carpanlara ayirma probleminin zorlugunu ve RSA sifrelemesinin giivenligini ortaya koy-
mugstur. Bit frekans1 dagilimlarina yonelik analizler ise belirgin bir desen ortaya koy-
mamis ve ¢arpanlarin sonug icerisindeki dagilimlarinin karmagikligini gostermistir.

Diisiik bit uzunlugundaki verilerle yapilan deneyler, veri seti boyutunun artirilmasi ve
egitim donemlerinin (epoch) uzatilmasinin tahmin dogrulugunu artirabilecegini goster-
mistir. Ayrica, bit uzunlugu arttikca, bu 6zel probleme uygun sekilde tasarlanmig 6zellestir-
ilmis sinir ag1 modellerinin kullanilmas1 hem dogruluk hem de egitim verimliligi acisin-
dan kritik 6neme sahiptir. Sonuglar baslangigtaki beklentileri karsilamasa da kriptanaliz
yontemlerine iliskin 6nemli bulgular sunmaktadir. Bu ¢calisma, makine 6grenimi tekniklerinin
geligtirilmesi, veri setlerinin genisletilmesi ve disiplinler aras1 yaklasimlarin benimsen-
mesinin kriptanaliz alaninda ilerleme saglamak ve dijital iletisim giivenligini giiclendirmek

icin gerekli oldugunu vurgulamaktadir.

ANAHTAR KELIMELER: ikili Yaklasim, Kriptoanaliz, Makine Ogrenimi, Sinir Agi,

Sifreleme

JURI: Dr. Ogr. Uyesi Murat AK
Dog¢. Dr. Taner DANISMAN
Dr. Ogr. Uyesi Naci ER
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INTRODUCTION A. GURDAL

1. INTRODUCTION

From the inception of the Internet, secure data transfer has been a critical concern
in the field of computer security. Even before the Internet, various methods were em-
ployed to securely store or transmit messages, such as Ancient Spartan Cryptography,
Roman encryption and ciphers, the Hebern rotor machine, and World War II cryptogra-
phy. Throughout history, we have relied on encryption methods, algorithms, and protocols
to meet our need for secure communication. Today, mathematicians and programmers
continue to develop new encryption techniques to ensure that only the intended recipients
can access transmitted messages. Numerous functions have been created to encrypt data,
some relying on secret keys and others utilizing mathematical formulas.

The primary aim of this thesis is to investigate attacks on the RSA factoring problem
using machine learning techniques and to seek improved methods for compromising the
RSA cryptosystem. By researching and testing current machine learning approaches to
attack the encryption algorithm, we aim to gain a deeper understanding of their advan-
tages and weaknesses. Additionally, by comparing historical research results with newly
generated data, we can visualize the actual improvements that have been made. The
analysis methods employed in this thesis will consist of machine learning models and
mathematical operations. These methods will be designed to produce meaningful data
that can be compared with other encryption algorithms based on performance, security,
and reliability.

In conclusion, the thesis will compare and summarize the definitions of the RSA en-
cryption algorithm, its data processing methods, and the outputs obtained from the analy-
sis. Given the rapid advancements in machine learning algorithms, it is possible that, with
the help of these models, we can identify and analyze any hidden patterns between cipher

texts and plain texts, should they exist.

1.1. Cryptography

The process of encrypting communications and data with codes so that only the in-
tended recipient can decode them and thereby preventing unauthorized access, is known

as cryptography. The term "cryptography" derives from the Greek words "crypt," meaning
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"hidden," and "graphy," meaning "writing." Data security techniques in cryptography are

based on mathematical ideas and a set of calculations controlled by rules, or algorithms,

that change signals into forms that are challenging to understand. These algorithms are

employed to verify data privacy, digitally sign documents, generate cryptographic keys,

facilitate secure internet browsing, and protect private transactions such as credit card

purchases.

In general, there are two types of cryptography:

Symmetric Key Cryptography: In this type of encryption, both the sender and the
receiver use the same key to encode and decode messages. Although these systems
are typically faster and simpler to implement, they require a secure method for
exchanging the key beforehand, which can be a significant drawback. The two
most popular symmetric key encryption methods are the Data Encryption Standard

(DES) and the Advanced Encryption Standard (AES).

» Asymmetric Key Cryptography: This encryption method uses a pair of keys (named

1.1.1.

public and private keys) for encrypting and decrypting data. The public key of the
recipient is used for encryption, while the private key is used for decryption. These
two keys are different; only the recipient has access to their private key. This ensures
that even if the public key is publicly available, only the recipient can decrypt the
message. The most popular technique for asymmetric key encryption is the RSA

algorithm.

RSA Operation and Prime Numbers

The asymmetric key cryptosystem called RSA allows digital signatures and secure

communication over unreliable networks. In 1977, it was Created by cryptographers and

computer scientists, Ron Rivest, Adi Shamir, and Leonard Adleman.

This is how the RSA algorithm works:

1.

Key Generation

* Choosing Two Large Prime Numbers; for security purposes, choosing big
prime numbers is essential. The challenge of factoring the products of these

primes is what gives RSA its security.

2
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* Semi-prime; calculate the modulus /V as the product of the chosen primes as

N = pq.

« Totient; calculate the Euler’s totient function ¢(/N') which is the count of pos-

itive integers less than N that are coprime with N. And it equals to ¢(N) =
(p—1(g—-1)
* Choose Public Exponent(e); Select a public exponent e that is coprime to

¢(N). 65537, which is a prime number, is the most common choice for the

value of e.

 Calculate Private Exponent(d); Determine the private exponent d with using
this formula; d x ¢ = 1 mod ¢(N). So, it is necessary to find the modular

multiplicative inverse of e modulo ¢ (V).
2. Key Distribution

* Public Key; (N,e) is published and can be seen by everyone.
 Private Key; (N,d) should be hidden by the owner and only the owner should
have access to it.
3. Encryption
* Message Representation; is the method of representing the plaintext message
as an integer m such that 0 < m < N

* Cipher Calculation; compute the ciphertext ¢ using the public key with this
formula ¢ = m® mod N. This modular exponentiation operation ensures

that the result is within the modulus V.

* Sending Ciphertext; transmit the ciphertext c to the intended recipient using

any suitable transfer method.
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4. Decryption

* Cipher Reception; the recipient, possessing the private key, receives the ci-

phertext c.

* Decryption Calculation; decrypting the ciphertext ¢ using the private key

with the formula m = ¢ mod N.

* Reverse Message Representation; since the value calculated with the de-
cryption formula is the same as the value encrypted by the sender. This value
m can be changed back to the plaintext version by using the same converter

method used on the sender side but reversed.

The difficulty of factoring the product of two large primes which is believed to be a
challenging mathematical problem, is the foundation of the security of RSA. As com-
putational power increases, key lengths must be adjusted to maintain the same level of
security. RSA is widely utilized in digital signatures, key exchange systems, and secure
communications due to its robust security and adaptability, making it an indispensable

algorithm in modern cryptography.

1.2. Training Theory

Every minute, technology becomes more deeply integrated into various aspects of our
daily lives. To meet the growing expectations of consumers, businesses are increasingly
relying on machine learning algorithms to streamline their operations. This reliance is
particularly evident in social media, where machine learning is used for tasks such as ob-
ject detection in images, and in the realm of personal electronics, where virtual assistants
like Alexa and Siri utilize machine learning for direct communication.

While machine learning (ML) and Neural Networks (NN) are related technological
terms commonly used in this project, it is necessary to cover the basis of these terms and

their differences before defining the aim of the project.

1.2.1. Machine Learning

Machine learning is a subfield of artificial intelligence (AI), which is the study of

intelligent human behavior. Artificial intelligence systems can now complete complicated

4
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jobs in a way that is similar to how humans solve problems.

In the 1950s, Arthur Samuel of IBM developed computer software for playing check-
ers, a significant early milestone in the field of artificial intelligence. Samuel’s software
was constrained by limited computer memory, prompting the development of techniques
like alpha-beta pruning. Central to his approach was a scoring system based on the posi-
tions of pieces on the board, aiming to estimate each player’s likelihood of winning. This
scoring function formed the basis of the minimax strategy, which ultimately led to the
development of the minimax algorithm. This algorithm enabled the software to decide
its next move by evaluating potential outcomes and selecting the one that maximized its
chances of success.

Samuel additionally created a variety of mechanisms that improved his program.
Samuel referred to this process as rote learning, in which his program coupled the val-
ues of the reward function with a record of every position it had previously encountered.
In 1952, Arthur Samuel first used the term "machine learning." So, the pioneer of Al,
Arthur Samuel originally described machine learning as the area of research that enables
computers to learn without being explicitly instructed.

Data; such as texts, numbers, and even images; are the fuel of the machine learning
models. Examples of data include time series data from sensors, bank transactions, im-
ages of objects or individuals, sales reports, etc. Before being employed as training data,
which constitutes the information used to train the machine learning model, data must
be gathered and prepped. The result of the learning process is better when more data is
collected.

The neural network model is trained to identify patterns and make predictions by
programmers who select a machine-learning model, provide data, and monitor its per-
formance. To enhance the accuracy of the model, human programmers may adjust its
parameters and make other modifications over time. This iterative process allows for con-
tinual improvement of the performance of the model and the generation of more accurate
results.

A subset of the training data is masked and employed as evaluation data to confirm that
the machine learning model is accurate when fresh data is introduced. The final version

of the model that can be used for different data sets in the future will be the end product
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of the training process.
Machine learning systems can act like different tools depending on their purpose.

There are three main ways these systems can be used:

* Descriptive: Imagine a machine learning system like a detective looking at clues
(data). A descriptive system would analyze the data and tell you what happened in
the past. For example, a system analyzing sales data could tell you which products

sold the most last month.

* Predictive: Now, imagine the detective is trying to solve a future crime (predict
what will happen). A predictive system would use the data to make educated
guesses about what might occur in the future. Building on the sales example, the
system could predict which products are likely to be popular next month based on

past trends.

* Prescriptive: Think of the detective not just predicting a crime, but also suggesting
how to prevent it. A prescriptive system would analyze the data and recommend
actions to take. In our sales example, the system might suggest stocking up on

certain products or running promotions based on its predictions.

The type of machine learning system you choose depends on what you want to achieve.
Essentially, the selected machine learning system can make us understand what happened
in the past (descriptive), predict what will happen in the future (predictive), or get recom-
mendations on what actions to take (prescriptive).

After the training of a neural network model, two critical challenges can hinder the

effectiveness of the model: overfitting and underfitting.

* Overfitting: This occurs when a model memorizes the training data too precisely,
capturing even the noise and idiosyncrasies within that data. While the model per-
forms exceptionally well on the training data itself, it generalizes poorly to unseen
data. Imagine a student studying only test questions and replicating them perfectly
on the exam; they wouldn’t understand the underlying concepts and struggle with

new problems.
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e Underfitting: Underfitting occurs when a model is too basic and misses important
patterns in the training data. This leads to low performance on both new data and
training data. It is similar to students who haven’t studied enough — they don’t have

the knowledge to answer questions well.

Both overfitting and underfitting prevent the model from achieving its goal of gener-
alizability — the ability to make accurate predictions on new data. A well-trained model
strikes a balance between learning the underlying patterns and avoiding memorization of
specifics.

To create a successful machine learning algorithm, first, which type of machine learn-

ing technique to be used must be decided. There are four types of machine learning;

* Supervised Learning: Supervised learning uses labeled datasets to train models for
accurate outcome prediction or data classification. The model adjusts its parameters
when new data is inputted until it achieves a good fit. This adjustment occurs during
cross-validation to prevent overfitting or underfitting. Organizing spam emails into
a separate folder is just one example of how large organizations utilize supervised
learning to tackle real-world problems. Techniques employed in supervised learn-
ing include neural networks, Naive Bayes, logistic regression, random forest, linear

regression, and support vector machines (SVM).

» Unsupervised Learning: Unsupervised learning involves using machine learning
algorithms to analyze and group datasets that don’t have labels. These algorithms
discover hidden relationships or patterns in the data without human intervention.
Unsupervised learning is useful for tasks like segmenting consumers, suggesting
complementary products, exploring data, and recognizing patterns and images be-
cause it can identify similarities and patterns in the data. It can also help reduce the
number of features in a model through dimensionality reduction. Popular methods
for this include principal component analysis (PCA) and singular value decompo-
sition (SVD). Neural networks, probabilistic clustering approaches, and k-means

clustering are among other algorithms utilized in unsupervised learning.

* Semi-supervised learning: Semi-supervised learning provides a satisfying middle

ground between supervised and unsupervised learning. It employs a smaller labeled

7
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data set for training purposes, which directs the classification and feature extraction
processes from a larger unlabeled data set. When there is insufficient labeled data
for a supervised learning system, semi-supervised learning can help. When labeling

sufficient data is too expensive, it also helps.

* Reinforcement learning; is a computational approach to learning where an agent
interacts with an environment to achieve a goal. Through trial and error, the agent
learns to take actions that maximize a cumulative reward signal. Every time step,
the agent assesses the condition of the environment, chooses a course of action,
and gets feedback in the form of a reward signal that indicates the immediate re-
sult of the action. The goal of an agent is to find a pattern or learn/understand a
policy and it tries to achieve that goal by establishing a state-to-action mapping
that optimizes the anticipated cumulative reward over time. Reinforcement learn-
ing algorithms employ various strategies, such as exploration and exploitation, to
balance between discovering new actions and exploiting known ones. Reinforce-
ment learning has applications in diverse fields, such as finance, robotics, business
management, healthcare, etc. where autonomous decision-making in dynamic en-

vironments is crucial.

To determine which machine learning system, should be selected to apply in a project,
there is also a decision map suggestion created by Thomas W. Malone and designed by
Laura Wentzel (Brown 2021). As this map suggests if data that is provided must be
clustered naturally, choosing the unsupervised learning system; or else, if the model must
learn what actions to take in different situations then supervised or reinforcement learning
would be more suitable.

If the learning process needs to be active, it implies that the decisions made by the
system will impact the situations it encounters later on. In contrast, if the learning pro-
cess is passive, the system learns solely from the given data without actively influencing

subsequent situations.
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1.2.2. Neural Network

Deep learning methods rely on neural networks, often called simulated neural net-
works (SNNs) or artificial neural networks (ANNs). Neural networks are a type of ma-
chine learning model inspired by the structure and functioning of the human brain. They
mimic how neurons in the brain communicate with each other.

Neural Networks have been used to speed up and automatize various tasks. Such as;
* Medical diagnosis by image classification.

» Targeted marketing by social network filtering and behavioral data analysis.

* Financial predictions by analyzing the historical data of financial instruments.

* Electrical load and energy demand forecasting.

* Process and quality control.

* Chemical compound identification.

* Document analysis; automated virtual agents and chatbots by natural language pro-

cessing.
* Recommendation Engines by user activity analysis.

* More accurately convert speech to text for meeting recordings and subtitles, assist

call center agents and automatically sort calls using speech recognition.
 Self-driving cars, facial recognition, image labeling, etc. by using computer vision.

ANNSs consist of one or more hidden layers, an output layer, and an input layer, which
together form the node layers. Every artificial neuron, also called a node, in the network
is linked to other nodes and possesses a weight and threshold. A node becomes active
and sends data to the next layer of the network when its output surpasses a predetermined
threshold value. On the other hand, no data is moved to the next layer of the network if

the output falls short of the threshold.
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Neural networks require training data in order to learn and as they are exposed to
more data over time, their accuracy typically improves. Fortunately, after they are cal-
ibrated for accuracy, learning algorithms are effective tools in artificial intelligence and
computer science that allow for quick data classification and clustering. Tasks requiring
pattern recognition, which may have previously taken hours for manual detection by hu-
man experts, can now be accomplished in minutes with the assistance of neural networks.
One of the most renowned examples of a neural network in practical use is the algorithm

employed by Google for its search engine.

1.3. Aims and Objectives
1.3.1. Aim

The primary aim of the thesis is to assess previous methods used for decrypting cipher
data. This involves conducting a comprehensive analysis of these methods, scientifically
delineating their strengths and weaknesses, and identifying the underlying reasons for
their limitations. Subsequently, the objective is to devise innovative strategies or algo-
rithms that mitigate the shortcomings observed in prior approaches, with the ultimate
goal of creating a decryption method that is more effective and successful.

Finally, by integrating the definitions and functionalities of these encryption algo-

rithms with the analysis results, attempting to address the following questions:

Which kind of attacks work better against the RSA encryption algorithm?

* Can machine learning algorithms be used to identify patterns in RSA encrypted

messages that could reveal the prime factors used in the encryption?

* How effective are machine learning algorithms at breaking RSA encryption com-

pared to traditional methods such as brute-force attacks or factoring algorithms?
* How can a machine learning model be used to attack the RSA encryption algorithm?

* What kind of machine learning methods have been used to attack the RSA encryp-

tion algorithm?
e Can we find out more effective methods?

10
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* Can we use machine learning methods together with classical algorithms in a hybrid

manner to get better results?

1.3.2. Objectives

The primary objective of this project is to develop an optimal machine-learning model
capable of efficiently factorizing semi-prime numbers. The model will take a semi-prime

number (n = pq) as input and aim to output either:

* The two prime factors of the semi-prime number, (p and q)
* One of the prime factors, (p or q)

* The totient of the semi-prime number (since determining the totient also allows for

the identification of the prime factors). (¢(N) = (p — 1)(¢ — 1))

By achieving this, the project seeks to enhance current methodologies in cryptanaly-
sis, providing a powerful tool for breaking the security of encryption algorithms that rely
on the difficulty of factorizing large semi-prime numbers. This advancement is expected
to have significant implications for the field of cryptography. Firstly, it will contribute to
a deeper understanding of the vulnerabilities present in widely-used cryptographic sys-
tems such as RSA, which is fundamental to many secure communications. Secondly, the
project aims to push the boundaries of machine learning applications in cryptanalysis,
demonstrating the potential of these advanced techniques to solve complex mathematical
problems that have traditionally been resistant to computational attacks.

Furthermore, by integrating innovative machine learning strategies, the project aims to
inspire future research and development in the field, encouraging the exploration of novel
approaches to cryptographic challenges. This could lead to the discovery of new algo-
rithms and techniques that enhance the overall security and reliability of digital commu-
nication systems. Overall, this project represents a significant step forward in the ongoing
effort to secure data in an increasingly digital world, ensuring that sensitive information

remains protected against evolving threats.
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1.4. Overview of Thesis

This thesis explores the intersection of machine learning and cryptanalysis, focus-
ing on the challenge of factorizing semi-prime numbers, which underpins the security of
many cryptographic systems. The primary objective is to develop an advanced machine-
learning model capable of efficiently breaking down semi-prime numbers into their con-
stituent prime factors or calculating their totient, thereby providing insights into the strengths
and vulnerabilities of current encryption algorithms.

The thesis is structured as follows:
1. Introduction:
* A comprehensive overview of cryptographic systems and the importance of

encryption in securing data.

* An explanation of the RSA algorithm and the significance of the semi-prime

factorization problem.

* The motivation and objectives of the thesis.
2. Literature Review:

* Examinations of historical and contemporary methods used in cryptanalysis,

focusing on those targeting the RSA algorithm.

* Reviews of machine learning techniques previously applied to similar prob-

lems.

* Identification of gaps and limitations in existing research.

3. Material & Method:

Detailed descriptions of the machine-learning models considered for this project.

The dataset preparation, including the generation and selection of semi-prime

numbers.

The process of training, validating, and testing the models.

Criteria for evaluating model performance.

12
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4. Results and Discussion:
* Presentation of the experimental results, including the performance metrics of
different models.

* A scientific delineation of the strengths and weaknesses of each approach.
5. Conclusion:

* Summary of the key findings and their significance.
* Recommendations for future research directions.
* Potential improvements and applications of the developed machine-learning

model.

This thesis aims to contribute to the field of cryptanalysis by leveraging machine learn-
ing to address the complex problem of semi-prime factorization, offering new perspectives

and solutions for enhancing the security of cryptographic systems.
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2. LITERATURE REVIEW

Since the implementation of the RSA cryptography system, numerous research ex-
periments have been conducted and published regarding the RSA cryptography algorithm
and its vulnerabilities. Given that the strength of the RSA algorithm relies on the com-
plexity of the prime factorization problem, these studies typically focus on identifying
weaknesses or patterns that could potentially undermine this complexity. This chapter

includes reviews of several published research papers on the subject.

2.1. Difficulty of Breaking RSA

There are several studies that have looked at the connection between the difficulty of
integer factorization and breaking the RSA algorithm, including Breaking RSA Generi-
cally is Equivalent to Factoring (Aggarwal and Maurer2009) and Breaking RSA May Be
As Difficult As Factoring (Brown 2016). These studies argue that the difficulty of break-
ing the RSA algorithm, specifically in obtaining the private exponent (d), is essentially
the same as the difficulty of modulus(n) factoring into its prime components.

The core of the security of the RSA algorithm lies in the fact that while it is easy to
multiply two large prime numbers to create a large composite number, it is challenging
to reverse this process and factor the composite number back into its prime components.
This factorization problem makes deriving the private key (d) from the public key (e, n)
so challenging.

Research has shown that any efficient method for breaking RSA and recovering the
private exponent would also provide an efficient solution for factoring large integers.
Therefore, the security of RSA encryption is directly tied to the computational difficulty
of integer factorization, reinforcing the notion that the two problems are computationally
equivalent in terms of their complexity.

These insights underscore the robustness of RSA encryption, as long as the factoriza-
tion of large integers remains a computationally hard problem. This equivalence between
breaking RSA and factoring ensures that advances in one area directly impact the security

considerations of the other.
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2.2. RSA Attacks

In the study titled RSA Attacks (Alrasheed and Fatima2021), detailed explanations of

the various attacking methods developed over the years are provided.

* Factoring Large Integers

This is the most widely known and one of the most challenging attack methods.
However, due to its complexity, it does not pose a significant threat to the RSA
system. The current fastest factorization algorithm is the General Number Field
Sieve, with a run-time of ((c + o(1))n'/3 log n?/3)

* Blinding Attack (Elementary Attacks)

A blinding attack on RSA exploits its mathematical properties to trick the private
key holder into decrypting a message without realizing it. The simplified break-

down of the attack steps is as follows:

1. The attacker has an encrypted message but no private key.
2. They multiply the ciphertext by a random number, creating a blinded version.

3. The attacker sends this blinded ciphertext to the private key holder for decryp-

tion.
4. The private key holder decrypts it, unaware it is a blinded message.

5. The attacker then uses the random number to reverse the process, revealing

the original message.

Elementary Attacks are essentially based on the users, the blinding attack is one of

the elementary attacks.
The formulas for the attack steps are as follows;
1. Blinding the Message
m =m-r° modn
where:

— m is the original message.
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— r is a random blinding factor.
— e is the public exponent.

— n is the modulus.

2. Decrypting the Blinded Message

where:

— ( is the ciphertext of the blinded message.

— d is the private exponent.

3. Revealing the Decrypted Message

where:

— r~! is the modular inverse of 7.

* Low Private Exponent
This attack depends on the theorem of Wiener which is;
Let N =pgand ¢ < p < 2q. Letd < 1/3N'V4,
Since (NN, e) is known the value of the d can be found if the d is sufficiently small.
The problem with this attack type is that the value of d is usually selected to be a
huge number. Therefore, this attack becomes impractical to use.

* Coppersmith’s Short Pad Attack (Low Public Exponent)
The theorem of this attack can be expressed in terms of this attack strategy;

While (N, e) is the public key. N is an n-bits-long number. m = |n/e?|. Let M €
Zy be a message with length at most n — m bits long. Define M, = 2" M +r, and
My = 2™ M +ry, where 71 and ro are different integers with 0 < ry,ry < 2™. If the
attacker has (N, e) and the encrypted versions (C1, Cs) of the separated message

(M, Ms) (11, ro are not known). the value of M, can be recovered.
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* Implementation Attacks
Other attacks focus on exploiting weaknesses in implementing RSA rather than at-
tacking the RSA algorithm directly. For example, an implementation attack catego-
rized under timing attacks was discovered in the P. Kocher’s paper, Timing attacks
on implementations of Die-Hellman, RSA, DSS, and other systems (Kocher||1996).
This attack allows an attacker to determine the value of the private exponent (d) by
measuring the exact time taken for the decryption process. The steps of this attack

are outlined below.

Formula;

- Letd = d,d,_1...dy (binary of d)

— Setz=Mand C = 1. Fori = 0...n do;
x* ()ifd; =1setC =C %z mod N
* (2) z=z%z mod N

— (C at the end has the value M? mod N

2.3. A First Study of the Neural Network Approach in the RSA Cryptosystem

The results of the initial experiments conducted on the RSA cryptosystem using a
neural network are published in this paper. (Meletiou et al.| 2002)

In the beginning, well-known RSA attack types were listed at the time as:

1. Given y = 2 mod N , trying all possible keys 0 < d < ¢(N) to obtain x = y?

mod N. However since ¢(/N) oc N it is impossible.

2. Finding ¢(N) and computing d such that
d*e=1 mod ¢(N)

(Euclidean Algorithm)
3. Finding d directly and computing z = y¢ mod N.

4. Factoring N = pq, deriving ¢(N) = (p — 1)(¢ — 1) and calculating d as above.
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For training the network, these training methods are used extensively. However, it did

not make a promising difference in the results.
 Standard Back Propagation (BP)
* Back Propagation with Variable Stepsize (BPVS)
* Resilient Back Propagation (RPROP)
* On-Line Adaptive Back Propagation (OABP)

As it is described in the paper as well if the value of d, then e x d — 1 can be calculated
and this is a multiple of ¢(/V). In Miller’s paper (Miller and Rieman||1976), it has been
demonstrated that N can be factored using a multiple of ¢(N). So, finding the value of d
is as hard as finding or calculating the value of ¢(/N) or as factoring .

The neural network designed in this project receives IV (pq) as input and ¢(N) which

is (p — 1)(¢ — 1) as output.

2.3.1. Results

There are several results of different training models in the paper. To test the network
performances, complete measure (1) which shows the percentage of the exact match
cases of predictions and targets, and near measure (y1,) which gives the percentage of tar-
gets and predictions which are close to each other with a given range. However, networks
are not trained with large p and q values.

While using N < 10001, the network with 1-5-5-1 Layer Topology trained with 80000
epoch using 66% train data. And it returned the accuracy of 3%(with train data) and 5%
(with test) for p,. For p5 these values increase to 35% and 40% respectively. And lastly,
for pi99, both values reach 90%. Even though the accuracy values are increasing, while N
is this small, these success rates do not seem very encouraging for solving the factorization

problem.

2.4. Prime Factorization Binary Approach

This is one of the most popular papers published about prime factorization with ma-

chine learning algorithms (Jansen and Nakayama 2005)). Authors; Boris Jansen and Kenji
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Nakayama have done the experiments and published the results of these experiments with

the N values under different circumstances.

2.4.1. Network Design

In the experiments that are the subject of this paper, the authors have employed mul-
tilayer feed-forward neural networks that have a single hidden layer.

Even though they experimented with a variety of multilayer feed-forward neural net-
works, networks with just one hidden layer produced the best results. The sinusoidal acti-
vation function is used for the hidden layer and the hyperbolic tangent activation function
is used for the output layer. The Resilient Backpropagation (RPROP) is used for train-
ing the networks. The Standard Back Propagation (BP) algorithm was also tested with
various parameter settings but did not receive a satisfactory result.

A measure called the Binary Complete Measure, denoted as 3, shows the percentage
of data where the network precisely produces the desired output. Another measure termed
the Binary Near Measure, denoted as (3, where ¢ > 1, indicates the percentage of data

where at most ¢ bits differ from the desired output produced by the network.

2.4.2. Number of Searchers for True Prime Number

Assuming k bits are incorrect in a certain output and b is the number of output bits.

The number of existing combinations for the target will be

=)= mm

When the least significant bit is always 1, it can be removed from the prediction

o (b=1\  (b—1)
C(k>_< k )_k!(b—k—l)!

2.4.3. Simulation Results

The neural network is developed using the Java Object-Oriented Neural Engine (JOONE).

* Group 1: For N < 1000

For small numbers N < 1000:
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— Two different neural network topologies, SNN and MNN-3, were tested.
— SNN was trained for 1000 epochs, and MNN-3 was trained for 3000 epochs.
— The training accuracy (3, to [35) for both networks was high, but testing accu-

racy was significantly lower, indicating potential overfitting.

* Group 2: For N < 10,000
For moderate numbers N < 10, 000:
— SNN was trained for 5000 epochs, while MNN-3 was trained for 15000 epochs.
— Both networks showed improved testing accuracy compared to the previous

group, with MNN-3 again outperforming SNN.

* Group 3: For N < 100,000 and 66% Train
For larger numbers N < 100, 000 with 66% training data:
— SNN and MNN-3 were trained for 10000 and 30000 epochs, respectively.
— Both networks showed moderate to high accuracy, with MNN-3 again per-

forming better than SNN.

* Group 4: For N < 100,000 and 33% Train
For larger numbers N < 100, 000 with 33% training data:
— Similar to the previous group but with less training data (33%).
— MNN-3 continued to perform better than SNN, but the accuracy was slightly

lower compared to the 66% training data group.

* Group 5: For N < 1,000,000 and 10% Train
For very large numbers N < 1,000, 000 with 10% training data:
— SNN and MNN-3 were trained for 15000 and 45000 epochs, respectively.

— Both networks showed lower accuracy due to the increased difficulty of the

problem and reduced training data.

— MNN-3 still outperformed SNN, but the success rates were lower than in pre-

vious groups.
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To summarize; across all groups, the MNN-3 topology generally performed better
than the SNN topology, particularly in the training data. However, the testing accuracy
often lagged, indicating challenges in generalizing the models. Even though accuracy
improved with more complex models and larger datasets, the success rates highlight the

difficulties in solving the factorization problem, especially as /N increases.

2.4.4. Comparison with Previous Studies

Meletiou et al. studied the ability of ANNs to factor integers. In Meletiou’s method,
data was in decimal format.

Meletiou et al. also mentioned that from a different perspective, when ANNs process
data in binary form, the problem is perceived as a classification problem rather than a
function input-output bond approximation problem. In this scenario, each output neuron
is responsible for determining the class to which the input belongs.

Meletiou et al. employed two intriguing but challenging techniques, known as the
"deflection technique'' and the ''stretching method'' to address the issue of converging

to local minima.

2.4.5. Conclusion

Finally, this research presents an optimized model built with a multilayer neural net-
work, wherein a binary expression for the input and output data is suggested. The focus

is on obtaining p, the smaller of the two prime numbers, as the output.

2.5. Cryptanalysis of RSA: integer prime factorization using genetic algorithms

In Rutkowski and Houghten paper (Rutkowski and Houghten| 2020), they applied
three different genetic algorithms to solve the integer factorization problem. One of these

genetic algorithms is "chromosome with m”.

prime = 6m £ 1

Using this notation to define a prime number reduces the complexity of the prime
numbers and with this approach, it is possible to factor a number with up to 22 decimal

digits.
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2.5.1. Related Studies

* In Yampolskiy’s paper (Yampolskiy|2010), a chromosome genetic algorithm is used

for integer factorization

— The two prime numbers, p and ¢, that result in the factorable integer n = pq
were represented by the chromosome. The chromosome length was selected
to match the decimal representation of N. The connection between semi-
prime and its prime components can be written as |p|, |¢| < @ As a result,
the decimal values of p and ¢ represented the first and second halves of the
chromosome, respectively. The chromosome representation is presented in

the equation below.

[p1p2P3p4-~-p|N\/2 qu2CI3Q4--~Q|N|/2]

— If N has m decimal digits, the highest possible fitness value for a chromosome
is m. This indicates that all m digits of the product generated from the chro-
mosome match /V, meaning the correct values of p and ¢ have been identified.
This describes how the "fitness function" evaluates the similarity between the
product of multiplying p and ¢ from the chromosome and N by using parity.
On the other hand, it may occur if the result of the chromosomal work of p

and ¢ is only one digit away from N.

— The best result achieved using this approach was the factorization of a twelve
digit semi prime (103694293567 = 143509 * 722563), the factorization pro-

cess took around six hours.

* In the paper of Mishra, Chaturvedi, and Pal (Mishra et al. 2014), multi-theaded

firefly algorithm is used.

— In this study, the integer factorization problem was approached using a multi-
threaded bound-changing chaotic firefly algorithm. The behavior of fireflies
inspired the design of the firefly algorithm. In this algorithm, the fitness func-
tion represents the light emitted by the fireflies, which attracts them to one

another.

22



LITERATURE REVIEW A. GURDAL

— Ten different test sets were used to test this algorithm. The largest number
tested has 14 digits 51790308404911 = (5581897 x 9278263), The Accuracy
of correctly factoring this number was 80-100% which depends on the total

number of fireflies used.

* In an anothor paper of Chaturvedi, Mishra and Shukla (Mishra et al.| 2016), a

heuristic approach for integer factorization is applied.

— This research tried to solve the integer factorization problem using a heuristic

approach based on molecules.

— This approach is based on how atoms are arranged in a place where inter-
atomic forces are almost nonexistent. A movement function, A force function
and an energy function are included in this approach to identify possible solu-

tions.

— As previously mentioned in the paper of Yampolskiy (Yampolskiy/2010), the
longest number evaluated using this approach was likewise 51790308404911 =
(5581897 % 9278263). With this method, the success rate of the algorithm was
69%. The authors also contrasted their findings with an algorithm for random
searches. The 11-digit (35-bit) number 42336478013 was the biggest number

that the random search algorithm could factor in, with a success rate of 4%.

2.5.2. Method

The constants that are used in all three genetic algorithms are:

* population size as 2000
* number of chromosomes as 2000 in a single population

* maximum number of generations as 2000 (this states that genetic algorithms will
keep running until it finds the prime number or reaches the maximum generation.)

This study lists the improved parts of the three genetic algorithms below.

1. Simple Genetic Algorithm;
Chromosome Representation, Fitness Function, Initial Population, Crossover and

Mutation
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2.

2.5.3.

“Chromosome is m”” Genetic Algorithm

Chromosome Representation, Fitness Function and Initial Population

. Primality Genetic Algorithm

Chromosome Representation, Fitness Function, Crossover and Mutation Procedure

Test Cases

. Simple GA - Crossover Rate = 50% and Mutation Rate = 100%;

In the test case; the best result with 38 bits N value gives a 3030 success rate with
max generation as 1244. The worst was 54 bits N value gives a 130 success rate

with max generation as 1564.

“Chromosome is m”’ GA - Crossover Rate = 100%, Mutation Rate = 100%;
In this test case; the best result with 44 bits N value gives a 3030 success rate with
max generation as 1309. The worst was 61 bits N value gives a 130 success rate

with max generation as 1276.

. Primality GA - Crossover Rate = 50%, Mutation Rate = 95%;

In this one; the best result with 36 bits N value gives a 3030 success rate with max
generation as 29. The worst was that 54 bits N value gives a 230 success rate with

a maximum generation of 21.

Both primes are in the search space using "Chromosome in m" GA with a 100%

crossover rate and 100% mutation rate. In the last test case, the best result with a 54-bit

N value achieved a 1630 success rate in 1987 generations, while the worst result with a

72-bit N value had a 130 success rate in 251 generations.

2.6. Integer Prime Factorization with Deep Learning

In the study, Integer Prime Factorization with Deep Learning (Murat et al. 2021),

deep learning techniques are applied to attempt to perform prime factorization.
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2.6.1. Dataset Generation

The data gathered are converted into binary vectors, the input values are semiprimes

and the output values (labels) are the smaller of the two prime divisors.

2.6.2. The Proposed Algorithm

p < g, N = pq, The input is N and the expected output is p. An RNN-LSTM
network is used for this purpose. A kind of neural network called an LSTM (Long Short-
Term Memory) is made to manage long-term dependencies in sequential data. It uses
memory cells and gates to control information flow, making it effective for tasks like time
series analysis and natural language processing. The published paper by A. Sherstinsky

(Sherstinsky|2020) has comprehensive information regarding LSTM networks.

Table 2.1. Model Summary

Layer Output Shape Param #
LSTM (None, 1, 128), (None, 1, 256), | 76288, 394240,
(None, 512) 1574912
Batch (None, 1, 128), (None, 1, 256), | 512, 1024, 2048,
Normalization (None, 512), (None, 128), 512,400
(None, 100)

Dropout (None, 1, 128), (None, 1, 256), 0,0,0,0,0
(None, 512), (None, 128)

(None, 100)
Dense (None, 128), (None, 100) 65664, 12900
(None, 10) 1010

2.6.3. Results

The result compares the performance of two models: the proposed RNN-ANN model
and the ANN model developed by Jansen and Nakamaya. The models were evaluated
based on their performance during training (using 10% of the data) and testing (using

90% of the data) across five different parameters (53, to 3,).
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* Proposed RNN-ANN Model:

— Training (10% data): Performance ranges from 38% to 93%.

— Testing (90% data): Performance ranges from 36% to 92%.
* ANN (Jansen & Nakamaya):

— Training (10% data): Performance ranges from 33% to 93%.

— Testing (90% data): Performance ranges from 28% to 89%.

The results indicate that the proposed RNN-ANN model generally performs better
on both training and testing data compared to the ANN model by Jansen and Nakamaya
(Jansen and Nakayama)2003)).

2.7. Integer Factorization

In this subject, a paper named Aftacks on the RSA cryptosystem using integer factor-
ization (Smiljani¢ and Ivani§|2011)) is published. And, in the translated version, this study
focuses on the application of integer factorization algorithms in breaking cryptographic
systems. It explores various algorithms, including Lehman’s (Lehman||1974)), Pollard’s
(Pollard|1975)), and the Quadratic Sieve algorithm (Pomerance||1984), to understand their
efficacy in factoring large integers. The paper provides a detailed examination of how
these algorithms function and their computational complexities.

Through rigorous analysis, the study aims to uncover potential vulnerabilities in cryp-
tographic systems that rely on the difficulty of factoring large numbers. By assessing the
efficiency and execution time of each algorithm, researchers aim to identify areas where
cryptographic systems may be susceptible to attacks. Understanding the capabilities and
limitations of these factorization algorithms is crucial for enhancing the security of cryp-
tographic protocols and protecting sensitive data.

A new modified integer factorization algorithm using integer modulo 20’s tech-
nique (Somsuk [2014)); in this paper, a newly developed technique for modified integer
factorization named Modified Fermat Factorization Version 4, is introduced to speed up

computation time. This algorithm is an improvement on Version 3 of the same algorithm.
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This algorithm uses 4> mod 20 = 19 mod 20 to examine the integer modulo 20
result, assessing whether it might be a perfect square before choosing to calculate all
of the digits of the result, given that its square root could be an integer. In the Fermat
Factorization problem, the square root of 4 may be an integer if the value of y> mod 20
is 0, 1,4, 5,9, or 16. In other cases, the square root of 32 is not time-consuming to
calculate.

Reverse Factorization and Comparison of Factorization Algorithms in attack to
RSA (Seker and Mert 2013); in this paper, a novel algorithm, closely resembling Fer-
mat’s factorization algorithm, is introduced. This algorithm significantly reduces the time
required for integer factorization. However, it is only tested on semi-prime numbers with
low bit lengths(8 digits). The results of this new algorithm, compared to well-known

integer factorization algorithms by their average execution times, are as follows:

Table 2.2. Result of the "Seker and Mert" paper

Method Avg. Exec. (mins)
Pollard Rho 398 (5-7 hours)
ECM 3443 (2-3 days)
Fermat 30

Quadratic Sieve | 326 (5-6 hours)
Erathostene 1267052 (2-3 years)
Trial Division 5510739 (>10 years)
New Approach | 5

Meta heuristics for prime factorization problem (Dass et al. 2013); in this arti-
cle, the possibility of solving prime factorization using meta-heuristic techniques is stud-
ied. The tested meta-heuristic techniques are Binary Particle Swarm Optimization (PSO),
Binary Differential Evolution (DE), and Genetic Algorithm (GA). The results of these
techniques are compared to a simple random search. In conclusion, the random search
technique performed better than the meta-heuristic techniques.

Integer factorization with a neuromorphic sieve (Monaco and Vindiola|2017); this

study explores using neuromorphic architectures to detect smooth numbers in polynomial
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sequences, crucial for integer factorization. It implemented a neuromorphic sieve with
LIF(leaky integrate-and-fire) neurons to exploit parallel computation and constant time
synaptic integration. The sieve maps factor base primes to neurons and the sieving interval
to time, forming a three-layer spiking neural network. This approach was tested on IBM’s
TrueNorth chip, which required quantizing synaptic weights due to hardware constraints.

The neuromorphic sieve was integrated into msieve software and tested on integers
from 32 to 64 bits. Results showed that the neuromorphic sieve achieved constant time
smooth number detection, outperforming traditional CPU-based methods in accuracy and
specificity. Among the four quantization strategies, the inverse strategy performed almost
to the same extent as the best integer approach. The neuromorphic approach demonstrated
significant promise for future high-frequency architectures. This work underscores the
potential for neuromorphic systems to handle complex computations beyond machine
learning efficiently.

Integer factorization using stochastic magnetic tunnel junctions; in this document
(Borders et al. [2019), a groundbreaking experiment in the field of probabilistic computing
is presented, introducing a new computing paradigm using classical entities known as p-
bits. The study focuses on the experimental realization of this concept using magnetic
tunnel junctions (MTJs) and demonstrates its potential for solving complex optimization
problems.

The work involved developing nanoscale MTJs to create p-bits, which were then elec-
trically interconnected to form a functional asynchronous network. The experiment aimed
to showcase the capabilities of this novel computing approach in addressing challenging
computational problems.

The results were promising, showing that the p-bit system operated at room tem-
perature and could be implemented using existing, highly scalable MRAM technology.
Additionally, the system demonstrated the ability to incorporate complex many-body in-
teractions, highlighting its potential for practical applications in optimization, sampling,
and machine learning.

Overall, the experimental results provided strong evidence of the potential scalability
and practicality of the p-bit-based computing paradigm, opening new possibilities for

unconventional computing systems.
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2.8. RSA Attack Methods

Efficient Method for Breaking RSA Scheme (Aboud|2009); in this paper, a novel
algorithm for attacking RSA cryptography is proposed, utilizing the Baghdad method for
calculating multiplicative inverses. This algorithm specifically targets the private key.
However, for this attack to succeed, certain conditions must be met. Specifically, the
appropriate bound of the public component must be established.

In the research paper of Abubakar et al. (Abubakar et al.|2014), cryptoanalytic attacks

on RSA classifications are explained,

¢ Attacks on Factorization Method

— Number Field Sieve Attack
— The Pollard’s p - 1

— Quadratic Sieve Factoring
* RSA Function Attacks

— Common Modulus
— Low Private Exponent

— Guessing the Decryption Exponent value
* Implementation Attacks

— Timing

— Fault Analysis

— Power Analysis Attacks

2.9. Quantum Attack Methods

Integer factorization using stochastic magnetic tunnel junctions (Jiang et al.|2018));
in this paper, two approaches to integer factorization in the context of quantum anneal-
ing are investigated. These methods aim to determine the factors of a given integer n

by encoding them into specific Hamiltonians Hp. The first method, known as the Direct
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Method directly addresses the factorization problem by formulating it as an Ising Hamil-
tonian. The second method, termed the Modified Multiplication Table Method simplifies
the process by adjusting multiplication tables, thereby reducing computational complex-
ity.

Experimental tests conducted on D-Wave 2000Q hardware demonstrate the practical
effectiveness of both methods. For instance, the Direct Method efficiently handles the
factorization of small numbers like 15, while the Modified Multiplication Table Method
is more effective for larger numbers like 143. These findings highlight the potential of
quantum annealing for integer factorization tasks and suggest future advancements in
quantum hardware and algorithms.

However, further research is necessary to explore the theoretical complexity of these
approaches, taking into account factors such as the spectral gap in Hamiltonians and their
applicability in noisy factorization algorithms.

Cryptographic Attack Possibilities over RSA Algorithm through Classical and
Quantum Computation (Son and Rasool [2018); The article examines different tech-
niques for breaking down large numbers into their smaller components. It discusses tradi-
tional methods like the Trail Division Algorithm, which involves straightforward division,
and more advanced methods like the Quadratic Sieve Algorithm. Additionally, it delves
into Shor’s Algorithm, a quantum method proposed by Peter Shor, which can efficiently
factor large integers by exploiting quantum principles.

Shor’s Algorithm stands out for its theoretical efficiency, but its practical implemen-
tation is hindered by the current limitations of quantum computing technology. While
classical methods such as the Quadratic Sieve Algorithm perform better than basic tech-
niques like Trail Division, they still fall short of the potential speed offered by Shor’s
Algorithm.

The article underscores the potential of quantum computing for integer factorization
tasks but acknowledges the challenges associated with realizing this potential due to the
current state of quantum computing technology.

Factoring 2048-bit RSA Integers in 177 Days with 13436 Qubits and a Multi-
mode Memory (Sangouard and Gouzien [2021); this article discusses the factorization

of large RSA integers using a quantum computer, focusing on Shor’s algorithm, a well-
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known method for integer factorization. The standard implementation of Shor’s algorithm
requires millions of qubits. However, this article proposes a new architecture that signifi-
cantly reduces the number of qubits needed.

In the proposed architecture, 13436 qubits are stored in memory, and a smaller pro-
cessor is used to manipulate them, reducing the required number of qubits by a factor of
three. The authors estimate that a 2048-bit RSA integer could be factored in 177 days

using this method.

2.10. Neural Network Attacks

Integer Factorisation, Fermat & Machine Learning on a Classical Computer
(Blake| 2023); in this paper, some binary classification models are used for the integer
factorization problem. with the 1 million, 426-bit length semi-prime numbers generated
and 2/3 of it used for training and the rest for testing, this model could perform a 72%
accuracy on given an n-bit semiprime, n, it can decide if R,,in < p/q < R,ax for a
user-specified gap (R,,in, R,,az).

Application of Artificial Neural Network in Cryptography (Arora et al.| 2015); in
this paper, the process of cryptography is completed in two steps using the backpropaga-

tion algorithm:
1. By deploying a sequential machine
2. By deploying a chaotic neural network

Using a sequential machine based on an artificial neural network (ANN), a three-bit
encryption device was constructed. This method effectively encrypts words that contain
only the alphabet letters “A” to “H”.

Using a chaotic neural network, it is observed that the initial parameter values are
crucial. In chaotic cryptography, initial conditions play a crucial role. Without knowing
the initial conditions as a whole, accurately decrypting encrypted data is quite challenging,
even with a comprehensive search.

Based on the analysis and work carried out in this paper, it is concluded that artifi-
cial neural networks are not only straightforward but also robust techniques capable of

reproducing highly complex computational machines.
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Breaking Cryptographic Implementations Using Deep Learning Techniques; in
this document (Portigliatti et al.| 2016), the study delves into the application of deep
learning techniques in side-channel attacks on cryptographic implementations. It outlines
the use of machine learning and deep learning methods, such as multilayer perceptrons,
stacked auto-encoders, and long and short-term memory units, to execute key recovery
attacks.

The document emphasizes the superiority of deep learning-based attacks over tradi-
tional template and machine learning-based attacks, supported by experimental evidence.
It provides insights into the architecture and parameters used for the deep learning net-
works and their efficiency in targeting both masked and unprotected cryptographic imple-
mentations.

The results demonstrate that when targeting masked or unprotected cryptographic
implementations, the proposed deep learning-based attacks are more efficient than tra-
ditional machine learning-based attacks. The document concludes by highlighting the
potential of deep learning techniques in breaking cryptographic implementations.

The Concept of Machine Learning and Elliptic Curves United Approach in Solv-
ing of the Factorization Problem (Vostrov and Dermenzhy|[2019); this article discusses
integrating the elliptic curve method (ECM) with machine learning to enhance integer
factorization efficiency. The ECM, known for its variability in computational time, relies
on generating random elliptic curves and performing elliptic curve arithmetic to find non-
trivial divisors of a composite number n. The authors implemented the ECM algorithm
in Java and tested it on composite numbers made up of two prime factors, experimenting
with different initial boundaries: 100, 30, 6, 2, and 1.

The experiments showed that adjusting the boundary size and the number of curves
needed to change the boundary impacted factorization time and efficiency. Larger bound-
aries (100, 30, 6) required a similar number of curves (around 6900 to 7000), while
smaller boundaries (2 and 1) required more curves (8700 and 12000, respectively). The
probability of finding a suitable curve increased with the number of curves used, espe-
cially for smaller boundaries.

The results indicated that using machine learning could predict effective curve param-

eters, reducing the number of curves needed for successful factorization. The authors pro-
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posed training a neural network on composite numbers with known factorization curves
to predict suitable parameters for unknown composite numbers, thereby improving the
ECM’s efficiency. Graphical analysis demonstrated the relationship between boundary
size, the number of curves, and factorization efficiency, highlighting the benefits of the
machine learning approach.

Overall, the work suggests that combining ECM with machine learning can signif-
icantly optimize the factorization process, reducing computational complexity and im-
proving success rates.

Machine Learning Based Attack on Certain Encryption Schemes; in this article
(Saif and Abidi 2019), the authors investigate a machine learning-based method to de-
crypt encrypted emails from the Enron dataset, bypassing the need for the decryption key.
Utilizing a subset of 252 emails, with 202 for training and 50 for testing, the emails were
initially encrypted using public key encryption schemes such as RSA or ECC. Three dis-
tinct feature sets were constructed based on email content, enabling decision trees to learn
text structures and predict plaintext words from encrypted versions.

To assess classification performance, each feature set underwent cross-validation,
where data was divided into three folds for training and validation. Accuracy scores and
performance metrics such as Fl-score, recall, and precision were computed for each set.
Following model evaluation, decryption involved analyzing word lengths in encrypted
emails and using classification models to predict plaintext words. Results from the three
models were aggregated to decrypt the entire text.

The decryption process demonstrated high accuracy, surpassing statistical attacks.
However, the machine learning approach required knowledge of space characters in the
text, which could be obtained through statistical analysis. In instances where space char-
acters weren’t the most frequent, the machine learning-based attack was inapplicable.

The study underscores the advantages of the machine learning-based approach, no-
tably its accuracy and comparatively low computational requirements, as opposed to tra-
ditional decryption methods reliant on obtaining the decryption key. It also suggests that
employing more robust machine learning algorithms like Random Forests could enhance
decryption efficacy for more intricate patterns in encrypted data. Overall, the research un-

derscores the potential of machine learning in decrypting encrypted texts without access
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to decryption keys.

Machine Learning Analysis for Side-Channel Attacks over Elliptic Curve Cryp-
tography (Villegas and Cordero2021); in this study, the authors conduct an experimental
evaluation of various machine learning (ML) models applied to Simple Power Analysis
(SPA) attacks on a device using Elliptic Curve Cryptography (ECC). Using an 8-bit At-
mega 328 U device, they compare the effectiveness of ML algorithms in detecting secret
keys.

The work involved capturing power traces during elliptic curve scalar multiplication
and training supervised learning algorithms, such as Decision Tree, Support Vector Ma-
chine (SVM), K-Nearest Neighbor and Random Forest, to classify addition and doubling
operations in elliptic curve calculations.

The results of this study show that the SVM achieved an accuracy of 75%, K-Nearest
Neighbor 37.5%, while both the Decision Tree and Random Forest reached 100% accu-
racy for the training data. However, Decision Tree and Random Forest models exhibited
significant overfitting when tested with different power traces, struggling with generaliza-
tion.

The study concludes that while ML models can identify key operations during train-
ing, their effectiveness in real-world applications is limited by overfitting. It suggests that
traditional non-ML-based SPA attacks may still be more precise and recommends explor-
ing multi-class classification algorithms to improve the generalizability of ML models for

SPA attacks.
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3. MATERIAL AND METHOD

The following section outlines the materials and methods employed in the current
study, aimed at investigating the impact of different variables on model accuracy. These
variables will be explained in the descriptions of each model. The study subjected to this

thesis is performed as follows;
» Studying previous experimentations.
 Data optimization processes.
* Training with various machine learning models.

Upon reviewing earlier experiments, it is evident that the majority of research focused
primarily on the N, p, and ¢ variables. In these studies, N was typically used for the input
nodes, while p, ¢, or both were used for the output nodes. Additionally, it is noteworthy
that the NV variables included in the models predominantly had values of less than one
million. This magnitude is significantly smaller than the /V variables commonly utilized
in the RSA encryption algorithm today.

NOTE: The project codes are stored in this GitHub repository link;
https://github.com/AhmetGurdal/RSA_ML_Attacks.

3.1. Data Processing

Before starting the training process, some data must be created to be used as input and
target values. At this point, it is known that to encrypt and decrypt messages using RSA,
correct values of p, ¢, N, ¢(N), e, and d variables should be determined or calculated.

Since ([V, e) is the public key, the value of these variables will be shared publicly. So,
these variables can be used as the input data of the training model. It is also known that,
in these variables, e only affects the value of d trying to find is neither easy nor helpful for
the prime factorization process. So, the only option left for input is the N variable. Also,
some other computed values including the /V variable in the calculation, can be useful.

To break the RSA cryptography, values of the p, ¢ or ¢(/N) variables must be known
to calculate the value of the d variable easily. So, at least one or more of these or other

values related to these variables can be used as output data.
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3.1.1. Data Collection

The data collection process is accomplished by using the GMP library in C++ lan-
guage. The output data file contains these variables in each line;

2,4, N, (N ),e,d.

This output data file is saved in “.csv” format. p and ¢ variables in each line are
generated prime numbers and the rest of the variables are calculated using these prime
numbers.

These generated prime numbers are limited to a pre-defined number of bit lengths.
Also, the same p and ¢ prime numbers are filtered out while still performing the data
collection process. The data collection application ran with 4 different bit lengths for
training and testing purposes. These are 256, 512, 1024 and 2048-bit lengths. For each
bit length, more than 50000 lines are generated.

#include <gmp.h>
#include <mpz.h>
#include <iostream>

void generate_prime (mpz_t prime, int nob)
{
gmp_randstate_t state;
gmp_randinit_default (state);
gmp_randseed_ui (state, time (NULL));

while (1)

{
mpz_urandomb (prime, state, nob);
if (mpz_probab_prime_p (prime, PRIME_ITERATIONS))
{

break;

}

gmp_randclear (state);

Figure 3.1. Prime Number Generation Algorithm

NOTE: The bit lengths listed above are the bit lengths of the prime numbers to create
other variables. So, to be more efficient, in pointing out the data used for training, bit

lengths of the prime numbers will be used. So, for example; if 256-bit data is used to train
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the model, it means that the data used to train the model is created with 2 different prime

numbers, each 256-bit length long.

3.1.2. Data Filtration

The data file created at the end of the data collection process, contains the data de-
scribed before. This file must be filtered because the generated prime numbers, p, and ¢
are selected randomly. So, in the prime number generating process loop, two issues may
occur for some lines.

The first issue is the algorithm may generate the same value for both p and ¢ prime
numbers. These values are not suitable to be the parameters of the RSA structure. The
second problem may occur when previously generated and used p and ¢ prime numbers
are generated again. This will cause the other variables to be the same as well.

In the end, the whole line will be a duplicate in the output file. These lines need to be
removed from the data file before using the data file for training because processing these
lines may cause over-fitting when trained with the unfiltered input and output data.

To remove these lines from the data file, the file will be processed again in a data
filtration application. This process is handled with a script written in Python using the

Pandas library.
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#Stage 1
import pandas as pd
import sys

try:

names — [llp", "qll, "n", "phi", lle", "d"]

df = pd.read_csv(file, names=names, sep=",")
except:

print ("File not found!")

sys.exit ()
#Stage 2

df = df.drop_duplicates|()

#Stage 3

samePrime = df[(df["p"] == df["g"])].index
df .drop (samePrime, inplace=True)

#Stage 4

df .to_csv(file, header=False, index=False)
print ("Data is saved successfully")

Figure 3.2. Data Filtration Script

This data filtration process has 4 steps:

1. Reading the old data file.
2. Removing the duplicate lines.
3. Remove lines with the same value for both p and g.

4. Saving the new data file.

At the end of the data filtering process, the output file is saved with the same name as

the input file to replace the old data file.

3.2. Data Sorting and Testing

The current training data created is sufficient for providing data related to a given N

and requesting either of the prime numbers. However, in some models, it will be necessary

to identify the larger or smaller prime numbers separately, or the order may matter in the

target output data.
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Due to the random nature of prime number generation, the data is not sorted, and
no column is specified for the larger or smaller prime. To address this issue and ensure
the adjustment of the training data before creating models with TensorFlow, the script
below, processes the training data. This pre-processing step involves sorting the primes
and categorizing them appropriately to maintain consistency and accuracy in the training
dataset.

from decimal import Decimal, localcontext
import pandas as pd

df = pd.read_csv("primes.csv", header=None)
with localcontext () as ctx:
ctx.prec = 300
for i in range(len(df)):
p,q = Decimal (df[0][i]), Decimal (df[1][i])
N, = Decimal (df[2][i])
phi_ N = Decimal (df[3][i])
e,d = df[4][i], Decimal (df[5][4i])

i
i

assert p » q != N, \
f"Error at {i} - wrong N"

assert (p - 1) = (g — 1) != phi_N,\
f"Error at {i} - wrong phi of N"

assert (e = d) % phi_ N != 1,\
f"Error at {i} - wrong d"

#Sorting p and g numbers

if (Decimal (df[0][i]) > Decimal (df[1][dil)):
print (f"Sorting at {i}")
df[0][i], dAf[1][i] = df[1][4i], dAEf[O][i]

print (" All tests are passed!!!")

Figure 3.3. Data Sorting and Testing Script

In this script;

* First assert command, checks if the multiplication of prime numbers equals the

value of V.
e Second assert command; checks if the ¢(N) equals to the "phi_N" variable

* Last assert command; checks if e times d mod ¢(N) equals to 1 or not. Since, the
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value of ¢(N

calculated d variable is correct for the given e variable.

3.3. Data Configuration Models

The data configuration models created to be trained in this project, are shared in this

section.

3.3.1.

In this model, the number of nodes in the input and output layers are set as the same.
For the input nodes, the binary form of the variable /V, and for the output nodes, a com-
bination of the variables p and ¢ are selected. /V bit length is ensured to be 512 bits and it
is also ensured that the first half of the output nodes belong to p variable and the second

half of the output nodes belong to ¢ variable. The data used to train the model is prepared

like this;

Model-n-pq

# Empty Data

model_inputs = np.empty (shape=
model_outputs = np.empty (shape=

for i in range(len(df)):

# Input

N_bin
N bin

Data

str(bin(int (df[2][1

N_bin.zfill(512)

# Output Data

g_bin
g _bin
p_bin
p_bin

str (bin(int
g bin.zfill
str(bin (int
p_bin.zfill

# Assigning

model_inputs|

model_outputs[i] =

(
(
(
(

df
25
df
25

[1

(0

6)

6)

1))) [2:
1011 ) [2:
1tin) ) [2:

i] = list (N_bin)

Figure 3.4. Model-n-pq - Data Preparation
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3.3.2. Model-n-p

For "Model-n-p", input and output data are adjusted to be the same length as the
previous model. The difference between this data configuration model and "Model-n-pq"
is that only the smaller prime number which is determined as the variable p after the
sorting process, is used for the output nodes. To make sure input and output nodes have

the same length, the beginning of the variable p is filled with zero.

# Input Data
N_bin = str(bin(int (df[2][1i]1))) [2:]
N_bin N_bin.zfill(512)

# Output Data
p_bin = str(bin(int (df[0]1[1]1))) [2:]
p_bin = p_bin.zfill (512)

# Assigning
model_inputs[i] = list (N_bin)
model_outputs[i] = list (p_bin)

Figure 3.5. Model-n-p - Data Preparation

3.3.3. Model-n-q

To be able to cover both prime numbers as the output nodes, in this one, the other prime
number which is the larger one (¢) is chosen as the output node. The data preparation code
can be seen below.

# Input Data
N_bin = str(bin(int(df[2]1[i]1)))[2:]
N_bin = N_bin.zfill(512)

# Output Data

g bin = str(bin(int (df[1][i]))) [2:]
g bin = g bin.zfill(512)

# Assigning

model_inputs[i] = list (N_bin)
model_outputs([i] = list (g_lbin)

Figure 3.6. Model-n-q - Data Preparation
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3.3.4. Model-s-p

For "Model-s-p"; both of the input and output nodes are 256-bit numbers. The relation
between the closest integer to the square root of the semi-prime (V) (selected as input)

and the smaller prime (p) (selected as the output).

# Input Data

N = Decimal (df[2][1])

S = N.sqgrt ()

RS_bin = str(bin(int (round(S)))) [2:]
RS_bin = RS_bin.zfill (256)

# Output Data

p_bin = str(bin(int (df[0][1])))[2:]
p_bin = p_bin.zfill (256)

# Assigning

model_inputs[i] = list (RS_bin)
model_outputs[i] = list (p_bin)

Figure 3.7. Model-s-p - Data Preparation

3.3.5. Model-s-q

For "Model-s-q"; the same structure and input data as the "Model-s-q" is used. For

the output dataset, a bigger prime (q) is selected for this data configuration model.

# Output Data and Assigning

g _bin = str(bin(int (df[1][1]))) [2:]
g bin = g bin.zfill (256)
model_outputs[i] = list (g_bin)

Figure 3.8. Model-s-q - Output Data Preparation

3.3.6. Model-se-p

In this data configuration model, instead of selecting the closest integer for the input
data, the closest even number to the square root of /V is chosen. A function is written to
find the closest even or odd number. The code of this function and the data preparation

process for this model are shared below.
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# r == 0 —-> returns nearest even
# r == 1 —-> returns nearest odd
def roundodd(f,r):
rf = round(f)
if(rf S 2 == r):
return rf
else:
if(rf -f > 0):
return rf - 1
else:
return rf + 1

Figure 3.9. Rounding Function

Input Data

= Decimal (df["n"][i])

= N.sqgrt ()

RS = roundodd (S, 0)

RS_bin = str(bin(int (RS))) [2:]
RS_bin = RS_bin.zfill (256)

0N Z %%

# Output Data

p_bin = str(bin(int (df["p"][i]))) [2:]
p_bin = p_bin.zfill (256)

# Assigning

model_inputs[i] = list (RS_bin)
model_outputs[i] = list (p_bin)

Figure 3.10. Model-se-p - Data Preparation

3.3.7. Model-so-p

For "Model-so-p"; the same structure as "Model-se-p" is used and the only difference
for this model is instead of using the closest even number to the square root of N (RS =
roundodd(S,0)) as the input data, the closest odd number (RS = roundodd(S, 1)) is

selected and processed.

3.3.8. Model-so-a

In this data configuration model, output data is changed from the smaller prime num-

ber (p) to the distance between smaller (p) and the square root of N rounded to the closest
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odd number (R.S). Output Data preparation for this model is shown in the figure below.

Output Data and Assigning

= Decimal (df ["p"]1[i])

= Decimal (df["n"][1i])
N.sgrt ()

RS = roundodd (S, 1)

a = Decimal(RS) - p

a_bin = str(bin(int(a))) [2:]

a _bin = a_bin.z£fill (256)
model_outputs[i] = list (a_bin)

0N 20 %%

Figure 3.11. Model-so-a - Output Data Preparation

3.3.9. Model-n-phi

For the input data, the binary form of the value of NV is used. And for the output data
¢(IN) is used for the training process. The data preparation code for this data configuration
model is shared below.

# Input Data

N = Decimal (df["n"][i])
N_Dbin = str(bin(int (N))) [2:]
N_bin = N_bin.zfill (512)

# Output Data

PN = Decimal (df ["phi"][il])
PN_bin = str(bin(int (pN))) [2:]
pN_bin = pN_bin.zfill (512)

# Assigning

model_inputs[i] = list (N_bin)
model_outputs[i] = list (pN_bin)

Figure 3.12. Model-n-phi - Data Preparation

3.3.10. Model-m-n-pq

In this data configuration, a matrix form dataset model is implemented. So, instead
of assigning each bit to a node in a linear layer, bits will have their location in a 2-
dimensional space. Before converting input and output data to matrix form, the required

space for that data in matrix form is calculated initially and an empty matrix for each input
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and output data is created by the algorithm. After that for each input and output data in
the datasets are looped through and their bits are assigned to the location created for them
in the matrices.

for i in range (input_size):

# Input Data

n_bin = str(bin(int (inputs[i]))) [2:]
n_bin = n_bin.zfill (bit_group * 2)
inputs[i] = [[int (]j) for j in list(i)]
for i in [n_bin[ind:
ind + sizes[0][-11]

for ind in range (0,
len(n_bin),
sizes[0][-1]1)1]

# Output Data

g _bin = str(bin(int (outputs[i][0]))) [2:]
g _bin = g _bin.zfill (bit_group)
p_bin = str (bin(int (outputs[i]l[1]1)))[2:]
p_bin = p_bin.zfill (bit_group)

output = p_bin + g_bin
outputs[i] = [[int(]) for J in list (i)]
for i in [output[ind:
ind + sizes[0][-11]
for ind in range (0,
len (output),
sizes[0] [-1]) 1]

Figure 3.13. Model-m-n-pq - Data Preparation

However, to be able to train these data with 2-dimensional machine learning layers
which mostly work with images, adding another dimension for the color channels of the
images was required by the layers. So, at the end of the converting linear data type to
matrix data type, The datasets will be reshaped to have arrays for the channels, that hold
only 1 bit in them.

inputs = inputs.reshape (-1, sizes[0][1],
sizes[0][2], 1)

outputs = outputs.reshape (-1, sizes[1][1],
sizes[1][2], 1)

Figure 3.14. Model-m-n-pq - Reshaping matrices
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In the end, the data is reshaped to be like this:

(RN
1111000011000011 E— :[0] [O] [0] [O]:
(1) (1 o] [o)
(0] [0 1) (]

Figure 3.15. Matrix Conversion of Binary String

3.4. Machine Learning

In this section, the structures, created for different network types for different input-

output data configurations, are shared.

3.4.1. Model Training Functions

There are at least two different functions to train a model successfully. These functions
are the "forward" and the "backpropagation" functions. In each iteration of the training
process, using the input data and the current weight values of the model neurons, each
neuron of every layer is calculated.

The neurons of the last layer (output layer) are considered to predict the model for the
given data of the current iteration. So, cost can be calculated with these output nodes and
target values for the current data. Then with this cost value, the neural network weights
are readjusted with the running backpropagation function. After going through all data
files repeatedly with a pre-determined value (epoch) times, the neural network at the end
is considered a trained model. So, with the adjusted values of the weights and nodes
saved, that model will be stored and available to continue training or calculate predictions

for the given data.

* Forward Function;

In a neural network, the forward function describes how input data passes through
the layers of the network to produce an output. Here’s a quick breakdown of how it

works:
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1. Input Propagation: The input data is passed into the function and flows se-

quentially through the network layers.

2. Layer Transformations: Each layer applies a specific transformation to the
data, such as linear transformations, activation functions, or pooling. For ex-
ample, in a fully connected layer, each input is multiplied by weights, biases

are added, and then an activation function is applied.

3. Output Generation: After the data passes through all layers, the final trans-
formed output is returned. This output can represent class scores, predicted

values, or any other network-targeted output.

The formula for the forward function is shared below;

NIk = D (NTk + 1[i] = WK [[])

* Backpropagation Function;

An approach for supervised learning called back-propagation is used to train artifi-
cial neural networks. It is essential to minimize the error between the desired and
expected outputs when adjusting the weights of a network. This function starts after
the forward function. So, every node in the network is processed. After that, follow

these steps to apply the back-propagation method:

1. Calculate Gradient

In each layer, calculate the differences between actual and predicted outputs

and apply the derivative function to the calculation.

2. Updating Weights

Multiplying the gradient value with the learning rate and updating the corre-

sponding weight value.

3. Updating Biases

The same process to update weights is applied to update the biases.
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These steps are applied to the first weights between the output layer and the last
hidden layer. Then between each hidden layer and finally, the weights between
the first hidden layer and the input layer. The formulas for this algorithm can be

explained like this;

1. Error at Output Layer

0; = oL _ ok -0'(2)

0z;  Oaj
This formula calculates the error term for each output neuron j. The error
term, ¢, is derived by taking the derivative of the loss function L with respect
to the input z; of the activation function at the output layer. This involves the
derivative of the loss with respect to the neuron’s output a; and the derivative

of the activation function o’(z;).

2. Gradient of the Loss with Respect to Weights (between layers [ and [ — 1)

3_L(l) _ 6;” ' a@(z_n

Ow;;
This equation calculates the gradient value of the loss function with respect
to the weights w;; between neurons in layer [ — 1 and [. The gradient, which
indicates how much the weight affects the loss, is given by the product of the

error term J; in the current layer and the activation a; of the neuron in the

previous layer.

3. Backpropagating the Error to the Previous Layer

z ) (Z 5O z) _ /(21(1—1))

This formula propagates the error from layer [ back to layer [ — 1. The error
term for a neuron in the previous layer, 51(}71), is calculated by summing the
products of the error terms 650 of the current layer and the corresponding
weights w( ). This result is then multiplied by the derivative of the activation

(=1

function with respect to the neuron’s input z; in the previous layer.
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4. Weight Update Rule

OL
ow'?

)

! !
w§j) A wz(j) —n:

This equation describes how the weights are updated during training. The

weight wg) is adjusted by subtracting a fraction (controlled by the learning rate
n) of the gradient of the loss with respect to that weight. This step moves the
weight in the direction that reduces the loss function, following the gradient

descent optimization method.

3.4.2. Model Structures and Layer Types

Model structures for the network types are chosen to be comparable to each other.
They may cover any possibilities that hold the potential to be crucial for determining a
relation between input and output data. Different network models are created to perform
the comparison test. The data used for training these models are the same for the different
network types.

For all models, the train and test dataset ratio is set to 90%. Also, the epoch value
is set to 100 and the "Adam" optimizer method is selected with a learning rate of 0.001.
This choice is based on the adaptive learning rate technique offered by the Adam function,
which accelerates convergence and enhances training rates in neural networks, making it
well-suited for the training process.

As for the loss function, after testing models with different functions like "categorical
cross entropy" and "mean squared error”, the binary cross-entropy function is chosen and
applied for most models tested. This function is particularly suitable for the data types
used in training. Additionally, binary cross-entropy is recommended for binary classifi-
cation applications because it constrains the output data between 0 and 1, facilitating the
separation into two distinct categories. In some models, different loss functions are also
used to compare them with other models.

The network layer types used on different models are listed below.

* Dense Layer; this term refers to a basic layer of neurons in which every single

neuron receives information from every other neuron in the layer above.
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Flatten Layer:; this type of network layer, can be used to convert multidimensional

inputs to one-dimensional.

Concatenate Layer; this type of network layer is utilized to merge two or more ten-
sors (arrays) along a chosen axis. It is especially beneficial in models with multiple

branches or when there is a need to integrate features from different layers.

Conv1D Layer; this layer is designed to perform a 1-dimensional convolution oper-
ation, which is typically applied to sequential data such as time series, text, or audio
signals. It works by sliding convolutional filters (kernels) along one dimension of

the input data.

Dropout Layer; this layer serves as a regularization method to prevent overfitting in
neural networks. It functions by randomly setting a portion of the input units to zero
during each training update, encouraging the model to generalize more effectively

by avoiding excessive dependence on specific neurons.

MaxPooling1D Layer; this layer is used for downsampling 1-dimensional input,
such as time series data or sequences. It extracts the maximum value from each
pooling window of the input, helping to reduce dimensionality and capture the most

important features.

LSTM Layer; can be described as; An RNN layer that discovers long-term rela-
tionships between sequence data and time-series time steps. During training, this
layer carries out extra operations that may enhance gradient flow across long se-

quences.

Even if the data that is used in this project, is not suitable for the layers like LSTM,

MaxPooling1D, and Conv1D which are more suitable to be applied to sequential data,

it could be useful to discover a hidden pattern or to make a comparison between other

training models.

3.5. Neural Network Models

In this section, only the focused portion of the codes are shown. The complete codes

are available via the project link shared at the beginning of this chapter.
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3.5.1. Multi Dense Network

In this network model type, a total of 10 dense layers (1 output layer and 9 hidden
layers) are implemented. The aim of this network is that if a pattern exists between private
and public components of RSA, each layer can try to learn and hold a part of the pattern.
And with them combined, the model may predict more accurately.

self.model = Sequential ([
Dense (i_size, activation='relu',
input_shape=(i_size,)),

Dense (i_size, activation='relu'),

Dense (i_size, activation='relu'),

Dense (i_size, activation='relu'),

14

Dense (i_size, activation='relu'

)
)
)
Dense (i_size, activation='relu'),
)
)I
)

Dense (i_size, activation='relu'),

(
(
(
(
Dense (i_size, activation='relu'
(
(
Dense (i_size, activation='relu'),
(

Dense (o_size, activation='sigmoid")

1)

Figure 3.16. Multi Dense Neural Network Model Code

Input Layer Hidden Layer Output Layer

Figure 3.17. Multi Dense Model Visualization

3.5.2. Feature Interaction Network

In this network model type, the dense layers with the ReLLU activation function are
used to capture potential interactions between different bits of the RSA variables. This

allows the network to learn more complex relationships than a simple linear model.
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input_layer = Input (shape=(i_size,))

# Feature interaction layers

interaction = Dense(i_size // 2,
activation='relu'") (input_layer)

interaction = Dense(i_size // 4,
activation="'relu') (interaction)

output = Dense (o_size,

activation='sigmoid"',
name='output') (interaction)

Figure 3.18. Feature Interaction Neural Network Model Code

Input Layer Interaction - Hidden Layers Qutput Layer

Figure 3.19. Feature Interaction Model Visualization

3.5.3. Autoencoder Feature Extraction Neural Network

The main reason for creating a model like this is because an autoencoder can be used
to reduce unnecessary features affecting the outcome by reducing the dimensionality of
the input (e.g., the semi-prime n) while retaining the most critical features. This could
potentially help in identifying patterns or characteristics of the input data that relate to the

factors (p and q).
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The neuron connections of this neural network can be visualized like this:

900 000
[ Lo N

Decoder

Output Layer

Figure 3.20. Autoencoder Feature Extraction Model Visualization

The code of this neural network model is shared below.

# Encoder

input_layer = Input (shape=(i_size,))
encoded = Dense(i_size//2,
activation='relu') (input_layer)

encoded = Dense(i_size//4,
activation="'relu') (encoded)

encoded_output = Dense(i_size//8,
activation="'relu') (encoded)

# Decoder for predicting p and g
decoded_p = Dense(i_size//4,
activation='relu') (encoded_output)
decoded_p = Dense(i_size//2,
activation="'relu') (decoded_p)
output = Dense(o_size, activation='sigmoid',
name="'"output') (decoded_p)

Figure 3.21. Autoencoder Feature Extraction Neural Network Code
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3.5.4. Hierarchical Neural Network

This neural network has two stages which are "Intermediate Prediction" and "Final
Prediction".

In the intermediate prediction stage, the input layer passes its nodes through two dense
layers. The first layer has half the nodes of the input layer and the second has quarter
nodes of the input layer, both using the ReLLU activation function. This stage’s output
is a single intermediate value, produced by a layer with one node and a linear activation
function.

In the final prediction stage, the intermediate value is combined with the original input
through concatenation. This new input passes through two more dense layers with the
same node sizes and ReLLU activations. The final layer has the total number of output-size
nodes with a sigmoid activation function, making predictions likely between 0 and 1.

This network structure first estimates an intermediate value and then refines the final

prediction using both the intermediate value and the original input.

# First stage: Predict an intermediate value

input_layer = Input (shape=(i_size,))

intermediate = Dense(i_size // 2,
activation='relu') (input_layer)

intermediate = Dense(i_size // 4,
activation='relu') (intermediate)

intermediate_output = Dense(l, activation='linear',

name="intermediate_output') (intermediate)

# Second stage: Predict p and g using
# the intermediate value

second_input = Concatenate () ([input_layer,
intermediate_output])

hidden = Dense(i_size // 2,
activation='relu') (second_input)

hidden = Dense(i_size // 4,
activation="'relu') (hidden)

output = Dense(o_size, activation='sigmoid',
name="output ') (hidden)

Figure 3.22. Hierarchical Neural Network Code
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Figure 3.23. Hierarchical Model Visualization - First Stage
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Figure 3.24. Hierarchical Model Visualization - Second Stage
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3.5.5. Convolutional Feed Forward Neural Network

This neural network model consists of several layers designed to process data:

* Convolutional Layer (Conv1D): This layer applies filters to the input data to cap-
ture patterns in sequences. It scans the data in small segments (3 units at a time)

and outputs a set of features.

 Flatten Layer: The output from the convolutional layer is reshaped into a flat array,

allowing it to be processed by the following dense layers.

* Dense Layers: These fully connected layers learn relationships between the fea-
tures. The first and second dense layers use the ReLLU activation function to en-
hance learning, while the final dense layer uses the softmax activation function to

produce a probability distribution over the output classes.

* Dropout Layer: This layer randomly drops 20% of the connections during training

to prevent overfitting, improving the model’s generalization ability.

This combination of layers helps the model learn from sequential data and make pre-

dictions based on the extracted patterns.

self.model = Sequential ([

ConvlD (i_size, 3,
activation='relu',
input_shape=(i_size, 1)),

Flatten (),

Dense (i_size, activation='relu'),

Dropout (0.2),

Dense (i_size, activation='relu'),

Dense (o_size, activation='softmax')

1)

Figure 3.25. Convolutional Feed Forward Neural Network Code
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Input Layer ConviD || Flatten Dense Dropout Dense ! QOutput Layer

Hidden Layers

Figure 3.26. Convolutional Feed Forward Model Visualization

3.5.6. Hybrid Convolutional LSTM Neural Network

Even if it looks similar to the previous model, there are some differences between
the previous model and this one. In this model, some layer types are changed with a
MaxPooling1D layer and an LSTM layer. Also, some new parameters are added or old
ones are updated in layers like Conv1D and Dropout. The code and the visualizations of
the model are shared below.

self.model = Sequential ()

self.model.add(ConvlD (filters=64, kernel_size=3,
padding='"same',
activation='relu',
input_shape=(i_size, 1)))

self.model.add (MaxPoolinglD (pool_size=2))

self.model.add (LSTM(i_size//4, activation='tanh',

return_sequences=True))

self.model.add (Dropout (0.3))

self.model.add (Flatten())

self.model.add (Dense(o_size, activation='sigmoid'))

Figure 3.27. Hybrid Convolutional LSTM Neural Network Code
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Input Layer ConviD MaxPooling1D

LSTM Dropout|| Flatten Dense QOutput Layer

Hidden Layers

Figure 3.28. Hybrid Convolutional LSTM Model Visualization

3.5.7. Conv2D Neural Network

This one is the last model tested in this project. In this one, the input and output data
are considered as matrices. And the model is trained with Conv2D layers. The code and
the visualization of the model are shared below.

self.model = Sequential ()

self.model.add (Conv2D (4, 1i_size,
activation="'relu',
padding='"same'))
self.model.add (Conv2D (2, i_size,
activation='relu',
padding='"same'))
self.model.add(Conv2D (2, i_size,
activation='relu',
padding='same'))
self.model.add (Conv2D (1, o_size,
activation='sigmoid',
padding="'same'))

Figure 3.29. Conv2D Neural Network Code
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Output Layer

Hidden Layers

Figure 3.30. Conv2D Model Visualization

After the initialization of these network topologies, determining the most suitable
topology among them involves selecting the input and output data for training. The vari-
ables used to create input and output data are converted into binary format to facilitate the
binary approach in the models. Additionally, increasing the value of epochs will likely
enhance the accuracy of some models. However, when deciding to increase the epoch
value, adjusting the epoch values for all models is essential to maintain consistency. Con-
sequently, this may result in a more time-consuming training process. Because of that,
selecting a reasonably low value for the epoch would be a better choice to reduce the

training time and create more comparable models.
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4. RESULTS AND DISCUSSION

In this section, the results of the conducted experiments are shared.

4.1. One Dimensional Model Results

The results of the trained neural networks are categorized into three distinct groups.
Each group corresponds to the bit lengths of the prime numbers used as the training data.
The training process of the largest bit-length dataset is not performed due to the time
consumption of the training process and the predictability of the outcome based on the
results of the models trained with the smaller bit-length datasets.

For each data model, the accuracies of the trained topology models obtained over 100
epochs for each model, are shared in the tables below. Each bit-length group includes two
tables. Combining the accuracy metrics of all topologies in one table may make the table
a bit crowded. However, this way is more suitable for comparison purposes. The names
of the topologies are shortened due to page width constraints.

This detailed breakdown facilitates a comprehensive understanding of the model’s

performance across different training conditions.

4.1.1. Topology Abbreviations

¢ AFE -> Autoencoder Feature Extraction
¢ CFF -> Convolutional Feature Fusion
e FIN -> Feature Interaction Network

e HN -> Hierarchical Network

HCL -> Hybrid Convolutional LSTM

e MD -> Multi Dense

The accuracy tables of these topologies are listed below.
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Table 4.3. 256-bit Prime Dataset Model Accuracies

Dataset Model Acce. | Acc. | Acce. | Ace. | Ace. | Acc.
(AFE) | (CFF) | (FIN) | (HN) | (HCL) | (MD)

Model-n-pq 5054 | 4983 | 5047 | 5041 | 5043 | .505
Model-n-p 5061 | 5002 | 5052 | .5055 | 5058 | .5054
Model-n-q 5039 | 4964 | 5028 | 5035 | 5031 | .5034
Model-n-phi | .5557 | .5068 | .5655 | .5515 | .5065 | .5589
Model-s-p 505 | 5001 | .5053 | .5053 | .5047 | .5054
Model-s-q 5039 | 4964 | 5044 | 5035 | 5042 | 504
Model-se-p 5055 | .5001 | .5049 | .5054 | 5057 | .505
Model-so-p 5058 | .5001 | .5048 | .5047 | .5059 | .5056
Model-so-a 5066 | .5068 | .5066 | .5067 | .5065 | .5066

Table 4.4. 512-bit Prime Dataset Model Accuracies

N A Acc. | Acc. | Acc. | Ace. | Ace. | Acc.
(AFE) | (CFF) | (FIN) | (HN) | (HCL) | (MD)

Model-n-pq 5021 - 5021 | .5021 | .5016 | .5017
Model-n-p 5026 - 5017 | .5028 - 502
Model-n-q 502 - 5015 | .5021 - .5009
Model-n-phi | .5632 - 5305 | 5271 - 5234
Model-s-p 5029 | .5003 | .5032 | .5026 - 5034
Model-s-q 5029 | 4983 | 502 | 5008 | 502 | .5024
Model-se-p 5034 - 5023 | 5014 - 5032
Model-so-p 5019 | .5002 | .5036 | .5027 - 503
Model-so-a 503 | 5029 | 5028 | 5034 - 503
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Table 4.5. 1024-bit Prime Dataset Model Accuracies

Dataset Model Acce. | Acc. | Acce. | Ace. | Ace. | Acc.
(AFE) | (CFF) | (FIN) | (HN) | (HCL) | (MD)

Model-n-pq 501 - 501 | .5008 - .5009
Model-n-p 5013 - 5006 | .501 - .5009
Model-n-q .5008 - 5013 | .5005 - 5004
Modeln-phi 5017 - 501 | .5013 - 5012
Model-s-p 5016 - 5014 | .5007 - 5018
Model-s-q 5015 - 5005 | .5007 - .5006
Model-se-p 5017 - 5007 | .5011 - 5012
Model-so-p 5017 - 5016 | .5008 - 5018
Model-so-a 5051 - 5049 | 5052 - 5048

4.2. Two Dimensional Model Results

The accuracy results of the Conv2D Neural Network for 3 different bit lengths are

shared in the table below.

Table 4.6. The Accuracies of the Conv2D Topology Model

Dataset Acc. | Acc. Acc.
Model (256) | (512) | (1024)
Model-m-n-pq | .5049 | .5005 | .5003

4.3. Bit Position Errors

At the end of the training and testing processes, the false predictions were carefully
examined by counting the positions where the models were predicted wrong. Since the
accuracy metrics of all models are very similar, the bit position error graphs are also very
similar. So, the results of some models that have different graphs are presented below to
offer a clear picture of the challenges faced. This analysis shows all bit positions where
the models had trouble, providing valuable insights into their performance and suggesting

areas for further improvement.
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The following graphs (in this section) display the bit position errors of models trained
with 256-bit data groups.

The first graph shows the results of a model trained with the ModeINPQ data con-
figuration and Autoencoder Feature Extraction topology. As can be seen, almost all bit
positions are mispredicted at a rate of 50%. The graph of most models trained with Mod-

eINPQ data configuration looks similar to this one.

Acc : 0.5054
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Figure 4.31. Autoencoder Feature Extraction - ModelNPQ - Bit Error Graph

For the other trained neural networks, most of the graphs resemble the one for the
model trained with the ModelNP configuration using the Autoencoder Feature Extraction

topology. Therefore, only this graph is shared to illustrate what the general bit position

error graph looks like.
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Figure 4.32. Autoencoder Feature Extraction - ModelNP - Bit Error Graph

The next belongs to the model trained with ModelNPHI using Hierarchical topology.

Acc : 0.5515
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Figure 4.33. Hierarchical - ModeINPHI - Bit Error Graph
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Finally, the last one is from the model trained with ModeINPHI using MultiDense

topology.

Acc : 0.5589
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Figure 4.34. MultiDense - ModelNPHI - Bit Error Graph

At first glance, some bit positions in the first half of the bit positions for the Model-
NPHI data could be useful in creating patterns. However, it is because the first half bits

of the value of phi are very similar to the first half bits of the value of n.

4.4. Low Bit Length Testing

At the end of the training process using large bit-length datasets, smaller bit-lengths
with larger datasets were tested to evaluate the effectiveness of the models used in this
project. The first test involved training a model on a dataset containing 64-bit prime
numbers with over 500,000 rows, using 1000 epochs. The training took approximately 15
hours, but the model’s accuracy remained around 55%, showing minimal improvement.

Following this, another dataset was created with 32-bit prime numbers, also with about
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500,000 rows, and trained for 1000 epochs. In this case, training took around 8 hours per
model, and the accuracy of some models reached approximately 70%.

The graphs below show that when the bit length increases, the training quality drops,
and predictions for the bit positions will be reduced. To counter that, the amount of data
used for training and also training parameters such as learning rate, epoch, etc. need to
be changed to make the training process longer. The graphs are listed from the lowest bit

length group to the highest bit length group.
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Figure 4.35. ModelNPHI - 256 Bit Length Group - Bit Error Graph
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Figure 4.36. ModeINPHI - 512 Bit Length Group - Bit Error Graph
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Figure 4.37. ModeINPHI - 1024 Bit Length Group - Bit Error Graph
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The chart below presents the success rates of various models based on their bit lengths.

It is clear that, for most models trained under the same conditions, success rates decrease

as the bit length increases.
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Figure 4.38. Bit Length - Success Rate Chart
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S. CONCLUSION

In conclusion, ten different input-output pairs across three-bit lengths are trained with
seven different neural network topologies in this thesis. Nine of these ten datasets are
tested on six of these seven neural network models and "Model-m-n-pq" is designed to
be used on the Conv2D neural network model. So, a total of 165 models are trained
and tested in this thesis. Despite efforts to calibrate and assess the predictive capabilities
of the developed models, the results show that the models were ineffective in accurately
predicting the expected outputs. This highlights the complexity of creating machine-
learning models for factorizing semi-prime numbers and the significant challenge posed
by the RSA encryption algorithm.

Furthermore, an exhaustive examination of the frequency distribution of bit locations
yielded no discernible patterns or significant discoveries for the predictions of the trained
models. This outcome underscores the intricate nature of the underlying factors governing
the distribution of prime factors within semi-prime numbers, elucidating the formidable
barrier to successful decryption.

However, additional testing on the low-bit-length dataset suggests that using a larger
dataset and training with a higher epoch value may improve the accuracy of the model’s bit
predictions. Furthermore, as the bit length increases, the need for a custom neural network
model designed to handle the input and output bits specifically for the job becomes more
critical. Implementing a customized neural network for this problem is likely to improve
prediction accuracy while also reducing the required training time for the model.

While the results of this investigation may not have met the initial expectations, they
nonetheless contribute significant insights to the ongoing discussion about cryptanalysis
methodologies. These findings underscore the need for continued research and innovation
in developing machine-learning models tailored to cryptanalysis, intending to overcome
the inherent challenges posed by complex encryption algorithms such as RSA.

Moving forward, avenues for further exploration could include refining and optimiz-
ing existing machine-learning algorithms and exploring novel methodologies that may
offer greater efficacy in factorizing semi-prime numbers. Also, the importance of the

training dataset size and allowing sufficient time for adjusting the connections between
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nodes for the given data should not be overlooked. Additionally, future research endeav-
ors could benefit from a multidisciplinary approach, drawing upon insights from fields
such as mathematics, computer science, and artificial intelligence to address the intricate
challenges posed by cryptographic systems. Through sustained efforts and collaboration,
significant progress is expected in advancing the state-of-the-art in cryptanalysis, which

will in turn strengthen the security and integrity of digital communication systems.
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