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OZET

DERIN OGRENME MIMARILERI iLE MR TARAMALARINDAN OMURILIiGIN
OTOMATIK BOLUTLENMESI VE MS LEZYONLARININ AYIRICI TANISI

Insan omuriligi, merkezi sinir sisteminin oldukga organize ve karmasik bir pargasidir ve
islevi noral sinyallerin beyinden (duyusal bilgi) periferik sinir sistemine (motor bilgisi) ve
periferik sinir sistemden beyne iletilmesini saglamaktir. MS (Multipl Skleroz), omurilikte
meydana geldiginde beynin, omuriligin ve optik sinirin beyaz ve gri maddesini etkiler.
MS hastaliginin erken teshisi, hastalifin ilerlemesini yavaglatmak ve semptomlarin
kontrol altina alinmasini saglamak agisindan biiylik 6nem tasir. Erken donemde dogru
tedaviye baslamak, hastaligin daha agir ataklar yapmasini engelleyebilir ve hastanin
yasam kalitesini artirabilir. Bu sayede, MS'in ilerlemesini durdurmak ya da yavaslatmak
miimkiin olabilir. MS hastaliginin teshisinde klinik semptom/bulgular, beyin omurilik
sivist incelemeleri, uyarilmis potansiyeller ve Manyetik Rezonans Goriintiileme (MRG)
bulgular1 kullanilmaktadir. Ozellikle, MRG’nin kullaniminin yayginlasmasi ve bilgisayar
destekli sistemlerin gelismesi, MS hastaliginin tanis1 ve takibinde Onemli katkilar
saglamistir. Diger taraftan, basta derin 6grenme modelleri olmak {izere, yapay zeka
algoritmalar1 ile MR goriintiilerinden omuriligin boliitlenmesi ve omurilik bolgesinde MS
lezyonlar1 bulunup bulunmadigina dayanan calismalar da son yillarda oldukca One
cikmistir. Ancak yine de, bu ve benzeri ¢alismalar belli oranda basarima ulasmis olsalar
da, wveriseti boyutunun kiiciikligiinden kaynaklt veri miktarinin azligt ve MS
lezyonlarinin oldukga kiiclik bir hacme sahip olmasi gibi nedenlerden dolay1 yapilan

calismalarda MS tespitinde basarimin diisiik oldugu goriilmektedir.

Bu tez calismasinda, derin 6grenme ile aksiyel ve sagital gibi farkli diizlemlerden alinan
T2-agirlikli MR goriintiileri {lizerinde servikal omurilik kesit alan1 (OKA), ve beyin
omurilik sivisi (BOS) alanlarinin boliitlenmesi ve omurilikte olusan MS lezyonlarinin
ayirici tanist gerceklestirilmistir. Calisma kapsaminda, dncelikle, Akdeniz Universitesi
Hastanesinden temin edilen servikal omurilik bodlgesi MR verileri ile servikal omurilik
bolgesi/kesit alan1 (OKA), BOS alant ve omurilik simirlar1 igerisinde bulunan MS
lezyonlarinin béliitleme islemlerini gergeklestirmek igin bir veriseti hazirlanmistir. Bu
veriseti iizerinde, U-Net mimarisi tabanli gelistirilen olan FractalSpiNet, Con-
FractalSpiNet ve Att-FractalSpiNet mimarileri kullanilarak, sagital ve aksiyel
diizlemlerdeki MR goriintiilerinde, omurilik ve beyin omurilik sivist alanlarinin
boliitlenmesi saglanarak, omurilik sinirlar igerisinde bulunan MS lezyonlar1 da tespit

edilmigtir. Ayrica Onerilen mimarilerle elde edilen sonuclar, Att U-Net (Attention U-Net),
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Res U-Net (Residual U-Net) ve Att-Res U-Net (Attention Residual U-Net) olmak iizere

karma mimariler ile de karsilastirilmistir.

Tez calismasinda, ayrica hazirlanan servikal omurilik verisetinde boliitlenmesi istenen
alanlarin maskeleme islemleri i¢in omurilik aksiyel OKA/BOS, omurilik aksiyel MS ve
omurilik sagital MS veri alt gruplari olusturulmustur. Hazirlanan servikal omurilik
veriseti lizerinde omurilik alaninin béliitlenmesi ve MS lezyonlarinin tespit edilmesi i¢in,
model basarilarimlarint 6lgmek icin piksel benzerligi temeline dayanan DSC (Dice
Similarity Coefficient), PRE (Precision) ve REC (Recall) metrikleri kullanilirken,
hacimsel bazli olarak VOE (Volumetric Overlap Error) ile RVD (Relative Volume
Difference) ve mesafe bazli olarak ASD (Average Surface Distance) ile HD95 (95th
percentile Hausdorff Distance) metrikleri kullanilmistir. Verisetinde ilk olarak omurilik
aksiyel OKA/BOS alt veri grubu ile deneysel calismalar gergeklestirilmistir. Yapilan
model egitimleri sonunda OKA bdliitlenmesi i¢in Con-FractalSpiNet mimarisi ile %94.99
DSC skoru, BOS bolgesi i¢in FractalSpiNet mimarisi ile %93.00 DSC skoru ve tiim
omurilik bdlgenin boliitlenmesi i¢in FractalSpiNet kullanilarak %96.54 DSC skoru ile en
ylksek basarimlar elde edilmistir. Diger omurilik aksiysl MS veri alt grubu {izerinde
gerceklestirilen egitimler sonucunda ilk boéliitleme bolgesi olan OKA i¢in en basarili
sonuglar Con-FractalSpiNet ve FractalSpiNet mimarileri ile sirasiyla %98.89, %98.88
DSC skoru elde edilirken, MS lezyonlarinin tespit edilmesinde en basarili sonuglar Con-
FractalSpiNet ve FractalSpiNet mimarileri ile %91.48 ve %90.90 DSC skorlar ile
bagarilmistir. Yine ayni veri alt grubunda, MS’siz omurilik alaninin bdéliitlemesi igin
model egitimleri sonucunda, en basarili modeller Con-FractalSpiNet ve FractalSpiNet
icin sirasiyla %97.25 ve %97.17 DSC skorlar elde edilmistir. Omurilik sagital MS veri
alt grubu iizerinde yapilan deneysel sonuclar incelendiginde, omurilik alan1 ve MS’siz
omurilik alanlarinin boéliitlemesi icin gerceklestirilen model egitimleri sonucunda, Att-
Res U-Net mimarisi ile sirasiyla %97.06 ve %95.16 DSC skorlar1 elde edilirken, MS
lezyonlarinin tespit edilmesinde Con-FractalSpiNet kullanilarak %56.25 DSC skoru ile
en basarili sonuglara ulasilmistir. Tiim sonuglar degerlendirildiginde, U-Net tabanl
onerilen FractalSpiNet mimarileri kullanilarak, servikal omurilik bolgesi ve bu bolgedeki
MS lezyonlarinin boliitlenmesinde, var olan ¢aligmalara gore oldukga rekabet¢i sonuclar

edilmistir.

Anahtar Kelimeler: Omurilik, Servikal Bolge, MR Goriintiilleme, Boliitleme,

Derin Ogrenme, U-Net, FractalSpiNet, MS Lezyon Tespiti.
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ABSTRACT

AUTOMATIC SEGMENTATION OF THE SPINAL CORD FROM MR SCANS AND
DIFFERENTIAL DIAGNOSIS OF MS LESIONS WITH DEEP LEARNING
ARCHITECTURES

The human spinal cord is a highly organised and complex part of the central nervous
system and its function is to transmit neural signals from the brain (sensory information)
to the peripheral nervous system (motor information) and from the peripheral nervous
system to the brain. When MS (Multiple Sclerosis) occurs in the spinal cord, it affects the
white and grey matter of the brain, the spinal cord and the optic nerve. Early diagnosis of
MS is important to slow the progression of the disease and control symptoms. Starting
the right treatment early can prevent the disease from causing more severe attacks and
improve the patient's quality of life. In this way, it may be possible to stop or slow the
progression of MS. Clinical symptoms/signs, cerebrospinal fluid tests, evoked potentials
and Magnetic Resonance Imaging (MRI) findings are used to diagnose MS. In particular,
the widespread use of MRI and the development of computer-aided systems have
contributed significantly to the diagnosis and follow-up of MS. On the other hand, studies
based on the segmentation of the spinal cord from MR images using artificial intelligence
algorithms, especially deep learning models, and the presence or absence of MS lesions
in the spinal cord region have also become prominent in recent years. However, although
these and similar studies have achieved a certain level of success, it can be seen that the
success in MS detection in these studies is low due to reasons such as the small amount

of data due to the small size of the dataset and the small volume of MS lesions.

In this thesis, the segmentation of cervical spinal cord cross-sectional area (CSA) and
cerebrospinal fluid (CSF) areas on T2-weighted MR images taken from different planes
such as axial and sagittal with deep learning and differential diagnosis of MS lesions in
the spinal cord were performed. In the study, a dataset was first prepared to perform
segmentation of cervical spinal cord CSA, CSF area and MS lesions within the spinal
cord boundaries using cervical spinal cord MR data obtained from Akdeniz University
Hospital. In this dataset, FractalSpiNet, Con-FractalSpiNet and Att-FractalSpiNet
architectures, developed based on U-Net architecture, were used to segment the spinal
cord and CSF areas in MR images in sagittal and axial planes, and to detect MS lesions
within the spinal cord boundaries. In addition, the results obtained with the proposed
architectures are also compared with mixed architectures, namely Att U-Net (Attention
U-Net), Res U-Net (Residual U-Net) and Att-Res U-Net (Attention Residual U-Net).

v



In this thesis, spinal cord axial CSA/CSF, spinal cord axial MS and spinal cord sagittal
MS data subgroups were created to mask the areas to be segmented in the cervical spinal
cord dataset. For segmentation of the spinal cord area and detection of MS lesions on the
prepared cervical spinal cord dataset, DSC (Dice Similarity Coefficient) based on pixel
similarity was used to measure model success, PRE (Precision) and REC (Recall) metrics
were used, VOE (Volumetric Overlap Error) and RVD (Relative Volume Difference) as
volume-based metrics, and ASD (Average Surface Distance) and HD95 (95th percentile
Hausdorff Distance) as distance-based metrics. Firstly, experimental studies were
performed on the axial CSA/CSF sub-dataset of the spinal cord. At the end of the model
training, the best results were obtained with 94.99% DSC score with Con-FractalSpiNet
architecture for CSA segmentation, 93.00% DSC score with FractalSpiNet architecture
for CSF region and 96.54% DSC score with FractalSpiNet for segmentation of the whole
spinal cord region. As a result of the training performed on the other subset of MS spinal
axial data, the best results for the first segmentation region, the CSA, were obtained with
the Con-FractalSpiNet and FractalSpiNet architectures with DSC scores of 98.89% and
98.88% respectively, while the best results for MS lesion detection were obtained with
the Con-FractalSpiNet and FractalSpiNet architectures with DSC scores of 91.48% and
90.90% respectively. In the same data subset, the most successful models for
segmentation of the non-MS spinal cord area were Con-FractalSpiNet and FractalSpiNet
with DSC scores of 97.25% and 97.17%, respectively. When analysing the experimental
results on the sagittal spinal cord MS data subset, 97.06% and 95.16% DSC scores were
obtained with the Att-Res U-Net architecture as a result of model training for
segmentation of the spinal cord area and spinal cord areas without MS, while the most
successful results were obtained with a DSC score of 56.25% using Con-FractalSpiNet
for detection of MS lesions. When all the results are evaluated, using the proposed U-net
based FractalSpiNet architectures, highly competitive results were obtained in the
segmentation of the cervical spinal cord region and MS lesions in this region compared to

existing studies.

Keywords: Spinal Cord, Cervical Region, MR Imaging, Segmentation, Deep
Learning, U-Net, FractalSpiNet, MS Lesion Detection.
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1. GIRIS

Insanda sinir sistemi, viicudu etkileyen i¢ ve dis uyaranlardan bilgi elde eden ve
elde edilen bilgiyi isleyen, viicut igerisinde hiicreler ag1 sayesinde sinyallerin ilgili organ
ve sistemlere iletimini saglayan, viicutta bu iletilere karsilik uyarilma, degerlendirme gibi
gorevleri etkili ve hizli bir sekilde gerceklestiren biitiinciil bir sistemdir. Insan sinir
sistemi anatomik olarak bir biitiin olarak degerlendirilirken, fizyolojik olarak ise merkezi
sinir sistemi (MSS) ve cevresel (CSS) olmak iizere iki temel yapidan olusmaktadir.
Merkezi sinir sistemi viicudun en 6nemli iki yapisi olan beyin ve omurilikten olusurken,
cevresel sinir sistemi ise viicudun geneline yayilmis olan sinir aglarindan

olusmaktadir(Mortazavi vd., 2012: 299).

Insan omuriligi (medulla spinalis veya spinal kord), MSS’nin olduk¢a organize ve
karmasik bir pargasidir ve noral sinyallerin beyinden (duyusal bilgi) periferik sinir
sistemine (motor bilgisi) ve periferik sinir sistemden beyne iletilmesini saglamaktir (R
Polattimur ve Dandil, 2023: 245). Bu bilgi, beyaz maddede (BM, white matter) bulunan
miyelinli motor ve duyusal aksonlardan gecer ve ¢ogunlukla gri maddede (GM, grey
matter) bulunan omurilik internéronlar tarafindan iletilir ve kontrol edilir(De Leener vd.,
2016: 125). Omurilik, omurga kanalinin i¢inde giivenli bir sekilde yer almakta olup beyin
omurilik stvis1 (BOS) ile cevrilidir. Bu sivi, farkli yogunluklara sahip olup omuriligi
korur. Ayrica omurilik, omur diskleri tarafindan da ¢evrelenerek dis etkenlere karsi ek bir
koruma altindadir (Stroman vd., 2014: 1070)

Omurilik, servikal, torasik ve lomber olmak {izere 3 ana boliimden olusmaktadir.
Omurilik kesit alan1 (OKA) yetiskin bir bireyde servikal seviyede ortalama 67 ila 101
mm? arasinda degisiklik gostermektedir(Y. Chen vd., 2020: 857). Omurilik sahip oldugu
kivrimlt yap1 nedeniyle olduk¢a zorlu bir ¢alisma alani olmasina ragmen gelisen MR
teknolojisi sayesinde  nokta  atist  klinik tam1  ile  cerrahi  islemler
yapilabilmektedir(Karkucak ve Koksal, 2021: 147). Ciinkii vertebral cisim, intervertebral
disk, omurilik kanali ve omurilik dahil olmak iizere servikal omurganin anatomik
ayrintilarin1 agikca gosterebilmekte olup omurilik alant MR goriintiilleme ile 3 farkli
planellerden sagital, aksiyel ve koronal agidan/diizlemden ¢cekim
saglayabilmektedir(Zhuo vd., 2022: €210292). Diger taraftan sagladig: niceliksel bilgilere
ek olarak multipl skleroz (MS), travmatik ve norodejeneratif hastaliklar gibi bir dizi
norolojik bozuklukta omurilik hasarini degerlendirmek i¢in son yirmi yilda giderek daha
fazla kullanilmaktadir(Gros vd., 2018: 215). Bu sayede kord boyunca degisken hacme ve

sekle sahip olan omurilik alan1 ugtan uca incelenebilmektedir. Ozellikle MS lezyonlarinin



MR verileri ile teshis edilebilmesi %80 ile %92 oraninda basarima ulasmaktadir(Bot vd.,
2002: 46). MS lezyonlar1 tiim omurilik boyunca goézlemlenebilmekle birlikte, siklikla
servikal omurilikte (%56,4) gozlemlenmektedir. Bu nedenle klinik ¢aligmalarda MS
vakalarinda, MR taramalar1 genellikle boyun (servikal) bolgesine odaklanarak
yapilmaktadir(M. Chen vd., 2013: 1051), (Bot vd., 2004: 226),(Patek ve Stewart, 2023:
406). MS vakalarinin degerlendirme asamasinda McDonald kriterleri ¢cok 6nemli bir yer
tutmaktadir ve bu kriterler ile MS tanis1 koymak i¢in klinik takipte MR’1in onemine
ozellikle vurgu yapilmaktadir(Thompson vd., 2018: 162). Ge¢misten giiniimiize ¢ok hizl
gelisim gosteren MR teknolojisi sayesinde nokta atis1 klinik tani ile cerrahi islemler
yapilabilmektedir(Karkucak ve Koksal, 2021: 147). MR teknolojisi 6nemli avantajlari
olmasina ragmen omuriligin goriintiilenecek bolgesindeki yapisal farkliliklar, bolgesel
zorluklar veya hastaliga bagli sorunlar, goriintli kalitesini olumsuz etkileyebilir. Bu da,
istenen seviyede net gorlntiler elde edilmesini zorlastirabilir(Stroman vd., 2014:
1070),(De Leener vd., 2016: 125).

Omurilik MR goriintiileme, omurilik ve omuriligin etrafin1 saran sinirler, diskler
ve omur kemiklerinin ayrintili bir sekilde incelenmesi amaciyla kullanilan bir tibbi
goriintilleme yontemidir(Kearney vd., 2015: 327). Omurilik bdlgesinde olusan disk
hernisi (fitikk), omurilik tiimorleri, omurilik yaralanmalari, enfeksiyonlar1 veya
iltihaplanmalar1 ve 6zellikle MS gibi noérolojik hastaliklarin tanisinda oldukg¢a yardimci
olmaktadir. MR goriintiileri, MS’in neden oldugu plak adi verilen hasarli bolgeleri
(lezyonlar) ortaya cikarabilmektedir. Omurilik MR goériintiilleme, MS lezyonlarinin
omurilikte olup olmadigini ve hastaligin omurilik iizerindeki etkisini degerlendirmek i¢in
kullanilir. Bu, MS tamisin1 dogrulamak ve hastalifin seyrini izlemek igin

gereklidir(Wattjes vd., 2015: 157).

MS, kronik, iltthaplanma, demiyelinizasyon ve norodejenerasyon gibi ¢esitli
semptomlarla karakterize edilen merkezi sinir sisteminin bir hastaligidir(Grigoriadis ve
Van Pesch, 2015: 3),(Mortazavi vd., 2012: 299). Bu hastalik MSS i¢indeki sinir liflerini
cevreleyen ve izole eden yag maddesi miyeline zarar vererek iltihaplanmaya neden olur
(Mortazavi vd., 2012: 299). Bu materyal sinir sinyallerinin bir nérondan digerine hizli bir
sekilde iletilmesinden sorumludur(Dilokthornsakul vd., 2016: 1014). MS hastaliginin
temel nedeni, beyin ve omurilikteki beyaz ve gri madde bolgelerinde demiyelinizan
plaklarin birikmesi ile olusmaktadir. Bu plaklar, sinir hiicrelerinin etrafindaki miyelin
tabakasina zarar vererek sinir sinyallerinin iletimini engeller ve hastaligin belirtilerine yol

acmaktadir. Demiyelinizasyon (demiyelinizasyon; sinir hiicrelerinin etrafin1 ¢evreleyen



miyelin kiliflarinin hasar gérmesi) veya miyelin kaybi sinir sistemi boyunca sinyallerin
olmas1 gerektigi sekilde dogru bir iletisim kuramamasina neden olmaktadir. Dogru
sinyallerin ulagmadig1 bolgelerde viicut fonksiyonlarinin bozularak bulanik gérme, agir
kas giicsiizliigii ve duyusal degisiklikler seklinde semptomlarin gézlemlenmesine neden

olmaktadir.

MS lezyonlarinin etiyolojisi tam olarak bilinmemekle birlikte, otoimmiinite,
genetik yatkinlik ve ¢evresel faktorlerin tamaminin hastalig: tetikleyen unsurlar oldugu
bilinmektedir(Weinshenker, 1996: 291),(Sawcer vd., 1996: 464). Diinya saglik orgiitliniin
(DSO) verilerine gore diinyada 1,8 milyondan fazla kisinin MS hastas1 oldugunu ve tiim
yag araliklarinda gézlemlenmekle beraber geng eriskinlerde ve 6zellikle kadinlarda daha
sik gozlemlendigini belirtmislerdir (World Health Organization (WHO), 2015)),(Nouri
vd., 2015: E675).

MS, hastasinin yasamini fiziksel, ekonomik, psikolojik ve sosyal yonleriyle
etkileyebilen, siklikla ozirliiliige yol agabilen kronik bir hastaliktir(Yildirnm ve
Fadiloglu, 2014: 100). Cesitli semptomlarin varlig1 ve dngoriilemeyen dogasi nedeniyle
hastalar gelecekleriyle ilgili belirsizlikle yasamak zorunda kalmakla beraber, MS
ilerleyen evrelerde norolojik morbidite ve mortaliteye sebep olabilmektedir(Lemay vd.,
2021: 102766). Ozellikle norodejeneratif hastaliklarin erken evredeki tanisi zordur
(Herholz vd., 2002: 302) ve merkezi sinir sisteminin yOneticisi olan beyinde meydana
gelen hastaliklar tiim viicudumuzdaki organlari etkileyebilmektedir. MS, ilk olarak 1868
yilinda Jean-Martin Charcot tarafindan yeni bir sinir sistemi hastalig1 olarak bildirilmistir
(Zalc, 2018: 3482) ve ardindan Schumacher (1965), Poser (1983) ve McDonald (2001)
MS i¢in klinik tani kriterleri yayinlamislardir. McDonald Kriterlerinde (Thompson vd.,
2018: 162) MS hastaligt i¢in bir dizi degerlendirme OSl¢iitii sunulmustur. Bu Ol¢iitler
zaman icerisinde revize edilerek giintimiizde de en sik kullanilan yontemlerden biri haline

gelmistir(Togrol ve Demir, 2013: 15).

Hastalik farkli seviyelere gore ifade edilmekte olup bazi seviyelerinde donemsel
ataklarla kendini gosterirken bir kisminda ise hastaligin basinda veya son déneminde
hizla ilerleyici bir siire¢ yasanabilmektedir(M. Oztiirk ve Tek, 2019: 10). Bu nedenle MS
plaklarinin  sinir sisteminin farkli yerlerinde, farkli zamanlarda olustugunun
gozlemlenmesi ile birlikte McDonald Kriterleri’nin vurguladigi énemli konulardan biri;
MS tanisi koyarken klinik takip i¢cin MRG (Manyetik Rezonans Goriintiileme)’in
onemine Ozellikle vurgu yapilmaktadir(Thompson vd., 2018: 162). MR omurilik



goriintiilemeleri, MS hastalarinin %80-92'sinde dogru teshis konulmasini1 saglamaktadir

ve bu yontem, MS tanisinda oldukca etkili bir aragtir(Bot vd., 2002: 46).

Son yillarda boliitleme teknikleri manuel (el yordami), yart otomatik ve tam
otomatik makine 6grenmesi metotlart kullanilarak oldukg¢a hizli bir gelisim kazanmistir.
Goriintiileme teknikleri ile boliitleme metotlarinin es zamanl olarak gelisim gdstermesi
biyomedikal miihendisligi gibi bircok tiirevlerinin ¢ogalmasimi saglamistir. Ozellikle
MRG gibi goriintii saglayic1 cihazlarin kaliteli veriler iiretmeye baslamasi boliitleme
calismalarina hiz kazandiran en 6nemli etkenlerin basinda gelmektedir. Fakat 1980’lerde
Onerilen evrisimsel sinir aglart (convolutional neural networks, CNN) yiiksek
matematiksel kapasite gerektiren islemler olmasi nedeniyle o donemde mevcut bilgisayar
donanimi yeterli olmadig1 i¢in kisithh bir kullaniminin olmasma sebep olmustur. Bu
nedenle sirastyla grafik islem birimi (graphical processing unit, GPU) ve tensor isleme
birimi (Tensor Isleme Birimi, TPU) bilgisayar islem birimlerinin kullanilmaya
baslanmasi ile ¢ok ¢esitli evrisim mimarileri tasarlanmaya ve kullanilmaya baslanarak
otomatik boliitleme metotlarin kullaniminda artis saglanmistir. Bu gelismelere paralel
olarak derin 0grenme mimarileri ile yapilan bdliitleme calismalarindan ¢ok basarili
sonuclar alinmasi bu alanda literatiire kazandirilan c¢alismalarin sayisini oldukga

hizlandirmistir.

Omurilik boliitlemesi i¢in Onerilen ¢alismalar incelendiginde MR goériintiilemenin
yaygin olarak tercih edildigi goriilmektedir(Wattjes vd., 2015: 157). Omurilik bolgesi
aksiyel, sagital ve koronal agidan taranmis MR verisetleri kullanilarak tiim omurilik veya
bolgesel olarak servikal, torasik ve lomber birimleri ayr1 ayri incelenebilmektedir.
Omurilik kesit alan1 (OKA/CSA), beyin omurilik sivist (BOS/CSF), GM ve BM gibi
alanlar1 zaman igerisinde farkli derin 6grenme yaklagimlariyla boliitleme calismalari
yapilmistir. Omurilik yapisinin incelenmesine ek olarak bu alan igerisinde bulunan
lezyon, timor vb. gibi hasarli doku olusumlarin yerlerinin tespit edilmesi ile ilgili olarak
yapilan ¢alismalar bu alanda oldukg¢a zorlu ¢alisma konular1 olarak degerlendirilmektedir.
Sekil 1.1°de gosterildigi gibi Sekil 1.1(a) ile ifade edilen servikal omurilik sagital MR
goriintiisiinden, enine kesitler alindiginda Sekil 1.1(b) ve Sekil 1.1 (c¢)’de goriildiigii gibi
aksiyel MR verileri elde edilmektedir. Aksiyel MR verilerinde OKA ve BOS alanlarinin
maske goriintiisii ve etiket islemi yapilmis goriintiisii verilmistir. Diger aksiyel veri olan
Sekil 1.1(c) ile OKA ve omurilik MS lezyonlarinin MR verisi, maske MR verisi ve etiket
islemi yapilmig goriintiisii verilmistir. Sagital MR verisi Sekil 1.1(d) ise yine OKA ve

maske MR verisi ile etiket islemi yapilmis goriintiisii verilmektedir.



Daha o6nceki c¢alismalarda omurilik boliitlemesi icin bir¢ok yontem Onerilmesine
ragmen paylasima agik veri havuzu oldukca kisithidir. Yapilan ¢alismalar ile paylasilmis
popiiler verisetleri mevcuttur fakat spesifik olarak caligma yapilmak istenilen organ,
doku, tiimor vb. alanlar i¢in 6zel verisetleri hazirlamak hala zorunlu bir gerekliliktir.
Diger taraftan ise veri elde edilmesi oldukg¢a zahmetli bir is yiikii olabilmektedir. Bunun
nedeni olarak ise hasta gizliligi ile ilgili olarak yasal diizenlemelerinin yetersizligi
sebebiyle yasanabilecek etik sorunlar basta olmak iizere, personel eksiklikleri vb.
durumlarin etkili oldugu sdylenebilmektedir. Derin 6grenme ile yapilan ¢alismalarda veri
miktar1 ile model basarimlarini etkileyen onemli bir parametre iken biyomedikal ¢aligma
alanlarinda yiiksek veri sayilarina ulagsmak her calisma i¢in miimkiin olmamaktadir.
Derin 6grenme alaninda yapilan g¢aligmalar sonucunda bu kisiti ortadan kaldiran bir
boliitleme yontemi olan U-Net mimarisi 2015 yilinda, Olaf Ronneberger, Phillip Fischer,
ve Thomas Brox tarafindan “U-Net: Convolutional Networks for Biomedical Image

Segmentation” makalesinde duyurulmustur(Ronneberger vd., 2015: 234).
SERVIKAL OMURILIK MRG

N : S
MRKESIT ~ UZMAN MASKESI ETIKET 1

MS Lezyon

- -

MS Lezyon

Sekil 1.1. Sagital servikal omurilik MR verisi(a), aksiyel omurilik MR kesiti, MR maske ve
etiketli veri(b), aksiyel omurilik MR kesiti, MR maske ve etiketli veri(c), sagital omurilik MR
kesiti, MR maske ve etiketli veri (d)

U-Net mimarisi, ESA temelli bir yap1 olarak, CNN ic¢in yiiksek veri gereksinimine
ihtiya¢ var iken, U-Net sayesinde olduk¢a az bir veri seti ile basarili sonuglar elde
etmenin miimkiin oldugunu yapilan ¢alismalar ile kanitlamistir. Evrisim aglarina yapilan
bu katki sayesinde, U-Net mimarisinin U seklindeki kolay yapilandirilabilen yapisi

kullanilarak, bir¢ok farkli derin ag ile yeni hibrid modeller gelistirilmistir. Ayrica, modele



katk1 saglayan ¢esitli yaklasimlar sayesinde yeni modeller olusturulmus ve bu modeller

literatiire kazandirilmistir.

Bu tez caligmasinda klinik karar vericilerine ve uygulayicilarina yardimcer olacak
rutin prosediirlerine ek bir derin 6grenme temelli farkli bir disiplinel yaklagim olan
otomatik boliitleme yontemi Onerilmektedir. Calismada, servikal omurilik bolgesi T2-
agirlikli (T2a) MR verileri ile ¢ok kapsamli veri setleri hazirlanmistir. Servikal omurilik
bolgesi T2a MR verileri sagital ve aksiyel MR ¢ekimlerini icermektedir. Bu sayede ilk
olarak omurilik OKA/BOS aksiyel T2a MR verileri ile omurilik kesit alan1 (OKA) ve
beyin omurilik stvist alant (BOS), ikinci olarak omurilik MS aksiyel T2a MR verileri ile
aksiyel kesit omurilik ve MS lezyonlarini, {i¢lincii olarak omurilik MS sagittal T2a MR
sagital kesit omurilik ve MS lezyonlarini tespit etmek icin MR kesitleri kullanilmistir.
MR goériintiileri ve bu goriintiiler icin tespit edilmesi hedeflenen alanlar i¢in uzman
etiketleme islemleri yapilarak ti¢ farkli veriseti grubu hazirlanmistir. Tezde ayrica, bu
verisetlerine ek olarak agik kaynak olarak paylasilan bir veri seti olan SCGMC (Spinal
cord grey matter segmentation challenge) veri seti ile omurilik gri madde ve beyaz madde
alanlarmin tespit edilmesi saglanmistir. Hazirlanan verisetleri iizerinde, U-Net mimarisi
tabanli gelistirilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet mimarileri ile
model egitimleri tamamlanarak elde edilen tiim sonuglar degerlendirilmistir. Diger
taraftan, elde edilen sonuglar, U-Net mimarisinden tiiretilmis hibrit modeller Att U-Net,
Res U-Net ve Att-Res U-Net mimarilerinin sonuglar1 ile de karsilastirilmistir. bu
modeller i¢in elde edilen sonuglar literatiirde siklikla kullanilan hacimsel, mesafe bazli ve

karisiklik matrisi temelli benzerlik metrikleri ile kapsamli bir sekilde degerlendirilmistir.
1.1. Tezin Amaci ve Hedefleri

Omurilikte MS lezyonlar1 ile ilgili olarak hekimlerin verdigi bilgiler 1s18inda
omurilik ve omurilik MS lezyonlarinin sinirlarinin ve konumlarinin tespit edilmesi klinik
olarak oldukca zahmetli olmakla birlikte son nihai karar verme esnasinda g¢ekismeli
fikirler olabildiginden bahsedilmistir. Bu baglamda omurilikte MS lezyonlarinin tespit
edilmesinin olduk¢a zorlu bir klinik konu oldugu ortak goériismeler sonucunda
anlagilmisgtir. Sorunun biitlinciil agidan ele alinmasi klinik karar vericiler icin ve MS
hastalarinin siireclerini takip edilebilmesi agisindan olduk¢a 6nemli olmaktadir. Ciinkii
MS’li hastalarin agisindan degerlendirildiginde, kisilerin giinliik yasamlarini kisitlayacak
kadar etkili olabilen bu lezyonlar hastaligin ilerleme asamalarinda bakim alma ihtiyaci
ortaya ¢ikabilmekte ve daha ileri seviye lezyonlar 6liimle bile sonuglanabilmektedir. Bu

nedenle hastaligin ne asamada oldugu, lezyonlarinin konumlarinin ve biiyiikliiklerinin



tespit edilmesi hayati 6nem tasimaktadir. Tiim bu durumlar incelendiginde hastaligin tan
ve tedavi asamasinda hekimlere yardimci olacak karar destek sistemlerinin klinik
prosediirlere entegre edilmesi karar vericilerin is yiikiinii azaltarak daha dogru kararlar
verebilmelerine katki sunacaktir. Diger taraftan, MS lezyonlarinin konumlar: itibariyle
cerrahi operasyonlar oldukca zorlu olabilmektedir. Cerrahi travmayi, komplikasyon
insidansini azaltmak ve cerrahi islemden en yiiksek sonuclar elde edebilmek icin MS
lezyonlarinin konumunun bilinmesi olduk¢a 6nemli olmaktadir. Bu tez c¢alismasinin
amact, klinik karar vericilerine ve uygulayicilarina yardimei olmak igin servikal omurilik
bolgesinin ve bu bolgedeki MS lezyonlarinin otomatik tesptini ve boliitlemesini derin
ogrenme tabanli mimariler kullanarak saglamaktir. Tez caligmasinin hedefleri ise

sunlardir:

Hedef 1: Hazirlanan veriseti ile servikal omurilik bdlgesinin ve beyin omurilik

s1visi alanlarinin otomatik boliitlenmesi:

Bu hedefi gergeklestirmek icin Akdeniz Universitesi’den Etik Kurul Onayi ile
basvuru yapilarak verilerin temin edilmesi saglanmistir. Veriler retrospektif olarak temin

edilmis olup uzman esliginde gercek maske islemleri gergeklestirilmistir.

Hedef 2: Omurilikte MS lezyonlar1 bulunan hastalardan alinan MR goriintiileri ile

omurilik bolgesinin otomatik boliitlenmesi ve MS lezyonlariin tespit edilmesi:

Bu hedefi gergeklestirmek icin Akdeniz Universitesi’den Etik Kurul Onayi
basvuru yapilarak verilerin temin edilmesi saglanmistir. Veriler retrospektif olarak son
yillardaki MS teshisi almis hastalardan elde edilmis MR verilerini igermektedir. Aksiyel
ve sagital MR verileri i¢in uzman esliginde ger¢ek maske islemleri gergeklestirilmistir.
Boliitleme islemlerini gergeklestirmek icin derin 6grenme mimarisi modellerinden olan

U-Net mimarisi tabanli yeni modeller gelistirilmistir.

Hedef 3: Omurilik alani, beyin omurilik sivisi ve MS lezyonlarinin béliitlenmesi

i¢in derin 6grenme modellerinin kiyaslanmasi, gii¢lii ve zay1f yonlerinin belirlenmesi:

Bu hedefi gerceklestirmek icin literatiirde siklikla kullanilan rekabet¢i U-Net
mimarileri kullanilarak omurilik alani, beyin omurilik sivisi alan1 ve MS lezyonlarinin
tespit edilmesi saglanmistir. Boliitleme calismalari i¢in temel U-Net mimarisi, Attention
U-Net mimarisi, Residual U-Net mimarisi ve Attention Residual U-Net mimarileri ile
model egitimleri gergeklestirilmistir. Bu sayede yeni katman yapisina sahip U-Net

mimarileri tasarlanmasi i¢in ¢ok yonlii sonuglar elde edilmistir.



Hedef 4: Omurilik alani, beyin omurilik sivisi ve MS lezyonlarinin béliitlenmesi

icin yeni bir derin 6grenme mimarisi gelistirilmesi:

Tez calismasi1 kapsaminda hazirladigimiz 6zgiin verisetlerini rekabet¢i U-Net
modelleri kullanilarak gerceklestirilen bir dizi egitimler ile boliitleme c¢alismalari
yapilmigtir. Tim bu rekabet¢i mimarilere ek olarak fractal evrisim yapisinin U-Net
modeline entere edilmesi ile yeni katman yapisina sahip olan FractalSpiNet, Con-
FractalSpiNet ve Att-FractalSpiNet modelleri gelistirilmistir. Tasarlanan yeni modeller
ve Ozgilin verisetleri ile omurilik bdlgesi, beyin omurilik sivist alanlari ve MS

lezyonlarinin boliitlenmesi islemlerinin gergeklestirilmistir.
1.2.  Arastirma Sorusu ve Hipotez

Literatiirde omurilik MS lezyonlarinin tespiti i¢in yapilmis mevcut ¢alismalarin
sinirl1  oldugu ve wveri seti kisitt nedeniyle genellestirilebilir olmadigi yapilan
calismalarinin karsilastirilabilirliginin az olmasina neden olmaktadir. Bununla beraber,
giincel derin 6grenme modelleri ile kapsamli ¢alismalarin smirli olmast da yapilacak
katktyr sinirlandirmaktadir. Diger taraftan, derin 6grenme modelleri ile elde edilen
sonuglarin oldukca yiiksek basarima sahip olmasi nedeniyle omurilik alanlarinin
boliitlenmesi ve MS lezyonlarinin tespit edilmesi ile ilgili yapilacak ¢alismalarda da
yliksek basarilar elde edilecegi ongoriisii degerlendirilmistir. Ayrica, omurilik bdlgesinde
MS lezyonlarinin konumu ve boyutlarinin oldukea kii¢iik olmasi sebebiyle, onerilecek bir
yaklasimin klinik ortamlarda hekimlerin kullanabilecegi karar destek sistemine entegre

edilmesi hasta takip ve tedavi siireglerini kolaylastiracagi da agiktir.

Tez cahsmasimin hipotezi: Hazirlanacak 6zgiin bir veriseti ile dnerilecek yeni bir

derin 6grenme modeli kullanilarak aksiyel ve sagittal diizlemde servikal omurilik
bolgesinin yiiksek dogrulukla béliitlenmesi saglanabilir ve bu bolgedeki MS lezyonlar

yliksek bagarimla tespit edilebilir.

Tez calismasinin arastirma sorusu: Servikal omurilik MR verilerinde gelismis

derin 6grenme mimarileri kullanilarak yiliksek basar1 oranlari ile omurilik alanin otomatik

boliitlenmesi ve omurilik MS lezyonlarinin tespit edilmesi gerceklestirilebilir mi?
1.3. Tez Calismasinin Katkisi

Bu tez c¢alismasinda, MR goriintiileri kullanilarak servikal omurilik alaninin
boliitlenmesi ve omurilik MS lezyonlarinin tespiti i¢in derin 6grenme modelleri
kullanilmas1  6nerilmistir. Onerilen yaklasim, hekimlerin veya karar vericilerin

kullandiklar1 manuel yaklasimlara ek olarak otomatik olarak boliitleme islemleri
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gerceklestirebilecekleri yenilik¢i yontemler igermektedir. Calismada, omurilik bolgesi ve
bu bolgede bulunan MS lezyonlarinin tespit edilmesi i¢in U-Net (Ronneberger vd., 2015:
234) derin 0grenme mimarisi tabanli yeni mimarileri 6nerilmis (FractalSpiNet, Con-
FractalSpiNet ve Att-FractalSpiNet modelleri) ve karma U-Net mimarileri olan Att U-
Net, Res U-Net, Att-Res U-Net ile de sonuglar karsilagtirilmastir.

Omurilik boliitlenmesi ve omurilik MS lezyonlariin tespit edilmesi i¢in 6nerilen

bu tez ¢alismasinin katkilar1 asagidaki gibi listelenebilir:

» Servikal omurilik bdliitlenmesi ve servikal omurilik MS lezyonlarinin
tespit edilmesi icin hazirlanan veriseti ve yenilik¢i mimariler ile biitiinciil

bir yaklasim sunulmustur.

» Servikal omurilik MR gorintiileri ile olusturulan verisetinde birbirinden
farkli alt gruplar olusturularak wveri setlerinin hazirlanmasi islemleri
tamamlanmustir. {lk olarak aksiyel MR verileri ile omurilik OKA/BOS
maskesi olusturulmustur. Aksiyel omurilik MR goriintiilerinde, omurilik ve
MS lezyonlarii tespit edebilmek icin bir MS maskesi olusturulmustur.
Benzer sekilde, servikal omurilik MR goriintiilerinde de sagital kesitler
kullanilarak  lezyonlarin belirlenmesi amaciyla bir MS maskesi
hazirlanmistir. Servikal omurilik MR goriintiileri ile li¢ farkli alt grup
maske verileri olusturularak omurilik, beyin omurilik sivisi ve MS
lezyonlarinin tespit edilmesi i¢in olusturulmustur. Yapilan deneysel
calismalar sonucunda, elde edilen ¢iktilardan {iretilen SCI-Expanded
indeksli makale ile servikal omurilik MS aksiyel veriseti agik kaynak
olarak paylagima sunulmustur.

» Servikal omurilik boliitleme ve MS lezyonlarimin tespit edilmesi i¢in U-Net
mimarisi temel alinarak FractalSpiNet, Con-FractalSpiNet ve Att-
FractalSpiNet mimarisleri gelistirilmistir.

» FractalSpiNet, servikal omurilik bolgesinde Snemli bir yenilik sunarak,
farkli klinik senaryolara uyarlanabilen giivenilir ve etkili bir ¢dziim olarak
One ¢ikmaktadir.

> Onerilen FractalSpiNet, Con-FractalSpiNet ve  Att-FractalSpiNet
mimarilerini kullanarak servikal omurilik tamamen otomatik bdliitleme

sekilde boliitlenmistir.



> Onerilen FractalSpiNet, Con-FractalSpiNet ve  Att-FractalSpiNet
mimarilerini ile servikal omurilik bolgesindeki MS lezyonlarinin basarili
bir sekilde tespit edilmesi saglanmustir.

> Onerilen FractalSpiNet, Con-FractalSpiNet ve  Att-FractalSpiNet
mimarilerinin  ve diger tiim mimarilerin egitimleri  sonunda
performanslarinin degerlendirilmesi icin literatiirde siklikla kullanilan
temel metrikler ile model basarim skorlar1 cikarilarak tiim mimarilerin

basar1 kiyaslamasi yapilmistir.
1.4. Tezin Organizasyonu
Bu tez, toplam 7 boliimden olusmaktadir. Ozetle bahsedecek olursak:

Bolim 1°de, omurilik ve MS hastalig1 hakkinda bilgi verilmis ve klinik siireclere
MR goériintiilemenin katkisi, omurilik bolgesinde MS lezyonlarinin tam1 ve tedavi
asamasinda kullanilan MR goriintiileme teknikleri hakkinda temel bilgiler ortaya
konulmustur. Ayrica, omurilik boliitleme ve MS lezyonlarinin tespiti i¢in kullanilacak
yontemler hakkinda temel bilgisi verilmistir. Tezin hipotezine, amacina ve
organizasyonuna yOnelik olarak dnceki akademik ¢alismalar hakkinda bilgiler verilmis ve

tez calismasinin fikri temelleri sunulmustur.

Bolim 2’de, omurilik boliitleme ve MS lezyonlarinin tespit edilmesi ¢aligmalari
iizerine derinlemesine literatlir taramasi yapilarak konu ugtan uca incelenmistir. Bu
alanda calisilmis icerik sayist oldukc¢a kisitli oldugu i¢in g¢ergeve genis perspektiften
bakilarak, makine 6grenmesi, derin 6grenme ve farkli U-Net mimarileri ile omurilik
boliitleme konusunda yapilmig bir¢ok calisma degerlendirilmis, ¢alismalarin detaylari,

sonuglar1 ve sinirliliklart ayr1 ayr1 incelenmistir.

Bolim 3’te, omuriligin gorevleri ve MS hastaliginin tanimi, epidemiyolojisi,
etiyolojisi, hastaligin belirtileri, tan1 ve teshis siire¢leri hakkinda detaylar verilmistir.
Ayrica, MS hastaligmin teshis ve simiflandirilmasinda kullanilan kriterler ve MS
lezyonlarinin incelenmesi i¢in yararlanilan MR goriintiilleme teknikleri hakkinda bilgi

verilmistir.

Boliim 4’te, tez ¢caligsmasi siiresince olusturulan verisetleri tiim teknik detaylar ile
anlatilmistir. Ayrica, deneysel calismalar yiiriitiilen diger global veri seti hakkinda teknik
bilgi paylasimi da yapilmistir. Veri hazirlik asamalar1 ve kullandigimiz metodolojinin

asamalar1 hakkinda detayli bilgiler verilmistir. Ek olarak bu bdliimde, derin 68renme,
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evrisim mimari yapilari ve U-Net hakkinda detaylar verilerek gelistirilen yeni modellerin

tiim teknik detaylar1 paylasilmistir.

Bolim 5°te, tez calismasi kapsaminca hazirlanan 6zgiin verisetleri ve global
veriseti olmak tizere dort farkli veriseti kullanilarak U-Net, karma U-Net ve gelistirilen
FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet modelleri olmak iizere toplam
yedi mimari ile deneysel islemler gerceklestirilmistir. Literatiirde siklikla kullanilan
Ol¢lim metrikleri ile model basarilar1 tablolar halinde kapsamli bir sekilde verilmistir.

Ayrica modellerden elde edilen verilerin sonuglar1 gorsellerle agiklanmistir.

Bolim 6’da ise deneysel sonuglardan elde edilen tiim ¢iktilar detayli olarak
degerlendirilmistir ve literatiirde yapilmis basarili ¢alismalar ile kiyaslayarak bu tez
calismasinin literatiire olan katkis1 anlatilmistir. Calismanin bilime katkilar1 ve kisitlari
diger caligmalar ile kiyaslanmistir ve onerilen yontemin medikal goriintii isleme alaninda

kullanilabilirligi tiim yonleri ile ele alinmistir.

Bolim 7°de, deneysel calismalarin literatiirdeki calismalar ile kiyaslanmasinin
ardindan, tez ¢alismasinin ¢iktilar1 degerlendirilerek literatiire olan katkis1 anlatilmistir.
Bu nedenle, daha basarili sonuglar elde edebilmek amaciyla, veriseti iyilestirmelerine
odaklanilmis ve metodolojinin giiclii ve zayif yonleri vurgulanarak detayli bir dizi oneri

sunularak tez bu sekilde sonlandirilmistir.
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2. LITERATUR TARAMASI

Servikal omurilik bélgesi boliitlenmesi ve omurilikte bulunan MS lezyonlarinin
tespit edilmesi ile ilgili olarak ge¢misten giinlimiize kadar yapilmis bircok bilimsel
calisma bulunmaktadir. Omurilik alaninin ve MS lezyonlarinin boliitlenmesi ¢alismalari
kapsaminda literatiir incelendiginde, genel anlamda en Onemli konularin kullanilan
veriseti ve boliitleme tekniklerinde tercih edilen metadolojik yaklasim oldugu ve
calismalarin bu dogrultuda birbirinden farklilastigi goriilmektedir. Diger taraftan,
omurilik boliitlemesi ve bu sinirlar icerisinde lezyon, tiimor gibi dokusal bozukluklarin
tespit edilmesi icin Onerilen yaklasimlar, calismalarin basarilarin1 direkt etkileyen en
onemli etkendir. Bu nedenle, omurilik ve bu bdlgede bulunan MS lezyonlarinin tespit
edilmesi i¢in ge¢misten giiniimiize kadar el yordami (manuel), yar1 otomatik ve tam
otomatik gibi farkli yontemler kullanilarak calismalar gerceklestirilmistir. Konunun zorlu
bir calisma siireci gerektirmesi ve farkl disipliner yapilar i¢erisinde bulunduruyor olmasi
sebebiyle, literatiirde yapilmis calisma sayisi oldukca kisithdir. Bu kisitin en biiyilik
sebebi olarak ortak kullanima sunulan detayli bir veriseti olmamas1 ve bireysel calisma
bazli hazirlanan verisetlerinin hazirlik asamasinin olduk¢a zahmetli olmas1 gosterilebilir.
Ozgiin veriseti olusturma, etik onay siirecinin uzun olmasi, hastane ¢alisma ortamalarinin
olduk¢a yogun olmasi ve personel eksikleri gibi engellere takilirken, hazirlanan
verisetleri de etik kaygilar gerekgesi ile arastirmacilarin kullanimi i¢in ¢ogunlukla
paylasilmamaktadir. Gilinimiizde bu konunun farkli disiplinlerin ortak c¢alismasini
icermesi ve literatiirde bu tarz ¢alismalarin hiz kazanmas1 multidisipliner ¢aligmalarin ana
motivasyon kaynagi olmaktadir. Nitekim gelisen goriintiileme teknikleri sayesinde
yuksek kalitede goriintiiler cok daha kisa MR c¢ekim siiresi sonucunda elde edilebilir
olmasi is yikiini ve bekleme siiresini azaltarak yapilacak olan c¢alismalara hiz
kazandirmistir. Gorilintli boliitlemesi ¢alismalarinda makine 6grenmesi ile baslayan bu
siire¢ evrisim sinir aglari ve derin 6grenme modellerinin ¢ok yogun olarak literatiire
kazandirilmas: arastirmacilar arasinda ilgi duyulan bir ¢alisma alani olmustur. Ozellikle
CPU, GPU, TPU gibi merkezi islem birimlerinin zaman igerisinde iyilestirilmesi
sayesinde bilgisayarlar yiliksek hesaplama kapasitesine ulasarak yeni ve kapsaml
calismalarin iiretilmesine olumlu katki sunmustur. Sonug¢ olarak tibbi goriintiilleme ve
biyomedikal goriintiileme alanindaki c¢alismalarin sayisinda oldukg¢a artis meydana

gelmistir.

MS lezyonlarinin teshisinde geleneksel klinik zoruluklarin asilmasi i¢in yenilikgi

yaklasimlardan siklikla yararlanilmaktadir. Bu baglamda, MR goriintiileri kullanilarak
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ilgilenilen lezyon alanlarin tespit edilmesi ve otomatik segmente edilmesi ¢alismalarina
yogun bir ilgi gosterilmis ve son yillarda literatiire ¢ok fazla katki sunulmustur.
Gegmisten giinlimiize omurilik boliitlemesi ve lezyonlarinin tespit edilmesi icin aksiyel,
koronal ve sagital olmak iizere farklt MR planelleri ve T1, T2 gibi farkli ¢ekim modalite
ozelliklerine sahip verisetleri hazirlanmistir. Farkli ¢ekim teknik 6zelliklere sahip MR
goriintiileri ile manuel veya zamanla otomatize olan modeller ile farkli yaklasimlar
gelistirilmistir. Omurilik calismalarinda siklikla BM ve GM, OKA, BOS alanlarinin
boliitlenmesi caligmlart yapilirken omurilik lezyonlarinin veya tiimérlerinin tespit
edilmesi ile ilgili de kisitli olmasina ragmen yapilmis ¢alismalar mevcuttur. Verisetlerinin
yant sira ¢esitli boliitleme teknikleri ile calismalarin O6zginligii arttirilmistir.
Manuel(Mirafzal vd., 2020: 406), yari-otomatik(Losseff vd., 1996: 701), (El Mendili vd.,
2015: 454), (Fonov vd., 2014: 817) ve tam otomatik(Koh vd., 2010: 3117), (Koh vd.,
2011: 1467), (M. Chen vd., 2013: 1051), (Pezold vd., 2015: 107), (Gros vd., 2018: 215)
teknikler var olmasina ragmen, giiniimiizde daha basarili sonuglar elde eden ve otomatik
tekniklerden olan derin O0grenme metotlar1 kullanmilarak(Y. Zhang vd., 2019: 974),
(McCoy vd., 2019: 737), (Gros vd., 2019: 901), (Reza vd., 2019: 487), (Merali vd., 2021:
10473) zaman maliyet agisindan ¢ok daha avantajli mimariler ortaya konulabilmektedir.
Derin 6grenme de Ozniteliklerin belirlenmesi islemlerini otomatize edecek bir mimari
yapinin varlig1 makine 6grenmesinde 6zniteliklerin manuel belirleme problemine ¢6ziim

olmustur.

Literatiir ge¢misten bugiine manuel, yar1 otomatik, tam otomatik boliitleme
teknikleri olarak ilerlerken geleneksel goriintii isleme algoritmalar1 ve farkli makine
O0grenmesi metotlar1 kullanilarak yapilan calismalar literatiir arastirmasi kapsaminda

degerlendirilmistir.
2.1. Geleneksel Yaklasimlar ( Manuel, Yar1 Otomatik ve Tam Otomatik )

Omurilik bolgesi boliitlenmesi ve MS lezyonlarinin tespit edilmesi i¢in geleneksel
yaklagimlar, genellikle klinik calismalar seklinde yapilmis olmakla beraber, goriintii
boliitlemesi kapsaminda oOnerilmis baglangic 6lceginde olan c¢alismalart icermektedir.
Goriintii boliitleme caligmalart genel anlamda birgok alanda tiptan, mimarliga, harita ve
kadastrodan uzay bilimine kadar olduk¢a genis kapsamda bilgi birikimine sahip olsada
Ozel datasetler isteyen ¢alismalar icin hala yeni ve calisilmasi heyacan veren konularin
basinda gelmektedir. Bu baglamda omurilik bolgesi ve omurilik sinirlari igerisinde tiimor,
lezyon ve diger doku bozukluklarinin bdliitlenmesi i¢in yapilmis calismalar sinirl

kalmaktadir. Klinik calismalar c¢ercevesinde ve bu siirecte gelisen yaklagimlar ile
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omurilik ve omurilik MS lezyonlar ile ilgili olarak yapilan ¢aligmalar bulunmaktadir. Bu
kapsamda; El Mendili ve arkadaslarinin (El Mendili vd., 2015: 454) O6nerdigi bir
calismada omurilik OKA ve BOS bolgesinin manuel ve yar1 otomatik ydntemle
kiyaslanmas1 lizerine bir c¢alisma yapilmistir. 49°u saglikli denek olmak iizere, 29
amyotrofik lateral sklerozlu, 19 spinal miiskiiler atrofili, 14 omurilik yaralanmali hasta
grubu olmak tlizere toplam 111 hasta verisi incelenmistir. T2a 3B turbo spin eko
goriintiilerini kullanarak, OKA ve BOS bdlgelerini manuel ve yar1 otomatik yontemlerle
boliitlenmesi i¢in C2-T9 omurilik boélgesi MR verileri kullanmilmistir. Elde ettikleri
bulgular 1s18inda yar1 otomatik bdliitleme yontemi ile omurilik alaninin 6l¢limiinde
yliksek tekrarlanabilirlik ve dogruluk elde edildigini ifade etmislerdir. Yine El Mendili ve
arkadaslarinin (Mendili vd., 2015: 1) yaptig1 diger bir calismada ise omuriligin 3B T2a
turbo spin eko MR taramalarindan hem kesitsel hem de hacimsel 6l¢limleri miimkiin
kilan yar1 otomatik c¢ift esik tabanli (DTbM, Double threshold-based method)
segmantasyon yontemini kullanmislardir. 82 saglikli denek olmak iizere 10 amyotrofik
lateral sklerozlu, 10 spinal miiskiiler atrofili ve 10 omurilik yaralanmali hastanin verileri
kullanilarak ¢alisma yapilmistir. Toplamda 59 saglikli hastanin MR goriintiilerinden
servikal omurilik sablonu standarti olusturmak igin, iyi ortalanmis diiz omurilik
goriintiileri kullanilarak dogru olasilikli doku haritasina yol agan bir standardizasyon hatti
tasarlanmistir. Boliitlemelerin dogrulugu bir radyolog tarafindan puanlanmistir. Kord
bolgesi kullanilarak DTbM, aktif yiizey yontemi (ASM, active surface method), esik
bazli yontem (TbM, threshold-based method) ve manuel taslak olusturma (temel gergek)
ile karsilastirilmistir. Onerilen sinirlh manuel miidahaleye sahip yar1 otomatik bir
boliitleme yontemi olan DTbM, diger yontemlerden ASM ve manuel taslak ile
kiyaslandiginda daha iyi sonug¢ elde edilirken TbM yontemi ile kiyaslandiginda benzer

Olciide basarili sonuglar verdigi belirtilmistir.

Losseff ve arkadaslar tarafindan(Losseff vd., 1996: 701), MS tanis1 almis 60 hasta
icin sakral kord alanmi ve engellilik arasinda baglantinin varlig1 arastirilmistir. Atrofinin
Olclilmesi ve degerlendirmesi i¢in yiiksek dereceli yeniden iiretilebilirligini artirmak ve
hastanin seri olarak izlenmesi gereken durumlar i¢in yeni bir yontem gelistirilmistir. Bu
baglamda, Kurtzke'nin Genisletilmis Sakatlik Durumu Olgegi (EDSS, Expanded
Disability Status Scale) ile olcililen sakral kord alanit ve engellilik arasinda gii¢lii bir
korelasyon bulunmasi sakral kord alani ve engellilik durumu arasinda giiglii bir neden-
sonug iliskisi oldugu sonucuna varmislardir. Yapilan deneysel calismalar sonucunda
atrofi ile kullanilan 6l¢ek arasinda kararli bir korelasyon tespit edilmis olup norolojik

bozulmanin hassas bir Olgiisii oldugu kanitlanarak klinik ortamda tedavi protokollerine
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dahil edilebilecegi Onerilmistir. MS ile atrofi arasindaki baglantinin daha net

anlasilabilmesi i¢in daha ¢ok arastirma yapilmasinin gerektigi sonucuna ulasilmistir.

Tench ve arkadaslar1 (Tench vd., 2005: 197) 10 saglikli hastadan elde ettikleri MR
verilerini kullanarak servikal omurilik sinirlarinin dogru bir sekilde o6lgiilebilmesi icin
kenar algilama (edge dedection) ve kismi hacim ortalamasi (PVA, partial volume
averaging) yontemlerini 6nermektedir. PVA, 6l¢iim hatalarinin azaltilmasi ile daha dogru
sonuca ulagsmak icin kullanilan yar1 otomatik bdliitleme yontemidir. Bu ydntemin,

omurilik atrofisi calismalarinda yararli olabilecegi sonucuna varilmaistir.

Horsfield ve arkadaslar1 (Horsfield vd., 2010: 446) 20 normal seyreden, 20
tekrarlayan-diizelen (RR, relapsing remitting), 20 ikincil ilerleyen (SP, sekonder
progresif) MS tanis1 olan toplam 60 hastadan elde edilen MR verileri kullanilarak yar
otomatik boliitleme yontemi olan aktif yilizey modeli ile omurilik kesit alaninin
belirlenmesi ve klinik sakatlik skorlarinin arasinda nasil iligkili oldugunu bulmaya
calismislardir. Elde ettikleri sonuglara gére mevcut boliitleme yontemlerine gore daha iyi
performans gosterdigi ve omurilik kesit alani ile klinik sakatlik skorlari arasindaki
korelasyonlar, yontemin omurilik atrofisini Ol¢gmede yararli olacagi sonucuna

varmislardir.

Koh ve arkadaslar1 (Koh vd., 2010: 3117) 52 hastadan elde edilen T2a MR verileri
kullanilarak omuriligi ve dural keseyi otomatik olarak boliitlemek icin tasarlanmisg
bilgisayar destekli bir teshis sistemini Onermektedirler. Bu sistem potansiyel bolgeleri
tespit etmek i¢in bir gradyan vektor akisi (GVF, Gradient Vector Flow) alan1 kullanarak
nihai boliitleme gergeklestirmek i¢in bagli bilesen analizini kullanmaktadir. Manuel
boliitlemeler ile kiyaslandiginda yiiksek dogruluk elde edilmis ve bu yontemin manuel
boéliitleme zorluklarina bir ¢oziim olabilecegi ve klinik teshis tutarliligini artirarak lomber

patolojilerin teshisinin daha kolay olabilecegi sonucu vurgulanmaktadir.

Kawahara ve arkadaslar1 (Kawahara vd., 2013: 848) ozellikle MS’li hasta grubu
ve saglikli deneklerden 3B T1 ve T2a omurilik MR goériintiilerinden olusan veri
kiimelerini kullanarak omurilik sekillerini belirleyebilmek i¢in temel bilesen analizi
(PCA, principal component analysis) yonteminden yararlanmaktadirlar. Olusturulan veri
kiimesi ile bdliitleme islemlerinde manuel miidahaleyi en aza indirerek ve bdliitleme
gorevlerindeki hassasiyeti artirarak omurilikle ilgili hastaliklarin teshisi ve izlenmesi i¢in
daha iyi araglar saglamayir amaglamaktadir. Ayrica Onerilen bdliitleme yOnteminin

dogrulugunu ve verimliligini test etmek i¢in bir biitiinciil bir yaklagim sunmaktadirlar.
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Law ve arkadaslar1 (Law vd., 2013: 49) omurilik hattinin ¢ikarilmasi ve omurilik
boliitleme icin gradyan rekabeti anizotropisi yontemini Onermektedirler. T1 ve T2a
omurilik MR verileri kullanilarak omurilik bélgesinin yiiksek dogruluk ve etkinlikte
calisma ciktilarinin elde edilmesi, manuel ihtiyaci azaltarak tam1 ve tedavi kolayligi

saglayacag diisliniilmektedir.

Omurilik lokasyonunun tam otomatik olarak tespit edilmesi ile ilgili olarak
Onerilen bir calismada Gros ve arkadaslar1 (Gros vd., 2018: 215) omurilik merkez
noktasmin olasiliksal lokalizasyon haritas1 ile omurilik merkez ¢izgisinin genel uzaysal
tutarliligi arasinda denge kurmaya ¢alisan OptiC algoritmast kullanilmaktadir. Daha
tutarli sinirlar elde etmek icin ise omurilik merkez hattinin beyin bdlgesi siirlarindan
ayirmay1 hedefleyen bir islem eklenmistir. 20 farkli merkezden norolojik hastaliklar1 olan
173 hasta dahil 501 kisiden T1, T2, T2a MR verileri kullanilmistir. OptiC’nin, Hough
doniisiimiine dayanan son teknoloji iirlini omurilik lokalizasyon teknigiyle
karsilastirildiginda 6zellikle ortalama kare hatasi (averaged mean square error) olan

patolojik vakalarda basarili sonuglar elde ettigi ifade edilmistir.

Chen ve arkadaslar1 (M. Chen vd., 2013: 1051) deforme edilebilir atlas yontemi ve
topoloji kisitlamalart kullanarak omurilik ve beyin omurilik sivisi alanlarinin
boliitlemesine yardimci olan bir yontem Onermektedirler. Calismada farkli hasta
gruplarindan T1, T2 MR verileri elde edilerek veri seti olusturulmustur. Omurilik
boliitleme multipl skleroz gibi ndrolojik hastaliklarin analizinde, hastaligin ilerlemesi ile
omurilik atrofisi ve sekil degisiklikleriyle ilgili 6l¢iimler arasinda korelasyon oldugunu
gostermek i¢in farkli iki veri kiimesi tizerinde degerlendirilmistir. Sonug¢lar manuel
boliitlemelerle karsilastirildiginda bu yontem, omurilik MR goriintiilerinde otomatik ve
dogru bdoliitleme saglayarak klinik karar verme siirecini desteklemekte ve manuel

boliitleme gereksinimini azalttig1 tespit edilmistir.

Asman ve arkadaslar1 (Asman vd., 2014: 460) farkli hasta gruplarindan ve T1, T2a
MR goriintiileri kullanilarak omurilik GM ve BM alanlarinin otomatik olarak segmente
edebilmek i¢in ¢oklu atlas yaklagimlarini onermektedirler. Bu yontem, omurilik gri ve
beyaz madde bdlgelerini otomatik olarak ayirmak icin gelistirilmistir ve 6zellikle MR
goriintiilerinde diisiik kontrast ve giriilti oranlart gibi zorluklar1 agsmak igin
tasarlanmistir. Bu sayede, manuel boliitleme gore daha yiliksek dogruluk sunmakta olup
zaman acgisindan daha verimli oldugu tespit edilmistir. Yontem, multipl skleroz gibi
norolojik hastaliklarin analizinde kullanilmakta ve omurilik atrofisi gibi durumlarin

degerlendirilmesine yardimci1 olmaktadir.
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De Leener ve arkadaslar1 (De Leener vd., 2015: 1705) omurilik gri bolgenin
segmente edilmesi i¢in farkli bireylerden elde edilen T2a MR goriintiileri kullanilarak bir
veri seti hazirlanmistir. Bu veri setini kullanarak gri ve beyaz maddeyi otomatik olarak
boliimlere ayirmak i¢in atlas deformasyon temeline dayanan yeni MNI-Poly-AMU
sablonu ve probabilistik gri madde MR verilerine kaydedilerek omurilik atlasinin standart
maskesi olusturulmustur. Yontem, manuel boliitleme karsilastirildiginda yiiksek dogruluk
gostermektedir. Otomatik boliitleme, Ozellikle gri madde boliitlemesinde, manuel
yontemlere kiyasla daha tutarli sonuglar verdigi ve multipl skleroz ve diger noérolojik
hastaliklarin  analizinde kullanilabilecegi, omurilik atrofisi gibi  durumlarin
degerlendirilmesine yardimci olabilecegi ve cesitli multi-parametrik MR verilerinin

metriklerinin dogru bir sekilde 6l¢iilmesini saglayabilecegi belirtilmistir.

Taso ve arkadaslar1 (Taso vd., 2015: 20) saglikli gen¢ ve yetiskin deneklerden
temin edilen T2a MR goriintiileri kullanilarak olusturduklart veri seti ile omurilik beyaz
ve gri bolgelerin boliitleme c¢alismasi ve yasla birlikte meydana gelen morfolojik
degisikliklerin tensor tabanli morfometri (TBM, Tensor-based morphometry) ile
haritalanmas1 i¢in kullanilmasin1 amaglamislardir. Olusturulan AMU40 sablonuna
dogrusal olmayan uzamsal normalizasyonu ile boliitleme islemi gergeklestirilerek yash
grupta anlamli anterior gri bolgenin atrofisini belirlenmesini sagladilar. Bu TBM'nin
omurilikteki yerel yapisal degisiklikleri incelemede kullanilabilirligini ilk kez gosteren
bir ¢alisma olmas1 bakimindan 6nemli olmakla beraber, yasa bagli omurilik morfolojisi

degisikliklerini arastirma potansiyelini vurgulamaktadir.
2.2.  Makine Ogrenmesi Yaklagimlar

Manuel, yar1 otomatik ve tam otomatik yontemleri ile omurilik boliitleme
calismalar1 siire¢ icerisinde yerini makine Ogrenmesine birakmaktadir. Calismalarda
omurilik bolgesinin farkli planelerden taranmis MR verisetleri kullanilarak omurilik
alani, beyin omurilik sivisi alani, gri madde ve beyaz madde ve Ozellikle omurilik
sinirlart igerisnde bulunan MS lezyonlar1 ve diger tiimér gruplarinin boliitlenmesi i¢in
farkli yaklagimlarla boliitleme yontemleri Onerilmistir. Simdiye kadar omuriligin
boliitlenmesi icin manuel destekli(Mirafzal vd., 2020: 406), yari-otomatik(Coulon vd.,
2002: 1176), (Horsfield vd., 2010: 446), (Van Uitert vd., 2005: 224) ve tam otomatik(De
Leener vd., 2015: 1705), (De Leener vd., 2014: 528) olmak iizere bir¢ok calisma
onerilmistir. Tam otomatik yontemlerde makine 6grenmesi ve derin 6grenme tabanli
yaklagimlarin yaygin olarak kullanilmistir. Bu ¢alismalarin birinde, Chen ve arkadaslari

(M. Chen vd., 2013: 1051) hem aksiyel hem de sagital MR verileri kullanarak anatomi
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odakli omurilik ve beyin omurilik sivisi bdlgelerinin bdliitlenmesini saglamislardir.
Calismada, iki farkli veriseti ile yontemin dogrulugu degerlendirilmis ve manuel
yontemlere gore daha avantajli olan yontemin basarilt oldugu vurgulanmistir. Bir diger
calismada, Yiannakas ve arkadagslar1 (Yiannakas vd., 2016: 71) geriye doniik MR
verilerinden olusan bir veriseti kullanarak servikal omurilik bdlgesinin otomatik
boliitlenmesini ve MS lezyonlarin tespit edilmesini saglamigladir. Calismada elde
edilen sonuglar baska yontemler ile de kiyaslanarak calismanin basarisi

degerlendirilmistir.

Jois ve arkadaslar1 (Jois vd., 2018: 524) ise 6zel bir veriseti kullanarak omurilik
bolgesinin dairesel aktif disklerini otomatik bdliitlemek i¢in bolge biiylime algoritmasini
kullanmiglardir. Mirafzal ve arkadaslari (Mirafzal vd., 2020: 406) ise aksiyel ve sagital
acidan taranmis 3B MR verilerini kullanarak omurilikte MS lezyonunlarinin tespitini
gerceklestirmiglerdir. Calismada, manuel olarak omurilik lezyonu tespiti yapan
uzmanlara oranla Onerilen yontemin daha basarili oldugunu gostermislerdir. Bir bagka
calismada, Bédard ve arkadaslar1 (Bédard ve Cohen-Adad, 2022: 1031253) omurilik
bolgesinin  otomatik normalizasyonunu ve Olgiimiinii merkezi sinir sisteminin

pontomedullary junction kullanarak ger¢eklestirmislerdir.

Sabaghian ve arkadaslar1 (Sabaghian vd., 2020: 811) makine 6grenmesi kiimeleme
algoritmas1 yontemlerinden biri olan K-Means kullanarak omurilik goriintiilenmesi
dogrulugunu arttirmayr amaglamiglardir. T2a MR goriintiilerinden olusan veri seti
kullanarak MR verisinde elde ettikleri benzer yogunluk degerlerinin gruplanmasini
saglayarak omurilik ve omur yapisinin boliitlenmesi gerceklestirmislerdir. Yogunluklarin
kiimelenmesi temeline dayali bu sistem ile omuriligin ¢evre doku yogunluklarindan ve
yapilarindan ayirmadaki zorluklara karsi giiclii bir yontem olarak ifade edilmekte ve
klinik asamalarinda kullanilmak i¢in dogru bir boliitleme islemi sunmakta oldugundan
bahsedilmektedir. Manuel islem siireclerinde yasanabilecek hatalarin aza indirgeyerek

ylksek dogruluk ve tekrarlanabilirlik saglayacagi belirtilmektedir.
2.3.  Derin Ogrenme ve U-Net ile Yapilan Calismalar

Son yillarda olduk¢a hizla gelisim gosteren derin 6grenme modelleri tibbi
goriintliileme alaninda karar destek sistemi olarak siklikla kullanilmaktadir. Omuriligin

boliitlenmesi ve tespiti i¢in derin 6grenme tabanli bircok yontem bulunmaktadir.

Gros ve digerleri (Gros vd., 2019: 901) ilk olarak omurilik merkez hattinin tespit

edilmesi olmak iizere omurilik kordunun ve MS lezyonun otomatik boliitlenmesi igin iki
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asamali bir CNN modeli 6nermislerdir. Tiim siire¢ 2 asamaya bodliinerek modelin asiri
dgrenmesinin 6niine gegilmistir. Ilk model olan 2B dilate ESA ile omurilik merkez hattini
tiim gorlintiiden ¢ikararak ¢alisma alanini kiigiiltiilmekte ve ikinci model olan 3B ESA ile
omurilik bolgesi boliitlenerek lezyonlarin tespit edilmesi saglanmaktadir. Bu sayede iki
asamali siire¢ ile MRG hacminin tamamina kiyasla lezyon voxellerinin kii¢iik oranini ele
alarak boliitleme dogrulugunu artirmayr hedeflemektedirler. Calismada, 30 farkh
merkezden toplanan saglikli, MS hastalar1 ve diger omurilik patolojilerine sahip bireyler
olmak tiizere toplam 1042 kisiden elde edilen MR verileri kullanilmistir. Veriler T1, T2a
gibi farkli MR goriintiileme teknikleri kullanilarak hazirlanmistir. Omurilik béliitleme
sonuclart mevcut calismalardan ¢ok iyi sonug¢ vermesine karsilik lezyon sonuglart manuel

boliitleme sonuglarina yakin kalmistir.

Bu calismalardan birisinde, Horvath ve digerleri (Horvath vd., 2019: 3) AMIRA
(Averaged Magnetization Inversion Recovery Acquisitions) ismini verdikleri goriintii
protokoliinii kullanarak MD-GRU (Multi-Dimensional Gated Recurrent Units) ad1 verilen
yeni bir tekrarlayan evrisim agi (RNN, recurrent neural network) kullanarak omurilik
bolgesindeki gri ve beyaz maddenin boliitlenmesini saglamislardir. Elde edilen sonuclara
gore norodejeneratif hastaliklarin degerlendirilmesinde omurilik boliitlemesi i¢in daha
hassas ve otomatik bir yaklagim olanagi sunmakla beraber Onerilen yeni yontem ile
omurilik MR goriintiilerinin analizinde dogruluk ve hassasiyeti arttirarak klinik ve
aragtirma amach kullanim i¢in oldukca verilimli bir ¢calisma gergeklestirilmistir. Caligsma,
MD-GRU modelini egitmek icin 855 omurilik MR goriintii dilimi kullanarak onceki
yontemlere kiyasla onemli iyilestirmeler gostermis ve klinik ve arastirma uygulamalari

icin umut verici bir ara¢ oldugunu ortaya koymuslardir.

Diger bir taraftan derin 6grenme ile yapilan ¢alismalar biiyiik bir hiz kazanmig
olup evrisim aglarin ile ilk ¢alismalar yapilmaya baslanmistir. Bu ¢alismalardan birinde
McCoy ve arkadaglart (McCoy vd., 2019: 737) tiim omurilik bélgesini ve intramediiller
omurilik lezyonlarin1 tespit etmislerdir. Bu yontemde 24 saat igerisinde omurilik
yaralanmas1 gecirmis 47 hastadan elde edilmis aksiyel T2a 3T MR goriintiileri
kullanilarak bir veriseti hazirlamislardir. Gelistirilen yeni 2B-CNN mimarisini kullanarak
tiim omurilik ve intramediiller omurilik lezyon bolgelerin tespit edilmesini saglamiglardir.
3 farkli modeli kiyaslayarak kullandiklar1 modellerin basaris1 arasinda c¢ok bir fark
olmamakla beraber modellerin derin bir ag yapisina sahip olmamasi elde ettikleri
sonuclar etkiledigi vurgusu yapilmistir. Elde ettikleri sonuglar1 diger boliitleme araglari

ile kiyaslayarak sonuclari degerlendirmislerdir. BASICseg ismini verdikleri 2B-CNN
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modeli ile akut omurilik yaralanma populasyonunda mevcut béliitleme araglarina kiyasla
daha iyi performans sergiledigi ve otomatik lezyon bdliitlenmesinden elde edilen
yaralanma hacimleri, akut fazdaki motor bozukluklarinin 6l¢imleriyle baglantisi tespit
edilmistir. Bu c¢alismanin bulgulari, omurilik yaralanma vakalarinda, tan1 ve tedavi
siirecinde dogru ve hizli bir sekilde degerlendirilmesine ©6nemli katki sunacagi
disliniilmektedir. Ayrica motor fonksiyon bozukluklar: ile iliskili biyoisaretcilerinin
tespiti icin derin 6grenme yontemlerinin etkinliginin oldukga yliksek oldugu sonucu elde

ettikleri diger bir calisma ¢ikitis1 olarak belirtmislerdir.

Omurilikte kordoma adi verilen tiimoriin otomatik olarak boliitlenmesi igin
yapilan calismada Reza ve arkadaslar1 (Reza vd., 2019: 487) 8 hastadan alinan 22 sagital
acidan ¢oklu kontrastlt MR goriintiileri kullanilarak olusturulan veri seti ile iki adimli 3
boyutlu CNN kullanilarak ilgili tlimor alan1 tespit edilmistir. Bir¢ok tiimor gibi kordoma
tiimorlerinin konumlari, boyut ve sekil bakimindan farkli goriiniimleri nedeniyle otomatik
boliitlemeleri zorlu bir is olarak belirtmislerdir. Modelin ilk asamasinda tiim potansiyel
timor voksellerini tespit etmeyi 6grenirken, ikinci asamada gercek tiimor voksellerini
birinci ag tarafindan tespit edilen yanlis pozitiflerden ayirt etmek i¢in siniflandiriciya ince
ayar yapmasi saglanmistir. Derin 6grenme uygulamalari i¢in model basarilarinin daha iyi
analiz edilmesi i¢in veri adedinin yiliksek olmasi gerekliligi var iken bu g¢alismada 8
kisiden veri temin edilmis olmasi elde edilen basarilarin diisiik olmasia bir gerekce

olarak gosterilmistir.

Derin 6grenme alaninda gelistirilen Resnet-50 mimarisi kullanilarak yapilan diger
bir ¢aligmada ise Merali ve arkadaglart (Merali vd., 2021: 10473) dejeneratif servikal
miyelopati (DCM, Degenerative cervical myelopathy) tanili hastalarinda servikal
omurilik sikismasini belirleyebilmek i¢in yeni bir model gelistirmislerdir. Model
egitimlerinde T2 MR verileri kullanmis olup yliksek sonuglar elde edilmistir. Fakat
yazarlar modelin daha iyi performansa sahip olmasi i¢in sadece dejeneratif servikal
miyelopati hastalarinin verilerine ek olarak asemptomatik hastalarin veya hafif DCM
semptomlar1 olan hastalarin verilerinin model egitimine dahil edilmesinin daha
genellestirilebilir bir modelle sonuglanabileceginden bahsetmektedirler. Ek olarak yapilan
etiketleme yonteminin bir kisit oldugu vurgusu yapilmistir. Bu model sayesinde, servikal
MR taramalarinin yorumlanmasinin verimliligini ve nesnelligini artirabilecegi ve birinci
basamak saglik hizmetlerinde goriintiilerin ilk yorum asamasina entegre edilmesinin
zaman ve insan kaynagi agisindan olumlu etki sunacagi degerlendirilmistir. Model

egitimleri sonunda dejeneratif servikal spinal kord kompresyonunu dogru bir sekilde
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tespit edilmesinin klinik karar vericilerin daha hizli ve etkili hastalik siire¢lerini

degerlendirmelerine 6nemli bir katki sunabilecegi vurgusu yapilmaistir.

Diger bir ¢alismada ise Perone ve arkadaslar1 (Perone vd., 2018: 1) canlida ve
canlt disinda (in vivo ve ex vivo) MR veri seti kullanilarak derin 6grenme modeli ile gri
bolgenin boliitlenmesini onermislerdir. Gelistirdikleri derin 6grenme modelinde Atrous
Uzaysal Piramit Havuzu (ASPP, Atrous Spatial Pyramid Pooling) adi verilen ve
dilatasyonlu konvoliisyonlarin kullanildigi 6zel bir mimari olusturmuslardir. Genislemeli
(dilatasyonlu) konvoliisyonlar, daha az parametre kullanarak alici alan1 6nemli 6l¢ilide
genisletmekte ve bu agin verimliligini artirmaktadir. Bu yontemde, farkli genisleme
oranlarina sahip paralel dallar kullanilarak ¢ok Slgekli 6zellikler yakalanabilmekte ve bu
sayede boliitleme dogrulugu artirilabilmektedir. Calismada 6 bagimsiz metot ile elde
edilen ¢iktilar karsilagtirilmistir. 10 farkli degerlendirme metrigi igerisinde 8 tane metrik
de daha yiiksek performans elde edilmistir. Modelde kullanilan 2B baglam bilgisine ek
olarak 3B baglam bilgilerininde olmasinin daha iyi sonuglar elde edilebilecegi fikri
savunulmustur. Fakat ek olarak bu yontem ile geleneksel tibbi goriintiileme mimarilerine
kiyasla daha az parametre kullanarak daha iyi sonuglar elde etmeyi basarmislardir. Bu
calisma, ALS (Amyotrofik Lateral Skleroz) gibi nérolojik bozukluklarla iliskilendirilen
gri madde degisikliklerinin otomatik olarak boliitlemenmesinin klinik siireclerine énemli

Olctide katki saglayacagi vurgusu yapilmaktadir.

U-Net mimarisi goriintiiler izerinde segmente edilecek 6zel bolgenin ¢ikarilmasini
gerceklestirir ve gelismis Ozellik secimi ile diger derin 6grenme modelleri ile
kiyaslandiginda daha az veri ile daha iistiin performans gostermektedir. Derin 6grenme de
ozellikle tibbi goriintiilleme alaninda kullanmak i¢in gelistirilen ve bircok agidan kararli
ve gliclii sonuglar veren U-Net modelleri kullanilarak farkli planelerden taranmis MR
goriintiileri  kullanilarak omurilik bdlgesi(Xiaoran Zhang vd., 2021: 104345),
(AskariHemmat vd., 2019: 115), (Hille wvd., 2020) ve omurilik timor ve
lezyonlarinin(Lemay vd., 2021: 102766), (Zhuo vd., 2022: €210292) otomatik boliitleme

ile ilgili yapilmis caligmalar bulunmaktadir.

Diger bir calismada Xiaoran Zhang ve arkadaslari (Xiaoran Zhang vd., 2021:
104345) servikal spondilotik miyelopati hastalarindan aksiyel a¢idan taranmis 3B Spine
MR verileri ile olusturulan bir veriseti ilizerinde yogun baglanti yapisina sahip U-Net
mimarisi kullanilarak omur sinir alaninin belirlenmesini hedeflemektedirler. Onerdikleri
U-Net mimarisi ile ozelliklerin ¢ikarilmasin1 saglayarak Inter-Slice Attention (ISA)

Modiilii ile de gelen bilgileri kullanarak boéliitleme sonuglarini iyilestirmek ve daha
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kararli bir boéliitleme elde etmek calismanin ana motivasyonu olarak sunulmustur.
Deneysel sonuglar, SAU-Net'in inter-slice attention modiiliiniin (ISA) etkinligini ve
yontemin diger derin 6grenme yOntemlerine kiyasla daha yiiksek dogruluk ve verimlilik
sagladigini  gosterilmektedir. Ozellikle, bu ydntem omurga kanal stenozu, disk
herniasyonu (fittk) ve dejenerasyonu gibi hastaliklarin tespitinde ve morfolojik

arastirmalarda kullanilabilecegi belirtilmektedir.

U-Net mimarisi kullanilarak gergeklestirilen diger bir ¢alismada AskariHemmat
ve arkadaglar1 (AskariHemmat vd., 2019: 115) sabit nokta niceleme yontemi (fixed point
quantization metot) Onerilmistir. Farkli agirliklar ve aktivasyon fonksiyonlar1 (ReLU,
Tanh) i¢in ii¢ farkli tibbi goriintiileme veriseti lizerinde performanslar1 kiyaslamislardir.
Makalenin ana amaci derin 6grenme modellerinin bellek tiikketimini ve hesaplama
sliresini azaltmay1 amaclayan yeni bir yontemi 6nermektedirler. Bu baglamda yaptiklar1 4
bit agirlik giincellemeleri ve 6 bit aktivasyonlar kullanarak bellek gereksinimlerinde 8 kat
azalma saglamayi1 basarmis olup elde edilen dogrulukta kiiciik dl¢ekle bir kayip yasandigi
ifade edilmistir. Onerdikleri sabit nokta kuantizasyonunu diger tekniklerle
karsilastirdiklarinda, GM (Spinal Cord Gray Matter Segmentation), EM (Electron
Microscopic) ve NIH (National Institute of Health) veri setleri lizerinde daha dogru ve
ayni zamanda daha tutarli sonuclar elde edildigini ifade etmislerdir. Bu yontem, 6zellikle
sinirl1 bellek ve hesaplama kaynaklarina sahip cihazlarda kullanilmak iizere derin
ogrenme modellerini daha verimli hale getirme potansiyeline sahip oldugu

beirtilmektedir.

U-Net ile yapilan diger bir ¢alismada Hille ve digerleri (Hille vd., 2020) MR
goriintiileri ile omurga metastazlarini segmentlere ayirmislardir. Arastirmacilar 40 klinik
vakada hem litik hem de sklerotik lezyon tiplerini (lytic and sclerotic lesion types) ve
farkli MR sekanslar1 kullanilarak 6zel sayilarda katman yapilar1 igeren U-Net benzeri bir
mimari kullanarak otomatik boliitleme yontemi 6nermislerdir. Model egitimleri sonunda
uzman diizeyine yakin boliitleme dogrulugu elde edildigi belirtilmistir. Bu baglamda
yapilmig baska bir calisma olmamasinin ¢alismada elde edilen sonuglarin performans

karsilastirmasi agisindan eksik kaldig1 vurgulanmaistir.

Omurilik ve bu bolgedeki tiimoriin, 6demin ve kavitenin (the tumor, edema and
cavity) tespit edilmesi icin kaskat yapiya sahip bir U-Net modelinde, Lemay ve digerleri
(Lemay vd., 2021: 102766) oncelikle omur bdlgesinin lokasyonunun belirlemisler ve
ikinci asamada ise tiimor, 6dem ve kavite alanlarinin tespit edilmesi saglamislardir.

Calismada 343 hastadan elde edilen gadolinyum ile gii¢lendirilmis Tla ve T2a MR
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verileri kullanilmigtir. En yaygmn ii¢ omurilik i¢i tiimor tipi olan astrositomlar,
ependimomlar ve hemanjioblastomlar incelenerek maske verisi olusturulmustur. Onerilen
kaskad(ardil) U-Net modeli ile ilk asamada model omuriligin sinir alanlar1 bulunmaktadir
ve smirlayict kutu koordinatlarini olusturulmaktadir. ikinci asamada ise bu smirlayici
kutulara gore goriintiiler kirpilarak timdrlerin boliitleme islemleri gerceklestirilmektedir.
Onerilen kaskad bir mimarinin secimi ile daha hizl1 egitim, daha hizli tahmin yetenegi ve
yiksek dice skoru elde etmeyi hedeflemislerdir. Calismada belli bir performans basarimi
elde edilmis olup, calismanin tek bir uzman tarafindan isaretlenmis olmasi, yalnizca
intramediiller timdorler lizerinde egitilmis olmasi, yliksek smif dengesizligi ¢alismanin
kisitlar1 olarak belirtilmistir. Bu ¢alisma ile omurilik tiimorii boliitleme alaninda 6nemli
bir c¢alisma oldugu ve klinik wuygulamalarda kullanilabilirliginin  6neminden

bahsetmektedirler.

Farkli derin 6grenme aglarinin kullanildigi bir diger caligmada ise Zhuo ve
arkadaslar1 (Zhuo vd., 2022: €210292) omurilik lezyonu béliitleme ve siniflandirmasi i¢in
yeni bir yontem Onermislerdir. MR verilerinde siklikla benzer o6zellikler sergileyen
intramediiller omurilik tiimorleri ve inflamatuar demiyelinizan lezyonlarin ve bunlarin alt
tiplerinin dogru sekilde ayirt edilmesi i¢in yapilan ¢alisma kapsaminda ¢ok genis 6lgekli
veri seti hazirlamislardir. Retrospektif olarak 490 hastadan; 118 astrositom, 130
ependimom, 101 MS, ve 141 ndéromyelitis optika spektrum bozuklugu (NMOSD) T2a
MR goriintiisii olusturulurken prospektif olarak ise 157 hastadan; 34 astrositom, 45
ependimom, 33 MS, ve 45 NMOSD T2a MR goriintiisii kullanilmislardir. Arastirmacilar
yontem olarak iki boyutlu MultiResUNet ve DenseNetl21 aglarina dayanan bir
siniflandirma ve boliitleme modeli gelistirmislerdir. Deneysel calismalar sonucunda
herbir hastalik grubu icin ayr1 ayr1 performans sonuglar elde etmislerdir. Klinik pratikte
manuel boliitlemenin zaman alic1 ve hata yapma olasiliginin yiiksek olmasi nedeniyle
model egitimleri sonucunda yiiksek dogruluk ile ilgili bdlgelerin tespit edilmesinin
gelecekte radyologlara yardimci araglar olarak kullanilabilecegini gostermesi agisindan
oldukc¢a 6nemli oldugu belirtilmektedir. Birbirine ¢ok benzer doku benzerlikleri gosteren
timor gruplart olmalarina karsilik bu iki tiir lezyonun tedavi ve prognozu farklidir, bu
nedenle dogru bir ayrim yapilmasi tedavi siireci i¢in ¢ok kritik bir detay olarak

belirtilmistir.

Bir diger calismada, Alsenan ve arkadaslari (Alsenan vd., 2021: 244) SCGM
verisetini kullanarak omurilik gri bolgenin tespit edilmesini saglamak i¢in U-Net ve

MobileNetV3 mimarilerilerinin birlesimine dayali bir yontem Onermislerdir. Bu
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calismada, MobileNetV3 modelinin bir dizi blok kullanarak 6zellik haritalar: {ireten ve bu
haritalar1 optimize eden bneck bloklari, sikma ve uyarma (SE, squeeze-and-excitation)
modiillerinden faydalanilmislardir. Ayrica modele upsampling katmanlar1 ve atlama
baglantilar1 ekleyerek MobileNetV3'in U-Net benzeri bir model haline getirilmistir.
Calismada onerilen model ile en giincel yontemlerle de kiyaslamasi yapilarak sonuglarin
degerlendirilmesi saglanmiglardir. MobileUNetV3, norolojik bozukluklarin teshisi ve
tedavisinde onemli bir arac¢ olarak kullanilabilecegi ve MR verileri iizerinde etkin bir
sekilde c¢alisarak, gri madde dokusunun ayrintili bir sekilde analiz edilebilecegi
onermektedirler. Klinik olarak zor bir alan olan spinal kord gri madde bdliitleme
konusunda 6nemli bir ilerleme sunmakta ve bu alanda gelecekte yapilacak ¢aligmalar icin

giiclii bir temel olusturuldugu vurgusu calisma kapsaminca yapilmistir.

Fei ve arkadaslar1 (Fei vd., 2023: 817) yaptiklar1 caligmada servikal spondilotik
miyelopati hastalarinin derin 6grenme temelli boliitleme yontemi kullanilarak ilgili
bolgenin segmente edilmesi saglanmistir. Hastaligin tan1 ve tedavi siire¢lerinde kullanilan
bir tiir manyetik rezonans goriintiileme teknigi olan difiizyon tensor goriintiileme (DTI,
diffusion tensor imaging) kullanmilmistir. DTI verilerinden elde edilen ve dokularin
mikroyapisal Ozelliklerini yansitan bir metrik olan FA (fraksiyonel anizotropi) degeri
kullanilmaktadir. Calismada, 89 servikal spondilotik miyelopati hastasindan elde edilen
toplam 1159 kesit analiz edilerek fraksiyonel anizotropi (FA) haritalar1 hesaplanmistir.
Lateral, dorsal, ventral ve gri madde bolgeleri, her iki yandan kapsayan sekiz farkl ilgi
alan1 (ROI, region of interest) belirlenerek egitim sonuglarinda elde edilen metrik
degerlerini manuel ve 6n egitilmis VGG16 and ResNet50 back bone U-Net modeli ile
kiyaslamiglardir. Cok fazla zaman alici manuel isaretleme yerine Onerilen otomatik
boliitleme modeli ile servikal omuriligin daha detayli bir sekilde analiz edilmesine ve
durumunun daha ayrintili olarak nicel hale getirilmesine olanak tanmimaktadir. Bu
calismanin sonuglari, servikal spondilotik miyelopati tan1 ve tedavisinde DTI ile elde
edilen verilerin otomatik olarak islenmesiyle klinik siire¢lerin hizlandirilabilecegini ve

daha dogru teshisler konulabilecegini gostermektedir.

Diger bir ¢alismada Zhang ve arkadaslar1 (Xiang Zhang vd., 2022: 1081441)
servikal omurilik MR goriintiilerinin boliitleme tekniklerini iyilestirmeyi amaglayan
gelistirilmis bir U-Net derin 6grenme modeli olan SeUneter mimarisini dnermektedir.
Arastirmada 300 hastadan alinan 600 T2a MR goriintiisii kullanilarak bir veriseti
hazirlanmistir. Bu goriintiiler, servikal vertebra cisimleri, intervertebral diskler, spinal

kanal ve spinal kord gibi ayrintili yapilar1 icermektedir ve toplamda 16 kategori (arka
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plan dahil) kapsamaktadir. Attention modiili U-Net mimarisinin ¢ift konvoliisyon
katmanlarina entegre edilerek daha ayrintili 6zelliklerin ¢ikarilmasini saglamasi
hedeflenmigstir. Farkli derin 6grenme modelleri ile sonuglar kiyaslandiginda daha iistiin
sonuclar elde edilmistir. SeUneter, servikal omurga MR bdliitlemesinde attention
baglantilarin1 kullanarak daha dogru ve verimli boliitleme saglayan yenilik¢i bir yontem
olarak degerlendirirken Ozellikle klinik ortamda omurga hastaliklarinin tanisinda ve

takibinde 6nemli bir ara¢ olabilecegi vurgusu yapilmaktadir.

Tablo 2.1.’de geleneksel ve derin 6grenme yontemlerini iceren omurilik sinirlari
ve farkli omurilik lezyonlarinin tespit edilmesini igeren literatiir ¢aligmalarinin kisa bir

Ozeti sunulmustur.

Tablo 2.1. Geleneksel ve derin 6grenme yontemlerini igeren omurilik sinirlari ve farkl

omurilik lezyonlarinin tespit edilmesini igeren literatiir calismalari

Calisma Sistem Metodoloji Veri Seti Veri saglayicisi
Geleneksel Metotlar
- El yordami Saglikli, ALS,
El Mendili vd. (2015) Nati-oto ROI MRI T2a SMA., SCI
- Double-thresholding Saglikli, ALS,
El Mendili vd. (2015)  Yari-oto (DTbM) MRI T2a SMA., SCI
Intensity-based thresholding .
Losseff vd. (1996) Yari-oto and region-growing M ik Saglikli, MS
. (FSPGR)
segmentation
Tench vd. (2005) Yanoto  Luge detection * PV MRI Tla Saglikli
correction
Horsfield vd. (2010) Yari-oto Active Surface MRI Tla, T2a  Saglikli, MS
Kawahara vd. (2013)  Yari-oto PCA MRI Tla, T2a  Saglikli, MS
Two points Gradient
Law vd. (2013) Yaroto  competition descriptor with oy Ton gaspky
orientation coherence +
intensity classification
Sabaghian vd. (2020)  Oto K-Means MRI T2a Yaralanmans
goniilli
MRI T1, T2,
Gros vd. (2018) Oto OptiC T2%, difiizyon 20 [arklt merkezden
< norolojik hasta
agirlikll
Koh vd. (2010) Oto Active contour(GVF) MRI T2a Saglikli
Chen vd. (2013) Oto Atlas registration with MRITla, T2a  Saglhikli, MS
topology constraint
Continuous max-flow with
Pezold vd. (2015) Oto cross-sectional similarity MRI Tla Saglikli, MS
prior
Asman vd. (2014) Oto Multi-atlas label fusion MRI T2a Saglikli
Single-atlas
De Leener vd. (2015)  Oto deformation(MNI-Poly- MRI T2,T2a Sagliklt
AMU sablon)
Taso vd. (2015) Oto Tensor tabanl morfometri ) 1o, Saglikli
: (TBM) (AMU40 sablon) £
De Leener vd. (2015) Oto PropSeg MRI Tla, T2a
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Tablo 2.1.’in devami

Gros vd. (2019) Oto 2B Dilate CNN+3B CNN %R;; L Saglikli, MS, Diger
AMIRA MR
Horviath vd. (2019) Oto MD-GRU (New RNN) (Ozel Sagliklt
protokol)
McCoy vd. (2019) Oto 2B-CNN MRI T2a Omurilik Yarali
Reza vd. (2019) Oto 3B-CNN MRI T2a Kordoma tiimor
Merali vd. (2021) Oto ResNet-50 MRI T2a dejencratif servikal
miyelopati
CNN (Atrous Spatial MRI
Perone vd. (2018) Oto Pyramid Pooling (ASPP)) Flair,T1a, T2a ALS
Koh vd. (2011) Oto an gttentlon model and an
active contour model
U-Net
Servikal
Zhang vd. (2021) Oto Sau-net MRI T2a spondilotik
miyelopati
Spinal Cord
Gray Matter
AskariHemmat vd. U"-Net (§ab1t noktq niceleme Segmentation,
(2019) Oto yontemi (fixed point ISBI challenge,
quantization metot)) National
Institute of
Health (NIH)
Hille vd. (2020) Oto U-Net MRI T1,T2,T2a ]S;i‘gle‘fh’ MS,
MRI
Gadolinium- Timér, Odem
Lemay vd. (2021) Oto Kaskad U-Net enhanced Tla ve Kavite
T2a
. Astrositom,
Zhuo vd. (2022) Oto MultiResUNet ve MRI T2a Ependimonm,
DenseNet121 MS
Alsenan vd. (2021) Oto MobileNetV3 ve U-Net SCGM Diger
Alsenan vd. (2022) Oto MobileNetV3 ve U-Net SCGM Diger
. Diffusion tensor  Servikal
. U-Net (backbone with . . .
Fei vd. (2023) Oto VGG16 and ResNet50) imaging (DTI) sp.ondllotlk
MRI) miyelopati
Zhang vd. (2022) Oto SeUneter MRI T2a Diger

ALS:Amiyotrofik lateral skleroz

SMA:Spinal muskiiler atrofi

SCI: Spinal cord injury
MS:Multipl skleroz
SSS:Santral sinir sistemi

MRI:Manyetik rezonans image
PCA: Principal component analysis
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3. OMURILIK VE YAPISI

Omurilik, beyinle birlikte merkezi sinir sisteminin énemli bir parcasidir. Insan
omuriligi merkezi sinir sisteminin oldukc¢a organize ve karmasik bir parcasidir.
Omuriligin islevi noral sinyallerin, beyinden (duyusal bilgi) periferik sinir sistemine
(motor bilgisi) ve periferik sinir sistemden beyne iletilmesini saglamaktir. Iletilen bu bilgi
BM bulunan miyelinli motor ve duyusal aksonlardan gecer ve ¢ogunlukla GM bulunan

omurilik interndronlar tarafindan iletilir ve kontrol edilir(De Leener vd., 2016: 125).
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Sekil 3.1. Omurilik vertebra anatomisi
Kaynak: (Altman ve Bayer, 2001)
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Omurilik omurlar arasindaki kemik bir kanal i¢inde olup omuriligin ¢evresi BOS
ad1 verilen beyin omurilik suyu ile ¢evrilidir. Omurilik, beyin ile periferik sinir sistemi
arasindaki baglantidan sorumlu olan ana baglantig1 saglamaktadir. Yaklasik 40-45 cm
uzunlugunda, 1 cm ¢apinda, 30 gr. Agirligindadir(Duman, 2009). Kadinlarda 1-2cm daha
uzundur. Sekil 3.1.’de goriildiigii gibi, omurilik temel olarak servikal vertebra (boyun
omuru, 7), torasik vertebra (sirt omuru, 12), lomber vertebra (bel omuru, 5), sakral
vertebra (sakrum, 5) ve koksigeal vertebra (koksis, 4) olmak iizere ilk 24 adet eklem
birbirine bagl olup tiim alana presakral vertebra denilmektedir. Diger sakral ve koksiks

alana ise pelvik bolge ismi verilmektedir.

Omurilik aksiyel (transvers) kesitte incelendiginde dis béliimiinde miyelinli akson
demetlerinden olusan beyaz madde (ak madde, beyaz cevher) var iken i¢ boliimiinde gri
madde (boz madde, gri cevher) bulunmaktadir. Omurilik gri madde ve beyaz madde ad1
verilen bu iki temel sinir dokudan olusmaktadir(Paugam vd., 2019: 21). Sekil 3.2.’de
goriildiigli gibi, gri madde H harfine benzetilmekte veya literatiirde “kelebek” seklinde
ifadesi kullanilmaktadir. Omurilik boyunca gri madde ve beyaz madde yapisi
incelendiginde hacimsel ve sekil bakimindan degisiklik gostermektedir. Omuriligin gri ve
beyaz maddenin sahip oldugu hacimsel degisiklikler veya doku deformasyonlar1 bir¢ok

norolojik hastalik sebebiyet vermektedir(Amukotuwa ve Cook, 2007: 511).

O DD 6Ty Ty

Sekil 3.2. Omurilik aksiyel kesitte beyaz madde ve gri madde yapisi
Kaynak: (Altman ve Bayer, 2001)

Bu dokulardaki beyaz ve gri maddede demiyelinizan plaklarinin birikmesi ile
beyin, omurilik ve optik sinirleri etkileyerek MS gibi bir¢ok hasarli dokunun olusmasina
sebep olmaktadir. Bu nedenle omurilik MR goériintiilleme ile MS, ALS ve travmatik

yaralanma gibi ¢esitli hastaliklarin arastirilmasinda hayati bir rol oynamaktadir.
3.1. Omurilik MS Lezyonlar:

Multipl Skleroz (MS), merkezi sinir sisteminin kronik, inflamatuvar,
demiyelinizan, norodejeneratif bir hastaligidir(Grigoriadis ve Van Pesch, 2015:
3),(Mortazavi vd., 2012: 299). MS, beyin, omurilik ve optik sinirleri etkilemekte olup
beyaz ve gri madde de demiyelinizan plaklarinin birikmesi ile olusan az da olsa
aksonlarm ve noron hasarlarinin goériildiigii bir hastaliktir tiiriidiir(S. Oztiirk vd., 2017:

137). Sinir aglar1 miyelin kiliflar sayesinde bir nérondan digerine iletilmesi gereken
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sinyalleri hizl1 bir sekilde iletilmesini saglamakla beraber bu miyelin kilifin hasarindan
(demiyelinizasyon) sinir sistemi boyunca iletimde aksakliklarin yasanmasina sebep
olmaktadir(Zeng vd., 2020: 610967). Bu aksamalar ise viicut fonksiyonlarinin
bozulmasina neden olur(Mortazavi vd., 2012: 299). MS oldukca heterojen bir hastalik
olup santral sinir sisteminin etkilendigi bodlgeye gore motor, duyu, otonom ve kognitif
bozukluklart igeren ¢ok degisken klinik belirti ve bulgular1 olabilmektedir(Christogianni
vd., 2018: 208).

MS hastasmnin yasamimi fiziksel, ekonomik, psikolojik ve sosyal yoOnleriyle
etkileyebilen, siklikla ozirliliige yol agan kronik bir hastaliktir(Yildirim ve Fadiloglu,
2014: 100). Cesitli semptomlarin varlifi ve ongoriilemeyen dogasi nedeniyle hastalar
gelecekleriyle ilgili belirsizlikle yasamak zorunda kalmakla beraber ilerleyen evrelerde
ndrolojik morbidite ve mortaliteye sebep olabilmektedir(Lemay vd., 2021: 102766). ilk
olarak 1868 yilinda Jean-Martin Charcot tarafindan yeni bir sinir sistemi hastalig1 olarak
bildirilmistir (Zalc, 2018: 3482) ve ardindan Schumacher (1965), Poser (1983) ve
McDonald (2001) MS ig¢in klinik tan1 kriterleri yayinlamislardir. McDonald Kriterlerinde
MS hastalig1 i¢in bir dizi degerlendirme 6l¢iitii sunulmustur(Thompson vd., 2018: 162).
Bu olgiitler zaman igerisinde revize edilerek giinlimiizde de en sik kullanilan

degerlendirme kriterlerinden biri haline gelmistir(Togrol ve Demir, 2013: 15).

MS lezyonlar1 omurilik servikal, torasik ve lomber olmak iizere tiim kord boyunca
gozlemlenebilmekle beraber siklikla servikal omurilikte (%56,4) daha fazla
gozlemlenmektedir ve bu nedenle klinik ¢alismalarda MS lezyonlar1t MR taramalarinda
genellikle servikal bolgede aranmaktadir(Bot vd., 2004: 226),(Patek ve Stewart, 2023:
406). Gegmisten giliniimiize ¢ok hizli gelisim gosteren MR teknolojisi sayesinde nokta
atist klinik tani ile cerrahi islemler yapilabilmektedir(Karkucak ve Koksal, 2021: 147).
MR teknolojisinin sagladigi kolayliklarin yan1 sira goriintiilenecek omurilik alanin sahip
oldugu farkliliklar bolgesel zorluklar veya patalojik nedenler tibbi goriintiilemenin ¢ekim
kalitesini etkileyerek optimumun altinda bir performans gostermesine sebep
olabilmektedir(Stroman vd., 2014: 1070),(De Leener vd., 2016: 125).

3.2. MS’de Epidemiyoloji

MS ile ilgili olarak 70 yildan fazla zaman diliminde yapilan c¢aligmalardan elde
edilen veriler ile epidemiyolojik olarak bir veri zenginligine ulagilmistir. Fakat diinya
genelinde MS'in cografi dagilim modelini ¢ikarmak hala zor bir istir(Pugliatti vd., 2002:
182). Yapilan istatistiksel c¢aligmalarda ortak kriterlerin kullanilmamasi; arastirilan

popiilasyonlarin degiskenligi, vakalarin hangi evrelerde olduklari, cografi ve zaman
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degiskenlerine bagl olarak tedaviye erisim imkanlarinin degerlendirilme kriterleri, farkl
tani kriterlerinin kullanilmasi gibi diger baslica kritik sorunlardandir. Bu nedenle ortak
zaman diliminde taranmis genel bilgiye ulagsmak zor olmakla birlikte son yapilan
degerlendirmeler yaklasik veya genel ifadeler kullanilmaktadir. Bu bakimdan
incelendiginde Diinya saglik orgiitiiniin son verilerine gore diinyada 2,5 milyondan fazla
kisinin MS hastast oldugunu ve tiim yas araliklarinda gézlemlenmekle beraber geng
erigkinlerde ve 6zellikle kadinlarda daha sik gézlemlendigini belirtmislerdir(Nouri vd.,
2015: E675). MS ile ilgili olarak yapilan arastirmalarda koken, kita, yasanilan cografi
bolge, cinsiyet, yas araligi, giin 15181 siiresi, beslenme sekillerine vb. gibi bircok agidan
yapilan c¢alismalar mevcuttur. Bunlardan bazilardan elde edilen verilere gore;
Tiirkmenler, Ozbekler, Kazaklar, Cinliler, Japonlar, Afrikali siyahlar vb. gibi irklarda
daha nadir izlenirken Parsiler ve Filistinlilerde daha fazla gozlemlenmekte oldugunu
belirtmislerdir(Pugliatti vd., 2002: 182). Aym bolgede yasayan farkli irklarda da farkh
sonuclar elde edildigi gézlemlenmistir. Bu nedenle genel bir ¢ikarimla MS hastaliginin
yasanilan yer ile ilgili degil daha c¢ok kisisel bir hastalik olmasi yorumunda
bulunulmustur(Pugliatti vd., 2002: 182). Diinyada yapilan ¢alismalar 1s181nda ¢ikarilmig
MS haritasina ait bir veriyi Sekil 3.4’te gosterilmektedir.

M. Pugliatti et al | Clinical Neurology and Neurosurgery 104 (2002) 182191 183
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Sekil 3.4. MS diinya geneli prevelansi haritasi
Kaynak:(Pugliatti vd., 2002: 182)

30



3.3.  MS Etiyolojisi

MS etiyolojisi tam olarak bilinmemekle birlikte, otoimmiinite, genetik yatkinlik ve
cevresel faktorlerin tamaminin hastalig1 tetikleyen unsurlar oldugu
bilinmektedir(Weinshenker, 1996: 291),(Sawcer vd., 1996: 464). MS otoimmiin hastalik
gruplari igerisinde degerlendirilmektedir(Mirza, 2002: 40). Otoiimmin sistem viicudun
bagisiklik sistemini olusturan hiicrelerinin kendi hiicrelerine saldirmasi anlamina

gelmektedir.

Viral enfeksiyonlar, bakteriyel enfeksiyonlar, beslenme aliskanligi, evcil hayvan
besleme, travma, kaza veya ameliyat, asilar, gebelik, iklim kosullar1 gibi bazi
parametrelerin etiyolojideki rolleri iizerinde oldukca genis arastirmalar yapilmasina
ragmen ortak bir gorlis elde edinilememistir(Sadovnick ve Ebers, 1993: 17). Diger
taraftan hayvansal yag et tiiketimi gibi beslenme sekillerinin MS ile olan iligkisi
incelendiginde farkli sonuclar elde edilmistir(Granieri, 2000: S141). iklim sartlar1, kita,
yasanilan cografi bolge, irk, cinsiyet, yas aralii, giin 15181 siiresi (D-vitamin), sosyo
kiiltiirel seviye, meslek secimi, asilar zararli aligkanliklar (sigara, alkol vb.), yiliksek
oranlarda kahve tiiketimi gibi birgok agidan yapilan ¢alismalar olmasina ragmen bir
kosula bagli olmayan ¢ok kosullu durumlarin degerlendirilmesi gereken bir hastalik
olarak yorum yapilabilmektedir. MS etiyolojisini tiim bu ¢evresel kosullarin ve yasam
standartlarinin yani sira genetik alt yapisi da incelenmesi gereken kompleks bir
hastaliktir(Olsson vd., 2017: 25). Ikizlerde ve MS'lilerin birinci derece yakin
akrabalarinda MS'in daha sik goriilmesi gibi nedenlerle genetik etkenlerin 6nemi giderek
daha arastirilmasi gereken kritik bir konu olarak karsimiza ¢ikmaktadir. Buna ek olarak
MS, beyaz irkta daha fazla goriiliirken siyah 1rkta nadir gézlemlenmektedir. Eskimolarda,
Joponya, Cin ve Kore'de de olduk¢a nadir olarak MS tanist alinmaktadir. Genetik
calismalarin 1s181nda bolgesel yapilmis bir¢ok ¢alisma yapilmis olmasina ragmen kisaca
MS, beyaz irkta fazla tan1 alirken Asya ve siyah irkta MS tanisi alma riski daha diisiik
oldugu belirtilebilmektedir(Mirza, 2002: 40).

34. MS Belirtileri, Tani ve Teshisi

MS hastalar1 ¢ok cesitli sebeplere bagl olarak yeni baslayan veya tekrarlayan
norolojik semptomlar i¢in klinik bagvurusu yapabilmektedirler. Fakat klinik semptomlari
ve bulgular1 olduk¢a degiskenlik gostermekte olup duyusal, motor, gorsel ve beyin sap1
ile iletimi saglayan yollarda meydana gelen hasarlardan dolay1
kaynaklanabilmektedir.(Garg ve Bhagyashree, 2021: 229). Bunlardan bazilar

ekstremitelerde glicsiizliik, duysal belirtiler, ataksi, mesane problemleri, yorgunluk,
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diplopi, gérme bulanmiklig1 gibi gorsel belirtiler, dizartri, bellek-konsantrasyon-dikkat
bozuklugu gibi kognitif yakinmalar sik goriilen belirtilerdir. Buna karsilik hareket
bozukluklari, epileptik ndbet, bas agrisi, demans diizeyinde kognitif yikim, kortikal
belirtiler, isitme kaybi, amyotrofi seyrek goriilen belirti ve bulgulardir(Unal vd., 2018: 9).

Klinik olarak izole sendrom (Clinically Isolated Syndrome (CIS)) olarak
adlandirilan bu hastalardaki ilk belirtiler optik norit, inkomplet miyelit veya beyin sap1
sendromu olabilmektedir(Miller vd., 2005: 281). Baslangigtaki beyin veya omurilik MR
goriintiileme ile tespit edilen klasik demiyelinizasyon lezyonlarmin varliginin ikinci kez
tekrarlamasi durumunda MS varlig1 i¢in en dnemli belirtilerinden biri olmaktadir (Filippi
vd., 1994: 635). Diger taraftan BOS anormalliklerinin tespit edilmesi elde edilen
bulgulara ek olarak karar verici bir degere sahip olabilmektedir(Awad vd., 2010: 1). MS
tanis1 icin gecmisten bugiine kadar edinilen klinik tecriibeler 1s18inda bir¢ok bilgi
birikimine ulagilmis olmasina ragmen hala MS igin tek bir tanisal test yoktur ve tani
genellikle MR goriintiilleme ve baz1 durumlarda BOS analizi ile desteklenen klinik seyrin
takibine dayanmaktadir. ilk kez 1965 yilinda Schumacher paneli ile kesin MS tani
kriterleri belirlenmistir ve ardindan Poser (1983) ve McDonald (2001) MS i¢in klinik tan1
kriterleri yayinlamiglardir. McDonald kriterleri klinik uygulayicilar tarafindan en c¢ok
kullan yontemler biitiinii olmustur. 2001°de ilk hali ile uygulanmaya baslayan ve yillar
icerisinde revize edilerek 2017’de en giincel versiyonu elde edilmistir(McDonald vd.,
2001: 121),(Thompson vd., 2018: 162). MS teshisi i¢in basvurulan McDonald

Kriterlerinin son versiyonu Tablo 3.1°de verilmistir.

Hastalik farkli seviyelere gore ifade edilmekte olup bazi seviyelerinde donemsel
ataklarla kendini gosterirken bir kisminda ise hastaligin basinda veya son déneminde
hizla ilerleyici bir siire¢ yasanabilmektedir(M. Oztiirk ve Tek, 2019: 10). Bu nedenle MS
plaklarinin  sinir sisteminin farkli yerlerinde, farkli zamanlarda olustugunun
gozlemlenmesi ile birlikte McDonald Kriterleri’nin vurguladigr énemli konulardan biri
MS tanisi koyarken klinik takip icin MRG (Manyetik Rezonans Goriintiileme)’in
onemine Ozellikle vurgu yapilmaktadir(Thompson vd., 2018: 162). MR omurilik
¢ekimleri ile MS hastalarinin %80-%92 oraninda teshis edilebilmektedir(Bot vd., 2002:
46).
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Tablo 3.1. Mcdonald Kriterleri 2017

Objektif Klinik Bulgulu - . .
Atak Lezyon Sayisi (MRG) MS Tamsi I¢in Gerekli Ek Veri
>2 atak >2 Yok?
> atak 1+ oykudg baska bir alanda ki Yok
lezyona ait atak
MSS’de farkl bir alandaki lezyona ait yeni bir atak veya MRG® ile
>2 atak 1 n . .
mekanda yayilimin gosterilmesi
| atak > Ek bir klinik atak veya MRGd ile zamanda yayilimin gosterilmesi
- veya BOS-spesifik OKB varligi
MSS’de farkl bir alandaki lezyona ait yeni bir atak veya MRG° ile
1 atak 1 lezyona ait objektif klinik mekanda yayilimin gosterilmesi ve ek bir klinik atak veya MRG¢
bulgu ile zamanda yayilimin gosterilmesi veya BOS-spesifik OKBe
varligi
. T . Asagidakilerin 2’si;
Sinsi 1 y1l klinik izleme (retrospektif MS tipik alanlarda >1 lezyon

ilerfleme Y oY2P rospekiigggtan e  Spinal kord da >2 lezyon

bagimsiz olarak) «  BOS-spesifik OKB varlig1

2 : Mekanda ve zamanda yayilim gostermek icin ek bir teste gerek yoktur. Ancak beyin MRG tiim hastalara
yapilmalidir. Tanty1 destekleyecek yetersiz klinik ve MR bulgulari olanlarda, tipik KIS olmayanlarda, atipik
ozellikleri olan hastalarda ek olarak spinal kord MRG ve BOS tetkiki yapilmalidir. Bu tetkikler yapilamadrysa ya
da negatifse MS tanis1 koymadan 6nce dikkat edilmeli ve alternatif tanilar goz 6niinde bulundurulmalidir.

b : Atak i¢in objektif ndrolojik bulgular temelinde konulmus klinik tan1 en giivenilirdir. Oykiideki ataga ait
dokiimante edilmis objektif norolojik bulgular yoksa, 6ykii enflamatuvar demyelinizan olaya ait tipik semptom ve
klinik gelisim 6zelliklerini igermelidir. Ancak en az bir atak objektif bulgularla desteklenmelidir. Objektif kanitlarin
yoklugunda dikkatli olunmalidir.

¢ : MRG’de alanda yayilim; MS tipik (periventrikiiler, kortikal/jukstakortikal, infratentoryal ve spinal kord) 4 alanin
>2’sinde >1 lezyon olmasi.

d4: MRG’de zamanda yayilim; herhangi bir zamanda ¢ekilen MRG’de kontrast tutan ve tutmayan lezyonlarin ayni
anda bulunmas1 veya takip MRG’sinde ilk MRG (¢ekildigi zamandan bagiMSiz olarak) referans alindiginda yeni
bir T2 hiperintens lezyonun ya da kontrast tutan lezyonun olmasi.

¢: BOS-spesifik OKB varlig1 zamanda yayilimi gostermez ama tanida onun yerine geger.

MS: Multipl skleroz, SSS: Santral sinir sistemi, MRG: Manyetik rezonans goriintiileme, BOS: Beyin omurilik
stvist, OKB: Oligoklonal band (immiinoglobulin bantlar)

Kaynak: (Thompson vd., 2018: 162)
3.5. Servikal Omurilik ve MS’in MR ile Goriintiillenmesi

MS tanist koymak i¢in tiim klinik degerlendirmelerin ardindan en 6nemli yardimci
ara¢c MR goriintiilemedir. McDonald Kriterlerine gore MS tanis1 almak i¢in klinik bulgular
yeterli olsa bile MRG verisi alinmadan karar verilmemesine 6zellikle vurgu yapilmaktadir.
Bunun en 6nemli nedeni ise demiyelinizan lezyonlarin sinir sisteminin farkli konumlarinda
farkli zamanlarda dilimlerinde olusabilmesi olarak ifade edilmektedir(Togrol ve Demir, 2013:
15). Bu sebeple farkli klinik seyir izleyen hastalarda yapilan MR tarama sonuglarinin

kiyaslanmasi hastaligin ve lezyonlarin takibi i¢in olduk¢a 6nemli olmaktadir.
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Gegmisten giiniimiize MR cihazlarinin ilk ¢ekim giicii 0.02T iken gelismeler ile
birlikte 1T, 3T, 5T ve en son 7T ¢ekim giiciine ve iizerinde bir ¢ekim kalitesine ulagsmistir. Bu
sayede cekim siireleri kisalmisg goriintiiler daha da netlesmistir. MR cihazlari, farkh
sekanslarda ¢ekim yapabilmektedir. Sekil 3.5.’te goriildiigli gibi, omurilik MR goériintiilerinin
Tla, T2a, FLAIR gibi farkli sekanslarda ve sagital, aksiyel ve koronal olmak iizere farkli
acisal MR cekimleri yapilabilmektedir.

Servikal/©Omurilik Sagital T2a MR

Torasik Omurilik Sagital T1a MR

Servikal Omu r'ilik'A'ksiya| T2a MR

Torasik Omurilik Sagital T2a MR Servikal Omurilik Aksiyal T1a MR

Sekil 3.5. Servikal ve torasik omurilik bolgesi T1a, T2a sagital ve aksiyel MR verileri

MR gorintiilerde incelenen omurilik lezyonlari, omuriligin yapisint  ve
fonksiyonunu etkileyen demiyelinizasyon, ndroaksonal kayip ve gliosis alanlarina
karsilik gelmektedir. Omurilik lezyonlari, geleneksel spineko sekanslarinda T2
hiperintensitesi alanlar1 ve daha az siklikla T1 hipointensitesi alanlar1 olarak goriintiilenir
(Moccia vd., 2019: 1756286419840593). MS lezyonlar siklikla servikal bolgede (%59)
ve daha az siklikla alt torasik omurilikte (T7-12; %20) goriiliir(Weier vd., 2012: 1560).
Buna karsilik, MS'deki lezyonlar sagital goriintiilerde siklikla puro seklinde/silindirik,
aksiyel goriintiilerde ise kama seklinde goriiniir ve tipik olarak keskin sinirlara sahiptir
(Filippi vd., 1994: 635). Sagital gériinlimlerde uzunluklar1 nadiren iki vertebral segmenti
asar. Aksiyel taramalarda MS lezyonlar kesit alaninin %50'sinden azini tutar, tercihen
lateral ve posterior beyaz cevher kolonlarimi kaplar ve gri cevheri korumaz. Klinik
ortamda omurilik MR" i¢in 6nerilen protokoller hem sagital hem de aksiyel taramalari
icermektedir(Kim vd., 2015: 1165).
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4. MATERYAL VE YONTEM

Tez kapsaminda omurilik bolgesi boliitlenmesi ve omurilik MS lezyon tespiti i¢in
onerilen yapimin genel blok diyagrami Sekil 4.1°de verilmekte olup diger sagital omurilik
MS lezyonlarinin tespit edilmesi ve aksiyel OKA/BOS alanlarinin boliitlenmesi siiregleri
ayn1 islemler uygulanmaktadir. Sistem ilk olarak veri seti hazirligi ile baglamaktadir. Veri
seti hazirligr genel anlamda uygun format doniisiimii, maske verilerinin olusturulmasi,
veri boyutlarinin esitlenmesi ve ihtiya¢ halinde veri artirma islemlerinin uygulanmasini
kapsamaktadir. Daha sonra verilerin test ve egitim olmak iizere ayrilarak kullanilacak
olan U-Net mimarilerine karar verilmektedir. Model egitimleri tamamlandiktan sonra
agirliklar kaydedilerek literatiirde siklikla kullanilan metrik degerleri hesaplanarak model
basarilar1 degerlendirilmektedir. En son asamada hedef boéliitleme alanlar i¢in omurilik

bolgelerinin boliitlenmesi veya omurilik MS lezyonlarinin tespit edilmesi saglanmaktadir.

Dataset . On islem Asamalari ] Onerilen Mimari Bolutleme Sonuglar

-
isj —test sdreci Omurilik
est verisi
Aksiyal
= eniyi
egitir agirhk [
seti
degeri _\7» Omurilik
Alsiyal Ms |
"), model
Omurilik
= - .
J
-
Egitim Sireci

Sekil 4.1. Servikal omurilik bolgesinin boliitlenmesi ve omurilik MS lezyonlarinin

MR Uzman Original MR Gorintd Kirpilmis MR Goriintist Artiriimis Veriseti
Goruntiisi Maskesi

MR Gorintist

Arturlmig
zman Maskesi

tespiti i¢in tez kapsaminda Onerilen yaklasimin blok diyagrami

Omurilik  bolgesinin  otomatik boliitlenmesi ve omurilikte bulunan MS
lezyonlarinin otomatik tespit edilmesi, MS hastaliginin takibinde ¢ok onemli bir karar
destek sistemi olarak kullanilabilmektedir. Klinik ortamda omurilik MR'1 i¢in 6nerilen
protokoller hem sagital hem de aksiyel taramalar1 icermektedir(Kim vd., 2015: 1165).
Buna ek olarak omurilik bolgesinde MS lezyonlar1 tan1 ve tedavisi i¢in ¢ogunlukla MS
yogunluklarinin servikal bdlgede olmasi nedeniyle omurilik servikal MR ¢ekimi
yapilmaktadir(Unal vd., 2018: 9). Aksiyel T2 goriintiilemenin &zellikle daha fazla sayida
kiictik o6lgekte, periferik ve noktasal MS lezyonlarinin tespitinde daha hassas iken sagittal
T2 gorintiilleme ile uzunlamasina lezyonlarin tespiti i¢in daha uygun olabilmektedir
vurgusu yapilmaktadir. Fakat baz1 yapilan caligmalarda ise sagital MR verilerinde ise
baz1 vakalarda lezyonlar1 yeterince hassas bir sekilde gostermedigi ifade edilmistir
(Galler vd., 2016: 963). Ozellikle aksiyel goriintiilerde, omuriligin yan bélgelerine
yerlesen kiiciik lezyonlar daha net goriildiigii icin tam1 dogrulugu bakimindan daha

avantajli durumda iken, sagittal kesitlerde bu tiir lezyonlar daha az goriiniir oldugu
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vurgusu yapilmistir (Alcaide-Leon vd., 2016: 970). Ortak konsensus genel anlamda
aksiyel ve sagittal goriintiilemenin birlikte kullanilmasi olduguna dikkat ¢cekmektedir. Bu
tez ¢alismasinda, aksiyel planelerden omurilik sinirlar1 ve bu smirlar igerisinde bulunan
lezyonlar tespit edilecegi i¢in tiim kord boyunca (7'si servikal, 12'si torakal, 5'i lomber)
MS lezyonlar1 taramak yerine daha sik gézlemlendigi omurilik servikal bolge MR verileri
kulanilmistir(Wheeler-Kingshott vd., 2014: 1082). Diger taraftan, tez calismasinda,
servikal omurilik boliitleme ve tespit etme islemleri i¢in U-Net mimarisi temelinde fractal
evrisim yapist kullanilarak gelistirilen FractalSpiNet, Con-FractalSpiNet, Att-

FractalSpiNet mimarileri kullanilmistir.

Tim kullanilan verisetleri ile deneysel caligmalar kapsaminca kullanilan ve
gelistirilen U-Net mimarilerinin detaylar1 tezin ilerleyen asamalarinda kapsamli olarak

sunulmustur.
4.1. Verisetleri

Tibbi goriintii isleme alaninda siklikla kullanilan bir¢ok veriseti olmasina karsilik
omurilik gibi spesifik ¢alisilmak istenilen bolgelerde agik kaynak (publicly-available/agik
kaynak) veriseti kisiti bulunmaktadir. Bu nedenle calisilmak istenilen spesifik organlar
veya dokular i¢in calismaya 0zgli veriseti olusturmak boliitleme ¢alismalarinin zorlu
fakat 6zgiin olmasmi saglayan bir adimdir. Bu tez caligmasi kapsaminda bir global
veriseti ve bir de ¢alismaya 0zgii veriseti lizerinde deneysel ¢alismalar yiiriitiilmiistiir. Bu
baglamda, 6zgiin veriseti icin Akdeniz Universitesi Hastanesi’ndeki MS hastalarindan
servikal omurilik bolgesine ait turbo spin echo sekansinda T2a MR verileri toplanarak
calismaya 0zgii veriseti ve alt gruplar1 olusturulmustur. Bu veri setleri: Omurilik Aksiyel
GM/BM (Global) (Sekil 4.2(a)), Omurilik Aksiyel OKA/BOS (Ozgiin) (Sekil 4.2(b)),
Omurilik Aksiyel MS (Ozgiin) (Sekil 4.2(d)), Omurilik Sagital MS (Ozgiin) (Sekil 4.2(¢e))
seklinde isimlendirilmistir. Sekil 4.2°de agik veriseti ve 0zgiin verisetinden ITK-SNAP
yazilim araci (Yushkevich vd., 2006: 1116) orijinal MR kesiti ve hazirlanan maske

verileri ile birlikte ¢alisilan hedef alan gosterilmektedir.
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(d)

Sekil 4.2. Veri setlerinde bulunan MR goriintiisii, MR goriintiisiine ait isaretlenmis maske
goriintiileri ve ilgili alanin igsaretlenmesi (a) omurilik GM/BM aksiyel T2a MR, (b) omurilik
OKA/BOS aksiyel T2a MR, (c) omurilik MS aksiyel T2a MR, (d) omurilik MS sagital T2a

MR

4.1.1. Global Veriseti (SCGMSC)

Tez calismasinda, literatiirde omurilik ¢alismalarinda kullanilan global bir veriseti
olan “Spinal cord grey matter segmentation challenge (SCGMSC)” veriseti kullanilarak
omurilik gri ve beyaz bdlge otomatik olarak bdéliitlenerek, elde edilen sonuglar 6nerilen

mimarilerin sonuglari ile karsilastirilmistir. SCGMSC veriseti (Ferran Prados vd., 2017:
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312), University College of London, Ecole Polytechnique de Montreal, University of

Zurich ve Vanderbilt University isimli dort iiniversitenin egitim amacli kullanim i¢in

hazirlamis oldugu bir verisetidir. “Gray matter spinal cord bdliitleme yarigmast”

kapmasinda veriler herkese acik halde

iletilmektedir.

sunulmus olup talep edilmesi

halinde

Tablo 4.1. SCGMSC acik kaynak veriseti icerik bilgileri (K:Kadin, E:Erkek)

Veri Merkezleri

Site 1-UCL Site 2-Montreal Site 3-Zurich Site 4-Vanderbilt
Veri sayisi (egitim, 20 20 20 20
test) (10,10) (10,10) (10,10) (10,10)
Hasta sayist 14K, 6E 11K, 9E 6K, 14E 7K, 13E
(cinsiyete gore)
Ortalama yas
(standart sapma) 443 (10.4) 33.7(17.4) 40.6 (10.4) 28.3(8.2)
Veri Edinimi ve Tarayic1 Teknik Bilgileri
e . 3 T Siemens TIM 3 T Siemens 3 T Philips
Tarayici 3 T Philips Achieva Trio S Achieva
2D spoiled . .
Sekans 3B Gradient echo gradient multi- e U-ocho 3B multi-ccho
A gradient-echo gradient-echo
Maske 40 40 40 40
(4 farkli uzman) (4 farkli uzman) (4 farkli uzman) (4 farkli uzman)
Toplam MR . . . .
goriintiisii 30 (kesit) 113(kesit) 178(kesit) 133 (kesit)
Toplam maske . . . .
goriintiisii 30(kesit) 113(kesit) 149(kesit) 132(kesit)
TE (ms) 5 5.41,12.56,19.16 19 7.2,16.1,25
TR (ms) 23 539 44 700
Flip Acisi (derece) 7 35 11 28
FOV (mm) 240%180 320%320 162x192 160x160
Coziiniirliik (mm) 0.5%0.5%5 0.5%0.5%5 0.25%0.25%2.5 0.3x0.3x5
NEX 8 1 5 2
Kesit 10 (3¢ikarilmis) 10 20 14
Siire (d:s) 13:34 4:38 10:40 5:46
Bobin (kanallar) 16 12+4 16 16
Bobin tipi Neurovascular Head+Neck Neurovascular Neurovascular
Hizlandirma - ORAFPA factor - SENSE RL=2

SCGMSC verisetinde, Tablo 4.1.’de verilen veriler saglikli deneklerin omurilik

bolgesinden anatomik goriintiilerinden elde edilmistir. Veriler dort farkli siteden

herbirinden 10 adet test ve 10 adet egitim veriseti temin edilmistir. Toplam veriseti 40

adet test 40 adet egitim olmak iizere 80 adettir. Her bir egitim verisi i¢in 4 farkli uzmanin

manuel olarak belirledigi gri bolge maskesi bulunmakta olup test veri seti i¢in maske

verisi bulunmaktadir. Teknik detaylar1 incelenecek olursa veriler 4 farkli makineden

cekim alindigr i¢in her bir MR verisinin icerdigi kesit sayist ve Ozellikleri boyutlari
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farklilik gostermektedir. Verisetinde MR goriintiileri farkli marka 3T makineler ile elde
edilmistir. Bu nedenle MR verilerinin sahip oldugu teknik detaylar farklilik
gostermektedir. Bu verilere ait her bir veri saglayicisi i¢in verilen omurilik MR goriintiisii
ve MR goriintiisiine ait 4 farkli uzman tarafindan isaretlemesi yapilmistir. Bu nedenle
deneysel calismalar siiresince 4 nolu maske verisi kullanilmistir. Bu inceleme sonucu
SCGMSC verisetinden her bir veri saglayicisindan 6rnek bir MR goriintii ve uzman

tarafindan etiketlenen maske verisi Sekil 4.3.te verilmistir.

(a) MR Kesiti (b) Uzman maskesi (c) MR Kesiti (d) Uzman maskesi

Sekil 4.3. SCGMSC verisetinde her bir veri saglayicisi i¢in kullanilan MR verileri ve MR
goriintlisiine ait maske verileri. (a, ¢) MR kesiti, (b, d) uzman tarafindan etiketlenmis maske

SCGMSC verisetinde, farkli boyutlara sahip olan MR verileri nedeniyle bazi1 6n
isleme islemlerinden gegirilerek veri seti 128x128 .png formatinda tek bir boyutta olacak
sekilde yeniden diizenlenmistir. Veriler goriintii ve o goriintiilere ait maskelerden olusan
esit boyutlarda yeni bir veri seti olusturulmustur. Boyut farkliligi U-Net mimarisinde
egitim yapilabilmesi i¢in bir engel olusturmaktadir ve bu nedenle tiim goriintiileri bir 6n
isleme tabi tutarak goriintii ve maske boyutlarini esitlenmesi gerekmektedir. Tim 6n
islemleme prosediirleri, Python ortaminda omurilik MR goriintileri i¢in maske

merkezleri kullanilarak gergeklestirilmistir.
4.1.2. Servikal Omurilik MR Veriseti

Tez ¢aligmasinda, Omurilik bolgesinin boliitlenmesi ve omurilik MS lezyonlarinin
tespit edilmesi c¢aligmasi1 kapsaminda gerekli olan MR verilerinin temini Akdeniz

Universitesi Hastanesinden temin edilmis olup calismanin yiiriitiilmesinde bir sakinca
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olmadigi Akdeniz Universitesi Tip Fakiiltesi Klinik Arastirmalar Etik Kurulunun
15.09.2021 tarihli KAEK-644 nolu karari ile onaylanmistir. Calisma kapsaminda
goriintiiler medikal veri goriintiileme formati olarak kullanilan DICOM formati ile temin
edilmistir. Bu baglamda, Akdeniz Universitesi Hastanesindeki kimlik bilgileri, cinsiyeti,
yas1 gibi 6zelliklerinden bagimsiz olarak temin edilen omurilik bdlgesine ait turbo spin
echo sekansinda T2a servikal omurilik MR verileri temin edilerek c¢alismalarin

kapsamina 6zgii bir etiketleme islemleri yapilarak alt grup verisetleri olusturulmustur.

DICOM formatinda temin edilen servikal omurilik MR verileri igerisinde klinik
uzmanlarin talepleri dogrultusunda aksiyel, sagital ve koronal vb. farkli g¢ekimler
bulunmaktadir. Servikal omurilik bolgesinin biitiinciil bir yaklasimla boliitme ¢alismalari
gerceklestirmek amaciyla aksiyel ve sagital MR verileri kullanilarak boliitlenmesi
hedeflenen alanlarin ayr1 ayri maskeleme islemleri yapilarak alt veri gruplari
olusturulmustur. Aksiyel ¢ekimler kullanilarak omurilik alan1 (OKA) ve beyin omurilik
stvist alan1 (BOS) isaretlemeleri yapilarak omurilik aksiyel OKA/BOS veri alt grubu
olusturulmustur. Yine servikal omurilik MR verileri igerisinde aksiyel ve sagital verilerde
omurilik ve MS lezyon alanlarinin isaretlenmesi yapilarak omurilik aksiyel MS ve
omurilik sagital MS veri alt gruplar1 olusturulmustur. Servikal omurilik MR verileri ile

toplam {i¢ adet birbirinden farkli ve 6zgiin veri seti alt gruplar1 hazirlanmistir.

Calismada kullanabilecek c¢ekim kalitesine sahip olan veriler tek tek incelenerek
her bir servikal omurilik MR verisi ITK-SNAP yazilim araci (Yushkevich vd., 2006:
1116) kullanilarak NifTI formatinda yeniden kaydedilmistir. Veriler T2 sekansi
kullanilarak ¢ekilen servikal omurilik MR goriintiilerinden olugmaktadir. MR verilerinde
calisilmak istenilen omurilik alanlar1 ve omurilik igerisinde bulunan MS lezyonlar: tek
tek isaretlenerek uzman maske verileri olusturulmustur. Radyoloji alaninda iki farkli
uzman tarafindan onaylanan maske verileri de NifTI formatinda kaydedilerek MR
goriintiisii ve maskelerinden olusan 06zgilin verisetleri elde edilmistir. Caligsmalarda
kullanilabilecek MR kesitlerinin sayis1t MR ¢ekim esnasinda kullanilan parametrelere
bagli olarak farkli adetlerce elde edilmistir. Model egitimi i¢in yetersiz olmasi halinde
veri kiimeleri i¢in veri artirma islemi yapilarak veri sayisinda iyilestirme islemleri

yapilmistir.
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Tablo 4.2. Omurilik aksiyel OKA/BOS, omurilik aksiyel MS ve omurilik sagital

MS alt gruplarindan olusan servikal omurilik MR veriseti teknik bilgileri ve parametreleri

Omurilik Aksiyel Omurilik Aksiyel Omurilik Sagital MS
OKA/BOS

MS

Hasta sayis1 87 87

Kullanilan BT tarama 20 87 50

sayisi

Hastanmin yas arahgi 18-72 18-72 18-72

MR makinesi SIEMENS Spectra SIEMENS Spectra SIEMENS Spectra

Magnetom Magnetom Magnetom

Tarama modu 2D 2D 2D

Seri agiklamasi T2 TSE TRA T2 TSE TRA T2 TSE SAG

Modalite Transversal T2-a Transversal T2-a Sagital T2-a

Manyetik gii¢ (T) 3.0 3.0 3.0

Kesit kalinhigi (mm) 4 4 3

Tekrarlama siiresi (ms) 3420 3420 3000

Yanki siiresi (ms) 86 86 97

Goriintiilleme sikhgi 123.185655 123.185655 123.185655

Kesitler arasindaki

bosluk 52 52 33

Ornekleme yiizdesi 90 90 70

Gorintil al g 78.125 78.125 100

yiizde fazi

Piksel bant genisligi 260 260 260

Dondiirme acisi1 (FA) 150 150 150
320x320

. 384x324

Boyutlar (piksel) 320x250 320x250 384x348
384x384

Dilim sayisi 24-30 24-30 13-15

Ny, NEX 239, 3.00 239,3.00 239, 3.00

Voksel araligi 0.572917x0.572917x3.3

0.6875x0.6875x5.2 0.6875x0.6875x5.2 0.625x0.625x3.3

0.78125x0.78125x3.3

Alt gruplarda, ilk olarak aksiyel c¢ekimler kullanilarak OKA ve BOS alami
isaretlemeleri yapilarak omurilik aksiyel OKA/BOS veri alt grubu olusturulmustur.
OKA/BOS boliitlemesi i¢in verisetindeki toplam 87 hastadan temin edilen servikal omurilik
MR taramalarindan 20 adet MR taramasi kullamilmustir. ikinci olarak, servikal omurilik
bolgesinin ve omurilik bolgesi igerisinde mevcut olan MS lezyonlarini inceleyebilmek igin
servikal omurilik bolgesi T2a MR verileriAksiyel diizlemdeki alt gruplarda ortalama 24 ile 30
arasinda kesit olup, taramalardaki kesit kalinligi 4 mm’dir. MR taramalarinda tekrarlama
stiresi (TR, repetition time) 3420.00 ms ile 3970.00 ms arasinda degismekte olup, yanki siiresi

(TE, echo time) ise 86.00 ms’dir. Hasta taramalarinda diger ¢ekim parametreleri ise, ETL=17

41



k-space, Ny=239, NEX=3.00 ve FA=150.00 deg seklindedir. Son olarak sagital kesitte MS
lezyonlarinin incelenmesi i¢in servikal omurilik bolgesi T2a MR verileri ile diger bir veriseti
alt grubu olusturulmustur. Veriler klinikte MS teshisi almig 50 hastanin MR taramasina ait
olup yas ve cinsiyet gibi kisisel 6zelliklerden bagimsiz olarak elde edilmistir. Her bir hasta
icin omuriligin yaklasik C1-C7 aksina denk gelen T2a MR taramalar1 13-15 arasinda MR
kesiti bulunmaktadir. Sagital omurilik MR verileri 320x320, 384x324, 384x348, 384x384
farkl1 piksel boyutlarinda degismektedir. Ug farkli alt grup igeren sevikal omurilik verisetinin

teknik bilgileri ve edinim parametreleri Tablo 4.2.’de detayli olarak verilmistir.
4.1.3. Veri Etiketleme ve On-Isleme

MR goriintiilerinin  ITK-SNAP ortaminda etiketleme islemi ig¢in Ornek bir
gosterimi  Sekil 4.4.te verilmistir. Oncelikle, DICOM formatindaki orijinal MR
goriintiileri ve hazirlanan maskeleri NifTI formatinda yeniden kaydedilmistir. Sekil
4.4 ten gorildugii tizere ¢alisiimak istenilen ilgili bolge (ROI, region of interest) genel MR
verisinde oldukga kiiciik bir yer kaplamaktadir. Deneysel calismalar esnasinda gereksiz arka
planlarin dez avantajlarini elimine etmek ve model basarisini arttirmak igin kirpma islemi
uygulanmistir.  Yapilan uygulama ile goriintiller tek boyutta indirgenerek yeniden
boyutlandirma islemleri yapilmistir. Bu islem maske merkezleri baz alinarak 128x128
Ol¢iisiine gore kirpma islemi uygulanmistir. Tiim islemlerin sonunda veriseti i¢in 500 tane png
formatinda T2a MR goriintii elde edilmistir. Ayrica veri artirma teknigi uygulanarak toplam
1000 adet png MR verisi ve bunlarin uzman maskelerini igeren veriseti hazirlanmistir. On
isleme asamasindan gecen verisetinden 6rnek MR goriintiileri ve maskeleri Sekil 4.5.°te

verilmistir.

Sekil 4.4. Omurilik aksiyel OKA/BOS T2a MR verileri ve MR goriintiisiine ait isaretlenmis
maske verilerinin goriintiileri
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Sekil 4.5. Omurilik aksiyel OKA/BOS T2a MR verileri 128x128 olarak yeniden
boyutlandirilmig 6rnek gorselleri

Sekil 4..6’da servikal omurilik sinirlar igerisinde bu alana karsilik gelen aksiyel
kesitlerde omurilik ve beyin omurilik sivist alanlarinin sekil, bi¢im ve yogunluk bakimindan
farkliliklar oldugu goriilmektedir. Bu farklilik verisetini kendi igerisinde O6zellesmesine

onemli dl¢iide katki sunmakta olup bu sayede goriintii ¢esitliligi saglamaktadir.

Z00OM

SERVIKAL OMURILIK MRG Omurilik  ZOOM  yzman

Aksiyal MRG___ MRG _ Maskesi

Al

o . ©

Sekil 4.6. Servikal omuriligin sagital ve aksiyel kesit OKA/BOS T2a MR gériintiisii ve
MR goriintiisiiniin maske verileri

Sekil 4.7°de servikal omurilik MR verileri kullanilarak omurilik sinirlari igerisinde bu
alana karsilik gelen aksiyel kesitler tek tek incelenerek oOncelikle MS lezyonlar1 tespit

edilmistir. Servikal omurilik boyunca tiim kesitlerde MS lezyonu olmadig1 icin etiketleme
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islemi tiim kesitler yerine sadece MS olan kesitlerde yapilmistir. Bu sebeple elde edilen
toplam goriintli sayis1 olduk¢a azalmaktadir. Fakat yine her bir omurilik kesitinin ve MS
lezyonlarinin birbirinden benzersiz olmasi verisetini kendi igerisinde 6zellesmesine 6nemli

Olciide katki sunmaktadir.

SERVIKAL OMURILIK MRG

Sagital Kesit Aksiyal Kesit

.

’\ "

Zoom MRG

Sekil 4.7. Servikal Omurilik MS Aksiyel T2a MR goriintiisii ve MR goriintiisiinde MS
lezyonun konumu

Servikal omurilik MS alr grubunda tiim islemlerin sonunda 87 adet MR
goriintlisiinden 231 tane png formatinda MS lezyonu barindiran kesit elde edilmistir. MR
verilerinin icerdigi kesit sayis1 24 ile 30 arasinda degiskenlik gosterdigi diisiiniildiigiinde MS
lezyonu igeren kesit sayisinin yaklasik ortalama 3 oldugu goriilmektedir. Bu nedenle veri
sayis1 oldukca diisiik sayilarda kalmistir. Veri artirma teknigi uygulanarak toplam 1080 adet
png MR verisi ve bu MR verilerinin uzman maskelerini igeren veriseti hazirlanmistir. MS
lezyonu igeren ve On isleme asamasindan gecen verisetinden 6rnek MR goriintiileri ve

maskeleri Sekil 4.8’de verilmistir.
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Sekil 4.8. Servikal Omurilik MS Aksiyel T2a MR verileri 128x128 olarak yeniden
boyutlandirilmig 6rnek gorseller

SERVIKAL OMURILIK MRG
Sagital MRG

Sagital Kesitler

Sekil 4.9. Servikal Omurilik MS Sagital T2a MR goriintiisii ve MR goriintiisiiniin
maskeleri

Sagital omurilik MR goriintiilerde MS lezyonlar1 siklikla puro seklinde/silindirik,
aksiyel goriintiilerde ise kama seklinde goriiniir ve tipik olarak keskin smirlara sahiptir
(Filippi vd., 2019: 1858). Sagital goriiniimlerde uzunluklar1 nadiren iki vertebral segmenti
asmaktadir. Sekil 4.9°da servikal omurilik sinirlari icerisinde bu alana karsilik gelen sagital

kesitlerde MS iceren kesitler tek tek incelenerek tespit edilmistir. Servikal omurilik boyunca

tiim kesitlerde MS lezyonu olmadig1 i¢in etiketleme islemi tiim kesitler yerine sadece MS
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olan kesitlerde yapilmistir. Temin edilenMR verileri ortalama 13 kesit igermekte ve bu
kesitlerde tiim omurilik bolgesi 2 veya 3 kesitte izlenebilirken MS lezyonlar1 ortalamasi 1
veya 2 kesit kadar olmaktadir. Bu durum veri sayisini oldukca diistirmekte oldugundan elde
edilen toplam 80 adet kesit i¢in veri arttirma islemleri yapilarak veri sayisinda iyilestirme

yapilmigstir.

Servikal Omurilik MS Sagital alt veri grubu i¢in ITK-SNAP yazilimi kullanilarak
yapilmis olan &rnek bir etiketleme calismas: Sekil 4.10°da verilmektedir. Oncelikle,
DICOM formatindaki orijinal MR goriintiileri ve hazirlanan maskeleri NifTI formatinda
yeniden kaydedilmistir. Servikal omurilik MR verilerinde aksiyel planellerde c¢alisilan
ilgili bolgeler MR goriintiisiinde oldukca kii¢iik yer kapladig: i¢in yeniden boyutlandirma
islemleri yapilirken sagital MR planellerinde boyut azaltma islemleri yerine boyut
esitleme islemleri yapilmistir. Her ne kadar ayni makinelerde ¢ekim yapilmis olsada
teknik personel veya herhangi farkli durumlar nedeniyle sagital MR verilerinde boyut
farkliliklar1 olan MR verilerinin oldugu tespit edilmistir. Bu nedenle 320x320 olarak
yeniden boyutlandirma islemleri yapilmistir. On isleme asamasindan boyut esitleme
islemlerinden sonra verisetinden 6rnek MR goriintiileri ve uzman maskeleri Sekil 4.11°de

verilmistir.

Sekil 4.10. Servikal Omurilik MS Sagital T2a MR verileri ve MR goriintiisiine ait
isaretlenmis maske verilerinin goriintiileri
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Sekil 4.11. Servikal Omurilik MS Sagital T2a MR verileri 320x320 olarak yeniden
boyutlandirilmig 6rnek gorseller

4.2. Veri Artirma

Veri artirma (data augmentation), makine 6grenimi ve derin 6grenme modellerinin
performansimi artirmak i¢in kullanilan 6nemli bir tekniktir. Veri artirma, veri setlerinin
kalitesini ve ¢esitliligini artirarak, modelin daha dogru, dayanikli ve genellestirilebilir
hale gelmesini saglar. Veri setinin yetersizligi, modelin genelleme yetenegini artirma,
daha dengeli bir veri seti olusturma, modelin dayanmikliligini artirma, veri anomalisinin
azaltilmasi, modelin performansint ve verimliligini artirma gibi teknik gerekgeler i¢in
veri artirma islemleri makine 6grenimi derin 6grenme ve alt dallarinda siklikla tercih
edilen bir yontemdir. Ozellikle veri toplama ve derleme islemlerinin ¢ok zahmetli ve
pahali olmasi biyomedikal alanda veri artirma yontemleri oldukg¢a kritik bir durum
olmaktadir. Genellikle amag elde edilen mevcut veri setini ¢esitli yontemler kullanarak
yapay bir sekilde genisletmek ve modelin performansini olumlu yonde etkilemektir. Bu
teknik sayesinde veri eksikligi, modelin genelleme yetenegi, sinif dengesizligi gibi bir¢ok
sorun elimine edilerek daha giiclii ve dayamikli modellerin gelistirilmesine olanak
tanimaktadir. Fakat kullanilacak olan veri artirma tekniklerinin dogru bir sekilde

degerlendirilerek en giivenli yol ve yontem tercih edilmelidir.

Medikal goriintiiler i¢in genellikle dondiirme (rotation), cevirme (flipping),
Olcekleme (scaling), kirpma (cropping), parlaklik degisimi (brightness adjustment) ve
giiriiltii eklemek (adding noise) gibi teknikler siklikla veri artirma i¢in kullanilmaktadir
(Kusrini vd., 2020: 105842). Medikal kesitler ilizerinde yapilan dondiirme islemi ile
modelin farkli perspektiflerden mevcut veriyi tanimasi saglanirken ¢evirme islemleri
yatay dikey konumlar i¢in belirli oranlarda verinin biitiinliigiinii kaybetmeyecek sekilde
yapilabilmektedir. Genellikle sag veya sol perspektiflik durumun 6nemli olmadigi MR ve

diger goriintiileme tekniklerinde yeni veriler elde edilmesi i¢in siklikla kullanilmaktadir.
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Diger 6nemli bir teknik ise Olgekleme yontemleridir. Bu yontem ile calisilmasi kiigiik
alanlar i¢in boyut kiicliltme veya tam tersi durumlar i¢in biiyiitme islemleri ile boyut
degistirmek miimkiin hale gelmektedir. Ozellikle gereksiz arka plana sahip olan MR
verilerinde ¢alisilmak istenilen ilgili bolgelerin daha net ortaya ¢ikmasi i¢in ve egitim

stiresine olumlu katki sunmak i¢in kirpma islemleri gerekli olmaktadir.

Tez calismas1 kapsaminda kullanilan U-Net modellerinin genel basarisina olumlu
katki sunacak en 6nemli adimlardan birisi veri artirma islemleridir. Bu ¢alismada, veri
cogaltilmasi icin NumPy kiitiiphanesinin dondiirme (x ve y eksenlerinde), ¢evirme,
kaydirma ve ayni islevleri kullanilmistir. Omurilik bolgesinin farkli sekil yapilarina sahip
olmast MS lezyonlarinin birbirinden benzersiz konum ve boyutlarda olusu temel
verisitinde ¢esitliligi saglayan en 6nemli faktordiir. Buna ek olarak yapilan veri artirma

islemleri ile veri seti hazir hale getirilerek model egitimlerinde sirasi ile kullanilmistir.
4.3. Metodoloji

Yapay zeka ve makine 6grenmesi gibi arastirma konularinin literatiirlere girmesi
ile birlikte bir¢ok alt arastirma konular1 dogmustur. Bunlardan en popiiler olan1 ise yapay
sinir aglarinin gelisim siireci ile birlikte evrisim sinir aglarinin daha derin ag modeller
gelistirme fikri ile gelistirilen derin 6grenme mimarileridir. 1943°de W. McCulloch ve
W.Pitts tarafindan Onerilen ilk yapay sinir ag1 modeli insan beyninin hesaplama 6zelligi

kullanilarak basit bir sinir ag1 modeli gelistirmislerdir (Krizhevsky vd., 2012).

Temelde insan sinir sisteminden ilham alinarak gelistirilen yapay sinir aglari
ginlilk hayatimizda ses asistanlari, Oneri sistemleri, goriintii isleme ve bilgisayarla
gorme, saglik ve medikal tan1 amagli, otonom araglar, finans sektorii, eglence ve oyun
alanlarinda ve akilli ev cihazlar1 olarak karsimiza ¢ikmaktadir. insan beyni &lcegince
karar verebilen mimariler gelistirilirken basar1 kriteri insan yetenekleri g¢ergevesince
degerlendirilmektedir. SOyle ki insan diizeyine yakin nesne tanimasi, konusmalari
siniflandirmasi, metin okuma ve belki seslendirme yapabilmesi tasarlanan sistemin
basarisin1 gostermektedir. Gelisimin ve calismanin ¢ok hizli oldugu bir alan olmakla

birlikte bir¢cok farkli disiplinel alanlarla da igice ¢alismalar yapilmaktadir.
4.3.1. Derin Ogrenme

Yapay sinir aglar1 birka¢ katmanli yapilar olarak tasarlanirken derin sinir aglar ile
¢ok katmanli yapilarin kullanilmasi modelin ne kadar derin oldugunu belirlemektedir. iki
onemli gelisme ile derin 6grenme alanmi bir sigrama yasamistir. Birincisi ImageNet

yarismasi ile elde edilen nesne smiflandirma konusunda elde edilen basarisidir. ikincisi
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ise merkezi isleme birimleri olan CPU’larin yerini grafik isleme birimlerine kisaca
GPU’larina birakmasi diger etkendir. Donanimsal olarak yetersizligin giderilmesi ile
birlikte derin 6grenme modellerinin katman sayisi artirilarak daha derin yeni mimarinin
tasarlanmasi1 hiz kazanmistir. Derin aglarin gelistirilmesi i¢in bir¢ok farkli sinir agi
gelistirilmistir. Bunlardan en c¢ok kullanilanlarindan bazilar1 Evrisimli Sinir Aglar
(Convolutional Neural Networks, CNN), Tekrarlayan Sinir Aglar1 (Recurrent Neural
Networks, RNN), Uzun Kisa Dénemli Bellek (Long / Short Term Memory, LSTM),
Derin Inan¢ Aglar1 (Deep Belief Networks, DBN), Cekismeli Uretici Aglar (Generative
Adversarial Networks, GAN) gibi Ornekler verilebilmektedir. Fakat derin 6grenme

mimarilerinde en ¢ok kullanilan ve temel yapis1 kullanilarak model CNN’dir.

Derin 0grenme mimarilerinde GPU teknolojisi ve biiyiik veri kiimelerinin
kullanima sunulmasi ile birlikte goriintii siniflandirma, siniflandirma ve lokalisazyon ve
algilama konu basliklar1 altinda nesne tanima ve takip etme, dogal dil islemede anlam
ayristirma, ciimle modelleme, tahmin problemleri gibi bir¢cok alanda birbirinden farkl
CNN mimarileri gelistirilmistir (Gu vd., 2018: 354; LeCun vd., 2015: 436). CNN’nin
onciil katmanlarinda kenar bilgisi gibi daha ilkel Oznitelikler elde edilirken, derin
katmanlarda goriintiiyii temsil eden karmasik 6znitelikler elde edilmektedir. Sekil 4.12°de
goriildiigii gibi CNN mimarisi; evrisim katmani, ortaklama katmani ve tam baglantili
katmani olmak iizere lic ana katmanla ifade ederken bazilar1 giris katmani, batch
normalizasyon katmani, aktivasyon katmani, dropout katmani ve smiflandirma
katmanlarin1 da evrisim yapisina dahil etmektedirler (Sakib vd., 2019). Evrisim aglar
genel anlamiyla ozellik ¢ikarimi, havuzlama, siniflandirma ve tanima islemlerini
gerceklestiren her bir katmaninda ayr1 bir matematiksel islem yiiriitiilen bir modellemedir
(Yamashita vd., 2018: 611). Temelde her bir katmanda giris goriintiisiinden itibaren
filtreler yardimiyla geri yayilim ile giincellenen agirliklar matrisinin sonucuna gore hedef

ciktilara ulagilmasi durumu olarak ifade edilebilmektedir.

. Toplu Toplu ‘> Akfivasvon Tam Baglanti&
- Normallestirme Y Diizlestirme

" -Kaydirma ‘ Maksimum-Ortaklama
-Ekleme Havuzlama

Sekil 4.12. Evrisim sinir ag1 model agamalari

Giris katmani, bu katman isminden de anlasilacagi iizere evrisim agimin ilk
katmanini olusturmaktadir. Bu katmanda calisilacak olan veri seti ham olarak modele

giris verisi olarak sunulmaktadir. Evrisim katmani, giris katmaninin devaminda
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Ozniteliklerin ¢ikarildigi matematiksel islemleri iceren evrisim katmani ile devam
etmektedir. Giris verisinin sahip oldugu her bir pikselin sayisal degerleri vardir. Bu
sayisal degerler filtre, kernel veya maske olarak ifade edilen 3x3, 5x5 vb. gibi boyutlu
matrislerin goriintii verisinin ilk satir ve siitun pikselinden baslayarak gezdirilmektedir
(Xiangyu Zhang vd., 2015: 1943). Bu gezdirilme esnasinda filtreler de denk gelen sayisal
her bir deger evrisim islemine tabi tutulmaktadir. Bu islem kisaca bir carpma islemi
uygulamasi olup bu carpma isleminden elde edilen sonuglar toplanarak yeni ve tek bir
sayisal deger elde edilmektedir. Elde edilen her bir sonu¢ matriste yerine yazilarak yeni
bir veri kiimesi olarak kaydedilmektedir. Bu islem ile veri kiimesi degismekte olup farkl
Ozelliklere sahip Oznitelik haritalar1 (feature map) elde edilebilmektedir (Gu vd., 2018:
354). Bu nedenle bunlarin her biri ag1 olustururken dikkat edilmesi gereken parametre

degerleri olarak 6zenle se¢ilmelidir.

Derin 6grenmede, toplu normallestirme katmani (batch normalization layer), 6n
islem teknigi olarak kullanilarak batch islemi, verilerin standartlastirmak igin
kullanilmaktadir (Ioffe, 2015). Egitim asamasinda modelin egitim siiresini hizlandirarak
daha yiiksek basar1 skorlar1 elde etmeyi saglamaktadir. Genel kullanim yeri ise evrisim
ile aktivasyon fonksiyonu arasinda tercih edilmektedir. Aktivasyon katmani (activation
layer), basit bir lineer regresyon modelinden daha karmasik olan verileri agin
ogrenebilmesini i¢in dogrusal olmayan doniisiimler saglayan yapr aktivasyon
fonksiyonlaridir (Goodfellow, 2016). ReLu, tanh, sigmoid gibi aktivasyon fonksiyonlar1
siklikla sinir ag mimarilerinde kullanilmaktadir. Relu aktivasyon fonksiyonu ¢aligmalarda
siklikla kullanilmakta olup tez g¢alismasi kapsaminca da ReLu aktivasyon fonksiyonu
kullanilmigtir (Nair ve Hinton, 2010: 807). Hiz acisindan diger aktivasyon
fonksiyonlarina gore daha avantajli olmasina ragmen probleme goére aktivasyon

fonksiyonunu belirlemek en dogru yaklasim olarak kabul gérmektedir.

Ortaklama (pooling) katmani, evrisim ag mimarilerinin diger énemli katmani olup
bir boyut azaltma (down sapmling) islemi olarak gorev yapmakta olup herhangi bir
ogrenme islemi ger¢eklesmemektedir (Wu, 2017: 495). Genel olarak ifade edilmek
istenilirse, giris matrisinin kanal sayis1 sabit kalacak sekilde genislik ve yiikseklik
bazinda agdaki parametre sayisin1 ve hesaplama miktarini azaltmaktadir. Veride bulunan
yuksek degerlikli 6zelliklerin korunmasina ve modelin en etkin bir sekilde egitilmesine
katki saglamaktadir. Ortalama ortaklama (average pooling) ve maksimum ortaklama
(maximum pooling) olmak iizere iki sekilde yapilabilmesine karsilik en ¢ok maksimum

ortaklama tercih edilmektedir (He vd., 2016: 770).
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Tam baglanti & diizlestirme (flattening) katmani, evrisim ve havuzlama
islemlerinin sonucunda elde edilen son tensor kiimesini tek boyutlu vektore doniistiirmek
i¢cin yapilmaktadir (Yamashita vd., 2018: 611). Siiflandirma islemlerinin ger¢eklesmesi
icin yapay sinir ag modeline verilecek olan matrisin tek boyuta indirgenmis olmasi
gerekmektedir. Bu nedenle diizlestirici (flatten) ve tam baglantili katmanlara ihtiyag
duyulmaktadir. Seyreltme (dropout-birakma) katmani, model egitimlerinin son
asamasinda bazi noronlarin g6z ardi edilerek model egitiminde asir1 Ogrenme
(overfitting) durumu var ise kullanilmast modelin performansini olumlu etkileyecek bir

ozelliktir (Gu vd., 2018: 354; Hinton, 2012) .

Smiflandirma katmani, siniflandirilmak istenilen nesne sayisi kadar ¢ikis degeri
belirleyerek sigmoid ve softmax gibi smiflandiricilar kullanilarak hedef c¢iktilar igin
basarimlar hesaplanmaktadir (Yamashita vd., 2018: 611). Genel anlamda eger iki sinifli
bir problem i¢in sonug iireten bir ag yapist ise sigmoid kullanilirken, ¢cok sinifli sonug
iireten bir ag icin softmax aktivasyon fonksiyonu kullanilmaktadir. Tiim ag katmanlarinin
bu islemlerin hepsini tek bir gorlintii i¢in sirasiyla yapmaktadir. Evrisim agin
siniflandirict islemi sonucunda toplam bir olacak sekilde nesne adedince skorlama islemi

yapilmaktadir.
4.3.2. U-Net Mimarisi

U-Net ise bir tiir evrisimli sinir ag1 temelli derin 6grenme yaklagimidir ve ilk
olarak biyomedikal goriintiiler {izerinde daha iyi bir boliitleme (boliitleme) yapma Onerisi
ile 2015 yilinda, Olaf Ronneberger, Phillip Fischer ve Thomas Brox tarafindan “U-Net:
Convolutional Networks for Biomedical Image Segmentation” makalesinde
duyurulmustur(Ronneberger vd., 2015: 234). U-Net ilk olarak 2015 yilinda Uluslararasi
Biyomedikal Goriintilleme Sempozyumu (UBGS) ¢ok az goriintii kiimesi kullanilarak
egitim yapilabildigini ve daha 6nce yapilmis olan sinirsel yapilarin elektron mikroskobik
yigilarda bdoliitlemesi calismalarindan (Ciresan vd., 2012) daha 1iyi performans
gostererek biiyiik bir farkla yarismay1 kazanmistir. Calismada 6zetle Ronneberger vd.,
elektron ve 151k mikroskobu kaynagi ile elde edilmis olan 512x512 boyutlarindaki
goriintiilerden olusan veri seti ile Caffe kiitliphanesi iceriginde bulunan verisetleri ile
toplam 3 farkli veri seti kullanarak boéliitleme c¢alismasi yapmislardir. Verisetlerinde
igerik olarak 30 adet elektron mikroskobu, 35 ve 20 adet 151k mikroskobu goriintiisiinden
olusmaktadirlar. Yarigmada birinci verisetinde 0.0003529 ¢ozgii hatas1 (warping error),
ikinci veri setinde %92 IoU, iiglincii veri setinde ise %77.5 IoU ile oldukga yiiksek bir

basar1 elde edilmistir (Ronneberger vd., 2015: 234). Elde edilen bu basar1 degeri
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sayesinde U-Net mimarisi olduk¢a fazla kullanilmaya ve arastirilmaya baslanmistir. Son
yillarda literatiirde U-Net mimarisi ve U-Net mimarisinden esinlenerek gelistirilmis

oldukg¢a fazla mimari ve akademik ¢alisma vardir.

Klasik evrigimli sinir ag1 modellerinde basarili sonug elde edilmesi ile verisetinin
biiylikliigii arasinda bir dogru mevcuttur. Cilinkii verisetlerindeki goriintiiler etiketlenerek
ve Ozellik haritalar1 ¢ikarilarak modele verilir ve model bu verileri etiket bilgisinden
tanimlayarak islem yapmaktadir. U-Net ise diger derin 6grenme modellerinin aksine
baglama dayali 6grenme 6zelligi sayesinde daha az veri seti ile daha hizli sonuglar elde
edilebilmektedir(Siddique vd., 2020: 1118).

U-Net mimarisi ismini Sekil 4.13.’te goriildiigii gibi mevcut U seklinden
almaktadir. Temelde evrisim ag1 modellerinde bulunan yapilar ile temsil edilirken
farklilastig1 6zelliklerde mevcuttur. Klasik evrisim blok yapisi yine korunarak evrisim
katmani, aktivasyon katmani ve havuzlama katmanmi U-Net mimarisinin kodlayici
(encoder) blok yapisint olusturmaktadir. Kodlayici bloklarin karsi simetrisinde kod
¢Oziicii blok yapilar ile tersine evrisim islemi uygulanmaktadir (Rukiye Polattimur vd.,
2023: 1). Her iki yapiy1 birbirine baglayan ve U-Net mimarisini diger evrigim
mimarilerinden ayiran en 6nemli baglantis1 birlestirme ve baglant1 kurmak i¢in kullanilan

concatenate ismi verilen baglant1 yapisi ile saglamaktadir.

v
Y
\4
v
Y

—> evrisim (conv) 3x3, BN, Relu

{ A — birlestirme (concatenate)

—>» maksimum havuzlama (max pool) 2x2
— yukari evrisim (up conv)

— evrisim (conv) 1x1

Sekil 4.13.U-Net mimarisinin temel yapisi

U-Net derin 6grenme mimarisi kodlama (encoder) ve kod ¢6ziicii (decoder) olmak
iizere simetrik iki parcanin bottleneck denilen darbogaz baglantis1 ile birbirine

baglanmasi ile olusmaktadir(J. Zhang vd., 2021: 107885). Temelde klasik evrisim
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mimarisinde bulunan katmanlarin birgogu U-Net mimarisinde de kullanilmakla beraber
tam baglanti katman kullanilmamaktadir. Evrisim mimarisinin yapisindan farkli olarak
ise kodlayict ve kod c¢oziicii bloklarini birbirine baglayan ‘concanetane’ adi verilen
baglantiya sahiptir. Encoder yapis1 U-Net mimarisinin ilk béliimiinde 2 kere 3x3 normal
evrisim islemi, ReLu aktivasyonu ve asagi yonlii iletilen veri i¢in 2x2 maksimum
havuzlama islemlerinden olugsmaktadir (LeCun vd., 2015: 436). Bu asamada klasik U-Net
mimarisinde kullanilmayan batch normalisazyon modele entegre edilebilmektedir. Batch
normalizasyon ile derin sinir aglarinin (DNN'ler) egitim siirecinde optimisazyonu en
sorunsuz Ol¢iide tutularak modelin daha hizli ve daha kararli egitimini saglamasina

yardimci olan bir tekniktir (Bjorck vd., 2018).

U-Net mimarisinde siklikla konvoliizasyon, batch normalizasyon ve aktivasyon
olarak sira ile islem goérmektedir. Bu islemler sonucunda iki adet ¢ikti iiretilmektedir.
Bunlardan birincisi bir alt basamakta bulunan evrisim bloguna girdi olarak aktarilmak
iizere baglanirken, diger c¢ikti ise karst kod ¢oziicii bloguna baglam bilgisi olarak
aktarilmaktadir (Milletari vd., 2016: 565). Bu o6zellik U-Net mimarisinin en 6nemli
ozelligidir. Ayrica, her alt 6rnekleme basamagina gegiste filtre sayis1 yani 6zellik sayisi
ikiye katlanirken goriintii boyutu da maksimum havuzlama islemi sayesinde yariya
digsmektedir. Alt alta bu sekilde evrisim bloklar1 halinde tekrar eden bir yapidan
olusmaktadir. Maksimum ortaklama islemi goriintiiyi 2%2 bloklara ayirir ve bu
bloklardaki maksimum pikseli alma temeli ile islem yapmaktadir. Boylece her bloktaki
derece daha 6nemli bilgiler korunurken daha az Onemli bilgiler atilmaktadir. Sonug
olarak giris goOrlntiisiinden daha kiiciik fakat daha anlamli bilgileri iceren Ozellik
haritasina sahip veri kiimesi ile temsil gorlintii olusturulmaktadir. Bu islemler 5 katman
boyunca devam etmektedir. Girdi boyutuna bagli olarak bu durum degiskenlik
gosterirken klasik U-Net mimarisinde goriintiiniin boyutlar1 128x128, 64x64, 32x32,
16x16 ve son olarak 8x8 piksele kadar diismektedir. Besinci katmanda darbogaz
(bootleneck) denilen yap1 ile kodlama ve kod ¢oziicii blok birbirine baglanmaktadir
(Cicek vd., 2016: 424). Kodlama asamasi bittigi i¢in havuzlama islemi kod ¢oziicii blokta

yapilmamaktadir.

Decoder yapisi, decoder katmaninda goriinti adim adim genislemeye
baglamaktadir. Yukar1 yonlii goriintii boyu tekrar katmanlar arasinda 2 katina ¢ikaracak
olan tersine evrisim islemi ile model sonunda goriintii orijinal boyutuna geri
ulagmaktadir. Kodlama blogundan gelen ayni seviyede tlretilen yiiksek ¢oziintrlikli

Ozellik haritalar1 ile kod ¢6ziicli blogunda bulunan diisiik ¢oziiniirliiklii 6zellik haritalari
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birlestirilmektedir. Bu adim, hem detay hem de baglam bilgisini koruyarak bdliitleme
performansin1 artirmaktadir. .Bu sayede goriintiilerin her pikselin hangi simifa ait

oldugunu tahmin edebilmek i¢in detayli bir 6zellik haritas1 elde edilmektedir.

U-Net mimarisinde evrisim sinir aglarinin en 6nemli baglanti yapis1 olan tam
baglantili katman yerine 6zellik vektoriinii istenen sayida sinifa eslemek i¢in 1x1 evrisim
uygulanmaktadir. Klasik 5 seviyeli bir U-Net mimarisinde kodlayici blokta 10 evrisim
katmani, darbogaz (bottleneck) blokta 2 evrisim katmani, kod ¢o6ziicii blokta 8 evrisim
katmani ve son olarak 1 adet ¢ikis katmaninda bulunan evrisim katmani ile toplamda 21
adet evrisim islemi uygulanmaktadir(Alom vd., 2018: 228),(Pattanayak, 2023). Elde
edilen ¢ikti ile her pikselin smifini belirleyerek en son boliitleme maskesini tiretmektedir.
Bu sayede 1x1 evrisim ile her bir piksel i¢in sinifsal olasiliklar hesaplanmaktadir ve her
bir piksel icin ayr1 siniflandirma yapilabilmektedir. Bu durumda sinif sayisina gore son
katmanda softmax (¢ok smifli veri seti i¢in) veya sigmoid (iki siniflt veri seti igin)
aktivasyon fonksiyonu kullanilmaktadir. Literatiirde siklikla kullanilan benzerlik

metrikleri ile model sonuglar1 degerlendirilerek model basarisi elde edilmektedir.
4.4. Hibrit U-Net Modelleri

U-Net mimarisi 6zellikle tibbi goriintii alaninda ¢ok basarili sonuglar elde ettikten
sonra arastirmacilarin ¢ok yogun ilgisini ¢ekmistir. Bu nedenle ¢ok hizli ilerleme
gosteren ve ¢cok yogun arastirma yapilan bir alan olmakla beraber farkli alanlarda da
calismalar gercgeklestirilmistir. Genel yapisi itibariyle U seklinde olmasi, evrisim
bloklarindan olusmas1 U-Net mimarisinin farkli modellere evrilme esnekligi sayesinde
(U-seklinde) diger derin 6grenme modellerinin blok yapilar1 veya Onerilen evrisim
bloklar1 kullanilarak hibrid modeller veya farkli katman baglantisina sahip yeni U-Net
tabanli modeller gelistirilebilmektedir. Temel U-Net modelinin etkin 6grenme 6zelligine
ek olarak hibrid modellerin farkli katman baglantilar1 ile veriyi niteleyen ozellikler
katman yapisi igerisinde korunarak daha farkli 6znitelik kiimeleri elde edilebilmektedir.
Bu sayede olusturulan yeni U-Net hibrid modellerin model egitimleri sonucunda elde

edilen performans degerine olumlu katki sunmasi beklenmektedir.
4.4.1. Attention (Dikkat) U-Net

Attention U-Net (Att U-Net) mimarisi U-Net mimarisine attention mekanizmasi
entegre edilerek Sekil 4.14.’te goriildiigii lizere yeni bir yap1 olarak tasarlanmistir. Temel
U-Net mimarisi olduk¢a basarili performans gostermesine ragmen oOzellikle tibbi

goriintlileme verilerinde ihtiya¢ duyulan lezyon timér gibi kiiclik, sinirhi veya gizlenmis
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nesneleri tespit etmek hala zorlu olabilmektedir. Bu kiiciik alanlarin segmente edilmesi
icin modelin dikkatini(attention) 6nemli 6zelliklere odaklamasi ve arka plan gibi gereksiz
detaylar1 gormezden gelmesi modelin performansina onemli 6lgiide katki sunmaktadir.
Attention mekanizmasi ile verilerin belirli 6zellik haritalarina veya boliimlerine "dikkat",
"0zen", "odak", gOstermesini amaciyla kullanilmaktadir (Oktay vd., 2018:
1804.03999v3). Dikkat mekanizmas1 6zellikle boliitleme gorevlerinde kiigiik sinirlara
sahip lezyon tiimor doku zedelenmeleri gibi hacimleri daha iyi tespit etmek icin yaygin
olarak kullanilmaktadir (B. Chen vd., 2023). Dikkat mekanizmas1 matematiksel bir skor
hesaplayarak yiiksek degerlikli nitelikleri belirleyerek modelin egitim siiresi boyunca
yiiksek skorlu alanlar1 kullanmasini saglamaktadir. Bu sayede hesaplama maliyetini
azaltip agin daha iyi genellestirmesine yardimci olmaktadir. Attention baglantis1 U-Net
modelinde bulunan kodlama ve kod ¢oziicii bloklar1 arasinda karsilikli baglant1 saglayan
atlama c¢iktisina eklenerek kod ¢oziicii bloguna yukari yonlii girdi olarak
verilmektedir(Oktay vd., 2018: 1804.03999v3).

— evrisim (conv) 3x3, BN, ReLu
M Il ’( :) > K —> birlestirme (concatenate)
; A —» maksimum havuzlama (max pool) 2x2

N N ——>» yukari evrisim (up conv)
—> evrisim (conv) 1x1

g @dﬂ(kat kapisi (attention gate)

— W, lxlxl ‘

Fo x Hox Wex Dy

X f ]
TH We:lxlxl ¢

Fi xHyx Wox D,

|

Sigmoid (62) Resampler

( ) a &
>y lxlxl f > @ > -

Fuux HyW, D, H,W, D, Hex Wex D,

Sekil 4.14. U-Net mimarisinde dikkat (attention) blok yapisi

Dikkat mekanizmasinda, klasik bir U-Net modelinin ilk katmanlarindan gelen
zayif Ozniteliklerde kod ¢oziicii bloguna girdi olarak aktarilmaktadir. Bu baglant1 ile U-
Net modelinde 6znitelik bilgisi iletilirken araya eklenen dikkat blogu sayesinde veriden

aktarilan zayif Ozellikler ve alakasiz bolgeler goz ardi edilerek agin sadece calisma
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alanma yani segmente edilecek alanina odaklanmasi saglanmaktadir. Verilerden ilgisiz
bolgelerin hesaplamaya dahil edilmemesi agin toplam hesaplama parametresini azaltarak
modelin daha hizli egitilmesini saglamaktadir (Siddique vd., 2020: 1118). Ayrica bu
baglantt yapist minimum hesaplama yiikiiyle U-Net modeli gibi standart evrigim
mimarilerine kolayca entegre edilebilirken, model duyarliligi ve tahmin yetenegine
onemli bir art1 kazandirmaktadir. Attention mimarisinde, U-Net hesaplama verimliligini
korurken, farkli veri kiimeleri ve egitim boyutlarinda U-Net'in tahmin performansin

tutarl bir sekilde iyilestirdigi tespit edilmistir (Oktay vd., 2018: 1804.03999v3).
4.4.2. Residual U-Net

Residual U-Net (Res U-Net) mimarisi yine U-Net mimarisinden tiiretilmis olup
Sekil 4.15.’te gosterilen “artik™, “kisayol”, “kalint1”, “kestirme” olarak ifade edilebilecek
baglant1 yapisi sayesinde almistir. Tiim yeni mimari tasarimlarinin amaci gibi residual U-
Net mimarisinin daha derin aglarin egitim siiregleri kolaylastirmak ve model basarimini
yukseltmek {lizerine kurgulanmistir. Res-Net ismi verilen Residual U-Net mimarisinin ¢ok
derin sinir aglarmin egitimi sirasinda karsilagilan "vanishing gradient" ismi verilen
kaybolan gradyan sorununu ¢6zmek i¢in gelistirilmis bir evrisim mimarisidir (Y. Zhang
vd., 2018: 1). Residual U-Net mimarisinde evrisim blok yapisinin standart U-Net evrisim
blok yapisindan farki ilk katman ile son katmanin birbirine direk baglanmasi ile elde
edilmistir. Bu artik baglant1 sayesinde giris 6zellik harita bilgisi ¢ikis evrisim katmanina
eklenerek modelin daha derin katmanlar etkili ve hizli bir sekilde ilerlemesine yardimci

olmas1 amaciyla tasarlanmistir.

—> evrisim (conv) 3x3, BN, ReLu
> > —> > W > — birlestirme (concatenate)

\_/ v f\/A —> maksimum havuzlama (max pool) 2x2

—> yukari evrisim (up conv)
— evrisim (conv) 1x1

.} artik baglanti (residual connection)

Sekil 4.15. U-Net mimarisinde artik (residual) blok yapis1

Artik (residual) evrisimde nihai ¢ikt1 6zellik haritasi ile giris 6zellik haritasindan

gelen artik baglant1 toplanarak aktivasyon islemine tabi tutulmaktadir. Bu yapi residual
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evrisim blogu olarak ifade edilmektedir. Residual baglanti sayesinde yakinsama
probleminin Oniine gecerek hizli ve kararli 6grenme gergeklesmektedir(He vd., 2016:
770). Artik baglant1 yapilari ile derin ag yapisi igerisinde daha hizli ilerleyebilmekteyken,
diger taraftan modele ek hesaplama gereksinimi dogmasina neden olmaktadir. Egitim
siirelerinde uzamalara neden olabilmektedir. Bu nedenle, daha derin yapilar tasarlanirken
model diizenlemelerinin dikkatle yapilmasi, asir1 6grenme gibi olast negatif durumlarin

ortadan kaldirilmasina yardimci olmaktadir.
4.5. Onerilen U-Net Tabanh Derin Ogrenme Mimarileri

U-Net yapisi, klasik evrisim bloklarindan olusan U seklindeki mimarisi sayesinde,
bircok derin 6grenme modeliyle yeniden kurgulanabilecek olduk¢a esnek bir yapiya
sahiptir. Bu nedenle literatiirde U-Net model ile yapilan bir¢ok farkli yeni model
tasarimlart mevcuttur. U-Net mimarisi kodlayici, kod ¢oOziicii, katman birlestirme
baglantis1 (concatenate) ve son katmanlar olmak iizere ayr1 ayri incelenebilmektedir. Bu
katmanlarda yapilan yenilikler gelisimler modele, egitim siireclerine olan katkisi
Olgegince degerlendirilmektedir. U-Net mimarisi kullanilarak gelistirilen mimariler goz
Oniine alindiginda literatiirde atlama baglantilar1 (skip connection), omurga (backbone)
dizayn1 (backbone design), darbogaz (bottleneck), doniistiiriiciiler (transformers), zengin
temsil (rich representation), olasiliksal tasarim (probabilistic design) olarak
gruplanabilmektedir(Azad vd., 2024: 1 ).

Atlama baglantilari, kodlama blogunun derin, diisiik c¢oziintrlikli evrisim
katmanindan elde edilen Oznitelik haritalarinin kod ¢o6ziicii blogun s1g, yliksek
¢Oziinlirliiklii 6znitelik haritalar1 ile birlestirdikleri igin U-Net mimarisinin 6énemli bir
parcasi olmaktadir. Bu nedenle bu baglanti yapisina entegre edilecek farkli evrisim blogu
veya farkli atlama yapilar1 kullanilarak U-Net++ (Zhou vd., 2018: 3), Att U-Net ve Res
U-Net gibi yeni mimariler tasarlayarak model egitimleri sonunda oldukga farkli sonuclar
elde etmek miimkiin olmaktadir. Diger taraftan omurga yapi aslinda klasik U-Net

mimarisinin ikili evrigim bloklarini temsil etmektedir.

Omurga, ham veriden anlamli 6znitelikleri ¢ikaran katmanlar dizisi olarak ifade
edilebilmektedir. Her derin mimarinin temel omurga yapisi farkli olmaktadir. Farkli
ozellige sahip derin mimarilerin U-Net mimarisi blok yapisina entegre edilmesi ile
residual U-Net, V-Net (Milletari vd., 2016: 565) gibi farkli mimariler elde
edilebilmektedir. Mimarinin daha derin 6zellikli olmasina neden olan bu yapisal degisim
parametre sayilarinin artisina neden olurken model basarim sonuglarint olumlu yonde

etkileyebilmektedir. Bu iki durumun iyi analiz edilerek mimari yapisina karar verilmesi
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model egitiminden elde edilecek sonuglart en optimum noktaya ulagsmasini

saglamaktadir.

Darbogaz (bottleneck) dedigimiz yap1 kodlayict ve kod ¢oziicii blok yapisini
birbirine baglayan U-Net mimarisinin taban evrisim yapisin1 olugturmaktadir. Klasik U-
Net mimarisinde tiim evrisim bloklarini1 yenilemek yerine bottleneck dedigimiz yapiya
yeni evrigim yapilar1 veya diger baglant1 yapilar1 kullanilarak Ma-Net (Fan vd., 2020:
179656), Sa-U-Net (Guo vd., 2021: 1236) gibi farkli U-Net modelleri tasarlamakta olas1

bir diger durumdur.

Diger taraftan, doniistiiriicli tipi model gelistirme yontemi ile TransUNet (J. Chen
vd., 2021), TransBTS (Wenxuan vd., 2021: 109) gibi mimariler tasarlanmistir. Bu tip
mimarilerde kodlayici veya kod ¢oziicii bloklarinda yapilan farkliliklar ile attention
yapilarinin modele entegre edilmistir. Zengin temsil tipi model gelistirme teknikleri
mimaride mevcut olan daha zengin ve 6nemli Ozellikleri 68renmek icin kurgulanmis
yapilardir. Bu sayede modelin sadece ylizeysel degil, ayn1 zamanda daha soyut ve yiiksek

seviyeli ozellikleri de ¢ikarabilmesi saglanmaktadir.

Zengin temsil U-Net mimarileri, klasik U-Net'in temel 0zellik c¢ikarma
kapasitesini genisletmek amaciyla, cesitli teknikler ve mimari degisiklikler kullanilarak
gelistirilmistir. Bu modellere Focal Tversky Attention U-Net (Abraham ve Khan, 2019:
683), Cascaded U-Net (Lachinov vd., 2018: 189) gibi 06rnek calismalar
gosterilebilmektedir. Olasiliksal yapilarin kullanilarak gelistirildigi model tasarimlarinda
model c¢iktilarina bir belirsizlik (uncertainty) metrigi eklenerek, hangi bdoliitleme
sonuglarinin giivenilir oldugunu belirlemeyi amaglayan mimari yapilaridir. Bu yaklagim,
ozellikle tibbi goriintiilerde, modelin bazi bolgelerde daha az emin oldugu durumlari
tespit etmeye yardimci olabilmektedir. Bu baglamda gelistirilen Bayesian Skip Net (Klug
vd., 2021: 168), Probabilistic U-Net (Kohl vd., 2018) gibi modeller daha detayli

incelenebilmektedir.

Tez calismas1 kapsaminda, tasarlanmis veya yenilik eklenmis mimari yapilar ¢ok
detayli olarak incelenerek farkli U-Net mimarileri gelistirilmistir. Yukarida anlatilan
model gelistirme yontemleri temel alinarak 6ncelikle omurga yapisina katki sunacak yeni
bir evrisim yapisinin tasarlanmistir. Bu kapsamda evrisim mimari yapilarinda biri olan
fraktal (fractal) evrisim modeli yapisinin U-Net mimarisine entegre edilmesi
gerceklestirilmistir. Ayrica, klasik U-Net mimarisinde direkt baglanti ile birlestirme

islemi yapilirken fractal evrisim blok yapis1 baglantiya entegre edilmesi ile ikinci bir
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mimari daha gelistirilmistir. Son olarak artik mekanizmasinin U-Net modellerine entegre

edilmesi islemi fraktal yapisi ile birlestirilerek yeni bir U-Net mimarisi daha 6nerilmistir.
4.5.1. FractalSpiNet

Tez kapsamida, U-Net mimarisi tabanli gelistirilen ilk model FractalSpiNet
mimarisidir. Bu mimari i¢in evrisim blok yapisisina yeni bir bakis sunan (Larsson vd., 2016)
calismasindan ilham alinmistir. FractalSpiNet mimarisinin temelinde, U-Net mimarisinde
kullanilan ResNet evrisim blok yapisinin, Sekil 4.16.°da gosterilen fraktal yapisi ile

degistirilmesi yatmaktadir.

Derin sinir aglarindan da bildigimiz gibi agin performansini olumsuz etkileyerek asiri
ogrenme (overfitting) gibi durumlarin yasanmasina sebep olabilmektedir. ResNet gibi derin
aglarin optimizasyonu kolaylastirmak icin atlamali baglantilar kullanilabilmektedir. Fakat bu
durumlar agin karmasik yapisini daha da artirmasi muhtemeldir. Fraktal evrisim modelinin
ResNet’den farkli olarak gecisli ve artik sinyallerin iletilme sekli baglantisal olarak
birbirinden ayridir. Clinkii ResNet bu iki baglant: i¢in ayricalik tanirken fraktal hi¢bir sinyal
icin Oncelikli olma durumu yoktur. Fraktal mimarisinde, birlestirme katmanina yapilan her
giris bir onceki evrisim cikisinin ¢iktis1 seklindedir. A§ yapisi tek basina herhangi birini
birincil olarak tanimlamamasina karsilik dncelikli baglanti yapilari kullanilarak farkli evrigsim

baglantisina sahip mimariler gelistirmek miimkiindiir.
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Sekil 4.16. Fractal evrisim blok yapis1
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En temelinde Mandelbrot fraktal geometriyi fraktal bir boyutsallik ile tamsil eden
istatistiksel bir nicelik olarak ifade etmektedir. Yani fraktal, kendi igerisinde benzer olan
yani 0z benzerlige sahip sekiller dizisinin bir biitiinii olusturmasi sonucu meydana gelen
bir kiime seklinde tanimlanmaktadir (Lu vd., 2012: 311). Bu kiimeye ise “Mandelbrot
Kiimesi” denilmektedir. Fraktal geometride her bir par¢a, tiim ydnlerde ayni indirgeme
oranlarina sahip, biitliiniin dogrusal bir geometrik indirgemesidir” seklinde ifade edilir ve
“Parcalar, ne kadar kiiciik olursa olsun, biitiine benzer” diyerek agiklanmatadir. Yani
fraktallar, temelde baz alinan 6z pargacigin benzerlige sahip olan sonsuz genisleyebilen
bir biitiinsellikle ifade edilebilmektedir. Temsil edilen bu biitiinliik icerisinde herbir parca
yine fraktalin 6z pargasini tasimaktadir. Esitlik (4.1)’de goriilen Mandelbrot kiimesi (z)
fonksiyonun karmasik sayilar diizlemindeki z parametresinin karesi alinarak sabit bir
saymin eklenmesiyle olugsmaktadir (Lu vd., 2012: 311). Aslinda ¢ok basit matematiksel
denklemler veya yinelemeli siiregler ile farkli karmagik fraktal yapilar olusturulabilecegi

sonucuna varitlmaktadir.
f(z) =z>+ ¢ (4.1)

Evrisim mimarisinde derin aglar gelistirmek oldukca onemlidir. Fraktal yapisinin
enine ve boyuna genisleyen 6zelligi evrisim modeli gelistirmek i¢in oldukca ilham verici
olmustur. Bu baglamda, (Larsson vd., 2016) tarafindan fractal geometrisinden
esinlenerek gelistirilmis olan Fractal-Net evrisim blok yapisinda giris ve ¢ikis arasinda
tek bir evrisim yapist f.(z) olarak ifade edilmektedir. Her bir genisleme ise f..,(2)
olarak formiilize edilmektedir. Soldan saga dogru bakildiginda ¢ kadar icice gecmis
siitiinlar 2¢~1 kadar evrisim yapisina sahiptir. Herbir giris ¢ikis katmani arasinda kalan
fraktal evrisim blogunun coklugu kadar agi derinlestirmek miimkiindiir(Larsson vd.,
2016). Fractal-Net yapisinda Esitlik (4.2)’deki ifade kullanilirken, kendi U-Net
mimarimiz i¢in Ozellestirilmis fraktal yapisi i¢in esitlik (4.3) kullanilmaktadir ve Sekil

4.17°de modellemesi gosterilmektedir.
f.(z) = conv(z) (4.2)
fc(z) = conv(z) + BN(z) + Activation (ReLu(z)) 4.3)

Fractal-Net igerisinde genisleyen evrisim yapisi sayesinde daha derin bir mimari
yapilandirmasina olanak saglamaktadir. Mimarinin blok yapist her adimda 2" seklinde
genislemekle beraber her biri farkli alt yollar ile birbirine baglanmaktadir. Fractal
yapisinin boylesine genislemesi asir1 derin evrisimli ag yapisi elde edilebilecegini

gostermektedir.
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Sekil 4.17. U-Net evrisim blok yapisi(a), FractalSpiNet evrisim blok yapisi(b)

Onerilen FractalSpiNet temelinde olan ve Sekil 4.18.’de gdsterilen fraktal evrisim
yapist igerisinde farkli baglantilar1 pasif ederek farkli evrisim bloklar1 elde etmek
miimkiindiir (Rukiye Polattimur vd., 2024). Klasik U-Net mimarisinde kullanilan
konvoliisyon, batch normalizasyon ve aktivasyon fonksiyonu islem sirasi1 yine fraktal
evrisim yapisina entegre edilmistir. Bu yap1 aslinda farkli evrisim yapilarini i¢inde tutan
farkli tensorler olarak adlandirmak miimkiindiir ve bu tensorlerin en biiyiik 6zelligi kanal
say1s1 Onceki doniisiim katmanindaki filtre kiimesinin boyutuna karsilik gelmesidir. Bu
ozellik sayesinde U-Net mimarisinin kodlama ve kod ¢oziicii bloklarina entegre edilmesi
ek bir islem olmadan olduk¢a kolay uygulanabilmektedir. Fraktal genisledik¢ce agin
derinligini artirmak miimkiindiir fakat derinlik artik¢a agin egitimi ve optimize edilmesi

zorlagsmaktadir.
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Sekil 4.18. Fraktal evrisim yapist basit yapidan genigleyen yapiya dogru a, b, ¢ sirasiyla
ilerlemektedir. FractalNet evrisim temel yapisi f.(z) =conv(z) (a), 2! evrisimiyle genisleyen
fraktal yapi ikinci genislemede b'de, ii¢lincii genislemede c'deki gibi ilerlemektedir. c¢'de
goriildiigii gibi her evrisim blogu bir evrisim, batch normalizasyon ve ReLu aktivasyon
fonksiyonu olarak tasarlanmistir

U-Net mimarisine entegre edilen fraktal yapis1 kullanilarak gelistirilen
FractalSpiNet mimarisinin tam yapist Sekil 4.19.°da sunulmustur. Bu mimaride,
derinliginin optimum diizeyde tutmak icin fayda zarar iliskisinde modelin egitim
siiresince elde edilen metrik performanslarina olan katkisi 6lgiisiinde degerlendirilmistir.
Nitekim ag1 istenildigi kadar genisletmek miimkiindiir fakat en derin ag1 tasarlamak
model igin her zaman en optimum sonucu vermemektedir. Bu baglamda 2! kadar
evrisim yapisinda c sayist agin derinligini belirlemektedir. Kodlama bloklarina entegre
edilen fraktal yapilar agag1 yonlii alt 6rnekleme uygulanarak kod ¢oziicii yoniinde ise giris
goriintiileri i¢in bir boliitleme maskesi olusturmak amaciyla {ist 6rnekleme ve tersine
evrisim islemleri uygulanmaktadir. Klasik evrisim blok yapisinda oldugu gibi fraktal
evrisim bloguda konvoliizasyon, batch normalizasyon ve aktivasyon (ReLu) olarak

kullanilmaktadir. U-Net mimarisinde modelin islem adimlar1 aym sekilde ilerlemekte
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olup modelin evrisim yapist degistirilerek yeni Onerilen evrisim blogunun modele olan

katkis1 incelenmistir.

Daralma i Genigleme

cikis

evrigim (conv) 3x3, BN, ReLu

8x8x1024
3x3x1024
8x8x1024

maksimum havuzlama (max pool) 2x2
== birlestirme (concatenate)

2X2 yukar evrigim (Up-Conv)
== evrisim (conv) 1X1 (Sigmoid)

OZAJ
:

3x3x1024

y
a
=4

3x3x1024
3x3x1024.
3x3x1024
3x3x1024

Sekil 4.19. Tez ¢aligmas1 kapsaminda gelistirilen U-Net tabanli FractalSpiNet mimarisinin
acik hali

4.5.2. Con-FractalSpiNet

Tez ¢aligmas1 kapsaminda U-Net mimarisi tabanli gelistirilen diger bir mimari Con-
FractalSpiNet olarak isimlendirilmistir. Bu mimaride de, katman birlestirme olarak
adlandirilan, kodlama ve kod ¢oziicii bloga dogrudan baglant1 saglayan baglantiya fraktal
evrisim yapisinin entegrasyonu ile gerceklestirilmistir. Bu baglanti, baslangic evrisim
yapilarinda bulunan konum ve baglam bilgisi kaybolmadan aktarilmasi saglanmaktadir.
Burada kullanilan direk baglanti yapist mevcut herhangi bir evrisim agi kullanilmadan
kodlama blogundan kars1 blok yapisinda bulunan kod ¢oziicli yapisina eklenmektedir. Klasik
U-Net mimarisinde konum ve baglam bilgisini aktarimi direkt olarak yapilirken yeni
mimaride fractal evrisim blogu kullanilarak baglant1 yapilmaktadir. Bu sayede Oznitelikler
yeniden evrisim islemine tabi tutularak yeni bir 6zellik haritasi ile kod ¢dziicii bloga aktarimi

saglanmaktadir. Sekil 4.20.’de goriilecegi gibi klasik U-Net yapisinin katman birlestirme
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baglantisina FractalNet blok yapisi entegre edilerek yeni model Con-FractalSpiNet

gosterilmistir.
Daralma 3 H 5 Genigleme
3 : 5\: H E wn
B | & LRI ] > il ™ T
\§-§ 33
s
" 'E} > evrigim (conv) 3x3, BN, ReLu
1 "{i—'j maksimum havuzlama (max pool) 2x2

) birlestirme (concatenate)
2X2 yukari evrigim (Up-Conv)
> evrisim (conv) 1X1 (Sigmoid)

Sekil 4.20. Tez ¢alismas1 kapsaminda gelistirilen U-Net tabanli Con-FractalSpiNet
mimarisinin ag¢ik hali

4.5.3. Att-FractalSpiNet

Tez caligmas1 kapsaminda o©neilen bir diger yapi ise Att-FractalSpiNet olarak
adlandirilmistir ve U-Net modellerinde daha 6nce karma modellerde karsimiza ¢ikan dikkat
(attention) yapist ile gerceklestirilmistir. Dikkat mekanizmasinin verisetlerinde gosterdigi
basar1 bircok farkli U-Net mimarilerilerinin tasarimina ilham olmustur. Bu nedenle yeni
modelin gelistirilmesinde en dnemli motivasyon attention derin 6grenme modelinin klasik U-
Net modeline entegre edilerek yapilmis olan yeni modelin basarisinin olduk¢a yiiksek
olmasidir. Goriintii boliitleme ¢aligmalarinda amag ilgili bolgenin boliitlenmesi hedeflenirken
goriintiilerde var olan gereksiz alanlarin (arka plan) gozardi edilmesi beklenir. Attention
(dikkat&ozen) modeli egitim siiresi boyunca sadece ilgili alanlar1 kullanarak hesaplama

maliyetini azaltip agin daha iyi genellestirmesine yardimci olmaktadir.

Dikkat baglantis1 U-Net modelinde bulunan kodlama ve kod ¢oziicii bloklar1 arasinda
karsilikli baglanti saglayan atlama ¢iktisina eklenerek kod ¢oziicii blogunda yukar1 yonlii girdi
olarak verilmektedir(Oktay vd., 2018: 1804.03999v3). Bu baglant1 ile U-Net modelinde
Oznitelik bilgisi iletilirken araya eklenen dikkat blogu sayesinde veriden aktarilan zayif
ozellikler ve alakasiz bolgeler goz ardi edilerek agin sadece calisma alanina yani segmente

edilecek alanina odaklanmasi saglanmaktadir. Verilerden ilgisiz bolgelerin hesaplamaya dahil
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edilmemesi agin toplam hesaplama parametresini azaltarak modelin daha hizli egitilmesini
saglamaktadir(Siddique vd., 2020: 1118). Ayrica bu baglant1 yapis1 minimum hesaplama
ylikiiyle U-Net modeli gibi standart evrisim mimarilerine kolayca entegre edilebilirken, model
duyarlilig1 ve tahmin yetenegine 6nemli bir arti kazandirmaktadir. Sekil 4.21°da gorildiugi
gibi, gelistirilen FractalSpiNet yapisinin katman birlestirme baglantisina dikkat mekanizmasi

baglant1 yapilarak onerilen Att-FractalSpiNet mimarisi elde edilmistir.

:
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giris
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maksimum havuzlama (max pool) 2x2
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Sekil 4.21. Tez caligmas1 kapsaminda gelistirilen U-Net tabanli Att-FractalSpiNet
mimarisinin ag¢ik hali
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5. DENEYSEL SONUCLAR

Tez calismas1 kapsaminca omurilik alani, beyin omurilik alani ve omurilikte MS
lezyonlarinin tespit edilmesi gibi farkli boliitleme ¢aligsmalarini gerceklestirmek icin temel U-
Net mimarisi, karma U-Net mimarileri ve dnerdigimiz FractalSpiNet mimarileri kullanilarak

bircok biitiinciil bir boliitleme ve tespit ¢alismasi gerceklestirilmistir.

Servikal omurilik aksiyel ve sagital MR verileri kullanilarak boliitlenmesi hedeflenen
alanlarin ayr1 ayr1 maskeleme islemleri yapilarak alt veri gruplar1 olusturulmustur. Aksiyel
cekimler kullanilarak OKA ve BOS isaretlemeleri yapilarak omurilik aksiyel OKA/BOS veri
alt grubu olusturulmustur. Yine servikal omurilik MR verileri igerisindeki aksiyel ve sagital
verilerde omurilik ve MS lezyon alanlarinin isaretlenmesi yapilarak omurilik aksiyel MS ve
omurilik sagital MS veri alt gruplart olusturulmustur. Dolayisiyla, servikal omurilik MR
verileri ile Tablo 5.1.’de verilen toplam {i¢ adet birbirinden farkli ve 6zgilin veri seti alt
gruplart hazirlanmistir. Diger taraftan, 6zgiin verisetine ek olarak agik kaynak veri seti olan
SCGMSC veriseti de ¢alisma kapsaminca boliitleme ¢alismalarinda degerlendirilmis ve elde
edilen sonuglar 6nerilen mimarilerin sonuglar ile karsilastirilmistir. Deneysel calismalarda,
temel U-Net mimarisi basta olmak tizere karma U-Net mimarilerinden Att U-Net, Res U-Net,
Att-Res U-Net mimarileri ve onerilen FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet
mimarileri sonuglar1 degerlendirilmigtir. Deneysel analizlerde, omurilik bolgesi ve beyin

omurilik alani, gri maddenin otomatik boliitlenmesi ve MS lezyonlarinin tespiti yapilmigtir.

Tablo 5.1. Tez ¢alismasi kapsaminda deneysel ¢alismalarda kullanilan tiim verisetleri ve

derin 6grenme mimarileri

Verisetleri Derin 6grenme mimarileri
Temel mimari
U-Net
1-Servikal Omurilik MR Veriseti (Ozgiin) Hibrit U-Net modelleri
e  Omurilik Aksiyel OKA/BOS Att U-Net
e Omurilik Aksiyel MS Res U-Net
e Omurilik Sagital MS Att-Res U-Net
Onerilen U-Net tabanli mimariler
2-SCGMSC (Acik Kaynak Omurilik Aksiyel GM/BM) FractalSpiNet

Con-FractalSpiNet
Att-FractalSpiNet

5.1. Optimize Edilen Hiper Parametreler

U-Net modelinin basarisini etkileyen baz1 6nemli hiperparametreler vardir. Model
egitimlerinde hiperparametre se¢imi agin daha az maliyetle daha yiiksek basarim elde

etmesi temelince degerlendirilmektedir (Atlan vd., 2020: 60; Feurer ve Hutter, 2019: 3).
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Tim segilen hiperparametreler modelin egitim siirecini ve performansini etkileyen
ayarlarin1 ve sayisal degerlerini ifade etmektedir. Bu hiperparametreler, genellikle
deneme yanilma yOntemiyle belirlenir veya litertaiirde siklikla basarili olan parametreler
segilerek 6n model kurulmakta ve modelin verimliligi iizerindeki etkileri model
asamalarinda degistirilerek en optimum degerlerin kullanmasi saglanmaktadir (Gtilcii ve
Kus, 2019: 503; Yu ve Zhu, 2020). Hiperparametreler model tasarim agsamasindan model

egitim siire¢lerine bircok adimda karar verilmesi gereken parametreleri icermektedir.

Model tasarim asamasinda kanal sayisi, filtre boyutu, katman sayisi, havuzlama
degerleri, aktivasyon fonksiyonu se¢imi, yukari Ornekleme yoOntemleri, ¢ikis
fonksiyonlar1 ve atlama baglantilarinin nasil yapilacagi konularinin degerlendirilmesi ve
elde edilen sonuglara gore yapilacak olan U-Net mimarilerinin performans sonuglar1 ayr1
ayr1 hesaplanmasi gerekmektedir. Model tasarimini etkileyen yenilik katan tiim asamalar
bu ozelliklerin aldig1 degerlere gore sekillenmektedir. Ote yandan, modelin kurulumu
sonrasinda, egitim siirecinde agirliklarin giincellenmesi, 6grenme hizi gibi parametrelerin
se¢imi ve farkli veri setleriyle yapilan ¢apraz dogrulamalar yoluyla model performansinin
nihai sayisal degerlere ulagmasi, biiytlik bir titizlikle takip edilmesi gereken adimlardir.
Model siiresi boyunca o6grenme egrileri ve dogrulama performanslart izlenerek
hiperparametrelerin modele olan olumlu olumsuz katkilar1 degerlendirilmektedir. En
dogru parametre sec¢imleri ile U-Net mimarisinin bagarili sonu¢larini daha da artirmasi ile
model 6grenme kapasitesinden maksimum Olgekte fayda saglamasi beklenmektedir. Tez
calismasinda, tim mimariler i¢in kullanilan hiperparametreler Tablo 5.2.’de verilmistir.
Tim modellerin basarimlarin1 degerlendirirken esit bir kiyaslama yapabilmek i¢in
optimum Ol¢ekte modele katki saglayacak parametreler secilerek model egitimleri

gerceklestirilmistir.

Tablo 5.2. U-Net ve diger tiim modeller i¢in tercih edilen hiperparametre degerleri

Epok (Epoch) 200

Yi1gin boyutu (Batch size) 8

Ogrenme orani (Learning rate) 0.001

Seyreltme (Dropout) 0.5

Aktivasyon fonksiyonu (Activation function) ReLU

Cikis aktivasyon fonksiyonu (Output activation function) Sigmoid

Optimizasyon algoritmasi (Optimization algorithm) Adam

Kayip fonksiyonu (Loss function) ikili ¢apraz entropi (Binary cross entropy)

Deneysel ¢alismalarda kullanilan tiim hiperparametreler derin 6grenme
modellerinin egitim siiresinde, modelin performansi iizerinde ve modelin genelleme

yeteneginde oldukca kritik bir oneme sahiptir. Tlim parametreler ayarlanabilir veya farkl
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secenekler dahilinde modele olan katkist incelenebilmektedir. Modelin davranisini
kontrol etmek, egitim siiresini kontrol etmek, asir1 uydurmayi1 6nlemek, optimizasyon
algoritmalarin1 ayarlamak, model performansini iyilestirmek gibi birgok hiperparametre
ozellikleri ile derin 6grenme modellerinden elde edilecek performansi en yiiksek degerine
ulastirmak mimkiin olabilmektedir. Fakat modellerin kurulmasinda en uygun
hiperparametre gibi bir durum olmamakla beraber ¢ogu zaman deneme yanilma

yontemiyle bu degerlerin optimize edilmesi gerekmektedir.

Ogrenme orami (learning rate), derin 6grenme modellerinde modelin hizli veya
yavas Ogrenmesine karar veren Oonemli bir hiperparametre degeridir. Yiiksek 0grenme
oran1 modelin daha hizli 6grenmesini saglayarak egitim siiresini kisa siirmesini
saglayabilmektedir. Fakat bu durum ayni zamanda egitim asamasinda biyiik
dalgalanmalara neden olabilmektedir. Ogrenme oranini daha diisiik tutulmas: halinde ise
daha stabil bir egitim siireci gecirmesini saglar ama bu durumda egitim siiresinin oldukg¢a
uzamasina neden olarak yerel minumumlara kolayca takilabilecegi durumlara sebep

verebilmektedir.

Batch boyutu (y1gin boyutu), derin 6grenme hiperparametrelerinde ¢ok énemli bir
deger olup model sonucunu 6nemli dl¢lide etkileyebilmektedir. Derin 6grenmede y1gin
boyutu modelin bir egitim adiminda isledigi 6rneklerin sayisini belirlemektedir. Yani, bir
yigin boyutu agin ne kadar siklikla giincellenecegini belirlemektedir. Yigin boyutu
bilgisayarin hesaplama giicii ile direkt iliskilidir. Diger taraftan ozellikle veri setinin
boyutu, mimarinin total parametre sayist ve donanimsal yeterlilik durumlar1 en uygun

degeri belirlemek i¢in dikkate alinmas1 gereken kriterlerdir.

Epok sayis1 (Epochs), tiim veri setinin egitim agamasinda bir kez kullanilmasi bir
epok degerine karsilik gelmektedir. Epok aldigir deger dl¢iisiince modelin egitim siiresi
boyunca tiim verisetini ka¢ kere kullanacagi anlamina gelmektedir. Model egitimleri
sonunda model ve veri seti uyumunu takip edebilmek i¢in egitim kaybi1 ve dogrulama
kayb1 gibi grafikler incelenmektedir. Egitim kayb1 model veri setini uyumunu gosteren
bir deger iken dogrulama kayb1 ise modelin genelleme yetenegi agiklamakta olup asiri
ogrenmeyi engellemek icin bir veri sunmaktadir. Kisaca epok degeri modelin egitim

siirecini ve performansini 6lgme ve degerlendirmek i¢in 6nemli bir parametredir.

Aktivasyon fonksiyonlar1 (Activation functions), genel olarak yapay sinir
aglarinda kullanilan aktivasyon fonksiyonlar1 farkli matematiksel islevselligi ile her
katmanin ¢iktisin1 istenilen deger bazinda sonu¢lanmasini saglamaktadir. ReLU

(Rectified Linear Activation) evrisim sinir aglarinda en ¢ok kullanilan fonksiyon olmakla
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beraber ikili smiflandirma problemlerin ¢6ziimii i¢in sigmoid, ¢oklu siniflandirma

problemleri i¢in softmax kullanilmaktadir.

Seyreltme orani (Dropout orani), derin 6grenme modellerinde siklikla kullanilan
ve temeli bir¢ok parametreye dayanan overfitting denilen asir1 uydurmay1 azaltmak i¢in
kullanilan bir regiilarizasyon teknigidir. Asir1 uydurma (overfitting) durumlart model
egitimleri esnasinda sik yasanan problemlerin basinda gelmektedir ve asir1 uydurma
sebebiyle model veri seti ile olan uyumu azaltarak yeni verilere olan genelleme

yetenegini kaybetmektedir veya azalmaktadir.

Momentum, derin Ogrenme modellerinde ve gradyan inisi optimizasyon
algoritmalarinda kullanilan gradyan inis hizini stabilize etmek i¢in tercih edilen bir
tekniktir. Momentum her bir egitim adiminda 6nceki adimlarin bir ortalamasini alarak
gradyan giincellemelerini diizenleyerek birlestirmektedir. Bu nedenle momentum degeri
ile gradyan inisi sirasinda hizin1 ayarlayarak modelin egitim siirecini hizlandirarak yerel

minimumlardan daha hizli ve sorunsuz ¢ikmasina yardimci olabilmektedir.

Optimizasyon algoritmasi, modelin parametre degerlerinin egitim veri seti ile en
uygun sekilde giincellenmesini saglamaktadirlar. Genellikle derin 6grenme modellerinde
Adam optimisazyon algoritmasi kullanilmasina karsiik RMSProp, SGD, AdaGrad,
Adadelta, Nadam ve Gradient Descent gibi kullanilan bir¢ok popiiler algoritmalar da

mevcuttur.

Batch normalizasyon, agin daha hizli ve daha istikrarli bir sekilde egitilmesine
yardimc1 olan ve daha iyi genelleme yetenegine sahip olmasini saglayan bir
normalizasyon teknigidir. Batch normalizasyon modele olan katkilar1 sirasiyla
degiskenliklerin azalmasini saglamaktadir, asir1 6grenmenin Oniine gecerek modelin
genelleme yetenegini artirmaktadir ve son olarak gradyan inisinin daha kararli olmasini

saglayarak egitim siiresini kisaltmaktadir seklinde ifade edilebilmektedir.
5.2. Performans Metrikleri

U-Net mimarisinde performans kriterleri model egitimleri sonucunda béliitleme
basarisin1 degerlendirmek i¢in kullanilan ¢ok Onemli matematiksel araglardir. Egitim
sonunda maske ve orijinal gorlntiiler kullanilarak yapilan bir simiflandirma
probleminin/isleminin ne kadar basarili oldugunu anlamak icin cesitli degerlendirme
kriterleriyle sonuglarimizi analiz etmek ve modelin tahmin edebilme yeteneginin sayisal

sonuclarini ¢ikarmak i¢in metrikler kullanilmaktadir.
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Tez caligmasi kapsaminca yapilan deneysel c¢aligmalar sonucunda servikal
omurilik bdlgesinin ve beyin omurilik sivis1 alaninin béliitlenmesi ve MS lezyonlarinin
tespitini degerlendirmek ic¢in Onemli anahtar metrikler kullanilarak model basarilari
degerlendirilmistir. Bunlardan en 6nemli metrik olan ve Esitlik (5.1)’de verilen Dice
benzerlik katsayis1 (DSC) altin standart (ger¢ek/uzman) maske ile boliitleme sonucu
tahmin maskesi arasindaki boliitleme oranmi gostermekte olan model basarisini
degerlendirmek i¢in literatiirde en sik tercih edilen metriktir. Bu iki maske verisi arasinda
iliski (eslesme/Ortiisme) ne kadar yiiksek ise basarim o kadar yiiksek olmaktadir. Aldigi
deger O ile 1 arasinda olup 1 ile yiizde yiiz 6rtiismeyi, O ile higbir benzer piksel 6rtiismesi

olmadigimi gostermektedir.

Esitlik (5.2)’de verilen hacimsel bazli benzerlik tespitleri i¢in kullanilan hacimsel
ortisme hatas1 (Volume overlap error, VOE) ile Esitlik (5.7)’deki goreceli hacim farki
(Relative Volume Error, RVD) metrikleri basar1 6lgiitii olarak model egitimleri sonunda
kullanilmistir. VOE metrigi kullanilarak tahmin edilen béliitleme ve altin standart
boliitleme arasindaki "birlesim" ve "kesisim" hacimlerinin hesaplanmasi sonucu elde
edilmektedir. RVD ise tahmin edilen ve ger¢ek maske hacmi arasindaki fark:
hesaplamaktadir. RVD ile boliitlemen hacimsel dogrulugu olciilerek dogruluk degeri

hesaplanmaktadir.

Bunlarin yani sira mesafe bazli degerlendirme metrikleri olan Esitlik (5.3), Esitlik
(5.4) ve Esitlik (5.5)’teki Hausdorff mesafesi 95 (HD95), son olarak Esitlik (5.6)’daki
ortalama yiizey mesafesi (Average Symmetric Surface Distance, ASD) metrikleri ile
modellerin mesafe bazli degerlendirilerek basar1 Olgiitleri ¢ikarilmistir. Hausdorff
mesafesi ile iki kiime arasindaki en uzak nokta cifti arasindaki maksimum mesafeyi
O0lcmekte ve bu metrik genellikle boliitlenen kenarlar arasindaki maksimum hatay1
belirlemektedir. HD95 (95. Persentil Hausdorff Mesafesi) HD'nin 95. persentilini ifade
etmekte olup kisaca en biiyiik %5'lik mesafe ihmal edilerek kalan %95'lik mesafelerin en
biiyligii hesaplamaya katilarak maksimum u¢ degerin etkisini azaltilmakta ve daha kararl
bir 6l¢iim saglamaktadir. Daha diisiik degerler daha iyi boliitleme anlamina gelirken
aksiyel MS lezyonlar1 gibi kiiciik fakat klinik olarak ©Onemli sinirlarin hatalari
algilayabilmek i¢in Onemli bir Olgek degeri olarak kullanilmaktadir. ASD metrigi
sayesinde model boliitlemen sinirlar1 arasindaki ortalama mesafeyi 6lgmektedir. Bu iki
ylizey arasindaki tiim noktalarin mesafelerinin ortalamasi alinarak hesaplanmakta ve

genel bir hata 6l¢iisli saglamaktadir.

DSC (PM, GM) = %x 100 (5.1)
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[PM NGM]|

VOE (PM,GM) = (1 — |PM|+|GM|—|PMUGM]|

)x 100 (5.2)

hd(PM, GM) = max yrgghldllx —yll2 (5.3)
hd(GM, PM) = max min [[x = yll (5.4)
HD95(PM, GM) = max(hd(PM, GM), hd(GM, PM)) (5.5)
d (SPM, S(GM)) +
ASD(PM, GM) = ;GSPM escean @ ( (GM) ) (5.6)
IsPMI+ISGMIN Fg  esamy d (SGM, S(PM))
RVD(PM, GM) = (%)x 100 (5.7)
REC (PM, GM) = ——— x 100 5.8
(PM, GM) = TP+FN " (5-8)
TP
PRE (PM, GM) = ——— x 100 (5.9)

Karisiklik matrisi degerleri gercek pozitif (TP), yanlis pozitif (FP), yanlis negatif
(FN) ve gercek negatif (TN) olmak {izere karisiklik matrisi degerlerini kullanarak bir¢ok
degerlendirme metrigi hesaplamak miimkiindiir. Duyarlilik (Recall, REC) Esitlik (5.8)
denklemi ile model tarafindan dogru tahmin edilen piksellerin gercek dogru piksellere
orani tespit edilmektedir. Kesinlik (Precision, PRE) ise Esitlik (5.9) denklemi ile pozitif
olarak tahmin edilen degerlerden kaginan gercekten pozitif degerleri gostermektedir.
Kullanilan metrikler i¢in denklemlerde PM (tahmin edilen maske, predict mask), onerilen
yontemle elde edilen boliitleme sonucunu temsil ederken, GM (gerceklik maskesi, uzman
maskesi, ground thruth) uzman radyolog tarafindan maskelenen referans alani temsil

etmektedir.
5.3. Yazilim ve Donanimsal Altyap:

Derin 6grenme modellerinin gelisim siireglerini etkileyen en 6nemli 2 etken
donanimsal yeterlilik ile kolay ve uygulanabilir yazilim gelistirilmesi olarak gdstermek
miimkiindiir. Derin 6grenme alaninda CPU (Central Processing Unit), GPU (Graphics
Processing Unit) ve TPU (Tensor Processing Unit) gibi islemci tiirlerinin gelisimi, derin
ogrenme modellerinin egitimi ve uygulanmasi i¢in kullanilan donanim altyapisinda
onemli degisikliklere neden olmustur. CPU’lar derin 6grenme modellerinin ilk yillarinda
vardi fakat derin mimarileri buyiikliigii ve karmasikligi arttikca bu teknoloji ile
hedeflenen basarilar elde edilememistir. Ozellikle paralel hesaplama kabiliyeti olmadig

icin derin 6grenme modelinin biiylik boyutlu verilerle calistigi zamanlarda egitim ve
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cikarim stireleri olduk¢a uzun siirmiistir. GPU grafik isleme birimleri ise genellikle
grafiksel uygulamalar1 hizlandirmak i¢in kullanilirken sahip olduklar1 paralel hesaplama
yetenekleri sayesinde derin 6grenme modellerinin egitimini ve ¢ikarimini biiyiik 6lcilide
hizlandirmislardir.  Ozellikle NVIDIA'min  CUDA  platformu derin  §grenme
calismalarinda GPU kullanimim1 arttirmistir. Google tarafindan gelistirilen 6zel bir
donanim ¢esidi olan TPU'lar ile tensor isleme gorevlerine (6zellikle derin 6grenme
modellerinde sik¢a kullanilan tensor islemleri) odaklanmislardir. TPU teknolojisi
sayesinde oldukca biiyiik verisetlerinin kullaniminda derin 6grenme mimarilerinin egitim
sirelerine olumlu katki sunarak daha diisiik enerji tiiketimiyle daha yiiksek performans
saglayabilmektedir. Bu 6zellikleri TensorFlow, Keras ve Google'n sundugu bulut tabanl
calisma ortamlarinda (Colab) olduk¢a uyumlu olarak ¢alisabilmektedir. Bu sayede biiyiik
verisetleri ile ¢alismak zaman ve verim agisindan daha makul hale gelmistir. Tim bu
donanimsal gelisim siireci derin 6§renmenin agama asama yaygin olarak benimsenmesine

ve ¢ok cesitli uygulama alanlarinda kullanilmasina 6nemli bir katkida sunmustur.

Derin 6grenme mimarilerinin gitgide daha komplex bir hale gelmesi kullanilan
yazilim dilinin ve yazilim araglarinin pratiklesmesini saglamistir. Siirekli glincellenerek
yeniliklerin sunuldugu bu alanda, gelisim ve yenilikler olduk¢a hizli olmaktadir. Bu
cercevede bircok yazilim araclar1 ve dili gelistirilmistir. En ¢ok kullanim alanina sahip
kiitiiphaneler: TensorFlow, PyTorch, Keras, MXNet, Caffe, ONNX olarak siralamak
miimkiindiir. Derin 6grenme kiitiiphaneleri ile uyumlu caligmasi sayesinde yaygin bir
kullanima sahiptir. Interaktif kullanimlari sayesinde model asamalarini sirasiyla
igsletebilmekte, model c¢iktilarinizi  gorsellestirebilmekte ve  sonuglart  analiz
edilebilmektedir. Bazi popiiler IDE araytizleri: PyCharm, Visual Studio Code (VS Code),
Spyder, Google Colab ve Jupyter Notebook olarak belirtilebilmektedir. Tezde yapilan
deneysel caligmalarin tamaminda Tablo 5.3.’te detaylar1 verilen donanimlarina sahip bir
bilgisayar kullanilarak tamamlanmistir. Tez calismasinin bu boliimiinde deneysel
calismalar kapsaminda biitlinciil olarak omuriligin otomatik boliitleme igin tim
asamalarda ITK-SNAP yazilim1 ve Python programlama dili ile Jupyter Notebook IDE

kullanilmastir.

Tablo 5.3. Caligmada kullanilan bilgisayarin donanimsal yapis1 ve teknik 6zellikleri

Donanmim  Ozellikler

CPU Intel® Core™ i5-10600KF, 4.10 GHz, 6 Core / 12 Thread
RAM (x2) 16 GB (DDR4 3000 Mhz)

Mainboard ASUS B560

GPU NVIDIA RTX™ A4000 16 GB GDDR6

Harddisk 1TB WD SATA 6G HDD+500GB PCle NVMe M.2 SSD
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5.4. Omurilik Aksiyel OKA/BOS Alt Veri Kiimesinde Elde Edilen Sonuc¢lar

Bu asamada, servikal omurilik T2a MR verilerini kullanarak olusturudugumuz ilk
O0zglin veri grubumuz ile OKA ve BOS alanlarin boliitleme ¢alismasini
gerceklestirilmistir. Alt veri kiimesinde 20 MR taramasi kullanilarak toplam 500 adet
goriintii ve maske elde edilmistir. Deneysel ¢alismalar kapsaminda, veri artirma teknigi
kullanilarak veri seti 1000 olarak genisletilmistir. Bu veri alt kiimesi Tablo 5.4.°te
goriildiigli gibi %80 egitim ve %20 test olarak ikiye ayrilmistir. Boliitleme islemi i¢in
temel U-Net mimarisi basta olmak iizere karma U-Net mimarilerinden Att U-Net, Res U-
Net, Att-Res U-Net mimarileri ve Onerilen FractalSpiNet, Con-FractalSpiNet, Att-
FractalSpiNet mimarileri kullanilarak bir¢ok deneysel ¢alisma gergeklestirilmistir. Model
egitimleri sonucunda modelin calisma performansini degerlendirmek i¢in egitim ve
degerlendirme dogruluk (accuracy) grafikleri, zaman ve parametre iliskisinin
degerlendirilmesi, model basarilar1 oranlarinin sayisal degerleri i¢cin DSC (%), VOE (%),
HD95 [mm], ASD [mm], RVD (%), REC (%), PRE (%) metrik degerlerinin
hesaplanmas1 gerceklestirilmistir. Ayrica tiim test kiimesi verisi i¢cin model tahmin
yetenegini gozlemleyebilmek i¢cin MR verisi, MR maske verisi ve model egitimleri
sonucunda elde edilen tahmin maskeleri tek tek c¢ikartilmistir. Bu sayede piksel bazl
benzerlik oranlar1 ve metrik degerleri tim test kiimesi icin tek tek hesaplanarak

ortalamasi alinmistir.

Tablo 5.4. Omurilik aksiyel OKA/BOS veri detaylari

MR Uzman Teknik Boyut Egitim Test
goriintiisic  Maskesi Detaylar kiimesi _ kiimesi
Omurilik Aksiyel e
OKA/BOS

Aksiyel MR 128x128 800 200
T2a ipe (%830)  (%20)

Deneysel ¢alismalarda, temel U-Net mimarisi, Att U-Net, Res U-Net, Att-Res U-
Net mimarileri ve Onerilen FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet
mimarilerinin performans sonuglar1 karsilagtirilmistir. Bu mimariler farkli katman ve
baglant1 yapilarina sahip oldugu i¢in toplam parametre sayilar1 birbirinden oldukga farklh
degerlere sahiptir. Bu durum egitim siiresini etkileyen en Onemli etkenlerdendir.
Parametre sayisi ile egitim siiresi arasinda dogru orantili bir iligkiye sahip oldugu Tablo

5.5.’te daha detayli incelendiginde gézlemlenecektir.
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Tablo 5.5. Omurilik aksiyel OKA/BOS alt veri kiimesi model parametre sayisinin 200 epoch

icin model egitim siiresi, model dogruluk ve IoU sonuglar1

Omurilik Aksiyel OKA/BOS  Parametre Zaman Dogruluk(%) IoU (%)

U-Net 31,401,349 0:27:17  98.93 80.06
Att U-Net 37,333,513 0:33:39 98.90 67.40
Res U-Net 33,156,933 0:32:39 98.92 66.62
Att-Res U-Net 39,089,097 0:39:19  98.90 71.13
FractalSpiNet 109,922,693  1:27:25  98.93 78.14
Con-FractalSpiNet 53,369,029 0:57:07  98.92 72.77
Att-FractalSpiNet 115,854,857  1:35:05  98.92 79.78

Model egitimleri asamasinda her bir epok i¢in doguluk (accuracy) degeri
hesaplanarak model sonucunda bir degerlendirme grafigi elde edilmektedir. U-Net
mimarisinde, egitim dogrulugu (training accuracy) ve dogrulama dogrulugu (validation
accuracy) grafikleri modelin performansi, genelleme yetenegi ve olasi sorunlar1 hakkinda
onemli bilgiler vermektedir. Bu grafikler, egitim siireci boyunca modelin nasil
0grendigini ve bu 6grenmenin dogrulama verisi lizerinde nasil genellestirildigini anlamak
icin arastirmacilar tarafindan siklikla kullanilmaktadir. Egitim dogrulugu modelin egitim
veri seti lizerinde dogru tahmin ettigi 6rneklerin oranin1 gdsterirken dogrulama dogrulugu
modelin test veri seti iizerinde dogru tahmin ettigi O6rneklerin oranidir. Bu, modelin
egitilmedigi verilere karsi nasil performans gosterdigini degerlendirmek i¢in énemli bir
parametredir. Diger taraftan egitim kayb1 (training loss) modelin egitim verisi lizerinde
tahmin ettigi degerlerin gercek degerlerden ne kadar saptigini ifade etmektedir.
Dogrulama kayb1 (validation loss) modelin test verisi {lizerinde tahmin ettigi degerlerin
gercek degerlerden ne kadar saptigin1 gostermektedir. Basarili bir egitim grafiginde hem
egitim hem de dogrulama dogrulugu zamanla artar ve birbirine yakin degerler alirsa eger
bu genellikle modelin hem egitim verisi lizerinde iyi 6grendigini hem de 6grendiklerini
test verisi i¢in bagariyla genellestirdigini gostermektedir. Kayip grafikleri i¢in ise durum
egitim kaybi1 ve dogrulama kaybi zamanla azalma seyri izlerken egitim sonunda

ulasabilecegi en diisiik seviyelere inmektedir.

Sekil 5.1(a, b, c,d )’de omurilik aksiyel OKA/BOS alt veri kiimesinde, model
egitimleri sonunda, egitim kaybi, egitim dogrulugu, dogrulama kaybi ve dogrulama
dogrulugu grafikleri U-Net, Att U-Net, Res U-Net, Att-Res U-Net, FractalSpiNet, Con-
FractalSpiNet, Att-FractalSpiNet i¢in elde edilen gorseller verilmistir. Egitim dogrulugu

ve egitim kayb1 grafikleri oldukca beklenen seyirde bir sonug¢ elde edilirken dogrulama
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kayb1 ve dogrulama dogrulugu grafiklerinde test kiimesinde Att-Res U-Net modelinde en
yiiksek pik degerleri elde edilmistir. Bu durum test verisinin degerlendirilmenin bu
asamasinda modelin zorlandig1 ve hata aldigi bir an1 gostermektedir. Bu biiytikliikte
olmasa da diger modellerde degerlendirme dogrulugu grafiginde farkli asamalarda

modelde pikler gormek miimkiindiir.

Egitim Kaybi Egitim Dogrulugu
06 — FractalSpiNet 0.99 = ——
- Con-FractalSpiNet
05 Att-FractalSpiNet 0.98
U-Net
Att U-Net
097
04 —— Res U-Net
Qo - Att-Res U-Net Q.
S, 03 3,096 - FractalSpiNet
T T —— Con-FractalSpiNet
X< 02 X 0.95 [ Att-FractalSpiNet
U-Net
01 094 Att U-Net
— Res U-Net
00 I~ 093 — Att-Res U-Net
0 %5 S50 75 100 125 150 175 200 0 23 0 75 100 125 150 175 200
Epok (a) Epok (b)
Dogrulama Kaybi Dogrulama Dogrulugu
— FractalSpiNet 10 ' T v
400 - (Con-FractalSpiNet
Att-FractalSpiNet
038 \
U-Net |
300 Att U-Net
Q ~— Res U-Net 2 16
% - Att-Res U-Net %
X 200 N4 — FractalSpiNet
04 - (Con-FractalSpiNet
Att-FractalSpiNet
100 U-Net
0.2 Att U-Net
— Res U-Net
04 M A - —— Att-Res U-Net
T T T T T T T T T 0.0 - T r - T - - - -
0 5 50 75 100 125 150 175 200 0 25 S0 75 100 125 150 175 200

Sekil 5.1. Omurilik Aksiyel OKA/BOS verisi igin U-Net, Att U-Net, Res U-Net, Att-Res
U-Net, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet model egitimleri sonucunda
elde edilen (a) egitim kaybu, (b) egitim dogrulugu, (c) dogrulama kayb1 ve (d) dogrulama
dogrulugu degerlerinin grafikleri (200 epok, batch size=8)

Servikal omurilik boyunca aksiyel OKA ve BOS’un boliitlemesi ve MS
lezyonlarinin tespiti i¢in 6nerilen FractalSpiNet modelleri ve diger U-Net, Att U-Net, Res
U-Net, Att-Res U-Net mimarileri egitimleri sonucunda elde edilen metrik sonuglar1 Tablo
5.6.’da, Tablo 5.7.’de, Tablo 5.8.’de ayr1 ayr1 gosterilmistir. Burada, tiim metrik degerleri
DSC (%), VOE (%), HD95 [mm], ASD [mm], RVD (%), REC (%), PRE (%) test veri
setinde bulunan tiim goriintiiler i¢in ayr1 ayr1 hesaplanarak ortalama skor cikarilmistir.
Boliitleme basarist her MR dilimi i¢in hesaplanan metrik sonuglarinin ortalamasi alinarak
elde edilmistir ve sonuglar ayrintili olarak verilmistir. Tiim modeller i¢in 200 epok (tur)

sayis1 i¢in model metrik degerleri hesaplanmistir.
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Ilk olarak OKA igin béliitleme sonuglar1 hesaplanarak Tablo 5.6°da verilmistir.
Con-FractalSpiNet kullanilarak DSC sonuglarinin %94.99 ile servikal omurilikteki OKA
bolgesini segmentlemede daha basarili oldugunu goriiliirken, hemen ardindan U-Net
%94.94 ve FractalSpiNet %94.90 ile birbirine olduk¢a yakin skorlar ile basarili bir
sekilde bolitleme saglamiglardir. Diger taraftan, sirasiyla Res U-Net %94.79, Att-
FractalSpiNet %94.70, Att U-Net %93.37 ve Att-Res U-Net %92.37 gibi olduk¢a yliksek
DSC skorlar1 elde edilmistir. Ayrica, ASD ve VOE gibi metriklerin sonuglarinda da
onerilen Con-FractalSpiNet ile daha basarili iken, RVD metrik sonucunda FractalSpiNet
ve Con-FractalSpiNet modellerinde en iyi degerlere sahiptir. HD9S5 i¢in ise en basarili
sonu¢ U-Net mimarisi ile elde edilmistir. Att-Res U-Net mimarisinde, egitim sonuglari

degerlendirildiginde en az basarili sonuclar elde edilmistir.

Tablo 5.6. Omurilik Aksiyel OKA/BOS alt veri kiimesinde FractalSpiNet mimarileri ve diger

U-Net mimarileri i¢in OKA alanin boliitleme sonuglari

Derin Ogrenme Mimarileri DSC VOE HDY9S ASD RVD REC PRE
(%) (n) [mm] [mm] () (%) (%)
U-Net 9494 948 4.18 17.96  5.02 95.64 9446
Att U-Net 9337 1220 7.73 3545 691 95.01 92.12
Res U-Net 94.79  9.75 4.62 20.05 6.99 97.28  92.64
Att-Res U-Net 9237 1402 1462 4999 739 9498 90.10
FractalSpiNet 9490 9.57 421 18.55 4.94 95.15 94.83
Con-FractalSpiNet 9499 943 4.24 17.53  4.94 95.63  94.53
Att-FractalSpiNet 9470  9.92 4.71 2320  5.02 9551 94.10

FractalSpiNet modelleri ve diger U-Net, Att U-Net, Res U-Net ve Att-Res U-Net
mimarileri i¢in model egitimleri sonunda tiim test veri seti i¢in gorsellestirme yapilarak DSC
ve diger tim metrik degerleri hesaplanarak kaydedilmistir. Bu asamada, OKA/BOS aksiyel
T2a MR test veri setinde baz1 6rnek gorseller i¢in hedef OKA alanin DSC skorlari ile birlikte
boliitleme sonuglart Sekil 5.2.°de verilmistir. Test setinden segilen 6rnek goriintiilerin analizi
yapilacak olursa tiim modellerin ¢ok yliksek DSC puanlariyla oldukga basarili boliitleme
sonuglar tirettigini goriilmektedir. Tiim modellerin yiiksek performansina ragmen, onerilen
Con-FractalSpiNet, FractalSpiNet ve temel U-Net mimarisi ile elde edilen DSC puanlarinin
daha yiiksek oldugu goriilmektedir.
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Con- Att-
Att-Res U-Net FractalSpiNet FractalSpiNet FractalSpiNet

MR Goruntusu Uzman Maskesi U-Net Att U-Net Res U-Net

- : - L -
DSC:95.57 DSC:88.50 DSC:92.02 DSC:94.63
DSC:95.74 DSC:96.69 DSC:96.75 DSC:93.38 DSC:96.67
- . @ 2B ® o

DSC:96.30 DSC:94.85 DSC:95.91 DSC:95.38 DSC:97.35

) N .

DSC:96.93 DSC:95.02 DSC:94.39 DSC:90.73 DSC:97.22 DSC:97.61

DSC:94.88 DSC:95.21 DSC:95.17 DSC:91.72 DSC:96.50

Sekil 5.2. Tiim model egitimleri sonunda omurilik aksiyel OKA/BOS test kiimesinden bazi
ornek gorseller icin OKA bdoliitleme sonuglar1 ve DSC skorlari

Deneysel calismalarda, ayni egitimler sonucunda farkli béliitleme sonuglart alarak
ayr1 ayri degerlendirmeler yapilmistir. Bu kapsamda egitimler sonunda BOS olarak
bilinen omurilik etrafin1 saran alanin bdliitleme basaris1 ayrica degerlendirilmistir. Tablo
5.7°den detayli bir analiz yapilacak olursa, FractalSpiNet sonucglariin servikal
omurilikteki BOS bélgesini béliitlemede daha basarili oldugu gériilmektedir. Onerilen
FractalSpiNet mimarisi kullanilarak elde edilen DSC puanlari, tiim omurilikteki BOS
bolgesi i¢in %93.00 iken, U-Net %92.95, Att FractalSpiNet %92.82, Con-FractalSpiNet
%92.76 ve Res U-Net %92.70 olmak {izere sirasiyla DSC skorlar1 elde edilmistir. Ayrica,
VOE icin en yiiksek skor FractalSpiNet modeli ile hesaplanirken, HD95 Att-
FractalSpiNet ile ASD degeri Res U-Net modelinde ve RVD ig¢in ise Con-FractalSpiNet
modeli ile daha basarili sonuglar elde edilmistir. Mesafe tabanli metriklerin sonug¢larinin
da Onerilen FractalSpiNet mimarileri ile toplamda daha basarili oldugu ve daha kiiciik
mesafeler elde edebilme yetenegi dogrulanmaktadir. Yine genel anlamda en az basarili
sonuglar dikkat modelleri olan Att-Res U-Net ve Att U-Net egitimleri ile hesaplanirken,
dikkat baglantisinin fractal mimari yapisiyla daha uyumlu calistig1 Att-FractalSpiNet elde

ettigi skorlardan goriilmektedir.
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Tablo 5.7. Omurilik aksiyel OKA/BOS alt veri kiimesinde FractalSpiNet mimarileri ve diger

U-Net mimarileri i¢in BOS alanin béliitleme sonuglari

Derin Ogrenme Mimarileri DSC VOE HD9S ASD RVD REC PRE
(%) (%) [mm] [mm] ) (%) (%)
U-Net 9295 1293 6.95 8.73 6.62 9349 92.76
Att U-Net 9228 1398 8.27 11.99  8.69 94.57  90.58
Res U-Net 9270 1337 7.15 7.21 6.74 92.02 93.80
Att-Res U-Net 9193 14.61 1487 2797 7.70 9270  91.64
FractalSpiNet 93.00 12.89 6.83 7.72 6.56 9322 93.11
Con-FractalSpiNet 9276  13.29 7.29 7.35 6.44 9244 9343
Att-FractalSpiNet 9282 13.18 6.71 9.39 7.33 94.18 91.85

FractalSpiNet modelleri ve diger U-Net, Att U-Net, Res U-Net ve Att-Res U-Net
mimarileri i¢cin OKA/BOS aksiyel T2a MR test veri setinde bazi 6rnek gorseller i¢in hedef
BOS alanin DSC segmente skorlar1 ile boliitleme sonucglar1 Sekil 5.3.’te verilmistir. Test
setinden secilen 6rnek goriintiilerin analizi yapilacak olursa tiim modellerin ¢ok yiiksek DSC
puanlartyla olduk¢a basarili boliitleme sonuclart iirettigi goriilmektedir. Tiim modellerin
yiikksek performansina ragmen, Onerilen FractalSpiNet mimarisiyle elde edilen DSC
puanlariin daha yiiksek oldugu deneysel ¢aligmalar sonucunda elde edilmistir.

Con- Att-
MR Goruntusu Uzman Maskesi U-Net Att U-Net Res U-Net  Att-Res U-Net FractalSpiNet FractalSpiNet FractalSpiNet

DSC:.95.35 DSC:95.78 DSC:89.56 DSC:95.52
DSC:.84.97 DSC:83.15 DSC:84.71 DSC:78.77

DSC:90.28

<o | D
o000

DSC:97.51 DSC:96.79 DSC:96.72 34 DSC:97.79 DSC:97.27

DSC:9642 | DSC:9594 | DSC:95.66 | DSC:94.49 | DSC:96.78 g DSC:96.92

:94. DSC:96.31 | DSC:93.90 DSC:95.20 | DSC:94.70 DSC:95.52
DsC:93.38| Dsc:95.00| Dsc:93.19| Dsc:93.43 gg

Sekil 5.3. Tiim model egitimleri sonunda omurilik aksiyel OKA/BOS test kiimesinden bazi
ornek gorseller icin BOS boliitleme sonuglar1 ve DSC skorlart

3
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Tablo 5.8.’de servikal omurilikteki OKA ve BOS tiim alanin bdliitleme sonuglart ile
elde edilen sonuglar anahtar metrik skorlar1 ile birlikte verilmistir. Burada, FractalSpiNet
sonuclarinin servikal omurilikteki OKA ve BOS tiim alanin segmentlemede %96.54 skor ile
daha basarili oldugu goriilmektedir. U-Net, Res U-Net, Con-FractalSpiNet, Att-FractalSpiNet,
Att-Res U-Net ve Att U-Net modelleri i¢in DSC puanlar sirasiyla %96.49, %96.44, 9%96.39,
%96.25, %95.85 ve %95.84 olarak hesaplanmistir. Ayrica, VOE ve RVD gibi hacimsel
tabanli metrikler icin sirasiyla FractalSpiNet ve U-Net modelleri basarili iken, HD95 ve ASD
gibi mesafe tabanli metriklerin sonuglarinin da 6nerilen FractalSpiNet ve Con-FractalSpiNet
ile daha basarili oldugu ve daha kii¢iik mesafelerin elde edilmesinde olduk¢a basarili oldugu
kanitlanmistir. Ayrica, temel hesaplama metriklerden olan PRE degeri i¢in Onerilen Con-
FractalSpiNet mimarisinde en basarili sonuglar elde edilmistir. Dikkat mekanizmasinin fractal

mimarisiyle uyumu, elde edilen yiiksek DSC skorlariyla net bir sekilde goriilmektedir.

Tablo 5.8. Omurilik OKA/BOS aksiyel alt veri kiimesinde FractalSpiNet mimarileri ve diger

tiim U-Net mimarileri i¢in OKA ve BOS tiim alanin bdliitleme sonuglari

Derin Ogrenme Mimarileri DSC VOE HDY9S ASD RVD REC PRE
() (%) [mm] [mm] (%) (%) (%)
U-Net 9649 6.72 1.67 4.63 4.05 96.85 96.27
Att U-Net 95.84 7.87 3.36 7.85 586 97.70 9426
Res U-Net 96.44 6.81 1.95 423 416  96.51 96.52
Att-Res U-Net 9585 7.86 8.64 20.76  5.35 96.99 94.94
FractalSpiNet 96.54 6.64 1.39 3.98 412  96.59 96.63
Con-FractalSpiNet 9639 691 1.72 3.78 407  96.19 96.73
Att-FractalSpiNet 9625 7.16 211 5.46 454 9722 9545

FractalSpiNet modelleri ve U-Net, Att U-Net, Res U-Net ve Att-Res U-Net mimarileri
icin model egitimleri sonunda tiim test kiimesi i¢cin OKA ve BOS tiim alanin DSC skorlari ile
vbirlikte boliitleme sonuglart Sekil 5.4.’te verilmistir. Burada, tiim modellerin yiiksek
performansina ragmen, oOnerilen FractalSpiNet mimarileriyle elde edilen DSC skorlarinin

yiiksek oldugu goriilmektedir.
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Sekil 5.4. Tiim model egitimleri sonucunda omurilik aksiyel OKA/BOS test kiimesinden bazi
ornek gorseller icin OKA ve BOS tiim alanin boliitlemel sonuglari ve DSC skorlari

5.5.  Omurilik Aksiyel MS Alt Veri Kiimesinde Elde Edilen Sonuc¢lar

Servikal omurilik verisetinden olusturulan ikinci alt veri kiimesi ile omurilik OKA
boliitlenmesi ve MS lezyonlarinin tespiti gergeklestirilmistir. lk alt veri kiimesinde OKAve
BOS alan1 boéliitlenmisken, bu alt veri kiimesinde omurilik MS alani biraz daha kiigiilerek
isaretlenmistir. Bu alt veri kiimesinde toplam 87 MR taramasi kullanilarak toplam 231
goriintli ve maskesi elde edilmistir. Veri artirma teknikleri kullanilarak bu alt veri kiimesi de
1080 olarak genigletilmistir. Ayrica, yine bu alt kiime Tablo 5.9.’da goriildiigii gibi %80
egitim ve %20 test olarak ikiye ayrilmistir. Bu alt veri kiimesinde boliitleme islemi igin temel
U-Net mimarisi basta olmak iizere karma U-Net mimarilerinden Att U-Net, Res U-Net, Att-
Res U-Net mimarileri ve Onerilen FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet

mimarileri kullanilarak bircok deneysel ¢alisma gergeklestirilmistir.

Tablo 5.9. Omurilik aksiyel MS alt kiimesinin detaylari

MR Uzman Teknik Bovut Egitim Test
oriintiisii Maskesi detaylar y kiimesi _ kiimesi
Omurilik Akiyal 128x128 864 216
MR T2a Jpg (%80)  (%20)

Aksiyel MS k
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Bu alt veri kiimesi i¢in egitim sonucunda temel U-Net mimarisi, Att U-Net, Res U-
Net, Att-Res U-Net mimarileri ve Onerilen FractalSpiNet, Con-FractalSpiNet, Att-
FractalSpiNet mimarileri i¢in toplam parametre sayilar1 birbirinden oldukga farkli degerlere
sahiptir. Modellerin egitimi i¢in parametre sayisi, egitim siiresi, dogruluk ve IoU degerleri

Tablo 5.10°da detayli olarak verilmistir.

Tablo 5.10. Omurilik aksiyel MS alt veri kiimesinde model parametre sayisinin 200 epok i¢in

model egitim siiresi, dogruluk ve IoU sonuglar1

Omurilik Aksiyel MS Parametre Zaman (dk) Dogruluk (%) IoU(%)

U-Net 31,401,349 28:37 99.77 87.48
Att U-Net 37,333,513 35:19 99.77 87.52
Res U-Net 33,156,933 33:47 99.78 80.87
Att-Res U-Net 39,089,097 40:50 99.74 79.86
FractalSpiNet 109,922,693 91:18 99.78 89.21
Con-FractalSpiNet 53,369,029 60:05 99.78 86.98
Att-FractalSpiNet 115,854,857 99:52 99.78 82.89

Model egitimleri asamasinda her bir epok i¢in Sekil 5.5. (a, b, ¢,d)’de U-Net, Att U-
Net, Res U-Net, Att-Res U-Net, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet i¢in
model egitimleri sonucunda elde edilen egitim kaybi, egitim dogrulugu, dogrulama kaybi ve
dogrulama dogrulugu grafikleri verilmistir. Egitim dogrulugu ve egitim kayb1 grafikleri i¢in
klasik bir seyir izlerken degerlendirme kayb1 ve degerlendirme dogrulugu grafiklerinde test
kiimesinde Att U-Net ve Att-FractalSpiNet modelinde yaklagik 10 epok ve 5 epok degerinde
en yiiksek pikler gozlemlenmistir. Bu durum test verisinin degerlendirilme asamasinda
modelin zorlandig1 veya belki hata aldig1 bir an1 gostermektedir. Bu biiytikliikte olmasa da
diger modellerde degerlendirme dogrulugu grafiginde herbir modelde farkli epok degerlerinde
pikler gormek miimkiindiir. Egitim dogrulama grafiginde ise yine Att-FractalSpiNet
modelinde baslangic epokunda ve yaklasik 22 epok degerinde en yiiksek pik degeri aldig:

goriilmektedir.
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Sekil 5.5. Omurilik aksiyel MS alt veri kiimesi i¢cin U-Net, Att U-Net, Res U-Net, Att-Res
U-Net, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet model egitimleri sonucunda
elde edilen egitim kaybi(a), egitim dogrulugu(b), dogrulama kaybi(c) ve dogrulama
dogrulugu(d) degerlerinin grafikleri (200 epok, batch size=8)

Servikal omurilik boyunca OKA ve MS lezyonlarinin boliitleme i¢in Onerilen
FractalSpiNet modelleri ve U-Net, Att U-Net, Res U-Net ve Att-Res U-Net mimarilerinin
egitimleri sonucunda metrikler ic¢in elde edilen sonuglari Tablo 5.11.°de gosterilmistir.
Burada, tiim metrik degerleri test veri setinde bulunan tiim goriintiiler i¢cin ayr1 ayri
hesaplanarak ortalama skor ¢ikarilmistir. Omurilik alan1 (OKA), MS lezyonlar1 ve MS’siz
omurilik alan1 boéliitleme alanlar1 olarak belirlenmistir. Bu nedenle model egitimleri
sonucunda bu tii¢ boliitleme sonuclar1 ayr1 ayr1 hesaplanmistir. OKA boliitlemesi i¢in Tablo
5.11.’de model test kiimesi i¢in elde edilen tiim metriklerin skorlar1 verilmistir. Con-
FractalSpiNet ve FractalSpiNet mimarileri ile sirasiyla %98.89, %98.88 sonuglar1 elde
edilmis olup en basarili modeller olarak goriilmektedir. Diger taraftan Res U-Net, U-Net, Att-
FractalSpiNet, Att U-Net, ve Att-Res U-Net modelleri i¢in DSC puanlar1 sirastyla %98.67,
%98.54, 9%98.41, %98.01 ve %97.90 olarak hesaplanmistir. VOE ve RVD gibi hacimsel
benzerlik degerlendirme metrikleri i¢in FractalSpiNet ile %2.04 ve %0.97 skorlar1 ile en

basarili mimari olurken, mesafe tabanli HD95 ve ASD metriklerin sonuclari i¢in en yiiksek
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skorlar sirastyla FractalSpiNet ve Con-FractalSpiNet i¢in 0.39 mm ve 1.09 mm olarak elde
edilmistir. Ayrica, PRE degeri i¢in yine Con-FractalSpiNet en yliksek degere sahipken, REC

degeri i¢in FractalSpiNet kullanilarak daha basarili sonuglar elde etmistir.

Tablo 5.11. Omurilik aksiyel MS alt veri kiimesinde FractalSpiNet mimarileri ve U-Net

mimarileri icin OKA alan1 boliitleme sonuglart

Derin Ogrenme Mimarileri DSC VOE HD9S ASD RVD REC PRE
(%) (%) [mm] [mm] (%) (%) (%)
U-Net 98.54  2.67 0.49 1.67 1.51 98.43  98.69
Att U-Net 98.01 3.64 1.36 3.90 2.71 98.80 97.33
Res U-Net 98.67 243 0.60 1.55 1.55 98.69  98.70
Att-Res U-Net 97.90 3.90 1.32 3.68 2.19 98.59 97.26
FractalSpiNet 98.88 2.04 0.39 1.38 0.97 98.84  98.94
Con-FractalSpiNet 98.89  2.05 5.12 1.09 1.18 98.62 99.21
Att-FractalSpiNet 98.41 2.34 0.80 2.73 1.57 98.75 98.11

Bu alt veri kiimesi icin, FractalSpiNet modelleri ve diger U-Net, Att U-Net, Res U-Net
ve Att-Res U-Net mimarileri kullanilarak tiim test veri kiimesi i¢in OKA alaninin boliitleme
sonuclart DSC skorlar ile birlikte Sekil 5.6.’da verilmistir. Burada, tiim modellerin yiiksek
boliitleme performansina ragmen, onerilen FractalSpiNet mimarileriyle oldukc¢a yiiksek DSC
skorlarma ulasildig1 goriilmektedir.

Con- Att-
MR Goruntusu Uzman Maskesi U-Net Att U-Net Res U-Net  Att-Res U-Net FractalSpiNet FractalSpiNet FractalSpiNet

DSC:98.17 DSC:99.28

DSC:99.41 DSC:99.42 DSC:99.41

DSC:99.32 DSC:98.98 DSC:98.63

DSC:96.97 DSC:98.26

DSC:99.67 DSC:99.67 DSC:99.17

Sekil 5.6. Tiim mimariler i¢cin omurilik aksiyel MS test kiimesinden baz1 gorseller i¢in OKA
alaninin boliitleme sonuglar1 ve DSC skorlari
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Servikal omurilik MS aksiyel alt veri kiimesinde boliitleme alani i¢in MS
lezyonlarinin boliitleme basarisinda elde edilen sonuglar Tablo 5.12.” de verilmistir. Burada,
uzmanlar tarafindan isaretlenmesi yapilan gercek maske verileri ile model egitimleri sonunda
test setinden se¢ilen 6rnek maske goriintiilerin piksel bazli kiyaslanmasi yapildiginda, oldukca
kiictik piksel alana karsilik gelen MS lezyonlarinin tespiti ¢ok zorlu bir gérev olmasina
ragmen, MS lezyonlarinin yliksek DSC skorlariyla tespit edildigini goriilmektedir. cok ytliksek
DSC puanlart model egitimleri sonunda elde edilmistir. Onerilen Con-FractalSpiNet ve
FractalSpiNet mimarileri kullanilarak, omurilik MS lezyonlarin1 tespit etmede DSC igin
%91.48 ve %90.90 olarak oldukga yiiksek skorlar bagarilmistir. Diger taraftan, Res U-Net,
Att-FractalSpiNet, U-Net, Att-Res U-Net ve Att U-Net mimarileri ile MS lezyonlarinin tespit
edilmesinde sirasiyla %88.87, %88.79, %86.00, %83.06 ve %75.34 DSC skorlar
basarilmistir. Ayrica, VOE icin Con-FractalSpiNet modeli ile %12.92 hesaplanirken, RVD
icin FractalSpiNet mimairis ile %9.62 skoru elde edilmistir ve hacimsel olarak benzerlik
metrik orani en yiiksek skorlar elde edilmistir. HD95 Con-FractalSpiNet ile ASD degeri
FractalSpiNet modelinde daha basarili sonuglar elde edilmistir. Boylelikle hem hacimsel
tabanli metriklerin sonuglarinin hemde mesafe bazli metriklerin sonuglarinin Gnerilen
FractalSpiNet ve Con-FractalSpiNet mimarileri ile toplamda daha basarili oldugu ve daha
kiiciik mesafelerin hesaplanabilirliginin yiiksek oldugu tespit edilmistir. PRE ve REC
degerleri i¢in ise en yliksek skorlar Con-FractalSpiNet mimarisi ile sirasiyla %92.27 ve
%92.13 olarak elde edilmistir. Yine genel anlamda en az basarili performasn sonuglari, dikkat

tabanli modeller olan Att U-Net ve Att-Res U-Net ile elde edilmistir.

Tablo 5.12. Omurilik aksiyel MS alt veri kiimesinde FractalSpiNet mimarileri ve diger U-Net

mimarileri i¢in elde edilen MS lezyonlarinin boliitleme sonuglari

Derin Ogrenme Mimarileri DSC VOE HD9S ASD RVD REC PRE
(%) (%) [mm] [mm] (%) (%) (%)
U-Net 86.00  20.83 11.55 28.23 1350  83.73  90.50
Att U-Net 7534 3618 2192 67.98 2452 6956  85.25
Res U-Net 88.87 1720  9.83 31.28 11.29  90.24  89.33
Att-Res U-Net 83.06  25.58 14.28 47.47 1537  85.11 83.04
FractalSpiNet 90.90 1406  8.06 16.08 9.62 9126  92.20
Con-FractalSpiNet 91.48 1292 727 20.84 9.93 92.13 9227
Att-FractalSpiNet 88.79 17.17 11.59 35.81 11.77  89.33 89.79

Bu alt veri kiimesi i¢in, MS lezyonlarinin tespitinde FractalSpiNet modelleri ve diger
U-Net karma modelleri i¢in test kiimesindeki bazi 6rnek kesitlerde elde edilen sonuglar DSC
skorlar1 ile birlikte Sekil 5.7.°de gosterilmistir. Bu asamada, modellerin yiiksek

performansinin yaninda, onerilen FractalSpiNet mimarileriyle elde edilen %100 Ortiisme ile
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gerceklesmis ornek lezyonlarin varligi boliitleme sonuglarindan goriilmektedir ve sonuglarin
basarili oldugu dogrulanmaktadir.
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Sekil 5.7. Tiim model egitimleri sonunda omurilik Aksiyel MS test verisetinden bazi 6rnek
gorseller icin MS lezyonlarmin DSC tahmin skorlari

Bu alt veri kiimesinde, MS lezyonu olmayan OKA bdlgesi, veri setindeki goriintiilerde
uzmanlar tarafindan isaretlenen iki etiketten biridir. Bu etiket servikal omurilikte MS lezyonu
olmayan OKA bolgesini temsil etmektedir. Bu alan tespit edilerek, MS lezyonlarinin oldukga
kiiciik hacimlere sahip olmasi nedeniyle MS lezyonlarinin tespitinde diisiik skorlar elde
edilmesi durumuna alternatif ikinci bir boliitleme ile sonuglarin ikili ¢apraz-dogrulamasi
yapilmistir. Tablo 5.13’te bu alan icin elde edilen boliitleme sonuglar1 degerlendirildiginde,
Con-FractalSpiNet ve FractalSpiNet mimarileri %97.25 ve %97.17 DSC skorlar ile en
basarili modeller olarak goriilmektedir. Bu mimarileri Res U-Net, Att-FractalSpiNet ve U-Net
mimarileri sirasiyla %96.64, %96.48, %96.18 DSC skorlariyla takip etmektedir. Att-Res U-
Net ve Att U-Net mimarileri ise %94.50 ve %94.42 DSC skorlarina sahip olmasina karsilik,
kullanilan mimariler arasinda en az basarili olarak temsil edilmektedir. Con-FractalSpiNet
mimarisi ile hacim bazli degerlendirme metrigi olarak kullanilan VOE ve RVD i¢in %4.84 ve
%?2.57 ile en yiiksek skorlar elde edilirken, yine mesafe bazli HD95 ve ASD metrikleri i¢in de

sirastyla 2.41 mm ve 3.20 mm skorlar1 elde edilmistir. Bu kesit alani igin, Onerilen
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FractalSpiNet yontemlerinin tiim temel metrikler i¢in bdliitleme performansi agisindan U-Net
mimarisinden daha iyi performans gosterdigi sonucuna varilabilmektedir. Res U-Net, Att-
FractalSpiNet, U-Net, Att-Res U-Net ve Att U-Net mimarileri, MS lezyonu olmayan omurilik
bolgesinde sirastyla DSC igin sirasiyla %96,64, %96,48 %96,18, %94,50 ve %94,42 olmak
iizere en yiiksek puanlar elde edilmistir. Onerilen FractalSpiNet mimarisini takiben, Res U-
Net modeli MS lezyon olmayan boliitleme sonuglari omurilik bolgesi boliitleme islemlerinden
daha basarilidir. Tiim boliitleme ¢alismasi degerlendirildiginde FractalSpiNet modelleri ile
oldukc¢a basarili sonuglar elde edildigi goriilmiistiir. Yine dikkat mekanizmasimin eklendigi

modeller kiyaslandiginda, en basarili Att-FractalSpiNet modelinin oldugu anlagilmaktadir.

Tablo 5.13. Omurilik aksiyel MS alt veri kiimesinde FractalSpiNet mimarileri ve U-Net

mimarileri igcin MS’siz omurilik alaninin béliitleme sonuglari

Derin Ogrenme Mimarileri DSC VOE HD9YS ASD RVD REC PRE
(%) (%) [mm] [mm] (%) (%) (%)
U-Net 96.18  6.75 3.03 4.89 3.66 97.11 95.43
Att U-Net 9442  9.94 5.01 13.13 7.87 9775  91.58
Res U-Net 96.64  6.00 2.90 4.34 3.20 96.72  96.75
Att-Res U-Net 9450  9.77 4.93 8.32 4.57 9546  93.79
FractalSpiNet 97.17  5.00 245 3.72 2.64 9727  97.20
Con-FractalSpiNet 9725 484 241 3.20 2.57 97.10  97.58
Att-FractalSpiNet 96.48  6.08 3.092 6.06 3.52 9722 9596

MS’siz OKA alaninin bdliitlenmesinde, FractalSpiNet modelleri ve U-Net mimarileri
icin deneysel calismalarda, tim mimariler i¢in ayni test verisine ait model ciktilar1 Sekil
5.8’de goriildiigli gibidir. Mimarilerinin sonuglart servikal omurilik alani sinirlart icinde MS
lezyonu olmayan OKA bdlgesinin boliitleme i¢in de karsilastirilmistir. Hem MS alaninin
segmente edilmesi, hemde MS’siz alanin segmente edilmesi sayesinde ikili dogrulama ile MS
lezyonlar tespit edilebilmektedir. Bu sayede zorlu test verilerinde lezyonlarin konumlarimin
ve biylikliiklerini dogrulama imkani olusmaktadir. Sekil 5.8.’de goriilebilecegi gibi, test
setinden se¢ilen 6rnek MR goriintiilerinin analizi, bdliitleme sonuglar birbirine yakin olsa da,
onerilen Con-FractalSpiNet, FractalSpiNet ve Att-FractalSpiNet mimarilerinde daha yiiksek
DSC skorlar1 goriilmektedir.
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Sekil 5.8. Tiim derin 6grenme mimarileri i¢in omurilik aksiyel MS test kiimesinde baz1 6rnek
kesitler i¢in MS’siz omurilik alanin boéliitlenmesi ve DSC skorlari

5.6. Omurilik Sagital MS Alt Veri Kiimesi ile Elde Edilen Sonuglar

Servikal omurilik verisetinde {iglincli alt veri kiimesi sagital diizlemde elde edilen
goriintliler icin olusturulmustur. Burada, sagital diizlemde OKA ve MS lezyonlarinin
boliitleme calismasi gerceklestirilmistir. Sagital MR goriintiilerinde MS lezyonlar1 belirlemek
konumu ve polarite bozukluklar1 bakimindan olduk¢a zorlu olabilmektedir. Ayrica aksiyel
cekimlerde tek bir MR taramasinda, ortalama 27 veri elde edilebilirken, sagital ¢ekimlerde bu
say1 oldukca az olmakta ve ortalama 8 veya 9 MR kesiti icermektedir. Bu bakimdan bu 8
kesitten tiim omurilik sinirlari goren veri sayist 1 veya 2 olarak degiskenlik gdsterirken, bu
kesitlerde de MS alanim belirlemek olduk¢a zor olmaktadir. Diger taraftan belirlenen MS
alanlarinda siklikla polarite bozukluklar1 gozlenmektedir. U-Net mimarileri ile ¢aligmanin
temelini olusturan verisetinde maske olusturulmasi islemi bu asamada olduk¢a zorlu olmakta
ve bu olumsuzluklar isaretlenen MS lezyonu sayisini da oldukca azalmaktadir. Bu nedenle bu
alt veri kiimesinde 34 MR taramasi kullanilarak toplam 54 goriintii ve maskeleri elde
edilebilmistir. Bu alt veri kiimesinde, veri artirma teknikleri kullanilarak goriintii sayist 530
olarak genisletilmistir ve Sekil 5.14’te goriildiigii gibi %80 egitim ve %20 test olarak ikiye

ayrimstir.

87



Tablo 5.14. Omurilik sagital MS alt veri kiimesini detaylar1

MR Uzman Teknik Bovut Egitim Test
oriintiisii  Maskesi detaylar Y kiimesi  kiimesi

Omurilik
Sagital MS Sagital MR 320x320

T g (%830)  (%20)

Sagital diizlemdeki deneysel calismalarda, U-Net mimarisi, Att U-Net, Res U-Net,
Att-Res U-Net mimarileri ve onerilen FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet
mimarilerinin egitim sonucunda farkli katman ve baglant1 yapilarina sahip oldugu i¢in toplam
parametre sayilarinin Sekil 5.15.teki gibi birbirinden oldukca farkli oldugu goriilmiistiir.
Parametre sayis1 ile egitim siiresi arasinda dogru orantili bir iligki vardir ve Bu durum egitim
stiresini etkileyen en onemli etkenlerdendir. Model egitim siiresini goriintii boyutunun da
etkiledigi aksiyel ve sagital diizlemdeki goriintiilerin egitim siireleri arasindaki farktan
anlasilmaktadir. Soyleki, aksiyel verilerin 128x128 boyutlarinda olmasina karsilik sagital
veriler, 320x320 boyutlarma sahiptir ve piksel bazli egitim gergeklestiren U-Net

mimarilerinin egitim siirelerini etkiledigi ¢ok net goriilmektedir.

Tablo 5.15. Omurilik sagital MS alt veri kiimesinde model parametre sayisinin 200 epoch

icin model egitim siiresi, dogruluk ve IoU sonuglar1

Omurilik MS Sagital T2a MR Parametre =~ Zaman Dogruluk (%) IoU(%)

U-Net 31,401,349 1:07:21  99.61 90.44
Att U-Net 37,333,513 1:25:23  99.60 91.67
Res U-Net 33,156,933 1:23:41  96.61 92.18
Att-Res U-Net 39,089,097 1:40:16  98.90 71.14
FractalSpiNet 109,922,693  3:51:55 99.63 91.81
Con-FractalSpiNet 53,369,029 2:30:44  99.60 90.23
Att-FractalSpiNet 115,854,857  3:59:51  98.93 79.78

* Fractal U-Net ve Att-Fractal U-Net modelleri icin bilgisayar ozellikleri nedeniyle batchsize 4 olarak alinarak
hesaplannmustir. Bu nedenle hesaplama siiresi iki model icin artmistir.

Bu alt veri kiimesinde, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet, U-Net,
Att U-Net, Res U-Net, Att-Res U-Net modellerinin egitim asamalarin1 degerlendirmek igin
her bir epok icin hesaplanan dogrulama ve kayip degerleri i¢in egitim sonunda Sekil 5.9°daki
grafik elde edilmistir. Bu grafik detayli incelenecek olursa egitim dogrulama degeri neredeyse
tiim modeller i¢in %98.9 ile %99.63 arasinda sonlanmis olup basarili bir egitim asamasi
oldugu goriilmektedir. Egitim kaybi grafifinden modellerin genellesme egrileri

izlenebilmektedir. Dogrulama dogrulugu grafigi incelenecek olursa modellerin test veri seti
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tizerinde baz1 modellerde ilk epok degerlerinde pikler gézlemlenirken yer yer diger modeller
icinde 200 epok siiresince bazi pik goriilmektedir. Bu grafik ile modelin test verisetinde
bulunan bazi ornek setleri tahmin ederken zorlandigi bu yiizden piklerin elde edildigini
sOylemek gerekmektedir. Dogrulama kaybi grafigi incelenecek olursa modelin test verisi
tizerinde tahmin ettigi degerlerin gercek degerlerden hangi araliklarda saptigini veya tahmin
ederken zorlandig1 asamalar1 gostermektedir. Dogrulama grafikleri i¢in egri zamanla artarak
birbirine en yakin degerlere ulagirken kayip grafiklerinde bu seyir tam tersi yonde azalan egim

gostermektedir ve ulasabilecegi en diisiik seviyelere kadar inmektedir.
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Sekil 5.9. Omurilik sagital MS alt veri kiimesi i¢in U-Net, Att U-Net, Res U-Net, Att-Res
U-Net, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet model egitimleri sonucunda
elde edilen egitim kaybi (a), egitim dogrulugu (b), dogrulama kaybi (c) ve dogrulama
dogrulugu (d) degerleri grafikleri (200 epok)

Sagital MS alt veri kiimesinde omurilik, MS lezyonlar1 ve MS’siz omurilik alanm
boliitleme i¢in hedef alanlar olarak belirlenmistir. Servikal omurilik boyunca sagital omurilik
ve omurilik MS lezyonlarinin boliitleme i¢in onerilen FractalSpiNet modelleri ve diger U-Net,
Att U-Net, Res U-Net ve Att-Res U-Net mimarileri egitimleri sonucunda elde edilen metrik
bazinda performans sonuclar1 Tablo 5.16.’da gosterilmistir. Tabloda, Att-Res U-Net mimarisi
ile MS lezyonlarinin tespitinde en yiiksek DSC skoru %97.06 olarak elde edilmistir. Hemen
ardindan FractalSpiNet ile %96.16’lik DSC skoru ile ikinci en yliksek bagsarim elde edilmistir.
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Dolayisiyla, bu diger alt veri kiimeleri ile yapilan deneysel analizlerde daha az basarili olan
model genel anlamda Att-Res U-Net mimarisi iken, sagital MS verisetinde olduk¢a basarili
performans gostererek en yiliksek degerlere ulagmistir. Egitim asamalarinda model
parametrelerinde ve hiperparametre degerlerinde hicbir degisiklik yapilmadigir goéz Oniinde
tutulursa, kullanilan verisetinin degisimi ile bu skor elde edilmistir. Diger alt veri kiimelerinde
goriintiiler 128x128 boyutlarinda iken, sagital MS veri kiimesindeki goriintiileri 320x320
boyutlarinda olmasi modelin hedef boliitlemen alanin biiytimesi ile dogru orantili oldugu
yorumu yapilabilmektedir. Diger taraftan Tablo 5.16’da hacimsel benzerlik metrikleri olan
VOE ve RVD i¢in en yiiksek skorlar Att-Res U-Net ile %5.67 ve %2.13 olarak elde edilirken,
mesafe bazli degerlendirme metrikleri i¢in de yine Att-Res U-Net mimarisi en yiiksek skorlari
elde ederek 0.14 mm ve 0.43 mm olarak hesaplanmigtir. Ayrica, ResNet gibi derin omurga
aglar1 biiylik ve karmasik veri setlerinde basarilidir. Ancak, daha kiiciik ve basit veri setleri
icin cok derin mimariler asir1 6grenmeye neden olabilmektedir (He vd., 2016: 770). Ozellikle
yapilan bazi ¢calismalarda kiigiik veri setlerinde ¢ok karmasik modellerin asir1 6grenme riskine

isaret edilmektedir(C. Zhang vd., 2021: 107),(Goodfellow, 2016).

Tablo 5.16. Omurilik sagital MS alt veri kiimesinde FractalSpiNet mimarileri ve U-Net

mimarileri i¢cin omurilik alanin boliitleme sonuglari

Egitim sonuclari DSC VOE HDY9S ASD RVD REC PRE
%) (%) mm] mm] (%) (%) (%)

U-Net 9596 7.62 7.10 986 3.18 95.14 96.92
Att U-Net 95.63 822 470 10.66 3.88 9594 9548
Res U-Net 96.07 746 753 16.08 2.89 96.18 96.06
Att-Res U-Net 97.06 5.67 144 429 213 96.66 97.50
FractalSpiNet 96.16 7.25 9.10 623 328 9643 96.03

Con-FractalSpiNet 9592 7.61 4.14 859 347 9494 97.13
Att-FractalSpiNet 9598 7.60 3.82 7772 3.66 96.32 95.78

FractalSpiNet ve U-Net, Att U-Net, Res U-Net ve Att-Res U-Net mimarileri i¢in
omurilik MS Sagital T2a MR test veri setinde bazi 6rnek gorseller i¢cin hedef omurilik alanin
boliitleme sonuglart Sekil 5.10.’da verilmistir. Tiim modeller yiiksek performans gosterirken,
ozellikle onerilen Att-Res U-Net ve FractalSpiNet mimarisiyle elde edilen DSC skorlariin

daha yiiksek oldugu deneysel ¢aligmalar sonucunda goriilmektedir.
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Sekil 5.10. Tiim mimariler i¢in omurilik sagital MS test kiimesindeki bazi1 6rnek kesitler i¢in
tiim omurilik alanin boliitlenmesi ve basarilan DSC skorlart

Servikal omurilik MS sagital alt veri kiimesinde, aksiyel verisetinde oldugu gibi MS
lezyonlar1 oldukg¢a kiiclik hacimlere sahiptir. Sagital alt veri kiimesi i¢in detayli analizler
yapilmis olmakla beraber, aksiyel verilerden farkli olarak MS lezyonlarmi MR verisinde
isaretlemek oldukca giicli bir asama olmustur. MR goriintiisinde MS lezyonlarinin
siirlarinin keskin bir sekilde belli olmamasi1 polarite bozuluklarina sahip olmasi egitim
sonunda elde edilen basarimi oldukga diisiirdiigli gozlemlenmistir. Literatiirde de yapilan bazi
caligmalarda, MS verilerinin analizi i¢in siklikla aksiyel diizlem kesitlerine basvuruldugu ve
sagital diizlemde lezyonlarin tespitinde yasanilan giigliikler ifade edilmistir (Alcaide-Leon
vd., 2016: 970; Galler vd., 2016: 963). Tablo 5.17°de test setinden segilen drnek goriintiilerin
piksel bazli kiyaslanmasi yapildiginda MS lezyonlarinin basarisinin DSC skoru ile, bazi
modellerde %50 tizerinde, baz1 modellerde ise altinda edildigi goriilmektedir. Oldukca kiiciik
piksel alana karsilik gelen MS lezyonlarinin sagital diizlemde tespiti, aksiyel diizleme gore
oldukc¢a zorlu bir gorev olarak ifade edilebilmektedir. Burada, Con-FractalSpiNet mimarisi
MS lezyonlarin1 tespit etmede en yiliksek DSC puanina ulagarak %356.25 olarak
hesaplanmistir. Yine Att-Res U-Net ve U-Net mimarileri sirasiyla %55.61 ve %53.04 ile

yiizde ellinin {izerinde bdliitleme basarimi elde edilmistir. Hacimsel benzerlik metrigi olan
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VOE i¢in en yiiksek degeri DSC skoru ile paralel olarak Con-FractalSpiNet mimarisi ile
%56.58 olarak hesaplanirken, diger hacimsel metrik olan RVD i¢in en yliksek skor Att-
FractalSpiNet ile %34.82 olarak elde edilmistir. Ayrica REC ve PRE gibi diger 6nemli
metrikler i¢in de yine Con-FractalSpiNet mimarisi servikal omurilik MS lezyonlarinin
boliitlemede daha iyi performansa sahiptir. Att U-Net modeli ile yine en az basarili sonuglar

elde edilmistir.

Tablo 5.17. Omurilik sagital MS alt veri kiimesinde FractalSpiNet mimarileri ve U-Net

mimarileri icin MS lezyonlarinin boliitleme sonuglari

Derin Ogrenme Mimarileri DSC VOE RVD REC PRE
(%) (%) (%) (%) (%)
U-Net 53.04 60.24 47.87 59.29 51.83
Att U-Net 41.32 71.98 75.05 5343 36.41
Res U-Net 42.19 69.67 43.35 43.67 45.47
Att-Res U-Net 55.61 58.53 34.90 59.45 55.53
FractalSpiNet 46.35 67.20 35.29 48.58 47.40
Con-FractalSpiNet 56.25 56.58 43.59 61.04 55.98
Att-FractalSpiNet 43.94 68.63 34.82 44.30 47.08

Bu alt veri kiimesinde, FractalSpiNet ve diger tiim U-Net mimarileri i¢in test veri
kiimesinde bazi 6rnek kesitler icin MS lezyonlarinin DSC ile skorlar1 boliitleme sonuglari
Sekil 5.11.’de verilmistir. Bu asamada segilen 6rnek goriintiilerin analizi yapilacak olursa,
tim modellerde diger alt veri kiimeleri i¢in elde edilen yiiksek skorlar elde edilmedigi
goriilmektedir. Con-FractalSpiNet ve Att-Res U-Net mimarileri ile diger mimarilere gore
daha basarili sonuclar elde edildigi goriilmektedir. Bu alt veri kiimesinde, MS lezyonlariin
net bir polarite farkina sahip olmamasi ve ¢ok kiigiik temsil alanina sahip MS lezyonlari
nedeniyle elde edilen sonuglar diger verisetlerine oranla diisiik kalmustir. Ozellikle Res U-Net
modelinde bazi verilerde hi¢ lezyon tespit edemedigi MR test goriintiileri olmustur. Diger
taraftan aktif bir lezyon alani olmasia ragmen, moldellerin birden fazla lezyon alani tespit
etmesinin sebebi MR goriintiisiinde omurilik sinirlart igerisinde isaretlenen MS poritesine

benzer polarite alanlarinin olmasidir.
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Sekil 5.11. Tiim mimariler i¢in omurilik sagital MS test kiimesindeki bazi1 6rnek goriintiiler
icin MS lezyonlarinin béliitleme sonuglari ve DSC skorlari

Sagital MS alt veri kiimesinde MS lezyonu olmayan omurilik bdlgesinin boliitleme
islemlerine ait sonuglar Tablo 5.18.’de sunulmustur. Bu alanin boliitleme sagital verilerde
daha onemli hale gelmistir. Ciinkii sagital verilerde MS lezyonlarmin tespitinde oldukga
diistik skorlar elde edilmesi, daha biiylik hacme sahip olan MS’siz omurilik alaninn tespit
edilmesi ile ikili dogrulamay1 zorunlu hale getirmektedir. Burada, tiim omurilik alanin
boliitleme sonuglarina benzer sonuglar elde edilmis olup, en yiiksek DSC skoru yine Att-Res
U-Net mimarisi ile %95.16 olarak hesaplanmistir. Hemen ardindan FractalSpiNet ile %94.10
DSC skoru elde edilmistir. Diger mimarilerin skorlar1 birbirlerine ¢ok yakin sonuglara
sahiptir. Hacimsel ortiismeyi ifade eden VOE ve RVD degeri yine en yliksek DSC skoruna
sahip olan Att-Res U-Net modeli ile %9.12 ve %2.64 olarak gergeklesmistir. Mesafe bazl
metriklerde ise yine Att-Res U-Net modeli en yiiksek skorlara sahip model olarak HD95 i¢in

0.48 mm ve ASD i¢in 0.72 mm olarak en hassas degerlere ulagsmistir.
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Tablo 5.18. Omurilik sagital MS alt veri kiimesinde FractalSpiNet mimarileri ve U-Net

mimarileri icin MS’siz omurilik alanin boliitleme sonuglar

Derin Ogrenme Mimarileri DSC VOE HD9S ASD RVD REC PRE
(%) (%) [mm|] [mm] (%) (%) (%)
U-Net 9388 11.29 10.16 13.65 4.22 93.13 94.80
Att U-Net 9340 12.00 9.20 13.77  5.09 93.06 94.06
Res U-Net 9378 1149 1133 2129 5.08 94.73  93.06
Att-Res U-Net 9516 9.12 4.83 7.19 2.64 9485 95.53
FractalSpiNet 94.10 10.86 13.13 11.39 5.12 95.03 93.45
Con-FractalSpiNet 9376 1136 7.85 12.78  5.28 93.06 94.84
Att-FractalSpiNet 9383 1136 7.23 1335 597 95.11 92.88

FractalSpiNet modelleri ve diger tim U-Net mimarileri icin test kiimesindeki bazi
kesitler i¢in boliitleme sonuglart Sekil 5.12°de sunulmustur. Burada, ornek gorseller
incelendiginde boliitleme basarim dagiliminin oldukca degiskenlik gosterdigi goriilmektedir.
Ornegin ilk gorselde en yiiksek DSC skoru Att-FractalSpiNet ile %96.81 olarak almirken,
ikinci ve tgilincii kesit i¢in Att-Res U-Net modelleri ile %95.43 ve %97.73 DSC skorlari
basarilmistir. Diger taraftan dordiincii kesit i¢in %96.74 ile Att U-Net, besinci kesit i¢in
%96.84 ile FractalSpiNet ve altinci kesit igin ise %99.08 ile Con-FractalSpiNet modellerinde
en yiiksek DSC skorlar1 elde edilmistir. MS alaninda daha fazla piksel alani ile temsil edilen
MS’siz omurilik alani i¢in, elde edilen skorlar oldukca yiiksek olmasini saglamaktadir. Bu
nedenle MS alanlarinin basarili olarak tespit edildigi sonucu ¢ok dogru olmamakla beraber
MS lezyonlarinin konum olarak dogrulugu i¢in bir kriter olmasina karsilik hacimsel olarak
cok basarili sonuclar vermemektedir. Bu baglamda sagital MR verileri ile MS lezyonlariin
daha yiiksek basarilar ile tespit edilmesi i¢in MR verilerinin oldukea kaliteli teknik 6zelliklere
sahip olmas1 gerektigi analizi ¢ikmaktadir. MR verilerinde MS lezyonlariin net bir sekilde
izlenebilirligi U-Net modellerinin basarisin1 dogrudan etkilen en 6nemli teknik 6zellik oldugu
ve bu durumun sagital diizlemde MS lezyonlariin tespit edilmesinin zorlu bir gérev olarak

gegerliligini korudugu ugtan uca yapilan caligmalar neticesinde ifade edilebilmektedir.
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Sekil 5.12. Tiim mimariler i¢in omurilik sagital MS test kiimesindeki bazi1 6rnek kesitler i¢in

MS’siz omurilik alanin boliitleme sonuglar1 ve DSC skorlari
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6. TARTISMA

Bu tez ¢aligmasinda, omurilik ve omurilik bdlgesinde bulunan MS lezyonlarimin
onerilen U-Net tabanli derin 0Ogrenme mimarileri ile tespiti ve boliitlenmesi
gerceklestirilmistir. Deneysel analizler sonucunda elde edilen sonuclar detayli olarak
incelendiginde, servikal omurilik T2 MR goriintiileri kullanilarak olusturulan omurilik aksiyel
OKA/BOS, omurilik aksiyel MS ve omurilik sagital MS veriseti alt gruplart ile 6nerilen
FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet mimarileri ve U-Net, Att U-Net, Res
U-Net ve Att-Res U-Net gibi rekabetci diger modeller kullanilarak elde edilen sonuglar ayri
ayr1 degerlendirilmistir. Diger taraftan, model ayarlamalar1 i¢in ortak parametreler segilerek
modellerin esit bir yaklasimla degerlendirilmesi saglanmistir. Modeller i¢in tercih edilen
parametreler bacth boyutu 8, 6grenme oranin 0.001, aktivasyon fonksiyonu ReLU, kayip
fonksiyonu binary cross entropy, optimizasyon fonksiyonu sigmoid, optimizasyon algoritmasi
adam ve droupout degeri 0.5 olarak 200 epok degerleri kullanilarak tiim alt veri kiimeleri i¢in
egitimler gerceklestirilmistir. Tiim egitimler sonunda model basarilarini 6lgmek igin
literatiirde siklikla kullanilan piksel ortlisme temeline dayanan DSC, PRE ve REC degerleri
kullanilirken diger taraftan hacimsel bazli olarak VOE, RVD ve mesafe bazli olarak ASD ve
HDO95 metrikleri degerlendirme metrikleri olarak kullanilmigtir. Farkli yaklagim temellerine

sahip metriklerin kullanilmas1 modelleri ¢ok yonlii analiz edilmesine olanak saglamaktadir.

Omurilik yapisi itibariyle belirli bir geometrik sekle sahip olmamakla beraber omur
yapisina gore de kivrimli bir sekle sahiptir. Bu nedenle bolgenin boliitlenmesi sinirlarinin
belirlenmesi olduk¢a zorlu bir konu olarak ortaya ¢ikmaktadir. Bu alanda tespit edilmeye
calisilan lezyonlar konum, boyut ve sekil bakimindan oldukg¢a heterojen bir yapiya sahiptir.
Lezyon vokselleri orijinal MR verilerinde tiim omurilik hacmine oranla ¢ok az bir alan ile
temsil edilmektedir. Ozellikle sagital diizlemdeki verilerde tiim omurilik alan1 boyunca
aksiyel diizlemdeki verilere oranla ¢ok daha kii¢iik hacimlere sahip olabilmektedir. Lezyon
yogunluklarinin gri madde yogunluklarina ve diger bazi dokusal yapilara benzerlik
gostermesi, maskeleme yaparken ve egitim sirasinda olumsuz sonug¢ olarak karsimiza

cikmaktadir.

Omurilik boliitleme ve MS lezyonlarinin tespiti i¢in yiiriitilen deneysel analizlerde,
basarili skorlarin yani sira test veri seti degerlendirildiginde modellerin omurilik siirlarinin
tam olarak belirleyemedigi, tasma veya daha az alanin tahmin edildigi 6rnek veriler Sekil
6.1.(a)’da verilmistir. Baz1 piksel eklentilerinin oldugu goriilmesine ragmen bu durum

omurilik smirlarini yine de yiiksek basarilar ile tespit edildigi goriilmektedir. ikinci hedef
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boliitleme alani olan beyin omurilik sinirlart i¢in modellerin bagarilari test edilmistir. Basarili
bir sonuglar sergileyen modellerin test verisetleri incelendiginde bazi verilerde %90’1n altinda
piksel ortiismesi olan bazi verilere rastlanmigtir. Bu verilere 6rnek gorseller Sekil 6.1.(b)’de
verilmistir. Uciincii béliitleme alan1 omurilik ve beyin omurilik alanlarinmn birlikte temsil
edildigi tiim alan olarak belirlenmistir. Bu gorseller incelendigi Sekil 6.1.(c)’de goriilecegi
gibi basarisiz sonuglarda bile, onerilen yontemlerin oldukca yiiksek DSC skorlarina sahip
oldugu goriilmektedir.
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Sekil 6.1. Onerilen FractalSpiNet mimarileri ve modeller kullanilarak omurilik alaninin
boliitlenmesi (a), beyin omurilik sivisi alaninin boliitlenmesi (b), omurilik ve beyin omurilik
stvist tiim alanin boliitlenmesi (c) igin nispeten diislik bagarima sahip sonuglar

Omurilik aksiyel MS alt veri kiimesinde, test kiimesinde yapilan degerlendirmeler
sonucunda gozlemlenen bazi boliitleme hatalarin1 gosteren ornek veriler Sekil 6.2.(a)’da
gosterilmektedir. Eksik piksel veya fazla piksel olarak kendini gosteren Ortiigme hatalar1 elde
edilen metrik degerlerini dogrudan etkileyerek model basar1 skorlarini degistirmektedir. Diger

taraftan, MS lezyonlarinin ¢ok kiiclik piksellerle ifade edildigi ve belirli bir geometrik sekle
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sahip olmadigi g6z Oniine alindiginda, onerilen Con-FractalSpiNet ve FractalSpiNet
mimarilerinin oldukca basarili boliitleme gergeklestirdigi ve dikkate deger sonuglar elde ettigi
sOylenebilir. Ancak, yine de MS lezyonlarinin tespitinde nispeten daha diisiik basarima sahip
bazi sonuglar ise Sekil 6.2.(b)’de verilmistir.
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Sekil 6.2. Onerilen FractalSpiNet mimarileri ve diger tiim modeller icin omurilik aksiyel MS
alt veri kiimesinde tiim omurilik alaninin boliitlenmesi (a), omurilik MS lezyonlarinin
boliitlenmesi (b), MS lezyonlart olmayan omurilik alaninin boliitlenmesi (¢) i¢in daha diisiik
basarima sahip kesitler

MS lezyonlarinin hacimsel olaral tam belirlenemedigi eksik veya daginik bir bolgenin
tahmin edildigi sonuclardan goriilmektedir. Nitekim egitimler sonunda MR goriintiisiiniin
cekim kalitesinin, MS lezyonlarina benzer polaritelere sahip alanlarin olmast MS
lezyonlarinin sinirlarinin net bir sekilde belirli olmamasi durumlarinda etiket islemlerinde
hata olasiliklarin1 artirmakta ¢ikarimi yapilabilmektedir. Aslinda MR goriintiisinde MS
lezyonlarina benzer polaritelere sahip alanlar basariy1 diistirmekte ve islem adimlarmin en
basinda maske verisini (temel gercek) hazirlamay1 oldukca zorlagtirmaktadir. Bu nedenle,

onerilen ¢aligmanin yiiksek kaliteli net MR kesitlerinde MS lezyonlarinin tespitine katki
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saglamasi olduk¢a olasi iken MR goriintiisii ve gercek maske verisi arasindaki hatali
etiketleme islemleri model basarilarin1 oldukca etkilemektedir. Diger boliitleme alani olan
MS’siz  omurilik alanin tespit edilmesi ic¢in yine tim modeller ile egitimler
gerceklestirilmistir. MS’siz omurilik alan1 boliitleme ¢alismasina dahil edilmesinin en biiyiik
sebebi MS lezyonlar1 boliitleme ile birlikte ikili dogrulama saglamaktir. Test verisetinde
oldukca yiiksek piksel Ortiismeleri gozlemlenirken, Sekil 6.2.(c)’de verilen bazi 6rnek

goriintlilerde daha az veya daha ¢ok piksel eslesmeleri gergeklesmistir.

Omurilik sagital MS alt veri kiimesinde Onerilen mimariler kullanilarak, omurilik
alaninin boliitlenmesinde, MS lezyonlarinin tespitinde ve MS olmadan omurilik alaniin
boliitlenmesinde daha diisiik basarima sahip sonuglara 6rnekler sirasiyla Sekil 6.3(a), Sekil
6.3(b) ve Sekil 6.3(c)’de gosterilmistir. Att-Res U-Net mimarisinin bu alt veri kiimesi ile
uyumu olduke¢a dikkat ¢eken bir detay olmustur. Ciinkii diger iki alt veri kiimesi ile yapilan
sonuclar degerlendirildiginde, az basarili skorlar1 elde eden modellerden biri iken, sagital MS
alt veri kiimesi ile en bagarili DSC skorlarini elde eden mimarilerden biri olmustur. Burada,
aksiyel diizlemdeki alt veri kiimeleri 128x128 iken sagital diizlemdeki goriintii boyutlar
320x320 olmasi ilk belirgin 6zellik olarak degerlendirilmektedir. Nitekim calisma alaninin
biliylimesi modelin basarisina olan katkisini olumlu etkilemis olabilecegi goriisii oldukga
yiikksek bir olasilik olarak degerlendirilebilmektedir. Basar1 farkini etkileyen en Onemli
etkenlerden olan veri sayis1 oldugu diisiiniiliirse sagital veri kiimesinin daha kapsamli bir hale
getirilerek, artirilmast veri gesitliligine katki sunmasi ve model basarilarini olumlu yonde
etkilemesi beklenmektedir. Diger taraftan, sagital diizlemdeki verilerde MS lezyon basarisi
oldukca diisiik olmasi yiliksek basarimlar icin motivasyon kaynagi iken, sagital MR
verilerinde gozlemlenen polarite bozukluklar1 bu basariy1 diisliren en 6nemli etkendir. Sagital
verilerde net MS lezyonlar1 gézlemlenirken diger taraftan net olmayan pikseller ile temsil
edilen ve bu yiizden maskeleme islemlerinin olduk¢a zorlu oldugu MR verileride
bulunmaktadir. MR verilerinin kalitesinin artirilmast MR ¢ekim kalinliginin disiiriilmesi
verisetinin ¢esitlenmesi ve sayisinin artmasina olduk¢a olumlu katki sunacaktir. Test
verisetinde bulunan 6rnek veriler incelendigi baz1 modellerde MS verileri hig¢ piksel ortlismesi

gereklesmeyen veriler bulunurken daha az veya ¢ok hatali veriler ile karsilagmak miimkiindjir.
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Sekil 6.3. Onerilen FractalSpiNet mimarileri ve diger tiim modeller icin sagittal diizlem alt
veri kiimesinde tiim omurilik alaninin béliitlenmesinde (a), omurilik MS lezyonlarinin
boliitlenmesinde (b), MS lezyonlar1 olmayan omurilik alaninin béliitlenmesinde (c) daha
diisiik basarimli sonuglar

Aksiyel omurilik alam igerisinde bulunan gri madde bolgesi yine MS alanlarinin
segmente edilmesi gibi zorlu bir ¢aligma konusu olarak literatiirde ge¢mektedir. Tez
caligmas1 kapsaminda Onerilen yontemlerin perfomansi, ayn1 zamanda, agik bir veriseti olarak
sunulan SCGMSC verisetindeki goriintiiler ile de degerlendirilmistir. Bu veri seti, dort farkl
siteden alinan omurilik goriintiilerinden olusmaktadir. Deneysel analizler i¢in, bu verisetinden
328 egitim (~%80) ve 83 test (~%20) seti dahil olmak iizere toplam 411 MR goriintiisii ve
gercek maske secilmistir. Veriseti yine 128x128 olarak hazirlanmis olup veri artirma
teknikleri uygulanmadan mevcut say1 adedince egitimler gerceklestirilmistir. Ayrica,
onerilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet mimarisinin bu verisetindeki
performansi, U-Net mimarisi ve tlirevleri olan Att U-Net, Res U-Net ve Att-Res U-Net

modelleriyle karsilastirilmistir ve elde edilen sonuglar Tablo 6.1°de sunulmustur. Model
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egitimleri sonunda gri bolgenin boliitlemesinde, en yiiksek DSC skoru %83.20 ile U-Net
mimarisi ile elde dilmis olup, hemen ardindan % 83.05 DSC skoru ile FractalSpiNet elde
etmistir. Onerilen FractalSpiNet ve U-Net modellerinin sonuglarinin diger modellere gore
olduk¢a yakin ve daha basarili oldugu sonucuna varilabilmektedir. Con-FractalSpiNet ve

Att U-Net mimarileri ile %81.96 ve %80.40 DSC skoru olarak basarim elde edilmistir.

Tablo 6.1. Omurilikte GM béliitlemesi i¢in SCGMSC verisetinde FractalSpiNet mimarileri

ve U-Net mimarilerinin sonuglarinin degerlendirmesi

Derin Ogrenme Mimarileri DSC VOE HDY9S ASD RVD REC PRE
(%) (%) [mm] [mm] (%) (%) (%)
U-Net 8320 2842 1.33 4.84 9.09 8549  81.35
Att U-Net 80.40 3236 1.55 5.83 8.92 79.38  81.98
Res U-Net 7924 3387 1.72 5.59 10.14  76.61 82.65
Att-Res U-Net 7479  39.65 4.25 10.78 1441 78.11 72.47
FractalSpiNet 83.05 28.68 1.39 4.84 10.55 86.28  80.42
Con-FractalSpiNet 81.96 30.20 1.35 4.45 9.79 79.28  85.46
Att-FractalSpiNet 7575 37.81 6.62 27774 2213 7736 7631

SCGMSC verisetinde test kiimesinde basarili piksel ortiigmelerinin oldugu veri
ornekler Sekil 6.4.°de verismistir. Goriintiillerden anlasilacagr iizere, U-Net ve
FractalSpiNet ile oldukca yiiksek boliitleme sonuglari elde edilirken, diger modeller ile
%383’1in altinda DSC skorlar1 elde edilmistir.

Con- Att-

MR Goruntusu Uzman Maskesi U-Net Att U-Net Res U-Net FractalSpiNet FractalSpiNet FractalSpiNet

Att-Res U-Net

DSC:88.76 DSC:86.66

DSC:92.06 DSC:89.81 DSC:86.95

Sekil 6.4. Onerilen FractalSpiNet mimarileri ve diger tiim modellerin SCGMSC verisetinde
omurilik GM béliitleme sonuglar

Omurilik boliitleme icin bazi kamuya agik veri kiimeleri olmasina ragmen,
servikal omurilik boélgesini ve bu bolgedeki MS lezyonlarini 6zel olarak iceren kamuya
acik bir veri kiimesi bulunmamaktadir. Bu nedenle, bu calismanin sonuglarin1 birgok
parametrede diger son teknoloji yaklagimlarla karsilagtirmak genel anlamda miimkiin
degildir. Ayrica, calismalarda kullanilan farkli yontemler esit karsilastirmayi daha da

zorlastirmaktadir. Ayrica, bircok calismada degerlenme metrikleri olarak tercih edilen
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temel performans Olgiitleri de birbirinden ¢ok farklidir. Bununla birlikte, genel literatiir
taramas1 yapildiginda ¢alismamiza yakin Olgekte veri seti kullanan ve yontemlerinde
DSC skoru sonuglarint veren benzer bazi calismalarla karsilastirilmasi Tablo 6.2.°de
verilmistir. Servikal omurilik bolgesinde calismanin zorluklari1 g6z 6niine alindiginda, bu
calismada Onerilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet mimarilerinin

cok basarili performans sonuglari elde ettigi goriilebilmektedir.

Daha 6nce onerilen omurilik boliitleme c¢alismalarinin ¢ogu, bu tez ¢aligmasi da
dahil olmak {izere orijinal veri setini kullanmistir. Ancak Bedard ve arkadaslar1 (Bédard
ve Cohen-Adad, 2022: 1031253) , kamuya acik bir veri seti olan omurga veriseti
kullanmistir. Ote yandan, en son c¢alismalar ¢ogunlukla omurilik bdliitleme
gerceklestirmistir ve omurilikte MS lezyonu tespiti iizerine birkag ¢alisma da vardir. Bu
calismalar arasinda omurilik alanin segmente edilmesi ile veriler sunan ¢alismalar De
Leener ve arkadaslar1 (De Leener vd., 2014: 528) ve(De Leener vd., 2015: 1705), Zhuo
ve arkadaglari(Zhuo vd., 2022: €210292), Prados ve arkadaslari(F. Prados vd., 2016:
36151), X. Zhang ve arkadaslar1 (Xiaoran Zhang vd., 2021: 104345) yaptiklari1 calismalar
ile elde edilen DSC skorlar1 Tablo 6.2.’de verilmistir. Omurilik MS lezyonlarin1 veya
diger timor vb. yapilarin tespit etmek icin yapilan c¢alismalar ise Gros ve
arkadaslari(Gros vd., 2019: 901), Lemay ve arkadaslari(Lemay vd., 2021: 102766), Zhuo
ve arkadaslar1 (Zhuo vd., 2022: €210292) olarak literatiirde yer almaktadir. Bu tez
calismasinda orijinal veri setinde Onerilen FractalSpiNet, Con-FractalSpiNet ve Att-
FractalSpiNet mimarilerinin diger yontemlerle kiyaslayarak sonuclarin analizleri
yapilmistir. Nitekim 3 farkl alt veri kiimesi ile deneysel ¢aligsmalar yapilmistir. Omurilik
OKA/BOS aksiyel T2a MR veri seti ile omurilik boliitleme icin elde edilen sonuglar
FractalSpiNet %94.90, Con-FractalSpiNet %94.99 ve Att-FractalSpiNet %94.70 tespit
edilmistir. Yine ayn1 veri seti ile beyin omurilik sivist boliitleme sonuglar1 FractalSpiNet,
Con-FractalSpiNet ve Att-FractalSpiNet icin sirastyla %92.99, %92.76 ve %92.82 olarak
tespit edilmistir. Son olarak omurilik ve beyin omurilik sivis1 alanlarinin toplami i¢in
alinan boliitleme sonuglart i¢in elde edilen DSC skorlar1 FractalSpiNet, Con-
FractalSpiNet ve Att-FractalSpiNet i¢in sirasiyla %96.54, %96.39ve 9%96.25 olarak
hesaplanmistir. Omurilik MS aksiyel T2a MR veri seti ile omurilik boliitleme sonuglari
FractalSpiNet %98.88, Con-FractalSpiNet %98.89 ve Att-FractalSpiNet %98.41 olarak
elde edilmis olup omurilik MS sagital T2a MR veri setinde ise bu sonuglar FractalSpiNet
%96.16, Con-FractalSpiNet %95.92 ve Att-FractalSpiNet %95.98 olarak tespit edilmistir.
Diger yapilan ¢alismalar ile kiyaslandiginda omurilik béliitleme ile elde edilen en yiiksek

DSC skoru %96 olarak tespit edilmistir. Omurilik aksiyel MS verisi ile MS lezyonlar1
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icin alinan boliitleme sonuglar1 FractalSpiNet %90.90, Con-FractalSpiNet %91.48 ve Att-
FractalSpiNet %88.79 olarak oldukca rekabetci sonuglar elde edilirken omurilik sagital
MS alt veri kiimesi ile bu sonuglar FractalSpiNet %46.35, Con-FractalSpiNet %56.25 ve
Att-FractalSpiNet %43.94 olarak daha az basarili sonuglar ile tespit edilmistir. Diger
yapilan calismalar ile kiyaslandiginda aksiyel verilerde omurilik MS bdliitleme ile elde
edilen en yiiksek DSC skoru %60.4 ve %50.0 iken tiimor i¢in %76.7 = 1.5 olarak DSC

skoru tespit edilmistir.

Tablo 6.2. FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet ile literatiirde yapilmis

benzer Olgekli calismalarinin karsilastirilmasi

Calisma Veriseti Metot DSC (%)
?Zf)f 4e)ener vd. Ozgiin veriseti PropSeg 90.0 (omurilik boliitleme)
De Leener vd. Ogeiin veriseti PropSe 91.0 £+ 0.02 (omurilik ve omurilik
(2015) el p>cg kanalinmn béliitlenmesi)
P —— OPAL algoritmasi ve  96.5 (Lezyonlu OKA bdliitleme)
PradosNGRR016) ggn veriseti STEPS boliitleme  97.0 (Lezyonsuz OKA)
- — 95.9 (omurilik boliitleme)
Gros vd. (2019) Ozgiin veriseti CNN (DeepSeg) 60.4 (MS lezyon tespii)
Lemay vd. (2021)  Ozgiin veriseti g—illjlztritemelh giskad 76.7 £+ 1.5 (Timor + Kavity + Adem)
Zhang vd. (2021) Ozgiin veriseti U-Net 87.0 + 18.4 (OKA boliitleme)
P . Channel attentive U- : -
Zhang vd. (2022) Ozgiin veriseti Net (SeUneter) 90.67 £ 1.63 (servikal omur boliitleme)
- . : 50.0 (MS)
Zhuo vd. (2022) Ozgiin veriseti MultiResUNet 58.0 (NOSD)
Bedard vd. (2023) opine generic U-Net temelli soft ¢, 1 (omurilik béliitleme)
public” veriseti boliitleme
94.90(OKA béliitleme)
FractalSpiNet 92.99(BOS boliitleme)
96.54(OKA+BOS boliitleme)
. . 94.99 (OKA boliitleme)
omunbie Asel - Con-FractalSpiNet  92.76(BOS biliitlemc)
96.39(OKA+BOS boliitleme)
94.70 (OKA boliitleme)
Att-FractalSpiNet 92.82(BOS boliitleme)
96.25(0OKA+BOS boliitleme)
98.88 (OKA boliitleme)
FractalSpiNet 97.17 (MS’siz OKA bdéliitleme)
Onerilen Method 90.90 (MS lezyon tespiti)
(Servikal Omurilik Aksiyel 98.89 (OKA boliitleme)
Omurilik MS Con-FractalSpiNet 97.25 (MS’siz OKA boliitleme)
Veriseti) 91.48 (MS lezyon tespiti)
98.41 (OKA boéliitleme)
Att-FractalSpiNet 96.48 (MS’siz OKA boliitleme)
88.79 (MS lezyon tespiti)
96.16 (OKA boliitleme)
FractalSpiNet 94.10 (MS’siz OKA boliitleme)
46.35 (MS lezyon tespiti)
1 . 95.92 (OKA baéliitleme)
O lik Sagital .
vs R ConFractalSpiNet  93.76 (MSsiz OKA boliitleme)

56.25 (MS lezyon tespiti)

Att-FractalSpiNet

95.98 (OKA baoliitleme)
93.83 (MS’siz OKA béliitleme)
43.94 (MS lezyon tespiti)
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Omurilik aksiyel OKA/BOS verisi i¢in toplam 1000 goriintii i¢in %20’si test veri
seti olarak ayrilmis olup 200 olarak belirlenmistir. Omurilik aksiyel MS verisi i¢in 1080
goriintliniin %20°si test verisi olarak ayrilarak toplam 216 MR goriintiisii ve maske verisi
ayrilmistir. Ugiincii alt veri kiimesi olan omurilik sagital MS alt veri kiimesinde 530 olup
%20’s1 olan 106 adet MR goriintiisii test veri seti olarak ayrilmistir. Tablo 6.3’te verilen
zaman Olgekleri test verisetinde tiim veriler i¢in metriklerin hesaplanmasi ve tahminlerin
gorsellestirilmesi asamasini kapsamaktadir. Bu siireler herbir veri seti i¢in tim
modellerin degerlendirme siireleri Ol¢lilmiis ve herbir veri i¢in ortalama siireleri
cikarilmistir. Modellerin egitimleri sonunda test verisetinin metriklerin hesaplanmasi ve
verilerin gorsellestirilmesi i¢in gegen siire ayr1 ayrt hesaplanmistir. Toplam siirelerin test
veri sayisina bolliinmesi ile herbir veri i¢in elde edilen siire de ayr1 ayr1 hesaplanmistir.
Tek bir aksiyel MR goriintiisii i¢in ortalama tespit siiresi tiim modeller i¢in yaklasik 0.2
saniye iken sagital diizlemdeki goriintiiler icin bu siire 0,.35 olarak tespit edilmistir.
Modeller arasinda 6nemli bir fark olmamasina karsilik veri seti bazinda farklilik verilerin
boyutlarindan kaynaklanmakta oldugu c¢ikarimi yapilabilmektedir. aksiyel goriintiiler
128x128 piksel boyutunda iken, sagital goriintiiler 320x320 oldugu icin piksel bazli islem
yapan U-Net mimarilerinin sonuglarinin degerlendirme asamasinda gecen siirelere fark
olarak yansimistir. Alinan sonugclar test seti i¢in hesaplanan toplam tespit siiresi ve tek bir
MR goriintiisii icin elde edilen tespit siiresi, Onerilen calismanin ger¢ek zamanl

uygulamalarini1 gerceklestirmeyi anlamli kilmaktadir.

Tablo 6.3. Tiim modellerin egitimleri sonunda herbir test seti i¢in toplam tespit siiresi ve

test verisetindeki tek bir goriintii i¢in ortalama tespit siiresi

Test verisinin toplam tespit siireleri(s) Test verisinde herbir veri icin ortalama
. tespit siireleri(s)

%f:l’;roﬂﬁ:f“me Omurilik Omurilik  Omurilik | Omurilik Omurilik Omurilik

Aksiyel Aksiyel Sagital Aksiyel Aksiyel Sagital

OKA/BOS MS MS OKA/BOS MS MS
U-Net 43.37 45.51 37.14 0.217 0.211 0.350
Att U-Net 42.14 44 .82 37.31 0.211 0.208 0.352
Res U-Net 42.55 45.17 37.92 0.213 0.209 0.358
Att-Res U-Net 42.81 44.67 37.64 0.214 0.207 0.355
FractalSpiNet 42.23 44.42 3791 0.211 0.205 0.358
Con-FractalSpiNet 41.42 44.99 37.33 0.207 0.208 0.352
Att-FractalSpiNet 43.59 44.92 37.46 0.218 0.208 0.353
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7. SONUC

Bu tez calismasinda omurilik bdlgesinin ve omurilik MS lezyonlarin tespit
edilmesi i¢in derin O6grenme yontemlerinden U-Net mimarisi tabanh fraktal evrisim
yapisina sahip yeni mimariler Onerilmistir. Deneysel ¢aligmalarda, Onerilen
FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet modellerinin diger U-Net
modellerine gore daha basarili sonuglar elde ettigi goriilmiistiir. Tim deneysel
asamalarda modellerin ayarlamalar1 i¢in ayni1 degerlere sahip parametreler kullanilarak
tiim modellerin egitimleri sonunda her bir test verisi i¢in metrik degerleri hesaplanmistir.
Elde edilen tiim sonuglar birebir ayn1 ¢alismalar olmasa bile literatiirde yapilmis benzer
calismalar ile kiyaslanarak model ve verisetleri hakkinda elde edilen bulgular 6lgegince

degerlendirmeler yapilmistir.

Omurilik, yapisal olarak belirli bir geometrik sekle sahip olmayip, vertebral
yapiya karsilik gelen kavisli bir yapiya sahiptir. Bu nedenle bolgeyi segmente etmek ve
sinirlarint belirlemek oldukg¢a zorlu bir istir. Omurilik smirlarinin omurilik boyunca
degisken bir sekle sahip olmas1 ve omurilikte tespit edilecek lezyonlarin konum, boyut ve
sekil acisindan heterojen olmasi, hazirladigimiz veri seti gruplarina cesitlilik agisindan
olumlu etkisi olmakla birlikte boliitleme i¢in dikkate alinmasi gereken Onemli bir
ayrintidir. Bu calismada, fraktal evrisim tabanli hibrit U-Net mimarisi olarak 6nerilen
FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet modelleri ve diger rekabetci
mimariler kullanilarak servikal omuriligin otomatik bolitleme ve omurilik MS
lezyonlarinin tespiti gerceklestirilmistir. Onerilen FractalSpiNet ve Con-FractalSpiNet
mimarileri bir¢ok boliitleme calismasi sonunda oldukga yiiksek DSC skoru elde ederek
diger modellere istiinliik saglamistir. Aksiyel kesitlerde MS lezyonlarinin tespit edilmesi
sagital verilere gore oldukca yiiksek ve basarili drtiisme yetenegi sergilemistir. Ozetle,
deneysel sonuglar servikal omurilik ve MS lezyonlarinin dogru bdliitleme skorlar1 elde
etmede model yaklasimlarimizin etkinligini, en son yontemleri geride biraktig1 veya ¢ok

yakin sonuglar elde ettigi gézlemlenmektedir.

En genel anlamda, Onerilen FractalSpiNet ve Con-FractalSpiNet mimarileri
veriseti bazinda degiskenlik gostererek temel U-Net modelinden daha yiiksek performans
elde etmistirr Bu yoOntemin gelecekteki yeni mimariler ig¢in gelistirilebilecegi
ongorilmektedir. Servikal omuriligi dogru bir sekilde boliitlenmesi ve MR
goriintiilerinden MS lezyonlarini tespit etme yetenegi, hasta bakimi i¢in derin etkilere

sahiptir. MS lezyonlarinin erken ve kesin bir sekilde tanimlanmasi, zamaninda miidahale
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icin ¢cok Onemlidir. Potansiyel olarak hastaligin ilerlemesini yavastip hastanin tedavi

siirecini olumlu katki sunmasi agisindan ¢ok énemli bir caligsmadir.

FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet modelleri radyologlarin
dogrulugunu ve verimliligini artirmasina katki sunarak manuel boliitleme icin gereken
siireyi azaltabilir ve tanisal giiveni artirabilmektedir. Bu daha kisisellestirilmis ve etkili
tedavi planlarina yol agabilmekte, MS ve omurilikle ilgili diger rahatsizliklar1 olan
hastalarin yasam kalitesini iyilestirebilmektedir. MR goriintiilemede gelinen noktada
cekim asamasinda teknoloji agisindan MS gibi lezyon bdlgelerine odaklanmak heniiz
miimkiin degildir ve genel MR verilerinde ¢ok fazla gereksiz alan vardir. Bu nedenle,
omuriligin aksiyel diizlem MR goriintiisii, kapladig1 alan agisindan ¢ok kiiciik bir alana
karsilik gelir ve bu sinirlar igindeki MS lezyonlar1 ¢ok daha kiigiik piksel degerlerine
karsilik gelmektedir. Bu kadar kiiciik alanlar1 maskelemek, deneyimli uzmanlar icin bile
cok zordur ve hata olasiligt devam etmektedir. Bu baglamda, omuriligin, omurilik
icindeki farkli birimlerin ve omurilik bolgesindeki MS lezyonlarinin derin 68renme
mimarileriyle boliitleme, veri setinin hazirlanmasindaki zorluklar nedeniyle ¢ok smirlt
kalmaktadir. Ayrica, lezyon yogunluklarinin gri madde yogunluklarina ve diger bazi
dokusal yapilara benzerligi, manuel maskeleme siire¢lerinde hata olasiligini artiran diger
faktorlerdendir. Maskelemenin dogru sekilde gergeklestirilememesi, nihayetinde egitim
basarisizligina ve daha sonra omurilik ve MS lezyonlarinin daha diisiik performansla

tespit edilmesine yol agmasi muhtemeldir.

Bu tez ¢alismasinda da, aksiyel ve sagital agidan taranan servikal omuriligin MR
kesitleri kullanilarak yeni bir veriseti olusturulmustur. Bu veri seti i¢in, omurilik bolgesi
ve MS lezyonlar i¢in gercek maske verileri, iki deneyimli radyologun fikir birligiyle
olusturulmustur. Veri setindeki MR goriintiileri yalnizca omuriligin servikal bolgesinden
taranmakta ve daha ileri ¢aligmalar i¢in, omuriligin torasik ve lomber bdlgelerinden

goriintiiler taranarak MS lezyonu, tiim omurilik boyunca segmentlere ayrilmistir.

Calismaya katki sunacak diger caligmalar kisaca optimisazyon algoritmalar: ile
bir¢ok farkli kombinasyonda model egitimleri yapilarak bu modellerin egitim basarisina
olan katkis1 incelenebilir, model egitimlerinde yapilan 6n islem ¢alismalarinda yapilacak
olan degislik (goriintii formati, goriintii boyutu, goriintii sayist vb.) gdstermesi agin
performansina olan etkisi, diger karma U-Net modeller ile kiyaslanmas1 gibi yapilacak
bir¢ok calisma seklinde siralanabilmektedir. Ayrica elde edilen basarili sonuclar
sayesinde karar destek sistemlerin klinik ortamlarda uygulayicilara oldukg¢a faydali

olabilecegi degerlendirilmektedir. Her ne kadar aksiyel kesitler kullanilarak MS
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lezyonlarinin farkli yol ve yontemlerle tespit edilmesi icin ¢alisilmis olsa bile ac¢ik kaynak
(publicly- available) paylasilan bir veriseti olmadigindan birebir veri seti kiyaslamasi
yapilamamuistir. Ger¢ek maske (ground truth) isleminin her ne kadar iki uzman tarafindan
yapilmis olsa bile bu islemin manuel olarak yapilmasi yapilan islemin hataya hala agik
oldugunu gostermektedir. Bununla beraber her ne kadar farkli planellerden veriler
kullanilarak sistemin kararlig1 test edilmis olsa bile farkli yogunluklara sahip MR
goriintiilerinin verisetlerine dahil edilmesi verisetinin daha genellestirerek model tahmin

yetenegini nasil etkileyecegi diger bir ¢calisma konusu olabilecek degerliktedir.
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