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Birinci bölüm tezin giriş bölümüdür. Bu bölümde, özel eğriler ve yüzey 

üzerindeki özel eğriler ile ilgili literatür bilgisi ve bu tezde yapılanlar hakkında 

kısaca bilgi verilmiştir. 

 

İkinci bölümde, 3-boyutlu Öklid uzayında eğriler ve yüzeyler teorisine ait 

temel kavramlar verilmiştir. 

 

Tezin orjinal kısımlarından biri olan üçüncü bölümde, yüzey üzerindeki oD -

Darboux slant helisler incelenmiştir. Oskülatör Darboux çatısı tanımlanmış ve türev 

formülleri bulunmuştur. Bu çatı kullanılarak bir eğrinin oD -Darboux slant helis olma 

şartı verilmiştir. Oskülatör Darboux çatısına göre oD -Darboux slant helislerin 

diferansiyel denklem karakterizasyonları verilmiştir. Ayrıca parametrik ve kapalı 

formda verilen bir yüzey üzerinde oD -Darboux slant helis elde etmek için birer 

yöntem bulunmuş ve örnekler verilmiştir.  

 

Tezin orjinal kısımlarından olan dördüncü bölümde, yüzey üzerinde rD -

Darboux slant helisler incelenmiştir. Rektifiyan Darboux çatısı tanımlanmış ve türev 

formülleri bulunmuştur. Bu çatı kullanılarak bir eğrinin rD -Darboux slant helis olma 

şartı verilmiştir. Rektifiyan Darboux çatısına göre rD -Darboux slant helislerin 

diferansiyel denklem karakterizasyonları bulunmuştur. Daha sonra parametrik ve 

kapalı formda verilen bir yüzey üzerinde rD -Darboux slant helis elde etmek için 

birer yöntem bulunmuş ve örnekler verilmiştir.  

 

Tezin bir diğer orijinal kısmı olan beşinci bölümde, yüzey üzerinde nD -

Darboux slant helisler incelenmiştir. Normal Darboux çatısı tanımlanmış ve türev 

formülleri bulunmuştur. Bu çatı kullanılarak bir eğrinin nD -Darboux slant helis olma 

şartı verilmiştir. Normal Darboux çatısına göre nD -Darboux slant helislerin 

diferansiyel denklem karakterizasyonları bulunmuştur. Son olarak, parametrik ve 

kapalı formda verilen bir yüzey üzerinde nD -Darboux slant helis elde etmek için 

birer yöntem bulunmuş ve örnekler verilmiştir.   

 

Altıncı bölümde, sonuç ve öneriler verilmiştir.  
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1.GİRİŞ 

Eğriler teorisi, birçok alanda yaygın bir şekilde kullanılmasından dolayı 

diferansiyel geometride hala ilginç konulardan biridir ve birçok matematikçi 

tarafından çalışılmaktadır. Eğriler teorisinde en çok ilgi çeken konulardan biri ise 

bazı özel eğriler olup bu eğrilerden en meşhur ve en kullanışlı olanları helisler ve 

slant helislerdir. Helisler ve slant helisler, doğada ve bilimde sıklıkla karşılaştığımız, 

bilgisayar destekli geometrik tasarımdan fraktal geometriye, kinematikten DNA 

çiftlerine, geniş bir kullanım alanına sahip olan eğrilerdir. Helis eğrileri, teğetleri 

sabit bir doğrultuyla sabit açı yapan eğriler olarak tanımlanmıştır [1]. Izumiya ve 

Takeuchi helislere benzer şekilde asal normal vektörleri sabit bir doğrultuyla sabit 

açı yapan eğriler olarak slant helisleri tanımlamışlar ve karakterizasyonlarını 

vermişlerdir [2]. Yakın zamanlarda E. Zıplar, A. Şenol ve Y. Yaylı, Frenet çatısının 

Darboux ani dönme vektörü sabit bir doğrultu ile sabit açı yapan özel eğriyi Darboux 

helis olarak tanımlamış ve bu eğri için karakterizasyonları vermişlerdir [3].  Daha 

sonra bu üç helis çeşidi üzerine matematikçiler birçok çalışmalar yaptılar ve bu 

çalışmalar sadece Öklid uzaylarında değil aynı zamanda Minkowski uzaylarında da 

yapıldı [4-10].  

 

Diferansiyel geometrinin en önemli çalışma alanlarından biri de yüzeyler 

üzerindeki özel eğrilerdir. Yüzey üzerinde kalan özel eğrilerin belirlenmesi çok 

önemli problemlerden biridir ve bu eğriler de bilimin farklı alanlarında kullanım 

alanlarına sahiplerdir. Bu önemine binaen yüzey üzerindeki farklı özel eğrilerin 

incelenmesi hem geometri hem de geometri ile çok yakından ilişkili olan fizik, 

astronomi, mühendislik gibi bilimler açısından çok önemlidir. Bazı özel uzay 

eğrilerinin karakterizasyonları yüzeyler üzerinde de incelenebildiği gibi bu eğrilerden 

farklı olarak yüzey üzerinde kalan başka özel eğriler de eğri-yüzey ikilisinin çatısı 

olarak bilinen Darboux çatısı ile tanımlanmış ve incelenmiştir. Yüzey üzerindeki 

helisler J. Puig-Pey ve ark. tarafından incelenmiş ve konum vektörleri verilmiştir 

[11]. Bu eğrilerden bir diğeri, fizikte optik konusunda önemli bir yere sahip olan 

isophote eğrileridir. Bu eğrilerin geometrik tanımı F. Doğan ve Y. Yaylı tarafından 

yapılmış ve karakterizasyonlarına ilişkin incelemeler de hem Öklid hem de Lorentz 

uzaylarında ayrıntılı olarak incelenmiştir [12-14]. Benzer düşünceyle son yıllarda N. 



2 

 

Macit ve M. Düldül, yüzey üzerinde bir diğer özel eğriyi relatively normal-slant helis 

ismi ile tanımlamış ve bu eğrilerin geometrisini incelemişlerdir [15]. Yadav, A., & 

Pal, B. relatively normal-slant helisleri, konum vektörlerinin bulunduğu düzleme 

göre incelemiş ayrıca isophote eğrilerinin konum vektörlerini vermişlerdir [16]. E. 

Nesovica ve ark. Minkowski 3-uzayında null olmayan relatively normal-slant 

helisleri incelemişlerdir [17]. A. Yadav ve ark. Minkowski 3-uzayında relatively 

normal-slant helislerin karakterizasyonlarını inceleyip slant helislerle ilişkilerini 

vermişlerdir [18]. 

 

 Bununla birlikte S. Hananoi, N. Ito ve S. Izumiya, yüzey eğrileri üzerinde üç 

yeni vektör alanı tanımladılar [19]. M. Önder, bu üç yeni vektörü dikkate alarak 

yüzey üzerinde üç yeni özel eğri tanımladı;  , ,i o n r  ve , ,o n r  indisleri sırasıyla 

yüzey üzerindeki eğrinin oskülatör, normal ve rektifyan düzlemlerini temsil etmek 

üzere bu eğrileri 
iD -Darboux slant helisler  olarak isimlendirdi ve bağlantılı helis 

olarak tanımladığı yeni bazı helis türleri ile bu yüzey eğrilerinin ilişkisini ortaya 

koydu [20]. 

 

Bu tezin amacı, M. Önder tarafından tanımlanan 
iD -Darboux slant helislerin 

karakterizasyonlarını detaylı incelemek ve geometrik özelliklerini ortaya koymaktır. 

Öncelikle bu eğrileri daha kolay incelemek için üç yeni ortogonal çatı tanımlanacak 

ve bu çatılara ait türev formülleri bulunacaktır. Ardından bu çatılar yardımıyla 
iD -

Darboux slant helisleri karakterize eden denklemler bulunacaktır. Sonra,
iD -Darboux 

slant helisleri karakterize eden denklemler, tanımlanan bu çatıların eğrilikleri ile 

Darboux çatısının eğrilikleri arasındaki ilişkilerden yararlanılarak eğri-yüzey 

ikilisinin eğrilikleri cinsinden verilecektir. Daha sonra, bu yeni çatılar yardımıyla 

yüzey üzerinde yatan eğrileri karakterize eden diferansiyel denklemler bulunup bu 

denklemlerden yararlanılarak 
iD -Darboux slant helisleri karakterize eden 

diferansiyel denklemler bulunacaktır. Son olarak, kapalı ve parametrik formda 

verilen bir yüzey üzerinde bulunan 
iD -Darboux slant helisleri elde etmek için 

metotlar verilip sonrasında örnekler verilecektir.  
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2. GENEL BİLGİLER 

 Bu bölümde Öklid uzayında eğriler ve yüzeyler teorisi ile ilgili temel 

kavramlar verilecektir. 

 

2.1. Eğriler İçin Temel Kavramlar 

Tanım 2.1.1: 
nE  uzayında iki vektör ( )1 2 3, , ,..., np p p p p=  ve ( )1 2 3, , ,..., nq q q q q=  

olmak üzere  

1 1 2 2 3 3, ... n np q p q p q p q p q= + + + +  

eşitliği ile tanımlanan fonksiyona Öklid iç çarpımı denir [21]. 

Tanım 2.1.2: 
nE  uzayında bir vektör ( )1 2 3, , ,..., np p p p p=  olmak üzere 

,p p p=  

eşitliği ile tanımlanan fonksiyona nE  uzayında norm denir [21]. 

Tanım 2.1.3: 3E  uzayında iki vektör ( )1 2 3, ,p p p p=  ve ( )1 2 3, ,q q q q=  olmak üzere 

p  ve q  vektörlerinin vektörel çarpımı 

( )2 3 3 2 3 1 1 3 1 2 2 1, ,p q p q p q p q p q p q p q = − − −  

şeklinde tanımlıdır [22,23]. 

Tanım 2.1.4: 
nE  nin her bir p  noktasında : →nf E IR  fonksiyonunun her 

basamaktan kısmi türevleri varsa f   fonksiyonu C   sınıfındandır veya düzgün 

fonksiyondur denir [21]. 

Tanım 2.1.5: I , IR  nin bir açık aralığı olmak üzere :  → nI IR E  biçiminde 

düzgün bir   dönüşümüne 
nE   uzayında bir eğri denir [21]. 
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Tanım 2.1.6: 3:  →I IR E eğrisi için her t I  için ( ) 0 t  ise   eğrisine 

regüler eğri denir [21,23]. 

Tanım 2.1.7: 3:  →I IR E eğrisi için her s I  için ( ) 1 =s  ise   eğrisine 

birim hızlı eğri denir. Bu durumda s I  parametresine   eğrisinin yay parametresi 

adı verilir [22,23]. 

Tanım 2.1.8: 3E   uzayında birim hızlı 3:  →I IR E  eğrisi için ( ) ( )=T s s   

eşitliği ile belirli ( )T s  vektörüne,   eğrisinin ( )s  noktasındaki birim teğet vektörü 

denir [21]. 

Tanım 2.1.9: 3E   uzayında birim hızlı 3:  →I IR E  eğrisi için ( ) ( )s T s =  ile 

tanımlı : →I R  fonksiyonuna   eğrisinin eğrilik fonksiyonu denir. ( )s  değerine 

eğrinin ( )s  noktasındaki eğriliği veya birinci eğriliği denir [21]. 

Tanım 2.1.10: 3E  uzayında birim hızlı 
3:  →I IR E  eğrisi için 

1
( ) ( )

( )
N s T s

s
=   eşitliği ile belirli ( )N s  vektörüne,   eğrisinin ( )s  noktasındaki 

asli normal vektörü denir [21]. 

Tanım 2.1.11: 
3E  uzayında birim hızlı 

3:  →I IR E  eğrisi için 

( ) ( ) ( )= B s T s N s  eşitliği ile belirli ( )B s  vektörüne,   eğrisinin ( )s  noktasındaki 

binormal vektörü denir [21]. 

Tanım 2.1.12: ( ), ( ), ( )T s N s B s  vektörlerine
3:  →I IR E  eğrisinin ( )s  

noktasındaki Frenet vektörleri denir.  ( ), ( ), ( )T s N s B s  kümesine   eğrisinin ( )s  

noktasındaki Frenet çatısı denir. T,N,B  vektör alanlarına   eğrisi üzerinde Frenet 

vektör alanları denir [21]. 

Tanım 2.1.13: Birim hızlı 
3:  →I IR E  eğrisinin Frenet vektör alanları T,N,B  

olmak üzere  

: , ( ) ( ), ( )  → = −I IR s B s N s  
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fonksiyonuna   eğrisinin burulma fonksiyonu denir. ( )s  değerine de eğrinin ( )s  

noktasındaki burulması veya ikinci eğriliği denir [21].  

Teorem 2.1.14: Birim hızlı 3:  →I IR E  eğrisinin Frenet vektör alanları T,N,B  

ise  

T N

N T B

B N



 



 =

 = − +

 = −

 

dır. Bu eşitliklere birim hızlı   eğrisinin Frenet formülleri denir [21,23,24]. 

Tanım 2.1.15: 3E  uzayında birim hızlı 
3:  →I IR E  eğrisinin Frenet vektör 

alanları T,N,B  olsun.  ( ), ( )T s N s  kümesinin gerdiği düzleme oskülatör düzlem, 

 ( ), ( )T s B s  kümesinin gerdiği düzleme rektifiyan düzlem,  ( ), ( )N s B s  kümesinin 

gerdiği düzleme normal düzlem denir [21].  

Tanım 2.1.16: 3E  uzayında birim hızlı 3:  →I IR E  eğrisinin Frenet vektör 

alanları T,N,B  olsun. W T B = +  ile tanımlı vektöre Darboux vektörü denir [22]. 

Tanım 2.1.17: 
3:  →I IR E   eğrisinin her s I   için ( ) ( )s T s =  teğet vektörü, 

sabit bir doğrultu ile sabit açı yapıyorsa   eğrisine helis veya eğilim çizgisi denir 

[1,22,24]. 

Teorem 2.1.18: 
3:  →I IR E  eğrisinin helis olması için gerek ve yeter şart her 

s I  için 
( )

( )

s

s




 fonksiyonunun sabit olmasıdır [1,22,24]. 

Tanım 2.1.19: 
3:  →I IR E  eğrisinin her s I  için ( )N s  asli normal vektörü, 

sabit bir doğrultu ile sabit açı yapıyorsa   eğrisine slant helis denir [2]. 

Teorem 2.1.20: 
3:  →I IR E  eğrisinin slant helis olması için gerek ve yeter şart 

her s I  için  



6 

 

( )

2

3
2 2 2

( ) ( )
 




 

 
  

=   
  +

 

s s  

fonksiyonunun sabit olmasıdır [2].  

Tanım 2.1.21: 3:  →I IR E eğrisinin her s I   için  ( )W s  Darboux ani dönme 

vektörü, sabit bir doğrultu ile sabit açı yapıyorsa   eğrisine Darboux helis denir [3]. 

Teorem 2.1.22: (i) 3:  →I IR E  eğrisinin Darboux helis olması için gerek ve 

yeter şart her s I  için      

( )
3

2 2 2

2

1
( ) ( )

 


 



 
 

+ 
=    

  
  

d s s  

 fonksiyonunun sabit olmasıdır[3]. 

 (ii) 3:  →I IR E  eğrisinin bir Darboux helis olması için gerek ve yeter şart   

nın bir slant helis olmasıdır [3]. 

 

2.2. Yüzeyler İçin Temel Kavramlar 

Tanım 2.2.1: ,A
2E  nin bir açık alt cümlesi olsun. 2 3: , →X A E E

( )( , ) ( , ), ( , ), ( , )X u v x u v y u v z u v=  dönüşümü aşağıdaki şartları sağlıyorsa X  

dönüşümüne basit yüzey veya yüzey yaması denir [21]. 

1) X  diferansiyellenebilirdir. 

2) X  homeomorfizmdir.  

3) X  regülerdir. 

Tanım 2.2.2: S , 
3E   uzayının bir alt cümlesi olsun. S  nin her bir p  noktası için 

( )p X A   ve ( )X A S  olacak şekilde bir 2 3:X A E E →  basit yüzeyi varsa S  

ye 
3E  de bir yüzey denir [21]. 
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Tanım 2.2.3: Bir 2 3:X A E E →  basit yüzeyi için 
u vX X  sıfırdan farklı olacak 

biçimde ( ),u v A  noktasında birim normal vektör alanı veya yüzeyin normali; 

u v

u v

X X
U(u,v)

X X


=


 

ile tanımlıdır. Burada 
uX  ve 

vX  sırasıyla X  in u  ve v  ye göre kısmı türevleridir 

[21]. 

Tanım 2.2.4: 3E  de S  yüzeyinin her bir p  noktasına  

: ( ) ( ) →p p pI T T IRS S  ,   ( , ) ,=p p p p pI v w v w  

fonksiyonunu karşılık getiren pI  fonksiyonuna, S  yüzeyi üstünde birinci temel form 

denir. Burada ( ),pT S  p  noktasında S  yüzeyine teğet vektörlerin kümesidir. Birinci 

temel form, ,= u uE X X  , ,= u vF X X  ve ,= v vG X X  olmak üzere  

2 22= + +I Edu Fdudv Gdv  

ile tanımlıdır. Buradaki , ,E F G  fonksiyonlarına yüzeyin birinci temel form 

katsayıları denir [21,24]. 

Tanım 2.2.5: 
3E  de bir S  yüzeyi ( )( , ) ( , ), ( , ), ( , )X u v x u v y u v z u v=  

parametrizasyonu ile verilirse S  yüzeyi üzerindeki birim hızlı bir eğri için 

( )( ) ( ), ( )s X u s v s =  yazılabilir. Böylece   eğrisinin ( )s  noktasındaki teğet 

vektörü  


= +u v

d du dv
X X

ds ds ds
 

olur.   birim hızlı olduğundan  

2 2

2 1
du du dv dv

E F G
ds ds ds ds

   
+ + =   

   
 

bulunur [15]. 
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Tanım 2.2.6: 
3E  de bir S  yüzeyi ( , ,z) 0f x y =   kapalı formu ile verilsin. Bu 

taktirde S  yüzeyi içinde yatan birim hızlı ( )( ) ( ), ( ), ( )s x s y s z s =  eğrisi için  

0x y z

dx dy dz
f f f

ds ds ds
+ + =  

ve 

2 2 2

1
dx dy dz

ds ds ds

     
+ + =     

     
 

eşitlikleri sağlanır [15]. 

Tanım 2.2.7: 
3E  de bir S  yüzeyi üzerinde birim hızlı bir : →I S  eğrisi verilsin. 

Yüzeyin dik birim normal vektör alanı U  olsun.   eğrisinin birim teğet vektör alanı 

T  olmak üzere V U T=   eşitliği ile tanımlı vektör alanını göz önüne alalım. 

Vektörel çarpımın özelliklerinden  ( ), ( ), ( )T s V s U s  kümesi ( )s  noktasındaki 

3

( )sT E  teğet uzayının bir ortonormal tabanı olur. Bu tabana ( ), S  eğri-yüzey 

ikilisinin çatısı veya Darboux çatısı denir [21].  

Tanım 2.2.8: : →I S  birim hızlı bir eğri ve Darboux çatısının vektör alanları 

, ,T V U   olsun.  

( ) ( ), ( )nk s s U s=  

eşitliği ile belirli ( )nk s  fonksiyonuna, ( ), S  eğri-yüzey ikilisinin ( )s  noktasındaki 

normal eğriliği denir [21]. 

Tanım 2.2.9: : →I S  birim hızlı bir eğri ve Darboux çatısının vektör alanları 

, ,T V U   olsun.  

( ) ( ), ( )gk s s V s=  

eşitliği ile belirli ( )gk s  fonksiyonuna, ( ), S  eğri-yüzey ikilisinin ( )s  

noktasındaki geodezik eğriliği denir [21]. 
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Tanım 2.2.10: : →I S  birim hızlı bir eğri ve Darboux çatısının vektör alanları 

, ,T V U   olsun.  

( ) ( ), ( )g s U s V s = −  

eşitliği ile belirli ( )g s  fonksiyonuna, ( ), S  eğri-yüzey ikilisinin ( )s  noktasındaki 

geodezik burulması denir [21]. 

Tanım 2.2.11: :  →I IR S  birim hızlı bir eğri olmak üzere ,nk
gk  ve g  

fonksiyonlarına ( ), S  ikilisinin eğri-yüzey ikilisinin eğrilikleri denir [21]. 

Tanım 2.2.12: ,U  S  yüzeyi üzerinde birim dik vektör alanı olmak üzere S  nin bir 

p  noktasında  

( ) = −
pp p vS v D U  

eşitliği ile tanımlı : ( ) ( )→p p pS T TS S  fonksiyonuna, S  yüzeyinin p  noktasında, U  

birim dik vektör alanına bağlı şekil operatörü denir. Burada ,
pvD U  U  vektörünün 

pv  vektörü yönündeki kovaryant türevidir [21].  

Tanım 2.2.13: i) S  yüzeyinin bir p  noktasında, : ( ) ( )→p p pS T TS S  lineer 

dönüşümünün öz değerlerine, p  noktasındaki asli eğrilikler denir. 

ii) : ( ) ( )→p p pS T TS S  lineer dönüşümünün sıfırdan farklı öz vektörlerine p  

noktasındaki asli vektörler veya eğrilik vektörleri denir. 

iii) 0pv  ve ( ), 0=p pS v v  ise pv  vektörüne, p  noktasında bir asimptotik vektör 

denir [21]. 

Tanım 2.2.14: ,S  
3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan bir 

eğri olsun.  

i) Her t I  için ( ) t  hız vektörü, ( ) t  noktasında S  yüzeyinin bir eğrilik 

vektörü ise   eğrisine, S  yüzeyi üzerinde bir eğrilik çizgisi denir. 
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ii) Her t I  için ( ) t  hız vektörü, ( ) t  noktasında S  yüzeyinin bir 

asimptotik vektörü ise   eğrisine, S  yüzeyi üzerinde bir asimptotik eğri 

denir. 

iii) S  yüzeyinin   eğrisi boyunca birim dik birim normal vektör alanı U  

olmak üzere   vektör alanı, U  vektör alanının lineer bileşimi ise   

eğrisine, S  yüzeyi üzerinde bir geodezik eğri denir [21]. 

Teorem 2.2.15: ,S  3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan 

birim hızlı bir eğri olsun. 

i)   eğrisinin asimptotik eğri olması için gerek ve yeter şart 0nk =  olmasıdır. 

ii)   eğrisinin geodezik eğri olması için gerek ve yeter şart 0gk =  olmasıdır. 

iii)   eğrisinin eğrilik çizgisi olması için gerek ve yeter şart 0g = olmasıdır 

[21,23]. 

Tanım 2.2.16: :  →I IR S  eğrisinin birinci eğriliği  , ikinci eğriliği   ve eğri-

yüzey ikilisinin eğrilikleri nk  , gk  ve g arasında  

         
2 2 2

g nk k = + ,      cosgk  = ,     sinnk  = ,      g  = −             (2.1) 

bağıntıları vardır. Burada  , Frenet çatısının B  binormal vektörü ile U  yüzey 

normali arasındaki açıdır [14]. 

Tanım 2.2.17: :  →I IR S , S  yüzeyi üzerinde birim hızlı bir eğri ve Darboux 

çatısının vektör alanları  , ,T V U  ve eğri-yüzey ikilisinin eğrilikleri nk , gk  ve g  

olsun. Darboux çatısının türev formülleri 

                                                     

g n

g g

n g

T k V k U

V k T U

U k T V





 = +

 = − +

 = − −

                                                 (2.2) 

şeklindedir [14,15,23].  

Tanım 2.2.18: :  →I IR S , S  yüzeyi üzerinde birim hızlı bir eğri olsun.   

eğrisinin Darboux çatısı ile Frenet çatısı arasındaki ilişkiler  
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cos sin

sin cos

 

 

=

= +

= − +

T T

N V U

B V U

 

ve  

cos sin

sin cos

 

 

=

= −

= +

T T

V N B

U N B

 

şeklindedir. Burada  , B  binormal vektörü ile U  yüzey normali arasındaki açıdır 

[14]. 

Tanım 2.2.19: 
3E  de bir S  yüzeyi üzerinde birim hızlı bir 

3:  →I IR E  eğrisi 

verilsin.   nın Darboux çatısı  , ,T V U  olsun.   eğrisi boyunca yüzeyin U  birim 

normali, sabit bir doğrultu ile sabit açı yapıyorsa   eğrisine S  yüzeyi üzerinde 

isophote eğrisi denir [14].  

Teorem 2.2.20: :  →I IR S , S  yüzeyi üzerinde birim hızlı bir eğri olsun.   

eğrisinin Darboux çatısı  , ,T V U  ve eğri-yüzey ikilisinin eğrilikleri nk , gk  ve g  

olsun.    eğrisinin isophote eğrisi olması için gerek ve yeter şart her s I  için  

( ) ( )

2

3/2 1/2
2 2 2 2

( ) ( )



 

   =  +   + +
 

g gn
i

n
n g n g

kk
s s

kk k
 

fonksiyonunun sabit olmasıdır. Burada 0nk  dır [14]. 

Tanım 2.2.21: 
3E  de bir S  yüzeyi üzerinde birim hızlı bir 

3:  →I IR E  eğrisi 

verilsin.   nın Darboux çatısı  , ,T V U  olsun.   nın  V  vektör alanı sabit bir 

doğrultu ile sabit açı yapıyorsa   eğrisi, S  yüzeyi üzerinde relatively normal-slant 

helis olarak adlandırılır [15]. 

Teorem 2.2.22: 
3:  →I IR E , S  yüzeyi üzerinde birim hızlı bir eğri olsun.   

eğrisinin Darboux çatısı  , ,T V U  ve eğri-yüzey ikilisinin eğrilikleri nk , gk  ve g  
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olsun.   eğrisinin relatively normal-slant helis olması için gerek ve yeter şart her 

s I  için 

( )
( )( )2 2

3/2
2 2

1
( ) ( )   



 
  = − − +
 +
 

v g g g g n g g

g g

s k k k k s
k

 

fonksiyonunun sabit olmasıdır. Burada ( ) ( ), 0,0g gk   dır [15]. 

Tanım 2.2.23: :  →I IR S , S  yüzeyi üzerinde birim hızlı bir eğri ve Darboux 

çatısının vektör alanları  , ,T V U  ve eğri-yüzey ikilisinin eğrilikleri nk , gk  ve g  

olsun.   eğrisi boyunca  

                           

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ) ( )





= −

= − +

= +

o g n

n n g

r g g

D s s T s k s V s

D s k s V s k s U s

D s s T s k s U s

                                     (2.3) 

ile tanımlı vektör alanlarına sırasıyla oskülatör Darboux vektör alanı, normal 

Darboux vektör alanı, rektifiyan Darboux vektör alanı denir [19]. 

Tanım 2.2.24: :  →I IR S , S  yüzeyi üzerinde ( )oD s , ( )nD s  ve ( )rD s  

Darboux vektörlerine sahip birim hızlı bir eğri olsun.  , ,i o n r  olmak üzere, iD  

Darboux vektör alanı birim ve sabit id  doğrultusu ile sabit i  açısı yapıyorsa yani 

, cosi i iD d =   ise   eğrisine iD -Darboux slant helis denir [20]. 
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3. YÜZEY ÜZERİNDE oD -DARBOUX SLANT HELİSLER 

Bu bölümde, 3E  uzayında bir S  yüzeyi üzerinde kalan ve yeni bir özel 

yüzey eğrisi olan oD -Darboux slant helis incelenecektir. Bu özel eğriyi daha kolay 

incelemek için ilk olarak oskülatör Darboux çatısı ve türev formülleri verilecektir. 

Daha sonra bu yeni çatı yardımıyla oD -Darboux slant helisler için karakterizasyonlar 

verilecektir. Son olarak, parametrik ve kapalı formda verilen bir S  yüzeyi üzerinde 

oD -Darboux slant helis elde edebilmek için birer yöntem verilip ardından örnekler 

verilecektir. 

 

3.1. Yüzey Eğrileri İçin Oskülatör Darboux Çatısı  

S  bir yüzey olsun. :  →I IR S  bu yüzey üzerinde kalan birim hızlı, 

 , ,T V U  Darboux çatısına, , ,g n gk k  eğriliklerine ve ( ) ( ) ( ) ( ) ( )= −o g nD s s T s k s V s  

oskülatör Darboux vektörüne sahip bir eğri olsun. Bu taktirde, 

( ) ( ) ( ) ( ) ( )= −o g nD s s T s k s V s  

vektörü normlanırsa  

2 2 2 2

( )( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )



 
= = −

+ +

go n
o

o g n g n

sD s k s
D s T s V s

D s s k s s k s
 

elde edilir. 
oD  vektörü T  ve V  nin gerdiği düzlemde olduğundan U  vektörüne 

diktir. Dolayısıyla = o oY D U  birim vektörünün tanımlanması ile yüzey üzerindeki 

  eğrisi boyunca yeni bir ortonormal çatı olan  , ,o oD U Y  çatısını elde edilir.  

Tanım 3.1.1: Yukarıdaki şekilde tanımlanan  , ,o oD U Y  çatısına S  yüzeyi üzerinde  

  eğrisinin oskülatör Darboux çatısı veya kısaca OD-çatısı denir.  

Şimdi bu çatı için türev formüllerini verelim. 
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Teorem 3.1.2: S  bir yüzey ve :  →I IR S  bu yüzey üzerinde yay parametresi s  

olan ve OD-çatısına sahip birim hızlı bir eğri olsun. OD-çatısının vektör alanları 

, ,o oD U Y  ve eğrilikleri  o , o  olmak üzere, OD-çatısının türev formülleri  

                                                               





 

 = −

 =

 = −

o o o

o o

o o o o

D Y

U Y

Y D U

                                                (3.1) 

şeklindedir. Burada 
2

2 2






  
= +   +   

gn
o g

n g n

k
k

k k
 ve 2 2

o n gk = +  dır. 

İspat: 
oD ,  , ,o oD U Y  çatısının elemanlarının lineer birleşimi olarak yazılabilir. 

Yani 

                                                           
1 2 3

 = + +o o oD a D a U a Y                                          (3.2) 

yazılır. Burada ( ), (1,2,3),= =i ia a s i  s  in diferansiyellenebilir fonksiyonlarıdır. 

(3.2) ifadesinin her iki yanı 
oD  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +o o o o o o oD D a D D a D U a D Y  

bulunur. , 1=o oD D  ve , , 0= =o o oD U D Y  olduğundan 1, =o oD D a  dır. Diğer 

taraftan , 1=o oD D eşitliğinin türevi alınırsa 1, 0 = =o oD D a  bulunur. (3.2) 

ifadesininin iki yanı U vektörü ile iç çarpılırsa  

1 2 3, , , , = + +o o oD U a D U a U U a Y U  

bulunur. , , 0= =o oD U Y U  ve , 1=U U  olduğundan 2, =oD U a  olur. Öte 

yandan , cos− =oD V  olmak üzere, oD  vektöründe 
2 2

sin
g

g nk





=

+
 ve 

2 2
cosn

g n

k

k



=

+
 olarak tanımlanırsa  
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                                                             sin cos = −oD T V                                              (3.3) 

bulunur. (3.3) ifadesinin türevi alınırsa ve Darboux çatısının türev formülleri 

kullanılırsa 

( )cos ( )sin ( sin cos )        = + + + + −o g g n gD k T k V k U  

elde edilir. Burada 
2 2

sin
g

g nk





=

+
 ve 

2 2
cosn

g n

k

k



=

+
 olduğu göz önüne alınırsa 

U  vektörünün katsayısı sıfır olur. Dolayısıyla  

                          ( )cos ( )sin     = + + +o g gD k T k V                               (3.4) 

bulunur.  Bulunan 
oD  vektörü, U  vektörü ile iç çarpılırsa 

2 , ( ) cos ( )sin ,

( ) cos , ( )sin ,

0

   

   

  = = + + +

 = + + +

=

o g g

g g

a D U k T k V U

k T U k V U  

elde edilir. Şimdi de (3.2) ifadesi 
oY  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +o o o o o o oD Y a D Y a U Y a Y Y  

bulunur. , , 0= =o o oD Y U Y  ve , 1o oY Y =  olduğundan 3 ,= o oa D Y  elde edilir. 

Böylece  

2 2 2 2

2 2 2 2

2 2 2 2

( ) ( )



 



 



 

 
 =  = − 
 + +
 

=  − 
+ +

= − −
+ +

g n
o o

g n g n

g n

g n g n

gn

g n g n

k
Y D U T V U

k k

k
T U V U

k k

k
T V

k k

 

elde edilir. 
2 2

sin
g

g nk





=

+
 ve 

2 2
cosn

g n

k

k



=

+
 olduğu kullanılırsa  
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                                                            cos sinoY T V = − −                                           (3.5) 

elde edilir. (3.4) de bulunan 
oD  vektörü ile (3.5) de bulunan 

oY  vektörü iç çarpılırsa 

                 

3

2 2

2 2

, ( ) cos ( )sin , cos sin

( )cos , ( )sin ,

( )(cos sin )

( )

     

   

  



  = = + + + − −

 = − + − +

= − + +

= − +

o o g g

g g

g

g

a D Y k T k V T V

k T T k V V

k

k

        (3.6) 

bulunur. Burada   nü bulmak için, 
2 2

sin
g

g nk





=

+
 ve 

2 2
cosn

g n

k

k



=

+
 olduğu 

göz önüne alınırsa tan


 =
g

nk
 bulunur. Bu ifadenin türevi alınırsa  

( )21 tan


 
 

 + =  
 

g

nk
 

elde edilir. Bu ifadede tan


 =
g

nk
 eşitliği yerine yazılırsa  

2

2
1

 


   
 + =    

  

g g

n nk k
 

ve bu denklem düzenlenirse  

                                                 
2

2 2






   
 =     +   

g n

n n g

k

k k
                                              (3.7) 

 

 bulunur. (3.7) eşitliği ,  (3.6) da yazılırsa  

2

3 2 2





     = − +     +    

g n
g

n n g

k
a k

k k
 

elde edilir. Bulunan 1 2,a a  ve 3a  değerleri (3.2) denkleminde yazılırsa  



17 

 

                                            
2

2 2





      = − +     +    

g n
o g o

n n g

k
D k Y

k k
                               (3.8) 

bulunur. 

 Şimdi U  vektörünün türevini hesaplayalım. ,U   , ,o oD U Y  çatısının 

elemanlarının lineer birleşimi olarak yazılabilir. Yani 

                                                  
1 2 3

 = + +o oU b D b U b Y                                           (3.9) 

yazılır. Burada ( ), (1,2,3),= =i ib b s i  s  in diferansiyellenebilir fonksiyonlarıdır. (3.9) 

eşitliğinin her iki yanı 
oD  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +o o o o o oU D b D D b D U b D Y  

bulunur. , 1=o oD D  ve , , 0= =o o oD U D Y  olduğundan 1, =oU D b  olur. 

Darboux çatısının türev formüllerinden n gU k T V = − −  dır. U   ve 

2 2 2 2



 
= −

+ +

g n
o

g n g n

k
D T V

k k
 vektörleri yerine yazılırsa         

1
2 2 2 2

2 2 2 2

2 2 2 2

, ,

, ,

0




 

 

 

 

 

= = − − −
+ +

−
= +

+ +

−
= +

+ +

=

g n
o n g

g n g n

n g g n

g n g n

n g g n

g n g n

k
b U D k T V T V

k k

k k
T T V V

k k

k k

k k

 

elde edilir. (3.9) eşitliğinin her iki yanı U  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +o oU U b D U b U U b Y U  



18 

 

bulunur. , , 0= =o oD U Y U  ve , 1U U =  olduğundan  2 ,b U U=  olur. Öte 

yandan , 1U U =  ifadesinin türevi alınırsa 2, 0U U b = =  elde edilir. (3.9) ifadesi 

oY  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +o o o o o oU Y b D Y b U Y b Y Y  

bulunur. , , 0= =o o oD Y U Y  ve , 1o oY Y =  olduğundan 3 , ob U Y=  elde edilir. 

Darboux türev formüllerinden n gU k T V = − −  dır. Ayrıca  

2 2 2 2

2 2 2 2

2 2 2 2

( ) ( )



 



 



 

 
 =  = − 
 + +
 

=  − 
+ +

= − −
+ +

g n
o o

g n g n

g n

g n g n

gn

g n g n

k
Y D U T V U

k k

k
T U V U

k k

k
T V

k k

 

dır. Bu vektörler yerine yazılırsa  

3
2 2 2 2

22

2 2 2 2

2 2

2 2

2 2

, ,

, ,

gn
o n g

g n g n

gn

g n g n

g n

g n

g n

k
b U Y k T V T V

k k

k
T T V V

k k

k

k

k




 



 







= = − − − −
+ +

= +
+ +

+
=

+

= +

 

bulunur. Bulunan 1 2,b b  ve 3b  değerleri (3.9) da yazılırsa  

                                                                 2 2

g n oU k Y = +                                                (3.10) 

elde edilir. 
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Şimdi 
oY  vektörünün türevini hesaplayalım. ,oY   , ,o oD U Y  çatısının 

elemanlarının lineer birleşimi olarak yazılabilir. Yani 

                                                  
1 2 3

 = + +o o oY c D c U c Y                                            (3.11) 

yazılır. Burada ( ), (1,2,3),= =i ic c s i  s  in diferansiyellenebilir fonksiyonlarıdır. 

(3.11) ifadesinin her iki yanı oD  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +o o o o o o oY D c D D c D U c D Y  

bulunur. , 1=o oD D  ve , , 0= =o o oD U D Y  olduğundan 1, =o oY D c  dır. (3.5) 

eşitliğinin türevi alınırsa ve Darboux çatısının türev formülleri kullanılırsa 

                   

( ) ( )

( ) ( )

( )

( ) ( ) ( )

sin cos cos sin

sin cos cos sin

sin sin cos cos

cos sin

sin cos cos sin

o

g n g g

g g

n g

g g n g

Y T T V V

T k V k U V k T U

k T k V

k U

k T k V k U

     

      

     

  

      

    = − − −

 = − + − − − +

 = + + − −

− +

 = + − + − +

         (3.12) 

bulunur. (3.12) de bulunan 
oY  vektörü ile sin cos = −oD T V  vektörü iç çarpılırsa  

1 ,  = = +o o gc Y D k  

elde edilir. (3.7) ifadesi yerine yazılırsa  

2

1 2 2

g n
g

n n g

k
c k

k k





   
= +    +   

 

bulunur. (3.11) ifadesinin her iki yanı U vektörü ile iç çarpılırsa  

1 2 3, , , , = + +o o oY U c D U c U U c Y U  

elde edilir. , , 0= =o oD U Y U  ve , 1U U =  olduğundan  2 ,oc Y U=  dir.  (3.12) 

eşitliği kullanılırsa 
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( ) ( ) ( )

( )

2 , sin cos cos sin ,

cos sin

o g g n g

n g

c Y U k T k V k U U

k

      

  

  = = + − + − +

= − +
 

bulunur. Ayrıca 
2 2

sin
g

g nk





=

+
 ve 

2 2
cosn

g n

k

k



=

+
 ifadeleri yerine yazılırsa  

2
2 2 2 2

22

2 2 2 2

2 2

gn
n g

g n g n

gn

g n g n

g n

k
c k

k k

k

k k

k




 



 



 
 = − +
 + +
 

 
 = − +
 + +
 

= − +

 

elde edilir. Son olarak (3.11) ifadesi 
oY  vektörü ile iç çarpılırsa  

1 2 3, , , , = + +o o o o o o oY Y c D Y c U Y c Y Y  

bulunur. , , 0= =o o oD Y U Y  ve , 1o oY Y =  olduğundan 3 ,o oc Y Y=  dir. 

, 1o oY Y =  ifadesinin türevini alırsak 3, 0o oY Y c = =  elde edilir. Bulunan 1 2,c c  ve 

3c  ifadeleri (3.11) ifadesinde yazılırsa 

                              
2

2 2

2 2






      = + − +     +    

g n
o g o g n

n n g

k
Y k D k U

k k
                        (3.13) 

elde edilir. (3.8), (3.10) ve (3.13) denklemleri dikkate alınarak , 
oD U  ve 

oY   

vektörleri matris formunda yazılırsa 

( )

2

2 2

2 2

2
2 2

2 2

0 0

0 0

0












    − +    +        
     = +    
           + − +    +    

gn
g

n g n
o o

n g

o o

gn
g n g

n g n

k
k

k k
D D

U k U

Y Y
k

k k
k k
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bulunur. Burada      

                                              

2

2 2

2 2






 

  
= +   +   

= +

gn
o g

n g n

o n g

k
k

k k

k

                                      (3.14) 

 denilirse OD-çatısının türev formülleri 

                                           

0 0

0 0

0





 

    − 
     =    

     −    

o o o

o

o o o o

D D

U U

Y Y

                                  

şeklinde olur.                                                                                                                 

 

3.2. oD -Darboux Slant Helisin Ekseni ve Karakterizasyonları   

 S  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim hızlı bir eğri 

olsun.   eğrisinin Darboux çatısı  , ,T V U  ve eğrilikleri ,g nk k  ve g  olsun. Bu 

eğrinin oskülatör Darboux vektörü ( ) ( ) ( ) ( ) ( )= −o g nD s s T s k s V s  olmak üzere, yüzey 

üzerinde 
oD -Darboux slant helis kavramı aşağıdaki şekilde tanımlanmıştır. 

Tanım 3.2.1: S  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim hızlı 

bir eğri olsun.   eğrisinin oD  vektörü alanı (veya denk olarak = o
o

o

D
D

D
 birim 

vektör alanı) sabit bir doğrultu ile sabit açı yapıyorsa   eğrisi S  yüzeyi üzerinde 

oD -Darboux slant helis olarak adlandırılır [20]. 

 

 Şimdi bu tanımı dikkate alarak literatürde daha önce verilmemiş olan 

aşağıdaki karakterizasyonları verebiliriz. 
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Teorem 3.2.2: S , 3E  de bir yüzey ve  :  →I IR S  bu yüzey üzerinde OD-çatısı 

 , ,o oD U Y  olan birim hızlı bir eğri olsun.   eğrisinin bir oD -Darboux Slant helis 

olması için gerek ve yeter şart her s I  için                                                                  

                                                                    ( ) ( )





= o
o

o

s s                                                (3.15) 

fonksiyonunun sabit olmasıdır. Burada 0o   ve 0o   dır.  

İspat:  , OD-çatısı  , ,o oD U Y  olan bir oD -Darboux Slant helis olsun. oD -Darboux 

slant helis tanımından   nın 
oD  birim vektörü, sabit doğrultulu, 

od  vektörü ile 

sabit   açısı yapar. Yani , cos=o oD d  dır. Bu ifadenin türevi alınırsa

, 0 =o oD d  bulunur. (3.1) deki OD-çatısının türev formülleri kullanılırsa 

, 0− =o o oY d  

elde edilir. 0o   olduğundan , 0o oY d =  dır. Yani  
od  vektörü 

oY  vektörüne diktir. 

Dolayısıyla 
od , 

oD  ve U  vektörünün gerdiği düzlemde bulunur. O halde  

cos sin = +o od D U  

yazılabilir. Bu ifadenin türevi alınırsa, 
od  vektörü sabit olduğundan 

( ) ( )
( )

0 cos sin

cos sin

sin cos

 

   

   

 = +

= − +

= −

o

o o o o

o o o

D U

Y Y

Y

 

bulunur. oY  vektörü sıfırdan farklı olduğundan sin cos 0o o   − =   dır. 

Dolayısıyla buradan  

cos
cot

sin

o

o

sbt
 


 

= = =  

elde edilir. 
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Tersine olarak 
cos

cot
sin

o

o

sbt
 


 

= = =  olsun. Buradan sin coso o   =  

yazılabilir.   

cos sin = +o od D U  

alalım. 
od  vektörünün sabit olduğunu gösterelim. cos sin = +o od D U  ifadesinin 

türevini alıp (3.1) deki türev formülleri ve ardından sin coso o   =  olduğu 

kullanılırsa 

cos sin

cos ( ) sin ( )

( sin cos )

( cos cos )

0

 

   

   

   

  = +

= − +

= −

= −

=

o o

o o o o

o o o

o o o

d D U

Y Y

Y

Y

 

bulunur. Dolayısıyla 
od  sabit vektördür. Ayrıca  , cos=o oD d  olduğundan 

od  

sabit vektörü , 
oD  vektörü ile sabit açı yapar.   bir oD -Darboux slant helistir.       

 Teorem 3.2.2 den aşağıdaki sonuçlar elde edilir. 

Sonuç 3.2.3:  , 
3E  de S  yüzeyi üzerinde kalan birim hızlı bir eğri ve Darboux 

çatısının eğrilikleri ,g nk k  ve g  olsun.   eğrisinin oD -Darboux Slant helis olması 

için gerek ve yeter şart her s I  için 

                         

2 2

2

2 2

( ) ( )
n g

o

gn
g

n g n

k
s s

k
k

k k








 
 
 +

=  
  
+   +   

                                    (3.16) 

veya denk olarak 



24 

 

2 2

2

2 2

( ) ( )






 

 
 
 +
 =

  
 − +   +   

n g

o

g n
g

n g g

k
s s

k
k

k

 

 fonksiyonunun sabit olmasıdır.  

İspat: (3.14) eşitlikleri (3.15) te yazılırsa hemen görülür.                 

Sonuç 3.2.4: Oskülatör Darboux çatısına göre oD -Darboux slant helisin ekseni 

                                                   cos sin = +o od D U                                         (3.17) 

şeklindedir. 

Sonuç 3.2.5: oD -Darboux slant helisin ekseni, Darboux çatısının vektörleri 

cinsinden 

2 2 2 2
cos cos sin


  

 
= − +

+ +

g n
o

g n g n

k
d T V U

k k
 

şeklindedir. 

Sonuç 3.2.6:   eğrisinin oD -Darboux slant helis olması için gerek ve yeter şart   

eğrisinin isophote eğrisi olmasıdır. 

İspat:   eğrisinin bir oD -Darboux slant helis olduğunu kabul edelim.  (3.17) 

eşitliğinin her iki tarafı U  vektörü ile iç çarpılırsa 

, sin= =od U sabit  

 elde edilir. Bu da   eğrisinin isophote eğrisi olduğunu gösterir.                               

Sonuç 3.2.7:  , S  yüzeyi üzerinde birim hızlı bir 
oD -Darboux slant helis olsun. Bu 

durumda;  

i)   nın S  yüzeyi üzerinde 0nk   olan bir geodezik eğri olması için gerek ve yeter 

şart    nın  



25 

 

2 2 2 2
cos sin cos

 
  

   
= +

+ +
od T N B  

 eksenli bir Darboux helis (slant helis) olmasıdır. 

ii)   nın S  yüzeyi üzerinde 0gk   olan asimptotik bir eğri olması için gerek ve 

yeter şart   nın  cos sin =od T B  eksenli bir helis olmasıdır.   

iii)  , S  yüzeyi üzerinde bir eğrilik çizgisi ise bu taktirde   düzlemsel bir eğridir. 

İspat: i)   geodezik eğri ise 0gk =  dır. Bu durumda (2.1) eşitlikleri kullanılarak 

nk =  ve 
g =  elde edilir.  , 

oD -Darboux Slant helis olduğundan bulunan 

değerler (3.16) da yazılırsa 

( )

2 2

2 2

32 2
2 2 2

1
o sabit

 


   

   
 

+
= = =

    
   

+    
+

 

bulunur. Teorem 2.1.22 (i) gereğince   bir Darboux helistir. Ayrıca Teorem 2.1.22 

(ii) gereğince   bir slant helistir. Ayrıca Tanım 2.2.18 de verilen Darboux çatısı ile 

Frenet çatısı arasındaki ilişkiler, Sonuç 3.2.5 de yazılıp (2.1) eşitlikleri kullanılırsa, 

oD -Darboux slant helisin Frenet çatısının vektörleri cinsinden ekseni  

2

2 2 2 2 2 2
cos cos sin cos sin


    

     

   
   = + − + + +
   + + +
   

g n g gn n
o

g n g n g n

k k kk k
d T N B

k k k
 

şeklinde olur. 0gk = , 
nk =  ve 

g =  eşitlikleri burada yazılırsa   Darboux 

helisinin ekseni    

2 2 2 2
cos sin cos

 
  

   
= +

+ +
od T N B  

olarak bulunur.  

Tersine olarak  , 
2 2 2 2

cos sin cos
 

  
   

= +
+ +

od T N B  eksenli bir 

Darboux helis olsun. Darboux helisin ekseni ile yukarıda 
oD -Darboux slant helisin 
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Frenet çatısına göre verilen ekseni dikkate alınırsa 0gk =  bulunur.  , S  yüzeyi 

üzerinde geodezik bir eğridir.  

ii)   asimptotik eğri ise 0nk =  dır. (2.1) eşitlikleri kullanılarak 
gk =  ve 

g =  elde 

edilir.  , 
oD -Darboux slant helis olduğundan bulunan değerler (3.16) da yazılırsa 

o sabit





= =  

bulunur. Teorem 2.1.18 gereğince   bir helistir. Ayrıca  
gk = , 

g =  ve   nın 

asimptotik eğri olduğu, yukarıda 
oD -Darboux slant helisin Frenet çatısına göre 

verilen ekseninde kullanılırsa   nın ekseni cos sin =od T B  olarak bulunur. 

Tersine olarak  ,  cos sin =od T B  eksenli bir helis olsun. Helisin ekseni 

ile 
oD -Darboux slant helisin Frenet çatısına göre ekseni dikkate alınırsa 0nk =  

bulunur.  , S  yüzeyi üzerinde asimptotik eğridir.  

iii)   eğrilik çizgisi ise 0g =  dır.  , 
oD -Darboux slant helis olduğundan (3.16) dan 

n
o

g

k
sabit

k
 = =  elde edilir. ,  Frenet çatısının B  binormal vektörü ile U  yüzey 

normali arasındaki açı olmak üzere (2.1) eşitlikleri kullanılırsa  

sin
tan

cos

n

g

k
sabit

k

 


 
= = = , 

dolayısıyla sabit =  bulunur. 0g   = − =  olduğundan 0 =  elde edilir. Yani   

düzlemseldir.  

                                                                                                                                                              

3.3. oD -Darboux Slant Helislerin OD-Çatısına Göre Diferansiyel Denklem 

Karakterizasyonları 

 Bu kısımda, ilk olarak 
3E  de bir S  yüzeyi üzerinde bulunan eğrilerin 

diferansiyel denklem karakterizasyonları, OD-çatısının elemanları olan oD , U  ve 

oY  vektörler alanlarına bağlı olarak verilecektir. Ardından oD -Darboux slant helisler 
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için diferansiyel denklem karakterizasyonları, OD-çatısının elemanları olan 
oD , U  

ve 
oY  vektörler alanlarına bağlı olarak verilecektir. 

Teorem 3.3.1: ,S  3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan 

birim hızlı bir eğri olsun.   eğrisini OD-çatısının 
oD  vektör alanına göre karakterize 

eden vektörel diferansiyel denklem 0o   ve 0o   olmak üzere           

              

2 21 1 1 1

0

      
    


 



                 + + + + +      
            

 

 
+ = 

 

o o o o o o o o o o

o o o o o

o
o o o

o

D D D

D

      (3.18) 

şeklindedir.  

İspat: (3.1) sisteminin üçüncü denkleminden U  vektörü yalnız bırakılırsa  

                                                               
0 0

1

 
= −o

o oU D Y                                                      (3.19) 

bulunur. (3.1) sisteminin ilk denkleminden oY  vektörü yalnız bırakılırsa 
1


= −o o

o

Y D , 

bulunan 
oY  vektörü (3.1) in ikinci denkleminde yazılırsa  

                                                         
0




 = − o

oU D                                                  (3.20) 

elde edilir. Bulunan 
oY  ifadesinin iki yanının türevi alınırsa  

1 1
,

 

 
  = − − 

 
o o o

o o

Y D D  bulunan bu ifade (3.19) de yazılırsa  

0 0

0 0 0

1 1 1

1 1 1



   



    

    = − − −   
 

 
 = + + 

 

o
o o o

o o

o
o o o

o o

U D D D

D D D
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elde edilir. Elde edilen U vektörünün türevini alınırsa 

0 0

1 1 1 1 1 1  

         

                 = + + + + +       
        
 

o o
o o o o o o

o o o o o o o o

U D D D D D D  

olur. Bu denklem düzenlenirse 

1 1 1 1 1 1  

         

                     = + + + + +        
              

 

o o
o o o o

o o o o o o o o o o

U D D D D    (3.21) 

bulunur. (3.21),  (3.20) de yerine yazılırsa 

2 2

0

1 1 1 1 1 1
0

  

          

               +     + + + + + =        
              

 

o o o
o o o o

o o o o o o o o o o

D D D D  

elde edilir. Elde edilen bu denklemin her iki tarafı o o   ile çarpılırsa 

2 21 1 1 1

0

      
    


 



                 + + + + +      
            

 

 
+ = 

 

o o o o o o o o o o

o o o o o

o
o o o

o

D D D

D

 

diferansiyel denklemi elde edilir.                                                                             

Sonuç 3.3.2: ,S  
3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir oD -Darboux slant helis olsun.   eğrisini 
oD  vektör alanına göre karakterize 

eden vektörel diferansiyel denklem, 0o   ve 0o   olmak üzere 

2 21 1 1 1
0      

    

                 + + + + + =      
            

 

o o o o o o o o o o

o o o o o

D D D  
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şeklindedir. 

İspat: Teorem 3.3.1 de, 3E  de eğrileri OD-çatısının 
oD  elemanına göre karakterize 

eden genel diferansiyel denklemin (3.18) şeklinde olduğu gösterildi. Şimdi   eğrisi 

oD -Darboux slant helis olduğunu kabul edelim. oD -Darboux slant helis olma 

şartından o

o




 ifadesi sabit olduğundan o

o




 ifadesi de sabittir. Dolayısıyla 0o

o





 
= 

 
 

ifadesi (3.18) denkleminde yazılırsa  

2 21 1 1 1
0      

    

                 + + + + + =      
            

 

o o o o o o o o o o

o o o o o

D D D  

denklemi elde edilir.                                                                                                      

Teorem 3.3.3: ,S  3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan 

birim hızlı bir eğri olsun.   eğrisini OD-çatısının U  vektör alanına göre karakterize 

eden vektörel diferansiyel denklem,  0o   ve 0o   olmak üzere  

               

2 21 1 1 1

0

o o o o o o o

o o o o o

o
o o

o

U U U

U

      
    


 



                 + + + + +      
            

 

 
+ = 

 

    (3.22) 

şeklindedir.  

İspat: (3.1) sisteminin ikinci denkleminden 
1

o

o

Y U


=  yazılabilir. Bu ifadenin türevi 

alınırsa 

1 1
o

o o

Y U U
 

 
  = + 

 
 

bulunur. Bu değer (3.1) in üçüncü denkleminde yazılıp 
oD  yalnız bırakılırsa 
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1 1 1 

    

 
 = + + 

 

o
o

o o o o o

D U U U  

elde edilir. Bulunan 
oD   vektörünün türevi alınırsa  

1 1 1 1 1 1  

         

                 = + + + + +       
        
 

o o
o

o o o o o o o o o o

D U U U U U U  

bulunur. Bu denklem düzenlenirse 

1 1 1 1 1 1  

         

                     = + + + + +        
              

 

o o
o

o o o o o o o o o o

D U U U U  

bulunur. (3.1) sisteminin ikinci denkleminden 
oY  çekilip (3.1) in birinci denkleminde 

yazılırsa 



 = − o
o

o

D U   olur. Bulunan 
oD  vektörünün eşiti son denklemde yerine 

yazılırsa 

1 1 1 1 1 1  

          

                     − = + + + + +        
              

 

o o o

o o o o o o o o o o o

U U U U U  

bulunur. Bu denklem düzenlenirse 

1 1 1 1 1 1
0o o o

o o o o o o o o o o o

U U U U
  

          

                    + + + + + + =        
              

 

 

elde edilir. Bulunan son denklem o o   ile çarpılırsa  
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2 21 1 1 1

0

o o o o o o o

o o o o o

o
o o

o

U U U

U

      
    


 



                 + + + + +      
            

 

 
+ = 

 

 

diferansiyel denklemi elde edilir.                                                                                                                                                                                   

Sonuç 3.3.4: ,S  3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir oD -Darboux slant helis olsun.   eğrisini U  vektör alanına göre karakterize 

eden vektörel diferansiyel denklem 

2 21 1 1 1
0o o o o o o o

o o o o o

U U U      
    

                 + + + + + =      
            

 

 

şeklindedir. Burada 0o   ve 0o   dır. 

İspat: Teorem 3.3.3 de, 3E  de eğrileri OD-çatısının U  vektör alanına göre 

karakterize eden genel diferansiyel denklemin (3.22) şeklinde olduğu gösterildi. 

Şimdi   eğrisi oD -Darboux slant helis olduğunu kabul edelim. oD -Darboux slant 

helis olma şartından o

o




 ifadesi sabittir. Dolayısıyla 0o

o





 
= 

 
 ifadesi (3.22) 

denkleminde yazılırsa  

2 21 1 1 1
0o o o o o o o

o o o o o

U U U      
    

                 + + + + + =      
            

 

 

denklemi elde edilir.                 

Teorem 3.3.5: ,S  
3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir eğri olsun.  eğrisini OD-çatısının oY  vektör alanına göre karakterize eden 

vektörel diferansiyel denklem  1 0n  olmak üzere  
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                      ( ) ( ) ( )1 2 2 3 3

1 1 1

1 1 1
0     + − + − + + − + =o o o o oY n n Y n n Y n Y

n n n
             (3.23) 

şeklindedir. Burada ( )1 2 1

1
, 1




    
= = +

 −

o
o

o o o o o

n n n  ve ( )2 2

3 1  = +o on n  dır.  

İspat: (3.1) sisteminin üçüncü denkleminden   

                                                         
1 

 
= + o

o o

o o

D Y U                                         (3.24) 

yazılabilir. Bulunan ifadenin türevi alınıp ve OD-çatısının türev formülleri 

kullanılırsa  

                                       
2 2

1 1
0

  

   

    +
 + + + =   
   

o o o
o o o

o o o o

Y Y Y U                                    

bulunur. Son denklemde U  vektörü yalnız bırakılırsa 

( )2 2   

           

+
 = − + −

     − − −

o o oo o
o o o

o o o o o o o o o o o o

U Y Y Y , 

bulunan bu ifade (3.24) de yazılırsa, ( )1 2 1

1
, 1




    
= = +

 −

o
o

o o o o o

n n n  ve 

( )2 2

3 1  = +o on n   olmak üzere  

                                                   
1 2 3
 = − + −o o o oD nY n Y n Y ,                                                     

elde edilir. Son bulunan eşitliğin her iki yanının türevi alınıp OD-çatısının türev 

formülleri kullanılırsa  

( ) ( ) ( )1 2 2 3 3

1 1 1

1 1 1
0     + − + − + + − + =o o o o oY n n Y n n Y n Y

n n n
 

denklemi elde edilir.             

Teorem 3.3.6: ,S  
3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan 

birim hızlı bir oD -Darboux slant helis olsun.   eğrisini oY  vektör alanına göre 

karakterize eden vektörel diferansiyel denklem 
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( )2 21
0  



 
 + + + = 

 
o o o o o o

o

Y Y Y  

şeklindedir. Burada 0o   dır. 

İspat: (3.1) deki türev formüllerinin üçüncüsünden 
oD  vektörü yalnız bırakılırsa 

1 

 
= + o

o o

o o

D Y U  

bulunur. Bu ifadenin türevi alınırsa  

1 1  

   

      
  = + + +     

     

o o
o o o

o o o o

D Y Y U U  

elde edilir. Burada U   yerine türev formüllerindeki eşiti yazılırsa 

2
1 1  

   

      
  = + + +     

     

o o
o o o o

o o o o

D Y Y U Y  

bulunur. Bulunan bu ifade (3.1) sisteminin birinci ifadesinde yerine yazılıp denklem 

düzenlenirse 

2
1 1  


   

      
 + + + = −     

     

o o
o o o o o

o o o o

Y Y U Y Y  

2

2 2

1 1
0

1 1
0

 


   

  

   

      
 + + + + =     

     

      ++ + + =     
     

o o
o o o o

o o o o

o o o
o o o

o o o o

Y Y U Y

Y Y U Y

 

elde edilir.   eğrisi oD -Darboux slant helis olduğundan 0o

o





 
= 

 
 dır. Dolayısıyla 

denklem  
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2 2

0

0

1 1
0

 

  

   ++ + =   
   

o
o o o

o o

Y Y Y  

halini alır. Son olarak bu denklem o  ile çarpılırsa  

( )2 21
0  



 
 + + + = 

 
o o o o o o

o

Y Y Y  

elde edilir.                                                                                              

 

3.4. Yüzey Üzerinde oD -Darboux Slant Helisin Elde Edilmesi 

 Bu kısımda, parametrik ve kapalı formda verilen bir yüzey üzerinde oD -

Darboux slant helis elde edilebilmek için yöntemler verilecektir. 

 

3.4.1. Parametrik Formda Verilen Yüzey Üzerinde oD -Darboux Slant Helisin 

Elde Edilmesi 

S ,  
3E  uzayında ( , )X X u v=  parametrizasyonu ile verilen bir yüzey olsun. 

( )( ) ( ), ( )s X u s v s = , S  yüzeyi üzerinde, sabit ve birim 
od  doğrultusu ile sabit   

açısı yapan, Darboux çatısı  , ,T V U  olan birim hızlı bir oD -Darboux slant helis 

olsun.    eğrisini elde etmek için ( )u s  ve ( )v s  değerlerinin bulunması gerekir. İlk 

olarak ( )u s  değerini bulalım. 

u v

du dv
T X X

ds ds
 = = +   ,     u v

u v

X X
U

X X


=


 ,    V U T=   

dir. T  vektörünün ve U  vektörünün eşiti V  vektöründe yazılırsa 

( ) ( )
1

v u v u

u v

du dv
V EX FX FX GX

ds dsX X

 
= − + − 

  
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bulunur [15]. Burada , ,E F G birinci temel formun katsayılarıdır.  , oD -Darboux 

slant helis olduğundan , cos=o oD d  dır. Bu ifadede 
oD  vektörü yerine yazılırsa 

                                      
2 2 2 2

, cos
g n

o

g n g n

k
T V d

k k




 
− =

+ +
                            (3.25) 

elde edilir. Yukarıda bulunan T  ve V  vektörleri (3.25) de yazılırsa  

( ) ( )

2 2

2 2

cos
1

,

g

u v

g n

n
v u v u o

u vg n

du dv
X X

ds dsk

k du dv
EX FX FX GX d

ds dsX Xk








 
+ 

 +

=
 

  − − + −    +  

 

bulunur. Bu ifade düzenlenirse  

2 2 2 2 2 2

2 2 2 2

2 2

1
, , ,

1 1
, ,

1
, cos

g g n
u o v o v o

u vg n g n g n

n n
u o v o

u v u vg n g n

n
u o

u vg n

kdu dv du
X d X d E X d

ds ds dsX Xk k k

k kdu dv
F X d F X d

ds dsX X X Xk k

k dv
G X d

dsX Xk

 

  

 




+ −
+ + +

+ −
 + +

+ =
+

 

elde edilir. Bulunan son denklemde işlem kolaylığı açısından  

2 2

g

g nk




= 

+
, 

2 2

n

g n

k
K

k
=

+
, 2 = − =u vX X EG F N , 

, =u o oX d L ,  , =v o oX d M  

kısaltmaları kullanılırsa, son ifade  

1 1

1 1
cos

 + − +

− + =

o o o o

o o

du dv du du
L M K EM K FL

ds ds N ds N ds

dv dv
K FM K GL

N ds N ds

 

olur. Bu ifadenin her iki yanı N  ile çarpılırsa 
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cos + − + − + =o o o o o o

du dv du du dv dv
L N M N KEM KFL KFM KGL N

ds ds ds ds ds ds
 

elde edilir. 
du

ds
 ve 

dv

ds
 parantezine alınırsa 

             ( ) ( )( ) ( ) cos + − +  − + =o o o o

du dv
N KF L KEM N KF M KGL N

ds ds
       (3.26) 

bulunur. Bu ifadede 
dv

ds
 yalnız bırakılırsa  

                
( )cos

( ) ( )

  + −
= −

 − +  − +

o o

o o o o

N KF L KEMdv N du

ds N KF M KGL N KF M KGL ds
                     (3.27) 

elde edilir. Ayrıca   eğrisi birim hızlı olduğundan   

                                 

2 2

2 1
du du dv dv

E F G
ds ds ds ds

   
+ + =   

   
                                      (3.28) 

bulunur [15]. (3.27) ifadesi (3.28) de yerine yazılırsa 

2

2

( )cos
2

( ) ( )

( )cos
1

( ) ( )





  + − 
+ −  

 − +  − +   

  + −
+ − = 

 − +  − + 

o o

o o o o

o o

o o o o

N KF L KEMdu du N du
E F

ds ds N KF M KGL N KF M KGL ds

N KF L KEMN du
G

N KF M KGL N KF M KGL ds

 

denklemi elde edilir. Bu denklemde parantezler açılırsa 

( )

( )

( )

( )

( )

2 2

2 2

2 2

2 2

2

( )cos
2 2

( ) ( )

( )cos
2 cos

( ) ( )

( )
1

( )






 + −   
+ −   

 − +  − +   

 + −
+ −

 − +  − +

 + −  
+ = 

  − +

o o

o o o o

o o

o o o o

o o

o o

N KF L KEMdu N du du
E F F

ds N KF M KGL ds N KF M KGL ds

N KF L KEMN du
G GN

dsN KF M KGL N KF M KGL

N KF L KEM du
G

dsN KF M KGL

 

bulunur. Elde edilen son denklemde paydalar eşitlenirse 
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( )

( )

( )

( )

( )( )

( )

( )

( )

( )

2 2

2 2

2

2

2 2

2

( ) cos ( )
2

( ) ( )

( ) ( )
2

( )

( )cos
2 cos

( ) ( )






 − +  − + 
+ 

  − +  − +

 + −  − +  
−  

  − +

 + −
+ −

 − +  − +

o o o o

o o o o

o o o o

o o

o o

o o o o

N KF M KGL N N KF M KGLdu du
E F

ds dsN KF M KGL N KF M KGL

N KF L KEM N KF M KGL du
F

dsN KF M KGL

N KF L KEMN
G GN

N KF M KGL N KF M KGL

( )

( )

2

2 2

2

( )
1

( )

 + −  
+ = 

  − +

o o

o o

du

ds

N KF L KEM du
G

dsN KF M KGL

 

olur. Bu denklemin her iki tarafı ( )
2

( ) − +o oN KF M KGL  ile çarpılırsa 

( ) ( )

( )( )

( ) ( )

( )

2
2

2

2 2

2
2

2

( ) 2 cos ( )

2 ( ) ( ) cos

2 cos ( ) ( )

( )







 
 − + +  − + 

 

 
−  + −  − + + 

 

 
−  + − +  + −  

 

=  − +

o o o o

o o o o

o o o o

o o

du du
E N KF M KGL FN N KF M KGL

ds ds

du
F N KF L KEM N KF M KGL GN

ds

du du
GN N KF L KEM G N KF L KEM

ds ds

N KF M KGL

 

elde edilir. Burada 

2
du

ds

 
 
 

 ve 
du

ds
 parantezine alınırsa 

( ) ( )( )

( )

( )

( )
( )

2 2

2

22 2

( ) 2 ( ) ( )

( )

2 cos ( )
cos ( )

2 cos ( )






  − + −  + −  − +  
   
   +  + − 

 − + 
+ + =  − + 

−  + −  

o o o o o o

o o

o o

o o

o o

E N KF M KGL F N KF L KEM N KF M KGL du

dsG N KF L KEM

FN N KF M KGL du
GN N KF M KGL

dsGN N KF L KEM

 

ifadesi elde edilmiş olur. 

2
du

ds

 
 
 

 ve 
du

ds
 katsayılarındaki parantezler açılırsa  

2 2 2 2 2

22

2 2 2 2

2 2 2

2

( ) 2 ( )

2 ( )( ) 2 ( )

2 ( ) 2 ( )

2 ( )

2 cos

  − +  − +
 
−  +  − −  + +   

  
 − + +  +  

 
 −  + + 

+  − + −  − +

o o o o

o o o

o o o o

o o o

o o o o o

E N KF M E N KF KGL M EK G L

F N KF N KF L M F N KF KGL du

dsF N KF KEM FK EGL M G N KF L

G N KF KEL M GK E M

N F NM KF M FKGL G NL FKGL G

( )
22 2cos ( )

  

+ =  − +

o

o o

du
KEM

ds

GN N KF M KGL
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bulunur. 

2
du

ds

 
 
 

 ifadesinin katsayısı 2

oEM , 2

oGL  ve 2 o oL M  parantezine, 
du

ds
  

ifadesinin katsayısı oKM  ve N  parantezine alınırsa 

( )

( )

2 2 2

2

2 2 2

2

2 2 2

( ) 2 ( )

( ) 2 ( )

( ) ( )( )
2

( )

2 cos ( ) ( ) cos ( ) 

 
 

 − +  − + + 
  

 + −  + + + +  
 

  − −  +  −  
  −  + +  

 − + − + =  − + 

o

o

o o

o o o o

EM N KF FK N KF GK E

du
GL N KF FK N KF EK G

ds
N KF EKG F N KF N KF

L M
G N KF KE FK EG

du
N KM EG F N FM GL GN N KF M KG

ds
( )

2

oL

 

elde edilir. 

2
du

ds

 
 
 

 in katsayısındaki parantezler açılırsa  

2 2 2 2 2

2

2 2 2 2 2

2 2 2 2

2 2 2

2

( ) 2 ( ) 2 2( )

( ) 2 ( ) 2 2( )

( )
2

( )

2 cos ( )

 
 

  −  + +  − +  
   

 +  +  + −  − +    
  

  − −  +  −  +   + −  − +  

+ −

o

o

o o

o

EM N KF N KF KF N KF EK G

du
GL N KF N KF KF N KF EK G

ds

NEKG K EFG F N F NK F NK
L M

F KF G NKE GK EF FK EG

N KM EG F ( )
22 2( ) cos ( ) +  − + =  − + o o o o

du
N FM GL GN N KF M KGL

ds

 

bulunur. Gerekli sadeleştirmeler yapılırsa 

( )

2 2 2 2 2 2 2 2 2

2 2 2

2

22 2

( ) ( ) ( ) ( )

2 ( ) ( )

2 cos ( ) ( )

cos ( )





     − + +  − +        
    −  − +  

 + − + − 

+ =  − +

o o

o o

o o o

o o

EM N KF EK G GL N KF EK G du

dsFL M N KF EK G

du
N KM EG F N FM GL

ds

GN N KF M KGL

 

elde edilir. Burada 
2 2 2( ) ( )N KF EK G − +  parantezine alınarak  

( )( )

( )

2

2 2 2 2 2

2

22 2

( ) ( ) 2

2 cos ( ) ( )

cos ( )





   − + + − +    

 − +  − 

+ =  − +

o o o o

o o o

o o

du
N KF EK G EM GL FL M

ds

du
N KM EG F N FM GL

ds

GN N KF M KGL
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bulunur. İşlem kolaylığı açısından 2 2 2+ − =o o o o oEM GL FL M A  kısaltması kullanılırsa  

( )

( )

2

2 2 2 2

22 2

( ) ( ) 2 cos ( ) ( )

cos ( ) 0





     + − + − + −      

+ −  − + =

o o o o

o o

du du
N K EG F A N KM EG F N FM GL

ds ds

GN N KF M KGL

 

ikinci dereceden denklemi elde edilir. Bu denklemin kökleri bize 
du

ds
 ifadesini verir. 

Bu denklemin diskriminantı 

( ) ( )

( )

( ) ( )

2
2 2 2

22 2 2 2 2

2
2 2 2

2 2 2 2 2

22 2 2

4 cos ( ) ( )

4 ( ) ( ) cos ( )

4 cos ( ) ( )

4 cos ( ) ( )

4 ( ) ( ) ( )









  = − + − 

  −  + − −  − +
   

 = − + − 

 −  + −
 

  +  + −  − +
   

o o o o

o o o

o o o

o

o o o

N KM EG F N FM GL

A N K EG F GN N KF M KGL

N KM EG F N FM GL

A GN N K EG F

A N K EG F N KF M KGL

 

bulunur. Bu ifade düzenlenerek 

( )

( ) ( )

2
2

2 2

2 2 2

22 2 2

( ) ( )
4 cos

( ) ( )

4 ( ) ( ) ( )



  − +  −  
 =  

 −  + −   

  +  + −  − +
   

o o o

o

o

o o o

KM EG F N FM GL
N

A G N K EG F

A N K EG F N KF M KGL

 

elde edilir. Daha önce yapılan kısaltmalar bulunan diskriminantda yerine yazılırsa, 

2 2− =EG F N  ve 2 2 1 + =K  olduğundan 

( )

2
2

2
2

2

2

2

( ) ,

4 cos ( , , )

( ) ,
4 ( )

,



  −
  
   =  +  − 
 
 
 − −
 

    −
  + −   +   

v o

o u v u v v o u o

o

u v v o

o

u o

K EG F X d

X X X X F X d G X d

A G EG F

X X KF X d
A EG F

KG X d

 

bulunur. Dolayısıyla aranan 
du

ds
 ifadesi   
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2

2

2 cos ( ) ( )

2( )

  − − + −   =
−

o o o o

o

N KM EG F N FM GLdu

ds EG F A
 

şeklindedir.  Yukarıdaki denklemde, yapılan kısaltmalar yerine yazılırsa     

2

2

2 cos ( ) , ( , , )

2( )

  −  − +  −  
 =

−

u v v o u v v o u o o

o

X X K EG F X d X X F X d G X ddu

ds EG F A
   (3.29) 

bulunur. Burada 
2 2 2 2

,
g n

g n g n

k
K

k k



 
 = =

+ +
ve 2 2 2+ − =o o o o oEM GL FL M A  dır. 

Şimdi benzer yolla  
dv

ds
  ifadesini bulalım. (3.26) da 

du

ds
 yalnız bırakılırsa  

( )

( )

( )

( )cos

( ) ( )

  − +
= −

 + −  + −

o o

o o o o

N KF M KGLdu N dv

ds N KF L KEM N KF L KEM ds
 

elde edilir. Bulunan 
du

ds
 in eşiti (3.28) de yazılırsa  

( )

( )

( )

( )

( )

( )

2

2

( )cos

( ) ( )

( )cos
2 1

( ) ( )





  − +
−   + −  + − 

  − +  
+ − + =     + −  + −   

o o

o o o o

o o

o o o o

N KF M KGLN dv
E

N KF L KEM N KF L KEM ds

N KF M KGLN dv dv dv
F G

N KF L KEM N KF L KEM ds ds ds

 

bulunur. Parantezler açılırsa 

( )

( )

( )

( )

( )

( )

( )

2 2

2 2

2 2

2

2 2

( )cos
2 cos

( ) ( )

( ) 2 cos

( )( )

2 ( )
1

( )






 − +
−

 + −  + −

 − +  
+ + 

 + −  + −

 − +    
− + =   

 + −    

o o

o o o o

o o

o oo o

o o

o o

N KF M KGLEN dv
EN

dsN KF L KEM N KF L KEM

N KF M KGL dv FN dv
E

ds N KF L KEM dsN KF L KEM

F N KF M KGL dv dv
G

N KF L KEM ds ds

 

elde edilir. Paydalar eşitlenirse 
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( )

( )

( )

( )

( )

( )

( )

( )( )

( )

2 2

2 2

2 2

2 2

2

( )cos
2 cos

( ) ( )

( ) 2 cos ( )

( ) ( )

2 ( ) ( )

( )






 − +
−

 + −  + −

 − +  + − 
+ + 

  + −  + −

 − +  + − 
−

 + −

o o

o o o o

o o o o

o o o o

o o o o

o o

N KF M KGLEN dv
EN

dsN KF L KEM N KF L KEM

N KF M KGL FN N KF L KEMdv dv
E

ds dsN KF L KEM N KF L KEM

F N KF M KGL N KF L KEM dv

dsN KF L KEM

( )

( )

2

2 2

2

( )
1

( )


 



 + −  
+ = 

  + −

o o

o o

N KF L KEM dv
G

dsN KF L KEM

 

bulunur. Denklemin iki tarafı ( )
2

( ) + −o oN KF L KEM  ile çarpılırsa  

( )

( ) ( )

( )( )

( ) ( )

2 2

2
2

2

2
2 2

cos 2 cos ( )

( ) 2 cos ( )

2 ( ) ( )

( ) ( )

 



−  − +

 
+  − + +  + − 

 

 
−  − +  + −  

 

 
+  + − =  + − 

 

o o

o o o o

o o o o

o o o o

dv
EN EN N KF M KGL

ds

dv dv
E N KF M KGL FN N KF L KEM

ds ds

dv
F N KF M KGL N KF L KEM

ds

dv
G N KF L KEM N KF L KEM

ds

 

elde edilir. 

2
dv

ds

 
 
 

 ve 
dv

ds

 
 
 

 parantezine alınırsa 

( ) ( )

( )( )

( ) ( )

( )

2 2 2

22 2

( ) ( )

2 ( ) ( )

2 cos ( ) 2 cos ( )

cos ( )

 



  − + +  + −  
   

 −  − +  + −  

+  + − −  − +  

+ =  + −

o o o o

o o o o

o o o o

o o

E N KF M KGL G N KF L KEM dv

dsF N KF M KGL N KF L KEM

dv
FN N KF L KEM EN N KF M KGL

ds

EN N KF L KEM

 

bulunur. 

2
dv

ds

 
 
 

 ve 
dv

ds

 
 
 

 katsayılarındaki parantezler açılırsa 
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2 2 2 2 2

22

2 2 2 2

2 2 2

2

( ) 2 ( )

2 ( )( ) 2 ( )

2 ( ) 2 ( )

2 ( )

2 cos

  − +  − +
 
−  −  + +  −   

  
−  + + +  +  
 
 −  + + 

+  + − −  + −

o o o o

o o o

o o o o

o o o

o o o o o

E N KF M E N KF KGL M EK G L

F N KF N KF L M F N KF KEM dv

dsF N KF KGL FK EGL M G N KF L

G N KF KEL M GK E M

N F NL F KL FKEM E NM FEKM E( )

( )
22 2cos ( )

       

+ =  + −

o

o o

dv
KGL

ds

EN N KF L KEM

 

elde edilir. 

2
dv

ds

 
 
 

 katsayısı 2

oEM , 2

oGL  ve 2 o oL M  parantezine,  
dv

ds

 
 
 

 katsayısı 

KL−  ve N  parantezine alınırsa  

( )

( )

( )

2 2 2

2

2 2 2

2

2 2 2

( ) 2 ( )

( ) 2 ( )

( ) ( )( )
2

( )

2 cos ( ) ( ) cos

(

 

 
 

 − +  − + + 
  

 + −  + + +   
 

  − −  −  +  
 

 + −  +  

  + − − + − +    

=  +

o

o

o o

o o o

EM N KF F N KF K GK E

dv
GL N KF F N KF K EK G

ds
E N KF KG F N KF N KF

L M
FK EG G N KF KE

dv
N KL EG F N FL EM EN

ds

N K( )
2

) −o oF L KEM

 

elde edilir. 

2
dv

ds

 
 
 

 katsayısını tekrar düzenleyerek  

( )

( )

( )

2 2 2 2 2 2

2

2 2 2 2 2 2

2 2 2 2

2

2

( ) 2 ( ) 2 2

( ) 2 ( ) 2 2

( ) ( )
2

2 cos ( ) ( )

 
 

 −  + +  − + + 
   

 +  + −  − + +   
  

  − −  + + 
   −  −  

 + − − + −
 

o

o

o o

o o o

EM N KF N KF F NK F K GK E

dv
GL N NKF KF F NK F K EK G

ds

NEKG K EFG F N F KF FK EG
L M

G NKE K EFG

dv
N KL EG F N FL EM

d

( )

2 2

2

cos

( )


 

+ 
 

=  + −o o

EN
s

N KF L KEM

 

bulunur. Burada gerekli sadeleştirmeler yapılırsa  



43 

 

( )

( )

( )

( )

( )

2 2 2 2 2 2

2

2 2 2 2 2 2

2 2 2

2 2 2

2

( ) ( ) 2

( ) ( ) 2

2 ( ) ( )

2 cos ( ) ( ) cos

( )

 

  + − + +
 

   + − + +  
   
 − −  +
 

  + − − + − +    

=  + −

o

o

o o

o o o

o o

EM N KF F K GK E

dv
GL N KF F K EK G

ds

L M K EFG F N F KF

dv
N KL EG F N FL EM EN

ds

N KF L KEM

 

elde edilir. 

2
dv

ds

 
 
 

 katsayısı tekrar düzenlenirse 

( )

( )

( )

( )

( )

2 2 2 2

2

2 2 2 2

2 2 2

2 2 2

2

( ) ( )

( ) ( )

2 ( ) ( )

2 cos ( ) ( ) cos

( )

 

  + − +
 

   + − −  
   
  + −
 

  + − − + − +    

=  + −

o

o

o o

o o o

o o

EM N K EG F

dv
GL N K EG F

ds

FL M N K EG F

dv
N KL EG F N FL EM EN

ds

N KF L KEM

 

bulunur. 

2
dv

ds

 
 
 

 in katsayısı 
2 2 2( ) ( )N K EG F + −  parantezine alınırsa  

( )( )

( )

( )

2

2 2 2 2 2

2

22 2

2 ( ) ( )

2 cos ( ) ( )

cos ( ) 0





  − +  + −     

  + − − + −     

+ −  + − =

o o o o

o o o

o o

dv
EM FL M GL N K EG F

ds

dv
N KL EG F N FL EM

ds

EN N KF L KEM

 

elde edilir. Daha önce kullanılan 2 22− + =o o o o oEM FL M GL A  kısaltması tekrar 

kullanılırsa  

( )

( )

( )

2

2 2 2

2

22 2

( ) ( )

2 cos ( ) ( )

cos ( ) 0





   + −     

  + − − + −     

+ −  + − =

o

o o o

o o

dv
A N K EG F

ds

dv
N KL EG F N FL EM

ds

EN N KF L KEM
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ikinci dereceden denklemi elde edilir. Bu denklemin kökleri bize 
dv

ds
 i verir. 

Denklemin diskriminantı hesaplanırsa 

( ) ( )

( )( )

2
* 2 2 2 2 2 2

22 2 2

4 cos ( ) ( ) ( ) ( )

4 ( ) ( ) ( )

   =  − − − −  + −
  

+  + −  + −

o o o o

o o o

N N FL EM KL EG F AE N K EG F

A N K EG F N KF L KEM

 

bulunur. Yapılan kısaltmalar bulunan *  da yerine yazılırsa, 2 2− =EG F N  ve 

2 2 1 + =K  olduğundan 

( )( )
( )

( )
( )

2
2

2
* 2

2

2

2

, , , ( )
4 cos

,
4

,



 
  − − − 

 = 
 
− −  

   +
 + −
  −
 

u v u o v o u o

o u v

o

u v u o

o

v o

X X F X d E X d K X d EG F
X X

A E EG F

X X KF X d
A EG F

KE X d

elde edilir. Dolayısıyla denklemin kökleri   

( )2 *

2

2 cos ( ) ( )

2( )

− − − + −  
=

−

o o o o

o

N KL EG F N FL EMdv

ds EG F A
 

ile bulunur. Daha önce yaptığımız kısaltmalar yerine yazılırsa 

 

2 *

2

2 cos ( ) , ( , , )

2( )

  −  − − +  −  
 =

−

u v u o u v u o v o o

o

X X K EG F X d X X F X d E X ddv

ds EG F A
 (3.30) 

 elde edilir. Burada 
2 2 2 2

,
g n

g n g n

k
K

k k



 
 = =

+ +
 ve 2 2 2+ − =o o o o oEM GL FL M A  dır. 

Dolayısıyla (3.29) ve (3.30) dan  

2

2

2 *

2

2 cos ( ) , ( , , )

2( )

2 cos ( ) , ( , , )

2( )





  −  − +  −  
  =

 −


 −  − − +  −  
  =

−

u v v o u v v o u o

o

u v u o u v u o v o o

o

X X K EG F X d X X F X d G X ddu

ds EG F A

X X K EG F X d X X F X d E X ddv

ds EG F A

(3.31) 

diferansiyel denklem sistemi elde edilir. Bu diferansiyel denklem sistemi 
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0 0

0 0

( )

( )

=

=

u s u

v s v
 

başlangıç noktası ile birlikte çözülüp bulunan değerler ( , )X u v  de yazılırsa S  yüzeyi 

üzerinde istenen oD -Darboux slant helis elde edilir. 

 

3.4.2. Kapalı Formda Verilen Yüzey Üzerinde oD -Darboux Slant Helisin Elde 

Edilmesi 

 S , 3E  uzayında ( , , ) 0f x y z =  kapalı formu ile verilen bir yüzey olsun. 

( )( ) ( ), ( ), ( )s x s y s z s = , S  yüzeyi üzerinde, sabit ve birim ( ), ,od a b c=   doğrultusu 

ile sabit   açısı yapan, Darboux çatısı  , ,T V U  olan birim hızlı bir oD -Darboux 

slant helis olsun.    eğrisini elde etmek için ( ), ( )x s y s  ve ( )z s  değerlerinin 

bulunması gerekir. 1 2,e e  ve 3 ,e  3E  uzayının standart baz vektörleri olmak üzere 

Darboux çatısının elemanları; 

, ,
dx dy dz

T
ds ds ds


 

= =  
 

, 

( )
1

, ,x y z

f
U f f f

f f


= =

 

1 2 3
1 1

, ,x y z y z z x x y

e e e
dz dy dx dz dy dx

V U T f f f f f f f f f
f f ds ds ds ds ds ds

dx dy dz

ds ds ds

 
=  = = − − − 

   
 

şeklindedir [15]. Bulunan T  ve V  vektörleri, oD  vektörünün normlanmış hali olan  

2 2 2 2

( ) ( )
( ) ( ) (s)

( ) ( ) ( ) ( )



 
= −

+ +

g n
o

g n g n

s k s
D s T s V

s k s s k s
 vektöründe yerine yazılırsa 

2 2 2 2

( ) ( ) 1
( ) , , , ,

( ) ( ) ( ) ( )



 

   
= − − − −   

   + +

g n
o y z z x x y

g n g n

s k sdx dy dz dz dy dx dz dy dx
D s f f f f f f

ds ds ds ds ds ds ds ds dsfs k s s k s
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elde edilir.  , oD -Darboux slant helis olduğundan , cos=o oD d  dır. 
od  vektörü 

ve yukarıda bulunan 
oD  vektörü yerine yazılırsa 

( )

2 2

2 2

( )
, ,

( ) ( )

( ) 1
, , , , , cos

( ) ( )

g

g n

n
y z z x x y

g n

s dx dy dz

ds ds dss k s

k s dz dy dx dz dy dx
f f f f f f a b c

ds ds ds ds ds dsfs k s








 
 
 +

 
− − − − = 

 +

 

bulunur. Burada işlem kolaylığı için  
2 2

( )

( ) ( )

g

g n

s

s k s




= 

+
 ve 

2 2

( )

( ) ( )

n

g n

k s
K

s k s
=

+
 

alınıp ifade düzenlenirse 

( )

( )

, , , , ,

, , , , , cosy z z x x y

dx dy dz
a b c

ds ds ds

K dz dy dx dz dy dx
f f f f f f a b c

ds ds ds ds ds dsf


 
  

 

 
− − − − = 

 

 

elde edilir. Buradaki iç çarpım işlemleri yapılırsa  

cos

 + + − + − +
  

− + =
  

y z z

x x y

dx dy dz K dz K dy K dx
a b c af af bf

ds ds ds ds ds dsf f f

K dz K dy K dx
bf cf cf

ds ds dsf f f

 

bulunur. 
dx

ds
 , 

dy

ds
 ve 

dz

ds
   parantezine alınırsa 

cos

   
    − + +  + −
      
   

 
 +  − + =
  
 

z y z x

y x

K K dx K K dy
a bf cf b af cf

ds dsf f f f

K K dz
c af bf

dsf f

 

elde edilir. Her iki taraf  f  ile çarpılırsa  
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( ) ( )

( )

( ) ( )

( ) cos

  − − +   − −

+   − − = 

z y x z

y x

dx dy
a f K bf cf b f K cf af

ds ds

dz
c f K af bf f

ds

             (3.32) 

bulunur. Ayrıca , 0T U =  olduğundan  

                                                  0x y z

dx dy dz
f f f

ds ds ds
+ + =                                       (3.33) 

dır [15]. Burada 
dy

ds
  yalnız bırakılırsa  

x z

y y

f fdy dx dz

ds f ds f ds
= − −  

bulunur. Bu ifade (3.32) de yerine yazılırsa  

( ) ( )

( )

( ) ( )

( ) cos

 
  − − + − −   − −  

 

+   − − = 

x z
z y x z

y y

y x

f fdx dx dz
a f K bf cf b f K cf af

ds f ds f ds

dz
c f K af bf f

ds

 

elde edilir. Parantezler açılırsa 

( ) ( )

( ) ( )

( ) ( )

( ) ( ) cos

 
  − − + −   − −  

 

 
+ −   − − +   − − =   
 

x
z y x z

y

z
x z y x

y

fdx dx
a f K bf cf b f K cf af

ds f ds

f dz dz
b f K cf af c f K af bf f

f ds ds

 

bulunur. Denklemin iki tarafı yf   ile çarpılırsa  

( ) ( )( )

( )( ) ( )

( ) ( )

( ) ( ) cos

  − − + −   − −

+ −   − − +   − − = 

y y z y x x z

z x z y y y x y

dx dx
a f f Kf bf cf f b f K cf af

ds ds

dz dz
f b f K cf af c f f Kf af bf f f

ds ds

 

elde edilir. xf−  ve zf−  ifadeleri paranteze dağıtılırsa  
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( ) ( )

( ) ( )

( ) ( )

( ) ( )

cos

  − − + −   + −

+ −   + − +   − −

= 

y y z y x x x z

z z x z y y y x

y

dx dx
a f f Kf bf cf b f f Kf cf af

ds ds

dz dz
b f f Kf cf af c f f Kf af bf

ds ds

f f

 

bulunur. Burada 
dx

ds
 ve 

dz

ds
   parantezine alınırsa  

( )

( )

( ) ( ) ( )

( ) ( ) ( ) cos

   − − − − − 

 +   − − − − − =  

y x y z y x x z

y z y y x z x z y

dx
f af bf K f bf cf f cf af

ds

dz
f cf bf K f af bf f cf af f f

ds

 

elde edilir. Bulunan denklemde  

( ) ( ) ( ) 0   − − − − − =  y x y z y x x z of af bf K f bf cf f cf af  

denilerek 
dx

ds
 yalnız bırakılırsa  

            
( )1

cos
( ) ( )



    −  =  − 
   − − − −    

y z

y

o y y x z x z

f cf bfdx dz
f f

ds dsK f af bf f cf af
         (3.34) 

bulunur. Benzer yolla 
dy

ds
 i bulalım. (3.33) denkleminde 

dx

ds
 yalnız bırakılırsa 

y z

x x

f fdx dy dz

ds f ds f ds
= − −  

bulunur. Bu ifade (3.32) de yazılırsa  

( ) ( )

( )

( ) ( )

( ) cos

 
− −   − − +   − − 
 

+   − − = 

y z
z y x z

x x

y x

f fdy dz dy
a f K bf cf b f K cf af

f ds f ds ds

dz
c f K af bf f

ds

 

elde edilir. 
y z

x x

f fdy dz

f ds f ds

 
− − 
 

 ifadesi paranteze dağıtılırsa 
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( ) ( )

( ) ( )

( ) ( )

( ) ( ) cos

   
−   − − + −   − −   
   

+   − − +   − − = 

y z
z y z y

x x

x z y x

f fdy dz
a f K bf cf a f K bf cf

f ds f ds

dy dz
b f K cf af c f K af bf f

ds ds

 

bulunur. Bulunan bu ifadenin iki tarafı xf  ile çarpılırsa 

( )( ) ( )( )

( )( ) ( )( )

( ) ( )

( ) ( ) cos

−   − − + −   − −

+   − − +   − − = 

y z y z z y

x x z x y x x

dy dz
f a f K bf cf f a f K bf cf

ds ds

dy dz
f b f K cf af f c f K af bf f f

ds ds

 

elde edilir. xf , − yf  ve − zf  ifadeleri parantezlere dağıtılırsa  

( ) ( )

( ) ( )

( ) ( )

( ) ( ) cos

−   + − + −   + −

+   − − +   − − = 

y y z y z z z y

x x x z x x y x x

dy dz
a f f Kf bf cf a f f Kf bf cf

ds ds

dy dz
b f f Kf cf af c f f Kf af bf f f

ds ds

 

bulunur. 
dy

ds
 ve 

dz

ds
   parantezine alınırsa 

( )

( )

( ) ( ) ( )

( ) ( ) ( ) cos

   − − − − − 

 +   − − − − − =  

x y x x z y z y

x z x y x z z y x

dy
f bf af K f cf af f bf cf

ds

dz
f cf af K f af bf f bf cf f f

ds

 

elde edilir. ( ) ( ) ( ) 0   − − − − − =  y x y z y x x z of af bf K f bf cf f cf af  denilerek 
dy

ds
 

yalnız bırakılırsa  

           
( )1

cos
( ) ( )



    −  = −  
   − − − −    

x z

x

o x y x z z y

f cf afdy dz
f f

ds dsK f af bf f bf cf
          (3.35) 

bulunur.   eğrisi birim hızlı olduğundan  

                                              

2 2 2

1
dx dy dz

ds ds ds

     
+ + =     

     
                                     (3.36) 

elde edilir [15]. (3.34) ve (3.35) eşitlikleri (3.36) da yerine yazılarak 
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( )

( )

2

2

2

1
cos ( ) ( ) ( )

1
( ) ( ) ( ) cos

1





  
  −   − − − − −      

  
 +   − − − − − −       

 
+ = 
 

y y z y y x z x z

o

x z x y x z z y x

o

dz
f f f cf bf K f af bf f cf af

ds

dz
f cf af K f af bf f bf cf f f

ds

dz

ds

 

bulunur. Burada kareler alınıp bulunan ifade de benzer olan ifadeler ortak çarpan 

parantezine alınırsa  

( )

( ) ( )

2 2 2 2

2

2 2 2

2 2 2 2

2 2 2

2
2 2 2 2 2 2

( ) ( 2 )

( ) ( )

( ) ( )( )1
2 1

( )

( ) ( ) 2 ( )

   − + + +
   

   − + −
   

   − + + −
  −   +

   + − 
 
 +   + + + − +
 
 
 

y x x y z

z x z z y

x y z x y y x

o z x y

x y z z x y

af bf f f f
K

f cf af bf cf

b a f f f c f f af bf
f K

abf f f

f c f f a b f cf af bf

2

2 2

2 2 2 2

2
2 2 2

2

( ) ( )1
2 cos

( )( )

1
cos ( ) 1 0










 
 
  

 
 
 
  

     + − +    −  
   − − + +    

+  + − =


x y z x y

o y x x y z

x y

o

dz

ds

f c f f f af bf dz
f

dsK af bf f f f

f f f

 

ikinci derece denklemi elde edilir. Bu denklemin kökleri  

( )

( ) ( )

2 2 2 2

2

2 2 2

2 2 2 2

1 2 2 2

2
2 2 2 2 2 2

2

( ) ( 2 )

( ) ( )

( ) ( )( )1
2 1

( )

( ) ( ) 2 ( )

  − + + +
  

  − + −
  

  − + + −
  = −   +

   + − 
 
 +   + + + − +
 
 
 

= −

y x x y z

z x z z y

x y z x y y x

o z x y

x y z z x y

af bf f f f
K

f cf af bf cf

b a f f f c f f af bf
q f K

abf f f

f c f f a b f cf af bf

q

2 2

2 2 2 2

2
2 2 2

3 2

( ) ( )1
2 cos

( )( )

1
cos ( ) 1





    + − +  
   − − + +  

=  + −


x y z x y

o y x x y z

x y

o

f c f f f af bf
f

K af bf f f f

q f f f
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olmak üzere 

                                                 

2

2 2 1 3

1

4

2

q q q qdz

ds q

−  −
=                                         (3.37) 

ile bulunur. Bulunan bu ifade (3.34) ve (3.35) de yerine yazılırsa 

2

2 2 1 3

1

2

2 2 1 3

1

cos

1
( ) 4

2( ) ( )

( ) 4
1 2( ) ( )

cos





 
 
 

 =    − −  −
   − 

   − − − −     

    − −  −
  

   = − − − −    

− 

y

y z

o

y y x z x z

x z

x y x z z y

o

x

f f

dx
f cf bf q q q q

ds
qK f af bf f cf af

f cf af q q q q
dy qK f af bf f bf cf
ds

f f

2

2 2 1 3

1

4

2










   

 
  
  

 
 −  −
 =





q q q qdz

ds q

             (3.38) 

diferansiyel denklem sistemi elde edilir.Böylece 

0 0

0 0

0 0

( )

( )

( )

=

=

=

x s x

y s y

z s z

 

başlangıç noktası ile birlikte bir başlangıç değer problemi elde ederiz. Bu problemin 

çözümü bize S  üzerinde aradığımız oD -Darboux slant helisi verir. 

 

3.5. oD -Darboux Slant Helis Örnekleri  

 Bu kısımda, oD -Darboux slant helislere ait örnekler verilecektir. Örnek 3.5.1 

de yüzey üzerinde verilen bir eğrinin oD -Darboux slant helis olup olmadığı Sonuç 

3.2.3 yardımıyla kontrol edilecektir. Örnek 3.5.2 de parametrik formda verilen bir 

yüzey üzerinde oD -Darboux slant helis elde edebilmek için 3.4.1 bölümünde verilen 
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yöntem uygulanmıştır. Örnek 3.5.3 de kapalı formda verilen bir yüzey üzerinde oD -

Darboux slant helis elde edebilmek için 3.4.2 bölümünde verilen yöntem 

uygulanmıştır.  

   

Örnek 3.5.1: ( , ) ( , sin , cos )X u v u u v u v=  parametrizasyonu ile koni yüzeyi verilsin. 

2

s
u =  ve 2 ln

2

s
v =  ( 0s ) alınarak bu yüzey üzerinde  

( ) , sin 2 ln , cos 2 ln
2 2 2 2 2

s s s s s
s

    
=     

    
 

eğrisi elde edilir.  

1 1 1 1 1
, sin 2 ln cos 2 ln , cos 2 ln sin 2 ln

2 2 2 2 2 2 22 2

s s s s


        
 = + −        

        
 , 

1 =  olduğundan   eğrisi birim hızlı bir eğridir. Bu eğrinin Darboux çatısının 

elemanları bulunursa  

1 1 1 1 1
, sin 2 ln cos 2 ln , cos 2 ln sin 2 ln

2 2 2 2 2 2 22 2

s s s s
T

        
= + −        

        
, 

(1,sin ,cos ), (0, cos , sin )u vX v v X u v u v= = −  , 

. . .

1 sin cos ( , sin , cos )

0 cos sin

u vX X v v u u v u v

u v u v

 = = −

−

, 2 =u vX X u  

olduğundan 

( )
1

1,sinv,cosv ,
2

1
1,sin 2 ln ,cos 2 ln ,

2 22



= = −



    
= −     

    

u v

u v

X X
U

X X

s s
U

1 1 1 1 1
, cos 2 ln sin 2 ln , sin 2 ln cos 2 ln

2 2 2 2 2 2 22 2

s s s s
V

        
= − − − −        

        
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elde edilir. Ayrıca  

1 1 1 1
0, cos 2 ln sin 2 ln , sin 2 ln cos 2 ln

2 2 2 22 2

1 1
0, cos 2 ln , sin 2 ln

2 2



        

 = − − −        
        

    
 = −    

    

s s s s

s ss s

s s
U

s s

 

olduğundan  

1
,

2

1
,

1
,

2











= = −

= =

= − = −

n

g

g

k U
s

k V
s

U V
s

 

bulunur. Bu değerler (3.16) denkleminde yazılırsa  

1 = =o sabit  

olduğundan   eğrisi S  yüzeyi üzerinde bir oD -Darboux slant helistir. Sonuç 3.2.6 

gereğince   eğrisi isophote eğrisidir. Koni yüzeyi ve seçilen   eğrisi Şekil 3.5.1 de 

gösterilmiştir. Bu örnek  [25] nolu referanstan türetilmiştir. 
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Şekil 3.5.1: ( , ) ( , sin , cos )=X u v u u v u v  yüzeyi üzerinde

( ) , sin 2 ln , cos 2 ln
2 2 2 2 2


    

=     
    

s s s s s
s  denklemli oD -Darboux slant helis 

 

Örnek 3.5.2: ( , ) ( cos , sin , )=X u v u v u v u  ile verilen S  yüzeyi üzerinde normal 

eğriliği 
1

2
=nk

s
, geodezik burulması 

1

2
 =g

s
 olan ve (0,0,1)=od  doğrultusu ile 

4


 =  açısı yapan oD -Darboux slant helisi 3.4.1 bölümünde verilen yöntemle 

bulalım. Gerekli hesaplamalar yapılırsa  

1

2
 = , 

1

2
=K , 

(cos ,sin ,1)=uX v v ,  ( sin , cos ,0)= −vX u v u v , 

( cos , sin , ) = − −u vX X u v u v u , 2=  =u vN X X u , 
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, 1= =o u oL X d , , 0= =o v oM X d , 

, 2= =u uE X X , , 0= =u vF X X , 
2,= =v vG X X u , 

2 22− =EG F u , 2 2− =EG F u , 

0 =o , * 0 =o  

bulunur. Bulunan bu değerler (3.31) de yerine yazılırsa  

1

2

1

2


=


 =


du

ds

dv

ds u

 

denklem sistemi elde edilir. Bu denklem sistemin çözümünden 1c  ve 2c  integrasyon 

sabitleri olmak üzere  

1

1 2

2

2 ln
2

= +

 
= + + 

 

s
u c

s
v c c

 

bulunur.  Özel olarak 1 2 0= =c c  olarak alınırsa 0s  olmak üzere 

2

2 ln
2

=

 
=  

 

s
u

s
v

 

elde edilir. Bulunan u  ve v  değerleri ( , ) ( cos , sin , )=X u v u v u v u  de yerine yazılırsa, 

bu yüzey üzerinde  

( ) ( ( ), ( )) cos( 2 ln ), sin( 2 ln ),
2 2 2 2 2


 

= =  
 

s s s s s
s X u s v s  

oD -Darboux slant helisi elde edilir. Koni yüzeyi ve bulunan   eğrisi Şekil 3.5.2 de 

gösterilmiştir.  Bu örnek [25] nolu referanstan türetilmiştir. 
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Şekil 3.5.2 : ( , ) ( cos , sin , )=X u v u v u v u  yüzeyi üzerinde normal eğriliği 
1

2
=nk

s
, 

geodezik burulması 
1

2
 =g

s
 olan ve (0,0,1)=od  doğrultusu ile 

4


 =  açısı yapan 

 oD -Darboux slant helis 

 

Örnek 3.5.3: 
2 2 2( , , ) 1 0= + + − =f x y z x y z  kapalı formu ile verilen küre yüzeyi 

üzerinde normal eğriliği 
1

2
=nk  ve geodezik burulması  

1

2
 =g

 olan ve 

(0,0,1)=od  doğrultusu ile 
3


 =  açısı yapan oD -Darboux slant helisi 3.4.2 

bölümünde verilen yöntemle bulalım. Gerekli hesaplamalar yapılırsa  

1

3
 = , 

6

3
=K , 

2 , 2 , 2= = =x y zf x f y f z , 2 2 22 = + +f x y z , 

2 2 22 3

3
  = + +f x y z , 2 24 6

( )
3

 = +o x y , 

2

1 2 2

3
1

2

 
= + 

+ 

z
q

x y
, 
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2

2 2 2

3
1

2

 
= − + 

+ 

z
q

x y
, 

2

3 2 2

3
1 1

8

 
= + − 

+ 

z
q

x y
 

bulunur. Bulunan değerler (3.38) de yerine yazılırsa  

 

2 2 2

2 2 2 2
2 2 2

2 2 2

2 2
2 2 2

2 2 2

2 2

2 2 2

2 2

2 2 2

6

41

1 3 6 1

6 3 42

1 3 6 1

6 3 41 2

6

4

3 6 1

6 3 4

  
+ + 

 
=

  + + 
 − + + + −   + +    

  + 
 + + − −   + +   =  +
 
− + +  

+
= −

+ +

y x y z
dx

ds x y x y
y x y z xz

x y z

x y
x x y z yz

x y zdy

ds x y

x x y z

dz x y

ds x y z






















 

diferansiyel denklem sistemi elde edilir. Bu diferansiyel denklem sistemi karmaşık 

olduğundan eğrinin parametrik denklemi elde edilememiş olsa da bu sistem için 

(1,0,0)=P  başlangıç noktası ile Matlab programında ‘ode45’ komutu kullanılırsa 

aranan eğrinin grafiği Şekil 3.5.3 deki gibi elde edilir.  
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Şekil 3.5.3: 2 2 2( , , ) 1 0= + + − =f x y z x y z  yüzeyi üzerinde normal eğriliği 
1

2
=nk , 

geodezik burulması  
1

2
 =g

 olan ve (0,0,1)=od  doğrultusu ile 
3


 =  açısı yapan oD -

Darboux slant helis 
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4. YÜZEY ÜZERİNDE rD -DARBOUX SLANT HELİSLER 

Bu bölümde, 3E  uzayında bir S  yüzeyi üzerinde kalan ve yeni bir özel 

yüzey eğrisi olan rD -Darboux slant helis incelenecektir. Bu özel eğriyi daha kolay 

incelemek için ilk olarak rektifiyan Darboux çatısı ve bu çatının türev formülleri 

verilecektir. Daha sonra bu yeni çatı yardımıyla rD -Darboux slant helisler için 

karakterizasyonlar verilecektir. Son olarak, parametrik ve kapalı formda verilen bir 

S  yüzeyi üzerinde rD -Darboux slant helis elde edebilmek için birer yöntem verilip 

ardından örnekler verilecektir. 

 

4.1. Yüzey Eğrileri İçin Rektifiyan Darboux Çatısı  

S  bir yüzey olsun. :  →I IR S  bu yüzey üzerinde kalan birim hızlı, 

 , ,T V U  Darboux çatılı, , , g n gk k  eğriliklerine ve ( ) ( ) ( ) ( ) ( )= +r g gD s s T s k s U s  

rektifiyan Darboux vektörüne sahip bir eğri olsun. Bu taktirde, 

 ( ) ( ) ( ) ( ) ( )= +r g gD s s T s k s U s  

vektörü normlanırsa  

 
2 2 2 2

( ) ( )( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )



 
= = +

+ +

g gr
r

r g g g g

s k sD s
D s T s U s

D s k s s k s s
 

elde edilir. 
rD  vektörü, T  ve U  vektörünün gerdiği düzlemde bulunduğundan V  

vektörüne diktir. Dolayısıyla = r rY D V  birim vektörünün tanımlanması ile yüzey 

üzerindeki   eğrisi boyunca yeni bir ortonormal çatı olan  , ,r rD V Y  çatısı elde 

edilir.  

Tanım 4.1.1: Yukarıdaki şekilde tanımlanan  , ,r rD V Y  çatısına S  yüzeyi üzerinde 

  eğrisinin rektifiyan Darboux çatısı veya kısaca RD-çatısı denir.  

Şimdi bu çatı için türev formüllerini verelim. 
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Teorem 4.1.2: S  bir yüzey olsun. :  →I IR S  bu yüzey üzerinde yay parametresi 

s  olan ve RD-çatısına sahip birim hızlı bir eğri olsun. RD-çatısının vektör alanları 

, ,r rD V Y  ve eğrilikleri  r , r  olmak üzere, RD-çatısının türev formülleri  

 

r r r

r r

r r r r

D Y

V Y

Y D V





 

 = −

 =

 = −

 (4.1) 

şeklindedir. Burada 

2

2 2

g g

r n

g g g

k
k

k k






   
= −      +   

 ve 2 2

r g gk = +  dır. 

İspat: 
rD ,  , ,r rD V Y  çatısının elemanlarının lineer birleşimi olarak yazılabilir. 

Yani 

 1 2 3
 = + +r r rD a D a V a Y  (4.2) 

formundadır. Burada ( ), (1,2,3),= =i ia a s i s  in diferansiyellenebilir 

fonksiyonlarıdır.  (4.2) eşitliğinin her iki yanı 
rD vektörü ile iç çarpılırsa 

 1 2 3, , , , = + +r r r r r r rD D a D D a D V a D Y  

bulunur. , 1=r rD D  ve , , 0= =r r rD V D Y  olduğundan  

 1, =r rD D a  

dır. Diğer taraftan 1=rD  olduğundan  , 1=r rD D  dır. Bu eşitliğin türevi alınırsa  

1, 0 = =r rD D a  dir.  (4.2) ifadesininin her iki yanı V  vektörü ile iç çarpılırsa 

 1 2 3, , , , = + +r r rD V a D V a V V a Y V  
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bulunur. , , 0= =r rD V Y V  ve , 1=V V  olduğundan 2, =rD V a  dir. Öte yandan 

rD  vektörü ile U  vektörü arasındaki açı   olmak üzere 
rD  vektöründe 

2 2
sin

g

g gk





=

+
 ve 

2 2
cos

g

g g

k

k



=

+
 olarak tanımlanırsa  

 sin cos = +rD T U  (4.3) 

bulunur. (4.3) ün türevi alınıp ve Darboux türev formülleri kullanılırsa 

 ( ) ( ) ( )cos sin cos sin        = − + − − −r n g g nD k T k V k U  

elde edilir. 
2 2

sin
g

g gk





=

+
 ve 

2 2
cos

g

g g

k

k



=

+
 olduğu göz önüne alınırsa V  nin 

katsayısı sıfır olur. Dolayısıyla  

 ( ) ( )cos sin     = − − −r n nD k T k U  (4.4) 

bulunur.  Bulunan 
rD  vektörü, V  vektörü ile iç çarpılırsa 

 
2 , 0= =ra D V  

elde edilir. Şimdi de (4.2) ifadesi 
rY  vektörü ile iç çarpılırsa 

 1 2 3, , , , = + +r r r r r r rD Y a D Y a V Y a Y Y  

bulunur. , , 0= =r r rD Y V Y  ve , 1r rY Y =  olduğundan 3 ,= r ra D Y  elde edilir. 

Ayrıca 

 

2 2 2 2

2 2 2 2

2 2 2 2

( ) ( )



 



 



 

 
 =  = + 
 + +
 

=  + 
+ +

= − +
+ +

g g

r r

g g g g

g g

g g g g

g g

g g g g

k
Y D V T U V

k k

k
T V U V

k k

k
T U

k k
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elde edilir. 
2 2

sin
g

g gk





=

+
 ve 

2 2
cos

g

g g

k

k



=

+
 olduğu dikkate alınırsa 

 cos sinrY T U = − +  (4.5) 

elde edilir. (4.4) de bulunan 
rD  ve (4.5) de bulunan 

rY  vektörleri iç çarpılırsa 

 

( ) ( )

( )

( )

3

2 2

, cos sin , cos sin

(cos sin )

     

  



  = = − − − − +

= − − +

= − −

r r n n

n

n

a D Y k T k U T U

k

k

    (4.6) 

bulunur. tan
g

gk




 
=   
 

 ifadesinin türevinden  

 

2

2 2

g g

g g g

k

k k






   
 =       +   

 

elde edilir. Bu ifade (4.6) ifadesinde yazılırsa  

 

2

3 2 2

g g

n

g g g

k
a k

k k





     = − −       +     

 

elde edilir. Bulunan 1 2,a a  ve 3a  değerleri (4.2) denkleminde yazılırsa  

 

2

2 2





      = − −       +     

g g

r n r

g g g

k
D k Y

k k
 (4.7) 

bulunur. 

             Şimdi V vektörünün türevini hesaplayalım. ,V   , ,r rD V Y  çatısının 

elemanlarının lineer birleşimi olarak yazılabilir. Yani 

 1 2 3
 = + +r rV b D b V b Y  (4.8) 



63 

 

yazılır. Burada ( ), (1,2,3),= =i ib b s i  s  in diferansiyellenebilir fonksiyonlarıdır.  

(4.8) ifadesinin her iki yanı 
rD vektörü ile iç çarpılırsa 

 1 2 3, , , , = + +r r r r r rV D b D D b D V b D Y  

bulunur. , 1=r rD D  ve , , 0= =r r rD V D Y  olduğundan  

 1, =rV D b  

dır. Darboux türev formüllerinden g gV k T U = − +  dır. V   ve 

2 2 2 2



 
= +

+ +

g g

r

g g g g

k
D T U

k k
 vektörleri yerine yazılırsa         

 

1
2 2 2 2

2 2 2 2

2 2 2 2

, ,

, ,

0




 

 

 

 

 

= = − + +
+ +

= − +
+ +

= − +
+ +

=

g g

r g g

g g g g

g g g g

g g g g

g g g g

g g g g

k
b V D k T U T U

k k

k k
T T U U

k k

k k

k k

 

elde edilir. (4.8) eşitliğinin her iki yanı V  vektörü ile iç çarpılırsa 

 1 2 3, , , , = + +r rV V b D V b V V b Y V  

bulunur. , , 0= =r rD V Y V  ve , 1V V =  olduğundan  

 2 ,b V V=  

dur. Öte yandan , 1V V =  ifadesinin türevi alınırsa 2, 0V V b = =  elde edilir. (4.8) 

ifadesi rY  vektörü ile iç çarpılırsa 

 1 2 3, , , , = + +r r r r r rV Y b D Y b V Y b Y Y  
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bulunur. , , 0= =r r rD Y V Y  ve , 1r rY Y =  olduğundan  

 3 , rb V Y=  

elde edilir. Darboux türev formüllerinden g gV k T U = − +  dır. Ayrıca  

 
2 2 2 2



 
=  = − +

+ +

g g

r r

g g g g

k
Y D V T U

k k
 

dır. Bu vektörler yerine yazılırsa  

3
2 2 2 2

2 2

2 2 2 2

2 2

2 2

2 2

, ,

, ,

g g

r g g

g g g g

g g

g g g g

g g

g g

g g

k
b V Y k T U T U

k k

k
T T U U

k k

k

k

k




 



 







= = − + − +
+ +

= +
+ +

+
=

+

= +

 

bulunur. Bulunan 1b , 2b  ve 3b  değerleri (4.8) de yazılırsa  

 2 2

g g rV k Y = +  (4.9) 

elde edilir. 

Şimdi rY  vektörünün türevini hesaplayalım. ,rY  , ,r rD V Y  çatısının 

elemanlarının lineer birleşimi olarak yazılabilir. Yani 

 
1 2 3

 = + +r r rY c D c V c Y  (4.10) 

yazılır. Burada ( ), (1,2,3),= =i ic c s i  s  in diferansiyellenebilir fonksiyonlarıdır.  

(4.10) ifadesinin her iki yanı 
rD  vektörü ile iç çarpılırsa 

 1 2 3, , , , = + +r r r r r r rY D c D D c D V c D Y  
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bulunur. , 1=r rD D  ve , , 0= =r r rD V D Y  olduğundan  

1, =r rY D c  

dır. (4.5) eşitliğinin her iki yanının türevi alınır ve Darboux türev formülleri 

kullanılırsa 

 ( ) ( ) ( )sin cos sin cosr n g g nY k T k V k U        = − − + + −  (4.11) 

bulunur. 
2 2

sin
g

g gk





=

+
 ve 

2 2
cos

g

g g

k

k



=

+
 olduğundan  sin cos = +rD T U  

olur. Dolayısıyla  

 ( )1 ,  = = −r r nc Y D k  

elde edilir. tan
g

gk




 
=   
 

 ifadesinin türevinden bulunan  

 

2

2 2

g g

g g g

k

k k






   
 =       +   

 

ifadesi yerine yazılırsa  

 

2

1 2 2

g g

n

g g g

k
c k

k k





   
= −      +   

 

bulunur. (4.10) ifadesinin her iki yanı V  vektörü ile iç çarpılırsa  

 1 2 3, , , , = + +r r rY V c D V c V V c Y V  

elde edilir. , , 0= =r rD V Y V  ve , 1V V =  olduğundan  

 2 ,= rc Y V  

dir.  (4.11) kullanılarak  
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( ) ( ) ( )

( )

2 , sin cos sin cos ,

cos sin

r n g g n

g g

c Y V k T k V k U V

k

      

  

  = = − − + + −

= − +

 

bulunur. Ayrıca 
2 2

sin
g

g gk





=

+
 ve 

2 2
cos

g

g g

k

k



=

+
 ifadeleri yerine yazılırsa  

 

2
2 2 2 2

2 2

2 2 2 2

2 2

g g

g g

g g g g

g g

g g g g

g g

k
c k

k k

k

k k

k




 



 



 
 = − +
 + +
 

 
 = − +
 + +
 

= − +

 

elde edilir. Son olarak (4.10) ifadesi 
rY  vektörü ile iç çarpılırsa  

 1 2 3, , , , = + +r r r r r r rY Y c D Y c V Y c Y Y  

bulunur. , , 0= =r r rD Y V Y  ve , 1r rY Y =  olduğundan 

 3 ,r rc Y Y=  

 dir.  , 1r rY Y =  ifadesinin türevi alınırsa 3, 0r rY Y c = =  elde edilir. Bulunan 1 2,c c  

ve 3c  ifadeleri (4.10) ifadesinde yazılırsa 

 

2

2 2

2 2






      = − − +       +     

g g

r n r g g

g g g

k
Y k D k V

k k
 (4.12) 

elde edilir. (4.7), (4.9) ve (4.12) denklemleri dikkate alınarak , 
rD V  ve rY   ifadeleri 

matris formunda yazılırsa 
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( )

2

2 2

2 2

2

2 2

2 2

0 0

0 0

0












       − −        +          
    

  = +   
             
 − − +       +    
 

g g

n

g g g

r r

g g

r
r

g g

n g g

g g g

k
k

k k
D D

V k V

YY
k

k k
k k

 

bulunur. Burada      

 

2

2 2

2 2

g g

r n

g g g

r g g

k
k

k k

k






 

   
= −      +   

= +

 (4.13) 

 olarak tanımlanırsa RD-çatısının türev formülleri 

 

0 0

0 0

0





 

    − 
     =    
      −    

r r r

r

r r r
r

D D

V V

YY

  

şeklinde olur.                                                                                                                 

 

4.2. rD -Darboux Slant Helisin Ekseni ve Karakterizasyonları   

           S  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim hızlı bir eğri 

olsun.   eğrisinin Darboux çatısı  , ,T V U  ve eğrilikleri ,g nk k  ve g  olsun. Bu 

eğrinin rektifiyan Darboux vektörü ( ) ( ) ( ) ( ) ( )= +r g gD s s T s k s U s  olmak üzere, yüzey 

üzerinde 
rD -Darboux slant helis kavramı aşağıdaki şekilde tanımlanmıştır. 

Tanım 4.2.1: :  →I IR S  eğrisinin rD  vektör alanı (veya denk olarak = r
r

r

D
D

D
 

birim vektör alanı) sabit bir doğrultu ile sabit açı yapıyorsa   eğrisi S  yüzeyi 

üzerinde rD -Darboux slant helis olarak adlandırılır [20]. 



68 

 

      Şimdi bu tanımı dikkate alarak rD -Darboux slant helislerin karakterizasyonlarını 

verebiliriz. 

Teorem 4.2.2: S , 3E  de bir yüzey ve :  →I IR S   bu yüzey üzerinde  , ,r rD V Y  

RD-çatısına sahip birim hızlı bir eğri olsun.   eğrisinin rD -Darboux slant helis 

olması için gerek ve yeter şart her s I  için 

 ( ) ( )





= r
r

r

s s   (4.14) 

 fonksiyonunun sabit olmasıdır. Burada 0r   ve 0r   dır.  

İspat:  , RD-çatısı  , ,r rD V Y  olan bir rD -Darboux slant helis olsun. rD -Darboux 

slant helis tanımından   nın 
rD  birim vektörü, sabit doğrultulu 

rd  vektörü ile sabit 

  açısı yapar. Yani , cos=r rD d  dır. Bu ifadenin türevi alınırsa , 0 =r rD d  

bulunur. (4.1) deki RD-çatısının türev formülleri kullanılırsa 

 , 0− =r r rY d  

elde edilir. 0r   olduğundan , 0=r rY d  dır. Yani 
rd  vektörü 

rY  vektörüne 

diktir. Dolayısıyla rd  vektörü, 
rD  ve V  vektörlerinin gerdiği düzlemde bulunur. O 

halde  

 cos sin = +r rd D V  

yazılabilir. Bu ifadenin türevi alınırsa, rd  sabit vektör olduğundan 

 ( ) ( )
( )

0 cos sin

cos sin

sin cos

 

   

   

 = +

= − +

= −

r

r r r r

r r r

D V

Y Y

Y

 

bulunur. rY  sıfırdan farklı bir vektör olduğundan sin cos 0r r   − =   dır. 

Dolayısıyla buradan  
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cos

cot
sin

r

r

sabit
 


 

= = =  

elde edilir. 

          Tersine olarak,   bir sabit olmak üzere, 
cos

cot
sin

r

r

sabit
 


 

= = =  olarak 

tanımlansın. Buradan sin cosr r   =  yazılabilir.   

 cos sin = +r rd D V  

alalım. 
rd  nin sabit olduğunu gösterelim. cos sin = +r rd D V  ifadesinin türevi 

alınıp ardından (4.1) deki türev formülleri ve sin cosr r   =  olduğu kullanılırsa 

 

cos sin

cos ( ) sin ( )

( sin cos )

( cos cos )

0

 

   

   

   

  = +

= − +

= −

= −

=

r r

r r r r

r r r

r r r

d D V

Y Y

Y

Y

 

bulunur. Dolayısıyla 
rd  sabit vektördür. Ayrıca  , cos=r rD d  olduğundan 

rd  

sabit vektörü, 
rD  vektörü ile ile sabit açı yapar. Yani   bir rD -Darboux slant 

helistir.             

            Teorem 4.2.2 den aşağıdaki sonuçlar elde edilebilir.   

Sonuç 4.2.3: ,  
3E  de S  yüzeyi üzerinde kalan birim hızlı bir eğri ve bu eğrinin 

Darboux çatısının eğrilikleri ,g nk k  ve g  olsun.   eğrisinin rD -Darboux Slant helis 

olması için gerek ve yeter şart her s I  için 

 

2 2

2

2 2

( ) ( )








 
 
 +
 =

  
 −   +   

g g

r

g g

n

g g g

k
s s

k
k

k k

 (4.15) 
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veya denk olarak 

2 2

2

2 2

( ) ( )






 

 
 
 +
 =

  
 − −   +   

g g

r

g g

n

g g g

k
s s

k
k

k

 

 fonksiyonunun sabit olmasıdır.  

İspat: (4.13) eşitlikleri (4.14) de yazılarak (4.15) eşitliğine kolayca ulaşılır.   

Sonuç 4.2.4: Rektifiyan Darboux çatısına göre rD -Darboux slant helisin ekseni 

 cos sin = +r rd D V   (4.16) 

şeklindedir. 

Sonuç 4.2.5: rD -Darboux slant helisin ekseni, Darboux çatısının vektörleri 

cinsinden 

2 2 2 2
cos sin cos


  

 
= + +

+ +

g g

r

g g g g

k
d T V U

k k
 

şeklindedir. 

Sonuç 4.2.6: S  yüzeyi üzerinde birim hızlı bir   eğrisinin rD -Darboux slant helis 

olması için gerek ve yeter şart   nın relatively normal-slant helis olmasıdır. 

İspat: (4.16) eşitliğinin iki tarafı V  vektörü ile iç çarpılırsa 

, sin= =rd V sabit  

bulunur. Bu da   eğrisinin relatively normal-slant helis olduğunu gösterir.  

Sonuç 4.2.7:  , S  yüzeyi üzerinde birim hızlı bir 
rD -Darboux slant helis olsun. Bu 

durumda,  
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i)   nın S  yüzeyi üzerinde 0nk   olan bir geodezik eğri olması için gerek ve yeter 

şart   nın cos sin = rd T B  eksenli bir helis olmasıdır. 

ii)   nın S  yüzeyi üzerinde 0gk   olan asimptotik bir eğri olması için gerek ve yeter 

şart   nın   

2 2 2 2
cos sin cos

 
  

   
= +

+ +
rd T N B  

eksenli bir Darboux helis (slant helis) olmasıdır. 

iii)  , S  yüzeyi üzerinde bir eğrilik çizgisi ise   düzlemsel bir eğridir. 

İspat: i)   geodezik eğri ise 0gk =  dır. (2.1) eşitlikleri kullanılarak 
nk =  ve 

g =  

elde edilir. Bulunan değerler (4.15) de yazılırsa 





=  =r sabit  

olduğundan Teorem 2.1.18 gereğince   bir helistir. Ayrıca Tanım 2.2.18 de verilen 

Darboux çatısı ile Frenet çatısı arasındaki ilişkiler, Sonuç 4.2.5 de yazılıp (2.1) 

eşitlikleri kullanılırsa, 
rD -Darboux slant helisin Frenet çatısının vektörleri cinsinden 

ekseni 

2 2 2 2

2

2 2

cos sin cos

sin cos


  

  

 
  

 
 = + +
 + +
 

 
 + − +
 +
 

g g n g

r

g g g g

gn

g g

k k k
d T N

k k

kk
B

k

 

 

şeklinde olur. 0gk = , 
nk =  ve 

g =  olduğu kullanılırsa,   helisinin ekseni 

cos sin = rd T B  bulunur.  
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          Tersine olarak,  , cos sin = rd T B  eksenli bir helis olsun. Helisin ekseni ile 

rD -Darboux slant helisin Frenet çatısının vektörleri cinsinden ekseni dikkate alınırsa 

0gk =  bulunur.    geodezik bir eğridir.  

ii)   asimptotik eğri ise 0nk =  dır. (2.1) eşitlikleri kullanılarak 
gk =  ve 

g =  elde 

edilir. Bulunan değerler (4.15) de yazılırsa 

( )

2

3
2 2 2

1


 


 

= =
 

 
 

+

r sabit  

olduğundan Teorem 2.1.22 (i) gereğince    Darboux helistir. Ayrıca Teorem 2.1.22 

(ii) gereğince   bir slant helistir. Ayrıca 0nk = , 
gk =  ve 

g =  olduğu, yukarıda 

rD -Darboux slant helisin Frenet çatısının vektörleri cinsinden verilen ekseninde 

yazılırsa,   nın ekseni 
2 2 2 2

cos sin cos
 

  
   

= +
+ +

rd T N B  olarak bulunur.  

            Tersine olarak,  , 
2 2 2 2

cos sin cos
 

  
   

= +
+ +

rd T N B  eksenli bir 

Darboux helis olsun. Darboux helisin ekseni ile 
rD -Darboux slant helisin Frenet 

çatısının vektörleri cinsinden ekseni dikkate alınırsa 0=nk  bulunur.   asimptotik bir 

eğridir.  

iii)   eğrilik çizgisi ise 0g =  dır. Bu taktirde  = − =
g

r

n

k
sabit

k
 elde edilir. (2.1) 

eşitlikleri kullanılırsa,  ,  eğrisinin Frenet çatısının B  binormal vektörü ile U  

yüzey normali arasındaki açı olmak üzere 

cos
cot

sin

 


 
− = − = − =

g

n

k
sabit

k
, 

dolayısıyla sabit =  bulunur. 0g   = − =  olduğundan 0 =  elde edilir. Yani   

düzlemseldir.          
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4.3. rD  -Darboux Slant Helislerin RD-Çatısına Göre Diferansiyel Denklem 

Karakterizasyonları 

          Bu kısımda, önce 3E  de bir S  yüzeyi üzerinde bulunan eğrilerin diferansiyel 

denklem karakterizasyonları RD-çatısının elemanları olan ,rD V  ve 
rY  vektör 

alanlarına bağlı olarak verilecektir. Daha sonra rD -Darboux slant helisleri 

karakterize eden diferansiyel denklem karakterizasyonları RD-çatısının elemanları 

olan ,rD V  ve 
rY  vektör alanlarına bağlı olarak verilecektir. 

Teorem 4.3.1: ,S  3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir eğri olsun.   eğrisini RD-çatısının 
rD  vektör alanına göre karakterize eden 

vektörel diferansiyel denklem, 0r   ve 0r   olmak üzere 

 

2 21 1 1 1

0

      
    


 



                 + + + + +      
            

 

 
+ = 

 

r r r r r r r r r r

r r r r r

r
r r r

r

D D D

D

 (4.17) 

şeklindedir.  

İspat: (4.1) sisteminin birinci denkleminden rY  vektörü yalnız bırakılırsa  

 
1


= −r r

r

Y D  (4.18) 

olur. Bu ifadenin türevi alınırsa  

 
1 1

 

 
  = − − 

 
r r r

r r

Y D D  (4.19) 

bulunur. (4.1) sisteminin üçüncü denkleminden V  vektörü yalnız bırakılırsa  

                                                      
1

 
= −r

r r

r r

V D Y                                             (4.20) 
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olur.  (4.19), (4.20) de yerine yazılırsa  

1 1 1

    

 
 = + + 

 

r
r r r

r r r r r

V D D D  

  elde edilir. Bu ifadenin türevi alınırsa 

1 1 1 1 1 1 

         

                     = + + + + +        
              

 

r r
r r r r

r r r r r r r r r r

V D D D D (4.21) 

sonucuna ulaşılır. (4.18) ve (4.21) eşitlikleri (4.1) in ikinci denkleminde yazılırsa  

1 1 1 1 1 1  

          

                     + + + + + = −        
              

 

r r r
r r r r r

r r r r r r r r r r r

D D D D D  

bulunur. Bulunan denklem düzenlenirse 

2 21 1 1 1 1 1
0

  

          

               +     + + + + + =        
              

 

r r r
r r r r

r r r r r r r r r r r

D D D D  

elde edilir. Son denklemin her iki tarafı r r   ile çarpılırsa 

2 21 1 1 1

0

      
    


 



                 + + + + +      
            

 

 
+ = 

 

r r r r r r r r r r

r r r r r

r
r r r

r

D D D

D

 

diferansiyel denklemi elde edilir.     

Sonuç 4.3.2: ,S  
3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir rD -Darboux slant helis olsun.  eğrisini rD  vektör alanına göre karakterize 

eden vektörel diferansiyel denklem 
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2 21 1 1 1
0      

    

                 + + + + + =      
            

 

r r r r r r r r r r

r r r r r

D D D  

şeklindedir. Burada 0r   ve 0r   dır. 

İspat: Teorem 4.3.1 de, 3E  de eğrileri RD-çatısının 
rD  elemanına göre karakterize 

eden genel diferansiyel denklemin (4.17) şeklinde olduğu gösterildi. Şimdi   eğrisi 

rD -Darboux slant helis olduğunu kabul edelim. rD -Darboux slant helis olma 

şartından r

r




 ifadesi sabit olduğundan r

r




 ifadesi de sabittir. Dolayısıyla 0r

r





 
= 

 
 

ifadesi (4.17) denkleminde yazılırsa  

2 21 1 1 1
0      

    

                 + + + + + =      
            

 

r r r r r r r r r r

r r r r r

D D D      

denklemi elde edilir.                                                                             

Teorem 4.3.3: ,S  3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir eğri olsun.   eğrisini RD-çatısının V vektör alanına göre karakterize eden 

vektörel diferansiyel denklem,  0r   ve 0r   olmak üzere  

 

2 21 1 1 1

0

r r r r r r r

r r r r r

r
r r

r

V V V

V

      
    


 



                 + + + + +      
            

 

 
+ = 

 

 (4.22) 

şeklindedir.  

İspat: (4.1) sisteminin 2. denkleminden  

  
1

r

r

Y V


=  (4.23) 
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yazılabilir. Bu ifadenin türevi alınırsa 

 
1 1

 

 
  = + 

 
r

r r

Y V V  

bulunur. Bu eşitlik, (4.1) in üçüncü denkleminde yazılıp 
rD  yalnız bırakılırsa 

1 1 1 

    

 
 = + + 

 

r
r

r r r r r

D V V V  

elde edilir. Bulunan 
rD   ifadesinin türevi alınıp denklem düzenlenirse 

1 1 1 1 1 1  

         

                     = + + + + +        
              

 

r r
r

r r r r r r r r r r

D V V V V  

bulunur. Bulunan 
rD  değeri ve (4.23) ifadesi  (4.1) sisteminin birinci denkleminde 

yazılırsa 

1 1 1 1 1 1 r r r

r r r r r r r r r r r

V V V V V
  

          

                     + + + + + = −        
              

 

 

 elde edilir. Son denklem düzenlenirse 

2 21 1 1 1

0

r r r r r r r

r r r r r

r
r r

r

V V V

V

      
    


 



                 + + + + +      
            

 

 
+ = 

 

 

diferansiyel denklemi elde edilir.                                                   

Sonuç 4.3.4: ,S  
3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir rD -Darboux slant helis olsun.  eğrisini V vektör alanına göre karakterize 

eden vektörel diferansiyel denklem 
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2 21 1 1 1
0r r r r r r r

r r r r r

V V V      
    

                 + + + + + =      
            

 

 

şeklindedir. Burada 0r   ve 0r   dır. 

İspat: Teorem 4.3.3 de, 3E  de eğrileri RD-çatısının V  elemanına göre karakterize 

eden genel diferansiyel denklemin (4.22) şeklinde olduğu gösterildi. Şimdi   

eğrisinin rD -Darboux slant helis olduğunu kabul edelim. rD -Darboux slant helis 

olma şartından r

r




 ifadesi sabittir. Dolayısıyla 0r

r





 
= 

 
 ifadesi (4.22) 

denkleminde yazılırsa  

2 21 1 1 1
0r r r r r r r

r r r r r

V V V      
    

                 + + + + + =      
            

 

 

denklemi elde edilir.                                                                                                    

Teorem 4.3.5: ,S  3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan 

birim hızlı bir eğri olsun.  eğrisini RD-çatısının 
rY  vektör alanına göre karakterize 

eden vektörel diferansiyel denklem, 1 0   olmak üzere  

  ( ) ( ) ( )1 2 2 3 3

1 1 1

1 1 1
0     

  
     + − + − + + − + =r r r r rY Y Y Y       

şeklindedir. Burada ( )1 2 1

1
, 1


   

    
= = +

 −

r
r

r r r r r

 ve ( )2 2

3 1   = +r r  

şeklindedir.  

İspat: (4.1) in üçüncü denkleminden   

 
1 

 
= + r

r r

r r

D Y V                                            (4.24) 
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yazılabilir. Bulunan ifadenin türevi alınırsa ve RD-çatısının türev formülleri 

kullanılırsa  

2 21 1
0

  

   

    +
 + + + =   
   

r r r
r r r

r r r r

Y Y Y V  

bulunur. Son denklemde V  vektörü yalnız bırakılırsa 

( )2 2   

           

+
 = − + −

     − − −

r r rr r
r r r

r r r r r r r r r r r r

V Y Y Y  

bulunan bu ifade (4.24) de yazılırsa ( )1 2 1

1
, 1


   

    
= = +

 −

r
r

r r r r r

 ve 

( )2 2

3 1   = +r r  olmak üzere  

1 2 3   = − + −r r r rD Y Y Y  

elde edilir. Son bulunan eşitliğin her iki yanının türevi alınıp RD-çatısının türev 

formülleri kullanılırsa  

( ) ( ) ( )1 2 2 3 3

1 1 1

1 1 1
0     

  
     + − + − + + − + =r r r r rY Y Y Y  

denklemi elde edilir.     

Teorem 4.3.6: ,S  3E  de bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan 

birim hızlı bir rD -Darboux slant helis olsun.   eğrisini RD-çatısının 
rY  vektör 

alanına göre karakterize eden vektörel diferansiyel denklem 

( )2 21
0r r r r r r

r

Y Y Y  


 
 + + + = 

 
 

şeklindedir. Burada 0r   dır. 

İspat: (4.1) deki türev formüllerinin üçüncüsünden 
rD  vektörü yalnız bırakılırsa 
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1 

 
= + r

r r

r r

D Y T  

bulunur. Bu eşitliğin türevi alınırsa  

1 1  

   

    
   = + + +   

   

r r
r r r

r r r r

D Y Y V V  

elde edilir.   eğrisi rD -Darboux slant helis olduğundan 0r

r





 
= 

 
olur. Dolayısıyla  

1 1 

  

 
   = + + 

 

r
r r r

r r r

D Y Y V  

dır. Burada V   yerine türev formüllerindeki eşiti yazılırsa 

21 1 

  

 
  = + + 

 

r
r r r r

r r r

D Y Y Y  

bulunur. Bulunan bu eşitlik, (4.1) in birinci denkleminde yerine yazılıp denklem 

düzenlenirse 

21 1 r
r r r r r

r r r

Y Y Y Y



  

 
 + + = − 
 

 

2

2 2

1 1
0

1 1
0

r
r r r r

r r r

r r
r r r

r r r

Y Y Y

Y Y Y




  

 

  

   
 + + + =   
   

   +
 + + =   
   

 

elde edilir. Son olarak bu denklem r  ile çarpılarak  

( )2 21
0r r r r r r

r

Y Y Y  


 
 + + + = 

 
 

elde edilir.    
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4.4. Yüzey Üzerinde rD -Darboux Slant Helisin Elde Edilmesi 

 Bu kısımda, parametrik ve kapalı formda verilen bir yüzey üzerinde rD -

Darboux slant helis elde edilebilmek için yöntemler verilecektir. 

 

4.4.1. Parametrik Formda Verilen Yüzey Üzerinde rD -Darboux Slant Helisin 

Elde Edilmesi 

 S , 3E  uzayında ( , )X X u v=  parametrizasyonu ile verilen bir yüzey olsun. 

( )( ) ( ), ( ) =s X u s v s , S  yüzeyi üzerinde, sabit ve birim 
rd  doğrultusu ile sabit   

açısı yapan, Darboux çatısı  , ,T V U  olan birim hızlı bir rD -Darboux slant helis 

olsun.   eğrisini elde etmek için ( )u s  ve ( )v s  değerlerinin bulunması gerekir. İlk 

olarak ( )u s  değerini bulalım. 

,  = = +u v

du dv
T X X

ds ds
    ,


=



u v

u v

X X
U

X X
    V U T=   

dir. T  vektörünün ve U  vektörünün eşiti V  vektöründe yazılırsa 

( ) ( )
1

v u v u

u v

du dv
V EX FX FX GX

ds dsX X

 
= − + − 

  
 

bulunur [15]. Burada , ,E F G  birinci temel formun katsayılarıdır.  , rD -Darboux 

slant helis olduğundan , cos=r rD d  dır. Bu ifadede 
rD  vektörü yerine yazılırsa 

 
2 2 2 2

, cos
g g

r

g g g g

k
T U d

k k




 
+ =

+ +
 (4.25) 

elde edilir. Yukarıda bulunan T  ve U  vektörlerinin eşitleri (4.25) de yazılırsa  

 
2 2 2 2

, cos
g g u v

u v r

u vg g g g

k X Xdu dv
X X d

ds ds X Xk k




 

    + + = 
  + +  
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bulunur. Bu ifade düzenlenirse  

2 2 2 2 2 2

1
, , , cos

g g g

u r v r u v r

u vg g g g g g

kdu dv
X d X d X X d

ds ds X Xk k k

 


  
+ +  =

+ + +

 

elde edilir. Bulunan son denklemde işlem kolaylığı açısından  

2 2

g

g g

S
k




=

+
, 

2 2

g

g g

k
R

k 
=

+
,  2

u vX X EG F N = − = , 

 , =u r rX d L ,  , =v r rX d M , , =u v r rX X d B  

kısaltmaları kullanılırsa, son ifade  

1
cos+ + =r r r

du dv
SL SM R B

ds ds N
 

olur. Bu eşitliğin her iki yanı N  ile çarpılırsa 

 cos+ + =r r r

du dv
SL N SM N RB N

ds ds
 (4.26) 

elde edilir. Bu ifadede 
dv

ds
 yalnız bırakılırsa  

 
cos −

= −r r

r r

N RB SL Ndv du

ds SM N SM N ds
 (4.27) 

elde edilir. Ayrıca   eğrisi birim hızlı olduğundan   

                                         

2 2

2 1
du du dv dv

E F G
ds ds ds ds

   
+ + =   

   
                              (4.28) 

bulunur [15]. (4.27) ifadesi, (4.28) de yerine yazılırsa 

22
cos cos

2 1
    − − 

+ − + − =    
     

r r r r

r r r r

N RB SL N N RB SL Ndu du du du
E F G

ds ds SM N SM N ds SM N SM N ds
 

denklemi elde edilir. Bu denklemde parantezler açılırsa 
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22

2

cos cos
2 2

cos
2 1

 



 − − 
+ − +   

   

    −
− + =    

    

r r r

r r r

r r r

r r r

N RB SL N N RBdu du du du
E F F G

ds ds SM N ds SM N ds SM N

N RB SL N SL Ndu du
G g

SM N SM N ds SM N ds

 

bulunur. Elde edilen son denklemde paydalar eşitlenirse 

( )

( ) ( )

2 2

2 2 2 2 2

2
2 2 2 2 2 2 2

2 cos 2

cos 2 cos



 

   
+ − −   

   

 
+ − − − + = 

 

r r r r r

r r r r r

du du du
ES M N FSM N N RB FS N L M

ds ds ds

du du
G N RB G N RB SL N GS L N S M N

ds ds

 

bulunur. Burada 

2
du

ds

 
 
 

 ve 
du

ds
 parantezine alarak 

( ) 

( )

2

2 2 2 2

2 2 2 2

2 2 cos

cos 0





 
 − + + − −  

 

+ − − =

r r r r r r r

r r

du du
S N EM FL M GL SN N RB FM GL

ds ds

G N RB S M N

 

ifadesi elde edilmiş olur. İşlem kolaylığı açısından 2 2 2+ − =r r r r rEM GL FL M A  

denilirse   

 
( ) 

( )

2

2 2

2 2 2 2

2 cos

cos 0





 
+ − − 

 

+ − − =

r r r r

r r

du du
S N A SN N RB FM GL

ds ds

G N RB S M N

 

ikinci dereceden denklemi elde edilir. Bu denklemin kökleri bize 
du

ds
 ifadesini verir. 

Bu denklemin diskriminantı 

 
( )  

( )

222 2

22 2 2 2 2

4 cos

4 cos





 = − −

 − − −
 

r r r r

r r r

S N N RB FM GL

S N A G N RB S M N
 

bulunur. Bu ifade düzenlenirse 

( ) ( )
2 22 2 4 4 24 cos 4   = − − − +
 r r r r r r rS N N RB FM GL A G S N M A  
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elde edilir. Daha önce yapılan kısaltmalar, bulunan diskriminantda yerine yazılırsa 

( )

2

2
2

2

2 2

2 2

4

4 2

2 2

cos

, ,
4

,

4 ,












 
     −      = 
     + −  −     +

  

 
 + 
 +
 

u v

g v r u r

r u v g

g g u v r r

g g

g

u v v r r

g g

X X

F X d G X d
X X k

k X X d A G
k

X X X d A
k

 

bulunur. Dolayısıyla aradığımız 
du

ds
 ifadesi  

( ) 
2 2

2 cos

2

− − −  
=

r r r r

r

SN N RB FM GLdu

ds S N A
 

şeklindedir.  Yukarıdaki denklemde, daha önce yapılan kısaltmalar yerine yazılırsa  

 
2

2

cos
2 , ,

,

2

 
   −  −  

  − 
 =



u v

u v v r u r r

u v r

u v r

X X
S X X F X d G X d

R X X ddu

ds S X X A
 (4.29) 

bulunur. Burada 
2 2

g

g g

S
k




=

+
,

2 2

g

g g

k
R

k 
=

+
 ve 2 2 2= + −r r r r rA EM GL FL M  dır. 

Şimdi benzer yolla  
dv

ds
  ifadesini bulalım. (4.26) da 

du

ds
 yalnız bırakılırsa  

cos −
= −r r

r r

N RB SM Ndu dv

ds SL N SL N ds
 

elde edilir. Bulunan 
du

ds
 in eşiti (4.28) de yerine yazılırsa  

2 2
cos cos

2 1
    − −  

− + − + =     
    

r r r r

r r r r

N RB SM N N RB SM Ndv dv dv dv
E F G

SL N SL N ds SL N SL N ds ds ds
 

bulunur. Parantezler açılıp payda eşitlenirse 
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( ) ( )

( )

2
2 2 2 2

2 2

2 2 2 2 2 2 2 2

cos 2 cos

2 cos 2

 



 
− − − +  

 

   
+ − − + =   

   

r r r r

r r r r r r

dv dv
E N RB E N RB SM N ES M N

ds ds

dv dv dv
F N RB SL N FS N L M GS N L S N L

ds ds ds

 

elde edilir. 

2
dv

ds

 
 
 

 ve 
dv

ds

 
 
 

 parantezine alınırsa 

( ) ( )( )

( )

2

2 2 2 2

2 2 2 2

2 2 cos

cos 0





 
− + + − − 

 

+ − − =

r r r r r r r

r r

dv dv
S N EM FL M GL SN N RB FL EM

ds ds

E N RB S N L

 

bulunur. Daha önce kullanılan 2 22− + =r r r r rEM FL M GL A  kısaltmasını tekrar 

kullanarak  

( )( )

( )

2

2 2

2 2 2 2

2 cos

cos 0





 
+ − − 

 

+ − − =

r r r r

r r

dv dv
S N A SN N RB FL EM

ds ds

E N RB S N L

 

ikinci dereceden denklemi elde edilir. Bu denklemin kökleri bize 
dv

ds
 i verir. 

Denklemin diskriminantı hesaplanırsa  

 
( ) ( )

( )

2 2* 2 2

22 2 2 2 2

4 cos

4 cos





 = − −

 − − −
 

r r r r

r r r

S N N RB FL EM

S N A E N RB S N L
 

bulunur. *

r  düzenlenirse  

 ( ) ( )
2 2* 2 2 4 4 24 cos 4   = − − − +
 r r r r r r rS N N RB FL EM A E S N A L  

   elde edilir. Yapılan kısaltmalar bulunan *

r  da yerine yazılırsa  

( )
2

22
* 2

24
4

cos
4 , ,

,

4 ,

 
   =  − −
    − 

 

+ 

u v

r u v u r v r r

u v r

u v r u r

X X
S X X F X d E X d A E

R X X d

S X X A X d
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elde edilir. Dolayısıyla denklemin kökleri   

 
( )( ) *

2 2

2 cos

2

− − −  
=

r r r r

r

SN N RB FL EMdv

ds S N A
 

ile bulunur. Daha önce yapılan kısaltmalar yerine yazılırsa 

 

( ) *

2
2

cos
2 , ,

,

2

 
 −  −  
 − 
 =



u v

u v u r v r r

u v r

u v r

X X
S X X F X d E X d

R X X ddv

ds S X X A
 (4.30) 

 elde edilir. Burada 
2 2

g

g g

S
k




=

+
,

2 2

g

g g

k
R

k 
=

+
 ve 2 22= − +r r r r rA EM FL M GL  dır. 

(4.29) ve (4.30) dan  

( )

2
2

*

2
2

cos
2 , ,

,

2

cos
2 , ,

,

2





  
    −  −  

   − 
  =





 
  −  −  
  − 
  =

 


u v

u v v r u r r

u v r

u v r

u v

u v u r v r r

u v r

u v r

X X
S X X F X d G X d

R X X ddu

ds S X X A

X X
S X X F X d E X d

R X X ddv

ds S X X A

 (4.31) 

 diferansiyel denklem sistemi elde edilir. Bu denklem sistemi 

0 0

0 0

( )

( )

=

=

u s u

v s v
 

başlangıç noktası ile birlikte çözülüp bulunan değerler ( , )X u v  de yazılırsa S  yüzeyi 

üzerinde istenen rD -Darboux slant helis elde edilir. 
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4.4.2.Kapalı Formda Verilen Yüzey Üzerinde Bulunan rD -Darboux Slant 

Helisin Elde Edilmesi  

            S , 3E  uzayında ( , , ) 0f x y z =  kapalı formu ile verilen bir yüzey olsun. 

( )( ) ( ), ( ), ( ) =s x s y s z s , S  yüzeyi üzerinde, sabit ve birim ( ), ,rd a b c=   doğrultusu 

ile sabit   açısı yapan, Darboux çatısı  , ,T V U  olan birim hızlı bir rD -Darboux 

slant helis olsun.    eğrisini elde etmek için ( ), ( )x s y s  ve ( )z s  değerlerinin 

bulunması gerekir. 1 2,e e  ve 3 ,e  3E  uzayının standart baz vektörleri olmak üzere 

Darboux çatısının elemanları; 

 , ,
 

= =  
 

dx dy dz
T

ds ds ds
, 

 ( )
1

, ,x y z

f
U f f f

f f


= =

 
, 

 

1 2 3
1

1
, ,

x y z

y z z x x y

e e e

V U T f f f
f

dx dy dz

ds ds ds

dz dy dx dz dy dx
f f f f f f

ds ds ds ds ds dsf

=  =


 
= − − − 

 

 

şeklindedir [15]. Bulunan T  ve U  vektörleri, 
rD  vektöründe yerine yazılırsa 

 ( )
2 2 2 2

1
, , , ,



 

 
= + 

  + +

g g

r x y z

g g g g

kdx dy dz
D f f f

ds ds ds fk k
 

elde edilir.  , rD -Darboux slant helis olduğundan , cos=r rD d  dır. 
rd  vektörü 

ve yukarıda bulunan rD  vektörü yerine yazılırsa 

( ) ( )
2 2 2 2

1
, , , , , , , cos

g g

x y z

g g g g

kdx dy dz
f f f a b c

ds ds ds fk k




 

 
+ = 

  + +
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bulunur. Burada işlem kolaylığı için 
2 2

g

g g

S
k




=

+
 ve 

2 2

g

g g

k
R

k 
=

+
 denilip ifade 

düzenlenirse 

 ( ) ( )
1

, , , , , , , cosx y z

dx dy dz
S R f f f a b c

ds ds ds f


 
+ = 

  
 

elde edilir. Buradaki iç çarpım işlemi yapılırsa  

1 1 1
cosx y z

dx dy dz
Sa Sb Sc R af R bf R cf

ds ds ds f f f
+ + + + + =

  
 

bulunur. Her iki taraf f  ile çarpılırsa 

 ( )cos x y z

dx dy dz
S f a S f b S f c f R af bf cf

ds ds ds
 +  +  =  − + +  (4.32) 

elde edilir. Ayrıca , 0T U =  olduğundan  

 0x y z

dx dy dz
f f f

ds ds ds
+ + =  (4.33) 

dır [15]. Burada 
dy

ds
 ifadesi yalnız bırakılırsa  

 x z

y y

f fdy dx dz

ds f ds f ds
= − −  

bulunur. Bu ifade (4.32) de yerine yazılırsa ve işlem kolaylığı için 

( )cos x y zf R af bf cf H − + + =  kısaltması kullanılırsa 

x z

y y

f fdx dx dz dz
S f a S f b S f c H

ds f ds f ds ds

 
 +  − − +  =  

 

 

elde edilir. Parantezler açılırsa 

x z

y y

f fdx dx dz dz
S f a S f b S f b S f c H

ds f ds f ds ds
 −  −  +  =  
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bulunur. Denklemin iki tarafı yf   ile çarpılırsa  

y x z y y

dx dx dz dz
S f af S f bf S f bf S f cf Hf

ds ds ds ds
 −  −  +  =  

elde edilir. Her iki taraf S f   ye bölünürse  

1
y x z y y

dx dx dz dz
af bf bf cf Hf

ds ds ds ds S f
− − + =


 

bulunur. Bulunan denklemde 
dx

ds
 ve 

dz

ds
 parantezine alınırsa 

( ) ( )
1

y x y z y

dx dz
af bf cf bf Hf

ds ds S f
− + − =


, 

 
dx

ds
 yalnız bırakılırsa  

                                     ( )
1 1

y z y

y x

dx dz
Hf bf cf

ds af bf dsS f

 
 = + −

−  
 

                      (4.34) 

elde edilir. Benzer yolla 
dy

ds
 i bulalım. (4.33) denkleminde 

dx

ds
 yalnız bırakılırsa 

y z

x x

f fdx dy dz

ds f ds f ds
= − −  

bulunur. Bu ifade (4.32) de yazılırsa  

( )cos
y z

x y z

x x

f fdy dz dy dz
S f a S f b S f c f R af bf cf

f ds f ds ds ds


 
 − − +  +  =  − + + 

 
 

elde edilir. Parantez açılıp her iki taraf S f  ye bölünürse 

1y z

x x

f fdy dz dy dz
a a b c H

f ds f ds ds ds S f
− − + + =


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olur. Bulunan bu ifadenin iki tarafı xf  ile çarpılıp sonra da  
dy

ds
 ve 

dz

ds
   parantezine 

alınırsa 

( ) ( )
1

x y x z x

dy dz
bf af cf af f H

ds ds S f
− + − =


 

elde edilir. 
dy

ds
 yalnız bırakılırsa  

 
( )

( )
1 1

x z x

y x

dy dz
cf af f H

ds ds S faf bf

 
= − − 

−  

 (4.35) 

bulunur.   birim hızlı olduğundan  

 

2 2 2

1
dx dy dz

ds ds ds

     
+ + =     

     
 (4.36) 

elde edilir [15]. ( ) 0− =  y x raf bf  denilerek (4.34) ve (4.35) ifadeleri (4.36) da 

yerine yazılırsa  

( ) ( )

2 2
2

1 1 1 1
1y z y x z x

r r

dz dz dz
Hf bf cf cf af f H

S f ds ds S f ds

        
+ − + − − + =                      

 

bulunur. Burada kareler alınıp, bulunan ifade de benzer olan ifadeler ortak çarpan 

parantezine alınırsa  

( )

2

2 2 2 2 2 2

2

2 2

2

2

2 2

2

1
( ) ( ) 2 ( ) 1

1 1
2 ( )

1 1
( ) 1 0

  
 + + + − + +      

   + + − +     

 
+ + − =    

z x y z x y

r

z x y x y

r

x y

r

dz
a b f c f f cf af bf

ds

dz
H f af bf c f f

S f ds

H f f
S f

 

ikinci derece denklemi elde edilir. Bu denklemin kökleri  

 2 2 2 2 2 2

1 2

1
( ) ( ) 2 ( ) 1 = + + + − + + 

z x y z x y

r

q a b f c f f cf af bf   
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                        ( )2 2

2 2

1 1
2 ( ) = + − +

  
z x y x y

r

q H f af bf c f f
S f

 

                        

2

2 2

3 2

1 1
( ) 1x y

r

q H f f
S f

 
= + −    

 

olmak üzere 

 

2

2 2 1 3

1

4

2

q q q qdz

ds q

−  −
=  (4.37) 

ile bulunur. (4.37) ifadesi (4.34) ve (4.35) de yerine yazılırsa, ( ) 0− =  y x raf bf  

olmak üzere 

 

( )

( )

2

2 2 1 3

1

2

2 2 1 3

1

2

2 2 1 3

1

41 1

2

41 1

2

4

2

   −  −
   = + −

    
  

   −  −
  = − −

      

 −  −

=



y z y

r

x z x

r

q q q qdx
Hf bf cf

ds S f q

q q q qdy
cf af f H

ds q S f

q q q qdz

ds q

  (4.38) 

diferansiyel denklem sistemi elde edilir. Böylece 

0 0

0 0

0 0

( )

( )

( )

=

=

=

x s x

y s y

z s z

 

başlangıç noktası ile birlikte bir başlangıç değer problemi elde ederiz. Bu problemin 

çözümü bize S  yüzeyi üzerinde aradığımız rD -Darboux slant helisi verir. 

 

4.5. rD -Darboux Slant Helis Örnekleri 

Bu kısımda, rD -Darboux slant helislere ait örnekler verilecektir. Örnek 4.5.1 

de yüzey üzerinde verilen bir eğrinin rD -Darboux slant helis olup olmadığı Sonuç 
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4.2.3 yardımıyla kontrol edilecektir. Örnek 4.5.2 de parametrik formda verilen bir 

yüzey üzerinde rD -Darboux slant helis elde edebilmek için 4.4.1 bölümünde verilen 

yöntem uygulanmıştır. Örnek 4.5.3 de kapalı formda verilen bir yüzey üzerinde rD -

Darboux slant helis elde edebilmek için 4.4.2 bölümünde verilen yöntem 

uygulanmıştır.   

 

Örnek 4.5.1: ( )( , ) ,sin ,cosX u v v u u=  parametrizasyonu ile verilen silindir yüzeyini 

ele alalım. 
2

s
u =  ve 

2

s
v =  alınarak bu yüzey üzerinde 

( ) ,sin ,cos
2 2 2


 

=  
 

s s s
s  

eğrisi elde edilir.  

1
( ) 1,cos , sin

2 2 2


 
 = − 

 

s s
s , 

olup ( ) 1  =s  olduğundan   birim hızlıdır.   eğrisinin Darboux çatı elemanları  

1
1,cos , sin

2 2 2

1
1, cos ,sin

2 2 2

0, sin , cos
2 2



 
= − 

 

 
= − 

 

 
= − − 
 

s s
T

s s
V

s s
U

 

olarak bulunur. Ayrıca  

1
0, sin , cos

2 2 2

1
0, cos ,sin

2 2 2



 

 = − − 
 

 
 = − 

 

s s

s s
U

 

olduğundan                                                                                                                                                        
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1
,

2

, 0

1
,

2











= =

= =

= − = −

n

g

g

k U

k V

U V

 

elde edilir. Bulunan değerler (4.15) in denk ifadesinde yerine yazılırsa 

2

2 2

2

2 2

1

2
1

1

2






 

 
 +  

= = = −
  −

− −  +  

g g

r

g g

n

g g g

k

k
k

k

 

olduğundan   eğrisi S  yüzeyi üzerinde bir rD -Darboux slant helistir. Ayrıca Sonuç 

4.2.6 gereğince   eğrisi bir relatively normal-slant helistir. Silindir yüzeyi ve seçilen 

  eğrisi Şekil 4.5.1 de gösterilmiştir. 

 

Şekil 4.5.1: ( )( , ) ,sin ,cos=X u v v u u  yüzeyi üzerinde ( ) ,sin ,cos
2 2 2


 

=  
 

s s s
s  

denklemli rD -Darboux slant helis 
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Örnek 4.5.2: ( , ) ( cos , sin , )=X u v u v u v u  ile verilen koni yüzeyi üzerinde geodezik 

burulması 
1

2
=gk

s
, geodezik burulması 

1

3
 =g

s
 olan ve 

rD vektörü,  (0,0,1)=rd  

doğrultusu ile 
5

cos
30

 =   olacak şekilde   açısı yapan rD -Darboux slant helisi 

4.4.1 bölümünde verilen yöntemle bulalım. Gerekli hesaplamalar yapılırsa  

2

5
=S , 

3

5
=R , 

(cos ,sin ,1)=uX v v ,  ( sin , cos ,0)= −vX u v u v , 

( cos , sin , ) = − −u vX X u v u v u , 2=  =u vN X X u , 

, 1= =r u rL X d , , 0= =r v rM X d , 

, 2= =u uE X X , , 0= =u vF X X , 
2,= =v vG X X u , 

2 22− =EG F u , 2 2− =EG F u , 

0 =r , * 664

75
 =r u  

bulunur. Bulunan bu değerler (4.31) de yerine yazılırsa  

1

3

1

3


=



 =


du

ds

dv

ds u

 

denklem sistemi elde edilir. Bu denklem sistemin çözümünden 1c  ve 2c  integrasyon 

sabitleri olmak üzere  

( )

1

1 2

3

ln 3

= +

= + +

s
u c

v s c c

 

bulunur.  Özel olarak 1 2 0= =c c  olarak alınırsa 0s  olmak üzere 
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3

ln

=

=

s
u

v s

 

elde edilir. Bulunan u  ve v  değerleri ( , ) ( cos , sin , )=X u v u v u v u  de yerine yazılırsa, 

bu yüzey üzerinde  

( ) ( ( ), ( )) cos(ln ), sin(ln ),
3 3 3


 

= =  
 

s s s
s X u s v s s s  

rD -Darboux slant helisi elde edilir. Koni yüzeyi ve bulunan   eğrisi Şekil 4.5.2 de 

gösterilmiştir. 

  

Şekil 4.5.2 : ( , ) ( cos , sin , )=X u v u v u v u  yüzeyi üzerindeki geodezik eğriliği 
1

2
=gk

s
, 

geodezik burulması 
1

3
 =g

s
 olan (0,0,1)=rd  doğrultusu ile 

5
cos

30
 =   olacak şekilde 

  açısı yapan rD -Darboux slant helis 
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Örnek 4.5.3: 
2 2( , , ) 1 0= + − =f x y z y z  kapalı formu ile silindir yüzeyi verilsin. Bu 

yüzey üzerinde eğrilikleri 0=gk , 
1

2
 = −g

 olan ve 
rD  vektörü, sabit (1,0,0)=rd  

doğrultusu ile 
4


 =  açısı yapan rD -Darboux slant helisi 4.4.2 bölümünde verilen 

metotla bulalım. Gerekli hesaplamalar yapılırsa 

2 2

0, 2 , 2 ,

(0,2 ,2 ), 2 ,

= = =

 =  = +

x y zf f y f z

f y z f y z
 

2 2 2 2

2 2

1, 0

cos ( ) 2( ),

2



 



= = − = =
+ +

=  − + + = +

 = − =

g g

g g g g

x y z

r y x

k
S R

k k

H f R af bf cf y z

af bf y

 

bulunur. Dolayısıyla 

2 2

1 2 32

1
, 0,

2

+
= = = −

y z
q q q

y
 

olduğundan  

2 2

2 2

2

2

2( )

2( )




= −




= 
+


 =
 +

dx

ds

dy z

ds y z

dz y

ds y z

 

elde edilir. Bu diferansiyel denklem sistemi karmaşık olduğundan eğrinin parametrik 

denklemi elde edilememiş olsa da bu sistem için Matlab programında (0, 1,0)−P  

başlangıç noktası ile ‘ode45’ komutu kullanıllırsa aranan eğrinin grafiği Şekil 4.5.3 

deki gibi elde edilir. 
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Şekil 4.5.3: 
2 2( , , ) 1 0= + − =f x y z y z  yüzeyi üzerinde geodezik eğriliği 0=gk , 

geodezik burulması 
1

2
 = −g  olan ve sabit (1,0,0)=rd  doğrultusu ile 

4


 =  açısı yapan 

rD -Darboux slant helis 
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5. YÜZEY ÜZERİNDE nD -DARBOUX SLANT HELİSLER 

 Bu bölümde, 3E  uzayında bir S  yüzeyi üzerinde kalan ve yeni bir özel 

yüzey eğrisi olan nD -Darboux slant helisler incelenecektir. Bu özel eğriyi daha kolay 

incelemek için ilk olarak normal Darboux çatısı ve türev formülleri verilecektir. 

Daha sonra bu yeni çatı yardımıyla nD -Darboux slant helisler için karakterizasyonlar 

verilecektir. Son olarak, kapalı ve parametrik formda verilen bir S  yüzeyi üzerinde 

nD -Darboux slant helis elde edebilmek için birer yöntem verilip ardından örnekler 

verilecektir.  

 

5.1. Yüzey Eğrileri İçin Normal Darboux Çatısı  

S  bir yüzey olsun. :  →I IR S  bu yüzey üzerinde kalan birim hızlı, 

 , ,T V U  Darboux çatılı, , ,g n gk k  eğriliklerine ve ( ) ( ) ( ) ( ) ( )= − +n n gD s k s V s k s U s  

normal Darboux vektörüne sahip bir eğri olsun. Bu taktirde, 

( ) ( ) ( ) ( ) ( )= − +n n gD s k s V s k s U s  

vektörü normlanırsa  

2 2 2 2

( )( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
= = − +

+ +

gn n
n

n n g n g

k sD s k s
D s V s U s

D s k s k s k s k s
 

elde edilir. 
nD  vektörü, V  ve U  vektörlerinin gerdiği düzlemde bulunduğundan T  

vektörüne diktir. Dolayısıyla = n nY D T  birim vektörünün tanımlanması ile yüzey 

üzerindeki    eğrisi boyunca yeni bir ortonormal çatı olan  , ,n nD T Y  çatısı elde 

edilir.  

Tanım 5.1.1: Yukarıdaki şekilde tanımlanan  , ,n nD T Y  çatısına, S  yüzeyi üzerinde 

  eğrisinin normal Darboux çatısı veya kısaca ND-çatısı denir.  

Şimdi bu çatı için türev formüllerini verelim. 
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Teorem 5.1.2: S  bir yüzey olsun. :  →I IR S  bu yüzey üzerinde yay parametresi 

s  olan ve ND-çatısına sahip birim hızlı bir eğri olsun. ND-çatısının vektör alanları  

, ,n nD T Y  ve eğrilikleri n , n  olmak üzere, ND-çatısının türev formülleri  

                                                                 





 

 = −

 =

 = −

n n n

n n

n n n n

D Y

T Y

Y D T

                                               (5.1) 

şeklindedir. Burada 

2

2 2

gn
n g

g n g

kk

k k k
 

   
= +      +   

 ve 2 2

n n gk k = +  dır 

İspat: 
nD ,  , ,n nD T Y  çatısının elemanlarının lineer birleşimi olarak yazılabilir. Yani 

                                                1 2 3
 = + +n n nD a D a T a Y                                          (5.2) 

yazılır. Burada ( ), (1,2,3),= =i ia a s i  s  in diferansiyellenebilir fonksiyonlarıdır. 

(5.2) ifadesinin her iki yanı 
nD  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +n n n n n n nD D a D D a D T a D Y  

bulunur. , 1=n nD D  ve , , 0= =n n nD T D Y  olduğundan  

1, =n nD D a  

dır. , 1=n nD D  eitliğinin türevi alınırsa 1, 0 = =n nD D a  dir.  (5.2) ifadesininin iki 

yanı T  vektörü ile iç çarpılırsa  

1 2 3, , , , = + +n n nD T a D T a T T a Y T  
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bulunur. , , 0= =n nD T Y T  ve , 1T T =  olduğundan  2, =nD T a  dür. Öte 

yandan 
nD  vektörü ile U  vektörü arasındaki açı   olmak üzere 

2 2
sinn

n g

k

k k
=

+
 ve 

2 2
cos

g

n g

k

k k
=

+
 olarak tanımlanırsa 

                                                        sin cos = − +nD V U                                              (5.3) 

bulunur. (5.3) ifadesinin türevi alınırsa ve Darboux türev formülleri kullanılırsa 

( sin cos ) ( )cos ( )sin         = − − + − +n g n g gD k k T V U  

elde edilir. 
2 2

sinn

n g

k

k k
=

+
 ve 

2 2
cos

g

n g

k

k k
=

+
 olduğu göz önüne alınırsa T  nin 

katsayısı sıfır olur. Dolayısıyla  

                                    ( )cos ( )sin       = − + − +n g gD V U                              (5.4) 

bulunur.  (5.4) ifadesinin her iki yanı T  vektörü ile iç çarpılırsa 

2 , 0= =na D T  

elde edilir. Şimdi de (5.2) ifadesi 
nY  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +n n n n n n nD Y a D Y a T Y a Y Y  

bulunur. , , 0= =n n nD Y T Y  ve , 1n nY Y =  olduğundan 3 ,= n na D Y  elde edilir.  

2 2 2 2

2 2 2 2

2 2 2 2

( ) ( )

( )

 
 =  = − + 
 + +
 

= −  + 
+ +

= − − +
+ +

gn
n n

n g n g

gn

n g n g

gn

n g n g

kk
Y D T V U T

k k k k

kk
V T U T

k k k k

kk
U V

k k k k

 



100 

 

elde edilir. 
2 2

sinn

n g

k

k k
=

+
 ve 

2 2
cos

g

n g

k

k k
=

+
 olduğu dikkate alınırsa 

                                                                 cos sinnY V U = +                                           (5.5) 

elde edilir. (5.4) te bulunan 
nD  ve (5.5) de bulunan 

nY  vektörleri iç çarpılırsa 

            

3

2 2

, ( ) cos ( )sin ,cos sin

( )(cos sin )

( )

       

   

 

  = = − + − + +

= − + +

= − +

n n g g

g

g

a D Y V U V U

         (5.6) 

bulunur. tan n

g

k

k


 
=   
 

 ifadesinin türevinden  

2

2 2

gn

g n g

kk

k k k


   
 =       +   

 

elde edilir. Bu eşitlik, (5.6) ifadesinde yerine yazılırsa  

2

3 2 2

gn
g

g n g

kk
a

k k k


     = − +       +     

 

elde edilir. Bulunan 1 2,a a  ve 3a  değerleri (5.2) denkleminde yazılırsa  

                                        

2

2 2


      = − +       +     

gn
n g n

g n g

kk
D Y

k k k
                                   (5.7) 

bulunur. 

 Şimdi T vektörünün türevini hesaplayalım. ,T  , ,n nD T Y  çatısının 

elemanlarının lineer birleşimi olarak yazılabilir. Yani 

                                                              1 2 3
 = + +n nT b D b T b Y                                             (5.8) 
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yazılır. Burada ( ), (1,2,3),= =i ib b s i  s  in diferansiyellenebilir fonksiyonlarıdır. (5.8) 

ifadesinin her iki yanı 
nD  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +n n n n n nT D b D D b D T b D Y  

bulunur. , 1=n nD D  ve , , 0= =n n nD T D Y  olduğundan  

1, =nT D b  

dır. Darboux türev formüllerinden g nT k V k U = +  dır. T   ve 

2 2 2 2
= − +

+ +

gn
n

n g n g

kk
D V U

k k k k
 vektörleri yerine yazılırsa         

1
2 2 2 2

2 2 2 2

2 2 2 2

, ,

, ,

0

= = + − +
+ +

−
= +

+ +

−
= +

+ +

=

gn
n g n

n g n g

g n g n

n g n g

g n g n

n g n g

kk
b T D k V k U V U

k k k k

k k k k
V V U U

k k k k

k k k k

k k k k

 

elde edilir. (5.8) eşitliğinin her iki yanı T  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +n nT T b D T b T T b Y T  

bulunur. , , 0= =n nD T Y T  ve , 1T T =  olduğundan  

2 ,b T T=  

dir. Öte yandan , 1T T =  ifadesinin türevi alınırsa 2, 0T T b = =  elde edilir. (5.8) 

eşitliğinin her iki yanı nY  vektörü ile iç çarpılırsa 
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1 2 3, , , , = + +n n n n n nT Y b D Y b T Y b Y Y  

bulunur. , , 0= =n n nD Y T Y  ve , 1n nY Y =  olduğundan  

3 , nb T Y=  

elde edilir. Darboux türev formüllerinden g nT k V k U = +  dır. Ayrıca  

2 2 2 2
=  = +

+ +

gn
n n

n g n g

kk
Y D T U V

k k k k
 

dır. Bu vektörler yerine yazılırsa  

3
2 2 2 2

22

2 2 2 2

2 2

2 2

2 2

, ,

, ,

= = + +
+ +

= +
+ +

+
=

+

= +

gn
n g n

n g n g

gn

n g n g

n g

n g

n g

kk
b U Y k V k U U V

k k k k

kk
U U V V

k k k k

k k

k k

k k

 

bulunur. Bulunan 1 2,b b  ve 3b  değerleri (5.8) de yazılırsa  

                                                                   2 2

n g nT k k Y = +                                                 (5.9) 

elde edilir. 

Şimdi 
nY  vektörünün türevini hesaplayalım. ,nY  , ,n nD T Y  çatısının 

elemanlarının lineer birleşimi olarak yazılabilir. Yani 

                                                 1 2 3
 = + +n n nY c D c T c Y                                            (5.10) 

yazılır. Burada ( ), (1,2,3),= =i ic c s i  s  in diferansiyellenebilir fonksiyonlarıdır. 

(5.10) ifadesinin her iki yanı nD  vektörü ile iç çarpılırsa 
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1 2 3, , , , = + +n n n n n n nY D c D D c D T c D Y  

bulunur. , 1=n nD D  ve , , 0= =n n nD T D Y  olduğundan  

1, =n nY D c  

dır. (5.5) eşitliğinin türevi alınıp, Darboux türev formülleri kullanılırsa 

   

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

sin cos cos sin

cos sin sin sin cos cos

cos sin sin cos

       

         

       

  = − + − + + + − −

 = − − + − − + +

 = − − − + + +

n g g n g

g n g g

g n g g

Y V k T U U k T V

k k T V U

k k T V U

     (5.11) 

bulunur. 
2 2

sinn

n g

k

k k
=

+
 ve 

2 2
cos

g

n g

k

k k
=

+
 olduğundan sin cos = − +nD V U  

olur. Dolayısıyla  

( ) ( ) ( )

( ) ( )

( )( )

1

2 2

2 2

,

cos sin sin cos , sin cos

sin cos

sin cos

         

     

   

 

=

 = − − − + + + − +

 = + + +

= + +

= +

n n

g n g g

g g

g

g

c Y D

k k T V U V U

 

elde edilir. tan n

g

k

k


 
=   
 

 ifadesinin türevinden bulunan 

2

2 2

gn

g n g

kk

k k k


   
 =       +   

 

ifadesi yerine yazılırsa 

2

1 2 2

gn
g

g n g

kk
c

k k k


   
= +      +   

 

bulunur. (5.10) eşitliğinin her iki tarafı T  vektörü ile iç çarpılırsa 
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1 2 3, , , , = + +n n nY T c D T c T T c Y T  

elde edilir. , , 0= =n nD T Y T  ve , 1T T =  olduğundan  

2 ,nc Y T=  

dir.  (5.11) eşitliğini kullanarak  

( ) ( ) ( )

( )

2 ,

cos sin sin cos ,

cos sin

n

g n g g

g n

c Y T

k k T V U T

k k

       

 

=

 = − − − + + +

= − −

 

bulunur. Ayrıca 
2 2

sinn

n g

k

k k
=

+
 ve 

2 2
cos

g

n g

k

k k
=

+
 eşitlikleri yerine yazılırsa  

2
2 2 2 2

22

2 2 2 2

2 2

gn
n g

n g n g

gn

n g n g

n g

kk
c k k

k k k k

k

k k k k

k k



 
 = − −
 + +
 

 
 = − +
 + +
 

= − +

 

elde edilir. Son olarak (5.10) ifadesi nY  vektörü ile iç çarpılırsa 

1 2 3, , , , = + +n n n n n n nY Y c D Y c T Y c Y Y  

bulunur. , , 0= =n n nD Y T Y  ve , 1n nY Y =  olduğundan 

3 ,n nc Y Y=  

 dir.  , 1n nY Y =  ifadesinin türevi alınırsa 3, 0n nY Y c = =  elde edilir. Bulunan 1 2,c c  

ve 3c  ifadeleri (5.10) ifadesinde yazılırsa 
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2

2 2

2 2


      = + − +       +     

gn
n g n n g

g n g

kk
Y D k k T

k k k
                      (5.12) 

elde edilir. (5.7), (5.9) ve (5.12) denklemleri dikkate alınarak , 
nD U  ve oY   

vektörleri matris formunda yazılırsa 

( )

2

2 2

2 2

2

2 2

2 2

0 0

0 0

0





       − +        +          
    

  = +   
             
 + − +       +    
 

gn
g

g n g

n n

n g

n
n

gn
g n g

g n g

kk

k k k
D D

T k k T

YY
kk

k k
k k k

 

bulunur. Burada      

                                             

2

2 2

2 2

gn
n g

g n g

n n g

kk

k k k

k k

 



   
= +      +   

= +

                                      (5.13) 

 olarak tanımlanırsa ND-çatısının türev formülleri 

                                             

0 0

0 0

0





 

    − 
     =    
      −    

n n n

n

n n n
n

D D

T T

YY

                              (5.14)     

şeklinde olur.                                                                                                           

        

5.2. nD -Darboux Slant Helisin Ekseni ve Karakterizasyonları                             

 S  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim hızlı bir eğri 

olsun.   eğrisinin Darboux çatısı  , ,T V U  ve eğrilikleri ,g nk k  ve g  olsun. Bu 

eğrinin normal Darboux vektörü ( ) ( ) ( ) ( ) (s)= − +n n gD s k s V s k s U  olmak üzere, yüzey 

üzerinde 
nD -Darboux slant helis kavramı aşağıdaki şekilde tanımlanmıştır. 
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Tanım 5.2.1: :  →I IR S eğrisinin nD  vektörü alanı (veya denk olarak = n
n

n

D
D

D
 

birim vektör alanı) sabit bir doğrultu ile sabit açı yapıyorsa   eğrisi S  yüzeyi 

üzerinde nD -Darboux slant helis olarak adlandırılır [20]. 

Şimdi bu tanımı dikkate alarak nD -Darboux slant helislerin 

karakterizasyonlarını verebiliriz. 

Teorem 5.2.2: S , 3E  uzayında bir yüzey ve  , bu yüzey üzerinde ND-çatısına 

sahip birim hızlı bir eğri olsun.   eğrisinin nD -Darboux slant helis olması için gerek 

ve yeter şart her s I  için  

                                                    ( ) ( )





= n
n

n

s s                                                    (5.15) 

fonksiyonunun sabit olmasıdır. Burada 0n   ve 0n   dır.  

İspat:  , ND-çatısı  , ,n nD T Y  olan bir nD -Darboux slant helis olsun. nD -Darboux 

slant helis tanımından   nın 
nD  birim teğet vektörü, sabit doğrultulu sabit 

nd  

vektörü ile sabit   açısı yapar. Yani , cosn nD d =  dır. Bu ifadenin türevi alınarak 

, 0 =n nD d  bulunur. (5.1) deki ND-çatısının türev formülleri kullanılırsa 

, 0n n nY d− =  

elde edilir. 0n   olduğundan , 0n nY d =  dır. Yani 
nd  vektörü 

nY  vektörüne diktir. 

Dolayısıyla 
nd  vektörü 

nD  ve T  vektörlerinin gerdiği düzlemde bulunur. O halde  

cos sinn nd D T = +   

yazılabilir. Bu ifadenin türevi alınırsa nd  vektörü sabit olduğundan  



107 

 

( )

0 cos sin

cos ( ) sin ( )

sin cos

n

n n n n

n n n

D T

Y Y

Y

 

   

   

 = +

= − +

= −

 

bulunur. 
nY  sıfırdan farklı bir vektör olduğundan sin cos 0n n   − =   dır. Buradan  

cos
cot

sin

n

n

sabit
 


 

= = =  

elde edilir. 

Tersine olarak,  sabit olmak üzere,  
cos

cot
sin

n

n

sabit
 


 

= = =  olsun. 

Buradan sin cosn n   =  yazılabilir.   

cos sin = +n nd D T  

alalım. 
nd  nin sabit olduğunu gösterelim. cos sin = +n nd D T  ifadesinin türevi 

alınıp ardından (5.1) deki türev formülleri ve sin cosn n   =  olduğunu 

kullanılırsa 

cos sin

cos ( ) sin ( )

( sin cos )

( cos cos )

0

 

   

   

   

  = +

= − +

= −

= −

=

n n

n n n n

n n n

n n n

d D T

Y Y

Y

Y

 

bulunur. Dolayısıyla 
nd  sabit vektördür. 

nd  vektörünün 
nD  vektörü ile sabit açı 

yaptığını gösterelim. 

, cos sin ,

cos , sin ,

cos

 

 



= +

= +

=

n n n n

n n n

d D D T D

D D T D  

elde edilir. Dolayısıyla nd  sabit vektörü, nD  vektörü ile sabit açı yapar.   bir nD -

Darboux slant helistir.                            
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Teorem 5.2.2 den aşağıdaki sonuçlar elde edilebilir. 

                                                                                                                             

Sonuç 5.2.3:  , 
3E  de S  yüzeyi üzerinde kalan birim hızlı bir eğri ve Darboux 

çatısının eğrilikleri ,g nk k  ve g  olsun.   eğrisinin nD -Darboux slant helis olması 

için gerek ve yeter şart her s I  için  

                                          

2 2

2

2 2

( ) ( )
n g

n

g n
g

n g g

k k
s s

k k

k k k





 
 
 +
 =

  
 +   +   

                               (5.16) 

veya denk olarak  

2 2

2

2 2

( ) ( )



 
 
 +

=  
  

− +   +   

n g

n

gn
g

n g n

k k
s s

kk

k k k

 

 fonksiyonunun sabit olmasıdır.  

İspat: (5.13) eşitlikleri (5.15) te yazılırsa (5.16) elde edilir.                                        

Sonuç 5.2.4: Normal Darboux çatısına göre nD -Darboux slant helisin ekseni 

                                                             cos sin = +n nd D T                                                   (5.17) 

şeklindedir. 

Sonuç 5.2.5: nD -Darboux slant helisin ekseni, Darboux çatısının vektörleri 

cinsinden 

2 2 2 2
sin cos cos  = − +

+ +

gn
n

n g n g

kk
d T V U

k k k k
 

şeklindedir. 
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Sonuç 5.2.6:   eğrisinin nD -Darboux slant helis olması için gerek ve yeter şart   

nın bir helis olmasıdır. 

İspat: (5.17) eşitliğinin iki yanı T  vektörü ile iç çarpılırsa , sin= =nT d sabit  

bulunur. Bu da   eğrisinin bir helis olduğunu gösterir.                                                

Sonuç 5.2.7:  , S  yüzeyi üzerinde birim hızlı bir 
nD -Darboux slant helis olsun. Bu 

durumda,  

i)  nın S  yüzeyi üzerinde 0nk   olan bir geodezik eğri olması için gerek ve yeter 

şart   nın sin cos = +nd T B  eksenli bir helis olmasıdır.  

ii)   nın S  yüzeyi üzerinde 0gk  olan bir asimptotik eğri olması için gerek ve 

yeter şart   nın sin cos = +nd T B  eksenli bir helis olmasıdır.  

iii)  , S  yüzeyi üzerinde bir eğrilik çizgisi ise 

( )

2

3
2 2 2

g n

g
n g

k k

k
k k

 
  
 +

 ifadesi sıfırdan 

farklı bir sabittir. 

İspat: i)   geodezik eğri ise 0gk =  dır. Bu durumda (2.1) eşitlikleri kullanılarak 

nk =  ve 
g =  elde edilir.  , 

nD -Darboux slant helis olduğundan bulunan 

değerler (5.16) da yazılırsa 





= =n sabit  bulunur. Teorem 2.1.18 gereğince   bir 

helistir. Ayrıca Tanım 2.2.18 de verilen Darboux çatısı ile Frenet çatısı arasındaki 

ilişkiler, Sonuç 5.2.5 de yazılıp (2.1) eşitlikleri kullanılırsa, 
nD -Darboux slant helisin 

Frenet çatısının vektörleri cinsinden ekseni  

2 2

sin cos 


+
= +

n g

n

k k
d T B  

şeklinde olur. 0gk =  ve yukarıda bulunan 
nk =  ve 

g =  eşitlikleri burada yazılırsa 

  helisinin ekseni  sin cos = +nd T B  olarak bulunur.  
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Tersine olarak  , sin cos = +nd T B  eksenli bir helis olsun. Helisin ekseni 

ile yukarıda 
nD -Darboux slant helisin Frenet çatısına göre verilen ekseni dikkate 

alınırsa 0gk =  bulunur.  , S  yüzeyi üzerinde geodezik bir eğridir.  

ii) i) nin ispatına benzer olarak yapılır.  

iii)   eğrilik çizgisi ise 0g =  dır.  , 
nD -Darboux slant helis olduğundan (5.16) dan 

( )

2

3
2 2 2

0

 
  

 +

g n

g
n g

k k

k
k k

 bir sabit olduğu anlaşılır.                      

 

5.3. nD  -Darboux Slant Helislerin ND-çatısına Göre Diferansiyel Denklem 

Karakterizasyonları 

 Bu kısımda, ilk olarak 3E  de bir S  yüzeyi üzerinde bulunan eğrileri 

karakterize eden diferansiyel denklem karakterizasyonları ND-çatısının elemanları 

olan 
nD , T  ve 

nY  vektör alanlarına bağlı olarak verilecektir. Daha sonra, ND-

çatısının elemanları olan 
nD , T  ve 

nY  vektör alanlarına bağlı olarak  nD -Darboux 

slant helisleri karakterize eden diferansiyel denklemler verilecektir. 

Teorem 5.3.1: ,S  3E  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir eğri olsun.   eğrisini ND-çatısının nD  vektör alanına göre karakterize eden 

vektörel diferansiyel denklem, 0n   ve 0n   olmak üzere 

              

2 21 1 1 1

0

      
    


 



                 + + + + +      
            

 

 
+ = 

 

n n n n n n n n n n

n n n n n

n
n n n

n

D D D

D

     (5.18) 

şeklindedir.  

İspat: (5.1) sisteminin birinci denkleminden  
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1


= −n n

n

Y D                                                                (5.19) 

yazılabilir. Bu ifadenin türevi alınırsa  

                                                 
1 1

 

 
  = − − 

 
n n n

n n

Y D D                                         (5.20) 

bulunur. (5.1) sisteminin üçüncü denkleminden  

                                                      
1

 
= −n

n n

n n

T D Y                                            (5.21) 

elde edilir.  (5.20), (5.21) de yerine yazılırsa  

1 1 1

    

 
 = + + 

 

n
n n n

n n n n n

T D D D  

  elde edilir. Bu eşitliğin türevi alınırsa 

             

1 1 1 1 1 1

        





                  = + + + +      
            

 

 
+  
 

n
n n n

n n n n n n n n n

n
n

n

T D D D

D

      (5.22) 

elde edilir. (5.19) ve (5.22) eşitlikleri (5.1) sisteminin ikinci denkleminde yazılırsa  

1 1 1 1 1 1  

          

                     + + + + + = −        
              

 

n n n
n n n n n

n n n n n n n n n n n

D D D D D  

bulunur. Bu denklem düzenlenirse  

2 2
1 1 1 1 1 1

0
  

          

               +     + + + + + =        
              

 

n n n
n n n n

n n n n n n n n n n n

D D D D  
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elde edilir. Bulunan son denklemin her iki tarafı n n   ile çarpılırsa 

2 21 1 1 1

0

      
    


 



                 + + + + +      
            

 

 
+ = 

 

n n n n n n n n n n

n n n n n

n
n n n

n

D D D

D

 

diferansiyel denklemi elde edilir.                                                                             

Sonuç 5.3.2: ,S  3E  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim hızlı 

bir nD -Darboux slant helis olsun.   eğrisini 
nD  vektör alanına göre karakterize eden 

vektörel diferansiyel denklem 

2 21 1 1 1
0      

    

                 + + + + + =      
            

 

n n n n n n n n n n

n n n n n

D D D  

şeklindedir. Burada 0n   ve 0n   dır. 

İspat: Teorem 5.3.1 de, 3E  de eğrileri ND-çatısının nD  elemanına göre karakterize 

eden genel diferansiyel denklemin (5.18) şeklinde olduğu gösterildi. Şimdi   

eğrisinin nD -Darboux slant helis olduğunu kabul edelim. nD -Darboux slant helis 

olma şartından n

n




 ifadesi sabit olduğundan n

n




 ifadesi de sabittir. Dolayısıyla 

0n

n





 
= 

 
 ifadesi (5.18) denkleminde yazılırsa  

2 21 1 1 1
0      

    

                 + + + + + =      
            

 

n n n n n n n n n n

n n n n n

D D D  

denklemi elde edilir.                                                                                                           



113 

 

Teorem 5.3.4: ,S  3E  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir eğri olsun.   eğrisini ND-çatısının T  vektör alanına göre karakterize eden 

vektörel diferansiyel denklem,  0n   ve 0n   olmak üzere  

             

2 21 1 1 1

0

n n n n n n n

n n n n n

n
n n

n

T T T

T

      
    


 



                 + + + + +      
            

 

 
+ = 

 

     (5.23) 

şeklindedir.  

İspat: (5.1) sisteminin 2. denkleminden  

                                                           
1

n

n

Y T


=                                                    (5.24) 

yazılabilir. Bu ifadenin türevi alınırsa 

1 1
n

n n

Y T T
 

 
  = + 

 
 

bulunur. Bu değer (5.1) sisteminin üçüncü denkleminde yazılıp nD  vektörü yalnız 

bırakılırsa 

1 1 1 

    

 
 = + + 

 

n
n

n n n n n

D T T T  

elde edilir. Bulunan 
nD   vektörünün türevi alınıp denklem düzenlenirse 

1 1 1 1 1 1  

         

                     = + + + + +        
              

 

n n
n

n n n n n n n n n n

D T T T T  

bulunur. Bulunan 
nD  değeri ve (5.24),  (5.1) sisteminin birinci denkleminde yazılırsa 
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1 1 1 1 1 1 n n n

n n n n n n n n n n n

T T T T T
  

          

                     + + + + + = −        
              

 

 

 elde edilir. Son denklem düzenlenip  n n   ile çarpılırsa  

2 21 1 1 1

0

n n n n n n n

n n n n n

n
n n

n

T T T

T

      
    


 



                 + + + + +      
            

 

 
+ = 

 

 

diferansiyel denklemi elde edilir.                                                                                    

Sonuç 5.3.4: ,S  3E  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim hızlı 

bir nD -Darboux slant helis olsun.   eğrisini T  vektör alanına göre karakterize eden 

vektörel diferansiyel denklem 

2 21 1 1 1
0n n n n n n n

n n n n n

T T T      
    

                 + + + + + =      
            

 

 

şeklindedir. Burada 0n   ve 0n   dır. 

İspat: Teorem 5.3.3 de, 
3E  de eğrileri ND-çatısının T  vektör alanına göre 

karakterize eden genel diferansiyel denklemin (5.23) şeklinde olduğu gösterildi. 

Şimdi   eğrisinin nD -Darboux slant helis olduğunu kabul edelim. nD -Darboux slant 

helis olma şartından n

n




 ifadesi sabittir. Dolayısıyla 0n

n





 
= 

 
 ifadesi (5.23) 

denkleminde yazılırsa  

2 21 1 1 1
0n n n n n n n

n n n n n

T T T      
    

                 + + + + + =      
            

 
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denklemi elde edilir.                                                                                                      

Teorem 5.3.5: ,S  3E  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir eğri olsun.  eğrisini, ND-çatısının 
nY  vektör alanına göre karakterize eden 

vektörel diferansiyel denklem,  1 0m  olmak üzere  

  ( ) ( ) ( )1 2 2 3 3

1 1 1

1 1 1
0     + − + − + + − + =n n n n nY m m Y m m Y m Y

m m m
      

şeklindedir. Burada ( )1 2 1

1
, 1




    
= = +

 −

n
n

n n n n n

m m m  ve ( )2 2

3 1  = +n nm m  

şeklindedir.  

İspat: (5.1) sisteminin üçüncü denkleminden   

                                                         
1 

 
= + n

n n

n n

D Y T                                         (5.25) 

yazılabilir. Bulunan ifadenin türevi alınırsa ve ND-çatısının türev formülleri 

kullanılırsa  

                                       
2 2

1 1
0

  

   

    +
 + + + =   
   

n n n
n n n

n n n n

Y Y Y T                                    

bulunur. Son denklemde T  vektörü yalnız bırakılırsa 

( )2 2   

           

+
 = − + −

     − − −

n n nn n
n n n

n n n n n n n n n n n n

T Y Y Y  

elde edilir. Bulunan bu ifade (5.25) de yazılırsa, ( )1 2 1

1
, 1




    
= = +

 −

n
n

n n n n n

m m m  

ve ( )2 2

3 1  = +n nm m   olmak üzere  

                                                   
1 2 3
 = − + −n n n nD mY m Y m Y                                                      

elde edilir. Son bulunan eşitliğin her iki yanının türevi alınıp ND-çatısının türev 

formülleri kullanılırsa  
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( ) ( ) ( )1 2 2 3 3

1 1 1

1 1 1
0     + − + − + + − + =n n n n nY m m Y m m Y m Y

m m m
 

denklemi elde edilir.             

Teorem 5.3.6: ,S  3E  bir yüzey ve :  →I IR S  bu yüzey üzerinde kalan birim 

hızlı bir nD -Darboux slant helis olsun.   eğrisini 
nY  vektör alanına göre karakterize 

eden vektörel diferansiyel denklem 

( )2 21
0  



 
 + + + = 

 
n n n n n n

n

Y Y Y  

şeklindedir. Burada 0n   dır. 

İspat: (5.1) sisteminin üçüncü denkleminden  

1 

 
= + n

n n

n n

D Y T  

bulunur. Bu ifadenin türevi alınırsa  

1 1  

   

      
   = + + +     

     

n n
n n n

n n n n

D Y Y T T  

elde edilir. Burada T   yerine, türev formüllerindeki eşiti yazılırsa 

2
1 1  

   

      
  = + + +     

     

n n
n n n n

n n n n

D Y Y T Y  

bulunur. Bulunan bu ifade (5.1) sisteminin birinci denkleminde yerine yazılıp 

denklem düzenlenirse 

2 2
1 1

0
  

   

      +
 + + + =     
     

n n n
n n n

n n n n

Y Y T Y  
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elde edilir.   eğrisi nD -Darboux slant helis olduğundan 0n

n





 
= 

 
 dır. Dolayısıyla 

denklem  

2 2
1 1

0
 

  

   +
 + + =   

   

n n
n n n

n n n

Y Y Y  

halini alır. Son olarak bu denklem n  ile çarpılarak 

( )2 21
0  



 
 + + + = 

 
n n n n n n

n

Y Y Y  

elde edilir.                                                       

 

5.4. Yüzey Üzerinde nD -Darboux Slant Helisin Elde Edilmesi 

 Bu kısımda, parametrik ve kapalı formda verilen bir yüzey üzerinde nD -

Darboux slant helis elde edilebilmek için yöntemler verilecektir. 

 

5.4.1. Parametrik Formda Verilen Yüzey Üzerinde nD -Darboux Slant Helisin 

Elde Edilmesi 

S , 3E  uzayında ( , )X X u v=  parametrizasyonu ile verilen bir yüzey olsun. 

( )( ) ( ), ( )s X u s v s = , S  yüzeyi üzerinde, sabit ve birim 
nd  doğrultusu ile sabit   

açısı yapan, Darboux çatısı  , ,T V U  olan birim hızlı bir nD -Darboux slant helis 

olsun.   eğrisini elde etmek için ( )u s  ve ( )v s  değerlerinin bulunması gerekir. İlk 

olarak ( )u s  değerini bulalım. 

u v

du dv
T X X

ds ds
 = = +   ,     u v

u v

X X
U

X X


=


 ,    V U T=   

dir. T  vektörünün ve U  vektörünün eşiti V  vektöründe yazılırsa 
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( ) ( )
1

v u v u

u v

du dv
V EX FX FX GX

ds dsX X

 
= − + − 

  
 

bulunur [15]. Burada , ,E F G  birinci temel formun katsayılarıdır.  , nD -Darboux 

slant helis olduğundan , cos=n nD d  dır. Bu ifadede 
nD  vektörü yerine yazılırsa 

                                    
2 2 2 2

, cos
gn

n

n g n g

kk
V U d

k k k k
− + =

+ +
                         (5.26) 

elde edilir. Yukarıda bulunan V  ve U  vektörleri (5.26) da yazılırsa  

( ) ( )
2 2

2 2

1

, cos

n
v u v u

u vn g

g u v
n

u vn g

k du dv
EX FX FX GX

ds dsX Xk k

k X X
d

X Xk k


 
  − − + −    +  

 
 + =
 +  

 

bulunur. Bu ifade düzenlenirse  

2 2 2 2

2 2 2 2

2 2

1 1
, ,

1 1
, ,

1
, cos

n n
v n u n

u v u vn g n g

n n
v n u n

u v u vn g n g

g

u v n

u vn g

k kdu du
E X d F X d

ds dsX X X Xk k k k

k kdu dv
F X d G X d

ds dsX X X Xk k k k

k
X X d

X Xk k


− +
 + +

− +
 + +

+  =
+

 

elde edilir. Bulunan son denklemde işlem kolaylığı açısından  

2 2

n

n g

k
P

k k
=

+
,

2 2

g

n g

k
Q

k k
=

+
,  2

u vX X EG F N = − = , 

, =u n nX d L ,  , =v n nX d M , , =u v n nX X d B  

kısaltmaları kullanılırsa, son ifade  

1 1 1 1 1
cos− + − + + =n n n n n

du du dv dv
P EM P FL P FM P GL Q B

N ds N ds N ds N ds N
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olur. Bu ifadenin her iki yanı N  ile çarpılırsa 

cos− + − + = −n n n n n

du du dv dv
PEM PFL PFM PGL N QB

ds ds ds ds
 

elde edilir. Son eşitlik 
du

ds
 ve 

dv

ds
 parantezine alınırsa 

                 ( ) ( ) cos− + + − + = −n n n n n

du dv
PEM PFL PFM PGL N QB

ds ds
              (5.27) 

bulunur. Bu ifadede 
dv

ds
 yalnız bırakılırsa  

                        
( )

( )

( )

cos − +−
= −

− + − +

n nn

n n n n

PEM PFLN QBdv du

ds PFM PGL PFM PGL ds
                           (5.28) 

elde edilir. Ayrıca   eğrisi birim hızlı olduğundan   

                                      

2 2

2 1
du du dv dv

E F G
ds ds ds ds

   
+ + =   

   
                              (5.29) 

bulunur [15]. (5.28) ifadesi (5.29) da yerine yazılırsa 

( )

( )

( )

( )

( )

( )

2

2

cos
2

cos
1





 − +− 
+ − +    − + − +   

 − +−
− =  − + − + 

n nn

n n n n

n nn

n n n n

PEM PFLN QBdu du du
E F

ds ds PFM PGL PFM PGL ds

PEM PFLN QB du
G

PFM PGL PFM PGL ds

 

denklemi elde edilir. Bu denklemde parantezler açılırsa 

( )

( )

( )

( )

( )

( )( )

( )

( )

( )

2 2

2

2 2

2 2

2

cos
2 2

cos cos
2

1



 

− +−   
+ −   

− + − +   

− − − +
+ −

− + − +

− +  
+ = 

 − +

n nn

n n n n

n n n n

n n n n

n n

n n

PEM PFLN QBdu du du
E F F

ds PFM PGL ds PFM PGL ds

N QB N QB PEM PFL du
G G

dsPFM PGL PFM PGL

PEM PFL du
G

dsPFM PGL

 

bulunur. Elde edilen son denklemde paydalar eşitlenirse 
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( ) ( )( )

( ) ( )

( ) ( )( )

( ) ( )

2
2

2

2

2
2 2

2 cos

2

cos 2 cos



 

 
− + + − − + 

 

 
− − + − +  

 

+ − − − − +

 
+ − + = − + 

 

n n n n n

n n n n

n n n n

n n n n

du du
E PFM PGL F N QB PFM PGL

ds ds

du
F PEM PFL PFM PGL

ds

du
G N QB G N QB PEM PFL

ds

du
G PEM PFL PFM PGL

ds

 

bulunur. Burada 

2
du

ds

 
 
 

 ve 
du

ds
 parantezine alınarak 

( ) ( )( ) ( )

( ) ( ) ( )

( ) ( )

2
2 22

2 2

2

2 cos

cos





  − + − − + − + + − +     

+ − − + − − +  

+ − = − +

n n n n n n n n

n n n n n

n n n

du
P E FM GL F EM FL FM GL G EM FL

ds

du
N QB P F FM GL G EM FL

ds

G N QB PFM PGL

 

ifadesi elde edilmiş olur. 

2
du

ds

 
 
 

 ve 
du

ds
 katsayılarındaki parantezler açılıp 

2
du

ds

 
 
 

 

ifadesinin katsayısı 2

nEM , 2

nGL  ve 2 n nFL M  parantezine alınırsa 

( ) ( ) ( )

( ) ( )

( ) ( )

2

2 2 2 2 2 2

2

2 2

2

2 cos

cos 0





  − + − − −     

 + − −
 

+ − − − + =

n n n n

n n

n n n

du
P EM EG F GL EG F FL M EG F

ds

du
N QB P M EG F

ds

G N QB PFM PGL

 

elde edilir. Burada 

2
du

ds

 
 
 

 katsayısı ( )2EG F−  parantezine alınırsa  

( )

( ) ( )

( ) ( )

2

2 2 2 2

2

2 2

2

2 cos

cos 0





 
 + − −   

 

 + − −
 

+ − − − + =

n n n n

n n

n n n

du
EM GL FL M P EG F

ds

du
N QB P M EG F

ds

G N QB PFM PGL

 

bulunur. İşlem kolaylığı açısından 2 2 2+ − =n n n n nEM GL FL M A  denilirse   
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( ) ( ) ( )

( ) ( )

2

2 2 2

2 2

2 cos

cos 0





   − + − −    

+ − − − + =

n n n

n n n

du du
A P EG F N QB P M EG F

ds ds

G N QB PFM PGL

 

ikinci dereceden denklemi elde edilir. Bu denklemin kökleri bize 
du

ds
 ifadesini verir. 

Bu denklemin diskriminantı 

( ) ( )

( ) ( ) ( )

222 2 2

2 22 2

4 cos

4 cos





 = − −

 − − − − − +
 

n n n

n n n n

P M N QB EG F

A P EG F G N QB PFM PGL
 

olarak bulunur. Bu ifade düzenlenirse 

( ) ( ) ( )

( )( )

22 2 2 2

24 2

4 cos

4

   = − − − −
 

+ − − +

n n n n

n n n

P N QB EG F M EG F A G

A P EG F FM GL
 

elde edilir. Daha önce yapılan kısaltmalar bulunan diskriminantda yerine yazılırsa 

( ) ( ) ( )

( )( )

2 2
2 2 2

2
4 2

4 cos , ,

4 , ,

   =  −  − − −
  

+ − − +

n u v u v n v n n

n v n u n

P X X Q X X d EG F X d EG F A G

A P EG F F X d G X d

 

bulunur. Dolayısıyla aradığımız 
du

ds
 ifadesi  

( ) ( )
( )

2

2 2

2 cos

2

− − −  
=

−

n n n

n

N QB PM EG Fdu

ds A P EG F
 

şeklindedir.  Yukarıdaki denklemde, yapılan kısaltmalar yerine yazılırsa  

      
( )( )

( )

2

2 2

2 , cos ,

2

−  −  −  
=

−

v n u v u v n n

n

P X d X X Q X X d EG Fdu

ds A P EG F
        (5.30) 

bulunur. Burada 
2 2

n

n g

k
P

k k
=

+
,

2 2

g

n g

k
Q

k k
=

+
 ve 2 2 2= + −n n n n nA EM GL FL M  dır.  
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Şimdi benzer yolla  
dv

ds
  ifadesini bulalım. (5.27) de 

du

ds
 yalnız bırakılırsa  

( )

( )

( )

cos − +−
= −

− + − +

n nn

n n n n

PFM PGLN QBdu dv

ds PEM PFL PEM PFL ds
 

elde edilir. Bulunan 
du

ds
 ifadesinin eşiti (5.29) da yazılırsa  

( )

( )

( )

( )

( )

( )

2

2

cos

cos
2 1





 − +−
− +  − + − + 

 − +−  
− + =    − + − +   

n nn

n n n n

n nn

n n n n

PFM PGLN QB dv
E

PEM PFL PEM PFL ds

PFM PGLN QB dv dv dv
F G

PEM PFL PEM PFL ds ds ds

 

bulunur. Parantezler açılırsa 

( )

( )

( )( )

( )

( )

( )

( )

( )

( )

( )

2

2 2

2 2

2

2 2

cos cos
2

cos
2

2 1

 



− − − +
−

− + − +

− + − 
+ + 

− + − +

− +    
− + =   

− +    

n n n n

n n n n

n n n

n nn n

n n

n n

N QB N QB PFM PGL dv
E E

dsPEM PFL PEM PFL

PFM PGL N QBdv dv
E F

ds PEM PFL dsPEM PFL

PFM PGL dv dv
F G

PEM PFL ds ds

 

elde edilir. Paydalar eşitlenirse 

( )

( )

( )( )

( )

( )

( )

( )( )

( )

( )( )

( )

( )

( )

2

2 2

2 2

2 2

22

2 2

cos cos
2

cos
2

2

 



− − − +
−

− + − +

− + − − + 
+ + 

 − + − +

− + − + − + 
− + 

 − + − +

n n n

n n n n

n n n n n

n n n n

n n n n n n

n n n n

N QB N QB PFM PGL dv
E E

dsPEM PFL PEM PFL

PFM PGL N QB PEM PFLdv dv
E F

ds dsPEM PFL PEM PFL

PFM PGL PEM PFL PEM PFLdv d
F G

dsPEM PFL PEM PFL

2

1
 

= 
 

v

ds

 

bulunur. Denklemin iki tarafı ( )
2

− +n nPEM PFL  ile çarpılırsa  
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( ) ( )( )

( ) ( )( )

( )( )

( ) ( )

2

2
2

2

2
2 2

cos 2 cos

2 cos

2

 



− − − − +

 
+ − + + − − + 

 

 
− − + − +  

 

 
+ − + = − + 

 

n n n n

n n n n n

n n n n

n n n n

dv
E N QB E N QB PFM PGL

ds

dv dv
E PFM PGL F N QB PEM PFL

ds ds

dv
F PFM PGL PEM PFL

ds

dv
G PEM PFL PEM PFL

ds

 

elde edilir. 

2
dv

ds

 
 
 

 ve 
dv

ds

 
 
 

 parantezine alınırsa 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

2
2 22

2 2

2

2 cos

cos





  − + − − + − + + − +     

+ − − + − − +  

+ − = − +

n n n n n n n n

n n n n n

n n n

dv
P E FM GL F FM GL EM FL G EM FL

ds

dv
P N QB F EM FL E FM GL

ds

E N QB PEM PFL

 

bulunur. 

2
dv

ds

 
 
 

 ve 
dv

ds

 
 
 

 katsayılarında parantezleri açılıp 

2
dv

ds

 
 
 

 katsayısı 2

nEM , 

2

nGL  ve 2 n nFL M  parantezine alınarak  

( ) ( ) ( )

( )( )

( ) ( )

2

2 2 2 2 2 2

2

2 2

2

2 cos

cos 0





  − + − − −     

− − −

+ − − − + =

n n n n

n n

n n n

dv
P EM EG F GL EG F FL M EG F

ds

dv
PL N QB EG F

ds

E N QB PEM PFL

 

elde edilir. 

2
dv

ds

 
 
 

 ifadesinin katsayısı ( )2EG F−  parantezine alınırsa  

( )

( )( )

( ) ( )

2

2 2 2 2

2

2 2

2

2 cos

cos 0





 
 + − −   

 

− − −

+ − − − + =

n n n n

n n

n n n

dv
P EM GL FL M EG F

ds

dv
PL N QB EG F

ds

E N QB PEM PFL

 

elde edilir. 2 2 2+ − =n n n n nEM GL FL M A  olduğundan  
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( ) ( )( )

( ) ( )

2

2 2 2

2 2

2 cos

cos 0





 
− − − − 

 

+ − − − + =

n n n

n n n

dv dv
A P EG F PL EG F N QB

ds ds

E N QB PEM PFL

 

ikinci dereceden denklemi elde edilir. Bu denklemin kökleri bize 
dv

ds
 ifadesini verir. 

Denklemin diskriminantı bulunursa 

( ) ( )

( ) ( ) ( )

2 2* 2 2 2

2 22 2

4 cos

4 cos





 = − −

 − − − − − +
 

n n n

n n n n

P L EG F N QB

A P EG F E N QB PEM PFL
 

bulunur. *

n  düzenlenirse  

( )( ) ( )( )

( )( )

2* 2 2 2 2

24 2

4 cos

4

 = − − − −

+ − − +

n n n n

n n n

P EG F N QB L EG F A E

A P EG F EM FL
 

elde edilir. Yapılan kısaltmalar bulunan *

n  da yerine yazılırsa  

( )( ) ( ) ( )

( )( )

2 2
* 2 2 2

2
4 2

4 cos , ,

4 , ,

  
 = −  −  − − 

 

+ − − +

n u v u v n u n n

n v n u n

P EG F X X Q X X d X d EG F A E

A P EG F E X d F X d

 

elde edilir. Dolayısıyla denklemin kökleri   

( )( )
( )

2 *

2 2

2 cos

2

 − −  
=

−

n n n

n

PL N QB EG Fdv

ds A P EG F
 

ile bulunur. Daha önce yapılan kısaltmalar yerine yazılırsa 

        
( )( )

( )

2 *

2 2

2 , cos ,

2

 −  −  
=

−

u n u v u v n n

n

P X d X X Q X X d EG Fdv

ds A P EG F
      (5.31) 

 elde edilir. Burada 
2 2

n

n g

k
P

k k
=

+
,

2 2

g

n g

k
Q

k k
=

+
 ve 2 2 2= + −n n n n nA EM GL FL M  dır. 

(5.30) ve (5.31) den 
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( )( )

( )

( )( )

( )

2

2 2

2 *

2 2

2 , cos ,

2

2 , cos ,

2





 −  −  −  
 =
 −


 −  −  
 =

−

v n u v u v n n

n

u n u v u v n n

n

P X d X X Q X X d EG Fdu

ds A P EG F

P X d X X Q X X d EG Fdv

ds A P EG F

   (5.32) 

diferansiyel denklem sistemi elde edilir.  Bu diferansiyel denklem sistemi 

0 0

0 0

( )

( )

=

=

u s u

v s v
 

başlangıç noktası ile birlikte çözülüp bulunan değerler ( , )X u v  de yazılırsa S  yüzeyi 

üzerinde istenen nD -Darboux slant helis elde edilir. 

 

5.4.2. Kapalı Formda Verilen Yüzey Üzerinde nD -Darboux Slant Helisin Elde 

Edilmesi 

 ,S  3E  uzayında ( , , ) 0f x y z =  kapalı formu ile verilen bir yüzey olsun. 

( )( ) ( ), ( ), ( )s x s y s z s = , S  yüzeyi üzerinde, sabit ve birim ( ), ,nd a b c=   doğrultusu 

ile sabit   açısı yapan, Darboux çatısı  , ,T V U  olan birim hızlı bir nD -Darboux 

slant helis olsun.    eğrisini elde etmek için ( ), ( )x s y s  ve ( )z s  değerlerinin 

bulunması gerekir. 1 2,e e  ve 3 ,e  3E  uzayının standart baz vektörleri olmak üzere 

Darboux çatısının elemanları; 

, ,
 

= =  
 

dx dy dz
T

ds ds ds
, 

( )
1

, ,


= =
 

x y z

f
U f f f

f f
, 
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1 2 3
1

1
, ,

=  =


 
= − − − 

 

x y z

y z z x x y

e e e

V U T f f f
f

dx dy dz

ds ds ds

dz dy dx dz dy dx
f f f f f f

ds ds ds ds ds dsf

 

şeklindedir [15]. Bulunan V  ve U  vektörleri, 
nD  vektöründe yerine yazılırsa 

( )

2 2

2 2

( ) 1
( ) , ,

( ) ( )

( ) 1
, ,

( ) ( )

 
  = − − − − 

   +  

 
 +
 +  

n
n y z z x x y

n g

g

x y z

n g

k s dz dy dx dz dy dx
D s f f f f f f

ds ds ds ds ds dsfk s k s

k s
f f f

fk s k s

 

elde edilir.  , nD -Darboux slant helis olduğundan , cos=n nD d  dır. nd  vektörü 

ve yukarıda bulunan 
nD  vektörü yerine yazılırsa 

( ) ( )

2 2

2 2

( ) 1
, ,

( ) ( )

( ) 1
, , , , , cos

( ) ( )


 
  − − − − 

   +  

 
 + =
 +  

n
y z z x x y

n g

g

x y z

n g

k s dz dy dx dz dy dx
f f f f f f

ds ds ds ds ds dsfk s k s

k s
f f f a b c

fk s k s

 

bulunur. Burada işlem kolaylığı için 
2 2

n

n g

k
P

k k
=

+
 ve 

2 2

g

n g

k
Q

k k
=

+
 denilip ifade 

düzenlenirse 

( ) ( )

1
, ,

1
, , , , , cos

 
  − − − − 

   
 

 
 + =
 
 

y z z x x y

x y z

dz dy dx dz dy dx
P f f f f f f

ds ds ds ds ds dsf

Q f f f a b c
f

 

elde edilir. Buradaki iç çarpım işlemleri yapılırsa  



127 

 

( )

1

1
cos

 
− − + − + − 

  

+ + + =


y z z x x y

x y z

dz dy dx dz dy dx
P af af bf bf cf cf

ds ds ds ds ds dsf

Q af bf cf
f

 

bulunur. Her iki taraf f  ile çarpılırsa 

( ) cos

 
− − + − + − 

 

+ + + = 

y z z x x y

x y z

dz dy dx dz dy dx
P af af bf bf cf cf

ds ds ds ds ds ds

Q af bf cf f

, 

 bu ifade 
dx

ds
 , 

dy

ds
 ve 

dz

ds
   parantezine alınırsa 

                          
( ) ( )

( ) ( )cos

− + + −

+ − + =  − + +

z y z x

y x x y z

dx dy
Pbf Pcf Paf Pcf

ds ds

dz
Paf Pbf f Q af bf cf

ds

                     (5.33) 

elde edilir. Ayrıca , 0T U =  olduğundan  

                                                  0+ + =x y z

dx dy dz
f f f

ds ds ds
                                      (5.34) 

dır [15]. Burada 
dy

ds
 ifadesi yalnız bırakılırsa  

= − −x z

y y

f fdy dx dz

ds f ds f ds
 

bulunur. Bu ifade (5.33) de yerine yazılırsa ve işlem kolaylığı için 

( )cos x y zf Q af bf cf C − + + =  denilirse 

( ) ( ) ( )
 

− + + − − − + − + =  
 

x z
z y z x y x

y y

fdx dx f dz dz
Pbf Pcf Paf Pcf Paf Pbf C

ds f ds f ds ds
 

elde edilir. Parantezler açılırsa 
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( ) ( )
   
− + − − + − + − − =      
   

x z
z y z x y x z x

y y

f fdx dz
P bf cf af cf P af bf af cf C

f ds f ds
 

bulunur. Denklemin iki tarafı yf   ile çarpılırsa  

( ) ( )( )

( ) ( )( )

− + − −

+ − + − − =

y z y x z x

y y x z z x y

dx
P f bf cf f af cf

ds

dz
P f af bf f af cf f C

ds

 

elde edilir. Her iki taraf P   ye bölünürse  

( ) ( )( )

( ) ( )( )
1

y z y x z x

y y x z z x y

dx
f bf cf f af cf

ds

dz
f af bf f af cf f C

ds P

− + − −

+ − + − − =

 

bulunur. Bulunan denklemde 
dx

ds
 yalnız bırakılırsa  

( ) ( )
( ) ( )( )

1 1 
= − + − + − − − − −  

y y y x z z x

x z x y y z

dx dz
f C f af bf f af cf

ds P dsf af cf f cf bf
 

elde edilir. ( ) ( ) 0− − − =  x z x y y z nf af cf f cf bf  denilirse 

                  ( ) ( )( )
1 1 

= − + − + − −   
y y y x z z x

n

dx dz
f C f af bf f af cf

ds P ds
                  (5.35) 

bulunur. Benzer yolla 
dy

ds
 ifadesini bulalım. (5.34) denkleminde 

dx

ds
 yalnız 

bırakılırsa 

= − −
y z

x x

f fdx dy dz

ds f ds f ds
 

bulunur. Bu ifade (5.33) de yazılırsa  

( ) ( ) ( )
 

− + − − + − + − + = 
 

y z
z y z x y x

x x

f dy f dz dy dz
Pbf Pcf Paf Pcf Paf Pbf C

f ds f ds ds ds
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elde edilir. Her iki taraf P  ye bölünürse 

( ) ( ) ( )
1 

− + − − + − + − + = 
 

y z
z y z x y x

x x

f dy f dz dy dz
bf cf af cf af bf C

f ds f ds ds ds P
 

olur.  
dy

ds
 ve 

dz

ds
   parantezine alınırsa 

( ) ( )

( ) ( )
1

 
− − + + − 
 

 
+ − − + + − + = 
 

y

z y z x

x

z
z y y x

x

f dy
bf cf af cf

f ds

f dz
bf cf af bf C

f ds P

 

bulunur. Bulunan bu ifadenin iki tarafı xf  ile çarpılırsa 

( ) ( )

( ) ( )
1

 − − + + −
 

 + − − + + − + =
 

y z y x z x

z z y x y x x

dy
f bf cf f af cf

ds

dz
f bf cf f af bf f C

ds P

 

elde edilir. 
dy

ds
 yalnız bırakılırsa  

( ) ( )
( ) ( )

1 1  = − − − −  − − −  
x x x y z y z

x z x y y z

dy dz
f C f bf af f cf bf

ds P dsf af cf f cf bf
 

bulunur. Burada ( ) ( ) 0− − − =  x z x y y z nf af cf f cf bf  denilirse 

                      ( ) ( )
1 1  = − − − −    

x x x y z y z

n

dy dz
f C f bf af f cf bf

ds P ds
              (5.36) 

olur.   nD -Darboux slant helisi birim hızlı olduğundan  

                                               

2 2 2

1
dx dy dz

ds ds ds

     
+ + =     

     
                                    (5.37) 

elde edilir [15]. (5.35) ve (5.36) ifadeleri (5.37) de yerine yazılırsa  
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( ) ( )( )

( ) ( )

2

2 2

1 1

1 1
1

  
− + − − −     

     + − − − − + =          

y y x y z z x

n

x x x y z y z

n

dz
f C f bf af f af cf

P ds

dz dz
f C f bf af f cf bf

P ds ds

 

bulunur. Burada kareler alınıp bulunan ifade de benzer olan ifadeler ortak çarpan 

parantezine alınırsa  

( )( ) ( )

( )( )

2
2

2 2 2 2 2 2

2

2 2 2

2

2 2 2

2 2

1
2 ( ) ( ) 1

1 1
2

1 1
( ) 1 0

   + + − + − + − +       

 − + + −
 

+ + − =


x y z x y z z x y z

n

x y z x y

n

x y

n

dz
f f f bf af f af cf cf bf

ds

dz
C f f f bf af

P ds

C f f
P

 

ikinci derece denklemi elde edilir. Bu denklemin kökleri  

( )( ) ( )
2

2 2 2 2 2 2

1 2

1
2 ( ) ( ) 1 = + + − + − + − +

  
x y z x y z z x y z

n

q f f f bf af f af cf cf bf

( )( )2 2 2

2 2

1 1
2  = − + + −

 
x y z x y

n

q C f f f bf af
P

 

2 2 2

3 2 2

1 1
( ) 1x y

n

q C f f
P

= + −


 

olmak üzere 

                                                 

2

2 2 1 3

1

4

2

q q q qdz

ds q

−  −
=                                         (5.38) 

ile bulunur. (5.38) ifadesi (5.35) ve (5.36) de yerine yazılırsa  
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( ) ( )( )

( ) ( )( )

2

2 2 1 3

1

2

2 2 1 3

1

2

2 2 1 3

1

41 1

2

41 1

2

4

2

   −  −
   = − + − − −

    
  

   −  −   = − − − −
      


 −  −

=



y y x y z z x

n

x x x y z y z

n

q q q qdx
f C f bf af f af cf

ds P q

q q q qdy
f C f bf af f cf bf

ds P q

q q q qdz

ds q

      (5.39) 

diferansiyel denklem sistemi elde edilir. Böylece 

0 0

0 0

0 0

( )

( )

( )

=

=

=

x s x

y s y

z s z

 

başlangıç noktası ile birlikte bir başlangıç değer problemi elde ederiz. Bu problemin 

çözümü bize S  üzerinde aradığımız nD -Darboux slant helisi verir. 

 

5.5. nD -Darboux Slant Helis Örnekleri 

Bu kısımda, nD -Darboux slant helislere ait örnekler verilecektir. Örnek 5.5.1 

ve Örnek 5.5.2 de yüzey üzerinde verilen bir eğrinin nD -Darboux slant helis olup 

olmadığı Sonuç 5.2.3 yardımıyla kontrol edilecektir. Örnek 5.5.3 de parametrik 

formda verilen bir yüzey üzerinde nD -Darboux slant helis elde edebilmek için 5.4.1 

bölümünde verilen yöntem uygulanmıştır. Örnek 5.4.1 de kapalı formda verilen bir 

yüzey üzerinde nD -Darboux slant helis elde edebilmek için 5.4.2 bölümünde verilen 

yöntem uygulanmıştır.  

 

Örnek 5.5.1: S  yüzeyi, 0u  olmak üzere 
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( ) ( ) ( )

( ) ( ) ( )

cos 2 ln sin 2 ln cos 2 ln ,
33 2 2

( , ) sin 2 ln cos 2 ln sin 2 ln ,
33 2 2

2 2

 
+ + 

 
 

= − + 
 
 

+ 
 

u u v
u u u

u u v
X u v u u u

u v

 

parametrizasyonu ile verilsin. =u s  ( 0s ) ve 0=v  alınarak S  yüzeyi üzerinde 

( ) ( ) ( ) ( )( ) cos 2 ln sin 2 ln , sin 2 ln cos 2 ln ,
3 33 2 3 2 2


 

= + − 
 

s s s s s
s s s s s  

eğrisi elde edilir.  

( ) ( )1 1 1
( ) cos 2 ln , sin 2 ln ,

2 2 2


  =  
 

s s s , 

dolayısıyla ( ) 1 =s  olduğundan   birim hızlıdır.   eğrisinin Darboux çatı 

elemanları  

( ) ( )( )

( ) ( )( )

( ) ( )( )

1
cos 2 ln ,sin 2 ln ,1

2

sin 2 ln , cos 2 ln ,0

1
cos 2 ln ,sin 2 ln , 1

2


=

= −

= −

T s s

V s s

U s s

 

olarak bulunur. Ayrıca  

( ) ( )

( ) ( )

1 1
sin 2 ln , cos 2 ln ,0

1 1
sin 2 ln , cos 2 ln ,0


 

 = − 
 

 
 = − 

 

s s
s s

U s s
s s

 

olduğundan                                                                                                                                                        
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, 0

1
,

1
,











= =

= = −

= − =

n

g

g

k U

k V
s

U V
s

 

elde edilir. Bulunan değerler (5.16) da yerine yazılırsa 1 = =n sabit  olduğundan   

eğrisi S  yüzeyi üzerinde bir nD  -Darboux slant helistir. Ayrıca Sonuç 5.2.6 

gereğince   eğrisi bir helistir. S  yüzeyi ve seçilen   eğrisi Şekil 5.5.1 de 

gösterilmiştir. 

 

Şekil 5.5.1 

( ) ( ) ( )

( ) ( ) ( )

cos 2 ln sin 2 ln cos 2 ln ,
33 2 2

( , ) sin 2 ln cos 2 ln sin 2 ln ,
33 2 2

2 2

 
+ + 

 
 

= − + 
 
 

+ 
 

u u v
u u u

u u v
X u v u u u

u v

 yüzeyi 

üzerindeki  

( ) ( )

( ) ( )

cos 2 ln sin 2 ln ,
33 2

( )

sin 2 ln cos 2 ln ,
33 2 2



 
+ 

 =
 

− 
 

s s
s s

s
s s s

s s

 denklemli nD  -Darboux slant helis 
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Örnek 5.5.2: S  yüzeyi 
1 1

( , ) sin cos , cos sin , 1
2 2 2

 
= + + + 
 

u
X u v u v u v   

parametrizasyonu ile verilsin. 0=v  alınırsa S  yüzeyi üzerinde 

1 1
( ) sin 1, cos , 1

2 2 2


 
= + + 
 

s
s s s  eğrisi elde edilir. 1 =  olduğundan   

eğrisi birim hızlıdır.   eğrisinin Darboux çatı elemanları 

2

2

2

1
(cos , sin ,1)

2

1
(cos sin ,1 cos ,sin )

2 1 cos

1
( 1,0,cos )

1 cos


= −

= +
+

= −
+

T s s

V s s s s
s

U s
s

 

olarak bulunur. Ayrıca 

( )

( )
( )3

2 2

1
sin ,cos ,0

2

1
cos sin ,0, sin

1 cos



  = −

 = − −

+

s s

U s s s

s

 

olduğundan 

( )

2

2

2

2

sin
,

2 1 cos

cos
,

1 cos

sin
,

2 1 cos











= =
+

= = −
+

= − =
+

n

g

g

s
k U

s

s
k V

s

s
U V

s

 

elde edilir. Bulunan değerler (5.16) da yazılırsa 1 = − =n sabit  olur. Dolayısıyla   

eğrisi S  yüzeyi üzerinde bir nD  -Darboux slant helistir. Ayrıca Sonuç 5.2.6 

gereğince   eğrisi bir helistir. S  yüzeyi ve   eğrisi Şekil 5.5.2 de gösterilmiştir. 
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Şekil 5.5.2. 
1 1

( , ) sin cos , cos sin , 1
2 2 2

 
= + + + 
 

u
X u v u v u v  yüzeyi üzerindeki 

          
1 1

( ) sin 1, cos , 1
2 2 2


 

= + + 
 

s
s s s  denklemli nD  -Darboux slant helis 

 

Örnek 5.5.3: S  yüzeyi 
1 1

( , ) cos , sin , 2
2 2 2

 
= − 
 

u
X u v u u v  parametrizasyonu 

ile verilsin. Bu yüzey üzerinde normal ve geodezik eğrilikleri 
1

2
=nk , 0=gk  olan 

ve nD  vektörü, sabit (0,0,1)=nd  doğrultusu ile 
4


 =  açısı yapan nD -Darboux 

slant helisi 5.4.1 bölümünde verilen metotla bulalım. 

1 1 1
sin , cos , ,

2 2 2

(0,0, 2)

 
= − 
 

= −

u

v

X u u

X

 

olduğundan  
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2

2 2

2(cos ,sin ,0), 2

, 1, , 2, , 4,

1
2, , , , 2,

2

2 2, 0

 = −  =

= = = = − = =

− = = = = = −

= − + = =

u v u v

u u u v v v

n u r n v r

n n n n n

X X u u X X

E X X F X X G X X

EG F L X d M X d

A EM FL M GL B

 

olarak bulunur. Ayrıca 
2 2 2 2

1, 0= = = =
+ +

gn

n g n g

kk
P Q

k k k k
 olduğundan bulunan tüm 

değerler yerine yazılırsa 0 =n  ve * 8 =n  olur. Dolayısıyla  

1

2 2 2 2

8


=


 =


du

ds

dv

ds

 

elde edilir. Bu diferansiyel denklemler, ( )  ifade negatif kabul edilip çözülürse,  

1 2,c c  integrasyon sabiti olmak üzere 

1

2

= +

=

u s c

v c
 

bulunur. Özel olarak  1 2 0= =c c  kabul edilirse =u s  ve 0=v  elde edilir. Bulunan 

bu değerler yüzeyin parametrik denkleminde yazılırsa, S  yüzeyi üzerinde  

1 1
cos , sin ,

2 2 2


 
=  
 

s
s s  

nD -Darboux slant helisi elde edilir. S  yüzeyi üzerindeki   nD -Darboux slant 

helisin şekli Şekil 5.5.3 deki gibidir. Bu örnekte [26] nolu referanstan 

faydalanılmıştır. 
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Şekil 5.5.3: 
1 1

( , ) cos , sin , 2
2 2 2

 
= − 
 

u
X u v u u v  yüzeyi üzerinde normal eğriliği 

1

2
=nk , geodezik eğriliği 0=gk  olan ve (0,0,1)=nd  doğrultusu ile 

4


 =  açısı yapan 

nD -Darboux slant helis 

 

Örnek 5.5.4: 
2 2( , , ) 0= + − =f x y z x y z  kapalı formu ile verilen paraboloid yüzeyi 

üzerinde eğrilikleri 
1

2
=nk ,  0 =g  olan ve (0,0,1)=nd  doğrultusu ile 

3


 =  açısı 

yapan nD -Darboux slant helisi 5.4.2 bölümünde verilen yöntemle bulalım. Gerekli 

hesaplamalar yapılırsa  

1=P , 0=Q , 2 , 2 , 1= = = −x y zf x f y f , 

2 24( ) 1 = + +f x y , 2 21
4( ) 1

2
= + +C x y , 2 24( ) = − +n x y , 

1 2 2

1
1

4( )
= +

+
q

x y
,  2 0=q ,  3 2 2

1 3

16( ) 4
= −

+
q

x y
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bulunur. Bulunan değerler (5.39) da yazılırsa  

2 2
2 2

2 2 2 2

2 2
2 2

2 2 2 2

2 2

2 2

1 12( ) 1
2 4( ) 1

4( ) 16( ) 4

1 12( ) 1
4( ) 1 2

4( ) 16( ) 4

12( ) 1

16( ) 4

  + −
 = + + + 

+ + +   


  + −
= − + + − 

+ + +   


+ −
=  + +



dx x y
x y x y

ds x y x y

dy x y
x x y y

ds x y x y

dz x y

ds x y

 

diferansiyel denklem sistemi elde edilir. Bu diferansiyel denklem sistemi karmaşık 

olduğundan eğrinin parametrik denklemi elde edilememiş olsa da bu sistem için 

Matlab programında (0, 1,1)= −P  başlangıç noktası ile ‘ode45’ komutu kullanılırsa 

aranan eğrinin grafiği Şekil 5.5.4 deki gibi elde edilir.  

 

Şekil 5.5.4: 2 2 0+ − =x y z  yüzeyi üzerinde normal eğriliği 
1

2
=nk , geodezik eğriliği 

0=gk  olan ve (0,0,1)=nd  doğrultusu ile 
3


 =  açısı yapan nD -Darboux slant helis 
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6. SONUÇ VE ÖNERİLER  

Bu tez çalışmasında, daha önce [20] nolu referansta tanımlaması yapılan, 

fakat incelemesi yapılmayan, üç yeni yüzey eğrisi olan iD -Darboux slant helisler      

(  , ,i o n r ) üzerine çalışılmıştır. Öncelikle bu eğrileri daha kolay incelemek için üç 

yeni ortogonal çatı tanımlanmış ve bu çatılara ait türev formülleri bulunmuştur. 

Ardından bu çatılar yardımıyla 
iD -Darboux slant helisleri karakterize eden 

denklemler elde edilmiştir. 
iD -Darboux slant helisleri karakterize eden denklemler, 

tanımlanan bu çatıların eğrilikleri ile Darboux çatısının eğrilikleri arasındaki 

ilişklerden yararlanılarak eğri-yüzey ikilisinin eğrilikleri cinsinden verilmiştir. Bu 

yeni çatılar yardımıyla yüzey üzerinde yatan tüm eğrileri karakterize eden 

diferansiyel denklemler bulunmuş, bulunan bu diferansiyel denklemlerden 

yararlanılarak 
iD -Darboux slant helisleri karakterize eden diferansiyel denklemler 

elde edilmiştir. Son olarak, kapalı ve parametrik formda verilen bir yüzey üzerinde 

bulunan 
iD -Darboux slant helisleri elde edebilmek için metotlar verilip ardından bu 

metotlara ilişkin örnekler verilmiştir.  

Bu yapılan çalışmalara ek olarak, tanımlanan üç yeni ortogonal çatı ile yüzey 

üzerinde bulunan eğriler incelenebilir. Öklid uzayında yüzey üzerindeki iD -Darboux 

slant helisler ilk kez bu çalışmada incelendiğinden, burada elde edilen veriler 

ışığında bu yüzey eğrilerinin farklı özellikleri ve karakterizasyonları Öklid uzayında 

incelenmeye devam edilebilir. iD -Darboux slant helisler, burada verilen yol ve 

yöntemler yardımıyla başka uzaylarda da çalışılıp incelenebilir. Ayrıca bu çalışma, 

başka uzaylardaki farklı eğri ve yüzey tiplerine göre çalışmalar yapılmasına öncülük 

edebilir. 
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