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DEEP REINFORCEMENT LEARNING
FOR AUTONOMOUS AIR COMBAT

UNDER NOISY OBSERVATIONS

SUMMARY

Artificial intelligence plays an important role in solving many decision-making and
autonomy problems. It is divided into sub-branches: supervised learning, unsupervised
learning, reinforcement learning, etc. Reinforcement learning (RL) has recently proven
itself as a powerful instrument for solving complex problems. It even surpassed human
performance in several challenging applications, such as generating efficient matrix
multiplication algorithms, large-scale strategy management in complex games, etc.

The problem of autonomous air combat has been studied for many years. It has many
advantages. Pilot training in this field is a long and challenging process. In addition, the
performance of the trained pilots is restricted by G-load tolerance and human reflexes.
The autonomous driving of aircraft eliminates these problems. However, it is a difficult
problem to solve. The complexity of air combat arises from aggressive close-range
maneuvers and agile enemy behaviors. Reinforcement learning, which has proven to
solve many difficult problems, can be used in autonomous air combat.

In this thesis, we study reinforcement learning methods that can be integrated into
situations where observation is perceived as noisy in the autonomous air combat
problem. First, we develop an air combat simulation consisting of aircraft dynamics. It
enables simultaneous action selection by multiple aircraft and is suitable for developing
reinforcement learning algorithms. Then, using this simulation, we compare the
performance of the state-of-the-art deep reinforcement learning algorithms, which
are Deep Q-learning (DQN), Rainbow, Proximal Policy Optimization (PPO), and
Advantage Actor-Critic (A2C).

In previous studies, it is assumed that the air combat environment is noiseless.
However, there might be uncertainties in real-life scenarios due to sensor errors,
which prevent the estimation of the actual position of the enemy. Therefore, in this
thesis, we improve the air combat simulation. The new simulation provides noisy
observations to the agents, making the air combat problem even more challenging. In
the experiments, we observe that noise in the environment causes the performance
decrease of reinforcement learning algorithms in proportion to the noise level. In
order to increase the performance, we propose the state stacking method. In our
extensive experiments, the proposed method significantly outperforms the baseline
algorithms regarding the winning ratio, where the performance improvement is even
more pronounced in high noise levels. In addition, we incorporate a self-play scheme
into our training process by periodically updating the enemy with a frozen copy of
the training agent. In this way, the training agent faces smarter enemy strategies
which improve the performance and robustness of the agents. In our simulations, we

xxi



experimentally demonstrate that the self-play scheme provides important performance
gains compared to the classical RL training.

In the training phase, we train reinforcement learning algorithms at different noise
levels, and each policy obtains optimal results at its noise level compared to other
methods. However, in the test stage, the agent cannot select a policy among them
because it does not know the current noise level. Therefore, we study an artificial
neural network-based classifier, which determines the current noise level in the
environment. Using air combat simulation, we create datasets with different state
stacks and noise levels. Then, we train neural network-based classifiers using these
datasets.

Finally, we create an architecture that will cover the entire system. The architecture
consists of the environment and the agent. The environment includes aircraft dynamics
and adding noise to the state space. The environment receives the actions from the
agents, passes them through the aircraft dynamics, and calculates the reward value
with the new observation. The agent takes the current state, applies the state stacking
method, and sends the output to the noise classifier to detect the noise level. Finally, the
proper reinforcement learning policy selects an action and sends it to the environment.
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GÜRÜLTÜLÜ GÖZLEM ALTINDA
OTONOM HAVA MUHAREBESİ İÇİN
DERİN PEKİŞTİRMELİ ÖĞRENME

ÖZET

Yapay zeka bir çok karar verme ve otonomi probleminin çözümünde önemli bir rol
oynamaktadır. Yapay zeka, denetimli öğrenme, denetimsiz öğrenme, pekiştirmeli
öğrenme (RL) vb. alt dallara ayrılır. Pekiştirmeli öğrenme, son zamanlarda karmaşık
sorunları çözmek için güçlü bir araç olduğunu kanıtlamış ve hatta birkaç zorlu
uygulamada insan performansını geride bırakmıştır. Bu öğrenme yöntemini diğer
yapay zeka yöntemlerinden ayıran en önemli fark verinin elde ediliş biçimidir.
Denetimli ve denetimsiz öğrenmede veri seti eğitimden önce oluşturulur ve bu veri
seti kullanılarak eğitim gerçekleştirilir. RL’de bunun aksine eğitim aşamasında
simülasyondan veya gerçek donanım üzerinden veri elde edilir. Bu sebeple sıralı karar
verme ve/veya simülasyona dayalı problemleri çözmek için RL kullanılabilir.

Otonom hava muharebesi problemine uzun yıllardır çalışılmaktadır. Hava
muharebesinin otonom olarak gerçekleşmesinin bir çok avantajı vardır. Öncelikle,
bu alanda pilot eğitimi uzun ve zorlu bir süreçtir. Buna ek olarak, eğitilen pilotların
performansı G toleransı, insan refleksleri vb. koşullara bağlı olarak değişmektedir.
Ayrıca otonom uçakların muharebe dışında da bir çok kullanım alanı vardır. Yüzey
keşif, elektrik hattı izleme, görüntüleme vb. görevler bu alanlara örnek olarak
verilebilir.

Muharebe uçaklarının agresif yakın mesafe manevra gerçekleştirmeleri ve çevik
hareket tarzı sergilemeleri ortamın hızlı değişen bir yapıda olmasına sebep olur.
Ayrıca bu ortam durağan olmayan bir yapıya sahiptir. Çünkü herhangi bir t anında
birden çok uçak ortama aksiyon uygulamaktadır. Bu da şuanki ve bir sonraki durum
arasında kurulan bağlantıyı azaltmaktadır. Bu nedenlerden dolayı hava muharebesi,
çözülmesi zor bir problemdir. Son yıllarda bir çok sıralı karar verme probleminde
başarılı sonuçlar veren pekiştirmeli öğrenme algoritmaları bu problemin çözümünde
kullanılabilir. Hava muharebesinde bir çok sıralı karar sınırlı bir geri bildirim altında
verilmektedir. Örneğin bir muharebenin kazanma veya kaybetme durumunda, ajan
sadece oyun sonucuna göre bir geri bildirim almaktadır. Ara durumlarda uyguladığı
aksiyonların değerlendirilmesi zorlaşmaktadır.

Bu tezde, otonom hava muharebesi probleminde, gözlemin gürültülü algılandığı
durumlara entegre olabilecek pekiştirmeli öğrenme yöntemleri üzerine çalışılmıştır.

İlk olarak, pekiştirmeli öğrenme algoritmalarını geliştirmeye uygun, uçak dinamik-
lerinin olduğu ve aynı anda birden fazla uçağın aksiyon alabildiği bir hava muharebesi
simülasyonu geliştirilmiştir. Bu simülasyon, uçakların birbirlerine göre konum ve
durum bilgilerini hesaplayarak pekiştirmeli öğrenme algoritmalarının girdi olarak
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kullanacağı gözlem bilgisini sağlar. Uçaklar bu gözleme göre hızını ve burun açısını
değiştirerek düşman uçağa karşı avantajlı konuma geçmeye çalışır.

Son yıllarda öne çıkan Deep Q-learning (DQN), Rainbow, Proximal Policy
Optimization (PPO), Advantage Actor-Critic (A2C) gibi ayrık aksiyon uzayında
çalışabilen derin pekiştirmeli öğrenme algoritmalarının performansı, oluşturulan
simülasyonda karşılaştırılmıştır. Gerçekleştirilen deneylerde DQN algoritmasının
diğer algoritmalara göre daha iyi sonuçlar elde ettiği görülmüştür.

Bundan önce gerçekleştirilen çalışmalarda muharebe ortamının gürültüsüz olduğu
varsayılmıştır. Fakat gerçek bir hava muharebesinde çeşitli nedenlerle ortamda
gürültü oluşabilir ve düşman uçağın gerçek konumu tam olarak hesaplanamayabilir.
Bu tezde, bu varsayımı ortadan kaldırmak ve problemin karmaşıklığını arttırmak
için rakip uçağın konumuna bir dağılımdan bağımsız örneklemler alınarak gürültü
eklenmiştir. Böylece eğitilen uçak, düşman uçağın gerçek konumunu bilemez ve onun
konumunu ayrık bir şekilde algılar. Gerçekleştirilen deneylerde, ortamda gürültünün
olması, pekiştirmeli öğrenme algoritmalarının performansının gürültü seviyesi ile
orantılı olarak düşmesine neden olduğu görülmüştür. Bu performansı arttırmak için
durum istifleme yöntemi önerilmiştir. Bu yöntem ile yüksek gürültü seviyesine sahip
ortamlarda referans ajana kıyasla %138’e kadar performans artışı elde edildiği yapılan
deneylerde gösterilmiştir.

Bu tezde odaklanılan bir diğer nokta ise düşman ajanın stratejisini geliştirme
üzerine olmuştur. Çok ajanlı pekiştirmeli öğrenme problemlerinde, eğitilen ajanın
performansı rakip ajanlara bağlı olmaktadır. Çünkü rakibin daha karmaşık hamleler
uygulaması eğitilen ajanı zorlar ve daha iyi stratejiler geliştirmesini sağlar. Bundan
önceki çalışmalarda kullanılan rakip ajan stratejilerinin aksine, kendi kendine
oynama yöntemi, hava muharebesi probleminde uygulanmıştır. Belirli zaman
periyotlarında düşman uçağın stratejisi, o ana kadar eğitilmiş olan ajanın stratejisi ile
değiştirilmiştir. Gerçekleştirilen simülasyonlarda, kendi kendine oynama yöntemi ile
eğitilen ajanın, bu yöntem ile eğitilmeyen ajana karşı %88’lik kazanma oranı elde
ettiği görülmüştür. Ayrıca, kendi kendine oynama yöntemi eğitim aşamasında iki
farklı avantaj sağlamıştır. İlk olarak, düşman politikası için kural tabanlı bir ajan
yazma zorunluluğu ortadan kalkmıştır. İkinci olarak, düşman ajanın politikası belirli
periyotlarda güncellendiği için eğitilen ajan basitten zora doğru bir eğitim stratejisi
doğal olarak ortaya çıkmıştır.

Bu bölüme kadar oluşturulan yapıda, eğitim aşamasında, pekiştirmeli öğrenme
politikaları farklı gürültü seviyelerinde eğitilmiştir ve her bir politika kendi gürültü
seviyesinde diğer modellere kıyasla daha iyi bir sonuç ortaya koymaktadır. Fakat
test ortamında, ajan içinde bulunduğu gürültü seviyesini bilmediği için bu politikalar
arasında bir seçim gerçekleştiremez. Bu sebeple bu tezde çalışılan bir diğer konu ise
yapay sinir ağı tabanlı gürültü sınıflandırıcı olmuştur. Hava muharebesi simülasyonu
kullanılarak farklı istif sayılarında ve farklı gürültü seviyelerinde veri setleri
oluşturulmuştur. Bu veri setleri oluşturulurken dikkat edilen bir nokta, pekiştirmeli
öğrenme politikaları ve sınıflandırıcıların girdilerinin aynı olmasıdır. Böylece
pekiştirmeli öğrenme döngüsü değiştirilmeden sınıflandırıcı bu döngüye entegre
edilebilmiştir. Bu veri setleri kullanılarak yapay sinir ağı tabanlı sınıflandırıcılar
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eğitilmiştir. Eğitim sonucunda istif sayısının yüksek olduğu sınıflandırıcılar yaklaşık
%90’lık bir validasyon başarı oranı sağlamıştır.

Son olarak, oluşturulan sistemi uçtan uca kapsayacak bir mimari oluşturulmuştur.
Bu mimari çevre ve ajandan oluşmaktadır. Çevre bölümünde, uçak dinamikleri ve
durum uzayına gürültü eklenmesi bulunmaktadır. Çevre ajanlardan gelen aksiyonları
alır, uçak dinamiklerinden geçirir ve yeni gözlem ile ödül değerini hesaplar. Son
olarak, mevcut gözleme gürültü ekler, gürültülü gözlem ve ödül değerlerini ajana
gönderir. Ajan kısmında ise, durum istifleme, gürültü sınıflandırma ve farklı
gürültü seviyelerinde eğitilmiş pekiştirmeli öğrenme politikaları bulunmaktadır. Ajan,
çevreden gelen durumları alır ve bunları belirli zaman aralıklarında istifler. Bu
istifleri çevredeki gürültü oranını belirlemek için gürültü sınıflandırıcıya iletir. Gürültü
sınıflandırıcı, çevrenin gürültü seviyesine karar verir ve aksiyon almak üzere gürültü
seviyesine uygun olan pekiştirmeli öğrenme politikasını seçer.
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1. INTRODUCTION

1.1 Motivation of the Study

Modern aircraft such as F-35 and F-16 are produced in agile structures that can make

sudden maneuvers to avoid enemy aircraft. The military pilots experience a long and

tough training process to use these aircraft. Although they show a decent maneuvering

performance on these aircraft, their performance is inherently restricted by the human

reflexes and G-load tolerance.

On the other hand, the autonomous control of the unmanned aircraft (UA) can enable

to utilize the full maneuvering capacity of these aircraft and also prevent the possible

damages to the human pilots [1]. In addition, UA has many civilian use cases [2] such

as surface reconnaissance, power-line monitoring, law enforcement, etc.

As stated by Yang et al. [3], the design of an autonomously maneuvering aircraft

is a highly challenging problem since these aircraft fight each other with aggressive

maneuvers at close range. In addition, unpredictable actions of the enemy aircraft

increases the problem complexity. As a remedy, the deep learning methods and the

optimization algorithms can be used to tackle this problem.

As one of the main branches of artificial intelligence, the RL techniques demonstrate

superior results in several decision-making problems. For example, trajectory

generation in drone racing [4], large-scale strategy management in Dota 2 game

[5], generating efficient matrix multiplication algorithms (Alpha Tensor) [6], and

auto curricula training in contentious multi-agent environment [7] are the specific

illustrative RL based solutions. These examples prove that RL can be used in various

domains.

Similar to these problems, the air combat problem requires sequentially taking

reasonable actions with only a limited feedback from the environment such as the
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win/loss of the fight, therefore, the RL based solutions are highly suitable for this

problem.

This thesis is based on the [8]. We used and extended these ideas.

1.2 Literature Review

The air combat problem is extensively studied in the literature.

McGrew et al. [1] present a method based on approximate dynamic programming.

They pointed out that the success of their approach depends on feature development,

reward shaping, and trajectory sampling.

Isci et al. [9] emphasize that it is important to protect the energy of the aircraft along

with defeating the enemy aircraft in air combat. They define an energy condition for

aircraft and penalized the agent in reward function based on the energy consumption.

Unlike the other studies, Yang et al. [3] define the probability of shooting the enemy

aircraft as being directly proportional to the proximity of the enemy. In addition, they

also divide the training phase into two parts. In the first part, the enemy takes simple

actions. In the second part, the agent plays against a more sophisticated enemy with a

stochastic policy.

Pope et al. [10] employ a hierarchical reinforcement learning methodology. They

develop their approach on DARPA’s AlphaDogFight Trials environment. This

simulator provides low-level controller input. Therefore, they separate the control

structure into different layers and trained different agents for specific tasks.

Hu et al. [11] propose an autonomous maneuver model based on deep reinforcement

learning algorithms. They design rules based on expert knowledge and use them in

the training phase. Thus, by reducing the search space with rule-based actions, they

reduce the time that the agent loses by taking random action.

Another issue emphasized in this thesis is the strategy of the enemy agent. In previous

studies, the strategy of the enemy agent was generally chosen as follows: predefined

maneuvers [3,9,10,12], Minimax [13,14] and heuristic search algorithms (Monte Carlo

Tree Search) [13].
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Tasbas et al. [15] present a method based on Double Deep Q-networks for 2D air

combat problem. They focus on how the enemy agent affects the training performance.

They demonstrate that the trained agent can achieve higher returns when the enemy

policy is more sophisticated.

1.3 Contributions

In this thesis, we implement basic aircraft dynamics and define state and action space

for reinforcement learning algorithms. In previous studies, discrete reward functions

are designed [1,13] according to winning or losing an episode. In this thesis, on

the contrary, we design a continuous reward function and provide its pseudo-code

We also compare state-of-the-art deep reinforcement learning algorithms in the air

combat environment, including Deep Q-networks [16], Rainbow [17], Proximal Policy

Optimization [18], and Advantage Actor-Critic [19].

Previous works focus on different fields in air combat. They implement air combat

environments and propose different approaches for high-level strategy management.

In all of these studies, the environment is assumed to be noise-free, i.e., the exact

position of the enemy aircraft is known. However, this may not be achievable in a

real-life scenario. For example, the sensor errors or medium conditions may cause the

observation to differ from the reality.

In this thesis, contrary to previous studies, we develop a simulation that provides noisy

observations to the agents. We design the noise characteristic to be adjustable through

its parameters. Hence, we can evaluate the performance of the trained agents under a

wide range of noise levels.

Since the agent perceives its enemy as dispersed, the air combat problem becomes

more complex. Thus, the RL algorithm’s performance decreases as the noise level

increases. We propose a state-stacking technique, which reduces the noise and

increases overall performance.

Contrary to previous studies, we aim to create a smarter enemy behavior using

competitive self-play techniques. Therefore, the agent encounters smarter enemy

strategies, and the problem gets harder progressively during training. We create
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different self-play structures to demonstrate the effect of the enemy difficulty

performance of the training agent. Furthermore, we empirically show that the agent

trained with self-play scheme outperforms the agent trained without self-play in a noisy

test environment.

We train different reinforcement learning policies in different noise-level environ-

ments. However, the environment’s noise level is unknown in the test stage. Therefore,

we propose a classifier that measures the noise level in the environment and leads to

selecting the right RL policy for the current noise.

Finally, we summarize the overall system in an end-to-end architecture. This

architecture consists of two sub-systems: agent and environment. The environment

takes action and returns the reward and noisy states. The agent stacks states, sends

them to the noise classifier, and then selects actions from an RL policy based on the

environment’s noise.

1.4 The Outline of the Thesis

The rest of the organization of the thesis is as follows.

In Chapter 2, we introduce the background of the reinforcement learning concept,

including tabular solution methods (Dynamic Programming, Monte Carlo, Temporal

Difference Learning), value-based DRL algorithms (Deep Q-networks, Rainbow),

policy gradients, and actor-critic based DRL algorithms (Advantage Actor-Critic,

Proximal Policy Optimization).

In Chapter 3, we explain the aircraft dynamics, air combat geometry, simulation

environment settings (state and action space), and reward design of the dog fight. We

also share baseline results of the experiments based on deep reinforcement learning

algorithms.

In Chapter 4, we explain how we generate a noisy state in an air combat environment

and reduce noise using state stacking. We also clarify the enemy strategy in air combat

(including self-play) and the results of the proposed methods.
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In Chapter 5, we design a noise classifier based on an artificial neural network. This

classifier takes stacked observation as input and predicts the environment’s noise level.

We also summarize the overall system in an end-to-end noisy air combat architecture.

Finally, Chapter 6 concludes the thesis with final remarks.
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2. BACKGROUND

2.1 Reinforcement Learning

Reinforcement learning is a sub-branch of machine learning that maps situations to

actions in order to maximize reward signal. The learner, the agent, is not provided with

direct information about which action gives more reward in which situation. Instead,

the agent tries to increase the reward signal by discovering the environment through

trial and error.

Reinforcement learning differs in many aspects from supervised learning and

unsupervised learning, which are other sub-branches of machine learning. Firstly,

there is no supervisor in reinforcement learning unlike supervised learning. The only

feedback that the agent gets is the reward signal. Secondly, almost all of the machine

learning algorithms based on independent and identically distributed samples. On the

other hand, in reinforcement learning, the data distribution changes over time during

the training phase. Finally, the agent is in a sequential decision-making process.

Hence, it’s actions affects the subsequent data distribution it obtains [20].

2.2 Key elements of reinforcement learning

There are two main characters in reinforcement learning: agent and environment. The

environment represents a problem that has to be solved by an agent. The agent is the

decision maker or learner algorithm. It interacts with the environment and takes actions

according to the states it is in. After this action, the environment returns a new state

and a reward signal that the agent has to maximize over time.

This agent-environment interaction loop is demonstrated in Figure 2.1. In this figure,

there are some concepts which belongs to reinforcement learning terminology: state

St , reward Rt , action At .
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Figure 2.1 : The agent-environment interaction in reinforcement learning.

A state is a description of the current situation. It is represented as a vector, matrix

or higher-order tensor. For chess bot that learns to play chess game, the state is the

positions of the chess pieces in the board. Another example would be gaming bot that

plays arcade games via visual observation. The state of the bot is the RGB matrix of

the game pixels.

A reward is a scalar feedback signal that indicates how well the agent make decisions in

the environment. The main objective of the reinforcement learning agent is discovering

the environment and improving its policy in order to maximize cumulative reward.

An action is the interaction method of the agent. A set of actions create the action space

of the environment. There are two different action spaces: discrete and continuous.

Discrete action space is limited with a finite number of moves. Some environments,

like Atari [21], use discrete action space, where the actions are "move right", "move

left", "fire", etc. In continuous action spaces, actions are real values. For instance,

Mujoco Simulator [22] use continuous action space, where the actions are the inputs

of robot joints.

Formally, in Figure 2.1, at each time step t, the state St defines the current state of

the environment. The agent selects an action At according to the current state. One

time step later, it receives a reward Rt+1 and next state St+1. This interaction continues

until the final step of an episode T in a finite environment. This interaction creates a

trajectory τ:

τ = S0,A0,R1,S1,A1, ...,AT−1,ST ,RT , (2.1)

where S0 is the initial state of the environment.
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Policy

Policy π is a mapping function that determines the behavior of the agent in the

environment. It decides what action to take in the current state. There are two types

policies in reinforcement learning: deterministic and stochastic. Deterministic policy

selects action with 1 probability in a certain state:

a = π(s). (2.2)

On the other hand, output of a stochastic policy is an action distribution. Each action

has a probability and they sampled with a randomness:

π(a|s) = P [At = a|St = s] . (2.3)

2.3 Markov decision process

Almost all of the reinforcement learning problems are defined as Markov Decision

Process (MDP). It formulates the interaction between the agent and the environment

mathematically. Formally, MDP is a tuple ⟨S,A,P,R,γ⟩, where S is the state space, A

is the action space, P is the state transition model:

Pa
ss′ = P(s,s′,a) = P[St+1 = s′|St = s,At = a], (2.4)

R is the reward model:

Ra
s = R(s,a) = E[Rt+1|St = s,At = a], (2.5)

and γ ∈ [0,1] is the discount factor [23].

2.4 Value Functions

Although reward signal demonstrates the immediate feedback, it does not provide

information about future rewards. Therefore, a discounted reward called return Gt

is calculated:

Gt = Rt+1 + γRt+2 + γ
2Rt+3 + ...=

∞

∑
k=0

γ
kRt+k+1, (2.6)

where discount factor γ ∈ [0,1] emphasis on future reward.
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Value function is the expected return of a state s. It estimates how good the agent to be

in a given state. There are two different value functions: state value function (2.7) and

action value function (2.8). State value function is the expected return starting from

state s and following policy π:

Vπ(s) = Eπ [Gt |St = s] = Eπ

[
∞

∑
k=0

γ
kRt+k+1|St = s

]
. (2.7)

Action value function is the expected return starting from state s, taking action a, and

following policy π:

Qπ(s,a) = Eπ [Gt |St = s,At = a] = Eπ

[
∞

∑
k=0

γ
kRt+k+1|St = s,At = a

]
. (2.8)

The optimal value function gives the maximum return:

V ∗(s) = max
π

Vπ(s), (2.9)

Q∗(s,a) = max
π

Qπ(s,a). (2.10)

following optimal policy π∗.

2.5 Bellman Equation

Value function has a recursive structure. It can be decomposed into immediate reward

Rt+1 and discounted value of next state γV (St+1). The obtained equation is called as

Bellman Equation. Bellman equation in terms of the state value function is:

V (s) = E[Gt |St = s]

= E[Rt+1,+γRt+2 + γ
2Rt+3...|St = s]

= E[Rt+1,+(γRt+2 + γ
2Rt+3...)|St = s]

= E[Rt+1,+γGt+1|St = s]

= E[Rt+1,+γV (St+1)|St = s].

(2.11)

Bellman Equation in terms of the action value function is derived similar to equation

(2.11) as:

Q(s,a) = E[Rt+1 + γQ(St+1,At+1)|St = s,At = a]. (2.12)

10



The Bellman equation of the optimal action value function follows the intuition: if the

optimal value Q∗(s′,a′) is known under next states s′ and actions a′, then the optimal

strategy is to select a′, which maximizes expected value of R(s,a)+ γQ∗(s′,a′).

The Bellman equations of the optimal value functions are:

V ∗(s) = max
a

E
s′∼P

[R(s,a)+ γV ∗(s′)], (2.13)

Q∗(s,a) = E
s′∼P

[R(s,a)+ γmax
a′

Q∗(s′,a′)], (2.14)

where s′ is the next state, a′ is the next action.

2.6 Dynamic Programming

DP uses the bellman equations to evaluate value functions, when the model of the

environment is fully known. One of the common approach of the DP is Value Iteration.

It is a version of Bellman optimality equation (2.14) with an update rule. It performs

policy evaluation for each state s ∈ S until convergence [20]:

V (s) = max
a

(
Ra

s + γ ∑
s′∈S

Pa
ss′V (s′)

)
. (2.15)

After value updates, we obtain a policy π ≈ π∗, which acts greedily:

π(s) = argmax
a

(
Ra

s + γ ∑
s′∈S

Pa
ss′V (s′)

)
. (2.16)

The main drawback of DP is that it needs full knowledge of transition dynamics P and

reward dynamics R. Therefore, it is a model-based algorithm.

2.7 Monte Carlo

Monte Carlo methods learn from experience without using model of the environment.

Therefore, it is a model-free algorithm. The main idea of MC methods is to use

empirical mean to calculate value function. Therefore, MC learns from the complete

episodes: S1,A1,R2,S2,A2, ...,ST ,RT to compute return Gt = ∑
T−t−1
k=0 γkRt+k+1. For

this reason, all episodes must terminate eventually. The overall MC prediction is given

in Algorithm 1 [20]. As in DP, after value updates, policy act greedily for control.
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Algorithm 1 First-visit MC prediction
A policy π , V (s) for all s ∈ S, Returns(s) for all s ∈ S.

1: For each episode:
2: Generate an episode following π: S0,A0,R1,S1,A1, ...,RT
3: G← 0
4: For each time step of episode, t = T −1,T −2, ...0:
5: G← γG+Rt+1
6: Unless St appears in S0,S1, ...,St−1 :
7: Append G to Returns(St)
8: V (St)← avg(Returns(St))

2.8 Temporal Difference Learning

Temporal difference (TD) is one of the central idea of the reinforcement learning.

It combines the advantages of Dynamic Programming (DP) and Monte Carlo (MC)

methods [20].

TD learning uses bootstrapping to update estimates of values like DP. Thus, it does not

wait for a final outcome like MC. It is also a model-free algorithm. Therefore, it does

not use the model of the state and reward dynamics. We arrange these three method’s

backup functions:

V (St)← Eπ [Rt+1 + γV (St+1)], (2.17)

V (St)←V (St)+α(Gt−V (St)), (2.18)

V (St)←V (St)+α(Rt+1 + γV (St+1)−V (St)), (2.19)

where (2.17) is DP backup function, (2.18) is MC backup function and (2.19) is

TD backup function. TD learning is similar to MC method, however, it replaces Gt

with dynamic programming’s bootstrapping update Rt+1 + γV (St+1). This results in a

quantity called the TD Error:

δt = Rt+1 + γV (St+1)−V (St). (2.20)

TD Error is the difference between the current estimate V (St) and it’s better estimate

Rt+1 + γV (St+1). The agent updates its value functions with a better estimate and

optimize its policy in each time step. Notice that TD error uses next reward Rt+1 and

next state St+1. Therefore, it is necessary to take a step for the update.
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Q-learning is one of the RL algorithm, which uses TD updates as a value function

estimator. It does not use the model of the environment and learn from samples, so it

is model-free.

The overall Q-learning algorithm is given in Algorithm 2 [20]. In this algorithm, firstly,

all the Q(s,a) values are initialized arbitrarily for each state and action pairs.

In each episode, environment provides initial state S. Then, each step of episode,

algorithm chooses an action A from Q policy using state S. In practice, all actions

are not taken from the Q policy to ensure exploration of new states. Instead, it is

selected from Q policy with 1− ε probability and random policy with ε probability.

This method is called ε-greedy. Note that ε-greedy approach is not compulsory for

Q-learning. It is just an exploration technique.

Environment takes selected action A and returns reward R and new state S′. Q(s,a)

updates its value using TD error. Then, next state S′ is assigned as current state S. This

loop continuous until the terminal state S.

Algorithm 2 Q-learning (off-policy TD control)
Initialize Q(s,a),∀s ∈ S,∀a ∈ A(s) arbitrarily.

1: For each episode:
2: Initialize S
3: For each time step of episode:
4: Choose A from S using policy derived from Q (e.g., ε-greedy)
5: Take action A, observe R,S′

6: Q(s,a)← Q(s,a)+α[R+ γ maxa Q(s′,a)−Q(s,a)]
7: S← S′

8: until S is terminal

Q-learning is an off-policy algorithm. In other words, the value function updates and

the collected transition samples come from different policies.

2.9 Deep Q-Networks (DQN)

One of the sub-branch of machine learning is deep learning, which uses artificial

neural networks. DL has an extensive usage in many fields: computer vision [24,25],

natural language processing [26] etc. These methods use different ANN architectures,
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including convolutional neural networks, and recurrent neural networks to use in both

supervised and unsupervised problems.

Mnih et al. [27] use the advantageous aspects of deep learning in reinforcement

learning, and compose a deep reinforcement learning algorithm called Deep

Q-Networks. Their main objective is to train control policies based on convolutional

neural networks from raw image data in sophisticated RL environments. They

combine Q-learning algorithm with stochastic gradient descent optimizer, and train

Atari policies.

Deep learning has several challenges from the RL perspective. Firstly, deep learning

algorithms need a large amount of labeled data. The input of the network and target

output is explicit. RL algorithms, on the other hand, learn from scalar, delayed, and

noisy reward signals. The algorithms meet with a reward thousands of time steps

later. This makes it difficult to establish the relationship between intermediate steps

and rewards. Secondly, DL algorithms suppose the data samples are independent. RL

algorithms, on the other hand, encounter highly correlated states. Finally, DL assumes

the data distribution is the same overall as the training. However, data distribution

changes over time in RL environments.

2.10 Rainbow

After DQN algorithm is published, many extensions are offered to improve this

algorithm. Hessel et al. [17] combined six extensions in one structure and called it

the Rainbow Algorithm:

• Double Q-learning,

• Prioritized replay,

• Dueling networks,

• Multi-step learning,

• Distributional RL,

• Noisy nets.
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Algorithm 3 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ

Initialize target action-value function Q̂ with weights θ− = θ

1: For episode=1, M:
2: Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
3: For t=1, T:
4: With probability ε select a random action at
5: otherwise select at = argmaxa Q(φ(st),a;θ)
6: Execute action at in emulator and observe reward rt and image xt+1
7: Set st+1 = st ,at ,xt+1 and preprocess φt+1 = φ(st+1)
8: Store transition (φt ,at ,rt ,φt+1) in D
9: Sample random minibatch of transitions (φ j,a j,r j,φ j+1) from D

10: Set y j =

{
r j if episode terminates at step j+1

r j + γ maxa′ Q̂(φ j+1,a′;θ−) otherwise
11: Perform a gradient descent step on (y j−Q(φ j,a j;θ))2 with respect
12: to the network parameters θ

13: Every C steps reset Q̂ = Q
14: End For
15: End For

Double Q-learning

The first idea is the Double Q-learning [28]. The DQN algorithm has an overestimation

bias problem because of using the max term in temporal difference updates. The DQN

optimizes the neural networks by minimizing the following loss:

(Rt+1 + γt+1 max
a′

q
θ
(St+1,a′)−qθ (St ,At))

2, (2.21)

where the θ is the online network parameters and the θ is the target network parame-

ters. The online network selects actions and is updated through back-propagation. The

target network, on the other hand, is not directly optimized, it’s parameters are updated

every n step by the online network. Target network use increases the stability of the

training.

Double Q-learning uses two different networks to decouple the max term. The first

network selects actions, and the second network estimates the value of these actions,

using the loss:

(Rt+1 + γt+1q
θ
(St+1,argmax

a′
qθ (St+1,a′))−qθ (St ,At))

2. (2.22)
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This change decreases overestimations of the Q values and improves performance

[17,28].

Prioritized experience replay

Another fruitful extension is Prioritized Experience Replay (PER) [29]. Deep

Q-learning samples data from the replay buffer uniformly. Thus, each sample has

an equal selection probability in the training phase. Prioritized experience replay, on

the other hand, assigns a probability pt for each transition. The main idea is the select

valuable transitions more frequently.

The selection probability pt is calculated by absolute temporal difference error:

pt ∝ |Rt+1 + γt+1 max
a′

q
θ
(St+1,a′)−qθ (St ,At)|ω , (2.23)

where ω is the importance exponent, which adjusts the probability of selecting a

transition.

The prioritized experience replay generates bias because it changes the sampling

distribution. Therefore, the authors propose prioritization importance sampling

weights to correct bias:

wi =

(
1
N

1
P(i)

)β

, (2.24)

where β is the prioritization importance sampling parameter. β is between 0 and

1. With β = 1, the sampling bias is fully compensated, and the distribution is

uniform. Lastly, this method inserts new transitions to the replay buffer with the

highest probability to increase new samples selection probability.

Dueling networks

Another improvement on the DQN algorithm is Dueling Networks [30]. The dueling

network decomposes the Q function Q(s,a) into two quantities: the state-value

function V (s) and the state-dependent action advantage function A(s,a). The

state-value function V (s) is the expected return of a state s. The action advantage

function is a delta value, which demonstrates how much extra reward is obtained by

selecting a particular action. The action advantage value could be positive, negative or

zero.
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The main idea of the using dueling architecture is to show that it is unnecessary to

estimate the value of each action in every state, e.g., in the Atari game Enduro [30],

the agent should select an action only when it encounters an obstacle. If there is no

obstacle, then Q values should be close to the state-value in this scenario.

The network architecture of action values [17]:

Aθ (s,a) =Vη( fξ (s))+
(

Aψ( fξ (s),a)−
∑a′ Aψ( fξ (s),a′)

Nactions

)
, (2.25)

where ξ is the parameters of the shared encoder fξ , η is the parameters of the value

stream fη , ψ is the parameters of the advantage stream fψ , and the overall network is

θ = (ξ ,η ,ψ). To keep stability of the optimization, the mean of the advantage values

are subtracted from the each advantage value.

Multi-step learning

Vanilla Q-learning uses one step learning, i.e., it receives a single reward and select

maximum Q-value at time t:

Q(St ,At)← Q(St ,At)+α

[
Rt+1 + γ max

a
Q(St+1,a)−Q(St ,At)

]
. (2.26)

Sutton et al. [31] propose forward-view n-step targets, which leads faster learning. In

this method, we define n-step return:

R(n)
t ≡

n−1

∑
k=0

γ
k
t Rt+k+1, (2.27)

and multi-step DQN loss:

(R(n)
t + γ

(n)
t max

a′
Q

θ
(St+n,a′)−Qθ (St ,At))

2. (2.28)

Distributional reinforcement learning

Q-learning uses the expected return as a value function. Distributional reinforcement

learning [32], on the other hand, proposes a value distribution instead of the expected

return, i.e., it replaces action-value Q with a value distribution Z:

Z(St ,At) = R(St+1,At+1)+ γZ(St+1,At+1). (2.29)

and the expectation of the Z is the Q:

Q(S,A) = EZ(S,A). (2.30)
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Figure 2.2 : Distributional reinforcement learning network architecture [33].

Bellemare et al. [32] model value distribution dt using a discrete distribution. The

distribution dt at time t is defined with a probability mass pθ (st ,at) and a support z,

i.e., dt = (z, pθ (st ,at)). The main goal is to bring close the estimated distribution to

real distribution by changing network parameter θ .

The support z is the set of atoms:

zi =VMIN +(i−1)∆z,∆z :=
VMAX −VMIN

Natoms−1
, (2.31)

where i ∈ {1, ...,Natoms} and zi is the ith atom, , N ∈ N+ is the number of the

atoms, VMIN and VMAX refer to the minimum and maximum values of the state-value

distribution, respectively. Figure 2.2 demonstrates an example of the distributional

reinforcement learning network architecture. In this figure, there are four different

actions, and each action has five atoms.

And the probability mass function p is:

pi(s,a) =
eθi(s,a)

∑ j eθ j(s,a)
. (2.32)

The training of the probability masses uses a similar approach to the Bellman’s update.

The distribution dt is bring close to the target distribution d′t using a statistical distance
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measurement, e.g., Kullbeck-Leibler divergence. The target distribution d′t is:

d′t ≡ (Rt+1 + γt+1z, p
θ
(St+1,a∗t+1)), (2.33)

where Rt+1 is the reward, which shifts the value distribution, z is the fixed support, and

a∗t+1 is the greedy action in state St+1.

Greedy action selection consists of two steps:

Q(st+1,a) := ∑
i

zi pi(st+1,a), (2.34)

a∗← argmax
a

Q(st+1,a), (2.35)

where the first step is the calculating return distribution’s sum for each Q value, and

the second step is the selecting Q value greedily.

Finally, the loss is:

DKL(Φzd′t ||dt), (2.36)

where, Φz is the L2-projection of the target distribution onto z.

Noisy nets

Last but not least, the noisy net is another improvement over deep Q learning. DQN

algorithm uses ε greedy approach for exploration. At the beginning of the training,

it takes random actions, then it decays ε , and the agent selects the best action by

looking at current information. Fortunato et al. [34], on the other hand, propose another

approach for the exploration problem, Noisy Nets.

Noisy Nets add noise to the neural network’s weights and biases in the training stage.

It leads to discovering unseen states and action regions. The standard linear layer is

defined as, y = b+Wx, where b is the bias, W is the weights, and x is the input of

the layer. The noisy linear layer combines the linear layer and a random variable from

Gaussian noise as,

y = (b+Wx)+(bnoisy⊙ ε
b +(Wnoisy⊙ ε

w)x), (2.37)

where, bnoisy is the noisy bias, Wnoisy is the noisy weight, εb and εw are random

variables, and ⊙ is the element-wise product.
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2.11 Policy Gradients

Value-based methods learn an action-value function and select actions according to the

method. So they do not have an explicit policy without action-value estimates. Policy

gradient methods, on the other hand, learn a parameterized policy that selects actions

without using value functions.

Fundamentally, policy gradient methods learn a policy based on the gradient of a

scalar performance measure J(θ). These methods update parameters to maximize

performance using gradient ascend:

θt+1 = θt +α∇̂J(θt), (2.38)

where ∇J(θ) is the partial derivative of J(θ) with respect to θ . All methods that follow

this approach are called policy gradient methods.

The notation of probability of action a, in state s with parameter θ at time t is:

π(a|s,θ) = Pr{At = a|St = s,θt = θ} . (2.39)

The Policy Gradient Theorem

A natural question is how we can estimate the performance gradient with respect to

the policy parameter. The policy gradient theorem has a theoretical answer to this

question. Sutton et al. prove the policy gradient theorem using elementary calculus

and re-arranging terms for the episodic case in [20].

Before going into the details of the theorem, we describe the score function. Because

the underlying idea of the policy gradient theory uses this funtion. Score function

describes the direction in which we should change the parameter θ to maximize the

likelihood. Suppose a policy πθ is differentiable, and we have the information of the

gradient of the policy ∇θ πθ (s,a). Rearranging it with πθ (s,a) and using the log trick

derivative we obtain:

∇θ πθ (s,a) = πθ (s,a)
∇θ πθ (s,a)

πθ (s,a)
= πθ (s,a)∇θ logπθ (s,a),

(2.40)

where ∇θ logπθ (s,a) is the score function. And it describes the direction of the

optimization.
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Back to the policy gradient theorem, consider a one-step MDP, performance measure

J(θ) is equal to the expectation of the reward r under policy πθ :

J(θ) = Eπθ
[r]

= ∑
s

d(s)∑
a

πθ (s,a)Rs,a,
(2.41)

where r is the one time-step reward, d(s) is the distribution over states. And the

derivative of the performance measure Jθ is ∇θ J(θ),

∇θ J(θ) = ∑
s

d(s)∑
a

∇θ πθ (s,a)Rs,a

= ∑
s

d(s)∑
a

πθ (s,a)∇θ logπθ (s,a)Rs,a

= Eπθ
[∇θ logπθ (s,a)r] ,

(2.42)

where ∇θ logπθ (s,a) is the score, and r is the instantaneous reward. In the first line

of the equation, we arrange ∇θ πθ (s,a) with πθ (s,a) as in Equation 2.40. After that,

we obtain the second line of the equation using log trick derivative. Finally, taking an

expectation over states and actions results in the final line of the equation. The score

∇θ logπθ (s,a) tells us how we should change the optimization parameters (weights

for neural networks) in order to increase or decrease the log probability of selecting

action at at state st . The reward r is the scoring function, if it is high it will rise the

probabilities of the state-action combination, otherwise, if it is low it will descend the

probabilities of the state-action combinations. So, the score and the reward works in

cooperation to obtain better policy.

Reward r is one-step return, but we can replace it with long-term value Qπ(s,a) in

order to make equation to multi-step MDP:

∇θ J(θ) = Eπθ
[∇θ logπθ (s,a)Qπθ (s,a)] , (2.43)

REINFORCE: Monte Carlo Policy Gradient

REINFORCE is an implementation of the policy gradient theorem as an algorithm. It

updates parameters by stochastic gradient descent. And it uses return vt as an unbiased

sample of Qπθ (st ,at):

∆θt = α∇θ logπθ (st ,at)vt . (2.44)
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Algorithm 4 REINFORCE: Monte-Carlo Policy Gradient
Initialize θ arbitrarily

1: for each episode {s1,a1,r2, ...,sT−1,aT−1,rT} ∼ πθ do:
2: for t = 1 to T −1 do:
3: θ ← θ +α∇θ logπθ (st ,at)vt

4: end for
5: end for

The overall algorithm of the REINFORCE is given in Algorithm 4 [23].

2.12 Actor-Critic Methods

REINFORCE has a high variance problem, which slows down learning. One idea

to reduce variance is to use actor-critic architecture. The actor is the policy, which

takes action in the environment. And it updates its parameters by policy gradients.

The critic, on the other hand, does not select any action. It estimates the action-value

function Q(s,a) and sends it to the actor. In other words, the actor picks the actions,

and the critic evaluates these actions.

Formally, the critic-network parameters w are updated by T D(0):

w← w+βδφ(s,a), (2.45)

where δ is the TD-error:

δ = r+ γQw(s′,a′)−Qw(s,a). (2.46)

The actor-network parameters |θ are updated by policy gradient:

θ ← θ +α∇θ logπθ (a|s)Qw(s,a). (2.47)

Notice that Qw(s,a) is parameterized by the critic-network weights w, so its just a

number, and its derivatives is equal to 0 with respect to actor-network parameters θ .

2.13 Advantage Actor-Critic (A2C)

Another approach to reducing variance in policy gradient methods is subtracting a

baseline function from the scoring function:

θ ← θ +α∇θ logπθ (a|s)(Qw(s,a)−B(s)), (2.48)
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where B(s) is a baseline. And it may decrease variance without changing the

expectation, because the subtracted value is zero [20]:

∑
a

B(s)∇π(a|s,θ) = B(s)∇∑
a

π(a|s, |θ) = B(s)∇1 = 0. (2.49)

A natural and good baseline can be state-value function B(s) =V πθ (s). So, we obtain

advantage function:

Aπθ (s,a) = Qπθ (s,a)−V πθ (s). (2.50)

And we can update policy gradient using the advantage function:

∇θ J(θ) = Eπθ
[∇θ logπθ (s,a)Aπθ (s,a)] . (2.51)

We need to estimate both state-value Vv(s), and action-value Qw(s,a) to calculate

advantage function. There is more than one way to do this.

For example, Advantage Actor-Critic (A2C) algorithm [19] uses a shared network to

estimate both Qw(s,a) and Vv(s). The TD error δ πθ is:

δ
πθ = r+ γV πθ (s′)−V πθ (s), (2.52)

is an unbiased estimate of the advantage function:

Eπθ
[δ πθ |s,a] = Eπθ

[r+ γV πθ |s,a]−V πθ (s,a)

= Qπθ (s,a)−V πθ (s)

= Aπθ (s,a)

(2.53)

So we can update the policy gradient with the TD-error:

∇θ J(θ) = Eπθ
[∇θ logπθ (s,a)δ πθ ] . (2.54)

2.14 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [18] is another algorithm based on the policy

gradient theorem. Vanilla policy gradients are sample inefficient and have stability

problems. In order to solve these problems, Schulman et al. propose an algorithm

called Trust Region Policy Optimization [35]. However, this algorithm is complicated

and incompatible with some architectures like parameter sharing. PPO simplifies the
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TRPO algorithm without losing performance (experimentally). It introduces a simpler,

more general, and more compatible algorithm.

Trust Region Methods

Policy gradient methods have a training stability problem. One reason for this problem

is differences in policy updates. If we have large policy updates, we may face the "off

the cliff" problem. Moreover, we may not recover the old policy again. In addition,

smaller policy updates provide more stable optimization, and we may obtain an optimal

solution more likely.

In this context, TRPO maximizes an objective function (surrogate objective):

maximize Êt
[
rt(θ)Ât

]
, (2.55)

where rt(θ) is the ratio function:

rt(θ) =
πθ (at |st)

πθold(at |st)
. (2.56)

If rt(θ)> 1, the probability of taking action at at state st is more likely in current policy

πθ than old policy πθold . Otherwise, if 0 < rt(θ) < 1, the probability of taking action

at at state st is less likely in current policy πθ than old policy πθold .

TRPO uses a hard constraint to ensure that the new policy is not far from the old policy.

The constraint is:

Êt
[
KL
[
πθold(·|st),πθ (·|st)

]]
≤ δ , (2.57)

where, KL is the KL-divergence.

Clipped Surrogate Objective

The TRPO objective Êt
[
rt(θ)Ât

]
may lead to excessively large policy updates.

Therefore, it uses a constraint as seen in Equation 2.57. However, this objective

function with constraint leads to the second-order derivative. Therefore, PPO

algorithm simplifies the TRPO’s objective, and uses the following objective:

LCLIP(θ) = Êt
[
min(rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât)

]
, (2.58)

where epsilon ε is a hyper-parameter. With this objective, it is guaranteed that the

current policy does not far from the previous policy, and this update requires only

first-order derivation.
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If the policy and the value function networks share network parameters, then we have

to define a loss function that combines the objectives of these functions. PPO combines

these terms as follows:

LCLIP+V F+S
t (θ) = Êt

[
LCLIP

t (θ)− c1LV F
t (θ)+ c2S [πθ ] (st)

]
, (2.59)

where c1,c2 are coefficients, LV F
t is value function loss (Vθ (st)−V targ

t )2 and S is the

entropy bonus.
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3. AUTONOMOUS MANEUVER DECISION BASED ON
REINFORCEMENT LEARNING

3.1 Aircraft Dynamics

We design and construct a simulator, which models the motion dynamics of the

aircraft and performs a close-range one-to-one air combat scenario. Since the deep

reinforcement learning based algorithms usually require a large number of interactions

with the environment, we assume that the inner loop controllers of the aircraft are

well-tuned. We use a simplified model for the state of the aircraft.

The state-transition model is inspired by previous studies [1,13] with the following

equations:

ψ = ψ +aψ∆ψ , (3.1)

v = clip(v+av∆v,vmin,vmax), (3.2)

x = x+ vt cos(ψ
π

180◦
), (3.3)

y = y+ vt sin(ψ
π

180◦
). (3.4)

In (3.1) and (3.2), the bank angle change ∆ψ and the velocity change ∆v selected as

10◦ and 0.1 m/s, respectively. We also limit the minimum and maximum velocity of

the aircraft as vmin = 4 m/s and vmax = 8 m/s.

3.2 Air Combat Geometry

We describe a close-range air combat scenario to clarify the problem, where the black

aircraft is the agent and the red aircraft is the enemy in Figure 3.1. Here, LOS is the

line of sight, ATA is the antenna train angle, and AA is the aspect angle. LOS refers to

the line passing through the center of gravity of two aircraft. ATA refers to the angle

between the agent’s heading and the enemy aircraft’s position. AA denotes the angle

between the enemy aircraft’s tail and LOS. When both ATA and AA values get closer

to zero, the agent gets the position, where it can shoot the enemy.
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Figure 3.1 : Representation of a close-range one-to-one air combat scenario, where
we control the black aircraft and the red aircraft is the enemy. It also illustrates

antenna train angle (ATA), aspect angle (AA), and line of sight (LOS).

3.3 State Space

State space consists of 7 arguments:

s = [R,ATAa,ATAe,ψa,ψe,va,ve], (3.5)

where R is the distance, ATAa is the agent’s antenna train angle, ATAe is the enemy’s

antenna train angle, ψa is the agent’s bank angle, ψe is the enemy’s bank angle, va is

the agent’s velocity and ve is the enemy’s velocity.

The ATA values and the distance R provide information about the relative positions of

aircraft to each other. In addition, aircraft can predict the enemy’s next position by

taking other arguments, which are bank angles (ψa,ψe) and velocities (va,ve).

3.4 Action Space

Aircraft take two different control inputs as an action; velocity v and angle ψ:

a = [v,ψ]. (3.6)

These two parameters can be ascent, descend or remain same in discrete space.

Therefore, the combination of these two parameters composes nine discrete actions:vt−∆v,ψt +∆ψ vt ,ψt +∆ψ vt +∆v,ψt +∆ψ

vt−∆v,ψt vt ,ψt vt +∆v,ψt
vt−∆v,ψt−∆ψ vt ,ψt−∆ψ vt +∆v,ψt−∆ψ

 . (3.7)
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3.5 Reward Design

Reward function design is an important step in the RL. The designed reward function

should maximize the long-term utility. The aim of the air combat is to get behind

the opponent aircraft and follow it as much as possible. It is also to prevent the

enemy agent from following the training agent. In previous studies, discrete reward

functions are designed [1,13] according to winning or losing an episode. In this study,

on the contrary, we use a continuous reward function and provide its pseudo-code in

Algorithm 5. In this reward function, when the agent gets behind the enemy aircraft,

the smaller the angle between the direction of the agent aircraft and the enemy’s

position, the closer the reward value to 1. On the contrary, it gets closer to -1 when the

enemy aircraft is behind us. If there is a crash between two aircraft, the reward is -1.

Algorithm 5 Reward Function
Input: ATAa,ATAe,AAa,AAe,R = distance

1: if (crash,0 m <= R < 10 m) :
2: r =−1
3: else if (10 m <= R <= 100 m) :
4: if (advantage, |ATAa|<= 30◦ and |AAa|< 60◦) :
5: r = 1− ATAa

30
6: else if (disadvantage, |ATAe|<= 30◦ and |AAe|< 60◦) :
7: r = ATAe

30 −1
8: else:
9: r = 0

Output: r

3.6 Experiments

We model the environment as a closed box as shown in Figure 4.1. Therefore, the

agents can not go beyond a certain distance. As seen in this figure, x and y length

is 300m. We initialize the positions and angle values of the agent and the enemy

randomly during the training phase in the environment. In this way, we force the agent

to explore new states.

We normalize observations (Equation (3.5)) between 0 and 1 since we use neural

networks as a function approximator. The episode length of the game is 200 timesteps.
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We train various policies using four different algorithms (DQN, Rainbow, A2C, and

PPO) and evaluate them using return Gt . Each algorithm has its hyper-parameters.

While some of the hyper-parameters are common, some of them are algorithm-specific.

We tune each algorithm’s hyper-parameters using grid-search and summarize best

policies in Table 3.1. In this table, we categorize algorithms by their architecture,

value-based and actor-critic.

Table 3.1 : Deep reinforcement learning algorithm’s training hyper-parameters.

Algorithms
Types of RL Hyper-parameters DQN Rainbow A2C PPO

learning rate 6.25e-5 6.25e-5 1e-4 3e-4
Both gamma 0.99 0.99 0.99 0.99

batch size 32 128 64
memory size 100.000 100.000

learning starts 50.000 50.000
target update 10.000 10.000

Value-based alpha 0.5
beta 0.4

v_min -150
v_max 150
n_steps 3

number of envs. 4 4
n_epochs 10

Actor-critic n_steps 5 2048
gae_lambda 0.95 0.95
clip_range 0.2

Learning rate, gamma, and batch size are common hyper-parameters for all the

algorithms. We use Adam [36] as a neural network optimizer. We use similar

architectures for both value-based and actor-critic methods as shown in Figure 3.2.

In the value-based architecture, there are two hidden layers with 128 neurons. The

input and output sizes are equal to the state space and action space sizes, respectively.

DQN and Rainbow algorithms use this architecture. However, it should be noted that

the Rainbow algorithm’s output is different because of the distributional atoms. It uses

the distributional network architecture, as shown in Figure 2.2.

On the other hand, actor-critic network architecture has one shared network, and its

output is divided into two branches: actor and critic networks. We use only one
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Figure 3.2 : Visualization of the two different network architectures: value-based and
actor-critic.

network for this architecture. However, some instead create two separate networks.

A2C and PPO algorithms use actor-critic network architecture.

We trained four algorithms (DQN, Rainbow, A2C, PPO) with 5 million timesteps and

demonstrate results in Figure 3.3. In addition, we added a random policy, which selects

a random action in each timestep.

Figure 3.3 : The performance comparison of the reinforcement learning algorithms
on the air-combat environment. The vertical axis is the score, demonstrating an

episode’s return value. The horizontal axis is the timesteps, indicating the number of
actions taken during the training.
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This figure demonstrates that the random policy gets around 0 returns in an episode. It

might obtain positive rewards in some steps. However, it also faces negative rewards

because of the policy’s randomness, so the episode score converges to around 0.

We compared results with respect to episode return and sample efficiency. Nature DQN

outperformed all algorithms in episode return. It achieved more than 100 scores in an

episode. PPO and Rainbow algorithms obtained around 90 episode returns. However,

the A2C algorithm could not converge well as the other algorithms. It achieved around

70 episode returns.

On the other hand, when we compare sample efficiency, the Rainbow algorithm

obtained meaningful results faster than the algorithms. It reached 60 episode return

in 30.000 timesteps. However, its convergence to the global optimal point is as long as

the other algorithms.
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4. REINFORCEMENT LEARNING UNDER NOISY OBSERVATIONS

4.1 Introduction

As stated in the Chapter 1.2, the previous studies assume that, the environment is

assumed to be noise-free. Thus, the exact position of the enemy aircraft is known.

However, this may not be achievable in a real-life scenario. For example, the sensor

errors and medium conditions may cause the observation to differ from the reality.

In this study, contrary to previous studies, we first develop a simulation that provides

noisy observations to the agents. We also emphasize that the noise characteristics

are adjustable through its parameters, hence, we can evaluate the performance of the

trained agents under a wide range of noise level. Since the agents fights against the

enemy aircraft by using the inaccurate observations, the air combat problem becomes

more complex, hence, the performance of the RL algorithms usually decreases as

the noise level increases. In our algorithm, we stack the consecutive observations

to address deteriorating effect of the corrupted observations on the performance of the

RL algorithms.

4.2 Noisy State Generation

The state transition model generated from aircraft dynamics is specified in the Section

3.1. It is assumed that the enemy aircraft’s position is absolutely correct in these

dynamics. However, it is usually impossible to obtain noise-free data in real life. In

order to overcome this problem, we suggest to add noise to the state space during the

training and testing phases. The noise-free state space is mentioned in the Equation

(3.5).

Applying different noise to each of the parameters in state space may lead to

inconsistencies. Hence, we insert the noise into the enemy aircraft’s parameters

before calculating these values. The details of the noisy state generation are shown
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in Algorithm 6. The noise values are derived from the Gaussian distribution. The

position noise nx,y ∼N (µ, σ2
x,y) is inserted to the enemy aircraft’s position xe and ye,

whereas the angle noise nψ ∼N (µ, σ2
ψ) is inserted to the enemy aircraft’s angle ψe.

Since neural networks are used as a function approximator, we normalize values in

state space between 0 and 1 to ensure stability during the training stage.

Algorithm 6 Noisy State Generation
Input: agent status = {xa,ya,ψa,va}, enemy status = {xe,ye,ψe,ve}, nx,ny ∼
N (µ, σ2

x,y), nψ ∼N (µ, σ2
ψ).

1: x̂e = xe +nx,where nx ∼N (µ,σ2
x,y)

2: ŷe = ye +ny,where ny ∼N (µ,σ2
x,y)

3: ψ̂e = ψe +nψ ,where nψ ∼N (µ,σ2
ψ)

4: R̂ =
√
(xa− x̂e)2 +(ya− ŷe)2

5: ˆATAa = ATA(xa,ya, x̂e, ŷe,ψa)
6: ˆATAe = ATA(x̂e, ŷe,xa,ya, ψ̂e)

Output: st+1 = [R̂, ˆATAa, ˆATAe,ψa, ψ̂e,va,ve]

Figure 4.1 demonstrates the actual and the noisy positions of the enemy aircraft. In

this figure, the black plane is the training agent, the red plane is the enemy agent,

and the orange plane is how the training agent sees the enemy agent. In part (a) of

this figure, the enemy’s position noise value is nx,y ∼ N (0,5) and the angle noise

value is nψ ∼ N (0,1). In part (b) of this figure, the enemy’s position noise value is

nx,y ∼N (0,20) and the angle noise value is nψ ∼N (0,1). Since the noise in part (b)

is high, the training agent perceives the opponent as more dispersed.
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4.3 Noise Reduction with State Stacking

The perceived position of the enemy aircraft by the agent changes depending on the

variance of the noise as shown in Figure 4.1. The agent can generalize and ignore the

noise in low variance cases. However, after the noise exceeds a certain threshold, the

agent’s performance begins to degrade.

There is a correlation between states, since the positions of the agent are sequential.

Therefore, we propose a state stacking technique in order to reduce noise and increase

performance. The agent sees the state space at time t is as follows:

St = {St ,St−1, ...,St−n+1} , (4.1)

where the n is the stack number. The trained model associates between states using

this technique.

4.4 Enemy Strategy and Self-play

Another subject emphasized in this study is the strategy of the enemy agent. As stated

by Bansal et al. [37], the complexity of the trained RL agent depends on the complexity

of the environment. In other words, smarter agents can be trained in more complex

environments. They also pointed out that self-play can produce substantially more

complex behaviors than the environment itself. In addition, self-play also provides

many advantages:

• Any supervision or human expertise is no longer required.

• Agent can learn the policy by playing with itself.

• It ensures that the environment difficulty is at the right level to improve agent

strategy.

To show the effect of the self-play, we enforce the enemy agent to select random action,

i.e., the enemy agent chooses the action from the network with probability 1−λ and
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take random action from uniform distribution with probabililty λ . For the specisif case

λ = 0, the enemy agent always use the actions from the network.

4.5 Experiments

We model the environment as a closed box as shown in Figure 4.1. Therefore,

the agents can not go beyond a certain distance. We initialize the positions and

angle values of the agent and the enemy randomly during the training phase in the

environment. In this way, the agent is forced to explore new states.

We conducted a hyper-parameter search and the selected hyper-parameter set is given

in Table 4.1, where we use the same hyper-parameter set for all experiments.

Table 4.1 : Reinforcement learning policies hyper-parameters.

Hyper-parameter Value
State space size 7

Action space size 9
Learning rate, lr 1e-4

Discount factor, γ 0.99
Replay memory size 20.000

Mini batch size 32
Target update frequency, C 10.000

Initial exploration rate 1
Final exploration rate 0.05

Final exploration time-steps 100.000
Episode length 200

4.5.1 State stacking on different noise levels

We carry out different experiments on the state stacking approach without using

self-play. Two different training graphs with different state noise are given in Figure

4.2 and Figure 4.3. In the all of the training processes, the stack number value are

chosen as 1, 2, 4, and 8.

Firstly, in Figure 4.2, the enemy’s position noise value is nx,y ∼ N (0,5) and the

enemy’s angle noise value is nψ ∼ N (0,1). In this figure, when the state stack is not

used, the reward value is around 90. On the contrary, the agent’s performance increases

around 10% when stack number is greater than 1. As a result of this experiment,
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although the use of stacked states provides performance gains, the number of stacks

has only a marginal improvement.

Figure 4.2 : The x-axis shows how many million time-steps the training is, and the
y-axis shows the obtained score for a certain moment t. Self-play is not used in this
experiment. The position noise value is nx,y ∼N (0,5) and the angle noise value is

nψ ∼N (0,1). It is observed that the performance increases around %10 as the state
stack is increased.

Secondly, in Figure 4.3, enemy’s position variance is increased to σx,y = 20, but its

angle variance is remained as σψ = 1. In this case, the environment is quite noisy, and

the episode score is around 44 when the stack number is 1. On the other hand, the

score increases to around 70, when the number of state stack is 8. In other words, state

stacking increases the performance around %59 compared to the situation where no

stacking is used. In addition, it is clearly shown in this graph that the score increases

in proportion to the number of stacks. This gives information about how robust the

proposed method is.

Figure 4.3 : The x-axis shows how many million time-steps the training is, and the
y-axis shows the obtained score for a certain moment t. Self-play is not used in this
experiment. The position noise value is nx,y ∼N (0,20) and the angle noise value is
nψ ∼N (0,1). It can be observed that the performance increases around %59 as the

state stack is increased.
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In addition, we train policies with different combinations of state stack and noise

values and summarize it in Table 4.2. This table shows that as the noise value

increases, obtained highest score decreases inversely. Stack number does not affect

the performance where the position’s noise variance is low (σ2
x,y = 1 and σ2

x,y = 3).

However, when noise exceeds these values, stacking starts to compensate the noise.

4.5.2 Training with self-play

There are two sides in the air combat problem. Better strategies may emerge if there is

competition between these sides during training. One of the purpose of the self-play is

to employ this contest. Therefore, we design a training process that includes self-play.

In this experimental setup, enemy policy πt
e is replaced with the agent policy πt

a at every

n time-steps. The parameter n is selected as 50.000 by using grid search. In addition,

the enemy is forced to choose random action with the probability λ and action from

its own policy with the probability 1−λ .

In this experiment, we compare the performance of self-play agent with different

exploration parameter λ . Thus, we demonstrate the effect of self-play. The results

of the self-play are shown in Table 4.3. In this table, the enemy agent is the one, which

is trained without self-play. Both the agent and the enemy are trained in the same

environment conditions, where the noise variances are σx,y = 10 and σψ = 1. These

two agents also did not encounter each other during the training.

We run 1000 Monte Carlo simulation. At the beginning of the each simulation, we

initialize both agents at random positions with random angles. Win, lose and tie

conditions are designed according to the reward function. When any agent achieves

the strike angle within striking distance, then it is the winner. The maximum episode

length is set as 200 time-steps. If both agents are alive at the end of the episode, then

tie condition occurs.

As seen in Table 4.3, it is obvious that self-play agents outperformed each match

regardless of the parameter λ . However, for the lower values of the parameter λ ,

which correspond to the more sophisticated enemy agents during training, the training

agent achieved better performances in the test stage.
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Table 4.3 : Agents trained with self-play and without self-play launched from
random locations and faced 1000 times. Noise value’s variances are

σx,y = 10 and σψ = 1. The win probability is calculated as: win/(win+lose).

Agent Enemy Win Lose Tie Win Probability
Self-play λ = 0 nx,y ∼N (0,10) 726 99 175 0.88

Self-play λ = 0.2 nx,y ∼N (0,10) 753 102 145 0.88
Self-play λ = 0.5 nx,y ∼N (0,10) 758 109 133 0.87
Self-play λ = 0.9 nx,y ∼N (0,10) 574 309 117 0.65
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5. CLASSIFYING NOISY OBSERVATIONS IN REINFORCEMENT
LEARNING SIMULATIONS

5.1 Introduction

In Chapter 3, we create a baseline air combat environment and compare state-of-the-art

deep reinforcement learning algorithms. Chapter 4 proposes a noise generation method

for air combat environments. Since the noise makes it difficult to predict the actual

location of the enemy, the RL algorithm’s performance decreases. Therefore, we

propose state-stacking and self-play methods to lower noise and increase performance.

We train different RL policies in different noise-level environments using these

methods. Experiments demonstrate that the proposed method outperforms baseline

DRL algorithms. In this structure, we assume that the environmental noise level is

known. However, the aircraft does not know the environment’s noise level in a real-life

test scenario.

In this chapter, we propose a feed-forward neural network-based noise classifier to

determine noise-level. Our main idea is to integrate a box that takes observations as

input and predict noise level as outputs. Since the input of this box is the same as the

RL algorithm, it does not affect the RL loop.

5.2 Noise Classifier

We collect three datasets using the simulation, which generates noisy observation.

Datasets contain five classes: noise’s standard deviations are 0, 4, 8, 16, and 32. Each

dataset has 50.000 samples. Their input size is different and depends on the stack sizes.

Therefore, we train three different classifiers for each stack size.

The end-to-end noisy air combat architecture is given in Figure 5.1. The architecture

consists of the agent and the environment. The agent includes three steps. In the

first step, the agent receives the current observation and stacks it with the previous

n− 1 states. In the second step, the classifier takes stacked states as input. Then, it
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predicts the environment noise level and selects a proper RL policy. Finally, the proper

RL policy takes the stacked state and selects an action. Note that the noise classifier

and RL policies are trained separately, although they are given together in the figure

demonstrating the overall system architecture.

Figure 5.1 : Visualization of reinforcement learning cycle incorporating noise
classifier architecture. In this architecture, the agent includes state stacking, noise

classification, and reinforcement learning policies. The environment includes
transition dynamics, and the addition of noise to the situation.

5.2.1 Training setup

As mentioned in the previous section, we train three classifiers based on the stack sizes:

2, 4, and 8. We use the feed-forward neural network as shown in Figure 5.1. The input

size of the neural network (7 x n) depends on the stack size n. The output size is the

same and five for each classifier: 0 (noiseless), 4, 8, 16, and 32.

Table 5.1 : Noise classifier hyper-parameters.

Hyper-parameter Values
Learning rates [0.01, 0.001, 0.0001 0.03 0.003 0.0003 0.07 0.007 0.0007 ]
Weight decay [True, False]

Step sizes [1,100,200]
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We tune the classifiers using the hyperparameters in Table 5.1. In this table, the

learning rate is the step size used when updating the neural network weights. Weight

decay is a regularization method. It reduces the over-fitting of training. We select

the weight decay parameter as 0.0001. Learning rate decay is another regularization

method used in this study. We decay the learning rate at each step size. For example,

when the step size is 1, the learning rate is multiplied by 0.99 at the end of each epoch;

when the step size is 100 and 200, the learning rate is multiplied by 0.1. We divide

the data set into %80 training set and %20 validation set. We use Adam as a neural

network optimizer. We use cross entropy as a loss function.

5.3 Experiments

The training and validation accuracy rates are shown in Figure 5.2 and Figure 5.3. The

training is more stable when the number of stacks is 4. When the number of stacks is 2,

the classifier reaches about %81 validation because the inference from sequential data

is less than other methods. Figure 5.3 illustrates that learning rate decay increases the

performance when the stack number is 4 and 2, whereas it decreases the performance

when the stack number is 8.

Another evaluation method is the loss function. Training and validation loss values are

given respectively in Figure 5.5 and Figure 5.6. In these figures, we only compare the

best results of the accuracy figures. When the number of stacks is 4, it is obvious that

the classifier reaches lower loss values more quickly.

We train each classifier for 600 epochs. However, as seen in the loss function figures,

we terminated the training with an early stop at the points where the training loss

continued to decrease, but the validation loss remained constant or started to oscillate.

We indicate the points by the red dots.

We can use confusion matrixes to evaluate the trained models in more detail based on

classes. Confusion matrixes of the classifiers are given in Figure 5.7, Figure 5.8 and

Figure 5.9. When the stack number is 2, the classifier obtains the lowest results for

each class in proportion to the validation accuracy. We observe the highest error rate

in classes with noise values of 16 and 32. When the stack number is 4, the classifier
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Figure 5.2 : Train accuracy of the noise classifier. The stack number is the last n
states, a noise reduction technique. When the stack number is 2 and 4, we decay the

learning rate in epoch 200 and 400.

Figure 5.3 : Validation accuracy of the noise classifier. The stack number is the last n
states, a noise reduction technique. When the stack number is 2 and 4, we decay the

learning rate in epoch 200 and 400.
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Figure 5.4 : F1 scores of the noise classifier.

Figure 5.5 : Train loss of the noise classifier. The stack number is the last n states, a
noise reduction technique. Red points demonstrate the early stop, where we stop the

training and prevent overfitting.

predicts the true 16 noise level with the lowest accuracy. When the number of stacks

is 8, we obtain better results on a class basis than the other two classifiers.
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Figure 5.6 : Validation loss of the noise classifier. The stack number is the last n
states, a noise reduction technique. Red points demonstrate the early stop, where we

stop the training and prevent overfitting.

Figure 5.7 : Confusion matrix of the noise classifier when the stack number is 2.
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Figure 5.8 : Confusion matrix of the noise classifier when the stack number is 4.

Figure 5.9 : Confusion matrix of the noise classifier when the stack number is 8.
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6. CONCLUSIONS

In this thesis, we investigated the air combat problem under noisy conditions. We

examined the creation of a multi-agent air combat environment and the addition of

noise to this environment. We proposed a novel structure to solve this problem based

on state-of-the-art reinforcement learning algorithms.

Firstly, we implemented aircraft dynamics and created an environment that supports

multi-agent interactions. Then, we defined state and action space for reinforcement

learning algorithms. We also designed a continuous reward function and provided its

pseudo-code. We compared state-of-the-art deep reinforcement learning algorithms in

the air combat environment, including DQN, Rainbow, PPO, and A2C.

In addition to previous works, we developed a simulation that generates noisy

observations to the agents. Since the noise can be adjustable through its parameters, we

could evaluate our policies in different noise conditions. As a result of noise addition,

the RL agent’s performance decreased as the noise level increased. Therefore, we

proposed a state-stacking technique, which reduces the noise and increases the trained

policy performance. We empirically show that the proposed stacking method increases

performance up to %138.04 in high-noise environments.

Secondly, we focused on the create smarter enemy behaviors using competitive

self-play techniques. Thus, the agent faced smarter enemy strategies in the training

stage and obtained better policies. We also created different self-play structures to

demonstrate the effect of the proposed method. We empirically demonstrate that the

agent trained with self-play beats the agent trained without self-play by %88 win rate.

Thirdly, we trained different DRL policies in different noise-level environments.

However, the environment’s noise level is unpredictable in the validation stage.

Therefore, we collected data using the air combat simulation. The content of the data

is the state and the noise level in that state. We trained a classifier that takes states as
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input and selects noise level as output. The classifier achieves around %90 validation

accuracy.

Finally, we combined the overall system in an end-to-end architecture. This

architecture contains the agent and the environment. The environment takes action

as an input. It applies the action in the state and reward transitions, and obtains noisy

states and a reward value. The agent takes the noisy state as an input. It applies

state stacking and transmits data to the noise classifier. The classifier determines the

current noise level and selects the proper deep reinforcement learning policy for action

selection.
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APPENDIX A : Reward Visualization

(a)

(b)

Figure A.1 : Examples of the negative reward function. Agent receives the negative
reward if it is in the enemy shooting range and distance.
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(a)

(b)

Figure A.2 : Examples of the zero reward function. In both figures, the agent receives
no reward signal because of the shooting distance.

60



(a)

(b)

Figure A.3 : Examples of the positive reward function. The agent receives a positive
reward if the enemy is in the agent’s shooting range and distance.
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APPENDIX B : Air Combat Trajectory Examples

(a)

(b)

Figure B.1 : Visualization of the example air combat trajectories 1.
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(a)

(b)

Figure B.2 : Visualization of the example air combat trajectories 2.
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