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OZET

SINIR KATLI NEUTRAL TiP GECIKMELI DIFERANSIYEL
PROBLEMLERIN NUMERIK COZUMLERI

EKINCI, Yilmaz
Doktora Tezi, Matematik Anabilim Dali
Danigsman: Prof. Dr.Musa CAKIR
Aralik 2023, 101 sayfa

Bu c¢alismada, lineer ve lineer olmayan singiiler pertiirbe o6zellikli birinci
mertebeden neutral tip gecikmeli diferansiyel denklemler i¢in sonlu farklar metodu
kullanilarak niimerik ¢oziimler ele alinmistir. Ele alinan problemler i¢in hata teriminin
incelemelerinde kullanilacak asimptotik degerlendirmeler yapilmistir. Kalan terimleri
integral biciminde olan integral 6zdeslikleri ile lineer problem i¢in diizgiin, Shishkin ve
Bakhvalov sebekelerinde ve lineer olmayan problem i¢in de Shishkin ve Bakhvalov
sebekelerinde uygun fark semalar1 kurulmustur. Fark gsemalarinin pertlirbasyon
parametresine gore ayrik maksimum normda diizgiin yakinsakliklar1 ve kararliliklari
incelenmis, ele aliman problemler o6rnekler {izerinde test edilerek grafik c¢izimleri
yapilmustir.

Anahtar kelimeler: Diizgiin yakinsaklik, Neutral tip gecikmeli diferansiyel
denklem, Singiiler pertiirbe, Sonlu fark metodu






ABSTRACT

NUMERICAL SOLUTIONS OF BOUNDARY LAYERED NEUTRAL TYPE
DELAYED DIFFERENTIAL PROBLEMS

EKINCI, Yilmaz
Ph.D. Thesis, Department of Mathematics
Supervisor: Prof. Dr. Musa CAKIR
December 2023, 101 pages

In this study, numerical solutions are handled by using finite different methods
for linear and non-linear first order neutral type delay differential equations with
singular perturbation properties. Asymptotic evaluations are made to be used in the
analysis of the error term for the problems considered. Appropriate difference schemes,
consisting of integral identities where the remainder terms are in integral form, have
been established on the uniform, Shishkin and Bakhvalov meshes for the linear
problem; and on Shishkin and Bakhvalov meshes for the non-linear problem. The
uniform convergence and stability of the difference schemes at discrete maximum norm
according to the perturbation parameter are discussed, the problems discussed are tested
on examples and graphic drawings are presented.

Keywords: Finite difference method, Neutral type delay differential equation,
Singular perturbation, Uniform convergence
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Bu calismada kullanilmis bazi simgeler ve kisaltmalar, aciklamalariyla asagida

sunulmustur.

Simgeler

C"a,b]

0(h?)

m < &

Kisaltmalar

DDE
NDDE
SPNDDE

SIMGELER VE KISALTMALAR

Aciklama

Sebekedeki maksimum hata
Sebekedeki tam hata

Gegis noktast

Baslangi¢ fonksiyonu
Sonlu baz fonksiyonlari
Sebeke

Sebeke adimi

Sebeke adimi1 ve £’dan bagimsiz genel sabit

[a, b] araliginda n. mertebeden siirekli tiirevlere

sahip fonksiyonlar kiimesi

Sebeke elemanlarinin sayisi

Yakinsama hizi

Yakinsaklik mertebesi

Gecikme parametresi

Diferansiyel denklemin analitik ¢6ziimii
Diferansiyel denklemin yaklasik ¢oziimii

Pertiirbasyon parametresi

Aciklama

Gecikmeli (Delay) Diferansiyel Denklem
Neutral Tip Gecikmeli Diferansiyel Denklem

Singiiler Pertlirbe Neutral Tip Gecikmeli

Diferansiyel Denklem

Xiii






1. GIRIS

En yiiksek mertebeden tiirev terimi t’ye, diger terimleri t ve t’den dnceki anlara
bagli olan diferansiyel denklemlere gecikmeli (delay) diferansiyel denklemler (DDEs)
denir. En yiiksek mertebeden tiirev teriminde de gecikme varsa bu tip diferansiyel
denklemlere de neutral tip gecikmeli diferansiyel denklemler (NDDEs) denir. Gecikmeli
ve neutral tip gecikmeli diferansiyel denklemlerle ilgili calismalar 1960’11 yillara
dayanmaktadir ve giiniimiize kadar da bu konularla ilgili varlik-teklik, kararlilik ve
cOzlimleri {izerine c¢ok sayida calisma vyiiriitilmektedir (Bellman ve Cooke, 1963;
El’sgolts, 1973; Hale, 1977; Jackiewicz, 1987; Kuang ve Feldstein, 1991; Kuang, 1993;
Bellen ve Zennaro, 2003; Balachandran vd., 2009; Bellen vd., 2009; Cakir vd., 2022).

Biyoloji, tip, kimya, fizik, miihendislik, ekonomi vb. alanlardaki hem dogal hem
de insan yapim siireglerin ¢ogu zaman gecikmeleri igcermektedir. Dogadaki basit bir
ornek yeniden agaclandirmadir. Kesilen bir ormanin yeniden agaclandirilmasinin
ardindan herhangi bir olgunluga ulasmasi uzun bir siire alacaktir. Dolayisiyla orman
hasadi ve yenilenmesine iligkin herhangi bir matematiksel modelin zaman
gecikmelerine sahip olmasi gerekmektedir. Baska bir 6rnek, hayvanlarin daha sonraki
faaliyet ve sorumluluklarin1 gergeklestirmeden once yiyeceklerini sindirmek i¢in zaman
ayirmalan gerekmektedir. Yani gelecek sistemin durumu geg¢misteki baz1 degiskenlere
bagli oldugundan, daha gergcekci bir model geg¢misin bazi kisimlarmni igermelidir.
Gegmis durumlart igeren model problemler DDEs ve NDDEs olarak adlandirilir
(Bellman ve Cooke, 1963; Kuang, 1993).

Diger yandan singiiler pertiirbe olmus problemlerle ilgili caligmalar 20. yiizyilin
baslarinda baslamistir. Bu donemde arastirmalar cogunlukla asimptotik ac¢ilimlar
lizerine yapilmis ve 1960’l1 yillardan sonraki donemlerde niimerik ¢6ziim konusunda
dikkat ¢ekici sonuglar elde edilmistir (Nayfeh, 1973; O’Malley, 1974; Dolan vd., 1980;
Kevorkian ve Cole, 1981; Kadalbajoo ve Reddy, 1989; O’Malley, 1991; Nayfeh, 1993;
Farrell vd., 2000). Son donemlerde bu arastirmalar daha ¢ok adi ve kismi diferansiyel
denklemlerin c¢esitli tipleri lizerine yogunlasarak devam etmektedir. Bu tiir problemler
matematiksel olarak en yliksek mertebeden tiirevlerinin katsayilarinin pozitif kii¢iik bir
parametre oldugu problemler olarak bilinmektedir. Boyle problemlerin ¢dzlimleri,

pertlirbasyon terimi € sifira yaklastiginda olusan siir katmanlarindan dolay1 problemin



¢Oziimii aniden degisiyorken katmanlarin disindaki bolgelerde ¢6ziim davraniglari
diizenli ve yavas degisir (Linf, 1985; Roos vd., 1996; Shishkin ve Shishkina, 2009).

Singiiler pertiirbe neutral tip gecikmeli diferansiyel denklemler (SPNDDESs) iki
tip zorluk igermektedir. Birincisi problemin en yiiksek mertebeden tiirev i¢eren terimin
biiyiikk bir gecikme parametresine sahip olmasidir. Gecikme parametresinin biiyiik
olmasit Taylor agilimini kullanmay1 imkansiz kilmaktadir. Dolayisiyla probleme uygun
niimerik yontem gelistirmek &nemlidir. Ikinci zorluk ise problemin singiiler pertiirbe
Ozellikli olmasidir. Bu, dogal olarak problemin smir katina sahip oldugunu
gostermektedir. Bu tarz problemlerde ¢6zlim, ince gecis katlarinda hizli, diger yerlerde
diizenli ve yavas degisir. Bu da niimerik ¢6zlim i¢in ciddi sorunlara sebep olmaktadir.
Dolayistyla, klasik niimerik yontemleri kararsizliklar1 ya da iraksak olmalar1 nedeniyle
bu tarz problemlere uygulamak imkansiz olmaktadir. Bu sebepten dolayi €’na gore
diizgiin yakinsaklhigi saglayacak uygun niimerik metotlarin kurulmasi 6nem arz
etmektedir.

Bu caligmada birinci mertebeden SPNDDEs ele alinacak, lineer ve lineer
olmayan formlarmin niimerik c¢oziimleri yapilacaktir. Bu problemlerin yapisi ve
saglamasi gereken sartlar asagida verilmektedir:

Ilk olarak birinci mertebeden lineer singiiler pertiirbe neutral tip gecikmeli

diferansiyel denklemini ele alacagiz.
elu®) +a@®ut —r)]"+b®ut) + c®u(t —r) = f(t), tE], (1.1)
u(t) =), tel, (1.2)
burada u € CX(I) , a(t), b(t) =B > 0,c(t), f(t) ve @(t), I ve I, ’da istenilen
mertebeden stirekli tiirevlere sahip fonksiyonlardir.

Daha sonra birinci mertebeden lineer olmayan singiiler pertiirbe neutral tip

gecikmeli diferansiyel denklemini ele alacagiz.
elu®) + a@®ult —r)]" + f(t,u(t),u(t — r)) =0, tel, (1.3)

u(t) =), tel, (1.4)



burada u € C*(I), a(t), ¢(t) ve f(t,u(t), v(t)) swrastyla I, I, ve I X R?’de yeterince

diizgiin fonksiyonlardir. Bunlara ek olarak

of

0<MS£SM1, (1.5)
of
™ <M, (1.6)

sartlar1 saglansm. (1.1)-(1.2) ve (1.3)-(1.4) problemleri igin I = (0,T] =Uy, I,
L={ttr,_,<t<n}ll<p<mvery=sr,0<s<mvel,=[-r0],]=[0T]
(sadelik i¢in T /r’yi tam say1 olarak kabul edecegiz yani T = mr). r gecikme sabitidir
ve 0 < € << 1 olacak sekilde kiigiik bir pozitif parametredir.

(1.1)-(1.2) ve (1.3)-(1.4) problemleri literatiirde Hale tipi problemler olarak
bilinmektedirler (Hale, 1977). Ayrica bu problemlerimiz x = 0°da baslangi¢ sinir katina
ve i¢ bolgelerde de i¢ sinir katlarina sahiptirler.

Neutral tip gecikmeli diferansiyel denklemlerin ¢oziimlerinin siirdiiriilebilir
olmasi i¢in ekstradan bir sarta ihtiya¢ duyulmaktadir. Fermuar sart1 (Sewing condition)

olarak adlandirilan bu sart asagida verildigi gibidir:
x'(t) = f(t,x(t),x(t —r),x'(t— r)), toy<t<oo, r>0 (1.7)

ve baslangic fonksiyonu ¢ € C1[t, —1,t,] olarak verilen neutral tip gecikmeli

diferansiyel problem icin fermuar sart1 (sewing condition),

¢'(to) = F(to, ¢ (to), ¢'(to)) (1.8)

olarak belirlenmektedir (Kolmanovskii ve Myshkis, 1992). Boylece (1.8) sartiyla
birlikte (1.7) probleminin ¢6zlimiin siirdiiriilebilir oldugu séylenir. Bu sart (1.1) ve (1.3)

problemlerine uyarlandiginda sirasiyla,

e[e’(07) + a'(0)p(=7) + a(0)'(=1)] + b(0)p(0) + c(0)p(=7) = f(0), (1.9)



ele’(07) + a' (0@ (=7) + a(®e' (=] + £(0,¢(0),(~1)) = 0 (1.10)
ifadeleri elde edilir. Diger yandan bu sarta denk olan

u() = o), —r<t<0veu'(t)= ¢'(t), r<t<o0 (1.11)
sartin1 kullanmakta olan yazarlarda bulunmaktadir (Baker ve Parmuzin, 2008; Enright
ve Hayashi, 1998; Baker ve Paul, 2006).

(1.1)-(1.2) ve (1.3)-(1.4) problemlerinde verilen sartlar ve sirasiyla (1.9), (1.10)
fermuar sartlarn1 (ya da (1.11) sarti) dikkate almirsa (1.1)-(1.2) ve (1.3)-(1.4)
problemlerin varlik-tekligi garanti altina alinmis olur.

Klasik fark semalarmin diizgiin sebekede, kararsizliklari ve €’a gore diizgiin
yakinsak olmamalarini gosteren asagidaki 6rnegi inceleyelim.

Ornek 1.1 Asagida verilen birinci mertebeden adi diferansiyel problemini ele alalim.

su'(x)+ulx) =0, 0<x<1, u(0)=1. (1.12)
(1.12) probleminin kesin ¢oziimii,
u(x) = e e (1.13)
olur. Ayrica (1.12) problemi i¢in agik Euler semasini yazalim:
lyi=¢ey,i+y;=0, i=0,12,..,N, yo=1. (1.14)
Burada
Vi = Virr —¥i)/h

ileri fark tiirevi ve h sebeke adimidir. (1.14)’ten



bulunur. y; ve (1.3) beraber dikkate alinirsa,

) h it
limly; — uCe)| = |(1-7) =™

ifadesi elde edilir. Burada h ve & degerlerinin oranindan dolay1 kararsiz bir yapi
olusmaktadir. Dolayisiyla € ’a gore diizgiin yakinsaklik yoktur denir (Amirali ve
Amirali, 2018).

Singiiler pertiirbe olmus problemlerin davranigini 6rneklemek amaciyla (1.12)
probleminin ¢6ziimii olan (1.3) denkleminin grafigi, degisen € degerlerine gore asagida

Sekil 1.1 ve Sekil 1.2 ile verilmistir.

02 04 0.6 08 1.0

Sekil 1.1 (1.12) probleminin ¢dziimiiniin € = 1,271,272 degerlerine gore degisimi
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Sekil 1.2 (1.12) probleminin ¢ziimiiniin £ = 273,274, 275 degerlerine gore degisimi

Sekil 1.1 ve Sekil 1.2°de gorildiigii gibi kiiclilen € degerleri i¢in grafik siir katinin
oldugu x = 0 noktasina daha fazla yaslanmaktadir. Bu tip davranis singiiler pertiirbe
olmus diferansiyel denklemlere has bir Ozelliktir ve baslangic veya sinir katinin
varhiginin belirtisidir. (1.12) problemi x = 0 noktasinda bir baglangi¢ katina sahiptir ve
¢ kiiciildiikge grafik egrisi koordinat eksenlerine daha fazla yaslanmaktadir.

Singiiler pertiirbe gecikmeli diferansiyel denklemlerle ilgi literatiirde ¢ok sayida
calisma mevcuttur fakat singiiler pertiitbe neutral tip gecikmeli diferansiyel
denklemlerle ilgi pek bir caligmaya rastlamadik. Sadece kiiclik gecikme durumlarinda
calismalar mevcut ve bunlarin ¢éziimii i¢in Taylor ag¢ilimi1 yardimiyla bazi niimerik
caligmalar sunulmustur (Kadalbajoo ve Sharma, 2004; Reddy ve ark., 2012). Kii¢iik
gecikmeler i¢in Taylor agiliminmi kullanmak miimkiin iken gecikmenin biiyiik olmasi
durumda bu yaklasimi kullanmak miimkiin degildir (ihmal edilemeyecek kadar kayip
olusmaktadir). SPNDDEs i¢in literatiirde biiyiikk gecikme ile ilgili herhangi bir
caligmaya rastlanmamakla birlikte 3. boliimde verilen “Kayipsiz Iletim Hatt1 Modeli”

bu tezi hazirlamamizdaki temel motivasyon kaynagimizi olusturmaktadir.



2. KAYNAK BILDIRISLERI

DDE’ler tip, biyoloji, fizik, kimya, miihendislik, ekonomi ve o6zellikle enzim
kinetigi, enfeksiyon hastaliklar1 ve immiinolojideki matematiksel modeller gibi bilimsel
ve teknik alandaki uygulamalarda model denklemler olarak ortaya ¢ikmaktadir (Driver,
1977; Gopalsamy, 1992; Hairer vd., 2008; Villasana ve Radunskaya, 2003; Foley ve
Mackey, 2009; Liz ve Rost, 2013; Martina ve Veronika, 2015; Getto ve Waurick, 2016;
Guo ve Ma, 2016; Rihan, 2021).

NDDE’ler popiilasyon ekolojisi, kontrol teorisi, salinim teorisi, elektrodinamik,
biyomatematik ve tip bilimi gibi alanlardaki uygulamalarda goze ¢arpmaktadir (Kuang,
1993; Kolmanovskii ve Myshkis, 1999; Baker vd., 2008; Hadeler, 2008; Erneux, 2009;
Rihan, 2010; Zeng vd., 2016).

NDDE’lerin ¢6ziimiiniin davranislari, ¢oziimiiniin varlik-tekligi ve ¢oziimlerin
kararlilik sonuglar1 iizerine calismalar yogun olarak devam etmektedir (Bellman ve
Cooke, 1963; El’sgolts, 1973; Hale, 1977; Jackiewicz, 1987; Kuang ve Feldstein, 1991;
Kuang, 1993; Palaniswami, 1995; Bellen ve Zennaro, 2003; Zhang vd., 2005; Bellen ve
Guglielmi, 2009; Liu vd., 2010; Halas ve Anguelova, 2013; Tung ve Altun, 2017).

NDDE’lerin kesin ¢oziimiinii bulmak c¢ogunlukla zor olmaktadir. Bu nedenle
niimerik yaklagimlara bagvurmak gerekir. Son yillarda NDDE'lerin sayisal ¢6ziimii i¢in
bircok yontem Onerilmistir. Bu yontemlerin ¢ogu, sayisal yontemlerin siradan
diferansiyel denklemler i¢in uyarlamalaridir. Euler ve Runge-Kutta gibi geleneksel
yontemler kullanilarak NDDE’ler i¢in kapsamli yaklasik ¢oziimler sunulmustur (Bellen
ve Zennaro, 2003). Runge-Kutta metodu kullanilarak NDDE’ler kararli sayisal
¢oziimler verilmistir (Wen vd., 2015; Wang, 2017). Tek adiml1 8 (one-leg 8) ve lineer 8
metodlar ile yaklasik ¢oziimler onerilmistir (Gan, 2009). 8-yontemi ile NDDE’lerin
Hopf catallanmasinin (Hopf bifurcation) korunmasini ele alarak, tiiretilen sayisal ayrik
sistemin dinamiklerini analiz etmektedirler (Su vd., 2013). H-yontemleri kullanilarak
neutral lojistik gecikmeli diferansiyel denklemin sayisal ¢oziimiiniin salinimiyla
ilgilenilmistir (Wang, 2015). Sobolev normlarinda block-pulse fonksiyonlar1 ve
Legendere polinomlariyla sayisal ¢oziimler sunulmustur (Sedaghat vd., 2015). Klasik
¢Oziimlerin belirli bir zaman anindan sonra NDDE’ler i¢in mevcut olmamasi s6z konusu
olacag i¢in Utkin (Filippov) tipi zayif ¢oziimler genisletiyor ve siireksizlikleri ortadan

kaldiran yeni bir diizenleme 6neriliyor (Guglielmi ve Hairer, 2016). Diizgiin sebekede



iistel katsayili baz fonksiyonlar: kullanilarak sonlu farklar metoduyla ayrik maksimum
normda yaklagik ¢oziimler sunulmustur (Ekinci, 2017; Cimen ve Ekinci, 2017).
Genellestirilmis Lambert W fonksiyonunu kullanarak lineer NDDE'leri ¢o6zmek i¢in
yeni bir sayisal yontem Onerilmistir (Jamilla vd., 2020). Lineer olmayan neutral
stokastik gecikmeli integro-diferansiyel denklem i¢in bdliinmiis adimli teta (split-step
theta) yaklasimiyla kesin ¢oziime gliglii bir yakinsaklik ispatlanmig ve sayisal ¢oziimler
onerilmistir (Zhao vd., 2020). Diizgiin sebeke iizerinde sonlu farklar metodu
kullanilarak neutral tip gecikmeli Volterra integro-diferansiyel denklem ic¢in niimerik
sonuclar sunulmustur (Amirali ve Acar, 2024).

Singiiler pertlirbe problemler levha teorisi, yar1 iletken cihaz modelleri,
akigskanlar mekanigi, yiiksek Reynolds sayili akigkan akisinda, kuantum mekanigi,
reaksiyon-difiizyon siirecleri, elastikiyet gibi bilim ve mihendisligin g¢esitli
alanlarindaki matematiksel problemlere uygulanmasinda ortaya ¢ikmaktadir (Doolan
vd., 1980; O’Malley, 1991; Nayfeh, 1993; Miller vd., 1996; Farrel vd., 2000).

Singiiler pertiirbe gecikmeli problemlerle ilgili son yillarda ¢ok fazla niimerik
calisma mevcuttur. Niimerik olarak ¢alisilmis bazi singiiler pertiirbe 6zellikli gecikmeli
problemlere asagidaki 6rnekler verilebilir.

Amiraliyev ve Erdogan (2007), asagidaki birinci mertebeden singiiler pertiirbe
gecikmeli baglangi¢ deger problemini ele aldilar.

{eu’(t) +a(u(t) + b(ut—r)=f(t), tel, 2.0

u(t) = @(t), tel,.

Bu problemin ¢6ziimii i¢in sonlu farklar metodunu kullanarak her bir alt aralik iizerinde
parcali diizgiin sebekede fark semasinin pertiirbasyon parametresine gore diizgiin
yakinsakligini incelediler.

Geng ve Qian (2014), yukaridaki problemi ele aldilar ve problemin ¢oziimii i¢in
pargali dogurgan cekirdekli metodu (piecewise reproducing kernel method) kullanarak
sinir katlarindaki bozulmayi iyilestirecek sonuclar elde ettiler.

Amiraliyeva ve Amiraliyev (2009), asagidaki birinci mertebeden singiiler

pertiirbe parametrize gecikmeli sinir deger problemini ele aldilar:



{su’(t) + f(t,u(t),u(t—r),A)=0,tel=(0,T],T >0, 2.2)

u(t) = @(t), t €1, u(T) = B.

Sonlu farklar metodunu kullanarak parcali diizgiin sebeke lizerinde, fark semasimin
pertiirbasyon parametresine gore diizgiin yakinsakligini incelediler.
Liu ve Chen (2014), asagidaki kii¢iik gecikmeli ikinci mertebeden singiiler

pertiirbe sinir deger problemini ele aldilar:

{—eug’(x) —a(uz(x —6) + b(x)u.(x) = f(x),
u(x) =), —6<x<0, u (1) =y.

(2.3)
Gecikme iceren terim, Taylor acilimi kullanilarak gecikme teriminden kurtararak
problemi gecikme terimi icermeyen bir singiiler pertiirbe probleme doniistiirdiiler. Daha
sonra monitdr fonksiyonuyla uygun sebeke lizerinde niimerik ¢alismalar sundular.

Amiraliyev ve Cimen (2010), asagidaki ikinci mertebeden singiiler pertiirbe
konveksiyon difiizyon gecikmeli sinir deger problemini ele aldilar:

{su”(x) +a()u'(x) +b()u(x —1r) = f(x),x €Q, (2.4)

u(x) =), x €2y u(l) =B.

Problemin ¢oziimii i¢in bir diizgiin sebeke tizerinde iistel katsayili fark semasi sundular
ve pertlirbasyon parametresinden bagimsiz olarak ayrik maksimum normda birinci
dereceden yakinsakligi incelediler.

Amiraliyev vd. (2019), asagidaki birinci mertebeden singiiler pertiirbe Volterra

integro gecikmeli problemi ele aldilar:

t

(
eu' +a(t)u + f K(t,s)u(s)ds = f(t), tel, 2.5)
t—r .
u(t) = p(t), tel,.
Bu problemi ¢ézmek icin diizgiin sebekede, kalan terimi integral formunda olan {istel

baz fonksiyonlarini ve kuadratiir formiilleri igeren integral 6zellikli yontemi kullandilar

ve pertlirbasyon parametresine gore diizgiin yakinsakligi incelediler.



Podila ve Kumar (2019), asagidaki ikinci mertebeden singiiler pertiirbe
gecikmeli sinir deger problemini ele aldilar:

{—Ey”(x) +a(x)y' () +b(x)y(x -1 =f(x), x€4, (2.6)

y(x) = p(x),x € 2y; y(2) =B

Bu problem i¢in diizgiin sebeke iizerinde serbest salinimli ¢6ziim verdiler. Diizgiin
sebeke lizerinde geleneksel semalardan daha kesin bir sema 6nerdiler ve bu semanin
pertiirbasyon parametresine gore diizgiin yakinsadigini da gosterdiler.

Cimen ve Cakir (2018), asagidaki nonlokal sarta sahip singiiler pertiirbe
gecikmeli problemi ele aldilar:

{eu”(x) +a()u'(x) + b()u(x) + c(ulx —r) = f(x), x € 1,

ux) = o), x €0y yu(ly) +ul) =A, L €0, (2.7)

Bu problemin ¢6ziimii i¢in sonlu fark metodunun diizgiin yakinsakligin1 analiz ettiler.
Bartoszewski ve Baranowska (2015), asagidaki ikinci mertebeden singiiler

perturbe gecikmeli diferansiyel denklemler i¢in sinir deger problemini ele aldilar:

{Ey”(t) =fl,y(x),y' (), y(a(x))), asx<b, 2.8)

y(x) =px),x <a, y(b) = .

Bu problemi kiibik splinelar kullanarak niimerik yaklagim 6nerdiler.
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3. MODEL DENKLEMLER

Bu boéliimde bilimin c¢esitli alanlarinda ortaya c¢ikan neutral tip gecikmeli
diferansiyel denklemle ifade edilen bazi model denklemler ele alinacaktir. Hiicre
cogalmast modeli (Baker vd., 1998), popiilasyon dinamigi modeli (Kuang ve Felstein,
1991), iki durumlu devre ag1 modeli (Chukwu, 1992) ve insan viicut denge modeli
(Domoshnitsky vd., 2021) c¢alismalar1 model denklemlere 6rnek olarak verilebilir.

Ayrica bunlarin disinda {i¢ farkli model denklem asagida detayli sekilde incelenmistir.

3.1 Acik AK Ekonomi Modeli

Asagidaki formiil, ekonominin bir mal veya hizmet olan Y ’yi iiretmek i¢in
fiziksel sermaye (makine, iiretim bandi vs.) K’yi kullanarak sahip oldugu {iiretim

surecini temsil eder.
Y = AK (3.1

burada, A > 0 toplam faktor verimliligini temsil eder ve birim fiziksel sermayenin birim
tirtin liretimine katkisini yansitir.

Asagida hanehalkinin faydasini ifade eden Ramsey ekonomik modeli verilmistir.
Bu model hanehalklarmin temel ekonomik davranislarini ve kararlarini incelemek icin

kullanilir.

c)l=0-1

fowe_pt e 4 (3.2)

Hanehalkinin tiiketim mali olan C ile ne kadar fayda sagladigmi gosterir. C, "t"
zamaninda tiiketilen mal veya hizmet miktarin1 temsil eder ve 8 > 0, p > 0, faydanin
zamanla nasil azaldigini ifade eden bir katsayidir (iskonto oranlaridir).

Asagidaki formiilde de hanehalkinin biitge kisitin1 ifade eder. Bu biitce kisiti,

hanehalkinin tiiketim kararlarinm etkiler.

K'(t) —D'(t) = AK(t) — 8K(t) —rD(t) — C(1). (3.3)



Burada

K'(t): Mevcut dénemdeki toplam varlik miktarimn,

D'(t): Net yabanci borcu,

C (t): Hanehalkinin mevcut donemdeki tiiketimi,

AK(t) — 6K (t): Gelecek donemdeki yatirim

rD(t): Borg geri ddemesini temsil etmektedir.

Burada hanehalki, biitce kisit1 icinde, mevcut ve gelecek donemlerdeki tiiketim, yatirim
ve borg geri 6demesi arasinda bir denge kurmaya c¢alisir. (3.3)’te A = 0 ve t = 0 olacak

sekilde
D(t) = MK(t—1)

doniisiimii yapilirsa asagidaki gibi (3.4) elde edilmis olur.

K'(t) =M ({t—1)+ (A—8)K(t) — rAK(t — 1) — C(b) (3.4)
(3.4)’te Ramsey hanehalklarinin bor¢ alma konusunda belirli kisitlamalar oldugunu ve
gelecekteki yatirimlara taahhiitte bulunmadigini ifade ediyor. Hanehalklari, ge¢miste
sahip olduklar1 rehin degerinin bir kismina kadar bor¢ alabilirler ancak gelecekteki
yatirimlar taahhiit etmek zorunda degillerdir.
Tiiketim C ve tasarruf oran1 s arasindaki iliskiyi ifade etmek i¢in

C=(1-s)Y (3.5)

denklemi kullanilir. Burada 0 < s < 1 tasarruf oranini ve Y toplam c¢iktiyr temsil

etmektedir. (3.5) esitligi (3.4)’te dikkate alinirsa

K'(t) =MK'(t—1) +eK(t) — rAK(t — 1) (3.6)

denklemi elde edilir. Burada € = sA — § dir. Sonug olarak (3.6) denklemi neutral tipten
gecikmeli bir diferansiyel denklemdir (Boucekkine ve Pintus, 2010).
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3.2 Radyo Frekans Modeli

Bu model denklem bir iletim hattt osilatériinde gecikmeye bagli radyo
frekanslarinin deneysel gozlemini ifade etmektedir. Kullanilan degiskenler asagida
verilmektedir.

P R: Saga dogru hareket eden bir gerilim dalgasidur.
YL Sola dogru hareket eden bir gerilim dalgasidir.
V(z,t): Voltaj (z: konum, t: zaman)

I(z,t): Akim (z: konum, t: zaman)

R.: Karakteristik impedans

R: Direng

C: Kapasitans

p: Yansima katsayisi

vy: Dalga hiz1

Yansima katsayis1 denklemi, standart iletim hatt1 teorisine gore

_ —R-R,
P="R+r,
ile verilir. Hat boyunca her noktadaki V(z,t) ve I(z, t) su sekilde verilen “Telgraf¢inin

denklemleri” olarak ifade edilir.

L 0 V@D
"ot 07 5z
W _ L Al
T P

Bu denklemlerin genel ¢6ziimii su sekilde verilmektedir:

Vizt) =p* (- UZ—O) +t (e + vio) (3.7)
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I(z,t) = Ric{lpR (t- %) —yh(e+ vio)} (3.8)

Burada ® ve !, sistemin baslangic kosullarina bagli ve zamanin keyfi fonksiyonlarini
ifade eden, sirasiyla saga ve sola dogru hareket eden birer gerilim dalgasidirlar ve

dahas1 YR ile ! arasinda asagidaki iliski mevcuttur.

PR = gt (O]
Ohm yasasina gore z = d konumu i¢in

V({d,t) = —RI(d,t) (3.9)
ifadesi tanimlanabilir. Burada (3.7) ve (3.8), (3.9)’da dikkate alinirsa

R

¢%0=R

R,
gyt -]

esitligi elde edilir ve T = 2d /v, dir. Bu fark denklem modeli, fiziksel sistem tizerinde
saglikli bilgiler sagliyor olsa da fiziksel olarak gercek¢i olmayan anlik sonlu sigramalara

izin verdigi i¢in tam olarak gercekei bir model sayillmaz. z = d i¢in daha gergekei

c dv(d,t) —do) + V(d,t)
dt
sinir sart1 dikkate alinirsa
, 1 1 1 1
CPh) =~ (7~ ) WM + (- + ) olwh e =] .

—Cg' Y (t — DYt — 1)

model denklemi elde edilir ve (3.11) denklemi neutral diferansiyel denklem olarak

bilinen bir tiir fonksiyonel diferansiyel denklemdir (Blakely ve Corron, 2004).
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3.3 Kayipsiz iletim Hatt1

Lineer olmayan bir devre ile sonlandirilan kayipsiz bir iletim hattindaki kii¢iik

genligin salmimlar, pertlirbasyon teorisiyle

incelenir. Bu sistemi tanimlayan
denklemler, bir gecikmeli fark diferansiyel denklemine indirgenir (Brayton, 1967).

i(x,t)

R-%_ LOSSLESS + c
TRANSMISSION vy
ol e Vixf fyp [ v
'L -
1
|

Sekil 3.1 Kayipsiz iletim hatt1 diizenegi

=Y
L

E elektromotor kuvvet, R direng, L seri indiiktans, C birim hat basina paralel kapasitans,

C; bir toplu paralel kapasitor kapasitansi olarak temsil etmektedir. Burada

s= (L) Y2 vez = (L/C)V?

olsun.

Ciw() + kw(t —1)] = f(w(t),w(t — 1)) (3.12)

buradat =2/s,k=(R—2)/(R + z) ve

2E 1 k
f(w(t),w(t — T)) =—TR™ Ew(t) + ;W(t —7T)— g(w(t)) — kg(w(t — T)).

Ek olarak, farz edelim ki R > z, boylece 0 < k < 1 olur. u(t) = w(rt) donilisimiinii
yaparsak:

u(®) =wet), u(t—1)=w(t-1), u(t) . u(t—1)

= w(tt), T=W(Tt—r)
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olacaktir. Bu degerler (3.12)’de dikkate alinirsa

elu(t) +ku(t—1)] = fult),u(t — 1)) (3.13)
denklemi elde edilir. Burada ¢ = C; /7 olarak alinmaktadir. Pratikte kapasitans C;

kiictiktlir dolayistyla € da pozitif kiigiik bir degerdir. Dolayisiyla (3.13) denklemi bir
singiiler pertiirbe diferansiyel denklemdir (Huang, 2005).
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4. TEMEL TANIMLAR VE ON BiLGIiLER

Bu béliimde diizgiin ve diizgiin olmayan sebekede fark semasinin kurulmasinda

ihtiya¢ duyulan temel tanim, teorem, notasyon ve formiiller verilmektedir.
Tammm 4.1  Sebeke ve Sebeke Fonksiyonu

a) I arahigmin sonlu sayida noktadan olusan parcalanisina bir sebeke denir. Bu

sebekede tanimlanmis fonksiyona ise sebeke fonksiyonu denir.
b) I iizerinde tanimlanan
wy, = {t:0=ty <t; < <ty, =T}

ayrik noktalar kiimesine I’da tamimlanan diizgiin olmayan sebeke denir. t; noktalarma

ise diiglim noktalar1 veya sebeke diigiimleri denir. h; = t; — t;_4 sebeke adimidir.
c) Eger diigiimler esit aralikli iseler
wy, = {ti:t;=1ih, i =0,1.2,..,N; h=T/N}
ifadesine I araligindaki diizgiin sebeke denir. h sabitine sebeke adimi denir.
d) Diizgiin veya diizgiin olmayan sebekede tanimlanmis g; = g(t;) fonksiyonuna
t; diiglim noktalarindaki sebeke fonksiyonu denir (Samarskii, 2001; Amirali ve Amirali,

2018).

Tanim 4.2  Maksimum Norm ve L; Normu

lglleor = ggg;lg(t)l



ifadesine g(t) fonksiyonunun I aralifindaki maksimum normu denir (Samarskii, 2001;

Amirali ve Amirali, 2018).

T
lgllor = f 19 (o) dx
0

ifadesine g(t) fonksiyonunun [ araligindaki L; normu denir (Samarskii, 2001; Amirali

ve Amirali, 2018).

Tammm 4.3  Sebeke Normlar

Iglleo,00, = max|gil

ifadesine diizgiin sebekede maksimum normun fark benzeri denir.

Igllco, ey = gglglgil

ifadesi diizgiin olmayan sebekede maksimum normun fark benzeridir (Samarskii, 2001;
Amirali ve Amirali, 2018).

N-1
gl =k ) lgi
i=1

ifadesine diizgiin sebekede L; normunun fark benzeri denir.
Tanmim 4.4  Fark Tiirevleri

I arahiginda g(t) fonksiyonu igin

ifadesine diizgiin sebekede birinci mertebeden geri fark tiirevi ve
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ifadesi de diizgiin olmayan sebekede birinci mertebeden geri fark tiirevi olarak bilinir.

Burada h; = t; — t;_; sebeke adimidir (Samarskii, 2001; Amirali ve Amirali, 2018).

Tanim 4.6 Kararhhk

Lineer

Lu=f(t), teG 4.1)

denkleminin

lu=u(t), terl (4.2)

sartin1 (sinir sart1 veya baslangi¢ sart olabilir.) saglayan ¢oziimiiniin bulunmasi istensin.
Burada f(t), u(t) belirli fonksiyonlar (veri fonksiyonlar1), [ belirli bir lineer
diferansiyel operatordiir. G = G U T bdlgesinde herhangi bir @, = wp, U [, sebekesinin
kuruldugunu varsayalim. Burada wy, -i¢ sebeke, [, -siir sebeke (sebeke sinir noktalar
kiimesi), h ise sebeke diiglimlerinin yogunlugunu ifade eden parametredir (sebeke

adimi). (4.1)-(4.2) problemine karsilik
Lyy = @p, t € wp, 4.3)
lhy=xXxn tE€ly (4.4)
fark problemi olsun. Burada, Ly, [, — @y da tanimlanan fonksiyonlar kiimesinde etkili
olan fark operatorleri, ¢y, x5 belli sebeke fonksiyonlaridir.

Kararlilik, fark problemleri veya genellikle yaklasik algoritmalar i¢in bunlarin

pratik uygulanabilmesinin gerektirdigi dnemli bir 6zelliktir.
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(4.3)-(4.4) fark problemi, belli simiflardan olan her bir ¢y, x, baslangi¢c veri
fonksiyonlar1 ve yeteri kadar kiiglik h < hy icin bir tek ¢oziime sahip oldugunu
varsayalim. (4.3)-(4.4) probleminin baglangi¢ veri fonksiyonlar1 @, X olan ¢oziimiinii
y ile belirleyelim.

h’a bagli olmayan C;, C, sabitleri varsa yeteri kadar kii¢iik h < hy i¢in

Iy —ylly < Cill@n — @nllz + CllIXn — xnlls 4.5)

esitsizligi saglanmis olsun, bu durumda (4.3)-(4.4) fark semasi sag tarafa ve sinir (veya
baslangic) sartina gore kararlidir denir. Burada ||. ||, |- ]l2, |l- |3 herhangi sebeke
normlaridir.

(4.3)-(4.4) problemi lineer oldugundan kararhilig: ifade eden (4.5) esitsizligi

Iyl < Cillgnllz + Collxalls

esitsizligine denktir.

Boylece kararlilik, fark semasinin ¢éziimiiniin baslangi¢ veri fonksiyonlarina siirekli
bagli olduguna, hem de bu bagliligin h’a gore diizgiin bi¢imli oldugunu ifade eder
(Samarskii, 2001; Amirali ve Amirali, 2018).

Tanim 4.7 Yakinsakhk

u, (4.1)-(4.2) probleminin kesin ¢oziimii ve herhangi bir sebekedeki bu probleme
uygun fark probleminin ¢oziimii y olsun. z =y —u farki hata fonksiyonu olarak
tanimlanmaktadir.

h — 0 oldugunda ||z||; = ||y — u|l; = 0 ise (||]l; s6z konusu sebekede herhangi
bir norm), bu durumda y fark probleminin ¢6zlimii u probleminin ¢ézlimiine yakinstyor

denir. Ayrica, yeteri kadar kiiciik h sabitleri i¢in

ly —ull; £ Ch*, k>0

ise (C, h’a baghh olmayan sabittir.) bu durumda yaklasik ¢oziim kesin ¢dziime h’in

k’1nc1 derecesiyle yakinsar veya yaklasik ¢oziim O (h*) kesinligine sahiptir denir.
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Bu tanima ilave olarak C ve h sabitleri, singiiler pertiirbe 6zellikli problemdeki
pertiirbasyon parametresi olan £’dan bagimsiz iseler o zaman yaklasik ¢oziim, kesin

¢Oziime £’na gore diizgiin yakinsak olur denir (Samarskii, 2001; Amirali ve Amirali,

2018).

Tanim 4.8 Maksimum Hata ve Yakinsakhik Orani

Kesin ¢oziimili olmayan problem i¢in ¢ift katli sebekede yaklasik ¢éziimlerden

&2N

biri y&V ve digeri j olsun. Bu durumda maksimum hata ve maksimum noktasal hata

sirastyla

e = lly™ = 552",

eV = maxe®V

wN

~E,2N

olarak belirlenir.Burada ¥ orijinal t; € wy sebekesinin noktalarimi ve tjy1/, =

(t; + tix1)/2,i =0,1,...,N — 1 orta noktalarin1 igeren niimerik degerlerdir ve p"

diizgiin yakinsaklik orani
p" =log,(e"/e*")
bi¢ciminde belirlenir (Farrell vd., 2000).
Tamm 4.9
f(t), I’de tanimli herhangi bir fonksiyon olsun. Bu durumda C™(I) ifadesine I

araliginda t’ye gore n. mertebeden siirekli tiirevlere sahip fonksiyonlar kiimesi denir

(Samarskii, 2001; Amirali ve Amirali, 2018).

21



Tanim 4.10

Diizgiin sebekede fark semasiin kurulmasi ve incelenmesinde asagida belirtilen

bazi1 kuadratiir formiilleri kullanilacaktir. Birinci 6zdeslik

b

b
] p(0)f (¥)dx = I ] p()dx|{of (B) + (1 — 0)f (@)

a

) (4.6)

+f1a, b] f(x — x("))'p(x)dx + R, (f)

a

seklindedir. Burada o -reel parametre, p(x) € C|[a, b] agirlik fonksiyonu, f(x) belirli

fonksiyon ve
b b

Ru(f) = f dxp(x) f F® B Koy (69d5, fECT, n=1,2

a

kalan terimdir ve diger bazi ifadeler asagida verilmistir.
KD =T(x-5)-(b-a)'(x—a)(b—-3%° s=0,1,

x@ =gb+ (1 —-0)a, flab]= %,

N

2
L=, 420 =0, 2<0.

' )
Bir diger 6zdeslik

b

b
[ peor @dx = fla.b) [ peodx + R @.7)

a
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seklindedir ve burada p € C[a, b] ve kalan terim R;;(f) asagida verilmistir.

b b
RL(f) = — f dxp’ (x) f F® @Ko (x,Dd5, fECT, n=1,2.

(4.6) ve (4.7) formiillerinde aym K (x,%) fonksiyonunun bulundugunu belirtelim
(Amirali ve Amirali, 2018).

Tanim 4.11 Regiiler ve Singiiler Pertiirbe Problem

P, problemi ¢ kiiciik parametresine bagli bir problem olsun. Bu problemin u,
¢oziimiinin L(u, &) = 0 denklemi ile belirlendigi kabul edilsin. Bu tiir problemlere
genelde pertiitbe olmus problem denir. € = 0 durumundaki P, probleminin ¢&zimii,
bagka bir deyisle L(uy, 0) = 0 bagmtisi ile tanimlanan problemin ¢oziimii, u, olsun. P,
problemine, P, problemine uygun indirgenmis problem denir. Indirgenmis P, problemi
verilmis problemle ayni tipe ve mertebeye sahipse, ayrica her iki problemin de bir tek
¢Oziimii varsa P, problemine regiiler pertiirbe olmus problem, aksi durumda ise singiiler

pertiirbe olmus problem denir (Amirali ve Amirali, 2018).
Teorem 4.1 Ortalama Deger Teoremi

u = f(x,y,z) fonksiyonu bir D bolgesinde tanimlanmis bir fonksiyon olsun. Bu
fonksiyonun D bolgesinde fy, fy, f, siirekli kismi tiirevlerinin var oldugunu kabul
edelim. Bu takdirde D bolgesinde herhangi M(xq, Vo, 2zo) ve M;(xq + Ax, vy, +
Ay, zy + Az) noktalari i¢in dyle bir 3 0 < 8 < 1 bulunur ki

Af (x0,¥0,20) = f(xo + Ax,yo + Ay, zo + Az) — (X0, Yo, Zo)

= f,(xo + 0Ax,yy + OAy, z, + 6Az)Ax
+1y(xo + 0Ax,yo + 04y, zy + 0Az) Ay
+f,(xo + 0Ax,y, + 04y, zy + O0Az)Az
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olur. Buna ortalama deger formiilii denir (Musayev vd., 2006).

Teorem 4.2 Maksimum Prensibi

Asagidaki fark problemini ele alalim.
Invi = €vg; +aqv; = F;, i =0,1,2,..., N, (4.8)
vy = A. (4.9)

Burada |F;| < F;, a > a > 0 ve F; azalmayan fonksiyon olsun. Bu durumda (4.8)-

(4.9)’un ¢oziimii,

lvil < 1Al + @ 2F, i=0,1,2,..,N, (4.10)
esitsizligini saglar (Amiraliyev ve Yilmaz, 2014).
ispat. ® = +v; + |A| + a~F; bariyer fonksiyonunu goéz oniinde bulunduralim ve F;

azalmayan fonksiyon oldugu i¢in Fz; = (F; — F;_1)/7 = 0 olur. Dolayisiyla agik bir
sekilde,

Iy®F = +F,+aa 'F,>2F,+F =0

~

Ve

P =+A+|Al+a 'Fy =0

oldugu goriiliir. Boylece maksimum prensibine gore

dF >0

olur. Dolayisiyla (4.10)’un ispat1 tamamlanmis olur (Amiraliyev ve Yilmaz, 2014).
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5. LINEER SINGULER PERTURBE NEUTRAL TiP GECiKMELI
DIFERANSIYEL PROBLEM

Bu boliimde (1.1)-(1.2) problemi i¢in Lemma 5.1°de bazi1 6n degerlendirmeler
yapilacaktir. Diizgiin sebekede fark semasi kurulacak, diizgiin sebekede Lemma 5.2°de
kalan terim R;’nin, Lemma 5.3’te hata fonksiyonu z;'nin degerlendirmesi yapilacaktir
ve daha sonra Teorem 5.1°de diizgiin sebekede Lemma 5.2 ve Lemma 5.3’ilin
birlesiminden fark semasiin kararliligi ve diizglin yakinsakligi gosterilecektir. Daha
sonra diizgiin olmayan sebekede fark semasi kurulacak, diizgiin olmayan sebekede
Lemma 5.4’te hata fonksiyonu z;'nin, Lemma 5.5’de Shishkin sebekede kalan terim
R;’nin ve Lemma 5.6’da Bakhvalov sebekede kalan terim R;’nin degerlendirmesi
yapilacaktir. Teorem 5.2’de, Lemma 5.4 ve Lemma 5.5’in birlesiminden Shishkin
sebekede ve Teorem 5.3°te, Lemma 5.4 ve Lemma 5.6’nin birlesiminden Bakhvalov
sebekede fark semasinin kararliligi ve diizgiin yakinsakligi gosterilecektir. En son bir
ornek iizerinde niimerik sonuglar incelenecek, grafik ¢izimleri yapilacak ve bolim

degerlendirmesi yapilacaktir.

5.1 Baz On Degerlendirmeler

Bu kisimda niimerik metodumuzu sunmadan 6nce (1.1)-(1.2) probleminin u(t)
¢Ozlimiin ve tiirevinin baz1 6zelliklerini verecegiz. Uygun nlimerik ¢6ziimiin analizinde

bu 6zelliklere ihtiya¢ duyulacaktir.

Lemma 5.1 a,b, ¢, f € C1(I); ¢ € C*(I,) oldugunu kabul edelim. O zaman (1.1)-(1.2)

probleminin u ¢6ziimii ve tiirevi i¢in asagidaki degerlendirmeler dogrudur:

llleos, < Cp1 <p<m, (5.1)
_ p—1 —B(t—rp_l)
lu' (D) < c{1+%e( : )},1 <p<m. (5.2)

Burada



C1 = (1 + 2l )@l sy + B~ {If ooz, + [lclloo, sy + Nlallooz, 1Bl [l ),

Cy = (1 + llallosy, )€1 + llalleos, l1@1loo s,
+ B I oo, + [llcllooz, + Nalloos, 1blles s, ]C1},

(3 = (1 + “a”oo,l3)CZ + llalleo,r,C1 + ﬁ_l{||f||oo,13 + [“C”oo,l3 + ”a”oo,13||b”oo,l3]62};

Cp = (1 + ”a”oo,lp) Cp-1+ llallw"pcp_z

+ B {1 Nlen, + [lelen, + Nalloos, 1Bl | Coos }

Ispat. Ik 6nce (5.1)’in dogrulugunu gosterecegiz. Bazi diizenlemelerle birlikte (1.1)

problemi
ev'(t) + b(t)v(t) = F(t) (5.3)
formunda yazilabilir. Burada,
v(t) = u(t) + a(®)u(t —r),

F@) = f(®) = [c(®) —a®b®)]ult — 1)
olur. (5.1) esitsizligini degerlendirmek i¢in tiimevarim yontemini kullaniyoruz. (5.3)’ten
t

1 1.t
+- fF(r)e‘Efr”(s)dsdr, tel, (5.4)

rp_l

f’”tp—1 b(s)ds

v(t) = v(rp_l)e_%

ifadesi yazilabilir. Daha agik yazmak i¢in v(t) ve F(t) degerlerini (5.4)’te yerine

yazarsak
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u(t) = —a(u(t—r) + [u(rp_l) + a(rp—l)u(rp—l _ T)]e_%f’”tp—l b(s)ds

"‘% j{f(f) _ [c(®) = a(@)b(D)]u(r — r)}e s PO g

Tp—l

—B(t-rp-1)
= —a@®u(t —7) + [u(ry_1) + alrp_)u(ry_y —7)]e” = )

t_

+— f (@ = [c(@) — a@b@ulz - e ¢ dr

™p-1

esitligini elde ediyoruz. Bundan sonraki adimlarda tlimevarim ydntemiyle ispat

asamalar1 verilecektir. p = 1 i¢in (t € I;), (5.5)’ten

() < la@®llult =)l + [l90)] + [a(®)lp(-)[le"s

—-B(t—-1)

+ [ @1+ 1@+ la@Ib@lo@ -l e e
0

Nulleo,r, < llalleo, 191ty + 1@ lleoty + Nl@llco,r, 1@ 1leo s,

—B( T)

{1 flloo,sy + Ulclleor, + llallon, s, 1Blloo,, 1 lloo,z } = f

< llalloor l@lleoy + l@lleo iy + llalloo,r, 1@l 1,

-pe
{1 flleo s, + (elleor, + N1l 1Bl )l pllcn sy B~ 7

lltlloo,ry, < (1 + 2ll@lloo s, )@ len
+B7 I ooz, + [llelloo,ry + Nlalleor, 1Blleor, ]l @l sy} = Co

esitsizligini elde ediyoruz. Dolayisiyla (5.1) esitsizligindeki p = 1 ig¢in ispat yapildi.
Benzer sekilde, (5.5)ten p = 2 i¢in (t € 1)
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—B(t-1)

lu@® < la@®]ut =)l + [lu@)| + la@@)[u(0)[]e” -

—B(t-1)

+%j{|f(f)l+[IC(T)I+Ia(T)I|b(T)I]Iu(T—r)I}e e drt
0

Nullo,r, < Nalleo,r, 1ttllcor, + ttllo,r, + llallco,r, 1@ llco s,

t
1 -B(t-1)
+{|If||oo,12+[I|c||oo,12+IIalloo,zzIIbIIw,IZ]IIuIIw,Il};]e e dr
b

< (1 + llallos,)C1 + llalloo s, 10 loo,,

1 —B(t-1)
{1, + [Nellos, + llallos, 1Bl ]6)87 (1= 5

Nullos, < (14 Nlalloor,)Cr + Nlalloo s, l@llco s,
+ﬁ_1{”f“oo,12 + [“C“oo,l2 o “a”oo,lzllb”oo,lz]cl} = (;

esitsizligini elde ederiz ve benzer yaklasimla p = 3 i¢in (t € I5)

lttll ooz, < (14 lalleor,)Co + llallons, Co
+ B Nlooz, + [lclloo,s, + Nlallon s 1Blloos, ]C2} = C5

degerlendirmesi yapilabilir. Simdi, p = k icin (5.1) esitsizliginin dogru oldugunu kabul

edelim. Yani

Il < (1 + Nlalloo,, ) Crmr + Nlalloo s, Cicz

+ B I ooy + [Nelleorye + Nallon p 1Plloo, ] Cior} = Cic

esitsizligi dogru olsun. Boylece t € I, i¢in degerlendirmenin dogru oldugunu

gostermemiz gerekmektedir. (5.5) denkleminden,
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ltlloo repy < (1 + llallco sy, )Cic + Natlloo ey, Cma

+ B Mooty + [Nelleotyeqy + 1@llon rp 1Bl 1y [Ch} = Cicaa

ifadesini elde ederiz ve bu da aradigimiz sonugtur. Dolayisiyla p = k + 1 i¢in de (5.1)
esitsizliginin dogrulugu ispatlanmis oldu. Boylece (5.1) esitsizliginin ispati tamamlanir.

Simdi ise (5.2) esitsizligini ispatin1 verelim: (5.3)’ten bir kere tiirev alirsak
ev"'()+b()v'(t) =F'(t) = b'()v(t) = &(b), (5.6)
denklemi elde edilir. Burada @ (t) asagida verildigi gibidir:

@(t) = f'(t) + [a'(©)b(t) — c'(O]u(t — 1)
+a(®b(t) — c(O]u'(t — 1) — b’ (D).

Ispat asamalarina gegcmeden dnce @ (t) icin degerlendirme yapalim:

2@ < If' O] + [la"O1b@O)] + lc" O Nult = 1)
+a@bO] + lc@®1u'(t =) + b (O] [u®)].

Buradan, Lemma 5.1°deki sartlar ve (5.1) esitsizligi dikkate alinirsa @ (t) igin
o) <CA+ [u'(t—7)]) (5.7)

yaklasimi yazilabilir. Daha sonra (5.2)’nin ispati i¢in, (5.6) denkleminden asagidaki

bagintiy1 yazabiliriz:

t

_1l,t 1 1.t
V() = v'(ry_)e 2hrp-y D(S)ds = f D(r)e e PO rel, (5.8)

rp_l

(5.8) bagintisin1 daha agik yazarsak asagidaki gibi bir degerlendirme elde ediyoruz:
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u' () =—a@®u'(t—r)—ad @®u(t—r)

1 r I} __1frt b(s)ds
' (rp-1) + @' (- )u(rp-1 = 1) + alrp-1 ) 1y — )] = 7o

t
1 -1t
+; f@(r)e?ffb(s)ds dr.

rp_l

Buradan

—B(t-rp-1)
[u' (O] < la@®|uw' (t =)l + la’ Ol ut = )|+ |u' (rp-1) e =
-B(t-rp—1)
T 1 M T o MO |

t
1 -B(t-1)
i jlfb(r)le—s dr
p—1

ifadesi yazilabilir. Ayrica (1.1) denkleminden
efu'(t) +a®u'(t —r)] = —ea’(u(t —r) — b(Ou(t) — c®ult —r) + f(t)

olup, t = 0 i¢in

lp"(0)] + |a(0)[le"(=r)] < |a"(0)]lp(=7)

N [b(0)[[@(0)] + |c(0)[[@(—=m)] + [£(0)] ¢ (5.10)
€ T &

esitsizligini yazabiliriz. Bu asamadan sonra (5.2)’nin ispati i¢in tiimevarim metodunu

kullanacagiz. Simdi (5.9) esitsizliginden p = 1 (t € ;) i¢in,

W' < la®lle’(t =) + [a'(Olpt —7)|

t—T

-t 1 ; _
+H1g' @] + 2@l 1] + [ OllgpC-nlle™ + [1o@le™+ dr
0
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esitsizligini yazabiliriz. Burada (5.7) ve (5.10) esitsizliklerini de dikkate alirsak
' 1 B
Iu(t)ISC(1+;e s) (5.11)

ifadesini elde ederiz. Daha sonra p = k (t € I,) i¢in asagida verildigi gibi (5.2)

esitsizliginin dogru oldugunu kabul edelim.

(t-rieep)"? ZEETho1)
g—k e £ .

W ()| < 6{1 + (5.12)

Simdi de p=k+1(t € I;4,) i¢in dogru oldugunu gosterelim. (5.9) esitsizligi
p = k + 1 i¢in asagidaki formda yazilabilir:

[u' (O] < la@®]lu'(t = )] + [’ @©|u(t —7)]

=B(t-rg)
Flw Gl + el (re_Dlle 2

t

(5.13)

—B(t-rg) -B(t-1)

1
Ha' GOl Dle™ -+ [lo@le™ < dr

Tk

Ispatin devamu icin u'(ry), u'(rx—1) ve u'(t — r) ifadeleri igin bazi degerlendirmeleri

yapalim. Ilk olarak (5.12) esitsizliginden t = 7}, almirsa

, (1, — 1)1 =Blri=ri1)
Iu(rk)ISC{1+ i gkkl e e

elde edilir. Burada x*e* <Ce™*, 0<y <1, x€[0,0), k>0 esitsizligini

uygularsak

luW'(r)| <C, k=1 (5.14)
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ifadesini elde ederiz. Benzer sekilde

W ()l <C, k=1 (5.15)

yaklagimini da elde ederiz. Yine (5.12) dikkate alinirsa u'(t — r) i¢in

t—r—r1._ k=1 _p(t-r-rp_4)
|u’(t—r)|§C{1+( T~ T e—g’“}

ck

—p k-1 —B(t-TE)
SC{1+M9 : k} (5.16)

gk
ifadesini elde ederiz ve buradan da

(t-r)** —_B(t_rk)}

1D(0)] < 0{1 T (5.17)

esitsizligini yazabiliriz. Bu degerlendirmelerden sonra (5.14), (5.15), (5.16) ve (5.17)
esitsizlikleri (5.13)’te dikkate alirsak

t—1)k 1t =Bl=rk) —B(t-15)
—( gllj) eTk> +Ce

lu' ()| < C(l +

¢
1 T—1) 1 -Be-r)\ -Bt-D
+ch<1+—( ) e ¢ k>e ¢ dt
Tk

ck

(t =)kt =Bl=rr)

ck

-0\ 1 =B (t — 1)k
<C+cC —> Tk—( i)

1
+CEﬁ 18(1—6 z +ECe ok
(t—rk)k —B(t-Tg)
SC{I-I—WQ £

son degerlendirmeyi elde ederiz. Bu da (5.2) esitsizliginin ispatini verir.
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5.2 Diizgiin Sebeke

Burada probleme uygun sebeke tanimini verecegiz. Herhangi g(t) sebeke
fonksiyonu i¢in, g; = g(t;) olarak kullanacagiz ve u(t) nin t;’deki yaklasik ¢ozimiini

y; olarak ifade edecegiz. I iizerinde diizgiin sebeke wy, olsun:

wy. ={t; =ihi=1,2,..,Ny, h=T/N, =r/N},

0
wyp ={tiiti=ry_1 +[i—(@—DNIh}, p— DN +1<i<pN,

—ypym
Wy, =Up=1 Opp,

(1]

@y, = wy, U{0}, @_y={t;:t; =—ih,i=—-N,—-N+1,..,0}.

gi = g(t;) sebeke fonksiyonu igin probleme uygun sebeke normlar1 asagidaki sekilde

tanimlanmaktadir:

lglleoey, = maxlg:l, 1<p<m,
b o

191l0,0y, = maxlg;|, 1<p<m.
(UNO

5.3 Diizgiin Sebekede Fark Semasinin Kurulmasi

Burada (1.1)-(1.2) probleminin fark yaklagimi i¢in
t; i
X0 [ Luw@de = [ Fewode (5.18)
ti—1

ti—q

Ozdesligini kullanacagiz. Burada ; (t)
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b;
Vi) =e =D ¢ <t<t (5.19)
olarak belirlenmis iistel katsayil1 baz fonksiyonudur. Dahas1 bu fonksiyon

—e'(®) + b (6) =0, t;; <t <t;, P;(t) =1

probleminin ¢oziimidiir. Ayrica y;
=— 5.20
p=z (5.20)

ti
1
x=h [ de=——
ti—1

olarak sec¢ilmis bir katsayidir. Simdi de (5.18) 6zdesligini yeniden diizenlersek

X [ efu® + a@ute - D@ de+ 0 [ beu@wio de
[ e@ute - @ de=x 0 [ Fewo de

esitligini elde ederiz. Hem esitligin sol tarafindaki ikinci ve iigiincii terimlere ve hem de

esitligin sag tarafina ekleme ¢ikarmalar yaparsak

t; ti
X0 [ () + alut - 1w de+ 7 h b | uowio de
ti—1 ti—1
f b (5.21)
e [ue- @ de =0 [ o de
ti—1 ti—1

+R™Y + R + R

0zdesligini elde ederiz ve (5.21)’de kalan terimler
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t

RO = 3 [ b= b0 de

RO =2 [l = colute - @ de,
RO =y [1F© = fwioy de

olarak belirlenir. Daha sonra (5.21) i¢in bazi terimlere (4.6) ve (4.7) kuadratiir

formiillerini uygulayacagiz. Ilk olarak

t

X [ eu® + a@ute = 1o de

ti—1

terimine (4.7) formiiliinii uygularsak

t

X [ e + a@ute = 1) de

ti—1

ti
- P;(t)dt —RY
-1

= ylh-1e lu(ti) +au(t; —r) —ulti—q) —a;qulti4 — T)l

L

_, lu(ti) —u(t;_y) + aiu(t;-l— r) —a;_qu(ti—g — 7')] _ Ri(*)
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[u(ti) —u(ti—1)  aiqu(t;—7) —ai_qu(ti_y —7)
=& +

h h
au(t; —r) —ag_qu(t; — 1) *)
—R!
h L
ti
X [ el + a@ute = 1) de
X (5.22)
-1
= elug; + ai_quz;_y + aguiy] - R
esitligini elde ederiz. Burada kalan terim Rl.(*)
t; t;
d
Ri(*) =y th7le f Y (t)dt j [u’(s) +£[a(s)u(s — 1)Ko (t,s)|ds
ti—1 ti—1

olarak elde edilmistir. ikinci olarak
ti
RN RTGUIOL
ti-1
terimine (4.6) formiiliinii uygularsak

tl tl
X [ i@ de = x| [ o deue)
ti—1 ti—1

tl
+x R b f(t — t);(t) dt — R{™
ti—1
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t

X th b, f (P () dt
ti—q

(5.23)

tl.
= b + +x; th™ by, f (t — t);(t) dt — R
ti—1

esitligini elde ederiz ve kalan terim

t t
RS == [ wi@de [ W)k ds
ti—1 ti—1

olarak belirlenir. Burada Ri(*) ve Ri(**) beraber diisiiniildiigiinde (5.19)’da verilen iistel

katsayil1 baz fonksiyonu elde edilir ve Rl.(*) ’da geriye kalan hata terimi

t; t;
d
RO = xithe | wide | ZlaGsduls — Ko 5) ds
ti—q ti—1

bi¢iminde olacaktir. Son olarak

ti
xe [ G- de
ti—q
terimine de (4.6) formiiliinii uygularsak
t; t
xi th™e; f u(t =)y (t)dt = x; 'h™'¢; f Yi() dt|u;_py
ti—1 ti—q
ti
a7 th T sy j(t — t)Y;(t) dt — R®
ti1
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t

xithTle fu(t—r)lpi(t) dt =

ti—1

(5.24)

tl
ot + 2 W gy [ (6= w0 de - RO
ti—q

esitligini elde ederiz ve burada da kalan terim

t; t;
Ri(S) = —x; th™ ¢ f Y () dt f u'(s —r)Ky(t,s)ds
ti—q tiq

olacaktir. (5.21) esitliginde (5.22)-(5.23) ve (5.24) degerlendirmeleri dikkate alirsak

tl
E[uf,i ta;_qug;_yt af,iui—N] + xi "h™thug f(t — t)Y;(t) dt
ti—1

: (5.25)
+)(l-_1h_1ciu;‘i_N j-(t — tl)lpl(t) dt + bl-ui + CiUj_ny = fl + Ri
ti—1
0zdesligini elde ederiz. Buradan da (5.19) ve (5.20) dikkate alinirsa
t; .
-1 -1 % g _m Ez 82 _M
Xi h j(t_ti)lpi(t)dtz—h(h’b_e ¢ —T3 1t ze€ £>
1— e_bi; i bi bi
ti—q (5.26)
h _pt €
= 1 ~ _bi% e & — b—l
ifadesi bulunur. Bu diizenlemelerle birlikte (5.25)’ten agsagidaki fark yaklagimini
yazabiliriz:
SAl'uE,i + Biuf,i—N + biui + Cl-ul-_N = fl + Ri' (527)
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Buradaki katsayilar
Ci

olup kalan terim R; asagida verildigi gibidir:

Ry =R™ +RP + R® + R™ + R®, (5.28)
ti
R® = yiint f [b; — b(OTu(OP:(t) dt,
ti—1
ti
R® = yiht f [ — c(O)]ult — r)wi(t) dt,
ti—q
ti
RO = [1F© - @ e
ti1
t; t;
(4) —13,-1 / d
R; " =xi " h~"e | ¢Y(t)dt s [a(s)u(s —1)]Ko(t,s) ds,
ti—q ti—q
tl ti
Rl.(s) = —x;th ¢ j P;(t) dt f u'(s —1)Ko(t, s) ds.
ti—1 ti—1

Sonug olarak (5.27) denkleminde R; kalan terimi ithmal edilirse

EAiyE,l' + Biyz,l'—N + biyi + Cl'yl'—N = fi' 1 <i< NO' (529)
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Yi=¢;, —N=<i<0 (5.30)
fark yaklasimi onerilebilir.

5.4 Diizgiin Sebekede Kararhhk ve Diizgiin Yakinsaklik Analizi

Bu béliimde fark semasmin kararliligl ve diizgiin yakinsakligi incelenecektir.
Lemma 5.2°de kalan terim R; nin, Lemma 5.3’te hata fonksiyonu z; nin degerlendirmesi
yapilacaktir. Daha sonra Teorem 5.1°de de bu iki lemmanin birlesiminden kararlilik ve
diizglin yakinsaklik gosterilmis olacaktir.

Bu metodun yakinsakligini incelemek i¢in, z; hata fonksiyonunu ele alacagiz ve

z; =y; —u;, 0 < i< N hata fonksiyonu asagidaki fark probleminin ¢éztiimiidiir.
€Aizg; + Bizg;_y + bizi + Cizi_y = R;, 1< i< N,, (5.31)
zz=0, -N<i<O. (5.32)
Buradaki R; kalan terimi (5.28) bagintisiyla tanimlanmaktadir.

Lemma 5.2 Eger, a € C1(I),b,c,f € C(I) ve ¢ € C1(l,) ise 0 zaman R; hata

fonksiyonu i¢in
“R”La)N,p <Ch, 1<p<m
ifadesi dogrudur.

Ispat. Burada hata terimlerini tek tek ele alacagiz. Ri(l) teriminde ortalama deger

teoremi kullanilirsa

|b(t) —b(@®)| = |b"®)lIt; — tl, t.§€ [t;—q, t:],

|b(t;) = b(®)| < Ch
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esitsizligini yazabiliriz. Bu esitsizlik dikkate alinirsa

tl
[RO] < chlxith [l de
ti—q

olur. Burada (5.1) esitsizligi dikkate alinirsa

N-1 Ul
IR, < chah Y, [ ucey e
=1,

ifadesi yazilabilir ve
%)
xi= 0 [ it
tiq
oldugundan
ti
(i [ i de=1
ti1

esitligini elde ederiz. Dolayisiyla

||R(1)||1wh < Ch? (5.33)

olur. Ri(z) hatasini ele alalim. Burada

le(t) —c@] = I ®llt; — t], t,§ € [t;—1, ;]
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le(t) —c(®)] < Ch
esitsizliginden
&
|Ri(2)| < Ch|x/*h?t j u(t — r)y;(t) dt

ti—g

yazilabilir ve burada (5.1) esitsizligi de dikkate alinirsa

N-1 U
”R(Z)”lwh < Ch Xi‘lh‘lhz fl/)l-(t) dt| < Ch? (5.34)
=1,

yazilabilir. Ri(3) hatasini ele alalim. Burada

lf @) = @D = If' @It =], .8 € [ti—q,t;]
lf(@®) = f(t)] < Ch

olur ve bu esitsizlikle birlikte

N-1 i
”R(3)”1wh < Ch Xi‘lh‘lhz fl/)l-(t) dt| < Ch? (5.35)
=14

ifadesini elde ederiz. Ri(4) hata terimini ele alalim.

tl tl
d
Ri(4) = xi'th7le j Y’ () dt jg[a(s)u(s — 1)Ky (t,s) ds.
ti—1 ti1
Biliyoruz ki
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Ko(t,8) = To(t =& —h™'(t — t;—1)

n

p
(Tn(A) =5, 120 W =0, 1< o)

ITo(t =8 —h'(t—t;-)| <1

olur ve

“Pice-0)
Yi(t)=e 7, ti 1 <t<t,

h
£ (1 — e_biE)

Xi = bih

esitlikleri dikkate alinirsa

¢
Xt e f W) dt = B te(itD) — pilti)
ti—1

b;h
h
£ <1 - e_bl?)

olup b € C(I) oldugundan |b;| < C olur. Dolasiyla
ti
RO < ¢ [UaGlluts -l + la@IG - llds

ti—q

esitsizligi yazilabilir. Lemma 5.1°den ve a € C*(I) sartindan,
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ti
|R§‘”| <cC f[1 +u'(s =) ds

ti—1

olur. Buradan |u'(t — r)| ifadesinin degerlendirmesini yapacagiz. Biliyoruz ki (5.2)

esitsizligi asagidaki gibi revize edilebilir.

B p-2 (=B(t-rp—2)
|u’(t—r)|£C{1+(tz+_Zl)e< c )}, 1<p<m. (5.36)

Buradan xfe* <Ce™*, 0<y <1, x€[0,0), k>0 , esitsizligini (5.36)

esitsizliginin sag tarafina uygularsak

1 -By(t-rp-2)
lu't—r)|<C 1+;e E

esitsizligi elde edilmis olur. Bu esitsizlik Ri(4) ifadesinin degerlendirmesi i¢in dikkate

alinirsa

N-1 Ui
|r|,, <c{h+h) f uw'(s — 1) ds
1,wp
=1t
pt 1 Y (s-rp—2)
<c h+hzg fe—e ds
=1t
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yazilabilir. Buradan

[R®]|,, <Ch (5.37)

1,wp

sonucuna varilir. Son olarak da Rl.(s) hata terimini ele alalim. Ri(s) hata terimi asagidaki

gibidir:
t; t;
Rl.(s) = —x; th™ ¢ f Y;(t) dt f u'(s —r)Ky(t,s) ds.
ti—1 ti—q

Yine Ri(4) "in degerlendirmesinde oldugu gibi

Ko(t,8) = To(t —&) —h™*(t — t;_41)

n

p
(Tn(A) =5 120 MW =0, 1< 0)

ITo(t =8 —h 't —t;_)| <1

olur ve

tl
2 f Pi©) dt =1
ti—q

esitligi de yazilabildigi i¢in
&
|Rl.(5)| <C jlu’(s —1)|ds

ti—g

esitsizligi elde edilir. Ri(4) lin degerlendirmesine benzer sekilde
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e DR —By(sr )
&), <chy < [
&

1,wp -

=1t

T
-By(s-rp-2)
fe € ds

0

-Byrp—2 -ByT
<ChB Yy le = (eT_1)

< Ch

m | =

esitsizligi yazilabilir. Buradan

|R®||. <ch (5.38)

1,wp

ifadesi elde edilir. Sonu¢ olarak (5.33), (5.34), (5.35), (5.37) ve (5.38) esitsizlikleri
(5.28) esitliginde dikkate alinirsa Lemma 5.2°nin dogrulugu gosterilmis olur.

Lemma 5.3 (5.31)-(5.32) probleminin ¢éziimii olan z; i¢in

12iny < € ) MRl 1< p<m

degerlendirmesi dogrudur.
Ispat. (5.31) ifadesini

€Aizg; + bizy = —Bizg;_y — Cizi_y + R;
olarak yazalim. Burada
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fark operatdrii icin maksimum prensibi uygulanirsa

1200 oy < |Zp-1] + B A+ h+ Bl oy, 12 M0,y s

+(& + 2h D lall oo 12l con o + B2 IR 1,

<{14 57 |A+h+ B Dlellowy, + &+ 2ehallwwyy |} 1zlowy,-.

(5.39)
+B7 IR0,
fark esitsizligi elde edilir. Biliyoruz ki
Wy < uwp_q + Up, (5.40)

formundaki birinci mertebeden fark esitsizliginin ¢6ziimii agagidaki gibi verilebilir:

p
wy < wouP + Z uP =S, (5.41)
s=1

(5.39) esitsizliginde
Wy = 1Zlles oyt = 1+ B [(L+ Bt Bl o0y, + (& + 280l |

Wp-1 = ”Z”oo,a)N,p ve Y, = ﬁ_lllR”l,wN‘p

olarak alinirsa (5.39) fark esitsizliginin ¢6zimii

14
1lloon, <67 |1
k=1
p—k

F B[+ R+ BNy + &+ 26h Dl || IR,
olarak bulunur. Bu ise Lemma 5.3’{in ispatidir.
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Onceki iki lemmadan calismanin kararhilikve yakisaklik sonucunu asagidaki

gibi formiile edebiliriz.

Teorem 5.1 (5.29)-(5.30) fark probleminin ¢oziimii diigiim noktalarinda (1.1)-(1.2)
probleminin ¢dziimiine € < h sart1 altinda €’na gore diizglin yakinsaktir ve yakinsama
hizi O(h) bicimindedir. Dolayisiyla € < h sarti altinda asagidaki degerlendirme
dogrudur:

ly =l 5y, < Ch.

Ispat. Lemma 5.2 ve Lemma 5.3 beraber diisiiniiliirse teoremin dogrulugu kolaylikla

gorundr.

5.5 Diizgiin Olmayan Sebekede Fark Semasinin Kurulmasi

Herhangi g(t) sebeke fonksiyonu i¢in, g; = g(t;) olarak kullanacagiz ve
u(t)’nin t;’deki yaklasik ¢oziimiinii y; olarak ifade edecegiz. (1.1) probleminin fark

yaklagimi i¢in asagidaki 6zdesligi kullanacagiz.

t; t
it jLu(t)dt =ht ff(t)dt, 1<i<N, (5.42)
ti—1 ti-1

(5.42) bagintisin1 yeniden diizenlersek

ehi! j %[u(t)+a(t)u(t—r)]dt+h{1 f b(Ou(t)dt

(5.43)

t

+h;?t fc(t)u(t—r)dtzhi_l ff(t)dt

ti—1
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yazabiliriz. (5.43) bagmtisindaki ilk terim hari¢ diger integral ifadelerine kismi

integrasyon uygularsak (1.1) denklemi i¢in asagidaki fark yaklagimini elde ederiz:
e[ual- +a;quz;_y t az’l-ul-_N] +bu;+cui_y=fi+R,i=1,2,..,N,. (5.44)

Burada kalan terim R; asagidaki gibidir:

R;=hit j(t —ti_1) % [b()u(t) + c(®u(t —r) — f(t)]dt. (5.45)

ti—q

(5.44) fark yaklagimindakiR; hata terimini ihmal edersek (1.1)-(1.2) problemi ig¢in

asagidaki fark semasini 6nerebiliriz:
5[)’2,1 +a; 1Yyt aE,iyi—N] + by +ciyien=fi, 1=1,2,..,Ny, (5.46)
Yi=¢; —N<i<O0. (5.47)

5.6 Diizgiin Olmayan Sebekede Hata Fonksiyonunun Degerlendirmesi

Bu metodun yakinsakligini incelemek ic¢in z; =y; —u;, 0 <i < Ny hata

fonksiyonu asagidaki fark probleminin ¢oziimiidiir.
E[Zf,i +a; 125,y + a;‘izl-_N] +bizi +cizi_.y =R;, 1<i<N,, (5.48)
zz=0, -N<i<O. (5.49)
Buradaki R;, (5.45) denkleminden verilen hata terimidir.

Lemma 5.4 (5.48)-(5.49) probleminin ¢oziimii olan z; i¢in asagidaki degerlendirme

dogrudur:
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p
120y < € D IR llnoy,, 1< p <.
k=1

Ispat. (5.48) denkleminden,
€zz; + bz = —€a;_ 175,y —€ag;Ziy —CiZiy TR, 1<i< N
esitligi yazilabilir. Burada
tz; = ezz; + bz, (p— 1N <i<pN

fark operatorii i¢in maksimum prensibi uygulanirsa

(5.50)

1Zlleo.y < 1Z-1] + B {(Bell@llon iy, + ooy ) 1zl s + IR ller o, }

< {1+ 87 (3elallo,wpy + Ny, ) 1zlowyyr + B IR0y,

esitsizligi yazilabilir. Buradan (5.40) formundaki birinci mertebeden fark esitsizliginin

¢ozlimii olan (5.41) esitsizligini kullanacagiz.
Wy = zllosiny it = 14 B (3elllony, + lelloowy, )

Wp-1 = ”Z”oo,wN,p_l ve Y, = ﬁ_lllR”oo,wN,p

olarak alinirsa

p
p—s
12liny <67 [14+ 57 (3ellalleonny, + Ielloin,)]| IRl
s=1

ifadesi elde edilir. Bu da Lemma 5.4’{in ispatidir.
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5.7 Shishkin Sebeke (Parcal Diizgiin Sebeke)

I iizerinde diizgiin olmayan sebeke wy, olsun:
wy, ={0<ty <ty <<ty =T, hi=t;—ti_4}
I, her bir alt araliklarinda N sebeke noktalarini igerir (1 < p < m).
wyp, ={ty(p—1DN+1<i<pN}, 1<p<m,
Wy, =Upz1 O p,

wy, = wy, Y {0}

0

seklinde verilmektedir. g; = g(t;) sebeke fonksiyonu i¢in probleme uygun sebeke

normlar1 agagidaki sekilde tanimlanmaktadir:

”g”oo,a)Np = maXIgil , 1< 1% <m,
, N p

||g||oo,w,\,0 =max|g;|, 1<p <m.
a)NO

(5.46)-(5.47) fark semasinin £’na gore diizglin yakinsak olmasi i¢in Shishkin sebekesini
kullanacagiz. N ¢ift sayilar1 igin pargali dizgiin wy, sebekesini [rp_l, ap] ve [ap,rp]
araliklarmin her birini N/2 tane esit alt araliklara bdlecegiz. Bu bdliinen araliklar

parcal1 diizglin sebekede asagidaki dogru parcasinda gosterildigi gibidir:

I Ll
————ft———+— e s S |
r

o, r .. Tpq0p - T

Sekil 5.1 [0.T] araligimin Shishkin sebekedeki parcalanisi
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Burada a,, gegis noktasi,
. r -1
Op = Tp_1 + min {E’ﬁ elnN} (5.51)

sebekenin kalin ve ince kisimlarini birbirinde ayiran geg¢is noktasidir.

Burada hgl) ve hz(,z) adim uzunluklari, sirasiyla asagidaki sekilde tanimlanmaktadir:
D _ _ -1 (2 _ _ -1
hy,’ =2(0, —=1p-1)N7*, b’ =2(r, —0,)N!, 1<p<m. (5.52)

Sebekenin noktalar kiimesi asagidaki sekilde verilmektedir:

ti=1y 1+~ (@-DMKY, i=(p-DN,.., (p - %) N, (5.53)
ti=o,+(i—(p—2)N)A?, i=(p—3)N+1.pN, 1<p<m (5.54)

5.8 Shishkin Sebekede Kalan Teriminin Degerlendirmesi

Lemma 5.5 Eger a € C1(I),b,c,f € C(I) ve ¢ € C(Iy), 0o zaman R; hata fonksiyonu

IRy, < CN7'InN, 1<p<m (5.55)

degerlendirmesini saglar.

Ispat. (5.45)’ten

L d
IR;| < kit f(t - ti—l)%lb(t)u(t) +c(@u(t—7r) — f(t)ldt
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esitsizligini yazabiliriz. Bu esitsizlikte, (5.1) ve Lemma 5.1’in sartlarin1 dikkate alirsak

asagidaki ifadeyi yazabiliriz:

IR < Cih + j[|u'(t)|+|u'(t—r)|]dt .

ti—1
Buradan da (5.2) esitsizligini géz oniine aldigimizda asagidaki degerlendirmeyi buluruz:
t;

J

ti—1

ep ep—1

|R;| < C{hi +

_ P=1  B(t-ry_4) _ P=2  B(t-rp_2)
(=)~ (), Me(%)] dt}. (5.56)

Daha sonra x¥e* < Ce™”, 0<y <1, x€[0,0),k>0 , esitsizligini (5.56)

esitsizligine uygularsak (5.56) esitsizligini

1 i (—By(t—rp_1)>
IRl < C by += ”e : ldt

ti—q

formuna indirgemis oluruz.

Her bir wy ;, alt araliginda kalan terimi degerlendirecegiz. Ik 6nce
Op =Tp_1 +7/2
durumunu g6z 6ntinde bulunduralim. Dolayisiyla

/2 < B~y lelnN ve h;l) = hl(,z) =h, =1/N

olur. Boylece
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1 -Br(t- —By(t-Tp-1) 1)
IR < C f L+-e” & |dt<CO+eDh (5.57)

Rl < co(1+ Eﬁ-ly-llnzv)
N T
yaklasimi verilebilir. Buradan da
R <CN'InN, (p—1N<i<pN, 1<p<m (5.58)
sonucuna varilabilir. Simdi de
Op = Ty_1 + By telnN

durumunu g6z Oniinde bulunduracagiz ve R; ’yi, [rp_l, ap] ve [ap,rp] araliklarinda

sirastyla degerlendirecegiz. Once [rp_l, ap] siir bolgesini ele alalim. (5.57)’den
IR;| < C(1+ 5‘1)h§1) =C(A+e 12ty teNtinN
< CQ2B Yy teNlnN + 2871y IN"1InN)
yazilabilir. Buradan da asagidaki esitsizlige varilabilir.
IRl <CN'InN, (p—DN<i<(p-1/2)N, 1<p<m. (5.59)
Daha sonra [ap,rp] araliginda (p — 1/2)N + 1 < i < pN i¢in R;’yi degerlendirelim.
ti=0,+ ([ — (- 1/2NAP =1,y + 7y elnN + (i — (p — 1/2)N)hS

oldugu i¢in
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Rl < {2 + pry i [ S|

IRl <cC {h(z) + By N1 1=/ (1 - e%héz))}
- 4

esitsizligini yazabiliriz. Buradan da
IRl <CN7Y, (p—1/2)N+1<i<pN (5.60)

oldugu goriilebilir. Sonug olarak (5.58), (5.59) ve (5.60) beraber dikkate alinirsa (5.55)

esitsizliginin ispat1 tamamlanmis olur.

Teorem 5.2 (1.1)-(1.2) probleminin ¢oziimii u ve (5.46)-(5.47) probleminin ¢oziimii y

olsun. Bu durumda
ly — ulloc,,aw0 < CN 'InN
ifadesi dogrudur.

Ispat. Lemma 5.4 ve Lemma 5.5 beraber dikkate alinirsa teoremin dogrulugu kolaylikla

gorunur.
5.9 Bakhvalov Sebeke (Graded Mesh)

I iizerinde diizgiin olmayan sebeke wy, olsun.
wy, ={0<tp <ty <<ty =T, h=t—ti4}.
I, her bir alt araliklarinda N sebeke noktalarini igerir:

wyp, ={ti(@p—1DN+1<i<pN}, 1<p<m,
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—m
Wy, =Up=1 ONp,

wy, = wy, U {0}

0

seklinde verilmektedir. g; = g(t;) sebeke fonksiyonu i¢in probleme uygun sebeke

normlar1 asagidaki sekilde tanimlanmaktadir:

“g”oo,a)Np = maxlgi|, 1< 14 <m,
) ONp

”g”oo,wNo = maxlgil , 1<p<m
(UNO

(5.46)-(5.47) fark semasinin €’na gore diizgiin yakinsak olmasi i¢in diizglin olmayan
Bakhvalov sebeke olarak bilinen 6zel bir sebeke kullanacagiz. N ¢ift sayisi igin [0, T]
araligi, [rp_l, rp] alt araliklarindan olusmaktadir. Buradaki her bir [rp_l,rp] araliklarini
da [rp_l, ap] ve [ap,rp] alt araliklarina bolelim. Bu bolinen araliklar Bakhvalov

sebekede agagidaki dogru pargasinda gosterildigi gibidir:

ekil 5.2 [0.T] araliginin Bakhvalov sebekedeki parcalanigi
g p
Burada a,, gegis noktasi,
0p = Tp_q + min {g, —ﬁ"ly_lelne}, 0<y<1 (5.61)

sebekenin kalin ve ince kisimlarim1 birbirinde ayiran gegis noktasidir. Sebeke noktalar

kiimesi de agagidaki gibi verilebilir:

r. .
t; € [rp_l, ap]. Op <Tp_q1+ 2 1emn
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2(i= (- 1N)

ti=1p_1— By leln|1—-(1—¢)

N )
(5.62)
2p—1)N
(p—DN+1SiS££7—L3
t; € [rp_l, ap]: Op =Tp_1+ g icin
Brp\ 2(i — (p — 1)N
tl-=rp_1—ﬁ‘ly‘leln[1—<1—e_z_:)( (IIJV ))l’
(5.63)
2p —1)N
(p—DN+1SiS££3—Lq
. N Z(r —O')
tiE[ap'rp]:ti:0p+(l—(2P—1)5>%,
(5.64)
(2p— 1N .
T+1SlSpN; 1<p<N.

Bakhvalov sebekede (5.61), (5.62), (5.63) ve (5.64) dikkate alinarak hata

degerlendirmesi yapilacaktir.

5.10 Bakhvalov Sebekede Kalan Teriminin Degerlendirmesi

Lemma 5.6 Lemma 5.1’in sartlar1 altinda, (5.46)-(5.47) semasinin kalan terimi R; i¢in
IRy, SCNTY, 1<p<m (5.65)
esitsizligi dogrudur.
Ispat. R; kalan terimi asagidaki gibidir:
ti
Rl < C{ht [0+ - rllde .

ti—g
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Burada (5.2) esitsizligini gdz Oniine aldigimizda asagidaki degerlendirmeyi buluruz:

i

_ Pl B(t-rp_q)
ri=cins | (t=rpa)”  (F=)

&

&b
i1 (5.66)
@—r_ng(%w%ﬂb |
+£Z—_16 € dt ;.

xke* < Ce™*, 0<y <1, x€[0,0),k>0,esitsizligi (5.66) esitsizligine uygulanip
gerekli diizenlemeler yapildiginda (5.66)

ti
1 (—ﬁY(f—Tp—l))
ti—1
esitsizligine indirgenmis olur. 1k olarak

r
O-p < rp_]_ +§

durumunu g6z 6niinde bulunduralim. Buradan
o

— -1,,—1
p =Tp—1— By "&lne

olur. [rp_l, ap] sinir bolgesinde (5.67)’den asagidaki esitsizlik yazilabilir:

-By(ti—1-Tp-1) —By(ti-rp-1)
|IR;| < Cih;+ B 1y tle € —e € ,

(5.68)
(p—DN+1$iSQ£:2£

Burada
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2i 20—1)
hi=t;—ti_, =By le{—In [1 -(1- s)—] +nf1—->1-¢)
N N
olur ve daha sonra i’ye gore ortalama deger teoremi uygulanirsa
4(1—¢)N?!
hy =Byt <4p7 Yy '1-eNT<CNT? 5.69
olur ve
—By(ti_1-Tp-1) By[_ﬁ_ly_lgln 1—(1—s)¥]] I ( ) 2(i — 1)]
e e =e e =|1-(1—-¢
N
—By(ti-rp—1) By[—ﬁ—ly—lszn[l—(l—s)zﬁi ] 2i
e E =e e = [1 —(1- ‘S)ﬁ

esitlikleri yazilabilir. Buradan

—By(ti—1-Tp-1) —By(ti-rp-1) 2(0—1) 20
e e —e e —ll—(l—e) N l_[l_(l_g)ﬁ]

—ﬁY(ti_l—Tp—ﬂ —ﬁY(fi‘rp—l)

e e —e : <CN! (5.70)

olur. Sonug olarak (5.69) ve (5.70), (5.68) de dikkate alinirsa

_@-DN

IRI<CN7', (p—1N+1<i< > (5.71)

esitsizligi elde edilir. Simdi de [, 7, ] bdlgesine bakalim. (5.2)’den
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-By(t-rp—1)
') < C<€_1e—s =) 1)

aliabileceginden

|R;| < Ch;
olur. Buradan
2p —1)N
IR <CN71, Gp > ) +1<i<pN; 1<p<N
esitsizligi yazilabilir. Simdi de
r
Op =Tp—q1+ >

durumunu g6z 6niinde bulunduralim. Bu durumda

T
5 < —B Yy lelne

olur. [rp_l, ap] siir bolgesinde asagidaki esitsizlikleri kullanacagiz:
_Br\ 2i _Br
hij=t —ti_, = ﬁ‘ly‘ls{—ln [1 — (1 —e 2£>N] + In ll — <1 —e 2

Burada i’ye gore ortalama deger teoremini uyguladigimizda

Br
4 (1 - e_E> N1

hi = ﬁ_lg Br
1—-i2 <1 — e_Z)N‘l

<4p? (1 - e_Z)N‘l <CN-!

elde edilir ve ayrica
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(5.72)

2(i—1)
=

(5.73)



1—e 22 |N"1<(CN? (5.74)

=By(ti—1-Tp-1) -By(ti-rp-1) _pr
e € —e € =2 ( )

esitligi yazilabilir. Dolayisiyla (5.73) ve (5.74), (5.68)’de dikkate alinirsa

(2p — 1N

. (5.75)

IR|<CN"!, (p—1N+1<i<

esitsizligi elde edilir. Son olarak [ap, rp] bolgesine bakalim. (5.2) esitsizligindenden
—Bl’(f—rp—l)
W@ <Cclete” - <1

yazilabilir. Dolayisiyla
IR;| < Ch;
olur. Buradan da

(2p —1)N N

R <CN7H,
IR -

1<i<pN; 1<p<m (5.76)

esitsizligi yazilabilir. (5.71), (5.72), (5.73) ve (5.76) degerlendirmelerini beraber dikkate

alindiginda (5.65)’in ispat1 tamamlanmis olur.

Teorem 5.3 (1.1)-(1.2) probleminin ¢oziimii u ve (5.46)-(5.47) probleminin ¢oziimii y

olsun. Bu durumda
-1
Iy = ulleozy, < CN

degerlendirmesi dogrudur.
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Ispat. Lemma 5.4 ve Lemma 5.6 birlikte dikkate alinirsa teoremin dogrulugu kolaylikla

gorundr.

5.11 Niimerik Sonuclar

Bu boélimde (1.1)-(1.2) lineer problemi i¢in Cizelge 5.1°de Shishkin tipindeki
parcali diizgiin sebeke iizerinde kurulmus fark semasi ve Cizelge 5.2°de Bakhvalov
tipindeki diizgiin olmayan sebeke lizerine kurulmus fark semasi i¢in bazi niimerik

sonuclar sunulmustur. Ayrica niimerik sonuglara ait grafik ¢izimleri yapilmistir.

Ornek 5.1 Asagidaki test problemini ele aliyoruz.

!

£ [u(t) + %tanhz(t)u(t — 1| +32(t* + 8)u(t) — %e‘Ztu(t -1

=3t’+et,0<t <2,
u(t) =et, —1<t<0.

Bu problemin kesin ¢dziimii u(t) bilinmiyor. Bu nedenle bizim wy ,, sebeke lizerindeki

maksimum hatalar1 tahmin etmek icin ¢ift kath sebeke prensibini kullanacagiz (Doolan

vd., 1980; Farell vd., 2000). Burada kullanilan baslangi¢ tahmini

yi(o) =1-—e

olarak alinmistir ve iterasyon sayisi n su sekilde sec¢ilmistir:

max yi(n) — yi(n_l) <1075,
l

Ortaya ¢ikan e®" hatalar1 ve belirli € ve N degerleri i¢in p®" yakinsama dereceleri
Cizelge 5.1 ve Cizelge 5.2°de listelenmistir.
Bu kisimda, parcali diizgiin sebeke (Shishkin sebeke) iizerinde (1.1)-(1.2)

problemine uygulanan (5.46)-(5.47) fark semasi icin Ornek 5.1 iizerinden bazi niimerik
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sonuglar

sunacagiz.

Ele

alinan

problem,

e=2"1i=4,8,..,24

N = 32,64,128,256,512,1024 degerleri icin hesaplanmaktadir. Elde edilen eV

hatalar1 ve buna karsilik gelen uygun p" degerleri Cizelge 5.1°de verilmistir.

Cizelge 5.1 Ornek 5.1 i¢in Shishkin sebekede & ve N nin farkli degerleri icin maksimum

hatalar ve yakinsama oranlari

€ N =32 N =64 N =128 N = 256 N =512 N =1024

2% 0.0175036 0.0110168  0.0066281 0.0038630 0.0021985 0.0012296
0.67 0.73 0.78 0.81 0.84

278 0.0175036 0.0110168  0.0066281 0.0038630 0.0021985 0.0012296
0.67 0.73 0.78 0.81 0.84

2712 0.0175036 0.0110168  0.0066281 0.0038630 0.0021985 0.0012296
0.67 0.73 0.78 0.81 0.84

2716 0.0175036 0.0110168  0.0066281 0.0038630 0.0021985 0.0012296
0.67 0.73 0.78 0.81 0.84

2720 0.0175036 0.0110168 0.0066281 0.0038630 0.0021985 0.0012296
0.67 0.73 0.78 0.81 0.84

27%* 0.0175036 0.0110168  0.0066281 0.0038630 0.0021985 0.0012296
0.67 0.73 0.78 0.81 0.84

eV 0.0175036 0.0110168  0.0066281 0.0038630 0.0021985 0.0012296
pN  0.67 0.73 0.78 0.81 0.84
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——— y()

co-ome- - y2n)

0.05

t

0.5 1.0 1.5 2.0

Sekil 5.3 ¢ = 27* ve N = 64 i¢in Ornek 5.1’in [0,2] araliginda Shishkin sebekedeki
niimerik ¢oziimii

B
1.0 jm
—e—— ym)
0.8}
ceemeses y2n)
0.6 @
0.4}
| |
0.2
- - - e t
0.2 0.4 0.6 0.8

Sekil 5.4 ¢ = 27* ve N = 64 icin Ornek 5.1’in [0,1] araliginda Shishkin sebekedeki
niimerik ¢oziimii
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0.06

0.05

0.04 -

0.03

0.02

niimerik ¢oziimii

Sekil 5.5 ¢ = 27* ve N = 64 icin Ornek 5.1’in [1,2] araliginda Shishkin sebekedeki

ON"1Y =272 g=27% =278 =212

—— — W — o ——A— — ¥ —

g=2"16

£=2720 g=p—24

i

64 128 256

0.5

0.05

Max—Frror

0.02 -
0.01
0.005

512

1024

10.05

10.02
0.01
0.005

64 128 256
N

grafigi
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512

1024

Sekil 5.6 Farkli € ve N degerleri icin Ornek 5.1’in Shishkin sebekedeki maksimum hata



Burada da diizglin olmayan sebeke (Bakhvalov sebeke) iizerinde (1.1)-(1.2)
problemine uygulanan (5.46)-(5.47) fark semasi igin Ornek 5.1 iizerinden baz1 niimerik
sonuclar sunacagiz. Ele alinan problem, &= 270 i=8,..,24,28 ve N =
16,32,64,128,256,512 degerleri i¢in hesaplanmaktadir. Ortaya ¢ikan e hatalar1 ve

buna karsilik gelen uygun p" degerleri Cizelge 5.2°de verilmistir.

Cizelge 5.2 Omnek 5.1 icin Bakhvalov sebekede € ve N ’nin farkli degerleri igin
maksimum hatalar ve yakinsama oranlari

£ N =16 N =32 N =64 N =128 N =256 N =512

278 0.0219117 0.0123980 0.0066681 0.0035017 0.0018086 0.0009237
0.82 0.89 0.93 0.95 0.97

2712 0.0220092 0.0124257 0.0066968 0.0035139 0.0018151 0.0009271
0.82 0.89 0.93 0.95 0.97

2716 (0.0220152 0.0124272 0.0066986 0.0035149 0.0018156 0.0009272
0.82 0.89 0.93 0.95 0.97

2720 0.0220156 0.0124273 0.0066987 0.0035149 0.0018156 0.0009272
0.83 0.89 0.93 0.95 0.97

2724 0.0220156 0.0124273 0.0066987 0.0035150 0.0018156 0.0009272
0.83 0.89 0.93 0.95 0.97

2728 0.0220156 0.0124273 0.0066987 0.0035150 0.0018156 0.0009272
0.83 0.89 0.93 0.95 0.97

eV 0.0220156 0.0124273 0.0066987 0.0035150 0.0018156 0.0009272
p"¥  0.83 0.89 0.93 0.95 0.97
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——— y(m)

. ceemec s y@n)

Sekil 5.7 € = 27* ve N = 64 i¢in Ornek 5.1’in [1,2] araliginda Bakhvalov sebekedeki
niimerik ¢oziimii

—e— y(
ce--m---- y(2n)
= - = - - -
0.2 0.4 0.6 0.8

Sekil 5.8 £ = 27* ve N = 64 icin Ornek 5.1’in [0,1] araliginda Bakhvalov sebekedeki
niimerik ¢oziimii
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0.06 E

0.05

—e—— y(m)

ceemess Y@

Sekil 5.9 ¢ = 27* ve N = 64 i¢in Ornek 5.1’in [1,2] araliginda Bakhvalov sebekedeki
niimerik ¢oziimii

OoN~l)  g=2"8 e=2"12  g—p—16  o_5-20 o _5-24  _5-28
- - —— ——A— —— % S =
64 128 256 512 1024

1r ‘ ‘ ‘ 71
0.5 10.5
0.1} 10.1
5 0.05| 10.05
L? 0.02 | 10.02
§ 0.01 0.01
0.005 0.005
0.001 0.001
64 128 256 512 1024
N

Sekil 5.10 Farkli & ve N degerleri i¢in Ornek 5.1’in Bakhvalov sebekedeki maksimum

hata grafigi
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5.12 Boliim Sonu Degerlendirmesi

Bu bélimde birinci mertebeden lineer SPNDDE ele alindi. (1.1) ve (1.2)
probleminin ¢oziimii u ve u’ igin bazi degerlendirmeler yapildi. Diizgiin sebekede tistel
katsayil1 fark semasi kuruldu, fark semasinin kararlilik ve diizgiin yakinsaklik analizi
yapildi. Diizgiin sebekede kesin ¢oziimiin, yaklasik ¢oziime € < h sart1 altinda birinci
mertebeden diizgiin yakinsak oldugu gosterildi. Bu ise pratik olmayan agir bir sarttir.
Bu degerlendirmenin iyilestirilemez oldugu birinci mertebeden singiiler pertiirbe bir
problem {izerinde gosterilmistir (Amirali ve Amirali, 2018). Diizgiin olmayan sebeke
icin de klasik fark semasi kuruldu. Fark semasinin kararliligi ve diizglin yakinsaklig
Shishkin ve Bakhvalov sebekelerde incelendi. Yakinsama hizi, Shishkin sebeke i¢in
O(N~lInN) ve Bakhvalov sebeke igin O(N~1) oldugu gosterildi. Daha sonra kesin
¢Ozlimii olmayan bir 6rnek ele alinarak Shishkin sebeke ve Bakhvalov sebeke igin

niimerik sonuglar incelendi ve grafik ¢izimleri yapildi.
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6. LINEER OLMAYAN SINGULER PERTURBE NEUTRAL TiP
GECIiKMELI DIFERANSIYEL PROBLEM

Bu boliimde (1.3)-(1.4) problemi i¢in Lemma 6.1°de baz1 6n degerlendirmeler
yapilacak ve daha sonra fark semasi kurulacaktir. Fark semasimin kararlhilig1 ve diizgiin
yakinsaklig1r incelenecektir. Lemma 6.2°de hata fonksiyonu z; 'nin, Lemma 6.3’te
Shishkin sebekede kalan terim R;’nin ve Lemma 6.4°te Bakhvalov sebekede kalan terim
R;’nin degerlendirmesi yapilacaktir. Daha sonra Teorem 6.1°’de, Lemma 6.2 ve Lemma
6.3’lin birlesiminden Shishkin sebekede ve Teorem 6.2°de, Lemma 6.2 ve Lemma
6.4’ln birlesiminden Bakhvalov sebekede fark semasinin kararlilign ve diizgiin

yakinsaklig1 gdsterilmis olacaktir.

6.1 Bazi On Degerlendirmeler

Bu kisimda niimerik metodumuzu sunmadan 6nce (1.3)-(1.4) probleminin u(t)
¢Oziimiinlin ve tiirevinin bazi Ozelliklerini verecegiz. Uygun niimerik ¢Ozlimiin

analizinde bu 6zelliklere ihtiya¢ duyulacaktir.

Lemma 6.1 a € C'(1),f € C*(I X R x R) ve ¢ € C1(I,) oldugunu kabul edelim. O

zaman (1.3)-(1.4) probleminin u ¢6zlimii ve tiirevi i¢in asagidaki degerlendirmeler

dogrudur:
||u||oo,,p <C 1<p<m, (6.1)
|u'(t)] < C{l + (t_rps_—pl)p_lew}, 1<p<m. (6.2)
Burada

Gy = (14 2lallool@lloos, + 17 {IFIl.,, + M2+ llalleo, My ]ll0 Nl s, )

G, = (1 + ||a||oo,12)Cl + llalloo,r, l@llco s, + pt {”f”oolz + [Mz + ”a”oo,lel]Cl};



C:=(1+ ||a||oo,13)Cz +llalleo Gy + p7t {”f”oo,3 +[M, + ”a”oo,I3M1]CZ}:

6y = (1+ lallos,) Coor + lallnsy Cos + w7 {1, + [Ma + llallens, M3 65}

Ispat. Lineer olmayan f terimi igin Teorem 4.1 uygulanirsa

0 0
f(t,u®),v(®) — £(t,0,0) = ﬂf(t, Bu(t), Ov(t) Ju(t) + %f(t, Ou(t), Ov(t) )v(t)

esitligi elde edilir. Burada

= a ~ ~
b(t) =L (t,,7),

0
&)= 2 (6,5,9),

f©) =-f(t,0,0),

i=0u(t), v=0u(t—r), 0<O6<1

ifadeleri gz ontlinde bulundurulursa (1.3) denklemi asagidaki formda yazilabilir:

elu(®) + a(®u(t —r)]" + b()u(t) + é(u(t —r) = f(t), tEl. (6.3)

Burada uygun doniisiimle, (6.3) problemi

ew'(t) + b(Ow(t) = H(t) (6.4)

formunda yazilabilir. Burada

w(t) = u(t) + a(®u(t —r)
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Ve

G = f(@©) — [é(t) — a@®b(®O)]ult —7)

olur. (6.1) ifadesini degerlendirmek i¢in tliimevarim yontemini kullaniyoruz. (6.4)

esitliginden agagidaki degerlendirmeyi yazabiliriz:
t

1 1.t
w(t) =w(ry_1)e Efrp P +2 f G(r)e ek P@dgr, e L,. (6.5)

Tp_l
w(t) ve G(t) degerlerini (6.5)’te yerine yazarsak

u(t) = —a()u(t—r) + [u(rp 1) + a(rp 1)U(Tp - T)]e ; Tp 1b(s)ds

+% f {f(0) = [6(®) —a@b(@®]u(r — r)}e—%f;l;(s)dsdl_

Tp_l

= —a@ult =) + [ulrys) + alrprJulrys — e T

(6.6)

- f—

+-vay—dﬂ—MﬂMﬂw@—mk B

-1

esitligini elde ediyoruz. p = 1 igin (t € I)

() < la®llult = )l + [p0)] + la()llp(-r)[le™

1 ‘ ~ - —u(t-1
+2 [1F@1+ 1@ + la@IB@llpt ~ e e

Nulleo,r, < llalleo, 191l ty + 1@ ooty + Nl@llco,r, 1 leor,
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t
1 —u(t-1)
{171, + el + Nallos JBlL,, Ml } 5 [ e
0

< llalloor l@lleoy + l@lleory + llalloo,r, 1@l 1,

~ N - —ut
{171, + (Nelleos, + Nalloop, Bl ) Iplleose} 2™
yazilabilir. Buradan

ltlleor, < (1 + 2llallos )@ llos sz,

(7L, + [Nellon, + lallaop Bl [Iello,,} = c

ifadesi p = 1 igin (6.1) esitsizliginin ispatidir. Yine (6.6)’dan p = 2 igin (t € I,)

u(@®) < la@®llult — )] + [u@)] + la@u©)]le”

1 : bl ~ —u(t-t
+;f{|f(f)| + [lE@] + [a@I|b@)|]lux — NI} e ar

esitsizligini elde ediyoruz. Bu esitsizlikten

Nullo,r, < Nalleo,r, 1ttllcor, + ttllo s, + llallco,r, 1@ llco s,

t
u(-1)

1 -
{71, + el + Nallos I3l Ml ) [ 6™

r

< (1 + llalloy, )€1 + llalloo s, 1@ lloo,,

~ ~ —u(t-r)
{171, + (1o, + Nallos B, ]} u (1= e

llloor, < (1 + llalloo,)Co + llalloo s ll@llco g

{171, + 1l + Nalle 5], ] €} = Co
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yaklasimi bulunur. Benzer sekilde p = 3 i¢in (t € I3)

lullo r, < (1 + ||a||oo,13)Cz + llallo,r, C4

e {17, + [Nl + Nalleo s 5], ] €2} = o

degerlendirmesini elde ediyoruz. Daha sonra, p = k i¢in (6.1) esitsizliginin dogru

oldugunu kabul edelim. Yani

ulloos, < (14 llallans, )Cer + llalleo s, Ces

AL, + [Nl + o 3], ] i} = G

esitsizligi dogru olsun. Boylece t € I, i¢in degerlendirmenin dogru oldugunu

gosterelim. (6.6) denkleminden

Il epy < (1 + Nalloo ey )Cic + Nalloo sy, Coma

B, + (1o, + @l 1B, |6} = G

esitsizligini yazabiliyoruz. Dolayisiylap = k + 1 i¢in de (6.1) esitsizliginin dogrulugu
ispatlanmig oldu. Boylece (6.1) esitsizliginin ispati tamamlanir.
Simdi ise (6.2) esitsizligini ispat edelim. (6.4)’ten bir kere tiirev alirsak asagidaki

denklem elde edilir:
ew" (t) + b(O)w'(t) = G'(t) = D' (t)w(t) = H(t). (6.7)
Burada H(t) asagida verildigi gibidir:

H(®) = f'(©) + [a'(©b(®) — &' (®)]|u(t — 1)
+[a(©)b(t) — é@®)]w' (t — 1) — b’ (Ou(D).
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Ispata gegmeden dnce H (t) icin asagidaki degerlendirmeyi yapalim:

IHOI < [f' @+ [la’O1|b@)]| + 1&" @] lut = 1)
+[la@I[b@®| + le@I]lw' (€ = I + [b' O] lu®)].

Buradan
[HO)| <CA+|u'(t—7)]) (6.8)

esitsizligini yazabiliriz.
(6.2) esitsizliginin ispatina devam edelim. (6.7) denkleminden asagidaki

bagintiy1 yazabiliriz:

t
1 1t~
+- fH(r)e‘Efr”(s)dsdr, t € I, (6.9)

rp_l

_igt b(s)d
W’(t) — W’(Tp_l)e gfrp_l (s)ds

(6.9) bagintisin1 daha agik yazarsak asagidaki degerlendirmeyi elde ediyoruz:

u' () =—a@®u'(t—r)—a @®u(t—1)
1 r I} __1frt _ b(s)ds
' (1rp-1) + @' (-1 Ju(rp-1 = ) + a(rp-1)u' (-1 —7)]e = o2
. t
+E j H(r)es 2% gr.

Tp—l

Buradan
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—u(t-rp—1)
[ (@] < la@®)llw'(t =)l + la'Ollult = )|+ |u'(rp-1) e =

_rp—l)

—u(t
Hlalrp-)l[w' (-1 = 1) + |a’ (o) | [u(rp-a —7)|]le™ = (6.10)

t
1 —u(t-7)
+= jIH(T)Ie—s dr
p—1

p

yazilabilir. Ayrica, (6.3) denkleminden

elu' () +a(®u'(t —1r)] = —ea’ Ou(t — 1) = b(u(t) — é(Oult —r) + f(t)

olup t = 0 i¢in

lo"(0)] + |a(0)[le"(=r)] < [a"(0)]|p(=r)]

L P@le@)1 +1EO@IllpnI1 +|fO)] _ € (6.11)
€ I

esitsizligi yazilabilir. ilk olarak (6.10) esitsizliginden p = 1 i¢in (t € I,),

W' (O] < la@®lle’(t =)l + [a'(Ollp(t — 1)

—u(t-1)

t
et 1 G2}
+lo'(0)] + la(0)[le" (=) + [a’(0)|lp(—7)]e" +EfIH(T)Ie e drt
0
esitsizligi yazilabilir. Burada (6.8) ve (6.11) esitsizligini de dikkate alirsak asagidaki
degerlendirmeyi yazabiliriz:

u

’ 1 ==
W' ()| SC(1+;e : ) (6.12)
Daha sonra p = k igin (t € I,) asagidaki esitsizligin dogru oldugunu kabul edelim.

O Ll G =)
k e €
&

W ()| < 6{1 + (6.13)
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Son olarak p=k+1 i¢in (t € Ix41) , (6.2) esitsizliginin dogru oldugunu
gosterebilirsek ispat tamamlanmis olacaktir. (6.10) esitsizligi p = k + 1 i¢cin asagidaki

formda yazilabilir:

[’ (O] < la@®]lu'(t =) + [a’(@®)[ut — )]

—u(t-rg)

+Huw' | + lam)|u' (re-1)[]e e

(6.14)

—u(t-Tg) —u(t-1)

t
1
+la'm)llu(re-1le e +;f|H(T)Ie e dt
Tk

Oncelikle (6.13) esitsizliginden t = 73, alinirsa

—1q)k 7t M}

/ (7
|u' (r)| SC{1+ ok e

ifadesi elde edilir. Burada x*e* < Ce™*, 0<y <1, x €[0,), k > 0 esitsizligi

uygulanirsa

W)l <C, k=1 (6.15)

yazilabilir. Benzer sekilde

W ()l <C, k=1 (6.16)

olur. Ayrica tekrardan (6.13) dikkate alinirsa u'(t — r) igin

t—r—1,_ k=1 _u(t—r-r,_4)
|u’(t—r)|£C{1+( T~ Tie1) e e kl}

ck
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(t-rp)k1 —u(t-rg)
SC{1+r€+e : } (6.17)
degerlendirmesi yapilabilir. Dolayistyla
k-1 ZB(ETE)
IH(®)| sc{1+%e : k} (6.18)

yazilabilir. Buradan (6.15), (6.16), (6.17) ve (6.18) esitsizlikleri (6.14)’te dikkate

aliirsa
(t — rk)k_l —u(t-rg) —u(t-rg)
lu'(t)] <C 1+E—ke € +Ce ¢
t
1 (T il Tk)k_l —u(t-1g) —u(t-7)
b — j ld——F—e ¢ e ¢ drt
£ &
Tk
t — 1)1 —u(e-ry) 1 —u(t-1) 1 —u(t-m) (t — 1 )¥
SC+C¢€TI€+C_M_1S<1_€ £ )+—C€ Ekﬂ
ok € € kek

(t — )k —nlt=r)
<C {1 + W@ £

esitsizligi elde edilir. Bu da (6.2) esitsizliginin ispatin1 verir.

6.2 Fark Semasinin Kurulmasi

Burada (1.3) probleminin fark yaklagimi i¢in agsagidaki 6zdesligi kullaniyoruz.

hi' f elut) + a@®u(t —r)]'dt + hi’! f f(tu®),ult—r))dt =0,

1<i<N,.
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Ikinci terime kismi integrasyon uygulanirsa

e[uf‘i +a_qug_y + a;‘iui_,v] + R F (6 u), ult —r)(t - ti_l)]:_l

—h;t f(t - ti_l)%f(t,u(t),u(t —7))dt =0

elde edilir. Buradan
elug; + aiqug;_y + agui_y] + f(t upuiy) + Ry = 0 (6.19)

fark yaklasimi elde edilir ve kalan terim R; asagida verildigi gibidir:
ti
r, d
R; = —h; f (t — ti_l)a f(t,u@®),u(t —r))de. (6.20)

ti—1

Daha sonra (6.19) esitliginden kalan terim R; ihmal edilirse asagidaki fark semasi

yazilabilir:
e[y;‘i +a;i_1Yzint a;‘iyi_N] + f(t, yvi,yien) =0, 1 <i<N,, (6.21)
vi=¢;, —N<i<0. (6.22)

6.3 Hata Fonksiyonunun Degerlendirmesi

Burada z; =y, —u; , 1<i <N, hata fonksiyonu asagidaki fark probleminin

¢Ozimiudiir.

elzg; + aimazg;_y + agzin]| + 6L yuyien) — (G upuiy) =R, 1 <P <Ny, (6.23)
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z;=0, —N<i<0. (6.24)

Lemma 6.2 (6.23)-(6.24) probleminin ¢dziimii olan z; hata fonksiyonu icin asagidaki

yaklagim dogrudur.

4
12y < € D IRl 1<p <.
k=1

Ispat. (6.23) esitliginde f fonksiyonlari icin Teorem 4.1 uygulanirsa
elzz; + a2z, + @z Zion] + bizi + G2y = R;

esitligi elde edilir. Burada
- 0 4 ~
bi = %(ti,ui + Hzi,ui_N + QZL'_N)

of ~ ~ ~
C; = %(ti,ui +0z,u;_y + Hzl-_N), 0<o<1
olur. Dolayisiyla (6.23) i¢in
€25, + biz; = —ea;_1z5;_y — €az,zi_y — CiZi_y + R; (6.25)
ifadesi yazilabilir. (6.25)’te
0z; = ezg; + bz, (p—1DN<i<p

fark operatorii i¢in maksimum prensibi uygulanirsa

1zl < 1Zp-1| + 17 {(3eNaler oy + 1Eeniopy ) 12ler ooy + RNy}
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< {1+ 17 (3ellallowy, + 10wy, ) 1Zlewyy s + 2 IR0y, (6.26)

birinci mertebeden fark esitsizligi elde edilir. (6.26) esitsizliginin ¢oziimii i¢in (6.39)
formundaki birinci mertebeden fark esitsizliginin ¢oziimii olan (6.40) esitsizligini

dikkate alip,
Wy = 112lles oyt = 1+ 17 (3ellalloo oy, + 1Elleoiy, )

Wpe1 = 12l veWp = 17 IR len o,
biciminde se¢im yaparsak (6.26) fark esitsizliginin ¢oziimiinii

p
i P
12y < 7Y (14 17 (3Nl + 1leiy)]| IRl
k=1

olarak bulabiliriz. Bu da Lemma 6.2’in ispatina varir.

6.4 Shishkin Sebekede Kalan Teriminin Degerlendirmesi

Lemma 6.3 Lemma 6.1’nin kosullar1 altinda (6.21)-(6.22) fark semasinin kalan terimi

R; i¢in
IRy, < CN“HnN, 1<p<m
degerlendirmesi dogrudur.

Ispat. (6.20) denklemindeki R; igin herhangi bir sebeke iizerinde

f —f u'(t) + fu(t—r) dt, 1<i<N,

IRl < B f(t i) |2+ 2
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esitsizligi yazilabilir. Bu esitsizlikte Lemma 6.1’in sartlar1 dikkate alinirsa

ti
IR < Ch; + j(lu’(t)|+|u’(t—r)|)dt L 1<i<N,

ti—1
ifadesi yazilabilir. Simdi de (6.2) dikkate alinirsa

t

J

ti—1

P=1 P=2 (e
t—1._ u(t-rp-1) t—1_ u(t-rp—2)
|Ri|SC{hi+ Eorm) () Loma)l (5 )]dt} (627)

degerlendirmesi yazilabilir. Burada (6.27) ifadesi (5.56) ifadesine indirgendigi igin

ispatin devami Lemma 5.5°deki adimlar takip edilerek ispat tamamlanir.

Teorem 6.1 (1.3)-(1.4) probleminin ¢oziimii u ve (5.21)-(5.22) probleminin ¢oziimii y

olsun. Bu durumda asagidaki degerlendirme dogrudur:
Iy — ullo sy, < CN~tinN.
Ispat. Lemma 6.2 ve Lemma 6.3 beraber diisiiniiliirse ispat tamamlanr.

6.5 Bakhvalov Sebekede Kalan Teriminin Degerlendirmesi

Lemma 6.4 Lemma 6.1 kosullar altinda (6.21)-(6.22) semasinin kalan terimi R; igin

asagida verilen esitsizlik dogrudur:
IRlowy, SCN™Y, 1<p<m,

Ispat. Burada (6.27) ifadesi (5.66) ifadesine indirgendiginden dolay1 ispatin devanu igin

Lemma 5.6’daki adimlar takip edilerek tamamlanir.
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Teorem 6.2 (1.3)-(1.4) probleminin ¢oziimii u ve (6.21)-(6.22) probleminin ¢oziimii y

olsun. Bu durumda
ly = ulloay, < CN~!
esitsizligi dogrudur.
Ispat. Lemma 6.2 ve Lemma 6.4 beraber dikkate almirsa ispat tamamlanir.

6.6 Niimerik Sonuclar

Bu béliimde (1.3)-(1.4) lineer olmayan problem ig¢in Oncelikle probleme uygun
algoritma olusturulmus, daha sonra Cizelge 6.1’de Shishkin tipindeki parcali diizgiin
sebeke lizerinde kurulmus fark semasi i¢in ve Cizelge 6.2’de de Bakhvalov tipindeki
diizglin olmayan sebeke iizerine kurulmus fark semasi i¢in bazi niimerik sonuglar

sunulmustur. Ayrica niimerik sonuglara uygun grafik ¢izimleri de yapilmistir.

6.6.1 Algoritma

(5.21)-(5.22) lineer olmayan fark problemini ¢6zmek icin asagidaki yari

lineerlestirme (quasi-linearizasyon) teknigini kullaniyoruz.

£ -1 -1
_(_yl(zli - ai_lyi(zll)v_l + Cliyl-(zll)v + yl-(n )) + f(t[; yl‘(n )) yl(fg])

y(n)_ (n-1) N
Y e  Of (n-1) . (n)
h_i+£(tiiyi 'yi—N)

" = g

i=12,..Ny; n=1,2,..ve yl.(o) veriliyor.

Ornek 6.1 Bu béliimde teorik sonuglar1 destekleyen lineer olmayan bir 6rnek ele

alacagiz.
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1 1A
e |u(®) + 7 tank?@u(c - 1)] +u(t) + tanh(u(t))

1
+et +Ecosh(u(t — 1)) =0, 0<t<2,

ult)=1 —-1<t<0.

Bu problemin kesin ¢dziimii u(t) bilinmiyor. Bu nedenle yine wy ,, sebeke iizerindeki

maksimum hatalar1 tahmin etmek icin ¢ift katli sebeke prensibini kullanacagiz. Yani
hesaplanan ¢oziimleri bir sebeke iizerindeki c¢oziimlerle karsilastirtyoruz (Doolan vd.,

1980; Farell vd., 2000). Burada kullanilan baslangi¢ tahmini

y(O) =1—¢et

L

olarak alinmis ve iterasyon sayisi n su sekilde secilmistir:
max yi(n) — yi(n_l) <1075,
l

Bu kisimda, parcali diizgiin sebeke (Shishkin sebeke) iizerinde (1.3)-(1.4)
problemine uygulanan (6.21)-(6.22) fark semasi igin Ornek 6.1 {izerinden baz1 niimerik
sonuglar sunacagiz. Ele alinan problem, &= 27 i =4,8,..,24 ve
N = 32,64,128,256,512,1024 degerleri icin hesaplanmaktadir. Ortaya c¢ikan eN

hatalar1 ve buna karsilik gelen uygun p¥ degerleri Cizelge 6.1°de verilmistir.
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Cizelge 6.1 Ornek 6.1 igin Shishkin sebekede & ve N’nin farkli degerleri icin maksimum

hatalar ve yakinsama oranlar1

€ N =32 N = 64 N =128 N = 256 N =512 N = 1024

27*  0.0585140 0.0384984  0.0238415 0.0141404 0.0081353  0.0045794
0.60 0.69 0.75 0.80 0.83

278 0.0589737 0.0388002  0.0240287  0.0142515 0.0081992  0.0046153
0.60 0.69 0.75 0.80 0.83

2712 0.0590024 0.0388190  0.0240403 0.0142584  0.0082032  0.0046176
0.60 0.69 0.75 0.80 0.83

2716 0.0590042 0.0388202  0.0240411 0.0142588  0.0082034  0.0046177
0.60 0.69 0.75 0.80 0.83

2720 0.0590043 0.0388203  0.0240411 0.0142588  0.0082034  0.0046177
0.60 0.69 0.75 0.80 0.83

27%* 0.0590043 0.0388203  0.0240411 0.0142588  0.0082034  0.0046177
0.60 0.69 0.75 0.80 0.83

el 0.0590043 0.0388203  0.0240411 0.0142588 0.0082034  0.0046177
p"  0.60 0.69 0.75 0.80 0.83

0.0

0.5

1.0

1.5

2.0

Sekil 6.1 £ = 27* ve N = 64 icin Ornek 6.1’in [0,2] araliginda Shishkin sebekedeki
niimerik ¢oziimii
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1.0 -

0.5+

0.0+

—0.5+

—1.0+

—1.5+

—20¢+

0.0 0.2 0.4 0.6 0.8

Sekil 6.2 ¢ = 27* ve N = 64 i¢in Ornek 6.1’in [0,1] araliginda Shishkin sebekedeki
niimerik ¢ozliimii

1.0 1.2 1.4 1.6 1.8 2.0

Sekil 6.3 ¢ = 27* ve N = 64 i¢in Ornek 6.1’in [1,2] araliginda Shishkin sebekedeki
niimerik ¢oziimii
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OWN"Yy =272 =274 =278 2712 o_p-16 520 _5-24

0

— e — — 8B — ——— ——h— —¥—

64 128 256 512 1024
1P ‘ ‘ ‘ 71
0.5} 10.5
0.1} 10.1
5
§ 005" 10.05
I
§ 0.02 | 10.02

0.01 10.01

0.005 10.005

64 128 256 512 1024

Sekil 6.4 Farkli € ve N degerleri icin Ornek 6.1’in Shishkin sebekedeki maksimum hata
grafigi

Bu kisimda, diizgiin olmayan sebeke (Bakhvalov sebeke) iizerinde (1.3)-(1.4)
problemine uygulanan (6.21)-(6.22) fark semasi icin Ornek 6.1 iizerinden bazi niimerik
sonugclar sunacagiz. Ele alinan problem, &= 271 i =4,8,..,24 ve
N = 16,32,64,128, 256,512 degerleri i¢in hesaplanmaktadir. Ortaya ¢ikan e hatalari
ve buna karsilik gelen uygun p" degerleri asagidaki Cizelge 6.2°de verilmistir.
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Cizelge 6.2 Omek 6.1 icin Bakhvalov sebekede & ve N ’nin farkli degerleri igin
maksimum hatalar ve yakinsama oranlari

£ N =16 N =32 N = 64 N =128 N = 256 N =512

27%  0.0460119 0.0251589 0.0131140 0.0066993 0.0033863 0.0017024
0.87 0.94 0.97 0.98 0.99

278 0.0492397 0.0267977 0.0140078 0.0071654 0.0036243 0.0018227
0.88 0.94 0.97 0.98 0.99

272 0.0494350 0.0269067 0.0140656  0.0071951 0.0036394 0.0018303
0.88 0.94 0.97 0.98 0.99

2716 00494471 0.0269135 0.0140692 0.0071970 0.0036403 0.0018308
0.88 0.94 0.97 0.98 0.99

2720 0.0494479 0.0269140 0.0140694 0.0071971 0.0036404 0.0018308
0.88 0.94 0.97 0.98 0.99

2724 0.0494479 0.0269140 0.0140694 0.0071971 0.0036404 0.0018308
0.88 0.94 0.97 0.98 0.99

eV 0.0494479 0.0269140 0.0140694 0.0071971 0.0036404 0.0018308

pV  0.88 0.94 0.97 0.98 0.99

0.5

1.0

1.5

2.0

t

Sekil 6.5 ¢ = 27* ve N = 64 icin Ornek 6.1’in [0,2] araliginda Bakhvalov sebekedeki
niimerik ¢oziimii
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0.2 0.4 0.6 0.8

Sekil 6.6 ¢ = 27* ve N = 64 i¢in Ornek 6.1’in [0,1] araliginda Bakhvalov sebekedeki
niimerik ¢oziimii

1.2 1.4 1.6 1.8 2.0

Sekil 6.7 ¢ = 27* ve N = 64 i¢in Ornek 6.1’in [1,2] araliginda Bakhvalov sebekedeki
niimerik ¢oziimii
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ON"YY =272 g=2"% =278 =012 p716 520 524

M

64 128 256 512 1024
1F ‘ ‘ ‘ 71
0.5} 105
0.1} 10.1
B
5 0.05) 10.05
I
§ 0.02 | 10.02

0.01 10.01

0.005 10.005

64 128 256 512 1024
N

Sekil 6.8 Farkli € ve N degerleri icin Ornek 6.1’in Bakhvalov sebekedeki maksimum
hata grafigi

6.7 Boliim Sonu Degerlendirmesi

Bu bdliimde birinci mertebeden lineer olmayan SPNDDE ele alindi. (1.3)-(1.4)
problemin niimerik ¢6ziimii i¢in u ve tiirevi i¢in bazi degerlendirmeler yapildi. Diizgiin
olmayan sebeke i¢in klasik fark semasi kuruldu. Fark semasinin kararliligi ve diizgiin
yakinsakligi Shishkin ve Bakhvalov sebekelerde incelendi. Yakinsama hizi Shishkin
sebeke icin O(N~1InN) ve Bakhvalov sebeke igin O(N™1) oldugu gosterildi. Kesin
¢Ozlimii olmayan bir 6rnek ele alinarak niimerik sonuglar incelendi ve grafik ¢izimleri

yapildi.
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7. TARTISMA VE SONUC

Bu caligmada popiilasyon ekolojisi, biyoloji, fizik, tip ve ekonomi gibi bilim ve
miithendislikte gegen bazi siiregler icin SPNDDE:s i¢in baslangi¢ deger problemlerinin
sonlu fark metoduyla niimerik ¢oziimleri incelendi. Bu problemlerin niimerik ¢éziimii
icin uygun fark semalar1 kuruldu. Bu fark semalar i¢in hata degerlendirmeleri, €’na
gore diizgiin yakinsakliklar1 ve kararlilik analizleri yapildi.

(1.1)-(1.2) problemi i¢in ilk once diizgiin sebekede iistel katsayili fark semasi
kuruldu. Bu fark semasi ¢ < h sart1 altinda €’na gore diizgiin yakinsak oldugu ve
yakinsama hizinin O(N 1) oldugu teorik olarak gdsterildi. Bu sart ise pratik olmayan
agir bir sarttir ve pratik sonucglar elde edemedigimiz i¢in tablo ve grafik verilmemistir.
Bu degerlendirmenin iyilestirilemez oldugu birinci mertebeden singiiler pertiirbe bir
problem iizerinde gdsterilmistir (Amirali ve Amirali, 2018). Daha sonra diizgiin
olmayan sebekede klasik fark semasi kuruldu. Bu fark semasinin ayrik maksimum
normda ¢€’a gore diizgiin yakinsak oldugu gosterildi.

(1.3)-(1.4) problemi icin de diizgiin olmayan sebekede klasik fark semasi
kuruldu ve fark semasinin ayrik maksimum normda €’a gore diizgiin yakinsak oldugu
gosterildi.

(1.1)-(1.2) ve (1.3)-(1.4) problemleri icin teorik olarak gosterilen sonuglar
orneklerle desteklendi. Elde edilen niimerik sonucglar teorik sonuglari destekler
niteliktedir.

[ araliginda t’nin farkli degerleri i¢in kurulan fark semalarinm farkli N ve &
degerleri igin eV maksimum hata sonuglari ve p" yakinsaklik oranlar1 tablolarda
listelenmis ve grafik cizimleri yapilmistir. Bu tablo ve grafikler € parametresine gore
yakisama hizlarinm Shishkin (parcali diizgiin) sebekede O(N ~1InN) ve Bakhvalov
sebekede O(N™1) oldugu goriilmiistiir. Bu verilere gore problemlerin yakinsama
derecesi Shishkin sebeke icin p" = 0.85 ve Bakhvalov sebeke i¢in pV = 1 civarinda
oldugu gorilmiistiir. Bu ise elde edilen nlimerik sonuglarin teorik sonuclar1 destekler

nitelikte oldugunu gostermektedir.
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