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OZET

MUHENDISLIK UYGULAMALARINDA KARMASIK AKISLAR ICIN COZUM-
UYARLI AGSIZ HAD YONTEMIi

Coziim-uyumlu agsiz hesaplamali akiskanlar dinamigi (CFD) yontemleri, miihendislik
uygulamalarinda karmasik akislarin simiilasyonunda umut vadeden araglar olarak One
cikmaktadir. Bu doktora tezi, ¢éziim-uyumlu agsiz CFD yontemlerinin gelistirilmesi ve
incelenmesine odaklanmaktadir. Lattice Boltzmann yontemi (LBM), bu yontemlerin
temelini olustururken, mikroskobik modeller ve mezoskopik kinetik denklemleri kullanarak
akiskan akislarinin temel fiziksel oOzelliklerini yakalamaktadir. Agsiz yontemler, ag
yapilandirmasina ihtiya¢ duymadan sistem cebirsel denklemlerinin olusturulmasina imkan
vererek LBM'yi tamamlar. Onceden tanimlanmis aglara dayanmak yerine, alan diigiimleri
olarak adlandirilan dagilmis diigiimler, problem alanin1 ve sinirlarim1 tanimlar. Bu
arastirmanin temel katkisi, LBM ve agsiz yontemlerin avantajlarini birlestiren ¢oziim-
uyumlu agsiz CFD ydntemlerinin gelistirilmesidir. Bu yontemler, akis 6zelliklerine dayali
olarak hesaplama agin1 dinamik olarak uyumlu hale getirerek hesaplama kaynaklarinin ilgi
alanlarina optimal olarak dagitilmasini saglar. Bu uyarlanabilirlik, hesaplama maliyetlerini
azaltirken dogrulugu artirarak miihendislik uygulamalarinda karsilasilan karmasik akis
problemleri i¢in uygundur. Kapsamli sayisal deneyler ve referans problemlerle yapilan
dogrulamalar, oOnerilen ¢o6ziim-uyumlu agsiz CFD yoOntemlerinin etkinliini ve
performansini gostermektedir. Elde edilen sonuglar, bu yontemlerin karmasik akislari dogru
bir sekilde simiile etme yeteneklerini ve hesaplama verimliligini korudugunu
vurgulamaktadir. Arastirma bulgulari, miihendislik uygulamalarinda karmasik akislarin
simiilasyonunda giincel caligsmalara katkida bulunarak genis bir alan i¢in pratik ¢oziimler
sunmaktadir. Anahtar kelimeler: ¢éziim-uyumlu agsiz CFD yontemleri, lattice Boltzmann
yontemi, karmasik akislar, miihendislik uygulamalari, sayisal simiilasyonlar, agsiz

yontemler, agsiz yontemler, hesaplama verimliligi, dogruluk.

Anahtar Kkelimeler: Agsiz Hesaplamali Akiskanlar Dinamigi Coziim Yontemi, Lattice-

Boltzmann Method, Tiirbiilans Modelleri
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ABSTRACT

SOLUTION-ADAPTIVE MESHLESS CFD METHODS FOR COMPLEX FLOWS
IN ENGINEERING APPLICATIONS

Solution-adaptive meshless computational fluid dynamics (CFD) methods have emerged as
promising tools for simulating complex flows in various engineering applications. This
doctoral thesis focuses on the development and investigation of solution-adaptive meshless
CFD methods for accurately capturing the behaviour of complex flows. The lattice
Boltzmann method (LBM) forms the basis of the proposed methods, employing
microscopic models and mesoscopic kinetic equations to capture the essential physics of
fluid flows. Meshless methods, such as meshfree or gridless methods, complement the
LBM by enabling the establishment of system algebraic equations without relying on
predefined meshes. Instead, scattered nodes, referred to as field nodes, define the problem
domain and boundaries. The key contribution of this research is the development of
solution-adaptive meshless CFD methods that combine the advantages of the LBM and
meshless methods. These methods dynamically adapt the computational mesh based on
flow features, ensuring optimal allocation of computational resources to areas of interest.
This adaptive capability reduces computational costs and enhances accuracy, making them
well-suited for handling complex flow problems encountered in engineering applications.
Extensive numerical experiments and validation against benchmark problems demonstrate
the effectiveness and performance of the proposed solution-adaptive meshless CFD
methods. The results highlight their capability to accurately simulate complex flows while
maintaining computational efficiency. The research findings contribute to advancing the
state-of-the-art in simulating complex flows in engineering applications, offering practical

solutions for a wide range of fields.

Keywords: Meshless CFD Methods, Lattice-Boltzmann Method, Turbulence models



CLAIM FOR ORIGINALITY

SOLUTION-ADAPTIVE MESHLES CFD METHODS FOR COMPLEX FLOWS IN
ENGINEERING APPLICATIONS

This doctoral thesis presents a unique contribution to solution-adaptive meshless
computational fluid dynamics (CFD) methods for complex engineering flows. By
combining the strengths of lattice Boltzmann method (LBM) and meshless techniques, this
research proposes innovative solution-adaptive approaches. Integrating solution-adaptive
meshless methods with LBM is a novel concept, overcoming limitations of traditional
mesh-based approaches. The proposed methods dynamically adapt the computational mesh
based on flow characteristics, improving accuracy and reducing computational costs. This
adaptability is particularly beneficial for complex engineering flow problems. The research
includes theoretical investigations, numerical experiments, and validations using reference
problems. Results encounter the effectiveness and performance of the proposed methods in
accurately simulating complex flows while maintaining computational efficiency. This
original research significantly advances numerical simulations for engineering applications,
providing practical solutions for complex flow phenomena. By pushing the boundaries of
traditional CFD methods, this research opens new avenues for efficient and accurate
simulations of complex flows. The combination of solution-adaptive meshless techniques
and LBM offers promising prospects for the field. This doctoral thesis establishes
innovative methodologies, contributing to the advancement of computational fluid

dynamics in engineering.
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1. INTRODUCTION

The study of flow past circular cylinders has garnered significant attention in both
experimental and numerical research due to the inherent symmetry of the cylinder geometry
and its relevance to various industrial applications. Numerous investigations have been
conducted to understand the fluid dynamics phenomena associated with the flow around
cylinders, including separation, vortex shedding, and the transition to turbulence. These
phenomena play a crucial role in determining flow-induced forces such as drag and lift

forces, as well as pressure coefficients (Sarpkaya, 2004; William et al., 2004).

In recent years, there has been a growing focus on evaluating the effect of oscillations, both
transverse and rotational, on the wakes generated by cylinders (Tokumaru et al., Filler et
al., 1991). While the effect of translational oscillations on vortex-induced vibrations has
been extensively studied, the investigation of rotational oscillations and their impact on
wakes has gained attention more recently. Understanding the behavior of the oscillating
cylinder, especially at higher Reynolds numbers, necessitates fine resolution and the use of

a fine mesh in CFD analyses (Jiange et al., 2016).

LBM offers several advantages over traditional CFD methods, particularly in handling
complex geometries and boundaries. Researchers have shown that LBM is highly suitable
for simulating intricate geometries and complex boundary conditions (Huang et al., 2022;
Zhang et al., 2023). The flexibility of the lattice-based grid structure in LBM allows for

easy representation of irregular geometries and accurate capture of flow features.

Moreover, LBM excels in simulating multi-scale and multiphase flows. Recent studies have
demonstrated the capability of LBM in microfluidics applications (Chen et al., 2022) and
multiphase flows with phase change phenomena (Tang et al., 2023). The mesoscopic nature
of LBM enables accurate modelling of flow behaviour at different length scales, leading to
improved accuracy in numerical predictions. Efficient parallelization is another strength of
LBM, enabling high-performance computing for large-scale simulations. This is

particularly advantageous for turbulent flow simulations and aerodynamic analyses.



Researchers have successfully employed LBM in simulating turbulent flows with excellent
scalability and computational efficiency (Li et al., 2022; Wang et al., 2023). Furthermore,
LBM provides a natural framework for incorporating complex physics, such as thermal
effects and fluid-structure interactions. Recent work has shown the capability of LBM in
accurately capturing heat transfer phenomena in porous media (Liu et al., 2022) and
simulating fluid-structure interactions (Wu et al., 2023). These advancements in modelling

complex physics contribute to more realistic and comprehensive numerical results.

LBM has played a significant role for enhancing the quality of numerical results in CFD
applications. Its ability to handle complex geometries, simulate multi-scale and multi-phase
flows, efficient parallelization, and incorporation of complex physics makes it a promising

choice for researchers.

In this doctoral research, we advocate for the integration of a solution-adaptive
methodology using the LBM within meshless CFD frameworks. Leveraging particle-
centric paradigms, like LBM, paves the way for distinctively discrete solutions in fluid flow
dynamics. What sets LBM apart is its ability to seamlessly converge micro-scale and
macro-scale understandings. Rooted deeply in microscopic modelling and mesoscopic
kinetic theory, LBM facilitates the formulation of simplified yet profound kinetic
representations. This, in turn, ensures that macroscopic outcomes align perfectly with

anticipated macroscopic equations. (Jiange et al., 2016; Nazarinia et al., 2011).

The LBM, in combination with solution-adaptive meshless methods, enables the accurate
simulation of complex flows around circular cylinders. Meshless methods, such as the
meshfree or gridless approach, complement the LBM by eliminating the need for
predefined meshes. Instead, scattered nodes, known as field nodes, define the problem
domain and boundaries. By dynamically adapting the computational mesh based on flow
features, the proposed solution adaptive meshless CFD methods allocate computational
resources optimally to areas of interest. This adaptivity reduces computational costs while
maintaining accuracy, making them well-suited for analyzing complex flow problems

encountered in engineering applications (Park et al., 2011; Musavi et al., 2016).



Additionally, in a study conducted by Nazarinia et al. (2011), the physical mechanism
behind the oscillating cylinder, involving both translational and rotational oscillations, was
investigated through experimental analysis using particle image velocimetry (PIV). The
purpose of their study was to characterize the wake of forced cylinder flow at a Reynolds
number of 1322. To enhance the accuracy of their findings, a solution-adaptive method was
employed, which included dynamic mesh adaptation to increase the local resolution near
the cylinder. This method was implemented using the fully parallelized block-structured
adaptive mesh refinement software system AMROC (Deiterding, 2011). In high Reynolds
number situations, AMROC incorporated Smagorinsky's eddy viscosity approximation to

model sub-grid scale turbulence.

The aerodynamic characteristics of a small-scale Archimedes spiral wind turbine blade are
comprehensively analyzed through numerical simulations and experimental validation. The
numerical analysis is conducted using XFlow, a software based on the lattice Boltzmann
method (LBM), renowned for its ability to accurately simulate fluid dynamics phenomena.
Specifically, the Wall-Adapting Local Eddy-viscosity (WALE) turbulence model is
employed for its favorable properties in both laminar and turbulent flows, particularly near
solid bodies and walls. To validate the numerical simulations, Particle Image Velocity
(PIV) techniques are utilized, providing empirical evidence of the aerodynamic features of
the spiral wind turbine. The velocity profiles obtained from XFlow simulations closely
match the trajectory and magnitude of tip vortices observed in experimental results,
confirming the accuracy of the numerical predictions. Furthermore, the researchers
compare their findings with those obtained using XFlow software, highlighting the
software's capability to accurately simulate complex flow phenomena. XFlow's unique
particle-driven, Lagrangian methodology rooted in LBM principles enables the simulation
of diverse problems, including aerodynamics, aero-acoustics, and fluid-structure

interactions (Safdari et al., 2015).

This interdisciplinary study provides valuable insights into the physical behavior of the
Archimedes spiral wind turbine blade and its wake characteristics. By employing advanced

techniques such as PIV and solution-adaptive methods with dynamic mesh adaptation, the

3



researchers gain a deeper understanding of flow dynamics and associated phenomena. The
integration of experimental validation and numerical simulations using XFlow software
enhances the reliability and robustness of the findings, contributing to the existing

knowledge base in fluid dynamics research (Safdari et al., 2015).

This doctoral thesis aims to contribute to the development and investigation of solution-
adaptive meshless CFD methods based on LBM, specifically tailored to accurately simulate
the behaviour of complex flows. The research findings will address the limitations of
traditional mesh-based CFD methods and provide practical solutions for a wide range of
engineering applications. Extensive numerical experiments and validation against
benchmark problems will be conducted to lead the effectiveness and computational
efficiency of the proposed solution-adaptive meshless CFD methods. Ultimately, this
research endeavours to advance the state-of-the-art in simulating complex flows, providing

valuable insights for various fields of study.
1.1. Overview of Computational Fluid Dynamics (CFD)

CFD is a powerful tool in the field of fluid mechanics, enabling the simulation and analysis
of complex fluid flow phenomena. CFD involves the numerical solution of governing
equations, typically the Navier-Stokes equations, which describe the fundamental principles
governing fluid motion. These equations, along with additional equations for turbulence
modelling or other specific physical effects, are discretized and solved numerically to

obtain approximate solutions.

Traditional CFD methods rely on the use of computational grids or meshes to discretize the
physical domain. However, in recent years, meshless and mesh-free methods have gained
attention as alternative approaches. These methods eliminate the need for structured or
unstructured grids, instead utilizing particle-based or function-based representations of the
fluid domain. Examples of meshless methods include Smoothed Particle Hydrodynamics
(SPH), Moving Particle Semi-implicit (MPS) method, and the Element-Free Galerkin

(EFG) method. Mesh-free methods, on the other hand, utilize mathematical functions or



shape functions to represent the solution field without requiring a predefined mesh Barrios,

et.al., 2016).

Meshless and mesh-free methods provide several advantages when compared to traditional
mesh-based methods in certain scenarios. They provide greater flexibility in handling
complex geometries and evolving interfaces, as they do not require explicit mesh
generation or remeshing. These methods also exhibit better adaptivity to local features and
can handle large deformations more effectively. Additionally, they offer efficient

parallelization potential, enabling faster computations on parallel computing architectures.

The choice between mesh-based and meshless/mesh-free methods depends on the specific
problem at hand and the desired accuracy and computational efficiency. Both approaches
have their strengths and limitations, and researchers continue to explore and develop

advanced techniques that combine the advantages of both methods.



2. MESHLESS CFD METHODS

Meshless Computational Fluid Dynamics (CFD) methods have emerged as an alternative
approach to traditional mesh-based methods for solving fluid flow problems. Unlike mesh-
based methods that require the generation and manipulation of a computational grid,
meshless methods rely on a set of scattered data points or particles to discretize the flow
domain. This unique characteristic of meshless methods offers several advantages in terms

of flexibility and adaptability.

One of the key advantages of meshless methods is their ability to handle complex
geometries and arbitrary mesh configurations. Traditional mesh-based methods often face
challenges in accurately representing irregular or highly intricate geometries, requiring
extensive grid generation and refinement efforts. In meshless methods, the need for a
structured grid is eliminated, allowing for a more straightforward representation of complex
geometries (Liu et al.,, 2018). This makes meshless methods particularly suitable for
problems involving fluid flows in intricate domains or situations where the flow domain

changes dynamically.

Additionally, meshless methods offer adaptivity in terms of spatial resolution. In traditional
mesh-based methods, the accuracy of the solution is limited by the grid resolution,
necessitating grid refinement in areas of interest. Meshless methods, on the other hand, do
not rely on a fixed grid, but rather on scattered data points. This allows for the adaptation of
spatial resolution based on the local flow features, resulting in efficient and accurate
simulations (Liu et al., 2020). Furthermore, meshless methods can naturally handle
dynamic remeshing, which is particularly advantageous for problems with evolving flow

domains or moving boundaries.

Meshless methods exhibit excellent scalability and parallelizability, making them well-
suited for high-performance computing. The absence of a structured grid simplifies the
computational operations, enabling efficient parallel processing and distribution of

computational tasks among multiple processors or computing nodes (Rabczuk et al., 2010).



This scalability is crucial for tackling large-scale and computationally demanding fluid

flow problems.

It is worth noting that meshless methods also have some limitations. The accuracy and
convergence behaviour of meshless methods depend on the choice of the radial basis
functions or other interpolation schemes used to reconstruct the solution from the scattered
data points. The accuracy can vary depending on the choice of interpolation functions and
their parameters, requiring careful selection and calibration (Liu et al., 2018). Additionally,
the computational cost of meshless methods can be higher compared to traditional mesh-

based methods, especially for large-scale simulations.

Meshless CFD methods offer several advantages, including their ability to handle complex
geometries, adaptivity in spatial resolution, and scalability in high-performance computing.
These features make meshless methods a promising alternative for simulating fluid flows,

particularly in situations involving intricate geometries or evolving flow domains.
2.1. Lattice Boltzmann Method

A recent advancement in computational fluid dynamics is the Lattice Boltzmann Method
(LBM), which offers an alternative approach to solving fluid flow problems. Unlike
traditional CFD methods that rely on structured or unstructured grids, LBM is a meshless
method that operates on a lattice model. In LBM, the fluid is represented by distribution
functions defined on a lattice grid, where each lattice node corresponds to a discrete fluid
particle. The evolution of these distribution functions is governed by discrete Boltzmann
equations, which describe the streaming and collision processes of the fluid particles. By
simulating the distribution functions' dynamics, LBM captures the macroscopic behavior of
the fluid flow. One of the key advantages of LBM is its ability to handle complex boundary
conditions and geometries with ease. The lattice structure simplifies the implementation of
various boundary conditions, such as no-slip walls or inflow/outflow conditions, without
the need for complex mesh generation. Additionally, LBM exhibits excellent

parallelizability, enabling efficient computations on parallel computing architectures.



LBM has demonstrated its effectiveness in simulating a wide range of fluid flow problem:s,
including laminar and turbulent flows, multiphase flows, and flows in complex geometries.
It has shown promise in simulating flows with complex physics, such as free-surface flows,
porous media flows, and fluid-structure interactions. Moreover, LBM can be extended to
incorporate additional physics, such as thermal effects or chemical reactions, making it

suitable for studying various engineering applications (Guo et al., 2013).

The LBM adopts a mesoscopic perspective, simulating fluid dynamics based on
interactions among particles arranged on a structured grid. The fluid flow is existed by the
collective behaviour of these particles. The Boltzmann equation produce as single particle

distribution function f'takes the following form (Succi, 2001):
af -
E+v.Vf=Q(f) (2.1)

The function f (X, ¥,t) corresponds to the likelihood of identifying particles possessing the
granular, microscopic velocity ¢ at the specific location x and moment t. The collision
operator, €(f) governs the temporal alteration in the distribution function f during a particle
collision. In a plethora of studies focused on the kinetic theory underlying fluid dynamics,
the collision term QFCX is typically symbolized as Q(f). This term usually manifests as a
convoluted integral expression. A simplification termed "BGK", conceived by Bhatnagar,
Gross, and Krook, and later incorporated by Qian et al. in 1992, substitutes the intricate
integral component with a more straightforward representation, as depicted in Equation 2.3

(Bhatnagar et al., 1954).

) == (£~ ) 2.2)

This mechanism simulates the collision's impact by letting the distribution function f relax
towards a Maxwellian equilibrium state fieq. Here, the parameter 1 stands as an emblematic
time, orchestrating the rhythm at which the distribution function gravitates towards

equilibrium. A first step for discretization of the Boltzmann equation is the restriction of the

continuous velocity space into a finite set of velocities. V= {€,,€4,....,e4_1} thus, the



distribution function f (¥, v ,t) is reduced f;(X, t) which describes the distribution along a

finite lattice.

The Boltzmann equation under the BGK approximation becomes LBGK the discrete
Boltzmann equation given by Qian et al., (1992)

%i +e,.Vf;, = %(fl-eq i) (2.3)

The f ¢ in Eq. 3 is the equilibrium distribution function for density. This equation is
discretized with a step size Ax and a time step A¢ which are linked by the following relation:

A .. .- . 4 o
A—: = ¢; . This discretization ensures that the particles in a node x move in time Az toward a

neighbour node x + e;At along the vector €; and equation is Qian et al., (1992) ;

fiGE +Edt t +dt) — fi(®,6) = - (£ - fi(®, 1)) (2.4)

1.Streaming: During each time step At, the particles undergo movement along the lattice
bonds to adjacent lattice nodes. The distribution function f;*(X, t) propagates along the
vector C;, and at the updated time t + At, the distribution function at a neighbouring

fi(@+ Gdt, t +dt) = f;" (X, t) Qianetal., (1992).

2. Collision: At time t, the particles located at a specific node x interact, leading to changes

in their velocity directions. As a result of this collision, the distribution function transitions

from f;(X, t) to f;"(%, t) =%(fieq — fi(%, t)), where t is a characteristic time

representing the relaxation rate of the distribution function towards its equilibrium state

£
ALl

LBM models are categorized based on the spatial dimension d and the count of distribution
functions b, leading to the descriptor DdQb. For two-dimensional scenarios, a D2Q9 lattice
model, encompassing nine distinct unit velocities, is employed to represent the flow field,

as illustrated in Figure 1.



LBM schemes are classified as a function of the spatial dimension d and the number of
distribution functions b, resulting in the notation DdQb. In the two-dimensional case, a
model with nine discrete unit velocities is realized for simulating the flow field (D2Q9)

lattice model as shown in Figure 1.1.

7 Yey

Figure 2.1. Discrete velocity directions for D2Q9 model in a computational cell

(Deiterding,2011)
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Usually the discretized equilibrium distribution function for D2Q9 adopts the following
expression [5]:

3 9 3
ﬁeq = pa)i(l + C_s (eiaua) +—= (eiaua)2 - 2_c§ (ua)z (2.5)

2
2¢§

Where e;, discrete velocity, ¢g = c/\/ 3 is the sound speed, u the macroscopic velocity,

w; are built preserving the isotropy. The pressure was obtained through the equation of
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state: p = c2p, here. It can be further demonstrated that there's a relationship between the
kinematic viscosity v and the collision frequency w, Chen et al., (1998).

-1 _ CSZAt

w=T =
v+Atcg? /2

(2.6)

Though the outlined model is readily applicable for simulating laminar flows, incorporating
a turbulence model becomes indispensable in scenarios with high Reynolds numbers.
Within the LBM framework, the large eddy simulation methodology is often the preferred

choice.

In the three-dimensional realm of the LBM, the physical domain gets discretized into
uniform Cartesian grids termed as lattices. Every lattice is structured with nodes, and these
nodes communicate with adjacent ones via certain lattice velocities determined during the
computation process. The classification of LBM frameworks depends on their spatial
dimensionality (d) and their count of distribution functions (b), expressed as DdQb. For bi-
dimensional configurations, standard models include D2Q7 and D2Q9. Meanwhile, in tri-
dimensional contexts, models like D3Q13, D3Q15, D3Q19, and D3Q27 gain prominence.
For instance, the XFlow computational tool harnesses the D3Q27 model, characterized by

its twenty-seven distinct velocities, as illustrated in Figure 1.2.

By employing these lattice models, the LBM can accurately simulate fluid flow and capture
complex flow phenomena in three-dimensional space. Each lattice node carries information
about the fluid's local characteristics, such as velocity and density, allowing for the

simulation of various fluid dynamics problems.

The discretized equilibrium distribution function for D3Q27 covers the following

expression [3]:
eq _ 3 9 2_ 3 2
f; - pwi(l + é (eiaua) + E (eiaua) - ﬁ (ua) (2-7)

Where e;, discrete velocity, ¢, is the sound speed, u the macroscopic velocity, w; are built

preserving the isotropy. For this purpose, the D3Q27 scheme has been implemented to the
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analysis of VAWT and Wall-Adapting Local Eddy-viscosity (WALE), Spalart-Allmaras
and Smagorinsky turbulence models have been selected to analysis static pressure, velocity

and turbulence models. The WALE has good properties both near to and far from the wall
turbulent flows (Weickert et al. 2010; Zhuo et al. 2013).

Figure 2.2. The lattice structure of D3Q27 model (Laloglu et al., 2023)
2.2. Large - Eddy Turbulence Models

Large Eddy Simulation (LES) is a computational method used to simulate turbulent flows
by capturing the energy-containing large-scale structures while modelling the effects of the
smaller-scale turbulent fluctuations. To accurately represent the subgrid-scale (SGS)
turbulence, various turbulence models have been developed. In the context of LBM, it is
common to adopt a large eddy simulation approach and assume that the partial density
distribution functions used in the scheme represent the resolved scales. The sub-grid scale
turbulence is then considered by adding a turbulent viscosity vt to the physical one

Krafczyk et al (2003).

A
v*=v+vt=c§(r*_7t)

*
where T*=1.+17=1/w
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and the effective relaxation frequency, ", replaces @ in the collision operator throughout

the scheme.

Although it is more computationally expensive to use the space-filtered NSE than the time-
averaged Navier- Stokes Equation, the former produces accurate solutions that capture

details of physical quantity fluctuations that are lost in time-averaging.

Large eddy simulation (LES) is the predominant form of the space-filtered NSE and is

derived by introducing a space-filtered quantity, u".
u(x;, ) = [ [ Ax; uxg, )G (g, x;dx;

where G is a spatial filter convolution kernel which has an associated cutoff length scale, /i,
and cut off time scale, 7.. Scales smaller than these are eliminated from . The resulting

space-filtered Navier- Stokes Equation system is

ou;

(')xj_
61~1i aai{lj _ 165 n 62111- aTij
ot~ ax; 1 pox | oxdx 0%

where 7;; is the sub-grid-scale stress (SGS) that reflects the interaction of the unresolved

scales with the resolved scales. It arises from the filtered advection term (Leonard, 1975)

uiuj = Tij + uiuj

The Boussinesq assumption for turbulent stresses allows the sub-grid-scale stress to be

represented with an SGS eddy viscosity, v;, as

_ ou, . ou;
Tij -0 ax] axl-
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2.2.1. Smagorinsky Model

One of the most important tasks in an LES solution is to model the sub-grid scale stresses.

In this study, Smagorinsky models (Smagorinsky, 1963) was used for this purpose.

Within LES simulations, an extra form of viscosity, termed the turbulent eddy viscosity v,

is incorporated to account for turbulence effects. This specific viscosity is expressed as:
v, = C:Ax*w (2.8)

Where C, indicates the constant associated with the LES model, while, Ax represents the
spacing in the lattice structure. The operator the lattice spacing, and @ corresponds to the
LES model. Within the framework of the lattice Boltzmann formulation, the connection

between viscosity and the relaxation time 1 is established by

2791 Tt
iy (2.9)

Vtotal = Vo + V¢ =

where v, refers to the inherent molecular viscosity. Drawing parallels to the division of the
viscosity parameter, the relaxation time t is segmented into its molecular and turbulent

components. The collective relaxation time can be expressed as:

Ttotal = 3Vtotar T 0.5 (2.10)
By adding Eq. 2. 8)

Teotar = 3(Vo + C2Ax%*w + 0.5) (2.11)

Derived the operator @ exclusively from the shear stress tensor for Smagorinsky as follows:
Lj

Smagorinsky, LES model constant was given the value of C, =0.2 in Equation 2.7.
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2.2.2. Dynamic Models

Dynamic models are extensions of the Smagorinsky model that aim to improve the
accuracy and adaptivity of the eddy viscosity coefficient. These models dynamically
estimate the eddy viscosity coefficient based on the local flow characteristics. One example
is the dynamic Smagorinsky model proposed by Germano et al. (1991), which incorporates
a test filter to determine the optimal value of the eddy viscosity coefficient. The dynamic
models account for the spatial and temporal variations in the flow and provide a more

accurate representation of the turbulence.
2.2.3. Scale-Dependent Models

Scale-dependent models consider the scale dependency of turbulence and aim to capture the
anisotropic behavior of turbulence at different length scales. These models utilize different
eddy viscosity coefficients for different scales, allowing for a more accurate representation
of the turbulent flow field. Examples of scale-dependent models include the dynamic
mixed-scale model proposed by Lilly (1992) and the scale-similarity model developed by
Vreman et al. (1997). These models consider the non-universal behaviour of turbulence and

provide improved predictions for flows with complex geometries.
2.2.4. Wall-Adapting Models

Wall-adapting models are specifically designed to handle turbulent flows near solid walls,
where the existence of boundary layers significantly affects the flow dynamics. These
models incorporate wall functions or modifications to the eddy viscosity coefficient to
account for the near-wall effects. Various wall-adapting models have been proposed to
improve the accuracy of LES near walls. Examples include the wall-resolving model,
which resolves the near-wall region with a fine grid, and the wall-modeled model, which

uses wall functions to approximate the near-wall flow, Sagaut, (2006).
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2.3. Applications of Lattice Boltzmann Method (LBM) in Fluid Dynamics

The LBM has gained significant attention in recent years due to its ability to simulate
complex fluid flows with high accuracy and computational efficiency. LBM 1is a
mesoscopic numerical approach that discretizes the fluid domain into a lattice structure,
where fluid properties are represented by particle distribution functions. This method offers
several advantages over traditional numerical methods, such as its inherent parallelism,

easy handling of complex geometries, and efficient treatment of fluid-structure interactions.

LBM has been successfully applied to a wide range of fluid dynamics problems. One such
area is in the study of multiphase flows, where the interactions between different fluid
phases are of interest. The immiscible fluid interfaces and interfacial dynamics can be
accurately captured using LBM, making it suitable for simulating phenomena such as
droplet coalescence, bubble dynamics, and liquid-solid interactions (Liu et al., 2019).
Additionally, LBM has been employed in modelling porous media flows, where the fluid
flow through a porous structure is of interest. The ability of LBM to handle complex
geometries and its inherent adaptivity make it suitable for simulating fluid flow through

porous media (Liu et al., 2018).

Turbulent flows have also been extensively studied using LBM. The ability to model
turbulence using large eddy simulation (LES) techniques with LBM has provided valuable
insights into the complex behavior of turbulent flows. LES-LBM simulations have been
employed in various applications, including the study of turbulent boundary layers, flow
over complex geometries, and turbulent mixing processes (Chen et al., 2019). The
combination of LBM and LES allows for a detailed analysis of the flow characteristics,

such as vortex shedding, turbulence statistics, and energy spectra.

Furthermore, LBM has found applications in the field of microfluidics, where fluid flow at
small scales is of interest. The ability of LBM to handle multiscale problems and its
computational efficiency make it suitable for simulating fluid flows in microchannels and
microdevices (Li et al.,, 2017). LBM has been used to investigate phenomena such as

electrokinetic, droplet dynamics, and microscale heat transfer.
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In summary, the LBM has proven to be a versatile and powerful tool in the field of fluid
dynamics. Its applications span various areas, including multiphase flows, porous media
flows, turbulent flows, and microfluidics. The accurate representation of complex fluid
behaviour, computational efficiency, and flexibility in handling different flow regimes

make LBM a valuable numerical approach in fluid dynamics research.
2.4. Advantages and Limitations of LBM

The Lattice Boltzmann Method (LBM) offers several advantages that make it an attractive
choice for simulating fluid flows. One of the key advantages is its inherent parallelism,
which allows for efficient utilization of modern high-performance computing architectures
(Kruger et al., 2017). The lattice structure of LBM lends itself well to parallel processing,
enabling the simulation of large-scale and complex fluid flows within reasonable
computational timeframes. This makes LBM particularly useful for tackling problems that

involve high Reynolds numbers or intricate geometries.

Another advantage of LBM is its ability to handle complex boundary conditions and
interfaces with relative ease. The lattice-based nature of LBM allows for straightforward
implementation of various boundary conditions, including no-slip, slip, and free-slip
conditions, as well as the modeling of moving or deforming boundaries (Ginzburg et al.,
2014). Additionally, LBM excels at capturing fluid interfaces and interfacial phenomena,
such as phase separation and multiphase flow behavior, due to its mesoscopic nature (Shan
et al., 2015). This makes LBM a valuable tool in studying problems involving fluid-

structure interactions or complex fluid interfaces.

Moreover, LBM exhibits adaptivity in terms of spatial resolution, allowing for efficient and
accurate simulations. Unlike traditional mesh-based methods, LBM does not require
complex mesh generation procedures, making it particularly suitable for problems with
irregular geometries or situations that involve frequent grid modifications (Kruger et al.,
2017). This adaptivity enables the simulation of flow phenomena at different scales,

ranging from macroscopic to microscale flows, using a unified numerical framework.
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Despite its advantages, LBM also has some limitations that need to be considered. One
limitation is the relatively higher memory requirement compared to other numerical
methods. LBM requires storing particle distribution functions on the lattice, which can lead
to significant memory usage, especially for large-scale simulations (Kruger et al., 2017).
Additionally, the mesoscopic nature of LBM introduces statistical noise in the simulation
results, which may require longer computational times or additional post-processing

techniques for accurate analysis (Ginzburg et al., 2014).

In summary, the Lattice Boltzmann Method (LBM) offers several advantages, including its
parallelism, ease of handling complex boundaries and interfaces, and adaptivity in spatial
resolution. These characteristics make LBM well-suited for simulating complex fluid flows.
However, it is important to consider its limitations, such as higher memory requirements

and the presence of statistical noise, when applying LBM to fluid dynamics problems.
2.5. Introduction to Solution-Adaptive Methods

Solution-adaptive methods are a class of numerical techniques used in computational fluid
dynamics (CFD) to dynamically refine or coarsen the computational grid based on the
solution characteristics. These methods aim to enhance the accuracy and efficiency of CFD
simulations by selectively refining regions with high solution gradients or important flow
features while coarsening regions with low solution variations (Tumin & Erturk, 2016). By
adaptively adjusting the grid resolution, solution-adaptive methods can provide more

accurate solutions with reduced computational costs compared to fixed grid approaches.

The formulation of solution-adaptive methods involves several key steps. Firstly, an initial
grid is generated to discretize the computational domain. This grid can be structured or
unstructured, and its quality and resolution are chosen based on the problem requirements.

The initial grid serves as the foundation for subsequent adaptivity procedures.

Next, the CFD solver is employed to solve the governing equations on the initial grid. The
solution variables, such as velocity, pressure, and temperature, are computed iteratively

using numerical algorithms. During the solution process, error indicators are employed to
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assess the local accuracy of the solution and identify regions where grid refinement or

coarsening is necessary (Bungartz & Zenger, 2002).

Various error indicators can be used to guide the adaptivity process. These indicators can
be based on solution gradients, local truncation errors, or other flow characteristics of
interest. Commonly used error estimation techniques include the Richardson extrapolation,
adjoint-based error estimation, and residual-based error estimation (Iaccarino & Verzicco,
2003). These indicators provide information about the regions that require grid refinement
or coarsening to improve the overall accuracy of the solution. Once the error indicators are
computed, grid adaptation strategies are employed to refine or coarsen the grid accordingly.
Grid refinement involves subdividing cells or adding new cells to increase the grid
resolution, while grid coarsening involves merging cells or removing unnecessary cells to
reduce the grid size. Various grid adaptation techniques, such as h-refinement, p-
refinement, and adaptive mesh refinement (AMR), can be employed to adjust the grid
structure based on the error indicators. The grid adaptation process is typically performed
iteratively. After the grid is refined or coarsened, the CFD solver is applied again on the
updated grid to obtain an improved solution. This iterative procedure continues until a
desired level of accuracy is achieved or the solution reaches convergence. Overall, solution-
adaptive methods provide an effective approach to enhance the accuracy and efficiency of
CFD simulations. By dynamically adjusting the grid resolution based on the solution
characteristics, these methods can capture flow features and resolve regions of interest with

higher accuracy while minimizing computational costs in less significant areas.
2.6. Adaptive Mesh Refinement in LBM

For dynamic mesh adaptation at a local level, it has been integrated the block-structured
AMR technique introduced by Berger & Collela. Originally, this method was
conceptualized for time-explicit finite volume schemes pertaining to hyperbolic
conservation laws. Nevertheless, given its iterative process and intrinsic design that
considers time step refinement, it suits lattice Boltzmann schemes quite fittingly. This

compatibility stems from the fact that the fundamental theory behind the transport step of

19



these schemes is rooted in a hyperbolic constant velocity advection equation. To ensure a
seamless integration with the pre-existing parallelized finite volume AMR software,
AMROC, it has been fashioned the LBM to be cell-centric. With the block-based AMR
strategy, finite volume cells are systematically grouped into distinct, non-overlapping
rectangular grids via a specialized algorithm. These grids are characterized by an

appropriate layer of halo cells.
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Figure 2.3. Displaying the partial density distribution functions is crucial when
understanding the data transfer at the junction between coarse and fine boundaries. The
bold black demarcations symbolize a physical boundary. (a) Coarse data points extending
into the fine grid; (b) incoming interpolated fine points in peripheral zones (top) and
outgoing points in these zones post two fine-level transport maneuvers (bottom); (c)
computed averages that supplant coarse data before another update cycle adjacent to the

boundary, Deiterding, (2002).

Grids are structured with particular emphasis on establishing conditions at inter-level

junctions and physical boundaries. These refinement tiers are processed in a nested manner.

The spatial mesh width Ax and the time step At; are refined by the same factor 77, where we
assume 7; = 2 for [ > 0 and ry = 0. Note that in an adaptive LBM the collision frequency

w; 1s not a constant but needs to be adjusted.
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Furthermore, the interface zone demands specific attention. In the given depiction and as
illustrated in Figure 2.3, time intervals at the coarse layer C are marked by the superscript
n, while the label F highlights the fine tier. The prefixes 'in' and 'out' demarcate
distributions moving into and out of the fine grid at the junction with the coarse grid.
Computationally, this algorithm aligns with the technique presented by Chen et al., 1998.
It's precisely adapted to the Berger-Collela recursive pattern, which prioritizes updating the
entire coarse grids before delving into fine grid calculations. This systematic full update of
the associated coarse lattice followed by necessary adjustments is what makes the Berger-
Collela method notably efficient. Yet, this strategy has been seldom employed in lattice
Boltzmann techniques. Earlier adaptive LBM methodologies prioritized the fine grid's
update before addressing the corresponding coarse tier, offering no clear path for

introducing time-interpolated conditions at the fine-level interface.
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3. BENCHMARKS FOR LBM AND SOLUTION-ADAPTIVE
METHODS

3.1. Simulation of the Flow past an Cylinder at high Reynolds Number

The phenomenon of fluid flow around a circular cylinder has garnered considerable
attention in the literature, undergoing extensive examination through both experimental and
computational studies. Lausova et al. seek to identify an appropriate numerical model for

simulating 2D flow past a smooth circular cylinder at a Reynolds number of 17,000.

Among the various approaches for modeling turbulent flows in engineering, RANS
(Reynolds-Averaged Navier-Stokes) models, which rely on the time-averaged equations of
motion, are predominantly utilized. Within this domain, the SST (Shear-Stress Transport)
k- model is selected for this investigation due to its proven effectiveness in high Reynolds
number scenarios. LBM analysis is compared with the study using XFlow and considered

to implement close amounts of grids
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Figure 3.1. Computational area — dimensions Lausova et al., (2019).
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Table 3.1. Parameters of the calculations Lausova et al., (2019).

Parameters of the

Geometric dimensions Values T Values
Cylinder diameter D=01m Air velocity inlet =3 ms’
Length of the area L=5m Turbulence intensity i,=2%
Width of the area B=1&m Kinematic viscosity p=1710%m?s?

Distance of ci::‘IIigtder axis from I=10m Density p=1225k g-m':‘

where u represents the flow velocity, v is kinematical viscosity of the running fluid and D is
a diameter of the cylinder. The value Re = 1.7-10"4 represents a fully developed turbulence

in the subcritical regime.
3.2. XFlow Simulation Setup

To conduct a comparable analysis to that performed the computational domain was discretized
with a lattice arrangement. A total of 89,920 lattice points were strategically implemented
across the computational area for this analysis. This meticulous lattice arrangement ensures the
accurate representation of the flow dynamics surrounding the circular cylinder, facilitating a

comprehensive comparison with the results.

Figure 3.2. XFlow Lattice Structure with using Adaptive Refinement
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3.3. Evaluation of Mean Stream Velocity Field in Wake Region Using Lattice
Boltzmann Method

In this study, the focus lies on evaluating the mean stream velocity field within the wake region
trailing the circular cylinder. To achieve this, the computational domain is discretized using the
Lattice Boltzmann Method (LBM), a powerful numerical technique widely employed for

simulating fluid flows.

The LBM approach is particularly suited for capturing complex flow phenomena due to its
inherent ability to model fluid behavior at various scales. By employing LBM, the flow
dynamics around the cylinder can be accurately simulated, providing insights into the

characteristics of the wake region.

Furthermore, the Wale-Adaptive Large Eddy Simulation (WALE) turbulence model is
employed specifically within the wake region. This model offers enhanced capabilities for
capturing turbulent fluctuations, making it well-suited for accurately representing the
turbulent flow characteristics prevalent in the wake of the cylinder. Illustrative figures are
utilized to depict the mean stream velocity and velocity profiles across different grid
configurations. These figures serve as visual aids for comparing and analyzing the
computed results, providing valuable insights into the flow behavior and the effectiveness

of the numerical approach employed.

Overall, the combination of the Lattice Boltzmann Method with the WALE LES turbulence
model offers a robust framework for accurately evaluating the mean stream velocity field in
the wake region behind the cylinder, facilitating a comprehensive understanding of the flow

dynamics and contributing to advancements in fluid dynamics research.
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Figure 3.3. Horizontal velocity components
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Figure 3.4. Horizontal Velocity Components — Vertical axis in the far wake

Figure 3.4 illustrates the mean stream velocity field in the far wake, providing valuable

insights into the distribution of velocities downstream of the cylinder. This visualization
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aids in understanding the evolution of flow structures and the extent of wake recovery,
crucial for assessing the aerodynamic performance of the cylinder and its impact on

downstream flow conditions.

3.4. Simulation of the Flow around an Oscillating Cylinder with Adaptive Lattice
Boltzmann Methods

Many aerodynamic problems are characterised by an interaction between moving structures
and fluid flow. As a canonical example for this problem class, we consider in here the
subsonic flow around a cylindrical body undergoing an imposed regular oscillatory motion.
This flow has been studied extensively experimentally as well as numerically because of its
obvious importance as a fundamental problem occurring in a multitude of industrial
applications. Studies have revealed that transverse or rotational motion of the cylinder can
have a significant influence on the wake flow. Especially the influence of translational
oscillations on vortex formation and the effect of rotation on wake behaviour have been
evaluated Hou et al.; Howell et al. Flow-induced forces such as drag and lift are highly
sensitive to the accurate representation of the motion as well as the mesh resolution,
providing an ideal and challenging benchmark for modern fluid solvers that can handle
large-scale fluid-structure interaction. In CFD analysis of the oscillating cylinder setup, a
fine resolution is required to accurately represent the effect of the motion, which means that
a high-resolution mesh must be used to analyse the flows around the cylinder, especially if

the flow has a higher Reynolds number Laloglu et al., (2017).

To capture high frequency cylinder motion as well as small-scale flow structures, this study
uses solution-adaptive mesh refinement. The underlying numerical discretisation adopted
here is the LBM. LBM derives its foundation from the Boltzmann equation, which
primarily dictates the behaviour of particle propagation. However, instead of focusing on
singular particles, the LBM operates within the continuum domain by considering

aggregates characterized by their probability densities Laloglu et al., (2017).

The lattice Boltzmann method can be understood as a mesoscale approach, designed for the

intermediate scale regime between continuum (macro-scale) and individual particles
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(micro-scale). The fundamental concept is to devise streamlined kinetic models at
encapsulate the core physics of the microscopic interactions, ensuring that the aggregated
values align with the targeted macroscopic equations. Simplified kinetic models, such as
the BGK (Bhatnagar, Gross and Krook) collision operator, which is based on the
assumption that only two particles can collide at a time, can be used if the macroscopic
dynamics of a fluid is the result of the collective behaviour of many microscopic particles
in the system. For instance, Jiange et al. (2016) have used a BGK-based incompressible
lattice Boltzmann method to numerically investigate vortex-induced vibrations (VIV)
phenomena around an oscillating square cylinder. In their study, results for stationary
cylinder cases were in in good agreement with results of traditional CFD methods for
Reynolds numbers Re 166. When the Reynolds number was Re > 166, the trend of the
Strouhal number variation over Reynolds number was still consistent with the results from
conventional continuum mechanical methods, but differences increased with Reynolds
number, which was attributed to differences in computational domain size and the
inlet/outlet boundary conditions. Here, we reproduce by numerical simulation two laminar
flow configurations that have been experimentally studied by Nazarinia et al.,(2011). They
used particle image velocimetry (PIV) to characterise the wake of forced cylinder flow at

Reynolds number 1322. We then extend these cases into the turbulent regime.

Table 3.2. Applied values of At and Ag, Nazarinia et al.,(2011).

Case | A: Ao| Vr
2 D/4| 10| 0.5
3 D2 | 10| 1.0

— 6(t) Q ¥(#)
— % &

Figure 3.5. Motion imposed on cylinder, Nazarinia et al.,(2011).
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The harmonic motions of the cylinder have translationally and rotationally movements.
Equation (3.1) and (3.2) involve the rotational amplitude, frequency and time. The forced

motion of the cylinder is specified by;

y(t) = A; sin( 2nf,t) (3.1
0(t) = Ag sin( 2mfyt) (3.2)

As can be seen Figure 3.5, the oscillating cylinder which is an outer diameter of 20 mm was
moved on transitional and rotational. The computational analysis in 2D was performed with
a constant velocity of Uue=0.0606 m/s for laminar flow and U,,,=0.303m/s and Re= 6610
for turbulence flow. The frequencies of the motions are fixed close to that of the natural
(von Karman) frequency (T'= f=fp=0.6 s'). The natural frequency is fy =~ 0.6154s~!

Thus, Strouhal number;

St; = f;D/U,, = 0.198 for frequency,

St = fyD/U,, = 0.203for forcing (Nazarinia et al. 2011).
3.5. Evaluating of mesh refinement and solution time

As comparing to experimental results, the selection of the lattice size can effectively change
the CFD results owing to increasing of number of particles and relaxation time depending
on probability distribution functions. When lattice size decreases in domain, the collision
frequency will decrease and the results are more sensitive. Solution-adaptive approach
provided the better accuracy and in good agreement with experimental data. The
parameters of solvers information were tried to same level to correctly compare the results.

There is no wall function that applied on boundary layer.
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t=1.09081s t=2.02579s t=3.1166s

| t=1.00815

Figure 3.6. Case 3: Evolution of dynamic mesh refinement (upper row) and distribution to

four processors over time (lower row) in AMROC. (Laloglu et al., 2017)
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Figure 3.7. Mesh refinement of Case 2 on a) AMROC b) XFlow for laminar flows and c)

experimental contour (Nazarinia et al., 2011)
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Figure 3.8. Mesh refinement of Case 2 on a) AMROC b) XFlow for laminar flows and c)

experimental contour (Nazarinia et al., 2011)

An exemplary computation for Case 3 is visualised in Fig. 3.8. In the upper row, the
domains of the three levels of successively finer block-structured meshes are shown with
isosurfaces of the magnitude of the vorticity vector overlaid. It is apparent that the
refinement follows the vortices generated by the cylinder motion. This computation was
run on 4 processors and the lower row depicts in different colours the domains associated to
the processors. The AMROC system uses a rigorous domain decom- position approach, in
which higher level temporal and spatial refinement is considered in computing the actual
workload, but only distribution entities in terms of the base level mesh are used for

partitioning.
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Table 3.3. Laminar and turbulence flows parameters for Case 2 and Case 3 (Nazarinia et
al., 2011)

Total cell CPU ti
Flow type | Case | Ato [s] 9% cos Ate [s]| Re | y* ime [s]
AMROC | XFlow AMROC | XFlow
) 2 0.0015 | 85982 | 84778 | 333 |1322| 0 | 161.89 176
Laminar
3 0.0015 | 91774 | 90488 | 3.33 |1322| 0 | 16597 183
2 [0.00031| 232840 |216452| 1.66 |6310|24| 635.8 887
Turbulent
3 10.00031| 255582 |246366| 1.66 |6310|2.6| 933.2 1325
250
4
200
% 150 == Case 2
E 100 ~#—Case 3
50 Case 2-ldeal
0 =>¢=Case 3-ldeal
0 1 2 3 4 5 6 7

Number of Cores

Figure 3.9. Overall solution time depending on number of cores in laminar flow for t=3.33s
on AMROC

1200
1000
__ 800 === Case2
? 600 == Case 3
= 400 Case 2_ldeal
200 =>é=Case 3_ Ideal
0
0 2 Némber of Cores 6 8

Figure 3.10. Overall solution time depending on number of cores in turbulence flow for
t=1.66 s on AMROC
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The solution time can be decreased effectively with increasing of number of cores in
(Message Passing Interface) MPI parallel solver. The code was operated on Ubuntu 14.04
with a workstation an Intel® Xeon® CPU Process @3.50 GHz, 16GB RAM, NVIDIA
Quadro K4200 work station operating on 12 CPUs (6 cores, 6 threads). It is understood
from Figure 3.9-3.10 that when the number of cores are increased, overall solution time is

decreasing due to communications delaying among the processors.
3.6. Effecting of varying Vr in laminar flows

Obtaining computational analysis results are presented in vorticity distributions for
AMROC code and XFlow commercial software data were compared with investigation of
Cp (drag coefficient) and Cy(lift coefficient) in different velocity ratios. Utilizing by
adaptive mesh refinement technique on AMROC, near-wake flow structures on
downstream flow were obtained using with LBM method at laminar flows. The flow
domain was arranged at same size for AMROC and XFlow. Note that the significant impact
to solve the motion is required to observe the vortex shedding behind the cylinder. For this
purpose, the vortex mode is classified by the Williamson and Roshko in 1988. From their
analyses, they experimentally discerned the structures of the near-wake by examining
vortex shedding, which revealed distinct vortex modes. The experimental review helped in
recognizing specific vortex configurations close to the primary phase-lock-in zone, namely
28, 2P, and P + S. The 2S pattern indicates that every half-cycle feeds a vortex into the
downstream wake, reminiscent of the natural Karman vortex shedding. On the other hand,
2P depicts the creation of vortex duos that laterally drift away from the wake's central axis.
The P + S mode stands as an unbalanced variant of the 2P configuration, where the cylinder

releases both a vortex duo and a solitary vortex within a single cycle.
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Figure 3.11. Vorticity distributions for laminar flows at U=0.0606 m/s and Re= 1322 a)
XFlow and b) AMROC for Case 2, V= 0.5
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Figure. 3.12. Comparison of a) drag coefficient (Cp) and b) lift coefficient (Cr) graph
depending on time for Case 2, V= 0.5

Figure 3.11 gives us the 2S vortex mode and are coherent when compared to the referenced
paper and XFlow commercial software for Vr=0.5. Furthermore, the near-wake vortices are
remaining coherently in the near-wake and are synchronized with the translational motion.
Besides, the graphs of drag and lift coefficient were demonstrated to get detailed
comparison AMROC code with XFlow as shown Figure 3.12a and Figure 3.12b at Vr of
0.5. It showed the Cp and Cy values were presented an agreement even if they have some
discrepancies. As can be seen from Figure 3.8, the same discrepancies were obtained at Vr

of 0.5 during the analysis of Case 2.
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(a) (b)
Figure 3.13. Vorticity distributions for laminar flows at U=0.0606 m/s and Re= 1322 a)

XFlow and b) AMROC for Case 3, Vz=1
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Figure 3.14. Comparison of a) drag coefficient (Cp) and b) lift coefficient (Cr) graph

depending on time for Case 3, V=1

The parameters taking from referenced paper (Nazarinia et al., 2011) values were applied to
for Case 2 and Case 3 as given Table 1. Obtained results were enabled to understand better
the behaviour of the motion and mechanism behind of the oscillating cylinder movement
with increasing of velocity ratios at phase-locked. The near-wakes structures are very
agreement with XFlow commercial software as shown Figure 3.13. As the VR increases to
1.0, observable from Figure 3.13, there's a notable transition in the vortex shedding mode.
Instead of the previously observed 2S mode, a P+S mode emerges in the near-wake,
characterized by the formation of one solitary vortex and a vortex pair during each cycle.

The vortex shedding pattern identified for this scenario is distinctly P+S. Such vortex
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formations are commonly recognized within the vortex street and have been studied for
their synchronization with oscillatory movements. These vortex patterns contribute to a
broader wake, predominantly because the translational motion in these situations outpaces
the rotational. The Cp and Cy. values were demonstrated still eligible discrepancies but they

were occurred coherently as shown Figure 3.14.
3.7. Effecting of varying VR in turbulence flows

In order to attain the more knowledge about the near-wake structures behind the cylinder, it
was increased the average velocity further to U=0.303 m/s and Re= 6310. Smagorinsky

sub-grid scale turbulence model was used to see the vorticity shedding at high Reynolds

number. All cases as given Table 3.3 were applied at the same domain in 2D analysis.

(a) (b)

Figure 3.15. Vorticity distributions for laminar flows at U=0.303 m/s and Re= 6310 a)
XFlow and b) AMROC for Case 2, V= 0.5
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Figure 3.16. Comparison of a) drag coefficient (Cp) and b) lift coefficient (Cr) graph
depending on time for Case 2, V= 0.5
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Figure 3.15 shows the 2S vortex mode obtaining from AMROC and are coherent when
compared to the XFlow commercial software for Vr=0.5. In particular, Cp and Cr values of

AMROC were presented very compatibility with XFlow results with slightly discrepancies

as shown Figure 3.16.

(b)

Figure 3.17. Vorticity distributions for laminar flows at U=0.303 m/s and Re= 6310 a)
XFlow and b) AMROC for Case 3, Vz= 1
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Figure 3.18. Comparison of a) drag coefficient (Cp) and b) lift coefficient (Cr) graph

depending on time for Case 3, Vr= 1

Figure 3.17 gives vortex shedding mode to the signature of a P+S mode in the near-wakes
structures is very agreement with XFlow commercial software. With increase of Re, it

produced more defined a weak wake that proves the P vortex mode to outwards.
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3.8. Darrieus VAWT Numerical Model Meshfree analysis using with LBM

Vertical axis wind turbines (VAWTSs) are commonly categorized into two main types: drag-
driven turbines, such as the Savonius design, and lift-driven turbines, like the Darrieus
design. While drag-driven turbines tend to have better initial start-up performance, they
exhibit lower power generation efficiency compared to lift-driven turbines. In this
investigation, the focus is on evaluating the performance of a Darrieus-type wind turbine
operating at a wind speed of 12 m/s. The straight blades of the turbine utilize the NACA
0015 airfoil profile. The specific characteristics of the VAWT employed in the virtual wind
tunnel simulation conducted by (Lee Y. and Lim H. 2015) are as follows: the chord length
is 150 mm, the rotor diameter (D) is 740 mm, the length (L) is 600 mm, and the aspect ratio
(L/D) is 0.81. The turbine consists of three blades. Figure 3.19 illustrates a schematic CAD
representation of the Darrieus VAWT employed in this study, with dimensions matching
those of the experimental study conducted by (Lee Y. and Lim H. 2015). The Reynolds

number for the given values of air velocity at 12 m/s is approximately 120,000.

Figure 3.19. CAD geometry of Darrieus Vertical Axis Wind Turbine
3.8.1. Applied Turbulence Models

Selecting a turbulence model is an important factor to ensure that accurate numerical
solutions can be obtained in a reasonable time. Two turbulence modelling approaches were

used during the computations; LES and RANS.
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3.8.1.1. Large Eddy Simulation (LES)

In Large Eddy Simulation (LES), an essential aspect is the representation of sub-grid scale
stresses. This study employed two different models, namely WALE and Smagorinsky
models, to address this task. During LES simulations, turbulent eddy viscosity v, is
introduced as an additional viscosity to capture the characteristics of turbulence. The value

of this eddy viscosity is determined by the chosen model equation 2.8 ;

Here, C, represents a constant specific to the chosen LES model, Ax refers to the spacing
between lattice points, and @ corresponds to the LES model operator. In the LBM model,
the viscosity is connected to the relaxation time t. This relationship governs the rate at
which the distribution function approaches equilibrium. By appropriately adjusting the
relaxation time, the desired viscosity can be achieved, influencing the flow behaviour in the

simulation equation 2.9.

The relaxation time t can be decomposed into molecular and turbulent components,
analogous to the separation of the viscosity term. This allows for distinguishing the
contributions of molecular viscosity v, and turbulent effects. The total relaxation time

encompasses both these aspects, as expressed by the following equation 2.10.
By applying Eq. (2.8), we arrive at equation 2.11

Derived the operator @ exclusively from the shear stress tensor for Smagorinsky as follows

equation 2.12

The WALE model considers the shear stress tensor including the rotation tensor. The

operator @ is defined as follows ,Weickert et al., 2010 :

3
(stj65;)°

5 2
(Si}'Si}')2+(Gideidj)4

@ = (3.3)

wu|
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The difference between WALE and Smagorinsky, LES model constant was given the value

of C,,0.325 and 0.12, respectively, in Equation 6.
3.8.1.2. Reynolds-Averaged Navier-Stokes (RANS)

In the context of RANS simulations, the Spalart-Allmaras turbulence model is a one-
equation model solving a transport equation for a variable called ¥, which represents an
approximation of viscosity. This variable is then used to adjust a turbulent viscosity v.
Within the framework of the lattice Boltzmann method (LBM), the turbulent viscosity can
be employed to modify the relaxation time in the collision operator. In this investigation, a
modified version of the model, presented in Equation 3.4, was implemented to enhance the
numerical behaviour in the vicinity of the wall within the laminar sublayer. The transport
equation and the complete set of parameters associated with the model are provided below

(Laloglu et al., 2023):

5 L, o - 2 o 72
% + u. (Vv) = %[V 3 ((v + v)Vv) + cbZ(Vv) ] + cp1ST — Cwifw (g) (3.4)
~ X3 v
Ve =Vfp1, fo1 = X3+c,’ =0

2
cp; = 0.1355, o = 3 Cpr = 0.622, k=041,

2
Cp1 1+ Cp2
Cw1 = » + pa w2 = 0.3, Cw3z = 2, c,1 =0.1

3.8.1.3. Virtual Wind Tunnel Analysis and Boundary Conditions

The computational analysis consists of lattice structures shown Figure 3.20. The
dimensions of the numerical wind tunnel were selected as 3m x 2mx 6m (width % height
xlength) to observe better analysis because it gives suitable environment depending on
turbine size, investigating wake effect inside in virtual wind tunnel. In order to see the
effect of number of cells on the solutions, two cases were chosen; lattice structures with

element numbers about 2 500 000 and 5 000 000. In this simulation, inlet wind velocity of
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12m/s is applied to predict the aerodynamic characteristics with various turbulence models
in accordance with the reference (Lee et al. 2015). Adaptive wake refinement technique
was used to observe detailed wake developing around the blades. The XFlow engine
incorporates an automatic scale adaptation feature that adjusts the resolved scales based on
user-defined criteria. This adaptive process enhances the solution accuracy in regions near
the walls by refining the mesh, effectively capturing strong gradients within the flow.
Additionally, as the flow progresses, the engine dynamically adapts to refine the wake
region, ensuring an accurate representation of the evolving flow patterns. This behavior is
illustrated in Figure 3.29, showcasing the adaptability and effectiveness of the XFlow

engine in optimizing the solution quality throughout the computational domain.

Figure 3.20. Cell Configuration of Darrieus Vertical Axis Wind Turbine (5 000 000 lattice
cells).
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Figure 3.21. Adaptive Wake Refinement for Darrieus Vertical Axis Wind Turbine (5 000
0000 lattice cells). The spatial resolution in this case varied within a range of 0.00125m to

0.05m.

The design parameters of turbine and boundary conditions were specified according to the
reference (Lee et al. 2015). One of the performance parameters of wind turbines is the tip-
speed-ratio (TSR), which is the blade-tip speed against wind speed and is defined in
Equation 10. Typically, the power performance of the rotor can be presented by variation of
power coefficient with TSR. In a wind turbine power obtains by multiplying the torque
generated on the blades by the aerodynamic forces with the rotation speed. Torque
coefficient (Cp) and power coefficient (Cp) were calculated using Equations 3.11 and 3.12,
respectively (Lee et al. 2015).

Tip Speed __ wXR
Wind Speed o U

TSR = (3.11)

0.5pARU

In Equation 11, Q is torque [Nm], p denotes the air density [kg/m?], and 4 is the cross-

sectional area of the rotor [m?] (Lee et al. 2015).
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In order to investigate the performance characteristics, three tip-speed ratios (TSRs) of 1,
1.2 and 1.6 were chosen for the calculations. (Lee et al. 2015) obtained the maximum

power coefficient at TSR of 1.2 in their experimental results.
3.8.1.4. Results and Discussion
Solution times with different turbulence modelling approaches

In this study, CFD solutions were performed on an Intel® Xeon® CPU Process @3.50
GHz, 16GB RAM, NVIDIA Quadro K4200 workstation operating on 12 CPUs. Mesh
structures and their qualities may increase computational cost, and it is required that higher
performance computer is established. However, LBM based on particle-based approach
uses a uniform Cartesian grid that can be refined as it is required depending on geometry
and flow field. In order to see the effect of the number of lattices on the solution time, CPU

times of solutions with different turbulence modelling approaches were given in Table 3.3.

Table 3.4. Overall CPU time (s) with respect to number of lattices in different turbulence

models
Overall CPU Time (s)
Number of RANS LES LES
Lattices
Spalart Allmaras WALE Smagorinsky
2,500,000 1.13 x 10* 1.16 x 10* 1.18 x 10*
5,000,000 1.64 x 10* 1.77 x 10* 1.87 x 10°

The Courant Number plays a crucial role in governing the choice of time step scheme. By
increasing the time step size, computational speed can be accelerated, making it desirable to
set the Courant Number as high as feasible. On other hand smaller numbers mean a more
stable solution but it will be slower since it is doing more steps. The relation between

courant number and stable solution can be taken in consideration of stability parameter. The
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stability parameter must be less than 1, so configuration of the simulation time was adjusted

the given value of Courant number of 0.8.

When solution time displayed in Table 1 is compared, RANS solution with Spalart-
Allmaras model had lower computational time compared to the others for both 2 500 000
and 5 000 000 lattices. Large- Eddy Simulation (LES) method, WALE and Smagorinsky
turbulence models have greater values owing to the influence of time-dependent solution as
shown Table 1. In other words, The RANS approach relies on ensemble-averaged
equations, which limits its ability to predict local flow fluctuations. In contrast, the LES
approach utilizes spatially filtered equations, allowing for the capture of large-scale flow

structures based on the chosen filter size.
Torque and power coefficients

Torque coefficients were obtained using the XFlow software by time averaging the
instantaneous torque predictions. Results obtained with 2500000 lattices are displayed and

compared with experimental data in Figure 3.22.
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0,8 1 1,2 TSR 1,4 1,6 1,8

Figure 3.22. Variations in torque coefficients according to turbulence models and

experimental results (Lee et al. 2015) for 2 500 000 lattices.
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From Figure 3.22, it seems that results do not all agree well with the referenced
experimental results. Here solutions with Spalart-Allmaras model showed the worst
agreement while the other predictions remained within the error bars of the measurements
for TSRs of 1 and 1.2. Among the solutions, LES predictions with Smagorinsky model
yielded the best agreement.
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TSR

Figure 3.23. Variations in torque coefficients according to turbulence models and

experimental results (Lee et al. 2015) for 5,000,000 lattices.

To see the effect of number of lattices on predictions, numerical solutions were repeated for
a lattice size of 5 000 000 and the corresponding torque coefficient predictions are
displayed in Figure 3.23 along with the experimental data. The improvement in the
predictions is evident from this figure where all of them appeared to be inside the error bars
of the measurement. Solutions obtained with WALE method showed the best agreement

with experiment for this configuration.

Overall, the agreement between the numerical predictions and experimental measurements
was found to be satisfactory for 5 000 000 lattices. Therefore, this lattice size was used in

the rest of the study.
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Figure 3.24. Variations in power coefficients according to turbulence models and

experimental results (Lee et al. 2015) for 5,000,000 lattices

Figure 3.24 clearly demonstrates the good agreement between the WALE turbulence model
and experimental results. Additionally, it can be observed that the power coefficient reaches

to maximum at TSR 1.2 for 5 000 000 lattices.
Comparison of flow field predictions with different turbulence models

It is known that structure of a VAWT causes more wake-blade interactions than a HAWT.
Based on this idea, this study aimed to reveal the effect of different turbulence models on

the wake predictions fora VAWT.
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(aA)LES-WALE (b) RANS-Spalart -Allmarass

(¢) LES-Smagorinsky

Figure 3.25. Velocity contours around VAWT in different turbulence models for TSR 1
and 8 =77°
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(2)LES-WALE

(c)LES-Smagorinsky

Figure 3.26. Turbulence Intensity (%) around VAWT in different turbulence models for
TSR 1 and @ =77°

Contours distributions were taken from XFlow CFD software involving velocities and
turbulence intensities at TSR1 and azimuthal angle ,0 of 77° as shown Figure 3.25. The
velocity distributions on the cutting plane were demonstrated in Figure 3.26. It shows that
the boundary layer of WALE and Spalart-Allmarass model give the similar separation flow

from the surface of blade while the Smagorinsky turbulence model is obviously exhibiting
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the flow which are separated from blade surface earlier. Figure 3.26 gives the better results
that enable to understand changing viscosity effect on VAWT. Turbulence intensity
provides to observe better wake predictions, the wake is separated from the trailing-edge of

blade earlier and LES-WALE model contours have more intense wake structure than the

other.

(a)LES-WALE (b) RANS-Spalart-Allmaras

(c)LES-Smagorinsky

Figure 3.27. Velocity contours around VAWT in different turbulence models for TSR 1.2
and 8 =90°
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Figure 3.28. Turbulence Intensity (%) around VAWT in different turbulence models for
TSR 1.2 and 6 =90°

For TSR 1.2 and 6=90° velocities contours are found the higher values at RANS- Spalart-
Allmaras turbulence model as shown Figure 3.27. LES models shows that WALE and
Smagorinsky demonstrated more turbulence density around the blade similar each other as

shown Figure 3.28.
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(a) LES-WALE (b) RANS-Spalart-Allmaras

(c¢) LES-Smagorinsky

Figure 3.29. Velocity contours around VAWT in different turbulence models for TSR 1.6
and 8 =10°
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(a)LES-WALE (b)RANS-Spalart- Allmaras

(c)LES-Smagorinsky

Figure 3.30. Turbulence Intensity (%) around VAWT in different turbulence models for
TSR 1.6 and 8 =180°

As for TSR 1.6 and 6=180°, RANS and LES modes reveal the similar wake structures and
the higher rotor speed can be visualized to demonstrate wake predictions using with
vorticity structures. RANS model, Spalart-Allmaras, is good agreement with LES-WALE
model at higher rotor speed. LES -Smagorinsky showed that wake is cutting from flow

separation of trailing-edge earlier as shown Figure 3.30.
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Investigation of Vorticity at maximum power coefficient

At high angles of attack and low TSR, VAWTs undergo dynamic stall, leading to complex
flow structures around the blades. This phenomenon involves large separated flow regions,
vortex shedding, and potential blade vortex interactions. Despite the challenging
aerodynamics, VAWTs can still generate power at low TSR due to these flow
characteristics. Understanding and accurately modelling these flow phenomena are crucial

for optimizing VAWT design and performance under dynamic stall conditions.

Vorticity behind the blades and turbine is a significant factor, performing at maximum
power and torque coefficient, to enables to examine the influence of different turbulence
models. As seen in below Figure 3.31-3.32-3.33, it can be seen obviously the vorticity
measurements while the wind passes the around turbine and blades, it rises the value of
vorticity around the blade as it rotates and entry to the path of the other blade flowing in the

wind tunnel.

Figure 3.31. Vorticity coloured by field Velocity for LES-WALE turbulence model for
TSR 1.2.
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Figure 3.32. Vorticity coloured by field Velocity for RANS-Spalart-Allmaras turbulence
models for TSR 1.2.

Figure 3.33. Vorticity coloured by field Velocity for LES-Smagorinsky turbulence models
for TSR 1.2.

One of the basic schemes, vorticity coloured by field velocity was used to observe the wake
structures in flow field. It is beneficial when compared with RANS, LES turbulence models
reveal clearly existing of wake structures and velocities behind the VAWT. Furthermore,
LES models, WALE and Smagoringsky, demonstrate individually the different wake
structures even if they are at same class. The visualization in Figures 3.31,32 and 3.33

depicts the turbulent structures, showcasing distinct vortex shapes formed behind the
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rotating blades under varying turbulence models (WALE, Smagorinsky, Spalart-
Allmarass). These figures provide insights into the characteristic features of the vortices
when the wind originates from the left side. In the figures, when the TSR is 1.2, WALE
turbulence model shows the existing of long vorticity intense when compared to RANS-
Spalart Allmarass and smagorinsky turbulence models. Thus, it was clear that LES WALE
turbulence models enable to observe the wake predictions behind the VAWT.
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4. FLUID-STRUCTURE INTERACTION

Fluid-Structure Interaction (FSI) is a pivotal concept in many engineering fields, including
aerospace, civil, and biomedical engineering, embodying the complex relationships
between fluids and solid structures. FSI simulations demand advanced numerical methods

and proficient computational techniques.

Darrieus wind turbines, a specific type of vertical axis wind turbine, present an excellent
case study for FSI due to the intricate interaction between the rotating blades and the
surrounding wind flow. Analysing the aerodynamic performance of Darrieus wind turbines
necessitates accurate simulations of this interaction (Ferreira, C. J., van Bussel, G. J., &

Scarano, F., 2006).

A concurrent or weak coupling technique, where fluid and solid simulations run
simultaneously and reciprocally update their boundary conditions, is now prevalent for such
FSI simulations (Donea, J., & Huerta, A., 2003). Deiterding (2011a) has introduced a
surface-mesh-based coupling routine for the continual updating of boundary data between
the fluid and solid domains. This routine was further enhanced to communicate not only

pressure forces but also viscous surface traction forces.

The Lattice Boltzmann Method (LBM), an innovative numerical technique for fluid flow
simulations, has been incorporated in FSI studies in recent years, including Darrieus turbine
analysis (Kriiger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E.
M., 2021). Combined with a level set signed distance function for the representation of the
deforming solid's triangular surface mesh, the LBM provides an accurate depiction of the

complex deformation within the fluid domain.

The modelling of the turbine's complex motion employs the Newton-Euler 6DOF motion
solver (Kane, T. R., & Levinson, D. A., 1985). Slender deformable components, like the
turbine blades, are represented either as quasi 2D using the Euler-Bernoulli beam solver or

fully 3D using the Timoshenko Beam solver (Euler, L., 1759; Timoshenko, S. P., 1921).
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The crucial task of data exchange between processors for different solvers is proficiently
managed by the Eulerian-Lagrangian coupler (Deiterding, 2011b). AMROC's space-filling
curve facilitates efficient domain decomposition, allowing only the fluid processors
containing parts of the solid boundary to partake in the communication of interface values

(Deiterding, R., 2001).

In conclusion, although simulating fluid-structure interactions, such as those in Darrieus
wind turbines, poses significant computational challenges, recent advances including the
use of LBM, level set methods, and efficient coupling routines have made it possible to

produce more accurate and realistic FSI simulations.
4.1. Application LBM-FSI analysis on Darieus-Wind turbine

FSI in the context of wind turbine performance is a critical area of investigation, given the
increasing emphasis on renewable energy sources. XFlow, with its capability to analyse FSI
scenarios, offers an advanced simulation platform to study this interaction with heightened

precision.

XFlow employs the Lattice Boltzmann Method (LBM) solver, an avant-garde technique
known for its computational efficiency and suitability for complex flow problems,
especially in the realm of FSI. The LBM's mesoscopic approach makes it particularly adept

at handling turbulent flow problems, which are inherent to wind turbine simulations.

A salient feature of the LBM solver within XFlow is its ability to accurately simulate self-
rotated wind turbine performance. The self-rotation of the turbine is a result of the
aerodynamic forces acting upon it, an interaction between the fluid (air) and the solid
structure (turbine blades). This intricate phenomenon requires high-fidelity simulations to
ensure that the turbine's rotational speed and subsequent energy generation are estimated
with precision. The dynamic nature of these simulations, considering the constantly
changing interaction between the wind and the rotating blades, underscores the need for a
solver that can adapt in real-time. XFlow, with its adaptive LBM solver, fits this need

perfectly.
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Figure 4.1. Power coefficient comparison between Experimental and LBM-FSI (Lee et al

2015)

A testament to XFlow's robust FSI capabilities is the comparative study with experimental
data, particularly from the Tip Speed Ratio (TSR) parameter. TSR is a pivotal metric in
wind turbine analysis, indicating the efficiency of the turbine at varying wind speeds.
Figure 4.1 demonstrates comparing XFlow's simulation outcomes with experimental TSR
data, it's possible to validate the software's accuracy and reliability. This exercise further
consolidates the software's position as a trustworthy tool for simulating wind turbine

performance, especially in scenarios involving intricate fluid and solid interactions
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Figure 4.2. Contours velocity of Daireus wind turbine by using LBM- Xflow.

Figure 4.3. Angular velocity changes from self-starting position on Darieus wind turbine

Figure 4.2 demonstrates the contours change in the aerodynamic force effecting and Figure

4.3, the angular velocity of turbine is increasing from self-starting position.
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5. CONTRIBUTIONS

This doctoral research represents a significant advancement in the field of computational
fluid dynamics (CFD) through the development and exploration of solution-adaptive,
meshless computational methods rooted in the Lattice Boltzmann Method (LBM),
specifically tailored for the precise simulation of complex flows around oscillating circular
cylinders. By addressing the inherent limitations of traditional mesh-based CFD
approaches, this study introduces innovative solutions that not only enhance computational
efficiency but also ensure high accuracy across a diverse spectrum of engineering

applications. The multifaceted contributions of this research are delineated as follows:
5.1. Significance of Solution-Adaptive Meshless Methods

At the heart of this investigation lies the formulation of a novel solution-adaptive
methodology, which capitalizes on the inherent strengths of the Lattice Boltzmann Method
within a meshless CFD framework. This groundbreaking approach circumvents the
necessity for predefined meshes, instead employing scattered or field nodes to delineate the
problem domain, while dynamically adapting the computational mesh in response to
evolving flow characteristics. Such adaptivity engenders a substantial reduction in
computational costs while concurrently preserving high levels of accuracy, rendering it

particularly well-suited for the analysis of intricate flow phenomena.
5.2. Integration with Lattice Boltzmann Method

This research represents a pioneering effort in the integration of the Lattice Boltzmann
Method (LBM) with solution-adaptive meshless techniques, thereby establishing a robust
framework for simulating fluid flow dynamics. This integration capitalizes on the unique
strengths of both approaches to overcome the limitations of traditional methods and achieve
more accurate and efficient simulations. The mesoscopic nature of the LBM, rooted in
microscopic modeling and kinetic theory, provides a solid foundation for representing fluid
behavior at a fundamental level. By discretizing the fluid domain into discrete particles and

simulating their interactions according to kinetic principles, LBM offers a simplified yet
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profound representation of fluid dynamics. This approach ensures alignment between
macroscopic outcomes and theoretical predictions, thereby enhancing the accuracy of
simulations. Moreover, by integrating LBM with solution-adaptive meshless techniques,
this research enables the accurate modeling of complex flows spanning multiple scales and
phases. Meshless techniques, which eschew the need for predefined grids and instead rely
on scattered nodes to define the computational domain, offer flexibility and adaptability in
capturing flow dynamics. The combination of LBM's mesoscopic approach with solution-
adaptive meshless techniques allows for the seamless adaptation of the computational mesh
based on flow characteristics, leading to enhanced computational efficiency without

compromising accuracy.

Overall, this integration of LBM with solution-adaptive meshless techniques represents a
significant advancement in the simulation of fluid flow dynamics. By leveraging the
strengths of both approaches, this research opens new avenues for accurately modeling
complex flows encompassing multi-scale and multiphase phenomena, thereby contributing
to the advancement of computational fluid dynamics and its applications across various

fields of science and engineering.
5.3. Enhanced Handling of Complex Geometries

Conventional computational fluid dynamics (CFD) methodologies frequently face hurdles
when confronted with the task of effectively tackling complex geometries and boundary
conditions. However, the research at hand accentuates the remarkable effectiveness of the
proposed methodologies in seamlessly addressing intricate geometries and complex
boundary conditions. This superiority is primarily ascribed to two key factors: the inherent
flexibility of the lattice-based grid structure in the Lattice Boltzmann Method (LBM) and

the dynamic adaptability intrinsic to the meshless framework.

The lattice-based grid structure utilized in LBM exhibits notable flexibility, allowing for
the representation of complex geometries with relative ease. Unlike traditional mesh-based
methods, which often necessitate intricate mesh generation procedures to conform to

irregular geometries, LBM inherently accommodates such complexities through its lattice
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structure. This inherent flexibility minimizes the computational overhead associated with

mesh generation while ensuring accurate representation of intricate geometries.

Furthermore, the dynamic adaptability characteristic of the meshless framework employed
in the proposed methodologies further enhances their efficacy in handling complex flow
domains. By eschewing the reliance on predefined meshes and instead utilizing scattered or
field nodes to define the problem domain, the meshless framework offers unparalleled
versatility in adapting to evolving flow conditions. This adaptability allows for the seamless
adjustment of the computational mesh based on flow characteristics, thereby enabling
robust modeling of intricate flow domains without the constraints imposed by traditional
mesh-based approaches. Collectively, these attributes empower the proposed
methodologies to excel in addressing the challenges posed by complex geometries and
boundary conditions. By leveraging the inherent flexibility of the lattice-based grid
structure in LBM and the dynamic adaptability of the meshless framework, these
methodologies facilitate accurate and efficient modeling of intricate flow domains, thereby

advancing the frontier of computational fluid dynamics research.
5.4. Application to Engineering Problems

The findings of this research undergo rigorous validation against benchmark problems, a
standard practice in the field of computational fluid dynamics (CFD), to ensure their
accuracy and reliability. Subsequently, these validated findings are applied to investigate
flow phenomena around circular cylinders, a topic of significant interest due to its
relevance across various industrial applications. This application serves as a compelling
demonstration of the efficacy of the proposed method in capturing critical flow phenomena
inherent in such scenarios. One of the key flow phenomena addressed in this context is
separation, where the flow detaches from the surface of the cylinder due to adverse pressure
gradients. Properly capturing separation phenomena is crucial for accurately predicting
aerodynamic forces and understanding the overall flow behavior around the cylinder.
Additionally, the method is evaluated for its ability to capture vortex shedding, a

phenomenon characterized by the formation of alternating vortices in the wake region of

61



the cylinder. Vortex shedding plays a vital role in determining the aerodynamic forces
acting on the cylinder and is essential for various engineering applications such as

structural design and energy extraction from fluid flows.

Furthermore, the transition to turbulence is another critical aspect examined in this study.
As the flow around the cylinder undergoes transition from laminar to turbulent regimes,
there are significant changes in flow characteristics, including increased drag and
fluctuating forces. Accurately predicting this transition is essential for understanding the

overall flow dynamics and its implications for engineering design.

By successfully capturing these pivotal flow phenomena—separation, vortex shedding, and
transition to turbulence—the proposed method demonstrates its efficacy in providing
accurate predictions of flow-induced forces around circular cylinders. This not only
enhances our understanding of complex flow behaviors but also contributes to improving
the design and performance of various industrial applications, ranging from aerospace to
renewable energy. Thus, the findings of this research have far-reaching implications for

advancing the field of fluid dynamics and its practical applications in engineering.
5.5. Performance in Turbulent Flow Simulation

The proposed methodologies showcased in this research exhibit exceptional proficiency in
simulating turbulent flows, a cornerstone in the realm of CFD. This prowess stems from
several key factors, including efficient parallelization strategies and the innate framework
of the LBM, which is adept at seamlessly integrating complex physics into simulations.
Efficient parallelization strategies play a pivotal role in enhancing the scalability and
performance of turbulent flow simulations. By distributing computational tasks across
multiple processors or computing nodes, parallelization significantly reduces simulation
time and enables the handling of larger and more complex problem domains. This allows
for the simulation of turbulent flows with higher fidelity and resolution, leading to more
accurate predictions of flow behavior. Moreover, the inherent framework of LBM lends
itself well to the incorporation of complex physics, including thermal effects and fluid-

structure interactions. LBM's mesoscopic approach, which models fluid dynamics at a
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microscopic level, allows for the representation of intricate physical phenomena with
relative simplicity. This facilitates the accurate simulation of turbulent flows in various
scenarios, making it particularly advantageous for aerodynamic analyses and the

examination of multiphase flows characterized by phase change phenomena.

Additionally, enhancements to the AMROC code further bolster the efficiency of turbulent
flow simulations. AMROC, a computational framework for solving partial differential
equations, is optimized for the implementation of turbulence models such as the constant
Smagorinsky model. These enhancements improve the computational robustness of the
approach, ensuring reliable and accurate simulations of turbulent flows across a range of
engineering applications. In summary, the proposed methodologies leverage efficient
parallelization strategies, harness the innate framework of LBM, and benefit from
enhancements to the AMROC code to excel in simulating turbulent flows. This capability
is invaluable for conducting aerodynamic analyses and comprehensively examining
multiphase flows, thereby advancing our understanding of complex fluid dynamics

phenomena and informing engineering design processes.
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6. CONTRIBUTION TO WIND ENERGY RESEARCH

An exemplary application of the methodologies developed in this research is their
utilization in a thorough investigation of the aerodynamic performance of Darrieus-type
vertical axis wind turbines (VAWTSs). This investigation encompasses the utilization of
various turbulence models to analyze and evaluate the turbine's performance
comprehensively. Notably, the research extends beyond mere validation of these turbulence
models in terms of torque and power coefficients; it delves deeper to provide invaluable
insights into the nuanced influence of turbulence models on the aerodynamic performance
of VAWTs. The study rigorously assesses the predictive accuracy and reliability of
different turbulence models employed in simulating the flow dynamics around Darrieus-
type VAWTs. By comparing the simulated results with experimental data, the research
evaluates the capability of each turbulence model to accurately predict important
performance parameters such as torque and power coefficients. This validation process
ensures that the chosen turbulence models can effectively capture the intricate flow
phenomena present in VAWTSs' operating conditions, thus enhancing confidence in the
simulation results. Furthermore, the research goes beyond mere validation by examining
how different turbulence models impact the aerodynamic performance of VAWTs in
nuanced ways. By systematically comparing the results obtained with various turbulence
models, the study identifies and elucidates the specific strengths and limitations of each
model in capturing critical flow features and predicting turbine performance. These insights
offer valuable guidance for researchers and engineers in selecting the most suitable

turbulence model for simulating VAWTs under different operating conditions.

Overall, this contribution significantly enriches the body of knowledge within the realm of
wind energy research by providing comprehensive insights into the aerodynamic
performance of Darrieus-type VAWTs. The thorough investigation of turbulence models
and their impact on turbine performance not only advances our understanding of VAWT
aerodynamics but also informs the development of more accurate and reliable simulation

tools for optimizing wind turbine design and operation
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7. ADVANCING SIMULATION TECHNIQUES

Through the utilization of cutting-edge simulation techniques, this doctoral research has
made significant strides in advancing our understanding of complex flow dynamics. By
employing solution-adaptive methods with dynamic mesh adaptation, the study has been
able to finely tune computational meshes in response to evolving flow conditions, resulting
in more accurate and efficient simulations. Furthermore, rigorous comparative analyses
against experimental data and alternative numerical models have provided invaluable
insights into the behavior of complex flows, shedding light on phenomena that were
previously poorly understood. The integration of these advanced simulation techniques has
not only propelled the frontier of simulation methodologies but has also laid the
groundwork for future innovations in fluid dynamics research. By delving deep into the
intricacies of flow dynamics and associated phenomena, this research has expanded our
knowledge base and paved the way for the development of more sophisticated simulation

tools and analytical approaches.

In summary, this doctoral thesis represents a significant leap forward in the simulation of
complex flows. Its comprehensive, efficient, and rigorously accurate approach transcends
conventional CFD methodologies, offering new avenues for analyzing fluid dynamics. The
manifold contributions of this research have the potential to catalyze a paradigm shift in the
way engineers and scientists approach the analysis of fluid dynamics, with far-reaching
implications across diverse fields of study and numerous industrial applications.
Furthermore, it is noteworthy that the successful completion of the AEROFSI project,
funded by the Ministry of Science, Industry, and Technology, underscores the practical
relevance and real-world impact of this research endeavor. This collaboration highlights the
importance of academic-industry partnerships in driving innovation and advancing

scientific knowledge for the benefit of society as a whole.
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8. CONCLUSIONS

In this work, Darieus-type 500 W straight-bladed Vertical axis wind turbine (VAWT) was
investigated with using a XFlow commercial software, using a meshingless Lattice

Boltzman method, for different turbulence models in fine and coarse lattices.

In order to assess the validity of the proposed numerical modelling, offering the
meshingless lattice Boltzmann method, which users can avoid the remeshing process for
CFD simulation enables to investigate the aerodynamic performance of wind turbine with

less amount of lattices, save the time and computational costs.

Firstly, the influence of different turbulence modelling approaches on solution time was
investigated depending on lattice sizes, it was appeared that RANS model can give faster
solution than LES approaches even when number of lattices is increased and the increase of

number of lattices is not changing the solution time proportionally.

Secondly, experimental data of torque coefficient obtained from (Lee Y., Lim H 2015)
were compared with different turbulence models in fine and coarse lattices. LES models,
WALE and Smagorinsky demonstrated the best agreement with experimental data.
Especially, Smagorinsky model can be useful when less computational cost is required and
WALE is a suitable turbulence model that is best agreement with experimental data in order
to capture the maximum torque and power coefficient as users are analysing the VAWT at

the fine lattices.

The effect of turbulence models is achieved by the velocity and turbulence intensity
contours at different TSR values. RANS and LES model are giving an observable wake
structure behind the rotating blades, especially at maximum torque coefficient. However,

LES model is useful when compared to result with experimental in fine lattices.

Result is also given by the investigation of vorticity at maximum power coefficient at
varying azimuthal angle. LES models are exhibiting considerably difference the wake

predictions when compared with RANS. LES-WALE model has more intense the wake
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structures, it is reasonable effect of LES model constant, and its operator based on formula

Including rotation tensor.

In addition, a comprehensive sensitivity analysis has been conducted to further investigate
the behaviour of VAWTs. Surprisingly, the study reveals that capturing the flow
phenomenon does not require an excessively fine grid, despite the significant flow
separation observed. The simulation results are compared with both numerical and
experimental data, and although some discrepancies exist, they are relatively minor when

using fine lattices.

Moreover, the study highlights an interesting finding: the power performance of the VAWT
increases as the TSR rises, particularly at low TSRs. However, at high TSRs, the
interaction between vortices and blades becomes more prominent and significantly
influences the blade's performance. This work was supported by Scientific Research
Projects Commission (BAPKO) of Marmara University, under the grant number FEN-C-
DRP-130515-0179.
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