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ÖZET 

 
SINIR KATLI NEUTRAL TİP GECİKMELİ DİFERANSİYEL 

PROBLEMLERİN NÜMERİK ÇÖZÜMLERİ 
 

EKİNCİ, Yılmaz 
Doktora Tezi, Matematik Anabilim Dalı 

Danışman: Prof. Dr.Musa ÇAKIR 
Aralık 2023, 101 sayfa 

 
Bu çalışmada, lineer ve lineer olmayan singüler pertürbe özellikli birinci 

mertebeden neutral tip gecikmeli diferansiyel denklemler için sonlu farklar metodu 
kullanılarak nümerik çözümler ele alınmıştır. Ele alınan problemler için hata teriminin 
incelemelerinde kullanılacak asimptotik değerlendirmeler yapılmıştır. Kalan terimleri 
integral biçiminde olan integral özdeşlikleri ile lineer problem için düzgün, Shishkin ve 
Bakhvalov şebekelerinde ve lineer olmayan problem için de Shishkin ve Bakhvalov 
şebekelerinde uygun fark şemaları kurulmuştur. Fark şemalarının pertürbasyon 
parametresine göre ayrık maksimum normda düzgün yakınsaklıkları ve kararlılıkları 
incelenmiş, ele alınan problemler örnekler üzerinde test edilerek grafik çizimleri 
yapılmıştır. 

 
Anahtar kelimeler: Düzgün yakınsaklık, Neutral tip gecikmeli diferansiyel 

denklem, Singüler pertürbe, Sonlu fark metodu 
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ABSTRACT 

 
NUMERICAL SOLUTIONS OF BOUNDARY LAYERED NEUTRAL TYPE 

DELAYED DIFFERENTIAL PROBLEMS 
 

EKİNCİ, Yılmaz 
Ph.D. Thesis, Department of Mathematics 

Supervisor: Prof. Dr. Musa ÇAKIR 
December 2023, 101 pages 

 
In this study, numerical solutions are handled by using finite different methods 

for linear and non-linear first order neutral type delay differential equations with 
singular perturbation properties. Asymptotic evaluations are made to be used in the 
analysis of the error term for the problems considered. Appropriate difference schemes, 
consisting of integral identities where the remainder terms are in integral form, have 
been established on the uniform, Shishkin and Bakhvalov meshes for the linear 
problem; and on Shishkin and Bakhvalov meshes for the non-linear problem. The 
uniform convergence and stability of the difference schemes at discrete maximum norm 
according to the perturbation parameter are discussed, the problems discussed are tested 
on examples and graphic drawings are presented. 

 
 
Keywords: Finite difference method, Neutral type delay differential equation, 

Singular perturbation, Uniform convergence
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1. GİRİŞ 
 

En yüksek mertebeden türev terimi 𝑡’ye, diğer terimleri 𝑡 ve 𝑡’den önceki anlara 

bağlı olan diferansiyel denklemlere gecikmeli (delay) diferansiyel denklemler (DDEs) 

denir. En yüksek mertebeden türev teriminde de gecikme varsa bu tip diferansiyel 

denklemlere de neutral tip gecikmeli diferansiyel denklemler (NDDEs) denir. Gecikmeli 

ve neutral tip gecikmeli diferansiyel denklemlerle ilgili çalışmalar 1960’lı yıllara 

dayanmaktadır ve günümüze kadar da bu konularla ilgili varlık-teklik, kararlılık ve 

çözümleri üzerine çok sayıda çalışma yürütülmektedir (Bellman ve Cooke, 1963; 

El’sgolts, 1973; Hale, 1977; Jackiewicz, 1987; Kuang ve Feldstein, 1991; Kuang, 1993; 

Bellen ve Zennaro, 2003; Balachandran vd., 2009; Bellen vd., 2009; Cakir vd., 2022). 

Biyoloji, tıp, kimya, fizik, mühendislik, ekonomi vb. alanlardaki hem doğal hem 

de insan yapımı süreçlerin çoğu zaman gecikmeleri içermektedir. Doğadaki basit bir 

örnek yeniden ağaçlandırmadır. Kesilen bir ormanın yeniden ağaçlandırılmasının 

ardından herhangi bir olgunluğa ulaşması uzun bir süre alacaktır. Dolayısıyla orman 

hasadı ve yenilenmesine ilişkin herhangi bir matematiksel modelin zaman 

gecikmelerine sahip olması gerekmektedir. Başka bir örnek, hayvanların daha sonraki 

faaliyet ve sorumluluklarını gerçekleştirmeden önce yiyeceklerini sindirmek için zaman 

ayırmaları gerekmektedir. Yani gelecek sistemin durumu geçmişteki bazı değişkenlere 

bağlı olduğundan, daha gerçekçi bir model geçmişin bazı kısımlarını içermelidir. 

Geçmiş durumları içeren model problemler DDEs ve NDDEs olarak adlandırılır 

(Bellman ve Cooke, 1963; Kuang, 1993). 

Diğer yandan singüler pertürbe olmuş problemlerle ilgili çalışmalar 20. yüzyılın 

başlarında başlamıştır. Bu dönemde araştırmalar çoğunlukla asimptotik açılımlar 

üzerine yapılmış ve 1960’lı yıllardan sonraki dönemlerde nümerik çözüm konusunda 

dikkat çekici sonuçlar elde edilmiştir (Nayfeh, 1973; O’Malley, 1974; Dolan vd., 1980; 

Kevorkian ve Cole, 1981; Kadalbajoo ve Reddy, 1989; O’Malley, 1991; Nayfeh, 1993; 

Farrell vd., 2000). Son dönemlerde bu araştırmalar daha çok adi ve kısmi diferansiyel 

denklemlerin çeşitli tipleri üzerine yoğunlaşarak devam etmektedir. Bu tür problemler 

matematiksel olarak en yüksek mertebeden türevlerinin katsayılarının pozitif küçük bir 

parametre olduğu problemler olarak bilinmektedir. Böyle problemlerin çözümleri, 

pertürbasyon terimi 𝜀 sıfıra yaklaştığında oluşan sınır katmanlarından dolayı problemin 



 
 

2 
 

çözümü aniden değişiyorken katmanların dışındaki bölgelerde çözüm davranışları 

düzenli ve yavaş değişir (Linβ, 1985; Roos vd., 1996; Shishkin ve Shishkina, 2009). 

Singüler pertürbe neutral tip gecikmeli diferansiyel denklemler (SPNDDEs) iki 

tip zorluk içermektedir. Birincisi problemin en yüksek mertebeden türev içeren terimin 

büyük bir gecikme parametresine sahip olmasıdır. Gecikme parametresinin büyük 

olması Taylor açılımını kullanmayı imkânsız kılmaktadır. Dolayısıyla probleme uygun 

nümerik yöntem geliştirmek önemlidir. İkinci zorluk ise problemin singüler pertürbe 

özellikli olmasıdır. Bu, doğal olarak problemin sınır katına sahip olduğunu 

göstermektedir. Bu tarz problemlerde çözüm, ince geçiş katlarında hızlı, diğer yerlerde 

düzenli ve yavaş değişir. Bu da nümerik çözüm için ciddi sorunlara sebep olmaktadır. 

Dolayısıyla, klasik nümerik yöntemleri kararsızlıkları ya da ıraksak olmaları nedeniyle 

bu tarz problemlere uygulamak imkânsız olmaktadır. Bu sebepten dolayı 𝜀 ’na göre 

düzgün yakınsaklığı sağlayacak uygun nümerik metotların kurulması önem arz 

etmektedir. 

Bu çalışmada birinci mertebeden SPNDDEs ele alınacak, lineer ve lineer 

olmayan formlarının nümerik çözümleri yapılacaktır. Bu problemlerin yapısı ve 

sağlaması gereken şartlar aşağıda verilmektedir: 

İlk olarak birinci mertebeden lineer singüler pertürbe neutral tip gecikmeli 

diferansiyel denklemini ele alacağız. 

 

 𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]ᇱ + 𝑏(𝑡)𝑢(𝑡) + 𝑐(𝑡)𝑢(𝑡 − 𝑟) = 𝑓(𝑡),   𝑡 ∈ 𝐼, (1.1) 

 

 𝑢(𝑡) = 𝜑(𝑡),       𝑡 ∈ 𝐼₀       (1.2) 

 

burada 𝑢 ∈ 𝐶ଵ(𝐼)̅ , 𝑎(𝑡), 𝑏(𝑡) ≥ 𝛽 > 0, 𝑐(𝑡), 𝑓(𝑡)  ve 𝜑(𝑡) , 𝐼  ve 𝐼଴ ’da istenilen 

mertebeden sürekli türevlere sahip fonksiyonlardır. 

Daha sonra birinci mertebeden lineer olmayan singüler pertürbe neutral tip 

gecikmeli diferansiyel denklemini ele alacağız. 

 

 𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]ᇱ + 𝑓൫𝑡, 𝑢(𝑡), 𝑢(𝑡 − 𝑟)൯ = 0,    𝑡 ∈ 𝐼,  (1.3) 

 

 𝑢(𝑡) = 𝜑(𝑡),       𝑡 ∈ 𝐼₀       (1.4) 
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burada 𝑢 ∈ 𝐶ଵ(𝐼)̅, 𝑎(𝑡), 𝜑(𝑡) ve 𝑓൫𝑡, 𝑢(𝑡), 𝑣(𝑡)൯ sırasıyla 𝐼 ̅, 𝐼₀ ve 𝐼 ̅ × 𝑅ଶ’de yeterince 

düzgün fonksiyonlardır. Bunlara ek olarak 

 

   0 < 𝜇 ≤
డ௙

డ௨
≤ 𝑀ଵ,      (1.5) 

 

    ቚ
డ௙

డ௩
ቚ ≤ 𝑀ଶ      (1.6) 

 

şartları sağlansın. (1.1)-(1.2) ve (1.3)-(1.4) problemleri için 𝐼 = (0, 𝑇] =∪௣ୀଵ
௠ 𝐼௣ , 

𝐼௣ = ൛𝑡: 𝑟௣ିଵ < 𝑡 ≤ 𝑟௣ൟ, 1 ≤ 𝑝 ≤ 𝑚  ve 𝑟௦ = 𝑠𝑟 , 0 ≤ 𝑠 ≤ 𝑚  ve 𝐼଴ = [−𝑟, 0] , 𝐼 ̅ = [0, 𝑇] 

(sadelik için 𝑇/𝑟’yi tam sayı olarak kabul edeceğiz yani 𝑇 = 𝑚𝑟). 𝑟 gecikme sabitidir 

ve 0 < 𝜀 << 1 olacak şekilde küçük bir pozitif parametredir. 

 (1.1)-(1.2) ve (1.3)-(1.4) problemleri literatürde Hale tipi problemler olarak 

bilinmektedirler (Hale, 1977). Ayrıca bu problemlerimiz 𝑥 = 0’da başlangıç sınır katına 

ve iç bölgelerde de iç sınır katlarına sahiptirler. 

Neutral tip gecikmeli diferansiyel denklemlerin çözümlerinin sürdürülebilir 

olması için ekstradan bir şarta ihtiyaç duyulmaktadır. Fermuar şartı (Sewing condition) 

olarak adlandırılan bu şart aşağıda verildiği gibidir: 

 

 𝑥ᇱ(𝑡) = 𝑓൫𝑡, 𝑥(𝑡), 𝑥(𝑡 − 𝑟), 𝑥ᇱ(𝑡 − 𝑟)൯,   𝑡଴ ≤ 𝑡 < ∞,   𝑟 > 0  (1.7) 

 

ve başlangıç fonksiyonu 𝜑 ∈ 𝐶ଵ[𝑡଴ − 𝑟, 𝑡଴]  olarak verilen neutral tip gecikmeli 

diferansiyel problem için fermuar şartı (sewing condition), 

 

  𝜑ᇱ(𝑡଴
ି) = 𝐹(𝑡଴, 𝜑(𝑡଴), 𝜑′(𝑡଴))     (1.8) 

 

olarak belirlenmektedir (Kolmanovskii ve Myshkis, 1992). Böylece (1.8) şartıyla 

birlikte (1.7) probleminin çözümün sürdürülebilir olduğu söylenir. Bu şart (1.1) ve (1.3) 

problemlerine uyarlandığında sırasıyla, 

 

𝜀[𝜑ᇱ(0ି) + 𝑎ᇱ(0)𝜑(−𝑟) + 𝑎(0)𝜑ᇱ(−𝑟)] + 𝑏(0)𝜑(0) + 𝑐(0)𝜑(−𝑟) = 𝑓(0), (1.9) 
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𝜀[𝜑ᇱ(0ି) + 𝑎ᇱ(0)𝜑(−𝑟) + 𝑎(0)𝜑ᇱ(−𝑟)] + 𝑓൫0, 𝜑(0), 𝜑(−𝑟)൯ = 0  (1.10) 

 

ifadeleri elde edilir. Diğer yandan bu şarta denk olan 

 

 𝑢(𝑡) =  𝜑(𝑡) ,   − 𝑟 ≤ 𝑡 ≤ 0 ve 𝑢ᇱ(𝑡) =  𝜑ᇱ(𝑡), −𝑟 ≤ 𝑡 ≤ 0  (1.11) 

 

şartını kullanmakta olan yazarlarda bulunmaktadır (Baker ve Parmuzın, 2008; Enright 

ve Hayashi, 1998; Baker ve Paul, 2006). 

(1.1)-(1.2) ve (1.3)-(1.4) problemlerinde verilen şartlar ve sırasıyla (1.9), (1.10) 

fermuar şartları (ya da (1.11) şartı) dikkate alınırsa (1.1)-(1.2) ve (1.3)-(1.4) 

problemlerin varlık-tekliği garanti altına alınmış olur. 

Klasik fark şemalarının düzgün şebekede, kararsızlıkları ve 𝜀 ’a göre düzgün 

yakınsak olmamalarını gösteren aşağıdaki örneği inceleyelim. 

 

Örnek 1.1 Aşağıda verilen birinci mertebeden adi diferansiyel problemini ele alalım. 

 

 𝜀𝑢ᇱ(𝑥) + 𝑢(𝑥) = 0,   0 < 𝑥 ≤ 1,   𝑢(0) = 1.   (1.12) 

 

(1.12) probleminin kesin çözümü, 

 

   𝑢(𝑥) = 𝑒ି
ೣ

ഄ        (1.13) 

 

olur. Ayrıca (1.12) problemi için açık Euler şemasını yazalım: 

 

  𝑙𝑦௜ = 𝜀𝑦௫,௜ + 𝑦௜ = 0,   𝑖 = 0, 1, 2, … , 𝑁,   𝑦଴ = 1.   (1.14) 

 

Burada 

 

𝑦௫,௜ = (𝑦௜ାଵ − 𝑦௜) ℎ⁄  

 

ileri fark türevi ve ℎ şebeke adımıdır. (1.14)’ten 
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𝑦௜ = ൬1 −
ℎ

𝜀
൰

௜

 

 

bulunur. 𝑦௜ ve (1.3) beraber dikkate alınırsa, 

 

lim
௛→଴

|𝑦௜ − 𝑢(𝑥௜)| = ቤ൬1 −
ℎ

𝜀
൰

௜

− 𝑒ି௜
೓

ഄ ቤ 

 

ifadesi elde edilir. Burada ℎ  ve 𝜀  değerlerinin oranından dolayı kararsız bir yapı 

oluşmaktadır. Dolayısıyla 𝜀 ’a göre düzgün yakınsaklık yoktur denir (Amirali ve 

Amirali, 2018). 

Singüler pertürbe olmuş problemlerin davranışını örneklemek amacıyla (1.12) 

probleminin çözümü olan (1.3) denkleminin grafiği, değişen 𝜀 değerlerine göre aşağıda 

Şekil 1.1 ve Şekil 1.2 ile verilmiştir. 

 

 

Şekil 1.1 (1.12) probleminin çözümünün 𝜀 = 1, 2ିଵ, 2ିଶ değerlerine göre değişimi 
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Şekil 1.2 (1.12) probleminin çözümünün 𝜀 = 2ିଷ, 2ିସ, 2ିହ değerlerine göre değişimi 

 
Şekil 1.1 ve Şekil 1.2’de görüldüğü gibi küçülen 𝜀 değerleri için grafik sınır katının 

olduğu 𝑥 = 0 noktasına daha fazla yaslanmaktadır. Bu tip davranış singüler pertürbe 

olmuş diferansiyel denklemlere has bir özelliktir ve başlangıç veya sınır katının 

varlığının belirtisidir. (1.12) problemi 𝑥 = 0 noktasında bir başlangıç katına sahiptir ve 

𝜀 küçüldükçe grafik eğrisi koordinat eksenlerine daha fazla yaslanmaktadır. 

Singüler pertürbe gecikmeli diferansiyel denklemlerle ilgi literatürde çok sayıda 

çalışma mevcuttur fakat singüler pertürbe neutral tip gecikmeli diferansiyel 

denklemlerle ilgi pek bir çalışmaya rastlamadık. Sadece küçük gecikme durumlarında 

çalışmalar mevcut ve bunların çözümü için Taylor açılımı yardımıyla bazı nümerik 

çalışmalar sunulmuştur (Kadalbajoo ve Sharma, 2004; Reddy ve ark., 2012). Küçük 

gecikmeler için Taylor açılımını kullanmak mümkün iken gecikmenin büyük olması 

durumda bu yaklaşımı kullanmak mümkün değildir (ihmal edilemeyecek kadar kayıp 

oluşmaktadır). SPNDDEs için literatürde büyük gecikme ile ilgili herhangi bir 

çalışmaya rastlanmamakla birlikte 3. bölümde verilen “Kayıpsız İletim Hattı Modeli” 

bu tezi hazırlamamızdaki temel motivasyon kaynağımızı oluşturmaktadır. 
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2. KAYNAK BİLDİRİŞLERİ 
 

DDE’ler tıp, biyoloji, fizik, kimya, mühendislik, ekonomi ve özellikle enzim 

kinetiği, enfeksiyon hastalıkları ve immünolojideki matematiksel modeller gibi bilimsel 

ve teknik alandaki uygulamalarda model denklemler olarak ortaya çıkmaktadır (Driver, 

1977; Gopalsamy, 1992; Hairer vd., 2008; Villasana ve Radunskaya, 2003; Foley ve 

Mackey, 2009; Liz ve Röst, 2013; Martina ve Veronika, 2015; Getto ve Waurick, 2016; 

Guo ve Ma, 2016; Rihan, 2021). 

NDDE’ler popülasyon ekolojisi, kontrol teorisi, salınım teorisi, elektrodinamik, 

biyomatematik ve tıp bilimi gibi alanlardaki uygulamalarda göze çarpmaktadır (Kuang, 

1993; Kolmanovskii ve Myshkis, 1999; Baker vd., 2008; Hadeler, 2008; Erneux, 2009; 

Rihan, 2010; Zeng vd., 2016).  

NDDE’lerin çözümünün davranışları, çözümünün varlık-tekliği ve çözümlerin 

kararlılık sonuçları üzerine çalışmalar yoğun olarak devam etmektedir (Bellman ve 

Cooke, 1963; El’sgolts, 1973; Hale, 1977; Jackiewicz, 1987; Kuang ve Feldstein, 1991; 

Kuang, 1993; Palaniswami, 1995; Bellen ve Zennaro, 2003; Zhang vd., 2005; Bellen ve 

Guglielmi, 2009; Liu vd., 2010; Halas ve Anguelova, 2013; Tunç ve Altun, 2017). 

NDDE’lerin kesin çözümünü bulmak çoğunlukla zor olmaktadır. Bu nedenle 

nümerik yaklaşımlara başvurmak gerekir. Son yıllarda NDDE'lerin sayısal çözümü için 

birçok yöntem önerilmiştir. Bu yöntemlerin çoğu, sayısal yöntemlerin sıradan 

diferansiyel denklemler için uyarlamalarıdır. Euler ve Runge-Kutta gibi geleneksel 

yöntemler kullanılarak NDDE’ler için kapsamlı yaklaşık çözümler sunulmuştur (Bellen 

ve Zennaro, 2003). Runge-Kutta metodu kullanılarak NDDE’ler kararlı sayısal 

çözümler verilmiştir (Wen vd., 2015; Wang, 2017). Tek adımlı 𝜃 (one-leg 𝜃) ve lineer 𝜃 

metodları ile yaklaşık çözümler önerilmiştir (Gan, 2009). 𝜃-yöntemi ile NDDE’lerin 

Hopf çatallanmasının (Hopf bifurcation) korunmasını ele alarak, türetilen sayısal ayrık 

sistemin dinamiklerini analiz etmektedirler (Su vd., 2013). H-yöntemleri kullanılarak 

neutral lojistik gecikmeli diferansiyel denklemin sayısal çözümünün salınımıyla 

ilgilenilmiştir (Wang, 2015). Sobolev normlarında block-pulse fonksiyonları ve 

Legendere polinomlarıyla sayısal çözümler sunulmuştur (Sedaghat vd., 2015). Klasik 

çözümlerin belirli bir zaman anından sonra NDDE’ler için mevcut olmaması söz konusu 

olacağı için Utkin (Filippov) tipi zayıf çözümler genişletiyor ve süreksizlikleri ortadan 

kaldıran yeni bir düzenleme öneriliyor (Guglielmi ve Hairer, 2016). Düzgün şebekede 
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üstel katsayılı baz fonksiyonları kullanılarak sonlu farklar metoduyla ayrık maksimum 

normda yaklaşık çözümler sunulmuştur (Ekinci, 2017; Cimen ve Ekinci, 2017). 

Genelleştirilmiş Lambert W fonksiyonunu kullanarak lineer NDDE'leri çözmek için 

yeni bir sayısal yöntem önerilmiştir (Jamilla vd., 2020). Lineer olmayan neutral 

stokastik gecikmeli integro-diferansiyel denklem için bölünmüş adımlı teta (split-step 

theta) yaklaşımıyla kesin çözüme güçlü bir yakınsaklık ispatlanmış ve sayısal çözümler 

önerilmiştir (Zhao vd., 2020). Düzgün şebeke üzerinde sonlu farklar metodu 

kullanılarak neutral tip gecikmeli Volterra integro-diferansiyel denklem için nümerik 

sonuçlar sunulmuştur (Amirali ve Acar, 2024). 

Singüler pertürbe problemler levha teorisi, yarı iletken cihaz modelleri, 

akışkanlar mekaniği, yüksek Reynolds sayılı akışkan akışında, kuantum mekaniği, 

reaksiyon-difüzyon süreçleri, elastikiyet gibi bilim ve mühendisliğin çeşitli 

alanlarındaki matematiksel problemlere uygulanmasında ortaya çıkmaktadır (Doolan 

vd., 1980; O’Malley, 1991; Nayfeh, 1993; Miller vd., 1996; Farrel vd., 2000). 

Singüler pertürbe gecikmeli problemlerle ilgili son yıllarda çok fazla nümerik 

çalışma mevcuttur. Nümerik olarak çalışılmış bazı singüler pertürbe özellikli gecikmeli 

problemlere aşağıdaki örnekler verilebilir. 

Amiraliyev ve Erdoğan (2007), aşağıdaki birinci mertebeden singüler pertürbe 

gecikmeli başlangıç değer problemini ele aldılar. 

 

൜
𝜀𝑢ᇱ(𝑡) + 𝑎(𝑡)𝑢(𝑡) + 𝑏(𝑡)𝑢(𝑡 − 𝑟) = 𝑓(𝑡),   𝑡 ∈ 𝐼,

𝑢(𝑡) = 𝜑(𝑡),   𝑡 ∈ 𝐼଴.
  (2.1) 

 

Bu problemin çözümü için sonlu farklar metodunu kullanarak her bir alt aralık üzerinde 

parçalı düzgün şebekede fark şemasının pertürbasyon parametresine göre düzgün 

yakınsaklığını incelediler. 

Geng ve Qian (2014), yukarıdaki problemi ele aldılar ve problemin çözümü için 

parçalı doğurgan çekirdekli metodu (piecewise reproducing kernel method) kullanarak 

sınır katlarındaki bozulmayı iyileştirecek sonuçlar elde ettiler. 

Amiraliyeva ve Amiraliyev (2009), aşağıdaki birinci mertebeden singüler 

pertürbe parametrize gecikmeli sınır değer problemini ele aldılar: 
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൜
𝜀𝑢ᇱ(𝑡) + 𝑓(𝑡, 𝑢(𝑡), 𝑢(𝑡 − 𝑟), λ) = 0, 𝑡 ∈ 𝐼 = (0, 𝑇], 𝑇 > 0,

𝑢(𝑡) = 𝜑(𝑡), 𝑡 ∈ 𝐼଴, 𝑢(𝑇) = 𝐵.
  (2.2) 

 

Sonlu farklar metodunu kullanarak parçalı düzgün şebeke üzerinde, fark şemasının 

pertürbasyon parametresine göre düzgün yakınsaklığını incelediler. 

Liu ve Chen (2014), aşağıdaki küçük gecikmeli ikinci mertebeden singüler 

pertürbe sınır değer problemini ele aldılar: 

 

൜
−𝜀𝑢ఌ

ᇱᇱ(𝑥) − 𝑎(𝑥)𝑢ఌ
ᇱ (𝑥 − 𝛿) + 𝑏(𝑥)𝑢ఌ(𝑥) = 𝑓(𝑥),

𝑢ఌ(𝑥) = 𝜑(𝑥) ,   − 𝛿 ≤ 𝑥 ≤ 0,   𝑢ఌ(1) = 𝛾.
  (2.3) 

 

Gecikme içeren terim, Taylor açılımı kullanılarak gecikme teriminden kurtararak 

problemi gecikme terimi içermeyen bir singüler pertürbe probleme dönüştürdüler. Daha 

sonra monitör fonksiyonuyla uygun şebeke üzerinde nümerik çalışmalar sundular. 

Amiraliyev ve Cimen (2010), aşağıdaki ikinci mertebeden singüler pertürbe 

konveksiyon difüzyon gecikmeli sınır değer problemini ele aldılar: 

 

൜
𝜀𝑢′′(𝑥) + 𝑎(𝑥)𝑢ᇱ(𝑥) + 𝑏(𝑥)𝑢(𝑥 − 𝑟) = 𝑓(𝑥), 𝑥 ∈ 𝛺,

𝑢(𝑥) = 𝜑(𝑥),   𝑥 ∈ 𝛺଴;   𝑢(𝑙) = 𝐵.
  (2.4) 

 

Problemin çözümü için bir düzgün şebeke üzerinde üstel katsayılı fark şeması sundular 

ve pertürbasyon parametresinden bağımsız olarak ayrık maksimum normda birinci 

dereceden yakınsaklığı incelediler. 

Amiraliyev vd. (2019), aşağıdaki birinci mertebeden singüler pertürbe Volterra 

integro gecikmeli problemi ele aldılar: 

 

⎩
⎨

⎧
𝜀𝑢ᇱ + 𝑎(𝑡)𝑢 + න 𝐾(𝑡, 𝑠)𝑢(𝑠)𝑑𝑠

௧

௧ି௥

= 𝑓(𝑡),   𝑡 ∈ 𝐼,

𝑢(𝑡) = 𝜑(𝑡),   𝑡 ∈ 𝐼଴.

  (2.5) 

 

Bu problemi çözmek için düzgün şebekede, kalan terimi integral formunda olan üstel 

baz fonksiyonlarını ve kuadratür formülleri içeren integral özellikli yöntemi kullandılar 

ve pertürbasyon parametresine göre düzgün yakınsaklığı incelediler. 
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Podila ve Kumar (2019), aşağıdaki ikinci mertebeden singüler pertürbe 

gecikmeli sınır değer problemini ele aldılar: 

 

൜
−𝜀𝑦ᇱᇱ(𝑥) + 𝑎(𝑥)𝑦ᇱ(𝑥) + 𝑏(𝑥)𝑦(𝑥 − 1) = 𝑓(𝑥), 𝑥 ∈ 𝛺,

𝑦(𝑥) = 𝜑(𝑥), 𝑥 ∈ 𝛺଴;   𝑦(2) = β.
  (2.6) 

 

Bu problem için düzgün şebeke üzerinde serbest salınımlı çözüm verdiler. Düzgün 

şebeke üzerinde geleneksel şemalardan daha kesin bir şema önerdiler ve bu şemanın 

pertürbasyon parametresine göre düzgün yakınsadığını da gösterdiler. 

Cimen ve Cakir (2018), aşağıdaki nonlokal şarta sahip singüler pertürbe 

gecikmeli problemi ele aldılar: 

 

൜
𝜀𝑢ᇱᇱ(𝑥) + 𝑎(𝑥)𝑢ᇱ(𝑥) + 𝑏(𝑥)𝑢(𝑥) + 𝑐(𝑥)𝑢(𝑥 − 𝑟) = 𝑓(𝑥),   𝑥 ∈ 𝛺,

𝑢(𝑥) = 𝜑(𝑥),   𝑥 ∈ 𝛺଴;    𝛾𝑢(𝑙ଵ) + 𝑢(𝑙) = A,   𝑙ଵ ∈ 𝛺.
  (2.7) 

 

Bu problemin çözümü için sonlu fark metodunun düzgün yakınsaklığını analiz ettiler. 

Bartoszewski ve Baranowska (2015), aşağıdaki ikinci mertebeden singüler 

perturbe gecikmeli diferansiyel denklemler için sınır değer problemini ele aldılar: 

 

൜
𝜀𝑦ᇱᇱ(𝑡) = 𝑓(𝑥, 𝑦(𝑥), 𝑦′(𝑥), y(α(x))), 𝑎 ≤ 𝑥 ≤ 𝑏,

𝑦(𝑥) = 𝜑(𝑥), 𝑥 ≤ 𝑎, 𝑦(𝑏) = ψ.
  (2.8) 

 

Bu problemi kübik splinelar kullanarak nümerik yaklaşım önerdiler. 
 

 

  



 

3. MODEL DENKLEMLER 
 

Bu bölümde bilimin çeşitli alanlarında ortaya çıkan neutral tip gecikmeli 

diferansiyel denklemle ifade edilen bazı model denklemler ele alınacaktır. Hücre 

çoğalması modeli (Baker vd., 1998), popülasyon dinamiği modeli (Kuang ve Felstein, 

1991), iki durumlu devre ağı modeli (Chukwu, 1992) ve insan vücut denge modeli 

(Domoshnitsky vd., 2021) çalışmaları model denklemlere örnek olarak verilebilir. 

Ayrıca bunların dışında üç farklı model denklem aşağıda detaylı şekilde incelenmiştir. 

 

3.1 Açık AK Ekonomi Modeli 

 
Aşağıdaki formül, ekonominin bir mal veya hizmet olan 𝑌 ’yi üretmek için 

fiziksel sermaye (makine, üretim bandı vs.) 𝐾 ’yi kullanarak sahip olduğu üretim 

sürecini temsil eder. 

 

    𝑌 = 𝐴𝐾      (3.1) 

 

burada, 𝐴 > 0 toplam faktör verimliliğini temsil eder ve birim fiziksel sermayenin birim 

ürün üretimine katkısını yansıtır. 

Aşağıda hanehalkının faydasını ifade eden Ramsey ekonomik modeli verilmiştir. 

Bu model hanehalklarının temel ekonomik davranışlarını ve kararlarını incelemek için 

kullanılır. 

 

    ∫ 𝑒ିఘ௧
಴(೟)భషഇషభ

భషഇ
ௗ௧∞

଴
.     (3.2) 

 

Hanehalkının tüketim malı olan 𝐶  ile ne kadar fayda sağladığını gösterir. 𝐶 , "𝑡" 

zamanında tüketilen mal veya hizmet miktarını temsil eder ve 𝜃 ≥ 0, 𝜌 ≥ 0, faydanın 

zamanla nasıl azaldığını ifade eden bir katsayıdır (iskonto oranlarıdır).  

Aşağıdaki formülde de hanehalkının bütçe kısıtını ifade eder. Bu bütçe kısıtı, 

hanehalkının tüketim kararlarını etkiler. 

 

  𝐾 ′(𝑡) − 𝐷′(𝑡) = 𝐴𝐾(𝑡) − 𝛿𝐾(𝑡) − 𝑟𝐷(𝑡) − 𝐶(𝑡).   (3.3) 
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Burada 

𝐾 ′(𝑡): Mevcut dönemdeki toplam varlık miktarını, 

𝐷′(𝑡): Net yabancı borcu, 

𝐶(𝑡): Hanehalkının mevcut dönemdeki tüketimi, 

𝐴𝐾(𝑡) − 𝛿𝐾(𝑡): Gelecek dönemdeki yatırım 

𝑟𝐷(𝑡): Borç geri ödemesini temsil etmektedir. 

Burada hanehalkı, bütçe kısıtı içinde, mevcut ve gelecek dönemlerdeki tüketim, yatırım 

ve borç geri ödemesi arasında bir denge kurmaya çalışır. (3.3)’te λ ≥ 0 ve τ ≥ 0 olacak 

şekilde 

 

𝐷(𝑡) = λK(t − τ) 

 

dönüşümü yapılırsa aşağıdaki gibi (3.4) elde edilmiş olur. 

 

  𝐾 ′(𝑡) = λK′(t − τ) + (A − 𝛿)𝐾(𝑡) − 𝑟λK(t − τ) − 𝐶(𝑡)  (3.4) 

 

(3.4)’te Ramsey hanehalklarının borç alma konusunda belirli kısıtlamalar olduğunu ve 

gelecekteki yatırımlara taahhütte bulunmadığını ifade ediyor. Hanehalkları, geçmişte 

sahip oldukları rehin değerinin bir kısmına kadar borç alabilirler ancak gelecekteki 

yatırımları taahhüt etmek zorunda değillerdir. 

Tüketim 𝐶 ve tasarruf oranı 𝑠 arasındaki ilişkiyi ifade etmek için 

 

    𝐶 =  (1 − 𝑠)𝑌     (3.5) 

 

denklemi kullanılır. Burada 0 < 𝑠 < 1  tasarruf oranını ve 𝑌  toplam çıktıyı temsil 

etmektedir. (3.5) eşitliği (3.4)’te dikkate alınırsa 

 

  𝐾 ′(𝑡) = λK′(t − τ) + ε𝐾(𝑡) − 𝑟λK(t − τ)    (3.6) 

 

denklemi elde edilir. Burada ε = sA − 𝛿 dir. Sonuç olarak (3.6) denklemi neutral tipten 

gecikmeli bir diferansiyel denklemdir (Boucekkine ve Pintus, 2010). 
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3.2 Radyo Frekans Modeli 

 
Bu model denklem bir iletim hattı osilatöründe gecikmeye bağlı radyo 

frekanslarının deneysel gözlemini ifade etmektedir. Kullanılan değişkenler aşağıda 

verilmektedir. 

𝜓ோ: Sağa doğru hareket eden bir gerilim dalgasıdır. 

𝜓௅: Sola doğru hareket eden bir gerilim dalgasıdır. 

𝑉(𝑧, 𝑡): Voltaj (𝑧: konum, 𝑡: zaman) 

𝐼(𝑧, 𝑡): Akım (𝑧: konum, 𝑡: zaman) 

𝑅௖: Karakteristik impedans 

𝑅: Direnç 

𝐶: Kapasitans 

𝜌: Yansıma katsayısı 

𝑣଴: Dalga hızı 

Yansıma katsayısı denklemi, standart iletim hattı teorisine gore 

 

𝜌 =
−𝑅 − 𝑅௖

−𝑅 + 𝑅௖
 

 

ile verilir. Hat boyunca her noktadaki 𝑉(𝑧, 𝑡) ve 𝐼(𝑧, 𝑡) şu şekilde verilen “Telgrafçının 

denklemleri” olarak ifade edilir. 

 

𝑅௖

𝜕𝐼(𝑧, 𝑡)

𝜕𝑡
= −𝑣଴

𝜕𝑉(𝑧, 𝑡)

𝜕𝑧
 

 

𝜕𝑉(𝑧, 𝑡)

𝜕𝑡
= −𝑣଴𝑅௖

𝜕𝐼(𝑧, 𝑡)

𝜕𝑧
. 

 

Bu denklemlerin genel çözümü şu şekilde verilmektedir: 

 

   𝑉(𝑧, 𝑡) = 𝜓ோ ቀ𝑡 −
௭

௩బ
ቁ + 𝜓௅ ቀ𝑡 +

௭

௩బ
ቁ   (3.7) 
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   𝐼(𝑧, 𝑡) =
ଵ

ோ೎
ቄ𝜓ோ ቀ𝑡 −

௭

௩బ
ቁ − 𝜓௅ ቀ𝑡 +

௭

௩బ
ቁቅ.   (3.8) 

 

Burada 𝜓ோ ve 𝜓௅, sistemin başlangıç koşullarına bağlı ve zamanın keyfi fonksiyonlarını 

ifade eden, sırasıyla sağa ve sola doğru hareket eden birer gerilim dalgasıdırlar ve 

dahası 𝜓ோ ile 𝜓௅ arasında aşağıdaki ilişki mevcuttur. 

 

    𝜓ோ(𝑡) = 𝑔[𝜓௅(𝑡)]. 

 

Ohm yasasına göre 𝑧 = 𝑑 konumu için 

 

    𝑉(𝑑, 𝑡) = −𝑅𝐼(𝑑, 𝑡)     (3.9) 

 

ifadesi tanımlanabilir. Burada (3.7) ve (3.8), (3.9)’da dikkate alınırsa 

 

𝜓௅(𝑡) =
𝑅 + 𝑅௖

𝑅 − 𝑅௖
𝑔[𝜓௅(𝑡 − 𝜏)] 

 

eşitliği elde edilir ve 𝜏 = 2𝑑/𝑣଴ dır. Bu fark denklem modeli, fiziksel sistem üzerinde 

sağlıklı bilgiler sağlıyor olsa da fiziksel olarak gerçekçi olmayan anlık sonlu sıçramalara 

izin verdiği için tam olarak gerçekçi bir model sayılmaz. 𝑧 = 𝑑 için daha gerçekçi 

 

𝐶
𝑑𝑉(𝑑, 𝑡)

𝑑𝑡
= 𝐼(𝑑, 𝑡) +

𝑉(𝑑, 𝑡)

𝑅
 

 

sınır şartı dikkate alınırsa 

 

𝐶𝜓̇௅(𝑡) = − ൬
1

𝑅௖
−

1

𝑅
൰ 𝜓௅(𝑡) + ൬

1

𝑅௖
+

1

𝑅
൰ 𝑔[𝜓௅(𝑡 − 𝜏)] 

−𝐶𝑔′[𝜓௅(𝑡 − 𝜏)]𝜓̇௅(𝑡 − 𝜏) 

(3.11) 

 

model denklemi elde edilir ve (3.11) denklemi neutral diferansiyel denklem olarak 

bilinen bir tür fonksiyonel diferansiyel denklemdir (Blakely ve Corron, 2004). 
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3.3 Kayıpsız İletim Hattı 

 
Lineer olmayan bir devre ile sonlandırılan kayıpsız bir iletim hattındaki küçük 

genliğin salınımları, pertürbasyon teorisiyle incelenir. Bu sistemi tanımlayan 

denklemler, bir gecikmeli fark diferansiyel denklemine indirgenir (Brayton, 1967). 

 

 

Şekil 3.1 Kayıpsız iletim hattı düzeneği 

 
𝐸 elektromotor kuvvet, 𝑅 direnç, 𝐿 seri indüktans, 𝐶 birim hat başına paralel kapasitans, 

𝐶ଵ bir toplu paralel kapasitör kapasitansı olarak temsil etmektedir. Burada 

 

𝑠 = (𝐿𝐶)ିଵ ଶ⁄  ve 𝑧 = (𝐿 𝐶⁄ )ଵ ଶ⁄  

 

olsun. 

 

𝐶ଵ[𝑤̇(𝑡) + 𝑘𝑤̇(𝑡 − 𝜏)] = 𝑓(𝑤(𝑡), 𝑤(𝑡 − 𝜏))   (3.12) 

 

burada 𝜏 = 2 𝑠⁄ , 𝑘 = (𝑅 − 𝑧) (𝑅 + 𝑧)⁄  ve 

 

𝑓൫𝑤(𝑡), 𝑤(𝑡 − 𝜏)൯ =
2𝐸

𝑧 + 𝑅
−

1

𝑧
𝑤(𝑡) +

𝑘

𝑧
𝑤(𝑡 − 𝜏) − 𝑔൫𝑤(𝑡)൯ − 𝑘𝑔൫𝑤(𝑡 − 𝜏)൯. 

 

Ek olarak, farz edelim ki 𝑅 > 𝑧, böylece 0 < 𝑘 < 1 olur. 𝑢(𝑡) = 𝑤(𝜏𝑡) dönüşümünü 

yaparsak: 

 

𝑢(𝑡) = 𝑤(𝜏𝑡),    𝑢(𝑡 − 1) = 𝑤(𝜏𝑡 − 𝜏),     
𝑢̇(𝑡)

𝜏
= 𝑤̇(𝜏𝑡),       

𝑢̇(𝑡 − 1)

𝜏
= 𝑤̇(𝜏𝑡 − 𝜏) 
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olacaktır. Bu değerler (3.12)’de dikkate alınırsa 

 

𝜀[𝑢̇(𝑡) + 𝑘𝑢̇(𝑡 − 1)] = 𝑓(𝑢(𝑡), 𝑢(𝑡 − 1))   (3.13) 

 

denklemi elde edilir. Burada 𝜀 = 𝐶ଵ 𝜏⁄  olarak alınmaktadır. Pratikte kapasitans 𝐶ଵ 

küçüktür dolayısıyla 𝜀 da pozitif küçük bir değerdir. Dolayısıyla (3.13) denklemi bir 

singüler pertürbe diferansiyel denklemdir (Huang, 2005).  



 

4. TEMEL TANIMLAR VE ÖN BİLGİLER 
 

Bu bölümde düzgün ve düzgün olmayan şebekede fark şemasının kurulmasında 

ihtiyaç duyulan temel tanım, teorem, notasyon ve formüller verilmektedir. 

 

Tanım 4.1 Şebeke ve Şebeke Fonksiyonu 

 

a) 𝐼 ̅ aralığının sonlu sayıda noktadan oluşan parçalanışına bir şebeke denir. Bu 

şebekede tanımlanmış fonksiyona ise şebeke fonksiyonu denir. 

 

b) 𝐼 ̅üzerinde tanımlanan 

 

𝜔ேబ
= ൛𝑡௜: 0 = 𝑡଴ < 𝑡ଵ < ⋯ < 𝑡ேబ

= 𝑇ൟ 

 

ayrık noktalar kümesine 𝐼’̅da tanımlanan düzgün olmayan şebeke denir. 𝑡௜ noktalarına 

ise düğüm noktaları veya şebeke düğümleri denir. ℎ௜ = 𝑡௜ − 𝑡௜ିଵ şebeke adımıdır. 

 

c) Eğer düğümler eşit aralıklı iseler 

 

𝜔ேబ
= {𝑡௜: 𝑡௜ = 𝑖ℎ,   𝑖 = 0,1,2, … , 𝑁;    ℎ = 𝑇/𝑁} 

 

ifadesine 𝐼 ̅aralığındaki düzgün şebeke denir. ℎ sabitine şebeke adımı denir. 

 

d) Düzgün veya düzgün olmayan şebekede tanımlanmış 𝑔௜ = 𝑔(𝑡௜) fonksiyonuna 

𝑡௜ düğüm noktalarındaki şebeke fonksiyonu denir (Samarskii, 2001; Amirali ve Amirali, 

2018). 

 

Tanım 4.2 Maksimum Norm ve 𝑳𝟏 Normu 

 

‖𝑔‖ஶ,ூ̅ = max
଴ஸ௧ஸ்

|𝑔(𝑡)| 
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ifadesine 𝑔(𝑡) fonksiyonunun 𝐼 ̅aralığındaki maksimum normu denir (Samarskii, 2001; 

Amirali ve Amirali, 2018). 

 

‖𝑔‖ଵ,ூ̅ = න|𝑔(𝑥)|

்

଴

𝑑𝑥 

 

ifadesine 𝑔(𝑡) fonksiyonunun 𝐼  ̅aralığındaki 𝐿ଵ normu denir (Samarskii, 2001; Amirali 

ve Amirali, 2018). 

 

Tanım 4.3 Şebeke Normları 

 

‖𝑔‖ஶ,ఠ೓
= max

଴ஸ௜ஸே
|𝑔௜| 

 

ifadesine düzgün şebekede maksimum normun fark benzeri denir. 
 

‖𝑔‖ஶ,ఠಿ
= max

଴ஸ௜ஸே
|𝑔௜| 

 

ifadesi düzgün olmayan şebekede maksimum normun fark benzeridir (Samarskii, 2001; 
Amirali ve Amirali, 2018). 
 

‖𝑔‖ଵ,ఠ೓
= ℎ ෍|𝑔௜|

ேିଵ

௜ୀଵ

 

 

ifadesine düzgün şebekede 𝐿ଵ normunun fark benzeri denir. 

 

Tanım 4.4 Fark Türevleri 

 

𝐼 ̅aralığında 𝑔(𝑡) fonksiyonu için 

 

𝑔௧̅,௜ =
𝑔௜ − 𝑔௜ିଵ

ℎ
 

 

ifadesine düzgün şebekede birinci mertebeden geri fark türevi ve 
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𝑔௧̅,௜ =
𝑔௜ − 𝑔௜ିଵ

ℎ௜
 

 

ifadesi de düzgün olmayan şebekede birinci mertebeden geri fark türevi olarak bilinir. 

Burada ℎ௜ = 𝑡௜ − 𝑡௜ିଵ şebeke adımıdır (Samarskii, 2001; Amirali ve Amirali, 2018). 

 

Tanım 4.6 Kararlılık 

 

Lineer 

 

   𝐿𝑢 = 𝑓(𝑡),   𝑡 ∈ 𝐺      (4.1) 

 

denkleminin 

 

   𝑙𝑢 = 𝜇(𝑡),   𝑡 ∈ Г      (4.2) 

 

şartını (sınır şartı veya başlangıç şart olabilir.) sağlayan çözümünün bulunması istensin. 

Burada 𝑓(𝑡), 𝜇(𝑡)  belirli fonksiyonlar (veri fonksiyonları), 𝑙  belirli bir lineer 

diferansiyel operatördür. 𝐺̅ = 𝐺 ∪ Г bölgesinde herhangi bir 𝜔ഥ௛ = 𝜔௛ ∪ 𝑙௛ şebekesinin 

kurulduğunu varsayalım. Burada 𝜔௛ -iç şebeke, 𝑙௛ -sınır şebeke (şebeke sınır noktaları 

kümesi), ℎ  ise şebeke düğümlerinin yoğunluğunu ifade eden parametredir (şebeke 

adımı). (4.1)-(4.2) problemine karşılık 

 

   𝐿௛𝑦 = 𝜑௛,   𝑡 ∈ 𝜔௛,      (4.3) 

 

   𝑙௛𝑦 = χ௛,    𝑡 ∈ 𝑙௛      (4.4) 

 

fark problemi olsun. Burada, 𝐿௛ , 𝑙௛ − 𝜔ഥ௛’da tanımlanan fonksiyonlar kümesinde etkili 

olan fark operatörleri, 𝜑௛, χ௛ belli şebeke fonksiyonlarıdır. 

Kararlılık, fark problemleri veya genellikle yaklaşık algoritmalar için bunların 

pratik uygulanabilmesinin gerektirdiği önemli bir özelliktir. 
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(4.3)-(4.4) fark problemi, belli sınıflardan olan her bir 𝜑௛, χ௛  başlangıç veri 

fonksiyonları ve yeteri kadar küçük ℎ ≤ ℎ଴  için bir tek çözüme sahip olduğunu 

varsayalım. (4.3)-(4.4) probleminin başlangıç veri fonksiyonları 𝜑෤௛, χ෤௛ olan çözümünü 

𝑦෤ ile belirleyelim. 

ℎ’a bağlı olmayan 𝐶ଵ, 𝐶ଶ sabitleri varsa yeteri kadar küçük ℎ ≤ ℎ଴ için 

 

 ‖𝑦෤ − 𝑦‖ଵ ≤ 𝐶ଵ‖𝜑෤௛ − 𝜑௛‖ଶ + 𝐶ଶ‖χ෤௛ − χ௛‖ଷ   (4.5) 

 

eşitsizliği sağlanmış olsun, bu durumda (4.3)-(4.4) fark şeması sağ tarafa ve sınır (veya 

başlangıç) şartına göre kararlıdır denir. Burada ‖. ‖ଵ, ‖. ‖ଶ, ‖. ‖ଷ  herhangi şebeke 

normlarıdır. 

(4.3)-(4.4) problemi lineer olduğundan kararlılığı ifade eden (4.5) eşitsizliği 

 

‖𝑦‖ଵ ≤ 𝐶ଵ‖𝜑௛‖ଶ + 𝐶ଶ‖χ௛‖ଷ 

 

eşitsizliğine denktir. 

Böylece kararlılık, fark şemasının çözümünün başlangıç veri fonksiyonlarına sürekli 
bağlı olduğuna, hem de bu bağlılığın ℎ’a göre düzgün biçimli olduğunu ifade eder 
(Samarskii, 2001; Amirali ve Amirali, 2018). 
 
Tanım 4.7 Yakınsaklık 

 

 𝑢, (4.1)-(4.2) probleminin kesin çözümü ve herhangi bir şebekedeki bu probleme 

uygun fark probleminin çözümü 𝑦  olsun. 𝑧 = 𝑦 − 𝑢  farkı hata fonksiyonu olarak 

tanımlanmaktadır. 

 ℎ → 0 olduğunda ‖𝑧‖ଵ = ‖𝑦 − 𝑢‖ଵ → 0 ise (‖∙‖ଵ söz konusu şebekede herhangi 

bir norm), bu durumda 𝑦 fark probleminin çözümü 𝑢 probleminin çözümüne yakınsıyor 

denir. Ayrıca, yeteri kadar küçük ℎ sabitleri için 

 

‖𝑦 − 𝑢‖ଵ ≤ 𝐶ℎ௞,   𝑘 > 0 

 

ise (𝐶 , ℎ’a bağlı olmayan sabittir.) bu durumda yaklaşık çözüm kesin çözüme ℎ’ın 

𝑘’ıncı derecesiyle yakınsar veya yaklaşık çözüm 𝑂(ℎ௞) kesinliğine sahiptir denir. 
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Bu tanıma ilave olarak 𝐶 ve ℎ sabitleri, singüler pertürbe özellikli problemdeki 

pertürbasyon parametresi olan 𝜀’dan bağımsız iseler o zaman yaklaşık çözüm, kesin 

çözüme 𝜀’na göre düzgün yakınsak olur denir (Samarskii, 2001; Amirali ve Amirali, 

2018). 

 

Tanım 4.8 Maksimum Hata ve Yakınsaklık Oranı 

 

Kesin çözümü olmayan problem için çift katlı şebekede yaklaşık çözümlerden 

biri 𝑦ఌ,ே ve diğeri 𝑦෤ఌ,ଶே olsun. Bu durumda maksimum hata ve maksimum noktasal hata 

sırasıyla 

 

𝑒ఌ,ே = ‖𝑦ఌ,ே − 𝑦෤ఌ,ଶே‖ஶ, 

 

𝑒ே = max
ఠಿ

𝑒ఌ,ே 

 

olarak belirlenir.Burada 𝑦෤ఌ,ଶே  orijinal 𝑡௜ ∈ 𝜔ே  şebekesinin noktalarını ve 𝑡௜ାଵ ଶ⁄ =

(𝑡௜ + 𝑡௜ାଵ) 2⁄ , 𝑖 = 0,1, … , 𝑁 − 1  orta noktalarını içeren nümerik değerlerdir ve 𝑝ே 

düzgün yakınsaklık oranı 

 

𝑝ே = logଶ(𝑒ே/𝑒ଶே) 

 

biçiminde belirlenir (Farrell vd., 2000). 

 

Tanım 4.9 

 

 𝑓(𝑡), 𝐼’̅de tanımlı herhangi bir fonksiyon olsun. Bu durumda 𝐶௡(𝐼)̅ ifadesine 𝐼 ̅

aralığında 𝑡’ye göre 𝑛. mertebeden sürekli türevlere sahip fonksiyonlar kümesi denir 

(Samarskii, 2001; Amirali ve Amirali, 2018). 
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Tanım 4.10 

 

Düzgün şebekede fark şemasının kurulması ve incelenmesinde aşağıda belirtilen 

bazı kuadratür formülleri kullanılacaktır. Birinci özdeşlik 

 

න 𝑝(𝑥)𝑓(𝑥)𝑑𝑥

௕

௔

= ቎න 𝑝(𝑥)𝑑𝑥

௕

௔

቏ {𝜎𝑓(𝑏) + (1 − 𝜎)𝑓(𝑎)} 

+𝑓[𝑎, 𝑏] න൫𝑥 − 𝑥(ఙ)൯𝑝(𝑥)𝑑𝑥

௕

௔

+ 𝑅௡(𝑓) 

(4.6) 

 

şeklindedir. Burada 𝜎 -reel parametre, 𝑝(𝑥) ∈ 𝐶[𝑎, 𝑏]  ağırlık fonksiyonu, 𝑓(𝑥)  belirli 

fonksiyon ve 

 

𝑅௡(𝑓) = න 𝑑𝑥𝑝(𝑥)

௕

௔

න 𝑓(௡)

௕

௔

(℥)𝐾௡ିଵ(𝑥, ℥)𝑑℥,    𝑓 ∈ 𝐶௡,    𝑛 = 1, 2 

 

kalan terimdir ve diğer bazı ifadeler aşağıda verilmiştir. 

 

𝐾௦(𝑥, ℥) = 𝑇௦(𝑥 − ℥) − (𝑏 − 𝑎)ିଵ(𝑥 − 𝑎)(𝑏 − ℥)௦,   𝑠 = 0, 1, 

 

𝑥(ఙ) = 𝜎𝑏 + (1 − 𝜎)𝑎,    𝑓[𝑎, 𝑏] =
𝑓(𝑏) − 𝑓(𝑎)

𝑏 − 𝑎
, 

 

𝑇௦(𝜆) =
𝜆௦

𝑠!
,   𝜆 ≥ 0;   𝑇௦(𝜆) = 0,   𝜆 < 0. 

 

Bir diğer özdeşlik 

 

න 𝑝(𝑥)𝑓ᇱ(𝑥)𝑑𝑥 =

௕

௔

𝑓[𝑎, 𝑏] න 𝑝(𝑥)𝑑𝑥

௕

௔

+ 𝑅௡
∗ (𝑓) (4.7) 
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şeklindedir ve burada 𝑝 ∈ 𝐶ଵ[𝑎, 𝑏] ve kalan terim 𝑅௡
∗ (𝑓) aşağıda verilmiştir. 

 

𝑅௡
∗ (𝑓) = − න 𝑑𝑥𝑝ᇱ(𝑥) න 𝑓(௡)

௕

௔

(℥)𝐾௡ିଵ(𝑥, ℥)𝑑℥,    𝑓 ∈ 𝐶௡,    𝑛 = 1, 2.

௕

௔

 

 

(4.6) ve (4.7) formüllerinde aynı 𝐾௦(𝑥, ℥)  fonksiyonunun bulunduğunu belirtelim 

(Amirali ve Amirali, 2018). 

 

Tanım 4.11 Regüler ve Singüler Pertürbe Problem 

 

 𝑃ఌ  problemi 𝜀  küçük parametresine bağlı bir problem olsun. Bu problemin 𝑢ఌ 

çözümünün 𝐿(𝑢, 𝜀) = 0  denklemi ile belirlendiği kabul edilsin. Bu tür problemlere 

genelde pertürbe olmuş problem denir. 𝜀 = 0  durumundaki 𝑃଴  probleminin çözümü, 

başka bir deyişle 𝐿(𝑢଴, 0) = 0 bağıntısı ile tanımlanan problemin çözümü, 𝑢଴ olsun. 𝑃଴ 

problemine, 𝑃ఌ problemine uygun indirgenmiş problem denir. İndirgenmiş 𝑃଴ problemi 

verilmiş problemle aynı tipe ve mertebeye sahipse, ayrıca her iki problemin de bir tek 

çözümü varsa 𝑃ఌ problemine regüler pertürbe olmuş problem, aksi durumda ise singüler 

pertürbe olmuş problem denir (Amirali ve Amirali, 2018). 

 

Teorem 4.1 Ortalama Değer Teoremi 

 

 𝑢 = 𝑓(𝑥, 𝑦, 𝑧) fonksiyonu bir 𝐷 bölgesinde tanımlanmış bir fonksiyon olsun. Bu 

fonksiyonun 𝐷  bölgesinde 𝑓௫ , 𝑓௬, 𝑓௭  sürekli kısmi türevlerinin var olduğunu kabul 

edelim. Bu takdirde 𝐷  bölgesinde herhangi 𝑀଴(𝑥଴, 𝑦଴, 𝑧଴)  ve 𝑀ଵ(𝑥଴ + ∆𝑥, 𝑦଴ +

∆𝑦, 𝑧଴ + ∆𝑧) noktaları için öyle bir ∃ 0 < 𝜃 < 1 bulunur ki 

 

∆𝑓(𝑥଴, 𝑦଴, 𝑧଴) = 𝑓(𝑥଴ + ∆𝑥, 𝑦଴ + ∆𝑦, 𝑧଴ + ∆𝑧) − 𝑓(𝑥଴, 𝑦଴, 𝑧଴) 

 

= 𝑓௫(𝑥଴ + 𝜃∆𝑥, 𝑦଴ + 𝜃∆𝑦, 𝑧଴ + 𝜃∆𝑧)∆𝑥 

+𝑓௬(𝑥଴ + 𝜃∆𝑥, 𝑦଴ + 𝜃∆𝑦, 𝑧଴ + 𝜃∆𝑧)∆𝑦 

+𝑓௭(𝑥଴ + 𝜃∆𝑥, 𝑦଴ + 𝜃∆𝑦, 𝑧଴ + 𝜃∆𝑧)∆𝑧 
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olur. Buna ortalama değer formülü denir (Musayev vd., 2006). 

 

Teorem 4.2 Maksimum Prensibi 

 

Aşağıdaki fark problemini ele alalım. 

 

  𝑙ே𝑣௜ ≔ 𝜀𝑣௧̅,௜ + 𝑎௜𝑣௜ = 𝐹௜ ,   𝑖 = 0,1,2, … , 𝑁଴,    (4.8) 

 

  𝑣଴ = 𝐴.        (4.9) 

 

Burada |𝐹௜| ≤ 𝐹ത௜ , 𝑎 ≥ 𝛼 > 0  ve 𝐹ത௜  azalmayan fonksiyon olsun. Bu durumda (4.8)-

(4.9)’un çözümü, 

 

  |𝑣௜| ≤ |𝐴| + 𝛼ିଵ𝐹ത௜,    𝑖 = 0, 1, 2, … , 𝑁଴    (4.10) 

 

eşitsizliğini sağlar (Amiraliyev ve Yilmaz, 2014). 

 

İspat. Φ௜
± = ±𝑣௜ + |𝐴| + 𝛼ିଵ𝐹ത௜ bariyer fonksiyonunu göz önünde bulunduralım ve 𝐹ത௜ 

azalmayan fonksiyon olduğu için 𝐹ത௧̅,௜ = (𝐹ത௜ − 𝐹ത௜ିଵ)/𝜏 ≥ 0  olur. Dolayısıyla açık bir 

şekilde, 

 

𝑙ேΦ௜
± ≥ ±𝐹ത௜ + 𝑎௜𝛼ିଵ𝐹ത௜ ≥ 𝐹௜ + 𝐹ത௜ ≥ 0 

 

ve 

 

Φ଴
± = ±𝐴 + |𝐴| + 𝛼ିଵ𝐹ത଴ ≥ 0 

 

olduğu görülür. Böylece maksimum prensibine göre 

 

Φ଴
± ≥ 0 

 

olur. Dolayısıyla (4.10)’un ispatı tamamlanmış olur (Amiraliyev ve Yilmaz, 2014). 



 

5. LİNEER SİNGÜLER PERTÜRBE NEUTRAL TİP GECİKMELİ 
DİFERANSİYEL PROBLEM 

 
Bu bölümde (1.1)-(1.2) problemi için Lemma 5.1’de bazı ön değerlendirmeler 

yapılacaktır. Düzgün şebekede fark şeması kurulacak, düzgün şebekede Lemma 5.2’de 

kalan terim 𝑅௜’nin, Lemma 5.3’te hata fonksiyonu 𝑧௜ ’nin değerlendirmesi yapılacaktır 

ve daha sonra Teorem 5.1’de düzgün şebekede Lemma 5.2 ve Lemma 5.3’ün 

birleşiminden fark şemasının kararlılığı ve düzgün yakınsaklığı gösterilecektir. Daha 

sonra düzgün olmayan şebekede fark şeması kurulacak, düzgün olmayan şebekede 

Lemma 5.4’te hata fonksiyonu 𝑧௜ ’nin, Lemma 5.5’de Shishkin şebekede kalan terim 

𝑅௜ ’nin ve Lemma 5.6’da Bakhvalov şebekede kalan terim 𝑅௜ ’nin değerlendirmesi 

yapılacaktır. Teorem 5.2’de, Lemma 5.4 ve Lemma 5.5’in birleşiminden Shishkin 

şebekede ve Teorem 5.3’te, Lemma 5.4 ve Lemma 5.6’nın birleşiminden Bakhvalov 

şebekede fark şemasının kararlılığı ve düzgün yakınsaklığı gösterilecektir. En son bir 

örnek üzerinde nümerik sonuçlar incelenecek, grafik çizimleri yapılacak ve bölüm 

değerlendirmesi yapılacaktır. 

 

5.1 Bazı Ön Değerlendirmeler 

 
Bu kısımda nümerik metodumuzu sunmadan önce (1.1)-(1.2) probleminin 𝑢(𝑡) 

çözümün ve türevinin bazı özelliklerini vereceğiz. Uygun nümerik çözümün analizinde 

bu özelliklere ihtiyaç duyulacaktır. 

 

Lemma 5.1 𝑎, 𝑏, 𝑐, 𝑓 ∈ 𝐶ଵ൫𝐼൯;  𝜑 ∈ 𝐶ଵ(𝐼଴) olduğunu kabul edelim. O zaman (1.1)-(1.2) 

probleminin 𝑢 çözümü ve türevi için aşağıdaki değerlendirmeler doğrudur: 

 

‖𝑢‖ஶ,ூ೛
≤ 𝐶௣, 1 ≤ 𝑝 ≤ 𝑚,     (5.1) 

 

|𝑢′(𝑡)| ≤ 𝐶 ቊ1 +
൫௧ି௥೛షభ൯

೛షభ

ఌ೛
𝑒

൬
షഁ൫೟షೝ೛షభ൯

ഄ
൰
ቋ , 1 ≤ 𝑝 ≤ 𝑚. (5.2) 

 

Burada 

 



 
 

26 
 

𝐶ଵ = ൫1 + 2‖𝑎‖ஶ,ூభ
൯‖𝜑‖ஶ,ூబ

+ 𝛽ିଵ൛‖𝑓‖ஶ,ூభ
+ ൣ‖𝑐‖ஶ,ூభ

+ ‖𝑎‖ஶ,ூభ
‖𝑏‖ஶ,ூభ

൧‖𝜑‖ஶ,ூబ
ൟ, 

 

𝐶ଶ ≡ ൫1 + ‖𝑎‖ஶ,ூమ
൯𝐶ଵ + ‖𝑎‖ஶ,ூమ

‖𝜑‖ஶ,ூబ

+ 𝛽ିଵ൛‖𝑓‖ஶ,ூమ
+ ൣ‖𝑐‖ஶ,ூమ

+ ‖𝑎‖ஶ,ூమ
‖𝑏‖ஶ,ூమ

൧𝐶ଵൟ, 

 

𝐶ଷ ≡ ൫1 + ‖𝑎‖ஶ,ூయ
൯𝐶ଶ + ‖𝑎‖ஶ,ூయ

𝐶ଵ + 𝛽ିଵ൛‖𝑓‖ஶ,ூయ
+ ൣ‖𝑐‖ஶ,ூయ

+ ‖𝑎‖ஶ,ூయ
‖𝑏‖ஶ,ூయ

൧𝐶ଶൟ, 

 

𝐶௣ ≡ ቀ1 + ‖𝑎‖ஶ,ூ೛
ቁ 𝐶௣ିଵ + ‖𝑎‖ஶ,ூ೛

𝐶௣ିଶ

+ 𝛽ିଵ ቄ‖𝑓‖ஶ,ூ೛
+ ቂ‖𝑐‖ஶ,ூ೛

+ ‖𝑎‖ஶ,ூ೛
‖𝑏‖ஶ,ூ೛

ቃ 𝐶௣ିଵቅ. 

 

İspat. İlk önce (5.1)’in doğruluğunu göstereceğiz. Bazı düzenlemelerle birlikte (1.1) 

problemi 

 

𝜀𝑣ᇱ(𝑡) + 𝑏(𝑡)𝑣(𝑡) = 𝐹(𝑡)     (5.3) 

 

formunda yazılabilir. Burada, 

 

𝑣(𝑡) = 𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟), 

 

𝐹(𝑡) = 𝑓(𝑡) − [𝑐(𝑡) − 𝑎(𝑡)𝑏(𝑡)]𝑢(𝑡 − 𝑟) 

 

olur. (5.1) eşitsizliğini değerlendirmek için tümevarım yöntemini kullanıyoruz. (5.3)’ten 

 

𝑣(𝑡) = 𝑣൫𝑟௣ିଵ൯𝑒
ି

భ

ഄ
∫ ௕(௦)ௗ௦

೟
ೝ೛షభ +

1

𝜀
න 𝐹(𝜏)𝑒ି

భ

ഄ
∫ ௕(௦)ௗ௦

೟
ഓ 𝑑𝜏

௧

௥೛షభ

,   𝑡 ∈ 𝐼௣ (5.4) 

 

ifadesi yazılabilir. Daha açık yazmak için 𝑣(𝑡)  ve 𝐹(𝑡)  değerlerini (5.4)’te yerine 

yazarsak 
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𝑢(𝑡) = −𝑎(𝑡)𝑢(𝑡 − 𝑟) + ൣ𝑢൫𝑟௣ିଵ൯ + 𝑎൫𝑟௣ିଵ൯𝑢൫𝑟௣ିଵ − 𝑟൯൧𝑒
ି

భ

ഄ
∫ ௕(௦)ௗ௦

೟
ೝ೛షభ  

+
1

𝜀
න {𝑓(𝜏) − [𝑐(𝜏) − 𝑎(𝜏)𝑏(𝜏)]𝑢(𝜏 − 𝑟)}𝑒ି

భ

ഄ
∫ ௕(௦)ௗ௦

೟
ഓ 𝑑𝜏

௧

௥೛షభ

 

 

= −𝑎(𝑡)𝑢(𝑡 − 𝑟) + ൣ𝑢൫𝑟௣ିଵ൯ + 𝑎൫𝑟௣ିଵ൯𝑢൫𝑟௣ିଵ − 𝑟൯൧𝑒
షഁ൫೟షೝ೛షభ൯

ഄ

+
1

𝜀
න {𝑓(𝜏) − [𝑐(𝜏) − 𝑎(𝜏)𝑏(𝜏)]𝑢(𝜏 − 𝑟)}𝑒

షഁ(೟షഓ)

ഄ 𝑑𝜏

௧

௥೛షభ

 

(5.5) 

 

eşitliğini elde ediyoruz. Bundan sonraki adımlarda tümevarım yöntemiyle ispat 

aşamaları verilecektir. 𝑝 = 1 için (𝑡 ∈ 𝐼ଵ), (5.5)’ten 

 

|𝑢(𝑡)| ≤ |𝑎(𝑡)||𝑢(𝑡 − 𝑟)| + [|𝜑(0)| + |𝑎(0)||𝜑(−𝑟)|]𝑒
షഁ೟

ഄ  

+
1

𝜀
න{|𝑓(𝜏)| + [|𝑐(𝜏)| + |𝑎(𝜏)||𝑏(𝜏)|]|𝜑(𝜏 − 𝑟)|}

௧

଴

𝑒
షഁ(೟షഓ)

ഄ 𝑑𝜏 

 

‖𝑢‖ஶ,ூభ
≤ ‖𝑎‖ஶ,ூభ

‖𝜑‖ஶ,ூబ
+ ‖𝜑‖ஶ,ூబ

+ ‖𝑎‖ஶ,ூభ
‖𝜑‖ஶ,ூబ

 

+൛‖𝑓‖ஶ,ூభ
+ [‖𝑐‖ஶ,ூభ

+ ‖𝑎‖ஶ,ூభ
‖𝑏‖ஶ,ூభ

]‖𝜑‖ஶ,ூబ
ൟ

1

𝜀
න 𝑒

షഁ(೟షഓ)

ഄ 𝑑𝜏

௧

଴

 

 

≤ ‖𝑎‖ஶ,ூభ
‖𝜑‖ஶ,ூబ

+ ‖𝜑‖ஶ,ூబ
+ ‖𝑎‖ஶ,ூభ

‖𝜑‖ஶ,ூబ
 

+൛‖𝑓‖ஶ,ூభ
+ ൫‖𝑐‖ஶ,ூభ

+ ‖𝑎‖ஶ,ூభ
‖𝑏‖ஶ,ூభ

൯‖𝜑‖ஶ,ூబ
ൟ𝛽ିଵ𝑒

షഁ೟

ഄ  

 

‖𝑢‖ஶ,ூభ
≤ ൫1 + 2‖𝑎‖ஶ,ூభ

൯‖𝜑‖ஶ,ூబ
 

+𝛽ିଵ൛‖𝑓‖ஶ,ூభ
+ ൣ‖𝑐‖ஶ,ூభ

+ ‖𝑎‖ஶ,ூభ
‖𝑏‖ஶ,ூభ

൧‖𝜑‖ஶ,ூబ
ൟ ≡ 𝐶ଵ 

 

eşitsizliğini elde ediyoruz. Dolayısıyla (5.1) eşitsizliğindeki 𝑝 = 1  için ispat yapıldı. 

Benzer şekilde, (5.5)’ten 𝑝 = 2 için (𝑡 ∈ 𝐼ଶ) 
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|𝑢(𝑡)| ≤ |𝑎(𝑡)||𝑢(𝑡 − 𝑟)| + [|𝑢(𝑟)| + |𝑎(𝑟)||𝑢(0)|]𝑒
షഁ(೟షೝ)

ഄ  

+
1

𝜀
න{|𝑓(𝜏)| + [|𝑐(𝜏)| + |𝑎(𝜏)||𝑏(𝜏)|]|𝑢(𝜏 − 𝑟)|}

௧

଴

𝑒
షഁ(೟షഓ)

ഄ 𝑑𝜏 

 

‖𝑢‖ஶ,ூమ
≤ ‖𝑎‖ஶ,ூమ

‖𝑢‖ஶ,ூభ
+ ‖𝑢‖ஶ,ூభ

+ ‖𝑎‖ஶ,ூమ
‖𝜑‖ஶ,ூబ

 

+൛‖𝑓‖ஶ,ூమ
+ [‖𝑐‖ஶ,ூమ

+ ‖𝑎‖ஶ,ூమ
‖𝑏‖ஶ,ூమ

]‖𝑢‖ஶ,ூభ
ൟ

1

𝜀
න 𝑒

షഁ(೟షഓ)

ഄ 𝑑𝜏

௧

௥

 

 

≤ ൫1 + ‖𝑎‖ஶ,ூమ
൯𝐶ଵ + ‖𝑎‖ஶ,ூమ

‖𝜑‖ஶ,ூబ
 

+൛‖𝑓‖ஶ,ூమ
+ ൣ‖𝑐‖ஶ,ூమ

+ ‖𝑎‖ஶ,ூమ
‖𝑏‖ஶ,ூమ

൧𝐶ଵൟ𝛽ିଵ ൬1 − 𝑒
షഁ(೟షೝ)

ഄ ൰ 

 

‖𝑢‖ஶ,ூమ
≤ ൫1 + ‖𝑎‖ஶ,ூమ

൯𝐶ଵ + ‖𝑎‖ஶ,ூమ
‖𝜑‖ஶ,ூబ

 

+𝛽ିଵ൛‖𝑓‖ஶ,ூమ
+ ൣ‖𝑐‖ஶ,ூమ

+ ‖𝑎‖ஶ,ூమ
‖𝑏‖ஶ,ூమ

൧𝐶ଵൟ ≡ 𝐶ଶ 

 

eşitsizliğini elde ederiz ve benzer yaklaşımla 𝑝 = 3 için (𝑡 ∈ 𝐼ଷ) 

 

‖𝑢‖ஶ,ூయ
≤ ൫1 + ‖𝑎‖ஶ,ூయ

൯𝐶ଶ + ‖𝑎‖ஶ,ூయ
𝐶ଵ

+ 𝛽ିଵ൛‖𝑓‖ஶ,ூయ
+ ൣ‖𝑐‖ஶ,ூయ

+ ‖𝑎‖ஶ,ூయ
‖𝑏‖ஶ,ூయ

൧𝐶ଶൟ ≡ 𝐶ଷ 

 

değerlendirmesi yapılabilir. Şimdi, 𝑝 = 𝑘 için (5.1) eşitsizliğinin doğru olduğunu kabul 

edelim. Yani 

 

‖𝑢‖ஶ,ூೖ
≤ ൫1 + ‖𝑎‖ஶ,ூೖ

൯𝐶௞ିଵ + ‖𝑎‖ஶ,ூೖ
𝐶௞ିଶ

+ 𝛽ିଵ൛‖𝑓‖ஶ,ூೖ
+ ൣ‖𝑐‖ஶ,ூೖ

+ ‖𝑎‖ஶ,ூೖ
‖𝑏‖ஶ,ூೖ

൧𝐶௞ିଵൟ ≡ 𝐶௞ 

 

eşitsizliği doğru olsun. Böylece 𝑡 ∈ 𝐼௞ାଵ  için değerlendirmenin doğru olduğunu 

göstermemiz gerekmektedir. (5.5) denkleminden, 
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‖𝑢‖ஶ,ூೖశభ
≤ ൫1 + ‖𝑎‖ஶ,ூೖశభ

൯𝐶௞ + ‖𝑎‖ஶ,ூೖశభ
𝐶௞ିଵ

+ 𝛽ିଵ൛‖𝑓‖ஶ,ூೖశభ
+ ൣ‖𝑐‖ஶ,ூೖశభ

+ ‖𝑎‖ஶ,ூೖశభ
‖𝑏‖ஶ,ூೖశభ

൧𝐶௞ൟ ≡ 𝐶௞ାଵ 

 

ifadesini elde ederiz ve bu da aradığımız sonuçtur. Dolayısıyla 𝑝 = 𝑘 + 1 için de (5.1) 

eşitsizliğinin doğruluğu ispatlanmış oldu. Böylece (5.1) eşitsizliğinin ispatı tamamlanır. 

Şimdi ise (5.2) eşitsizliğini ispatını verelim: (5.3)’ten bir kere türev alırsak 

 

𝜀𝑣ᇱᇱ(𝑡) + 𝑏(𝑡)𝑣ᇱ(𝑡) = 𝐹ᇱ(𝑡) − 𝑏ᇱ(𝑡)𝑣(𝑡) = 𝛷(𝑡),   (5.6) 

 

denklemi elde edilir. Burada 𝛷(𝑡) aşağıda verildiği gibidir: 

 

𝛷(𝑡) = 𝑓ᇱ(𝑡) + [𝑎ᇱ(𝑡)𝑏(𝑡) − 𝑐ᇱ(𝑡)]𝑢(𝑡 − 𝑟) 

+[𝑎(𝑡)𝑏(𝑡) − 𝑐(𝑡)]𝑢ᇱ(𝑡 − 𝑟) − 𝑏ᇱ(𝑡)𝑢(𝑡). 

 

İspat aşamalarına geçmeden önce 𝛷(𝑡) için değerlendirme yapalım: 

 

|𝛷(𝑡)| ≤ |𝑓ᇱ(𝑡)| + [|𝑎ᇱ(𝑡)||𝑏(𝑡)| + |𝑐ᇱ(𝑡)|]|𝑢(𝑡 − 𝑟)| 

+[|𝑎(𝑡)||𝑏(𝑡)| + |𝑐(𝑡)|]|𝑢ᇱ(𝑡 − 𝑟)| + |𝑏ᇱ(𝑡)||𝑢(𝑡)|. 

 

Buradan, Lemma 5.1’deki şartlar ve (5.1) eşitsizliği dikkate alınırsa 𝛷(𝑡) için 

 

  |𝛷(𝑡)| ≤ 𝐶(1 + |𝑢ᇱ(𝑡 − 𝑟)|)      (5.7) 

 

yaklaşımı yazılabilir. Daha sonra (5.2)’nin ispatı için, (5.6) denkleminden aşağıdaki 

bağıntıyı yazabiliriz: 

 

𝑣ᇱ(𝑡) = 𝑣ᇱ൫𝑟௣ିଵ൯𝑒
ି

భ

ഄ
∫ ௕(௦)ௗ௦

೟
ೝ೛షభ +

1

𝜀
න 𝛷(𝜏)𝑒ି

భ

ഄ
∫ ௕(௦)ௗ௦

೟
ഓ 𝑑𝜏

௧

௥೛షభ

,    𝑡 ∈ 𝐼௣. (5.8) 

 

(5.8) bağıntısını daha açık yazarsak aşağıdaki gibi bir değerlendirme elde ediyoruz: 
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𝑢ᇱ(𝑡) = −𝑎(𝑡)𝑢ᇱ(𝑡 − 𝑟) − 𝑎ᇱ(𝑡)𝑢(𝑡 − 𝑟) 

+ൣ𝑢ᇱ൫𝑟௣ିଵ൯ + 𝑎ᇱ൫𝑟௣ିଵ൯𝑢൫𝑟௣ିଵ − 𝑟൯ + 𝑎൫𝑟௣ିଵ൯𝑢ᇱ൫𝑟௣ିଵ − 𝑟൯൧𝑒
షభ

ഄ
∫ ௕(௦)ௗ௦

೟
ೝ೛షభ  

+
1

𝜀
න 𝛷(𝜏)𝑒

షభ

ഄ
∫ ௕(௦)ௗ௦

೟
ഓ

௧

௥೛షభ

𝑑𝜏. 

 

Buradan 

 

|𝑢ᇱ(𝑡)| ≤ |𝑎(𝑡)||𝑢ᇱ(𝑡 − 𝑟)| + |𝑎ᇱ(𝑡)||𝑢(𝑡 − 𝑟)| + ห𝑢ᇱ൫𝑟௣ିଵ൯ห𝑒
షഁ൫೟షೝ೛షభ൯

ഄ  

+ൣห𝑎൫𝑟௣ିଵ൯หห𝑢ᇱ൫𝑟௣ିଵ − 𝑟൯ห + ห𝑎ᇱ൫𝑟௣ିଵ൯หห𝑢൫𝑟௣ିଵ − 𝑟൯ห൧𝑒
షഁ൫೟షೝ೛షభ൯

ഄ  

+
1

𝜀
න |𝛷(𝜏)|𝑒

షഁ(೟షഓ)

ഄ

௧

௥೛షభ

𝑑𝜏 

(5.9) 

 

ifadesi yazılabilir. Ayrıca (1.1) denkleminden 

 

𝜀[𝑢ᇱ(𝑡) + 𝑎(𝑡)𝑢ᇱ(𝑡 − 𝑟)] = −𝜀𝑎ᇱ(𝑡)𝑢(𝑡 − 𝑟) − 𝑏(𝑡)𝑢(𝑡) − 𝑐(𝑡)𝑢(𝑡 − 𝑟) + 𝑓(𝑡) 

 

olup, 𝑡 = 0 için 

 

|𝜑ᇱ(0)| + |𝑎(0)||𝜑ᇱ(−𝑟)| ≤ |𝑎ᇱ(0)||𝜑(−𝑟)| 

+
|𝑏(0)||𝜑(0)| + |𝑐(0)||𝜑(−𝑟)| + |𝑓(0)|

𝜀
≤

𝐶

𝜀
 

(5.10) 

 

eşitsizliğini yazabiliriz. Bu aşamadan sonra (5.2)’nin ispatı için tümevarım metodunu 

kullanacağız. Şimdi (5.9) eşitsizliğinden 𝑝 = 1 (𝑡 ∈ 𝐼ଵ) için, 

 

|𝑢′(𝑡)| ≤ |𝑎(𝑡)||𝜑ᇱ(𝑡 − 𝑟)| + |𝑎ᇱ(𝑡)||𝜑(𝑡 − 𝑟)|  

+[|𝜑ᇱ(0)| + |𝑎(0)||𝜑ᇱ(−𝑟)| + |𝑎ᇱ(0)||𝜑(−𝑟)|]𝑒
షഁ೟

ഄ +
1

𝜀
න|𝛷(𝜏)|

௧

଴

𝑒
షഁ(೟షഓ)

ഄ 𝑑𝜏 
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eşitsizliğini yazabiliriz. Burada (5.7) ve (5.10) eşitsizliklerini de dikkate alırsak 

 

   |𝑢′(𝑡)| ≤ 𝐶 ൬1 +
ଵ

ఌ
𝑒

షഁ

ഄ ൰     (5.11) 

 

ifadesini elde ederiz. Daha sonra 𝑝 = 𝑘 (𝑡 ∈ 𝐼௞)  için aşağıda verildiği gibi (5.2) 

eşitsizliğinin doğru olduğunu kabul edelim. 

 

  |𝑢′(𝑡)| ≤ 𝐶 ൜1 +
(௧ି௥ೖషభ)ೖషభ

ఌೖ
𝑒

షഁ൫೟షೝೖషభ൯

ഄ ൠ.    (5.12) 

 

Şimdi de 𝑝 = 𝑘 + 1 (𝑡 ∈ 𝐼௞ାଵ)  için doğru olduğunu gösterelim. (5.9) eşitsizliği 

𝑝 = 𝑘 + 1 için aşağıdaki formda yazılabilir: 

 

|𝑢ᇱ(𝑡)| ≤ |𝑎(𝑡)||𝑢ᇱ(𝑡 − 𝑟)| + |𝑎ᇱ(𝑡)||𝑢(𝑡 − 𝑟)| 

+[|𝑢ᇱ(𝑟௞)| + |𝑎(𝑟௞)||𝑢ᇱ(𝑟௞ିଵ)|]𝑒
షഁ൫೟షೝೖ൯

ഄ  

+|𝑎ᇱ(𝑟௞)||𝑢(𝑟௞ିଵ)|𝑒
షഁ൫೟షೝೖ൯

ഄ +
1

𝜀
න|𝛷(𝜏)|𝑒

షഁ(೟షഓ)

ഄ

௧

௥ೖ

𝑑𝜏. 

(5.13) 

 

İspatın devamı için 𝑢′(𝑟௞), 𝑢′(𝑟௞ିଵ) ve 𝑢ᇱ(𝑡 − 𝑟) ifadeleri için bazı değerlendirmeleri 

yapalım. İlk olarak (5.12) eşitsizliğinden 𝑡 = 𝑟௞ alınırsa 

 

|𝑢′(𝑟௞)| ≤ 𝐶 ቊ1 +
(𝑟௞ − 𝑟௞ିଵ)௞ିଵ

𝜀௞
𝑒

షഁ൫ೝೖషೝೖషభ൯

ഄ ቋ 

 

≤ 𝐶 ቊ1 +
𝑟௞ିଵ

𝜀௞
𝑒

షഁೝ

ഄ ቋ 

 

elde edilir. Burada 𝑥௞𝑒௫ ≤ 𝐶𝑒ିఊ௫,   0 < 𝛾 < 1,   𝑥 ∈ [0, ∞), 𝑘 > 0 eşitsizliğini 

uygularsak 

 

   |𝑢′(𝑟௞)| ≤ 𝐶,   𝑘 ≥ 1      (5.14) 
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ifadesini elde ederiz. Benzer şekilde 

 

   |𝑢′(𝑟௞ିଵ)| ≤ 𝐶,   𝑘 ≥ 1     (5.15) 

 

yaklaşımını da elde ederiz. Yine (5.12) dikkate alınırsa 𝑢ᇱ(𝑡 − 𝑟) için 

 

|𝑢ᇱ(𝑡 − 𝑟)| ≤ 𝐶 ቊ1 +
(𝑡 − 𝑟 − 𝑟௞ିଵ)௞ିଵ

𝜀௞
𝑒

షഁ൫೟షೝషೝೖషభ൯

ഄ ቋ 

 

    ≤ 𝐶 ൜1 +
(௧ି௥ೖ)ೖషభ

ఌೖ
𝑒

షഁ൫೟షೝೖ൯

ഄ ൠ    (5.16) 

 

ifadesini elde ederiz ve buradan da 

 

   |𝛷(𝑡)| ≤ 𝐶 ൜1 +
(௧ି௥ೖ)ೖషభ

ఌೖ
𝑒

షഁ൫೟షೝೖ൯

ഄ ൠ    (5.17) 

 

eşitsizliğini yazabiliriz. Bu değerlendirmelerden sonra (5.14), (5.15), (5.16) ve (5.17) 

eşitsizlikleri (5.13)’te dikkate alırsak 

 

|𝑢ᇱ(𝑡)| ≤ 𝐶 ቆ1 +
(𝑡 − 𝑟௞)௞ିଵ

𝜀௞
𝑒

షഁ൫೟షೝೖ൯

ഄ ቇ + 𝐶𝑒
షഁ൫೟షೝೖ൯

ഄ  

+
1

𝜀
𝐶 න ቆ1 +

(𝜏 − 𝑟௞)௞ିଵ

𝜀௞
𝑒

షഁ൫ഓషೝೖ൯

ഄ ቇ 𝑒
షഁ(೟షഓ)

ഄ

௧

௥ೖ

𝑑𝜏 

 

≤ 𝐶 + 𝐶
(𝑡 − 𝑟௞)௞ିଵ

𝜀௞
𝑒

షഁ൫೟షೝೖ൯

ഄ + 𝐶
1

𝜀
𝛽ିଵ𝜀 ൬1 − 𝑒

షഁ(೟షഓ)

ഄ ൰ +
1

𝜀
𝐶𝑒

షഁ൫೟షೝೖ൯

ഄ
(𝑡 − 𝑟௞)௞

𝑘𝜀௞
 

 

≤ 𝐶 ቊ1 +
(𝑡 − 𝑟௞)௞

𝜀௞ାଵ
𝑒

షഁ൫೟షೝೖ൯

ഄ ቋ 

 

son değerlendirmeyi elde ederiz. Bu da (5.2) eşitsizliğinin ispatını verir. 
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5.2 Düzgün Şebeke 

 
Burada probleme uygun şebeke tanımını vereceğiz. Herhangi 𝑔(𝑡)  şebeke 

fonksiyonu için, 𝑔௜ = 𝑔(𝑡௜) olarak kullanacağız ve 𝑢(𝑡)’nin 𝑡௜’deki yaklaşık çözümünü 

𝑦௜ olarak ifade edeceğiz. 𝐼 üzerinde düzgün şebeke 𝜔ேబ
 olsun: 

 

𝜔ேబ
= {𝑡௜ = 𝑖ℎ, 𝑖 = 1, 2, … , 𝑁଴, ℎ = 𝑇/𝑁଴ = 𝑟/𝑁}, 

 

𝜔ே,௣ = ൛𝑡௜: 𝑡௜ = 𝑟௣ିଵ + [𝑖 − (𝑝 − 1)𝑁]ℎൟ, (𝑝 − 1)𝑁 + 1 ≤ 𝑖 ≤ 𝑝𝑁, 

 

𝜔ேబ
=∪௣ୀଵ

௠ 𝜔ே,௣, 

 

𝜔ഥேబ
= 𝜔ேబ

∪ {0},       𝜔ഥିே = {𝑡௜: 𝑡௜ = −𝑖ℎ, 𝑖 = −𝑁, −𝑁 + 1, … ,0}. 

 

𝑔௜ = 𝑔(𝑡௜) şebeke fonksiyonu için probleme uygun şebeke normları aşağıdaki şekilde 

tanımlanmaktadır: 

 

‖𝑔‖ஶ,ఠಿ,೛
= max

ఠಿ,೛

|𝑔௜| ,   1 ≤ 𝑝 ≤ 𝑚, 

 

‖𝑔‖ஶ,ఠಿబ
= max

ఠಿబ

|𝑔௜| ,   1 ≤ 𝑝 ≤ 𝑚. 

 

5.3 Düzgün Şebekede Fark Şemasının Kurulması 

 
Burada (1.1)-(1.2) probleminin fark yaklaşımı için 

 

𝜒௜
ିଵℎିଵ න 𝐿𝑢(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 = 𝜒௜
ିଵℎିଵ න 𝑓(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 (5.18) 

 

özdeşliğini kullanacağız. Burada 𝜓௜(𝑡) 
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   𝜓௜(𝑡) = 𝑒ି
್೔
ഄ

(௧೔ି௧)
,   𝑡௜ିଵ ≤ 𝑡 ≤ 𝑡௜    (5.19) 

 

olarak belirlenmiş üstel katsayılı baz fonksiyonudur. Dahası bu fonksiyon 

 

−𝜀𝜓௜′(𝑡) + 𝑏௜𝜓௜(𝑡) = 0,   𝑡௜ିଵ ≤ 𝑡 ≤ 𝑡௜ ,   𝜓௜(𝑡௜) = 1 

 

probleminin çözümüdür. Ayrıca 𝜒௜ 

 

𝜒௜ = ℎିଵ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 =
1 − 𝑒ି௕೔ఘ

𝑏௜𝜌
,   𝜌 =

ℎ

𝜀
 (5.20) 

 

olarak seçilmiş bir katsayıdır. Şimdi de (5.18) özdeşliğini yeniden düzenlersek 

 

𝜒௜
ିଵℎିଵ න 𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]′𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 + 𝜒௜
ିଵℎିଵ න 𝑏(𝑡)𝑢(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

+𝜒௜
ିଵℎିଵ න 𝑐(𝑡)𝑢(𝑡 − 𝑟)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 = 𝜒௜
ିଵℎିଵ න 𝑓(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

 

eşitliğini elde ederiz. Hem eşitliğin sol tarafındaki ikinci ve üçüncü terimlere ve hem de 

eşitliğin sağ tarafına ekleme çıkarmalar yaparsak 

 

𝜒௜
ିଵℎିଵ න 𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]′𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 + 𝜒௜
ିଵℎିଵ𝑏௜ න 𝑢(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

+𝜒௜
ିଵℎିଵ𝑐௜ න 𝑢(𝑡 − 𝑟)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 = 𝜒௜
ିଵℎିଵ𝑓௜ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

+𝑅௜
(ଵ)

+ 𝑅௜
(ଶ)

+ 𝑅௜
(ଷ) 

(5.21) 

 

özdeşliğini elde ederiz ve (5.21)’de kalan terimler 
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𝑅௜
(ଵ)

= 𝜒௜
ିଵℎିଵ න[𝑏௜ − 𝑏(𝑡)]𝑢(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡, 

 

𝑅௜
(ଶ)

= 𝜒௜
ିଵℎିଵ න[𝑐௜ − 𝑐(𝑡)]𝑢(𝑡 − 𝑟)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡, 

 

𝑅௜
(ଷ)

= 𝜒௜
ିଵℎିଵ න[𝑓(𝑡) − 𝑓௜]𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

 

olarak belirlenir. Daha sonra (5.21) için bazı terimlere (4.6) ve (4.7) kuadratür 

formüllerini uygulayacağız. İlk olarak 

 

𝜒௜
ିଵℎିଵ න 𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]′𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

 

terimine (4.7) formülünü uygularsak 

 

𝜒௜
ିଵℎିଵ න 𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]′𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

 

= 𝜒௜
ିଵℎିଵ𝜀 ቈ

𝑢(𝑡௜) + 𝑎௜𝑢(𝑡௜ − 𝑟) − 𝑢(𝑡௜ିଵ) − 𝑎௜ିଵ𝑢(𝑡௜ିଵ − 𝑟)

ℎ
቉ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 − 𝑅௜
(∗) 

 

= 𝜀 ቈ
𝑢(𝑡௜) − 𝑢(𝑡௜ିଵ) + 𝑎௜𝑢(𝑡௜ − 𝑟) − 𝑎௜ିଵ𝑢(𝑡௜ିଵ − 𝑟)

ℎ
቉ − 𝑅௜

(∗) 
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= 𝜀 ቈ
𝑢(𝑡௜) − 𝑢(𝑡௜ିଵ)

ℎ
+

𝑎௜ିଵ𝑢(𝑡௜ − 𝑟) − 𝑎௜ିଵ𝑢(𝑡௜ିଵ − 𝑟)

ℎ

+
𝑎௜𝑢(𝑡௜ − 𝑟) − 𝑎௜ିଵ𝑢(𝑡௜ − 𝑟)

ℎ
൨ − 𝑅௜

(∗) 

 

𝜒௜
ିଵℎିଵ න 𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]′𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

= 𝜀ൣ𝑢௧,௜ + 𝑎௜ିଵ𝑢௧,௜ିே + 𝑎௧,௜𝑢௜ିே൧ − 𝑅௜
(∗) 

(5.22) 

 

eşitliğini elde ederiz. Burada kalan terim 𝑅௜
(∗) 

 

𝑅௜
(∗)

= 𝜒௜
ିଵℎିଵ𝜀 න 𝜓′௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 න ൤𝑢ᇱ(𝑠) +
𝑑

𝑑𝑠
[𝑎(𝑠)𝑢(𝑠 − 𝑟)]𝐾଴(𝑡, 𝑠)൨

௧೔

௧೔షభ

𝑑𝑠 

 

olarak elde edilmiştir. İkinci olarak 

 

𝜒௜
ିଵℎିଵ𝑏௜ න 𝑢(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

 

terimine (4.6) formülünü uygularsak 

 

𝜒௜
ିଵℎିଵ𝑏௜ න 𝑢(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 = 𝜒௜
ିଵℎିଵ𝑏௜ ቎ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡቏ 𝑢(𝑡௜) 

+𝜒௜
ିଵℎିଵ𝑏௜𝑢௧,௜ න(𝑡 − 𝑡௜)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 − 𝑅௜
(∗∗) 

 

 



 
 

37 
 

𝜒௜
ିଵℎିଵ𝑏௜ න 𝑢(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

= 𝑏௜𝑢௜ + +𝜒௜
ିଵℎିଵ𝑏௜𝑢௧,௜ න(𝑡 − 𝑡௜)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 − 𝑅௜
(∗∗) 

(5.23) 

 

eşitliğini elde ederiz ve kalan terim 

 

𝑅௜
(∗∗)

= −𝜒௜
ିଵℎିଵ𝑏௜ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 න 𝑢′(𝑠)𝐾଴(𝑡, 𝑠)

௧೔

௧೔షభ

𝑑𝑠 

 

olarak belirlenir. Burada 𝑅௜
(∗) ve 𝑅௜

(∗∗) beraber düşünüldüğünde (5.19)’da verilen üstel 

katsayılı baz fonksiyonu elde edilir ve 𝑅௜
(∗)’da geriye kalan hata terimi 

 

𝑅௜
(ସ)

= 𝜒௜
ିଵℎିଵ𝜀 න 𝜓′௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 න
𝑑

𝑑𝑠
[𝑎(𝑠)𝑢(𝑠 − 𝑟)]𝐾଴(𝑡, 𝑠)

௧೔

௧೔షభ

𝑑𝑠 

 

biçiminde olacaktır. Son olarak 

 

𝜒௜
ିଵℎିଵ𝑐௜ න 𝑢(𝑡 − 𝑟)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

 

terimine de (4.6) formülünü uygularsak 

 

𝜒௜
ିଵℎିଵ𝑐௜ න 𝑢(𝑡 − 𝑟)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 = 𝜒௜
ିଵℎିଵ𝑐௜ ቎ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡቏ 𝑢௜ିே 

+𝜒௜
ିଵℎିଵ𝑐௜𝑢௧,௜ିே න(𝑡 − 𝑡௜)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 − 𝑅௜
(ହ) 
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𝜒௜
ିଵℎିଵ𝑐௜ න 𝑢(𝑡 − 𝑟)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 = 

𝑐௜𝑢௜ିே + 𝜒௜
ିଵℎିଵ𝑐௜𝑢௧,௜ିே න(𝑡 − 𝑡௜)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 − 𝑅௜
(ହ) 

(5.24) 

 

eşitliğini elde ederiz ve burada da kalan terim 

 

𝑅௜
(ହ)

= −𝜒௜
ିଵℎିଵ𝑐௜ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 න 𝑢′(𝑠 − 𝑟)𝐾଴(𝑡, 𝑠)

௧೔

௧೔షభ

𝑑𝑠 

 

olacaktır. (5.21) eşitliğinde (5.22)-(5.23) ve (5.24) değerlendirmeleri dikkate alırsak 

 

𝜀ൣ𝑢௧,௜ + 𝑎௜ିଵ𝑢௧,௜ିே + 𝑎௧,௜𝑢௜ିே൧ + 𝜒௜
ିଵℎିଵ𝑏௜𝑢௧,௜ න(𝑡 − 𝑡௜)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

+𝜒௜
ିଵℎିଵ𝑐௜𝑢௧,௜ିே න(𝑡 − 𝑡௜)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 + 𝑏௜𝑢௜ + 𝑐௜𝑢௜ିே = 𝑓௜ + 𝑅௜ 

(5.25) 

 

özdeşliğini elde ederiz. Buradan da (5.19) ve (5.20) dikkate alınırsa 

 

𝜒௜
ିଵℎିଵ න(𝑡 − 𝑡௜)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 =

௕೔

ఌ

1 − 𝑒ି௕೔
೓

ഄ

ቆℎ
𝜀

𝑏௜
𝑒ି

್೔೓

ഄ −
𝜀ଶ

𝑏௜
ଶ +

𝜀ଶ

𝑏௜
ଶ 𝑒ି

್೔೓

ഄ ቇ 

=
ℎ

1 − 𝑒ି௕೔
೓

ഄ

𝑒ି௕೔
೓

ഄ −
𝜀

𝑏௜
 

(5.26) 

 

ifadesi bulunur. Bu düzenlemelerle birlikte (5.25)’ten aşağıdaki fark yaklaşımını 

yazabiliriz: 

 

𝜀𝐴௜𝑢௧,௜ + 𝐵௜𝑢௧,௜ିே + 𝑏௜𝑢௜ + 𝐶௜𝑢௜ିே = 𝑓௜ + 𝑅௜.   (5.27) 
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Buradaki katsayılar 

 

𝐴௜ = 𝑏௜𝜌
𝑒ି௕೔ఘ

1 − 𝑒ି௕೔ఘ
,   𝐵௜ = 𝑐௜ℎ

𝑒ି௕೔ఘ

1 − 𝑒ି௕೔ఘ
+ 𝜀 ൬𝑎௜ିଵ −

𝑐௜

𝑏௜
൰,   𝐶௜ = 𝑐௜ + 𝜀𝑎௧,௜ 

 

olup kalan terim 𝑅௜ aşağıda verildiği gibidir: 

 

   𝑅௜ = 𝑅௜
(ଵ)

+ 𝑅௜
(ଶ)

+ 𝑅௜
(ଷ)

+ 𝑅௜
(ସ)

+ 𝑅௜
(ହ)

,   (5.28) 

 

𝑅௜
(ଵ)

= 𝜒௜
ିଵℎିଵ න[𝑏௜ − 𝑏(𝑡)]𝑢(𝑡)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡, 

 

𝑅௜
(ଶ)

= 𝜒௜
ିଵℎିଵ න[𝑐௜ − 𝑐(𝑡)]𝑢(𝑡 − 𝑟)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡, 

 

𝑅௜
(ଷ)

= 𝜒௜
ିଵℎିଵ න[𝑓(𝑡) − 𝑓௜]𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡, 

 

𝑅௜
(ସ)

= 𝜒௜
ିଵℎିଵ𝜀 න 𝜓′௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 න
𝑑

𝑑𝑠
[𝑎(𝑠)𝑢(𝑠 − 𝑟)]𝐾଴(𝑡, 𝑠)

௧೔

௧೔షభ

𝑑𝑠, 

 

𝑅௜
(ହ)

= −𝜒௜
ିଵℎିଵ𝑐௜ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 න 𝑢ᇱ(𝑠 − 𝑟)𝐾଴(𝑡, 𝑠)

௧೔

௧೔షభ

𝑑𝑠. 

 

Sonuç olarak (5.27) denkleminde 𝑅௜ kalan terimi ihmal edilirse 

 

 𝜀𝐴௜𝑦௧,௜ + 𝐵௜𝑦௧,௜ିே + 𝑏௜𝑦௜ + 𝐶௜𝑦௜ିே = 𝑓௜ ,   1 ≤ 𝑖 ≤ 𝑁଴,   (5.29) 
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𝑦௜ = 𝜑௜ ,   − 𝑁 ≤ 𝑖 ≤ 0      (5.30) 

 

fark yaklaşımı önerilebilir. 

 

5.4 Düzgün Şebekede Kararlılık ve Düzgün Yakınsaklık Analizi 

 
Bu bölümde fark şemasının kararlılığı ve düzgün yakınsaklığı incelenecektir. 

Lemma 5.2’de kalan terim 𝑅௜ nin, Lemma 5.3’te hata fonksiyonu 𝑧௜ nin değerlendirmesi 

yapılacaktır. Daha sonra Teorem 5.1’de de bu iki lemmanın birleşiminden kararlılık ve 

düzgün yakınsaklık gösterilmiş olacaktır. 

Bu metodun yakınsaklığını incelemek için, 𝑧௜ hata fonksiyonunu ele alacağız ve 

𝑧௜ = 𝑦௜ − 𝑢௜ , 0 ≤ 𝑖 ≤ 𝑁₀ hata fonksiyonu aşağıdaki fark probleminin çözümüdür. 

 

  𝜀𝐴௜𝑧௧,௜ + 𝐵௜𝑧௧,௜ିே + 𝑏௜𝑧௜ + 𝐶௜𝑧௜ିே = 𝑅௜,   1 ≤ 𝑖 ≤ 𝑁଴,  (5.31) 

 

  𝑧௜ = 0, −𝑁 ≤ 𝑖 ≤ 0.       (5.32) 

 

Buradaki 𝑅௜ kalan terimi (5.28) bağıntısıyla tanımlanmaktadır. 

 

Lemma 5.2 Eğer, 𝑎 ∈ 𝐶ଵ(𝐼), 𝑏, 𝑐, 𝑓 ∈ 𝐶(𝐼) ve 𝜑 ∈ 𝐶ଵ(𝐼଴) ise o zaman 𝑅௜ hata 

fonksiyonu için 

 

‖𝑅‖ଵ,ఠಿ,೛
≤ 𝐶ℎ,   1 ≤ 𝑝 ≤ 𝑚 

 

ifadesi doğrudur. 

 

İspat. Burada hata terimlerini tek tek ele alacağız. 𝑅௜
(ଵ) teriminde ortalama değer 

teoremi kullanılırsa 

 

|𝑏(𝑡௜) − 𝑏(𝑡)| = |𝑏ᇱ(ξ)||𝑡௜ − 𝑡|,   𝑡, ξ ∈ [𝑡௜ିଵ, 𝑡௜], 

 

|𝑏(𝑡௜) − 𝑏(𝑡)| ≤ 𝐶ℎ 
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eşitsizliğini yazabiliriz. Bu eşitsizlik dikkate alınırsa 

 

ቚ𝑅௜
(ଵ)

ቚ ≤ 𝐶ℎ ቎𝜒௜
ିଵℎିଵ න|𝑢(𝑡)|𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡቏ 

 

olur. Burada (5.1) eşitsizliği dikkate alınırsa 

 

ฮ𝑅(ଵ)ฮ
ଵ,ఠ೓

≤ 𝐶ℎ𝜒௜
ିଵℎିଵℎ ෍ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡

ேିଵ

௜ୀଵ

 

 

ifadesi yazılabilir ve 

 

𝜒௜ = ℎିଵ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 

 

olduğundan 

 

𝜒௜
ିଵℎିଵ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 = 1 

 

eşitliğini elde ederiz. Dolayısıyla 

 

    ฮ𝑅(ଵ)ฮ
ଵ,ఠ೓

≤ 𝐶ℎଶ     (5.33) 

 

olur. 𝑅௜
(ଶ) hatasını ele alalım. Burada 

 

|𝑐(𝑡௜) − 𝑐(𝑡)| = |𝑐ᇱ(ξ)||𝑡௜ − 𝑡|,   𝑡, ξ ∈ [𝑡௜ିଵ, 𝑡௜] 
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|𝑐(𝑡௜) − 𝑐(𝑡)| ≤ 𝐶ℎ 

 

eşitsizliğinden 

 

ቚ𝑅௜
(ଶ)

ቚ ≤ 𝐶ℎ ቎𝜒௜
ିଵℎିଵ න 𝑢(𝑡 − 𝑟)𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡቏ 

 

yazılabilir ve burada (5.1) eşitsizliği de dikkate alınırsa 

 

ฮ𝑅(ଶ)ฮ
ଵ,ఠ೓

≤ 𝐶ℎ ቎𝜒௜
ିଵℎିଵℎ ෍ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡

ேିଵ

௜ୀଵ

቏ ≤ 𝐶ℎଶ (5.34) 

 

yazılabilir. 𝑅௜
(ଷ) hatasını ele alalım. Burada 

 

|𝑓(𝑡) − 𝑓(𝑡௜)| = |𝑓ᇱ(ξ)||𝑡 − 𝑡௜|,   𝑡, ξ ∈ [𝑡௜ିଵ, 𝑡௜] 

 

|𝑓(𝑡) − 𝑓(𝑡௜)| ≤ 𝐶ℎ 

 

olur ve bu eşitsizlikle birlikte 

 

ฮ𝑅(ଷ)ฮ
ଵ,ఠ೓

≤ 𝐶ℎ ቎𝜒௜
ିଵℎିଵℎ ෍ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡

ேିଵ

௜ୀଵ

቏ ≤ 𝐶ℎଶ (5.35) 

 

ifadesini elde ederiz. 𝑅௜
(ସ) hata terimini ele alalım. 

 

𝑅௜
(ସ)

= 𝜒௜
ିଵℎିଵ𝜀 න 𝜓′௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 න
𝑑

𝑑𝑠
[𝑎(𝑠)𝑢(𝑠 − 𝑟)]𝐾଴(𝑡, 𝑠)

௧೔

௧೔షభ

𝑑𝑠. 

 

Biliyoruz ki 
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𝐾଴(𝑡, ξ) = 𝑇଴(𝑡 − ξ) − ℎିଵ(𝑡 − 𝑡௜ିଵ) 

 

൬𝑇௡(𝜆) =
𝜆௡

𝑛!
,   𝜆 ≥ 0;   𝑇௡(𝜆) = 0,   𝜆 < 0൰ 

 

|𝑇଴(𝑡 − ξ) − ℎିଵ(𝑡 − 𝑡௜ିଵ)| ≤ 1 

 

olur ve 

 

𝜓௜(𝑡) = 𝑒ି
್೔
ഄ

(௧೔ି௧)
,   𝑡௜ିଵ ≤ 𝑡 ≤ 𝑡௜ , 

 

𝜒௜ =
𝜀 ൬1 − 𝑒ି௕೔

೓

ഄ൰

𝑏௜ℎ
 

 

eşitlikleri dikkate alınırsa 

 

𝜒௜
ିଵℎିଵ𝜀 න 𝜓′௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 =
𝑏௜ℎ

𝜀 ൬1 − 𝑒ି௕೔
೓

ഄ൰
ℎିଵ𝜀൫𝜓௜(𝑡௜) − 𝜓௜(𝑡௜ିଵ)൯ 

=
𝑏௜

1 − 𝑒ି௕೔
೓

ഄ

൬1 − 𝑒ି௕೔
೓

ഄ൰ = 𝑏௜ 

 

olup 𝑏 ∈ 𝐶(𝐼)̅ olduğundan |𝑏௜| ≤ 𝐶 olur. Dolasıyla 

 

ቚ𝑅௜
(ସ)

ቚ ≤ 𝐶 න[|𝑎′(𝑠)||𝑢(𝑠 − 𝑟)| + |𝑎(𝑠)||𝑢′(𝑠 − 𝑟)|]

௧೔

௧೔షభ

𝑑𝑠 

 

eşitsizliği yazılabilir. Lemma 5.1’den ve 𝑎 ∈ 𝐶ଵ(𝐼) şartından, 
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ቚ𝑅௜
(ସ)

ቚ ≤ 𝐶 න[1 + |𝑢′(𝑠 − 𝑟)|]

௧೔

௧೔షభ

𝑑𝑠 

 

olur. Buradan |𝑢′(𝑡 − 𝑟)| ifadesinin değerlendirmesini yapacağız. Biliyoruz ki (5.2) 

eşitsizliği aşağıdaki gibi revize edilebilir. 

 

 |𝑢′(𝑡 − 𝑟)| ≤ 𝐶 ቊ1 +
൫௧ି௥೛షమ൯

೛షమ

ఌ೛షభ
𝑒

൬
షഁ൫೟షೝ೛షమ൯

ഄ
൰
ቋ ,   1 ≤ 𝑝 ≤ 𝑚.  (5.36) 

 

Buradan 𝑥௞𝑒௫ ≤ 𝐶𝑒ିఊ௫,   0 < 𝛾 < 1,   𝑥 ∈ [0, ∞), 𝑘 > 0 , eşitsizliğini (5.36) 

eşitsizliğinin sağ tarafına uygularsak 

 

|𝑢′(𝑡 − 𝑟)| ≤ 𝐶 ቆ1 +
1

𝜀
𝑒

షഁം൫೟షೝ೛షమ൯

ഄ ቇ 

 

eşitsizliği elde edilmiş olur. Bu eşitsizlik 𝑅௜
(ସ) ifadesinin değerlendirmesi için dikkate 

alınırsa 

 

ฮ𝑅(ସ)ฮ
ଵ,ఠ೓

≤ 𝐶 ቌℎ + ℎ ෍ න 𝑢′(𝑠 − 𝑟)

௧೔

௧೔షభ

𝑑𝑠

ேିଵ

௜ୀଵ

ቍ 

 

≤ 𝐶 ቌℎ + ℎ ෍
1

𝜀
න 𝑒

షഁ ൫ೞషೝ೛షమ൯

ഄ

௧೔

௧೔షభ

𝑑𝑠

ேିଵ

௜ୀଵ

ቍ 

 

≤ 𝐶ℎ ቌ𝑇 +
1

𝜀
න 𝑒

షഁം൫ೞషೝ೛షమ൯

ഄ

்

଴

𝑑𝑠ቍ 

 

≤ 𝐶ℎ ቆ𝑇 + 𝛽ିଵ𝛾ିଵ𝑒
షഁംೝ೛షమ

ഄ ൬𝑒
షഁം೅

ഄ − 1൰ቇ 
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yazılabilir. Buradan 

 

    ฮ𝑅(ସ)ฮ
ଵ,ఠ೓

≤ 𝐶ℎ     (5.37) 

 

sonucuna varılır. Son olarak da 𝑅௜
(ହ) hata terimini ele alalım. 𝑅௜

(ହ) hata terimi aşağıdaki 

gibidir: 

 

𝑅௜
(ହ)

= −𝜒௜
ିଵℎିଵ𝑐௜ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 න 𝑢ᇱ(𝑠 − 𝑟)𝐾଴(𝑡, 𝑠)

௧೔

௧೔షభ

𝑑𝑠. 

 

Yine 𝑅௜
(ସ)’ün değerlendirmesinde olduğu gibi 

 

𝐾଴(𝑡, ξ) = 𝑇଴(𝑡 − ξ) − ℎିଵ(𝑡 − 𝑡௜ିଵ) 

 

൬𝑇௡(𝜆) =
𝜆௡

𝑛!
,   𝜆 ≥ 0;   𝑇௡(𝜆) = 0,   𝜆 < 0൰ 

 

|𝑇଴(𝑡 − ξ) − ℎିଵ(𝑡 − 𝑡௜ିଵ)| ≤ 1 

 

olur ve 

𝜒௜
ିଵℎିଵ න 𝜓௜(𝑡)

௧೔

௧೔షభ

𝑑𝑡 = 1 

 

eşitliği de yazılabildiği için 

 

ቚ𝑅௜
(ହ)

ቚ ≤ 𝐶 න|𝑢ᇱ(𝑠 − 𝑟)|

௧೔

௧೔షభ

𝑑𝑠 

 

eşitsizliği elde edilir. 𝑅௜
(ସ)’ün değerlendirmesine benzer şekilde 
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ฮ𝑅(ହ)ฮ
ଵ,ఠ೓

≤ 𝐶ℎ ෍
1

𝜀
න 𝑒

షഁം൫ೞషೝ೛షమ൯

ഄ

௧೔

௧೔షభ

𝑑𝑠

ேିଵ

௜ୀଵ

 

 

≤ 𝐶ℎ
1

𝜀
න 𝑒

షഁം൫ೞషೝ೛షమ൯

ഄ

்

଴

𝑑𝑠 

 

≤ 𝐶ℎ𝛽ିଵ𝛾ିଵ𝑒
షഁംೝ೛షమ

ഄ ൬𝑒
షഁം೅

ഄ − 1൰ 

 

eşitsizliği yazılabilir. Buradan 

 

     ฮ𝑅(ହ)ฮ
ଵ,ఠ೓

≤ 𝐶ℎ    (5.38) 

 

ifadesi elde edilir. Sonuç olarak (5.33), (5.34), (5.35), (5.37) ve (5.38) eşitsizlikleri 

(5.28) eşitliğinde dikkate alınırsa Lemma 5.2’nin doğruluğu gösterilmiş olur. 

 

Lemma 5.3 (5.31)-(5.32) probleminin çözümü olan 𝑧௜ için 

 

‖𝑧‖ஶ,ఠಿ,೛
≤ 𝐶 ෍‖𝑅‖ଵ,ఠಿ,ೖ

௣

௞ୀଵ

,   1 ≤ 𝑝 ≤ 𝑚 

 

değerlendirmesi doğrudur. 

 

İspat. (5.31) ifadesini 

 

𝜀𝐴௜𝑧௧,௜ + 𝑏௜𝑧௜ = −𝐵௜𝑧௧,௜ିே − 𝐶௜𝑧௜ିே + 𝑅௜ 

 

olarak yazalım. Burada 

 

𝑙𝑧 ≔ 𝜀𝐴௜𝑧௧,௜ + 𝑏௜𝑧௜ ,    (𝑝 − 1)𝑁 < 𝑖 ≤ 𝑝𝑁 
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fark operatörü için maksimum prensibi uygulanırsa 

 

‖𝑧‖ஶ,ఠಿ,೛
≤ ห𝑧௣ିଵห + 𝛽ିଵ(1 + ℎ + 𝛽ିଵ)‖𝑐‖ஶ,ఠಿ,೛

‖𝑧‖ஶ,ఠಿ,೛షభ
 

    +(𝜀 + 2𝜀ℎିଵ)‖𝑎‖ஶ,ఠಿ,೛
‖𝑧‖ஶ,ఠಿ,೛షభ

+ 𝛽ିଵ‖𝑅‖ଵ,ఠಿ,೛
 

 

≤ ቄ1 + 𝛽ିଵ ቂ(1 + ℎ + 𝛽ିଵ)‖𝑐‖ஶ,ఠಿ,೛
+ (𝜀 + 2𝜀ℎିଵ)‖𝑎‖ஶ,ఠಿ,೛

ቃቅ ‖𝑧‖ஶ,ఠಿ,೛షభ
 

+𝛽ିଵ‖𝑅‖ଵ,ఠಿ,೛
 

(5.39) 

 

fark eşitsizliği elde edilir. Biliyoruz ki 

 

     𝑤௣ ≤ 𝜇𝑤௣ିଵ + ψ୮,    (5.40) 

 

formundaki birinci mertebeden fark eşitsizliğinin çözümü aşağıdaki gibi verilebilir: 

 

𝑤௣ ≤ 𝑤଴𝜇௣ + ෍ 𝜇௣ି௦ψୱ

௣

௦ୀଵ

. (5.41) 

 

(5.39) eşitsizliğinde 

 

𝑤௣ = ‖𝑧‖ஶ,ఠಿ,೛
, 𝜇 = 1 + 𝛽ିଵ ቂ(1 + ℎ + 𝛽ିଵ)‖𝑐‖ஶ,ఠಿ,೛

+ (𝜀 + 2𝜀ℎିଵ)‖𝑎‖ஶ,ఠಿ,೛
ቃ, 

 

   𝑤௣ିଵ = ‖𝑧‖ஶ,ఠಿ,೛
 ve ψ୮ = 𝛽ିଵ‖𝑅‖ଵ,ఠಿ,೛

 

 

olarak alınırsa (5.39) fark eşitsizliğinin çözümü 

 

‖𝑧‖ஶ,ఠಿ,೛
≤ 𝛽ିଵ ෍ ൤1

௣

௞ୀଵ

+ 𝛽ିଵ ቂ(1 + ℎ + 𝛽ିଵ)‖𝑐‖ஶ,ఠಿ,೛
+ (𝜀 + 2𝜀ℎିଵ)‖𝑎‖ஶ,ఠಿ,೛

ቃ൨
௣ି௞

‖𝑅‖ଵ,ఠಿ,ೖ
 

 

olarak bulunur. Bu ise Lemma 5.3’ün ispatıdır. 
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Önceki iki lemmadan çalışmanın kararlılıkve yakınsaklık sonucunu aşağıdaki 

gibi formüle edebiliriz. 

 

Teorem 5.1 (5.29)-(5.30) fark probleminin çözümü düğüm noktalarında (1.1)-(1.2) 

probleminin çözümüne 𝜀 ≤ ℎ şartı altında 𝜀’na göre düzgün yakınsaktır ve yakınsama 

hızı 𝑂(ℎ)  biçimindedir. Dolayısıyla 𝜀 ≤ ℎ  şartı altında aşağıdaki değerlendirme 

doğrudur: 

 

‖𝑦 − 𝑢‖ஶ,ఠഥ ಿబ
≤ 𝐶ℎ. 

 

İspat. Lemma 5.2 ve Lemma 5.3 beraber düşünülürse teoremin doğruluğu kolaylıkla 

görünür. 

 

5.5 Düzgün Olmayan Şebekede Fark Şemasının Kurulması 

 
Herhangi 𝑔(𝑡)  şebeke fonksiyonu için, 𝑔௜ = 𝑔(𝑡௜)  olarak kullanacağız ve 

𝑢(𝑡)’nin 𝑡௜ ’deki yaklaşık çözümünü 𝑦௜  olarak ifade edeceğiz. (1.1) probleminin fark 

yaklaşımı için aşağıdaki özdeşliği kullanacağız. 

 

ℎ௜
ିଵ න 𝐿𝑢(𝑡)𝑑𝑡

௧೔

௧೔షభ

= ℎ௜
ିଵ න 𝑓(𝑡)𝑑𝑡

௧೔

௧೔షభ

,   1 ≤ 𝑖 ≤ 𝑁଴ (5.42) 

 

(5.42) bağıntısını yeniden düzenlersek 

 

𝜀ℎ௜
ିଵ න

𝑑

𝑑𝑡
[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]𝑑𝑡

௧೔

௧೔షభ

+ ℎ௜
ିଵ න 𝑏(𝑡)𝑢(𝑡)𝑑𝑡

௧೔

௧೔షభ

 

+ℎ௜
ିଵ න 𝑐(𝑡)𝑢(𝑡 − 𝑟)𝑑𝑡

௧೔

௧೔షభ

= ℎ௜
ିଵ න 𝑓(𝑡)𝑑𝑡

௧೔

௧೔షభ

 

(5.43) 
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yazabiliriz. (5.43) bağıntısındaki ilk terim hariç diğer integral ifadelerine kısmi 

integrasyon uygularsak (1.1) denklemi için aşağıdaki fark yaklaşımını elde ederiz: 

 

𝜀ൣ𝑢௧,௜ + 𝑎௜ିଵ𝑢௧,௜ିே + 𝑎௧,௜𝑢௜ିே൧ + 𝑏௜𝑢௜ + 𝑐௜𝑢௜ିே = 𝑓௜ + 𝑅௜ , 𝑖 = 1, 2, … , 𝑁଴. (5.44) 

 

Burada kalan terim 𝑅௜ aşağıdaki gibidir: 

 

𝑅௜ = ℎ௜
ିଵ න(𝑡 − 𝑡௜ିଵ)

𝑑

𝑑𝑡
[𝑏(𝑡)𝑢(𝑡) + 𝑐(𝑡)𝑢(𝑡 − 𝑟) − 𝑓(𝑡)]𝑑𝑡

௧೔

௧೔షభ

. (5.45) 

 

(5.44) fark yaklaşımındaki 𝑅௜  hata terimini ihmal edersek (1.1)-(1.2) problemi için 

aşağıdaki fark şemasını önerebiliriz: 

 

 𝜀ൣ𝑦௧,௜ + 𝑎௜ିଵ𝑦௧,௜ିே + 𝑎௧,௜𝑦௜ିே൧ + 𝑏௜𝑦௜ + 𝑐௜𝑦௜ିே = 𝑓௜ ,   𝑖 = 1, 2, … , 𝑁଴, (5.46) 

 

 𝑦௜ = 𝜑௜, −𝑁 ≤ 𝑖 ≤ 0.       (5.47) 

 

5.6 Düzgün Olmayan Şebekede Hata Fonksiyonunun Değerlendirmesi 

 
Bu metodun yakınsaklığını incelemek için 𝑧௜ = 𝑦௜ − 𝑢௜ , 0 ≤ 𝑖 ≤ 𝑁₀  hata 

fonksiyonu aşağıdaki fark probleminin çözümüdür. 

 

 𝜀ൣ𝑧௧,௜ + 𝑎௜ିଵ𝑧௧,௜ିே + 𝑎௧,௜𝑧௜ିே൧ + 𝑏௜𝑧௜ + 𝑐௜𝑧௜ିே = 𝑅௜,   1 ≤ 𝑖 ≤ 𝑁଴, (5.48) 

 

 𝑧௜ = 0, −𝑁 ≤ 𝑖 ≤ 0.        (5.49) 

 

Buradaki 𝑅௜, (5.45) denkleminden verilen hata terimidir. 

 

Lemma 5.4 (5.48)-(5.49) probleminin çözümü olan 𝑧௜  için aşağıdaki değerlendirme 

doğrudur: 
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‖𝑧‖ஶ,ఠಿ,೛
≤ 𝐶 ෍‖𝑅‖ஶ,ఠಿ,ೖ

௣

௞ୀଵ

,   1 ≤ 𝑝 ≤ 𝑚. 

 

İspat. (5.48) denkleminden, 

 

 𝜀𝑧௧,௜ + 𝑏௜𝑧௜ = −𝜀𝑎௜ିଵ𝑧௧,௜ିே − 𝜀𝑎௧,௜𝑧௜ିே − 𝑐௜𝑧௜ିே + 𝑅௜,   1 ≤ 𝑖 ≤ 𝑁଴ (5.50) 

 

eşitliği yazılabilir. Burada 

 

ℓ𝑧௜ ≡ 𝜀𝑧௧,௜ + 𝑏௜𝑧௜ ,   (𝑝 − 1)𝑁 < 𝑖 ≤ 𝑝𝑁 

 

fark operatörü için maksimum prensibi uygulanırsa 

 

‖𝑧‖ஶ,ఠಿ,೛
≤ ห𝑧௣ିଵห + 𝛽ିଵ ቄቀ3𝜀‖𝑎‖ஶ,ఠಿ,೛

+ ‖𝑐‖ஶ,ఠಿ,೛
ቁ ‖𝑧‖ஶ,ఠಿ,೛షభ

+ ‖𝑅‖ஶ,ఠಿ,೛
ቅ 

 

≤ ቄ1 + 𝛽ିଵ ቀ3𝜀‖𝑎‖ஶ,ఠಿ,೛
+ ‖𝑐‖ஶ,ఠಿ,೛

ቁቅ ‖𝑧‖ஶ,ఠಿ,೛షభ
+ 𝛽ିଵ‖𝑅‖ஶ,ఠಿ,೛

 

 

eşitsizliği yazılabilir. Buradan (5.40) formundaki birinci mertebeden fark eşitsizliğinin 

çözümü olan (5.41) eşitsizliğini kullanacağız. 

 

  𝑤௣ = ‖𝑧‖ஶ,ఠಿ,೛
, 𝜇 = 1 + 𝛽ିଵ ቀ3𝜀‖𝑎‖ஶ,ఠಿ,೛

+ ‖𝑐‖ஶ,ఠಿ,೛
ቁ 

 

  𝑤௣ିଵ = ‖𝑧‖ஶ,ఠಿ,೛షభ
 ve ψ୮ = 𝛽ିଵ‖𝑅‖ஶ,ఠಿ,೛

 

 

olarak alınırsa 

 

‖𝑧‖ஶ,ఠಿ,೛
≤ 𝛽ିଵ ෍ ቂ1 + 𝛽ିଵ ቀ3𝜀‖𝑎‖ஶ,ఠಿ,೛

+ ‖𝑐‖ஶ,ఠಿ,೛
ቁቃ

௣ି௦
௣

௦ୀଵ

‖𝑅‖ஶ,ఠಿ,ೖ
 

 

ifadesi elde edilir. Bu da Lemma 5.4’ün ispatıdır. 



 

 

5.7 Shishkin Şebeke (Parçalı Düzgün Şebeke)

 
𝐼 üzerinde düzgün olmayan şebeke 

 

𝜔ேబ
= ൛0

 

𝐼௣ her bir alt aralıklarında 𝑁

 

𝜔ே,௣ = {

 

 

 

şeklinde verilmektedir. 𝑔௜

normları aşağıdaki şekilde tanımlanmaktadır:

 

‖

 

‖

 

(5.46)-(5.47) fark şemasının 

kullanacağız. 𝑁  çift sayıları için

aralıklarının her birini 𝑁/

parçalı düzgün şebekede aşağıdaki doğru parçasında gösterildiği gibidir:

 

Şekil 5.1 [0.T] aralığının Shishkin şebekedeki parçalanışı
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(Parçalı Düzgün Şebeke) 

üzerinde düzgün olmayan şebeke 𝜔ேబ
 olsun: 

൛ < 𝑡଴ < 𝑡ଵ < ⋯ < 𝑡ேబ
= 𝑇,    ℎ௜ = 𝑡௜ − 𝑡௜ିଵൟ 

𝑁 şebeke noktalarını içerir (1 ≤ 𝑝 ≤ 𝑚). 

{𝑡௜: (𝑝 − 1)𝑁 + 1 ≤ 𝑖 ≤ 𝑝𝑁},    1 ≤ 𝑝 ≤ 𝑚, 

𝜔ேబ
=∪௣ୀଵ

௠ 𝜔ே,௣, 

𝜔ഥேబ
= 𝜔ேబ

∪ {0} 

= 𝑔(𝑡௜)  şebeke fonksiyonu için probleme uygun şebeke 

normları aşağıdaki şekilde tanımlanmaktadır: 

‖𝑔‖ஶ,ఠಿ,೛
= max

ఠಿ,೛

|𝑔௜| ,   1 ≤ 𝑝 ≤ 𝑚, 

‖𝑔‖ஶ,ఠಿబ
= max

ఠಿబ

|𝑔௜| ,   1 ≤ 𝑝 ≤ 𝑚. 

) fark şemasının 𝜀’na göre düzgün yakınsak olması için Shishkin şebekesini 

çift sayıları için parçalı düzgün 𝜔ே,௣  şebekesini ൣ𝑟௣ି

/2  tane eşit alt aralıklara böleceğiz. Bu bölünen aralıklar 

parçalı düzgün şebekede aşağıdaki doğru parçasında gösterildiği gibidir:

] aralığının Shishkin şebekedeki parçalanışı 

ൟ 

şebeke fonksiyonu için probleme uygun şebeke 

’na göre düzgün yakınsak olması için Shishkin şebekesini 

ൣ ିଵ, 𝜎௣൧ ve ൣ𝜎௣, 𝑟௣൧ 

Bu bölünen aralıklar 

parçalı düzgün şebekede aşağıdaki doğru parçasında gösterildiği gibidir: 
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Burada 𝜎௣ geçiş noktası, 

 

   𝜎௣ = 𝑟௣ିଵ + 𝑚𝑖𝑛 ቄ
௥

ଶ
, 𝛽ିଵ𝜀𝑙𝑛𝑁ቅ    (5.51) 

 

şebekenin kalın ve ince kısımlarını birbirinde ayıran geçiş noktasıdır. 

Burada ℎ௣
(ଵ) ve ℎ௣

(ଶ) adım uzunlukları, sırasıyla aşağıdaki şekilde tanımlanmaktadır: 

 

 ℎ௣
(ଵ)

= 2൫𝜎௣ − 𝑟௣ିଵ൯𝑁ିଵ,   ℎ௣
(ଶ)

= 2൫𝑟௣ − 𝜎௣൯𝑁ିଵ,    1 ≤ 𝑝 ≤ 𝑚.  (5.52) 

 

Şebekenin noktalar kümesi aşağıdaki şekilde verilmektedir: 

 

𝑡௜ = 𝑟௣ିଵ + (𝑖 − (𝑝 − 1)𝑁)ℎ௣
(ଵ)

,     𝑖 = (𝑝 − 1)𝑁, … , ቀ𝑝 −
ଵ

ଶ
ቁ 𝑁,   (5.53) 

 

𝑡௜ = 𝜎௣ + ቀ𝑖 − ቀ𝑝 −
ଵ

ଶ
ቁ 𝑁ቁ ℎ௣

(ଶ)
,    𝑖 = ቀ𝑝 −

ଵ

ଶ
ቁ 𝑁 + 1, … , 𝑝𝑁,   1 ≤ 𝑝 ≤ 𝑚. (5.54) 

 

5.8 Shishkin Şebekede Kalan Teriminin Değerlendirmesi 

 
Lemma 5.5 Eğer 𝑎 ∈ 𝐶ଵ(𝐼), 𝑏, 𝑐, 𝑓 ∈ 𝐶(𝐼) ve 𝜑 ∈ 𝐶ଵ(𝐼଴), o zaman 𝑅௜ hata fonksiyonu 

 

 ‖𝑅‖ஶ,ఠಿ,೛
≤ 𝐶𝑁ିଵ𝑙𝑛𝑁,    1 ≤ 𝑝 ≤ 𝑚   (5.55) 

 

değerlendirmesini sağlar. 

 

İspat. (5.45)’ten 

 

|𝑅௜| ≤ ℎ௜
ିଵ න(𝑡 − 𝑡௜ିଵ)

𝑑

𝑑𝑡
|𝑏(𝑡)𝑢(𝑡) + 𝑐(𝑡)𝑢(𝑡 − 𝑟) − 𝑓(𝑡)|𝑑𝑡

௧೔

௧೔షభ
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eşitsizliğini yazabiliriz. Bu eşitsizlikte, (5.1) ve Lemma 5.1’in şartlarını dikkate alırsak 

aşağıdaki ifadeyi yazabiliriz: 

 

|𝑅௜| ≤ 𝐶 ቐℎ௜ + න[|𝑢′(𝑡)| + |𝑢ᇱ(𝑡 − 𝑟)|]𝑑𝑡

௧೔

௧೔షభ

ቑ. 

 

Buradan da (5.2) eşitsizliğini göz önüne aldığımızda aşağıdaki değerlendirmeyi buluruz: 

 

|𝑅௜| ≤ 𝐶 ቐℎ௜ + න ൥
൫𝑡 − 𝑟௣ିଵ൯

௣ିଵ

𝜀௣
𝑒

൬
షഁ൫೟షೝ೛షభ൯

ഄ
൰

+
൫𝑡 − 𝑟௣ିଶ൯

௣ିଶ

𝜀௣ିଵ
𝑒

൬
షഁ൫೟షೝ೛షమ൯

ഄ
൰
൩ 𝑑𝑡

௧೔

௧೔షభ

ቑ. (5.56) 

 

Daha sonra 𝑥௞𝑒௫ ≤ 𝐶𝑒ିఊ ,   0 < 𝛾 < 1,   𝑥 ∈ [0, ∞), 𝑘 > 0 , eşitsizliğini (5.56) 

eşitsizliğine uygularsak (5.56) eşitsizliğini 

 

|𝑅௜| ≤ 𝐶 ቐℎ௜ +
1

𝜀
න ቈ𝑒

൬
షഁം൫೟షೝ೛షభ൯

ഄ
൰
቉ 𝑑𝑡

௧೔

௧೔షభ

ቑ 

 

formuna indirgemiş oluruz. 

Her bir 𝜔ே,௣ alt aralığında kalan terimi değerlendireceğiz. İlk önce 

 

𝜎௣ = 𝑟௣ିଵ + 𝑟/2 

 

durumunu göz önünde bulunduralım. Dolayısıyla 

 

𝑟/2 ≤ 𝛽ିଵ𝛾ିଵ𝜀𝑙𝑛𝑁 ve ℎ௣
(ଵ)

= ℎ௣
(ଶ)

= ℎ௣ = 𝑟/𝑁 

 

olur. Böylece 
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|𝑅௜| ≤ 𝐶 න ቈ1 +
1

𝜀
𝑒

షഁം൫೟షೝ೛షభ൯

ഄ ቉

௧೔

௧೔షభ

𝑑𝑡 ≤ 𝐶(1 + 𝜀ିଵ)ℎ௜ (5.57) 

  

|𝑅௜| ≤ 𝐶
𝑟

𝑁
൬1 +

2

𝑟
𝛽ିଵ𝛾ିଵ𝑙𝑛𝑁൰ 

 

yaklaşımı verilebilir. Buradan da 

 

  |𝑅௜| ≤ 𝐶𝑁ିଵ𝑙𝑛𝑁,     (𝑝 − 1)𝑁 ≤ 𝑖 ≤ 𝑝𝑁,    1 ≤ 𝑝 ≤ 𝑚  (5.58) 

 

sonucuna varılabilir. Şimdi de 

 

𝜎௣ = 𝑟௣ିଵ + 𝛽ିଵ𝛾ିଵ𝜀𝑙𝑛𝑁 

 

durumunu göz önünde bulunduracağız ve 𝑅௜ ’yi, ൣ𝑟௣ିଵ, 𝜎௣൧  ve ൣ𝜎௣, 𝑟௣൧  aralıklarında 

sırasıyla değerlendireceğiz. Önce ൣ𝑟௣ିଵ, 𝜎௣൧ sınır bölgesini ele alalım. (5.57)’den 

 

|𝑅௜| ≤ 𝐶(1 + 𝜀ିଵ)ℎ௜
(ଵ)

= 𝐶(1 + 𝜀ିଵ)2𝛽ିଵ𝛾ିଵ𝜀𝑁ିଵ𝑙𝑛𝑁 

 

≤ 𝐶(2𝛽ିଵ𝛾ିଵ𝜀𝑁ିଵ𝑙𝑛𝑁 + 2𝛽ିଵ𝛾ିଵ𝑁ିଵ𝑙𝑛𝑁) 

 

yazılabilir. Buradan da aşağıdaki eşitsizliğe varılabilir. 

 

 |𝑅௜| ≤ 𝐶𝑁ିଵ𝑙𝑛𝑁,   (𝑝 − 1)𝑁 ≤ 𝑖 ≤ (𝑝 − 1/2)𝑁,   1 ≤ 𝑝 ≤ 𝑚.  (5.59) 

 

Daha sonra ൣ𝜎௣, 𝑟௣൧ aralığında (𝑝 − 1/2)𝑁 + 1 ≤ 𝑖 ≤ 𝑝𝑁 için 𝑅௜’yi değerlendirelim. 

 

𝑡௜ = 𝜎௣ + (𝑖 − (𝑝 − 1/2)𝑁)ℎ௣
(ଶ)

= 𝑟௣ିଵ + 𝛽ିଵ𝛾ିଵ𝜀𝑙𝑛𝑁 + (𝑖 − (𝑝 − 1/2)𝑁)ℎ௣
(ଶ) 

 

olduğu için 
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|𝑅௜| ≤ 𝐶 ൜ℎ௣
(ଶ)

+ 𝛽ିଵ𝛾ିଵ𝑁ିଵ ൤𝑒
షഁം

ഄ
(௜ିଵି(௣ିଵ/ଶ)ே)௛೛

(మ)

− 𝑒
షഁം

ഄ
(௜ି(௣ିଵ/ଶ)ே)௛೛

(మ)

൨ൠ 

 

|𝑅௜| ≤ 𝐶 ൜ℎ௣
(ଶ)

+ 𝛽ିଵ𝛾ିଵ𝑁ିଵ𝑒
షഁം

ഄ
(௜ିଵି(௣ିଵ/ଶ)ே)௛೛

(మ)

൬1 − 𝑒
షഁം

ഄ
௛೛

(మ)

൰ൠ 

 

eşitsizliğini yazabiliriz. Buradan da 

 

   |𝑅௜| ≤ 𝐶𝑁ିଵ,   (𝑝 − 1/2)𝑁 + 1 ≤ 𝑖 ≤ 𝑝𝑁   (5.60) 

 

olduğu görülebilir. Sonuç olarak (5.58), (5.59) ve (5.60) beraber dikkate alınırsa (5.55) 

eşitsizliğinin ispatı tamamlanmış olur. 

 

Teorem 5.2 (1.1)-(1.2) probleminin çözümü 𝑢 ve (5.46)-(5.47) probleminin çözümü 𝑦 

olsun. Bu durumda 

 

‖𝑦 − 𝑢‖ஶ,ఠഥ ಿబ
≤ 𝐶𝑁ିଵ𝑙𝑛𝑁 

 

ifadesi doğrudur. 

 

İspat. Lemma 5.4 ve Lemma 5.5 beraber dikkate alınırsa teoremin doğruluğu kolaylıkla 

görünür. 

 

5.9 Bakhvalov Şebeke (Graded Mesh) 

 
𝐼 üzerinde düzgün olmayan şebeke 𝜔ேబ

 olsun. 

 

𝜔ேబ
= ൛0 < 𝑡଴ < 𝑡ଵ < ⋯ < 𝑡ேబ

= 𝑇,    ℎ௜ = 𝑡௜ − 𝑡௜ିଵൟ. 

 

𝐼௣ her bir alt aralıklarında 𝑁 şebeke noktalarını içerir: 

 

𝜔ே,௣ = {𝑡௜: (𝑝 − 1)𝑁 + 1 ≤ 𝑖 ≤ 𝑝𝑁},    1 ≤ 𝑝 ≤ 𝑚, 
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𝜔ேబ
=∪௣ୀଵ

௠ 𝜔ே,௣, 

 

𝜔ഥேబ
= 𝜔ேబ

∪ {0} 

 

şeklinde verilmektedir. 𝑔௜ = 𝑔(𝑡௜)  şebeke fonksiyonu için probleme uygun şebeke 

normları aşağıdaki şekilde tanımlanmaktadır: 

 

‖𝑔‖ஶ,ఠಿ,೛
= max

ఠಿ,೛

|𝑔௜| ,   1 ≤ 𝑝 ≤ 𝑚, 

 

‖𝑔‖ஶ,ఠಿబ
= max

ఠಿబ

|𝑔௜| ,   1 ≤ 𝑝 ≤ 𝑚. 

 

(5.46)-(5.47) fark şemasının 𝜀’na göre düzgün yakınsak olması için düzgün olmayan 

Bakhvalov şebeke olarak bilinen özel bir şebeke kullanacağız. 𝑁 çift sayısı için [0, 𝑇] 

aralığı, ൣ𝑟௣ିଵ, 𝑟௣൧ alt aralıklarından oluşmaktadır. Buradaki her bir ൣ𝑟௣ିଵ, 𝑟௣൧ aralıklarını 

da ൣ𝑟௣ିଵ, 𝜎௣൧ ve ൣ𝜎௣, 𝑟௣൧  alt aralıklarına bölelim. Bu bölünen aralıklar Bakhvalov 

şebekede aşağıdaki doğru parçasında gösterildiği gibidir: 

 

 

Şekil 5.2 [0.T] aralığının Bakhvalov şebekedeki parçalanışı 

 

Burada 𝜎௣ geçiş noktası, 

 

  𝜎௣ = 𝑟௣ିଵ + 𝑚𝑖𝑛 ቄ
௥

ଶ
, −𝛽ିଵ𝛾ିଵ𝜀𝑙𝑛𝜀ቅ ,   0 < 𝛾 < 1   (5.61) 

 

şebekenin kalın ve ince kısımlarını birbirinde ayıran geçiş noktasıdır. Şebeke noktalar 

kümesi de aşağıdaki gibi verilebilir: 

 

𝑡௜ ∈ ൣ𝑟௣ିଵ, 𝜎௣൧: 𝜎௣ < 𝑟௣ିଵ +
௥

ଶ
 için 
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𝑡௜ = 𝑟௣ିଵ − 𝛽ିଵ𝛾ିଵ𝜀𝑙𝑛 ቈ1 − (1 − 𝜀)
2(𝑖 − (𝑝 − 1)𝑁)

𝑁
቉, 

(𝑝 − 1)𝑁 + 1 ≤ 𝑖 ≤
(2𝑝 − 1)𝑁

2
, 

(5.62) 

 

𝑡௜ ∈ ൣ𝑟௣ିଵ, 𝜎௣൧: 𝜎௣ = 𝑟௣ିଵ +
௥

ଶ
 için 

 

𝑡௜ = 𝑟௣ିଵ − 𝛽ିଵ𝛾ିଵ𝜀𝑙𝑛 ቈ1 − ൬1 − 𝑒ି
ഁೝ೛

మഄ ൰
2(𝑖 − (𝑝 − 1)𝑁)

𝑁
቉, 

(𝑝 − 1)𝑁 + 1 ≤ 𝑖 ≤
(2𝑝 − 1)𝑁

2
, 

(5.63) 

 

𝑡௜ ∈ ൣ𝜎௣, 𝑟௣൧: 𝑡௜ = 𝜎௣ + ൬𝑖 − (2𝑝 − 1)
𝑁

2
൰

2൫𝑟௣ − 𝜎௣൯

𝑁
, 

(2𝑝 − 1)𝑁

2
+ 1 ≤ 𝑖 ≤ 𝑝𝑁;   1 ≤ 𝑝 ≤ 𝑁. 

(5.64) 

 

Bakhvalov şebekede (5.61), (5.62), (5.63) ve (5.64) dikkate alınarak hata 

değerlendirmesi yapılacaktır. 

 

5.10 Bakhvalov Şebekede Kalan Teriminin Değerlendirmesi 

 
Lemma 5.6 Lemma 5.1’in şartları altında, (5.46)-(5.47) şemasının kalan terimi 𝑅௜ için 

 

    ‖𝑅‖ஶ,ఠಿ,೛
≤ 𝐶𝑁ିଵ,   1 ≤ 𝑝 ≤ 𝑚   (5.65) 

 

eşitsizliği doğrudur. 

 

İspat. 𝑅௜ kalan terimi aşağıdaki gibidir: 

 

|𝑅௜| ≤ 𝐶 ቐℎ௜ + න[|𝑢′(𝑡)| + |𝑢ᇱ(𝑡 − 𝑟)|]𝑑𝑡

௧೔

௧೔షభ

ቑ. 
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Burada (5.2) eşitsizliğini göz önüne aldığımızda aşağıdaki değerlendirmeyi buluruz: 

 

|𝑅௜| ≤ 𝐶 ቐℎ௜ + න ൥
൫𝑡 − 𝑟௣ିଵ൯

௣ିଵ

𝜀௣
𝑒

൬
షഁ൫೟షೝ೛షభ൯

ഄ
൰

௧೔

௧೔షభ

+
൫𝑡 − 𝑟௣ିଶ൯

௣ିଶ

𝜀௣ିଵ
𝑒

൬
షഁ൫೟షೝ೛షమ൯

ഄ
൰቉ 𝑑𝑡ቑ. 

(5.66) 

 

𝑥௞𝑒௫ ≤ 𝐶𝑒ିఊ௫,   0 < 𝛾 < 1,   𝑥 ∈ [0, ∞), 𝑘 > 0, eşitsizliği (5.66) eşitsizliğine uygulanıp 

gerekli düzenlemeler yapıldığında (5.66) 

 

|𝑅௜| ≤ 𝐶 ቐℎ௜ +
1

𝜀
න ቈ𝑒

൬
షഁം൫೟షೝ೛షభ൯

ഄ
൰
቉ 𝑑𝑡

௧೔

௧೔షభ

ቑ (5.67) 

 

eşitsizliğine indirgenmiş olur. İlk olarak 

 

𝜎௣ < 𝑟௣ିଵ +
𝑟

2
 

 

durumunu göz önünde bulunduralım. Buradan 

 

𝜎௣ = 𝑟௣ିଵ − 𝛽ିଵ𝛾ିଵ𝜀𝑙𝑛𝜀 

 

olur. ൣ𝑟௣ିଵ, 𝜎௣൧ sınır bölgesinde (5.67)’den aşağıdaki eşitsizlik yazılabilir: 

 

|𝑅௜| ≤ 𝐶 ቊℎ௜ + 𝛽ିଵ𝛾ିଵ ቈ𝑒
షഁം൫೟೔షభషೝ೛షభ൯

ഄ − 𝑒
షഁം൫೟೔షೝ೛షభ൯

ഄ ቉ቋ, 

(𝑝 − 1)𝑁 + 1 ≤ 𝑖 ≤
(2𝑝 − 1)𝑁

2
. 

(5.68) 

 

Burada 
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ℎ௜ = 𝑡௜ − 𝑡௜ିଵ = 𝛽ିଵ𝛾ିଵ𝜀 ቊ−𝑙𝑛 ൤1 − (1 − 𝜀)
2𝑖

𝑁
൨ + 𝑙𝑛 ቈ1 − (1 − 𝜀)

2(𝑖 − 1)

𝑁
቉ቋ 

 

olur ve daha sonra 𝑖’ye göre ortalama değer teoremi uygulanırsa 

 

ℎ௜ = 𝛽ିଵ𝛾ିଵ𝜀
4(1 − 𝜀)𝑁ିଵ

1 − 𝑖∗2(1 − 𝜀)𝑁ିଵ
≤ 4 𝛽ିଵ𝛾ିଵ(1 − 𝜀)𝑁ିଵ ≤ 𝐶𝑁ିଵ (5.69) 

 

olur ve 

 

𝑒
షഁം൫೟೔షభషೝ೛షభ൯

ഄ = 𝑒ି
ഁംቈషഁషభംషభഄ೗೙൤భష(భషഄ)

మ(೔షభ)
ಿ

൨቉

ഄ = ቈ1 − (1 − 𝜀)
2(𝑖 − 1)

𝑁
቉ 

 

𝑒
షഁം൫೟೔షೝ೛షభ൯

ഄ = 𝑒ି
ഁംቈషഁషభംషభഄ೗೙൤భష(భషഄ)

మ೔
ಿ

൨቉

ഄ = ൤1 − (1 − 𝜀)
2𝑖

𝑁
൨ 

 

eşitlikleri yazılabilir. Buradan 

 

𝑒
షഁം൫೟೔షభషೝ೛షభ൯

ഄ − 𝑒
షഁം൫೟೔షೝ೛షభ൯

ഄ = ቈ1 − (1 − 𝜀)
2(𝑖 − 1)

𝑁
቉ − ൤1 − (1 − 𝜀)

2𝑖

𝑁
൨ 

 

  𝑒
షഁം൫೟೔షభషೝ೛షభ൯

ഄ − 𝑒
షഁം൫೟೔షೝ೛షభ൯

ഄ ≤ 𝐶𝑁ିଵ    (5.70) 

 

olur. Sonuç olarak (5.69) ve (5.70), (5.68) de dikkate alınırsa 

 

|𝑅௜| ≤ 𝐶𝑁ିଵ,   (𝑝 − 1)𝑁 + 1 ≤ 𝑖 ≤
(2𝑝 − 1)𝑁

2
 (5.71) 

 

eşitsizliği elde edilir. Şimdi de ൣ𝜎௣, 𝑟௣൧ bölgesine bakalım. (5.2)’den 
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|𝑢′(𝑡)| ≤ 𝐶 ቆ𝜀ିଵ𝑒
షഁം൫೟షೝ೛షభ൯

ഄ ≤ 1ቇ 

 

alınabileceğinden 

 

|𝑅௜| ≤ 𝐶ℎ௜ 

 

olur. Buradan 

 

|𝑅௜| ≤ 𝐶𝑁ିଵ ,   
(2𝑝 − 1)𝑁

2
+ 1 ≤ 𝑖 ≤ 𝑝𝑁;   1 ≤ 𝑝 ≤ 𝑁 (5.72) 

 

eşitsizliği yazılabilir. Şimdi de 

 

𝜎௣ = 𝑟௣ିଵ +
𝑟

2
 

 

durumunu göz önünde bulunduralım. Bu durumda 

 

𝑟

2
< −𝛽ିଵ𝛾ିଵ𝜀𝑙𝑛𝜀 

 

olur. ൣ𝑟௣ିଵ, 𝜎௣൧ sınır bölgesinde aşağıdaki eşitsizlikleri kullanacağız: 

 

ℎ௜ = 𝑡௜ − 𝑡௜ିଵ = 𝛽ିଵ𝛾ିଵ𝜀 ቊ−𝑙𝑛 ൤1 − ൬1 − 𝑒ି
ഁೝ

మഄ ൰
2𝑖

𝑁
൨ + 𝑙𝑛 ቈ1 − ൬1 − 𝑒ି

ഁೝ

మഄ ൰
2(𝑖 − 1)

𝑁
቉ቋ. 

 

Burada 𝑖’ye göre ortalama değer teoremini uyguladığımızda 

 

ℎ௜ = 𝛽ିଵ𝜀
4 ൬1 − 𝑒ି

ഁೝ

మഄ ൰ 𝑁ିଵ

1 − 𝑖∗2 ൬1 − 𝑒ି
ഁೝ

మഄ ൰ 𝑁ିଵ

≤ 4 𝛽ିଵ ൬1 − 𝑒ି
ഁೝ

మഄ ൰ 𝑁ିଵ ≤ 𝐶𝑁ିଵ (5.73) 

 

elde edilir ve ayrıca 
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𝑒
షഁം൫೟೔షభషೝ೛షభ൯

ഄ − 𝑒
షഁം൫೟೔షೝ೛షభ൯

ഄ = 2 ൬1 − 𝑒ି
ഁೝ

మഄ ൰ 𝑁ିଵ ≤ 𝐶𝑁ିଵ (5.74) 

 

eşitliği yazılabilir. Dolayısıyla (5.73) ve (5.74), (5.68)’de dikkate alınırsa 

 

|𝑅௜| ≤ 𝐶𝑁ିଵ,   (𝑝 − 1)𝑁 + 1 ≤ 𝑖 ≤
(2𝑝 − 1)𝑁

2
 (5.75) 

 

eşitsizliği elde edilir. Son olarak ൣ𝜎௣, 𝑟௣൧ bölgesine bakalım. (5.2) eşitsizliğindenden 

 

|𝑢′(𝑡)| ≤ 𝐶 ቆ𝜀ିଵ𝑒
షഁം൫೟షೝ೛షభ൯

ഄ ≤ 1ቇ 

 

yazılabilir. Dolayısıyla 

 

|𝑅௜| ≤ 𝐶ℎ௜ 

 

olur. Buradan da 

 

|𝑅௜| ≤ 𝐶𝑁ିଵ ,   
(2𝑝 − 1)𝑁

2
+ 1 ≤ 𝑖 ≤ 𝑝𝑁;   1 ≤ 𝑝 ≤ 𝑚 (5.76) 

 

eşitsizliği yazılabilir. (5.71), (5.72), (5.73) ve (5.76) değerlendirmelerini beraber dikkate 

alındığında (5.65)’in ispatı tamamlanmış olur. 

 

Teorem 5.3 (1.1)-(1.2) probleminin çözümü 𝑢 ve (5.46)-(5.47) probleminin çözümü 𝑦 

olsun. Bu durumda 

 

‖𝑦 − 𝑢‖ஶ,ఠഥ ಿబ
≤ 𝐶𝑁ିଵ 

 

değerlendirmesi doğrudur. 
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İspat. Lemma 5.4 ve Lemma 5.6 birlikte dikkate alınırsa teoremin doğruluğu kolaylıkla 

görünür. 

 

5.11 Nümerik Sonuçlar 

 
Bu bölümde (1.1)-(1.2) lineer problemi için Çizelge 5.1’de Shishkin tipindeki 

parçalı düzgün şebeke üzerinde kurulmuş fark şeması ve Çizelge 5.2’de Bakhvalov 

tipindeki düzgün olmayan şebeke üzerine kurulmuş fark şeması için bazı nümerik 

sonuçlar sunulmuştur. Ayrıca nümerik sonuçlara ait grafik çizimleri yapılmıştır. 

 

Örnek 5.1 Aşağıdaki test problemini ele alıyoruz. 

 

𝜀 ൤𝑢(𝑡) +
1

4
𝑡𝑎𝑛ℎ²(𝑡)𝑢(𝑡 − 1)൨

ᇱ

+ 32(𝑡² + 8)𝑢(𝑡) −
1

8
𝑒ିଶ௧𝑢(𝑡 − 1) 

        = 3𝑡² + 𝑒ି௧, 0 < 𝑡 ≤ 2, 

 

    𝑢(𝑡) = 𝑒௧ ,   − 1 ≤ 𝑡 ≤ 0. 

 

Bu problemin kesin çözümü 𝑢(𝑡) bilinmiyor. Bu nedenle bizim 𝜔ே,௣ şebeke üzerindeki 

maksimum hataları tahmin etmek için çift katlı şebeke prensibini kullanacağız (Doolan 

vd., 1980; Farell vd., 2000). Burada kullanılan başlangıç tahmini 

 

𝑦௜
(଴)

= 1 − 𝑒ି௧೔ 

 

olarak alınmıştır ve iterasyon sayısı 𝑛 şu şekilde seçilmiştir: 

 

max
௜

ቚ𝑦௜
(௡)

− 𝑦௜
(௡ିଵ)

ቚ ≤ 10ିହ. 

 

Ortaya çıkan 𝑒ఌ,ே  hataları ve belirli 𝜀  ve 𝑁  değerleri için 𝑝ఌ,ே  yakınsama dereceleri 

Çizelge 5.1 ve Çizelge 5.2’de listelenmiştir. 

Bu kısımda, parçalı düzgün şebeke (Shishkin şebeke) üzerinde (1.1)-(1.2) 

problemine uygulanan (5.46)-(5.47) fark şeması için Örnek 5.1 üzerinden bazı nümerik 
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sonuçlar sunacağız. Ele alınan problem, 𝜀 = 2ି௜ , 𝑖 = 4, 8, … , 24  ve 

𝑁 = 32, 64, 128, 256, 512, 1024  değerleri için hesaplanmaktadır. Elde edilen 𝑒ே 

hataları ve buna karşılık gelen uygun 𝑝ே değerleri Çizelge 5.1’de verilmiştir. 

 

Çizelge 5.1 Örnek 5.1 için Shishkin şebekede 𝜀 ve 𝑁’nin farklı değerleri için maksimum 
hatalar ve yakınsama oranları 

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024 

2ିସ 0.0175036 0.0110168 0.0066281 0.0038630 0.0021985 0.0012296 

 0.67 0.73 0.78 0.81 0.84  

2ି଼ 0.0175036 0.0110168 0.0066281 0.0038630 0.0021985 0.0012296 

 0.67 0.73 0.78 0.81 0.84  

2ିଵଶ 0.0175036 0.0110168 0.0066281 0.0038630 0.0021985 0.0012296 

 0.67 0.73 0.78 0.81 0.84  

2ିଵ଺ 0.0175036 0.0110168 0.0066281 0.0038630 0.0021985 0.0012296 

 0.67 0.73 0.78 0.81 0.84  

2ିଶ଴ 0.0175036 0.0110168 0.0066281 0.0038630 0.0021985 0.0012296 

 0.67 0.73 0.78 0.81 0.84  

2ିଶସ 0.0175036 0.0110168 0.0066281 0.0038630 0.0021985 0.0012296 

 0.67 0.73 0.78 0.81 0.84  

𝑒ே 0.0175036 0.0110168 0.0066281 0.0038630 0.0021985 0.0012296 

𝑝ே 0.67 0.73 0.78 0.81 0.84  
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Şekil 5.3 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 5.1’in [0,2] aralığında Shishkin şebekedeki 
nümerik çözümü 

 

 

Şekil 5.4 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 5.1’in [0,1] aralığında Shishkin şebekedeki 
nümerik çözümü 
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Şekil 5.5 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 5.1’in [1,2] aralığında Shishkin şebekedeki 
nümerik çözümü 

 

 

Şekil 5.6 Farklı 𝜀 ve 𝑁 değerleri için Örnek 5.1’in Shishkin şebekedeki maksimum hata 
grafiği 
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Burada da düzgün olmayan şebeke (Bakhvalov şebeke) üzerinde (1.1)-(1.2) 

problemine uygulanan (5.46)-(5.47) fark şeması için Örnek 5.1 üzerinden bazı nümerik 

sonuçlar sunacağız. Ele alınan problem, 𝜀 = 2ି௜ , 𝑖 = 8, … , 24, 28  ve 𝑁 =

16, 32, 64, 128, 256, 512 değerleri için hesaplanmaktadır. Ortaya çıkan 𝑒ே  hataları ve 

buna karşılık gelen uygun 𝑝ே değerleri Çizelge 5.2’de verilmiştir. 

 

Çizelge 5.2 Örnek 5.1 için Bakhvalov şebekede 𝜀  ve 𝑁 ’nin farklı değerleri için 
maksimum hatalar ve yakınsama oranları 

𝜀 𝑁 = 16 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 

2ି଼ 0.0219117 0.0123980 0.0066681 0.0035017 0.0018086 0.0009237 

 0.82 0.89 0.93 0.95 0.97  

2ିଵଶ 0.0220092 0.0124257 0.0066968 0.0035139 0.0018151 0.0009271 

 0.82 0.89 0.93 0.95 0.97  

2ିଵ଺ 0.0220152 0.0124272 0.0066986 0.0035149 0.0018156 0.0009272 

 0.82 0.89 0.93 0.95 0.97  

2ିଶ଴ 0.0220156  0.0124273 0.0066987 0.0035149 0.0018156 0.0009272 

 0.83 0.89 0.93 0.95 0.97  

2ିଶସ 0.0220156 0.0124273 0.0066987 0.0035150 0.0018156 0.0009272 

 0.83 0.89 0.93 0.95 0.97  

2ିଶ଼ 0.0220156 0.0124273 0.0066987 0.0035150 0.0018156 0.0009272 

 0.83 0.89 0.93 0.95 0.97  

𝑒ே 0.0220156 0.0124273 0.0066987 0.0035150 0.0018156 0.0009272 

𝑝ே 0.83 0.89 0.93 0.95 0.97  
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Şekil 5.7 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 5.1’in [1,2] aralığında Bakhvalov şebekedeki 
nümerik çözümü 

 

 

Şekil 5.8 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 5.1’in [0,1] aralığında Bakhvalov şebekedeki 
nümerik çözümü 
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Şekil 5.9 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 5.1’in [1,2] aralığında Bakhvalov şebekedeki 
nümerik çözümü 

 

 

Şekil 5.10 Farklı 𝜀 ve 𝑁 değerleri için Örnek 5.1’in Bakhvalov şebekedeki maksimum 
hata grafiği 
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5.12 Bölüm Sonu Değerlendirmesi 

 
Bu bölümde birinci mertebeden lineer SPNDDE ele alındı. (1.1) ve (1.2) 

probleminin çözümü 𝑢 ve 𝑢ᇱ için bazı değerlendirmeler yapıldı. Düzgün şebekede üstel 

katsayılı fark şeması kuruldu, fark şemasının kararlılık ve düzgün yakınsaklık analizi 

yapıldı. Düzgün şebekede kesin çözümün, yaklaşık çözüme 𝜀 ≤ ℎ şartı altında birinci 

mertebeden düzgün yakınsak olduğu gösterildi. Bu ise pratik olmayan ağır bir şarttır. 

Bu değerlendirmenin iyileştirilemez olduğu birinci mertebeden singüler pertürbe bir 

problem üzerinde gösterilmiştir (Amirali ve Amirali, 2018). Düzgün olmayan şebeke 

için de klasik fark şeması kuruldu. Fark şemasının kararlılığı ve düzgün yakınsaklığı 

Shishkin ve Bakhvalov şebekelerde incelendi. Yakınsama hızı, Shishkin şebeke için 

𝑂(𝑁ିଵ𝑙𝑛𝑁)  ve Bakhvalov şebeke için 𝑂(𝑁ିଵ)  olduğu gösterildi. Daha sonra kesin 

çözümü olmayan bir örnek ele alınarak Shishkin şebeke ve Bakhvalov şebeke için 

nümerik sonuçlar incelendi ve grafik çizimleri yapıldı.  
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6. LİNEER OLMAYAN SİNGÜLER PERTÜRBE NEUTRAL TİP 
GECİKMELİ DİFERANSİYEL PROBLEM 

 
Bu bölümde (1.3)-(1.4) problemi için Lemma 6.1’de bazı ön değerlendirmeler 

yapılacak ve daha sonra fark şeması kurulacaktır. Fark şemasının kararlılığı ve düzgün 

yakınsaklığı incelenecektir. Lemma 6.2’de hata fonksiyonu 𝑧௜ ’nin, Lemma 6.3’te 

Shishkin şebekede kalan terim 𝑅௜’nin ve Lemma 6.4’te Bakhvalov şebekede kalan terim 

𝑅௜’nin değerlendirmesi yapılacaktır. Daha sonra Teorem 6.1’de, Lemma 6.2 ve Lemma 

6.3’ün birleşiminden Shishkin şebekede ve Teorem 6.2’de, Lemma 6.2 ve Lemma 

6.4’ün birleşiminden Bakhvalov şebekede fark şemasının kararlılığı ve düzgün 

yakınsaklığı gösterilmiş olacaktır. 

 

6.1 Bazı Ön Değerlendirmeler 

 
Bu kısımda nümerik metodumuzu sunmadan önce (1.3)-(1.4) probleminin 𝑢(𝑡) 

çözümünün ve türevinin bazı özelliklerini vereceğiz. Uygun nümerik çözümün 

analizinde bu özelliklere ihtiyaç duyulacaktır. 

 

Lemma 6.1 𝑎 ∈ 𝐶ଵ൫𝐼൯, 𝑓 ∈ 𝐶ଵ൫𝐼 × ℝ × ℝ൯ ve 𝜑 ∈ 𝐶ଵ(𝐼଴) olduğunu kabul edelim. O 

zaman (1.3)-(1.4) probleminin 𝑢 çözümü ve türevi için aşağıdaki değerlendirmeler 

doğrudur: 

 

‖𝑢‖ஶ,ூ೛
≤ 𝐶௣,   1 ≤ 𝑝 ≤ 𝑚,     (6.1) 

 

|𝑢′(𝑡)| ≤ 𝐶 ቊ1 +
൫௧ି௥೛షభ൯

೛షభ

ఌ೛
𝑒

షഋ൫೟షೝ೛షభ൯

ഄ ቋ ,   1 ≤ 𝑝 ≤ 𝑚.  (6.2) 

 

Burada 

 

𝐶ଵ = ൫1 + 2‖𝑎‖ஶ,ூభ
൯‖𝜑‖ஶ,ூబ

+ 𝜇ିଵ ቄฮ𝑓ሚฮ
ஶ,ூభ

+ ൣ𝑀ଶ + ‖𝑎‖ஶ,ூభ
𝑀ଵ൧‖𝜑‖ஶ,ூబ

ቅ, 

 

𝐶ଶ ≡ ൫1 + ‖𝑎‖ஶ,ூమ
൯𝐶ଵ + ‖𝑎‖ஶ,ூమ

‖𝜑‖ஶ,ூబ
+ 𝜇ିଵ ቄฮ𝑓ሚฮ

ஶ,ூమ
+ ൣ𝑀ଶ + ‖𝑎‖ஶ,ூమ

𝑀ଵ൧𝐶ଵቅ, 
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𝐶ଷ ≡ ൫1 + ‖𝑎‖ஶ,ூయ
൯𝐶ଶ + ‖𝑎‖ஶ,ூయ

𝐶ଵ + 𝜇ିଵ ቄฮ𝑓ሚฮ
ஶ,ூయ

+ ൣ𝑀ଶ + ‖𝑎‖ஶ,ூయ
𝑀ଵ൧𝐶ଶቅ, 

 

𝐶௣ ≡ ቀ1 + ‖𝑎‖ஶ,ூ೛
ቁ 𝐶௣ିଵ + ‖𝑎‖ஶ,ூ೛

𝐶௣ିଶ + 𝜇ିଵ ൜ฮ𝑓ሚฮ
ஶ,ூ೛

+ ቂ𝑀ଶ + ‖𝑎‖ஶ,ூ೛
𝑀ଵቃ 𝐶௣ିଵൠ. 

 

İspat. Lineer olmayan 𝑓 terimi için Teorem 4.1 uygulanırsa 

 

𝑓൫𝑡, 𝑢(𝑡), 𝑣(𝑡)൯ − 𝑓(𝑡, 0,0) =
𝜕

𝜕𝑢
𝑓൫𝑡, 𝜃𝑢(𝑡), 𝜃𝑣(𝑡)൯𝑢(𝑡) +

𝜕

𝜕𝑣
𝑓൫𝑡, 𝜃𝑢(𝑡), 𝜃𝑣(𝑡)൯𝑣(𝑡) 

 

eşitliği elde edilir. Burada 

 

𝑏෨(𝑡) =
డ௙

డ௨
(𝑡, 𝑢෤, 𝑣෤), 

 

𝑐̃(𝑡) =
𝜕𝑓

𝜕𝑣
(𝑡, 𝑢෤, 𝑣෤), 

 

𝑓ሚ(𝑡) = −𝑓(𝑡, 0,0), 

 

𝑢෤ = 𝜃𝑢(𝑡),   𝑣෤ = 𝜃𝑢(𝑡 − 𝑟),   0 < 𝜃 < 1 

 

ifadeleri göz önünde bulundurulursa (1.3) denklemi aşağıdaki formda yazılabilir: 

 

𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]ᇱ + 𝑏෨(𝑡)𝑢(𝑡) + 𝑐̃(𝑡)𝑢(𝑡 − 𝑟) = 𝑓ሚ(𝑡),   𝑡 ∈ 𝐼.  (6.3) 

 

Burada uygun dönüşümle, (6.3) problemi 

 

𝜀𝑤ᇱ(𝑡) + 𝑏෨(𝑡)𝑤(𝑡) = 𝐻(𝑡)     (6.4) 

 

formunda yazılabilir. Burada 

 

𝑤(𝑡) = 𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟) 
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ve 

 

𝐺(𝑡) = 𝑓ሚ(𝑡) − ൣ𝑐̃(𝑡) − 𝑎(𝑡)𝑏෨(𝑡)൧𝑢(𝑡 − 𝑟) 

 

olur. (6.1) ifadesini değerlendirmek için tümevarım yöntemini kullanıyoruz. (6.4) 

eşitliğinden aşağıdaki değerlendirmeyi yazabiliriz: 

 

𝑤(𝑡) = 𝑤൫𝑟௣ିଵ൯𝑒
ି

భ

ഄ
∫ ௕෨(௦)ௗ௦

೟
ೝ೛షభ +

1

𝜀
න 𝐺(𝜏)𝑒ି

భ

ഄ
∫ ௕෨(௦)ௗ௦

೟
ഓ 𝑑𝜏

௧

௥೛షభ

,   𝑡 ∈ 𝐼௣. (6.5) 

 

𝑤(𝑡) ve 𝐺(𝑡) değerlerini (6.5)’te yerine yazarsak 

 

𝑢(𝑡) = −𝑎(𝑡)𝑢(𝑡 − 𝑟) + ൣ𝑢൫𝑟௣ିଵ൯ + 𝑎൫𝑟௣ିଵ൯𝑢൫𝑟௣ିଵ − 𝑟൯൧𝑒
ି

భ

ഄ
∫ ௕෨(௦)ௗ௦

೟
ೝ೛షభ  

+
1

𝜀
න ൛𝑓ሚ(𝜏) − [𝑐̃(𝜏) − 𝑎(𝜏)𝑏෨(𝜏)]𝑢(𝜏 − 𝑟)ൟ𝑒ି

భ

ഄ
∫ ௕෨(௦)ௗ௦

೟
ഓ 𝑑𝜏

௧

௥೛షభ

 

 

= −𝑎(𝑡)𝑢(𝑡 − 𝑟) + ൣ𝑢൫𝑟௣ିଵ൯ + 𝑎൫𝑟௣ିଵ൯𝑢൫𝑟௣ିଵ − 𝑟൯൧𝑒
షഋ൫೟షೝ೛షభ൯

ഄ  

+
1

𝜀
න ൛𝑓ሚ(𝜏) − [𝑐̃(𝜏) − 𝑎(𝜏)𝑏෨(𝜏)]𝑢(𝜏 − 𝑟)ൟ𝑒

షഋ(೟షഓ)

ഄ 𝑑𝜏

௧

௥೛షభ

 
(6.6) 

 

eşitliğini elde ediyoruz. 𝑝 = 1 için (𝑡 ∈ 𝐼ଵ) 

 

|𝑢(𝑡)| ≤ |𝑎(𝑡)||𝑢(𝑡 − 𝑟)| + [|𝜑(0)| + |𝑎(0)||𝜑(−𝑟)|]𝑒
షഋ೟

ഄ  

+
1

𝜀
න൛ห𝑓ሚ(𝜏)ห + ൣ|𝑐̃(𝜏)| + |𝑎(𝜏)|ห𝑏෨(𝜏)ห൧|𝜑(𝜏 − 𝑟)|ൟ

௧

଴

𝑒
షഋ(೟షഓ)

ഄ 𝑑𝜏 

 

‖𝑢‖ஶ,ூభ
≤ ‖𝑎‖ஶ,ூభ

‖𝜑‖ஶ,ூబ
+ ‖𝜑‖ஶ,ூబ

+ ‖𝑎‖ஶ,ூభ
‖𝜑‖ஶ,ூబ
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+ ቄฮ𝑓ሚฮ
ஶ,ூభ

+ [‖𝑐̃‖ஶ,ூభ
+ ‖𝑎‖ஶ,ூభ

ฮ𝑏෨ฮ
ஶ,ூభ

]‖𝜑‖ஶ,ூబ
ቅ

1

𝜀
න 𝑒

షഋ(೟షഓ)

ഄ 𝑑𝜏

௧

଴

 

 

≤ ‖𝑎‖ஶ,ூభ
‖𝜑‖ஶ,ூబ

+ ‖𝜑‖ஶ,ூబ
+ ‖𝑎‖ஶ,ூభ

‖𝜑‖ஶ,ூబ
 

+ ቄฮ𝑓ሚฮ
ஶ,ூభ

+ ቀ‖𝑐̃‖ஶ,ூభ
+ ‖𝑎‖ஶ,ூభ

ฮ𝑏෨ฮ
ஶ,ூభ

ቁ ‖𝜑‖ஶ,ூబ
ቅ 𝜇ିଵ𝑒

షഋ೟

ഄ  

 

yazılabilir. Buradan 

 

‖𝑢‖ஶ,ூభ
≤ ൫1 + 2‖𝑎‖ஶ,ூభ

൯‖𝜑‖ஶ,ூబ
 

+𝜇ିଵ ቄฮ𝑓ሚฮ
ஶ,ூభ

+ ቂ‖𝑐̃‖ஶ,ூభ
+ ‖𝑎‖ஶ,ூభ

ฮ𝑏෨ฮ
ஶ,ூభ

ቃ ‖𝜑‖ஶ,ூబ
ቅ ≡ 𝐶ଵ 

 

ifadesi 𝑝 = 1 için (6.1) eşitsizliğinin ispatıdır. Yine (6.6)’dan 𝑝 = 2 için (𝑡 ∈ 𝐼ଶ) 

 

|𝑢(𝑡)| ≤ |𝑎(𝑡)||𝑢(𝑡 − 𝑟)| + [|𝑢(𝑟)| + |𝑎(𝑟)||𝑢(0)|]𝑒
షഋ(೟షೝ)

ഄ  

+
1

𝜀
න൛ห𝑓ሚ(𝜏)ห + ൣ|𝑐̃(𝜏)| + |𝑎(𝜏)|ห𝑏෨(𝜏)ห൧|𝑢(𝜏 − 𝑟)|ൟ

௧

଴

𝑒
షഋ(೟షഓ)

ഄ 𝑑𝜏 

 

eşitsizliğini elde ediyoruz. Bu eşitsizlikten 

 

‖𝑢‖ஶ,ூమ
≤ ‖𝑎‖ஶ,ூమ

‖𝑢‖ஶ,ூభ
+ ‖𝑢‖ஶ,ூభ

+ ‖𝑎‖ஶ,ூమ
‖𝜑‖ஶ,ூబ

 

+ ቄฮ𝑓ሚฮ
ஶ,ூమ

+ [‖𝑐̃‖ஶ,ூమ
+ ‖𝑎‖ஶ,ூమ

ฮ𝑏෨ฮ
ஶ,ூమ

]‖𝑢‖ஶ,ூభ
ቅ

1

𝜀
න 𝑒

షഋ(೟షഓ)

ഄ 𝑑𝜏

௧

௥

 

 

≤ ൫1 + ‖𝑎‖ஶ,ூమ
൯𝐶ଵ + ‖𝑎‖ஶ,ூమ

‖𝜑‖ஶ,ூబ
 

+ ቄฮ𝑓ሚฮ
ஶ,ூమ

+ ቂ‖𝑐̃‖ஶ,ூమ
+ ‖𝑎‖ஶ,ூమ

ฮ𝑏෨ฮ
ஶ,ூమ

ቃ 𝐶ଵቅ 𝜇ିଵ ൬1 − 𝑒
షഋ(೟షೝ)

ഄ ൰ 

 

‖𝑢‖ஶ,ூమ
≤ ൫1 + ‖𝑎‖ஶ,ூమ

൯𝐶ଵ + ‖𝑎‖ஶ,ூమ
‖𝜑‖ஶ,ூబ

 

+𝜇ିଵ ቄฮ𝑓ሚฮ
ஶ,ூమ

+ ቂ‖𝑐̃‖ஶ,ூమ
+ ‖𝑎‖ஶ,ூమ

ฮ𝑏෨ฮ
ஶ,ூమ

ቃ 𝐶ଵቅ ≡ 𝐶ଶ 
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yaklaşımı bulunur. Benzer şekilde 𝑝 = 3 için (𝑡 ∈ 𝐼ଷ) 

 

  ‖𝑢‖ஶ,ூయ
≤ ൫1 + ‖𝑎‖ஶ,ூయ

൯𝐶ଶ + ‖𝑎‖ஶ,ூయ
𝐶ଵ 

+𝜇ିଵ ቄฮ𝑓ሚฮ
ஶ,ூయ

+ ቂ‖𝑐̃‖ஶ,ூయ
+ ‖𝑎‖ஶ,ூయ

ฮ𝑏෨ฮ
ஶ,ூయ

ቃ 𝐶ଶቅ ≡ 𝐶ଷ 

 

değerlendirmesini elde ediyoruz. Daha sonra, 𝑝 = 𝑘  için (6.1) eşitsizliğinin doğru 

olduğunu kabul edelim. Yani 

 

 ‖𝑢‖ஶ,ூೖ
≤ ൫1 + ‖𝑎‖ஶ,ூೖ

൯𝐶௞ିଵ + ‖𝑎‖ஶ,ூೖ
𝐶௞ିଶ 

+𝛽ିଵ ቄฮ𝑓ሚฮ
ஶ,ூೖ

+ ቂ‖𝑐̃‖ஶ,ூೖ
+ ‖𝑎‖ஶ,ூೖ

ฮ𝑏෨ฮ
ஶ,ூೖ

ቃ 𝐶௞ିଵቅ ≡ 𝐶௞ 

 

eşitsizliği doğru olsun. Böylece 𝑡 ∈ 𝐼௞ାଵ  için değerlendirmenin doğru olduğunu 

gösterelim. (6.6) denkleminden 

 

 ‖𝑢‖ஶ,ூೖశభ
≤ ൫1 + ‖𝑎‖ஶ,ூೖశభ

൯𝐶௞ + ‖𝑎‖ஶ,ூೖశభ
𝐶௞ିଵ 

+𝛽ିଵ ቄฮ𝑓ሚฮ
ஶ,ூೖశభ

+ ቂ‖𝑐̃‖ஶ,ூೖశభ
+ ‖𝑎‖ஶ,ூೖశభ

ฮ𝑏෨ฮ
ஶ,ூೖశభ

ቃ 𝐶௞ቅ ≡ 𝐶௞ାଵ 

 

eşitsizliğini yazabiliyoruz. Dolayısıyla 𝑝 = 𝑘 + 1 için de (6.1) eşitsizliğinin doğruluğu 

ispatlanmış oldu. Böylece (6.1) eşitsizliğinin ispatı tamamlanır. 

Şimdi ise (6.2) eşitsizliğini ispat edelim. (6.4)’ten bir kere türev alırsak aşağıdaki 

denklem elde edilir: 

 

  𝜀𝑤ᇱᇱ(𝑡) + 𝑏෨(𝑡)𝑤ᇱ(𝑡) = 𝐺ᇱ(𝑡) − 𝑏෨ ᇱ(𝑡)𝑤(𝑡) = 𝐻(𝑡).  (6.7) 

 

Burada 𝐻(𝑡) aşağıda verildiği gibidir: 

 

  𝐻(𝑡) = 𝑓ሚᇱ(𝑡) + ൣ𝑎ᇱ(𝑡)𝑏෨(𝑡) − 𝑐̃ᇱ(𝑡)൧𝑢(𝑡 − 𝑟) 

     +ൣ𝑎(𝑡)𝑏෨(𝑡) − 𝑐̃(𝑡)൧𝑢ᇱ(𝑡 − 𝑟) − 𝑏෨ ᇱ(𝑡)𝑢(𝑡). 
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İspata geçmeden önce 𝐻(𝑡) için aşağıdaki değerlendirmeyi yapalım: 

 

|𝐻(𝑡)| ≤ ห𝑓ሚᇱ(𝑡)ห + ൣ|𝑎ᇱ(𝑡)|ห𝑏෨(𝑡)ห + |𝑐̃ᇱ(𝑡)|൧|𝑢(𝑡 − 𝑟)| 

+ൣ|𝑎(𝑡)|ห𝑏෨(𝑡)ห + |𝑐̃(𝑡)|൧|𝑢ᇱ(𝑡 − 𝑟)| + ห𝑏෨ᇱ(𝑡)ห|𝑢(𝑡)|. 

 

Buradan 

 

   |𝐻(𝑡)| ≤ 𝐶(1 + |𝑢ᇱ(𝑡 − 𝑟)|)     (6.8) 

 

eşitsizliğini yazabiliriz. 

(6.2) eşitsizliğinin ispatına devam edelim. (6.7) denkleminden aşağıdaki 

bağıntıyı yazabiliriz: 

 

𝑤ᇱ(𝑡) = 𝑤ᇱ൫𝑟௣ିଵ൯𝑒
ି

భ

ഄ
∫ ௕෨(௦)ௗ௦

೟
ೝ೛షభ +

1

𝜀
න 𝐻(𝜏)𝑒ି

భ

ഄ
∫ ௕෨(௦)ௗ௦

೟
ഓ 𝑑𝜏

௧

௥೛షభ

,    𝑡 ∈ 𝐼௣. (6.9) 

 

(6.9) bağıntısını daha açık yazarsak aşağıdaki değerlendirmeyi elde ediyoruz: 

 

𝑢ᇱ(𝑡) = −𝑎(𝑡)𝑢ᇱ(𝑡 − 𝑟) − 𝑎ᇱ(𝑡)𝑢(𝑡 − 𝑟) 

+ൣ𝑢ᇱ൫𝑟௣ିଵ൯ + 𝑎ᇱ൫𝑟௣ିଵ൯𝑢൫𝑟௣ିଵ − 𝑟൯ + 𝑎൫𝑟௣ିଵ൯𝑢ᇱ൫𝑟௣ିଵ − 𝑟൯൧𝑒
షభ

ഄ
∫ ௕෨(௦)ௗ௦

೟
ೝ೛షభ  

+
1

𝜀
න 𝐻(𝜏)𝑒

షభ

ഄ
∫ ௕෨(௦)ௗ௦

೟
ഓ

௧

௥೛షభ

𝑑𝜏. 

 

Buradan 
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|𝑢ᇱ(𝑡)| ≤ |𝑎(𝑡)||𝑢ᇱ(𝑡 − 𝑟)| + |𝑎ᇱ(𝑡)||𝑢(𝑡 − 𝑟)| + ห𝑢ᇱ൫𝑟௣ିଵ൯ห𝑒
షഋ൫೟షೝ೛షభ൯

ഄ  

+ൣห𝑎൫𝑟௣ିଵ൯หห𝑢ᇱ൫𝑟௣ିଵ − 𝑟൯ห + ห𝑎ᇱ൫𝑟௣ିଵ൯หห𝑢൫𝑟௣ିଵ − 𝑟൯ห൧𝑒
షഋ൫೟షೝ೛షభ൯

ഄ  

+
1

𝜀
න |𝐻(𝜏)|𝑒

షഋ(೟షഓ)

ഄ

௧

௥೛షభ

𝑑𝜏 

(6.10) 

 

yazılabilir. Ayrıca, (6.3) denkleminden 

 

𝜀[𝑢ᇱ(𝑡) + 𝑎(𝑡)𝑢ᇱ(𝑡 − 𝑟)] = −𝜀𝑎ᇱ(𝑡)𝑢(𝑡 − 𝑟) − 𝑏෨(𝑡)𝑢(𝑡) − 𝑐̃(𝑡)𝑢(𝑡 − 𝑟) + 𝑓ሚ(𝑡) 

 

olup 𝑡 = 0 için 

 

|𝜑ᇱ(0)| + |𝑎(0)||𝜑ᇱ(−𝑟)| ≤ |𝑎ᇱ(0)||𝜑(−𝑟)| 

+
ห𝑏෨(0)ห|𝜑(0)| + |𝑐̃(0)||𝜑(−𝑟)| + ห𝑓ሚ(0)ห

𝜀
≤

𝐶

𝜀
 

(6.11) 

 

eşitsizliği yazılabilir. İlk olarak (6.10) eşitsizliğinden 𝑝 = 1 için (𝑡 ∈ 𝐼ଵ), 

 

|𝑢′(𝑡)| ≤ |𝑎(𝑡)||𝜑ᇱ(𝑡 − 𝑟)| + |𝑎ᇱ(𝑡)||𝜑(𝑡 − 𝑟)| 

+[|𝜑ᇱ(0)| + |𝑎(0)||𝜑ᇱ(−𝑟)| + |𝑎ᇱ(0)||𝜑(−𝑟)|]𝑒
షഋ೟

ഄ +
1

𝜀
න|𝐻(𝜏)|

௧

଴

𝑒
షഋ(೟షഓ)

ഄ 𝑑𝜏 

 

eşitsizliği yazılabilir. Burada (6.8) ve (6.11) eşitsizliğini de dikkate alırsak aşağıdaki 

değerlendirmeyi yazabiliriz: 

 

   |𝑢′(𝑡)| ≤ 𝐶 ቀ1 +
ଵ

ఌ
𝑒

షഋ

ഄ ቁ.     (6.12) 

 

Daha sonra 𝑝 = 𝑘 için (𝑡 ∈ 𝐼௞) aşağıdaki eşitsizliğin doğru olduğunu kabul edelim. 

 

  |𝑢′(𝑡)| ≤ 𝐶 ൜1 +
(௧ି௥ೖషభ)ೖషభ

ఌೖ
𝑒

షഋ൫೟షೝೖషభ൯

ഄ ൠ.    (6.13) 
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Son olarak 𝑝 = 𝑘 + 1  için (𝑡 ∈ 𝐼௞ାଵ) , (6.2) eşitsizliğinin doğru olduğunu 

gösterebilirsek ispat tamamlanmış olacaktır. (6.10) eşitsizliği 𝑝 = 𝑘 + 1 için aşağıdaki 

formda yazılabilir: 

 

|𝑢ᇱ(𝑡)| ≤ |𝑎(𝑡)||𝑢ᇱ(𝑡 − 𝑟)| + |𝑎ᇱ(𝑡)||𝑢(𝑡 − 𝑟)| 

+[|𝑢ᇱ(𝑟௞)| + |𝑎(𝑟௞)||𝑢ᇱ(𝑟௞ିଵ)|]𝑒
షഋ൫೟షೝೖ൯

ഄ  

+|𝑎ᇱ(𝑟௞)||𝑢(𝑟௞ିଵ)|𝑒
షഋ൫೟షೝೖ൯

ഄ +
1

𝜀
න|𝐻(𝜏)|𝑒

షഋ(೟షഓ)

ഄ

௧

௥ೖ

𝑑𝜏. 

(6.14) 

 

Öncelikle (6.13) eşitsizliğinden 𝑡 = 𝑟௞ alınırsa 

 

|𝑢′(𝑟௞)| ≤ 𝐶 ቊ1 +
(𝑟௞ − 𝑟௞ିଵ)௞ିଵ

𝜀௞
𝑒

షഋ൫ೝೖషೝೖషభ൯

ഄ ቋ 

 

≤ 𝐶 ቊ1 +
𝑟௞ିଵ

𝜀௞
𝑒

షഋೝ

ഄ ቋ 

 

ifadesi elde edilir. Burada 𝑥௞𝑒௫ ≤ 𝐶𝑒ିఊ௫,   0 < 𝛾 < 1,   𝑥 ∈ [0, ∞), 𝑘 > 0  eşitsizliği 

uygulanırsa 

 

    |𝑢′(𝑟௞)| ≤ 𝐶,   𝑘 ≥ 1     (6.15) 

 

yazılabilir. Benzer şekilde 

 

   |𝑢′(𝑟௞ିଵ)| ≤ 𝐶,   𝑘 ≥ 1     (6.16) 

 

olur. Ayrıca tekrardan (6.13) dikkate alınırsa 𝑢ᇱ(𝑡 − 𝑟) için 

 

|𝑢ᇱ(𝑡 − 𝑟)| ≤ 𝐶 ቊ1 +
(𝑡 − 𝑟 − 𝑟௞ିଵ)௞ିଵ

𝜀௞
𝑒

షഋ൫೟షೝషೝೖషభ൯

ഄ ቋ 
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    ≤ 𝐶 ൜1 +
(௧ି௥ೖ)ೖషభ

ఌೖ
𝑒

షഋ൫೟షೝೖ൯

ഄ ൠ    (6.17) 

 

değerlendirmesi yapılabilir. Dolayısıyla 

 

   |𝐻(𝑡)| ≤ 𝐶 ൜1 +
(௧ି௥ೖ)ೖషభ

ఌೖ
𝑒

షഋ൫೟షೝೖ൯

ഄ ൠ    (6.18) 

 

yazılabilir. Buradan (6.15), (6.16), (6.17) ve (6.18) eşitsizlikleri (6.14)’te dikkate 

alınırsa 

 

|𝑢ᇱ(𝑡)| ≤ 𝐶 ቆ1 +
(𝑡 − 𝑟௞)௞ିଵ

𝜀௞
𝑒

షഋ൫೟షೝೖ൯

ഄ ቇ + 𝐶𝑒
షഋ൫೟షೝೖ൯

ഄ  

+
1

𝜀
𝐶 න ቆ1 +

(𝜏 − 𝑟௞)௞ିଵ

𝜀௞
𝑒

షഋ൫ഓషೝೖ൯

ഄ ቇ 𝑒
షഋ(೟షഓ)

ഄ

௧

௥ೖ

𝑑𝜏 

 

≤ 𝐶 + 𝐶
(𝑡 − 𝑟௞)௞ିଵ

𝜀௞
𝑒

షഋ൫೟షೝೖ൯

ഄ + 𝐶
1

𝜀
𝜇ିଵ𝜀 ൬1 − 𝑒

షഋ(೟షഓ)

ഄ ൰ +
1

𝜀
𝐶𝑒

షഋ൫೟షೝೖ൯

ഄ
(𝑡 − 𝑟௞)௞

𝑘𝜀௞
 

 

≤ 𝐶 ቊ1 +
(𝑡 − 𝑟௞)௞

𝜀௞ାଵ
𝑒

షഋ൫೟షೝೖ൯

ഄ ቋ 

 

eşitsizliği elde edilir. Bu da (6.2) eşitsizliğinin ispatını verir. 

 

6.2 Fark Şemasının Kurulması 

 
Burada (1.3) probleminin fark yaklaşımı için aşağıdaki özdeşliği kullanıyoruz. 

 

ℎ௜
ିଵ න 𝜀[𝑢(𝑡) + 𝑎(𝑡)𝑢(𝑡 − 𝑟)]ᇱ𝑑𝑡

௧೔

௧೔షభ

+ ℎ௜
ିଵ න 𝑓൫𝑡, 𝑢(𝑡), 𝑢(𝑡 − 𝑟)൯𝑑𝑡 = 0

௧೔

௧೔షభ

, 

          1 ≤ 𝑖 ≤ 𝑁଴. 
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İkinci terime kısmi integrasyon uygulanırsa 

 

𝜀ൣ𝑢௧,௜ + 𝑎௜ିଵ𝑢௧,௜ିே + 𝑎௧,௜𝑢௜ିே൧ + ℎ௜
ିଵൣ𝑓൫𝑡, 𝑢(𝑡), 𝑢(𝑡 − 𝑟)൯(𝑡 − 𝑡௜ିଵ)൧

௧೔షభ

௧೔  

−ℎ௜
ିଵ න(𝑡 − 𝑡௜ିଵ)

𝑑

𝑑𝑡
𝑓൫𝑡, 𝑢(𝑡), 𝑢(𝑡 − 𝑟)൯𝑑𝑡

௧೔

௧೔షభ

= 0 

 

elde edilir. Buradan 

 

 𝜀ൣ𝑢௧,௜ + 𝑎௜ିଵ𝑢௧,௜ିே + 𝑎௧,௜𝑢௜ିே൧ + 𝑓(𝑡௜, 𝑢௜ , 𝑢௜ିே) + 𝑅௜ = 0   (6.19) 

 

fark yaklaşımı elde edilir ve kalan terim 𝑅௜ aşağıda verildiği gibidir: 

 

𝑅௜ = −ℎ௜
ିଵ න(𝑡 − 𝑡௜ିଵ)

𝑑

𝑑𝑡
𝑓൫𝑡, 𝑢(𝑡), 𝑢(𝑡 − 𝑟)൯𝑑𝑡

௧೔

௧೔షభ

. (6.20) 

 

Daha sonra (6.19) eşitliğinden kalan terim 𝑅௜  ihmal edilirse aşağıdaki fark şeması 

yazılabilir: 

 

𝜀ൣ𝑦௧,௜ + 𝑎௜ିଵ𝑦௧,௜ିே + 𝑎௧,௜𝑦௜ିே൧ + 𝑓(𝑡௜, 𝑦௜ , 𝑦௜ିே) = 0,   1 ≤ 𝑖 ≤ 𝑁଴,  (6.21) 

 

𝑦௜ = 𝜑௜, −𝑁 ≤ 𝑖 ≤ 0.        (6.22) 

 

6.3 Hata Fonksiyonunun Değerlendirmesi 

 
Burada 𝑧௜ = 𝑦௜ − 𝑢௜ , 1 ≤ 𝑖 ≤ 𝑁଴  hata fonksiyonu aşağıdaki fark probleminin 

çözümüdür. 

 

𝜀ൣ𝑧௧,௜ + 𝑎௜ିଵ𝑧௧,௜ିே + 𝑎௧,௜𝑧௜ିே൧ + 𝑓(𝑡௜ , 𝑦௜ , 𝑦௜ିே) − 𝑓(𝑡௜ , 𝑢௜, 𝑢௜ିே) = 𝑅௜, 1 ≤ 𝑖 ≤ 𝑁଴, (6.23) 
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𝑧௜ = 0, −𝑁 ≤ 𝑖 ≤ 0.         (6.24) 

 

Lemma 6.2 (6.23)-(6.24) probleminin çözümü olan 𝑧௜ hata fonksiyonu için aşağıdaki 

yaklaşım doğrudur. 

 

‖𝑧‖ஶ,ఠಿ,೛
≤ 𝐶 ෍‖𝑅‖ஶ,ఠಿ,ೖ

௣

௞ୀଵ

,   1 ≤ 𝑝 ≤ 𝑚. 

 

İspat. (6.23) eşitliğinde 𝑓 fonksiyonları için Teorem 4.1 uygulanırsa 

 

𝜀ൣ𝑧௧,௜ + 𝑎௜ିଵ𝑧௧,௜ିே + 𝑎௧,௜𝑧௜ିே൧ + 𝑏ത௜𝑧௜ + 𝑐௜̅𝑧௜ିே = 𝑅௜ 

 

eşitliği elde edilir. Burada 

 

𝑏ത௜ =
𝜕𝑓

𝜕𝑢
൫𝑡௜, 𝑢௜ + 𝜃෨𝑧௜, 𝑢௜ିே + 𝜃෨𝑧௜ିே൯ 

 

𝑐௜̅ =
𝜕𝑓

𝜕𝑣
൫𝑡௜, 𝑢௜ + 𝜃෨𝑧௜ , 𝑢௜ିே + 𝜃෨𝑧௜ିே൯,   0 < 𝜃෨ < 1 

 

olur. Dolayısıyla (6.23) için 

 

  𝜀𝑧௧,௜ + 𝑏ത௜𝑧௜ = −𝜀𝑎௜ିଵ𝑧௧,௜ିே − 𝜀𝑎௧,௜𝑧௜ିே − 𝑐௜̅𝑧௜ିே + 𝑅௜  (6.25) 

 

ifadesi yazılabilir. (6.25)’te 

 

ℓ𝑧௜ ≡ 𝜀𝑧௧,௜ + 𝑏ത௜𝑧௜,   (𝑝 − 1)𝑁 < 𝑖 ≤ 𝑝 

 

fark operatörü için maksimum prensibi uygulanırsa 

 

‖𝑧‖ஶ,ఠಿ,೛
≤ ห𝑧௣ିଵห + 𝜇ିଵ ቄቀ3𝜀‖𝑎‖ஶ,ఠಿ,೛

+ ‖𝑐̅‖ஶ,ఠಿ,೛
ቁ ‖𝑧‖ஶ,ఠಿ,೛షభ

+ ‖𝑅‖ஶ,ఠಿ,೛
ቅ 
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 ≤ ቄ1 + 𝜇ିଵ ቀ3𝜀‖𝑎‖ஶ,ఠಿ,೛
+ ‖𝑐̅‖ஶ,ఠಿ,೛

ቁቅ ‖𝑧‖ஶ,ఠಿ,೛షభ
+ 𝜇ିଵ‖𝑅‖ஶ,ఠಿ,೛

 (6.26) 

 

birinci mertebeden fark eşitsizliği elde edilir. (6.26) eşitsizliğinin çözümü için (6.39) 

formundaki birinci mertebeden fark eşitsizliğinin çözümü olan (6.40) eşitsizliğini 

dikkate alıp, 

 

  𝑤௣ = ‖𝑧‖ஶ,ఠಿ,೛
, 𝜇 = 1 + 𝜇ିଵ ቀ3𝜀‖𝑎‖ஶ,ఠಿ,೛

+ ‖𝑐̅‖ஶ,ఠಿ,೛
ቁ 

 

  𝑤௣ିଵ = ‖𝑧‖ஶ,ఠಿ,೛షభ
veψ୮ = 𝜇ିଵ‖𝑅‖ஶ,ఠಿ,೛

 

 

biçiminde seçim yaparsak (6.26) fark eşitsizliğinin çözümünü 

 

‖𝑧‖ஶ,ఠಿ,೛
≤ 𝜇ିଵ ෍ ቂ1 + 𝜇ିଵ ቀ3𝜀‖𝑎‖ஶ,ఠಿ,೛

+ ‖𝑐̅‖ஶ,ఠಿ,೛
ቁቃ

௣ି௞
‖𝑅‖ஶ,ఠಿ,ೖ

௣

௞ୀଵ

 

 

olarak bulabiliriz. Bu da Lemma 6.2’in ispatına varır. 

 

6.4 Shishkin Şebekede Kalan Teriminin Değerlendirmesi 

 
Lemma 6.3 Lemma 6.1’nin koşulları altında (6.21)-(6.22) fark şemasının kalan terimi 

𝑅௜ için 

 

‖𝑅‖ஶ,ఠಿ,೛
≤ 𝐶𝑁ିଵ𝑙𝑛𝑁,    1 ≤ 𝑝 ≤ 𝑚 

 

değerlendirmesi doğrudur. 

 

İspat. (6.20) denklemindeki 𝑅௜ için herhangi bir şebeke üzerinde 

 

|𝑅௜| ≤ ℎ௜
ିଵ න(𝑡 − 𝑡௜ିଵ) ฬ

𝜕𝑓

𝜕𝑡
+

𝜕𝑓

𝜕𝑢
𝑢ᇱ(𝑡) +

𝜕𝑓

𝜕𝑣
𝑢ᇱ(𝑡 − 𝑟)ฬ 𝑑𝑡

௧೔

௧೔షభ

,   1 ≤ 𝑖 ≤ 𝑁଴ 
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eşitsizliği yazılabilir. Bu eşitsizlikte Lemma 6.1’in şartları dikkate alınırsa 

 

|𝑅௜| ≤ 𝐶 ቐℎ௜ + න(|𝑢ᇱ(𝑡)| + |𝑢ᇱ(𝑡 − 𝑟)|)𝑑𝑡

௧೔

௧೔షభ

ቑ ,   1 ≤ 𝑖 ≤ 𝑁଴ 

 

ifadesi yazılabilir. Şimdi de (6.2) dikkate alınırsa 

 

|𝑅௜| ≤ 𝐶 ቐℎ௜ + න ൥
൫𝑡 − 𝑟௣ିଵ൯

௣ିଵ

𝜀௣
𝑒

൬
షഋ൫೟షೝ೛షభ൯

ഄ
൰

+
൫𝑡 − 𝑟௣ିଶ൯

௣ିଶ

𝜀௣ିଵ
𝑒

൬
షഋ൫೟షೝ೛షమ൯

ഄ
൰
൩ 𝑑𝑡

௧೔

௧೔షభ

ቑ (6.27) 

 

değerlendirmesi yazılabilir. Burada (6.27) ifadesi (5.56) ifadesine indirgendiği için 

ispatın devamı Lemma 5.5’deki adımlar takip edilerek ispat tamamlanır. 

 

Teorem 6.1 (1.3)-(1.4) probleminin çözümü 𝑢 ve (5.21)-(5.22) probleminin çözümü 𝑦 

olsun. Bu durumda aşağıdaki değerlendirme doğrudur: 

 

‖𝑦 − 𝑢‖ஶ,ఠഥ ಿబ
≤ 𝐶𝑁ିଵ𝑙𝑛𝑁. 

 

İspat. Lemma 6.2 ve Lemma 6.3 beraber düşünülürse ispat tamamlanır. 

 

6.5 Bakhvalov Şebekede Kalan Teriminin Değerlendirmesi 

 
Lemma 6.4 Lemma 6.1 koşulları altında (6.21)-(6.22) şemasının kalan terimi 𝑅௜ için 

aşağıda verilen eşitsizlik doğrudur: 

 

‖𝑅‖ஶ,ఠಿ,೛
≤ 𝐶𝑁ିଵ,    1 ≤ 𝑝 ≤ 𝑚. 

 

İspat. Burada (6.27) ifadesi (5.66) ifadesine indirgendiğinden dolayı ispatın devamı için 

Lemma 5.6’daki adımlar takip edilerek tamamlanır. 
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Teorem 6.2 (1.3)-(1.4) probleminin çözümü 𝑢 ve (6.21)-(6.22) probleminin çözümü 𝑦 

olsun. Bu durumda 

 

‖𝑦 − 𝑢‖ஶ,ఠഥ ಿబ
≤ 𝐶𝑁ିଵ 

 

eşitsizliği doğrudur. 

 

İspat. Lemma 6.2 ve Lemma 6.4 beraber dikkate alınırsa ispat tamamlanır. 

 

6.6 Nümerik Sonuçlar 

 
Bu bölümde (1.3)-(1.4) lineer olmayan problem için öncelikle probleme uygun 

algoritma oluşturulmuş, daha sonra Çizelge 6.1’de Shishkin tipindeki parçalı düzgün 

şebeke üzerinde kurulmuş fark şeması için ve Çizelge 6.2’de de Bakhvalov tipindeki 

düzgün olmayan şebeke üzerine kurulmuş fark şeması için bazı nümerik sonuçlar 

sunulmuştur. Ayrıca nümerik sonuçlara uygun grafik çizimleri de yapılmıştır. 

 

6.6.1 Algoritma 
 

(5.21)-(5.22) lineer olmayan fark problemini çözmek için aşağıdaki yarı 

lineerleştirme (quasi-linearizasyon) tekniğini kullanıyoruz. 

 

𝑦௜
(௡)

= 𝑦௜
(௡ିଵ)

−

ఌ

௛೔
ቀ−𝑦௜ିଵ

(௡)
− 𝑎௜ିଵ𝑦௜ିேିଵ

(௡)
+ 𝑎௜𝑦௜ିே

(௡)
+ 𝑦௜

(௡ିଵ)
ቁ + 𝑓ቀ𝑡௜, 𝑦௜

(௡ିଵ)
, 𝑦௜ିே

(௡)
ቁ

ఌ

௛೔
+

డ௙

డ௬
ቀ𝑡௜, 𝑦௜

(௡ିଵ)
, 𝑦௜ିே

(௡)
ቁ

 

 

𝑦௜
(௡)

= 𝜑௜ 

 

𝑖 = 1, 2, … 𝑁଴;    𝑛 = 1, 2, … ve 𝑦௜
(଴) veriliyor. 

 

Örnek 6.1 Bu bölümde teorik sonuçları destekleyen lineer olmayan bir örnek ele 

alacağız. 
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𝜀 ൤𝑢(𝑡) +
1

4
𝑡𝑎𝑛ℎଶ(𝑡)𝑢(𝑡 − 1)൨

ᇱ

+ 𝑢(𝑡) + tanh൫𝑢(𝑡)൯ 

+𝑒௧ +
1

2
cosh൫𝑢(𝑡 − 1)൯ = 0, 0 < 𝑡 ≤ 2, 

 

𝑢(𝑡) = 1,   − 1 ≤ 𝑡 ≤ 0. 

 

Bu problemin kesin çözümü 𝑢(𝑡) bilinmiyor. Bu nedenle yine 𝜔ே,௣ şebeke üzerindeki 

maksimum hataları tahmin etmek için çift katlı şebeke prensibini kullanacağız. Yani 

hesaplanan çözümleri bir şebeke üzerindeki çözümlerle karşılaştırıyoruz (Doolan vd., 

1980; Farell vd., 2000). Burada kullanılan başlangıç tahmini 

 

𝑦௜
(଴)

= 1 − 𝑒ି௧೔ 

 

olarak alınmış ve iterasyon sayısı 𝑛 şu şekilde seçilmiştir: 

 

max
௜

ቚ𝑦௜
(௡)

− 𝑦௜
(௡ିଵ)

ቚ ≤ 10ିହ. 

 

Bu kısımda, parçalı düzgün şebeke (Shishkin şebeke) üzerinde (1.3)-(1.4) 

problemine uygulanan (6.21)-(6.22) fark şeması için Örnek 6.1 üzerinden bazı nümerik 

sonuçlar sunacağız. Ele alınan problem, 𝜀 = 2ି௜ , 𝑖 = 4, 8, … , 24  ve 

𝑁 = 32, 64, 128, 256, 512, 1024  değerleri için hesaplanmaktadır. Ortaya çıkan 𝑒ே 

hataları ve buna karşılık gelen uygun 𝑝ே değerleri Çizelge 6.1’de verilmiştir. 
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Çizelge 6.1 Örnek 6.1 için Shishkin şebekede 𝜀 ve 𝑁’nin farklı değerleri için maksimum 
hatalar ve yakınsama oranları 

𝜀 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 𝑁 = 1024 

2ିସ 0.0585140 0.0384984 0.0238415 0.0141404 0.0081353 0.0045794 

 0.60 0.69 0.75 0.80 0.83  

2ି଼ 0.0589737 0.0388002 0.0240287 0.0142515 0.0081992 0.0046153 

 0.60 0.69 0.75 0.80 0.83  

2ିଵଶ 0.0590024 0.0388190 0.0240403 0.0142584 0.0082032 0.0046176 

 0.60 0.69 0.75 0.80 0.83  

2ିଵ଺ 0.0590042 0.0388202 0.0240411 0.0142588 0.0082034 0.0046177 

 0.60  0.69 0.75 0.80 0.83  

2ିଶ଴ 0.0590043 0.0388203 0.0240411 0.0142588 0.0082034 0.0046177 

 0.60 0.69 0.75 0.80 0.83  

2ିଶସ 0.0590043 0.0388203 0.0240411 0.0142588 0.0082034 0.0046177 

 0.60 0.69 0.75 0.80 0.83  

𝑒ே 0.0590043 0.0388203 0.0240411 0.0142588 0.0082034 0.0046177 

𝑝ே 0.60 0.69 0.75 0.80 0.83  
 

 

 

Şekil 6.1 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 6.1’in [0,2] aralığında Shishkin şebekedeki 
nümerik çözümü 
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


     
















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





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t

8

6

4

2

0

u

 y2n

 yn
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Şekil 6.2 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 6.1’in [0,1] aralığında Shishkin şebekedeki 
nümerik çözümü 

 

 

Şekil 6.3 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 6.1’in [1,2] aralığında Shishkin şebekedeki 
nümerik çözümü 
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Şekil 6.4 Farklı 𝜀 ve 𝑁 değerleri için Örnek 6.1’in Shishkin şebekedeki maksimum hata 
grafiği 

 
Bu kısımda, düzgün olmayan şebeke (Bakhvalov şebeke) üzerinde (1.3)-(1.4) 

problemine uygulanan (6.21)-(6.22) fark şeması için Örnek 6.1 üzerinden bazı nümerik 

sonuçlar sunacağız. Ele alınan problem, 𝜀 = 2ି௜ , 𝑖 = 4, 8, … , 24  ve 

𝑁 = 16, 32, 64, 128, 256, 512 değerleri için hesaplanmaktadır. Ortaya çıkan 𝑒ே hataları 

ve buna karşılık gelen uygun 𝑝ே değerleri aşağıdaki Çizelge 6.2’de verilmiştir. 
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Çizelge 6.2 Örnek 6.1 için Bakhvalov şebekede 𝜀  ve 𝑁 ’nin farklı değerleri için 
maksimum hatalar ve yakınsama oranları 

𝜀 𝑁 = 16 𝑁 = 32 𝑁 = 64 𝑁 = 128 𝑁 = 256 𝑁 = 512 

2ିସ 0.0460119 0.0251589 0.0131140 0.0066993 0.0033863 0.0017024 

 0.87 0.94 0.97 0.98 0.99  

2ି଼ 0.0492397 0.0267977 0.0140078 0.0071654 0.0036243 0.0018227 

 0.88 0.94 0.97 0.98 0.99  

2ିଵଶ 0.0494350 0.0269067 0.0140656 0.0071951 0.0036394 0.0018303 

 0.88 0.94 0.97 0.98 0.99  

2ିଵ଺ 0.0494471 0.0269135 0.0140692 0.0071970 0.0036403 0.0018308 

 0.88 0.94 0.97 0.98 0.99  

2ିଶ଴ 0.0494479 0.0269140 0.0140694 0.0071971 0.0036404 0.0018308 

 0.88 0.94 0.97 0.98 0.99  

2ିଶସ 0.0494479 0.0269140 0.0140694 0.0071971 0.0036404 0.0018308 

 0.88 0.94 0.97 0.98 0.99  

𝑒ே 0.0494479 0.0269140 0.0140694 0.0071971 0.0036404 0.0018308 

𝑝ே 0.88 0.94 0.97 0.98 0.99  
 

 

 

Şekil 6.5 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 6.1’in [0,2] aralığında Bakhvalov şebekedeki 
nümerik çözümü 
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Şekil 6.6 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 6.1’in [0,1] aralığında Bakhvalov şebekedeki 
nümerik çözümü 

 

 

Şekil 6.7 𝜀 = 2ିସ ve 𝑁 = 64 için Örnek 6.1’in [1,2] aralığında Bakhvalov şebekedeki 
nümerik çözümü 
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Şekil 6.8 Farklı 𝜀 ve 𝑁 değerleri için Örnek 6.1’in Bakhvalov şebekedeki maksimum 
hata grafiği 

 

6.7 Bölüm Sonu Değerlendirmesi 

 
Bu bölümde birinci mertebeden lineer olmayan SPNDDE ele alındı. (1.3)-(1.4) 

problemin nümerik çözümü için 𝑢 ve türevi için bazı değerlendirmeler yapıldı. Düzgün 

olmayan şebeke için klasik fark şeması kuruldu. Fark şemasının kararlılığı ve düzgün 

yakınsaklığı Shishkin ve Bakhvalov şebekelerde incelendi. Yakınsama hızı Shishkin 

şebeke için 𝑂(𝑁ିଵ𝑙𝑛𝑁)  ve Bakhvalov şebeke için 𝑂(𝑁ିଵ)  olduğu gösterildi. Kesin 

çözümü olmayan bir örnek ele alınarak nümerik sonuçlar incelendi ve grafik çizimleri 

yapıldı. 
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7. TARTIŞMA VE SONUÇ 
 

Bu çalışmada popülasyon ekolojisi, biyoloji, fizik, tıp ve ekonomi gibi bilim ve 

mühendislikte geçen bazı süreçler için SPNDDEs için başlangıç değer problemlerinin 

sonlu fark metoduyla nümerik çözümleri incelendi. Bu problemlerin nümerik çözümü 

için uygun fark şemaları kuruldu. Bu fark şemaları için hata değerlendirmeleri, 𝜀’na 

göre düzgün yakınsaklıkları ve kararlılık analizleri yapıldı. 

 (1.1)-(1.2) problemi için ilk önce düzgün şebekede üstel katsayılı fark şeması 

kuruldu. Bu fark şeması 𝜀 ≤ ℎ  şartı altında 𝜀 ’na göre düzgün yakınsak olduğu ve 

yakınsama hızının 𝑂(𝑁ିଵ) olduğu teorik olarak gösterildi. Bu şart ise pratik olmayan 

ağır bir şarttır ve pratik sonuçlar elde edemediğimiz için tablo ve grafik verilmemiştir. 

Bu değerlendirmenin iyileştirilemez olduğu birinci mertebeden singüler pertürbe bir 

problem üzerinde gösterilmiştir (Amirali ve Amirali, 2018). Daha sonra düzgün 

olmayan şebekede klasik fark şeması kuruldu. Bu fark şemasının ayrık maksimum 

normda 𝜀’a göre düzgün yakınsak olduğu gösterildi. 

 (1.3)-(1.4) problemi için de düzgün olmayan şebekede klasik fark şeması 

kuruldu ve fark şemasının ayrık maksimum normda 𝜀’a göre düzgün yakınsak olduğu 

gösterildi. 

 (1.1)-(1.2) ve (1.3)-(1.4) problemleri için teorik olarak gösterilen sonuçlar 

örneklerle desteklendi. Elde edilen nümerik sonuçlar teorik sonuçları destekler 

niteliktedir. 

 𝐼 ̅ aralığında 𝑡 ’nin farklı değerleri için kurulan fark şemalarının farklı 𝑁  ve 𝜀 

değerleri için 𝑒ே  maksimum hata sonuçları ve 𝑝ே  yakınsaklık oranları tablolarda 

listelenmiş ve grafik çizimleri yapılmıştır. Bu tablo ve grafikler 𝜀 parametresine göre 

yakınsama hızlarının Shishkin (parçalı düzgün) şebekede 𝑂(𝑁ିଵ𝑙𝑛𝑁)  ve Bakhvalov 

şebekede 𝑂(𝑁ିଵ)  olduğu görülmüştür. Bu verilere göre problemlerin yakınsama 

derecesi Shishkin şebeke için 𝑝ே ≅ 0.85 ve Bakhvalov şebeke için 𝑝ே ≅ 1 civarında 

olduğu görülmüştür. Bu ise elde edilen nümerik sonuçların teorik sonuçları destekler 

nitelikte olduğunu göstermektedir.  
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VAN YÜZÜNCÜ YIL ÜNİVERSİTESİ 

FEN BİLİMLERİ ENSTİTÜSÜ 
LİSANSÜSTÜ TEZ ORİJİNALLİK RAPORU 

 
Tarih. 25/12/2023  

 
Tez başlığı: SINIR KATLI NEUTRAL TİP GECİKMELİ DİFERANSİYEL 
PROBLEMLERİN NÜMERİK ÇÖZÜMLERİ 

Yukarıda başlığı belirtilen tez çalışmamın kapak sayfası, giriş, ana bölümler ve sonuç 
bölümlerinden oluşan toplam 76 (Yetmiş altı) sayfalık kısmına ilişkin, 06/12/2023 
tarihinde şahsım/tez danışmanım tarafından Turnitin adlı intihal tespit programından 
aşağıda belirtilen filtrelemeler uygulanarak alınmış olan orijinallik raporuna göre tezimin 
benzerlik oranı % 17 (On yedi) dir.  
Uygulanan filtreler aşağıda verilmiştir: 
- Kabul ve onay sayfası hariç, 
- Teşekkür hariç, 
- İçindekiler hariç, 
- Simge ve kısaltmalar hariç, 
- Gereç ve yöntemler hariç, 
- Kaynakça hariç,  
- Alıntılar hariç, 
- Tezden çıkan yayınlar hariç, 
- 7 kelimeden daha az örtüşme içeren metin kısımları hariç (Limit match size to 7 words) 
 
Van Yüzüncü Yıl Üniversitesi Lisansüstü Tez Orijinallik Raporu Alınması ve 
Kullanılmasına İlişkin Yönerge’yi inceledim ve bu yönergede belirtilen azami benzerlik 
oranlarına göre tez çalışmamın herhangi bir intihal içermediğini aksinin tespit edileceği 
muhtemel durumda doğabilecek her türlü hukuki sorumluluğu kabul ettiğimi ve 
yukarıda vermiş olduğum bilgilerin doğru olduğunu beyan ederim.  
 
Gereğini bilgilerinize arz ederim.  

Tarih ve imza 
25/12/2023  

Adı soyadı: Yılmaz EKİNCİ 
Öğrenci no: 18910001361 
Anabilim dalı: Uygulamalı Matematik 
Programı: Matematik 
Statüsü:             (  ) Yüksek lisans                    ( x ) Doktora 
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