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ÖZET 

 

UYDU GÖRÜNTÜLERİNİN SINIFLANDIRILMASINDA ÇOK DEĞİŞKENLİ 

UYARLANABİLİR REGRESYON EĞRİLERİ ALGORİTMASINA DAYALI 

HİBRİT MODELLERİN GELİŞTİRİLMESİ 

Azize UYAR 

Ondokuz Mayıs Üniversitesi 
Lisansüstü Eğitim Enstitüsü 

Harita Mühendisliği Ana Bilim Dalı  

Doktora, Eylül/2024  

Danışman: Prof. Dr. Derya ÖZTÜRK 

Uzaktan algılama verilerinin kullanım alanı arttıkça, farklı özelliklere sahip 

doğal ve yapay nesnelerin tespit edilmesi, arazi örtüsü/kullanımı türlerinin 

belirlenmesi ve tematik haritaların üretilmesi, mevcut durum ve değişimlerin 

belirlenmesi, planlama ve modelleme gibi birçok çalışma için kullanılan görüntü 

sınıflandırma algoritmaları büyük önem kazanmaktadır. Bu amaç doğrultusunda 

sınıflandırma doğruluğunun arttırılması ve daha güvenilir sonuçların elde edilmesi 

için yeni yöntem ve yaklaşımlar araştırılmaya devam etmektedir. Bu kapsamda hibrit 

modelleme yaklaşımlarıyla, farklı yöntemlerin avantajlarının birleştirilerek 

analizlerin doğruluğunun ve güvenilirliğinin arttırılması amaçlanmaktadır.  

Bu tez çalışmasında, parametrik olmayan bir sınıflandırma tekniği olan Çok 

Değişkenli Uyarlanabilir Regresyon Eğrileri (Multivariate Adaptive Regression 

Splines – MARS) algoritmasının yüksek performanslı bir sınıflandırıcı ve 

optimizasyon teknikleri ile entegre edildiği yeni hibrit modeller önerilmektedir. 

Çalışma kapsamında MARS algoritmasına dayalı üç model geliştirilmiştir. İlk 

modelde, görüntü sınıflandırmada yüksek performansa sahip Rastgele Orman 

(Random Forest – RF) algoritması ile MARS-RF hibrit modeli oluşturulmuştur. 

İkinci ve üçüncü modellerde ise MARS algoritmasının parametrelerini optimize 

etmek amacıyla Parçacık Sürü Optimizasyonu (Particle Swarm Optimization – PSO) 

ve Bayes Optimizasyonu (Bayesian Optimization – BO) algoritmaları ile entegre 

MARS-PSO ve MARS-BO hibrit modelleri oluşturulmuştur. 

MARS ve RF tekil algoritmaları ve MARS-RF, MARS-PSO ve MARS-BO 

hibrit modellerin oluşturulması ve uygulanması MATLAB ve RStudio yazılımları 

ortamında gerçekleştirilmiştir. MARS, RF ve üç farklı hibrit model (MARS-RF, 

MARS-PSO, MARS-BO), iki farklı uydu görüntüsü kullanılarak (Landsat-8 OLI ve 

Sentinel-2A MSI) ve iki farklı çalışma alanında (Samsun-Bafra ve Samsun-Atakum) 

yapılan arazi örtüsü/kullanımı sınıflandırma sonuçlarıyla test edilmiştir. 

Sınıflandırma sonuçları, toplam doğruluk, kappa istatistiği ve F1 skor doğruluk 

ölçütleri ile karşılaştırılmıştır. Sonuçlar karşılaştırıldığında tüm hibrit modellerin tüm 

uydu görüntüsü ve çalışma alanlarında MARS ve RF yöntemlerinden daha yüksek 

doğruluk gösterdiği belirlenmiştir. Önerilen hibrit modellerin performansı 

karşılaştırıldığında ise doğruluk sıralaması MARS-BO, MARS-PSO ve MARS-RF 

şeklindedir. Elde edilen sonuçlar, hibrit modellerin sınıflandırma performansını 

arttırmada önemli bir rol oynadığını ve özellikle optimizasyon teknikleriyle 

entegrasyonun sonuçların iyileştirilmesinde etkisinin yüksek olduğunu göstermiştir. 

Bu bağlamda çalışmanın sonuçları, hibrit modellerin uydu görüntülerinin 

sınıflandırılmasında önemli avantajlar sağlayarak daha doğru ve güvenilir sonuçların 

elde edilmesine katkıda bulunduğunu göstermektedir. 

Anahtar Sözcükler: Görüntü Sınıflandırma, Hibrit Sınıflandırma, MARS, RF, 

Optimizasyon, PSO, BO  
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ABSTRACT 

 

DEVELOPMENT OF HYBRID MODELS BASED ON MULTIVARIATE 

ADAPTIVE REGRESSION SPLINES ALGORITHM FOR CLASSIFICATION OF 

SATELLITE IMAGES 

Azize UYAR 

Ondokuz Mayıs University 
Institute of Graduate Studies 

Department of Geomatics Engineering 

Ph.D., September/2024  

Supervisor: Prof. Dr. Derya ÖZTÜRK 

With the expanding scope of remote sensing applications, image 

classification algorithms are becoming increasingly essential across diverse research 

areas, including the detection of natural and artificial objects, land cover/use 

classification, thematic map production, monitoring of current conditions and 

changes, and applications in planning and modeling. To enhance classification 

accuracy and yield more reliable results, there is a continuous focus on developing 

novel methods and approaches. In this context, hybrid modeling approaches are 

particularly significant as they combine the strengths of various methods to improve 

the accuracy and reliability of analyses. 

This thesis proposes innovative hybrid models that integrate the 

Multivariate Adaptive Regression Splines (MARS) algorithm, a non-parametric 

classification technique, with high-performance classifiers and optimization 

strategies. Three MARS-based models were developed as part of this study. The first 

model combines MARS with the Random Forest (RF) algorithm—recognized for its 

robust performance in image classification—resulting in the MARS-RF hybrid 

model. The second and third models enhance the MARS algorithm by optimizing its 

parameters using Particle Swarm Optimization (PSO) and Bayesian Optimization 

(BO), leading to the development of the MARS-PSO and MARS-BO hybrid models, 

respectively. 

The standalone MARS and RF algorithms, along with the MARS-RF, MARS-

PSO, and MARS-BO hybrid models, were implemented and tested within MATLAB 

and RStudio environments. These models were evaluated on land cover/use 

classification tasks using two distinct satellite datasets (Landsat-8 OLI and Sentinel-

2A MSI) and two geographic study areas (Samsun-Bafra and Samsun-Atakum). 

Classification performance was assessed through overall accuracy, kappa statistics, 

and F1-score metrics. Comparative analysis revealed that all hybrid models exhibited 

superior accuracy across all satellite images and study areas relative to the standalone 

MARS and RF methods. Among the hybrid models, the MARS-BO model achieved 

the highest accuracy, followed by MARS-PSO and MARS-RF. The findings 

underscore the effectiveness of hybrid models in substantially enhancing 

classification performance, particularly through the integration of optimization 

techniques. Overall, the study demonstrates that hybrid models significantly advance 

satellite image classification, contributing to the generation of more accurate and 

dependable results. 

Keywords:  Image Classification, Hybrid Classification, MARS, RF, Optimisation, 

PSO, BO 
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1. GİRİŞ 

Uzaktan algılama, geniş kapsama alanı, tekrar algılama yapabilme ve çoklu 

spektral bantlar gibi avantajlara sahiptir. Bu teknoloji, geniş ya da erişilmesi zor 

alanlarda güncel bilgi elde edilmesini, küresel ve bölgesel gözlemler yapılmasını, 

ayrıca arazi örtüsü/kullanımı değişim analizlerinin gerçekleştirilmesini sağlar (Lu 

and Weng, 2007; Li et al., 2014). Uzaktan algılama ile elde edilen veri zenginliği 

sayesinde, yeryüzünün mevcut durumunu gözlemlemek ve görüntülerden bilgi 

çıkararak geleceğe dair tahminlerde bulunmak mümkündür. Bu kapsamda, uzaktan 

algılama verilerinin analizi önemli bir çalışma alanı oluşturmuş olup, edinilen 

bilgilerin daha doğru, hızlı ve güvenilir olmasını sağlamak amacıyla araştırmalar 

devam etmektedir (Herold et al., 2002; Lillesand et al., 2015).  

Uzaktan algılamada veri analizi ile ilgili çalışmaların başında uydu 

görüntülerinin sınıflandırılması gelmektedir. Arazi örtüsü/kullanımını belirlemek, 

alanları hesaplamak, değişimleri tespit etmek, geleceğe yönelik tahmin ve 

modellemeler yapabilmek için uydu görüntülerinde sınıflandırma analizi yapılır. 

Görüntü sınıflandırma, arazi örtüsü/kullanımı bilgisi, şehir planlama, tarım, 

ormancılık, jeolojik uygulamalar ve askeri alanlar gibi birçok alanda 

kullanılmaktadır (Mather and Koch, 2011; Lillesand et al., 2015).  

Arazi örtüsü/kullanımı bilgileri, sürdürülebilir yönetim, doğal kaynakların 

geliştirilmesi ve kullanılması, çevrenin korunması, planlama, bilimsel analiz, 

modelleme ve izleme konularında önemli bir rol oynamaktadır. 1980'ler ve 1990'lar 

boyunca çoğu görüntü sınıflandırma yöntemi, görüntü pikselini temel analiz birimi 

olarak kullanmıştır (Blaschke, 2010; Lillesand et al., 2015). Piksel tabanlı 

sınıflandırma yöntemleri olarak adlandırılan bu yaklaşımlarda, her piksel tek bir arazi 

örtüsü/kullanımı sınıfı olarak belirlenir. Piksel tabanlı sınıflandırma yöntemleri, 

kontrolsüz (ISODATA, kümeleme vb.) ve kontrollü (maksimum olabilirlik, 

paralelyüz vb.) sınıflandırma yöntemleri olarak iki ana kolda geliştirilmiştir. Ancak 

bir piksel, yalnızca tek bir arazi örtüsü veya kullanım türünü değil, aynı zamanda 

çeşitli arazi örtüsü veya kullanım türlerinin bir karışımını da içerebilir; bu durum, 

literatürde karışık piksel problemi olarak geçmektedir. Karışık piksel sorununu 

çözmek için 1980'li yılların sonuna doğru bulanık sınıflandırma yöntemleri 

geliştirilmiştir. Ayrıca IKONOS, QuickBird ve WorldView gibi yüksek çözünürlüklü 

uzaktan algılama sensörlerinin üretilmesiyle nesne tabanlı sınıflandırma yöntemleri 
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geliştirilmiştir (Dribault et al., 2012; Wilson and Oreopoulos, 2013). 

Uydu görüntüleri, elektromanyetik spektrumun görünür, kızılötesi ve 

mikrodalga kısımlarından elde edilebilir ve bu farklı türdeki uydu görüntüleri 

yeryüzünün farklı özelliklerini tespit eder. Ayrıca dokusal bilgiler, indeksler, Sayısal 

Yükseklik Modeli veya diğer yardımcı veri kaynakları gibi orijinal uzaktan algılama 

verilerinden türetilen bilgiler de sınıflandırma doğruluğunun arttırılmasına katkıda 

bulunabilir (Pal and Mather, 2005). Ancak, girdi verisi miktarındaki artış her zaman 

sınıflandırma performansında artış anlamına gelmemektedir. Böyle bir yaklaşım, 

daha gürültülü ve gereksiz veriler içeren büyük bir veri hacmi yaratabilir ve bu da 

sınıflandırma doğruluğunu azaltabilir. Bu nedenle, sınıflandırma algoritmalarının 

uygun olarak seçilmesi sınıflandırma sonuçlarının kalitesinde önemli bir iyileşme 

sağlayabilir (Lu and Weng, 2007). 

Yaygın olarak kullanılan klasik sınıflandırma algoritmalarının en büyük 

sınırlaması, uzaktan algılama verilerini yeterince modelleyemeyen varsayımlara 

dayanmalarıdır. Son zamanlarda, makine öğrenme teorisine dayanan parametrik 

olmayan sınıflandırma teknikleri geliştirilmiştir. Klasik sınıflandırıcıların aksine, 

Rastgele Orman (Random Forest – RF), Yapay Sinir Ağı (Artificial Neural Networks 

– ANN), Destek Vektör Makineleri (Support Vector Machines – SVM) ve Çok 

Değişkenli Uyarlanabilir Regresyon Eğrileri (Multivariate Adaptive Regression 

Splines – MARS) gibi ileri sınıflandırma teknikleri varsayımlara dayanmaz ve bu 

nedenle karmaşık bir veri kümesini daha etkili bir biçimde ele alabilirler. Bu 

özellikleri nedeniyle, bu sınıflandırıcılar klasik yöntemlere önemli alternatifler olarak 

görülmekte ve özellikle regresyon yöntemlerinin sınıflandırıcı olarak kullanılması 

ilgi çekici hale gelmektedir (Lu and Weng, 2007; Waske et al., 2007; Kuter, 2014; Li 

et al., 2014). 

Görüntü sınıflandırmada kullanılan regresyon analizi değişkenler arasındaki 

ilişkiyi açıklayabilecek doğru modele karar vererek, bilinen verilerden hareketle 

bilinmeyen durumlar hakkında tahminler yapma olanağı sağlar. Ancak görüntü 

sınıflandırmada kullanılan klasik regresyon yöntemleri, gerçek olguları tam 

anlamıyla modelleyememektedir. Bunun nedeni, gerçek olgularda doğrusallık, 

değişkenler arası etkileşim, birden fazla bağımlı ve bağımsız değişkenin bulunması 

gibi problemlerin bulunmasıdır. Bu sebeplerden dolayı, parametrik olmayan 

regresyon modelleri kullanılmaya başlanmıştır (Breiman et al., 1984; Kuter, 2014; 
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Bui et al., 2019). Friedman (1991) tarafından Parametrik olmayan regresyon 

analizlerinde kullanılmak üzere MARS algoritması geliştirilmiştir. Mevcut doğrusal 

ve doğrusal olmayan regresyon modellerinin aksine, MARS bağımsız değişkenlerin 

çeşitli aralıkları için farklı katsayılar hesaplayarak ve etkileşim terimlerini dahil 

ederek, gerçek dünya yapılarını daha doğru yansıtan modeller oluşturur. Bu sayede, 

MARS algoritması karmaşık veri kümelerini daha etkili modelleyebilir ve piksel 

tabanlı sınıflandırma yöntemlerinin çözümleyemediği doğrusal olmayan ilişkileri 

daha iyi yansıtabilir. Ancak, MARS algoritmasının da bazı kısıtları bulunmaktadır. 

Aşırı uyum sorunu, modelin eğitim verisine fazla uyum sağlamasına ve test 

verisindeki performansının düşmesine neden olabilir. Ayrıca, MARS algoritmasının 

karmaşıklığı ve parametrelerinin belirlenmesindeki zorluklar da önemli kısıtlar 

arasındadır (Friedman, 1993). 

Görüntü sınıflandırmasının tarihsel sürecine bakıldığında, daima bir gelişim ve 

değişim sürecinin yaşandığı görülmektedir. Bu gelişim, sınıflandırma doğruluğunu 

arttırmaya yönelik çalışmalarla devam etmektedir. Görüntü sınıflandırma analizinde 

performansı arttırmaya yönelik çalışmalar yeni yöntemlerin geliştirilmesi, klasik 

yöntemlerde değişiklikler yapılması ve ilave yöntemler eklenmesi çerçevesinde 

gerçekleştirilmektedir (Li et al., 2014; Mather and Tso, 2016). Özellikle günümüzde 

yapılan çalışmalar, sınıflandırma performansını arttırmak için mevcut yöntemlerin 

avantajlarını birleştirmeye odaklanmıştır. Mevcut yöntemlerin birleştirilmesi 

sınıflandırma algoritmalarının hibrit kullanımıyla mümkündür. Hibrit modeller, farklı 

algoritmaların güçlü yönlerini bir araya getirerek daha yüksek doğruluk sağlar. Bu 

yöntemler, farklı sınıflandırma algoritmalarının birlikte kullanılması sayesinde, her 

bir algoritmanın zayıf yönlerini telafi eder ve daha iyi bir performans elde edilmesini 

sağlar (Ranawana and Palade, 2006; Foody et al., 2007; Lv et al., 2017; Saini and 

Ghosh, 2017). 

Hibrit sınıflandırma, özellikle karmaşık veri setlerinde ve farklı koşullarda 

yüksek doğruluk oranları elde etmek için büyük önem taşır. Bu sayede, arazi 

örtüsü/kullanımı değişikliklerinin izlenmesi, çevresel etkilerin değerlendirilmesi ve 

doğal kaynak yönetimi gibi alanlarda daha etkin ve güvenilir analizler yapılabilir. 

Son zamanlarda, sınıflandırma algoritmalarının yanı sıra optimizasyon 

algoritmalarının kombinasyonunu içeren hibrit sınıflandırma modelleri 

geliştirilmektedir. Bu hibrit modeller, sınıflandırma sürecini optimize etmek ve 
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iyileştirmek için yaygın olarak kullanılmaktadır (Omran et al., 2004; Bo and Wang, 

2005; Wang et al., 2017; Hoang et al., 2018). 

Uydu görüntülerinin sınıflandırılmasında, son zamanlarda kullanılmaya 

başlanan ve regresyon yöntemi olarak öne çıkan MARS yönteminin yukarıda 

bahsedilen kısıtlarını gidermek için hibrit modeller kullanılabilir. Hibrit modeller, 

farklı sınıflandırma algoritmalarının birlikte kullanılması sayesinde, her bir 

algoritmanın zayıf yönlerini telafi eder ve daha iyi bir performans elde edilmesini 

sağlar. MARS algoritması ile diğer sınıflandırma algoritmalarının hibrit kullanımı, 

hem aşırı uyum sorununu azaltabilir hem de modelin genel performansını arttırabilir. 

Aynı zamanda MARS algoritmasının parametrelerinin belirlenmesinde optimizasyon 

yöntemlerinin kullanılmasıyla hesaplama zorluğu azaltılarak, performans arttırılabilir 

(Omran et al., 2004; Bo and Wang, 2005; Wang et al., 2017). 

1.1. Tezin Amacı ve Özgün Değer  

Bu tezin amacı, piksel tabanlı parametrik olmayan bir sınıflandırma tekniği 

olan MARS’ın, arazi örtüsü/kullanımı haritalarının doğruluğunu arttırmak için 

performansı yüksek bir sınıflandırıcı veya optimizasyon yöntemi ile entegre edilerek 

yeni hibrit modellerin geliştirilmesidir. Bu amaç doğrultusunda, i) girdi veri 

setlerinin elde edilmesi ve sınıflandırma öncesi ön işlemlerin yapılması, ii) MARS 

algoritmasının RF, Parçacık Sürü Optimizasyonu (Particle Swarm Optimization – 

PSO) ve Bayes Optimizasyonu (Bayesian Optimization – BO) teknikleri ile entegre 

edildiği hibrit sınıflandırma süreci ve tematik harita üretimi, iii) sonuçların 

karşılaştırılması olmak üzere üç ana işlem adımı takip edilmiştir.  

Önerilen hibrit yöntemler uydu görüntülerinin sınıflandırılmasında daha önce 

uygulanmamıştır. Bu nedenle tez çalışması kapsamında aşağıdaki araştırma 

hedeflerine ulaşılması hedeflenmektedir. 

 Parametrik olmayan sınıflandırıcıların gücünün ve uygunluğunun 

gösterilmesi (Bu algoritmalar yüksek sınıflandırma doğruluğuna sahiptir ve 

genellikle klasik parametrik sınıflandırıcılardan daha iyi performans 

göstermektedir.) 

 Uydu görüntülerinin sınıflandırılması alanında mevcut sınıflandırma 

yöntemlerinin kısıtlamalarının en aza indirgenmesi ve doğruluğun 

arttırılması için yeni yaklaşımların geliştirilmesi.  

 MARS algoritmasının performansını arttırmak için sınıflandırma 
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yöntemlerinden yine yüksek performansa sahip RF algoritması ile hibrit bir 

modelin geliştirilmesi. 

 MARS sınıflandırma algoritması parametrelerinin bulunması sorunlarının 

optimizasyon tekniği ile çözülmesi. Bu kapsamda PSO ve BO optimizasyon 

yöntemleriyle entegre hibrit modellerin geliştirilmesi. 

 MARS algoritmasının performansını arttırmak için RF sınıflandırma, PSO 

ve BO optimizasyon tekniklerini kullanarak oluşturulan hibrit modellerle 

tahmin doğruluğunun ve modelin genel performansının arttırılması. 

Bu çalışmada, sınıflandırma yöntemlerinin kısıtlamalarını en aza indirgemek 

ve doğruluğu arttırmak amacıyla uydu görüntülerinin sınıflandırılması alanında 

MARS algoritmasına dayalı yeni hibrit sınıflandırma yaklaşımları geliştirilerek, daha 

doğru ve kapsamlı bilgi elde etmek için araştırmacılara ve uygulayıcılara önemli bir 

aracın sağlanması amaçlanmıştır. MARS algoritmasına dayalı yeni modellerin 

geliştirilmesi amacıyla, MARS algoritmasının performansını arttırmak için yüksek 

performansa sahip bir sınıflandırıcı ile birleştirilmesi ve optimizasyon tekniklerinin 

kullanılarak algoritma parametrelerinin optimize edilmesini kapsayan yaklaşımlar 

önerilmektedir. Bu modeller, MARS algoritmasının tahmin doğruluğunu, hesaplama 

hızını ve/veya modelin genel performansını arttırmayı hedeflemektedir. Yaygın 

kullanılan ileri sınıflandırma yöntemlerinde değişkenlerin öneminin belirlenememesi, 

yorumlama güçlüğü olması doğruluğu etkileyen dezavantajlardandır. Bu tezde, bu 

dezavantajları parametrik olmayan regresyon eğrileri çerçevesinde "akılcı" ve 

"yenilikçi" bir şekilde ele alarak görüntü sınıflandırması için yeni alternatif yaklaşım 

araştırılacaktır. MARS algoritmasına dayalı hibrit yaklaşımların sınıflandırma 

doğruluğu farklı alan ve farklı veri setlerinde irdelenecektir. 

1.2. Motivasyon 

MARS algoritmasının hibrit modellerde kullanımı oldukça nadirdir ve 

literatürde sınırlı sayıda örnek bulunmaktadır. Ancak, MARS algoritmasına dayalı 

hibrit model oluşturma çalışmaları, sağlık ve mühendislik gibi farklı disiplinlerde 

giderek artan bir ilgi görmektedir (Yao et al., 2013; Santoso and Wulandari, 2018; 

Benemaran and Esmaeili-Falak, 2020; Nguyen et al., 2022; Hanteh et al., 2023; Hai 

et al., 2023). Bu bağlamda, MARS algoritmasına dayalı hibrit modellerin uydu 

görüntüleri sınıflandırma analizinde de benzer başarılar elde edebileceği 

öngörülmektedir. Ancak, bu alandaki araştırmaların sınırlı olması, MARS 

algoritmasının potansiyelini tam anlamıyla ortaya koyabilmek için daha fazla çalışma 
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yapılması gerektiğini göstermektedir. 

Uzaktan algılama teknolojisi, sağladığı yüksek çözünürlük, geniş kapsama 

alanı ve tekrarlanabilir görüntüleme gibi teknik avantajlar sayesinde arazi 

örtüsü/kullanımı sınıflandırması ve tematik haritalamada yaygın olarak 

kullanılmaktadır. Bu teknoloji, mevcut durumun tespit edilmesinin yanı sıra, iklim 

değişikliği, kentsel alanların genişlemesi ve sosyoekonomik eşitsizlik gibi faktörlerin 

yol açtığı arazi örtüsü/kullanımındaki büyük değişimlerin izlenmesinde de önemli bir 

rol oynamaktadır (Lillesand and Kiefer 1994; Lu and Weng, 2007; Lillesand et al., 

2015; Öztürk, 2002). 

Arazi örtüsü/kullanımı haritalamak, değişimleri izlemek ve modellemek için 

yeni sınıflandırma yöntemlerinin geliştirilmesinin yanı sıra mevcut yöntemlerin 

hibrit olarak birleştirilmesi de literatürde öne çıkmaktadır. Son yıllarda giderek daha 

fazla tercih edilen hibrit sınıflandırma yöntemleri, uzaktan algılama görüntülerinde 

sınıflandırma doğruluğunu artırma konusunda oldukça etkili olmuş ve başarılı 

sonuçlar elde edilmiştir (Lu and Weng, 2007; Du et al., 2012; Zhang and Tang, 2013; 

Phiri and Morgenroth, 2017; Wang et al., 2018; Tan et al., 2019; Hanteh et al., 2023). 

Tekil sınıflandırıcıları bir araya getirerek sınıflandırıcı toplulukları oluşturan hibrit 

modeller, son yirmi yılda hızla gelişmiş ve görüntü işleme, örüntü tanıma ve hedef 

tanımlama gibi alanlarda geniş bir uygulama yelpazesi bulmuştur. Doğruluğu ve 

verimliliği artırma potansiyelleri sayesinde hibrit yöntemler, günümüzde oldukça ilgi 

çeken bir araştırma konusu haline gelmiştir (Phyu, 2009; Chi et al., 2009; Rozenstein 

and Karnieli, 2011). 

Bu doktora tezinin temel motivasyonu, uydu görüntüsü sınıflandırma 

analizlerinde mevcut yöntemlerin güçlü yanlarını birleştirerek sınıflandırma 

doğruluğunu ve performansını artırmaktır. Hızla değişen çevresel koşullarda, arazi 

örtüsü/kullanımı değişikliklerini etkin bir şekilde izlemek ve anlamak için en doğru 

ve güvenilir haritaların üretilmesi gerekmektedir. Bu hedef doğrultusunda, MARS 

algoritmasına dayalı üç farklı hibrit model geliştirilmiştir. 

1.3. Tezin Yapısı ve Metodoloji  

Tez kapsamında, arazi örtüsü/kullanımının sınıflandırılmasında MARS 

algoritmasına dayalı hibrit bir yaklaşımın ortaya konulması amaçlanmaktadır. Tez 

çalışması beş bölümden oluşmaktadır: 

Birinci bölüm, teze giriş ve genel bakış niteliğinde olup çalışmanın amaç ve 

özgün değerini, motivasyonunu, mevcut tezin yapısını ve literatür incelemesini 
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ortaya koymaktadır. 

Çalışma için işlevsel bir arka plan sunmak amacıyla, ikinci bölüm uydu 

görüntülerinin sınıflandırılması, hibrit sınıflandırma, MARS, RF, optimizasyon ve 

sınıflandırma doğruluğunu değerlendirme konularını ele almaktadır. 

Üçüncü bölüm, MARS algoritmasına dayalı hibrit sınıflandırma modellerinin 

geliştirilmesi, kodlama ve uygulama/modellerin testlerini kapsayan metodolojiyi 

sunmaktadır. 

Dördüncü bölüm, farklı test alanı ve uydu görüntüleri için MARS ve RF tekil 

sınıflandırma yöntemleri ile MARS-RF, MARS-PSO ve MARS-BO hibrit model 

sonuçlarını, sonuçların yorumlanması/karşılaştırılmasını ve MARS algoritmasına 

dayalı hibrit modellerin katkılarını içermektedir. 

Beşinci bölümde tezin çıktıları, literatüre katkısı ve gelecek çalışmalar için 

öneriler bulunmaktadır. 

1.4. Literatür Özeti 

Tekil sınıflandırıcıların sonuçlarının birleştirilmesi, sınıflandırma doğruluğunu 

arttırmakta, eğitim süresini kısaltmakta ve sınıflandırma performansını 

geliştirmektedir. Bununla birlikte, birçok çalışma hibrit modellerin ancak tekil 

sınıflandırıcılar doğru ve çeşitliyse, yani düşük hata oranları sergiliyorsa ve farklı 

hatalar yapıyorsa veya hataları bağımsızsa etkili olduğunu göstermiştir.  

Yapılan literatür araştırması sonucunda MARS algoritmasının tek başına 

kullanılarak hem uydu görüntülerinin sınıflandırılmasında hem de diğer alanlarda 

performansını kanıtladığı görülmüştür. MARS algoritmasının kullanımını diğer bilim 

dallarında incelediğimizde, sınırlı sayıda da olsa, MARS algoritması ile hibrit 

modellerin oluşturulduğu ve bu hibrit modellerin diğer yöntemlerle 

karşılaştırıldığında performanslarının daha iyi sonuç verdiği anlaşılmaktadır. 

Bu bölümde literatür özeti MARS algoritmasının uydu görüntülerinin 

sınıflandırılmasında kullanımı, hibrit sınıflandırma ve MARS algoritmasına dayalı 

hibrit modelleme olarak üç alt bölümde ele alınmıştır. İlk olarak MARS 

algoritmasının uydu görüntülerinin sınıflandırılmasında kullanımı ile ilgili çalışmalar 

aşağıda özetlenmiştir. 

Ouiros vd. (2009), multispektral uydu görüntülerinin sınıflandırılmasında yeni 

bir yöntem olarak MARS algoritmasını önermiştir. Çalışmada karşılaştırma için 

Maksimum Benzerlik ve Paralelyüz yöntemleri de kullanılmıştır. Doğruluk 

karşılaştırma sonuçlarına göre, MARS yöntemiyle, 17 sınıfın 14'ünde daha iyi 
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sonuçlar elde etmiştir. Bu sonuç MARS yönteminin multispektral sınıflandırma için 

uygunluğunu doğrulamaktadır. 

Kuter (2014), görüntü sınıflandırmasında, kar haritalaması amacına yönelik 

MARS algoritmasının performansını değerlendirmiştir. Sınıflandırma işlemi için R 

yazılımında çalışan “earth” modülü kullanılmış, su, bulut, kar ve kara olmak üzere 

dört adet sınıf oluşturulmuştur. Sınıflandırma sonuçları hata matrisleri kullanılarak 

karşılaştırılmış ve dört sınıftan üçünde MARS algoritmasının daha yüksek doğruluk 

verdiği sonucuna ulaşılmıştır. 

Veri madenciliğinden kanser tanı çalışmalarına kadar birçok veri analizinde 

son zamanlarda ön plana çıkan hibrit modelleme yaklaşımı, görüntü sınıflandırma 

alanında da ilgi görmeye başlamıştır. Geniş bir perspektif katması amacıyla çeşitli 

veri analizi çalışmalarında geliştirilen hibrit modellerle ilgili literatür özeti aşağıda 

yer almaktadır. Burada sunulan hibrit modeller tez çalışmasının amaç ve kapsamına 

uygun olarak iki veya daha fazla sınıflandırıcının birleştirilmesi veya optimizasyon 

yöntemi kullanılması ile ilgili örneklerle sınırlandırılmıştır. 

Friedl ve Brodley (1997), karar ağacı (Decision Tree – DT) tekniklerinden 

yararlandığı çalışmada tek değişkenli, çok değişkenli ve hibrit karar ağacı 

yöntemleriyle sınıflandırma gerçekleştirmiş ve hibrit karar ağacının diğer iki 

yöntemden daha iyi performansa sahip olduğunu göstermişlerdir.  

Omran vd. (2004), PSO algoritmasına dayanan kontrolsüz görüntü kümeleme 

yaklaşımı sunmuşlardır. Yeni görüntü kümeleme algoritması, geniş 

uygulanabilirliğini göstermek için sentetik, MR ve uydu görüntüleri olarak üç farklı 

görüntüye başarıyla uygulanmıştır. Önerilen algoritma ISODATA sınıflandırma 

yöntemi ile karşılaştırılmış ve daha iyi sonuçlar verdiği belirlenmiştir. 

Bo ve Wang (2004), Landsat TM görüntülerinin sınıflandırılması için hibrit 

Oylayan Öznitelik Aralıkları (Voting Feature Intervals – VFI) ve Bayes 

algoritmalarını kullanmıştır. Önerilen hibrit yöntem ile VFI ve Bayes algoritmaları 

toplam doğruluk sonucuna göre karşılaştırıldığında hibrit yöntemin daha yüksek 

toplam doğruluğa sahip olduğu sonucuna ulaşılmıştır. 

Fauvel vd. (2006), bulanık kümeler teorisini kullanarak bir sinir ağından ve bir 

bulanık sınıflandırıcıdan elde edilen sınıflandırma sonuçlarının birleştirilmesi ile elde 

edilen hibrit bir yöntem önermiştir. Önerilen hibrit yöntemin, farklı sınıflandırıcıların 

ayrı kullanımına kıyasla sınıflandırma doğruluğunu iyileştirdiği sonucuna 

ulaşılmıştır. 
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Foody vd. (2007), biyoçeşitlilik haritalaması için yaptıkları çalışmada, görüntü 

sınıflandırmada DT, diskriminant analizi, SVM, MLP ve radyan tabanlı fonksiyon 

yöntemlerini kullanmıştır. Ayrıca birden çok sınıflandırma yöntemini entegre etmek 

için oy çokluğu seçim kuralını (majority voting rule) kullanmışlardır. Entegre 

sınıflandırmanın, sınıflandırma kesinliğini belirleme ve sınıflandırma sonrası 

iyileştirme için kullanılabileceği sonucuna ulaşmışlardır. 

Phyu (2009), veri madenciliğinde sınıflandırma teknikleri araştırmasında, 

DT’nin ve Bayes ağının çoğu durumda, biri çok doğru olduğunda diğerinin doğru 

olmadığı ve tam tersi şekilde önemli farklı özelliğe sahip olduğu sonucuna varmıştır. 

İki farklı yöntemin güçlü taraflarını ele alarak, algoritmaları topluluk yöntemiyle 

birleştirerek hibrit bir yöntem önermiştir. 

Chi vd. (2009), hiperspektral uzaktan algılama görüntülerinin 

sınıflandırılmasındaki nicelik problemini elimine edebilmek için bir topluluk 

sınıflandırma algoritması uygulamıştır. Önerilen yöntemde, sonuçlar artan 

sınıflandırma doğruluğunun yanı sıra artan robustluk sağlamıştır. 

Rozenstein ve Karnieli (2011), Landsat-TM görüntüleri kullanarak ISODATA, 

Maksimum Olabilirlik ve bu iki yöntemin kombinasyonundan oluşan hibrit 

sınıflandırma sonuçlarını karşılaştırmıştır. Elde edilen sonuçlar hibrit 

sınıflandırmanın diğer iki yönteme göre daha yüksek doğruluğa sahip olduğunu 

göstermiştir. 

Banos vd. (2013), hem aktivite hem de sensör sınıflandırma seviyelerinde 

verilen tekil kararların potansiyelini hesaba katan bir hibrit sınıflandırma 

metodolojisi önermiştir. Ağırlıklı toplam yaklaşımı kullanılarak oluşturulan 

yöntemin, benzer bir performans elde etmek için yüksek boyutlu bir özellik alanı 

gerektirebilecek klasik modellerle elde edilen sonuçlardan sistematik olarak daha iyi 

performans gösterdiği sonucuna ulaşılmıştır. 

Zhang ve Tang (2013), arazi örtüsü sınıflandırmasını geliştirmek için Boosting 

sınıflandırıcısını ve SVM yöntemlerini birleştirmiştir. Sonuç, sadece Boosting ve 

sadece SVM ile karşılaştırıldığında sınıflandırma doğruluğunda önemli bir gelişme 

olduğunu göstermiştir. 

Jaison vd. (2015), DNA mikroarray teknolojisinin gelişmesi ile kanser 

sınıflandırmasındaki ilerlemeyi teşvik etmek amacıyla DNA mikroarray verilerini 

analiz etmek için en yakın komşu, SVM ve Naive Bayes sınıflandırıcıdan oluşan 

hibrit bir sınıflandırma yöntemi önermişlerdir. Önerilen yöntemin performansı SVM, 
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en yakın komşu ve Naive Bayes sınıflandırıcılarla karşılaştırılmıştır. Sonuçlar hibrit 

yaklaşımının klasik sınıflandırıcılardan daha yüksek sınıflandırma doğruluğu 

ürettiğini göstermiştir. 

Piao vd. (2015), yüksek boyutlu verilerin sınıflandırılmasında, her bir 

sınıflandırıcı için alıştırma örneklemlerinin bölümlere ayrılmasıyla belirlenen farklı 

bir dizi alıştırma örneklemlerinden oluşturulduğu bir topluluk yöntemi önermiştir. 

Önerilen yöntemde her sınıflandırıcının sonuçları çoğunluk oylamasıyla birleştirilir. 

Yöntemin performansı diğer yöntemler ile karşılaştırılmış ve sonuçlar, önerilen 

yöntemin diğer yöntemlerden daha iyi performans gösterdiğini ortaya çıkarmıştır. 

Chinnaswamy ve Srinivasan (2016), kanser teşhisinde kullanılan mikroarray 

gen ekspresyon verilerinde, özellik seçimi ve sınıflandırma için korelasyon katsayısı 

ile PSO birleştiren hibrit bir özellik seçimi yaklaşımı önermiştir. Çalışma 

kapsamında, özellik seçimi ve sınıflandırma üç çok sınıflı veri seti üzerinde 

gerçekleştirilmiştir. Özellik seçimi sürecinden sonra seçilen genler aşırı öğrenme 

makinesi (Extreme Learning Machines – ELM) sınıflandırıcısına tabi tutulmuştur. 

Deney sonuçları, önerilen hibrit yaklaşımın daha yüksek sınıflandırma doğruluğu 

sağladığını ve klasik sınıflandırıcılar ile yapılan deneylere kıyasla daha az özellik 

kullandığını göstermiştir. 

Tan vd. (2016), alıştırma örneklemleri seçiminde yeni bir strateji ve daha iyi 

bir performans elde edebilmek amacıyla çoklu sınıflandırma sistemini 

kullanmışlardır. Çoklu sınıflandırıcılar topluluğu kullanarak yüksek çözünürlüklü 

uzaktan algılama görüntülerinde değişiklik tespiti için otomatik yöntem 

önermişlerdir. 

Lv vd. (2017) ELM ve yığınlanmış otomatik kodlayıcı (Stacked Auto Encoder 

– SAE) yöntemleri kullanarak bir uzaktan algılama görüntü sınıflandırma algoritması 

önermiştir. Sınıflandırma doğruluğunu iyileştirmek için önerilen yöntemde iki 

sınıflandırıcının güçlü yönleri ele alınmıştır. SAE, yüksek çeşitlilik oluşturmak için; 

ELM ise algoritmanın öğrenme hızını iyileştirmek için temel sınıflandırıcı olarak 

seçilmiştir. 

Wang vd. (2018), ağırlıklı oylama (weighted voting) kuralıyla entegre edilen 

ve üstün bir performans elde eden çoklu nesne özellikleri ve çoklu sınıflandırıcılar 

kullanan nesne tabanlı bir değişiklik tespit yöntemi önermiştir. Yüksek çözünürlüklü 

uzaktan algılama veri setinin deneysel sonuçları, önerilen yaklaşımın toplam 

doğruluk açısından klasik yöntemlerden daha iyi performansa sahip olduğunu 
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göstermiştir. 

Zhang (2018) ve Zhang vd. (2018), yaptıkları çalışmalarda MLP ve Evrişimli 

Sinir Ağları (Convolutional Neural Network – CNN) yöntemleriyle farklı birleştirme 

yaklaşımı kullanarak bir hibrit sınıflandırıcı önermiştir. İlk çalışmada (Zhang, 2018) 

kural tabanlı bir karar birleştirme yaklaşımı kullanılarak, yöntemler kısa ve etkili bir 

şekilde entegre edilmiştir. İkinci çalışmada ise (Zhang et al., 2018), sınıflandırma 

doğruluğunu arttırmak için bölgesel bir karar füzyonu ile entegre etmek önerilmiştir. 

Önerilen her iki hibrit sınıflandırıcı da sınıflandırma doğruluğu açısından MLP ve 

CNN’den daha iyi performans göstermiştir. 

Tan vd. (2019), yüksek çözünürlüklü uydu görüntülerinde çoklu 

sınıflandırıcılar kullanılarak otomatik değişiklik tespiti için nesne tabanlı bir 

yaklaşım önermiştir. SVM, en yakın komşu ve ekstra ağaçlar (ExT) sınıflandırıcıları 

temel sınıflandırıcı olarak seçilmiştir. Değişikliklerin belirlendiği görüntüyü 

sınıflandırmak için çok ölçekli nesne tabanlı kanıt teorisi füzyonu ve belirsizlik 

analizi kullanılmıştır. Sonuçlar, piksel tabanlı ve nesne tabanlı yöntemlerin ilgili 

avantajlarını birleştiren önerilen yaklaşımın etkinliğini ve üstünlüğünü doğrulamıştır. 

MARS algoritması, görüntü sınıflandırma alanında nispeten yeni bir yöntem 

olup, bu alanda yapılan çalışmalar sınırlıdır. MARS algoritmasının hibrit modellerde 

kullanımı ise oldukça nadirdir ve literatürde sınırlı sayıda örnek bulunmaktadır. 

Ancak, MARS algoritmasına dayalı hibrit model oluşturma çalışmaları, sağlık ve 

mühendislik gibi farklı disiplinlerde giderek artan bir ilgi görmektedir. Bu 

çalışmalarda, MARS algoritması diğer sınıflandırma ve optimizasyon teknikleriyle 

birleştirilerek daha yüksek doğruluk, genelleme kabiliyeti ve model performansı elde 

edilmeye çalışılmıştır. Sağlık alanında MARS tabanlı hibrit modeller, tıbbi teşhis ve 

hastalık öngörüsünde kullanılarak klinik karar destek sistemlerinin geliştirilmesine 

katkı sağlamıştır. Mühendislik alanında ise, bu hibrit modeller, sistemlerin 

performansını optimize etmek, arıza teşhisleri yapmak ve karmaşık mühendislik 

problemlerini çözmek için uygulanmıştır. Çeşitli sağlık ve mühendislik alanlarında 

kullanılan MARS algoritmasına dayalı hibrit model oluşturma çalışmaları aşağıda 

özetlenmektedir.  

Yao vd. (2013), hastalık tahmini ve teşhisi için veri madenciliği tekniklerini 

araştırmış ve hastalık tahmin modeli oluşturmak için RF ve MARS yöntemlerinin 

entegrasyonuna dayalı yeni bir yaklaşım önermiştir. İlk olarak değişkenlerin ön 

taramasını yapmak ve önem sıralarını elde etmek için RF yöntemi kullanılmıştır. RF 
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yöntemi sonucu değişkenler elimine edilmiş ve yeni veri kümesi elde edilmiştir. Elde 

edilen yeni veri kümesi ile hastalığa sahip insanların hayatta kalabilirliğini tahmin 

etmek için kolay yorumlanabilir MARS yöntemi kullanılmıştır. Elde edilen sonuçlar 

doğrultusunda önerilen yöntemin daha yüksek bir doğruluk ve uygulanması daha 

kolay bir model sağladığı belirtilmiştir. 

Liao vd. (2018) yaptıkları çalışmada köprülerin sel ve depreme karşı 

güvenliğini etkiyelen faktörleri incelemişlerdir. Köprülerdeki oyulma derinliği 

etkisini ölçmek için Swarm Optimization (SO) ve MARS yöntemlerinin bir 

entegrasyonuna dayanan SO-MARS öğrenme algoritmasını önermişlerdir. SO-

MARS algoritması, MARS algoritmasının optimum parametreleri bulmak için SO 

algoritmasının kullanıldığı bir modeldir.  

Santoso ve Wulandari (2018), yaptıkları çalışmada erken doğum tahmini için 

SVM ve MARS yöntemlerinin hibrit bir modelini sunmuşlardır. SVM uygulanırken 

özellik seçimi en önemli problemlerdendir. Bu doğrultuda sınıflandırma doğruluğunu 

arttırmak için, MARS algoritması girdi özelliklerini seçmek için kullanılmıştır. 

Oluşturulan MARS-SVM hibrit modeli sonuçları SVM ve MARS yöntemleri ile 

karşılaştırılmış ve hibrit MARS-SVM modelinin daha yüksek doğruluk oranına sahip 

olduğu sonucuna ulaşılmıştır. 

Alade vd. (2019), glikol nano akışkanların özgül ısı kapasitesini tahmin etmek 

için SVM yöntemine BO tekniğini uygulayarak, Bayes Destek Vektör Regresyon 

modelinin uygulanabilirliğini incelemişlerdir. Araştırma sonuçları, önerilen modelin 

%99,95 korelasyon katsayısı ve 0,0047'lik karesel ortalama hata ile son derece 

yüksek bir doğruluk sağladığını göstermektedir. Bu model, güneş kolektörlerinin 

termal verimliliğinin daha doğru hesaplanabilmesi için etkili bir yöntem 

sunmaktadır. 

Benemaran ve Esmaeili-Falak (2020), beton numunelerinin uzun vadeli basınç 

dayanımının tahmin edilmesinde MARS yöntemini uygulanmış ve MARS yöntemi 

ile elde edilen denklemleri PSO algoritması ile optimize etmişlerdir. Son model, daha 

düşük maliyetli olması ve daha uzun çalışma süresi ile betonun nihai ürününün 

maliyetini düşürmüş ve mekanik özelliklerini iyileştirmiştir. 

Nguyen vd. (2022), yaptıkları çalışmada, madencilik patlamalarında zemin 

titreşimini tahmin etmek için yenilikçi bir hibrit model olan MARS-PSO-MLP 

modelinin kullanımını araştırmışlardır. Araştırmada, farklı parametreler ile çeşitli 

MARS modelleri geliştirilmiş ve bu modellerin çıktı tahminleri yeni bir veri seti 
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olarak birleştirilmiştir. Önerilen model, tek başına kullanılan MARS ve MLP 

modellerine kıyasla daha yüksek doğruluk ve güvenilirlik sağlamış, karesel ortalama 

hata ve ortalama mutlak hata değerlerinde önemli iyileşmeler göstermiştir. 

Hanteh vd. (2023), kolonların basınç dayanımını tahmin etmek için MARS ve 

PSO algoritmalarının birleştirilmesiyle MARS-PSO modeli oluşturmuşlardır. Bu 

model, eğitim ve test aşamalarında sırasıyla 0.9972 ve 0.9961 korelasyon 

katsayılarına sahip olmasıyla diğer modellere göre daha iyi performans göstermiştir. 

Bu yöntemlerin kullanımı, model verimliliğini arttırırken sonuç elde etme hızını da 

yükseltmiştir. 

Hai vd. (2023), orman yangın duyarlılık haritalaması için MARS 

algoritmasında optimizasyon uygulanan hibrit bir yöntem önermişlerdir. Haritalama 

için 5 yıllık bir periyodun ele alındığı çalışmada Kedi Sürüsü Optimizasyonu 

algoritması (Cat Swarm Optimization – CSO), duyarlılık haritaları oluşturmak için 

MARS parametrelerini ayarlamaktadır. MARS-CSO modelinin, model ağacı, 

azaltılmış hata budama ağacı ve MARS algoritmasından daha iyi performansa sahip 

olduğu sonucuna ulaşılmıştır. 
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2. KURAMSAL TEMELLER 

2.1.  Uydu Görüntülerinin Sınıflandırılması 

Sınıflandırma algoritmaları farklı kriterlere göre kategori edilebilir, Tablo 2.1 

farklı sınıflandırma kriterleri ve kategorilerine göre sınıflandırma yöntemlerini 

göstermektedir. 

Tablo 2.1 Sınıflandırma yöntemlerinin kategorilendirilmesi (Lu and Weng, 2007) 

Sınıflandırma Kriteri Sınıflandırma Kategorisi Sınıflandırma Yöntemleri 

Piksel bilgisi kullanımına 

göre 

Piksel tabanlı sınıflandırma 

Maksimum Olabilirlik, 

Minimum Mesafe, ANN, RF, 

MARS 

Nesne tabanlı sınıflandırma eCognition 

Eğitim örneklemlerinin 

kullanılmasına göre 

Kontrollü sınıflandırma 

Maksimum Olabilirlik, 

Minimum Mesafe, ANN, DT, 

RF, MARS 

Kontrolsüz sınıflandırma ISODATA, kümeleme 

Veri dağılımı ve parametre 

kullanımına göre 

Parametrik sınıflandırma 

Maksimum Olabilirlik, 

Doğrusal Diskriminant Analizi 

(Linear Discriminant Analysis) 

Parametrik olmayan 

sınıflandırma 

Destek Vektör Makineleri, 

ANN, DT, RF, MARS 

Çıktı sayısına göre 

Kesin (Hard) sınıflandırma 

Maksimum Olabilirlik, 

Minimum Mesafe, SVM, ANN, 

RF, MARS 

Yumuşak (Soft) sınıflandırma 

Bulanık Küme Sınıflandırıcıları, 

Alt Piksel Sınıflandırıcı, 

Spektral Karışım Analizi 

Algoritma sayısına göre 
Tekil algoritma  

Hibrit sistem  

 

Uydu teknolojisinin ilk dönemlerinde yapılan çalışmalar, görüntüdeki her 

pikseli bir tematik sınıfa atayarak görüntüleri piksel düzeyinde sınıflandırma üzerine 

yoğunlaşmıştır. Görüntü sınıflandırmada kullanılan ilk yöntemler arasında, 

maksimum olabilirlik, minimum mesafe ve paralelyüz gibi istatistiksel yöntemler 

bulunmaktadır. Piksel tabanlı sınıflandırma olarak adlandırılan bu yöntemler piksel 

yansıtım değerlerine göre görüntüyü sınıflandırmaktadır. Her nesne farklı 

radyometrik özelliklere sahiptir; bu nedenle farklı nesneler farklı spektral imzalara 

sahiptir. Bu spektral imzalar, piksel yansıtım değerlerinin benzersiz kombinasyonları 
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olarak tanımlanabilir ve bu da piksel tabanlı sınıflandırma yöntemlerinde her pikselin 

farklı sınıflara ayrılmasını sağlar (Lu and Weng, 2007; Tuia et al., 2011; Li et al., 

2014). Piksel tabanlı sınıflandırma kontrolsüz ve kontrollü sınıflandırma olarak ikiye 

ayrılmaktadır. Kontrolsüz sınıflandırma, günümüzde çoğunlukla çalışma alanı 

hakkında herhangi bir ön bilgi olmadığında veya arazi hakkında ön bilgi elde etmek 

için kullanılan bir yöntemdir. Verilerin temel yapısının araştırıldığı bu yöntemde, 

sınıfları temsil eden bir dizi ağırlık merkezi üretilir ve pikseller bu merkezlere göre 

otomatik olarak sınıflara ayrılır. Kontrolsüz sınıflandırmanın avantajları arasında 

hızlı olması, insan hatalarını barındırmaması ve ayrıntılı ön bilgi gerektirmemesidir; 

kısıtı ise azami ölçüde ayrılabilir sınıflar oluşturmasıdır. Kontrollü sınıflandırma 

yönteminde ise sınıflandırma, tüm görüntüdeki nesneleri temsil eden ve ait oldukları 

sınıflar belli olan pikseller kullanılarak gerçekleştirilir. Alıştırma örneklemleri olarak 

adlandırılan bu piksel grupları, görüntüdeki gerekli bilgilerin küçük bir örneğini 

içerir ve her sınıfın özellik açıklamasını genişletmek için kullanılır. Başka bir 

deyişle, kontrollü sınıflandırma tekniğinde, sınıflandırıcıya karar sınırlarını öğretmek 

için alıştırma örneklemleri kullanılır. Elde edilen özellikler her piksel için 

araştırılarak ve benzerliği değerlendirilerek görüntü sınıflandırılır. Kontrollü 

sınıflandırma tekniğinin avantajı, kullanıcının deneyimiyle kontrolsüz 

sınıflandırmaya kıyasla daha doğru sonuç vermesi, kısıtı ise eğitim aşamasının 

zaman alıcı ve maliyetli olmasıdır (Xia et al., 2017; Sharma et al., 2018). 

Uydu teknolojisinde çözünürlüklerin artmasıyla, görüntüleri piksel düzeyinde 

yorumlamak, bir pikselin tematik anlamını ve farklı arazi örtülerini ayırmak için ek 

bilgilerin gerekebileceği yönünde çalışmalar yapılmıştır (Geneletti and Gorte, 2003; 

Frohn et al., 2009). Piksel yansıtım değerlerinin yanı sıra görüntüdeki doku, ton ve 

büyüklük gibi benzer özelliklere sahip piksellerin gruplandırılması ve bu pikselleri 

temsil eden nesnelerin oluşturulması ile yapılan sınıflandırma yöntemi, nesne tabanlı 

sınıflandırma olarak adlandırılır. Bu yöntem sayesinde nesne düzeyinde analizler 

yapılmaya başlanmış ve nesne tabanlı sınıflandırma, yüksek çözünürlüklü uydu 

görüntülerinde iyi performans sağlamıştır (Lu and Weng, 2007; Kalkan ve Maktav, 

2010; Xia et al., 2017). 

Veri dağılımı ve parametre kullanımı göz önüne alındığında, sınıflandırma 

algoritmaları parametrik ve parametrik olmayan olmak üzere iki grupta 

incelenmektedir. Parametrik algoritmalar verilerin belirli bir istatistiksel dağılımda 

olduğunu varsaymaktadır. Parametrik olmayan algoritmalar ise istatistiksel dağılım 
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hakkında varsayım yapmamaktadır (Huang et al., 2002; Mather and Koch, 2011). 

Uydu görüntülerinin sınıflandırılmasında DT, ANN ve SVM gibi güçlü parametrik 

olmayan sınıflandırma yöntemleri, son zamanlarda literatürde geniş yer bulmaktadır 

(Lu and Weng, 2007; Mather and Koch, 2011). 

Görüntü sınıflandırma yöntemleri, çıktı sayısına göre kesin (hard) ve yumuşak 

(soft) sınıflandırma yöntemleri olarak kategorize edilmektedir. Kesin sınıflandırma 

yöntemlerinde, her piksel yalnızca tek bir tematik sınıfa atanır, yani pikseller kesin 

sınıf etiketleri alır. Bu yöntemler, genellikle belirli bir sınıfa ait olma olasılığı en 

yüksek olan sınıfı seçerek pikselleri sınıflandırır. Buna karşılık, yumuşak 

sınıflandırma yöntemlerinde, her piksel birden fazla sınıfa atanabilir ve her sınıfa ait 

olma olasılığı belirtilir. Yumuşak sınıflandırma, piksellerin birden çok sınıfa ait 

olabileceği karmaşık ve belirsiz alanlarda daha esnek ve ayrıntılı sonuçlar sunar (Lu 

and Weng, 2007; Foody, 2009). 

Görüntü sınıflandırma yöntemleri, kullanılan algoritma sayısına göre ele 

alındığında tekil ve hibrit sınıflandırma yöntemleri olarak kategorize edilebilir. Tekil 

sınıflandırma yöntemleri, her pikseli sınıflandırmak için yalnızca bir algoritma 

kullanırken, hibrit sınıflandırma yöntemleri birden fazla algoritmanın 

kombinasyonunu kullanır. Hibrit sınıflandırma yöntemleri farklı algoritmaların güçlü 

yanlarını birleştirerek daha yüksek doğruluk ve güvenilirlik elde etmektedir. Bu 

yöntemler, veri çeşitliliğine ve karmaşıklığına daha iyi uyum sağlar, parametrik ve 

parametrik olmayan algoritmaların avantajlarını bir araya getirir ve sınıflandırma 

hatalarını azaltarak daha kapsamlı ve doğru sonuçlar sunar (Hansen and Salamon, 

1990; Du et al., 2012; Piao et al., 2015). 

2.2. Hibrit Sınıflandırma 

Görüntü sınıflandırma yöntemleri, birçok disiplin alanında kullanılmaktadır. 

Günümüze kadar birçok görüntü sınıflandırma yöntemi önerilmiş, geliştirilmiş ve bu 

değişim süreci devam etmektedir. Herhangi bir yöntemin diğerleri arasında en iyi 

yöntem olduğu söylenemez, çünkü doğruluk bir dizi faktöre bağlıdır. Uydu 

görüntüsünün çözünürlüğü, elde edilecek sınıf sayısı, kullanılan bant sayısı ve 

çalışma alanının özellikleri sınıflandırma doğruluğunu etkilemektedir (Sharma et al., 

2016; Thakur and Maheshwari, 2017). Bu faktörlerin bir arada değerlendirilmesiyle 

oluşan karmaşık yapı nedeniyle en ideal sınıflandırma yöntemini seçmek zordur. 

Çünkü her bir sınıflandırma yönteminin kendine özgü güçlü yanları ve sınırlamaları 

vardır. Örneğin, kontrolsüz sınıflandırma yöntemleri, hızlı ve ön bilgi gerektirmeyen 
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bir çözüm sunarken, bu yöntemler belirli bir sınıfa ait pikselleri yeterince ayırt 

edemeyebilir ve bu da doğruluğun düşmesine neden olabilir. Benzer şekilde, 

maksimum olabilirlik gibi kontrollü sınıflandırma yöntemleri, yeterli eğitim noktaları 

ve normal dağılımlı görüntü değerleri ile iyi performans gösterirken karmaşık 

görüntülerde güvenilir sonuçlar elde edilemeyebilir (Lu and Weng, 2007; Phiri and 

Morgenroth, 2017).  

Farklı algoritmalar, aynı çalışma alanı için farklı sonuçlar verebilir fakat tek bir 

algoritma tüm sınıflar için en iyi performansı gösteremeyebilir (Şekil 2.1). 

Sınıflandırıcılar, birbiriyle ilişkisiz sınıflandırma hatalarına sahiptirler. Bu nedenle, 

farklı sınıflandırıcıların birleştirilmesiyle daha yüksek sınıflandırma doğrulukları 

elde edilebilir. Başka bir deyişle, her bir sınıflandırma yönteminin kendine özgü 

güçlü yanları ve kısıtları vardır, farklı sınıflandırıcıların güçlü yanları kullanılarak 

sınıflandırma doğruluğu arttırılabilir. Bu yöntem hibrit sınıflandırma yöntemi olarak 

adlandırılır. Bir hibrit sınıflandırma modeli, tek bir sınıflandırıcı kullanılarak elde 

edilebilecekten daha iyi bir sınıflandırma performansı elde etmek için bir dizi 

algoritmadan oluşan bir bileşik modeldir (Hansen and Salamon, 1990; Opitz and 

Shavlik, 1996; Liu and Mason, 2009). Hibrit sınıflandırma, sınıflandırma alanında 

nispeten yeni bir kullanım alanına sahiptir ve ilk olarak 1990'larda farklı 

sınıflandırıcıları birleştirerek daha yüksek doğruluk elde etme amacıyla kullanılmaya 

başlanmıştır. İki doğrusal regresyon modelinden oluşan bir hibrit model fikri ilk 

olarak Tukey (1977) tarafından önerilmiştir. Birden fazla sınıflandırıcının birlikte 

kullanımının yanı sıra tek bir sınıflandırıcı ile sınıflandırma algoritmasının 

performansını arttırmak amacıyla ek bir optimizasyon adımının dahil edilmesi son 

zamanlarda uygulanan hibrit yöntemlerdendir. Bu yöntemler, farklı algoritmaların 

güçlü yanlarını bir araya getirerek, sınıflandırma doğruluğunu arttırmakta ve daha 

güvenilir sonuçlar elde edilmesine olanak tanımaktadır (Hashem, 1994; Krogh and 

Vedelsby, 1995; Aziz et al., 2017). 
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Şekil 2.1 Hibrit sınıflandırma (Ranawana and Palade, 2006) 

Hibrit yöntem, makine öğrenmesi alanında önemli bir kavramdır ve karar 

vermek için birden fazla modeli birleştirme yaklaşımını ifade eder. Bu çerçevede her 

model, bir temel öğrenici olarak kabul edilebilir. Hibrit yöntemin performansının 

genellikle tekil bir yöntemden daha iyi olduğu yaygın olarak kabul edilmektedir. 

Bunun nedeni, farklı modellerin aynı veri seti üzerinde her zaman aynı yanlış 

tahminleri yapmamasıdır; başka bir deyişle, modeller birbirlerinin hatalarını telafi 

eder. Bu durum, bir dizi yöntemin hibrit olarak çalışmasının, tek bir yöntem 

tarafından üretilen hataları düzeltebileceği ve böylece daha iyi genel performansa 

katkıda bulunabileceği şeklindeki temel önermeyi tanımlar. Hibrit yöntemler, 

sağlamlık ve doğruluğun iyileştirilmesinin yanı sıra, sınırlı örneklem boyutu, yüksek 

boyutlu görevler, sınıf dengesizliği ve veri gürültüsü gibi zorluklarla başa çıkmadaki 

etkinliği nedeniyle de araştırma konusu olmaktadır (Aziz et al., 2017; Fallah et al., 

2018). 

2.2.1. Hibrit Sınıflandırma Teknikleri 

Sınıflandırma performansını yükseltmek amacıyla yapılan araştırmalar, mevcut 

yöntemlerin özelliklerini birleştirerek sınıflandırma doğruluğunu arttırmaya 

odaklanmıştır. Farklı yaklaşımlar kullanılarak hibrit sınıflandırma yöntemleri (çoklu 

sınıflandırma sistemleri) oluşturulabilir. Hibrit yöntemin ilk kullanıldığı zamanlarda 

görüntü sınıflandırması yöntemlerinin hibrit kullanımı, Çoklu Sınıflandırma Sistemi 

(Multiple Classifier System – MCS) olarak adlandırılmaktaydı. Çoklu Sınıflandırma 

Sisteminin ana amacı, birden çok sınıflandırıcı arasındaki tamamlayıcılığı ve 

doğruluğu arttırmaktır. Daha sonra yapılan çalışmalarla, sadece farklı 

sınıflandırıcıların değil, farklı algoritmaların birlikte kullanımı ile Hibrit 

Sınıflandırma Sistemi oluşturulması amaçlanmıştır. Hibrit Sınıflandırma Sistemi, 
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doğruluk ve verimliliği arttırma yeteneği nedeniyle son yirmi yılda hızla geliştirilmiş 

ve örüntü tanıma, görüntü işleme ve hedef tanımlama gibi çeşitli alanlarda yaygın 

olarak kullanılmaktadır. (Chi et al., 2009; Liu and Mason, 2009; Du et al., 2012; Tan 

et al., 2016). 

Hibrit Sınıflandırma Sistemi üç ana başlıkta incelenmektedir; alıştırma 

örneklemleri aşamasında oluşturulan kombinasyon, ardışık kombinasyon, paralel 

kombinasyon. (Rozenstein and Karnieli 2011). Bir algoritma tarafından oluşturulan 

sınıflandırma sonucunun, bir sonraki algoritmada girdi olarak kullanılması ardışık 

kombinasyon olarak adlandırılmıştır. Şekil 2.2’de gösterilen bu yöntemle oluşturulan 

hibrit modellerde, her algoritmanın elde ettiği sonuç, zincirdeki son algoritmaya 

ulaşana kadar sırayla bir sonraki algoritmaya aktarılır. Bu zincirde amaç tüm 

sistemin doğruluğunu iyileştirmek ve hata kontrollerini dahil etmektir. Şekil 2.3’te 

gösterilen paralel kombinasyonda ise, çoklu sınıflandırıcılar karşılıklı etkileşim 

olmadan bağımsız olarak tasarlanır ve çıktıları karar kuralına göre birleştirilir. En 

yaygın kullanılan karar kuralı her bir algoritmanın belirli bir sınıf için tahmin 

oluşturmasıdır (Xu et al., 1992; Rahman and Fairhurst, 1999; Rozenstein and 

Karnieli 2011; Du et al., 2012). 

 

Şekil 2.2 Sınıflandırma yöntemlerinin ardışık kombinasyonu (Du et al., 2012) 

 

Şekil 2.3 Sınıflandırma yöntemlerinin paralel kombinasyonu (Du et al., 2012) 
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Yaygın olarak uygulanan hibrit sınıflandırma sisteminde karar kurallar; 

a) Maksimum Kural (Maximum Rule – MR), birden çok sınıflandırıcı 

tarafından sağlanan olasılıkları birleştirmek için basit bir yöntemdir. Her 

sınıf üyeliği, k sınıfından biri için bir oy olarak yorumlanır ve her bir 

sınıflandırıcı için en yüksek sınıf üyeliğini alan sınıf, o sınıflandırıcının sınıf 

etiketi olarak atanır. Daha sonra N sınıflandırıcılardan gelen sınıf etiketleri 

tekrar karşılaştırılır ve bir pikselin, fi sınıflandırıcı tarafından verilen bir Ck 

sınıfına ait olan bir pikselin sınıf üyeliği PMR olasılığı hesaplanır (Eşitlik 

2.1). En yüksek sınıf üyeliğini alan sınıf son sınıflandırma olarak belirlenir. 

Maksimum kuralın en büyük sorunu, güvenilirliklerine bakılmaksızın tüm 

sınıflandırıcıların aynı yetkiye sahip olmasıdır (Foody, 2009; Salah, 2017). 

𝑃𝑀𝑅 = 𝑚𝑎𝑥[max 𝑝𝑝 (𝐶𝑘|𝑓𝑖)]                (2.1) 

b) Ağırlıklı Toplam (Weighted Sum – WS) yönteminde, ilk olarak her 

sınıflandırıcının sonucundaki sınıf üyeliği, sınıflandırıcıların her sınıf için 

(0≤ αci ≤1) güvenilirliğine (doğruluğuna) göre ağırlıklandırılır. Bundan 

sonra her sınıf için tüm sınıflandırıcıların sonucundaki sınıf üyelikleri 

toplanır ve maksimum toplamı alan sınıf, Eşitlik 2.2'deki gibi son sınıf 

etiketi olarak belirlenir. Bu denklemde, PWS ağırlıklı toplama dayalı 

olasılıktır, αci her sınıflandırıcının ağırlığıdır, ppi i’nci için elde edilen sınıf 

üyelik değeridir, N ise sınıflandırıcıların sayısıdır (Le et al., 2007; Salah, 

2017). 

𝑃𝑊𝑆 = ∑ 𝛼𝑐𝑖𝑝𝑝𝑖
𝑁
𝑖=1                  (2.2) 

c) Bulanık Çoğunluk Oylaması (Fuzzy Majority Voting – FMV) ağırlıkların 

değerlerinin doğrudan sağlanabilmesi için ağırlıklara bazı anlamlar veren 

yöntemdir. Ağırlıklar için bulanık dilsel niceleyicilere dayalı anlambilim 

kullanılır ve Eşitlik 2.3 ile hesaplanabilir. Bu denklemde ppi i’nci pikselin 

Markov olasılığı, k sınıfların sayısıdır (Zadeh, 1983). 

PFMV = arg maxk [∑ wpi
ppi

N
i=1 ]               (2.3) 

2.2.2. Hibrit Sınıflandırma Performansını Etkileyen Faktörler 

Hibrit modeller, farklı modellerin veya algoritmaların güçlü yönlerinden 

yararlanma avantajı sunarak gelişmiş doğruluk ve genelleme sağlar. Farklı veri 

türlerini etkili bir şekilde ele alabilir ve sağlam tahminler veya sınıflandırmalar 
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sağlayabilirler. 

Hibrit modellerin kısıtları karmaşıklık, artan hesaplama gereksinimleri ve aşırı 

uyum riskidir (Aziz et al., 2017; Fallah et al., 2018); 

 Karmaşıklık: Hibrit modellerin geliştirilmesi ve uygulanması tek modellere 

kıyasla daha karmaşık olabilir. Birden fazla algoritma veya modelin entegre 

edilmesi dikkatli bir tasarım ve koordinasyon gerektirir, bu durum genel 

sistemin karmaşıklığını arttırabilir. 

 Artan hesaplama gereksinimleri: Hibrit modeller genellikle tekil modellere 

kıyasla daha fazla hesaplama kaynağı gerektirir. Birden fazla model 

birleştirildiğinden, eğitim ve çıkarımın hesaplama yükü daha yüksek olabilir 

ve modelin ölçeklenebilirliğini sınırlayabilir. 

 Aşırı uyum riski: Hibrit modeller, özellikle farklı modellerin entegrasyonu 

dikkatli yapılmazsa, aşırı uyum sağlamaya daha yatkındır. Aşırı uyum, bir 

modelin eğitim verilerine çok yakından uyması durumunda ortaya çıkar ve 

bu da tüm veriye uygulandığında düşük performansa neden olur. Bu riski 

azaltmak için uygun düzenleme teknikleri ve doğrulama prosedürleri 

gereklidir. 

2.2.3. Hibrit Sınıflandırmanın Avantajları 

Her temel sınıflandırma algoritması, yeni bir örneğin sınıf değerini tahmin 

etmek için bir eğitim setinden bir model oluşturmak üzere kendi öğrenme 

prosedürüne sahiptir ve her yeni örneği sınıflandırmak için kullanılacak olan 

verilerden bir model oluşturur. Hibrit sınıflandırma ise yeni bir örneğin sınıf değerini 

belirlemek için bir dizi model oluşturur. Yapılan çalışmalar hibrit sınıflandırma 

algoritmasının yalnızca daha yüksek tahmin doğruluğu elde etmediğini, aynı 

zamanda öğrenme sonuçlarının kolay yorumlanmasını da sağladığını göstermektedir 

(Hansen and Salamon, 1990; Hashem, 1994; Krogh and Vedelsby, 1995). 

Her bir uygulamaya özel sınıflandırıcı yöntemi veya optimum parametre setini 

seçmek için evrensel bir öneri yoktur. Hibrit modeller, güçlü yönlerini birleştirerek 

tekil modellerin sınırlamalarını ele almak için tasarlanmıştır. Hibrit modelin her bir 

bileşeni kendine özgü yetenekleriyle katkıda bulunarak daha güçlü ve çok yönlü bir 

model ortaya çıkarır (Aziz et al., 2017; Fallah et al., 2018); 

 Daha iyi performans: Hibrit modeller, tekil modellere kıyasla daha yüksek 

doğruluk ve daha iyi performans elde edebilir. Hibrit modeller, farklı 
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algoritmaların güçlü yönlerinden yararlanarak tek bir modelin 

sınırlamalarının üstesinden gelebilir ve daha doğru tahminler veya 

sınıflandırmalar sağlayabilir. 

 Geliştirilmiş sağlamlık: Hibrit modeller genellikle verilerdeki gürültü ve 

aykırı değerlere karşı daha dayanıklıdır. Farklı algoritmalar farklı veri 

türlerine karşı farklı hassasiyetlere sahip olduğundan, hibrit bir model daha 

geniş bir veri varyasyon ile başa çıkabilir ve daha güvenilir sonuçlar 

üretebilir. 

 Artan genelleştirilebilirlik: Hibrit modeller, verilere iyi genelleme 

yapabilme yeteneğine sahiptir. Her biri kendi genelleme yeteneklerine sahip 

birden fazla modeli birleştirerek, verilerdeki daha geniş bir desen ve ilişki 

yelpazesini yakalayabilen hibrit yöntemler daha iyi genelleme performansı 

sağlar. 

2.3. Çok Değişkenli Uyarlanabilir Regresyon Eğrileri (Multivariate 

Adaptive Regression Splines – MARS) 

Regresyon analizi, bir veya daha fazla bağımsız değişken kullanarak bir 

bağımlı değişken hakkında tahminlerde bulunmak için kullanılan bir analiz 

yöntemidir. Başka bir ifadeyle, regresyon, bağımlı ve bağımsız değişkenler 

arasındaki ilişkileri belirleyebilmek için yapılan istatistiksel analizdir ve hem 

tanımlayıcı hem de çıkarımsal istatistik sağlamaktadır. Regresyon analizinin amacı 

bağımlı değişken ile bağımsız değişken arasında anlamlı bir ilişki olup olmadığını 

araştırmak bir ilişki varsa bunun gücünü belirlemek ve ileriye yönelik tahminleri 

belirlemeye çalışmaktır. Değişkenler arasında tespit edilen ilişki, matematiksel bir 

fonksiyon şeklinde yazılır ve bu fonksiyona regresyon denklemi denmektedir 

(Orhunbilge, 1996; Sevimli, 2009). 

Regresyon analizinde bir değişkenin başka bir veya daha fazla değişkene olan 

bağımlılığı fonksiyonel veya deterministik ilişkilerle değil istatistiksel ilişkilerle 

incelenmektedir. Değişkenlerin bulunduğu tüm sistemlerde, bazı değişkenlerin 

diğerleri üzerindeki etkilerinin incelenmesi regresyon analizi ile yapılabilmektedir. 

Regresyon analizi veri tanımlama, parametre kestirimi, ön kestirim ve denetleme 

amaçlarıyla kullanılabilir. Regresyon mühendislik, fizik, iktisat ve biyoloji gibi farklı 

bilim dallarının konusu olmuştur (Kutner et al., 2005; Weisberg, 2005; Öztürkcan, 

2009; Erar, 2013). 

Bazı uygulamalarda bağımlı değişkeni etkileyen bir bağımsız değişken varken 
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bazı uygulamalarda birden fazla değişken olabilir, bu durum regresyon modeli 

kurulmasında farklı yaklaşımların kullanılmasına neden olmaktadır. Bir değişkeni 

etkileyen iki ve daha fazla bağımsız değişken arasındaki neden-sonuç ilişkilerini 

doğrusal bir modelle açıklamak ve bu bağımsız değişkenlerin etki düzeylerini 

belirlemek için yararlanılan yönteme çok değişkenli regresyon analizi denir. Çok 

değişkenli regresyonda, bağımlı değişkeni etkileyen birden çok bağımsız değişken 

bulunmaktadır ve Eşitlik 2.4’te gösterildiği gibi ifade edilir (Alpar, 1997). 

𝑦 = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑖𝑥𝑖 + 𝜀     (2.4) 

βi regresyon katsayısını ifade etmektedir ve çoklu doğrusal regresyon 

modellerinde, yaygın olarak regresyon katsayısı değerleri en küçük kareler 

yöntemiyle bulunur. Çoklu regresyon modellerinde veriler matris şeklinde gösterilir, 

bu nedenle regresyon katsayıları tahmininde kullanılan en küçük kareler yöntemi 

aşağıdaki gibi matris formunda yazılabilir (Eşitlik 2.5) (Alpar, 1997). 
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        (2.5) 

Çok değişkenli regresyon modeli varsayımları; 

 Model doğrusal kurulmuştur. 

 Bağımsız değişken değerleri yinelenen örneklemelerde değişmez. 

 Hataların toplamı sıfırdır. 

 Hatalar arasında ilişki yoktur. 

 Parametreler normal dağılımdadır.  

Çok değişkenli regresyon analizinde bağımlı değişkeni etkileyen bağımsız 

değişkenler modele eklenmektedir, bu ekleme işlemi üç şekilde gerçekleştirilebilir 

(Anonim 2019); 

 Hiyerarşik ekleme (Blockwiseentry): Literatür araştırmalarına dayanarak en 

önemli tahmin değişkeni önce girilir. 

 Zorla ekleme (Enter): Tüm tahmin değişkenleri eşzamanlı olarak modele 

girilir. 

 Adım adım ekleme: Tamamen matematiksel ölçütlere göre girilir. Bağımlı 

değişkendeki değişimi en fazla açıklayan tahmin değişkenini bulunur, sonra 

geri kalan değişimi en fazla açıklayan tahmin değişkenini bulunur. 
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Doğadaki olgular, olaylar doğrusal olmayan bir eğilim gösterdiğinden doğrusal 

modelle temsil edilemezler. Bu modellerde genellikler parametrik olmayan 

yöntemler kullanılır, fakat oluşturulacak modelde kullanılacak bağımsız değişken 

sayısı fazla sayıda ise çoğu parametrik olmayan regresyon yöntemleri yeterli 

olmamaktadır. Çünkü büyük veri setlerinden bilgi çıkarımı yapmak yani modellemek 

zordur. Son yıllarda, gerçek olguların daha etkili yansıtılabilmesi amacıyla birçok 

bağımsız değişkenin kullanılması yaygın hale gelmiştir. Bu bağlamda, 1991 yılında 

Jerome Friedman tarafından geliştirilen MARS, çok sayıda bağımsız değişkenin bir 

arada değerlendirilmesini mümkün kılan algoritmaların kullanımını sağlamıştır. 

MARS, regresyon analizlerindeki karmaşıklığı azaltarak, veri setlerindeki ilişkileri 

daha hassas modellemeye imkân tanımıştır. 

MARS yöntemi, klasik doğrusal ve doğrusal olmayan yöntemlerden farklı bir 

yaklaşım sergiler. Çünkü MARS bağımlı ve bağımsız değişkenler için herhangi bir 

özel varsayıma ihtiyaç duymaz. Bu yöntem, belirlenen aralıklarda farklı katsayılar 

üretir ve modelin yapısını daha iyi yansıtmak adına etkileşim terimlerini dahil eder. 

MARS algoritması, bağımlı bir değişken ile açıklayıcı değişken seti arasındaki olası 

ilişkiyi belirlemek amacıyla "düzleştirme eğrileri (uzanımları – smoothing splines)" 

kullanma prensibine dayanır. Hem yüksek boyutlu sınıflandırma hem de tahmin 

problemleri için kullanılabilecek esnek bir modelleme tekniği olan MARS bağımsız 

değişkenlerin oluşturduğu uzayı birbirleriyle örtüşen birçok bölgeye ayırır ve bu 

bölgelerde fonksiyonlar oluşturur (Friedman, 1993; Leathwick et al., 2006; Toprak, 

2011; Weber et al., 2012). Bu bölgeler, düğüm noktaları ile birbirinden ayrılır ve iki 

düğüm arasındaki fonksiyon, temel fonksiyon (basis function) olarak adlandırılır. 

Temel fonksiyonlar, bağımlı değişken ile parçalı doğrusal (piecewise linear) bir ilişki 

içindedir. Farklı katsayılar ve etkileşim terimleri kullanılarak belirlenen aralıklarda 

model oluşturulması, veri setinin gerçek yapısını daha hassas bir şekilde yansıtarak 

daha doğru sonuçlar elde edilmesine olanak tanır. Bu nedenle, MARS yöntemi, 

analizlerdeki esneklik ve geniş kapsamlı modele uyum yeteneği açısından değerli bir 

araç olarak kabul edilir. MARS algoritması bağımsız değişkenler arasındaki 

etkileşimi de dikkate alarak bağımsız değişkenlerin modele girip girmeyeceğini 

belirlemektedir ve robust modeller üretir (Friedman, 1993; Stevens, 1991; Özfalcı, 

2008; Temel vd, 2010; Sevgenler, 2019). 

MARS, yüksek boyutlu parametrik olmayan regresyon modelleri oluşturabilen 

esnek bir yaklaşım sunar. Bu parametrik olmayan regresyon yöntemi, bağımlı ve 
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bağımsız değişkenler arasındaki temel fonksiyonel ilişki konusunda özel bir 

varsayım yapmaz. Yani, model oluşturulurken belirli bir matematiksel formül veya 

ilişki yapısal kısıtlamalara tabi değildir.  

2.3.1. Düğüm Noktası 

MARS yöntemi, değişkenler arasındaki ilişkileri dikkate alarak değişimlerin 

olduğu belirli noktaları belirler ve bu noktalar arasında uygun dönüşümlerle düz bir 

doğru elde etmeye çalışır. Modeldeki değişimin meydana geldiği, yani regresyon 

doğrusundaki eğimin değiştiği noktalara "düğüm noktası" denir. Her bir bağımsız 

değişken için düğüm noktalarının belirlenmesi, hızlı ancak çok yoğun bir arama 

prosedürü kullanılarak gerçekleştirilir. 

Şekil 2.4'te, bağımsız değişken x ve bağımlı değişken y arasındaki ilişkinin 

dağılımını göstermektedir. Bu örnekte dört adet düğüm noktası bulunmaktadır ve her 

düğüm noktasında fonksiyonun eğiminin değiştiği gözlemlenmektedir. MARS, bu 

düğüm noktalarını tespit ederek, veri setindeki karmaşık ilişkileri yakalamaya ve 

modelin esnek bir şekilde uyarlanmasına olanak tanır. Bu sayede, regresyon 

doğrusundaki eğimin belirli aralıklarda değişim göstermesi, gerçek veri setinin özgün 

yapısını daha iyi yansıtabilir ve daha doğru tahminler elde edilebilir. (Friedman, 

1991; Özfalcı, 2008; Ünal, 2009).  

 

Şekil 2.4 MARS modelindeki düğüm noktaları (Anonim 2019) 

Düğüm noktası belirleme işlemi için ilk olarak sabit fonksiyon seçilir (Eşitlik 

2.6); 

𝑓𝑗 = 𝑐𝑗      (2.6) 

𝑐𝑗 sabiti bağımlı değişkenin ortalaması olarak alınır (Eşitlik 2.7). 

𝑐𝑗 =
1

𝑁
∑ 𝑦     (2.7) 
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İlk düğüm noktası bulunduktan sonra Lack of Fit (LOF) kriteri geçerli olur 

(Eşitlik 2.8); 

𝐿𝑂𝐹[𝑓𝑗(𝑥)] = min ∑(𝑦𝑖 − 𝑐)2   (2.8) 

LOF kriteri toplamı minimum yapan c noktasının bulunması işlemidir. Bu 

iterasyon istenilen düğüm noktası sayısına ulaşılana kadar devam etmektedir 

(Friedman, 1993). 

2.3.2. Temel Fonksiyonlar 

Birçok gerçek dünya problemi, parçalı doğrusal olan sürekli fonksiyonları 

içerir. Şekil 2.5'te gösterildiği gibi üç doğru parçasına sahip parçalı doğrusal bir 

eğriyi modellemek için genellikle ikili değişkenler kullanılır. 

MARS algoritması veriler arasındaki ilişkiyi parçalı fonksiyonlarla belirler, 

böylece tüm değerlere en yakın geçecek şekilde yani ilişkiyi en güçlü şekilde 

modelleyen temel fonksiyonlar oluşturur. Bağımsız değişken değerlerini bölgelere 

ayırarak (Şekil 2.5) her bölgeyi bir temel fonksiyon ile ifade etmektedir (Akyol, 

2011; Özkurt, 2013). 

 

Şekil 2.5 MARS modelinde düğüm noktaları arasındaki temel fonksiyonlar (Ünal, 2009). 

MARS modeli [𝑥 − 𝑡]+ ve [𝑡 − 𝑥]+ formundaki temel fonksiyonlar kullanılır 

(Eşitlik 2.9). Bu temel fonksiyonlar bağımsız değişkenlerin bağımlı değerleri en iyi 

düğüm noktalarında bölen parçalı regresyon eğrileridir ve yansıması olan çiftler 

olarak adlandırılır. Alt indis olarak gösterilen “+” pozitif tarafı temsil etmektedir.  

[𝑥 − 𝑡]+ = {
𝑥 − 𝑡,   𝑥 > 𝑡

0,   𝑥 < 𝑡
                          [𝑡 − 𝑥]+ = {

𝑡 − 𝑥,   𝑥 < 𝑡
0,   𝑥 > 𝑡

   (2.9) 

Örnek olarak düğüm noktası 0.5 olan (x-0.5)
+ 

ve (0.5-x)
+ 

temel fonksiyonları 

Şekil 2.6’da gösterilmiştir. 
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Şekil 2.6 Temel fonksiyonlar (yansıma çifti) (Özmen, 2010) 

Şekil 2.6'da gösterilen parçalı fonksiyonlar, MARS algoritmasında "yansıma 

çifti (reflected pair)" olarak adlandırılır. Her bir düğüm noktasında, MARS 

algoritması tarafından bir yansıma çifti oluşturulur. Bu yansıma çiftleri, düğüm 

noktaları arasında parçalı fonksiyonları temsil eder. Her yansıma çifti, belirli bir 

aralıktaki değişkenler arasındaki ilişkiyi yakalayarak, modelin karmaşıklığını 

düşürmeye ve veri setinin doğasını daha iyi anlamaya yönelik bir adaptasyon sağlar 

(Stevens, 1991; Goepp et al., 2018) 

Temel fonksiyonların gösterimi Eşitlik 2.10’da gösterilmektedir. 

𝐵 = {[𝑋𝑗 − 𝑡]
+

 , [𝑡 − 𝑋𝑗]
−

  𝑡 ∈ {𝑥1𝑗, 𝑥2𝑗 , 𝑥3𝑗 , … . 𝑥𝑁𝑗}, 𝑗 = 1,2,3, … 𝑝}          (2.10) 

Eşitlik 2.10’da N veri sayısı, p girdi boyutunu temsil etmektedir. Tüm veri seti 

kullanılarak toplam temel fonksiyon sayısı ise 2Np formülü ile bulunmaktadır. Temel 

fonksiyonları bulunmasında belirli bir temel fonksiyonu bulmak için Eşitlik 2.11 

kullanılmaktadır. 

𝐵𝑚(𝑋) = ∏ 𝐻[𝑠𝑘𝑚(𝑥𝑣(𝑘,𝑚) − 𝑡𝑘𝑚)]+
𝐾𝑚
𝑘=1     (2.11) 

burada K yansıma çifti sayısı 

 𝑥𝑣(𝑘,𝑚) kesişen lineer fonksiyona karşılık gelen bağımsız değişken 

 𝑡𝑘𝑚 düğüm noktası 

 𝑠𝑘𝑚 = ±1 olarak alınır ve temel fonksiyonu pozitif yapmak için kullanılır. 

MARS modelinin genel fonksiyon gösterimi ise Eşitlik 2.12’de 

gösterilmektedir. 

𝑓(𝑥) = 𝛽0 + ∑ 𝛽𝑚 𝐵𝑚(𝑥) + 𝜀𝑀
𝑚=1     (2.12) 

Bu eşitlikte; 

 𝐵𝑚(𝑥) m’inci temel fonksiyonu  

M temel fonksiyon sayısını temsil etmektedir. 
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MARS modelinde ilk temel fonksiyon 1 olarak hesaplanır (Eşitlik 2.13) (Friedman, 

1993). 

𝐵0(𝑋) = 1     (2.13) 

Temel fonksiyonları olası yapısı Eşitlik 2.14’te gösterilmektedir. 

 1 

 𝑥𝑘 

 [𝑥𝑘 − 𝑡𝑖]+ 

 𝑥𝑘𝑥𝑙 

 [𝑥𝑘 − 𝑡𝑖]+𝑥𝑙 

 [𝑥𝑘 − 𝑡𝑖]+[𝑥𝑙 − 𝑡𝑗]+                     (2.14) 

MARS çok sayıda değişkeni bir arada bağımsız ve etkileşimli olarak modele 

dahil edebilen, güçlü algoritmalarla parametre tahmin edilmesine imkan sağlayan 

parametrik olmayan yöntemlerdendir. MARS yöntemi regresyon modelini 

oluştururken ileri ve geri adım algoritması diye adlandırılan iki aşamalı bir algoritma 

kullanmaktadır (Friedman et al., 2001; SPM Guide Help, 2018). 

2.3.3. İleri Adım 

MARS algoritması, tüm değişkenler arasındaki potansiyel bütün etkileşimleri 

içeren her düğüm konumunu belirler. Bu nedenle, ilk aşama olan ileri adımda, 

değişkenleri ve potansiyel düğümleri test ederek aşırı doymuş (overfit) bir modele 

ulaşılabilir. Bu aşırı doymuş model, veri setindeki her bir değişken ve düğüm 

kombinasyonunu içerir, ancak bu durum modelin genelleme yeteneğini zayıflatabilir. 

İleri adım sürecinde, bağımsız değişkenlerin en uygun düğüm noktalarının tespit 

edilip aralıklara bölünmesiyle oluşturulan parçalı doğrusal regresyon eğrilerine 

"temel fonksiyon" denir. Bu temel fonksiyonlar, değişkenler arasındaki etkileşimleri 

yakalamak ve her bir düğüm noktasında regresyon eğrisini modellenmesini sağlamak 

amacıyla kullanılır. İleri adım sürecini göstermek için ikili ağaç diyagramı çizilebilir 

(Şekil 2.7) (Breiman et al., 1984; Hastie et al., 2001; Ünal, 2009). 

Temel fonksiyonların sürekli çift olarak eklenmesi karmaşık bir model 

oluşturur ve iterasyon halinde devam eden bu işlem kullanıcının belirlediği temel 

fonksiyon sayısına ulaşılıncaya kadar devam etmektedir. En üst seviyeye ulaşıncaya 

kadar devam eden iterasyon ardından ikinci adım olan geri adıma geçilir (Hastie et 

al., 2001).  
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Şekil 2.7 İkili ağaç diyagramı (Hastie et al., 2001) 

2.3.4. Geri Adım 

İkinci aşama olan geri adımda gereksinim olmayan faktörler ve bileşenler 

elenmektedir. Hata kareler toplamı minimum olması amacıyla; önemli bağımsız 

değişkenler ve bu değişkenlerin etkileşimleri belirlenir. Optimum modeli elde 

edebilmek için bazı temel fonksiyonlar modelden çıkarılmaktadır. İleri adımda temel 

fonksiyonlar modele çift olarak eklenirken geri adımda çiftin bir tarafı yok sayılır, 

yani son modelde temel fonksiyonlar çift değildir. Bu eleme yöntemi, Craven ve 

Wabha (1978) tarafından geliştirilen “genelleştirilmiş çapraz geçerlilik” (generalized 

cross validation – GCV) kriterini temel almaktadır. GCV kaç tane temel fonksiyon 

olacağını, aynı zamanda modeldeki uyuşumsuzluğu (Lack Of Fit – LOF) gösterir 

(Eşitlik 2.15). Regresyon analizinde, gözlemlenen veriler ile ortalama fonksiyon 

arasındaki fark rastgele olmayan bir bileşene sahiptir ve bu bileşen LOF olarak 

adlandırılır (Friedman, 1993; Akyol, 2011; Özkurt, 2013) 

𝐿𝑂𝐹(𝑓) = 𝐺𝐶𝑉(𝛼) =
1

𝑁

∑ (𝑦𝑖−𝑓𝛼(𝑥𝑖))2𝑁

𝑖=1
 

(1−𝑀(𝛼) (𝑁)2⁄
             (2.15) 

𝑀(𝛼) = 𝑢 + 𝑑𝑘   

k = seçilen düğüm sayısı 

d= optimal temel fonksiyonları elde etmek için kullanılan bir ceza parametresi 2<d<5 

en ideali 3. 

U= temel fonksiyonların sayısı 

N= veri setindeki bağımsız değişken sayısı 

𝐺𝐶𝑉(𝛼) pay hata kareler toplamını, payda ise modelin karmaşıklığını 

hesaplamaktadır. Geriye doğru adım algoritmasında bağımsız değişkenler ve 

değişkenlerin etkileşimleri belirlenerek 𝐺𝐶𝑉(𝛼) sonucunu kendi minimununa 

ulaşana kadar iterasyon devam eder ve GCV değerini minimum yapan model seçilir 

(Friedman, 1993). 
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Ayrıca Friedman (1991) GCV haricinde R2 kriterini de karşılaştırma ölçütü 

olarak önermektedir ve bir model, R2 değeri önemli ölçüde yüksekse tercih 

edilmektedir. Optimum düğüm konumları ve temel fonksiyon sayısı belirlendiğinde, 

seçilen temel fonksiyonlar üzerinden uygun modelin tahminlerini yapabilmek için en 

küçük kareler yöntemi kullanılır. Tek bir bağımsız xi değişkeni ile yi bağımlı 

değişkeni arasındaki ilişki modellendiğinde Eşitlik 2.16 oluşturulur (Sephton 2001); 

𝑌𝑖 = 𝛽0 + ∑ 𝛽𝑘
𝐾
𝑘=1 𝐵𝑘(𝑋𝑖) + 𝜖𝑖            (2.16) 

Burada  

𝐵𝑘(𝑋𝑖)=𝑋𝑖’nin k’ıncı temel fonksiyonudur. 

𝛽0 = modeldeki sabit terim 

𝛽𝑘 = temel fonksiyon katsayısı 

K = temel fonksiyon sayısı 

İleri ve geri adımları tamamlandıktan sonra MARS genel formülü Eşitlik 

2.17’de gösterilmektedir. 

𝑓(𝑥) =  𝛽0 + ∑ 𝑓𝑖(𝑥𝑖)𝐾𝑚=1 + ∑ 𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗)𝐾𝑚=2 + ∑ 𝑓𝑖𝑗𝑘(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘)𝐾𝑚=3 + ⋯   (2.17) 

Burada birinci toplam tek değişkenli bütün temel fonksiyonları içerir. İkinci 

toplam ise iki değişkeni ve varsa bu değişkenler arasındaki etkileşimleri içeren bütün 

temel fonksiyonları içerir. Bu mantık benzer şekilde devam eder. Fonksiyonların 

yapısını ise Eşitlik 2.18’de gösterilmektedir (Friedman, 1991); 

𝑓𝑖(𝑥𝑖) = ∑ 𝛽𝑚𝐵𝑚(𝑥𝑖)

𝐾𝑚=1

 

𝑓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) = ∑ 𝛽𝑚𝐵𝑚(𝑥𝑖, 𝑥𝑗)

𝐾𝑚=2

 

𝑓𝑖𝑗𝑘(𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘) = ∑ 𝛽𝑚𝐵𝑚(𝑥𝑖, 𝑥𝑗 , 𝑥𝑘)

𝐾𝑚=3

 

(2.18) 

MARS algoritmasında düğüm nokta sayısı ve bu noktaların konumları önceden 

belirlenmez. İleri ve geri adımsal süreç kullanılarak düğüm noktalarını belirlemek 

için en iyi noktalar araştırılmaktadır. İleri adımda aşırı doymuş model, geri adımda 

GCV kullanarak sadeleştirilir ve düğüm noktaları belirlenir (Friedman, 1991; Koç, 

2012; Sevgenler, 2019). 
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MARS algoritmasının adımları özetlenecek olursa; 

 İleriye adım 

1. En basit modelle yani sadece bir sabit katsayı ile başlanır. 

2. Her açıklayıcı/bağımsız değişken için temel fonksiyon araştırılır. 

3. Tahmin hatasını minimum yapan temel fonksiyon yansıma çiftleri 

belirlenir ve modele dahil edilir. 

4. Modelin önceden kullanıcı tarafından belirlenen karmaşıklığa ulaşana 

kadar adım 2’ye gidilir. 

 Geri adım 

5. Sabit fonksiyon hariç temel fonksiyonlar araştırılır ve GCV kıstası 

kullanılarak modele en az katkıda bulunan temel fonksiyonlar silinir. 

6. GCV sonucu kendi minimumuna ulaşana kadar 5. adım tekrarlanır. 

MARS algoritmasının işlem adımları Şekil 2.8’de görselleştirilmiştir. Bağımlı 

ve bağımsız değişkenler kullanılarak düğüm noktaları ve temel fonksiyonlar 

belirlenir, sonrasında hata kareler toplamı ve GCV ile geri adım gerçekleştirilir. 

Oluşturulan model test edildikten sonra ret edilirse bağımlı değişkenler tam ve doğru 

şekilde açıklanamamıştır demektir. Kabul gören model ise tahmin veya sınıflandırma 

için yeterli doğruluğa sahiptir. 

 

Şekil 2.8 MARS modeli işlem adımları 

2.3.5. MARS Algoritmasının Avantaj ve Kısıtları 

MARS algoritmasının temel kısıtı parametreleri belirlerken arama uzayını 

rastgele örnekleyerek çalıştığı için önceki iterasyonlardan elde edilen bilgilerin 
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kullanılmamasıdır. Bu durum özellikle fonksiyonun bilinmediği parametre seçim 

problemlerinde sorun yaratmaktadır, ayrıca parametre tahmini için yapılan 

iterasyonlardan dolayı analiz süresi uzun olmaktadır. Optimizasyon yöntemleri bu 

noktada devreye girer ve parametrelerin belirlenmesinde ilk iterasyonda rastgele olsa 

dahi sonraki iterasyonlarda ilk iterasyon sonucunu kullanarak en uygun parametre 

değerine ulaşır. 

MARS algoritmasının avantajları (Friedman, 1991; Yazıcı, 2011;); 

 Bağımlı ve bağımsız değişkenler arasındaki ilişkide var olabilecek doğrusal 

olmayan durumların tespitini sağlar. 

 Bağımlı ve bağımsız değişkenler yani veri dağılımları hakkında herhangi bir 

varsayım bulunmamaktadır. 

 Bağımsız değişkenler arasında uygun etkileşimleri otomatik olarak arar ve 

çok sayıda etkileşimli değişken olduğunda tercih edilir. 

 Herhangi bir bağımsız değişken modele yeterince katkıda bulunmuyorsa, 

model karmaşıklığını azaltmak için bağımsız değişkeni modelden 

çıkarabilir. 

 Çoklu bağlantı probleminde diğer regresyon yöntemlerine göre çok az 

etkilenir. 

 Orijinal verilerin alt kümelerini temel alır, bu nedenle modelin 

yorumlanması kolaydır. 

 Kayıp değerlerden ve/veya aşırı uç değerlerden diğer yöntemlere göre daha 

az etkilenmektedir. 

 Bağımsız değişkenleri parçalara ayırarak, farklı aralık değerleri için farklı 

katsayılar türeterek yüksek tahmin performanslı modeller geliştirir. 

MARS algoritmasının kısıtları (Yazıcı, 2011; Friedman, 1991); 

 Modelin yorumlanması zorlayıcıdır. 

 Büyük veri setlerinde daha başarılı olduğu için, genellikle büyük veri 

setlerine ihtiyaç duyar. 

 Optimum temel fonksiyon sayısı ve ceza parametresi belirleme zorlayıcıdır. 

2.3.6. Mekânsal Analizlerde MARS Algoritmasının Kullanımı  

Regresyon ve sınıflandırma yeryüzü ile ilgili çeşitli bilgileri elde etmek için 

kullanılan Coğrafi Bilgi Sistemleri (CBS) ve uzaktan algılama teknolojilerinde 

önemli bir rol oynamaktadır. Uzaktan algılama verilerinden bilgi çıkarımı için birçok 
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çeşit regresyon ve sınıflandırma yöntemi uygulanmaktadır. Böylece mekânsal olgular 

daha iyi anlaşılır ve karar vermek için modellenir. Ayrıca, olaylar başka bölgelerde 

veya zamanlarda tahmin edilebilecek şekilde modellenir. Gerçek yaşam problemleri 

ve çoğu etkinin genellikle doğrusal olmayan davranış sergilediği doğal olayları 

açıklayan temel veri madenciliği araçları parametrik olmayan regresyon ve 

sınıflandırma yöntemleridir (Kuter, 2014). Regresyon yöntemlerinin mekânsal 

analizlerde kullanılmasının sebepleri; 

 Olayları daha iyi anlamak ve karar vermek için modellemektir. 

 Olayları başka bölgelerde veya zamanlarda tahmin edebilecek şekilde 

modellemektir. 

 Hipotezleri belirlemektir. 

Sınıflandırma yöntemleri parametrik ve parametrik olmayan olmak üzere ikiye 

ayrılmaktadır. Parametrik sınıflandırma yöntemlerinde Gauss dağılımı gibi başlangıç 

koşulları uzaktan algılama görüntülerinde bulunmaz. Eğer veriler yüksek bir 

boyutluluğa sahipse, parametrik yöntemlerin öğrenme aşaması için birçok örnek 

gereklidir. Yapay sinir ağları ve karar ağaçları gibi parametrik olmayan sınıflandırma 

yöntemleri ise veri dağılımı hakkında herhangi bir varsayım yapmadan analiz 

yapmaktadır. Birçok çalışma parametrik olmayan yöntemlerin daha iyi sınıflandırma 

sonuçları sağladığını göstermiştir (Friedl and Brodley, 1997; Foody et al., 2007; Lu 

and Weng, 2007; Mather and Koch, 2011). Yapılan literatür incelemelerinde, küçük 

eğitim örnekleriyle bile, parametrik olmayan sınıflandırma algoritmalarının 

parametrik olanlardan daha iyi sonuçlar sağladığı görülmüştür. Parametrik olmayan 

regresyon yöntemi olan MARS algoritması tıp, biyoloji, ekonomi, ziraat alanlarında, 

ayrıca simülasyon ve tahmin modellenmesinde özellikle veri madenciliği alanında 

sıklıkla kullanılmaktadır, yapılan yeni çalışmalar mekânsal analizlerde de 

kullanılabilirliğini kanıtlamıştır (Quirós et al., 2009; Kuter, 2014; Kuter vd, 2015; 

Park et al., 2017). Bu sav literatür araştırması bölümündeki (Bölüm 1.4) örneklerle 

desteklenmektedir. 

2.4. Rastgele Orman Algoritması (Random Forest – RF) 

2.4.1. Topluluk Öğrenmesi 

Bir hibrit model ile bir topluluk modelinin kullanılması, probleme ve mevcut 

verilerin özelliklerine bağlıdır. Farklı model türlerinin entegre edilmesini veya farklı 

verilerin işlenmesini gerektiriyorsa, hibrit bir model daha uygun olabilir. Öte yandan, 

amaç varyansı azaltmak ve istikrarı arttırmaksa, bir topluluk modeli daha iyi bir 
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seçim olabilir. Topluluk modelleri, aynı modelin birden fazla örneğini birleştirerek 

varyansı azaltma ve kararlılığı arttır. Büyük veri kümelerini verimli işleyebilir ve 

aşırı uyum riskini azaltabilirler (Breiman, 1996; Lee et al., 2020). 

Topluluk öğrenimi, iki veya daha fazla modelden elde edilen tahminleri 

birleştirerek tahminlerde doğruluğu ve esnekliği arttıran bir makine öğrenimi 

tekniğidir. Topluluk öğrenimi modelin genel performansını arttırır ve bu yaklaşım 

yalnızca doğruluğu arttırmakla kalmaz, aynı zamanda verilerdeki belirsizliklere karşı 

dayanıklılık da sağlar (Breiman, 2001; Pal and Mather, 2005). 

Birçok farklı topluluk öğrenmesi yöntemi bulunmaktadır; maksimum oylama, 

ortalama, ağırlıklı ortalama, yığma (stacking), torbalama (bagging), yükseltme 

(boosting). Günümüzde bu yöntemlerden torbalama yöntemi uydu görüntüsü 

sınıflandırma analizlerinde kullanılan DT yöntemine uygulanarak RF algoritması 

ortaya çıkmıştır (Breiman, 1996; Breiman, 2001). 

1996 yılında Breiman tarafından geliştirilmiş olan Torbalama (bootstrap 

aggregating - bagging) yöntemi, orijinal veri setinden elde edilen önyükleme 

örneklerine tahmincilerin uygulanmasıyla bir topluluk oluşturulur. Önyükleme 

işlemi, iadeli rastgele seçim yöntemiyle alt örneklemler oluşturmak için kullanılır. 

Bu alt örneklemler, orijinal veri setindeki gözlem sayısıyla aynı olacak şekilde 

oluşturulur. Bu süreçte, bazı gözlemler alt örneklemlerde hiç yer almazken, bazıları 

birden fazla kez seçilebilir. Tahminlerin birleştirilmesi aşamasında, regresyon 

ağaçları için tahminlerin ortalaması alınırken, sınıflandırma ağaçlarında sonuçlar 

oylama yöntemiyle belirlenir. Torbalama yöntemi ile DT yönteminden uyarlanan RF 

yöntemi Şekil 2.9’da gösterildiği gibi, alt örneklemlerin oluşturulması, bu alt 

örneklemlerden karar ağaçlarının oluşturulması ve orman oluşturan karar ağaçlarının 

birleştirilmesidir. Torbalama, tutarsız tahminci değişkenlerin tahmin doğruluğunu 

arttırabilir. Düşük yanlılık miktarına sahip ancak yüksek varyanslı değişkenleri 

kullanarak, bu değişkenleri daha elverişli hale getirir. Ayrıca, deneysel sonuçlar 

torbalama yönteminin, tekil ağaçlara göre daha etkin sonuçlar verdiğini göstermiştir 

(Breiman, 1996; Lee et al., 2020). 
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Şekil 2.9 Torbalama yöntemi (Lee et al., 2020) 

2.4.2. RF Algoritması 

DT yöntemi, sınıfları birbirinden ayırt etmek için sınıflandırma problemini 

katmanlı bir yapıya dönüştürmektedir. RF algoritması DT algoritmasından türetilmiş 

ve eğitim aşamasında birden çok karar ağacının kullanılmasıyla karar ormanı 

oluşturulur. Matematiksel olarak kolay ifade edilebilen ve programlanabilen yapısı 

nedeniyle RF, birden fazla algoritmanın hibrit kullanıldığı sınıflandırma modellerinin 

oluşturulmasında tercih edilen algoritmaların başında gelmektedir (Breiman, 2001; 

Pal and Mather 2005;). 

Makine algoritması olan RF, Şekil 2.10’da gösterildiği gibi her bir karar ağacı 

bir başlangıç düğümü içerir. Bu başlangıç düğümü, dal adı verilen kısımlar 

aracılığıyla alt düğümlere bağlanır. Dallanmalar, yaprak düğümlere kadar devam 

eder. Alt düğümlere bölme işlemi gerçekleştirirken, rastgele bir öznitelik alt kümesi 

seçilmektedir (Breiman et al., 1984; Breiman, 2001; Pal and Mather, 2005; Mather 

and Koch, 2011). 

 

Şekil 2.10 RF sınıflandırması (Özdarıcı Ok vd., 2011)  
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RF algoritması birden fazla DT yapısının kullanılması ve her bir DT 

tahmininden yola çıkılarak sonuç tahminlerin yapılması esasına dayanmaktadır (Pal 

and Mather 2005). RF sınıflandırıcı, her sınıflandırıcı, giriş vektörlerinin eğitim 

setinden bağımsız olarak örneklenen rastgele bir vektör kullanılarak üretilir. Her 

ağacın, belirli bir girdi vektörünün yerleştirileceği en popüler sınıf için bir birim oyu 

attığı ağaç sınıflandırıcılarının bir kombinasyonundan oluşur. (Breiman, 2001). 

RF oluşturma tekniği genellikle torbalama ve rastgele alt uzay yöntemlerinin 

bir kombinasyonudur. Torbalama (Breiman, 1996), sınıflandırma doğruluğunu 

arttırmak ve aşırı uydurmayı önlemek için kullanılan bir yöntemdir. N boyutunda bir 

eğitim seti verildiğinde, torbalama, orijinal eğitim setinden değiştirilerek rastgele 

numuneler çizerek her biri n boyutunda (burada n <N) bir dizi yeni eğitim seti 

oluşturur. Ayrıca verilerin M nitelikleri (örn. Spektral bantlar) içerdiğini varsayalım. 

Ağacın her bir düğümü için, m (m <M) öznitelikleri, o düğümdeki en iyi bölünmeyi 

hesaplamak için temel sağlamak üzere rastgele seçilir. Daha sonra her örnek, 

ormandaki tüm ağaç belirleyicilerinden en popüler oyları alan sınıfa atanır (Mather 

and Koch, 2011). 

2.4.3. RF Algoritmasının İşlem Adımları 

RF algoritması, veri setindeki en iyi bölme noktasını belirleyerek her düğümde 

en uygun dalı seçer. Bu işlem, rasgele seçilmiş veri setleri üzerinde gerçekleştirilir, 

her biri orijinal verinin yer değiştirilmesiyle oluşturulan bu veri setleri üzerinde 

rasgele ağaçlar türetir. Her bir ağaç, farklı bir veri seti üzerinde eğitilir. Algoritma 

eğitim aşamasında, tam veri setinden rasgele seçilen 2/3'lük bir kısmı kullanılır ve bu 

alt kümeler üzerinde ağaçlar oluşturulur. Eğitim setinin geri kalan 1/3'lük kısmı ise 

algoritmanın test edilmesi için kullanılır. Bu test verisi "Out Of Bag" (OOB) verisi 

olarak adlandırılır. Bu yaklaşım, ağaçların oluşturulmasında kullanılan veri setiyle 

eğitim ve test aşamalarında farklı veri setlerinin kullanılmasına dayanır (Archer, 

2008; Belgiu and Dragut, 2016). 

RF algoritması eğitim veri setine ait birden fazla karar ağacı içerir. RF 

sınıflandırıcısı bir ağaç oluşturmak için belirli parametreler gerektirir, bunlar 

arasında her bir düğümde kullanılan değişkenlerin sayısı ve oluşturulacak ağaçların 

sayısı yer alır. Bu parametreler, modelin çeşitliliğini ve genelleme yeteneğini 

arttırarak doğruluğunu iyileştirir. RF, bu parametreleri kullanarak bir dizi karar ağacı 

oluşturur ve sonuçları bir araya getirerek güçlü ve genelleştirilebilir bir sınıflandırma 

modeli elde eder. Kullanıcı tarafından en iyi bölünmeyi belirlemek için başlangıç 
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düğümde kullanılan değişkenlerin sayısı rastgele seçilir, sonraki değişken sayısı 

genelleştirilmiş hatalara göre arttırılır ya da azaltılır. Bu esneklik, modelin 

karmaşıklığını ve genelleme yeteneğini kontrol etmeye yardımcı olur. Değişkenlerin 

sayısının azaltılmasıyla korelasyon ve güç azalırken, m'nin arttırılmasıyla korelasyon 

ve güç artar. RF algoritması, bu adaptasyon sayesinde veri setine uygun ve dengeli 

bir sınıflandırma modeli oluşturabilir (Pal and Mather, 2005; Saini and Ghosh, 

2017). 

RF algoritmasında, öncelikle orijinal veri seti üzerinde önyükleme (bootstrap) 

yöntemleri kullanılarak eğitim ve test veri setleri oluşturulur. Eğitim veri setinden 

rastgele seçim yapılarak en büyük genişliğe sahip bir karar ağacı oluşturulur. Eğitim 

ve test veri setlerindeki sınıfların homojenliğini belirlemek için Gini indeksi, entropi, 

yanlış sınıflandırma hatası ve kazanç oranı gibi kriterler kullanılır. Gini indeksi, 

homojenlik durumunu belirlemek için sıkça kullanılır ve değeri düştükçe sınıfların 

homojenliği artar. Bu indeks, Eşitlik 2.19'de belirtilen formülle hesaplanır (Breiman, 

2001; Mather and Tso, 2016).  

𝐺𝑖𝑛𝑖 =  1 − ∑ (
𝑓(𝐶İ,𝑇

|𝑇|
)

2
𝑁
𝑖=1                         (2.19) 

 Burada Ci, rastgele seçilen örneğin sınıfını; T, eğitim veri setini; f, seçilen 

örneğin Ci sınıfına ait olma olasılığını ifade etmektedir. Bir alt düğümün Gini 

indeksi, üst düğümün Gini indeksinden daha düşük olduğunda, o dalın başarılı 

olduğunu gösterir. Gini indeksi hesaplandıktan sonra, her düğüme bir sınıf atanır ve 

ağaç, veri seti ile test edilir. Test sonrası oluşan sınıflar kaydedilir ve bu işlemler 

modeldeki tüm ağaçlar için tekrarlanır. Test verisi ile yapılan değerlendirme 

sonucunda hangi kategorilerde kaç defa sınıflandırıldığı tespit edilir. Bu sonuçlar, 

eğitim veri setindeki sınıflandırmalar ile karşılaştırılır. Bu süreç, modelin 

doğruluğunu ve performansını değerlendirmek ve sınıflandırma algoritmasının 

etkinliğini ölçmek için kullanılır.  

2.4.4. RF Algoritmasının Avantaj ve Kısıtları 

RF algoritmasının avantajları; 

 RF algoritması hem regresyon hem de sınıflandırma problemlerinde 

kullanılabilir böylece geniş bir uygulama alanına sahiptir. 

 DT uygulamalarında karşılaşılan aşırı uyum problemi RF ile azaltılmaktadır. 

Aşırı uyum probleminin azalmasının nedeni eğitim aşamasında farklı veri 

setlerinin oluşturulmasıdır.  
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 Her bir karar ağacının tahmin üzerindeki doğruluğunu ölçmeye imkan 

vermektedir.  

 Her düğümde farklı eğitim verileri ve rastgele tahminciler ile dallanma 

gerçekleştirildiği için oluşan ağaçlar birbirinden bağımsızdır. 

 Kategorik ve sürekli değerlerle iyi çalışır 

 Kural tabanlı bir yaklaşım kullandığından verilerin normalleştirilmesi 

gerekli değildir. 

RF algoritmasının kısıtları; 

 Çok sayıda ağaç oluşturduğu için hesaplama gücü fazlalığı ve kaynak 

gerektirir. 

 Her bir değişkenin önemini belirleyemez. Başka bir deyişle karar ağaçları 

oluşturmak için uygun değişkenlerin seçimi zordur. 

 Çok sayıda ağaç oluşturduğu için çok fazla hesaplama gücü gerektirir. 

 Sınıfı belirlemek için birçok karar ağacını birleştirdiğinden dolayı eğitim 

aşamasında çok zaman gerektirir. 

2.5. Optimizasyon  

Optimizasyon, bir sonlandırma koşuluna ulaşılana kadar her örneklemede 

verilere ekleme yaparak bir örnekleme politikasının tekrar tekrar kullanılmasıdır. 

Optimizasyon teknikleri yüzyılı aşkın bir süredir mevcuttur. Başlangıçta, diferansiyel 

hesap, birçok pratik durumda ve teorik problemde ortaya çıkan fonksiyonların 

maksimum veya minimumlarını bulmak için uygulanmıştır. İlk olarak, George B. 

Dantzig, 1947 yılında doğrusal programlama problemlerinin çözümü için simpleks 

algoritmasını geliştirmiş ve doğrusal programlama, optimizasyonda kullanılan temel 

tekniklerden biri olmuştur. Pratik hesaplama algoritmalarının sistematik gelişimi ise 

1950’li yıllarda gerçekleşmiş ve bilgisayar teknolojileri ile birlikte 1980’li yıllarda 

gelişimi hızlanmıştır (Liberti and Maculan, 2006; Sarker and Newton, 2007; Boyd 

and Parrilo, 2009; Bergstra et al., 2011) 

Son yarım yüzyılda, geliştirilen birçok klasik optimizasyon tekniğine ek olarak, 

benzetimli tavlama, tabu arama, genetik algoritmalar, sinirsel hesaplama, bulanık 

mantık ve karınca kolonisi optimizasyonu gibi modern sezgisel teknikler de 

geliştirilmiştir. Bu modern teknikler, uygulayıcılara daha karmaşık durumları ele 

almak için yeni yöntemler sağlamaktadır. Optimizasyon sürecinin amacı, karar 

verme ve modelleme süreçlerinin gerçekçi ve pratik sonuçlarının belirlenmesine 
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yardımcı olmaktır. Optimizasyon sürecini adımlara ayırırsak; temel problemin 

tanımlanması ve formüle edilmesi, matematiksel modelin kurulması, en uygun 

çözümün seçilmesi, çözümün analiz edilmesi ve tercih edilen optimizasyon 

modellemesinin uygulanması olarak sıralanabilir. Günümüzde, uydu görüntülerinin 

sınıflandırılmasında kullanılan yöntemlerin içerdiği fonksiyon parametrelerinin 

belirlenmesi önem arz ettiği ve en iyi parametrelerin nerede aranacağı konusunda 

daha iyi seçimler yapmak için optimizasyon yöntemleri kullanmak etkili bir çözüm 

olmaktadır. Bazı basit matematiksel ifadelerde, birinci türevi sıfıra eşitleyerek 

denklemi çözmek yeterli olabilir. Ancak, problem türleri, türev alınabilirlik durumu 

ve kısıtlamalar göz önüne alındığında, optimizasyon için geliştirilmiş birçok yöntem 

mevcuttur (Liberti and Maculan, 2006, Zhigljavsky and Zilinskas, 2008). 

2.5.1.  Optimizasyon Problemleri 

On sekizinci yüzyılın ünlü İsviçreli matematikçi ve fizikçisi Leonhard Euler 

(1707-1783), "...Evrende bir maksimum ya da minimum kuralının ortaya çıkmadığı 

hiçbir şey yoktur" demiştir. Bu söz, optimizasyonun temel amacı olan minimum veya 

maksimum değerlerin aranmasını anlatır. Optimizasyon ile birbiriyle ilişkili bir dizi 

değişken için değer seçimini içeren karmaşık bir karar problemine, performansı ve 

kararın kalitesini ölçmek için tasarlanmış tek bir çözüme odaklanarak yaklaşılır. Bu 

çözüm, karar değişkenlerinin seçimini sınırlayabilecek kısıtlamalara tabi olarak 

maksimize veya minimize edilmesidir. Sonuç olarak, optimizasyon, felsefi olarak 

doğru çözümü veren bir ilke değil, bir kavramsallaştırma ve analiz aracı olarak 

görülmelidir (Liberti and Maculan, 2006; Sarker and Newton, 2007). 

Belirli kısıtlamalara tabi olarak bir dizi değişkenin matematiksel bir 

fonksiyonunu minimize veya maksimize etmeye çalışan problemler, optimizasyon 

problemleri olarak adlandırılabilecek benzersiz bir problem sınıfı oluşturur. 

Optimizasyon, bilgisayar bilimleri ve makine öğrenimi, mühendislik, operasyonel 

araştırma, ekonomi ve ulaşım gibi birçok disiplinde kullanılmaktadır. Tüm olası 

alternatif çözümlerin yalnızca bir alt kümesini analiz ederek en uygun çözümleri 

bulan optimizasyon algoritmalarını uygulamak için, fonksiyon özelliklerine ilişkin 

bazı bilgilere ihtiyaç duyulur ve buna göre optimizasyon kategorilendirilir. 

Şekil 2.11’de gösterildiği gibi ilk olarak amaca göre kategorizasyonu tekli veya 

çoklu olması ve amaç türünün maksimizasyon veya minimizasyon olarak 

belirlenmesi gerekmektedir. Birden fazla amaç olması durumunda, amaçlar 

genellikle birbiriyle çelişir. Eğer çelişmiyorlarsa, çoklu hedefler tek hedefli bir 
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probleme dönüştürülebilir. Probleme göre kategorizasyonu problemin kısıtlamalar 

içerip içermediğini gösterir. Genel kanı gerçek dünyada kısıtlamasız optimizasyon 

problemi olmadığı yönündedir, çünkü gerçek dünyada ya kısıtlama fonksiyonları ya 

da değişken sınırları (üst veya alt) veya her ikisi de bulunmaktadır. Kısıtsız 

problemlerin incelenmesi çok önemlidir çünkü birçok optimizasyon algoritması 

kısıtlı problemleri kısıtsız probleme dönüştürerek çözmektedir. Buna ek olarak, bazı 

kısıtlamasız optimizasyon teknikleri, kısıtlı problemler için çözüm prosedürleri 

sağlamak için genişletilebilir. Değişkenlerin kategorize edilmesi reel sayı, tam sayı 

veya karışık (reel/tam sayı) olabilir. Fonksiyon kategorizasyonu temel olarak 

fonksiyonların çözüm yaklaşımı açısından çok önemli olan matematiksel 

özellikleriyle ilgilidir. Amaç veya kısıtlama fonksiyonları doğrusal, doğrusal 

olmayan veya her ikisi birden olabilir. Konvekslik, klasik optimizasyonda önemli bir 

özellik olarak kabul edilir, çünkü birçok optimizasyon tekniği fonksiyonun konveks 

olduğu varsayımına dayalı olarak geliştirilmiştir. Son olarak fonksiyon türevlenebilir 

veya türevlenemez olabilir, optimizasyonda çözüm yaklaşımları iki ana gruba 

ayrılabilir: (i) türevli olanlar ve (ii) türevsiz olanlar. Türev tabanlı teknikler 

kullanılırken fonksiyonun türevlenebilirliği gereklidir. Örnek olarak, reel sayı 

değişkenlerine sahip tek amaçlı, kısıtlı bir problemin fonksiyon özellikleri doğrusal 

olmayan, dışbükey ve diferansiyel olabilir (Sarker and Newton, 2007). 

 

Şekil 2.11 Optimizasyon problemleri kategorizasyonu (Sarker and Newton, 2007) 

Verilen bu genel kategorizeye ek olarak, optimizasyon problemi tek modlu ve 

çok modlu özelliklerini de dikkate alır. Sadece bir tepe noktası (optimum çözüm) 
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olan bir fonksiyon tek modlu bir fonksiyon, birden fazla tepe noktası (yerel veya 

global optimum) olan bir fonksiyon çok modlu bir fonksiyon olarak kabul edilir. 

Fonksiyon statik ve dinamik olabilir. Çözümde karşılanması gereken kısıtlamalar sert 

kısıtlamalar olarak bilinirken, belirli bir ceza ile veya belirli koşullar altında ihlal 

edilebilen kısıtlamalar yumuşak kısıtlar olarak adlandırılır (Bazaraa et al., 1990; 

Hillier and Lieberman, 2005; Sarker and Newton, 2007) 

Bir optimizasyon probleminin çözülmesi için aşağıdaki unsurların belirlenmesi 

gerekmektedir; 

1. Problemin modellenmesi 

 Optimizasyon değişkenlerinin tanımlanması  

 Amaç fonksiyonunun formülize edilmesi 

 Problem kısıtlı mı yoksa kısıtsız mı olduğunu belirlemek, kısıtların 

belirlenmesi 

2. Problemin özelliklerinin belirlenmesi 

 Optimizasyon değişkeninin boyutunu belirlemek 

 Amaç doğrusal mı yoksa doğrusal değil mi? Kısıtlar (varsa) doğrusal mı 

yoksa doğrusal değil mi belirlemek 

 Problem dışbükey mi yoksa dışbükey değil mi belirlemek 

Bu iki temel unsurun sırayla uygulanması zorunlu değildir ve tamamlanması ile 

uygun optimizasyon yöntemi seçilir. Örneğin, doğrusal bir optimizasyon problemi en 

iyi şekilde doğrusal optimizasyon problemlerine uyarlanmış bir çözücü mesela 

simpleks yöntemin kullanılabilir. Fakat literatürdeki genel kanı her tür optimizasyon 

problemi için tek bir en iyi çözücü olmadığı yönündedir (Luenberger and Ye, 2008; 

Boyd and Parrilo, 2009; Herzog, 2022). 

Optimizasyon problemlerinin matematiksel olarak genel gösterimi Eşitlik 

2.20’de gösterilmektedir. 

Minimum veya maximum  𝑓0(𝑥)                  (2.20) 

    𝑓𝑖(𝑥) ≤ 𝑏𝑖,    i=1,….,m 

𝑥 = (𝑥1, … . . , 𝑥𝑛)  ∶ optimizasyon değişkenleri 

𝑓0 ∶  𝑅𝑛  → 𝑅 ∶ amaç fonksiyon  

𝑓𝑖: 𝑅𝑛  → 𝑅, 𝑖 = 1, … , 𝑚 ∶ kısıt  

Bu problemin optimal çözüm sonucu x, kısıtlamaları sağlayan tüm vektörler 

arasında en küçük veya en büyük  𝑓0(𝑥) değerine sahiptir olarak ifade edilir. 



42 

 

En yakın komşu sınıflandırmasında k değerine, destek vektör makineleri 

algoritmasında hangi kernel fonksiyonunun kullanılacağına, ağ modellerinde 

seyreltmeye, nöron sayısına, katman sayısına tasarımcı karar verdiği gibi MARS 

algoritmasında da tasarımcının karar vermesi gereken bazı parametreler 

bulunmaktadır. Bu parametrelerin başlangıçta hangi değerleri alacağı açık ve kesin 

değildir; çünkü bunlar veri setine, problemin yapısına göre değişiklik göstermektedir. 

Bu parametreler, hiper parametre (hyperparameter) olarak adlandırılır. Doğrusal 

olmayan problemlerin çözümünde en uygun hiper parametre değerleri bulmak için 

optimizasyon yöntemleri kullanılmakta olup, bu algoritmalar arasında performans ve 

hız bakımından farklılıklar bulunmaktadır (Bergstra et al., 2011; Feurer and Hutter, 

2019; Savaş, 2019; Yang and Shami, 2020). 

2.5.2. Parçacık Sürü Optimizasyonu (Particle Swarm Optimization – PSO)  

PSO, 1995 yılında James Kennedy ve Russell Eberhart tarafından geliştirilen 

doğadan ilham alan en popüler metasezgisel optimizasyon algoritmalarından biridir. 

Son zamanlarda PSO, bilim ve mühendislik alanındaki çeşitli optimizasyon 

problemlerinin çözümünde umut verici bir algoritma olarak ortaya çıkmıştır PSO, 

model setlerinin en iyi performansı göstermesi için farklı tahmin sonuçlarının bir 

araya getirilmesine yönelik mühendislik zorluklarına çözüm olarak geliştirilmiştir. 

PSO tekniğinin yakınsama hızı çok hızlıdır ve bu teknik aynı zamanda çok boyutlu 

problemleri de çözebilmektedir (Kennedy and Eberhart, 1995; Kennedy and 

Eberhart, 2007). 

PSO, kuş ve balık gibi sürü halinde hareket eden hayvanların, yiyecek bulma 

gibi temel ihtiyaçlarını karşılamak için hareket ederken, sürüdeki diğer bireyleri 

etkilediği ve sürünün amacına daha kolay ulaştığı gözlemlenerek geliştirilen bir 

optimizasyon tekniğidir (Kennedy and Eberhart, 1995). PSO, her biri probleme 

potansiyel bir çözüm sunan bir parçacık sürüsünü içerir. PSO algoritmasında, her bir 

parçacık çözümü arayan bir unsur olarak kabul edilir ve parçacıkların bulunduğu veri 

kümesi sürü olarak adlandırılır. PSO'nun her iterasyonunda, parçacıklar hem kendi 

önceki en iyi konumlarının hafızasından hem de sürüdeki diğer parçacıklar 

tarafından elde edilen en iyi konumdan etkilenerek arama uzayında hareket ederler. 

Her bir parçacığın çözüm aradığı süre boyunca elde ettiği en iyi konum "pbest" 

olarak adlandırılır. Tüm sürüde, arama süresi boyunca çözüme en çok yaklaşan 

parçacığın o andaki durumu ise "gbest" olarak adlandırılır (Kennedy and Eberhart, 

1995; Jiang et al., 2007; Kennedy and Eberhart, 2007; Inti and Tandon, 2017; Gad, 
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2022). 

PSO, çeşitli türlerin arama alanındaki ihtiyaçlarını karşılamak için 

sergiledikleri sosyal ve işbirlikçi davranışlardan esinlenmiştir. Algoritma, kişisel 

deneyim (pbest), genel deneyim (gbest) ve parçacıkların arama uzayında bir sonraki 

konumlarına (değerlerine) karar vermek için mevcut hareketleri tarafından 

yönlendirilir. Deneyimler, iki faktör (c1 ve c2) ve [0, 1] arasında üretilen iki rastgele 

sayı ile hızlandırılırken, mevcut hareket (wmin, wmax) arasında değişen bir w ile 

çarpılır. PSO optimizasyonu Eşitlik 2.21 ve Eşitlik 2.22 kullanılarak iteratif formüller 

ile elde edilir. Eşitlik 5.1'de pbest i,j (k) i’nci bireyinin kişisel en iyi j. parçacığın temsil 

ederken, gbest i,j (k) , k iterasyonuna kadar popülasyonun en iyi bireyinin j. bileşenini 

temsil eder (Kennedy and Eberhart, 1995; Kennedy and Eberhart, 2007; Gad, 2022). 

𝑉𝑖,𝑗(𝑘 + 1) =  𝜔 ∗ 𝑉𝑖,𝑗(𝑘) +  𝑐1 ∗ 𝑟𝑎𝑛𝑑(. ) ∗ (𝑝𝑏𝑒𝑠𝑡𝑖,𝑗
(𝑘) − 𝑋𝑖,𝑗(𝑘)) + 𝑐2 ∗

𝑟𝑎𝑛𝑑(. ) ∗ (𝑔𝑏𝑒𝑠𝑡𝑖,𝑗
(𝑘) − 𝑋𝑖,𝑗(𝑘))                (2.21) 

 

𝑋𝑖,𝑗(𝑘 + 1) = 𝑋𝑖,𝑗(𝑘) +  𝑉𝑖,𝑗(𝑘 + 1)    (2.22) 

 

i = N büyüklüğünde ve j = D boyutundaki başlangıç sürüsünden i’nci parçacık 

Xi = (X i, 1 , X i, 2 , . . . , X i, D )T ile gösterilir ve burada ”T” transpoze operatörünü 

ifade eder. Popülasyondaki her bir parçacığın hızı Vi = (Vi, 1 , Vi, 2 , . . . , Vi, D )
T 

olarak ifade edilir. rand(.) 0 ile 1 arasındaki rastgele sayıyı temsil eder. Bireysel ve 

global uç değerler sırasıyla pbest i, j ve gbest i, j terimleriyle ifade edilir. Öğrenme 

(hızlanma) faktörleri, yani c1 ve c2, 2 ile 2.05 arasında değişmektedir. Bu katsayılar, 

parçacıkların hem kendi en iyi pozisyonlarına (bilişsel bileşen – c1) hem de sürünün 

en iyi pozisyonuna (sosyal bileşen – c2) yönelme eğilimlerini kontrol eder (Alam, 

2016). Ağırlık faktörü ω, parçacıkların hızını azaltmaya ve sürüyü kontrol etmeye 

yardımcı olur ve Eşitlik 2.23’te ifade edilmektedir (Eberhart and Kennedy, 1995; 

Kennedy and Eberhart, 2007; Çatal Reis ve Bayram, 2016; Hasanoğlu, 2019). 

 

𝜔 = 𝜔𝑚𝑖𝑛 +  
(𝑇𝑚𝑎𝑥−𝑇)(𝜔𝑚𝑎𝑥−𝜔𝑚𝑖𝑛)

𝑇𝑚𝑎𝑥
      (2.23) 

 

Eşitlik 2.23’te T ve Tmax mevcut ve maksimum iterasyon sayılarını 

göstermektedir (Çatal Reis ve Bayram, 2016; Hasanoğlu, 2019). 
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PSO algoritmasının adımları Şekil 2.12’ de gösterilmektedir (Hasanoğlu, 

2019). 

Adım 1: Tahmin değerlerinin ağırlıklarının başlatılması. 

Adım 2: T = 1'i ayarlayın 

Adım 3: PSO algoritmasının parametre değerlerini ayarlayın ve ayrıca 

popülasyon boyutunu belirtin. 

Adım 4: Konum (X i ) ve hız (Vi ) vektörlerinden bahsederek parçacıklar üretin. 

Adım 5: Üretilen her parçacığın uygunluğunu hesaplayın. 

Adım 6: Uygunluk değerinin önceki uç değerden daha iyi olması durumunda 

bireysel uç değeri ( pbest i, j ) güncelleyin. 

Adım 7: Adım 6'da bireysel uç değer güncelleniyorsa, global uç değeri (gbest i, j ) 

buna göre güncelleyin. Bu arada, parçacığın hızını ve konumunu da hesaplayın ve 

güncelleyin. 

Adım 8: T =Tmax'a kadar iterasyon sayısını (T = T + 1) artırarak bu adımları 

tekrarlayın. 

Adım 9: Optimizasyonun sonu. 

Optimizasyon işlemi tamamlandıktan sonra, minimum MSE'ye sahip tahmin 

kombinasyonunun nihai ağırlıkları ve o zamana kadar nihai tahmin elde edilecektir. 
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Şekil 2.12 PSO işlem adımları (Hasanoğlu, 2019) 

PSO algoritmasının avantajları (Gad, 2022); 

 Eğitim aşaması hızlıdır. 

 Diğer optimizasyon yöntemlerine göre daha az parametre ayarı içermesi 

 Optimizasyon problemlerindeki kısıtların kolay uygulanabilmesi 

PSO algoritmasının kısıtları (Gad, 2022); 

 Her iterasyonda hız güncellenmesi nedeniyle daha fazla belleğe ihtiyaç 

duyar. 

 Ayrık optimizasyon problemlerinde performansı diğer birçok optimizasyona 

göre düşüktür. 

2.5.3.  Bayes Optimizasyonu (Bayesian Optimization – BO) 

Malzeme bilimi, robotik, sentetik gen tasarımı ve tahmin sistemleri gibi 

alanlardaki problemlere başarıyla uygulanmış olan BO, makine öğrenimi 

algoritmaları için parametrelerin ayarlanmasında kullanılmaya başlanmıştır (Bergstra 
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et al., 2011, Joy et al., 2019). BO iki ana bileşeni bulunmaktadır; birincisi bilinmeyen 

fonksiyonu modellemek, diğeri ise bu modele dayalı olarak uygulamanın 

gerçekleştirileceği bir sonraki noktayı seçmektir (Garnett et al., 2010; Gonzalez et al. 

2015). 

BO, bir amaç fonksiyonunun maksimum ve minimum değerlerini bulmak için 

Bayes teoremini kullanan bir yaklaşımdır. Bir olayın/olgunun koşullu olasılığını 

hesaplamak için kullanılan BO, gözlemlenen olayların diğer olayların olasılığına 

bağlı olduğunu belirten Bayes olasılık teoremine dayanır. Bayes teoremi, 18. 

yüzyılda İngiliz matematikçi Thomas Bayes tarafından geliştirilen ve olasılık 

teorisinde önemli bir yer tutan bir teoremdir. Bayes teoremi, iki olay olan A ve B'nin 

meydana gelmesindeki koşullu olasılıklar arasındaki ilişkiyi açıklar. Genellikle 

P(A|B) olarak yazılan koşullu olasılık, B olayının gerçekleştiği bilgisine dayanarak A 

olayının gerçekleşme olasılığıdır (Eşitlik 2.24) (Mockus et al., 1978; Jones, 2001; 

Ekici, 2009; Yu and Zhu, 2020). 

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴) 𝑃(𝐴)     (2.24) 

BO, Bayes teoremini kullanarak amaç fonksiyonunun sonsal dağılımını tahmin 

etmektedir ve bu dağılımı dikkate alarak bir sonraki parametre değerlerini belirler. 

BO, diğer optimizasyon yaklaşımlarından farklı kılan, tüm girdi uzayını 

araştırmaması, bunun yerine bir optimum sağlama olasılığı daha yüksek olan kısıtlı 

bir alt kümeye odaklanmasıdır (Mockus et al., 1978; Jones, 2001). 

BO algoritmasındaki iki önemli seçim bulunmaktadır; optimize edilen 

fonksiyon hakkındaki varsayımları ifade eden fonksiyonlar arasında öncelik 

seçilmesi, değerlendirilecek bir sonraki noktayı belirleyen edinim fonksiyonu 

seçilmesi. İlk kısım için esnekliği ve izlenebilirliği nedeniyle Gauss süreci önceliğini 

tercih edilmektedir. Edinim fonksiyonları ise Gauss süreci yanı sıra önceki 

gözlemlere de bağlı olarak değişmektedir (Mockus et al., 1978; Brochu et al., 2010). 

Gauss süreci {xn ∈  X }𝑛=1
𝑁  herhangi bir sonlu N nokta kümesinin RN üzerinde 

çok değişkenli bir Gauss dağılımı oluşturur. Bu noktalardan n'incisi f (xn) fonksiyon 

değeri olarak alınır ve bu değerler arasında bir ortak ilişki (kovaryans) belirler. Gauss 

sürecinin temel bileşeninden biri olan kovaryans fonksiyonu iki nokta arasındaki 

benzerliği ölçer ve diğer bir bileşen ise fonksiyonun şeklinin nasıl olduğunu 

belirleyen ortalama fonksiyondur. Bu öncül işlemler sonucunda edinim fonksiyonu 

oluşturulur. Edinim fonksiyonu, amaç fonksiyonunun bir sonraki aşamada nerede 

örnekleneceğini belirler. Beklenen İyileştirme (Expected Improvement), Bilgi 
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Gradyanı (Knowledge Gradient), Entropi Arama ve Tahmini Entropi Arama 

(Entropy Search and Predictive Entropy Search) yaygın olarak kullanılan edinim 

fonksiyonlarıdır. Edinim fonksiyonuyla amaç fonksiyonuna yaklaşan bir vekil 

fonksiyonu oluşturulur. Yeni veri noktalarıyla yani iterasyonla, vekil fonksiyon 

zaman içinde daha doğru hale gelir ve optimizasyon sürecini optimum çözüme doğru 

yönlendirir (Mockus et al., 1978; Brochu et al., 2010; Frazier, 2018). 

Optimizasyon iki nokta ile başlar. Her iterasyonda, hedef fonksiyonundan bir 

sonraki örneklemenin nerede yapılacağını belirlemek için edinim fonksiyonunun 

maksimum olduğu nokta seçilir. Daha sonra, edinim fonksiyonu argmax değerinde 

örneklenir, Gauss süreci güncellenir ve süreç tekrarlanır. Şekil 2.13 1 boyutlu tasarım 

probleminde BO algoritması kullanımına bir örnektir. Örnekte amaç fonksiyonunun 

örneklenmiş değerlerinin 4 iterasyonu üzerinden, amaç fonksiyonunun Gauss 

yaklaşımını göstermektedir (Mockus et al., 1978; Jones, 2001, Sasena, 2002; Brochu 

et al., 2010). 

 

Şekil 2.13 1 boyutlu tasarım probleminde BO algoritmasının kullanımı (Brochu et al., 2010) 

BO algoritması gerçekleştirilirken yapılması gereken iki önemli seçim vardır. 

İlk olarak, optimize edilen fonksiyonla ilgili varsayımları ifade edecek fonksiyonlar 

üzerinde bir öncelik yani Gauss süreci önceliğini seçilir. İkinci olarak, 
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değerlendirilecek bir sonraki noktanın belirlenmesine olanak tanıyan, modelin son 

halinden bir fayda fonksiyonu oluşturmak için kullanılan bir edinim fonksiyonu 

seçilmesidir (Brouch et al., 2010; Hoffman et al., 2011; Gonzalez, 2017). 

BO algoritması işlem adımları Şekil 2.14’te gösterilmektedir (Brouch et al., 

2010; Hoffman et al., 2011); 

 Parametre ve iterasyon sayısı belirlenmesi t = 1, 2, . . . 

 Gauss süreci ile edinim fonksiyonunu optimize ederek xt'nin bulunması: xt = 

argminx u(x|D1:t−1). 

 Amaç fonksiyonunu örneklenmesi: yt = f (xt) + εt. 

 Verilerin genişletilmesi D1:t = {D1:t−1, (xt, yt)} ve Gauss sürecinin 

güncellenmesi. 

 Optimizasyon sonu 

 

Şekil 2.14 BO işlem adımları 
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BO algoritması avantajları (Brouch et al., 2010; Frazier, 2018); 

 Diğer birçok algoritmanın temelini oluşturma 

 Ön bilgilerin ve öznel bilginin tahminlere dahil etme 

 Sınırlı veri kullanılabilirliği olan durumları etkin bir şekilde analiz etme, 

verilerin az olduğu durumlarda küçük veri setlerine dayalı çıkarımlar 

sağlama 

 Klasik yöntemlere kıyasla istatistiksel analiz için daha esnek ve sezgisel bir 

çerçeve sunma 

 Olasılık dağılımlarındaki değişikliklerin izlenmesini sağlamak ve olasılıksal 

modeller üzerinden istatistiksel ve nedensel çıkarımları kolaylaştırmak 

BO algoritması kısıtları (Brouch et al., 2010; Frazier, 2018); 

 Özellikle büyük ölçekli problemler veya yüksek boyutlu arama uzayları için 

hesaplama açısından yoğun olabilir 

 Problemde paralellik durumu olduğunda uygulaması zordur yani BO sıralı 

bir süreçtir, amaç fonksiyonunda paralel hesaplama gerektiren durumlarda 

dezavantajılıdır.  

 Kavramsal olarak karmaşıktır. 

2.6. Sınıflandırma Doğruluğunun Değerlendirilmesi 

Uydu görüntülerinin sınıflandırılmasında başlıca işlem adımları; 

sınıflandırmada kullanılacak görüntülerin ve bantların belirlenmesi, görüntü 

önişleme, sınıfların belirlenmesi, eğitim örneklemlerinin seçilmesi, özellik çıkarımı, 

uygun sınıflandırma yaklaşımlarının seçilmesi, sınıflandırma sonrası işlem ve 

doğruluk değerlendirmesidir (Stehman, 1999; Grullan et al., 2009; Stehman and 

Wickham, 2011; Wickham et al., 2017). Sınıflandırma süreci dikkate alındığında 

çalışma alanının özellikleri, analistin deneyimleri, uzaktan algılama verilerinin 

seçimi, sınıflandırma tekniği gibi faktörlerin sınıflandırma doğruluğunu etkilediği 

anlaşılmaktadır (Stehman, 1999; Stehman and Czaplewski, 2003; Lu and Weng, 

2007).  

Bir haritanın doğruluğunun bilimsel olarak güvenilir bir şekilde 

değerlendirilmesi kritik önem taşımaktadır. Tematik harita doğruluğunun 

değerlendirilmesi, çıktıların güvenilirliği ve kalitesinin sayısal olarak analiz 

edilmesine olanak tanıyan önemli bir aşamadır (Congalton and Green, 2009). 

Doğruluk değerlendirmesinde sınıflandırılmış haritalar ile referans veriler arasındaki 
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istatistiksel belirlenmektedir. Doğruluk değerlendirme süreci üç temel adımdan 

oluşur: i) referans veriyi seçmek için kullanılan örnekleme stratejisi ii) örneklem 

verisini kullanarak arazi örtüsü/kullanımı haritaları oluşturan hedef tasarım ve iii) 

hata ve belirsizliklerin tahmin edilmesi (Stehman, 1999; Stehman and Czaplewski, 

2003). 

Görüntü sınıflandırma analizlerinde genellikle hata matrisi (confusion matrix), 

ve hata matrisinden hesaplanan toplam doğruluk, kappa istatistiği ve F1 skor gibi 

ölçütler kullanılarak yapılır. Hata matrisi, sınıflandırma sonuçları ile referans veriler 

arasındaki uyumu gösteren bir tablodur ve her bir sınıf için doğru ve yanlış 

sınıflandırılan piksel sayısını içerir. Toplam doğruluk, doğru sınıflandırılan 

örneklerin toplam örnek sayısına oranıdır ve sınıflandırmanın genel başarısını ifade 

eder. Kappa istatistiği ise, sınıflandırmanın rastgele tahminlere göre ne kadar iyi 

olduğunu gösteren bir ölçüttür ve 0 ile 1 arasında bir değer alır. Bu iki ölçüt birlikte 

kullanılarak, görüntü sınıflandırma analizlerinde elde edilen sonuçların doğruluğu ve 

güvenilirliği kapsamlı bir şekilde değerlendirilebilir (Foody, 2009). Hata matrisinden 

hesaplanan kesinlik (precision) ve duyarlılık (recall) ölçütleri kullanılarak hesaplanan 

F1 skoru doğruluk değerlendirme ölçütü ise makine öğrenmesi ve istatistiksel 

modelleme alanlarında yaygın olarak kullanılmaktadır (Lipton et al., 2014). 

2.6.1. Toplam Doğruluk 

Bir hata matrisi oluşturmak, sınıflandırma doğruluğunun değerlendirmesinde 

en yaygın kullanılan yöntemlerden biridir. Tablo 2.2’de gösterilen hata matrisi, sütun 

ve satır sayısı sınıf sayısına eşit olan bir diziden oluşur ve referans örneklerini sınıf 

bazında tahmin edilen sınıflandırma verileriyle karşılaştırmak için kullanılır. Hata 

matrisi bir n x n dizisi içerir, burada "n" sınıf sayısını temsil eder. Hata matrisinde 

diyagonal hücreler doğru sınıflandırılmış piksel sayısını verirken, diyagonal olmayan 

hücreler sınıflandırma hatalarını, yani referans görüntü ile sınıflandırılmış görüntü 

arasındaki uyumsuzlukları gösterir. Hata matrisi kullanılarak üretici ve kullanıcı 

doğruluğu ölçütleri ayrıca ihmal hatası ve dahil etme hatası elde edilmektedir 

(Congalton and Green, 1999; Foody, 2009). 
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Tablo 2.2 Hata matrisi 

  Referans Veri Toplam Kullanıcı Doğruluğu / 

Kesinlik (Precision) 

  A B   

Sınıflandırılmış Veri A xAA xAB xi+ xAA / xi+ 

B xBA xBB xi+ xBB / xi+ 

Toplam  x+i x+i N  

Üretici Doğruluğu / 

Duyarlılık (Recall) 

 xAA / x+i xBB / x+i   

 

Tablo 2.2’de eşitliği verilen üretici doğruluğu, bir spektral sınıf için referans 

kabul edilen piksellerden kaç tanesinin doğru şekilde sınıflandırıldığını gösterir. Her 

sınıf için doğru sınıflandırılmış piksellerin sayısının, o sınıf için kullanılan referans 

piksellerinin toplam sayısına bölünmesiyle hesaplanan üretici doğruluğu 1’den farkı 

alınarak ihmal hatası elde edilir. Tablo 2.2’de eşitliği verilen kullanıcı doğruluğu 

sınıflandırma haritasındaki bir pikselin sınıfının yeryüzünde de o pikseli temsil edip 

etmediğini ölçmektedir. Kullanıcı doğruluğu 1’den farkı alınarak dahil etme hatasını 

elde edilir (Lillesand and Kiefer 1994; Assal et al., 2015). 

Hata matrisi kullanılarak hesaplanan doğruluk ölçütlerinden toplam doğruluk, 

tüm referans alanlarının ne kadarının doğru sınıflandırıldığı bilgisini verir. Hata 

matrisindeki doğru sınıflandırılmış piksel sayısı toplamının referans piksellerinin 

toplamına bölünmesiyle elde edilen toplam doğruluk değeri yüzde olarak ifade edilir 

ve Tablo 2.2’deki hata matrisi örnek alınarak formülleştirildiğinde Eşitlik 2.25’te 

gösterildiği gibi hesaplanmaktadır (Lillesand and Kiefer 1994; Assal et al., 2015). 

𝑡𝑜𝑝𝑙𝑎𝑚 𝑑𝑜ğ𝑟𝑢𝑙𝑢𝑘 =  
𝑥𝐴𝐴+𝑥𝐵𝐵

𝑡𝑜𝑝𝑙𝑎𝑚 𝑟𝑒𝑓𝑒𝑟𝑎𝑚𝑠 𝑣𝑒𝑟𝑖 𝑠𝑎𝑦𝚤𝑠𝚤
    (2.25) 

 

2.6.2. Kappa İstatistiği  

Cohen'in Kappa istatistiği, tesadüfi bir sınıflandırıcı ile referans veri arasındaki 

şans uyumu ile otomatik bir sınıflandırıcı ile referans veri arasındaki gerçek uyum 

arasındaki farkı ifade etmektedir. Bir sınıflandırmanın doğruluğunu değerlendirmek 

için kullanılan istatistiksel bir değer olan Kappa, sınıflandırmanın sadece rastgele 

değer atamaya kıyasla ne kadar iyi performans gösterdiğini değerlendirir. Yani, 

sınıflandırmanın rastgele olandan daha iyi sonuç verip vermediği hakkında bilgi 

verir. Eşitlik 2.26’da gösterildiği gibi hesaplanan kappa değeri 0 ile 1 arasında 

değişebilir; 0 değeri, sınıflandırmanın rastgele bir sınıflandırmadan daha iyi 



52 

 

olmadığını gösterir. 1'e yakın bir kappa değeri ise sınıflandırmanın rastgele 

sınıflandırmadan önemli ölçüde daha iyi olduğunu gösterir. Kappa katsayısı, şans 

uyum olasılığını hesaba katan bir ölçüttür (Lillesand and Kiefer 1994; Assal et al., 

2015). 

 

𝑘 =
𝐺ö𝑧𝑙𝑒𝑚𝑙𝑒𝑛𝑒𝑛 𝐷𝑜ğ𝑟𝑢𝑙𝑢𝑘−Ş𝑎𝑛𝑠 𝑈𝑦𝑢𝑚𝑢

1−Ş𝑎𝑛𝑠 𝑈𝑦𝑢𝑚𝑢
     (2.26) 

 

Eşitlik 2.27 kappa istatistiği hesabının formülizasyonunu göstermektedir.  

𝑘 =
𝑁∗ ∑ 𝑥𝑖𝑖− 𝑟

𝑖=1  ∑ 𝑥𝑖+∗ 𝑥+𝑖 𝑟
𝑖=1

𝑁2− ∑ 𝑥𝑖+∗ 𝑥+𝑖 𝑟
𝑖=1

                             (2.27) 

Burada 

r = hata matrisindeki satır sayısı 

xii = i satır ve i sütunundaki veri sayısı (hata matrisinin ana çaprazındaki değerler) 

xi+ = i satırındaki gözlemlerin toplamı 

x+i = i sütunundaki gözlemlerin toplamı 

N = toplam referans veri sayısını ifade etmetedir. 

 

2.6.3. F1 Skor 

F1 skor ölçütünün hesaplanması için duyarlılık ve kesinlik ölçütlerinin 

hesaplanması gerekmektedir. Tablo 2.2’de gösterildiği gibi üretici doğruluğu, 

duyarlılık; kullanıcı doğruluğu ise kesinlik ile aynı şekilde hesaplanmaktadır. F skor 

ise Eşitlik 2.7’de gösterildiği gibi hesaplanır. Duyarlılık, kesinlik ve F1 skoru 

ölçütleri her bir sınıf için ayrı ayrı hesaplanır. Bir sınıflandırma sonucunda hem 

doğru sonuçların bulunması hem de yanlış sonuçların azaltılması önemli ise F1 skora 

bakılmaktadır. Bu ölçütlerinin temel avantajı, sınıflandırıcının performansını tek tek 

sınıflar bazında ele alarak sınıf dengesizliği sorunlarıyla ilgili olarak doğruluk gibi 

çok sınıflı ölçütlerin eksikliklerini hesaba katma ve aynı zamanda tek tek sınıf 

performanslarını göstermesidir. Bu ölçütlerin kısıtı ise tek bir sınıfı kapsaması, tüm 

sınıflandırma performansını ifade etmemesidir. F ölçütü, duyarlılık ve kesinlik 

ölçütlerinin ağırlıklı harmonik ortalamasıdır. Herhangi bir α ∈ R, α > 0 için, F 

ölçüsünün genel bir formülasyonu Eşitlik 2.28’de gösterilmektedir (Gamon et al., 

2005; Sokolova and Lapalme, 2009; Japkowicz and Shah, 2011). 

 

𝐹 ∝=  
(1+∝)∗(𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘∗𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘)

(∝ ∗𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘)+𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘
             (2.28) 
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Eşitlik 2.28’deki fomülde α=1 alınarak ölçüt, F1 skor olarak adlandırılır ve 

Eşitlik 2.29 elde edilir.  

𝐹1 =  
2∗(𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘∗𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘)

𝐾𝑒𝑠𝑖𝑛𝑙𝑖𝑘+𝐷𝑢𝑦𝑎𝑟𝑙𝚤𝑙𝚤𝑘
                        (2.29) 

 

F1 ölçütünü, çoklu sınıflandırmalarda hesaplamak için 3 yöntem 

bulunmaktadır; makro, mikro ve ağırlıklı ortalama. Makro ortalama tüm sınıfların 

eşit oranda etkisini sonuç değere yansıtmaktadır. Mikro ortalama daha büyük veri 

sayısına sahip sınıfların etkisinin daha fazla olmasını sağlar. Ağırlıklı ortalama ise 

sınıf ağırlıklarının farklı olarak ele alınarak hesaplanır. Bu çalışmada sınıfların etkisi 

eşit olması nedeniyle makro ortalama kullanılarak sınıflandırma sonucu F1 skoru 

hesaplanmıştır. (Sokolova and Lapalme, 2009; Japkowicz and Shah, 2011; Lipton et 

al., 2014). 
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3. METODOLOJİ 

Uydu görüntülerinin sınıflandırma performansını arttırmak için MARS 

algoritmasına dayalı MARS-RF, MARS-PSO ve MARS-BO hibrit modelleri 

geliştirilmiştir. MARS ve RF tekil algoritmaları ve MARS-RF, MARS-PSO ve 

MARS-BO hibrit modellerin oluşturulması ve uygulanması MATLAB ve RStudio 

yazılımları ortamında gerçekleştirilmiştir. Modellerin uygulanması ve testi için iki 

farklı çalışma alanında (Samsun-Bafra ve Samsun-Atakum) arazi örtüsü/kullanımı 

sınıfları tespit edilmiş ve iki farklı uydu görüntüsü (Landsat-8 OLI ve Sentinel-2 

MSI) ve çalışmada kullanılacak bantlar belirlenmiştir.  

3.1. MARS Algoritmasına Dayalı Hibrit Sınıflandırma Modellerinin 

Geliştirilmesi 

Hibrit bir model oluşturmak için öncelikle problem ve veri seti incelenir. 

Problemi etkili bir şekilde ele almak için birleştirilebilecek farklı modellerin veya 

algoritmaların güçlü ve zayıf yönleri karşılaştırılır. Problem için en uygun olan 

algoritma seçilir. Bu algoritmaların güçlü ve zayıf yönleri, birbirlerini nasıl 

tamamlayabilecekleri göz önünde bulundurularak entegre edilir (Zhou et al., 2002; 

Liu and Ge, 2018; Ye and Ding, 2018). 

Günümüzde, optimize edilmiş parametrelerin varsayılan ayarlara göre daha iyi 

olduğu yaygın olarak kabul edilmektedir. Literatür, hibrit sistemlerin ancak tekil 

sınıflandırıcılar doğru ve çeşitliyse, yani düşük hata oranları sergiliyorsa ve farklı 

hatalar yapıyorsa veya hataları bağımsızsa etkili olduğunu açıkça göstermiştir 

(Thornton et al., 2013; Mantovani et al., 2016; Sanders and Giraud-Carrier, 2017). 

Bu çalışmada hibrit sınıflandırmada kullanılacak tekniklerin seçiminde bu 

hususlara dikkat edilmiştir. Bu bağlamda öncelikle MARS algoritması avantaj ve 

kısıtları incelenmiş, kısıtları elimine edebilecek veya en aza indirgeyebilecek 

teknikler araştırılmıştır. Araştırılan tekniklerin hibrit kullanım esnekliğine sahip olup 

olmadığı incelendiğinde RF algoritması hibrit kullanımda etkinliği ve ayrıca görüntü 

sınıflandırma çalışmalarındaki performansı ile öne çıkmıştır (Zhou et al., 2002; Liu 

and Ge, 2018; Ye and Ding, 2018). Bu nedenle çalışma kapsamındaki ilk hibrit 

model olarak MARS-RF oluşturulmuştur.  

Ayrıca MARS algoritması incelendiğinde en uygun temel fonksiyon sayısı ve 

ceza parametresi belirleme kısıtının performansa etkisini optimizasyon yöntemleri ile 

elimine etme veya en aza indirgemenin yapılabileceği öngörülmüştür. Optimizasyon, 
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bir dizi işlem uygulanıp, amaç fonksiyonunu maksimum veya minimum yapan 

değerlerin elde edilmesidir. Günümüzde, optimize edilmiş hiper parametrelerin 

varsayılan ayarlara göre daha iyi olduğu yaygın olarak kabul edilmektedir (Thornton 

et al., 2013; Mantovani et al., 2016; Sanders and Giraud-Carrier, 2017). Bu çalışma 

kapsamında PSO ve BO, MARS algoritmasının hiper parametrelerinin optimize 

edilmesinde kullanılarak sırasıyla MARS-PSO ve MARS-BO hibrit modelleri 

geliştirilmiştir.  

3.1.1. MARS-RF Hibrit Sınıflandırma Modeli 

MARS ile RF algoritmaları uydu görüntüsü sınıflandırma analizlerinde ayrı 

ayrı uygulandığında yüksek doğruluklu sonuçlar vermektedirler. Ayrıca MARS ile 

RF algoritmalarının avantaj ve kısıtları incelendiğinde birbirlerinin kısıtlarını elimine 

edebileceği öngörülmüştür. MARS algoritmasının kısıtı olan aşırı uyum problemi, 

RF algoritmasında bulunmamaktadır. Ayrıca RF algoritmasının kısıtı olan uygun 

değişkenlerin seçimi, MARS algoritmasının değişkenler arasındaki etkileşimi 

hesaplayarak uygun değişkenleri seçmesiyle giderilmektedir. Bu avantaj ve kısıtlar 

göz önüne alınarak MARS ve RF sınıflandırma sonuçları birleştirildiğinde kısıtların 

etkisini en aza indirgeme veya elimine etmesi amacıyla hibrit model geliştirilmiştir. 

MARS-RF hibrit modeli, hibrit sınıflandırma tekniklerinden paralel 

kombinasyon ile oluşturulmuş (Şekil 3.1), modelin performansı toplam doğruluk, 

kappa istatistiği ve F1 skor ile değerlendirilmiştir. Şekil 3.1’de gösterilen işlem 

adımlarında alıştırma örneklemleri ENVI yazılımı kullanılarak seçilmiş ve RStudio 

yazılımına aktarmak amacıyla düzenlenmiştir. RStudio yazılımında MARS 

algoritması “earth” paket programı kullanılarak uygulanmıştır (çapraz geçerlilik, aşırı 

uyum cezası, modelin derecesi, maksimum fonksiyon sayısı gibi parametreler 

değiştirilebilmektedir). MARS algoritmasında genelleştirilmiş çapraz geçerlilik 

değeri en küçük olan model en ideal model olarak seçilmektedir. Bu doğrultuda 

RStudio programı içerisinde en küçük değere sahip GCV hesaplatılması için döngü 

oluşturulmuş, MARS algoritması bu döngüye bağlı çalıştırılmıştır. MARS 

algoritması ile görüntü sınıflandırma işlemi gerçekleştirmek amacıyla öncelikle 

RStudio yazılımı kullanılarak temel fonksiyonlar elde edilmiştir. Bu temel 

fonksiyonlar kullanılarak tüm görüntü sınıflandırılmıştır. Yine aynı alıştırma 

örneklemleri kullanılarak paralel olarak RF sınıflandırıcısı RStudio yazılımında 

“randomForest” kodlarıyla çalıştırılmıştır. Bu kodlar içerisinde oluşturulacak ağaç 

sayısı ve her dallanmada aday olarak rastgele örneklenen değişken sayısını kullanıcı 
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belirleyebilmektedir. 

 RStudio yazılımında ASCII formatında kaydedilen sınıflandırma sonuç 

görüntüleri, hibrit model oluşturmak amacıyla MATLAB yazılımında açılmıştır. 

MATLAB yazılımında iki sınıflandırılmış görüntü incelenerek her iki yöntemde de 

aynı sınıfa ve farklı sınıflara atanan pikseller kodlama yapılarak belirlenmiştir. 

Paralel kombinasyon yöntemini uygulamak için karar kuralı olarak her iki 

algoritmada faklı sınıfa atanan pikseller için F1 skor doğruluğu yüksek olan modelin 

sonucunun seçilmesi olarak belirlenmiştir. Bu doğrultuda kodlamada MARS ve RF 

algoritmalarının her sınıf için F1 skor doğruluk değerleri kullanılarak “if” döngüsü 

kurulmuştur. Böylece her pikselin sınıf seçimi yapılmıştır. Fakat farklı sınıflara 

atanan piksellerin her iki sınıflandırıcıda da F1 skor doğruluğunun eşit olması 

durumu göz önüne alınarak kodlamaya kappa değeri büyük olan algoritmanın sonucu 

seçilmesi yönünde ekleme yapılmıştır. 

 

Şekil 3.1 MARS-RF işlem adımları 

3.1.2. MARS-PSO Hibrit Sınıflandırma Modeli 

MARS-PSO hibrit modeli, en iyi MARS modeli için parametreleri optimize 

etmek üzere PSO tekniği kullanılarak geliştirilmiştir. PSO tekniği sadece MARS 

modelinin parametrelerini optimize etmekle kalmaz, aynı zamanda modelin doğrusal 

olmayan ve değişkenler arasındaki karmaşık etkileşimleri yakalama yeteneğini de 

geliştirir (Bui et al., 2017; Nguyen et al., 2022; Garai et al., 2024). 

PSO, tahmin modelinin doğruluğunu arttırmak için her iterasyonda 

parçacıkların konumlarını yinelemeli olarak ayarlayarak optimum çözüme doğru 

gelişir. Bu parçacıklar MARS algoritmasındaki maksimum temel fonksiyon sayısı, 

ceza parametresi hiper parametreleridir ve en uygun değerlerinin bulunması 
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amaçlanmaktadır. MARS-PSO hibrit sınıflandırma modelinin teorik temelleri 

literatürdeki benzer çalışmalarla desteklenmektedir (Benemaran and Esmaeili-Falak, 

2020; Nguyen et al., 2022; Hanteh et al., 2023; Garai et al., 2024). Şekil 3.2’de hiper 

parametrelerin optimize edilme süreci akış şeması olarak gösterilmiştir. 

 

 
 

Şekil 3.2 MARS-PSO işlem adımları 

MARS modelinin tahmin kabiliyeti maksimum temel fonksiyon sayısı ve ceza 

parametresinden etkilenmektedir. Bu çalışmada, MARS'ın sınıflandırma sonucunu 

optimize etmek amacıyla MATLAB yazılımı kullanılarak temel fonksiyon sayısı ve 

ceza parametresinin uygun değerlerini aramak için PSO optimizasyonu 

kullanılmıştır. 

Maksimum iterasyon 100, maksimum parçacık sayısı 50, temel fonksiyon 

sayısı ve ceza parametresi başlangıç değeri alt ve sınır aralığında Eşitlik 3.1’e göre 

rastgele belirlenir (Bui et al., 2019). 

 

𝑋𝑖,0 = 𝐿𝐵 + 𝑅(0,1) ∗ (𝑈𝐵 − 𝐿𝐵)                 (3.1) 

 

R(0,1), 0 ile 1 arasında eşit dağılımlı rastgele bir sayıyı ifade etmektedir. LB ve 

UB ise parametreler için alt ve üst sınırların iki vektörüdür. Temel fonksiyon sayısı 
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ve ceza parametresinin alt sınırları sırasıyla 3 ve 2; üst sınırları ise sırasıyla 50 ve 5 

olarak belirlenmiştir. 

Optimizasyon süreci boyunca, PSO popülasyonu MARS'ın parametreleri olan 

çok sayıda değişkeni keşfetmiştir. Her iterasyonda, her bir parametre seti kullanılarak 

GCV hesaplanmıştır. GCV fonksiyonunun değerini minimum yapan parametreler 

seçilerek MARS algoritması gerçekleştirilmiştir. 

3.1.3. MARS-BO Hibrit Sınıflandırma Modeli 

MARS-BO hibrit modeli, en iyi MARS modeli için parametreleri optimize 

etmek üzere BO tekniği kullanılarak geliştirilmiştir. MARS algoritmasındaki 

maksimum temel fonksiyon sayısı, ceza parametresi hiper parametreleridir ve en 

uygun değerlerinin bulunması hedeflenmektedir. MARS-BO modelinde BO 

kullanılarak amaç fonksiyonunun yani GCV fonksiyonunun minimumunu bulmak 

amaçlanmaktadır. 

BO, ilk olarak birkaç noktanın değerlendirilmesiyle başlar ve ilk vekil model 

oluşturulur. Bu model ve edinim fonksiyonuna dayanarak, vekil modeli ve optimum 

çözüm arayışını iyileştirmek için sonraki nokta seçilir. Bu iteratif süreç, maksimum 

değerlendirme sayısına ulaşılana veya tatmin edici bir çözüme yakınsama gibi bir 

durdurma kriteri karşılanıncaya kadar devam eder. 

MATLAB yazılımı kullanılarak gerçekleştirilen MARS-BO hibrit modelin 

işlem adımları Şekil 3.3’te gösterilmektedir. MARS-BO hibrit modelinde, BO’da 

hiper parametrelerin alt ve üst sınırları kullanıcı tarafından belirlenir. Bu çalışmada 

temel fonksiyon sayısı ve ceza parametresinin alt sınırları sırasıyla 3 ve 2 olarak, üst 

sınırları sırasıyla 50 ve 5 olarak belirlenmiştir. BO’da parametrelerin başlangıç 

değerleri üst ve alt sınırlarına göre rastgele seçilmiştir. Edinim fonksiyonu olarak ise 

beklenen iyileştirme seçilmiştir ve edinim fonksiyonuyla amaç fonksiyonuna 

yaklaşan bir vekil fonksiyonu oluşturulmuştur. İterasyonla, vekil fonksiyon zaman 

içinde daha doğru hale gelir ve optimizasyon sürecini optimum çözüme doğru 

yönlendirir. 
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Şekil 3.3 MARS-BO hibrit model işlem adımları 

3.2. Kodlama 

Bu çalışma kapsamında yazılan kodlar MATLAB ve RStudio yazılımı 

üzerinden gerçekleştirilmiştir. Her iki yazılımda da hem hazır komutlar kullanılıp 

hem de hazır komutlarda değişiklik ve ilave kodlama yapılmıştır. 

R, istatistiksel hesaplama ve grafikler için bir programlama dili ve yazılım 

ortamıdır. Yeni Zelanda Auckland Üniversitesinden Ross Ihaka ve Robert 

Gentleman tarafından geliştirilmiştir. R programının farklı arayüzleri bulunmakta 

olup, bu çalışmada RStudio arayüzü (Şekil 3.4) kullanılmıştır. RStudio, kullanıcıların 

veri analizi, istatistiksel modelleme, veri görselleştirme ve raporlama gibi çeşitli 

işlemleri gerçekleştirmelerine olanak tanır ve geniş paket kütüphanesine sahiptir. 

Ayrıca RStudio, açık kaynaklı bir yazılımdır ve bu özelliği, kullanıcıların yazılımın 

işleyişini tam olarak anlamalarını ve gerektiğinde değiştirmelerini mümkün kılar 

(Anonim, 2021). RStudio yazılımı, RF ve MARS algoritmalarının kodlama 

yönünden incelenmesi ve kodlamayı değiştirebilme esnekliğine sahip olması 

açısından avantaj sağlamıştır. 
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Şekil 3.4 RStudio arayüzü 

MATLAB (Şekil 3.5), matematiksel hesaplamalar, veri analizi, modelleme, 

simülasyon ve grafiksel gösterimler için kullanılan yüksek seviyeli bir programlama 

dilidir. MathWorks tarafından geliştirilmiş olan MATLAB, mühendislik, bilim, 

ekonomi ve daha birçok alanda geniş bir kullanım alanına sahiptir. MATLAB’ın 

kullanıcı dostu arayüzü, kapsamlı dökümantasyonu, araştırmacıların kod yazmayı ve 

geliştirmeyi hızlı ve verimli bir şekilde öğrenmelerine olanak sağlar. Ayrıca 

MATLAB geniş bir fonksiyon ve kütüphaneye sahiptir (MATLAB Help Center, 

2024). 

 

Şekil 3.5 MATLAB yazılımı 



61 

 

RStudio yazılımında uydu görüntülerinin açılması ve analize hazırlanması 

amacıyla “raster” paket kodlaması her iki algoritma için kullanılmıştır. RF 

algoritması için RStudio yazılımında “randomForest” ve “e1071” paket kodlamaları 

üzerinde değişiklikler yapılarak toplam 71 satır kodlama ile sınıflandırma işlemi 

gerçekleştirilmiştir. Çalışmada öncelikle “raster”, “e1071” ve “randomForest” 

paketleri kütüphaneden yüklenmiş ve alıştırma örneklemleri açılmıştır. Ardından RF 

algoritması parametreleri ayarlanarak sınıflandırma gerçekleştirilmiş ve sonuç 

görüntü, harita oluşturmak amacıyla ASCII formatında kaydedilmiştir. 

library(raster) 

library(e1071)  

library(randomForest) 

 

samples15 <- readOGR(dirname("D:/train/samples"), 

                    tools::file_path_sans_ext(basename("D:/train/samples"))) 

. 

. 

. 

result_RF = predict(RGB, 

                    ro, 

                    filename = "classification_RF.tif", 

                    overwrite = TRUE) 

plot(result_RF, add=TRUE) 

varImp(ro, scale=FALSE) 

ra = aggregate(result_RF, fact=2)  

writeRaster(ra, "D:/train/arcgıs/RF.asc", format="ascii") 

MARS algoritması için ise “earth” paket kodlaması kullanılarak toplam 43 satır 

kodlama ile sınıflandırma gerçekleştirilmiştir. Öncelikle “raster” ve “earth” paketleri 

kütüphaneden yüklenmiş ve alıştırma örneklemleri açılmıştır. Ardından MARS 

algoritması parametreleri ayarlanarak “for” döngüsü oluşturulup sınıflandırma 

gerçekleştirilmiş ve sonuç görüntü, harita oluşturmak amacıyla ASCII formatında 

kaydedilmiştir. 

library(raster) 

library(earth) 

samples15 <- readOGR(dirname("D:/train/samples"), 
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                    tools::file_path_sans_ext(basename("D:/train/samples"))) 

. 

. 

. 

summary(mars, digits=3, style="max") 

evimp(mars) 

 

result <- predict(RGB, 

                  mars, 

                  filename = "classification_mars.tif", 

                  overwrite = TRUE) 

writeRaster(ra, "D:/train/arcgıs/MARS.asc", format="ascii") 

MARS-RF hibrit model RStudio ve MATLAB yazılımları kullanılarak 

gerçekleştirilmiştir. Yukarıda anlatıldığı gibi MARS ve RF algoritmaları RStudio 

yazılımı kullanılarak sınıflandırma gerçekleştirilmiştir. RStudio yazılımında ASCII 

formatında elde edilen görüntüler MATLAB yazılımında açılmış ve iki algoritma 

sonucundan paralel kombinasyon yöntemine göre hibrit model oluşturulmuştur. 

Hibrit model oluşturmak için öncelikle MATLAB yazılımında açılan sonuç 

görüntüler incelenmiştir. Bu inceleme paralel kombinasyon ve belirlenen karar 

kuralınca; her iki algoritmada da aynı sınıfa atanan pikseller ve iki algoritmada farklı 

sınıflara ayrılan piksellerin belirlenmesini içermektedir. Bu inceleme MATLAB 

yazılımında hazırlanan kod ile yapılmıştır. Belirlenen piksellere karar kuralına göre 

piksellerin sınıf ataması olması amacıyla “if” döngüsü kodlaması yapılmıştır ve 

MARS-RF hibrit model sonucu elde edilmiştir. Karar kuralının MATLAB 

yazılımında kodu aşağıdaki gibidir; 

% Karar Kuralı 

combined_preds = zeros(size(y_test)); 

for i = 1:length(y_test) 

    if mars_preds(i) == rf_preds(i) 

        combined_preds(i) = mars_preds(i); 

    else 

        mars_class = mars_preds(i); 

        rf_class = rf_preds(i); 

        if mars_pa(mars_class) > rf_pa(rf_class) 
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            combined_preds(i) = mars_class; 

        else 

            combined_preds(i) = rf_class; 

        end 

    end 

end 

 

MARS-PSO hibrit modeli MARS algoritması parametrelerine optimizasyon 

uygulanması ile elde edilen modeldir. MARS algoritması maksimum temel 

fonksiyon sayısı ve ceza parametresi parametrelerinin en uygun değerlerinin 

belirlenmesi amacıyla PSO algoritmasının kullanılarak optimize edilmesi MATLAB 

yazılımında 109 satır kodlama ile gerçekleştirilmiştir.  

% MARS algoritmasının hiperparametrelerinin belirleneceği aralıklar 

belirlenir 

lower_bound = [3 2]; % alt sınır 

upper_bound = [50 5]; % üst sınır 

 

% PSO algoritmasının parametreleri belirlenir 

num_particles = 50; % parçacık sayısı 

max_iterations = 100; % maksimum iterasyon sayısı 

. 

. 

. 

% En iyi hiperparametreler bulunur 

best_params = bestPoint(results); 

 

% MARS modeli oluşturulur 

model = fitMars(X, Y, ... 

 

MARS-BO hibrit modeli MARS algoritması parametrelerine optimizasyon 

uygulanması ile elde edilen modeldir. MARS algoritması maksimum temel 

fonksiyon sayısı ve ceza parametresi parametrelerinin en uygun değerlerinin 

belirlenmesi amacıyla BO algoritmasının kullanılarak optimize edilmesi MATLAB 

yazılımında kodlama ile gerçekleştirilmiştir.  
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% BO için aralıklar belirlenir 

hyperparams.min_nodes = 2; 

hyperparams.max_nodes = 20; 

hyperparams.min_threshold = 0.01; 

hyperparams.max_threshold = 0.5;  

hyperparams.min_degree = 1; 

hyperparams.max_degree = 3; 

% MARS algoritmasının hiperparametrelerinin belirleneceği aralıklar 

belirlenir 

lower_bound = [3 2]; % alt sınır 

upper_bound = [50 5]; % üst sınır 

. 

. 

. 

% En iyi hiperparametreler bulunur 

best_params = bestPoint(results); 

. 

% MARS modeli oluşturulur 

model = fitMars(X, Y, ... 

3.3. Uygulama ve Modellerin Testi 

MARS algoritmasına dayalı hibrit sınıflandırma modellerinin performans 

değerlendirmesi için iki farklı çalışma alanı ve iki farklı uydu görüntüsü 

kullanılmıştır. Başka bir ifade ile önerilen yöntemlerin performansı, iki ayrı bölgede 

farklı çözünürlüklere sahip iki farklı uydu görüntüsü kullanılarak test edilmiştir. Bu 

kapsamda gerçekleştirilen ana işlem aşamaları Şekil 3.6’da gösterilmiştir. 

Görüntülerde ilk önce ön işleme gerçekleştirilmiştir. Alıştırma örneklemlerinin 

seçiminin ardından MARS ve RF sınıflandırmaları ile MARS-RF, MARS-PSO ve 

MARS-BO hibrit sınıflandırmaları uygulanmış ve sınıflandırma sonuçlarının 

karşılaştırılması doğruluk analizi gerçekleştirilmiştir. 
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Şekil 3.6 Uygulama ve test için iş akış şeması 

3.3.1. Test Alanlarının Belirlenmesi  

Görüntü sınıflandırma yöntemlerinin performanslarını değerlendirmek için, 

çeşitli arazi örtüsü/kullanımı içeren farklı çalışma alanları gereklidir. Bu yaklaşım, 

sınıflandırma yöntemlerinin çeşitli koşullardaki performanslarını ve yeteneklerini 

anlamak için önemlidir. Farklı çalışma alanlarından elde edilen veri setleri, görüntü 

sınıflandırma algoritmalarının çeşitli coğrafi ve topolojik özelliklere nasıl tepki 

verdiğini değerlendirmek için kullanılabilir. Aynı zamanda, bu veri setleri, 

yöntemlerin genellikle farklı iklim koşulları, bitki örtüsü tipleri veya yerel özelliklere 

uyum sağlama yeteneklerini değerlendirmek için de kullanılabilir. Böylece 

sınıflandırma yöntemlerinin performansları, farklı arazi örtüsü/kullanımı için 

karşılaştırılabilir (Gregorio and Jansen, 1998; Li et al., 2014; Mather and Tso, 2016). 

Test alanı 1 olarak seçilen Bafra ilçesi, Samsun ilinin kuzeybatısında, 

Karadeniz'e kıyısı olan bir yerleşim yeridir ve yaklaşık olarak 41° 35' - 41° 45' kuzey 

enlemleri ve 35° 54' - 36° 15' doğu boylamları arasında yer alır (Şekil 3.6). İlçenin 

toplam yüzölçümü Harita Genel Müdürlüğü (HGM) verilerine göre 1503 km² olup, 

Türkiye İstatistik Kurumu (TÜİK) 2023 yılı verilerine göre 143109 nüfusa sahiptir. 

Bafra ilçesi, Karadeniz kıyısından iç kesimlere doğru uzanan geniş bir alanı 

kaplamaktadır. İlçe tarımsal üretim açısından Samsun'un en önemli bölgelerinden 



66 

 

biridir. İlçede ayrıca ormanlık alanlar ve kırsal yerleşimler bulunmaktadır. Bu 

çeşitlilik ile Bafra arazi kullanımı yönünden farklılık göstermekte ve çeşitli 

ekosistemlere ev sahipliği yapmaktadır (Hekimoğlu vd., 2007). 

Test alanı 2 olarak seçilen Atakum ilçesi, Samsun ilinin batısında, Karadeniz 

kıyısında yer almaktadır (Şekil 3.7). İlçe, yaklaşık 41° 20' - 41° 25' kuzey enlemleri 

ve 36° 18' - 36° 24' doğu boylamları arasında konumlanmıştır. Bu coğrafi konumla, 

Atakum hem deniz hem de dağ topografyasına sahiptir. Atakum'un toplam 

yüzölçümü HGM verilerine göre 351 km² olup, TÜİK 2023 yılı verilerine göre 

245328 nüfusa sahiptir. Arazi kullanımı ve örtüsü sınıflandırması açısından 

Atakum'da kentsel alanlar, tarım arazileri ve ormanlık bölgeler öne çıkmaktadır. Bu 

çeşitlilik, arazi kullanımı ve örtüsü sınıflandırma çalışmaları için zengin veri 

sağlamaktadır (Hekimoğlu vd., 2007). 

 

Şekil 3.7 Test alanları: Bafra ve Atakum ilçeleri (Samsun) 
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3.3.2. Uydu Görüntüleri ve Bantların Seçimi 

Tez kapsamında farklı arazi örtüsü/kullanımı türlerinin ayırt edilmesinde 

Landsat-8 OLI ve Sentinel-2A MSI uydu görüntüleri kullanılmıştır. Bu çalışmada, 

Landsat-8 OLI uydu görüntüsünün 6 bandı (Bant 2, Bant 3, Bant 4, Bant 5, Bant 6 ve 

Bant 7) ve Sentinel-2A MSI uydu görüntüsünün 10 bandı (Bant 2, Bant 3, Bant 4, 

Bant 5, Bant 6, Bant 7, Bant 8, Bant 8A, Bant 11 ve Bant 12) kullanılmıştır. Bu 

bantların seçiminde, çalışma alanlarının özellikleri ve belirlenen sınıflar 

değerlendirmeye alınmıştır. Uydu sistemleri ile ilgili teknik bilgiler aşağıdaki 

bölümlerde detaylı olarak verilmiştir.  

 Sentinel-2A/B 

Sentinel-2 uydu sistemi Sentinel-2A ve Sentinel-2B olmak üzere iki uydudan 

oluşmaktadır. Sentinel-2A, Haziran 2015, Sentinel-2B ise Temmuz 2016 tarihinde 

fırlatılmış olup, Avrupa Uzay Ajansı’nın (ESA) yeryüzünden 786 km yükseklikteki 

yörüngesinde, güneşle senkronize bir yer gözlem uydusudur. Sentinel-2A ve 

Sentinel-2B takım uyduları gibi çalıştığı ve aynı çözünürlüklere sahip oldukları için 

birlikte kullanılabilirler. Sentinel-2, 10 m (Bant 2, Bant 3, Bant 4, Bant 8), 20 m 

(Bant 5, Bant 6, Bant 7, Bant 8A, Bant 11, Bant 12) ve 60 m (Bant 1, Bant 9, 

Bant10) çözünürlüğe sahiptir. Bu çalışmada kullanılan Sentinel-2A MSI görüntüleri 

ESA web sitesinden indirilmiştir. Sentinel-2A MSI uydusuna ait teknik özellikler 

Tablo 3.1’de verilmiştir (Sentinel-2A User Handbook, 2015).  

Tablo 3.1 Sentinel-2A MSI uydu görüntüsünün teknik özellikleri 

Bantlar Merkez dalgaboyu (nm) Piksel boyutu (m) 

Bant 1- Coastal 443 60 

Bant 2- Blue 490 10 

Bant 3- Green 560 10 

Bant 4- Red 665 10 

Bant 5- Vegetation Red Edge 705 20 

Bant 6- Vegetation Red Edge 740 20 

Bant 7- Vegetation Red Edge 783 20 

Bant 8- NIR 842 10 

Bant 8A- Narrow NIR 865 20 

Bant 9- Water Vapour 945 60 

Bant 10- SWIR Cirrus 1375 60 

Bant 11- SWIR1 1610 20 

Bant 12- SWIR2 2190 20 
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 Landsat-8 OLI 

11 Şubat 2013 tarihinde yeryüzünden 705 km yükseklikteki yörüngesine 

oturtulan Landsat-8 OLI, güneşle senkronize bir yer gözlem uydusudur. Uydu 

üzerinde iki algılayıcı bulunmaktadır: OLI (Operational Land Imager) ve TIRS 

(Thermal Infrared Sensor). Landsat-8 OLI, 15 m PAN, 30 m MS (RGB, NIR, SWIR) 

ve 100 m termal bant çözünürlüğüne sahiptir. Bu çalışmada kullanılan Landsat-8 

OLI görüntüleri, Amerika Birleşik Devletleri Jeoloji Araştırmaları Merkezi'nin 

(USGS) web sitesinden indirilmiştir. Tablo 3.2’de Landsat-8 OLI uydusuna ait 

teknik özellikler gösterilmektedir (Landsat-8 OLI Data Users Handbook, 2018).  

Tablo 3.2 Landsat-8 OLI uydu görüntüsünün teknik özellikleri 

Bantlar Merkez dalgaboyu (nm) Piksel boyutu (m) 

Bant 1 - Coastal aerosol 443 30 

Bant 2 - Blue 483 30 

Bant 3 - Green 560 30 

Bant 4 - Red 660 30 

Bant 5 - Near Infrared (NIR) 865 30 

Bant 6 - SWIR 1 1650 30 

Bant 7 - SWIR 2 2220 30 

Bant 8 - Panchromatic 640 15 

Bant 9 - Cirrus 1375 30 

 

3.3.3. Sınıflandırmada Kullanılacak Arazi Örtüsü/Kullanımı Sınıflarının 

Belirlenmesi 

Dünya genelinde, özellikle gelişmekte olan ülkelerde, tarımsal üretime olan 

yoğun bağımlılıkları ve artan nüfus nedeniyle arazi örtüsü/kullanımında hızlı 

değişimler gözlenmektedir. Bu değişimlerin etkin planlama ve yönetimi için güncel 

ve doğru arazi örtüsü/kullanımı bilgisinin tespit edilmesi gerekmektedir. Bu durum, 

kısa süreler içerisinde daha geniş alanlardan farklı arazi örtüsü/kullanımı verilerinin 

elde edilmesi için modern metodolojilerin geliştirilmesini gerektirmektedir 

(Anderson et al., 1976; Büttner 2011; Nedd et al., 2021). 

Bu çalışmada belirlenecek sınıf sayısı ve sınıflar için literatürde kabul görmüş 

üç adet arazi örtüsü/kullanımı sınıflandırma sistemi incelenmiştir; USGS Arazi 

örtüsü/kullanımı sınıflandırma sistemi (Anderson et al., 1976), Gıda ve Tarım 

Örgütü’nün (Food and Agriculture Organization – FAO) Arazi örtüsü sınıflandırma 

sistemi ve CORINE (Coordination of Information on the Environment – Çevresel 
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Bilginin Koordinasyonu) (Nedd et al., 2021). Çalışma alanlarının içerdikleri sınıf 

özellikleri dikkate alınarak CORINE sisteminin kullanılmasına karar verilmiştir. 

CORINE Avrupa Çevre Ajansının oluşturduğu arazi örtüsü/kullanımı 

sınıflandırmasına göre uydu görüntüleri üzerinden bilgisayar destekli görsel 

yorumlama metodu ile üretilen arazi örtüsü/kullanımı verisidir. Sınıflandırma 

sistemi, Avrupa genelinde arazi örtüsü/kullanımı verilerinin standart bir metodoloji 

ile toplanmasını, düzenlenmesini ve analiz edilmesini sağlayan bir sistemdir. 

Literatür incelendiğinde CORINE sınıflandırma sistemi, çevre yönetimi, planlama, 

araştırma ve politika geliştirme gibi birçok alanda yaygın olarak kullanılmaktadır 

(Grullon et al., 2009; Nedd et al., 2021).  

Bu çalışmada CORINE arazi örtüsü/kullanımı sınıflandırma sisteminin 

belirlediği kriterler ve sınıflandırma sistemi incelenerek ve çalışma alanları göz 

önünde bulundurularak; Bafra ilçesi için “Yapay alanlar”, “Ekilebilir Alanlar”, 

“Karışık Tarım Alanları”, “Orman ve Yarı Doğal Alanlar”, “Sulak Alanlar”, “Suyla 

Kaplı Alanlar” sınıfları; Atakum ilçesi için “Yapay Alanlar”, “Tarımsal Alanlar”, 

“Orman ve Yarı Doğal Alanlar”, “Bitki Örtüsünün Az Olduğu veya Hiç Olmadığı 

Açık Alanlar”, “Suyla Kaplı Alanlar” sınıfları seçilmiştir. Arazi örtüsü/kullanımı 

sınıfları, çalışılan alan ve işlevsellik gibi çeşitli gereksinimlere esnek bir şekilde 

uyarlanmalıdır. Bu nedenle farkı çalışma alanları için farklı sınıflar ve sınıf seviyeleri 

seçilmiştir. 

Bu çalışmada, MARS ve RF tekil algoritmaları ve MARS algoritmasına dayalı 

üç farklı hibrit model (MARS-RF, MARS-PSO ve MARS-BO) uygulanmıştır. 

Gerçekleştirilen tüm sınıflandırma analizleri için iki farklı uydu sistemi kullanılmıştır; 

 23.07.2023 tarihli Landsat-8 OLI uydu görüntüsünün 6 bandı (Bant 2, Bant 

3, Bant 4, Bant 5, Bant 6 ve Bant 7);  

 27.07.2023 tarihli Sentinel-2A MSI uydu görüntüsünün 10 bandı (Bant 2, 

Bant 3, Bant 4, Bant 5, Bant 6, Bant 7, Bant 8, Bant 8A, Bant 11 ve Bant 

12) kullanılmıştır.  

3.3.4. Görüntü Ön İşleme 

Uydu görüntüleri çevresel etkiler nedeniyle sistematik ve sistematik olmayan 

hatalar içermektedir. Bu nedenle, uydu görüntülerine uygulamalarda kullanılmadan 

önce düzeltmelerin uygulanması gerekmektedir. 

Çalışma kapsamında kullanılan Landsat-8 OLI Collection 2 Level-2 

görüntülerinin radyometrik kalibrasyon ve atmosferik düzeltme işlemi USGS 
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tarafından uygulanmıştır ve analize hazır verilerdir. Atmosferik düzeltme, arazi 

yüzey yansıma kodu (Land Surface Reflectance Code – LaSRC) algoritması 

kullanılarak gerçekleştirilmiştir (USGS, 2023). 

Çalışma kapsamında Sentinel-2A Seviye-1C uydu görüntüsüne uygulanan 

atmosferik düzeltme işlemcisi Sen2Cor, ESA tarafından geliştirilmiştir. Sen2Cor, 

temel amacı Sentinel-2 Seviye-1C Atmosfer Üstü (TOA) ürünlerini atmosferin 

etkilerinden düzelterek Atmosfer Altı (BOA) yüzey yansıma ürünü sunmaktır (Main-

Knorn et al., 2017). Görüntü ön işlemesi için Sentinel Application Platform (SNAP) 

yazılımında bulunan Sen2Cor aracı kullanılmıştır. Sentinel-2A MSI uydu görüntüsü 

çalışma alanlarından Bafra ilçesi için iki çerçevede yer almaktadır bu nedenle 

ArcGIS yazılımında görüntü mozaikleme işlemi gerçekleştirilmiştir.  

Sentinel-2A MSI uydu görüntülerinin tüm bantlarının piksel boyutu yönünden 

uyumlu olmasını sağlamak için 20 m piksel boyutlu bantlar en yakın komşu 

enterpolasyonu ile 10 m piksel boyutuna yeniden örneklenmiştir. Son olarak uydu 

görüntüleri, çalışma alanları olan Bafra ve Atakum ilçe idari sınırlarına göre 

kesilmiştir. Suyla kaplı alanların da çalışmaya eklenmesi amacıyla sınırlar deniz 

yönünde 2 km genişletilmiştir. 

3.3.5. Alıştırma Örneklemlerinin Seçilmesi 

Bir sınıflandırma yönteminin performansı, alıştırma örneklem veri setinin 

boyutu, çalışma alanının karmaşıklığı, görüntülerin çözünürlüğü ve kullanılan 

sınıflandırma algoritması dahil olmak üzere çeşitli faktörlere bağlıdır. Alıştırma 

örneklemlerinin sayısı, kullanılan veri ve algoritma türüne göre değişir. Bu sayı, 

alıştırma örneklemlerinin sınıf üyeliği hakkında yeterli bilgi edinmek için yeterince 

büyük olmalı ancak eğitim verilerinin aşırı eğitilmesine neden olacak kadar büyük 

olmamalıdır. Alıştırma örneklemlerinin seçimi sınıflandırma performansını doğrudan 

etkileyen önemli faktörlerdendir ve alıştırma örneklemlerinin seçiminde yardımcı 

verilerin kullanılması gerekmektedir. Makine öğrenmesi alanında yapılan önceki 

araştırmalar, alıştırma örneklem veri setinin yalnızca eğitim hızını etkilemekle 

kalmayıp aynı zamanda sınıflandırıcıların performansı üzerinde de etkili olduğunu 

göstermektedir (Rendell and Cho, 1990; Shavlik, 1991; Brodley, 1995). 

Bu tez kapsamında, ENVI yazılımında oluşturulan standart sahte renkli 

görüntü, kontrolsüz sınıflandırma yöntemi olan ISODATA sınıflandırma sonuç 

görüntüsü, NDVI indeks sonuç görüntüsü ve Google Earth Pro görüntüleri 

kullanılarak alıştırma örneklemleri seçilmiştir. Bu yardımcı veri kümelerinin dahil 
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edilmesiyle, alıştırma örneklemlerinin seçiminde daha doğru ve güvenilir sonuçlar 

elde edilir. Bu veri kaynakları, uydu görüntülerinden elde edilen spektral bilgileri 

tamamlayan yardımcı verilerdir. Bu yardımcı veriler kullanılarak uydu 

görüntüsünden alıştırma örneklemleri verisi için ENVI yazılımında ROI’ler (region 

of interest) oluşturulup, ASCII formatında kaydedilmiştir. ASCII formatında 

kaydedilen spektral yansıtım değerleri sınıf bilgisi de eklenerek düzenlenmiştir. 

Eğitim ve model performanslarını değerlendirmek amacıyla; Bafra ilçesi için toplam 

2248 ve Atakum ilçesi için toplam 1738 piksel veri örneği kullanılmıştır. Veri setleri 

eğitim seti (%70) ve test seti (%30) olarak ikiye ayrılmıştır. Tablo 3.3’te her sınıf 

için eğitim ve test veri seti piksel sayıları gösterilmektedir. 

Tablo 3.3 Eğitim ve test veri sayıları 

Çalışma 

Alanı 
Sınıf 

Eğitim Veri 

Sayısı 

Test Veri 

Sayısı 
Toplam  

Bafra 

Suyla Kaplı Alanlar 242 104 

2248 

Sulak Alanlar 252 108 

Orman ve Yarı Doğal 

Alanlar 
264 113 

Karışık Tarımsal Alanlar 334 107 

Ekilebilir Alanlar 249 105 

Yapay Alanlar 259 111 

Atakum 

Suyla Kaplı Alanlar 235 101 

1738 

Orman ve Yarı Doğal 

Alanlar 
247 106 

Tarımsal Alanlar 247 106 

Bitki Örtüsünün Az Olduğu 

veya Hiç Olmadığı Açık 

Alanlar 

245 105 

Yapay Alanlar 242 104 

 

3.3.6. Görüntü Sınıflandırma 

Bu çalışma kapsamında MARS ve RF algoritmaları temel sınıflandırıcı olarak 

kullanılmıştır. Temel sınıflandırıcıların algoritmaları RStudio yazılımında 

gerçekleştirilmiştir. Hibrit modeller ise, RStudio yazılımından elde edilen sonuç 

görüntülerin MATLAB yazılımında hazırlanan kodlama ile işlenmesiyle 

oluşturulmuştur. 

RF algoritması ile görüntü sınıflandırma işlemi RStudio yazılımında 

“randomForest” paket programıyla gerçekleştirilmiştir. RF algoritmasında 

kullanıcının belirlemesi gereken her bir düğümde kullanılan değişkenlerin sayısı (m) 

ve oluşturulacak ağaçların sayısı gibi parametreler bulunmaktadır. Bu nedenle bu 

çalışmada, parametreleri ayarlamak, doğruluk açısından en iyi sonucu veren 
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parametrelerin optimum büyüklüklerini elde etmek için ağaç sayısı (Ntree - 

'n_estimators') ve değişken sayısı (Mtry - 'max_features') değer aralıkları dikkate 

alınmıştır. Burada Ntree ('n_estimators') =20 ve Mtry ('max_features') = auto, yani 

değişken sayısının kareköküdür. Ardından, Ntree değeri 50 ve 100’e çıkarılmış ve 

Mtry'yi varsayılan değerlerde (auto) tutarak bunlar test edilmiştir. En iyi Ntree değeri 

belirlendikten sonra, bu değer sabit tutulmuş ve Mtry = 5, 7, 10 gibi bir dizi 

büyüklüğü göz önünde bulundurarak Mtry'nin en iyi değerini bulmak için algoritma 

tekrar çalıştırılmıştır. RF algoritmasında bu iki parametrenin en iyi iki değerine karar 

vermek için toplam dokuz test gerçekleştirilmiştir.  

MARS sınıflandırıcısı ise RStudio yazılımında “earth” paketinde 

çalıştırılmıştır. Açık kaynak kodlu bir yazılım olan RStudio ile çapraz geçerlilik, ceza 

parametresi, modelin derecesi, maksimum fonksiyon sayısı gibi parametreler, 

kodlamada düzenlemeler yaparak değiştirilebilmektedir. MARS algoritmasında 

genelleştirilmiş çapraz geçerlilik değeri en küçük olan model en ideal model olarak 

seçilmektedir. Bu doğrultuda RStudio programı içerisinde en küçük değere sahip 

genelleştirilmiş çapraz geçerlilik hesaplatılması için döngü oluşturulmuş, MARS 

algoritması bu döngüye bağlı çalıştırılmıştır. Ceza parametre değeri (penalty) 

yaklaşık 2 ila 5 aralığında değerler önermektedir. İleri adımda belirlenen maksimum 

fonksiyon sayısı (nk) 20 olarak belirlenmiştir. Maksimum etkileşim derecesi ise 

(degree) varsayılan ayarlarda 1 olarak tanımlanmıştır yani etkileşim terimleri modele 

dahil etmez, bu çalışmada (degree) 1 ve 2 olarak belirlenmiştir. Çapraz doğrulama 

katlarının sayısı (nfold) varsayılan değeri 0'dır yani çapraz doğrulama yoktur. 1'den 

büyükse, kodlamada (earth) önce tüm verilerle her zamanki gibi standart bir model 

oluşturur, sonra her seferinde dışarıda bırakılmış veriler üzerinde en küçük kareler 

yöntemine göre modeller oluşturur. Bu parametreler denenerek en küçük GCV 

değerinin bulunmasıyla ideal MARS modeli yani temel fonksiyonlar elde edilmiş 

olur. Bu temel fonksiyonlar kullanılarak tüm görüntü sınıflandırılmıştır. 

3.3.7. Sınıflandırma Doğruluk Analizi 

Uydu görüntülerinin sınıflandırma doğruluk analizi, sınıflandırmanın ne kadar 

başarılı olduğunu belirlemek için kullanılır. Sınıflandırma yöntemlerini 

karşılaştırmada hata matrisi kullanılarak kullanıcı doğruluğu/kesinlik, üretici 

doğruluğu/duyarlılık, toplam doğruluk, kappa istatistiği ve F1 skor gibi doğruluk 

ölçütleri kullanılır.  

Bu çalışmada, kullanıcı doğruluğu/kesinlik, üretici doğruluğu/duyarlılık ve F1 
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skor ölçütleri sınıf bazında karşılaştırmada kullanılmıştır. Sınıflandırma sonucunun 

genel karşılaştırması ise toplam doğruluk, kappa istatistiği ve makro ortalama 

alınarak hesaplanan F1 skor değerleri ile yapılmıştır. Bu doğruluk ölçütlerinin 

kullanılması, modelin performansının genel ve sınıf bazında kapsamlı bir şekilde 

değerlendirme yapılmasını sağlar. Bu sayede, sınıflandırıcıların nasıl performans 

gösterdiği ve hangi yöntemlerin daha güvenilir sonuçlar verdiği hakkında daha 

detaylı bilgi elde edilebilir.  
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4. BULGULAR VE TARTIŞMA 

MARS, RF, MARS-RF, MARS-PSO ve MARS-BO’nun sınıflandırma 

doğruluğunu belirlemek için, sınıf bazında kullanıcı doğruluğu/kesinlik, üretici 

doğruluğu/duyarlılık ve F1 skor ölçütleri ve genel sınıflandırma değerlendirmesi için 

toplam doğruluk, kappa değeri ve makro ortalama ile hesaplanan F1 skor ölçütleri 

kullanılmış ve tüm modeller için elde edilen sonuçlar karşılaştırılmıştır. 

4.1. Test Alanı 1: Bafra İlçesi Sınıflandırma Sonuçları 

4.1.1. Test Alanı 1: Bafra İlçesi MARS Sınıflandırma Sonuçları 

Test alanı 1 olarak seçilen Bafra ilçesi MARS algoritma sınıflandırması iki 

uydu görüntüsü için ayrı ayrı gerçekleştirilmiştir. Şekil 4.1 Landsat-8 OLI uydu 

görüntüsüne ait MARS sınıflandırma sonucunu göstermektedir. Bafra ilçesi Landsat-

8 OLI uydu görüntüsü MARS sınıflandırma sonucu hata matrisi Tablo 4.1’de 

verilmiştir.  

 

Şekil 4.1 Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS sınıflandırma sonucu 
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Tablo 4.1 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 82 10 14 10 0 0 116 

Ekilebilir Alanlar 17 75 4 0 0 0 96 

Karışık Tarımsal 

Alanlar 
3 16 80 13 0 0 112 

Orman ve Yarı 

Doğal Alanlar 
9 4 9 85 8 0 115 

Sulak Alanlar 0 0 0 5 89 4 98 

Suyla Kaplı 

Alanlar 
0 0 0 0 11 100 111 

Toplam 111 105 107 113 108 104 648 

Şekil 4.2 Sentinel-2A MSI uydu görüntüsüne ait MARS sınıflandırma 

sonucunu göstermektedir. Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS 

sınıflandırma sonucu hata matrisi Tablo 4.2’de verilmiştir. 

 

Şekil 4.2 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS sınıflandırma sonucu 
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Tablo 4.2 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı 

Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 90 6 13 9 0 0 118 

Ekilebilir Alanlar 12 74 2 0 0 0 88 

Karışık Tarımsal 

Alanlar 
0 20 87 11 0 0 118 

Orman ve Yarı 

Doğal Alanlar 
9 5 5 87 8 0 114 

Sulak Alanlar 0 0 0 6 83 5 94 

Suyla Kaplı 

Alanlar 
0 0 0 0 17 99 116 

Toplam 111 105 107 113 108 104 648 

 

4.1.2. Test Alanı 1: Bafra İlçesi RF Sınıflandırma Sonuçları 

Şekil 4.3 Landsat-8 OLI uydu görüntüsüne ait RF sınıflandırma sonucunu 

göstermektedir. Bafra ilçesi Landsat-8 OLI uydu görüntüsü RF sınıflandırma sonucu 

hata matrisi Tablo 4.3’te verilmiştir. 

 

Şekil 4.3 Bafra ilçesi Landsat-8 OLI uydu görüntüsü RF sınıflandırma sonucu 
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Tablo 4.3 Bafra ilçesi Landsat-8 OLI uydu görüntüsü RF sınıflandırma sonucu hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 80 9 15 10 0 0 114 

Ekilebilir Alanlar 18 76 3 0 0 0 97 

Karışık Tarımsal 

Alanlar 
4 15 81 14 0 0 114 

Orman ve Yarı 

Doğal Alanlar 
9 5 8 83 9 0 114 

Sulak Alanlar 0 0 0 6 88 5 99 

Suyla Kaplı 

Alanlar 
0 0 0 0 11 99 110 

Toplam 111 105 107 113 108 104 648 

 

Şekil 4.4 Sentinel-2A MSI uydu görüntüsüne ait RF sınıflandırma sonucunu 

göstermektedir. Bafra ilçesi Sentinel-2A MSI uydu görüntüsü RF sınıflandırma 

sonucu hata matrisi Tablo 4.4’te verilmiştir.  

 

Şekil 4.4 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü RF sınıflandırma sonucu 
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Tablo 4.4 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü RF sınıflandırma sonucu hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 89 6 14 10 0 0 119 

Ekilebilir Alanlar 13 77 1 0 0 0 91 

Karışık Tarımsal 

Alanlar 
0 18 87 12 0 0 117 

Orman ve Yarı 

Doğal Alanlar 
9 4 5 84 8 0 110 

Sulak Alanlar 0 0 0 7 81 5 93 

Suyla Kaplı 

Alanlar 
0 0 0 0 19 99 118 

Toplam 111 105 107 113 108 104 648 

 

4.1.3. Test Alanı 1: Bafra İlçesi MARS-RF Hibrit Sınıflandırma Sonuçları 

Şekil 4.5 Landsat-8 OLI uydu görüntüsüne ait MARS-RF sınıflandırma 

sonucunu göstermektedir. Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-RF 

sınıflandırma sonucu hata matrisi Tablo 4.5’te verilmiştir.  

 

Şekil 4.5 Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-RF sınıflandırma sonucu 



79 

 

Tablo 4.5 Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-RF sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 82 9 15 10 0 0 116 

Ekilebilir Alanlar 17 76 3 0 0 0 96 

Karışık Tarımsal 

Alanlar 
3 15 81 13 0 0 112 

Orman ve Yarı 

Doğal Alanlar 
9 5 8 85 8 0 115 

Sulak Alanlar 0 0 0 5 89 4 98 

Suyla Kaplı 

Alanlar 
0 0 0 0 11 100 111 

Toplam 111 105 107 113 108 104 648 

 

Şekil 4.6 Sentinel-2A MSI uydu görüntüsüne ait MARS-RF sınıflandırma 

sonucunu göstermektedir. Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS-RF 

sınıflandırma sonucu hata matrisi Tablo 4.6’da verilmiştir.  

 

Şekil 4.6 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS-RF sınıflandırma sonucu 
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Tablo 4.6 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS-RF sınıflandırma sonucu 

hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 90 6 14 9 0 0 119 

Ekilebilir Alanlar 12 77 1 0 0 0 90 

Karışık Tarımsal 

Alanlar 
0 18 87 11 0 0 116 

Orman ve Yarı 

Doğal Alanlar 
9 4 5 87 8 0 113 

Sulak Alanlar 0 0 0 6 83 5 94 

Suyla Kaplı 

Alanlar 
0 0 0 0 17 99 116 

Toplam 111 105 107 113 108 104 648 

 

4.1.4. Test Alanı 1:Bafra İlçesi MARS-PSO Hibrit Sınıflandırma Sonuçları 

Şekil 4.7 Landsat-8 OLI uydu görüntüsüne ait MARS-PSO sınıflandırma 

sonucunu göstermektedir. Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-PSO 

sınıflandırma sonucu hata matrisi Tablo 4.7’de verilmiştir.  

 

Şekil 4.7 Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-PSO sınıflandırma sonucu 



81 

 

Tablo 4.7 Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-PSO sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 83 8 13 10 0 0 114 

Ekilebilir Alanlar 15 77 3 0 0 0 95 

Karışık Tarımsal 

Alanlar 
3 14 83 12 0 0 112 

Orman ve Yarı 

Doğal Alanlar 
10 6 8 86 8 0 118 

Sulak Alanlar 0 0 0 5 90 4 99 

Suyla Kaplı 

Alanlar 
0 0 0 0 10 100 110 

Toplam 111 105 107 113 108 104 648 

 

Şekil 4.8 Sentinel-2A MSI uydu görüntüsüne ait MARS-PSO sınıflandırma 

sonucunu göstermektedir. Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS-PSO 

sınıflandırma sonucu hata matrisi Tablo 4.8’de verilmiştir.  

 

Şekil 4.8 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS-PSO sınıflandırma sonucu 
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Tablo 4.8 Bafra ilçesi Sentinel-2A uydu görüntüsü MARS-PSO sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 91 5 12 7 0 0 115 

Ekilebilir Alanlar 12 79 3 0 0 0 94 

Karışık Tarımsal 

Alanlar 
0 13 85 10 0 0 108 

Orman ve Yarı 

Doğal Alanlar 
8 8 7 91 9 0 123 

Sulak Alanlar 0 0 0 5 84 3 92 

Suyla Kaplı 

Alanlar 
0 0 0 0 15 101 116 

Toplam 111 105 107 113 108 104 648 

 

4.1.5. Test Alanı 1: Bafra İlçesi MARS-BO Hibrit Sınıflandırma Sonuçları 

Şekil 4.9 Landsat-8 OLI uydu görüntüsüne ait MARS-BO sınıflandırma 

sonucunu göstermektedir. Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-BO 

sınıflandırma sonucu hata matrisi Tablo 4.9’da verilmiştir.  

 

Şekil 4.9 Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-BO sınıflandırma sonucu 
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Tablo 4.9 Bafra ilçesi Landsat-8 OLI uydu görüntüsü MARS-BO sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 85 8 13 10 0 0 116 

Ekilebilir Alanlar 14 79 3 0 0 0 96 

Karışık Tarımsal 

Alanlar 
3 13 83 11 0 0 110 

Orman ve Yarı 

Doğal Alanlar 
9 5 8 87 7 0 116 

Sulak Alanlar 0 0 0 5 91 4 100 

Suyla Kaplı 

Alanlar 
0 0 0 0 10 100 110 

Toplam 111 105 107 113 108 104 648 

 

Şekil 4.10 Sentinel-2A MSI uydu görüntüsüne ait MARS-BO sınıflandırma 

sonucunu göstermektedir. Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS-BO 

sınıflandırma sonucu hata matrisi Tablo 4.10’da verilmiştir.  

 

Şekil 4.10 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS-BO sınıflandırma sonucu 
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Tablo 4.10 Bafra ilçesi Sentinel-2A MSI uydu görüntüsü MARS-BO sınıflandırma sonucu 

hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Ekilebilir 

Alanlar 

Karışık 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Sulak 

Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 91 4 11 5 0 0 111 

Ekilebilir Alanlar 12 80 4 0 0 0 96 

Karışık Tarımsal 

Alanlar 
0 12 85 9 0 0 106 

Orman ve Yarı 

Doğal Alanlar 
8 9 7 94 9 0 127 

Sulak Alanlar 0 0 0 5 84 3 92 

Suyla Kaplı 

Alanlar 
0 0 0 0 15 101 116 

Toplam 111 105 107 113 108 104 648 

 

4.2. Test Alanı 2: Atakum İlçesi Sınıflandırma Sonuçları 

4.2.1. Test Alanı 2:Atakum İlçesi MARS Sınıflandırma Sonuçları 

Şekil 4.11 Landsat-8 OLI uydu görüntüsüne ait MARS sınıflandırma sonucunu 

göstermektedir. Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS sınıflandırma 

sonucu hata matrisi Tablo 4.11’de verilmiştir.  

 

Şekil 4.11 Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS sınıflandırma sonucu 
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Tablo 4.11 Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 77 13 0 13 0 103 

Tarımsal Alanlar 5 82 9 10 0 106 

Orman ve Yarı Doğal 

Alanlar 
4 7 84 3 0 98 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

18 4 13 79 0 114 

Suyla Kaplı Alanlar 0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

Şekil 4.12 Sentinel-2A MSI uydu görüntüsüne ait MARS sınıflandırma 

sonucunu göstermektedir. Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-

BO sınıflandırma sonucu hata matrisi Tablo 4.12’de verilmiştir.  

 

Şekil 4.12 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS sınıflandırma sonucu 
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Tablo 4.12 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS sınıflandırma sonucu 

hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 78 12 0 13 0 98 

Tarımsal Alanlar 8 84 9 8 0 114 

Orman ve Yarı Doğal 

Alanlar 
4 6 85 3 0 98 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

14 4 12 81 0 111 

Suyla Kaplı Alanlar 0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

4.2.2. Test Alanı 2: Atakum İlçesi RF Sınıflandırma Sonuçları 

Şekil 4.13 Landsat-8 OLI uydu görüntüsüne ait RF sınıflandırma sonucunu 

göstermektedir. Atakum ilçesi Landsat-8 OLI uydu görüntüsü RF sınıflandırma 

sonucu hata matrisi Tablo 4.13’te verilmiştir.  

 

Şekil 4.13 Atakum ilçesi Landsat-8 OLI uydu görüntüsü RF sınıflandırma sonucu 
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Tablo 4.13 Atakum ilçesi Landsat-8 OLI uydu görüntüsü RF sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 76 14 0 12 0 102 

Tarımsal Alanlar 7 81 11 10 0 109 

Orman ve Yarı 

Doğal Alanlar 
4 6 82 2 0 94 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık 

Alanlar 

17 5 13 81 0 116 

Suyla Kaplı Alanlar 0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

Şekil 4.14 Sentinel-2A MSI uydu görüntüsüne ait RF sınıflandırma sonucunu 

göstermektedir. Atakum ilçesi Sentinel-2A MSI uydu görüntüsü RF sınıflandırma 

sonucu hata matrisi Tablo 4.14’te verilmiştir.  

 

Şekil 4.14 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü RF sınıflandırma sonucu 
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Tablo 4.14 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü RF sınıflandırma sonucu hata 

matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 78 12 0 8 0 98 

Tarımsal Alanlar 8 84 9 13 0 114 

Orman ve Yarı 

Doğal Alanlar 
4 6 85 3 0 98 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık 

Alanlar 

14 4 12 81 0 111 

Suyla Kaplı Alanlar 0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

4.2.3. Test Alanı 2: Atakum İlçesi MARS-RF Sınıflandırma Sonuçları 

Şekil 4.15 Landsat-8 OLI uydu görüntüsüne ait MARS-RF sınıflandırma 

sonucunu göstermektedir. Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-RF 

sınıflandırma sonucu hata matrisi Tablo 4.15’te verilmiştir.  

 

Şekil 4.15 Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-RF sınıflandırma sonucu 
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Tablo 4.15 Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-RF sınıflandırma sonucu 

hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 77 13 0 12 0 102 

Tarımsal Alanlar 5 82 9 10 0 106 

Orman ve Yarı 

Doğal Alanlar 
4 7 84 2 0 97 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık 

Alanlar 

18 4 13 81 0 116 

Suyla Kaplı Alanlar 0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

Şekil 4.16 Sentinel-2A MSI uydu görüntüsüne ait MARS-RF sınıflandırma 

sonucunu göstermektedir. Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-

RF sınıflandırma sonucu hata matrisi Tablo 4.16’da verilmiştir.  

 

Şekil 4.16 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-RF sınıflandırma sonucu 
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Tablo 4.16 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-RF sınıflandırma sonucu 

hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 78 12 0 8 0 98 

Tarımsal Alanlar 8 84 9 11 0 112 

Orman ve Yarı 

Doğal Alanlar 
4 6 85 3 0 98 

Bitki Örtüsünün 

Az Olduğu veya 

Hiç Olmadığı Açık 

Alanlar 

14 4 12 83 0 113 

Suyla Kaplı 

Alanlar 
0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

4.2.4. Test Alanı 2: Atakum İlçesi MARS-PSO Sınıflandırma Sonuçları 

Şekil 4.17 Landsat-8 OLI uydu görüntüsüne ait MARS-RF sınıflandırma 

sonucunu göstermektedir. Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-PSO 

sınıflandırma sonucu hata matrisi Tablo 4.17’de verilmiştir.  

 

Şekil 4.17 Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-PSO sınıflandırma sonucu 
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Tablo 4.17 Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-PSO sınıflandırma sonucu 

hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 78 13 0 12 0 103 

Tarımsal Alanlar 7 84 10 8 0 109 

Orman ve Yarı 

Doğal Alanlar 
3 9 86 3 0 101 

Bitki Örtüsünün 

Az Olduğu veya 

Hiç Olmadığı Açık 

Alanlar 

16 0 10 82 0 108 

Suyla Kaplı 

Alanlar 
0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

Şekil 4.18 Sentinel-2A MSI uydu görüntüsüne ait MARS-PSO sınıflandırma 

sonucunu göstermektedir. Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-

PSO sınıflandırma sonucu hata matrisi Tablo 4.18’de verilmiştir. 

 

Şekil 4.18 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-PSO sınıflandırma 

sonucu 
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Tablo 4.18 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-PSO sınıflandırma 

sonucu hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 80 12 0 10 0 102 

Tarımsal Alanlar 7 86 8 8 0 109 

Orman ve Yarı 

Doğal Alanlar 
4 7 87 3 0 101 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık 

Alanlar 

13 1 11 84 0 109 

Suyla Kaplı Alanlar 0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

4.2.5. Test Alanı 2: Atakum İlçesi MARS-BO Sınıflandırma Sonuçları 

Şekil 4.19 Landsat-8 OLI uydu görüntüsüne ait MARS-BO sınıflandırma 

sonucunu göstermektedir. Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-BO 

sınıflandırma sonucu hata matrisi Tablo 4.19’da verilmiştir.  

 

Şekil 4.19 Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-BO sınıflandırma sonucu 
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Tablo 4.19 Atakum ilçesi Landsat-8 OLI uydu görüntüsü MARS-BO sınıflandırma sonucu 

hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve 

Yarı Doğal 

Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 78 12 0 11 0 101 

Tarımsal Alanlar 7 85 11 8 0 111 

Orman ve Yarı 

Doğal Alanlar 
6 8 87 3 0 104 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık 

Alanlar 

13 1 8 83 0 105 

Suyla Kaplı Alanlar 0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

Şekil 4.20 Sentinel-2A MSI uydu görüntüsüne ait MARS-BO sınıflandırma 

sonucunu göstermektedir. Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-

BO sınıflandırma sonucu hata matrisi Tablo 4.20’de verilmiştir.  

 

Şekil 4.20 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-BO sınıflandırma sonucu 
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Tablo 4.20 Atakum ilçesi Sentinel-2A MSI uydu görüntüsü MARS-BO sınıflandırma sonucu 

hata matrisi 

  Referans Verisi   

  
Yapay 

Alanlar 

Tarımsal 

Alanlar 

Orman ve Yarı 

Doğal Alanlar 

Bitki Örtüsünün Az 

Olduğu veya Hiç 

Olmadığı Açık Alanlar 

Suyla 

Kaplı 

Alanlar 

Toplam 

Yapay Alanlar 81 12 0 10 0 103 

Tarımsal Alanlar 6 86 8 7 0 107 

Orman ve Yarı 

Doğal Alanlar 
4 8 89 3 0 104 

Bitki Örtüsünün 

Az Olduğu veya 

Hiç Olmadığı Açık 

Alanlar 

13 0 9 85 0 107 

Suyla Kaplı 

Alanlar 
0 0 0 0 101 101 

Toplam 104 106 106 105 101 522 

 

4.3. Sınıflandırma Sonuçlarının Karşılaştırılması  

MARS ve RF tekil sınıflandırıcılar ve MARS-RF, MARS-PSO ve MARS-BO 

hibrit modellerin sınıflandırma sonuçlarının karşılaştırmalı olarak 

değerlendirilebilmesi için tüm yöntemlerin Landsat-8 OLI ve Sentinel-2A MSI uydu 

görüntüsündeki sonuçları aynı tabloda gösterilmiştir. Bu amaçla sınıf bazında 

değerlendirmeler için kullanıcı doğruluğu/kesinlik, üretici doğruluğu/duyarlılık ve F1 

skor doğruluk ölçütlerini kapsayan ve sınıflandırmanın genel doğruluk 

değerlendirmesi için toplam doğruluk, kappa ve makro ortalama F1 skor değerlerni 

kapsayan ayrı tablolar olşturulmuştur. Ayrıca sınıf sayıları ve sınıflar iki çalışma 

alanı için farklılık gösterdiği için ayrı ayrı ele alınmıştır.  

Tablo 4.21’de Bafra İlçesi Landsat-8 OLI ve Sentinel-2A MSI veri setlerinin 

sonuçları kullanıcı doğruluğu/kesinlik, üretici doğruluğu/duyarlılık ve F1 skor olarak 

verilmiştir. 
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Tablo 4.21 Bafra İlçesi Kullanıcı Doğruluğu / Kesinlik, Üretici Doğruluğu / Duyarlılık ve F1 

Skor sonuçları 

    Landsat-8 OLI  Sentinel-2A MSI  

 Sınıf  Yöntem 

Kullanıcı 

Doğruluğu / 

Kesinlik  

Üretici 

Doğruluğu / 

Duyarlılık 

F1 Skor 

Kullanıcı 

Doğruluğu 

/ Kesinlik  

Üretici 

Doğruluğu / 

Duyarlılık 

F1 Skor 

Yapay 

Alanlar 

MARS 0,7069 0,7387 0,7225 0,7627 0,8108 0,7860 

RF 0,7018 0,7207 0,7111 0,7479 0,8018 0,7739 

MARS-RF 0,7069 0,7387 0,7225 0,7563 0,8108 0,7826 

MARS-PSO 0,7281 0,7477 0,7378 0,7913 0,8198 0,8053 

MARS-BO 0,7328 0,7658 0,7489 0,8198 0,8198 0,8198 

Ekilebilir 

Alanlar 

MARS 0,7813 0,7143 0,7463 0,8409 0,7048 0,7668 

RF 0,7835 0,7238 0,7525 0,8462 0,7333 0,7857 

MARS-RF 0,7917 0,7238 0,7562 0,8556 0,7333 0,7897 

MARS-PSO 0,8105 0,7333 0,7700 0,8404 0,7524 0,7940 

MARS-BO 0,8229 0,7524 0,7861 0,8333 0,7619 0,7960 

Karışık 

Tarımsal 

Alanlar 

MARS 0,7143 0,7477 0,7306 0,7373 0,8131 0,7733 

RF 0,7105 0,7570 0,7330 0,7436 0,8131 0,7768 

MARS-RF 0,7232 0,7570 0,7397 0,7500 0,8131 0,7803 

MARS-PSO 0,7411 0,7757 0,7580 0,7870 0,7944 0,7907 

MARS-BO 0,7545 0,7757 0,7650 0,8019 0,7944 0,7981 

Orman 

ve Yarı 

Doğal 

Alanlar 

MARS 0,7391 0,7522 0,7456 0,7632 0,7699 0,7665 

RF 0,7281 0,7345 0,7313 0,7636 0,7434 0,7534 

MARS-RF 0,7391 0,7522 0,7456 0,7699 0,7699 0,7699 

MARS-PSO 0,7288 0,7611 0,7446 0,7398 0,8053 0,7712 

MARS-BO 0,7500 0,7699 0,7598 0,7402 0,8319 0,7833 

Sulak 

Alanlar 

MARS 0,9082 0,8241 0,8641 0,8830 0,7685 0,8218 

RF 0,8889 0,8148 0,8502 0,8710 0,7500 0,8060 

MARS-RF 0,9082 0,8241 0,8641 0,8830 0,7685 0,8218 

MARS-PSO 0,9091 0,8333 0,8696 0,9130 0,7778 0,8400 

MARS-BO 0,9100 0,8426 0,8750 0,9130 0,7778 0,8400 

Suyla 

Kaplı 

Alanlar 

MARS 0,9009 0,9615 0,9302 0,8534 0,9519 0,9000 

RF 0,9000 0,9519 0,9252 0,8390 0,9519 0,8919 

MARS-RF 0,9009 0,9615 0,9302 0,8534 0,9519 0,9000 

MARS-PSO 0,9091 0,9615 0,9346 0,8707 0,9712 0,9182 

MARS-BO 0,9091 0,9615 0,9346 0,8707 0,9712 0,9182 

 

Tablo 4.21 incelendiğinde Bafra İlçesi Yapay Alanlar sınıfı Landsat-8 OLI veri 

seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7069), üretici 

doğruluğu/duyarlılık (0,7387) ve F1 skor (0,7225) sonuçlarını vermiştir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7018), üretici 
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doğruluğu/duyarlılık (0,7207) ve F1 skoru (0,7111) değerleri ile MARS 

algoritmasından biraz daha düşük performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7069) ve üretici 

doğruluğu/duyarlılık (0,7387) ve F1 skor (0,7225) sonuçları tekil MARS 

algoritmasıyla aynı sonuçları vermiştir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7281), üretici 

doğruluğu/duyarlılık (0,7477) ve F1 skor (0,7378) değerleri ile MARS 

algoritmasından daha iyi sonuç vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7328), üretici 

doğruluğu/duyarlılık (0,7658) ve F1 skor (0,7489) ile en yüksek değerlere sahiptir. 

Bafra İlçesi Yapay Alanlar sınıfı Sentinel-2A MSI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7627), üretici 

doğruluğu/duyarlılık (0,8108) ve F1 skor (0,7860) sonuçlarını vermiştir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7479), üretici 

doğruluğu/duyarlılık (0,8018) ve F1 skor (0,7739) değerleri ile MARS 

algoritmasından daha düşük sonuç vermiştir. 

- MARS-RF hibrit modeli, üretici doğruluğu/duyarlılık (0,8108) ve F1 skoru 

(0,7826) ile MARS algoritması ile aynı ve yakın sonuç veriyor, ancak kullanıcı 

doğruluğu/kesinlik (0,7563) değeri MARS algoritmasında daha düşük bir değere 

sahiptir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7913), üretici 

doğruluğu/duyarlılık (0,8198) ve F1 skoru (0,8053) ile en iyi ikinci sonuçları 

vermektedir.  

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8198), üretici 

doğruluğu/duyarlılık (0,8198) ve F1 skor (0,8198) ile en yüksek değerlere sahiptir. 

Bafra İlçesi Ekilebilir Alanlar sınıfı Landsat-8 OLI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7813), üretici 

doğruluğu/duyarlılık (0,7143) ve F1 skor (0,7463) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7835), üretici 

doğruluğu/duyarlılık (0,7238) ve F1 skor (0,7525) ile MARS algoritmasına yakın bir 

performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7917), üretici 

doğruluğu/duyarlılık (0,7238) ve F1 skor (0,7562) ile her iki tekil algoritmadan biraz 

daha iyi sonuç vermektedir. 
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- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8105), üretici 

doğruluğu/duyarlılık (0,7333) ve F1 skor (0,7700) sonucunu vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8229), üretici 

doğruluğu/duyarlılık (0,7524) ve F1 skor (0,7861) ile en yüksek performansa sahip 

modeldir. 

Bafra İlçesi Ekilebilir Alanlar sınıfı Sentinel-2A MSI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,8409), üretici 

doğruluğu/duyarlılık (0,7048) ve F1 skor (0,7668) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,8462), üretici 

doğruluğu/duyarlılık (0,7333) ve F1 skorunda (0,7857) ile MARS algoritmasından 

biraz daha yüksek performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8556), üretici 

doğruluğu/duyarlılık (0,7333) ve F1 skor (0,7897) ile her iki tekil algoritmadan biraz 

daha iyi sonuç vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8404), üretici 

doğruluğu/duyarlılık (0,7524) ve F1 skor (0,7940) sonucunu vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8333), üretici 

doğruluğu/duyarlılık (0,7619) ve F1 skor (0,7960) ile Sentinel-2A MSI veri seti için 

en iyi performansa sahip modeldir. 

Bafra İlçesi Karışık Tarımsal Alanlar sınıfı Landsat-8 OLI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7143), üretici 

doğruluğu/duyarlılık (0,7477) ve F1 skor (0,7306) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7105), üretici 

doğruluğu/duyarlılık (0,7570) ve F1 skor (0,7330) değerleri ile MARS algoritmasına 

yakın bir performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7232), üretici 

doğruluğu/duyarlılık (0,7570) ve F1 skor (0,7397) ile tekil algoritmalarından daha iyi 

sonuç vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7411), üretici 

doğruluğu/duyarlılık (0,7757) ve F1 skor (0,7580) ile en iyi ikinci sonucu 

vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7545), üretici 

doğruluğu/duyarlılık (0,7757) ve F1 skor (0,7650) ile Landsat-8 OLI veri seti için en 

yüksek değerlere sahip modeldir. 
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Bafra İlçesi Karışık Tarımsal Alanlar sınıfı Sentinel-2A MSI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7373), üretici 

doğruluğu/duyarlılık (0,8131) ve F1 skor (0,7733) sonucu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7436), üretici 

doğruluğu/duyarlılık (0,8131) ve F1 skor (0,7768) ile MARS algoritmasından biraz 

daha yüksek performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7500), üretici 

doğruluğu/duyarlılık (0,8131) ve F1 skorunda (0,7803) ile tekil algoritmalara göre 

biraz daha iyi sonuçlar vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7870), üretici 

doğruluğu/duyarlılık (0,7944) ve F1 skor (0,7907) ile güçlü sonuçlar vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8019), üretici 

doğruluğu/duyarlılık (0,7944) ve F1 skor (0,7981) ile Sentinel-2A MSI veri seti için 

en yüksek değerlere sahip modeldir. 

Bafra İlçesi Orman ve Yarı Doğal Alanlar sınıfı Landsat-8 OLI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7391), üretici 

doğruluğu/duyarlılık (0,7522) ve F1 skor (0,7456) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7281), üretici 

doğruluğu/duyarlılık (0,7345) ve F1 skor (0,7313) ile MARS algoritmasından daha 

düşük performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7391), üretici 

doğruluğu/duyarlılık (0,7522) ve F1 skor (0,7456) ile MARS algoritmasıyla aynı 

sonuçları vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7288), üretici 

doğruluğu/duyarlılık (0,7611) ve F1 skor (0,7446) sonucunu vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7500), üretici 

doğruluğu/duyarlılık (0,7699) ve F1 skor (0,7598) ile Landsat-8 OLI veri seti için en 

yüksek değerlere sahip modeldir. 

Bafra İlçesi Orman ve Yarı Doğal Alanlar sınıfı Sentinel-2A MSI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7632), üretici 

doğruluğu/duyarlılık (0,7699) ve F1 skor (0,7665) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7636), üretici 

doğruluğu/duyarlılık (0,7434) ve F1 skor (0,7534) ile MARS algoritmasına yakın 

sonuçlar vermektedir. 
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- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7699), üretici 

doğruluğu/duyarlılık (0,7699) ve F1 skor (0,7699) ile MARS algoritmasından biraz 

daha iyi sonuçlar vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik 0,7398, üretici 

doğruluğu/duyarlılık 0,8053 ve F1 skor 0,7712 sonucunu vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7402), üretici 

doğruluğu/duyarlılık (0,8319) ve F1 skor (0,7833) ile Sentinel-2A MSI veri seti için 

en yüksek değerlere sahip modeldir. 

Bafra İlçesi Sulak Alanlar sınıfı Landsat-8 OLI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,9082), üretici 

doğruluğu/duyarlılık (0,8241) ve F1 skor (0,8641) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,8889), üretici 

doğruluğu/duyarlılık (0,8148) ve F1 skor (0,8502) ile MARS algoritmasından daha 

düşük bir performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,9082), üretici 

doğruluğu/duyarlılık (0,8241) ve F1 skor (0,8641) ile MARS algoritmasıyla aynı 

sonuçları vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,9091), üretici 

doğruluğu/duyarlılık (0,8333) ve F1 skor (0,8696) sonucunu vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,9100), üretici 

doğruluğu/duyarlılık (0,8426) ve F1 skor (0,8750) ile Landsat-8 OLI veri seti için en 

yüksek performansı gösteren modeldir. 

Bafra İlçesi Sulak Alanlar sınıfı Sentinel-2A MSI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,8830), üretici 

doğruluğu/duyarlılık (0,7685) ve F1 skor (0,8218) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,8710), üretici 

doğruluğu/duyarlılık (0,7500) ve F1 skor (0,8060) ile MARS algoritmasından daha 

düşük sonuçlar vermiştir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8830), üretici 

doğruluğu/duyarlılık (0,7685) ve F1 skor (0,8218) ile MARS algoritmasıyla aynı 

sonuçları vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,9130), üretici 

doğruluğu/duyarlılık (0,7778) ve F1 skor (0,8400) ile güçlü sonuçlar vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,9130), üretici 
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doğruluğu/duyarlılık (0,7778) ve F1 skor (0,8400) ile Sentinel-2A MSI veri seti için 

en iyi sonuçları vermektedir. 

Bafra İlçesi Suyla Kaplı Alanlar sınıfı Landsat-8 OLI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,9009), üretici 

doğruluğu/duyarlılık (0,9615) ve F1 skor (0,9302) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,9000), üretici 

doğruluğu/duyarlılık (0,9519) ve F1 skor (0,9252) ile MARS algoritmasından biraz 

daha düşük performans göstermiştir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,9009), üretici 

doğruluğu/duyarlılık (0,9615) ve F1 skor (0,9302) ile MARS algoritmasıyla aynı 

sonuçları vermiştir. 

- MARS-PSO ve MARS-BO hibrit modelleri, kullanıcı doğruluğu/kesinlik 

(0,9091), üretici doğruluğu/duyarlılık (0,9615) ve F1 skor (0,9346) değerleri aynı ve 

en iyi performansı gösteren modellerdir. 

Bafra İlçesi Suyla Kaplı Alanlar sınıfı Sentinel-2A MSI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,8534), üretici 

doğruluğu/duyarlılık (0,9519) ve F1 skor (0,9000) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,8390), üretici 

doğruluğu/duyarlılık (0,9519) ve F1 skor (0,8919) değerleri ile MARS 

algoritmasından daha düşük sonuçlar vermiştir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8534), üretici 

doğruluğu/duyarlılık (0,9519) ve F1 skor (0,9000) ile MARS algoritmasıyla aynı 

sonuçları vermektedir. 

- MARS-PSO ve MARS-BO hibrit modelleri, kullanıcı doğruluğu/kesinlik 

(0,8707), üretici doğruluğu/duyarlılık (0,9712) ve F1 skor (0,9182) değerleri aynı ve 

en iyi performansı gösteren modellerdir. 

Tekil algoritmaların performansları kendi içinde karşılaştırıldığında Yapay 

Alanlar, Sulak Alanlar ve Suyla Kaplı Alanlar için MARS algoritması en iyi 

doğruluk ölçütü değerlerini vermiştir. Ekilebilir Alanlar sınıfı için RF algoritması en 

iyi sonuçları vermektedir. Karışık Tarımsal Alanlar sınıfında ise Landsat-8 OLI veri 

setinde Kullanıcı Doğruluğu / Kesinlik ölçütü MARS algoritmasında daha yüksek 

iken Üretici Doğruluğu / Duyarlılık ve F1 Skor RF algoritmasında daha yüksektir. 

Sentinel-2A MSI veri setinde ise Üretici Doğruluğu / Duyarlılık hem RF hem de 

MARS algoritmasında eşit, Kullanıcı Doğruluğu / Kesinlik ve F1 Skor ölçütlerinde 
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ise RF algoritması daha yüksek sonuç vermiştir. Orman ve Yarı Doğal Alanlar 

sınıfında ise Sentinel-2A MSI veri setinde Kullanıcı Doğruluğu / Kesinlik RF 

algoritmasında, diğer tüm ölçütler ise MARS algoritmasında yüksek değerlere 

sahiptir. 

MARS-RF hibrit modeli tekil MARS algoritmasından genel olarak daha iyi 

veya eşit sonuçlar vermiştir. Hem Landsat-8 OLI hem de Sentinel-2A MSI veri seti 

için en iyi performansı MARS-PSO ve MARS-BO algoritmaları göstermiştir. En iyi 

performansı gösteren MARS-BO hibrit modeli tekil MARS algoritması ile 

karşılaştırıldığında her iki ver seti ve üç ölçüt için ortalama yaklaşık olarak 0,02 artış 

göstermektedir. 

Tablo 4.22 Test alanı 2 olan Atakum İlçesi sınıflandırma sonuçlarını 5 model 

için sınıf bazında vermektedir. Sınıflandırma sonuçları Landsat-8 OLI ve Sentinel-

2A MSI veri setleri için ayrı sütunlarda gösterilmiştir. 
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Tablo 4.22 Atakum İlçesi Kullanıcı Doğruluğu / Kesinlik, Üretici Doğruluğu / Duyarlılık ve 

F1 Skor sonuçları 

    Landsat-8 OLI  Sentinel-2A MSI  

    

Kullanıcı 

Doğruluğu 

/ Kesinlik  

Üretici 

Doğruluğu 

/ 

Duyarlılık 

F1 Skor 

Kullanıcı 

Doğruluğu 

/ Kesinlik  

Üretici 

Doğruluğu 

/ 

Duyarlılık 

F1 Skor 

Yapay 

Alanlar 

MARS 0,7476 0,7404 0,7440 0,7959 0,7500 0,7723 

RF 0,7451 0,7308 0,7379 0,7857 0,7404 0,7624 

MARS-RF 0,7549 0,7404 0,7476 0,7959 0,7500 0,7723 

MARS-PSO 0,7573 0,7500 0,7536 0,7843 0,7692 0,7767 

MARS-BO 0,7723 0,7500 0,7610 0,7864 0,7788 0,7826 

Tarımsal 

Alanlar 

MARS 0,7736 0,7736 0,7736 0,7368 0,7925 0,7636 

RF 0,7431 0,7642 0,7535 0,7477 0,7830 0,7650 

MARS-RF 0,7736 0,7736 0,7736 0,7500 0,7925 0,7706 

MARS-PSO 0,7706 0,7925 0,7814 0,7890 0,8113 0,8000 

MARS-BO 0,7658 0,8019 0,7834 0,8037 0,8113 0,8075 

Orman ve 

Yarı Doğal 

Alanlar 

MARS 0,8571 0,7925 0,8235 0,8673 0,8019 0,8333 

RF 0,8723 0,7736 0,8200 0,8469 0,7830 0,8137 

MARS-RF 0,8660 0,7925 0,8276 0,8673 0,8019 0,8333 

MARS-PSO 0,8515 0,8113 0,8309 0,8614 0,8208 0,8406 

MARS-BO 0,8365 0,8208 0,8286 0,8558 0,8396 0,8476 

Bitki 

Örtüsünün 

Az Olduğu 

veya Hiç 

Olmadığı 

Açık 

Alanlar 

MARS 0,6930 0,7524 0,7215 0,7297 0,7714 0,7500 

RF 0,6983 0,7714 0,7330 0,7281 0,7905 0,7580 

MARS-RF 0,6983 0,7714 0,7330 0,7345 0,7905 0,7615 

MARS-PSO 0,7593 0,7810 0,7700 0,7706 0,8000 0,7850 

MARS-BO 0,7905 0,7905 0,7905 0,7944 0,8095 0,8019 

Suyla 

Kaplı 

Alanlar 

MARS 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

RF 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

MARS-RF 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

MARS-PSO 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

MARS-BO 1,0000 1,0000 1,0000 1,0000 1,0000 1,0000 

 

Tablo 4.22 incelendiğinde Atakum İlçesi Yapay Alanlar sınıfı Landsat-8 OLI 

veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7476), üretici 

doğruluğu/duyarlılık (0,7404) ve F1 skor (0,7440) sonucunu vermiştir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7451), üretici 

doğruluğu/duyarlılık (0,7308) ve F1 skor (0,7379) ile MARS algoritmasından biraz 

daha düşük performans sergilemektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7549), üretici 

doğruluğu/duyarlılık (0,7404) ve F1 skor (0,7476) ile MARS ve RF 
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algoritmalarından biraz daha iyi sonuç vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7573), üretici 

doğruluğu/duyarlılık (0,7500) ve F1 skor (0,7536) sonucunu vermiştir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7723), üretici 

doğruluğu/duyarlılık (0,7500) ve F1 skor (0,7610) ile en yüksek doğruluk ölçütü 

değerlerine sahip modeldir. 

Atakum İlçesi Yapay Alanlar sınıfı Sentinel-2A MSI veri seti için; 

 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7959), üretici 

doğruluğu/duyarlılık (0,7500) ve F1 skor (0,7723) sonuç vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7857), üretici 

doğruluğu/duyarlılık (0,7404) ve F1 skor (0,7624) ile MARS algoritmasından daha 

düşük sonuçlar vermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7959), üretici 

doğruluğu/duyarlılık (0,7500) ve F1 skor (0,7723) ile MARS algoritmasıyla aynı 

sonuçları vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7843), üretici 

doğruluğu/duyarlılık (0,7692) ve F1 skor (0,7767) sonucunu vermiştir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7864), üretici 

doğruluğu/duyarlılık (0,7788) ve F1 skor (0,7826) ile en yüksek doğruluk ölçütü 

değerlerine sahip modeldir. 

Atakum İlçesi Tarımsal Alanlar sınıfı Landsat-8 OLI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7736), üretici 

doğruluğu/duyarlılık (0,7736) ve F1 skor (0,7736) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7431), üretici 

doğruluğu/duyarlılık (0,7642) ve F1 skor (0,7535) ile MARS algoritmasından daha 

düşük performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7736), üretici 

doğruluğu/duyarlılık (0,7736) ve F1 skor 0.7736 ile MARS algoritmasıyla aynı 

sonuçları vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7706), üretici 

doğruluğu/duyarlılık (0,7925) ve F1 skor (0,7814) ile en iyi ikinci sonucu 

vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7658), üretici 
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doğruluğu/duyarlılık (0,8019) ve F1 skor (0,7834) ile en yüksek doğruluk ölçütü 

değerlerine sahip modeldir. 

Atakum İlçesi Tarımsal Alanlar sınıfı Sentinel-2A MSI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7368), üretici 

doğruluğu/duyarlılık (0,7925) ve F1 skor (0,7636) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7477), üretici 

doğruluğu/duyarlılık (0,7830) ve F1 skor (0,7650) ile MARS algoritmasından biraz 

daha iyi performans sergilemektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7500), üretici 

doğruluğu/duyarlılık (0,7925) ve F1 skor 0,7706 ile MARS algoritmasından biraz 

daha iyi sonuç vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7890), üretici 

doğruluğu/duyarlılık (0,8113) ve F1 skor (0,8000) ile güçlü sonuçlar vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8037), üretici 

doğruluğu/duyarlılık (0,8113) ve F1 skor (0,8075) ile en yüksek doğruluk ölçütü 

değerlerine sahip modeldir. 

Atakum İlçesi Orman ve Yarı Doğal Alanlar sınıfı Landsat-8 OLI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,8571), üretici 

doğruluğu/duyarlılık (0,7925) ve F1 skor (0,8235) sonucunu vermektedir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,8723), üretici 

doğruluğu/duyarlılık (0,7736) ve F1 skor (0,8200) ile MARS algoritmasına yakın 

sonuçlar vermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8660), üretici 

doğruluğu/duyarlılık (0,7925) ve F1 skor (0,8276) ile MARS algoritmasından daha 

iyi sonuç vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8515), üretici 

doğruluğu/duyarlılık (0,8113) ve F1 skor (0,8309) ile güçlü sonuçlar vermektedir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8365), üretici 

doğruluğu/duyarlılık (0,8208) ve F1 skor (0,8286) ile en yüksek doğruluk ölçütü 

değerlerine sahip modeldir. 

Atakum İlçesi Orman ve Yarı Doğal Alanlar sınıfı Sentinel-2A MSI veri seti 

için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,8673), üretici 

doğruluğu/duyarlılık (0,8019) ve F1 skor (0,8333) sonucunu vermektedir. 
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- RF algoritması, kullanıcı doğruluğu/kesinlik (0,8469), üretici 

doğruluğu/duyarlılık (0,7830) ve F1 skor (0,8137) ile MARS algoritmasından daha 

düşük performans göstermektedir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8673), üretici 

doğruluğu/duyarlılık (0,8019) ve F1 skor (0,8333) ile MARS algoritmasıyla aynı 

sonuçları vermektedir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8614), üretici 

doğruluğu/duyarlılık (0,8208) ve F1 skor (0,8406) sonucunu vermiştir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,8558), üretici 

doğruluğu/duyarlılık (0,8396) ve F1 skor (0,8476) ile en yüksek doğruluk ölçütü 

değerlerine sahip modeldir. 

Atakum İlçesi Bitki Örtüsünün Az Olduğu veya Hiç Olmadığı Açık Alanlar 

sınıfı Landsat-8 OLI veri seti için;  

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,6930), üretici 

doğruluğu/duyarlılık (0,7524) ve F1 skor (0,7215) sonucunu vermiştir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,6983), üretici 

doğruluğu/duyarlılık (0,7714) ve F1 skor (0,7330) ile MARS algoritmasından biraz 

daha iyi sonuç vermiştir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,6983), üretici 

doğruluğu/duyarlılık (0,7714) ve F1 skor (0,7330) ile RF algoritmasıyla aynı 

sonuçları vermiştir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7593), üretici 

doğruluğu/duyarlılık (0,7810) ve F1 skor (0,7700) sonucunu vermiştir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7905), üretici 

doğruluğu/duyarlılık (0,7905) ve F1 skor (0,7905) ile en yüksek doğruluk ölçütü 

değerlerine sahip modeldir. 

Atakum İlçesi Bitki Örtüsünün Az Olduğu veya Hiç Olmadığı Açık Alanlar 

sınıfı Sentinel-2A MSI veri seti için; 

- MARS algoritması, kullanıcı doğruluğu/kesinlik (0,7297), üretici 

doğruluğu/duyarlılık (0,7714) ve F1 skor (0,7500) sonucunu vermiştir. 

- RF algoritması, kullanıcı doğruluğu/kesinlik (0,7281), üretici 

doğruluğu/duyarlılık (0,7905) ve F1 skor (0,7580) ile MARS algoritmasından daha 

iyi sonuçlar vermiştir. 

- MARS-RF hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7345), üretici 
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doğruluğu/duyarlılık (0,7905) ve F1 skor (0,7615) ile tekil MARS ve RF 

algoritmalarından biraz daha iyi sonuç vermiştir. 

- MARS-PSO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7706), ), üretici 

doğruluğu/duyarlılık (0,8000) ve F1 skor (0,7850) ile güçlü sonuçlar vermiştir. 

- MARS-BO hibrit modeli, kullanıcı doğruluğu/kesinlik (0,7944), üretici 

doğruluğu/duyarlılık (0,8095) ve F1 skor (0,8019) ile en yüksek doğruluk ölçütü 

değerlerine sahip modeldir. 

Atakum İlçesi Suyla Kaplı Alanlar sınıfı Landsat-8 OLI ve Sentinel-2A MSI 

veri seti için; 

- MARS, RF, MARS-RF, MARS-PSO ve MARS-BO modellerinde kullanıcı 

doğruluğu/kesinlik, üretici doğruluğu/duyarlılık ve F1 skor 1,0000 değerini vermiştir. 

Suyla Kaplı Alanlar sınıfının, sınıflandırma doğruluğu genellikle yüksek doğrulukta 

elde edilmektedir, bu çalışmada da bu sonuç elde edilmiştir. 

Tekil algoritmalar kendi içinde karşılaştırıldığında Yapay Alanlar için MARS 

algoritması en iyi doğruluk ölçütü değerlerini vermiştir. Tarımsal Alanlar Landsat-8 

OLI veri setinde MARS algoritması en yüksek sonuçları verirken, Sentinel-2A MSI 

veri seti için kullanıcı doğruluğu/kesinlik ve F1 skoru RF algoritmasında, üretici 

doğruluğu/duyarlılık ise MARS algoritmasında az farkla yüksek sonuç vermiştir. 

Orman ve Yarı Doğal Alanlar sınıfı Sentinel-2A MSI veri seti için MARS 

algoritması en yüksek doğruluk ölçüt değerlerine sahipken, Landsat-8 OLI veri seti 

için kullanıcı doğruluğu/kesinlik RF algoritmasında, üretici doğruluğu/duyarlılık ve 

F1 skor ise MARS algoritmasında daha yüksek sonuç vermiştir. Bitki Örtüsünün Az 

Olduğu veya Hiç Olmadığı Açık Alanlar Landsat-8 OLI veri seti için RF algoritması 

en yüksek değerlere sahipken, Sentinel-2A MSI veri setinde kullanıcı 

doğruluğu/kesinlik MARS algoritmasında, üretici doğruluğu/duyarlılık ve F1 skor 

değerleri RF algoritmasında daha yüksek sonuç vermiştir. 

MARS-RF hibrit modeli tekil MARS algoritmasından genel olarak daha iyi 

veya eşit sonuçlar vermiştir. Hem Landsat-8 OLI hem de Sentinel-2A MSI veri seti 

için en iyi performansı MARS-PSO ve MARS-BO algoritmaları göstermiştir. En iyi 

performansı gösteren MARS-BO hibrit modeli tekil MARS algoritması ile 

karşılaştırıldığında her iki ver seti ve üç ölçüt için ortalama yaklaşık olarak 0,03 artış 

göstermektedir. 

Tablo 4.23’te Bafra ve Atakum ilçeleri için Landsat-8 OLI ve Sentinel-2A MSI 

veri setlerinin sınıflandırılmasında Toplam Doğruluk, Kappa ve makro ortalama ile 
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hesaplanan F1 skor ölçütleri verilmiştir. 

Tablo 4.23 Bafra ve Atakum ilçeleri için Landsat-8 OLI ve Sentinel-2A MSI veri setlerinin 

sınıflandırılmasında Toplam Doğruluk, Kappa ve makro ortalama ile 

hesaplanan F1 skor sonuçları 

    Landsat-8 OLI  Sentinel-2A MSI  

    
Toplam 

Doğruluk 
Kappa F1 Skor 

Toplam 

Doğruluk 
Kappa F1 Skor 

Bafra 

MARS %78,86 0,7542 0,7899 %80,25 0,7629 0,8024 

RF %78,24 0,7388 0,7839 %79,78 0,7574 0,7979 

MARS-RF %79,17 0,7499 0,7931 %80,71 0,7685 0,8074 

MARS-PSO %80,09 0,7610 0,8024 %81,94 0,7833 0,8199 

MARS-BO %81,02 0,7792 0,8116 %82,56 0,7907 0,8259 

Atakum 

MARS %81,03 0,7629 0,8125 %82,18 0,7773 0,8239 

RF %80,65 0,7581 0,8089 %81,80 0,7725 0,8198 

MARS-RF %81,42 0,7677 0,8164 %82,57 0,7821 0,8275 

MARS-PSO %82,57 0,7821 0,8272 %83,91 0,7988 0,8405 

MARS-BO %83,14 0,7892 0,8327 %84,67 0,8084 0,8479 

 

Tablo 4.23 incelendiğinde Bafra ilçesi Landsat-8 OLI veri seti için; 

- MARS (%78,86) ve RF (%78,24) birbirine oldukça yakın toplam doğruluk 

değerine sahiptir. Ancak hibrit yöntemler daha iyi performans göstermektedir; 

MARS-RF (%79,17) ve MARS-PSO (%80,09) hibrit modelleri MARS ve RF 

algoritmalarına göre daha yüksek toplam doğruluk sağlamıştır. En yüksek toplam 

doğruluk ise MARS-BO (%81.02) hibrit modeliyle elde edilmiştir. 

- MARS-BO hibrit modeli 0,7792 kappa değeriyle en yüksek sonucu vermiştir. 

MARS-PSO (0,7610) ve MARS-RF (0,7499) hibrit modelleri de RF (0,7388) ve 

MARS (0,7542) algoritmalarına göre daha iyi sonuçlar sunmuştur. 

- MARS-BO hibrit modeli 0,8116 ile en yüksek F1 skorunu vermektedir. 

MARS-PSO (0,8024) ve MARS-RF (0,7931) hibrit modelleri de MARS (0,7899) ve 

RF (0,7839) algoritmalarına göre daha yüksek sonuçlar vermiştir. 

Bafra ilçesi Sentinel-2 MSI veri seti için; 

- En yüksek toplam doğruluk MARS-BO (%82,56) hibrit modeli ile elde 

edilmiştir. MARS-PSO (%81,94) ve MARS-RF (%80,71) hibrit modelleri de MARS 

(%80,25) ve RF (%79,78) algoritmalarına göre daha yüksek toplam doğruluk 

sağlamaktadır. 

- MARS-BO (0,7907) hibrit modeli en yüksek kappa değerine sahiptir. MARS-

PSO (0,7833) ve MARS-RF (0,7685) hibrit modelleri MARS (0,7629) ve RF 

(0,7574) yöntemlerine göre daha iyi sonuçlar vermektedir. 
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- MARS-BO hibrit modeli 0,8259 ile en yüksek F1 skoruna sahiptir. MARS-

PSO (0,8199) ve MARS-RF (0,8074) hibrit modelleri MARS (0,8024) ve RF 

(0,7979) yöntemlerine göre daha iyi performans göstermektedir. 

Atakum ilçesi Landsat-8 OLI veri seti için; 

- MARS-BO hibrit modeli en yüksek toplam doğruluğu (%83,14) vermektedir. 

MARS-PSO (%82,57) ve MARS-RF (%81,42) hibrit modelleri MARS (%81,03) ve 

RF (%80,65) algoritmalarına göre daha iyi sonuçlar vermiştir. 

- En yüksek kappa değeri yine MARS-BO (0,7892) hibrit modeli ile elde 

edilmiştir. MARS-PSO (0,7821) ve MARS-RF (0,7677) hibrit modelleri ile MARS 

(0,7629) ve RF (0,7581) yöntemlerine göre daha iyi kappa değerleri gözlemlenmiştir. 

- En yüksek F1 skoru MARS-BO (0,8327) hibrit modeli ile elde edilmiştir. 

MARS-PSO (0,8272) ve MARS-RF (0,8164) hibrit modelleri MARS (0,8125) ve RF 

(0,8089) yöntemlerine göre daha iyi performans gözlemlenmiştir. 

Atakum ilçesi Sentinel-2 MSI veri seti için; 

- En yüksek toplam doğruluk MARS-BO (%84,67) hibrit modeli ile elde 

edilmiştir. MARS-PSO (%83,91) ve MARS-RF (%82,57) hibrit modelleri MARS 

(%82,18) ve RF (%81,80) yöntemlerine göre daha iyi sonuçlar sunmuştur. 

- En yüksek kappa değeri MARS-BO (0,8084) hibrit modeli ile elde edilmiştir. 

MARS-PSO (0,7988) ve MARS-RF (0,7821) hibrit modelleri yine MARS (0,7773) 

ve RF (0,7725) yöntemlerine göre daha yüksek performans göstermektedir. 

- En yüksek F1 skoru yine MARS-BO (0,8479) hibrit modelinde elde 

edilmiştir. MARS-PSO (0,8405) ve MARS-RF (0,8275) hibrit modelleri MARS 

(0,8239) ve RF (0,8198) yöntemlerine göre daha iyi F1 skor değerine sahiptir. 

Bu çalışmanın temel sınıflandırıcısı olan MARS algoritması ve bu algoritmaya 

dayalı hibrit yaklaşımlar karşılaştırıldığında, hibrit yaklaşımların sınıflandırma 

doğruluğu daha yüksektir. Tablo 4.23 incelendiğinde, üç doğruluk ölçütünün de 

hibrit modellerin tekil sınıflandırıcılardan daha iyi performansa sahip olduklarını 

görülmektedir. Hibrit modeller kendi içinde kıyaslandığında ise optimizasyon 

algoritmalarının kullanıldığı hibrit modeller (MARS-PSO ve MARS-BO), MARS 

algoritmasının RF algoritması ile hibrit yaklaşımını sunan MARS-RF modelinden 

daha iyi performansa sahiptir. MARS-BO ve MARS-PSO modelleri arasındaki fark 

çok az olmakla birlikte MARS-BO modeli daha iyi bir performansa sahiptir.  
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4.4. MARS Algoritmasına Dayalı Hibrit Sınıflandırma Modellerinin 

Katkıları ve Kısıtları 

Gelişen teknoloji ile arazi üzerinde yapılan maliyetli ve zaman alan çalışmalar 

yerine, uydu görüntülerinin sınıflandırılması daha yüksek doğrulukta, çok daha 

ekonomik ve hızlı şekilde gerçekleştirilebilir. Ayrıca, farklı sınıflandırıcılar aynı 

çalışma alanı için farklı sonuçlar verebilir fakat tek bir sınıflandırıcı tüm sınıflar için 

en iyi performansı gösteremez. Başka bir deyişle, her bir sınıflandırma yönteminin 

kendine özgü güçlü yanları ve kısıtları vardır, farklı sınıflandırıcıların güçlü yanları 

kullanılarak sınıflandırma doğruluğu arttırılabilir. Bu amaç doğrultusunda, 

sınıflandırma doğruluğunun arttırılması ve daha güvenilir sonuçların elde edebilmesi 

için yeni yaklaşımlar araştırılmaktadır. Bu çalışmalar, sınıflandırma performansını 

arttırmak için hibrit yaklaşımlara odaklanmıştır. 

MARS algoritması tıp, biyoloji, ekonomi alanında kullanılmasına rağmen 

görüntü sınıflandırma alanında yeni bir yöntemdir. Yeryüzündeki doğal ve yapay 

nesneler, doğrusal olmayan davranış sergiler ve bağımlı değişkenleri etkileyen birçok 

bağımsız değişken bulunmaktadır, bu nedenle parametrik olmayan regresyon 

modelleri yeryüzü araştırmalarına adapte edildiğinde daha başarılı sonuçlar 

vermektedir. MARS, bağımsız değişkenlerin belirli aralıkları için farklı ilişkiler 

ortaya koyarak, daha esnek modeller oluşturulmasını sağlar. MARS algoritmasının 

bu güçlü yönlerini başka algoritmaların avantajları ile birleştirerek, sınıflandırma 

doğruluğunu arttırılabilir. Bu bağlamda, bu tez çalışmasında MARS algoritmasına 

dayalı hibrit yöntemler geliştirilmiş ve MARS-RF, MARS-PSO ve MARS-BO 

olarak adlandırılan üç yaklaşım sunulmuştur. 

MARS ve RF algoritmalarının sonuçları incelendiğinde üç doğruluk ölçütü de 

birbirine çok yakın olarak elde edilmiştir. Literatürde arazi örtüsü/kullanımı analizi 

açısından MARS ve RF algoritmalarının karşılaştırılması olmasa da, tıp, çevre 

alanlarında regresyon analizi karşılaştırmalarında çoğunlukla MARS algoritması 

daha iyi performans sağlamıştır, ama bazılarında ise RF daha iyi performans 

göstermiştir (Yao et al., 2013; Zabihi et al., 2016; Hamidi et al., 2018).  

Bu çalışmada önerilen ilk hibrit model olan MARS-RF modeli, hibrit 

sınıflandırma tekniklerinden paralel kombinasyon yöntemi ile oluşturulmuş olup 

modelin performansı toplam doğruluk, kappa istatistiği ve F1 skor ile 

değerlendirilmiştir. Hem iki çalışma alanında hem de iki veri setinde MARS-RF 

modelinin daha yüksek doğruluğa sahip olduğu görülmüştür. Her ne kadar MARS ve 
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RF tekil sınıflandırma sonuçları toplam doğruluk, kappa ve F1 skor değerleri 

bakımından birbirine yakın olsa da, belirlenen karar kuralına göre her bir sınıfın 

performansı ayrı olarak dikkate alındığı için MARS-RF hibrit modeli sınıflandırma 

doğruluğunu arttırmış, farklı sınıflandırıcıların hibrit kullanımına dair örnek 

oluşturmuştur. 

Ayrıca görüntü sınıflandırma analizinde iyi performansa sahip MARS 

algoritması, optimizasyon yöntemleri ile birlikte kullanımı da performansı arttırıcı 

bir etki yapmaktadır. Birçok yüksek performansı sınıflandırıcı gibi MARS 

algoritmasında da kullanıcının belirlediği parametreler bulunmaktadır, algoritmada 

bu parametrelerin seçimi performansı doğrudan etkilemektedir. Bu nedenle 

parametre seçimi önemli bir unsurdur ve optimizasyon yöntemleri en uygun 

parametre seçiminde kullanılan ve iyi sonuçlar veren yöntemlerdir. MARS 

algoritması parametreleri kullanıcı tarafından belirlenmektedir ve zamanla literatürde 

bu parametreler için alt ve üst sınırlar oluşmaya başlamıştır. Fakat temel fonksiyon 

sayısı ve ceza parametresi gibi değerlerin kullanıcı tarafından belirlenmesi her zaman 

en uygun sonucu vermemektedir. Bu nedenle, bu parametrelerin belirlenmesinde ek 

bir yöntem olarak optimizasyon yöntemi kullanılmasıyla algoritmadaki bu kısıtın 

giderilmesi hedeflenmiştir. Çalışma kullanılan PSO ve BO tekniklerine parametreler 

için alt ve üst sınırlar verilerek, iterasyonlarla en uygun değerlerin bulunması 

sağlanmıştır. Bu tez çalışmasında, MARS algoritmasının PSO ve BO optimizasyon 

teknikleri ile sırasıyla MARS-PSO ve MARS-BO modelleri geliştirilmiştir. 

Parametrelerin optimizasyonuna yönelik iki algoritmanın performansı 

karşılaştırıldığında MARS-BO modelinin daha iyi sonuç verdiği görülmektedir. Her 

iki algoritmanın da performansı iyi olmakla beraber literatür incelendiğinde BO 

algoritması PSO algoritmasına göre daha iyi performansa sahip olduğu birçok 

çalışma görülmektedir (Snoek et al., 2012; Frazier, 2018; Tani and Veelken, 2024). 

MARS algoritması, bağımsız değişkenlerin karmaşık ilişkilerini modelleme 

kabiliyeti ve doğrusal olmayan yapıları yakalama yeteneği ile öne çıkar. Bu 

özellikleri sayesinde, uydu görüntülerinin sınıflandırılmasında yüksek doğruluk 

oranları elde edilir. MARS algoritmasının avantajları ve kısıtları, uydu görüntülerinin 

hibrit sınıflandırılmasında yeni modeller oluşturma potansiyelini göstermektedir. 

Gelecekteki çalışmalarda, MARS algoritmasına dayalı hibrit modellerin, uydu 

görüntü analizinde sıklıkla kullanılan bir araç haline gelmesi beklenmektedir. Bu da 

araştırmacılara daha kapsamlı ve güvenilir analizler yapma olanağı sunacaktır. 
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MARS tabanlı hibrit modellerin uydu görüntü analizinde yaygınlaşması, özellikle 

değişkenlik gösteren ve karmaşık yapıları olan coğrafi alanlarda daha doğru sonuçlar 

elde edilmesine katkı sağlayacaktır. Böylece, arazi kullanım değişikliklerinin 

izlenmesi, çevresel etkilerin değerlendirilmesi ve doğal kaynak yönetimi gibi 

alanlarda daha etkili çözümler sunulacaktır. 
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5. SONUÇ VE ÖNERİLER 

Mekânsal analizlerde uydu görüntüsü sınıflandırması, yaygın ve etkili bir 

yöntem olarak öne çıkmaktadır. Mevcut durumun tespiti, değişimlerin izlenmesi, 

planlama ve modelleme gibi pek çok araştırmada sınıflandırma analizi önemli bir rol 

oynamaktadır. Günümüzde uydu görüntülerinin sınıflandırma analizine yönelik 

araştırmalar hız kesmeden devam etmekte ve bu alandaki gelişim sürekli olarak 

ilerlemektedir. Son yıllarda, daha güvenilir ve doğru sonuçlar elde etmek amacıyla 

farklı algoritmaların güçlü yönlerini birleştiren hibrit yaklaşımlar geliştirilmektedir. 

Hibrit yaklaşımlar, çeşitli sınıflandırıcıların birlikte kullanılması veya optimizasyon 

tekniklerinin sınıflandırıcılara entegre edilmesi yoluyla elde edilir. Bu tür hibrit 

yöntemler, farklı sınıflandırma algoritmalarının avantajlarını bir araya getirerek 

sınıflandırma doğruluğunu arttırmakta ve mekânsal analizlerde daha kapsamlı 

sonuçlara ulaşılmasına katkı sağlamaktadır. 

Hibrit modeller, farklı algoritmaların güçlü yönlerini birleştirerek sınıflandırma 

doğruluğunu arttırır ve karmaşık arazi örtüsü türlerinin daha hassas bir şekilde 

tanımlanmasını sağlar. Bu amaç doğrultusunda, MARS algoritması hibrit model 

geliştirmede yüksek potansiyele sahip bir yöntem olarak öne çıkmaktadır. Bu 

çalışmada hibrit yöntemlerin oluşturulmasında iki temel yaklaşım benimsenmiştir: 

farklı sınıflandırma yöntemlerinin birleştirilmesi ve optimizasyon tekniklerinin 

kullanılması. Bu amaçla MARS algoritmasına dayalı olarak MARS-RF, MARS-PSO 

ve MARS-BO olmak üzere üç hibrit model geliştirilmiştir.  

MARS-RF hibrit modeli, MARS algoritması ile RF algoritmasının paralel 

kombinasyon tekniğiyle entegre edilmesiyle oluşturulmuştur. MARS ve RF 

algoritmalarının avantajları ve kısıtları incelenerek hibrit kullanımda doğruluğun 

arttırılabileceği ön görülmüştür. MARS algoritmasında görülen aşırı uyum problemi, 

RF algoritmasında bulunmamaktadır. Aynı zamanda RF algoritmasının karşılaştığı 

uygun değişken seçimi zorluğu, MARS algoritmasının değişkenler arasındaki 

etkileşimi dikkate alarak en uygun değişkenleri seçme özelliği ile aşılabilmektedir. 

Bu avantaj ve kısıtlar doğrultusunda, MARS ve RF algoritmalarının sınıflandırma 

sonuçları birleştirilerek kısıtların etkisini en aza indirmek ve daha yüksek doğruluk 

sağlamak amacıyla bir hibrit model geliştirilmiştir. 

MARS algoritması incelendiğinde en uygun temel fonksiyon sayısı ve ceza 

parametresi belirleme kısıtı bulunmaktadır. Bu parametreler optimizasyon 
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yöntemleriyle belirlenebilir. Optimizasyon, amaç fonksiyonunu maksimum veya 

minimum değere ulaştıran parametreleri belirlemek için bir dizi işlemin 

uygulanmasıdır. Bu çalışmada iki farklı optimizasyon tekniği kullanılarak hibrit 

model oluşturulmuştur. MARS algoritmasının parametrelerini optimize etmek 

amacıyla PSO ve BO teknikleri kullanılarak sırasıyla MARS-PSO ve MARS-BO 

hibrit sınıflandırma modelleri geliştirilmiştir. 

MARS, RF, MARS-RF, MARS-PSO ve MARS-BO olmak üzere beş modelin 

performanslarını değerlendirmek amacıyla iki farklı çalışma alanı ve iki ayrı uydu 

veri seti kullanılmıştır. Sınıflandırma işlemleri, RStudio ve MATLAB yazılımları 

aracılığıyla gerçekleştirilmiştir. Modellerin performansını detaylı bir şekilde 

karşılaştırmak için, her sınıf özelinde kullanıcı doğruluğu/kesinlik, üretici 

doğruluğu/duyarlılık ve F1 skoru gibi ölçütler dikkate alınmıştır. Genel model 

karşılaştırmasında ise toplam doğruluk, kappa değeri ve makro ortalama F1 skoru 

gibi ölçütler kullanılmıştır. 

Sonuçlar, hibrit modellerin tek başına kullanılan algoritmalara göre daha 

yüksek doğruluk sağladığını göstermektedir. Özellikle optimizasyon teknikleriyle 

desteklenen hibrit modellerin, sınıflandırma doğruluğunu önemli ölçüde artırdığı 

gözlemlenmiştir. Bu durum, algoritma parametrelerinin optimize edilmesinin 

sınıflandırma sonuçları üzerindeki olumlu etkisini vurgulamaktadır. Özellikle 

MARS-BO modeli, toplam doğruluk, kappa değeri ve F1 skoru gibi kritik ölçütlerde 

en yüksek performansa ulaşarak, MARS algoritmasının optimizasyon teknikleri ile 

entegre edilmesinin uydu görüntüleri sınıflandırma analizlerinde güçlü ve etkili bir 

yöntem olduğunu ortaya koymuştur. Bu sonuçlar, MARS algoritmasının hibrit 

modellerle desteklenmesinin, uydu görüntülerinin sınıflandırmasında daha doğru ve 

güvenilir sonuçlar elde etmede potansiyel bir çözüm sunduğunu kanıtlamaktadır. 

Hibrit yaklaşımlar daha doğru ve kapsamlı bilgi elde etmek için araştırmacılara 

ve uygulayıcılara önemli bir araç sağlanmıştır. Hibrit model geliştirme hem farklı 

sınıflandırıcı kullanılabilmesi hem de birden fazla sınıflandırıcı/optimizasyon 

kullanılabilmesi açısından esneklik sunmaktadır. Hibrit modellerin farklı coğrafi 

alanlar ve arazi örtüsü/kullanımı çeşitlilikleri üzerinde test edilmesi, yüksek doğruluk 

sağlama potansiyelini desteklemektedir. Bu bağlamda ilerleyen çalışmalarda MARS 

algoritmasına dayalı farklı sınıflandırıcı ve/veya optimizasyon teknikleri kullanılarak 

sınıflandırma doğruluğu arttırma amacıyla çalışmalar devam etmelidir.  
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