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Damisman: Dog. Dr. Hiiseyin KOCAYIGIT
Bu tez ¢alismasi, alt1 boliimden olusmustur.

Birinci boliim tezin girig bolimiidiir. Bu boliimde, 6zel egriler ve ylizey
tizerindeki 6zel egriler ile ilgili literatiir bilgisi ve bu tezde yapilanlar hakkinda
kisaca bilgi verilmistir.

Ikinci boliimde, 3-boyutlu Oklid uzaymnda egriler ve yiizeyler teorisine ait
temel kavramlar verilmistir.

Tezin orjinal kisimlarmdan biri olan ti¢iincii boliimde, yiizey tizerindeki D, -
Darboux slant helisler incelenmistir. Oskiilator Darboux catis1 tanimlanmis ve tiirev
formiilleri bulunmustur. Bu cati kullanilarak bir egrinin D, -Darboux slant helis olma
sartt verilmistir. Oskiilatéor Darboux c¢atisina gore D, -Darboux slant helislerin

diferansiyel denklem karakterizasyonlar1 verilmistir. Ayrica parametrik ve kapali
formda verilen bir yiizey iizerinde D, -Darboux slant helis elde etmek igin birer

yontem bulunmus ve 6rnekler verilmistir.

Tezin orjinal kisimlarindan olan dordincii béliimde, yiizey iizerinde D, -
Darboux slant helisler incelenmistir. Rektifiyan Darboux ¢atis1 tanimlanmis ve tiirev
formiilleri bulunmustur. Bu ¢ati kullanilarak bir egrinin D, -Darboux slant helis olma
sartt verilmistir. Rektifiyan Darboux c¢atisina gére D, -Darboux slant helislerin

diferansiyel denklem karakterizasyonlar1 bulunmustur. Daha sonra parametrik ve
kapali formda verilen bir yiizey tizerinde D, -Darboux slant helis elde etmek i¢in

birer yontem bulunmus ve 6rnekler verilmistir.

Tezin bir diger orijinal kismi olan besinci béliimde, yilizey tizerinde D, -
Darboux slant helisler incelenmistir. Normal Darboux ¢atis1 tanimlanmis ve tiirev
formiilleri bulunmustur. Bu ¢ati kullanilarak bir egrinin D, -Darboux slant helis olma
sartt verilmistir. Normal Darboux ¢atisma gore D, -Darboux slant helislerin

diferansiyel denklem karakterizasyonlari bulunmustur. Son olarak, parametrik ve
kapali formda verilen bir yiizey iizerinde D, -Darboux slant helis elde etmek i¢in

birer yontem bulunmus ve 6rnekler verilmistir.
Altinc1 boliimde, sonug ve dneriler verilmistir.

Vil



Anahtar Kelimeler: Darboux catisi, Oskiilator Darboux ¢atisi, rektifiyan Darboux
catis1, normal Darboux catisi, D, -Darboux slant helis, D, -Darboux slant helis, D, -

Darboux slant helis.
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This thesis consists of six chapters.

First chapter is introduction. In this chapter, literature review about special
curves and special curves on surface and some information about this thesis is given.

In chapter two, basic concepts of the theory of curves and surfaces in 3-
dimensional Euclidian space are given.

In chapter three, which is one of the original parts of the thesis, the D, -

Darboux slant helices on the surface are examined. The osculator Darboux frame is
defined and derivative formulas are found. Using this frame, the condition for a
curve to be a D,-Darboux slant helix is given. Differential equation characterizations

of D,-Darboux slant helices according to the osculator Darboux frame are given.
Additionally, a method to obtain a D, -Darboux slant helix on a given surface in
parametric and implicit form is found and examples are given.

In chapter four, which is one of the original parts of the thesis, the D, -Darboux

slant helices on the surface are examined. The rectifying Darboux frame is defined
and derivative formulas are found. Using this frame, the condition for a curve to be a

D, -Darboux slant helix is given. Differential equation characterizations of D, -

Darboux slant helices according to the rectifying Darboux frame are given. Later, a
method to obtain a D, -Darboux slant helix on a given surface in parametric and

implicit form is found and examples are given.

In chapter five, which is another original parts of the thesis, the D, -Darboux
slant helices on the surface are examined. The normal Darboux frame is defined and
derivative formulas are found. Using this frame, the condition for a curve to bea D, -
Darboux slant helix is given. Differential equation characterizations of D, -Darboux
slant helices according to the normal Darboux frame are given. Finally, a method to
obtain a D, -Darboux slant helix on a given surface in parametric and implicit form is

found and examples are given.
In chapter six, results and recommendations are given.
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1.GIRiS

Egriler teorisi, bircok alanda yaygin bir sekilde kullanilmasindan dolay1
diferansiyel geometride hala ilging konulardan biridir ve bircok matematikei
tarafindan calisilmaktadir. Egriler teorisinde en c¢ok ilgi ¢eken konulardan biri ise
bazi 6zel egriler olup bu egrilerden en meshur ve en kullanisli olanlar1 helisler ve
slant helislerdir. Helisler ve slant helisler, dogada ve bilimde siklikla karsilastigimiz,
bilgisayar destekli geometrik tasarimdan fraktal geometriye, kinematikten DNA
ciftlerine, genis bir kullanim alanina sahip olan egrilerdir. Helis egrileri, tegetleri
sabit bir dogrultuyla sabit a¢1 yapan egriler olarak tanimlanmustir [1]. Izumiya ve
Takeuchi helislere benzer sekilde asal normal vektorleri sabit bir dogrultuyla sabit
ac1 yapan egriler olarak slant helisleri tanimlamiglar ve karakterizasyonlarini
vermisglerdir [2]. Yakin zamanlarda E. Ziplar, A. Senol ve Y. Yayli, Frenet ¢atisinin
Darboux ani donme vektorii sabit bir dogrultu ile sabit ac1 yapan 6zel egriyi Darboux
helis olarak tanimlamis ve bu egri i¢in karakterizasyonlar1 vermislerdir [3]. Daha
sonra bu li¢ helis ¢esidi iizerine matematikgiler bir¢ok calismalar yaptilar ve bu
calismalar sadece Oklid uzaylarinda degil ayn1 zamanda Minkowski uzaylarinda da
yapildi [4-10].

Diferansiyel geometrinin en 6nemli ¢alisma alanlarindan biri de ylizeyler
tizerindeki Ozel egrilerdir. Yiizey lizerinde kalan ozel egrilerin belirlenmesi ¢ok
onemli problemlerden biridir ve bu egriler de bilimin farkli alanlarinda kullanim
alanlarina sahiplerdir. Bu 6nemine binaen yiizey lizerindeki farkli 6zel egrilerin
incelenmesi hem geometri hem de geometri ile ¢ok yakindan iligkili olan fizik,
astronomi, miihendislik gibi bilimler agisindan ¢ok Onemlidir. Baz1 6zel uzay
egrilerinin karakterizasyonlar1 ylizeyler lizerinde de incelenebildigi gibi bu egrilerden
farkli olarak yiizey lizerinde kalan baska 6zel egriler de egri-ylizey ikilisinin catisi
olarak bilinen Darboux catis1 ile tanimlanmis ve incelenmistir. Yiizey ilizerindeki
helisler J. Puig-Pey ve ark. tarafindan incelenmis ve konum vektorleri verilmistir
[11]. Bu egrilerden bir digeri, fizikte optik konusunda énemli bir yere sahip olan
isophote egrileridir. Bu egrilerin geometrik tanimi F. Dogan ve Y. Yayl tarafindan
yapilmis ve karakterizasyonlarina iliskin incelemeler de hem Oklid hem de Lorentz

uzaylarinda ayrintili olarak incelenmistir [12-14]. Benzer diislinceyle son yillarda N.



Macit ve M. Diildil, yiizey tizerinde bir diger 6zel egriyi relatively normal-slant helis
ismi ile tanimlamig ve bu egrilerin geometrisini incelemiglerdir [15]. Yadav, A., &
Pal, B. relatively normal-slant helisleri, konum vektorlerinin bulundugu diizleme
gore incelemis ayrica iSophote egrilerinin konum vektorlerini vermislerdir [16]. E.
Nesovica ve ark. Minkowski 3-uzayinda null olmayan relatively normal-slant
helisleri incelemislerdir [17]. A. Yadav ve ark. Minkowski 3-uzayinda relatively
normal-slant helislerin karakterizasyonlarini inceleyip slant helislerle iliskilerini

vermislerdir [18].

Bununla birlikte S. Hananoi, N. Ito ve S. Izumiya, yiizey egrileri iizerinde ii¢

yeni vektdr alam tamimladilar [19]. M. Onder, bu ii¢ yeni vektorii dikkate alarak
yiizey {izerinde ti¢ yeni ozel egri tanimladi; i e{o,n,r} ve o,n,r indisleri sirasiyla
yiizey lizerindeki egrinin oskiilator, normal ve rektifyan diizlemlerini temsil etmek

tizere bu egrileri D, -Darboux slant helisler olarak isimlendirdi ve baglantili helis

olarak tanimladig1 yeni bazi helis tiirleri ile bu ylizey egrilerinin iliskisini ortaya
koydu [20].

Bu tezin amaci, M. Onder tarafindan tanimlanan D, -Darboux slant helislerin

karakterizasyonlarini detayli incelemek ve geometrik 6zelliklerini ortaya koymaktir.
Oncelikle bu egrileri daha kolay incelemek igin ii¢ yeni ortogonal ¢at1 tanimlanacak

ve bu catilara ait tiirev formiilleri bulunacaktir. Ardindan bu ¢atilar yardimiyla D, -
Darboux slant helisleri karakterize eden denklemler bulunacaktir. Sonra, D, -Darboux

slant helisleri karakterize eden denklemler, tanimlanan bu ¢atilarin egrilikleri ile
Darboux ¢atisinin egrilikleri arasindaki iliskilerden yararlanilarak egri-yiizey
ikilisinin egrilikleri cinsinden verilecektir. Daha sonra, bu yeni c¢atilar yardimiyla
ylizey lizerinde yatan egrileri karakterize eden diferansiyel denklemler bulunup bu

denklemlerden yararlanilarak D, -Darboux slant helisleri karakterize eden

diferansiyel denklemler bulunacaktir. Son olarak, kapali ve parametrik formda

verilen bir ylizey iizerinde bulunan D, -Darboux slant helisleri elde etmek igin

metotlar verilip sonrasinda 6rnekler verilecektir.



2. GENEL BILGILER

Bu boliimde Oklid uzaymda egriler ve yiizeyler teorisi ile ilgili temel

kavramlar verilecektir.

2.1. Egriler I¢in Temel Kavramlar

Tamm 2.1.1: E" uzayinda iki vektor p=(p,, P, Py, Py ) V€ §=(0, 0, s, 0)

olmak iizere
(P.0) = PG, + PoGy + PGs + ...+ PG,
esitligi ile tanimlanan fonksiyona Oklid i¢ ¢arpimi denir [21].

Tanmm 2.1.2: E" uzayinda bir vektor p :( P Psy Payeens pn) olmak iizere
[pl=(p.B)
esitligi ile tanimlanan fonksiyona E" uzayinda norm denir [21].

Tamm 2.1.3: E® uzayinda iki vektdr p=(p,, p,, p;) Ve §=(0,,0,,0;) olmak iizere

p ve ¢ vektorlerinin vektorel garpimi

pxq= ( PG — Pslzs Psth — PGy PG, — pqu)
seklinde tanimlidir [22,23].

Tamm 2.1.4: E" nin her bir p noktasinda f:E"— IR fonksiyonunun her
basamaktan kismi tiirevleri varsa f fonksiyonu C” swunifindandir veya diizgiin

fonksiyondur denir [21].

Tammm 2.1.5: |, IR nin bir agik araligi olmak iizere «r:l c IR—E" bigiminde

diizgiin bir @ doniisiimiine E" uzayinda bir egri denir [21].



Tamm 2.1.6: a1 cIR—E’ egrisi i¢in her tel igin o'(t)#0 ise a egrisine

regiiler egri denir [21,23].

Tamm 2.1.7: 1 c IR— E®egrisi igin her sel igin ‘

a'(s)Hzl iSe « egrisine

birim hizli egri denir. Bu durumda s e | parametresine o egrisinin yay parametresi
ad1 verilir [22,23].

Tammm 2.1.8: E® uzayinda birim hizh a:1 cIR—E? egrisi i¢in T(s)=a'(s)
esitligi ile belirli T(s) vektoriine, & egrisinin a(s) noktasindaki birim teget vektorii

denir [21].

Tamm 2.1.9: E* uzayinda birim hizli o:1 < IR — E® egrisi i¢in x(S) :‘

f’(S)H ile
tanimlt «: 1 — R fonksiyonuna « egrisinin egrilik fonksiyonu denir. x(s) degerine
egrinin «(S) noktasindaki egriligi veya birinci egriligi denir [21].

Tamm 2.1.10: E® wuzaymda birim hizh a:lcIR—E® egrisi igin

N(s):if '(s) esitligi ile belirli N(s) vektdriine, & egrisinin (s) noktasimdaki

x(S)

asli normal vektorii denir [21].

Tamm 2.1.11: E® uzaymda birim hizh «a:1cIR—>E® egrisi icin
B(s) =T (s)x N(s) esitligi ile belirli B(s) vektoriine, ¢ egrisinin ¢(S) noktasindaki
binormal vektori denir [21].

Tamm 2.1.12: T(s), N(s), B(s) vektorlerine ol c IR—E® egrisinin  (s)

noktasindaki Frenet vektorleri denir. {f(s), N(s), B(S)} kiimesine & egrisinin «(S)

noktasindaki Frenet ¢atisi denir. T,N,B vektér alanlarma o egrisi tizerinde Frenet

vektor alanlar: denir [21].

Tammm 2.1.13: Birim hizli «:1 cIR—E? egrisinin Frenet vektor alanlar T,N,é

olmak tlizere

1 > IR, 7(s)=—(B'(s), N(s))



fonksiyonuna « egrisinin burulma fonksiyonu denir. z(s) degerine de egrinin «(s)

noktasindaki burulmasi veya ikinci egriligi denir [21].

Teorem 2.1.14: Birim hizli ;1 < IR — E® egrisinin Frenet vektor alanlar: T,N,B

ise
T =xN
N'=—«T +7B
B'=—zN

dir. Bu esitliklere birim hizli & egrisinin Frenet formiilleri denir [21,23,24].

Tamm 2.1.15: E® uzaymda birim hizli a:1 cIR—E® egrisinin Frenet vektor

alanlar1 T,N,B olsun. {f(s), N(S)} kiimesinin gerdigi diizleme oskiilator diizlem,

{f(s), E(S)} kiimesinin gerdigi diizleme rektifiyan diizlem, {N(S), é(s)} kiimesinin

gerdigi diizleme normal diizlem denir [21].

Tamm 2.1.16: E® uzaymda birim hizlh a:1 cIR—E® egrisinin Frenet vektor

alanlar1 T,N,B olsun. W =T +«B ile tanimh vektdre Darboux vektérii denir [22].

Tamm 2.1.17: o:1 cIR—E® egrisinin her sel igin @'(s)=T(s) teget vektorii,

sabit bir dogrultu ile sabit ag1 yapiyorsa « egrisine helis veya egilim ¢izgisi denir
[1,22,24].

Teorem 2.1.18: a: 1 — IR — E? egrisinin helis olmas: igin gerek ve yeter sart her

z(s)

sel igin E fonksiyonunun sabit olmasidir [1,22,24].
K

Tamm 2.1.19: o:1 c IR—E® egrisinin her sel igin N(s) asli normal vektorii,

sabit bir dogrultu ile sabit ag1 yapiyorsa « egrisine slant helis denir [2].

Teorem 2.1.20: «: 1 < IR — E? egrisinin slant helis olmasi i¢in gerek ve yeter sart

her sel igin



o= (] |

fonksiyonunun sabit olmasidir [2].

Tamm 2.1.21: 1 c IR — E3egrisinin her sel i¢in W (s) Darboux ani donme

vektort, sabit bir dogrultu ile sabit ag1 yapiyorsa « egrisine Darboux helis denir [3].

Teorem 2.1.22: (i) a:1 c IR—E?® egrisinin Darboux helis olmas1 igin gerek ve

yeter sart her Sel igin

fonksiyonunun sabit olmasidir[3].

(ii) a:1 < IR—E?® egrisinin bir Darboux helis olmasi i¢in gerek ve yeter sart «

nin bir slant helis olmasidir [3].

2.2. Yiizeyler i¢in Temel Kavramlar

Tanmmm 2.2.1: A, E? nin bir acitk alt ciimlesi olsun. X:Ac E? > E?,
X(u,v) =(x(u,v), y(u,v), z(u,v)) donligimii  asagidaki sartlar1 sagliyorsa X
dontistimiine basit yiizey veya yiizey yamast denir [21].

1) X diferansiyellenebilirdir.

2) X homeomorfizmdir.

3) X regiilerdir.
Tamm 2.2.2: S, E® uzaymn bir alt ciimlesi olsun. S nin her bir p noktas: igin
peX(A) ve X(A) cS olacak sekilde bir X : Ac E? — E? basit yiizeyi varsa S

ye E* de bir yiizey denir [21].



Tamm 2.2.3: Bir X : Ac E*> — E® basit yiizeyi igin )Zu X )ZV sifirdan farkli olacak

bicimde (u,v) € A noktasinda birim normal vektér alanit veya yiizeyin normali;

>

Xu>< v

X, %X,

U(u,v) =

Xy
X

ile tanimhidir. Burada )Zu ve )ZV sirastyla X in U ve v ye gore kismi tiirevleridir

[21].

Tamim 2.2.4: E°® de S yiizeyinin her bir p noktasina
I, T (S)xT,(S) > IR, 1,(V,,W,)=(V

fonksiyonunu karsilik getiren 1, fonksiyonuna, S yiizeyi iistiinde birinci temel form

denir. Burada T,(S), p noktasinda S yiizeyine teget vektorlerin kiimesidir. Birinci

temel form, E=<XU,XU> : F=<XU,XV> ve G=<)?V,>ZV> olmak iizere

| = Edu? + 2Fdudv + Gdv?

ile tanimhidir. Buradaki E,F,G fonksiyonlarina yiizeyin birinci temel form
katsayilar: denir [21,24].

Tamm 2.25: E® de bir S yizeyi X(u,v)=(x(u,v),y(u,v),z(u,v))
parametrizasyonu ile verilirse S yiizeyi iizerindeki birim hizli bir egri igin
a(s) = X (u(s),v(s)) yazilabilir. Bdylece a egrisinin a(s) noktasindaki teget

vektori

da _ du+~ dv
ds “ds Y ds

olur. & birim hizli oldugundan

2 2
E d_u +2Fd—u%+G ﬂ =1
ds ds ds ds

bulunur [15].



Tamm 2.2.6: E® de bir S yiizeyi f(x,y,z2)=0 kapal formu ile verilsin. Bu

taktirde S yiizeyi iginde yatan birim hizli «(S) = (X(S), y(s), Z(S)) egrisi i¢in

fX%+ ﬂ+f2$:0
ds Yds ds

ve

2 2 2
DEORER
ds ds ds
esitlikleri saglanir [15].

Tamm 2.2.7: E® de bir S yiizeyi iizerinde birim hizli bir ;1 — S egrisi verilsin.
Yiizeyin dik birim normal vektor alam U olsun. o egrisinin birim teget vektor alani
T olmak iizere V=UxT esitligi ile tanimli vektdr alammi gdz oniine alalim.

Vektorel g¢arpimin 6zelliklerinden {'I:(S),V(S),U(S)} kiimesi «(S) noktasindaki

TD{(S)E3 teget uzaymin bir ortonormal tabani olur. Bu tabana (a,S) egri-ylizey

ikilisinin ¢atis1 veya Darboux ¢atist denir [21].

Tammm 2.2.8: o:1 —> S birim hizli bir egri ve Darboux catisinin vektdr alanlari

T,V,U olsun.
ky(s)=(a"(s),U (s))

esitligi ile belirli k, (s) fonksiyonuna, («,S) egri-yiizey ikilisinin a/(s) noktasindaki

normal egriligi denir [21].

Tanmm 2.2.9: o:1 — S birim hizli bir egri ve Darboux catisinin vektdr alanlar

T,V,U olsun.
ky(3)=(a"(s).V (3))

esitligi ile belirli k,(s) fonksiyonuna, (a,S) egri-yiizey ikilisinin  (s)

noktasindaki geodezik egriligi denir [21].



Tanmm 2.2.10: a:1 — S birim hizli bir egri ve Darboux catisinin vektor alanlar

T,V,U olsun.
7,(8)=-(U'(s).V (5))
esitligi ile belirli z,(s) fonksiyonuna, (a,S) egri-ylizey ikilisinin a(S) noktasindaki
geodezik burulmas: denir [21].
Tamm 2.2.11: a:1 cIR—S birim hizhh bir egri olmak iizere K, k, ve 7,

fonksiyonlarina (a, S) ikilisinin egri-yiizey ikilisinin egrilikleri denir [21].

Tammm 2.2.12: U, S yiizeyi iizerinde birim dik vektér alani olmak tizere S nin bir

p noktasinda

S,(v,)=-D, U

Vp

esitligi ile tanimlt S, : T (S) —T,(S) fonksiyonuna, S yiizeyinin p noktasinda, u
birim dik vektor alanina bagl sekil operatorii denir. Burada Dvplj, U vektoriiniin

V, vektorii yoniindeki kovaryant tiirevidir [21].

Tamm 2.2.13: i) S yiizeyinin bir p noktasinda, S, :T,(S)—>T,(S) lineer

doniisiimiiniin 6z degerlerine, p noktasindaki asli egrilikler denir.

i) S,:T,(S)—>T,(S) lineer doniisiimiiniin sifirdan farkli 6z vektorlerine p

noktasindaki asli vektorler veya egrilik vektorleri denir.
i) v, =0 ve <S(\7p),\7p> =0 ise V, vektoriine, p noktasinda bir asimptotik vektér

denir [21].

Tamim 2.2.14: S, E® de bir yiizey ve a: | < IR — S bu yiizey iizerinde kalan bir

egri olsun.

i) Her tel icin &'(t) hiz vektorii, a(t) noktasinda S ylizeyinin bir egrilik

vektorli ise @ egrisine, S yiizeyi lizerinde bir egrilik ¢izgisi denir.



i) Her tel i¢in o'(t) hiz vektorli, «(t) noktasinda S yiizeyinin bir
asimptotik vektorii ise @ egrisine, S yiizeyi iizerinde bir asimptotik egri
denir.

i) S yiizeyinin « egrisi boyunca birim dik birim normal vektdr alani Ua
olmak tizere a" vektor alani, Ua vektor alaninin lineer bilesimi ise o

egrisine, S yiizeyi lizerinde bir geodezik egri denir [21].

Teorem 2.2.15: S, E® de bir yiizey ve a:l IR —S bu yiizey iizerinde kalan

birim hizli bir egri olsun.

I) « egrisinin asimptotik egri olmasi i¢in gerek ve yeter sart K, =0 olmasidur.
i) « egrisinin geodezik egri olmasi igin gerek ve yeter sart k; =0 olmasidir.
i) a egrisinin egrilik ¢izgisi olmas igin gerek ve yeter sart 7, =0 olmasidir
[21,23].
Tanmm 2.2.16: a1 < IR— S egrisinin birinci egriligi «, ikinci egriligi r ve egri-

yiizey ikilisinin egrilikleri K, ,k, ve 7, arasinda

K’ =ki+kl, ky=xcosg, Kk =xsing, r,=r-¢ (2.1)

bagmtilar1 vardir. Burada ¢, Frenet catismin B binormal vektorii ile V] ylizey

normali arasindaki acidir [14].
Tanmm 2.2.17: a:1 cIR—> S, S yiizeyi iizerinde birim hizli bir egri ve Darboux
catisinin vektor alanlart T,V,U ve egri-yiizey ikilisinin egrilikleri K, k, ve z,

olsun. Darboux ¢atisinin tiirev formiilleri

T' =KV +kU
V'=—kT+z0 (22)
U'= —knf—rg\7

seklindedir [14,15,23].

Tanmm 2.2.18: a: 1 cIR—>S, S yiizeyi lizerinde birim hizli bir egri olsun. «

egrisinin Darboux ¢atisi ile Frenet ¢atis1 arasindaki iligkiler
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N =cosgV +singU
B =—singV +cosgU

ve

-I__'

cosgN —sing B
U =singN +cos¢B

< —
Il I

seklindedir. Burada ¢, B binormal vektorii ile U yiizey normali arasindaki agidir

[14].

Tammm 2.2.19: E® de bir S yiizeyi iizerinde birim hizli bir &:1 IR — E® egrisi
verilsin. @ nin Darboux ¢atis {f,V,U} olsun. a egrisi boyunca yiizeyin U birim
normali, sabit bir dogrultu ile sabit ag1 yapiyorsa « egrisine S yiizeyi iizerinde
isophote egrisi denir [14].

Teorem 2.2.20: a¢:1 cIR—S, S yiizeyi ilizerinde birim hizli bir egri olsun. «
egrisinin Darboux catis1 {f,V,U} ve egri-yiizey ikilisinin egrilikleri Kk, k, ve 7,

olsun. « egrisinin isophote egrisi olmasi i¢in gerek ve yeter sart her se | igin

o,(s)== k—nz?,lz(r_g} +k—guz (s)
(k2+2'§) k (kf+r§)

fonksiyonunun sabit olmasidir. Burada k, #0 dir [14].

Tamm 2.2.21: E® de bir S yiizeyi iizerinde birim hizli bir ;1 < IR — E® egrisi

verilsin. & nin Darboux catisi {f,V,U} olsun. @ min V vektdr alanmi sabit bir

dogrultu ile sabit ag1 yapiyorsa o egrisi, S ylizeyi lizerinde relatively normal-slant
helis olarak adlandirilir [15].

Teorem 2.2.22: a:1 cIR—E?®, S yiizeyi iizerinde birim hizli bir egri olsun. &

egrisinin Darboux catis1 {f,V,U} ve egri-yiizey ikilisinin egrilikleri k,, k, ve 7,

11



olsun. a egrisinin relatively normal-slant helis olmasi i¢in gerek ve yeter sart her

sel icin

0,(s)= ﬁz)yz(fékg Kz —ky (K +25)) |(9)
g

9

fonksiyonunun sabit olmasidir. Burada (z,,k, ) #(0,0) dir [15].

g’y

Tanmm 2.2.23: a: 1 cIR—> S, S yiizeyi lizerinde birim hizli bir egri ve Darboux

catisinin vektor alanlart T,V,U ve egri-yiizey ikilisinin egrilikleri K, k, ve z,

olsun. o egrisi boyunca

D, (s) =17, (S)T (s) =k, (S)V(s),
D, (s) =k, (SV (s) + K, (S)U (s), (2.3)
D, (s) =7, ()T (5) + K, (s)U (s)

ile tanimli vektor alanlarina siwrasiyla oskiilatér Darboux vektér alani, normal

Darboux vektor alani, rektifiyan Darboux vektor alani denir [19].

Tanmm 2.2.24: a:lcIR—>S , S yiizeyi iizerinde Ijo(s) , D (s) ve D,(s)
Darboux vektorlerine sahip birim hizli bir egri olsun. i e{o,n, r} olmak iizere, Iji
Darboux vektor alani birim ve sabit CTi dogrultusu ile sabit € agis1 yapiyorsa yani

<[~)i,(§i>:c056'i ise o egrisine D, -Darboux slant helis denir [20].

12



3. YUZEY UZERINDE D,-DARBOUX SLANT HELiSLER

Bu boliimde, E® uzayinda bir S yiizeyi iizerinde kalan ve yeni bir ozel
yiizey egrisi olan D_-Darboux slant helis incelenecektir. Bu 6zel egriyi daha kolay

incelemek icin ilk olarak oskiilator Darboux catisi ve tiirev formiilleri verilecektir.

Daha sonra bu yeni ¢at1 yardimiyla D_-Darboux slant helisler i¢in karakterizasyonlar

verilecektir. Son olarak, parametrik ve kapali formda verilen bir S ylizeyi tizerinde
D, -Darboux slant helis elde edebilmek i¢in birer yontem verilip ardindan 6rnekler

verilecektir.

3.1. Yiizey Egrileri Icin Oskiilatér Darboux Catisi

S bir yiizey olsun. a:l cIR—S bu yiizey iizerinde kalan birim hizli,
{f,V,U} Darboux catisina, K ,k,,z, egriliklerine ve I50(s):rg(s)f(s)—kn(s)V(S)

g’ ™n

oskiilatér Darboux vektoriine sahip bir egri olsun. Bu taktirde,
D, (5) =7, (S)T(s) ~k,(S)V (5)
vektorli normlanirsa

YOO k()

o By
B, () Je2©)+K2(s) ° rgg+ﬁ@)(9

[_jo(s) = ‘

—

elde edilir. D, vektorii T ve V nin gerdigi diizlemde oldugundan U vektoriine
diktir. Dolayistyla Y, = D, xU birim vektériiniin tanimlanmast ile yiizey iizerindeki

a egrisi boyunca yeni bir ortonormal ¢ati olan {Ijo,lj,\fo} catisini elde edilir.

Tanmm 3.1.1: Yukaridaki sekilde tanimlanan {IjO,U,Y;} catisina S ylizeyi lizerinde

a egrisinin oskiilator Darboux ¢atist veya kisaca OD-¢atis: denir.

Simdi bu gat1 i¢in tiirev formiillerini verelim.
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Teorem 3.1.2: S bir yiizey ve a: | IR —> S bu yiizey tizerinde yay parametresi S

olan ve OD-catisina sahip birim hizli bir egri olsun. OD-¢atisinin vektor alanlar

I:#)O,LJ,YQO ve egrilikleri J,, u, olmak lizere, OD-¢atisinin tiirev formiilleri
D(; = _50 _;)
L_j, = ﬂoY_; (3.1)
Y:), =0, _:UOU

2 ’
seklindedir. Burada &, =[ K, }[:(-_g] +k, ve g, =k’ +7,7 dir.

2 2
K, +7, |

ispat: 5;, {IjO,U,YE} catisinin elemanlarinin lineer birlesimi olarak yazilabilir.

Yani
D; =a,D, +a,U +ay, (3.2)

yazilir. Burada a =a,(s),1=(12,3), s in diferansiyellenebilir fonksiyonlaridir.

(3.2) ifadesinin her iki yani [30 vektort ile i¢ garpilirsa

(5,,5,)=a,(5,,5,)+2, (B, 0)+a,(5,.7,)

—

bulunur. <[3O, [30>=1 ve <I30,lj> :<I50,\70> =0 oldugundan <|3(;, D0>=a1 dir. Diger
taraftan <I30, I30>=1 esitliginin tiirevi alinirsa <l§;, Do>:0281 bulunur. (3.2)

ifadesininin iki yani U vektorii ile i¢ carpilirsa

(o]

bulunur. <I5 ,U>:<\7,0>:O ve <U, >:1 oldugundan <D;,U>:a2 olur. Ote

- - T
yandan (D,,-V)=cos¢ olmak iizere, D, vektdrinde ——2—===sing Ve
< > ’ \ /rgz +k?

K
——=—==C0S¢ olarak tanimlanirsa
75 +k?
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D, =singT —cos gV (3.3)

bulunur. (3.3) ifadesinin tiirevi alinirsa ve Darboux catisinin tiirev formiilleri

kullanilirsa

D, = (¢'+K,)cosgT + (¢ +k;)singV + (k, sing— 1z, cos g)U

- (4 : k
elde edilir. Burada ——2— =sin¢ ve ——2— =c0s¢ oldugu gdz 6niine alinirsa

2 2 2 2
7 Tk T, +K;

U vektériiniin katsayisi sifir olur. Dolayistyla

D, = (¢'+Kk,)cosgT + (¢ +k,)singV (3.4)
bulunur. Bulunan D/ vektdri, U vektorii ile i¢ carpilirsa

a, =<|3;,U>=<(¢'+kg)cos¢f+(¢'+kg)sin¢\7,U>
:(¢'+kg)cos¢<f,0>+(¢'+ k,)sin ¢<\7,U>
=0

elde edilir. Simdi de (3.2) ifadesi Y; vektort ile i¢ ¢arpilirsa
(DY) =a,(B,.Y,)+a, (U.Y, ) +a (V.. Y,)

bulunur. (B,.Y,)=(U,Y,)=0 ve <\70VO>:1 oldugundan a3:<5;,\70> elde edilir.

Boylece

. T = k - -
V=DxU=|— _T-—1_V|xU
\/ng-l-knz \/Z'g2+knz
N (fo])——k” (V xU)
7o +kd JTe+ K
k - T -
- _ n T_ 9 V
7o +k? 7o +k?

=sing ve K cos¢ oldugu kullanilirsa

b
2 2 2 2
7 Tk 7, +k;

elde edilir.
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—

Y, =—cos¢T —singV (3.5)

elde edilir. (3.4) de bulunan D vektdrii ile (3.5) de bulunan VO vektorl i¢ carpilirsa

ag:<f);,\70>:<(¢’+kg)cos¢f+(¢'+kg)sin¢\7,—cos¢f—sin¢\7>
_ ' 2 /7 5 / < 2 AT
= (¢ +k,)cos’ (T, T)— (¢ +k,)sin’ $(V.V) 8
=—(#' +k,)(cos’ p+sin® 9)
=—(¢'+k,)
bulunur. Burada ¢' nii bulmak igin, i =sing ve L:cos¢ oldugu
rg +kf 1'; +kn2

4 . .
g0z Oniine alinirsa tan ¢ = k—g bulunur. Bu ifadenin tiirevi alinirsa

n

¢'(1+tan2¢)=(i—gj

n

T
elde edilir. Bu ifadede tan¢ = k—g esitligi yerine yazilirsa

ve bu denklem diizenlenirse

' Ty ’ kn2
== 3.7
¢ (kn]£k§+T§J 3.7
bulunur. (3.7) esitligi, (3.6) da yazilirsa

AR

elde edilir. Bulunan a,,a, ve a, degerleri (3.2) denkleminde yazilirsa
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B/ = o ) [k Tk |V (3.8)
U VAT A '

bulunur.

Simdi U vektdriiniin  tiirevini hesaplayalim. U', {ﬁo,U,i} catisinin

elemanlarinin lineer birlesimi olarak yazilabilir. Yani
U’ =bD, +bU +hbY, (3.9)

yazilir. Burada b =b.(s), i=(1,2,3), s in diferansiyellenebilir fonksiyonlaridir. (3.9)

esitliginin her iki yan1 [30 vektort ile i¢ ¢arpilirsa
<U,1 DO> = b1<|:_jo’ [_jo>+b2 <[307U>+b3 <[_50’Y_:J>

bulunur. (D,,B,)=1 ve (B,,U)=(D,.Y,)=0 oldugundan <U',f)o>:b1 olur.

-

Darboux ¢atismin  tiirev  formiillerinden U’:—knf—TgV dir. U" ve

k

n

. T - ~
D, = : g - T- —— V' vektérleri yerine yazilirsa
\/z'g +k’ \/rg +k;

n=(0"8,)=( kT -V, e T -V
\/r§+kf \/rgz-i-kf
k.7, == (7 S
vl =\l
knrg z'gkn

elde edilir. (3.9) esitliginin her iki yan1 U vektérii ile i¢ ¢arpilirsa

0

(0"U)=b,(5,U)+b,(U,U)+b,(¥,U)
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bulunur. <I30,U>:<VO,U>:O ve <U,U>:1 oldugundan b2:<U',U> olur. Ote
yandan <U,U> =1 ifadesinin tiirevi alinirsa <U',U> =0=Dh, elde edilir. (3.9) ifadesi

Y; vektori ile i¢ carpilirsa

|

o)

bulunur. (B,,Y,)=(G,¥,)=0 ve (¥,Y,)=1 oldugundan b3=<U’,VO> elde edilir.

o
o

(07.9,) =B, Y, +b, (0., )+

Darboux tiirev formiillerinden U’ = —k T — ’l'g\7 dir. Ayrica
Y,=D,xU = I S xU
\/ng +k? \/ 72 +k?
T _ i I
= 2 (TxU)- K, VxU)
ng +k2 rgz +k2
K, Ty -

g " fn g "
2 2
zkn 2<T;’T;>+ :9 2<\7’\7>
7, +k; 7, +k;
B rgz+kn2
- T§+kn2
= Jre+k;

bulunur. Bulunan b, b, ve b, degerleri (3.9) da yazilirsa
U’ =72 +K2Y, (3.10)

elde edilir.
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Simdi Y; vektoriiniin  tlirevini  hesaplayalim. i” {[30,0,%} catisinin

elemanlarinin lineer birlesimi olarak yazilabilir. Yani
Y!=¢,D, +cU +c.Y, (3.11)

yazilir. Burada ¢, =c,(s),i=(12,3), s in diferansiyellenebilir fonksiyonlaridir.

(3.11) ifadesinin her iki yan1 D, vektorii ile i¢ ¢arpilirsa
(7,8,) =5, (5,,8,)+¢, (B,.0) +,(5,.7,)

bulunur. (5,,5,)=1 ve (B,,U)=(5,.Y,)=0 oldugundan (¥;,0,)=c, d. (3.5)

esitliginin tiirevi alinirsa ve Darboux gatisinin tiirev formiilleri kullanilirsa

Y/ =¢'singT —cosgT'— ¢’ cosgV —singV'
= ¢'sin ¢f—cos¢(kg\7+an)—¢’cos¢\7—sin ¢(—kgf+rglj)
=(#'sing+k, sing)T +(=¢'cos gk, cos ¢ )V (3.12)
—(k,cosg+z,sing)U
=(g'+k, )singT —(4'+k, )cos gV —(k, cosg+1z, sing)U

bulunur. (3.12) de bulunan Y, vektorii ile D, =singT —cosgV vektorii i¢ carpilirsa
Cl :<i'1 [_jo> :¢,+kg

elde edilir. (3.7) ifadesi yerine yazilirsa

NEAIGESI N
Cl (knj (kn2+fng+ g

bulunur. (3.11) ifadesinin her iki yam U vektorii ile i¢ ¢arpilirsa

(71.0)=6,(B,.0) +¢,(0,0) +c,(%,,0)

elde edilir. (B,,U)=(Y,,U)=0 ve <U,U>:1 oldugundan ¢, =(Y;,U) dir. (3.12)

esitligi kullanilirsa
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c, :<\70’,U>:<(¢'+kg)sin #T (¢ +k, )cosV —(k, cos g+, sing)U U>
=—(k, cosg+17,sing)

bulunur. Ayrica

T . k : o
—2—=sing ve ﬁ =C0S¢ ifadeleri yerine yazilirsa
\ /rgz +k? T, +K;

YY) =

bulunur. <f)o,\70>:<0,\70>:0 ve <0 O>—1 oldugundan c3=<\70’,\70> dir.

<Y;,Y;>=l ifadesinin tiirevini alirsak < Y,

>=c3:O elde edilir. Bulunan c,,c, ve
c, ifadeleri (3.11) ifadesinde yazilirsa

-, ) k,’ - -
Y = (k_gj (W}kg Do—q/r§+ka
n n [s}

elde edilir. (3.8), (3.10) ve (3.13) denklemleri dikkate alinarak D/, U’
vektorleri matris formunda yazilirsa

G O
-~ O =
Il
o o
o
|
VR
=~
=1
Nl
+:N
(\]
«
N
N
VR
>\—|@l~1
\_/‘
+
~
[{e]

<
o

3?\—
_I_
D“l
<G Ool

o

I/
=
>

MES
+ 5
N
[{=]

N
~
VR
z-|-1
=1 «
;/‘
+
=~
«
—_

[
=
=1
N
+
(ﬂ
«

N
N—
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bulunur. Burada

k 2 )
8y =| = || 2| +k,
K2+ K, (3.14)
Ho =K +7,]

D! 0 0 -5,)\(D,
Uil={0 0 g ||U
Y_;J’ 50 s 0 Y_:)
seklinde olur. 0

3.2.D,-Darboux Slant Helisin Ekseni ve Karakterizasyonlari

S bir yiizey ve a1 < IR— S bu yiizey lizerinde kalan birim hizli bir egri

olsun. a egrisinin Darboux ¢atisi {f,\7,lj} ve egrilikleri kg,kn ve 7, olsun. Bu

egrinin oskiilator Darboux vektori DO(S)zrg (s)T(s)—k (S)V(s) olmak iizere, yiizey

tizerinde D, -Darboux slant helis kavrami asagidaki sekilde tanimlanmustir.
Tanmm 3.2.1: S bir yiizey ve a:1 < IR — S bu yiizey iizerinde kalan birim hizl

vektor alani) sabit bir dogrultu ile sabit ag1 yapiyorsa & egrisi S yiizeyi iizerinde

O

0

birim

bir egri olsun. o egrisinin D, vektorii alani (veya denk olarak D, =

O

0

D, -Darboux slant helis olarak adlandirilir [20].

Simdi bu tanimi dikkate alarak literatiirde daha Once verilmemis olan

asagidaki karakterizasyonlar1 verebiliriz.
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Teorem 3.2.2: S, E® de bir yiizey ve a:l < IR — S bu yiizey iizerinde OD-¢atis1

{Ijo,U,YZ} olan birim hizli bir egri olsun. o egrisinin bir D, -Darboux Slant helis

olmasi i¢in gerek ve yeter sart her Se | igin

0,(5)="2(5) (3.15)

0

fonksiyonunun sabit olmasidir. Burada x, #0 ve &, # 0 dur.

ispat: o, OD-catis {DO,U,VO} olan bir D, -Darboux Slant helis olsun. D, -Darboux

slant helis tanimindan ¢ nin [30 birim vektorii, sabit dogrultulu, Jo vektorl ile
sabit & acis1 yapar. Yani <|5 d >=COS¢9 dir. Bu ifadenin tiirevi alinirsa

o’ o

<|3; , JO> =0 bulunur. (3.1) deki OD-¢atisinin tiirev formiilleri kullanilirsa
-5,(¥,.d,)=0

elde edilir. &, #0 oldugundan <YO,JO>:O dir. Yani d, vektorii Y, vektoriine diktir.

Dolayisiyla Jo, [30 ve U vektoriiniin gerdigi diizlemde bulunur. O halde
d, =coséD, +sinaJ
yazilabilir. Bu ifadenin tlirevi alinirsa, ao vektori sabit oldugundan

0=cos&D] +sinaU’
= cose(—éo\fo)ﬂin 6’(,%\7 )
=Y, (1, sin6- 35, cos )

bulunur. Y, vektorii sifirdan farkli oldugundan g, sSin@—o,c0s0=0  dur.
Dolayistyla buradan
M, _Cosé

—— =cotd =sbt
o sing

elde edilir.
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k ﬂ:w:cow:sbt olsun. Buradan g, siné=¢,cosé

sing

Tersine olara

o]

yazilabilir.
d, =cosdD, +sinJ

alalim. d, vektdriiniin sabit oldugunu gdsterelim. d, =cos@D, +sin@J ifadesinin

tirevini alip (3.1) deki tiirev formiilleri ve ardindan g, Sin@=0,c0s6 oldugu

kullanilirsa

d,” =coséD, +sinoU’
=c0sA(-0,Y,) +sinO(w,Y,)
=Y (u,sin@ -5, cos )
=Y, (5, cos@ -5, cos @)

Il
o

bulunur. Dolayisiyla ao sabit vektordiir. Ayrica <5 d >=COS¢9 oldugundan JO

o'~ o

sabit vektori , f)o vektort ile sabit ac1 yapar. « bir D, -Darboux slant helistir. 0
Teorem 3.2.2 den asagidaki sonuglar elde edilir.

Sonu¢ 3.2.3: «, E® de S yiizeyi iizerinde kalan birim hizli bir egri ve Darboux

catisin egrilikleri kK ,k, ve 7, olsun. a egrisinin D, -Darboux Slant helis olmasi

icin gerek ve yeter sart her S| igin

7,(5) = ” (s) (3.16)

veya denk olarak
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o,(8) = — (s)

fonksiyonunun sabit olmasidir.

Ispat: (3.14) esitlikleri (3.15) te yazilirsa hemen goriiliir. [

Sonug¢ 3.2.4: Oskiilator Darboux ¢atisina gore D, -Darboux slant helisin ekseni
d, =cosdD, +sinaJ (3.17)
seklindedir.

Sonu¢ 3.2.5: D, -Darboux slant helisin ekseni, Darboux c¢atisinin vektorleri

cinsinden
- T = k - 5 -
d, =c0s0 —_-T —c0s —_-V +sin U
7o +k? 7o +k?
seklindedir.

Sonu¢ 3.2.6: « egrisinin D, -Darboux slant helis olmasi igin gerek ve yeter sart o

egrisinin isophote egrisi olmasidir.

Ispat: a egrisinin bir D, -Darboux slant helis oldugunu kabul edelim. (3.17)

—

esitliginin her iki tarafi U vektorii ile i¢ carpilirsa
(d,,U')=sin 6 = sabit

elde edilir. Bu da a egrisinin isophote egrisi oldugunu gosterir. 0

Sonu¢ 3.2.7: a, S yiizeyi iizerinde birim hizli bir D,-Darboux slant helis olsun. Bu

durumda;

I)  nin S yiizeyi lizerinde k, #0 olan bir geodezik egri olmasi igin gerek ve yeter

sart a nin
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T T > . N K =
d, =c080 ——=——==T +sinON Fcos§ ———=B
4 i’ 4 i’

eksenli bir Darboux helis (slant helis) olmasidir.

i) @ mn S ylizeyi lizerinde k, #0 olan asimptotik bir egri olmasi icin gerek ve

yeter sart « nin d, =cosdT FsingB eksenli bir helis olmasidur.
iii) a, S yiizeyi lizerinde bir egrilik ¢izgisi ise bu taktirde « diizlemsel bir egridir.

Ispat: i) o geodezik egri ise k,=0 dir. Bu durumda (2.1) esitlikleri kullanilarak
k,=Fx ve r =7 elde edilir. «, D, -Darboux Slant helis oldugundan bulunan

degerler (3.16) da yazilirsa

bulunur. Teorem 2.1.22 (i) geregince ¢ bir Darboux helistir. Ayrica Teorem 2.1.22
(i) geregince o bir slant helistir. Ayrica Tanim 2.2.18 de verilen Darboux catisi ile
Frenet ¢atis1 arasindaki iliskiler, Sonug 3.2.5 de yazilip (2.1) esitlikleri kullanilirsa,

D, -Darboux slant helisin Frenet ¢atisinin vektorleri cinsinden ekseni

- T _ k, k kol k2 N A
d =c0s0 —2xoT +| —C0S0 ————+sinO—" [N +| COSO —="—=+5sinO—< |B

0 2 2 2 2 2 2
7, +K; qurg +k; K qurg +k; K

seklinde olur. k =0, k =Fx Vve r =r esitlikleri burada yazilirsa a Darboux

helisinin ekseni

d =c0sd———T FsinON +cosd

K
0
T2+ K ? k7

B

olarak bulunur.

L TFsinON+cosd———B eksenli bir

Nl +K? Nl +K?

Darboux helis olsun. Darboux helisin ekseni ile yukarida D -Darboux slant helisin

Tersine olarak a« , d, =cosd
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Frenet catisina gore verilen ekseni dikkate alinirsa k, =0 bulunur. o, S yiizeyi
tizerinde geodezik bir egridir.
i) o asimptotik egri ise k, =0 dir. (2.1) esitlikleri kullamilarak k, =¥« ve r, =7 elde

edilir. &, D,-Darboux slant helis oldugundan bulunan degerler (3.16) da yazilirsa

o, =F— =sabit

X =

bulunur. Teorem 2.1.18 geregince « bir helistir. Ayrica k, =F«, r,=7 Ve a nin
asimptotik egri oldugu, yukarida D, -Darboux slant helisin Frenet g¢atisina gore

verilen ekseninde kullanilirsa ¢ nin ekseni ao =cosdT FsingB olarak bulunur.

Tersine olarak &, d, =cosdT FsingB eksenli bir helis olsun. Helisin ekseni
ile D, -Darboux slant helisin Frenet ¢atisina gore ekseni dikkate almirsa k, =0

bulunur. @, S yiizeyi iizerinde asimptotik egridir.
i) a egrilik ¢izgisi ise r, =0 dir. a, D,-Darboux slant helis oldugundan (3.16) dan

k . o L -
o, :k—”zsablt elde edilir. &, Frenet catisinin B binormal vektori ile U yiizey
g

normali arasindaki a¢1 olmak tizere (2.1) esitlikleri kullanilirsa

k., _xsiné

n

k, xcosé

= tan & = sabit,

dolayistyla & = sabit bulunur. 7, =7 —¢"=0 oldugundan 7 =0 elde edilir. Yani «

diizlemseldir.

3.3. D, -Darboux Slant Helislerin OD-Catisina Gére Diferansiyel Denklem

Karakterizasyonlari

Bu kisimda, ilk olarak E°® de bir S yiizeyi iizerinde bulunan egrilerin

diferansiyel denklem karakterizasyonlari, OD-¢atisinin elemanlar1 olan [30, U ve

Y, vektorler alanlarina bagl olarak verilecektir. Ardindan D,-Darboux slant helisler
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icin diferansiyel denklem karakterizasyonlari, OD-¢atisinin elemanlar1 olan [30, U

ve YT) vektorler alanlarina bagl olarak verilecektir.

Teorem 3.3.1: S, E® de bir yiizey ve a:l cIR—S bu yiizey iizerinde kalan
birim hizl1 bir egri olsun. « egrisini OD-gatisinin [30 vektor alanina gore karakterize

eden vektorel diferansiyel denklem g, #0 ve o, #0 olmak tizere

!

|:_jom_'_ ,L1050 L +50 i Ij(;'+ #050 i i +,U§+502 Ij(;
5 5 0|5

00 [o] 0 (o] (318)
+ 14,0, [iJ Ijo =0
Ho
seklindedir.
ispat: (3.1) sisteminin tigiincii denkleminden U vektorii yalniz birakilirsa
= 0, = 1
U :_Do__Yo (3.19)
Hy Hy

bulunur. (3.1) sisteminin ilk denkleminden Y, vektorii yalniz birakilirsa \70 =5 5(; :

0

bulunan Y, vektorii (3.1) in ikinci denkleminde yazilirsa

—

U'=-£op; (3.20)
50

elde  edilir.  Bulunan Y; ifadesinin  iki  yanmin  tiirevi  alinirsa

Lo (1) s 1 .
Y= —{5—] D, oy D/, bulunan bu ifade (3.19) de yazilirsa

0 o]




elde edilir. Elde edilen U vektoriiniin tiirevini alinirsa

!
! !

@{LJ 5L g i[iJ 5;,+i[ij 5;4[5} 5, % 5
/,l050 ﬂ050 :uo 50 luo 50 :uo /uo

olur. Bu denklem diizenlenirse

' 2 2
N (L] +1[1J 57+ AH AT [ij B, =0
1u050 /’1050 Hy 50 Hy 50 lu050 Hy
elde edilir. Elde edilen bu denklemin her iki tarafi x40, ile carpilirsa

!

! !

DY+ 1,6, 1 +6, 1 Dl +1 14,0, 1L +62+ 42 D,
S S |\ s

0-0 0 0

!

+1,0, (iJ [30 =
U

diferansiyel denklemi elde edilir. 0

Sonu¢ 3.3.2: S, E® de bir yiizey ve a:1 < IR—S bu yiizey iizerinde kalan birim
hizl1 bir D, -Darboux slant helis olsun. & egrisini D, vektor alanina gére karakterize

eden vektorel diferansiyel denklem, z, #0 ve &, #0 olmak iizere

!

! !

D"+ 14,0, L +0, 1 D! +1{ 1,6, ERE +02+ 423D =0
5 5 s

!

00 0
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seklindedir.

Ispat: Teorem 3.3.1 de, E® de egrileri OD-gatisinin [30 elemanina gore karakterize

eden genel diferansiyel denklemin (3.18) seklinde oldugu gosterildi. Simdi « egrisi

D, -Darboux slant helis oldugunu kabul edelim. D, -Darboux slant helis olma

sartindan % ifadesi sabit oldugundan O ifadesi de sabittir. Dolayisiyla [iJ =0
o ILIO o

ifadesi (3.18) denkleminde yazilirsa

D +| 1,6, 1 +0, 1 D! +1{ 1,0, N +02+ 42D =0
5 5 s

0-0 0

denklemi elde edilir. (]

Teorem 3.3.3: S, E® de bir yiizey ve a:l cIR—S bu yiizey iizerinde kalan

birim hizl bir egri olsun. ¢ egrisini OD-gatisnin U vektdr alanina gore karakterize

eden vektorel diferansiyel denklem, x, #0 ve 6, #0 olmak iizere

!

ors w3 Jen 2 ool 2{2] [ vt
/’lo o /’IO [o] /LlO (322)

seklindedir.

. - 1 -
Ispat: (3.1) sisteminin ikinci denkleminden Y, =—U" yazilabilir. Bu ifadenin tiirevi

0

alinirsa

!

Y_;r:(iJ U’r_i_iu'n
Hy Hy

bulunur. Bu deger (3.1) in iigiincii denkleminde yazilip D, yalniz birakilirsa
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B, - Gr+t| L|gr+teg
HoO, o \ My S

o 0o

elde edilir. Bulunan D, vektdriiniin tiirevi almirsa

D! = SEN Y Iy EON JE3 U (O X S Ny GO 0 Y A
Ho9, H0, 5 \ o 0 \ % %

bulunur. Bu denklem diizenlenirse

I3(’,:LU”’+ 1 +i =3 u”+ e c g &g
HoO, HoOy ) Oy \ 9, \ #o %, %,
bulunur. (3.1) sisteminin ikinci denkleminden \70 cekilip (3.1) in birinci denkleminde

- 0, = - by, .
yazilirsa D; =—=—U" olur. Bulunan D, vektoriiniin esiti son denklemde yerine
Hy

yazilirsa

_i"(z 1 U’m+ L +i i U’/{+ i i _}_& U!+ Hy U
Ho o0y Ho0y ) Oy \ 0, \ 4y %, %

bulunur. Bu denklem diizenlenirse

1 U’m_l_ 1 +i i U”+ i i +&+§ U'+ & U:O
,L1050 ﬂ050 50 Hy 60 Hy 50 Ho 50

elde edilir. Bulunan son denklem g0, ile garpilirsa
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!

U+ %@[L] +ﬂo[i] U"+{ 10, i[i} +ul+62 U
HoOy Ho S, \ Ho

J7
+u,0,| == |U=0
o2

0

diferansiyel denklemi elde edilir. 0

Sonu¢ 3.3.4: S, E® de bir yiizey ve a:1 < IR— S bu yiizey iizerinde kalan birim

hizli bir D, -Darboux slant helis olsun. « egrisini U vektdr alanina gore karakterize

eden vektorel diferansiyel denklem

!

U™ M@(LJ +ﬂ°(iJ U"+{ 1.0, i(i] +u+62 U =0
lLlé‘ 0 50 (0]

00

seklindedir. Burada u, #0 ve o, #0 dur.

ispat: Teorem 3.3.3 de, E® de egrileri OD-catismin U vektdr alanma gore
karakterize eden genel diferansiyel denklemin (3.22) seklinde oldugu gosterildi.

Simdi « egrisi D,-Darboux slant helis oldugunu kabul edelim. D, -Darboux slant

helis olma sartindan % ifadesi sabittir. Dolayisiyla (%j =0 ifadesi (3.22)

(o] 0

denkleminde yazilirsa

!

U+ M@(LJ +y0[iJ U"+{ 1.0, i[i] +u’+62 U =0
J782 H S \ H

0~o0

denklemi elde edilir. [

Teorem 3.3.5: S, E® de bir yiizey ve a:1 cIR—S bu yiizey iizerinde kalan birim
hizli bir egri olsun. o egrisini OD-¢atisinin Yi) vektor alanina gore karakterize eden

vektorel diferansiyel denklem n, #0 olmak iizere
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Y—'m+_(nl,_n2)Y‘;”+1(_n£+n3)Y_:)f+ni(_5o+né) =0 (323)

Ho n, =i(1+5(;n1) ve n, =n, (4 +57) dur.

seklindedir. Burada n, = —————,
:Ucl)é‘o - ﬂoé‘l; é‘0

Ispat: (3.1) sisteminin iigiincii denkleminden

Vg (3.24)
5

yazilabilir. Bulunan ifadenin tirevi almip ve OD-gatisinin tiirev formiilleri

kullanilirsa

! 2 2 ’
O BE O Sl 2
50 50

bulunur. Son denklemde U vektorii yalmz birakilirsa

- p ' N 7 s
U < é‘0 Yorr+ 50 Yoy -t (luo 0 ) b,
:uc,)é‘o - :uoé‘c; /uc’)é‘o - luoé‘c; luc,)é‘o _nuoé‘c:

bulunan bu ifade (3.24) de yazilirsa, n =—=5 — n, :i(1+ sn) ve
ﬂ;é‘o - /,105(; 50

n,=n ( w+ 502) olmak iizere
I:_jo =- Y_:>”+ nzY_:)' - nsY_; )

elde edilir. Son bulunan esitligin her iki yanmn tiirevi alinip OD-gatisinin tiirev

formiilleri kullanilirsa

denklemi elde edilir. 0

Teorem 3.3.6: S, E® de bir yiizey ve a:l cIR—S bu yiizey iizerinde kalan
birim hizh bir D, -Darboux slant helis olsun. ¢ egrisini Y, vektor alanmna gore

karakterize eden vektorel diferansiyel denklem
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-

Y'+8, | = | Y + (12 +52)Y, =0
0 0( 5‘ ] 0 ( (o] 0o ) 0
seklindedir. Burada &, # 0 dur.

Ispat: (3.1) deki tiirev formiillerinin iigiinciisiinden D, vektérii yalniz birakilirsa

5 = 2|V Ly | gy Ll
5,) ° 8 ° s ,

elde edilir. Burada U’ yerine tiirev formiillerindeki esiti yazilirsa

! 2
Y B AR 2 Ny SR
5,)° 6 s, 3,

bulunur. Bulunan bu ifade (3.1) sisteminin birinci ifadesinde yerine yazilip denklem

dizenlenirse

!

elde edilir. « egrisi D, -Darboux slant helis oldugundan (%j =0 dir. Dolayisiyla

0

denklem
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! 2, @2
iY_;”-I— i Y—;' + m Y—; =0
s s 5,

halini alir. Son olarak bu denklem J, ile ¢arpilirsa

!

oo 2 e -0

0

elde edilir. 0

3.4. Yiizey Uzerinde D,-Darboux Slant Helisin Elde Edilmesi

Bu kisimda, parametrik ve kapali formda verilen bir yiizey iizerinde D, -

Darboux slant helis elde edilebilmek i¢in yontemler verilecektir.

3.4.1. Parametrik Formda Verilen Yiizey Uzerinde D,-Darboux Slant Helisin

Elde Edilmesi

S, E®uzaymda X =X(u,v) parametrizasyonu ile verilen bir yiizey olsun.
a(s)=X (u(s),v(s)), S vyiizeyi iizerinde, sabit ve birim d, dogrultusu ile sabit &
acist yapan, Darboux catisi {f,V,U} olan birim hizli bir D -Darboux slant helis

olsun. « egrisini elde etmek igin u(s) ve v(s) degerlerinin bulunmas:1 gerekir. Ilk

olarak u(s) degerini bulalim.

dir. T vektdriiniin ve U vektdriiniin esiti V vektdriinde yazilirsa

B} 1 ¢ _rX )L (Fx _ex |3
VZW[(EXV—FXU)W(FXV‘GX“)EJ

u \
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bulunur [15]. Burada E,F,G birinci temel formun katsayilaridir. «, D, -Darboux

slant helis oldugundan <I30 , JO> =cos@ dir. Buifadede D, vektdrii yerine yazilirsa

Ty ~ k -
— L—V,d, )=cosd (3.25)

\/z'gz +an ! \/z'gz +kn2

elde edilir. Yukarida bulunan T ve V vektorleri (3.25) de yazilirsa

"y (x du R, ﬂ]
frgz +k? ds ds

=C0sd
a ( ! [(EX ~FX )d—“+(F>Z ~GX )%HJ
\/ +k? ds ! Yds || °
bulunur. Bu ifade diizenlenirse
T - -\ du T = -\ dv K, 1 - =\ du
ﬁ<xu,do>g+ﬁ<xv,do>£—m‘# E<><v,o|0>E

(R e e (R )

G<)ZU,JO>%:COSH

r§+kn2 X X)Z

+ K,
\/rgz +k?

elde edilir. Bulunan son denklemde islem kolaylig1 agisindan

ﬁ:r,ﬁ:m EG-F2=N,
(X,.d,) =L, (X,.d,) =M,
kisaltmalari kullanilirsa, son ifade
FLd—u I'M, ﬂ—KiEM d_u K—FLd—u
°ds °ds N °ds N °ds

—KiFMOd—-FKiGLOﬂ:COSQ
N ds N ds

olur. Bu ifadenin her iki yan1 N ile garpilirsa
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FLON— +I'M, N%—KEM au + KFL, d—u—KFM y-ﬁ-KGL %:NCOSH

ds ds °ds ° ds °ds °ds

.. du dv .
elde edilir. ™ ve & parantezine alinirsa
S S

((CN + KF)L, — KEM, )g—“+((rN KF)M, + KGL)%:NCOSQ (3.26)
S S

bulunur. Bu ifadede % yalniz birakilirsa
S

dv N cos 6 _ (DN +KF)L, ~KEM, du

Rl 3.27
ds ([IN-KF)M,+KGL, (I'N-KF)M, +KGL, ds (3.27)
elde edilir. Ayrica o egrisi birim hizli oldugundan
2
E(d”) popdudv, G(d—vj il (3.28)
ds ds ds ds
bulunur [15]. (3.27) ifadesi (3.28) de yerine yazilirsa
E(d_uJ2+2Fd_u N cosé _ (TN +KF)L, - KEM, du
ds ds | (N -KF)M, + KGL, (FN—KF)M +KGL, ds
G N cosé _ (N +KF)L, —KEM, du 1
(’N-KF)M,+KGL, (I'N-KF)M,+KGL, ds
denklemi elde edilir. Bu denklemde parantezler acilirsa
2
E[d_uj L 9F N cosé du _F ('N + KF)L, - KEM, (duj
ds (N —KF)M, + KGL, ds (N -KF)M, +KGL, \ ds
2 cos? I'N +KF)L, - KEM
+G NTcos’0 56N cosgLTN+KF) o) du
((CN —KF)M, + KGL,) ((TN —KF)M, +KGL, )’ ds

o ((IN+KF)L, —KEM o) (dujzzl

((rN KF)M, +KGL, )’ \ ds

bulunur. Elde edilen son denklemde paydalar esitlenirse
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E

((TN —KF)M, +KGL, )’ (d_ujz . op NcosO((TN —KF)M, +KGL,) du
((TN —KF)M, + KGL, )" \ ds ((CN —KF)M, +KGL,)*  ds
((TN +KF)L, —KEM, )((T'N —KF)M, + KGLO)(dujz

—2F . =
((CN —KF)M, +KGL,)

ds
2 2 I'N+KF)L —KEM
e N?cos® 26N cosd (( L o)zd_U
((CN —KF)M, +KGL,) ((CN —KF)M, +KGL, )’ ds

((CN +KF)L, —KEM, )’ (d_uT
((CN —KF)M, +KGL, )"\ ds

+G

olur. Bu denklemin her iki tarafi (('N — KF)M_ + KGL, )2 ile carpilirsa

2
E((FN -KF)M_ + KGL0)2 (g—uj +2FN COSH((FN -KF)M, + KGLO)(;—u
S S

2
—2F ((TN + KF)L, - KEM_ )((CN - KF)M, + KGLO)((;—U] +GN?cos® @
S

2
~2GN cos§((TN + KF)L, — KEMO)Z—U+G((FN FKF)L, - KEMO)z(j_uj
S S

=((CN — KF)M, + KGL, )’

2
elde edilir. Burada (2—”) ve ((:ij_u parantezine alinirsa
S S

E((TN —KF)M, +KGL, )’ —2F ((TN + KF)L, — KEM, ) ((TN —=KF)M, + KGL, ) (dujz
+G(('N +KF)L, —KEM, )’ ds
|:2FN cos@((TN - KF)M, + KGL,) }du

+ — +GN?cos? @ = ((TN — KF)M, + KGL, )’
—2GN cos@((I'N +KF)L, —KEM, ) | ds

2
ifadesi elde edilmis olur. (g—uJ ve 3—u katsayilarindaki parantezler agilirsa
S S

E('N —KF)*M?2 + 2E('N —KF)KGL,M, + EK’G?L

—2F(I'N + KF)(I'N —KF)L,M, —2F (N + KF)KGL? + |( du \?
2F (TN — KF)KEM? + 2FK?EGL M, + G(I'N + KF)? 2 (EJ
— 2G(I'N + KF)KEL,M, +GK2E’M?

+2N cos [ FTNM, - KF°M, + FKGL, - GI'NL, - FKGL, +GKEMO]Z—“
S

+GN2cos? 6 = ((TN —KF)M, + KGL, )’
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2
bulunur. (d_u) ifadesinin katsayis1 EM?

g 2 GL® ve 2L M, parantezine,
S

ds

ifadesinin katsayist KM, ve I'N parantezine alinirsa

EM; (TN - KF)? +2FK (N — KF) + GK°E ) + 2
GL (TN +KF)* - 2FK(I'N + KF) + EK*G ) + (d_“j .
M {(FN —KF)EKG —F(I'N +KF)(I'N — KF)}

*°| —.G(I'N + KF)KE + FK?EG

2N cos [ KM, (EG —F?)+IN(FM, —GLO)]Z—“+GN2 cos? 6 = (TN - KF)M, + KGL, )’
S

2
elde edilir. (Z—UJ in katsayisindaki parantezler acilirsa
S

EM [ (TN)® =2KFIN + (KF)? + 2KFTN - 2(KF)* + EK’G | 2

+GL2 [ (TN)? + 2KFTN + (KF)? - 2KFTN — 2(KF)’ + EK’G | (d_“j
I'NEKG - K?EFG — F(I'N)? + F2INK — F2INK

+F (KF)? —~GI'NKE — GK *EF + FK’EG }

+2|_0|v|{
+2N cos 0] KM, (EG - F*) +I'N(FM, —GLO)]Z—”+GN2 cos? 6 = ((TN —KF)M, + KGL, )’
S

bulunur. Gerekli sadelestirmeler yapilirsa

EMZ[(TN)® - (KF)? + EK?G |+GL: [ (TN)* - (KF)* + EK?G | | gy \?
~2FL,M, [ (TN)? - (KF)* + EK’G | (E)

+2N cos [ KM, (EG - F?)+ N (FM, —GLO)](;—U
S

+GN?cos? @ = ((I'N —KF)M, +KGL, )’

elde edilir. Burada (I'N)? —(KF)? + EK°G parantezine alinarak

(o ey exc) ez o2, ] ) «

2N cos 9] KM, (EG — F?)+TN(FM, —GLO)]‘;_“
S

+GNZ2cos? 6 = (('N — KF)M, + KGL, )’
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bulunur. Islem kolayligi agisindan EM?Z +GL2 —2FL M_ = A, kisaltmasi kullanilirsa

2 2 2 d ’ 2 d
[((PN)?+K*(EG-F ))A)](d—:J +2N cos 6 KM, (EG ~F )+FN(FMO—GLO)]d—:

+GN2cos? 6 —((TN —KF)M, + KGL, )’ =0

ikinci dereceden denklemi elde edilir. Bu denklemin kokleri bize 2—“ ifadesini verir.
S

Bu denklemin diskriminanti

A, =4N? cos” 0] KM, (EG ~ F?)+ TN(FM, ~GL,) |
—4A[((TN)? + K*(EG - FZ))}[GN2 cos? 6—((T'N —KF)M, +KGL, )ZJ
= 4N’ cos’ 0] KM, (EG—F?)+ N (FM, —<3|_0)]2
—4AGN? cos? 0[((FN)2 +K*(EG— FZ))]

+4A[((PN) + K2(EG - Fz))][((FN —KF)M, +KGL, )Z}
bulunur. Bu ifade diizenlenerek

[KM,(EG~F?)+TN(FM, -GL,) |
—A)G[((FN)Z +K?(EG - FZ))]
+4A[((TN)? +K*(EG - F?)) ]| (PN — KF)M, +KGL, )’ |

A, =4N?cos’ 0

elde edilir. Daha 6nce yapilan kisaltmalar bulunan diskriminantda yerine yazilirsa,

EG—F2=N? ve I'’’ + K* =1 oldugundan
2

(F(X,.d,)-G(X,.d,))
~AG(EG-F?)

K(EG-F?*)(X,.d,)
F

A0:4‘)Zux)zv

cos? 6 4T X, x X,

(T[X, xX,|-KF)(X,.d,) 2

+4A (EG-F?) o
+KG<X d>

u’ ™o

bulunur. Dolayisiyla aranan ;I_u ifadesi
S
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du —2Ncos¢9[KM (EG-F?)+TN(FM, -GL,) |+./A,
ds 2(EG-F?)A

seklindedir. Yukaridaki denklemde, yapilan kisaltmalar yerine yazilirsa

o _ 2R R st K(EG-F (X, d,) TR, R (X, d,)-6(R A,
ds 2(EG F)A\)

bulunur. Burada T = ve EM’+GL:-2FL M, =A, di.

T ok,
4/r§ik§’K_4/r§+kf

Simdi benzer yolla % ifadesini bulalim. (3.26) da (;—u yalniz birakilirsa
S S

du _ N cos _ ((’N =KF)M, +KGL, ) dv
ds  (('N+KF)L,—KEM,) (('N+KF)L,—KEM,) ds

elde edilir. Bulunan 3—u in esiti (3.28) de yazilirsa
S

N cos @ ((FN KF)M, + KGL )dv
((FN+KF)LO—KEMO) ((FN+KF)LO—KEMO) ds
LoF N cos @ _((FN—KF)MO+KGLO)% %4_6(%)2_1
((FN+KF)LO—KEMO) ((FN+KF)LO—KEMO) ds |ds ds
bulunur. Parantezler agilirsa
2 cos? I'N -KF)M_ + KGL,
ENT00s'0 5 gos )M, + KCL,) dv
((CN +KF)L, -KEM,) ((CN +KF)L, -KEM,) ds

((FN KF)M, +KGL, )’ (vaer 2FN cos @ dv
((FN+KF)L ~KEM, )’ \ds) = (TN +KF)L, - KEM, ds

_2F((N—KF)M, + KGLO)[Q):G(@JZ 4
((CN +KF)L, —KEM,) ds ds)

elde edilir. Paydalar esitlenirse
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2 2 —

EN?cos® @ __2ENcosd ((FN KF)M, +KGL0)2 ﬂ

((TN +KF)L, - KEM,) ((TN +KF)L, —KEM, )’ ds

((TN —KF)M, +KGL, )’ (QT , 2PN cos&((IN +KF)L, — KEM, ) dv

((TN + KF)L, —KEM, )’ L ds ((CN +KF)L, —KEM, )" ds

_ 2F (TN —KF)M, + KGL, )((TN +|<|:)|_0—|<E|v|o)(ﬂj2
((TN +KF)L, — KEM, )’ ds

((TN + KF)L, — KEM, )’ (ﬂf

((TN +KF)L, — KEM, )"\ ds

+E

+G

bulunur. Denklemin iki tarafi (('N + KF)L, — KEM, )2 ile carpilirsa

EN?cos® 6 —2EN cos@((TN —KF)M, + KGLO)%

2
+E((TN —KF)M, +KGL, )’ (%} +2FN cosf((IN + KF)L, - KEMO)%
S S

—2F ((CN —=KF)M, +KGL, )((TN + KF)L, - KEMO)(%j

2
+G((TN +KF)L, —KEM, )’ (%) = ((TN +KF)L, —KEM, )’

2
elde edilir. (Qj ve (gj parantezine alinirsa
ds ds

E((TN —KF)M, +KGL, )" +G(('N + KF)L, ~KEM, )’ (QJZ
—2F ((N = KF)M, +KGL, )((TN + KF)L, —KEM,)  [\ds

+[2FN COS@((FN +KF)L, —KEM, )-2EN COSQ((FN -KF)M, + KGLO) 3—\8/

+EN?cos? @ = ((TN +KF)L, - KEM, )’

2
bulunur. (%J ve (%j katsayilarindaki parantezler agilirsa
S S
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[E(IN —KF)*M2 + 2E(I'N — KF)KGL,M, + EK’GL?
—2F (TN —KF)(I'N + KF)L,M, + 2F (TN —KF)KEM? |( v Y
—2F(IN + KF)KGL? + 2FK’EGLM, + G(I'N + KF)? L2 (Ej
| ~2G(I'N + KF)KEL,M, + GK?E’M?

+| 2N cos0(FTNL, + FKL, ~ FKEM, ~ENM, + FEKM,, — EKGL, )][%)
S

+EN2cos?@ = ((I'N + KF)L, - KEM, )’

2
elde edilir. (%) katsayist EM?, GL2 ve 2L M, parantezine, (?j katsayis1
S s

—KL ve I'N parantezine alinirsa

EMZ((CN - KF)? + 2F (I'N - KF)K +GK?E ) + 2
GL: ((TN +KF)? —2F (TN + KF)K + EK’G ) + (g—‘s’j
N (E(FN—KF)KG—F(FN—KF)(FN+KF))

* | +FK?*EG -G(I'N + KF)KE

+[2N cos O(—KL,(EG - F?) + IN(FL, - EMO))](%)+ EN’cos’ @
S

=(('N +KF)L, —KEM, )’

2
elde edilir. (?j katsayisini tekrar diizenleyerek
S

EM ((TN)” ~2KFT'N + (KF)* + 2FTNK ~2F’K* + GK’E)+|

GLZ((T'N)? + 2INKF + (KF)? ~2FTNK — 2F?K? + EK G ) + (%}
INEKG - K’EFG — F(TN)? + F(KF)? + FK’EG

~GI'NKE - K?EFG ]

2L0M0£

+[2N c0s(~KL,(EG — F?)+TN(FL, - EM ))] W) EN?cos? g
0 (o] dS
= ((N +KF)L, — KEM, )’

bulunur. Burada gerekli sadelestirmeler yapilirsa
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EM?((N) +(KF)? —2F°K? + GK’E ) +
2
GLZ ((PN)? +(KF)? - 2F*K* + EK*G ) + (%)
S
2L, M, (-K*EFG - F(I'N)* + F(KF)?)
+[2N cos0(—KL,(EG - F*)+N(FL, - EMO))](%) ENZ2cos® 0
S

=((TN +KF)L, —-KEM, )’
(v " .
elde edilir. & katsayis1 tekrar diizenlenirse
S

EM?(('N)* +K*(EG-F?))+ 2
GL (('N)* +K*(EG-F?))- [%j
2FL,M, ((TN)* + K*(EG - F?))
+[2N cos O(~KL,(EG - F?) + IN(FL, - EMO))J(%j+ EN?cos’ @

=((TN +KF)L, —-KEM, )’

2
bulunur. (%j in katsayist ('N)? + K*(EG — F?) parantezine alinirsa
S

[(Em; —ZFLoMo+GL§)(<PN>2+K2<EG—F2>)J(%I
ST ——
+EN2cos? 0 —((N + KF)L, ~KEM, )’ =0

elde edilir. Daha o6nce kullanilan EM2—-2FL M, +GL: = A kisaltmas1 tekrar

kullanilirsa

[AJ ((TN)? + K2(EG - FZ))](%J

+[ 2N cos (KL, (EG ~F*)+N(FL, - EMO))](%)

+EN2cos? @ —((I'N + KF)L, ~KEM, )’ =0
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ikinci dereceden denklemi elde edilir. Bu denklemin kokleri bize % i verir.
S

Denklemin diskriminant1 hesaplanirsa

A, = 4N? cos? 9[(FN (FL, —EM,)—KL,(EG - |:2))2 — AE((I'N)* + K*(EG - FZ))}

+4A,((CN)* +K*(EG—F?))((T'N +KF)L, - KEM, )’

bulunur. Yapilan kisaltmalar bulunan A" da yerine yazilirsa, EG—F?=N? ve

I'* + K? =1 oldugundan

(r

~AE(EG-F?)

(r +KF)<)ZU,JO>]Z

—KE(X,.d,)

A, =4|X, x )ZVHZ cos® 0

+4A3(EG—F2)[

elde edilir. Dolayisiyla denklemin kokleri

dv  —2Ncosd(-KL,(EG—F2)+TN(FL, ~EM,))= /A,
ds 2(EG-F)A

ile bulunur. Daha 6nce yaptigimiz kisaltmalar yerine yazilirsa

@:_2 X, xX, (:05<9[—K(EG—F2)<>ZUI~o>+F quXv (F<X“’J°>_E<XV’J°>)}£\/E (3.30)
0 2(EG-F)A

elde edilir. Burada I' = ve EM? +GL? -2FL M, = A, dur.

T ok,
Q/f;ikj’Kﬂ/f;mg

Dolayisiyla (3.29) ve (3.30) dan

du 2% XX [cost] KEG-FA)(X,.d,)+T[X, xX | (F (X,.,)-6(X,.d,) | +a
o ] 2EG-F)A
) (3.31)
dv 2R, xR Jcos6] -KEG-F*)(X,,d, )+ TR, X, (F<Xu,&o>—E<XV,JO>)}i\/E
ds 2EG-FH)A

diferansiyel denklem sistemi elde edilir. Bu diferansiyel denklem sistemi
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u(sy) = Uy
V(sy) =V,

baslangic noktasi ile birlikte ¢oziiliip bulunan degerler X (u,v) de yazilirsa S yiizeyi

tizerinde istenen D, -Darboux slant helis elde edilir.

3.4.2. Kapah Formda Verilen Yiizey Uzerinde D,-Darboux Slant Helisin Elde
Edilmesi

S, E® uzaymda f(x,y,z)=0 kapali formu ile verilen bir yiizey olsun.
a(s)=(x(s),¥(s),2(s)), S yiizeyi iizerinde, sabit ve birim d, =(a,b,c) dogrultusu
ile sabit @ acis1 yapan, Darboux ¢atisi {f,V,U} olan birim hizli bir D, -Darboux

slant helis olsun. « egrisini elde etmek igin X(S),y(s) ve z(s) degerlerinin

bulunmas: gerekir. €, €, ve €,, E’ uzaymmn standart baz vektdrleri olmak iizere

Darboux ¢atisinin elemanlari;

f:&':(%,%,%ji
ds ds ds

|
U=r—m=r(f.f,. 1)
I
el eZ e3
\7=Uxf=% £, f, fZ=%(fy%—fz%,fz?—fx%,fxg—y—fy%j
¥l qy | IVFIN7ds Tdstds FasThs s
ds ds ds

seklindedir [15]. Bulunan T ve V vektérleri, D, vektoriiniin normlanmis hali olan

B, (5) = —— ©) T s)—¢\7(s) vektoriinde yerine yazilirsa

T E9)+K ) ( JE2E)+K )

B.(5) = 7,(s) (dx dy dzj_\/ k.(s) 1 (f dz dy’fZ dx (o dz o dy o %]

[ ki) \ds ds ds ) [eE(s)ric(s) [V Vs Tds’ds s’ s s

ds’ds’ds
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elde edilir. &, D, -Darboux slant helis oldugundan (B,,d, ) =cos¢ dur. d, vektori

ve yukarida bulunan f)o vektorii yerine yazilirsa

) (o o)
/rgz(s)+kf(s) ds’'ds’ds

—Kal®) L [fﬁ—fﬂfﬁ—fd—zfcIy f%J(abC) = cos 6
J2(9)+k2(s) [ V| “ds’ ‘ds  “ds’ *ds Vds)

O k(s

Jr (s)+k? (s «/z' (s)+k? (s

bulunur. Burada islem kolaylig1 icin
alinip ifade diizenlenirse
r (%,ﬂ,d—zj,(a,b,C)
ds ds ds

_ Kﬁ ( y%_fzﬂ,fzd—x—fxﬁ,fxdy fd—Xj (a,b,c))=cosé
Vf” ds “ds’ “ds *ds' *ds 'd

elde edilir. Buradaki i¢ ¢carpim islemleri yapilirsa

rafterp@irell Loar Colar & Lpr X
oo o] o ] ™ e o]
K dz K dy K dx_
R I T
bulunur. dx : dy ve gz parantezine alinirsa
ds ds ds

Ta- ' bf, + ' of dx+ b+ af — K of dy
vi HVfH vi VfH

+| I'c— Kﬁ af, + Kﬁ bf, E:cosé?
\%i \%i ds

elde edilir. Her iki taraf |Vf| ile carpilirsa
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(Ta[vF| - K (of, ~cf ))%+(rbuvf H—K(cfx—afz))j_y
(3.32)
(FCHWH K(af, —bf )) —HVchos&

bulunur. Ayrica (T,U)=0 oldugundan

R g AL

3.33
“ds  Yds ‘ds (333)

dir [15]. Burada % yalniz birakilirsa
S

dy fodx f,dz
ds fy ds fy ds

bulunur. Bu ifade (3.32) de yerine yazilirsa

(ar [VF|- K o, —cfy))%+(—%%—%%J(MHVFH— K(cf,~af,))

(CFHVf |- K(af, —bf ))— =|[vF | cose

elde edilir. Parantezler agilirsa

(arHvFH— K (bf, —cfy))%{—:—;](bruvfu— K (cf, —afz))%

f ]
[—f—;j(bFHVfH—K(cfx—afz)) +(cr || - K (af, ~bf ))__vaucosg

bulunur. Denklemin iki tarafi f, ile garpilirsa

(ar |V | t, - i, o, —cfy))%+(— f, ) (br|vF] - K, —afz))%

+(=1,)(br [VF] - K (e, —afz))%+(cl" Vi £, - K, (af, —bfx))% = || £, coso

elde edilir. —f, ve —f, ifadeleri paranteze dagitilirsa
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(arHvF | £, - K, of, —cfy))%Jr(—ervF | £, + Kf (cf, —af, ))%
+(-br”vf | 7, +Kf,(cf, —afz))%+(cl““vf | £, —Kf, (af, —bfx))%

= HVfH f, coso

dx dz .
bulunur. Burada & ve % parantezine alinirsa
S S

([ caf, =bf,) = K, bF, cf,) - (¢, —afz)])%

+(rHvFH(cfy —bf,)— K[ f,(af, —bf,) - f,(cf, —afz)])% =|Vf|| f, cos@

elde edilir. Bulunan denklemde

[V | af, —bf,) K[ f, (of, —cf,) - ,(cf, ~af,) |= 2, %0

denilerek % yalniz birakilirsa
S

o T 2 o

ds  Q, —K [ f,(af, ~bf,) - f,(cf, —af,) | IS

bulunur. Benzer yolla j—y i bulalim. (3.33) denkleminde % yalniz birakilirsa
S S

dx f,dy f, dz

ds . ds f, ds
bulunur. Bu ifade (3.32) de yazilirsa

(L8 ot o) oK)

+{or V|- K, ~bt,)) = [vF|coso

f
elde edilir. [——y— - —Z—] ifadesi paranteze dagitilirsa
« S
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[—:_i)(aruvfu— K (bf, —cfy))%+[—:—ij(al“uvfu— K (bf, —cfy))%

+{or [V |- K (et ~af,)) 2+ (or [V |- K (af, b1, )) = = [V |cos

bulunur. Bulunan bu ifadenin iki tarafi f, ile ¢arpilirsa

(a1, ) 2L a1

+(1,)(br || - K(cf, —afz))%+( f,)(cr [VF] - K af, —bfx))% =[[VF] . cose

elde edilir. f,, —f, ve —f, ifadeleri parantezlere dagitilirsa

(—arHvF | £, +Kf, (of, —cfy))%+(—al“ [vf] £, + Kt of, —cfy))%

+ (b |V £, - K (cf, - afz))% +(cr |V 1, - Ki, (af, - bfx))% =[] £, coso
bulunur. dy ve dz parantezine alinirsa
ds ds
(r”vf | o, —af,) - K[ f,(cf, -af,)- , (b, —cfy)])%
+(r\\vf”(cfx —af,)— K[ f,(af, —bf,) - f, (bf, —cfy)])% =|IVf || f, cos@

elde edilir. TV (af, ~bf,)—K[ f, (bf, —cf,) — ,(cf, —af,) | =, # O denilerek 3_35’

yalniz birakilirsa

dy_ 1 J[TIvFeeh-at) @
ds  Q, {K[fx(afybfx) f,(bf, —cf,)] 0 || £, coso (3.35)

2 2 2
[%] +(d_yj +($j _1 (3.36)
ds ds ds
elde edilir [15]. (3.34) ve (3.35) esitlikleri (3.36) da yerine yazilarak
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2
f, cos 9}}

im0, -2

o {157~ o, -1,

2

+(%j =1
ds

bulunur. Burada kareler alinip bulunan ifade de benzer olan ifadeler ortak ¢arpan

parantezine alinirsa
_KZ (af, —bf)2(f2 + f2+2f7)+ |
£2((cf, —af,)* + (bf, —cf,)*)
Lo (©*=a®)f f f, +c(f2+ f2)(af, —bf
L opfwr|k| T2 el B B
+abf, (7 - 1)

+(r”vf H)Z (c*(f2+ £2)+ (a2 +b?) £~ 2cf, (af, +bf,))

1
—K [ (af, =bf )(f7 + £+ ) ]

_{2 vFHcose_{FHVF etz + -1, +bfy)q} @
QF ds

+§va [ cos? 017+ £2)-1=0

ikinci derece denklemi elde edilir. Bu denklemin kokleri

'KZ (af, —bf, ) (F2+ f2+2f2)+
£2((cf, —af,)* + (bf, —cf,)?)
o (2 =a®)f f,f, +c(f2+ f2)(af, —bf,
L arfwr|| © Z2 b el BaL
+abf, (f2 - f2)

+(r”vf H)Z (c*(f2+ £2)+ (@2 +b?) £2 —2cf, (af, +bf,))

I I
VFHCOS%FHW et -t :bm]}

o| —K[(af, ~bE)(f2+ 17+ £7)]
o= ot o
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olmak tlizere

ds 20,

ile bulunur. Bulunan bu ifade (3.34) ve (3.35) de yerine yazilirsa

HVFH f, cos 6
d -
oL (o e, -t [qm }

K| f,(af, —bf,) - f,(cf, —af,)] 20,

r|[vf | cf, —af,) [qz + [~ 490, J

dy 1 2

B " o —K[ f,(af, ~bf,)— f,(bf, - cf ) | Oy (3.38)
—HVF f cosé

dz _ -0, %407 44,0,

ds 20,

diferansiyel denklem sistemi elde edilir.Boylece

X(So) =X
y(so) =Y
Z(so) =1,

baslangi¢ noktasi ile birlikte bir baglangi¢c deger problemi elde ederiz. Bu problemin

¢Ozliimii bize S lzerinde aradigimiz D, -Darboux slant helisi verir.

3.5. D,-Darboux Slant Helis Ornekleri

Bu kisimda, D,-Darboux slant helislere ait drnekler verilecektir. Ornek 3.5.1

de yiizey tizerinde verilen bir egrinin D_-Darboux slant helis olup olmadigi Sonug

3.2.3 yardimiyla kontrol edilecektir. Ornek 3.5.2 de parametrik formda verilen bir

yiizey tizerinde D, -Darboux slant helis elde edebilmek igin 3.4.1 boliimiinde verilen
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yontem uygulanmistir. Ornek 3.5.3 de kapali formda verilen bir yiizey iizerinde D, -

Darboux slant helis elde edebilmek icin 3.4.2 boliimiinde verilen yontem

uygulanmistir.

Ornek 3.5.1: X (u,v)=(u,usinv,ucosv) parametrizasyonu ile koni yiizeyi verilsin.

u= % ve v=+/2 In% (s> 0) alinarak bu yiizey lizerinde

a(s) :[g,gsm(«/ﬁln %j,%cos(ﬁln%}j

egrisi elde edilir.

a'= (%,%sin(\/ﬁlng}r%cos(ﬁlngj,%cos(\/ﬁln %]—%sin(ﬁln%)j ,

||07’|| =1 oldugundan « egrisi birim hizli bir egridir. Bu egrinin Darboux catisinin

elemanlar1 bulunursa

T= (%,%sin(ﬁln%}%cos(ﬁln %J,%cos(ﬁln%)—%sin(ﬁm%D,

X, =(@sinv,cosv), X, =(0,ucosv,-usinv) ,

_uw2

X,xX,=|L sinv  cosv |=(-u,usinv,ucosv), |X,xX,
0 wucosv -usinv

oldugundan

U= RATE2, i(—l,sinv, cosv),

XX

qa:%(_min(\/iln%),cos[ﬁlngn,

V= (_%'%Cos(ﬁm%j—%sm[ﬁlngj,—%sin(ﬁlng)_%cos(ﬁln%D

c
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elde edilir. Ayrica

o _( \/—SCOS(\/_”‘ J %Sin(ﬁlngj, N sm(«/_ln j_gcos(ﬁlngn

u, ZKO,ECOS(ﬁIngj,—%sin(ﬁln %D

oldugundan
- 1
K, =<a ,U»——E
K =(a" V) :%
., :—<U;,\7>:—%

bulunur. Bu degerler (3.16) denkleminde yazilirsa

o, =1=sabit

oldugundan « egrisi S yiizeyi lizerinde bir D, -Darboux slant helistir. Sonug 3.2.6
geregince a egrisi iSophote egrisidir. Koni yiizeyi ve secilen « egrisi Sekil 3.5.1 de

gosterilmistir. Bu 6rnek [25] nolu referanstan tiiretilmistir.
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Sekil 3.5.1: X (u,v) = (u,usinv,ucosv) yiizeyi lizerinde

a(s):[g,%sin(\/ﬁln%}%cos(\/ﬁln%D denklemli D, -Darboux slant helis

Ornek 3.5.2: X(u,v)=(ucosv,usinv,u) ile verilen S yiizeyi iizerinde normal

egriligi k, = L, geodezik burulmasi 7, = —— olan ve d, =(0,0,1) dogrultusu ile

1
J2s 2s

0=% acis1 yapan D, -Darboux slant helisi 3.4.1 bolimiinde verilen yontemle

bulalim. Gerekli hesaplamalar yapilirsa

X, = (cosv,sinv,1), X, =(-usinv,ucosv,0),

=uv2,

X, x X, = (-ucosv,-usinv,u), N =H)Zu x X,
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EG—F2=2u%, JVEG-F2 =u+2,
A,=0, A, =0

bulunur. Bulunan bu degerler (3.31) de yerine yazilirsa

du_1
ds 2
w_ 1
ds  uv2

denklem sistemi elde edilir. Bu denklem sistemin ¢6ziimiinden C, ve C, integrasyon

sabitleri olmak tizere
u—s+q
2

V= 2In(§+clj+c2

bulunur. Ozel olarak ¢, =C, =0 olarak alinirsa s >0 olmak iizere

S
U=—
2

v:ﬁln(%)

elde edilir. Bulunan u ve v degerleri X (u,v)=(ucosv,usinv,u) de yerine yazilirsa,

bu yiizey iizerinde

a(s) = X (u(s), v(s)) =Gcos(¢§ In %),%sin(\/z |n%),§j

D, -Darboux slant helisi elde edilir. Koni yiizeyi ve bulunan o egrisi Sekil 3.5.2 de

gosterilmistir. Bu 6rnek [25] nolu referanstan tiiretilmistir.
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Sekil 3.5.2 : X (u,v)=(ucosv,usinv,u) yiizeyi lizerinde normal egriligi k, = \/_iz :
S
geodezik burulmasi 7, = L olanve d, =(0,0,1) dogrultusu ile & =% agis1 yapan

25

D, -Darboux slant helis

Ornek 35.3: f(X,y,2)=x*+Yy*+2z°-1=0 kapal formu ile verilen kiire yiizeyi

.. C pens 1 . 1
izerinde normal egrilifi k,=-—= ve geodezik burulmasi =5 olan ve

N
d, =(0,0,1) dogrultusu ile 9:% agist yapan D, -Darboux slant helisi 3.4.2

boliimiinde verilen yontemle bulalim. Gerekli hesaplamalar yapilirsa

fo=2x f, =2y, f,=2z, “Vf“:Z«/x2+y2+zz,

rof|- 28 ey o, - ey,
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3 2
=—|1+ -1
% 8( x2+y2)

bulunur. Bulunan degerler (3.38) de yerine yazilirsa

ﬁy«/xz +yi+17°

o1 |4
ds  x%+y2 1 — 3_46 | x*+y* 1
| =y Ky e || = [ — =
[\/Ey 4 6 3\X+y’+2° 4
(1 B & 3_46 | xX*+y° 1)]
X XYy || T —=
dy 1 (JE Y yj[a 3\/x2+y2+22 4
ds X% +y?

—? XJX°+y’+2°

diferansiyel denklem sistemi elde edilir. Bu diferansiyel denklem sistemi karmasik
oldugundan egrinin parametrik denklemi elde edilememis olsa da bu sistem igin

P =(1,0,0) baslangi¢c noktasi ile Matlab programinda ‘ode45’ komutu kullanilirsa
aranan egrinin grafigi Sekil 3.5.3 deki gibi elde edilir.



Sekil 3.5.3: f(x,y,2) =x* +y* +2° —1=0 yiizeyi lizerinde normal egriligi k = 1

ﬁ 1
geodezik burulmast 7, =% olan ve d, =(0,0,1) dogrultusu ile & =% acist yapan D, -

Darboux slant helis
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4. YUZEY UZERINDE D, -DARBOUX SLANT HELISLER

Bu boliimde, E® uzayinda bir S yiizeyi iizerinde kalan ve yeni bir ozel
ylizey egrisi olan D, -Darboux slant helis incelenecektir. Bu 6zel egriyi daha kolay

incelemek i¢in ilk olarak rektifiyan Darboux catist ve bu ¢atinin tiirev formiilleri

verilecektir. Daha sonra bu yeni ¢ati yardimiyla D, -Darboux slant helisler i¢in

karakterizasyonlar verilecektir. Son olarak, parametrik ve kapali formda verilen bir

S yiizeyi tizerinde D, -Darboux slant helis elde edebilmek i¢in birer yontem verilip

ardindan Ornekler verilecektir.

4.1. Yiizey Egrileri Icin Rektifiyan Darboux Catisi

S bir yiizey olsun. y:l cIR—S bu ylizey iizerinde kalan birim hizl,
{f,V,U} Darboux catili, kg, K, 7, egriliklerine ve f)r(s)=rg(s)f(s)+kg(s)lj(s)

rektifiyan Darboux vektoriine sahip bir egri olsun. Bu taktirde,
D, (5) =7, (8)T () +k, (U ()
vektorii normlanirsa

- TORAC NP 10

RN YR I v L A ey

elde edilir. D, vektorii, T ve U vektoriiniin gerdigi diizlemde bulundugundan V

U(s)

vektoriine diktir. Dolayisiyla Y: = f)r xV/ birim vektoriiniin tanimlanmasi ile yiizey
tizerindeki y egrisi boyunca yeni bir ortonormal ¢at1 olan {5r,\7,Y:} catis1 elde

edilir.

Tanmm 4.1.1: Yukanidaki sekilde tanimlanan {Dr,V,Y:} catisina S yiizeyi iizerinde

y egrisinin rektifiyan Darboux ¢atisi veya kisaca RD-¢atisi denir.

Simdi bu gat1 i¢in tiirev formiillerini verelim.

59



Teorem 4.1.2: S bir yiizey olsun. y:1 cIR—S bu ylizey lizerinde yay parametresi
s olan ve RD-gatisina sahip birim hizli bir egri olsun. RD-gatisinin vektor alanlart

Dr,\7, . ve egrilikleri o,, x4, olmak lizere, RD-catisinin tiirev formiilleri

I:N)r':_ér r
V' = pY, (4.1)
Y_>r’:§r~r_lur\7
klindedir. B da—rgl ]« _ Jkir72 d
seklindeqair. burada r—k— m—nveﬂr— g+7’-g 1r.
g [¢] g

Ispat: D, , {Ijr,V,Y:} catisinin elemanlarmin lineer birlesimi olarak yazilabilir.

Yani
D, =aD, +aV +a,Y. (4.2)

formundadir. Burada a =a¢(s),1=(123), s in  diferansiyellenebilir

fonksiyonlaridir. (4.2) esitliginin her iki yan1 D, vektdrii ile i¢ carpilirsa

<I3r',f)r>=a1<f)r,Dr>+a2<[3r,\7>+a3<5r,\7r>

DI’

dir. Diger taraftan ‘ =1 oldugundan <I3r, [3r> =1 dir. Bu esitligin tiirevi alinirsa

(D;,B,)=a =0 dir. (4.2) ifadesininin her iki yan1 V vektorii ile i¢ carplirsa

(B1.V) =2, (B, V) +2, (V.V} +2,(¥,.V)
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bulunur. <I3r ,\7> = <Y:,\7> =0 ve <\7,\7> =1 oldugundan <I5;,\7> =a, dir. Ote yandan
D, vektdrii ile U vektorii arasindaki ag1 y olmak iizere D, vektériinde

2 2 2 2
Jkg+rg ﬂ/kg+2'g

=siny ve =COoSy olarak tanimlanirsa

D, =sinyT +cosyU (4.3)
bulunur. (4.3) tin tiirevi alinip Ve Darboux tiirev formiilleri kullanilirsa
D; = (v’ —k, )cosyT +(k, siny —z, cosy )V - (v’ -k, )sinyU

k

9

2 2
Jkg +7,

.= T . 9 - - 7o
elde edilir. —2— =siny ve =C0oSy oldugu goz Oniine alinirsa V nin

2 2
A /kg +7,
katsayist1 sifir olur. Dolayisiyla

—

D; =(y'—k,)cosyT —(y'—k, )sinyU (4.4)
bulunur. Bulunan D/ vektorii, V' vektorii ile ig garpilirsa

a, = < D; ,\7> =0
elde edilir. Simdi de (4.2) ifadesi \7r vektort ile i¢ garpilirsa

(517} 8,(5,7,)+a, V.Y, )-a, (V.

bulunur. <I3r,\7,>=<*,\7,>=0 ve <::>:1 oldugundan a3:<I3r’,\7r> elde edilir.
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T k
elde edilir, —2— =siny ve ——=cosy oldugu dikkate aliirsa
1/kgzjtrg2 1[ngrfg
Y =—cosyT +sinyU (4.5)

elde edilir. (4.4) de bulunan D/ ve (4.5) de bulunan Y: vektorleri i¢ ¢arpilirsa

=—(y' -k, )(cos’y +sin’p) (4.6)
= _(l//,_ kn)

T
bulunur. tany =£ g ] ifadesinin tiirevinden

kg
(T , k2
o))
g g 9

elde edilir. Bu ifade (4.6) ifadesinde yazilirsa

(K
K, k; +rgz

elde edilir. Bulunan a;,a, ve a, degerleri (4.2) denkleminde yazilirsa

- 7, , kg2 -
D =—|| — — | K, |Y; 4.7
kg kg +7,

bulunur.

Simdi V vektoriiniin  tiirevini hesaplayalim. \7', {f)r,\7,\7r} catisinin

elemanlarinin lineer birlesimi olarak yazilabilir. Yani

V'=bD, +bV +hbY (4.8)
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yazilir. Burada b =b.(s),i=(12,3), s in diferansiyellenebilir fonksiyonlaridir.

(4.8) ifadesinin her iki yani f)r vektorii ile i¢ ¢arpilirsa
(V',5,)=b,(5,.5, ) +b, (B, ¥} +,(5,.¥,)

bulunur. < >= 0 oldugundan

rr’r

dir. Darboux tirev formiillerinden V' = —kgf + rglj dir. V' ve

—

- T ~ k
D, = - d = T+ - 3 - U vektorleri yerine yazilirsa
\/ kg +7, \/ ky +7,

<\7( = > - - Tg = kg
l) = ’|>r = —k |+’[||' |+ ll

S0 (r 1) ,0)

2 2 2 2
«/kg-l-rg Jkg+z'g

_ kzgrg _ kzgz'g 2
\/kg +7, \/kg +7,
=0

elde edilir. (4.8) esitliginin her iki yan1 V' vektorii ile i¢ carpilirsa
(V') =5,(B,V ) +b, (V.V ) b, (Y,.V)
bulunur. <I5r,\7> = <\7r\7> =0 ve <Q,\7> =1 oldugundan
b, =(V'.V)
dur. Ote yandan <\7,\7> =1 ifadesinin tiirevi almirsa < ﬁ',\7> =0=h, elde edilir. (4.8)
ifadesi Vr vektorii ile i¢ ¢arpilirsa

CRARNGRANNAANNAS
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bulunur. <5r,ﬁ> :<\7,qu> =0 ve <Vr,ﬂ>=1 oldugundan

elde edilir. Darboux tiirev formiillerinden V' = —kgf + rgU dir. Ayrica

— —

Y =D, xV =

r

—

U

kg _ 7,
o 2T+ 2, 2
\/kg+rg \/kg+rg

dir. Bu vektorler yerine yazilirsa

bulunur. Bulunan b,, b, ve b, degerleri (4.8) de yazilirsa
V'= Jk; Jrz';Yﬁr (4.9)
elde edilir.

Simdi Y vektoriiniin tirevini hesaplayalm. Y, {Q,V,\ﬁ} catisinin

elemanlarinin lineer birlesimi olarak yazilabilir. Yani
Y'=cD, +cV +cY, (4.10)

yazilir. Burada c, =c;(s),i=(12,3), s in diferansiyellenebilir fonksiyonlaridir.

(4.10) ifadesinin her iki yan1 f)r vektorii ile i¢ ¢arpilirsa
<v7, f)r>=cl<f)r, B, )+¢,(B,V)+c,(B,.Y,)
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bulunur. <[3r,[5r>=1 ve <5r,V>:<Dr,Vr>:0 oldugundan
<Y-r’1 I:_jr>:C1

dir. (4.5) esitliginin her iki yaninin tiirevi alimir ve Darboux tiirev formiilleri

kullanilirsa
Y, = (' =k, )sinyT - (K, cosy +z,siny )V +(y'—k,)cospyU  (4.11)

7, i Ky
bulunur. ———=siny ve

2 2 2 2
kg+rg ./kg+rg

olur. Dolayistyla

=cosy oldugundan D, =sinyT +cosyU

.
elde edilir. tany = [k—gJ ifadesinin tiirevinden bulunan
g

ifadesi yerine yazilirsa

! k2
C, = (T—QJ [%J —k,
ky ) \ kg +7,
bulunur. (4.10) ifadesinin her iki yan1 V' vektérii ile i¢ garpilirsa

(% V)=(B,V)+c, (V.V) +e, (¥,.V)

elde edilir. (5,.V)=(Y,,V)=0 ve (V,V) =1 oldugundan

dir. (4.11) kullanilarak
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C, = <Vr’,\7> = <(w'— k,)sin z//f—(kg COsy + 7, Sin w)\7+(w'— k, )cosV/U,\7>

=—(k, cosy +7,siny )

elde edilir. Son olarak (4.10) ifadesi Y. vektorii ile i¢ carpilirsa

(70, ) =6 (B, )+, (0.5, o, (7.
bulunur. <I3r,\7r>=<*,\7,>:0 ve <\7,Vr>:l oldugundan
C3:<Vr',vr>

dir. <Vr,yr>=1 ifadesinin tiirevi alinirsa <Y?,Yar>zc3 =0 elde edilir. Bulunan c,,c,

ve c, ifadeleri (4.10) ifadesinde yazilirsa

, T ’ k? ~ — -
Y =||-2 > g > |-k, |D, — kg +7,V (4.12)
k kg +7,

9

elde edilir. (4.7), (4.9) ve (4.12) denklemleri dikkate almarak D/, V' ve Y, ifadeleri

matris formunda yazilirsa
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2
D, D,
V' |= 0 0 JKk+72 v
‘A Yo

7\
7\—|©<\\
N~
7\
=~
Q

+ |
N
«
N
|

=~
S

—_
|

=
Q
+

3

«Q N
N —
o

bulunur. Burada

5= T | [ |-k
Tl ke ) (4.13)

D 0 0 -5 )b
Vil=l0 0 u ||V
Y_.' 5r —H, 0 Y_.r
seklinde olur. [

4.2. D, -Darboux Slant Helisin Ekseni ve Karakterizasyonlari
S bir ylizey ve y:1 cIR—S bu yilizey iizerinde kalan birim hizli bir egri
olsun. y egrisinin Darboux ¢atisi {f,V,U} ve egrilikleri ky,k, ve 7z, olsun. Bu

egrinin rektifiyan Darboux vektori Dr(S)ZTg (s)'I:(s)+kg (s)U(s) olmak iizere, yiizey

tizerinde D, -Darboux slant helis kavrami asagidaki sekilde tanimlanmustir.

Oh

r

Tanmm 4.2.1: y:1 cIR—S egrisinin D, vektor alam (veya denk olarak D, =

Oh

birim vektor alani) sabit bir dogrultu ile sabit a¢1 yapiyorsa y egrisi S ylizeyi

r

tizerinde D, -Darboux slant helis olarak adlandirilir [20].
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Simdi bu tanim1 dikkate alarak D, -Darboux slant helislerin karakterizasyonlarini

verebiliriz.

Teorem 4.2.2: S, E® de bir yiizey ve 7:1 cIR—S bu yiizey iizerinde {ﬁr,V,Y:}

RD-¢gatisina sahip birim hizli bir egri olsun. y egrisinin D, -Darboux slant helis

olmasi i¢in gerek ve yeter sart her se | igin

o, (s)=§(s) (4.14)

r

fonksiyonunun sabit olmasidir. Burada x, #0 ve o, #0 dir.

ispat: », RD-catis1 {15,,\7,\7r} olan bir D, -Darboux slant helis olsun. D, -Darboux

slant helis tanimindan » nin D, birim vektdrii, sabit dogrultulu d . vektori ile sabit
@ acgis1 yapar. Yani <I3r,a,>:cosa) dir. Bu ifadenin tiirevi ahn1rsa<f)r',ar>:o

bulunur. (4.1) deki RD-¢atisinin tiirev formiilleri kullanilirsa

~5,(¥,,d,) =0

r

elde edilir. 6, #0 oldugundan <V,,a,>=o dir. Yani d, vektorii Y. vektoriine

diktir. Dolayistyla d . vektorii, D, ve V vektorlerinin gerdigi diizlemde bulunur. O

halde
d, =coswD, +sinV
yazilabilir. Bu ifadenin tiirevi alimirsa, d, . sabit vektor oldugundan

0=coswD! +sin V'’
= cosw(—&r\ﬁ)+sin a)(y,\? )

=Y, (4 sinw—-6, cosw)

bulunur. Y. sifirdan farkli bir vektdr oldugundan g, Sin@—&,cos@=0  dur.

r

Dolayistyla buradan

68



4, COoSw
o Sihw

r

= cot w = sabit

elde edilir.

. . . . COSw )
Tersine olarak, o bir sabit olmak iizere, o =cot w = sabit olarak

sinw

r

tanimlansin. Buradan x, Sinw =9, COS@ yazilabilir.
d_=coswD, +sin &V

alalim. CTr nin sabit oldugunu gdsterelim. ar :COSa)II#)r +sinwV ifadesinin tiirevi

alimip ardindan (4.1) deki tiirev formiilleri ve g, Sin® =J, C0OS® oldugu kullanilirsa

d' =coswD’ +sinaV'
=cosao(-5,Y.)+sina(yY,)
=Y (g, sinw -5, cos )
=Y (5, cos w— &, cos )

0

bulunur. Dolayisiyla d, sabit vektordiir. Ayrica <[3r,ar>:COSw oldugundan d,

sabit vektorii, D, vektorii ile ile sabit ag1 yapar. Yani y bir D, -Darboux slant

helistir. 0

Teorem 4.2.2 den agagidaki sonuglar elde edilebilir.

Sonug¢ 4.2.3: , E® de S yiizeyi iizerinde kalan birim hizli bir egri ve bu egrinin
Darboux catisimin egrilikleri k;,k, ve 7, olsun. y egrisinin D, -Darboux Slant helis

olmasi i¢in gerek ve yeter sart her se | igin

ks + rg
o,(s)= , (s) (4.15)
5 [f} T
2 2 n
kg + 74 K,
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veya denk olarak

o.(s)= — (s)

fonksiyonunun sabit olmasidir.

Ispat: (4.13) esitlikleri (4.14) de yazilarak (4.15) esitligine kolayca ulasilir. [

Sonug¢ 4.2.4: Rektifiyan Darboux ¢atisina gore D, -Darboux slant helisin ekseni
d_=coswD, +sin &V (4.16)

seklindedir.

Sonu¢ 4.2.5: D, -Darboux slant helisin ekseni, Darboux catisinin vektorleri

cinsinden
- T . k -
d, = cosw%T +sin aV +cosw%U
Jkg-i-fg ./kg+fg
seklindedir.

Sonu¢ 4.2.6: S yiizeyi lizerinde birim hizli bir y egrisinin D, -Darboux slant helis

olmasi i¢in gerek ve yeter sart y nin relatively normal-slant helis olmasidir.
Ispat: (4.16) esitliginin iki tarafi V vektori ile i¢ carpilirsa
<Jr,\7> =sin @ = sabit
bulunur. Bu da y egrisinin relatively normal-slant helis oldugunu gosterir. [

Sonug¢ 4.2.7: y, S ylizeyi lizerinde birim hizli bir D, -Darboux slant helis olsun. Bu

durumda,
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I) y nin S yiizeyi iizerinde k, #0 olan bir geodezik egri olmasi i¢in gerek ve yeter

sart ¥ nin d, =coseT +sinwB eksenli bir helis olmasidur.

i) y mn S ylizeyi lizerinde k, =0 olan asimptotik bir egri olmasi igin gerek ve yeter

sart y nin

- T
d, =cose

(os]]

T FsinwN +cosw
?+i° 4K’

eksenli bir Darboux helis (slant helis) olmasidir.
iii) y, S ylizeyi iizerinde bir egrilik ¢izgisi ise y diizlemsel bir egridir.
Ispat: i) y geodezik egri ise k, =0 dir. (2.1) esitlikleri kullanilarak k =Fx ve r, =7

elde edilir. Bulunan degerler (4.15) de yazilirsa

o, = +— =sabit

r

X =

oldugundan Teorem 2.1.18 geregince y bir helistir. Ayrica Tanim 2.2.18 de verilen

Darboux c¢atis1 ile Frenet catis1 arasindaki iliskiler, Sonu¢ 4.2.5 de yazilip (2.1)

esitlikleri kullanilirsa, D, -Darboux slant helisin Frenet ¢atisinin vektorleri cinsinden

ekseni

T, o= | . Kk K,
d, =cosw——:T +| sinw-—2L +cos 0 — =
JKs +7¢ K Kk\ke +7;

ok k).
+| —Sino—+cosw————— |B

K 2 2
Kﬂ[kg +7,

seklinde olur. k, =0, k =Fx ve z =7z oldugu kullanilirsa, y helisinin ekseni

d. =cosaT +sinwB bulunur.
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Tersine olarak, y, d. =cosaT +sinwB eksenli bir helis olsun. Helisin ekseni ile
D, -Darboux slant helisin Frenet ¢atisinin vektorleri cinsinden ekseni dikkate alinirsa

k, =0 bulunur. y geodezik bir egridir.

i) y asimptotik egri ise k, =0 dir. (2.1) esitlikleri kullamlarak k, =¥« ve r, =7 elde

edilir. Bulunan degerler (4.15) de yazilirsa
o, = - = sabit
)
— =
(1(2 +7? )5 K

oldugundan Teorem 2.1.22 (i) geregince y Darboux helistir. Ayrica Teorem 2.1.22

(ii) geregince y bir slant helistir. Ayrica k =0, k, =¥« Ve 7, =7 oldugu, yukarida

D, -Darboux slant helisin Frenet ¢atisinin vektorleri cinsinden verilen ekseninde

v T T 1 =
yazilirsa, y nin ekseni d. =cosw T FsinwN +cosw B olarak bulunur.
o’ + o’ + K
- - T S = K = -
Tersine olarak, y, d =cosw T FsinwN +cosw B eksenli bir
Ny * + K7

Darboux helis olsun. Darboux helisin ekseni ile D, -Darboux slant helisin Frenet
catisinin vektorleri cinsinden ekseni dikkate alinirsa kK, =0 bulunur. y asimptotik bir
egridir.

k
iii) y egrilik cizgisi ise r, =0 dir. Bu taktirde o, =—k—9=sabit elde edilir. (2.1)

esitlikleri kullanilirsa, &, y egrisinin Frenet ¢atisnin B binormal vektorii ile U

ylizey normali arasindaki ac1 olmak iizere

k
__gz_Losfz—coté = sabit,

K, xsiné&

dolayistyla & = sabit bulunur. 7, =7 —¢"=0 oldugundan z =0 elde edilir. Yani y

diizlemseldir. []
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4.3. D, -Darboux Slant Helislerin RD-Catisina Gore Diferansiyel Denklem

Karakterizasyonlari

Bu kisimda, énce E® de bir S yiizeyi iizerinde bulunan egrilerin diferansiyel

denklem karakterizasyonlar1 RD-gatisinin elemanlar1 olan Ii, V ve Y: vektor

alanlarina bagl olarak verilecektir. Daha sonra D, -Darboux slant helisleri

karakterize eden diferansiyel denklem karakterizasyonlari RD-gatisinin elemanlari

olan D,,V ve Y, vektor alanlarina bagh olarak verilecektir.

Teorem 4.3.1: S, E® de bir yiizey ve y:1 cIR—S bu yiizey iizerinde kalan birim

hizl1 bir egri olsun. o egrisini RD-¢atisinin [3r vektor alanina gore karakterize eden

vektorel diferansiyel denklem, x, #0 ve J, #0 olmak iizere

5;”—’_ /ur5r L +5r i 5;,+ :ur5r i i +/ur2+5r2 DII
r5r 5[’ ILIF 5)’
+11,0, (ij D, =0
Y7,
seklindedir.

Ispat: (4.1) sisteminin birinci denkleminden \7r vektorii yalniz birakilirsa

olur. Bu ifadenin tiirevi alinirsa

bulunur. (4.1) sisteminin iigiincii denkleminden V vektorii yalniz birakilirsa

v=2rp Ly
Hy Hy
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olur. (4.19), (4.20) de yerine yazilirsa
v*:_rﬁr+i[i) 54 L 5
H, Hy

elde edilir. Bu ifadenin tirevi alinirsa

V=t g (LJ +i(i} By+| 2 i[iJ D;+(i} D, (4.21)
:ur5r :ur5r Hy 5I’ He Hy 5r e

sonucuna ulagilir. (4.18) ve (4.21) esitlikleri (4.1) in ikinci denkleminde yazilirsa

1 g, [LJ +i[1] 54| % AH D;{i] 5 =t
He 6, Ho, ) e\ G, Mo | O My o

bulunur. Bulunan denklem diizenlenirse

! ! 2 2
1 g, (L] +AH Bry| 440, AH 5;+(i] 5, 0
16, MO, ) e\ 6, O, | M\ 6 M

elde edilir. Son denklemin her iki tarafi 5, ile garpilirsa

D+| 1,6, 1 +0, 1 D/ +| 4°+8.2+ 1,6, 1L D!
106, 5 5

+1.0, (i] D, =0

diferansiyel denklemi elde edilir. L

Sonu¢ 4.3.2: S, E® de bir yiizey ve y:1 cIR—S bu yiizey iizerinde kalan birim
hizli bir D, -Darboux slant helis olsun. y egrisini [3r vektor alanina gore karakterize
eden vektorel diferansiyel denklem
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5{%) D7 +| 4* +6,° + 4,6, i(% D; =0

r

- 1)
D'+| o, | — | +
r #I’ r ( 5 ]

r-r

seklindedir. Burada x, #0 ve o, #0 dur.

Ispat: Teorem 4.3.1 de, E® de egrileri RD-gatisinin D, elemanina gore karakterize
eden genel diferansiyel denklemin (4.17) seklinde oldugu gosterildi. Simdi y egrisi

D, -Darboux slant helis oldugunu kabul edelim. D, -Darboux slant helis olma

r

sartindan % ifadesi sabit oldugundan o ifadesi de sabittir. Dolayisiyla [iJ =0
r My

ifadesi (4.17) denkleminde yazilirsa

B 1Y) (1)< 1(1Y ]~
D'+| u6.| —— | +8.| — | |D!'+| > +8°+ud.|—| = || |D/ =0
r ILlI' I'[ 5\] r[é‘] r ILlI' r ﬂr r [5} r

r-r r

denklemi elde edilir. [

Teorem 4.3.3: S, E® de bir yiizey ve y:1 cIR—S bu yiizey iizerinde kalan birim

hizl1 bir egri olsun. y egrisini RD-¢atisinin V vektdr alamina gore karakterize eden

vektorel diferansiyel denklem, g, #0 ve o6, #0 olmak iizere

i e 2] ol 32 [y
ﬂr r ILlr r yr (4.22)

seklindedir.

Ispat: (4.1) sisteminin 2. denkleminden

Y ==V (4.23)
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yazilabilir. Bu ifadenin tiirevi alinirsa
Y, = (ij Vie Ly
Hy Hy

bulunur. Bu esitlik, (4.1) in {igiincii denkleminde yazilip D, yalniz birakilirsa

5 -t vre il L |ty
wo, o \u) S

r

elde edilir. Bulunan D, ifadesinin tiirevi alnip denklem diizenlenirse

D;:LV"# L +i i \7”+ i i +& \7’+ & \7
/uré\r /ur5r 5r Hy 5r Hy 5r 5r

bulunur. Bulunan f)r’ degeri ve (4.23) ifadesi (4.1) sisteminin birinci denkleminde

yazilirsa

i\7"’+ i +i i \7"+ i i +& \7'+ & \7=—i\7’
.0, #o, ) o\ 4 S, \ 4y S, S, H,

diferansiyel denklemi elde edilir. L

Sonu¢ 4.3.4: S, E® de bir yiizey ve y:1 cIR—S bu yiizey iizerinde kalan birim
hizli bir D, -Darboux slant helis olsun. y egrisini V vektor alamina gore karakterize

eden vektorel diferansiyel denklem
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!

V"t yﬁ{%} +,ur£ij V"4 ud. %[ij + 12 +57 V' =0

r-r r

!

seklindedir. Burada x, #0 ve 6, #0 dur.

ispat: Teorem 4.3.3 de, E® de egrileri RD-catisinin V elemanina gore karakterize

eden genel diferansiyel denklemin (4.22) seklinde oldugu gosterildi. Simdi y
egrisinin D, -Darboux slant helis oldugunu kabul edelim. D, -Darboux slant helis

olma sartindan % ifadesi sabittir. Dolayisiyla (%j =0 ifadesi (4.22)

r r

denkleminde yazilirsa

!

V" +| 1.6 [%J +,ur[lJ V"4 ud. i[ij + 12 +67 V' =0
4

r-r

denklemi elde edilir. [

Teorem 4.35: S, E® de bir yiizey ve y:1 cIR—S bu yiizey iizerinde kalan

birim hizli bir egri olsun. y egrisini RD-¢atisinin Vr vektor alanina gore karakterize

eden vektorel diferansiyel denklem, 4, # 0 olmak tizere
Vb (B AN (<A 2 (0, 4 )Y, =0
A A A

seklindedir. Burada A4 = #, A, = i(1+ S54) ve A= ﬂl(,uf +5,2)
He O, _luré‘r 5r

seklindedir.

Ispat: (4.1) in iiciincii denkleminden

D =i\7'+?\7 (4.24)
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yazilabilir. Bulunan ifadenin tiirevi alimirsa ve RD-gatisinin tiirev formiilleri

kullanilirsa

0, 0

r r

! 2 2 !
5&@4 [i) Vi e tory +(&] V =0

r

bulunur. Son denklemde V' vektérii yalniz birakilirsa

. . C o S+
Ve Oy, O g (i +o0)
/ur’é‘r - :uré‘r, /ur’é‘r - :ur5r' zur’é‘r - /uré‘r'

r

bulunan bu ifade (4.24) de vyazilirsa A:L,@:i(l+§r’ﬂl) ve
lLl; r_:urér' 5r

A=A ( e+ §r2) olmak iizere

D, =AY+ AY/ - A,

elde edilir. Son bulunan esitligin her iki yaninin tiirevi alinip RD-gatisinin tiirev

formiilleri kullanilirsa
V(= AV (<2 + 2 Vit (=5, + Y, =0
4 A 4

denklemi elde edilir. [

Teorem 4.3.6: S, E® de bir yiizey ve y:1 cIR—S bu yiizey iizerinde kalan

birim hizli bir D, -Darboux slant helis olsun. y egrisini RD-gatisnin Y. vektor

r

alanina gore karakterize eden vektorel diferansiyel denklem

!

SRR

Y_;—”+§r(
0,

r

seklindedir. Burada &, #0 dur.

Ispat: (4.1) deki tiirev formiillerinin {i¢linciisiinden f)r vektorii yalniz birakilirsa
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bulunur. Bu esitligin tiirevi alinirsa

B =Ly [ L |y by A ly
o) 0 0 0

r r r r

elde edilir. y egrisi D, -Darboux slant helis oldugundan [%J = 0 olur. Dolayisiyla

r

!

[_jr,:iY_;”"f‘ i Y_;,"f‘&\].'
10} o) o)

r r r

dir. Burada V' yerine tiirev formiillerindeki esiti yazilirsa

;s -
B =2y | 2| vty
5 5 5

r r

bulunur. Bulunan bu esitlik, (4.1) in birinci denkleminde yerine yazilip denklem

diizenlenirse

elde edilir. Son olarak bu denklem o, ile garpilarak

!

oo | 2 el a0

r

elde edilir. []
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4.4. Yiizey Uzerinde D, -Darboux Slant Helisin Elde Edilmesi

Bu kisimda, parametrik ve kapali formda verilen bir yiizey iizerinde D, -

Darboux slant helis elde edilebilmek i¢in yontemler verilecektir.

4.4.1. Parametrik Formda Verilen Yiizey Uzerinde D, -Darboux Slant Helisin

Elde Edilmesi

S, E® uzayinda X = X(u,v) parametrizasyonu ile verilen bir yiizey olsun.
y(s)=X (U(S),V(S)), S yiizeyi iizerinde, sabit ve birim d . dogrultusu ile sabit @
acist yapan, Darboux catisi {f,V,U} olan birim hizli bir D, -Darboux slant helis

olsun. y egrisini elde etmek icin u(s) ve v(s) degerlerinin bulunmas: gerekir. Ilk

olarak u(s) degerini bulalim.

yoTox M g Vg XXX GG, T
ds ds

dir. T vektoriiniin ve U vektdriiniin esiti V' vektoriinde yazilirsa

1 - -\ du " -\ adv
Y :W[(EXV —qu)£+(|:xv —GXU)E}

bulunur [15]. Burada E,F,G birinci temel formun katsayilaridir. y, D, -Darboux

slant helis oldugundan <[ﬁ)r d r> —cosw dir. Bu ifadede D, vektorii yerine yazilirsa

=CO0S @ (4.25)

T ~ k I
29 2T+ 29 2U,dr
\/kg+rg \/kg+rg

elde edilir. Yukarida bulunan T ve U vektérlerinin esitleri (4.25) de yazilirsa

,d

Ty - du o dv kg Xuva -
— XUEJFXVE + | % <X ]
*’kg_'_rg \fkg_'_rg ‘ u>< v

=CO0Sw
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bulunur. Bu ifade diizenlenirse

T = =\ du T S = dv K 1 . o =
——(X,,d, )—+——==(X,,d, )—+ 2 —( X, xX,,d, )=cosw
4/k;+fg< Vs 4/kg2+fg< E Jkg+12\xuxxv< )
elde edilir. Bulunan son denklemde islem kolaylig1 agisindan

5 g % _p, [X,xX,|=VEG—F? =N,
,/k§+2'§ «[kg2+r§
(X,d)=L,, (X,.d,)=M,, (X,xX,,d)=B,
kisaltmalari kullanilirsa, son ifade
SLr%JrSMrer RiBr =COoS @
ds ds N
olur. Bu esitligin her iki yan1 N ile ¢arpilirsa
SLrNd—u+S|\/|rNﬂ+RBr=NCOSa) (4.26)
ds ds
- : dv
elde edilir. Bu ifadede & yalniz birakilirsa
S
dv_Ncosw—-RB, SLN du (4.27)
ds SM, N SM_N ds '
elde edilir. Ayrica y egrisi birim hizli oldugundan
du’Y du dv dv’
E(—) +2F——+G(—J =1 (4.28)
ds ds ds ds

bulunur [15]. (4.27) ifadesi, (4.28) de yerine yazilirsa

2 2
E(duj +2Fd_u(NCOSa)—RBr SL,N du}rG(NCOSa)—RBr SL,N du]

ds ds| SM.N  SM.Nds SM.N  SM.,Nds

denklemi elde edilir. Bu denklemde parantezler acilirsa
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2 2
£ du +2|:d_uNcosw—RBr_ZFd_u SL, N d—u+G N cosw—RB,
ds ds SM,N ds SM,N ds SM,N

Ncosw—RB. [ SLN du SLN du)
-2G o v e
SM.N SM.N ds SM.N ds

bulunur. Elde edilen son denklemde paydalar esitlenirse

ES’M ZNZ(d—u

2 2
; J +2FSM,N (N COSw—RBr)d—u—ZFSZNZLer(d—uJ
S

ds ds

+G (N cosw—RB, )’ ~2G (N cosw—RB, )SL,N d—u+GSZLfN2(d—u

jz =S*M?2N?
ds ds '

2
bulunur. Burada (Z—UJ ve 3—“ parantezine alarak
S S

2
S’°N’[EM/ -2FL M, +GL§](d—uj +2SN (N cosw—RB, )[FM, —GLr]d—u
ds ds

+G(Ncosw—RB, )" ~S*M?N? =0

ifadesi elde edilmis olur. Islem kolayligi agisindan EM?+GL2-2FL M, = A

denilirse

2
S’N’A (Z—Q +2SN (N cosw—RB,)[FM, —GLr]j—:

+G(Ncosw—RB, ) —~S*M?N?=0

ikinci dereceden denklemi elde edilir. Bu denklemin kokleri bize 2—” ifadesini verir.
S

Bu denklemin diskriminanti

A, =43°N?(Ncosw—RB, )’[FM, —GL, |
—482N2A[G(N cosw—RB, )’ —SZMfNZ}

bulunur. Bu ifade diizenlenirse

A, =4S°N? (N cosw—RB, )’ [(FMr —GLr)Z—AG}+4S4N4MEA
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elde edilir. Daha once yapilan kisaltmalar, bulunan diskriminantda yerine yazilirsa

‘Xu x X,|[cos@

| gz s el

(X,.d,) A

2

4
T .
+4[—2g ZJ |X, %X,
\ [kg +7,
- du . .
bulunur. Dolayisiyla aradigimiz — ifadesi

ds

du —2SN(Ncosw—RB, )[FM, —GL ]+,/A
ds 2S2N2A,

seklindedir. Yukaridaki denklemde, daha 6nce yapilan kisaltmalar yerine yazilirsa

W . H)?ux)zv cos @ . B
~25[X, x X, O TE(R,d ) =6 (X, d ) |+ A,
d_u: ‘ d _R<XUXXV1dI‘> |: < > < >:| (429)
ds 257X, < X, [ A '

bulunur. Burada S = ve A =EM?+GL?-2FL M, dur.

7, k
% Ro_—_9%

2 2 2 2
Jkg +7, Jkg +7,

Simdi benzer yolla % ifadesini bulalim. (4.26) da (;—u yalniz birakilirsa
S S

du _Ncosw—RB, SM,N dv
ds SL,N SL,N ds

elde edilir. Bulunan 3—” in esiti (4.28) de yerine yazilirsa
S

2 2
E(NCOSa)—RBr_SMrN QJ +2F[Nc05a}—RBr_SMrN g]dv G(dvj 4

SL.N SL.N ds SL.N SLN dsjds  \ds

bulunur. Parantezler agilip payda esitlenirse
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2
E (N cos@—RB, )" ~2E (N cosw—RB, ) SM,N %+ ESZMsz(Qj

S ds
dv 2n12 dVZ 222dV2 2121 2
+2F(Ncosw—RBr)SLrN——2FS N°LM, | —| +GS°N°L| — | =S°N°L;
ds ds ds
2
elde edilir. (%j ve (Qj parantezine alinirsa
ds ds

2
SZNZ(EMf —2FLM, +GL§)(%) +2SN (N cosw—RB, )(FL, —El\/lr)%

+E(Ncoso-RB, )" ~S*N?L2 =0

bulunur. Daha &nce kullanilan EM? —2FL M _+GL> =A kisaltmasmi tekrar

kullanarak

2
SZNZA,(%j +2SN (N cosw—RB, )(FL, —EMr)%

+E(Ncosw—RB, )’ ~S$2N?L2 =0

ikinci dereceden denklemi elde edilir. Bu denklemin kokleri bize % i verir.
S

Denklemin diskriminant1 hesaplanirsa

A; =4S*N?(Ncosw—RB, ) (FL, —EM, )’
~45°N’A | E(Ncosw-RB, ) ~S*N’L |

bulunur. A’ diizenlenirse
A, =4SN (N cosw—RB, )’ | (FL, —EM, )~ AE |+48'N*A L]

elde edilir. Yapilan kisaltmalar bulunan A, da yerine yazilirsa

) ~ ‘Xuxivcosa) o B )
A =457 X, x X, | N [(F<Xu,dr>—E<Xv,d>) —AE}
+4s*X, < X,| A (X,.d,)
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elde edilir. Dolayisiyla denklemin kokleri

dv —2SN(Ncosw—RB,)(FL, —EM, )= ,/A
ds 2S2N2A

ile bulunur. Daha 6nce yapilan kisaltmalar yerine yazilirsa

X, xX,|cosw

o X“XX”H[—W}xxx,d,>}(F<XU’df>‘E<*v’dr>)iJA’:

ds

< (4.30)

— - 12
X, <X, [ A

elde edilir. Burada S =

7, kg ) )
R= ve A =EM?—2FLM, +GL? dr.
2 2 2 2
Jkg+rg «/kg+z'g

(4.29) ve (4.30) dan
X, x X, [cosw o -
N _ZSHXUXXVH[R<)?ux)ZV,JrJ[F<XV,dr>_G<Xu’dr>}+\/z
ds 252X, %X, A s
N ~25|IX, x X, [_XR<;XX;OS:>](F<)Zd>E<>Zd>)4_r\/A_
ds 252X, x X, A

diferansiyel denklem sistemi elde edilir. Bu denklem sistemi

U(So) =U,
V(So) =Vo

baslangic noktasi ile birlikte ¢oziiliip bulunan degerler X (u,v) de yazilirsa S yiizeyi

tizerinde istenen D, -Darboux slant helis elde edilir.
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4.4.2.Kapali Formda Verilen Yiizey Uzerinde Bulunan D, -Darboux Slant
Helisin Elde Edilmesi

S, E® uzayinda f(x,y,z)=0 kapali formu ile verilen bir yiizey olsun.
(8)=(X(5), ¥(5),2(s)), S yiizeyi iizerinde, sabit ve birim d, =(a,b,c) dogrultusu
ile sabit @ acis1 yapan, Darboux ¢atisi {T,V,U} olan birim hizli bir D, -Darboux

slant helis olsun. y egrisini elde etmek igin X(S),y(s) ve z(s) degerlerinin
bulunmasi gerekir. €, €, ve &, E® uzaymin standart baz vektorleri olmak iizere

Darboux ¢atisinin elemanlari;

Foye (dx dy dz
ds'ds’'ds

G-t f,f.f
o] o)
_ _ _ 1 é>1 éZ éS
V=UxT=r——olf f f
HVfH dx dy dz
ds ds ds
=1(f__f fOx 0z ﬂ_f%)
v ds’ st “ds' *ds Y ds

seklindedir [15]. Bulunan T ve U vektorleri, D, vektoriinde yerine yazilirsa

Ij:T_g(dxdydzj Ky 1(fff)

r - x? tyr Tz
JK2 ds ds ds \/k§+’[§ \%i

elde edilir. y, D, -Darboux slant helis oldugundan <[3r,d,>:cosw dir. d, vektori

r

ve yukarida bulunan [3r vektorii yerine yazilirsa

T—G(dx dy dz} Ky 1ﬂ (fx,f ,fz) (a,b,c) )=cosw
\/@ ds’'ds’ ds \/k92+f§ v y
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z'
bulunur. Burada islem kolayhig1 igin ——2—=—==3S ve =R denilip ifade

2 2 2 2
kg +7, kg +7,

diizenlenirse

<5(%,Q,QJ+R 1ﬂ (fx,fy,fz),(a,b,c)>—cosa)
ds ds ds \%i

elde edilir. Buradaki i¢ ¢arpim islemi yapilirsa

Sa%+8bﬂ+8 dz —af, +Ri— bf +R— ! cf, =cosw

do s HV I HVfH ¥

bulunur. Her iki taraf HVF H ile carpilirsa
SHVf Ha—+SHVf Hbdy SHVf Hc —HVf HCOSa) R(af +bf, +cf ) (4.32)

elde edilir. Ayrica <f, U> =0 oldugundan

Py S

0 4.33
“ds Yds ‘ds (433)

dir [15]. Burada % ifadesi yalniz birakilirsa
S

dy  f,dx f, dz

ds fy ds fy ds

bulunur. Bu ifade (4.32) de yerine yazilirsa ve islem kolaylig1 igin

HVFH cosw—R (afX +bf, +cf, ) =H kisaltmasi kullanilirsa

- d - f,dx f,d = d
s[vifa® 5[ Hb[_f_yd_z_f_yd_z}suw o1
elde edilir. Parantezler acilirsa
R
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bulunur. Denklemin iki tarafi f, ile garpilirsa

S HVf H af S HVf Hbf S HVf Hbf +S HVf H = Hf

elde edilir. Her iki taraf S va H ye boliiniirse

af DX pf K B B2 1y
Y ds ds ds ’ds sl|vf|

dx dz .
bulunur. Bulunan denklemde o ve o parantezine alinirsa
S S

dx dz 1
(af, =bf, )+ (cf, =bf, )= STor

? yalniz birakilirsa
S

XL L (bf, —of, )2 (4.34)
ds af, —bf, | S|Vf ds

elde edilir. Benzer yolla (;_y i bulalim. (4.33) denkleminde % yalniz brrakilirsa
S S

dx _ fdy f dz

ds f ds f ds

bulunur. Bu ifade (4.32) de yazilirsa

suvrua(_:_%_%d_j ST 2.+ 5|7 2 < o7 cos o (o, +bf, 1,

elde edilir. Parantez acilip her iki taraf S HVF H ye boliiniirse

f
_yﬂ_af_g_kby_k(:%— 1

Z

fds fds ds ds s|vi

X X
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ile carpilip sonra da (;_y ve gz parantezine
S

ds

olur. Bulunan bu ifadenin iki tarafi f,

alinirsa

dy
bf, —af |—+(cf —af )—=———1f
(of =2, ) g (et =2l ) spvi]
oo dy
elde edilir. ds yalniz birakilirsa
s
dy 1 dz 1
- = I(cf —af)—=——=——fH 4.35
ds (afy—bfx)[(cx ) g s|vf| } (4.39)

bulunur. » birim hizli oldugundan

(%T +(d_yj2 +(%j2 1 (4.36)
ds ds ds

elde edilir [15]. (af, —bf, ) =0, =0 denilerek (4.34) ve (4.35) ifadeleri (4.36) da

yerine yazilirsa

2 2 2
L1 ,+(bf, —cf )% AL (cfx—afz)%—foH +(%J =1
Q| s|vf] Vas | Tl o ds S|Vf| ds

bulunur. Burada kareler alinip, bulunan ifade de benzer olan ifadeler ortak c¢arpan

parantezine alinirsa
{ - @ +b?) £2+¢?(F7 + £7) - 2f(af, +bf )]+1}(33
1 dz
+{2WH [f(af +bf,)—c(f7+f )]}ds

2
1 1
ST H| (f2+f2)-1=0
' (snwn ]“”)

ikinci derece denklemi elde edilir. Bu denklemin kokleri
1
q = E[(az +b°) £ 467 (17 + £7) - 2cf, (af, +bf ) |+1
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1,1
0 zzmH Q—f[fz(afx +bf ) —c(f2+17)]

2
1( 1
=—|——_H| (f2+f)-1
% Qf(S”Vf” J(XJF )

olmak tzere

dz _ -0, %q; — 49,0, (4.37)

ds 20,

ile bulunur. (4.37) ifadesi (4.34) ve (4.35) de yerine yazilirsa, (af, —bf,)=Q #0

olmak tlzere

% — i 1 Hf + (bf —cf ) -0, * \l q22 B 4q1q3
ds O S|vf|| "’ 2q,
- 4 —
ﬂ = i (Cfx - afz) % * v 9% 4q1q3 _ 1 fo (438)
| 2, STV
dz _ -0, %4/0; - 4q,,
ds 20,

diferansiyel denklem sistemi elde edilir. Boylece

X(So) =X
y(so) =Y
Z(So) =1,

baslangi¢ noktasi ile birlikte bir baglangi¢c deger problemi elde ederiz. Bu problemin

¢oziimil bize S ylizeyi iizerinde aradigimiz D, -Darboux slant helisi verir.

4.5. D, -Darboux Slant Helis Ornekleri

Bu kistmda, D, -Darboux slant helislere ait 6rnekler verilecektir. Ornek 4.5.1

de ylizey tizerinde verilen bir egrinin D, -Darboux slant helis olup olmadigi Sonug
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4.2.3 yardimiyla kontrol edilecektir. Ornek 4.5.2 de parametrik formda verilen bir

yiizey tizerinde D, -Darboux slant helis elde edebilmek igin 4.4.1 boliimiinde verilen

yontem uygulanmistir. Ornek 4.5.3 de kapali formda verilen bir yiizey iizerinde D, -

Darboux slant helis elde edebilmek icin 4.4.2 boliimiinde verilen yontem

uygulanmistir.

Ornek 4.5.1: X (u,v) =(v,sinu,cosu) parametrizasyonu ile verilen silindir yiizeyini

S S
ele alalim. U =—= ve Vv = —= alinarak bu yiizey lizerinde
\/E x/E yuzey

= Gy gy oo

egrisi elde edilir.

“’f@mf fj

=1 oldugundan y birim hizlidir. y egrisinin Darboux ¢at1 elemanlar1

)
o)
U, (O sm\/SE «/Sfj

V=

olarak bulunur. Ayrica

oldugundan
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, 1
kn :<7 !Uy>:E
Ky =<7",V> =0
, 1
z, =_<U7’V>=_E

O =

1 2
1/k2+r2 (J
g 9 ’ _ 2 __1
2

1
T k -
‘“[J 2

g9 9 g

oldugundan y egrisi S yiizeyi lizerinde bir D, -Darboux slant helistir. Ayrica Sonug
4.2.6 geregince y egrisi bir relatively normal-slant helistir. Silindir yiizeyi ve segilen

y egrisi Sekil 4.5.1 de gosterilmistir.

Sekil 4.5.1: X(u,v)=(v,sinu,cosu) yiizeyi iizerinde y(S):(

S . S S
—,SIN—F=,C0S —
272 \/Ej

denklemli D, -Darboux slant helis
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Ornek 4.5.2: X (u,v)=(ucosv,usinv,u) ile verilen koni yiizeyi iizerinde geodezik

burulmasi Kk, = i, geodezik burulmast 7, L olan ve D, vektorii, d, =(0,0,1)
J2s 3s
dogrultusu ile COSa)=i olacak sekilde @ agis1 yapan D, -Darboux slant helisi
30
4.4.1 boliimiinde verilen yontemle bulalim. Gerekli hesaplamalar yapilirsa
g_¥2 p_ B8
VNG

X, = (cosv,sinv,1), X, =(-usinv,ucosv,0),

X, x X, = (-ucosv,~usinv,u), N =[X,xX,|=uv2,

EG-F*=2u®, VEG-F? =uv/2,

du 1
ds 3
v 1
ds Jau

denklem sistemi elde edilir. Bu denklem sistemin ¢dziimiinden C, ve C, integrasyon

sabitleri olmak tizere

U=—=+¢,

&le

v:ln(s+\/§(:l)+c2

bulunur. Ozel olarak ¢, =C, =0 olarak alinirsa s >0 olmak iizere
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elde edilir. Bulunan u ve v degerleri X (u,v)=(ucosv,usinv,u) de yerine yazilirsa,

bu ylizey ilizerinde

S S

;/(S)zX(u(s),v(s)):[ ﬁcos(lns), ﬁsin(lns),%j

D, -Darboux slant helisi elde edilir. Koni yiizeyi ve bulunan y egrisi Sekil 4.5.2 de

gosterilmistir.

Sekil 4.5.2 1 X(u,v) =(ucosv,usinv,u) yiizeyi tizerindeki geodezik egriligi k, :iz,
s
geodezik burulmasi 7, = L olan d_=(0,0,1) dogrultusu ile cosw = S olacak sekilde
g ,\/§S r (] \/%

@ agist yapan D, -Darboux slant helis
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Ornek 4.5.3: f(x,y,2) =y>+2>—1=0 kapali formu ile silindir yiizeyi verilsin. Bu

yiizey iizerinde egrilikleri k, =0, 7, =_% olan ve D, vektoril, sabit d, = (1,0,0)

dogrultusu ile a):% acist yapan D, -Darboux slant helisi 4.4.2 bolimiinde verilen
metotla bulalim. Gerekli hesaplamalar yapilirsa

f, =0, fy =2y, f, =2z,
vf =(0,2y,22), HVFHzZ y2+122,

s _ 3R _g
Jeve o [k
H :vaucosw— R(af, +bf, +cf,) =/2(y* +2%),

Q, =af, —bf, =2y

bulunur. Dolayisiyla

24 7° 1

6 =2, 9,=0q,
y

oldugundan

dx_ V2
ds 2
dy _, 7
ds—\2(y*+727)
%_¢#
ds  J2(y*+2%)

elde edilir. Bu diferansiyel denklem sistemi karmagik oldugundan egrinin parametrik

denklemi elde edilememis olsa da bu sistem i¢in Matlab programinda P(0,—1,0)

baslangic noktasi ile ‘ode45’ komutu kullanillirsa aranan egrinin grafigi Sekil 4.5.3
deki gibi elde edilir.
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=0,

=y? +12° —1=0 yiizeyi iizerinde geodezik egriligi Kq

: (X Y,2)

Sekil 4.5.3

— acisl yapan

T
4

(4,0,0) dogrultusu ile @

D, -Darboux slant helis
96

geodezik burulmast 7, _ 48 olan ve sabit d,
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5. YUZEY UZERINDE D,-DARBOUX SLANT HELISLER

Bu bélimde, E® uzayinda bir S yiizeyi iizerinde kalan ve yeni bir 6zel
ylizey egrisi olan D, -Darboux slant helisler incelenecektir. Bu 6zel egriyi daha kolay

incelemek icin ilk olarak normal Darboux catist ve tiirev formiilleri verilecektir.

Daha sonra bu yeni ¢at1 yardimiyla D, -Darboux slant helisler igin karakterizasyonlar

verilecektir. Son olarak, kapali ve parametrik formda verilen bir S ylizeyi tizerinde

D, -Darboux slant helis elde edebilmek i¢in birer yontem verilip ardindan 6rnekler

verilecektir.

5.1. Yiizey Egrileri icin Normal Darboux Catisi
S bir ylizey olsun. f:1cIR—S bu yiizey lizerinde kalan birim hizl,

{f,V,U} Darboux ¢atili, kg .,k ,z, egriliklerine ve I5n(3):—kn(s)\7(s)+kg(s)lj(s)

g’ ™n

normal Darboux vektoriine sahip bir egri olsun. Bu taktirde,
D, (s) ==k, (s)V(s) +k, (s)U (s)
vektorii normlanirsa

D,(s) _ K, (s)

) i} k() -
D, (S)H o [k2(s) +KZ(s) Ve «/knz (s)+kZ(s) e

elde edilir. D, vektorii, V ve U vektorlerinin gerdigi diizlemde bulundugundan T

I:_jn (S) = ‘

vektoriine diktir. Dolayisiyla Y] = f)n xT birim vektoriiniin tanimlanmas: ile yiizey
tizerindeki S egrisi boyunca yeni bir ortonormal ¢at1 olan {ISn,'I?,Y;} catis1 elde

edilir.

Tanmm 5.1.1: Yukaridaki sekilde tanimlanan {[3n,'lr,\7r1} gatisina, S yiizeyi tizerinde

[ egrisinin normal Darboux ¢atist veya kisaca ND-¢atis: denir.

Simdi bu gat1 i¢in tiirev formiillerini verelim.
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Teorem 5.1.2: S bir yilizey olsun. 8:1 cIR—S bu yiizey lizerinde yay parametresi
s olan ve ND-catisina sahip birim hizli bir egri olsun. ND-¢atisinin vektor alanlar

I:ﬁ)n,'I?,Y#n ve egrilikleri 6., u, olmak tlizere, ND-¢gatisinin tiirev formiilleri

D/ =-5Y,
T =uY, (56.1)
Y'=6D,-uT

!

k K
seklindedir. Burada &, = {k—”] [kz jkz}LTg ve g, = Jk2+k2 dir
g n g

ispat: I5r: , {[3n ,'Ij,Y]} catisinin elemanlarmin lineer birlesimi olarak yazilabilir. Yani

D/ =aD, +a,T +ayY, (5.2)

yazilir. Burada a =a,(s),1=(12,3), s in diferansiyellenebilir fonksiyonlaridir.

(5.2) ifadesinin her iki yan1 D, vektorii ile i¢ carpilirsa
(B;.5,)=2,(B,,B,)+a,(D,T)+a,(D,Y,)
bulunur. (B,,B,)=1ve (B,,T)=(D,.Y,)=0 oldugundan
(D;.D,)=a

dir. <[3n, f)n> =1 eitliginin tiirevi alinirsa <|3,:, ljn> =0=a, dir. (5.2) ifadesininin iki

yam T vektoril ile i¢ carpilirsa

(B1,T)=a,(5,,T)+, (T, T)+a, (¥, T)
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bulunur. <I3n,'lr>=<Y],'I?>=O ve <'|?,'|?>=1 oldugundan <I5;,f>:a2 diir. Ote

< I . k :
yandan D, vektorii ile U vektorii arasindaki a¢1 77 olmak lizere ———==sinn ve

JKE +K?
9

———=—==C0S7 olarak tanimlanirsa
JKZ+k?

D, =—sin7V +cosyU (5.3
bulunur. (5.3) ifadesinin tiirevi alinirsa ve Darboux tiirev formiilleri kullanilirsa

D, = (k, sing—k, cosn)T — (17 +7,) cosV — (' + 7, ) sin U

. k : k .
elde edilir, ——2—=sinny ve ——=—= =057 oldugu goz oniine alinirsa T nin

JKE+k? ke +k¢

katsayist1 sifir olur. Dolayisiyla
D, =—(17' +7,)cosiNV — (i’ + 7,) sinJ (5.4)
bulunur. (5.4) ifadesinin her iki yam1 T vektorii ile i¢ ¢arpilirsa
a, = <I3,; ,f> =0

elde edilir. Simdi de (5.2) ifadesi Y] vektorti ile i¢ garpilirsa

B K ok o] -
Y, =D, xT =| - 2” = — xT
JKZ+kZ k2K
K G = g - =
0 (VxT)+ (U xT)
JK K ks +k:
N ) W
2 2 2 2
k, +Kq ky +Kq

99



. k : k :
elde edilir, —_— =sinn ve ——— =c0s7 oldugu dikkate alinirsa

JKE K Jk k2
Y, =cosnV +siniJ (5.5)
elde edilir. (5.4) te bulunan D/ ve (5.5) de bulunan Y] vektorleri i¢ ¢arpilirsa

a, :<[3r’],\7n> :<—(77’+rg)00577\7—(77’+rg)sin nU,cosnV +sin nU>
=—(17'+17,)(cos’ i +sin’ 17) (5.6)
= _(77,+Tg)

bulunur. tanny = {E—"j ifadesinin tiirevinden

g
(k) K
T <k
g n g

elde edilir. Bu esitlik, (5.6) ifadesinde yerine yazilirsa

kn , k92
==\ +
R PN PRl AL

elde edilir. Bulunan a;,a, ve a, degerleri (5.2) denkleminde yazilirsa

B (kn ],( k92 J Vi (5.7)
= | 2| 5 |+7, |Y, .
k, |\ kZ+k? ) o

bulunur.

Simdi T vektoriiniin tirevini hesaplayahm. T/, {5n,f,Y:]} catisinin

elemanlarinin lineer birlesimi olarak yazilabilir. Yani

T'=bD, +b,T +bY (5.8)
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yazilir. Burada b =b.(s), i=(1,2,3), s in diferansiyellenebilir fonksiyonlaridir. (5.8)

ifadesinin her iki yan1 f)n vektorii ile i¢ carpilirsa

dir.  Darboux  tirev  formiillerinden T'= kg\7 +kU  dir. T

- k - k -
D, =——=—V +——U vektorleri yerine yazilirsa
R S Ene

. L
b1=<T,Dn>= KV +k0,~ \/k2+k2 \/kﬁikj
T
T g o)
—k,k, kK,

\/kz Tk \/kz +k2

elde edilir. (5.8) esitliginin her iki yan1 T vektorii ile i¢ ¢arpilirsa

<f',f> b, (B,.T)+b, (T.T)+b,(¥,.T)

bulunur. <I3 f>=<\7 f> 0 ve <f,f>:1 oldugundan

Ve

dir. Ote yandan <-|:,-|:> =1 ifadesinin tiirevi almirsa <-|:',-|?> =0=Dh, elde edilir. (5.8)

esitliginin her iki yani Y] vektorii ile i¢ carpilirsa
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(F'¥, ) =0u(B,.Y, )+ b, (T, )+, (Y,.Y,)
bulunur. (B,.Y,)=(T.Y,)=0 ve (¥,.¥,)=1 oldugundan
b, =(T".Y,)
elde edilir. Darboux tiirev formiillerinden T'=kV +kU dir. Ayrica

ok L ko
D, xT =——2—U +———
JK2 ke k24K

—

Y, =

dir. Bu vektorler yerine yazilirsa

b3:<U',Yn>: KV +k U, ——2 2
k¥ +k¢ k¥ +k¢
- k2 .
- (0.0)s = (7V)
ks +k: ks +k;
_ ky Tk
k?+kg
= Jk: +k:

bulunur. Bulunan b, b, ve b, degerleri (5.8) de yazilirsa
'I?’=,\/knz +kgz\7n (5.9)
elde edilir.

Simdi Y, vektoriiniin tiirevini hesaplayalim. Y, {5n,'lr,\7r1} catisinin

elemanlarinin lineer birlesimi olarak yazilabilir. Yani
(5.10)

yazilir. Burada ¢, =c,(s),i=(12,3), s in diferansiyellenebilir fonksiyonlaridir.

(5.10) ifadesinin her iki yani [3n vektorii ile i¢ ¢arpilirsa
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dir. (5.5) esitliginin tiirevi alinip, Darboux tiirev formiilleri kullanilirsa

Y =—n'sin 77\7+cosn(—kgf+rgU)+77'coan +sinn(—knf—rg\7)
= (—k, cosp—k, siny)T +(-n'sing -z sinp )V + (' cosn +z,cosp)U  (5.11)
= (—k, cosn—k,siny)T —(n'+z, )sinnV +(n'+z, ) cosyU

=cosn oldugundan D, =—sinzV +cosiJ

bulunur. =sinny ve

K, k
ke Je ikj

olur. Dolayistyla
6=(¥,.D,)
:<(—kg cosn—k,sinn)T —(n'+z,)sinnV +(n'+z, )cosyU, —sin n\7+coan>
=(77’+rg)sin2 77+(77'+z'g)c052 n

= (77’+ z, )(sin2 17 + cos? 77)

o
=n'+71,

- kK 1. .
elde edilir. tann = [k—”J ifadesinin tiirevinden bulunan
[¢]

ifadesi yerine yazilirsa

c kn ! kgz
= 2| |+
B UYITITE

—

bulunur. (5.10) esitliginin her iki tarafi T vektori ile i¢ carpilirsa
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<V’,f>=cl<5n,f>+c2 (T.7)+c,(¥,.T)

elde edilir. (B,,T)=(Y,.T)=0 ve (T,T)=1 oldugundan

dir. (5.11) esitligini kullanarak

c, =(¥,.T)
- <(—kg cosn—k,sinn)T =(n'+z, )sinpV +(n'+7, )coan,f>

=(—k, cosn —k,siny)

k ’ k
bulunur. Ayrica ——2— =sin7n ve g

k? +k; JKE +kE

=cos7 esitlikleri yerine yazilirsa

¢, =| k =k a
S N PSS

k2 2
— n + g
\/kf Tk \/k§+k§
=—4/krf +kg

elde edilir. Son olarak (5.10) ifadesi \7” vektort ile i¢ ¢arpilirsa

dir. <Y:],Y:]>=1 ifadesinin tiirevi alinirsa <Y]’,Y:]> =, =0 elde edilir. Bulunan c,,c,

ve C, ifadeleri (5.10) ifadesinde yazilirsa
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N (k2 B 3
A (E—J (kzik 2}+Tg B, - JkZ + k2T (5.12)
9 n ¢}

vai

elde edilir. (5.7), (5.9) ve (5.12) denklemleri dikkate alinarak D/,U’ ve VY,

vektorleri matris formunda yazilirsa

>

—4 O

Il
o
(@]
~
= N
+
=~
«
N
< 4, O

<

TN
7\—|:7\-
~—
TN
=~
=l

=
+ |,
=~
«

N
~
_l’_

N
«
—_—

|
=
=l

N
T‘
o
«

N
N —
o

bulunur. Burada

kn , k92
e bl el A2 5.13
g n+ g ( )

D! 0 0 -5)D,
T |l=l0 0 pu |T (5.14)
Y ' §n —Hy 0 Y_;q

seklinde olur. 0

5.2.D,-Darboux Slant Helisin Ekseni ve Karakterizasyonlari

S bir yiizey ve f:1 cIR—S bu yiizey iizerinde kalan birim hizli bir egri
olsun. B egrisinin Darboux catisi {f,V,U} ve egrilikleri k,k, ve 7, olsun. Bu
egrinin normal Darboux vektorii Ijn(s)=—kn(s)\7(s)+kg(s)lj(s) olmak iizere, yiizey

tizerinde D, -Darboux slant helis kavrami agagidaki sekilde tanimlanmistir.
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Oh

n

Tammm 5.2.1: #:1 c IR— S egrisinin D, vektérii alan1 (veya denk olarak f)n =

h

birim vektdr alani) sabit bir dogrultu ile sabit ag1 yapiyorsa S egrisi S ylizeyi

n

tizerinde D, -Darboux slant helis olarak adlandirilir [20].

Simdi bu tanmmi dikkate alarak D, -Darboux slant helislerin

karakterizasyonlarini verebiliriz.

Teorem 5.2.2: S, E® uzayinda bir yiizey ve S, bu yiizey iizerinde ND-gatisina
sahip birim hizli bir egri olsun. f# egrisinin D, -Darboux slant helis olmasi i¢in gerek

ve yeter sart her Se | igin

0,(5)="2(5) (5.15)

n

fonksiyonunun sabit olmasidir. Burada x, #0 ve &, #0 dir.

ispat: 3, ND-gatis1 {5n,f,\7n} olan bir D, -Darboux slant helis olsun. D, -Darboux
slant helis tanimindan S nin D, birim teget vektorii, sabit dogrultulu sabit d_

n?’>=n

vektorii ile sabit § agis1 yapar. Yani <I3 d > = 0S¢ dir. Bu ifadenin tiirevi alinarak

<I3r" : 6|n> =0 bulunur. (5.1) deki ND-¢atisinin tiirev formiilleri kullanilirsa

elde edilir. 6, #0 oldugundan <ﬁ,an>:0 dir. Yani d, vektorii Y, vektoriine diktir.

Dolayisiyla Jn vektorii [3n ve T vektorlerinin gerdigi diizlemde bulunur. O halde
d =cos 9D, +sin T

yazilabilir. Bu ifadenin tiirevi aliirsa d, vektrii sabit oldugundan
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0=cos 3D/ +sin IT"’
=cos (-3,Y,) +sin H(u,Y,)
=Y, (u,sin$-35,cos 3)

bulunur. Y, sifirdan farkl bir vektor oldugundan g, sin $—&, cos$=0 dir. Buradan

ﬂch)—sgzcow:sabit
o, sing
elde edilir.
Tersine olarak, ¢ sabit olmak {izere, %:%zCOWzsabit olsun.
sin

n

Buradan g, sin$ =4, cos$ yazilabilir.
d, =cos 9D, +sin 9T

alalm. d_ nin sabit oldugunu gosterelim. d_ =cos9D, +singT ifadesinin tiirevi

alimp ardindan (5.1) deki tirev formiilleri ve g, Sin3=3, 083 oldugunu

kullanilirsa

d.' =cos9D; +sin IT’
=c0s9(-5.Y, ) +sin H(u.Y,)
=Y (u,sin $-35,cos9)

=Y (5, cos 9—5, cos 9)

Il
o

bulunur. Dolayisiyla Jn sabit vektordiir. an vektoriiniin D, vektorii ile sabit ag1

yaptigini gosterelim.

elde edilir. Dolayisiyla &n sabit vektorii, [3n vektorii ile sabit ag1 yapar. £ bir D, -

Darboux slant helistir. 0
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Teorem 5.2.2 den asagidaki sonuglar elde edilebilir.

Sonu¢ 5.2.3: 3, E°® de S yiizeyi iizerinde kalan birim hizli bir egri ve Darboux
catistnin egrilikleri K,k ve 7, olsun. g egrisinin D, -Darboux slant helis olmasi

icin gerek ve yeter sart her se | igin

o,(8) = — (s) (5.16)

veya denk olarak

k? +k;
0,(s) = , ()
2 (k)
- — T
k2 + kj K, 1
fonksiyonunun sabit olmasidir.
Ispat: (5.13) esitlikleri (5.15) te yazilirsa (5.16) elde edilir. 0

Sonug¢ 5.2.4: Normal Darboux ¢atisina gére D, -Darboux slant helisin ekseni
d, =cos 9D, +sin 9T (5.17)
seklindedir.

Sonu¢ 5.2.5: D, -Darboux slant helisin ekseni, Darboux ¢atisinin vektorleri

cinsinden
d _Sinﬁ—LCOSN-Fk—gCOSSlj
’ JKE+K2 JkZ+k2
seklindedir.
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Sonug 5.2.6: B egrisinin D, -Darboux slant helis olmasi i¢in gerek ve yeter sart 3

nin bir helis olmasidir.

Ispat: (5.17) esitliginin iki yan1 T vektorii ile i¢ carpilirsa <f,6n>=sin9:sabit

bulunur. Bu da g egrisinin bir helis oldugunu gésterir. 0

Sonu¢ 5.2.7: 3, S yiizeyi lizerinde birim hizli bir D, -Darboux slant helis olsun. Bu

durumda,

1) # nin S ylizeyi iizerinde k, #0 olan bir geodezik egri olmasi i¢in gerek ve yeter

sart B nin d_=sinJT +cos 9B eksenli bir helis olmasidir.

i) § mn S ylizeyi lizerinde k, 0 olan bir asimptotik egri olmasi i¢in gerek ve

yeter sart 8 nin d, =sindT +cosIB eksenli bir helis olmasidur.

k? k)
i) B, S yiizeyi lizerinde bir egrilik ¢izgisi ise —QS(—”J ifadesi sifirdan
2 2\>
(kZ+KZ)2 \ o
farkl bir sabittir.

Ispat: i) B geodezik egri ise k,=0 dir. Bu durumda (2.1) esitlikleri kullanilarak

k,=Fx ve r,=7 elde edilir. g, D, -Darboux slant helis oldugundan bulunan

degerler (5.16) da yazilirsa o, =X _ sabit bulunur. Teorem 2.1.18 geregince S bir
T

helistir. Ayrica Tanim 2.2.18 de verilen Darboux ¢atis1 ile Frenet catis1 arasindaki

iliskiler, Sonug 5.2.5 de yazilip (2.1) esitlikleri kullanilirsa, D, -Darboux slant helisin
Frenet catisinin vektorleri cinsinden ekseni
k?+k2

d =sindT +cos9~+——2B
K

,

seklinde olur. k, =0 ve yukarida bulunan k =¥« ve r, = esitlikleri burada yazilirsa

B helisinin ekseni d, =sin JT +cos 9B olarak bulunur.
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Tersine olarak g, d, =sinJT +cos 9B eksenli bir helis olsun. Helisin ekseni
ile yukarida D, -Darboux slant helisin Frenet ¢atisina goére verilen ekseni dikkate

alimirsa k, =0 bulunur. g, S yiizeyi lizerinde geodezik bir egridir.

i) 1) nin ispatina benzer olarak yapilir.

iii) g egrilik cizgisi ise 7, =0 dir. £, D, -Darboux slant helis oldugundan (5.16) dan

!

k2
—Q(QJ # 0 bir sabit oldugu anlagtlr. 0

9

5.3. D, -Darboux Slant Helislerin ND-¢atisina Gore Diferansiyel Denklem

Karakterizasyonlari

Bu kisimda, ilk olarak E° de bir S yiizeyi iizerinde bulunan egrileri

karakterize eden diferansiyel denklem karakterizasyonlari ND-gatisinin elemanlari

olan [3n, T ve Vn vektor alanlarina bagl olarak verilecektir. Daha sonra, ND-

gatisinin elemanlart olan D,, T ve Y, vektor alanlarina bagh olarak D, -Darboux

slant helisleri karakterize eden diferansiyel denklemler verilecektir.

Teorem 5.3.1: S, E® bir yiizey ve #:1 cIR—S bu yiizey iizerinde kalan birim
hizl1 bir egri olsun. £ egrisini ND-¢atisinin [3n vektor alanina gore karakterize eden

vektorel diferansiyel denklem, u, #0 ve 6, #0 olmak iizere

!

’ ’

Dy+| 1,6, KLJ +5n(iJ Dy +1 1,6, i[iJ +ul+52 4D,
H S, M, \ 6,

+1un§n [i] f)n = O

seklindedir.

(5.18)

Ispat: (5.1) sisteminin birinci denkleminden
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yazilabilir. Bu ifadenin tiirevi alinirsa

e L
5 5

n

bulunur. (5.1) sisteminin ti¢lincii denkleminden

7-%p L

Y_;] !
Hy Hy

elde edilir. (5.20), (5.21) de yerine yazilirsa

F=n

elde edilir. Bu esitligin tiirevi alinirsa

fo L g, [Lj +i[ij 5ro| %y LH 5
HnO,y MOy )t \ 9, Moo | Hy\ O

n

5n+i[iJ 5 +—— D
My a6, HnO

(5.19)

(5.20)

(5.21)

n

(5.22)

elde edilir. (5.19) ve (5.22) esitlikleri (5.1) sisteminin ikinci denkleminde yazilirsa

1o (1) 1(1)|s |6 |1(1)
—D+|| — | +—| — | |D/+| =+ —
HnO, 0y ) \ 9, My | My \ 6

bulunur. Bu denklem duzenlenirse

’ ! 2 2 !
i [_jr’]"+ 1 + i i [_jr’: + M + i i [_jr’l + i [_jn =0
HnO, 0y )t \ O, HnO, H \
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elde edilir. Bulunan son denklemin her iki tarafi z 0, ile ¢arpilirsa

D'+ 44,6 [%] +6, [%} Dy +| 1, +8,° + 16, i(i] D;

n=n n

!

+:un5n [ﬁJ 5[1 = 0

n

diferansiyel denklemi elde edilir. 0

Sonug 5.3.2: S, E°® bir yiizey ve f:1 cIR—S bu yiizey iizerinde kalan birim hizli

bir D,-Darboux slant helis olsun. B egrisini D, vektor alanina gore karakterize eden

vektorel diferansiyel denklem

[_jr’1”+ /uné‘n L +5n i [_jrlll+ :un2+5n2+lun5n | e [_jr']:O
JINeN 0

n

seklindedir. Burada u, #0 ve ¢, #0 dur.

Ispat: Teorem 5.3.1 de, E® de egrileri ND-catisinin [3n elemanina gore karakterize
eden genel diferansiyel denklemin (5.18) seklinde oldugu gosterildi. Simdi S

egrisinin D, -Darboux slant helis oldugunu kabul edelim. D, -Darboux slant helis

o ifadesi sabit oldugundan % ifadesi de sabittir. Dolayisiyla

olma sartindan
S, Hy

(ﬁj =0 ifadesi (5.18) denkleminde yazilirsa
M

D"+| 1.6 [%J +0, (51} D/ +| u?+387+ 1, —[—J D/ =0

n-n

denklemi elde edilir. [
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Teorem 5.3.4: S, E® bir yiizey ve :1 cIR—S bu yiizey iizerinde kalan birim

hizli bir egri olsun. f egrisini ND-gatisinin T vektor alanina gore karakterize eden

vektorel diferansiyel denklem, x, #0 ve 6, #0 olmak iizere

(5.23)
Y7, ~
+us | Bl T =0
o[ 2]
seklindedir.
Ispat: (5.1) sisteminin 2. denkleminden
. M.
Y =T (5.24)
Hy

yazilabilir. Bu ifadenin tiirevi alinirsa

!

Y, = [iJ oL
Hy H,

bulunur. Bu deger (5.1) sisteminin iigiincii denkleminde yazilip D, vektérii yalniz

birakilirsa

SREEES N RUNE Y
wé,  o\m) o

n

elde edilir. Bulunan D, vektdriiniin tiirevi alimip denklem diizenlenirse

!
! ! ! !

|3r:=i'|7’"+ L +i 1 T"+ L NG NN R
0, 0y ) O\ thy 0, \ 4y o, %,

bulunur. Bulunan f)r: degeri ve (5.24), (5.1) sisteminin birinci denkleminde yazilirsa
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N 0 | DU Y UER I O | DER U B R R TR OR
1,9, 0y ) O\ thy Oy \ ty S, %, Hy
elde edilir. Son denklem diizenlenip 1,6, ile carpilirsa

!

T"+ u@(i] +ﬂn[iJ T+ 16, i(iJ + iy + 8 T
JIN Hy S, \

U
+u0,| = |T=0
w2

diferansiyel denklemi elde edilir. 0

Sonug 5.3.4: S, E°® bir yiizey ve B:1 cIR—S bu yiizey iizerinde kalan birim hizl

bir D,-Darboux slant helis olsun. g egrisini T vektor alanina gére karakterize eden

vektorel diferansiyel denklem

!

T"+| 1,0, (%} + (i} T"+{ 16, %[LJ + 12 +82 0T =0

n—n n

!

seklindedir. Burada u, #0 ve 6, #0 dur.

Ispat: Teorem 5.3.3 de, E® de egrileri ND-gatisiin T vektér alamna gore

karakterize eden genel diferansiyel denklemin (5.23) seklinde oldugu gosterildi.

Simdi g egrisinin D, -Darboux slant helis oldugunu kabul edelim. D, -Darboux slant

helis olma sartindan % ifadesi sabittir. Dolayisiyla (%j =0 ifadesi (5.23)

n n

denkleminde yazilirsa

!

T"+| 1,0, (%J +u (i} T"+{ 10, %[i) + 12 +620T'=0

n—n n

!
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denklemi elde edilir. 0

Teorem 5.3.5: S, E® bir yiizey ve f:1 cIR—S bu yiizey iizerinde kalan birim
hizl1 bir egri olsun. £ egrisini, ND-¢atisinin Y] vektor alanina gore karakterize eden

vektorel diferansiyel denklem, m, #0 olmak iizere

w1, 1, .1 -
Y. +E(ml—m2)Yn +E(—m2 +m,)Y, +a(—5n +m;)Y, =0
seklindedir. Burada m=zzézaﬂm=éaﬂwm ve m,=m(ul+5?)

seklindedir.

Ispat: (5.1) sisteminin iiincii denkleminden

B, = Lyritaf (5.25)
5" s

n

yazilabilir. Bulunan ifadenin tiirevi alinirsa ve ND-catisinin tlirev formiilleri

kullanilirsa

!

2, o2 !
iY_;]”_{_ i Y_;1’+MY_; + ﬂ fZO
s "\ 5

bulunur. Son denklemde T vektérii yalniz birakilirsa

'|_":_ 5n Y_'rr+

' I N 7 i
: 5 w_d% nu
/urllé‘n _:uné‘r: :ur’15n _:uné‘r: :ur:é‘n _luné‘r:

n

£ mzzi(1+5,§ml)

elde edilir. Bulunan bu ifade (5.25) de yazilirsa, m = ———"——,
/urrlén _:un(sr: 5n

ve m, =m, ( uz+ §nz) olmak iizere

elde edilir. Son bulunan esitligin her iki yaninin tiirevi alinip ND-¢atisinin tiirev

formiilleri kullanilirsa
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denklemi elde edilir. [

Teorem 5.3.6: S, E® bir yiizey ve f:1 cIR—S bu yiizey iizerinde kalan birim

hizli bir D, -Darboux slant helis olsun. g egrisini Y, vektor alanina gore karakterize

eden vektorel diferansiyel denklem
. 1) - .
Y+, [—J Y+ (ynz + 5f)Yn =0

seklindedir. Burada o, # 0 dur.

Ispat: (5.1) sisteminin tigiincii denkleminden

5 =Ly Ly || | T
5“ 5[\ 5“ 5“

elde edilir. Burada T' yerine, tiirev formiillerindeki esiti yazilirsa

! ! 2
5 =Ly Ly | T Ay
5 "\, 5, 5,

bulunur. Bulunan bu ifade (5.1) sisteminin birinci denkleminde yerine yazilip

denklem duzenlenirse
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elde edilir. B egrisi D,-Darboux slant helis oldugundan (%} =0 dir. Dolayisiyla

n

denklem

! 2 2
R BE R PN
5, 5 5

elde edilir. (]

5.4. Yiizey Uzerinde D, -Darboux Slant Helisin Elde Edilmesi

Bu kisimda, parametrik ve kapali formda verilen bir yiizey tizerinde D, -

Darboux slant helis elde edilebilmek i¢in yontemler verilecektir.

5.4.1. Parametrik Formda Verilen Yiizey Uzerinde D,-Darboux Slant Helisin

Elde Edilmesi

S, E® uzaymnda X = X(u,v) parametrizasyonu ile verilen bir yiizey olsun.
B(s) =X (u(s),v(s)), S yiizeyi iizerinde, sabit ve birim d, dogrultusu ile sabit 9
acis1 yapan, Darboux catisi {'I?,\7,lj} olan birim hizli bir D, -Darboux slant helis

olsun. g egrisini elde etmek igin u(s) ve v(s) degerlerinin bulunmasi gerekir. Ik
olarak u(s) degerini bulalim.
= = g du o dv

f=T=X,—+X,— , U=—=""YX V=UxT
ds ds

dir. T vektdriiniin ve U vektdriiniin esiti V vektoriinde yazilirsa
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bulunur [15]. Burada E,F,G birinci temel formun katsayilaridir. S, D, -Darboux

slant helis oldugundan <I3 d > =€0S ¢ dir. Bu ifadede [3n vektorii yerine yazilirsa

n?!>n

B kK . -
__k V + S_U,d )=cosd (5.26)
\/k2+k2 \/k2+k2 "
n g n g

elde edilir. Yukarida bulunan V ve U vektorleri (5.26) da yazilirsa

K __Ld {(EXV—FXu)d—H(FXV—GXU)@}
,/kf+kg2 X, xX, ds ds
k X x X -
+ %”X)EV ,d. )=cos 9
JkZ+K2 | X, x X,
bulunur. Bu ifade diizenlenirse
e E(Xd) ML F(R,d,) Y
JkZ+K2 X, x X, ds [kZ+k? X, xX, ds
b pRa) L g(%,d)Y
JK2 k2 X, %X, ds \/knz+kgz‘XUxXV ds
k .
+ — 1# <XuxXV,dn>:0059
JK2+K2 X, x X,
elde edilir. Bulunan son denklemde islem kolaylig1 agisindan
k .-
& __p L =Q, [X,xX,|=VEG-F?=N,

JK2+k2 ’Jk§+k;

kisaltmalar1 kullanilirsa, son ifade

—PiEMnd—qu PlFLnd—u—PiFMnyjt PiGLnijQlBn =C0S 4
ds N ds N ds N ds N

118



olur. Bu ifadenin her iki yan1 N ile carpilirsa

—PEMnd—u+ PFLn%—PFMn%Jr PGI_nyz N cos $—QB,
ds ds ds ds

elde edilir. Son esitlik (;—u ve % parantezine alinirsa
S S

(—PEM, + PFL, )3—u+(—PFMn + PGLH)% =Ncos9—QB, (5.27)
S S

bulunur. Bu ifadede % yalniz birakilirsa
S

dv_ Ncos$-QB,  (-PEM,+PFL,)du

—= — 5.28
ds (-PFM,+PGL,) (-PFM,+PGL,)ds (528)
elde edilir. Ayrica S egrisi birim hizli oldugundan
2 2
E(d—u +2F%y+6(d—vj =1 (5.29)
ds ds ds ds

bulunur [15]. (5.28) ifadesi (5.29) da yerine yazilirsa

2
E(d_uj LoF du(( N cos $—QB, (—PEMn+PFLn)duJ

ds ds| (-PFM, +PGL,) (-PFM,+PGL,) ds

o _Necoss—QB, _(~PEM, +PFL) du
(-PFM, +PGL,) (~PFM, +PGL,) ds

denklemi elde edilir. Bu denklemde parantezler acilirsa

E(d_ujz_i_ZF N cos ¢ —QB, d—u—ZF (—PEI\/ln + PFLn)(d_ujz
ds (-PFM, +PGL,)ds ~ (-PFM,+PGL,)\ ds
s (N cos&—QBn)2 oG (N cos $-QB, )(-PEM, +PFL, ) du
(-PFM, +PGL, )’ (-PFM, +PGL, )’ ds
o (-PEM, +PFL,) [d_uj2 _,
(-PFM, +PGL, )’ ds

+

n

bulunur. Elde edilen son denklemde paydalar esitlenirse
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2
E(~PFM, +PGL, ) (‘;_;‘j +2F (N cos 9—QB, )(—PFM, + PGL,

du
ds

2
—2F (-PEM, + PFL, )(-PFM, + PGLn)(i—zj

+G(Ncos9-QB, )’ —2G (N cos $-QB, )(~PEM, + PFL”)?JI_E

2
+G(~PEM, + PFL, )’ (j—‘;j = (-PFM, +PGL, )’

2
bulunur. Burada (d_u} ve du parantezine alinarak

ds ds

2
Pz[E(—FMn +GL, )’ —2F (-EM, +FL, )(=FM, +GL, ) + G (-EM, +F|_n)2}[3—‘;j

du

+2(Ncos9—-QB,)P[ F(-FM, +GL,)-G(-EM, +FL,) s

+G(Ncos$-QB, )" =(~PFM, +PGL, )’

2 2
ifadesi elde edilmis olur. (3—”} ve (;_u katsayilarindaki parantezler acgilip [3—“}
S S S

ifadesinin katsayis1t EM?, GL2 ve 2FL M parantezine alinirsa

ot st 2]
+2(N COS&_QB”)P[Mn(EG—FZ)}z—:‘

+G(Ncos$-QB, )" —(~PFM, +PGL, )" =0

2
elde edilir. Burada (g—uJ katsayis1 (EG - Fz) parantezine alinirsa
S

[Em? 615 -2¢t, M, 1P (E6- F7) % |
+2(N COSlg_QBn)P[M”(EG_FZ)}S]_l;

+G(Ncos$-QB, )" —(-PFM, + PGL, )" =0

bulunur. islem kolaylig1 agisindan EM? +GL? —2FL M = A, denilirse
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AhPZ(EG—FZ)(z—LSJJZ"'Z(NCOSS—QB [ EG - F)}

+G(Ncos$-QB, )’ —(~PFM, +PGL, )" =0

du
ds

ikinci dereceden denklemi elde edilir. Bu denklemin kokleri bize 2—” ifadesini verir.
S

Bu denklemin diskriminanti

A, =4P?M?(Ncos9-QB, )’ (EG-F?)
~4AP*(EG-F?) G(N cos 9-QB, )’ ~(~PFM, +PGL, |

olarak bulunur. Bu ifade diizenlenirse

A, =4P*(Ncos9-QB, ) (EG-F*)| M?(EG-F?)-AG |
+4AP*(EG-F?)(-FM, +GL, )’

elde edilir. Daha 6nce yapilan kisaltmalar bulunan diskriminantda yerine yazilirsa

-Q(X, ><)Zv,an>)2(EG—FZ)RXV,JQZ(EG—FZ)—AWG}
+4AP4(EG—F2)(—F<)ZV,JH>+G<)ZU,Jn>)2

A, =4P?(|%,

bulunur. Dolayistyla aradigimiz g—u ifadesi
S

du —2(Ncos$-QB,)PM, (EG-F?)+ /A,

ds 2AP?(EG -F?)

seklindedir. Yukaridaki denklemde, yapilan kisaltmalar yerine yazilirsa

du_—2P(X,.d)(|%, < <X, a)) EG-F?)+ A,

ds 2AP*(EG -

(5.30)

\—/

bulunur. Burada P = L Q=

JKZ+k2

ve A =EMZ+GL2 —2FL M, dir.

k
«/k2+k
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Simdi benzer yolla % ifadesini bulalim. (5.27) de (;—u yalniz birakilirsa
S S

du_ Ncos$-QB,  (-PFM,+PGL,)dv
ds (-PEM,+PFL,) (-PEM,+PFL,) ds

elde edilir. Bulunan 3—” ifadesinin esiti (5.29) da yazilirsa
S

Ncosd-QB,  (-PFM +PGL)dv
(—PEM, +PFL,) (~PEM, +PFL,) ds

o[ _Ncos9-QB, _(-PFM, +PGL,) dv |dv G(@jzzl
(-PEM, +PFL,) (-PEM, +PFL )ds)ds \ds

bulunur. Parantezler acilirsa

: (N cos$-QB, )’ oE (N cos$-QB,)(-PFM, +PGL, ) dv

(-PEM, +PFL,)’ (-PEM, +PFL,)’ ds
= (-PFM, +PGLn)2( j L op (NCosg-QB,) dv
(-PEM, +PFL, )* d (—PEM, +PFL,) ds

2
oE (—PFMn+PGLn)(@j +G(%) "
S

(-PEM, +PFL, ) ds

elde edilir. Paydalar esitlenirse

(Ncos3-QB,)(-PFM, + PGL) dv

2
£ (N cos9-QB,) _oE

(~PEM, +PFL, )’ (-PEM, + PFL, )’ ds
E( PFM, + PGL, )’ (va +2F(NcosS—QB )(=PEM, + PFL,) dv
(-PEM, + PFL, )" \ds (-PEM, + PFL, )’ ds

_2F

(—PFMn+PGLn)(—PEMn+PFLn)(dvT+G(—PEMn+PFLn)2£dvjz_l
(~PEM, + PFL, )’ ds (~-PEM, +PFL )"\ ds )

bulunur. Denklemin iki tarafi (-PEM,, +PFL, )’ ile carpilirsa
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E(Ncos9—QB,)" —2E (N cos $—QB, )(~PFM, + PGLn)%

dv @

2
+E(~PFM, +PGL, )’ (Ej +2F (N cos 9-QB, ) (-PEM, +PFL, )~

2
—2F (-PFM, +PGL, )(~PEM, + PFLn)(%j

2
+G(-PEM, + PFL, )’ (%) = (-PEM, + PFL,)’

2
elde edilir. (ﬂj ve (ﬂj parantezine alinirsa
ds ds

2
PZ[E(—FMn +GL, )’ —2F (-FM, +GL, )(-EM, + FL, )+ G (~EM, + FLH)Z}(%]

+2P (N cos 9-QB,)[ F (-EM, +FL,)-E(-FM, +GL,) %

+E(Ncos9—QB,)" =(-PEM, +PFL, )’

2 2
bulunur. (%J ve (ﬂj katsayilarinda parantezleri agilip (%j katsayis1 EM?,
S

S ds

GL? ve 2FL M, parantezine alinarak

2
o e (e - ) ot (-2 -2em, (e - ) &)
d
—2PL, (N 0059‘QBn)(EG—F2)d_Z

+E(Ncos9—-QB, )’ —(~PEM, +PFL,)* =0

2
elde edilir. (%j ifadesinin katsayisi (EG - Fz) parantezine alinirsa
S

2
P?|EM? +GL; —ZFLnMn](EG_FZ)(%j
~2PL, (N coss—QBn)(EG_Fz)%

+E(Ncos9—QB,)" —(~PEM, + PFL,)’ =0

elde edilir. EM?+GL2 —2FL M, = A oldugundan
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2
A\WPZ(EG—FZ)(%] ~2PL, (EG-F*)(N cosS—QBn)%

+E(Ncos9—-QB, )’ —(~PEM, +PFL, )" =0

ikinci dereceden denklemi elde edilir. Bu denklemin kokleri bize % ifadesini verir.
S

Denklemin diskriminanti bulunursa

A, =4P?L2 (EG-F?) (N cos9-QB, )’
~4AP?(EG-F?)[ E(Ncos9-QB, )" ~(~PEM, +PFL, )" |

bulunur. A’ diizenlenirse

A, =4P*(EG-F’)(Ncos9-QB, ) (L2 (EG-F*)-AE)
+4AP*(EG-F?)(-EM, +FL,)’
elde edilir. Yapilan kisaltmalar bulunan A’ da yerine yazilirsa

n

A :4P2(EG—F2)(

cos 9-Q(X, x Xv,an>)z((<>2u,&n>)z(EG —FZ)—AHE)
+4AP'(EG-F)(-E(X,,d,)+F <>ZoT>)2
elde edilir. Dolayisiyla denklemin kdkleri

*

n

dv 2PLn(N COSS_QBn)(EG—Fz)i A
ds 2AP?*(EG-F?)

ile bulunur. Daha 6nce yapilan kisaltmalar yerine yazilirsa

ﬂ:2P<XU,Jn>(‘ X,xX,[cos9-Q(X,x X,.d,))(EG-F?)+ /A, 531
ds 2AP*(EG-F?)
elde edilir. Burada P = K, g ve A =EM?+GL’-2FL M, dur.

k
Jerie ’Q:Jk§+k;

(5.30) ve (5.31) den
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du —2P(X,.d,)(|X, x X Jcos 9-Q(X,xX,.d,})(EG-F?)+ [a,
ds 2AP*(EG-F?)
(5.32)
v 2P(X,.d,)(|X, xX,|cos$-Q(X, x X,.d,))(EG ~ F*)+ /A,
ds 2AP*(EG-F?)

diferansiyel denklem sistemi elde edilir. Bu diferansiyel denklem sistemi

u(s,) = o
V(s,) =V,

baslangic noktasi ile birlikte ¢oziiliip bulunan degerler X (u,v) de yazilirsa S yiizeyi

tizerinde istenen D, -Darboux slant helis elde edilir.

5.4.2. Kapah Formda Verilen Yiizey Uzerinde D,-Darboux Slant Helisin Elde

Edilmesi

S, E® uzaymda f(x,y,z)=0 kapali formu ile verilen bir yiizey olsun.
£(3) =(X(S), y(s), Z(S)), S yiizeyi iizerinde, sabit ve birim d_ = (a,b,c) dogrultusu
ile sabit 9 agis1 yapan, Darboux catisi {1?,\7,0} olan birim hizli bir D, -Darboux

slant helis olsun. B egrisini elde etmek icin X(S), y(s) ve z(s) degerlerinin
bulunmas1 gerekir. €, €, ve €, E® uzayinmn standart baz vektdrleri olmak {izere

Darboux ¢atisinin elemanlari;

RCLE)

ds’ds’ ds
U= Vf -1 f.f,f),
i

125



. & & &
V=UxT=—— f. f, f
Flloc oy o
ds ds ds

1 dz dy . dx dz , dy dx

= — fy__ z_’fz__ X . x__fy_

Vf” ds ds’ *ds ds’ *ds ds

seklindedir [15]. Bulunan V ve U vektorleri, D, vektdriinde yerine yazilirsa

D, ()=~ (9 14(fy%—fzﬂ,fzﬁ—fxﬁ,fxﬂ—fy%j
\/kf(s)+kgz(s) vf ds “ds “ds “ds “ds ’ds

N Ky (s) [{(fx,fy,fz)}
4/kn2(s)+k§(s) \%i

elde edilir. g, D,-Darboux slant helis oldugundan <Dn,dn>=c053 dir. d vektorii

ve yukarida bulunan [3n vektorii yerine yazilirsa

Ko (S) 1 dz ,dy .dx ,dz . dy . dx
- L e T T A e e
JEE) +kEE) | VAL Vds TdsT*ds s’ *ds s

kg (S) 1 )
+ \/knz(s) + kg2 (s) [HVFH( fof,. 1, )J,(a,b,c)> —co0s9

k k L
bulunur. Burada islem kolayligi i¢in ——=—==P ve ———==Q denilip ifade
k:+k: JkZ +K?

dizenlenirse
el (Y S
HVfH ds ds’ *ds ds’ *ds ds

1
+Q| = (.. f,. f,) .(a,b,c) ) =cos 9
[uw I )]( )>

elde edilir. Buradaki i¢ ¢arpim islemleri yapilirsa
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p L (af gz afOly bfd bfd—z cf, ady cf%]
Yds  tds ‘ds *ds *ds Yds

+Q—(af, +bf, +cf, ) =cosd

bulunur. Her iki taraf |V H ile carpilirsa

—P(af 92 o Wopr g B2 op g X
Yds " ds ds ds ds ’ds

+Q(afX +bf, +cf, ) = HVFHCOSS

bu ifade % , d—y ve d—z parantezine alinirsa
ds ds ds

(~Pbf, + Pcf )%+(Paf ~ Pcf )gz

(5.33)
dz
+(—Paf, + be*)E =|vf |[cos $—Q(af, +bf, +cf,)
elde edilir. Ayrica <f,U> =0 oldugundan
f, % dy +1, %:0 (5.34)

“ds ds *ds

dir [15]. Burada % ifadesi yalniz birakilirsa
S

bulunur. Bu ifade (5.33) de yerine yazilirsa ve islem kolayligi igin

[V ||cos 9-Q(af, +bf, +cf,)=C denilirse

)dZ C

d
(~Pbf, +Pcf, )— o

X, (Paf, —pef,)| - OX_ T 021, +(~Paf, + Pbf
ds f, ds

elde edilir. Parantezler acilirsa
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p| b, +cf, —x(af, ~cf,) |2 1P| —af, +bf, — = (af, —cf,) | % =C
f, ds f, ds

bulunur. Denklemin iki tarafi f, ile garpilirsa

P(f, (-bf, +cf,)- ,(af, —cf ))3:
dz

+P(fy(—afy+bfx)—f (af, —cf ))dS f,C

elde edilir. Her iki taraf P ye boliiniirse

(f, (-bf, +cf, )~ 1, (af, —cf ))‘;)S‘

+(f, (~af, +bf,)- f, (af, —cfx))%zéf C

y

bulunur. Bulunan denklemde % yalniz birakilirsa
S

dx 1 dz
—= ~=f,C+(f,(~af, +bf,)- f, (af, —cf
ds fx(afz—cfx)—fy(cfy—bfz){ p HC(f,(-af, bt )~ 1, (af, ))ds}
elde edilir. f, (af,—cf,)— f,(cf, —bf,)=Q, =0 denilirse
dx 1 dz
$:Q_r[_5 £,C+ (1, (—af, +bf, ) f, (af, —cf ))ds} (5.35)

bulunur. Benzer yolla g—y ifadesini bulalim. (5.34) denkleminde ? yalniz
s s

birakilirsa

bulunur. Bu ifade (5.33) de yazilirsa

f
(—beZ+Pcfy)[—f—yﬂ—f—%J (Paf, — Pcf )i’ +(~Paf, + Pbf

dz
ds f ds )

ds
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elde edilir. Her iki taraf P ye boliiniirse

dy

dz )
olur. == ve — parantezine alinirsa
ds ds

f dy
{—f—i(—bfz +cf, )+ (af, —cfx)}E

f dz 1
[—f—(—bfz rf )+ (af, +bfx)}d—z = =C

X

bulunur. Bulunan bu ifadenin iki tarafi f, ile carpilirsa

[- f, (=bf, +cf, )+ f,(af, —cfx)]%
+| =, (<bf, +cf, )+ f, (—f, +bfx)]% :% f.C

X

elde edilir. % yalniz birakilirsa
dy _ 1 lico _af - bt )%
ds f,(af, —cf,)- 1‘y(cfy —bfz)(P hC [fx(bfx afy) fZ(ny of, )] ds]
bulunur. Burada f, (af, —cf,)— f, (cf, —bf,)=Q, =0 denilirse
dy 11 dz
= Q_n(E f,C—| f,(bf, —af, ) - f,(cf, —bfz)]gj (5.36)

olur. g D,-Darboux slant helisi birim hizli oldugundan

()@
ds ds ds

elde edilir [15]. (5.35) ve (5.36) ifadeleri (5.37) de yerine yazilirsa
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2
1 1 ;
(& re(on-an ) o))
1(1 I
{Q_n[ﬁ RC | f(bf—at,)- 1, (ny—bfz)Jd_zj] +(d_3 -1

bulunur. Burada kareler alinip bulunan ifade de benzer olan ifadeler ortak carpan

parantezine alinirsa

n

2
{é[( F24 12+212)(bf, —af, )" + £2((af, —cf,)? + (cf, —bfz)z)}rl}(%j

1.1 d
_ZECQ_ﬁ[( 2417+ 17)(bf, —af, )|
+éécz(ff +f7)-1=0

ikinci derece denklemi elde edilir. Bu denklemin kokleri

0, = —Zécé[( 2 £+ 1) (bf, _afy)]

n

1 l 2 2 2
q3=§FC (fx + fy)—l

n

olmak tuzere

dz _ 0, +4/9; — 40,0,

5.38
ds 2q, (5.38)

ile bulunur. (5.38) ifadesi (5.35) ve (5.36) de yerine yazilirsa
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d 1 1 —g. +.d2 -4

d—Z=Q—n EfyC+(fy(bfxafy)fz(afchx)){ % \lzq;l qlqgu

dy 111 ~0, /97 —49,q
EQ—nBfXC—(fX(bfx—afy)—fz(cfy—bfz))[ : 2(;1 ”B (5.39)
dz _ —0, +4/0; — 40,0,

ds 20,

diferansiyel denklem sistemi elde edilir. Boylece

X(Sp) =X,
y(so) =Y
2(sy) = 2,

baslangi¢ noktasi ile birlikte bir baslangi¢ deger problemi elde ederiz. Bu problemin

¢Oziimii bize S iizerinde aradigimiz D, -Darboux slant helisi verir.

5.5. D_-Darboux Slant Helis Ornekleri

Bu kisimda, D, -Darboux slant helislere ait érnekler verilecektir. Ornek 5.5.1
ve Ornek 5.5.2 de yiizey iizerinde verilen bir egrinin D, -Darboux slant helis olup
olmadigi Sonu¢ 5.2.3 yardimiyla kontrol edilecektir. Ornek 5.5.3 de parametrik
formda verilen bir yiizey iizerinde D, -Darboux slant helis elde edebilmek i¢in 5.4.1
béliimiinde verilen yontem uygulanmustir. Ornek 5.4.1 de kapali formda verilen bir

yiizey tizerinde D, -Darboux slant helis elde edebilmek igin 5.4.2 boliimiinde verilen

yontem uygulanmustir.

Ornek 5.5.1: S yiizeyi, U>0 olmak iizere
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%cos(ﬁln u)+%sin(\/§In u)+%cos(\/§ln u),
X(u,v) = ?sm(\/_ u)—%cos(\/fln u)+%sin(\/§m u),
$+$

parametrizasyonu ile verilsin. u=s (s>0) ve v=0 alinarak S yiizeyi lizerinde

B(s) = (ﬁcos(\/ﬁln s)+§sin(\/§ln s),%sin(«/ﬁln s)—%cos(\/fln s)%j

egrisi elde edilir.
1 . 1
ﬂ (s)= (ﬁcos(ﬁln s),ﬁsm(«/fln S)Ej

dolayistyla Hﬁ'(s)Hzl oldugundan g birim hizlidir. B egrisinin Darboux c¢ati

elemanlan

=7 (cos(V2Ins).sin(21ns) 1)
( n(v2Ins),~cos(v21Ins), )

5, = 5 (os{ s} sn[VZns) -
olarak bulunur. Ayrica

A" =(—%sin(ﬁln s),%cos(ﬁln s),oj

u, :(-%sin(ﬁm s),%cos(ﬁln s),Oj

oldugundan
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elde edilir. Bulunan degerler (5.16) da yerine yazilirsa o, =1= sabit oldugundan S
egrisi S ylizeyi lzerinde bir D, -Darboux slant helistir. Ayrica Sonug¢ 5.2.6

geregince [ egrisi bir helistir. S yiizeyi ve secilen S egrisi Sekil 5.5.1 de

gosterilmistir.

207

15

10

51

o

- 4
II’IIIIIIIIIIIIII‘IIIV_IM
5 0 -5 0 -1287
u u . v
ﬁcos(ﬁlnu%gsm(ﬁlnu)+ﬁcos(\ﬁlnu),
Sekil 5.5.1 X(u,v) = Lsin(\/Elnu)—gcos(\/flnu)+Lsin(\/flnu), ylizeyi

W2 3 NG
u v
_+_
NP

%cos(ﬁlns%%sin(ﬁln s),

tizerindeki f(s) = 32 S s denklemli D, -Darboux slant helis
——5Si 21 - 21 ,—=
3\/55"1(\/_ ns) Scos(J_ ns) 5
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.. 1 . 1 . u
Ornek 552: S tizeyi X (U,V)=| —=SIinU+COSV,—=COSU +SIiNV,—=+1
et xXom~{ 72 o
parametrizasyonu  ile  wverilsin.  v=0 alimrsa S  yiizeyi {izerinde
S(s) = ( sins+1,—=coss, +1j egrisi elde edilir. Hﬂ H 1 oldugundan g
72 J’ 2

egrisi birim hizlidir. £ egrisinin Darboux ¢at1 elemanlar

T= i(cos s,—sins,1)

2

- 1 . .

V =———(cosssins,1+Cos’s,sins)
J21+cos?s

U, = ;(—1,0,003 s)

\J1+cos?s

olarak bulunur. Ayrica

1, .
"=_——_(sins,coss,0
B ﬁ( )
U;:;s(—cosssins,o,—sins)
(1+cos s)f

oldugundan

" =<~”'\7>=_ COSS

o =\P 1+cos? s
g\ sin®s

fo = <Uﬁ’v>_\/§(l+coszs)

elde edilir. Bulunan degerler (5.16) da yazilirsa o, =—1=sabit olur. Dolayisiyla
egrisi S ylizeyi lzerinde bir D, -Darboux slant helistir. Ayrica Sonu¢ 5.2.6

geregince S egrisi bir helistir. S yiizeyi ve f egrisi Sekil 5.5.2 de gdsterilmistir.
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7

4
-2

Sekil 5.5.2. X (u,v) = (isin u+ cosv,icosu +sin V,L +1} yiizeyi tizerindeki

2 N 7

S(s) = (isin s+1 icos S, %Jrlj denklemli D, -Darboux slant helis

7"

.. ) 1 1 . u .

Ornek 55.3: S yiizeyi X(u,v)=| —=cosu,—=sinu,——2v | parametrizasyonu
yuzeyi X (u,v) [ N 7 7 j p y

ile verilsin. Bu yiizey lizerinde normal ve geodezik egrilikleri K, =%, k, =0 olan

ve D, vektorii, sabit d, =(0,0,1) dogrultusu ile 9=% agis1 yapan D, -Darboux

slant helisi 5.4.1 boliimiinde verilen metotla bulalim.

—

X, = sinu,icosu,%}

S

X, =(0,0,-2)

oldugundan
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X, x X, =—/2(cosu,sinu,0), HX xX,[=+2
E=(X,,X,)=LF=(X,,X,)=—2,6=(X,,X,)=4,

. 1 I
EG-F*=2,L,=(X,.d,)= E,|v|n:<xv,dr>=—2,
A=EMZ2-2FL M, +GL2=2,B, =0

olarak bulunur. Ayrica P = =0 oldugundan bulunan tiim

K.k
,/kf+k§_l’Q_4/knzikgz

degerler yerine yazilirsa A, =0 ve A’ =8 olur. Dolayisiyla

du_y

ds
dv_2\2%2\2
ds 8

elde edilir. Bu diferansiyel denklemler, (¥) ifade negatif kabul edilip ¢oziliirse,

C,, C, integrasyon sabiti olmak iizere

Uu=s+c
vV=c,

bulunur. Ozel olarak ¢, =c¢, =0 kabul edilirse u=s ve v=0 elde edilir. Bulunan

bu degerler yiizeyin parametrik denkleminde yazilirsa, S yiizeyi lizerinde

—=sins,

(J’COSS N J’j

D, -Darboux slant helisi elde edilir. S yiizeyi tizerindeki S D, -Darboux slant

helisin  sekli Sekil 5.5.3 deki gibidir. Bu o6rnekte [26] nolu referanstan
faydalanilmistir.

136



30 -

0.5 1

Sekil 5.5.3: X (u,v)= (i cosu, isin u, % - ZVJ ylizeyi tizerinde normal egriligi

Z

k :i, geodezik egriligi k, =0 olan ve d, =(0,0,1) dogrultusu ile 4 2% acisl yapan

"R

D, -Darboux slant helis

Ornek 5.5.4: f(x,y,z)=x>+y*—z=0 kapali formu ile verilen paraboloid yiizeyi

tzerinde egrilikleri k_ :i, 7, =0 olan ve d =(0,0,1) dogrultusu ile «9:% acist

2
yapan D, -Darboux slant helisi 5.4.2 bolimiinde verilen yontemle bulalim. Gerekli

hesaplamalar yapilirsa

P=1,Q=0,f =2x f =2y, f,=-1,

[VF = VA + ¥ +1,C =~ JAGE +y) 1,9, = =4(¢ + ),

1 1

= 1’ :O, o
% 4(x2+y2)Jr % % 16(x% + y?)

_3
4
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bulunur. Bulunan degerler (5.39) da yazilirsa

dx 1
ds  4(x*+y?)

16(x* +y?)+4

dy_ 1
ds A(x* +y?%)

dz_ 12(x* +y?) -1
ds  \16(x*+y*)+4

{ZX\/Q(X2 ty)-1 + YJA(X2+ ¥ +1}

{x 4(x* + y2)+1—2y\/

120 + y2)—1}

16(x* +y?)+4

diferansiyel denklem sistemi elde edilir. Bu diferansiyel denklem sistemi karmasik

oldugundan egrinin parametrik denklemi elde edilememis olsa da bu sistem igin

Matlab programinda P =(0,—1,1) baslangi¢ noktasi ile ‘ode45’ komutu kullanilirsa

aranan egrinin grafigi Sekil 5.5.4 deki gibi elde edilir.

Sekil 5.5.4: X2 +y? —z =0 yiizeyi iizerinde normal egriligi k =~ , geodezik cgriligi

2

k, =0 olan ve d, =(0,0,1) dogrultusu ile 9 =% acist yapan D, -Darboux slant helis
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6. SONUC VE ONERILER

Bu tez calismasinda, daha 6nce [20] nolu referansta tanimlamasi yapilan,
fakat incelemesi yapilmayan, {i¢ yeni yiizey egrisi olan D, -Darboux slant helisler
(ie {o, n, r}) lizerine ¢alistlmistir. Oncelikle bu egrileri daha kolay incelemek igin ii¢
yeni ortogonal cati tanimlanmig ve bu catilara ait tiirev formiilleri bulunmustur.
Ardindan bu ¢atilar yardimiyla D, -Darboux slant helisleri karakterize eden
denklemler elde edilmistir. D, -Darboux slant helisleri karakterize eden denklemler,

tanimlanan bu catilarin egrilikleri ile Darboux ¢atisinin egrilikleri arasindaki
ilisklerden yararlanilarak egri-yiizey ikilisinin egrilikleri cinsinden verilmistir. Bu
yeni catilar yardimiyla yilizey Tlizerinde yatan tiim egrileri karakterize eden
diferansiyel denklemler bulunmus, bulunan bu diferansiyel denklemlerden
yararlanilarak D, -Darboux slant helisleri karakterize eden diferansiyel denklemler
elde edilmistir. Son olarak, kapali ve parametrik formda verilen bir yiizey lizerinde

bulunan D, -Darboux slant helisleri elde edebilmek igin metotlar verilip ardindan bu

metotlara iligkin drnekler verilmistir.

Bu yapilan ¢aligsmalara ek olarak, tanimlanan {i¢ yeni ortogonal ¢ati ile ylizey
iizerinde bulunan egriler incelenebilir. Oklid uzayinda yiizey iizerindeki D, -Darboux
slant helisler ilk kez bu ¢alismada incelendiginden, burada elde edilen veriler
15181nda bu yiizey egrilerinin farkli dzellikleri ve karakterizasyonlar1 Oklid uzayinda
incelenmeye devam edilebilir. D; -Darboux slant helisler, burada verilen yol ve

yontemler yardimiyla bagka uzaylarda da ¢alisilip incelenebilir. Ayrica bu calisma,

baska uzaylardaki farkli egri ve yiizey tiplerine gore ¢aligmalar yapilmasina onciiliik
edebilir.
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