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ABSTRACT 

 

MODELING COASTAL SHORELINE CHANGE  
THROUGH SATELLITE IMAGERY: 

A CASE STUDY DIM RIVER MOUTH, ALANYA COASTLINE 
 
 
 

Temizkaya, Mustafa Sinan 
Master of Science, Geodetic and Geographic Information Technologies 

Supervisor : Prof. Dr. Ahmet Cevdet Yalçıner 
Co-Supervisor: Prof. Dr. Sevda Zuhal Akyürek 

 
 

April 2024, 118 pages 

The continuous change of shoreline boundaries due to natural or human causes has 

created the necessity for shoreline monitoring. Sedimentation occurs in shallow 

water level areas where a river or creek discharges into the sea or ocean. Continuous 

erosion and sediment accumulation cause shoreline changes, which may result in 

losing land soil or destructive accumulation of sediments. This catastrophic natural 

event may harm coastal lands with economic value, such as beaches, agricultural 

areas, residential buildings, and hotels. Traditional shoreline monitoring is done by 

physically collecting data over a period of time in the desired location. Standard 

methodology requires many things, such as workforce, funding, and, more 

importantly, a long duration. This study examines monitoring shoreline change in 

Alanya, Türkiye, with Digital Shoreline Analysis System (DSAS) by using 

geographical information systems and remote sensing analysis. The study area is 

narrowed step by step by constructing different models to compare the results. The 

smallest microzone is selected as Dim River mouth in Alanya, Türkiye, for being 

naturally dynamic and having less human activity, which may cause artificial 

changes in shorelines. The research consists of analyzing the satellite images from 

two different satellites, Landsat and Planet, and corresponding reanalysis data of the 
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coastline. Based on the results, seasonal and cyclical behavior is obtained in the area. 

As the study area decreases, the changes in shoreline changes. Throughout the study 

area, mostly erosion is observed. In Dim River Mouth, the seasonal change in 

shorelines is obtained roughly between -25 and +25 meters for Landsat-8 imagery 

and -8 and +4 meters for Planet imagery.  

 

Keywords: Shoreline Monitoring, Coastal Erosion, Digital Shoreline Analysis 

System (DSAS), Geospatial Analysis, Remote Sensing
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ÖZ 

 

UYDU GÖRÜNTÜLERİYLE KIYI ŞERİDİNDEKİ DEĞİŞİMİN 
MODELLENMESİ: 

DİM ÇAYI AĞZI, ALANYA KIYI ŞERİDİ ÖRNEĞİ 
 
 
 

Temizkaya, Mustafa Sinan 
Yüksek Lisans, Jeodezi ve Coğrafi Bilgi Teknolojileri 

Tez Yöneticisi: Prof. Dr. Ahmet Cevdet Yalçıner 
Ortak Tez Yöneticisi: Prof. Dr. Sevda Zuhal Akyürek 

 

 

Nisan 2024, 118 sayfa 

Kıyı şeritlerinin sınırlarının sürekli olarak insan etkisi ya da doğal etkilerle değişimi 

kıyı şeritlerinin izlenmesinin gerekliliğini doğurmuştur. Sediment birikimi; derelerin 

ya da nehirlerin denizle buluştuğu noktalardaki sığ su seviyelerinde oluşur. 

Süregelen aşınma ve sediment akümülasyonu toprak kaybına veya yıkıcı etkili 

sediment birikimine sebep olabilecek kıyı şeridi değişikliklerine neden olur. Bu 

yıkıcı doğa olayı; sahil, zirai alanlar, yerleşim yerleri ve oteller gibi ekonomik değeri 

olan kıyısal yapılara zarar verebilir. Geleneksel kıyı şeridi izlenmesi fiziksel olarak 

belirli bir zaman diliminde istenen lokasyonda veri toplanmasıyla yapılır. Geleneksel 

metodoloji iş gücü, fonlama ve en önemlisi uzun bir süre gerektirir. Bu tez 

Alanya’daki kıyı şeridi değişminin Dijital Kıyı Şeridi Analiz Sistemi (DSAS) 

kullanılarak coğrafi bilgi sistemleri ve uzaktan algılama ile incelenmesini 

amaçlamaktadır. Çalışma alanı adım adım küçültülmüştür ve her bir çalışma alanı 

için ayrı modeller oluşturularak bu modellerin sonuçları birbirleriyle 

karşılaştırılmıştır. En mikrobölge, doğal olarak dinamik olması ve kıyı şeritlerinde 

yapay değişikliklere neden olabilecek insan faaliyetinin daha az olması nedeniyle 

Türkiye'nin Alanya ilçesindeki Dim Çayı ağzı olarak seçilmiştir. Araştırma, Landsat 

ve Planet olmak üzere iki farklı uydudan alınan uydu görüntülerinin ve buna karşılık 
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gelen kıyı şeridinin yeniden analiz verilerinin analizinden oluşmaktadır. Analiz 

sonuçlarına göre çalışma alanında hem mevsimsel hem de periyodik değişim 

trendleri gözlenmiştir. Çalışma alanı küçüldükçe gözlemlenen kıyı şeridi değişim 

değerleri de değiştirmiştir. Çalışma alanı boyunca çoğunlukla kıyı erozyonu 

gözlemlenmiştir. Dim Çayı ağzı bölgesindeki mevsimsel değişim Landsat-8 

görüntülerinden kabaca -25 ile +25 m arasında saptanmıştır. Bununla birlikte bu 

değişim Planet görüntülerinde -8 ile +4 m arasında gözlenmiştir.  

 

Anahtar Kelimeler: Kıyı Şeridi İzlenmesi, Kıyısal Erozyon, Dijital Kıyı Şeridi 

Analiz Sistemi (DSAS), Uzamsal Analiz, Uzaktan Algılama
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CHAPTER 1  

1 INTRODUCTION 

The natural environment of coastal areas provides habitats for complex ecosystems 

and is crucial for supporting socio-economic activities (Demir et al., 2017). A variety 

of species that contribute to the health of these areas and support human activities 

exist in these ecosystems. A shoreline exists where sea, ocean, and land meet 

(Parthasarathy et al., 2021). They are dynamic environments and can change rapidly 

due to the effects of both natural and human causes. Coastal shoreline changes result 

from several dynamic inductions, such as waves, currents, tides, and movements of 

sediments (Ergin et al., 2006). The change should be monitored continuously to 

prevent potential threats to coastal areas close to the sea or ocean, such as beaches, 

agricultural lands, residential buildings, and seaside tourist facilities. One of the most 

crucial coastal zone management issues is monitoring coastal erosion and accretion 

(Ari et al., 2007). The primary issue in seaside areas is presenting the dynamics of 

the location and estimating the future behavior of these dynamics (Hoffmann et al., 

2007). 

Shoreline changes are investigated by several methods, including numerical 

modeling of sediment transportation, optical remote sensing applications, unmanned 

aerial vehicles (UAV), synthetic aperture radar (SAR) imagery usage with remote 

sensing applications, and physical maps and their digitizations. Numerical modeling 

processes require enormous data collection over time in the desired location, which 

requires adequate manpower, funding, and special devices. Processing of this data 

necessitates modeling with intricate mathematical equations that take into account 

the influences of waves, currents, and winds. Additionally, coastal morphology 

evolution includes multifactoral physical characteristics, which makes it difficult to 
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represent all these characteristics in a mathematical model (Ari et al., 2007). Further, 

numerical modeling is a deterministic approach to the phenomena founded on the 

results of the collected data and laboratory tests that may not suit the real case 

scenarios completely. 

Extraction of changes in different features on large-scale surfaces can be granted 

using remote sensing data. Satellite imagery, unmanned aerial vehicles (UAV), and 

synthetic aperture radar (SAR) are data to obtain top-view displays of the desired 

locations. Satellite imagery is a beneficial data source for shoreline extraction and is 

freely available to some extent of resolution both in multispectral and radar sensors 

(Demir et al., 2017). Remote sensing techniques are essential for identifying, 

monitoring, and mapping coastal zones by evaluating temporal changes and 

commenting on their environmental importance (Kennedy et al., 2009). These 

techniques allow for the use of different methodologies while assessing data and 

create an option to index the data that may be further used to generate different 

analyses after detecting shoreline changes. Considering the effects of coastal erosion 

and accretion could lead to further analyses that include risk mapping, disaster 

management, and coastal zone management. Moreover, satellite imagery may reduce 

the investigation cost of creating a mathematical model by detecting the potential 

zones open for dynamic forces and assisting investigators with the collection of data 

in narrower zones.  

1.1 Scope and Objectives 

The scope of this study is to obtain the shoreline change in the Mediterranean 

Region's coastal zone in Türkiye over time by employing remote sensing and GIS 

using Landsat-8 imagery. The reason for using Landsat imagery is that it has a 30 by 

30-meter pixel resolution, and it is provided freely and open-source by the United 

States Geological Survey (USGS) agency; it can be accessed easily. Additionally, 

the aim is to confirm the accuracy of Landsat-8 derived shorelines by comparing it 

with the shoreline retrieved from Planet Public Benefit Corporation (PBC) data 



 
 
3 

having a 3-meter resolution. There are three primary objectives within the scope of 

this thesis, seeking answers to the following questions. These are: 

1. Can Landsat-8 imagery be used for shoreline monitoring? 

2. What is the relative sensitivity of the shorelines extracted from Landsat-8 

imagery? 

3. Can a Digital Shoreline Analysis System (DSAS) be used in modeling the 

shoreline changes? 

1.2 Contributions of the Study 

a. The study proves the use of Landsat-8 images for shoreline monitoring 

purposes as well as their reliability for use in real-world applications. Data 

has been available since the launch of the Landsat satellite in 1985. An image 

from 1987 is the earliest included in this study and is the starting point of the 

analysis. 

b. The study utilizes different USGS data and tools such as DSAS. These free 

and open-source data and tools contribute to the literature. The study area is 

examined for the first time using the Landsat-8 and GIS tools. Further, this 

study proposes a procedure to analyze large-scale areas affected by shoreline 

changes.  

c. The study proposes a procedure to extract the shorelines. Since the DSAS 

tool uses the given data, it is essential to have minimal error to overcome 

potentially wrong results. The rates that DSAS calculates are as correct as the 

accuracy of the shorelines (Himmelstoss et al., 2021). 

1.3 Outline of the Thesis 

This thesis includes seven chapters: Introduction, Literature Review, Study Area, 

Methodology and Data Characteristics, Analysis and Results, Discussion, and 
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Conclusion. The Introduction discusses the necessity of this study, its aim, and its 

contributions to literature. This section also presents an outline of the thesis. The 

Literature Review section summarizes the historical development and methodology 

based on the previous articles, theses, and conference papers for shoreline extraction 

and monitoring. Further, a conceptual framework behind the primary concepts this 

thesis explores is included in this chapter. The Study Area Chapter includes location 

characteristics, boundaries, and factual information. The procedure followed 

throughout the study is presented in the Methodology Chapter. Different data sources 

are used in this study. The required explanations for the data sources and their 

characteristics and the procession of these data are also explained in the 

Methodology and Data Characteristics Chapter. The fifth chapter follows with the 

analysis submission, and results based on the study are presented. This procedural 

study requires extensive discussions and highlights key points of the study. This 

requirement is fulfilled in the sixth chapter. Finally, the overall process is 

summarized in the seventh and final chapter. 
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CHAPTER 2  

2 LITERATURE REVIEW 

Shoreline change monitoring contributes to many disciplines because of the high 

number of interdisciplinary studies in the coastal zones, such as geology, biology, 

engineering, and geospatial sciences. In this chapter, the theoretical and empirical 

literature relevant to shoreline extraction and shoreline change monitoring is 

reviewed. The literature examines both numerical and geospatial analysis methods. 

In the first part, shoreline extraction studies are discussed and presented. In the 

second part, shoreline change determination procedures are studied both numerically 

and geospatially. In the literature, many studies have been proposed to monitor 

shoreline change and extract shoreline data. Differentiation occurs in the 

methodology and the source of data.  

2.1 Shoreline Extraction 

Optical and Synthetic Aperture Radar (SAR) data are both widely used to extract 

coastlines (Acar et al., 2012). Acar et al. (2012) developed an algorithm to extract 

shorelines from SAR images. They used histogram equalization to separate land and 

sea. As a result of the histogram equalization process, two main types are generated 

as an output: “too noisy” and “less noisy.” If the imagery is classified as “too noisy” 

after histogram equalization, further algorithms were applied to reduce the noise and 

normalize the image. It is noticed that the noise is caused by the same grey value of 

a pixel that has a particular value. Mathematical morphology is used to eliminate 

pixels that have random noise values. After mathematical operations, a fit-coast 

algorithm is used for the resulting image. 

Global positioning system (GPS) devices are efficient for getting real-time data and 

measurements from desired locations. Gokceoglu et al. (2015) obtained their data 
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using real-time kinematic measurements via GPS on the Antalya coast in Türkiye. 

The researchers utilized high water level (HWL) and low water level (LL) 

measurements to determine the shoreline in the desired location. To classify the 

boundary of the coastal zone, normalized difference vegetation index (NDVI) is 

applied to their study. As a result, a coastal zone is obtained based on the measured 

and collected land data.  

Different research areas are developed using different data sources to get better 

results in shoreline extraction processes. Demir et al. (2017) used Rasat Multi-

Spectral (MS) pan-sharpened image and Sentinel-1A imagery as the primary data 

sources. Initially, a random forest classifier is applied to the Rasat image, and fuzzy 

parameters are determined from this classification. Then, these parameters are used 

to extract the shoreline from the Sentinel image. Their proposed methodology 

includes four steps. These steps are pre-processing, classification, post-processing, 

and quality assessment. 

The use of programming allows the implementation of different approaches together 

to get better results in the studies. Using the Matlab platform, Bayram et al. (2017) 

extracted shorelines using the Random Forest algorithm on Landsat-8 and Gokturk-

2 images. The Random Forest classification algorithm is a pixel-based machine-

learning method relevant to decision trees (Bayram et al., 2017). Near-infrared (NIR) 

bands of Landsat-8 and Gokturk-2 images are analyzed. The analysis results are 

compared with the manually digitized shorelines using the Digital Shoreline 

Analysis System (DSAS). The average distances between manually digitized and 

extracted shorelines for Landsat-8 and Gokturk-2 imageries are reported as 11 m and 

3 m, respectively. 

Light detection and ranging (LIDAR) is one of the devices that creates detailed 

images while scanning over surfaces. Incekara et al. (2018) presented a study that 

normalized difference water index (NDWI)-based shoreline extraction. They used a 

LIDAR-derived intensity image (LDII) as an infrared band and compared the results 

with an orthophoto from Pléiades Satellite. The LDII image was added to the red-
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green-blue (RGB) image as an infrared image to obtain a layer-stacked image. Their 

methodology includes pre-processing to reduce the noise in the images.  Then, an 

NDWI calculation is conducted to separate the data into land and water. After 

separation, the shoreline is extracted. Results are compared with manually digitized 

vectors. Distance values range from 0 to 72 m and 0 to 114 m, which indicates that 

the dataset was heterogeneous. As a result, the use of LDII imagery as an infrared 

band needs to be evaluated more in detail for further studies based on their findings.  

Moreover, Demir et al. (2019a) also used LIDAR and synthetic aperture radar (SAR)  

datasets in their study. They preprocessed and analyzed the data from the LIDAR 

dataset to estimate parameters used in SAR image analysis. Sentinel-1 Level 1 grade 

is used as a synthetic aperture radar (SAR) source. SAR images are also pre-

processed before the analysis using external digital elevation model (DEM) data. 

Additionally, they employed a similar procedure in another study conducted in the 

same year using Sentinel-1A and Rasat pan-sharpened imagery. The use of optical 

and radar images together is exceptionally more effective for the correct extraction 

of shorelines (Demir et al., 2019b). The mean difference between the reference data 

was reported as 18.53 m in their study, while the k-means approach has a mean value 

of 23.69 m.  

The effectiveness of Artificial Neural Network (ANN) added Self-Organizing Map 

(SOM) by the use of random forest (RF) methods to extract the shorelines from 

Landsat-8 imagery is investigated by Bayram et al. (2019). SOM, ANN, and RF are 

implemented in the Matlab environment to carry out the necessary calculations. The 

results are compared with the manually digitized shorelines. Further, Bayram et al.  

(2019) investigated the effectiveness of different machine-learning methods for 

shoreline extraction from UAV Images. 

Image processing is another tool for shoreline extraction in the literature. 

Bamdadinejad et al. (2021) used support vector machine (SVM) classification and 

maximum likelihood classification methods to implement image processing into 

shoreline extraction studies. Landsat imagery is used, and the results are checked by 
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having overall accuracy and kappa coefficient calculation. The minimum and 

maximum of the pixel values in each band were reported as in the range of (0,1), 

which indicates the correctness of their calculations. 

Karaman (2021) examined and compared different thresholding methods for 

shoreline extraction using Landsat-8 and Sentinel-2 imagery. Different atmospheric 

correction analyses are used in his study, and results are compared with the help of 

statistical methods. 

Machine learning is a valuable tool for eliminating human mistakes and making 

studies more automated. Bengoufa et al. (2021) used Pléiades imagery that has high 

resolution in their study. The same Pléiades image is used for shoreline extraction 

by four different machine-learning models. These models can be categorized as 

pixel-based image analysis (PBIA) and object-based image analysis (OBIA). In their 

machine learning model, two machine learning classifiers, random forest (RF) and 

support vector machine (SVM), and two segmentation algorithms, multi-resolution 

segmentation (MRS) and mean shift segmentation (MSS), are used. They obtained 

six different shorelines for the same data; further, GPS data were collected from the 

location based on high water level (HWL) to compare the results using DSAS. As a 

result, it can be seen that object-based image analysis (OBIA) is more accurate in 

extracting shorelines in an automated manner.  

It is clear that there are many extraction methods for shorelines that use multispectral 

images using NDWI values and others. These methods are mainly based on the 

classification of pixels obtained from satellite imagery to divide the image into 

different features. However, object-based analyses are used in some studies to obtain 

shorelines that implement the use of shape, texture, and other topological features 

(McAllister et al., 2022). The available methods for the extraction of shorelines are 

categorized and presented in Figure 2.1. 
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Figure 2.1. Available Shoreline Extraction Techniques (McAllister et al., 2022) 

 

2.2 Shoreline Change Determination 

There are two main approaches in the literature to obtain shoreline changes. These 

are numerical determination methods and geospatial determination methods. 

Numerical methods use data measurements from areas of interest (AOI), laboratory 

testing, and mathematical modeling of dynamic factors such as wind, wave, tide, and 

currents (Ergin et al., 2006). 

On the other hand, geospatial modeling of shoreline changes uses satellite imagery, 

remote sensing techniques, and different algorithmic analyses. In this section, these 

two methods in the literature are reviewed. 
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2.2.1 Numerical Determination 

Shoreline change models such as one-line theory are quite promising if continuous 

and uninterrupted, and the correct data for prediction of wave-induced longshore 

sediment transport is provided. Also, the data on resulting shoreline changes are 

necessary  (Ergin et al., 2006). 

All contours are assumed to have similar shapes and shift both landward and seaward 

together to a restraining offshore depth, with the depth of closure becoming a single 

contour line (Kamphuis, 2000). Based on assumptions, the sand continuity equation 

is derived for a given coordinate system and represented in Equation 2.1 and Figure 

2.2. 

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

=  −
1

𝐷𝐷𝐶𝐶 + 𝐵𝐵
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑞𝑞𝑦𝑦� 

 

where y: along shoreline distance 

 t: time 

 Dc : depth of closure 

 B: beach berm height above still water level 

 Q: longshore sediment transport rate 

 x: longshore distance 

 qy: sources/sinks along the coast 

 

The depth of closure, DC, which is used to calculate the change in time in the 

perpendicular direction to the shore, is formulated by Hallermeier (1978). The 

formula is represented in Equation 2.2.  

(2.1) 
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𝐷𝐷𝐶𝐶 = 2.28 ∗ 𝐻𝐻𝑠𝑠, 12 −
68.5(𝐻𝐻𝑠𝑠, 12)2

𝑔𝑔 ∗ 𝑇𝑇2
 

 

where  Dc : depth of closure 

 Hs,12 : non-breaking significant wave height that exceeded 12 hr per year 

 T : significant wave period 

 g : gravitational acceleration 

 

Figure 2.2. Sand Continuity Equation Sketch (Ergin et al., 2006) 

 

Kamphuis (1991) developed experiments with three-dimensional(3-D) physical 

models of regular and irregular waves to define an expression for longshore sediment 

transport rate with a wide range of efficient parameters. Eventually, the following 

experimental formula, Equation 2.3, was derived with the application of non-

dimensionalization. 

 

 

(2.2) 
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𝑄𝑄 = 7.3 𝐻𝐻𝑠𝑠𝑠𝑠2  𝑇𝑇1.5 𝑚𝑚𝑏𝑏
0.75 𝐷𝐷50−0.25  sin0.6(2𝛼𝛼𝑏𝑏𝑏𝑏)             (𝑚𝑚3/ℎ𝑟𝑟) 

 

where Hsb: significant breaker wave height (in m.) 

 T: significant wave period(in sec.) 

 mb: beach slope at breaker location 

 D50: median grain size diameter(in m.) 

 𝛼𝛼𝑏𝑏𝑏𝑏: efficient wave-breaking angle 

 

Further, Ergin et al. (2006) used the one-line theory employing numerical model 

fundamentals in coastal engineering such as wave transformation, wave-structure 

interaction and sediment motion, and explicit solution of sand continuity equation to 

have an experimental study in the Black Sea region of Türkiye. The result of this 

study shows the usability of annual average wave heights in numerical models by 

comparing the results of the model with the field measurements.  

Other applications of the one-line theory for shoreline change determination are 

made by Güler et al. (1998) and Ari et al. (2007). Ari et al. (2007) also used 

geospatial analysis in their study. The numerical model data is compared with the 

remote sensing techniques applied to the IKONOS data. 

2.2.2 Geospatial Determination 

The time, cost, availability of satellite imagery, and level of proficiency are deriving 

factors that direct the method and materials of the research to be used in shoreline 

changes (Süzen et al., 2003). Historical data is the most essential tool as it is a 

considerable source for disaster risk management and coastal zone management 

(Süzen et al., 2003). Süzen et al. (2003) used digitization of shorelines from hard 

copy maps and KVR-1000 images to obtain the change in shorelines in Yesilirmak 

(2.3) 
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Delta. Further, 500-meter interval transects are implemented in the studied area to 

measure the changes in the shoreline. Transects are placed by using the “best fit” 

method. Moreover, Süzen et al. (2005) used aerial photographs to detect active 

shoreline changes in the Büyük Menderes River Delta for a period of 50 years. 

Bayram et al. (2013) used object-oriented classification in their study while 

monitoring the shoreline and basin change of Terkos Lake. Landsat-8 and thematic 

mapper(TM) imagery are used as data sources. Automatic shoreline extraction 

techniques are used to develop shorelines. The error range of shorelines equals 

almost a pixel based on Landsat-8 imagery. Error estimation is made by using 

manually digitized maps. Ozturk et al. (2015) applied a similar methodology to their 

study. They investigated the shoreline and basin change in the Kizilirmak Delta. 

They also used the Digital Shoreline Analysis System (DSAS) tool to analyze the 

shoreline data.  

By integrating artificial intelligence into different disciplines, machine learning 

methods are used and studied in different areas. Shoreline extraction and change 

detection have also taken advantage of these trends. Kumar et al. (2020) investigated 

the efficiency and capability of using machine learning for mapping shorelines on 

the eastern Indian coast. Artificial neural network (ANN), k-nearest neighbors 

(KNN), and support vector machine (SVM) algorithms were integrated into their 

study as a machine learning model. The integration of machine learning to shoreline 

change studies created a chance to combine both numerical and geospatial methods. 

As previously mentioned in Section 2.2.1., the numerical determination of shoreline 

changes has some challenges, such as implementing all deriving factors to the 

numerical models. Kumar et al. (2020) incorporated to reflect the wind speed and 

wave height data into their ANN model, which resulted in an 86.2% accuracy rate 

when comparing it with the KNN and SVM models. Based on the analysis of their 

study, the most outstanding elements of shoreline shift prediction are wind speed and 

wave height. 
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Additionally, tidal currents are the most effective shoreline change effects in  Asia. 

Therefore, continuous detection of shoreline change is needed in Asia. Due to the 

nature of satellites, big storage spaces are needed to evaluate the continuous shift of 

shorelines. To overcome this problem, big data platforms like Google Earth Engine 

enable users to develop their studies on cloud computing platforms. Arjasakusuma 

et al. (2021) used Google Earth Engine to extract shorelines from multitemporal 

satellite images from Landsat-7 ETM and Landsat-8 OLI by using the normalized 

difference water index (NDWI) in East Java Province, Indonesia. Further, using 

these extracted images, the Digital Shoreline Analysis System (DSAS) calculates the 

rate of change of shorelines year by year. Consequently, the end point rate (EPR) 

was reported in their study location. Ding et al. (2021) also used the Google Earth 

Engine to monitor the changeable shorelines in the Malay Islands with a similar 

methodology.  

The Digital Shoreline Analysis System (DSAS) is a valuable tool by the United 

States Geological Survey (USGS) to evaluate the change between shorelines from 

different dates for the exact location. As previously mentioned in this chapter, even 

though the data sources and shoreline extraction methodologies change, researchers 

tend to use DSAS for the calculations and results. There are many applications of 

DSAS all around the world. For instance, Hossain et al. (2021) used DSAS in their 

study to monitor the shoreline change in the southeast coast of Bangladesh. The end 

point rate (EPR)  and linear regression rate (LRR) are reported based on their study 

and shoreline extraction methodology. Besides this, Elkafrawy et al. (2021) 

implemented DSAS in their study to evaluate the effectiveness of coastal structures 

along the Eastern Nile Delta in Egypt. Shorelines are extracted by using histogram 

band thresholding. Besides, Shenbagaraj et al. (2021) chose to use unmanned aerial 

vehicle (UAV) imagery to monitor the shore. Results are obtained using vector 

overlay techniques to evaluate the areas where shoreline change occurs and DSAS 

to get the rates of change of shorelines annually. Natarajan et al. (2021) used an 

analogous model for shoreline change in India. Following that, the Kalman filter is 

employed to predict the future potential shoreline change in 2040. Matin et al. 
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(2021), Koulibaly et al. (2021), Al Ruheili et al. (2021), Quang et al. (2021), Kumar 

Das et al. (2021), Yiğit et al. (2022), Xu et al. (2022) studied different parts of the 

world through their research by using distinct data sources but similar 

methodologies. DSAS is commonly used in their papers, and similar shoreline 

extraction techniques have been implemented. 

2.3 Comprehensive Summary of the Chapter 

A comprehensive summary of the literature for the determination of shoreline change 

is provided in this chapter. Shoreline changes are of interest to scientists globally due 

to the value of coastal ecosystems and the economic importance of coastal changes. 

Studies involve mainly two explicit approaches.  

The first of these methods is the numerical modeling of sediment transportation. 

Numerical models are used to predict and understand the shoreline change behavior. 

The nature of shorelines causes the lack of these methods. Shoreline change occurs 

for different reasons, such as wind, wave, tide, current, and vegetation effects,  

excluding deliberate human effects. These effects sometimes occur individually, but 

generally, two or more of them are the deriving factors for the transformation. The 

one-line theory is introduced as a commonly used theory in numerical models of 

sediment transportation. However, a well-known fact for the numerical models is 

that the results depend on the given wave data input (Ergin et al., 2006). Therefore, 

generalization of results requires more experimental studies and statistical evaluation 

of these studies.  

The second method is the use of remote sensing techniques. In literature, different 

shoreline extraction methods exist using physical maps, UAV scans, and satellite 

imagery. Moreover, different machine learning methods are used to extract 

shorelines automatically with the lowest error. Using programming and artificial 

intelligence contributes to the automatization of shoreline extraction. However, a 

significant amount of error is generated through these implementations. Errors are 
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generally checked by using manually digitized shorelines throughout the studies. 

While comparing the shorelines, an error is generally estimated to be close to the 

resolution of a pixel, which concludes to be in an acceptable range for continuing the 

process (Bayram et al., 2013). In addition to shoreline extraction, quantifying 

shoreline changes and their effects is an important part of the studies. Generally, the 

DSAS tool is observed throughout the literature review to determine the relative 

change of shorelines numerically. The deriving factor for the shoreline change varies 

in different parts of the world. Some studies are needed due to the effects of tides 

and coastal erosion. On the other hand, some studies have been developed to examine 

the effects of accretion by wind and wave induction. 
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CHAPTER 3  

3 STUDY AREA 

The Eastern Mediterranean Region of Türkiye is well-known for its attractive tourist 

facilities and natural surroundings. Two cities lie in the eastern part of the 

Mediterranean region. These cities are Antalya and Mersin. Antalya holds many 

counties on its territory. One of these sub-cities is Alanya, which has many rivers 

and streams that carry sediments from the Taurus Mountains. Dim River is a small 

stream that carries lots of sediments and is one of the most dynamic sections of this 

city in terms of shoreline change. It is located to the east of Alanya city center. 

The study is conducted using different models, starting from the large-scale surface 

corresponding to the swath size of the Landsat satellite, which is about 250 km, to 

the low-scale surface covering the Dim River mouth area, which is about 10 km. The 

initial study area equals the swath size of the Landsat satellite, which has Antalya 

city center on the west side and Tekmen Harbor on the east side, as shown in Figure 

3.1. Then, the focus is narrowed to the entire coastline of Alanya to eliminate 

potentially high errors due to the nature of shoreline change. Shoreline change may 

differ from point to point. Thus, large-scale studies increase the error of estimation. 

End point rate (EPR) and linear regression rate (LRR) are generally reported as a 

result of analysis of shoreline changes, and using large-scale while estimating these 

rates may result in the wrong outcomes.  

At the last step of modeling, another area reduction is made up to the affected area 

of Dim River. Dim River creates a dynamic environment regarding shoreline 

changes and is affected by the seasonal precipitation regime. Human effects are 

known to be less than the average from the entire Alanya coastline. Hence, this 

location is selected to understand the natural behavior of shoreline change. Since it 
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is impossible to monitor the shoreline changes by the effect of humans, the location 

characteristics of the site must be naturally dynamic. 

 

 

Figure 3.1. 30th of August, 2023 Landsat-8 Image on Türkiye Map 

 

3.1 Initial Study Area 

The analysis of this thesis primarily uses Landsat-8 images used to extract the 

shorelines. Imaging that begins in the middle of Antalya City Center and ends at the 

east border of Tekmen Harbor, Mersin, has been extracted from available Landsat 

data to show the shoreline changes. This shoreline is about 243 kilometers in length 

based on the calculations in ArcGIS software from the manually digitized shoreline 

data that belongs to the 30th of August, 2023 Landsat-8 Image, as shown in Figure 

3.2.  
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Figure 3.2. Initial Study Area Representation 

 

3.2 Characteristics of Alanya 

Alanya is a prominent geographical entity within Antalya Province. It is strategically 

positioned along the Mediterranean coast of Turkiye and situated approximately 135 

km eastward from the city center of Antalya. The total surface area is approximately 

175,658 hectares. Thus, Alanya generates a multifaceted topographical and 

hydrological diversity. The boundaries of Antalya, Alanya, and generated shorelines 

are represented in Figure 3.3.  

The northern districts of Alanya are externalized by the orogenic branching of the 

Taurus Mountains, conjoined at the connection of Geyik and Akçalı Mountains, 

whose altitudinous peaks surpass 1,000 meters. Conversely, the southern topography 

is restricted by the iconic Alanya peninsula. It is fortified by a continuous wall 

extending over 6,500 meters, which effectively segregates it from the adjacent plains 

and the Taurus Mountain range. Despite the formidable topographical obstacles, 
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traversing passages such as Koçdovat Gediği, Kuşyuvası, Yelköprü, and the valleys 

etymologically affiliated with the Dim and Alara rivers facilitate connectivity with 

Inner Anatolia. 

The geostrategic significance of Alanya is further underscored by its role as a natural 

harbor on the eastern periphery of the peninsula. A prominent geological 

characteristic of Alanya is the prevalence of Permian crystalline limestones, 

constituting the foundational substrate of the peninsula. This geological substrate, 

punctuated by apparent fractures indicative of recent tectonic activities, 

metamorphosed into an expanse of plains through alluvial deposition, imparting a 

geomorphological panorama. 

The northern expanse of Alanya, characterized by summits, plateaus, and peaks, 

serves as a seasonal habitat for the indigenous populace, who establish summer 

settlements amid these altitudinous locales (URL-1). The lower altitudes 

metamorphose into coastal plains, demarcating the Alanya peninsula from the 

Taurus Mountains and highlighting the region's geomorphic diversity. A labyrinthine 

system of rivers articulates Alanya's hydrographic network. Further, each seep 

provides distinctive hydrological behaviors across different times. 

During the hot summers characterized by dry weather, the reduction in river flow 

gives way to the revival of watercourses following autumnal precipitation. In spring, 

there is a peak in water levels due to the thawing of the Taurus Mountain snowpack, 

leading to accelerated river flow and an increase in erosional tendencies due to steep 

topography that results in sediment transportation through rivers and streams.  

The primary rivers vital for agricultural irrigation in the region are the Alara River, 

Kargı River, Serapsu River, Oba River, and Dim River, marking the boundary 

between the districts of Manavgat and Alanya. The developmental trajectory of the 

Dim River is further emphasized by ongoing initiatives related to the Dim Dam 

project (URL-1). 
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Land use in Alanya is divided into distinct categories, including agricultural 

activities, meadows, and pastures, and is predominantly dedicated to the civil and 

cultural domain. The climatic and soil conditions in the region grant Alanya the 

distinction of possessing the most fertile soil in the Mediterranean.  

Efforts in afforestation, with an annual allocation of approximately 750 hectares, 

contribute to the expansion of the arboreal domain. Coniferous ecosystems, 

including pine and cedar varieties, adorn the elevated areas of the mountains, while 

extensive pine forests grace the coastal expanses. Notable agricultural cultivation 

includes citrus orchards and banana plantations, along with the growing cultivation 

of economically significant arboreal species such as avocado and kiwi (URL-1). 

Alanya's arboreal composition extends to the horticultural domain, incorporating 

cold-resistant fruit varieties such as apple, pear, and quince, which are visible in the 

mountainous and plateau regions. The introduction of ornamental eucalyptus trees, 

initially used for wetland reclamation, now contributes to the aesthetic enhancement 

of roadside environments.  

Alanya has a typical Mediterranean climate, which gets hot and dry in the summers 

and mild and rainy in the winters (URL-1). The daytime cooling during summer 

happens because of the coastal breeze from the sea, which helps reduce the overall 

heat. All of this makes Alanya a captivating destination in the world of tourism. 
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Figure 3.3. Borders of Antalya and Alanya with the Extracted Shorelines 

 

3.3 Characteristics of Dim River  

The coastal dynamics of the Dim River mouth in Alanya are regarded as essential 

for both environmental considerations and developmental initiatives. The river 

marks the administrative boundaries between the districts of Manavgat and Alanya.  

The coastal dynamics of the Dim River mouth are characterized by sophisticated 

interactions between sedimentation, erosion, and hydrodynamic processes, 

necessitating scholarly attention. Factors such as tidal influences, sediment transport 
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mechanisms, and the impact of anthropogenic interventions are subjected to 

comprehensive examination within academic discourse. The location of Dim River 

is presented in Figure 3.4. Moreover, in Figure 3.5. three different Google Earth 

images of Dim River Mouth are represented in 3-month periods.  

The geomorphological configuration of the Dim River mouth is inherently dynamic, 

reflecting complex interdependencies between fluvial and marine forces. Analyses 

of coastal dynamics in this context involve investigating the morphological changes 

induced by the river's discharge and its convergence with marine currents. Such 

analyses contribute to an academic understanding of the evolving coastal landscape, 

offering insights into potential implications for ecological integrity and sustainable 

land use practices. Furthermore, the bathymetric geomorphology is also considered 

to check whether there is a geological formation under the sea that has a formation 

like a submarine valley by using bathymetric maps, which are represented in Figure 

3.6. 

In addition to its geomorphic significance, the Dim River assumes agricultural 

relevance, as it is utilized as a vital water source for irrigation practices underlying 

local agricultural pursuits as a contribution of Dim Dam. Dim Dam is located on the 

Dim River in the Alanya district of Antalya, presented in Figure 3.4. constructed 

between 1998 and 2004. The dam serves the purposes of irrigation, energy 

generation, and the supply of drinking water. It has a concrete and rock-filled dam 

structure. The dam's height from the riverbed is 135 meters, and at the average water 

level, the reservoir has a volume of 265 hm³ and an area of 4.48 km². The dam 

provides irrigation services to an area of 5,312 hectares and produces 38 MW of 

power, generating an annual electricity output of 123 GWh (URL-2). Additionally, 

the dam supplies 11 hm³ of drinking water annually to the city of Antalya. Dim 

Dam's features highlight its role in water management and energy production and in 

providing essential resources for agriculture and the local community. 

Therefore, an investigation of the coastal dynamics of the Dim River mouth 

transcends its geological complexity, incorporating considerations of social 

implications and sustainable resource utilization. 
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Figure 3.4. Location of Dim River 
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Figure 3.5. Google Earth Images of Dim River (1st Photo belongs to December, 

2022, 2nd photo belongs to March, 2023, and 3rd photo belongs to June, 2023) 
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Figure 3.6. Bathymetry Map of Dim River Mouth (URL-3) 
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CHAPTER 4  

4 METHODOLOGY AND DATA CHARACTERISTICS 

The methodology includes several steps. These steps are data collection, shoreline 

extraction from the collected data, modeling of the shorelines and change by using a 

Digital Shoreline Analysis System (DSAS), and, ultimately,  analysis of the results 

of the models. 

This chapter provides the shoreline extraction procedure, modeling of the shorelines, 

and analysis methodology. These steps are tabulated in Figure 4.1. Two different 

types of data were used in the study. The data collection and processing differs from 

one dataset to another. The theoretical background and procession steps in this study 

are also discussed in this chapter.  

This study also includes a suggested procedure for shoreline extraction. The steps of 

shoreline extraction include Normalized Difference Water Index (NDWI) 

application to the data, reclassification of the NDWI imagery, two consecutive data 

type conversions, and manual editing to obtain the shoreline. Additionally, after 

extracting a single shoreline, several attributes are provided that are needed to create 

the model later. 

Modeling requires two layers. These layers are the baseline layer and shorelines 

layer. After the creation of these layers, the model is executed, and the intersections 

and transect layers are created automatically. The baseline and shoreline layers 

require several mandatory attributes for the model to function properly. These 

attributes and execution procedures are provided in this chapter.  

After the modeling, a detailed analysis is carried out to generate meaningful results 

from the model. Different results are calculated based on the data provided. The tool 

provider notes that the results depend on the reliability of the inputs provided 
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(Himmelstoss et al., 2021). The shoreline change envelope (SCE), net shoreline 

movement (NSM), end point rate (EPR), and linear regression rate (LRR) are 

calculated after the creation of the model.  

As the last step of this study, further analysis is made with higher-resolution data 

from Planet Public Benefit Corporation (PBC) Satellite. This analysis is used to 

assess the sensitivity of this study.  

 

 

Figure 4.1. Overall Flowchart of the Study 
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4.1 Satellite Data Characteristics and Processing 

In this study, two different data sources are used. Landsat data is considered mainly 

for the construction of the shoreline change model. Then, Planet data is used to 

validate the accuracy of the results obtained from Landsat data.  

The shoreline imaging was taken between 1987 and 2023. The summer months of 

June, July, and August were selected to eliminate the cloud cover on the imagery. 

The available Landsat data was sorted using this restriction to ensure that at most 

10% of cloud coverage was present. The dataset shows that the Landsat image bands 

correspond to an image change depending on the year.  It, therefore, directly affects 

the calculation of the normalized difference water index (NDWI). 

Landsat data holds nine different bands to evaluate the images. However, Planet data 

has only four bands. Due to the difference in the number of bands, different 

procedures are followed in the shoreline extraction process.  

4.1.1 Landsat Data 

The name Landsat corresponds to the name of the original mission. The Landsat 

mission was initiated under Project EROS (Earth Resources Observation Satellite) 

in the early 1960’s in the United States. The main target of the mission was to 

develop and launch Earth observation satellites for the sake of humanity. 

Over the years, different Landsat satellites have been launched. Landsat-1 was 

launched in 1972. The launches of Landsat-2, Landsat-3, and Landsat-4  followed in 

1975, 1978, and 1982, in order. Then, Landsat-5 was launched in 1984, and it 

operated for about twenty-eight years by providing high-resolution continuous data. 

Landsat-6 failed to achieve Earth orbit. Landsat-7 in 1999, Landsat-8 in 2013, and 

Landsat-9 in 2021 were launched, respectively (Wulder et al., 2016). The evolution 

of Landsat satellites is represented in Figure 4.2. 
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Figure 4.2. The Evolution of Landsat Satellites (Source: Public Domain) 

 

Most of the data used in this study was obtained from Landsat-8. Landsat-8 satellite 

includes two sensors. These are Operational Land Imager (OLI) and Thermal 

Infrared Sensor (TIRS). The Landsat-8 satellite generates 30-meter resolution, 11-

band images. All bands, excluding the Band 8, Band-10 and Band-11 have a 30-

meter resolution. And the spectral range changes from 0.43 µm to 12.51 µm. The 

study data consists of imagery between the years 1987 and 2023. Before 2013 there 

are four shorelines used for this study. These data correspond to the Landsat-5 and 

Landsat-7 satellites. The Global Land Survey (GLS) datasets consist of 

orthorectified Landsat-type satellite images with minimized cloud cover. These 

images offer nearly comprehensive coverage of the world's land area approximately 

every decade since the early 1970s (Gutman et al., 2013). The images for the years 

1987, 2005, and 2009 are taken from GLS collections. Further, the image from the 

year 2000 is taken from the L1G collection. All these data correspond to either 
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Landsat-5 or Landsat-7 satellites. The sensor type in these satellites is ETM+, which 

is different from the Landsat-8. Due to the usage of different sensors in these 

satellites, the band numbers change. Landsat-5 has seven bands, while Landsat-7 has 

eight bands. The corresponding bands, the spectral ranges, the resolution values of 

bands, and the names of the bands of Landsat-8 data are tabulated in Table 4.1. 

A total of sixty-six images are used to extract shorelines from different dates. The 

details of these images are given in Table A.1. in Appendix A. 
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Table 4.1 Landsat-5-7-8 Bands 

 

Band No. 

 

Name of the Band 

 

Spectral Range 

(µm) 

Resolution 

(m) 

Landsat No. 

Band 1 Coastal Aerosol 0.43 – 0.45 30 Landsat-8 

Band 2 Blue 0.45 – 0.51 30 Landsat-8 

Band 3 Green 0.53 – 0.59 30 Landsat-8 

Band 4 Red 0.64 – 0.67 30 Landsat-8 

Band 5 Near-Infrared 0.85 – 0.88 30 Landsat-8 

Band 6 Short Wave Infrared-1 1.57 – 1.65 30 Landsat-8 

Band 7 Short Wave Infrared-2 2.11 – 2.29 30 Landsat-8 

Band 8 Panchromatic(PAN) 0.50 – 0.68 15 Landsat-8 

Band 9 Cirrus 1.36 – 1.38 30 Landsat-8 

Band 10 TIRS - 1 10.6 - 11.19 100 Landsat-8 

Band 11 TIRS - 2 11.5 - 12.51 100 Landsat-8 

Band 1 Blue 0.45 – 0.52 30 Landsat-7 

Band 2 Green 0.52 – 0.60 30 Landsat-7 

Band 3 Red 0.63 – 0.69 30 Landsat-7 

Band 4 Near-Infrared 0.77 – 0.90 30 Landsat-7 

Band 5 Short-wave Infrared 1.55 – 1.75 30 Landsat-7 

Band 6 Thermal 10.40 – 12.50 60 Landsat-7 

Band 7 Mid-Infrared 2.08 – 2.35 30 Landsat-7 

Band 8 Panchromatic 0.52 – 0.90 15 Landsat-7 

Band 1 Visible Blue 0.45 – 0.52 30 Landsat-5 

Band 2 Visible Green 0.52 – 0.60 30 Landsat-5 

Band 3 Visible Red 0.63 – 0.69 30 Landsat-5 

Band 4 Near-Infrared 0.76 – 0.90 30 Landsat-5 

Band 5 Near-Infrared 1.55 – 1.75 30 Landsat-5 

Band 6 Thermal 10.40 – 12.50 120 Landsat-5 

Band 7 Mid-Infrared 2.08 – 2.35 30 Landsat-5 
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4.1.2 Planet Data 

Planet is a leading Earth imaging company that operates the PlanetScope satellite 

constellation. The PlanetScope features approximately 130 satellites that capture 

detailed imagery of Earth's surface. Utilizing advanced sensors, these compact 

CubeSat satellites are designed in a 3U form factor, measuring 10 cm by 10 cm by 

30 cm, enabling them to capture high-resolution data (Planet Scope, 2023) 

The second-generation satellites are known as Dove-R or PS2.SD, use a multistripe 

frame with bands divided between RGB (Red, Green, Blue) and NIR (Near-

Infrared), enhancing the spectral resolution of the imagery. Meanwhile, the third-

generation SuperDove or PSB.SD satellites, equipped with sensors launched in early 

2020, produce daily imagery with eight spectral bands. These bands include Coastal 

Blue, Blue, Green I, Green, Red, Yellow, Red Edge, and Near-Infrared, offering a 

comprehensive view of the Earth's surface. The sophisticated sensor technology 

enables Planet to provide valuable data for various applications, including 

environmental monitoring, agriculture, and land cover analysis (Planet Scope, 2023). 

The image processing chain of Planet consists of three categories with different 

applications to the raw data to enhance the number of bands, represented in Figure 

4.3. 
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Figure 4.3. Image Processing Chain of Planet (Planet Scope, 2023) 

 

Planet provides 3-band, 4-band, and 8-band datasets based on user requirements and 

demand. PS2 and PS2.SD sensors provide only 3-Band and 4-Band imagery. 

However, third-generation sensors are named as PSB.SD provides all three types of 

imagery: 3-band, 4-band, and 8-band. Planet has a 3-meter resolution, ten times 

greater than a typical Landsat image with a 30 by 30-meter resolution. The 

corresponding characteristics of the Planet image are represented in Table 4.2. 
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Table 4.2 Planet PS2 4-Band Data Characteristics 

Band Number 

 

Name of the Band 

 

Spectral Range 

(µm) 

Resolution 

(m) 

Band 1 Red 0.59 – 0.67 3 

Band 2 Green 0.50 – 0.59 3 

Band 3 Blue 0.455 – 0.515 3 

Band 4 Near-Infrared 0.78 – 0.86 3 

 

This study uses only an RGB-band Planet Image to develop the sensitivity. The date 

of the planet image is selected by considering similar criteria used in the Landsat 

image selection. To overcome the cloud interruption, the most available summer 

image is selected. The characteristics of the data used in sensitivity in this study are 

represented in Table 4.3. 

 

Table 4.3 Sensitivity Data 

Year 

 

Image Date 

(MM.DD.YYYY) 

Source 

 

2023 07.27.2023 Planet 

2023 07.29.2023 Landsat-8 
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4.2 Shoreline Extraction Procedure 

The accuracy of the shoreline extraction procedure is the essence of this study since 

the results of the study are heavily dependent on the accuracy of the provided data. 

The nature of satellite imagery consists of many pixels that have a resolution based 

on the type of the satellite. Landsat-8 images have a 30-meter resolution, which 

means the axis of a pixel corresponds to a 30-meter length in lateral and vertical 

distance. The semi-automatic shoreline extraction process consists of five sections: 

coregistration of the images, the separation of images as land and sea sections, 

reclassification of these sections, two consecutive conversions of data from raster to 

polygon and polygon to polyline, and elimination of unnecessary parts of the 

digitized images.  

After extracting a single shoreline, several attributes are provided automatically by 

the ArcGIS software or by user creation. The flowchart of the shoreline extraction 

process is represented in Figure 4.4.  

 

 

Figure 4.4. Flowchart of Shoreline Extraction 

Data Collection Coregistration Application of 
NDWI

Reclassification
1st Data 

Conversion
(from Raster to 

Polygon)

2nd Data 
Conversion

(from Polygon to 
Polyline)

Editing
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The same object from the real world from different data sources that are collected at 

different times is represented in geospatial studies. To overcome potential distortions 

in Landsat images that are collected from different years and months, co-registration 

is applied before making any application in the shoreline extraction process. Some 

certain landmarks are selected on the images, and each image is checked to determine 

whether there is any distortion or not in the collected imagery. A representation of 

the coregistration process is visualized in Figures 4.5.  In these figures, the lighthouse 

of Alanya port is selected with a red square polygon, and different Landsat and Planet 

images are expressed as the visualization of the coregistration process.  

 

 
Figure 4.5. Co-registration Representation 

2000.07.13-Landsat 2009.08.15-Landsat 

2023.08.30-Landsat 2023.07.13-Planet 
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Reclassification refers to the process of taking input cell values and changing them 

with new output cell values. Reclassification is frequently employed to streamline or 

alter the interpretation of raster data by substituting a specific value with a new one 

or consolidating ranges of values into a singular value. In other words, 

reclassification tools modify raster values, and the reclass by individual value tool 

facilitates a one-to-one alteration of specific values within the raster. In scenarios 

like habitat analysis, where distinct values in a land use raster signify different land 

use types, reclassification assigns a preference range to each value, providing 

meaning to each land use type. This process involves assigning higher values to more 

favored land types and lower values to less preferred ones. The reclassification is 

executed individually, resulting in an output range of values (Reclass by Ranges of 

Values, n.d.) Additionally, the reclassification of value ranges is a process where 

alternative values are assigned to specific intervals of values. This is particularly 

useful when dealing with continuous data, as seen in applications like habitat 

analyses. Instead of specifying each value and its alternative, the reclassification 

tools require lower and upper bounds inputs for the existing values and the 

corresponding alternative value for the defined range. The output then assigns the 

alternative value to all original raster values within the specified range. The handling 

of boundary breaks varies depending on the specific tool used for reclassification by 

ranges (Reclass by Ranges of Values, n.d.). In this study, images are reclassified 

after applying NDWI calculation to the raster files. Reclassification is based on two 

output zones with natural breaks to identify the raster files as land and sea. 

The Normalized Difference Water Index (NDWI) calculation and reclassification are 

applied to raster files from the satellite imagery. Two conversions are applied to the 

raster files after the NDWI application and reclassification. Firstly, a reclassified 

raster file is converted to a vector file to form polygons. This conversion allows the 

potential polygons from the raster file to be obtained for further analysis. Then, the 

sea polygon is converted to the polyline file to extract the shoreline. Additionally, 

some fluctuations occur on the shoreline at the end of the semi-automatic process. 

These fluctuations are manually edited to eliminate potential errors in the analysis. 
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In Figure 4.6, the elimination of fluctuations is represented. The red-colored line is 

the corresponding shoreline of the image. The top picture is an ill-conditioned 

shoreline, and the bottom picture is a corrected shoreline. 

 

 

Figure 4.6. Manual Edition of Extracted Shoreline 
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4.2.1 Normalized Difference Water Index (NDWI) 

Normalized Difference Water Index (NWDI) is an index that is used to classify the 

water and land bodies separately on a satellite image. In other words, the measure of 

water bodies is obtained by NDWI. Typical Landsat-8 data consists of nine bands, 

and NDWI is the ratio of differences between near-infrared (NIR) and short-wave-

infrared (SWIR) bands. Also, the NDWI can be obtained from green and near-

infrared bands. It is first proposed by Gao (1996) as a different application of the 

Normalized Difference Vegetation Index (NDVI). Gao (1996) concluded that from 

the laboratory tests and different applications of NDWI, the index uses two narrow 

channels centered near 0.86 µm and 1.24 µm. 

After applying NDWI to the satellite imagery values in a range of minus one and 

plus one obtained for each pixel, typically, values greater than 0.5, which is the mean 

value, are classified as water bodies. 

Further, each satellite imagery consists of different sensors and bands in different 

band numbers. Landsat-8 has two sensors: an Operational Land Imager (OLI) and a 

Thermal Infrared Sensor (TIRS). Landsat-7 employs an Enhanced Thematic Mapper  

(ETM+) as its sensor. Landsat-4 and Landsat-5 has Multi Spectral Scanner (MSS) 

and Thematic Mapper (TM). Lastly, the first three Landsat Satellites (Landsat1-3) 

have only MSS as their sensor. Users must be aware of the difference between 

different satellite images to obtain a true NDWI. The band designations of Landsat 

images with the names of the sensors on the corresponding satellites are tabulated in 

Table 4.1.  

Two possible equations are available to calculate the NDWI. McFeeters (1996) 

suggested the division of the subtraction of the shortwave infrared (SWIR) band from 

the green band to the summation of these bands to calculate NDWI represented in 

Equation 4.1. 
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𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑋𝑋𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 

 

The second option to calculate the NDWI is the division of the subtraction of the 

shortwave infrared (SWIR) band from the near-infrared (NIR) band to the 

summation of these bands, which is the first equation of NDWI represented in 

Equation 4.2. 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑋𝑋𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑋𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
 

 

Throughout this study, the first equation of NWDI is used due to the availability of 

the bands in the images. Therefore, the Equation 4.1. can be derived for Landsat-8 

images in the form of Equation 4.3. The raster calculator tool of ArcGIS software is 

used to execute this equation to the raster images. An example NDWI image 

corresponding to Landsat-8 data from the 8th of August, 2023, is represented in 

Figure 4.7. 

 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 3 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 5
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 3 + 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 5

 (4.3) 

(4.2) 

(4.1) 
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Figure 4.7. NDWI Image of 8th of August, 2023 

 

4.2.2 Attributes of Shorelines 

Digital Shoreline Analysis System (DSAS) needs certain types of attributes to 

execute the model. The GIS software automatically generates some of the required 

attributes, some of which are user-created. An identifier attribute (ID), shape,  and 

shape length calculated by GIS are autogenerated attributes. DSAS Date and DSAS 

uncertainty are user-created. 
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Additionally, some attributes are provided to the shorelines for clarification. These 

are Image date, Cloudy, Year, and Source attributes.  

The Image Date attribute is like the DSAS date, but the DSAS date has a text data 

format. On the other hand, the Image Date is in date data format as MM/DD/YYYY. 

The cloudy attribute includes information about the cloudiness of the shoreline. 

Three possible inputs are added to the Cloudy attribute. These are: “yes,” “no,” and 

“a bit.” Moreover, the Year attribute is added to sort the data in terms of Year, and 

the Source attribute is provided to record further information about the source of the 

shoreline. In Table 4.5, the designated characteristics of attributes are provided. 

 

Table 4.4 Shoreline Attributes 

Attribute Name Data Type Attribute Addition DSAS Requirement 

FID Object Identifier Autogenerated Required 

Shape Geometry Autogenerated Required 

Shape_Leng Double Autogenerated Required 

DSAS_date Text User-created Required 

DSAS_uncy Any Numeric Field User-created Required 

image_date Date User-created Optional 

cloudy Text User-created Optional 

year Long User-created Optional 

source Text User-created Optional 

 

4.3 Digital Shoreline Analysis System (DSAS) 

Digital Shoreline Analysis System (DSAS) is a tool used as an add-in to ArcGIS. 

DSAS is provided open source by the United States Geological Survey (USGS). The 

software provides calculations for the determination of changes in shorelines. DSAS 
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provides an automated method for establishing measurement locations and making 

rate and statistical calculations. While the terminology of this software tool is 

designed for coastal applications, the DSAS application has the versatility to 

calculate rates of change for any scenario involving boundary changes. This includes 

instances where a distinct feature position can be identified at specific time intervals, 

such as glacier limits, riverbanks, or land use/cover boundaries (Himmelstoss et al., 

2021).  

DSAS generates transects that intersect shorelines by extending perpendicular lines 

to the reference baseline. The software has two different consecutive execution steps. 

In the first execution, DSAS software generates transect and intersect layers using 

the baseline and shoreline layers as inputs. These layers are created carefully because 

they are the core of the models. The reliability of the DSAS tool depends heavily on 

the accuracy of the inputs created by users. Rates and statistics are computed in the 

second execution using layers generated in the first execution. At the end of the 

second execution, DSAS provides results for Net Shoreline Movement (NSE), 

Shoreline Change Envelope (SCE) as distance measurements, End Point Rate (EPR), 

Linear Regression Rate (LRR), and Weighted Linear Regression Rate (WLR) as 

statistics, further, supplemental statistic for linear (L) and weighted (W) regressions. 

The supplemental statistics are Confidence Interval (LCI/WCI), Standard Error 

(LSE/WSE), and R-squared values (LR2/WR2).  

The overall flowchart of DSAS software and execution inputs and outputs are 

presented in Figure 4.8. A more detailed workflow of DSAS with necessary steps, 

software icons, and explanations is given in Figure B.1. in Appendix B. 
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Figure 4.8. Digital Shoreline Analysis System (DSAS) Flowchart 

 

4.3.1 Baseline Layer 

The baseline is a line that represents the overall behavior of all shorelines and serves 

as the starting point for all transects cast by the DSAS application. The baseline can 

either consist of many segments or become a single line that characterizes the overall 

behavior of historical shorelines. It can be positioned onshore, offshore, or in the 

mid-shore, as shown in Figure 4.9. DSAS software can catch the type changes in 

baseline positions and generate required transects according to the positions of the 

baseline layer.  

First Execution

• Inputs

• Baseline Layer

• Shorelines Layer

• Outputs

• Intersects Layer

• Transects Layer

Second Execution

• Inputs

• Transects Layer

• Intersects Layer

• Outputs

• Net Shoreline 

Movement(NSM)

• Shoreline Change 

Envelope(SCE)

• End Point Rate(EPR)

• Linear Regression Rate(LRR)

• Weighted Linear Regression 

Rate(WLR)
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Figure 4.9. Types of Baseline Positioning (Himmelstoss et al., 2021) 

 

Two approaches are suggested by DSAS developers to create a baseline layer. The 

first approach is creating a new feature class and manually generating the baseline 

layer. The second approach is using the buffer function of ArcGIS.  

The oldest image in this study belongs to the year 1987, an image from the Landsat 

satellite. The shoreline of 1987 is used to generate a reference baseline throughout 

the study. Two hundred meters buffer is applied to the shoreline of the year 1987, 

and manual smoothing is applied to necessary sections. The partial view of the 

reference baseline of the study is presented in Figure 4.10.  
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Figure 4.10. Partial View of the Baseline Layer of Alanya 

 

The baseline layer requires specific attributes that DSAS needs to generate transect 

and intersect layers. As in the shorelines layer, some of these required attributes are 

user-generated, and some are generated automatically by ArcGIS. An object 

identifier attribute, a shape attribute, and a shape length attribute are generated by 

ArcGIS. One optional attribute named “DSAS_Search” is also created in “double” 

data format. “DSAS_Search” attribute refers to the search distance of the algorithm 

to intersect the shorelines layer in meters. The baseline layer attribute requirements 

are represented in Table 4.6. 
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Table 4.5 Baseline Layer Attributes 

Attribute Name Data Type Attribute Addition DSAS Requirement 

FID Object Identifier Autogenerated Required 

Shape Geometry Autogenerated Required 

Shape_Leng Double Autogenerated Required 

DSAS_searc Double User-created Required 

 

4.3.2 Shoreline Layer 

Shorelines can be digitized from many sources, such as digital orthophotos, global 

positioning systems (GPS), aerial photographs, or physical maps. Each shoreline 

vector represents a specific position in time, and it must be assigned a date in the 

shorelines feature class in the attribute table. It should be noted that the calculated 

rates of change in shorelines are only as correct as the reliability of the input data 

(Himmelstoss et al., 2021). 

The semi-automatic shoreline extraction procedure that is discussed in detail in 

Section 4.2. is applied to each image collected from the Landsat database. Then, all 

the shorelines are merged to form a shoreline layer. Sixty-six Landsat images were 

used to construct the shoreline layer for shoreline change detection models. In the 

monthly changes study, the year 2023 is selected, and 12 images from each month 

of the year 2023 are used to obtain the monthly change in the region. Additionally, 

a Planet satellite image and a Landsat image that both have close generation dates 

are used to conduct a sensitivity study.  
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4.3.3 Intersections and Transections Layer 

In the first execution of the Digital Shoreline Analysis System (DSAS), the baseline 

and shoreline layers are used as inputs. The measurements that are formed by DSAS 

from the baseline intersect with the shorelines. The points of intersection include 

location and time information that are used to calculate rates of change. The distances 

from the baseline to each intersection point along a transect are used to calculate the 

desired statistics. The inputs and outputs of the first execution of the DSAS are 

represented in Figure 4.11. 

 

Figure 4.11. Baseline, Shoreline, Transect, and Intersection Layers Representation 

(Himmelstoss et al., 2021) 
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4.3.4 Rate Calculation 

In the second execution of the Digital Shoreline Analysis System (DSAS), the tool 

is capable of a set of statistical calculations based on the selection of the desired 

parameters. Shoreline rate assessments rely on measuring differences in shoreline 

positions over time along designated transects. These rates, expressed in meters per 

year, are determined using different calculation methods. Once the user-defined 

calculations are done in DSAS, the software produces a new feature class for transect 

rates and a point intersect feature class. Table 4.7. presents standardized field 

headings for rate-change statistics, accompanied by detailed explanations in the 

subsequent section. 

 

Table 4.6 DSAS Rates and Descriptions 

DSAS Statistics Description 

NSM Net Shoreline Movement 

SCE Shoreline Change Envelope 

EPR End Point Rate 

EPRunc Uncertainty of End Point Rate 

LRR Linear Regression Rate 

LSE Standard Error of Linear Regression 

LCI Confidence Interval of Linear Regression 

LR2 R-squared of Linear Regression 

WLR Weighted Linear Regression Rate 

WSE Standard Error of Weighted Linear Regression 

WCI Confidence Interval of Weighted Linear Regression 

WR2 R-squared of Weighted Linear Regression 
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Net Shoreline Movement (NSM) 

The net shoreline movement (NSM) is the distance between the oldest and the newest 

shorelines in meters. 

 

Shoreline Change Envelope (SCE) 

The shoreline change envelope (SCE) represents the highest distance among all the 

shorelines that intersect in the given transect. SCE is a distance in meters, not a rate. 

It always has a positive sign. 

 

End Point Rate (EPR) 

The division of the distance between the newest and oldest shorelines measured in 

the selected transection into the elapsed time is defined as the end point rate (EPR). 

The unit of EPR is a meter per year. Its advantages are the ease of computation and 

the minimum requirement of two shoreline dates. However, it is a disadvantage when 

there is more data. The additional information obtained from more data is ignored 

while calculating EPR. Furthermore, the changes in the sign, in other words, the 

accretion or erosion of the shoreline, may be missed by only looking at EPR. Also, 

the seasonal changes might not be observed due to the nature of the EPR calculation. 

The differences and calculation processes are illustrated in Figure 4.12. 
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Figure 4.12. Visualization of NSM, SCE, and EPR Calculations (Himmelstoss et 

al., 2021) 

 

Linear Regression Rate (LRR) 

By fitting a least-squares regression line to all shoreline points for a transect, a linear 

regression rate of change in statistics can be calculated. To minimize the sum of the 

squared residuals, the regression line is placed. The slope of this line is the linear 

regression rate. The method of linear regression uses all the data without considering 

the changes in trend or accuracy. The method is essentially computational and needs 

further interpretation to make the calculation meaningful for the desired models. The 

calculation is based on accepted statistical concepts. Yet, the linear regression 

technique is vulnerable to outlier influence and tends to underestimate the rate of 

change compared to alternative statistics like EPR. The graphical representation of 

LRR calculation in DSAS is given in Figure 4.13. 
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Figure 4.13. Graphical Procedural Representation of LRR Calculation by DSAS 

(Himmelstoss et al., 2021) 

 

Weighted Linear Regression (WLR) 

Weighted linear regression assigns higher importance or weight to more reliable data 

when determining a best-fit line. When computing rate-of-change statistics for 

shorelines, greater weight is given to data points with smaller position uncertainties. 

This weight (w) is determined by the variance in the measurement uncertainty (e), 

as defined by Genz et al. (2007) with the Equation 4.4: 

𝑤𝑤 =
1
𝑒𝑒2

 

where “e” represents the shoreline uncertainty value. 

(4.4) 
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The uncertainty field within the shoreline feature class is utilized to compute this 

weight. The graphical representation of WLR calculation in DSAS is given in Figure 

4.14. 

 

Figure 4.14. Graphical Procedural Representation of WLR Calculation by DSAS 

(Himmelstoss et al., 2021) 
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CHAPTER 5  

5 ANALYSIS AND RESULTS 

As described in Chapter 3, the study area is narrowed by starting from the swath 

width of the Landsat satellite to the Dim River mouth. Shorelines are formed for the 

entire area, then they are clipped to the desired lengths to execute more detailed 

models. In this chapter, the detailed description of each model and the results of the 

program are discussed and reported. Additionally, a sensitivity study and a monthly 

change investigation are made. At the end of this chapter, all model results are 

reported and compared with each other. Further, a comprehensive summary of the 

entire analysis and results of this thesis is provided. 

There are three main models developed and executed. The first model covers the 

entire area that is equal to the swath width of the Landsat satellite. This analysis starts 

from the middle of Antalya City center, which corresponds to the west section of the 

picture, and ends at Tekmen Harbor in Mersin, which denotes the east section of the 

image. The total length of this shoreline is approximately 243 km. For this section, 

net shoreline movement (NSM), shoreline change envelope (SCE), end point rate 

(EPR), and linear regression rate (LRR) are calculated. 

The second model is developed for Alanya County, which has a shoreline length of 

135 km roughly. The same parameters are calculated for this section as in the initial 

model.  

The third model is created for the Dim River mouth, which has almost 10 km 

shoreline length. This section of Alanya County is selected because it is free from 

human activities that directly lead to changing the shorelines. Additionally, Dim 

River is a dynamic section to observe shoreline changes and seasonal effects on the 

shoreline. 
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In these three models, Landsat images that belong to the years between 1987 and 

2023 are used for the analysis. Only summer months are selected, which are June, 

July, and August. In total, sixty-six images are used to construct the shoreline layer. 

However, to check the sensitivity of the study, a planet satellite image was chosen 

that has a close date to the corresponding Landsat image. A sensitivity study is made 

by using these two shorelines to consider the relative correctness of the satellites. 

Further, the mean of the sensitivity study is used as the uncertainty value of the Dim 

River Mouth model, and a meta-analysis is made by using this value. 

The Digital Shoreline Analysis System (DSAS) does not capture the relative 

differences between the provided shorelines; therefore, if there is a seasonal change 

that results in accretion and erosion throughout the year, DSAS misses it. This 

situation is discussed in detail in Chapter 6. But, to check the seasonal changes, Dim 

River Mouth is modeled for the year 2023 by providing an image from each month. 

The monthly change model is created by using these images.  

5.1 Model for Initial Area of Interest 

As expressed before, the initial area of interest corresponds to an approximately 243 

km long shoreline that has a west border in the middle of the Antalya City Center 

and an east border at Tekmen Harbor, Mersin. The corresponding shoreline and 

baseline layers are expressed in Figure 5.1. In Figure 5.2. baseline and shoreline 

layers are represented in detail by zooming in. The red line on the figures represents 

the shoreline layer that involves sixty-six shorelines from different years extracted 

from Landsat images. The blue line represents the baseline that is created by 

buffering the oldest Landsat image 200 meters away from the shore. The oldest 

image is from 1987.  

Landsat images have a 30-meter resolution. Therefore, it is hard to detect and catch 

changes in wavy zones of the costs. The wavy zones that cause anomalies in the rate 
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calculation are manually excluded from the analysis. This problem is discussed in 

detail in Chapter 6. 

 

 

 

Figure 5.1. Baseline and Shoreline Layers for the Initial Area of Interest 
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By using the shoreline and baseline layers, a set of rates is calculated by employing 

DSAS. The net shoreline movement (NSM), shoreline change envelope (SCE), end 

point rate (EPR), and linear regression rate (LRR) are calculated and presented in 

Appendix C. Based on the NSM results shoreline of the initial area of interest is 

classified based on erosion and accretion zones which is represented in Figure 5.2. 

 

 

Figure 5.2. Erosion and Accretion Classification of Initial Area of Interest 

 

5.2 Model for Alanya 

The second model is created by narrowing the areas up to the borders of Alanya 

County. The same shorelines and baseline areas are used to develop the model, and 

similarly, the same rates are calculated for the Alanya County model. The shoreline 
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distance of the second model is about 135 km, which is nearly half of the initial area 

of interest. The corresponding baseline and shorelines are represented in Figure 5.3.  

 

 

 

 

 

 

 

Figure 5.3. Baseline and Shoreline Layers of Alanya County 

 

The net shoreline movement (NSM), shoreline change envelope (SCE), end point 

rate (EPR), and linear regression rate (LRR) of Alanya County are also calculated 
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and represented in Appendix C. Furthermore, the Alanya County shoreline is 

classified as an accretion and erosion zone by using NSM values, which are 

represented in Figure 5.4.  

 

Figure 5.4. Erosion and Accretion Classification of Alanya County 

 

5.3 Model for Dim River 

The last model is narrowed up to the borders of Dim River Mouth. The shoreline 

distance of the Dim River Model is about 10 km. As expressed before, the zone is 

mostly free from human activities that can directly change the shoreline and dynamic 

due to sediment transportation. As before, the same baseline and shoreline layers are 

used to analyze the changes in Dim River Mouth, and the rates of the previous 

models are calculated. Further, to check the accuracy of the results, temporal change 
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based on the years and accumulation is constructed by employing Excel. The 

baseline and shoreline layers for the Dim River Mouth Model are represented in 

Figure 5.5. The Net Shoreline Movement (NSM), Shoreline Change Envelope 

(SCE), End Point Rate (EPR), and Linear Regression Rate (LRR) are presented in 

Figures 5-9.  

 

 
Figure 5.5. Baseline and Shoreline Layers for Dim River Model 
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Figure 5.6. Net Shoreline Movement (NSM) in Dim River Model 
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Figure 5.7. Shoreline Change Envelope (SCE) for Dim River Model 
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Figure 5.8. End Point Rate (EPR) for Dim River Model 
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Figure 5.9. Linear Regression Rate (LRR) for Dim River Model 

 

Up to this model, accretion is observed in the study area. However, only erosion is 

observed in the Dim River model. Therefore, to check the accuracy of the results, a 

change in the time graph is manually constructed to determine whether there is a 

cyclical situation in-between years. To do that, the oldest image is considered a 

starting point, and yearly changes are reported. At the end of this analysis, a cyclical 

behavior in the area is observed. The cyclical behavior is represented in Figure 5.10.  
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Figure 5.10. Yearly Change Graph for Dim River Model for Summer Months 
between 2013-2022 from Landsat-8 Imagery 
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The cyclical behavior is studied by considering different time intervals based on the 

endpoint rate calculation. A cyclical behavior that lasts for more than one year is 

observed. In almost every four years, the shoreline is exposed to accretion and 

erosion consecutively, as expressed in Table 5.1. and Figure 5.11. 

 

Table 5.1 Cyclical Behavior Data of Dim Model 

 Year #1 Year #2 Duration 
(yr) 

Rate 
(m/yr) Type 

Period #1 1987 2000 13 -0.96 Erosion 
Period #2 2000 2005 5 -1.86 Erosion 
Period #3 2005 2009 4 4.65 Accretion 
Period #4 2009 2013 4 0.88 Accretion 
Period #5 2013 2017 4 -0.13 Erosion 
Period #6 2017 2021 4 5.53 Accretion 
Period #7 2021 2023 3 -2.25 Erosion 

 

 

Figure 5.11. End Point Rate vs. Period Graph for Dim River Mouth from Landsat-8 

Imagery 
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5.4 Monthly Change Investigation Study  

The behavior of the shoreline in the study area is not linear. In the beginning, only 

summer months are used to develop the model to abstain from intense cloud cover 

in the area. Because of having a cyclical behavior even in the summer months, a 

monthly change study is done to check the seasonal changes in the shoreline in Dim 

River Mouth. The year 2023 is selected to create the monthly change study with 

Landsat-8 and Planet Satellite imagery separately, and a single image from each 

month is used to construct the shoreline layer. The shoreline and baseline layers of 

Landsat-8 images are represented in Figure 5.12.  

 

 

Figure 5.12. Baseline and Shoreline Layers for Landsat-8 Monthly Change Study 
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The same statistics are calculated as in the previous models in the monthly change 

study. The net shoreline movement (NSM), shoreline change envelope (SCE), and 

linear regression rate (LRR) results for the monthly change study are represented in 

Appendix C. The end point rate (EPR) results are represented in Figure 5.13. 

 

 

Figure 5.13. End Point Rate (EPR) Results of Landsat-8 Monthly Change Study 

 

The same methodology for the detection of cyclical behavior in the Dim River Model 

is applied here to determine monthly changes in a year. To do that, a single transect 

is selected, and changes in order between months are reported. The selected transect 

is presented in Figure 5.14. Based on the obtained data, a change in time graph is 
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created by ordering monthly changes. The change is represented in Figure 5.15. The 

Digital Shoreline Analysis System (DSAS) is not capable of detecting monthly 

and/or cyclical changes. Therefore, further interpretation of data is needed. This is 

discussed in Chapter 6.  

 
Figure 5.14. Closer Representation Selected Transect for Monthly Change Study 

for 2023 using Landsat-8 Data 
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Figure 5.15. Monthly Shoreline Change Obtained from Landsat-8 for 2023 

 

The same procedure and calculations are applied to the Planet imagery. Shorelines 

from each month of 2023 are extracted from Planet imagery, and a closer transect is 

selected to obtain the seasonal behavior of the Dim River Mouth. The shorelines and 

baseline of the Planet imagery monthly change model are represented in Figure 5.16.  

 

 

-30

-20

-10

0

10

20

30

40

C
ha

ng
e 

(m
)

Time (month)



 
 

72 

 

Figure 5.16. Shoreline and Baseline Layers of Planet Monthly Change Study 

 

Based on the Net Shoreline Movement (NSM) results, the shoreline is classified as 

erosion and accretion, which is represented in Figure 5.17. Further, similar to the 

previous model that is formed with Landsat-8 imagery, a single transect that is close 

to the north of the Dim River mouth is selected, and temporal changes are examined 

by considering the relative distances between shorelines. The temporal change that 

is obtained from Planet imagery is represented in Figure 5.18. The corresponding 

dates of Planet Satellite imagery that are used in the monthly change study are 

tabulated in Table A.2. in Appendix A. 
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Figure 5.17. Erosion and Accretion Zones of Dim River Mouth Obtained from 

Planet Data for 2023 
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Figure 5.18. Monthly Shoreline Change Obtained from Planet for 2023 

 

The monthly change in Landsat-8 images is in a range of roughly -25 and +25 meters. 

As expressed before, Landsat-8 images have a resolution of 30 by 30 meters. On the 

other hand, Planet has a three-by-three-meter resolution with a monthly change range 

between roughly -8 and +4 meters. The value difference between these satellites 

proves there is a monthly change in the area, and the methodology used to obtain this 

is correct. However, as the resolution of the imagery used increases, the reliability 

of the results will also increase. As expressed before, data characteristics for the 

monthly change studies from two different satellite data are expressed in Table A.2. 

in Appendix A. As can be seen from the data dates, the Landsat-8 data do not directly 

coincide with the Planet data by considering their dates. There are two-to-three-day 

differences between the instant times at which the images are captured. Therefore, 

during these differentiated times of events, storm surges are observed in the Dim 

River Mouth. The storm surge event resulted in having different monthly change 
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results between Planet and Landsat-8 data.  Further, it is essential to express that the 

Dim River Mouth zone is naturally dynamic, and the values reported in the seasonal 

change graphs can change transect by transect. The intention of this study is to see 

whether there is a cyclical/seasonal behavior in the area or not. Based on the provided 

result, it is clear that there is a differentiated monthly change behavior in Dim River 

Mouth, and the DSAS tool lacks capturing the temporal differences. This situation 

is discussed in Chapter 6.  

5.5 Sensitivity Study 

Landsat data has a 30-meter resolution, while Planet Satellite has a 3-meter. The 

accuracy and sensitivity of the study are checked by using two images from Landsat-

8 and Planet Satellite that have close dates. The dates of these images are tabulated 

in Table 5.2. 

 

Table 5.2 Sensitivity Data Dates 

Year 

 

Image Date 

(MM.DD.YYYY) 

Source 

 

2023 07.27.2023 Planet 

2023 07.29.2023 Landsat-8 

 

The Digital Shoreline Analysis System (DSAS) is employed to determine the relative 

distances between two shorelines. The two shorelines and baseline are represented 

in Figure 5.19. 
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Figure 5.19. Shoreline and Baseline Layers of Sensitivity Study 

 

As previously explained in Chapter 4, the net shoreline movement (NSM) measures 

the distances between the oldest and the youngest boundaries. In this case, two 

shorelines are provided. Therefore, the NSM value represents the distances between 

these two boundaries. The statistical distribution of NSM values of the sensitivity 

study is presented in Figure 5.27. and the mean value of this distribution is used as 

the uncertainty value of the Dim River Model. The same results are obtained after 

executing the Dim River Model with an uncertainty value that is obtained as the 
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mean of the sensitivity analysis result. This match is interpreted as the error of this 

study. In other words, the error of the study is equal to the mean value of NSM results 

in sensitivity analysis.  

 

 

Figure 5.20. Frequency Distribution of Sensitivity Study 

 

5.6 Results 

The results of this study reveal significant insights into shoreline monitoring through 

the Alanya shoreline. The Net Shoreline Movement (NSM), Shoreline Change 

Envelope (SCE), End Point Rate (EPR), and Linear Regression Rate (LRR) are 

calculated for each model and compared. Further, cyclical behavior and seasonal 

behavior are checked by interpreting the results in a timely order.  

Results provided insights based on the vulnerability of the sections of the shoreline. 

Since the resolution of the Landsat images is 30 meters, in this scale, the acceptable 

error should be equal to about a pixel. This error range is satisfied throughout the 

studies.  

The maximum and minimum values of the calculations for the initial area of interest 

with the units are tabulated in Table 5.1. 
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Table 5.3 Calculation Results for Models 

Model of Initial Area of Interest 

Rate Maximum Minimum Unit 

NSM 39.98 -210.81 meter 

SCE 197.73 0.33 meter 

EPR 1.23 -6.51 meter/year 

LRR 0.89 -10.28 meter/year 

Model of Alanya County 

NSM 49.24 -104.22 meter 

SCE 108.31 2.31 meter 

EPR 1.37 -8.03 meter/year 

LRR 0.73 -4.22 meter/year 

Model of Dim River Mouth 

NSM -18.65 -77.61 meter 

SCE 97.42 30.48 meter 

EPR -0.50 -4.23 meter/year 

LRR -0.44 -3.13 meter/year 

 

5.7 Comprehensive Summary of the Chapter 

The study focuses on analyzing shoreline changes in the area shrinking from the 

swath width of Landsat satellite imagery to the Dim River mouth zone. Three main 

models are developed and executed to assess shoreline dynamics and seasonal 

effects. The first model covers the entire area, approximately 243 km long, from 

Antalya City center to Tekmen Harbor in Mersin. The second model focuses on 

Alanya County, with a shoreline length of about 135 km, while the third model 

concentrates on the Dim River mouth, with a shoreline length of approximately 10 

km. 
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Using Landsat satellite images from 1987 to 2023, shorelines are extracted for 

summer months (June, July, and August) to account for variations. The analysis 

employs parameters such as net shoreline movement (NSM), shoreline change 

envelope (SCE), end point rate (EPR), and linear regression rate (LRR) to quantify 

shoreline changes. A sensitivity study using Planet satellite imagery is conducted to 

assess the accuracy and reliability of the results. 

The study reveals significant shoreline changes over the years, with both accretion 

and erosion observed in different sections. Detailed analyses, including graphical 

representations and statistical summaries, are provided for each model. Additionally, 

a monthly change study is conducted to examine the variations in shoreline behavior 

throughout the year, particularly focusing on the Dim River mouth area. 

Furthermore, the study identifies cyclical patterns in shoreline changes, with 

alternating periods of accretion and erosion observed over several years. These 

cyclical behaviors are analyzed and graphically represented to understand long-term 

trends. Sensitivity analysis helps determine the uncertainty associated with the study 

results, providing insights into the reliability of the findings. 

Overall, the study provides a comprehensive understanding of shoreline dynamics in 

the study area, highlighting the influence of both natural processes and human 

activities. It emphasizes the importance of considering monthly variations and 

conducting sensitivity analyses to ensure the accuracy of shoreline change 

assessments. 
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CHAPTER 6  

6 DISCUSSION OF THE RESULTS 

The discussion encompasses various aspects of this study. Three main discussions 

are developed to evaluate the results and models. As described in the methodology 

and analysis chapters, shorelines are extracted with a semi-automatic process and 

evaluated by employing a Digital Shoreline Analysis System (DSAS). DSAS makes 

several statistical calculations after the generation of intersections and transects.  

The shoreline extraction process is discussed by focusing on both semi-automatic 

and fully automated approaches. In semi-automatic processes, meticulous steps such 

as coregistration, NDWI calculation, reclassification, and manual editing ensure 

accuracy. However, challenges like cloud cover and building interference can lead 

to errors. Fully automated methods like DDWI offer efficiency but may still require 

manual correction. Additionally, raster-to-vector conversion introduces uncertainties 

that result from data type changes. Geographic Information Systems (GIS) software 

aids in automation but has limitations.  

Digital Shoreline Analysis System (DSAS) aids in analyzing shoreline changes but 

faces challenges in curvy zones and in capturing cyclical behaviors. The accuracy of 

DSAS results depends on the accuracy of shoreline extraction. Statistical measures 

like Net Shoreline Movement (NSM), Shoreline Change Envelope (SCE), End Point 

Rate (EPR), and Linear Regression Rate (LRR) provide insights into coastal 

dynamics but have limitations in capturing nuances and seasonal variations. 

Understanding these statistical measures is crucial for accurate interpretation of 

shoreline changes. Overall, the discussion emphasizes the need for further 

interpretation and integration of various data sources and technologies to enhance 

shoreline analysis methodologies. 
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6.1 Shoreline Extraction Discussion 

The semi-automatic process in this study defines a meticulous approach required for 

shoreline extraction. Coregistration, normalized difference water index (NDWI) 

calculation, reclassification,  and manual editing collectively form a robust 

framework aimed at ensuring the accuracy and reliability of extracted shoreline data. 

Each step of the extraction process should be addressed systematically to define and 

discuss potential errors.  Coregistration is done by selecting previously known places 

in the area, such as a lighthouse, football pitch, architectural monument, etc. In 30-

meter resolution, it is hard to define places in Landsat images. NDWI emerges as a 

powerful tool for differentiating between water bodies and land surfaces in satellite 

imagery. By leveraging specific spectral bands, such as green and near-infrared, 

NDWI calculations enable the precise delineation of shorelines. However, NDWI 

may generate a certain level of inconsistency due to some factors, such as cloud 

cover, light-colored landmarks, or buildings across the desired area that might cause 

deviations in the division of water and land boundaries. Reclassification is done 

based on the NDWI results with natural breaks, and the potential errors in NDWI 

calculation may lead to false division in reclassification. At the end of the semi-

automatic process, manual editing is needed to correct fluctuations throughout the 

shorelines that may bring human-made mistakes with them.  

On the other hand, fully automated approaches are being researched in shoreline 

extraction studies by different disciplines. Abdelhady et al. (2022) suggested a fully 

automated shoreline extraction algorithm by using different multispectral images in 

their study of the Lake Michigan shoreline. The algorithm is based on the Direct 

Difference Water Index (DDWI). The results of the algorithm are classified based 

on the extracted shoreline as accurate, good, and failed, as represented in Figure 6.1.  
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Figure 6.1. Sample of the detected shoreline from the images, shorelines are shown 
in yellow. (a,b) were classified as accurate; (c,d) were classified as good; (e,f) were 

classified as failed.(Abdelhady et al., 2022) 

 

Similarly, as a result of the semi-automated shoreline extraction process suggested 

in this study, some “failed” results are edited manually. Therefore, the automation 

processes do not guarantee accurate results.  

Due to the resolution of data and pixel-based nature of satellite images, conversion 

of raster data into vector data may lead to some uncertainties in the position of 

shorelines. The conversion of raster files to vector formats facilitates the extraction 
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of detailed spatial information, particularly in delineating polygons representing 

water bodies. This conversion enhances the granularity of shoreline data, enabling 

more nuanced analyses and insights into coastal dynamics. However, the potential 

data loss and/or distortion during the conversion process should be considered as 

another factor for the resulting errors. Therefore, a certain level of uncertainty is 

provided in the studies for each shoreline, and the calculated result should not be 

evaluated by neglecting this fact.  

The pivotal role of Geographic Information Systems (GIS) software, particularly 

ArcGIS, in automating tasks and facilitating data management cannot be overstated. 

However, it is crucial to consider the limitations of GIS software, such as algorithmic 

biases and computational constraints, which may impact the accuracy of extracted 

shoreline data. 

The extracted shoreline data can be seamlessly integrated with diverse studies and 

applications, ranging from coastal erosion modeling to habitat mapping and land-use 

planning. By leveraging interdisciplinary approaches and multi-source data 

integration, it is possible to enhance the holistic understanding of coastal dynamics 

and inform evidence-based decision-making in environmental management and 

conservation efforts. For instance, satellite data only provides an instant image at the 

time of data collection. At that time, the shore might be under the effect of some 

biological, tidal, or other environmental changes that might not directly change the 

shoreline. However, it is not possible to discriminate against these effects by just 

looking at satellite imagery.  

6.2 Digital Shoreline Analysis System (DSAS) Procedure Discussion 

The Digital Shoreline Analysis System (DSAS) is used to analyze the changes in 

distances and calculate some statistics based on these measurements. DSAS uses a 

shoreline layer and a baseline layer to automatically generate transects and 

intersection points starting from the baseline and crossing to the shorelines. 
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However, in the curvy zones of the study area, DSAS misses the ending shorelines 

and crosses the land to reach the last shoreline. This problem is presented in Figure 

6.2. In Figure 6.2. light blue transects are ill-conditioned transects automatically 

generated by DSAS. It is observed that the ill-conditioned transects are the transects 

that intersect to each other. Also, ill-conditioned transects are longer than the regular 

transects. To automatically detect the ill-conditioned transects two filters can be 

implemented to the transects layers. These two filters are based on the length of the 

transect and intersection of the transects. To overcome this problem, the peninsula 

can be divided into two in a perpendicular direction to the cape. Nevertheless, DSAS 

cannot overcome this issue automatically. On the other hand, to understand the 

overall trend of desired location, all transects are needed for statistical calculations. 

Eliminating some transects due to the ill-conditioned generation of DSAS eventually 

changes the statistical results. This inconsistency might lead to a misunderstanding 

of the overall behavior of the desired study location. In this study, the effects of 

curvatures are observed in the models of Initial Area of Interest and Alanya. The 

Dim River Mouth model does not have curvy zones that are exposed to the 

elimination of ill-conditioned transects. 

 

 
 

Figure 6.2. DSAS Transect Generation Anomaly Representation 



 
 

86 

An additional concern is that DSAS uses the primary and ending shorelines while 

making calculations based on the generated transects. This DSAS calculation 

procedure eliminates the effects of providing more data to increase the accuracy of 

results. In other words, DSAS gives the same results if the primary and ending 

shorelines are provided to the program as input. Shorelines that are in the middle of 

primary and ending ones do not have any effect in the calculations NSM and EPR in 

DSAS. This was the motivation for temporal change studies in this research.  

DSAS only captures the distance changes between the provided shoreline without 

considering these changes in a timely order. Therefore, this leads to missing the 

cyclical and/or seasonal behaviors in the area. To overcome this, relative distances 

are calculated as it is done in Chapter 5 in the monthly change study. Ordering 

measurements in a timely manner leads to an exploration of monthly change and 

cyclical behavior in the study area. In this study, no direct upward or downward trend 

was observed in the shoreline changes, but even if there is, DSAS is not capable of 

capturing the trends. Therefore, DSAS should be used as an automatic transect and 

intersect generation tool in shoreline monitoring studies, and the results need further 

interpretation. 

Furthermore, the accuracy of the results is in the range that is provided to the DSAS 

tool as the shorelines layer. In other words, the more accurate shorelines lead to more 

accurate calculations by DSAS (Himmelstoss et al., 2021). The accuracy of the 

shoreline extraction procedure directly affects the accuracy of DSAS results. Even if 

a certain level of uncertainty is provided before the calculations for each shoreline, 

the uncertainty value only refers to the probability of having a mistake for each data 

source. In this study, Landsat-8 images are used to analyze shoreline changes. The 

United States Geological Survey (USGS) suggests that using a 10-meter uncertainty 

value in both a positive and negative direction is acceptable. Therefore, a 10-meter 

uncertainty value is used in all of the shorelines. However, as a result of the 

sensitivity study using a 3-meter resolution Planet Satellite image, the accuracy is 

obtained at 38 meters, which is close to a pixel size. In the literature, Bayram et al. 

(2013) conducted a study using Landsat images, which resulted in a 37-meter 
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accuracy. This similarity explains that the procedure and calculations in this thesis 

are conducted accordingly and matched with the examples in the literature. However, 

shoreline changes observed in the Planet data may be linked with the existence of 

coastal structures in the area that can not be identified in Landsat-8 imagery, which 

has a 30-meter resolution. These human-made coastal structures are not regulated in 

the area. The existence and visibility of these coastal structures might be a reason for 

observing accretion in the Dim Model that is generated by using Planet Imagery. A 

similar procedure can be followed to obtain more accurate results by using higher 

spatial resolution images. In that case, researchers should consider different 

uncertainty values if they use different data sources at the same time in the shoreline 

layer.  

6.3 Statistical Results Discussion 

In shoreline analysis, understanding the statistical calculations employed by software 

like DSAS is crucial for accurate assessment and interpretation of coastal changes. 

DSAS offers a range of statistical measures, each providing unique insights into 

shoreline dynamics.  

Net Shoreline Movement (NSM) measures the overall change in shoreline position 

over time. It provides a straightforward metric of coastal erosion or accretion, 

quantifying the net distance between the oldest and newest shorelines. NSM serves 

as a foundational metric, offering a broad overview of shoreline change. It misses 

the monthly change and/or cyclical changes in the provided data. An increase in the 

accuracy of results is expected as the amount of data used in the studies increases. 

However, NSM only measures the distance between a starting point and an ending 

point, which are shorelines in this study. Thus, it is possible to expect the same or 

close result by also reducing the amount of data. This is another reason for the need 

for further interpretation of results. 
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The Shoreline Change Envelope (SCE) represents the maximum extent of shoreline 

variability within a transect. Unlike rates, SCE is a distance measure, offering insight 

into the range of shoreline fluctuations. Its positive sign indicates the magnitude of 

change, irrespective of direction. SCE provides valuable context for understanding 

the variability and dynamic nature of coastal zones. Hence, the envelope value can 

only be used to classify shoreline zones in terms of their vulnerability. Further 

examination is needed after this kind of classification.  

End Point Rate (EPR) calculates the average rate of shoreline change between two 

endpoints over a specified time period. While EPR is straightforward to compute and 

interpret, it has limitations, particularly with extensive datasets. EPR may overlook 

nuances in shoreline dynamics and fail to capture seasonal variations or changes in 

trend direction. Nevertheless, it remains a useful metric for basic trend analysis. 

Also, it gives the most logical results in this study by providing data that has units of 

meters per year. However, in the monthly change study, only the year 2023 is 

selected for analysis. Therefore, DSAS misses the changes in months by only 

focusing on years in the calculation of EPR. To overcome this issue, imaginary years 

can be assigned to each shoreline for better EPR results. Even in this case, DSAS is 

capable of missing the seasonal behavior in the provided data, and further 

clarification is needed.  

Linear Regression Rate (LRR) employs a least-squares regression approach to 

quantify the rate of shoreline change. By fitting a regression line to all shoreline 

points, LRR captures the overall trend while minimizing residual errors. However, 

LRR may underestimate rates compared to EPR, particularly in the presence of 

outliers. Despite this, it offers a robust statistical framework based on established 

concepts. The DSAS tool uses a linear regression rate by using statistical concepts 

rather than considering coastal studies. Therefore, the LRR can give more accurate 

results based on the effect of coastal dynamics such as tides, tornados, currents, etc. 

In this study, the Alanya shoreline is exposed to a nearly 0.9-meter tidal effect, which 

may not be logical to discuss in a 30-meter resolution.  
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In conclusion, DSAS offers a comprehensive suite of statistical measures for 

shoreline analysis, each with its strengths and limitations. Understanding these 

statistical points is essential to effectively interpret shoreline change dynamics. 
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CHAPTER 7  

7 CONCLUSION AND RECOMMENDATIONS 

In conclusion, this study delved into the assessment of shoreline changes in the 

Mediterranean region of Turkey, with a particular focus on the Alanya area, utilizing 

a combination of remote sensing data, Geographic Information Systems (GIS) tools, 

and Digital Shoreline Analysis System (DSAS). Throughout the comprehensive 

analysis conducted, several significant findings and implications emerged.  

Firstly, the study successfully demonstrated the feasibility and practicality of 

utilizing Landsat-8 imagery for shoreline monitoring purposes. Leveraging Landsat-

8 data with its 30-meter pixel resolution and its accessibility through the United 

States Geological Survey (USGS) provided valuable insights into the dynamics of 

shoreline changes over time. Additionally, the study underscored the importance of 

accuracy and reliability in shoreline extraction processes. Employing a semi-

automatic approach involving coregistration, Normalized Difference Water Index 

(NDWI) calculation, reclassification, and manual editing proved effective but also 

highlighted the need for systematic error handling, especially in areas with complex 

topography or ambiguous land-water boundaries. Moreover, the utilization of the 

Digital Shoreline Analysis System (DSAS) facilitated the statistical analysis of 

shoreline changes, offering metrics such as Net Shoreline Movement (NSM), 

Shoreline Change Envelope (SCE), End Point Rate (EPR), and Linear Regression 

Rate (LRR). These metrics provided valuable insights into the overall trends and 

variability of shoreline dynamics despite certain limitations in capturing seasonal 

variations and nuanced changes. The study identified areas for future research, 

emphasizing the integration of emerging technologies such as machine learning and 

unmanned aerial systems (UAS) to enhance shoreline monitoring accuracy and 

scalability. Furthermore, there is a need for further exploration of seasonal and 

cyclical shoreline changes, as well as improving the interoperability of data sources 
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for more comprehensive analyses. As it is discussed and represented in detail 

throughout the study, the study area is narrowed step by step by starting roughly 240 

km extent to 10 km extent. The Digital Shoreline Analysis System (DSAS) evaluates 

the calculation as a whole and calculates statistical results based on the overall area 

of study. Therefore, to reduce the potential error, the study area is narrowed. This 

narrowing process resulted in more accurate results in obtaining the erosion and 

accretion zones in the area in detail and classifying the parameters. Additionally, as 

the resolution of the input data increases, the accuracy of the results also increases. 

By comparing the results from Landsat-8 and Planet Satellite data, it is acceptable to 

say that the procedure followed in this study is promising and gives better results 

with higher resolution values. On the other hand, a combination of Landsat and 

Planet data together to get more accurate results by considering their uncertainty 

values can be recommended for further studies in shoreline change determination. 

Moreover, throughout the model generation, only geospatial data is used, and no 

sediment transportation data is included in the analysis. However, by considering the 

situation from a coastal engineering perspective, there is a need to include sediment 

transportation data to result in more accurate calculations and understand the 

behavior of the location. In the Dim River Mouth Model, there might be some human 

effects on the Dim River, such as sand collection from the river bed upstream, which 

prevents sediment transport from the river to the shore. 

The implications of this study extend beyond academia, with significant relevance 

to coastal management and conservation efforts. By enhancing our understanding of 

shoreline dynamics and vulnerabilities, informed decisions can be made to mitigate 

risks, plan for sustainable land use, and address environmental challenges in coastal 

areas. Ultimately, this study contributes to the existing body of literature by 

providing insights into the feasibility, accuracy, and implications of utilizing remote 

sensing and GIS tools for shoreline monitoring in coastal regions. It underscores the 

importance of interdisciplinary approaches and ongoing research efforts to advance 

our understanding of coastal dynamics and inform evidence-based decision-making 

for coastal management and conservation. 
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Based on the results and the effort throughout the study, some recommendations for 

future researchers can be expressed. Future research endeavors should focus on 

advancing shoreline extraction techniques through the integration of emerging 

technologies, such as machine learning, deep learning, and unmanned aerial systems 

(UAS). Additionally, efforts to improve spatial resolution, temporal coverage, and 

data interoperability hold promise for enhancing the accuracy, scalability, and 

applicability of shoreline extraction methodologies in diverse geospatial contexts. 
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APPENDICES 

A. Details of Study Data 

Table A.1 Data Details 

No. 
  

Year 
  

Image Date 
(YYYY-MM-DD) 

Cloudy 
(yes/A bit/no) 

Landsat No. 
  

1 1987 1987-08-19 no Landsat-5 
2 2000 2000-07-13 no Landsat-7 
3 2005 2005-08-12 yes Landsat-7 
4 2009 2009-08-15 no Landsat-5 
5 2013 2013-06-23 no Landsat-8 
6 2013 2013-07-09 yes Landsat-8 
7 2013 2013-07-25 no Landsat-8 
8 2013 2013-08-10 no Landsat-8 
9 2013 2013-08-26 no Landsat-8 
10 2014 2014-06-10 A bit Landsat-8 
11 2014 2014-06-26 no Landsat-8 
12 2014 2014-07-12 yes Landsat-8 
13 2014 2014-08-13 yes Landsat-8 
14 2014 2014-08-29 yes Landsat-8 
15 2015 2015-06-13 yes Landsat-8 
16 2015 2015-07-15 no Landsat-8 
17 2015 2015-08-16 yes Landsat-8 
18 2016 2016-06-15 yes Landsat-8 
19 2016 2016-07-16 yes Landsat-8 
20 2016 2016-08-02 A bit Landsat-8 
21 2016 2016-08-18 yes Landsat-8 
22 2017 2017-06-02 no Landsat-8 
23 2017 2017-07-04 A bit Landsat-8 
24 2017 2017-07-20 no Landsat-8 
25 2017 2017-08-05 yes Landsat-8 
26 2017 2017-08-21 yes Landsat-8 
27 2018 2018-06-05 no Landsat-8 
28 2018 2018-07-07 A bit Landsat-8 
29 2018 2018-07-23 no Landsat-8 
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30 2018 2018-08-08 no Landsat-8 
31 2018 2018-08-24 yes Landsat-8 
32 2018 2018-07-07 A bit Landsat-8 
33 2019 2019-06-08 no Landsat-8 
34 2019 2019-07-10 no Landsat-8 
35 2019 2019-07-26 yes Landsat-8 
36 2019 2019-08-11 no Landsat-8 
37 2019 2019-08-27 no Landsat-8 
38 2020 2020-06-10 A bit Landsat-8 
39 2020 2020-06-26 no Landsat-8 
40 2020 2020-07-12 A bit Landsat-8 
41 2020 2020-07-28 no Landsat-8 
42 2020 2020-08-13 no Landsat-8 
43 2020 2020-08-29 no Landsat-8 
44 2021 2021-06-29 no Landsat-8 
45 2021 2021-07-15 no Landsat-8 
46 2021 2021-07-31 yes Landsat-8 
47 2021 2021-08-16 no Landsat-8 
48 2022 2022-06-16 A bit Landsat-8 
49 2022 2022-06-24 no Landsat-8 
50 2022 2022-07-02 no Landsat-8 
51 2022 2022-07-10 yes Landsat-8 
52 2022 2022-07-18 no Landsat-8 
53 2022 2022-07-26 no Landsat-8 
54 2022 2022-08-11 yes Landsat-8 
55 2022 2022-08-19 A bit Landsat-8 
56 2022 2022-08-27 no Landsat-8 
57 2022 2022-06-16 A bit Landsat-8 
58 2023 2023-06-07 no Landsat-8 
59 2023 2023-07-05 yes Landsat-8 
60 2023 2023-07-13 no Landsat-8 
61 2023 2023-07-21 no Landsat-8 
62 2023 2023-07-29 no Landsat-8 
63 2023 2023-08-06  yes Landsat-8 
64 2023 2023-08-14 yes Landsat-8 
65 2023 2023-08-22 A bit Landsat-8 
66 2023 2023-08-30 no Landsat-8 

 

Table A.1 Continued 
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Table A.2 Data Details of Monthly Change Study 

ID image_date cloudy source Shape_Leng 
(m) 

1 2023-01-26 yes Landsat-8 7212.73 
2 2023-02-11 no Landsat-8 9335.67 
3 2023-03-15 no Landsat-8 9304.59 
4 2023-04-24 no Landsat-8 9316.20 
5 2023-05-02 no Landsat-8 9308.46 
6 2023-06-19 no Landsat-8 9304.16 
7 2023-07-21 no Landsat-8 9310.15 
8 2023-08-30 no Landsat-8 9312.51 
9 2023-09-23 no Landsat-8 9330.57 
10 2023-10-25 no Landsat-8 9320.64 
11 2023-11-02 abit Landsat-8 9307.84 
12 2023-12-23 no Landsat-8 9300.04 
13 2023-07-21 no Landsat-8 9310.15 
14 2023-04-24 no Landsat-8 9316.20 

 

ID image_date source Shape_Leng (m) 
1 1/24/2023 Planet PBC 9550.77 
2 2/15/2023 Planet PBC 10244.49 
3 3/15/2023 Planet PBC 10315.11 
4 4/23/2023 Planet PBC 9928.21 
5 5/1/2023 Planet PBC 10329.32 
6 6/17/2023 Planet PBC 10738.35 
7 7/22/2023 Planet PBC 10430.49 
8 8/30/2023 Planet PBC 2324.82 
9 9/23/2023 Planet PBC 10427.64 
10 10/22/2023 Planet PBC 9999.56 
11 11/23/2023 Planet PBC 10180.99 
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B. Digital Shoreline Analysis System (DSAS) Workflow 

 

Figure B.1. Workflow of Digital Shoreline Analysis System (DSAS) (Himmelstoss 

et al., 2021)
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C. Analysis Results and Charts 

As explained in detail in Chapter 4, net shoreline movement represents the total 

change in between the youngest and the oldest shorelines in meters. In Figure C.2. 

blue zones represent the positive changes in shorelines, which denote an accretion, 

and red zones represent coastal erosion. Shoreline change envelope (SCE) is the 

maximum value in a change in meter by not considering the sign of the change as 

expressed in detail in Chapter 4. Therefore, in Figure C.3. All of the values 

represented in the charts are positive. The legend is divided by considering the mean 

of total values. Red zones represent the SCE values that are less than the mean, and 

blue zones represent values above the mean. The end point rate (EPR) is the rate at 

which the zones change per year in meters. It might have either positive or negative 

values. Positive EPR value represents the amount of accretion in meters per year. 

Similarly, negative values represent the amount of erosion per year. The calculation 

procedure is expressed in detail in Chapter 4.  

In Figure C.4. red zones are erosion zones, and blue zones are accretion zones. 

Lastly, the linear regression rate (LRR) is calculated. In LRR calculation, DSAS uses 

all the data provided without considering whether there is a trend or accuracy 

mistake. The LRR calculation is made using statistical fundamentals and represents 

a rate that needs further interpretation. In Figure C.5. red zones represent negative 

LRR values, while blue zones represent positive LRR values.  
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Figure C.2. Net Shoreline Movement (NSM) for the Initial Area of Interest 
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Figure C.3. Shoreline Chance Envelope (SCE) for the Initial Area of Interest 
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Figure C.4. End Point Rate (EPR) for the Initial Area of Interest 
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Figure C.5. Linear Regression Rate (LRR) for the Initial Area of Interest 
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Similar to the initial model, red zones represent the areas that are vulnerable to 

erosion, and blue zones represent accretion. The green line is the baseline used in the 

Alanya Model. 

 

 

 

Figure C.6. Net Shoreline Movement (NSM) for Alanya Model 
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Figure C.7. Shoreline Change Envelope (SCE) for Alanya Model
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Figure C.8. End Point Rate (EPR) for Alanya Model 
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Figure C.9. Linear Regression Rate (LRR) for Alanya Model 
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Figure C.10. Net Shoreline Movement (NSM) Results of Monthly Change Study 
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Figure C.11. Shoreline Change Envelope (SCE) Results of Monthly Change Study 
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Figure C.12. Linear Regression Rate (LRR) Results of Monthly Change Study 
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