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ÖZET 

MÜHENDİSLİK UYGULAMALARINDA KARMAŞIK AKIŞLAR İÇİN ÇÖZÜM-

UYARLI AĞSIZ HAD YÖNTEMİ 

Çözüm-uyumlu ağsız hesaplamalı akışkanlar dinamiği (CFD) yöntemleri, mühendislik 

uygulamalarında karmaşık akışların simülasyonunda umut vadeden araçlar olarak öne 

çıkmaktadır. Bu doktora tezi, çözüm-uyumlu ağsız CFD yöntemlerinin geliştirilmesi ve 

incelenmesine odaklanmaktadır. Lattice Boltzmann yöntemi (LBM), bu yöntemlerin 

temelini oluştururken, mikroskobik modeller ve mezoskopik kinetik denklemleri kullanarak 

akışkan akışlarının temel fiziksel özelliklerini yakalamaktadır. Ağsız yöntemler, ağ 

yapılandırmasına ihtiyaç duymadan sistem cebirsel denklemlerinin oluşturulmasına imkan 

vererek LBM'yi tamamlar. Önceden tanımlanmış ağlara dayanmak yerine, alan düğümleri 

olarak adlandırılan dağılmış düğümler, problem alanını ve sınırlarını tanımlar. Bu 

araştırmanın temel katkısı, LBM ve ağsız yöntemlerin avantajlarını birleştiren çözüm-

uyumlu ağsız CFD yöntemlerinin geliştirilmesidir. Bu yöntemler, akış özelliklerine dayalı 

olarak hesaplama ağını dinamik olarak uyumlu hale getirerek hesaplama kaynaklarının ilgi 

alanlarına optimal olarak dağıtılmasını sağlar. Bu uyarlanabilirlik, hesaplama maliyetlerini 

azaltırken doğruluğu artırarak mühendislik uygulamalarında karşılaşılan karmaşık akış 

problemleri için uygundur. Kapsamlı sayısal deneyler ve referans problemlerle yapılan 

doğrulamalar, önerilen çözüm-uyumlu ağsız CFD yöntemlerinin etkinliğini ve 

performansını göstermektedir. Elde edilen sonuçlar, bu yöntemlerin karmaşık akışları doğru 

bir şekilde simüle etme yeteneklerini ve hesaplama verimliliğini koruduğunu 

vurgulamaktadır. Araştırma bulguları, mühendislik uygulamalarında karmaşık akışların 

simülasyonunda güncel çalışmalara katkıda bulunarak geniş bir alan için pratik çözümler 

sunmaktadır. Anahtar kelimeler: çözüm-uyumlu ağsız CFD yöntemleri, lattice Boltzmann 

yöntemi, karmaşık akışlar, mühendislik uygulamaları, sayısal simülasyonlar, ağsız 

yöntemler, ağsız yöntemler, hesaplama verimliliği, doğruluk. 

Anahtar kelimeler: Ağsız Hesaplamalı Akışkanlar Dinamiği Çözüm Yöntemi, Lattice-

Boltzmann Method, Türbülans Modelleri 



v 

 

ABSTRACT 

SOLUTION-ADAPTIVE MESHLESS CFD METHODS FOR COMPLEX FLOWS 

IN ENGINEERING APPLICATIONS  

Solution-adaptive meshless computational fluid dynamics (CFD) methods have emerged as 

promising tools for simulating complex flows in various engineering applications. This 

doctoral thesis focuses on the development and investigation of solution-adaptive meshless 

CFD methods for accurately capturing the behaviour of complex flows. The lattice 

Boltzmann method (LBM) forms the basis of the proposed methods, employing 

microscopic models and mesoscopic kinetic equations to capture the essential physics of 

fluid flows. Meshless methods, such as meshfree or gridless methods, complement the 

LBM by enabling the establishment of system algebraic equations without relying on 

predefined meshes. Instead, scattered nodes, referred to as field nodes, define the problem 

domain and boundaries. The key contribution of this research is the development of 

solution-adaptive meshless CFD methods that combine the advantages of the LBM and 

meshless methods. These methods dynamically adapt the computational mesh based on 

flow features, ensuring optimal allocation of computational resources to areas of interest. 

This adaptive capability reduces computational costs and enhances accuracy, making them 

well-suited for handling complex flow problems encountered in engineering applications. 

Extensive numerical experiments and validation against benchmark problems demonstrate 

the effectiveness and performance of the proposed solution-adaptive meshless CFD 

methods. The results highlight their capability to accurately simulate complex flows while 

maintaining computational efficiency. The research findings contribute to advancing the 

state-of-the-art in simulating complex flows in engineering applications, offering practical 

solutions for a wide range of fields. 

 

Keywords: Meshless CFD Methods, Lattice-Boltzmann Method, Turbulence models 
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CLAIM FOR ORIGINALITY 

SOLUTION-ADAPTIVE MESHLES CFD METHODS FOR COMPLEX FLOWS IN 

ENGINEERING APPLICATIONS  

This doctoral thesis presents a unique contribution to solution-adaptive meshless 

computational fluid dynamics (CFD) methods for complex engineering flows. By 

combining the strengths of lattice Boltzmann method (LBM) and meshless techniques, this 

research proposes innovative solution-adaptive approaches. Integrating solution-adaptive 

meshless methods with LBM is a novel concept, overcoming limitations of traditional 

mesh-based approaches. The proposed methods dynamically adapt the computational mesh 

based on flow characteristics, improving accuracy and reducing computational costs. This 

adaptability is particularly beneficial for complex engineering flow problems. The research 

includes theoretical investigations, numerical experiments, and validations using reference 

problems. Results encounter the effectiveness and performance of the proposed methods in 

accurately simulating complex flows while maintaining computational efficiency. This 

original research significantly advances numerical simulations for engineering applications, 

providing practical solutions for complex flow phenomena. By pushing the boundaries of 

traditional CFD methods, this research opens new avenues for efficient and accurate 

simulations of complex flows. The combination of solution-adaptive meshless techniques 

and LBM offers promising prospects for the field. This doctoral thesis establishes 

innovative methodologies, contributing to the advancement of computational fluid 

dynamics in engineering. 
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1. INTRODUCTION 

The study of flow past circular cylinders has garnered significant attention in both 

experimental and numerical research due to the inherent symmetry of the cylinder geometry 

and its relevance to various industrial applications. Numerous investigations have been 

conducted to understand the fluid dynamics phenomena associated with the flow around 

cylinders, including separation, vortex shedding, and the transition to turbulence. These 

phenomena play a crucial role in determining flow-induced forces such as drag and lift 

forces, as well as pressure coefficients (Sarpkaya, 2004; William et al., 2004). 

In recent years, there has been a growing focus on evaluating the effect of oscillations, both 

transverse and rotational, on the wakes generated by cylinders (Tokumaru et al., Filler et 

al., 1991). While the effect of translational oscillations on vortex-induced vibrations has 

been extensively studied, the investigation of rotational oscillations and their impact on 

wakes has gained attention more recently. Understanding the behavior of the oscillating 

cylinder, especially at higher Reynolds numbers, necessitates fine resolution and the use of 

a fine mesh in CFD analyses (Jiange et al., 2016). 

LBM offers several advantages over traditional CFD methods, particularly in handling 

complex geometries and boundaries. Researchers have shown that LBM is highly suitable 

for simulating intricate geometries and complex boundary conditions (Huang et al., 2022; 

Zhang et al., 2023). The flexibility of the lattice-based grid structure in LBM allows for 

easy representation of irregular geometries and accurate capture of flow features. 

Moreover, LBM excels in simulating multi-scale and multiphase flows. Recent studies have 

demonstrated the capability of LBM in microfluidics applications (Chen et al., 2022) and 

multiphase flows with phase change phenomena (Tang et al., 2023). The mesoscopic nature 

of LBM enables accurate modelling of flow behaviour at different length scales, leading to 

improved accuracy in numerical predictions. Efficient parallelization is another strength of 

LBM, enabling high-performance computing for large-scale simulations. This is 

particularly advantageous for turbulent flow simulations and aerodynamic analyses. 
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Researchers have successfully employed LBM in simulating turbulent flows with excellent 

scalability and computational efficiency (Li et al., 2022; Wang et al., 2023). Furthermore, 

LBM provides a natural framework for incorporating complex physics, such as thermal 

effects and fluid-structure interactions. Recent work has shown the capability of LBM in 

accurately capturing heat transfer phenomena in porous media (Liu et al., 2022) and 

simulating fluid-structure interactions (Wu et al., 2023). These advancements in modelling 

complex physics contribute to more realistic and comprehensive numerical results. 

LBM has played a significant role for enhancing the quality of numerical results in CFD 

applications. Its ability to handle complex geometries, simulate multi-scale and multi-phase 

flows, efficient parallelization, and incorporation of complex physics makes it a promising 

choice for researchers. 

In this doctoral research, we advocate for the integration of a solution-adaptive 

methodology using the LBM within meshless CFD frameworks. Leveraging particle-

centric paradigms, like LBM, paves the way for distinctively discrete solutions in fluid flow 

dynamics. What sets LBM apart is its ability to seamlessly converge micro-scale and 

macro-scale understandings. Rooted deeply in microscopic modelling and mesoscopic 

kinetic theory, LBM facilitates the formulation of simplified yet profound kinetic 

representations. This, in turn, ensures that macroscopic outcomes align perfectly with 

anticipated macroscopic equations. (Jiange et al., 2016; Nazarinia et al., 2011). 

The LBM, in combination with solution-adaptive meshless methods, enables the accurate 

simulation of complex flows around circular cylinders. Meshless methods, such as the 

meshfree or gridless approach, complement the LBM by eliminating the need for 

predefined meshes. Instead, scattered nodes, known as field nodes, define the problem 

domain and boundaries. By dynamically adapting the computational mesh based on flow 

features, the proposed solution adaptive meshless CFD methods allocate computational 

resources optimally to areas of interest. This adaptivity reduces computational costs while 

maintaining accuracy, making them well-suited for analyzing complex flow problems 

encountered in engineering applications (Park et al., 2011; Musavi et al., 2016). 
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Additionally, in a study conducted by Nazarinia et al. (2011), the physical mechanism 

behind the oscillating cylinder, involving both translational and rotational oscillations, was 

investigated through experimental analysis using particle image velocimetry (PIV). The 

purpose of their study was to characterize the wake of forced cylinder flow at a Reynolds 

number of 1322. To enhance the accuracy of their findings, a solution-adaptive method was 

employed, which included dynamic mesh adaptation to increase the local resolution near 

the cylinder. This method was implemented using the fully parallelized block-structured 

adaptive mesh refinement software system AMROC (Deiterding, 2011). In high Reynolds 

number situations, AMROC incorporated Smagorinsky's eddy viscosity approximation to 

model sub-grid scale turbulence. 

The aerodynamic characteristics of a small-scale Archimedes spiral wind turbine blade are 

comprehensively analyzed through numerical simulations and experimental validation.  The 

numerical analysis is conducted using XFlow, a software based on the lattice Boltzmann 

method (LBM), renowned for its ability to accurately simulate fluid dynamics phenomena. 

Specifically, the Wall-Adapting Local Eddy-viscosity (WALE) turbulence model is 

employed for its favorable properties in both laminar and turbulent flows, particularly near 

solid bodies and walls. To validate the numerical simulations, Particle Image Velocity 

(PIV) techniques are utilized, providing empirical evidence of the aerodynamic features of 

the spiral wind turbine. The velocity profiles obtained from XFlow simulations closely 

match the trajectory and magnitude of tip vortices observed in experimental results, 

confirming the accuracy of the numerical predictions. Furthermore, the researchers 

compare their findings with those obtained using XFlow software, highlighting the 

software's capability to accurately simulate complex flow phenomena. XFlow's unique 

particle-driven, Lagrangian methodology rooted in LBM principles enables the simulation 

of diverse problems, including aerodynamics, aero-acoustics, and fluid-structure 

interactions (Safdari et al., 2015). 

This interdisciplinary study provides valuable insights into the physical behavior of the 

Archimedes spiral wind turbine blade and its wake characteristics. By employing advanced 

techniques such as PIV and solution-adaptive methods with dynamic mesh adaptation, the 
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researchers gain a deeper understanding of flow dynamics and associated phenomena. The 

integration of experimental validation and numerical simulations using XFlow software 

enhances the reliability and robustness of the findings, contributing to the existing 

knowledge base in fluid dynamics research (Safdari et al., 2015). 

 This doctoral thesis aims to contribute to the development and investigation of solution-

adaptive meshless CFD methods based on LBM, specifically tailored to accurately simulate 

the behaviour of complex flows. The research findings will address the limitations of 

traditional mesh-based CFD methods and provide practical solutions for a wide range of 

engineering applications. Extensive numerical experiments and validation against 

benchmark problems will be conducted to lead the effectiveness and computational 

efficiency of the proposed solution-adaptive meshless CFD methods. Ultimately, this 

research endeavours to advance the state-of-the-art in simulating complex flows, providing 

valuable insights for various fields of study. 

1.1. Overview of Computational Fluid Dynamics (CFD) 

CFD is a powerful tool in the field of fluid mechanics, enabling the simulation and analysis 

of complex fluid flow phenomena. CFD involves the numerical solution of governing 

equations, typically the Navier-Stokes equations, which describe the fundamental principles 

governing fluid motion. These equations, along with additional equations for turbulence 

modelling or other specific physical effects, are discretized and solved numerically to 

obtain approximate solutions. 

Traditional CFD methods rely on the use of computational grids or meshes to discretize the 

physical domain. However, in recent years, meshless and mesh-free methods have gained 

attention as alternative approaches. These methods eliminate the need for structured or 

unstructured grids, instead utilizing particle-based or function-based representations of the 

fluid domain. Examples of meshless methods include Smoothed Particle Hydrodynamics 

(SPH), Moving Particle Semi-implicit (MPS) method, and the Element-Free Galerkin 

(EFG) method. Mesh-free methods, on the other hand, utilize mathematical functions or 
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shape functions to represent the solution field without requiring a predefined mesh  Barrios, 

et.al., 2016). 

Meshless and mesh-free methods provide several advantages when compared to traditional 

mesh-based methods in certain scenarios. They provide greater flexibility in handling 

complex geometries and evolving interfaces, as they do not require explicit mesh 

generation or remeshing. These methods also exhibit better adaptivity to local features and 

can handle large deformations more effectively. Additionally, they offer efficient 

parallelization potential, enabling faster computations on parallel computing architectures. 

The choice between mesh-based and meshless/mesh-free methods depends on the specific 

problem at hand and the desired accuracy and computational efficiency. Both approaches 

have their strengths and limitations, and researchers continue to explore and develop 

advanced techniques that combine the advantages of both methods. 
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2. MESHLESS CFD METHODS 

Meshless Computational Fluid Dynamics (CFD) methods have emerged as an alternative 

approach to traditional mesh-based methods for solving fluid flow problems. Unlike mesh-

based methods that require the generation and manipulation of a computational grid, 

meshless methods rely on a set of scattered data points or particles to discretize the flow 

domain. This unique characteristic of meshless methods offers several advantages in terms 

of flexibility and adaptability. 

One of the key advantages of meshless methods is their ability to handle complex 

geometries and arbitrary mesh configurations. Traditional mesh-based methods often face 

challenges in accurately representing irregular or highly intricate geometries, requiring 

extensive grid generation and refinement efforts. In meshless methods, the need for a 

structured grid is eliminated, allowing for a more straightforward representation of complex 

geometries (Liu et al., 2018). This makes meshless methods particularly suitable for 

problems involving fluid flows in intricate domains or situations where the flow domain 

changes dynamically. 

Additionally, meshless methods offer adaptivity in terms of spatial resolution. In traditional 

mesh-based methods, the accuracy of the solution is limited by the grid resolution, 

necessitating grid refinement in areas of interest. Meshless methods, on the other hand, do 

not rely on a fixed grid, but rather on scattered data points. This allows for the adaptation of 

spatial resolution based on the local flow features, resulting in efficient and accurate 

simulations (Liu et al., 2020). Furthermore, meshless methods can naturally handle 

dynamic remeshing, which is particularly advantageous for problems with evolving flow 

domains or moving boundaries. 

Meshless methods exhibit excellent scalability and parallelizability, making them well-

suited for high-performance computing. The absence of a structured grid simplifies the 

computational operations, enabling efficient parallel processing and distribution of 

computational tasks among multiple processors or computing nodes (Rabczuk et al., 2010). 
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This scalability is crucial for tackling large-scale and computationally demanding fluid 

flow problems. 

It is worth noting that meshless methods also have some limitations. The accuracy and 

convergence behaviour of meshless methods depend on the choice of the radial basis 

functions or other interpolation schemes used to reconstruct the solution from the scattered 

data points. The accuracy can vary depending on the choice of interpolation functions and 

their parameters, requiring careful selection and calibration (Liu et al., 2018). Additionally, 

the computational cost of meshless methods can be higher compared to traditional mesh-

based methods, especially for large-scale simulations. 

Meshless CFD methods offer several advantages, including their ability to handle complex 

geometries, adaptivity in spatial resolution, and scalability in high-performance computing. 

These features make meshless methods a promising alternative for simulating fluid flows, 

particularly in situations involving intricate geometries or evolving flow domains. 

2.1. Lattice Boltzmann Method 

A recent advancement in computational fluid dynamics is the Lattice Boltzmann Method 

(LBM), which offers an alternative approach to solving fluid flow problems. Unlike 

traditional CFD methods that rely on structured or unstructured grids, LBM is a meshless 

method that operates on a lattice model. In LBM, the fluid is represented by distribution 

functions defined on a lattice grid, where each lattice node corresponds to a discrete fluid 

particle. The evolution of these distribution functions is governed by discrete Boltzmann 

equations, which describe the streaming and collision processes of the fluid particles. By 

simulating the distribution functions' dynamics, LBM captures the macroscopic behavior of 

the fluid flow. One of the key advantages of LBM is its ability to handle complex boundary 

conditions and geometries with ease. The lattice structure simplifies the implementation of 

various boundary conditions, such as no-slip walls or inflow/outflow conditions, without 

the need for complex mesh generation. Additionally, LBM exhibits excellent 

parallelizability, enabling efficient computations on parallel computing architectures. 
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LBM has demonstrated its effectiveness in simulating a wide range of fluid flow problems, 

including laminar and turbulent flows, multiphase flows, and flows in complex geometries. 

It has shown promise in simulating flows with complex physics, such as free-surface flows, 

porous media flows, and fluid-structure interactions. Moreover, LBM can be extended to 

incorporate additional physics, such as thermal effects or chemical reactions, making it 

suitable for studying various engineering applications (Guo et al., 2013). 

The LBM adopts a mesoscopic perspective, simulating fluid dynamics based on 

interactions among particles arranged on a structured grid. The fluid flow is existed by the 

collective behaviour of these particles. The Boltzmann equation produce as single particle 

distribution function f takes the following form (Succi, 2001): 

𝜕𝑓

𝜕𝑡
+ 𝑣⃗. ∇𝑓 = Ω(𝑓)                                                                                                          (2.1) 

The function 𝑓(𝑥⃗, 𝑣⃗,t) corresponds to the likelihood of identifying particles possessing the 

granular, microscopic velocity 𝑐 at the specific location x and moment t. The collision 

operator, Ω(f) governs the temporal alteration in the distribution function f during a particle 

collision. In a plethora of studies focused on the kinetic theory underlying fluid dynamics, 

the collision term Ωi
𝐵𝐺𝐾 is typically symbolized as Ω(f). This term usually manifests as a 

convoluted integral expression. A simplification termed "BGK", conceived by Bhatnagar, 

Gross, and Krook, and later incorporated by Qian et al. in 1992, substitutes the intricate 

integral component with a more straightforward representation, as depicted in Equation 2.3 

(Bhatnagar et al., 1954). 

Ω(𝑓) =
1

𝜏
(𝑓𝑖

𝑒𝑞 − 𝑓𝑖)                                                                                                       (2.2) 

This mechanism simulates the collision's impact by letting the distribution function f relax 

towards a Maxwellian equilibrium state 𝑓𝑖
𝑒𝑞 . Here, the parameter τ stands as an emblematic 

time, orchestrating the rhythm at which the distribution function gravitates towards 

equilibrium. A first step for discretization of the Boltzmann equation is the restriction of the 

continuous velocity space into a finite set of velocities. V⃗⃗⃗ = {e⃗⃗0, e⃗⃗1, … , en−1}  thus, the 
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distribution function 𝑓(𝑥⃗, 𝑣⃗ ,t) is reduced 𝑓𝑖(𝑥⃗, t) which describes the distribution along a 

finite lattice.  

The Boltzmann equation under the BGK approximation becomes LBGK the discrete 

Boltzmann equation given by Qian et al., (1992) 

𝑑𝑓𝑖

𝑑𝑡
+ 𝑒𝑖. ∇𝑓𝑖 =

1

𝜏
(𝑓𝑖

𝑒𝑞 − 𝑓𝑖)                                                                                            (2.3) 

The 𝑓  𝑒𝑞 in Eq. 3 is the equilibrium distribution function for density. This equation is 

discretized with a step size ∆x and a time step ∆t which are linked by the following relation: 

∆𝑥

∆𝑡
= 𝑒𝑖 . This discretization ensures that the particles in a node x move in time ∆t toward a 

neighbour node 𝑥 + 𝑒𝑖∆𝑡  along the vector 𝑒𝑖  and equation is Qian et al., (1992) ; 

𝑓𝑖(𝑥⃗ + 𝑒𝑖𝑑𝑡, 𝑡 + 𝑑𝑡) −  𝑓𝑖(𝑥⃗ , 𝑡) =
1

𝜏
(𝑓𝑖

𝑒𝑞 − 𝑓𝑖(𝑥⃗ , 𝑡))                                                   (2.4) 

1.Streaming: During each time step ∆t, the particles undergo movement along the lattice 

bonds to adjacent lattice nodes. The distribution function 𝑓𝑖
∗(𝑥⃗, 𝑡) propagates along the 

vector 𝑐𝑖, and at the updated time t + ∆t, the distribution function at a neighbouring 

𝑓𝑖(𝑥⃗ + 𝑐𝑖𝑑𝑡, 𝑡 + 𝑑𝑡) = 𝑓𝑖
∗(𝑥⃗, 𝑡)   Qian et al., (1992). 

 

2. Collision: At time t, the particles located at a specific node x interact, leading to changes 

in their velocity directions. As a result of this collision, the distribution function transitions 

from 𝑓𝑖(𝑥⃗, 𝑡) to 𝑓𝑖
∗(𝑥⃗, 𝑡) =

1

𝜏
(𝑓𝑖

𝑒𝑞 − 𝑓𝑖(𝑥⃗, 𝑡)), where τ is a characteristic time 

representing the relaxation rate of the distribution function towards its equilibrium state 

𝑓𝑖
𝑒𝑞

. 

LBM models are categorized based on the spatial dimension d and the count of distribution 

functions b, leading to the descriptor DdQb. For two-dimensional scenarios, a D2Q9 lattice 

model, encompassing nine distinct unit velocities, is employed to represent the flow field, 

as illustrated in Figure 1. 
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LBM schemes are classified as a function of the spatial dimension d and the number of 

distribution functions b, resulting in the notation DdQb. In the two-dimensional case, a 

model with nine discrete unit velocities is realized for simulating the flow field (D2Q9) 

lattice model as shown in Figure 1.1.  

 

Figure 2.1. Discrete velocity directions for D2Q9 model in a computational cell 

(Deiterding,2011) 

 

𝑒𝛼 = {

0,
(±1,0)𝑐, (0, ±1)𝑐,
(±1, ±1)𝑐

} 𝛼 = 0 

𝛼 = 1,2,3,4 

𝛼 = 5,6,7, 𝜔𝑖 = {

4/9
1/9
1/36

} 𝑖 = 0 

𝑖 = 1,2,3,4 

𝑖 = 5,6,7,8 

Usually the discretized equilibrium distribution function for D2Q9 adopts the following 

expression [5]: 

𝑓𝑖
𝑒𝑞 = 𝜌𝜔𝑖(1 +

3

𝑐𝑠
(𝑒𝑖𝑎𝑢𝑎) +

9

2𝑐𝑠
2 (𝑒𝑖𝑎𝑢𝑎)2 −

3

2𝑐𝑠
2 (𝑢𝑎)2                              (2.5) 

Where 𝑒𝑖𝑎 discrete velocity, 𝑐𝑠 = c/√3 is the sound speed, u the macroscopic velocity, 

𝑖 are built preserving the isotropy. The pressure was obtained through the equation of 
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state: p = 𝑐𝑠
2ρ, here. It can be further demonstrated that there's a relationship between the 

kinematic viscosity ν and the collision frequency w, Chen et al., (1998). 

𝑤 = 𝜏−1 =
𝑐𝑠

2𝛥𝑡

𝑣+𝛥𝑡𝑐𝑠
2/2

                                                                     (2.6) 

Though the outlined model is readily applicable for simulating laminar flows, incorporating 

a turbulence model becomes indispensable in scenarios with high Reynolds numbers. 

Within the LBM framework, the large eddy simulation methodology is often the preferred 

choice. 

In the three-dimensional realm of the LBM, the physical domain gets discretized into 

uniform Cartesian grids termed as lattices. Every lattice is structured with nodes, and these 

nodes communicate with adjacent ones via certain lattice velocities determined during the 

computation process. The classification of LBM frameworks depends on their spatial 

dimensionality (d) and their count of distribution functions (b), expressed as DdQb. For bi-

dimensional configurations, standard models include D2Q7 and D2Q9. Meanwhile, in tri-

dimensional contexts, models like D3Q13, D3Q15, D3Q19, and D3Q27 gain prominence. 

For instance, the XFlow computational tool harnesses the D3Q27 model, characterized by 

its twenty-seven distinct velocities, as illustrated in Figure 1.2. 

By employing these lattice models, the LBM can accurately simulate fluid flow and capture 

complex flow phenomena in three-dimensional space. Each lattice node carries information 

about the fluid's local characteristics, such as velocity and density, allowing for the 

simulation of various fluid dynamics problems. 

The discretized equilibrium distribution function for D3Q27 covers the following 

expression [3]: 

𝑓𝑖
𝑒𝑞 = 𝜌𝜔𝑖(1 +

3

𝑐𝑠
2 (𝑒𝑖𝑎𝑢𝑎) +

9

2𝑐𝑠
4 (𝑒𝑖𝑎𝑢𝑎)2 −

3

2𝑐𝑠
2 (𝑢𝑎)2                                   (2.7) 

Where 𝑒𝑖𝑎 discrete velocity, 𝑐𝑠 is the sound speed, u the macroscopic velocity, 𝑖 are built 

preserving the isotropy. For this purpose, the D3Q27 scheme has been implemented to the 
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analysis of VAWT and Wall-Adapting Local Eddy-viscosity (WALE), Spalart-Allmaras 

and Smagorinsky turbulence models have been selected to analysis static pressure, velocity 

and turbulence models. The WALE has good properties both near to and far from the wall 

turbulent flows (Weickert et al. 2010; Zhuo et al. 2013).  

 

Figure 2.2. The lattice structure of D3Q27 model (Laloglu et al., 2023) 

2.2. Large - Eddy Turbulence Models 

Large Eddy Simulation (LES) is a computational method used to simulate turbulent flows 

by capturing the energy-containing large-scale structures while modelling the effects of the 

smaller-scale turbulent fluctuations. To accurately represent the subgrid-scale (SGS) 

turbulence, various turbulence models have been developed. In the context of LBM, it is 

common to adopt a large eddy simulation approach and assume that the partial density 

distribution functions used in the scheme represent the resolved scales. The sub-grid scale 

turbulence is then considered by adding a turbulent viscosity 𝑣t to the physical one 

Krafczyk et al (2003). 

  

𝑣 ∗= 𝑣 + 𝑣𝑡 = 𝑐𝑠
2(𝜏 ∗ −

𝛥𝑡

2
)    

where   𝜏 ∗= τL + τt =: 1/ω* 



13 

 

and the effective relaxation frequency, ω*, replaces ω in the collision operator throughout 

the scheme. 

Although it is more computationally expensive to use the space-filtered NSE than the time- 

averaged Navier- Stokes Equation, the former produces accurate solutions that capture 

details of physical quantity fluctuations that are lost in time-averaging. 

Large eddy simulation (LES) is the predominant form of the space-filtered NSE and is 

derived by introducing a space-filtered quantity, u˜. 

𝑢
~

(𝑥𝑖 , 𝑡) = ∬ ∫ ∆𝑥𝑖 𝑢(𝑥𝑖 , 𝑡)𝐺(𝑥𝑖 , 𝑥𝑖′)𝑑𝑥𝑖                    

where G is a spatial filter convolution kernel which has an associated cutoff length scale, ls, 

and cut off time scale, τc. Scales smaller than these are eliminated from u˜. The resulting 

space-filtered Navier- Stokes Equation system is 

𝜕𝑢
~

𝑗

𝜕𝑥𝑗
= 0 

𝜕𝑢
~

𝑖

𝜕𝑡
+

𝜕𝑢
~

𝑖𝑢
~

𝑗

𝜕𝑥𝑗
= 𝐹𝑖 −

1𝜕𝑝
~

𝜌𝜕𝑥𝑖
+ 𝑣

𝜕2𝑢
~

𝑖

𝜕𝑥𝑖𝜕𝑥𝑗
−

𝜕𝜏𝑖𝑗

𝜕𝑥𝑗
 

where τij is the sub-grid-scale stress (SGS) that reflects the interaction of the unresolved 

scales with the resolved scales. It arises from the filtered advection term (Leonard, 1975) 

 

𝑢𝑖𝑢𝑗

~
= 𝜏𝑖𝑗 + 𝑢

~

𝑖𝑢
~

𝑗  

The Boussinesq assumption for turbulent stresses allows the sub-grid-scale stress to be 

represented with an SGS eddy viscosity, νt, as 

𝜏𝑖𝑗 = −𝑣𝑡 (
𝜕𝑢

~

𝑖

𝜕𝑥𝑗
+

𝜕𝑢
~

𝑗

𝜕𝑥𝑖
) 
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2.2.1. Smagorinsky Model 

One of the most important tasks in an LES solution is to model the sub-grid scale stresses. 

In this study, Smagorinsky models  (Smagorinsky, 1963) was used for this purpose.  

Within LES simulations, an extra form of viscosity, termed the turbulent eddy viscosity 𝑣𝑡, 

is incorporated to account for turbulence effects. This specific viscosity is expressed as: 

𝑣𝑡 = 𝐶𝑥
2𝛥𝑥2𝜔                                                                        (2.8) 

Where 𝐶𝑥 indicates the constant associated with the LES model, while, ∆x represents the 

spacing in the lattice structure. The operator  the lattice spacing, and 𝜔̿  corresponds to the 

LES model. Within the framework of the lattice Boltzmann formulation, the connection 

between viscosity and the relaxation time τ is established by 

𝑣𝑡𝑜𝑡𝑎𝑙 = 𝑣0 + 𝑣𝑡 =
2𝜏0−1

6
+

𝜏𝑡

3
                                                                   (2.9) 

where 𝑣𝑜 refers to the inherent molecular viscosity. Drawing parallels to the division of the 

viscosity parameter, the relaxation time τ is segmented into its molecular and turbulent 

components. The collective relaxation time can be expressed as: 

𝜏𝑡𝑜𝑡𝑎𝑙 = 3𝑣𝑡𝑜𝑡𝑎𝑙 + 0.5                                                                  (2.10) 

By adding Eq. 2. 8) 

𝜏𝑡𝑜𝑡𝑎𝑙 = 3(𝑣0 + 𝐶𝑥
2𝛥𝑥2𝜔 + 0.5)                                                               (2.11) 

Derived the operator 𝜔̿ exclusively from the shear stress tensor for Smagorinsky as follows: 

𝜔 = ∑ 𝑆𝑖𝑗

𝑖,𝑗

𝑆𝑖𝑗 

Smagorinsky, LES model constant was given the value of  𝐶𝑥 = 0.2  in Equation 2.7. 
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2.2.2. Dynamic Models 

Dynamic models are extensions of the Smagorinsky model that aim to improve the 

accuracy and adaptivity of the eddy viscosity coefficient. These models dynamically 

estimate the eddy viscosity coefficient based on the local flow characteristics. One example 

is the dynamic Smagorinsky model proposed by Germano et al. (1991), which incorporates 

a test filter to determine the optimal value of the eddy viscosity coefficient. The dynamic 

models account for the spatial and temporal variations in the flow and provide a more 

accurate representation of the turbulence. 

2.2.3. Scale-Dependent Models 

Scale-dependent models consider the scale dependency of turbulence and aim to capture the 

anisotropic behavior of turbulence at different length scales. These models utilize different 

eddy viscosity coefficients for different scales, allowing for a more accurate representation 

of the turbulent flow field. Examples of scale-dependent models include the dynamic 

mixed-scale model proposed by Lilly (1992) and the scale-similarity model developed by 

Vreman et al. (1997). These models consider the non-universal behaviour of turbulence and 

provide improved predictions for flows with complex geometries. 

2.2.4. Wall-Adapting Models 

Wall-adapting models are specifically designed to handle turbulent flows near solid walls, 

where the existence of boundary layers significantly affects the flow dynamics. These 

models incorporate wall functions or modifications to the eddy viscosity coefficient to 

account for the near-wall effects. Various wall-adapting models have been proposed to 

improve the accuracy of LES near walls. Examples include the wall-resolving model, 

which resolves the near-wall region with a fine grid, and the wall-modeled model, which 

uses wall functions to approximate the near-wall flow, Sagaut, (2006). 
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2.3. Applications of Lattice Boltzmann Method (LBM) in Fluid Dynamics 

The LBM has gained significant attention in recent years due to its ability to simulate 

complex fluid flows with high accuracy and computational efficiency. LBM is a 

mesoscopic numerical approach that discretizes the fluid domain into a lattice structure, 

where fluid properties are represented by particle distribution functions. This method offers 

several advantages over traditional numerical methods, such as its inherent parallelism, 

easy handling of complex geometries, and efficient treatment of fluid-structure interactions. 

LBM has been successfully applied to a wide range of fluid dynamics problems. One such 

area is in the study of multiphase flows, where the interactions between different fluid 

phases are of interest. The immiscible fluid interfaces and interfacial dynamics can be 

accurately captured using LBM, making it suitable for simulating phenomena such as 

droplet coalescence, bubble dynamics, and liquid-solid interactions (Liu et al., 2019). 

Additionally, LBM has been employed in modelling porous media flows, where the fluid 

flow through a porous structure is of interest. The ability of LBM to handle complex 

geometries and its inherent adaptivity make it suitable for simulating fluid flow through 

porous media (Liu et al., 2018). 

Turbulent flows have also been extensively studied using LBM. The ability to model 

turbulence using large eddy simulation (LES) techniques with LBM has provided valuable 

insights into the complex behavior of turbulent flows. LES-LBM simulations have been 

employed in various applications, including the study of turbulent boundary layers, flow 

over complex geometries, and turbulent mixing processes (Chen et al., 2019). The 

combination of LBM and LES allows for a detailed analysis of the flow characteristics, 

such as vortex shedding, turbulence statistics, and energy spectra. 

Furthermore, LBM has found applications in the field of microfluidics, where fluid flow at 

small scales is of interest. The ability of LBM to handle multiscale problems and its 

computational efficiency make it suitable for simulating fluid flows in microchannels and 

microdevices (Li et al., 2017). LBM has been used to investigate phenomena such as 

electrokinetic, droplet dynamics, and microscale heat transfer. 
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In summary, the LBM has proven to be a versatile and powerful tool in the field of fluid 

dynamics. Its applications span various areas, including multiphase flows, porous media 

flows, turbulent flows, and microfluidics. The accurate representation of complex fluid 

behaviour, computational efficiency, and flexibility in handling different flow regimes 

make LBM a valuable numerical approach in fluid dynamics research. 

2.4. Advantages and Limitations of LBM 

The Lattice Boltzmann Method (LBM) offers several advantages that make it an attractive 

choice for simulating fluid flows. One of the key advantages is its inherent parallelism, 

which allows for efficient utilization of modern high-performance computing architectures 

(Kruger et al., 2017). The lattice structure of LBM lends itself well to parallel processing, 

enabling the simulation of large-scale and complex fluid flows within reasonable 

computational timeframes. This makes LBM particularly useful for tackling problems that 

involve high Reynolds numbers or intricate geometries. 

Another advantage of LBM is its ability to handle complex boundary conditions and 

interfaces with relative ease. The lattice-based nature of LBM allows for straightforward 

implementation of various boundary conditions, including no-slip, slip, and free-slip 

conditions, as well as the modeling of moving or deforming boundaries (Ginzburg et al., 

2014). Additionally, LBM excels at capturing fluid interfaces and interfacial phenomena, 

such as phase separation and multiphase flow behavior, due to its mesoscopic nature (Shan 

et al., 2015). This makes LBM a valuable tool in studying problems involving fluid-

structure interactions or complex fluid interfaces. 

Moreover, LBM exhibits adaptivity in terms of spatial resolution, allowing for efficient and 

accurate simulations. Unlike traditional mesh-based methods, LBM does not require 

complex mesh generation procedures, making it particularly suitable for problems with 

irregular geometries or situations that involve frequent grid modifications (Kruger et al., 

2017). This adaptivity enables the simulation of flow phenomena at different scales, 

ranging from macroscopic to microscale flows, using a unified numerical framework. 
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Despite its advantages, LBM also has some limitations that need to be considered. One 

limitation is the relatively higher memory requirement compared to other numerical 

methods. LBM requires storing particle distribution functions on the lattice, which can lead 

to significant memory usage, especially for large-scale simulations (Kruger et al., 2017). 

Additionally, the mesoscopic nature of LBM introduces statistical noise in the simulation 

results, which may require longer computational times or additional post-processing 

techniques for accurate analysis (Ginzburg et al., 2014). 

In summary, the Lattice Boltzmann Method (LBM) offers several advantages, including its 

parallelism, ease of handling complex boundaries and interfaces, and adaptivity in spatial 

resolution. These characteristics make LBM well-suited for simulating complex fluid flows. 

However, it is important to consider its limitations, such as higher memory requirements 

and the presence of statistical noise, when applying LBM to fluid dynamics problems. 

2.5. Introduction to Solution-Adaptive Methods 

Solution-adaptive methods are a class of numerical techniques used in computational fluid 

dynamics (CFD) to dynamically refine or coarsen the computational grid based on the 

solution characteristics. These methods aim to enhance the accuracy and efficiency of CFD 

simulations by selectively refining regions with high solution gradients or important flow 

features while coarsening regions with low solution variations (Tumin & Erturk, 2016). By 

adaptively adjusting the grid resolution, solution-adaptive methods can provide more 

accurate solutions with reduced computational costs compared to fixed grid approaches. 

The formulation of solution-adaptive methods involves several key steps. Firstly, an initial 

grid is generated to discretize the computational domain. This grid can be structured or 

unstructured, and its quality and resolution are chosen based on the problem requirements. 

The initial grid serves as the foundation for subsequent adaptivity procedures. 

Next, the CFD solver is employed to solve the governing equations on the initial grid. The 

solution variables, such as velocity, pressure, and temperature, are computed iteratively 

using numerical algorithms. During the solution process, error indicators are employed to 



19 

 

assess the local accuracy of the solution and identify regions where grid refinement or 

coarsening is necessary (Bungartz & Zenger, 2002). 

Various error indicators can be used to guide the adaptivity process. These indicators can 

be based on solution gradients, local truncation errors, or other flow characteristics of 

interest. Commonly used error estimation techniques include the Richardson extrapolation, 

adjoint-based error estimation, and residual-based error estimation (Iaccarino & Verzicco, 

2003). These indicators provide information about the regions that require grid refinement 

or coarsening to improve the overall accuracy of the solution. Once the error indicators are 

computed, grid adaptation strategies are employed to refine or coarsen the grid accordingly. 

Grid refinement involves subdividing cells or adding new cells to increase the grid 

resolution, while grid coarsening involves merging cells or removing unnecessary cells to 

reduce the grid size. Various grid adaptation techniques, such as h-refinement, p-

refinement, and adaptive mesh refinement (AMR), can be employed to adjust the grid 

structure based on the error indicators. The grid adaptation process is typically performed 

iteratively. After the grid is refined or coarsened, the CFD solver is applied again on the 

updated grid to obtain an improved solution. This iterative procedure continues until a 

desired level of accuracy is achieved or the solution reaches convergence. Overall, solution-

adaptive methods provide an effective approach to enhance the accuracy and efficiency of 

CFD simulations. By dynamically adjusting the grid resolution based on the solution 

characteristics, these methods can capture flow features and resolve regions of interest with 

higher accuracy while minimizing computational costs in less significant areas. 

2.6. Adaptive Mesh Refinement in LBM 

For dynamic mesh adaptation at a local level, it has been integrated the block-structured 

AMR technique introduced by Berger & Collela. Originally, this method was 

conceptualized for time-explicit finite volume schemes pertaining to hyperbolic 

conservation laws. Nevertheless, given its iterative process and intrinsic design that 

considers time step refinement, it suits lattice Boltzmann schemes quite fittingly. This 

compatibility stems from the fact that the fundamental theory behind the transport step of 
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these schemes is rooted in a hyperbolic constant velocity advection equation. To ensure a 

seamless integration with the pre-existing parallelized finite volume AMR software, 

AMROC, it has been fashioned the LBM to be cell-centric. With the block-based AMR 

strategy, finite volume cells are systematically grouped into distinct, non-overlapping 

rectangular grids via a specialized algorithm. These grids are characterized by an 

appropriate layer of halo cells. 

 

Figure 2.3. Displaying the partial density distribution functions is crucial when 

understanding the data transfer at the junction between coarse and fine boundaries. The 

bold black demarcations symbolize a physical boundary. (a) Coarse data points extending 

into the fine grid; (b) incoming interpolated fine points in peripheral zones (top) and 

outgoing points in these zones post two fine-level transport maneuvers (bottom); (c) 

computed averages that supplant coarse data before another update cycle adjacent to the 

boundary, Deiterding, (2002). 

 

Grids are structured with particular emphasis on establishing conditions at inter-level 

junctions and physical boundaries. These refinement tiers are processed in a nested manner. 

The spatial mesh width ∆𝑥 and the time step ∆𝑡𝑙 are refined by the same factor 𝑟𝑙, where we 

assume 𝑟𝑙 ≥ 2 for 𝑙 > 0 and 𝑟0 = 0. Note that in an adaptive LBM the collision frequency 

𝑤𝑙 is not a constant but needs to be adjusted.  
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Furthermore, the interface zone demands specific attention. In the given depiction and as 

illustrated in Figure 2.3, time intervals at the coarse layer C are marked by the superscript 

n, while the label F highlights the fine tier. The prefixes 'in' and 'out' demarcate 

distributions moving into and out of the fine grid at the junction with the coarse grid. 

Computationally, this algorithm aligns with the technique presented by Chen et al., 1998. 

It's precisely adapted to the Berger-Collela recursive pattern, which prioritizes updating the 

entire coarse grids before delving into fine grid calculations. This systematic full update of 

the associated coarse lattice followed by necessary adjustments is what makes the Berger-

Collela method notably efficient. Yet, this strategy has been seldom employed in lattice 

Boltzmann techniques. Earlier adaptive LBM methodologies prioritized the fine grid's 

update before addressing the corresponding coarse tier, offering no clear path for 

introducing time-interpolated conditions at the fine-level interface. 
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3. BENCHMARKS FOR LBM AND SOLUTION-ADAPTIVE 

METHODS 

3.1. Simulation of the Flow past an Cylinder at high Reynolds Number 

The phenomenon of fluid flow around a circular cylinder has garnered considerable 

attention in the literature, undergoing extensive examination through both experimental and 

computational studies. Lausova et al. seek to identify an appropriate numerical model for 

simulating 2D flow past a smooth circular cylinder at a Reynolds number of 17,000. 

Among the various approaches for modeling turbulent flows in engineering, RANS 

(Reynolds-Averaged Navier-Stokes) models, which rely on the time-averaged equations of 

motion, are predominantly utilized. Within this domain, the SST (Shear-Stress Transport) 

k-ω model is selected for this investigation due to its proven effectiveness in high Reynolds 

number scenarios. LBM analysis is compared with the study using XFlow and considered 

to implement close amounts of grids 

 

Figure 3.1. Computational area – dimensions Lausova et al., (2019). 
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Table 3.1. Parameters of the calculations Lausova et al., (2019). 

 

where u represents the flow velocity, v is kinematical viscosity of the running fluid and D is 

a diameter of the cylinder. The value Re = 1.7·10^4 represents a fully developed turbulence 

in the subcritical regime. 

3.2. XFlow Simulation Setup  

To conduct a comparable analysis to that performed the computational domain was discretized 

with a lattice arrangement. A total of 89,920 lattice points were strategically implemented 

across the computational area for this analysis. This meticulous lattice arrangement ensures the 

accurate representation of the flow dynamics surrounding the circular cylinder, facilitating a 

comprehensive comparison with the results. 

 

                      Figure 3.2. XFlow Lattice Structure with using Adaptive Refinement 

 



24 

 

3.3. Evaluation of Mean Stream Velocity Field in Wake Region Using Lattice 

Boltzmann Method 

In this study, the focus lies on evaluating the mean stream velocity field within the wake region 

trailing the circular cylinder. To achieve this, the computational domain is discretized using the 

Lattice Boltzmann Method (LBM), a powerful numerical technique widely employed for 

simulating fluid flows.  

The LBM approach is particularly suited for capturing complex flow phenomena due to its 

inherent ability to model fluid behavior at various scales. By employing LBM, the flow 

dynamics around the cylinder can be accurately simulated, providing insights into the 

characteristics of the wake region. 

Furthermore, the Wale-Adaptive Large Eddy Simulation (WALE) turbulence model is 

employed specifically within the wake region. This model offers enhanced capabilities for 

capturing turbulent fluctuations, making it well-suited for accurately representing the 

turbulent flow characteristics prevalent in the wake of the cylinder. Illustrative figures are 

utilized to depict the mean stream velocity and velocity profiles across different grid 

configurations. These figures serve as visual aids for comparing and analyzing the 

computed results, providing valuable insights into the flow behavior and the effectiveness 

of the numerical approach employed. 

Overall, the combination of the Lattice Boltzmann Method with the WALE LES turbulence 

model offers a robust framework for accurately evaluating the mean stream velocity field in 

the wake region behind the cylinder, facilitating a comprehensive understanding of the flow 

dynamics and contributing to advancements in fluid dynamics research.  
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Figure 3.3. Horizontal velocity components 

 

 

Figure 3.4. Horizontal Velocity Components – Vertical axis in the far wake 

 

Figure 3.4 illustrates the mean stream velocity field in the far wake, providing valuable 

insights into the distribution of velocities downstream of the cylinder. This visualization 
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aids in understanding the evolution of flow structures and the extent of wake recovery, 

crucial for assessing the aerodynamic performance of the cylinder and its impact on 

downstream flow conditions. 

3.4. Simulation of the Flow around an Oscillating Cylinder with Adaptive Lattice 

Boltzmann Methods 

Many aerodynamic problems are characterised by an interaction between moving structures 

and fluid flow. As a canonical example for this problem class, we consider in here the 

subsonic flow around a cylindrical body undergoing an imposed regular oscillatory motion. 

This flow has been studied extensively experimentally as well as numerically because of its 

obvious importance as a fundamental problem occurring in a multitude of industrial 

applications. Studies have revealed that transverse or rotational motion of the cylinder can 

have a significant influence on the wake flow. Especially the influence of translational 

oscillations on vortex formation and the effect of rotation on wake behaviour have been 

evaluated Hou et al.; Howell et al. Flow-induced forces such as drag and lift are highly 

sensitive to the accurate representation of the motion as well as the mesh resolution, 

providing an ideal and challenging benchmark for modern fluid solvers that can handle 

large-scale fluid-structure interaction. In CFD analysis of the oscillating cylinder setup, a 

fine resolution is required to accurately represent the effect of the motion, which means that 

a high-resolution mesh must be used to analyse the flows around the cylinder, especially if 

the flow has a higher Reynolds number Laloglu et al., (2017). 

To capture high frequency cylinder motion as well as small-scale flow structures, this study 

uses solution-adaptive mesh refinement. The underlying numerical discretisation adopted 

here is the LBM. LBM derives its foundation from the Boltzmann equation, which 

primarily dictates the behaviour of particle propagation. However, instead of focusing on 

singular particles, the LBM operates within the continuum domain by considering 

aggregates characterized by their probability densities Laloglu et al., (2017). 

The lattice Boltzmann method can be understood as a mesoscale approach, designed for the 

intermediate scale regime between continuum (macro-scale) and individual particles 
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(micro-scale). The fundamental concept is to devise streamlined kinetic models at 

encapsulate the core physics of the microscopic interactions, ensuring that the aggregated 

values align with the targeted macroscopic equations. Simplified kinetic models, such as 

the BGK (Bhatnagar, Gross and Krook) collision operator, which is based on the 

assumption that only two particles can collide at a time, can be used if the macroscopic 

dynamics of a fluid is the result of the collective behaviour of many microscopic particles 

in the system. For instance, Jiange et al. (2016) have used a BGK-based incompressible 

lattice Boltzmann method to numerically investigate vortex-induced vibrations (VIV) 

phenomena around an oscillating square cylinder. In their study, results for stationary 

cylinder cases were in in good agreement with results of traditional CFD methods for 

Reynolds numbers Re  166. When the Reynolds number was Re > 166, the trend of the 

Strouhal number variation over Reynolds number was still consistent with the results from 

conventional continuum mechanical methods, but differences increased with Reynolds 

number, which was attributed to differences in computational domain size and the 

inlet/outlet boundary conditions. Here, we reproduce by numerical simulation two laminar 

flow configurations that have been experimentally studied by Nazarinia et al.,(2011). They 

used particle image velocimetry (PIV) to characterise the wake of forced cylinder flow at 

Reynolds number 1322. We then extend these cases into the turbulent regime.  

Table 3.2. Applied values of At and Aθ , Nazarinia et al.,(2011). 

 

 

Figure 3.5. Motion imposed on cylinder, Nazarinia et al.,(2011). 

Case At Aθ VR 

2 D/4 1.0 0.5 

3 D/2 1.0 1.0 
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The harmonic motions of the cylinder have translationally and rotationally movements. 

Equation (3.1) and (3.2) involve the rotational amplitude, frequency and time. The forced 

motion of the cylinder is specified by; 

𝑦(𝑡) = 𝐴𝑡 𝑠𝑖𝑛( 2𝜋𝑓𝑡𝑡)                                                                                 (3.1) 

𝜃(𝑡) = 𝐴𝜃 𝑠𝑖𝑛( 2𝜋𝑓𝜃𝑡)                                                                                                      (3.2) 

As can be seen Figure 3.5, the oscillating cylinder which is an outer diameter of 20 mm was 

moved on transitional and rotational. The computational analysis in 2D was performed with 

a constant velocity of Uavg=0.0606 m/s for laminar flow and Uavg=0.303m/s and Re= 6610 

for turbulence flow.  The frequencies of the motions are fixed close to that of the natural 

(von  Karman) frequency (T-1= ft=𝑓𝜃=0.6 s-1). The natural frequency is 𝑓𝑁 ≈ 0.6154𝑠−1 

Thus, Strouhal number; 

 𝑆𝑡𝑡 = 𝑓𝑡𝐷/𝑈∞ ≈ 0.198 for frequency, 

𝑆𝑡 = 𝑓𝑁𝐷/𝑈∞ ≈ 0.203for forcing (Nazarinia et al. 2011). 

3.5. Evaluating of mesh refinement and solution time  

As comparing to experimental results, the selection of the lattice size can effectively change 

the CFD results owing to increasing of number of particles and relaxation time depending 

on probability distribution functions. When lattice size decreases in domain, the collision 

frequency will decrease and the results are more sensitive. Solution-adaptive approach 

provided the better accuracy and in good agreement with experimental data.  The 

parameters of solvers information were tried to same level to correctly compare the results. 

There is no wall function that applied on boundary layer.  
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            t = 1.09081 s                             t = 2.02579 s                             t = 3.1166 s 
 

 

 

Figure 3.6. Case 3: Evolution of dynamic mesh refinement (upper row) and distribution to 

four processors over time (lower row) in AMROC. (Laloglu et al., 2017) 

 

 

 

a)                                                                b) 

 
c) 

 

Figure 3.7. Mesh refinement of Case 2 on a) AMROC b) XFlow for laminar flows  and c) 

experimental contour (Nazarinia et al., 2011) 
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Figure 3.8. Mesh refinement of Case 2 on a) AMROC b) XFlow for laminar flows  and c) 

experimental contour (Nazarinia et al., 2011) 

 

An exemplary computation for Case 3 is visualised in Fig. 3.8. In the upper row, the 

domains of the three levels of successively finer block-structured meshes are shown with 

isosurfaces of the magnitude of the vorticity vector overlaid. It is apparent that the 

refinement follows the vortices generated by the cylinder motion. This computation was 

run on 4 processors and the lower row depicts in different colours the domains associated to 

the processors. The AMROC system uses a rigorous domain decom- position approach, in 

which higher level temporal and spatial refinement is considered in computing the actual 

workload, but only distribution entities in terms of the base level mesh are used for 

partitioning.  
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Table 3.3. Laminar and turbulence flows parameters for Case 2 and Case 3 (Nazarinia et 

al., 2011) 

Flow type Case ∆t0 [s] 
Total cells 

∆te [s] Re y+ CPU time [s] 

AMROC XFlow AMROC XFlow 

Laminar 
2 0.0015 85982 84778 3.33 1322 0 161.89 176 

3 0.0015 91774 90488 3.33 1322 0 165.97 183 

Turbulent 
2 0.00031 232840 216452 1.66 6310 2.4 635.8 887 

3 0.00031 255582 246366 1.66 6310 2.6 933.2 1325 

 

 

Figure 3.9. Overall solution time depending on number of cores in laminar flow for t=3.33s 

on AMROC 

 

Figure 3.10. Overall solution time depending on number of cores in turbulence flow for 

t=1.66 s on AMROC 
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The solution time can be decreased effectively with increasing of number of cores in 

(Message Passing Interface) MPI parallel solver. The code was operated on Ubuntu 14.04 

with a workstation an Intel® Xeon® CPU Process @3.50 GHz, 16GB RAM, NVIDIA 

Quadro K4200 work station operating on 12 CPUs (6 cores, 6 threads). It is understood 

from Figure 3.9-3.10 that when the number of cores are increased, overall solution time is 

decreasing due to communications delaying among the processors. 

3.6. Effecting of varying VR in laminar flows 

Obtaining computational analysis results are presented in vorticity distributions for 

AMROC code and XFlow commercial software data were compared with investigation of 

CD (drag coefficient) and CL(lift coefficient) in different velocity ratios. Utilizing by 

adaptive mesh refinement technique on AMROC, near-wake flow structures on 

downstream flow were obtained using with LBM method at laminar flows. The flow 

domain was arranged at same size for AMROC and XFlow. Note that the significant impact 

to solve the motion is required to observe the vortex shedding behind the cylinder. For this 

purpose, the vortex mode is classified by the Williamson and Roshko in 1988. From their 

analyses, they experimentally discerned the structures of the near-wake by examining 

vortex shedding, which revealed distinct vortex modes. The experimental review helped in 

recognizing specific vortex configurations close to the primary phase-lock-in zone, namely 

2S, 2P, and P + S. The 2S pattern indicates that every half-cycle feeds a vortex into the 

downstream wake, reminiscent of the natural Karman vortex shedding. On the other hand, 

2P depicts the creation of vortex duos that laterally drift away from the wake's central axis. 

The P + S mode stands as an unbalanced variant of the 2P configuration, where the cylinder 

releases both a vortex duo and a solitary vortex within a single cycle. 
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(a) (b) 

 

Figure 3.11. Vorticity distributions for laminar flows at U=0.0606 m/s and Re= 1322 a) 

XFlow and b) AMROC for Case 2, VR= 0.5 

  
(a) (b) 

Figure. 3.12. Comparison of a) drag coefficient (CD) and b) lift coefficient (CL) graph 

depending on time for Case 2, VR= 0.5 

 

Figure 3.11 gives us the 2S vortex mode and are coherent when compared to the referenced 

paper and XFlow commercial software for VR=0.5. Furthermore, the near-wake vortices are 

remaining coherently in the near-wake and are synchronized with the translational motion. 

Besides, the graphs of drag and lift coefficient were demonstrated to get detailed 

comparison AMROC code with XFlow as shown Figure 3.12a and Figure 3.12b at VR of 

0.5. It showed the CD and CL values were presented an agreement even if they have some 

discrepancies.  As can be seen from Figure 3.8, the same discrepancies were obtained at VR 

of 0.5 during the analysis of Case 2.  
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                         (a)        (b) 

Figure 3.13. Vorticity distributions for laminar flows at U=0.0606 m/s and Re= 1322 a) 

XFlow and b) AMROC for Case 3, VR= 1 

 

  
(a) (b) 

Figure 3.14. Comparison of a) drag coefficient (CD) and b) lift coefficient (CL) graph 

depending on time for Case 3, VR= 1 

 

The parameters taking from referenced paper (Nazarinia et al., 2011) values were applied to 

for Case 2 and Case 3 as given Table 1. Obtained results were enabled to understand better 

the behaviour of the motion and mechanism behind of the oscillating cylinder movement 

with increasing of velocity ratios at phase-locked. The near-wakes structures are very 

agreement with XFlow commercial software as shown Figure 3.13. As the VR increases to 

1.0, observable from Figure 3.13, there's a notable transition in the vortex shedding mode. 

Instead of the previously observed 2S mode, a P+S mode emerges in the near-wake, 

characterized by the formation of one solitary vortex and a vortex pair during each cycle. 

The vortex shedding pattern identified for this scenario is distinctly P+S. Such vortex 
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formations are commonly recognized within the vortex street and have been studied for 

their synchronization with oscillatory movements. These vortex patterns contribute to a 

broader wake, predominantly because the translational motion in these situations outpaces 

the rotational. The CD and CL values were demonstrated still eligible discrepancies but they 

were occurred coherently as shown Figure 3.14. 

3.7. Effecting of varying VR in turbulence flows 

In order to attain the more knowledge about the near-wake structures behind the cylinder, it 

was increased the average velocity further to U=0.303 m/s and Re= 6310. Smagorinsky 

sub-grid scale turbulence model was used to see the vorticity shedding at high Reynolds 

number. All cases as given Table 3.3 were applied at the same domain in 2D analysis.  

 
 

                               (a)       (b) 

 

Figure 3.15. Vorticity distributions for laminar flows at U=0.303 m/s and Re= 6310 a) 

XFlow and b) AMROC for Case 2, VR= 0.5 

   

Figure 3.16. Comparison of a) drag coefficient (CD) and b) lift coefficient (CL) graph 

depending on time for Case 2, VR= 0.5 

 

-4

-2

0

2

4

6

0 0,5 1 1,5 2

C
D

Time (s)XFLOW AMROC

-4

1

6

0 0,5 1 1,5 2

C
L

Time (s)
XFLOW AMROC



36 

 

Figure 3.15 shows the 2S vortex mode obtaining from AMROC and are coherent when 

compared to the XFlow commercial software for VR=0.5. In particular, CD and CL values of 

AMROC were presented very compatibility with XFlow results with slightly discrepancies 

as shown Figure 3.16.  

  
                                      (a)       (b) 

 

Figure 3.17. Vorticity distributions for laminar flows at U=0.303 m/s and Re= 6310 a) 

XFlow and b) AMROC for Case 3, VR= 1 

 

  
    (a)                 (b) 

Figure 3.18. Comparison of a) drag coefficient (CD) and b) lift coefficient (CL) graph 

depending on time for Case 3, VR= 1 

Figure 3.17 gives vortex shedding mode to the signature of a P+S mode in the near-wakes 

structures is very agreement with XFlow commercial software. With increase of Re, it 

produced more defined a weak wake that proves the P vortex mode to outwards.  
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3.8. Darrieus VAWT Numerical Model Meshfree analysis using with LBM 

Vertical axis wind turbines (VAWTs) are commonly categorized into two main types: drag-

driven turbines, such as the Savonius design, and lift-driven turbines, like the Darrieus 

design. While drag-driven turbines tend to have better initial start-up performance, they 

exhibit lower power generation efficiency compared to lift-driven turbines. In this 

investigation, the focus is on evaluating the performance of a Darrieus-type wind turbine 

operating at a wind speed of 12 m/s. The straight blades of the turbine utilize the NACA 

0015 airfoil profile. The specific characteristics of the VAWT employed in the virtual wind 

tunnel simulation conducted by (Lee Y. and Lim H. 2015) are as follows: the chord length 

is 150 mm, the rotor diameter (D) is 740 mm, the length (L) is 600 mm, and the aspect ratio 

(L/D) is 0.81. The turbine consists of three blades. Figure 3.19 illustrates a schematic CAD 

representation of the Darrieus VAWT employed in this study, with dimensions matching 

those of the experimental study conducted by (Lee Y. and Lim H. 2015). The Reynolds 

number for the given values of air velocity at 12 m/s is approximately 120,000. 

 

Figure 3.19. CAD geometry of Darrieus Vertical Axis Wind Turbine 

3.8.1. Applied Turbulence Models 

Selecting a turbulence model is an important factor to ensure that accurate numerical 

solutions can be obtained in a reasonable time. Two turbulence modelling approaches were 

used during the computations; LES and RANS. 
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3.8.1.1. Large Eddy Simulation (LES) 

In Large Eddy Simulation (LES), an essential aspect is the representation of sub-grid scale 

stresses. This study employed two different models, namely WALE and Smagorinsky 

models, to address this task. During LES simulations, turbulent eddy viscosity 𝑣𝑡 is 

introduced as an additional viscosity to capture the characteristics of turbulence. The value 

of this eddy viscosity is determined by the chosen model equation 2.8 ; 

Here, 𝐶𝑥 represents a constant specific to the chosen LES model, ∆x refers to the spacing 

between lattice points, and 𝜔̿  corresponds to the LES model operator. In the LBM model, 

the viscosity is connected to the relaxation time τ. This relationship governs the rate at 

which the distribution function approaches equilibrium. By appropriately adjusting the 

relaxation time, the desired viscosity can be achieved, influencing the flow behaviour in the 

simulation equation 2.9. 

The relaxation time τ can be decomposed into molecular and turbulent components, 

analogous to the separation of the viscosity term. This allows for distinguishing the 

contributions of molecular viscosity 𝑣𝑜 and turbulent effects. The total relaxation time 

encompasses both these aspects, as expressed by the following equation 2.10. 

By applying Eq. (2.8), we arrive at equation 2.11 

Derived the operator 𝜔̿ exclusively from the shear stress tensor for Smagorinsky as follows 

equation 2.12 

The WALE model considers the shear stress tensor including the rotation tensor. The 

operator 𝜔̿ is defined as follows ,Weickert et al., 2010 :  

 

                               𝜔̿ =
(𝐺𝑖𝑗

𝑑 𝐺𝑖𝑗
𝑑)

3
2

(𝑆𝑖𝑗𝑆𝑖𝑗)
5
2+(𝐺𝑖𝑗

𝑑𝐺𝑖𝑗
𝑑)

5
4

                              ( 3.3) 
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The difference between WALE and Smagorinsky, LES model constant was given the value 

of  𝐶𝑥 , 0.325 and 0.12, respectively, in Equation 6. 

3.8.1.2. Reynolds-Averaged Navier-Stokes (RANS) 

In the context of RANS simulations, the Spalart-Allmaras turbulence model is a one-

equation model solving a transport equation for a variable called 𝑣̃, which represents an 

approximation of viscosity. This variable is then used to adjust a turbulent viscosity νt. 

Within the framework of the lattice Boltzmann method (LBM), the turbulent viscosity can 

be employed to modify the relaxation time in the collision operator. In this investigation, a 

modified version of the model, presented in Equation 3.4, was implemented to enhance the 

numerical behaviour in the vicinity of the wall within the laminar sublayer. The transport 

equation and the complete set of parameters associated with the model are provided below 

(Laloglu et al., 2023): 

𝜕𝑣̅

𝜕𝑡
+ 𝑢⃗⃗. (∇⃗⃗⃗𝑣̃) =  

1

𝜎
[∇⃗⃗⃗ . ((𝑣 + 𝑣̃)∇⃗⃗⃗𝑣̃) + 𝑐𝑏2(∇⃗⃗⃗𝑣̃)

2
] + 𝑐𝑏1𝑆̃𝑣̃ − 𝑐𝑤1𝑓𝑤 (

𝑣̅

𝑑
)

2

                      (3.4) 

𝑣𝑡 = 𝑣̃𝑓𝑣1 ,      𝑓𝑣1 =
𝑋3

𝑋3+𝑐𝑣1
3  ,    𝑋 =

𝑣̃

𝑣
, 

𝑐𝑏1 = 0.1355,   𝜎 =
2

3
,   𝑐𝑏2 = 0.622 ,   𝜅 = 0.41, 

𝑐𝑤1 =
𝑐𝑏1

2

𝜅
+

1 + 𝑐𝑏2

𝜎
,     𝑐𝑤2 = 0.3 , 𝑐𝑤3 = 2 , 𝑐𝑣1 = 0.1 

3.8.1.3. Virtual Wind Tunnel Analysis and Boundary Conditions 

The computational analysis consists of lattice structures shown Figure 3.20. The 

dimensions of the numerical wind tunnel were selected as 3m × 2m× 6m (width × height 

×length) to observe better analysis because it gives suitable environment depending on 

turbine size, investigating wake effect inside in virtual wind tunnel. In order to see the 

effect of number of cells on the solutions, two cases were chosen; lattice structures with 

element numbers about 2 500 000 and 5 000 000. In this simulation, inlet wind velocity of 
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12m/s is applied to predict the aerodynamic characteristics with various turbulence models 

in accordance with the reference (Lee et al. 2015). Adaptive wake refinement technique 

was used to observe detailed wake developing around the blades. The XFlow engine 

incorporates an automatic scale adaptation feature that adjusts the resolved scales based on 

user-defined criteria. This adaptive process enhances the solution accuracy in regions near 

the walls by refining the mesh, effectively capturing strong gradients within the flow. 

Additionally, as the flow progresses, the engine dynamically adapts to refine the wake 

region, ensuring an accurate representation of the evolving flow patterns. This behavior is 

illustrated in Figure 3.29, showcasing the adaptability and effectiveness of the XFlow 

engine in optimizing the solution quality throughout the computational domain. 

 

Figure 3.20. Cell Configuration of Darrieus Vertical Axis Wind Turbine (5 000 000 lattice 

cells). 
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Figure 3.21. Adaptive Wake Refinement for Darrieus Vertical Axis Wind Turbine (5 000 

0000 lattice cells). The spatial resolution in this case varied within a range of 0.00125m to 

0.05m.  

The design parameters of turbine and boundary conditions were specified according to the 

reference (Lee et al. 2015). One of the performance parameters of wind turbines is the tip-

speed-ratio (TSR), which is the blade-tip speed against wind speed and is defined in 

Equation 10. Typically, the power performance of the rotor can be presented by variation of 

power coefficient with TSR. In a wind turbine power obtains by multiplying the torque 

generated on the blades by the aerodynamic forces with the rotation speed. Torque 

coefficient (CQ) and power coefficient (CP) were calculated using Equations 3.11 and 3.12, 

respectively (Lee et al. 2015).  

𝑇𝑆𝑅 =
𝑇𝑖𝑝 𝑆𝑝𝑒𝑒𝑑

𝑊𝑖𝑛𝑑 𝑆𝑝𝑒𝑒𝑑
=

𝜔×𝑅

𝑈∞
                                                                                                 (3.11) 

𝐶𝑄 =
𝑄

0.5𝜌𝐴𝑅𝑈∞
  

In Equation 11, Q is torque [Nm],  𝜌 denotes the air density [kg/m3], and A is the cross-

sectional area of the rotor [m2] (Lee et al. 2015). 
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𝐶𝑝 =
𝑄𝜔

0.5𝜌𝐴𝑈∞
3                                                                                                                  (3.12) 

In order to investigate the performance characteristics, three tip-speed ratios (TSRs) of 1, 

1.2 and 1.6 were chosen for the calculations. (Lee et al. 2015) obtained the maximum 

power coefficient at TSR of 1.2 in their experimental results. 

3.8.1.4. Results and Discussion 

Solution times with different turbulence modelling approaches  

In this study, CFD solutions were performed on an Intel® Xeon® CPU Process @3.50 

GHz, 16GB RAM, NVIDIA Quadro K4200 workstation operating on 12 CPUs. Mesh 

structures and their qualities may increase computational cost, and it is required that higher 

performance computer is established. However, LBM based on particle-based approach 

uses a uniform Cartesian grid that can be refined as it is required depending on geometry 

and flow field. In order to see the effect of the number of lattices on the solution time, CPU 

times of solutions with different turbulence modelling approaches were given in Table 3.3.  

Table 3.4. Overall CPU time (s) with respect to number of lattices in different turbulence 

models 

Number of 

Lattices 

Overall CPU Time (s) 

RANS 

Spalart Allmaras 

LES 

WALE 

LES 

Smagorinsky 

2,500,000 1.13 x 104 1.16 x 104 1.18 x 104 

5,000,000 1.64 x 104 1.77 x 104 1.87 x 105 

The Courant Number plays a crucial role in governing the choice of time step scheme. By 

increasing the time step size, computational speed can be accelerated, making it desirable to 

set the Courant Number as high as feasible. On other hand smaller numbers mean a more 

stable solution but it will be slower since it is doing more steps. The relation between 

courant number and stable solution can be taken in consideration of stability parameter. The 
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stability parameter must be less than 1, so configuration of the simulation time was adjusted 

the given value of Courant number of 0.8.  

When solution time displayed in Table 1 is compared, RANS solution with Spalart-

Allmaras model had lower computational time compared to the others for both 2 500 000 

and 5 000 000 lattices. Large- Eddy Simulation (LES) method, WALE and Smagorinsky 

turbulence models have greater values owing to the influence of time-dependent solution as 

shown Table 1. In other words, The RANS approach relies on ensemble-averaged 

equations, which limits its ability to predict local flow fluctuations. In contrast, the LES 

approach utilizes spatially filtered equations, allowing for the capture of large-scale flow 

structures based on the chosen filter size. 

Torque and power coefficients  

Torque coefficients were obtained using the XFlow software by time averaging the 

instantaneous torque predictions. Results obtained with 2500000 lattices are displayed and 

compared with experimental data in Figure 3.22.   

 

Figure 3.22. Variations in torque coefficients according to turbulence models and 

experimental results (Lee et al. 2015) for 2 500 000 lattices. 
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From Figure 3.22, it seems that results do not all agree well with the referenced 

experimental results. Here solutions with Spalart-Allmaras model showed the worst 

agreement while the other predictions remained within the error bars of the measurements 

for TSRs of 1 and 1.2. Among the solutions, LES predictions with Smagorinsky model 

yielded the best agreement.  

 

Figure 3.23. Variations in torque coefficients according to turbulence models and 

experimental results (Lee et al. 2015) for 5,000,000 lattices. 

To see the effect of number of lattices on predictions, numerical solutions were repeated for 

a lattice size of 5 000 000 and the corresponding torque coefficient predictions are 

displayed in Figure 3.23 along with the experimental data. The improvement in the 

predictions is evident from this figure where all of them appeared to be inside the error bars 

of the measurement. Solutions obtained with WALE method showed the best agreement 

with experiment for this configuration.   

Overall, the agreement between the numerical predictions and experimental measurements 

was found to be satisfactory for 5 000 000 lattices. Therefore, this lattice size was used in 

the rest of the study. 
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Figure 3.24. Variations in power coefficients according to turbulence models and 

experimental results (Lee et al. 2015) for 5,000,000 lattices 

Figure 3.24 clearly demonstrates the good agreement between the WALE turbulence model 

and experimental results. Additionally, it can be observed that the power coefficient reaches 

to maximum at TSR 1.2 for 5 000 000 lattices. 

Comparison of flow field predictions with different turbulence models 

It is known that structure of a VAWT causes more wake-blade interactions than a HAWT. 

Based on this idea, this study aimed to reveal the effect of different turbulence models on 

the wake predictions for a VAWT.  
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                        (a)LES-WALE             (b) RANS-Spalart -Allmarass 

 

 
      (c) LES-Smagorinsky 

 

Figure 3.25. Velocity contours around VAWT in different turbulence models for TSR 1 

and 𝜽 =77o 

. 
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 (a)LES-WALE               (b)RANS-Spalart- Allmaras 

 

 
(c)LES-Smagorinsky 

 

Figure 3.26. Turbulence Intensity (%) around VAWT in different turbulence models for 

TSR 1 and 𝜽 =77o 

 

Contours distributions were taken from XFlow CFD software involving velocities and 

turbulence intensities at TSR1 and azimuthal angle , 𝜽  of 77o as shown Figure 3.25. The 

velocity distributions on the cutting plane were demonstrated in Figure 3.26. It shows that 

the boundary layer of WALE and Spalart-Allmarass model give the similar separation flow 

from the surface of blade while the Smagorinsky turbulence model is obviously exhibiting 
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the flow which are separated from blade surface earlier. Figure 3.26 gives the better results 

that enable to understand changing viscosity effect on VAWT. Turbulence intensity 

provides to observe better wake predictions, the wake is separated from the trailing-edge of 

blade earlier and LES-WALE model contours have more intense wake structure than the 

other.   

 

  
 (a)LES-WALE               (b) RANS-Spalart-Allmaras 

 

 
(c)LES-Smagorinsky 

 

Figure 3.27. Velocity contours around VAWT in different turbulence models for TSR 1.2 

and 𝜽 =90o 
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                (a) LES-WALE             (b)  RANS-Spalart- Allmaras 

 

 
(c)LES-Smagorinsky 

 

Figure 3.28.  Turbulence Intensity (%) around VAWT in different turbulence models for 

TSR 1.2 and 𝜽 =90o 

For TSR 1.2 and θ=90o velocities contours are found the higher values at RANS- Spalart-

Allmaras turbulence model as shown Figure 3.27. LES models shows that WALE and 

Smagorinsky demonstrated more turbulence density around the blade similar each other as 

shown Figure 3.28.  
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                (a)  LES-WALE           (b)  RANS-Spalart-Allmaras 

 

 
(c) LES-Smagorinsky 

 

Figure 3.29. Velocity contours around VAWT in different turbulence models for TSR 1.6 

and 𝜽 =10o 
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       (a)LES-WALE      (b)RANS-Spalart- Allmaras 

 

 
(c)LES-Smagorinsky 

 

Figure 3.30. Turbulence Intensity (%) around VAWT in different turbulence models for 

TSR 1.6 and 𝜽 =180o 

As for TSR 1.6 and θ=180o, RANS and LES modes reveal the similar wake structures and 

the higher rotor speed can be visualized to demonstrate wake predictions using with 

vorticity structures. RANS model, Spalart-Allmaras, is good agreement with LES-WALE 

model at higher rotor speed. LES -Smagorinsky showed that wake is cutting from flow 

separation of trailing-edge earlier as shown Figure 3.30. 
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Investigation of Vorticity at maximum power coefficient  

At high angles of attack and low TSR, VAWTs undergo dynamic stall, leading to complex 

flow structures around the blades. This phenomenon involves large separated flow regions, 

vortex shedding, and potential blade vortex interactions. Despite the challenging 

aerodynamics, VAWTs can still generate power at low TSR due to these flow 

characteristics. Understanding and accurately modelling these flow phenomena are crucial 

for optimizing VAWT design and performance under dynamic stall conditions. 

Vorticity behind the blades and turbine is a significant factor, performing at maximum 

power and torque coefficient, to enables to examine the influence of different turbulence 

models. As seen in below Figure 3.31-3.32-3.33, it can be seen obviously the vorticity 

measurements while the wind passes the around turbine and blades, it rises the value of 

vorticity around the blade as it rotates and entry to the path of the other blade flowing in the 

wind tunnel.  

 

Figure 3.31. Vorticity coloured by field Velocity for LES-WALE turbulence model for 

TSR 1.2. 
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Figure 3.32. Vorticity coloured by field Velocity for RANS-Spalart-Allmaras turbulence 

models for TSR 1.2. 

 

Figure 3.33. Vorticity coloured by field Velocity for LES-Smagorinsky turbulence models 

for TSR 1.2. 

One of the basic schemes, vorticity coloured by field velocity was used to observe the wake 

structures in flow field. It is beneficial when compared with RANS, LES turbulence models 

reveal clearly existing of wake structures and velocities behind the VAWT. Furthermore, 

LES models, WALE and Smagoringsky, demonstrate individually the different wake 

structures even if they are at same class. The visualization in Figures 3.31,32 and 3.33 

depicts the turbulent structures, showcasing distinct vortex shapes formed behind the 
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rotating blades under varying turbulence models (WALE, Smagorinsky, Spalart-

Allmarass). These figures provide insights into the characteristic features of the vortices 

when the wind originates from the left side. In the figures, when the TSR is 1.2, WALE 

turbulence model shows the existing of long vorticity intense when compared to RANS-

Spalart Allmarass and smagorinsky turbulence models. Thus, it was clear that LES WALE 

turbulence models enable to observe the wake predictions behind the VAWT. 
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4. FLUID-STRUCTURE INTERACTION 

Fluid-Structure Interaction (FSI) is a pivotal concept in many engineering fields, including 

aerospace, civil, and biomedical engineering, embodying the complex relationships 

between fluids and solid structures. FSI simulations demand advanced numerical methods 

and proficient computational techniques. 

Darrieus wind turbines, a specific type of vertical axis wind turbine, present an excellent 

case study for FSI due to the intricate interaction between the rotating blades and the 

surrounding wind flow. Analysing the aerodynamic performance of Darrieus wind turbines 

necessitates accurate simulations of this interaction (Ferreira, C. J., van Bussel, G. J., & 

Scarano, F., 2006). 

A concurrent or weak coupling technique, where fluid and solid simulations run 

simultaneously and reciprocally update their boundary conditions, is now prevalent for such 

FSI simulations (Donea, J., & Huerta, A., 2003). Deiterding (2011a) has introduced a 

surface-mesh-based coupling routine for the continual updating of boundary data between 

the fluid and solid domains. This routine was further enhanced to communicate not only 

pressure forces but also viscous surface traction forces. 

The Lattice Boltzmann Method (LBM), an innovative numerical technique for fluid flow 

simulations, has been incorporated in FSI studies in recent years, including Darrieus turbine 

analysis (Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E. 

M., 2021). Combined with a level set signed distance function for the representation of the 

deforming solid's triangular surface mesh, the LBM provides an accurate depiction of the 

complex deformation within the fluid domain. 

The modelling of the turbine's complex motion employs the Newton-Euler 6DOF motion 

solver (Kane, T. R., & Levinson, D. A., 1985). Slender deformable components, like the 

turbine blades, are represented either as quasi 2D using the Euler-Bernoulli beam solver or 

fully 3D using the Timoshenko Beam solver (Euler, L., 1759; Timoshenko, S. P., 1921). 
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The crucial task of data exchange between processors for different solvers is proficiently 

managed by the Eulerian-Lagrangian coupler (Deiterding, 2011b). AMROC's space-filling 

curve facilitates efficient domain decomposition, allowing only the fluid processors 

containing parts of the solid boundary to partake in the communication of interface values 

(Deiterding, R., 2001). 

In conclusion, although simulating fluid-structure interactions, such as those in Darrieus 

wind turbines, poses significant computational challenges, recent advances including the 

use of LBM, level set methods, and efficient coupling routines have made it possible to 

produce more accurate and realistic FSI simulations. 

4.1. Application LBM-FSI analysis on Darieus-Wind turbine 

FSI in the context of wind turbine performance is a critical area of investigation, given the 

increasing emphasis on renewable energy sources. XFlow, with its capability to analyse FSI 

scenarios, offers an advanced simulation platform to study this interaction with heightened 

precision. 

XFlow employs the Lattice Boltzmann Method (LBM) solver, an avant-garde technique 

known for its computational efficiency and suitability for complex flow problems, 

especially in the realm of FSI. The LBM's mesoscopic approach makes it particularly adept 

at handling turbulent flow problems, which are inherent to wind turbine simulations. 

A salient feature of the LBM solver within XFlow is its ability to accurately simulate self-

rotated wind turbine performance. The self-rotation of the turbine is a result of the 

aerodynamic forces acting upon it, an interaction between the fluid (air) and the solid 

structure (turbine blades). This intricate phenomenon requires high-fidelity simulations to 

ensure that the turbine's rotational speed and subsequent energy generation are estimated 

with precision. The dynamic nature of these simulations, considering the constantly 

changing interaction between the wind and the rotating blades, underscores the need for a 

solver that can adapt in real-time. XFlow, with its adaptive LBM solver, fits this need 

perfectly. 
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Figure 4.1. Power coefficient comparison between Experimental and LBM-FSI (Lee et al 

2015) 

A testament to XFlow's robust FSI capabilities is the comparative study with experimental 

data, particularly from the Tip Speed Ratio (TSR) parameter. TSR is a pivotal metric in 

wind turbine analysis, indicating the efficiency of the turbine at varying wind speeds. 

Figure 4.1 demonstrates comparing XFlow's simulation outcomes with experimental TSR 

data, it's possible to validate the software's accuracy and reliability. This exercise further 

consolidates the software's position as a trustworthy tool for simulating wind turbine 

performance, especially in scenarios involving intricate fluid and solid interactions 
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Figure  4.2. Contours velocity of Daireus wind turbine by using LBM- Xflow. 

 

Figure  4.3. Angular velocity changes from self-starting position on Darieus wind turbine  

Figure 4.2 demonstrates the contours change in the aerodynamic force effecting and Figure 

4.3, the angular velocity of turbine is increasing from self-starting position. 
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5. CONTRIBUTIONS  

This doctoral research represents a significant advancement in the field of computational 

fluid dynamics (CFD) through the development and exploration of solution-adaptive, 

meshless computational methods rooted in the Lattice Boltzmann Method (LBM), 

specifically tailored for the precise simulation of complex flows around oscillating circular 

cylinders. By addressing the inherent limitations of traditional mesh-based CFD 

approaches, this study introduces innovative solutions that not only enhance computational 

efficiency but also ensure high accuracy across a diverse spectrum of engineering 

applications. The multifaceted contributions of this research are delineated as follows: 

5.1. Significance of Solution-Adaptive Meshless Methods 

 At the heart of this investigation lies the formulation of a novel solution-adaptive 

methodology, which capitalizes on the inherent strengths of the Lattice Boltzmann Method 

within a meshless CFD framework. This groundbreaking approach circumvents the 

necessity for predefined meshes, instead employing scattered or field nodes to delineate the 

problem domain, while dynamically adapting the computational mesh in response to 

evolving flow characteristics. Such adaptivity engenders a substantial reduction in 

computational costs while concurrently preserving high levels of accuracy, rendering it 

particularly well-suited for the analysis of intricate flow phenomena. 

5.2. Integration with Lattice Boltzmann Method 

This research represents a pioneering effort in the integration of the Lattice Boltzmann 

Method (LBM) with solution-adaptive meshless techniques, thereby establishing a robust 

framework for simulating fluid flow dynamics. This integration capitalizes on the unique 

strengths of both approaches to overcome the limitations of traditional methods and achieve 

more accurate and efficient simulations.  The mesoscopic nature of the LBM, rooted in 

microscopic modeling and kinetic theory, provides a solid foundation for representing fluid 

behavior at a fundamental level. By discretizing the fluid domain into discrete particles and 

simulating their interactions according to kinetic principles, LBM offers a simplified yet 
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profound representation of fluid dynamics. This approach ensures alignment between 

macroscopic outcomes and theoretical predictions, thereby enhancing the accuracy of 

simulations. Moreover, by integrating LBM with solution-adaptive meshless techniques, 

this research enables the accurate modeling of complex flows spanning multiple scales and 

phases. Meshless techniques, which eschew the need for predefined grids and instead rely 

on scattered nodes to define the computational domain, offer flexibility and adaptability in 

capturing flow dynamics. The combination of LBM's mesoscopic approach with solution-

adaptive meshless techniques allows for the seamless adaptation of the computational mesh 

based on flow characteristics, leading to enhanced computational efficiency without 

compromising accuracy. 

Overall, this integration of LBM with solution-adaptive meshless techniques represents a 

significant advancement in the simulation of fluid flow dynamics. By leveraging the 

strengths of both approaches, this research opens new avenues for accurately modeling 

complex flows encompassing multi-scale and multiphase phenomena, thereby contributing 

to the advancement of computational fluid dynamics and its applications across various 

fields of science and engineering. 

5.3. Enhanced Handling of Complex Geometries 

 Conventional computational fluid dynamics (CFD) methodologies frequently face hurdles 

when confronted with the task of effectively tackling complex geometries and boundary 

conditions. However, the research at hand accentuates the remarkable effectiveness of the 

proposed methodologies in seamlessly addressing intricate geometries and complex 

boundary conditions. This superiority is primarily ascribed to two key factors: the inherent 

flexibility of the lattice-based grid structure in the Lattice Boltzmann Method (LBM) and 

the dynamic adaptability intrinsic to the meshless framework. 

The lattice-based grid structure utilized in LBM exhibits notable flexibility, allowing for 

the representation of complex geometries with relative ease. Unlike traditional mesh-based 

methods, which often necessitate intricate mesh generation procedures to conform to 

irregular geometries, LBM inherently accommodates such complexities through its lattice 
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structure. This inherent flexibility minimizes the computational overhead associated with 

mesh generation while ensuring accurate representation of intricate geometries. 

Furthermore, the dynamic adaptability characteristic of the meshless framework employed 

in the proposed methodologies further enhances their efficacy in handling complex flow 

domains. By eschewing the reliance on predefined meshes and instead utilizing scattered or 

field nodes to define the problem domain, the meshless framework offers unparalleled 

versatility in adapting to evolving flow conditions. This adaptability allows for the seamless 

adjustment of the computational mesh based on flow characteristics, thereby enabling 

robust modeling of intricate flow domains without the constraints imposed by traditional 

mesh-based approaches. Collectively, these attributes empower the proposed 

methodologies to excel in addressing the challenges posed by complex geometries and 

boundary conditions. By leveraging the inherent flexibility of the lattice-based grid 

structure in LBM and the dynamic adaptability of the meshless framework, these 

methodologies facilitate accurate and efficient modeling of intricate flow domains, thereby 

advancing the frontier of computational fluid dynamics research. 

5.4. Application to Engineering Problems 

The findings of this research undergo rigorous validation against benchmark problems, a 

standard practice in the field of computational fluid dynamics (CFD), to ensure their 

accuracy and reliability. Subsequently, these validated findings are applied to investigate 

flow phenomena around circular cylinders, a topic of significant interest due to its 

relevance across various industrial applications. This application serves as a compelling 

demonstration of the efficacy of the proposed method in capturing critical flow phenomena 

inherent in such scenarios. One of the key flow phenomena addressed in this context is 

separation, where the flow detaches from the surface of the cylinder due to adverse pressure 

gradients. Properly capturing separation phenomena is crucial for accurately predicting 

aerodynamic forces and understanding the overall flow behavior around the cylinder. 

Additionally, the method is evaluated for its ability to capture vortex shedding, a 

phenomenon characterized by the formation of alternating vortices in the wake region of 



62 

 

the cylinder. Vortex shedding plays a vital role in determining the aerodynamic forces 

acting on the cylinder and is essential for various engineering applications such as 

structural design and energy extraction from fluid flows. 

Furthermore, the transition to turbulence is another critical aspect examined in this study. 

As the flow around the cylinder undergoes transition from laminar to turbulent regimes, 

there are significant changes in flow characteristics, including increased drag and 

fluctuating forces. Accurately predicting this transition is essential for understanding the 

overall flow dynamics and its implications for engineering design. 

By successfully capturing these pivotal flow phenomena—separation, vortex shedding, and 

transition to turbulence—the proposed method demonstrates its efficacy in providing 

accurate predictions of flow-induced forces around circular cylinders. This not only 

enhances our understanding of complex flow behaviors but also contributes to improving 

the design and performance of various industrial applications, ranging from aerospace to 

renewable energy. Thus, the findings of this research have far-reaching implications for 

advancing the field of fluid dynamics and its practical applications in engineering. 

5.5. Performance in Turbulent Flow Simulation 

The proposed methodologies showcased in this research exhibit exceptional proficiency in 

simulating turbulent flows, a cornerstone in the realm of CFD. This prowess stems from 

several key factors, including efficient parallelization strategies and the innate framework 

of the LBM, which is adept at seamlessly integrating complex physics into simulations. 

Efficient parallelization strategies play a pivotal role in enhancing the scalability and 

performance of turbulent flow simulations. By distributing computational tasks across 

multiple processors or computing nodes, parallelization significantly reduces simulation 

time and enables the handling of larger and more complex problem domains. This allows 

for the simulation of turbulent flows with higher fidelity and resolution, leading to more 

accurate predictions of flow behavior. Moreover, the inherent framework of LBM lends 

itself well to the incorporation of complex physics, including thermal effects and fluid-

structure interactions. LBM's mesoscopic approach, which models fluid dynamics at a 
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microscopic level, allows for the representation of intricate physical phenomena with 

relative simplicity. This facilitates the accurate simulation of turbulent flows in various 

scenarios, making it particularly advantageous for aerodynamic analyses and the 

examination of multiphase flows characterized by phase change phenomena. 

Additionally, enhancements to the AMROC code further bolster the efficiency of turbulent 

flow simulations. AMROC, a computational framework for solving partial differential 

equations, is optimized for the implementation of turbulence models such as the constant 

Smagorinsky model. These enhancements improve the computational robustness of the 

approach, ensuring reliable and accurate simulations of turbulent flows across a range of 

engineering applications.  In summary, the proposed methodologies leverage efficient 

parallelization strategies, harness the innate framework of LBM, and benefit from 

enhancements to the AMROC code to excel in simulating turbulent flows. This capability 

is invaluable for conducting aerodynamic analyses and comprehensively examining 

multiphase flows, thereby advancing our understanding of complex fluid dynamics 

phenomena and informing engineering design processes. 
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Figure 5.1. AMROC implements the AMR method in C++ and can be used directly in C++ 

or with Fortran functions called from C++ interface objects.( Deiterding ,2011) 

 

 

  



65 

 

6. CONTRIBUTION TO WIND ENERGY RESEARCH 

An exemplary application of the methodologies developed in this research is their 

utilization in a thorough investigation of the aerodynamic performance of Darrieus-type 

vertical axis wind turbines (VAWTs). This investigation encompasses the utilization of 

various turbulence models to analyze and evaluate the turbine's performance 

comprehensively. Notably, the research extends beyond mere validation of these turbulence 

models in terms of torque and power coefficients; it delves deeper to provide invaluable 

insights into the nuanced influence of turbulence models on the aerodynamic performance 

of VAWTs. The study rigorously assesses the predictive accuracy and reliability of 

different turbulence models employed in simulating the flow dynamics around Darrieus-

type VAWTs. By comparing the simulated results with experimental data, the research 

evaluates the capability of each turbulence model to accurately predict important 

performance parameters such as torque and power coefficients. This validation process 

ensures that the chosen turbulence models can effectively capture the intricate flow 

phenomena present in VAWTs' operating conditions, thus enhancing confidence in the 

simulation results. Furthermore, the research goes beyond mere validation by examining 

how different turbulence models impact the aerodynamic performance of VAWTs in 

nuanced ways. By systematically comparing the results obtained with various turbulence 

models, the study identifies and elucidates the specific strengths and limitations of each 

model in capturing critical flow features and predicting turbine performance. These insights 

offer valuable guidance for researchers and engineers in selecting the most suitable 

turbulence model for simulating VAWTs under different operating conditions. 

Overall, this contribution significantly enriches the body of knowledge within the realm of 

wind energy research by providing comprehensive insights into the aerodynamic 

performance of Darrieus-type VAWTs. The thorough investigation of turbulence models 

and their impact on turbine performance not only advances our understanding of VAWT 

aerodynamics but also informs the development of more accurate and reliable simulation 

tools for optimizing wind turbine design and operation 
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7. ADVANCING SIMULATION TECHNIQUES 

Through the utilization of cutting-edge simulation techniques, this doctoral research has 

made significant strides in advancing our understanding of complex flow dynamics. By 

employing solution-adaptive methods with dynamic mesh adaptation, the study has been 

able to finely tune computational meshes in response to evolving flow conditions, resulting 

in more accurate and efficient simulations. Furthermore, rigorous comparative analyses 

against experimental data and alternative numerical models have provided invaluable 

insights into the behavior of complex flows, shedding light on phenomena that were 

previously poorly understood. The integration of these advanced simulation techniques has 

not only propelled the frontier of simulation methodologies but has also laid the 

groundwork for future innovations in fluid dynamics research. By delving deep into the 

intricacies of flow dynamics and associated phenomena, this research has expanded our 

knowledge base and paved the way for the development of more sophisticated simulation 

tools and analytical approaches.  

In summary, this doctoral thesis represents a significant leap forward in the simulation of 

complex flows. Its comprehensive, efficient, and rigorously accurate approach transcends 

conventional CFD methodologies, offering new avenues for analyzing fluid dynamics. The 

manifold contributions of this research have the potential to catalyze a paradigm shift in the 

way engineers and scientists approach the analysis of fluid dynamics, with far-reaching 

implications across diverse fields of study and numerous industrial applications. 

Furthermore, it is noteworthy that the successful completion of the AEROFSI project, 

funded by the Ministry of Science, Industry, and Technology, underscores the practical 

relevance and real-world impact of this research endeavor. This collaboration highlights the 

importance of academic-industry partnerships in driving innovation and advancing 

scientific knowledge for the benefit of society as a whole. 
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8. CONCLUSIONS 

In this work, Darieus-type 500 W straight-bladed Vertical axis wind turbine (VAWT) was 

investigated with using a XFlow commercial software, using a meshingless Lattice 

Boltzman method, for different turbulence models in fine and coarse lattices. 

In order to assess the validity of the proposed numerical modelling, offering the 

meshingless lattice Boltzmann method, which users can avoid the remeshing process for 

CFD simulation enables to investigate the aerodynamic performance of wind turbine with 

less amount of lattices, save the time and computational costs. 

Firstly, the influence of different turbulence modelling approaches on solution time was 

investigated depending on lattice sizes, it was appeared that RANS model can give faster 

solution than LES approaches even when number of lattices is increased and the increase of 

number of lattices is not changing the solution time proportionally.  

Secondly, experimental data of torque coefficient obtained from (Lee Y., Lim H 2015) 

were compared with different turbulence models in fine and coarse lattices. LES models, 

WALE and Smagorinsky demonstrated the best agreement with experimental data. 

Especially, Smagorinsky model can be useful when less computational cost is required and 

WALE is a suitable turbulence model that is best agreement with experimental data in order 

to capture the maximum torque and power coefficient as users are analysing the VAWT at 

the fine lattices. 

The effect of turbulence models is achieved by the velocity and turbulence intensity 

contours at different TSR values. RANS and LES model are giving an observable wake 

structure behind the rotating blades, especially at maximum torque coefficient. However, 

LES model is useful when compared to result with experimental in fine lattices.  

Result is also given by the investigation of vorticity at maximum power coefficient at 

varying azimuthal angle. LES models are exhibiting considerably difference the wake 

predictions when compared with RANS. LES-WALE model has more intense the wake 
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structures, it is reasonable effect of LES model constant, and its operator based on formula 

Including rotation tensor. 

In addition, a comprehensive sensitivity analysis has been conducted to further investigate 

the behaviour of VAWTs. Surprisingly, the study reveals that capturing the flow 

phenomenon does not require an excessively fine grid, despite the significant flow 

separation observed. The simulation results are compared with both numerical and 

experimental data, and although some discrepancies exist, they are relatively minor when 

using fine lattices. 

Moreover, the study highlights an interesting finding: the power performance of the VAWT 

increases as the TSR rises, particularly at low TSRs. However, at high TSRs, the 

interaction between vortices and blades becomes more prominent and significantly 

influences the blade's performance. This work was supported by Scientific Research 

Projects Commission (BAPKO) of Marmara University, under the grant number FEN-C-

DRP-130515-0179.  
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