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ÇOK AMAÇLI OPTİMİZASYON YÖNTEMLERİ İLE İŞARET AYRIŞTIRMA 

Hüsamettin ÇELİK 

Erciyes Üniversitesi, Fen Bilimleri Enstitüsü 

Doktora Tezi, Nisan 2024 

Danışman: Prof. Dr. Nurhan KARABOĞA 

ÖZET 

İşaret işleme alanında birçok problem, Kör Kaynak Ayrıştırma problemleri olarak 

formüle edilmiştir. Klasik olarak bu problemler kaynak işaretlerine ilişkin bir ayrıştırma 

kriterinin optimizasyonu yoluyla çözülmektedir. Ancak birçok pratik durumda 

kaynaklara ilişkin birden fazla bilgi bulunmaktadır ve dolayısıyla sorunun çözümü için 

birden fazla ayrıştırma kriteri oluşturulabilmektedir. Bu nedenle bu çalışma, kör kaynak 

ayrıştırma problemlerini çözmek için, SPEA2 yöntemi ile birden fazla kriterin eş zamanlı 

optimizasyonu ile elde edilen çok amaçlı bir yaklaşım uygulanmasını önermektedir. Bu 

yaklaşımın uygulanabilirliğini ortaya koymak amacıyla önce üç kişiye ait konuşma sesleri 

ve sonrasında biyomedikal işaretlerin ayrıştırılması test edilmiştir. Ayrıca bu tez 

çalışmasında kullanılan çok amaçlı kör kaynak ayrıştırmasının performansını artırmak 

için ön işlemler uygulanarak işaret ayrıştırmadaki başarım oranı olumlu şekilde test 

edilmiştir. Ayrıca işaretlerin örnek sayısının azaltılması amacıyla Ayrık Dalgacık 

Dönüşümü uygulanarak zaman-frekans ekseninde gerekli analizler yapılmıştır. Bu analiz 

sonucunda elde edilen karışık işaretler çok amaçlı kör kaynak ayırma yöntemine 

uygulanmış ve önerilen yöntemlerle performansın arttırılabileceği görülmüştür. Aynı 

zamanda önerilen yöntemlerin işlem maliyetleri artmasına rağmen işlem sürelerinde az 

da olsa azalma sağlanmıştır. Uygulama sonuçları, birbirine karışmış konuşma sesleri veya 

birbirine karışmış biyomedikal işaretlerin ayrıştırılmasında önerilen yöntemin 

kullanılabileceğini göstermiştir. 

Anahtar Kelimeler: Kör Kaynak Ayrıştırma, Çok Amaçlı Optimizasyon, SPEA2, Ayrık 

Dalgacık Dönüşümü, Beyazlatma, İşaret Ayrıştırma.  
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SIGNAL SEPARATION WITH MULTI-OBJECTIVE OPTIMIZATION 

METHODS 

Hüsamettin ÇELİK 

Erciyes University, Graduate School of Natural and Applied Sciences  

PhD Thesis, April 2024 

Supervisor: Prof. Dr. Nurhan KARABOĞA 

ABSTRACT 

Many problems in the field of signal processing have been formulated as Blind Source 

Separation problems. Classically, these problems are solved by optimizing a separation 

criterion for the source signals. However, in many practical cases, there is more than one 

information about the resources and therefore more than one separation criterion can be 

created to solve the problem. Therefore, this study proposes to apply a multi-objective 

approach obtained by simultaneous optimization of multiple criteria with the SPEA2 

method to solve blind source separation problems. To demonstrate the feasibility of this 

approach, first the speech sounds of three people and then the parsing of biomedical 

signals has been tested. In addition, to increase the performance of the Multi-Objective 

Blind Source Separation used in this thesis study, the performance rate in signal 

separation has been tested by applying pre-processing. In addition, in order to reduce the 

number of samples of the signals, the necessary analyzes were obtained on the time-

frequency axis by applying the Discrete Wavelet Transform. The mixed signals obtained 

as a result of this analysis have been applied to the multi-objective blind source separation 

method and it has been seen that the performance could be increased with the proposed 

methods. At the same time, although the transaction costs of the proposed methods 

increased, a slight decrease has been achieved in the processing times. Application results 

have shown that the proposed method can be used to separate entangled speech or 

biomedical signals. Application results have shown that the proposed method can be used 

in separating mixed speech sounds or mixed biomedical signals. 

Keywords: Blind Source Separation, Multi-Objective Optimization, SPEA2, Discrete 

Wavelet Transform, Whitening, Signal Separation.   
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GİRİŞ 

Doğada birçok ses farklı kaynakların karışımı olan işaretlerin toplamından oluşur. 

İnsanlar gürültülü veya karmaşık işitsel ortamlarda mevcut davranışsal açıdan en alakalı 

bilgiyi çıkarmak için dikkatini tek bir sese odaklama yeteneğine sahiptir. Bu durum klasik 

olarak Kokteyl Parti Etkisi (CPE, Cocktail Party Effect) veya Kokteyl Parti Problemi 

(CPP, Cocktail Party Problem) olarak adlandırılmaktadır. CPP probleminde, insanların 

konuşmak için bir araya geldiği bir kokteyl partisinin olduğu varsayılır. Konuşmacıların 

işaretlerini toplamak için bir mikrofon kullanırsa, toplanan işaretler aynı anda konuşan 

birçok kişinin karışımı olacaktır. Bu durumda kaynaklar olarak bilinen, bireysel seslerin 

bu karışık işaretten nasıl ayırt edileceğidir. Bu sorun genel olarak Kör Kaynak Ayrıştırma 

(BSS, Blind Source Separation) olarak bilinir. 

BSS hem orijinal verileri hem de karıştırma işleminin parametrelerini göz ardı ederek, bu 

tür kaynakların bir dizi karışımından bir dizi kaynak işaretini kurtarmayı amaçlayan işaret 

işleme problemidir. Bu problemle ilgili olarak, gözlenen karışımlar arasından karışımları 

oluşturan işaretleri tahmin etmek amaçlanmaktadır. Bu yönteme, her ne kadar kör olduğu 

söylense de çözülebilmesi için kaynakların ve karıştırma süreci hakkında bazı ön 

bilgilerin verilmesini gerektirmektedir. Bu bilgiye dayanarak, karışık işaretlerin 

ayrıştırılması için bir optimizasyon kriteri oluşturulabilir.  

BSS, Jutten ve Hérault tarafından ortaya atılmış ve sonraki yıllarda kaynakların çok çeşitli 

özelliklerine ilişkin çeşitli optimizasyon kriterleri geliştirilmiştir [1]. Bunlar arasında 

istatistiksel bağımsızlığa, korelasyona, zamansal yapıya ve işaretlerin seyrekliğine 

dayananları sayabiliriz [2]. Bu kriterleri temel alan tüm modellerde optimize edilecek tek 

bir amaç fonksiyonu bulunmaktadır. Tek amaçlı yöntemler başarılı olsa da bazı zorluklar 

söz konusudur. Tek amaçlı yöntemlerin aracılığıyla belirlenen kaynakların sayısı verinin 

boyutunu aşamaz. Electroensefalogram (EEG) işaret analizi gibi uygulama alanlarında, 

işarete yönelik kaynak sayısı her zaman veriyi toplayan elektrot sayısından daha fazladır. 
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Örneğin, EEG verilerine ek olarak işaret, kas ve göz hareketlerinden kaynaklanan 

artefaktlarla karışarak istenen sonuçlar elde edilmez.  Ancak kaynaklar hakkında önceden 

bilgi setinin bulunduğu ve bu nedenle sorunu çözmek için birden fazla optimizasyon 

kriterinin oluşturulabileceği durumlar da vardır. Bu durumlarda genellikle kriterler, 

kaynak işaretlerinin tüm özelliklerini hesaba katan tek bir amaç fonksiyonunda 

birleştirilmesidir.  

Kaynak işaretlerine ilişkin birden fazla bilginin varlığı birçok uygulamada yaygın 

olduğundan ve bu sayede bir dizi optimizasyon kriteri elde edilebildiğinden, bu çalışma 

kör kaynak ayırma problemlerini Çok Amaçlı Optimizasyon (MOO, Multi-Objective 

Optimization) yoluyla ele almayı amaçlamaktadır [3]. Bu şekilde kriterleri tek bir amaç 

fonksiyonunda birleştirmek yerine eş zamanlı olarak optimize edilmesi planlanmaktadır. 

Önerilen yaklaşımda, problemin çözümüyle sonuçlanan tek amaçlı yaklaşımdan farklı 

olarak bir dizi Pareto optimum çözüm üretilecektir [4]. 

Böylece, karar vericinin kriterler için ağırlıkları önceden belirlemesine gerek 

kalmayacak, bunun yerine kararına dayanak oluşturacak eşit derecede optimal çözümlere 

sahip olacaktır. Bir amaç fonksiyonunun formülasyonunda birden fazla kriteri dikkate 

alan çalışmalar olmasına rağmen, bunların eşzamanlı optimizasyonunun kör kaynak 

ayrımı bağlamında çok az araştırıldığı bilinmektedir [5]. 

Bu tez çalışmasının temel amacı, BSS problemlerinde çok amaçlı optimizasyonun 

uygulanabilirliği gösterilerek performansının geliştirilmesidir. Çok amaçlı optimizasyon 

modellerinden olan Güçlü Pareto Evrimsel Algoritması 2 (SPEA2, Strength Pareto 

Evolutionary Algorithm) yöntemine dayalı bir teknik kullanılarak çözülecektir. Bu 

nedenle bu çalışmada bu tekniğin ve burada ele alınan problemlere uygunluğunun 

araştırılması gerçekleştirilecektir. Bahsedilen bu amaçlara ek olarak, çok amaçlı 

optimizasyon kör kaynak ayrımı bağlamında çok az araştırıldığı için bu çalışma aynı 

zamanda bu konudaki araştırmaları teşvik etmeyi de amaçlamaktadır. 

Bu tezde, uygulama için üç farklı ses işareti olarak iki kadın ve bir erkek konuşma ses 

karışımının ayrıştırılması incelenmiştir. Aynı yöntemlerle iki erkek konuşma sesi ve bir 

Beyaz Gauss Gürültü işaretinin ayrıştırtılması da sağlanmıştır. Bu konuşma sesleri 

iletişim, güvenlik, biyomedikal, kontrol sistemleri ve istihbarat gibi analiz gerektiren 

birçok alanda yol gösterici olarak kullanılmaktadır. İletişim için konuşma işaretlerinin 
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kodlanması ve kodunun çözülmesi, güvenlik için konuşma sesi tanıma, biyotıpta hastalık 

teşhisi, konuşma bozuklukları ve düzeltilmesi, kontrol alanında sesli komut kontrol 

sistemleri ve istihbarat alanında kelime yakalama gibi uygulamalarda sıklıkla 

kullanılmaktadır. 

Uygulama gerçek hayattan esinlenerek planlanmış ve her koşmada işaretler yapay olarak 

rastgele matris kullanılarak birbirine karıştırılmıştır. Önerilen yöntemde kullanılan 

algoritmanın 50 koşma sonucu ortalama İşaret-Gürültü Oranı (SNR, Signal-to-Noise 

Ratio) değerleri alınarak performans analizleri yapılmıştır. Kullanılan yöntemlerin 

performanslarını kanıtlamak için biyomedikal işaretler üzerinde de uygulama yapılmıştır. 

Birbirine rastgele olarak karıştırılmış Fetal Electrocardiogram (EKG) işareti, beyaz Gauss 

gürültü işareti ve anne EKG işaretlerinin ayrıştırılması sağlanmıştır. Ayrıca birbirine 

karıştırılmış EEG ve beyaz Gauss gürültü işaretlerinin ayrıştırılması da test edilmiştir.  

Tez çalışmasına göre önerilen yöntemle BSS probleminin çözümünde SPEA2 yöntemi 

kullanılmış, böylece eş zamanlı olarak belirlenen amaç fonksiyonları ile karışmış 

işaretlerin ayrıştırılması sağlanmıştır. Devamında önerilen yöntemin performansını 

artırmak için ön işlem olarak beyazlatma kullanılması önerilmiştir. Ayrıca işaretler 

üzerinde Ayrık Dalgacık Dönüşümü (DWT, Discrete Wavelet Transform) kullanılarak 

gerekli analizler sonucunda Çok Amaçlı Kör Kaynak Ayrıştırma (MO-BSS, Multi-

Objective Blind Source Separation) ile işaret ayrıştırmadaki başarım oranında artış 

sağlanmıştır.  

Tez çalışmasının ilk bölümünde insan sesinin oluşumu, yapısı, özellikleri ve bu seslerin 

işitilme süreci anlatılmıştır. Devamında EKG işareti, CPP ve BSS yöntemleri 

anlatılmıştır. İkinci bölümde çok amaçlı optimizasyon algoritmaları ve bu algoritmaların 

BSS yönteminde kullanımları hakkında bilgi verilmiştir. Üçüncü bölümde yöntemlerin 

işaret ayrıştırmadaki performanslarını arttırmak için önerilen ön işlem ve ayrık dalgacık 

dönüşümü hakkında bilgi verilmiştir. Ayrıca bu yöntemlerin performanslarını ölçmek için 

performans metrikleri anlatılmıştır. Dördüncü bölümde MO-BSS yöntemi ile ses 

işaretleri ayrıştırılmıştır. Ayrıca tasarlanan ön işlemli MO-BSS ve DWT MO-BSS 

yöntemleri ile konuşma sesleri ve biyomedikal işaretler ayrıştırılmış ve sonuçlar tablo ve 

grafiklerle yorumlanmıştır. Son bölümde ise çalışmanın deneysel sonuçlarına göre 

değerlendirme yapılmıştır.   



 

 

 

1.  BÖLÜM  

KONUŞMA SESİ, EKG VE KÖR KAYNAK AYRIŞTIRMA 

HAKKINDA GENEL BİLGİLER  

Kör kaynak ayrıştırma birden fazla işaretin karışımını içeren işaretlerden kaynaklar 

hakkında başka hiçbir ek bilgi olmadan her bir kaynağın tahmin edilmesi işlemidir. Ses 

uygulamalarında özellikle ortam dinlemelerinde sensörlerle kaydedilen karışım 

işaretlerinden orijinal kaynak seslerine ulaşmak için yaygın bir şekilde kullanılır. Hayatın 

her aşamasında kullanılan işaretlerin gürültüsüz ve orijinaline yakın biçimde elde 

edilmesi haberleşme, biyomedikal ve güvenlik gibi birçok alanda çoğu zaman hayati 

önem taşımaktadır. Konuşma seslerinde kulağımız her ne kadar istenmeyen sesleri 

ayrıştırsa da çoğu işaretlerde yetersiz kalmaktadır. Bu durumda işaret ayrıştırma 

algoritmalarından faydalanılarak karışmış işaretlerden orijinaline en yakın kaynak 

işaretlerin elde edilmesi amaçlanmaktadır. 

1.1. Kullanılan İşaretler 

İşaret ayrıştırma yöntemlerinde en yaygın kullanılan işaret olarak insan sesleri 

gelmektedir. Bu tezde önerilen yöntemler ile farklı insan sesleri ayrıştırılacak olup 

devamında biyomedikal işaretler de ayrıştırılacaktır. İnsan seslerinin ve EKG işaretlerinin 

detaylı incelenmesi aşağıda verilmiştir.   

1.1.1. İnsan Sesinin Yapısı 

İnsan sesi, konuşma ve işitme süreci, birçok kompleks mekanizmanın bir araya 

gelmesiyle oluşur. Konuşma ve ses üretimi, gırtlak (Larenks), solunum sistemleri olarak 

akciğer, göğüs ve karın kasları, çene, dudaklar ve dilin koordinasyonu ile gerçekleşir. 

İşitme ise, kulakların dış, orta ve iç kısımları arasında gerçekleşen bir dizi mekanik ve 

elektriksel süreçlerden sonra beyne iletilen işaretlerle ortaya çıkar. 
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Ses üretimi, gırtlak adı verilen bir organda gerçekleşir. Gırtlak, solunum yolunun üst 

kısmında yer alır ve birçok önemli fonksiyona sahiptir. Ses telleri, gırtlak içinde bulunan 

iki ince elastik yapıya sahiptir. Ses telleri, hava akımı geçtiği zaman titreşerek ses 

oluştururlar. Bu titreşimler, sesin temel frekansını belirler. Ses tellerinden çıkan ses, ağız 

ve burun boşluklarından geçerken şekillendirilir. Dil, dudaklar, dişler ve çene gibi yapılar, 

sesin şeklini değiştirebilir ve farklı sesleri oluşturabilir. Bu şekillendirme süreci, konuşma 

sırasında harflerin ve kelimelerin doğru bir şekilde oluşmasını sağlar. Konuşma sistemi 

ve organlar Şekil 1.1’de gösterilmiştir. Aynı zamanda sesler erkek ve kadınlarda farklı 

tonlarda oluşur. Erkeklerin ses telleri genellikle daha kalın ve daha uzundur, bu da daha 

düşük bir ses tonuna neden olur. Kadınların ses telleri ise genellikle daha ince ve daha 

kısa olduğu için daha yüksek bir ses tonuna sahiptir. Bu farklılık, cinsiyet hormonlarından 

kaynaklanır. Bununla birlikte, her bireyin ses tonu birbirinden farklıdır çünkü ses 

tellerinin boyutu ve şekli genetik faktörlere, yaşa ve kullanıma bağlı olarak değişebilir.  

 

Şekil 1.1. Konuşma sistemi ve konuşma ile ilgili organlar [6] 

Konuşmanın akciğerlerde değil beyinde başladığını ve bunun için de konuşma 

organlarımız tarafından yerine getirilebilmesi amacıyla zihnimizde birtakım komutlara 

ihtiyaç duyulmaktadır. Yani bir ses bilime (fonetik plana) ve bir motor plana (dil, dudak 

ve damak hareketleri) ihtiyacımız vardır [7]. Bu işlemlerden sonra seslerin fiziksel 

üretimine başlanır. O halde konuşma, akciğerlerden gelen ve nefes borusu ile ağız ve 

burun boşluklarından geçen bir hava akımı tarafından üretilir. Bu da dört süreci içerir: 
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Başlatma, fonasyon/seslendirme, oro-nazal süreç ve artikülasyon yani ses ve sözcüklerin 

oluşması sürecidir.  

Başlatma süreci, havanın akciğerlerden dışarı atıldığı andır. 

Fonasyon süreci gırtlakta meydana gelir. Gırtlak, hava geçişinde iki yatay doku kıvrımına 

sahiptir; bunlar ses telleridir. Bu kıvrımlar arasındaki boşluğa glottis denir. Glottisin 

kapatılması ile hava geçişi engellenir veya ses tellerini titreterek “sesli sesler” 

üretebilecek dar bir açıklığa sahip olabilir. Son olarak, normal nefes almada olduğu gibi 

tamamen açık olabilir ve böylece ses tellerinin titreşimi azaltılarak "sessiz sesler" üretilir. 

Hava, gırtlak ve farenksten yani yutaktan geçtikten sonra burun veya ağız boşluğuna 

girebilir. Oro-nazal süreç sayesinde burun ünsüzleri (m, n) ile diğer sesler ayırt edilebilir 

hale gelir. Son olarak artikülasyon yani sesletim süreci en bariz olanıdır, yani ağızda 

gerçekleşir ve konuşma seslerinin çoğunun ayırt edilebildiği süreçtir. Alınan havanın 

gırtlaktan geçerek artikülatör dediğimiz üst ve alt dudaklar, üst ve alt dişler, dil ve damak 

tarafından biçimlenerek ses, hece ve konuşma sesine dönüştürülmesidir. Böylece 

konuşma sesleri, söylendiği yer ve nasıl söylendiği açısından birbirinden ayrılır [8]. 

Sesler dış dünyayla birçok iletişim kurduğumuz işaretlerdir, elbette fikirlerimiz, ayrıca 

duygularımız ve kişiliğimizdir. Ses, konuşmanın dokusuna silinmez bir şekilde 

dokunmuş, konuşmacının amblemidir. Bu anlamda, konuşulan dildeki her bir ifademiz 

yalnızca kendi mesajını taşımakla kalmaz, aynı zamanda vurgu, ses tonu ve alışılmış ses 

kalitesiyle belirli toplumsal ya da bölgesel gruplara üyeliğimizin, toplumsal 

cinsiyetimizin sesli bir beyanıdır. Sesimiz bireysel, fiziksel ve psikolojik kimliğimiz ve 

anlık ruh halimizin bir aynasıdır. Sesler aynı zamanda bizim için önemli olan ailemizin 

üyeleri, medya kişilikleri, dostlarımız ve düşmanlarımız gibi diğer insanları çoğu zaman 

başarılı bir şekilde tanımamızı sağlayan araçlardan biridir. Her ne kadar DNA analizinden 

elde edilen deliller, seslerden elde edilen delillerden potansiyel olarak çok daha etkili olsa 

da DNA konuşamaz. Bir suçun planlanması, gerçekleştirilmesi veya itiraf edilmesi kayıt 

altına alınamaz. Bu kadar açık bir şekilde doğrudan suçlayıcı olamaz. Hızlı bir şekilde 

ortaya çıkacağı gibi, sesler son derece karmaşık işaretlerdir ve adli-fonetik yöntemin 

doğasında olan bazı sınırlamalar, kısmen bunların karmaşıklığı ile kullanıldıkları gerçek 

dünya arasındaki etkileşimin bir sonucudur [9]. 
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Ses belirli bir kişi tarafından çıkarıldığı ve bu şekilde tanınabileceği düşünüldüğünde 

farklı kişilerce de seslendirmeler yani taklitler olabilir.  

Bu yaklaşımda tartışılması gereken üç önemli konu vardır: 

• Ses kalitesi ile fonetik kalite arasındaki fark, 

• Ses tonu, 

• Ses modeli. 

Bir noktada, ilk ikisini, bir sesi öncelikle dinleyicinin bakış açısından yani işitme 

açısından ve modeli de konuşmacının bakış açısından ele almak ve onu karakterize etmek 

mümkündür. Ses modeli bir dereceye kadar ses kalitesi/fonetik kalite ayrımını 

varsaydığından öncelikle bu ayrım ses tonuyla birlikte ele alınır. Dilsel, dil dışı ve dil 

ötesi veya parafonolojik terimleri genellikle sırasıyla fonetik kalite, ses kalitesi ve ses 

tonunu işaret etme işlevi gören özellikleri nitelendirmek için kullanılır [10]. 

1.1.2. Ses Kalitesi ve Fonetik Kalitesi 

Daha önce de belirttiğimiz gibi, birinin konuşması duyulduğunda öncelikle iki şeyin 

farkına varılır: söylenenler ve bunu söyleyen kişinin özellikleri. Sesin içeriği ve 

kaynağına ilişkin bu iki tür yargıya en yakın şekilde karşılık gelen ses yönleri, sırasıyla 

fonetik kalite ve ses kalitesi olarak adlandırılır [11].  

1.1.3. Fonetik Kalite 

Fonetik kalite, bir sesin dilsel özellikle fonolojik bilgiyi işaret eden yönlerini ifade eder. 

Daha teknik terimlerle ifade edersek, fonetik kalite, ünlü ve ünsüz ses birimleri gibi dilsel 

birimlerin tam olarak belirlenmiş gerçekleşmelerini veya ses birimlerini oluşturur [12].  

Fonetik kalite, ünsüzler ve ünlüler gibi bölümsel seslerle sınırlı değildir; aynı zamanda 

tonlama, ton, vurgu ve ritim gibi bölümler üstü dilsel kategorilere de bağlıdır. Bu nedenle, 

“HAKARET” ve “hakaret” arasındaki vurgu farkı aynı zamanda fonetik kalitenin bir 

yönünü oluşturur, çünkü bir fiil ile bir isim arasındaki dilsel farklılığa işaret eder. Birçok 

fonetikçi, fonetik kalite kavramını, farklı dilleri veya lehçeleri karakterize eden ve bir dili 

/lehçeyi diğerinden farklı kılan seslerin özelliklerini de kapsayacak şekilde 

genişletmektedir [13]. 
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1.1.4. Ses Kalitesi 

Ses kalitesi, fonetik kalite kaldırıldığında kişinin duyabileceği kalitedir; örneğin birisinin 

bir kapının arkasında konuştuğunun duyulabildiği ancak aslında söylediklerinin 

duyulamadığı veya anlaşılamadığı durumlardır [10]. 

Ses kalitesinin genellikle iki bileşene sahip olduğu anlaşılır: bir organik bileşen ve bir 

ayar bileşeni. Organik bileşen, sesin, belirli bir konuşmacının ses yolu anatomisi ve 

fizyolojisi tarafından belirlenen, örneğin ses yolu uzunluğu veya burun boşluğunun hacmi 

gibi ve üzerinde hiçbir kontrolü olmayan yönlerini ifade eder. Bir konuşmacının anatomik 

donanımı tipik olarak ses özelliklerinin kapsamına sınırlar getirir; dolayısıyla anatomik 

olarak belirlenmiş bir özelliğe iyi bir örnek, konuşmacının temel frekans aralığının üst ve 

alt sınırları olacaktır [14].  

Çoğunlukla ortam veya artikülatör ortam olarak adlandırılan ses kalitesinin ikinci 

bileşeni, bireyin konuşurken benimsediği alışılmış kas ortamlarını ifade eder. Bir 

konuşmacı alışkanlık olarak hafif yuvarlak dudaklarla, örneğin genizle veya düşük perde 

aralığıyla konuşabilir. Bu ayar özellikleri kasıtlı olarak benimsendiğinden, konuşmacının 

kontrolü altında olması açısından ilk bileşenden farklılık göstermektedir.   

Ses kalitesi ile fonetik kalite arasındaki fark, fonetik özelliklerin algılanmasındaki farklı 

rolleri açısından da açıklanabilir. Ses kalitesinin, fonetik kalite rakamının 

değerlendirilmesi için gerekli arka planı sağladığına dikkat çekilmiştir. Örneğin, bir 

konuşmacının dilsel perdesi yani bir ton dilinde yüksek ton ile alçak ton arasındaki farkı 

işaret eden perde yalnızca genel perde aralığının arka planına göre doğru şekilde 

değerlendirilebilir [10].  

Bazen konuşmanın hem ses hem de fonetik kalitesini duyabilmek 

mümkündür. Dolayısıyla, bir ses dilini konuşan bir erkek ve bir kadın konuşmacının 

yükselip alçalan tona sahip bir kelime söylemesini dinlediğinizde, fonetik perdenin aynı 

olduğu duyulabilir [14]. Ayrıca ses kalitesi perdesine dikkat edip, fonetik kalite kimliğine 

rağmen kadının erkekten farklı, daha yüksek bir ses kalitesi perdesine sahip olduğu da 

fark edilebilir. Ancak bu, yüksek tonlu şarkı söyleme gibi özel tekniklerin dışında vokal 

kalitesiyle mümkün değildir. Örneğin hem kadın hem de erkeğin aynı sesli harfi aynı 

fonetik kalitede söylediğini duymak muhtemeldir, ancak eşlik eden ses kalitesi farkını 
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cinsiyet dışında formant yani insan ses yolunun akustik rezonansından kaynaklanan geniş 

frekans bölgesi frekanslarında duymak imkansızdır [15].   

1.1.5. Ses tonu 

Varsayımsal olarak bazı kişilerin gerçekte ne söylediğini duyamasak da bunu nasıl 

söylediklerine dair bir şeyler duyabilmemiz akla yatkındır. Örneğin kızgın ya da 

sızlanıyor gibi görünebilirler. Bu bilgiyi ileten ses özellikleri, ses tonu olarak adlandırılır 

ve bu nedenle ses tonu, geçici duygusal durumları sözlü olarak işaret ettiğimiz ana 

yollardan biridir [16].   

Ses tonunun, fonetik kalite ve ses kalitesiyle aynı ses boyutlarını paylaşması belki de 

sürpriz olmayacaktır. Fonetik kalite, ses kalitesi ve ses tonu aynı boyutlarda 

gerçekleştiğinden, farklılıkları nasıl algıladığımız sorusu ortaya çıkar. Fonetik kalite, ses 

kalitesi ve ses tonu özellikleri arasındaki farkın öncelikle özelliklerin ne kadar süreyle 

korunduğuna bağlı olduğu varsayılmaktadır. Ses tonu özellikleri, yarı kalıcı ses kalitesi 

ile anlık fonetik kalite özellikleri arasında bir süre boyunca korunur [9,10].   

1.1.6. İşitme Süreci 

Konuşma olayı devamında işitme sürecini başlatır. İşitme, etraftaki seslerin kulak 

vasıtasıyla algılamaya dönüştüğü süreçtir. Dış ortamdaki ses titreşimlerinin sinir 

uyarılarına dönüştürülerek beyne iletilmesi ve burada ses olarak yorumlanmasıdır. 

Sesler, gitarın kopmuş teli gibi titreşen nesneler, daha çok ses dalgaları olarak bilinen 

ve titreşen hava moleküllerinin basınç darbelerini ürettiğinde meydana gelir.  

İşitme sistemi genel olarak üç kısma ayrılır; dış kulak, orta kulak ve iç kulak. Dış kulak, 

başın dışındaki kulaktan kulak zarına kadar her şeyi içerir. Orta kulak, kulak zarından 

koklea’ya (kafatasının içindeki salyangoz kabuğu yapısı) kadar olan boşluğu ve yapıları, 

iç kulak ise içindeki tüm yapılarla birlikte koklea’yı ve sesi beyne taşıyan işitme sinirini 

anlatır. İşitme sisteminin bu üç bölümünün her biri işitmeye ve işitme kaybına neden 

olabilecek bazı sorunlara katkıda bulunur. 

Dış Kulak: Ses ilk olarak kulak kepçesinden yani kulağın başımızın dışından görünen 

kısmından dışarı çıkar. Kulak kepçesi ses dalgalarını toplar ve bunları kulak kanalından 

kulak zarına iletir. 
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Orta Kulak: Orta kulak, kulak zarı ile koklea’nın oval penceresi arasında kalan 

kısımdır. Dış taraftan gelen ses dalgaları orta kulağa girdiğinde kulak zarını 

titreştirir. Kulak zarının arkasında vücuttaki en küçük kemikler olan üç orta kulak 

kemiğini içeren hava dolu bir boşluk vardır. Kulak zarı titreştiğinde orta kulaktaki 

kemiklerin de titreşmesine neden olur. Orta kulakta sorun varsa kulak zarının veya orta 

kulaktaki kemiklerin hareketini kısıtlayabilir ve geçmesi gereken sesin azalmasına neden 

olabilir. 

İç Kulak: İşitme ve denge organımız olan koklea, işitme siniriyle birlikte iç kulak olarak 

adlandırılır. Ses, bir ucu kokleaya bağlı olan orta kulak kemiklerinin titreşimleriyle iç 

kulağa geçer. Koklea içindeki minik tüy hücreleri, ses titreşimlerini elektriksel uyarılara 

dönüştürür ve bu uyarılar, sesi işitme sinirinden beyne taşır ve burada ses ve konuşma 

olarak yorumlanır [17,18]. 

Ses, parçacıkların komşu parçacıklara enerji aktarırken ileri geri titreştiği uzunlamasına 

bir dalga olarak hareket eder. Sesin özelliklerini keşfederken sesi enine bir dalga olarak 

görselleştirilebilir. Kulak, dalgaların farklı fiziksel özelliklerini algılayıp analiz ederek 

sesin yüksekliği ve perdesi gibi farklı öznel yönlerini ayırt edebilir. Perde, ses dalgalarının 

frekansının algılanmasıdır; yani birim zamanda sabit bir noktadan geçen dalga boyu 

sayısıdır. Frekans genellikle saniye başına devir veya hertz cinsinden ölçülür. Frekans ne 

kadar yüksek olursa diğer bir deyişle dalga boyu kısa olursa, perde de o kadar yüksek 

olur. Bir ses dalgasının şiddeti genliğiyle ilgilidir. Daha büyük bir genlik daha yüksek bir 

sese neden olur. Ses yüksekliği, sesin yoğunluğunun, yani ses dalgalarının kulak zarına 

uyguladığı basıncın algılanmasıdır. Genlikleri veya güçleri ne kadar büyük olursa, sesin 

basıncı veya yoğunluğu ve dolayısıyla ses yüksekliği de o kadar büyük olur. İnsan kulağı 

1.000 ile 4.000 hertz arasındaki frekanslara en duyarlıdır ve bunları en kolay şekilde 

algılar, ancak en azından normal genç kulaklar için tüm duyulabilir ses aralığı yaklaşık 

20 ila 20.000 hertz arasındadır. Sesin yoğunluğu, sesin göreceli büyüklüğünü logaritmik 

ölçekte ifade eden bir birim olan desibel (dB) cinsinden ölçülür ve raporlanır. Başka bir 

deyişle desibel, herhangi bir sesin yoğunluğunu, kulağın en hassas olduğu aralıktaki bir 

frekansta, normal insan kulağı tarafından ancak algılanabilen standart bir sesle 

karşılaştıran bir birimdir. Desibel ölçeğinde, insanın işitme aralığı, 0 dB neredeyse 

duyulamayan yani en düşük ses seviyesi, 30 dB fısıltılı konuşma, 60 dB normal konuşma, 
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90 dB trafik gürültüsü ve 130/140 dB ise çok aşırı ses yani insana acı verici hale geldiği 

seviye olarak kabul edilmektedir [19].  

1.1.7. İstenmeyen Seslerin Algılanması 

İşitme sürecinde kulak sadece istenen kaynaktan gelen sesleri algılamaz. Bunu yanında 

istenmeyen birçok ses veya gürültü de aynı zamanda işitilir.  Mutlak sessizlik yalnızca 

boşlukta var olduğundan, aynı anda veya birbiri ardına meydana gelebilecek yararlı veya 

istenmeyen ses kaynaklarıyla sürekli olarak karşı karşıya kalınır.  Basitçe söylemek 

gerekirse, kulaklarımız bize ulaşan farklı ses mesajlarını kodlar ve beynimiz, dikkat ve 

hafızayı kullanarak bunları yeniden yapılandırma ve sıralama görevini yerine getirir. Bu, 

örneğin farklı sesleri tanımamıza, konuşmayı anlamamıza, etrafta başka sesler varken bir 

konuşmayı takip etmemize veya karmaşık bir sesin farklı öğelerini ayırt etmemize olanak 

tanır. Her zaman bu sürecin geçerli olması veya seslerin ayırt edilmesi mümkün 

olmamaktadır. Aynı anda birden fazla kişinin konuşmacı olması ya da çok gürültülü 

ortamlarda sesleri ayırt etmek çoğu zaman imkânsız hale gelmektedir. Bu soruna geçerli 

bir çözüm bularak elde edilen sesler birçok alanda önemli rol oynamaktadır. Daha önce 

belirttiğimiz gibi kontrol sistemleri, güvenlik sistemleri, tıp, haberleşme gibi pek çok 

alanda sesleri ayırt etmemiz teknolojik açıdan önemli roller üstlenmektedir [20]. 

Sadece konuşma sesi olarak değil aynı zamanda tıp alanında EKG, Fetal EKG, EEG ve 

EMG gibi gürültülü işaretlerin ayrıştırılması, müzik enstrümanlarının ya da şarkı 

sözlerinin birbirinden ayrıştırılması, ortam dinlemelerinde seslerin ve gürültünün 

ayrıştırılması, haberleşme alanındaki işaretlerin ayrıştırılması ve görüntü ayrıştırma gibi 

pek çok alanda istenen işaretlerin istenmeyen işaretlerden ayrıştırılması için birçok 

çalışma yapılmaktadır.  

Bu tez çalışmasında kör kaynak ayrıştırma olarak tanımlanan ve literatürde kokteyl parti 

problemi olarak geçen yöntemle önerilen yöntem kullanılarak birbirine karışmış olan 

işaretlerin birbirlerinden ayrıştırılması sağlanmıştır. Kör kaynak ayrıştırma işlemine çok 

amaçlı optimizasyon yöntemi olan SPEA2 yöntemi uygulanmış ve iki amaç fonksiyonu 

ile ayrıştırma işlemi yapılmıştır. Ayrıca konuşma ve biyomedikal işaretler üzerinde 

denemeler yapılarak sonuçlar görsel ve nicel olarak yorumlanmıştır. Aşağıda bu tezde 

kullanılan biyomedikal işaretlerden anne EKG, beyaz Gauss gürültü ve Fetal EKG 

işaretleri hakkında bilgi verilmiştir.   
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1.2. EKG İşareti  

İnsan sağlığı açısından ve erken tedavi için ölçülen biyomedikal işaretler gürültüden 

ayrıştırılmış şekilde elde edilmelidir. Bu tez kapsamında önerilen yöntem ile birbirlerine 

karıştırılmış anne EKG, beyaz Gauss gürültü ve Fetal EKG işaretlerinin ayrıştırılması 

sağlanmıştır.  

EKG, insan kalbinin farklı kalp rahatsızlıkları hakkında önemli bilgiler 

vermektedir. EKG işaretinin analizi, yaşamı tehdit eden kalp durumlarını tespit etmek ve 

önlemek için araştırma topluluğunun ana hedefi olmuştur. Geleneksel işaret işleme 

yöntemleri, makine öğrenimi ve bunun derin öğrenme gibi alt dalları, EKG işaretini analiz 

etmek ve sınıflandırmak ve esas olarak kalp rahatsızlıkların ve aritmilerin erken tespiti ve 

tedavisine yönelik uygulamalar geliştirmek için popüler tekniklerdir [21–23]. 

Elektrokardiyografi, bir asırdan fazla bir süre önce Hollandalı fizyolog Willem Einthoven 

tarafından icat edilmiştir. EKG, insan kalbinin elektriksel aktivitesini gösterir ve EKG 

işaret morfolojileri, farklı kalp koşullarına bağlı olarak çeşitli aritmi türleri hakkında bilgi 

sağlar. EKG dalga grafiğinden aritminin hızlı ve doğru bir şekilde tanımlanması, 

potansiyel olarak birçok hayat kurtarabilir ve dünya çapında sağlık bakım maliyetleri 

açısından çok fazla tasarruf sağlayabilir. Bu bizi, EKG analizinin ayrıntılı bir 

incelemesini yapmaya ve EKG işaret analizinin her aşamasının akışını ve önemini daha 

fazla açıklığa kavuşturmak ve kategorize etmek için EKG işaretlerinin sağlıklı bir şekilde 

elde edilmesine motive etmiştir. Etkin EKG işaret analizinin halk sağlığı ve ekonomi 

üzerinde sunduğu muazzam etkiyle birlikte, donanım ve yazılım araçlarının yanı sıra 

gerçek zamanlı izlemenin yanı sıra, taşınabilir ve giyilebilir cihazlar kullanarak EKG 

işaretini aşamalara dayalı bir süreç halinde analiz etmek için çeşitli uygulamalar 

sunulmuştur. Fakat tüm bu çalışmaların temelinde EKG işaretinin doğru 

yorumlanabilmesi için ilgili kişiden gürültüsüz ve en az hata oranı ile EKG işaretinin elde 

edilmesi gerekir.  

Elektriksel aktivite, kalp dokuları tarafından üretilen ve EKG elektrotlarının elektrotları 

aracılığıyla toplanan küçük potansiyel biçimindedir. Minyatür işaretler güçlendirilir ve 

EKG olarak kaydedilir. Elektriksel aktivite normalde Sinüs Düğümün (SA düğümü) 

otomatiklik sergileyen özel hücreleri tarafından kendiliğinden üretilir. İmpulsun 

oluşması, normal dinlenme durumunda dış yüzeyi daha pozitif yüklü olan kalp hücre 
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duvarının elektriksel polaritesinin tersine çevrilmesinden kaynaklanmaktadır. Bu tersine 

çevirme, hücre duvarının dış yüzeyinde, bitişik kalp dokusuna bir uyarı olarak yayılan 

olumsuzlukları üretmektedir [21,22]. 

1.2.1. EKG Dalga Formları  

Vücut yüzeyinde ölçülen EKG, kalp kasının aşamalı aktivasyonunun bir sonucudur ve 

Şekil 1.2’de gösterilen PQRST kompleksi ile sonuçlanır. Bu harf gösterimi ilk kez 1895 

yılında Einthoven tarafından icat edilmiştir [24–26].  

 

Şekil 1.2. Normal bir EKG periyodu [27] 

Farklı EKG dalgaları alfabetik sırayla P, QRS ve TU dalgaları olarak 

adlandırılır. Şekilleri, genlikleri ve zaman aralıkları sağlık ve kalbin durumu hakkında 

önemli bilgiler vermektedir. P dalgası atriyal depolarizasyonu yansıtır. QRS kompleksi 

ventriküler depolarizasyonu yansıtır. Ventriküllerin repolarizasyonu TU dalgası 

tarafından yansıtılır. Elektrokardiyograf, depolarizasyon akımı ilgili elektrot telinin 

pozitif kutbuna doğru yayıldığında EKG elektrot teli için pozitif bir dalga kaydeder. Buna 

karşılık akımın kutuptan uzağa yayılması durumunda negatif bir dalga ortaya 

çıkmaktadır.  

Sağlıklı bir bireyden ölçülen EKG işaretine ait genlik ve zaman değerleri Tablo 1.1’de 

gösterilmiştir.  
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Tablo 1.1. EKG işaretine ait genlik ve zaman parametresi 

EKG Dalgası Genlik Değerleri EKG Aralığı Süresi (sn) 

P 0.25 mV P-R 0.12-0.20 sn 

R 1.6 mV Q-T 0.35-0.44 sn 

Q R’nin % 25’i S-T 0.05-0.15 sn 

T 0.1-0.5 mV Q-R-S 0.09 sn 

 

1.2.2. Biyomedikal İşaretlerde Gürültü Giderme 

EKG analizi ve sınıflandırması, birincil giriş olarak önceden kaydedilmiş veya gerçek 

zamanlı EKG işaretlerini gerektirir. Her iki durumda da EKG verisi alımı, sensörlerin ve 

kabloların vücuda takılmasıyla sağlanır. EKG işaretinin alınması sırasında, orijinal 

işaretle birlikte gürültü de yakalanır ve bu EKG'nin kalitesini ve sınıflandırmasını önemli 

ölçüde etkiler. Gürültünün giderilmesine ve farklı anormallikleri doğru bir şekilde 

tanımlamak için EKG işaretinden gürültüyü çıkarmak araştırmacıların en büyük ilgi 

alanlarından birini oluşturmuştur. EKG işaretinin gürültüsünü gidermeye yönelik 

geleneksel yöntemler, kaliteyi doğrulamak için örnek entropili bant geçiren filtrelerin 

(0,05-45Hz) uygulanmasını içerir. Gürültü, sağlık durumunun değerlendirilmesinde 

hayati önem taşıyan yanlış alarmlara neden olabilir. Gürültü herhangi bir biçimde olabilir 

ancak iki ana biçimde kategorize edilebilir: dahili gömülü gürültü ve harici gürültü. Dış 

gürültü, elektrik hattı gürültüsü veya başka herhangi bir beyaz gürültü olabilir. EKG 

analizinde gürültü genellikle veri kaynaklarından veri alındıktan sonra 

giderilir. Gürültülü işareti temizlemenin birçok farklı yöntemi vardır. EKG işaretinin 

kalitesi Yapısal Benzerlik İndeksi Ölçüsü (SSIM, Structural Similarity Index 

Measure)  ile kontrol edilebilir ve işaret-gürültü oranı gibi ölçümlerle değerlendirilebilir 

[28]. EKG gürültü giderme aşamasında araştırmacılar tarafından bildirilen diğer 

performans ölçümleri arasında Doğruluk (acc), Ortalama Kare Hatası (mse), Ortalama 

Karekök Hatası (rsme) veya Yakınsama Oranı yer almaktadır [22]. Bu tezde gürültü 

giderme işlemi MO-BSS yöntemleri yardımıyla gürültü ayrıştırma yapılacak ve sonuçlar 

SNR cinsinden değerlendirilecektir. 
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1.2.3. Fetal EKG 

Fetal elektrokardiyogram ilk kez 1906 yılında M. Cremer tarafından gözlemlenmiştir 

[29]. Bu alandaki ilk çalışmalar, fetal işaretlerin genliğinin çok düşük olması nedeniyle 

sınırlı olan o zamanın galvanometrik cihazları kullanılarak gerçekleştirilmiştir. Ölçüm ve 

amplifikasyon teknikleri geliştikçe fetal elektrokardiyografi daha uygulanabilir ve 

popüler hale gelmiştir [30,31]. 1960’da fetal EKG için farklı yöntemler uygulansa da 

istenen seviyede işaretler elde edilememiştir [32]. Sonrasında bilgisayar bilimi ve işaret 

işleme tekniklerindeki gelişmelerle birlikte, fetal R dalgası tespiti ve abdominal 

elektrotlardan annenin kalp girişiminin iptali için otomatik işaret işleme ve uyarlamalı 

filtreleme teknikleri kullanılmıştır [33]. Bununla birlikte, teknikler hiçbir zaman yaklaşık 

fetal kalp hızı tahminlerinden daha fazlasını sağlayamamış ve fetal EKG analizi konusu, 

o zamandan beri hem biyomedikal hem de işaret işleme toplulukları için zorlu bir sorun 

olarak kabul edilmiştir. 2000 yılına kadar fetal EKG işaretlerinden sağlıklı bir şekilde veri 

elde edilmesi pek sağlanamamıştır. Yaklaşık son 20 yılda özellikle fetal 

Manyetokardiyografiye (MCG, Magnetocardiography) olan ilgi yeniden artmıştır. Bu 

kısmen yeni düşük gürültülü ve düşük fiyatlı ölçüm ve dijitalleşme sistemlerinin bir 

sonucu olarak, kısmen de bir dizi işaret işleme ve uyarlanabilir filtreleme tekniklerindeki 

gelişmelere bağlanmıştır. 

1.2.4. Fetal Kalp Gelişimi 

Kalp, fetüste geliştirilen ilk organlardan biridir ve hamileliğin çok erken evrelerinde 

önemli miktarda büyümeye uğrar. Bu gelişimin en kritik dönemi, basit kalp tüpünün dört 

odacıklı kalp şeklini aldığı döllenmeden sonraki 3 ile 7’nci hafta arasındaki süreçtir. 

Kalbin yaşamın 3’üncü haftasında atmaya başladığına ve kendi kanını, kendi kan 

grubuyla ayrı bir kapalı dolaşım sistemi aracılığıyla pompaladığına inanılıyor. Kısa bir 

süre sonra göz, kulak ve solunum sistemleri oluşmaya başlar. Fetal kalp daha sonra 7 ile 

9’uncu haftalarda ultrason görüntüleme ile harici olarak izlenebilir; ancak bu adımda 

yalnızca belirsiz görüntüler kaydedilebilir. Kalp dalga formları ve kalp atış hızının 

atımdan atıma değişkenliği ultrason görüntülemede ölçülemez. 20’nci haftada, fetal kalp 

atışı, dakikada yaklaşık 120-160 atışla amplifikasyon olmadan duyulabilir, ancak kalp 

atış hızının üzerindeki oskültasyondan (stetoskop ile dinleme) çok az ilave tanı bilgisi 

elde edilebilir [24]. 
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Bu nedenle kalp aktivitesinin morfolojik bilgisini içeren fetal EKG ve MCG büyük ilgi 

görmüştür. Bu işaretler, gebe kaldıktan sonraki 18 ile 20’nci haftalar gibi erken bir 

dönemde annenin karnından kaydedilebilir [34].  

Hamileliğin sonlarına doğru, yaklaşık 26’ncı haftada fetüs nefes alıp vermeye 

başlar. Elbette ki fetüs bu hareketle hava solumuyor ve kanı oksijenlendirmiyor. Bunun 

yüzey aktif madde üretimine yardımcı olduğu ve doğumdan önce solunum sistemini 

çalıştırdığı düşünülmektedir. Her ne kadar fetüs 23-24 haftada rahim dışında 

yaşayabiliyor olsa da doğumda bu erken kabul edilir ve normal gebelik süresi yaklaşık 40 

haftadır. Aslında 23 haftada rahim dışında yaşama şansı yalnızca %15'tir ve yaşama 

olasılığı 24 haftada %56'ya, 25 haftada ise %79'a yükselir [35]. 

Annenin karın bölmelerindeki deri ve deri altı yağının iletkenliği de zayıftır; kas 

dokusundan yaklaşık on kat daha küçüktür. Bu nedenle, yüzey elektrotları ile iç dokuların 

arayüzü olan bu iki katmanın, kaydedilen fetal EKG üzerinde önemli bir etkisi vardır. Bu 

farklı doku ve katmanların tümü, fetal kalp işaretlerinin annenin vücut yüzeyine kadar 

yayıldığı, hacim iletkeni olarak adlandırılan bir yapı oluşturur. Bu hacim iletkeni sabit bir 

iletken değildir ve elektrik iletkenliği ve geometrik şekli gebelik boyunca sürekli 

değişmektedir. Spesifik olarak, EKG ve MCG'nin harici elektrotlardan kaydedilebildiği 

gebeliğin ikinci yarısında yani 20’nci haftalar, amniyotik sıvının, plasentanın ve fetüsün 

hacminin arttığı bilinmektedir. İletkenliği çok düşük olan bebeğin cildindeki ilk 

koruma tabakası gebeliğin 28’inci ve 32’nci haftaları arasında oluşur. Fetüse neredeyse 

elektriksel olarak koruma sağlar ve fetal yüzey EKG'sinin kaydedilmesini çok 

zorlaştırır. Ancak normal gebeliklerde veya prematüre olmayan doğumlarda bu tabaka 

gebeliğin 37 ile 38’inci haftalarında yavaş yavaş erir [36,37]. 

Fetal kalbin mekanik işlevi yetişkin kalbinden farklı olsa da atıştan atıma elektriksel 

aktivitesi oldukça benzerdir. Kalbin dalga benzeri pompalama hareketi, kalbin kasılıp 

gevşemesinden sorumlu olan ve kalp kasını oluşturan tabaka boyunca dağıtılan ve onun 

düzenli kasılmasını ve gevşemesini koordine eden bir sinir lifleri ağı tarafından kontrol 

edilir.  

Morfolojik olarak yetişkinler ve fetüsler oldukça benzer EKG modellerine sahiptir; ancak 

fetal komplekslerin göreceli genlikleri gebelik boyunca ve hatta doğumdan sonra önemli 

değişikliklere uğrar. En önemli değişiklik fetüsler ve yenidoğanlar için oldukça zayıf olan 
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T dalgalarıyla ilgilidir [34]. Şu anda fetal EKG analizi klinik alanda neredeyse tamamen 

kalp atış hızını ve ilişkili değişkenliği analiz etmek için kullanılmaktadır.  

1.2.5. EKG İşaretlerin Ölçümü ve Önemi 

Gözlemlenen işaretleri ayrıştırmak ya da gürültülü kısımlarını ayırmak için doğrusal veya 

doğrusal olmayan dönüşümler kullanılır. Elbette doğrusal olmayan dönüşümler daha 

çok geçicidir ve işaretin istenen ve istenmeyen kısımları hakkında bazı ön bilgiler 

gerektirmektedir. [38] nolu kaynakta doğrusal olmayan yöntemler kullanılarak bir dizi 

anneye ait EKG’nin iptali ve fetal EKG’nin ise iyileştirme yöntemleri geliştirilmiştir. Bu 

yöntemler, işaretin durum-uzay gösterimini oluşturmak için gürültülü işaret ve onun 

gecikmeli versiyonlarını kullanmayı, geleneksel veya Temel Bileşen Analizi (PCA, 

Principal Component Analysis), uygulamaları kullanarak durum-uzay yörüngesini 

yumuşatmayı ve örnekleri zaman-alanı gösterimine geri aktarmayı içerir. Bu yöntemler 

tek bir anne karın kanalına kadar uygulanabilmesi açısından oldukça caziptir. Bununla 

birlikte, gerekli zaman gecikmelerinin seçimi kalp işaretlerinin atımlar arası önemli 

değişimleri, durum-uzayı yumuşatma sırasında silinebilir. Üstelik doğrusal yöntemlerle 

karşılaştırıldığında daha yüksek hesaplama karmaşıklığına sahiptirler ve gürültü 

istatistikleri değiştikçe doğru yerleştirme boyutu da değişebilir. 

Daha önceki çalışmalarda, çok kanallı ayrıştırma yöntemleri, gözlemlenen işaretlere 

oldukça 'körü körüne' yaygın olarak uygulanmıştır ve genellikle fetal bileşenlerin ayrı 

bileşenler olarak çıkarılmasının garantisi olmadığı anlaşılmıştır. Bu nedenle önemli bir 

konu, uygun ön işleme ve işaret/gürültü karışımları hakkındaki ön bilgilerin kullanılması 

yoluyla fetal bileşenlerin farklı yöntemler ile elde edilme olasılığının arttırılması ve ayrıca 

elde edilen işaret bileşen kalitesinin iyileştirilmesidir. Bu, hatasız fetal EKG çıkarma 

yöntemleri geliştirmek için gerekli bir adımı oluşturur. 

İlgili diğer bir konu da çok kanallı kaynak ayırma teknikleriyle çıkarılan bileşenler için 

fizyolojik yorumların bulunmasıdır. Bu yöntemler genellikle istatistiksel bağımsızlık gibi 

oldukça soyut istatistiksel kriterlerin en üst düzeye çıkarılmasına dayansa da gerçek 

verilere uygulandığında ortaya çıkan bileşenlerin fiziksel olarak neye karşılık geldiği çok 

açık değildir. Kalbin noktasal bir kaynak değil, dağıtılmış bir kaynak olduğu dikkate 

alındığında, kalp işaretleri açısından bu konu daha da önem kazanmaktadır. 
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Yetişkin klinik elektrokardiyografisi, işaret işleme teknikleri ve hızlı dijital işlemcilerdeki 

önemli ilerlemelere rağmen, fetal EKG'lerin analizi henüz başlangıç aşamasındadır. Bu 

kısmen standart veri tabanlarının bulunmamasından, kısmen de fetal EKG'nin anne 

EKG'sine kıyasla nispeten düşük işaret-gürültü oranına bağlı olmasından veya fetal kalp 

ile ölçüm elektrotları arasındaki çeşitli ortamlardan ve fetal kalbin daha küçük 

olmasından ve kısmen fetal kalp fonksiyonu ve gelişimine ilişkin klinik bilginin daha az 

olmasından kaynaklanmaktadır. 

Kalp kusurları en sık görülen doğum kusurları arasındadır ve doğum kusurlarına bağlı 

ölümlerin önde gelen nedenidir.  Kusur, bebeğin doğumdan sonra uzun yıllar sağlıklı 

görünmesine neden olacak kadar hafif olabileceği gibi, yaşamını doğrudan tehlikeye 

sokacak kadar ciddi de olabilir. Doğuştan gelen kalp kusurları, kalbin oluştuğu 

hamileliğin erken evrelerinde ortaya çıkar ve kalbin herhangi bir bölümünü veya işlevini 

etkileyebilir. Genetik bir sendrom, kalıtsal bir bozukluk veya enfeksiyonlar veya ilaç 

kötüye kullanımı gibi çevresel faktörler nedeniyle kalp atış bozukluğu ortaya 

çıkabilir. Ancak doğum eylemi dışında, fetal EKG spesifik yapısal bozuklukların 

görüntülenmesinde etkili bir araç olduğu kanıtlanmamıştır. Bunun yerine fetal EKG, 

göbek kordonunu boğan spesifik fetal pozisyon nedeniyle genel kansızlık gibi daha global 

sorunlarla sınırlandırılmıştır [39,40]. 

Fetal kalp hızı izlemenin ortaya çıkışından bu yana, doğum sırasında fetal izlemede klinik 

olarak anlamlı bir ilerleme kaydedilmemiştir. Ayrıca, Amerika Birleşik Devletleri'ndeki 

doğum olaylarının %85'inden fazlasında sürekli fetal izleme kullanılmaktadır ve bakım 

standardını temsil etmektedir. Günümüzde fetal izleme tamamen fetal kalp hızına 

dayanmaktadır ve hem çocukların hem de yetişkinlerin kardiyak değerlendirmesinin 

temel taşı olan fetal EKG dalga biçimi özelliklerini içermemektedir. Bu en kritik bilgi 

kaynağının klinik uygulamadan hariç tutulmasının birincil nedeni, fetal EKG'yi güvenilir 

bir şekilde ölçecek teknolojinin büyük ölçüde mevcut olmamasıdır [41]. 

Çoğu kalp kusuru, elektrokardiyografi ile kaydedilen ve geleneksel ultrasonik 

yöntemlerle karşılaştırıldığında çok daha fazla bilgi içerdiğine inanılan kalp elektrik 

işaretlerinin morfolojisinde bazı belirtileri vardır. Ancak hiçbir işaret işleme tekniği, 

annenin vücut yüzeyinden kaydedilen fetal EKG'nin düşük SNR nedeniyle anne karnına 

yerleştirilen elektrotlardan güvenilir bir şekilde bozulmamış bir fetal EKG işareti 
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iletememiştir. Bu nedenle fetal elektrokardiyografinin uygulanması neredeyse kalp atışı 

analizi ve doğum sırasında fetal kafa derisine bir elektrot yerleştirilmesi ile sınırlı 

olmuştur. Şu anda fetal EKG dalga formunu güvenilir bir şekilde ölçmenin tek yolu bu 

olsa da, yalnızca sınırlı klinik koşullar altında gerçekleştirilebilir ve fetüsün güvenliği için 

risk oluşturur [24,42].  

1.3. Beyaz Gauss Gürültüsü 

Beyaz Gauss gürültüsü, düz frekans spektrumuna sahip bir tür rastgele sinyal veya 

gürültüyü ifade eder. Bu, tüm frekanslarda eşit güce sahip olduğu anlamına gelir. "Gauss" 

terimi, Gauss veya normal dağılıma uyan gürültünün genliğinin olasılık dağılımını ifade 

etmektedir. Pratik anlamda, beyaz Gauss gürültüsü genellikle elektronik iletişim 

kanalları, elektronik bileşenler ve çevresel gürültü gibi sinyal ve sistemlerdeki çeşitli 

rastgele bozulma türlerini modellemek için kullanılır.  

1.4. Kokteyl Parti Problemi 

Kokteyl parti problemi, kişinin kalabalık ve gürültülü bir ortamda işitsel dikkatini belirli 

seslere odaklayıp, diğer istemediği sesleri filtreleyerek duyma dışında bırakma sürecidir 

[43]. Kör kaynak ayrımı ilk olarak 1982'de Bernard Ans, Jeanny Hérault ve Christian 

Jutten ile sinir bilimci Jean-Pierre Roll arasında omurgalılarda hareket kodunun 

çözülmesi hakkında yapılan basit bir tartışmayla başlamıştır [20]. İşaretleri bağımsız bir 

şekilde ayrıştırma fikri ise ilk olarak Jutten ve Herault tarafından 1991 yılında ortaya 

çıkmıştır [1].  

İnsanlar, birden fazla konuşmacının ve arka plan gürültülerinin olduğu durumlarda 

akustik arka planı maskeleyerek işitsel dikkati belirli bir sese odaklama konusunda 

dikkate değer bir yeteneğe sahiptir. Buna kokteyl parti etkisi veya kokteyl parti sorunu 

denir. Bu olağanüstü yetenek üç aşamadan oluşur: düşük seviyeli uyaran niteliklerinin 

doğru şekilde işlenmesi, işitsel bilgilerin tutarlı seslere ayrılması ve daha yüksek seviyeli 

işlemeyi kolaylaştırmak için diğerlerinin hariç tutulmasıyla bir sese seçici olarak 

katılmaktır. Konuşma ayırma, insanın ilk iki aşama olan doğru işleme ve ayırma 

yeteneğini taklit ederek bu kokteyl parti sorununu çözmeyi amaçlamaktadır [20].  

Kokteyl parti problemi Şekil 1.3’te üç sesin karışım modeli olarak gösterilmektedir. 

Genel olarak bağımsız kişilerden gelen ses dalgalarının üst üste bindirildiği ve uzaysal 
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olarak ayrılmış ancak diğer açılardan aynı veya farklı olan mikrofonda biraz farklı faz ve 

hacimlere sahip karışık kaynak vektörü olarak kaydedildiği bu paradigmayı 

göstermektedir [44]. Bu problemlerde kaynak işaretlerin bilinmeyen karışım ve filtreleme 

işlemlerine göre matematiksel ve fiziksel modelleme olarak farklı yöntemler 

uygulanabilir.  

 

Şekil 1.3. Kokteyl parti problemi 

CPP’de, en az iki konuşmacının aynı ortamda rastgele olarak birbirleri ile konuştuğu ve 

bu konuşmaların en az iki mikrofon ile kaydedildiği düşünülür. Buradaki amaç, 𝑆1 ve 𝑆2 

kaynakları olarak konuşmacıların sesleri ve 𝑎𝑖𝑗 karışım işlemini yani ortamın özelliğini 

bilmeden, sensörler ile kaydedilmiş 𝑥1 ve 𝑥2 karışım işaretlerinden her bir kaynak 

işaretlerin yeniden oluşturulmasıdır [45].  

Karışmış halde bulunan/kaydedilmiş işaretlerin birbirinden ayrıştırılması sürecinde BSS 

yöntemi uygulanmaktadır. Bu süreçte işaret kaynaklarının ve bu kaynakların birbirine 

nasıl karıştığı hakkında çok az bilgi ya da hiçbir bilgi olmaksızın gözlemlenen istatistiksel 

olarak bağımsız karışımlardan her bir kaynak işaretin ayrıştırılması sağlanmaktadır 

[43,44].   

Kör terimi, karıştırma işlemi veya mevcut kaynak işaretleri hakkında özel bir bilginin 

bulunmadığı anlamına gelir. BSS’de doğrusal olarak karışık gözlemlerin kökenine ilişkin 

herhangi bir ön bilgi eksikliği, tüm kaynaklar arasında istatistiksel olarak güçlü ancak 
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fiziksel olarak makul bir istatistiksel bağımsızlık varsayımı ile iyi bir şekilde telafi 

edilebilir [46–48]. Doğrusal karıştırmaya ilişkin bu hipotez, doğal veya tipik bir akustik 

ortam içindeki işaret yayılımı açısından gerçekçi olmayabilir. Yankılanan ortamda her 

mikrofon, kaynakların çoklu zaman gecikmeli versiyonlarının ağırlıklı toplamını yakalar; 

bu aslında her işaretin odanın veya mekânın akustik transfer fonksiyonuyla 

evrişimidir. Buna göre BSS'nin görevi, yalnızca mikrofon dizisinin her bir giriş kanalında 

yakalanan gözlemlenen evrişimli karışımlardan elde edilen bilgilerin birleştirilmesine 

dayanarak bilinmeyen oda transfer fonksiyonlarını veya bunların tersini tahmin etmeye 

eşdeğer hale gelmektedir [43]. 

BSS’nin bazı uygulama alanları arasında biyomedikal işaret analizi, jeofizik veri işleme, 

veri madenciliği, kablosuz iletişim ve sensör dizisi işleme yer almaktadır [49]. Kör 

Kaynak Ayrıştırma sorunu Şekil 1.4’te gösterildiği gibi bir dizi kaynak süreci, bir karışım 

modeli ve bir dizi varsayımla tanımlanır. 

 

Şekil 1.4. Kör kaynak ayrıştırma yönteminin blok diyagramı 

Genel olarak bir partide 𝑚 karışmış sensör işareti 𝑥𝑖(𝑡)   (𝑖 = 1,2, … , 𝑚),  𝑛 tane sıfır 

ortalamalı, birbirinden bağımsız ve gürültü işaretlerinin doğrusal karışımı olarak 

matematiksel gösterimi; 

 𝑥𝑖(𝑡) = ∑ 𝑎𝑖𝑗
𝑛
𝑗−1 𝑠𝑗(𝑡) + 𝑣𝑖(𝑡)    (𝑖 = 1,2, … , 𝑚)  (1.1) 

ile ifade edilir. Bu denklemde 𝑥𝑖(𝑡) sensörler tarafından alınan karışık işaretleri, 𝑠𝑗(𝑡) 

kaynak işaretlerini, 𝑣𝑖(𝑡)  i'inci sensörün gözlem gürültüsünü belirtir. Bu ifadeler 
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doğrultusunda Denklem (1.1), bir matris olarak Denklem (1.2)’de gösterildiği gibi ifade 

edilebilir. 

 𝑥(𝑡) = 𝐴𝑠(𝑡) + 𝑣(𝑡) (1.2) 

Belirtilen bu denklemde 𝑥(𝑡) ve 𝑠(𝑡) birer vektör olarak şu şekilde ifade edilir [50]. 

 

 𝑥(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), … , 𝑥𝑚(𝑡)]𝑇 (1.3) 

 𝑠(𝑡) = [𝑠1(𝑡), 𝑠2(𝑡), … , 𝑠𝑛(𝑡)]𝑇 (1.4) 

𝐴 ise 𝑚 × 𝑛 boyutlu tam ranka sahip karıştırıcı matristir. Üstteki her iki denklem fiziksel 

olarak ifade edilecek olursa bir dizi sensör (mikrofon, anten, dönüştürücü) vasıtası ile 

kaydedilen işaretler, kaynakların doğrusal karışımı olarak elde edilmektedir. Uygulamada 

bu kaynaklar sıfır ortalamalı, zamanla değişen, birbirlerine göre bağımsız veya tam olarak 

bağımsız oldukları ve sayılarının bilinmediği varsayılır. Buradaki amaç kör kaynak 

ayrıştırmada sadece sensör işaretleri 𝑥(𝑡) yardımıyla ve uygun bir yöntem ile kaynak 

işaretlerin tahmin edilmesidir. BSS’nin blok diyagramında görüldüğü gibi rastgele 

değişken olarak verilen kaynak işaretlerinin (𝑠(𝑡)) tahmini olan 𝑦(𝑡) işaretlerinin 

bulunması için; 

 𝑠𝑗(𝑡) = 𝑦𝑗(𝑡) = ∑ 𝑤𝑗𝑖
𝑚
𝑗−1 𝑥𝑖(𝑡)    (𝑗 = 1,2, … , 𝑛) (1.5) 

 𝑦(𝑡) = 𝑊𝑥(𝑡)   (1.6) 

denklemi kullanılır. Denklemde 𝑊 matrisi kullanılarak doğrusal bir dönüşüm ile 𝑦(𝑡) 

tahmini işaretler bulunur. Dönüşüm ile bulunan işaretlerin mümkün olduğunca 

birbirlerinden bağımsız oldukları varsayılır. BSS’de gerçek kaynak işaretleri bağımsız 

olmasalar bile bulunmaya çalışılır.  Bu işlemi yaparken sadece ikinci dereceden istatistik 

kullanılır [51,52]. İkinci dereceden istatistik kaynakların ilintisiz olduklarını varsayar. 

Ayrıca ikinci dereceden istatistik birden fazla Gauss işareti üzerine uygulanabilir. 

İşaret işleme kapsamında kör kaynak ayrıştırmanın diğer alanlardaki uygulamalarından 

bazıları şunlardır: 

Makine izleme: İşaret ayırma, akustik özelliği ile hasar esnasında mekanik bir aygıt 

tarafınca yayılan ses ve potansiyel olarak normal çalışma parçaları da dahil olmak üzere 
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diğer kaynakların karışımından oluşan bir ortamdan izole ederek muhtemel mekanik 

arızaları belirlemek için kullanılabilir.  

Tıbbi teşhis: Birçok tıbbi aygıt çoğunlukla insan vücudundan gelen birçok işareti mesela 

EEG işaretleri veya EKG işaretlerini elde etmek için kullanılır. Bunun sonucunda mevcut 

olabilecek belirli bir bedensel fonksiyona/uyaranlara bağlanabilecek sensörler yardımıyla 

alınan işaretler hasta teşhisi ve tedavisi için ayrıştırılır. İşaretlerin elde edilmesinde 

problardan, kişinin kas hareketlerinden yada ölçüm sırasında çevresel nedenlerden dolayı 

gürültü karışabilmektedir. Bu sayede sistemdeki gürültünün etkisinden kaynaklanan 

yanlış teşhisleri önleyebilmek amacıyla kullanılabilir.  

Müzik Performansı: Bu, genellikle müzik performanslarının kaydedilmesinde, yalnızca 

kayıtlardaki belirli enstrüman seslerine ve şarkı sözlerine odaklanmak için sıklıkla 

kullanılabilen uygulamaların başında gelmektedir. Bu bilhassa belirli bir enstrümanın, 

örneğin normalden biraz daha yüksek veya düşük olması gereken bir enstüman aletinin 

sesini yükseltmek veya farklı bir amaç için kullanılabilir. 

Sismik İzleme: Sismik aktivitenin uzun vadeli tahmini çoğu zaman dünyanın tektonik 

plakalarının hareketlerine ilişkin prensipte yapılabilecek bir şeydir. Ancak kısa vadeli 

tahmin sorunlar oluşturabilir. Genellikle bir depremi karakterize eden şeylerden biri, 

akustik dalgalar ve bunların iyonosfer boyunca nasıl yayıldıkları hakkında elde edilen 

farklı işaretlerdir. Bu işaretleri izole etmek için kör kaynak ayırma teknikleri 

kullanılabilir. Böylece depremin kısa bir süre önce tahmin edilmesi sağlanabilmekte ve 

bu alanda çalışmalar devam etmektedir [53].  

1.5. Ses İşleme 

Sesin işlenmesi birçok farklı uygulamayı içerir. Bu bölümde tez için ses işlemenin ilgili 

kısımları basit bir şekilde sunulmuş ve açıklanmıştır. Yöntemlerin uygulanmasını ve 

sonuçları anlamak için ses işlemeyle ilgili temel bir anlayış gereklidir. Basitçe söylemek 

gerekirse, ses işleme, onu iyileştirmek için bir ses işareti üzerinde bazı uygulamaları 

gerektirir. Ses işleme, gürültüyü filtreleyerek, arka plan gürültüsünü baskılayarak veya 

işareti sezgisel bir şekilde temsil ederek gerçekleştirilebilir. 
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Uzak mikrofonlarla kaydedilen konuşma işaretleri, hoparlörden, gürültüden ve 

yankılanmadan dolayı kaçınılmaz olarak bozulur; bu da yakalanan konuşma işaretlerinin 

algısal kalitesini ciddi şekilde bozmaktadır.  

Konuşma ve diğer birçok doğal ses kaynağıyla ilgili dikkate değer olaylardan biri, 

enerjinin zaman-frekans düzleminde yayılması ve eşzamanlı kaynakların bu şekilde 

temsil edildiğinde sıklıkla yoğun bir şekilde serpiştirilmiş olmasıdır. Bu nedenle, ses 

kaynakları genellikle çok sayıda frekans ürettiğinden ve zamanla değiştiğinden, yalnızca 

çevresel frekans ayrışımına dayalı olarak çoğunlukla istenen performans 

sağlanamayabilir.  

Olası bir çözüm, kaynakların karakteristik değerlere sahip olabileceği bir özellik uzayına 

yansıtma yapmaktır. Ses yüksekliği, ses perdesi veya tını gibi algısal boyutlar iyi adaylar 

gibi görünmektedir ve başkaları tarafından yapılan çalışmaların sonuçları, işitsel algısal 

organizasyonun büyük ölçüde bu gibi boyutlardaki sesler arasındaki benzerlik temelinde 

gerçekleştiğini göstermektedir. Bu nedenle algısal olarak benzer olan sesler aynı kaynağa 

atanma eğilimindedir. Bu, kaynakların eşzamanlı olmasına rağmen ilgili özelliklerin 

tahmin edilebileceğini ve sorunun, ses özelliklerinin zaman içinde uygun şekilde 

bağlanarak kaynaklara atanması yani akış sorunu veya akış ayrımı olduğunu varsayar. 

Her ne kadar özniteliklerin tahmini ile bunların kaynak tahminleri halinde 

gruplandırılması arasında etkileşimler olsa da, çoğu durumda bunlar büyük ölçüde 

ayrılabilir problemler olabilir [54,55]. 

BSS kullanılırken çoğu zaman birçok farklı Sonlu Dürtü Yanıtlı (FIR, Finite Impulse 

Response) filtrenin kullanılması gerekir ve gerçekçi senaryolarda binlerce filtre katsayısı 

bulunmalıdır. Geleneksel uyarlanabilir filtreleme teknikleri yalnızca zaman alanında 

çalışmayı seçer; bu durumda filtre güncellemeleri örnek bazında gerçekleştirilir. Bu gibi 

durumlarda algoritmanın karmaşıklığı engelleyici hale gelebilir. Bunun yerine, aşırı 

hesaplama gereksinimlerini azaltmak ve karmaşıklıktan önemli ölçüde tasarruf etme 

potansiyeli elde etmek için, Hızlı Fourier Dönüşümünün (FFT, Fast Fourier Transform) 

verimli kullanımına güvenerek çerçeve tabanlı veya diğer adıyla blok tabanlı 

uygulamalarda kullanılabilir [43]. 



 

 

 

2.  BÖLÜM  

ÇOK AMAÇLI OPTİMİZASYON ALGORİTMALARININ KÖR 

KAYNAK AYRIŞTIRMADA KULLANILMASI 

Çok Amaçlı Optimizasyon Algoritmalarının (MOOA, Multi-Objective Optimization 

Algorithm) BSS problemleri çözümünde kullanımı 2016 yılına dayanmaktadır [5,56]. Bu 

yöntemlerin karışmış işaretlerin ayrıştırılmasındaki kullanımı ile literatürde çok amaçlı 

BSS olarak adlandırılmaktadır. Evrimsel Algoritma (EA, Evolutionary Algorithm) olarak 

literatürde kullanılan SPEA2 yöntemi BSS yönteminde kullanılarak karışmış işaretler 

ayrıştırılmıştır. Tez çalışmasının bu bölümünde çok amaçlı optimizasyon ve SPEA2 

yöntemi ile ilgili genel bilgiler açıklandıktan sonra literatürdeki çok amaçlı BSS 

algoritmalarının tasarım ve performansları analiz edilmiştir. Şekil 2.1’de çok amaçlı BSS 

modelinin blok diyagramı verilmiştir. Ayrıca, literatürdeki çok amaçlı BSS metotları ile 

ilgili bazı çıkarımlar ve yorumlar yapılmış ve önerilen yöntemlerin hesaplama 

karmaşıklıkları özetlenmiştir.  

 

Şekil 2.1. Çok amaçlı kör kaynak ayrıştırma blok diyagramı 
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2.1. Çok Amaçlı Optimizasyon Algoritmaları 

Problemi çözmek için farklı MOO yöntemleri vardır. Bu algoritmalar evrimsel 

algoritmaların ve optimizasyon yaklaşımlarının geliştirilmesine büyük katkılar 

sağlamaktadır. Aşağıda en yaygın kullanılan yöntemlerden kısaca bahsedilmiştir [57]. 

(1) NSGAII: Yüksek hesaplama karmaşıklığını, seçkinlik eksikliğini ve 

Baskılanmayanları Sıralayan Genetik Algoritma'nın (NSGA, Non-Dominated Sorting 

Genetic Algorithm) paylaşım parametresinin belirlenmesini çözmek için 

önerilmiştir. NSGAII'de, ebeveyn popülasyonu ve yavru popülasyonunu birleştirmek için 

bir çiftleşme havuzu oluşturularak bir seçim operatörü tasarlanmıştır. Algoritmada baskın 

olmayan sıralama ve kalabalıklaşma mesafesi sıralaması da uygulanmaktadır [58].  

(2) PAES: Pareto-Arşivlenmiş Evrim Strateji (PAES, Pareto Archived Evolution 

Strategy) basit bir evrimsel algoritmadır. Algoritma, bir kişilik bir popülasyondan yerel 

aramayı kullanan ancak mevcut ve aday çözüm vektörlerinin yaklaşık baskınlık 

sıralamasını belirlemek için önceden bulunan çözümlerin referans arşivini kullanan (1 + 

1) bir evrim stratejisi olarak kabul edilmektedir [59]. 

(3) SPEA2: Güçlü Pareto evrimsel algoritması, 1999 yılında Zitzler tarafından 

önerildi. SPEA'ya dayanarak, ayrıntılı bir uygunluk ataması, bir yoğunluk tahmin tekniği 

ve gelişmiş bir arşiv kesme yöntemini içeren geliştirilmiş bir versiyon, yani SPEA2 

yöntemi önerilmiştir [60]. 

(4) MOEA/D: Ayrıştırmaya Dayalı Çok Amaçlı Evrimsel Algoritma (MOEA/D, Multi-

Objective Evolutionary Algorithm Based on Decomposition), Li ve Zhang tarafından 

önerildi. Çok amaçlı bir optimizasyon problemini çok sayıda skaler optimizasyon alt 

problemine ayrıştırır ve bunları eş zamanlı olarak optimize etmektedir. Her alt problem 

yalnızca komşu alt problemlerden gelen bilgiler kullanılarak optimize edilir, bu da 

algoritmayı etkili ve verimli kılmaktadır [61]. 

(5) MOPSO: Çok Amaçlı Parçacık Sürü Optimizasyonu (MOPSO, Multi-Objective 

Particle Swarm Optimization), Pareto baskınlığına ve mevcut liderlerin listesini 

filtrelemek için ses çıkarma faktörünün kullanımına dayanmaktadır. Farklı mutasyon 

operatörleri sürünün farklı alt bölümlerine etki etmektedir. Epsilon-baskınlık kavramı da 

algoritmaya dahil edilmiştir [62]. 
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2.2. Çok Amaçlı Evrim Algoritmalarının Temel Prensipleri 

Evrimsel Hesaplama (EC, Evolutionary Computation) algoritmaları doğadan ilham alan 

yöntemlerdir. Esas olarak optimizasyon problemlerini çözmek için kullanılırlar, bir 

çözüm popülasyonu sağlarlar ve bu noktalar arasındaki etkileşim, bir arama alanı boyunca 

optimizasyon sürecini yönlendirir. Temel mekanizmaları basit olmasına rağmen evrimsel 

hesaplama algoritmaları, diğer optimizasyon yöntemleriyle çözülemeyen veya zorlukla 

çözülebilen sorunlara başka çözümler üretebilen genel, sağlam ve güçlü bir arama 

mekanizması olarak kendilerini kanıtlamıştır. Kapalı optimizasyon yöntemlerinin çoğu 

ileri sürülen varsayımlara dayanır. Örneğin, gradyan inişine dayalı yöntemler, amaç 

fonksiyonlarının türevini hesaplama becerisini gerektirir. Doğrusal Programlama gibi 

diğer yöntemler yalnızca tek amaçlı problemleri çözebilir ve çoğu zaman her değişkenin 

bütünlük kısıtlamasını kaldırarak bir gevşeme gerektirir. Ayrıca, birçok gerçek problem 

doğrusal değildir ve doğrusal olmayan fonksiyonlara doğrusal fonksiyonlarla yaklaşmak 

gerçekten tatmin edici olmayabilir. EC algoritmaları problem çözümü için arzu edilen 

çeşitli özelliklere sahiptir. Kontrol edilemeyecek kadar büyük ve son derece karmaşık 

arama alanlarında birden fazla çelişen hedefi ele alma yeteneğine sahiptirler. 

Kombinatoryal optimizasyonda, arama alanının geniş olduğu problemlerde, Evrimsel 

Algoritmalar sonlu bir çözüm kümesinden en uygun çözümü bulmaya çalışırlar. 

Çözümler, belirli bir problem örneğini ne kadar iyi çözdüklerini belirleyen bir uygunluk 

fonksiyonu aracılığıyla değerlendirilir. Darwin’in doğal seçilim ilkesine benzer şekilde, 

en güçlü bireyler hayatta kalır ve daha uyumlu çözümler üretecek şekilde evrimleşir. 

Popülasyonun en iyi üyelerine odaklanarak ve küçük varyasyonlar (mutasyon) ve 

çiftleşme işlemleri uygulayarak, popülasyonun makul bir süre içinde iyi ve hatta optimal 

çözümlere doğru evrilmesi beklenir [63]. 

Gerçek dünyadaki optimizasyon problemleri genellikle tek bir hedefle değil, aday 

çözümlerin değerlendirilmesi gereken bir dizi kriterle karakterize edilir. Tek-amaçlı bir 

bağlamda "optimizasyon" iyi anlaşılmış bir görev olsa da yani amaç fonksiyonunun uç 

noktasını bulmak anlamına gelirken, çok-amaçlı problemler için aynı şey söylenemez. 

Çok amaçlı bir problemin hedefleri sıklıkla birbiriyle çelişir; yani, hedeflerden birini 

iyileştiren bir çözüm, eninde sonunda diğerlerinden en az birini bozacaktır. Sonuç olarak, 

tek bir küresel çözüm yoktur ve bir Pareto Cephesini (PF, Pareto Front) dolduran bir dizi 

optimal noktanın, yani bir Pareto Kümesinin belirlenmesi gereklidir. Şekil 2.2’de Pareto 
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cephesinin genel yapısı gösterilmiştir. Pareto kümesinin oluşturulması hesaplama 

açısından pahalı olabilir ve temeldeki uygulamanın karmaşıklığı kesin yöntemlerin 

uygulanmasını engellediğinden çoğu zaman gerçekleştirilemez [64]. Bu nedenle 

Evrimsel Algoritmalar için bir dizi stokastik arama stratejisi geliştirilmiştir. Bunlar 

genellikle optimum dengeyi belirlemeyi garanti etmezler ancak iyi bir yaklaşım, yani 

amaç vektörleri optimal amaç vektörlerinden çok da uzakta olmayan bir çözüm kümesi 

bulmaya çalışırlar. 

 

Şekil 2.2. Pareto cephesi kavramının gösterimi 

1980’lerin sonlarında Çok Amaçlı Evrimsel Algoritmalar (MOEA, Multi-Objective 

Evolutionary Algorithm), artık birden fazla hedefi aynı anda dikkate alması ve vektör 

değerli bir maliyet fonksiyonunun bileşenlerini optimize etmeye çalışması gereken 

optimizasyon problemlerini çözmek için kullanılmaktaydı [65]. Tipik olarak, MOEA'lar 

uygunluk atamasında baskınlık kavramını kullanır. İlk olarak Goldberg tarafından 

Evrimsel algoritmalara tanıtılan bu fikir, çok amaçlı problemin tek bir objektif probleme 

dönüştürülmesini gerektirmeyen avantaja sahiptir [66].  Ayrıca, Pareto optimal, Şekil 

2.2'de yer alan bir dizi çeşitlendirilmiş çözümü tek seferde üretebilirler. Bu yüzeydeki her 

nokta, bir maliyet vektörü bileşeninde, geri kalan bileşenlerden en az birinde bozulmaya 

yol açmayan hiçbir iyileştirmenin elde edilemeyeceği anlamında optimaldir. Bu, tüm 

hedeflerde diğerinden daha kötü olmayan ve aynı anda en az bir hedefte kesinlikle 

diğerinden daha iyi olan bir çözümün diğerine hükmedildiği Pareto hakimiyeti kavramına 

yol açmaktadır. 
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Hakimiyet temelli yaklaşımlarda muhtemelen birbiriyle çelişen iki önemli hedef vardır: 

yakınsama ve çeşitlilik. Yakınsama, Pareto-optimal cephede yer alan bir çözüm kümesi 

bulma yeteneğini ifade ederken, çeşitlilik, Pareto-optimal cephenin tüm aralığını 

kapsaması gereken bu tür çözümlerin heterojenliğini ifade etmektedir. Çoğu MOEA, 

yoğunluk bilgisini seçim sürecine dahil ederek mevcut Pareto kümesi yaklaşımı içindeki 

çeşitliliği korumaya çalışmaktadır. Belirli bir bireyi seçme olasılığı, çevresindeki 

bireylerin yoğunluğu arttıkça azalır. Bu konu, istatistikte olasılık yoğunluk 

fonksiyonlarının tahmini ile yakından ilgilidir. 

Optimum cepheye olan mesafe minimuma indirilirken, üretilen çözümlerin çeşitliliği 

maksimuma çıkarılmalıdır. Bununla birlikte, farklı MOEA'lar, farklı Çok Amaçlı 

Optimizasyon Problemler (MOOP, Multi-Objective Optimization Problem) için belirgin 

yakınsama ve çeşitlilik ile baskın olmayan çözümler sunar. MOEA'nın çeşitliliğini ve 

yakınsamasını iyileştirmek için, 1990'lardan beri ek bir elitizm kavramı çok popüler hale 

geldi. Elitizm, rastgele etkiler nedeniyle optimizasyon sürecinde iyi çözümlerin 

kaybedilmesi sorununu ele almaktadır. Bu sorunla başa çıkmanın bir yolu, arama 

sırasında bulunan baskın olmayan veya en çok tercih edilen tüm çözümlerin saklanmasına 

izin veren, arşiv adı verilen harici bir kümeyi sürdürmektir. Bu arşiv, temel olarak 

optimizasyon sürecinde bu çözümlerin kaybolmasını önlemeyi amaçlamaktadır. 

Alternatif olarak, eski popülasyon ve o kaynak, yani varyasyondan sonraki çiftleşme 

havuzu, eski popülasyonun modifiye edilmiş çiftleşme havuzuyla değiştirilmesi yerine 

deterministik bir seçim prosedürü uygulanarak birleştirilir. Hepsi tutulacak çözümlerin 

seçildiği varyant kriterleri tanımlayarak seçkinliği sürdürmek için farklı stratejiler olarak 

baskınlık kriteri ve yoğunluk tahmini gibi kriterler önerirler. Sonuç olarak, farklı 

MOEA'ların farklı avantajları ve dezavantajları vardır ve sonuç olarak, farklı problemler 

için eşit derecede iyi çözümler sunmayabilir.  

2.3. Çok Amaçlı Optimizasyon Problemi 

Çok amaçlı bir optimizasyon problemi, kısıtlamalara ve değişken sınırlara tabi olarak 

minimize edilmesi veya maksimize edilmesi gereken birden fazla amaç fonksiyonu 

içerirler. 𝑚 adet optimizasyon hedefini içeren bir MOOP, şu şekilde formüle edilebilir: 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐹(𝑥) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥) ]𝑇;  
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 𝑔𝑗(𝑥) ≤ 0,                 𝑗 = 1, … , 𝐽; (2.1) 

 𝑥𝑖
(𝐿)

≤ 𝑥𝑖 ≤ 𝑥𝑖
(𝑈)

,     𝑖 = 1, … , 𝑛.  

burada uygun bir çözüm 𝑥 ∈ 𝑋𝑛, n karar değişkeninin bir vektörüdür, 𝑥 = (𝑥1,𝑥2, … , 𝑥𝑛). 

Karar uzayındaki uygulanabilir çözümler kümesi, 𝑔𝑗(𝑥) ≤ 0 kısıtlamaları ve değişken 

sınırlar tarafından tanımlanır. Çok amaçlı fonksiyon vektörü 𝐹 ∈ 𝑋𝑛 × 𝑌𝑚, burada 

𝑓𝑖: 𝑋𝑛 → 𝑌,   𝑖 = 1, … , 𝑚, belirli bir çözümün kalitesini 𝑌𝑚, amaç uzayında bir amaç 

vektörü (𝑦1,𝑦2, … , 𝑦𝑚) atayarak değerlendirir, Şekil 2.3’te karar uzayı ve amaç uzayı 

genel yapısı gösterilmiştir.  

 

Şekil 2.3. Genel olarak çok amaçlı problemin gösterimi 

Örnek olarak, amaç uzayının gerçek sayıların, yani 𝑌 ⊂ ℝ'nin bir alt kümesi olduğunu ve 

optimizasyonun amacının tek bir hedefi 𝑚 = 1 en aza indirmek olduğunu varsayalım. 

Böyle tek amaçlı bir optimizasyon probleminde, 𝑦1 = 𝐹(𝑥1) ve 𝑦2 = 𝐹(𝑥2) olmak üzere 

𝑦1 < 𝑦2 ise 𝑥1 ∈ 𝑋𝑛 çözümü diğer 𝑥2 ∈ 𝑋𝑛 çözümünden daha iyidir. Karar uzayında 

birkaç optimal çözüm bulunabilmesine rağmen, hepsi aynı amaç değerine eşlenir, yani 

amaç uzayında yalnızca tek bir optimum bulunmaktadır. 

𝑌𝑚 ⊂ ℝ𝑚 ve 𝑚 > 1 ile vektör değerli 𝐹 değerlendirme fonksiyonu durumunda, 𝑥1 ve 𝑥2 

çözümlerini karşılaştırma durumu daha karmaşıktır. Pareto hakimiyeti kavramını takiben, 

𝑦1'in hiçbir bileşeni 𝑦2'nin karşılık gelen bileşeninden büyük değilse ve bileşenlerinden 

en az biri daha küçükse, bir 𝑦1 amaç vektörünün başka bir 𝑦2(𝑦1 ≺ 𝑦2) hedef vektörüne 

baskın olduğu söylenir. Buna göre, bir 𝑥1 çözümünün başka bir 𝑥2 çözümünden daha iyi 
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olduğunu söyleyebiliriz, yani 𝑥1, 𝑥2(𝑥1 ≺ 𝑥2)’ye baskındır, eğer 𝑦1 = 𝐹(𝑥1), 𝑦2 =

𝐹(𝑥2) üzerinde hakimse, yani (𝑦1 ≺ 𝑦2) diyebiliriz. Burada, optimal çözümler, yani 

başka herhangi bir çözümün baskın olmadığı çözümler, farklı amaç vektörlerine 

eşlenebilir. Başka bir deyişle, hedefler arasında farklı değiş tokuşları temsil eden birkaç 

optimal amaç vektörü olabilir.  

Genel bir stokastik arama algoritması üç bölümden oluşur:  

a) O anda dikkate alınan çözüm adaylarını içeren bir çalışma belleği,  

b) Bir seçim modülü,  

c) Bir varyasyon modülü.  

Seçim prosedürleri, çiftleşme ve çevresel seçim olarak sınıflandırılır. Çiftleşme seçimi, 

varyasyon için umut verici çözümler seçmeyi amaçlar ve genellikle stokastik bir tarzda 

gerçekleştirilir. Buna karşın çevresel seçim, önceden depolanan çözümlerden ve yeni 

oluşturulan çözümlerden hangisinin dahili bellekte tutulacağını belirlemektedir. 

Varyasyon modülü bir dizi çözüm alır ve yeni çözümler üretmek için bu çözümleri 

sistematik veya rastgele değiştirilir. Bir stokastik optimize edicinin bir yinelemesi, ardışık 

eşleştirme seçimi, varyasyon ve çevresel seçim adımlarını içerir; bu döngü belirli bir 

durdurma kriteri sağlanana kadar tekrarlanır (Şekil 2.4). 

 

Şekil 2.4. Çok amaçlı problemin bileşenleri 

2.4. NSGAII Algoritması 

Hakim olmayan sıralama ve paylaşımı kullanan çok amaçlı evrimsel algoritmalar, bir 

süredir hesaplama karmaşıklıkları, elitizm olmayan yaklaşımları ve bir paylaşım 

parametresi belirleme ihtiyacı nedeniyle eleştirilmiştir. NSGAII, bu sorunları ele almayı 
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amaçlamaktadır. NSGAII algoritması, çok amaçlı bir optimizasyon probleminde birden 

çok Pareto-optimal çözümü bulmaya çalışırken, üç ana fikre odaklanmaktadır: 

1) Elitist bir ilke kullanır;  

2) Açık bir çeşitlilik koruma mekanizması kullanır;  

3) Domine edilmemiş çözümleri vurgular.  

Çoğu yönden, bu algoritmanın orijinal NSGA ile pek çok benzerliği yoktur, ancak 

yazarlar, oluşumunu ve menşe yerini vurgulamak için NSGA-II adını korumuştur [67]. 

Her nesilde, ilk olarak ana popülasyon üzerinde uygulanan genetik operatörler 

kullanılarak yavru popülasyon oluşturulur. Bu durumda, çoğaltma işleçleri yukarıda Tek 

Amaçlı Evrimsel Algoritmalar (SOEA, Single-Objective Evolutionary Algorithm) için 

tanımlananla aynı olacaktır. İki çözüm seti daha sonra 2N büyüklüğünde yeni bir 

popülasyon oluşturmak için birleştirilir ve buradan baskınlığa dayalı seçim yoluyla N 

boyutlu bir popülasyon oluşturulur. NSGAII algoritmasının temel yapısı şu şekildedir 

[68].  

Algoritma 1.  NSGA-II Algoritması 

1: Tanımlar, NSGA-II (ebeveyn, çocuk ve referans noktaları oluştur) 

2: Popülasyonu başlat 

3: Popülasyonu hedeflere göre değerlendir 

4: Pareto hakimiyetine göre sıralama ata 

5: Yeni birey (çocuk) nüfusu oluşturun 

5.1: Ebeveyn ikili turnuva seçimi 

5.2: Rekombinasyon ve Mutasyon 

6: while Durdurmama koşulu do 

6.1: for Popülasyondaki her Ebeveyn ve Çocuk için do 

6.2: Pareto'ya göre sıralama atayın  

6.3: Pareto cephesi boyunca baskın olmayan vektör kümeleri oluştur 

6.4: İlk cepheden başlayarak N birey bulunana kadar sonraki nesile 

çözümler ekleyerek döngü yapın ve her cephedeki noktalar arasındaki 

kalabalıklaşma mesafesini belirle 
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6.5: end for 

6.6: Ön alt taraftaki yani daha düşük sıradaki noktaları seçin  

6.7: Gelecek nesili oluştur 

6.7.1: Ebeveyn ikili turnuva seçimi 

6.7.2: Rekombinasyon ve Mutasyon 

7: end while 

8: sonlandır 

2.5. Güçlü Pareto Evrimsel Algoritması (SPEA) 

SPEA ve SPEA-II, 1999 ve 2001'de Zitzler ve ark. tarafından sunulmuştur.  SPEA, 

SPEA-II'nin temelini oluşturduğundan burada SPEA'nın kısa bir özeti 

verilmektedir. SPEA çok amaçlı bir optimizasyon algoritmasıdır ve aynı zamanda 

evrimsel çok amaçlı algoritmalar alanına da aittir.  Güçlü Pareto'nun SPEA'da önemli bir 

rolü vardır çünkü bu, çözümlerin birinci sıraya ne kadar yakın olduğunu 

göstermektedir. Algoritmanın amacı, bir dizi baskın olmayan çözümü, ideal olarak 

bir Pareto optimal çözüm kümesini tanımlamak ve korumaktır [60,69]. Pareto optimal 

çözümlerinin tümüne Pareto optimal seti denir. Pareto optimal seti, amaç uzayındaki en 

iyi baskın olmayan çözümlerden oluşur. Her çözüm için iki ana parametre dikkate alınır: 

ilk durum, aşağıdaki gibi tanımlanan Pareto kuvvetidir: 

 𝑆(𝑖) =
𝑛

𝑁+1
  (2.2) 

burada 𝑁 popülasyon büyüklüğüdür ve 𝑛 , bireysel 𝑖'nin hakim olduğu veya ona eşit olan 

bireylerin sayısıdır. Bu nedenle, baskın çözümler, Denklem (2.2)'ye göre diğerlerinden 

daha düşük güce sahip olan yanıtlardır. Ayrıca ikinci parametre, aşağıdaki 

tanımla 𝑗 bireyi için uygunluk değeridir [70]: 

 𝐹(𝑗) = 1 + ∑ 𝑆(𝑖)𝑖≺𝑗   (2.3) 

Denklem (2.3)’e göre popülasyondaki 𝑗 bireyinin 𝐹(𝑗), (≺) baskın olan veya  𝑗 bireyine 

eşit olan tüm dış popülasyon üyelerinin güç değerleri 𝑆(𝑖)’nin toplamı kullanılarak 

hesaplanmaktadır. Bu uygunluk atama yöntemi, daha düşük uygunluk değerine sahip bir 

çözümün daha iyi olduğunu öne sürmektedir [70,71]. 
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SPEA'nın genel adımları aşağıdaki gibi açıklanabilir: 

Tanımlar: 𝑇 maksimum nesil sayısıdır, 𝑡 yineleme sayısıdır ve dış küme Pareto optimal 

çözüm kümesidir. Çözümlerin harici olarak depolandığını ve ayrıca sürekli olarak 

yükseltildiğini unutmayın. Son olarak bu sette saklanan çözümler Pareto optimal setini 

temsil etmektedir. 

(1) Başlatma: ilk popülasyon oluşturulur ve boş harici Pareto optimal seti oluşturulur.  

(2) Pareto optimal seti güncellenir. Pareto optimal kümesinin boyutu önceden 

tanımlanmış bir sınırı aşarsa, diğer Pareto kümeleri bir kümeleme tekniğiyle 

silinir. Pareto setini yönetilebilir bir boyuta indirmek için ortalama bağlantı 

bazlı hiyerarşik kümeleme algoritması kullanılır. Gerekli sayıda grup elde edilene kadar 

bitişik kümeleri birleştirerek yinelemeli olarak gerçekleştirilir [70].  

(3) Uygunluk değerleri dış Pareto optimal seti ve popülasyon için hesaplanır.  

(4) İkili turnuva seçimi: popülasyon ve dış kümedeki bireyler birleştirilir ve herhangi iki 

birey rastgele seçilir. Uygunluk fonksiyonlarına göre daha iyi olan çiftleşme havuzuna 

taşınır. Çiftleşme havuzu, çapraz geçen bir popülasyon kümesidir ve yeni bir popülasyon 

üretmek için bunlar üzerinde mutasyon işlemleri gerçekleştirilir.  

(5) Mutasyon ve çaprazlama işlemleriyle yeni bir popülasyon üretilir.  

(6) 𝑡 = 𝑡 + 1'i ayarlayın. Durdurma kriteri (𝑡 > 𝑇) karşılanmazsa Adım 2'ye gidin; ya da 

arşiv üyeleri Pareto optimal kümesi olarak sunulur [69]. 

2.6. Güçlü Pareto Evrimsel Algoritması 2 (SPEA2) 

NSGA-II, yeni popülasyonu doldurmak için çözümlerin baskınlık derinliği sıralamasını 

kullanırken, SPEA2 kısmen sıralı çözüm uzayında baskınlık sayımı ve baskınlık 

sıralaması sıralama stratejilerine başvurur. Baskınlık sıralaması stratejisinde, bir çözümle 

ilişkilendirilen sıralama, popülasyondaki ele alınan çözüme hakim olan çözümlerin 

sayısıyla ilişkilidir. Bu tezde, SPEA2 sürümü kullanılmıştır, çünkü bu sürüm selefinin 

yani SPEA’nın aksine ince taneli bir uygunluk atama stratejisi, bir yoğunluk tahmin 

tekniği ve gelişmiş bir arşiv kesme yöntemi içermektedir.  
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SPEA2'nin SPEA'ya kıyasla temel farklılıkları şunlardır:  

Her bir birey için, kendisinin ve kendisinin kaç kişi tarafından domine edildiğini hesaba 

katan geliştirilmiş bir uygunluk atama şeması kullanılır. Arama sürecinin daha kesin bir 

şekilde yönlendirilmesine izin veren bir en yakın komşu yoğunluğu tahmin tekniği dahil 

edilmiştir [60].  

 

Şekil 2.5. SPEA2 blok diyagramı 
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Temel SPEA için sunulan adımlara benzer şekilde, geliştirilmiş algoritmanın, yani 

SPEA2'nin ayrıntıları aşağıdaki paragraflarda verilmektedir. Ayrıca Şekil 2.5’te 

SPEA2’nin blok diyagramı verilmiştir. 

Tanımlar: 𝑃𝑡 (𝑡 yinelemesindeki ana popülasyon), 𝑃𝑡̅ (𝑡 yinelemesindeki arşiv 

popülasyonu), 𝑁̅ (arşiv boyutu) ve 𝑇 (maksimum nesil sayısı). 

Başlatma: 𝑡 = 0 'ı ayarlayın ve başlangıç popülasyonunu oluşturun 𝑃0 ve boş arşiv 𝑃𝑡̅ =

𝜑.  

Bireyler için uygunluk değerlerini hesaplayın. 𝑃𝑡 ve 𝑃𝑡̅ (hem popülasyon hem de arşiv 

setleri). 

Arşivdeki her bir kişi için 𝑃𝑡̅ ve nüfus 𝑃𝑡, güç değeri 𝑆(𝑖) aşağıdaki denklem kullanılarak 

hesaplanır: 

 𝑆(𝑖) = |{𝑗|𝑗 ∈ 𝑃𝑡 + 𝑃̅𝑡 ∧ 𝑖 ≻ 𝑗}|  (2.4) 

+ sembolü çoklu küme birleşimini temsil ederken, sembol ≻ Pareto baskınlık ilişkisine 

karşılık gelir ve sembol ∧  VE anlamına gelir.  

SPEA2 için 𝐹(𝑖) şu şekilde tanımlanır: 

 𝐹(𝑖) = 𝑅(𝑖) + 𝐷(𝑖)  (2.5) 

 𝑖 birey için hesaplanan uygunluk 𝑅(𝑖) değeri aşağıdaki denklemle hesaplanır: 

 𝑅(𝑖) = ∑ 𝑆(𝑗)𝑗∈𝑃𝑡+𝑃̅𝑡,𝑗≻𝑖   (2.6) 

Ancak optimizasyon hedefi simge durumuna küçültülmüş bir arama ise 𝐹(𝑖) , ham 

uygunluk burada en aza indirilmelidir, yani, 𝑅(𝑖) = 0, baskın olmayan bir bireye karşılık 

gelir [60]. 

Uygunluk fonksiyonu genelde Pareto baskınlığı sayesinde iyi bir sınıflama sağlasa da 

birçok bireyin birbirini domine etmediği durumlarda başarısız olabilir. Bu gibi 

durumlarda ayrım sağlamak amacıyla başka yoğunluk bilgilerine bakmak gerekmektedir.  

(𝑖) çözümünün yoğunluğu; 
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 𝐷(𝑖) =
1

𝜎
𝑖
(𝑘)

+2
  (2.7) 

eşitliği ile bulunur. Paydası 0 < 𝐷(𝑖) < 1 olduğundan paydaya 2 eklenir. 

SPEA2'de kullanılan yoğunluk tahminleme tekniği 𝑘. en yakın komşuluk metodunun bir 

uyarlamasıdır. Bir noktadaki yoğunluk 𝑘. en yakın veri noktasına olan uzaklığın azalan 

bir fonksiyondur.  

 𝑘 = √𝑁 + 𝑁̅  (2.8) 

Yoğunluk fonksiyonu olarak 𝑘. en yakın komşuya olan uzaklığın tersi alınmaktadır. Yani, 

her bir birey 𝑖 için arşiv ve popülasyonlardaki tüm bireylere olan uzaklıklar hesaplanır ve 

bir listede tutulmaktadır. Liste artan sırada sıralandıktan sonra, 𝑖'ninci ve 𝑘’ninci en yakın 

komşular arasındaki amaç-uzay mesafesini temsil eder ve 𝜎𝑖
(𝑘)

 olarak gösterilir [72,73]. 

2.7. Çevresel Seçim 

SPEA2'deki arşiv güncelleme işlemi, SPEA'dakinden iki açıdan farklılık gösterir: i) 

arşivde yer alan bireylerin sayısı sürekli fazla mesaidir ve ii) kesme yöntemi, sınır 

çözümlerinin kaldırılmasını engeller. Çevresel seçim sırasında ilk adım, baskın olmayan 

bireylerin tamamını, yani uygunluğu birden düşük olanları arşivden ve popülasyondan 

gelecek neslin arşivine kopyalamaktır [60]: 

Güncellenmiş arşiv kümesi 𝑃̅𝑡+1'in boyutu, seçilen sabit boyut 𝑁̅'yi aşarsa 𝑃̅𝑡+1'in 

boyutunu azaltmak için bir kesme operatörü kullanılmaktadır. 𝑃̅𝑡+1'in boyutu 𝑁̅'ye eşitse 

işlem tamamlanır. Aksi takdirde 𝑁̅'nin boyutu 𝑁̅'den daha büyük veya daha küçüktür.  

Eğer küme 𝑁̅'den küçükse, önceki arşivdeki 𝑁̅ − |𝑃̅𝑡+1|’nin baskın olduğu en iyi bireyler 

yeni arşive kopyalanır. Küme 𝑁̅'yi aşarsa, bireyleri 𝑃̅𝑡+1'den |𝑃̅𝑡+1| = 𝑁̅ 'ye kadar 

çıkarmak için bir arşiv dönüştürme yöntemi kullanılır. Her yinelemede, tüm 𝑗 ∈ 𝑃𝑡̅ + 1 

için 𝑖 ≤𝑑 𝑗 olan birey 𝑖 seçilir ve 

 𝑖 ≤𝑑 𝑗 ∶⟺  ∀  0 < 𝑘 < |𝑃̅𝑡+1|   ∶ 𝜎𝑖
𝑘 = 𝜎𝑗

𝑘   ∨  

 ∃  0 < 𝑘 < |𝑃̅𝑡+1|   ∶ [(∀  0 < 𝑙 < 𝑘: 𝜎𝑖
𝑙 = 𝜎𝑗

𝑙) ∧ 𝜎𝑖
𝑘 < 𝜎𝑗

𝑘]  (2.9) 
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burada 𝜎𝑖
𝑘, 𝑖 bireyinin i'nin 𝑃̅𝑡+1'deki 𝑘 'inci komşusuna olan uzaklığıdır. Her aşamada, 

minimum mesafeli komşu kaldırılmak üzere seçilir ve bir sonraki en küçük mesafeye 

sahip olan komşular art arda kaldırılarak bağlar koparılır.  

Bu çalışmalar ışığında SPEA2 algoritması yakınsama ve çeşitlilik açısından iyi 

performans sağlamıştır. Böylece SPEA'dan daha iyi performans gösterir ve iyi bilinen 

çeşitli test problemlerinde Pareto Zarflama Temelli Seçim Algoritması (PESA, Pareto 

Envelope-Based Selection Algorithm) ve NSGA-II ile karşılaştırılmalı uygulamalar 

yapılmaktadır. 

2.8. Çok Amaçlı Evrimsel Algoritmalardaki Sorunlar 

Pareto-optimal kümenin yaklaşımı muhtemelen birbiriyle çelişen iki hedefi içerir: 

optimal cepheye olan mesafenin en aza indirilmesi ve üretilen çözümlerin çeşitliliğinin 

yani amaç veya parametre değerleri açısından maksimize edilmesidir. Bu bağlamda, çok 

amaçlı bir evrimsel algoritma tasarlanırken iki temel konu vardır: çiftleşme seçimi ve 

çevresel seçimdir. İlk konu, aramanın Pareto-optimal cepheye doğru nasıl 

yönlendirileceği sorusuyla doğrudan ilgilidir. Bir birey havuzu verildiğinde, yavru 

üretimi için hangi bireylerin seçildiği temelinde uygunluk değerleri atanmalıdır. 

Çiftleşme havuzunu doldurma prosedürü genellikle rastgele seçilmektedir. İkinci konu, 

evrim sürecinde hangi bireylerin tutulacağı sorusunu ele almaktadır. Sınırlı zaman ve 

depolama kaynakları nedeniyle, belirli bir nesildeki bireylerin yalnızca belirli bir kısmı 

bir sonraki neslin havuzuna kopyalanabilir. Burada deterministik bir seçim kullanmak 

yaygın bir uygulamadır. 

Çoğu modern MOEA algoritmasında, bu iki kavram, ayrıntılar farklı olsa da şu şekilde 

gerçekleştirilir: 

Çevresel seçim: Nüfusun yanı sıra, şu ana kadar ele alınan tüm çözümler arasında baskın 

olmayan cephenin bir temsilini içeren bir arşiv tutulur. Arşivin bir üyesi ancak i) ona 

hakim olan bir çözüm bulunursa veya ii) maksimum arşiv boyutu aşılırsa ve arşiv üyesinin 

bulunduğu ön kısım aşırı kalabalıksa kaldırılmaktadır. Genellikle tesadüfen meydana 

gelebilecek saf üremeye ek olarak, bir bireyin birkaç nesil boyunca hayatta kalabilmesinin 

tek yolu arşive kopyalanmasıdır. Bu teknik, rastgele etkiler nedeniyle mevcut baskın 

olmayan cephenin belirli kısımlarını kaybetmemek için dahil edilmiştir. 
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Çiftleşme seçimi: Her nesildeki birey havuzu iki aşamalı bir süreçte değerlendirilir. 

Öncelikle tüm bireyler, bu çoklu küme üzerinde kısmi bir düzen tanımlayan Pareto 

baskınlık ilişkisi temelinde karşılaştırılır. Temel olarak, her bireyin hakim olduğu, veya 

kayıtsız kaldığı bilgiler, nesil havuzunda bir sıralama tanımlamak için kullanılmaktadır. 

Daha sonra, bu sıralama, yoğunluk bilgisinin dahil edilmesiyle iyileştirilir. Belirli bir 

bireyin bulunduğu yerin boyutunu ölçmek için çeşitli yoğunluk tahmin teknikleri 

kullanılmaktadır. 

Prensip olarak, her iki seçim şeması da birbirinden tamamen bağımsızdır. Böylece, 

birincisi Pareto tabanlı olabilirken ikincisi uygunluk değerlerini hesaplamak için 

ağırlıklandırma yaklaşımını kullanabilir. Bununla birlikte, birçok evrimsel yöntemle her 

iki kavram da benzer şekilde uygulanmaktadır. 

Örneğin, PESA'da, eşleştirme seçimi yalnızca geçerli baskın olmayan kümeyi depolayan 

arşivde gerçekleştirilir [74]. Histogram tekniği olarak sınıflandırılabilecek belirli bir 

yoğunluk ölçüsü, arşiv elemanlarının kalabalıklaşma derecesine göre farklı 

örneklenebilmesi sağlanır. Gerçek popülasyonu oluşturan oluşturulan çocuklar daha 

sonra arşive dahil edilmek üzere kontrol edilmektedir. Arşive girmeyen kişiler, bir 

sonraki nesil döngüsü başlamadan önce kaldırılır. Bu yaklaşımla, çiftleşme ve çevresel 

seçim, seçim kriterleri yani mevcut baskın olmayan cephenin üyesi açısından aynıdır ve 

yalnızca seçim sürecine göre farklılık gösterir. Aynı şey gelecek vaat eden diğer bir 

algoritma olan NSGA-II için de geçerlidir [60,75]. Burada bireyler havuzu önce Pareto 

hakimiyeti kavramına göre farklı cephelere ayrılır. Birinci baskın olmayan cepheye ait 

bireyler en yüksek rütbeye, ikinci hakim olmayan cephedekilere ikinci en yüksek rütbeye 

vb. atanır. Her sıra içinde, bireyler arasında bir sıralama tanımlamak için her hedef 

boyunca en yakın iki bireye olan mesafelerin toplamını temsil eden özel bir dışlama 

ölçüsü kullanılır. Bu sıralama temelinde hem çevresel hem de çiftleşme seçimi yapılır. 

Ebeveyn popülasyonu ve yavru popülasyonu birleştirip en kötü %50'yi silerek birey 

havuzu kesilir. Daha sonra, bir sonraki yavru popülasyonu oluşturmak için kalan bireyler 

üzerinde ikili turnuvalar gerçekleştirilir. PESA'nın aksine, arşivin yalnızca baskın 

olmayan bireyleri değil, aynı zamanda baskın bireyleri de içerebileceğini unutmayın; 

NSGA-II ile arşiv her zaman tamamen doldurulurken, PESA ile sadece kısmen 

doldurulabilir [60]. 



 

 

 

3.  BÖLÜM  

ÇOK AMAÇLI OPTİMİZASYON ALGORİTMALARINDA 

PERFORMANS ARTIRMA YÖNTEMLERİ  

MO-BSS algoritmalarının hem işlem performanslarını artırmak hem de işlem sürelerini 

iyileştirmek için karışım işaretleri üzerinde bir dizi yöntemler uygulanmıştır. Ön işlem ve 

DWT yöntemlerinin kullanımına dayalı yeni yöntemler önerilmiştir. Ön işlem olarak 

beyazlatma dönüşümü yöntemi önerilmiştir. Bu yöntem ile kovaryans matrisine sahip 

rastgele değişkenlerden oluşan bir vektörü korelasyonsuz ve varyansı bir olan yeni 

vektöre dönüşümü sağlanır. Böylece verilerin istatistiksel özelliklerini değiştirerek 

gürültüyü azaltmak veya özellik çıkarmayı kolaylaştırmak için kullanılmaktadır. DWT 

ise bir sinyalin temel fonksiyonların olduğu frekans bileşenlerini bulmak için önerilen 

diğer bir yöntemdir. Bu yöntemler yapısı ve MO-BSS’ye uygulanması hakkında genel 

bilgiler şu şekildedir: 

3.1. Ön İşlemler Yöntemi 

Gözlemlenen işaretler üzerinde ayrıştırma işlemini basitleştirmek ve işlem yükünü 

azaltmak amacıyla işaretler ön işleme tabi tutulması algoritmaların performansını 

artıracaktır. İşaret işlemede beyazlatma yaygın olarak kullanılan ön işleme tekniğidir. 

Beyazlaştırma, bir veri kümesindeki tüm doğrusal bağımlılıkları ortadan kaldırır ve tüm 

boyutlar boyunca varyansı normalleştirir; bu işlem sezgisel olarak veri kümesini küresel 

olarak simetrik bir dağılım sağlar. Beyazlaştırma işlemi; PCA’da özellik çıkarma ve veri 

sıkıştırmada yaygın olarak kullanılan ve Hotelling dönüşümü olarak da bilinen bir 

tekniktir. Elde edilen verileri ayrıştırmadan önce ön işlem olarak bilinen beyazlatma 

işleminin kullanılması işaretler üzerinde olumlu etkiye sahip olacaktır.  Genel olarak PCA 

veri boyutu indirgeme amacıyla kullanılmıştır. Beyazlaştırma işleminde sıfır 
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ortalamasına sahip rastgele bir vektör (𝑥) beyazsa, bileşenleri ilişkisizdir ve kovaryans 

matrisi Σ birim matrise (𝐼) eşittir. 

 Σ = 𝐸{𝑥𝑥𝑇} = 𝐼    (3.1) 

Beyaz olmayan verileri dönüşüm matrisi kullanarak beyazlaştırmak için gözlemlenen bir 

vektör 𝑥, doğrusal bir dönüşümle beyaz bir vektöre 𝑧 dönüştürülebilir [1]. 

  𝑧 = 𝑉𝑥     (3.2) 

Beyazlatma için birçok farklı dönüşüm yöntemleri bulunmaktadır. Bunlardan en çok 

kullanılanı kovaryans matrisinin özdeğerlerinin ayrıştırılmasıdır. Bu yöntemde 𝐸 

özdeğerlerin ortogonal matrisi ve 𝐸{𝑥𝑥𝑇} ve 𝐷 = 𝑑𝑖𝑎𝑔(𝑑1,…,𝑑𝑛) özdeğerlerden oluşan 

köşegen bir matristir. 

 𝐸{𝑥𝑥𝑇} = 𝐸𝐷𝐸𝑇 (3.3) 

Denklem (3.3)'e uygun olarak beyazlatma matrisi 𝑉, Denklem (3.4)'teki gibi 

oluşturulabilir. 

 𝑉 = 𝐸𝐷
−1

2⁄ 𝐸𝑇𝑥  (3.4) 

𝐷
−1

2⁄ = 𝑑𝑖𝑎𝑔(𝑑𝑛

−1
2⁄

, … , 𝑑𝑛

−1
2⁄

) eşitliği, karıştırma matrisi 𝐴’nın üzerindeki etkisi, 

 𝑉 = 𝐸𝐷
−1

2⁄ 𝐸𝑇𝐴𝑠 = 𝐴̃𝑠 (3.5) 

ile bulunur ve 𝐴̃ matrisi ortogonal matris olarak hesaplanır [76–83].  

Ön işlem olarak beyazlatma yöntemi kör kaynak ayrıştırma olarak çok amaçlı 

optimizasyon algoritmalarına uyarlanması Şekil 3.1 ile gösterilen blok diyagramında 

verilmiştir. Gözlemlenen karışık veriler önce beyazlatma işlemine tabi tutulur ve 

sonrasında MO-BSS yöntemi ile işaretler ayrıştırılır. 
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Şekil 3.1. Önerilen ön işlemli MO-BSS algoritmasının blok diyagramı 

3.2. Dalgacık Dönüşümü Yöntemi 

MO-BSS’de önerilen bir diğer yöntem dalgacık dönüşümüdür. Dalgacık dönüşümü işaret 

ve görüntü işleme, örüntü tanıma ve bilgisayarlı görme, astronomi, akustik ve jeofizik 

gibi çeşitli alanlarda uygulama alanı bulan popüler bir tekniktir. Bu popülerliğin iki temel 

nedeni vardır. Birinci neden, iyi bir zaman frekansı lokalizasyon özelliğine sahip olan 

dalgacık dönüşümünün içsel doğasından kaynaklanmaktadır. Bunu anlayabilmek için 

öncelikle standart Fourier tekniklerinin incelenebilir. Bu teknikler, sonsuz üstel dalgalar 

kullanarak bir işaretin toplam frekans içeriğini analiz eder. Fourier dönüşümü (FT, 

Fourier Transform), periyodik işaretlerin analizi için uygun olduğundan, eğer bir işaretin 

belirli bir zamandaki frekans içeriği gerekiyorsa, örneğin; işarette bir yükselişin meydana 
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geldiği an gerekliyse FT bilgiyi sağlayamayacaktır. FT'nin eksikliği, iyi bir frekans 

yerelleştirmesi sağlaması ancak zaman yerelleştirmesi sağlayamamasıdır. 

Bu sorunun üstesinden gelmek için, pencereli üstel dalgaları kullanarak işareti belirli 

zaman konumlarında analiz eden Kısa Zamanlı Fourier dönüşümü (STFT, Short Time 

Fourier Transform) geliştirilmiştir. Bu, üstel dalgaların gerekli zaman anında ortalanmış 

uygun bir pencere fonksiyonu ile çarpılması yoluyla yapılmaktadır. Bu çalışmada 

kullanılan Gabor dönüşümü, pencere fonksiyonu olarak Gauss çekirdeğini kullanan 

STFT'nin özel bir durumudur. Gabor bu pencereyle STFT'nin en iyi ortak zaman-frekans 

lokalizasyonuna ulaştığını kanıtlamıştır [18]. İyi ortak zaman-frekans yerelleştirme 

özelliğinin yanı sıra, STFT hala pencere fonksiyonunun neden olduğu ölçek bağımlılığı 

sorununu sunmaktadır. Bunu anlamak için, işaretteki ani yükselişin zaman konumu göz 

önüne alınmaktadır. Yükselişin genişliği analiz penceresinin genişliğinden çok daha 

küçük veya daha büyükse, yine de yükselişin meydana geldiği zaman anının 

belirlenememe sorunu olacaktır. Bu sorunun üstesinden gelmek için, bir işareti farklı 

zaman konumlarında, farklı boyutlardaki çekirdeklerle analiz eden WT, çekirdeklerin, 

ana dalgacık adı verilen bir prototip fonksiyonun ötelenmesi ve genişletilmesiyle 

oluşturulduğu yerde kullanılmaktadır. Dalgacık dönüşümünün popülaritesindeki ikinci 

faktör Mallat'tan kaynaklanmaktadır [11]. Gerçekleştirilen çalışmada çoklu çözünürlüklü 

ayrıştırma fikrini kullandı ve dalgacık katsayılarının aynı işaretin iki farklı çözünürlük 

versiyonu arasındaki bilgi farkını temsil etmeye uygun olduğunu göstermiştir. Bu, 

WT'nin ayrı bir versiyonunun verimli bir şekilde uygulanmasını sağlamıştır [84].  

DWT'nin ismine ilk yayınlanan referans Daubechies [85] tarafından yapılmıştır. İç 

çarpımları almak yerine, vektör olarak sakladığımız zaman serileri ile filtrelerin 

evrişimleri kullanılarak ayrık dönüşümler alınmaktadır. 

Tez çalışmasında işaret analizi için yaygın olarak kullanılan iki tür dalgacık dönüşümüne 

odaklanılmıştır: Sürekli Dalgacık dönüşümü (CWT, Continuous Wavelet Transform) ve 

ayrık dalgacık dönüşümleridir. İsmine rağmen CWT sıklıkla ayrık işaret analizi için 

kullanılmaktadır. Ana dalgacık adı verilen sürekli bir fonksiyondan türetilen ölçeklenmiş 

ve çevrilmiş dalgacıklar cinsinden bir işaretin yedekli bir temsilini sağlarken DWT, bir 

işaretin bir dizi ayrı ortonormal dalgacık aracılığıyla yedeksiz bir temsilini sağlamaktadır.  
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3.2.1. Sürekli Dalgacık Dönüşümü Yöntemi 

CWT, denklemle ana dalgacık 𝜓 'dan türetilen ölçeklenmiş ve çevrilmiş dalgacıklar 𝜓𝑠,𝜏 

ile bir işareti temsil eder.  

Sürekli dalgacık dönüşümü, ana dalgacıktan türetilen ölçeklenmiş ve çevrilmiş 

dalgacıklar açısından bir fonksiyonun yedekli bir temsilini sağlar. CWT'nin matematiksel 

tanımı şu şekildedir.  

 𝜓𝑠,𝜏(𝑡) =
1

√𝑠
𝜓 (

𝑡−𝜏

𝑠
)  (3.6) 

𝑠 ve 𝜏 parametrelerine ölçek ve öteleme adı verilir. CWT uygulaması genellikle işaretin 

katsayılarından yeniden oluşturulmasını içermez. Ancak işlemin tersinirliği bize orijinal 

işaretteki tüm bilgilerin CWT'de de mevcut olduğunu garanti eder. Bu nedenle yeniden 

yapılandırmaya gerek olmasa da kabul edilebilir dalgacıklar yaygın olarak 

kullanılmaktadır [86,87].  

3.2.2. Ayrık Dalgacık Dönüşümü Yöntemi 

Dalgacık dönüşümlerini hesaplarken CWT'nin yaklaşık bir sonucunu elde etmek için, 

ayrık dalgacık dönüşümü, Fourier dönüşümüne bir yaklaşım hesaplanırken ayrık Fourier 

dönüşümünün kullanıldığı gibi kullanılabilir. 𝑥(𝑡) işaretine ayrık bir yaklaşım için 

aşağıdaki denklem yazılır, 

 𝑥(𝑡) = ∑ 𝑎𝑗,𝑘𝜓𝑗,𝑘(𝑡)𝑗,𝑘  (3.7) 

burada 𝑎𝑗,𝑘 katsayılarına 𝑥(𝑡) işaretinin DWT'si denir. DWT'nin arkasındaki fikir CWT 

ile aynıdır ancak yöntemler farklıdır. 

CWT, dalgacığı doğrudan işaretle evriştirirken DWT, giriş işaretini bir alçak geçiş ve bir 

yüksek geçiş filtresiyle eşzamanlı olarak evriştirir. İki filtre birbiriyle ilişkilidir ve bir 

sonraki paragrafta sunulan Dörtlü Ayna Filtresinin (QMF, Quadrature Mirror Filters) 

kriterlerini karşılar. Şekil 3.2 QMF'nin arkasındaki fikri göstermektedir. Alçak geçişli bir 

filtre, yüksek geçişli bir filtre oluşturmak için yansıtılır. İkisinin birleştirilmesi, yalnızca 

belirli frekansların geçmesine izin veren bir bant geçiren filtre oluşturur. QMF, tipik 

olarak yalnızca birkaç sıfır olmayan değerin bulunduğu 𝑔𝑛 dizisi tarafından tanımlanan 
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bir alçak geçiş filtresi kullanılarak oluşturulur. Daha sonra alçak geçiş değerleri 

kullanılarak ℎ𝑛 sırasına sahip bir yüksek geçiş filtresi oluşturulur: 

 ℎ𝑛 = (−1)𝑛𝑔1−𝑛 (3.8) 

Her iki filtre de iç ortogonalliği karşılar 

 ∑ ℎ𝑛𝑛 ℎ𝑛+2𝑗 = 0 (3.9) 

tüm tamsayılar için 𝑗 ≠ 0 ve karelerin toplamına sahip 

 ∑ ℎ𝑛
2

𝑛 = 1 (3.10) 

Karşılıklı diklik ilişkisi 

 ∑ ℎ𝑛𝑛 𝑔𝑛+2𝑗 = 0 (3.11) 

tüm tamsayılar için  𝑗 'nin de sağlanması gerekmektedir. 

Her filtrenin uzunluğu işaretin uzunluğunun yarısı kadardır. Her iki filtreyi de işaretle 

evriştirdikten sonra, her iki çıkış da iki kat aşağı örneklenir. Birleştirilen iki çıkış, giriş 

işaretinin uzunluğuna sahiptir. Yüksek geçişli filtreleme yapıldıktan sonraki çıktıya detay 

katsayıları, alçak geçişli filtrelemeden sonraki çıktıya ise yaklaşım katsayıları adı verilir. 

Filtreleme sonucu oluşan katsayıların örnek sayısı alt örnekleme (downsampling) ile 

yarıya indirgenir. Süreç Şekil 3.2’de gösterilmiştir. 

 

Şekil 3.2. Ayrık dalgacık dönüşümünde işaretin filtrelenmesi 

Şekilde, giriş işaretini çeşitli bileşenlere ayıran, ağaç yapılı bir filtre dizisi olan bir filtre 

bankası gösterilmektedir. Her düzeydeki çıktı bileşenleri daha da filtrelenerek ağaç yapılı 

şekle ulaşılabilir. Frekans çözünürlüğünü arttırmak için ayrıştırma tekrarlanabilir. 
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Yaklaşım katsayıları bir sonraki ayrıştırma seviyesinin girdisidir ve hesaplamalar, 

çıktının uzunluğu bir olana kadar tekrarlanabilir. Başlangıçtaki alçak geçiren filtre, daha 

sonra anlatılacak olan ölçeklendirme fonksiyonu kullanılarak oluşturulur. 

Genişleme 𝜎 ve öteleme 𝜏 olan bir dalgacık fonksiyonu Denklem (3.12)'de 

tanımlanmıştır. 𝜎 ve 𝜏 parametrelerini, 𝜎 genişlemesinin logaritmik ayrıklaştırılmasıyla 

örneklenir. Daha sonra, ayrıklaştırılmış bir dalgacık fonksiyonu elde etmek için, 

genişleme 𝜎 ile orantılı olan her bir 𝜏 'ye ayrı adımlarla hareket ederek çeviri parametresi 

𝜏 'ye bağlantı kurulur: 

 𝜓𝑚,𝑛(𝑡) =
1

√𝜎0
𝑚 𝜓 (

𝑡−𝑛𝜏0𝜎0
𝑚

𝜎0
𝑚 ) (3.12) 

burada 𝜎0 > 1  ve 𝜏0 > 0 'dır ve genişleme ve öteleme 𝑚 ve 𝑛 tarafından belirlenir. Daha 

sonra sürekli bir 𝑥(𝑡) işaretinin ayrık dalgacıkları ile dalgacık dönüşümü tanımlanır: 

 𝑇𝑚,𝑛 = ∫ 𝑥(𝑡)
1

√𝜎0
𝑚 𝜓(𝜎0

−𝑚𝑡 − 𝑛𝜏0)𝑑𝑡
∞

−∞
 (3.13) 

 

Şekil 3.3. Önerilen ayrık dalgacık dönüşümlü MO-BSS algoritmasının blok diyagramı 
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Dalgacık katsayıları veya detay katsayıları olarak da adlandırılan ayrık dalgacık dönüşüm 

değerleri 𝑇𝑚,𝑛, 𝑚, 𝑛 üzerinden bir genişleme-öteleme ızgarasında şu şekilde verilir, 

 𝑥(𝑡) = ∑ ∑ 𝑇𝑚,𝑛𝜓𝑚,𝑛(𝑡)∞
𝑛=−∞

∞
𝑚=−∞  (3.14) 

ve Ters Ayrık Dalgacık Dönüşümü (IDWT, Inverse Discrete Wavelet Transform) formüle 

edilir [88]. 

DWT yönteminin MO-BSS algoritmasına uyarlanma işlemine ait blok diyagramı Şekil 

3.3’te gösterilmiştir.  

3.2.3. DWT Dalga Formları Yöntemi 

Kullanılan dalgacık dönüşümü teorisinin karmaşıklığı, dalgacık yapışmasının orijinal 

işaret tasvirine yakınlığını belirler. Bir işaretin bu tasviri, geniş bant alıcısının 

performansının iyileştirilebilmesi için dönüşüm alanındaki işaretin farklı 

çözünürlüklerine yönelik bir kriterin oluşturulmasını gerektirir. Değişen karmaşıklık 

derecelerine sahip bir sistem entegrasyonunda kullanılabilecek birkaç dalgacık dönüşümü 

şeması vardır; bu şemalar, dönüşüm seçimini donanım karmaşıklığı ile orijinal işaretin 

doğruluğu arasında bir denge haline getirerek eşikleme kesimini gürültünün daha doğru 

bir şekilde ortadan kaldırılmasını sağlar [89]. 

Sonraki aileler özellikle DWT'de kullanılmak üzere tasarlanmıştır. Bu dalgacıklar 

kompakt bir şekilde desteklenir ve ortogonal veya biortogonaldir. Bir QMF yapısı 

oluşturabilen bir yüksek geçiş ve alçak geçiş analizi ve sentez filtresi ile karakterize 

edilirler. Her aile, dört filtreye yol açan belirli tasarım kurallarına göre tasarlanmıştır. 

Filtreler birkaç sıra için oluşturulabilir, ancak çoğu aile daha düşük derecelerle sınırlıdır. 

Bu filtrelerden, dalga biçimleri hiç düzgün görünmeyebilir, ancak dalgacık filtrelerinin 

hepsi frekans alanında düzgün geçiş bantlarına sahiptir. Genel olarak, daha yüksek 

düzeylerde işlevler zaman alanında daha düzgün hale gelir ve bu da onları gerçek 

hayattaki işaretleri analiz etmek için daha uygun hale getirmiş olur. 

Dalgacık dönüşümünde yaygın olarak kullanılan Daubechies olarak da bilinen dalgacık 

dönüşümü kullanılır. Ayrık zamanda dalgacık analizini uygulanabilir hale getiren 

kompakt destekli ortonormal dalgacığı icat edilmiştir. Ölçeklendirme fonksiyonlarına 
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göre farklı katsayıları içeren bir aileden oluşur. Bu ailenin birinci dereceden üyesi aynı 

zamanda Haar dalgacığı olarak da bilinir. 

3.2.4. Haar Dalgacık Dönüşümü Yöntemi 

Bu dalgacık dönüşümü, dönüştürülmekte olan dalga formunun şeklini ve ayrıntısını 

tahmin edecek temel yaklaşım fonksiyonlarını kullanan dikdörtgen bir fonksiyona 

dayanır. Basitleştirilmiş Haar dalgacık dönüşümü, adım fonksiyonunun bir varyasyonu 

olan yaklaşık bir fonksiyon kullanır. 

Haar'ın temel dönüşümü, bitişik adım çiftini daha geniş bir adım ve bir dalgacıkla 

değiştirerek 𝑓 fonksiyonuna dalgacıklarla yaklaşmayı ifade eder. Daha geniş adım, ilk 

adım çiftinin ortalamasını ölçerken, iki alternatif adımdan oluşan dalgacık, ilk adım 

çiftinin farkını ölçer [90,91]. Bu yöntem temel dalgacık dönüşümü olup, geniş bantlı bir 

alıcı tasarımından beklendiği gibi yüksek çözünürlüklü işaretler için uygun değildir. Daha 

düşük (4 ila 6 dB) iki işaret dinamik aralığı için kabul edilebilir olsa da elde edilen işaret 

adım fonksiyonları olarak tanımlandığından +18 dB'de benzer performans beklenemez. 

Dolayısıyla bu dönüştürme yöntemi, işaret spektrumunun daha doğru bir şekilde 

tanımlanmasına ve dolayısıyla daha doğru gürültü gidermeye dayalı olarak sistem 

performansının iyileştirilmesine uygun bir aday değildir.  

3.2.5. Daubechies Dalgacık Dönüşümü Yöntemi 

Ingrid Daubechies, Daubechies dalgacık dönüşümünün Haar'ın süreksiz adım 

tasarımından ziyade sürekli bir işaret olması açısından Haar'ın dalgacık dönüşümünden 

farklı olan dalgacıkları kullanarak dönüşüm yapan yeni bir algoritma serisini tanıtmıştır. 

Sürekliliğin bir sonucu olarak sürekli işaretler daha doğru bir temsile sahiptir; ancak bu 

sürekliliğin karmaşık denklemler ve uygulamalar kullanma maliyeti vardır ve bu da daha 

karmaşık donanımlarla sonuçlanır. Bu fonksiyonların bazıları matris hesaplamalarına 

dayanmaktadır. Zaman açısından verimli ve sistem kullanımında uygulanabilir sürekli 

dalgacıklar tasarlamak için Daubechies, 𝜑 ile gösterilen temel bir yapı bloğu veya 

ölçeklendirme fonksiyonu tanıtılmıştır. Başlangıç koşulları için Daubechies 

dalgacıklarının nasıl hesaplandığına dair bir örnek aşağıda belirtilmiştir [89–91]: 
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 𝜑(0) ≔ 0  

 𝜑(1) ≔
1+√3

2
  

 𝜑(2) ≔
1−√3

2
   

 𝜑(3) ≔ 0 (3.15) 

Bu koşullar şu koşulu karşılar: 

 𝜑(𝑟) =
1+√3

4
𝜑(2𝑟) +

3+√3

4
𝜑(2𝑟 − 1) + 

 
3−√3

4
𝜑(2𝑟 − 2) +

1−√3

4
𝜑(2𝑟 − 3) (3.16) 

Ayrıca, 𝜑 değerlerinin ortalama veya ağırlıklandırma faktörleri olarak görev yapabilmesi 

için başlangıç değerlerinin toplamının 1 olması da gereklidir. 

 𝜑(0) + 𝜑(1) + 𝜑(2) + 𝜑(3) = 0 +
1+√3

2
+

1−√3

2
+ 0 = 1 (3.17) 

𝜑 fonksiyonu,  𝜓 ile gösterilen ve aşağıdaki gösterimle tanımlanan ilgili dalgacık için 

temel yapı taşı görevi görmektedir:  

 𝜓(𝑟) ≔ −
1+√3

4
𝜑(2𝑟 − 1) +

3+√3

4
𝜑(2𝑟) − 

 
3−√3

4
𝜑(2𝑟 + 1) +

1−√3

4
𝜑(2𝑟 + 2)  (3.18) 

 = −ℎ0𝜑(2𝑟 − 1) + ℎ1𝜑(2𝑟) − ℎ2𝜑(2𝑟 + 1) + ℎ3𝜑(2𝑟 + 2)  (3.19) 

 = (−1)1ℎ1−1𝜑(2𝑟 − 1) + (−1)0ℎ1−0𝜑(2𝑟 − 0) + 

 (−1)−1ℎ1−[−1]𝜑(2𝑟 − [−1]) + (−1)−2ℎ1−[−2]𝜑(2𝑟 − [−2])  (3.20) 

Daubechies dalgacığı bu şekilde hesaplanır. Daubechies dalgacık yönteminin kaybolan 

momentleri kullandığı görülmektedir. Kaybolan anlar, fonksiyonda frekans ekseninin 

altına düştüğü bir nokta olarak tanımlanır. Kaybolan anlar, dönüştürülen dalgacığın 

düzgünlüğüne katkıda bulunur çünkü sistemin, pahalı donanım uygulamasından ödün 
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vermeden transfer fonksiyonundaki farklılıkları telafi etmesine olanak tanır [89]. 

Daubechies dalgacık dönüşümünde işaret yapışması, Haar dalgacığınkinden daha 

belirgindir, bu da Daubechies dalgacık dönüşümünü ayrık dalgacık dönüşümünün daha 

popüler uygulamalarından biri haline getirmektedir [92]. Bu dönüşüm ve eşikleme 

yöntemi, alıcının sistem performansını iyileştirme konusunda Haar dalgacık 

dönüşümünden çok daha umut verici hale gelmiştir. 

3.2.6. Eşik Belirleme ve Gürültü Giderme  

Daha önce tartışıldığı gibi, dalgacık dönüşümü zamana dayalı işareti ayrıntılara ve işaret 

için genel bir forma ayırır. Frekans genliği açısından ayrıntılar çok daha küçük 

olduğundan, gürültünün büyük kısmı ayrıntılarda sorun yaratır. Gürültülü katsayıların 

olduğu yere sıfır eklemek, daha temiz bir işaret oluşturmak için olası bir çözümdür [93]. 

Bu yöntemin ana motivasyonları aşağıdaki varsayımlar ve gözlemlerle özetlenebilir: 

1. Dalgacık dönüşümünün korelasyonsuzlaştırma özelliği seyrek bir işaret yaratır: 

dokunulmamış katsayıların çoğu sıfıra yakındır veya sıfırdadır. 

2. Gürültü tüm katsayılara eşit olarak yayılır. 

3. Gürültü seviyesi, işaretin gürültüden ayırt edilemeyecek kadar yüksek olmaması. 

Belirli bir değerin altına sıfır ekleyen bir eşik eklemek, işaretin basit ve etkili bir tasarımla 

temizlenmesini sağlar. Bu basitlik, eşiklemeyi bir işaretteki gürültüyü azaltmak için 

yaygın bir çözüm haline getiren şeydir. Belirli bir eşik değerinin altındaysa küçük 

katsayıların sıfırla değiştirilmesine sert eşikleme adı verilir. Bir katsayının üzerindeki 

katsayıların mutlak bir değere indirildiği başka bir yöntem, katsayılarda daha fazla 

süreklilik sağlar. Gürültü katsayıları ile işaret katsayıları arasında temiz bir geçiş vardır. 

Yumuşak eşikleme adı verilen bu yöntem özellikle matematiksel kontrol edilebilirliğin 

korunmasında etkilidir; örneğin sürekli işaretler için yapılmış bir sistemde süreksiz bir 

işaret kullanılamaz veya bazı istenmeyen sonuçlara neden olabilir. Bu durumlarda 

sürekliliği sağlayan yumuşak eşik, süreksiz sert eşik yönteminden açıkça daha iyi bir 

seçim olacaktır. Ancak eşik türünün ayarlanması, ayarlanması gereken parametrelerden 

yalnızca biridir. Önemli bir parametre eşik seçimidir. Bu eşik birkaç öğeye 

dayandırılabilir: varyans sapmaları, yani ortalama mutlak sapma ve sayısal standart 

tahmin veya ortalama karesel hata kullanan eşik tahmin edicileri. Ortalama karesel hata, 
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öncelikle yumuşak eşikleme için bir eşik tahmincisi olarak kullanılır ve uygulamalar, ses 

işlemenin yanı sıra görüntü işlemeyi de içerir [93]. 

Gürültü giderme için kullanılabilecek çok sayıda DWT dalga formu vardır. Dalgacık 

katsayıları işaret ve dalgacık arasındaki benzerliğin bir ölçüsü olduğundan, dalga biçimi 

ayrıştırmanın kalitesini belirler. En iyi sonuçlar, dalga biçimi işarete iyi uyduğu zaman 

elde edilir. Çoğu işaret için, özellikle de kontrolde, düzgün bir dalga biçimi seçilmelidir. 

Kontroldeki ölçümlerin çoğu, alçak geçiş davranışına sahip nedensel sistemler tarafından 

üretilir, dolayısıyla çıktıları düzgün olacaktır. Bununla birlikte, yüksek dereceli 

dalgacıklar daha düzgün olduğundan, dalga biçimlerinin düzgünlüğü ile hesaplama süresi 

arasında her zaman bir denge olacaktır. Bu örnekte, az çok keyfi olarak, “Db1” dalgacığı 

seçilmiştir [94] . 

Ters ayrık dalgacık dönüşümü, türetilen yaklaşım ve detay katsayılarından bir işareti 

yeniden oluşturur. Her ayrıştırma seviyesinde yarım bant filtreleri, frekans bandının 

yalnızca yarısını kapsayan işaretler üretir. Bu yöntemle zaman çözünürlüğü yüksek 

frekanslarda iyi olurken, frekans çözünürlüğü düşük frekanslarda iyi hale gelir. Filtreleme 

ve yok etme işlemine istenen seviyeye ulaşılıncaya kadar devam edilir. Maksimum seviye 

sayısı işaretin uzunluğuna bağlıdır. Orijinal işaretin DWT'si daha sonra ayrıştırmanın son 

seviyesinden başlanarak elde edilir. 

 

Şekil 3.4. Ters Ayrık dalgacık dönüşümünde işaretin yeniden yapılandırılması [96] 

Şekil 3.4’te orijinal işaretin dalgacık katsayılarından yeniden yapılanma süreci 

gösterilmiştir. Yeniden yapılanma süreci ayrıştırma sürecinin tersidir. Her seviyede 

yaklaşıklık ve detay katsayıları iki ile üst örneklenir (upsampling), alçak geçiş ve yüksek 

geçiş filtrelerinden geçirilir ve daha sonra toplanır. Orijinal işaret elde edilinceye kadar 

bu işleme devam edilir [95]. 
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3.3. Çözümlerin PF Yakınlığını Ölçmede Kullanılan Metrikler 

Çok amaçlı optimizasyon problemleri, aynı anda optimize edilecek birçok birbiriyle 

çelişen hedefi içerir [67,97–100]. Çok amaçlı evrimsel algoritmalar gibi çok sayıda 

yaklaşım, şu anda mühendislik, finans, lojistik gibi alanlarda yaygın olan problemleri 

çözmek için etkili ve farklı yöntemler geliştirilmiştir [101–104]. Farklı yaklaşımları 

değerlendirmek için çeşitli bağlamlarda uygun performans ölçümlerini tasarlamak kritik 

öneme sahiptir. Örneğin, Tek Amaçlı Optimizasyon Problemlerinin (SOOP, Single-

Objective Optimization Problem) amacı, minimizasyon veya maksimizasyon açısından 

en uygun çözümü bulmaktır. SOOP'lerde iki çözümü karşılaştırmak ve daha iyi uyuma 

sahip olanı üstün olarak görmek nispeten kolaydır. Ancak MOOP'lerde çözüm 

üstünlüğünü değerlendirmek, çatışan hedeflerin varlığı nedeniyle çok daha karmaşıktır. 

Çeşitli yaklaşımlar sıklıkla Pareto baskınlık kavramına göre eşit derecede adil olan bir 

dizi çözümden oluşan bir optimal çözüm seti elde eder [105]. Bununla birlikte, Çok 

amaçlı optimizasyonda farklı optimal çözüm kümelerinin niceliksel bir karşılaştırmasını 

sağlamak da önemli derecede etkilidir. Bugüne kadar, MOOP'de çözüm seti optimalliğini 

tanımlamak ve MOEA'ların değerlendirilmesi için bir dizi niceliksel ölçüm önerilmiştir 

[106,107]. Her metrik, bir veya daha fazla performans kriterini dikkate alan bir bakış 

açısıyla tasarlanmıştır. 

Tipik performans kriterleri, baskın olmayan çözüm kümesinin kapasitesini, çözümlerin 

gerçek Pareto cephelerine yakınsamasını, amaç uzayındaki çözümlerin çeşitliliğini, 

referans kümelerine göre baskın çözüm hacmi gibi durumları içerir. Örneğin Van 

Veldhuizen ve ark. baskın olmayan çözümlerin sayısını hesaplamak için metrikler 

tasarlamışlardır [107]. Çözümlerin gerçek PF'lere yakınlığını ölçmek için Nesil Mesafesi 

(GD, Generational Distance) metriği tanıtılmıştır [58,108]. Zhou ve ark. yüksek boyutlu 

MOOP'lerdeki çözüm çeşitliliğini ölçmek için Genelleştirilmiş Yayılım (∆∗), Li ise 

Yayılma ölçü (SP, ∆, Spread) metriğini tanıtmışlardır [109]. Zitzler ve ark. ise referans 

setlerine göre optimal çözüm setlerinin hakim hacmini hesaplamak için popüler Hiper 

Hacim (HV, Hypervolume) metriğini geliştirmişlerdir [69,106]. Son yirmi yılda önerilen 

performans metriklerinin çokluğuyla birlikte, MOOA metrikleri üzerine yapılan 

araştırmalara yönelik çalışmalarda bulunmaktadır [110–114]. Örneğin Okabe ve ark. 

araştırmalarında MOOA metriklerini önem, mesafe, hacim, dağılım ve yayılma açısından 

sınıflandırmıştır [110]. 
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Zitzler ve ark. MOOA metriklerini matematiksel bir çerçeve kullanarak sınıflandırmıştır 

[111]. Klasik MOOA metriklerini analiz ettikten sonra Tan ve ark., Düzgün Dağıtım (UD, 

Uniform Distribution) parametresine bağlı bir ölçüm önermişlerdir [112]. Wu ve ark. öte 

yandan, HV ile ilişkili altı ölçüm çeşidini özetlemiş ve bunları MOOA’ları üzerinde 

uygulaması yapılmıştır [115]. MOO metrikleri üzerine yapılan birçok önemli anket, 

deneysel çalışma ve analizin bireysel metriğe odaklanmakla sınırlı olduğunu belirtmekte 

fayda vardır [110–114]. MOO ölçümleri arasındaki ilişkileri kurmaya yönelik bugüne 

kadar çok az çalışma yapıldı veya hiç çalışma yapılmadı. Dolayısıyla bu makale bu 

boşluğu doldurmaya çalışmaktadır. Bu tezde, çok amaçlı optimizasyonun farklı 

hedeflerine yönelik farklı algoritmalar arasındaki sayısal karşılaştırmayı göstermek için 

yaygın olarak kullanılan temel performans kriterlerine göre Ters Nesil Mesafesi (IGD, 

Inverted Generational Distance), HV ve SP dahil olmak üzere üç temsili ölçüt dikkate 

alınarak uygulama sonuçları test edilmiştir [116].  

Metriklerden IGD ve HV algoritmaların hem yakınsama hem de çeşitlilik başarısını 

ölçerken, SP metriği çeşitlilik başarısını ölçmektedir. Bu metriklerden HV metriğinin 

değeri maksimum olması istenirken diğer IGD ve SP metrik değerinin minimum olması 

istenmektedir [117]. 

3.3.1. IGD Metriği 

Bu gösterge, çok amaçlı optimizasyonun yakınlık ve çeşitlilik hedefi için niceliksel bir 

ölçüm sağlayan temsili bir ölçümdür. Adından da anlaşılacağı gibi GD'nin tersi olan IGD, 

Pareto cephesinin elde edilen çözüm kümesine ne kadar yakın olduğunu ölçmek için 

kullanılır.  

IGD metriğinde 𝑃𝑇 , nesnel uzayda eşit olarak dağılmış noktaların bir kümesidir. 𝑃𝑂, 

önerilen algoritma tarafından elde edilen baskın olmayan çözüm kümesidir ve 𝑃𝑇 'den 𝑃𝑂 'a 

olan ortalama mesafe şu şekilde tanımlanır [118]: 

 𝐼𝐺𝐷(𝑃𝑇 , 𝑃𝑂) =
∑ 𝑑𝑖𝑠𝑡(𝑣,𝑃𝑂)𝜈∈𝑃𝑇

|𝑃𝑇|
  (3.21) 

burada 𝑑𝑖𝑠𝑡(𝑣, 𝑃𝑂) iki nokta arasındaki minimum Öklid mesafesini gösterir. Hesaplanan 

IGD değerinin düşük olması 𝑃𝑇 ile 𝑃𝑂 arasındaki mesafenin yakınlığını gösterir. Önerilen 

algoritmalar için bu değerin düşük olması tercih edilir [57,119–121]. 
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IGD, bir çözüm kümesinin kalitesini dört yönün tamamı açısından yansıtma yeteneğine 

sahiptir: yakınsama, yayılma, tekdüzelik ve önem. Ancak IGD'nin önemli bir zayıflığı, 

değerlendirme sonuçlarının büyük ölçüde referans kümesinin davranışına bağlı olmasıdır. 

Pareto cephesi boyunca yoğun ve düzgün bir şekilde dağıtılmış çözümlerden oluşan bir 

referans seti gereklidir; aksi takdirde kolayca yanıltıcı sonuçlar verebilir [122]. Referans 

seti normal olarak elde edilen tüm çözümlerin toplanmasından oluşturulduğu için bu 

durum özellikle Arama Tabanlı Yazılım Mühendisliğinde (SBSE, Search-Based Software 

Engineering) sorunludur; dağıtımı kontrol edilemez. Ek olarak, referans kümesinin 

oluşturulma şekli, IGD'nin, dikkate alınan çözüm kümelerinin çoğunluğuyla tutarlı, 

belirli bir dağıtım modelini tercih etmesine neden olur [122]. Başka bir deyişle, eğer bir 

çözüm seti diğerlerinden çok farklı bir şekilde dağıtılırsa, o zaman setin gerçek dağılımı 

ne olursa olsun, muhtemelen zayıf bir IGD değeri ataması muhtemeldir [119]. 

3.3.2. HV Metriği 

IGD gibi HV de bir çözüm kümesinin kalitesini dört açıdan değerlendirir. Arzu edilen 

pratik kullanılabilirliği ve teorik özellikleri nedeniyle, HV muhtemelen SBSE'de 

tartışmasız en yaygın kullanılan göstergelerden biridir [123–131]. 

Bu hiper hacim metriği, tüm hedeflerin en aza indirileceği MOEA'lar tarafından elde 

edilen baskın olmayan çözüm setlerinin üyeleri tarafından kapsanan hacmi (hedef 

uzayında) hesaplar [132]. Belirtilen HV şu şekilde hesaplanabilir: 

 𝐻𝑉 = 𝑣𝑜𝑙𝑢𝑚𝑒 (⋃ 𝛿𝑖
|𝑃𝑂|
𝑖=1 )  (3.22) 

burada 𝛿𝑖 referans noktasına göre baskın hypervolume olarak adlandırılır. Yüksek bir HV 

değeri tercih edilir. HV göstergesinin bir sınırlaması, hedeflerin sayısına göre katlanarak 

artan hesaplama süresidir. Göstergenin 10'dan fazla hedefe sahip veya makul bir küme 

boyutu altında bir çözüm kümesinde uygulanabilir olmasını sağlayan teorik ve pratik 

olarak çalışma süresini azaltmak için birçok çaba sarf edilmiştir. Daha önce belirtildiği 

gibi, HV bir çözüm kümesinin diz noktaları lehinedir, dolayısıyla karar verici 

problemlerin Pareto cephesinin diz noktalarını tercih ettiğinde iyi bir seçimdir. Ayrıca 

referans noktasının ayarları değerlendirme sonuçlarını etkileyebilir [57,119].  
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3.3.3. SP Metriği 

SP, çözümler arasındaki yayılmanın dağılımını ve kapsamını ölçmede kullanılır.  SP 

göstergesi ve onun varyantları [58,109,133], alandaki çözüm kümelerinin çeşitliliğini 

yani, yayılma ve tekdüzelik özelliklerini değerlendirmek için yaygın olarak 

benimsenmiştir [129,134–138]. Özellikle çözümlerin yayılması sonucunda elde edilen 

komşu Pareto optimal çözümlerin Öklid uzaklıklarının ortalamasını verir. Pareto optimal 

çözümlerinin dağılımı aynı biçimde yinelenen olduğunda yayılma sıfıra eşittir. Spesifik 

olarak, iki amaçlı bir senaryoda bir çözüm kümesi A'nın göstergesi ∆ aşağıdaki gibi 

tanımlanır. 

 ∆(𝐴) =
∑ 𝑑𝑚

𝑒𝑀
𝑚=1 +∑ |𝑑𝑖−𝑑̅|

|𝜑|
𝑖=1

∑ 𝑑𝑚
𝑒𝑀

𝑚=1 +|𝜑|𝑑̅
  (3.23) 

Burada 𝑑𝑖,  𝑑̅i ve 𝑑𝑚
𝑒  sırasıyla ardışık çözümler arasındaki Öklid uzaklığını, Öklid 

uzaklığının ortalamasını (𝑑𝑖) ve 𝑃𝑇 ve 𝑃𝑂 uç çözümleri arasındaki mesafeyi belirtir [126]. 

Kümenin hem yayılma hem de tekdüzelik açısından iyi bir dağılımını gösteren küçük bir 

∆ değeri tercih edilir. ∆ = 0, kümedeki çözümlerin eşit uzaklıkta olduğu ve sınırlarının 

Pareto cephe uçlarına ulaştığı anlamına gelmektedir. 

∆'nin (varyantları da dahil olmak üzere) önemli bir zayıflığı, baskın olmayan çözümlerin 

her iki hedefte de ardışık olarak konumlandırıldığı iki amaçlı problemlerde güvenilir bir 

şekilde çalışmasıdır. Daha fazla hedef olduğunda, bir hedefteki çözümün komşusu, başka 

bir hedefteki çözümün çok uzağında olabilir [139]. 

Bu sorun herhangi bir mesafeye dayalı çeşitlilik göstergesi için geçerlidir. İkiden fazla 

hedefi olan problemler için bölge bölünmesine dayalı çeşitlilik göstergeleri daha 

doğrudur [122]. Tipik olarak alanı birçok eşit boyutlu hücreye bölerler ve daha sonra 

çözümler yerine hücreleri dikkate alırlar (örneğin, bu hücrelerin sayısını saymak). Bu, 

daha çeşitli çözümlerin genellikle daha fazla hücreyi doldurduğu gerçeğine 

dayanmaktadır. Bununla birlikte, bu tür göstergeler, tipik olarak her hücrenin bilgisini 

kaydetmeleri gerektiğinden, boyut olumsuzluğundan zarar görebilir. 
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3.4. Kullanılan Amaç Fonksiyonları 

Genel olarak BSS’de tek amaçlı optimizasyon problemlerinde 𝑊 ayrıştırma matrisinin 

çözümü: 

 min  
𝑊

𝐽(𝑊)  (3.24) 

ile ifade edilirken, 𝐽(𝑊) kaynakların seyreklik, Gauss olmama veya zamansallık gibi 

özellikleri içerir. Bu nedenle, kaynak ayrımının istenen özelliği temsil etmede 𝐽(𝑊) 

ayırma kriterine güçlü bir şekilde bağlı olduğu belirtilebilir. Bu bağlamda 𝐽(𝑊) kaynak 

işaretlerinin mükemmel bir şekilde ayrılmasını sağladığında kontrast fonksiyonu gibi 

davrandığı söylenebilir [4]. Ancak pratik durumlarda bu her zaman mümkün değildir, 

çünkü örneğin rastgele gürültünün karışması söz konusu olabilir. 

Denklem (3.24)’ün çözümünde dikkate değer bir diğer husus, kişinin BSS problemi için 

tek bir çözüme, yani kaynak kümesinin tek bir tahminine ulaşmasıdır. Ancak biyomedikal 

işaret işleme gibi gerçek uygulamalarda karar vermek için birden fazla olası tahminin 

olması istenebilir. Belirli kriter çerçevesinde problemi tek amaçlı çözmek yerine, sunulan 

problemlerin çözümü için çok amaçlı optimizasyon uygulanması önerilmiştir. Birçok 

pratik durumda birden fazla kaynak karakteristiğine ilişkin bilgi mevcut olduğundan 

optimizasyon probleminde birden fazla kriter kullanılabilir. Bu durumda birden fazla 

kriteri dikkate alan ancak bunları tek bir maliyet fonksiyonunda birleştiren bazı 

yaklaşımlar sunulmuştur. Bu durumla ilgili olarak, problem için bir dizi optimal çözüme 

yol açan çok amaçlı optimizasyona dayalı bir yaklaşım olarak birden fazla kriteri dikkate 

alan modeli şu şekilde gösterebiliriz.   

 min  
𝑊

𝜆1 𝐽1(𝑊) + 𝜆2 𝐽2(𝑊) + … + 𝜆𝐾 𝐽𝐾(𝑊)  (3.25) 

burada 𝜆 = (𝜆2, 𝜆2, … , 𝜆𝐾) ağırlık vektörüdür. 𝜆’yı önceden belirleyerek problem 

çözülürse optimal bir ayrıştırma matrisi elde edilebilir. 𝜆 ağırlık değerleri değiştirilirse 

farklı çözümler elde edilebilir. Bu da farklı kaynaklar için farklı çözümler elde etmemize 

sebep olabilir. Kaynak işaretlerin iki özelliğine ilişkin iki farklı kriterden oluşan bir 

optimizasyon modeli Denklem (3.26)’da verilmiştir. Seyreklik ve korelasyon olarak iki 

farklı amaç fonksiyonu işaret ayrıştırma için kullanılacaktır. Bu şekilde, her bir kriter 

kombinasyonu için bir sonuç çözümü olacaktır. Çok amaçlı optimizasyonda bir kaynağın 
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seyrekliği ve aralarındaki ilişki hakkında bilgi olduğunu varsayalım. Seyreklik ve 

korelasyon kriterlerine dayalı optimizasyon problemi şu şekilde verilmektedir: 

 min
𝑊

𝜆1𝐽𝑠𝑒𝑦𝑟𝑒𝑘𝑙𝑖𝑘(𝑊) + 𝜆2 𝐽𝑘𝑜𝑟𝑒𝑙𝑎𝑠𝑦𝑜𝑛(𝑊)  (3.26) 

Bazı alanlarda seyrek olduğu söylenen işaretleri çıkarmak için kullanılan optimizasyon 

kriteri olarak 𝑙1-normu sunulmaktadır. Çok amaçlı optimizasyon için önerilen 𝑙1-normu 

yeniden ağırlıklandırılmış minimizasyon problemine bağlı olarak işaret tahmininde 

kullanılmaktadır. Bu şekilde istenen seyreklik değerinin elde edilmesi 𝑙1-norm 

minimizasyon yöntemi ile elde edilmektedir. Kaynak işaretlerine ilişkin bir dizi bilgiyi 

hesaba katmayı amaçlayan, ancak λ ağırlık kümesinin önsel tanımından kaçınarak, BSS 

problemleriyle başa çıkmak için çok amaçlı bir optimizasyon yaklaşım 

uygulanmasını aşağıdaki denklem ile çözümü verilmektedir. 

 min
𝑊

[ 𝐽𝑠𝑒𝑦𝑟𝑒𝑘𝑙𝑖𝑘(𝑊),  𝐽𝑘𝑜𝑟𝑒𝑙𝑎𝑠𝑦𝑜𝑛(𝑊)] (3.27) 

Verilen bu denklem ile kullanıcının problem hakkındaki öznel bilgisine göre en iyi olanı 

seçmesine temel olarak kullanılabilecek bir dizi baskın olmayan tahmin kümesi elde 

edilir. Bu tez kapsamında optimizasyon kriterlerini formüle etmek için hem seyreklik hem 

de zaman korelasyon kriterleri kullanılmıştır.  

İlk kriter olarak 𝑙1-norm minimizasyonu yoluyla alınan kaynakların seyrekliğini hesaba 

katan bir ayırma kriteri oluşturularak işlem yapılmıştır. Ölçeklendirme sorunlarından 

kaçınmak için 𝑙1-normunu normalleştirebiliriz; 

  𝐽1(𝑊) = ∑
‖𝑊𝑖

𝑇 𝑥(𝑡)‖
1

‖𝑊𝑖
𝑇 𝑥(𝑡)‖

2

2
𝑖=1   (3.28) 

burada 𝑊𝑖
𝑇,  𝑖. kaynağın tahminiyle ilişkili 𝑊 ayrıştırma matrisinin 𝑖. satırını temsil eder.  

İkinci olarak, minimizasyon problemine uyarlanmış optimizasyon işlemi Denklem 

(3.29)’de verilmektedir.  

  𝐽2(𝑊) = − ∑ |𝐸[𝑊𝑖
𝑇𝑥(𝑡)𝑥(𝑡 − 𝜏)𝑇𝑤𝑖]|2

𝑖=1   (3.29) 
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 𝐽2(𝑊)'nin hesaplanmasının önceden tanımlanmış bir 𝜏 gecikmesine bağlı olarak 

belirlenir. Bu parametre, zamansal yapının görsel olarak daha belirgin olduğu 

karışımın otokorelasyon fonksiyonundan doğrudan bulunabilir. 

Dikkate alınan her iki kriterin de farklı özelliklere sahip olduğunu belirtmekte fayda var. 

Seyreklik, elemanlarının çoğunun sıfıra yakın olduğu vektörlerle ilgilidir. Öte yandan, 

otokorelasyon, alınan kaynakların zamansal yapısından yararlanır. Bu nedenle çok amaçlı 

problemin çözümü 

 min
𝑊

[∑
‖𝑊𝑖

𝑇 𝑥(𝑡)‖
1

‖𝑊𝑖
𝑇 𝑥(𝑡)‖

2

2
𝑖=1 , − ∑ |𝐸[𝑊𝑖

𝑇𝑥(𝑡)𝑥(𝑡 − 𝜏)𝑇𝑤𝑖]|2
𝑖=1  ]    (3.30) 

ile ifade edilir. Böylece her iki özellik arasındaki dengeyi temsil eden ve baskın olmayan 

çözümlerin elde edilmesi sağlanır.  

Kör kaynak ayrıştırma uygulamasında, yapay olarak oluşturulmuş bir A matrisinden, 

literatürden alınan kaynaklar kullanılacak ve karıştırılacaktır. Karışık veriler daha sonra 

baskın olmayan çözümler bulmak için çok amaçlı algoritmaya sunulacaktır. Her iki amaç 

fonksiyonunda da çok amaçlı modelin çözümü, soruna yönelik bir dizi baskın olmayan 

çözümle sonuçlanır. Bu çalışmada gerçekleştirilen deneyler, kaynakların bazı spesifik 

özelliklerinin kullanımını içerse de, çok amaçlı modelin herhangi bir veri seti ve 

optimizasyon kriterine genellenebileceğini doğrulamaktadır [81]. 

3.5. Benimsenen Çok Amaçlı Algoritma Hakkında Genel Hususlar 

Kör kaynak ayrımı kapsamındaki amaç fonksiyonlarının dışbükeylik açısından analiz 

edilmesi zor olduğundan, özellikle çok amaçlı optimizasyonda eş zamanlı olarak ele 

alındığında deneyler için SPEA2 algoritması tercih edilmiştir. Bu nedenle, maliyet 

fonksiyonları tanımlandıktan ve çok amaçlı model formüle edildikten sonra sorunun 

çözümü için SPEA2 uygulanmıştır. Algoritmanın her yinelemesinde, değişkenler 

(çıkarma vektörü, ayırma matrisi, doğrusal olmayanların veya kaynakların parametreleri 

ve ele alınan soruna bağlı olarak karıştırma matrisi), baskın olmayan çözümlere yaklaşana 

kadar evrimsel operatörlerden geçer. Ayrıca, bu çalışmada gerçekleştirilen tüm deneyler 

için bazı başlangıç değerlendirmeleri yapılmıştır. Bunlar: 
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Girdi: Tüm deneylerde dikkate alınan rekombinasyon oranı 𝑐 = 0,5’tir. Ters problem 

bağlamındaki deney haricinde, başlangıç popülasyonu 𝑃1'in bireyleri rastgele oluşturuldu 

ve tüm arama uzayını kapsayabildi. Çıkarma vektörü veya ayırma matrisi ile ilgili bireyler 

durumunda, [-1, 1] aralığı dikkate alınmıştır, çünkü BSS tekniklerinin doğasında bulunan 

ölçek belirsizliği göz önüne alındığında, bu, kaynak kurtarma işlemiyle ilgisizdir. 

Varyasyon: 𝑐 = 0,5 rekombinasyon oranına göre, varyasyon popülasyonunun %50'si 

rekombinasyona, %50'si ise mutasyona uğrar. Ayrıca bu aşamada dikkate alınması 

gereken önemli bir nokta da bu operatörlerin kaç değişkene göre hareket edeceğidir. 

SPEA2'nin yakınsamasını hızlandırmak için, bu miktarı, seçim mekanizmasındaki 

rastgele bir karaktere ek olarak, algoritmanın bulunduğu mevcut nesil ve maksimum nesil 

sayısı 𝑇'nin bir fonksiyonu olarak belirledik. Böylece ilk nesillerde daha fazla değişken 

değiştirilebiliyor, algoritma ilerledikçe bu sayı azalıyor. Aşağıda her operatör için bu 

miktarı elde etme mekanizmasını (buna 𝐵 diyeceğiz) sunuyoruz. 

Rekombinasyon: 𝑁𝑣𝑎𝑟 her bireydeki elementlerin (değişkenlerin) sayısı ve 𝑔 mevcut 

neslin sayısı olsun. İlk olarak, rekombinasyonun etki edeceği elementlerin 𝐵 sayısını şu 

şekilde belirleriz: 

 𝐵 = 𝑟𝑎𝑛𝑑𝑖 (1, 𝑟𝑜𝑢𝑛𝑑 (
(𝑔−1)∗(1−(𝑁𝑣𝑎𝑟−1))

𝑇−1
+ (𝑁𝑣𝑎𝑟 − 1)))   (3.31) 

burada 𝑟𝑜𝑢𝑛𝑑(𝛽), çıkışı 𝛽’ya en yakın tam sayı olan bir fonksiyondur ve  𝑟𝑎𝑛𝑑𝑖(𝜗1, 𝜗2) 

çıkışı [𝜗1, 𝜗2] aralığında bir tam sayı olan rastgele bir üreteçtir. Daha sonra, varyasyon 

popülasyonundan iki bireyi 𝑖 ve 𝑗’yi rastgele seçiyoruz. 𝐵 pozitif tamsayılar 𝑧 =

[𝓏1, … , 𝓏𝐵], burada 0 ≤ 𝓏𝐵 ≤ 𝑁𝑣𝑎𝑟 biçiminde ifade edilir. 

 Rekombinasyon, bireysel 𝑖 'nin 𝑧 elemanlarının, 𝑗 bireyinin 𝑧 elemanları ile değiştirilmesi 

ve bunun tersi ile yeni bireyler 𝑖′ ve 𝑗′ oluşturularak gerçekleştirilir. Yeniden birleştirilen 

bireylerin orijinallerle aynı olması durumundan kaçınmak için, rekombinasyon 

operatöründe dikkate alınan maksimum 𝐵 'nin 𝑁𝑣𝑎𝑟 − 1 olduğunu belirtmek gerekir. 

Mutasyon: Mutasyon durumunda 𝐵 'yi elde etme mekanizması, rekombinasyon 

mekanizmasına benzer, yalnızca 𝑁𝑣𝑎𝑟 için maksimum değerini değiştirir (bu da ilk 

nesillerdeki tüm elementlerde mutasyona izin verir). Böylece, Denklem (3.32) ile 𝐵 

sayısını belirlenir.  



60 

 𝐵 = 𝑟𝑎𝑛𝑑𝑖 (1, 𝑟𝑜𝑢𝑛𝑑 (
(𝑔−1)∗(1−𝑁𝑣𝑎𝑟)

𝑇−1
+ 𝑁𝑣𝑎𝑟))  (3.32) 

Burada varyasyon popülasyonundan rastgele bir 𝑖 bireyi ve 0 ≤ 𝓏𝑖 ≤ 𝑁𝑣𝑎𝑟 olan 𝐵 pozitif 

tamsayılar 𝑧 = [𝓏1, … , 𝓏𝐵]'yi seçiyoruz.  Mutasyon bireyin 𝓏𝑏 elemanlarını değiştirerek 

gerçekleştirilir ve burada 𝑏 = 1,2, … , 𝐵 olmak üzere 𝑖 bireyin 𝑖𝓏𝐵
′ = (1 + 0,1 ∗ 𝑟𝑎𝑛𝑑𝑛) ∗

𝑖𝓏𝐵
 olarak bulunur. Ayrıca 𝑖𝓏𝐵

, 𝑖 bireyin 𝓏𝑏 'inci elemanıdır, 𝑖𝓏𝐵
′  de 𝑖′ bireyin 𝓏𝑏 'inci 

elemanıdır. 𝑟𝑎𝑛𝑑𝑛 ise , ortalaması 0 ve standart sapması 1'e eşit olan Normal dağılımdan 

elde edilen rastgele bir sayıdır [4,81].  

 



 

 

 

4.  BÖLÜM  

MO-BSS YÖNTEMİ İLE İŞARETLERİN AYRIŞTIRILMASI 

Başlangıçta uygulamaya ait gerekçeler sunulacak ve sonrasında önerilen sorunların 

çözümü için düşünülen modeller sunulmuştur. Benimsenen çok amaçlı algoritmaya 

ilişkin ek hususlar da gösterilmiştir. 

Kör kaynak ayrıştırmada genelde tek amaçlı optimizasyon yöntemleri kullanılmaktadır. 

Bu da ayrıştırmanın doğrulanması yönünde soru işaretlerine sebebiyet vermektedir. Çok 

amaçlı optimizasyon ile ayrıştırma işleminin doğruluğunun teyit edilmesi ve farklı amaç 

fonksiyonları ile sonuç değerlendirmenin daha verimli olması sağlanacaktır.  

Tez çalışmasının uygulama bölümünde kullanılan yöntemlerden MO-BSS, Ön işlemli 

MO-BSS ve DWT MO-BSS yöntemlerinin SNR değeri ile performansları ve işlem 

süreleri test edilmiştir. Uygulamada kullanılan test işaretleri konuşma ve biyomedikal 

işaret olarak iki farklı türde ayrıştırılmış ve algoritmaların performansları 

değerlendirilmiştir. Konuşma işareti olarak iki kadın ve bir erkek konuşma sesi 

kullanılmıştır. Algoritma performanslarının teyitti için birbirlerine karışmış iki erkek ve 

bir gürültü işaretinin ayrıştırılması yapılmıştır. Ayrıca biyomedikal işaret olarak Anne 

EKG, Fetal EKG ve beyaz Gauss gürültü işaretleri kullanılmıştır. Aynı zamanda EEG ve 

beyaz Gauss gürültü işaretlerinin ayrıştırılması da aynı yöntemler ile test edilmiştir. Tez 

kapsamında BSS için SPEA2 algoritması ile çok amaçlı ayrıştırma yapılarak SNR 

değerleri ölçülmüştür. Kör kaynak ayrıştırma için kullanılacak olan SPEA2 

algoritmasından önce işaretler rastgele karıştırılarak ön işlemler uygulanması ve bu 

sayede veri işlemeyi kolaylaştırmanın yanı sıra boyut indirgeme ve hızlı yakınsama 

sağlanmıştır. Sonrasında MO-BSS yöntemine ayrık dalgacık yöntemi uygulanarak test 

işlemleri ayrıca değerlendirilmiştir. 
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Bazı çalışmalarda işaret sayısına göre sabit karıştırma matrisleri kullanılırken yani iki 

işaret için Denklem (4.1)’de verilen ifadeler yaygın şekilde ele alınırken bu çalışmada 

günlük hayatta işaretlerin nasıl karıştığını bilmediğimizden rastgele oluşturulmuş 

karıştırma matrisleri kullanılmıştır (𝐴 = 𝑟𝑎𝑛𝑑_𝑜𝑟𝑡ℎ(2)).  

 𝐴 = [
1 0.5

0.5 1
] veya 𝐴 = [

1 0.7
0.7 1

] v.b. (4.1) 

Değerlendirmede SNR değeri aşağıdaki denklem ile hesaplanmıştır.  

 𝑆𝑁𝑅𝑑𝐵 = 10𝑙𝑜𝑔10 (
𝑃𝑠

𝑃𝑛
) (4.2) 

burada 𝑃𝑠ve 𝑃𝑛 sırasıyla işaret ve gürültü işaretlerinin gücünü temsil etmektedir.  

4.1 Araştırma Modeli ve Uygulama 

Yapay ve doğrusal şekilde karıştırılmış işaretleri birbirinden ayırmak için yapılan bu 

çalışmada üç farklı kaynaktan alınan işaretler üç sensör tarafından kaydedilmiş ve tekrar 

kaynak işaretleri elde etmek için farklı algoritmalar üzerinde uygulamalar yapılmıştır.  

İşaretlerin karıştırılmasında kaynak ve sensör uzaklıkları eşit kabul edilerek doğrusal 

karışım rastgele matris kullanılarak yapılmıştır. Rastgele matris kullanılarak daha doğal 

ve ayrıştırılması zor olan karışımlar elde edilmiştir.  

Uygulamalar iki farklı işaret grupları üzerinde yapılmıştır. İlk uygulama konuşma sesleri 

üzerinde, ikinci uygulama ise biyomedikal işaretler üzerinde yapılmıştır. İlk yapılan 

uygulamalarda belirlenen amaç fonksiyonları doğrultusunda iki kadın ve bir erkek 

konuşma seslerine ait veriler ile gerekli simülasyon çalışmaları yapılmıştır. Bu tezde 

kullanılan konuşma sesleri [140] numaralı kaynaktan alınmıştır. Üç sese ait veriler her 

seferinde farklı karıştırma matrisleri ile karıştırılmak suretiyle algoritmaların 50 koşma 

sonucundaki değerleri incelenmiş ve elde edilen tahmini işaretler yorumlanmıştır. 

Öncelikle MO-BSS algoritmasında uygulamalar yapılmıştır. Sonuçlar 50 koşmanın her 

adımında SNR değerleri kaydedilmiş ve bunların ortalaması da alınarak grafik ve tablolar 

eşliğinde sunulmuştur. Aynı zamanda algoritma performans metrikleri ile de 

değerlendirilmiştir. Her algoritma için ayrıca çalışma sürelerinin ortalamaları da tablo 

şeklinde verilmiştir.  
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MO-BSS algoritmasının hesaplama performansını artırmak için ön işlem yöntemi 

dediğimiz beyazlatma işlemi uygulanmıştır. MO-BSS algoritmasında yapılan simülasyon 

çalışmaları ve değerlendirme yöntemleri bu algoritma için de yapılmış olup kıyaslama 

sonuçları tablolarda gösterilmiştir.  

Önerilen ön işlemli MO-BSS uygulamasından sonra DWT ile MO-BSS uygulaması 

yapılmıştır. Aynı şekilde tüm sonuçlar diğer algoritma verileri ile de karşılaştırılarak 

ayrıntılı olarak SNR ve performans metrikleri tablo şeklinde gösterilmiştir. Tüm 

uygulamalarda veriler değerlendirilirken 1000, 2000, 5000, 10000, 20000 ve 30000 örnek 

sayısı dikkate alınarak farklı uzunluktaki veri miktarlarına göre SNR oranları 

değerlendirilmiştir.     

Şekil 4.1’de kullanılan iki kadın ve bir erkek konuşma işaretlerinin 10000 örnek sayısı 

olarak gösterimi verilmiştir. Bu veriler kaynak veri veya kaynak işaret olarak 

adlandırılmaktadır.   

 

Şekil 4.1. İki kadın ve bir erkek konuşma sesine ait kaynak işaretler 

Bu üç işaret rastgele karıştırılarak MO-BSS algoritmasına uygulanmış ve performans 

sonuçları kaydedilmiştir. Bu algoritmanın kararlığını ölçmek için her işaret ayrıştırma 

adımında rastgele karıştırma matrisi değiştirilmiş ve 50 koşma olarak Monte Carlo 

uygulaması yapılmıştır.  Monte Carlo simülasyonu birçok alanda problem çözümlerinde 

kullanılmaktadır [141]. Burada Monte Carlo simülasyonu her koşmada farklı karıştırma 
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matrisleri kullanarak kaydedilen SNR değerlerinin ortalaması alınmaktadır. Bu yöntem 

ile algoritmaların gerçek performansları değerlendirilmiştir. Önerilen SPEA2 

simülasyonunda kullanılan parametre değerleri popülasyon büyüklüğü 100, harici küme 

büyüklüğü 50, çapraz geçiş oranı 50 ve maksimum yineleme sayısı 60 olarak 

belirlenmiştir. 

Uygulamada Şekil 4.2'de görüldüğü gibi orijinal kaynak işaretler, rastgele karışım 

işaretler ve MO-BSS algoritma sonucu tahmin edilen kaynak işaretlerin daha iyi 

gözlemlenmesi için 4000 örnek büyüklüğündeki değişimleri gösterilmektedir. Şekilde 

karışım işaretleri üç işaretin karışımı olduğundan genlik durumlarına göre karışım 

oranları değişiklik göstermektedir. İşaret ayrıştırma sonucunda elde edilen tahmini 

işaretler ne kadar orijinal işaretlere benzese de görsel olarak bunu anlamak çok zordur. 

Dolayısıyla SNR ve metrik değerleri gerçek tahmini işaretler hakkında bilgi verecektir.   

 

 

 

Şekil 4.2. Kullanılan orijinal kaynak işaretler, karıştırılmış işaretler ve tahmin edilen 

kaynak işaretler 

Uygulamada SPEA2 algoritması kullanılarak baskın olmayan kümenin yanı sıra her bir 

kriteri ayrı ayrı en aza indiren çözümler ve baskın olmayan kümedeki en iyi çözüm Şekil 
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4.3’te gösterilmektedir. İşaretler rastgele karıştırıldığı için her koşmada Pareto 

cephesindeki çözümler de değişmektedir.  

 

Şekil 4.3. Algoritmanın koşma sırasında rastgele alınan Pareto cephesi 

MO-BSS algoritma performansını daha ayrıntılı incelemek için Tablo 4.1’de verilen 

değerler SNR cinsinden kaydedilmiştir. Kullanılan işaretler 1000, 2000, 5000, 10000, 

20000 ve 30000 örnek boyutlarında ayrıştırma işlemine tabi tutulmuştur. Bu örnek 

sayıları rastgele seçilmiş olup algoritmanın performansı hakkında yeterince bilgi sahibi 

olmaya yeterlidir. Tablodaki değerler algoritmanın 50 koşma sonucundaki ortalama 

değerlerini göstermektedir.  

Tablo 4.1. Örnek sayılarına göre MO-BSS yönteminin SNR değerleri 

Örnek Sayısı 
1.Kadın Sesi İçin 

MO-BSS 

2.Kadın Sesi İçin 

MO-BSS 

Erkek Sesi İçin 

MO-BSS  

1000 20.56 21.09 24.64 

2000 22.41 20.35 25.37 

5000 23.18 22.94 22.61 

10000 25.64 23.15 24.33 

20000 22.73 21.11 23.15 

30000 26.10 25.84 27.42 
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Çok amaçlı optimizasyon yardımıyla karışmış işaretlerin ayrıştırılmasında Tablo 4.1’deki 

değerler incelendiğinde özellikle kadın seslerinde birbirine yakın sonuçlar dikkat 

çekerken erkek sesinin ayrıştırılmasının daha iyi sonuçlar verdiği gözlemlenmiştir. Kadın 

seslerinde örnek sayısı arttıkça SNR değerinin de arttığı, erkek ses işaretinde ise artış 

oranının sınırlı kaldığı görülmektedir. Birinci kadın sesinde en iyi ayrıştırma değeri 26.10 

dB ile 30000 örnek boyutunda en düşük ayrıştırma ise 20.56 dB ile 1000 örnek boyutunda 

olduğu görülmektedir. İkinci kadın sesinin ayrıştırılmasında, en yüksek 25.84 dB ile 

30000 örnek boyutunda en düşük ise 20.35 dB ile 2000 örnek boyutunda hesaplanmıştır. 

Erkek sesinde ise ölçülen en yüksek 27.42 dB ile 30000 örnek boyutu ve en düşük değer 

olarak 22.61 dB ile 5000 örnek boyutundaki verilerde elde edilmiştir.   

Birinci kadın sesinin ayrıştırılmasında algoritmanın 50 koşmada alınan her bir SNR 

değeri Şekil 4.4’te verilen grafikte gösterilmiştir. Bu değerler 10000 örnek boyutunun 

ayrıştırılmasından alınmıştır. Birinci kadın ses işareti için algoritmanın her koşmadaki 

SNR değerleri tam sayı olarak alınmış olup 18 dB ile 32 dB arasında değiştiği 

anlaşılmaktadır. Bu değişik normal olup işaretlerin her örnek adımındaki genlik değerleri 

ve karıştırma matrisinin her koşmada farklı değerler almasından kaynaklanmaktadır.  

     

Şekil 4.4. Birinci kadın sesi için algoritmanın 50 koşma sayısındaki SNR sonuçları 

Şekil 4.5’te ikinci kadın ses işaretinin algoritmanın 50 koşmadaki ayrıştırılmasında SNR 

değerleri 17 dB ve 35 dB arasında değişiklik göstermiştir. 10000 örnek boyutundan alınan 
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bu değerlerin ortalaması 23 dB olarak hesaplanmıştır. Birinci kadın sesinde olduğu gibi 

burada da değerler değişkenlik göstermiştir.   

     

Şekil 4.5. İkinci kadın sesi için algoritmanın 50 koşma sayısındaki SNR sonuçları 

   

Şekil 4.6. Erkek sesi için algoritmanın 50 koşma sayısındaki SNR sonuçları 

Şekil 4.6’da gösterilen erkek ses işaretinin ayrıştırılmasın da ise değerlerin tam sayısı 

alınarak 19 dB ile 35 dB arasında değişen SNR değerleri elde edilmiştir. Ortalama SNR 

değeri ise 24 dB’dir. Burada kaynak işaretlerin iki kadın ve bir erkek sesi olarak seçilmesi 

algoritmanın performansını olumsuz yönde etkileyen verilerdir. Genel olarak 

çalışmalarda iki işaret kullanılmakta ve bu işaretlerin biri ses olurken diğeri gürültü 
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şeklinde verilmektedir. Dolayısıyla bu işaret karışımların ayrıştırılması nispeten daha 

kolay olacağından SNR değerleri de yüksek çıkabilmektedir. Tezde kullandığımız 

işaretler ve kaynak sayısı gerçek hayatta karşılaşacağımız doğal ortamlar göz önüne 

alınarak üç farklı işaret olarak seçilmiş ve en zor şartlarda bu işaretlerin ayrıştırılması 

sağlanmıştır.  

MO-BSS algoritmasının performans değerleri ölçmek için ise performans metrikleri 

kullanılmıştır. Tablo 4.2’de IGD metriği için en iyi değer, en kötü değer ve ortalama 

değerleri verilmiştir. Metrik değerlerinin ölçümü için de verilerin örnek boyutları aynı 

değerler kullanılarak simülasyonlar yapılmıştır. IGD değerinin küçük olması istenirken 

örnek sayısı arttıkça en iyi, en kötü ve dolayısıyla ortalama değerlerinde arttığı 

gösterilmiştir. En iyi IGD değeri 0.00012 ile 5000 örnek boyutunda en kötü IGD değeri 

ise 0.12644 ile 30000 örnek boyutunda hesaplanmıştır. Ortalama değerler incelendiğinde, 

işaretlerin örnek sayısı arttıkça IGD değerlerinin de arttığı gözlemlenmiştir.   

Tablo 4.2. MO-BSS yönteminin IGD metrik değerleri 

 

Tablo 4.3’te HV metriği için ölçümler yapılmıştır. Ortalama değerlere baktığımızda en 

iyi değerin 10000 örnek boyutunda 0.65848 değer aldığı, en kütü ise 1000 örnek boyutu 

ile 0.22645 değer aldığı tabloda gösterilmiştir. Genelde örnek sayısına göre artış olsa da 

işaret karışımlarından dolayı baskın olmayan çözüm setlerindeki verilerin değerleri farklı 

olacaktır. Bu da örnek sayısından bağımsız olarak tüm metrikler de değişkenlik 

göstermektedir. 

 

Örnek Sayısı 
IGD Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

1000 0.00013 0.01348 0.00557 

2000 0.00016 0.02910 0.00612 

5000 0.00012 0.07097 0.00916 

10000 0.00057 0.05611 0.01648 

20000 0.00346 0.08078 0.01935 

30000 0.00448 0.12644 0.02354 
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Tablo 4.3. MO-BSS yönteminin HV metrik değerleri 

Örnek Sayısı 
HV Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

1000 0.80568 0.02318 0.22645 

2000 0.83521 0.03684 0.23634 

5000 0.76841 0.04582 0.34405 

10000 0.97748 0.03845 0.65848 

20000 0.96826 0.05461 0.52021 

30000 0.98645 0.05867 0.54244 

 

Tablo 4.4’te ise SP metriğinin ölçüm sonuçları verilmiştir. Burada metrik değerlerinin 

küçük değerler alması istenir. Dolayısıyla en iyi 5000 örnek boyutunda 0.66842 değeri 

ve en kötü değer olarak 20000 örnek boyutundaki 1.69834 değeri görmekteyiz. 

Ortalamaya baktığımızda ise istenen metrik değeri 2000 örnek boyutunda 1.15457 olarak 

hesaplanmıştır.  

Tablo 4.4. MO-BSS yönteminin SP metrik değerleri 

Örnek Sayısı 
SP Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

1000 0.68425 1.60145 1.25843 

2000 0.71121 1.51641 1.15457 

5000 0.66842 1.59831 1.18412 

10000 0.74645 1.56112 1.17398 

20000 0.88684 1.69834 1.21780 

30000 0.94365 1.48079 1.23452 

 

Tasarlanan algoritmanın çalışma süreleri örnek sayılarına göre incelenmiştir. Tablo 4.5’te 

belirtilen değerler 50 koşmada Monte Carlo analizi sonucundaki ortalama sürelerdir. 

Örnek sayısı arttıkça hesaplama yükü de artacaktır. Yalnız örnek sayısına göre aynı 

oranda artış olmamıştır. Tablo 4.5’te verilen süreler tek amaçlı optimizasyon 

algoritmalarına göre yüksek olsa da çok amaçlı optimizasyon algoritmalarının işlem 
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yüklerinden dolayı yüksektir. Çünkü işlem yükü tek amaçlı optimizasyonlara göre 

fazladır. 

Tablo 4.5. MO-BSS yönteminin farklı örnek sayılarına göre çalışma süreleri 

Örnek Sayısı 
MO-BSS 

(sn) 

1000 3.36 

2000 5.67 

5000 7.39 

10000 11.42 

20000 18.24 

30000 23.69 

 

Genel olarak bakıldığında MO-BSS algoritmasının çalışmasında SNR değerlerinin 

yüksek olması istenmektedir. Bu doğrultuda algoritmanın performansını artırmak için bir 

dizi işlemler yapılmıştır. Ayrıştırma işlemine başlamadan önce işaretleri korelasyonsuz 

bir değişkene dönüştürüp işaretlerin daha yüksek SNR değerlerinde ayrıştırılması 

amaçlanmıştır. Bu yöntem ön işlem dediğimiz beyazlatma işlemi olarak işaretlere 

uygulanarak algoritmanın işlem performansı incelenmiştir.   

4.2. Ön İşlem ve Ayrık Dalgacık Dönüşümü Uygulaması 

Çok amaçlı optimizasyon yöntemi ile uygulanan SPEA2 algoritmasına ön işlem olarak 

beyazlatma uygulanıp sonuçlar değerlendirilmiştir. Devamındaki uygulamada ise MO-

BSS yöntemine DWT uygulanmış ve bu sayade işaretlerde boyut indirgeme yapılarak 

algoritmanın başarım oranı test edilmiştir.  

4.3. Ön İşlem Uygulanarak İşaret Ayrıştırma 

Bu bölümdeki ilk uygulamada MO-BSS ile ön işlemli MO-BSS algoritmalarının 

karşılaştırmalı bir değerlendirilmesi yapılmıştır. Şekil 3.1’deki blok diyagramına göre 

algoritma tasarlanmış ve aynı işaretler ile uygulama yapılmıştır. Algoritma performansı 

daha ayrıntılı incelemek için Tablo 4.6’da verilen değerler SNR cinsinden kaydedilmiştir.  
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Bu tabloda ilk yapılan uygulama ile ön işlemli MO-BSS algoritmalarının sonuçları 

kıyaslama açısından birlikte verilmiştir.  Aynı şekilde işaretler 1000, 2000, 5000, 10000, 

20000 ve 30000 örnek boyutlarında ayrıştırma işlemine tabi tutulmuştur.  

Tablo 4.6. Örnek sayılarına göre ön işlemli MO-BSS yönteminin SNR değerleri 

Örnek 

Sayısı 

1. Kadın Sesi İçin 2. Kadın Sesi İçin Erkek Sesi İçin 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

MO-BSS 
Ön İşlemli 

MO-BSS 
MO-BSS 

Ön 

İşlemli 

MO-BSS 

1000 20.56 29.08 21.09 31.37 24.64 32.47 

2000 22.41 34.61 20.35 33.28 25.37 36.31 

5000 23.18 32.13 22.94 32.17 22.61 35.92 

10000 25.64 35.71 23.15 34.63 24.33 37.34 

20000 22.73 33.52 21.11 36.97 23.15 37.63 

30000 26.10 38.02 25.84 38.36 27.42 39.18 

 

Tablo 4.6’daki değerler algoritmanın 50 koşma sonucundaki ortalama değerleridir. Ön 

işlemli MO-BSS algoritmasının her üç ses işaretinin ayrıştırılmasında daha iyi sonuçlar 

verdiği tabloda gösterilmiştir. Ayrıca ikinci kadın sesisin birinci kadın sesinden daha iyi 

ayrıştırıldığı, erkek sesinin ise örnek sayısı arttıkça SNR değerinin de arttığı 

gözlemlenmiştir. Bu durum işaret ayrıştırma tekniklerinde örnek sayısı ile SNR değerinin 

artması genel olarak paralellik göstermektedir. Tablodaki değerler ayrıntılı olarak 

incelendiğinde MO-BSS algoritmasında birinci kadın sesinin en düşük SNR değeri 20.56 

dB iken ön işlemli MO-BSS’de 29.08 dB’ye yükselmiştir. En yüksek değer ise 26.10 

dB’den 38.08 dB’ye çıkarılmıştır. Bu sonuçlar ile yaklaşık %45 oranında performans 

artışı sağlanmıştır. İkinci kadın sesinin ayrıştırılmasında MO-BSS algoritmasında en 

düşük SNR değeri 20.35 dB olarak hesaplanmışken ön işlemli MO-BSS algoritmasında 

bu değer 33.28 dB’ye çıkarılmıştır. En yüksek 25.84 dB olarak hesaplanan değer ise 38.36 

dB’ye yükseltilmiştir. Genel olarak tüm örnek sayısındaki değerlere bakıldığında yaklaşık 

%50-65 arasında artış olduğu hesaplanmaktadır. Erkek sesinin ayrıştırma sürecinde ise 

MO-BSS algoritmasında en düşük SNR değeri 22.61 dB olarak hesaplanırken ön işlemli 

MO-BSS algoritmasıyla bu değer 35.92 dB’ye yükseltilmiştir. En yüksek hesaplanan 
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27.42 dB değeri de önerilen algoritma yöntemi ile 39.18 dB’ye çıkarılmıştır. Tüm örnek 

sayılarındaki SNR değerleri incelendiğinde yaklaşık %40-60 arasında algoritmanın 

performans artışı sağlanmıştır.  

10000 örnek boyutundaki birinci kadın sesinin ayrıştırılmasında 50 kez çalıştırılan Monte 

Carlo analizinin her koşmadaki ön işlemli MO-BSS algoritmasının SNR değerleri ise 

Şekil 4.7’deki grafikte gösterilmiştir. SNR değerleri 22 dB ile 43 dB arasında değişkenlik 

göstermektedir. 10000 örnek sayısındaki ortalama SNR değeri MO-BSS’de 25 dB iken 

ön işlemli algoritmada 35 dB ile kayda değer bir artış sağlanmıştır.  

   

Şekil 4.7. Birinci kadın sesi için ön işlemli MO-BSS’nin 50 koşmadaki SNR sonuçları 

İkinci kadın sesi için ise SNR değerleri 21 dB ile 47 dB arasındaki değişen değerler ile 

Şekil 4.8’de gösterilmektedir. 10000 örnek sayısındaki ortalamaya bakıldığında SNR’si 

34 dB değeri ile MO-BSS algoritmasında ölçülen 23 dB değerinden oldukça iyi olduğu 

anlaşılmaktadır.  

Erkek sesinin ayrıştırılmasında SNR değerinin 29 dB ile 45 dB arasında değişen grafiği 

Şekil 4.9’da gösterilmiştir. Erkek sesinde diğer iki sese nazaran SNR değerleri arasındaki 

farkın yani en düşük ile en yüksek değerlerin birbirine yakın olduğu görülmektedir. Bu 

değişikliklerin ana nedeni karıştırma matrisidir. Daha önce de belirtildiği gibi karıştırma 

matrisi rastgele oluşturulmuştur.  
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Şekil 4.8. İkinci kadın sesi için ön işlemli MO-BSS’nin 50 koşmadaki SNR sonuçları 

   

Şekil 4.9. Erkek sesi için ön işlemli MO-BSS’nin 50 koşmadaki SNR sonuçları 

Algoritmaların performanslarını daha iyi görmek ve karşılaştırmak için Tablo 4.7’de IGD 

metrik değerleri verilmiştir. Ön işlemli MO-BSS algoritmasının IGD değerleri MO-BSS 

yönteminden daha iyi olduğu ve özellikle 30000 örnek sayısındaki performansının 

başarılı olduğu görülmektedir. En iyi değerler kategorisi incelendiğinde 10000 örnek 

boyutu hariç diğer IGD metrik değerlerinde azalma görülerek başarım sağlanmıştır. En 

kötü değerler kısmında 1000 örnek boyutu hariç diğer örnek boyutlarında istenen 

sonuçlar elde edilmiştir. Ortalama değerle kategorisinde ise önerilen yöntemin IGD 
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metrik değerleri incelendiğinde tüm örnek boyutlarında başarım sağlandığı 

anlaşılmaktadır. 

Tablo 4.7. Ön işlemli MO-BSS yönteminin IGD metrik değerleri 

Örnek 

Sayısı 

IGD Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

1000 0.00013 0.00011 0.01348 0.01813 0.00557 0.00548 

2000 0.00016 0.00010 0.02910 0.02437 0.00612 0.00564 

5000 0.00012 0.00011 0.07097 0.04534 0.00916 0.00837 

10000 0.00057 0.00061 0.05611 0.04916 0.01648 0.01241 

20000 0.00346 0.00127 0.08078 0.06852 0.01935 0.01608 

30000 0.00448 0.00189 0.12644 0.05054 0.02354 0.01385 

 

 

Tablo 4.8. Ön işlemli MO-BSS yönteminin HV metrik değerleri 

Örnek 

Sayısı 

HV Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

1000 0.80568 0.80845 0.02318 0.02387 0.22645 0.22942 

2000 0.83521 0.84789 0.03684 0.03945 0.23634 0.24181 

5000 0.76841 0.79645 0.04582 0.04834 0.34405 0.34975 

10000 0.97748 0.93411 0.03845 0.04127 0.65848 0.66337 

20000 0.96826 0.97086 0.05461 0.05864 0.52021 0.51845 

30000 0.98645 0.98048 0.05867 0.05785 0.54244 0.55013 
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Tablo 4.8’de HV metriğine ait veriler gösterilmiş olup MO-BSS ile ön işlemli MO-BSS 

algoritma arasında farkın çok az olduğu gösterilmiştir. En iyi değer incelendiğinde 10000 

ve 30000 örnek boyutlarında ön işlemli MO-BSS algoritma sonuçlarının MO-BSS 

algoritmasına göre düşük çıktığı görülmektedir. Diğer örnek sayılarında istenen sonuçlar 

elde edilmiştir. En kötü değer kısmında 30000 örnek boyutu hariç diğer örnek 

boyutlarında önerilen algoritmanın performansı MO-BSS algoritmasına göre yüksek 

değerler bulunmuş ve HV metriğinde istenen sonuçlar elde edilmiştir. Ortalama değerlere 

bakıldığında sadece 20000 örnek boyutunda düşük değer çıktığı, yani MO-BSS 

algoritmanın performansının daha iyi olduğu ve diğer örnek sayılarında çok az da olsa 

yüksek değerler ölçüldüğü tabloda gösterilmiştir.  

SP metriğine ait algoritmaların performansını gösteren değerler Tablo 4.9’da 

gösterilmiştir. En iyi değerlerde 20000 örnek boyutunda az da olsa MO-BSS algoritması 

önerilen algoritmadan daha iyi sonuç vermiştir. Diğer örnek sayılarında ise önerilen 

algoritmanın performansının başarılı olduğu görülmektedir. En iyi değerler her iki 

algoritmada da yakın sonuçlar verirken en kötü değerlerde kayda değer değişkenlik 

gözlemlenmiştir. Ortalama verilere bakıldığında örnek sayısı arttıkça önerilen 

algoritmanın metrik değerinin daha iyi sonuç verdiği görülmektedir.  

Tablo 4.9. Ön işlemli MO-BSS yönteminin SP metrik değerleri 

Örnek 

Sayısı 

SP Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

MO-BSS 

Ön 

İşlemli 

MO-BSS 

1000 0.68425 0.67576 1.60145 1.53786 1.25843 1.11678 

2000 0.71121 0.69785 1.51641 1.59345 1.15457 1.14875 

5000 0.66842 0.65374 1.59831 1.24560 1.18412 1.17067 

10000 0.74645 0.73045 1.56112 1.42457 1.17398 1.15236 

20000 0.88684 0.88757 1.69834 1.33485 1.21780 1.16104 

30000 0.94365 0.93478 1.48079 1.19748 1.23452 1.11352 
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MO-BSS ve ön işlemli MO-BSS algoritmalarının örnek boyutlarına göre çalışma süreleri 

Tablo 4.10’da verilmiştir. Her iki algoritmanın da çalışma süreleri benzer olup çok az fark 

vardır. İşlem yoğunluğu dikkate alınırsa önerilen algoritmanın MO-BSS’den az da olsa 

işlem süresinin düşük olması olumlu etki yaratmaktadır. İşlem süreleri saniye cinsinden 

ölçülmüştür. Özellikle 30000 örnek sayısındaki veri ayrıştırılırken önerilen algoritmanın 

işlem maliyeti MO-BSS algoritmasına göre 1.5 saniye daha kısa sürede sonuç 

vermektedir. Diğer örnek sayılarında ise kayda değer fark olmadığı tabloda gösterilmiştir.   

Tablo 4.10. MO-BSS ve ön işlemli MO-BSS yöntemlerinin çalışma süreleri 

Örnek Sayısı 
MO-BSS 

(sn) 

Ön İşlemli  

MO-BSS 

(sn) 

1000 3.36 3.11 

2000 5.67 5.58 

5000 7.39 7.46 

10000 11.42 11.02 

20000 18.24 17.49 

30000 23.69 22.37 

 

Şekil 4.10’da işlem sürelerinin daha iyi anlaşılması amacıyla grafiksel gösterimi 

verilmiştir. İki algoritma arasında değişim az da olsa bar grafiğinde daha net 

anlaşılmaktadır.  

Genel olarak her iki algoritmanın SNR değerlerine bakıldığında ön işlemeli MO-BSS 

algoritmasında başarılı sonuçlar elde edilmiştir. Performans metriklerindeki değerler de 

bunu desteklemektedir. Hesaplama maliyeti bakımından önerilen yöntemlerin işlem yükü 

arttığından istenen seviyede işlem süresi olmasa da yaklaşık olarak aynı süreyi korumuş 

veya çok az da olsa işlem süresinde azalmalar görülmüştür.   
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Şekil 4.10. MO-BSS ve ön işlemli MO-BSS yöntemlerinin çalışma sürelerinin grafiksel 

gösterimi 

Kullanılan algoritmanın hesaplama yükünü azaltmak için çalışmalara devam edilmiştir. 

Bu doğrultuda işaretin zaman ve frekanstaki davranışları incelenmiştir. İşaretin düşük ve 

yüksek frekanslı bileşenlerine ayırdığımızda düşük frekanslı bileşenler genellikle işaretin 

tanınma özelliği hakkında bilgi verdiğinden bu doğrultuda çalışmalar yapılmıştır. İşaret 

bileşenleri hakkında yeterince bilgiye ulaşılması durumunda işaret ayrıştırmada olumlu 

etki yaratmıştır. Bunun için alçak geçiren filtreler ile işaretin bileşenlerine ayrıştırılması 

sağlanmıştır. Bu doğrultuda tasarlanan MO-BSS algoritması için Dalgacık 

Dönüşümünden (WT, Wavelet Transform) yararlanılmıştır. 

4.4. Ayrık Dalgacık Dönüşümü Uygulanmış MO-BSS Algoritması  

Önerilen bu ikinci çalışmada aynı kaynak işaretler kullanılarak rastgele karışımları elde 

edilmiştir. Sonrasında ayrık dalgacık dönüşümü ile uygun filtreleme yapılıp ve 

devamında SPEA2 yöntemi ile de kör kaynak ayrıştırma işlemi yapılmıştır. Elde edilen 

işaretler tekrar ters ayrık dalgacık dönüşümü ile kaynak işaretlerin tahmini değerlerine 

ulaşılmıştır. Tezde önerilen bu ikinci yöntemle ön işlemli MO-BSS’de olduğu gibi işaret 

ayrıştırma SNR cinsinden ve performans metrikleri dikkate alınarak uygulamalar 

yapılmış ve sonuçlar MO-BSS algoritmasıyla karşılaştırılmıştır.  
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Şekil 4.11’de iki kadın ve bir erkek ses işaretlerinin zaman-frekans eksenindeki orijinal, 

karışmış ve tahmini ayrıştırılmış şekilleri gösterilmektedir. Bu kısımdaki tüm 

uygulamalarda da işaretlerin 1000, 2000, 5000, 10000, 20000 ve 30000 örnek sayılarına 

göre testler yapılmıştır.  

 

 

 

Şekil 4.11. Ses işaretlerinin zaman-frekans eksenindeki orijinal, karışmış ve tahmini 

ayrıştırılmış şekilleri 

DWT ile yapılan uygulama sonuçlarının SNR değerleri Tablo 4.11’de gösterilmiştir. 

Tablodaki değerler algoritmaların 50 koşma sonucundaki ortalama değerleridir. Tabloda 

MO-BSS, ön işlemli MO-BSS ve DWT MO-BSS yöntemlerinin SNR değerleri verilmiş 

ve DWT MO-BSS yönteminin diğer iki yöntemlerden da başarılı sonuçlar verdiği 

görülmektedir.  

Birinci kadın ses işaretinde 1000 örnek sayısında 38.30 dB ile en düşük değer, 20000 

örnek sayısında 52.47 dB ile de en yüksek SNR değerleri elde edilmiştir. DWT MO-BSS 

yöntemiyle MO-BSS yönteminin SNR değerleri karşılaştırıldığında yaklaşık olarak 

%100’lük bir artış olduğu görülmektedir. Ön işlemli MO-BSS yöntemi ile 
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karşılaştırıldığında değişen örnek sayısına göre yaklaşık %30-55 arasında SNR 

değerlerinde artış olduğu hesaplanmıştır.  

İkinci kadın ses ayrıştırılmasında en düşük SNR değeri 37.87 dB ile 1000 örnek 

boyutunda, en yüksek 50.78 dB ile de 30000 örnek boyutlarında elde edilmiştir. DWT 

MO-BSS yöntemiyle MO-BSS yönteminin SNR değerleri karşılaştırıldığında farklı 

örnek boyutlarında %100’ü aşan başarılı bir performans sağlanmıştır. Aynı şekilde DWT 

MO-BSS yöntemiyle ön işlemli MO-BSS karşılaştırıldığında ise değişen örnek sayısına 

göre yaklaşık %20-40 arasında SNR değerlerinde artış olduğu hesaplanmıştır.  

Tablo 4.11. Örnek sayılarına göre MO-BSS, ön işlemli MO-BSS ve DWT MO-BSS 

yöntemlerinin SNR değerleri 

Örnek 

Sayısı 

1. Kadın Sesi İçin 2. Kadın Sesi İçin Erkek Sesi İçin 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

1000 20.56 29.08 38.30 21.09 31.37 37.87 24.64 32.47 42.21 

2000 22.41 34.61 43.57 20.35 33.28 41.43 25.37 36.31 45.34 

5000 23.18 32.13 49.62 22.94 32.17 45.57 22.61 35.92 49.63 

10000 25.64 35.71 50.15 23.15 34.63 48.51 24.33 37.34 53.72 

20000 22.73 33.52 52.47 21.11 36.97 50.08 23.15 37.63 55.46 

30000 26.10 38.02 51.13 25.84 38.36 50.78 27.42 39.18 56.04 

 

Erkek ses işaretinin ayrıştırılmasın da ise 42.21 dB ile 56.04 dB arasında değişen SNR 

değerleri gösterilmiştir. Kadın seslerinde olduğu gibi DWT MO-BSS yöntemi ile MO-

BSS yönteminin SNR değerleri karşılaştırıldığında farklı örnek boyutlarında %100’ü 

aşan değerler bulunmuştur. Aynı şekilde DWT MO-BSS yöntemi ile ön işlemli MO-BSS 

karşılaştırıldığında ise değişen örnek sayısına göre yaklaşık %30-50 arasında SNR 

değerlerinde artış olduğu hesaplanmıştır. Tüm örnek sayıları içerisinde DWT MO-BSS 

yöntemi ile en yüksek SNR değeri 56.04 dB olarak 30000 örnek boyutundaki erkek sesi 

ayrıştırılmıştır. Özellikle erkek ses işaretinin daha iyi ayrıştırıldığı ve örnek sayısının 

artışına göre SNR değerlerinin de arttığı görülmektedir. Bu sonuçlara göre algoritmanın 
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başarım oranında çok iyi derecede iyileştirmeler yapıldığı uygulama sonuçları ile 

gösterilmiştir.   

   

Şekil 4.12. Birinci kadın sesi için Monte Carlo analizinin DWT MO-BSS’nin 50 

koşmadaki SNR sonuçları 

DWT MO-BSS yöntemi için 10000 örnek boyutundaki birinci kadın sesinin 

ayrıştırılmasında 50 kez çalıştırılan Monte Carlo analizinin her koşmadaki SNR 

değerlerinin grafiği ise Şekil 4.12’de gösterilmiştir. 50 koşma içerisinde tam sayı olarak 

alınan 42 dB ile 58 dB arasında değişen değerler ile diğer yöntemlere göre daha sabit 

değerler elde edildiği görülmektedir.  

Şekil 4.13’te verilen ikinci kadın sesi için 10000 örnek boyutundaki SNR değerleri 40 dB 

ile 56 dB arasında değişmektedir. Bu aralıktaki değerlerin ortalaması ise 48 dB’dir. 

Ortalama değerlere bakıldığında her iki kadın sesinin ayrıştırılmasındaki değerler 

birbirine yakındır.  

Erkek sesi için 50 kez çalıştırılan Monte Carlo analizinin SNR değerleri ise Şekil 4.14’te 

gösterilmiştir. En düşük 44 dB ve en yüksek 60 dB arasında değişen değerler ile işaret 

ayrıştırma için başarılı sonuçlar elde edilmiştir. Ortalama SNR değeri ise 10000 örnek 

boyutunda 53 dB olarak en yüksek değere ulaşılmıştır. Tüm kaynak işaretler içerisinde 

ortama SNR değeri 56 dB ile 30000 örnek boyutundaki erkek sesinin ayrıştırılması 

olmuştur.  
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Şekil 4.13. İkinci kadın sesi için Monte Carlo analizinin DWT MO-BSS’nin 50 

koşmadaki SNR sonuçları 

   

Şekil 4.14. Erkek sesi için Monte Carlo analizinin DWT MO-BSS’nin 50 koşmadaki 

SNR sonuçları 

DWT MO-BSS yönteminin de performans metrikleri incelenmiştir. Aşağıda verilen 

tablolarda ön işlemli MO-BSS ile DWT MO-BSS yöntemlerinin metrik değerlerinin 

karşılaştırılması yapılmıştır. Tablo 4.12’de verilen IGD metriği incelendiğinde en iyi 

olarak değerlendirilen kategoride örnek sayısının yüksek olduğu 20000 ve 30000’de 

metrik değerlerinin düşük olduğu görülmektedir. IGD metriği için değerinin düşük olması 

algoritmalarda istenen bir durumdur. 1000, 2000, 5000 ve 10000 örnek değerlerinde ön 



82 

işlemli MO-BSS yönteminin MO-BSS’ye göre daha başarılı olduğu anlaşılmaktadır. En 

kötü değerler kategorisi incelendiğinde genel anlamda ön işlemli MO-BSS yöntemine 

göre daha düşük değerlerin ölçülmesi ile beklenen durumun elde edildiği kanıtlanmıştır. 

Yöntemlerin ortalama değerleri incelendiğinde de DWT MO-BSS yönteminin ön işlemli 

MO-BSS yöntemine göre daha iyi sonuçlar verdiği tablodan anlaşılmaktadır. Ön işlemli 

MO-BSS yönteminde ortalama değerler daha fazla değişkenlik göstermiştir.  

Tablo 4.12. Ön işlemli ve DWT MO-BSS yöntemlerinin IGD metrik değerleri 

Örnek 

Sayısı 

IGD Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

1000 0.00011 0.00028 0.01813 0.01249 0.00548 0.00364 

2000 0.00010 0.00050 0.02437 0.01768 0.00564 0.00438 

5000 0.00011 0.00041 0.04534 0.03141 0.00837 0.00433 

10000 0.00061 0.00075 0.04916 0.03298 0.01241 0.00364 

20000 0.00127 0.00086 0.06852 0.03482 0.01608 0.00418 

30000 0.00189 0.00116 0.05054 0.03640 0.01385 0.00462 

 

Tablo 4.13. Ön işlemli ve DWT MO-BSS yöntemlerinin HV metrik değerleri 

Örnek 

Sayısı 

HV Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

1000 0.80845 0.92548 0.02387 0.01732 0.22942 0.33847 

2000 0.84789 0.93684 0.03945 0.01768 0.24181 0.35621 

5000 0.79645 0.97325 0.04834 0.01245 0.34975 0.36314 

10000 0.93411 0.86478 0.04127 0.01261 0.66337 0.45871 

20000 0.97086 0.89641 0.05864 0.01295 0.51845 0.52389 

30000 0.98048 0.92175 0.05785 0.01364 0.55013 0.59642 
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Tablo 4.13’te HV metriğine ait değerler verilmiştir. En iyi değerler kategorisindeki DWT 

MO-BSS yöntemi için örnek sayısının 1000, 2000 ve 5000 olduğu durumlarda işaretlerde 

ayrıştırma işlemi daha iyi yapılırken örnek sayılarının 5000’in üzerine çıkıldığı durumda 

da ise ön işlemli MO-BSS daha iyi performans sergilemiştir. En kötü değerler 

kategorisinde önerilen yöntemlerin her biri için elde edilen değerler çok değişkenlik 

göstermemiştir. Ancak ön işlemli MO-BSS yönteminin DWT MO-BSS yönteminden 

daha iyi sonuçlar verdiği de tablodan görülmektedir. Ortalama değerler de ise 10000 

örnek boyutu hariç diğer örnek sayılarında ön işlemeli MO-BSS yönteminden daha 

yüksek sonuçlar elde edilmesi sağlanmıştır.  

SP metrik değerlerinde ise Tablo 4.14’te gösterilen en iyi değerler kategorisinde ön 

işlemli MO-BSS yöntemiyle ölçülen değerlerden düşük olmasıyla istenen veriler elde 

edilmiştir. En kötü değerler kategorisinde ise 5000 örnek sayısı hariç diğerlerinde daha 

iyi sonuçlar elde edilmiştir. Ortalama değerlere bakıldığında DWT MO-BSS yöntemi ile 

elde edilen sonuçların daha düşük olması sebebiyle ön işlemli MO-BSS yöntemine göre 

daha başarılı olduğu yani işaretleri daha iyi ayrıştırdığı anlaşılmaktadır.  

Tablo 4.14. Ön işlemli ve DWT MO-BSS yöntemlerinin SP metrik değerleri 

Örnek 

Sayısı 

SP Metriği 

En İyi Değer En Kötü Değer Ortalama Değer 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

Ön İşlemli 

MO-BSS 

DWT MO-

BSS 

1000 0.67576 0.60154 1.53786 1.51684 1.11678 1.00584 

2000 0.69785 0.61364 1.59345 1.52486 1.14875 1.00837 

5000 0.65374 0.70485 1.24560 1.49854 1.17067 1.01681 

10000 0.73045 0.71254 1.42457 1.12682 1.15236 1.09632 

20000 0.88757 0.79545 1.33485 1.30125 1.16104 1.08365 

30000 0.93478 0.76451 1.19748 1.16436 1.11352 1.09965 

 

MO-BSS, ön işlemli MO-BSS ve DWT MO-BSS yöntemlerinin çalışma yani koşma 

süreleri Tablo 4.15’te gösterilmiştir. İşlem yükü artmasına rağmen işlem sürelerinde 

küçük değerlerde olsa azalma olduğu tabloda gösterilmiştir.  
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Tablo 4.15. MO-BSS, ön işlemli MO-BSS ve DWT MO-BSS yöntemlerinin koşma 

süreleri 

Örnek Sayısı 
MO-BSS 

(sn) 

Ön İşlemli  

MO-BSS 

(sn) 

DWT 

MO-BSS 

(sn) 

1000 3.36 3.11 3.15 

2000 5.67 5.58 5.55 

5000 7.39 7.46 7.12 

10000 11.42 11.02 10.78 

20000 18.24 17.49 17.37 

30000 23.69 22.37 21.18 

 

Özellikle 30000 örnek sayısındaki veriler ayrıştırılırken önerilen DWT MO-BSS 

yönteminin işlem maliyeti MO-BSS yöntemine göre yaklaşık 2.5 saniyeye yakın daha 

kısa sürede, ön işlemli MO-BSS yöntemine göre ise 1.2 saniyeye yakın daha kısa sürede 

işlem sonuçları elde edilmiştir. Diğer örnek sayılarında ise yaklaşık bir saniyenin altında 

değişen farklı sürelerde algoritmalar çalışmalarını tamamlamıştır. Algoritmaların koşma 

süreleri Şekil 4.15’te ki grafikte daha iyi görüleceği üzere örnek sayısı arttıkça işlem 

sürelerinde de azalma olduğu net bir şekilde gösterilmiştir. 

  

Şekil 4.15. MO-BSS ve önerilen her iki yöntemin koşma süreleri 
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Bu bölümde, karışmış işaretlerin birbirinden ayrıştırılmasında birden fazla optimizasyon 

kriterinin mevcut olması ve sorunlarla ilgili nesnel bilgiye dayalı olarak gerçekleştirilen 

bu çalışmada ele alınan metodoloji incelenmiştir. Tezde kullanılan BSS yöntemi, SPEA2 

yöntemi ve bu yöntemlerle ilgili performans artışı sağlamak için yapılan çalışmalar ve 

deneysel sonuçlar açıklanmıştır. Önerilen yöntemler farklı ses gruplarına uygulanmış ve 

algoritmaların sergiledikleri performanslar incelenmiştir. 

4.5. Önerilen Yöntemlerin Farklı Seslere Uygulanması 

MO-BSS ve önerilen yöntemler ile birbirine karıştırılmış iki erkek ve bir beyaz Gauss 

gürültü işaretinin ayrıştırılması sağlanarak algoritmaların performansları test edilmiştir. 

Şekil 4.16’da orijinal işaretler, karışım işaretleri ve önerilen yöntemler yardımıyla tahmin 

edilen işaretlerin 4000 örnek sayısındaki şekilleri gösterilmiştir.   

 

 

 

Şekil 4.16. İki erkek sesi ve gürültü işaretine ait kaynak işaretler 

MO-BSS, ön işlemli MO-BSS ve DWT MO-BSS algoritmalarının performansları 

belirtilen işaretlerde test edilmiş ve SNR değerleri Tablo 4.16’da gösterilmiştir.   
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Birinci erkek ses işaretinin MO-BSS yöntemi ile ayrıştırılmasında en düşük SNR değeri 

16.84 dB ile 1000 örnek boyutunda hesaplanmış, en yüksek SNR değeri 24.31 dB ile 

30000 örnek boyutunda elde edilmiştir. MO-BSS yöntemi üzerinde yapılan ön işlemli 

uygulamada 1000 örnek boyutunda 19.37 dB ile düşük, 30000 örnek boyutunda 32.39 dB 

ile en yüksek SNR değeri bulunmuştur. En yüksek %40’a yakın bir artış ile 5000 örnek 

boyutunda SNR değeri hesaplanmıştır. Aynı ölçümler DWT MO-BSS yöntemi ile de 

yapılmış ve en düşük 30.34 dB ile en yüksek 41.18 dB arasında değişen SNR değerleri 

hesaplanmıştır. DWT MO-BSS ile MO-BSS arasında %100’i geçen en fazla ayrıştırma 

değeri 1000 örnek boyutunda sağlanmıştır. Ayrıca ayrık dalgacık dönüşümü uygulanan 

yöntemin ön işlemli MO-BSS yönteminden ise %70 oranında daha başarılı sonuç elde 

edildiği görülmektedir.  

Tablo 4.16. Örnek sayılarına göre erkek sesleri ve gürültü işaretinin SNR değerleri 

Örnek 

Sayısı 

1. Erkek Sesi İçin 2. Erkek Sesi İçin Gürültü Sesi İçin 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

1000 16.84 19.37 33.02 15.67 20.04 29.37 13.05 20.37 28.37 

2000 20.04 23.44 30.34 19.27 21.18 37.91 13.16 19.16 28.16 

5000 18.19 25.23 36.67 22.31 27.45 36.53 15.37 21.46 31.65 

10000 21.67 22.68 38.29 21.05 25.97 38.12 18.75 22.67 32.02 

20000 23.38 28.82 39.34 20.34 32.64 39.24 20.61 25.37 32.37 

30000 24.31 32.39 41.18 22.08 35.82 40.76 23.37 29.61 34.62 

 

İkinci erkek sesinin MO-BSS yöntemi ile ayrıştırılmasında 15.67 dB ile 22.08 dB 

arasında değişen SNR değerleri elde edimiştir. Ön işlemli MO-BSS yöntemi ile 1000 

örnek boyutunda 20.04 dB ile en düşük, 30000 örnek boyutunda 35.82 dB ile en yüksek 

ayrıştırma oranı sağlanmıştır. Böylece MO-BSS yöntemine göre %60 oranında en yüksek 

ayrıştırma 20000 örnek boyutunda elde edilmiştir. DWT MO-BSS yönteminde ise 29.37 

dB ile 40.76 dB arasında değişen SNR değerleri ile ayrıştırma en iyi şekilde sağlanmıştır.  
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Gürültü işaretinin MO-BSS algoritması ile ayrıştırılmasında ise 1000 örnek boyutunda 

13.05 dB ile en düşük, 23.37 dB ile 30000 örnek boyutunda en yüksek SNR değeri 

hesaplanmıştır. Ön işlemli MO-BSS yönteminde ise 2000 örnek boyutunda 19.16 dB ile 

en düşük, 30000 örnek boyutunda 29.61 dB ile en yüksek SNR değeri elde edilmiştir. 

Böylece en yüksek oran olarak yaklaşık %55 oranında MO-BSS yöntemine göre başarım 

sağlanmıştır. DWT MO-BSS yönteminde ise en yüksek 34.62 dB ile 30000 örnek 

boyutunda SNR değeri elde edilmiştir.  

Genel olarak incelendiğinde erkek seslerinin gürültüden daha iyi ayrıştırtıldığı ve önerilen 

yöntemlerin kararlı bir şekilde ayrıştırma işlemi yaptığı görülmektedir. Örnek sayılarına 

göre en iyi ayrıştırma 30000 örnek boyutunda birinci erkek sesinin DWT MO-BSS 

yöntemi ile ayrıştırılmasında sağlanmıştır. 

Şekil 4.17’de gösterilen grafikte 10000 örnek boyutu için birinci erkek sesinin 

ayrıştırılmasında algoritmaların 50 koşma için Monte Carlo analizinin sonuçları 

verilmiştir.  

     

Şekil 4.17. Birinci erkek ses işareti için Monte Carlo analizinin MO-BSS, ön işlemli 

MO-BSS ve DWT MO-BSS’nin SNR sonuçları 

Ön işlemli MO-BSS, önerilen birinci yöntem olarak ve DWT MO-BSS ise önerilen ikinci 

yöntem olarak ifade edilmiştir. MO-BSS yöntemi için en düşük SNR değeri 17 dB ve en 

yüksek SNR değeri ise 28 dB aralığında değişmektedir. MO-BSS ile önerilen birinci 

yöntem grafikte benzer gibi görünse de önerilen birinci yöntem 16 dB ile 30 dB arasında 
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değişen SNR değerlerine sahiptir. Birinci erkek sesi için önerilen ikinci yöntemin başarısı 

açık bir şekilde grafikte gösterilmiştir. En düşük 27 dB ve en yüksek 48 dB olan SNR 

değerleri ile en iyi ayrıştırma sağlanmıştır.    

Şekil 4.18’de ise bar grafiği olarak algoritmaların 10 koşma sonucundaki SNR 

değerlerindeki farklılığının net anlaşılması için verilmiştir. Önerilen ikinci yöntemin açık 

ara işaret ayrıştırmadaki performansı görülmektedir.  

 

Şekil 4.18. Birinci erkek ses işareti için MO-BSS ve önerilen iki yöntemin10 koşmadaki 

SNR değerleri 

Şekil 4.19’da verilen grafikte ikinci erkek sesinin ayrıştırılmasında algoritmaların 50 

koşma sonucundaki SNR değerleri verilmiştir.  MO-BSS yöntemi için 16 dB ile 29 dB 

arasında değişen SNR değerlerinin ayrıştırılması sağlanmıştır. Önerilen birinci yöntem 

de en düşük SNR değeri 17 dB ve en yüksek 33 dB arasında değişen değerler ile MO-

BSS yönteminden daha iyi bir ortalama SNR değerine sahiptir. İkinci önerilen yöntem de 

ise 31 dB ve 45 dB arasında değişen SNR değerleri ile en iyi şekilde ayrıştırma işlemi 

sağlanmıştır.   
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Şekil 4.19. İkinci erkek ses işareti için Monte Carlo analizinin MO-BSS, ön işlemli MO-

BSS ve DWT MO-BSS’nin SNR sonuçları 

Şekil 4.20’de bar grafiği olarak gösterilen verilerde algoritmaların 10 koşma sonucundaki 

SNR değerleri gösterilmiştir. Algoritmaların farklı koşmalarında MO-BSS ve ön işlemli 

MO-BSS yöntemlerinin SNR değerleri değişkenlik gösterse de önerilen ikinci yöntem 

her koşmada en iyi SNR değerine sahiptir.   

 

Şekil 4.20. İkinci erkek ses işareti için MO-BSS ve önerilen iki yöntemin 10 koşmadaki 

SNR değerleri 
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Gürültü işaretinin ayrıştırılması için algoritmaların 50 koşma sonucundaki SNR değerleri 

ise Şekil 4.21’de gösterilmiştir. 10000 örnek boyutundan alınan veriler için MO-BSS 

yöntemi 13 dB ile 24 dB arasında değişen SNR değerleri ile ayrıştırılmıştır. Önerilen 

birinci yöntemde 14 dB ile 28 dB arasında değişen değerler alırken, önerilen ikinci 

yöntemde 25 dB ile 40 dB arasında değişen SNR değerleri ile başarılı bir şekilde işaretler 

ayrıştırılmıştır.  

  

Şekil 4.21. Gürültü işareti için Monte Carlo analizinin MO-BSS, ön işlemli MO-BSS ve 

DWT MO-BSS’nin SNR sonuçları 

 

Şekil 4.22. Gürültü işareti için MO-BSS ve önerilen iki yöntemin 10 koşmadaki SNR 

değerleri 



91 

Şekil 4.22’de algoritmaların 10 koşmadaki SNR değerleri verilmiş olup karıştırma 

matrislerindeki değişikliklere göre MO-BSS ve önerilen birinci yöntem arasında 

değişimler daha net gösterilmiştir. Gürültü işareti için önerilen ikinci yöntemin her 

koşmasında SNR değeri en yüksek seviyeyi yakalamıştır. 

Genel olarak değişen SNR aralıklarında işaretler ayrıştırılsa da ortalama değerlere 

bakıldığında önerilen birinci ve ikinci yöntemler MO-BSS yöntemine göre daha yüksek 

değerlerde işaretler ayrıştırılmıştır.  

Her ne kadar ses işaretleri üzerinde yapılan Matlab uygulamalarında başarılı sonuçlar elde 

edilmiş ve kanıtlanmış olsa da farklı işaretler üzerinde de deneysel işlemler yaparak 

önerilen yöntemlerin performansını görmemiz gerekir. Bu doğrultuda önerilen 

yöntemlerde de biyomedikal işaretler (Fetal EKG, Anne EKG, EEG ve beyaz Gauss 

gürültü) için gerekli uygulamalar yapılmıştır. 

4.6. Çok Amaçlı Optimizasyon Algoritmaları ile EKG İşaretlerin Ayrıştırılması 

Tasarlanan yöntemler aynı zamanda karışmış EKG işaretlerinin ayrıştırılmasında da 

uygulanmıştır.  Uygulamada üç farklı işaret olarak fetal EKG işareti, beyaz Gauss gürültü 

işareti ve anne EKG işaretleri kullanılmıştır.  

 

Şekil 4.23. Fetal EKG, gürültü ve Anne EKG’ye ait kaynak işaretler 

İşaretlerin karıştırılması doğrusal olarak ve karışım rastgele matris kullanılarak 

yapılmıştır. Ses işaretlerinde olduğu gibi biyomedikal işaretlerin ayrıştırılmasında da 
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algoritmaların 50 koşma sonucundaki her bir değeri ve bunların ortalamaları alınmıştır. 

MO-BSS, ön işlemli MO-BSS ve DWT MO-BSS yöntemlerinin işlem sonuçları SNR 

cinsinden verilmiştir. Uygulamada kullanılan işaretler [142] numaralı kaynaktaki veri 

tabanından alınmıştır. Beyaz Gauss gürültü ise yapay olarak oluşturulmuştur. Şekil 

4.23’te kullanılan biyomedikal işaretlerin 2000 örnek sayısı olarak gösterimi verilmiştir. 

Bu veriler kaynak veri, kaynak işaret veya orijinal işaret olarak adlandırılmaktadır.   

Tüm uygulamalarda veriler değerlendirilirken 1000, 2000, 5000, 10000, 20000 ve 30000 

örnek sayısı dikkate alınarak farklı uzunluktaki veri miktarlarına göre SNR oranları 

değerlendirilmiştir. Uygulamada kullanılan biyomedikal işaretler rastgele karıştırılarak 

önce MO-BSS, Ön işlemli MO-BSS ve sonrasında DWT MO-BSS yöntemlerine 

uygulanmış ve performans sonuçları kaydedilmiştir.  

 

 

 

Şekil 4.24. EKG ayrıştırmada kullanılan orijinal kaynak işaretler, karıştırılmış işaretler 

ve tahmin edilen kaynak işaretler 

Uygulama sonucunda Şekil 4.24’te görüldüğü gibi orijinal işaretler, rastgele karışım 

işaretleri ve MO-BSS yöntemlerinin işlem sonucu tahmin edilen kaynak işaretlerin şekli 

gösterilmektedir. Şekilde karışım işaretleri üç işaretin karışımı olduğundan genlik 
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durumlarına göre karışım oranları değişiklik göstermektedir. İşaretlerin 2000 örnek 

boyutları dikkate alınarak grafikler oluşturulmuştur.  

Tablo 4.17’de yöntemlerin her koşmada farklı karıştırma matrisleri kullanarak kaydedilen 

SNR değerlerinin ortalaması gösterilmiştir. Üç yöntemin örnek sayılarına göre SNR 

değerleri tek tabloda verilmiştir.  

Tablo 4.17. Örnek sayılarına göre Fetal EKG ve gürültü ve Anne EKG işaretlerinin 

SNR değerleri 

Örnek 

Sayısı 

Fetal EKG İşareti İçin Gürültü İşareti İçin Anne EKG İşareti İçin 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

MO-

BSS 

Ön 

İşlemli 

MO-

BSS 

DWT 

MO-

BSS 

1000 22.26 23.41 38.95 20.56 21.67 38.35 21.33 21.91 37.06 

2000 24.43 25.30 38.46 23.47 25.48 39.91 21.43 20.32 36.57 

5000 23.08 28.61 42.38 21.39 26.38 41.54 24.47 28.71 43.76 

10000 24.49 33.78 44.21 22.52 27.23 40.67 25.09 32.76 42.85 

20000 27.67 34.67 45.73 24.03 31.06 41.17 26.67 32.81 43.41 

30000 30.88 38.34 47.02 25.32 34.19 42.39 29.62 37.64 46.85 

 

Fetal EKG işaretinin MO-BSS yöntemi ile ayrıştırılmasında en düşük SNR değeri 22.26 

dB ile 1000 örnek boyutunda, en yüksek SNR değeri 30.88 dB ile 30000 örnek boyutunda 

hesaplanmıştır. MO-BSS yöntemi üzerinde yapılan ön işlemli uygulama ile aynı işaret 

tekrar ayrıştırılmıştır. Bu kez 1000 örnek boyutunda 23.41 dB ile en düşük, 30000 örnek 

boyutunda 38.34 dB ile en yüksek SNR değeri elde edilmiştir.  Düşük örnek boyutlarında 

MO-BSS ile ön işlemli MO-BSS arasında SNR değerleri birbirine yakınken örnek sayısı 

arttıkça SNR değerinde de artış sağlanmıştır. En yüksek %40’a yakın bir artış ile 10000 

örnek boyutunda SNR değeri hesaplanmıştır. Aynı işlemler DWT MO-BSS yöntemi ile 

de yapılmış ve en düşük 38.95 dB ile en yüksek 47.02 dB arasında değişen SNR değerleri 

hesaplanmıştır. DWT MO-BSS ile MO-BSS arasında %80’i geçen ayrıştırma 

performansı sağlanmıştır. Ayrık dalgacık dönüşümü uygulanan yöntemin ön işlemli MO-

BSS yönteminden ise %50 oranında daha başarılı sonuç elde edildiği görülmektedir. 
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Genel olarak her üç yöntemde de örnek sayısı arttıkça SNR değerlerinin de arttığı 

görülmektedir.  

Beyaz Gauss gürültü işaretinin ayrıştırılmasında ilk önce MO-BSS yöntemi uygulanmış 

ve en düşük 20.56 dB ile 1000 örnek boyutunda, en yüksek 25.32 dB ile 30000 örnek 

boyutunda SNR değerleri tabloda gösterilmiştir. Ön işlemli MO-BSS yöntemi ile yapılan 

ayrıştırmada ise en düşük 21.67 dB ile 1000 örnek boyutunda, en yüksek 34.19 dB ile 

30000 örnek boyutunda SNR değerleri hesaplanmıştır. Bunun sonucunda ön işlemli 

yöntemin MO-BSS yöntemine göre en fazla %40 SNR değerleri ile daha başarılı olduğu 

hesaplanmıştır. Ayrık dalgacık dönüşümü uygulanan MO-BSS yönteminde de en düşük 

38.35 dB ile 1000 örnek boyutunda, en yüksek 42.39 dB ile 30000 örnek boyutunda SNR 

değerleri tabloda gösterilmiştir. Ayrıca Tablo 4.17’de sadece gürültü işaretinin DWT 

MO-BSS ile ayrıştırılmasındaki tüm örnek sayılarına bakılırsa hesaplanan SNR 

değerlerinin birbirine yakın olduğu yani 1000 örnek boyutu ile 30000 örnek boyutu 

arsındaki ayrıştırmada yaklaşık 4 dB değerinde fark olduğu görülmektedir. Bu yöntemin 

MO-BSS yöntemine göre en fazla %90 oranında, ön işlemli MO-BSS yöntemine göre de 

en fazla %80 oran ile 1000 örnek boyutunda başarım sağladığı kanıtlanmıştır. 

Anne EKG işaretinin MO-BSS yöntemi ile ayrıştırılmasında farklı örnek boyutlarına 

21.33 dB ile 29.62 dB arasında değişen SNR değerleri hesaplanmıştır. Ön işlemli MO-

BSS yönteminde ise 20.32 dB ile 37.64 dB arasında değişen değerler bulunmuştur. Düşük 

örnek boyutlarında MO-BSS ile yaklaşık aynı değerler elde edilmişken örnek sayısı 

arttıkça SNR değerlerinde de artış paralellik göstermiştir. MO-BSS yönteminden yaklaşık 

olarak en fazla %30 oranında performans artışı sağlanmıştır. 2000 örnek boyutunda ise 

MO-BSS yönteminde daha düşük bir ayrıştırma elde edilmiştir. Ayrık dalgacık dönüşümü 

uygulanan MO-BSS yönteminde en düşük SNR değeri 36.57 dB ile 2000 örnek 

boyutunda hesaplanırken, en yüksek SNR değeri 46.85 dB ile 30000 örnek boyutunda 

hesaplanmıştır. DWT MO-BSS ile MO-BSS arasında yaklaşık %80’i oranında ayrıştırma 

performansı sağlanmıştır. Ayrık dalgacık dönüşümü uygulanan yöntemin ön işlemli MO-

BSS yönteminden ise en fazla %75 oranında daha başarılı sonuç verdiği görülmektedir.  

Şekil 4.25’te Fetal EKG işaretinin 10000 örnek boyutundan alınan 50 koşma için Monte 

Carlo analizinin SNR sonuçları verilmiştir. Grafikte ön işlemli MO-BSS, önerilen birinci 

yöntem olarak ve DWT MO-BSS ise önerilen ikinci yöntem olarak ifade edilmiştir. MO-
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BSS yöntemi için en düşük SNR değeri 16 dB ile 32 dB arasında değişen değerler ile 

Fetal EKG işareti ayrıştırılmıştır. Önerilen birinci yöntem de 25 dB ile 42 dB arasında 

değişen değerler alırken, önerilen ikinci yöntemde 35 dB ile 51 dB arasında değişen SNR 

değerleri ile Fetal EKG işareti başarılı bir şekilde ayrıştırıldığı görülmektedir.  

  

Şekil 4.25. Fetal EKG işareti için Monte Carlo analizinin MO-BSS, ön işlemli MO-BSS 

ve DWT MO-BSS’nin SNR sonuçları 

 

Şekil 4.26. Fetal EKG işareti için MO-BSS ve önerilen iki yöntemin 10 koşmadaki SNR 

değerleri 
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Şekil 4.26’da algoritmaların 10 koşmadaki SNR değerleri verilmiş olup karıştırma 

matrislerindeki değişikliklere göre her koşmada farlı SNR değerleri elde edilmiştir. 

Önerilen birinci ve ikinci yöntemin, MO-BSS yöntemine kıyasla yüksek sonuçlar verdiği 

daha net anlaşılmaktadır. Önerilen ikinci yöntem ise tüm örnek boyutlarında açıkça Fetal 

EKG işaretini çok daha iyi ayrıştırdığı görülmektedir. 

Şekil 4.27’de gürültü işaretinin 50 koşma için ayrıştırılma değerleri verilmiştir. 10000 

örnek boyutunda ölçülen MO-BSS yönteminin SNR değerleri için en düşük 17 dB iken 

en yüksek 30 dB olarak hesaplanmıştır. Önerilen birinci yöntem de SNR değerleri 20 dB 

ile 37 dB arasında değişirken önerilen ikinci yöntemde 30 dB ile 48 dB arasında değişen 

değerler ile gürültü işaretinin ayrıştırılması sağlanmıştır.  

  

Şekil 4.27. Gürültü işareti için Monte Carlo analizinin MO-BSS, ön işlemli MO-BSS ve 

DWT MO-BSS’nin SNR sonuçları  

Şekil 4.28’de algoritmaların 10 koşmadaki SNR değerleri verilmiş olup karıştırma 

matrislerindeki değişikliklere göre önerilen ikinci yöntemin genel anlamada yüksek 

sonuçlar verdiği, MO-BSS ile önerilen birinci yöntemin ise koşma sayılarına göre 

değişkenlik gösterdiği anlaşılmaktadır. Grafiğe göre önerilen birinci yöntemin 

kullanılabilirliği yine de MO-BSS yönteminden iyi SNR sonuçları verdiği grafikten 

görülmektedir.  
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Şekil 4.28. Gürültü işareti için MO-BSS ve önerilen iki yöntemin 10 koşmadaki SNR 

değerleri 

Şekil 4.29’da anne EKG işaretinin her yöntem için 50 koşma sonucundaki SNR 

değerlerinin grafiği gösterilmiştir. MO-BSS yöntemi ile SNR değerleri 19 dB ve 32 dB 

arasında değişen değerler hesaplanmıştır. Önerilen birinci yöntem de ise 25 dB ile 39 dB 

arasında değişen değerler ile anne EKG işaretinin daha yüksek değerlerde ayrıştırıldığı 

gözlemlenmiştir. Önerilen ikinci yöntem de 32 dB ile 49 dB arasında değişen değerler ile 

anne EKG işaretinin ayrıştırılması başarılı bir şekilde tamamlanmıştır. 

  

Şekil 4.29. Anne EKG işareti için Monte Carlo analizinin MO-BSS, ön işlemli MO-BSS 

ve DWT MO-BSS’nin SNR sonuçları 
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Şekil 4. 30’da verilen bar grafiğinde algoritmaların 10 koşmadaki SNR değerleri 

incelendiğinde özellikle önerilen birinci yöntemin diğer yöntemlere nazaran daha 

değişken değerler aldığı görülmektedir. Kullanılan her üç işarette de önerilen ikinci 

yöntemin işaret ayrıştırmadaki başarısı açıkça grafiklerden görülmektedir.  

 

Şekil 4.30. Anne EKG işareti için MO-BSS ve önerilen iki yöntemin 10 koşmadaki SNR 

değerleri 

Yapılan bu çalışmalar farklı ses işaretleri ya da biyomedikal işaretler olsun önerilen her 

iki yöntemin de birbirlerine karışmış olarak elde edilen işaretleri başarılı bir şekilde 

ayrıştırdığı anlaşılmaktadır. 10000 örnek boyutunda ses işaretleri ile biyomedikal 

işaretlerin SNR değerleri karşılaştırıldığında önerilen birinci yöntemin biyomedikal 

işaretlerde MO-BSS yönteminden daha iyi sonuçlar verdiği grafiklerde görülmektedir.  

Ayrıca [83] nolu kaynakta yapılan çalışmada da anne EKG, Fetal EKG ve beyaz Gauss 

gürültü işaretinin ayrıştırılması yapılmıştır. Yapılan çalışmada tek amaçlı optimizasyon 

yöntemi ile en fazla 5000 örnek boyutu olarak işaretler ele alınmıştır. Tablo 4.18’de [83] 

nolu kaynaktaki SNR değerleri ile bu tez çalışmasında önerilen yöntemlerin SNR 

değerleri verilmiştir.  
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Tablo 4.18. Önerilen yöntemlerin SNR cinsinden performans karşılaştırılması 

Örnek 

Sayısı 

Fetal EKG İşareti İçin Gürültü İşareti İçin Anne EKG İşareti İçin 

[83] 

Nolu 

kaynak  

Ön 

İşlemli 

MO-

BSS  

DWT 

MO-

BSS  

[83] 

Nolu 

kaynak  

Ön 

İşlemli 

MO-

BSS  

DWT 

MO-

BSS  

[83] 

Nolu 

kaynak  

Ön 

İşlemli 

MO-

BSS  

DWT 

MO-

BSS  

1000 35.18 23.24 38.39 9.08 21.42 38.15 12.56 21.77 37.61 

2000 34.64 25.68 38.57 11.19 25.71 39.69 14.44 20.23 36.38 

5000 37.94 28.17 42.08 14.34 26.33 41.24 19.03 28.62 43.47 

 

Tablodaki değerlere göre, kıyaslanan çalışmada Fetal EKG işareti ön işlemli MO-BSS 

yöntemine göre yüksek SNR değerleri ile dikkat çekerken DWT MO-BSS yöntemine 

göre düşük SNR değerleri hesaplanmıştır. Gürültü ve Anne EKG işaretlerinde önerilen 

her iki yöntemde [83] nolu kaynaktaki yöntemden daha iyi sonuçlar verdiği 

görülmektedir.  

4.7. EEG ve Beyaz Gauss Gürültü İşaretlerinin Ayrıştırılması 

Önerilen yöntemler, iki işaretin karışımı olan EEG ve beyaz Gauss gürültü işaretleri 

üzerinde de test edilmiştir. EEG işaretleri beyin aktivitesi olarak epilepsi, beyin tümörleri, 

beyin hasarı, uyku bozuklukları ve felç gibi hastalıkların teşhisinde sıklıkla 

ölçülmektedir. Tüm biyomedikal işaretlerde olduğu gibi EEG işaretinin de gürültüsüz bir 

şekilde ölçülmesi gerekir. Bu kapsamda ele alınan işaret sayısı iki farklı şekilde 

belirlenmiş ve bu işaretlerin ayrıştırılmasında kullanılan yöntemlerin performansları 

ölçülmüştür.  

Şekil 4.31’de EEG ve beyaz Gauss gürültü işaretine ait 2000 örnek boyutunda kaynak 

işaretler gösterilmiştir. Bu iki işaret rastgele karıştırılarak üç yönteme uygulanmış ve 

performans sonuçları kaydedilmiştir.  

Tablo 4.19’da işaretlerin farklı örnek boyutlarında ayrıştırma sonuçlarının SNR değerleri 

verilmiştir. Genel olarak bakıldığında DWT MO-BSS yöntemin SNR değerleri diğer iki 

yöntemin SNR değerlerinden yüksek olduğu görülmektedir. 
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Şekil 4.31. EEG ve gürültüye ait kaynak işaretler 

EEG işareti için MO-BSS yöntemi 26.48 dB ile 41.52 dB arasında değişen SNR değerleri 

hesaplanmıştır. Ön işlemli MO-BSS yöntemindeki değerler incelendiğinde en yüksek 

43.04 dB ile 30000 örnek boyutunda ayrıştırma sağlanmıştır. En fazla artış ise 5000 örnek 

boyutunda sağlanmış ve MO-BSS yöntemine göre %10’luk bir artış olmuştur. Önerilen 

ikinci yöntem olan DWT MO-BSS yönteminde ise 33.55 dB ile 47.64 dB arasında 

değişen SNR değerleri hesaplanmıştır. Oransal olarak incelendiğinde önerilen ikinci 

yöntemin SNR değerlerindeki artışın daha fazla olduğu görülmektedir. Her iki işaretin 

ayrıştırılmasında MO-BSS yöntemi ile önerilen birinci yöntem birbirlerine yakın SNR 

sonuçları verse de önerilen birinci yöntemin daha iyi ayrıştırma yaptığı tabloda 

gösterilmiştir.  

Gürültü işaretinin ayrıştırılmasında MO-BSS yöntemi ile ön işlemli MO-BSS yöntemi 

arasında SNR değerleri olarak çok fark olmasa da ön işlemli MO-BSS yönteminin 

işaretleri daha iyi ayrıştırdığı tablo 4.19’da görülmektedir. Önerilen ikinci yöntemde ise 

en düşük 32.24 dB ile en yüksek 45.64 dB arasında değişen değerler alarak başarılı bir 

şekilde gürültü işareti ayrıştırılmıştır. 
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Tablo 4.19. Örnek sayılarına göre EEG ve gürültü işaretlerinin SNR değerleri 

Örnek Sayısı 

EEG İşareti İçin Gürültü İşareti İçin 

MO-BSS 
Ön İşlemli 

MO-BSS  

DWT MO-

BSS  
MO-BSS 

Ön İşlemli 

MO-BSS  

DWT MO-

BSS  

1000 26.48 28.73 33.55 26.47 27.08 32.24 

2000 28.94 29.67 34.47 26.89 27.37 33.67 

5000 30.73 33.33 37.83 28.48 29.67 36.61 

10000 29.42 30.70 36.91 29.39 31.48 38.22 

20000 37.11 38.16 44.87 37.73 38.93 42.08 

30000 41.52 43.04 47.64 40.17 41.74 45.64 

 

İşaret sayılarına göre incelendiğinde birbirine karışmış iki işaretin ayrıştırılmasının üç 

işaretin ayrıştırılmasına oranla SNR değerlerinin daha yüksek sonuçlar verdiği yapılan 

deneysel sonuçlardan anlaşılmıştır. Bu kapsamda özellikle birbirine karışmış 

biyomedikal işaretlerde önerilen yöntemler kullanılarak güvenli bir şekilde hastalık 

teşhisi ve tedavisi için işaret ayrıştırma işlemi yapılabilir. 

 



 

 

 

5.  BÖLÜM  

SONUÇ VE ÖNERİLER 

BSS, birbirine karışmış işaretlerin frekans özellikleri, sensör tarafından elde edilme 

konumları veya kaynakların birbirine karıştırılma şekilleri hakkında herhangi bir ön bilgi 

olmadan işaretlerin birbirlerinden ayrıştırılması problemidir. Bu problemle ilgili olarak, 

gözlenen karışımlar arasından karışımları oluşturan işaretleri tahmin etmek 

amaçlanmaktadır. Kör kaynak ayırma problemleri olarak formüle edilen çeşitli durumlar 

vardır. Hangi işaretlerin karıştırıldığını ve karıştırma işleminin parametrelerini bilmeden, 

bu tür verilerin karışımından bir dizi girdi verisinin tahmin edilmesini içeren bu tür 

problemler, optimizasyon modelleri kullanılarak çözülür. Kural olarak bu modeller, 

kaynak işaretlerine ilişkin bir kriterin belirlenmesi yani tek amaç fonksiyonu belirlenerek 

en uygun çözüm aranmaktadır. Pratikte kaynak işaretleri hakkında birden fazla bilgi 

bulunabileceğinden, bu çalışma, sorunun çok amaçlı optimizasyon yoluyla çözülmesi için 

bu bilgi kümesinin dikkate alınarak çözülmesini hedeflemiştir. Bu doğrultuda ele alınan 

MO-BSS yöntemi ile uygulanan deneyler, dikkate alınan modelin uygulanabilirliğini 

doğrulamaktadır. 

Kaynakların kör kaynak ayrıştırılmasına ilişkin olarak, doğrusal karışımlarda hem 

gürültülü senaryolarda hem de gürültüsüz senaryolarda ideale en yakın çözüm, baskın 

olmayan küme içinde bulunur ve her iki senaryoda da ayrıştırma başarılı bir şekilde 

yapılır. Ayrıca ayrıştırma işleminde örnek sayısının az olması nedeniyle ayırma 

işlemindeki zorluğun yüksek olduğu gerçek verilere uygulandığında bile ayrıştırma 

işlemi başarılı bir şekilde yapılmıştır.  

Elbette problemler kör olduğundan yani kaynaklar ve karışım matrisi bilgisi olmadan, 

baskın olmayan küme içinde hangisinin en iyi çözüm olduğunu belirlemek imkansızdır. 

Ancak problemin yer aldığı bağlamda yer alan karar verici, konuya ilişkin bilgisine göre 

en doğru görünen çözümü seçebilecek bir dizi çözüme sahip olacaktır. Bu şekilde, 
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problemin çözümü, kriterlerin ağırlıklandırılmasının önceden seçilmesiyle değil, eşit 

derecede optimal çözümlerin bir kümesiyle elde edilir. 

Bu tez çalışmasında birbirlerine karışmış farklı konuşma sesleri ve biyomedikal işaretler 

MO-BSS yöntemi kullanılarak işaretlerin orijinal kaynak şekilleri tahmin edilmiştir. MO-

BSS yöntemi ile Tablo 4.1’de iki kadın ve bir erkek sesinin ayrıştırılması, Tablo 4.6’da 

aynı sesler ile ön işlemli MO-BSS yöntemi ile ayrıştırma sonuçları ve Tablo 4.11’de ise 

DWT MO-BSS yöntemi ile işaretlerin ayrıştırma sonuçları SNR cinsinden verilmiştir. 

Aynı yöntemler üzerinde farklı işaretlerin de testi sağlanmıştır. Bu kapsamda Tablo 

4.16’da iki erkek ve bir beyaz Gauss gürültü işareti, Tablo 4.17’de anne EKG, beyaz 

Gauss ve Fetal EKG işaretlerinin ayrıştırılma sonuçları, Tablo 4.19’da ise EEG ve beyaz 

Gauss gürültü işaretlerinin ayrıştırılma sonuçları SNR cinsinden verilmiştir. 

 Uygulama sonuçları önerilen ön işlemli ve DWT MO-BSS yöntemlerinin işaretleri 

yüksek SNR oranları ile ayrıştırdığı kanıtlanmıştır. Genel olarak DWT MO-BSS 

yönteminin ön işlemli MO-BSS yöntemine göre işaretleri daha iyi ayrıştırdığı 

görülmüştür. İşlem süreleri açısından incelendiğinde önerilen yöntemlerin işlem yükleri 

artmasına rağmen çok az da olsa işlem sürelerinde azalma sağlanmıştır. 

Ancak sunulan sorunların çözümüne yönelik literatürde çok az araştırılan bir yaklaşım 

olması nedeniyle elde edilen sonuçlar bu alanda çalışmayı teşvik etmektedir. Deneyler 

belirli veri setleri ve kriterleri içerse de diğer durumlar için çok amaçlı yaklaşım genel bir 

başarı sağlamaktadır. Bu sayede çok çeşitli uygulamalarda kullanılabilir.  

Gelecekteki diğer çalışmalar, söz konusu problemin çözümündeki yöntemlerin 

performanslarını karşılaştırmak amacıyla BSS bağlamında farklı çok amaçlı yöntemlerin 

uygulanmasını içermektedir. Bu nedenle bu yeni yaklaşımda diğer veri kümeleri ve 

optimizasyon kriterleri test edilecektir. Problemde mevcut olan çok sayıda değişkenle 

başa çıkmak için daha etkili tekniklerin araştırılması yapılacaktır. Ayrıca, kullanılan 

yöntemlerin hesaplama süresini azaltmak amacıyla, bulunan çözümlerin yakınsaması ve 

çeşitliliği ile ilgili durdurma kriterleri araştırılacaktır. 
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