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ÖZET 

DERİN ÖĞRENME MİMARİLERİ İLE MR TARAMALARINDAN OMURİLİĞİN 

OTOMATİK BÖLÜTLENMESİ VE MS LEZYONLARININ AYIRICI TANISI 

İnsan omuriliği, merkezi sinir sisteminin oldukça organize ve karmaşık bir parçasıdır ve 

işlevi nöral sinyallerin beyinden (duyusal bilgi) periferik sinir sistemine (motor bilgisi) ve 

periferik sinir sistemden beyne iletilmesini sağlamaktır. MS (Multipl Skleroz), omurilikte 

meydana geldiğinde beynin, omuriliğin ve optik sinirin beyaz ve gri maddesini etkiler. 

MS hastalığının erken teşhisi, hastalığın ilerlemesini yavaşlatmak ve semptomların 

kontrol altına alınmasını sağlamak açısından büyük önem taşır. Erken dönemde doğru 

tedaviye başlamak, hastalığın daha ağır ataklar yapmasını engelleyebilir ve hastanın 

yaşam kalitesini artırabilir. Bu sayede, MS'in ilerlemesini durdurmak ya da yavaşlatmak 

mümkün olabilir. MS hastalığının teşhisinde klinik semptom/bulgular, beyin omurilik 

sıvısı incelemeleri, uyarılmış potansiyeller ve Manyetik Rezonans Görüntüleme (MRG) 

bulguları kullanılmaktadır. Özellikle, MRG’nin kullanımının yaygınlaşması ve bilgisayar 

destekli sistemlerin gelişmesi, MS hastalığının tanısı ve takibinde önemli katkılar 

sağlamıştır. Diğer taraftan, başta derin öğrenme modelleri olmak üzere, yapay zeka 

algoritmaları ile MR görüntülerinden omuriliğin bölütlenmesi ve omurilik bölgesinde MS 

lezyonları bulunup bulunmadığına dayanan çalışmalar da son yıllarda oldukça öne 

çıkmıştır. Ancak yine de, bu ve benzeri çalışmalar belli oranda başarıma ulaşmış olsalar 

da, veriseti boyutunun küçüklüğünden kaynaklı veri miktarının azlığı ve MS 

lezyonlarının oldukça küçük bir hacme sahip olması gibi nedenlerden dolayı yapılan 

çalışmalarda MS tespitinde başarımın düşük olduğu görülmektedir.  

Bu tez çalışmasında, derin öğrenme ile aksiyel ve sagital gibi farklı düzlemlerden alınan 

T2-ağırlıklı MR görüntüleri üzerinde servikal omurilik kesit alanı (OKA), ve beyin 

omurilik sıvısı (BOS) alanlarının bölütlenmesi ve omurilikte oluşan MS lezyonlarının 

ayırıcı tanısı gerçekleştirilmiştir. Çalışma kapsamında, öncelikle, Akdeniz Üniversitesi 

Hastanesinden temin edilen servikal omurilik bölgesi MR verileri ile servikal omurilik 

bölgesi/kesit alanı (OKA), BOS alanı ve omurilik sınırları içerisinde bulunan MS 

lezyonlarının bölütleme işlemlerini gerçekleştirmek için bir veriseti hazırlanmıştır. Bu 

veriseti üzerinde, U-Net mimarisi tabanlı geliştirilen olan FractalSpiNet, Con-

FractalSpiNet ve Att-FractalSpiNet mimarileri kullanılarak, sagital ve aksiyel 

düzlemlerdeki MR görüntülerinde, omurilik ve beyin omurilik sıvısı alanlarının 

bölütlenmesi sağlanarak, omurilik sınırları içerisinde bulunan MS lezyonları da tespit 

edilmiştir. Ayrıca önerilen mimarilerle elde edilen sonuçlar, Att U-Net (Attention U-Net), 
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Res U-Net (Residual U-Net) ve Att-Res U-Net (Attention Residual U-Net) olmak üzere 

karma mimariler ile de karşılaştırılmıştır. 

Tez çalışmasında, ayrıca hazırlanan servikal omurilik verisetinde bölütlenmesi istenen 

alanların maskeleme işlemleri için omurilik aksiyel OKA/BOS, omurilik aksiyel MS ve 

omurilik sagital MS veri alt grupları oluşturulmuştur. Hazırlanan servikal omurilik 

veriseti üzerinde omurilik alanının bölütlenmesi ve MS lezyonlarının tespit edilmesi için, 

model başarılarımlarını ölçmek için piksel benzerliği temeline dayanan DSC (Dice 

Similarity Coefficient), PRE (Precision) ve REC (Recall) metrikleri kullanılırken, 

hacimsel bazlı olarak VOE (Volumetric Overlap Error) ile RVD (Relative Volume 

Difference) ve mesafe bazlı olarak ASD (Average Surface Distance) ile  HD95 (95th 

percentile Hausdorff Distance)  metrikleri kullanılmıştır. Verisetinde ilk olarak omurilik 

aksiyel OKA/BOS alt veri grubu ile deneysel çalışmalar gerçekleştirilmiştir. Yapılan 

model eğitimleri sonunda OKA bölütlenmesi için Con-FractalSpiNet mimarisi ile %94.99 

DSC skoru, BOS bölgesi için FractalSpiNet mimarisi ile %93.00 DSC skoru ve tüm 

omurilik bölgenin bölütlenmesi için FractalSpiNet kullanılarak %96.54 DSC skoru ile en 

yüksek başarımlar elde edilmiştir. Diğer omurilik aksiysl MS veri alt grubu üzerinde 

gerçekleştirilen eğitimler sonucunda ilk bölütleme bölgesi olan OKA için en başarılı 

sonuçlar Con-FractalSpiNet ve FractalSpiNet mimarileri ile sırasıyla %98.89, %98.88 

DSC skoru elde edilirken, MS lezyonlarının tespit edilmesinde en başarılı sonuçlar Con-

FractalSpiNet ve FractalSpiNet mimarileri ile %91.48 ve %90.90 DSC skorları ile 

başarılmıştır. Yine aynı veri alt grubunda, MS’siz omurilik alanının bölütlemesi için 

model eğitimleri sonucunda, en başarılı modeller Con-FractalSpiNet ve FractalSpiNet 

için sırasıyla %97.25 ve %97.17 DSC skorları elde edilmiştir. Omurilik sagital MS veri 

alt grubu üzerinde yapılan deneysel sonuçlar incelendiğinde, omurilik alanı ve MS’siz 

omurilik alanlarının bölütlemesi için gerçekleştirilen model eğitimleri sonucunda, Att-

Res U-Net mimarisi ile sırasıyla %97.06 ve %95.16 DSC skorları elde edilirken, MS 

lezyonlarının tespit edilmesinde Con-FractalSpiNet kullanılarak %56.25 DSC skoru ile 

en başarılı sonuçlara ulaşılmıştır. Tüm sonuçlar değerlendirildiğinde, U-Net tabanlı 

önerilen FractalSpiNet mimarileri kullanılarak, servikal omurilik bölgesi ve bu bölgedeki 

MS lezyonlarının bölütlenmesinde, var olan çalışmalara göre oldukça rekabetçi sonuçlar 

edilmiştir. 

Anahtar Kelimeler: Omurilik, Servikal Bölge, MR Görüntüleme, Bölütleme, 

Derin Öğrenme, U-Net, FractalSpiNet, MS Lezyon Tespiti. 
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ABSTRACT 

AUTOMATIC SEGMENTATION OF THE SPINAL CORD FROM MR SCANS AND 

DIFFERENTIAL DIAGNOSIS OF MS LESIONS WITH DEEP LEARNING 

ARCHITECTURES 

The human spinal cord is a highly organised and complex part of the central nervous 

system and its function is to transmit neural signals from the brain (sensory information) 

to the peripheral nervous system (motor information) and from the peripheral nervous 

system to the brain. When MS (Multiple Sclerosis) occurs in the spinal cord, it affects the 

white and grey matter of the brain, the spinal cord and the optic nerve. Early diagnosis of 

MS is important to slow the progression of the disease and control symptoms. Starting 

the right treatment early can prevent the disease from causing more severe attacks and 

improve the patient's quality of life. In this way, it may be possible to stop or slow the 

progression of MS. Clinical symptoms/signs, cerebrospinal fluid tests, evoked potentials 

and Magnetic Resonance Imaging (MRI) findings are used to diagnose MS. In particular, 

the widespread use of MRI and the development of computer-aided systems have 

contributed significantly to the diagnosis and follow-up of MS. On the other hand, studies 

based on the segmentation of the spinal cord from MR images using artificial intelligence 

algorithms, especially deep learning models, and the presence or absence of MS lesions 

in the spinal cord region have also become prominent in recent years. However, although 

these and similar studies have achieved a certain level of success, it can be seen that the 

success in MS detection in these studies is low due to reasons such as the small amount 

of data due to the small size of the dataset and the small volume of MS lesions. 

In this thesis, the segmentation of cervical spinal cord cross-sectional area (CSA) and 

cerebrospinal fluid (CSF) areas on T2-weighted MR images taken from different planes 

such as axial and sagittal with deep learning and differential diagnosis of MS lesions in 

the spinal cord were performed. In the study, a dataset was first prepared to perform 

segmentation of cervical spinal cord CSA, CSF area and MS lesions within the spinal 

cord boundaries using cervical spinal cord MR data obtained from Akdeniz University 

Hospital. In this dataset, FractalSpiNet, Con-FractalSpiNet and Att-FractalSpiNet 

architectures, developed based on U-Net architecture, were used to segment the spinal 

cord and CSF areas in MR images in sagittal and axial planes, and to detect MS lesions 

within the spinal cord boundaries. In addition, the results obtained with the proposed 

architectures are also compared with mixed architectures, namely Att U-Net (Attention 

U-Net), Res U-Net (Residual U-Net) and Att-Res U-Net (Attention Residual U-Net). 
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In this thesis, spinal cord axial CSA/CSF, spinal cord axial MS and spinal cord sagittal 

MS data subgroups were created to mask the areas to be segmented in the cervical spinal 

cord dataset. For segmentation of the spinal cord area and detection of MS lesions on the 

prepared cervical spinal cord dataset, DSC (Dice Similarity Coefficient) based on pixel 

similarity was used to measure model success, PRE (Precision) and REC (Recall) metrics 

were used, VOE (Volumetric Overlap Error) and RVD (Relative Volume Difference) as 

volume-based metrics, and ASD (Average Surface Distance) and HD95 (95th percentile 

Hausdorff Distance) as distance-based metrics. Firstly, experimental studies were 

performed on the axial CSA/CSF sub-dataset of the spinal cord. At the end of the model 

training, the best results were obtained with 94.99% DSC score with Con-FractalSpiNet 

architecture for CSA segmentation, 93.00% DSC score with FractalSpiNet architecture 

for CSF region and 96.54% DSC score with FractalSpiNet for segmentation of the whole 

spinal cord region. As a result of the training performed on the other subset of MS spinal 

axial data, the best results for the first segmentation region, the CSA, were obtained with 

the Con-FractalSpiNet and FractalSpiNet architectures with DSC scores of 98.89% and 

98.88% respectively, while the best results for MS lesion detection were obtained with 

the Con-FractalSpiNet and FractalSpiNet architectures with DSC scores of 91.48% and 

90.90% respectively. In the same data subset, the most successful models for 

segmentation of the non-MS spinal cord area were Con-FractalSpiNet and FractalSpiNet 

with DSC scores of 97.25% and 97.17%, respectively. When analysing the experimental 

results on the sagittal spinal cord MS data subset, 97.06% and 95.16% DSC scores were 

obtained with the Att-Res U-Net architecture as a result of model training for 

segmentation of the spinal cord area and spinal cord areas without MS, while the most 

successful results were obtained with a DSC score of 56.25% using Con-FractalSpiNet 

for detection of MS lesions. When all the results are evaluated, using the proposed U-net 

based FractalSpiNet architectures, highly competitive results were obtained in the 

segmentation of the cervical spinal cord region and MS lesions in this region compared to 

existing studies. 

Keywords: Spinal Cord, Cervical Region, MR Imaging, Segmentation, Deep 

Learning, U-Net, FractalSpiNet, MS Lesion Detection. 
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1. GİRİŞ 

İnsanda sinir sistemi, vücudu etkileyen iç ve dış uyaranlardan bilgi elde eden ve 

elde edilen bilgiyi işleyen, vücut içerisinde hücreler ağı sayesinde sinyallerin ilgili organ 

ve sistemlere iletimini sağlayan, vücutta bu iletilere karşılık uyarılma, değerlendirme gibi 

görevleri etkili ve hızlı bir şekilde gerçekleştiren bütüncül bir sistemdir. İnsan sinir 

sistemi anatomik olarak bir bütün olarak değerlendirilirken, fizyolojik olarak ise merkezi 

sinir sistemi (MSS) ve çevresel (ÇSS) olmak üzere iki temel yapıdan oluşmaktadır. 

Merkezi sinir sistemi vücudun en önemli iki yapısı olan beyin ve omurilikten oluşurken, 

çevresel sinir sistemi ise vücudun geneline yayılmış olan sinir ağlarından 

oluşmaktadır(Mortazavi vd., 2012: 299). 

İnsan omuriliği (medulla spinalis veya spinal kord), MSS’nin oldukça organize ve 

karmaşık bir parçasıdır ve nöral sinyallerin beyinden (duyusal bilgi) periferik sinir 

sistemine (motor bilgisi) ve periferik sinir sistemden beyne iletilmesini sağlamaktır (R 

Polattimur ve Dandil, 2023: 245). Bu bilgi, beyaz maddede (BM, white matter) bulunan 

miyelinli motor ve duyusal aksonlardan geçer ve çoğunlukla gri maddede (GM, grey 

matter) bulunan omurilik internöronlar tarafından iletilir ve kontrol edilir(De Leener vd., 

2016: 125). Omurilik, omurga kanalının içinde güvenli bir şekilde yer almakta olup beyin 

omurilik sıvısı (BOS) ile çevrilidir. Bu sıvı, farklı yoğunluklara sahip olup omuriliği 

korur. Ayrıca omurilik, omur diskleri tarafından da çevrelenerek dış etkenlere karşı ek bir 

koruma altındadır (Stroman vd., 2014: 1070) 

Omurilik, servikal, torasik ve lomber olmak üzere 3 ana bölümden oluşmaktadır. 

Omurilik kesit alanı (OKA) yetişkin bir bireyde servikal seviyede ortalama 67 ila 101 

mm2 arasında değişiklik göstermektedir(Y. Chen vd., 2020: 857). Omurilik sahip olduğu 

kıvrımlı yapı nedeniyle oldukça zorlu bir çalışma alanı olmasına rağmen gelişen MR 

teknolojisi sayesinde nokta atışı klinik tanı ile cerrahi işlemler 

yapılabilmektedir(Karkucak ve Köksal, 2021: 147). Çünkü vertebral cisim, intervertebral 

disk, omurilik kanalı ve omurilik dahil olmak üzere servikal omurganın anatomik 

ayrıntılarını açıkça gösterebilmekte olup omurilik alanı MR görüntüleme ile 3 farklı 

planellerden sagital, aksiyel ve koronal açıdan/düzlemden çekim 

sağlayabilmektedir(Zhuo vd., 2022: e210292). Diğer taraftan sağladığı niceliksel bilgilere 

ek olarak multipl skleroz (MS), travmatik ve nörodejeneratif hastalıklar gibi bir dizi 

nörolojik bozuklukta omurilik hasarını değerlendirmek için son yirmi yılda giderek daha 

fazla kullanılmaktadır(Gros vd., 2018: 215). Bu sayede kord boyunca değişken hacme ve 

şekle sahip olan omurilik alanı uçtan uca incelenebilmektedir. Özellikle MS lezyonlarının 
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MR verileri ile teşhis edilebilmesi %80 ile %92 oranında başarıma ulaşmaktadır(Bot vd., 

2002: 46). MS lezyonları tüm omurilik boyunca gözlemlenebilmekle birlikte, sıklıkla 

servikal omurilikte (%56,4) gözlemlenmektedir. Bu nedenle klinik çalışmalarda MS 

vakalarında, MR taramaları genellikle boyun (servikal) bölgesine odaklanarak 

yapılmaktadır(M. Chen vd., 2013: 1051), (Bot vd., 2004: 226),(Patek ve Stewart, 2023: 

406). MS vakalarının değerlendirme aşamasında McDonald kriterleri çok önemli bir yer 

tutmaktadır ve bu kriterler ile MS tanısı koymak için klinik takipte MR’ın önemine 

özellikle vurgu yapılmaktadır(Thompson vd., 2018: 162). Geçmişten günümüze çok hızlı 

gelişim gösteren MR teknolojisi sayesinde nokta atışı klinik tanı ile cerrahi işlemler 

yapılabilmektedir(Karkucak ve Köksal, 2021: 147). MR teknolojisi önemli avantajları 

olmasına rağmen omuriliğin görüntülenecek bölgesindeki yapısal farklılıklar, bölgesel 

zorluklar veya hastalığa bağlı sorunlar, görüntü kalitesini olumsuz etkileyebilir. Bu da, 

istenen seviyede net görüntüler elde edilmesini zorlaştırabilir(Stroman vd., 2014: 

1070),(De Leener vd., 2016: 125).  

Omurilik MR görüntüleme, omurilik ve omuriliğin etrafını saran sinirler, diskler 

ve omur kemiklerinin ayrıntılı bir şekilde incelenmesi amacıyla kullanılan bir tıbbi 

görüntüleme yöntemidir(Kearney vd., 2015: 327). Omurilik bölgesinde oluşan disk 

hernisi (fıtık), omurilik tümörleri, omurilik yaralanmaları, enfeksiyonları veya 

iltihaplanmaları ve özellikle MS gibi nörolojik hastalıkların tanısında oldukça yardımcı 

olmaktadır. MR görüntüleri, MS’in neden olduğu plak adı verilen hasarlı bölgeleri 

(lezyonlar) ortaya çıkarabilmektedir. Omurilik MR görüntüleme, MS lezyonlarının 

omurilikte olup olmadığını ve hastalığın omurilik üzerindeki etkisini değerlendirmek için 

kullanılır. Bu, MS tanısını doğrulamak ve hastalığın seyrini izlemek için 

gereklidir(Wattjes vd., 2015: 157). 

MS, kronik, iltihaplanma, demiyelinizasyon ve nörodejenerasyon gibi çeşitli 

semptomlarla karakterize edilen merkezi sinir sisteminin bir hastalığıdır(Grigoriadis ve 

Van Pesch, 2015: 3),(Mortazavi vd., 2012: 299). Bu hastalık MSS içindeki sinir liflerini 

çevreleyen ve izole eden yağ maddesi miyeline zarar vererek iltihaplanmaya neden olur 

(Mortazavi vd., 2012: 299). Bu materyal sinir sinyallerinin bir nörondan diğerine hızlı bir 

şekilde iletilmesinden sorumludur(Dilokthornsakul vd., 2016: 1014). MS hastalığının 

temel nedeni, beyin ve omurilikteki beyaz ve gri madde bölgelerinde demiyelinizan 

plakların birikmesi ile oluşmaktadır. Bu plaklar, sinir hücrelerinin etrafındaki miyelin 

tabakasına zarar vererek sinir sinyallerinin iletimini engeller ve hastalığın belirtilerine yol 

açmaktadır. Demiyelinizasyon (demiyelinizasyon; sinir hücrelerinin etrafını çevreleyen 
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miyelin kılıflarının hasar görmesi) veya miyelin kaybı sinir sistemi boyunca sinyallerin 

olması gerektiği şekilde doğru bir iletişim kuramamasına neden olmaktadır. Doğru 

sinyallerin ulaşmadığı bölgelerde vücut fonksiyonlarının bozularak bulanık görme, ağır 

kas güçsüzlüğü ve duyusal değişiklikler şeklinde semptomların gözlemlenmesine neden 

olmaktadır.  

MS lezyonlarının etiyolojisi tam olarak bilinmemekle birlikte, otoimmünite, 

genetik yatkınlık ve çevresel faktörlerin tamamının hastalığı tetikleyen unsurlar olduğu 

bilinmektedir(Weinshenker, 1996: 291),(Sawcer vd., 1996: 464). Dünya sağlık örgütünün 

(DSÖ) verilerine göre dünyada 1,8 milyondan fazla kişinin MS hastası olduğunu ve tüm 

yaş aralıklarında gözlemlenmekle beraber genç erişkinlerde ve özellikle kadınlarda daha 

sık gözlemlendiğini belirtmişlerdir (World Health Organization (WHO), 2015)),(Nouri 

vd., 2015: E675).   

MS, hastasının yaşamını fiziksel, ekonomik, psikolojik ve sosyal yönleriyle 

etkileyebilen, sıklıkla özürlülüğe yol açabilen kronik bir hastalıktır(Yıldırım ve 

Fadıloğlu, 2014: 100). Çeşitli semptomların varlığı ve öngörülemeyen doğası nedeniyle 

hastalar gelecekleriyle ilgili belirsizlikle yaşamak zorunda kalmakla beraber, MS 

ilerleyen evrelerde nörolojik morbidite ve mortaliteye sebep olabilmektedir(Lemay vd., 

2021: 102766). Özellikle nörodejeneratif hastalıkların erken evredeki tanısı zordur 

(Herholz vd., 2002: 302) ve merkezi sinir sisteminin yöneticisi olan beyinde meydana 

gelen hastalıklar tüm vücudumuzdaki organları etkileyebilmektedir. MS, ilk olarak 1868 

yılında Jean-Martin Charcot tarafından yeni bir sinir sistemi hastalığı olarak bildirilmiştir 

(Zalc, 2018: 3482) ve ardından Schumacher (1965), Poser (1983) ve McDonald (2001) 

MS için klinik tanı kriterleri yayınlamışlardır. McDonald Kriterlerinde (Thompson vd., 

2018: 162) MS hastalığı için bir dizi değerlendirme ölçütü sunulmuştur. Bu ölçütler 

zaman içerisinde revize edilerek günümüzde de en sık kullanılan yöntemlerden biri haline 

gelmiştir(Toğrol ve Demir, 2013: 15).  

Hastalık farklı seviyelere göre ifade edilmekte olup bazı seviyelerinde dönemsel 

ataklarla kendini gösterirken bir kısmında ise hastalığın başında veya son döneminde 

hızla ilerleyici bir süreç yaşanabilmektedir(M. Öztürk ve Tek, 2019: 10). Bu nedenle MS 

plaklarının sinir sisteminin farklı yerlerinde, farklı zamanlarda oluştuğunun 

gözlemlenmesi ile birlikte McDonald Kriterleri’nin vurguladığı önemli konulardan biri; 

MS tanısı koyarken klinik takip için MRG (Manyetik Rezonans Görüntüleme)’in 

önemine özellikle vurgu yapılmaktadır(Thompson vd., 2018: 162). MR omurilik 
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görüntülemeleri, MS hastalarının %80-92'sinde doğru teşhis konulmasını sağlamaktadır 

ve bu yöntem, MS tanısında oldukça etkili bir araçtır(Bot vd., 2002: 46).  

Son yıllarda bölütleme teknikleri manuel (el yordamı), yarı otomatik ve tam 

otomatik makine öğrenmesi metotları kullanılarak oldukça hızlı bir gelişim kazanmıştır. 

Görüntüleme teknikleri ile bölütleme metotlarının eş zamanlı olarak gelişim göstermesi 

biyomedikal mühendisliği gibi birçok türevlerinin çoğalmasını sağlamıştır. Özellikle 

MRG gibi görüntü sağlayıcı cihazların kaliteli veriler üretmeye başlaması bölütleme 

çalışmalarına hız kazandıran en önemli etkenlerin başında gelmektedir. Fakat 1980’lerde 

önerilen evrişimsel sinir ağları (convolutional neural networks, CNN) yüksek 

matematiksel kapasite gerektiren işlemler olması nedeniyle o dönemde mevcut bilgisayar 

donanımı yeterli olmadığı için kısıtlı bir kullanımının olmasına sebep olmuştur. Bu 

nedenle sırasıyla grafik işlem birimi (graphical processing unit, GPU) ve tensor işleme 

birimi (Tensor İşleme Birimi, TPU) bilgisayar işlem birimlerinin kullanılmaya 

başlanması ile çok çeşitli evrişim mimarileri tasarlanmaya ve kullanılmaya başlanarak 

otomatik bölütleme metotların kullanımında artış sağlanmıştır. Bu gelişmelere paralel 

olarak derin öğrenme mimarileri ile yapılan bölütleme çalışmalarından çok başarılı 

sonuçlar alınması bu alanda literatüre kazandırılan çalışmaların sayısını oldukça 

hızlandırmıştır. 

Omurilik bölütlemesi için önerilen çalışmalar incelendiğinde MR görüntülemenin 

yaygın olarak tercih edildiği görülmektedir(Wattjes vd., 2015: 157). Omurilik bölgesi 

aksiyel, sagital ve koronal açıdan taranmış MR verisetleri kullanılarak tüm omurilik veya 

bölgesel olarak servikal, torasik ve lomber birimleri ayrı ayrı incelenebilmektedir. 

Omurilik kesit alanı (OKA/CSA), beyin omurilik sıvısı (BOS/CSF), GM ve BM gibi 

alanları zaman içerisinde farklı derin öğrenme yaklaşımlarıyla bölütleme çalışmaları 

yapılmıştır. Omurilik yapısının incelenmesine ek olarak bu alan içerisinde bulunan 

lezyon, tümör vb. gibi hasarlı doku oluşumların yerlerinin tespit edilmesi ile ilgili olarak 

yapılan çalışmalar bu alanda oldukça zorlu çalışma konuları olarak değerlendirilmektedir. 

Şekil 1.1’de gösterildiği gibi Şekil 1.1(a) ile ifade edilen servikal omurilik sagital MR 

görüntüsünden, enine kesitler alındığında Şekil 1.1(b) ve Şekil 1.1 (c)’de görüldüğü gibi 

aksiyel MR verileri elde edilmektedir. Aksiyel MR verilerinde OKA ve BOS alanlarının 

maske görüntüsü ve etiket işlemi yapılmış görüntüsü verilmiştir. Diğer aksiyel veri olan 

Şekil 1.1(c) ile OKA ve omurilik MS lezyonlarının MR verisi, maske MR verisi ve etiket 

işlemi yapılmış görüntüsü verilmiştir. Sagital MR verisi Şekil 1.1(d) ise yine OKA ve 

maske MR verisi ile etiket işlemi yapılmış görüntüsü verilmektedir.  
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Daha önceki çalışmalarda omurilik bölütlemesi için birçok yöntem önerilmesine 

rağmen paylaşıma açık veri havuzu oldukça kısıtlıdır. Yapılan çalışmalar ile paylaşılmış 

popüler verisetleri mevcuttur fakat spesifik olarak çalışma yapılmak istenilen organ, 

doku, tümör vb. alanlar için özel verisetleri hazırlamak hala zorunlu bir gerekliliktir. 

Diğer taraftan ise veri elde edilmesi oldukça zahmetli bir iş yükü olabilmektedir. Bunun 

nedeni olarak ise hasta gizliliği ile ilgili olarak yasal düzenlemelerinin yetersizliği 

sebebiyle yaşanabilecek etik sorunlar başta olmak üzere, personel eksiklikleri vb. 

durumların etkili olduğu söylenebilmektedir. Derin öğrenme ile yapılan çalışmalarda veri 

miktarı ile model başarımlarını etkileyen önemli bir parametre iken biyomedikal çalışma 

alanlarında yüksek veri sayılarına ulaşmak her çalışma için mümkün olmamaktadır. 

Derin öğrenme alanında yapılan çalışmalar sonucunda bu kısıtı ortadan kaldıran bir 

bölütleme yöntemi olan U-Net mimarisi 2015 yılında, Olaf Ronneberger, Phillip Fischer, 

ve Thomas Brox tarafından “U-Net: Convolutional Networks for Biomedical Image 

Segmentation” makalesinde duyurulmuştur(Ronneberger vd., 2015: 234). 

 
Şekil 1.1. Sagital servikal omurilik MR verisi(a), aksiyel omurilik MR kesiti, MR maske ve 

etiketli veri(b), aksiyel omurilik MR kesiti, MR maske ve etiketli veri(c), sagital omurilik MR 
kesiti, MR maske ve etiketli veri (d) 

U-Net mimarisi, ESA temelli bir yapı olarak, CNN için yüksek veri gereksinimine 

ihtiyaç var iken, U-Net sayesinde oldukça az bir veri seti ile başarılı sonuçlar elde 

etmenin mümkün olduğunu yapılan çalışmalar ile kanıtlamıştır. Evrişim ağlarına yapılan 

bu katkı sayesinde, U-Net mimarisinin U şeklindeki kolay yapılandırılabilen yapısı 

kullanılarak, birçok farklı derin ağ ile yeni hibrid modeller geliştirilmiştir. Ayrıca, modele 
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katkı sağlayan çeşitli yaklaşımlar sayesinde yeni modeller oluşturulmuş ve bu modeller 

literatüre kazandırılmıştır.  

Bu tez çalışmasında klinik karar vericilerine ve uygulayıcılarına yardımcı olacak 

rutin prosedürlerine ek bir derin öğrenme temelli farklı bir disiplinel yaklaşım olan 

otomatik bölütleme yöntemi önerilmektedir. Çalışmada, servikal omurilik bölgesi T2-

ağırlıklı (T2a) MR verileri ile çok kapsamlı veri setleri hazırlanmıştır. Servikal omurilik 

bölgesi T2a MR verileri sagital ve aksiyel MR çekimlerini içermektedir. Bu sayede ilk 

olarak omurilik OKA/BOS aksiyel T2a MR verileri ile omurilik kesit alanı (OKA) ve 

beyin omurilik sıvısı alanı (BOS), ikinci olarak omurilik MS aksiyel T2a MR verileri ile 

aksiyel kesit omurilik ve MS lezyonlarını, üçüncü olarak omurilik MS sagittal T2a MR 

sagital kesit omurilik ve MS lezyonlarını tespit etmek için MR kesitleri kullanılmıştır. 

MR görüntüleri ve bu görüntüler için tespit edilmesi hedeflenen alanlar için uzman 

etiketleme işlemleri yapılarak üç farklı veriseti grubu hazırlanmıştır. Tezde ayrıca, bu 

verisetlerine ek olarak açık kaynak olarak paylaşılan bir veri seti olan SCGMC (Spinal 

cord grey matter segmentation challenge) veri seti ile omurilik gri madde ve beyaz madde 

alanlarının tespit edilmesi sağlanmıştır. Hazırlanan verisetleri üzerinde, U-Net mimarisi 

tabanlı geliştirilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet mimarileri ile 

model eğitimleri tamamlanarak elde edilen tüm sonuçlar değerlendirilmiştir. Diğer 

taraftan, elde edilen sonuçlar, U-Net mimarisinden türetilmiş hibrit modeller Att U-Net, 

Res U-Net ve Att-Res U-Net mimarilerinin sonuçları ile de karşılaştırılmıştır. bu 

modeller için elde edilen sonuçlar literatürde sıklıkla kullanılan hacimsel, mesafe bazlı ve 

karışıklık matrisi temelli benzerlik metrikleri ile kapsamlı bir şekilde değerlendirilmiştir. 

1.1. Tezin Amacı ve Hedefleri 

Omurilikte MS lezyonları ile ilgili olarak hekimlerin verdiği bilgiler ışığında 

omurilik ve omurilik MS lezyonlarının sınırlarının ve konumlarının tespit edilmesi klinik 

olarak oldukça zahmetli olmakla birlikte son nihai karar verme esnasında çekişmeli 

fikirler olabildiğinden bahsedilmiştir. Bu bağlamda omurilikte MS lezyonlarının tespit 

edilmesinin oldukça zorlu bir klinik konu olduğu ortak görüşmeler sonucunda 

anlaşılmıştır. Sorunun bütüncül açıdan ele alınması klinik karar vericiler için ve MS 

hastalarının süreçlerini takip edilebilmesi açısından oldukça önemli olmaktadır. Çünkü 

MS’li hastaların açısından değerlendirildiğinde, kişilerin günlük yaşamlarını kısıtlayacak 

kadar etkili olabilen bu lezyonlar hastalığın ilerleme aşamalarında bakım alma ihtiyacı 

ortaya çıkabilmekte ve daha ileri seviye lezyonlar ölümle bile sonuçlanabilmektedir. Bu 

nedenle hastalığın ne aşamada olduğu, lezyonlarının konumlarının ve büyüklüklerinin 



7 
 

tespit edilmesi hayati önem taşımaktadır. Tüm bu durumlar incelendiğinde hastalığın tanı 

ve tedavi aşamasında hekimlere yardımcı olacak karar destek sistemlerinin klinik 

prosedürlere entegre edilmesi karar vericilerin iş yükünü azaltarak daha doğru kararlar 

verebilmelerine katkı sunacaktır. Diğer taraftan, MS lezyonlarının konumları itibariyle 

cerrahi operasyonlar oldukça zorlu olabilmektedir. Cerrahi travmayı, komplikasyon 

insidansını azaltmak ve cerrahi işlemden en yüksek sonuçlar elde edebilmek için MS 

lezyonlarının konumunun bilinmesi oldukça önemli olmaktadır. Bu tez çalışmasının 

amacı, klinik karar vericilerine ve uygulayıcılarına yardımcı olmak için servikal omurilik 

bölgesinin ve bu bölgedeki MS lezyonlarının otomatik tesptini ve bölütlemesini derin 

öğrenme tabanlı mimariler kullanarak sağlamaktır. Tez çalışmasının hedefleri ise 

şunlardır: 

Hedef 1: Hazırlanan veriseti ile servikal omurilik bölgesinin ve beyin omurilik 

sıvısı alanlarının otomatik bölütlenmesi: 

Bu hedefi gerçekleştirmek için Akdeniz Üniversitesi’den Etik Kurul Onayı ile 

başvuru yapılarak verilerin temin edilmesi sağlanmıştır. Veriler retrospektif olarak temin 

edilmiş olup uzman eşliğinde gerçek maske işlemleri gerçekleştirilmiştir.   

Hedef 2: Omurilikte MS lezyonları bulunan hastalardan alınan MR görüntüleri ile 

omurilik bölgesinin otomatik bölütlenmesi ve MS lezyonlarının tespit edilmesi: 

Bu hedefi gerçekleştirmek için Akdeniz Üniversitesi’den Etik Kurul Onayı 

başvuru yapılarak verilerin temin edilmesi sağlanmıştır. Veriler retrospektif olarak son 

yıllardaki MS teşhisi almış hastalardan elde edilmiş MR verilerini içermektedir. Aksiyel 

ve sagital MR verileri için uzman eşliğinde gerçek maske işlemleri gerçekleştirilmiştir. 

Bölütleme işlemlerini gerçekleştirmek için derin öğrenme mimarisi modellerinden olan 

U-Net mimarisi tabanlı yeni modeller geliştirilmiştir.  

Hedef 3: Omurilik alanı, beyin omurilik sıvısı ve MS lezyonlarının bölütlenmesi 

için derin öğrenme modellerinin kıyaslanması, güçlü ve zayıf yönlerinin belirlenmesi: 

Bu hedefi gerçekleştirmek için literatürde sıklıkla kullanılan rekabetçi U-Net 

mimarileri kullanılarak omurilik alanı, beyin omurilik sıvısı alanı ve MS lezyonlarının 

tespit edilmesi sağlanmıştır. Bölütleme çalışmaları için temel U-Net mimarisi, Attention 

U-Net mimarisi, Residual U-Net mimarisi ve Attention Residual U-Net mimarileri ile 

model eğitimleri gerçekleştirilmiştir. Bu sayede yeni katman yapısına sahip U-Net 

mimarileri tasarlanması için çok yönlü sonuçlar elde edilmiştir.  
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Hedef 4: Omurilik alanı, beyin omurilik sıvısı ve MS lezyonlarının bölütlenmesi 

için yeni bir derin öğrenme mimarisi geliştirilmesi: 

Tez çalışması kapsamında hazırladığımız özgün verisetlerini rekabetçi U-Net 

modelleri kullanılarak gerçekleştirilen bir dizi eğitimler ile bölütleme çalışmaları 

yapılmıştır. Tüm bu rekabetçi mimarilere ek olarak fractal evrişim yapısının U-Net 

modeline entere edilmesi ile yeni katman yapısına sahip olan FractalSpiNet, Con-

FractalSpiNet ve Att-FractalSpiNet modelleri geliştirilmiştir. Tasarlanan yeni modeller 

ve özgün verisetleri ile omurilik bölgesi, beyin omurilik sıvısı alanları ve MS 

lezyonlarının bölütlenmesi işlemlerinin gerçekleştirilmiştir. 

1.2. Araştırma Sorusu ve Hipotez 

Literatürde omurilik MS lezyonlarının tespiti için yapılmış mevcut çalışmaların 

sınırlı olduğu ve veri seti kısıtı nedeniyle genelleştirilebilir olmadığı yapılan 

çalışmalarının karşılaştırılabilirliğinin az olmasına neden olmaktadır. Bununla beraber, 

güncel derin öğrenme modelleri ile kapsamlı çalışmaların sınırlı olması da yapılacak 

katkıyı sınırlandırmaktadır. Diğer taraftan, derin öğrenme modelleri ile elde edilen 

sonuçların oldukça yüksek başarıma sahip olması nedeniyle omurilik alanlarının 

bölütlenmesi ve MS lezyonlarının tespit edilmesi ile ilgili yapılacak çalışmalarda da 

yüksek başarılar elde edileceği öngörüsü değerlendirilmiştir. Ayrıca, omurilik bölgesinde 

MS lezyonlarının konumu ve boyutlarının oldukça küçük olması sebebiyle, önerilecek bir 

yaklaşımın klinik ortamlarda hekimlerin kullanabileceği karar destek sistemine entegre 

edilmesi hasta takip ve tedavi süreçlerini kolaylaştıracağı da açıktır. 

Tez çalışmasının hipotezi: Hazırlanacak özgün bir veriseti ile önerilecek yeni bir 

derin öğrenme modeli kullanılarak aksiyel ve sagittal düzlemde servikal omurilik 

bölgesinin yüksek doğrulukla bölütlenmesi sağlanabilir ve bu bölgedeki MS lezyonları 

yüksek başarımla tespit edilebilir.  

Tez çalışmasının araştırma sorusu: Servikal omurilik MR verilerinde gelişmiş 

derin öğrenme mimarileri kullanılarak yüksek başarı oranları ile omurilik alanın otomatik 

bölütlenmesi ve omurilik MS lezyonlarının tespit edilmesi gerçekleştirilebilir mi? 

1.3. Tez Çalışmasının Katkısı 

Bu tez çalışmasında, MR görüntüleri kullanılarak servikal omurilik alanının 

bölütlenmesi ve omurilik MS lezyonlarının tespiti için derin öğrenme modelleri 

kullanılması önerilmiştir. Önerilen yaklaşım, hekimlerin veya karar vericilerin 

kullandıkları manuel yaklaşımlara ek olarak otomatik olarak bölütleme işlemleri 
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gerçekleştirebilecekleri yenilikçi yöntemler içermektedir. Çalışmada, omurilik bölgesi ve 

bu bölgede bulunan MS lezyonlarının tespit edilmesi için U-Net (Ronneberger vd., 2015: 

234) derin öğrenme mimarisi tabanlı yeni mimarileri önerilmiş (FractalSpiNet, Con-

FractalSpiNet ve Att-FractalSpiNet modelleri) ve karma U-Net mimarileri olan Att U-

Net, Res U-Net, Att-Res U-Net ile de sonuçlar karşılaştırılmıştır.  

Omurilik bölütlenmesi ve omurilik MS lezyonlarının tespit edilmesi için önerilen 

bu tez çalışmasının katkıları aşağıdaki gibi listelenebilir: 

Ø Servikal omurilik bölütlenmesi ve servikal omurilik MS lezyonlarının 

tespit edilmesi için hazırlanan veriseti ve yenilikçi mimariler ile bütüncül 

bir yaklaşım sunulmuştur. 

Ø Servikal omurilik MR görüntüleri ile oluşturulan verisetinde birbirinden 

farklı alt gruplar oluşturularak veri setlerinin hazırlanması işlemleri 

tamamlanmıştır. İlk olarak aksiyel MR verileri ile omurilik OKA/BOS 

maskesi oluşturulmuştur. Aksiyel omurilik MR görüntülerinde, omurilik ve 

MS lezyonlarını tespit edebilmek için bir MS maskesi oluşturulmuştur. 

Benzer şekilde, servikal omurilik MR görüntülerinde de sagital kesitler 

kullanılarak lezyonların belirlenmesi amacıyla bir MS maskesi 

hazırlanmıştır. Servikal omurilik MR görüntüleri ile üç farklı alt grup 

maske verileri oluşturularak omurilik, beyin omurilik sıvısı ve MS 

lezyonlarının tespit edilmesi için oluşturulmuştur. Yapılan deneysel 

çalışmalar sonucunda, elde edilen çıktılardan üretilen SCI-Expanded 

indeksli makale ile servikal omurilik MS aksiyel veriseti açık kaynak 

olarak paylaşıma sunulmuştur. 

Ø Servikal omurilik bölütleme ve MS lezyonlarının tespit edilmesi için U-Net 

mimarisi temel alınarak FractalSpiNet, Con-FractalSpiNet ve Att-

FractalSpiNet mimarisleri geliştirilmiştir. 

Ø FractalSpiNet, servikal omurilik bölgesinde önemli bir yenilik sunarak, 

farklı klinik senaryolara uyarlanabilen güvenilir ve etkili bir çözüm olarak 

öne çıkmaktadır. 

Ø Önerilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet 

mimarilerini kullanarak servikal omurilik tamamen otomatik bölütleme 

şekilde bölütlenmiştir. 
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Ø Önerilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet 

mimarilerini ile servikal omurilik bölgesindeki MS lezyonlarının başarılı 

bir şekilde tespit edilmesi sağlanmıştır. 

Ø Önerilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet 

mimarilerinin ve diğer tüm mimarilerin eğitimleri sonunda 

performanslarının değerlendirilmesi için literatürde sıklıkla kullanılan 

temel metrikler ile model başarım skorları çıkarılarak tüm mimarilerin 

başarı kıyaslaması yapılmıştır. 

1.4. Tezin Organizasyonu 

Bu tez, toplam 7 bölümden oluşmaktadır. Özetle bahsedecek olursak: 

Bölüm 1’de, omurilik ve MS hastalığı hakkında bilgi verilmiş ve klinik süreçlere 

MR görüntülemenin katkısı, omurilik bölgesinde MS lezyonlarının tanı ve tedavi 

aşamasında kullanılan MR görüntüleme teknikleri hakkında temel bilgiler ortaya 

konulmuştur. Ayrıca, omurilik bölütleme ve MS lezyonlarının tespiti için kullanılacak 

yöntemler hakkında temel bilgisi verilmiştir. Tezin hipotezine, amacına ve 

organizasyonuna yönelik olarak önceki akademik çalışmalar hakkında bilgiler verilmiş ve 

tez çalışmasının fikri temelleri sunulmuştur.  

Bölüm 2’de, omurilik bölütleme ve MS lezyonlarının tespit edilmesi çalışmaları 

üzerine derinlemesine literatür taraması yapılarak konu uçtan uca incelenmiştir. Bu 

alanda çalışılmış içerik sayısı oldukça kısıtlı olduğu için çerçeve geniş perspektiften 

bakılarak, makine öğrenmesi, derin öğrenme ve farklı U-Net mimarileri ile omurilik 

bölütleme konusunda yapılmış birçok çalışma değerlendirilmiş, çalışmaların detayları, 

sonuçları ve sınırlılıkları ayrı ayrı incelenmiştir.  

Bölüm 3’te, omuriliğin görevleri ve MS hastalığının tanımı, epidemiyolojisi, 

etiyolojisi, hastalığın belirtileri, tanı ve teşhis süreçleri hakkında detaylar verilmiştir. 

Ayrıca, MS hastalığının teşhis ve sınıflandırılmasında kullanılan kriterler ve MS 

lezyonlarının incelenmesi için yararlanılan MR görüntüleme teknikleri hakkında bilgi 

verilmiştir.  

Bölüm 4’te, tez çalışması süresince oluşturulan verisetleri tüm teknik detayları ile 

anlatılmıştır. Ayrıca, deneysel çalışmalar yürütülen diğer global veri seti hakkında teknik 

bilgi paylaşımı da yapılmıştır. Veri hazırlık aşamaları ve kullandığımız metodolojinin 

aşamaları hakkında detaylı bilgiler verilmiştir. Ek olarak bu bölümde, derin öğrenme, 
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evrişim mimari yapıları ve U-Net hakkında detaylar verilerek geliştirilen yeni modellerin 

tüm teknik detayları paylaşılmıştır. 

 Bölüm 5’te, tez çalışması kapsamınca hazırlanan özgün verisetleri ve global 

veriseti olmak üzere dört farklı veriseti kullanılarak U-Net, karma U-Net ve geliştirilen 

FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet modelleri olmak üzere toplam 

yedi mimari ile deneysel işlemler gerçekleştirilmiştir. Literatürde sıklıkla kullanılan 

ölçüm metrikleri ile model başarıları tablolar halinde kapsamlı bir şekilde verilmiştir. 

Ayrıca modellerden elde edilen verilerin sonuçları görsellerle açıklanmıştır. 

Bölüm 6’da ise deneysel sonuçlardan elde edilen tüm çıktılar detaylı olarak 

değerlendirilmiştir ve literatürde yapılmış başarılı çalışmalar ile kıyaslayarak bu tez 

çalışmasının literatüre olan katkısı anlatılmıştır. Çalışmanın bilime katkıları ve kısıtları 

diğer çalışmalar ile kıyaslanmıştır ve önerilen yöntemin medikal görüntü işleme alanında 

kullanılabilirliği tüm yönleri ile ele alınmıştır. 

Bölüm 7’de, deneysel çalışmaların literatürdeki çalışmalar ile kıyaslanmasının 

ardından, tez çalışmasının çıktıları değerlendirilerek literatüre olan katkısı anlatılmıştır. 

Bu nedenle, daha başarılı sonuçlar elde edebilmek amacıyla, veriseti iyileştirmelerine 

odaklanılmış ve metodolojinin güçlü ve zayıf yönleri vurgulanarak detaylı bir dizi öneri 

sunularak tez bu şekilde sonlandırılmıştır.  
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2. LİTERATÜR TARAMASI 

Servikal omurilik bölgesi bölütlenmesi ve omurilikte bulunan MS lezyonlarının 

tespit edilmesi ile ilgili olarak geçmişten günümüze kadar yapılmış birçok bilimsel 

çalışma bulunmaktadır. Omurilik alanının ve MS lezyonlarının bölütlenmesi çalışmaları 

kapsamında literatür incelendiğinde, genel anlamda en önemli konuların kullanılan 

veriseti ve bölütleme tekniklerinde tercih edilen metadolojik yaklaşım olduğu ve 

çalışmaların bu doğrultuda birbirinden farklılaştığı görülmektedir. Diğer taraftan, 

omurilik bölütlemesi ve bu sınırlar içerisinde lezyon, tümör gibi dokusal bozuklukların 

tespit edilmesi için önerilen yaklaşımlar, çalışmaların başarılarını direkt etkileyen en 

önemli etkendir. Bu nedenle, omurilik ve bu bölgede bulunan MS lezyonlarının tespit 

edilmesi için geçmişten günümüze kadar el yordamı (manuel), yarı otomatik ve tam 

otomatik gibi farklı yöntemler kullanılarak çalışmalar gerçekleştirilmiştir. Konunun zorlu 

bir çalışma süreci gerektirmesi ve farklı disipliner yapıları içerisinde bulunduruyor olması 

sebebiyle, literatürde yapılmış çalışma sayısı oldukça kısıtlıdır. Bu kısıtın en büyük 

sebebi olarak ortak kullanıma sunulan detaylı bir veriseti olmaması ve bireysel çalışma 

bazlı hazırlanan verisetlerinin hazırlık aşamasının oldukça zahmetli olması gösterilebilir. 

Özgün veriseti oluşturma, etik onay sürecinin uzun olması, hastane çalışma ortamalarının 

oldukça yoğun olması ve personel eksikleri gibi engellere takılırken, hazırlanan 

verisetleri de etik kaygılar gerekçesi ile araştırmacıların kullanımı için çoğunlukla 

paylaşılmamaktadır. Günümüzde bu konunun farklı disiplinlerin ortak çalışmasını 

içermesi ve literatürde bu tarz çalışmaların hız kazanması multidisipliner çalışmaların ana 

motivasyon kaynağı olmaktadır. Nitekim gelişen görüntüleme teknikleri sayesinde 

yüksek kalitede görüntüler çok daha kısa MR çekim süresi sonucunda elde edilebilir 

olması iş yükünü ve bekleme süresini azaltarak yapılacak olan çalışmalara hız 

kazandırmıştır. Görüntü bölütlemesi çalışmalarında makine öğrenmesi ile başlayan bu 

süreç evrişim sinir ağları ve derin öğrenme modellerinin çok yoğun olarak literatüre 

kazandırılması araştırmacılar arasında ilgi duyulan bir çalışma alanı olmuştur. Özellikle 

CPU, GPU, TPU gibi merkezi işlem birimlerinin zaman içerisinde iyileştirilmesi 

sayesinde bilgisayarlar yüksek hesaplama kapasitesine ulaşarak yeni ve kapsamlı 

çalışmaların üretilmesine olumlu katkı sunmuştur. Sonuç olarak tıbbi görüntüleme ve 

biyomedikal görüntüleme alanındaki çalışmaların sayısında oldukça artış meydana 

gelmiştir.  

MS lezyonlarının teşhisinde geleneksel klinik zorulukların aşılması için yenilikçi 

yaklaşımlardan sıklıkla yararlanılmaktadır. Bu bağlamda, MR görüntüleri kullanılarak 
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ilgilenilen lezyon alanların tespit edilmesi ve otomatik segmente edilmesi çalışmalarına 

yoğun bir ilgi gösterilmiş ve son yıllarda literatüre çok fazla katkı sunulmuştur.  

Geçmişten günümüze omurilik bölütlemesi ve lezyonlarının tespit edilmesi için aksiyel, 

koronal ve sagital olmak üzere farklı MR planelleri ve T1, T2 gibi farklı çekim modalite 

özelliklerine sahip verisetleri hazırlanmıştır. Farklı çekim teknik özelliklere sahip MR 

görüntüleri ile manuel veya zamanla otomatize olan modeller ile farklı yaklaşımlar 

geliştirilmiştir. Omurilik çalışmalarında sıklıkla BM ve GM, OKA, BOS alanlarının 

bölütlenmesi çalışmları yapılırken omurilik lezyonlarının veya tümörlerinin tespit 

edilmesi ile ilgili de kısıtlı olmasına rağmen yapılmış çalışmalar mevcuttur. Verisetlerinin 

yanı sıra çeşitli bölütleme teknikleri ile çalışmaların özgünlüğü arttırılmıştır. 

Manuel(Mirafzal vd., 2020: 406), yarı-otomatik(Losseff vd., 1996: 701), (El Mendili vd., 

2015: 454), (Fonov vd., 2014: 817) ve tam otomatik(Koh vd., 2010: 3117), (Koh vd., 

2011: 1467), (M. Chen vd., 2013: 1051), (Pezold vd., 2015: 107), (Gros vd., 2018: 215) 

teknikler var olmasına rağmen, günümüzde daha başarılı sonuçlar elde eden ve otomatik 

tekniklerden olan derin öğrenme metotları kullanılarak(Y. Zhang vd., 2019: 974), 

(McCoy vd., 2019: 737), (Gros vd., 2019: 901), (Reza vd., 2019: 487), (Merali vd., 2021: 

10473) zaman maliyet açısından çok daha avantajlı mimariler ortaya konulabilmektedir. 

Derin öğrenme de özniteliklerin belirlenmesi işlemlerini otomatize edecek bir mimari 

yapının varlığı makine öğrenmesinde özniteliklerin manuel belirleme problemine çözüm 

olmuştur. 

Literatür geçmişten bugüne manuel, yarı otomatik, tam otomatik bölütleme 

teknikleri olarak ilerlerken geleneksel görüntü işleme algoritmaları ve farklı makine 

öğrenmesi metotları kullanılarak yapılan çalışmalar literatür araştırması kapsamında 

değerlendirilmiştir.  

2.1. Geleneksel Yaklaşımlar ( Manuel, Yarı Otomatik ve Tam Otomatik ) 

Omurilik bölgesi bölütlenmesi ve MS lezyonlarının tespit edilmesi için geleneksel 

yaklaşımlar, genellikle klinik çalışmalar şeklinde yapılmış olmakla beraber, görüntü 

bölütlemesi kapsamında önerilmiş başlangıç ölçeğinde olan çalışmaları içermektedir. 

Görüntü bölütleme çalışmaları genel anlamda birçok alanda tıptan, mimarlığa, harita ve 

kadastrodan uzay bilimine kadar oldukça geniş kapsamda bilgi birikimine sahip olsada 

özel datasetler isteyen çalışmalar için hala yeni ve çalışılması heyacan veren konuların 

başında gelmektedir. Bu bağlamda omurilik bölgesi ve omurilik sınırları içerisinde tümör, 

lezyon ve diğer doku bozukluklarının bölütlenmesi için yapılmış çalışmalar sınırlı 

kalmaktadır. Klinik çalışmalar çerçevesinde ve bu süreçte gelişen yaklaşımlar ile 
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omurilik ve omurilik MS lezyonları ile ilgili olarak yapılan çalışmalar bulunmaktadır. Bu 

kapsamda; El Mendili ve arkadaşlarının (El Mendili vd., 2015: 454) önerdiği bir 

çalışmada omurilik OKA ve BOS bölgesinin manuel ve yarı otomatik yöntemle 

kıyaslanması üzerine bir çalışma yapılmıştır. 49’u sağlıklı denek olmak üzere, 29 

amyotrofik lateral sklerozlu, 19 spinal müsküler atrofili, 14 omurilik yaralanmalı hasta 

grubu olmak üzere toplam 111 hasta verisi incelenmiştir. T2a 3B turbo spin eko 

görüntülerini kullanarak, OKA ve BOS bölgelerini manuel ve yarı otomatik yöntemlerle 

bölütlenmesi için C2-T9 omurilik bölgesi MR verileri kullanılmıştır. Elde ettikleri 

bulgular ışığında yarı otomatik bölütleme yöntemi ile omurilik alanının ölçümünde 

yüksek tekrarlanabilirlik ve doğruluk elde edildiğini ifade etmişlerdir. Yine El Mendili ve 

arkadaşlarının (Mendili vd., 2015: 1) yaptığı diğer bir çalışmada ise omuriliğin 3B T2a 

turbo spin eko MR taramalarından hem kesitsel hem de hacimsel ölçümleri mümkün 

kılan yarı otomatik çift eşik tabanlı (DTbM, Double threshold-based method)  

segmantasyon yöntemini kullanmışlardır. 82 sağlıklı denek olmak üzere 10 amyotrofik 

lateral sklerozlu, 10 spinal müsküler atrofili ve 10 omurilik yaralanmalı hastanın verileri 

kullanılarak çalışma yapılmıştır. Toplamda 59 sağlıklı hastanın MR görüntülerinden 

servikal omurilik şablonu standartı oluşturmak için, iyi ortalanmış düz omurilik 

görüntüleri kullanılarak doğru olasılıklı doku haritasına yol açan bir standardizasyon hattı 

tasarlanmıştır. Bölütlemelerin doğruluğu bir radyolog tarafından puanlanmıştır. Kord 

bölgesi kullanılarak DTbM, aktif yüzey yöntemi (ASM, active surface method), eşik 

bazlı yöntem (TbM, threshold-based method) ve manuel taslak oluşturma (temel gerçek) 

ile karşılaştırılmıştır. Önerilen sınırlı manuel müdahaleye sahip yarı otomatik bir 

bölütleme yöntemi olan DTbM, diğer yöntemlerden ASM ve manuel taslak ile 

kıyaslandığında daha iyi sonuç elde edilirken TbM yöntemi ile kıyaslandığında benzer 

ölçüde başarılı sonuçlar verdiği belirtilmiştir. 

Losseff ve arkadaşları tarafından(Losseff vd., 1996: 701), MS tanısı almış 60 hasta 

için sakral kord alanı ve engellilik arasında bağlantının varlığı araştırılmıştır. Atrofinin 

ölçülmesi ve değerlendirmesi için yüksek dereceli yeniden üretilebilirliğini artırmak ve 

hastanın seri olarak izlenmesi gereken durumlar için yeni bir yöntem geliştirilmiştir. Bu 

bağlamda, Kurtzke'nin Genişletilmiş Sakatlık Durumu Ölçeği (EDSS, Expanded 

Disability Status Scale) ile ölçülen sakral kord alanı ve engellilik arasında güçlü bir 

korelasyon bulunması sakral kord alanı ve engellilik durumu arasında güçlü bir neden-

sonuç ilişkisi olduğu sonucuna varmışlardır. Yapılan deneysel çalışmalar sonucunda 

atrofi ile kullanılan ölçek arasında kararlı bir korelasyon tespit edilmiş olup nörolojik 

bozulmanın hassas bir ölçüsü olduğu kanıtlanarak klinik ortamda tedavi protokollerine 
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dahil edilebileceği önerilmiştir. MS ile atrofi arasındaki bağlantının daha net 

anlaşılabilmesi için daha çok araştırma yapılmasının gerektiği sonucuna ulaşılmıştır. 

Tench ve arkadaşları (Tench vd., 2005: 197) 10 sağlıklı hastadan elde ettikleri MR 

verilerini kullanarak servikal omurilik sınırlarının doğru bir şekilde ölçülebilmesi için 

kenar algılama (edge dedection) ve kısmi hacim ortalaması (PVA, partial volume 

averaging) yöntemlerini önermektedir. PVA, ölçüm hatalarının azaltılması ile daha doğru 

sonuca ulaşmak için kullanılan yarı otomatik bölütleme yöntemidir. Bu yöntemin, 

omurilik atrofisi çalışmalarında yararlı olabileceği sonucuna varılmıştır. 

Horsfield ve arkadaşları (Horsfield vd., 2010: 446) 20 normal seyreden, 20 

tekrarlayan-düzelen (RR, relapsing remitting), 20 ikincil ilerleyen (SP, sekonder 

progresif) MS tanısı olan toplam 60 hastadan elde edilen MR verileri kullanılarak yarı 

otomatik bölütleme yöntemi olan aktif yüzey modeli ile omurilik kesit alanının 

belirlenmesi ve klinik sakatlık skorlarının arasında nasıl ilişkili olduğunu bulmaya 

çalışmışlardır. Elde ettikleri sonuçlara göre mevcut bölütleme yöntemlerine göre daha iyi 

performans gösterdiği ve omurilik kesit alanı ile klinik sakatlık skorları arasındaki 

korelasyonlar, yöntemin omurilik atrofisini ölçmede yararlı olacağı sonucuna 

varmışlardır. 

Koh ve arkadaşları (Koh vd., 2010: 3117) 52 hastadan elde edilen T2a MR verileri 

kullanılarak omuriliği ve dural keseyi otomatik olarak bölütlemek için tasarlanmış 

bilgisayar destekli bir teşhis sistemini önermektedirler. Bu sistem potansiyel bölgeleri 

tespit etmek için bir gradyan vektör akışı (GVF, Gradient Vector Flow) alanı kullanarak 

nihai bölütleme gerçekleştirmek için bağlı bileşen analizini kullanmaktadır. Manuel 

bölütlemeler ile kıyaslandığında yüksek doğruluk elde edilmiş ve bu yöntemin manuel 

bölütleme zorluklarına bir çözüm olabileceği ve klinik teşhis tutarlılığını artırarak lomber 

patolojilerin teşhisinin daha kolay olabileceği sonucu vurgulanmaktadır. 

Kawahara ve arkadaşları (Kawahara vd., 2013: 848) özellikle MS’li hasta grubu 

ve sağlıklı deneklerden 3B T1 ve T2a omurilik MR görüntülerinden oluşan veri 

kümelerini kullanarak omurilik şekillerini belirleyebilmek için temel bileşen analizi 

(PCA, principal component analysis) yönteminden yararlanmaktadırlar. Oluşturulan veri 

kümesi ile bölütleme işlemlerinde manuel müdahaleyi en aza indirerek ve bölütleme 

görevlerindeki hassasiyeti artırarak omurilikle ilgili hastalıkların teşhisi ve izlenmesi için 

daha iyi araçlar sağlamayı amaçlamaktadır. Ayrıca önerilen bölütleme yönteminin 

doğruluğunu ve verimliliğini test etmek için bir bütüncül bir yaklaşım sunmaktadırlar. 
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Law ve arkadaşları (Law vd., 2013: 49) omurilik hattının çıkarılması ve omurilik 

bölütleme için gradyan rekabeti anizotropisi yöntemini önermektedirler. T1 ve T2a 

omurilik MR verileri kullanılarak omurilik bölgesinin yüksek doğruluk ve etkinlikte 

çalışma çıktılarının elde edilmesi, manuel ihtiyacı azaltarak tanı ve tedavi kolaylığı 

sağlayacağı düşünülmektedir.  

Omurilik lokasyonunun tam otomatik olarak tespit edilmesi ile ilgili olarak 

önerilen bir çalışmada Gros ve arkadaşları (Gros vd., 2018: 215) omurilik merkez 

noktasının olasılıksal lokalizasyon haritası ile omurilik merkez çizgisinin genel uzaysal 

tutarlılığı arasında denge kurmaya çalışan OptiC algoritması kullanılmaktadır. Daha 

tutarlı sınırlar elde etmek için ise omurilik merkez hattının beyin bölgesi sınırlarından 

ayırmayı hedefleyen bir işlem eklenmiştir. 20 farklı merkezden nörolojik hastalıkları olan 

173 hasta dahil 501 kişiden T1, T2, T2a MR verileri kullanılmıştır. OptiC’nin, Hough 

dönüşümüne dayanan son teknoloji ürünü omurilik lokalizasyon tekniğiyle 

karşılaştırıldığında özellikle ortalama kare hatası (averaged mean square error) olan 

patolojik vakalarda başarılı sonuçlar elde ettiği ifade edilmiştir.  

Chen ve arkadaşları (M. Chen vd., 2013: 1051) deforme edilebilir atlas yöntemi ve 

topoloji kısıtlamaları kullanarak omurilik ve beyin omurilik sıvısı alanlarının 

bölütlemesine yardımcı olan bir yöntem önermektedirler. Çalışmada farklı hasta 

gruplarından T1, T2 MR verileri elde edilerek veri seti oluşturulmuştur. Omurilik 

bölütleme multipl skleroz gibi nörolojik hastalıkların analizinde, hastalığın ilerlemesi ile 

omurilik atrofisi ve şekil değişiklikleriyle ilgili ölçümler arasında korelasyon olduğunu 

göstermek için farklı iki veri kümesi üzerinde değerlendirilmiştir. Sonuçlar manuel 

bölütlemelerle karşılaştırıldığında bu yöntem, omurilik MR görüntülerinde otomatik ve 

doğru bölütleme sağlayarak klinik karar verme sürecini desteklemekte ve manuel 

bölütleme gereksinimini azalttığı tespit edilmiştir.  

Asman ve arkadaşları (Asman vd., 2014: 460) farklı hasta gruplarından ve T1, T2a 

MR görüntüleri kullanılarak omurilik GM ve BM alanlarının otomatik olarak segmente 

edebilmek için çoklu atlas yaklaşımlarını önermektedirler. Bu yöntem, omurilik gri ve 

beyaz madde bölgelerini otomatik olarak ayırmak için geliştirilmiştir ve özellikle MR 

görüntülerinde düşük kontrast ve gürültü oranları gibi zorlukları aşmak için 

tasarlanmıştır. Bu sayede, manuel bölütleme göre daha yüksek doğruluk sunmakta olup 

zaman açısından daha verimli olduğu tespit edilmiştir. Yöntem, multipl skleroz gibi 

nörolojik hastalıkların analizinde kullanılmakta ve omurilik atrofisi gibi durumların 

değerlendirilmesine yardımcı olmaktadır. 
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De Leener ve arkadaşları (De Leener vd., 2015: 1705) omurilik gri bölgenin 

segmente edilmesi için farklı bireylerden elde edilen T2a MR görüntüleri kullanılarak bir 

veri seti hazırlanmıştır. Bu veri setini kullanarak gri ve beyaz maddeyi otomatik olarak 

bölümlere ayırmak için atlas deformasyon temeline dayanan yeni MNI-Poly-AMU 

şablonu ve probabilistik gri madde MR verilerine kaydedilerek omurilik atlasının standart 

maskesi oluşturulmuştur. Yöntem, manuel bölütleme karşılaştırıldığında yüksek doğruluk 

göstermektedir. Otomatik bölütleme, özellikle gri madde bölütlemesinde, manuel 

yöntemlere kıyasla daha tutarlı sonuçlar verdiği ve multipl skleroz ve diğer nörolojik 

hastalıkların analizinde kullanılabileceği, omurilik atrofisi gibi durumların 

değerlendirilmesine yardımcı olabileceği ve çeşitli multi-parametrik MR verilerinin 

metriklerinin doğru bir şekilde ölçülmesini sağlayabileceği belirtilmiştir.  

Taso ve arkadaşları (Taso vd., 2015: 20) sağlıklı genç ve yetişkin deneklerden 

temin edilen T2a MR görüntüleri kullanılarak oluşturdukları veri seti ile omurilik beyaz 

ve gri bölgelerin bölütleme çalışması ve yaşla birlikte meydana gelen morfolojik 

değişikliklerin tensor tabanlı morfometri (TBM, Tensor-based morphometry) ile 

haritalanması için kullanılmasını amaçlamışlardır. Oluşturulan AMU40 şablonuna 

doğrusal olmayan uzamsal normalizasyonu ile bölütleme işlemi gerçekleştirilerek yaşlı 

grupta anlamlı anterior gri bölgenin atrofisini belirlenmesini sağladılar. Bu TBM'nin 

omurilikteki yerel yapısal değişiklikleri incelemede kullanılabilirliğini ilk kez gösteren 

bir çalışma olması bakımından önemli olmakla beraber, yaşa bağlı omurilik morfolojisi 

değişikliklerini araştırma potansiyelini vurgulamaktadır. 

2.2.  Makine Öğrenmesi Yaklaşımları 

Manuel, yarı otomatik ve tam otomatik yöntemleri ile omurilik bölütleme 

çalışmaları süreç içerisinde yerini makine öğrenmesine bırakmaktadır. Çalışmalarda 

omurilik bölgesinin farklı planelerden taranmış MR verisetleri kullanılarak omurilik 

alanı, beyin omurilik sıvısı alanı, gri madde ve beyaz madde ve özellikle omurilik 

sınırları içerisnde bulunan MS lezyonları ve diğer tümör gruplarının bölütlenmesi için 

farklı yaklaşımlarla bölütleme yöntemleri önerilmiştir. Şimdiye kadar omuriliğin 

bölütlenmesi için manuel destekli(Mirafzal vd., 2020: 406), yarı-otomatik(Coulon vd., 

2002: 1176), (Horsfield vd., 2010: 446), (Van Uitert vd., 2005: 224) ve tam otomatik(De 

Leener vd., 2015: 1705), (De Leener vd., 2014: 528) olmak üzere birçok çalışma 

önerilmiştir. Tam otomatik yöntemlerde makine öğrenmesi ve derin öğrenme tabanlı 

yaklaşımların yaygın olarak kullanılmıştır. Bu çalışmaların birinde, Chen ve arkadaşları 

(M. Chen vd., 2013: 1051) hem aksiyel hem de sagital MR verileri kullanarak anatomi 
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odaklı omurilik ve beyin omurilik sıvısı bölgelerinin bölütlenmesini sağlamışlardır. 

Çalışmada, iki farklı veriseti ile yöntemin doğruluğu değerlendirilmiş ve manuel 

yöntemlere göre daha avantajlı olan yöntemin başarılı olduğu vurgulanmıştır. Bir diğer 

çalışmada, Yiannakas ve arkadaşları (Yiannakas vd., 2016: 71) geriye dönük MR 

verilerinden oluşan bir veriseti kullanarak servikal omurilik bölgesinin otomatik 

bölütlenmesini ve MS lezyonlarının tespit edilmesini sağlamışladır. Çalışmada elde 

edilen sonuçlar başka yöntemler ile de kıyaslanarak çalışmanın başarısı 

değerlendirilmiştir. 

Jois ve arkadaşları (Jois vd., 2018: 524) ise özel bir veriseti kullanarak omurilik 

bölgesinin dairesel aktif disklerini otomatik bölütlemek için bölge büyüme algoritmasını 

kullanmışlardır. Mirafzal ve arkadaşları (Mirafzal vd., 2020: 406) ise aksiyel ve sagital 

açıdan taranmış 3B MR verilerini kullanarak omurilikte MS lezyonunlarının tespitini 

gerçekleştirmişlerdir. Çalışmada, manuel olarak omurilik lezyonu tespiti yapan 

uzmanlara oranla önerilen yöntemin daha başarılı olduğunu göstermişlerdir. Bir başka 

çalışmada, Bédard ve arkadaşları (Bédard ve Cohen-Adad, 2022: 1031253)  omurilik 

bölgesinin otomatik normalizasyonunu ve ölçümünü merkezi sinir sisteminin 

pontomedullary junction kullanarak gerçekleştirmişlerdir. 

Sabaghian ve arkadaşları (Sabaghian vd., 2020: 811) makine öğrenmesi kümeleme 

algoritması yöntemlerinden biri olan K-Means kullanarak omurilik görüntülenmesi 

doğruluğunu arttırmayı amaçlamışlardır. T2a MR görüntülerinden oluşan veri seti 

kullanarak MR verisinde elde ettikleri benzer yoğunluk değerlerinin gruplanmasını 

sağlayarak omurilik ve omur yapısının bölütlenmesi gerçekleştirmişlerdir. Yoğunlukların 

kümelenmesi temeline dayalı bu sistem ile omuriliğin çevre doku yoğunluklarından ve 

yapılarından ayırmadaki zorluklara karşı güçlü bir yöntem olarak ifade edilmekte ve 

klinik aşamalarında kullanılmak için doğru bir bölütleme işlemi sunmakta olduğundan 

bahsedilmektedir. Manuel işlem süreçlerinde yaşanabilecek hataların aza indirgeyerek 

yüksek doğruluk ve tekrarlanabilirlik sağlayacağı belirtilmektedir. 

2.3.  Derin Öğrenme ve U-Net ile Yapılan Çalışmalar 

Son yıllarda oldukça hızla gelişim gösteren derin öğrenme modelleri tıbbi 

görüntüleme alanında karar destek sistemi olarak sıklıkla kullanılmaktadır. Omuriliğin 

bölütlenmesi ve tespiti için derin öğrenme tabanlı birçok yöntem bulunmaktadır.  

Gros ve diğerleri (Gros vd., 2019: 901) ilk olarak omurilik merkez hattının tespit 

edilmesi olmak üzere omurilik kordunun ve MS lezyonun otomatik bölütlenmesi için iki 
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aşamalı bir CNN modeli önermişlerdir. Tüm süreç 2 aşamaya bölünerek modelin aşırı 

öğrenmesinin önüne geçilmiştir. İlk model olan 2B dilate ESA ile omurilik merkez hattını 

tüm görüntüden çıkararak çalışma alanını küçültülmekte ve ikinci model olan 3B ESA ile 

omurilik bölgesi bölütlenerek lezyonların tespit edilmesi sağlanmaktadır. Bu sayede iki 

aşamalı süreç ile MRG hacminin tamamına kıyasla lezyon voxellerinin küçük oranını ele 

alarak bölütleme doğruluğunu artırmayı hedeflemektedirler. Çalışmada, 30 farklı 

merkezden toplanan sağlıklı, MS hastaları ve diğer omurilik patolojilerine sahip bireyler 

olmak üzere toplam 1042 kişiden elde edilen MR verileri kullanılmıştır. Veriler T1, T2a 

gibi farklı MR görüntüleme teknikleri kullanılarak hazırlanmıştır. Omurilik bölütleme 

sonuçları mevcut çalışmalardan çok iyi sonuç vermesine karşılık lezyon sonuçları manuel 

bölütleme sonuçlarına yakın kalmıştır.  

Bu çalışmalardan birisinde, Horváth ve diğerleri (Horváth vd., 2019: 3) AMIRA 

(Averaged Magnetization Inversion Recovery Acquisitions) ismini verdikleri görüntü 

protokolünü kullanarak MD-GRU (Multi-Dimensional Gated Recurrent Units) adı verilen 

yeni bir tekrarlayan evrişim ağı (RNN, recurrent neural network) kullanarak omurilik 

bölgesindeki gri ve beyaz maddenin bölütlenmesini sağlamışlardır. Elde edilen sonuçlara 

göre nörodejeneratif hastalıkların değerlendirilmesinde omurilik bölütlemesi için daha 

hassas ve otomatik bir yaklaşım olanağı sunmakla beraber önerilen yeni yöntem ile 

omurilik MR görüntülerinin analizinde doğruluk ve hassasiyeti arttırarak klinik ve 

araştırma amaçlı kullanım için oldukça verilimli bir çalışma gerçekleştirilmiştir. Çalışma, 

MD-GRU modelini eğitmek için 855 omurilik MR görüntü dilimi kullanarak önceki 

yöntemlere kıyasla önemli iyileştirmeler göstermiş ve klinik ve araştırma uygulamaları 

için umut verici bir araç olduğunu ortaya koymuşlardır. 

Diğer bir taraftan derin öğrenme ile yapılan çalışmalar büyük bir hız kazanmış 

olup evrişim ağların ile ilk çalışmalar yapılmaya başlanmıştır. Bu çalışmalardan birinde 

McCoy ve arkadaşları (McCoy vd., 2019: 737) tüm omurilik bölgesini ve intramedüller 

omurilik lezyonlarını tespit etmişlerdir. Bu yöntemde 24 saat içerisinde omurilik 

yaralanması geçirmiş 47 hastadan elde edilmiş aksiyel T2a 3T MR görüntüleri 

kullanılarak bir veriseti hazırlamışlardır. Geliştirilen yeni 2B-CNN mimarisini kullanarak 

tüm omurilik ve intramedüller omurilik lezyon bölgelerin tespit edilmesini sağlamışlardır. 

3 farklı modeli kıyaslayarak kullandıkları modellerin başarısı arasında çok bir fark 

olmamakla beraber modellerin derin bir ağ yapısına sahip olmaması elde ettikleri 

sonuçları etkilediği vurgusu yapılmıştır. Elde ettikleri sonuçları diğer bölütleme araçları 

ile kıyaslayarak sonuçları değerlendirmişlerdir. BASICseg ismini verdikleri 2B-CNN 
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modeli ile akut omurilik yaralanma populasyonunda mevcut bölütleme araçlarına kıyasla 

daha iyi performans sergilediği ve otomatik lezyon bölütlenmesinden elde edilen 

yaralanma hacimleri, akut fazdaki motor bozukluklarının ölçümleriyle bağlantısı tespit 

edilmiştir. Bu çalışmanın bulguları, omurilik yaralanma vakalarında, tanı ve tedavi 

sürecinde doğru ve hızlı bir şekilde değerlendirilmesine önemli katkı sunacağı 

düşünülmektedir. Ayrıca motor fonksiyon bozuklukları ile ilişkili biyoişaretçilerinin 

tespiti için derin öğrenme yöntemlerinin etkinliğinin oldukça yüksek olduğu sonucu elde 

ettikleri diğer bir çalışma çıkıtısı olarak belirtmişlerdir.  

Omurilikte kordoma adı verilen tümörün otomatik olarak bölütlenmesi için 

yapılan çalışmada Reza ve arkadaşları (Reza vd., 2019: 487) 8 hastadan alınan 22 sagital 

açıdan çoklu kontrastlı MR görüntüleri kullanılarak oluşturulan veri seti ile iki adımlı 3 

boyutlu CNN kullanılarak ilgili tümör alanı tespit edilmiştir. Birçok tümör gibi kordoma 

tümörlerinin konumları, boyut ve şekil bakımından farklı görünümleri nedeniyle otomatik 

bölütlemeleri zorlu bir iş olarak belirtmişlerdir. Modelin ilk aşamasında tüm potansiyel 

tümör voksellerini tespit etmeyi öğrenirken, ikinci aşamada gerçek tümör voksellerini 

birinci ağ tarafından tespit edilen yanlış pozitiflerden ayırt etmek için sınıflandırıcıya ince 

ayar yapması sağlanmıştır. Derin öğrenme uygulamaları için model başarılarının daha iyi 

analiz edilmesi için veri adedinin yüksek olması gerekliliği var iken bu çalışmada 8 

kişiden veri temin edilmiş olması elde edilen başarıların düşük olmasına bir gerekçe 

olarak gösterilmiştir. 

Derin öğrenme alanında geliştirilen Resnet-50 mimarisi kullanılarak yapılan diğer 

bir çalışmada ise Merali ve arkadaşları (Merali vd., 2021: 10473) dejeneratif servikal 

miyelopati (DCM, Degenerative cervical myelopathy) tanılı hastalarında servikal 

omurilik sıkışmasını belirleyebilmek için yeni bir model geliştirmişlerdir. Model 

eğitimlerinde T2 MR verileri kullanmış olup yüksek sonuçlar elde edilmiştir. Fakat 

yazarlar modelin daha iyi performansa sahip olması için sadece dejeneratif servikal 

miyelopati hastalarının verilerine ek olarak asemptomatik hastaların veya hafif DCM 

semptomları olan hastaların verilerinin model eğitimine dahil edilmesinin daha 

genelleştirilebilir bir modelle sonuçlanabileceğinden bahsetmektedirler. Ek olarak yapılan 

etiketleme yönteminin bir kısıt olduğu vurgusu yapılmıştır. Bu model sayesinde, servikal 

MR taramalarının yorumlanmasının verimliliğini ve nesnelliğini artırabileceği ve birinci 

basamak sağlık hizmetlerinde görüntülerin ilk yorum aşamasına entegre edilmesinin 

zaman ve insan kaynağı açısından olumlu etki sunacağı değerlendirilmiştir. Model 

eğitimleri sonunda dejeneratif servikal spinal kord kompresyonunu doğru bir şekilde 
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tespit edilmesinin klinik karar vericilerin daha hızlı ve etkili hastalık süreçlerini 

değerlendirmelerine önemli bir katkı sunabileceği vurgusu yapılmıştır.  

Diğer bir çalışmada ise Perone ve arkadaşları (Perone vd., 2018: 1) canlıda ve 

canlı dışında (in vivo ve ex vivo) MR veri seti kullanılarak derin öğrenme modeli ile gri 

bölgenin bölütlenmesini önermişlerdir. Geliştirdikleri derin öğrenme modelinde Atrous 

Uzaysal Piramit Havuzu (ASPP, Atrous Spatial Pyramid Pooling) adı verilen ve 

dilatasyonlu konvolüsyonların kullanıldığı özel bir mimari oluşturmuşlardır. Genişlemeli 

(dilatasyonlu) konvolüsyonlar, daha az parametre kullanarak alıcı alanı önemli ölçüde 

genişletmekte ve bu ağın verimliliğini artırmaktadır. Bu yöntemde, farklı genişleme 

oranlarına sahip paralel dallar kullanılarak çok ölçekli özellikler yakalanabilmekte ve bu 

sayede bölütleme doğruluğu artırılabilmektedir. Çalışmada 6 bağımsız metot ile elde 

edilen çıktılar karşılaştırılmıştır. 10 farklı değerlendirme metriği içerisinde 8 tane metrik 

de daha yüksek performans elde edilmiştir. Modelde kullanılan 2B bağlam bilgisine ek 

olarak 3B bağlam bilgilerininde olmasının daha iyi sonuçlar elde edilebileceği fikri 

savunulmuştur. Fakat ek olarak bu yöntem ile geleneksel tıbbi görüntüleme mimarilerine 

kıyasla daha az parametre kullanarak daha iyi sonuçlar elde etmeyi başarmışlardır. Bu 

çalışma, ALS (Amyotrofik Lateral Skleroz) gibi nörolojik bozukluklarla ilişkilendirilen 

gri madde değişikliklerinin otomatik olarak bölütlemenmesinin klinik süreçlerine önemli 

ölçüde katkı sağlayacağı vurgusu yapılmaktadır. 

U-Net mimarisi görüntüler üzerinde segmente edilecek özel bölgenin çıkarılmasını 

gerçekleştirir ve gelişmiş özellik seçimi ile diğer derin öğrenme modelleri ile 

kıyaslandığında daha az veri ile daha üstün performans göstermektedir. Derin öğrenme de 

özellikle tıbbi görüntüleme alanında kullanmak için geliştirilen ve birçok açıdan kararlı 

ve güçlü sonuçlar veren U-Net modelleri kullanılarak farklı planelerden taranmış MR 

görüntüleri kullanılarak omurilik bölgesi(Xiaoran Zhang vd., 2021: 104345), 

(AskariHemmat vd., 2019: 115), (Hille vd., 2020) ve omurilik tümör ve 

lezyonlarının(Lemay vd., 2021: 102766), (Zhuo vd., 2022: e210292) otomatik bölütleme 

ile ilgili yapılmış çalışmalar bulunmaktadır.  

Diğer bir çalışmada Xiaoran Zhang ve arkadaşları (Xiaoran Zhang vd., 2021: 

104345) servikal spondilotik miyelopati hastalarından aksiyel açıdan taranmış 3B Spine 

MR verileri ile oluşturulan bir veriseti üzerinde yoğun bağlantı yapısına sahip U-Net 

mimarisi kullanılarak omur sınır alanının belirlenmesini hedeflemektedirler. Önerdikleri 

U-Net mimarisi ile özelliklerin çıkarılmasını sağlayarak Inter-Slice Attention (ISA) 

Modülü ile de gelen bilgileri kullanarak bölütleme sonuçlarını iyileştirmek ve daha 
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kararlı bir bölütleme elde etmek çalışmanın ana motivasyonu olarak sunulmuştur. 

Deneysel sonuçlar, SAU-Net'in inter-slice attention modülünün (ISA) etkinliğini ve 

yöntemin diğer derin öğrenme yöntemlerine kıyasla daha yüksek doğruluk ve verimlilik 

sağladığını gösterilmektedir. Özellikle, bu yöntem omurga kanal stenozu, disk 

herniasyonu (fıtık) ve dejenerasyonu gibi hastalıkların tespitinde ve morfolojik 

araştırmalarda kullanılabileceği belirtilmektedir. 

U-Net mimarisi kullanılarak gerçekleştirilen diğer bir çalışmada AskariHemmat 

ve arkadaşları (AskariHemmat vd., 2019: 115) sabit nokta niceleme yöntemi (fixed point 

quantization metot) önerilmiştir. Farklı ağırlıklar ve aktivasyon fonksiyonları (ReLU, 

Tanh) için üç farklı tıbbi görüntüleme veriseti üzerinde performansları kıyaslamışlardır. 

Makalenin ana amacı derin öğrenme modellerinin bellek tüketimini ve hesaplama 

süresini azaltmayı amaçlayan yeni bir yöntemi önermektedirler. Bu bağlamda yaptıkları 4 

bit ağırlık güncellemeleri ve 6 bit aktivasyonlar kullanarak bellek gereksinimlerinde 8 kat 

azalma sağlamayı başarmış olup elde edilen doğrulukta küçük ölçekle bir kayıp yaşandığı 

ifade edilmiştir. Önerdikleri sabit nokta kuantizasyonunu diğer tekniklerle 

karşılaştırdıklarında, GM (Spinal Cord Gray Matter Segmentation), EM (Electron 

Microscopic) ve NIH (National Institute of Health) veri setleri üzerinde daha doğru ve 

aynı zamanda daha tutarlı sonuçlar elde edildiğini ifade etmişlerdir. Bu yöntem, özellikle 

sınırlı bellek ve hesaplama kaynaklarına sahip cihazlarda kullanılmak üzere derin 

öğrenme modellerini daha verimli hale getirme potansiyeline sahip olduğu 

beirtilmektedir. 

U-Net ile yapılan diğer bir çalışmada Hille ve diğerleri (Hille vd., 2020) MR 

görüntüleri ile omurga metastazlarını segmentlere ayırmışlardır. Araştırmacılar 40 klinik 

vakada hem litik hem de sklerotik lezyon tiplerini (lytic and sclerotic lesion types) ve 

farklı MR sekansları kullanılarak özel sayılarda katman yapıları içeren U-Net benzeri bir 

mimari kullanarak otomatik bölütleme yöntemi önermişlerdir. Model eğitimleri sonunda 

uzman düzeyine yakın bölütleme doğruluğu elde edildiği belirtilmiştir. Bu bağlamda 

yapılmış başka bir çalışma olmamasının çalışmada elde edilen sonuçların performans 

karşılaştırması açısından eksik kaldığı vurgulanmıştır. 

Omurilik ve bu bölgedeki tümörün, ödemin ve kavitenin (the tumor, edema and 

cavity) tespit edilmesi için kaskat yapıya sahip bir U-Net modelinde, Lemay ve diğerleri 

(Lemay vd., 2021: 102766) öncelikle omur bölgesinin lokasyonunun belirlemişler ve 

ikinci aşamada ise tümör, ödem ve kavite alanlarının tespit edilmesi sağlamışlardır. 

Çalışmada 343 hastadan elde edilen gadolinyum ile güçlendirilmiş T1a ve T2a MR 
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verileri kullanılmıştır. En yaygın üç omurilik içi tümör tipi olan astrositomlar, 

ependimomlar ve hemanjioblastomlar incelenerek maske verisi oluşturulmuştur. Önerilen 

kaskad(ardıl) U-Net modeli ile ilk aşamada model omuriliğin sınır alanları bulunmaktadır 

ve sınırlayıcı kutu koordinatlarını oluşturulmaktadır. İkinci aşamada ise bu sınırlayıcı 

kutulara göre görüntüler kırpılarak tümörlerin bölütleme işlemleri gerçekleştirilmektedir. 

Önerilen kaskad bir mimarinin seçimi ile daha hızlı eğitim, daha hızlı tahmin yeteneği ve 

yüksek dice skoru elde etmeyi hedeflemişlerdir. Çalışmada belli bir performans başarımı 

elde edilmiş olup, çalışmanın tek bir uzman tarafından işaretlenmiş olması, yalnızca 

intramedüller tümörler üzerinde eğitilmiş olması, yüksek sınıf dengesizliği çalışmanın 

kısıtları olarak belirtilmiştir. Bu çalışma ile omurilik tümörü bölütleme alanında önemli 

bir çalışma olduğu ve klinik uygulamalarda kullanılabilirliğinin öneminden 

bahsetmektedirler. 

Farklı derin öğrenme ağlarının kullanıldığı bir diğer çalışmada ise Zhuo ve 

arkadaşları (Zhuo vd., 2022: e210292) omurilik lezyonu bölütleme ve sınıflandırması için 

yeni bir yöntem önermişlerdir. MR verilerinde sıklıkla benzer özellikler sergileyen 

intramedüller omurilik tümörleri ve inflamatuar demiyelinizan lezyonların ve bunların alt 

tiplerinin doğru şekilde ayırt edilmesi için yapılan çalışma kapsamında çok geniş ölçekli 

veri seti hazırlamışlardır. Retrospektif olarak 490 hastadan; 118 astrositom, 130 

ependimom, 101 MS, ve 141 nöromyelitis optika spektrum bozukluğu (NMOSD) T2a 

MR görüntüsü oluşturulurken prospektif olarak ise 157 hastadan; 34 astrositom, 45 

ependimom, 33 MS, ve 45 NMOSD T2a MR görüntüsü kullanılmışlardır. Araştırmacılar 

yöntem olarak iki boyutlu MultiResUNet ve DenseNet121 ağlarına dayanan bir 

sınıflandırma ve bölütleme modeli geliştirmişlerdir. Deneysel çalışmalar sonucunda 

herbir hastalık grubu için ayrı ayrı performans sonuçları elde etmişlerdir. Klinik pratikte 

manuel bölütlemenin zaman alıcı ve hata yapma olasılığının yüksek olması nedeniyle 

model eğitimleri sonucunda yüksek doğruluk ile ilgili bölgelerin tespit edilmesinin 

gelecekte radyologlara yardımcı araçlar olarak kullanılabileceğini göstermesi açısından 

oldukça önemli olduğu belirtilmektedir. Birbirine çok benzer doku benzerlikleri gösteren 

tümör grupları olmalarına karşılık bu iki tür lezyonun tedavi ve prognozu farklıdır, bu 

nedenle doğru bir ayrım yapılması tedavi süreci için çok kritik bir detay olarak 

belirtilmiştir.  

Bir diğer çalışmada, Alsenan ve arkadaşları (Alsenan vd., 2021: 244) SCGM 

verisetini kullanarak omurilik gri bölgenin tespit edilmesini sağlamak için U-Net ve 

MobileNetV3 mimarilerilerinin birleşimine dayalı bir yöntem önermişlerdir. Bu 
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çalışmada, MobileNetV3 modelinin bir dizi blok kullanarak özellik haritaları üreten ve bu 

haritaları optimize eden bneck blokları, sıkma ve uyarma (SE, squeeze-and-excitation) 

modüllerinden faydalanılmışlardır. Ayrıca modele upsampling katmanları ve atlama 

bağlantıları ekleyerek MobileNetV3'ün U-Net benzeri bir model haline getirilmiştir. 

Çalışmada önerilen model ile en güncel yöntemlerle de kıyaslaması yapılarak sonuçların 

değerlendirilmesi sağlanmışlardır. MobileUNetV3, nörolojik bozuklukların teşhisi ve 

tedavisinde önemli bir araç olarak kullanılabileceği ve MR verileri üzerinde etkin bir 

şekilde çalışarak, gri madde dokusunun ayrıntılı bir şekilde analiz edilebileceği 

önermektedirler. Klinik olarak zor bir alan olan spinal kord gri madde bölütleme 

konusunda önemli bir ilerleme sunmakta ve bu alanda gelecekte yapılacak çalışmalar için 

güçlü bir temel oluşturulduğu vurgusu çalışma kapsamınca yapılmıştır. 

Fei ve arkadaşları (Fei vd., 2023: 817) yaptıkları çalışmada servikal spondilotik 

miyelopati hastalarının derin öğrenme temelli bölütleme yöntemi kullanılarak ilgili 

bölgenin segmente edilmesi sağlanmıştır. Hastalığın tanı ve tedavi süreçlerinde kullanılan 

bir tür manyetik rezonans görüntüleme tekniği olan difüzyon tensör görüntüleme (DTI, 

diffusion tensor imaging) kullanılmıştır. DTI verilerinden elde edilen ve dokuların 

mikroyapısal özelliklerini yansıtan bir metrik olan FA (fraksiyonel anizotropi) değeri 

kullanılmaktadır. Çalışmada, 89 servikal spondilotik miyelopati hastasından elde edilen 

toplam 1159 kesit analiz edilerek fraksiyonel anizotropi (FA) haritaları hesaplanmıştır. 

Lateral, dorsal, ventral ve gri madde bölgeleri, her iki yandan kapsayan sekiz farklı ilgi 

alanı (ROI, region of interest) belirlenerek eğitim sonuçlarında elde edilen metrik 

değerlerini manuel ve ön eğitilmiş VGG16 and ResNet50 back bone U-Net modeli ile 

kıyaslamışlardır. Çok fazla zaman alıcı manuel işaretleme yerine önerilen otomatik 

bölütleme modeli ile servikal omuriliğin daha detaylı bir şekilde analiz edilmesine ve 

durumunun daha ayrıntılı olarak nicel hale getirilmesine olanak tanımaktadır. Bu 

çalışmanın sonuçları, servikal spondilotik miyelopati tanı ve tedavisinde DTI ile elde 

edilen verilerin otomatik olarak işlenmesiyle klinik süreçlerin hızlandırılabileceğini ve 

daha doğru teşhisler konulabileceğini göstermektedir.  

Diğer bir çalışmada Zhang ve arkadaşları (Xiang Zhang vd., 2022: 1081441) 

servikal omurilik MR görüntülerinin bölütleme tekniklerini iyileştirmeyi amaçlayan 

geliştirilmiş bir U-Net derin öğrenme modeli olan SeUneter mimarisini önermektedir. 

Araştırmada 300 hastadan alınan 600 T2a MR görüntüsü kullanılarak bir veriseti 

hazırlanmıştır. Bu görüntüler, servikal vertebra cisimleri, intervertebral diskler, spinal 

kanal ve spinal kord gibi ayrıntılı yapıları içermektedir ve toplamda 16 kategori (arka 
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plan dahil) kapsamaktadır. Attention modülü U-Net mimarisinin çift konvolüsyon 

katmanlarına entegre edilerek daha ayrıntılı özelliklerin çıkarılmasını sağlaması 

hedeflenmiştir. Farklı derin öğrenme modelleri ile sonuçlar kıyaslandığında daha üstün 

sonuçlar elde edilmiştir. SeUneter, servikal omurga MR bölütlemesinde attention 

bağlantılarını kullanarak daha doğru ve verimli bölütleme sağlayan yenilikçi bir yöntem 

olarak değerlendirirken özellikle klinik ortamda omurga hastalıklarının tanısında ve 

takibinde önemli bir araç olabileceği vurgusu yapılmaktadır. 

Tablo 2.1.’de geleneksel ve derin öğrenme yöntemlerini içeren omurilik sınırları 

ve farklı omurilik lezyonlarının tespit edilmesini içeren literatür çalışmalarının kısa bir 

özeti sunulmuştur. 

Tablo 2.1. Geleneksel ve derin öğrenme yöntemlerini içeren omurilik sınırları ve farklı 

omurilik lezyonlarının tespit edilmesini içeren literatür çalışmaları  

Çalışma  Sistem  Metodoloji Veri Seti  Veri sağlayıcısı 

Geleneksel Metotlar 

El Mendili vd. (2015) El yordamı 
/Yarı-oto ROI MRI T2a Sağlıklı, ALS, 

SMA, SCI 

El Mendili vd. (2015) Yarı-oto 
Double-thresholding 
(DTbM) 

MRI T2a  Sağlıklı, ALS, 
SMA, SCI 

Losseff vd. (1996) Yarı-oto 
Intensity-based thresholding 
and region-growing 
segmentation 

MRI T1-like 
(FSPGR)  Sağlıklı, MS 

Tench vd. (2005) Yarı-oto Edge detection + PV 
correction MRI T1a  Sağlıklı 

Horsfield vd. (2010) Yarı-oto Active Surface  MRI T1a, T2a Sağlıklı, MS 
Kawahara vd. (2013) Yarı-oto PCA MRI T1a, T2a Sağlıklı, MS 

Law vd. (2013) Yarı-oto 

Two points Gradient 
competition descriptor with 
orientation coherence + 
intensity classification 

MRI T1a, T2a Sağlıklı 

Sabaghian vd. (2020) Oto K-Means MRI T2a Yaralanmamış 
gönüllü 

Gros vd. (2018) Oto  OptiC 
MRI T1, T2, 
T2*, difüzyon 
ağırlıklı 

20 farklı merkezden 
nörolojik hasta 

Koh vd.  (2010) Oto Active contour(GVF) MRI T2a Sağlıklı 

Chen vd.  (2013) Oto Atlas registration with 
topology constraint MRI T1a, T2a Sağlıklı, MS 

Pezold vd. (2015) Oto 
Continuous max-flow with 
cross-sectional similarity 
prior 

MRI T1a Sağlıklı, MS 

Asman vd. (2014)  Oto Multi-atlas label fusion MRI T2a Sağlıklı 

De Leener vd. (2015) Oto 
Single-atlas 
deformation(MNI-Poly-
AMU şablon) 

MRI T2,T2a Sağlıklı 

Taso vd. (2015) Oto Tensor tabanlı morfometri 
(TBM) (AMU40 şablon) MRI T2a Sağlıklı 

De Leener vd. (2015) Oto PropSeg MRI T1a, T2a  
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Tablo 2.1.’in devamı 

Gros vd. (2019) Oto 2B Dilate CNN+3B CNN MRI T1, 
T2,T2a Sağlıklı, MS, Diğer 

Horváth vd. (2019) Oto MD-GRU (New RNN) 
AMIRA MR 
(Özel 
protokol) 

Sağlıklı 

McCoy vd. (2019) Oto 2B-CNN MRI T2a Omurilik Yaralı 

Reza vd. ( 2019) Oto 3B-CNN MRI T2a Kordoma tümör 

Merali vd. (2021) Oto ResNet-50 MRI T2a dejeneratif servikal 
miyelopati  

Perone vd. (2018) Oto CNN (Atrous Spatial 
Pyramid Pooling (ASPP)) 

MRI 
Flair,T1a, T2a ALS 

Koh vd. (2011) Oto an attention model and an 
active contour model   

U-Net 

Zhang vd. (2021) Oto Sau-net  MRI T2a 
Servikal 
spondilotik 
miyelopati 

AskariHemmat vd. 
(2019) Oto 

U-Net (sabit nokta niceleme 
yöntemi (fixed point 
quantization metot)) 

Spinal Cord 
Gray Matter 
Segmentation, 
ISBI challenge, 
National 
Institute of 
Health (NIH) 

 

Hille vd. (2020) Oto U-Net  MRI T1,T2,T2a Sağlıklı, MS, 
Diğer 

Lemay vd. (2021) Oto Kaskad U-Net 

MRI 
Gadolinium-
enhanced T1a 
T2a 

Tümör, Ödem 
ve Kavite 

Zhuo vd. (2022) Oto MultiResUNet ve 
DenseNet121 MRI T2a 

Astrositom, 
Ependimom, 
MS 

Alsenan vd. (2021) Oto MobileNetV3 ve U-Net SCGM Diğer 
Alsenan vd. (2022) Oto MobileNetV3 ve U-Net SCGM Diğer 

Fei vd. (2023) Oto U-Net (backbone with 
VGG16 and ResNet50) 

Diffusion tensor 
imaging (DTI) 
MRI) 

Servikal 
spondilotik 
miyelopati 

Zhang vd. (2022) Oto SeUneter MRI T2a Diğer 
ALS:Amiyotrofik lateral skleroz 
SMA:Spinal musküler atrofi 
SCI: Spinal cord injury 
MS:Multipl skleroz 
SSS:Santral sinir sistemi 
MRI:Manyetik rezonans image 
PCA: Principal component analysis 
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3.  OMURİLİK VE YAPISI 

Omurilik, beyinle birlikte merkezî sinir sisteminin önemli bir parçasıdır. İnsan 

omuriliği merkezi sinir sisteminin oldukça organize ve karmaşık bir parçasıdır. 

Omuriliğin işlevi nöral sinyallerin, beyinden (duyusal bilgi) periferik sinir sistemine 

(motor bilgisi) ve periferik sinir sistemden beyne iletilmesini sağlamaktır. İletilen bu bilgi 

BM bulunan miyelinli motor ve duyusal aksonlardan geçer ve çoğunlukla GM bulunan 

omurilik internöronlar tarafından iletilir ve kontrol edilir(De Leener vd., 2016: 125). 

 
Şekil 3.1. Omurilik vertebra anatomisi 

Kaynak: (Altman ve Bayer, 2001) 
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Omurilik omurlar arasındaki kemik bir kanal içinde olup omuriliğin çevresi BOS 

adı verilen beyin omurilik suyu ile çevrilidir. Omurilik, beyin ile periferik sinir sistemi 

arasındaki bağlantıdan sorumlu olan ana bağlantığı sağlamaktadır. Yaklaşık 40-45 cm 

uzunluğunda, 1 cm çapında, 30 gr. Ağırlığındadır(Duman, 2009). Kadınlarda 1-2cm daha 

uzundur. Şekil 3.1.’de görüldüğü gibi, omurilik temel olarak servikal vertebra (boyun 

omuru, 7), torasik vertebra (sırt omuru, 12), lomber vertebra (bel omuru, 5), sakral 

vertebra (sakrum, 5) ve koksigeal vertebra (koksis, 4) olmak üzere ilk 24 adet eklem 

birbirine bağlı olup tüm alana presakral vertebra denilmektedir. Diğer sakral ve koksiks 

alana ise pelvik bölge ismi verilmektedir. 

Omurilik aksiyel (transvers) kesitte incelendiğinde dış bölümünde miyelinli akson 

demetlerinden oluşan beyaz madde (ak madde, beyaz cevher) var iken iç bölümünde gri 

madde (boz madde, gri cevher) bulunmaktadır. Omurilik gri madde ve beyaz madde adı 

verilen bu iki temel sinir dokudan oluşmaktadır(Paugam vd., 2019: 21). Şekil 3.2.’de 

görüldüğü gibi, gri madde H harfine benzetilmekte veya literatürde “kelebek” şeklinde 

ifadesi kullanılmaktadır. Omurilik boyunca gri madde ve beyaz madde yapısı 

incelendiğinde hacimsel ve şekil bakımından değişiklik göstermektedir. Omuriliğin gri ve 

beyaz maddenin sahip olduğu hacimsel değişiklikler veya doku deformasyonları birçok 

nörolojik hastalık sebebiyet vermektedir(Amukotuwa ve Cook, 2007: 511).  

 
Şekil 3.2. Omurilik aksiyel kesitte beyaz madde ve gri madde yapısı  

Kaynak: (Altman ve Bayer, 2001) 

Bu dokulardaki beyaz ve gri maddede demiyelinizan plaklarının birikmesi ile 

beyin, omurilik ve optik sinirleri etkileyerek MS gibi birçok hasarlı dokunun oluşmasına 

sebep olmaktadır. Bu nedenle omurilik MR görüntüleme ile MS, ALS ve travmatik 

yaralanma gibi çeşitli hastalıkların araştırılmasında hayati bir rol oynamaktadır. 

3.1. Omurilik MS Lezyonları 

Multipl Skleroz (MS), merkezi sinir sisteminin kronik, inflamatuvar, 

demiyelinizan, nörodejeneratif bir hastalığıdır(Grigoriadis ve Van Pesch, 2015: 

3),(Mortazavi vd., 2012: 299). MS, beyin, omurilik ve optik sinirleri etkilemekte olup 

beyaz ve gri madde de demiyelinizan plaklarının birikmesi ile oluşan az da olsa 

aksonların ve nöron hasarlarının görüldüğü bir hastalıktır türüdür(S. Öztürk vd., 2017: 

137). Sinir ağları miyelin kılıflar sayesinde bir nörondan diğerine iletilmesi gereken 
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sinyalleri hızlı bir şekilde iletilmesini sağlamakla beraber bu miyelin kılıfın hasarından 

(demiyelinizasyon) sinir sistemi boyunca iletimde aksaklıkların yaşanmasına sebep 

olmaktadır(Zeng vd., 2020: 610967). Bu aksamalar ise vücut fonksiyonlarının 

bozulmasına neden olur(Mortazavi vd., 2012: 299). MS oldukça heterojen bir hastalık 

olup santral sinir sisteminin etkilendiği bölgeye göre motor, duyu, otonom ve kognitif 

bozuklukları içeren çok değişken klinik belirti ve bulguları olabilmektedir(Christogianni 

vd., 2018: 208). 

MS hastasının yaşamını fiziksel, ekonomik, psikolojik ve sosyal yönleriyle 

etkileyebilen, sıklıkla özürlülüğe yol açan kronik bir hastalıktır(Yıldırım ve Fadıloğlu, 

2014: 100). Çeşitli semptomların varlığı ve öngörülemeyen doğası nedeniyle hastalar 

gelecekleriyle ilgili belirsizlikle yaşamak zorunda kalmakla beraber ilerleyen evrelerde 

nörolojik morbidite ve mortaliteye sebep olabilmektedir(Lemay vd., 2021: 102766). İlk 

olarak 1868 yılında Jean-Martin Charcot tarafından yeni bir sinir sistemi hastalığı olarak 

bildirilmiştir (Zalc, 2018: 3482) ve ardından Schumacher (1965), Poser (1983) ve 

McDonald (2001) MS için klinik tanı kriterleri yayınlamışlardır. McDonald Kriterlerinde 

MS hastalığı için bir dizi değerlendirme ölçütü sunulmuştur(Thompson vd., 2018: 162). 

Bu ölçütler zaman içerisinde revize edilerek günümüzde de en sık kullanılan 

değerlendirme kriterlerinden biri haline gelmiştir(Toğrol ve Demir, 2013: 15). 

MS lezyonları omurilik servikal, torasik ve lomber olmak üzere tüm kord boyunca 

gözlemlenebilmekle beraber sıklıkla servikal omurilikte (%56,4) daha fazla 

gözlemlenmektedir ve bu nedenle klinik çalışmalarda MS lezyonları MR taramalarında 

genellikle servikal bölgede aranmaktadır(Bot vd., 2004: 226),(Patek ve Stewart, 2023: 

406). Geçmişten günümüze çok hızlı gelişim gösteren MR teknolojisi sayesinde nokta 

atışı klinik tanı ile cerrahi işlemler yapılabilmektedir(Karkucak ve Köksal, 2021: 147). 

MR teknolojisinin sağladığı kolaylıkların yanı sıra görüntülenecek omurilik alanın sahip 

olduğu farklılıklar bölgesel zorluklar veya patalojik nedenler tıbbi görüntülemenin çekim 

kalitesini etkileyerek optimumun altında bir performans göstermesine sebep 

olabilmektedir(Stroman vd., 2014: 1070),(De Leener vd., 2016: 125). 

3.2.  MS’de Epidemiyoloji  

MS ile ilgili olarak 70 yıldan fazla zaman diliminde yapılan çalışmalardan elde 

edilen veriler ile epidemiyolojik olarak bir veri zenginliğine ulaşılmıştır. Fakat dünya 

genelinde MS'in coğrafi dağılım modelini çıkarmak hala zor bir iştir(Pugliatti vd., 2002: 

182). Yapılan istatistiksel çalışmalarda ortak kriterlerin kullanılmaması; araştırılan 

popülasyonların değişkenliği, vakaların hangi evrelerde oldukları, coğrafi ve zaman 
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değişkenlerine bağlı olarak tedaviye erişim imkanlarının değerlendirilme kriterleri, farklı 

tanı kriterlerinin kullanılması gibi diğer başlıca kritik sorunlardandır. Bu nedenle ortak 

zaman diliminde taranmış genel bilgiye ulaşmak zor olmakla birlikte son yapılan 

değerlendirmeler yaklaşık veya genel ifadeler kullanılmaktadır. Bu bakımdan 

incelendiğinde Dünya sağlık örgütünün son verilerine göre dünyada 2,5 milyondan fazla 

kişinin MS hastası olduğunu ve tüm yaş aralıklarında gözlemlenmekle beraber genç 

erişkinlerde ve özellikle kadınlarda daha sık gözlemlendiğini belirtmişlerdir(Nouri vd., 

2015: E675). MS ile ilgili olarak yapılan araştırmalarda köken, kıta, yaşanılan coğrafi 

bölge, cinsiyet, yaş aralığı, gün ışığı süresi, beslenme şekillerine vb. gibi birçok açıdan 

yapılan çalışmalar mevcuttur. Bunlardan bazılardan elde edilen verilere göre; 

Türkmenler, Özbekler, Kazaklar, Çinliler, Japonlar, Afrikalı siyahlar vb. gibi ırklarda 

daha nadir izlenirken Parsiler ve Filistinlilerde daha fazla gözlemlenmekte olduğunu 

belirtmişlerdir(Pugliatti vd., 2002: 182). Aynı bölgede yaşayan farklı ırklarda da farklı 

sonuçlar elde edildiği gözlemlenmiştir. Bu nedenle genel bir çıkarımla MS hastalığının 

yaşanılan yer ile ilgili değil daha çok kişisel bir hastalık olması yorumunda 

bulunulmuştur(Pugliatti vd., 2002: 182).  Dünyada yapılan çalışmalar ışığında çıkarılmış 

MS haritasına ait bir veriyi Şekil 3.4’te gösterilmektedir. 

 
Şekil 3.4. MS dünya geneli prevelansı haritası  

Kaynak:(Pugliatti vd., 2002: 182) 
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3.3.  MS Etiyolojisi 

MS etiyolojisi tam olarak bilinmemekle birlikte, otoimmünite, genetik yatkınlık ve 

çevresel faktörlerin tamamının hastalığı tetikleyen unsurlar olduğu 

bilinmektedir(Weinshenker, 1996: 291),(Sawcer vd., 1996: 464). MS otoimmün hastalık 

grupları içerisinde değerlendirilmektedir(Mirza, 2002: 40). Otoümmin sistem vücudun 

bağışıklık sistemini oluşturan hücrelerinin kendi hücrelerine saldırması anlamına 

gelmektedir. 

Viral enfeksiyonlar, bakteriyel enfeksiyonlar, beslenme alışkanlığı, evcil hayvan 

besleme, travma, kaza veya ameliyat, aşılar, gebelik, iklim koşulları gibi bazı 

parametrelerin etiyolojideki rolleri üzerinde oldukça geniş araştırmalar yapılmasına 

rağmen ortak bir görüş elde edinilememiştir(Sadovnick ve Ebers, 1993: 17). Diğer 

taraftan hayvansal yağ et tüketimi gibi beslenme şekillerinin MS ile olan ilişkisi 

incelendiğinde farklı sonuçlar elde edilmiştir(Granieri, 2000: S141). İklim şartları, kıta, 

yaşanılan coğrafi bölge, ırk, cinsiyet, yaş aralığı, gün ışığı süresi (D-vitamin), sosyo 

kültürel seviye, meslek seçimi, aşılar zararlı alışkanlıklar (sigara, alkol vb.), yüksek 

oranlarda kahve tüketimi gibi birçok açıdan yapılan çalışmalar olmasına rağmen bir 

koşula bağlı olmayan çok koşullu durumların değerlendirilmesi gereken bir hastalık 

olarak yorum yapılabilmektedir. MS etiyolojisini tüm bu çevresel koşulların ve yaşam 

standartlarının yanı sıra genetik alt yapısı da incelenmesi gereken kompleks bir 

hastalıktır(Olsson vd., 2017: 25). İkizlerde ve MS'lilerin birinci derece yakın 

akrabalarında MS'in daha sık görülmesi gibi nedenlerle genetik etkenlerin önemi giderek 

daha araştırılması gereken kritik bir konu olarak karşımıza çıkmaktadır. Buna ek olarak 

MS, beyaz ırkta daha fazla görülürken siyah ırkta nadir gözlemlenmektedir. Eskimolarda, 

Joponya, Çin ve Kore'de de oldukça nadir olarak MS tanısı alınmaktadır. Genetik 

çalışmaların ışığında bölgesel yapılmış birçok çalışma yapılmış olmasına rağmen kısaca 

MS, beyaz ırkta fazla tanı alırken Asya ve siyah ırkta MS tanısı alma riski daha düşük 

olduğu belirtilebilmektedir(Mirza, 2002: 40). 

3.4.  MS Belirtileri, Tanı ve Teşhisi 

MS hastaları çok çeşitli sebeplere bağlı olarak yeni başlayan veya tekrarlayan 

nörolojik semptomlar için klinik başvurusu yapabilmektedirler. Fakat klinik semptomları 

ve bulguları oldukça değişkenlik göstermekte olup duyusal, motor, görsel ve beyin sapı 

ile iletimi sağlayan yollarda meydana gelen hasarlardan dolayı 

kaynaklanabilmektedir.(Garg ve Bhagyashree, 2021: 229). Bunlardan bazıları 

ekstremitelerde güçsüzlük, duysal belirtiler, ataksi, mesane problemleri, yorgunluk, 



32 
 

diplopi, görme bulanıklığı gibi görsel belirtiler, dizartri, bellek-konsantrasyon-dikkat 

bozukluğu gibi kognitif yakınmalar sık görülen belirtilerdir. Buna karşılık hareket 

bozuklukları, epileptik nöbet, baş ağrısı, demans düzeyinde kognitif yıkım, kortikal 

belirtiler, işitme kaybı, amyotrofi seyrek görülen belirti ve bulgulardır(Ünal vd., 2018: 9).  

Klinik olarak izole sendrom (Clinically İsolated Syndrome (CIS)) olarak 

adlandırılan bu hastalardaki ilk belirtiler optik nörit, inkomplet miyelit veya beyin sapı 

sendromu olabilmektedir(Miller vd., 2005: 281). Başlangıçtaki beyin veya omurilik MR 

görüntüleme ile tespit edilen klasik demiyelinizasyon lezyonlarının varlığının ikinci kez 

tekrarlaması durumunda MS varlığı için en önemli belirtilerinden biri olmaktadır (Filippi 

vd., 1994: 635). Diğer taraftan BOS anormalliklerinin tespit edilmesi elde edilen 

bulgulara ek olarak karar verici bir değere sahip olabilmektedir(Awad vd., 2010: 1). MS 

tanısı için geçmişten bugüne kadar edinilen klinik tecrübeler ışığında birçok bilgi 

birikimine ulaşılmış olmasına rağmen hala MS için tek bir tanısal test yoktur ve tanı 

genellikle MR görüntüleme ve bazı durumlarda BOS analizi ile desteklenen klinik seyrin 

takibine dayanmaktadır. İlk kez 1965 yılında Schumacher paneli ile kesin MS tanı 

kriterleri belirlenmiştir ve ardından Poser (1983) ve McDonald (2001) MS için klinik tanı 

kriterleri yayınlamışlardır. McDonald kriterleri klinik uygulayıcılar tarafından en çok 

kullan yöntemler bütünü olmuştur. 2001’de ilk hali ile uygulanmaya başlayan ve yıllar 

içerisinde revize edilerek 2017’de en güncel versiyonu elde edilmiştir(McDonald vd., 

2001: 121),(Thompson vd., 2018: 162). MS teşhisi için başvurulan McDonald 

Kriterlerinin son versiyonu Tablo 3.1’de verilmiştir. 

Hastalık farklı seviyelere göre ifade edilmekte olup bazı seviyelerinde dönemsel 

ataklarla kendini gösterirken bir kısmında ise hastalığın başında veya son döneminde 

hızla ilerleyici bir süreç yaşanabilmektedir(M. Öztürk ve Tek, 2019: 10). Bu nedenle MS 

plaklarının sinir sisteminin farklı yerlerinde, farklı zamanlarda oluştuğunun 

gözlemlenmesi ile birlikte McDonald Kriterleri’nin vurguladığı önemli konulardan biri 

MS tanısı koyarken klinik takip için MRG (Manyetik Rezonans Görüntüleme)’in 

önemine özellikle vurgu yapılmaktadır(Thompson vd., 2018: 162). MR omurilik 

çekimleri ile MS hastalarının %80-%92 oranında teşhis edilebilmektedir(Bot vd., 2002: 

46).  
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Tablo 3.1. Mcdonald Kriterleri 2017 

Atak Objektif Klinik Bulgulu 
Lezyon Sayısı (MRG) MS Tanısı İçin Gerekli Ek Veri 

≥2 atak ≥2 Yok a 

≥2 atak 1+ öyküde başka bir alanda ki 
lezyona ait atak Yok b 

≥2 atak 1 MSS’de farklı bir alandaki lezyona ait yeni bir atak veya MRGc ile 
mekânda yayılımın gösterilmesi 

1 atak ≥2 Ek bir klinik atak veya MRGd ile zamanda yayılımın gösterilmesi 
veya BOS-spesifik OKB varlığı 

1 atak 1 lezyona ait objektif klinik 
bulgu 

MSS’de farklı bir alandaki lezyona ait yeni bir atak veya MRGe ile 
mekânda yayılımın gösterilmesi ve ek bir klinik atak veya MRGd 
ile zamanda yayılımın gösterilmesi veya BOS-spesifik OKBe 
varlığı 

Sinsi 
ilerleme 

1 yıl klinik izleme (retrospektif 
veya prospektif, ataktan 
bağımsız olarak) 

Aşağıdakilerin 2’si; 
• MS tipik alanlarda ≥1 lezyon 
• Spinal kord da ≥2 lezyon 
• BOS-spesifik OKB varlığı 

a : Mekanda ve zamanda yayılımı göstermek için ek bir teste gerek yoktur. Ancak beyin MRG tüm hastalara 
yapılmalıdır. Tanıyı destekleyecek yetersiz klinik ve MR bulguları olanlarda, tipik KİS olmayanlarda, atipik 
özellikleri olan hastalarda ek olarak spinal kord MRG ve BOS tetkiki yapılmalıdır. Bu tetkikler yapılamadıysa ya 
da negatifse MS tanısı koymadan önce dikkat edilmeli ve alternatif tanılar göz önünde bulundurulmalıdır.  
b : Atak için objektif nörolojik bulgular temelinde konulmuş klinik tanı en güvenilirdir. Öyküdeki atağa ait 
dökümante edilmiş objektif nörolojik bulgular yoksa, öykü enflamatuvar demyelinizan olaya ait tipik semptom ve 
klinik gelişim özelliklerini içermelidir. Ancak en az bir atak objektif bulgularla desteklenmelidir. Objektif kanıtların 
yokluğunda dikkatli olunmalıdır.  
c : MRG’de alanda yayılım; MS tipik (periventriküler, kortikal/jukstakortikal, infratentoryal ve spinal kord) 4 alanın 
≥2’sinde ≥1 lezyon olması.  
d: MRG’de zamanda yayılım; herhangi bir zamanda çekilen MRG’de kontrast tutan ve tutmayan lezyonların aynı 
anda bulunması veya takip MRG’sinde ilk MRG (çekildiği zamandan bağıMSız olarak) referans alındığında yeni 
bir T2 hiperintens lezyonun ya da kontrast tutan lezyonun olması. 
e: BOS-spesifik OKB varlığı zamanda yayılımı göstermez ama tanıda onun yerine geçer.  
MS: Multipl skleroz, SSS: Santral sinir sistemi, MRG: Manyetik rezonans görüntüleme, BOS: Beyin omurilik 
sıvısı, OKB: Oligoklonal band (immünoglobulin bantlar)  

Kaynak: (Thompson vd., 2018: 162) 

3.5. Servikal Omurilik ve MS’in MR ile Görüntülenmesi 

MS tanısı koymak için tüm klinik değerlendirmelerin ardından en önemli yardımcı 

araç MR görüntülemedir. McDonald Kriterlerine göre MS tanısı almak için klinik bulgular 

yeterli olsa bile MRG verisi alınmadan karar verilmemesine özellikle vurgu yapılmaktadır. 

Bunun en önemli nedeni ise demiyelinizan lezyonların sinir sisteminin farklı konumlarında 

farklı zamanlarda dilimlerinde oluşabilmesi olarak ifade edilmektedir(Toğrol ve Demir, 2013: 

15). Bu sebeple farklı klinik seyir izleyen hastalarda yapılan MR tarama sonuçlarının 

kıyaslanması hastalığın ve lezyonların takibi için oldukça önemli olmaktadır.  



34 
 

Geçmişten günümüze MR cihazlarının ilk çekim gücü 0.02T iken gelişmeler ile 

birlikte 1T, 3T, 5T ve en son 7T çekim gücüne ve üzerinde bir çekim kalitesine ulaşmıştır. Bu 

sayede çekim süreleri kısalmış görüntüler daha da netleşmiştir. MR cihazları, farklı 

sekanslarda çekim yapabilmektedir. Şekil 3.5.’te görüldüğü gibi, omurilik MR görüntülerinin 

T1a, T2a, FLAIR gibi farklı sekanslarda ve sagital, aksiyel ve koronal olmak üzere farklı 

açısal MR çekimleri yapılabilmektedir.  

 
Şekil 3.5. Servikal ve torasik omurilik bölgesi T1a, T2a sagital ve aksiyel MR verileri 

MR görüntülerde incelenen omurilik lezyonları, omuriliğin yapısını ve 

fonksiyonunu etkileyen demiyelinizasyon, nöroaksonal kayıp ve gliosis alanlarına 

karşılık gelmektedir. Omurilik lezyonları, geleneksel spineko sekanslarında T2 

hiperintensitesi alanları ve daha az sıklıkla T1 hipointensitesi alanları olarak görüntülenir 

(Moccia vd., 2019: 1756286419840593). MS lezyonları sıklıkla servikal bölgede (%59) 

ve daha az sıklıkla alt torasik omurilikte (T7-12; %20) görülür(Weier vd., 2012: 1560). 

Buna karşılık, MS'deki lezyonlar sagital görüntülerde sıklıkla puro şeklinde/silindirik, 

aksiyel görüntülerde ise kama şeklinde görünür ve tipik olarak keskin sınırlara sahiptir 

(Filippi vd., 1994: 635). Sagital görünümlerde uzunlukları nadiren iki vertebral segmenti 

aşar. Aksiyel taramalarda MS lezyonları kesit alanının %50'sinden azını tutar, tercihen 

lateral ve posterior beyaz cevher kolonlarını kaplar ve gri cevheri korumaz. Klinik 

ortamda omurilik MR'ı için önerilen protokoller hem sagital hem de aksiyel taramaları 

içermektedir(Kim vd., 2015: 1165).   
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4. MATERYAL VE YÖNTEM 

Tez kapsamında omurilik bölgesi bölütlenmesi ve omurilik MS lezyon tespiti için 

önerilen yapının genel blok diyagramı Şekil 4.1’de verilmekte olup diğer sagital omurilik 

MS lezyonlarının tespit edilmesi ve aksiyel OKA/BOS alanlarının bölütlenmesi süreçleri 

aynı işlemler uygulanmaktadır. Sistem ilk olarak veri seti hazırlığı ile başlamaktadır. Veri 

seti hazırlığı genel anlamda uygun format dönüşümü, maske verilerinin oluşturulması, 

veri boyutlarının eşitlenmesi ve ihtiyaç halinde veri artırma işlemlerinin uygulanmasını 

kapsamaktadır. Daha sonra verilerin test ve eğitim olmak üzere ayrılarak kullanılacak 

olan U-Net mimarilerine karar verilmektedir. Model eğitimleri tamamlandıktan sonra 

ağırlıklar kaydedilerek literatürde sıklıkla kullanılan metrik değerleri hesaplanarak model 

başarıları değerlendirilmektedir. En son aşamada hedef bölütleme alanları için omurilik 

bölgelerinin bölütlenmesi veya omurilik MS lezyonlarının tespit edilmesi sağlanmaktadır. 

 

Şekil 4.1. Servikal omurilik bölgesinin bölütlenmesi ve omurilik MS lezyonlarının 

tespiti için tez kapsamında önerilen yaklaşımın blok diyagramı  

Omurilik bölgesinin otomatik bölütlenmesi ve omurilikte bulunan MS 

lezyonlarının otomatik tespit edilmesi, MS hastalığının takibinde çok önemli bir karar 

destek sistemi olarak kullanılabilmektedir. Klinik ortamda omurilik MR'ı için önerilen 

protokoller hem sagital hem de aksiyel taramaları içermektedir(Kim vd., 2015: 1165). 

Buna ek olarak omurilik bölgesinde MS lezyonları tanı ve tedavisi için çoğunlukla MS 

yoğunluklarının servikal bölgede olması nedeniyle omurilik servikal MR çekimi 

yapılmaktadır(Ünal vd., 2018: 9). Aksiyel T2 görüntülemenin özellikle daha fazla sayıda 

küçük ölçekte, periferik ve noktasal MS lezyonlarının tespitinde daha hassas iken sagittal 

T2 görüntüleme ile uzunlamasına lezyonların tespiti için daha uygun olabilmektedir 

vurgusu yapılmaktadır. Fakat bazı yapılan çalışmalarda ise sagital MR verilerinde ise 

bazı vakalarda lezyonları yeterince hassas bir şekilde göstermediği ifade edilmiştir 

(Galler vd., 2016: 963). Özellikle aksiyel görüntülerde, omuriliğin yan bölgelerine 

yerleşen küçük lezyonlar daha net görüldüğü için tanı doğruluğu bakımından daha 

avantajlı durumda iken, sagittal kesitlerde bu tür lezyonlar daha az görünür olduğu 
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vurgusu yapılmıştır (Alcaide-Leon vd., 2016: 970). Ortak konsensus genel anlamda 

aksiyel ve sagittal görüntülemenin birlikte kullanılması olduğuna dikkat çekmektedir. Bu 

tez çalışmasında, aksiyel planelerden omurilik sınırları ve bu sınırlar içerisinde bulunan 

lezyonlar tespit edileceği için tüm kord boyunca (7'si servikal, 12'si torakal, 5'i lomber) 

MS lezyonları taramak yerine daha sık gözlemlendiği omurilik servikal bölge MR verileri 

kulanılmıştır(Wheeler-Kingshott vd., 2014: 1082). Diğer taraftan, tez çalışmasında, 

servikal omurilik bölütleme ve tespit etme işlemleri için U-Net mimarisi temelinde fractal 

evrişim yapısı kullanılarak geliştirilen FractalSpiNet, Con-FractalSpiNet, Att-

FractalSpiNet mimarileri kullanılmıştır. 

Tüm kullanılan verisetleri ile deneysel çalışmalar kapsamınca kullanılan ve 

geliştirilen U-Net mimarilerinin detayları tezin ilerleyen aşamalarında kapsamlı olarak 

sunulmuştur. 

4.1. Verisetleri 

Tıbbi görüntü işleme alanında sıklıkla kullanılan birçok veriseti olmasına karşılık 

omurilik gibi spesifik çalışılmak istenilen bölgelerde açık kaynak (publicly-available/açık 

kaynak) veriseti kısıtı bulunmaktadır. Bu nedenle çalışılmak istenilen spesifik organlar 

veya dokular için çalışmaya özgü veriseti oluşturmak bölütleme çalışmalarının zorlu 

fakat özgün olmasını sağlayan bir adımdır. Bu tez çalışması kapsamında bir global 

veriseti ve bir de çalışmaya özgü veriseti üzerinde deneysel çalışmalar yürütülmüştür. Bu 

bağlamda, özgün veriseti için Akdeniz Üniversitesi Hastanesi’ndeki MS hastalarından 

servikal omurilik bölgesine ait turbo spin echo sekansında T2a MR verileri toplanarak 

çalışmaya özgü veriseti ve alt grupları oluşturulmuştur. Bu veri setleri: Omurilik Aksiyel 

GM/BM (Global) (Şekil 4.2(a)), Omurilik Aksiyel OKA/BOS (Özgün) (Şekil 4.2(b)), 

Omurilik Aksiyel MS (Özgün) (Şekil 4.2(d)), Omurilik Sagital MS (Özgün) (Şekil 4.2(e)) 

şeklinde isimlendirilmiştir. Şekil 4.2’de açık veriseti ve özgün verisetinden ITK-SNAP 

yazılım aracı (Yushkevich vd., 2006: 1116) orijinal MR kesiti ve hazırlanan maske 

verileri ile birlikte çalışılan hedef alan gösterilmektedir. 
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(a)  

 
(b) 

 
(c) 

 
(d) 

Şekil 4.2. Veri setlerinde bulunan MR görüntüsü, MR görüntüsüne ait işaretlenmiş maske 
görüntüleri ve ilgili alanın işaretlenmesi (a) omurilik GM/BM aksiyel T2a MR, (b) omurilik 
OKA/BOS aksiyel T2a MR, (c) omurilik MS aksiyel T2a MR, (d) omurilik MS sagital T2a 

MR  

4.1.1. Global Veriseti (SCGMSC) 

Tez çalışmasında, literatürde omurilik çalışmalarında kullanılan global bir veriseti 

olan “Spinal cord grey matter segmentation challenge (SCGMSC)” veriseti kullanılarak 

omurilik gri ve beyaz bölge otomatik olarak bölütlenerek, elde edilen sonuçlar önerilen 

mimarilerin sonuçları ile karşılaştırılmıştır. SCGMSC veriseti (Ferran Prados vd., 2017: 
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312), University College of London, Ecole Polytechnique de Montreal, University of 

Zurich ve Vanderbilt University isimli dört üniversitenin eğitim amaçlı kullanım için 

hazırlamış olduğu bir verisetidir. “Gray matter spinal cord bölütleme yarışması” 

kapmasında veriler herkese açık halde sunulmuş olup talep edilmesi halinde 

iletilmektedir.  

Tablo 4.1. SCGMSC açık kaynak veriseti içerik bilgileri (K:Kadın, E:Erkek) 
Veri Merkezleri 

 Site 1-UCL Site 2-Montreal Site 3-Zurich Site 4-Vanderbilt 
Veri sayısı (eğitim, 
test) 

20 
(10,10) 

20 
(10,10) 

20 
(10,10) 

20 
(10,10) 

Hasta sayısı 
(cinsiyete göre) 14K, 6E 11K, 9E 6K, 14E 7K, 13E 

Ortalama yaş 
(standart sapma) 44.3 (10.4) 33.7 (17.4) 40.6 (10.4) 28.3 (8.2) 

 
Veri Edinimi ve Tarayıcı Teknik Bilgileri  

Tarayıcı 3 T Philips Achieva 3 T Siemens TIM 
Trio 

3 T Siemens 
Skyra 

3 T Philips 
Achieva 

Sekans 3B Gradient echo 
2D spoiled 

gradient multi-
echo 

3B multi-echo 
gradient-echo 

3B multi-echo 
gradient-echo 

Maske 40 
(4 farklı uzman) 

40 
(4 farklı uzman) 

40 
(4 farklı uzman) 

40 
(4 farklı uzman) 

Toplam MR 
görüntüsü 30 (kesit) 113(kesit) 178(kesit) 133(kesit) 

Toplam maske 
görüntüsü 30(kesit) 113(kesit) 149(kesit) 132(kesit) 

TE (ms) 5 5.41,12.56,19.16 19 7.2,16.1,25 
TR (ms) 23 539 44 700 
Flip Açısı (derece) 7 35 11 28 
FOV (mm) 240×180 320×320 162×192 160×160 
Çözünürlük (mm) 0.5×0.5×5 0.5×0.5×5 0.25×0.25×2.5 0.3×0.3×5 
NEX 8 1 5 2 
Kesit  10 (3çıkarılmış) 10 20 14 
Süre (d:s) 13:34 4:38 10:40 5:46 
Bobin (kanallar) 16 12 + 4 16 16 
Bobin tipi Neurovascular Head+Neck Neurovascular Neurovascular 

Hızlandırma – GRAPPA factor 
2 – SENSE RL=2 

 

SCGMSC verisetinde, Tablo 4.1.’de verilen veriler sağlıklı deneklerin omurilik 

bölgesinden anatomik görüntülerinden elde edilmiştir. Veriler dört farklı siteden 

herbirinden 10 adet test ve 10 adet eğitim veriseti temin edilmiştir. Toplam veriseti 40 

adet test 40 adet eğitim olmak üzere 80 adettir. Her bir eğitim verisi için 4 farklı uzmanın 

manuel olarak belirlediği gri bölge maskesi bulunmakta olup test veri seti için maske 

verisi bulunmaktadır. Teknik detayları incelenecek olursa veriler 4 farklı makineden 

çekim alındığı için her bir MR verisinin içerdiği kesit sayısı ve özellikleri boyutları 
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farklılık göstermektedir. Verisetinde MR görüntüleri farklı marka 3T makineler ile elde 

edilmiştir. Bu nedenle MR verilerinin sahip olduğu teknik detaylar farklılık 

göstermektedir. Bu verilere ait her bir veri sağlayıcısı için verilen omurilik MR görüntüsü 

ve MR görüntüsüne ait 4 farklı uzman tarafından işaretlemesi yapılmıştır. Bu nedenle 

deneysel çalışmalar süresince 4 nolu maske verisi kullanılmıştır. Bu inceleme sonucu 

SCGMSC verisetinden her bir veri sağlayıcısından örnek bir MR görüntü ve uzman 

tarafından etiketlenen maske verisi Şekil 4.3.’te verilmiştir. 

 
(a) MR kesiti (b) Uzman maskesi (c) MR kesiti (d) Uzman maskesi 
Şekil 4.3. SCGMSC verisetinde her bir veri sağlayıcısı için kullanılan MR verileri ve MR 

görüntüsüne ait maske verileri. (a, c) MR kesiti, (b, d) uzman tarafından etiketlenmiş maske 

SCGMSC verisetinde, farklı boyutlara sahip olan MR verileri nedeniyle bazı ön 

işleme işlemlerinden geçirilerek veri seti 128x128 .png formatında tek bir boyutta olacak 

şekilde yeniden düzenlenmiştir. Veriler görüntü ve o görüntülere ait maskelerden oluşan 

eşit boyutlarda yeni bir veri seti oluşturulmuştur. Boyut farklılığı U-Net mimarisinde 

eğitim yapılabilmesi için bir engel oluşturmaktadır ve bu nedenle tüm görüntüleri bir ön 

işleme tabi tutarak görüntü ve maske boyutlarını eşitlenmesi gerekmektedir. Tüm ön 

işlemleme prosedürleri, Python ortamında omurilik MR görüntüleri için maske 

merkezleri kullanılarak gerçekleştirilmiştir.  

4.1.2. Servikal Omurilik MR Veriseti 

Tez çalışmasında, Omurilik bölgesinin bölütlenmesi ve omurilik MS lezyonlarının 

tespit edilmesi çalışması kapsamında gerekli olan MR verilerinin temini Akdeniz 

Üniversitesi Hastanesinden temin edilmiş olup çalışmanın yürütülmesinde bir sakınca 
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olmadığı Akdeniz Üniversitesi Tıp Fakültesi Klinik Araştırmalar Etik Kurulunun 

15.09.2021 tarihli KAEK-644 nolu kararı ile onaylanmıştır. Çalışma kapsamında 

görüntüler medikal veri görüntüleme formatı olarak kullanılan DICOM formatı ile temin 

edilmiştir. Bu bağlamda, Akdeniz Üniversitesi Hastanesindeki kimlik bilgileri, cinsiyeti, 

yaşı gibi özelliklerinden bağımsız olarak temin edilen omurilik bölgesine ait turbo spin 

echo sekansında T2a servikal omurilik MR verileri temin edilerek çalışmaların 

kapsamına özgü bir etiketleme işlemleri yapılarak alt grup verisetleri oluşturulmuştur. 

DICOM formatında temin edilen servikal omurilik MR verileri içerisinde klinik 

uzmanların talepleri doğrultusunda aksiyel, sagital ve koronal vb. farklı çekimler 

bulunmaktadır. Servikal omurilik bölgesinin bütüncül bir yaklaşımla bölütme çalışmaları 

gerçekleştirmek amacıyla aksiyel ve sagital MR verileri kullanılarak bölütlenmesi 

hedeflenen alanların ayrı ayrı maskeleme işlemleri yapılarak alt veri grupları 

oluşturulmuştur. Aksiyel çekimler kullanılarak omurilik alanı (OKA) ve beyin omurilik 

sıvısı alanı (BOS) işaretlemeleri yapılarak omurilik aksiyel OKA/BOS veri alt grubu 

oluşturulmuştur. Yine servikal omurilik MR verileri içerisinde aksiyel ve sagital verilerde 

omurilik ve MS lezyon alanlarının işaretlenmesi yapılarak omurilik aksiyel MS ve 

omurilik sagital MS veri alt grupları oluşturulmuştur. Servikal omurilik MR verileri ile 

toplam üç adet birbirinden farklı ve özgün veri seti alt grupları hazırlanmıştır.  

Çalışmada kullanabilecek çekim kalitesine sahip olan veriler tek tek incelenerek 

her bir servikal omurilik MR verisi ITK-SNAP yazılım aracı (Yushkevich vd., 2006: 

1116) kullanılarak NifTI formatında yeniden kaydedilmiştir. Veriler T2 sekansı 

kullanılarak çekilen servikal omurilik MR görüntülerinden oluşmaktadır. MR verilerinde 

çalışılmak istenilen omurilik alanları ve omurilik içerisinde bulunan MS lezyonları tek 

tek işaretlenerek uzman maske verileri oluşturulmuştur. Radyoloji alanında iki farklı 

uzman tarafından onaylanan maske verileri de NifTI formatında kaydedilerek MR 

görüntüsü ve maskelerinden oluşan özgün verisetleri elde edilmiştir. Çalışmalarda 

kullanılabilecek MR kesitlerinin sayısı MR çekim esnasında kullanılan parametrelere 

bağlı olarak farklı adetlerce elde edilmiştir. Model eğitimi için yetersiz olması halinde 

veri kümeleri için veri artırma işlemi yapılarak veri sayısında iyileştirme işlemleri 

yapılmıştır.  
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Tablo 4.2. Omurilik aksiyel OKA/BOS, omurilik aksiyel MS ve omurilik sagital 

MS alt gruplarından oluşan servikal omurilik MR veriseti teknik bilgileri ve parametreleri 

 Omurilik Aksiyel 
OKA/BOS 

 

Omurilik Aksiyel 
MS  

 

Omurilik Sagital MS 
 

  
Hasta sayısı 87 87 87 
Kullanılan BT tarama 
sayısı 20 87 50 

Hastanın yaş aralığı 18-72 18-72 18-72 
MR makinesi SIEMENS Spectra 

Magnetom 
SIEMENS Spectra 

Magnetom 
SIEMENS Spectra 

Magnetom 
Tarama modu 2D 2D 2D 
Seri açıklaması T2_TSE_TRA T2_TSE_TRA T2_TSE_SAG 
Modalite Transversal T2-a  Transversal T2-a  Sagital T2-a  
Manyetik güç (T) 3.0 3.0 3.0 
Kesit kalınlığı (mm) 4 4 3 
Tekrarlama süresi (ms) 3420 3420 3000 
Yankı süresi (ms) 86 86 97 
Görüntüleme sıklığı 123.185655 123.185655 123.185655 
Kesitler arasındaki 
boşluk 5.2 5.2 3.3 

Örnekleme yüzdesi 90 90 70 
Görüntü alanının 
yüzde fazı 78.125 78.125 100 

Piksel bant genişliği 260 260 260 
Döndürme açısı (FA) 150 150 150 

Boyutlar (piksel) 320x250  320x250  

320x320 
384x324 
384x348 
384x384 

Dilim sayısı 24–30 24–30 13-15 
Ny, NEX 239, 3.00 239, 3.00 239, 3.00 
Voksel aralığı 

0.6875x0.6875x5.2 0.6875x0.6875x5.2 
0.572917x0.572917x3.3 

0.625x0.625x3.3  
0.78125x0.78125x3.3 

 

Alt gruplarda, ilk olarak aksiyel çekimler kullanılarak OKA ve BOS alanı 

işaretlemeleri yapılarak omurilik aksiyel OKA/BOS veri alt grubu oluşturulmuştur. 

OKA/BOS bölütlemesi için verisetindeki toplam 87 hastadan temin edilen servikal omurilik 

MR taramalarından 20 adet MR taraması kullanılmıştır. İkinci olarak, servikal omurilik 

bölgesinin ve omurilik bölgesi içerisinde mevcut olan MS lezyonlarını inceleyebilmek için 

servikal omurilik bölgesi T2a MR verileriAksiyel düzlemdeki alt gruplarda ortalama 24 ile 30 

arasında kesit olup, taramalardaki kesit kalınlığı 4 mm’dir. MR taramalarında tekrarlama 

süresi (TR, repetition time) 3420.00 ms ile 3970.00 ms arasında değişmekte olup, yankı süresi 

(TE, echo time) ise 86.00 ms’dir. Hasta taramalarında diğer çekim parametreleri ise, ETL=17 
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k-space, Ny=239, NEX=3.00 ve FA=150.00 deg şeklindedir. Son olarak sagital kesitte MS 

lezyonlarının incelenmesi için servikal omurilik bölgesi T2a MR verileri ile diğer bir veriseti 

alt grubu oluşturulmuştur. Veriler klinikte MS teşhisi almış 50 hastanın MR taramasına ait 

olup yaş ve cinsiyet gibi kişisel özelliklerden bağımsız olarak elde edilmiştir. Her bir hasta 

için omuriliğin yaklaşık C1-C7 aksına denk gelen T2a MR taramaları 13-15 arasında MR 

kesiti bulunmaktadır. Sagital omurilik MR verileri 320x320, 384x324, 384x348, 384x384 

farklı piksel boyutlarında değişmektedir. Üç farklı alt grup içeren sevikal omurilik verisetinin 

teknik bilgileri ve edinim parametreleri Tablo 4.2.’de detaylı olarak verilmiştir. 

4.1.3. Veri Etiketleme ve Ön-İşleme 

MR görüntülerinin ITK-SNAP ortamında etiketleme işlemi için örnek bir 

gösterimi Şekil 4.4.’te verilmiştir. Öncelikle, DICOM formatındaki orijinal MR 

görüntüleri ve hazırlanan maskeleri NifTI formatında yeniden kaydedilmiştir. Şekil 

4.4.’ten görüldüğü üzere çalışılmak istenilen ilgili bölge (ROI, region of interest) genel MR 

verisinde oldukça küçük bir yer kaplamaktadır. Deneysel çalışmalar esnasında gereksiz arka 

planların dez avantajlarını elimine etmek ve model başarısını arttırmak için kırpma işlemi 

uygulanmıştır. Yapılan uygulama ile görüntüler tek boyutta indirgenerek yeniden 

boyutlandırma işlemleri yapılmıştır. Bu işlem maske merkezleri baz alınarak 128x128 

ölçüsüne göre kırpma işlemi uygulanmıştır. Tüm işlemlerin sonunda veriseti için 500 tane png 

formatında T2a MR görüntü elde edilmiştir. Ayrıca veri artırma tekniği uygulanarak toplam 

1000 adet png MR verisi ve bunların uzman maskelerini içeren veriseti hazırlanmıştır. Ön 

işleme aşamasından geçen verisetinden örnek MR görüntüleri ve maskeleri Şekil 4.5.’te 

verilmiştir.  

 
 Şekil 4.4. Omurilik aksiyel OKA/BOS T2a MR verileri ve MR görüntüsüne ait işaretlenmiş 

maske verilerinin görüntüleri  
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Şekil 4.5. Omurilik aksiyel OKA/BOS T2a MR verileri 128x128 olarak yeniden 

boyutlandırılmış örnek görselleri 
 

Şekil 4..6’da servikal omurilik sınırları içerisinde bu alana karşılık gelen aksiyel 

kesitlerde omurilik ve beyin omurilik sıvısı alanlarının şekil, biçim ve yoğunluk bakımından 

farklılıklar olduğu görülmektedir. Bu farklılık verisetini kendi içerisinde özelleşmesine 

önemli ölçüde katkı sunmakta olup bu sayede görüntü çeşitliliği sağlamaktadır.   

 
Şekil 4.6. Servikal omuriliğin sagital ve aksiyel kesit OKA/BOS T2a MR görüntüsü ve 

MR görüntüsünün maske verileri  

Şekil 4.7’de servikal omurilik MR verileri kullanılarak omurilik sınırları içerisinde bu 

alana karşılık gelen aksiyel kesitler tek tek incelenerek öncelikle MS lezyonları tespit 

edilmiştir. Servikal omurilik boyunca tüm kesitlerde MS lezyonu olmadığı için etiketleme 



44 
 

işlemi tüm kesitler yerine sadece MS olan kesitlerde yapılmıştır. Bu sebeple elde edilen 

toplam görüntü sayısı oldukça azalmaktadır. Fakat yine her bir omurilik kesitinin ve MS 

lezyonlarının birbirinden benzersiz olması verisetini kendi içerisinde özelleşmesine önemli 

ölçüde katkı sunmaktadır.  

 
Şekil 4.7. Servikal Omurilik MS Aksiyel T2a MR görüntüsü ve MR görüntüsünde MS 

lezyonun konumu  

Servikal omurilik MS alr grubunda tüm işlemlerin sonunda 87 adet MR 

görüntüsünden 231 tane png formatında MS lezyonu barındıran kesit elde edilmiştir. MR 

verilerinin içerdiği kesit sayısı 24 ile 30 arasında değişkenlik gösterdiği düşünüldüğünde MS 

lezyonu içeren kesit sayısının yaklaşık ortalama 3 olduğu görülmektedir. Bu nedenle veri 

sayısı oldukça düşük sayılarda kalmıştır. Veri artırma tekniği uygulanarak toplam 1080 adet 

png MR verisi ve bu MR verilerinin uzman maskelerini içeren veriseti hazırlanmıştır. MS 

lezyonu içeren ve ön işleme aşamasından geçen verisetinden örnek MR görüntüleri ve 

maskeleri Şekil 4.8’de verilmiştir.  
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Şekil 4.8. Servikal Omurilik MS Aksiyel T2a MR verileri 128x128 olarak yeniden 

boyutlandırılmış örnek görseller 

 
Şekil 4.9. Servikal Omurilik MS Sagital T2a MR görüntüsü ve MR görüntüsünün 

maskeleri  

Sagital omurilik MR görüntülerde MS lezyonları sıklıkla puro şeklinde/silindirik, 

aksiyel görüntülerde ise kama şeklinde görünür ve tipik olarak keskin sınırlara sahiptir 

(Filippi vd., 2019: 1858). Sagital görünümlerde uzunlukları nadiren iki vertebral segmenti 

aşmaktadır. Şekil 4.9’da servikal omurilik sınırları içerisinde bu alana karşılık gelen sagital 

kesitlerde MS içeren kesitler tek tek incelenerek tespit edilmiştir. Servikal omurilik boyunca 

tüm kesitlerde MS lezyonu olmadığı için etiketleme işlemi tüm kesitler yerine sadece MS 
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olan kesitlerde yapılmıştır. Temin edilenMR verileri ortalama 13 kesit içermekte ve bu 

kesitlerde tüm omurilik bölgesi 2 veya 3 kesitte izlenebilirken MS lezyonları ortalaması 1 

veya 2 kesit kadar olmaktadır. Bu durum veri sayısını oldukça düşürmekte olduğundan elde 

edilen toplam 80 adet kesit için veri arttırma işlemleri yapılarak veri sayısında iyileştirme 

yapılmıştır. 

Servikal Omurilik MS Sagital alt veri grubu için ITK-SNAP yazılımı kullanılarak 

yapılmış olan örnek bir etiketleme çalışması Şekil 4.10’da verilmektedir. Öncelikle, 

DICOM formatındaki orijinal MR görüntüleri ve hazırlanan maskeleri NifTI formatında 

yeniden kaydedilmiştir. Servikal omurilik MR verilerinde aksiyel planellerde çalışılan 

ilgili bölgeler MR görüntüsünde oldukça küçük yer kapladığı için yeniden boyutlandırma 

işlemleri yapılırken sagital MR planellerinde boyut azaltma işlemleri yerine boyut 

eşitleme işlemleri yapılmıştır. Her ne kadar aynı makinelerde çekim yapılmış olsada 

teknik personel veya herhangi farklı durumlar nedeniyle sagital MR verilerinde boyut 

farklılıkları olan MR verilerinin olduğu tespit edilmiştir. Bu nedenle 320x320 olarak 

yeniden boyutlandırma işlemleri yapılmıştır. Ön işleme aşamasından boyut eşitleme 

işlemlerinden sonra verisetinden örnek MR görüntüleri ve uzman maskeleri Şekil 4.11’de 

verilmiştir.  

 
 Şekil 4.10. Servikal Omurilik MS Sagital T2a MR verileri ve MR görüntüsüne ait 

işaretlenmiş maske verilerinin görüntüleri 
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Şekil 4.11. Servikal Omurilik MS Sagital T2a MR verileri 320x320 olarak yeniden 

boyutlandırılmış örnek görseller 

4.2. Veri Artırma 

Veri artırma (data augmentation), makine öğrenimi ve derin öğrenme modellerinin 

performansını artırmak için kullanılan önemli bir tekniktir. Veri artırma, veri setlerinin 

kalitesini ve çeşitliliğini artırarak, modelin daha doğru, dayanıklı ve genelleştirilebilir 

hale gelmesini sağlar. Veri setinin yetersizliği, modelin genelleme yeteneğini artırma, 

daha dengeli bir veri seti oluşturma, modelin dayanıklılığını artırma, veri anomalisinin 

azaltılması, modelin performansını ve verimliliğini artırma gibi teknik gerekçeler için 

veri artırma işlemleri makine öğrenimi derin öğrenme ve alt dallarında sıklıkla tercih 

edilen bir yöntemdir. Özellikle veri toplama ve derleme işlemlerinin çok zahmetli ve 

pahalı olması biyomedikal alanda veri artırma yöntemleri oldukça kritik bir durum 

olmaktadır. Genellikle amaç elde edilen mevcut veri setini çeşitli yöntemler kullanarak 

yapay bir şekilde genişletmek ve modelin performansını olumlu yönde etkilemektir. Bu 

teknik sayesinde veri eksikliği, modelin genelleme yeteneği, sınıf dengesizliği gibi birçok 

sorun elimine edilerek daha güçlü ve dayanıklı modellerin geliştirilmesine olanak 

tanımaktadır. Fakat kullanılacak olan veri artırma tekniklerinin doğru bir şekilde 

değerlendirilerek en güvenli yol ve yöntem tercih edilmelidir.  

Medikal görüntüler için genellikle döndürme (rotation), çevirme (flipping), 

ölçekleme (scaling), kırpma (cropping), parlaklık değişimi (brightness adjustment) ve 

gürültü eklemek (adding noise) gibi teknikler sıklıkla veri artırma için kullanılmaktadır 

(Kusrini vd., 2020: 105842). Medikal kesitler üzerinde yapılan döndürme işlemi ile 

modelin farklı perspektiflerden mevcut veriyi tanıması sağlanırken çevirme işlemleri 

yatay dikey konumlar için belirli oranlarda verinin bütünlüğünü kaybetmeyecek şekilde 

yapılabilmektedir. Genellikle sağ veya sol perspektiflik durumun önemli olmadığı MR ve 

diğer görüntüleme tekniklerinde yeni veriler elde edilmesi için sıklıkla kullanılmaktadır. 
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Diğer önemli bir teknik ise ölçekleme yöntemleridir. Bu yöntem ile çalışılması küçük 

alanlar için boyut küçültme veya tam tersi durumlar için büyütme işlemleri ile boyut 

değiştirmek mümkün hale gelmektedir. Özellikle gereksiz arka plana sahip olan MR 

verilerinde çalışılmak istenilen ilgili bölgelerin daha net ortaya çıkması için ve eğitim 

süresine olumlu katkı sunmak için kırpma işlemleri gerekli olmaktadır.  

Tez çalışması kapsamında kullanılan U-Net modellerinin genel başarısına olumlu 

katkı sunacak en önemli adımlardan birisi veri artırma işlemleridir. Bu çalışmada, veri 

çoğaltılması için NumPy kütüphanesinin döndürme (x ve y eksenlerinde), çevirme, 

kaydırma ve aynı işlevleri kullanılmıştır. Omurilik bölgesinin farklı şekil yapılarına sahip 

olması MS lezyonlarının birbirinden benzersiz konum ve boyutlarda oluşu temel 

verisitinde çeşitliliği sağlayan en önemli faktördür. Buna ek olarak yapılan veri artırma 

işlemleri ile veri seti hazır hale getirilerek model eğitimlerinde sırası ile kullanılmıştır.  

4.3. Metodoloji 

Yapay zeka ve makine öğrenmesi gibi araştırma konularının literatürlere girmesi 

ile birlikte birçok alt araştırma konuları doğmuştur. Bunlardan en popüler olanı ise yapay 

sinir ağlarının gelişim süreci ile birlikte evrişim sinir ağlarının daha derin ağ modeller 

geliştirme fikri ile geliştirilen derin öğrenme mimarileridir. 1943’de W. McCulloch ve 

W.Pitts tarafından önerilen ilk yapay sinir ağı modeli insan beyninin hesaplama özelliği 

kullanılarak basit bir sinir ağı modeli geliştirmişlerdir (Krizhevsky vd., 2012).  

Temelde insan sinir sisteminden ilham alınarak geliştirilen yapay sinir ağları 

günlük hayatımızda ses asistanları, öneri sistemleri, görüntü işleme ve bilgisayarla 

görme, sağlık ve medikal tanı amaçlı, otonom araçlar, finans sektörü, eğlence ve oyun 

alanlarında ve akıllı ev cihazları olarak karşımıza çıkmaktadır. İnsan beyni ölçeğince 

karar verebilen mimariler geliştirilirken başarı kriteri insan yetenekleri çerçevesince 

değerlendirilmektedir. Şöyle ki insan düzeyine yakın nesne tanıması, konuşmaları 

sınıflandırması, metin okuma ve belki seslendirme yapabilmesi tasarlanan sistemin 

başarısını göstermektedir. Gelişimin ve çalışmanın çok hızlı olduğu bir alan olmakla 

birlikte birçok farklı disiplinel alanlarla da içiçe çalışmalar yapılmaktadır. 

4.3.1. Derin Öğrenme 

Yapay sinir ağları birkaç katmanlı yapılar olarak tasarlanırken derin sinir ağlar ile 

çok katmanlı yapıların kullanılması modelin ne kadar derin olduğunu belirlemektedir. İki 

önemli gelişme ile derin öğrenme alanı bir sıçrama yaşamıştır. Birincisi ImageNet 

yarışması ile elde edilen nesne sınıflandırma konusunda elde edilen başarısıdır. İkincisi 
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ise merkezi işleme birimleri olan CPU’ların yerini grafik işleme birimlerine kısaca 

GPU’larına bırakması diğer etkendir. Donanımsal olarak yetersizliğin giderilmesi ile 

birlikte derin öğrenme modellerinin katman sayısı artırılarak daha derin yeni mimarinin 

tasarlanması hız kazanmıştır. Derin ağların geliştirilmesi için birçok farklı sinir ağı 

geliştirilmiştir. Bunlardan en çok kullanılanlarından bazıları Evrişimli Sinir Ağları 

(Convolutional Neural Networks, CNN), Tekrarlayan Sinir Ağları (Recurrent Neural 

Networks, RNN), Uzun Kısa Dönemli Bellek (Long / Short Term Memory, LSTM), 

Derin İnanç Ağları (Deep Belief Networks, DBN), Çekişmeli Üretici Ağlar (Generative 

Adversarial Networks, GAN) gibi örnekler verilebilmektedir. Fakat derin öğrenme 

mimarilerinde en çok kullanılan ve temel yapısı kullanılarak model CNN’dir.  

Derin öğrenme mimarilerinde GPU teknolojisi ve büyük veri kümelerinin 

kullanıma sunulması ile birlikte görüntü sınıflandırma, sınıflandırma ve lokalisazyon ve 

algılama konu başlıkları altında nesne tanıma ve takip etme, doğal dil işlemede anlam 

ayrıştırma, cümle modelleme, tahmin problemleri gibi birçok alanda birbirinden farklı 

CNN mimarileri geliştirilmiştir  (Gu vd., 2018: 354; LeCun vd., 2015: 436). CNN’nin 

öncül katmanlarında kenar bilgisi gibi daha ilkel öznitelikler elde edilirken, derin 

katmanlarda görüntüyü temsil eden karmaşık öznitelikler elde edilmektedir. Şekil 4.12’de 

görüldüğü gibi CNN mimarisi; evrişim katmanı, ortaklama katmanı ve tam bağlantılı 

katmanı olmak üzere üç ana katmanla ifade ederken bazıları giriş katmanı, batch 

normalizasyon katmanı, aktivasyon katmanı, dropout katmanı ve sınıflandırma 

katmanlarını da evrişim yapısına dahil etmektedirler (Sakib vd., 2019). Evrişim ağlar 

genel anlamıyla özellik çıkarımı, havuzlama, sınıflandırma ve tanıma işlemlerini 

gerçekleştiren her bir katmanında ayrı bir matematiksel işlem yürütülen bir modellemedir 

(Yamashita vd., 2018: 611). Temelde her bir katmanda giriş görüntüsünden itibaren 

filtreler yardımıyla geri yayılım ile güncellenen ağırlıklar matrisinin sonucuna göre hedef 

çıktılara ulaşılması durumu olarak ifade edilebilmektedir. 

 

Şekil 4.12. Evrişim sinir ağı model aşamaları 

Giriş katmanı, bu katman isminden de anlaşılacağı üzere evrişim ağının ilk 

katmanını oluşturmaktadır. Bu katmanda çalışılacak olan veri seti ham olarak modele 

giriş verisi olarak sunulmaktadır. Evrişim katmanı, giriş katmanının devamında 
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özniteliklerin çıkarıldığı matematiksel işlemleri içeren evrişim katmanı ile devam 

etmektedir. Giriş verisinin sahip olduğu her bir pikselin sayısal değerleri vardır. Bu 

sayısal değerler filtre, kernel veya maske olarak ifade edilen 3x3, 5x5 vb. gibi boyutlu 

matrislerin görüntü verisinin ilk satır ve sütun pikselinden başlayarak gezdirilmektedir 

(Xiangyu Zhang vd., 2015: 1943). Bu gezdirilme esnasında filtreler de denk gelen sayısal 

her bir değer evrişim işlemine tabi tutulmaktadır. Bu işlem kısaca bir çarpma işlemi 

uygulaması olup bu çarpma işleminden elde edilen sonuçlar toplanarak yeni ve tek bir 

sayısal değer elde edilmektedir. Elde edilen her bir sonuç matriste yerine yazılarak yeni 

bir veri kümesi olarak kaydedilmektedir. Bu işlem ile veri kümesi değişmekte olup farklı 

özelliklere sahip öznitelik haritaları (feature map) elde edilebilmektedir (Gu vd., 2018: 

354). Bu nedenle bunların her biri ağı oluştururken dikkat edilmesi gereken parametre 

değerleri olarak özenle seçilmelidir.  

Derin öğrenmede, toplu normalleştirme katmanı (batch normalization layer), ön 

işlem tekniği olarak kullanılarak batch işlemi, verilerin standartlaştırmak için 

kullanılmaktadır (Ioffe, 2015). Eğitim aşamasında modelin eğitim süresini hızlandırarak 

daha yüksek başarı skorları elde etmeyi sağlamaktadır. Genel kullanım yeri ise evrişim 

ile aktivasyon fonksiyonu arasında tercih edilmektedir. Aktivasyon katmanı (activation 

layer), basit bir lineer regresyon modelinden daha karmaşık olan verileri ağın 

öğrenebilmesini için doğrusal olmayan dönüşümler sağlayan yapı aktivasyon 

fonksiyonlarıdır (Goodfellow, 2016). ReLu, tanh, sigmoid gibi aktivasyon fonksiyonları 

sıklıkla sinir ağ mimarilerinde kullanılmaktadır. Relu aktivasyon fonksiyonu çalışmalarda 

sıklıkla kullanılmakta olup tez çalışması kapsamınca da ReLu aktivasyon fonksiyonu 

kullanılmıştır (Nair ve Hinton, 2010: 807). Hız açısından diğer aktivasyon 

fonksiyonlarına göre daha avantajlı olmasına rağmen probleme göre aktivasyon 

fonksiyonunu belirlemek en doğru yaklaşım olarak kabul görmektedir.  

Ortaklama (pooling) katmanı, evrişim ağ mimarilerinin diğer önemli katmanı olup 

bir boyut azaltma (down sapmling) işlemi olarak görev yapmakta olup herhangi bir 

öğrenme işlemi gerçekleşmemektedir (Wu, 2017: 495). Genel olarak ifade edilmek 

istenilirse, giriş matrisinin kanal sayısı sabit kalacak şekilde genişlik ve yükseklik 

bazında ağdaki parametre sayısını ve hesaplama miktarını azaltmaktadır. Veride bulunan 

yüksek değerlikli özelliklerin korunmasına ve modelin en etkin bir şekilde eğitilmesine 

katkı sağlamaktadır. Ortalama ortaklama (average pooling) ve maksimum ortaklama 

(maximum pooling) olmak üzere iki şekilde yapılabilmesine karşılık en çok maksimum 

ortaklama tercih edilmektedir (He vd., 2016: 770).  
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Tam bağlantı & düzleştirme (flattening) katmanı, evrişim ve havuzlama 

işlemlerinin sonucunda elde edilen son tensör kümesini tek boyutlu vektöre dönüştürmek 

için yapılmaktadır (Yamashita vd., 2018: 611). Sınıflandırma işlemlerinin gerçekleşmesi 

için yapay sinir ağ modeline verilecek olan matrisin tek boyuta indirgenmiş olması 

gerekmektedir. Bu nedenle düzleştirici (flatten) ve tam bağlantılı katmanlara ihtiyaç 

duyulmaktadır. Seyreltme (dropout-bırakma) katmanı, model eğitimlerinin son 

aşamasında bazı nöronların göz ardı edilerek model eğitiminde aşırı öğrenme 

(overfitting) durumu var ise kullanılması modelin performansını olumlu etkileyecek bir 

özelliktir (Gu vd., 2018: 354; Hinton, 2012) .  

Sınıflandırma katmanı, sınıflandırılmak istenilen nesne sayısı kadar çıkış değeri 

belirleyerek sigmoid ve softmax gibi sınıflandırıcılar kullanılarak hedef çıktılar için 

başarımlar hesaplanmaktadır (Yamashita vd., 2018: 611). Genel anlamda eğer iki sınıflı 

bir problem için sonuç üreten bir ağ yapısı ise sigmoid kullanılırken, çok sınıflı sonuç 

üreten bir ağ için softmax aktivasyon fonksiyonu kullanılmaktadır. Tüm ağ katmanlarının 

bu işlemlerin hepsini tek bir görüntü için sırasıyla yapmaktadır. Evrişim ağın 

sınıflandırıcı işlemi sonucunda toplam bir olacak şekilde nesne adedince skorlama işlemi 

yapılmaktadır.  

4.3.2. U-Net Mimarisi 

U-Net ise bir tür evrişimli sinir ağı temelli derin öğrenme yaklaşımıdır ve ilk 

olarak biyomedikal görüntüler üzerinde daha iyi bir bölütleme (bölütleme) yapma önerisi 

ile 2015 yılında, Olaf Ronneberger, Phillip Fischer ve Thomas Brox tarafından “U-Net: 

Convolutional Networks for Biomedical Image Segmentation” makalesinde 

duyurulmuştur(Ronneberger vd., 2015: 234). U-Net ilk olarak 2015 yılında Uluslararası 

Biyomedikal Görüntüleme Sempozyumu (UBGS) çok az görüntü kümesi kullanılarak 

eğitim yapılabildiğini ve daha önce yapılmış olan sinirsel yapıların elektron mikroskobik 

yığınlarda bölütlemesi çalışmalarından (Ciresan vd., 2012) daha iyi performans 

göstererek büyük bir farkla yarışmayı kazanmıştır. Çalışmada özetle Ronneberger vd., 

elektron ve ışık mikroskobu kaynağı ile elde edilmiş olan 512x512 boyutlarındaki 

görüntülerden oluşan veri seti ile Caffe kütüphanesi içeriğinde bulunan verisetleri ile 

toplam 3 farklı veri seti kullanarak bölütleme çalışması yapmışlardır. Verisetlerinde 

içerik olarak 30 adet elektron mikroskobu, 35 ve 20 adet ışık mikroskobu görüntüsünden 

oluşmaktadırlar. Yarışmada birinci verisetinde 0.0003529 çözgü hatası (warping error), 

ikinci veri setinde %92 IoU, üçüncü veri setinde ise %77.5 IoU ile oldukça yüksek bir 

başarı elde edilmiştir (Ronneberger vd., 2015: 234). Elde edilen bu başarı değeri 

https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
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sayesinde U-Net mimarisi oldukça fazla kullanılmaya ve araştırılmaya başlanmıştır. Son 

yıllarda literatürde U-Net mimarisi ve U-Net mimarisinden esinlenerek geliştirilmiş 

oldukça fazla mimari ve akademik çalışma vardır. 

Klasik evrişimli sinir ağı modellerinde başarılı sonuç elde edilmesi ile verisetinin 

büyüklüğü arasında bir doğru mevcuttur. Çünkü verisetlerindeki görüntüler etiketlenerek 

ve özellik haritaları çıkarılarak modele verilir ve model bu verileri etiket bilgisinden 

tanımlayarak işlem yapmaktadır. U-Net ise diğer derin öğrenme modellerinin aksine 

bağlama dayalı öğrenme özelliği sayesinde daha az veri seti ile daha hızlı sonuçlar elde 

edilebilmektedir(Siddique vd., 2020: 1118).  

U-Net mimarisi ismini Şekil 4.13.’te görüldüğü gibi mevcut U şeklinden 

almaktadır. Temelde evrişim ağı modellerinde bulunan yapılar ile temsil edilirken 

farklılaştığı özelliklerde mevcuttur. Klasik evrişim blok yapısı yine korunarak evrişim 

katmanı, aktivasyon katmanı ve havuzlama katmanı U-Net mimarisinin kodlayıcı 

(encoder) blok yapısını oluşturmaktadır. Kodlayıcı blokların karşı simetrisinde kod 

çözücü blok yapıları ile tersine evrişim işlemi uygulanmaktadır (Rukiye Polattimur vd., 

2023: 1). Her iki yapıyı birbirine bağlayan ve U-Net mimarisini diğer evrişim 

mimarilerinden ayıran en önemli bağlantısı birleştirme ve bağlantı kurmak için kullanılan 

concatenate ismi verilen bağlantı yapısı ile sağlamaktadır.  

 
Şekil 4.13.U-Net mimarisinin temel yapısı 

U-Net derin öğrenme mimarisi kodlama (encoder) ve kod çözücü (decoder) olmak 

üzere simetrik iki parçanın bottleneck denilen darboğaz bağlantısı ile birbirine 

bağlanması ile oluşmaktadır(J. Zhang vd., 2021: 107885). Temelde klasik evrişim 
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mimarisinde bulunan katmanların birçoğu U-Net mimarisinde de kullanılmakla beraber 

tam bağlantı katmanı kullanılmamaktadır. Evrişim mimarisinin yapısından farklı olarak 

ise kodlayıcı ve kod çözücü bloklarını birbirine bağlayan ‘concanetane’ adı verilen 

bağlantıya sahiptir. Encoder yapısı U-Net mimarisinin ilk bölümünde 2 kere 3x3 normal 

evrişim işlemi, ReLu aktivasyonu ve aşağı yönlü iletilen veri için 2x2 maksimum 

havuzlama işlemlerinden oluşmaktadır (LeCun vd., 2015: 436). Bu aşamada klasik U-Net 

mimarisinde kullanılmayan batch normalisazyon modele entegre edilebilmektedir. Batch 

normalizasyon ile derin sinir ağlarının (DNN'ler) eğitim sürecinde optimisazyonu en 

sorunsuz ölçüde tutularak modelin daha hızlı ve daha kararlı eğitimini sağlamasına 

yardımcı olan bir tekniktir (Bjorck vd., 2018).  

U-Net mimarisinde sıklıkla konvolüzasyon, batch normalizasyon ve aktivasyon 

olarak sıra ile işlem görmektedir. Bu işlemler sonucunda iki adet çıktı üretilmektedir. 

Bunlardan birincisi bir alt basamakta bulunan evrişim bloğuna girdi olarak aktarılmak 

üzere bağlanırken, diğer çıktı ise karşı kod çözücü bloğuna bağlam bilgisi olarak 

aktarılmaktadır (Milletari vd., 2016: 565). Bu özellik U-Net mimarisinin en önemli 

özelliğidir. Ayrıca, her alt örnekleme basamağına geçişte filtre sayısı yani özellik sayısı 

ikiye katlanırken görüntü boyutu da maksimum havuzlama işlemi sayesinde yarıya 

düşmektedir. Alt alta bu şekilde evrişim blokları halinde tekrar eden bir yapıdan 

oluşmaktadır. Maksimum ortaklama işlemi görüntüyü 2×2 bloklara ayırır ve bu 

bloklardaki maksimum pikseli alma temeli ile işlem yapmaktadır. Böylece her bloktaki 

derece daha önemli bilgiler korunurken daha az önemli bilgiler atılmaktadır. Sonuç 

olarak giriş görüntüsünden daha küçük fakat daha anlamlı bilgileri içeren özellik 

haritasına sahip veri kümesi ile temsil görüntü oluşturulmaktadır. Bu işlemler 5 katman 

boyunca devam etmektedir. Girdi boyutuna bağlı olarak bu durum değişkenlik 

gösterirken klasik U-Net mimarisinde görüntünün boyutları 128x128, 64x64, 32x32, 

16x16 ve son olarak 8x8 piksele kadar düşmektedir. Beşinci katmanda darboğaz 

(bootleneck) denilen yapı ile kodlama ve kod çözücü blok birbirine bağlanmaktadır 

(Çiçek vd., 2016: 424). Kodlama aşaması bittiği için havuzlama işlemi kod çözücü blokta 

yapılmamaktadır.  

Decoder yapısı, decoder katmanında görüntü adım adım genişlemeye 

başlamaktadır. Yukarı yönlü görüntü boyu tekrar katmanlar arasında 2 katına çıkaracak 

olan tersine evrişim işlemi ile model sonunda görüntü orijinal boyutuna geri 

ulaşmaktadır. Kodlama bloğundan gelen aynı seviyede üretilen yüksek çözünürlüklü 

özellik haritaları ile kod çözücü bloğunda bulunan düşük çözünürlüklü özellik haritaları 



54 
 

birleştirilmektedir. Bu adım, hem detay hem de bağlam bilgisini koruyarak bölütleme 

performansını artırmaktadır. .Bu sayede görüntülerin her pikselin hangi sınıfa ait 

olduğunu tahmin edebilmek için detaylı bir özellik haritası elde edilmektedir. 

U-Net mimarisinde evrişim sinir ağlarının en önemli bağlantı yapısı olan tam 

bağlantılı katman yerine özellik vektörünü istenen sayıda sınıfa eşlemek için 1x1 evrişim 

uygulanmaktadır. Klasik 5 seviyeli bir U-Net mimarisinde kodlayıcı blokta 10 evrişim 

katmanı, darboğaz (bottleneck) blokta 2 evrişim katmanı, kod çözücü blokta 8 evrişim 

katmanı ve son olarak 1 adet çıkış katmanında bulunan evrişim katmanı ile toplamda 21 

adet evrişim işlemi uygulanmaktadır(Alom vd., 2018: 228),(Pattanayak, 2023). Elde 

edilen çıktı ile her pikselin sınıfını belirleyerek en son bölütleme maskesini üretmektedir. 

Bu sayede 1x1 evrişim ile her bir piksel için sınıfsal olasılıklar hesaplanmaktadır ve her 

bir piksel için ayrı sınıflandırma yapılabilmektedir. Bu durumda sınıf sayısına göre son 

katmanda softmax (çok sınıflı veri seti için) veya sigmoid (iki sınıflı veri seti için) 

aktivasyon fonksiyonu kullanılmaktadır. Literatürde sıklıkla kullanılan benzerlik 

metrikleri ile model sonuçları değerlendirilerek model başarısı elde edilmektedir. 

4.4. Hibrit U-Net Modelleri 

U-Net mimarisi özellikle tıbbi görüntü alanında çok başarılı sonuçlar elde ettikten 

sonra araştırmacıların çok yoğun ilgisini çekmiştir. Bu nedenle çok hızlı ilerleme 

gösteren ve çok yoğun araştırma yapılan bir alan olmakla beraber farklı alanlarda da 

çalışmalar gerçekleştirilmiştir. Genel yapısı itibariyle U şeklinde olması, evrişim 

bloklarından oluşması U-Net mimarisinin farklı modellere evrilme esnekliği sayesinde 

(U-şeklinde) diğer derin öğrenme modellerinin blok yapıları veya önerilen evrişim 

blokları kullanılarak hibrid modeller veya farklı katman bağlantısına sahip yeni U-Net 

tabanlı modeller geliştirilebilmektedir. Temel U-Net modelinin etkin öğrenme özelliğine 

ek olarak hibrid modellerin farklı katman bağlantıları ile veriyi niteleyen özellikler 

katman yapısı içerisinde korunarak daha farklı öznitelik kümeleri elde edilebilmektedir. 

Bu sayede oluşturulan yeni U-Net hibrid modellerin model eğitimleri sonucunda elde 

edilen performans değerine olumlu katkı sunması beklenmektedir.  

4.4.1. Attention (Dikkat) U-Net 

Attention U-Net (Att U-Net) mimarisi U-Net mimarisine attention mekanizması 

entegre edilerek Şekil 4.14.’te görüldüğü üzere yeni bir yapı olarak tasarlanmıştır. Temel 

U-Net mimarisi oldukça başarılı performans göstermesine rağmen özellikle tıbbi 

görüntüleme verilerinde ihtiyaç duyulan lezyon tümör gibi küçük, sınırlı veya gizlenmiş 
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nesneleri tespit etmek hala zorlu olabilmektedir. Bu küçük alanların segmente edilmesi 

için modelin dikkatini(attention) önemli özelliklere odaklaması ve arka plan gibi gereksiz 

detayları görmezden gelmesi modelin performansına önemli ölçüde katkı sunmaktadır. 

Attention mekanizması ile verilerin belirli özellik haritalarına veya bölümlerine "dikkat", 

"özen", "odak", göstermesini amacıyla kullanılmaktadır (Oktay vd., 2018: 

1804.03999v3). Dikkat mekanizması özellikle bölütleme görevlerinde küçük sınırlara 

sahip lezyon tümör doku zedelenmeleri gibi hacimleri daha iyi tespit etmek için yaygın 

olarak kullanılmaktadır (B. Chen vd., 2023). Dikkat mekanizması matematiksel bir skor 

hesaplayarak yüksek değerlikli nitelikleri belirleyerek modelin eğitim süresi boyunca 

yüksek skorlu alanları kullanmasını sağlamaktadır. Bu sayede hesaplama maliyetini 

azaltıp ağın daha iyi genelleştirmesine yardımcı olmaktadır. Attention bağlantısı U-Net 

modelinde bulunan kodlama ve kod çözücü blokları arasında karşılıklı bağlantı sağlayan 

atlama çıktısına eklenerek kod çözücü bloğuna yukarı yönlü girdi olarak 

verilmektedir(Oktay vd., 2018: 1804.03999v3).  

 

 

Şekil 4.14. U-Net mimarisinde dikkat (attention) blok yapısı 

Dikkat mekanizmasında, klasik bir U-Net modelinin ilk katmanlarından gelen 

zayıf özniteliklerde kod çözücü bloğuna girdi olarak aktarılmaktadır. Bu bağlantı ile U-

Net modelinde öznitelik bilgisi iletilirken araya eklenen dikkat bloğu sayesinde veriden 

aktarılan zayıf özellikler ve alakasız bölgeler göz ardı edilerek ağın sadece çalışma 
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alanına yani segmente edilecek alanına odaklanması sağlanmaktadır. Verilerden ilgisiz 

bölgelerin hesaplamaya dahil edilmemesi ağın toplam hesaplama parametresini azaltarak 

modelin daha hızlı eğitilmesini sağlamaktadır (Siddique vd., 2020: 1118). Ayrıca bu 

bağlantı yapısı minimum hesaplama yüküyle U-Net modeli gibi standart evrişim 

mimarilerine kolayca entegre edilebilirken, model duyarlılığı ve tahmin yeteneğine 

önemli bir artı kazandırmaktadır. Attention mimarisinde, U-Net hesaplama verimliliğini 

korurken, farklı veri kümeleri ve eğitim boyutlarında U-Net'in tahmin performansını 

tutarlı bir şekilde iyileştirdiği tespit edilmiştir (Oktay vd., 2018: 1804.03999v3). 

4.4.2. Residual U-Net 

Residual U-Net (Res U-Net) mimarisi yine U-Net mimarisinden türetilmiş olup 

Şekil 4.15.’te gösterilen “artık”, “kısayol”, “kalıntı”, “kestirme” olarak ifade edilebilecek 

bağlantı yapısı sayesinde almıştır. Tüm yeni mimari tasarımlarının amacı gibi residual U-

Net mimarisinin daha derin ağların eğitim süreçleri kolaylaştırmak ve model başarımını 

yükseltmek üzerine kurgulanmıştır. Res-Net ismi verilen Residual U-Net mimarisinin çok 

derin sinir ağlarının eğitimi sırasında karşılaşılan "vanishing gradient" ismi verilen 

kaybolan gradyan sorununu çözmek için geliştirilmiş bir evrişim mimarisidir (Y. Zhang 

vd., 2018: 1). Residual U-Net mimarisinde evrişim blok yapısının standart U-Net evrişim 

blok yapısından farkı ilk katman ile son katmanın birbirine direk bağlanması ile elde 

edilmiştir. Bu artık bağlantı sayesinde giriş özellik harita bilgisi çıkış evrişim katmanına 

eklenerek modelin daha derin katmanları etkili ve hızlı bir şekilde ilerlemesine yardımcı 

olması amacıyla tasarlanmıştır. 

 

Şekil 4.15. U-Net mimarisinde artık (residual) blok yapısı 

Artık (residual) evrişimde nihai çıktı özellik haritası ile giriş özellik haritasından 

gelen artık bağlantı toplanarak aktivasyon işlemine tabi tutulmaktadır. Bu yapı residual 
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evrişim bloğu olarak ifade edilmektedir. Residual bağlantı sayesinde yakınsama 

probleminin önüne geçerek hızlı ve kararlı öğrenme gerçekleşmektedir(He vd., 2016: 

770). Artık bağlantı yapıları ile derin ağ yapısı içerisinde daha hızlı ilerleyebilmekteyken, 

diğer taraftan modele ek hesaplama gereksinimi doğmasına neden olmaktadır. Eğitim 

sürelerinde uzamalara neden olabilmektedir. Bu nedenle, daha derin yapılar tasarlanırken 

model düzenlemelerinin dikkatle yapılması, aşırı öğrenme gibi olası negatif durumların 

ortadan kaldırılmasına yardımcı olmaktadır. 

4.5. Önerilen U-Net Tabanlı Derin Öğrenme Mimarileri  

U-Net yapısı, klasik evrişim bloklarından oluşan U şeklindeki mimarisi sayesinde, 

birçok derin öğrenme modeliyle yeniden kurgulanabilecek oldukça esnek bir yapıya 

sahiptir. Bu nedenle literatürde U-Net model ile yapılan birçok farklı yeni model 

tasarımları mevcuttur. U-Net mimarisi kodlayıcı, kod çözücü, katman birleştirme 

bağlantısı (concatenate) ve son katmanlar olmak üzere ayrı ayrı incelenebilmektedir. Bu 

katmanlarda yapılan yenilikler gelişimler modele, eğitim süreçlerine olan katkısı 

ölçeğince değerlendirilmektedir. U-Net mimarisi kullanılarak geliştirilen mimariler göz 

önüne alındığında literatürde atlama bağlantıları (skip connection), omurga (backbone) 

dizaynı (backbone design), darboğaz (bottleneck), dönüştürücüler (transformers), zengin 

temsil (rich representation), olasılıksal tasarım (probabilistic design) olarak 

gruplanabilmektedir(Azad vd., 2024: 1 ).  

Atlama bağlantıları, kodlama bloğunun derin, düşük çözünürlüklü evrişim 

katmanından elde edilen öznitelik haritalarının kod çözücü bloğun sığ, yüksek 

çözünürlüklü öznitelik haritaları ile birleştirdikleri için U-Net mimarisinin önemli bir 

parçası olmaktadır. Bu nedenle bu bağlantı yapısına enteğre edilecek farklı evrişim bloğu 

veya farklı atlama yapıları kullanılarak U-Net++ (Zhou vd., 2018: 3), Att U-Net ve Res 

U-Net gibi yeni mimariler tasarlayarak model eğitimleri sonunda oldukça farklı sonuçlar 

elde etmek mümkün olmaktadır. Diğer taraftan omurga yapı aslında klasik U-Net 

mimarisinin ikili evrişim bloklarını temsil etmektedir.  

Omurga, ham veriden anlamlı öznitelikleri çıkaran katmanlar dizisi olarak ifade 

edilebilmektedir. Her derin mimarinin temel omurga yapısı farklı olmaktadır. Farklı 

özelliğe sahip derin mimarilerin U-Net mimarisi blok yapısına entegre edilmesi ile 

residual U-Net, V-Net (Milletari vd., 2016: 565) gibi farklı mimariler elde 

edilebilmektedir. Mimarinin daha derin özellikli olmasına neden olan bu yapısal değişim 

parametre sayılarının artışına neden olurken model başarım sonuçlarını olumlu yönde 

etkileyebilmektedir. Bu iki durumun iyi analiz edilerek mimari yapısına karar verilmesi 
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model eğitiminden elde edilecek sonuçları en optimum noktaya ulaşmasını 

sağlamaktadır.  

Darboğaz (bottleneck) dediğimiz yapı kodlayıcı ve kod çözücü blok yapısını 

birbirine bağlayan U-Net mimarisinin taban evrişim yapısını oluşturmaktadır. Klasik U-

Net mimarisinde tüm evrişim bloklarını yenilemek yerine bottleneck dediğimiz yapıya 

yeni evrişim yapıları veya diğer bağlantı yapıları kullanılarak Ma-Net (Fan vd., 2020: 

179656), Sa-U-Net (Guo vd., 2021: 1236)  gibi farklı U-Net modelleri tasarlamakta olası 

bir diğer durumdur.  

Diğer taraftan, dönüştürücü tipi model geliştirme yöntemi ile TransUNet (J. Chen 

vd., 2021), TransBTS (Wenxuan vd., 2021: 109) gibi mimariler tasarlanmıştır. Bu tip 

mimarilerde kodlayıcı veya kod çözücü bloklarında yapılan farklılıklar ile attention 

yapılarının modele entegre edilmiştir. Zengin temsil tipi model geliştirme teknikleri 

mimaride mevcut olan daha zengin ve önemli özellikleri öğrenmek için kurgulanmış 

yapılardır. Bu sayede modelin sadece yüzeysel değil, aynı zamanda daha soyut ve yüksek 

seviyeli özellikleri de çıkarabilmesi sağlanmaktadır.  

Zengin temsil U-Net mimarileri, klasik U-Net'in temel özellik çıkarma 

kapasitesini genişletmek amacıyla, çeşitli teknikler ve mimari değişiklikler kullanılarak 

geliştirilmiştir. Bu modellere Focal Tversky Attention U-Net (Abraham ve Khan, 2019: 

683), Cascaded U-Net (Lachinov vd., 2018: 189) gibi örnek çalışmalar 

gösterilebilmektedir. Olasılıksal yapıların kullanılarak geliştirildiği model tasarımlarında 

model çıktılarına bir belirsizlik (uncertainty) metriği eklenerek, hangi bölütleme 

sonuçlarının güvenilir olduğunu belirlemeyi amaçlayan mimari yapılarıdır. Bu yaklaşım, 

özellikle tıbbi görüntülerde, modelin bazı bölgelerde daha az emin olduğu durumları 

tespit etmeye yardımcı olabilmektedir. Bu bağlamda geliştirilen Bayesian Skip Net (Klug 

vd., 2021: 168), Probabilistic U-Net (Kohl vd., 2018) gibi modeller daha detaylı 

incelenebilmektedir. 

Tez çalışması kapsamında, tasarlanmış veya yenilik eklenmiş mimari yapılar çok 

detaylı olarak incelenerek farklı U-Net mimarileri geliştirilmiştir. Yukarıda anlatılan 

model geliştirme yöntemleri temel alınarak öncelikle omurga yapısına katkı sunacak yeni 

bir evrişim yapısının tasarlanmıştır. Bu kapsamda evrişim mimari yapılarında biri olan 

fraktal (fractal) evrişim modeli yapısının U-Net mimarisine entegre edilmesi 

gerçekleştirilmiştir. Ayrıca, klasik U-Net mimarisinde direkt bağlantı ile birleştirme 

işlemi yapılırken fractal evrişim blok yapısı bağlantıya entegre edilmesi ile ikinci bir 



59 
 

mimari daha geliştirilmiştir. Son olarak artık mekanizmasının U-Net modellerine entegre 

edilmesi işlemi fraktal yapısı ile birleştirilerek yeni bir U-Net mimarisi daha önerilmiştir.  

4.5.1. FractalSpiNet 

Tez kapsamıda, U-Net mimarisi tabanlı geliştirilen ilk model FractalSpiNet 

mimarisidir. Bu mimari için evrişim blok yapısısına yeni bir bakış sunan (Larsson vd., 2016) 

çalışmasından ilham alınmıştır. FractalSpiNet mimarisinin temelinde, U-Net mimarisinde 

kullanılan ResNet evrişim blok yapısının, Şekil 4.16.’da gösterilen fraktal yapısı ile 

değiştirilmesi yatmaktadır. 

Derin sinir ağlarından da bildiğimiz gibi ağın performansını olumsuz etkileyerek aşırı 

öğrenme (overfitting) gibi durumların yaşanmasına sebep olabilmektedir. ResNet gibi derin 

ağların optimizasyonu kolaylaştırmak için atlamalı bağlantılar kullanılabilmektedir. Fakat bu 

durumlar ağın karmaşık yapısını daha da artırması muhtemeldir. Fraktal evrişim modelinin 

ResNet’den farklı olarak geçişli ve artık sinyallerin iletilme şekli bağlantısal olarak 

birbirinden ayrıdır. Çünkü ResNet bu iki bağlantı için ayrıcalık tanırken fraktal hiçbir sinyal 

için öncelikli olma durumu yoktur. Fraktal mimarisinde, birleştirme katmanına yapılan her 

giriş bir önceki evrişim çıkışının çıktısı şeklindedir. Ağ yapısı tek başına herhangi birini 

birincil olarak tanımlamamasına karşılık öncelikli bağlantı yapıları kullanılarak farklı evrişim 

bağlantısına sahip mimariler geliştirmek mümkündür. 

 
Şekil 4.16. Fractal evrişim blok yapısı  
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En temelinde Mandelbrot fraktal geometriyi fraktal bir boyutsallık ile tamsil eden 

istatistiksel bir nicelik olarak ifade etmektedir. Yani fraktal, kendi içerisinde benzer olan 

yani öz benzerliğe sahip şekiller dizisinin bir bütünü oluşturması sonucu meydana gelen 

bir küme şeklinde tanımlanmaktadır (Lu vd., 2012: 311). Bu kümeye ise “Mandelbrot 

Kümesi” denilmektedir. Fraktal geometride her bir parça, tüm yönlerde aynı indirgeme 

oranlarına sahip, bütünün doğrusal bir geometrik indirgemesidir” şeklinde ifade edilir ve 

“Parçalar, ne kadar küçük olursa olsun, bütüne benzer” diyerek açıklanmatadır. Yani 

fraktallar, temelde baz alınan öz parçacığın benzerliğe sahip olan sonsuz genişleyebilen 

bir bütünsellikle ifade edilebilmektedir. Temsil edilen bu bütünlük içerisinde herbir parça 

yine fraktalın öz parçasını taşımaktadır. Eşitlik (4.1)’de görülen Mandelbrot kümesi f(z) 

fonksiyonun karmaşık sayılar düzlemindeki z parametresinin karesi alınarak sabit bir 

sayının eklenmesiyle oluşmaktadır (Lu vd., 2012: 311). Aslında çok basit matematiksel 

denklemler veya yinelemeli süreçler ile farklı karmaşık fraktal yapılar oluşturulabileceği 

sonucuna varılmaktadır.  

f(z) =z2+ c (4.1) 

Evrişim mimarisinde derin ağlar geliştirmek oldukça önemlidir. Fraktal yapısının 

enine ve boyuna genişleyen özelliği evrişim modeli geliştirmek için oldukça ilham verici 

olmuştur. Bu bağlamda, (Larsson vd., 2016) tarafından fractal geometrisinden 

esinlenerek geliştirilmiş olan Fractal-Net evrişim blok yapısında giriş ve çıkış arasında 

tek bir evrişim yapısı 𝑓!(𝑧) olarak ifade edilmektedir. Her bir genişleme ise 𝑓!"#(𝑧) 

olarak formülize edilmektedir. Soldan sağa doğru bakıldığında c kadar içiçe geçmiş 

sütünlar 2$%# kadar evrişim yapısına sahiptir. Herbir giriş çıkış katmanı arasında kalan 

fraktal evrişim bloğunun çokluğu kadar ağı derinleştirmek mümkündür(Larsson vd., 

2016). Fractal-Net yapısında Eşitlik (4.2)’deki ifade kullanılırken, kendi U-Net 

mimarimiz için özelleştirilmiş fraktal yapısı için eşitlik (4.3) kullanılmaktadır ve Şekil 

4.17’de modellemesi gösterilmektedir. 

f&(z) = conv(z) (4.2) 

𝑓!(𝑧) = 𝑐𝑜𝑛𝑣(𝑧) + 𝐵𝑁(𝑧) + 𝐴𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛	(𝑅𝑒𝐿𝑢(𝑧)) (4.3) 

Fractal-Net içerisinde genişleyen evrişim yapısı sayesinde daha derin bir mimari 

yapılandırmasına olanak sağlamaktadır. Mimarinin blok yapısı her adımda 2n şeklinde 

genişlemekle beraber her biri farklı alt yollar ile birbirine bağlanmaktadır. Fractal 

yapısının böylesine genişlemesi aşırı derin evrişimli ağ yapısı elde edilebileceğini 

göstermektedir. 
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Şekil 4.17. U-Net evrişim blok yapısı(a), FractalSpiNet evrişim blok yapısı(b) 

Önerilen FractalSpiNet temelinde olan ve Şekil 4.18.’de gösterilen fraktal evrişim 

yapısı içerisinde farklı bağlantıları pasif ederek farklı evrişim blokları elde etmek 

mümkündür (Rukiye Polattimur vd., 2024). Klasik U-Net mimarisinde kullanılan 

konvolüsyon, batch normalizasyon ve aktivasyon fonksiyonu işlem sırası yine fraktal 

evrişim yapısına entegre edilmiştir. Bu yapı aslında farklı evrişim yapılarını içinde tutan 

farklı tensörler olarak adlandırmak mümkündür ve bu tensörlerin en büyük özelliği kanal 

sayısı önceki dönüşüm katmanındaki filtre kümesinin boyutuna karşılık gelmesidir. Bu 

özellik sayesinde U-Net mimarisinin kodlama ve kod çözücü bloklarına entegre edilmesi 

ek bir işlem olmadan oldukça kolay uygulanabilmektedir. Fraktal genişledikçe ağın 

derinliğini artırmak mümkündür fakat derinlik artıkça ağın eğitimi ve optimize edilmesi 

zorlaşmaktadır.  
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Şekil 4.18. Fraktal evrişim yapısı basit yapıdan genişleyen yapıya doğru a, b, c sırasıyla 

ilerlemektedir. FractalNet evrişim temel yapısı f&(z) =conv(z) (a), 2c-1 evrişimiyle genişleyen 
fraktal yapı ikinci genişlemede b'de, üçüncü genişlemede c'deki gibi ilerlemektedir. c'de 
görüldüğü gibi her evrişim bloğu bir evrişim, batch normalizasyon ve ReLu aktivasyon 

fonksiyonu olarak tasarlanmıştır 

U-Net mimarisine entegre edilen fraktal yapısı kullanılarak geliştirilen 

FractalSpiNet mimarisinin tam yapısı Şekil 4.19.’da sunulmuştur. Bu mimaride, 

derinliğinin optimum düzeyde tutmak için fayda zarar ilişkisinde modelin eğitim 

süresince elde edilen metrik performanslarına olan katkısı ölçüsünde değerlendirilmiştir. 

Nitekim ağı istenildiği kadar genişletmek mümkündür fakat en derin ağı tasarlamak 

model için her zaman en optimum sonucu vermemektedir. Bu bağlamda 2'%# kadar 

evrişim yapısında c sayısı ağın derinliğini belirlemektedir. Kodlama bloklarına entegre 

edilen fraktal yapılar aşağı yönlü alt örnekleme uygulanarak kod çözücü yönünde ise giriş 

görüntüleri için bir bölütleme maskesi oluşturmak amacıyla üst örnekleme ve tersine 

evrişim işlemleri uygulanmaktadır. Klasik evrişim blok yapısında olduğu gibi fraktal 

evrişim bloğuda konvolüzasyon, batch normalizasyon ve aktivasyon (ReLu) olarak 

kullanılmaktadır. U-Net mimarisinde modelin işlem adımları aynı şekilde ilerlemekte 
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olup modelin evrişim yapısı değiştirilerek yeni önerilen evrişim bloğunun modele olan 

katkısı incelenmiştir.   

 

 
Şekil 4.19. Tez çalışması kapsamında geliştirilen U-Net tabanlı FractalSpiNet mimarisinin 

açık hali 

4.5.2. Con-FractalSpiNet 

Tez çalışması kapsamında U-Net mimarisi tabanlı geliştirilen diğer bir mimari Con-

FractalSpiNet olarak isimlendirilmiştir. Bu mimaride de, katman birleştirme olarak 

adlandırılan, kodlama ve kod çözücü bloğa doğrudan bağlantı sağlayan bağlantıya fraktal 

evrişim yapısının entegrasyonu ile gerçekleştirilmiştir. Bu bağlantı, başlangıç evrişim 

yapılarında bulunan konum ve bağlam bilgisi kaybolmadan aktarılması sağlanmaktadır. 

Burada kullanılan direk bağlantı yapısı mevcut herhangi bir evrişim ağı kullanılmadan 

kodlama bloğundan karşı blok yapısında bulunan kod çözücü yapısına eklenmektedir. Klasik 

U-Net mimarisinde konum ve bağlam bilgisini aktarımı direkt olarak yapılırken yeni 

mimaride fractal evrişim bloğu kullanılarak bağlantı yapılmaktadır. Bu sayede öznitelikler 

yeniden evrişim işlemine tabi tutularak yeni bir özellik haritası ile kod çözücü bloğa aktarımı 

sağlanmaktadır. Şekil 4.20.’de görüleceği gibi klasik U-Net yapısının katman birleştirme 
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bağlantısına FractalNet blok yapısı entegre edilerek yeni model Con-FractalSpiNet 

gösterilmiştir. 

 
Şekil 4.20. Tez çalışması kapsamında geliştirilen U-Net tabanlı Con-FractalSpiNet 

mimarisinin açık hali 

4.5.3. Att-FractalSpiNet  

Tez çalışması kapsamında öneilen bir diğer yapı ise Att-FractalSpiNet olarak 

adlandırılmıştır ve U-Net modellerinde daha önce karma modellerde karşımıza çıkan dikkat 

(attention) yapısı ile gerçekleştirilmiştir. Dikkat mekanizmasının verisetlerinde gösterdiği 

başarı birçok farklı U-Net mimarilerilerinin tasarımına ilham olmuştur. Bu nedenle yeni 

modelin geliştirilmesinde en önemli motivasyon attention derin öğrenme modelinin klasik U-

Net modeline enteğre edilerek yapılmış olan yeni modelin başarısının oldukça yüksek 

olmasıdır. Görüntü bölütleme çalışmalarında amaç ilgili bölgenin bölütlenmesi hedeflenirken 

görüntülerde var olan gereksiz alanların (arka plan) gözardı edilmesi beklenir. Attention 

(dikkat&özen) modeli eğitim süresi boyunca sadece ilgili alanları kullanarak hesaplama 

maliyetini azaltıp ağın daha iyi genelleştirmesine yardımcı olmaktadır. 

Dikkat bağlantısı U-Net modelinde bulunan kodlama ve kod çözücü blokları arasında 

karşılıklı bağlantı sağlayan atlama çıktısına eklenerek kod çözücü bloğunda yukarı yönlü girdi 

olarak verilmektedir(Oktay vd., 2018: 1804.03999v3). Bu bağlantı ile U-Net modelinde 

öznitelik bilgisi iletilirken araya eklenen dikkat bloğu sayesinde veriden aktarılan zayıf 

özellikler ve alakasız bölgeler göz ardı edilerek ağın sadece çalışma alanına yani segmente 

edilecek alanına odaklanması sağlanmaktadır. Verilerden ilgisiz bölgelerin hesaplamaya dahil 
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edilmemesi ağın toplam hesaplama parametresini azaltarak modelin daha hızlı eğitilmesini 

sağlamaktadır(Siddique vd., 2020: 1118). Ayrıca bu bağlantı yapısı minimum hesaplama 

yüküyle U-Net modeli gibi standart evrişim mimarilerine kolayca entegre edilebilirken, model 

duyarlılığı ve tahmin yeteneğine önemli bir artı kazandırmaktadır. Şekil 4.21’da görüldüğü 

gibi, geliştirilen FractalSpiNet yapısının katman birleştirme bağlantısına dikkat mekanizması 

bağlantı yapılarak önerilen Att-FractalSpiNet mimarisi elde edilmiştir. 

 
Şekil 4.21. Tez çalışması kapsamında geliştirilen U-Net tabanlı Att-FractalSpiNet 

mimarisinin açık hali 
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5. DENEYSEL SONUÇLAR 

Tez çalışması kapsamınca omurilik alanı, beyin omurilik alanı ve omurilikte MS 

lezyonlarının tespit edilmesi gibi farklı bölütleme çalışmalarını gerçekleştirmek için temel U-

Net mimarisi, karma U-Net mimarileri ve önerdiğimiz FractalSpiNet mimarileri kullanılarak 

birçok bütüncül bir bölütleme ve tespit çalışması gerçekleştirilmiştir.  

Servikal omurilik aksiyel ve sagital MR verileri kullanılarak bölütlenmesi hedeflenen 

alanların ayrı ayrı maskeleme işlemleri yapılarak alt veri grupları oluşturulmuştur. Aksiyel 

çekimler kullanılarak OKA ve BOS işaretlemeleri yapılarak omurilik aksiyel OKA/BOS veri 

alt grubu oluşturulmuştur. Yine servikal omurilik MR verileri içerisindeki aksiyel ve sagital 

verilerde omurilik ve MS lezyon alanlarının işaretlenmesi yapılarak omurilik aksiyel MS ve 

omurilik sagital MS veri alt grupları oluşturulmuştur. Dolayısıyla, servikal omurilik MR 

verileri ile Tablo 5.1.’de verilen toplam üç adet birbirinden farklı ve özgün veri seti alt 

grupları hazırlanmıştır. Diğer taraftan, özgün verisetine ek olarak açık kaynak veri seti olan 

SCGMSC veriseti de çalışma kapsamınca bölütleme çalışmalarında değerlendirilmiş ve elde 

edilen sonuçlar önerilen mimarilerin sonuçları ile karşılaştırılmıştır. Deneysel çalışmalarda, 

temel U-Net mimarisi başta olmak üzere karma U-Net mimarilerinden Att U-Net, Res U-Net, 

Att-Res U-Net mimarileri ve önerilen FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet 

mimarileri sonuçları değerlendirilmiştir. Deneysel analizlerde, omurilik bölgesi ve beyin 

omurilik alanı, gri maddenin otomatik bölütlenmesi ve MS lezyonlarının tespiti yapılmıştır.  

Tablo 5.1. Tez çalışması kapsamında deneysel çalışmalarda kullanılan tüm verisetleri ve 

derin öğrenme mimarileri 
Verisetleri Derin öğrenme mimarileri 

1-Servikal Omurilik MR Veriseti (Özgün) 
• Omurilik Aksiyel OKA/BOS  
• Omurilik Aksiyel MS 
• Omurilik Sagital MS 

 
2-SCGMSC (Açık Kaynak Omurilik Aksiyel GM/BM) 

Temel mimari 
U-Net 
Hibrit U-Net modelleri 
Att U-Net 
Res U-Net 
Att-Res U-Net 
Önerilen U-Net tabanlı mimariler 
FractalSpiNet   
Con-FractalSpiNet   
Att-FractalSpiNet  

 

5.1. Optimize Edilen Hiper Parametreler 

U-Net modelinin başarısını etkileyen bazı önemli hiperparametreler vardır. Model 

eğitimlerinde hiperparametre seçimi ağın daha az maliyetle daha yüksek başarım elde 

etmesi temelince değerlendirilmektedir (Atlan vd., 2020: 60; Feurer ve Hutter, 2019: 3). 
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Tüm seçilen hiperparametreler modelin eğitim sürecini ve performansını etkileyen 

ayarlarını ve sayısal değerlerini ifade etmektedir. Bu hiperparametreler, genellikle 

deneme yanılma yöntemiyle belirlenir veya litertaürde sıklıkla başarılı olan parametreler 

seçilerek ön model kurulmakta ve modelin verimliliği üzerindeki etkileri model 

aşamalarında değiştirilerek en optimum değerlerin kullanması sağlanmaktadır (Gülcü ve 

Kuş, 2019: 503; Yu ve Zhu, 2020). Hiperparametreler model tasarım aşamasından model 

eğitim süreçlerine birçok adımda karar verilmesi gereken parametreleri içermektedir.  

Model tasarım aşamasında kanal sayısı, filtre boyutu, katman sayısı, havuzlama 

değerleri, aktivasyon fonksiyonu seçimi, yukarı örnekleme yöntemleri, çıkış 

fonksiyonları ve atlama bağlantılarının nasıl yapılacağı konularının değerlendirilmesi ve 

elde edilen sonuçlara göre yapılacak olan U-Net mimarilerinin performans sonuçları ayrı 

ayrı hesaplanması gerekmektedir. Model tasarımını etkileyen yenilik katan tüm aşamalar 

bu özelliklerin aldığı değerlere göre şekillenmektedir. Öte yandan, modelin kurulumu 

sonrasında, eğitim sürecinde ağırlıkların güncellenmesi, öğrenme hızı gibi parametrelerin 

seçimi ve farklı veri setleriyle yapılan çapraz doğrulamalar yoluyla model performansının 

nihai sayısal değerlere ulaşması, büyük bir titizlikle takip edilmesi gereken adımlardır. 

Model süresi boyunca öğrenme eğrileri ve doğrulama performansları izlenerek 

hiperparametrelerin modele olan olumlu olumsuz katkıları değerlendirilmektedir. En 

doğru parametre seçimleri ile U-Net mimarisinin başarılı sonuçlarını daha da artırması ile 

model öğrenme kapasitesinden maksimum ölçekte fayda sağlaması beklenmektedir. Tez 

çalışmasında, tüm mimariler için kullanılan hiperparametreler Tablo 5.2.’de verilmiştir. 

Tüm modellerin başarımlarını değerlendirirken eşit bir kıyaslama yapabilmek için 

optimum ölçekte modele katkı sağlayacak parametreler seçilerek model eğitimleri 

gerçekleştirilmiştir. 

Tablo 5.2. U-Net ve diğer tüm modeller için tercih edilen hiperparametre değerleri 
Epok (Epoch)  200 
Yığın boyutu (Batch size) 8 
Öğrenme oranı (Learning rate) 0.001 
Seyreltme (Dropout) 0.5 
Aktivasyon fonksiyonu (Activation function) ReLU 
Çıkış aktivasyon fonksiyonu (Output activation function) Sigmoid 
Optimizasyon algoritması (Optimization algorithm) Adam 
Kayıp fonksiyonu (Loss function) İkili çapraz entropi (Binary cross entropy) 

 

Deneysel çalışmalarda kullanılan tüm hiperparametreler derin öğrenme 

modellerinin eğitim süresinde, modelin performansı üzerinde ve modelin genelleme 

yeteneğinde oldukça kritik bir öneme sahiptir. Tüm parametreler ayarlanabilir veya farklı 
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seçenekler dahilinde modele olan katkısı incelenebilmektedir. Modelin davranışını 

kontrol etmek, eğitim süresini kontrol etmek, aşırı uydurmayı önlemek, optimizasyon 

algoritmalarını ayarlamak, model performansını iyileştirmek gibi birçok hiperparametre 

özellikleri ile derin öğrenme modellerinden elde edilecek performansı en yüksek değerine 

ulaştırmak mümkün olabilmektedir. Fakat modellerin kurulmasında en uygun 

hiperparametre gibi bir durum olmamakla beraber çoğu zaman deneme yanılma 

yöntemiyle bu değerlerin optimize edilmesi gerekmektedir.  

Öğrenme oranı (learning rate), derin öğrenme modellerinde modelin hızlı veya 

yavaş öğrenmesine karar veren önemli bir hiperparametre değeridir. Yüksek öğrenme 

oranı modelin daha hızlı öğrenmesini sağlayarak eğitim süresini kısa sürmesini 

sağlayabilmektedir. Fakat bu durum aynı zamanda eğitim aşamasında büyük 

dalgalanmalara neden olabilmektedir. Öğrenme oranını daha düşük tutulması halinde ise 

daha stabil bir eğitim süreci geçirmesini sağlar ama bu durumda eğitim süresinin oldukça 

uzamasına neden olarak yerel minumumlara kolayca takılabileceği durumlara sebep 

verebilmektedir.  

Batch boyutu (yığın boyutu), derin öğrenme hiperparametrelerinde çok önemli bir 

değer olup model sonucunu önemli ölçüde etkileyebilmektedir. Derin öğrenmede yığın 

boyutu modelin bir eğitim adımında işlediği örneklerin sayısını belirlemektedir. Yani, bir 

yığın boyutu ağın ne kadar sıklıkla güncelleneceğini belirlemektedir. Yığın boyutu 

bilgisayarın hesaplama gücü ile direkt ilişkilidir. Diğer taraftan özellikle veri setinin 

boyutu, mimarinin total parametre sayısı ve donanımsal yeterlilik durumları en uygun 

değeri belirlemek için dikkate alınması gereken kriterlerdir.  

Epok sayısı (Epochs), tüm veri setinin eğitim aşamasında bir kez kullanılması bir 

epok değerine karşılık gelmektedir. Epok aldığı değer ölçüsünce modelin eğitim süresi 

boyunca tüm verisetini kaç kere kullanacağı anlamına gelmektedir. Model eğitimleri 

sonunda model ve veri seti uyumunu takip edebilmek için eğitim kaybı ve doğrulama 

kaybı gibi grafikler incelenmektedir. Eğitim kaybı model veri setini uyumunu gösteren 

bir değer iken doğrulama kaybı ise modelin genelleme yeteneği açıklamakta olup aşırı 

öğrenmeyi engellemek için bir veri sunmaktadır. Kısaca epok değeri modelin eğitim 

sürecini ve performansını ölçme ve değerlendirmek için önemli bir parametredir.  

Aktivasyon fonksiyonları (Activation functions), genel olarak yapay sinir 

ağlarında kullanılan aktivasyon fonksiyonları farklı matematiksel işlevselliği ile her 

katmanın çıktısını istenilen değer bazında sonuçlanmasını sağlamaktadır. ReLU 

(Rectified Linear Activation) evrişim sinir ağlarında en çok kullanılan fonksiyon olmakla 
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beraber ikili sınıflandırma problemlerin çözümü için sigmoid, çoklu sınıflandırma 

problemleri için softmax kullanılmaktadır.  

Seyreltme oranı (Dropout oranı), derin öğrenme modellerinde sıklıkla kullanılan 

ve temeli birçok parametreye dayanan overfitting denilen aşırı uydurmayı azaltmak için 

kullanılan bir regülarizasyon tekniğidir. Aşırı uydurma (overfitting) durumları model 

eğitimleri esnasında sık yaşanan problemlerin başında gelmektedir ve aşırı uydurma 

sebebiyle model veri seti ile olan uyumu azaltarak yeni verilere olan genelleme 

yeteneğini kaybetmektedir veya azalmaktadır.  

Momentum, derin öğrenme modellerinde ve gradyan inişi optimizasyon 

algoritmalarında kullanılan gradyan iniş hızını stabilize etmek için tercih edilen bir 

tekniktir. Momentum her bir eğitim adımında önceki adımların bir ortalamasını alarak 

gradyan güncellemelerini düzenleyerek birleştirmektedir. Bu nedenle momentum değeri 

ile gradyan inişi sırasında hızını ayarlayarak modelin eğitim sürecini hızlandırarak yerel 

minimumlardan daha hızlı ve sorunsuz çıkmasına yardımcı olabilmektedir.  

Optimizasyon algoritması, modelin parametre değerlerinin eğitim veri seti ile en 

uygun şekilde güncellenmesini sağlamaktadırlar. Genellikle derin öğrenme modellerinde 

Adam optimisazyon algoritması kullanılmasına karşılık RMSProp, SGD, AdaGrad, 

Adadelta, Nadam ve Gradient Descent gibi kullanılan birçok popüler algoritmalar da 

mevcuttur.  

Batch normalizasyon, ağın daha hızlı ve daha istikrarlı bir şekilde eğitilmesine 

yardımcı olan ve daha iyi genelleme yeteneğine sahip olmasını sağlayan bir 

normalizasyon tekniğidir. Batch normalizasyon modele olan katkıları sırasıyla 

değişkenliklerin azalmasını sağlamaktadır, aşırı öğrenmenin önüne geçerek modelin 

genelleme yeteneğini artırmaktadır ve son olarak gradyan inişinin daha kararlı olmasını 

sağlayarak eğitim süresini kısaltmaktadır şeklinde ifade edilebilmektedir. 

5.2. Performans Metrikleri 

U-Net mimarisinde performans kriterleri model eğitimleri sonucunda bölütleme 

başarısını değerlendirmek için kullanılan çok önemli matematiksel araçlardır. Eğitim 

sonunda maske ve orijinal görüntüler kullanılarak yapılan bir sınıflandırma 

probleminin/işleminin ne kadar başarılı olduğunu anlamak için çeşitli değerlendirme 

kriterleriyle sonuçlarımızı analiz etmek ve modelin tahmin edebilme yeteneğinin sayısal 

sonuçlarını çıkarmak için metrikler kullanılmaktadır. 
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Tez çalışması kapsamınca yapılan deneysel çalışmalar sonucunda servikal 

omurilik bölgesinin ve beyin omurilik sıvısı alanının bölütlenmesi ve MS lezyonlarının 

tespitini değerlendirmek için önemli anahtar metrikler kullanılarak model başarıları 

değerlendirilmiştir. Bunlardan en önemli metrik olan ve Eşitlik (5.1)’de verilen Dice 

benzerlik katsayısı (DSC) altın standart (gerçek/uzman) maske ile bölütleme sonucu 

tahmin maskesi arasındaki bölütleme oranını göstermekte olan model başarısını 

değerlendirmek için literatürde en sık tercih edilen metriktir. Bu iki maske verisi arasında 

ilişki (eşleşme/örtüşme) ne kadar yüksek ise başarım o kadar yüksek olmaktadır. Aldığı 

değer 0 ile 1 arasında olup 1 ile yüzde yüz örtüşmeyi, 0 ile hiçbir benzer piksel örtüşmesi 

olmadığını göstermektedir.  

Eşitlik (5.2)’de verilen hacimsel bazlı benzerlik tespitleri için kullanılan hacimsel 

örtüşme hatası (Volume overlap error, VOE) ile Eşitlik (5.7)’deki göreceli hacim farkı 

(Relative Volume Error, RVD) metrikleri başarı ölçütü olarak model eğitimleri sonunda 

kullanılmıştır. VOE metriği kullanılarak tahmin edilen bölütleme ve altın standart 

bölütleme arasındaki "birleşim" ve "kesişim" hacimlerinin hesaplanması sonucu elde 

edilmektedir. RVD ise tahmin edilen ve gerçek maske hacmi arasındaki farkı 

hesaplamaktadır. RVD ile bölütlemen hacimsel doğruluğu ölçülerek doğruluk değeri 

hesaplanmaktadır. 

Bunların yanı sıra mesafe bazlı değerlendirme metrikleri olan Eşitlik (5.3), Eşitlik 

(5.4) ve Eşitlik (5.5)’teki Hausdorff mesafesi 95 (HD95), son olarak Eşitlik (5.6)’daki 

ortalama yüzey mesafesi (Average Symmetric Surface Distance, ASD) metrikleri ile 

modellerin mesafe bazlı değerlendirilerek başarı ölçütleri çıkarılmıştır. Hausdorff 

mesafesi ile iki küme arasındaki en uzak nokta çifti arasındaki maksimum mesafeyi 

ölçmekte ve bu metrik genellikle bölütlenen kenarlar arasındaki maksimum hatayı 

belirlemektedir. HD95 (95. Persentil Hausdorff Mesafesi) HD'nin 95. persentilini ifade 

etmekte olup kısaca en büyük %5'lik mesafe ihmal edilerek kalan %95'lik mesafelerin en 

büyüğü hesaplamaya katılarak maksimum uç değerin etkisini azaltılmakta ve daha kararlı 

bir ölçüm sağlamaktadır. Daha düşük değerler daha iyi bölütleme anlamına gelirken 

aksiyel MS lezyonları gibi küçük fakat klinik olarak önemli sınırların hataları 

algılayabilmek için önemli bir ölçek değeri olarak kullanılmaktadır. ASD metriği 

sayesinde model bölütlemen sınırları arasındaki ortalama mesafeyi ölçmektedir. Bu iki 

yüzey arasındaki tüm noktaların mesafelerinin ortalaması alınarak hesaplanmakta ve 

genel bir hata ölçüsü sağlamaktadır.  

DSC	(PM, GM) = (	*	|,-	∩/-|
|,-|∪|/-|

 x 100  (5.1) 
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VOE	(PM, GM) = (1 − |,-	∩/-|
|,-|"|/-|%|,-∪/-|

)	x	100	 (5.2)	

hd(PM, GM) = max
*∈,-

min
2∈/-

‖x − y‖(	 (5.3) 

hd(GM, PM) = max
2∈/-

min
*∈,-

‖x − y‖( (5.4) 

HD95(PM, GM) = max(hd(PM, GM), hd(GM, PM)) (5.5) 

ASD(PM, GM) = #
|3(,-)|"|3(/-)|

W
∑ 𝑑6!"	∈6(78) ZSPM, S(GM)[ +
∑ 𝑑6#"	∈6(98) ZSGM, S(PM)[

\ (5.6) 

RVD(PM, GM) = (|,-|%|/-||/-|
) x 100 (5.7) 

REC	(PM, GM) = :,
:,";<

 x 100 (5.8) 

PRE	(PM, GM) = :,
:,	"	;,

 x 100 (5.9) 

Karışıklık matrisi değerleri gerçek pozitif (TP), yanlış pozitif (FP), yanlış negatif 

(FN) ve gerçek negatif (TN) olmak üzere karışıklık matrisi değerlerini kullanarak birçok 

değerlendirme metriği hesaplamak mümkündür. Duyarlılık (Recall, REC) Eşitlik (5.8) 

denklemi ile model tarafından doğru tahmin edilen piksellerin gerçek doğru piksellere 

oranı tespit edilmektedir. Kesinlik (Precision, PRE) ise Eşitlik (5.9) denklemi ile pozitif 

olarak tahmin edilen değerlerden kaçınan gerçekten pozitif değerleri göstermektedir. 

Kullanılan metrikler için denklemlerde PM (tahmin edilen maske, predict mask), önerilen 

yöntemle elde edilen bölütleme sonucunu temsil ederken, GM (gerçeklik maskesi, uzman 

maskesi, ground thruth) uzman radyolog tarafından maskelenen referans alanı temsil 

etmektedir. 

5.3. Yazılım ve Donanımsal Altyapı 

Derin öğrenme modellerinin gelişim süreçlerini etkileyen en önemli 2 etken 

donanımsal yeterlilik ile kolay ve uygulanabilir yazılım geliştirilmesi olarak göstermek 

mümkündür. Derin öğrenme alanında CPU (Central Processing Unit), GPU (Graphics 

Processing Unit) ve TPU (Tensor Processing Unit) gibi işlemci türlerinin gelişimi, derin 

öğrenme modellerinin eğitimi ve uygulanması için kullanılan donanım altyapısında 

önemli değişikliklere neden olmuştur. CPU’lar derin öğrenme modellerinin ilk yıllarında 

vardı fakat derin mimarileri büyüklüğü ve karmaşıklığı arttıkça bu teknoloji ile 

hedeflenen başarılar elde edilememiştir. Özellikle paralel hesaplama kabiliyeti olmadığı 

için derin öğrenme modelinin büyük boyutlu verilerle çalıştığı zamanlarda eğitim ve 
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çıkarım süreleri oldukça uzun sürmüştür. GPU grafik işleme birimleri ise genellikle 

grafiksel uygulamaları hızlandırmak için kullanılırken sahip oldukları paralel hesaplama 

yetenekleri sayesinde derin öğrenme modellerinin eğitimini ve çıkarımını büyük ölçüde 

hızlandırmışlardır. Özellikle NVIDIA'nın CUDA platformu derin öğrenme 

çalışmalarında GPU kullanımını arttırmıştır. Google tarafından geliştirilen özel bir 

donanım çeşidi olan TPU'lar ile tensor işleme görevlerine (özellikle derin öğrenme 

modellerinde sıkça kullanılan tensor işlemleri) odaklanmışlardır. TPU teknolojisi 

sayesinde oldukça büyük verisetlerinin kullanımında derin öğrenme mimarilerinin eğitim 

sürelerine olumlu katkı sunarak daha düşük enerji tüketimiyle daha yüksek performans 

sağlayabilmektedir. Bu özellikleri TensorFlow, Keras ve Google'ın sunduğu bulut tabanlı 

çalışma ortamlarında (Colab) oldukça uyumlu olarak çalışabilmektedir. Bu sayede büyük 

verisetleri ile çalışmak zaman ve verim açısından daha makul hale gelmiştir. Tüm bu 

donanımsal gelişim süreci derin öğrenmenin aşama aşama yaygın olarak benimsenmesine 

ve çok çeşitli uygulama alanlarında kullanılmasına önemli bir katkıda sunmuştur. 

Derin öğrenme mimarilerinin gitgide daha komplex bir hale gelmesi kullanılan 

yazılım dilinin ve yazılım araçlarının pratikleşmesini sağlamıştır. Sürekli güncellenerek 

yeniliklerin sunulduğu bu alanda, gelişim ve yenilikler oldukça hızlı olmaktadır. Bu 

çerçevede birçok yazılım araçları ve dili geliştirilmiştir. En çok kullanım alanına sahip 

kütüphaneler: TensorFlow, PyTorch, Keras, MXNet, Caffe, ONNX olarak sıralamak 

mümkündür. Derin öğrenme kütüphaneleri ile uyumlu çalışması sayesinde yaygın bir 

kullanıma sahiptir. İnteraktif kullanımları sayesinde model aşamalarını sırasıyla 

işletebilmekte, model çıktılarınızı görselleştirebilmekte ve sonuçları analiz 

edilebilmektedir. Bazı popüler IDE arayüzleri: PyCharm, Visual Studio Code (VS Code), 

Spyder, Google Colab ve Jupyter Notebook olarak belirtilebilmektedir. Tezde yapılan 

deneysel çalışmaların tamamında Tablo 5.3.’te detayları verilen donanımlarına sahip bir 

bilgisayar kullanılarak tamamlanmıştır. Tez çalışmasının bu bölümünde deneysel 

çalışmalar kapsamında bütüncül olarak omuriliğin otomatik bölütleme için tüm 

aşamalarda ITK-SNAP yazılımı ve Python programlama dili ile Jupyter Notebook IDE 

kullanılmıştır. 

Tablo 5.3. Çalışmada kullanılan bilgisayarın donanımsal yapısı ve teknik özellikleri 

Donanım Özellikler 
CPU Intel® Core™ i5-10600KF, 4.10 GHz, 6 Core / 12 Thread 
RAM (x2) 16 GB (DDR4 3000 Mhz) 
Mainboard ASUS B560 
GPU NVIDIA RTX™ A4000 16 GB GDDR6 
Harddisk  1TB WD SATA 6G HDD+500GB PCIe NVMe M.2 SSD 
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5.4. Omurilik Aksiyel OKA/BOS Alt Veri Kümesinde Elde Edilen Sonuçlar 

Bu aşamada, servikal omurilik T2a MR verilerini kullanarak oluşturuduğumuz ilk 

özgün veri grubumuz ile OKA ve BOS alanların bölütleme çalışmasını 

gerçekleştirilmiştir. Alt veri kümesinde 20 MR taraması kullanılarak toplam 500 adet 

görüntü ve maske elde edilmiştir. Deneysel çalışmalar kapsamında, veri artırma tekniği 

kullanılarak veri seti 1000 olarak genişletilmiştir. Bu veri alt kümesi Tablo 5.4.’te 

görüldüğü gibi %80 eğitim ve %20 test olarak ikiye ayrılmıştır. Bölütleme işlemi için 

temel U-Net mimarisi başta olmak üzere karma U-Net mimarilerinden Att U-Net, Res U-

Net, Att-Res U-Net mimarileri ve önerilen FractalSpiNet, Con-FractalSpiNet, Att-

FractalSpiNet mimarileri kullanılarak birçok deneysel çalışma gerçekleştirilmiştir. Model 

eğitimleri sonucunda modelin çalışma performansını değerlendirmek için eğitim ve 

değerlendirme doğruluk (accuracy) grafikleri, zaman ve parametre ilişkisinin 

değerlendirilmesi, model başarıları oranlarının sayısal değerleri için DSC (%), VOE (%), 

HD95 [mm], ASD [mm], RVD (%), REC (%), PRE (%) metrik değerlerinin 

hesaplanması gerçekleştirilmiştir. Ayrıca tüm test kümesi verisi için model tahmin 

yeteneğini gözlemleyebilmek için MR verisi, MR maske verisi ve model eğitimleri 

sonucunda elde edilen tahmin maskeleri tek tek çıkartılmıştır. Bu sayede piksel bazlı 

benzerlik oranları ve metrik değerleri tüm test kümesi için tek tek hesaplanarak 

ortalaması alınmıştır. 

Tablo 5.4. Omurilik aksiyel OKA/BOS veri detayları 

 MR 
görüntüsü 

Uzman 
Maskesi 

Teknik 
Detaylar  Boyut  Eğitim 

kümesi  
Test 
kümesi 

Omurilik Aksiyel 
OKA/BOS  
 

  

Aksiyel MR 
T2a 

128x128 
.jpg 

800 
(%80) 

200 
(%20) 

 

Deneysel çalışmalarda, temel U-Net mimarisi, Att U-Net, Res U-Net, Att-Res U-

Net mimarileri ve önerilen FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet 

mimarilerinin performans sonuçları karşılaştırılmıştır. Bu mimariler farklı katman ve 

bağlantı yapılarına sahip olduğu için toplam parametre sayıları birbirinden oldukça farklı 

değerlere sahiptir. Bu durum eğitim süresini etkileyen en önemli etkenlerdendir. 

Parametre sayısı ile eğitim süresi arasında doğru orantılı bir ilişkiye sahip olduğu Tablo 

5.5.’te daha detaylı incelendiğinde gözlemlenecektir.  
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Tablo 5.5. Omurilik aksiyel OKA/BOS alt veri kümesi model parametre sayısının 200 epoch 

için model eğitim süresi, model doğruluk ve IoU sonuçları 
Omurilik Aksiyel OKA/BOS  Parametre Zaman   Doğruluk(%) IoU (%) 
U-Net 31,401,349 0:27:17 98.93 80.06 
Att U-Net 37,333,513 0:33:39 98.90 67.40 
Res U-Net 33,156,933 0:32:39 98.92 66.62 
Att-Res U-Net 39,089,097 0:39:19 98.90 71.13 
FractalSpiNet  109,922,693 1:27:25 98.93 78.14 
Con-FractalSpiNet  53,369,029 0:57:07 98.92 72.77 
Att-FractalSpiNet  115,854,857 1:35:05 98.92 79.78 

 

Model eğitimleri aşamasında her bir epok için doğuluk (accuracy) değeri 

hesaplanarak model sonucunda bir değerlendirme grafiği elde edilmektedir. U-Net 

mimarisinde, eğitim doğruluğu (training accuracy) ve doğrulama doğruluğu (validation 

accuracy) grafikleri modelin performansı, genelleme yeteneği ve olası sorunları hakkında 

önemli bilgiler vermektedir. Bu grafikler, eğitim süreci boyunca modelin nasıl 

öğrendiğini ve bu öğrenmenin doğrulama verisi üzerinde nasıl genelleştirildiğini anlamak 

için araştırmacılar tarafından sıklıkla kullanılmaktadır. Eğitim doğruluğu modelin eğitim 

veri seti üzerinde doğru tahmin ettiği örneklerin oranını gösterirken doğrulama doğruluğu 

modelin test veri seti üzerinde doğru tahmin ettiği örneklerin oranıdır. Bu, modelin 

eğitilmediği verilere karşı nasıl performans gösterdiğini değerlendirmek için önemli bir 

parametredir. Diğer taraftan eğitim kaybı (training loss) modelin eğitim verisi üzerinde 

tahmin ettiği değerlerin gerçek değerlerden ne kadar saptığını ifade etmektedir. 

Doğrulama kaybı (validation loss) modelin test verisi üzerinde tahmin ettiği değerlerin 

gerçek değerlerden ne kadar saptığını göstermektedir. Başarılı bir eğitim grafiğinde hem 

eğitim hem de doğrulama doğruluğu zamanla artar ve birbirine yakın değerler alırsa eğer 

bu genellikle modelin hem eğitim verisi üzerinde iyi öğrendiğini hem de öğrendiklerini 

test verisi için başarıyla genelleştirdiğini göstermektedir. Kayıp grafikleri için ise durum 

eğitim kaybı ve doğrulama kaybı zamanla azalma seyri izlerken eğitim sonunda 

ulaşabileceği en düşük seviyelere inmektedir.  

Şekil 5.1(a, b, c,d )’de omurilik aksiyel OKA/BOS alt veri kümesinde, model 

eğitimleri sonunda, eğitim kaybı, eğitim doğruluğu, doğrulama kaybı ve doğrulama 

doğruluğu grafikleri U-Net, Att U-Net, Res U-Net, Att-Res U-Net, FractalSpiNet, Con-

FractalSpiNet, Att-FractalSpiNet için elde edilen görseller verilmiştir. Eğitim doğruluğu 

ve eğitim kaybı grafikleri oldukça beklenen seyirde bir sonuç elde edilirken doğrulama 
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kaybı ve doğrulama doğruluğu grafiklerinde test kümesinde Att-Res U-Net modelinde en 

yüksek pik değerleri elde edilmiştir. Bu durum test verisinin değerlendirilmenin bu 

aşamasında modelin zorlandığı ve hata aldığı bir anı göstermektedir. Bu büyüklükte 

olmasa da diğer modellerde değerlendirme doğruluğu grafiğinde farklı aşamalarda 

modelde pikler görmek mümkündür. 

 
Şekil 5.1. Omurilik Aksiyel OKA/BOS verisi için U-Net, Att U-Net, Res U-Net, Att-Res 

U-Net, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet model eğitimleri sonucunda 
elde edilen (a) eğitim kaybı, (b) eğitim doğruluğu, (c) doğrulama kaybı ve (d) doğrulama 

doğruluğu değerlerinin grafikleri (200 epok, batch size=8) 

Servikal omurilik boyunca aksiyel OKA ve BOS’un bölütlemesi ve MS 

lezyonlarının tespiti için önerilen FractalSpiNet modelleri ve diğer U-Net, Att U-Net, Res 

U-Net, Att-Res U-Net mimarileri eğitimleri sonucunda elde edilen metrik sonuçları Tablo 

5.6.’da, Tablo 5.7.’de, Tablo 5.8.’de ayrı ayrı gösterilmiştir. Burada, tüm metrik değerleri 

DSC (%), VOE (%), HD95 [mm], ASD [mm], RVD (%), REC (%), PRE (%) test veri 

setinde bulunan tüm görüntüler için ayrı ayrı hesaplanarak ortalama skor çıkarılmıştır. 

Bölütleme başarısı her MR dilimi için hesaplanan metrik sonuçlarının ortalaması alınarak 

elde edilmiştir ve sonuçlar ayrıntılı olarak verilmiştir. Tüm modeller için 200 epok (tur) 

sayısı için model metrik değerleri hesaplanmıştır. 



76 
 

İlk olarak OKA için bölütleme sonuçları hesaplanarak Tablo 5.6’da verilmiştir. 

Con-FractalSpiNet kullanılarak DSC sonuçlarının %94.99 ile servikal omurilikteki OKA 

bölgesini segmentlemede daha başarılı olduğunu görülürken, hemen ardından U-Net 

%94.94 ve FractalSpiNet %94.90 ile birbirine oldukça yakın skorlar ile başarılı bir 

şekilde bölütleme sağlamışlardır. Diğer taraftan, sırasıyla Res U-Net %94.79, Att-

FractalSpiNet %94.70, Att U-Net %93.37 ve Att-Res U-Net %92.37 gibi oldukça yüksek 

DSC skorları elde edilmiştir. Ayrıca, ASD ve VOE gibi metriklerin sonuçlarında da 

önerilen Con-FractalSpiNet ile daha başarılı iken, RVD metrik sonucunda FractalSpiNet 

ve Con-FractalSpiNet modellerinde en iyi değerlere sahiptir. HD95 için ise en başarılı 

sonuç U-Net mimarisi ile elde edilmiştir. Att-Res U-Net mimarisinde, eğitim sonuçları 

değerlendirildiğinde en az başarılı sonuçlar elde edilmiştir. 

Tablo 5.6. Omurilik Aksiyel OKA/BOS alt veri kümesinde FractalSpiNet mimarileri ve diğer 

U-Net mimarileri için OKA alanın bölütleme sonuçları 
Derin Öğrenme Mimarileri DSC  

(%) 
VOE  
(%) 

HD95  
[mm] 

ASD  
[mm] 

RVD  
(%) 

REC  
(%) 

PRE  
(%) 

U-Net 94.94 9.48 4.18 17.96 5.02 95.64 94.46 
Att U-Net 93.37 12.20 7.73 35.45 6.91 95.01 92.12 
Res U-Net 94.79 9.75 4.62 20.05 6.99 97.28 92.64 
Att-Res U-Net 92.37 14.02 14.62 49.99 7.39 94.98 90.10 
FractalSpiNet  94.90 9.57 4.21 18.55 4.94 95.15 94.83 
Con-FractalSpiNet  94.99 9.43 4.24 17.53 4.94 95.63 94.53 
Att-FractalSpiNet  94.70 9.92 4.71 23.20 5.02 95.51 94.10 

 

FractalSpiNet modelleri ve diğer U-Net, Att U-Net, Res U-Net ve Att-Res U-Net 

mimarileri için model eğitimleri sonunda tüm test veri seti için görselleştirme yapılarak DSC 

ve diğer tüm metrik değerleri hesaplanarak kaydedilmiştir. Bu aşamada, OKA/BOS aksiyel 

T2a MR test veri setinde bazı örnek görseller için hedef OKA alanın DSC skorları ile birlikte 

bölütleme sonuçları Şekil 5.2.’de verilmiştir. Test setinden seçilen örnek görüntülerin analizi 

yapılacak olursa tüm modellerin çok yüksek DSC puanlarıyla oldukça başarılı bölütleme 

sonuçları ürettiğini görülmektedir. Tüm modellerin yüksek performansına rağmen, önerilen 

Con-FractalSpiNet, FractalSpiNet ve temel U-Net mimarisi ile elde edilen DSC puanlarının 

daha yüksek olduğu görülmektedir. 
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Şekil 5.2. Tüm model eğitimleri sonunda omurilik aksiyel OKA/BOS test kümesinden bazı 

örnek görseller için OKA bölütleme sonuçları ve DSC skorları 

Deneysel çalışmalarda, aynı eğitimler sonucunda farklı bölütleme sonuçları alarak 

ayrı ayrı değerlendirmeler yapılmıştır. Bu kapsamda eğitimler sonunda BOS olarak 

bilinen omurilik etrafını saran alanın bölütleme başarısı ayrıca değerlendirilmiştir. Tablo 

5.7.’den detaylı bir analiz yapılacak olursa, FractalSpiNet sonuçlarının servikal 

omurilikteki BOS bölgesini bölütlemede daha başarılı olduğu görülmektedir. Önerilen 

FractalSpiNet mimarisi kullanılarak elde edilen DSC puanları, tüm omurilikteki BOS 

bölgesi için %93.00 iken, U-Net %92.95, Att FractalSpiNet %92.82, Con-FractalSpiNet 

%92.76 ve Res U-Net %92.70 olmak üzere sırasıyla DSC skorları elde edilmiştir. Ayrıca, 

VOE için en yüksek skor FractalSpiNet modeli ile hesaplanırken, HD95 Att-

FractalSpiNet ile ASD değeri Res U-Net modelinde ve RVD için ise Con-FractalSpiNet 

modeli ile daha başarılı sonuçlar elde edilmiştir. Mesafe tabanlı metriklerin sonuçlarının 

da önerilen FractalSpiNet mimarileri ile toplamda daha başarılı olduğu ve daha küçük 

mesafeler elde edebilme yeteneği doğrulanmaktadır. Yine genel anlamda en az başarılı 

sonuçlar dikkat modelleri olan Att-Res U-Net ve Att U-Net eğitimleri ile hesaplanırken, 

dikkat bağlantısının fractal mimari yapısıyla daha uyumlu çalıştığı Att-FractalSpiNet elde 

ettiği skorlardan görülmektedir. 
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Tablo 5.7. Omurilik aksiyel OKA/BOS alt veri kümesinde FractalSpiNet mimarileri ve diğer 

U-Net mimarileri için BOS alanın bölütleme sonuçları 
Derin Öğrenme Mimarileri DSC  

(%) 
VOE  
(%) 

HD95  
[mm] 

ASD  
[mm] 

RVD 
(%) 

REC  
(%) 

PRE  
(%) 

U-Net 92.95 12.93 6.95 8.73 6.62 93.49 92.76 
Att U-Net 92.28 13.98 8.27 11.99 8.69 94.57 90.58 
Res U-Net 92.70 13.37 7.15 7.21 6.74 92.02 93.80 
Att-Res U-Net 91.93 14.61 14.87 27.97 7.70 92.70 91.64 
FractalSpiNet  93.00 12.89 6.83 7.72 6.56 93.22 93.11 
Con-FractalSpiNet  92.76 13.29 7.29 7.35 6.44 92.44 93.43 
Att-FractalSpiNet  92.82 13.18 6.71 9.39 7.33 94.18 91.85 

 

FractalSpiNet modelleri ve diğer U-Net, Att U-Net, Res U-Net ve Att-Res U-Net 

mimarileri için OKA/BOS aksiyel T2a MR test veri setinde bazı örnek görseller için hedef 

BOS alanın DSC segmente skorları ile bölütleme sonuçları Şekil 5.3.’te verilmiştir. Test 

setinden seçilen örnek görüntülerin analizi yapılacak olursa tüm modellerin çok yüksek DSC 

puanlarıyla oldukça başarılı bölütleme sonuçları ürettiği görülmektedir. Tüm modellerin 

yüksek performansına rağmen, önerilen FractalSpiNet mimarisiyle elde edilen DSC 

puanlarının daha yüksek olduğu deneysel çalışmalar sonucunda elde edilmiştir. 

 
Şekil 5.3. Tüm model eğitimleri sonunda omurilik aksiyel OKA/BOS test kümesinden bazı 

örnek görseller için BOS bölütleme sonuçları ve DSC skorları 
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Tablo 5.8.’de servikal omurilikteki OKA ve BOS tüm alanın bölütleme sonuçları ile 

elde edilen sonuçlar anahtar metrik skorları ile birlikte verilmiştir. Burada, FractalSpiNet 

sonuçlarının servikal omurilikteki OKA ve BOS tüm alanın segmentlemede %96.54 skor ile 

daha başarılı olduğu görülmektedir. U-Net, Res U-Net, Con-FractalSpiNet, Att-FractalSpiNet, 

Att-Res U-Net ve Att U-Net modelleri için DSC puanları sırasıyla %96.49, %96.44, %96.39, 

%96.25, %95.85 ve %95.84 olarak hesaplanmıştır. Ayrıca, VOE ve RVD gibi hacimsel 

tabanlı metrikler için sırasıyla FractalSpiNet ve U-Net modelleri başarılı iken, HD95 ve ASD 

gibi mesafe tabanlı metriklerin sonuçlarının da önerilen FractalSpiNet ve Con-FractalSpiNet 

ile daha başarılı olduğu ve daha küçük mesafelerin elde edilmesinde oldukça başarılı olduğu 

kanıtlanmıştır. Ayrıca, temel hesaplama metriklerden olan PRE değeri için önerilen Con-

FractalSpiNet mimarisinde en başarılı sonuçlar elde edilmiştir. Dikkat mekanizmasının fractal 

mimarisiyle uyumu, elde edilen yüksek DSC skorlarıyla net bir şekilde görülmektedir. 

Tablo 5.8. Omurilik OKA/BOS aksiyel alt veri kümesinde FractalSpiNet mimarileri ve diğer 

tüm U-Net mimarileri için OKA ve BOS tüm alanın bölütleme sonuçları 
Derin Öğrenme Mimarileri DSC 

(%) 
VOE 
(%) 

HD95 
[mm] 

ASD 
[mm] 

RVD 
(%) 

REC 
(%) 

PRE 
(%) 

U-Net 96.49 6.72 1.67 4.63 4.05 96.85 96.27 
Att U-Net 95.84 7.87 3.36 7.85 5.86 97.70 94.26 
Res U-Net 96.44 6.81 1.95 4.23 4.16 96.51 96.52 
Att-Res U-Net 95.85 7.86 8.64 20.76 5.35 96.99 94.94 
FractalSpiNet  96.54 6.64 1.39 3.98 4.12 96.59 96.63 
Con-FractalSpiNet  96.39 6.91 1.72 3.78 4.07 96.19 96.73 
Att-FractalSpiNet  96.25 7.16 2.11 5.46 4.54 97.22 95.45 

 

FractalSpiNet modelleri ve U-Net, Att U-Net, Res U-Net ve Att-Res U-Net mimarileri 

için model eğitimleri sonunda tüm test kümesi için OKA ve BOS tüm alanın DSC skorları ile 

vbirlikte bölütleme sonuçları Şekil 5.4.’te verilmiştir. Burada, tüm modellerin yüksek 

performansına rağmen, önerilen FractalSpiNet mimarileriyle elde edilen DSC skorlarının 

yüksek olduğu görülmektedir. 
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Şekil 5.4. Tüm model eğitimleri sonucunda omurilik aksiyel OKA/BOS test kümesinden bazı 

örnek görseller için OKA ve BOS tüm alanın bölütlemel sonuçları ve DSC skorları 

5.5. Omurilik Aksiyel MS Alt Veri Kümesinde Elde Edilen Sonuçlar 

Servikal omurilik verisetinden oluşturulan ikinci alt veri kümesi ile omurilik OKA 

bölütlenmesi ve MS lezyonlarının tespiti gerçekleştirilmiştir. İlk alt veri kümesinde OKAve 

BOS alanı bölütlenmişken, bu alt veri kümesinde omurilik MS alanı biraz daha küçülerek 

işaretlenmiştir. Bu alt veri kümesinde toplam 87 MR taraması kullanılarak toplam 231 

görüntü ve maskesi elde edilmiştir. Veri artırma teknikleri kullanılarak bu alt veri kümesi de 

1080 olarak genişletilmiştir. Ayrıca, yine bu alt küme Tablo 5.9.’da görüldüğü gibi %80 

eğitim ve %20 test olarak ikiye ayrılmıştır. Bu alt veri kümesinde bölütleme işlemi için temel 

U-Net mimarisi başta olmak üzere karma U-Net mimarilerinden Att U-Net, Res U-Net, Att-

Res U-Net mimarileri ve önerilen FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet 

mimarileri kullanılarak birçok deneysel çalışma gerçekleştirilmiştir.  

Tablo 5.9. Omurilik aksiyel MS alt kümesinin detayları 

 MR 
görüntüsü 

Uzman 
Maskesi 

Teknik 
detaylar  Boyut  Eğitim 

kümesi  
Test 
kümesi 

Omurilik 
Aksiyel MS  

  

Akiyal 
MR T2a 

128x128 
.jpg 

864 
(%80) 

216 
(%20) 
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Bu alt veri kümesi için eğitim sonucunda temel U-Net mimarisi, Att U-Net, Res U-

Net, Att-Res U-Net mimarileri ve önerilen FractalSpiNet, Con-FractalSpiNet, Att-

FractalSpiNet mimarileri için toplam parametre sayıları birbirinden oldukça farklı değerlere 

sahiptir. Modellerin eğitimi için parametre sayısı, eğitim süresi, doğruluk ve IoU değerleri 

Tablo 5.10’da detaylı olarak verilmiştir. 

Tablo 5.10. Omurilik aksiyel MS alt veri kümesinde model parametre sayısının 200 epok için 

model eğitim süresi, doğruluk ve IoU sonuçları  

Omurilik Aksiyel MS Parametre Zaman (dk)  Doğruluk (%) IoU(%) 
U-Net 31,401,349 28:37 99.77 87.48 
Att U-Net 37,333,513 35:19 99.77 87.52 
Res U-Net 33,156,933 33:47 99.78 80.87 
Att-Res U-Net 39,089,097 40:50 99.74 79.86 
FractalSpiNet  109,922,693 91:18 99.78 89.21 
Con-FractalSpiNet  53,369,029 60:05 99.78 86.98 
Att-FractalSpiNet  115,854,857 99:52 99.78 82.89 

 

Model eğitimleri aşamasında her bir epok için Şekil 5.5. (a, b, c,d)’de U-Net, Att U-

Net, Res U-Net, Att-Res U-Net,  FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet için 

model eğitimleri sonucunda elde edilen eğitim kaybı, eğitim doğruluğu, doğrulama kaybı ve 

doğrulama doğruluğu grafikleri verilmiştir. Eğitim doğruluğu ve eğitim kaybı grafikleri için 

klasik bir seyir izlerken değerlendirme kaybı ve değerlendirme doğruluğu grafiklerinde test 

kümesinde Att U-Net ve Att-FractalSpiNet modelinde yaklaşık 10 epok ve 5 epok değerinde 

en yüksek pikler gözlemlenmiştir. Bu durum test verisinin değerlendirilme aşamasında 

modelin zorlandığı veya belki hata aldığı bir anı göstermektedir. Bu büyüklükte olmasa da 

diğer modellerde değerlendirme doğruluğu grafiğinde herbir modelde farklı epok değerlerinde 

pikler görmek mümkündür. Eğitim doğrulama grafiğinde ise yine Att-FractalSpiNet 

modelinde başlangıç epokunda ve yaklaşık 22 epok değerinde en yüksek pik değeri aldığı 

görülmektedir. 
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Şekil 5.5. Omurilik aksiyel MS alt veri kümesi için U-Net, Att U-Net, Res U-Net, Att-Res 

U-Net, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet model eğitimleri sonucunda 
elde edilen eğitim kaybı(a), eğitim doğruluğu(b), doğrulama kaybı(c) ve doğrulama 

doğruluğu(d) değerlerinin grafikleri (200 epok, batch size=8) 

Servikal omurilik boyunca OKA ve MS lezyonlarının bölütleme için önerilen 

FractalSpiNet modelleri ve U-Net, Att U-Net, Res U-Net ve Att-Res U-Net mimarilerinin 

eğitimleri sonucunda metrikler için elde edilen sonuçları Tablo 5.11.’de gösterilmiştir. 

Burada, tüm metrik değerleri test veri setinde bulunan tüm görüntüler için ayrı ayrı 

hesaplanarak ortalama skor çıkarılmıştır. Omurilik alanı (OKA), MS lezyonları ve MS’siz 

omurilik alanı bölütleme alanları olarak belirlenmiştir. Bu nedenle model eğitimleri 

sonucunda bu üç bölütleme sonuçları ayrı ayrı hesaplanmıştır. OKA bölütlemesi için Tablo 

5.11.’de model test kümesi için elde edilen tüm metriklerin skorları verilmiştir. Con-

FractalSpiNet ve FractalSpiNet mimarileri ile sırasıyla %98.89, %98.88 sonuçları elde 

edilmiş olup en başarılı modeller olarak görülmektedir. Diğer taraftan Res U-Net, U-Net, Att-

FractalSpiNet, Att U-Net, ve Att-Res U-Net modelleri için DSC puanları sırasıyla %98.67, 

%98.54, %98.41, %98.01 ve %97.90 olarak hesaplanmıştır. VOE ve RVD gibi hacimsel 

benzerlik değerlendirme metrikleri için FractalSpiNet ile %2.04 ve %0.97 skorları ile en 

başarılı mimari olurken, mesafe tabanlı HD95 ve ASD metriklerin sonuçları için en yüksek 
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skorlar sırasıyla FractalSpiNet ve Con-FractalSpiNet için 0.39 mm ve 1.09 mm olarak elde 

edilmiştir. Ayrıca, PRE değeri için yine Con-FractalSpiNet en yüksek değere sahipken, REC 

değeri için FractalSpiNet kullanılarak daha başarılı sonuçlar elde etmiştir.  

Tablo 5.11. Omurilik aksiyel MS alt veri kümesinde FractalSpiNet mimarileri ve U-Net 

mimarileri için OKA alanı bölütleme sonuçları 
Derin Öğrenme Mimarileri DSC  

(%) 
VOE 
(%) 

HD95 
[mm] 

ASD 
[mm] 

RVD 
(%) 

REC 
(%) 

PRE 
(%) 

U-Net 98.54 2.67 0.49 1.67 1.51 98.43 98.69 
Att U-Net 98.01 3.64 1.36 3.90 2.71 98.80 97.33 
Res U-Net 98.67 2.43 0.60 1.55 1.55 98.69 98.70 
Att-Res U-Net 97.90 3.90 1.32 3.68 2.19 98.59 97.26 
FractalSpiNet  98.88 2.04 0.39 1.38 0.97 98.84 98.94 
Con-FractalSpiNet  98.89 2.05 5.12 1.09 1.18 98.62 99.21 
Att-FractalSpiNet  98.41 2.84 0.80 2.73 1.57 98.75 98.11 

 

Bu alt veri kümesi için, FractalSpiNet modelleri ve diğer U-Net, Att U-Net, Res U-Net 

ve Att-Res U-Net mimarileri kullanılarak tüm test veri kümesi için OKA alanının bölütleme 

sonuçları DSC skorları ile birlikte Şekil 5.6.’da verilmiştir. Burada, tüm modellerin yüksek 

bölütleme performansına rağmen, önerilen FractalSpiNet mimarileriyle oldukça yüksek DSC 

skorlarına ulaşıldığı görülmektedir. 

 
Şekil 5.6. Tüm mimariler için omurilik aksiyel MS test kümesinden bazı görseller için OKA 

alanının bölütleme sonuçları ve DSC skorları 
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Servikal omurilik MS aksiyel alt veri kümesinde bölütleme alanı için MS 

lezyonlarının bölütleme başarısında elde edilen sonuçlar Tablo 5.12.’ de verilmiştir. Burada, 

uzmanlar tarafından işaretlenmesi yapılan gerçek maske verileri ile model eğitimleri sonunda 

test setinden seçilen örnek maske görüntülerin piksel bazlı kıyaslanması yapıldığında, oldukça 

küçük piksel alana karşılık gelen MS lezyonlarının tespiti çok zorlu bir görev olmasına 

rağmen, MS lezyonlarının yüksek DSC skorlarıyla tespit edildiğini görülmektedir. çok yüksek 

DSC puanları model eğitimleri sonunda elde edilmiştir. Önerilen Con-FractalSpiNet ve 

FractalSpiNet mimarileri kullanılarak, omurilik MS lezyonlarını tespit etmede DSC için 

%91.48 ve %90.90 olarak oldukça yüksek skorlar başarılmıştır. Diğer taraftan, Res U-Net, 

Att-FractalSpiNet, U-Net, Att-Res U-Net ve Att U-Net mimarileri ile MS lezyonlarının tespit 

edilmesinde sırasıyla %88.87, %88.79, %86.00, %83.06 ve %75.34 DSC skorları 

başarılmıştır. Ayrıca, VOE için Con-FractalSpiNet modeli ile %12.92 hesaplanırken, RVD 

için FractalSpiNet mimairis ile %9.62 skoru elde edilmiştir ve hacimsel olarak benzerlik 

metrik oranı en yüksek skorlar elde edilmiştir. HD95 Con-FractalSpiNet ile ASD değeri 

FractalSpiNet modelinde daha başarılı sonuçlar elde edilmiştir. Böylelikle hem hacimsel 

tabanlı metriklerin sonuçlarının hemde mesafe bazlı metriklerin sonuçlarının önerilen 

FractalSpiNet ve Con-FractalSpiNet mimarileri ile toplamda daha başarılı olduğu ve daha 

küçük mesafelerin hesaplanabilirliğinin yüksek olduğu tespit edilmiştir. PRE ve REC 

değerleri için ise en yüksek skorlar Con-FractalSpiNet mimarisi ile sırasıyla %92.27 ve 

%92.13 olarak elde edilmiştir. Yine genel anlamda en az başarılı performasn sonuçları, dikkat 

tabanlı modeller olan Att U-Net ve Att-Res U-Net ile elde edilmiştir. 

Tablo 5.12. Omurilik aksiyel MS alt veri kümesinde FractalSpiNet mimarileri ve diğer U-Net 

mimarileri için elde edilen MS lezyonlarının bölütleme sonuçları  
Derin Öğrenme Mimarileri DSC  

(%) 
VOE  
(%) 

HD95  
[mm] 

ASD  
[mm] 

RVD  
(%) 

REC  
(%) 

PRE  
(%) 

U-Net 86.00 20.83 11.55 28.23 13.50 83.73 90.50 
Att U-Net 75.34 36.18 21.92 67.98 24.52 69.56 85.25 
Res U-Net 88.87 17.20 9.83 31.28 11.29 90.24 89.33 
Att-Res U-Net 83.06 25.58 14.28 47.47 15.37 85.11 83.04 
FractalSpiNet  90.90 14.06 8.06 16.08 9.62 91.26 92.20 
Con-FractalSpiNet  91.48 12.92 7.27 20.84 9.93 92.13 92.27 
Att-FractalSpiNet  88.79 17.17 11.59 35.81 11.77 89.33 89.79 

 
Bu alt veri kümesi için, MS lezyonlarının tespitinde FractalSpiNet modelleri ve diğer 

U-Net karma modelleri için test kümesindeki bazı örnek kesitlerde elde edilen sonuçlar DSC 

skorları ile birlikte Şekil 5.7.’de gösterilmiştir. Bu aşamada, modellerin yüksek 

performansının yanında, önerilen FractalSpiNet mimarileriyle elde edilen %100 örtüşme ile 
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gerçekleşmiş örnek lezyonların varlığı bölütleme sonuçlarından görülmektedir ve sonuçların 

başarılı olduğu doğrulanmaktadır. 

 
Şekil 5.7. Tüm model eğitimleri sonunda omurilik Aksiyel MS test verisetinden bazı örnek 

görseller için MS lezyonlarının DSC tahmin skorları 

Bu alt veri kümesinde, MS lezyonu olmayan OKA bölgesi, veri setindeki görüntülerde 

uzmanlar tarafından işaretlenen iki etiketten biridir. Bu etiket servikal omurilikte MS lezyonu 

olmayan OKA bölgesini temsil etmektedir. Bu alan tespit edilerek, MS lezyonlarının oldukça 

küçük hacimlere sahip olması nedeniyle MS lezyonlarının tespitinde düşük skorlar elde 

edilmesi durumuna alternatif ikinci bir bölütleme ile sonuçların ikili çapraz-doğrulaması 

yapılmıştır. Tablo 5.13’te bu alan için elde edilen bölütleme sonuçları değerlendirildiğinde, 

Con-FractalSpiNet ve FractalSpiNet mimarileri %97.25 ve %97.17 DSC skorları ile en 

başarılı modeller olarak görülmektedir. Bu mimarileri Res U-Net, Att-FractalSpiNet ve U-Net 

mimarileri sırasıyla %96.64, %96.48, %96.18 DSC skorlarıyla takip etmektedir. Att-Res U-

Net ve Att U-Net mimarileri ise %94.50 ve %94.42 DSC skorlarına sahip olmasına karşılık, 

kullanılan mimariler arasında en az başarılı olarak temsil edilmektedir. Con-FractalSpiNet 

mimarisi ile hacim bazlı değerlendirme metriği olarak kullanılan VOE ve RVD için %4.84 ve 

%2.57 ile en yüksek skorlar elde edilirken, yine mesafe bazlı HD95 ve ASD metrikleri için de 

sırasıyla 2.41 mm ve 3.20 mm skorları elde edilmiştir. Bu kesit alanı için, önerilen 
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FractalSpiNet yöntemlerinin tüm temel metrikler için bölütleme performansı açısından U-Net 

mimarisinden daha iyi performans gösterdiği sonucuna varılabilmektedir. Res U-Net, Att-

FractalSpiNet, U-Net, Att-Res U-Net ve Att U-Net mimarileri, MS lezyonu olmayan omurilik 

bölgesinde sırasıyla DSC için sırasıyla %96,64, %96,48 %96,18, %94,50 ve %94,42 olmak 

üzere en yüksek puanlar elde edilmiştir. Önerilen FractalSpiNet mimarisini takiben, Res U-

Net modeli MS lezyon olmayan bölütleme sonuçları omurilik bölgesi bölütleme işlemlerinden 

daha başarılıdır. Tüm bölütleme çalışması değerlendirildiğinde FractalSpiNet modelleri ile 

oldukça başarılı sonuçlar elde edildiği görülmüştür. Yine dikkat mekanizmasının eklendiği 

modeller kıyaslandığında, en başarılı Att-FractalSpiNet modelinin olduğu anlaşılmaktadır. 

Tablo 5.13. Omurilik aksiyel MS alt veri kümesinde FractalSpiNet mimarileri ve U-Net 

mimarileri için MS’siz omurilik alanının bölütleme sonuçları 
Derin Öğrenme Mimarileri DSC  

(%) 
VOE  
(%) 

HD95  
[mm] 

ASD  
[mm] 

RVD  
(%) 

REC  
(%) 

PRE  
(%) 

U-Net 96.18 6.75 3.03 4.89 3.66 97.11 95.43 
Att U-Net 94.42 9.94 5.01 13.13 7.87 97.75 91.58 
Res U-Net 96.64 6.00 2.90 4.34 3.20 96.72 96.75 
Att-Res U-Net 94.50 9.77 4.93 8.32 4.57 95.46 93.79 
FractalSpiNet  97.17 5.00 2.45 3.72 2.64 97.27 97.20 
Con-FractalSpiNet  97.25 4.84 2.41 3.20 2.57 97.10 97.58 
Att-FractalSpiNet  96.48 6.08 3.092 6.06 3.52 97.22 95.96 

 

MS’siz OKA alanının bölütlenmesinde, FractalSpiNet modelleri ve U-Net mimarileri 

için deneysel çalışmalarda, tüm mimariler için aynı test verisine ait model çıktıları Şekil 

5.8’de görüldüğü gibidir. Mimarilerinin sonuçları servikal omurilik alanı sınırları içinde MS 

lezyonu olmayan OKA bölgesinin bölütleme için de karşılaştırılmıştır. Hem MS alanının 

segmente edilmesi, hemde MS’siz alanın segmente edilmesi sayesinde ikili doğrulama ile MS 

lezyonları tespit edilebilmektedir. Bu sayede zorlu test verilerinde lezyonların konumlarının 

ve büyüklüklerini doğrulama imkanı oluşmaktadır. Şekil 5.8.’de görülebileceği gibi, test 

setinden seçilen örnek MR görüntülerinin analizi, bölütleme sonuçları birbirine yakın olsa da, 

önerilen Con-FractalSpiNet, FractalSpiNet ve Att-FractalSpiNet mimarilerinde daha yüksek 

DSC skorları görülmektedir. 
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Şekil 5.8. Tüm derin öğrenme mimarileri için omurilik aksiyel MS test kümesinde bazı örnek 

kesitler için MS’siz omurilik alanın bölütlenmesi ve DSC skorları 

5.6. Omurilik Sagital MS Alt Veri Kümesi ile Elde Edilen Sonuçlar 

Servikal omurilik verisetinde üçüncü alt veri kümesi sagital düzlemde elde edilen 

görüntüler için oluşturulmuştur. Burada, sagital düzlemde OKA ve MS lezyonlarının 

bölütleme çalışması gerçekleştirilmiştir. Sagital MR görüntülerinde MS lezyonları belirlemek 

konumu ve polarite bozuklukları bakımından oldukça zorlu olabilmektedir. Ayrıca aksiyel 

çekimlerde tek bir MR taramasında, ortalama 27 veri elde edilebilirken, sagital çekimlerde bu 

sayı oldukça az olmakta ve ortalama 8 veya 9 MR kesiti içermektedir. Bu bakımdan bu 8 

kesitten tüm omurilik sınırları gören veri sayısı 1 veya 2 olarak değişkenlik gösterirken, bu 

kesitlerde de MS alanını belirlemek oldukça zor olmaktadır. Diğer taraftan belirlenen MS 

alanlarında sıklıkla polarite bozuklukları gözlenmektedir. U-Net mimarileri ile çalışmanın 

temelini oluşturan verisetinde maske oluşturulması işlemi bu aşamada oldukça zorlu olmakta 

ve bu olumsuzluklar işaretlenen MS lezyonu sayısını da oldukça azalmaktadır. Bu nedenle bu 

alt veri kümesinde 34 MR taraması kullanılarak toplam 54 görüntü ve maskeleri elde 

edilebilmiştir. Bu alt veri kümesinde, veri artırma teknikleri kullanılarak görüntü sayısı 530 

olarak genişletilmiştir ve Şekil 5.14’te görüldüğü gibi %80 eğitim ve %20 test olarak ikiye 

ayrılmıştır.  
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Tablo 5.14. Omurilik sagital MS alt veri kümesini detayları 

 MR 
görüntüsü 

Uzman 
Maskesi 

Teknik 
detaylar  Boyut  Eğitim 

kümesi  
Test 
kümesi 

Omurilik 
Sagital MS 
 

  

Sagital MR 
T2a 

320x320 
.jpg  (%80) (%20) 

 

Sagital düzlemdeki deneysel çalışmalarda, U-Net mimarisi, Att U-Net, Res U-Net, 

Att-Res U-Net mimarileri ve önerilen FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet 

mimarilerinin eğitim sonucunda farklı katman ve bağlantı yapılarına sahip olduğu için toplam 

parametre sayılarının Şekil 5.15.’teki gibi birbirinden oldukça farklı olduğu görülmüştür. 

Parametre sayısı ile eğitim süresi arasında doğru orantılı bir ilişki vardır ve Bu durum eğitim 

süresini etkileyen en önemli etkenlerdendir. Model eğitim süresini görüntü boyutunun da 

etkilediği aksiyel ve sagital düzlemdeki görüntülerin eğitim süreleri arasındaki farktan 

anlaşılmaktadır. Şöyleki, aksiyel verilerin 128x128 boyutlarında olmasına karşılık sagital 

veriler, 320x320 boyutlarına sahiptir ve piksel bazlı eğitim gerçekleştiren U-Net 

mimarilerinin eğitim sürelerini etkilediği çok net görülmektedir. 

Tablo 5.15. Omurilik sagital MS alt veri kümesinde model parametre sayısının 200 epoch 

için model eğitim süresi, doğruluk ve IoU sonuçları  
Omurilik MS Sagital T2a MR Parametre Zaman  Doğruluk (%) IoU(%) 
U-Net 31,401,349 1:07:21 99.61 90.44 
Att U-Net 37,333,513 1:25:23 99.60 91.67 
Res U-Net 33,156,933 1:23:41 96.61 92.18 
Att-Res U-Net 39,089,097 1:40:16 98.90 71.14 
FractalSpiNet  109,922,693 3:51:55 99.63 91.81 
Con-FractalSpiNet  53,369,029 2:30:44 99.60 90.23 
Att-FractalSpiNet  115,854,857 3:59:51 98.93 79.78 
* Fractal U-Net ve Att-Fractal U-Net modelleri için bilgisayar özellikleri nedeniyle batchsize 4 olarak alınarak 
hesaplanmıştır. Bu nedenle hesaplama süresi iki model için artmıştır. 

 

Bu alt veri kümesinde, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet, U-Net, 

Att U-Net, Res U-Net, Att-Res U-Net modellerinin eğitim aşamalarını değerlendirmek için 

her bir epok için hesaplanan doğrulama ve kayıp değerleri için eğitim sonunda Şekil 5.9’daki 

grafik elde edilmiştir. Bu grafik detaylı incelenecek olursa eğitim doğrulama değeri neredeyse 

tüm modeller için %98.9 ile %99.63 arasında sonlanmış olup başarılı bir eğitim aşaması 

olduğu görülmektedir. Eğitim kaybı grafiğinden modellerin genelleşme eğrileri 

izlenebilmektedir. Doğrulama doğruluğu grafiği incelenecek olursa modellerin test veri seti 
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üzerinde bazı modellerde ilk epok değerlerinde pikler gözlemlenirken yer yer diğer modeller 

içinde 200 epok süresince bazı pik görülmektedir. Bu grafik ile modelin test verisetinde 

bulunan bazı örnek setleri tahmin ederken zorlandığı bu yüzden piklerin elde edildiğini 

söylemek gerekmektedir. Doğrulama kaybı grafiği incelenecek olursa modelin test verisi 

üzerinde tahmin ettiği değerlerin gerçek değerlerden hangi aralıklarda saptığını veya tahmin 

ederken zorlandığı aşamaları göstermektedir. Doğrulama grafikleri için eğri zamanla artarak 

birbirine en yakın değerlere ulaşırken kayıp grafiklerinde bu seyir tam tersi yönde azalan eğim 

göstermektedir ve ulaşabileceği en düşük seviyelere kadar inmektedir.  

 
Şekil 5.9. Omurilik sagital MS alt veri kümesi için U-Net, Att U-Net, Res U-Net, Att-Res 

U-Net, FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet model eğitimleri sonucunda 
elde edilen eğitim kaybı (a), eğitim doğruluğu (b), doğrulama kaybı (c) ve doğrulama 

doğruluğu (d) değerleri grafikleri (200 epok) 

Sagital MS alt veri kümesinde omurilik, MS lezyonları ve MS’siz omurilik alanı 

bölütleme için hedef alanlar olarak belirlenmiştir. Servikal omurilik boyunca sagital omurilik 

ve omurilik MS lezyonlarının bölütleme için önerilen FractalSpiNet modelleri ve diğer U-Net, 

Att U-Net, Res U-Net ve Att-Res U-Net mimarileri eğitimleri sonucunda elde edilen metrik 

bazında performans sonuçları Tablo 5.16.’da gösterilmiştir. Tabloda, Att-Res U-Net mimarisi 

ile MS lezyonlarının tespitinde en yüksek DSC skoru %97.06 olarak elde edilmiştir. Hemen 

ardından FractalSpiNet ile %96.16’lık DSC skoru ile ikinci en yüksek başarım elde edilmiştir. 
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Dolayısıyla, bu diğer alt veri kümeleri ile yapılan deneysel analizlerde daha az başarılı olan 

model genel anlamda Att-Res U-Net mimarisi iken, sagital MS verisetinde oldukça başarılı 

performans göstererek en yüksek değerlere ulaşmıştır. Eğitim aşamalarında model 

parametrelerinde ve hiperparametre değerlerinde hiçbir değişiklik yapılmadığı göz önünde 

tutulursa, kullanılan verisetinin değişimi ile bu skor elde edilmiştir. Diğer alt veri kümelerinde 

görüntüler 128x128 boyutlarında iken, sagital MS veri kümesindeki görüntüleri 320x320 

boyutlarında olması modelin hedef bölütlemen alanın büyümesi ile doğru orantılı olduğu 

yorumu yapılabilmektedir. Diğer taraftan Tablo 5.16’da hacimsel benzerlik metrikleri olan 

VOE ve RVD için en yüksek skorlar Att-Res U-Net ile %5.67 ve %2.13 olarak elde edilirken, 

mesafe bazlı değerlendirme metrikleri için de yine Att-Res U-Net mimarisi en yüksek skorları 

elde ederek 0.14 mm ve 0.43 mm olarak hesaplanmıştır. Ayrıca, ResNet gibi derin omurga 

ağları büyük ve karmaşık veri setlerinde başarılıdır. Ancak, daha küçük ve basit veri setleri 

için çok derin mimariler aşırı öğrenmeye neden olabilmektedir (He vd., 2016: 770). Özellikle 

yapılan bazı çalışmalarda küçük veri setlerinde çok karmaşık modellerin aşırı öğrenme riskine 

işaret edilmektedir(C. Zhang vd., 2021: 107),(Goodfellow, 2016).  

Tablo 5.16. Omurilik sagital MS alt veri kümesinde FractalSpiNet mimarileri ve U-Net 

mimarileri için omurilik alanın bölütleme sonuçları 
Eğitim sonuçları DSC  

(%) 
VOE  
(%) 

HD95  
[mm] 

ASD  
[mm] 

RVD  
(%) 

REC  
(%) 

PRE  
(%) 

U-Net 95.96 7.62 7.10 9.86 3.18 95.14 96.92 
Att U-Net 95.63 8.22 4.70 10.66 3.88 95.94 95.48 
Res U-Net 96.07 7.46 7.53 16.08 2.89 96.18 96.06 
Att-Res U-Net 97.06 5.67 1.44 4.29 2.13 96.66 97.50 
FractalSpiNet  96.16 7.25 9.10 6.23 3.28 96.43 96.03 
Con-FractalSpiNet  95.92 7.61 4.14 8.59 3.47 94.94 97.13 
Att-FractalSpiNet  95.98 7.60 3.82 7.72 3.66 96.32 95.78 

 

FractalSpiNet ve U-Net, Att U-Net, Res U-Net ve Att-Res U-Net mimarileri için 

omurilik MS Sagital T2a MR test veri setinde bazı örnek görseller için hedef omurilik alanın 

bölütleme sonuçları Şekil 5.10.’da verilmiştir. Tüm modeller yüksek performans gösterirken, 

özellikle önerilen Att-Res U-Net ve FractalSpiNet mimarisiyle elde edilen DSC skorlarının 

daha yüksek olduğu deneysel çalışmalar sonucunda görülmektedir. 
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Şekil 5.10. Tüm mimariler için omurilik sagital MS test kümesindeki bazı örnek kesitler için 

tüm omurilik alanın bölütlenmesi ve başarılan DSC skorları 

Servikal omurilik MS sagital alt veri kümesinde, aksiyel verisetinde olduğu gibi MS 

lezyonları oldukça küçük hacimlere sahiptir. Sagital alt veri kümesi için detaylı analizler 

yapılmış olmakla beraber, aksiyel verilerden farklı olarak MS lezyonlarını MR verisinde 

işaretlemek oldukça güçlü bir aşama olmuştur. MR görüntüsünde MS lezyonlarının 

sınırlarının keskin bir şekilde belli olmaması polarite bozuluklarına sahip olması eğitim 

sonunda elde edilen başarımı oldukça düşürdüğü gözlemlenmiştir. Literatürde de yapılan bazı 

çalışmalarda, MS verilerinin analizi için sıklıkla aksiyel düzlem kesitlerine başvurulduğu ve 

sagital düzlemde lezyonların tespitinde yaşanılan güçlükler ifade edilmiştir (Alcaide-Leon 

vd., 2016: 970; Galler vd., 2016: 963). Tablo 5.17’de test setinden seçilen örnek görüntülerin 

piksel bazlı kıyaslanması yapıldığında MS lezyonlarının başarısının DSC skoru ile, bazı 

modellerde %50 üzerinde, bazı modellerde ise altında edildiği görülmektedir. Oldukça küçük 

piksel alana karşılık gelen MS lezyonlarının sagital düzlemde tespiti, aksiyel düzleme göre 

oldukça zorlu bir görev olarak ifade edilebilmektedir. Burada, Con-FractalSpiNet mimarisi 

MS lezyonlarını tespit etmede en yüksek DSC puanına ulaşarak %56.25 olarak 

hesaplanmıştır. Yine Att-Res U-Net ve U-Net mimarileri sırasıyla %55.61 ve %53.04 ile 

yüzde ellinin üzerinde bölütleme başarımı elde edilmiştir. Hacimsel benzerlik metriği olan 
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VOE için en yüksek değeri DSC skoru ile paralel olarak Con-FractalSpiNet mimarisi ile 

%56.58 olarak hesaplanırken, diğer hacimsel metrik olan RVD için en yüksek skor Att-

FractalSpiNet ile %34.82 olarak elde edilmiştir. Ayrıca REC ve PRE gibi diğer önemli 

metrikler için de yine Con-FractalSpiNet mimarisi servikal omurilik MS lezyonlarının 

bölütlemede daha iyi performansa sahiptir. Att U-Net modeli ile yine en az başarılı sonuçlar 

elde edilmiştir. 

Tablo 5.17. Omurilik sagital MS alt veri kümesinde FractalSpiNet mimarileri ve U-Net 

mimarileri için MS lezyonlarının bölütleme sonuçları  
Derin Öğrenme Mimarileri DSC  

(%) 
VOE  
(%) 

RVD  
(%) 

REC  
(%) 

PRE  
(%) 

U-Net 53.04 60.24 47.87 59.29 51.83 
Att U-Net 41.32 71.98 75.05 53.43 36.41 
Res U-Net 42.19 69.67 43.35 43.67 45.47 
Att-Res U-Net 55.61 58.53 34.90 59.45 55.53 
FractalSpiNet  46.35 67.20 35.29 48.58 47.40 
Con-FractalSpiNet  56.25 56.58 43.59 61.04 55.98 
Att-FractalSpiNet  43.94 68.63 34.82 44.30 47.08 

 

Bu alt veri kümesinde, FractalSpiNet ve diğer tüm U-Net mimarileri için test veri 

kümesinde bazı örnek kesitler için MS lezyonlarının DSC ile skorları bölütleme sonuçları 

Şekil 5.11.’de verilmiştir. Bu aşamada seçilen örnek görüntülerin analizi yapılacak olursa, 

tüm modellerde diğer alt veri kümeleri için elde edilen yüksek skorlar elde edilmediği 

görülmektedir. Con-FractalSpiNet ve Att-Res U-Net mimarileri ile diğer mimarilere göre 

daha başarılı sonuçlar elde edildiği görülmektedir. Bu alt veri kümesinde, MS lezyonlarının 

net bir polarite farkına sahip olmaması ve çok küçük temsil alanına sahip MS lezyonları 

nedeniyle elde edilen sonuçlar diğer verisetlerine oranla düşük kalmıştır. Özellikle Res U-Net 

modelinde bazı verilerde hiç lezyon tespit edemediği MR test görüntüleri olmuştur. Diğer 

taraftan aktif bir lezyon alanı olmasına rağmen, moldellerin birden fazla lezyon alanı tespit 

etmesinin sebebi MR görüntüsünde omurilik sınırları içerisinde işaretlenen MS poritesine 

benzer polarite alanlarının olmasıdır.  



93 
 

 
Şekil 5.11. Tüm mimariler için omurilik sagital MS test kümesindeki bazı örnek görüntüler 

için MS lezyonlarının bölütleme sonuçları ve DSC skorları 

Sagital MS alt veri kümesinde MS lezyonu olmayan omurilik bölgesinin bölütleme 

işlemlerine ait sonuçlar Tablo 5.18.’de sunulmuştur. Bu alanın bölütleme sagital verilerde 

daha önemli hale gelmiştir. Çünkü sagital verilerde MS lezyonlarının tespitinde oldukça 

düşük skorlar elde edilmesi, daha büyük hacme sahip olan MS’siz omurilik alanınn tespit 

edilmesi ile ikili doğrulamayı zorunlu hale getirmektedir. Burada, tüm omurilik alanın 

bölütleme sonuçlarına benzer sonuçlar elde edilmiş olup, en yüksek DSC skoru yine Att-Res 

U-Net mimarisi ile %95.16 olarak hesaplanmıştır. Hemen ardından FractalSpiNet ile %94.10 

DSC skoru elde edilmiştir. Diğer mimarilerin skorları birbirlerine çok yakın sonuçlara 

sahiptir. Hacimsel örtüşmeyi ifade eden VOE ve RVD değeri yine en yüksek DSC skoruna 

sahip olan Att-Res U-Net modeli ile %9.12 ve %2.64 olarak gerçekleşmiştir. Mesafe bazlı 

metriklerde ise yine Att-Res U-Net modeli en yüksek skorlara sahip model olarak HD95 için 

0.48 mm ve ASD için 0.72 mm olarak en hassas değerlere ulaşmıştır.  
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Tablo 5.18. Omurilik sagital MS alt veri kümesinde FractalSpiNet mimarileri ve U-Net 

mimarileri için MS’siz omurilik alanın bölütleme sonuçları  
Derin Öğrenme Mimarileri DSC  

(%) 
VOE  
(%) 

HD95  
[mm] 

ASD  
[mm] 

RVD  
(%) 

REC  
(%) 

PRE  
(%) 

U-Net 93.88 11.29 10.16 13.65 4.22 93.13 94.80 
Att U-Net 93.40 12.00 9.20 13.77 5.09 93.06 94.06 
Res U-Net 93.78 11.49 11.33 21.29 5.08 94.73 93.06 
Att-Res U-Net 95.16 9.12 4.83 7.19 2.64 94.85 95.53 
FractalSpiNet  94.10 10.86 13.13 11.39 5.12 95.03 93.45 
Con-FractalSpiNet  93.76 11.36 7.85 12.78 5.28 93.06 94.84 
Att-FractalSpiNet  93.83 11.36 7.23 13.35 5.97 95.11 92.88 

 

FractalSpiNet modelleri ve diğer tüm U-Net mimarileri için test kümesindeki bazı 

kesitler için bölütleme sonuçları Şekil 5.12’de sunulmuştur. Burada, örnek görseller 

incelendiğinde bölütleme başarım dağılımının oldukça değişkenlik gösterdiği görülmektedir. 

Örneğin ilk görselde en yüksek DSC skoru Att-FractalSpiNet ile %96.81 olarak alınırken, 

ikinci ve üçüncü kesit için Att-Res U-Net modelleri ile %95.43 ve %97.73 DSC skorları 

başarılmıştır. Diğer taraftan dördüncü kesit için %96.74 ile Att U-Net, beşinci kesit için 

%96.84 ile FractalSpiNet ve altıncı kesit için ise %99.08 ile Con-FractalSpiNet modellerinde 

en yüksek DSC skorları elde edilmiştir. MS alanında daha fazla piksel alanı ile temsil edilen 

MS’siz omurilik alanı için, elde edilen skorlar oldukça yüksek olmasını sağlamaktadır. Bu 

nedenle MS alanlarının başarılı olarak tespit edildiği sonucu çok doğru olmamakla beraber 

MS lezyonlarının konum olarak doğruluğu için bir kriter olmasına karşılık hacimsel olarak 

çok başarılı sonuçlar vermemektedir. Bu bağlamda sagital MR verileri ile MS lezyonlarının 

daha yüksek başarılar ile tespit edilmesi için MR verilerinin oldukça kaliteli teknik özelliklere 

sahip olması gerektiği analizi çıkmaktadır. MR verilerinde MS lezyonlarının net bir şekilde 

izlenebilirliği U-Net modellerinin başarısını doğrudan etkilen en önemli teknik özellik olduğu 

ve bu durumun sagital düzlemde MS lezyonlarının tespit edilmesinin zorlu bir görev olarak 

geçerliliğini koruduğu uçtan uca yapılan çalışmalar neticesinde ifade edilebilmektedir.  
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Şekil 5.12. Tüm mimariler için omurilik sagital MS test kümesindeki bazı örnek kesitler için 

MS’siz omurilik alanın bölütleme sonuçları ve DSC skorları 
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6. TARTIŞMA 

Bu tez çalışmasında, omurilik ve omurilik bölgesinde bulunan MS lezyonlarının 

önerilen U-Net tabanlı derin öğrenme mimarileri ile tespiti ve bölütlenmesi 

gerçekleştirilmiştir. Deneysel analizler sonucunda elde edilen sonuçlar detaylı olarak 

incelendiğinde, servikal omurilik T2 MR görüntüleri kullanılarak oluşturulan omurilik aksiyel 

OKA/BOS, omurilik aksiyel MS ve omurilik sagital MS veriseti alt grupları ile önerilen 

FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet mimarileri ve U-Net, Att U-Net, Res 

U-Net ve Att-Res U-Net gibi rekabetçi diğer modeller kullanılarak elde edilen sonuçlar ayrı 

ayrı değerlendirilmiştir. Diğer taraftan, model ayarlamaları için ortak parametreler seçilerek 

modellerin eşit bir yaklaşımla değerlendirilmesi sağlanmıştır. Modeller için tercih edilen 

parametreler bacth boyutu 8, öğrenme oranın 0.001, aktivasyon fonksiyonu ReLU, kayıp 

fonksiyonu binary cross entropy, optimizasyon fonksiyonu sigmoid, optimizasyon algoritması 

adam ve droupout değeri 0.5 olarak 200 epok değerleri kullanılarak tüm alt veri kümeleri için 

eğitimler gerçekleştirilmiştir. Tüm eğitimler sonunda model başarılarını ölçmek için 

literatürde sıklıkla kullanılan piksel örtüşme temeline dayanan DSC, PRE ve REC değerleri 

kullanılırken diğer taraftan hacimsel bazlı olarak VOE, RVD ve mesafe bazlı olarak ASD ve 

HD95 metrikleri değerlendirme metrikleri olarak kullanılmıştır. Farklı yaklaşım temellerine 

sahip metriklerin kullanılması modelleri çok yönlü analiz edilmesine olanak sağlamaktadır. 

Omurilik yapısı itibariyle belirli bir geometrik şekle sahip olmamakla beraber omur 

yapısına göre de kıvrımlı bir şekle sahiptir. Bu nedenle bölgenin bölütlenmesi sınırlarının 

belirlenmesi oldukça zorlu bir konu olarak ortaya çıkmaktadır. Bu alanda tespit edilmeye 

çalışılan lezyonlar konum, boyut ve şekil bakımından oldukça heterojen bir yapıya sahiptir. 

Lezyon vokselleri orijinal MR verilerinde tüm omurilik hacmine oranla çok az bir alan ile 

temsil edilmektedir. Özellikle sagital düzlemdeki verilerde tüm omurilik alanı boyunca 

aksiyel düzlemdeki verilere oranla çok daha küçük hacimlere sahip olabilmektedir. Lezyon 

yoğunluklarının gri madde yoğunluklarına ve diğer bazı dokusal yapılara benzerlik 

göstermesi, maskeleme yaparken ve eğitim sırasında olumsuz sonuç olarak karşımıza 

çıkmaktadır.  

Omurilik bölütleme ve MS lezyonlarının tespiti için yürütülen deneysel analizlerde, 

başarılı skorların yanı sıra test veri seti değerlendirildiğinde modellerin omurilik sınırlarının 

tam olarak belirleyemediği, taşma veya daha az alanın tahmin edildiği örnek veriler Şekil 

6.1.(a)’da verilmiştir. Bazı piksel eklentilerinin olduğu görülmesine rağmen bu durum 

omurilik sınırlarını yine de yüksek başarılar ile tespit edildiği görülmektedir. İkinci hedef 
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bölütleme alanı olan beyin omurilik sınırları için modellerin başarıları test edilmiştir. Başarılı 

bir sonuçlar sergileyen modellerin test verisetleri incelendiğinde bazı verilerde %90’ın altında 

piksel örtüşmesi olan bazı verilere rastlanmıştır. Bu verilere örnek görseller Şekil 6.1.(b)’de 

verilmiştir. Üçüncü bölütleme alanı omurilik ve beyin omurilik alanlarının birlikte temsil 

edildiği tüm alan olarak belirlenmiştir. Bu görseller incelendiği Şekil 6.1.(c)’de görüleceği 

gibi başarısız sonuçlarda bile, önerilen yöntemlerin oldukça yüksek DSC skorlarına sahip 

olduğu görülmektedir. 

 
(a) 

 
(b) 

  
(c) 

Şekil 6.1. Önerilen FractalSpiNet mimarileri ve modeller kullanılarak omurilik alanının 
bölütlenmesi (a), beyin omurilik sıvısı alanının bölütlenmesi (b), omurilik ve beyin omurilik 

sıvısı tüm alanın bölütlenmesi (c) için nispeten düşük başarıma sahip sonuçlar 

Omurilik aksiyel MS alt veri kümesinde, test kümesinde yapılan değerlendirmeler 

sonucunda gözlemlenen bazı bölütleme hatalarını gösteren örnek veriler Şekil 6.2.(a)’da 

gösterilmektedir. Eksik piksel veya fazla piksel olarak kendini gösteren örtüşme hataları elde 

edilen metrik değerlerini doğrudan etkileyerek model başarı skorlarını değiştirmektedir. Diğer 

taraftan, MS lezyonlarının çok küçük piksellerle ifade edildiği ve belirli bir geometrik şekle 
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sahip olmadığı göz önüne alındığında, önerilen Con-FractalSpiNet ve FractalSpiNet 

mimarilerinin oldukça başarılı bölütleme gerçekleştirdiği ve dikkate değer sonuçlar elde ettiği 

söylenebilir. Ancak, yine de MS lezyonlarının tespitinde nispeten daha düşük başarıma sahip 

bazı sonuçlar ise Şekil 6.2.(b)’de verilmiştir. 

 
(a) 

 
(b) 

 
(c) 

Şekil 6.2. Önerilen FractalSpiNet mimarileri ve diğer tüm modeller için omurilik aksiyel MS 
alt veri kümesinde tüm omurilik alanının bölütlenmesi (a), omurilik MS lezyonlarının 

bölütlenmesi (b), MS lezyonları olmayan omurilik alanının bölütlenmesi (c) için daha düşük 
başarıma sahip kesitler 

MS lezyonlarının hacimsel olaral tam belirlenemediği eksik veya dağınık bir bölgenin 

tahmin edildiği sonuçlardan görülmektedir. Nitekim eğitimler sonunda MR görüntüsünün 

çekim kalitesinin, MS lezyonlarına benzer polaritelere sahip alanların olması MS 

lezyonlarının sınırlarının net bir şekilde belirli olmaması durumlarında etiket işlemlerinde 

hata olasılıklarını artırmakta çıkarımı yapılabilmektedir. Aslında MR görüntüsünde MS 

lezyonlarına benzer polaritelere sahip alanlar başarıyı düşürmekte ve işlem adımlarının en 

başında maske verisini (temel gerçek) hazırlamayı oldukça zorlaştırmaktadır. Bu nedenle, 

önerilen çalışmanın yüksek kaliteli net MR kesitlerinde MS lezyonlarının tespitine katkı 
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sağlaması oldukça olası iken MR görüntüsü ve gerçek maske verisi arasındaki hatalı 

etiketleme işlemleri model başarılarını oldukça etkilemektedir. Diğer bölütleme alanı olan 

MS’siz omurilik alanın tespit edilmesi için yine tüm modeller ile eğitimler 

gerçekleştirilmiştir. MS’siz omurilik alanı bölütleme çalışmasına dahil edilmesinin en büyük 

sebebi MS lezyonları bölütleme ile birlikte ikili doğrulama sağlamaktır. Test verisetinde 

oldukça yüksek piksel örtüşmeleri gözlemlenirken, Şekil 6.2.(c)’de verilen bazı örnek 

görüntülerde daha az veya daha çok piksel eşleşmeleri gerçekleşmiştir. 

Omurilik sagital MS alt veri kümesinde önerilen mimariler kullanılarak, omurilik 

alanının bölütlenmesinde, MS lezyonlarının tespitinde ve MS olmadan omurilik alanının 

bölütlenmesinde daha düşük başarıma sahip sonuçlara örnekler sırasıyla Şekil 6.3(a), Şekil 

6.3(b) ve Şekil 6.3(c)’de gösterilmiştir. Att-Res U-Net mimarisinin bu alt veri kümesi ile 

uyumu oldukça dikkat çeken bir detay olmuştur. Çünkü diğer iki alt veri kümesi ile yapılan 

sonuçlar değerlendirildiğinde, az başarılı skorları elde eden modellerden biri iken, sagital MS 

alt veri kümesi ile en başarılı DSC skorlarını elde eden mimarilerden biri olmuştur. Burada, 

aksiyel düzlemdeki alt veri kümeleri 128x128 iken sagital düzlemdeki görüntü boyutları 

320x320 olması ilk belirgin özellik olarak değerlendirilmektedir. Nitekim çalışma alanının 

büyümesi modelin başarısına olan katkısını olumlu etkilemiş olabileceği görüşü oldukça 

yüksek bir olasılık olarak değerlendirilebilmektedir. Başarı farkını etkileyen en önemli 

etkenlerden olan veri sayısı olduğu düşünülürse sagital veri kümesinin daha kapsamlı bir hale 

getirilerek, artırılması veri çeşitliliğine katkı sunması ve model başarılarını olumlu yönde 

etkilemesi beklenmektedir. Diğer taraftan, sagital düzlemdeki verilerde MS lezyon başarısı 

oldukça düşük olması yüksek başarımlar için motivasyon kaynağı iken, sagital MR 

verilerinde gözlemlenen polarite bozuklukları bu başarıyı düşüren en önemli etkendir. Sagital 

verilerde net MS lezyonları gözlemlenirken diğer taraftan net olmayan pikseller ile temsil 

edilen ve bu yüzden maskeleme işlemlerinin oldukça zorlu olduğu MR verileride 

bulunmaktadır. MR verilerinin kalitesinin artırılması MR çekim kalınlığının düşürülmesi 

verisetinin çeşitlenmesi ve sayısının artmasına oldukça olumlu katkı sunacaktır. Test 

verisetinde bulunan örnek veriler incelendiği bazı modellerde MS verileri hiç piksel örtüşmesi 

gerekleşmeyen veriler bulunurken daha az veya çok hatalı veriler ile karşılaşmak mümkündür.  
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(a) 

 
(b) 

 
(c) 

Şekil 6.3. Önerilen FractalSpiNet mimarileri ve diğer tüm modeller için sagittal düzlem alt 
veri kümesinde tüm omurilik alanının bölütlenmesinde (a), omurilik MS lezyonlarının 

bölütlenmesinde (b), MS lezyonları olmayan omurilik alanının bölütlenmesinde (c) daha 
düşük başarımlı sonuçlar 

Aksiyel omurilik alanı içerisinde bulunan gri madde bölgesi yine MS alanlarının 

segmente edilmesi gibi zorlu bir çalışma konusu olarak literatürde geçmektedir. Tez 

çalışması kapsamında önerilen yöntemlerin perfomansı, aynı zamanda, açık bir veriseti olarak 

sunulan SCGMSC verisetindeki görüntüler ile de değerlendirilmiştir. Bu veri seti, dört farklı 

siteden alınan omurilik görüntülerinden oluşmaktadır. Deneysel analizler için, bu verisetinden 

328 eğitim (~%80) ve 83 test (~%20) seti dahil olmak üzere toplam 411 MR görüntüsü ve 

gerçek maske seçilmiştir. Veriseti yine 128x128 olarak hazırlanmış olup veri artırma 

teknikleri uygulanmadan mevcut sayı adedince eğitimler gerçekleştirilmiştir. Ayrıca, 

önerilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet mimarisinin bu verisetindeki 

performansı, U-Net mimarisi ve türevleri olan Att U-Net, Res U-Net ve Att-Res U-Net 

modelleriyle karşılaştırılmıştır ve elde edilen sonuçlar Tablo 6.1’de sunulmuştur. Model 
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eğitimleri sonunda gri bölgenin bölütlemesinde, en yüksek DSC skoru %83.20 ile U-Net 

mimarisi ile elde dilmiş olup, hemen ardından % 83.05 DSC skoru ile FractalSpiNet elde 

etmiştir. Önerilen FractalSpiNet ve U-Net modellerinin sonuçlarının diğer modellere göre 

oldukça yakın ve daha başarılı olduğu sonucuna varılabilmektedir. Con-FractalSpiNet ve 

Att U-Net mimarileri ile %81.96 ve %80.40 DSC skoru olarak başarım elde edilmiştir.  

Tablo 6.1. Omurilikte GM bölütlemesi için SCGMSC verisetinde FractalSpiNet mimarileri 

ve U-Net mimarilerinin sonuçlarının değerlendirmesi  
Derin Öğrenme Mimarileri DSC  

(%) 
VOE  
(%) 

HD95  
[mm] 

ASD  
[mm] 

RVD  
(%) 

REC  
(%) 

PRE  
(%) 

U-Net 83.20 28.42 1.33 4.84 9.09 85.49 81.35 
Att U-Net 80.40 32.36 1.55 5.83 8.92 79.38 81.98 
Res U-Net 79.24 33.87 1.72 5.59 10.14 76.61 82.65 
Att-Res U-Net 74.79 39.65 4.25 10.78 14.41 78.11 72.47 
FractalSpiNet  83.05 28.68 1.39 4.84 10.55 86.28 80.42 
Con-FractalSpiNet  81.96 30.20 1.35 4.45 9.79 79.28 85.46 
Att-FractalSpiNet  75.75 37.81 6.62 27.74 22.13 77.36 76.31 

 

SCGMSC verisetinde test kümesinde başarılı piksel örtüşmelerinin olduğu veri 

örnekler Şekil 6.4.’de verişmiştir. Görüntülerden anlaşılacağı üzere, U-Net ve 

FractalSpiNet ile oldukça yüksek bölütleme sonuçları elde edilirken, diğer modeller ile 

%83’ün altında DSC skorları elde edilmiştir. 

 
Şekil 6.4. Önerilen FractalSpiNet mimarileri ve diğer tüm modellerin SCGMSC verisetinde 

omurilik GM bölütleme sonuçları  

Omurilik bölütleme için bazı kamuya açık veri kümeleri olmasına rağmen, 

servikal omurilik bölgesini ve bu bölgedeki MS lezyonlarını özel olarak içeren kamuya 

açık bir veri kümesi bulunmamaktadır. Bu nedenle, bu çalışmanın sonuçlarını birçok 

parametrede diğer son teknoloji yaklaşımlarla karşılaştırmak genel anlamda mümkün 

değildir. Ayrıca, çalışmalarda kullanılan farklı yöntemler eşit karşılaştırmayı daha da 

zorlaştırmaktadır. Ayrıca, birçok çalışmada değerlenme metrikleri olarak tercih edilen 
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temel performans ölçütleri de birbirinden çok farklıdır. Bununla birlikte, genel literatür 

taraması yapıldığında çalışmamıza yakın ölçekte veri seti kullanan ve yöntemlerinde 

DSC skoru sonuçlarını veren benzer bazı çalışmalarla karşılaştırılması Tablo 6.2.’de 

verilmiştir. Servikal omurilik bölgesinde çalışmanın zorlukları göz önüne alındığında, bu 

çalışmada önerilen FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet mimarilerinin 

çok başarılı performans sonuçları elde ettiği görülebilmektedir.  

Daha önce önerilen omurilik bölütleme çalışmalarının çoğu, bu tez çalışması da 

dahil olmak üzere orijinal veri setini kullanmıştır. Ancak Bedard ve arkadaşları (Bédard 

ve Cohen-Adad, 2022: 1031253) , kamuya açık bir veri seti olan omurga veriseti 

kullanmıştır. Öte yandan, en son çalışmalar çoğunlukla omurilik bölütleme 

gerçekleştirmiştir ve omurilikte MS lezyonu tespiti üzerine birkaç çalışma da vardır. Bu 

çalışmalar arasında omurilik alanın segmente edilmesi ile veriler sunan çalışmalar De 

Leener ve arkadaşları (De Leener vd., 2014: 528) ve(De Leener vd., 2015: 1705), Zhuo 

ve arkadaşları(Zhuo vd., 2022: e210292), Prados ve arkadaşları(F. Prados vd., 2016: 

36151), X. Zhang ve arkadaşları (Xiaoran Zhang vd., 2021: 104345) yaptıkları çalışmalar 

ile elde edilen DSC skorları Tablo 6.2.’de verilmiştir. Omurilik MS lezyonlarını veya 

diğer tümör vb. yapıların tespit etmek için yapılan çalışmalar ise Gros ve 

arkadaşları(Gros vd., 2019: 901), Lemay ve arkadaşları(Lemay vd., 2021: 102766), Zhuo 

ve arkadaşları (Zhuo vd., 2022: e210292) olarak literatürde yer almaktadır. Bu tez 

çalışmasında orijinal veri setinde önerilen FractalSpiNet, Con-FractalSpiNet ve Att-

FractalSpiNet mimarilerinin diğer yöntemlerle kıyaslayarak sonuçların analizleri 

yapılmıştır. Nitekim 3 farklı alt veri kümesi ile deneysel çalışmalar yapılmıştır. Omurilik 

OKA/BOS aksiyel T2a MR veri seti ile omurilik bölütleme için elde edilen sonuçlar 

FractalSpiNet %94.90, Con-FractalSpiNet %94.99 ve Att-FractalSpiNet %94.70 tespit 

edilmiştir. Yine aynı veri seti ile beyin omurilik sıvısı bölütleme sonuçları FractalSpiNet, 

Con-FractalSpiNet ve Att-FractalSpiNet için sırasıyla %92.99, %92.76 ve %92.82 olarak 

tespit edilmiştir. Son olarak omurilik ve beyin omurilik sıvısı alanlarının toplamı için 

alınan bölütleme sonuçları için elde edilen DSC skorları FractalSpiNet, Con-

FractalSpiNet ve Att-FractalSpiNet için sırasıyla %96.54, %96.39ve %96.25 olarak 

hesaplanmıştır. Omurilik MS aksiyel T2a MR veri seti ile omurilik bölütleme sonuçları 

FractalSpiNet %98.88, Con-FractalSpiNet %98.89 ve Att-FractalSpiNet %98.41 olarak 

elde edilmiş olup omurilik MS sagital T2a MR veri setinde ise bu sonuçlar FractalSpiNet 

%96.16, Con-FractalSpiNet %95.92 ve Att-FractalSpiNet %95.98 olarak tespit edilmiştir. 

Diğer yapılan çalışmalar ile kıyaslandığında omurilik bölütleme ile elde edilen en yüksek 

DSC skoru %96 olarak tespit edilmiştir. Omurilik aksiyel MS verisi ile MS lezyonları 



103 
 

için alınan bölütleme sonuçları FractalSpiNet %90.90, Con-FractalSpiNet %91.48 ve Att-

FractalSpiNet %88.79 olarak oldukça rekabetçi sonuçlar elde edilirken omurilik sagital 

MS alt veri kümesi ile bu sonuçlar FractalSpiNet %46.35, Con-FractalSpiNet %56.25 ve 

Att-FractalSpiNet %43.94 olarak daha az başarılı sonuçlar ile tespit edilmiştir. Diğer 

yapılan çalışmalar ile kıyaslandığında aksiyel verilerde omurilik MS bölütleme ile elde 

edilen en yüksek DSC skoru %60.4 ve %50.0 iken tümör için %76.7 ± 1.5 olarak DSC 

skoru tespit edilmiştir.  

Tablo 6.2. FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet ile literatürde yapılmış 

benzer ölçekli çalışmalarının karşılaştırılması 
Çalışma   Veriseti  Metot DSC (%) 
De Leener vd. 
(2014)  Özgün veriseti PropSeg 90.0 (omurilik bölütleme) 

De Leener vd. 
(2015)  Özgün veriseti PropSeg 91.0 ± 0.02 (omurilik ve omurilik 

kanalının bölütlenmesi) 

Prados vd. (2016)  Özgün veriseti OPAL algoritması ve 
STEPS bölütleme  

96.5 (Lezyonlu OKA bölütleme)  
97.0 (Lezyonsuz OKA) 

Gros vd.  (2019)  Özgün veriseti CNN (DeepSeg) 95.9 (omurilik bölütleme) 
60.4 (MS lezyon tespii) 

Lemay vd.  (2021)  Özgün veriseti U-Net temelli kaskad 
mimari  76.7 ± 1.5 (Tümor + Kavity + Adem) 

Zhang vd. (2021)  Özgün veriseti U-Net 87.0 ± 18.4 (OKA bölütleme) 

Zhang vd. (2022)  Özgün veriseti Channel attentive U-
Net (SeUneter) 90.67 ± 1.63 (servikal omur bölütleme) 

Zhuo vd. (2022)  Özgün veriseti MultiResUNet  50.0 (MS)  
58.0 (NOSD) 

Bedard vd. (2023)  “Spine generic 
public” veriseti 

U-Net temelli soft 
bölütleme 96.0 ± 1 (omurilik bölütleme) 

Önerilen Method 
(Servikal 
Omurilik 
Veriseti) 
 

Omurilik Aksiyel 
OKA/BOS  

FractalSpiNet  
94.90(OKA bölütleme)  
92.99(BOS bölütleme) 
96.54(OKA+BOS bölütleme) 

Con-FractalSpiNet  
94.99 (OKA bölütleme)  
92.76(BOS bölütleme) 
96.39(OKA+BOS bölütleme) 

Att-FractalSpiNet  
94.70 (OKA bölütleme)  
92.82(BOS bölütleme) 
96.25(OKA+BOS bölütleme) 

Omurilik Aksiyel 
MS  
 

FractalSpiNet  
98.88 (OKA bölütleme)  
97.17 (MS’siz OKA bölütleme) 
90.90 (MS lezyon tespiti) 

Con-FractalSpiNet  
98.89 (OKA bölütleme)  
97.25 (MS’siz OKA bölütleme) 
91.48 (MS lezyon tespiti) 

Att-FractalSpiNet  
98.41 (OKA bölütleme)  
96.48 (MS’siz OKA bölütleme) 
88.79 (MS lezyon tespiti) 

Omurilik Sagital 
MS  

FractalSpiNet  
96.16 (OKA bölütleme)  
94.10 (MS’siz OKA bölütleme) 
46.35 (MS lezyon tespiti) 

Con-FractalSpiNet  
95.92 (OKA bölütleme)  
93.76 (MS’siz OKA bölütleme) 
56.25 (MS lezyon tespiti) 

Att-FractalSpiNet  
95.98 (OKA bölütleme)  
93.83 (MS’siz OKA bölütleme) 
43.94 (MS lezyon tespiti) 
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Omurilik aksiyel OKA/BOS verisi için toplam 1000 görüntü için %20’si test veri 

seti olarak ayrılmış olup 200 olarak belirlenmiştir. Omurilik aksiyel MS verisi için 1080 

görüntünün %20’si test verisi olarak ayrılarak toplam 216 MR görüntüsü ve maske verisi 

ayrılmıştır. Üçüncü alt veri kümesi olan omurilik sagital MS alt veri kümesinde 530 olup 

%20’si olan 106 adet MR görüntüsü test veri seti olarak ayrılmıştır. Tablo 6.3’te verilen 

zaman ölçekleri test verisetinde tüm veriler için metriklerin hesaplanması ve tahminlerin 

görselleştirilmesi aşamasını kapsamaktadır. Bu süreler herbir veri seti için tüm 

modellerin değerlendirme süreleri ölçülmüş ve herbir veri için ortalama süreleri 

çıkarılmıştır. Modellerin eğitimleri sonunda test verisetinin metriklerin hesaplanması ve 

verilerin görselleştirilmesi için geçen süre ayrı ayrı hesaplanmıştır. Toplam sürelerin test 

veri sayısına bölünmesi ile herbir veri için elde edilen süre de ayrı ayrı hesaplanmıştır. 

Tek bir aksiyel MR görüntüsü için ortalama tespit süresi tüm modeller için yaklaşık 0.2 

saniye iken sagital düzlemdeki görüntüler için bu süre 0,.35 olarak tespit edilmiştir. 

Modeller arasında önemli bir fark olmamasına karşılık veri seti bazında farklılık verilerin 

boyutlarından kaynaklanmakta olduğu çıkarımı yapılabilmektedir. aksiyel görüntüler 

128x128 piksel boyutunda iken, sagital görüntüler 320x320 olduğu için piksel bazlı işlem 

yapan U-Net mimarilerinin sonuçlarının değerlendirme aşamasında geçen sürelere fark 

olarak yansımıştır. Alınan sonuçlar test seti için hesaplanan toplam tespit süresi ve tek bir 

MR görüntüsü için elde edilen tespit süresi, önerilen çalışmanın gerçek zamanlı 

uygulamalarını gerçekleştirmeyi anlamlı kılmaktadır. 

Tablo 6.3. Tüm modellerin eğitimleri sonunda herbir test seti için toplam tespit süresi ve 

test verisetindeki tek bir görüntü için ortalama tespit süresi 

Derin Öğrenme 
Mimarileri 

Test verisinin toplam tespit süreleri(s) Test verisinde herbir veri için ortalama 
tespit süreleri(s) 

Omurilik 
Aksiyel 
OKA/BOS  

Omurilik 
Aksiyel 
MS  

Omurilik 
Sagital 
MS  

Omurilik 
Aksiyel 
OKA/BOS  

Omurilik 
Aksiyel 
MS  

Omurilik 
Sagital 
MS  

U-Net 43.37 45.51 37.14 0.217 0.211 0.350 
Att U-Net 42.14 44.82 37.31 0.211 0.208 0.352 
Res U-Net 42.55 45.17 37.92 0.213 0.209 0.358 
Att-Res U-Net 42.81 44.67 37.64 0.214 0.207 0.355 
FractalSpiNet  42.23 44.42 37.91 0.211 0.205 0.358 
Con-FractalSpiNet  41.42 44.99 37.33 0.207 0.208 0.352 
Att-FractalSpiNet  43.59 44.92 37.46 0.218 0.208 0.353 
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7. SONUÇ  

Bu tez çalışmasında omurilik bölgesinin ve omurilik MS lezyonların tespit 

edilmesi için derin öğrenme yöntemlerinden U-Net mimarisi tabanlı fraktal evrişim 

yapısına sahip yeni mimariler önerilmiştir. Deneysel çalışmalarda, önerilen 

FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet modellerinin diğer U-Net 

modellerine göre daha başarılı sonuçlar elde ettiği görülmüştür. Tüm deneysel 

aşamalarda modellerin ayarlamaları için aynı değerlere sahip parametreler kullanılarak 

tüm modellerin eğitimleri sonunda her bir test verisi için metrik değerleri hesaplanmıştır. 

Elde edilen tüm sonuçlar birebir aynı çalışmalar olmasa bile literatürde yapılmış benzer 

çalışmalar ile kıyaslanarak model ve verisetleri hakkında elde edilen bulgular ölçeğince 

değerlendirmeler yapılmıştır. 

Omurilik, yapısal olarak belirli bir geometrik şekle sahip olmayıp, vertebral 

yapıya karşılık gelen kavisli bir yapıya sahiptir. Bu nedenle bölgeyi segmente etmek ve 

sınırlarını belirlemek oldukça zorlu bir iştir. Omurilik sınırlarının omurilik boyunca 

değişken bir şekle sahip olması ve omurilikte tespit edilecek lezyonların konum, boyut ve 

şekil açısından heterojen olması, hazırladığımız veri seti gruplarına çeşitlilik açısından 

olumlu etkisi olmakla birlikte bölütleme için dikkate alınması gereken önemli bir 

ayrıntıdır. Bu çalışmada, fraktal evrişim tabanlı hibrit U-Net mimarisi olarak önerilen 

FractalSpiNet, Con-FractalSpiNet, Att-FractalSpiNet modelleri ve diğer rekabetçi 

mimariler kullanılarak servikal omuriliğin otomatik bölütleme ve omurilik MS 

lezyonlarının tespiti gerçekleştirilmiştir. Önerilen FractalSpiNet ve Con-FractalSpiNet 

mimarileri birçok bölütleme çalışması sonunda oldukça yüksek DSC skoru elde ederek 

diğer modellere üstünlük sağlamıştır. Aksiyel kesitlerde MS lezyonlarının tespit edilmesi 

sagital verilere göre oldukça yüksek ve başarılı örtüşme yeteneği sergilemiştir. Özetle, 

deneysel sonuçlar servikal omurilik ve MS lezyonlarının doğru bölütleme skorları elde 

etmede model yaklaşımlarımızın etkinliğini, en son yöntemleri geride bıraktığı veya çok 

yakın sonuçlar elde ettiği gözlemlenmektedir.  

En genel anlamda, önerilen FractalSpiNet ve Con-FractalSpiNet mimarileri 

veriseti bazında değişkenlik göstererek temel U-Net modelinden daha yüksek performans 

elde etmiştir. Bu yöntemin gelecekteki yeni mimariler için geliştirilebileceği 

öngörülmektedir. Servikal omuriliği doğru bir şekilde bölütlenmesi ve MR 

görüntülerinden MS lezyonlarını tespit etme yeteneği, hasta bakımı için derin etkilere 

sahiptir. MS lezyonlarının erken ve kesin bir şekilde tanımlanması, zamanında müdahale 
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için çok önemlidir. Potansiyel olarak hastalığın ilerlemesini yavaştıp hastanın tedavi 

sürecini olumlu katkı sunması açısından çok önemli bir çalışmadır.  

FractalSpiNet, Con-FractalSpiNet ve Att-FractalSpiNet modelleri radyologların 

doğruluğunu ve verimliliğini artırmasına katkı sunarak manuel bölütleme için gereken 

süreyi azaltabilir ve tanısal güveni artırabilmektedir. Bu daha kişiselleştirilmiş ve etkili 

tedavi planlarına yol açabilmekte, MS ve omurilikle ilgili diğer rahatsızlıkları olan 

hastaların yaşam kalitesini iyileştirebilmektedir. MR görüntülemede gelinen noktada 

çekim aşamasında teknoloji açısından MS gibi lezyon bölgelerine odaklanmak henüz 

mümkün değildir ve genel MR verilerinde çok fazla gereksiz alan vardır. Bu nedenle, 

omuriliğin aksiyel düzlem MR görüntüsü, kapladığı alan açısından çok küçük bir alana 

karşılık gelir ve bu sınırlar içindeki MS lezyonları çok daha küçük piksel değerlerine 

karşılık gelmektedir. Bu kadar küçük alanları maskelemek, deneyimli uzmanlar için bile 

çok zordur ve hata olasılığı devam etmektedir. Bu bağlamda, omuriliğin, omurilik 

içindeki farklı birimlerin ve omurilik bölgesindeki MS lezyonlarının derin öğrenme 

mimarileriyle bölütleme, veri setinin hazırlanmasındaki zorluklar nedeniyle çok sınırlı 

kalmaktadır. Ayrıca, lezyon yoğunluklarının gri madde yoğunluklarına ve diğer bazı 

dokusal yapılara benzerliği, manuel maskeleme süreçlerinde hata olasılığını artıran diğer 

faktörlerdendir. Maskelemenin doğru şekilde gerçekleştirilememesi, nihayetinde eğitim 

başarısızlığına ve daha sonra omurilik ve MS lezyonlarının daha düşük performansla 

tespit edilmesine yol açması muhtemeldir.  

Bu tez çalışmasında da, aksiyel ve sagital açıdan taranan servikal omuriliğin MR 

kesitleri kullanılarak yeni bir veriseti oluşturulmuştur. Bu veri seti için, omurilik bölgesi 

ve MS lezyonları için gerçek maske verileri, iki deneyimli radyoloğun fikir birliğiyle 

oluşturulmuştur. Veri setindeki MR görüntüleri yalnızca omuriliğin servikal bölgesinden 

taranmakta ve daha ileri çalışmalar için, omuriliğin torasik ve lomber bölgelerinden 

görüntüler taranarak MS lezyonu, tüm omurilik boyunca segmentlere ayrılmıştır.  

Çalışmaya katkı sunacak diğer çalışmalar kısaca optimisazyon algoritmaları ile 

birçok farklı kombinasyonda model eğitimleri yapılarak bu modellerin eğitim başarısına 

olan katkısı incelenebilir, model eğitimlerinde yapılan ön işlem çalışmalarında yapılacak 

olan değişlik (görüntü formatı, görüntü boyutu, görüntü sayısı vb.) göstermesi ağın 

performansına olan etkisi, diğer karma U-Net modeller ile kıyaslanması gibi yapılacak 

birçok çalışma şeklinde sıralanabilmektedir. Ayrıca elde edilen başarılı sonuçlar 

sayesinde karar destek sistemlerin klinik ortamlarda uygulayıcılara oldukça faydalı 

olabileceği değerlendirilmektedir. Her ne kadar aksiyel kesitler kullanılarak MS 
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lezyonlarının farklı yol ve yöntemlerle tespit edilmesi için çalışılmış olsa bile açık kaynak 

(publicly- available) paylaşılan bir veriseti olmadığından birebir veri seti kıyaslaması 

yapılamamıştır. Gerçek maske (ground truth) işleminin her ne kadar iki uzman tarafından 

yapılmış olsa bile bu işlemin manuel olarak yapılması yapılan işlemin hataya hala açık 

olduğunu göstermektedir. Bununla beraber her ne kadar farklı planellerden veriler 

kullanılarak sistemin kararlığı test edilmiş olsa bile farklı yoğunluklara sahip MR 

görüntülerinin verisetlerine dahil edilmesi verisetinin daha genelleştirerek model tahmin 

yeteneğini nasıl etkileyeceği diğer bir çalışma konusu olabilecek değerliktedir. 
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