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ABSTRACT

Cephe, A., Novel Statistical Approaches For Survival Analysis Of Rna-
Sequencing Data, Hacettepe University Graduate School of Health Sciences,
Department of Biostatistics Doctor of Philosophy Thesis, Ankara, 2024. The
number of people with cancer is increasing daily, and the mortality for cancer is
constantly increasing since the biomarkers of many cancer types are unknown. Also,
cancer doesn’t progress between individuals similarly, and all patients vary in response
to the same treatment because of genetic differences. At this stage, it is very important
to apply more effective treatments by making more accurate prognosis predictions
using personalized medicine strategies. Estimating survival in cancer patients using
survival time provides essential results. With the development of omics technologies,
the relationship between survival time and gene expression profiles of patients can
now be modeled. RNA-sequencing technology has been used in recent years for
survival analysis omics-based due to its advantages. Although RNA-sequencing has
many advantages, it differs from classical survival data with high-dimensionality,
heterogeneity, and highly-correlated genes. Due to these problems, the regularized
Cox methods and machine learning algorithms adapted to survival data are used
instead of classical survival algorithms. However, the regularized Cox methods require
some assumptions to be met using the Cox algorithm. Machine learning algorithms
that are first created for classification problems and then adapted to survival data
require additional time and effort. This study aims to develop new approaches that can
be used in the survival analysis of RNA-sequencing data by combining voom
transformation, stacking algorithm, and lasso methods with block structure. For this
purpose, survival data can be converted into binary classification data with the stacking
algorithm. Using the sample weights obtained after the voom transformation in
priority-Lasso and IPF-Lasso algorithms, two new approaches are presented:
voomStackPrio and voomStackIPF. Our approaches were applied to 12 real RNA-
sequencing data from the TCGA database. Performance comparisons were made with
other survival algorithms in the literature using Harrell’s concordance index. The
results showed that the performance of the two new approaches was similar or better
than other survival algorithms.

Key Words: survival, RNA-sequencing, voom, stacking, IPF-Lasso
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OZET

Cephe, A., RNA-Dizileme Verilerinin Sagkalim Analizlerinde Yeni Istatistiksel
Yaklasimlar, Hacettepe Universitesi Saghk Bilimleri Enstitiisii Biyoistatistik
Programi Doktora Tezi, Ankara, 2024. Kansere yakalanan insanlarin sayis1 her
gecen glin artmaktadir ve birgok kanser tiiriine ait biyobelirtecler bilinemedigi i¢in bu
hastaliktan 6liim oranlar1 da stirekli artis gostermektedir. Ayrica, her kanser hastaligi
her hastada ayni sekilde seyretmemekte ve her hasta aym tedaviye aym yaniti
vermemektedir. Bu asamada, bireysel tip stratejilerinden da yararlanarak daha dogru
prognoz tahminleri yaparak daha etkili tedaviler uygulamak olduk¢a Onemlidir.
Kanser hastalarinda olay zamani degiskenlerinden yararlanarak sagkalim
tahminlemesi yapmak bize ¢ok dnemli sonuglar saglamaktadir. Omics teknolojilerinin
de gelismesiyle birlikte artik sagkalim zamani ve hastalarin gen ifade profilleri
arasindaki iliski modellenebilmektedir. Bu ¢alismalarda son yillarda avantajlarindan
dolayr RNA-dizileme verileri kullanilmaktadir. Ancak, RNA-dizileme verileri klasik
sagkalim verilerinden farkli olarak yiiksek-boyutluluk, heterojenlik ve yiiksek-
korelasyonli genleri bulundurma o6zelliklerine sahiptir. Bu 6zelliklerinden dolay1
klasik sagkalim algoritmalar1 yerine diizenlilestirilmis Cox yontemleri ve sagkalim
verilerine uyarlanmis makine Ogrenmesi algoritmalart kullanilmaktadir. Ancak,
diizenlilestirilmis Cox yontemleri Cox algoritmasinin kullaniminda saglanmasi
gereken bir takim varsayimlar1 gerektirmektedir. Genellikle Once siniflandirma
problemleri igin olusturulup daha sonra sagkalim verilerine uyarlanan makine
O0grenmesi algoritmalar1 da ek bir zaman ve ¢aba gerektirmektedir. Bu ¢alismada,
voom doniisiimii, stacking algoritmasi ve bloklu lasso yontemlerini birlestirerek RNA-
dizileme verilerinin sagkalim analizlerinde kullanilabilecek yeni yaklasimlar
gelistirilmesi amaglanmistir. Bu amagla, stacking algoritmasi ile sagkalim verileri ikili
siniflandirma verilerine doniistiiriilebilmektedir. Voom doniisiimii sonrasi elde edilen
gozlem agirliklar1 da priority-Lasso ve IPF-Lasso algoritmalarinda kullanilarak
voomStackPrio ve voomStackIPF adinda iki adet yeni yaklagim sunulmustur.
Gelistirdigimiz bu yaklagimlar TCGA veritabanindan alinan on iki adet gergek RNA-
dizileme verisinde uygulanmistir. Harrell’in Concordance Indeksi kullanilarak
literatiirde yer alan diger sagkalim algoritmalar1 ile performans karsilastirilmasi
yapilmistir. Sonuglar, calisma kapsaminda gelistirilen iki adet yeni yaklasimin
performansinin diger sagkalim algoritmalar1 ile benzer veya daha iyi oldugunu
gostermistir.

Anahtar Kelimeler: sagkalim, RNA-dizileme, voom, stacking, IPF-Lasso
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1. INTRODUCTION

1.1. Problem Overview

Gene expression profiling measures the actively expressed genes in a cell at a
specified time. This method produces patterns of genes expressed by a cell, utilizing
the capability to simultaneously measure the expression level of transcripts (MRNA or
miRNA) for thousands of genes (1). Gene expression profiling has many goals: (i) it
evaluates gene activity in particular cell behaviors (e.g., cell division) to determine the
cell's role in these processes (2), (ii) it identifies active genes that respond to changes
in the cell's environment, improving our understanding of how different conditions
affect gene expression, (iii) it studies the role of molecules such as drugs on cell
response, and explores potential treatment options by targeting genes that are more
prominent in diseases like cancer (1,3).

Transcriptomics technologies are pivotal in the extrapolation and analysis of
gene expression. The main technologies used are DNA microarrays and RNA-
sequencing (RNA-seq). They identify and quantify gene activity (expression) for gene
expression profiling (4). While both methods can detect RNA transcripts in a sample
(cells, tissues, etc.), the methods used are distinct. While RNA-seq uses a sequencing
approach, microarray uses a hybridization approach. For decades, microarray
technology has been used extensively in gene expression research. However, there are
limitations to this array technology (5). For instance, the dynamic range for detecting
transcript levels in microarrays is somewhat limited, influenced by factors like
background, saturation, spot density, and quality, especially when dealing with
transcripts found in low abundance (6). In addition, in microarray analyses, cross-
hybridization results in high background levels, and microarray techniques rely on a
priori knowledge of the reference genome (7,8). Due to its numerous advantages,
RNA-seq technology, utilizing next-generation sequencing (NGS), has recently
become the preferred choice over microarrays. RNA-seq has a wider dynamic range
of expression levels and relatively higher sensitivity, allowing the detection and
quantification of both highly expressed and low-expressed genes, and contains a very
low background signal (5). RNA-seq can identify rare transcripts and low-abundance
RNA molecules such as single nucleotide polymorphisms (SNP) except de novo SNPs



for low abundance RNAs, while microarrays cannot detect SNPs. RNA-Seq not only
identifies transcripts corresponding to known genomic sequences but also sequences
complex transcriptomes and explores non-model organisms with undetermined
genomic sequences—capabilities beyond the reach of microarrays, which are limited
to known sequences. The accuracy of the RNA-seq in detecting the expression of
extremely abundant genes is high, while the accuracy of the microarray data is
relatively low (9). Finally, RNA-seq eliminates the necessity for specific probes and
can sequence without relying on a reference genome (5).

Three main types of gene expression studies can be distinguished: class
prediction, class discovery, and differential expression analysis (DE). DE studies are
goal-oriented. Identification of genes that express differently under various
experimental conditions is known as differential expression analysis (10). In order to
treat a gene as differentially expression, the number of reads (or expression levels)
between these conditions has to be statistically significant. Class discovery is the
process of classifying data by similarity in behavior or property. This means you can
discover new classes without using pre-defined labels (11). Class prediction, on the
other hand, entails the development of decision rules to discriminate samples with
known class labels and determine the class to which a new sample belongs (11). In this
thesis, 'survival analysis' of gene expression data will be concentrated, in contrast to
these three. This thesis aims to bring a new perspective to the literature on the survival
analysis. Predicting when and with what probability a new sample will experience a
specific event using gene expression data holds great importance, especially in
bioinformatics.

Prediction of survival, especially in cancer patients, is an important factor in
clinical decision-making (i.e., increasing the frequency of follow-up and prescribing
specific treatments) for clinicians (12). Survival analyses are employed to identify
disease-causing factors in cancer patients, estimate the time until death, and predict the
degree of malignancy and the time of disease progression. Early detection of cancer
and timely appropriate interventions help prevent over-treatment (e.g., unnecessary
drug use) and ensure appropriate palliative care is provided to the patient.

Predicting survival is difficult due to the heterogeneous structure of cancer
cells. As an illustration, individuals with diffuse large B-cell lymphoma (DLBCL)
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demonstrate clinical diversity; while 40% respond favorably to treatment and
experience extended survival, the remaining 60% show resistance and have reduced
survival prospects. Further investigation revealed significant differences in DLBCL
survival rates between activated and germinal center B-like DLBCL (13). In DLBCL,
individuals suffering from germinal center B-like demonstrated markedly better
overall survival compared to those with activated B-like. In initial cancer survival
studies, clinical variables such as age, race, and laboratory results (tumor size, tumor
grade, etc.) served as predictors of outcome (14). Nevertheless, depending solely on
clinical variables, laboratory results, and clinician experience has proven insufficient
in predicting cancer survival (15) because each type of cancer progresses uniquely in
each patient, and individual responses to identical treatments can vary significantly.
Survival analysis using gene expression data became feasible with the development of
omics technologies and precision medicine (16). It has been observed that more
accurate results are achieved when utilizing genetic data alone or in combination with
clinical data (17,18).

Unlike regression analysis and other classification methods, survival analysis
is focused on the time to event outcome. The survival analysis aims to predict
survival/hazard functions, compare those functions, and identify the relationship
between survival time and covariates. Binary classification techniques or logistic
regression, on the other hand, are techniques for predicting the probability of a binary
outcome (e.g., smoking status). In a survival analysis, the variables and time of an
event are combined to determine its outcome. Certain observations might be censored
as a result of this outcome variable. Individuals still alive at the end of the study or lost
to follow-up during the study period are considered censored since their survival times
are not precisely known (19). Various statistical models exist to predict survival
probability in cancer studies. The survival curves between the two groups were
compared, and survival functions were estimated using non-parametric techniques like
Kaplan-Meier (20), the log-rank test (21), Nelson-Aalen (22), and life-table (23). To
account for their effects, semi-parametric models like Cox regression (24) emerged
because these non-parametric methods do not provide information about the
contribution of different risk factors to the probability of survival. Several Cox
regression models have been developed, including penalized Cox regression (25,26),



time-dependent Cox models (27), etc. Cox models require some assumptions, such as
proportional hazards, which are often violated in real-life data. Parametric models have
been developed that do not require satisfying these assumptions, such as Buckley-
James linear regression (28), penalized regression (29), accelerated failure time models
(30), etc.

Gene expression data, in contrast to traditional clinical data, suffers from a
high-dimensionality issue because there are substantially more genomic covariates (p
>>n) than samples. The high-dimensionality issue prevents the
aforementioned survival analysis techniques from being used with gene expression
data such as RNA-seq (31). Gene correlations in RNA-seq are frequently very
strong, which  can cause serious problems with collinearity (32). The high
multicollinearity and high number of genes in the RNA-seq data, in spite of the low
sample count, lead to overfitting issues. Moreover, the data structure of RNA-seq is
heterogeneous and complex. Although the Cox regression model, a linear model
producing risk scores based on covariates, is widely used in survival analysis, it
struggles to analyze complex nonlinear relationships between logarithmic risk scores
and covariates (33). To address these challenges, penalized Cox regression algorithms,
such as lasso (34), ridge (35), and elastic-net (36), perform variable selection on gene
expression data (37). Although these algorithms reduce computational costs and
overfitting, their application is restricted by the assumptions required for the Cox
proportional hazards model. Consequently, recent studies have adopted machine
learning approaches for survival analysis, offering more effective solutions
independent of model assumptions. Machine learning methods designed for
classification problems are powerful and robust. Due to the time-to-event outcome
variable, these algorithms cannot be directly applied to survival data. However, upon
examining machine learning algorithms developed for survival problems, it is
generally observed that they are extensions of machine learning methods originally
designed for classification problems, adapted to handle survival data. For instance,
random forest algorithms (38), commonly used in classification, have been adapted for
survival data, resulting in random survival forest algorithms (39). Other machine
learning algorithms follow a similar process, including survival trees (40,41), Bayesian
networks (42), neural networks (43), support vector machines (44), ensemble methods



(39,45,46), deep neural networks (47), active learning, transfer learning (48), multi-
task learning (49).

Survival algorithms employed in analyzing high-dimensional data have been
compared in multiple studies within the literature. For example, Bovelstad et al. (50)
evaluated the performance of the following techniques on high-dimensional datasets:
univariate feature selection, principal components regression, forward stepwise
selection, lasso and ridge regression, and partial least squares regression. Similarly,
Van Wieringen et al. (51) assessed the results of numerous survival analysis
approaches on high-dimensional genomic data, including univariate Cox regression,
principal component analysis, tree-based ensemble methods, penalized least squares,
and penalized Cox regression. Moreover, Witten et al. (31) investigated various
strategies for survival data analysis of genomic datasets, categorizing them into
discrete feature selection, shrinkage-based methods, clustering-based methods, and
variance-based methods. A recent study by Spooner et al., (52) used two datasets to
test a variety of machine learning (ML) and feature selection algorithms, such as
penalized, boosting and random forest methods, for survival analysis. Herrmann et al.
(53) performed a large-scale comparison study of multi-omics data to survival. They
used eleven survival methods groups: boosting, penalized regression, and random
forest.

In some cases, penalized or machine-learning approaches are used to analyze
RNA-seq data. The Random Survival Forest algorithm was used in the Ma et al. (54)
study on lung adenocarcinoma (LUAD) to analyze RNA-seq and clinical data. The
results showed that the RSF model performed better than the classical Cox model.
Different deep learning models were used to predict survival in cancer patients using
RNA-seq dataset in a study by Huang et al. (55). Ching et al. (56) utilized Cox
regression with neural networks (Cox-nnet) to forecast the survival of RNA-seq data.
Wang et al. (57) used RNA-seq data to develop a new method for predicting lung
cancer survival using a deep learning model based on a Convolutional Neural Network
(CNN). Grimes et al. (58) demonstrated that survival analysis results using RNA-seq
data gave higher accuracy than those based solely on clinical data, with the elastic-net
algorithm delivering the best performance. Jardillier et al. (59) compared the
performances of lasso-based penalized Cox Methods (lasso, ridge, elastic-net, adaptive



elastic net, etc.) using 16 cancer datasets. Compared to models established using only
clinical data, this study demonstrated enhanced performance when integrating RNA-
seq data with clinical data. Ding et al. (60) developed a machine-learning survival
prediction model based on miRNAs.

The number of machine learning algorithms developed for classification
problems is continuously increasing. Machine-learning algorithms for survival
analysis are generally derived from those utilized in the classification problems
described above. Applying machine learning methods originally designed for
classification problems to survival data requires additional effort. It is crucial to
emphasize that all machine learning algorithms developed or yet to be created for
classification problems can be applied similarly to address survival problems.
Therefore, the idea of stacking becomes significant, converting survival data into
classification data and ensuring the use of classification algorithms in survival analysis
(61). The stacking changes the data structure, transforming the time until the event
outcome in the survival data into a binary outcome variable suitable for classification
algorithms. Covariates of RNA-seq gene expression data are presented in two sets: a
covariate matrix consisting of continuous variables and a risk matrix consisting of
binary variables. While stacking has proven successful with low-dimensional data, no
studies in the literature explore applying this stacking concept to high-dimensional
RNA-seq survival data (61).

In an RNA-seq experiment, cDNA fragments are assembled by adding
sequencing adapters, creating a library of cDNA fragments. Then, this library is
sequenced to generate millions of short sequence reads corresponding to individual
cDNA fragments (62). Therefore, RNA-seq technology yields data in the form of count
numbers. Due to the count nature of the data, analyses of RNA-seq data have employed
either discrete distributions such as Poisson (63) or negative Binomial (64,65).
However, RNA-seq data has problems with mean-variance dependence, outliers, and
high skewness (66). Therefore, since modeling them using count distributions is
difficult and complex, studies employing transformation methods have also been
applied to apply normal-based approaches by converting discrete count data into
continuous data. The RNA-seq datasetin these studies was transformed using

logarithmic transformation (67), variance-stabilizing transformation (VST) (65),



regularized logarithm (rlog) transformation (68), and variance modeling at the
observation level (voom) (69), all of which were based on normal-based statistical
methods. With the voom transformation, the relationship between mean and variance
is taken into consideration when modeling discrete count data using a linear modeling
technique. This method generates logCPM values for each count data and weights
based on observational/sample. However, in most studies utilizing the voom method
to analyze RNA-seq data, only the logCPM values obtained are used, and the weights
created by the voom method are ignored. Very few studies include logCPM values and
weights obtained after voom transformation in the analysis. These studies achieved
high accuracy results in differential analysis (70), classification (71), and clustering
(72) by utilizing logCPM values and weight values obtained through the voom method
with RNA-seq data. However, no survival analysis study was found in the literature
that explores the joint utilization of the two outputs (logCPM and weights) obtained
after the voom transformation on RNA-seq data.

The stacking algorithm and voom transformation are used to generate the
covariate matrix based on the RNA- seq survival data. The covariate matrix is
composed of continuous as well as binary variables. In these cases, rather than using
traditional machine learning techniques for analysis, we have found that using machine
learning approaches that are able to handle different types of data will yield more
precise results. The priority-Lasso and Integrative-Penalized Regression with Penalty
Factors (IPF-Lasso) algorithms can analyze variables of different data types within
distinct blocks. The priority-Lasso algorithm typically organizes variables into blocks
based on their types and analyzes them in a prioritized sequence (73). On the other
hand, the IPF-Lasso algorithm analyzes diverse data types by assigning distinct penalty
factors to reduce the coefficients (74). Both algorithms can also sample weights in
their analyses. Employing sample-based weights derived from the wvoom
transformation in these algorithms is likely to yield more precise results. No study in
the literature yet performs survival analysis by taking into account the sample weights
in the priority-Lasso and IPF-Lasso algorithms on RNA-seq.

This study aims to transform RNA-seq survival data into classification data by

combining the powerful voom transform and stacking idea and generate two novel



approaches of priority-lasso and IPF-lasso algorithms, which are adept at analyzing

data within a block structure.
1.2. Contribution

This thesis presents two novel algorithms, voom-based priority-Lasso
(voomStackPrio) and voom-based IPF-Lasso (voomStackIPF). These algorithms
integrate three powerful methods —voom transformation, stacking idea, and lasso with
block— for the survival analysis on RNA-seq data. In both approaches, the process is
started by transforming raw RNA-seq data with voom. The idea of stacking is then
applied to the resulting data matrix. Finally, priority-Lasso and IPF-Lasso algorithms
are run using the sample weights derived from the stacked data matrix and the voom
transformation. The resulting linear estimators are then utilized to make survival
predictions. Thus, the main objectives of proposing these approaches are as follows:

1. to extend the application of voom transformation for survival analysis on

RNA-seq data,
2. to adapt the stacking idea for RNA-seq data,
3. to make the priority-Lasso and IPF-Lasso algorithms available for RNA-

seq data with sample weights.
1.3. Organization of This Thesis

The organization of this thesis is as follows. The 'General Information' section
discussed survival analysis and RNA-seq technology. It was mentioned which
methods are used in filtering, normalization, and transformation, leading to the
preparation of RNA-seq data for analysis. The section also elucidates the fundamental
concept of survival analysis and outlines the algorithms used for analyzing high-
dimensional RNA-seq data In the 'Material and Methods' section, we explain how
voomStackPrio and voomStackIPF algorithms were created. We also explain how
these algorithms are evaluated, and compare them with other algorithms based on real
data. We also provide information on the R package we developed for this study. The
'Results’ section presents the analysis results from 12 real datasets. The study's findings
are summarized in the ‘Conclusion’ section, while the 'Discussion’ section delves into

a comprehensive exploration and interpretation of the results.



2. GENERAL INFORMATION

2.1. Cancer and Survival Analysis

In 2020, nearly 10 million lives were claimed by cancer, making it the world's
second leading cause of death, which equates to almost one in six deaths (75).
Additionally, the 2022 report from the World Health Organization highlights the
prevalence of certain cancers in 2020, including breast with 2.26 million cases, lung
with 2.21 million cases, colon and rectum with 1.93 million cases, prostate with 1.41
million cases, non-melanoma skin with 1.20 million cases, and stomach with 1.09
million cases. In 2020, the leading causes of cancer-related deaths were lung (1 point
80 million deaths), stomach (769,000 deaths), liver (830,000 deaths), colon and rectum
(916,000 deaths), and breast (685,000 deaths). Approximately 400,000 cases of cancer
are diagnosed in children each year. Cervical cancer is predominant in 23 countries,
with varying prevalence rates across each nation.

Early detection is critical to successful cancer treatment. If treatment is
delayed, it reduces the patient’s chances of survival, exacerbates treatment
complications, reduces quality of life, and increases treatment expenses (76). Most
types of cancer can be detected early. When cancer is caught early and treated early,
the patient's five-year survival rate is significantly higher than when diagnosed later.
Illustratively, the National Cancer Institute's data indicates that when cervical cancer
is detected at an early stage, there is a 92% 5-year relative survival rate. On the other
hand, survival rate over five years is 17% in cases of cervical cancer that is discovered
after it has spread throughout the body. In addition to significantly impacting survival
rates, early diagnosis results in significant cost savings. Early cancer diagnosis has
been shown to save the US economy $26 billion annually, according to a study (77).

For the reasons mentioned above, developing new treatment methods is very
important for early diagnosis of diseases like cancer, patient survival prediction, and
overall survival extension. Utilizing patient data specific to a disease enables the
prediction of an individual's likelihood of recovery, mortality, or the probability and
timing of mortality through statistical analysis. The time-to-event of interest is a
commonly used outcome variable in cancer studies. Different statistical analyses are

applied when the time-to-event of interest is observed for all samples. Some samples,
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though, might not have experienced the event by the end of the study in some studies,
like those on cancer. For these samples, the time until the event is unknown and is
classified as ‘censored’. Ignoring these censored samples can result in biased and
inefficient estimates (78). Survival analysis is necessary for datasets of this nature. The
main goals of survival analysis are to estimate and compare survival/hazard functions
and evaluate the relationship between explanatory variables and survival time (79).

Survival analysis stands as one of the most prevalent statistical techniques
employed to assess a patient's mortality risk and identify prognostic factors influencing
that risk. These analyses aim to estimate life expectancy by observing individuals with
a certain disease for a certain period of time, determining the types of treatment, and
examining the recovery period or relapse period after treatment. Additionally, survival
analyses are valuable in evaluating the impact of newly produced drugs or a newly
developed treatment method on patients. It allows comparison of the life expectancy
of different patient groups and helps determine whether a disease seen in different
regions and times has epidemic characteristics.

Survival analyses are essential for modeling a variety of biological events,
including the time from birth to death, the time from cancer treatment to death, the
time from the first heart attack to the second, and the time to tumor recurrence. These
analyses further calculate probabilities such as 2-year survival, 5-year survival,
disease-free survival, progression-free survival, or overall survival. There are several
reasons why accurate survival probabilities are important. Over-estimating a patient’s
survival may result in delayed treatment for patients with severe disease, allowing
them to progress further. On the other hand, under-estimating can lead to patients
delaying treatment because they don’t expect to live long enough to see the long-term
benefits. Accurate forecasts also help patients and their families deal with life-altering
events, allowing them to plan for the rest of their lives accordingly. In addition, precise
survival estimates play an important role in the efficient use of scarce healthcare
resources by avoiding unnecessary medication and treatment (80).

In medical applications, survival analyses are essential because they can predict
the prognosis of a disease and, based on those predictions, estimate the probability that
a patient will recover. Survival models provide answers to questions like, “How likely

is the patient to survive in 6 years based on the patient’s information?”. These
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estimated probabilities are used by clinicians to make important decisions about
patient care. For example, they may increase the frequency of follow-ups or perform
specific treatments. Accurate prognosis predictions help clinicians make appropriate
clinical decisions in treatment and care planning and reduce the risk of over- or under-
treatment. For example, although mandatory rehydration is routinely performed for
cancer patients with fatal diseases, the importance of stopping or withdrawing
rehydration is emphasized to avoid distress due to overhydration (81). Similarly,
though corticosteroids and sedatives often provide relief for symptoms, their long-term
unnecessary use can lead to undesirable effects such as Cushing's appearance, oral
candidiasis, and tolerance (82). Consequently, decisions regarding medical
applications are largely contingent on survival assessments.

Diagnostic research and application centers are dedicated to investigating the
genetic causes of diverse diseases, delving into pharmacogenetics and personalized
medicine, and applying genetic tests using survival analysis. In order to ascertain the
impact on life expectancy, cancer research centers conduct survival studies on a variety
of cancer types and other malignancies. In the meantime, survival analyses are used
by biotech and pharmaceutical companies to assess the efficacy of novel drugs. In
addition to these applications, researchers from a variety of industries frequently

employ survival analyses in their scientific investigations.
2.2. Survival Analysis in Precision Medicine

Traditionally, pathological exams and symptom observation have been the
primary methods used by physicians to diagnose cancer. The pathological examination
method involves looking at the cancerous cell under a microscope. It has been used for
many years to diagnose cancer. But this method, which is based on a variety of criteria
and the experience of experts, is by its very nature subjective. Additionally, the
challenge arises when different tumors share the same DNA, making accurate
diagnosis challenging. In response, analyses utilizing gene expression data play a vital
role as the distinct gene expression profiles among various tumors differ (83). Using
people’s genetic information to diagnose cancer will result in faster, more precise, and

more sensitive findings.



12

The primary modalities employed in cancer treatment include surgery,
chemotherapy, and radiation. Additionally, supplementary approaches include
targeted therapy, immunotherapy, laser treatment, and hormonal therapy. But even the
same cancer can progress differently in different patients. There are also differences
in cancer types and types of cancerous cells. These factors limit the effectiveness of
traditional cancer treatments. Consequently, researchers are increasingly looking for
personalized approaches in cancer treatment. Precision medicine, alternatively
referred to as personalized medicine, encapsulates the idea of administering the right
drug to the right patient at the right dose and time (84). Advancements in high-
dimensional sequencing technology have made obtaining genetic data, including
genomic, transcriptomic, metabolomic, etc., more accessible. By using this
genetic information,  precision  medicine  can identify  high-risk  patients
before symptoms appear, highlighting the critical role that early detection plays in
the diagnosis of many cancers. Early diagnosis improves patient survival, maximizes
financial resources for healthcare, and lowers the risk of severe conditions. As such,
precision medicine, in its goal of preventing the disease process, minimizes or
eliminates side effects during treatment, allowing patients to derive maximum benefit

from the therapy and achieving the ultimate purpose of disease treatment (85).

In classical survival analysis, patient demographic and clinical data are
commonly employed, resulting in the calculation of similar survival probabilities for
individuals sharing similar demographic and clinical characteristics. Now that
personalized medicine applications are available, we’ve noticed that survival time and
survival chances can differ greatly from person to person. Distinct molecular and
patient characteristics can lead to diverse progressions of the same disease, and
individuals may exhibit different responses to identical treatments (Figure 2.1).
Despite the physical similarities, the differences in responses are mainly due to genetic
differences, which is why genetic information is such an important part of precision
medicine. Precision medicine recognizes that even individuals with the same genetic
origin may experience distinct progressions of fatal diseases. Consequently, predicting
survival times using specific biomarkers related to the prognosis of such diseases
becomes essential. Various biomarkers utilized in personalized treatments for

predicting survival, identifying high-risk groups, and forecasting benefits from
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specific treatments have significantly contributed to the diagnosis and prognosis of
diseases in clinical studies (86). Consequently, alongside classical survival analyses
utilizing clinical data, recent advancements have led to the development of survival
models incorporating high-dimensional molecular data from technologies such as

omics (genomics, transcriptomics, proteomics, metabolomics).
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Figure 2.1. Differences in treatment processes and outcomes between traditional and
precision medicine.

Sequencing technologies are instrumental in establishing the genetic profiles
of tumors in cancer patients. Gene expression data serves as a snapshot of the diseased
gene, and the intensity of expression of specific genes within diseased tissue is a good
biomarker for predicting the probability of patient survival. There is a high correlation
between gene expression data and survival, and several studies have shown that the
power of such data is more remarkable than clinical data and other prognostic factors
(87). Genes expressing cancer cells can be identified and treatment response of a
patient can be predicted through analysis of genetic profiles using sequencing
technologies. By using sequencing technologies, cancer patients can now receive more
individualized and customized treatment plans based on the unique characteristics of
their cancer, as opposed to the standard application of surgery, chemotherapy, and
radiation treatments to every patient.
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2.3. Next Generation Sequencing Technologies

Next-generation sequencing (NGS) stands as a high-throughput method
proficient in sequencing vast and complex genomes, suitable for both DNA and RNA
samples. NGS technology is distinguished by its high-speed capabilities. For instance,
the process of sequencing the entire human genome, which once took more than a
decade with the older Sanger sequencing technology, can now be completed in just a
single day using NGS (88).

The way NGS works is similar to that of Sanger sequencing; however, there
are some key differences. NGS can detect genomic variations, which is more sensitive
and quantitative than Sanger sequencing can. NGS can generate more sequencing data
on the same set of input sample requirements that Sanger sequencing does. NGS
employs massive parallel sequencing and simultaneously screens multiple genes
across multiple samples. It does not require a priori knowledge of the genome. NGS
is sensitive to tumor heterogeneity, leveraging its capacity to sequence heterogeneous
genomes within a sample. Additionally, NGS offers a single-nucleotide resolution. It
also has a higher dynamic range of signal, reproducibility and a lower sequencing cost
(89).

Various NGS platforms utilize diverse sequencing technologies, enabling the
simultaneous sequencing of numerous DNA polymers. Each NGS platforms conducts
parallel sequencing of millions of small DNA fragments. Illumina is the most widely
adopted among these platforms, and its workflow is illustrated in Figure 2.2.

Sample preparation begins with the extraction of DNA for next-generation
sequencing (90). Before employing NGS technology, the sample must undergo the
following steps to prepare for sequencing.

Sample Extraction: This step aims to obtain pure DNA or RNA. DNA or RNA nucleic
acids are extracted from various biological samples, including blood, cell cultures,
sputum, bone marrow, tissue selection, bacterial cultures, or urine (90). Different
extraction methods are employed based on the starting material. The purpose of these
methods is to obtain the best quality and the highest yield of nucleic acids from the
sample type. Nuclear acid isolation involves disrupting the cell wall or cell membrane
disruption through physical, chemical, or enzymatic methods to release the genetic
material. Subsequently, in nuclear acid isolation, undesirable substances such as
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proteins and lipids that may interfere with the reaction are eliminated from the cell
using methods like centrifugation, filtration, or bead-based. Following nucleic acid
isolation, a purification step is initiated. VVarious methods, such as silica, ion exchange,
cellulose, or precipitation-based techniques, are employed to purify nucleic acids. The
final stage involves assessing the amount of nucleic acid in the sample. Inadequate
nucleic acid concentration may lead to the amplification of unwanted products during
polymerase chain reaction (PCR) or the generation of short-read lengths during
sequencing. An increased background during sequencing procedures may result if the
nucleic acid concentration is too high.

Library Preparation: This step transforms the extracted nucleic acids into a format
suitable for the chosen sequencing technology (90). Generating a sequencing library
from a DNA or RNA sample involves two main steps: (i) amplification and (ii) the
addition of sequencing adapters. In the case of RNA as the starting template, an
additional step is required to convert RNA to cDNA through reverse transcription.
First, all DNA is fragmented into similar-sized pieces to enhance the reading
sensitivity of the bases and mitigate enzymatic errors associated with longer DNA
strands. Various methods, including physical, chemical, or enzymatic approaches, are
employed for DNA fragmentation. Once the length of the DNA is adjusted, specialized
adapters are ligated to both ends of the DNA fragments. Adapters, chemically
synthesized oligonucleotides with predetermined sequences, bind to the ends of DNA
molecules. These adapters are designed to interact with a specific sequencing platform
and serve as barcodes, enabling the identification of the initial location of each
nucleotide.

Clonal Amplification: The DNA fragments from the libraries are amplified to such an
extent that fluorescent signals for single-base incorporation are detectable by the
sequencers in the downstream sequencing reaction. Initially, the library created from
DNA fragments is fixed to the surface for amplification. The fragments are hybridized
to the flow cell surface, and each bound fragment is amplified into a clonal cluster
through a series of amplification reactions known as bridge amplification (91). The
five steps of bridge amplification include: (i) synthesis of the complementary strand
of a DNA fragment in the library from the priming oligo of the flow cell, (ii) folding

of the complementary strand folds and formation of the double-stranded bridge, (iii)
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creation of two single strands by denaturing the double-stranded bridge, (iv) repeating
the process of bridge amplification, and (v) generating more clones of double-stranded
bridges. Subsequently, each fragment forms a cluster of identical molecules known as
clonal clusters, each representing one primary library molecule. The double-stranded
clonal bridges are denatured, the reverse strands are removed, and the forward strands

persist as clusters for sequencing.
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Figure 2.2. Workflow of next generation sequencing using Illumina systems.

DNA Sequencing: NGS platform is used for parallel sequencing. The library is loaded
onto the sequencer, in which it systematically ‘reads’ the nucleotides individually. The
DNA sequence obtained by sequencing each piece of DNA is referred to as a read. The
quantity of reads generated varies based on the sequencing platform and kit. A
comprehensive comparison table of sequencing platforms is provided in Table 2.1 of
Zararsiz’s PhD thesis (92).

The most popular platform is Illumina sequencing. Illumina sequencing uses
fluorescent dye-labeled dNTPs with a reversible terminator to read fluorescent signals
in every cycle, using a process called cyclic reversible termination (93). Only one of

the four fluorescent DNTPs are incorporated into the DNA polymerase in each cycle
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based on complementarity and then unbound DNTP’s are eliminated. Cluster images
are taken after each nucleotide has been incorporated; the emission wavelength is
measured and the fluorescence intensity is measured to determine the base that has
been incorporated into each cluster during this cycle. The fluorescent dye and
terminator are then cut and released after imaging. This is followed by another
synthesis cycle, another imaging cycle, and another deprotection cycle. Because each
base is read from one cycle to the next, the read length is iteratively repeated ‘n’ cycles.
Alignment and Data Analysis: Initially, the reads must be filtered based on quality,
amplicon size, and concordance between paired ends. The reads are then assembled
and aligned to a reference genome. In the concluding stages, reads can be compared
with reference sequences or with other samples to detect variants by disease status,
etc. If reads are aligned with a reference genome, variant annotation can associate
variants with known genes or regulatory sequences.

This final step comprises three phases: processing, analyzing, and interpreting the raw
sequencing data. Various bioinformatics tools, such as TopHat2 (94), STAR (95),
featureCounts (96), DESeq2 (68), and EdgeR (97), are employed to process, analyze,

interpret, and transform raw sequencing data into meaningful information.
2.4. RNA-Sequencing Technique

A new high-throughput sequencing technique for transcriptome analysis called
RNA-sequencing (RNA-seq) offers a reliable method for describing and measuring
transcriptomes. Although microarray technology has been used for gene expression
profiling studies for many years, RNA-seq offers many advantages over microarray
technology. Firstly, unlike DNA microarrays, which can only profile predetermined
transcripts/genes, RNA-seq enables comprehensive sequencing of the entire
transcriptome (98). Secondly, due to the markedly lower background signals in RNA-
seq compared to DNA microarrays, noise in the experiment is easily eliminated during
analysis. Third, RNA-seq has a wider dynamic range of expression and does not
require a large amount of total RNA for quantification (5). Finally, RNA-seq offers
higher resolution, a better detection range, and reduced technical variability (99).

RNA-seq is the direct sequencing of transcripts by NGS. All RNA-seq data is

therefore generated using the libraries preparation and sequencing platforms listed in
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the ‘Next Generation Sequencing’ section. NGS is capable of generating millions of
reads. Depending on the sequencing platform you choose, the number of reads may
differ. There are several steps that need to be completed before statistical analysis can
be applied to the RNA-seq data and the tools used in these steps are described in detail
in Table 2.1.

FASTQ Formats: High-dimensional sequencing results are obtained using next-
generation sequencing technologies (such as lllumina) in FASTQ (100) format, often
with the .txt extension. This format represents both sequencing data and quality scores
using a single ASCII character. Each read is presented with four lines stacked one
below the other in the file (Figure 2.3).

Identifier =P @HWI-ST330:304:HO45HADXX:1:1101:1111:61397
Sequence =P CACTTGTAAGGGCAGGCCCCCTTCACCCTCCCGCTCCTGGGGGANNNNNNNNNNANNNCGAGGCCCTGGGGTAGAGGGNNNNNNNNNNNNNNGATCTTGG
+ sign & identifier @ +HWI-ST330:304:HO45SHADXX:1:1101:1111:61397
Quality scores @m@e  @?@DDDDDDHHH2GH : ?FCBGGB@C2DBEGI 1 1 TAEF ; FCGG #HHEH#HHHHHHHHHHE-HHHHHEHHHHHEHHHHEHHHHAHHEHHHH A

Base=T
pred Quality # = 23

Figure 2.3. FASTQ formats.

In Figure 2.3, Line 1 starts with the @ character and continues with a sequence
identifier, typically containing information related to sequencing technology, such as
flow cell IDs, lane numbers, and information on read pairs. Line 2 consists of the raw
sequence reading featuring sequence letters. Line 3 starts with + and marks the end of
the sequence. The sequence identifier on the first line may follow the +. Line 4 displays
the quality values corresponding to the sequence in Line 2, containing the same
number of symbols as the letters in the sequence.

Quality Control: Quality control involves assessing raw sequencing data to identify
potential problems that may affect downstream analyses. Data quality metrics are
determined for this, providing information about various aspects such as read length,
sequencing depth, base quality, and GC content.

In Figure 2.3, Line 4 of the data in FASTQ format contains the quality code. This code
indicates the likelihood of a sequencing error at each nucleotide position, and the
quality score is derived when the probability of such an error is known. For instance,
if the probability of an ‘X’ error is 0.01, its quality score would be -10*log,,p=20.
These characters on Line 4 of the FASTQ file are interpreted based on the ASCII

character table.
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The widely used tool for quality metrics is FASTQC (101), which takes the FASTQ
file as input and generates an HTML file as output. This HTML file comprises several
sections. For instance, the “Basic statistics” section provides general information about
the number and length of reads, while the quality of reads of nucleotides is visually
presented in the “Per base sequence quality” section.

Filtering/Trimming: Adapter sequences are short oligonucleotides and ligated to DNA
fragments' ends. When you read the adapter sequence next to the unidentified target
DNA sequence, remove the adapter sequence to restore the target DNA sequence
(102). Similarly, low-quality reads containing sequencing errors, such as base-calling
errors, phasing errors, and insertion-deletion errors, are excluded from the sequencing
data. The use of adapter sequences and low quality nucleotides may result in false
positives and lower the accuracy of the downstream analysis.

Sequence Read Alignment: Alignment identifies the optimal position for each read in
relation to a reference genome. For organisms that have a reference genome, reads are
mapped to a genome or to a transcriptome. Two important mapping quality parameters
are the percentage of mapped reads and the uniformity of read coverage on exons and
the mapped strand (103). Following alignment, the result file format is Sequencing
Alignment Map (SAM) or Binary Alignment Map (BAM).

Expression Quantification: The number of reads from the RNA-seq data that map to
each transcript sequence is estimated in this step (103). A gene transfer format (GTF)
file is used to count the number of reads that have been mapped or aligned to each
gene during the process. GTF files contain gene models illustrating the structure of the

transcripts produced by each gene.

De novo Transcriptome Assembly: When an organism's reference genome is either
incomplete or nonexistent, de novo assembly is utilized. In this step, a reference file

is created using the available data because there isn't a reference genome yet.

Following the expression quantification steps, raw count data from RNA-seq

is acquired. Now, the pre-processing steps for this raw data have been initiated.
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Steps for RNA-seq data analysis | Tools
FASTQC (101)
Quiality Control NGSQC (104)

RNA-SeQC (105)

Filtering/Trimming

Trimmomatic (106)
PRINSEQ (107)
Soapnuke (108)

Read Alignment

Bowtie (109)
BWA (110)
STAR (95)
Tophat2 (94)
HISAT2 (111)

De novo Assembly

Cufflinks (112)
StringTie (113)

Trinity (114)
SOAPdenovoTrans (115)
Trans-ABySS (116)

Expression Quantification

RSEM (117)
Kallisto (118)
Salmon (119)
FeatureCount (96)
HTSeg-count (120)
eXpress (121)
DEXSeq (122)
Sailfish (123)

2.5. RNA-Sequencing Data

2.5.1. Raw Data

The raw RNA-seq data comprises non-negative and integer count data. As

illustrated in Table 2.2, the rows represent samples, while the columns represent genes.

Time (t) and status (8) are variables associated with survival in the RNA-seq data. The
status variable indicates whether a sample has experienced a specific event. If the
sample has experienced the event, the status variable is set to 1. If the sample has not
experienced the event (i.e., if it is censored), the status variable takes the value 0. If a

sample experienced a specific event, the time variable denotes the duration until the

occurrence of that event; if the sample was censored, it denotes the time at which

censoring took place.



21

2.5.2. Filtering

Low-expressed genes in RNA-seq data may negatively affect analysis results.
First, RNA-seq inherently contains noise because it is obtained through a natural
random sampling process, and accurate expression quantification becomes difficult
because it measures gene expression profiles over a wide dynamic range (5). These
noise and measurement mistakes are more common in low expression genes in RNA-
seg. Secondly, low expression genes are not biologically significant because genes
usually need at least a certain amount of expression to turn into proteins or to be
considered biologically significant. Thirdly, the mean-variance relationship is more
accurately estimated by excluding low-expressed genes from the dataset. Inadequate
removal of low-expressed genes adversely affects linear modeling in limma-voom,
particularly when working with logCPM values assumed to be normally distributed.
Suppose filtering of low-expressed genes is inadequate for linear modeling in limma-
voom; the mean-variance trend plot generated as part of the voom function will show
a decrease in variance levels at the lower end of the expression scale. Lastly, from a
statistical perspective, the sensitivity of detecting differentially expressed genes may
be reduced when genes have consistently low-expression counts (124). Hence,
identifying and removing low-expressed genes and insufficiently sequenced fragments
from each sample's data are biologically and statistically essential.

Numerous methods are available for filtering low-expression genes, such as
applying a predefined threshold value (69,97), filtering genes with consistently low-
expression across samples, and filtering genes with low variance across samples.
The edgeR package (97) is commonly employed in studies to filter low-expressed
genes. The filterbyExpr () function in this package contributes to more accurate
analysis by eliminating genes with low-expression from the dataset. This function
automatically removes unexpressed or low-expressed genes while retaining as many
genes as possible with valuable counts. A gene to be considered expressed in a library,
it must have 5-10 counts. By default, this function selects the sample count of the group
with the smallest sample count as the minimum sample count and keeps genes with at
least ten or more sequence fragment counts in this sample count. The filtering criterion
is to remove the gene if the number of genes with less than ten expression counts in

all samples exceeds the minimum number of samples (125). This function preserves
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genes with counts per million (CPM) greater than k in the sample of n. Here, n is
determined by the minimum group sample size, and k is determined by the minimum
number of samples (dafault:10) at the minimum sample rate (default: 70% of smallest
group size). Genes with at least a few counts of 10 or more can be selected, but it is
preferable to use CPM values to account for differences in library sizes. For example,
if the median library size is 51 million and 10/51 (about 0.2), the function retains genes
with a CPM of 0.2 or more in at least three samples. The CPM cutoff used is affected
by sequencing depth and the experimental design. A lower CPM cutoff is preferred
when library sizes are larger, while a higher CPM is favored in the opposite case.
logCPM, FPKM, and RPKM can also be employed as scale conversions instead of
CPM (126).

Number of variables
p=6

Number of r
samples = L0 P L2 Pe L) P

=

n=3

Heterogeneity 1

.3 Genes with High-Correlation
‘fu (Golub et al., 1999)

Figure 2.4. High-dimensionality, heterogeneity, and high-collinearity problems of
RNA-seq data.

2.5.3. Normalization

Normalization is an essential step in the preprocessing of RNA-seq data prior
to analysis. In some cases, there may be technical differences between measurements

in different samples or unwanted biological effects such as batch effects (127) or
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general noise (128). Normalization methods take into account this sample variability
to remove systematic experimental bias as well as technical variations while
maintaining biological variation. Technical variations limit comparability as there are
differences in measurement distribution between samples. Therefore, the use of

standardization algorithms is necessary to eliminate or reduce technical variation.

Table 2.2. An example RNA-seq survival data matrix for ACC data.

Samples Genes Time | Status
Genel Gene2 | Gene3 | Gened4 | Geneb Genel9930 | Genel9931 (t) )
Samplel 5 100 40 987 8 532 6 8 1
Sample2 11 89 6 53 5 69 4 17 1
Sample3 6 67 78 61 14 74 10 9 0
Sample4 8 69 51 99 9 78 19 13 1
Sample79 3 20 12 678 2 49 43 20 0

While early RNA-seq studies initially considered normalization unnecessary,
subsequent analyses demonstrated its significance (129). A gene’s expression level is
determined by its number of mapped reads. Normalization is necessary to convert the
raw read count into an informative measure of gene expression by addressing factors
that affect the number of mapped reads on a gene, such as length (130), GC content
(131), and sequencing depth (132). Another reason for the necessity of normalization
is the variation in the proportion of mMRNA corresponding to a given gene between
biological conditions. In the sequenced sample of molecules, the number of molecules
(reads) corresponding to a given gene depends on the proportion of that gene in the
population of molecules available for sequencing. Therefore, when a few genes are
highly expressed in only one of the conditions, these genes will contribute a larger
share of the total molecules, leaving a smaller portion of the reads for other genes
(132). It may result in inaccurate differential expression for non-differentiated
expression genes, which highlights the need for normalization to explain these

differences. There are many ways to normalize RNA-seq data.
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Total Count Normalization: Each read count is divided by the total number of reads in
its corresponding sample to account for differences in library sizes among samples
(133).

Upper Quartile Normalization: Initially, genes with zero read counts across all
samples are removed. Subsequently, the count for each remaining gene is divided by
the 75th percentile (upper quartile) of the counts for its corresponding sample (129).
Median Quartile Normalization: Similar to upper quartile normalization, genes with
zero read counts across all samples are removed. However, the count for a remaining
gene is divided by the median, rather than the 75th percentile (upper quartile), of the
counts for its corresponding sample (133).

Quantile Normalization: It calculates a specific quantile, ensuring uniformity in the
distribution of normalized data across all samples by replacing each quantile with the
mean (or median) of that quantile calculated across the entire set of samples (134).
Trimmed Mean of M-values (TMM) Normalization: Initially, the TMM (132)
approach selects a sample as the reference sample. Subsequently, it compares the
counts in each sample to those in the reference sample to estimate the sequencing
depths ratio between each sample and the reference. Trim the gene based on fold
change and absolute expression level calculated from the selected sample to remove
differentially expressing genes. The mean is calculated over genes that do not exhibit
differential expression (except for differentially expressing genes). Trim the fold
changes by calculating the trimmed mean for each sample and scaling reads counts
based on this trimmed mean as well as the number of samples.

Relative Log Expression (RLE)-DESeq Normalization: The DESeq (65) normalization
initially computes a ratio, where the numerator is a read count, and the denominator is
the geometric mean of all read counts across all samples for that gene. The
denominator in this context represents a pseudo-reference sample. This process is
applied to every read count. Subsequently, it computes the median of all ratios specific
to that sample to scale a sample. This calculated value is the size factor for the
corresponding sample. The ratio of size factors calculated for each sample indicates
the ratio of their respective sequencing depths.

By computing a virtual pseudo-reference instance, DESeq corrects for overexpressions
resulting from gene length and frequency biases. For the dataset with the p gene and n
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sample, the pseudo-reference sample is calculated as the geometric mean of counts

across all samples for the g™ gene, forming a vector of the gene geometric mean (s, =

NTgiTgz - Tgn = ([TG=1 )™ g=1,2,...,p). The reason for calculating the geometric
mean here is that the geometric mean is less sensitive to extreme values than the
arithmetic mean.

Subsequently, for each sample, the median of the ratio of the counts of the relevant
sample to the pseudo-reference sample is defined as the size factor. For the i" sample,
the size factor is calculated as follows.

R; = median, (HZ:?T;n)l/" = median, T;igl

The denominator in the equation is an example of a pseudo-reference obtained through
geometric mean across samples. Therefore, each estimate of size factor denoted as R;,
is calculated as the median of the ratios of the counts of the i sample to those of the

pseudo-reference. The size factor is applied to scale that sample (65).

Finally, for each sample i, the normalization factor is calculated as the median of the
14 Values. Genes with a geometric mean of zero are ignored when calculating this
median. DESeq median normalization involves dividing each gene value in each
sample by these median values calculated for the relevant sample (135).
P, = ;—'ii,i =12,..,n

PoissonSeq: A group of genes that are non-differentially expressed (non-DE) are first
found using the PoissonSeq algorithm (63). It then determines a scaling factor
to approximate the read counts expected for every sample. Next, the goodness-of-fit
test is used to see if the predicted values agree well with the associated genes. This
iterative process is repeated until the algorithm best matches the observed and expected
values.

Reads per kilobase per million mapped reads (RPKM), Fragments per kilobase per
million mapped fragments (FPKM) Normalization, Transcripts per million (TPM):
RPKM normalization (136) involves dividing each read count by the product of the

number of reads in the sample (in millions) and the gene length (in kilobases). This
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accounts for gene lengths and the library size in total count normalization. FPKM
normalization (112), similar to RPKM, divides each read count by the number of reads
in the sample and the gene length but uses cONA molecules instead of RNA reads.

TPM (137) is a slight modification of RPKM, converting an RPKM to a TPM using

RPKM
Sum(RPKM)’

the formula TPM = 10° =

CuffDiff Normalization (138), an extension of DESeq normalization, is an
additional method to the ones mentioned above. Both an internal and an external
size factor are computed as two distinct normalization factors. A more resilient version
of the TMM approach is the Median Ratio Normalization (139), which is merely an

extension of TMM normalization.
2.5.4. Transformation

The RNA-seq count data matrix exhibits sparsity and skewness (140). Sparsity
means that many counts in the RNA-seq count matrix are zero. Conversely, skewness
refers to a skewed distribution when the histogram is plotted for all counts in the RNA-
seq count matrix. Additionally, RNA-seq count matrices are generally heteroskedastic,
meaning the number of highly expressed genes varies more than low-expressed genes
(141). Analyzing data with unequal variance using standard statistical methods is very
difficult. To overcome this problem, various transformation methods can be applied to
make the data homoskedastic.

Logarithmic transformation: For data with a skewed distribution, the logarithmic
transformation is a simple method that is often employed. This transformation helps
the data distribution approximate a normal distribution. When applying a logarithmic
transformation to reduce or eliminate the skewness of RNA-seq data, adding a small
constant, such as 0.5 or 1, to each count is common. This addition
is required to prevent undefinable outcomes in the log

transformation, particularly when working with dataset counts that are equal to 0.
x'ig =log(x;y + 0.5) or x';; = log(x;5 + 1)

After applying the log transform to RNA-seq data, the distribution typically doesn't

become perfectly normal, but it exhibits reduced skewness and fewer extreme values.
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Variance stabilizing transformation (VST): The purpose of the vst transformation is to
obtain variables whose variances independent of the mean, thereby eliminating the
dependence of the variance on the mean. This helps prevent a high variance of the
logarithm of the count data, especially when the mean is low. This transformation
method models the relationship between means and variances with a dispersion
parameter (65). Assume that i, is the mean and o is the variance for the g™ gene.
When the relationship between the mean and the variance is modeled by og = u, +
agug and a dispersion parameter is a; = @y + a;/14, then vst transformation is

calculated follows.

xig

] 1
xig=J dy,

o2
o
S 9

The parameters a; and «, are estimated using generalized linear models. Following
the vst transformation, all genes exhibit unequal variances, yet the counts are less
skewed and show fewer extreme values.

Regularized logarithm transformation (rlog): The vst transformation may not perform
optimally with datasets featuring unequal library size (68). To address this issue, the
rlog transformation is introduced. Like the vst transformation, the rlog transformation
aims to eliminate the variance dependency on the mean (68). Although many aspects
of rlog transformation resemble those of the vst transformation, the rlog transformation
requires more time, especially in datasets with numerous samples. This increased time
is due to the rlog fitting a shrinkage term for each sample and each gene. The rlog

transformation is applied as follows.

x’ig = logz(Qgi) = ﬁgo + ﬁig

The parameter q; is proportionate to the expected accurate concentration of fragments
for the g gene and i sample. The intercept B4, does not undergo shrinkage and B;g is
the sample-specific effect which is shrunk toward zero based on the dispersion-mean
trend over the entire dataset.

Power transformation: As RNA-seq data comprises non-negative counts, modeling
them with a discrete Poisson distribution is appropriate (9,129). Because of these data
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with biological replicates, the overdispersion issue arises due to the variance being
much larger than the mean. However, it cannot cope with this overdispersed problem
since the mean and variance of the Poisson distribution have the same parameter value.
An alternative is using the negative Binomial distribution to model RNA-seq data
instead of the Poisson distribution (65,132). Nevertheless, due to the complexity of the
negative Binomial distribution, Witten et al. proposed applying a power
transformation to the RNA-seq data in their study. Although the transformed data is
not an integer type after the power transformation, it can still be modeled using the
Poisson distribution (63).

When a € (0,1], the transformed count values are utilized (x";; = x{3). Using the total

count size factor estimation, a test is conducted to assess whether the Poisson model

fits the data well, as expressed by the following formula (142).

P n (*'ig — g 2o by
22 gxl-- ~ (- D 1)

X._)

voom transformation: RNA-seq quantifies the number of sequence reads mapped to
each gene or other genomic feature (exons, transcripts, etc.), resulting in RNA-seq
datasets consisting of integer counts (65). Consequently, statistical analyses of such
data have been approached through methods that analyze log counts after
normalization by sequencing depth (143-145) or by modeling using discrete data
distributions such as negative Binomial (65,97,146) and Poisson (147). However, the
mathematical theory of discrete distributions is less tractable than normal distribution
approaches and presents more limitations. Most discrete distribution methods applied
to RNA-seq data yield accurate results for datasets with small sample sizes.
Additionally, methods based on these distributions are statistical tests treating
estimated distributions as known parameters. Commonly used normal-distribution
methods for microarray data analysis are unsuitable for RNA-seq read counts because
RNA-seq data consists of integer counts, unlike the continuous data format of
microarrays. Despite log transformation, RNA-seq data retains the issue of unequal
variance—Ilarger counts with larger standard deviations and smaller counts with

smaller standard deviations. In order to overcome these difficulties, the voom
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transformation was designed to model the mean and variance relationship without
specifying the precise probabilistic distribution of counts (69). By incorporating the
mean-variance trend into precision weights for each normalized observation, the voom
transformation enables the application of statistical methods based on normal
distribution  after predicting the mean-variance trend of the data.

voom: Mean-variance trend

14

Sqrif standard ceviation )

Iog2( count size + 0.5 )

Figure 2.5. Voom mean-variance modeling.

If the RNA-seq datasets comprise n samples, each sample's count of reads
matching with each gene defines the RNA-seq profile. These profiles often involve
tens of thousands of genes, with the number of samples typically limited. The total
number of matched reads for each sample, referred to as the library size, may range
from a few hundred thousand to hundreds of millions. The count of reads for a gene is
proportional to the gene expression level, the gene transcript length, and the
sequencing depth of the library. Counts per million (cpm) values are derived by
dividing each read count by library size, enabling comparison across libraries of
varying sizes in millions. The differences in logCPM between samples generate the
log-fold-changes of the expression. logCPM (logarithm of counts per million reads)
values, akin to log-intensity values in microarrays, were utilized; however, it's

important to note that logCPM values may not exhibit constant variance.
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When analyzing the probability distributions of counts, it is seen that larger
counts exhibit larger variances. So, it was observed that the coefficient of variation in
RNA-seq should be a decreasing function for small counts and asymptote to a value
dependent on biological variability for larger counts (148). Studies involving technical
replications have demonstrated the standard deviation of logCPM continuously
decreases as a function of the mean. Conversely, in the case of biological replications,
this decrease is earlier and relatively more asymptotic (Figure 2.5) (69). Consequently,
logCPM values exhibit a mean-variance relationship that decreases based on count
size, and the logCPM transformation roughly distorts the variance of RNA-seq counts
as a function of count size, especially for genes with larger counts.

logCPM transformation can be analyzed using a trend approach for RNA-seq
data analysis (149,150). However, this causes the mean-variance trend of low-count
data to be ignored. Limma-trend models variance at the gene level, but RNA-seq count
sizes can vary widely from sample to sample for the same gene. Due to different
samples being sequenced at different depths, different count sizes can yield the same
cpm values. Therefore, voom models the mean-variance trend of logCPM values at the
individual observation level rather than applying gene-level variability to all samples
within the same gene. To achieve this, the mean-variance trend of the logged read
counts is estimated, and this mean-variance relationship is utilized to estimate the
variance of each logCPM value. The estimated variance is then retained as an inverse
weight for the logCPM value. The inverse square estimated standard deviation for each
sample becomes the weight for that sample.

The voom method has accurately controlled the type | error rate and false
discovery rate (69). The voom method produced results that were very close to the
nominal type | error rate in scenarios considering equal or unequal library sizes.
Moreover, voom consistently exhibited the lowest false discovery rate across various
cut points. Notably, voom also showcased faster performance than alternative
methods.

In the analysis of RNA-seq data, especially in DE analyses, normalization, and
batch correction are applied to eliminate systematic biases and reduce variability.
However, another factor complicating RNA-seq data analysis is the variability in

sample quality. One strategy to model sample-specific variability involves excluding
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high-variability samples from the dataset. This approach reduces variability but also
reduces the power to identify DE genes. Alternatively, retaining all samples in the
dataset allows for a comprehensive view but may limit the ability to distinguish true
differences between experimental conditions from noise due to increased variation. To
address this challenge, the concept of down-weighting observations from samples with
high variability has been introduced. This approach aims to preserve maximum
degrees of freedom while minimizing the impact of noisy observations (151).
Consequently, sample weights, in addition to observational weights, can be determined

post-voom transformation.
2.5.5. Feature Selection

Feature selection, which has several benefits, including removing redundant
variables, decreasing time complexity, and enhancing the efficiency of many
algorithms, is one of the most important challenges in high-dimensional data analysis.
It is not recommended to make predictions using all features due to the possibility of
overfitting. Given the sparsity assumption, it is important to choose the most important
features, since most of the features do not influence the result. One of the most
commonly used methods for feature selection is regularized regression methods, which
shrinks regression coefficients to zero, leading to economic prediction models and
dealing with the problem of overfitting (34).

Boruta algorithm (152) is a wrapper feature selection method derived from the
Random Forest algorithm. This method tries to determine a threshold by taking
advantage of the variable importance order used in the Random Forest algorithm. The
set of variables is doubled with copy variables called ‘shadow variables’ from the copy
of all variables. Random forest is trained on this new expanded dataset and variable
importance values are created. A statistical test compares the significance of each real
variable in the dataset with the maximum values of all dummy variables. Variables
with significantly larger importance values are labeled important, respectively, while
variables with smaller importance values are labeled unimportant. Thus, the Boruta
algorithm checks at each iteration whether a real feature is of higher importance. All

unimportant variables and shadow variables are removed. The previous steps are
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repeated until all variables have been classified or a predetermined number of runs
have been performed.

Variable selection with the Boruta algorithm has been used in gene expression
(153) and microbiome (154) studies involving high-dimensional omics datasets.
Boruta algorithm has been a recommended method for analyzing high-dimensional

data as well as low-dimensional data (155).
2.6. Survival Modeling

The outcome variable is the survival time, which is the time until the event of
interest occurs in many cancer studies. Various statistical methods can be used for
analysis when the event of interest occurs in all individuals in the study. However, if
the outcomes of the event become unobservable for individuals after a specific time
point due to various reasons, or if individuals have not experienced the event by the
end of the study, such instances are categorized as censored samples. This data type
cannot be analyzed with standard statistical methods or machine learning-based
prediction models developed for classification problems. This is due to the outcome
variables in these data containing both event and time information (156). Therefore,
survival algorithms have been developed to address this unique data type. Survival
algorithms are concerned not only with whether the event of interest occurred but also

when the event occurred.
2.6.1. Basic Concepts in Survival Analysis

Time-to-event variables: The survival data outcome variable comprises ‘status’ and

‘time’. The status variable represents the status of the individual at the end of the study,
and the time indicates the duration of the follow-up period. The status variable is
categorical, reflecting whether the individual experienced the event of interest. In
cancer studies, this event is typically the time to death. However, events such as the
time until cancer relapses, response to the treatment, disease development, or tumor
disappearance can also be considered. The time until these events of interest are always
continuous, positive, and usually exhibits a skewed distribution.

Censoring: Censored individuals are those who did not receive follow-up data during

the study period. The true survival time of these uncensored patients is unknown.
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Censored samples provide only partial details about the event's timing, leading to
underestimating or overestimating real survival times (157). Censorship in survival
studies may occur for a variety of reasons, including: i) individuals may still not have
experienced the event of interest by the study's end, ii) follow-up may have been lost
during the study period, iii) another untrackable event, such as death, may have
occurred, iv) patients may have withdrawn from the study for various reasons. Three
categories exist for censoring types: interval-, left-, and right-censoring (Figure 2.6).
The observed survival time in data that has been right-censored is less than or equal to
the true survival time, whereas the observed survival time in data that has been left-
censored is higher than or equal to the true survival time. Data that has been interval-

censored includes occurrences that take place inside a given time frame.

Not censored

X

—)( Not censored
{)Rigmcensored
0 Right censored
—O Right censored

3( Right censored

O Right censored

X

Left censored

Interval censored

start of study event time end of study

= unknown period = known period X = died O = alive

Figure 2.6. The three types of censoring.

Survival Data: Survival data, comprising n samples, can be described using a
minimum of three variables for each sample, denoted as X = {(x;, T;,6;)}, i =
1,2,...,n. Here, x; € R represents the covariate vector of the i" sample. T; is the
survival time if the i sample is uncensored, or T; is the censoring time if the i sample
is censored. T denotes the observed time until an event of interest occurs for
uncensored data or the observed time to censorship for censored variables. T is non-
negative and continuous. §; is the status variable of the it" sample, taking a value of 1
for uncensored samples and 0 for censored samples. Using various functions, survival
analysis predicts the time until the event of interest occurs for a new sample using

covariate variables and estimates the survival probability at predicted survival time.
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Survival Function (S(t)): The probability density function of T is denoted by f(t).

The cumulative distribution function of T, defined as F(t), computes the probability
that the event of interest (T) occurs before a specified time (t). The cumulative

distribution function is given as follows.

Fr(t) = j fr(w)du = P(T <t)

The survival function computes the probability that the time to the event of interest (T)

is not earlier than a specified time (t). The survival function is given as follows.

St@)=PTzt)=1-F@) = fmfr(u)du

The relationship among f+(t), Fy(t) and S;(t) are shown in Figure 2.7. Due to
lim,, o Fr(t) = 00, Sp(0) = 0.

The survival function is non-increasing and monotonically decreases with t (Figure
2.8). Since all samples survive at the beginning of the study, having not experienced
the event of interest, the initial value of the survival function at the origin is 1 when
t=0. (S7(0) = 1).

F(t) or proportion dead

17t) or death density

S(t) or proportion surviving to ¢

Density Function

Figure 2.7. The relationship among functions, which are f(t), F(t), S(t).

Probability Density Function (F(t)), or the Cumulative Incidence Function (R(t)): The

probability that an individual has a survival time equal to or less than t time.

Hazard Function (h(t)): The hazard function does not calculate a probability. This

function is the rate of the event at a specified time (t). The hazard function determines
the instantaneous failure rate at time t, provided an individual has survived until t, and

is defined by
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Figure 2.8. Smooth curve and stepped line graphs for survival function.

hy is non-negative and has no upper bound. If no event happened in 6t, then
hy(t) = 0. The hazard function may exhibit various graphical shapes, as shown in

Figure 2.9.

Hazrd functions
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Figure 2.9. Hazard functions.

Cumulative Hazard Function (H(t)): The cumulative hazard function is the total

amount of probability accumulated up to time t, where ‘instantaneous probability’ is
derived from the probability distribution function. It is the integral of the hazard
function from time 0 to time t and is also equal to the AUC of the h(t) from time 0 to

time t.
t
H(t) = f hr(uw)du
0

2.6.2. Statistical Methods for Survival Analysis

When analyzing survival data, three fundamental approaches are employed:
non-parametric, semi-parametric, and parametric, depending on the research question

(Figure 2.12). A comparison of these approaches is given in Table 2.3.
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Parametric Approaches

Parametric survival models assume that the survival times or the logarithm of
the survival times for all individuals in the data follow a theoretical survival
distribution. These models produce survival estimates based on this distribution (158).
The most common parameter estimation method in these models is the maximum
likelihood estimation method. Parametric approaches offer an advantage in reliably
estimating survival times, especially for events occurring long after the observed data.
Among the various parametric distributions, each employes different hazard functions;
the most commonly used ones include (i) Exponential, (ii) Weibull, (iii) Gompertz,

and (iv) Log-logistic.

Table 2.3. Comparison of type of survival approaches.

Type of Approaches

Advantages

Disadvantages

Non-parametric

-It is used when the theoretical
distribution of survival times

-Less effective results if
survival times are

is unknown or the | theoretically distributed.

proportional hazard | -Survival function has

assumption does not hold. piecewise constants

-It’s flexible. instead of being smooth. It
can  give  unrealistic
estimates  with  small
sample sizes.

Parametric -1t is easy to interpret as
survival  times show a
theoretical distribution.
-It’s simple, efficient,
effective.

- It does not need distribution

information for survival times.

-It may give inaccurate
results when distribution
assumptions are not met.
and

-Outcome  variable is
difficult to interpret as its
distribution is unknown.

Semi-parametric

Exponential Distribution: The Exponential distribution is the simplest parametric

model, characterized by a single parameter, A, where the mean of this distribution is
also A. It assumes that the random events of failure and death are time-independent,
with a constant instantaneous hazard over time. The probability density function is
given by f(t) = A exp[—At], the instantaneous hazard function is h(t) = A, the
cumulative hazard function is H(t) = At, and the survival function is S(t) =
exp[—At] (Figure 2.10).
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Figure 2.10. Exponential distribution, when A=0.25.

Weibull Distribution: The Weibull distribution is characterized by two parameters: a

scale parameter, A, and a shape parameter, y. The probability density function is given
by f(t) = Ayt¥~! exp[—AtY], the instantaneous hazard function is h(t) = Ayt¥ 1,
the cumulative hazard function is H(t) = AtY, and the survival function is S(t) =
exp[—(At)Y]. The behavior of the instantaneous hazard concerning time depends on
the value of y; it monotonically decreases over time when y <1, remains constant when

y =1, and increases over time when y >1 (Figure 2.11).
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Figure 2.11. Weibull distribution for A=0.25 and y =0.5.

Gompertz Distribution: The probability density function is given by f(t) =

Aexplyt] exp[—A/y (exp[yt] — 1)], the instantaneous hazard function is h(t) =
Aexp[yt], the cumulative hazard function is H(t) = A/y (exp[yt] — 1), and the
survival function is S(t) = exp[— A/y (exp[yt] — 1)].

Logistic Distribution: For the logistic distribution, the hazard function behaves non-

monotonically. The survival time is denoted by T, u is the parameter that determines
the location of the function, and o is the scale parameter. The probability density

e—(t-W/o e—(t-w/o

m, the survival function is Tre—(-w/o’

function is given by and the

instantaneous hazard function is sre-@m/oy
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Log-logistic Distribution: Similar to logistic distribution, the hazard function behaves

non-monotonically for the log-logistic distribution. The survival time is log(T), and
y>0 is the shape parameter. The probability density function is given by f(t) =

b-1
AytY=1/(1 + At¥)?, the instantaneous hazard function is h(t)=%, the

cumulative hazard function is H(t) = log(1 + At"), and the survival function is
S®) =1 +xanL

a. Linear Regression Models

Tobit regression employs a linear regression with a Gaussian distribution (159).
The Buckley and James regression utilizes a least-squared estimator for censored
dependent variables (160). In a particular study, this method was combined with the
elastic net regularizer (161). Penalized regression selects variables and estimates the
coefficient simultaneously (162). It addresses challenges related to multicollinearity
and high dimensionality. Various types of penalized regression include weighted

regression (163) and structured regularization (164).

b. Accelerated Failure Time (AFT) Model

The accelerated failure time model has some assumptions (165). It assumes the
linear relationship between the logarithm of the survival time and the covariates.
Additionally, it assumes that the features have a multiplicative effect on the survival

time.

Non-parametric Approaches

Non-parametric methods offer an alternative to parametric approaches by
avoiding assumptions about the distribution of event times. These methods typically
produce descriptive statistics, laying the groundwork for subsequent parametric or
semi-parametric analyses. Non-parametric techniques are particularly valuable when

no suitable theoretical distribution adequately fits the data.
a. Kaplan-Meier (or Product-Limit) Estimator

The non-parametric, the Kaplan-Meier estimator, is employed to estimate the

survival distribution function from survival data (20). Kaplan-Meier divides time into
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intervals, determined by observed event time rather than predefined intervals.
Individuals who have not yet experienced the event at the interval’s start and have not
been censored during the interval or earlier ones are considered at risk for each interval.
These at-risk individuals are estimated to have a survival probability and contribute to
the prediction of survival probability until the event occurs or they are subject to
censorship. The number of survivors is divided by the number of at-risk patients to
calculate the survival probability. The cumulative probability of survival up to time
interval t is then calculated by multiplying the survival probabilities across all
preceding time intervals.

Lett;,j = 1,2,...,n represent the total set of failure times recorded, and T be

the maximum failure time. The Kaplan-Meier estimator of the survival function,

denoted as S(t) = P(T = t), is expressed as follows.

$(t) = 1_[(1—%), 0<t<T

it J
jitjst

where d; is the number of individuals who experienced the event at the time ¢;, and 7;
is the number of individuals in the risk set just before the time ¢;.

Kaplan-Meier curves represent the Kaplan-Meier estimator of survival
probability over time. These curves start from 1 and decrease over time as a stepped
line instead of a smooth curve. This is because cumulative survival decreases at the
precise time a death occurs and remains flat between successive death times (Figure
2.8).

The log-rank test, also known as the Mantel log-rank, the Cox Mantel log-rank,
or the Mantel-Haenszel test, is widely used for comparing the Kaplan-Meier curves of
two or more samples. This test assesses whether the survival distributions of different
samples are equal. The underlying assumption is that the hazard functions of the
samples are parallel. It is a large-sample chi-square test, which calculates observed
versus expected cell counts over categories of outcomes. The log-rank test takes each
time point with a failure event, creating 2x2 tables that display the number of
individuals who experienced the event of interest and the total number of individuals
under follow-up. For each table, calculations are performed for observed deaths,
expected deaths, and the variance of the predicted number. These values are then
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summed across all tables, yielding a chi-square statistic with 1 degree of freedom. The
null hypothesis for the log-rank test posits that “The samples have identical distribution
curves.”, while the alternative hypothesis suggest that “The samples have different
distribution curves.” Alternative tests like Wilcoxon (Breslow), Tarone-Ware, Peto,
and Flemington-Harrington can be substitutes for the log-rank test.

b. Life-Table (Actuarial or Cutler-Ederer) Estimator

The Life-Table estimator approximates the Kaplan-Meier estimator,
particularly in large-scale population surveys (23). This method assumes that the
failure rate within a given interval remains consistent across all subjects and is

independent of the probability of survival in other time periods.

c. Nelson-Aalen Estimator

The Nelson-Aalen estimator is based on the counting process approach and
predicts the cumulative hazard function (22). The cumulative hazard at time t is below.

4 d
A = 1—[—, 0<t<T

1 j
i<t J
jitjst

Various equations can be used when converting to a survival function, such as
H(t) = —log[S(t)],S(t) = e H®,

Semi-Parametric Approaches

Semi-parametric approaches are based on regression analysis approach.
Therefore, some assumptions exist, like the proportional hazards. Parameter
estimation is performed using partial likelihood. The reason why these approaches are

called semi-parametric is that the distribution of the outcome is not known.

a. Cox Proportional Hazard

The most common model used to analyze survival data is the Cox proportional

hazards model (157). In this model, all individuals have the same proportion of hazards
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at all times and the hazard ratio is maintained over. The unspecified baseline hazard
makes this model semi-parametric. The model is based on hazard function, denoted as
h(t|x), which is the probability that an individual with predictors x will experience an
event at time t, given that the individual is alive just before t.

The Cox proportional hazards model relies on several assumptions (157). First,
there's the proportional hazards assumption, which states that the hazard ratio won't
change during the course of the follow-up. As an example, a Cox proportional hazard
model that uses the patient's sex as the predictor variable makes the assumption that
the risk is the same for males and females over the course of the follow-up. The second
assumption is the independence of survival times. According to this assumption, the
survival time of one patient does not depend upon the survival time of another. Thirdly,
a linear relationship between time-independent covariates and the log hazard should
exist. Lastly, censoring is assumed to be uninformative about the outcome of interest.
Those who are censored are exposed to the same risk at the end point of the study as
those who continue to be monitored (166).

Cox Proportional Hazards model is described as follows:
h(t) = ho(t)e(ﬁ1X1+32X2+~~+ﬁpo)
h(t) is the expected hazard at time t. hy(t), is the baseline hazard function.
X, = (X1, Xy, ..., Xp) is the covariates. BT = (B4, B, ..., Bp) is the coefficients.
Cox model models partial likelihood using maximum likelihood:

P = T (522 0)

jer; expPXi

Although the Cox proportional hazards model is extensively used in survival
analysis, it has some disadvantages. Firstly, the assumption that hazards are
proportional over time cannot always hold. Secondly, the model follows a restrictive
parametric format concerning how variables influence the outcome (167). It also has
limitations, particularly when dealing with high-dimensional
data, where model assumptions are frequently broken. Interpreting results becomes
challenging, particularly in interactions (168). Given these limitations, alternative
survival approaches have been developed, especially for high-dimensional genetic
data.
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2.7. Survival Modeling of High-Dimensional Data

Cox models are linear models that make assumptions about the hazard ratio,
and these assumptions may be violated in real-world data. That is, the Cox model can
only model linear interactions. Semi-parametric methods and parametric methods, rely
on the likelihood or partial likelihood functions commonly used in clinical studies.
However, there is a growing need for methods that perform better in more complicated
data, which may include high dimensional and non-linear relationships, for example,
in RNA-seq data with a number of features that exceed the number of samples.

Machine learning algorithms commonly used for survival analysis are
extensions of those developed for classification problems or traditional survival
models (Figure 2.12). Several machine learning methods have been adapted to address
survival analysis problems, offering enhanced prediction performance. These
approaches can capture complex and nonlinear relationships, and unlike the Cox
proportional hazards (PH) model or penalized methods, they do not strictly require the
Cox PH assumption. As a result, machine learning methods can provide more accurate

survival predictions, especially for high-dimensional and complex datasets.
2.7.1. Penalized Likelihood Cox Models

In classical data, when the number of variables (p) is less than the number of
samples (n), linear regression models perform well; however, when the number of
variables equals or exceeds the number of samples, they perform poorly. In these
cases, it becomes challenging to model with all features, and overfitting may result in
poor results (169). Gene expression data, which measure the expression levels of
millions of genes, falls into the high-dimensional data category. Therefore, the
standard Cox partial likelihood method cannot be applied directly to obtain parameter
estimation in such data with abundant variables. In addition to the high dimensionality,
the expression levels of some genes are often highly correlated, leading to the problem
of high collinearity (Figure 2.4). To address these challenges, penalized regression
models was developed by applying various penalties to the linear regression model.
The term ‘penalized’ implies adding constraints to the model due to its numerous
variables. Through penalization, coefficient values are shrunk, and some may be

reduced to 0. Lambda (1), a tuning parameter, determines the extent of shrinkage. This
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process ensures that less-contributing variables have coefficients close to or equal to
0, revealing the most relevant features for the outcome variable. Penalized methods
are also known as shrinkage or regularization methods and serve as feature selection

methods. Various regularized Cox models have been developed.
Lasso-Cox

Lasso (Least Absolute Shrinkage and Selection Operator) regression is a linear
model incorporating a regularization term into the loss function, emphasizing sparse
coefficient prediction. It predicts regression coefficients through shrinkage and
performs feature selection simultaneously. The penalty term in Lasso is called the L1-
norm, which denotes the sum of the absolute coefficients. By minimizing this penalty,
Lasso can yield coefficients that are precisely 0, provided that the sum of the absolute
values of the coefficients is below a certain constant. Consequently, the model's
complexity is diminished, making it a viable alternative to subset selection methods
for variable selection (170).

The L1-norm penalty term in Lasso regression has been integrated with log-
partial likelihood, making it applicable as a survival algorithm (34). Several studies
have also existed using Lasso with gene expression data for survival analysis
(34,171,172).

Ridge-Cox

Like Lasso regression, Ridge regression aims to shrink the regression
coefficients, bringing the coefficients of variables with minimal contribution to the
outcome close to 0. However, unlike Lasso, which employs the absolute value of
coefficients in its penalty term, Ridge uses the square of the coefficients. Ridge's
penalty term is called the L2-norm, representing the sum of the squared coefficients.
The magnitude of the penalty, denoted by a constant A, determines the extent of
shrinkage. When A=0, the penalty has no effect, and ridge regression produces classical
least squares coefficients. As A increases, the impact of the shrinkage penalty gets
larger, causing the ridge regression coefficients to approach 0. Ridge regression

shrinks the coefficients towards zero without precisely setting any of them to zero (35).
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The L2-norm penalty term in Ridge regression was integrated with log-partial

likelihood and began to be employed as a survival algorithm (169).
Elastic net-Cox

Elastic-net (EN) is a method that combines L1-norm and L2-norms by
penalizing tuning parameters. It performs the feature selection while simultaneously
addressing the correlation among features (36). The EN penalty term in the log-partial

likelihood function has been employed to analyze survival data (25).
2.7.2. CoxBoost

CoxBoost is an offset-based boosting approach (173). This approach predicts
Cox proportional hazard models through flexible penalization of covariates, allowing

unrestricted estimation of essential covariate parameters.
2.7.3. Survival Trees

Decision trees are a non-parametric supervised learning algorithm for
regression or classification problems (174). Their input and output variables can be
both categorical and continuous. Decision trees effectively partition complex and
heterogeneous datasets into homogeneous subgroups (nodes in the tree), utilizing
simple predefined decision rules based on a specified target variable. The outcome is
a hierarchical structure of candidate nodes extending from the tree's root to terminal
nodes, also known as leaves. The root is the initial node at the top of the tree,
encompassing all samples. Subsequent nodes or internal nodes branch off from the
root, forming a tree structure with each node contributing to the classification of
samples. The more nodes, the more complex the model becomes. There are leaf nodes
or leaves at the end of the decision tree that give the final output. Tree-based methods
can vary regarding splitting rule, pruning mechanism, ensembles, and randomization.

Various decision tree algorithms are available, including CART, 1D3, and
C4.5. ID3 and C4.5 are particularly effective tools for both classification and
regression tasks. The CART (Classification and Regression Tree) algorithm is one of
the first algorithms developed (174). A CART tree algorithm starts with the root node

containing all samples, makes a comprehensive search through all potential binary
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splits based on covariates, and selects the best one according to a splitting rule based
on an appropriate measure. It recursively partitions the training dataset into smaller
subsets, predicting a categorical or continuous outcome variable (Y) based on
covariates X = (Xl,...,Xp).The splitting rule is based on maximizing intra-node
homogeneity or inter-node heterogeneity. For an X covariate, a split has the form X<c
and its indicator function I(F<c) is defined for each sample, where c is a split threshold
value to divide all samples into two subsets. These two subsets created are the daughter
nodes of the current node. The best splitting number is maximized by specific splitting
rules. The result is a disjoint subset (end node = terminal node). The predictions are
uniquely assigned to the end node that a test sample belongs to. However, in situations
where noise exceeds true signals or unmeasured factors are present, there is a risk that
the single tree method may incorrectly split terminal nodes, leading to a large and
complex tree (175). The algorithm chooses a feature and a threshold at each tree
node to divide the data in half. Until the sample size of one node is small enough, this
procedure is repeatedly applied to the two daughter nodes and next nodes. The best
feature and threshold are chosen wusing metrics such asthe Gini index
to provide the best possible discrimination. Unlike other tree-based methods, the
CART algorithm consistently generates a binary tree.

Another important component of the CART algorithm is the stopping criterion.
A good selection of the stopping criterion ensures that the final tree is good.
Excessively small or large trees may fail to generalize to test data, resulting in
underfitting or overfitting issues in the training dataset. To mitigate overfitting, reduce
the tree size, and minimize prediction errors in tree-based algorithms, a pruning and
selection method is employed either during or after the tree creation process. This
involves removing partitions that do not significantly contribute to classification (174).
As a result of pruning, selecting a single tree from the subtree array is necessary.
Various methods, including cross-validation, bootstrap, AIC/BIC, and graphical
(“kink” in the curve or elbow), can be employed for selection (176). Numerous pruning
methods in the literature, including cost complexity pruning, critical value pruning,
pessimistic pruning, Minimum Description Length (MDL) pruning, and many others
(174,175,177). The tree continues to split into two at each node until the stopping

criteria are met.
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For survival analysis, survival trees are an extension of decision trees.
Regression analysis and predictions based on censored survival are made possible by
them. Survival trees contract a decision tree by iteratively partitioning it into tree nodes
based on specific features. Like standard trees, each division utilizes a dissimilarity
measure that computes the disparity in survival between two new nodes and chooses
the best partition that maximizes this difference. Various dissimilarity measures,
including log-rank test statistics, are employed for survival analysis. Different
approaches to splitting and pruning have been used in methods utilizing tree structures
for survival data, as outlined in Table 2.4.

Assume that U represents the true survival time, and C is the censoring time
for applying tree-based algorithms to survival data. The variable 7=
min(U, C) represents the time until the event occurs or the individual is censored. The
variable o=1(U<C) takes the value 1 if the true time-to-event is observed and O if the
individual is censored. X = (X, ..., X;,) denotes the vector of covariants. The initial
concept of applying tree-based algorithms to censored data was introduced by Ciampi
etal. (178) and Marubini et al. (179) but was further developed by Gordon & Olshen
(41).

Randomness can badly affect tree-based methods as the tree grows with
randomly selected individuals through bootstrapping. Developing a single tree may
yield different prediction results. Ensemble methods, on the other hand, treat each tree
independently, employing a random set of explanatory variables at each node and
ultimately considering all the results. The basic idea is that combining multiple
survival tree estimators yields better predictions than a single independent tree. This
enhances the predictive performance compared to individual decision trees. Growing
a full-size tree for each bootstrap sample also mitigates issues related to pruning and
selection. Averaging the results of multiple trees helps reduce overfitting (180).

2.7.4. Bagging Survival Trees

The high variance problem may arise in decision trees since different randomly

selected train samples are used, and quite different estimates are obtained. Also,
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Author(s)

Splitting rule

Pruning rule

Gordon and Olshen
(1985) (41)

Impurity reduction, using the
Wasserstein distance between
Kaplan-Meier survival curves

Cost-complexity pruning and
cross-validation

Ciampi, Thiffault,
Nakache, and Asselain
(1986) (181)

Two-sample test statistics based on
the weights such as log-rank test
statistic

Akaike information criterion
(AIC)

Segal (1988) (182)

Two-sample test statistics based on
the weights such as log-rank test
statistic

Not available

Butler, Gilpin, Gordon,
and Olshen (1989)

Two-sample test statistics based on
the weights such as log-rank test

A within-node measure

(183) statistic
Davis and Anderson Exponential log-likelihood loss Cost-complexity pruning
(1989) (184)

Therneau, Grambsch,
and Fleming (185)

The martingale residuals from a null
Cox model

Cost-complexity pruning and
crossvalidation

LeBlanc and Crowley
(1992) (186)

The node deviance measure for the
proportional hazards model
calculating the full likelihood by the
Nelson-Aalen estimator

Cost-complexity pruning and
crossvalidation

Keles and Segal (2002)
(187)

A survival tree based on the square
error of the martingale residuals
from a null Cox model

LeBlanc and Crowley
(1993) (188)

Two-sample test statistics based on
the weights such as log-rank test
statistic

Resampling and permutation

Intrator and
Kooperberg (1995)
(189)

Two-sample test statistics based on
the weights such as log-rank test
statistic

Cost-complexity pruning

Zhang and Singer
(1999) (190)

A combination of impurity of the
censored samples and impurity of
the observed time

Cost-complexity pruning

Breiman (2002) (191)

Probability .75 to split on time, and
Probability .25 to spliton a
covariate

N/A (embedded within the
survival forest algorithm)

Molinaro, Dudoit, and
van der Laan (192)

An inverse probability of censoring
weighted (IPCW) loss function

Cost-complexity pruning and
crossvalidation

Jin et al. (2004) (193)

A splitting rule based on the
variance of survival times

Hothorn et al. (2006)
(194)

Minimum p value

Stop when no p value is below a

prespecified a-level

allowing decision trees to grow to maximum depth can cause an overfitting problem.

Bagging improves prediction accuracy and reduces the prediction variance using the

bootstrap algorithm, which takes the mean from multiple bootstrap samples from the

training datasets and fits the decision tree to each samples. Breiman (195) created the

bagging procedure to solve the overfitting and stability problems encountered in single

decision trees.
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Bagging survival trees are calculated from survival trees based on bootstrap
samples. For this, a survival tree is built on each bootstrap sample. For each subsample,
the bootstrap aggregated estimator of the survival function is the Kaplan-Meier curve.
Finally, the mean of predictions from those bootstrap samples is calculated. In survival
analysis, the bagging procedure was applied to the right censored data by Hothorn et
al. (45). They used bagging with decision trees and predicted ensembling outputs via
the Kaplan-Meier curve for lymphoma and breast cancer patients.

The disadvantage of the bagging procedure is that it requires more time and
resources to create more than one training set. Also, Bagging can improve the accuracy
of the model by reducing variance, but it cannot solve the problem of highly correlated

trees.
2.7.5. Random Survival Forests

Since trees are created based on the same set of predictions in the bagging
algorithm, strong predictors are likely to be selected repeatedly. Accordingly,
averaging these predictions may not reduce the variance much, as bagging can
generate similar trees that produce highly correlated predictions. Like the bagging
algorithm, the random forest algorithm produces multiple trees but also considers the
correlation of predictions from those samples (38). The random forests algorithm takes
m of estimators to be evaluated in internal nodes and chooses the best instead of
considering all estimators each time. The number m is usually the square root of the
features. Thus, the correlation between trees decreases, and hence the variance
decreases.

The difference between the random forests algorithm and the bagging
procedure is that it chooses a random sample among the predictive variables. The
prediction from the random forests algorithm is obtained by averaging hundreds or
thousands of trees that differ from each other. Because random forests average many
trees, they can reduce overfitting over single-decision trees. Thus, it creates a more
robust and sophisticated mode than a single tree. These algorithms can also capture
nonlinear effects and interaction terms. It can also deal with multiple interrelated

variable states in data with collinearity problems.
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The random survival forests algorithm was created by modifying the random
forest algorithm for survival data. The random forests algorithm has been adapted to
the survival responses by Breiman (191), Hothorn et al. (46), and Ishwaran et al. (39).
This algorithm applies two-step randomization to increase the prediction performance
according to a single decision tree. First, a bootstrap random sample is taken for the
growth of each tree. Second, each tree node randomly selects some explanatory
variables (39). Several independent bootstrap samples are drawn randomly from the
training set. These samples are the same size and obtained by the substitution method.
Each bootstrap sample contains an average of approximately two-thirds of the dataset.
The remaining one-third is called out-of-bag data, which will not appear in the
bootstrap sample. A separate decision tree grows according to a particular splitting
rule without pruning from each bootstrap sample. Using bootstrap data prevents
overfitting. The second randomization is done at the node separation level. At each
tree node, the p variable is randomly selected. Each node is separated using one of the
variables that maximizes the difference in survival between daughter nodes. Each tree
grows under the constraint of a terminal node until a specific stopping rule is met.

For each tree, the cumulative hazard function is calculated with an estimator
such as Kaplan-Meier or Nelson-Aalen. All samples in the same node have the same
cumulative hazard function. The mean of each tree's calculated cumulative hazard
functions in the forest forms the ensemble cumulative hazard function. The algorithm
then calculates the estimation error of the cumulative hazard estimation for the out-of-
bag data (196).

However, random forests have the disadvantage of being unable to interpret a
single tree because they average various trees. Also, this algorithm has computational

and cost problems as too many trees are formed.
2.7.6. Boosting

The bagging and random forests algorithms use independent trees, while the
boosting algorithm builds trees based on previous trees. That is, the residuals at each
state are used to grow sequential trees. The boosting algorithm iteratively combines
weak learners to create a strong learner that can predict more accurate outcomes.

AdaBoost (Adaptative Boosting Algorithm) is one of the most popular boosting
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applications (197). This method works iteratively, identifying misclassified data points
and adjusting their weights to minimize training errors. The model iteratively
optimizes until it produces the most robust predictor. Apart from that, there are
XGBoost (198), GardientBoost (199), and BrownBoost (200). Gradient boosting
works by sequentially adding estimators to a collection, each correcting the errors of
the previous one. Yet, gradient boosting makes use of the residual errors of the prior
predictor rather than altering the weights of the data points as AdaBoost does.
Because it combines the boost method with the gradient descent algorithm, it is
referred to as gradient boost. XGBoost (Extreme gradient boost) is a gradient boosting
app designed for computation speed and scale. XGBoost takes advantage of multiple
cores on the CPU, allowing learning to occur in parallel during training.

The boosting algorithm was applied to censored data, which iteratively
combines base learners to obtain strong learners (194).

Since it is necessary to tune the learning rate, the tree depth, and the minimum
number of observations in terminal nodes in addition to the number of repetitions in

the boosting algorithm, having too many hyperparameters is a disadvantage.
2.7.7. Survival Support Vector Machine

The Support Vector Machine (SVM) is used in classification and regression
problems (201). SVM works very well with high-dimensional data by avoiding the
curse of dimensionality problems. The SVM algorithm finds a hyperplane in an N-
dimensional space, and this hyperplane classifies the data points. There are many
possible hyperplanes to separate the two classes of data points; however, the main
objective is to find a plane with a maximum distance between the data points of both
classes. This maximum distance is called a margin. This margin is calculated using
data points known as support vectors.

A hyperplane equation is given below
y=wlx+b

In this equation, output y indicates whether it is in a positive or negative class.

w represents the coefficients, and b is the constant value. The SVM algorithm is an
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optimization problem; a loss function must be minimized. The problem is formulated

as follows
n
N - .
min —w'w + VZ(Si +¢&),
w,b,e,ex 2 .
=1
wlo(x)+b =y —¢, Vi=1,..,n
—(wlo(x; > —y, — &t : _
subject to Wio() +b) =2 -y — ¢, Vi=1.,n
81201 Vl= L, N
& 20, vVi=1,..,n

For a new x* point where a; and «; are Lagrange multipliers, the index is

found by the formula
9 = Y (& —a))pE) 9 () + b
i

If the data has a higher dimensional feature space, a kernel function is used to
find a classifier to separate the two classes. The main advantage of SVM is that it can
consider the complex, non-linear relationships between features and survival with the
kernel trick. A Kernel function is shown as k(x;,x;) = @(x)T@(x)). k(x,y) = x"z
is used for the linear kernel, k(x,z) = (t + xTz)%,7 = 0 is used for the polynomial
kernel of degree a, k(x,z) = exp(— “X;—f”%) is used for the RBF kernel.

As a result of its successful results in regression and classification problems,
the SVM algorithm has also been extended for survival data. Different approaches
have been adopted to use the standard SVM algorithm in survival analyses.
Shivaswamy et al. (202) adopted the support vector regression approach, while Van
Belle et al. (203) and Evers & Messow (204) applied SVM based on ranking
constraints. Since outcomes were uncertain for censored data, all censored samples
were removed in the earliest support vector regression approaches, or censored
samples were considered non-events. These situations caused either underestimated
failure times or biased models. However, the support vector regression model

proposed by Shivaswamy et al. was formulated as follows
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w,b,e,ex 2

1 Y *
min —wlw + }/Z(ei + &),
i=1

wlo(x)+b =y —g, Vi=1,..,n
s (T on(r S S ot _
Subject to 61(W (p(xl) + b) = Slyl &y vl. , e, I
& 20, Vi=1,..,n
& 20, vVi=1,..,n

For a new x* point where a; and «; are Lagrange multipliers, the index is
found by the formula

u(x) = ) (@ = 8 a))e) p(x) + b

Van Belle et al. (203) and Evers & Messow (204) considered and formulated
the survival data as a ranking problem. In this approach, instead of dealing with the
prediction of the survival time, it is concerned with whether the patient's risk of the
event is high or low so that appropriate treatment can be given. The method includes
a penalty for each pair of comparable data points where the order in the prognostic

index differs from the observed order. The comparison indicator for

{(x, ¥, 6), (x;,7;,6;)} sample pairs is as follows

comp(i, j) = {1 if 6 =1andé; =1 Sl‘ land §; = 0and y; < y;
0 otherwise

The model is formulated as follows
R
min-—w'w + Y 2 ‘Sij:
we 2 )
i=1 11 Yi>Yj

comp(i,j)=1

wTl(p(x;) — (p(xj) >1—¢gj Vi=1,..,m Vj: y;>yjand comp(i,j) =1

subject to . . .
§j =0, Vi=1,..,n; Vj: y; >y;and comp(i,j) = 1

Foranew x* point where a;; is Lagrange multipliers, the index is found by the formula



54

n

u(x*) = Z z aij(@(x) — o)) p(x")
=1 J:Yi>Yj
comp(i,j)=1

2.8. Stacking ldea

The stacking idea presents mechanisms that can be considered classification
and regression problems for survival problems (61). This idea converts survival data
with time and status variables into classification data with binary outcome variables.
Thus, all regression and classification algorithms can be applied to the new dataset
because it doesn't include time and status variables.

There are some advantages of transforming survival data with stacking and
making it analyzeable with classification algorithms. Firstly, the number of algorithms
such as boosting, random forests, and deep neural networks developed primarily for
classification problems is considerably more than those developed for survival
analysis. Thus, numerous high-performance classification algorithms that cannot be
directly applied to survival data are also made available for survival analysis.
Secondly, the algorithms created for classification can also be made available for
survival data with an additional study due to differences in survival and classification
data structures during survival analysis. For example, a random survival forest
algorithm was again adapted to survival data using the random forest algorithm so that
the random forest algorithm used in classification problems can be used in survival
problems (205). The stacking idea will be important in adapting existing and future
classification algorithms to survival analysis. Thirdly, the transformation with the
stacking idea can be an advantage in providing higher performance than the standard
linear Cox model in some cases, especially in complex effects such as interactions in
survival data (168). Finally, the Cox proportional hazards standard survival model is a
linear model that assumes the relationship between covariates and hazard is constant
over time, and this assumption is not always possible.

To consider the survival problem as a classification problem, the sequential in
time structure of partial likelihood is used. In the standard Cox proportional hazards
model, the g coefficients are chosen by maximizing the partial likelihood. The reason

for using the term “partial” likelihood is that only the likelihood of individuals
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experiencing the relevant event is considered in the probability formula, and the
likelihood of censored individuals is not fully considered. That is, the Cox model does
not consider all individuals' likelihood. The partial likelihood can be written as a

product of probabilities.

k
L=L1*L2*L3*...*Lk=1_[Lj
j=1

k is the number of failure times. Ly gives the likelihood of failure at the i
failure time. At the fi" failure time, the set of individuals at risk is the risk set and is

denoted by R(t(s). Partial likelihood focuses on individuals who experienced the

event of interest. Also, it considers the survival time until censored for censored
individuals. That is, during the calculation of L, the contribution of this censored
individual, who was censored after the f" time of failure, is also included in this
calculation (157). Since the partial likelihood is a product of conditional probabilities
at each time point at which the event of interest occurs, we calculate the probability of
the individuals experiencing the event at that time point, depending on the risk set at
that time point. Maximizing the partial likelihood means solving a series of
classification problems together. To do this, at each time point at which the event of
interest is observed, we create a binary categorical variable representing the risk set
and a covariate matrix containing the covariates for each sample in the risk set at that
time. The binary categorical variable is created as much as the number of risk sets, and
these created binary variables are placed side by side as columns and form the risk
matrix. This risk matrix and the covariate matrix together form the prediction matrix
of the model. We also create a binary vector that shows whether each individual in the
risk set has experienced the event at the relevant time point. This binary vector is the
outcome variable of the model. Finally, the prediction matrix and outcome variables
created for each risk set are combined vertically, and this matrix creates the

classification data matrix (Figure 2.13).
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Prediction Matrix
Covariate Man‘ixJ \ Risk Matrix Outcome
Variable
X1 X2 Xz Xip] 1 00 .. 0 1
Xo1 Xop Xpz o Xop 1 0 O 0 0
_an an Xﬂ,3 . an_ nxp 0 0 0 amn 1 nxh 1 nxl

Figure 2.13. The data structure after the stacking idea.

An explanation of the stacking algorithm is given below to help you better
understand it. An example survival data matrix with four individuals is shown in Table
2.5.

Table 2.5. An example survival data matrix.

Individuals Time Status Covariate Matrix of RNA-Seq
i Ti 61 Xi1 Xi2 cee xl-p
1 9 1 4 10 0
2 8 0 5 14 2
3 6 1 7 18 8
4 10 1 3 9 5

First, the survival data are ordered from smallest to largest according to the time

variable, shown in Table 2.6.

Table 2.6. Survival data matrix ordered by time.

Individuals Time Status Covariate Matrix of RNA-Seq
i T; o; Xi1 Xio Xip
3 6 1 7 18 8
2 8 0 5 14 2
1 9 1 4 10 0
4 10 1 3 9 5

Each individual's contribution to the partial likelihood is calculated in Table 2.7.

Cox proportional hazard model: A(t|x) = 1,(t)exp(xTB)
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Partial likelihood:

Lpartiat(B) = 1_[ P(individual i event experience |R(T;) risk set)
_ 1—[ exp(x; B)
ZjeR(Tj) exp(ij,B)
There will be three risk sets since there are three uncensored individuals in the
dataset. The first risk set represents the time from the beginning of the study to the

sixth day and includes all individuals {1, 2, 3, 4} (Figure 2.14). The individuals in the
first risk set are shown in Table 2.8, and the cumulative classification matrix created

for this set after stacking is shown in Table 2.9.

Table 2.7. Contribution of each individual to partial likelihood.

Individuals Time Sample at Contribution of partial
risk likelihood
i Ti R(Tl) [eBZl-/ z eﬁZj]&,'
JER(T;)
3 6 {1'2’3,4} eBo+751+1352+"'+83p/(eBo+7B1+1332+"'+SBp + oo
+ ePot3Bit9Bu++56y)
2 8 {1,2,4} 1
1 9 {1,4} eﬁo+4ﬁ1+10[5‘2+~~~+1ﬁ’p/(eﬁo+4ﬁ1+1032+---+1ﬁp
+ eﬁ0+3pl+9ﬁz+m+sﬁp)
4 10 {1} e,b’0+3,81+9ﬁ2+~~~+5ﬁp/eﬁ0+3,81+9ﬁ2+~~~+5ﬁp =1
l’ Time ® 5—1 Individuals at risk: {1,2,3, 4}
o—@
. O 61':0
X, 6 8 9 10
i 3 2 1 4

Figure 2.14. The figure presentation of risk set —1

Table 2.8. Dataset of risk set — 1.

Time Status Covariate Matrix of RNA-Seq
Individuals
i T; &; Xi1 Xi2 Xip
3 6 1 7 18 8
2 8 0 5 14 2
1 9 1 4 10 0
4 10 1 3 9 5
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The second risk set represents the time from the beginning of the study to the
ninth day, and there are two individuals {1, 4} in this cluster (Figure 2.15). The
individuals found in the second risk set are shown in Table 2.10, and the cumulative

classification matrix created for this set after stacking is in Table 2.11.

Table 2.9. Cumulative classification matrix for risk set — 1.

Prediction Matrix (X) Outcome
Covariate Matrix Risk Matrix Variable
(Y)
7 18 8 1 0 0 1
5 14 2 1 0 0 0
4 10 1 1 0 0 0
3 9 5 1 0 0 0
Time ‘ ® 5-1 Individuals at risk: {1, 4}
—e OoO—e > '
O 5,'_:0
X; 9 10
i 1 4

Figure 2.15. The figure presentation of risk set — 2.

Table 2.10. Dataset of risk set — 2.

Individuals Time Status Covariate Matrix of RNA-Seq
i T; o; Xi1 i T; o;
1 9 1 4 1 9 1
4 10 1 3 4 10 1

Table 2.11. Cumulative classification matrix for risk set — 2.

Prediction Matrix (X) Outcome

Covariate Matrix Risk Matrix Va(rie;ble
Y
7 18 8 1 0 0 1
5 14 2 1 0 0 0
4 10 1 1 0 0 0
3 9 5 1 0 0 0
4 10 1 0 1 0 1
3 9 5 0 1 0 0

The third risk set represents the time from the beginning of the study to the tenth day,
and there is only one individual {4} in this cluster (Figure 2.16). The individual found
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in the third risk set is shown in Table 2.12, and the cumulative classification matrix
created for this set after stacking is in Table 2.13. After the stacking algorithm, the
survival data matrix in Table 2.5 has been transformed into the binary classification
data matrix in Table 2.13.

Time l ® 5-1 Individuals at risk: {4}
— @ O @ & >
O 5£=0
X; 10
; 4

Figure 2.16. The figure presentation of risk set — 3.

Table 2.12. Dataset of risk set — 3.

Individuals Time Status Covariate Matrix of RNA-Seq
i Ti (Si Xi1 i Ti 81'
4 10 1 3 4 10 1

The idea of stacking has been previously applied to logistic regression and
given good results (206). The Cox proportional hazards model, which makes an
estimation using the standard partial likelihood approach, is transformed into a
classification problem using the stacking idea, depending on whether each individual
experiences the event at each time point at which an event occurs (61). It has been
shown that the predictions and results obtained from maximizing the partial probability
in the Cox proportional hazards model are equivalent to the predictions and results
made over the logistic regression parameters to the data converted by stacking. Also,
the classification algorithms' performance after the stacking algorithm was higher than
the Cox proportional hazards model.

Randomness can badly affect tree-based methods as the tree grows with
randomly selected individuals through bootstrapping. Developing a single tree may
yield different prediction results. Ensemble methods, on the other hand, treat each tree
independently, employing a random set of explanatory variables at each node and
ultimately considering all the results. The basic idea is that combining multiple

survival tree estimators yields better predictions than a single independent tree. This
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enhances the predictive performance compared to individual decision trees. Growing
a full-size tree for each bootstrap sample also mitigates issues related to pruning and

selection. Averaging the results of multiple trees helps reduce overfitting (180).

Table 2.13. Cumulative classification matrix for risk set — 3.

Prediction Matrix (X) Outcome | Time
Covariate Matrix Risk Matrix Va(ria)ble
Y
7 18 8 1 0 0 1 6
5 14 2 1 0 0 0 8
4 10 1 1 0 0 0 9
3 9 5 1 0 0 0 10
4 10 1 0 1 0 1 9
3 9 5 0 1 0 0 10
3 9 5 0 0 1 1 10

This study will use the stacking idea for survival analysis of RNA-sequencing
data. Thus, the stacking idea, shown to give better results than the classical Cox
regression model when applied to clinical data, is expected to yield high-performance

results when applied to RNA-seq high-dimensional data.
2.9. Priority-Lasso and IPF-Lasso

The prediction matrix, which is the result of applying the idea of stacking to
RNA-seq survival data, contains two different types of data: the covariate matrix,
which consists of continuous variables, and the risk matrix, which consists of binary
variables. Priority-lasso and IPF-lasso algorithms allow the analysis of different types
of variables in different blocks. Thus, it has been shown that the model's prediction
performance increases (73,74).

Priority-Lasso algorithm puts variables in different blocks and gives these
blocks different priority orders. Although the priority-Lasso algorithm has more
characteristics, many of these characteristics are the same as the Lasso algorithm.
Variable types are usually considered when creating blocks, such as continuous,
discrete, binary, etc. Blocks can also be made according to variable contents, for
example, a block with clinical variables, a block with genetic variables, etc. Blocks
have a priority order. Accordingly, some blocks may have higher priority, while some

blocks may not be of high priority. The researcher determines this priority level.
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However, despite no absolute rule, high priority is given to blocks with easily
accessible and low-cost variables. The prediction model is fit after applying Lasso
regression as many as the number of blocks. It has been seen that the priority-lasso
algorithm gives similar or better results than the standard Lasso algorithm in data such
as multi-omics data where the variables in the data are of different types (73).

The IPF-Lasso algorithm was created from the necessity of applying different
penalty terms to different data types in multi-omics datasets. This algorithm defined
data types as modalities (data type = data modality). IPF-lasso applied different penalty
factors to the data modalities in the process of combining the data in order to develop
a more sparse estimation model for the data consisting of low and high dimensional
variables. For this, the L1 penalized regression (LASSO) algorithm is used. IPF-
LASSO performs better than the standard LASSO (74).

In this study, it is thought that the use of priority-Lasso and IPF-Lasso
algorithms when analyzing the continuous and binary variables that occur after
applying the stacking algorithms to the RNA-seq data can contribute positively to the

prediction accuracy.
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3. MATERIAL AND METHODS

In this section, the methodologies of the voomStackPrio and voomStackIPF
approaches will be explained in detail (Figure 3.1). First, details about the structure of
the RNA-seq survival data matrix will be provided. Second, the step-by-step process
of developing new survival approaches will be explained. Then, the focus will be on
elucidating how performance comparisons are conducted with other survival
algorithms employed in the literature. Finally, the infrastructure of the MLSeqSurv R

package utilized during the calculations will be mentioned.
3.1. Proposed RNA-Seq Survival Approaches

3.1.1. Notations

The data for survival analysis comprises two sets: covariates and outcome
variables. Gene expression in RNA-seq data consists of raw counts, and these variables
create covariates. Survival time and status of samples are the outcome variables.
Assume that the covariates of RNA-seq gene expression data are a nxp-dimensional
raw count data matrix representing n (i=1,2,..,n) samples and p (g=1,2,..,p) genes. This
matrix is called R. i*" row of the R matrix is denoted by r; = (R;1, Rz, .,Ryp) and
g*" column of the R matrix is denoted by ;, = (Ry 4, Ry, ..., Ryg)T- Accordingly, the
read count of i*" sample and gt" gene is denoted by Tig. The time variable, T (T; =
Ty, Ty, ..., Ty), is a survival time. The status variable, ¢ (6; = 63, d,, ..., 8,), indicates
whether there is censoring. If a sample has experienced the event of interest during the

study period, the status is denoted by 1 (6=1); or not, the status is denoted by 0 (6=0).
The survival data matrix is as in (Matrix 3.1).

1 Tz Tz . T T, &
er r22 T23 sz TZ 62 (3 1)
Tt Tz Tz o Taplo UTw 8l

We extracted the time variable (T) and state variable (6) from the dataset and
transposed the remaining matrix to initiate pre-processing. Normalization,

transformation, and filtering steps were executed using Matrix 3.2.
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11 T21 T31 Th1
T2 Ty T3 Th2

B B . (3 2)
Tip T2p Tap Tap pxn

To obtain the normalization factors for each gene, we then applied DESeq
median normalization to the remaining dataset. Furthermore, low-expressed genes
were identified from the nxp-dimensional raw RNA-seq matrix as described in Matrix
2.1. Following DESeq normalization and logCPM transformation, these identified

genes will be excluded from the dataset.
3.1.2. DESeq Median Normalization

In a comprehensive study that compared various normalization methods, TMM
and DESeq emerged as the best-performing methods (133). Therefore, we have chosen
to employ the DESeq median normalization method in this study.

The geometric mean over all samples is used to calculate the pseudo-reference
value for each gene. Specifically, the pseudo-reference value is computed as follows

for the g gene in the dataset with p genes and n sample.

S

g = n\/Tglrgz e Tgn = (H?:lrgi)l/n g=1,2,....p (3.3)

These geometric mean values calculated for each gene generate a new sample
called the pseudo-reference sample. Subsequently, each gene value in every sample is
divided by the corresponding pseudo-sample value of that gene. Then, the median
values for each sample are computed.

d; = mediang ——""

. Tgi
—9 ___ = median, £ 3.4
?=1rgi)1/n g Sg ( )

These median values calculated for each sample are the normalization factors
(size factors). The objective of this normalization step was not to derive normalized
values for each count but solely to compute normalization factors for each sample.

These normalization factors will be applied in the subsequent step to obtain logCPM

values.
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3.1.3. voom Transformation

The voom transformation yields two distinct outputs: logCPM values and

sample weights.
logCPM Values

The raw RNA-seq count data matrix is denoted as 7,;. To obtain logCPM

values for the data set, it is necessary to divide the count data by the normalization
factors (d values in Equation 3.4) and multiply by 1 million. The formula for this

calculation is presented below

X

Tgi+0.5
gi = log, (2> - +10°) (3.5)
d; are the values calculated in the normalization step for each sample. 0.5 is
added to each count value to prevent the Iogarithm from being 0. In addition, 1 was
added to d; to obtain the equality of 0 < Tgt0> ol <1

Following the normalization steps, logCPM value generation, and low-

expressed gene filtering, matrices for the dataset is presented in (Matrix 3.6).

X114 X1 e Xpy
| X13 X23 . Xn3 | (3.6)
: : . do
lxlp, Xopr o ,J

prxn

voom Transformation for Observational Weights

In the second stage of the voom transformation, sample weights are computed
to take advantage of the sample-specific weighting approach (151).

A linear model fits the data following logCPM transformation. Specifically,
the model assumes that E(xgi) =g = al-Tﬁg, where qa; is a vector of covariates and
p4 is a vector of unknown coefficients (69).

The linear model x, = DB, + ¢, and E(x,) = D, is assumed for each gene.
Xg = (Xg1, -, Xgn)" vector of logCPM values for the gene g; D is the design matrix

and By = (Bg1, ...,,BgK)T is the vector of the regression coefficients for the gene g.
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g4 isthe error terman E(eg) = 0. Thisyields regression coefficient estimates ﬁg, fitted
values fiy; = aiT,[?g, and residual standard deviations s, (69).

Suppose the expected value of a count is E(r) = A and var(r) = 1 + $pA2.
Here ¢ is a dispersion parameter. If r is large enough, the logCPM value of the
observation; x = log,(r) + log,(d) + 6log,(10). Since d will behave like a

constant, it becomes var(x) = var(log,(r)). Based on the delta rule and Taylor’s

var(r) _ 1

theorem (207), if A is large, log,(r) = A + (r — 1) /A from var(x) = = =5t .

The x,4; values, representing the logCPM values calculated in the 'logCPM
Values' step for each gene, are subjected to fitting based on the aforementioned linear

model. The calculation of the mean x, for each gene is carried out using the 7 =
xzlog,(d) — log,(10°).

hg; is estimated with Ay =, +log,(d; + 1.0) — log,(10°) (fi; =
E(xg;)) by fitting a LOWESS curve (208). The piecewise linear function lo(/igl-)

defined by the LOWESS curve is the estimated square root standard deviation of the

1
mean log counts 7 (sg(Z)).

The voom precision weights are inverse variances of wy; = lo (/Tgl-)“*. For the
dataset, x,; is the logCPM values and wy; is the associated weights for each counts.

The design matrix D denotes the experimental design and selects the regression

coefficients and parameterization, presenting the logCPM variability among the RNA
sources in the experiment. This model assumes var(xgi) = of,/wgi for gene g in
sample i, using an observational level weight wy; derived from the voom model as

found above and an unknown factor 03.

In addition to gene-dependent variance factors (o7) that account for variations
among genes, there are sample-dependent variance factors (Gf]i) reflecting potential

differences in quality across all or most genes within a given sample (151). This can
result in an increase or decrease in their variability, as illustrated below (70).

var(xgi) = ;—’;
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A

Figure 3.1. A flowchart of the steps of voomStackPrio and voomStackIPF algorithms.

The most straightforward log-linear model, ensuring that variability is
multiplicatively dependent on sample quality, is expressed as logof,i =6, +v;. The
constraint 3.7, ¥; = 0 gives o5 = exp(§,) for the variance factors by gene and y;
represents the relative variability of each sample. A given sample i is of relatively
better-than-mean quality if y; < 0, or of poorer-than-mean quality if y; > 0. Linear
modeling incorporates ‘voom precision weights’ for each observation, combined with
sample-specific weights, as described in wy; = wy; /exp¥;, where wy; represents the

observational voom weights (151).

The weights generated for each sample in the dataset are as follows (Equation
3.7). These will be the sample weights in the priority-Lasso and IPF-Lasso models

applied in the 'voomStackPrio and voomStackIPF Models' step.

w; = (W, Wy, ..., W) (3.7)
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Before proceeding to the stacking algorithm, we applied variance filtering and
feature selection. Following variance filtering, 2000 genes were selected.
Subsequently, after applying feature selection, p" features were chosen. Then, the
matrix was transposed once more to apply the stacking algorithm. Also, the time
variable (T) and state variable (o), previously removed from the dataset to apply of

pre-processing steps, were reintegrated (Matrix 3.8).

X11 X12 X13 le,,
X21 X22 X3 .. prH

Xn1 Xn2 Xn3 o Xppn

(3.8)
nxpir n nx2

3.1.4. Stacking for Classification

This step involved a conversion process, utilizing the stacking approach, to
transform RNA-seq survival data into classification data with a binary outcome.

Let’s consider h as the number of samples that experience the event in the data
set. Following the stacking algorithm, there will be h risk sets, corresponding to the
number of columns in the risk matrix, denoting the risk set as S. In each risk set at time
t, some samples either experienced the event at time t, experienced the event after time
t, or were censored after time t. S(t) = {subject i |t; = t}. Samples that are part of
the risk set at time t are assigned a value of 1, and samples outside of it are assigned a
value of 0. This information is displayed in the specific column of the risk set at
that time. The X covariate matrix is constructed as X(S(i)), where the covariate
number S(i) is associated with each sample. It has dimensions |S(i)|xp" for p" features.
Let ¥ represent the prediction of the binary outcome variable we will create for the
classification transformation. For the ¥ binary outcome variable, samples that
experience the event at the time associated with each risk set are assigned the value 1,
while others receive the value 0. Thus, ¥(S(i)) values are defined. The covariate
matrix, risk matrix, and binary outcome are created as many times as the risk sets
generated for each uncensored sample. They are then added vertically, one after the
other. This conversion results in (X,7) data, suitable for applying classification

algorithms to the survival data.
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After implementing the stacking algorithm, three components will be obtained
(i) the covariate matrix, (ii) the risk matrix, and (iii) the outcome variable, as shown in
(Matrix 3.9). The data matrix x,,,» in Matrix 3.8 is initially ordered based on time,
arranged from smallest to largest. This covariate matrix is then vertically expanded by
stacking. Hence, the covariate matrix consists of p’’ columns and n’ rows denoted by

covariate . Also, a risk matrix is obtained. The risk matrix expanded

nrxp'’
horizontally and vertically per the number of individuals experiencing the event. As
the number of risk sets corresponds to the number of samples experiencing the event,
the columns of the risk matrix at risk are equivalent to the number of samples in which
the event occurred (h). So, an n'xh-dimensional risk matrix, denoted as risk,,p, IS
obtained. There is a generated outcome variable for every risk set that exists at the
event time point. The variables in question designate samples that encounter the event
at that particular time point as 1, and samples that do not are defined as 0. As denoted
by Xy +1); the input matrix (X) has now transformed into an n'x(p""+h)-dimensional
matrix, incorporating both the covariate and risk matrices. An n'x1-dimensional

outcome variable (), denoted as outcome,,,, is obtained.

Covariate Matrix Risk Matrix Outcome
Variable
X11 X12 X13 *ip 10 0 0 1
x21 sz x23 xzp” [1 0 0 0] 0
X31 Xzz  Xzz o Xy 010 0 11 B9
| 3 |
lxnzl Xn'a Xp'3 e Xn,p”Jn,xp,, 0 0 O 1 N’ xh 1 n'x1

3.1.5. voomStackPrio and voomStacklLasso Models

We have two different types of data in our dataset: a binary risk matrix and a
continuous covariate matrix. In contrast to conventional classification algorithms,
our method relies on modeling that takes into account the particular kinds
of data related to the variables—a tactic that has been shown to produce predictions
that are more accurate. We employed the priority-Lasso and IPF-Lasso algorithms to
analyze diverse variable types in multi-omics data organized into blocks. In the
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subsequent stage, two new approaches—voomStackPrio and voomStackIPF— were

developed to analyze RNA-seq survival data.
Lasso and weighted Lasso regression model

Assume that x;, represents the observed value of the g™ variable for the it"
sample, where g=1, 2,..., (p"'+h), i=1, 2,..., n’. The outcome of sample i is denoted as
v;. In the classical Lasso method, estimating regression coefficients Sy, ..., ﬁ(p,, +h) for
the (p’’+h) variables involves minimizing the following objective function with

respect to gy, ..., ﬁ(p" +h)"

n ®"+h ®"+h)
D= D b A ) Byl
i=1 g=1 g=1

In this context, A represents the penalty parameter, which controls the degree
of shrinkage applied to the regression coefficient estimates. By tuning the value of 4,
the Lasso method regularizes these estimates, preventing overfitting and enhancing the
model’s capacity to generalize effectively to new data. The optimal A value is typically
accomplished through cross-validation, a statistical technique that evaluates the
model’s performance on an independent dataset.

While sample weights are often ignored in many Lasso regression models, a
constructive approach to address this omission is to incorporate sample weights into
the Lasso regression model. By assigning distinct weights to individual observations,
the weighted Lasso regression model can attribute greater significance to specific
observations, potentially enhancing the precision of the estimates. The goal of the

weighted Lasso regression is to minimize the following objective function concerning

:81' ---;,B(p"+h)

(@"'+h) (@' +h)

iwl(yi— D xighg? 2 D 1Bl
i=1 g=1

g=1

where w; represents the weight assigned to the i sample. This study will utilize sample
weights derived from the voom transformation in Equation 3.7 applied to RNA-seq

data in block-based Lasso algorithms.
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voomStackPrio

The priority-Lasso algorithm was applied to the n'x(p”" + h)-dimensional
prediction matrix X, including the covariate and risk matrices (Matrix 3.9). The
outcome variable y, a n'x1-dimensional vector, was obtained after the ‘Stacking for
Classification’ step (Matrix 3.9). To streamline this process, we organized variables
into two blocks based on their types: the continuous variables block for those in the
covariate matrix and the binary variables block for those in the risk matrix. Notably,
priority was given to the binary variable block. This strategic decision aligns with the
principle of the priority-Lasso algorithm, where the highest-priority block plays a
crucial role in explaining variability. Variables in lower-priority blocks are considered
only if they contribute to variances not already explained by higher-priority blocks.
Consequently, prioritizing the block with binary risk matrix variables, less complex
than RNA-seq continuous variables, is considered more suitable.

The variables in the two blocks for the i** sample can be represented as follows

X m)

. !
i ,...,xi(p,,+h)m , i=1..,.n m=1,2

The number of blocks is denoted by m, and the number of variables in the block
is denoted by (p” + h),,.. The regression coefficients of variable j are shown as follows

(m) (m) = "
1m y aeny (g},""h)m ) g - 1! bl (p + h)m

The vector n=(m;, m,) denotes the blocks descending order of priority. m;
represents the first (highest-priority) block, and m, represents the second (lower-
priority) block.

Initially, a Lasso model was applied to the high-priority binary variable block.
The goal of this step is primarily to capture the variability in the outcome variable
using variables within this block. The first block consists of h variables, and the

variables for the it" sample are depicted as follows.

@ ® . '
X1 s Xip ,i=1,..,n
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The h binary variables in block m, are employed to fit the initial Lasso

regression model. The coefficients ,8(“1), . (“1) are estimated by minimizing the
following formula

Tl hﬂl 2 hﬂl

ZW‘ y; — 2 (1) ﬁ(m) n /1(1'[1)2 | ﬁ;n)l

i=1 g=1 g=1

w; represents the weights assigned to the samples, derived from the voom
transformation.

The variables in the second block account for the remaining variability in the
outcome variable after explaining the portion addressed by the variables in the
block. The linear score obtained from the Lasso model fitted in the first block serves
as an offset, and a second Lasso model is fitted to the second block, which consists of
continuous variables. This involves fitting the second Lasso model to the residuals
from the first Lasso model without incorporating the offset, using the covariates in the
1, block. The linear predictor to be employed as an offset in the second Lasso model

is fitted in the first Lasso model as follows

(1T1) (“1) +. +,8(T[1) (11)

R, Lhn1

ﬁl,i(ﬂ) =

However, the linear estimation of 7, ; (1) can be over-optimistic and may result
in underestimating the mr, block. This is because y; is part of the data used to estimate
the £ coefficients employed in calculating this linear estimate. To address this issue,
cross-validation was employed to estimate the offset of 7, ;(1r). The dataset, X, was

divided into K roughly equal-sized portions, denoted as £=1,...,K. The coefficients

ﬁf{’;;()kl, - ﬁg;()kh were estimated, and cross-validated offsets are calculated as
follows

Ani(Mey = Bpo x G + o4 B )

The second block (r,) consists of p” variables, and the variables for the it"
sample are shown as follows
MONEENGE =1

11 ) wen xp” ,7’l
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(12)

The coefficients g; ,...,,B;ITZ) for the second block (rr,) are estimated by

2

minimizing the following formula

2 '

o p//ﬂ2 p’ -
D owil v = dimey Y xGPET | A Y |p0
i=1 g=1 g=1

voomStackIPF

As described in the priority-Lasso algorithm, the n'x(p”" + h)-dimensional X
prediction matrix, obtained at the conclusion of the ‘Stacking for Classification’ step,
encompasses continuous RNA-seq covariate variables and binary variables (Matrix
3.9). Given the distinct nature of these variables, the data type (or the number of data
modalities) is designated as two. Let the modality number be denoted by m (m=1, 2).

Variables in each modality are defined as follows

x(m) (m)

. 4
i ...,xi(p,,+h)m ,i=1,...,n m=1.2

(p" + h),, represents the number of variables in modality m. The g variable

is denoted by x™

g » and its corresponding coefficient is represented by ngm). In the

IPF-lasso algorithm, a weighted sum of the norms of the coefficients vector for each
modality is employed as a penalty term. To estimate the coefficients, the following

formula is minimized

n' 2 @"+hm 2,
Dwilyi=D > x|+ D awlB
i=1 m=1 g=1 m=1

Am represents the penalty for the variables in modality m. The first modality
(4, penalty) was treated as the reference modality, and the penalty factor for modality
m was expressed as A,, /1.

In this scenario, the penalty factors were defined as 1,, A, /A4,. Cross-validation
was applied to improve prediction performance. The various candidate vectors of

penalty factors are denoted as C and listed below
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W=, ,/)T  c=1,..,C

Cross-validation was performed using a performance metric such as AUC to

determine the optimal A, .
3.2. Performance Evaluation
3.2.1. Transformation of Test Data into Classification Data

A test matrix containing survival data was employed to evaluate the newly
developed algorithms for the survival analysis of RNA-seq data in '3.1. Proposed
RNA-Seq Survival Approaches' step. All pre-processing and stacking algorithm steps
applied to the training dataset were also executed on the test set, continuing until block-
based Lasso models were applied. The parameters used during normalization for the
training set were also consistently applied to the test set. However, the test set was
normalized independently of the training data, ensuring that both the training and test
sets were on the same scale and exhibited homoscedasticity. Low-expressed genes
excluded from the training set were also excluded from the test set. The parameters
used in the training sets during the voom transformation were also used in the test sets,
similar to the normalization step. The 2000 genes with the highest variance in the
training set were also selected in the test set. In the feature selection step, the variables
selected in the training set were also selected in the test set.

For the stacking algorithm, the same methodology employed to construct the
risk set for the training dataset was applied to generate risk set variables for the test
set. Initially, the time values of individuals experiencing the event in the training set
were arranged in ascending order. Subsequently, a risk matrix vector was created for
the relevant individual based on the range in which the time variable of each individual
in the test set falls in this order. To illustrate, suppose the time value of an individual
in the test set is 1578. Assuming there are ten risk set variables in the training set with
corresponding time variables (100, 300, 590, 1080, 1432, 1602, 1845, 1936, 2010,
2036) belonging to individuals who experienced the event in that set. Time 1578 aligns
with the 5th interval in this list. Consequently, the risk set values for this test set

observation would be (0, 0,0, 0, 1, 0, 0, 0, 0, 0). The computation of risk set values is
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performed individually for each person in the risk set, and collectively, these values

constitute the risk set for the test set, following the approach used in the training set.
3.2.2. RNA-Seq Datasets

Real RNA-seq survival data were used in this study, which concentrated on
TCGA data that included RNA-seq data for 12 different cancer types. Data on read

counts were obtained from the TCGA data portal (https://portal.gdc.cancer.gov/), and

the R program's TCGADbiolinks package (209) was used to carry out the download
operation. Each dataset comprises 60660 genes, including 19938 protein-coding genes
and 40722 non-coding genes. However, only protein-coding genes were considered
for this study. For cancer types other than LAML, the sample type "Primary Tumor™
was selected, while for LAML, individuals with the sample type "Primary Blood
Derived Cancer - Peripheral Blood" were included in the analysis. The overall survival
time and status data associated with RNA-seq count data were extracted from the
TCGA Clinical Data Resource, resulting from a comprehensive study involving
11,000 cancer patients across 33 different cancer types in TCGA (210). The
characteristics of the datasets are summarized in Table 3.1 and Table 3.2.

Table 3.1. RNA-Seq Datasets.

Data Cancer Type Sample | Zero/Null | Censoring
Code Size (n) Time Rate (0/1)
Filtering
ACC Adrenocortical Carcinoma 79 79 51/28
CESC Cervical S_quamous Cell _Carcmoma and 304 291 290/71
Endocervical Adenocarcinoma

ESCA | Esophageal Carcinoma 184 184 107/77
GBM | Glioblastoma Multiforme 155 154 32/122
KIRC | Kidney Renal Clear Cell Carcinoma 529 527 352/175
KIRP | Kidney Renal Papillary Cell Carcinoma 290 287 243/44
LAML | Acute Myeloid Leukemia 151 130 52/78
LGG Brain Lower Grade Glioma 516 511 386/125
MESO | Mesothelioma 87 85 12/73
PAAD | Pancreatic Adenocarcinoma 178 177 84/93
SARC | Sarcoma 259 259 161/98
UVM | Uveal Melanoma 80 80 57123



https://portal.gdc.cancer.gov/
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3.2.3. Evaluation Process

The procedures applied to the real datasets are detailed in the following step-
by-step manner. Additionally, a visual representation of these steps is presented in

Figure 3.2 via a flowchart.

Table 3.2. Patient Characteristics.

Data Age Gender Overall Survival Time Censoring Rate
Code (Female) (days) (=0)
ACC 46.70+15.77 | 48 (60.76) 1194 (662-2056) 51 (64.6)
CESC | 48.09+13.81 | 100 (100.00) 699 (410-1345) 220 (75.6)
ESCA | 62.45+11.93 | 26 (14.13) 396.50 (231.25-675.75) 107 (58.2)
GBM | 59.69+13.60 | 57 (37.01) 350.00 (153.00-535.50) 30 (19.5)
KIRC | 60.56+12.17 | 186 (35.23) | 1217.00 (551.00-1929.00) 352 (66.8)
KIRP | 61.04+13.00 | 76 (26.39) 771.00 (428.00-1508.00) 243 (84.7)
LAML | 53.52+16.32 | 59 (45.38) 366.00 (184.00-861.00) 53 (40.8)
LGG 43.02+13.36 | 228 (44.62) | 678.00 (405.00-1227.00) 386 (75.5)
MESO | 63.05+9.83 | 16 (18.82) 527.00 (258.00-852.00) 12 (14.0.)
PAAD | 64.52+10.93 | 80 (45.20) 466.00 (277.50-680.00) 84 (47.5)
SARC | 60.71+14.59 | 141 (54.44) | 947.00 (485.00-1585.00) 161 (62.2)
UVM | 61.65+13.95 | 35 (43.75) 784.00 (433.50-1182.50) 57 (71.3)

Splitting datasets: In the first step of the process, the data is split into two: the training

set and the test set. The training set is designated for developing the voomStackPrio
and voomStackIPF approaches, while the test set is reserved for evaluating the trained
model. The RNA-seq survival data matrix with n samples, as illustrated in (Matrix
3.1), was randomly split into 70% for the training set and 30% for the test set. The
status variables within the training and test sets are categorized into two groups,
denoted by values 0 and 1. Because these groups appeared in the status variable a
certain number of times, they were divided equally between the training and test
sets during the splitting step to prevent bias. For example, in the training set, there are
105 samples with status=1 and 35 samples with status=0, while in the test set, there

are 45 samples with status=1 and 15 samples with status=0. It is assumed that the
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training set comprises n, samples (rows), and the test set comprises n, samples (rows),
where n; + n, = n. The matrices representing the training and test sets are depicted
in (Matrix 3.10) and (Matrix 3.11).

(rTraing;  rTraing, rTraingg ... rTraing, T, &
rTrainy,; rTrain,, 1T rain23 o 1rTraing, T, &, (3.10)
[rTrain, ; rTraing, rTramn 3 rTralnnlp Tn1 nd, o
1

rTesty; rTesty; rTest;s .. rTesty,
rTest,y rTest,, 7rTesty; .. rTest2 l

P (3.11)
[rTest,,, rTest,,, rTest,,s; .. rTesthp On, o2

2

The time variable (T) and the status variable (§) were taken out of the training and test
matrices in the dataset during the next pre-processing steps. Additionally, the
transposes of both matrices were obtained. This partitioning process was done using
the partition () function within the mir3 package (211).

Normalization: The next step is to normalize the data for both training and test sets
after they have been divided. The DESeq median ratio algorithm was utilized in this
normalization process to obtain normalized values. The normalization process
involves leveraging the estimateSizeFactors () and
estimateDispersions () functions from the DESeq2 package (68), as well as
the calcNormFactors()  functions from the edgeR package (97).
Consistently applied to the test set were the same parameters that were used for
training set normalization. However, the test set was normalized independently of the
training data, ensuring that both the training and test sets were on the same scale and

exhibited homoscedasticity.

Filtering low-expressed genes: The approach of Chen et al. (212) is applied to remove
genes that are unexpressed or low-expressed (unchanging or low-variability) across all
the libraries using the function filterByExpr () from the edgeR package (97).
This function tries to keep genes with at least minimum count reads in a worthwhile
number of samples. According to this approach, we keep genes with CPM above the

minimum count (default k=10) in a minimum proportion of samples in the minimum
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group sample size (n). The minimum proportion is greater than 70% of the smallest
group size as default.

Removing the filtered unexpressed or low-expressed genes from the data before the
normalization step may change the data's original structure. Therefore, first of all, the
genes to be filtered were identified in the training set before normalization. Post
normalization and logCPM transformation on the training set encompassing all genes
identified were excluded. The excluded genes from the training set were also removed
from the test set.

Transformation: In the methods utilized for comparing model performance, we applied

the variance stabilizing transformation (vst) to the normalized values. For other
algorithms to compare, this transformation was achieved using the
varianceStabilizingTransformation () function within the DESeq?2
package (68). For our newly developed algorithms, voomStackPrio and
voomStackIPF, we implemented the voom transformation on the normalized values.
We reorganized the code of the wvoom(), CalcNormFactors/(),
arrayWeights (), and voomWithqualityweights () functions in the
limma (213) and edgeR (97) packages. The parameters used in the training sets were

also utilized in the test sets, similar to the normalization step.

Variance filtering: To improve analysis accuracy, more informative

genes were prioritized and the genes were sorted in descending order according
to their coefficients of variation. The studies were conducted using the top 2000 genes
from this ordered list. However, considering potential variations in the coefficient of
variation values after transformation, we identified the initial 2000 genes for analysis
before the transformation step. Following the transformation, a variance filtering
process was applied. This procedure was implemented in the training set, and
subsequently, the genes filtered in the training set were also filtered in the test set.

Feature selection: Two distinct feature selection methods were employed to compare

model performance. The first method involved model-based feature selection, which
is implemented differently for each survival model in the mlr3fselect package (214).
Resampling techniques are used by the algorithms in the mlr3fselect package (214)
to assess prediction performance and choose feature subsets. For feature selection,

resampling was conducted using 5 repeats of 5-fold cross-validation, with the
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performance measure set to ‘c-index’, and feature selection was completed using the
‘random search’ algorithm. The features selected in the training set were applied to the
test set.

The second method is the Boruta algorithm, which is also used in the feature selection
for our newly developed lasso-based methods, voomStackPrio and voomStackIPF. In
the Boruta feature selection from Boruta package (152) process, features labeled as
both ‘important’ and ‘tentative’ (closely resembling the best shadow features) were
retained in the dataset, while variables labeled as ‘unimportant’ were subsequently
removed. The features in the training dataset are also kept in the test dataset. Detailed
information regarding the number and names of the variables used for each model can
be found in the Appendix Files.

Hence, the pre-processing steps for RNA-seq data are now complete. We transposed
the training and test datasets to facilitate subsequent steps and reintroduced each
sample's time and status variables.

Stacking: We developed a function that followed the steps of the stacking algorithm to
convert the training set from a survival data matrix into a classification data matrix.
The survival test dataset was similarly transformed into a classification dataset by
leveraging the risk sets generated during the application of the stacking algorithm to
the training set.

Model fitting and parameter optimization: Multiple models with different parameters

were developed for the new approaches. The specific parameters used for
voomStackPrio can be found in Table 3.3, while those for voomStackIPF are listed in
Table 3.4. The ‘weights’ parameter in these tables denotes sample weights obtained
after the voom transformation. Given that our outcome variable y is binary in
voomStackPrio, the ‘family’ parameter is selected as ‘binomial’, and the
‘type.measure’ parameter is set to ‘auc’. The first block is penalized in two
voomsStackPrio models. The ‘lambda.type’ parameter determines the lambda value
used in predictions. ‘lambda.min’ provides the lambda with minimum cross-validated
errors, and ‘lambda.1se’ gives the largest lambda value within one standard error of
the minimum. The ‘standardized’ parameter determines whether estimates would be
standardized or not. For voomStackIPF, the ‘alpha’ parameter plays a pivotal role.
When set to 1, it applies an L1-penalty (lasso), and when set to 0, an L2-penalty (ridge)
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is used. Each model for voomStackPrio and voomStackIPF was run 30 times,
employing 10 repeats of 5-fold cross-validation.

The performance of the newly created voomStackPrio and voomStacklPF models was
compared to other survival analysis methods found in the literature.

These methods were categorized into four primary groups: (i) penalized Cox
regression methods, (ii) boosted survival methods, (iii) random survival forests, and
(iv) support vector machines. Hyperparameters for these machine-learning algorithms
were carefully selected to optimize model performance. The tuning of these
hyperparameters was carried out automatically using a 5-fold 10-repeated cross-
validation process. Importantly, optimal hyperparameters were chosen from different
ranges for different models, and the specific tuning parameters for each model are
detailed in Table 3.5. To ensure robustness and reliability, each model underwent 25
iterations, randomly selecting 30 distinct training and test datasets.

The steps applied to the algorithms for comparison are detailed below.

blackboost: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. For feature selection, the parameters used were 'learner=surv.blackboost’,
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex™)', and 'evals20 =
trm("evals"”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mir3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.blackboost’
function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify
the optimal tuning parameter via the mir3 package (211).

coxboost: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. For feature selection, the parameters used were ‘'learner=surv.coxboost',
‘resampling=rsmp(“cv", folds = 5)', 'measure = msr("surv.cindex")’, and ‘'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mir3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.coxboost’
function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify

the optimal tuning parameter via the mir3 package (211).
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gbm: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
feature  selection, the  parameters used  were ‘learner=surv.gbm’,
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex™)', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mir3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.gbm’ function
in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the mlr3 package (211).

glmboost: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. For feature selection, the parameters used were 'learner=surv.glmboost’,
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex™)', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mlr3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.gimboost’
function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify
the optimal tuning parameter via the mir3 package (211).

xgboost_gbtree: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. For feature selection, the parameters used were 'learner=surv.xgboost’,
'booster = “gbtree, ‘'resampling=rsmp("cv", folds = 5), ‘'measure =
msr("surv.cindex")’, and 'evals20 = trm("evals", n_evals = 5)", and 'fselector =
fs("random_search™)' for internal feature selection in the mlr3proba package (215).
Model parameters and hyper-parameters for tuning were set according to the
parameters provided for the ‘surv.xgboost’ function and ‘booster = “gbtree”” model
parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to
identify the optimal tuning parameter via the mir3 package (211).

xgboost_gblinear: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. For feature selection, the parameters used were 'learner=surv.xgboost’,

'booster = “gblinear’”, 'resampling=rsmp("cv", folds = 5)', 'measure =



Table 3.3. Model parameters for voomStackPrio models.

Parameters voomStackPriol voomsStackPrio2
weights sampleweights sampleweights
family binomial binomial
type.measure auc auc
blockl.penalization TRUE TRUE
lambda.type lambda.min lambda.1se
standardize FALSE FALSE
nfolds 5 5
cvoffset TRUE TRUE
cvoffsetnfolds 10 10

Table 3.4. Model parameters for voomStacklPF models.
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Parameters voomStacklPF1 | voomStackIPF2 | voomStacklPF3 | voomStacklPF4 | voomStackIPF5 | voomStacklPF6 | voomStacklPF7 | voomStackIPF8 | voomStackIPF9
weights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights
family binomial binomial binomial binomial binomial binomial binomial binomial binomial
standardize FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

pf c(1,1) c(1,1) c(1,1) c(1,2) c(1,2) c(1,2) c(2,1) c(2,1) c(2,1)
nfolds 5 5 5 5 5 5 5 5 5

ncv 10 10 10 10 10 10 10 10 10
type.measure auc auc auc auc auc auc auc auc auc
alpha 0 0.5 1 0 0.5 1 0 0.5 1
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msr("surv.cindex™")’, and ‘evals20 = trm("evals”, n_evals = 5)", and ‘fselector =
fs("random_search™)" for internal feature selection in the mir3proba package (215).
Model parameters and hyper-parameters for tuning were set according to the
parameters provided for the ‘surv.xgboost’ function and ‘booster = “gblinear”” model
parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to
identify the optimal tuning parameter via the mlr3 package (211).

xgboost_dart: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. For feature selection, the parameters used were ‘learner=surv.xgboost’,
'booster = “dart™, 'resampling=rsmp(*cv", folds = 5)', ‘measure = msr(*'surv.cindex")',
and 'evals20 = trm("evals", n_evals = 5)", and 'fselector = fs("random_search™)" for
internal feature selection in the mlr3proba package (215). Model parameters and
hyper-parameters for tuning were set according to the parameters provided for the
‘surv.xgboost’ function and ‘booster = “dart”” model parameter in Table 3.5. 10
repeats of 5-fold cross-validation were performed to identify the optimal tuning
parameter via the mlr3 package (211).

elasticnet: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. For feature selection, the parameters used were 'learner=surv.glmnet’,
‘alpha = 0.5', 'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")’, and
‘evals20 = trm("evals”, n_evals =5)", and ‘fselector = fs("random_search™)' for internal
feature selection in the mlr3proba package (215). Model parameters and hyper-
parameters for tuning were set according to the parameters provided for the
‘surv.glmnet’ function and ‘alpha = 0.5’ model parameter in Table 3.5. 10 repeats of
5-fold cross-validation were performed to identify the optimal tuning parameter via
the mlr3 package (211).

lasso: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
feature selection, the parameters used were ‘learner=surv.glmnet’, ‘alpha = 1',
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex™)', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature

selection in the mir3proba package (215). Model parameters and hyper-parameters
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for tuning were set according to the parameters provided for the ‘surv.glmnet’ function
and ‘alpha = 1’ model parameter in Table 3.5. 10 repeats of 5-fold cross-validation
were performed to identify the optimal tuning parameter via the mir3 package (211).
penalized: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. For feature selection, the parameters used were 'learner=surv.penalized’,
‘resampling=rsmp("“cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mir3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.penalized’
function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify
the optimal tuning parameter via the mir3 package (211).

ridge: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
feature selection, the parameters used were 'learner=surv.glmnet’, ‘alpha = 0,
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex")', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mir3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.glmnet’ function
and ‘alpha = 0’ model parameter in Table 3.5. 10 repeats of 5-fold cross-validation
were performed to identify the optimal tuning parameter via the mlr3 package (211).
cforest: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
feature  selection, the  parameters used were ‘learner=surv.cforest
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex™)', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mlr3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.cforest’ function
in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the mlr3 package (211).

ctree: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
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feature  selection, the  parameters used  were  ‘learner=surv.ctree’,
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex™)', and ‘'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mir3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.ctree’ function
in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the mlr3 package (211).

obliqueRSF: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. ~ For  feature  selection, the  parameters used  were

'learner=surv.obliqueRSF', ‘resampling=rsmp(“cv", folds = 5)', 'measure

msr("surv.cindex")’, and 'evals20 = trm("evals", n_evals = 5)", and ‘fselector
fs("random_search™)' for internal feature selection in the mlr3proba package (215).
Model parameters and hyper-parameters for tuning were set according to the
parameters provided for the ‘surv.obliqueRSF’ function in Table 3.5. 10 repeats of 5-
fold cross-validation were performed to identify the optimal tuning parameter via the
mlr3 package (211).

ranger: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
feature  selection, the  parameters used were ‘learner=surv.ranger,
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex™)', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mlr3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.ranger’ function
in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the mlr3 package (211).

rfsrc: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
feature  selection, the  parameters used  were ‘learner=surv.rfsrc,
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex™)', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature

selection in the mir3proba package (215). Model parameters and hyper-parameters
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for tuning were set according to the parameters provided for the ‘surv.rfsrc’ function
in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the mlr3 package (211).

rpart: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
feature  selection, the  parameters used  were ‘learner=surv.rpart’,
‘resampling=rsmp("“cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mir3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.rpart” function
in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the mlr3 package (211).

svm: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially. For
feature  selection, the parameters used  were ‘learner=surv.svm',
‘resampling=rsmp("cv", folds = 5)', 'measure = msr(*'surv.cindex")', and 'evals20 =
trm("evals”, n_evals = 5)", and 'fselector = fs("random_search™)' for internal feature
selection in the mir3proba package (215). Model parameters and hyper-parameters
for tuning were set according to the parameters provided for the ‘surv.svm’ function
in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the mlr3 package (211).

blackboost_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.blackboost’ function in Table 3.5. 10 repeats
of 5-fold cross-validation were performed to identify the optimal tuning parameter via
the mlr3 package (211).

coxboost_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting
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important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.coxboost’ function in Table 3.5. 10 repeats of
5-fold cross-validation were performed to identify the optimal tuning parameter via
the mlr3 package (211).

gbm_B: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially.
Following that, Boruta feature selection was employed, selecting important features
with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model
parameters and hyper-parameters for tuning were set according to the parameters
provided for the ‘surv.gbm’ function in Table 3.5. 10 repeats of 5-fold cross-validation
were performed to identify the optimal tuning parameter via the mir3 package (211).
glmboost_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.glmboost’ function in Table 3.5. 10 repeats of
5-fold cross-validation were performed to identify the optimal tuning parameter via
the mlr3 package (211).

xgboost_gbtree B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.xgboost’ function and ‘booster = “gbtree”’
model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to
identify the optimal tuning parameter via the mir3 package (211).
xgboost_gblinear_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta
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package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.xgboost” function and ‘booster = “gblinear’
model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to
identify the optimal tuning parameter via the mlr3 package (211).

xgboost_dart_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.xgboost’ function and ‘booster = “dart™
model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to
identify the optimal tuning parameter via the mlr3 package (211).

elasticnet_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.glmnet’ function and ‘alpha = 0.5’ model
parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to
identify the optimal tuning parameter via the mir3 package (211).

lasso_B: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially.
Following that, Boruta feature selection was employed, selecting important features
with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model
parameters and hyper-parameters for tuning were set according to the parameters
provided for the ‘surv.glmnet’ function and ‘alpha = 1’ model parameter in Table 3.5.
10 repeats of 5-fold cross-validation were performed to identify the optimal tuning
parameter via the mlr3 package (211).

penalized_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
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package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.penalized’ function in Table 3.5. 10 repeats of
5-fold cross-validation were performed to identify the optimal tuning parameter via
the mlr3 package (211).

ridge_B: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially.
Following that, Boruta feature selection was employed, selecting important features
with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model
parameters and hyper-parameters for tuning were set according to the parameters
provided for the ‘surv.glmnet’ function and ‘alpha = 0’ model parameter in Table 3.5.
10 repeats of 5-fold cross-validation were performed to identify the optimal tuning
parameter via the mlr3 package (211).

cforest_ B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.cforest’ function in Table 3.5. 10 repeats of 5-
fold cross-validation were performed to identify the optimal tuning parameter via the
mlr3 package (211).

ctree_B: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially.
Following that, Boruta feature selection was employed, selecting important features
with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model
parameters and hyper-parameters for tuning were set according to the parameters
provided for the ‘surv.ctree’ function in Table 3.5. 10 repeats of 5-fold cross-validation
were performed to identify the optimal tuning parameter via the mlr3 package (211).
obliqgueRSF_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according
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to the parameters provided for the ‘surv.obliqueRSF’ function in Table 3.5. 10 repeats
of 5-fold cross-validation were performed to identify the optimal tuning parameter via
the mlr3 package (211).

ranger_B: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, vst transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). Model parameters and hyper-parameters for tuning were set according
to the parameters provided for the ‘surv.ranger’ function in Table 3.5. 10 repeats of 5-
fold cross-validation were performed to identify the optimal tuning parameter via the
mlr3 package (211).

rfsrc_B: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially.
Following that, Boruta feature selection was employed, selecting important features
with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model
parameters and hyper-parameters for tuning were set according to the parameters
provided for the ‘surv.rfsrc’ function in Table 3.5. 10 repeats of 5-fold cross-validation
were performed to identify the optimal tuning parameter via the mir3 package (211).
rpart_B: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially.
Following that, Boruta feature selection was employed, selecting important features
with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model
parameters and hyper-parameters for tuning were set according to the parameters
provided for the ‘surv.rpart’ function in Table 3.5. 10 repeats of 5-fold cross-validation
were performed to identify the optimal tuning parameter via the mir3 package (211).
svm_B: Filtering was performed for low-expressed genes after DESeq normalization.
Subsequently, vst transformation and variance filtering were applied sequentially.
Following that, Boruta feature selection was employed, selecting important features
with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model
parameters and hyper-parameters for tuning were set according to the parameters
provided for the ‘surv.svm’ function in Table 3.5. 10 repeats of 5-fold cross-validation
were performed to identify the optimal tuning parameter via the mlr3 package (211).
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voomStackPriol: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the
priority-Lasso algorithm. The model parameters defined for ‘voomStackPriol’ are
given in Table 3.3. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the prioritylasso package (73).

voomStackPrio2: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the
priority-Lasso algorithm. The model parameters defined for ‘voomStackPrio2’ are
given in Table 3.3. 10 repeats of 5-fold cross-validation were performed to identify the
optimal tuning parameter via the prioritylasso package (73).

voomStackIPF1: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStacklPF1’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal
tuning parameter via the IPFlasso package (74).

voomStacklPF2: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was
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applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStackIPF2’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal
tuning parameter via the 1PFlasso package (74).

voomStacklPF3: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStackIPF3’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal
tuning parameter via the IPFlasso package (74).

voomStacklPF4: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStackIPF4’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal
tuning parameter via the IPFlasso package (74).

voomStackIPF5: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStackIPF5’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).
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voomStacklPF6: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStackIPF6’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal
tuning parameter via the IPFlasso package (74).

voomStacklPF7: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStackIPF7’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal
tuning parameter via the IPFlasso package (74).

voomStackIPF8: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStackIPF8’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal
tuning parameter via the IPFlasso package (74).

voomStacklPF9: Filtering was performed for low-expressed genes after DESeq
normalization. Subsequently, voom transformation and variance filtering were applied
sequentially. Following that, Boruta feature selection was employed, selecting
important features with the ‘withTentative = TRUE’ parameter using the Boruta
package (152). After completing the pre-processing steps, the stacking algorithm was
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applied, and the dataset was transformed into a format suitable for input into the IPF-
Lasso algorithm. The model parameters defined for ‘voomStackIPF9’ are given in
Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal
tuning parameter via the 1PFlasso package (74).

Prediction and performance evaluation: The evaluation of survival algorithms

involved the concordance index (Harrell's c-index) and integrated Brier score. For both
metrics, the survex package (216) was utilized. The ¢ index () function was
employed to calculate  Harrell's  concordance index, and the
integrated brier score () function was used to assess the integrated Brier
score metric.

Three distinct super lists have been generated for the Concordance Index, Integrated
Brier Score, and the number of selected features by aggregating ordered lists based on
their ranks. The RankAggreg package (217) was employed for this process, utilizing
the RankAggreg () function with the Cross Entropy Monte Carlo method.
Consequently, all survival algorithms, assessed against three different evaluation
criteria, are ranked from best to worst performance. The consolidated version of these
super lists is visually represented in a Venn diagram.

The performances of the models were also compared in terms of computation times.
3.2.4. Performance Evaluation Criteria

Sparsity, accuracy, and computational cost were the three parameters that were
used to assess the performance of the model. In order to evaluate sparsity, one must
determine how many features the model uses; models with fewer features are deemed
to be more sparse. Model accuracy was evaluated using the metrics concordance index
(Harrell's c-index) and integrated Brier score. Computational costs were computed,
and models delivering results in the shortest time were highlighted.

A model in survival analysis predicts the risk of a specific event for each
patient. The higher risk scores for patients with a shorter time-to-event determine the
model's effectiveness. The concordance index (c-index) is a metric that measures the
discriminating power of these risk models in survival analysis (218). When assessing

this, it calculates the agreement between all pairs of samples. Two patients are
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considered concordant if the predicted event risk by a model is lower for the patient
who experiences the event later.

Let the risk scores of the patients be represented by ¢. The concordance
calculation for each pair of patients is conducted based on three scenarios. For patients
i and j, the survival times are denoted as T; and T}, and the risk scores are ¢; and ¢;.

1. If both patients i and j are not censored,

a. Ifg; > ¢;and T; < Tj, these patient pair is concordant and
b. If ¢; > ¢; and T; > Tj, these patient pair is discordant.

2. If both patients i and j are censored, no calculation for this pair since it is

unknown who first experienced the event.

3. If one of patients i and j is censored and patient i experience the event at

time T; and patient j is censored,

a. If T; > Tj, no calculation for this pair since it is unknown who first
experienced the event.

b. If T; <T;, since patient i experienced the event first
I If ; > @, these patient pair is concordant and

ii. If ; < @j, these patient pair is discordant.

# concordant pairs

Harrell's ¢ — index =
# concordant pairs + # discordant pairs

The general formulation of Harrell’s c-index is given below.

Yo [(Ti > T;) (@) > ¢1).4

Harrell's ¢ — index =

A; is a factor used to exclude non-comparable pairs of samples from the
calculation, particularly when the shorter survival time is censored.

The concordance index is equivalent to the Area Under the Receiver Operating
Characteristic Curve (AUC) in the presence of a binary outcome. This index ranges
from zero to one. A c-index of 0.5 indicates that the risk model predicts randomly, and

a c-index close to 1 indicates better discriminating power for the risk model.



96

The Brier score is used to assess the discrimination abilities of models and
provide probabilistic results. It computes the mean squared error between the real
classes and predicted risks for a dataset with binary outcomes. Subsequently, the Brier

score was adapted for survival data (219). It is calculated as below.

Brier Score (1) =~ » wi(0) [9.(0) ~ ¥ (D)

8:/C(yy) yist

wi() = {1/C(J’i) yi>t

The probability of an event predicted for it"* sample is denoted as 9;(t), and
the observed status outcome in the i" sample is represented as y;(t) at time t. The
calculation of w; (t) involves the use of the Kaplan-Meier estimator for the censoring
distribution C. If the Brier score is close to 0, the predicted model is considered good.
If it is around 0.25, the predicted model performs at random.

The Brier score assesses the accuracy of a survival function at a specific time.
The integrated Brier score, obtained by integrating the Brier score across all follow-up

times, is utilized, as a particular point of time can not be determined.
3.2.5. Computational Infrastructure

All analyses were conducted using the R programming language. We employed
Version 2023.03.0+386 of the RStudio software for these analyses. Both R and
RStudio are freely available as open-source software and can be installed on Windows,
Macintosh, and Linux operating systems. To use RStudio, it is essential first to install
R. With RStudio, you can easily execute R code, create graphical presentations, and
access a history of your code. Details about the workstations used for running the

analyses, including their respective features, can be found in Table 3.6.
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regression

glmnet (230)

Group Function Package Model-Parameters Hyper-Parameters Reference
Boosted surv.blackboost | mir3 (211), mir3proba (215), | mstop = 100 family = “gehan”, “cindex”, Bithlmann and
survival mlr3extralearners (220), mstop= 10 — 1000 Yu (2003) (223)
model mboost (221), pracma (222) nu=0— 0.1
mtry= 1 — max(feature counts)

Random | surv.cforest mlir3 (211), mir3proba (215), | ntree = 100 ntree= 250 — 2500, Hothorn (2006)
survival mlr3extralearners (220), mtry= 1 — max(feature_counts) | (194)
forest partykit (224),

sandwich (225), coin (226)
Boosted surv.coxboost mlr3 (211), mlr3proba (215), stepno= 500 — 1500 Binder (2009)
survival mlr3extralearners (220), (227)
model CoxBoost (227), pracma (222)
Random | surv.ctree mlir3 (211), mir3proba (215), alpha=0 — 1, Hothorn and
survival mlr3extralearners (220), abseps=0 — 10, Zeileis  (2015)
forest partykit (224), maxdepth=1— 16 (224), Hothorn

coin (226), sandwich (225) (2006) (194)
Boosted surv.gbm mlr3 (211), mir3proba (215), | bag.fraction =0.9 interaction.depth=1 — 16 Friedman
survival mlr3extralearners (220), (2002) (229)
model gbm (228)
Boosted surv.glmboost mlr3 (211), mir3proba (215), family = “gehan”, “cindex”, Bithlmann and
survival mlr3extralearners (220), mstop= 10 — 1000, Yu (2003) (223)
model mboost (221), pracma (222) nu=0— 0.1
Penalised | surv.gimnet mlr3 (211), mir3proba (215), | alpha=1, lambda.min.ratio= 0 — 1 Friedman
Cox mlr3extralearners (220), s=0.01 (2010) (231)
regression glmnet (230)
Penalised | surv.gimnet mlr3 (211), mir3proba (215), | alpha =0, lambda.min.ratio= 0 — 1 Friedman
Cox mlr3extralearners (220), s=0.01 (2010) (231)
regression glmnet (230)
Penalised | surv.gimnet mlr3 (211), mlr3proba (215), | alpha=0.5, lambda.min.ratio=0 — 1 Friedman
Cox mlr3extralearners (220), $s=0.01 (2010) (231)



https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mboost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=CoxBoost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mboost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
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Random | surv.obliqueRSF | mlr3 (211), mlr3proba (215), alpha=0 — 1, Jaeger (2019)
survival mlr3extralearners (220), gamma=0 — 1 (233)
forest obliqueRSF (232),
pracma (222)
Penalised | surv.penalized mlr3 (211), mir3proba (215), | lambdal = 10, epsilon=0 — 1 Goeman (2010)
Cox mlr3extralearners (220), lambda2 = 10 (234)
regression penalized (234), pracma (222)
Random | surv.ranger mlr3 (211), splitrule= “C”, Breiman (2001)
survival mlr3learners (235), num.trees= 250 — 1000, (38)
forest ranger (236) mtry= 1 —max(feature_counts),
min.node.size= 1 — 20
Random | surv.rfsrc mlr3 (211), mlr3proba (215), ntree= 250 — 2500, Ishwaran (2008)
survival mlr3extralearners (220), mtry=1 — (39),
forest randomForestSRC max(feature_counts), Breiman (2001)
(237), pracma (222) nodesize= 1 — 20 (38)

Random | surv.rpart mlr3 (211), mir3proba (215), minbucket=1 — 20, Breiman (1984)
survival rpart (238), distr6 (239), maxdepth= 2 — 30 (174)
forest survival (240)
Support surv.svm mlr3 (211), mir3proba (215), | type = “hybrid”, sigf=2 — 12, Van Belle
vector mlr3extralearners (220), diff.meth = “makediff3”, | maxiter=20 — 50, (2011) (167)
machine survivalsvm (241) kernel = “lin_kernel”, margin= 0.01 — 0.1,

gamma.mu = ¢(100,1000) | bound=5 — 15
Boosted surv.xgboost mlr3 (211), booster = “gbtree” alpha=0 — 1, eta=0 — 1, Chen (2016)
survival mlr3learners (235), gamma=0 — 1, (198)
model xgboost (242) lambda=0 — 2,

nrounds=1 — 16

Boosted surv.xgboost mlr3 (211), booster = “gblinear” alpha=0 — 1,eta=0 — 1, Chen (2016)
survival mlr3learners (235), lambda=0 — 2, (198)
model xgboost (242) nrounds=1 — 16
Boosted surv.xgboost mlr3 (211), booster = “dart” alpha=0 — 1, eta=0 — 1, Chen (2016)
survival mir3learners (235), gamma=0 — 1, (198)
model xgboost (242) lambda=0 — 2,

nrounds=1 — 16



https://cran.r-project.org/package=mlr3
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https://cran.r-project.org/package=mlr3extralearners
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https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
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https://cran.r-project.org/package=penalized
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=ranger
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
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https://cran.r-project.org/package=survivalsvm
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=mlr3
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https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=xgboost

Table 3.6. Characteristics of the workstations employed for analysis.
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Workstation Operating CPU GPU Memor | Number

System y of Cores
Erciyes Windows 10 Intel i7-4790 Intel HD | 16 GB 4 cores
University, 3.60GHz Graphics 8 logical
Department  of 4600 processor
Biostatistics S
Erciyes Ubuntu AMD EPYC 2xTesla 27TB 256
University, Ziya 20.04 - 7742 (x2) — 256 V100S
Eren Drug Linux CPU 32GB
Research  and
Application
Center
(ERFARMA)
Erciyes Windows 10 | Intel(R) Xeon(R) - 350 GB | 30 cores
University, Dep 32 CPU E5-2650
artment of V4 @ 2.20 GHz
Information
Technology
Personal Windows 10 | Intel(R) Core™ - 8 GB 4
Computer i5-8265U CPU,

1.60GHz, 1800
Mhz

3.3. MLSeqSurv R Package

The voomStackPrio and voomStackIPF algorithms have a R package called

MLSeqSurv. With the help of this package, researchers can do survival analyses on

RNA-seq data by incorporating both newly created and previously published survival

algorithms. Researcher input datasets (training and test datasets) are required in order
to use the MLSeqSurv R package. These datasets can be submitted in formats such as
.csv, .xlIsx, and .txt. Once users input the datasets and chosen survival algorithm and
its parameters, the package automatically trains the model tailored to the training set.
After model training, the package calculates survival probabilities for the test data at
specified time points. Additionally, MLSeqSurv provides users with individual
survival curves for the test data. The source code for this package is available on the
official website at https://github.com/gokmenzararsiz/MLSegSurv. Following the
transfer of the MLSeqSurv package to the R BIOCONDUCTOR repository,

installation can be achieved using the following code.


https://github.com/gokmenzararsiz/MLSeqSurv
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if (!require("BiocManager", quietly = TRUE))
install.packages("BiocManager")

BiocManager: :install("MLSeqSurv'™)

The MLSeqSurv R packages used are mir3 (211), mir3proba (215),
mir3learners (235), mlr3extralearners (220), mlr3verse (243), mlr3tuningspaces
(244), mlr3fselect (214), limma (150), edgeR (97), DESeq2 (68), survival (240),
prioritylasso (73), ipflasso (74), mboost (221), pracma (222), partykit
(224), sandwich (225), coin (226), gbm (228), glmnet (230), CoxBoost (227),
obliqueRSF (232), penalized (234), ranger (236), rpart (238), distr6 (239),
randomForestSRC (237), survivalsvm (241), xgboost (242), survex (216), Boruta
(152).


https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=distr6
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4. RESULTS

4.1. Concordance Index, Integrated Brier Score, and Selected Features
for Real RNA-Seq Datasets

The results of the 12 real RNA-seq survival cancer datasets, as outlined in
Table 3.9, are depicted graphically in Figures 4.1 through 4.12 and elaborated upon in
tables ranging from Table 4.1 to Table 4.12. The concordance index, integrated Brier
score, and the number of selected features for each dataset are illustrated in boxplots.
The methods compared in these graphs are classified into five main groups: Boosted
survival models (Boosted), Penalized Cox regression models (Penalized), Random
survival forests (RSF), Survival support vector machine (SVM), and voom-based
stacking lasso methods (voomStackLasso).

Boosted survival models (Boosted) consist of algorithms such as blackboost,
coxboost, gamboost, gbm, glmboost, xgboost (including dart, gblinear, and gbtree),
and are represented in light pink. Penalized Cox regression models (Penalized) include
elasticnet, lasso, penalized, ridge algorithms, depicted in dark khaki. Random survival
forests (RSF) comprise cforest, ctree, obliqueRSF, ranger, rfsrc, rpart algorithms,
shown in green. Survival support vector machine (SVM) is represented in blue. Results
from the existing survival algorithms in the literature include outcomes from both the
internal feature selection algorithm, individually applied for each algorithm in the
mlir3proba package (215), and the feature selection process in the Boruta package
(152).

voom-based stacking lasso models (voomStackLasso), developed within the
scope of this study, include voomstackPriol, voomstackPrio2, voomstackIPF1,
voomstacklIPF2, voomstackIPF3, voomstackIPF4, voomstackIPF5, voomstackIPF6,
voomstackIPF7, voomstackIPF8, and voomstackIPF9, depicted in purple.

Summary statistics for the concordance index, integrated Brier score, and the
number of selected features are provided in the tables. The survival algorithms, whose
performance is compared, are listed in the table rows. The columns present the mean,
standard deviation, median, 1st-3rd quartile, minimum, and maximum statistics for the
concordance index, integrated Brier score, and the number of selected features. The
tables are formatted with bold to draw attention to the highest values. The midpoints



102

of the lines in the boxplots stand for the median, the bottom point for the lowest value,
and the top point for the maximum value.

The concordance index, integrated Brier score, and the number of selected
features for Adrenocortical Carcinoma (ACC) data are depicted in Figure 4.1, with
related summary statistics presented in Table 4.1. Upon examination of the graph and
table, it was observed that the cforest algorithm, when applied to internal feature
selection, exhibited the highest mean concordance index for ACC data at 0.866.
Among the methods applied to internal feature selection, the highest mean
concordance index values were observed for cforest (0.866+0.044), blackboost
(0.861+0.050), ridge (0.860+0.042), rfsrc (0.857+0.052), svm (0.857+0.046), and
ranger (0.854+0.073) algorithms. Conversely, the lowest mean concordance index
values were attributed to ctree (0.742+0.090) and rpart (0.758+0.089) algorithms.
Among the methods from the literature employing Boruta feature selection, the cforest
(cforest_B) (0.854+0.062), ridge (ridge_B) (0.856+0.057) and xgboost (with booster=
“gblinear”) (xgboost gblinear B) (0.852+0.047) algorithms demonstrated the highest
mean concordance index. On the other hand, the svm (svm_B) algorithm
(0.555+£0.245) exhibited the lowest mean concordance index. Among the
voomStackLasso methods, the voomStackIPF1 (0.855+0.054), voomStackIPF4
(0.854+0.053), and voomStackIPF7 (0.854+0.053) algorithms showed the highest
mean concordance index values, while the voomStackPrio2 algorithm (0.737+0.075)
displayed the lowest mean concordance index.

It was observed that the penalized algorithm, when utilized with Boruta feature
selection, resulted in the lowest mean integrated Brier score for ACC data, recorded at
0.131. Within the category of methods applied to internal feature selection, the
penalized (0.142+0.048) and cforest (0.1584+0.027) algorithms demonstrated the
lowest mean integrated Brier scores, while gbm (0.37540.079), lasso (0.366+0.181),
blackboost (0.359+0.064), and svm (0.339+0.069) algorithms displayed the highest
mean integrated Brier scores. In the group of methods from the literature employing
Boruta feature selection, the penalized (penalized_B) (0.131+0.032), ranger
(ranger_B) (0.140+0.031), and cforest (cforest B) (0.142+0.033) algorithms
showcased the lowest mean integrated Brier scores, while lasso (0.479+0.150) and
elasticnet (0.4524+0.159) algorithms presented the highest mean integrated Brier
scores. Among the voomStackLasso methods, voomStackIPF1 (0.134+0.027),
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voomStackIPF7 (0.134+0.026), and voomStackIPF4 (0.135+0.028) algorithms
demonstrated the lowest mean integrated Brier scores, whereas the voomStackPriol
algorithm (0.170+0.071) displayed the highest mean integrated Brier score.

voomStackLasso algorithms showed the lowest mean number of selected
features for ACC data (52.50+7.83). These were closely followed by the methods in
the literature that utilized Boruta feature selection (54.07+7.62). Regarding internal
feature selection methods, the algorithm with the lowest mean number of features was
rpart (600.77+427.46), while the algorithm with the highest mean number of features
was obliqueRSF (1137.10+£581.78).

The concordance index, Integrated Brier Score, and the number of selected
features for Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma
(CESC) data are depicted in Figure 4.2, with related summary statistics presented in
Table 4.2. Upon examination of both the graph and table, it was observed that the ridge
algorithm, when applied to internal feature selection, exhibited the highest mean
concordance index for CESC data at 0.686. Within the category of methods applied to
internal feature selection, the highest mean concordance index values were observed
for ridge (0.686+0.052), penalized (0.667+0.056), and cforest (0.662+0.054).
Conversely, the lowest mean concordance indices were attributed to ctree
(0.557+0.053) and rpart (0.573+0.073) algorithms. Among the methods from the
literature employing Boruta feature selection, the ranger (ranger_B) (0.643+0.066) and
ridge (ridge_B) (0.632+0.062) algorithms demonstrated the highest mean concordance
index, while the rpart (rpart_B) (0.546+0.082) and ctree (ctree_B) (0.547+0.078)
algorithms exhibited the lowest mean concordance index values. Among the
voomStackLasso methods, the voomStackIPF1 (0.660+0.047) and voomStackIPF7
(0.659+0.047) algorithms showed the highest mean concordance index values, while
the voomStackPrio2 algorithm (0.628+0.055) displayed the lowest mean concordance
index.

Upon reviewing the integrated Brier score results for CESC data, it was evident
that methods from the literature, where both internal feature selection and Boruta
feature selection were applied, consistently yielded high results. The voomStackLasso
methods yield the lowest integrated Brier score results. It was noted that among these
algorithms, the voomStackIPF4 exhibited the lowest mean integrated Brier score for
CESC data, at 0.191. This was followed by voomStackIPF1
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Figure 4.1. The concordance index, integrated Brier score, and the number of selected
features for ACC.



Table 4.1. The summary statistics of concordance index, integrated Brier score and the number of features selected for ACC.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.861+0.050 0.861 (0.832-0.892) 0.723-0.950 0.359+0.064 0.366 (0.349-0.402) 0.186-0.468 1081.83+570.29 1027.00 (597.75-1644.00) 157-1960
Cforest 0.866+0.044 0.878 (0.851-0.892) 0.755-0.933 0.158+0.027 0.154 (0.138-0.174) 0.119-0.233 1025.27+570.19 1006.50 (541.25-1492.00) 62-1907
Coxboost 0.803+0.075 0.805 (0.773-0.866) 0.614-0.908 0.209+0.081 0.187 (0.144-0.267) 0.079-0.364 867.10+£574.20 748.00 (270.00-1332.50) 23-1908
Ctree 0.742+0.090 0.764 (0.686-0.824) 0.543-0.875 0.22540.090 0.218 (0.156-0.299) 0.067-0.411 806.90+£602.60 544.00 (309.75-1359.50) 131-1995
Elasticnet 0.844+0.058 0.856 (0.812-0.887) 0.708-0.936 0.31240.176 0.255 (0.149-0.473) 0.111-0.639 992.90+522.90 979.00 (540.00-1426.00) 183-1891
Gbm 0.841+0.043 0.848 (0.813-0.865) 0.763-0.933 0.3754+0.079 0.373 (0.316-0.441) 0.219-0.508 1089.47+578.86 1063.50 (627.00-1623.25) 93-1943
Glmboost 0.817+0.076 0.830 (0.775-0.880) 0.632-0.930 0.335+0.086 0.363 (0.295-0.390) 0.157-0.468 850.87+481.50 850.50 (454.25-1139.25) 15-1706
Lasso 0.818+0.059 0.828 (0.768-0.866) 0.649-0.914 0.366+0.181 0.364 (0.192-0.508) 0.129-0.662 1021.77+537.09 982.00 (555.00-1480.75) 175-1960
Models ObliqueRSF 0.780+0.107 0.806 (0.717-0.849) 0.416-0.936 0.184+0.051 0.168 (0.156-0.209) 0.101-0.349 1137.10+581.78 1238.00 (600.25-1631.50) 22-1948
Penalized 0.829+0.058 0.832 (0.798-0.862) 0.692-0.950 0.142+0.048 0.131 (0.110-0.170) 0.057-0.295 776.67+551.31 691.50 (284.75-1274.25) 5-1946
Ranger 0.854+0.073 0.870 (0.822-0.899) 0.597-0.938 0.160+0.030 0.155 (0.138-0.177) 0.119-0.271 815.33+£575.74 798.00 (284.25-1278.00) 14-1988
Rfsrc 0.857+0.052 0.870 (0.831-0.884) 0.691-0.958 0.163+0.016 0.164 (0.152-0.174) 0.131-0.198 1050.30+493.23 1043.00 (614.00-1344.75) 97-1959
Ridge 0.860+0.042 0.871 (0.833-0.888) 0.766-0.924 0.218+0.083 0.198 (0.179-0.220) 0.122-0.511 807.27+£515.48 683.50 (394.00-1265.00) 84-1728
Rpart 0.758+0.089 0.783 (0.691-0.821) 0.593-0.896 0.241+0.078 0.225 (0.169-0.307) 0.138-0.418 600.77+427.46 489.50 (260.25-928.25) 51-1638
Svm 0.857+0.046 0.853 (0.818-0.893) 0.776-0.930 0.339+0.069 0.339 (0.280-0.374) 0.239-0.532 1116.874+493.32 1124.00 (682.75-1539.00) 250-1935
Xgboost (dart) 0.810+0.082 0.825 (0.783-0.865) 0.611-0.958 0.183+0.074 0.168 (0.132-0.221) 0.065-0.374 817.97+498.17 821.50 (382.25-1195.25) 43-1869
Xgboost (gblinear) 0.842+0.048 0.852 (0.816-0.874) 0.724-0.914 0.194+0.050 0.195 (0.161-0.228) 0.108-0.292 993.07+£599.29 1046.00 (362.75-1395.75) 33-1939
Xgboost (gbtree) 0.806:£0.075 0.809 (0.770-0.864) 0.601-0.934 0.182+0.056 0.175 (0.131-0.220) 0.090-0.334 835.63+552.05 844.00 (413.50-1155.25) 39-1994
Blackboost 0.841+0.062 0.857 (0.825-0.878) 0.633-0.925 0.333+0.089 0.364 (0.214-0.405) 0.180-0.468
Cforest 0.854::0.062 0.861 (0.824-0.899) 0.691-0.942 0.142+0.033 0.134 (0.118-0.170) 0.090-0.211
Coxboost 0.800+0.067 0.808 (0.752-0.851) 0.632-0.914 0.167+0.073 0.145 (0.118-0.212) 0.043-0.328
Ctree 0.739+0.086 0.746 (0.674-0.819) 0.576-0.868 0.269+0.101 0.244 (0.200-0.322) 0.117-0.561
Elasticnet 0.831+0.060 0.852 (0.793-0.877) 0.681-0.933 0.452+0.159 0.498 (0.345-0.568) 0.133-0.659
Gbm 0.824+0.049 0.831 (0.781-0.866) 0.723-0.901 0.368+0.102 0.375 (0.314-0.438) 0.141-0.550
Glmboost 0.809+0.062 0.822 (0.765-0.860) 0.681-0.894 0.340+0.089 0.364 (0.322-0.396) 0.169-0.484
Lasso 0.813+0.065 0.833 (0.761-0.867) 0.667-0.898 0.479+0.150 0.513 (0.461-0.573) 0.091-0.656
Models ObliqueRSF 0.802+0.066 0.817 (0.758-0.844) 0.644-0.934 0.157+0.063 0.134 (0.122-0.203 0.059-0.320
Boruta Penalized 0.8450.062 0.867 (0.8100.888) | 0.681.0.924 0.131£0.032 0.127 (0.105—0.162; 0.074-0.195 54.07+7.62 51.50(49.00-58.50) 3813
Ranger 0.844+0.067 0.864 (0.822-0.883) 0.649-0.967 0.140+0.031 0.133 (0.113-0.161) 0.099-0.204
Rfsrc 0.842+0.067 0.852 (0.809-0.883) 0.628-0.950 0.147+0.035 0.141 (0.117-0.176) 0.095-0.253
Ridge 0.856+0.057 0.874 (0.821-0.893) 0.681-0.924 0.281+0.124 0.214 (0.202-0.328) 0.182-0.603
Rpart 0.747+0.069 0.758 (0.705-0.802) 0.564-0.838 0.239+0.050 0.234 (0.193-0.277) 0.164-0.346
Svm 0.555+0.245 0.577 (0.314-0.767) 0.174-0.908 0.407+0.149 0.389 (0.286-0.536) 0.110-0.648
Xgboost (dart) 0.800+0.066 0.809 (0.751-0.847) 0.665-0.953 0.194+0.061 0.190 (0.147-0.241) 0.091-0.318
Xgboost (gblinear) 0.852+0.047 0.865 (0.817-0.886) 0.738-0.933 0.164+0.037 0.163 (0.135-0.186) 0.074-0.240
Xghboost (gbtree) 0.800+0.073 0.802 (0.756-0.856) 0.563-0.938 0.199+0.062 0.198 (0.160-0.250) 0.087-0.330
voomStackPriol 0.771+0.082 0.779 (0.705-0.842) 0.598-0.904 0.170+0.071 0.161 (0.122-0.186) 0.074-0.382
voomStackPrio2 0.737+0.075 0.731 (0.688-0.801) 0.551-0.867 0.162+0.028 0.165 (0.140-0.179) 0.103-0.237
voomsStackIPF1 0.855+0.054 0.866 (0.823-0.888) 0.702-0.925 0.134+0.027 0.132 (0.113-0.155) 0.087-0.190
voomsStackIPF2 0.776+0.070 0.783 (0.727-0.830) 0.636-0.891 0.139+0.029 0.139 (0.118-0.158) 0.070-0.200
voomStackIPF3 0.775+0.081 0.789 (0.711-0.837) 0.617-0.904 0.142+0.031 0.142 (0.118-0.163) 0.072-0.214
MLSeqSurv | voomStackIPF4 0.854+0.053 0.866 (0.821-0.888) 0.702-0.925 0.135+0.028 0.132 (0.113-0.157) 0.087-0.190 52.50+7.83 52.50 (46.75-58.25) 36-68
voomsStackIPF5 0.776+0.070 0.783 (0.727-0.830) 0.636-0.891 0.139+0.029 0.139 (0.118-0.158) 0.070-0.200
voomsStackIPF6 0.774+0.081 0.789 (0.711-0.837) 0.617-0.904 0.142+0.031 0.142 (0.118-0.163) 0.072-0.214
voomsStackIPF7 0.854+0.053 0.863 (0.823-0.888) 0.702-0.925 0.134+0.026 0.132 (0.113-0.155) 0.087-0.190
voomStackIPF8 0.776+0.070 0.783 (0.727-0.830) 0.636-0.891 0.139+0.029 0.139 (0.118-0.158) 0.070-0.200
voomsStackIPF9 0.775+0.081 0.789 (0.711-0.837) 0.617-0.904 0.142+0.031 0.142 (0.118-0.163) 0.072-0.214
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(0.192+0.016), voomStackIPF7 (0.192+0.016), voomStackPrio2 (0.195+0.017), and
voomStackIPF5 (0.195+0.020). The voomStackPriol algorithm (0.224+0.053)
displayed the highest mean integrated Brier score. Within the category of methods
applied to internal feature selection, the penalized algorithm (0.200+0.023)
demonstrated the lowest mean integrated Brier score, whereas gbm (0.390+0.108),
svm (0.371+0.074), and blackboost (0.366+0.072) algorithms displayed the highest
mean integrated Brier scores. In the group of methods from the literature employing
Boruta feature selection, the ridge (ridge_B) (0.212+0.008), penalized (penalized_B)
(0.214+0.024) and ranger (ranger_B) (0.214+0.016) algorithms showcased the lowest
mean integrated Brier scores, while svm (svm_B) (0.456+0.105), gbm (gbm_B)
(0.411+40.120) and blackboost (blackboost_B) (0.365+0.071) algorithms presented the
highest mean integrated Brier scores.

Among the voomStackLasso algorithms, the mean number of selected features
for CESC data was the lowest (11.70+4.72). These were closely followed by the
methods in the literature that utilized Boruta feature selection (12.63+4.72). In terms
of internal feature selection methods, the algorithm with the lowest mean number of
features was elasticnet (737.30+453.70), while the algorithm with the highest mean
number of features was xgboost (with booster= “gblinear””) (1335.53+491.05).

The concordance index, integrated Brier score, and the number of selected
features for Esophageal Carcinoma (ESCA) data are depicted in Figure 4.3, with
related summary statistics presented in Table 4.3. After examining both the graph and
the table for ESCA data, it was observed that the ranger algorithm, when applied to
internal feature selection, achieved the highest mean concordance index at 0.580. The
second-highest value was recorded by the voomStackIPF7 algorithm, with an average
of 0.560. Within the category of methods applied to internal feature selection, the
highest mean concordance indices were observed for ranger (0.580+0.060) and svm
(0.559+0.057). Conversely, the lowest mean concordance index values were attributed
to penalized (0.478+0.064) and blackboost (0.493+0.075) algorithms. In the group of
methods from the literature employing Boruta feature selection, the rpart (rpart_B)
(0.519+0.076) and obliqueRSF (obliqueRSF_B) (0.517+0.078) algorithms
demonstrated the highest mean concordance index values, while the xgboost (with
booster= “gblinear”) (xgboost gblinear B) (0.476+0.053) and svm (svm_B)
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Figure 4.2. The concordance index, integrated Brier score, and the number of selected

features for CESC.



Table 4.2. The summary statistics of concordance index, integrated Brier score and the number of features selected for CESC.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.636+0.050 0.647 (0.599-0.672) 0.524-0.732 0.366+0.072 0.381 (0.340-0.411) 0.204-0.494 914.17+530.80 832.50 (472.25-1420.75) 71-1863
Cforest 0.662+0.054 0.679 (0.623-0.700) 0.535-0.755 0.207+0.019 0.207 (0.197-0.217) 0.164-0.261 935.27+£565.19 963.00 (345.50-1410.75) 108-1929
Coxboost 0.639+0.054 0.651 (0.595-0.684) 0.532-0.738 0.271£0.054 0.254 (0.232-0.316) 0.193-0.417 1038.60+547.91 1128.00 (688.75-1481.75) 88-1858
Ctree 0.557+0.053 0.559 (0.522-0.584) 0.424-0.696 0.319+0.087 0.323 (0.246-0.386) 0.172-0.463 1053.77+548.88 1055.00 (553.00-1528.75) 152-1959
Elasticnet 0.651+0.054 0.665 (0.621-0.687) 0.540-0.749 0.304+0.090 0.306 (0.218-0.374) 0.188-0.528 737.30+453.70 603.00 (384.25-1018.75) 105-1896
Gbm 0.623+0.066 0.624 (0.589-0.665) 0.492-0.743 0.390+0.108 0.370 (0.297-0.499) 0.215-0.592 1066.67+609.77 984.00 (566.50-1635.25) 118-1950
Glmboost 0.655+0.067 0.657 (0.608-0.706) 0.485-0.768 0.348+0.077 0.376 (0.334-0.401) 0.200-0.443 917.50+£599.38 831.00 (428.50-1531.25) 18-1756
Lasso 0.645+0.061 0.643 (0.609-0.697) 0.494-0.743 0.306+0.102 0.287 (0.213-0.390) 0.147-0.567 1128.70+520.11 1060.50 (786.00-1583.25) 106-1969
Models ObliqueRSF 0.597+0.060 0.589 (0.569-0.627) 0.417-0.728 0.24140.042 0.234 (0.207-0.266) 0.179-0.332 948.03+£533.00 841.50 (525.50-1523.00) 24-1812
Penalized 0.667+0.056 0.675 (0.629-0.710) 0.538-0.759 0.200+0.023 0.199 (0.181-0.211) 0.164-0.261 883.80+581.86 797.00 (470.25-1487.50) 32-1871
Ranger 0.659+0.056 0.670 (0.627-0.707) 0.538-0.781 0.209+0.009 0.208 (0.204-0.215) 0.186-0.230 768.13+£520.49 570.50 (381.25-1094.00) 141-1918
Rfsrc 0.642+0.056 0.643 (0.606-0.688) 0.496-0.741 0.206+0.009 0.206 (0.199-0.211) 0.183-0.224 758.63+£624.16 624.00 (188.50-1322.25) 8-1957
Ridge 0.686+0.052 0.700 (0.655-0.725) 0.542-0.780 0.241+0.049 0.220 (0.202-0.281) 0.186-0.379 869.97+415.53 851.00 (538.75-1224.25) 203-1691
Rpart 0.573+0.073 0.581 (0.517-0.620) 0.399-0.696 0.308+0.057 0.302 (0.278-0.355) 0.193-0.424 845.83+584.01 683.00 (327.00-1402.75) 32-1922
Svm 0.658+0.058 0.652 (0.618-0.706) 0.553-0.781 0.371+0.074 0.374 (0.318-0.410) 0.224-0.556 1123.77+540.47 1091.00 (655.50-1602.75) 19-1972
Xgboost (dart) 0.607+0.075 0.615 (0.544-0.665) 0.486-0.741 0.275+0.054 0.280 (0.238-0.307) 0.185-0.401 955.90+467.37 877.50 (594.00-1304.75) 156-1984
Xgboost (gblinear) 0.630+0.081 0.646 (0.591-0.693) 0.500-0.766 0.234+0.022 0.230 (0.219-0.249) 0.189-0.294 1335.53+491.05 1376.50 (837.50-1754.50) 318-1997
Xgboost (gbtree) 0.607+0.059 0.596 (0.577-0.657) 0.485-0.723 0.28540.070 0.264 (0.235-0.341) 0.184-0.447 978.17+566.64 1027.00 (437.00-1475.75) 82-1926
Blackboost 0.592+0.063 0.593 (0.569-0.631) 0.478-0.730 0.365+0.071 0.379 (0.340-0.405) 0.203-0.494
Cforest 0.614+0.080 0.610 (0.571-0.658) 0.359-0.767 0.218+0.019 0.218 (0.209-0.230) 0.182-0274
Coxboost 0.629+0.069 0.638 (0.605-0.670) 0.464-0.753 0.227+0.038 0.219 (0.200-0.248) 0.173-0.309
Ctree 0.547+0.078 0.540 (0.493-0.600) 0.394-0.684 0.34140.056 0.334 (0.311-0.394) 0.233-0.428
Elasticnet 0.617+0.082 0.633 (0.544-0.686) 0.466-0.744 0.309+0.101 0.292 (0.216-0.395) 0.168-0.530
Gbm 0.621+0.076 0.625 (0.577-0.699) 0.424-0.757 0.4110.120 0.420 (0.301-0.518) 0.215-0.596
Glmboost 0.623+0.093 0.644 (0.557-0.694) 0.375-0.769 0.350+0.086 0.379 (0.303-0.411) 0.200-0.494
Lasso 0.623+0.076 0.642 (0.561-0.679) 0.480-0.749 0.324+0.109 0.318 (0.222-0.384) 0.175-0.545
Models ObliqueRSF 0.579+0.075 0.592 (0.541-0.620) 0.399-0.740 0.268+0.061 0.253 (0.226-0.310 0.180-0.416
Boruta Penalized 0.62120.067 0.627 (05650.669) | 0.481.0.756 0.214£0.024 0.210 50.198—0.229; 0.176-0.283 12.63£4.72 11.00 (9.00-16.00) 523
Ranger 0.643+0.066 0.637 (0.600-0.699) 0.460-0.760 0.214+0.016 0.214 (0.207-0.221) 0.186-0.250
Rfsrc 0.615+0.070 0.621 (0.571-0.672) 0.474-0.750 0.221+0.026 0.218 (0.202-0.236) 0.184-0.294
Ridge 0.632+0.062 0.632 (0.594-0.660) 0.507-0.769 0.21240.008 0.210 (0.206-0.217) 0.203-0.237
Rpart 0.546+0.082 0.557 (0.492-0.614) 0.378-0.741 0.317+0.060 0.315 (0.277-0.336) 0.200-0.471
Svm 0.563+0.078 0.560 (0.514-0.622) 0.404-0.683 0.456+0.105 0.424 (0.356-0.543) 0.335-0.638
Xgboost (dart) 0.599+0.078 0.599 (0.531-0.648) 0.465-0.780 0.263+0.039 0.262 (0.235-0.287) 0.188-0.326
Xgboost (gblinear) 0.558+0.069 0.543 (0.500-0.608) 0.386-0.691 0.244+0.019 0.241 (0.230-0.254) 0.214-0.294
Xghboost (gbtree) 0.601+0.077 0.599 (0.533-0.670) 0.445-0.756 0.254+0.050 0.265 (0.202-0.292) 0.187-0.338
voomStackPriol 0.645+0.051 0.634 (0.609-0.694) 0.551-0.741 0.224+0.053 0.211 (0.193-0.242) 0.148-0.431
voomStackPrio2 0.628+0.055 0.627 (0.589-0.675) 0.511-0.748 0.195+0.017 0.195 (0.183-0.206) 0.162-0.232
voomsStackIPF1 0.660+0.047 0.668 (0.619-0.685) 0.566-0.753 0.192+0.016 0.192 (0.184-0.204) 0.145-0.218
voomsStackIPF2 0.639+0.050 0.633 (0.603-0.678) 0.513-0.742 0.197+0.022 0.196 (0.181-0.213) 0.144-0.245
voomStackIPF3 0.638+0.050 0.633 (0.602-0.678) 0.513-0.741 0.198+0.022 0.197 (0.183-0.212) 0.145-0.247
MLSeqSurv | voomStackIPF4 0.658+0.049 0.663 (0.616-0.685) 0.558-0.759 0.191+0.016 0.190 (0.183-0.204) 0.145-0.217 11.70+4.72 12.00 (8.00-14.00) 4-26
voomsStackIPF5 0.640+0.049 0.633 (0.603-0.677) 0.513-0.740 0.195+0.020 0.193 (0.181-0.209) 0.144-0.229
voomsStackIPF6 0.639+0.049 0.632 (0.602-0.677) 0.513-0.744 0.196+0.020 0.195 (0.181-0.210) 0.145-0.231
voomsStackIPF7 0.659+0.047 0.656 (0.619-0.687) 0.568-0.754 0.192+0.016 0.193 (0.184-0.204) 0.145-0.218
voomStackIPF8 0.638+0.050 0.633 (0.603-0.678) 0.513-0.742 0.198+0.023 0.196 (0.181-0.214) 0.144-0.256
voomsStackIPF9 0.637+0.050 0.633 (0.602-0.678) 0.513-0.742 0.199+0.023 0.197 (0.183-0.213) 0.145-0.257
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(0.481+0.058) algorithms exhibited the lowest mean concordance index values.
Among the voomStackLasso methods, the voomStackIPF7 (0.560+0.063) and
voomStackIPF1 (0.558+0.064) algorithms showed the highest mean concordance
index values, while the voomStackPrio2 algorithm (0.530+0.122) displayed the lowest
mean concordance index.

It was observed that the cforest algorithm, when applied to internal feature
selection, achieved the lowest mean integrated Brier score at 0.182 for ESCA data.
Following this, the penalized (penalized_B) and ridge (ridge_B) algorithms, both with
Boruta feature selection applied, yielded an integrated Brier score of 0.183. Within the
category of methods applied to internal feature selection, the cforest (0.182+0.025)
and penalized (0.193+0.025) algorithms demonstrated the lowest mean integrated
Brier score, whereas svm (0.515+0.085), glmboost (0.411+0.192), and blackboost
(0.377+0.201) algorithms displayed the highest mean integrated Brier score. In the
group of methods from the literature employing Boruta feature selection, penalized
(penalized_B) (0.183+0.026) and ridge (ridge_B) (0.183+0.028) algorithms
showcased the lowest mean integrated Brier score, while svm (svm_B) (0.515+0.068),
glmboost (glmboost_B) (0.448+0.172), ctree (ctree_B) (0.418+0.077) and blackboost
(blackboost_B) (0.416+0.182) algorithms presented the highest mean integrated Brier
score. It was noted that among the voomStackLasso algorithms, the voomStackPrio2
and voomStacklIPF4 exhibited the lowest mean integrated Brier score for ESCA data,
at 0.205. This was followed by voomStackIPF1 (0.206+0.012) and voomStackIPF7
(0.206+0.013). The voomStackPriol algorithm (0.213+0.033) displayed the highest
mean integrated Brier score.

Among the methods in the literature that applied Boruta feature selection, the
mean number of selected features for ESCA data was the lowest (5.77+2.67). These
were closely followed by the voomStackLasso algorithms (6.10+2.68). In terms of
internal feature selection methods, the algorithm with the lowest mean number of
features was obliqueRSF (774.70+585.68), while the algorithm with the highest mean
number of features was rfsrc (1196.97+501.43).

The concordance index, integrated Brier score, and the number of selected
features for Glioblastoma Multiforme (GBM) data are depicted in Figure 4.4, with
related summary statistics presented in Table 4.4. After examining both the graph and

the table for GBM data, it was observed that the ranger algorithm, when applied to
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Figure 4.3. The concordance index, integrated Brier score, and the number of selected



Table 4.3. The summary statistics of concordance index, integrated Brier score and the number of features selected for ESCA.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.493+0.075 0.503 (0.456-0.535) 0.317-0.625 0.377+0.201 0.408 (0.186-0.539) 0.127-0.702 897.37+528.96 809.00 (457.25-1419.00) 73-1903
Cforest 0.541+0.074 0.530 (0.508-0.601) 0.374-0.685 0.182+0.025 0.183 (0.173-0.198) 0.126-0.229 1003.17£595.24 963.00 (560.25-1414.00) 38-1995
Coxboost 0.52440.062 0.534 (0.477-0.573) 0.392-0.622 0.240+0.047 0.235 (0.201-0.277) 0.163-0.323 910.03+563.47 734.00 (455.00-1351.50) 135-1998
Ctree 0.500+0.028 0.500 (0.499-0.501) 0.424-0.569 0.211+0.080 0.187 (0.172-0.209) 0.127-0.455 1015.27+£570.17 1129.50 (447.75-1501.00) 32-1864
Elasticnet 0.510+0.068 0.508 (0.482-0.560) 0.325-0.636 0.338+0.113 0.322 (0.233-0.405) 0.172-0.649 962.00+£576.62 871.50 (503.25-1588.50) 45-1965
Gbm 0.540+0.060 0.547 (0.503-0.580) 0.412-0.687 0.356+0.085 0.342 (0.281-0.423) 0.218-0.520 884.97+534.81 808.50 (569.50-1392.50) 109-1933
Glmboost 0.513+0.066 0.510 (0.472-0.561) 0.374-0.663 0.411+0.192 0.480 (0.201-0.548) 0.127-0.702 827.17+572.71 732.50 (352.00-1264.75) 15-1958
Lasso 0.507+0.068 0.488 (0.454-0.550) 0.400-0.696 0.334+0.102 0.304 (0.263-0.445) 0.170-0.529 842.03+£554.73 790.50 (322.00-1274.50) 68-1981
Models ObliqueRSF 0.524+0.064 0.513 (0.480-0.577) 0.425-0.677 0.236+0.054 0.224 (0.204-0.241) 0.150-0.379 774.70+£585.68 700.50 (219.75-1267.25) 13-1931
Penalized 0.478+0.064 0.473 (0.447-0.529) 0.311-0.563 0.193+0.025 0.194 (0.177-0.212) 0.141-0.240 902.90+541.23 849.50 (454.75-1309.00) 59-1904
Ranger 0.580+0.060 0.573 (0.538-0.617) 0.460-0.765 0.198+0.013 0.197 (0.188-0.205) 0.172-0.231 862.80+662.03 697.00 (237.50-1567.00) 47-1934
Rfsrc 0.546+0.068 0.549 (0.476-0.591) 0.430-0.731 0.203+0.032 0.196 (0.180-0.215) 0.161-0.280 1196.97+501.43 1127.00 (792.00-1629.75) 181-1951
Ridge 0.526+0.069 0.519 (0.477-0.569) 0.351-0.661 0.204+0.054 0.201 (0.168-0.225) 0.128-0.382 799.27+456.03 836.50 (412.75-1054.75) 119-1803
Rpart 0.516+0.068 0.509 (0.466-0.559) 0.404-0.708 0.249+0.050 0.248 (0.208-0.290) 0.144-0.340 983.80+559.49 1058.50 (469.00-1457.00) 15-1922
Svm 0.559+0.057 0.549 (0.521-0.613) 0.430-0.661 0.51540.085 0.495 (0.450-0.578) 0.337-0.679 815.43+605.25 754.00 (208.25-1316.25) 12-1948
Xgboost (dart) 0.520+0.063 0.513 (0.478-0.557) 0.375-0.649 0.272+0.052 0.270 (0.237-0.311) 0.165-0.384 924.87+560.28 972.00 (426.50-1422.00) 28-1908
Xgboost (gblinear) 0.507+0.063 0.500 (0.495-0.540) 0.318-0.622 0.231+0.029 0.236 (0.200-0.255) 0.179-0.273 1190.40+597.32 1323.00 (682.50-1688.50) 23-1984
Xgboost (gbtree) 0.529+0.060 0.532 (0.481-0.569) 0.413-0.672 0.276+0.058 0.278 (0.237-0.314) 0.155-0.386 913.70+617.37 746.50 (372.50-1498.25) 47-1969
Blackboost 0.495+0.032 0.500 (0.487-0.505) 0.417-0.560 0.416+0.182 0.478 (0.195-0.541) 0.156-0.702
Cforest 0.498+0.057 0.498 (0.461-0.527) 0.383-0.659 0.243+0.066 0.231 (0.198-0.268) 0.150-0.434
Coxboost 0.503+0.055 0.498 (0.463-0.531) 0.408-0.625 0.198+0.034 0.196 (0.176-0.214) 0.116-0.295
Ctree 0.500+0.066 0.492 (0.466-0.540) 0.292-0.629 0.418+0.077 0.425 (0.359-0.469) 0.283-0.575
Elasticnet 0.501+0.060 0.492 (0.452-0.539) 0.395-0.628 0.323£0.115 0.306 (0.211-0.424) 0.161-0.530
Gbm 0.502+0.053 0.503 (0.453-0.543) 0.423-0.630 0.324+0.091 0.296 (0.266-0.353) 0.227-0.675
Glmboost 0.493+0.065 0.496 (0.438-0.540) 0.379-0.630 0.448+0.172 0.494 (0.361-0.548) 0.128-0.675
Lasso 0.500+0.056 0.496 (0.458-0.545) 0.398-0.605 0.327+0.112 0.306 (0.263-0.427) 0.165-0.529
Models ObliqueRSF 0.517+0.078 0.537 (0.460-0.566) 0.344-0.670 0.240+0.046 0.233 (0.203-0.270 0.180-0.343
Boruta Penalized 0.48920.055 0.495 (0438.0.533) | 0.38L.0.627 0.183£0.026 0.179 (0.168—0.201; 0.132-0.247 5.7742.67 500 (4.00-8.00) 1
Ranger 0.492+0.062 0.484 (0.443-0.542) 0.403-0.628 0.214+0.019 0.213 (0.200-0.226) 0.177-0.273
Rfsrc 0.511+0.056 0.517 (0.459-0.550) 0.424-0.634 0.221+0.028 0.223 (0.201-0.236) 0.172-0.299
Ridge 0.497+0.057 0.495 (0.458-0.528) 0.396-0.624 0.183+0.028 0.182 (0.166-0.201) 0.128-0.276
Rpart 0.519+0.076 0.501 (0.464-0.599) 0.392-0.653 0.250+0.044 0.243 (0.228-0.277) 0.164-0.329
Svm 0.481+0.058 0.467 (0.431-0.532) 0.394-0.634 0.515+0.068 0.496 (0.464-0.547) 0.412-0.703
Xgboost (dart) 0.511+0.075 0.515 (0.457-0.569) 0.365-0.671 0.262+0.051 0.260 (0.221-0.306) 0.155-0.346
Xgboost (gblinear) 0.476+0.053 0.500 (0.434-0.501) 0.391-0.595 0.227+0.031 0.233 (0.196-0.249) 0.175-0.273
Xghboost (gbtree) 0.503+0.067 0.484 (0.453-0.558) 0.373-0.668 0.283+0.050 0.279 (0.240-0.319) 0.196-0.384
voomStackPriol 0.550+0.065 0.544 (0.502-0.587) 0.408-0.717 0.213+0.033 0.205 (0.197-0.218) 0.173-0.362
voomStackPrio2 0.530+0.122 0.548 (0.490-0.601) 0.000-0.717 0.205+0.018 0.201 (0.196-0.210) 0.187-0.283
voomsStackIPF1 0.558+0.064 0.560 (0.509-0.614) 0.428-0.715 0.206+0.012 0.203 (0.200-0.211) 0.189-0.244
voomsStackIPF2 0.552+0.062 0.555 (0.507-0.590) 0.434-0.718 0.210+0.016 0.208 (0.198-0.217) 0.187-0.256
voomStackIPF3 0.551+0.062 0.553 (0.506-0.589) 0.434-0.718 0.211+£0.016 0.209 (0.199-0.218) 0.187-0.257
MLSeqSurv | voomStackIPF4 0.553+0.065 0.553 (0.505-0.613) 0.424-0.711 0.205£0.011 0.203 (0.200-0.208) 0.187-0.240 6.10+2.68 5.00 (4.99-8.00) 2-13
voomsStackIPF5 0.552+0.063 0.551 (0.507-0.597) 0.434-0.718 0.209+0.015 0.207 (0.198-0.217) 0.189-0.253
voomsStackIPF6 0.551+0.063 0.551 (0.507-0.591) 0.434-0.718 0.210+0.016 0.208 (0.199-0.217) 0.189-0.254
voomsStackIPF7 0.560+0.063 0.563 (0.513-0.617) 0.428-0.717 0.206+0.013 0.204 (0.199-0.212) 0.189-0.246
voomStackIPF8 0.551+0.064 0.556 (0.499-0.591) 0.434-0.718 0.211+0.016 0.210 (0.199-0.218) 0.186-0.258
voomsStackIPF9 0.551+0.063 0.551 (0.501-0.588) 0.434-0.718 0.212+0.017 0.210 (0.199-0.219) 0.186-0.259




112

internal feature selection, achieved the highest mean concordance index at 0.600.
Within the category of methods applied to internal feature selection, the highest mean
concordance indices were observed for ranger (0.600+0.045), cforest (0.593+0.052),
gbm (0.590+0.060), penalized (0.585+0.056), elasticnet (0.583+0.060), lasso
(0.582+0.052), coxboost (0.581+0.064), and rfsrc (0.581+0.050). Conversely, the
lowest mean concordance index was attributed to the ctree algorithm (0.523+0.045).
In the group of methods from the literature employing Boruta feature selection, the
lasso (lasso_B) (0.577+0.040) and xgboost (with booster= “gblinear”)
(xgboost_gblinear_B) (0.575+0.042) algorithms demonstrated the highest mean
concordance index, while the obliqueRSF (obliqueRSF_B) (0.528+0.068) and xgboost
(with booster= “dart”) (xgboost dart B) (0.530+0.047) algorithms exhibited the
lowest mean concordance index. Among the voomStackLasso methods, the
voomStackIPF1 (0.579+0.034) and voomStackPriol (0.576+0.042) algorithms
showed the highest mean concordance index values, while the voomStackIPF7
algorithm (0.541+0.151) displayed the lowest mean concordance index.

It was observed that the cforest algorithm, when applied to internal feature
selection, achieved the lowest mean integrated Brier score at 0.113 for GBM data.
Within the category of methods applied to internal feature selection, the cforest
(0.113+0.020) and penalized (0.115+0.022) algorithms demonstrated the lowest mean
integrated Brier score, whereas svm (0.628+0.100), glmboost (0.501+0.277), and ctree
(0.413+0.118) algorithms displayed the highest mean integrated Brier score. In the
group of methods from the literature employing Boruta feature selection, the penalized
(penalized_B) algorithm (0.117+0.020) showcased the lowest mean integrated Brier
score, while the svm algorithm (0.632+0.133) presented the highest mean integrated
Brier score. It was noted that among the voomStackLasso algorithms, the
voomStackPrio5 and voomStackIPF6 exhibited the lowest mean integrated Brier score
for GBM data, at 0.149. This was followed by voomStackIPF1, voomStackIPF2,
voomStackIPF3, voomStackIPF4, and voomStackIPF7, all with a score of 0.150. The
voomStackPriol algorithm (0.161+0.031) displayed the highest mean integrated Brier
score.

Among the methods in the literature that applied Boruta feature selection, the
mean number of selected features for GBM data was the lowest (7.87+3.16). These

were closely followed by the voomStackLasso algorithms (7.90+4.07). In terms of
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internal feature selection methods, the algorithm with the lowest mean number of
features was ranger (647.80+478.69), while the algorithm with the highest mean
number of features was xgboost (with booster= “gblinear”) (1330.83+561.83).

The concordance index, integrated Brier score, and the number of selected
features for Kidney Renal Clear Cell Carcinoma (KIRC) data are depicted in Figure
4.5, with related summary statistics presented in Table 4.5. Upon reviewing both the
graph and the table for KIRC data, it was observed that the cforest and ranger
algorithms, when applied to internal feature selection, achieved the highest mean
concordance index at 0.717. Following this, the rfsrc algorithm, with internal feature
selection applied, yielded a mean concordance index of 0.708. Within the category of
methods applied to internal feature selection, the highest mean concordance indices
were observed for cforest (0.717+0.036), ranger (0.717+0.034), rfsrc (0.708+0.034),
ridge (0.707+0.034), and blackboost (0.705+0.033) algorithms. Conversely, the lowest
mean concordance index was attributed to the ctree algorithm (0.624+0.031). In the
group of methods from the literature employing Boruta feature selection, the cforest
(cforest_B) and ranger (ranger_B) algorithms demonstrated the highest mean
concordance index at 0.693, while the svm algorithm (0.601+0.076) exhibited the
lowest mean concordance index. Among the voomStackLasso methods, the
voomStackIPF1, voomStackIPF4, and voomStackIPF7 algorithms showed the highest
mean concordance index at 0.684, while the voomStackPrio2 algorithm (0.663+0.043)
displayed the lowest mean concordance index.

It was observed that the cforest algorithm, when applied to internal feature
selection, achieved the lowest mean integrated Brier score at 0.166 for KIRC data.
Within the category of methods applied to internal feature selection, the cforest
(0.166+0.009), penalized (0.171+0.012), ranger (0.173+0.007), and rfsrc
(0.173+0.008) algorithms demonstrated the lowest mean integrated Brier score,
whereas the svm algorithm (0.334+0.021) displayed the highest mean integrated Brier
score. In the group of methods from the literature employing Boruta feature selection,
penalized (0.168+0.015), ranger (0.173+0.011), coxboost (coxboost B)
(0.174+0.017), rfsrc (0.175+0.015) and cforest (cforest_B) (0.177+0.012) algorithms
showcased the lowest mean integrated Brier score, while elasticnet (elasticnet_B)
(0.413+0.162), svm (svm_B) (0.409+0.075), and lasso (lasso_B) (0.403+0.154)

algorithms presented the highest mean integrated Brier score. It was noted that among
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the voomStackLasso algorithms, the voomStacklPF2, voomStackIPF5, and
voomStackIPF8 exhibited the lowest mean integrated Brier score for KIRC data, at
0.178. This was followed by voomStackIPF3, voomStackIPF6, voomStackIPF9, at
0.179. The voomStackPriol algorithm (0.193+0.029) displayed the highest mean
integrated Brier score.

Among the methods in the voomStackLasso algorithms, the mean number of
selected features for KIRC data was the lowest (30.03+10.82). These were closely
followed by the methods in the literature that utilized Boruta feature selection
(30.47+10.31). In terms of internal feature selection methods, the algorithm exhibiting
the lowest mean number of features was rpart (763.03+503.42), whereas the algorithm
demonstrating the highest mean number of features was xgboost (with booster=
“gblinear”) (1653.70+291.65).

The concordance index, integrated Brier score, and the number of selected
features for Kidney Renal Papillary Cell Carcinoma (KIRP) data are depicted in Figure
4.6, with related summary statistics presented in Table 4.6. After examining both the
graph and the table for KIRP data, it was observed that the rfsrc (rfsrc_B) algorithm,
when applied to Boruta feature selection, achieved the highest mean concordance
index at 0.818. This is followed by the blackboost (blackboost _B) algorithm, with
Boruta feature selection applied, yielding a mean concordance index of 0.816. Among
the methods employed for internal feature selection, the highest mean concordance
indices were observed for lasso (0.805+0.075), elasticnet (0.804+0.068), and ranger
(0.804+0.069). Conversely, the lowest mean concordance indices were attributed to
ctree (0.719+0.103) and rpart (0.724+0.081) algorithms. In the group of methods from
the literature employing Boruta feature selection, the rfsrc (rfsrc_B) (0.818+0.078),
blackboost (blackboost B) (0.816+0.072), and gbm (gbm_B) (0.812+0.074)
algorithms demonstrated the highest mean concordance index, while the svm (svm_B)
algorithm (0.607+0.261) exhibited the lowest mean concordance index. Among the
voomStackLasso methods, the voomStackIPF7 algorithm (0.800+0.068) showed the
highest mean concordance index, while the voomStackIPF6 algorithm (0.751+0.099)
displayed the lowest mean concordance index.

It was noted that for KIRP data, the voomStackIPF8 algorithm attained the
lowest mean integrated Brier score of 0.122. This was followed by voomStackIPF1
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Figure 4.4. The concordance index, integrated Brier score, and the number of selected

features for GBM.



Table 4.4. The summary statistics of concordance index, integrated Brier score and the number of features selected for GBM.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.561+0.047 0.552 (0.540-0.587) 0.458-0.657 0.283+0.256 0.134 (0.116-0.531) 0.081-0.780 987.83+529.60 910.50 (522.75-1400.25) 68-1990
Cforest 0.593+0.052 0.594 (0.566-0.624) 0.441-0.690 0.113+0.020 0.115 (0.099-0.128) 0.068-0.148 891.90+601.21 819.50 (377.75-1354.00) 67-1941
Coxboost 0.581+0.064 0.585 (0.531-0.625) 0.453-0.711 0.136+0.029 0.135 (0.121-0.160) 0.070-0.203 893.03+£588.57 818.00 (290.25-1423.25) 16-1996
Ctree 0.523+0.045 0.522 (0.491-0.559) 0.410-0.632 0.413+0.118 0.427 (0.362-0.499) 0.120-0.589 972.53+£605.80 795.00 (516.50-1609.75) 41-1962
Elasticnet 0.583+0.060 0.573 (0.543-0.622) 0.449-0.710 0.254+0.101 0.241 (0.206-0.299) 0.097-0.634 994.77+562.07 985.00 (446.00-1508.25) 130-2000
Gbm 0.590+0.060 0.599 (0.561-0.630) 0.447-0.680 0.272+0.091 0.252 (0.205-0.339) 0.119-0.463 1121.174545.80 1096.50 (734.00-1588.00) 40-1974
Glmboost 0.568+0.050 0.568 (0.528-0.605) 0.469-0.658 0.501+0.277 0.649 (0.126-0.746) 0.083-0.794 742.83£522.26 709.50 (238.25-1121.25) 86-1764
Lasso 0.582+0.052 0.572 (0.537-0.630) 0.495-0.682 0.259+0.135 0.235 (0.148-0.321) 0.099-0.704 987.37+£533.94 926.50 (482.50-1549.25) 116-1898
Models ObliqueRSF 0.54340.056 0.541 (0.498-0.580) 0.453-0.684 0.129+0.032 0.132 (0.102-0.149) 0.064-0.197 798.77+£543.87 861.50 (311.25-1098.25) 17-1966
Penalized 0.585+0.056 0.591 (0.547-0.622) 0.461-0.679 0.115+0.022 0.115 (0.101-0.132) 0.067-0.155 866.83+502.49 774.00 (473.25-1287.00) 64-1775
Ranger 0.600+0.045 0.598 (0.564-0.641) 0.513-0.662 0.127+0.019 0.126 (0.115-0.140) 0.073-0.162 647.80+478.69 476.50 (294.75-1021.75) 27-1722
Rfsrc 0.581+0.050 0.576 (0.550-0.608) 0.476-0.712 0.126+0.027 0.123 (0.112-0.139) 0.073-0.218 792.90+£608.56 632.00 (245.25-1351.25) 5-1927
Ridge 0.578+0.051 0.585 (0.544-0.613) 0.455-0.652 0.201+0.073 0.190 (0.142-0.243) 0.100-0.343 839.80+545.74 814.50 (384.50-1093.75) 33-1864
Rpart 0.544+0.050 0.546 (0.505-0.571) 0.439-0.670 0.165+0.036 0.169 (0.134-0.187) 0.096-0.234 869.53+474.88 804.00 (496.25-1350.50) 107-1853
Svm 0.554+0.061 0.548 (0.509-0.594) 0.461-0.681 0.628+0.100 0.657 (0.583-0.695) 0.323-0.786 937.73+£537.22 835.00 (600.50-1366.50) 45-1996
Xgboost (dart) 0.564+0.048 0.570 (0.524-0.600) 0.452-0.673 0.174+0.040 0.170 (0.151-0.207) 0.093-0.240 1025.43+598.77 901.50 (491.25-1624.25) 90-1965
Xgboost (gblinear) 0.555+0.051 0.569 (0.503-0.599) 0.449-0.625 0.153+0.032 0.157 (0.133-0.181) 0.088-0.207 1330.83+561.83 1486.00 (1047.25-1738.50) 2-1988
Xgboost (gbtree) 0.567+0.057 0.573 (0.540-0.594) 0.403-0.675 0.170+0.041 0.165 (0.135-0.193) 0.100-0.271 908.07+466.79 911.00 (528.75-1334.25) 85-1690
Blackboost 0.548+0.046 0.556 (0.524-0.576) 0.419-0.626 0.347+0.279 0.145 (0.120-0.700) 0.073-0.794
Cforest 0.571+0.043 0.569 (0.537-0.603) 0.494-0.663 0.127+0.024 0.122 (0.109-0.138) 0.094-0.214
Coxboost 0.567+0.045 0.569 (0.546-0.600) 0.443-0.657 0.127+0.024 0.126 (0.109-0.147) 0.085-0.171
Ctree 0.549+0.047 0.548 (0.515-0.587) 0.467-0.667 0.35340.094 0.349 (0.280-0.409) 0.190-0.587
Elasticnet 0.573+0.043 0.578 (0.551-0.599) 0.479-0.659 0.235+0.079 0.235 (0.178-0.289) 0.092-0.395
Gbm 0.542+0.050 0.546 (0.514-0.575) 0.434-0.644 0.252+0.129 0.215 (0.166-0.304) 0.130-0.705
Glmboost 0.565+0.041 0.565 (0.550-0.594) 0.453-0.636 0.397+0.286 0.390 (0.115-0.688) 0.082-0.780
Lasso 0.577+0.040 0.578 (0.557-0.600) 0.479-0.664 0.234+0.080 0.234 (0.178-0.292) 0.099-0.377
Models ObliqueRSF 0.528+0.068 0.525 (0.471-0.594) 0.378-0.641 0.137+0.024 0.138 (0.120-0.159 0.087-0.179
Boruta Penalized 0.57220.040 0.567 (0.5470.602) | 0.486.0.654 0.117£0.020 0.120 50.101-0.132; 0.073-0.152 7.87+3.16 700 (6.00-9.00) 316
Ranger 0.557+0.041 0.551 (0.529-0.589) 0.489-0.680 0.129+0.019 0.131 (0.115-0.144) 0.086-0.162
Rfsrc 0.546+0.044 0.543 (0.523-0.565) 0.457-0.680 0.138+0.036 0.129 (0.116-0.152) 0.083-0.242
Ridge 0.569+0.039 0.575 (0.541-0.599) 0.491-0.646 0.122+0.025 0.119 (0.108-0.134) 0.069-0.189
Rpart 0.543+0.049 0.542 (0.515-0.572) 0.436-0.648 0.165+0.039 0.159 (0.138-0.198) 0.097-0.253
Svm 0.548+0.066 0.561 (0.511-0.596) 0.398-0.639 0.632+0.133 0.679 (0.522-0.731) 0.308-0.796
Xgboost (dart) 0.530+0.047 0.525 (0.495-0.549) 0.455-0.651 0.190+0.041 0.186 (0.162-0.226) 0.119-0.270
Xgboost (gblinear) 0.575+0.042 0.573 (0.542-0.605) 0.500-0.665 0.152+0.036 0.149 (0.118-0.184) 0.105-0.213
Xgboost (gbtree) 0.535+0.047 0.539 (0.500-0.566) 0.441-0.645 0.188+0.045 0.182 (0.156-0.214) 0.105-0.272
voomStackPriol 0.576+0.042 0.586 (0.554-0.607) 0.469-0.649 0.161+0.031 0.158 (0.133-0.183) 0.106-0.236
voomStackPrio2 0.569+0.045 0.566 (0.552-0.593) 0.455-0.654 0.153+0.021 0.154 (0.136-0.166) 0.109-0.193
voomsStackIPF1 0.579+0.034 0.581 (0.553-0.605) 0.505-0.643 0.150+0.017 0.152 (0.136-0.160) 0.112-0.190
voomsStackIPF2 0.572+0.042 0.567 (0.552-0.605) 0.467-0.632 0.150+0.017 0.147 (0.140-0.163) 0.116-0.191
voomStackIPF3 0.570+0.042 0.565 (0.549-0.605) 0.467-0.642 0.150+0.017 0.148 (0.141-0.163) 0.115-0.191
MLSeqSurv | voomStackIPF4 0.557+0.110 0.575 (0.547-0.601) 0.000-0.641 0.150+0.017 0.152 (0.136-0.160) 0.112-0.190 7.90+4.07 7.00 (4.75-10.00) 2-21
voomsStackIPF5 0.57240.046 0.565 (0.549-0.613) 0.463-0.663 0.149+0.017 0.147 (0.136-0.161) 0.116-0.191
voomsStackIPF6 0.572+0.046 0.564 (0.547-0.613) 0.463-0.665 0.149+0.017 0.148 (0.136-0.161) 0.115-0.191
voomsStackIPF7 0.541+0.151 0.581 (0.544-0.602) 0.000-0.643 0.150+0.017 0.152 (0.136-0.160) 0.112-0.190
voomStackIPF8 0.571+0.041 0.567 (0.547-0.602) 0.470-0.632 0.151+0.017 0.149 (0.141-0.163) 0.116-0.191
voomsStackIPF9 0.571£0.042 0.568 (0.551-0.602) 0.470-0.642 0.151+0.017 0.150 (0.141-0.163) 0.115-0.191
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(0.125+0.018) and voomStackIPF7 (0.125+0.018). The voomStackPriol algorithm
(0.189+0.087) displayed the highest mean integrated Brier score. Within the category
of methods applied to internal feature selection, the penalized (0.140+0.022), cforest
(0.142+0.022), and ranger (0.143+0.017) algorithms demonstrated the lowest mean
integrated Brier score, whereas the elasticnet algorithm (0.606+0.162) displayed the
highest mean integrated Brier score. In the category of methods from the literature
utilizing Boruta feature selection, the penalized (penalized_B) and ranger (ranger_B)
algorithms showcased the lowest mean integrated Brier score at 0.146, while elasticnet
(elasticnet_B) (0.670+0.060) and lasso (lasso_B) (0.657+0.104) algorithms presented
the highest mean integrated Brier score.

Among the methods in the literature that applied Boruta feature selection, the
mean number of selected features for KIRP data was the lowest (34.40+6.41). These
were closely followed by the voomStackLasso algorithms (38.90+8.30). In terms of
internal feature selection methods, the algorithm with the lowest mean number of
features was rpart (771.13+591.05), while the algorithm with the highest mean number
of features was xgboost (with booster= “gblinear”) (1485.13+534.78).

The concordance index, integrated Brier score, and the number of selected
features for Acute Myeloid Leukemia (LAML) data are depicted in Figure 4.7, with
related summary statistics presented in Table 4.7. After examining both the graph and
the table for LAML data, it was observed that the coxboost and rfsrc algorithms, when
applied to internal feature selection, achieved the highest mean concordance index at
0.667. This is followed by the elasticnet (0.664+0.065), lasso (0.664+0.070), cforest
(0.662+0.063), ranger (0.662+0.055), and ridge (0.660+0.059) algorithms, where
internal feature selection was applied, resulting in a mean concordance index.
Meanwhile, the ctree algorithm (0.554+0.052) exhibited the lowest mean concordance
index. Among the voomStackLasso methods, the voomStackIPF7 algorithm
(0.640+0.052) showed the highest mean concordance index, while the voomStackIPF6
algorithm (0.592+0.086) displayed the lowest mean concordance index. In the group
of methods from the literature employing Boruta feature selection, the ranger
(ranger_B) (0.629+0.048) and rfsrc (rfsrc_B) (0.622+0.058) algorithms demonstrated
the highest mean concordance index, while the svm (svm_B) algorithm (0.527+0.085)

exhibited the lowest mean concordance index.
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Figure 4.5. The concordance index, integrated Brier score, and the number of selected

features for KIRC.



Table 4.5. The summary statistics of concordance index, integrated Brier score and the number of features selected for KIRC.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd q Mean=Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) fAin-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.705+0.033 0.708 (0.687-0.721) 0.634-0.769 0.255+0.081 0.203 (0.197-0.359) 0.193-0.413 905.80+471.27 887.50 (459.25-1327.25) 91-1604
Cforest 0.717+0.036 0.722 (0.696-0.740) 0.647-0.802 0.166+0.009 0.165 (0.159-0.171) 0.150-0.187 1086.53+587.94 1175.00 (425.50-1635.50) 125-1983
Coxboost 0.688+0.032 0.685 (0.663-0.715) 0.638-0.759 0.180+0.021 0.178 (0.166-0.193) 0.151-0.234 1047.83+£502.49 1135.00 (650.25-1411.00) 21-1879
Ctree 0.624+0.031 0.617 (0.603-0.654) 0.567-0.674 0.279+0.034 0.283 (0.261-0.301) 0.206-0.344 783.13£511.44 746.00 (315.00-1194.75) 89-1781
Elasticnet 0.697+0.034 0.688 (0.672-0.729) 0.629-0.772 0.254+0.096 0.217 (0.185-0.297) 0.163-0.531 1194.97+537.78 1165.50 (720.25-1634.00) 95-1992
Gbm 0.686+0.032 0.689 (0.660-0.711) 0.627-0.754 0.308+0.048 0.305 (0.266-0.348) 0.222-0.397 960.50+509.20 835.50 (528.00-1380.00) 139-1928
Glmboost 0.684+0.033 0.677 (0.657-0.707) 0.640-0.755 0.270+0.086 0.197 (0.189-0.364) 0.187-0.374 882.87+495.71 729.50 (570.00-1396.50) 84-1627
Lasso 0.689+0.044 0.690 (0.667-0.707) 0.577-0.783 0.288+0.104 0.271 (0.206-0.342) 0.166-0.595 984.90+615.60 1035.00 (338.25-1535.50) 2-1984
Models ObliqueRSF 0.674+0.038 0.681 (0.645-0.703) 0.608-0.761 0.191+0.024 0.189 (0.179-0.200) 0.152-0.269 1111.73+581.12 1250.50 (606.00-1611.25) 152-1996
Penalized 0.701+0.037 0.704 (0.683-0.723) 0.627-0.789 0.171+0.012 0.167 (0.161-0.178) 0.153-0.198 929.70+563.54 876.50 (426.75-1469.25) 91-1797
Ranger 0.717+0.034 0.720 (0.700-0.742) 0.637-0.804 0.173+0.007 0.172 (0.169-0.177) 0.158-0.188 863.50+557.10 814.50 (329.50-1401.50) 44-1761
Rfsrc 0.708+0.034 0.714 (0.692-0.731) 0.636-0.784 0.173+0.008 0.173 (0.165-0.178) 0.162-0.194 1000.004+625.51 929.50 (470.00-1638.50) 63-1948
Ridge 0.707+0.034 0.705 (0.688-0.726) 0.639-0.772 0.197+0.041 0.185 (0.175-0.202) 0.154-0.364 1049.704+496.30 988.50 (674.25-1498.75) 328-1896
Rpart 0.635+0.034 0.632 (0.614-0.654) 0.559-0.705 0.284+0.024 0.285 (0.269-0.299) 0.235-0.347 763.03+503.42 653.50 (362.50-1174.50) 102-1813
Svm 0.655+0.032 0.653 (0.630-0.674) 0.603-0.719 0.334+0.021 0.333 (0.315-0.351) 0.297-0.377 1367.20+484.02 1405.50 (997.25-1850.75) 468-1986
Xgboost (dart) 0.673+0.034 0.673 (0.650-0.693) 0.605-0.740 0.218+0.024 0.218 (0.203-0.232) 0.174-0.295 1131.07+608.32 1282.00 (583.75-1673.75) 167-1985
Xgboost (gblinear) 0.696+0.039 0.695 (0.661-0.722) 0.618-0.792 0.204+0.021 0.201 (0.189-0.227) 0.155-0.240 1653.704+291.65 1649.50 (1536.50-1904.50) 857-1986
Xgboost (gbtree) 0.670+0.042 0.674 (0.636-0.697) 0.589-0.763 0.216+0.025 0.211 (0.195-0.240) 0.180-0.265 1050.07+558.69 1058.50 (705.75-1524.00) 34-1907
Blackboost 0.681+0.036 0.687 (0.652-0.708) 0.608-0.751 0.297+0.085 0.352 (0.197-0.369) 0.190-0.392
Cforest 0.693+0.030 0.693 (0.669-0.712) 0.644-0.756 0.177+0.012 0.175 (0.169-0.184) 0.158-0.210
Coxboost 0.673+0.034 0.673 (0.648-0.700) 0.603-0.748 0.174+0.017 0.171 (0.160-0.186) 0.152-0.210
Ctree 0.631+0.032 0.633 (0.607-0.651) 0.572-0.722 0.288+0.022 0.292 (0.270-0.304) 0.247-0.335
Elasticnet 0.686+0.032 0.689 (0.665-0.709) 0.615-0.744 0.413+0.162 0.427 (0.237-0.567) 0.169-0.617
Gbm 0.658+0.026 0.661 (0.640-0.676) 0.606-0.721 0.27440.047 0.270 (0.233-0.322) 0.210-0.367
Glmboost 0.683+0.031 0.682 (0.660-0.701) 0.628-0.750 0.348+0.055 0.364 (0.354-0.371) 0.189-0.412
Lasso 0.685+0.030 0.690 (0.666-0.702) 0.617-0.747 0.403+0.154 0.416 (0.252-0.556) 0.164-0.626
Models ObliqueRSF 0.658+0.041 0.659 (0.619-0.689) 0.585-0.731 0.196+0.022 0.197 (0.176-0.208 0.157-0.243
Boruta Penalized 0.6890.036 0.687 (0.662.0.713) | 0.626.0.772 0.1680.015 0.167 (0.156—0.174; 0.1480.197 30471031 28.00 (24.50-36.25) 12-85
Ranger 0.693+0.031 0.699 (0.668-0.716) 0.632-0.758 0.173+0.011 0.174 (0.166-0.179) 0.153-0.195
Rfsrc 0.683+0.030 0.686 (0.651-0.705) 0.637-0.744 0.175+0.015 0.172 (0.164-0.181) 0.152-0.219
Ridge 0.690+0.035 0.685 (0.665-0.713) 0.626-0.774 0.234+0.077 0.203 (0.196-0.225) 0.188-0.534
Rpart 0.630+0.041 0.626 (0.602-0.649) 0.560-0.758 0.289+0.035 0.285 (0.274-0.306) 0.211-0.387
Svm 0.601+0.076 0.623 (0.553-0.663) 0.386-0.697 0.409+0.075 0.373 (0.361-0.467) 0.334-0.617
Xgboost (dart) 0.653+0.032 0.651 (0.632-0.676) 0.600-0.715 0.221+0.029 0.213 (0.200-0.240) 0.175-0.304
Xgboost (gblinear) 0.657+0.082 0.681 (0.632-0.707) 0.500-0.780 0.216+0.021 0.221 (0.196-0.232) 0.181-0.248
Xgboost (gbtree) 0.659+0.032 0.660 (0.648-0.675) 0.561-0.751 0.222+0.022 0.220 (0.201-0.237) 0.191-0.270
voomStackPriol 0.675+0.035 0.681 (0.654-0.702) 0.584-0.725 0.193+0.029 0.183 (0.176-0.199) 0.159-0.284
voomStackPrio2 0.663+0.043 0.669 (0.628-0.688) 0.536-0.727 0.185+0.010 0.186 (0.178-0.192) 0.160-0.206
voomStackIPF1 0.684+0.036 0.685 (0.658-0.710) 0.614-0.767 0.181+0.015 0.176 (0.170-0.198) 0.157-0.209
voomStackIPF2 0.676+0.034 0.682 (0.661-0.703) 0.591-0.730 0.178+0.011 0.176 (0.172-0.187) 0.159-0.200
voomStackIPF3 0.674+0.034 0.679 (0.662-0.703) 0.592-0.726 0.179+0.011 0.176 (0.172-0.185) 0.159-0.202
MLSeqSurv | voomStackIPF4 0.684+0.036 0.685 (0.656-0.708) 0.614-0.766 0.181+0.015 0.176 (0.170-0.198) 0.157-0.209 30.03+10.82 28.50 (21.25-38.75) 15-52
voomStackIPF5 0.677+0.034 0.682 (0.661-0.705) 0.591-0.730 0.178+0.011 0.176 (0.172-0.187) 0.157-0.200
voomStackIPF6 0.675+0.034 0.679 (0.662-0.704) 0.592-0.726 0.179+0.011 0.176 (0.172-0.185) 0.157-0.202
voomStackIPF7 0.684+0.036 0.686 (0.658-0.713) 0.614-0.768 0.181+0.015 0.176 (0.170-0.198) 0.157-0.209
voomStackIPF8 0.676+0.034 0.682 (0.661-0.703) 0.591-0.730 0.178+0.011 0.176 (0.172-0.187) 0.159-0.200
voomStackIPF9 0.674+0.034 0.679 (0.662-0.703) 0.592-0.726 0.179+0.011 0.176 (0.172-0.185) 0.159-0.202
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Figure 4.6. The concordance index, integrated Brier score, and the number of selected

features for KIRP.



Table 4.6. The summary statistics of concordance index, integrated Brier score and the number of features selected for KIRP.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.787+0.070 0.785 (0.735-0.825) 0.631-0.927 0.21840.046 0.222 (0.179-0.253) 0.143-0.307 1110.47+482.44 1139.50 (709.00-1459.75) 50-1954
Cforest 0.791+0.072 0.805 (0.739-0.851) 0.659-0.905 0.142+0.022 0.137 (0.128-0.150) 0.113-0.224 846.97+531.93 793.00 (352.00-1186.25) 79-1965
Coxboost 0.812+0.071 0.835 (0.778-0.859) 0.619-0.893 0.174+0.059 0.173 (0.127-0.197) 0.085-0.321 987.37+469.36 1050.00 (492.50-1340.25) 220-1848
Ctree 0.719+0.103 0.727 (0.618-0.800) 0.518-0.918 0.199+0.058 0.186 (0.164-0.228) 0.113-0.388 927.80+£573.74 794.00 (373.75-1562.25) 100-1916
Elasticnet 0.804+0.068 0.804 (0.768-0.855) 0.632-0.910 0.606+0.162 0.661 (0.586-0.703) 0.138-0.762 1124.47+524.04 1057.00 (716.25-1684.75) 215-1952
Gbm 0.797+0.069 0.802 (0.752-0.857) 0.623-0.914 0.282+0.129 0.239 (0.207-0.348) 0.112-0.635 1057.20+519.82 1000.00 (560.75-1523.25) 234-1940
Glmboost 0.788+0.075 0.789 (0.738-0.846) 0.603-0.910 0.228+0.043 0.232 (0.197-0.253) 0.154-0.339 1245.53+582.77 1189.00 (728.50-1802.00) 119-2000
Lasso 0.805+0.075 0.813 (0.752-0.858) 0.624-0.927 0.590+0.186 0.670 (0.560-0.707) 0.143-0.762 1053.20+642.58 1229.00 (442.00-1624.75) 23-1997
Models ObliqueRSF 0.764+0.087 0.799 (0.684-0.812) 0.574-0.909 0.161+0.036 0.154 (0.137-0.179) 0.106-0.260 957.30+£580.57 940.50 (452.50-1431.25) 107-1972
Penalized 0.774+0.076 0.774 (0.727-0.828) 0.583-0.912 0.140+0.022 0.142 (0.122-0.153) 0.098-0.181 1048.40+526.04 1094.50 (572.50-1486.00) 205-1990
Ranger 0.804+0.069 0.798 (0.755-0.853) 0.681-0.939 0.143+0.017 0.139 (0.132-0.153) 0.113-0.192 1176.30+£550.23 1286.50 (741.50-1738.50) 41-1898
Rfsrc 0.787+0.077 0.787 (0.735-0.833) 0.618-0.930 0.149+0.022 0.145 (0.134-0.159) 0.113-0.198 1227.97+502.89 1278.50 (819.25-1637.00) 155-1980
Ridge 0.788+0.078 0.786 (0.729-0.843) 0.642-0.912 0.248+0.145 0.182 (0.152-0.273) 0.128-0.622 1022.23+567.98 1018.50 (495.50-1565.75) 153-1861
Rpart 0.724+0.081 0.717 (0.678-0.774) 0.524-0.898 0.232+0.057 0.223 (0.190-0.286) 0.133-0.346 771.13£591.05 633.00 (296.75-1080.00) 41-1912
Svm 0.747+0.077 0.764 (0.688-0.806) 0.542-0.888 0.220+0.036 0.216 (0.199-0.238) 0.162-0.303 1250.50+509.73 1347.00 (738.50-1715.00) 208-1935
Xgboost (dart) 0.782+0.090 0.790 (0.715-0.857) 0.580-0.918 0.170+0.050 0.159 (0.135-0.184) 0.100-0.332 1020.50+553.27 865.50 (606.75-1544.00) 99-1947
Xgboost (gblinear) 0.761+0.117 0.788 (0.683-0.842) 0.500-0.928 0.167+0.026 0.164 (0.152-0.183) 0.110-0.223 1485.13+534.78 1644.50 (1323.00-1883.00) 11-1999
Xgboost (gbtree) 0.785+0.074 0.791 (0.742-0.847) 0.637-0.929 0.162+0.039 0.161 (0.131-0.183) 0.104-0.242 1007.60+605.46 884.00 (493.00-1598.75) 100-1996
Blackboost 0.816+0.072 0.837 (0.770-0.860) 0.629-0.907 0.218+0.049 0.216 (0.166-0.250) 0.142-0.339
Cforest 0.797+0.087 0.802 (0.731-0.868) 0.606-0.917 0.153+0.033 0.154 (0.127-0.175) 0.094-0.244
Coxboost 0.795+0.070 0.796 (0.749-0.842) 0.632-0.914 0.167+0.054 0.148 (0.131-0.188) 0.102-0.327
Ctree 0.754+0.092 0.754 (0.692-0.837) 0.574-0.895 0.214+0.067 0.197 (0.174-0.228) 0.123-0.419
Elasticnet 0.802+0.068 0.815 (0.760-0.844) 0.655-0.917 0.670+0.060 0.683 (0.628-0.712) 0.548-0.762
Gbm 0.812+0.074 0.832 (0.742-0.870) 0.671-0.917 0.310+0.143 0.273 (0.186-0.421) 0.108-0.596
Glmboost 0.799+0.059 0.809 (0.770-0.841) 0.670-0.889 0.218+0.046 0.222 (0.184-0.248) 0.126-0.307
Lasso 0.799+0.074 0.805 (0.767-0.844) 0.624-0.921 0.657+0.104 0.684 (0.624-0.712) 0.199-0.762
Models ObliqueRSF 0.789+0.069 0.792 (0.749-0.835) 0.640-0.930 0.162+0.053 0.148 (0.134-0.170 0.105-0.379
Boruta Penalized 0.80420.074 0.801 (0.768.0.862) | 0.614-0.920 0.146£0.046 0.133 (0.115—0.160; 0.085-0.238 34.40£6.41 34.00 (31.00-37.50) 2250
Ranger 0.803::0.083 0.823 (0.745-0.868) 0.632-0.942 0.146:0.033 0.142 (0.127-0.159) 0.101-0.245
Rfsrc 0.818+0.078 0.844 (0.762-0.868) 0.619-0.926 0.149+0.035 0.139 (0.127-0.172) 0.097-0.263
Ridge 0.805+0.082 0.804 (0.766-0.867) 0.616-0.946 0.226+0.126 0.174 (0.157-0.221) 0.145-0.630
Rpart 0.741+0.079 0.755 (0.681-0.796) 0.574-0.858 0.224+0.057 0.206 (0.183-0.258) 0.138-0.368
Svm 0.607+0.261 0.717 (0.291-0.807) 0.166-0.920 0.300+0.135 0.225 (0.212-0.412) 0.136-0.602
Xgboost (dart) 0.797+0.082 0.807 (0.736-0.865) 0.595-0.913 0.167+0.048 0.166 (0.139-0.188) 0.080-0.333
Xgboost (gblinear) 0.725+0.135 0.754 (0.662-0.823) 0.500-0.918 0.164+0.024 0.167 (0.145-0.182) 0.121-0.224
Xgboost (gbtree) 0.791+0.080 0.820 (0.715-0.844) 0.641-0.937 0.172+0.046 0.163 (0.140-0.192) 0.113-0.308
voomStackPriol 0.774+0.062 0.779 (0.721-0.817) 0.664-0.890 0.189+0.087 0.152 (0.119-0.232) 0.098-0.402
voomStackPrio2 0.764+0.075 0.775 (0.719-0.811) 0.599-0.896 0.131+0.017 0.129 (0.118-0.140) 0.109-0.177
voomsStackIPF1 0.799+0.068 0.801 (0.786-0.848) 0.606-0.895 0.12540.018 0.125 (0.113-0.139) 0.069-0.159
voomsStackIPF2 0.773+0.065 0.778 (0.749-0.809) 0.603-0.888 0.12740.028 0.120 (0.109-0.141) 0.083-0.212
voomStackIPF3 0.759+0.095 0.775 (0.756-0.801) 0.413-0.891 0.133+0.043 0.118 (0.110-0.143) 0.086-0.283
MLSeqSurv | voomStackIPF4 0.799+0.068 0.801 (0.785-0.848) 0.616-0.908 0.127+0.016 0.128 (0.113-0.143) 0.091-0.153 38.90+8.30 38.00 (33.00-43.00) 23-62
voomsStackIPF5 0.769+0.066 0.778 (0.746-0.799) 0.591-0.888 0.128+0.029 0.120 (0.110-0.141) 0.085-0.222
voomsStackIPF6 0.751+0.099 0.775 (0.713-0.793) 0.413-0.891 0.133+0.042 0.120 (0.110-0.143) 0.087-0.267
voomsStackIPF7 0.800+0.068 0.802 (0.786-0.847) 0.616-0.908 0.125+0.018 0.126 (0.113-0.139) 0.069-0.152
voomStackIPF8 0.780-+0.058 0.783 (0.758-0.817) 0.637-0.888 0.122+0.021 0.119 (0.109-0.135) 0.083-0.183
voomsStackIPF9 0.755+0.097 0.775 (0.742-0.801) 0.417-0.891 0.134+0.042 0.120 (0.110-0.144) 0.085-0.272
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Figure 4.7. The concordance index, integrated Brier score, and the number of selected



Table 4.7. The summary statistics of concordance index, integrated Brier score and the number of features selected for LAML.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.619+0.065 0.609 (0.589-0.671) 0.505-0.730 0.342+0.195 0.209 (0.196-0.559) 0.177-0.709 889.20+530.61 828.00 (418.25-1385.50) 157-1882
Cforest 0.662+0.063 0.674 (0.624-0.717) 0.523-0.794 0.177+0.018 0.177 (0.165-0.190) 0.134-0.211 1164.33+539.96 1193.00 (746.25-1649.00) 92-1935
Coxboost 0.667+0.065 0.680 (0.610-0.713) 0.515-0.773 0.209+0.032 0.217 (0.184-0.232) 0.152-0.269 884.80+443.94 842.00 (578.00-1121.00) 231-1958
Ctree 0.554+0.052 0.556 (0.506-0.611) 0.460-0.627 0.314+0.075 0.310 (0.270-0.358) 0.162-0.513 881.20+£533.52 896.00 (369.25-1336.00) 13-1930
Elasticnet 0.664+0.065 0.654 (0.619-0.715) 0.513-0.822 0.350+0.095 0.365 (0.286-0.400) 0.196-0.611 1009.83+485.65 952.50 (611.25-1428.75) 192-1858
Gbm 0.654+0.062 0.661 (0.590-0.700) 0.542-0.747 0.25240.052 0.237 (0.223-0.303) 0.146-0.333 978.97+478.17 876.50 (616.75-1363.00) 267-1930
Glmboost 0.630+0.066 0.639 (0.578-0.684) 0.486-0.755 0.376+0.212 0.206 (0.194-0.611) 0.173-0.709 874.33+498.00 908.50 (452.25-1281.00 ) 140-1875
Lasso 0.664+0.070 0.671 (0.608-0.724) 0.529-0.793 0.355+0.122 0.382 (0.239-0.423) 0.136-0.611 1116.03+531.38 1120.50 (627.50-1552.50) 64-1976
Models ObliqueRSF 0.620+0.078 0.630 (0.569-0.671) 0.421-0.792 0.208+0.041 0.204 (0.179-0.227) 0.140-0.306 1256.43+530.96 1295.00 (858.50-1739.25) 21-1992
Penalized 0.652+0.069 0.660 (0.619-0.696) 0.490-0.796 0.180+0.019 0.178 (0.165-0.197) 0.145-0.212 1052.33+533.10 1143.50 (567.25-1517.75) 225-1975
Ranger 0.662+0.055 0.665 (0.626-0.697) 0.555-0.815 0.183+0.011 0.187 (0.173-0.190) 0.160-0.206 892.47+564.06 813.50 (398.75-1316.75) 29-1985
Rfsrc 0.667+0.057 0.679 (0.645-0.700) 0.536-0.790 0.182+0.015 0.184 (0.171-0.188) 0.148-0.228 872.00+£562.09 739.00 (416.75-1275.75) 54-1935
Ridge 0.660+0.059 0.678 (0.618-0.702) 0.529-0.749 0.275+0.073 0.274 (0.205-0.333) 0.184-0.434 922.30+£550.44 935.50 (430.00-1347.00) 92-1909
Rpart 0.592+0.074 0.605 (0.555-0.642) 0.431-0.722 0.260+0.045 0.260 (0.235-0.286) 0.170-0.363 1044.334586.72 906.50 (535.25-1625.00) 124-1989
Svm 0.653+0.062 0.653 (0.604-0.706) 0.540-0.760 0.51240.066 0.513 (0.473-0.557) 0.359-0.639 965.67+501.62 900.00 (542.75-1355.25) 49-1890
Xgboost (dart) 0.613+0.053 0.619 (0.583-0.646) 0.496-0.713 0.248+0.047 0.240 (0.210-0.289) 0.173-0.342 852.304£613.65 716.50 (338.00-1438.75) 27-1896
Xgboost (gblinear) 0.648+0.064 0.651 (0.616-0.710) 0.522-0.745 0.208+0.026 0.208 (0.192-0.224) 0.170-0.274 911.23+£558.30 741.50 (481.75-1469.25) 99-1845
Xgboost (gbtree) 0.604+0.059 0.601 (0.577-0.647) 0.458-0.718 0.24740.046 0.253 (0.210-0.284) 0.133-0.333 927.73+£658.62 864.00 (228.75-1500.50) 25-1956
Blackboost 0.606+0.058 0.616 (0.565-0.644) 0.456-0.702 0.367+0.202 0.205 (0.200-0.589) 0.151-0.656
Cforest 0.618+0.053 0.617 (0.578-0.658) 0.513-0.719 0.182+0.021 0.187 (0.170-0.193) 0.117-0.214
Coxboost 0.619+0.051 0.621 (0.583-0.655) 0.530-0.734 0.209+0.035 0.206 (0.181-0.234) 0.125-0.291
Ctree 0.571+0.059 0.580 (0.525-0.603) 0.449-0.692 0.301+0.052 0.298 (0.267-0.337) 0.207-0.414
Elasticnet 0.616+0.048 0.620 (0.582-0.657) 0.520-0.690 0.353+0.116 0.375 (0.240-0.421) 0.168-0.610
Gbm 0.618+0.054 0.621 (0.584-0.650) 0.487-0.735 0.278+0.077 0.273 (0.209-0.339) 0.180-0.534
Glmboost 0.617+0.045 0.621 (0.575-0.653) 0.525-0.681 0.435+0.204 0.557 (0.199-0.610) 0.170-0.708
Lasso 0.617+0.052 0.623 (0.580-0.661) 0.501-0.690 0.354+0.099 0.370 (0.273-0.425) 0.162-0.543
Models ObliqueRSF 0.603+0.066 0.613 (0.543-0.654) 0.497-0.758 0.21540.046 0.204 (0.183-0.228 0.162-0.352
Boruta Penalized 0.61720.047 0.627 (0591.0.654) | 0.524-0.696 0.186£0.023 0.189 (0.168—0.205; 0.130-0.220 21.00+8.28 21.50(14.00-26.25) 144
Ranger 0.629+0.048 0.631 (0.603-0.668) 0.531-0.719 0.183+0.017 0.186 (0.171-0.196) 0.135-0.213
Rfsrc 0.622+0.058 0.626 (0.589-0.651) 0.464-0.743 0.193+0.030 0.194 (0.170-0.202) 0.131-0.267
Ridge 0.618+0.048 0.623 (0.581-0.653) 0.527-0.716 0.203+0.017 0.205 (0.194-0.214) 0.155-0.234
Rpart 0.582+0.057 0.583 (0.538-0.621) 0.484-0.688 0.260+0.038 0.262 (0.242-0.279) 0.166-0.343
Svm 0.527+0.085 0.529 (0.457-0.599) 0.392-0.688 0.543+0.070 0.544 (0.500-0.583) 0.411-0.704
Xgboost (dart) 0.607+0.067 0.610 (0.565-0.668) 0.472-0.704 0.261+0.043 0.270 (0.228-0.284) 0.171-0.343
Xgboost (gblinear) 0.604:+0.058 0.616 (0.572-0.652) 0.484-0.733 0.229+0.026 0.231 (0.207-0.252) 0.186-0.276
Xgboost (gbtree) 0.613+0.057 0.615 (0.575-0.648) 0.486-0.709 0.252+0.046 0.256 (0.228-0.281) 0.149-0.357
voomStackPriol 0.615+0.057 0.621 (0.560-0.668) 0.503-0.697 0.209+0.030 0.211 (0.184-0.235) 0.150-0.261
voomStackPrio2 0.618+0.058 0.625 (0.577-0.661) 0.500-0.736 0.196+0.019 0.196 (0.182-0.212) 0.162-0.231
voomsStackIPF1 0.638+0.051 0.656 (0.656-0.674) 0.534-0.707 0.197+0.014 0.199 (0.185-0.209) 0.162-0.213
voomsStackIPF2 0.611+0.074 0.617 (0.572-0.666) 0.410-0.732 0.195+0.022 0.193 (0.181-0.204) 0.155-0.267
voomStackIPF3 0.604+0.085 0.615 (0.565-0.662) 0.317-0.727 0.196+0.023 0.194 (0.181-0.205) 0.156-0.269
MLSeqSurv | voomStackIPF4 0.639+0.052 0.660 (0.603-0.675) 0.527-0.707 0.198+0.012 0.198 (0.186-0.209) 0.174-0.216 21.87+7.14 21.00 (17.00-27.50) 7-34
voomsStackIPF5 0.606+0.074 0.604 (0.562-0.666) 0.417-0.732 0.195+0.021 0.193 (0.182-0.200) 0.155-0.257
voomsStackIPF6 0.592+0.086 0.591 (0.565-0.653) 0.324-0.727 0.196+0.022 0.193 (0.182-0.202) 0.156-0.263
voomsStackIPF7 0.640+0.052 0.660 (0.604-0.675) 0.534-0.711 0.197+0.014 0.199 (0.183-0.209) 0.162-0.214
voomStackIPF8 0.617+0.062 0.617 (0.574-0.666) 0.506-0.732 0.195+0.018 0.193 (0.183-0.204) 0.155-0.242
voomsStackIPF9 0.607+0.081 0.615 (0.566-0.662) 0.321-0.727 0.195+0.020 0.194 (0.181-0.205) 0.156-0.239
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It was noted that for LAML data, the cforest algorithm, when employed for
internal feature selection, achieved the lowest mean integrated Brier score of 0.177.
This was followed by penalized (0.180+0.019), rfsrc (0.182+0.015), and
ranger(0.183+0.011) algorithms, all with internal feature selection. Meanwhile, the
svm algorithm exhibited the highest score (0.512+0.066). In the category of methods
from the literature utilizing Boruta feature selection, cforest (cforest_B) (0.182+0.021)
and ranger (ranger_B) (0.183+0.017) algorithms showcased the lowest mean
integrated Brier score, while svm (svm_B) (0.543+0.070) and glmboost (glmboost_B)
(0.435+0.204) algorithms presented the highest mean integrated Brier score. The
voomStackIPF2, voomStackIPF5, voomStackIPF8, and voomStackIPF9 algorithms
displayed the lowest mean integrated Brier score, at 0.195. Meanwhile, the
voomStackPriol algorithm (0.209+0.030) displayed the highest mean integrated Brier
score.

Among the methods in the literature that applied Boruta feature selection, the
mean number of selected features for LAML data was the lowest (21.00+8.28). These
were closely followed by the voomStackLasso algorithms (21.87+7.14). In terms of
internal feature selection methods, the algorithm with the lowest mean number of
features was xgboost with dart (852.30+613.65), while the algorithm with the highest
mean number of features was obliqueRSF (1256.43+530.96).

The concordance index, integrated Brier score, and the number of selected
features for Brain Lower Grade Glioma (LGG) data are depicted in Figure 4.8, with
related summary statistics presented in Table 4.8. After examining both the graph and
the table for LGG data, it was observed that coxboost, when applied to internal feature
selection, achieved the highest mean concordance index at 0.833. This is followed by
the glmboost algorithm (0.832+0.043), with internal feature selection applied, yielding
a mean concordance index. The ctree (0.759+0.046) and rpart (0.769+0.038)
algorithms exhibited the lowest mean concordance index. In the category of methods
from the literature utilizing Boruta feature selection, the glmboost (gimboost_B)
(0.832+0.032), elasticnet (elasticnet B) (0.826+0.035), and lasso (lasso_B)
(0.825+0.037) algorithms demonstrated the highest mean concordance index, while
the svm(svm_B) algorithm (0.732+0.126) exhibited the lowest mean concordance
index. Among the voomStackLasso methods, the voomStacklPF1 (0.817+0.038),
voomStackIPF4 (0.816+0.038), and voomStackIPF7 (0.817+0.038) algorithms
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Figure 4.8. The concordance index, integrated Brier score, and the number of selected

features for LGG.



Table 4.8. The summary statistics of concordance index, integrated Brier score and the number of features selected for LGG.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.814+0.032 0.812 (0.793-0.835) 0.745-0.880 0.434+0.139 0.492 (0.422-0.526) 0.167-0.587 984.33+£524.46 918.50 (544.00-1381.00) 21-1999
Cforest 0.817+0.037 0.818 (0.788-0.847) 0.736-0.872 0.189+0.037 0.182 (0.162-0.203) 0.145-0.313 989.97+543.63 975.00 (598.00-1408.50) 87-1992
Coxboost 0.833+0.030 0.841 (0.810-0.859) 0.769-0.874 0.151+0.028 0.153 (0.129-0.167) 0.094-0.225 1153.07+£525.55 1219.50 (716.75-1548.00) 152-1973
Ctree 0.759+0.046 0.769 (0.738-0.790) 0.645-0.833 0.377+0.076 0.395 (0.303-0.432) 0.197-0.514 852.27+586.12 655.50 (414.00-1389.00) 71-1892
Elasticnet 0.823+0.037 0.832 (0.788-0.854) 0.732-0.874 0.411+0.104 0.438 (0.330-0.488) 0.163-0.570 864.73+£540.15 799.50 (378.75-1328.25) 41-1790
Gbm 0.821+0.027 0.826 (0.809-0.839) 0.768-0.882 0.309+0.084 0.286 (0.248-0.378) 0.173-0.469 924.47+559.52 839.50 (371.50-1314.00) 209-1998
Glmboost 0.832+0.043 0.842 (0.808-0.858) 0.701-0.900 0.480+0.091 0.501 (0.455-0.527) 0.171-0.587 1102.50+£501.33 1117.00 (739.00-1515.50) 221-1917
Lasso 0.819+0.045 0.826 (0.792-0.858) 0702-0.884 0.422+0.108 0.443 (0.373-0.490) 0.140-0.577 831.60+£522.56 760.50 (419.00-1278.75) 32-1911
Models ObliqueRSF 0.783+0.047 0.784 (0.761-0.813) 0.645-0.870 0.180+0.031 0.181 (0.155-0.201) 0.134-0.244 1244.77+484.69 1274.00 (861.00-1678.50) 249-1986
Penalized 0.796+0.036 0.795 (0.771-0.821) 0.713-0.862 0.158+0.019 0.153 (0.145-0.169) 0.128-0.204 1126.27+562.60 1023.50 (593.50-1666.25) 219-1957
Ranger 0.819+0.033 0.811 (0.791-0.852) 0.760-0.887 0.170+0.012 0.169 (0.161-0.181) 0.151-0.195 815.87+£549.94 680.00 (363.25-1253.00) 38-1759
Rfsrc 0.820+0.035 0.815 (0.787-0.849) 0.764-0.883 0.186+0.026 0.181 (0.162-0.210) 0.152-0.254 889.73£521.20 771.00 (426.00-1313.50) 198-1942
Ridge 0.819+0.035 0.824 (0.788-0.852) 0.756-0.873 0.329+0.103 0.325 (0.247-0.400) 0.184-0.525 1492.83+335.76 1504.00 (1250.75-1842.75) 698-1991
Rpart 0.769+0.038 0.772 (0.741-0.798) 0.705-0.869 0.217+0.029 0.216 (0.200-0.235) 0.160-0.286 903.37+484.52 793.50 (475.75-1328.50) 110-1786
Svm 0.801+0.042 0.798 (0.763-0.839) 0.711-0.865 0.389+0.054 0.387 (0.365-0.419) 0.288-0.533 1367.03+380.29 1432.00 (1087.00-1665.50) 509-1955
Xgboost (dart) 0.791£0.041 0.786 (0.760-0.832) 0.714-0.866 0.236+0.047 0.248 (0.202-0.267) 0.158-0.330 795.23+£535.48 711.50 (350.75-1295.25) 14-1731
Xgboost (gblinear) 0.805+0.068 0.805 (0.786-0.852) 0.500-0.884 0.194+0.026 0.195 (0.181-0.212) 0.128-0.238 1682.07+285.01 1179.50 (1587.50-1899.25) 962-1968
Xgboost (gbtree) 0.804+0.036 0.801 (0.781-0.825) 0.722-0.894 0.22040.046 0.212 (0.183-0.240) 0.164-0.339 1115.034492.22 1193.50 (681.00-1445.25) 247-1989
Blackboost 0.816+0.034 0.812 (0.796-0.834) 0.729-0.902 0.403+0.159 0.492 (0.182-0.521) 0.147-0.587
Cforest 0.813+0.039 0.807 (0.788-0.839) 0.735-0.887 0.298+0.045 0.288 (0.275-0.324) 0.202-0.395
Coxboost 0.817+0.034 0.818 (0.798-0.839) 0.735-0.887 0.155+0.020 0.160 (0.138-0.169) 0.112-0.196
Ctree 0.763+0.053 0.770 (0.723-0.807) 0.645-0.854 0.423+0.057 0.424 (0.389-0.471) 0.278-0.506
Elasticnet 0.826:0.035 0.824 (0.815-0.849) 0.726-0.894 0.376+0.103 0.400 (0.313-0.463) 0.145-0.533
Gbm 0.794-+0.040 0.790 (0.770-0.816) 0.722-0.890 0.317+0.086 0.299 (0.255-0.362) 0.216-0.545
Glmboost 0.832+0.032 0.831 (0.810-0.850) 0.742-0.897 0.453+0.123 0.498 (0.437-0.526) 0.146-0.587
Lasso 0.825+0.037 0.825 (0.814-0.837) 0.735-0.899 0.362+0.116 0.371 (0.262-0.467) 0.160-0.529
Models ObliqueRSF 0.769+0.058 0.778 (0.757-0.810) 0.631-0.846 0.187+0.032 0.184 (0.160-0.206 0.148-0.288
Boruta Penalized 0.81720.036 0.816 (0.796.0.840) | 0.717-0.876 0.155£0.019 0.152 (0.142—0.165; 0.126-0.196 6353:8.16 63.50 (58.75-69.25) 46-86
Ranger 0.820+0.032 0.815 (0.798-0.845) 0.751-0.885 0.168+0.012 0.167 (0.161-0.179) 0.147-0.190
Rfsrc 0.810+0.038 0.812 (0.783-0.840) 0.741-0.889 0.189+0.048 0.171 (0.157-0.211) 0.135-0.338
Ridge 0.813+0.037 0.815 (0.794-0.835) 0.710-0.880 0.246+0.083 0.220 (0.191-0.275) 0.154-0.485
Rpart 0.766+0.037 0.768 (0.738-0.789) 0.668-0.858 0.215+0.027 0.215 (0.199-0.238) 0.150-0.267
Svm 0.732+0.126 0.768 (0.715-0.795) 0.246-0.835 0.450+0.048 0.451 (0.410-0.482) 0.366-0.538
Xgboost (dart) 0.797+0.037 0.797 (0.770-0.817) 0.730-0.884 0.229+0.041 0.226 (0.201-0.249) 0.163-0.332
Xgboost (gblinear) 0.805+0.035 0.808 (0.773-0.838) 0.739-0.867 0.192+0.018 0.189 (0.178-0.209) 0.163-0.231
Xghboost (gbtree) 0.789+0.035 0.784 (0.766-0.800) 0.735-0.875 0.230+0.044 0.219 (0.203-0.252) 0.178-0.368
voomStackPriol 0.793+0.048 0.791 (0.774-0.827) 0.648-0.863 0.17240.015 0.172 (0.160-0.181) 0.136-0.204
voomStackPrio2 0.775+0.053 0.779 (0.743-0.815) 0.594-0.861 0.194+0.033 0.189 (0.172-0.211) 0.143-0.290
voomsStackIPF1 0.817+0.038 0.821 (0.797-0.841) 0.708-0.884 0.205+0.026 0.203 (0.186-0.224) 0.150-0.261
voomsStackIPF2 0.808+0.040 0.811 (0.787-0.836) 0.671-0.871 0.195+0.019 0.193 (0.186-0.208) 0.159-0.234
voomStackIPF3 0.802+0.048 0.812 (0.782-0.835) 0.663-0.869 0.197+0.023 0.193 (0.185-0.210) 0.160-0.254
MLSeqSurv | voomStackIPF4 0.816+0.038 0.820 (0.797-0.841) 0.708-0.884 0.205+0.026 0.203 (0.186-0.224) 0.150-0.261 66.4049.97 65.50 (57.00-73.25) 50-91
voomsStackIPF5 0.808+0.040 0.811 (0.787-0.836) 0.671-0.871 0.195+0.019 0.193 (0.186-0.208) 0.159-0.234
voomsStackIPF6 0.802+0.049 0.812 (0.782-0.835) 0.663-0.869 0.197+0.023 0.193 (0.185-0.210) 0.159-0.254
voomsStackIPF7 0.817+0.038 0.821 (0.797-0.841) 0.708-0.884 0.205+0.026 0.201 (0.186-0.224) 0.150-0.261
voomStackIPF8 0.808+0.040 0.811 (0.787-0.836) 0.671-0.871 0.195+0.019 0.193 (0.186-0.208) 0.159-0.234
voomsStackIPF9 0.802+0.048 0.812 (0.782-0.835) 0.663-0.869 0.197+0.023 0.193 (0.185-0.210) 0.160-0.254
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showed the highest mean concordance index, while the voomStackPrio2 algorithm
(0.775+0.053) displayed the lowest mean concordance index.

It was observed that for LGG data, the coxboost algorithm, when utilized for
internal feature selection, attained the lowest mean integrated Brier score of 0.151.
This was followed by penalized algorithm (0.158+0.019), with internal feature
selection. The glmboost algorithm, with internal feature selection, presented the
highest mean integrated Brier score, at 0.480. In the category of methods from the
literature utilizing Boruta feature selection, coxboost (coxboost_B) (0.155+0.020) and
penalized (penalized_B) (0.155+0.019) algorithms showcased the lowest mean
integrated Brier score, while glmboost (gimboost B) (0.453+0.123) and svm
(0.450+0.048) algorithms presented the highest mean integrated Brier score. The
voomStackPriol algorithm displayed the lowest integrated mean Brier score, at 0.172.
Meanwhile, the voomStackIPF1, voomStacklPF4, and voomStackIPF7 algorithms
displayed the highest mean integrated Brier score, at 0.205.

Among the methods in the literature that applied Boruta feature selection, the
mean number of selected features for LGG data was the lowest (63.53+8.16). These
were closely followed by the voomStackLasso algorithms (66.40+9.97). In terms of
internal feature selection methods, the algorithm with the lowest mean number of
features was xgboost (with booster=“dart”) (795.23+£535.48), while the algorithm with
the highest mean number of features was xgboost (with booster= “gblinear”)
(1682.07+285.01).

The concordance index, integrated Brier score, and the number of selected
features for Mesothelioma (MESO) data are depicted in Figure 4.9, with related
summary statistics presented in Table 4.9. After examining both the graph and the table
for MESO data, it was observed that voomStackIPF1 and voomStackIPF7 algorithms
achieved the highest mean concordance index at 0.731. This is followed by the
voomStackIPF4 algorithm (0.730+0.066), yielding a mean concordance index. The
voomStackPrio2 algorithm exhibited the lowest mean concordance index within the
voomStackLasso group, at 0.662+0.065. In the category of methods from the literature
utilizing Boruta feature selection, the ridge (ridge_B) (0.729+0.062) and penalized
(penalized_B) (0.724+0.060) algorithms demonstrated the highest mean concordance
index, while the svm (svm_B) algorithm (0.509+0.185) exhibited the lowest mean

concordance index. In the category of methods from the literature utilizing internal
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feature selection, the elasticnet (0.728+0.057) and xgboost (with booster= “gblinear”)
(0.723+0.058) algorithms demonstrated the highest mean concordance index, while
the rpart algorithm(0.609+0.076) exhibited the lowest mean concordance index.

It was observed that the penalized (penalized_B) algorithm, with Boruta feature
selection, achieved the lowest mean the integrated Brier score of 0.114 for MESO data.
This was followed closely by the cforest (cforest_B) and ranger (ranger_B) algorithms,
both employing internal feature selection, with a score of 0.123. The svm (svm_B)
algorithm, with the literature employing Boruta feature selection, presented the highest
mean integrated Brier score, at 0.624. In the category of methods from the literature
utilizing internal feature selection, the penalized algorithm (0.115+0.018) showcased
the lowest mean integrated Brier score, while the svm algorithm (0.634+0.058)
presented the highest mean integrated Brier score. Among voomStackLasso group, the
voomStackIPF6, voomStackIPF8, and voomStackIPF9 algorithms displayed the
lowest mean integrated Brier score, at 0.154. The voomStackIPF1, voomStackIPF4,
and voomsStackIPF7 algorithms displayed the highest mean integrated Brier score, at
0.174.

Among the methods in the literature that applied Boruta feature selection, the
mean number of selected features for MESO data was the lowest (26.27+10.03). These
were closely followed by the voomStackLasso algorithms (31.57+8.81). In terms of
internal feature selection methods, the algorithm with the lowest mean number of
features was ranger (637.63+457.30), while the algorithm with the highest mean
number of features was obliqgueRSF (1195.60+567.02).

The concordance index, integrated Brier score, and the number of selected
features for Pancreatic Adenocarcinoma (PAAD) data are depicted in Figure 4.10, with
related summary statistics presented in Table 4.10. After examining both the graph and
the table for PAAD data, it was observed that voomStackIPF7 and ridge algorithms,
with internal feature selection, achieved the highest mean concordance index at 0.640.
This is followed by the xgboost (with booster= “gblinear”), with both internal feature
selection and Boruta feature selection, yielding a mean concordance index, at 0.639.
Among voomStackLasso group, the voomStackIPF7 (0.640+0.052) and
voomStackIPF1 (0.637+0.057) algorithms displayed the highest mean concordance
index, while voomStackPriol algorithm (0.609+0.054) displayed the lowest

concordance index. In the category of methods from the literature utilizing Boruta
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Figure 4.9. The concordance index, integrated Brier score, and the number of selected
features for MESO.



Table 4.9. The summary statistics of concordance index, integrated Brier score and the number of features selected for MESO.
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Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max
Blackboost 0.704+0.061 0.704 (0.669-0.732) 0.569-0.848 0.440+0.267 0.583 (0.142-0.676) 0.128-0.741 1084.43+529.90 1129.50 (692.75-1465.25) 27-1906
Cforest 0.71240.061 0.718 (0.683-0.753) 0.582-0.822 0.129+0.019 0.129 (0.117-0.140) 0.087-0.172 843.67+£510.99 693.00 (438.75-1196.25) 135-1990
Coxboost 0.699+0.068 0.704 (0.636-0.749) 0.587-0.809 0.134+0.035 0.130 (0.107-0.155) 0.085-0.226 1163.30+£574.48 1246.00 (583.75-1678.50) 204-1983
Ctree 0.620+0.059 0.618 (0.589-0.682) 0.478-0.702 0.282+0.091 0.279 (0.192-0.335) 0.157-0.497 699.40+£635.02 474.50 (242.00-1169.25) 11-1939
Elasticnet 0.728+0.057 0.743 (0.696-0.768) 0.571-0.817 0.287+0.190 0.238 (0.135-0.343) 0.090-0.729 1073.77+553.66 1010.50 (599.50-1598.50) 153-1900
Gbm 0.684+0.064 0.694 (0.627-0.731) 0.542-0.788 0.308+0.088 0.307 (0.239-0.371) 0.142-0.546 852.40+500.67 780.50 (463.25-1255.25) 78-1771
Glmboost 0.702+0.051 0.711 (0.660-0.735) 0.588-0.788 0.337+0.267 0.153 (0.131-0.660) 0.101-0.730 1045.40+£567.91 1063.00 (494.25-1567.25) 109-1998
Lasso 0.702+0.056 0.716 (0.683-0.737) 0.579-0.810 0.297+0.179 0.241 (0.159-0.369) 0.087-0.697 1075.67+505.07 1032.00 (740.00-1570.50) 186-1838
Models ObliqueRSF 0.622+0.082 0.634 (0.583-0.676) 0.436-0.761 0.13740.030 0.133 (0.124-0.162) 0.073-0.213 1195.60+567.02 1321.00 (810.50-1715.50) 184-1899
Penalized 0.713+0.055 0.721 (0.685-0.751) 0.611-0.810 0.115+0.018 0.118 (0.103-0.130) 0.077-0.153 910.474526.21 749.00 (517.00-1443.75) 202-1977
Ranger 0.700+0.064 0.716 (0.641-0.746) 0.515-0.802 0.134+0.019 0.137 (0.120-0.149) 0.091-0.170 637.63+457.30 594.50 (245.50-919.25) 5-1572
Rfsrc 0.699+0.060 0.710 (0.668-0.736) 0.577-0.803 0.136+0.018 0.136 (0.125-0.147) 0.098-0.181 647.37+£553.53 637.50 (143.75-934.50) 17-1951
Ridge 0.718+0.053 0.726 (0.695-0.756) 0.594-0.813 0.198+0.147 0.143 (0.131-0.171) 0.105-0.659 881.00+£536.39 698.50 (466.75-1350.50) 78-1951
Rpart 0.609+0.076 0.623 (0.554-0.651) 0.462-0.761 0.200+0.030 0.202 (0.183-0.223) 0.141-0.263 750.03+488.10 700.00 (360.25-1021.00) 34-1971
Svm 0.715+0.053 0.714 (0.680-0.732) 0.602-0.830 0.634+0.058 0.644 (0.605-0.673) 0.490-0.743 1080.63+503.17 1125.00 (684.75-1524.50) 185-1967
Xgboost (dart) 0.657+0.065 0.657 (0.612-0.700) 0.457-0.769 0.167+0.046 0.162 (0.133-0.197) 0.079-0.280 715.23+470.47 622.00 (327.75-1120.75) 116-1948
Xgboost (gblinear) 0.723+0.058 0.742 (0.685-0.766) 0.555-0.823 0.139+0.026 0.139 (0.124-0.147) 0.096-0.230 1094.50+517.51 933.00 (688.00-1538.50) 87-1926
Xgboost (gbtree) 0.629+0.073 0.626 (0.596-0.668) 0.483-0.774 0.177+0.042 0.176 (0.141-0.211) 0.109-0.258 820.23+550.03 769.00 (318.75-1409.25) 8-1761
Blackboost 0.697+0.065 0.706 (0.668-0.749) 0.562-0.818 0.38540.268 0.164 (0.137-0.673) 0.106-0.719
Cforest 0.712:£0.060 0.726 (0.678-0.758) 0.588-0.797 0.12320.017 0.124 (0.110-0.135) 0.082-0.160
Coxboost 0.684:+0.063 0.688 (0.652-0.717) 0.551-0.830 0.131+0.025 0.134 (0.111-0.145) 0.074-0.212
Ctree 0.648+0.072 0.666 (0.590-0.705) 0.457-0.737 0.21140.060 0.198 (0.186-0.223) 0.127-0.465
Elasticnet 0.705+0.058 0.712 (0.681-0.736) 0.581-0.830 0.226+0.084 0.246 (0.149-0.294) 0.076-0.369
Gbm 0.683+0.062 0.691 (0.645-0.724) 0.562-0.852 0.251+0.093 0.228 (0.185-0.297) 0.143-0.508
Glmboost 0.706+0.059 0.725 (0.671-0.756) 0.568-0.787 0.316+0.259 0.157 (0.129-0.657) 0.098-0.741
Lasso 0.699+0.061 0.702 (0.661-0.739) 0.568-0.849 0.268+0.098 0.270 (0.198-0.313) 0.110-0.540
Models ObliqueRSF 0.660+0.086 0.670 (0.611-0.734) 0.404-0.785 0.140+0.032 0.134 (0.120-0.163 0.085-0.218
Boruta Penalized 0.724%0.060 0.733 (0.699.0.765) | 0.565.0.810 0.114£0.020 0.113 (0.100-0.125; 0.069-0.178 26.2710.03 24.00 (20.50-28.25) 13-59
Ranger 0.713+0.061 0.731 (0.690-0.751) 0.562-0.807 0.123+0.016 0.124 (0.110-0.135) 0.086-0.158
Rfsrc 0.711+0.065 0.727 (0.691-0.746) 0.569-0.810 0.133+0.026 0.130 (0.113-0.147) 0.083-0.189
Ridge 0.729+0.062 0.745 (0.699-0.772) 0.572-0.807 0.162+0.033 0.156 (0.142-0.176) 0.108-0.266
Rpart 0.654+0.068 0.666 (0.621-0.691) 0.460-0.770 0.191+0.026 0.191 (0.178-0.208) 0.137-0.252
Svm 0.509+0.185 0.508 (0.312-0.689) 0.237-0.780 0.624+0.079 0.642 (0.585-0.683) 0.428-0.742
Xgboost (dart) 0.673+0.067 0.684 (0.638-0.713) 0.525-0.808 0.179+0.037 0.181 (0.149-0.208) 0.096-0.258
Xgboost (gblinear) 0.717+0.065 0.727 (0.684-0.764) 0.552-0.820 0.157+0.030 0.152 (0.132-0.174) 0.111-0.228
Xghboost (gbtree) 0.660+0.068 0.671 (0.603-0.705) 0.535-0.767 0.181+0.037 0.177 (0.152-0.216) 0.098-0.240
voomStackPriol 0.691+0.072 0.699 (0.660-0.743) 0.492-0.808 0.160+0.028 0.154 (0.143-0.169) 0.118-0.241
voomStackPrio2 0.662+0.065 0.662 (0.622-0.712) 0.478-0.792 0.170+0.023 0.165 (0.156-0.183) 0.122-0.220
voomsStackIPF1 0.731+£0.066 0.740 (0.705-0.782) 0.535-0.864 0.174+0.020 0.173 (0.159-0.185) 0.141-0.220
voomsStackIPF2 0.669+0.092 0.695 (0.641-0.723) 0.351-0.832 0.157+0.029 0.154 (0.139-0.168) 0.101-0.258
voomStackIPF3 0.668+0.093 0.687 (0.644-0.729) 0.351-0.824 0.157+0.029 0.154 (0.139-0.168) 0.103-0.262
MLSeqSurv | voomStackIPF4 0.730+0.066 0.740 (0.705-0.781) 0.535-0.864 0.174+0.020 0.173 (0.159-0.186) 0.142-0.220 31.57+8.81 30.00 (24.75-39.00) 18-51
voomsStackIPF5 0.669+0.092 0.695 (0.641-0.723) 0.351-0.832 0.157+0.029 0.154 (0.139-0.167) 0.102-0.261
voomsStackIPF6 0.675+0.072 0.674 (0.642-0.729) 0.478-0.824 0.15440.022 0.154 (0.139-0.168) 0.103-0.207
voomsStackIPF7 0.731+0.067 0.740 (0.705-0.782) 0.532-0.864 0.174+0.020 0.173 (0.159-0.185) 0.141-0.220
voomStackIPF8 0.678+0.070 0.695 (0.642-0.723) 0.492-0.832 0.154+0.022 0.154 (0.139-0.167) 0.101-0.209
voomsStackIPF9 0.677+0.072 0.687 (0.644-0.729) 0.478-0.824 0.154+0.022 0.154 (0.139-0.168) 0.103-0.207
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feature selection, the xgboost (xgboost gblinear B) (with booster= “gblinear”)
algorithm (0.639+0.032) demonstrated the highest mean concordance index, while the
svm (svm_B) algorithm (0.528+0.110) exhibited the lowest mean concordance index.
In the group of methods from the literature employing internal feature selection, the
ridge (0.640+0.050) and xgboost (with booster= ““gblinear”) (0.639+0.040) algorithms
demonstrated the highest mean concordance index, while the ctree algorithm
(0.553+0.050) exhibited the lowest mean concordance index.

It was observed that the penalized algorithm, with both internal feature
selection and Boruta feature selection, achieved the lowest mean integrated Brier score
at 0.162 for PAAD data. In the category of methods from the literature utilizing
internal feature selection, the penalized (0.162+0.021) and cforest (0.166+0.019)
algorithms showcased the lowest mean integrated Brier score, while the svm
(0.520+0.057), blackboost (0.505+0.139) and ctree (0.419+0.076) algorithms
presented the highest mean integrated Brier score. In the category of methods from the
literature employing Boruta feature selection, the penalized (penalized B)
(0.162+0.024), coxboost (coxboost B) (0.176+0.035), and ranger (ranger_B)
(0.177+0.020) algorithms showcased the lowest mean integrated Brier score, while
svm (svm_B) (0.540+0.062), gimboost (gimboost_B) (0.477+0.158), and blackboost
(blackboost_B) (0.462+0.172) algorithms presented the highest mean integrated Brier
score. Among voomStackLasso group, the voomStackPrio2 (0.172+0.021) and
voomStackIPF5 (0.175+0.017) algorithms displayed the lowest mean integrated Brier
score. Conversely, the voomStackPriol algorithm displayed the highest mean
integrated Brier score, at 0.187.

Among the voomStackLasso algorithms, the mean number of selected features
for PAAD data was the lowest (8.70+3.25). These were closely followed by the
methods in the literature that utilized Boruta feature selection (9.20+3.39). In terms of
internal feature selection methods, the algorithm with the lowest mean number of
features was rfsrc (578.70+465.45), while the algorithm with the highest mean number
of features was obliqueRSF (1062.10+515.55).

The concordance index, integrated Brier score, and the number of selected
features for Sarcoma (SARC) data are depicted in Figure 4.11, with related summary
statistics presented in Table 4.11. After examining both the graph and the table for

SARC data, it was observed that the ridge algorithm, when applied for internal feature
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selection, achieved the highest mean concordance index at 0.650. In the group of
methods from the literature employing internal feature selection, the ridge
(0.650+0.042), cforest (0.635+0.042), penalized (0.634+0.041) and rfsrc
(0.634+0.032) algorithms demonstrated the highest mean concordance index, while
the rpart algorithm (0.557+0.054) exhibited the lowest mean concordance index. In the
group of methods from the literature employing Boruta feature selection, the ranger
(ranger_B) algorithm (0.619+0.052) demonstrated the highest mean concordance
index, while the svm (svm_B) algorithm (0.553+0.055) exhibited the lowest mean
concordance index. Among voomStackLasso group, the voomStackIPF7 algorithm
(0.615+0.032) displayed the highest mean concordance index, while voomStackPrio2
algorithm (0.597+0.043) displayed the lowest mean concordance index.

It was observed that for SARC data, the voomStacklPF4 and voomStackIPF7
algorithms achieved the lowest mean integrated Brier score of 0.192. This is followed
by voomStackIPF1, voomStackIPF2, and voomStackIPF8 resulting in an integrated
Brier score of 0.193. In the category of methods from the literature utilizing internal
feature selection, the cforest and ranger algorithms showcased the lowest mean
integrated Brier score at 0.206, while the svm algorithm (0.437+0.062) presented the
highest mean integrated Brier score. In the category of methods from the literature
utilizing Boruta feature selection, ridge (ridge B) (0.207+0.008) and ranger
(0.209+0.017) algorithms showcased the lowest mean integrated Brier score, while
svm (svm_B) (0.450+0.062) and blackboost (blackboost_B) (0.418+0.111) algorithms
presented the highest mean integrated Brier score. Among voomStackLasso group,
the voomStackIPF4 (0.192+0.010), voomStackIPF7 (0.192+0.011), voomStackIPF1
(0.193+0.011), voomStackIPF2 (0.193+0.012), and voomStackIPF8 (0.193+0.013)
algorithms displayed the lowest mean integrated Brier score. Conversely, the
voomStackPriol algorithm displayed the highest mean integrated Brier score, at 0.202.

Among the methods in the literature that applied Boruta feature selection, the
mean number of selected features for SARC data was the lowest (14.87+4.33). These
were closely followed by the voomStackLasso algorithms (16.27+4.81). In terms of
internal feature selection methods, the algorithm with the lowest mean number of
features was ranger (703.37+511.13), while the algorithm with the highest mean
number of features was xgboost (with booster= “gblinear”) (1184.37+519.21).
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The concordance index, integrated Brier score, and the number of selected
features for Uveal Melanoma (UVM) data are depicted in Figure 4.12, with related
summary statistics presented in Table 4.12. After examining both the graph and the
table for UVM data, it was observed that voomStackIPF3 and voomStackIPF9
achieved the highest mean concordance index at 0.841. In the group of methods from
the literature employing internal feature selection, the elasticnet (0.819+0.056),
xgboost (with booster= “gblinear”) (0.816+0.056), and glmboost (0.815+0.068)
algorithms demonstrated the highest mean concordance index, while the rpart
algorithm (0.698+0.106) exhibited the lowest mean concordance index. In the group
of methods from the literature employing Boruta feature selection, the xgboost (with
booster= “gblinear”) (xgboost gblinear B) algorithm (0.839+0.061) demonstrated the
highest mean concordance index, while the rpart (rpart_B) algorithm (0.721+0.090)
exhibited the lowest mean concordance index. Among voomsStackLasso group, the
voomStackIPF3 and voomStackIPF9 algorithm (0.841+0.059) displayed the highest
mean concordance index while voomStackIPF1l, voomStackIPF4, and
voomStackIPF7 algorithms displayed the lowest mean concordance index, at 0.817.

It was observed that for UVM data, the voomStackIPF3 and voomStackIPF9
algorithms achieved the lowest mean integrated Brier score of 0.108. This is followed
voomStackIPF2, voomStackIPF5, voomStackIPF6, and voomStackIPF8 yielding an
integrated Brier score of 0.111. The voomStackIPF1, voomStacklPF4, and
voomStackIPF7 algorithms displayed the highest mean integrated Brier score, at
0.144. In the category of methods from the literature utilizing internal feature selection,
the penalized algorithm showcased the lowest mean integrated Brier score at 0.122,
while the svm algorithm (0.303+0.071) presented the highest mean integrated Brier
score. In the category of methods from the literature employing Boruta feature
selection, penalized (penalized_B) algorithm (0.119+0.019) showcased the lowest
mean integrated Brier score, while gbm algorithm (0.312+0.086) presented the highest
mean integrated Brier score.

Among the voomStackLasso algorithms, the mean number of selected features
for UVM data was the lowest (42.20+12.95). These were closely followed by the
methods in the literature that utilized Boruta feature selection (43.57+£12.03). In terms

of internal feature selection methods, the algorithm with the lowest mean number of
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Figure 4.10. The concordance index, integrated Brier score, and the number of

selected features for PAAD.
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Table 4.10. The summary statistics of concordance index, integrated Brier score and the number of features selected for PAAD.
Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max

Blackboost 0.637+0.044 0.632 (0.613-0.675) 0.548-0.713 0.50540.139 0.563 (0.485-0.582) 0.165-0.622 963.834583.64 883.00 (486.50-1549.50) 82-1913
Cforest 0.618+0.050 0.613 (0.578-0.658) 0.538-0.736 0.1660.019 0.164 (0.154-0.184) 0.129-0.210 800.27+523.94 746.50 (319.75-1266.50) 42-1703
Coxboost 0.611%0.056 0.612 (0.575-0.655) 0.478-0.696 0.2010.039 0.200 (0.165-0.228) 0.144-0.277 860.90+588.22 782.00 (291.00-1436.25) 58-1898
Ctree 0.553%0.050 0.556 (0.516-0.580) 0.427-0.666 0.419£0.076 0.420 (0.372-0.464) 0.221-0.551 717.90+443.08 663.00 (355.25-1032.00) 38-1620
Elasticnet 0.613+0.050 0.617 (0.576-0.650) 0.486-0.707 0.283+0.077 0.283 (0.214-0.348) 0.156-0.424 985.90+455.34 925.50 (682.75-1315.75) 41-1986
Gbm 0.616:0.041 0.610 (0.584-0.644) 0.556-0.714 0.282+0.088 0.259 (0.235-0.327) 0.146-0.536 705.63+541.56 554.50 (320.75-930.25) 79-1973
Glmboost 0.627£0.053 0.622 (0.591-0.679) 0.515-0.711 0.360+0.187 0.304 (0.180-0.550) 0.163-0.615 772.63+586.42 652.00 (280.75-1229.25) 49-1952
Lasso 0.609+0.049 0.613 (0.581-0.639) 0.492-0.699 0.275+0.084 0.261 (0.205-0.343) 0.133-0.446 883.93+530.35 764.50 (480.50-1334.50) 30-1743

Models ObliqueRSF 0.577+0.050 0.577 (0.540-0.608) 0.496-0.700 0.205+0.052 0.194 (0.167-0.241) 0.136-0.322 1062.10£515.55 1267.00 (688.50-1448.50) 14-1849
Penalized 0.6360.062 0.661 (0.581-0.682) 0.525-0.749 0.1620.021 0.166 (0.146-0.181) 0.120-0.198 774.13+549.19 621.00 (294.50-1275.75) 54-1776
Ranger 0.6310.049 0.629 (0.588-0.663) 0.555-0.719 0.172£0.015 0.173 (0.165-0.181) 0.132-0.200 673.80+448.33 553.50 (262.50-923.75) 83-1742
Rfsrc 0.611+0.048 0.606 (0.580-0.643) 0.519-0.730 0.1720.021 0.171 (0.160-0.184) 0.139-0.234 578.70+465.45 442.00 (182.75-990.00) 34-1764
Ridge 0.64020.050 0.643 (0.601-0.681) 0.541-0.733 0.2010.061 0.181 (0.168-0.190) 0.158-0.424 776.73+583.27 591.00 (313.50-1258.75) 2-1929
Rpart 0.566+£0.060 0.563 (0.533-0.603) 0.376-0.697 0.25540.027 0.249 (0.236-0.275) 0.211-0.314 760.67+533.97 734.50 (295.00-1136.50) 51-1982
Svm 0.588+0.055 0.587 (0.560-0.622) 0.456-0.684 0.52040.057 0.528 (0.480-0.561) 0.402-0.649 988.83+496.60 901.50 (603.00-1330.75) 224-1988
Xgboost (dart) 0.5870.049 0,582 (0.551-0.621) 0.482-0.694 0.245+0.042 0.245 (0.208-0.280) 0.159-0.336 918.40+548.36 908.50 (401.25-1299.50) 137-1981
Xgboost (gblinear) 0.639:£0.040 0.637 (0.613-0.666) 0.566-0.710 0.206:0.021 0.202 (0.190-0.222) 0.173-0.247 1037.30+586.67 1140.50 (529.00-1540.50) 52-1897
Xgboost (gbtree) 0.583+0.059 0.580 (0.531-0.631) 0.467-0.722 0.252+0.050 0.249 (0.213-0.293) 0.177-0.361 842.60+500.42 872.50 (439.75-1257.25) 107-1751
Blackboost 0.614+0.051 0.617 (0.588-0.642) 0.467-0.716 0.46240.172 0.552 (0.198-0.579) 0.174-0.622
Cforest 0.613+0.048 0.611 (0.576-0.646) 0.516-0.712 0.189+0.027 0.191 (0.168-0.206) 0.135-0.263
Coxboost 0.626+0.046 0.624 (0.602-0.656) 0.481-0.733 0.176+0.035 0.174 (0.155-0.202) 0.089-0.254
Ctree 0.582+0.037 0.579 (0.564-0.613) 0.483-0.655 0.35840.057 0.371 (0.315-0.398) 0.211-0.468
Elasticnet 0.6320.044 0.630 (0.614-0.659) 0.479-0.721 0.34020.083 0.339 (0.292-0.396) 0.154-0.538
Gbm 0.593+0.056 0.601 (0.541-0.624) 0.492-0.732 0.310+0.112 0.273 (0.244-0.336) 0.168-0.564
Glmboost 0.626+0.041 0.624 (0.603-0.653) 0.493-0.702 0.477+0.158 0.552 (0.437-0.577) 0.169-0.622
Lasso 0.6310.045 0.633 (0.608-0.657) 0.477-0.712 0.338+0.081 0.351 (0.285-0.396) 0.179-0.478

Models ObliqueRSF 0.586+0.052 0.576 (0.551-0.608) 0.481-0.701 0.209+0.041 0.217 (0.179-0.238) 0.126-0.282

Boruta Penalized 0.633£0.039 0.630 (0.6080.662) | 0.556.0.735 0.162£0.024 0.163 (0.1450.182) | 0.114-0.203 9.20+3.39 900 (6.75-11.00) 518
Ranger 0.610£0.047 0.611 (0.581-0.633) 0.525-0.740 0.177+0.020 0.178 (0.165-0.196) 0.131-0.212
Rfsrc 0.589+0.056 0.591 (0.550-0.635) 0.471-0.688 0.192+0.035 0.183 (0.168-0.217) 0.131-0.267
Ridge 0.630+0.042 0.628 (0.598-0.659) 0.552-0.745 0.192+0.024 0.188 (0.184-0.194) 0.170-0.313
Rpart 0.561:0.061 0.557 (0.520-0.593) 0.427-0.689 0.252+0.026 0.247 (0.232-0.280) 0.189-0.297
Svm 0.528+0.110 0.521 (0.422-0.611) 0.349-0.736 0.540+0.062 0.560 (0.496-0.577) 0.402-0.639
Xgboost (dart) 0.571+0.061 0.580 (0.513-0.618) 0.482-0.730 0.274+0.060 0.275 (0.226-0.315) 0.179-0.427
Xgboost (gblinear) 0.6390.032 0.635 (0.616-0.662) 0.581-0.702 0.197+0.028 0.195 (0.178-0.220) 0.147-0.259
Xgboost (gbtree) 0.572+0.041 0.566 (0.534-0.609) 0.505-0.680 0.264+0.049 0.255 (0.222-0.311) 0.199-0.352
voomStackPriol 0.609+0.054 0.611 (0.570-0.660) 0.476-0.692 0.187£0.042 0.171 (0.158-0.222) 0.128-0.280
voomStackPrio2 0.620£0.064 0.636 (0.578-0.676) 0.484-0.702 0.172£0.021 0.172 (0.164-0.180) 0.125-0.223
voomStackIPF1 0.6370.057 0.643 (0.607-0.680) 0.513-0.722 0.182+0.014 0.183 (0.172-0.191) 0.150-0.210
voomStackIPF2 0.615+0.058 0.617 (0.567-0.666) 0.486-0.704 0.177+0.019 0.178 (0.162-0.188) 0.140-0.211
voomStackIPF3 0.614x0.058 0.616 (0.566-0.669) 0.499-0.704 0.177+0.019 0.178 (0.162-0.188) 0.140-0.212

MLSeqSurv | voomStacklPF4 0.6410.054 0.642 (0.613-0.678) 0.538-0.736 0.182£0.014 0.183 (0.173-0.192) 0.142-0.210 8.70+3.25 8.00 (6.00-11.25) 4-16
voomStackIPF5 0.617+0.061 0.627 (0.567-0.673) 0.486-0.704 0.175+0.017 0.179 (0.161-0.187) 0.145-0.211
voomStackIPF6 0.616+0.062 0.633 (0.569-0.666) 0.498-0.704 0.177+0.017 0.179 (0.165-0.186) 0.144-0.212
voomStackIPF7 0.640:£0.052 0.643 (0.613-0.680) 0.538-0.722 0.181+0.015 0.183 (0.172-0.191) 0.144-0.209
voomStackIPF8 0.614x0.058 0.615 (0.567-0.664) 0.486-0.704 0.177+0.019 0.178 (0.162-0.189) 0.140-0.211
voomStackIPF9 0.615+0.058 0.617 (0.566-0.669) 0.499-0.704 0.177+0.019 0.178 (0.162-0.188) 0.141-0.212
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Figure 4.11. The concordance index, integrated Brier score, and the number of
selected features for SARC.
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Table 4.11. The summary statistics of concordance index, integrated Brier score and the number of features selected for SARC.
Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max

Blackboost 0.624-0.039 0.633 (0.601-0.643) 0.536-0.719 0.395£0.121 0.448 (0.215-0.473) 0.195-0.527 1136.70+681.49 1352.00 (443.00-1798.75) 37-1965
Cforest 0.635+0.042 0.638 (0.603-0.666) 0.553-0.707 0.206:0.018 0.207 (0.193-0.214) 0.176-0.263 1065.40630.42 1151.00 (496.00-1696.00) 48-1978
Coxboost 0.6170.050 0.619 (0.577-0.649) 0.531-0.723 0.264:0.046 0.271 (0.239-0.294) 0.151-0.345 824.57+607.83 661.00 (286.25-1373.50) 34-1811
Ctree 0.574+0.044 0.577 (0.534-0.608) 0.510-0.664 0.3080.066 0.319 (0.242-0.351) 0.214-0.435 766.70+486.35 670.00 (352.00-1053.00) 195-1848
Elasticnet 0.611+0.040 0.616 (0.583-0.629) 0.531-0.709 0.305£0.075 0.290 (0.247-0.349) 0.200-0.513 1138.87585.43 1349.00 (682.50-1634.50) 4-1904
Gbm 0.614:0.052 0.619 (0.587-0.647) 0.473-0.717 0.378+0.066 0.383 (0.342-0.425) 0.218-0.476 892.43£507.18 825.00 (606.00-1168.00) 43-1992
Glmboost 0.617+0.046 0.621 (0.592-0.647) 0.512-0.709 0.37120.130 0.446 (0.209-0.468) 0.189-0.527 1016.47£519.40 1027.00 (601.25-1518.00) | 164-1798
Lasso 0.609+0.044 0.610 (0.571-0.644) 0.536-0.689 0.3430.085 0.344 (0.281-0.397) 0.203-0.549 1010.20+521.46 899.00 (584.75-1442.50) 40-1911

Models ObliqueRSF 0.599+0.051 0.601 (0.559-0.639) 0.491-0.697 0.240£0.041 0.233 (0.223-0.249) 0.169-0.388 1153.10+524.79 1222.50 (839.00-1561.75) | 129-1929
Penalized 0.6340.041 0.635 (0.603-0.664) 0.555-0.730 0.225£0.029 0.221 (0.203-0.244) 0.159-0.308 916.27£554.06 813.00 (436.25-1271.75) 82-1051
Ranger 0.629+0.036 0.635 (0.609-0.656) 0.527-0.695 0.206:0.012 0.205 (0.197-0.214) 0.185-0.243 7033751113 625.00 (302.75-936.50) 35-1962
Rfsrc 0.634:0.032 0.633 (0.615-0.652) 0.543-0.697 0.207£0.011 0.206 (0.200-0.213) 0.183-0.239 750.80+502.84 710.50 (253.25-1137.50) 33-1752
Ridge 0.650:£0.042 0.650 (0.626-0.674) 0.558-0.743 0.325:0.076 0.306 (0.269-0.378) 0.194-0.505 939.20£514.37 871.50 (492.75-1352.50) 150-1831
Rpart 0.557+0.054 0.555 (0.526-0.588) 0.443-0.683 0.298:0.040 0.294 (0.270-0.337) 0.229-0.366 792.70£542.19 800.50 (297.00-1072.25) 44-1829
Svm 0.609:0.066 0.606 (0.577-0.656) 0.416-0.748 0.437£0.062 0.434 (0.389-0.469) 0.291-0.560 1061.53+500.87 1034.50 (710.00-1451.75) | 108-1968
Xgboost (dart) 0.597+0.048 0.592 (0.570-0.633) 0.499-0.698 0.278%0.053 0.267 (0.244-0.299) 0.192-0.413 910.90635.97 718.00 (260.50-1455.50) 31-1985
Xghoost (gblinear) 0.617+0.056 0.626 (0.570-0.656) 0.500-0.699 0.2530.021 0.247 (0.239-0.267) 0.214-0.304 1184.37£519.21 1133.50 (887.75-1709.25) 33-1911
Xgboost (gbtree) 0.595+0.054 0.593 (0.551-0.642) 0.503-0.684 0.297£0.055 0.291 (0.249-0.353) 0.216-0.404 815.33£499.45 741.00 (435.00-1271.50) 47-1944
Blackboost 0.58340.053 0.579 (0.540-0.613) 0.497-0.706 04180111 0.453 (0.425-0.485) 0.197-0.527
Cforest 0.610+0.055 0.616 (0.568-0.640) 0.485-0.738 0.2110.022 0.209 (0.196-0.225) 0.174-0.265
Coxboost 0.6010.054 0.614 (0.552-0.643) 0.496-0.696 0.2520.038 0.246 (0.224-0.290) 0.188-0.321
Ctree 0.558+0.047 0.555 (0.521-0.585) 0.481-0.698 0.365£0.057 0.372 (0.318-0.416) 0.250-0.481
Elasticnet 0.593+0.048 0.594 (0.551-0.629) 0.496-0.673 0.329+0.095 0.307 (0.257-0.384) 0.204-0.552
Gbm 0.596+0.059 0.596 (0.555-0.620) 0.502-0.746 0.38620.077 0.388 (0.330-0.452) 0.215-0.552
Glmboost 0.598+0.050 0.597 (0.568-0.636) 0.509-0.710 0.3970.116 0.447 (0.231-0.480) 0.199-0.527
Lasso 0.597+0.053 0.606 (0.551-0.641) 0.483-0.687 0.3530.100 0.339 (0.273-0.454) 0.176-0.559

Models ObliqueRSF 0.588+0.069 0.592 (0.532-0.664) 0.469-0.700 0.2420.048 0.239 (0.211-0.267 0.148-0.361

Boruta Penalized 0.605£0.046 0.605 (0.568.0.637) | 0.508-0.716 0.2310.032 0.225 E0.204-0.255; 0.171-0.297 14.8724.33 14.00 (12.00-17.50) 8-24
Ranger 0.619:£0.052 0.622 (0.589-0.654) 0.488-0.722 0.209+0.017 0.208 (0.198-0.217) 0.176-0.251
Rfsrc 0.608+0.051 0.599 (0.579-0.639) 0.485-0.739 0.220£0.021 0.216 (0.202-0.232) 0.184-0.278
Ridge 0.6080.046 0.612 (0.574-0.641) 0.517-0.697 0.2070.008 0.205 (0.200-0.215) 0.192-0.221
Rpart 0.563%0.059 0.553 (0.524-0.605) 0.465-0.739 0.302+0.044 0.305 (0.271-0.333) 0.231-0.391
Svm 0.553+0.055 0557 (0.525-0.590) 0.407-0.640 0.4500.062 0.452 (0.395-0.499) 0.355-0.566
Xghoost (dart) 0.588+0.054 0.578 (0.555-0.613) 0.501-0.709 0.285:0.054 0.273 (0.241-0.334) 0.198-0.406
Xghoost (gblinear) 0.586+0.055 0.604 (0.545-0.623) 0.487-0.677 0.2540.030 0.250 (0.234-0.271) 0.211-0.335
Xgboost (gbtree) 0.589+0.061 0.572 (0.554-0.625) 0.486-0.751 0.2950.066 0.285 (0.240-0.354) 0.195-0.428
voomStackPriol 0.6130.037 0.612 (0.587-0.637) 0.524-0.675 0.202£0.014 0.199 (0.194-0.209) 0.176-0.239
voomStackPrio2 0.597+0.043 0.594 (0.556-0.635) 0.528-0.676 0.1970.010 0.199 (0.191-0.204) 0.175-0.213
voomStackIPFL 0.613+0.035 0.613 (0.591-0.637) 0.524-0.694 0.193+0.011 0.192 (0.185-0.202) 0.166-0.214
voomStacklPF2 0.610:£0.042 0.601 (0.577-0.651) 0.530-0.692 0.193£0.012 0.195 (0.187-0.201) 0.168-0.210
voomStackIPF3 0.609:£0.042 0.603 (0.581-0.650) 0.527-0.687 0.1940.012 0.196 (0.187-0.202) 0.168-0.212

MLSeqSurv | voomStackIPF4 0.6130.033 0.610 (0.591-0.636) 0.553-0.695 0.192+0.010 0.192 (0.186-0.201) 0.166-0.208 16.27+4.81 16.00 (13.00-19.25) 7-30
voomStackIPF5 0.6080.044 0.601 (0.577-0.647) 0.527-0.692 0.1940.012 0.196 (0.187-0.202) 0.168-0.213
voomStacklPF6 0.607:£0.045 0.603 (0.581-0.642) 0.522-0.687 0.1940.012 0.197 (0.187-0.203) 0.168-0.213
voomStacklPF7 0.615:0.032 0.613 (0.592-0.637) 0.561-0.696 0.192£0.011 0.192 (0.185-0.203) 0.165-0.210
voomStackIPF8 0.609+0.045 0.601 (0.577-0.653) 0.527-0.692 0.193+0.013 0.196 (0.187-0.203) 0.162-0.213
voomStackIPF9 0.608+0.045 0.603 (0.581-0.652) 0.522-0.687 0.1940.012 0.197 (0.187-0.203) 0.168-0.213




Models Models_Boruta

MLSeqSurv

Concordance Index

025

.—#++z m

o

Models Models_Boruta

MLSeqSurv

1.00

©
b
@

Integrated Brier Score
@

TEINEIREIN

ST SIS E SIS EE S EEE 5205085500050 s St s S b s te? S EEEEELEL
SO ,@é&i&@v@é e \éy”jg FEF LI EETS LT F S TSI ST LS
T & T SR & & FHESELLEEEE
oy = S5 3 SIS S
g
Models Models_Boruta MLSeqSurv
20004
60
3 60
o 1500
o
(3
(7]
g . -
401
% 1000
L3
w
=
o
=
]
20 20
g 500
z
0 0 o4
S & S0 NN > 050 ~ @
ST, 'o°3p%»°&%°"o@@‘§§{~§s? e & &
S \f} & ¥ 69 & ‘g(p’
& ‘2;9"&%’# . & ° &
o ¥ \‘&6\
Models

Groups of Algorithms ‘ Boosted — Penalized * RSF * SVM ‘ voomsStackLasso

Figure 4.12. The concordance index, integrated Brier score, and the number of

selected features for UVM.
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Table 4.12. The summary statistics of concordance index, integrated Brier score and the number of features selected for UVM.
Groups of Concordance Index Integrated Brier Score The Number of Features Selected
Algorithms Models Mean+Sd. Median (1st-3rd . Mean+Sd. Median (1st-3rd . Mean+Sd. . . .
Deviation Quar(tile) Min-Max Deviation Quar(tile) Min-Max Deviation Median (1st-3rd Quartile) | Min-Max

Blackboost 0.789-0.068 0.802 (0.752-0.840) 0.633-0.900 0.258+0.096 0.253 (0.162-0.340) 0.140-0.450 382.90+583.12 817.50 (331.25-1406.00) 113-1981
Cforest 0.798%0.071 0.811 (0.738-0.842) 0.608-0.972 0.1310.024 0.129 (0.120-0.141) 0.079-0.200 916.10+468.87 940,50 (570.75-1368.75) 4-1678
Coxboost 0.786=0.086 0.800 (0.715-0.858) 0.591-0.933 0.176:0.051 0.164 (0.135-0.208) 0.093-0.311 777.53£578.15 610.50 (320.75-1434.75) 26-1860
Ctree 0.7310.053 0.738 (0.689-0.768) 0.639-0.829 0.189+0.074 0.171 (0.135-0.231) 0.103-0.375 772.93+607.28 720.50 (218.25-1143.00) 56-1939
Elasticnet 0.819:£0.056 0.818 (0.789-0.851) 0.701-0.920 0.13240.032 0.129 (0.114-0.152) 0.060-0.200 823.77+419.77 868.50 (414.00-1082.25) 81-1679
Gbm 0.780£0.069 0.779 (0.722-0.846) 0.636-0.897 0.269+0.098 0.242 (0.203-0.309) 0.132-0.584 735.80+601.25 595.50 (201.75-1234.75) 32-1984
Glmboost 0.815£0.068 0.813 (0.777-0.871) 0.636-0.935 0.218+0.094 0.168 (0.150-0.271) 0.130-0.450 1009.93+566.02 994.00 (478.25-1403.75) 18-1972
Lasso 0.799+0.070 0.799 (0.755-0.854) 0.589-0.923 0.13540.030 0.134 (0.113-0.148) 0.075-0.207 854.50+545.62 789.50 (458.75-1273.75) 57-1932

Models ObliqueRSF 0.772+0.079 0.774 (0.721-0.836) 0.562-0.911 0.151+0.045 0.142 (0.127-0.162) 0.086-0.298 1116.40+560.43 1140.50 (553.50-1709.75) 54-1827
Penalized 0.808+0.076 0.833 (0.765-0.853) 0.500-0.886 0.12240.022 0.122 (0.105-0.142) 0.083-0.163 892.07£495.71 853.50 (494.50-1353.00) 102-1848
Ranger 0.808+0.070 0.822 (0.757-0.852) 0.659-0.921 0.1340.016 0.134 (0.127-0.143) 0.100-0.169 783.00£612.29 463.50 (266.75-1383.75) 21-1819
Rfsrc 0.811+0.064 0.818 (0.781-0.850) 0.648-0.953 0.1400.018 0.139 (0.129-0.147) 0.107-0.185 1102.63+534.90 1171.00 (661.00-1524.00) | 186-1976
Ridge 0.808+0.056 0.814 (0.769-0.842) 0.682-0.894 0.145+0.020 0.143 (0.133-0.154) 0.115-0.200 722.47+540.51 719,00 (229.00-1043.50) 57-1971
Rpart 0.698+0.106 0.696 (0.596-0.794) 0.522-0.867 0.224+0.072 0.231 (0.162-0.258) 0.102-0.359 342.434545.78 894.00 (244.50-1250.50) 11-1871
Svm 0.75940.117 0.785 (0.717-0.837) 0.322-0.902 0.303+0.071 0.279 (0.252-0.352) 0.198-0.524 3834.00£572.32 737.50 (298.50-1230.00) 105-1920
Xgboost (dart) 0.752+0.091 0.777 (0.682-0.813) 0.528-0.874 0.169+0.033 0.165 (0.149-0.186) 0.116-0.278 820.17+536.59 744,00 (391.25-1134.50) 14-1801
Xgboost (gblinear) 0.8160.056 0.817 (0.786-0.866) 0.670-0.897 0.154+0.032 0.158 (0.135-0.175) 0.081-0.226 830.43+447.23 780.50 (511.25-1218.75) 107-1611
Xgboost (gbtree) 0.746+£0.102 0.761 (0.689-0.834) 0.483-0.920 0.181+0.039 0.179 (0.162-0.201) 0.082-0.270 617.874407.24 524.00 (278.25-932.75) 15-1496
Blackboost 0.804+0.063 0.808 (0.747-0.865) 0.704-0.926 0.260+0.085 0.265 (0.182-0.336) 0.142-0.450
Cforest 0.810£0.058 0.823 (0.784-0.848) 0.659-0.920 0.127+0.026 0.124 (0.104-0.142) 0.087-0.199
Coxboost 0.821+0.051 0.815 (0.786-0.853) 0.708-0.933 0.146:0.039 0.141 (0.125-0.174) 0.068-0.224
Ctree 0.736+£0.066 0.740 (0.677-0.806) 0.629-0.843 0.183+0.036 0.190 (0.154-0.209) 0.105-0.247
Elasticnet 0.829+0.055 0.828 (0.783-0.881) 0.744-0.920 0.128+0.033 0.127 (0.103-0.147) 0.066-0.197
Gbm 0.776:0.069 0.778 (0.733-0.832) 0.625-0.953 0.312£0.086 0.290 (0.261-0.343) 0.191-0.572
Glmboost 0.825+0.060 0.825 (0.770-0.869) 0.733-0.944 0.185+0.085 0.150 (0.138-0.177) 0.122-0.450
Lasso 0.819+0.056 0.816 (0.773-0.868) 0.731-0.933 0.134+0.040 0.131 (0.106-0.158) 0.065-0.228

Models ObliqueRSF 0.7690.088 0.775 (0.729-0.821) 0.505-0.911 0.15540.047 0.143(0.131-0.171 0.079-0.302

Boruta Penalized 0.8300.065 0.827 (0.787:0.882) | 0.714.0.953 0.119£0.019 0.122 E0.103-0.135; 0.084-0.153 43.57+12.03 41.50 (34.75-52.25) 15-69
Ranger 0.818+0.063 0.820 (0.775-0.865) 0.711-0.941 0.129+0.018 0.127 (0.116-0.141) 0.100-0.183
Rfsrc 0.81120.075 0.797 (0.766-0.866) 0.663-0.965 0.134+0.025 0.130 (0.117-0.145) 0.086-0.193
Ridge 0.818+0.059 0.826 (0.775-0.857) 0.704-0.929 0.157+0.018 0.161 (0.146-0.166) 0.112-0.203
Rpart 0.7210.090 0.722 (0.657-0.803) 0.534-0.880 0.203%0.053 0.192 (0.165-0.239) 0.124-0.332
Svm 0.770+0.146 0.796 (0.728-0.845) 0.128-0.947 0.269+0.080 0.261 (0.218-0.314) 0.129-0.511
Xgboost (dart) 0.767+0.092 0.763 (0.718-0.819) 0.577-0.947 0.181£0.039 0.178 (0.153-0.207) 0.095-0.270
Xgboost (gblinear) 0.839:0.061 0.834 (0.797-0.883) 0.721-0.953 0.15540.035 0.157 (0.130-0.179) 0.066-0.219
Xgboost (gbtree) 0.766+0.074 0.757 (0.717-0.821) 0.592-0.929 0.190+0.049 0.180 (0.161-0.216) 0.100-0.309
voomStackPriol 0.8270.063 0.828 (0.777-0.880) 0.644-0.926 0.13320.033 0.127 (0.108-0.158) 0.086-0.212
voomStackPrio2 0.828+0.070 0.849 (0.766-0.887) 0.655-0.926 0.123+0.015 0.123 (0.114-0.131) 0.088-0.157
voomStackIPF1 0.817+0.063 0.810 (0.764-0.864) 0.698-0.937 0.144+0.013 0.143 (0.135-0.152) 0.120-0.183
voomStackIPF2 0.840:£0.055 0.839 (0.807-0.883) 0.655-0.916 0.111+0.016 0.112 (0.099-0.121) 0.083-0.150
voomStackIPF3 0.8410.059 0.851 (0.810-0.888) 0.655-0.926 0.1080.018 0.107 (0.095-0.119) 0.077-0.151

MLSeqSurv | voomStacklPF4 0.8170.062 0.810 (0.763-0.859) 0.698-0.937 0.1440.013 0.143 (0.134-0.153) 0.126-0.183 42.20£12.95 40.00 (33.00-50.50) 19-72
voomStackIPF5 0.840:£0.055 0.839 (0.807-0.883) 0.655-0.916 0.111£0.016 0.112 (0.099-0.121) 0.083-0.150
voomStackIPF6 0.830+0.072 0.836 (0.798-0.885) 0.600-0.926 0.111:0.020 0.110 (0.097-0.123) 0.077-0.165
voomStackIPF7 0.817+0.062 0.810 (0.764-0.859) 0.698-0.937 0.144+0.012 0.143 (0.135-0.152) 0.126-0.183
voomStackIPF8 0.840£0.055 0.839 (0.807-0.883) 0.655-0.916 0.11120.016 0.112 (0.099-0.121) 0.083-0.150
voomStackIPF9 0.841:£0.059 0.851 (0.810-0.888) 0.655-0.926 0.108+0.018 0.107 (0.095-0.119) 0.077-0.151
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features was xgboost (with booster= “gbtree”) (617.87+407.24), while the algorithm
with the highest mean number of features was obliqueRSF (1116.40+£560.43).

4.2. Super Lists

Within the study's scope is a plan to compare the model performances of 47
algorithms, including the newly developed ones. Due to the extensive number of
methods, diverse datasets, and multiple performance measures, determining the best
methods in every aspect is challenging. Therefore, the rank aggregation method was
employed. Rank aggregation is an optimization method capable of combining ordered
lists. Utilizing this approach, separate assessments were conducted based on the
number of selected features, concordance index, and integrated Brier score. As a result
of these evaluations, super lists were generated for each performance measure, ranking
methods from the best-performing to the worst-performing (Figure 4.13, Figure 4.14,
and Figure 4.15). Super lists have been generated based on the colors and numbers

assigned to the compared methods:

voomStackPriol | 1 blackboost 1| |blackboost B 1
voomStackPrio2 | 2 | | coxboost 2 | |coxboost B 2
voomStackIPF1 | 3 gbm 3| |gbm B 3
voomStackIPF2 | 4 | | glmboost 4| |glmboost B 4
voomStackIPF3 | 5 | |xgboost gbtree | 5| |xgboost gbtree B |5
voomStacklPF4 | 6 | |xgboost gblinear | 6 | |xgboost gblinear B | 6
voomStackIPF5 | 7 xgboost _dart 7| |xgboost dart B 7
voomStackIPF6 | 8 elasticnet 1| |elasticnet B 1
voomStackIPF7 | 9 lasso 2| |[lasso B 2
voomStacklPF8 | 10| |penalized 3| |penalized B 3
voomStackIPF9 [11| |ridge 4 ridge B 4
cforest 1| |cforest B 1
ctree 2 ctree B 2
obliqueRSF 3| |obliqgueRSF B 3
ranger 4 ranger B 4
rfsrc 5 rfsrc B 5
rpart 6 rpart B 6
svm 1 svm B 1

In Figure 4.13, a super list has been compiled based on the concordance index.
Initially, the concordance index results for each dataset were arranged in descending
order on separate lines. Running the rank aggregation algorithm across these 12

datasets formed the super list displayed in the bottom row. Among the top 20 methods
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Figure 4.14. The ranking of survival algorithms based the integrated Brier score.
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1 2 3 4 5 6 7 8 9 |10 |11 (12 (13|14 |15 |16 |17 | 18 | 19 | 20

ACC MLSeqSurv | Models Boruta | 6 | 3 | 2 | 4 [ 4 | 7 |5 | 4|2 |16 (2|1 (|5]|1|3]1]3

CESC MLSeqSurv Models Boruta | 1 5| 4 6 | 4|3 1 4 1 6] 7 5 2 2 8] 1 2 6

ESCA | Models Boruta MLSeqSurv 3 (414|243 |2|3|2|5|7|1|6(|12]|6]S5

GBM Models Boruta | MLSeqSurv 414|534 (3|6|1]|2|5|1|2|2|1]|]1]|7]3]|F%®6

KIRC MLSeqSurv ModelsBoruta | 6 | 2 | 4 | 4 |1 (3|3 |2 |5 |2 |4|5([1]|3([7]|1|1]6

KIRP Models Boruta MLSeqgSurv 6 (1|2 |3|2|5|7|4|3|2|3|1|1|4|[5[4]1]F€6

LAML | Models Boruta | MLSeqSurv 71542 |2|1|4|6|4|5|1|3|1|6][3|]2|1]3

LGG Models Boruta MLSeqSurv 71422 |1|5|6]|3|1|1|4|5|3|2[3[1]|4]36

MESO | Models Boruta MLSeqSurv 4|52 |7|6|5 |13 |43 [4|12]|]2]12]|]1]|]6]2]3

PAAD MLSeqSurv Models Boruta | 5 4 3 2 6 4 B 4 1 5 2 2 7 1 1 1 6 | 3

SARC | Models Boruta MLSeqSurv 4|52 |6 |52 |37 |3 (4242|212 ]|]212]|]1]3]F6

UvM MLSeqSurv Models Boruta | 5 4 3 2 2 4 7 1 6 1 6 2 1 8 1 4 51| 3

Models Boruta | MLSeqSurv 4 | 2 6
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Super
List Models Boruta | MLSeqSurv

ranger
ctree
rpart
ridge
glmboost
penalized
xgboost_dart
Xgboost_gbtree
coxboost
lasso
rfsrc
cforest
elasticnet
blackboost
gbm
svm
obliqueRSF
xgboost_gblinear

Figure 4.15. The ranking of survival algorithms based the number of selected
features.

according to the concordance index in this list are the following: ranger, ridge,
elasticnet, cforest, voomStackIPF1, rfsrc, voomStackIPF7, voomStackIPF4,
ranger_B, coxboost, ridge B, lasso, penalized B, gbm, elasticnet B, glmboost,
penalized, blackboost, lasso_B, xgboost (gblinear).

In Figure 4.14, a super list has been compiled based on the integrated Brier
score. Initially, the integrated Brier score results for each dataset were arranged on
separate lines from smallest to largest. Running the rank aggregation algorithm across
these 12 datasets formed the super list displayed in the bottom row. Among the top 20
methods according to the integrated Brier score in this list are the following, listed in
order: penalized_b, cforest, gbm, voomStackIPF2, voomStackIPF5, voomStackIPF6,
ranger, ranger_B, rfsrc, voomStackIPF8, voomStackIPF3, voomStackIPF9, rfsrc_B,
voomStackPrio2, voomStackIPF7, voomStackIPF1, voomStackIPF4,
voomStackPriol, coxboost_b, obliqueRSF.

In Figure 4.15, a super list has been generated based on the number of selected

features. Initially, lists were created for each dataset, ranging from using the least
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features to using the most features. In the resulting super list, it was chosen the least

number of features.

Number of Features

Integrated

Concordance Index )
Brier Score

elasticnet
voomStackIPF2

voomStackIPF3

ranger_B

ridge elasticnet_B

penalized_B \ voomStackIPF5

lasso_B

lasso

voomStackIPF8
voomStackIPF9

voomStackPrio1

voomStackIPF1

voomStackIPF4

xgboost_gblinear

voomStacklPF7 | \oomstackPrio2

gbm

ranger  cforest

obliqueRSF

glmboost

penalized

rfsrc

blackboost

Figure 4.16. A Venn diagram illustrating optimal practices concerning concordance
index, integrated Brier score, and the number of selected features.

Upon scrutinizing the survival models in this study solely based on a high
concordance index, it was evident that the lasso, elastic net, ridge, xgboost (gblinear),
gbm, glmboost, and blackboost algorithms, employing internal feature selection,
exhibited commendable performance. The obliqueRSF, which also utilizes internal
feature selection, was the sole model displaying a low integrated Brier score. Models
with both a high concordance index and a low integrated Brier score include cforest,
ranger, rfsrc, and penalized—each utilizing internal feature selection. Nevertheless,
despite their high performance in concordance index and integrated Brier score, these
models tend to incorporate excessive features. Elastic net and lasso models utilizing
Boruta feature selection exhibited low features and a high concordance index value.
However, their integrated Brier scores were also high. On the other hand,
voomStackIPF2, voomStackIPF3, voomStackIPF5, voomStackIPF6, voomStackIPF8,
voomStackIPF9, voomStackPriol, voomStackPrio2, rfsrc, and coxboost algorithms,
when employing Boruta feature selection, displayed a low feature count and a low
integrated Brier score value. Despite this, their concordance index values were not

notably high. Methods striking a balance between a high concordance index, low
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integrated Brier score, and a modest feature count include voomStackIPF1,
voomStackIPF4, voomStackIPF7, ranger, and penalized algorithms—all utilizing

Boruta feature selection (Figure 4.16).

4.3. Computational Time

The execution times of the algorithms for MESO, SARC, and LGG data are
presented in minutes in Table 4.13. Upon examination, it is evident that
voomStackLasso algorithms typically complete calculations in significantly less time
than existing algorithms. This characteristic enhances the practical utility of the newly

developed algorithms.
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Table 4.13. The summary statistics of the computational time for MESO, SARC, and

LGG.
Groupsof | 4o el MESO SARC LGG
Algorithms
Blackboost 60.69 55.94 102.08
Cforest 195.91 201.36 456.48
Coxboost 49.73 90.32 192.55
Ctree 18.23 24.9 39.9
Elasticnet 1.54 2.79 3.51
Gbm 5.01 23.4 48.37
GlImboost 18.56 55.71 109.59
Lasso 1.76 2.75 3.58
ObligueRSF 58.84 509.18 1064.64
Models Penalized 269 6.39 8.33
Ranger 2.17 72.07 419.81
Rfsrc 2.19 11.05 22.17
Ridge 1.35 2.89 5.00
Rpart 1.54 3.44 4.01
Svm 2.01 52.58 155.51
Xgboost (dart) 1.06 4.54 5.7
Xgboost (gblinear) 0.97 3.07 3.7
Xghboost (gbtree) 1.1 4.31 7.1
Blackboost 12.12 16.40 202.12
Cforest 25.37 85.65 1052.77
Coxboost 5.5 7.65 52.99
Ctree 0.93 0.92 6.35
Elasticnet 0.78 0.54 2.06
Gbm 0.71 0.63 5.31
Glmboost 6.97 11.48 104.63
Lasso 0.72 0.55 2.06
Models ObliqueRSF 26.21 66.44 243.68
Boruta Penalized 0.39 0.52 1.47
Ranger 5.85 99.52 544.57
Rfsrc 2.2 17.71 31.12
Ridge 0.75 0.54 2.03
Rpart 1.18 2.01 2.08
Svm 6.94 51.86 193.7
Xgboost (dart) 2.39 4.13 3.71
Xgboost (gblinear) 2.21 3.77 3.24
Xghoost (gbtree) 2.41 4.02 3.7
voomStackPriol 0.59 0.94 13.48
voomStackPrio2 0.58 0.85 13.36
voomStackIPF1 0.41 0.56 5.73
voomStackIPF2 0.72 0.45 9.82
voomStackIPF3 1.36 0.48 48.88
MLSeqSurv voomStackIPF4 0.42 0.53 7.24
voomStackIPF5 0.77 0.51 11.86
voomStackIPF6 0.99 0.44 50.64
voomStackIPF7 0.43 0.53 5.40
voomStackIPF8 0.66 0.41 4.56
voomStackIPF9 1.13 0.34 37.78

The values in the table are calculated in minutes. Mean values are given.
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5. DISCUSSION

Previously conducted with low-dimensional clinical data in earlier studies,
survival analyses have undergone a transformative shift toward integrating large-
dimensional gene expression data, such as RNA-seq. This shift reflects the advancing
landscape of precision medicine, emphasizing personalized diagnoses and treatments
over-generalized approaches applied uniformly to all patients. Researchers are
using genetic data to diagnose and treat diseases because they have realized that
different people respond differently to the same treatments and that diseases progress
differently in different ways in the same individuals. This paradigm shift towards
leveraging genetic information underscores the significance of tailoring medical
interventions based on an individual's unique genetic makeup, ushering in a new era
of targeted and more effective healthcare strategies.

Machine learning methods have been devised for survival analyses on high-
dimensional RNA-seq data. In the context of this thesis, we compared these established
methods in the literature with novel approaches we developed ourselves. The criteria
employed for model comparisons encompassed the concordance index and integrated
Brier score. Performance evaluation in survival analyses typically involves two main
aspects: discrimination and calibration.

In  survival analyses, the concordance index isthe most widely
used discrimination metric. Listing anticipated risk scores and actual results is the first
step, and then the alignment of these rankings is compared. Concordance occurs when
an individual who experiences an event at the start of the study period is given a greater
predicted risk score than an individual who experiences the event at the end of the
study period or never during the study period. This index represents the probability
that two randomly chosen subjects have correctly ranked risk estimates. Despite its
common use, the concordance index has drawbacks. It relies solely on the ranks of
predicted values, potentially inflating the index for models with inaccurate predictions
compared to competing models with more accurate predictions (245). Furthermore,
when introducing new statistically and clinically significant variables to the model, the
concordance index becomes less reliable, as it is insensitive to such additions (246).
Additionally, its interpretation is limited due to the amalgamation of sensitivity and

selectivity concepts (247).
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Alternatively, the Brier score shows up as a complete performance measure
that includes both calibration and discrimination. With respect tothe predicted
survival probability, this score measures the mean squared error. It can calculate a
general error measurement over all time points and be applied to a particular time point
(t). But in order to compute the Brier score, baseline estimation is required, and
different approaches can produce different scores. In this study, we employed the Brier
score developed by Graf et al. (219), eliminating the need for baseline estimation. This
method categorizes test data into two groups based on the training model, estimating
the risk-free probability for each sample from the Kaplan-Meier estimate relevant to
the group.

Models were additionally assessed based on the number of features they
selected. For models beyond the approaches we devised, analyses conducted using the
mir3proba package (215) revealed that the internal feature selection algorithms
needed to be sufficiently sparse in their selection, encompassing a broad array of
features. Consequently, the Boruta feature selection algorithm was applied in
subsequent analyses, addressing the need for more focused feature selection. In this
case, although models were created with fewer features, it has been observed that there
is little difference in model performances. Moreover, previous studies experimenting
with various feature selection methods for survival data have also indicated no
difference in model performance (52,248).

Upon reviewing the concordance index results, it is noteworthy that while the
internal feature selection and Boruta feature selection outcomes of algorithms in the
literature generally yield similar results, distinct algorithms exhibit higher
performance on different datasets. For instance, in evaluations based on concordance
index results for methods in the literature employing internal feature selection, the
ranger algorithm demonstrated superior performance in ESCA and GBM data, the
ridge algorithm excelled in PAAD and SARC data, and the elastic net algorithm
outperformed in MESO data. Notably,in the LAML data, the coxboost
algorithm performed the best, while in the ACC data, the cforest algorithm performed
exceptionally well. After scrutinizing the literature's approaches, it became evident
that ctree and rpart methods generally yielded lower accuracy across all datasets.
Comparative studies utilizing these algorithms concluded that different methods

performed better in diverse studies despite generating similar performance results. In
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a study encompassing ten different cancer datasets, Cox Proportional Hazards with
Ridge penalty, Random Survival Forests, Gradient Boosting for Survival Analysis
with a CoxPh loss function, linear and kernel Support Vector Machines generally
delivered comparable concordance index results, particularly in higher-dimensional
data. Cox proportional hazards demonstrated suboptimal performance in some high-
dimensional sets (249). Numerous studies have consistently showcased the high-
performance outcomes of the random survival forest algorithm (250-252). While
xgboost and random survival forest algorithms demonstrated similar performance in
certain studies (253), the xgboost algorithm outperformed in others (254,255).
Furthermore, studies are highlighting the high performance of the elasticnet algorithm
(256), the gbm algorithm (257), and the blackboost algorithm (53). In comparisons of
survival algorithms, the svm algorithm either showed results comparable to other
methods or exhibited lower performance outcomes (258).

When scrutinizing the results of the integrated Brier score, it is observed that
penalized, ranger, rfsrc, and cforest algorithms, among the survival algorithms in the
literature, consistently yield high-performance outcomes. Conversely, blackboost,
elasticnet, gbm, lasso, and svm algorithms tend to exhibit notably lower performances.
It's important to note that while algorithms with low integrated Brier score often
demonstrate high concordance index performances, relying solely on the concordance
index for model performance evaluation may not suffice for a comprehensive
assessment. This issue was also highlighted by Hermann et al., (53) in their article,
which argues that the selection of a performance measure can have a significant effect
on the assessment of the performance of a method. While many studies traditionally
measure survival model performances with the concordance index, Hermann et al. (53)
argued that the cindex is not an ideal measure as it solely assesses discrimination. They
proposed that the integrated Brier score is a more accurate measure. Additionally,
Hermann et al. (50) highlighted that if the study's goal is risk classification, using the
concordance index for interpretability is more accurate, whereas for prognostic
accuracy, the integrated Brier score is the preferred metric.

When assessed in terms of the number of variables incorporated into the model,
it becomes evident that the means and standard deviations of the selected variables in
algorithms employing internal feature selection methods are notably high, indicating

a lack of sparsity in these methods. However, upon applying Boruta feature selection
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to these algorithms, models could be constructed with significantly fewer variables. In
addition, Spooner et al. (52)compared model performance with survival algorithms
and with feature selection methods and found that feature selection did not result in
significant changes in model performance. This study observed that when both Boruta
feature selection and internal feature selection were applied to survival algorithms in
the literature, the model's performance was not significantly altered based on the
concordance index and integrated Brier score. It can be stated that, in some datasets,
model performances with Boruta feature selection are relatively lower than those with
integrated feature selection. However, it is noteworthy that, in models where Boruta
feature selection is applied, the mean and standard deviation of the selected feature
numbers are considerably lower.

When the models are evaluated in terms of calculation times, it is noteworthy
that boosting methods such as blackboost take a very long time to model. In addition,
it has been observed that penalized Cox regression models such as lasso, ridge,
elasticnet can model very quickly.

A comprehensive study was carried out, utilizing 12 real RNA-seq survival
datasets, to assess the proposed methodologies' efficacy and compare their
performance with that of other survival algorithms. Remarkably good results were
achieved when applied to real data. Notably, three of the recently formulated
voomStackIPF approaches (voomStackIPF1, voomStackIPF4, and voomStackIPF7)
demonstrated comparable or slightly superior results compared to the most favorable
results attained by established methods documented in the literature for the analysis of
RNA-seq survival data. These models demonstrated a high concordance index and a
low Brier score, showcasing the capability to generate models swiftly with minimal
variables. In addition, the models were also evaluated for how long it took to achieve
results. Upon further analysis, it became clear that the proposed algorithms delivered
results in a fraction of the time as the existing algorithms described in the literature.

The new algorithms used in this study are the first to integrate logCPM and
voom transformation-derived sample weights into survival algorithms for the first
time. While voom transformation has previously been used in differential expression
(69), classification (71), and clustering (72) analysis of RNA-seq data, this is the first
study to use voom transform in survival algorithms. This study shows impressive

performance and provides sparse results.The accuracy of the voom transformation to
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model the mean-variance relationship in RNA seq data is thought to be critical to the
success of our novel survival algorithms. Additionally, the weights obtained through
the voom transformation confer advantages, such as accommodating samples with
varying sorting depths and mitigating the impact of low-quality samples.

The stacking algorithm can alter the structure of survival data, converting it
into a classification data format. Consequently, all algorithms designed for
classification issues can be extended to address survival problems. Hence, the stacking
algorithm, renowned for its high-performance outcomes when applied to low-
dimensional data (61), was introduced for the first time to RNA-seq data in this study.
In the context of this thesis, the stacking algorithm facilitated the utilization of priority-
Lasso and IPF-Lasso classification algorithms, incorporating sample weights, for the
inaugural analysis of RNA-seq survival data. Integration with various classification
algorithms is achievable through the stacking algorithm. Rather than being confined
to a restricted set of survival algorithms, researchers can now employ numerous
classification algorithms, numbering in the hundreds drawn from existing literature
and incorporating newly developed methods for enhanced analysis. Thus, the stacking
algorithm and other established classification algorithms in the literature can now be
applied in the survival data analysis.

In this thesis study, several key factors contributed to the success of the new
algorithms used to analyze the survival data for RNA-seq: (i) the application of the
potent voom transformation algorithm to the data, (ii) the transformation of the
intricate structure of survival data into a simplified classification data structure through
stacking algorithms, (iii) the utilization of priority-Lasso and IPF Lasso algorithms
capable of analyzing the block structure of variables with diverse data structures
obtained through stacking, leading to more precise results, (iv) the modeling approach
involves applying distinct weights to individual samples in the RNA-seq data, and (v)
the Boruta algorithm, known for its effectiveness in selecting important variables, has
been integrated into newly developed algorithms. The combination of these robust
approaches has led to the development of two different survival algorithms: high
performance, sparse, and efficient modeling algorithms, which have made significant
contributions to the literature.

The developed algorithms extend beyond conventional survival analysis; they

also demonstrate exceptional proficiency in biomarker discovery. Their ability to
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perform both survival assays and biomarker assays using gene expression data at the
same time is of great importance to healthcare professionals, helping them to better
diagnose patients. Creating a decision support system for clinical diagnosis, driven by
identifying the most pertinent genes associated with a disease, empowers clinicians to
make more accurate diagnoses promptly. This, in turn, facilitates the development of
personalized treatments, enhances patients' quality of life, and positively contributes
to the country's economy.

MLSeqSurv, which was created for this thesis, allows researchers to perform
survival assays on the RNA-seq dataset using existing survival algorithms in the
literature as well as new algorithms. This package makes it easy to create individual
survival graphs so you can perform your own analysis without having to spend a lot of
time coding.

The newly developed algorithms, voomStackPrio, and voomStackIPF,
introduced within the context of this study, were implemented on RNA-seq data.
However, these algorithms can be extended for future investigations to analyze other
high-dimensional datasets such as microarray, proteomics, and metabolomics by
customizing the pre-processing steps. It is anticipated that in other high-dimensional
data settings, similar to RNA-seq, these algorithms would yield high-performance
results, particularly in the context of survival analyses. Additionally, in this study, only
protein-coding genes have been considered. However, in future studies, non-coding
genes may also be included in the analysis. Similarly, this study utilized bulk RNA-
seq data; however, the pre-processing step can be adapted and implemented for
survival analyses of single-cell RNA-seq data.

In this study, survival prediction was achieved by looking at data with
heterogeneous structures due to stacking through block structured lasso algorithms.
Future survival algorithms could be created using multiple kernel algorithms where
different types of data are evaluated in different cores. Moreover, studies have
demonstrated performance improvements when combining RNA-seq data with
clinical data or other omics data like microarray, metabolomics, and proteomics. This
situation aligns well with the voomStackIPF and voomStackPrio algorithms developed
in this study, which were designed to evaluate different data types in distinct blocks.
For instance, in scenarios involving clinical + RNA-seq data, post voom

transformation, and stacking, clinical data could be analyzed in one block while RNA-
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seq data is assessed in another. Similarly, for RNA-seq + metabolomics + proteomic
data, each data type could be processed and stacked separately according to its
structure, allowing for analysis in individual blocks—one for RNA-seq data, another

for metabolomics data, and a third for proteomic data.
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6. CONCLUSION

In this paper, we introduced two new algorithms to the literature: voom
transformation and stacking algorithm, as well as block-based lasso algorithms for
RNA-seq survival analysis. These algorithms solve problems such as high
dimensionality, high collinearity, and heterogeneity in RNA-seq data, tackling
survival problems by conceptualizing them as classification problems. The algorithms
developed have comparable or better model performance compared to other techniques
described in the literature, showing their efficiency in building models with minimal
features. In addition, these algorithms are much faster than existing algorithms in terms
of computational time, delivering results in a fraction of the time.

On the basis of these results, voomStackLasso algorithms serve as a viable

alternative to other survival algorithms used in the analysis of RNA-seq datasets.



10.

11.

12.

13.

14.

15.

154

7. REFERENCES

Fielden MR, Zacharewski TR. Challenges and limitations of gene expression profiling
in mechanistic and predictive toxicology. Toxicol Sci. 2001;60(1):6-10.

Richard C. Analysis of cell division parameters and cell cycle gene expression during
the cultivation of Arabidopsis thaliana cell suspensions. J Exp Bot.
2001;52(361):1625-33.

Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B, et al. Gene
expression profiling for molecular characterization of inflammatory breast cancer and
prediction of response to chemotherapy. Cancer Res. 2004;64(23):8558-65.

Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies.
PLoS Comput Biol. 2017;13(5):1-23.

Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.
Nat Rev | Genet. 2009;VOLUME 10(JANUARY 2009):57-63.

Van Vliet AHM. Next generation sequencing of microbial transcriptomes: Challenges
and opportunities. FEMS Microbiol Lett. 2010;302(1):1-7.

Raz T, Kapranov P, Lipson D, Letovsky S, Milos PM, Thompson JF. Protocol
dependence of sequencing-based gene expression measurements. PL0OS One.
2011;6(5).

Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray
in epigenetic research. Briefings Funct Genomics Proteomics. 2009;8(3):174-83.

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: An assessment of
technical reproducibility and comparison with gene expression arrays. Genome Res.
2008;18(9):1509-17.

O’Connell M. Differential expression, class discovery and class prediction using S-
PLUS and S+ArrayAnalyzer. ACM SIGKDD Explor Newsl. 2003;5(2):38-47.

Slonim DK, Tamayo P, Mesirov JP, Golub TR, Lander ES. Class prediction and
discovery using gene expression data. Proc Annu Int Conf Comput Mol Biol
RECOMB. 2000;263-72.

Hajizadeh N, Zhang M, Akerman M, Kohn N, Mathew A, Hadjiliadis D, et al. Survival
models to support shared decision-making about advance care planning for people with
advanced stage cystic fibrosis. BMJ Open Respir Res. 2021;8(1):1-14.

Alizadeh AA, Elsen MB, Davis RE, Ma CL, Lossos IS, Rosenwald A, et al. Distinct
types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature.
2000;403(6769):503-11.

Rosenberg J, Chia YL, Plevritis S. The effect of age, race, tumor size, tumor grade, and
disease stage on invasive ductal breast cancer survival in the U.S. SEER database.
Breast Cancer Res Treat. 2005;89(1):47-54.

Zhu B, Song N, Shen R, Arora A, Machiela MJ, Song L, et al. Integrating Clinical and



16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

155

Multiple Omics Data for Prognostic Assessment across Human Cancers. Sci Rep
[Internet]. 2017;7(1):1-13. Awvailable from: http://dx.doi.org/10.1038/s41598-017-
17031-8

Wang C, Machiraju R, Huang K. Breast cancer patient stratification using a molecular
regularized consensus clustering method. Methods [Internet]. 2014;67(3):304-12.
Available from: http://dx.doi.org/10.1016/j.ymeth.2014.03.005

Rafiq S, Tapper W, Collins A, Khan S, Politopoulos I, Gerty S, et al. Identification of
inherited genetic variations influencing prognosis in early-onset breast cancer. Cancer
Res. 2013;73(6):1883-91.

Silveira DRA, Quek L, Santos IS, Corby A, Coelho-Silva JL, Pereira-Martins DA, et
al. Integrating clinical features with genetic factors enhances survival prediction for
adults with acute myeloid leukemia. Blood Adv. 2020;4(10):2339-50.

Klein PJ, Moeschberger ML. SURVIVAL ANALYSIS Techniques for Censored and
Truncated Data. Springer; 2003.

E.L. Kaplan PM. Nonparametric Estimation from Incomplete Observations Author (s
): E . L . Kaplan and Paul Meier Source: Journal of the American Statistical
Association , Vol . 53 , No . 282 ( Jun ., 1958 ), pp . 457- Published by : American
Statistical Association Sta. Am Stat Assoc. 1958;53(282):457-81.

Society RS, Society RS. Asymptotically Efficient Rank Invariant Test Procedures
Author ( s ): Richard Peto and Julian Peto Reviewed work (s ): Source : Journal of the
Royal Statistical Society . Series A ( General ), Vol . 135, No .2 (1972), pp . Published
by : Wiley for th. 2013;135(2):185-207.

KLEIN J. Small sample moments of some estimators of the variance of the Kaplan-
Meier and Nelson-Aalen estimators. Scand J Stat. 1991;18(4):333-40.

Cutler SJ, Ederer F, Bethesd L. MAXIMUM UTILIZATION ANALYZING
SURVIVAL OF THE LIFE TABLE METHOD the method and its uses have been
admirably described by a number of authors , 2-6. Survival (Lond) [Internet]. 1958;
Available from: file:///E:/Todas as coisas da Tali/Leituras/Artigos/Cutler and Ederer
1958.pdf

Cox DR. Regression Models and Life-Tables Authors (s ): D . R . Cox Source : Journal
of the Royal Statistical Society . Series B ( Methodological ), Vol . 34, No . 2 Published
by : Wiley for the Royal Statistical Society Stable URL : http://www jstor.org/stable. J
R Stat Soc. 1972;34(2):187-220.

Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s
proportional hazards model via coordinate descent. J Stat Softw. 2011;39(5):1-13.

Hesterberg T, Choi NH, Meier L, Fraley C. Least angle and € 1 penalized regression:
A review. Stat Surv. 2008;2:61-93.

Fisher LD, Lin DY. Time-dependent covariates in the cox proportional-hazards
regression model. Annu Rev Public Health. 1999;20(6):145-57.

Wang Z, Wang CY. Statistical Applications in Genetics and Molecular Biology
Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker



29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

156

Data Buckley-James Boosting for Survival Analysis with High-Dimensional
Biomarker Data * . Stat Appl Genet Mol Biol. 2010;9(1).

Wood SN, Augustin NH. GAMs with integrated model selection using penalized
regression splines and applications to environmental modelling. Ecol Modell.
2002;157(2-3):157-717.

Schmid M, Hothorn T. Flexible boosting of accelerated failure time models. BMC
Bioinformatics. 2008;9:1-13.

Witten DM, Tibshirani R. Survival Analysis with high-dimensional covariates. Stat
Methods Med Res. 2010;19(1):29-51.

Jia M, Yuan DY, Lovelace TC, Hu M, Benos P V. Causal discovery in high-
dimensional, multicollinear datasets. Front Epidemiol. 2022;2(5).

Ma B, Yan G, Chai B, Hou X. XGBLC: an improved survival prediction model based
on XGBoost. Bioinformatics. 2022;38(2):410-8.

Tibshirani R. The lasso method for variable selection in the cox model. Stat Med.
1997;16(4):385-95.

Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal
Problems. Technometrics. 1970;12(1):55-67.

Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc
Ser B Stat Methodol. 2005;67(2):301-20.

Lee S, Lim H. Review of statistical methods for survival analysis using genomic data.
Genomics and Informatics. 2019;17(4).

Breiman LEO. Random Forests. 2001;5-32.

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann
Appl Stat. 2008;2(3):841-60.

Kwak LW, Halpern J, Olshen RA, Horning SJ. Prognostic significance of actual dose
intensity in diffuse large-cell lymphoma: Results of a tree-structured survival analysis.
J Clin Oncol. 1990;8(6):963—77.

Gordon L, Olshen RA. Tree-structured survival analysis. Cancer Treat Rep.
1985;69(10):1065-9.

Landoni G, Greco T, Biondi-Zoccai G, Neto CN, Febres D, Pintaudi M, et al.
Anaesthetic drugs and survival: A bayesian network meta-analysis of randomized trials
in cardiac surgery. Br J Anaesth [Internet]. 2013;111(6):886-96. Available from:
http://dx.doi.org/10.1093/bja/aet231

Biganzoli E, Boracchi P, Mariani L, Marubini E. Feed forward neural networks for the
analysis of censored survival data: A partial logistic regression approach. Stat Med.
1998;17(10):1169-86.

Lee YJ, Mangasarian O, Wolberg W. Breast cancer survival and chemotherapy: A
support vector machine analysis. 2000;0000(December):1-10.



45,

46.

47.

48.

49.

50.

51.

52.

53.

54,

55.

56.

57.

58.

59.

157

Hothorn T, Lausen B, Benner A, Radespiel-Troger M. Bagging survival trees. Stat
Med. 2004;23(1):77-91.

Hothorn T, Bithlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. Survival ensembles.
Biostatistics. 2006;7(3):355-73.

Faraggi D, Simon R. A neural network model for survival data. Stat Med.
1995;14(1):73-82.

Paul R, Hawkins S, Balagurunathan Y, Schabath M, Gillies R, Hall L, et al. Deep
Feature Transfer Learning in Combination with Traditional Features Predicts Survival
among Patients with Lung Adenocarcinoma. Tomography. 2016;2(4):388-95.

Li Y, WangJ, YeJ, Reddy CK. A multi-task learning formulation for survival analysis.
Proc ACM SIGKDD Int Conf Knowl Discov Data Min. 2016;13-17-Augu:1715-24.

Bovelstad HM, Nygérd S, Borgan @. Survival prediction from clinico-genomic models
- a comparative study. BMC Bioinformatics. 2009;10:1-9.

van Wieringen WN, Kun D, Hampel R, Boulesteix AL. Survival prediction using gene
expression data: A review and comparison. Comput Stat Data Anal [Internet].
2009;53(5):1590-603. Available from: http://dx.doi.org/10.1016/j.csda.2008.05.021

Spooner A, Chen E, Sowmya A, Sachdev P, Kochan NA, Trollor J, et al. A comparison
of machine learning methods for survival analysis of high-dimensional clinical data for
dementia prediction. Sci Rep [Internet]. 2020;10(1):1-10. Available from:
https://doi.org/10.1038/s41598-020-77220-w

Herrmann M, Probst P, Hornung R, Jurinovic V, Boulesteix AL. Large-scale
benchmark study of survival prediction methods using multi-omics data. Brief
Bioinform. 2021;22(3):1-15.

Ma B, Geng Y, Meng F, Yan G, Song F. Identification of a sixteen-gene prognostic
biomarker for lung adenocarcinoma using a machine learning method. J Cancer.
2020;11(5):1288-98.

Huang Z, Johnson TS, Han Z, Helm B, Cao S, Zhang C, et al. Deep learning-based
cancer survival prognosis from RNA-seq data: Approaches and evaluations. BMC Med
Genomics [Internet]. 2020;13(Suppl 5):1-12. Available from:
http://dx.doi.org/10.1186/s12920-020-0686-1

Ching T, Zhu X, Garmire LX. Cox-nnet: An artificial neural network method for
prognosis prediction of high-throughput omics data. PLoS Comput Biol. 2018;14(4):1—
18.

Wang L. Deep Learning Techniques to Diagnose Lung Cancer. Cancers (Basel).
2022;14(22).

Grimes T, Walker AR, Datta S, Datta S. Predicting survival times for neuroblastoma
patients using RNA-seq expression profiles. Biol Direct. 2018;13(1):1-15.

Jardillier R, Koca D, Chatelain F, Guyon L. Prognosis of lasso-like penalized Cox
models with tumor profiling improves prediction over clinical data alone and benefits
from bi-dimensional pre-screening. BMC Cancer [Internet]. 2022;22(1):1-16.



60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

158

Available from: https://doi.org/10.1186/s12885-022-10117-1

Ding D, Lang T, Zou D, Tan J, Chen J, Zhou L, et al. Machine learning-based
prediction of survival prognosis in cervical cancer. BMC Bioinformatics [Internet].
2021;22(1):1-17. Available from: https://doi.org/10.1186/512859-021-04261-X

Craig E, Zhong C, Tibshirani R. Survival stacking: casting survival analysis as a
classification problem. 2021;1-17. Available from: http://arxiv.org/abs/2107.13480

Nguyen T, Bhatti A, Yang S, Nahavandi S. RNA-seq count data modelling by grey
relational analysis and nonparametric Gaussian process. PLoS One. 2016;11(10):1-18.

Witten DM. Classification and clustering of sequencing data using a poisson model.
Ann Appl Stat. 2011;5(4):2493-518.

Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion,
with applications to SAGE data. Biostatistics. 2008;9(2):321-32.

Anders S, Huber W. Differential expression analysis for sequence count data. Nat
Preced. 2010;

Eling N, Richard AC, Richardson S, Marioni JC, Vallejos CA. Correcting the Mean-
Variance Dependency for Differential Variability Testing Using Single-Cell RNA
Sequencing Data. Cell Syst [Internet]. 2018;7(3):284-294.e12. Available from:
https://doi.org/10.1016/j.cels.2018.06.011

Zwiener |, Frisch B, Binder H. Transforming RNA-Seq data to improve the
performance of prognostic gene signatures. PL0oS One. 2014;9(1):1-13.

Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1-21.

Law CW, Chen Y, Shi W, Smyth GK. Voom: Precision weights unlock linear model
analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):1-17.

Ritchie ME, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A, et al.
Empirical array quality weights in the analysis of microarray data. BMC
Bioinformatics. 2006;7.

Zararsiz G, Goksuluk D, Klaus B, Korkmaz S, Eldem V, Karabulut E, et al. voomDDA:
Discovery of diagnostic biomarkers and classification of RNA-seq data. PeerJ.
2017;2017(10):1-27.

Cephe A, Koghan N, Zararsiz GE, Eldem V, Cosgun E, Karabulut E, et al. voomSOM:
voom-based Self-Organizing Maps for Clustering RNASequencing Data. Curr
Bioinform. 2022;18(2):154-69.

Klau S, Jurinovic V, Hornung R, Herold T, Boulesteix AL. Priority-Lasso: A simple
hierarchical approach to the prediction of clinical outcome using multi-omics data.
BMC Bioinformatics. 2018;19(1):1-14.

Boulesteix AL, De Bin R, Jiang X, Fuchs M. IPF-LASSO: Integrative L1-Penalized
Regression with Penalty Factors for Prediction Based on Multi-Omics Data. Comput
Math Methods Med. 2017;2017.



75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

159

Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pifieros M, Znaor A, et al. Cancer
statistics for the year 2020: An overview. Int J Cancer. 2021;149(4):778-89.

Neal RD, Tharmanathan P, France B, Din NU, Cotton S, Fallon-Ferguson J, et al. Is
increased time to diagnosis and treatment in symptomatic cancer associated with poorer
outcomes? Systematic review. Br J Cancer. 2015;112:592-107.

Kakushadze Z, Raghubanshi R, Yu W. Estimating cost savings from early cancer
diagnosis. Data. 2017;2(3):1-16.

Kattan MW, Kantoff PW, Nelson JB, Carroll PR, Roach M, Higano CS. Comparison
of Cox regression with other methods for determining prediction models and
nomograms. J Urol. 2003;170(6):6-10.

Singh R, Mukhopadhyay K. Survival analysis in clinical trials: Basics and must know
areas. Perspect Clin Res. 2011;2(4):145.

Henderson R. Problems and prediction in survival- data analysis. Stat Med.
1995;14(2):161-84.

McCann RM. Comfort Care for Terminally 111 Patients. Jama. 1994;272(16):1263.

Waljee AK, Rogers MAM, Lin P, Singal AG, Stein JD, Marks RM, et al. Short term
use of oral corticosteroids and related harms among adults in the United States:
population based cohort study. BMJ. 2017;357:j1415.

Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling
in breast cancer: Understanding the molecular basis of histologic grade to improve
prognosis. J Natl Cancer Inst. 2006;98(4):262—72.

Bielinski SJ, Olson JE, Pathak J, Weinshilboum RM, Wang L, Lyke KJ, et al.
Preemptive genotyping for personalized medicine: Design of the right drug, right dose,
right timedusing genomic data to individualize treatment protocol. Mayo Clin Proc.
2014,89(1):25-33.

Williamson R, Anderson W, Duckett S, Frazer I, Hillyard C, Kowal E, et al. The Future
of Precision Medicine in Australia. Report for the Australian Council of Learned
Academies. 2018. 1-196 p.

Ravina B, Tanner C, DiEuliis D, Eberly S, Flagg E, Galpern WR, et al. A longitudinal
program for biomarker development in Parkinson’s disease: A feasibility study. Mov
Disord. 2009;24(14):2081-90.

Pennathur A, Farkas A, Krasinskas AM, Ferson PF, Gooding WE, Gibson MK, et al.
Esophagectomy for T1 Esophageal Cancer: Outcomes in 100 Patients and Implications
for Endoscopic Therapy. Ann Thorac Surg [Internet]. 2009;87(4):1048-55. Available
from: http://dx.doi.org/10.1016/j.athoracsur.2008.12.060

Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract
Ed. 2013;98(6):236-8.

Serrati S, de Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S, et al. Next-
generation sequencing: Advances and applications in cancer diagnosis. Onco Targets
Ther. 2016;9:7355-65.



90.

91.

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

160

Hess JF, Kohl TA, Kotrova M, Roénsch K, Paprotka T, Mohr V, et al. Library
preparation for next generation sequencing: A review of automation strategies.
Biotechnol ~ Adv  [Internet].  2020;41(March):107537.  Awvailable  from:
https://doi.org/10.1016/j.biotechadv.2020.107537

Illumina Inc. Illumina sequencing introduction. Illumina Seq Introd [Internet].
2017;(October):1-8. Available from:
https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf

Zararsiz G. Development and application of novel machine learning approaches for
rna-seq data classification. 2015.

Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al.
Accurate whole human genome sequencing using reversible terminator chemistry.
Nature. 2008;456(7218):53-9.

Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate
alignment of transcriptomes in the presence of insertions, deletions and gene fusions.
Genome Biol. 2013;14(R36).

Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast
universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21.

Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923-30.

Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for
differential expression analysis of digital gene expression data. Bioinformatics.
2009;26(1):139-40.

Rao MS, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW, Blomme EAG, et al.
Comparison of RNA-Seq and microarray gene expression platforms for the
toxicogenomic evaluation of liver from short-term rat toxicity studies. Front Genet.
2019;10(JAN):1-16.

Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and
microarray in transcriptome profiling of activated T cells. PL0oS One. 2014;9(1).

Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for
sequences with quality scores, and the Solexa/lllumina FASTQ variants. Nucleic Acids
Res. 2009;38(6):1767-71.

S A. FastQC: a quality control tool for high throughput sequence data [Internet]. 2010.
Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

Jiang H, Lei R, Ding SW, Zhu S. Skewer: A fast and accurate adapter trimmer for next-
generation sequencing paired-end reads. BMC Bioinformatics. 2014;15(1):1-12.

Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et
al. Erratum: A survey of best practices for RNA-seq data analysis [Genome Biol.
(2016), 17, 13] doi: 10.1186/s13059-016-0881-8. Genome Biol. 2016;17(1):16-7.

Patel RK, Jain M. NGS QC toolkit: A toolkit for quality control of next generation
sequencing data. PLoS One. 2012;7(2).



105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

161

Deluca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. RNA-
SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics.
2012;28(11):1530-2.

Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Hlumina
sequence data. Bioinformatics. 2014;30(15):2114-20.

Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets.
Bioinformatics. 2011;27(6):863-4.

Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, et al. SOAPnuke: A MapReduce
acceleration-supported software for integrated quality control and preprocessing of
high-throughput sequencing data. Gigascience. 2018;7(1):1-6.

Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3).

Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinformatics. 2009;25(14):1754-60.

Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced aligner with low memory
requirements. Nat Methods. 2015;12(4):357-60.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts
and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511-5.

Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie
enables improved reconstruction of a transcriptome from RNA-seq reads. Nat
Biotechnol. 2015;33(3):290-5.

Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length
transcriptome assembly from RNA-Seq data without a reference genome. Nat
Biotechnol. 2011;29(7):644-52.

Hurgobin B. Short Read Alignment Using SOAP2. In: Plant Bioinformatics. Humana
Press, New York, NY; 2016. p. 241-252.

Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo
assembly and analysis of RNA-seq data. Nat Methods. 2010;7(11):909-12.

Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with
or without a reference genome. BMC Bioinformatics. 2011;12(323).

Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq
quantification. Nat Biotechnol. 2016;34(5):525-7.

Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-
aware quantification of transcript expression. Nat Methods. 2017;14(4):417-9.

Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-
throughput sequencing data. Bioinformatics. 2015;31(2):166-9.

Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of



122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

162

sequencing experiments. Nat Methods. 2013;10(1):71-3.

Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq
data. Genome Res. 2012;22(10):2008-17.

Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol.
2014;32(5):462-4.

Chen HM, MacDonald JA. Network analysis of TCGA and GTEXx gene expression
datasets for identification of trait-associated biomarkers in human cancer. STAR Protoc
[Internet]. 2022;3(1):101168. Available from:
https://doi.org/10.1016/j.xpro.2022.101168

Chen HM, MacDonald JA. Network analysis of TCGA and GTEXx gene expression
datasets for identification of trait-associated biomarkers in human cancer. STAR
Protoc. 2022 Mar 18;3(1).

Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, et al. RNA-seq analysis
is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research. 2018;5(1):1-29.

Park G, Park JK, Shin SH, Jeon HJ, Kim NKD, Kim YJ, et al. Characterization of
background noise in capture-based targeted sequencing data. Genome Biol.
2017;18(1):1-13.

Soneson C, Gerster S, Delorenzi M. Batch effect confounding leads to strong bias in
performance estimates obtained by cross-validation. PLoS One. 2014;9(6):1-12.

Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for
normalization and differential expression in MRNA-Seq experiments. 2010;

Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds systems
biology. Biol Direct. 2009;4:1-10.

Risso D, Schwartz K, Sherlock G, Dudoit S. GC-Content Normalization for RNA-Seq
Data. BMC Bioinformatics. 2011;

Robinson MD, Oshlack A. A scaling normalization method for differential expression
analysis of RNA-seq data. Genome Biol [Internet]. 2010;11(3):1-9. Available from:
http://genomebiology.com/2010/11/3/R25

Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A
comprehensive evaluation of normalization methods for Illumina high-throughput
RNA sequencing data analysis. Brief Bioinform. 2013;14(6):671-83.

Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization
methods for high density oligonucleotide array data based on variance and bias.
Bioinformatics. 2003;19(2):185-93.

Han H, Men K. How does normalization impact RNA-seq disease diagnosis? J Biomed
Inform [Internet]. 2018;85(July):80-92. Available from:
https://doi.org/10.1016/j.jbi.2018.07.016

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying



137.

138.

139.

140.

141.

142.

143.

144.

145.

146.

147.

148.

149.

150.

151.

163

mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621-8.

Wagner P, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data :
RPKM measure is inconsistent among samples. 2012;281-5.

Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential
analysis of gene regulation at transcript resolution with RNA-seg. Nat Biotechnol.
2013;31(1):46-53.

Maza E, Frasse P, Senin P, Bouzayen M, Zouine M. Comparison of normalization
methods for differential gene expression analysis in RNA-Seq experiments: A matter
of relative size of studied transcriptomes. Commun Integr Biol. 2013;6(6).

Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for
RNA-seq Differential Expression Analysis. Sci Rep. 2019;9(1):1-12.

Ahlmann-Eltze C, Huber W. Comparison of Transformations for Single-Cell RNA-
Seq Data. bioRxiv [Internet]. 2022;20(May):2021.06.24.449781. Available from:
http://biorxiv.org/content/early/2022/11/12/2021.06.24.449781.abstract

Agresti  A.  3Rd-Ed-Alan_Agresti_Categorical_Data_Analysis.Pdf. Vol. 47,
International encyclopedia of statistical science. 2013. p. 755-8.

Cloonan N, Forrest ARR, Kolle G, Gardiner BBA, Faulkner GJ, Brown MK, et al.
Stem cell transcriptome profiling via massive-scale mMRNA sequencing. Nat Methods.
2008;5(7):613-9.

Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, et al. A strand-
specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella
typhi. PLoS Genet. 2009;5(7).

Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, et al. Conserved
developmental transcriptomes in evolutionarily divergent species. Genome Biol.
2010;11(3).

Zhou YH, Xia K, Wright FA. A powerful and flexible approach to the analysis of RNA
sequence count data. Bioinformatics. 2011;27(19):2672-8.

Srivastava S, Chen L. A two-parameter generalized Poisson model to improve the
analysis of RNA-seq data. Nucleic Acids Res. 2010;38(17):1-15.

McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor
RNA-Seq experiments with respect to biological variation. Nucleic Acids Res.
2012;40(10):4288-97.

Smyth GK. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3(1):1-26.

Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. 2015;43(7):e47.

Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, et al. Why weight? Modelling
sample and observational level variability improves power in RNA-seq analyses.



152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

164

Nucleic Acids Res. 2015;43(15).

Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat Softw.
2010;36(11):1-13.

Guo P, Luo Y, Mai G, Zhang M, Wang G, Zhao M, et al. Gene expression profile based
classification models of psoriasis. Genomics. 2014;103(1):48-55.

Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, et al.
Gastrointestinal microbiome signatures of pediatric patients with irritable bowel
syndrome. Gastroenterology [Internet]. 2011;141(5):1782-91. Available from:
http://dx.doi.org/10.1053/j.gastro.2011.06.072

Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for
random forests and omics data sets. Brief Bioinform. 2019;20(2):492-503.

Kvamme H, Borgan O, Scheel I. Time-to-event prediction with neural networks and
cox regression. J Mach Learn Res. 2019;20:1-30.

Kleinbaum DG, Mitchel K. Survival Analysis: A Self-Learning Text. Vol. 39,
Technometrics. 1997. 228-229 p.

Lee ET, Wang JW. Statistical Methods for Survival Data Analysis. John Wiley & Sons,
Inc.; 2003. 243-255 p.

Tobin BYJ. Estimation of Relationships for Limited Dependent Variables Author (s ):
James Tobin Published by: The Econometric Society Stable URL:
http://www.jstor.org/stable/1907382 . OF RELATIONSHIPS FOR LIMITED
DEPENDENT VARIABLES °. Econometrica. 1985;26(1):24-36.

Buckley J, James I. Linear regression with censored data. Biometrika. 1979;66(3):429—
36.

Wang S, Nan B, Zhu J, Beer DG. Doubly penalized Buckley-James method for survival
data with high-dimensional covariates. Biometrics. 2008;64(1):132-40.

Kyung M, Gilly J, Ghoshz M, Casellax G. Penalized regression, standard errors, and
Bayesian lassos. Bayesian Anal. 2010;5(2):369—412.

Li Y, Vinzamuri B, Reddy CK. Regularized weighted linear regression for high-
dimensional censored data. 16th SIAM Int Conf Data Min 2016, SDM 2016.
2016;1(c):45-53.

Bach F, Jenatton R, Mairal J, Obozinski G. Structured sparsity through convex
optimization. Stat Sci. 2012;27(4):450-68.

Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. John Wiley
& Sons, Inc. All rights reserved.; 2002.

Deo SV, Deo V, Sundaram V. Survival analysis—part 2: Cox proportional hazards
model. Indian J Thorac Cardiovasc Surg. 2021;37(2):229-33.

van Belle V, Pelckmans K, van Huffel S, Suykens JAK. Improved performance on
high-dimensional survival data by application of survival-SVM. Bioinformatics.



168.

169.

170.

171.

172.

173.

174.

175.

176.

177.

178.

179.

180.

181.

182.

183.

165

2011;27(1):87-94.

Radespiel-Troger M, Rabenstein T, Schneider HT, Lausen B. Comparison of tree-
based methods for prognostic stratification of survival data. Artif Intell Med.
2003;28(3):323-41.

Verweij PJM, Van Houwelingen HC. Penalized likelihood in Cox regression. Stat Med.
1994;13:2427-36.

Shrinkage R. Regression Shrinkage and Selection via the Lasso Author ( s ): Robert
Tibshirani Source : Journal of the Royal Statistical Society . Series B ( Methodological
), Vol .58 ,No . 1 (1996 ), Published by : Wiley for the Royal Statistical Society Stable
URL. 2016;58(1):267-88.

Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-sample
size settings, with applications to microarray gene expression data. Bioinformatics.
2005;21(13):3001-8.

Ternés N, Rotolo F, Michiels S. Empirical extensions of the lasso penalty to reduce the
false discovery rate in high-dimensional Cox regression models. Stat Med.
2016;35(15):2561-73.

Binder H, Schumacher M. Allowing for mandatory covariates in boosting estimation
of sparse high-dimensional survival models. BMC Bioinformatics. 2008;9:1-10.

Breiman L. Classification and Regression Trees. Taylor & Francis Group; 1984.

Mingers J. An empirical comparison of selection measures for decision-tree induction.
Mach Learn. 1989;3(4):319-42.

Bou-Hamad |, Larocque D, Ben-Ameur H. A review of survival trees. Stat Surv.
2011;5(2011):44-71.

Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81-106.

Ciampi A, Negassa A, Lou Z. Tree-structured prediction for censored survival data and
the cox model. J Clin Epidemiol. 1995;48(5):675-89.

Marubini E, Morabito A, Valsecchi MG. Prognostic factors and risk groups: Some
results given by using an algorithm suitable for censored survival data. Stat Med.
1983;2(2):295-303.

Dietterich TG. Ensemble methods in machine learning. Lect Notes Comput Sci
(including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2000;1857
LNCS:1-15.

Ciampi A, Thiffault J, Nakache JP, Asselain B. Stratification by stepwise regression,
correspondence analysis and recursive partition. Comput Stat Data Anal. 1986;4:185-
204.

Segal MR. Regression Trees for Censored Data. 1988;44(1):35-47.

Jefrey H. Butler, Elzabeth A. Gilpin LG and RAO. Tree-structured survival analysis,
1. 1989.



184.

185.

186.

187.

188.

1809.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

166

Davis RB, Anderson JR. Exponential survival trees. Stat Med. 1989;8(8):947-61.
Therneau TM, Grambsch PM, Fleming TR. Biometrika Trust Martingale-Based
Residuals for Survival Models Published by : Oxford University Press on behalf of
Biometrika Trust Stable URL : http://www.jstor.org/stable/2336057 REFERENCES
Linked references are available on JSTOR for this article : Yo. 2016;77(1):147-60.

LeBlanc M, Crowley J. Relative Risk Trees for Censored Survival Data. Biometrics.
1992;48(2):411-25.

Kele S, Segal MR. Residual-based tree-structured survival analysis. Stat Med.
2002;21(2):313-26.

LeBlanc M, Crowley J. Survival trees by goodness of split. J Am Stat Assoc.
1993;88(422):457-67.

Intrator O, Kooperberg C. Trees and splines in survival analysis. Stat Methods Med
Res. 1995;4(3):237-61.

Zhang HP, Singer B. Recursive partitioning in the health sciences. New York, NY:
Springer; 1999.

Breiman L. Software for the masses. 2002.

Molinaro AM, Dudoit S, Van Der Laan MJ. Tree-based multivariate regression and
density estimation with right-censored data. J Multivar Anal. 2004;90(1 SPEC.
ISS.):154-77.

Jin H, Lu Y, Stone K, Black DM. Alternative tree-structured survival analysis based
on variance of survival time. Med Decis Mak. 2004;24(6):670-80.

Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional
inference framework. J Comput Graph Stat. 2006;15(3):651-74.

Breiman L. Bagging predictors. Mach Learn. 1996;24:123-40.

Wang H, Li G. A Selective Review on Random Survival Forests for High Dimensional
Data. Quant Biosci. 2017;36(2):85-96.

Freund Y, Schapire RE. Experiments with a New Boosting Algorithm. Proc 13th Int
Conf Mach Learn [Internet]. 1996;148-156. Available from:
http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAPERS/boosting-icml.pdf
Chen T, Guestrin C. XGBoost : A Scalable Tree Boosting System. 2016;785-94.

Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat.
2001;29(5):1189-232.

Freund Y. An adaptive version of the boost by majority algorithm. Mach Learn.
2001;43(3):293-318.

Cortes C, Vapnik V. Support-Vector Networks. Mach Learn. 1995;20:273-97.

Shivaswamy PK, Chu W, Jansche M. A support vector approach to censored targets.



203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

167

Proc - IEEE Int Conf Data Mining, ICDM. 2007;655-60.

Van Belle V, Pelckmans K, Van Huffel S, Suykens JAK. Support vector methods for
survival analysis: A comparison between ranking and regression approaches. Artif
Intell Med [Internet]. 2011;53(2):107-18. Available from:
http://dx.doi.org/10.1016/j.artmed.2011.06.006

Evers L, Messow CM. Sparse kernel methods for high-dimensional survival data.
Bioinformatics. 2008;24(14):1632-8.

Statistical Analysis - 2011 - Ishwaran - Random survival forests for high- dimensional
data.pdf.

D’Agostino RB, Lee M - L, Belanger AJ, Cupples LA, Anderson K, Kannel WB.
Relation of pooled logistic regression to time dependent cox regression analysis: The
framingham heart study. Stat Med. 1990;9(12):1501-15.

Ochlert GW. A Note on the Delta Method Author ( s ): Gary W . Oehlert Source : The
American Statistician, Feb ., 1992, Vol .46 ,No .1 (Feb.,1992), pp . 27-29 Published
by : Taylor & Francis , Ltd . on behalf of the American Statistical Association Stable
URL. 1992;46(1):27-9.

Cleveland WS. Robust Locally Weighted Regression and Smoothing Scatterplots. J
Am Stat Assoc. 1979;74(368):829.

Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks:
An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res.
2016;44(8):e71.

Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An
Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival
Outcome Analytics. Cell [Internet]. 2018;173(2):400-16. Available from:
https://doi.org/10.1016/

Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, et al. mir3: A modern
object-oriented machine learning framework in R. J Open Source Softw.
2019;4(44):1903.

Chen Y, Lun ATL, Smyth GK. From reads to genes to pathways: Differential
expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-
likelihood pipeline. F1000Research. 2016;5:1-51.

Smyth GK. limma: Linear Models for Microarray Data. Bioinforma Comput Biol Solut
Using R Bioconductor. 2005;(2005):397-420.

Becker M, Schratz P, Lang M, Bischl B. Package ‘mlr3fselect’ [Internet]. 2024.
Available from:
http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/mlir3fselect/mir3fselect.pdf

Sonabend R, Lang M, Kira FJ, Bender A, Bischl B. Data and text mining mlr3proba :
an R package for machine learning in survival analysis. 2021;37(February):2789-91.

Laj Spytek M, Krzyzi nski MK, Langbein SH, Baniecki H, Wright MN, Law Biecek
P. survex: an R package for explaining machine learning survival models. 2023;1-4.



217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

232.

168

Available from: https://arxiv.org/abs/2308.16113v1

Pihur V, Datta S, Datta S. RankAggreg, an R package for weighted rank aggregation.
BMC Bioinformatics. 2009;10:1-10.

Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical
tests. Jama. 1982;247(18):2543-6.

Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of
prognostic classification schemes for survival data. Stat Med. 1999;18(17-18):2529-
45.

mlr3extralearners [Internet]. Available from: https://github.com/mlr-
org/mir3extralearners

Boosting TM based, Matrix 1. Package © mboost ’ [Internet]. 2023. Available from:
https://cran.r-project.org/web/packages/mboost/index.html

Hans A, Borchers W, Borchers MHW. Package ‘ pracma .” 2023; Available from:
https://cran.r-project.org/web/packages/pracma/index.html

Biihlmann P, Yu B. Boosting With the L 2 Loss Regression and Classification Boosting
With the L 2 Loss : Regression and Classi cation. 2011;1459.

Date RP, Xml S, Lazydata F, Gpl- L, Hothorn AT, Seibold H, et al. Package  partykit
’ [Internet]. 2023. Available from: https://cran.r-
project.org/web/packages/partykit/index.html

Graham N. Package ° sandwich .” 2023; Available from: https://cran.r-
project.org/web/packages/sandwich/index.html

Conditional T, Procedures I, Test P, Description F, Utf- E, Gpl- L, et al. Package ‘ coin
’ [Internet]. 2023. Available from: https://cran.r-
project.org/web/packages/coin/index.html

Binder H, Allignol A, Schumacher M, Beyersmann J. Boosting for high-dimensional
time-to-event data with competing risks. 2009;25(7):890-6.

Generalized T, Regression B, Adaboost S. Package  gbm ’ [Internet]. 2024. Available
from: https://cran.r-project.org/web/packages/gbm/index.html

Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002;38(4):367—
78.

Jerome A, Hastie T, Tibshirani R, Tay K, Simon N, Yang J, et al. Package * glmnet ’
R topics documented : 2023; Available from: https://cran.r-
project.org/web/packages/glmnet/index.html

Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear
Models via Coordinate Descent. J Stat Softw. 2010;33(1):1-20.

Repp I, Repp L. Package © obliqueRSF .° 2022; Available from: https://cran.r-
project.org/web/packages/obliqueRSF/index.html



233.

234.

235.

2306.

237.

238.

239.

240.

241.

242.

243.

244,

245.

246.

247.

248.

169

Orsf T, Cox R, Study JH, Cvd A, Risk PC, November R, et al. Oblique random survival
forests 1. 2019;13(3):1847-83.

Goeman AJ, Meijer R, Chaturvedi N, Lueder M, Repp I, Repp L. Package © penalized
J 2022;1. Available from: https://cran.r-
project.org/web/packages/penalized/index.html

Dicekriging S. Package ‘mlr3learners’ [Internet]. 2024. Available from: https://cran.r-
project.org/web/packages/mlir3learners/index.html

Marvin A, Wright N, Wager S, Probst P, Wright MMN. Package ‘ ranger .” 2023;
Available from: https://cran.r-project.org/web/packages/ranger/index.html

Fast T, Random U, Ishwaran AH, Kogalur UB, Kogalur MUB, Suggests D, et al.
Package ¢ randomForestSRC . 2023; Available from: https://cran.r-
project.org/web/packages/randomForestSRC/index.html

Partitioning TR, Trees R. Package  rpart .” 2023; Available from: https://cran.r-
project.org/web/packages/rpart/index.html

Sonabend R, Kiraly FJ. distr6 : R6 Object-Oriented Probability Distributions Interface
in R. 2021;13(June):470-92.

Lumley T, S- R, Elizabeth A, Cynthia C, Therneau MTM. Package ° survival .” 2024;
Available from: https://cran.r-project.org/web/packages/sandwich/index.html

Package T, Survival T, Vector S, Fouodo ACJK. Package ¢ survivalsvm .” 2022;
Available from: https://cran.r-project.org/web/packages/survivalsvm/index.html

Chen K, Mitchell R, Cano I, Lin M. Package ‘ xgboost * R topics documented : 2024;
Available from: https://cran.r-project.org/web/packages/xgboost/index.html

Install TE. Package ‘mlr3verse.” 2023;1-4. Available from: https://cran.r-
project.org/web/packages/mlr3verse/index.html

Spaces TS, Collection D, Lgpl- L, Utf- E, Becker AM, Lang M, et al. Package
‘mlr3tuningspaces.’ 2024; Available from: https://cran.r-
project.org/web/packages/mlr3tuningspaces/index.html

Vickers AJ, Cronin AM. Traditional Statistical Methods for Evaluating Prediction
Models Are Uninformative as to Clinical Value: Towards a Decision Analytic
Framework. Semin Oncol [Internet]. 2010;37(1):31-8. Available from:
http://dx.doi.org/10.1053/j.seminoncol.2009.12.004

Cook NR. Use and misuse of the receiver operating characteristic curve in risk
prediction. Circulation. 2007;115(7):928-35.

Halligan S, Altman DG, Mallett S. Disadvantages of using the area under the receiver
operating characteristic curve to assess imaging tests: A discussion and proposal for an
alternative approach. Eur Radiol. 2015;25(4):932-9.

Karovic H. Comparison of Pre-processing Methods and Various Machine Learning
Models for Survival Analysis on Cancer Data.



249.

250.

251.

252.

253.

254.

255.

256.

257.

258.

170

Tizi W, Berrado A. Machine learning for survival analysis in cancer research: A
comparative study. Sci African [Internet]. 2023;21(August):e01880. Available from:
https://doi.org/10.1016/j.sciaf.2023.e01880

Xiao J, Mo M, Wang Z, Zhou C, Shen J, Yuan J, et al. The Application and Comparison
of Machine Learning Models for the Prediction of Breast Cancer Prognosis:
Retrospective Cohort Study. JMIR Med Informatics. 2022;10(2):1-11.

Hadanny A, Shouval R, Wu J, X CPG, Unger R, Zahger D, et al. This is a repository
copy of Machine learning-based prediction of 1-year mortality for acute coronary
syndrome . White Rose Research Online URL for this paper: Version: Published
Version Article : Hadanny , A , Shouval , R, Wu , J orcid . org / 0000-00. 2022;

Hao VY, Liang D, Zhang S, Wu S, Li D, Wang Y, et al. Machine learning for predicting
the survival in osteosarcoma patients: Analysis based on American and Hebei Province
cohort. Biomol Biomed. 2023;23(5):883-93.

Jin X, Sun Y, Zhou T, Leng Y, Guan S, Zhang K, et al. Machine Learning and
Prediction of All-Cause Mortality among Chinese Older Adults. 2021;

Haynatzki R. Prediction of survival models: A comparison between machine learning
and cox regression. AIP Conf Proc. 2022;2522(September).

Moncada-Torres A, van Maaren MC, Hendriks MP, Siesling S, Geleijnse G.
Explainable machine learning can outperform Cox regression predictions and provide
insights in breast cancer survival. Sci Rep [Internet]. 2021;11(1):1-13. Available from:
https://doi.org/10.1038/s41598-021-86327-7

Linden T, Hanses F, Domingo-Fernandez D, DeLong LN, Kodamullil AT, Schneider
J, et al. Machine Learning Based Prediction of COVID-19 Mortality Suggests
Repositioning of Anticancer Drug for Treating Severe Cases. Artif Intell Life Sci
[Internet]. 2021;1(November):100020. Available from:
https://doi.org/10.1016/j.ailsci.2021.100020

Lynch CM, Abdollahi B, Fuqua JD, de Carlo AR, Bartholomai JA, Balgemann RN, et
al. Prediction of lung cancer patient survival via supervised machine learning
classification techniques. Int J Med Inform [Internet]. 2017;108(April 2016):1-8.
Available from: http://dx.doi.org/10.1016/j.ijmedinf.2017.09.013

Kim H, Park T, Jang J, Lee S. Comparison of survival prediction models for pancreatic
cancer: Cox model versus machine learning models. Genomics and Informatics.
2022;20(2):1-9.



171

8. APPENDICES

Appendix 1: The codes for analysis and MLSeqSurv R Package, the selected
features for models.

The codes for analysis and selected features for models are available at

https://github.com/gokmenzararsiz/voomStackLasso.

The codes for MLSeqSurv R Package is available at
https://github.com/gokmenzararsiz/MLSegSurv.
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