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Bu tez c¢alismasi bes bolim halinde diizenlenmistir. Birinci bdliimde
calismanin amacindan bahsedilerek bir giris verilmistir. Ikinci boliimde ¢alismamizda
gerekli olacak temel tanimlar, teoremler ve genel bilgiler ifade edilmistir. Ugiincii
bolimde genel lineer model ve onun kisitlamali modelleri altinda cesitli parametre
fonksiyonlarinin en iyi lineer yansiz tahmin edicileri (BLUE) g6zoniine alinmuistir.
Ayrica genel lineer modellerde model matrisleri ve kovaryans matrislerinin yapilarina
gore en iyi lineer yansiz tahmin edicilerin esit olmasi igin bazi gerek ve yeter sartlar
arastirtlmistir. DOrdincl bolimde sonug ve oneriler verilmistir. Besinci bélimde ise
tezde yararlanilan kaynaklar listelenmistir.

Anahtar Kelimeler: Matris, Rank, Genellestirilmis invers, Genel Lineer Model,
Gauss—Markov Modeli, Kovaryans Matrisi, Tahmin Edici, En
Iyi Lineer Yansiz Tahmin Edici, Ortogonal Izdiigiim.
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This thesis is organized in five parts. In the first chapter, an introduction is
given by mentioning the purpose of the study. In the second part, the basic definitions,
theorems and general information that will be required in our study are expressed. In
the third section, the best linear unbiased estimator (BLUE) of several parametric
functions under a general linear model and its restricted models are considered.
Furthermore, some necessary and sufficient conditions are investigated for equalities
of best linear unbiased estimators of parametric functions according to structures of
model matrices and covariance matrices in general linear models. In the fourth chapter,
conclusions and recommendations are given. In the fifth chapter, the sources used in
the thesis are listed.
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1. GIRIS

Matrisler yardimiyla insa edilen lineer modeler ve ¢esitli uygulamalart bugiin
artik teorik matematik, istatistik, sosyoloji, kimya, fizik ve elektrik miithendisligi gibi
pek cok teknik alanda oldukca 6nemli hale gelmistir. Matris hesabi ise uzun yillardan
beri bilinmekte ve kullanilmaktadir. Ingiliz matematikgi Sylvester, 1850 yilinda matris
kavramini ilk kez kullanmigtir. 1853 yilinda bir diger ingiliz bilgini Hamilton ‘Lineer
and Vector Functions’ isimli eserinde matrislerin bazi 6zelliklerinden faydalanmis
ama matris ismini heniiz kullanmamustir. Yine bir ingiliz matematikgci olan Cayley ise
1858 yilinda zamaninda ¢ok meshur olan ‘Memorie on the Theory of Matrices’ isimli
caligmasinda matris cebirinin temel esaslarini ortaya koymustur. Daha sonra fransiz
Laguerre ve alman Frobenius matrislerle ilgili baz1 yeni kavramlar ve teoremler

tizerinde ¢alismalar yapmglardir.

Singdler bir matrisin inversi fikri ise ilk defa 1920 yilinda Moore (1920, 1935)
tarafindan ortaya atilmistir. Ancak 1955 yilina kadar bu konuda herhangi bir sistematik
calismaya rastlanamamaktadir. 1955 yilinda, 6nceki yillarda yapilan caligmalardan
tamamen bagimsiz olarak, Penrose (1955, 1956) biraz daha farkli bir yoldan Moore
tarafindan verilen invers kavramini tekrar tanimlamistir. Penrose ile asag1 yukar1 ayni
zamanlarda yasayan bilim adamlarindan Rao (1967) tarafindan tanimlanan ve
gelistirilen Pseuda invers ise Moore ve Penrose tarafindan verilen kisitlamalarin
tiimiinii saglamamaktadir. Rao, daha sonraki ¢aligmalarinda lineer denklemlerle ilgili
problemlerinin ¢éziiminde yeterli gelen ve Moore ve Penrose’ un vermis oldugu
tanimdan daha zay1f bir tanim ortaya koymustur. Boyle bir invers, bir genellestirilmis
invers (g-invers) olarak adlandirilmisg ve bunun ¢esitli uygulamalar1 Rao (1967)’ nun
cesitli galismalarinda yer almistir. Genellestirilmis inverslerle ilgili dnemli gelismeler
ve bunlarin uygulamalar1 Generalized Inverse of Matrices and Its Applications (Wiley,

1971) isimli kitapta verilmistir.

Matris ranki ile ilgili bilinen bir ger¢ek sudur ki ayni mertebeden iki A ve B
matrisinin benzer olmasi, yani UAV = B olacak sekilde iki tersinir U ve V matrisinin
mevcut olmasi i¢in gerek ve yeter sart r(A) = r(B) olmasidir. Bir matrisin
stitunlarinin ya da satirlarinin dogrusal bagimsizligini belirlemek i¢in en basit yontem,

matrisin elementer matris islemler yardimiyla satir veya siitun eselon formlara



indirgenmesidir. idempotent matrislerden olusan herhangi bir matris ifadesi igin, bu
ifade ile ilgili gesitli rank esitlikleri kurulabilir ve bu rank esitliklerinden yararlanilarak
verilen ifadenin bazi temel ozellikleri elde edilebilir. Bazi rank formulleri ise ¢esitli
blok matrisler ve elementer blok matris islemleri yardimiyla olusturulabilir. Son
zamanlarda yapilan ¢alismalarda bu yontemlerle pekgok yeni ve 6nemli rank esitlikleri

elde edilmis ve bu rank esitliklerinden birgok 6nemli sonug tiiretilmistir.

Olasilik ve ozellikle statistik; rasgelelik iceren olaylar, surecler, sistemler
hakkinda modeller kurmada, goézlemlere dayanarak bu modellerin gecerliligini
smnamada ve modellerden sonu¢ ¢ikarmada gerekli bazi bilgi ve yontemleri iceren
bilim dalidir. Ayrica belli bir konu ile ilgili verileri derlemek, diizenlemek, 6zetlemek,
sunmak, analiz etmek ve bu verilerden bir sonuca varmak i¢in kullanilan yéntemlerin
her biri istatistigin konusunu olusturmaktadir. Ger¢ek hayatta karsilasilan karmasik
problemleri anlamak, anlatmak istedikleri olgu ve sistemleri basitlestirmek, bu
problemlerin belli varsayimlar altinda modellenmesi ile ancak mimkun olabilir.
Modellemede kullanilan en giiglii araglardan biri istatistiktir. Genel olarak modeller
deterministik ve olasiliksal olmak {izere ikiye ayrilir. Deterministik modeller fen ve
sosyal bilimlerde oldukca fazla kullanilir ve bu modeller bir sistemin gelecekteki tiim
davraniglarini sistemin simdiki durumu ile tam ve kesin olarak ortaya koymaktadir.
Olasiliksal modellerde ise, sistem ¢iktilar1 degiskenlik gosterebilir. Clnki model ya

rasgele eleman icerir ya da bir sekilde rasgele degiskenler tarafindan etki altina alinir.

Istatistikte, lineer modeller kavrami oldukca genis ve 6nemli bir yer tutar.
Ozellikle ¢ok degiskenli lineer modellerde parametre tahminleri, parametrelere ait
gliven araliklar1 ve parametreler tizerine kurulan bazi lineer hipotez testleri ve bunlarin
istatistiksel yorumlar: literatiirde genis bir uygulama alani bulur. Ekonometride, bu
hipotezlerin ekonometrik anlamlarina yer verilerek elde edilen sonuglar hakkinda
yorumlar yapilir. Tiim bunlarin yaninda istatistiksel kavramlara geometrik yorumlarla

yaklasmak bu kavramlarin ¢ok daha kolay anlasilmasini saglamaktadir.

Bir bagimli degisken ile bir veya daha fazla bagimsiz degisken arasindaki
iliskiyi modellemek i¢in kullanilan lineer modeller genel olarak y = X + € seklinde
ifade edilir. Bu modelde, y bilinen gozlemlerin nx1 mertebeli vektori (rasgele

vektor), X n X p(n < p) mertebeli bir bilinen katsayr matrisi, g px 1 mertebeli



bilinmeyen parametre vektérii ve E(g)=0, Cov(e)=X olmak lizere ¢ ise nx1

tipinde rasgele degiskenlerin gozlenebilir olmayan bir hata vektéridir. Bu modeller

ekonomi, saglik, fen ve sosyoloji gibi bircok alanda uygulama alanina sahiptir.

Bu ¢alismada, bir genel lineer model ve bu modelden elde edilen bazi alt
modeller ele alinarak bu modeler altinda bilimeyen parametreler icin en iyi lineer
yansiz tahmin ediciler (BLUE) belirlenecektir. Ele alinan modeller altinda, model
matrisi ve kovaryans matrisinin yapisindaki farkliliklara bagl olarak bilinmeyen
parametre vektorlerinin tahmin edicileri farkli ifadelere ve 6zelliklere sahiptir. Ancak
bu tahmin ediciler bazi kosullar ve varsayimlar altinda benzer 6zellikler gosterebilirler.
Bu nedenle her model icin ortak olan bilinmeyen sabit ve rastgele vektorlerin lineer
kombinasyonunun BLUE’ lar1 arasindaki iliski karakterize edilerek BLUE’ larin
esitligi ile ilgili gerek ve yeter sartlar incelenmistir. BLUE’ larin denklemleri karmagsik
yapida matris islemleri igerdiginden elde edilecek sonuglar rank metotlari kullanilarak
elde edilmistir. Matrisler, matris ranki ve Lowner siralamasi ile ilgili detayl bilgi i¢in
Tian (2002, 2010), Puntanen ve Ark. (2011) ve Tian ve Zhang (2016), Haslett ve
Puntanen (2010), Jammalamadaka ve Sengupta (1999,2007), Liu ve Ark. (2017) ve
Lu ve Ark. (2015) calismalarina bakilabilir.



2. TEMEL KAVRAMLAR

2.1 Bazi Tamim ve Teoremler

Bu kisimda daha sonraki boliimlerde kullanilacak olan bazi 6nemli tanimlar ve
teoremler ispatsiz olarak verilecektir.
Tanim 2.1
I. K cisim olsun. m,n € N ve 1<i<m,1< j<nolmak Uzere butin (i, j) sirali
ikililerin kiimesi A = N X N ile gosterilsin. f — K fonksiyonu (i, j)— f (i,j)=a,
olarak tanimlansin. a; € K olacak sekilde segilen m.n tane elemanin olusturdugu

tabloya K cismi iizerinde tanimli mx n tipinde matris denir. Eger K = R, reel sayilar

kiimesi olarak alinirsa matrise reel matris, K = C, kompleks sayilar kiimesi olarak

alinirsa, matrise kompleks matris denir (Branson R., 1999).

Ay &y e By
A A, 8y wee. Ay, 2.1)
aml am2 * amn

matrisi kisaca A = [ai j]mxn seklinde gosterilir. Burada a; elemamt A matrisinin i.

satir ve j. siitununa karsilik gelen elemanidir. K cismi tzerinde segilen biitin A =

|ai;]._ . bicimindeki matrislerin kiimesi K™ ile gosterilir.

ii. A=|a ]mxn ve B=|b, }mxn ayni1 boyutlu iki matris olmak tizere eger her bir (i, j)
icin a; =b, ise A ve B matrislerine esit matrisler denir.

iii. A=[a; ] matrisinin her bir a; eleman sifir ise, bu takdirde A matrisine bir sifir
matris denir.

iv. A=[a; | ve B=[h;] aymboyutlumatrisler olmak izere A+ B matrisi

a,+ b, a,+b,........ a,+ b,

ALB - ay+ b, a,+by,........ a,, + b, (2.2)

a

ml

seklinde tanimlanir.



v. K cismi lizerinde s e K bir skaler say1 olmak iizere sA e K™ matrisi

ka,, ka,,.... ka,,
ka,, ka,,.... ka,, (2.3)

mn

seklinde tanimlanir.

Vi.A = [aij] pve B = [bij] . olmak lizere A ve B matrislerinin ¢arpimi

mx px
[ (allbll +o + alpbpl) (allbln +. + alpbpn) —|

A.B = I (a21b11 +o + azpbpl) (a21b1n +o + azpbpn) I (24)
(amibig +oovee. +ampbp1) ... (@mibig +oeen. +ampbyn)

biciminde tanimlanir. Acikca goriilecegi iizere ¢arpimin tanimli olabilmesi i¢in
birinci matrisin siitun sayzsi ile ikinci matrisin satir sayisi esit olmalidir. Bu sartlar

altinda ¢arpim matrisi A. B veya AB ile gosterilir (Hacisalihoglu H.H., 1977).
Tanim 2.2
i. Bir A=[a;]  matrisinde eger m=n ise bu durumda A matrisine bir kare
matris denir. Bu durumda A matrisindei a,;, a,,.......... ,a,, elemanlarina matrisin

kosegen (esas kosegen) elemanlar1 denir.
Ii. Kosegen elemanlart 1 ve diger elemanlari O olan bir kare matrise birim matris denir

ve birim matris 1 seklinde gosterilir.
iii. A = [al- j]mxnmatrisinde ayni numarali satir ve siitunlarin yer degistirilmesi ile elde

edilen AT = [aﬁ]nxm matrisine A matrisinin transpozu denir. Bu durumda uygun

tipten matrisler icin (A -+ B)T =A" +B" ve (AB)T =BT A" esitlikleri saglanir.

iv. A bir kare matris olmak tizere A" = A ise, A matrisine simetrik matris denir
(Hacisalihoglu H.H., 1977).

Teorem 2.1 A,B ve C bir K cismi lizerinde tanimli mxn boyutlu matrisleri ve
k,,k, € K skaler sayis1 i¢in asagidaki esitlikler saglanir (Hacisalihoglu H.H., 1977).
I. (A+B)+C=A+(B+C)
ii. A+0=0
. A+ (—A) =0



iv. A+B=B+A

V. k(A+B)=kA+k,A
vi.  (k+k,)A=kA+k,A
vii.  (kk,) A=k, (k,)A
viii. 1A=A ve 0A=0

Tanm 2.3 x, x,......... x, € R™* vektorleriigin Zai X, = 0 olacak sekilde hepsi birden
sifir olmayan a,,a,,......... a, skaler sayilar1 bulunuyorsa X, X,......... x, Vvektorlerine
lineer bagimlidir, aksi halde lineer bagimsizdir denir (Hacisalihoglu H.H., 1977).
Tamim 2.4 A matrisi mxn boyutlu ve aq,a,,......... a, sutunlarma sahip olan bir
matris olsun. x’ = (X, X, ......... x,) Vektord icin Ax = xa, +X,8, +....... +x,a, ifadesi
A matrisinin siitunlarinin bir lineer kombinasyonunu gosterir. Bu durumda A
matrisinin siitunlariin lineer kombinasyonu olarak ifade edilebilen biitiin vektorlerin
kimesine A matrisinin siitun uzay1 denir ve R(A) ile gosterilir. R(A), A matrisinin
stitunlar tarafindan gerilir ve siitun uzay1

R(A) = {y € R™*L:y = Ax,x € R"*1} (2.5)
ile ifade edilir (Hacisalihoglu H.H., 1977).

Tamim 2.5 A matrisinin a,a,,......... a, satirlari tarafindan iiretilen R™ in alt uzayma
A matrisinin satir uzayr denir. A matrisinin satir uzayr R(A’) olarak gosterilir
(Hacisalihoglu H.H., 1977).

Teorem 2.2 A matrisi mxn boyutlu ve C matrisi, A matrisinin satir indirgenmis

eselon bicimi olsun. A matrisinin satir uzayi ile C matrisinin satir uzayr aynidir

(Hacisalihoglu H.H., 1977).

Tamim 2.6 Bir matrisinin siitun uzayinin boyutuna matrisin siitun ranki denir. Bir
matrisinin satir uzaymin boyutuna ise matrisin satir ranki denir. Bir A matrisinin satir
indirgenmis eselon bigimindeki sifirdan farkli satirlarin sayisina ise matrisin ranki

denir ve r(A) ile gosterilir (Hacisalihoglu H.H., 1977).

Teorem 2.3 A matrisi mxn boyutlu matris olsun. A matrisinin satir ranki, siitun
rankina esittir (Hacisalihoglu H.H., 1977).



Teorem 2.4 Uygun boyutlu A, B ve C matrisleri i¢in agsagidaki ifadeler dogrudur
(Hacisalihoglu H.H., 1977):

i. R(A:B)=R(A)+R(B),

. R(AB)=R(A),

Hi.  R(AA)=R(A),

iv. R(C)=R(A)< C matrisi AB bigimindedir.

V. boy(R(A))=r(A),

Vi.  AeR™" igin r(A)<min{m,n},

vii. r(4) =r(A") =r(4'4) =r(AA).
Teorem 2.5 A ve A, tersi olan matrisler ise, bu durumda herhangi bir A, matrisi i¢in

A, AA , AA ve AAA, matrisleri ayn1 ranka sahiptir (Hacisalihoglu H.H., 1977).

Tamm 2.7 Eger P? =P olacak sekilde bir P matrisi varsa P matrisine idempotent
matris denir (Hacisalihoglu H.H., 1977).

Tanim 2.8 A matrisinin sifir uzayi
N(A) = {x € R Ax = 0} € R™¥! (2.6)
seklinde tanimlanir (Hacisalihoglu H.H., 1977).

Tamm 2.9 Eger AB =1 ise, B matrisine A matrisinin sag tersi denir ve bu ters B
ile gosterilir. A matrisine ise B matrisinin sol tersi denir ve bu ters A" ile gosterilir.
A matrisinin sag tersi, A matrisi tam satir rankli oldugu zaman vardir. Benzer sekilde
B matrisinin sol tersi, B matrisi tam siitun rankli oldugunda vardir. Sag ters veya sol
ters tek olmayabilir. A € R™*™ iiggensel matris olmak {izere, rank sartlar1 gésterir ki,
m > n oldugunda sag ters olmayabilir ve. m <n oldugunda sol ters olmayabilir.
Aslinda her iki tersin olmasi i¢in gerek ve yeter sart A matrisinin kare matris ve tam
rankli olmasidir. Bu durumda matrisin sag tersi ile sol tersi esit olur ve bu matrise,
nonsingller A matrisinin tersi denir. A™ ile gosterilir. O halde A matrisinin tersi
vardir ve bu ters tektir ancak ve ancak A matrisi nonsingulerdir. AA™* = A"1A =1
dir. Eger A ve B matrislerinin her ikisi de nonsingiiler ve ayn1 boyutlu ise (AB)™! =
B~1A™t dir.



Tamim 2.10 Herhangi bir A matrisi icin ABA = A ise, B matrisine A matrisinin
genellestirilmis inversi denir ve A matrisinin genellestirilmis inversi A~ ile gosterilir.
Eger A € R™ " ise, A~ € R™™dir. Her matrisin en az bir genellestirilmis tersi vardir.
Her simetrik matrisin en az bir simetrik genellestirilmis tersi vardir. Genel olarak, A~
tek degildir. A~ matrisinin tek olmasi i¢in gerek ve yeter kosul A matrisinin

nonsingiiler olmasidir. Bu durumda A~ = A~1 dir.

Tamm 2.11 Herhangi bir A matrisi igin,

i ABA= A
ii. BAB=B
iii. (4B)' = AB 2.7)

iv. (BA) = BA

kosullarini saglayan, B matrisine A matrisinin Moore-Penrose tersi (inversi) denir ve
At ile gosterilir. Bir matrisin Moore-Penrose inversi tektir. Eger A matrisi tersi

alinabilir bir matris ise bu durumda A* = A1 dir.

Teorem 2.6 A,BveC uygun boyutlu matrisler olmak iizere asagidaki ifadeler

dogrudur (Hacisalihoglu H.H., 1977).
. AHr=4
ii. AA" ve A"A idempotenttir.
iii. r(4) =r(A") =r(44%) =r(4t4),
iv. A'AAT = A = ATAA ve A'(AT) AT = At = AY(AM)' A,
v. A=0A"'=0,AB=0<B"'A"=0veA'B=0< A'B=0,
vii r(A)=r(A"4) =r(447) <r(4°),
vii.  BAC, A matrisinin genellestirilmis tersinin segimine gore degismez kalir
ancak ve ancak R(B") = R(A’) ve R(C)<=R(A) dir.

viii.  A"A ve AA™ matrislerinin her biri idempotent matrislerdir. A matrisi simetrik

ve idempotent matris ise | — A matrisi de simetrik ve idempotent matristir.
Tamm 2.12 A=(a;) nxn boyutlu bir kare matris olmak tzere A matrisinin

determinanti |A| ile gosterilir ve agagidaki gibi tanimlanir (Hacisalihoglu H.H., 1977).



i. n=1icin |Al=a,,

i. n=2icin |A|:a11a22_a12a211
iii. n>2 igin

1A= 20 | A~ 2 A [+ (D [ A = (1) 2y A (28)

i=1

dir, burada A;, (1,i). minordur.
Teorem 2.7 A matrisi kdsegen elemanlar1 a,,,....... ,a,, olan nxn boyutlu matris
olmak iizere, eger A matrisi iist liggensel, alt tiggensel veya kdsegen matris ise bu

takdirde |Al = a,a,....... a,, dir (Hacisalihoglu H.H., 1977).

Sonug 2.1
i. Amatrisi tersinir bir matris olmak Uzere |A| = ﬁ dir.
ii. | birim matris olmak lzere |I| = 1 dir (Hacisalihoglu H.H., 1977).
Teorem 2.8 A ve B ayni mertebeden kare matrisler olmak tzere |AB|=|A|B| dir

(Hacisalihoglu H.H., 1977).

Tamm 2.13 y = (y;) € R™? vektori ve simetrik A = (a;;) € R™™ matrisi igin,
Q(y): y’Ay=ZZyiyjaij (2.9)
i=1 j=1

ifadesine, y; elemanlarmin bir kuadratik formu ve A matrisine de bu kuadratik formun
matrisi denir. y'Ay kuadratik formu, simetrik bir A matrisi tarafindan karakterize
edilir ve bu matrise kuadratik formun matrisi denir (Hacisalihoglu H.H., 1977). Boyle
bir matris i¢in asagidakiler sdylenebilir.

i. Eger Yy =0 igin y'’Ay >0 ise A pozitif tanimlidir.

ii. Eger Yy =0 igin y'’Ay <0 ise A negatif tanimlidir.

iii. Eger Vy igin y’Ay >0 ise A nonnegatif tanimlidur.

Sonug 2.2 Eger f(z) = z'Az bir kuadratik form, z bir m x 1 tipinde vektor ve A

herhangi bir m x m tipinde simetrik matris ise, bu takdirde

2 f(z) = 2Az (2.10)



olacaktir.
2.2 Lineer Modelin Kurulusu

y gozlemlerin nx1 boyutlu vektori (rasgele vektor), X n x p(n < p) boyutlu

bir bilinen katsayr matrisi, g px 1 boyutlu bilinmeyen parametre vektori ve
E(¢)=0, Cov(e)=X olmak lzere ¢ ise nx1 boyutlu rasgele degiskenlerin

go6zlenebilir olmayan bir vektori olsun. Bu durumda bunlar arasinda
y=Xf+¢ (2.11)

bigiminde varsayilan bir bagintiya bir lineer model veya lineer regresyon modeli denir.
Bu model bazi1 6zel durumlara sahiptir. Bu 6zel durumlar, & rasgele vektdrinin
dagilimina ve kovaryans matrisine ya da X katsayr matrisinin yapisina ve rankina
bagli olarak ortaya ¢ikar. Aksi belirtilmedikge, r(X) = p oldugunu kabul edilecektir,
baska bir deyisle modelimizdeki X katsayr matrisi tam siitun rankli olacaktir, ¢ hata

vektoriiniin dagilimi hakkinda ise U¢ durum g6z dntine ahnabilir:

1. Durum: € ~ N(0, ¢%I)

2. Durum: & bilinmeyen bir dagilima sahip olup E(&)=0ve Cov(¢)=0c?l dir.
3. Durum: Cov(g) = oV dir, burada V bilinen pozitif definit bir matristir.

Birinci durumda her bir ¢ rasgele degiskeni O ortalamali, bilinmeyen o* varyansh

normal dagilima sahip olup ¢; ,i =1,2,3,...... , N, ler kendi aralarinda bagimsizdir.

Ikinci durumda, her bir & nin beklenen degeri sifir ise, & ler iliskisiz ve & ler

bilinmeyen ortak ¢ varyansina sahiptirler. Birinci ve tiglincli durumdaki varsayimlar
altindaki modellere Gauss-Markov modeli denir. ikinci durumdaki modellere ise
bazen en kuguk kareler modelleri adi verilir. Ayrica hata terimi normal dagiliml

oldugunda bu modellere hipotez modelleri de denilmektedir.

y = XB + € lineer modelinde X g vektoriine modelin deterministik kismi, y

ve ¢ vektorlerine ise modelin stokastik kismi adi verilir. y vektori bagimli degisken,
tepki degiskeni veya agiklanan degisken adi verilen bir rastgele degisken ile ilgili
gozlemler vektoridir. X matrisine tasarim matrisi, agiklayici degiskenlerin matrisi,
bagimli degiskenlerin gbzlem matrisi veya model matrisi gibi isimler verilmektedir ve

& vektorune de hata vektoru denilmektedir. Gergek yasamda olaylarin lineer modeller
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yardimiyla modellenmesi ¢alismalarinda y, X, g ve & degiskenleri bircok degisik
sekillerde anlamlandirilmaktadir. Ornegin bazi modellerde y iiretim miktari,

bazilarinda boy uzunlugu, bazilarinda ise bir ekonomik degisken olabilir.

p, hizi ile hareketine baslayan ve S, ivmesi ile dogrusal hareket eden bir
cismin zamana (t’ye) baglh olarak aldig1 yol S = g, + £t formuli ile verilmektedir.

Bu sekilde hareket eden bir cismin hizin1 ve ivmesini bilmek ve daha sonra belli bir
zamanda aldig1 yol miktarin1 belirlemek istedigimizi farzedelim. Bu durumda keyfi
olarak sectigimiz t, , i=12,.......... , N, zamanlarinda yol uzunluklarin1 gézlemlemeye
kalkistigimizda Olgiimlerdeki hatalardan dolayr S;,i=1,2,.......... N, gozlemleri

icin S, = S, + At + ¢, gibi bir modelin diistintilmesmi daha uygun goriinmektedir. Bu

durumda
Sl 1 tl 81
S 1t &2 <ﬁ1>
=1 . , X=|7 . ,E=| . =
Y : v ' d B2/ 31
SN Nx1 1ty NX2 EN/ Nx1

gosterimleri altznda yukarxda belirtilenler
y=Xf+¢

seklinde bir lineer model olarak ifade edilmektedir. Bu modelde eger y gozlem
vektoriindeki gozlemleri veren agiklayici ya da bagimh degiskeni y harfi, X
matrisinin ikinci sutunundaki gozlemler ile ilgili bagimsiz degiskeni X harfi ve hatay1

da ¢ harfi ile gosterirsek bu degiskenler arasindaki baginti

y=PBFthX+e
olarak da ifade edilebilir.

Bir diger 6rnek olarak, belli bir cins narenciye meyve suyu miktarini
narenciyenin agirligina bagl olarak incelemek isteyelim. Gergekte bir narenciyedeki
meyve suyu miktar1 sadece narenciyenin agirligina bagl degildir, ama agirlik ile
meyve suyu arasinda bir fonksiyonel bagitinin (bilinmeyen parametrelere gore lineer
bir ifade olabilir) varligini kabul edip, gozlemlerin bunu dogrulayip dogrulamadigini,
gbzlemlerden c¢ikarilan bir bagintinin bulunmasini1 ve bunlarin neticesinde agirliga

bagli olarak meyve suyu miktarin1 tahmin etmeyi diisiinebiliriz. Bu Ornekteki
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aciklayici degisken olan narenciyenin agirlig: ile agiklanan(bagimli) degisken olan
narenciyedeki meyve suyu miktar1 birer rasgele degisken olacaktir. Bu durumda eger
agirh@ X ile ve meyve suyu miktarin1 da y ile gosterirsek o zaman X ve y
degiskenlerinin bir ortak dagilimi soz konusu olacaktir. Bu durumda E(y|X = x) =
g(x) ifadesine y nin X Uzerinde bir regresyon denklemi denildigini ve X ve y

degiskenlerinin ortak dagiliminin normal olmas1 durumunda bunun

E(ylX =x) = g(x) = Bo + B1x

seklinde verildigini hatirlatalim. Bu takdirde (X, y) iki boyutlu rastgele degiskeninin

ortak dagilimindan N birimlik 6rneklem, (X;,y;) ,i=1,2,...... , N, olmak (izere

Vi = ﬁO + ﬁlXi + &y &~ (0'0-21)

veya
Y1 1 X1 &1
€
y = y:Z FX = 1X2 Le=| 7 ,,3=<B1>
: P ' B2/ 34
YN/ nx1 1 Xy Nx2 €N/ Nx1

matris gosterimi altinda
y=Xf +¢,

modeline bir basit lineer regresyon modeli denir. X ve y rasgele degiskenleri arasinda
bir ortak dagilim diistinmeden sadece y bagiml degisken ile ilgili gézlemlere dayali

olarak,
Vi=Po+ b1 Xi+e, i=12,...... ,N,

biciminde bir ifade s6z konusu oldugunda modele basit lineer model denir.

Ote yandan narenciyenin agirhigi olan X degiskeni ile narenciyedeki meyve
suyu miktart olan y degiskeninin ortak dagilimi normal olmayabilir. Bizim buradaki
amacimiz X degigkeninin gézlenen degerine bagl olarak y degiskeninin gézlenen

degerini 6n gérmek olduguna gore

biciminde bir lineer modeli ele almak daha uygun olacaktir. Bu durumda ¢ hata terimi,

birinci ornekteki yol uzunlugunun o&lgiilmesi sirasindaki hataya benzer bir hatayi
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icermekle birlikte, X degiskeninin belli bir degeri i¢in y degiskenindeki rastgeleligi

ve ayrica model belirlemedeki hatay1 da igerecektir.

Bir lineer modelde eger agiklayici degisken sayisi birden ¢ok ise bu modele
coklu lineer model (multiple linear model) denir. Bir lineer modelde eger bagiml
degisken sayisi birden cok ise bu durumda da modele ¢ok degiskenli model
(multivariate model) adi verilir. Sicaklik ve basincin, sertlik tizerindeki etkisinin
fonksiyon bigiminde bir bagmnti ile ifade edilip edilemeyecegi, bu bagintinin bi¢iminin
ne olacaglr veya sicaklik ile basing degiskenlerinin sertligi ne derece etkileyip
etkilemedigi gibi sorunlar ilk olarak metaliirji biliminin sorunlar1 gibi gdzukmektedir.
Metaliirji biliminin kanunlarina gore sicaklik ve basincin sertlik tizerindeki etkisi tam
olarak belirlenmis olabilir veya baginti1 bicimsel olarak belirlenmis ancak i¢inde
bilinmeyen katsayillar mevcut ya da aralarinda bir bagmti var ama ne oldugu
belirlenmemis olabilir. ilk durumda istatistik¢inin yapacag: fazla bir sey kalmamustir.
Belki sadece belirlenmis olan modelin gegerliliginin sinanmasinda yardimei olabilir.
Ikinci ve {i¢iincii durumlarda ise istatistikciye dnemli gérevler diismektedir. Amag
belirlendikten sonra (Ornegin bu amag hangi sicaklik ve basingta malzemenin sertligi
maksimum olmaktadir seklinde olabilir) gozlemlerin alinacagi en iyt deney
tasarimimnin Segilmesi ve ardindan da bir istatistiksel sonu¢ g¢ikariminin yapilmasi

istatistik biliminin sorunudur.

Bir diger 6rnek olarak belirli bir Grun tirdnun verimini incelemek istedigimizi
varsayalim. Siiphesiz ki verim, toprak ve hava ile ilgili bircok tabiat 6zelligi yaninda
sulama, giibreleme, topragi isleme gibi bazi etkenlere de baghdir. Bu nedenle
modelleme sirasinda, ¢ok karmasik olan gergek hayattaki iliskilerden bazilarini ihmal

ederek, verim miktart (y) icin, toplam yagis miktar1 (X;), sicaklik ortalamasi (X5),

giibre miktar1 (X3) ve birim metrekaredeki bitki sayis1 (X,) degiskenlerine bagl,

Yy =PBo+ X1+ Xofr + X3P3 + Xyt €

biciminde bir modelin gegerli oldugunu varsayalim. Bu durumda gerek model
gegerliliginin sinanmasi ve gerekse gecerli olan bir modelde aciklayici degiskenlerin
etkilerinin yani parametrelerin tahmin edilmesi amaciyla yapilacak arastirmada veri
toplama islemi uygulamada kolay olmayacaktir. Modeldeki yagis miktari ve sicaklik

ortalamasi ile ilgili agiklayic1 degiskenler birer rasgele degisken olmasina ragmen
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giibre miktar1 ile ilgili agiklayici degisken bir deterministik degisken olarak
gorilebilir. Bu nedenle agiklayict degiskenlerin birer rasgele degisken olup
olmadigina bakilmaksizin, bundan sonra agiklayict degiskenler ile ilgili X matrisini,
gbzlem degerlerinin bir matrisi, yani sabitlerin bir matrisi olarak diisiinmek daha

mantikli olacaktir.

2.3 Parametre Tahmini

Simdi bir denemenin n kez tekrarlandigini1 ve asagidaki verinin elde edildigini

varsayalim.
Gozlem y X, X, o X,
Numarasi degiskeni aciklayict degiskenleri
1 Y, X11 X127t Xyp
2 Y, X21 X2 ot Xgp
n
yn xnl an ces xnp

Bu durumda modelin
y=Po+ B X1+ B Xo+ o+ Xyt €

oldugunu kabul ederek, gdzlemlerin n- lilerin ayn1 modele isleyecegi de kabul edilirse

onlar arasinda

Y1 = Bo+ Pix11 + Baxip + -+ ,Bpxlp + &

Y2 = Bo + B1xz1 + BaXap + o+ BpXap + &

Yn = Bo + B1Xn1 + PaXpy + -+ ﬁpxnp + &,

seklinde bir bagint1 saglanir. Bu n tane denklem matris formunda

l ‘ [1 X111 X1z v Xip) Bo &

|1 x21 Xoz vt Xopl [31 n &2

1 xnl Xn2 xan Blp &n
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olarak yazilabilir. Genel olarak, p sayida bagimsiz degisken iceren bir basit lineer
model y = X + ¢ olarak ifade edilebilir. Bu durumda eger regresyon sabiti mevcut

ise, X in birinci sutunu (1,1, ...,1)" olacaktir.

Istatistiksel ¢ikarimlar1 ortaya koymak igin y = X + & modelinde bazi
varsayimlara ihtiyag duyulur. Bu varsayimlar regresyon katsayilarinin tahmin

edicisinin istatistiksel o6zelliklerini incelemek igin kullanilir ve asagidaki gibi

siralanabilir:
(i) E(e)=0.
(ii) E(ee’) = oI,
(i) r(X) =p

(iv) X stokastik (rasgele) olmayan bir matristir.
(v) &€~ N(0,021L,).
Regresyon katsay1 vektoriiniin tahmini i¢in bir genel yontem, uygun sekilde
secilen bir M fonksiyonu igin,
?=1 M(g;) = ?:1 M(J’i = Xi1f1 — Xizf2 — - — xip.Bp)
ifadesini minimumlastirmaktir. Bu durumda parametrelerin tahmini icin M(x) = x?
ile ilgili olan en kii¢lk kareler yontemi gdz 6nline alinir. Tim g vektorlerinin kiimesi

B ile gdsterilsin. Bu durumda eger 6zel bir ek bilgi verilmezse, B kiimesi k —boyutlu

reel 0klid uzayinda olacaktir. Amacimiz &; hatalarinin Kareleri toplamini, yani, verilen

yve X icin,
S(p)=2 e =c'e=(y-XB) (y-Xp)

ifadesini minimum yapan B de bir b’ = (by, by, ..., b,) vektérii bulmaktir. Bu takdirde

S(B) reel degerli, konveks ve diferansiyellenebilir bir fonksiyon oldugunda, bir

minimum daima mevcut olacaktir. Bunun i¢in
S(B)=y'y +BX'XB—2BX"y

yazilir ve S(B) nin § ya gore turevleri alinirsa Sonug 2.2 ye gore
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as(B)

T 2X'XP —2X'y
028B) _ 5y
g = 2X'X
yazilabilir. Bu durumda normal denklem
as(B)

5 =0 > XXB=Xy

dir. Bu durumda r(X) = p oldugu kabul edildiginden, bu durumda X'X pozitif

tanimlidir ve normal denklemin yegane ¢oziimii
B=&X)TXy
dir ki bu £ nin alisilmis en kiigiik kareler tahmin edicisi (OLSE) olarak adlandirilir.
X in tam rankli olmadig1 durumda, (XX ) matrisi XX matrisinin bir genellestirilmis
inversi ve o keyfi bir vektor olmak lzere
B=&X)Xy+[I-XX) XX|w
olacaktir.

Ote yandan X matrisinin tam rankl1 oldugu kabulii altinda bilinen bir V pozitif

tanimli matrisi i¢in E(£)=0 ve D(&)=o"V olarak dikkate alindiginda elde edilen

normal denklemlere karsilik gelen XV 'Xpg=XV™y normal denkleminin tek

¢ozimi olan B = (X'V"'X)"'X'V~'y tahmini genellestirilmis en kiigiik kareler

edicisi olarak bilinir.

Teorem 2.9
i. 9 =XB; y nin deneysel tahmin edicisi olsun. Bu takdirde §; X'Xg = X'y nin
tim S ¢ozlimleri i¢in ayni degere sahiptir.

ii. S(B); X'XB = X"y nin herhangi bir ¢6ziimii i¢in minimuma ulasir (Rao, 1973).

Ispat.i. b paramatresi
b=(XX) Xy+[1-(XX) XX |o
seklinde verilmis olsun. Bu takdirde X (X'X)~X'X = X oldugundan,

Xb=XX'X)X'y+ X[ — (X'X)"X'X]w = X(X'X)"X'y
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olur ki bu @ ya bagl degildir. Bu ise, §y nin XXb= XY nin her b ¢6ziimii i¢in ayn1

degere sahip oldugunu belirtir.
lii. Herhangi g igin,
SB)=[y—-Xb+X(b—-p)I'ly —Xb+X(b-p)l
= —Xb)'(y—Xb)+ (b—B)X'X(b—p)+2(b—B)X'(y—XDb)

=W —-Xb)(y—Xb)+(b—-p)X'X(b—-p)
> (y—Xb)' (y — Xb) = S(b)

=y'y—2y'Xb+b'X'Xb

=y'y—b'X'Xb
=y'y-y9
olduguna dikkat edelim.

Eger y = X +& modeli icin, # tahmini B nin herhangi bir tahmin edicisi ise,
bu takdirde uydurulan degerler § = Xf olarak tammlanir. Bu durumda f asagidaki
ozellikleri saglar.

(i) # nin tahmin hatas1 § — g = (X’X)_ley -B= (X'X)_lX’e seklindedir.
(i) X in rasgele olmadig1 kabul edildiginden ve E(&)=0oldugundan, E(f - ) =

(X'X)"1X'E(¢) = 0 olacaktir. Yani OLSE (alisilmis en kiigiik kareler tahmin

edicisi) B nin bir yansiz tahmin edicisidir.

(i) # min kovaryans matrisi Var(f) = a2(X'X) ™! olacaktur.

Teorem 2.10 (Gauss — Markov Teoremi) Alisilmis en kiigiik kareler tahmin edicisi
(OLSE) $ nin en iyi lineer yansiz tahmin edicisi (BLUE) dir (Rao, 1973).

Ispat. g nin OLSE si y nin bir lineer fonksiyonu olan b= (XX )7l Xy olsun. Ayrica
a nin elemanlar keyfi sabitler olmak iizere, I’ lineer parametrik fonksiyonunun bir

b" =a'y keyfi lineer tahmin edicisini goz dniine alalim. Bu takdirde
E(b")=E(ay)=aXp

yazilabilir ve bu nedenle
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E(b’)=aXp=I'B=aX =I'
oldugunda, b" ayni zamanda |'# mn bir yansiz tahmin edicisidir. Sadece lineer ve

yansiz olan tahmin edicileri goz Oniine almak istedigimizden dolayr kendimizi
a'X =" igin olan tahmin edicilere siirlayabiliriz. Ote yandan
Var(a'y)=aVar(y)a=oc’a’a
ve
Var (I'b) =1'Var (b)l =c%a’X (XX )" X4
oldugu kolayca gosterilebilir. Bu durumda
Var(a'y) —Var(l'b) = ¢%[a’'a — a’X(X'X)"1X'a]
=o0%d'(I — H)a
esitligi goz oniine almirsa (1 —H ) bir pozitif yari tanimli matris oldugundan
Var(a'y)-Var(I'b)=0
dir. Bu durum, eger b™ herhangi bir lineer yansiz tahmin edici ise, bu takdirde
varyansinin b nin varyansindan daha kiigiik olmamasi gerektigini ortaya koyar. Sonug

olarak “en iyi b” sifati bnin lineer yansiz tahmin ediciler i¢inde etkin oldugu

belirtmek Uizere, b en iyi lineer yansiz tahmin edicidir.
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3. GENEL LINEER MODEL VE KISITLAMALI MODELDE TAHMIN
3.1 Genel Lineer Model Altinda Parametre Tahmini

Genel lineer model altinda degisik tahmin edicilerin karakterize edilmesinde

matris rank metodunun kullanilmasi oldukc¢a énemlidir.
y=XB+¢ E(y) = XB, cov(y) = 2%, (3.1)

genel lineer modelinin verildigini varsayalim, burada X € R™P keyfi rankli bir
bilinenler matrisi, y € R™* gozlenebilir bir rasgele vektor, f € RP*! bilinmeyen
parametre vektorl, = € R™™ bilinen keyfi rankli non-negatif definit matris ve o2

bilinmeyen bir pozitif parametredir. (3.1) genel lineer modeli genellikle
M = {y,XB, 0%} (3.2)

seklinde gosterilir. & gozlenemeyen hata vektorii oldugundan £ kovaryans matrisi
hakkinda yanlis bir varsayimda bulunmak oldukga kolaydir. Ayrica X model matrisi
veri toplamada yanlis belirlenmis bir X, formuna da sahip olabilir. Bu durumda (3.2)
deki M orjinal modeli alternatif bir model olarak

My ={y, XoB, 0220} (3.3)

seklinde ifade edilebilir. Bu durumda M, modeline M modelinin misspecified
(yanlis belirlenmis) modeli ad1 verilir. Burada (3.1) modelinin tutarli oldugu yani bir

¢Oziime sahip oldugu varsayilacaktir. Bunun i¢in 1 olasilikla
y € R[X, Z] (3.3)

olmalidir. Eger £ matrisi singuler bir matris ise (3.1) modeline singtler lineer model
veya singller Gauss-Markov modeli de denir. Bu durumda g ve X parametrelerinin
(3.2) de verilen genel lineer model altindaki OLSE ve BLUE tahmin edicileri asagidaki

sekilde verilebilir:

I. B parametresinin (3.2) genel lineer modeli altinda OLSE tahmin edicisi
p=argmin(y — Xp)'(y — XB) (3.4)
dir. Dolayisiyla X nin (3.2) genel linner modeli altinda OLSE tahmin edicisi

OLSEy(XB) = X.OLSEy(B)

seklinde olacaktir.
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ii. X nin (3.2) modeli altindaki BLUE tahmin edicisi, BLUE,(Xf) ile gosterilir, bir
Gy lineer tahmin edicisi olarak tanimlanir 6yle ki E(Gy) = f ve X[ nin (3.2) altindaki
diger herhangi bir yansiz lineer tahmin edicisi Ly ise Cov(Ly)-Cov(Gy) farki
nonnegatif definittir.

P., Q4 ve F, matrisleri
Py=AA*E,=1—-P,=1—AA*ve F,=1—-Py=1—A%A

seklinde tanimlansin. Bu durumda P, matrisistandart i¢ ¢arpima gore RA) lzerindeki
ortoganal izdisiim olup E, ve F, matrisleri ise sirasiyle A’ ve A nisifir uzaylar
tizerindeki dik izdigiimleri gostermektedir. (3.4) bagmtisi ile ilgili normal denklem

X'XB=X"y seklinde olup bu denklemin ¢6ziimii asagidaki iyi bilinen sonugtur.
Lemma 3.1 (3.2) modeli altinda 8 ve X parametrelerinin OLSE tahmin edicileri
OLSEr(B) = (X'X)*X'y +(I — X*XX)v = Xty + Fyv
OLSE»;(XB) = XOLSE»(B) = XXty = Py y,
seklindedir, burada v € RP*? keyfi bir vektordur (Tian, 2009).

Tamm 3.1 Bir K € R™P matrisi icin K vektori M modeli altinda tahmin edilebilir

denir sayet M modeli altinda E(Ly) = Kf olacak sekilde bir L matrisi mevcutsa.

Kp vektorinin M modeli altinda tahmin edilebilir olmasi i¢in gerek ve yeter sart
RK") € RX") olnasidir(bkz. Tian ve Ark. (2008)). Bu durumda BLUE;(KpB) ile
gosterilen Kp vektorinin M modeli altindaki BLUE tahmin edicisi, bir Gy lineer
tahmin edicisi olarak tanimlanir 6yle ki E(Gy) = KB olup KB nin (3.2) altindaki diger
herhangi bir yansiz tahmin edicisi Ly ise Cov(Ly)-Cov(Gy) farki nonnegatif
definittir. (3.2) genel lineer modeli altinda K nin BLUE tahmin edicisinin genel

ifadesi Rao(1973) tarafindan asagidaki lemma da verilmistir.

Lemma 3.2 K € RY™P matrisi verilsin ve KB (3.2) modeli altinda tahmin edilebilir
olsun. Bir Gy tahmin edicisinin (3.2) altinda Kf nin bir BLUE tahmin edicisi olmasi

icin gerek ve yeter sart G matrisinin
G[X,ZEx] = [K, 0] (3.5)

lineer matris denklemini saglamasidir (Rao, 1973).
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Bu denklem daima tutarlidir, yani R([K,0]") < R([X,ZEx]’), veya buna denk olarak,
[K,O0][K,ZEx]T[X,ZEx] = [X, 0]
esitligi gergeklenir. Bu durumda (3.5) denkleminin genel ¢ozim, Py.x. ile gosterilir,
U € R*™ Kkeyfi bir matris ve Exsey =1 — [X, ZEx][X, YEy]* olmak lizere
Pg,x;z = [K, O][X, ZEx ] " +UEx 55y (3.6)
olup (3.2) modeli altinda K8 nin BLUE tahmin edicisi
BLUE(KB) = Py,x;5y (3.7)
seklindedir. Ozel olarak (3.2) modeli altinda X8 nin BLUE tahmin edicisi
BLUE (XB) = Px;zy (3.8)
olacaktir, burada U € R*™ keyfi bir matris olmak lizere
Px;z = [X, 0][X, ZEx| " +UE x 5k, (3.9)

dir. Ayrica {Py.x.s} Ve {BLUE; (KpB)} ile sirasiyla tim Py.yx.y izdiisiimlerinin ve
BLUE, (KpB) lerin ailesini gésterelim. Ote yandan T = £ + XUX’' ve U dar(T) =
r(Z,X) olacak sekilde simetrik bir matris olmak iizere BLUE;(K[) nimn bilinen bir
goOsteriminin
BLUE(KB) = KX'T*X)*X'T*y

seklinde oldugunu belirtelim. Lineer modeller teorisinde (3.2) modelindeki X
matrisinin tam siitun rankli ve £ kovaryans matrisinin de pozitif definit oldugu durum
en sik rastlanilan durumdur. Bu durumda, (3.2) modeli altinda Kf nin BLUE tahmin
edicisi agagidaki standart formda tek tiirlii olarak yazilabilir:

BLUE,;(KB) = X(X'S™1X)"1X's 1y (3.10)

Lemma 3.3 KB (3.2) modeli altinda tahmin edilebilir ve Pg.x.x Ve BLUE;;(Kp)

sirastyla (3.6) ve (3.7) de verildikleri gibi olsun. Bu takdirde asagidakiler saglanir
(Tian, 2009):

(@) Pgx.zX carpimu Py x.x2 = [K,0][X, ZEx]*Z seklinde tek tiirlii olarak yazilabilir.

(b) Pg.x.xX tektir ancak ve ancak r(X,X) =n dir.
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(c) Eger M tutarliise BLUE,;(KB) 1 olasilikla tektir.
(d) cov(BLUE(KB)) = a2[K, 0][X, 2Ex]*X([K, O][X, ZEx]*)’
r(cov(BLUE:(KB))) = r(K) + r(Z) — r(K,Z) = dim[R(K) N R(D)] .

Lemma 3.4 K, € R™P matrisi verilsin ve K, (3.3) modeli altinda tahmin edilebilir
olsun. Bu takdirde K,f nin (3.3) modeli altindaki BLUE tahmin edicisinin genel

ifadesi
seklinde verilebilir, burada Py ;x5 izdlsim matrisi, U, € R¥™™ keyfi bir matris ve

+ ..
E[XOrZOEXO] =1- [XO'ZOEXO][Xo;EoEXO] olmak Uzere
PKo;Xo;ZO - [KO' 0] [XO'ZOEX0]++U0E[X0.ZOEX0] (312)

seklindedir. Bu durumda

(@) Pyyxyz,Zo Sarpmmi Py .y . Xo = [Ko, 0][Xo, ZoEx,]"2o biciminde tek tirli
olarak yazilabilir.
(b) Py, x,z,20 tektirancak ve ancak  7(Xop,Zo) = n dir.
(¢) BLUEj,(KoB) 1 olasilikla tektir ancak ve ancak y € R[X,, Z,] dir.
(d) (3.2) deki varsayim altinda asagidakiler saglanir
E (BLUE», (Ko)) = Pegxoiz, XB

cov(BLUEy, (KoB)) = O-ZPKO;XO;ZOZPI’(O;XO;ZO
(e) Ozel olarak X, nin (3.3) modeli altindaki BLUE tahmin edicisi
BLUE]V[O(XO,B) = Py,i5,¥ (3.13)
seklidedir, burada U € R¥" keyfi bir matris olmak lizere
Py,;5, = [X0,0] [XO:ZOEXO]++UE[XO,ZOEX0] (3.14)

dir (Tian, 2009).
(3.6) ve (3.12) da verilen Py.x.5 Ve Pk x, s, izdisiim matrisleri (3.2) ve (3.3)
modellerinde verilen alti1 matrisle birlikte onlarin Moore-Penrose inversleri ve iki de

keyfi matris iceren matrislerdir.bu nedenle (3.2) ve (3.3) deki genel varsayimlar altinda
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BLUEj¢(KB) ve BLUE), (Kof) arasindaki iliskileri karakterize etmek énemlidir. Bu
nedenle Moore-Penrose inversler ve keyfi matrisler igeren degisik matris ifadelerini
sadelestirmek i¢in bir dizi degisik rank formiillerine ihtiya¢ duyulmaktadir. Parcali
matrisler i¢in asagidaki rank formiilleri Marsaglia & Styan (1974) tarafindan

verilmistir.

Lemma 3.5 AcR™", BeR™*, CeR"™ ve D € R™k matrisleri verilmis olsun. Bu

takdirde

r[A,B] = r(A) + r(E4B) = r(B) + r(EgA) (3.15)
r (21) = 7(4) + 7(CF,) = r(C) + r(AF,) (3.16)

rank esitlikleri sagalnir. Bu nedenle

r[A,B] = r(4) & AA*B = B = R(B) € R(A) (3.17)
r (‘g) — 7(4) o CA*A = C & R(C') S R(A) (3.18)

olacaktir (Marsaglia ve Styan, 1974) .

Ayrica (3.7) ve (3.11) de verilen BLUE tahmin edicileri arasindaki iligkiyi

karakterize etmek icin asagidaki sonug¢ kullanilabilir.

Lemma3.6 4 € R™" B € R™*k C € RP*" ve D € RP*¥ matrisleri verilmis olsun.
Bu takdirde

(@) XA = C ve XB = D matris denklem ¢iftinin ortak bir ¢6ziime sahip olmasi igin

!

C A
gerek ve yeter sart R (D’) CR (B’) veya buna denk olarak

A B\ _
r( i D) = 1(A, B) (3.19)
olmasidir.

(b) XB = D matris denkleminin herhangi bir ¢6ziminin ayni zamanda XA = C

matris denkleminin de bir ¢6zlimii olmasi i¢in gerek ve yeter sart

r(f, g) = r(B) (3.20)

olmasidir (Tian, 2009).
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Ispat. XA =C ve XB = D matris denklem cifti ortak olarak X(4,B) = (C,D)
seklinde yazilabilir. Bu denklemin ¢oziilebilir olmasi i¢in gerek ve yeter sart (3.19) un
saglanmasidir. XB = D nin genel ¢ozim( U, uygun mertebeden keyfi bir matris
olmak lzere X = DB* + U,Ep dir. Bunu XA = C denkleminde yerine yazarak
DB*A+ U,EgA = C elde edilir. Bu esitligin her U, i¢in saglanmasi i¢in gerek ve
yeter sat DB*A = C ve EzA = 0 olmasidir. Bu ise (3.20) ifadesine denktir.

3.2 Genel ve Yanhs Belirlenmis Modeller Altinda BLUE Tahminlerinin Esitligi

Bu kisimda genel lineer model ve yanlis belirlenmis lineer model altinda
parametre fonksiyonlarinin tahminlerinin esitligi incelenecektir. Bunun icgin, X €
R™*P keyfi rankl bir bilinenler matrisi, y € R™*! gézlenebilir bir rasgele vektor, g €
RP*1 bilinmeyen parametre vektori, = € R™ ™ bilinen keyfi rankli non-negatif definit

matris ve a2 bilinmeyen bir pozitif parametre olmak tizere (3.2) ve (3.3) de verilen
M ={y,XB,0%2} ve My ={y, X,B, 0%}

modellerini g0z oniine alalim. Bu durumda M, modeli M modelinin bir yanlis
belirlenmis modeli oldugundan M, modelinin tutarli oldugu varsayilamaz, yani
BLUEjg,(KoB) nn Py x5, I herhangi bir segimi i¢in 1 olasilikla tek olmasi
gerekmez.

Bilindigi gibi bir Gy lineer istatistiginin KB tahmin edilebilir parametre
fonksiyonu i¢in bir en iyi lineer yansiz tahmin edici, BLUE, olmasi i¢in cov(Gy)
kovaryans matrisinin bir minimum olmasidir. Bu durumda Gy nin K tahmin edilebilir
parametre fonksiyonu i¢in bir en 1yi lineer yansiz tahmin edici olmasi i¢in gerek ve
yeter sart G matrisinin

GX:VXL) = (K:0)
matris denklemini saglamasi gerektigini hatirlayalim (bakiniz, e.g., Rao, 1973, p.282).
Ilk olarak (3.2) modeli altinda Kf igin yansiz bir BLUE ¢, (Kof) min varhigt

ile ilgili olarak asagidaki teoremi verebiliriz.

Teorem 3.1 K, K, € R™P matrisleri verilsin ve Ky8 (3.3) modeli altinda tahmin
edilebilir, yani R(K,) € R(X;) olsun. BLUE), (KoB) ve BLUE»,(Xop) (3.11) ve
(3.13) de verildikleri gibi olsunlar. Bu takdirde
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(@) Pyyx,z,X = K olacak sekilde bir Py .x, .5, izdiisiim matrisinin mevcut olmasi igin
gerek ve yeter sart
0 Ex 2o
&R(K’) cCR| X (3.21)
Ko X}
olmasidir. Bu durumda BLUE,(Kof) = P, ;x,.5,y tahmin edicisi (3.2) deki M
modeli altinda K i¢in yansizdir.

(b) Ozel olarak Py,.5,X = X olacak sekilde bir Py 5 izdiisiim matrisinin mevcut

olmas1 i¢in gerek ve yeter sart
R(X, Xo)NR(Ex,Z,) = {0} (3.22)

olmasidir. Bu durumda BLUEj,(Xof) = Px,;5,y tahmin edicisi (3.2) deki M
modeli altinda X i¢in yansizdir (Tian, 2009).

Ispat. (3.12) esitligindeki Py,ixy;5, ifadesi Py .x .z, X = K yerine yazilirsa
+
[Ko, 0] [Xo» z:oExo] X+U0E[X0,EOEX0]X =K
elde edilir. Bu denklemin U, igin ¢oziilebilir olmasi igin gerek ve yeter sart

K — [Ko, 0][Xo, ZoEx, | X

T
E[Xo'EoExo]X

= r(E[XO,EOEXO]X) (3.23)

olmasidir. Bu esitligin her iki tarafina (3.15) uygulanir ve elemanter blok matris

islemleriyle gerekli sadelestirme yapilirsa

K — [Ko, 01[Xo, ZoEx, | X

Tr
E[XOrZOEXo]X

+
_ . |K = [Ko, 01[X0, ZoEx, | X O
X [X0.Z0Ex,]

—7r[Xo, ZoEx,]|

_ K [KO’O]
=7r [X [XO’ EOEXO]l - r[Xo, ZOEXO]

_ [k Ko O
=71 X XO ZOEXO]_T[XO'ZOEXO]

ve
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 (Efxozofixg 1 X) = T (X, X0, ZoEx,) = (X0, ZoEx,)
oldugu goriiliir. Bu nedenle (3.23) ifadesi

K K, 0 _

esitligine denk olacaktir. Yani (3.21) esitligi saglanir. Bu durumda (3.2) altinda

E(Pyy;x0i20Y) = PryixeizoXB = KP esitligi saglanir. Bu ise BLUE,(Kof) nin (3.2)

deki M modeli altinda Kf i¢in olmasi demektir. Boylece (a) saglanmis olur.
K = X ve K, = X, olsun. Bu takdirde (3.21) esitligi
(X, X0, 20Ex,) = 7(X,Xo) + 1(ZoEx,)
esitligine denk olacaktir. Yani (3.22) saglanir ve boylece (b) de saglanmais olur.

Teorem 3.2 K, K, € R™P matrisleri verilsin ve M ve M, modelleri (3.2) ve (3.3) de
verildikleri gibi olsun. KB ve Kyf nin sirasiyla M ve M, modelleri altinda tahmin

edilebilir oldugunu varsayalim. Bu takdirde

(a) Asagidaki ifadeler denktir:
() BLUEj,(KoB) € {BLUE):(KB)} olacak sekilde BLUE, (Ko ) mevcuttur.

0 ExX
.. 0 Ex,Zo .
@i) R % cR e dir.
Ko X}
0 X x 0
0 Zy 0 X, .
(iii) R K’ CR X' 0 0 dir.
K, X500
. K' X'Ey .
(iv) R (Ké) c ER(X(’)EN) , burada Ey = (ZEy, Z,Ey, ) dir.

(b) Ozel olarak asagidaki ifadeler denktir:
() BLUE,(XopB) € {BLUE»(XB)} olacak sekilde BLUEj,(Xof) mevcuttur.

(i) RCX, Xo)NR(ZEy, ZyEy, ) = {0} dir (Tian,2009).

Ispat. K ve Kyf8 sirastyla M ve M, modelleri altinda tahmin edilebilir oldugundan
Lemma 3.3 ve lemma 3.4 den KB ve K8 nin M ve M, altinda BLUE tahminleri

BLUE»(KB) = Pg.x:zy Ve BLUEp (KoB) = Piyixys,Y (3.24)
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ile verilir, burada Py,y.z Ve P, x,x, Matrisleri
PK;X;Z(X; IEy) = (K,0) ve PKO;XO;ZO (XOrZOEXO) = (Ko, 0) (3.25)

matris denklemlerinin ¢ozimleridir. Lemma 3.6 a. dan bu denklem ciftinin bir ortak

¢Ozlime sahip olmasi i¢in gerek ve yeter sart

K’ / X'
0 c EXZ
My | <% \ X}
0 Ex,Zo
olmasidir, yani a. nin ii. sikki1 veya buna denk olarak

YEy XoEx. X Xo
r( 0 0 ° ¥ Ko) = r(ZEx, ZoEx,, X, Xo) (3.26)
esitligi saglanir. (3.15) ifadesi (3.26) nin her iki tarafina uygulanirsa

S X X,

3 %, X
X X X X
X 0 0 o] [EyX EyX
rl4 Xog 8 =rlx 00 of=r[ %Oo]zr[ENX,ENXO]
o P &, 0 X 0 0

oldugu goriiliir. Bu ise sirastyla a. nin iii. ve iv. siklarina denk gelmektedir. Ote yandan
b. de istenilenler ise K = X ve K, = X, almarak a. sikkindan kolayca elde edilir.

Boylece ispat tamamlanmis olur.

Istatistiksel uygulamalarda M modelinde X model matrisi bilinir £ kovaryans
matrisi isebilinmez veya siklikla belirli bir X, matrisi olarak yanlis belirlenir. Bu

durumda Teorem 3.2 den asagidaki sonular ¢ikarilabilir.

Sonu¢ 3.1 X = X, olmak lizere M ve M, modelleri (3.2) ve (3.3) de verildikleri
gibi olsun. KB parametresinin M ve M, modelleri altinda tahmin edilebilir oldugunu

varsayalim. Bu takdirde asagidaki ifadeler denktir:

(1) BLUEy,(KB) € {BLUE;(KB)} olacak sekilde BLUE,(K) mevcuttur.

0 ExX
(i) SR(O) c ER<EX20> dir.
K’ )'é

(i) R(K") € R(X'Ey) , burada Ey = (ZEx, ZoEy, ) dir (Tian, 2009).
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Sonug¢ 3.2 X = X, olmak lizere M ve M, modelleri (3.2) ve (3.3) de verildikleri
gibi olsun. Bu takdirde asagidaki ifadeler denktir:

(i) BLUE ), (XB) = BLUE (XB) olacak sekilde BLUE ., (XB) ve BLUE;(Xp)
tahmin edicileri mevcuttur.
(ii) r(ZEx, ZoEx) = T(EXZ, Exzo) dil’

(i) r(zzo : g)zr(Z,ZO,X)+r(X) dir.

(iv) RXNR(ZEy, ZoEx) = {0} dir (Tian, 2009).

Sonu¢ 3.3 X = X, olmak lizere M ve M, modelleri (3.2) ve (3.3) de verildikleri
gibi olsun. ¥ nin pozitif definit oldugunu varsayalim. Bu takdirde asagidaki ifadeler
denktir:

(i) BLUE, (XB) = BLUE;(XB) olacak sekilde BLUEy, (XB) ve BLUE(XB)
tahmin edicileri mevcuttur.
(i) R(EeZ71X) € R(X) dir (Tian, 2009).

Ispat. X pozitif definit oldugundan Sonug 3.2 iii. ifadesi 7(ZoX~1X) = r(X) esitligine

dontisiir ve bdylece 1. ve 1i. nin denk oldugu sonucuna ulagilir.

Sonug 3.4 X = X, olmak Uzere M ve M, modelleri (3.2) ve (3.3) de verildikleri
gibi olsun. £ ve X, nin pozitif definit oldugunu varsayalim. Bu takdirde asagidaki
ifadeler denktir (Tian, 2009):

(i) BLUE»,(XB) = BLUE(XB) dir.
(ii) BLUE, (B) = BLUE:(B) dir.
(iii) R(E71X) € R(EFIX) dir.

(lV) T(ZEX, ZOEX) = T‘(EXZ) = r(EXZO) yanl m(ZEx) = m(ZOEx) dlr
BLUE3,(Kof) tahmin edicisi genel olarak tek olmadigindan lemma 3.6 (b)

den asagidaki sonug kolayca tiiretilebilir.

Teorem 3.3 M ve M, modelleri (3.2) ve (3.3) deverildikleri gibi olmak lizere KB ve
KoB sirastyla M ve M, modelleri altinda tahmin edilebilir olun. Bu takdirde

(a) Asagidaki ifadeler denktir:
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(i) BLUEx, (Kof) € {BLUE,(Kf)} dir.

0 ExX
.. 0 Ex,Zo .
(i) RX,Z) S R(Ko, Zo) ve R| 4 | SR )‘}, dir.
Ko X}

(b) Ozel olarak asagidaki ifadeler denktir:
(i) {BLUE»;,(XoB)} S {BLUE(XB)} dir.
(i) R(E) € R(X, %) ve R(ZEx, ZoEx, )NR(X,Zy) = {0} dir (Tian, 2009).

Ispat. Lemma 3.6 (b) dan (3.25) deki ikinci denklemingdziimlerinin her birinin (3.25)

deki birinci denkleminde ¢oziimii olmasi igin gerek ve yeter sart

SEy S0y X Xo
T( OX OOXO K Ko) = r(ZOEX()’XO) (327)

oldugu goriiliir. Bu ise (a) nin (ii) sikkina denk gelmektedir. Ote yandan (b) de
istenilenlerise K = X ve K, = X, alinarak (a) sikkindan kolayca elde edilir. Boylece

ispat tamamlanmus olur.

Sonug 3.5 X = X, olmak Gzere M ve M, modelleri (3.2) ve (3.3) de verildikleri
gibi olsun. KB parametresinin M ve M, modelleri altinda tahmin edilebilir oldugunu

varsayalim.

(a) Bu takdirde asagidaki ifadeler denktir:
(i) BLUEj,(KB) € {BLUEx (KB} dir.

0 EyX
(i) R(E) S R, %) ve ‘R(o) c SR(EXZO> dir.
K’ X'

(iii) R(E) € RX,Zy) ve R(K") € R(X'Ey) , burada Ey = (ZEX,ZOEXO) dir.
(b) Ozel olarak asagidaki ifadeler denktir:
(i)  {BLUEx,(XoB)} S {BLUE;;(XB)} dir.

(i)  RE) S RKX, Zy) ve RCEEx, ZoEx)NR(X) = {0} dir.
(i)  RE) S RX,Zy) ve R(ZEy) € R(ZHEy) dir (Tian, 2009).

Ispat. (a) daki (i) ve (ii) nin denkligi Teorem 3.3(a) dan goriilebilir. Verilen sartlar
altinda (3.27) ifadesi
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YEy XoExy X\ _
r( i X) = 1(ZoEyx, X) (3.28)
ifadesine doniisiir ki bu da
r(Z,X,2) =1(X,Z¢) ve r(ZEx,ZoEx) = r(ExZoEx) = 1(ZoEx)

ifadesine denktir. Bu nedenle (3.28) ifadesi (a) nin (iii) sikkina denktir. (b) deki

sonuglar ise (a) dan direct olarak elde edilebilir. Boylece ispat tamamlanir.

Sonug¢ 3.6 X = X, olmak Uzere M ve M, modelleri (3.2) ve (3.3) de verildikleri
gibi olsun. ¥ ve X, nin pozitif definit ve r(X) = (X;) = p oldugunu varsayalim.
BLUE,(XoB) ve BLUE(XB) daki gibi verilsin ve

BLUEy (XoB) = Xo(XoZ™'Xo) ' XoZ ™1y
olsun. Bu takdirde BLUEj,(XB) = BLUE»(Xof8) olmasi igin gerek ve yeter sart
RX) = R(Xy) ve R(EX) = R(EyX,) olmasidir (Tian, 2009).
Ozel bir durum olarak eger (3.2) modeli
My = {y, XoB, 0?1} (3.29)

olarak alinirsa, bu takdirde BLUE, (Kof8) = OLSEj;,(Kof8) = KoXg'y olacaktir. Bu

durumda asagidaki sonuglar verilebilir:

Sonug 3.7 M ve M, modelleri (3.2) ve (3.29) de verildikleri gibi olsun. K ve K,

sirastyla M ve M, modelleri altinda tahmin edilebilir olsunlar. Bu takdirde
(a) Asagidaki ifadeler denktir:
(i) OLSEy, (KoB8) € {BLUE(KP)} dir.
(INRC(KeX3)) € R(X) ve (KoXgX = K dir.
0 ExXEy,
(iii) iR(K’) CR| X'X, |dir.
K X5 X,
(b) Ozel durumda asagidaki ifadeler denktir:
(i) OLSEj, (XoB) € {BLUE\:(XB)} dir.

(i) R(EX,) S RX) ve RX) < R(X,) dir (Tian, 2009).
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BLUE,(KoB) tahmin edicisi genel olarak tek olmadigindan lemma 3.6 (b)

den asagidaki sonug kolayca tiiretilebilir.

Sonu¢ 3.8 X = X, olmak lUzere M ve M, modelleri (3.2) ve (3.29) de verildikleri
gibi olsun. KB M ve M, modelleri altinda tahmin edilebilir olsun. Bu takdirde
asagidaki ifadeler denktir:

() OLSEy, (KoB) € {BLUE:(KB)} dir.

(b) R(ZKXH)) € R(X) dir.

© R (Ig) cm (P

e ) dir (Tian, 2009).

Sonu¢ 3.9 X = X, olmak lizere M ve M, modelleri (3.2) ve (3.29) de verildikleri
gibi olsunlar. Bu takdirde BLUE,(Kof) = BOLSE);(XB) olup asagidaki ifadeler
birbirine denktir:

() OLSE»;(XB) = BLUE,;(Xp) dir.

(b) R(EX) € R(X) dir (Tian, 2009).

3.3 Kisitlamalh Gauss-Markov ve Yanhs Belirlenmis Model Altinda Tahminler

Bu kisimda Gauss-Markov lineer model ve onun kisitlamali modelleri altinda
parametre fonksiyonlarinin tahminlerinin esitlik durumlar1 incelenecektir. Bunun igin,
X € R™P keyfi rankl1 bir bilinenler matrisi, y € R™*! g6zlenebilir bir rasgele vektor,
B € RP*1 bilinmeyen parametre vektori, & € R™" bilinen keyfi rankli non-negatif

definit matris ve a2 bilinmeyen bir pozitif parametre olmak tizere
y = XB+e, E(y) = X, cov(y) = 0%,

genel lineer modelini yeniden gozoniine alalim ve bilinmeyen g parametre vektori
uzerine A € R™? bilinenler matrisi, 7(A) = m ve b € R™? bilinenler vektori

olmak tuzere tutarli bir
AB=b (3.30)

lineer matris denklemi formunda ekstra bir Onbilginin verildigini varsayalim. Bu tip
kisitlamalar siklikla 6rnegin parametre vektorii hakkindaki lineer hipotez testlerinin

incelenmesinde karsimiza ¢ikabilir. (3.30) kisitlamasi ile birlikte (3.2) modeline bir
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kisitlamali Gauss-Markov modeli veya esitlik kisitlamali Gauss-Markov modeli ad:
verilir. Bu model genellikle

R A L ) o

kapali formunda gosterilir. Kisitlamali lineer modeler 6zellikle istatistikte oldukg¢a sik
kullanilir. Bununla beraber (3.31) kisitlamali modeli altinda [ parametre vektorunin
tahmin edilmesi (3.2) genel modeli altinda tahmin edilmesinden ¢ok daha karmasiktir.
Genel lineer modellerin incelenmesinde (3.31) modeli genellikle ¢esitli doniigiimler
yardimiyle agik bir kisitlamali modele doniistiiriiliir. Bu husustaki en popiiler
dontisiimler Lagrange carpanlar1 yontemi ve (3.31) de verilen denkleme bir ¢6ziim

olacak sekilde yeniden bir parametrelestirme yapmaktir.

r(X) =p ve r(A) =m olmasi 6zel durumunda (3.31) modeli altinda f8

parametre vektoriiniin alisilmis en kiiciik kareler tahmin edicisi(OLSE) nin
OLSEy (B) = X'X)7' X'y + (X' X)) HAX'X)'A' 1 " (AX'X)™'X'y — b)

seklinde verildigini belirtelim (bkz. Amemiya, 1985). Ote yandan, eger r(X) < p ise
bu durumda g parametre vektoriinin veya K parametre fonksiyonunun OLSE ve
BLUE tahmin edicilerinin ifade edilmesinde genellestirilmis inversler devreye
girecektir.

(3.30) tutarl matris denkleminin genel ¢oziimii u keyfi bir vektor olmak Gizere
B =A*b + Fyu (3.31a)

seklinde olacaktir, burada Fy = — P, = — A*A dir. Bu durumda eger 8 nin bu
degeri (3.2) modelinde yerine yazlirsa, bu takdirde z =y — XA™h olmak Uzere

yeniden parametrelestirilmis
z=Xu+e¢ (3.31b)

lineer modeli elde edilir. Bu nedenle (3.31) modeli altindaki tahminler (3.31b) den
taretilebilir.

Daha 6nce de ifade edildigi gibi, eger r(X) < p, yani, model matrisi eksik
rankli ise, bu durumda g parametre vektoriinin ve KB parametre fonksiyonunun
OLSE ve BLUE tahmin edicilerinin ifade edilmesinde genellestirilmis inversler igin

icine girecektir.
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K € R¥™P olmak (izere verilen bir K parametre fonksiyonunun (3.2) ve (3.31)
de verilen genel lineer modeller altinda tahmin edilebilir olmasi i¢in daha dnce de ifade
edildigi gibi E(Ly + c¢) = KB olacak sekilde L ve ¢ matrisleri bulunmalidir. Bu
durumda (3.2) de verilen Gauss-Markov modeli altinda K parametre fonksiyonunun
tahmin edilebilir olmasi i¢in gerek ve yeter sart R(K') € R(X') olmasidir. Benzer
sekilde (3.31) de verilen model altinda K8 parametre fonksiyonunun tahmin edilebilir
olmasi ic¢in gerek ve yeter sart R(K') € R(X':A") olmasidir. Buradan kolayca
gorulebilir ki KB parametre fonksiyonu (3.2) modeli altinda tahmin edilebilir ise (3.31)
modeli altinda da tahmin edilebilir olacaktir. K parametre fonksiyonunun (3.2) ve
(3.31) de verilen modeller altindaki OLSE ve BLUE tahminleri farkli kriterlere gore
tanimlandigindan ayni olmalar1 gerekmez. Bu nedenle Kf parametre fonksiyonunun
OLSE ve BLUE tahmin edicilerini karsilastirmak ve 6zel olarak esit olmalar1 i¢in
gerek ve yeter sartlar vermek olduk¢a 6nemlidir. K parametre fonksiyonunun (3.2)

ve (3.31) modelleri altindaki OLSE tahminleri asagidaki lemma da verilmistir.

Lemma 3.7
(@) M modeli (3.2) deki gibi verilsin ve Kf fonksiyonu bu model altinda tahmin

edilebilir olsun. Bu takdirde
OLSE»(KB) = KX*y
seklinde tek tiirlii olarak yazilabilir.

(b) M, modeli (3.31) deki gibi verilsin ve Kf parametre fonksiyonu bu model altinda
tahmin edilebilir olsun. Bu takdirde M, modeli altinda KB parametre fonksiyonunun
OLSE tahmin edicisi K, = KF, ve X, = XF, olmak (izere

OLSEy, (KB) = (KA — Ky X, XAV )b + KXty
seklinde tek tiirlii olarak yazilabilir (Rao, 1973).

Ispat. (a) sikkinmn ispat1 6nceki kisimlarda verilmisti. AX = B matris denkleminin
tutarli olabilmesi icin gerek ve yeter sart biliyoruz ki AAT™B = B olmasidir. Bu
durumda genel ¢ozim C keyfi bir matris olmak lzere X = A*B + F,C parametrik
formunda yazilabilir. Ozel olarak AX = 0 denkleminin nonnegatif tanimli genel

¢Ozumi ise X = F,CC'F, olarak verilebilir. Ote yandan (3.31b) daki u parametre
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vektoriinin OLSE tahmini v keyfi bir vektor olmak tizere @t = X,z + Fy v olarak

yazilabilir. Bu durumda %@ nin bu degeri (3.31a) deki yerine yazilirsa
OLSEy (B) = A*b + F,X, "z + F4Fx u
= (A* — F,X,"XA")b + FyX, "y + F4Fy u
oldugu goriiliir ve boylece ispat tamamlanir.

Benzer sekilde (3.30) ile birlikte (3.2) yanlis belirlenmis modeli de

o= )02 3l eEs
seklinde gosterilebilir.

Bu kisimda K, K, € R™? olmak uzere verilen tahmin edilebilir KB ve K,f
parametre fonksiyonlarmin (3.31) ve (3.32) de verilen kisitlamali lineer modeller

altindaki tahmin edicileri arasindaki iliski incelenecektir.

Lemma 3.8 K, K, € R*™*? olmak (izere Kf ve Koff parametre fonksiyonlar1 sirasiyla
(3.31) ve (3.32) modeleri altinda tahmin edilebilir olsun. Bu takdirde

(i) (3.31) modeli altinda KB nin BLUE tahmin edicisinin genel ifadesi
BLUEMT(Kﬁ) = PK:A:fj} (333)

seklinde yazilabilir, burada P55 ifadesi G(X:£Eg) = (K:0) matris denkleminin bir

¢ozimi olup, bu denklemin genel ¢ézimii U € RX™+™ matrisi keyfi bir matris ve
~_ 1 ¢ _[X a_[Z2 0
g=[p] £=[}] ve2=[5 ¢
olmak tizere
Cay P +
Pr.gs = (K:0)(X:2Eg) + UE(gs5z,) (3.34)

parametrik formunda yazilabilir.

(if) (3.32) modeli altinda Ky8 nin BLUE tahmin edicisinin genel ifadesi

BLUE]V[TO(KOIB) = PKO:)?O:foy (335)

34



seklinde yazilabilir, buradaki Py .¢ 5 ifadesi G(XoiiOEX):(Koio) matris
0

denkleminin bir ¢6zimi olup, bu denklemin genel ¢oziimi U € R>™*™) matrisi

keyfi bir matris ve
P= ) 5o =[] ve to=F ]
olmak lzere

PKO:XO:EO = (Ko:0) (XO:EOEXO)+ + UE<XO:§0E}?O) (3.36)

parametrik formunda yazilabilir (Tian, 2009).

Kisim 3.2 deki sonuglar (3.31) ve (3.32) modellerine uygulanirsa asagidaki

sonuclar verilebilir.

Teorem 3.4 M, ve M, modelleri (3.31) ve (3.32) de verildikleri gibi olmak tizere
Kp ve Kyf sirasiyla M, ve M, modelleri altinda tahmin edilebilir olun. Bu takdirde

(a) Asagidaki ifadeler denktir:

(i) BLUEj, (KoB) € {BLUEy; (KB)} olacak sekilde bir BLUEyy, (K,f3) tahmin

edicisi mevcuttur.

0 EXFAE 0
.. 0 Ex r.20 0 .
r | © oA .
(i) R K R e A’/ dir
Kq x, A

K’ X'E A’ ] )
iii ER( ,> QER( N ,) dir, burada N = (ZExz,, 2, E dir.
( ) KO XOEN A ( XF 52 <0 XOFA)

(b) Ozel olarak asagidaki ifadeler denktir:
(i) {BLUEy, (XoB)} S {BLUE;; (XB)} olacak sekilde bir BLUEj, (Xof)

tahmin edicisi mevcuttur.

(ii) m()Af )20) nm(ZEgFA ZOE(’;OFA> — {0} dir (Tian, 2009).

Ispat. (3.15) ve (3.16) esitliklerinden kolayca gosterilebilir ki
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0 S 0 X 0
/8\ /Q 0 0\ 0 gy O
o 0 0 X, 0 XoFa20 0
R o |S%| 0 PR E W I Ol I 1)
\K’ X' A A 0 / K} X, A
K, Xo A A 0

dir. Bu durumda (a) sikkindaki (i) ve (ii) nin denkligi (3.37) ifadesi ve Teorem 3.2 (a)
dan elde edilir. Ayrica (b) sikkindaki sonug ise K = X ve K, = X, alinmak suretiyle

(a) sikkindan elde edilebilir ve boylece de ispat tamamlanmis olur.

Sonu¢ 3.10 X = X, olmak Uzere M, ve M,,- modelleri (3.31) ve (3.32) de verildikleri

gibi olsun ve Kp fonksiyonu M, ve M,- modelleri altinda tahmin edilebilir olun. Bu
takdirde

(a) Asagidaki ifadeler denktir:
(i) BLUEy,, (KoB) € {BLUE);, (KB)} olacak sekilde bir BLUE),, (K,f) tahmin

edicisi mevcuttur.
0 EXFAE 0
(i) §R<O> C R| Ex,rZ0 O dir.
KI X’ AI
(iii) m(K,) c SR(X,EN ,A,) dir, burada N = (ZEXFA' ZOEXOFA) dlr
(b) Ozel olarak asagidaki ifadeler denktir:

(i) {BLUE),, (XoB)} € {BLUE; (XB)} olacak sekilde bir BLUEj, (XoB)

tahmin edicisi mevcuttur.
XF, 3 %
(i) ER( 0 ) NR <(XFA)’ 0 ) = {0} dir.
0 0 (XF)'
(l“) T(ZEXFA: ZOEXOFA) == T(EXFAZ' EXOFAZO) dlr
(lV) m(XFA)r]ER(ZEXFA, ZOEXOFA) - {O} dll’

5 XF 0 o
W) r(zo . XFA) = 1 (5,50, XF,) + r(XF,) dir (Tian, 2009).

Sonug 3.11 X = X, olmak Uzere M, ve M, modelleri (3.31) ve (3.32) de verildikleri
gibi olsun ve X pozitif definit olsun. Bu takdirde
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(@) BLUE), (XB) = BLUE);, (XB) olacak sekilde bir BLUE;q, (Xf) tahmin
edicisi mevcuttur.
(b) R(ZyZ™1XF,) € R(XF,) dir (Tian, 2009).

Sonu¢ 3.12 X = X, olmak Uzere M, ve M,,- modelleri (3.31) ve (3.32) de verildikleri

gibi olsunve X ve X, pozitif definit olsun. Bu takdirde
(@) BLUE)q,, (XB) = BLUE), (XB) dir.
(b) R(Z"IXF,) = R(Z51XFE,) dir.
(©) R(ZExr,) = R(EoEx,r,) dir (Tian, 2009).

Eger (3.32) de verilen kisitlamali model 6zel olarak

Mo ={3]. 51817 Q) 339

olarak alinirsa bu takdirde asagidaki sonuglar elde edilir.

Teorem 3.5 M. ve M, modelleri (3.31) ve (3.38) de verildikleri gibi olmak tzere
KB ve Kyfp sirasiyla M. ve M, modelleri altinda tahmin edilebilir olun. Bu takdirde

(@) BLUEj, (KoB) € {BLUE); (KB)} olacak sekilde bir BLUE;, (Kop) tahmin
edicisi mevcuttur.
0 Exr,2XoFs 0
(b) R (K’> CR| X'XoF, A'| dir.(Tian, 2009).
K XiXoF, A
Teorem 3.6 X = X, olmak lizere M. ve M, modelleri (3.31) ve (3.38) de verildikleri
gibi olmak tizere Kp fonksiyonu M, ve M, modelleri altinda tahmin edilebilir olun.

Bu takdirde
(a) Asagidaki ifadeler denktir:

(i) BLUEa, (KB) € {BLUE;; (KB)} olacak sekilde bir BLUEjg, (KPB)
tahmin edicisi mevcuttur.

@ % p,y) < ((ZA)%((;)) air

(b) Asagidaki ifadeler denktir:
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(i) BLUEy;, (XB) € {BLUE), (XB)} olacak sekilde bir BLUEj;, (XB)

tahmin edicisi mevcuttur.
(i) R(ZXF,) € R(XFE,) dir (Tian, 2009).

Ispat. (a) sikkinin ispati Teorem 3.5 den goriiliir. Ayrica

R ((r,y) B (é}}jﬁ%))

Exra2XFy 0\ _ [ Exp,ZXF,
(XF,) (XF,) (XFA)'> -7 ((XFA)'(XFA)>

o
& 1(Exp,ZXFy) + 1(XFy) = 7(XFy)
[—4 EXFAZXFA = O
< R(EXE,) € R(XF,) (3.39)
oldugu goriiliir ve boylece de ispat tamamlanmis olur.

3.4 En iyi Lineer Yansiz Tahmin Ediciye Izdiisiim Odakh Bir Yaklasim

Bu kisimda genel lineer model altinda en iyi lineer yansiz tahmin ediciye

izdiisiim tabanli bir yaklasim ele alinacaktir. Bununla ilgili olarak yine
y=XB +¢ E(y) = XB, cov(y) = 623, (3.40)

€nel lineer modelmnin veridiginl varsayalim, oburada € €Y1l ranklii oir
genel li delini ildigini yalim, burada X € R™P keyfi rankli bi
bilinenler matrisi, y € R™* gozlenebilir bir rasgele vektor, f € RP*1 bilinmeyen
parametre vektorl, = € R™™ bilinen keyfi rankli non-negatif definit matris ve o2

bilinmeyen bir pozitif parametredir. (3.1) genel lineer modeli genellikle
M = {y,XB, 0?2} (3.41)

seklinde gosterilir. Burada (3.1) modelinin tutarli oldugu yani bir ¢6ziime sahip oldugu

varsayilacaktir. Bunun i¢in 1 olasilikla
y € R[X, 3]

olmalidir. Bu durumda y vektoriiniin Xf sistematik parc¢asinin (3.1) de verilen genel
lineer model altindaki BLUE, yani lineer, yansiz ve 16ener anlaminda minimum

varyansli tahmin edicisine izdiisiim odakli bir yaklagim verilecektir. Bilindigi gibi bir
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Gy lineer istatistiginin X tahmin edilebilir parametre fonksiyonu i¢in bir en iyi lineer

yansiz tahmin edici, BLUE, olmasi i¢in gerek ve yeter sart G matrisinin

GX=Xve GIX+t =0 (3.42)
matris denklemini saglamasi gerektigini hatirlayalim (bakiniz, e.g., Rao, 1973, p.282).
Burada X+ matrisi R(X1) = R(X)?* olacak sekilde bir matris olup R(X)* vektori
R(X) in orthogonal butiinleyenini géstermektedir. Bu durumda (3.42) ifadesi

G(PX, PZXJ') = (PX’ 0) (343)
olarak da yazilabilir.

Bu kisimdaki amacimiza ge¢gmeden oOnce izdiisiimler ve genellestirilmis
izdiistimler ile ilgili baz1 6zellikleri hatirlatmak yararli olacaktir. Cp,, ile m Xn
tipindeki kompleks matrislerin kiimesini gosterelim. Daha dnce verilenlere ilaveten

L € Cpp icin L* matrisi L nin eslenik transpozu ve L = I — L olsun. C57 ile
CP ={LeCy: L2 =L=L"}

kiimesini tanimlayalim. Bu durumda bir P orthogonal izdiisiimii i¢cin P € C9? olmasi
i¢in gerek ve yeter sart P = LL* olacak sekilde bir L € C,,, matrisinin mevcut
olmasidir. Buradan P, = LL* matrisi R(L) lizerinde dik izdiistim olur ve dolayisiyla
P, =1— P, de R(L)* iizerinde dik izdiisiimdiir.

P € C9P matrisi r rankli olsun. Bu takdirde dyle bir U € C,,,, Uniter matrisi

bulunabilir ki

pP=vU (’5 g) U (3.44)

yazilabilir. Ote yandan herhangi bir Q € C5¥ orthogonal izdiisiimii 4 € C,, ve

D € C,,_, »—, Hermityen matrisler olmak tzere

_ A B\,
e=u(s L) (3.45)
seklinde ifade edilebilir.

Lemma 3.9 Q € C” (3.45) deki gibi parcalanmis olsun. Bu takdirde

(i) A = A? + BB* veya buna denk olarak AA = BB* dir.
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(i) B = AB + BD veyabuna denk olarak B* = B*A + DB* dir.

(iii) D = D? + B*B veya buna denk olarak DD = B*B dir (Baksalary ve Trenkler
2009).

Lemma 3.10 Q € € (3.45) deki gibi par¢alanmis olsun. Bu takdirde
(i) A=A?+BB*, (ii) BD = AB,
(iii) AB = BD, (ivy D=D?+B"B
(v) R(B) SR@), (vi) R(B) € R),
(vii) R(B*) € R(D), (viii) R(B*) € R(D)
(ix) A*B=BD*, (X) A*B=BD*
ifadeleri gerceklenir (Baksalary ve Trenkler 2009).
Lemma 3.11 Q € C9% (3.45) deki gibi parcalanmis olsun. Bu takdirde
() A—BD*B*=Pz, (i) A+BD'B* =Py
(iii) D—B*A*B=P5, (ivy D+ B*A*B=Pjp,
(v D+B*A"B=P,, (vi D-B*A'B =P,
(vii) A+ BD*B*=P,, (vii) A—BD*B* =P,
ifadeleri gergeklenir (Baksalary ve Trenkler 2009).
Lemma 3.12 Q € CIP (3.45) deki gibi par¢alanmis olsun. Bu takdirde
(i) r(A) =r—r4) +r(B),
(i) (D) =n—-r+7r(B) —r(D),
ifadeleri gergeklenir (Baksalary ve Trenkler 2009).
Lemma 3.13 P,Q € CY? olsun. Bu takdirde
(i) P+ P(PQ)*, R(P) + R(Q) iizerinde dik izdiisiimdiir.

(i) P—P(PQ)*, R(P)NR(Q) iizerinde dik izdiisiimdiir (Baksalary ve Trenkler
2009).
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Lemma 3.14 P,Q € C9” olmak Uizere Q matrisi (3.45) deki gibi parcalanmis olsun.

olsun. Bu takdirde

(1) Pwppy+m) = U (Ir 0 ) U™ esitlsigi saglanir, burada dim[R(P) + R(Q)] =
0 Pp

r + r(D) dir.

P; O

(i) Puxpysnio) =U ( 0 )U* esitlsigi saglanmir, burada dim[N(P) +

Ly

N(@Q)] =n—-r(A) —r(B) dir.

(iii) Pgcpynm(g) = U( 05 10) U™ esitlsigi saglanir, burada dim[R(P) N R(Q)] =

r

r(A) — r(B) dir.

. 0 0Y),,. . y .
(V) Py pynno) = U (0 ﬁD) U* esitlsigi  saglanir, burada dim[N(P) N

N(Q)] = n—r —r(D) dir (Baksalary ve Trenkler (2009)).

Ispat. Sadece (i) ve (iii) siklarinin ispatim verecegiz. Digerleri de benzer sekilde

yapilabilir. Lemma 3.9 ve Lemma 3.10 daki sartlara bagli olarak

= 0 0),.
Po=U (B* D) U
matrisinin Moore-Penrose inversinin

= 0 BD*
+ _ *
poy =u(y %5 Ju
seklinde olacagi kolaylikla gosterilebilir. Bu nedenle lemma 3.13 deki (i) sikkindan
R(P) + R(Q) tizerindeki izdiisiimiin (i) sikkinda verilen forma sahip olacagi goulur.

Bu sikkin geri kalan kisminin saglandig ise agiktir.

(iii) sikkini gostermek i¢in Lemma 3.9 un (iii), Lemma 3.10 un (vi) ve (x)

siklar1 ve Lemma 3.11 in (ii) sikki kullanilarak direct bir hesaplamayla

PQ = U(é _OB) v

matrisinin Moore-Penrose inversinin
— P; 0
+ _ A *
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seklinde olacagi kolaylikla gosterilebilir. Bu nedenle lemma 3.13 deki (ii) sikkindan
R(P)NR(Q) tizerindeki izdusiimiin (iii) sikkinda verilen forma sahip olacagi goiiliir.
Ote yandan dim[R(P) N R(Q)] = r(PER(P)mR(Q)) olacagindan

dim[R(P) NR(Q)] =r(Pz) =r(I — AAY) =r —r(4)

oldugu goriiliir. (iii) sikkinin sagindaki esitlik ise Lemma 3.12 nin (I) sikkindan

kolayca goriilebilir ve boylece ispat tamamlanmis olur.
Lemma 3.15 P, Q € C2” matrisleri verilmis olsun. Bu takdirde

(i) R(P)NR(Q) = {0} & r(A) =r(B) dir.

(i R(PP) +R(Q) =C,; © r(D) =n—r dir (Baksalary ve Trenkler 2009).

Genellestirilmis izdiisim kavrami ise ilk kez Rao(1974) tarafindan ortaya

atitlmistir. F = R(F) ve H = R(H) C, ; uzaymin sirastyla F, H € C,, , matrisleriyle
tiretilen alt uzaylari olsun. F N H = {0} ve F+H =R(F,H) < C,, veherue
F + H vektorinin ur € F ve uy € H olmak lzere u = up + uy olarak tek tirli

yazilabildigini varsayalim. Bu durumda eger her u € F + H i¢in Py = up ise Pgjy

izdiistimiine F Uzerinde £ boyunca genellestirilmis izdiisiim operat6rii ad1 verilir.
Py operatdri lineer bir operator olup
PpyF =F ve PpyH =0 (3.46)
esitliklerini saglar, ancak bu operatoriin tek veya idempotent olmasi1 gerekmez.

T € C,,, matrisi verilsin. TF = F ve TH = 0 esitliklerini géz 6niine alalim.

Moore-Penrose inversin 6zelliklerinden (3.46) esitliklerinni
TP=P veTQ =0 (3.47)

olarak yazilabildigi goriillir, burada P = P = FF* ve Q = Py = HH* izdiisiimleri
sirastyla F = R(F) ve H = R(H) Uzerindeki orthogonal izdiisiimlerdir. (3.47)
denklemlerinin ¢oziilebilir olmasi i¢in gerek ve yeter sart asagidaki teoremde

verilmistir.

Teorem 3.7 P,Q € C9” olsun. Bu takdirde (3.47) ifadesinin T ye gore bir ¢oziime
sahip olmasi igin gerek ve yeter sart R(P)NR(Q) = {0} olmasidir (Baksalary ve
Trenkler 2009).
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Ispat. Moore-Penrose inversin 6zelliklerinden

P(P+ Q)+>

<R®+=@@rmun@@rr=(mp+®+

esitligi yazilabilir. Bu nedenle T(P, Q) = (P, 0) esitliginin bir ¢dziime sahip olmasi
i¢in gerek ve yeter sart

P(P+Q)*P =P ve P(P+Q)*Q =0 (3.48)

olmasidir. Boylece

15 _pp+
br=3Pa BD )U* (3.49)

@+Qr=0<
—D*B* 2D*—P,

gosterimi kullanilirsa (3.48) esitliklerinin saglanmasi igin gerek ve yeter sartin P; = 0
esitliginni saglanmasi oldugu goriiliir. Bu ise R(P)NR(Q) = {0} olasina denktir ve

bdylece ispat tamamlanmis olur.

Teorem 3.8 P,Q € CP matrisleri R(P)NR(Q) = {0} olacak sekilde verilmis olsun.

Bu takdirde (3.47) denklemlerinin genel ¢6zimum

T = (QP)* +YPy(psq) (3.50)
seklindedir, burada Y € Cy, , keyfi bir matris olup Py:(pq) ise P + Q nun sifir uzay
tizerindeki orthogonal izdiisimdiir (Baksalary ve Trenkler, 2009).

Ispat. Teoremin ispat burada verilmeyecektir. Ancak ispat igin Baksalary ve Trenkler
(2009) referansina bakilabilir.

(3.42) ifadesinden XpB parametresinin BLUE tahmin edicsinin G (3.43)

esitligini saglayan bir matris olmak lizere Gy seklinde verildigini hatirlayalim. Bu

durumda Py = P ve Py,1 = Q olmak tzere (3.43) esitligi
G(P,Q)=(P,0) (3.51)

formunda yeniden yazilabilir. Yukarida verilen sonuglar kullanilarak (3.51) esitliginin
tim ¢oztmleri belirlenebilir. Ornegin XB parametresinin BLUE tahmin edicsinin iki

Onemli gosterimini
Toy = (QP)*y ve Tyy=(-(PQ)"y
olarak yazabiliriz. Bu tiirden diger gosterimler Teorem 3.8 den elde edilebilir.
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Simdi BLUE tahmin edicisine izdiisiim tabanli diger bir yaklasim ortaya

koyalim. (3.42) deki X+ icin P =1 — XX secilirse
GP=P ve GIP=0 (3.52)

elde edilir. Q € R,, ,, matrisinin Q;,; € R, olmak lzere

Qll le
Q= ( 1 ) 3.53
912 QZZ ( )

seklinde parcalandigini varsayalim, 6yle ki ¥ nin bir pargalanisi
X =U0Qu’ (3.54)

formunda olsun. Buna ilaveten G matrisinin G, € R, , olmak tzere

G G
G = U( 11 12) U’
G21 Gy

olarak parcalandigini varsayalim. Bu takdirde (3.52) deki birinci sartin saglanmasi

icin gerek ve yeter sart G;; = I- Ve G,; = 0 olmasidir. Bunlar dikkate alinarak

GSP=U (0 Q5 + 012922) U’

0 GZZQZZ

oldugu goriilebilir. Sonugta (3.52) deki ikinci esitligin saglanmsi G1,Q,, = —4, Ve
G,,Q5,, = 0 olduguna denk olacaktir. £ nin nonnegative definit olmasinin bir sonucu
olarak R(Q;2) € R(Q,,) oldugu dikkate alimirsa (3.52) denklem ¢iftinin tutarh
oldugu goriliir. Eger G, singuler ise bu takdirde (3.52) denklem ¢ifti sonsuz ¢oklukta

¢Ozlime sahip olacaktir ki iki 6zel ¢6ziim

L. —Q,,Q% I, —04,03,
G =U(r 12 ZZ)U’ ve G =U( )U’ 3.55
0 0 0 ! 0 In—r - 'QIZ'Q-Z'-Z ( )

formuna sahiptir. Bu durumda da
G, = P — PXP(PIP)* ve G, = I, — P(PIP)* (3.56)

oldugu elde edilir ki hig stiphesiz bunlar BLUE tahmin edicisinin literatiirde iyi bilinen
gosterimleridir (bkz. Rao(1978)).

Simdi G matrisi (3.52) nin herhangi bir ¢dzimu olmak tzere BLUE (XB) = Gy
tahmin edicisini g6z o6nune alalim. Bu durumda G matrisi (3.55) de verilen iki

matristen herhangi biriyle gosterildiginde cov(Gy) = a2GXG’ olup
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_ + !
cov(BLUE(XB)) = 02U (911 01202201, 0) U’

. 0 (3.57)

oldugu goriiliir. Bu durumda (3.57) matrisinin sifirdan farkli pargasi (3.53) ifadesinde
tamimlanan Q matrisindeki ,, nin Schur komplementini gostermektedir. Diger

taraftan OLSE (XB) = Py nin kovaryans matrisinin

cov(OLSEXR)) = 02U (0t D) U’ (3.58)

formunda oldugu gosterilebilir. Bunun sonucu olarak (3.55) de verilen G, veya G

matrisi kullanilarak

_ £ qQ
cov(OLSE(XB), BLUE(XB)) = o2U (911 9(1)2922“12 8) U’ (3.59)

elde edilir. Ote yandan (3.57) ve (3.59) ifadelerinden cov(OLSE(XB), BLUE(XB)) =
cov(BLUE (X)) oldugu goriiliir. Dolayisiyla QF, nonnegative definit oldugundan
01,03,Q1, = 0 & Q,,0F, = 0 oldugu elde edilir. Bu durumda R(Q;,) € R(Q,,)
icermesine bagli olarak bu denkligin sag tarafinda bulunan esitlik Q,, = 0 olarak
sadelestirilebilir. Yukarida verilen gosterimler dikkate alinirsa asagidaki teorem

verilebilir.

Teorem 3.9 X parametre vektorii (3.40) modeli altinda tahmin edilebilir, £ (3.54)
deki gibi olmak lizere P de X in siitun uzay: iizerindeki orthogonal izdiisiimii gostersin.
Bu takdirde asagidaki ifadeler denktir (Baksalary ve Trenkler, 2009):

(i) BLUE(XB) = OLSE(XP),

(i) cov(BLUE(XPB)) = cov(OLSE(XRB)),

(iii) cov(OLSE(XB), BLUE(XB)) = cov(OLSE(XP)),
(iv) PT =3P,

V) Q=0

Ispat. Oncelikle belirtelim ki (i) ve (iv) de verilen durumlarm denkligi literatiirden
bilinmektedir (bkz. Puntanen ve Styan (1989)). Ote yandan (ii)<(v) ve (iii)=(v)
denklikleri sirasiyla (4.56) ve (4.58) formiillerini (4.57) ile birlestirerek kolaylikla elde

edilebilir. (iv)&(v) durumu ise agiktir. Boylece ispat tamamlanmis olur.
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3.5 Farkh Kovaryans Matrisli Iki Lineer Modelde BLUE larin Karsilastiriimasi

y=XB+e EY)=XB, cov(y) =2,
genel lineer modelinin verildigini varsayalim, burada X € R™? keyfi rankli bir
bilinenler matrisi, y € R™*! gozlenebilir bir rasgele vektor, f € RP*1 bilinmeyen
parametre vektord, ¥ € R™™ bilinen keyfi rankli non-negatif definit matristir. (3.1)
genel lineer modeli genellikle M = {y, XB, X} seklinde gosterilir. Daha 6nce de
verildigi gibi Py, = AA*, H=PyveM =1—H olsun.

Lemma 3.16 M = {y, Xf3,X} genel lineer modelini géz Oniine alalim. Bu takdirde
OLSE (XB) = BLUE(XB) olmasi ¢in asagidaki sartlardan birisinin saglanmasidir
(Hauke ve Ark., 2012):

(@) HX = ZH dir.

(b) HXM = 0 dir.

(c) R(ZX) € R(X) dir.

(d) N; ve N, keyfi olmak lizere X = HN;H + MN,M dir.

(e) « € R, N;3ve N, keyfi olmak Uizere 2 = al + HN;H + MN,M dir.

Lemma3.17 W = X + XUU'X' matrisi R(X, 2) = R(W) esitligini saglayan keyfi bir
matris olsun. Bu takdirde Fy tahmin edicisinin M = {y, X3, £} modeli altinda X i¢in

lineer olarak yeterli olmasi i¢in gerek ve yeter sart
RX) € RWF") (3.60)
olmasidir (Hauke ve Ark.,2012).

Ayrica Fy tahmin edicisi M = {y, X8, X} modeli altinda X icin lineer olarak yeterli
olsun. Bu takdirde {Fy, FXB, FZF'} doniistiiriilmiis modeli altinda X nin her BLUE
tahmin edicisi orjinal M modeli altinda X nin bir BLUE tahmin edicisidir ve terside

dogrudur. P,y ile
Pyy = A(A'NA)"A'N (3.61)
izdligiimiinii gosterelim.

Bu kisimdaki amacimiz farkli kovaryans matrislerine sahip iki
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My ={y, XB, 2} ve M, = {y, XB, Z,} (3.62)

modelleri altinda X8 parametre vektoriiniin BLUE tahmin edicilerini karsilastirmaktir.
Burada X, ve X, matrislerinin nonnegatif definit oldugu kabul edilecektir. Bu tahmin
edicileri BLUE(XB|M;) = XpB;,i = 1,2 ile gosterelim. Bu durumda nonnegatif

definit W, ve W, matrislerini

W, =%, + XU;U; X', R(W) =R(X, %), i=12 (3.63)
olarak tanimlayalim. Bu takdirde i = 1,2 igin

BLUE(XBIM;) = XB; = X(X'W; X)"X' Wy = Px:Wi+y (3.64)
olacaktir. Simdi ilgi alanimiz X 8; ve X, nin farki iizerine olacaktir. Bu problemin ilk
¢OzUmU X; ve Z, nin her ikisinin de olmasi sart1 altinda BLUE tahmin edicilerinin

esitligi durumunda goz oniine alinmistir. BLUE lar i¢in genel gosterimler L; ve L,

keyfi olmak Uzere G;y dir, burada
G; = PX;Wi+ + Li(I, — Pw,) (3.65)
dir. Burada G; € {PXIZiM} nin se¢imlerinden bagimsiz olarak G;y BLUE tahmin
edicilerinin sayisal degerlerinin tek oldugunu hatirlatalim.
M = {y, Xp, 2} genel modeli altinda
BLUE(XB|M) = Gy ve OLSE(XB|M) = Hy = Pxy (3.66)
tahmin edicilerinin karsilagtirllmasinda her y € R(X, Z) i¢in
Gy = Hy — HEM(MXIM)~ My (3.67)
ayrigimi yazilabilir. Bu nedenle BLUE(XB) ve OLSE(Xp) arasindaki fark
OLSE(XB) — BLUE(XB) = HEM(MZIM) My (3.68)
olacaktir. Ornegin W Lemma 3.17 de tamimlandig1 gibi olmak {izere
Hy —X(X'W*X)"X'W*y = HEM(MEIM)~ My (3.69)
elde edilir. Ayrica M modeli altinda BLUE tahmin edicinin rezidis(

y—X(X'W*rX)"X'W+y = SM(MEIM)~ My = & (3.70)
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olarak ifade edilebilir. (3.69) ve (3.70) ifadelerinin her y € R(W) iginsaglanmasi
gerektigini dolayistyla (3.69) un bir tiir istatistiksel esitlik oldugunu belirtelim. Ote

yandan asagidaki matris denklemleri saglanir.

H—-X(X'W*X)"X'W* = HEM(MEM)~MP,, , (3.71a)
= HEIM(MIM)*M, (3.71b)
I, - X(X'WX)"X'W* = HEM(MEM)*M + (I,, — Py). (3.71¢)

Simdi Py,+y ve Pyy,+y BLUE tahmin edicileri verildiginde bu tahmin
ediciler arasinda (3.68) de verilen OLSE ve BLUE tahmin edicileri arasindaki iliskiye
benzer bir iliski olup olmadig: sorusu akla gelebilir. Asagidaki teorem bu soruya bir

cevap niteligindedir.

Teorem 3.10 M; = {y, XB, 2} ve M, = {y, XB, Z,} modelleri verilmis olsun. W; ve
W, matrisleri (3.63) de tanimlandiklar1 gibi olsun. Farz edlim ki M, modeli cov(y) =
¥, olacak sekilde verilsin ve y € R(W,) = R(X, Z,) olsun. Bu takdirde

X, —XB, = Pywsy = Pywsty

= Py Z,M(MZ,M)™My

= Pywy (v — XB2) (3.72)
dir (Hauke ve Ark., 2012).

Ispat. Bu durumda
Py Py y = X(XWX) ™ X Wi X (X'W5 X))~ X' W5
= X(X'W;X)~X'W5 (3.73)
oldugundan
Pywr—Pxwy = Pyt (- PX:WZ"')

0zdesligi ve dolayisiyla her y € R™ igin

PywpyY — Pxw;}y = Py (- PX:W;)Y (3.74)
yazilabilir. Bu durumda M; modeli altinda y — Py,,+y vektori BLUE tahmin

edicisinin rezidisl olup

(I = Pyay)y = 2, M(MZ,M)" My =&, (3.75)
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olarak yazilabilir. Bu durumda (3.75) ifadesi (3.74) esitliginde yerine yazilirsa (3.72)
elde edilir ve boylece de ispat tamamlanmis olur.

Asagidaki esitligi kullanarak (3.72) de verilen XB; — X, fark: i¢in baska
birtakim ifadeler de verilebilir.

M(MZ,M)*M = M(MZ,M)* = (MZ,M)*M = (MZ,M)*. (3.76)
M = {y,XB,2} modeli altinda |[|OLSE(XB) —BLUE(XP)|| i¢in bir tst smir

Baksalary ve Kala (1980) tarafindan verilmisitr. (3.67) esitligine dayanan bu sunug

Jchmax(HEMZH
|Hy — Gy|| < YLmaxEMED ) ) (3.77)

Chmin(MEM)
olarak verilir, burada ch,,,,(A) A matrisinin en bilyliik 6zdegerini ve chy,in,(4) A
matrisinin sifirdan farkli en kiigiik 6zdegerini gostermektedir. (3.77) de y vektori
karsilik gelen rasgele vektoriin bir gerceklesmesidir. Bu durumda ||X B —XpB, || icin

karsilik gelen sonug

||X,6~’1 r XEZ” = ||PX:W1+EZM(MZZM)+M3’”
< 1Py Z2 MMM 1My = 22 1My (3.78)

seklinde olup, burada matris normu ||A|| = +/chperx (AA") olarak tanimlanmis ve
a= chmax(Px:W;rEzMZZP)'(:W;r) ve b = chyi (MZ,M) (3.79)
olacaktir. Burada (3.78) deki esitsizlik ||A|| matris normunun tutarlilik ve garpimsallik

ozelliginden kaynaklanmaktadir. Bu durumda eger MX, = 0 ise \;_E = 0 olacagindan

(3.78) esitsizliginin sag tarafinin sifira esit olmasi igin gerek ve yeter sart X5, = Xf3,
olmasidir.
Ote yandan BLUE tahin edici ile verilen lineer yansiz bir tahmin edici

arasindaki fark Oklid normu icin bir {ist stnir Makinen (2002) tarafindan verilmistir.

Bu yaklagimi kullanarak G; = P+, i = 1,2, igin 237/% = (2,/*)* olmak iizere
XBy = XB2 = (G1 — G2)(In — Go)y
= (G, — Gy *23 %5, M(Mz,M)~My

= (G, — G)%)*s1 /%, (3.80)

49



esitligi yazilabilir. Bu nedenle asagidaki teorem verilebilir.
Teorem 3.11 Yukarida verilen gosterimler altinda
X8, — XBa|| < |Gy — G)=3%||||25 /%4, || = cSSE(2) (3.81)
esitsizligi gerceklenir, burada a = chp,q (D), cov(y) =%, ,
D = 612,61 — G22,G; = (G1—G2)E2(G1G3)
= cov(Gyy) — cov(Gzy) = cov(GLy — Gzy) (3.82)
ve
SSE(Z,) = £23é, = yM(MZ,M)"My (3.83)
M, modeli altinda hatalarin agirlikli kareler toplamidir (Hauke ve Ark., 2012).
Simdi BLUE tahmin edicilerin genel gosterimlerinin farki ile ilgili olarak
[Pyws + LiUn = Pw)]y = [Pxawy + Lo(ln = Pu,) ]y = d (3.84)

ifadesini ele alalim. Bu durumda M, modelinin dogru bir model oldugunu varsayarak

y € R(W,) oldugunu dikkkate alarak
d = (Pyw; = Pxw)y + Li(ln = Pw,)y (3.85)

yazilabilir. Buradan L; matrisinin keyfi oldugu dikkate alinirsa R(W,) € R(W;)

olmadikga ||d|| nin bir tist sinira sahip olamyacag agiktir.

Simdi belirli sartlar altinda BLUE tahmin edicilerin esitliginin 6zel
dontstiiriilmiis bir model altinda OLSE ve BLUE tahmin edicilerin esitligi olarak
diistiniilebilmesine denk olan bir durumdan sz edilecektir. Bu yaklagim istatistiksel

literature oldukca yenidir. Bunun icin M; = {y, Xf3, 2, } modeli yerine
Myw ={y, XB, W1} (3.86)

modelini gozoniine alalim, burada W; (3.63) de tanimlanan nonnegative definit
matristir. Bu durumda M, modeli altinda Xf nin BLUE tahmin edicisinin M}
altindaki BLUE tahmin edicisi ile ayn1 oldugu gosterilebilir. Ornegin BLUE tahmin
edici (3.64) deki gibi yazilabilir.
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W, matrisinin W, = Z'AZ seklinde pargalandigmi varsayalim, burada Z €

R™Ws  matrisinin  siitunlar1  W; in sifirdan farkhh 3 =3, = - =1, >0
0zdegerlerine karsilik gelen 6zvektorler, A = kosg(dq, Az, ..., Aw,) Ve wy = (W) dir.
Q = A"Y27" € R¥**" olarak tanimlanirsa

Q" =ZAY%, Q*Q =Py, Q'Q= W, QW,Q" =1, (3.87)

esitlikleri yazilabilir. M, modeli Q matrisiyle soldan ¢arpilirsa
My = {QY» QXﬁ'le} = {y*,X*ﬁ,le} (3.88)
modeli ve M, modeli Q matrisiyle soldan ¢arpilirsa

M; ={Qy,QXB,Q2:Q'} = {y., X.5, 2.} (3.89)

modeli elde edilir. Bu durumda Qy nin M, modeli altinda X icin lineer olarak yeterli

olabilmesi i¢in gerek ve yeter sart
RX) € R(W,ZA~Y2) = R(W,W,) (3.90)
olmasidir. Boylece
Py = OLSE(XB|M;),
BLUE(XB|M,) = BLUE(XB|M3)
esitlikleri yazilabilir. Ote yandan
OLSE(QXBIM;) = Q.OLSE(XBIM;) ,
BLUE(QXB|M3) = Q.BLUE (XB| M)

oldugu dikkate alinirsa OLSE (X,[| M) =BLUE (X,.[| M) olmasi i¢in gerek ve yeter
sartin OLSE (XB| M) = BLUE (XB|M) oldugu gorilebilir. Bunun sonucu olarak da
bazi durumlarda Py.y+y ve BLUE(XB|M;) tahmin edicilerinin karsilastiriimasi

problemi OLSE(XB|M3) ve BLUE(XB|M,) tahmin edicilerinin Kkarsilastirilmasi
problemine doniigebilir. Bununla beraber bu doniistiirme tekniginin (3.90) bagintisi
saglandiginda gecerli oldugunu ayrica belirtelim. (3.90) bagintis1 i¢in agik bir ifade
RW,) € R(W,;) oldugunda gergeklesir.

Simdi Py.,+y tahmin edicisinin ne zaman M, modeli altinda bir BLUE

tahmin edici olabilecegini arastiralim. Litertiirde bu sorunun cevabr ile ilgili ¢esitli
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yaklasimlar mevcuttur. Bunlardan bir tanesi M, modelinin tutarli yapan her y vektori

icin (3.72) ifadesinin sifira esit olmas1 gerektigini sdylemektedir. Yani
PX:W1+22M(M22M)‘My =0, her y € R(X,Z,M) icin, (3.91)
veya buna denk olarak
PX:W1+22M(M22M)‘M22M =0 (3.92)
olmasidir ki bununsaglanmasi i¢in gerek ve yeter sart
X'WFE,M =0 (3.93)
olmasidir. Bir diger opsiyon
Pyw+ (X Z;M) = (X,0) (3.94)
esitliginin saglanmasinin control edilmesidir ki bu agik olarak (3.93) ifadesine denktir.

Uciincii bir yol ise yukarida tanimlanan
Ml* = {le QXﬁi le} = {y*;X*ﬁ; le} (395a)

M; ={Qy,QXB,Q2;Q'} = {y., X.p, 2.} (3.95h)

dontistiiriilmiis modellerini g6z oniine almaktir, burada Qy M, modeli altinda X icin

lineer olarak yeterli olup R(X) € R(W,W;) igermesi saglanmaktadir. Bu durumda
OLSE(XB|M;) = BLUE(XB| M) (3.96)
esitliginni saglanmasi igin gerek ve yeter sart
X.ZM, =0 (3.97)
olmasidir, burada M, = AY/?Z'M € {X}} dir. Buradan
X/Z M, = X' ZNYV2NY27'5, ZAN" V2N 7'M
= X'Wi'E,Py, M (3.98)
elde edilir ve dolayisiyla R(X) € R(W,W;) sarti altinda Py.y,+y nin M, modeli
altinda bir BLUE tahmin edici olmas1 i¢in gerek ve yeter sart

X’W1+22PW1M == 0 (399)
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olmasidir. Ote yandan eger R(W,) c R(W,) veya buna denk olarak R(Z,) c R(W,)
ise bu takdirde (3.99) ifadesi (3.93) halini alacaktir. Boylece R(X) ¢ R(W,W;)
yeterlilik sart1 ile birlikte (3.99) ifadesi (3.93) ifadesini saglar. Bu durumda R(X) c
R(W,W,) sart1 altinda (3.96) esitliginin saglanmasi i¢in bir gerek ve yeter sart R(QX)
inZ, = QX,Q’ ortonormal vektorlerinin r = r(QX) = r(X) olmak tizere olusturdugu

bir tabana sahip olmasidir, yani QX matrisi r = r(A) olan bir A matrisi icin
QX = Tw,xrArxp (3.100)

olarak ifade edilebilmesidir, burada T = (ty,t,, ..., t,-) siitunlar1 X, matrisinin keyfi
ortonormal vektorleridir. Bu nedenle Q = kosg(wy, wy, ..., w,.) Ve (w;, t;) ise QZ,Q’

matrisinni 6zdeger-6zvektor cifti olmak tizere T matrisi
QX,Q'T=TQ (3.101)
denklemini saglar. (3.101) esitligi Q" ile soldan garpilirsa
WE,Q'T = Q'TQ (3.102)

elde edilir. r = v(Q'T) oldugundan Q'T nin sifirdan farkli olup ayni1 zamanda W, X,
nin 8zvektdrleri olacaktir. Ote yandan (3.100) esitligi Q" ile soldan ¢arpilirsa

WX = Q'TA (3.103)

elde edilir. Bu ise R(W;tX) in W, Z, nin r tane 6zvektodriiniin olusturdugu bir tabana

sahip olmasi demektir. Bunun sonucu olarak asagidaki teorem verilebilir.

Teorem 3.12 r(X) = r olmak lizere M; = {y, XB,Z,} ve M, = {y, XB, Z,} modelleri

verilsin. Wy matrisi daha dnce verildigi gibi olmak lizere Py.,+y M; modeli altinda

X nin BLUE tahmin edicisi olsun. G matrisi de N (X'W;") uzaymm geren bir matris
olsun. Bu takdirde Py,+y nin M, modeli altinda da X nin bir BLUE tahmin

edicisi olmasi i¢in gerek ve yeter sart asagidaki denk sartlardan birinin saglanmasidir.
() X'W;s,M =0,
(b) REWTX) € R(X),
() REM) c NX'WH) =RWH X)L =RG),

(d) R(W;tX) uzay1 X, nin W, e gore r tane dzvektorii tarafindan gerilir,
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(e) R(X) uzay1 Z,W;" in r tane 6zvektorii tarafindan gerilir,

()] Pyw+Za matrisi simetriktir (Hauke ve Ark., 2012).

Bu teoremde M; modeli altinda X nin 6zel bir BLUE tahmin edicisinin ne zaman
M, modeli altinda da bir BLUE tahmin edicisi olabilecegini gozoniine alindi. M;
modeli altinda X8 nin BLUE tahmin edicisinin her hangi bir gésteriminin M, modeli
altinda da bir BLUE tahmin edicisi olmasi i¢in ne gerekmektedir sorusu akla gelebilir.

Asagidaki teorem bu sorunun cevabi olacaktir.

Teorem 3.13 M, = {y,Xp,2,} ve M, = {y, Xf,2,} modelleri verilmis olsun. W;
matrisi daha Once verildigi gibi olsun. Bu takdirde M; modeli altinda da X nin
BLUE tahmin edicisinin her hangi bir gésteriminin M, modeli altinda da bir BLUE

tahmin edicisi olmasi i¢in gerek ve yeter sart asagidaki denk sartlardan herhangi birinin
saglanmasidir (Hauke ve Ark., 2012):

(@) REXH) € REXD)
(b) £, =%, +XN, X"+ Z,MN,MZ;, N, ve N, keyfi matrisler,
(c) £, =XN;X'+X,MN,,M%,, N;3veN, keyfi matrisler.
Bu kisimda son olarak £, ve X, kovaryans matrislerinin pozitif definit olmasi
durumunu g6z oniine alalim. Boyle bir durum siiz konusu oldugunda M; ve M,

modelleri altinda XS parametre vektoruniin BLUE tahmin edicisi tek bir gosterime

sahip olacaktir ve bu tahmin ediciler arasindaki esitlik Py.s-1 Ve Pyy-1 carpanlari
arasindaki esitlik olacaktir. Bu durumda M; ve M, modellerinin doniistiiriilmiis
versiyonlar1 sirastyla

My = {277y, 272 XB ) = (0 X 1) (3.104a)

My = {72y, 272 x, 275,50 = (y, KB 2 (3.104b)

olacaktir. Bu durumda BLUE tahmin edicilerin esitligi OLSE tahmin edicileri ile M

modeli altinda esitligi ve X8 nin BLUE tahmin edicisinin esitligine denk olacaktir ve
bu nedenle de lemma 3.16 nin (¢) sikkindan R(Z; /*5,27 2. 272X) = R(z;Y%X)

yani, R(2;/?X) = R(X) oldugu gériilir.
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Asagidaki teoremde cesitli denklik sartlar1 siralanmaktadir. Bunlarin tamami

Lemma 3.16 ve Teorem 3.12 den elde edilen sonuglardir.

Teorem 3.14 X, ve X, kovaryans matrisleri pozitif definit ve r(X) = r olmak (izere
M, ={y,XB,2,} ve M, ={y,XB,Z,} modelleri verilmis olsun. Bu takdirde
BLUE(XB|M;) = BLUE(XB|M,) olmas1 igin gerek ve yeter sart asagidaki denk
sartlardan herhangi birinin saglanmasidir (Hauke ve Ark., 2012):

(@) Py.z;t = Pysyt s

(b) XT3 Py 51 = X'I51,

(€) Pyy-1Z3'Pyy;r = X3 Pyysr,

(d) 23" Py.5-1 matrisi simetriktir,

(€) 2127 Pysrr = 2572, 55 0,

() RETX) =REZ'X),

(@) REXD) = REX)

(h) R(E27X) = R

(i) Xzriz,xt =0,

g) iR(Zl_l/ZX) uzay1 21_1/22221_1/2 matrisinin r tane 6zvektériinden olusan bir
U = (uq, Uy, ..., U,) tabanina sahiptir.

(K) Bir Ay, matrisi igin 2, /2X = UA dir, burada r(4) = r ve U (j) deki gibidir.

() X = £/*UA: = TAdir, burada A ve U (k) daki gibidir, bu durumda T = £/*U
matrisinin siitunlart 2,271 matrisinin 6zvektorleri, yani £;Z;1 matrisinin

ozvektorleri, yani ;! e gore X! matrisinin 6zvektdrleri olacaktir.

(m) R(X) uzayi 2221_1/2 matrisinin r tane Ozvektoriinden olusan bir T =

(tq, ty, ..., t,) tabanina sahiptir.

Simdi M, = {y, Xf, Z,} modelinin dogru oldugunu ve cov(y) = Z, oldugunu

varsayalim. Bu durumda f; tahmininin 8, tahminine gore etkinliginin nasil olacagi
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sorusu akla gelebilir. Bunun igin X matrisinin tam siitun rankli oldugunu varsayalim.

f3, tahmininin S, tahminine gore etkinligi kovaryans matrislerinin determinant olarak

— |cov (B, |M3)| — |(x'z31 )71
|covB1IM2)|  |(X'ZTix)"1x'T7iE,Erix(x/27x)~1

__ kxp
T XlExXIET1X|

= eff(B,| M) (3.105)

seklinde yazilabilir, burada X, = ZIl/ZX L X, = 21_1/22221_1/2 olmak Uzere B, =
OLSE (B|M;) = BLUE(B|M,) dir. Béylece a ayni zamanda £, min M; modeli
altindaki Watson etkinligidir(Watson (1955)). Ote yandan p < n/2 ve I, ve X, nin
verildigini varsayalim. Bu takdirde a etkinligi i¢in bir alt sinir
A |XiX*|2 D 4YiVn—i+1
¢ Krxxmx] = sy )? (3.106)
olacaktir, burada y; Z, nin i —yinci en biiyiik 6z degeri olup

yi = chi(2]%5,57 %) = chi(E13,) (3.107)

ile gosterilir.
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4. SONUC ve ONERILER

Bu c¢alismada bir genel lineer model ve bu modelden elde edilen bazi alt
modeller ele alinarak bu modeler altinda bilimeyen parametre vektorleri icin en iyi
lineer yansiz tahmin ediciler (BLUE) belirlenmis ve bu modeler altinda 8 ve Xf
parametre vektorlerinin en iyi lineer yansiz tahmin edicilerinin birbirine esit olmasi
icin bir takim gerek ve yeter sartlar verilmistir. Genel ve yanlis belirlenmis modeller
alinda BLUE tahmin edicilerinin esitligi ve Kisitlamali Gauss-Markov ve yanlis
belirlenmis modeller altinda BLUE tahmin edicilerinin esitligi ile ilgili gerek ve yeter
sartlar verilmis ve daha sonra farkli kovaryans matrisli iki lineer model altinda BLUE
tahmin edicilerin karsilagtirilmasi problem ele alinmigtir. Ayrica izdiistimler ve en iyi

lineer yansiz tahmin ediciye izdiisiim odakli bir yaklagim verilmistir. Bunlara ilaveten

i. Verilen her bir model altinda g ve X parametre vektorleri en kiigiik kareler
tahmin edicileri (OLSE) verilerek, bu tahmin edicilerle en iyi lineer yansiz

tahmin ediciler (BLUE) arasindaki iliskiler incelenebilir.

ii. Verilen her bir model altinda 8 ve X parametre vektorleri agirlikli en kiigiik
kareler tahmin edicileri verilerek, bu tahmin edicilerle en iyi lineer yansiz tahmin

ediciler (BLUE) arasindaki iliskiler incelenebilir.

iii. K uygun mertebeden keyfi bir matris olmak Uzere KB parametre vektoru igin
ad1 gecen modeler altinda en iyi lineer yansiz tahmin ediciler (BLUE)

belirlenerek bu tahmin ediciler arasindaki iliskiler incelenebilir.

iv. Parcalanmig lineer modeler altinda en iyi lineer yansiz tahmin ediciler (BLUE)
belirlenerek bunlarin toplam ayrigimlari arastirilabilir. Baska bir deyisle M =
{y, X, 81 + X,,,0%%} parcalanmis genel lineer modeli ile bu modelin M; =
{y,X;B;, 022}, i = 1,2, alt modelleri icin

OLSE (X181 + X5B,|M) = OLSE(X, 81| M;) + OLSE(X,B,|M3)
BLUE (X151 + X22|M) = OLSE(X1 B, | M) + OLSE(X, | M)
OLSE(X1f1 + X2f2|1M) = BLUE(X, 1| M) + BLUE(X2B2| M)
BLUE (X181 + X2B2|M) = BLUE(X11|M;) + BLUE(X;,|M>)

toplam ayrisimlarinin saglanmasi ile ilgili gerek ve yeter sartlar arastirilabilir.

57



5. KAYNAKLAR

Baksalary, JK. (1984). A study of the equivalence between Gauss- Markoff model and
its augmentation by nuisance parameters. Math. Operationsforsch stat. ser. Stat.
15:3-35.

Baksalary, JK. & Mathew, T. (1986). Linear sufficiency and completeness in an
incorrectly specified general Gauss — Markov model. Sankhya Ser. A: 48, 169—
180.

Baksalary, JK. & Pordzik, PR. (1992). Implied linear restrictions in the general Gauss-
Markov model. J. Stat. Plan Inference. 23: 132-143.

Baksalary, JK. & Trenkler, G. (2009). A projector oriented approach to the best linear
unbiased estimator. Stat. Papers. 50: 721-733.

Ben-Israel, A. & Greville, TNE. (2003). Generalized Inverses: Theory and
Applications. 2nd ed. New York: Springer.

Gan, S., Lu, C. & Tian, Y. (2020). Computation and comparison of estimators under
different linear random effects models. Comm. Stat. and Simul. Comput. 49, no.
5:1210-222.

Gan, S., Sun, Y. & Tian, Y. (2017) Equivalence of predictors under real and over-
parameterized linear models. Comm. Statist. Theory Methods 46, no. 11: 5368-
5383.

Grol3, J. (2004). The general Gauss—Markov model with possibly singular dispersion
matrix. Stat. Pap. 45:311-336.

Grol3, J. & Puntanen, S. (2000). Estimation under a general partitioned linear model.
Linear Algebra and Its Applications 321, 131-44.

GroR, J. & Trenkler, G. (1998). On the equality linear statistics in General Markov
model. In: Mukherjee SP, Basu SK, Sinha BK (eds) Frontiers of Statistics.
Narosa Publishing House, New Delhi, pp. 189-194.

GroB, J., Trenkler, G. & Werner HJ. (2001). The equality of linear transforms of the
ordinary least squares estimator and the best linear unbiased estimator. Sankhya
Ser A 63:118-127.

Giiler, N., Puntanen, S. & Ozdemir, H. (2014). On the BLUES in two linear models
via C.R. Rao’s Pandora’s Box. Communications in Statistics - Theory and
Methods, 5, 43, 921-31.

Haslett, SJ. & Puntanen, S. (2010). Effect of adding regressors on the equality of the
BLUEs under two linear models, Journal of Statistical Planning and Inference,
140, 104-110.

Haslett, S J., Markiewicz, A. & Puntanen, S. (2020). Properties of BLUEs and BLUPs
in full vs. small linear models with new observations. In Recent developments
in multivariate and random matrix analysis: Festschrift in honour of Dietrich von
Rosen, eds. T. Holgersson and M. Singull, 123-46. Cham: Springer.

58



Hauke A., Markiewicz, A. & Puntanen, S. (2012). Comparing the BLUEs Under Two
Linear Models, Communications in Statistics - Theory and Methods, 41:13-14,
2405-2418.

Isolata, J. & Puntanen, S. (2009). A note on the equality of the OLSE and the BLUE
of the parametric function in the general Gauss—Markov model. Stat. Papers,
50:185-193.

Isotalo, J., Puntanen, S. & Styan, GPH. (2008). A useful matrix decomposition and its
statistical applications in linear regression. Commun. Statist. Theor. Meth.
37:1436-1457.

Jammalamadaka, SR. & Sengupta, A. (1999). Topics in circular statistics, London:
World Scientific, England.

Jammalamadaka, SR. & Sengupta, A. (2007). Inclusion and exclusion of data or
parametersin the general linear model. Statistics & Probability Letters 77: 1235—
1247.

Kesriklioglu E. (2013). Genel parcalanmis lineer modeller altinda tahmin edicilerin
etkinliklerinin karsilastirilmasi, Yiiksek Lisans Tezi, Sakarya Universitesi Fen
Bilimleri Enstitlsu, Sakarya.

Liu, S. (2000). Efficiency comparisons between the OLSE and the BLUE in a singular
linear model, Journal of Statistical Planning and Inference, 84, 191-200.

Liu, S., Ma, T., Sengupta, A., Shimizu, K. & Wang, MZ. (2017). Influence Diagnos-
tics in Possibly Asymmetric Circular-Linear Multivariate Regression Models,
Sankhya, B:79. 76-93.

Lu, C., Gan, S. & Tian, Y. (2015). Some remarks on general linear model with new
regressors. Statistics & Probability Letters, 97, 16-24.

Makinen, J. (2000). Bounds for the difference between a linear unbiased estimate and
the best linear unbiased estimate. Phys. Chem. Earth — Part A: Solid Earth and
Geodesy 25:693-698.

Makinen, J. (2002). A bound for the Euclidean norm of the difference between the best
linear unbiased estimator and a linear unbiased estimator. J. Geodesy 76:317—
322.

Markiewicz, A. & Puntanen, S. (2019). Further properties of the linear sufficiency in
the partitioned linear model. In Matrices, statistics and big data, eds. S. E.
Ahmed, F. Carvalho and S. Puntanen, 1-22. Cham: Springer.

Markiewicz, A., Puntanen, S. & Styan, GPH. (2010). A note on the interpretation of
the equality of OLSE and BLUE. Pak. J. Statist. 26:127-134.

Marsaglia, G. & Styan, GPH. (1974). Equalities and inequalities for ranks of matrices.
Linear and Multilinear Algebra, 2, 269-292.

Mitra, SK., Moore, BJ. (1973). Gauss—Markov estimation with an incorrect dispersion
matrix. Sankhya Ser. A, 35, 139-152.

Moore, EH. (1920). On the Reciprocal of the General Algebraic Matrix. (Abstract)
Bulletin of American Mathematical Society, 26, 394-395.

59


javascript:;
https://link.springer.com/article/10.1007/s13571-016-0116-8#auth-A_-SenGupta
https://link.springer.com/article/10.1007/s13571-016-0116-8#auth-K_-Shimizu
https://link.springer.com/article/10.1007/s13571-016-0116-8#auth-M__Z_-Wang
https://link.springer.com/journal/13571

Moore, EH. (1935). General Analysis. Memoirs of the American Philosophical
Society, I. American Philosophical Society, Philadelphia, Pennsylvania, 1935.

Penrose, R. (1955). A generalized inverse for matrices. Mathematical Proc. Cambridge
Philos. Soc. 51:406—413.

Penrose, R. (1956). On best approximate solutions of linear matrix equations.
Mathematical Proc. Cambridge Philos. Soc. 52: 17- 19.

Pordzik, PR. (2012). A bound for the Euclidian distance between restricted and
unrestricted estimators of parametric functions in the general linear model. Stat.
Papers, 53: 299-304.

Puntanen, S. & Styan GPH. (1989). The equality of the ordinary least squares estimator
and the best linear unbiased estimator [with comments by Oscar Kempthorne &
by Shayle R. Searle and with “Reply” by the authors]. Am Stat 43: 153-164.

Puntanen, S., Styan, GPH. & Tian, Y. (2005). Three rank formulas associated with the
covariance matrices of the BLUE and the OLSE in the general linear model.
Econometric Theor., 21, 659-664.

Puntanen, S., Styan, GPH. & lIsotalo, J. (2011). Matrix Tricks for Linear Statistical
Models, Our Personal Top Twenty, Springer, Heidelberg.

Rao, CR. (1967). Least squares theory using an estimated dispersion matrix and its
application to measurement of signals. In: Le Cam LM, Neyman J (eds)
Proceedings of the 5th Berkeley symposium on mathematical statistics and
probability: Berkeley, California, 1965/1966, vol 1. University of California
Press, Berkeley, 355-372.

Rao, CR. (1968). A note on a previous lemma in the theory of least squares and some
further results. Sankhya Ser A 30:245-252.

Rao, CR. (1971). Unified theory of linear estimation. Sankhya Ser, A 33: 371-394.

Rao, CR. (1972). A nte on the IPM method in the unified theory of linear estimation.
Sankhya Ser, A 34: 371-394.

Rao, CR. (1973a). Representations of best linear unbiased estimators in the Gauss-
Markoff model with a singular disperison matrix. Journal of Multivariate Anal.
3:276-292.

Rao, CR. (1973b). Linear statistical inference and its applications, 2nd edn. Wiley,
New York

Rao CR. (1974). Projectors, generalized inverses and the BLUE’s. J R Stat Soc Ser B
Stat Methodol 36: 442—448.

Rao, CR. (1976). Estimation of parameters in a linear model. Ann. Stat. 4:1023-1037.

Rao, CR. (1978). Choice of best linear estimators in the Gauss—Markoff model with a
singular dispersion matrix. Comm Stat Theory Methods A 7:1199-1208.

Rao, CR. (1983). A unified approach to inference from linear models. In: Pukkila T,
Puntanen S (eds) Proceedings of the first international tampere seminar on linear
statistical models and their applications. University of Tampere, Tampere 9-36.

60


https://www.cambridge.org/core/journals/mathematical-proceedings-of-the-cambridge-philosophical-society/volume/CB8D743367485458DA9B3DF087CA4764

Rao, CR, Yanai, H. (1979). General definition and decomposition of projectors and
some applications to statistical problems. J Stat Plann Infer 3:1-17

Rao, CR. & Mitra, SK. (1971a). Further contributions to the theroy of generalized
inverse of matrices and its applications. Sankhya, Ser. A 33,289-300.

Rao, CR.& Mitra, SK. (1971b). Generalized Inverse of Matrices and Its Applications.
New York: Wiley.

Sengupta, D, & Jammalamadaka, SR. (2003). Linear models: An integrated approach.
River Edge: World Scientific.

Tian, Y. (2002). The maximal and minimal ranks of some expressions of generalized
inverses of matrices. Southeast Asian Bull. Math, 25,745-755.

Tian, Y. (2009). On equalities for BLUEs under misspecified Gauss—Markov models.
Acta Mathematica Sinica, English Series 25:1907-1920.

Tian, Y. (2010). On equalities of estimations of parametric functions under a general
linear model and its restricted models. Metrika, 72:313-330.

Tian, Y. & Wiens, DP. (2006). On equality and proportionality of ordinary of least-
squares, weighted least-squares and best linear unbiased estimators in the
general linear model. Statist. Probab. Lett, 76:1265-1272.

Tian, Y. & Puntanen, S. (2009). On the equivalence of estimations under a general
linear model and its transformed models, Linear Algebra and Its Applications.
430, pp. 2622-2641.

Tian, Y. & Zhang, X. (2016). On connections among OLSEs and BLUEs of whole and
partial parameters under a general linear model. Statistics & Probability Letters,
112: 105-112.

Tian, Y., Beisiegel, M. Dagenais, E. & Haines, C. (2008). On the natural restrictions
in the singular Gauss—Markov model. Stat. Papers. 49:553-564.

Watson, GS. (1951). Serial correlation in regression analysis. Ph.D. Thesis, Dept. of
Experimental Statistics, North Carolina State College, Raleigh.

Watson, GS. (1955). Serial correlation in regression analysis, |. Biometrika 42:327—
341.

Werner, HJ. & Yapar, C. (1996) A BLUE decomposition in the general linear
regression model. Linear Algebra and its Applications, 237-238.

Zyskind, G. (1967). On canonical forms, nonnegative covariance matrices, and best
and simple least squares estimators in linear models. Ann. Stat. 38:1092-1110.

61


https://scholar.google.com/scholar?oi=bibs&cluster=14713895771280048289&btnI=1&hl=en
https://scholar.google.com/scholar?oi=bibs&cluster=14713895771280048289&btnI=1&hl=en

OZGECMIS

Kisisel Bilgiler

IAd1 Soyadi

Mehmet OZKAN

Dogum Yeri

Dogum Tarihi

Uyrugu x T.C. O Diger:

Telefon

E-Posta Adresi

Egitim Bilgileri

Lisans

Universite

Fakilte

Bolimu

Mezuniyet Y1l

Yuksek Lisans

Universite

Enstitii Adi

Anabilim Dal1

Program

Mezuniyet Tarihi

Doktora

Universite

Enstiti Adi

Anabilim Dali

Programi

Mezuniyet Tarihi

62




