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ABSTRACT

MODEL ROBUSTNESS IN DATA-SCARCE REGIMES AND THE
EFFECT OF FREQUENCY PERTURBATIONS

Mehmet Kerim Yücel

Doctor of Philosophy , Computer Engineering
Supervisor: Prof. Dr. Pınar Duygulu Şahin

2nd Supervisor: Assistant Prof. Ramazan Gökberk Cinbiş
December 2022, 146 pages

The last decade has witnessed the meteoric rise of data-driven methods, which has been

elevated to new heights thanks to the availability of powerful hardware and abundant data.

Despite their swift ascension, deep learning methods are repeatedly shown to have robustness

problems; they can be tricked into making errors with minor changes in the input that are

invisible to us humans, or they can not withstand certain failure modes common in real-life

scenarios. This thesis focuses on the robust generalization problem, where two primary aims

drive our research effort.

First, inspired from the surprising lack of thorough discussions on robust generalization

in data-scarce regimes, we perform an exhaustive analyses on the robustness behaviour of

models trained in zero-shot learning settings. We first show that discriminative zero-shot

models have distinct robustness characteristics against adversaries, such as unseen and seen

classes being affected disproportionately, the effect of original model accuracy and the stark

differences between how zero-shot and generalized zero-shot accuracies degrade. We also

identify the unique pseudo-robustness effect caused by adversaries, where models might be
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falsely declared as robust. We then extend our analyses to a more practical scenario, where

images are corrupted with common image corruptions. We curate and present the first three

datasets for corruption robustness analyses in the zero-shot literature. Using these datasets,

we provide a set of rigorous analyses with a wider range of zero-shot models to assess their

robustness against corruptions. Our results show that with key augmentation choices, we

can improve the performance profiles of various models. Finally, we aggregate the results

of adversarial and corruption robustness behaviours of zero-shot models and conclude with

a thorough comparison.

Second, inspired by the fundamental techniques in image processing, we focus on using

frequency-spectra information to improve model robustness. Assuming that the true

label information of an image resides in its low-frequency components, we propose

HybridAugment where images are augmented by randomly swapping their high-frequency

component with other images. This augmentation is implemented in tandem with existing

augmentations, and enforces the network to be less reliant on high-frequency information,

which is a prime reason for model robustness issues. We then propose two variants

of HybridAugment, where single or multiple image settings are used to perform the

augmentation. With single and multi image augmentations being used at the same time,

the results are further improved. Finally, inspired by the two orthogonal frequency-centric

analyses (i.e. frequency bands and phase/amplitude decomposition) and the need to unify

them, we propose HybridAugment++ that performs a hierarchical augmentation in the

frequency-spectra. In addition to swapping low and high-frequency components of images,

HybridAugment++ also swaps phase and amplitude of random images, but does so only

on the low-frequency components. HybridAugment++, with its single and paired variants

working in tandem, achieves state-of-the-art results in multiple benchmark datasets, showing

its effectiveness.

Keywords: Robust Generalization, Zero-Shot Learning, Frequency Analyses, Data

Augmentation, Image Recognition
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ÖZET

VERİ AZLIǦINDA MODEL GÜRBÜZLÜǦÜ VE FREKANS
KARIŞTIRMANIN ETKİLERİ

Mehmet Kerim Yücel

Doktora, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Pınar Duygulu Şahin

Eş Danışman: Asistan Prof. Ramazan Gökberk Cinbiş
Aralik 2022, 146 sayfa

Geçtiğimiz on yıl, veri bazlı metodların çeşitli disiplinlerde yükselişine tanık olmuştur.

Etkileyici yükselişlerine rağmen, derin öğrenme metodlarının gürbüzlük problemlerine

yatkın oldukları gözlemlenmiştir; bu modellerin, insanların farkedemeyeceği şekilde

değiştirilen resimlerde hatalı tahmin yaptıkları, hatta günlük senaryolarda olağan olarak

gerçekleşen ve girdileri etkileyebilen olaylar karşısında çalışamadıkları gözlemlenmiştir. Bu

tez, derin öğrenme modellerinin, gürbüz bir şekilde genellenmelerine odaklanmaktadır ve bu

konuda özellikle iki tane amaca yoğunlaşmıştır.

Veri azlığının olduğu senaryolarda eğitilmiş modellerin gürbüzlüğüne dair literatürde

çalışma olmamasından esinlenerek, bu tezde ilk olarak sıfır-atış senaryolarda eğitilen

modellerin gürbüzlük karakteristikleri incelenmiştir. İlk olarak, ayrımcı sıfır-atış modellerin,

düşmancıl resimlere karşı farklı gürbüzlük özelliklerine sahip oldukları saptanmıştır;

görülmüş ve görülmemiş sınıfların farklı etkilenmesi, asıl model başarımının etkisi, sıfır-atış

ve genelleştirilmiş sıfır-atış senaryolarının çok farklı etkilenmesi, bu davranışlara bazı

örneklerdendir. Bundan sonra, sadece düşmancıl resimlere karşı görülen sözde gürbüzlük
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etkisi saptanmıştır ve analiz edilmiştir; bu etki, aslında gürbüz olmayan modellerin gürbüz

olarak algılanmasına yol açabilmektedir. Bundan sonra, analizlerimiz daha pratik bir

senaryo olan olağan resim bozulmalarına odaklanmıştır. Öncelikle, bu senaryolarda analiz

yapabilmek için, sıfır-atış modellerinde olağan resim bozulmalarını analiz etmeye yarayacak,

literatürde önceden örneği olmayan, üç veri seti hazırlanmıştır. Bu veri setleri kullanılarak,

ve kullanılan sıfır-atış modelleri çeşitlendirilerek, olağan resim bozulmalarına karşı analizler

yapılmıştır. Çeşitli veri büyütme tekniklerinin, var olan sıfır-atış modellerinin sonuçlarını

iyileştirdiği görülmüştür. Son olarak, düşmancıl ve olağan bozulma analizlerin sonuçları

karşılaştırılmış ve sonuçlar verilmiştir.

Temel görüntü işleme tekniklerinden olan resim frekans analizi metodlarından ilham

alınarak, resimlerin frekans bilgilerinin model gürbüzlüğünü geliştirme ihtimalleri

araştırılmıştır. Resimlerin asıl önemli olan özelliklerinin düşük frekanslarda olduğunu baz

alarak, yeni bir veri büyütme tekniği geliştirilmiştir. HybridAugment adını verdiğimiz teknik,

resimlerin yüksek ve düşük frekans bileşenlerinin rastgele bir şekilde değiştirilmesiyle

yapılmaktadır. Başka veri büyütme teknikleriyle de çalışabilen bu metod, modellerin

öğrenme sürecinde düşük frekans bileşenlerine yoğunlaşmasını sağlamakta, ve gürbüzlük

problemlerinin sebebi olarak gösterilen yüksek frekans bileşenlerine yoğunlaşmalarını

azaltmaktadır. HybridAugment metodunun iki versiyonu sunulmuştur; tek ve çoklu

resimlerlerle çalışan bu versiyonlar, birlikte de çalışabilmekte ve sonuçları daha da

iyileştirmektedir. Son olarak, resimlerin faz bileşenenin daha ziyade uzaysal bilgiye

sahip olduklarını baz alarak, HybridAugment++ metodu geliştirilmiştir. Bu metod,

resimlerin faz ve büyüklük bileşenlerin rastgele değiştirilmesi ile HybridAugment tekniğini

hiyerarşik olarak uygulamaktadır. HybridAugment++, tekli ve çoklu versiyonları aynı anda

çalıştırıldığı zaman, birden fazla veri setinde literatürdeki en iyi sonuçları elde etmektedir.

Anahtar Kelimeler: Gürbüz Genelleme, Sıfır-Atış Öğrenme, Frekans Analizi, Veri

Büyütme, Resim Tanıma
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1. INTRODUCTION

In this chapter, we motivate our research, present a high-level overview of our research and

contributions, and finally provide a detailed organization of the thesis.

1.1. Background and Motivation

The goal of imitating the complex human vision system has been a centre of attention for

the research community, which eventually gave birth to the 60+ year old field of computer

vision. The computer vision journey is widely believed to have started in 1957 with the very

first digitization of an image, led by scientists of American National Institute of Standards

an Technology (ANIST) [12]. Widely accepted as the father of computer vision, Lawrence

Roberts was one of the first (if not the first) scientists who explored the acquisition of 3D

information from a 2D image in his PhD thesis in MIT [13]. These seminal works have been

succeeded with a plethora of equally impactful works, from Neocognitron [14] to Viola-Jones

[15], SIFT [16] to LeNet [17], and countless others that are being published even to this date.

Due to the high-dimensional and complex nature of images, the earlier computer vision

methods often struggled to make real-world impact, primarily due to their hand-crafted

nature that only worked under strict, simplifying assumptions. The natural complexity

of images often calls for an automated discovery of the patterns inherent to such

images. Therefore, computer vision research has extensively utilised the advances in

statistical/machine learning, such as SVMs [18], CNNs [17], graphical models [19], random

forests [20], and many more. Despite the increasing use of machine learning methods

in computer vision, the features that represent images have been primarily hand-crafted;

powerful representations such as SIFT [16], SURF [21] and ORB [22] have found use in

various vision tasks.

Much of the core computer vision research has stayed the same throughout the years

and primarily focused on one thing; effectively and efficiently representing images. A

breakthrough moment arrived in 2012 with AlexNet [23], where a combination of powerful
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GPU hardware, deeper convolutional neural networks and new regularization tricks showed

that it is quite possible to learn powerful image representations from data, rather than

handcrafting these representations. AlexNet started an AI storm that disrupted not only

vision, but any other discipline that can scale with data. Architectural novelties such as

VGG [24], ResNet [4], transformers [25], and countless other advances such as GANs [26],

knowledge distillation [27], self-supervised learning [28] and diffusion models [29] in what

is now called deep learning took computer vision to new heights that were unimaginable a

mere decade ago. The fact that ResNet paper got over 140000 citations is a testament to its

impact, and also to the ever-growing size of the field.

’All that glitters in not gold.’

William Shakespeare

Following the meteoric rise of deep learning in computer vision and other disciplines, an

intriguing study published in 2014 [30] showed a troubling pattern; these powerful neural

networks can be fooled to misclassify images via the addition of imperceptible (to the human

eye) noise, or perturbations, to the images. Essentially, an imperceptible noise added to

images is shown to be capable of completely invalidating otherwise state-of-the-art methods.

This problem is also shown to be present for numerous computer vision solutions/tasks, and

even other modalities such as speech [31] and natural language [32]. This vulnerability

of modern neural networks started an arms race between adversarial attacks and defenses,

where community rushed into finding methods to patch their networks for protection or

created new methods to fool them. These developments in adversarial machine learning

inspired researchers to focus on the bigger picture, namely the robust generalization of neural

networks, which covers analyses in many other robustness venues, such as out-of-distribution

robustness [33] and robustness to common image corruptions [9].

There has been an increase in interest on robust generalization in machine learning,

especially since real-world applications of these models require verifiable robustness against

malicious perturbations, or common types of corruptions an image can be exposed to in
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real-life systems. A wide range of literature on the topic is available, such as considering the

issue from a simple generalization perspective [34] to identifying robust/non-robust features

[35], from designing robustifying data augmentations [36] to analysing robustness from a

frequency-spectrum perspective [37].

Although the field of robust generalization is quite active, there are areas which have been

largely neglected and unexplored. One such area is the effect of the level of supervision on

robust generalization; virtually all papers in the literature somewhat assume that models are

trained under a fully supervised setting, where labels are available for each sample. The

availability of labels is a simplifying assumption, as label acquisition is often expensive, if

possible at all. In its extreme, the availability of training samples for certain classes may not

even be possible, leading to severe class imbalance. Zero-Shot Learning and Generalized

Zero-Shot Learning [7] lie in such extremes, where training data is available for only a

subset of classes, but models are evaluated on their ability to perform also on classes unseen

during the training. The current literature fails to answer these questions, especially in such

extremes.

Another area of interest is the development of data augmentation methods to increase model

robustness. Stemming from the perspective that considers robustness as a generalization

issue, many methods diversify training data distribution in such a way that models become

more robust, ideally while keeping their accuracies on uncorrupted data at least the same.

The majority of the studies focus on learning such augmentations [38] or use a combination

of existing, common image transformations [36]. There is an emerging and relatively

unexplored branch of work that focuses on the frequency spectra of images for robustness

[37]. As different frequency bands of images are known to carry different information, their

individual effects on robustness is actively being explored by the community. However, their

use for formulating robustifying data augmentation methods has been largely neglected.

In this thesis, in line with the previous discussions, we primarily focus on model robustness

in scarce data regimes, and then develop methods for model robustification. Essentially, we

first ask then answer the following questions.

3



• Q1: What are the robustness characteristics of models trained with heavily imbalanced

data; i.e. in zero-shot settings? Are their robustness characteristics any different from

their fully supervised counterparts? If so, how and why?

• Q2: Can we develop data augmentation methods that would produce robust models?

Specifically, can we leverage frequency spectra information of images to achieve this

goal? If so, how?

Throughout this thesis, we answer these two questions through theoretical discussions,

rigorous experimentation and detailed analyses. The answers we provide in this thesis, along

with relevant key insights, shed light on model robustness in data-scarce training regimes,

specifically for zero-shot settings. Furthermore, the methods presented in this thesis are

shown to be effective and superior to current methods on multiple benchmarks datasets

related to model robustness.

1.2. Contributions

This thesis reports three primary contributions, each of which are explained in their

respective chapters. The first two chapters aim to collectively answer the first question (Q1),

whereas the third chapter focuses on the second question (Q2) and presents multiple methods

which answer it.

Chapter 3. Having observed the negligence of robustness analyses for non-supervised

methods in the literature, we focus our efforts on models with weak-to-no supervision.

Specifically, we choose discriminative Zero-Shot Learning (ZSL) methods as they reside on

one extreme of data imbalance (where for some classes no training samples are available),

among other reasons detailed in the relevant chapter. We identify adversarial performance

of the model as the first key venue of robustness, and choose a family of representative

(discriminative) ZSL models. We subject these models to a multitude of common adversarial

attacks and defenses, and record their performance. Their performance is then analysed

from multiple key aspects; such as the effect of training data (i.e. per-class sample count,
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number of classes, etc.), the trends in class boundary transitions (i.e. class transitions from

false to correct, class transitions from unseen to seen, etc.), the potentially adverse effects

of defenses, the effect of model maturity (i.e. original accuracy of the model) and the

discrepancy between how ZSL and GZSL performance are affected. We show and discuss

that data-imbalanced models have different characteristics compared to fully supervised

models, when exposed to adversaries. Some exemplary differences are the discrepancy

between unseen and seen class performance degradation and the severe effect of model

maturity. We also identify the pseudo-robustness effect often observed in our analyses, where

absolute metrics may not always reflect the robustness behaviour of the model.

Chapter 4. We continue our work on the extensive analyses presented in Chapter 3.

Although adversarial robustness is arguably the venue that sparked the robust generalization

discussion in modern ML literature, they exhibit specific characteristics that lowers the

practicality of their threat; adversaries are worst-case scenarios specifically crafted with

malicious intent. Although quite possible, such incidents are not that likely to occur. With

this motivation, we search for a more practical venue of robustness analyses, with a more

immediate effect of real-world applications. We define common image corruptions as our

new robustness front, where images undergo effects that are common in real-world, such as

digital artefacts (i.e. jpeg compression, noise), various blur types and weather effects. Such

effects, unlike adversaries, are not worst-case scenarios (i.e. carefully crafted by experts to

be imperceptible) and thus have a higher threat practicality. Since there are no benchmark

datasets to analyse corruption robustness of ZSL models, we present not one but three

datasets that fill this gap. We present AWA2-C, SUN-C and CUB-C, which are corrupted

versions of existing ZSL datasets. Using these datasets with a multitude of methods that

claim to improve corruption robustness in fully supervised settings, we perform an exhaustive

experimentation and provide similar analyses to those of Chapter 3.; the effect of training

data (i.e. per-class sample count, number of classes, etc.), the trends in class boundary

transitions (i.e. class transitions from false to correct, class transitions from unseen to seen,

etc.), the effects of defense methods, the effect of model maturity (i.e. original accuracy

of the model) and the discrepancy between how ZSL and GZSL performance are effected.
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Furthermore, we expand our selection of ZSL models to answer a simple question; do our

findings generalize to a larger family of ZSL models?. We perform the same experiments

with other models, specifically chosen to be more accurate than our primary selection, and

show that our insights hold for a multitude of ZSL models, and not just a single family of

them. Our results show, among other things, that some defense methods actually improve the

accuracy of these ZSL models and set new strong baselines. We also show and discuss that

data-imbalanced models have different characteristics compared to fully supervised models,

when exposed to corruptions. Finally, we combine the findings of Chapters 3. and 4. to

present a set of rigorous comparative analyses to highlight the differences between the effects

of corruptions and adversaries, and present a detailed roadmap/starting point for further

studies in the field.

Chapter 5. Finally, we focus on developing methods that improve the robustness of

models, regardless of the supervision profile they are trained under. Inspired by the recent

studies that are based on frequency spectra to explain model robustness [10, 35, 37, 39],

and keeping in mind that the most successful robustness improvement methods do so by

introducing data augmentations, we focus on developing a frequency spectra based data

augmentation method. To this end, we propose HybridAugment, which closely follows the

well-known hybrid images [40] that combine high-frequency and low-frequency content of

images. The core idea behind our method is simple; we hypothesize that the true label

information of an image primarily reside in the low-frequencies of the image. Furthermore,

it is discussed that Convolutional Neural Network often use high-frequency content more

than us humans [39], which leads to robustness issues. Therefore, HybridAugment aims

to force the networks to rely on low-frequency information rather than high-frequency

information present in the data, thus improving their robustness. We propose two variants;

HybridAugment-Paired and HybridAugment-Single, where we use two random images and

the different transformations of the same image to provide low and frequency content

for the HybridAugment, respectively. Furthermore, we show that their combination,

HybridAugment-PairedSingle, outperform both of these two variants. We show that

HybridAugment-PairedSingle produces highly competitive results in several benchmark
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datasets.

We then identify arguably two of the most prominent frequency-centric analyses in the

literature; frequency-bands (i.e. low vs high) and phase/amplitude decomposition. Motivated

by the fact that HybridAugment shows that the former works, and the latter is shown to

work by the research community, we unify them into a single, hierarchical augmentation

method we call HybridAugment++. HybridAugment++ first separates the low and high

frequency content of an image, and since we know that the label information is primarily

in the low-frequency, performs the amplitude/phase swap on the low-frequency content.

It then combines the augmented low-frequency content with the high-frequency content

of another image to generate the augmented image. HybridAugment++ has single and

paired variants called HybridAugment++ Paired, HybridAugment++ Single and their

combinations HybridAugment++ PairedSingle. Our results on multiple benchmark datasets

show that HybridAugment++ Single outperforms other single-image augmentations on

multiple CNN architectures. Similarly, HybridAugment++ Paired comfortably outperforms

other multi-image augmentations on the same CNN architectures. Finally, their combination

HybridAugment++ PairedSingle achieve state-of-the-art robustness results on multiple

datasets with a significant margin.

Our contributions, in a more compact way, are listed below.

• We present a thorough adversarial robustness analyses of discriminative ZSL models,

and show the effect of extreme data imbalance, as well as model accuracy on

adversarial robustness. We also identify the pseudo-robustness effect with adversaries.

• We present three ZSL datasets for image corruption robustness analyses. To the best

of our knowledge, there is no other dataset presenting a testbed for ZSL corruption

robustness analyses.

• We present a thorough common image corruption analyses of discriminative ZSL

models, and show the effect of extreme data imbalance and model accuracy. We

expand our analyses to other families of ZSL models, and show that our insights hold

for a broader range of model families.
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• We perform a thorough comparison of adversarial and corruption robustness behaviour

of discriminative ZSL models, show the key differences and present roadmaps for

future research.

• We present new strong baselines for various existing ZSL methods by using

robustness-enhancing data augmentation methods.

• We present HybridAugment, a frequency-spectra based data augmentation method that

improves model robustness across multiple datasets. We present three variants of

HybridAugment.

• We present an enhanced version of HybridAugment, called HybridAugment++, that

achieves state-of-the-art robustness metrics on multiple benchmark datasets. We

present three variants of HybridAugment++.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, lists our contributions and outlines the scope of the

thesis.

• Chapter 2 provides the relevant foundational information and literature review on

Zero-Shot Learning, Robust Generalization and Frequency-Spectra in Images for

better comprehension of the thesis.

• Chapter 3 presents the adversarial robustness analyses of discriminative ZSL models

and identifies important phenomena such as the pseudo-robustness effect.

• Chapter 4 builds on Chapter 3 and presents the corruptions robustness analyses of a

larger family of ZSL models, performs a rigorous comparison between adversarial and

corruption robustness of discriminative ZSL models and presents three new datasets.
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• Chapter 5 introduces Hybrid-Augment and HybridAugment++ methods that improve

robustness across multiple datasets and multiple network architectures.

• Chapter 6 presents the summary of the thesis, discusses the highlights the thesis and

presents potential future directions of research.

The outcomes of this theses are reported in several publications and correspoding software

packages; one conference paper, one journal paper and a working paper to be submitted to a

conference or a journal.

Paper 1: Yucel, Mehmet Kerim, Ramazan Gokberk Cinbis, and Pinar Duygulu. ”A deep

dive into adversarial robustness in zero-shot learning.” European Conference on Computer

Vision Workshops. Springer, Cham, 2020.. This paper largely corresponds to what is reported

in Chapter 3., and presents the adversarial robustness analyses of discriminative ZSL models.

Paper 2: Yucel, Mehmet Kerim, Ramazan Gokberk Cinbis, and Pinar Duygulu. ”How robust

are discriminatively trained zero-shot learning models?.” Image and Vision Computing 119

(2022): 104392.. This paper largely corresponds to what is reported in Chapter 4., and

presents the corruption robustness analyses of discriminative ZSL models as well as three

new datasets we propose.

Software 1: The code used to perform the experiments presented in Paper 1 can be found

at https://github.com/MKYucel/adversarial_robustness_zsl.

Software 2: The code used to perform the experiments presented in Paper 2, as well as

our proposed datasets AWA-C, SUN-C and CUB-C can be found at the link given below

https://github.com/MKYucel/zero_shot_corruption_benchmarks.

Working Paper: The contents of Chapter 5 will be compiled into a paper for submission.

Working Paper Software: The code used to perform the experiments presented in Chapter

5 will be made available at https://github.com/MKYucel/hybrid_augment.
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2. RELATED WORK

In this chapter, we present the relevant foundational information we believe to be required

for a better comprehension of this thesis. We will provide a brief overview of the basics, and

then move forward with relevant literature.

2.1. Fundamentals

First, we cover the fundamentals; we talk about the core learning mechanisms in ML,

different supervision profiles in the current ML literature and introduce commonly used CNN

architectures.

2.1.1. A primer on Machine Learning

Machine Learning. Machine learning has many definitions, but we consider it to be

the discipline of learning from observations (data) to approximate functions and discover

patterns in the data. It is especially useful in complex cases, where a function does not have

a closed form solution or even can not be described mathematically. Imagine a scenario

where we are tasked with recognizing a cat in an image. The question is simple; how can we

mathematically describe a cat? We do have an idea about what a cat is; it has ears, whiskers,

mouth, eyes and paws. However, it is nearly impossible to formulate a cat mathematically as

cats differ in size, breed, age, gender and images in cats with them differ in viewpoint,

scale, color, illumination, etc. In this scenario, the best we can do is to approximate a

function that recognizes (and implicitly models) a cat; it should be able to say whether a

query image has cats or not. Such a scenario is ideal for machine learning; i) we have lots of

observations (i.e. images) of cats and ii) we know they are cats (i.e. labels). The rest depends

on the algorithmic choices we adopt. Machine Learning is built on a multi-disciplinary

paradigm, where it leverages mathematics (i.e. optimization, algebra, probability), statistics

(i.e. learning theory), psychology and computer science. It has been around for quite a while,
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but especially in the recent years it has become too big of a topic to summarize in a mere

chapter. Here, we describe the relevant basic building blocks for a brief overview.

Perceptron. Machine Learning borrows quite a lot from statistics and learning theory.

Along with fundamental methods like logistic regression, kernel methods, clustering and

dimensionality reduction, nearest neighbors and the like, the field has taken a lot of

inspiration from biology, especially from a learning mechanism perspective. The basic

processing unit of the brain is called neuron, which essentially receives and forwards

electrical information to other neurons with connections called synapses. Synapses have

weights which corresponds to the strength of the connection, and the output of a neuron is

essentially a combination of all input signals weighted by individual synaptic weights. As

a rough imitation of neurons, the seminal perceptron [41] classification model f(·;W ) was

proposed where

f(X;W ) = σ

b+
N∑
i=1

Wi ·Xi

 (1)

where X is the input data, N is the number of inputs (i.e. dimension of the input), σ

is the step function, Wi is the ith connection (i.e. synaptic) weights, Xi is the ith input

and b is the bias term. The primary problem with perceptron is that it provides a linear

decision boundary despite the non-linearity σ; such limitation would lead to insufficient

discriminatory performance in complex, real-world data. A natural solution to that is the

famous multi-layer perceptron, where a number of perceptron units are stacked together to

form a deeper classifier able to handle non-linear decision boundaries. Note that Equation

1 is the widely used fully-connected layer in modern neural networks, where activation

functions might differ based on network design.

Loss Functions. Now that we have a design theoretically capable of approximating any

function, we need a way to approximate any function. Before going into the learning

algorithms, we need a way to measure how well our method is doing on given observations.

This is called a loss function (i.e. cost function, objective function) and they map the values
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estimated by the model to the target values, and produce a value that computes the error

between the two. Depending on the task, this loss function is either minimized or maximized.

The space of loss functions is extremely large, spanning cross-entropy to KL-divergence

[42], smooth-L1 [43] to gradient losses [44], all the way up to learned loss functions such as

discriminator networks [26]. An example loss often used in our thesis is the cross-entropy

(CE) loss that measures the performance of a classification model given a target probability

distribution (i.e. labels), and its value decreases as the prediction distribution and target

distribution converge. It is defined as

CE = −
M∑
c=1

tilog(si) (2)

where M is the number of classes, ti is the ground-truth and si is the predicted class for class

i. Note that si are the softmax-normalized output probabilities.

Gradient-based Learning. We now have a function approximator and an evaluation metric,

but still lack the mechanism to update our function approximator such that it learns to, well,

approximate the function. The basic idea for this learning/optimization problem is defined

as

W ′ = argmin
W

N∑
n=1

(Loss(yn, pn)) (3)

where the aim is to find a set of weights W ′ that parameterizes the function approximator

f(·;W ), by minimizing the loss between ground-truth labels y and model predictions p over

N number of samples.

Actually performing Equation 3 requires two ingredients; i) an optimization method to find

the necessary parameter updates and ii) a way to do this for all parameters in the network.

Among the vast optimization literature, the most commonly used optimization method in

modern ML (and in our thesis) is the gradient descent method [41] that aims to find a local

minimum of our function approximator f(·;W ). Assuming that f(·;W ) is an end-to-end
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differentiable single layer model, gradient descent first calculates the gradient of the loss

function with respect to the parameters W of f(·;W ), and uses this gradient to update the

parameters W . It is formulated as

Wt+1 = W t − η
∂Loss

∂W t
(4)

where t indexes iteration/time, ∂ denotes the partial derivative operation and η is the

learning rate parameter. The final block of the puzzle is simple; how do we do this for a

network with many layers? The answer is the chain-rule from algebra, which leads to the

backpropagation [45] algorithm. Assuming an end-to-end differentiable, multi-layer model

f(·;W ), the backpropagation algorithm calculates the necessary gradient updates (required

by the gradient descent algorithm) for all model layers in a backward fashion, starting from

the final layer of the network. For example, to calculate the parameter update of the ith layer

of the network, backpropagation does the following

∂Loss

∂Wi

=
∂Loss

∂ZL

· ∂ZL

∂ZL−1

· · · ∂Zi

∂Wi

(5)

where L is the number of the layers in the network and Zi refers to representations (i.e.

hidden layer outputs) of the ith layer.

There are additional mechanisms, such as learning rates (see Equation 3), weight decays

etc. which are controlled by the so-called optimizers during the training; ADAM is a prime

example of these optimizers [46]. Furthermore, since all data samples might not fit to the

machine memory during training, in each iteration of Equation 3 we often randomly sample

a subset of the N training samples (i.e. batch) and perform the training; this process is called

stochastic gradient descent. We sample necessary number of batches until we cover the

entire dataset (i.e. epoch), and then train as much as we like. In short, the process can be

summarized as follows.

• We randomly sample a batch from the training samples.
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• We feed this batch to our network f(·;W ) and get our predictions.

• We calculate the loss value Loss, perform backpropagation (Equation 5) to find the

gradient updates for all layers.

• We perform the necessary gradient updates (Equation 4) with the help of the optimizer.

• We repeat until convergence, or until we reach a certain number of iterations/epochs.

2.1.2. Supervision Profiles in Machine Learning

As explained in Chapter 2.1., ML methods require large sets of data to model complex

tasks. Furthermore, these large datasets should come with label information; i.e. such as

the class label of the image (i.e. cat image, dog image, etc). This leads to an expensive and

laborious process, where manual annotations for many images need to be produced. Note

that this problem becomes even harder, nearly impossible with dense annotations; imagine a

segmentation mask annotation where every pixel must be annotated with class labels. This

will be extremely time consuming for a human annotator, thus quite expensive. Luckily,

machine learning is not formed of just supervised methods. We now briefly cover popular

supervision profiles.

Supervised Learning. Often called fully-supervised learning, supervised learning methods

are already mentioned in this thesis; when we have a dataset and associated ground-truth

labels, we can leverage such methods to achieve our goal. Since the availability of labels

provide a strong supervisory signal for learning, such methods often achieve state-of-the-art

in many tasks. Therefore, many bleeding-edge methods in various disciplines leverage

fully-supervised learning.

Unsupervised Learning. Unsupervised methods’ primary aim is to discover hidden

structures present in the data, without any external supervisory signal. Various clustering

or dimensionality reduction methods are such examples [47, 48]. Due to the lack of a

supervisory signal, these methods often struggle to reach bleeding-edge results. However,

eliminating the need of labels make them quite desirable due to lowered costs.
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Semi-supervised learning. In semi-supervised learning, methods make us of label and

unlabeled data to further achieve good results. By definition, it combines supervised and

unsupervised learning; i.e. we can leverage unlabeled data to learn good representations

and then finetune the model on labeled data to improve the results. Alternatively, we can

use a pretrained model to pseudo-label an unlabeled dataset, and then train another model

on these generated labels. Semi-supervised learning is a broad term and may refer to other

approaches as well, such as weakly-supervised methods where the annotations are not of the

same structure as the model predictions; weakly-supervised object detection methods without

localization annotations [49, 50] or stacked networks with implicit localization blocks [51]

are such examples.

Self-supervised methods. Self-supervised methods are quite similar to unsupervised

methods, but with key differences. In self-supervised methods, as the name implies, we craft

our own supervision, either by domain knowledge, data design or designing pretext tasks. An

example of using domain knowledge is the self-supervised depth estimation literature [52],

where left-right image consistency is used as a reconstruction loss by warping one image onto

another. Here, although there are no ground-truth labels present, we use geometric principles

to derive a supervisory signal. Data design refers to data engineering to generate ground-truth

labels; a prime example is video frame interpolation where one can simply hold-out frames

of a video to reduce the frame rate, and teach the model to predict the held-out frames.

Pretext-task based self-supervision comes in the form of pretraining; models are shown to

learn useful representations when they are forced to solve jigsaw puzzles [53].

Other supervision profiles. We note that this literature is vast, and covering all examples is

not tractable. However, aside from dataset-level supervision profiles, there are other profiles

where per-class sample count is of concern. Few-shot learning methods [54] aim to learn

from only a few images, whereas zero-shot learning methods [55] use absolutely no data

(labeled or unlabeled) for specific classes in the test distribution. Note that ZSL is a pillar of

our research and has a dedicated section (see Chapter 2.2.).
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2.1.3. Convolutional Neural Networks

Convolution Layer. With the seminal works of LeNet [17] and AlexNet [24], CNNs have

sparked the deep learning revolution. So far, we mentioned the fully-connected (FC) layers

(Equation 1) and networks formed of these layers. However, in high-dimensional data, using

FC layers quickly become intractable due to extreme number of parameters as they are

densely connected. Inspired from human visual systems and algebra, convolution layers use

the local convolution operation. A convolution operation is performed using a convolution

kernel (also called a filter), where we spatially slide and compute the dot products between

this kernel and image patches. After the multiplication (i.e. essentially a Hadamard product),

we sum the resulting matrix and produce a value. Note that if the size of the overall image

is bigger than the convolution kernel (which is often the case), we will end up with a matrix

of resulting values; this is called an activation map (i.e. feature, representation). The size of

each activation maps depend on convolution kernel size, stride and the input image size.

The convolution layers have several advantages; they i) are local in nature, which aligns well

with image modality due to closely-spaced pixel relations, ii) perform parameter sharing

spatially; i.e. same kernel is used throughout the whole image and iii) are sparsely connected

and save precious memory/storage/runtime. An example is shown in Figure 2.1. Note that

CNNs use convolution layers, but might use other layers as well; such as fully-connected

layers, pooling layers, non-linear activations, normalization layers, regularization layers (i.e.

dropout),etc. We do not mention much of these layers for brevity.

Architectural Advances. The literature on CNNs is quite vast; what [17] started had

huge consequences, and the end is not in sight yet. Here, we briefly review some CNN

architectures. Note that these architectures are reviewed primarily because we extensively

use them in Chapter 5.

AllConv [56] network removes the non-convolutional layers from CNNs (except the

non-linearities), and replaces the pooling layers with a convolutional layer with increased

stride. Note that the FC-layers can also be replaced by 1 × 1 convolution layers, leading
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Figure 2.1 A diagram of the convolution operation. Image credit: [3].

to an All-Convolution (AllConv) network. AllConv is a fundamental CNN architecture that

showed the power of convolutional layers, and the fact that they can be the sole building

block of advances architectures.

ResNet [4] architecture is arguably the most impactful CNN architecture in the literature,

where it is still the go-to architecture for virtually all vision tasks. ResNets ask a simple

question; how can we train even deeper networks? The problem before ResNets was the

the inability to train deeper models due to the vanishing gradients problem, where gradients

would be so small to provide meaningful parameter updates to earlier layers of a CNN. By

introducing the identity residual connections (i.e. a special case of another seminal paper

Highway Nets [57]), authors showed that even a 150-layer deep network can be trained

successfully with even better accuracy, thanks to the significantly improved gradient flow.

The residual block that forms ResNets is shown in Figure 2.2.

WideResNet [58] thoroughly discusses the effects of width and depth in residual networks,

and then propose a wider version of it. Specifically, a wider ResNet block is proposed.

WideResNets are known to be useful especially in terms of computational performance,

as the sequential nature of the network (i.e. depth) is traded against the number of filters

(i.e. width), which theoretically keeps a similar presentation power. Increasing the width

increases the computational performance much more gracefully compared to increasing the

depth, as more filters make better use of GPU parallelism.
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Figure 2.2 The ResNet [4] and ResNext [5] blocks. Image credit: [5].

ResNeXt architecture builds on the ResNet block and introduces the hyperparameter

cardinality which refers to the number of branches available in the residual block.

Essentially, multiple branches are fed the same input tensor where the output of each branch

is aggregated at the end, providing the output of the so-called ResNeXt block. Note that the

cardinality is similar to the width, except width refers to number of filters in a layer whereas

cardinality refers to number of parallel branches in a block. ResNeXt block is shown in

Figure 2.2.

DenseNet [6] explores the extreme where every layer is connected to every other layer.

Essentially, each layer takes the previous feature maps as input. According to the authors,

DenseNet addresses the vanishing gradient problem, strengthen feature propagation and

promote feature reuse. DenseNet is formed of DenseBlocks, where such dense connections

are established between layers with same feature dimensions. DenseNet produces strong

results, at the cost of degraded computational performance. DenseNet block is shown in

Figure 2.3.

2.2. (Generalized) Zero-Shot Learning

In this section, we focus on the relevant information on Zero-Shot and Generalized Zero-Shot

Learning. We first motivate why we need them, formally formulate the challenges and then

present a review of methods relevant to our thesis.
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Figure 2.3 The DenseNet [6] block. Image credit: [6].

2.2.1. Preliminaries.

As discussed in Chapter 2.1.2., although we have systems that can scale their performance

with data, finding the data and annotating them is an important bottleneck. Considering a

simple image classification problem, we must know that not every class is created equally;

some classes will have more samples than others (i.e. more images of cats on the internet

than, well, anything else). One-shot and few-shot learning methods are specifically devised

to address this class imbalance issue. What happens when we go the extreme, and have no

samples of some classes at all?

The first answer that comes to mind is that we can not recognize them at all. Specifically,

our classifier will assign a different prediction label to these samples, leading to completely

incorrect results. Detecting such samples are quite important in real-world applications.

Open Set methods and out-of-distribution detection methods tackle this issue up to a degree,

but they can only detect that such samples are not of the training classes. Essentially, all

these methods are limited to recognizing the classes they are trained on. We then revise our

question; how do we detect and recognize the classes not used in the training?
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Zero-Shot Learning. Zero-Shot Learning is a popular approach that aims to answer the

above question. ZSL primarily aims to leverage auxiliary information available on seen and

unseen classes to bridge the information gap caused by the data imbalance. In the context of

image classification, ZSL aims to train a model on (seen) classes and aims to perform well on

(unseen) classes not seen during the training. It can be seen as learning a mapping between

the auxiliary information and classes, and use this mapping to recognize the unseen classes.

Generalized Zero-Shot Learning. The primary problem of ZSL is its practicality; training

on a set of classes while aiming to classify a disjoint set of classes is not realistic. A more

realistic setting is where we train on a set of classes, and aim to perform well on the training

classes as well as a disjoint set of unseen classes. This setting is called Generalized Zero-Shot

Learning (GZSL), where the setting more closely imitates human visual system compared

to ZSL [7]. Figure 2.4 includes a diagram showing the differences between ZSL and GZSL

settings in training and testing stages.

Formally, assuming a training set S = {(xn, yn), n = 1 · · ·N} with yn ∈ Y tr where

Y tr correspond to the training classes, the aim of ZSL is to learn a function f(·;W ) that

minimizes the regularized empirical risk [59]

1

N

N∑
n=1

L(yn, f(xn;W )) +R(W ) (6)

where L(·) is the loss function and R(·) is the regularization term. More specifically, we aim

to learn f(·;W ) which can be defined as

f(x·;W ) = argmax
y∈Y

F (x, y;W ) (7)

The primary difference between ZSL and GZSL settings is that during ZSL evaluation,

f(·;W ) is expected to assign to test images a label y ⊂ Y ts whereas in GZSL, it is expected

to assign a label y ⊂ Y tr+ts, where Y ts refer to unseen image labels.
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Figure 2.4 ZSL and GZSL settings. Image credit: [7].

Evaluation metrics. Throughout this thesis, we focus on the image recognition task

within ZSL/GZSL settings. We follow and report the metrics widely used in the literature;

normalized (i.e. averaged across all classes to treat all classes equally, regardless of

per-sample count) top-1 accuracy on seen (Accs) and top-1 accuracy on unseen (Accu)

classes are used. Additionally, to present a single metric, harmonic score (H-Score) is also

reported, which is defined as

H = 2 ∗ Accs ∗ Accu
Accs + Accu

(8)

H-Score is especially useful to see the imbalances in unseen and seen class performance, and

due to the inherent low performance on unseen classes, generally favour unseen classes more

than seen counterparts.

Auxiliary Information. A crucial component of ZSL methods is the availability and the

nature of the auxiliary information. This auxiliary information is the only bridge linking

seen and unseen classes, therefore their accuracy and informativeness are of paramount

importance. Note that auxiliary information is also referred to as side information, class

prototypes, semantic information or class embeddings as well. In principle, any kind of
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information can be used as auxiliary information (i.e. discrete, continuous, etc.), but the two

types often used in the literature are i) attributes and ii) word vectors [60].

Attributes are sets of information about classes provided by human annotators, such as their

shape, color or even more abstract characteristics (i.e. season in the image, whether a bird

has a beak or not, etc). Despite being highly accurate, it is hard to scale attributes to large

datasets. However, they are the most commonly used type of auxiliary information in the

ZSL literature. Word vectors are essentially automated attributes extracted from large text

corpora, where classes are represented with vectors that represent various characteristics.

In contrast with manual attributes, they are easier to generate and scale, but tend to have

more noise. Note that we use manual attributes throughout our thesis, specifically the ones

provided by publicly available datasets [59, 61, 62].

Challenges. ZSL and GZSL have their unique challenges. The first challenge is the

knowledge transfer from seen to unseen classes, which is at the very core of both settings. An

accurate mapping between visual and attribute (i.e. semantic) space must be learned, such

that it facilitates the required knowledge transfer. Another core challenge is the projection

domain shift. This is essentially domain shift on steroids; unlike the domain shift problem

where two domains are known to have the same classes, in ZSL/GZSL two domains might

not share the same classes. Essentially, seen and unseen classes have different classes, and

they are likely to be from different domains as well. The third challenge is the auxiliary

information generation; they are integral to the success of ZSL/GZSL methods and they

must be generated in scale, with high effectiveness [7]. Last but not least, another challenge

is the overfitting. Apparent in GZSL, many methods inherently overfit to seen classes because

that is the only data they see during training [63]. Appropriate regularization and successful

knowledge transfer is imperative for tackling this issue.

2.2.2. Existing Methods

ZSL/GZSL literature is quite vast, and it is an ever expanding field due to its low sample

complexity nature. Earlier ZSL methods adopted a two-stage approach, where attributes
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Figure 2.5 Diagram of discriminative ZSL methods. Image credit: [7].

of a given image are predicted, and then these attributes are used to find the class

with similar attributes to produce the final result [64, 65]. Following these methods are

modern methods which we largely divide into two; i) discriminative and ii) generative

methods. Discriminative methods, also called embedding-based methods, learn a function

that associates the visual and the semantic embeddings, which is then used to compute

a similarity score between semantic vectors of unseen classes and predicted embeddings

of the query image [1, 66–75]. Generative methods leverage the advances in generative

modeling, and generate samples or features of seen classes based on the relation between

seen classes’ semantic and visual embeddings. Such methods effectively reduce ZSL into

a fully-supervised problem, where the generated features or samples of unseen classes are

used in training in a supervised fashion [76–79]. From another perspective, ZSL/GZSL

methods are divided as inductive and transductive, where inductive methods are accepted as

the conventional ZSL setting where only the visual features of seen classes and semantic

embeddings of all classes are available. However, in the transductive setting, unlabeled

samples of the unseen classes are also used [1, 80, 81]. The transductive setting is a mixed

bag; inclusion of unlabeled samples of unseen classes defeats the very purpose of ZSL/GZSL

methods, but it is not unrealistic to think that this will be possible in real-life setting [7].
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Discriminative methods have various approaches in itself, where the projection (i.e.

compatibility) function can be learned from visual to semantic space [66, 82, 83], semantic

to visual space [84, 85] or both of them can be mapped to a shared latent space [86, 87].

The way this function is implemented varies dramatically; graphs [67, 68], meta-learning

[69, 70], attention [1, 71], compositional learning [72], various network architectures [73]

and even out-of-distribution detection methods are some examples [66]. In this thesis, we

specifically focus on two methods; the seminal Attribute-Label Embedding (ALE) method

[83] and Latent Feature Guided Attribute Attention (LFGAA) method [1]. These two

methods form the backbone of our analyses presented in Chapters 3. and 4.. See relevant

chapters for details on these methods. A representative diagram for discriminative ZSL

methods is shown in Figure 2.5.

Generative methods primarily aim to reduce ZSL to a fully supervised problem by

generating samples or features for unseen classes. In principle, they address the projection

domain shift problem if they manage to generate adequate samples/features for the unseen

classes. GANs [88–91] and VAEs [92–94] are the most commonly used generative

methods, and they come with their burdens; unstable training, mode collapse and lack

of details in generated samples (i.e. blurriness) are some example issues plaguing the

generative approaches. Note that generative methods are in a comfortable lead in ZSL/GZSL

benchmarks despite the unique issues they face. In this thesis, we do not focus on generative

models and therefore do not go into further details here (see Chapter 3. for why we do not

focus on generative methods).

2.3. Robust Generalization

In this section, we focus on the relevant information on adversarial and corruption robustness

through the lens of the more general robust generalization discussion. We motivate the need

for robust generalization, specifically focus on adversarial and corruption robustness due to

their relevance to our thesis and then outline the existing challenges in the field.
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2.3.1. Preliminaries.

Although ML methods introduced significant advances in numerous fields, they have

their unique challenges. Among all of them, quite possibly the most important one is

generalization. The core idea behind generalization is simple; the reaction of the model

to new data. A model that is said to generalize well will perform well across new data. The

key point here is the definition of new data. Formally, when we talk about generalization in

ML, we first think of how well the model performs in the test set, which it has not seen during

training or hyperparameter tuning phase. Note that the training and test set of a dataset is

considered to be in the same distribution. Let us call this level of generalization as the

simple train-test generalization. Going one step further, let us assume multiple datasets with

same categories; i.e. two separate cat/dog classification datasets A and B. Ideally, we want a

model we trained on A or B perform well on the other. This is often the most practical case of

generalization; we would like to learn robust representations of classes that will perform well

generally across different distributions of data. Let us call this cross-dataset generalization.

Note that this distribution change in cross-dataset generalization is essentially a domain shift

issue that domain adaptation tries to solve.

Often what comes to mind when talk about cross-dataset generalization is seasonal changes,

viewpoint changes, color changes, etc. However, the real-life generalization demands much

more than that. Assume a query image belonging to a category seen in the training, the

misclassification of the query image is always a generalization issue. The underlying reason

of such errors might be anything, distribution changes, underfitting, any transformation that

does not change the label, etc. Note that the issue can stem from the training data, as well

as the architecture of the model. It is shown that ImageNet pretrained models often fit to the

texture rather than shape [8] (see Figure 2.6), and this problem can be alleviated to a degree

with injecting shape bias to the data [8]. There are datasets where extremely hard, yet natural

examples are curated, where it is hard for even us humans to correctly predict the class of

the image [95]. The inability of ML models to generalize across from natural images to

sketches/renditions [33], which us humans can effortlessly do, is considered another example
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Figure 2.6 ImageNet pretrained models focus on texture. Image credit: [8].

for data-based issues as well. From an architectural point of view, it is shown that CNNs tend

to leverage high-frequency information imperceptible to us humans, which leads to test errors

that degrades generalization [35, 39].

Among this sea of potential reasons, we focus on the specific ones that are the driving

force behind the robust generalization discussion, which we define as the ability to perform

well on a large distribution of images, including the adversarial and corrupted versions of

the test images1. These adversarial and corrupted version of images often look the same

to us humans, or we can still tell the actual class of the image, but they can completely

invalidate even the most accurate of ML models. They have the same practical effect on

ML models and their adoption in real-world use cases, but have wildly different underlying

characteristics. The motivation our their selection, however, is the same; they have immediate

and profound effects on generalization, and any analyses on and solution to them are of

paramount importance.

2.3.2. Adversarial Robustness

What is adversarial robustness? Adversarial robustness focuses on model generalization;

specifically the ability of a model to correctly classify clean, as well as adversarially

perturbed images. Such images are often called adversarial examples, and they are first

highlighted in [30]. Adversarial images are often imperceptible and created via adding

learned perturbation matrices to query images, and primarily have two properties; i) humans

1Note that robust generalization is essentially a subset of the broader true generalization discussion.
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can not distinguish clean and corrupted versions and ii) they lead to high-confidence, often

model-agnostic misclassifications by the model. There are various theories as to why they

exist; the linearity hypothesis [96], excessive dependency on high-frequency content [39],

decision boundary flatness [97] and inherent uncertainty on model predictions [98] are some

theories that attempt to justify their existence. In practice, adversarial examples are created

with adversarial attack methods, and are addressed with adversarial defense methods.

’Fool me once, shame on you.’

Anthony Weldon

Adversarial attacks. The literature on adversarial attacks is extremely vast and virtually

impossible to cover in detail in a short section. Following the seminal work that first

introduced adversarial examples [30], the first attack that scaled to ImageNet was reported

in [99]. A plethora of works followed; one-step attacks [96], transformation attacks [100],

one-pixel attacks [101], attacks not constrained by any ℓ-norm (i.e. potentially perceptible)

[102], iterative attacks [103], Jacobian-based attacks [104], universal attacks that worked

for an entire dataset [105] and generative method-based attacks [106] are some examples.

These attacks have various so called threat models, where the attacker makes an assumption

about their knowledge on the system to be attacked; white-box attacks assume extensive

access to the target model, its architecture and gradients whereas black-box methods can only

query the target model and have absolutely no knowledge about the model 2 [108]. Attacks

are also divided into two categories as targeted or non-targeted, depending on whether the

attack design dictates a specific class for misprediction. In other words, targeted attacks

forces a model misclassify an image as a cat, whereas non-targeted attacks just aims for

misclassification where any mispredicted label would suffice. Transferable term is coined

to indicate whether an adversarial example can invalidate a different model than the one

it is optimized to fool. Adversarial attacks have also managed to make their way into the

real-world from the digital world much like Agent Smith, where physical attacks, even when

2Note that there is a third variant grey-box attacks [107] that is not as applicable as the other two, and not
quite relevant to our thesis. Therefore, we omit its discussion here for brevity.
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Figure 2.7 Original (top left) and adversarial versions of a fox image.

printed on a t-shirt or on a sticker, managed to fool real-life ML systems [109]. Naturally,

adversarial attacks are not limited to just image recognition, but extended to various other

vision tasks like object detection [110], depth estimation [111] and object tracking [112], as

well as other modalities such as NLP [32], speech [31], point clouds [113], visual question

answering [114] and many more. See Figure 2.7 for visual examples of adversaries with

different strengths.

’Fool me twice, shame on me.’

Anthony Weldon

Adversarial defenses. Similar to adversarial example literature, adversarial defense

literature is quite vast as well, therefore we only highlight the important advances.

Adversarial defenses can be divided into three; methods that i) change the training regime,

ii) change the network and iii) use additional modules during inference [108]. A prime

example to the first category is the popular adversarial training, where adversarial examples

are added to the training sample pool [30, 96]. It is succeeded by improved methods
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[115–117], yet it is still considered as a strong baseline. Input gradient regularization [118],

autoencoder-based purification [119], bounded ReLUs [120], feature regeneration [121] and

knowledge distillation [122] are some methods for the second category. The third category,

and the second category to some degree, can be further divided into two sub-categories

where adversarial attacks are either purified or simply detected. Total variance minimization

[123], bit-depth reduction [124], JPEG compression [125], GANs [126] or other network

architectures [105] have been used for adversary purification, whereas feature squeezing

[124] and specialized detector architectures [127] have found use for adversary detection.

Similar to adversarial examples, there are many defense mechanisms designed for vision

tasks other than image recognition [128, 129], as well as other data modalities such as speech

[130], NLP [131] and many more. Among all the attacks and defenses listed, we have used

several of them in our research and will go into more detail in the next chapters. Note that

adversarial attack and defense literature is experiencing an ongoing arms race, with no end

in sight.

2.3.3. Corruption Robustness

From adversaries to corruptions. Despite their importance, adversarial examples require

several key ingredients; crafting an adversarial example with imperceptible changes require

expertise as they are arguably the worst-case scenarios for the model. This often means

that there needs to be bad intent for such examples to be realized; it is not quite realistic

for a system and/or a third party to create an adversarial example purely by chance and/or

without bad intent. These facts do not mean adversaries are not important, but rather makes

us question the threat they pose.

Common image corruptions are more practical scenarios where we see them happen

naturally; i.e. weather effects, digital artefacts, sensor noise, etc. They are not necessarily

the worst-case (i.e. imperceptible) or require bad intent to materialize, but they do occur and

occur more frequently. The elevated frequency of occurrence for corruptions make them a

more severe threat to real-world ML systems, and also a more practical venue for robustness
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analyses. As one expects, corruption robustness focuses on the ability of a model to correctly

classify clean as well as corrupted images. Note that corruptions, especially due to their

unbounded nature, are arguably even more dangerous than adversaries and are shown to

easily invalidate otherwise state-of-the-art models [9].

The corruption robustness field is comparably younger than the adversarial robustness field,

and thus still evolving. Its consolidation and standardization begun with the seminal

work that introduced ImageNet-C [9] dataset. ImageNet-C is essentially the ImageNet

validation set, but with several image corruptions with some 15 different types and 5

severity levels, such as noise types, weather effects, digital artefacts and commonly

occurring blur types. These effects are simulated synthetically and act as a proxy to

naturally occurring corruptions, where models are evaluated on these images to assess their

performance against such corruptions. Practitioners are encouraged not to train their models

using images corrupted with the same categories (i.e. unlike adversarial training where

adversaries are used in the training pool). Also, an additional four types of corruption

representing each category are provided as validation corruptions, where practitioners are

encouraged to validate their models on these four types, rather than the test corruptions

directly. ImageNet-C led to the release of multiple relevant datasets, such as CIFAR-C

and MNIST-C [9, 132] with relevant corruption types. ImageNet-P is released to assess

perturbation robustness, to see if models can preserve their predictions under temporally

evolving, potentially cascaded corruptions over time. The types of corruptions specific to

other modalities [133, 134] or more geometrically grounded corruptions [135] have been

standardized, and vision tasks other than image classification [136, 137] have been evaluated

against corruptions. See Figure 2.8 for example corruption visualizations.

Improving corruption robustness. Similar to the arms race between adversarial attacks

and examples, there has been a plethora of papers improving the corruption robustness of

existing models. These methods primarily focus on devising data augmentations to diversify

the training distribution such that the models become much more robust to corruptions.

Cascading randomly sampled image augmentations [36, 138], new augmentation regimes

[139–142], leveraging unlabeled data for self-supervised pretraining [143], adversarial
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Figure 2.8 ImageNet-C corruptions. Image credit: [9]

training [144, 145], explicit shape-bias injection [146, 147] and style-transfer [148] are

examples to such augmentations. Several methods focused on batch normalization and

its effect on corruption robustness, which turned out to be decisive factor in overall model

robustness [149]. This led to intra-batch sample statistic augmentations that aimed to focus

models’ attention to what matters [150]. Model ensembles, formed out of different domain

expert models [151] or frequency-biased models [152] are shown to be helpful as well.

Enhancing sub-networks of an architecture [153], augmentation consistency losses [154] and

wavelet-transform enhanced architectural changes [155] also improve robustness. Last but

not least, based on the frequency-spectra analyses of corruption robustness, several methods

have been proposed; biasing models to low-frequency regions [156], amplitude-phase mixing

for data augmentation [10] and spectrum perturbation [157, 158] are shown to be effective

for improving robustness. Note that many of these augmentation methods, unlike adversarial

defenses, aim to address the broader robustness issue, where they aim to improve both

clean, adversarial and corruption accuracies, with varying degrees of success. Many of these

methods are either borrowed/adapted from existing augmentation literature, or went on to be
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an integral part of augmentation literature and not just robustness literature. Note that among

all these methods, we have used several of them in our research and will go into more detail

in the next chapters.

2.3.4. Challenges

Despite the stunning advances in robust generalization, there are still numerous challenges

that needs to be addressed. A primary challenge is the very definition of corruption; existing

methods either simulate a subset of existing corruptions or focus on an extremely small

subset of (i.e. deblurring datasets) real-life corruptions. As is the case for any progressing

field, existing methods are likely to reach the limits of existing datasets at some point

in the near future, which will require new benchmark datasets with significant scale and

diversity. Another challenge is the robustness-accuracy trade-off ; it is often discussed that

these two are in odds at each other, where increased robustness leads to worse performance

on clean images, and vice versa [159]. Achieving a more substantial impact would require

the improvement on both fronts, not just one. The final challenge (among an extensive list of

others not mentioned here) is the severe bias of existing studies to fully supervised methods;

existing robustness methods exclusively focus on fully supervised settings which limits the

discussion to a restricted set of use cases. Effects of low model accuracy, data imbalance,

imperfect supervision profiles and the resulting complex decision boundaries are among

many areas relatively unexplored in the literature. Our thesis is motivated by this challenge

specifically, hence our focus on assessing zero-shot learning robustness on multiple fronts.

2.4. Frequency Spectra

In this section, we focus on the relevant information of frequency image analyses. We first

motivate why frequency analyses in images are necessary, when and where they are useful

and their relevance to our thesis.
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2.4.1. Preliminaries

Images inherently have a spatial form, where our perception is dependant on its width and

height. In their canonical domain, let us call it the pixel domain, images are represented

with various color spaces; i.e. as a function of RGB intensities, hue/saturation/lightness, etc.

for each pixel location. Everything is built on the smallest building block pixels. The pixel

domain representation is integral to our perception and for many uses in computer vision and

image processing, but a well-motivated question is can we have different building blocks to

represent images that will also be useful?

We first take a step back and go back to basics. In signal processing, where signals are often

one-dimensional 3 (i.e. electromagnetic waves, acoustic waves, speech, etc.), signals are

often defined with their magnitude, but more importantly, their periodicity. Their wavelength

is of paramount importance; it effects how far a signal can travel due to frequency-based

attenuation levels, how much information it can provide, etc. Note that the entire electronics

industry is built on these principles; in telecommunications sector, companies pay billions to

governments to acquire the rights of certain frequency bandwidths in which they can operate.

Therefore, it is imperative to refresh the basic knowledge of signal periodicity.

2.4.2. Primer on Fourier Transform

Jean-Baptiste Joseph Fourier, a mathematician and physicist, claimed in early 1800s that any

function can be decomposed into sine waves of different frequencies. Essentially, instead

of having time or space as the primary building block of a signal, this decomposition uses

sine waves with different frequencies as its basis. This process, called Fourier Transform,

effectively rewrites a signal as a weighted sum of sine waves with different frequencies; i.e.

showing us how much of each frequency is present in the signal. Let x(t) be a continuous

signal as a function of time t, the Fourier Transform is defined as [160]

3Excluding the time dimension.
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X(ω) =

∫ ∞

−∞
x(t)e−jωtdt (9)

where X(ω) is the original signal, now as a function of the frequency ω. The Inverse Fourier

Transform reverses this process and is defined as

x(t) =
1

2π

∫ ∞

−∞
X(ω)ejωtdω (10)

Note that the very building block of this frequency domain is a sine wave A(sinω+θ), where

A is the magnitude and θ is the phase component. The magnitude A tells us how much of

the that specific frequency component (i.e. amplitude) and phase tells us about its shift in

time. As useful as they are, these equations are defined for uni-variate continuous functions,

whereas images are multi-variate discrete functions.

Discrete Fourier Transform (DFT) comes to the rescue for digital signals that form the

backbone of our lives. Digital signals sample x(t) and turn it into a discrete set of

observations. Assuming we have an image x(a, b) with size N×N , and by simply extending

the uni-variate continuous Fourier transform to multi-variate discrete case, DFT is defined as

X(k, l) =
N−1∑
i=0

N−1∑
j=0

x(i, j)e−i2π( ki
N
+ lj

N ) (11)

where i, j index the image in spatial domain, the exponential terms correspond to basis sine

functions and the Fourier space is indexed by k, l. Note that the number of frequencies are

the same as the number of pixels; the spatial and Fourier domain images are of the same size.

Similar to the continuous case, the inverse DFT is calculated as

x(a, b) =
1

N2

N−1∑
k=0

N−1∑
l=0

X(i, j)ei2π(
ka
N

+ lb
N ) (12)
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2.4.3. Frequency Analyses on Images

A good point to start is to ask this question; what is frequency in an image? High-frequency in

images correspond to a high rate of intensity change; i.e. edges, object boundaries whereas

low-frequency in images correspond to no or gradual change areas. Phase and amplitude

components are stored for each frequency, but unlike the 1D continuous signal case, they are

a bit harder to interpret for 2D discrete images. Magnitude is still straightforward; it tells us

how much signal there is at a specific frequency component. Things get a bit messy when

it comes to phase; shown in Figure 2.9 are an input image, and its phase and (zero-centred)

amplitude 4. Unsurprisingly, neither of them mean something to us at first glance, especially

the phase. An interesting experiment is shown in the bottom of Figure 2.9; once the phase

and amplitude of two images are combined, and inverse DFT is applied, the resulting image

looks more like the image we took the phase component from. Therefore, we can say that

the phase encodes important spatial information regarding where each frequency component

occurs in an image.

How to use frequency analyses in practice? Image frequency analysis is used in several

crucial applications. Many compression algorithms (including the famous JPEG [161])

filter out the high-frequency components of the image, which commonly occurring noises

reside. Upsampling and downsampling operations are carefully designed to prevent aliasing,

a phenomena directly related to frequency bands of an image. Edge detection algorithms

often exploit frequency information of an image, which are used in more abstract tasks

like segmentation as well. From a computational perspective, using Fast Fourier Transform,

convolution operations can be calculated quite efficiently in the frequency domain, leading to

performant applications. Finally, unlike the original pixel domain representation that focuses

on the where, the frequency domain representation of images focus on the what. Each k, l

in X(k, l) (Equation 2.4.2.) correspond to information about all pixels in the image x(a, b).

This leads to many interesting applications, such as neural network designs leveraging this

fact to enlarge their receptive fields [162]. Our thesis heavily leverages frequency analyses

4We use this interchangeably with magnitude.
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Input                            Amplitude                       Phase

Figure 2.9 Mixing the phase and amplitude of two images. Image credit: [10]

in Chapter 5., where we use the fundamental frequency analyses theory to devise a data

augmentation method to improve model robustness.
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3. A Deep Dive into Adversarial Robustness in

Discriminative Zero-Shot Learning

In this chapter, we present our work on adversarial robustness in discriminative ZSL models.

We show that such ZSL models behave somewhat different to fully supervised models

when adversaries are present, and we lay out the reasons with detailed analyses; the effect

of dataset, model maturity, class boundary transitions induced by adversaries, effects of

defenses and the discrepancy between ZSL and GZSL performance. We also identify and

discuss the pseudo-robustness effect.

’As soon as you start fulfilling your purpose your adversaries will appear.’

Sunday Adelaja

3.1. Introduction

The swift ascension of machine learning models ignited a new wave of state-of-the-art

(SOTA) results in various fields; computer vision, natural language processing (NLP) and

speech recognition are just few examples. The increase in data availability, compute budgets

as well as core advances, led ML models to a meteoric rise in various tasks with no apparent

signs of a slowdown.

However, authors of [30] showed that ML models suffer from adversarial examples, which

are carefully crafted noise patterns that can lead models into mispredictions. These noise

patterns misguide models while introducing imperceptible perturbations to the given sample.

Starting with vision, adversarial intrusions have been extended various modalities such

as speech [31], NLP [32] and many others [163]. An equal attention has been given to

defend the models against such attacks, either by robustification of models or introducing

mechanisms to detect and/or purify adversaries [122]. Adversarial ML first emerged by

focusing on toy datasets in vision, such as MNIST and CIFAR-10/100, but swiftly scaled
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their threat to larger benchmarks such as ImageNet, and even to commercial solutions

[164, 165].

A large portion of the adversarial ML literature focused on supervised solutions and targeted

to improve their robustness. In Zero-shot learning (ZSL) and Generalized Zero-shot learning

(GZSL), however, the goal is different from the well-known supervised approach; the aim

is to learn from a subset of classes, such that we can optimize the transfer of the learned

knowledge to a set of classes which are completely unseen during the training. The inherently

tough problem of ZSL is still an open research topic, despite the recent advances. The

introduction of adversarial examples to ZSL models is an interesting intersection due to

three primary reasons. First, ZSL and adversarial robustness essentially try to address the

same thing, which is out-of-distribution sample recognition. In ZSL, these samples are from

different classes where adversaries are the misclassified, same-class samples. Second, the

complex knowledge transfer from seen to unseen classes is already hard, and the introduction

of adversaries will only make things more challenging. Third, discriminative ZSL models

are prone to attacks from multiple mediums; the attacks can be made on images, thus visual

embeddings, or on the attributes, thus the semantic embeddings. All these reasons make the

problem more appealing as their analyses can shed light on the broader generalization issue.

In this chapter, we present a thorough set of analyses on ZSL techniques and their reaction

to adversarial intrusions 5. In contrast with the recently popularized approaches where ZSL

is reduced to a supervised problem [78, 79], we look back in time and fix our gaze on the

label embedding model [83, 166] and assess its reaction against widely used adversarial

attacks and defenses. Through thorough assessment on popular benchmarks, we present a

framework that analyses the algorithm, but also presents rigorous analyses on many other

aspects; the effect of datasets (i.e. per-class sample count), the trends in class boundary

transitions as well as the details on how adversaries affect the knowledge transfer from seen

to unseen classes. We hope that this work will be the start a discussion on the adversarial

robustness of ZSL models, which has surprisingly, and largely, been ignored. Furthermore,

5Code is available at https://github.com/MKYucel/adversarial_robustness_zsl
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we believe that this chapter can serve as a benchmark for future work, and guide researchers

towards improving ZSL model robustness as a whole.

3.2. Related Work

Adversarial attacks. Adversarial ML has been an important segment of machine learning

in previous years as it shed light on important drawbacks of widely used models. It has been

shown in [30] that a noise pattern can be generated by aiming for the misprediction of a

given sample image; within certain ℓ-norm constraints, the generated noise pattern might be

completely imperceptible to us humans. A popular alternative is a one-step, fast attack that

leverages the gradients of the loss function with respect to the parameters of the network,

with the aim of generating a perturbation [96]. Another approach approximating the possible

minimum perturbation required for a misprediction is presented in [103]. A significantly

revised version of [30] is proposed in [99], where not one but three variants of the original

attack, each leveraging a different ℓ-norm to restriction to generate the perturbations, are

shown to scale to ImageNet and by-pass existing defense mechanisms [122].

The literature on the adversarial attacks is quite large; ranging from attacks universal to a

dataset [105] to attacks changing only a single pixel [101], spatial transformation attacks

[100] to attacks focusing on most important pixels [104], attacks not constrained with any

ℓ-norm [102] to black-box attacks[165], and even physical attacks [167] are some examples

in the literature. Adversarial intrusion exist practically anywhere ML is used, such as

reinforcement learning [168], NLP [32], graph networks [169], LIDAR [163], other vision

tasks [110, 170–172], speech [31] and even commercial solutions available to customers

[173].

Adversarial defenses. Numerous defenses aimed to combat adversaries have been

presented, leading to a cat-mouse game between the two. Several widely known defense

methods are knowledge distillation [122], adversarial training [30], label smoothing [116],

input-gradient regularization [118], ReLu activation analyses [120], feature generation [121],

generalizable defenses [174], GANs [126] and auto-encoders [127] for the purification of
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adversaries and metric learning [175]. These methods either re-train the model or propose

an additional module that identifies or neutralizes the adversaries. Another line of defenses

have leveraged existing advances and leveraged them against adversaries; JPEG compression

[125], bit-depth reduction, spatial smoothing [124] and total variance minimization [123] are

some examples. Adversarial ML literature is quite large; refer to [108, 176] for thorough

reviews on the topic.

Zero-shot learning. A large part of ML tasks have acquired SOTA results using supervised

settings, where all classes have ground-truth that drives the learning process. However,

the collection and curation of a fully-labeled dataset leads to a bottleneck in scaling up

ML models in practice. The laborious requirement of ground-truth label collection can

be partially addressed by the (transductive) self-supervised learning methods [177], but the

unlabeled data or the auxiliary supervision are not guaranteed to be available. Zero-shot

learning aims to tackle this by effectively closing the gap between seen (i.e. classes available

during training) and unseen (i.e. classes unavailable during training) classes by transferring

the knowledge learned during training. Generalized Zero-Shot learning, on the other hand,

performs this knowledge transfer while keeping the accuracy values on the seen classes high

as well. The side information on seen and unseen classes is leveraged to close the gap.

ZSL approaches, in its infancy, had a two-phase setting, where the attributes of an image were

predicted and these attributes were used to find the class with the most similar attributes

[64, 65]. By directly learning a linear [82, 83, 178, 179] or a non-linear compatibility

[66, 180–182] function to map from visual to a semantic space, later models changed to

a single-phase setting. The reverse mapping, from semantic space to the visual space

[84, 85], has also been explored. Embedding visual and semantic embeddings into a common

latent space for ZSL have also proven to be useful [86, 87]. Transductive approaches

leveraging visual or semantic information on unlabeled unseen class samples [80, 81]

are another discriminative approaches. Recently, in addition to discriminative approaches

[74, 183], generative approaches [76, 78, 79, 184] which model the mapping between visual

and semantic spaces are increasingly being used to generate samples for unseen classes,
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eventually reducing ZSL to a supervised setting. For further information on ZSL and GZSL,

readers are referred to [55, 185].

A recent unpublished paper [186] proposed a ZSL model robust to adversarial attacks by

formulating an adversarial training regime. Our study, on the other hand, concentrates

on setting up a framework and presents a benchmark to guide researchers’ efforts towards

adversarially robust ZSL/GZSL models, by presenting analyses of existing datasets and the

effects of several attacks and defenses. Note that our study is the first to establish such a

benchmark.

3.3. Model Selection

We take a step back and focus on the models that aim to transfer the knowledge learned

from seen classes to unseen classes, unlike the recent ones that rely on generative models

to generate samples using class embeddings for unseen classes and try to reduce ZSL to a

supervised setting. We believe that focusing on the latter would mean evaluating the sample

generation mechanism for adversarial robustness, rather than evaluating the robustness of the

model that aims to realize seen/unseen class knowledge transfer.

As presented in Section 3.2., there are numerous suitable candidates for model selection.

We select the label-embedding model [83], which has been shown to be a stable and

competitive model even in modern benchmarks [185]. Attribute-label embedding (ALE)

model is formulated as

F (x, y;W ) = θ(x)W Tϕ(y) (13)

where θ(x) is the visual and ϕ(y) is the class embeddings. These two modalities are

associated through the compatibility function F (·;W ).

We select ALE due to the fact that it is one of the first studies that showed direct mapping

by leveraging data and auxiliary information is more effective than the intermediate attribute
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prediction stage. Although there are methods which build on what ALE does 6, we believe

the results of ALE will be representative of the adversarial robustness of this family of ZSL

methods. Individual analyses of more approaches are encouraged, but are not in our current

scope. We note that we focus on an inductive setting.

3.4. Attacks and Defenses

Threat Model. We choose three white-box, per-image attacks where the attacker has full

access to the model architecture and its parameters. The attack model assumes a setting

where all images are attacked, regardless of their original predictions (i.e. whether they were

classified correctly or not). We choose a training-time defense (i.e. robustifying the model

by re-training) and two data-independent, preprocessing defenses, where input images are

processed before being fed to the network. The defense model assumes a blind regime, where

none of the defenders have access to attack details nor the attack frequency (i.e. defenses are

applied to all images; regardless whether the attacks introduced misclassifications or not). In

the next sections, we present the chosen attacks and defenses.

Attacks. The first attack is the popular Fast Gradient Sign method (FGSM) attack [96] that

is based on the linearity hypothesis. By taking the gradient of the loss function with respect

to the input, the change of the output with respect to each input component is estimated. This

is used to craft adversarial perturbations that will guide the image towards these directions,

which means maximizing the loss with respect to input components. We select FGSM due to

its one-shot nature (i.e. no optimization), its low computational complexity and the fact that

it is not optimized for the minimum perturbation. FGSM is formulated as

η = ϵsign(∇J(θ, x, y)) (14)

where ∇J() is the gradient of the cost function J with respect to the input image. We use

the untargeted version of FGSM that restricts the perturbation with the ℓ∞-norm.
6As noted in [185], models focusing on linear compatibility functions have the same formulation, but

different optimization objectives.
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The second attack is the DeepFool [103] attack. DeepFool concentrates on the distance of

an image to the closest decision boundary. It computes the distance to some number of

decision boundaries, finds the closest and takes a step towards this boundary. For non-linear

classifiers, this is approximated by an iterative approach that tries to cross the boundary, until

an iteration limit or the boundary is crossed. We select DeepFool due to following reasons; i)

it is an optimization based attack, ii) it aims for the minimum perturbation iii) it is inherently

indicative of the decision boundary characteristics. We use the original untargeted version

that restricts the perturbation with the ℓ2 norm. DeepFool is formulated as

r∗(x0) =
|fl̂(x0)

(x0)− fk̂(x0)
(x0)|∥∥∥wl̂(x0)

− wk̂(x0)

∥∥∥2

2

(
wl̂(x0)

− wk̂(x0)

)
(15)

where r∗(x0) is the minimum perturbation for the closest decision boundary l̂(x0), w is the

classifier, xo is the query image and k̂ is the mapping done by the classifier.

The last attack is the Carlini-Wagner [99] attack. It essentially refines the loss proposed

in [30] through several aspects and propose three different attacks, where each attack uses a

different ℓ-norm constraint to restrict the perturbation. We select it due to several reasons;

i) it is one of the first attacks that beats an adversarial defense, ii) one of the first to scale to

ImageNet and iii) it is a high-performing attack. We use the untargeted, ℓ2-norm version for

a better comparison with DeepFool. It is formulated as

minimize

∥∥∥∥12tanh(w) + 1)− x

∥∥∥∥2

2

+ c.f

(
1

2
tanh(w) + 1

)
(16)

where x is the input image, the term 1
2
(tanh(w) + 1) − xi is the changed variables to meet

box-constraints and c is a constant whose value is found by binary search. f is given as

f(x′) = max
(
max{Z(x′)i : i ̸= t} − Z(x′)t,−κ

)
(17)

43



where t is the target class, κ is the constant controlling the confidence of misclassification

and x′ is desired adversarial example.

Defenses. The first defense is the label smoothing. It is a popular regularization method

that avoids over-confident predictions. It assigns soft labels to ground-truth labels and is

formulated as

p(y|xi)


1− ϵ+ ϵn(y|xi), if a = 1

ϵn(y|xi), otherwise
(18)

where p(·) is the ground-truth assignment, yi is the correct class for input i, xi is the input

i, ϵ is the weight factor and n(·) is the added noise distribution. Label smoothing has been

shown to be a good defense method [116, 187] and its success is explained by the prevention

of confident predictions on out-of-distribution samples. We select label smoothing as it is i)

a training-time defense, ii) simple yet effective and iii) it is a good use case of ZSL models.

The second defense is local spatial smoothing. It has been reported that feature squeezing

techniques [124] provide adversarial robustness as they shrink the feature space where

adversarial examples reside. We use median-filter with reflect-padding to preprocess images

before feeding them to the network. We select spatial smoothing due to i) its data and

attack-independent and ii) its inexpensive nature. Furthermore, testing it against non-l0

attacks is a good use case for its efficiency 7. We only use the spatial smoothing operation,

and do not use the detection mechanism.

The last defense is the total variance minimization defense. It has been proposed [123] as an

input transformation defense, where the goal is to alleviate perturbations by reconstructing

the image. First, some pixels are selected with a Bernoulli distribution from the adversarial

image. Using these pixels, the image is reconstructed by taking into account the total

variation measure. Total-variance minimization is shown to be an efficient defense as it

promotes the removal of small and localized perturbations. We select it due to its simple and

7It has been noted in [124] that this defense is more effective against l0-norm attacks.
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data/attack independent nature. It is also an ideal candidate to evaluate different attacks due

to its localized perturbation removal ability. TVM is formulated as

minz

∥∥(1−X)⊙ (z − x)
∥∥2

2
+ λTV · TVp(z) (19)

where z is the reconstructed image, X is the random variable indexed by pixel locations, x

is the input image, TVp() is the total variation and ⊙ is the element-wise multiplication. The

total variation measure is given as

TVp(z) =
K∑
k=1

[
N∑
i=2

∥∥z(i, :, k)− z(i− 1, :, k)
∥∥
2
+

N∑
j=2

∥∥z(:, j, k)− z(:, j − 1, k)
∥∥
2

]
(20)

where i, j and k are the pixel locations.

3.5. Dataset and Evaluation Metrics

The evaluation is performed on three widely used ZSL/GZSL datasets; Caltech-UCSD-Birds

200-2011 (CUB) [61], Animals with Attributes 2 (AWA2) [185] and SUN [62]. CUB is

a mid-sized, fine-grained dataset with 312 attributes, where 200 classes are represented

with a total of 11788 images. CUB is challenging, as intra-class variance is quite tough

to model due to similar appearances and low number of samples. SUN is another mid-sized,

fine-grained dataset with 102 attributes. SUN is a challenging case as well, as it consists of

14340 images of 717 classes, resulting into even fewer images per class compared to CUB.

AWA2 is a larger-scale dataset with 85 attributes, where 50 classes are represented with

37322 images. AWA2, due to having a higher amount of images with fewer classes, makes

generalization to unseen classes harder. We leverage the splits proposed in [185] for both

ZSL and GZSL settings. We use the standard per-class top-1 accuracy for ZSL evaluation.

For GZSL, per-class top-1 accuracy values for seen and unseen classes are used to compute

harmonic-scores.
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Zero Shot Generalized Zero Shot

C S A C S A

Attack Top-1 u s h u s h u s h

Original 54.5 57.4 62.0 25.6 64.6 36.7 20.5 32.3 25.1 15.3 78.8 25.7

FGSM1 40.3 47.7 42.5 18.5 45.4 26.3 17.7 25.9 21.0 10.7 58.9 18.1

FGSM2 18.5 16.3 14.8 10.8 11.7 11.2 8.1 9.8 8.9 3.4 10.0 5.1

FGSM3 15.2 11.8 16.4 9.0 10.2 9.6 4.3 5.5 4.9 2.2 11.2 3.7

DEFO1 30.9 25.6 50.6 9.1 19.1 12.3 6.4 7.2 6.8 13.3 41.2 20.1

DEFO2 30.8 25.5 50.5 9.1 18.9 12.3 6.4 7.2 6.8 13.4 41.2 20.2

DEFO3 22.4 17.8 41.4 7.6 11.5 9.2 6.3 6.3 6.3 13.0 30.2 18.2

CaWa1 28.9 43.1 43.2 17.0 29.0 21.4 17.7 24.9 20.7 15.2 56.3 24.0

CaWa2 25.9 40.9 36.9 16.4 24.4 19.6 17.7 23.9 20.3 15.2 46.6 22.9

CaWa3 24.6 39.8 34.7 15.9 23.1 18.9 17.5 23.4 20.0 15.2 43.6 22.5

Table 3.1 Results when all images are attacked.

3.6. Implementation Details

In order to make the computational graph end-to-end differentiable, we merge ResNet-101

[4] (used to extract AWA2 [185] embeddings) feature extractor with ALE model. To

reproduce the results of ALE [185], we freeze the feature extractor and train ALE for each

dataset. The reproduced values of ALE are denoted as original in the tables; note that there

are slight variations compared to the original results in [185]. We use PyTorch [188] for our

experiments.

For FGSM, we sweep with a large range of ϵ values where we end up with visible

perturbations. We sweep with maximum iteration and ϵ (added value to cross the boundary)

parameter for DeepFool (DEFO) and Carlini-Wagner (CaWa, C&W) attacks, as we observe

diminishing returns (i.e. not producing stronger effects despite reaching intractable

compute time) for other parameters. Specifically, we use [FGSM1−3 ϵ: 0.001, 0.01, 0.1]

[DeepFool1−3 max iter, ϵ: (3,1e-6), (3,1e-5), (10,1e-6)] [C&W1−3 max iter: 3,6,10 ].

We assign 0.9 to the ground-truth class in label smoothing. For spatial smoothing and

total-variance minimization, we use 3x3 windows and maximum iteration of 3, respectively.
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Zero Shot Generalized Zero Shot

C S A C S A

Attack Top-1 u s h u s h u s h

Original 54.5 57.4 62.0 25.6 64.6 36.7 20.5 32.3 25.1 15.3 78.8 25.7

SpS 49.3 53.2 59.3 21.5 56.5 31.1 20.1 28.0 23.4 14.3 75.5 24.1

LbS 52.2 55.2 60.6 22.7 56.2 32.4 18.4 31.6 23.3 16.3 74.2 26.8

TVM 51.4 54.0 60.3 24.4 60.7 34.8 19.9 29.5 23.8 12.9 76.4 22.1

Table 3.2 Results where all images are defended (without any attacks).

We apply the same attack and defense parameters for every dataset for a fair comparison of

dataset characteristics. Across the tables in this chapter, C, S and A stand for CUB, SUN and

AWA2 datasets. Top-1 is the top-1 accuracy, where u, s and h are unseen, seen and harmonic

accuracy values.

3.7. Results

Attacks. We first present the effect of each attack on ZSL/GZSL performance. The results

are shown in Table 3.1.

In the ZSL setting, all attacks introduce detrimental effects at various rates, across all

datasets. FGSM introduces the strongest attack as one would expect, as in its most powerful

configuration, it introduces perceptible perturbations. On CUB, we see C&W attack leading

in low-maximum iterations, but it loses out to DeepFool in higher iterations. On SUN, C&W

fails to deliver and can not scale with the increasing maximum iterations, where DeepFool

manages to do a better job with an accuracy reduction 20 points higher than C&W. On AWA2,

C&W does a better job than DeepFool across all settings, with up to 7 points more reduction.

FGSM causes an upward accuracy spike on AWA2, despite its increasing strength. This is

mainly caused by changing the originally incorrectly predicted labels to their correct labels,

thereby increasing the accuracy. Lastly, DeepFool produces diminishing returns except the

highest maximum iteration, across all datasets.
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Zero Shot Generalized Zero Shot

C S A C S A

Attack Top-1 u s h u s h u s h

Original 54.5 57.4 62.0 25.6 64.6 36.7 20.5 32.3 25.1 15.3 78.8 25.7

FGSM1 47.9 51.1 54.5 20.3 53.5 29.4 19.8 26.0 22.5 12.7 70.0 21.5

FGSM2 31.9 36.0 24.6 14.5 30.5 19.7 14.5 16.6 15.5 6.2 25.3 10.0

DEFO1 46.4 49.0 58.0 18.8 50.1 27.3 15.9 21.0 18.1 13.5 69.3 22.6

DEFO3 46.2 48.8 58.0 18.7 50.0 27.2 15.9 21.0 18.1 13.1 68.8 22.1

CaWa1 48.3 52.7 58.2 21.0 55.0 30.5 20.2 27.3 23.2 14.2 73.6 23.9

CaWa3 48.4 52.3 58.2 21.0 54.9 30.4 20.0 27.2 23.1 14.2 73.3 23.8

Table 3.3 Results: All images are attacked and defended with spatial smoothing.

In the GZSL setting, across the board reduction for all datasets are observed for all

three attacks. On CUB, DeepFool performs the best (9.2 h-score), despite FGSM

producing significantly more perceptible perturbations. On SUN, FGSM has a slight lead

over DeepFool of around 1.5 points, though the resulting perturbations of DeepFool are

significantly less perceptible. On CUB and SUN, DeepFool takes approximately the same

time to produce the attack regardless of the maximum iteration value, suggesting that it

manages to cross the boundary in fewer iterations. This is sensible as CUB and SUN has

more classes than AWA2, which means class boundaries are closer to each other and thus

potentially easier to cross. However, we do not see that effect for C&W, which means it still

needs more iterations to cross the boundary despite requiring the largest compute time. On

AWA2, FGSM has a decisive lead and DeepFool is somewhat effective. C&W, on the other

hand, fails to introduce any meaningful effect, especially in unseen accuracy scores. As one

can see in Table 3.1, this is a wider phenomenon; there is a clear discrepancy in how unseen

and seen classes are affected. We investigate this phenomenon in the upcoming sections.

Defenses. We first apply the defenses without applying any attacks to see the effects of

defenses; a defense that degrades the results is naturally not suitable for use. The results are

shown in Table 3.2. In this table, SpS, LbS and TVM are spatial smoothing, label smoothing

and total-variance minimization, respectively.
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We see modest detrimental effects of defenses across the board, which we believe to be

acceptable given the improvements they bring. We observe that in AWA2, label smoothing

improves the GZSL performance compared to the original (≈ 1 point increase in h-score).

There is no clear winner here, although label smoothing and total-variance minimization do a

better job than spatial smoothing. We then analyze the effects of each defense under various

attack settings. We note that we omit one setting for each attack from our defense analysis;

they either introduce extreme perturbations (FGSM3) or negligible effects compared to their

weaker counterpart (DeepFool2 and C&W2).

The spatial smoothing results are shown in Table 3.3 8. In the ZSL setting, we see good

recoveries across all datasets. The recovered accuracy values are, as expected, better for

weaker attacks. We see similar recovered accuracy values for each DeepFool and C&W

settings (DeepFool1 vs DeepFool3, C&W1 vs C&W3), in contrast with what we see for

FGSM. This is potentially due to the nature of the attacks; the strength of FGSM scales

with the coefficient ϵ, whereas maximum iteration for C&W and DeepFool acts like a switch

indicating whether the attacks will perform or not. In the GZSL setting, the results follow

the trends of ZSL. We see negligible recoveries, up to 0.2 points, for C&W and DeepFool

on AWA2 in unseen accuracy values, although its performance for harmonic score and seen

accuracy values are better. Surprisingly, spatial smoothing degrades the unseen score by

1 point and harmonic scores of C&W1 by 0.1 points compared to its original (unattacked)

accuracy. This will be investigated thoroughly in the following sections.

The label smoothing results are shown in Table 3.4. In this table, results denoted with

original are obtained by training ALE with label-smoothing. Since the model is retrained

with label smoothing, we can not compare the recovery performance to Table 3.1. We first

note the performance difference between models trained with and without label smoothing

(see Table 3.2), and then compare the differences of Tables 3.1 and 3.4. The results show that

label smoothing does not introduce a visible improvement against FGSM in both ZSL and

GZSL. The results of DeepFool show negligible improvements in harmonic scores on CUB

(up to 1 point) and SUN (up to 0.5 points), despite the label smoothing model having lower

8Tables 3.3, 3.4 and 3.5 should be compared to Table 3.1.
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harmonic accuracy values compared to the original model. The C&W attack goes through

the highest recovery rate, especially in the ZSL setting (i.e. up to 10 point improvement on

CUB for C&W1).

The total-variance minimization results are shown in Table 3.5. In the ZSL setting, all around

recoveries for all attack settings are observed. Recovered values for DeepFool and C&W are

similar, similar to what we observed for spatial smoothing. Among all, TVM does the best

job in ZSL (i.e. up to 22 points on CUB for C&W1). In the GZSL setting, similar trends

with ZSL are observed. However, we see on AWA2 that unseen accuracies degrade (up to

2.5 points) in the presence of TVM, especially for DeepFool and C&W . For C&W, this

decrease is also salient for harmonic scores (up to 2.3 points). As seen in spatial smoothing,

TVM has a detrimental effect as well. This will be investigated in the later sections of the

thesis.

Summary. In attacks, an unbounded, high epsilon FGSM attack is the strongest and the

fastest, as one would expect. However, when minimum perturbation is of concern, FGSM

loses out to DeepFool and C&W dramatically. Across all datasets, DeepFool exhibits

the best trade-off between perturbation magnitude and success rate. In defenses, we see

varying rates of success for each dataset. On CUB, spatial smoothing is the best for FGSM

attacks, whereas TVM is the best for the rest. On AWA2, spatial smoothing is the best

across-the-board defense for every attack. For SUN, spatial smoothing is still the best for

FGSM, however TVM has a lead against C&W and DeepFool. Label smoothing is the worst

defense in general and TVM is the most compute-hungry, as expected. We present several

qualitative samples in Figure 3.4.

3.8. Analysis

A widely popular notion tells us that adversarial examples are considered as

out-of-distribution samples which models fail to recognize. As they do not have their

own class prototypes, the ranking system incorrectly assigns them to a class. We require

a mechanism to transfer knowledge from clean to adversarial images, on top of the
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Zero Shot Generalized Zero Shot

C S A C S A

Attack Top-1 u s h u s h u s h

Original 52.2 55.2 60.6 22.7 56.2 32.4 18.4 31.6 23.3 16.3 74.2 26.8

FGSM1 39.8 46.8 41.1 17.4 43.7 24.9 15.7 25.2 19.4 12.1 59.8 20.1

FGSM2 11.7 15.2 14.1 6.7 9.8 0.80 5.5 7.7 6.4 2.7 10.3 4.4

DEFO1 29.8 30.4 49.6 10.0 20.3 13.4 6.2 8.8 7.3 14.01 42.4 21.1

DEFO3 19.8 19.2 41.7 8.2 11.9 9.7 5.2 7.1 6.0 13.1 25.5 17.3

CaWa1 38.8 45.6 46.6 19.4 40.4 26.3 16.2 26.6 20.1 16.4 61.0 25.9

CaWa3 34.1 42.7 40.6 18.8 34.8 24.5 16.2 25.1 19.7 16.2 52.0 24.7

Table 3.4 Results: All images are attacked and defended with label smoothing.

Zero Shot Generalized Zero Shot

C S A C S A

Attack Top-1 u s h u s h u s h

Original 54.5 57.4 62.0 25.6 64.6 36.7 20.5 32.3 25.1 15.3 78.8 25.7

FGSM1 49.1 53.2 53.8 23.0 57.5 32.8 18.9 28.3 22.7 11.7 71.8 20.1

FGSM2 25.3 32.8 21.1 12.6 21.9 16.0 12.6 15.3 13.8 5.0 22.5 8.2

DEFO1 48.4 50.3 59.0 19.7 52.3 28.6 15.2 20.8 17.5 12.5 70.9 21.4

DEFO3 48.3 50.3 59.0 19.5 52.3 28.4 15.1 20.8 17.5 12.5 70.6 21.3

CaWa1 50.9 53.3 58.8 24.0 60.3 34.3 20.0 29.2 23.8 12.7 75.6 21.7

CaWa3 51.2 53.4 58.9 24.2 60.2 34.4 19.9 29.1 23.6 12.6 75.6 21.6

Table 3.5 Results: All images are attacked and defended with TV minimization.

seen-to-unseen transfer we need to tackle already. Furthermore, possibly from a much

simpler perspective, ZSL models, especially the ALE model, can be considered as immature

compared to supervised counterparts; accuracy levels are simply not that high. The second

perspective harbors interesting facts. Assuming a model with the perfect accuracy, we know

effective attacks can only degrade the results. Effective defenses can degrade the results

without any attacks, but we know they alleviate the issues to a certain degree. What happens

when the model is far from perfect is exactly what we need to focus on now. Note that this

is not a ZSL-specific issue.
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Generalized Zero Shot

C S A

Class Type U S U S U S

Transitions CF FC FF CF FC FF CF FC FF CF FC FF CF FC FF CF FC FF

FGSM1 70 14 74 49 33 53 51 10 66 49 14 61 83 9 74 33 49 42

FGSM2 96 13 87 98 30 70 98 10 90 98 14 86 100 4 96 92 29 71

DEFO1 87 8 85 81 18 75 93 6 90 95 8 88 46 5 68 51 22 46

DEFO3 93 8 87 92 19 76 94 6 91 98 8 90 52 6 75 70 24 52

C&W1 86 18 74 75 35 54 52 10 62 52 14 59 76 12 63 37 51 33

C&W3 92 19 76 85 36 57 56 11 68 59 15 62 87 13 70 54 56 35

Table 3.6 Categorization of prediction changes induced by each attack.

Class-transitions: False/Correct. The attack results show that in the GZSL setting, unseen

accuracy values are less severely affected compared to seen accuracy values, especially under

weak attacks. We investigate this by looking at the class-transitions for each attack setting.

For each class, we calculate the ratio of class transitions; out of all (originally) correctly

predicted samples, what percentage have transitioned to false? Out of all (originally) falsely

predicted samples, what percentage have transitioned to correct or other false classes? Our

results are shown in Table 3.6. In Table 3.6, U and S columns are results for unseen and

seen classes. CF, FC and FF are correct-to-false (as the percentage of all originally correct

predictions), false-to-correct and false-to-other-false (as the percentage of all originally

incorrect predictions) changes in %, represented as ratio averages.

Stronger attacks lead to higher correct-to-false (CF) percentages. Moreover, stronger attacks

also lead to higher false-to-other-false (FF) ratios. This means that regardless of the original

predictions, strong attacks induce more class transitions. There is also the possibility of an

attack correcting an originally incorrect prediction. We observe the highest false-to-correct

(FC) ratio in C&W (up to 56%) and the lowest in DeepFool (5%). C&W forces false

predictions to cross to correct class boundary and fails to push correct classes to incorrect

boundaries, which explains its poor performance.

When seen and unseen classes are compared, we observe higher FC ratios for seen classes
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(i.e. 43 points difference on AWA2 for C&W3). Furthermore, seen classes tend to have

lower CF ratios (i.e. 50 points difference for FGSM1). This is in contrast with the fact

that unseen classes are affected less severely in Table 3.1; also see Figure 3.1. However,

the original unseen/seen accuracy values of the model are different, especially for AWA2

and CUB. Naturally, the number of originally correct and false predicted samples are wildly

different for seen and unseen classes (i.e. unseen accuracy is lower, therefore 10% FC for

unseen samples is significantly high in terms of number of samples) and this leads to unseen

class accuracy values being affected less severely in absolute numbers, despite being affected

more severely in terms of ratios, hence the pseudo-robustness effect. This is a byproduct of

not having a strong model (i.e. low original accuracy). Another interesting fact is the high FC

rates in the seen classes; this tells us that in an event of misclassification, the model predicts

the correct class with a high probability, but not high enough to be the highest prediction.

Therefore, in an attack, since the sample is close to the correct decision boundary, it is highly

likely that the sample will be pushed to a close decision boundary, which happens to be

the correct decision boundary. This is not the case for unseen classes, which suggests that

seen classes are simply learned better, which is natural due to the very definition of the ZSL

setting. In the same spirit, one can expect high CF ratios for seen classes, however this is

not the case. This underlines that the model is robust for seen classes in the case of correct

predictions, but its false predictions are not as confident, which is another expected behaviour

due to the nature of ZSL.

Class-transitions: Seen/Unseen. We now focus on the effect of attacks from a seen/unseen

class perspective. For each class, we calculate the following for all samples and average it

for seen and unseen classes: out of all changed samples, what percent went to a seen or an

unseen class? Our results are shown in Table 3.7. In Table 3.7, UU, US, SU and SS are

unseen-to-unseen, unseen-to-seen, seen-to-unseen and seen-to-seen transitions, respectively.

The results show that except FGSM, attack characteristics in terms of seen/unseen class

transitions seem stable. For FGSM, we see increase in unseen-to-seen transitions, which is

in line with the further decrease of accuracy values (i.e. unseen-to-unseen can have false

to correct transitions for unseen). This behaviour is in agreement with the attack settings;
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           CUB                                                 SUN                                               AWA2

Unseen
Seen

Figure 3.1 The effects of FGSM (F), DeepFool (D) and C&W (C) attacks.

FGSM strengthens its attack with higher ϵ whereas DeepFool and C&W simply have more

time to solve for the minimum perturbation with higher iterations. We also see that originally

seen classes are more likely to go to a seen class, compared to an originally unseen class

(i.e. SS values are higher than US values), which gives us hints about the class decision

boundaries. Regardless of the dataset and the attack, an overwhelming majority of the

transitions happen towards seen classes. We hypothesize the reason for that to be two-fold.

First, the number of seen classes are higher than that of unseen classes, with varying degrees,

for each dataset. This only does not explain the decisive tendency towards seen classes,

however. Second, and more importantly, the model trains exclusively on seen classes and, as

expected, is more confident about its predictions, and this causes a severe bias towards seen

classes in the boundary transitions. See Figure 3.2 for a visualization of the seen/unseen

class transition trends.

Adverse effects of defenses. As shown in Section 3.7., there have been cases where

defenses reduced the accuracy after the attacks rather than recovering it (also see Figure 3.3).

Following the work shown in Table 3.6, we observe the effect of defenses (i.e. we add another

layer to CF, FC, FF transitions, such as CFC, FCF, FFC, etc). We can analyse the effect of
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SUN

AWA

                 

                             From unseen             From seen       From unseen             From seen               From unseen             From seen 

Changed to seen class

Changed to unseen class

            FGSM       DeepFool              C&W

Figure 3.2 Seen and unseen class transition charts for all attacks and datasets.

Generalized Zero Shot

C S A

Class Transition UU US SU SS UU US SU SS UU US SU SS

FGSM1 30 70 16 84 22 78 10 90 17 83 7 93

FGSM2 28 72 18 82 17 83 10 90 12 88 7 93

DEFO1 24 76 20 80 16 84 10 90 13 87 7 93

DEFO3 24 76 20 80 16 84 10 90 14 86 7 93

CaWa1 31 69 17 83 22 78 10 90 24 76 8 92

CaWa3 31 69 17 83 22 78 10 90 25 75 9 91

Table 3.7 Per-class normalized class transitions (in %) for different attacks.

defenses in four major categories; correcting a mistake (CFC, FFC), preserving the results

(CCC, FFF) and having detrimental effects (CCF, FCF) and failure to recover (CFF, FCC).

It must be noted that recovery here means recovering the original label, not the correct label.

Across all experiments, we observe every category of effect, with correct-recoveries (CFC)

leading the overall recovery of accuracy. However, we observe that the defense-induced

reduction of accuracy values correlate well with high FCF ratio. This effectively means that

the defense is simply negating the positive effect of attacks; the defense does its job well by

recovering the original predictions, but the original predictions may simply not be correct.
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Figure 3.3 TVM and SS defenses adversely affecting accuracy.

C I C I C I

I C I C I C

C I C C I C

C I C C IC

Correct              Incorrect (Attacked) 

Incorrect            Correct (Attacked)

Correct              Incorrect (Attacked)   

Correct (Defended)

Correct              Correct (Attacked)   

Incorrect (Defended)

Figure 3.4 Various class transitions induced by attacks and defenses.

Attacking only correct predictions. We have seen interesting trends so far, such as defenses

degrading the accuracy values, attacks increasing accuracy values and unseen accuracy

values being less severely affected despite the results of Table 3.6. Our model is far from
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being perfect, therefore it is imperative to decouple potential effects of low accuracy from

ZSL-specific trends. We then attack only the correct predictions towards this end. We see that

the unintuitive effects such as attacks improving the results or defenses degrading the results

are gone. Across all attacks, we see significant accuracy reductions and we see improvements

across all defenses. The overall rankings for best attack and defense follow our previous all

images attack settings, therefore we do not include detailed numerical results. In this setting,

results are slightly more reminiscent of a supervised model. However, the trends shown in

Tables 3.6 and 3.7 are still very much valid; unseen classes are affected more severely and

class transitions happen overwhelmingly towards seen classes. This suggests the extreme

class imbalance inherent in ZSL has a significant impact on robustness behaviour.

ZSL vs GZSL. The average performance of the model under ZSL and GZSL evaluation show

varying results; on CUB, harmonic scores are affected more severely than ZSL accuracy. On

SUN, both are effected quite similarly whereas on AWA2, ZSL accuracy is impacted more

heavily. The defenses work visibly better for GZSL than ZSL, with the only exception being

AWA2 with label smoothing defense.

Dataset characteristics. The datasets under consideration are wildly different in their

characteristics; SUN and CUB have fewer samples per class and high number of classes,

whereas AWA2 has high number of samples per class but fewer classes. On AWA2, we

see attacks failing to effect in their weakest setting; DeepFool and C&W introduce 2 and

0.1 point reduction, respectively. We observe that FC transitions happen more frequently on

AWA2 (up to 56%) compared to others; this is potentially linked to having multiple confident

predictions as this is more prominent for seen classes. Upward accuracy spikes happen more

frequently on AWA2 as well (especially in the ZSL setting); this is likely an effect of having

fewer number of classes, as misclassifications are simply more likely to fall into the originally

correct class. Transitions to unseen classes occur rarely on AWA2 (with a maximum of

9% for C&W3). Finally, we see the discrepancy between seen and unseen classes to be

pronounced on AWA2. All these insights support the claim of a larger distribution helping

robustness [189], since AWA2 is larger and has more per-class samples compared to others.

We see similar trends for SUN and CUB; SUN has the fewest transitions to unseen classes.

57



This correlates strongly with the high number of classes in SUN. In summary, we see SUN

and CUB getting better returns from all defenses, compared to AWA2.

3.9. Conclusion and Future Work

Despite their impressive rise, it is shown that machine learning models can be fooled with

carefully designed perturbations. Adversarial robustness have been primarily studied from

a supervised model perspective. ZSL and GZSL algorithms that lack supervision for a

set of classes have not received attention for their adversarial robustness. In this chapter,

we introduce a study that aims to fill this gap by evaluating a well-known ZSL model

for its adversarial robustness, both in ZSL and GZSL evaluation set-ups. We expose the

model to numerous attacks and defenses across popular ZSL datasets. Our results show

that adversarial robustness for ZSL has its own challenges, such as the extreme data bias

and the immature state of the field (compared to supervised learning). We highlight and

analyse several key points, especially in GZSL settings, to guide future researchers in what

needs attention in making ZSL models robust and also what points could be of importance

for interpreting the results. Finally, we identify and discuss the pseudo-robustness effect

often observed in our work, where absolute metrics may not always reflect the robustness

behaviour of the model.
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4. Unifying Adversarial and Corruption Robustness for

Discriminative ZSL

In this chapter, expanding on the previous chapter, we focus on common image corruption

robustness of discriminative ZSL models. We highlight some key points of this chapter; i)

three new datasets for robustness analyses in ZSL, ii) new strong baselines, iii) expansion

of selected ZSL models, iv) thorough analyses of corruption robustness behaviour and v) a

detailed comparison with adversarial robustness results of chapter 3..

’The corruption of the best things gives rise to the worst.’

David Hume

4.1. Introduction

Adversarial machine learning, with various attack [100–102, 104, 165, 167] and defense [30,

116, 118, 120, 122, 123, 125, 174] methods, brought a fresh perspective to robust

generalization [190]. Despite the discussions stemming from adversarial ML, adversaries

are worst-case scenarios and tend to require bad intent to materialize. There are other effects

which do affect images and the accuracy of a model. A subset of these effects, called

corruptions, occurs more frequently and naturally, are not worst-case scenarios and are not

necessarily imperceptible. [9] defines a variety of corruption categories, and shows that they

can invalidate otherwise state-of-the-art models in supervised regimes.

A large part of the literature in robustness has focused on supervised models. Zero-Shot

Learning (ZSL) and Generalized Zero-Shot Learning (GZSL) [64, 185] differ from fully

supervised settings; in ZSL, the aim is to learn from a set of classes such that the model

performs well on classes unseen during the training. GZSL extends this such that the

model performs well on both seen and unseen classes. As mentioned in the introduction of
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Figure 4.1 Examples from our datasets (left) and class transition examples.

chapter 3., ZSL serves as an interesting, and particularly challenging, medium for robustness

analyses. Therefore, we continue our focus on discriminative ZSL models.

In this chapter, we extend our previous work on adversarial attacks (chapter 3.) and

present in-depth analyses on the robustness of discriminative ZSL models from a common

image corruption aspect. We leverage the well-established, discriminatively trained label

embedding model [83, 166]. We then extend our analyses to a different family of ZSL

models with the attribute attention model (LFGAA) [1], and subject both to corruptions and

corruption-defenses. We also curate and publicly release the first corruption benchmarks for

ZSL/GZSL, with the names CUB-C, SUN-C and AWA2-C, with example images shown in

Figure 4.1. Jointly based on our new observations regarding natural corruptions and those

from chapter 3. regarding adversaries, we conclude our study with important insights and

discussions on dataset characteristics, class boundary transitions, severe class imbalance and

discrepancies between ZSL and GZSL performances. In summary, our contributions are

listed as follows.
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• We present a large set of experiments (over 1000+) focusing on the robustness of

discriminative ZSL models from a corruption aspect. To the best of our knowledge,

this is the first study to establish such a benchmark.

• We curate and release the first benchmark datasets for corruption analyses in ZSL;

CUB-C, AWA2-C and SUN-C. The code and datasets are available at https://

github.com/MKYucel/zero_shot_corruption_benchmarks.

• Our results show that discriminative ZSL models are not robust at all, and we

hypothesize the reasons to be severe class imbalance and model weakness. Combined

with the results of chapter 3., we show that the pseudo-robustness effect, where

absolute metrics may not always reflect the robustness behaviour of a model, is

present for adversarial attacks and not for corruptions. This pseudo-robustness effect

is visualized with examples in Figure 4.1 (right-side images).

• We show that several defense methods improve the clean accuracy and set new strong

baselines for both label-attribute embedding and attribute attention models.

• We show in detail that unseen and seen classes are affected disproportionately by

corruptions. We also show zero-shot and generalized zero-shot performances are

affected differently as well.

This chapter is structured as follows. In Section 4.2., we review the literature on ZSL,

corruption robustness and robust generalization. In Section 4.3., we motivate our work by

presenting the model selection process, dataset creation and methods we use to create our

benchmark. In Section 4.4., we show our experimental results and analyses. We perform

a concluding comparison of model robustness under adversaries and corruptions in Section

4.5.. We conclude with our final remarks in Section 4.6..

4.2. Related Work

Robust generalization. Adversaries tend to require malicious intent and have arguably

low probability of occurrence. Therefore, for a stronger analysis of robust generalization,
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additional venues are essential. It has been shown that ImageNet-trained CNNs are

biased towards texture, and this can be partially alleviated with a new benchmark

Stylized-ImageNet, formed of images with conflicting textures and shapes [8]. Another

work released ImageNet-A, which is a curated collection of notoriously hard examples of

ImageNet classes [95]. The effects of distribution shifts have been analysed with various

datasets, such as ImageNet-R, SVSF and DeepFashion Remixed [33]. For a detailed survey,

see chapter 2..

Corruption robustness. Corruption and perturbation robustness for various ML models

have been discussed in [9, 132], where ImageNet-C, ImageNet-P, CIFAR-C and MNIST-C

benchmarks have been proposed. The corruption robustness datasets simulate common

image corruptions, such as noise, weather, blur and digital degradations on various severity

values. In these works, it has been shown that virtually all state-of-the-art models

are invalidated when exposed to these corruptions. Several studies showed that data

augmentation techniques can help with robustness [33, 36, 142]. It is also shown that

adversarial training [144], self-supervised learning [143], arbitrary style-transfer [148],

adversarial noise-training [145] and rectified batch normalization [149] helps improve

corruption robustness. Corruption robustness is an active field with a large potential for

improvement.

Zero-shot Learning. ZSL aims to facilitate learning under severe class imbalance, where

the model is trained on a subset of classes and is required to perform accurately across all

classes, even for the ones unseen in training. ZSL models do this by exploiting intermediate

auxiliary information, commonly in the form of attributes, to transfer knowledge between

seen and unseen classes. Since we extensively covered this topic in chapters 2. and 3., we

refer the readers to the respective chapters for more information. For detailed surveys on the

topic, see [55, 185].

A preprint [186] proposes an adversarial training regime to train ZSL models robust to

adversaries. Our study, in contrast, focuses on the intrinsics of discriminative ZSL models

from a corruption robustness aspect. Combined with the previous work presented in
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chapter 3., we present a thorough analysis of discriminative ZS robustness with different

experimental setups where we assess not only the effect of corruptions, but also draw insights

on dataset characteristics, class transitions and ZSL/GZSL discrepancies. We also present

and release the first benchmark datasets for ZSL corruption robustness.

4.3. Methodology

In this section, we provide details on our ZSL-robustness benchmarks, present the defense

methods and ZSL formulation used in our analyses.

4.3.1. Benchmarking ZSL corruption robustness

The goal of corruption robustness is to analyse and understand scenarios where naturally

occurring image degradations harm the performance of a model. Therefore, corruption

robustness is of great practical importance for real-world use cases. It is imperative to have a

standardized representation of these effects so that common test beds can be constructed to

facilitate principled progress in the field.

A key contribution of this work is the curation and release of the corrupted versions of three

ZSL datasets; CUB-C, SUN-C and AWA2-C. In generating these benchmarks, we largely

follow the principles of the ImageNet Corruption (ImageNet-C) [9] dataset due to several

reasons. First, we believe that the corruption types of ImageNet-C sufficiently cover the

possible corruption effects an image may experience. Second, many ZSL methods use

features from ImageNet-pretrained models (i.e. ALE) or finetunes ImageNet-pretrained

backbones (i.e. attribute-attention model). We hypothesize it is only logical to maintain

parity with ImageNet-C corruption types to evaluate the robustness of the ZSL methods, as

well as the underlying representations they use.

The proposed SUN-C, CUB-C and AWA2-C datasets have four corruption categories

(weather, digital, blur and noise) and consist of 15 corruption types with 5 severity levels

each. We use the same corruption types in ImageNet-C [9]; gaussian, shot and impulse
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noise for noise category; glass, defocus, motion and zoom blur for blur category; snow,

frost, fog and brightness for weather category; contrast, elastic transform, pixelate and jpeg

compression for the digital category.

We adapt the existing corruptions to be suitable to the characteristics of our ZSL datasets

(i.e. image sizes, semantics, etc.) and ensure they are representative of common detrimental

effects (i.e. we make sure they are not too weak or too powerful). Finally, due to the vast

storage requirements, we corrupt the images on-the-fly in a deterministic way to achieve

reproducibility. See Figure 4.1 for example visuals.

4.3.2. Corruption robustness baselines

We also assess numerous defense methods for their ability in combating the adverse effects

of corruptions. We first assess three adversarial defense methods; label smoothing [187],

total variance minimization (TVM) [123] and spatial smoothing [124] 9. Additionally, we

experiment with two methods which are effective against image corruptions: AugMix [36]

and ANT [145].

AugMix leverages two simple building blocks; existing augmentation operations and a

consistency loss. The augmentation operations do not overlap with ImageNet-C corruptions

for fair analyses. AugMix samples up to three augmentation operations with different

severity values and creates an augmentation chain; these augmentations are to be applied

successively. The algorithm can create up to three augmentation chains that will work

in parallel. The final mixing operation, where the results of the chains are combined, is

performed with randomly sampled weights for each branch. The resulting image is combined

with the input image with randomly sampled weights, and the very final image is obtained.

This process is often done twice in parallel, giving us three images; the original image,

augmented image one and augmented image two. Finally, these three variants are used

to enforce a JS-divergence consistency loss (i.e. encoding these three images into similar

9Readers are referred to chapter 3. for further details of these techniques.
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embeddings) based on the fact that their semantics (i.e. class labels ) remain more or less the

same.

In contrast with augmentation methods that use existing corruptions or their combinations,

ANT makes one of the first attempts to learn an additive noise augmentation to optimize the

robustness of the model. ANT first trains a generative network against a trained classifier (i.e.

ImageNet classifier) to generate the adversarial noise. Note that this part is essentially similar

to existing adversarial example methods that learn how to generate adversaries. ANT takes

one step further and then jointly trains the classifier and the noise generator; it essentially

finetunes the classifier on images with generated noise added to them.

4.3.3. Zero-shot learning model

Following the practice of chapter 3., we use the well-known label-embedding formulation

(ALE) [83], which has been shown to be a stable and competitive method even in modern

benchmarks [185]. Although we have produced a detailed analyses in chapter 3., we find

the results to be somewhat limiting as we focus on a specific family of discriminative ZSL

models; ALE is an inductive model that does visual to semantic mapping with a linear

compatibility function. It is obvious that experimenting with every ZSL models is not

tractable, therefore we aim to hit a sweet spot between rigorousness and tractability.

To this end, we select the attribute attention model LFGAA [1]. LFGAA brings about several

advantages to our analyses; i) it is a more recent model that is significantly more accurate

than ALE, therefore its inclusion will let us assess how much of a factor model strength

plays in ZSL robustness, ii) it hails from a different family of models, that does a non-linear

mapping, via backbone finetuning, to both semantic and latent feature spaces, and iii) it has

an inductive and a transductive variant (LFGAA+SA), which will increase the depth of our

analyses.

LFGAA identifies the problem where all attributes are treated equally with respect to their

discriminative power; i.e. spotty pig and dalmatian dogs are given as examples where both
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have similar attributes in their spottiness, which might cause misclassifications. LFGAA

addresses this by an object-based attribute attention, where attributes are attended with

respect to the objects in the image. LFGAA, similar to ALE, learns the compatibility score

defined as

F
′
(x, y;W ) = θ(x)TWdiag(p(x))ϕy (21)

where p(x) is the proposed object-based attention, W is the learnable parameters used for

projection (i.e. the network), θ(x) is the visual embedding and ϕ(y) is the class-embedding

(i.e. attributes). The transductive variant of LFGAA (LFGAA+SA) uses a self-adaptation

mechanism to pseudo-label unlabeled samples and then iteratively refines the prototypes.

This process lets the method leverage additional unlabeled data.

We acknowledge that especially in the GZSL setting, most state-of-the-art methods are

generative approaches, where unseen class samples are generated using class embedding

conditional generative models [76, 78, 79, 184]. These methods require complex pipelines

where synthetic samples are generated and models are expected to learn from synthetic

samples and perform well on real samples. These methods present interesting venues

for robustness analyses, but their complex nature complicates the robustness analyses.

Therefore, we note that we keep the generative approaches outside our scope and focus

primarily on discriminatively trained ZSL models.

4.4. Experiments

In this section, we present the experimental setup and implementation details, and then show

our results and analyses.

4.4.1. Datasets and evaluation metrics

Similar to chapter 3., we train our models on CUB, SUN and AWA2 datasets. CUB is a

mid-sized dataset with 312 attributes, 200 classes and 11788 images. As classes are similar
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to each other appearance-wise and each class has few samples, it represents a challenging

case. SUN is another mid-sized dataset that has 102 attributes, 717 classes and 14340 images.

Due to having significantly different classes and even lower per-class sample compared to

CUB, SUN is also a quite challenging dataset. AWA2 is a larger dataset with 85 attributes,

50 classes and 37322 images. It has a good per-class sample count, which leads to a more

severe class imbalance between seen and unseen classes, and often lead to overfitting in

GZSL settings. We use the splits proposed in [185]. For corruption evaluations, we use our

newly proposed datasets SUN-C, CUB-C and AWA2-C, and evaluate our models using the

previously mentioned 15 corruptions with 5 severity levels.

In the corruption robustness literature, Mean Corruption Error (MCE) is the common metric;

MCE calculates the errors for each corruption type using all five severity levels and weighs

them using AlexNet errors, and then calculates the mean of each corruption category to

produce the MCE score [9]. Due to the sheer scale of experiments, providing MCE values is

not feasible 10 for us. Instead, we calculate the corrupted accuracy values for each corruption

type and severity level, find the reduction in accuracy compared to the original accuracy,

and then calculate the ratio of reduction (i.e. as a percentage of the original non-corrupted

results) for each corruption category 11, as shown in Figures 4.2 and 4.5. For defenses, we

do the same, but with a key change; instead of finding the reduction in accuracy compared to

the original accuracy, we find the reductions in accuracy (produced by the defense method)

compared to the corrupted accuracy values (for each severity and type) and then calculate

the ratio of reduction (i.e. as a percentage of the original non-corrupted results) for each

corruption category, as shown in Figures 4.3, 4.4, 4.6 and 4.7 12. We hope that our results

will be the ZSL-version of AlexNet error-weights for ZSL corruption robustness, due to the

seminal nature of ALE model.
10We provide MCE values in the appendix A.
11Our results are reminiscent of Relative MCE [9], which is another metric for corruption robustness.
12We note that Figures 4.3 and 4.4 can be compared to each other but not to Figure 4.2.

67



4.4.2. Implementation details

We merge ResNet-101 [4] feature extractor with ALE. We train the ALE model, keeping

the feature extractor fixed. For LFGAA, we retrain all the models on all datasets for both

inductive and transductive variants. We use ResNet backbone for CUB and SUN, and VGG

for AWA2. We indicate the reproduced values as LFGAA+SA and LFGAA+Hybrid for

LFGAA, and original for ALE, although there are slight variations coompared to original

results [1, 185]. We use PyTorch [188] for our experiments.

We set 0.9 to the ground-truth label for label smoothing. For spatial smoothing, we use

3x3 windows. The maximum iteration is 3 for TVM. We apply the same corruption and

defense parameters to all datasets for a fair comparison. We first resize and then corrupt the

images to make sure a comparable effect is achieved on all images. We leverage the original

implementations for AugMix (with JS divergence) and ANT, and tune the results on our

validation corruptions.

In the figures across this chapter, N, D, B and W are noise, digital, blur and weather

categories, respectively. Blue, red, orange and green bars indicate ZSL top-1, unseen, seen

and harmonic scores, respectively.

4.4.3. Corruption robustness experiments - ALE

Corruptions. The corruption performance of ALE is shown in Figure 4.2. In the ZSL setting,

we see all-around reductions of accuracy values. On AWA2, the highest ZSL reduction

is in the blur category. On CUB, the noise category introduces a significant reduction

in accuracy values up to 60%. SUN undergoes the highest reduction in accuracy (60%)

when exposed to noise. For all datasets, digital corruptions are the weakest. On individual

corruption types, we observe brightness to be the weakest link. Gaussian noise, shot noise

and contrast corruptions produce the highest accuracy drops on CUB, SUN and AWA2

datasets, respectively.
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Figure 4.2 Category-based reductions, as a % of the clean results.

In the GZSL setting, corruptions introduce decisive reductions across all datasets. On AWA2,

noise and blur introduce around the same degradation in harmonic scores (60%), although

effects on unseen and seen classes for noise and blur do vary. On CUB and SUN, noise leads

to the highest reduction in harmonic scores (up to 75% on SUN). On AWA2, unseen classes

suffer more severely compared to seen classes. On CUB, seen and unseen classes are affected

somewhat similarly, whereas on SUN seen classes are affected slightly more. On individual

corruption types, brightness is still the weakest one. Contrast, impulse and Gaussian noise

corruptions produce the largest accuracy drops on AWA2, CUB and SUN, respectively.

Defenses. The spatial smoothing results are shown in Figure 4.3. In the ZSL setting, spatial

smoothing adversely affects the results across all datasets. On AWA2, noise is affected the

worst (-7.5%) whereas digital is the least affected (-3.5%). On CUB and SUN, weather

and noise are the worst and least affected, respectively. Spatial smoothing seems to work

only on SUN dataset for noise (+1.5%) corruptions. On individual corruption types, spatial

smoothing only works well against impulse noise for all datasets. Spatial smoothing does

not work for GZSL either. Across all datasets, weather and noise are the worst and the least
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affected, respectively. The only time spatial smoothing works for GZSL is for noise on SUN

dataset again; it improves unseen classes and harmonic scores (0.5%). Reminiscent of ZSL,

spatial smoothing only works against impulse noise for all datasets in GZSL.

The total variance minimization results are shown in Figure 4.3. In the ZSL setting, TVM

fails to introduce any improvement, but actually is better than spatial smoothing. Across all

datasets, we see the noise results either improved (i.e. +3.4% on SUN) or affected negligibly

whereas weather category is affected the most. We see consistent recoveries for noise on

CUB and SUN, and also blur shows improvements on SUN. On individual corruption types,

we see all noise types undergo positive trends in all datasets. On AWA2, some blur types are

recovered as well, especially in high severity levels. On CUB, all noise types and glass blur

are improved. On SUN, all-around improvements are seen for all noise and blur corruptions.

In the GZSL setting, the results are worse, but still better than spatial smoothing. Across

all datasets, weather is the worst affected one (i.e. -10% on AWA2 h-score) again. Noise

and blur are the best for AWA2/CUB and SUN, respectively. We see positive trends only

in noise and blur for CUB and SUN, respectively. We observe unseen class accuracy levels

leading the recoveries when there is an actual improvement (i.e. +2.5% in unseen on SUN

for blur). On individual corruption types, we see zoom blur to be the only corruption that

is improved on AWA2. All noise types and glass blur experiences recoveries on CUB. On

SUN, all blur types are improved. Unseen classes still experience less degradation than seen

classes, specifically on SUN and AWA2 datasets.

For label smoothing, AugMix and ANT, we retrain the models and show the results in Table

4.1. Label smoothing has a slight negative effect, except on AWA2 GZSL where it actually

improves the unseen (+1 point) and harmonic scores (+1.1 point). AugMix performs worse

than label smoothing in ZSL, but it improves ZSL top-1 on SUN dataset by 1 point. In

GZSL, AugMix successfully improves seen, unseen and harmonic scores, except on CUB

where seen class accuracy is reduced by 4.5 points. ANT has a similar trajectory as AugMix;

it degrades ZSL scores. In GZSL, it improves unseen classes for all datasets and improves

harmonic scores on AWA2 by around 6 points and SUN by 3.3 points, which leads to

improved strong baselines.
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Zero Shot Generalized Zero Shot

C S A C S A

Top-1 u s h u s h u s h

Original 54.5 57.4 62.0 25.6 64.6 36.7 20.5 32.3 25.1 15.3 78.8 25.7

LbS 52.2 55.2 60.6 22.7 56.2 32.4 18.4 31.6 23.3 16.3 74.2 26.8

AugMix 51.6 58.4 54.9 27.2 60.1 37.5 23.6 35.7 28.4 16.1 83.5 27.0

ANT 48.9 57.4 55.1 26.1 60.6 36.4 23.6 35.8 28.4 19.3 85.4 31.6

Table 4.1 Results of ALE models trained with label smoothing, AugMix and ANT.

The label smoothing results are presented in Figure 4.3. In ZSL, we see negligible

improvements in isolated cases (i.e. weather category on CUB, +0.3%). On AWA2, all

categories are affected similarly but weather is the worst affected (-5%). On CUB, weather

results are improved slightly, and noise is the worst affected one. On SUN, all categories

reduce the accuracy slightly. In GZSL, we see improvements, especially on AWA2. Unseen

and harmonic scores are recovered quite visibly (up to 12%), possibly due to the increase in

unseen values shown in Table 4.1, even though seen accuracy values do get worse. Similar to

AWA2, weather enjoys the best results on CUB, even though it experiences accuracy drops.

On SUN, we see minor improvements in seen accuracy values for digital (0.2%) and weather

(1.5%), whereas unseen accuracy values go through significant degradation. On individual

corruption types, the trends follow the category-wise results, therefore no further detail is

provided.

The AugMix results are shown in Figure 4.4. In ZSL, AugMix simply fails to deliver.

Noise categories are the worst affected ones, except digital which is a bit worse than noise

on CUB. Blur category enjoys the smallest performance drop across all datasets. Despite

not seeing improvements in ZSL accuracy levels, the adverse impacts are visibly weaker

than the previous defenses; on SUN, blur and digital barely introduce further degradation

(-0.2% for both). In the GZSL setting, we see decisive improvements across all datasets.

Except seen classes on CUB, where reductions up to 5% are observed, both seen and unseen

classes are recovered all-around. Except some isolated cases (digital and weather on AWA2),

unseen class recoveries are visibly better than seen classes. Compared to label smoothing,
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Figure 4.3 SVM, SS and LS defense performance, as a % of clean results.

AWA2 recoveries are slightly worse but AugMix is effectively the first method that provides

consistent accuracy recoveries. Noise and weather categories undergo the highest recovery

rates for AWA2 (+18% in h-score) and SUN/CUB (up to +5% in h-score), respectively. On

individual corruption types, the trends are similar to category-level results, therefore we do

not provide further details.

The results of ANT are shown in Figure 4.4. In ZSL, ANT performs better than all others.

The results show consistent recoveries on SUN, partial recoveries on CUB and only slight

degradations on AWA2. On AWA2, noise performs the best whereas weather is the worst

(-7%). Blur goes through accuracy drops (-4%) and slight improvement (+1.2%) on CUB

and SUN, respectively. Noise performs the best and introduces significant improvements

in both CUB (+3%) and SUN (+10%). In the GZSL setting, we see clear and consistent

accuracy recovery performance, which makes ANT comfortably the best performing defense

method among all we have tested. Across all datasets and noise categories, unseen and

harmonic accuracies are improved. Seen classes, except digital and blur on CUB (-5%),

undergo recoveries as well. Unseen/seen discrepancy is quite visible, and unseen classes
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Figure 4.4 AugMix and ANT defense performance, as a % of clean results.

often enjoy better returns with ANT.

Summary. We observe that the digital corruptions are basically the weakest ones. Noise

categories introduce the most dramatic accuracy reductions, where accuracy drops of 60% on

AWA2 h-score and 73% on SUN h-score are observed. Brightness corruption is the weakest

one all-around, whereas different noise types and surprisingly contrast (a digital corruption)

are the most effective corruption types. In defenses, ANT is the most successful defense,

whereas spatial smoothing seems to be the most ineffective one.

4.4.4. Corruption robustness experiments - LFGAA

Corruptions. The corruption results of LFGAA is shown in Figure 4.5. In the ZSL setting,

the transductive variant (LFGAA+SA) shows all-around accuracy drops, where the reductions

are least significant on AWA2. The inductive variant (LFGAA+Hybrid) looks more robust

compared to SA; especially on AWA2 the effect of the corruptions are significantly smaller

(-5% in digital). In the GZSL setting, both variants experience accuracy drops all-around.
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Figure 4.5 Category-based reductions, as a % of the clean results- LFGAA [1].

Except SUN in LFGAA+SA, virtually all others show that unseen classes experience a

more visible degradation. LFGAA+Hybrid shows a slightly less severe degradation than

LFGAA+SA in the GZSL setting, which is quite prominent for AWA2 results. Especially in

LFGAA+Hybrid, unseen classes are affected severely.

Defenses. We provide the accuracy values of LFGAA trained with AugMix and ANT in

Table 4.2, as well as the reproduced original results. We see that the effects on AugMix and

ANT are a mixed-bag. AugMix improves on CUB ZSL (+2.6%) and AWA2 GZSL (+7.5%)

for LFGAA+SA and improves on AWA2 GZSL (+5%) for LFGAA+Hybrid. ANT performs

better compared to AugMix, where it shows improvements on ZSL and GZSL for all datasets

except SUN GZSL for LFGAA+SA. In LFGAA+Hybrid, it shows negligible degradations for

ZSL but shows consistent improvements in GZSL, leading to improved strong baselines.

AugMix, for LFGAA+SA (see Figure 4.6), shows improvements in ZSL except some select

categories, especially on SUN. In the GZSL setting, except SUN, it shows significant

improvements. The results also show that AugMix helps recover unseen class accuracy

values better than seen class accuracy values. For LFGAA+Hybrid (see Figure 4.7), AugMix
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Zero Shot Generalized Zero Shot

C S A C S A

Top-1 u s h u s h u s h

LFGAA+SA 78.9 58.7 74.9 43.4 79.6 56.2 16.0 26.0 19.8 33.2 83.3 47.5

+ AugMix 81.5 55.0 65.0 44.2 65.4 52.7 14.7 20.6 17.2 42.0 80.1 55.1

+ ANT 80.6 59.5 75.6 50.0 69.0 57.9 15.8 23.2 18.8 43.3 89.0 58.2

LFGAA+Hybrid 71.6 57.9 70.4 25.9 81.8 39.4 14.0 39.7 20.8 15.2 88.4 25.9

+ AugMix 66.1 56.3 64.6 20.9 78.5 33.0 13.4 39.7 20.0 18.6 91.3 31.0

+ ANT 70.7 56.6 68.8 28.0 80.4 41.6 15.4 38.8 22.1 16.4 92.5 27.8

Table 4.2 Results of LFGAA [1] trained with AugMix and ANT.

performs worse; in ZSL it degrades the results, except some cases (i.e. noise in SUN). In the

GZSL setup, the results look better for AWA2 but for other datasets the degradation trend is

still there.

ANT, for LFGAA+SA (see Figure 4.6), introduces better results compared to those of

AugMix. In ZSL, except some isolated cases on SUN, consistent improvements are shown.

In the GZSL setting the trend is the same. The recoveries in unseen classes are visibly better

than seen classes. For LFGAA+Hybrid (see Figure 4.7), ANT fails to deliver. In ZSL,

it introduces diverse affects but still does a better job than AugMix. In the GZSL setting,

except AWA2 and some other cases (i.e. noise in CUB and SUN), it does introduce accuracy

improvements. In overall, ANT does a visibly-better job, but can not deliver a tangible

improvement in LFGAA+Hybrid.

4.4.5. Analysing corruption robustness

Our corruption results show many similarities with our observations on adversarial attacks

presented in chapter 3., in terms of unseen/seen and ZSL/GZSL discrepancy, and adverse

effect of defenses. We perform a similar set of analyses to see the characteristics of ZSL

models under the impact of corruptions. The analyses presented here are primarily for the

ALE model, but note that the insights apply to LFGAA as well.

75



       AWA2-C                         CUB-C                        SUN-C        AWA2-C                         CUB-C                        SUN-C

      AugMix                                                                      ANT

N       D               W        N      D      B       W                                             N       D      B      W       N       D       B    W         N                                               

                  B                                                                   D      B       W                                                                                           D       B     W 
          N

Figure 4.6 AugMix and ANT performance, as a % of clean results. LFGAA SA.
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Figure 4.7 AugMix and ANT performance, as a % of clean results. LFGAA H.

Class transitions: False/Correct. We focus on the discrepancy between seen/unseen

classes. Figure 4.2 shows that on AWA2, unseen classes are affected more severely but

76



Generalized Zero Shot

C S A

Class Type U S U S U S

Transitions CF FC FF CF FC FF CF FC FF CF FC FF CF FC FF CF FC FF

Noise 79 4 78 73 7 79 81 3 85 81 3 84 75 2 61 38 18 47

Digital 59 6 68 48 12 59 60 4 67 58 5 67 64 3 50 30 16 39

Weather 61 5 70 53 10 62 63 4 71 61 4 69 60 3 51 33 16 42

Blur 63 5 72 55 12 64 83 3 79 71 4 78 79 3 68 54 14 55

Table 4.3 Categorization of prediction changes induced by corruption categories.

on SUN and CUB, both are affected pretty much the same. Following the practice of

chapter 3., we investigate this behaviour by analyzing the class transitions for each corruption

category. We calculate the following; out of all (originally) correctly predicted samples, what

percentage have transitioned to false and out of all (originally) falsely predicted samples,

what percentage have transitioned to correct to other false classes? The results are shown

in Table 4.3. In Table 4.3, U and S columns are results for unseen and seen classes,

respectively. CF, FC and FF are correct-to-false (as the percentage of all originally correct

predictions), false-to-correct and false-to-other-false (as the percentage of all originally

incorrect predictions) changes in %, represented as ratio averages.

We observe that the CF transitions tightly correlate with the results of Figure 4.2; stronger

categories lead to higher CF transitions. Furthermore, the stronger categories lead to higher

FF transitions, which is yet another indication of stronger corruptions leading to more class

transitions. FC transitions are higher for digital corruptions (up to 16%), which has the

lowest CF transition (i.e. 30% on AWA2 for seen classes), which partially explains why it

failed to create a strong negative impact.

The comparison of seen and unseen class accuracy values provides key insights. First,

CF transitions are higher for unseen classes, especially on AWA2 where unseen CF ratios

basically double the seen CF ratios. Moreover, unseen FC transitions are visibly lower

compared to seen classes, except on SUN where they are pretty similar. High CF and

low FC indicates that unseen classes are affected disproportionately. Note that this was
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also the case for adversarial attacks, although the absolute accuracy values in chapter 3.

showed otherwise for adversaries due to the pseudo-robustness effect. A similar situation

occurs here too; Figure 4.2 shows unseen/seen discrepancy only for AWA2. On CUB and

SUN, the discrepancy is not as clear. Unlike the adversarial scenario, however, the level of

discrepancy between seen/unseen classes correlate well with the absolute reduction results of

Table 4.3; on CUB and SUN, CF/FC difference between unseen/seen classes is not prominent

therefore seen/unseen absolute accuracy values are close, whereas CF/FC difference between

unseen/seen classes is quite prominent and seen/unseen absolute accuracy values are quite

different. Finally, we see high FC values for seen classes; this means that the correct

prediction probably has a high confidence, but not high enough to be correct prediction

(i.e. model predicts incorrectly, but correct label has high confidence), therefore any nudge

enforced to the image in the manifold is likely to lead to boundary transition towards the

correct class, resulting into high FC transitions for seen classes.

Class transitions: Seen/Unseen. Here, we focus on the transitions from a seen/unseen class

aspect. Following the practice of chapter 3., we calculate the following for all samples and

average it for seen and unseen classes; out of all changed samples, what percent went to

a seen or an unseen class? The results are given in Table 4.4. In Table 4.4, UU, US, SU

and SS are unseen-to-unseen, unseen-to-seen, seen-to-unseen and seen-to-seen transitions,

respectively.

The comparison of different categories shows minimal differences, hinting that the type of

corruption has little to no role in the transition trends. We also see that originally seen classes

are more likely to transition to another seen class, compared to originally unseen classes.

Independent of the dataset and the corruption, class transitions happen decisively towards

the seen classes. These trends are reminiscent of the findings of chapter 3. and we believe

the core reasons are the same; the discrepancy between number of seen/unseen classes in

the datasets, as well as the bias of the model towards seen classes, play a significant part in

shaping the nature of the transitions.

A large part of the adversarial robustness analyses in chapter 3. are spearheaded by the fact
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Generalized Zero Shot

C S A

Class Transition UU US SU SS UU US SU SS UU US SU SS

Noise 26 74 23 77 14 86 12 88 8 92 4 96

Digital 23 77 17 83 16 84 12 88 12 88 5 95

Weather 25 75 20 80 16 84 10 90 12 88 5 95

Blur 22 78 17 83 14 86 10 90 10 90 7 93

Table 4.4 Class transition averages (in %) for corruption categories.

that the ALE model is weak; it is not that accurate. When exposed to perturbations, there are

common occurrences of attacked test sets having higher accuracy values. For corruptions,

this happens just once; the brightness corruption shows less than 0.1% increase in ZSL

accuracy on AWA2. Since this is clearly a negligible increase for an outlier (1 out of 75

corruptions), it is sensible to declare that the weakness of the model does not play a part

against corruptions.

Adverse effect of defenses. As shown in Figures 4.3 to 4.4, a large part of the defense

mechanisms fail to work. Their introduction results into worsening of the results, not just

into failure to recover. In chapter 3., the results show the degrading effects of defenses

(under adversarial attacks) had high correlation with FCF cases (i.e. original false prediction

corrected by the attack, and then recovered to original prediction by the defense). In contrast,

here we see that defenses do not work, because they simply do not work. Since there are

practically no cases where a corruption increases the accuracy levels, we observe that FCF

scenarios simply do not exist, therefore we believe that the negative effect of defenses are

not tied to the weakness of the model.

Corrupting only the correct predictions. We also corrupt only the originally correct

predictions and then defend them; our agenda is to potentially decouple the effects of

model maturity and ZSL-specific behaviour. The results support our previous claim; the

weakness of the model does not play a part. We see the same behaviour in all results;

defenses which did not work still do not work. The isolated, single case of corruptions
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increasing the accuracy is eliminated, but this virtually has no effect on the overall trend.

All the insights explained in Section 4.4.3. hold; ZSL/GZSL, unseen/seen discrepancies and

corruption/defense performances are the same when we only corrupt the correct predictions.

ZSL vs GZSL. The model performance in ZSL and GZSL settings show that harmonic

scores are consistently more severely affected than ZSL accuracy levels. This can be linked

to the very nature of both settings; in ZSL, all test classes are balanced in the sense that none

of them are seen during the training. In GZSL, class imbalance shows its effect and severely

degrades unseen classes, which leads to poor harmonic scores. For defenses that do not work,

there is no definitive answer as to if ZSL or GZSL scores are recovered in a better fashion.

For defenses that work, GZSL accuracy levels are recovered whereas ZSL accuracies fail to

do so. We credit this to several factors; first, GZSL methods are severely impacted already,

so they have more space for recovery. Second, working defense methods produce models

with higher GZSL accuracies, which might be resulting into better robustness.

Dataset characteristics. SUN and CUB both have high number of classes with few samples

per class. AWA2, in contrast, has few classes with high per-class sample count. We observe

the effects of this discrepancy in our results; AWA2 is the least affected dataset, especially

in ZSL (i.e. reduction of 23% for digital category). Seen/unseen class discrepancy is

most prominent on AWA2, probably due to the class imbalance further exacerbated with

high per-class sample count. This is also reflected by quite low CF transitions. Highest

FC transitions occur for AWA2 as well, hinting that AWA2 trained model outputs multiple

confident predictions. Furthermore, highest number of transitions to seen classes also signal

the bias of AWA2 trained models. Despite the fact that AWA2 is the least affected one under

corruptions, it experiences the highest recovery rates when defended (i.e. 50% recovery in

noise category). When defended with preprocessing defenses (i.e. spatial smoothing and

TVM), we observe SUN getting the best returns, followed by CUB. Apart from that, SUN

and CUB trained models share exhibit similar behaviour.
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4.4.6. Comparing LFGAA and ALE

ALE vs LFGAA. The results of Figures 4.2 and 4.5 show that LFGAA is visibly more

robust than ALE, especially with the inductive variant LFGAA+Hybrid. We credit the

improved robustness of LFGAA to the previously mentioned factors that makes LFGAA

a more powerful model in the first place.

Transductive vs Inductive. The results of Figure 4.5 show that LFGAA+Hybrid does

a better job then LFGAA+SA. This is surprising, because LFGAA+SA leverages more

data, which is often shown to improve robustness [189]. However, we hypothesize that

the corruptions are potentially harming the self-adaptation process, which results into less

effective prototypes.

Defense Performance for ALE and LFGAA. When we compare Figures 4.4, 4.6 and 4.7,

we see that the defenses work approximately the same for ALE and LFGAA+SA. There are

slight differences in performances across different datasets, but in average AugMix and ANT

provide the most significant improvements. When we compare LFGAA+Hybrid and ALE,

we see that ALE enjoys better defense performance.

Comparing the trends for ALE and LFGAA. We see that the trends presented for ALE

in Section 4.4.5. apply to LFGAA as well; ZSL results are less affected than GZSL, unseen

classes go through a more severe degradation and AWA2-trained models are the most robust

ones.

4.5. Comparing adversarial and corruption robustness

We now combine our observations with our prior results on adversarial robustness from

chapter 3. to conclude our analyses.

Model strength. The original performance of ALE does have an impact on adversaries,

whereas it does not have an effect on corruptions. Adversarial attacks try to cross decision

boundaries, often in an efficient manner (i.e. imperceptible, minimum perturbation) whereas
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corruptions do not focus on being efficient, as can be seen from the fact that Table 4.3

has lower FC than the corresponding results of chapter 3.. Adversaries often cross to

the closest decision boundary, which in some cases result into correcting an originally

incorrect prediction (i.e. upward accuracy spikes). Defenses also recover the originally false

predictions (i.e. adverse effects of defenses). We see none of these trends for corruptions.

Unseen/seen discrepancy. We observe that unseen classes are affected more severely. This

trend is apparent against both corruption and adversaries, hinting that the class imbalance

affects them the same. However, due to model weakness, this effect is effectively masked for

adversarial attacks, i.e. unseen classes go through less degradation than seen classes, which

we call the pseudo-robustness effect. This effect is not observed for corruptions.

GZSL and ZSL. In corruption experiments, GZSL is affected more severely whereas for

adversarial attacks, there is no definitive answer. In both cases, working defenses improve

GZSL performance more so than they improve ZSL.

Datasets. Models trained on AWA2 are the most robust ones, owing to their high

per-class sample count and potentially to their comparably fewer number of classes. The

robustness difference between models trained on AWA2 and other datasets is smaller against

corruptions, suggesting that simply shoving more data in the mix may not solve corruption

robustness.

Defenses. THe adversarial defenses tested in chapter 3. do not work against corruptions.

Although they work arguably well against adversarial attacks, they fail to deliver against

corruptions (except some noise and blur types). Despite the careful design of adversaries, this

highlights that their effect on images are somewhat limited; corruptions cover a significantly

wider range of effects and probably require an even more fundamental solution.

4.6. Conclusion

The robustness of ML models has attracted significant attention in the recent years, however

it has primarily been approached from a supervised perspective. In this study, we present the
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first comprehensive study to analyse the robustness of discriminative ZSL models against

common image corruptions. We subject several commonly used discriminative ZSL models

to corruptions and corruption defenses, and also create multiple corruption benchmark

datasets for ZSL. Our baseline results show that the discriminative ZSL models are not

robust at all, due to the severe class imbalance and model weakness. Our results further

indicate that although some defense methods do work, they fail to do so in a tangible manner,

underlining the necessity of further research in the topic. We also show that despite the failure

of defense methods in improving robustness, they help set new high accuracy levels for our

ZSL models. We emphasize the important differences in robustness between seen/unseen

classes and ZSL/GZSL settings. Finally, we conclude by jointly analysing and comparing

the results on corruptions and adversaries, and provide a bigger picture of discriminative ZSL

robustness.
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5. HybridAugment++: Unified Frequency Spectra

Perturbations for Model Robustness

In this chapter, we focus on designing methods aimed at improving the robustness of models

to distribution shifts. We adopt a frequency-centric approach and propose not one but

two methods; HybridAugment and HybridAugment++. By performing a hierarchical data

augmentation in frequency spectra, our method improves clean and robustness performance

on multiple datasets and multiple distribution shifts.

5.1. Introduction

The last decade witnessed machine learning (ML) elevating many methods to new heights in

various fields. Despite surpassing human performance in multiple tasks, the generalization of

these models are hampered by distribution shifts, such as adversarial examples [30], common

image corruptions [36] and out-of-distribution samples [191]. Addressing these issues are

of paramount importance to facilitate the wide-spread adoption of ML models in practical

deployment, especially in safety-critical ones [192, 193], where such distribution shifts are

simply inevitable.

Distribution shift-induced performance drops signal a gap between how ML models and us

humans perform perception. Several studies attempted to bridge, or at least understand,

this gap from architecture [149, 151, 152] and training data [10, 36, 138–142] centric

perspectives. An interesting perspective is built on the frequency spectra of the training data;

convolutional neural networks (CNN) are shown to leverage high-frequency components

that are invisible to humans [39] and also shown to be reliant on the amplitude component, as

opposed to the phase component us humans favour [10]. Several studies leveraged frequency

spectra insights to improve model robustness. These methods, however, either leverage

cumbersome ensemble models [152], formulate complex augmentation regimes [157, 158]

or focus on a single robustness venue [157, 158, 194] rather than improving the broader
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Figure 5.1 Our methods. Colors: Phase, amplitude, low & high frequency.

robustness to various distribution shifts. Furthermore, it is imperative to preserve, if not

improve, the clean accuracy levels of the model while improving its robustness.

Our work aims to improve the robustness of CNNs to various distribution shifts. Inspired

by the frequency spectra based data augmentations, we propose HybridAugment which

is based on the well-known hybrid images [40]. Based on the observation that the

label information of images are predominantly related to the low-frequency components

[195, 196], HybridAugment simply swaps high-frequency and low-frequency components

of randomly selected images in a batch, regardless of their class labels. This forces the

network to focus on the low-frequency information of images and makes the models less

reliant on the high-frequency information, which are often shown to be the root cause

of robustness issues. HybridAugment is implemented in three lines of code, produces

virtually no training overhead and improves both adversarial and corruption robustness while

preserving or improving the clean accuracy.

Additionally, we set our eyes on jointly exploiting the contributions of frequency spectra
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augmentation methods while unifying them into a simpler, single augmentation regime.

We then propose HybridAugment++, which performs hierarchical perturbations in the

frequency spectra. Exploiting the fact that the phase component carries most of the

information in an image [10], HybridAugment++ first decomposes images into high and

low-frequency components, swaps the amplitude and phase of the low frequency component

with another image, and then combines this augmented low-frequency information with the

high-frequency component of a random image. HybridAugment++ forces the models to

rely on the phase and the low-frequency information, which helps align them with human

perception. As a result, HybridAugment++ further improves adversarial and corruption

robustness, while further improving the clean accuracy against several alternatives. See

Figure 5.1 for a diagram of our proposed methods.

Our main contributions can be summarized as follows.

• We propose HybridAugment, a simple data augmentation method that helps models

rely on low-frequency components of data samples. It is implemented in just three

lines of code and has virtually no overhead.

• We extend HybridAugment and propose HybridAugment++, which performs

hierarchical augmentations in the frequency spectra to help models rely on

low-frequency and phase components of images.

• HybridAugment improves adversarial and corruption robustness of multiple CNN

models, while preserving (or improving) the clean accuracy. HybridAugment++

outperforms many alternatives by further improving corruption, adversarial and clean

accuracies on multiple benchmark datasets.

5.2. Related Work

Robust Generalization - Adversarial. Adversarial ML has been studied intensively since

their discovery [30], resulting into numerous attack [30, 96, 103] and defense [120, 121, 125,

197] methods borne out of an arms race that is still very much active. Notable attacks include
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FGSM [96], DeepFool [103], C&W [99] where AutoAttack [2] is now a widely used attack

for adversarial evaluation. The defense methods either diversify the training distribution with

attacked images [197, 198], purify the adversarial examples [125, 127] or detect whether an

image is adversary or not [120, 124].

Robust Generalization - Corruptions. Common image corruptions might have various

causes, and they occur more frequently than adversaries in practice. Numerous datasets

simulating these effects have been released to facilitate standard evaluations [36, 132,

135]. The methods addressing corruption robustness can be largely divided into two;

architecture-centric and data-centric methods. Architecture-centric methods include neural

architecture search for robust architectures [199], focusing on subnets [153], rectifying

batch normalization [149], wavelet based layers [200] and forming ensembles [151, 152].

The data-centric methods are arguably more prominent in the literature; adversarial

training [144, 197], cascade augmentations [36, 138], augmentation networks [142, 145],

learned augmentation policies [201] , shape-bias injection [146, 147], style augmentation

[8], using fractals [141], soft-edge driven image blending [139] and max-entropy image

transformations [140] are all shown to improve corruption robustness at varying degrees.

Robust Generalization - Frequency Aspect. The generalization of neural networks have

been analysed extensively. Specifically, several frequency-centric studies showed that

CNNs tend to rely on the high-frequency information us humans can not see [39], or

rely more on the amplitude component than phase component us humans tend to favour

[10]. Similarly, when models are trained on low-pass or high-pass filtered images, models

trained on high-pass filtered images have significantly higher accuracy than the models

trained on low-pass filtered images, although high-pass filtered images look like random

noise to us humans [201]. Multiple studies confirm that models reliant on low-frequency

components are more robust [195, 196]. Interestingly, frequency analyses present a different

interpretation of the robustness-accuracy trade-off; many methods that improve clean

accuracy force networks to rely on the high-frequency components, which might sacrifice

robustness [39].
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Robust Generalization - Frequency-Centric Methods. A trade-off in frequency-based

data augmentations is that one should not sacrifice the other; training on high-frequency

augmentations can improve robustness to high-frequency corruptions, but tend to

sacrifice the low-frequency corruption robustness or the clean accuracy [152, 201, 202].

Frequency-centric methods include biasing Jacobians [202], swapping phase and amplitude

of random images [10], perturbing phase and amplitude spectra along with consistency

regularization [157], frequency-band expert ensembles [152], frequency-component

swapping of same-class samples [203] and wavelet-denoising layers [200]. Note that there

is a considerable literature on frequency-centric adversarial attacks, but since we primarily

focus on methods to improve robustness, they are not mentioned here.

A concurrent work is [203], where hybrid-image based augmentation is also used. We

have, however, several key advantages; we i) lift the restriction of sampling from the same

classes for augmentation, leading to a more diverse training distribution, ii) also present

HybridAugment++ that performs phase/amplitude swap specifically in low-frequency

components, iii) report improvements on corruption and adversarial robustness, as well

as clean accuracy on multiple benchmark datasets (CIFAR-10/100, ImageNet). Note that

other frequency-based methods either train with ImageNet-C corruptions [152], report

only corruption results [157], rely on external data [141] or use external models [142].

HybridAugment is simple to implement, can be easily plugged in to existing training

pipelines and present a broader analyses of various robustness venues.

5.3. Method

In this section, we formally define the problem, motivate our work and then present our

proposed techniques.

5.3.1. Preliminaries

Let F (x;W ) be an image classification CNN trained on the training set TRx = (xi, yi)
N
i=1

with N samples, where x and y correspond to images and labels. The clean accuracy (CA) of

88



F (x;W ) is formally defined as its accuracy over a clean test set TEx = (xj, yj)
M
j=1. Assume

two operators A(·) and C(c, s) that adversarially attacks or corrupts TEx with corruption

category c and severity s. Let ATEx and CTEx be adversarially attacked and corrupted

versions of TEx, and let F (x;W ) have a robust accuracy (RA) on ATEx and a corruption

accuracy (CRA) on CTEx. A robust F (x;W ) has minimal gaps between CA and RA, and

CA and CRA. Ideally, CA is preserved or improved in the robustification process.

What we know. We first revisit key points in frequency-centric analyses; i) CNNs

favour high-frequency content [39], ii) adversaries and corruptions primarily operate in

high-frequency [195], but some also operate in low-frequency [36], iii) images are dominated

by low-frequency information [152] and iv) models relying on low-frequency components

are more robust [195, 196]. The trade-off presents itself naturally; low-frequency reliant

models are more robust but might miss out on clean accuracy brought by the high-frequency

components.

5.3.2. HybridAugment

We hypothesize that a sweet spot in the robustness/accuracy trade-off can still be found;

unlike the hard approaches that completely rule out the reliance on high-frequency

components, we propose to reduce the reliance on them. To this end, we adopt a data

augmentation approach that aims to diversify TRx by an operation HA(·). Keeping the

strong relation intact between labels and low-frequency content (i.e. labels comes from

low-frequency-component image), we propose to swap high and low-frequency components

of images in a batch on-the-fly. Unlike [203], we do not restrict the images to belong to the

same class; this diversifies the training distribution even further while preserving the image

semantics. We call this HybridAugment, and it is defined as

HAP (xi, xj) = LF (xi) +HF (xj) (22)
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where xi is the input image and xj is a randomly sampled image in the same batch as xi. HF

and LF are high and low-frequency components of images xi and xj , and they are defined as

LF (x) = GaussBlur(x)

HF (x) = x− LF (x)
(23)

where GaussBlur results into a low-frequency image. Note that a similar outcome is

possible by using Discrete Fourier Transforms (DFT), swapping the frequency bands and

then applying Inverse DFT (IDFT). We find the gaussian blur operation to be faster and

better in practice.

Following the practice of [10], we propose two variants of HybridAugment; one that operates

over multiple images (Hybrid-P) and one that operates on a single image (Hybrid-S).

Essentially, the multiple image version is Equation 22, where two images are sampled to

create an augmented image. In the single image variant, xj is a different view of xi created

by applying N randomly sampled augmentation operations. The single image variant is

defined as

HAS(xi) = LF (Aug(xi)) +HF ( ˆAug(xi)) (24)

where Aug and ˆAug correspond to two sets of randomly sampled augmentation operations.

Note that multiple and single versions can work in tandem (Hybrid-PS), and actually

outperform single and multiple image versions.

5.3.3. HybridAugment++

The frequency analysis is a vast literature, however, two core aspects often stand out;

frequency-bands (i.e. low, high) and the decomposition of signals into amplitude and

phase. HybridAugment covers the former and tightly relates them to robustness and model
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def hybrid_augment_paired(x_batch, prob, blur_fnc, is_ha_plus):
#x_batch: batch of training images
#prob: probability value [0,1]
#blur_fnc: blurring function
#is_ha_plus: True for HA++, false for HA

p = random.uniform(0,1)
if p > prob:

return x

batch_size = x_batch.size()[0]
index = torch.randperm(batch_size)

lfc = blur_fnc(x_batch)
hfc = x - lfc
hfc_mix = hfc[index]

if is_ha_plus:
#Based on the APR method.
p = random.uniform(0,1)
if p > 0.6:

lfc = lfc
else:

index_p = torch.randperm(batch_size)
phase1, amp1 = fft(lfc)
lfc_mix = lfc[index_p]
phase2, amp2 = fft(lfc_mix)
lfc = ifft(phase1, amp2)

hybrid_ims = lfc + hfc_mix
return hybrid_ims

Figure 5.2 Pseudocode of HybridAugment and HybridAugment++ (paired).

accuracy, and shows competitive results in various robustness benchmarks (see Section

5.4.). The latter is investigated in APR [10], where phase is shown to be the more relevant

component for correct classification, and training models based on their phase labels and

swapping amplitude components of images randomly lead to more robust models. Note

that frequency-bands and phases/amplitude discussions are orthogonal, since phase does not

correspond to low-frequency and amplitude does not correspond to high-frequency. The

phase component is shown to include more spatial information [10], which makes sense since

amplitude is just a global representation (without spatiality) based on different frequency

bases.

We hypothesize that these two approaches can be complementary; a model more reliant on
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low-frequency components and spatial information (i.e. phase) can further improve model

robustness. Inspired by the successes of cascaded augmentation methods [36, 138, 142], we

unify the two core aspects of the frequency spectra into a single, hierarchical augmentation

method HybridAugment++. HybridAugment++ is defined as

HA++
P (xi, xj, xz) = APRP (LF (xi), xz) +HF (xj) (25)

where APRP is defined as [10]

APRP (xi, xz) = IDFT (Axz ⊗ ei.Pxi ) (26)

where ⊗ is element-wise multiplication, A is the amplitude and P is the phase

component. Similar to HybridAugment and APR, we also define a single-image version

of HybridAugment++ as

HA++
S (xi) = APRS(LF (Aug(xi))) +HF ( ˆAug(xi)) (27)

where APRS is defined as [10]

APRS(xi) = IDFT
(
A ¯Aug(xi) ⊗ e

i.PAug(xi)

)
(28)

where Aug, ˆAug, ¯Aug and Aug are different sets of randomly sampled augmentation

operations. Note that HybridAugment++ is an essentially a framework; one can use

different single and paired image augmentations (phase/amplitude or frequency-bands),

either individually or together, and can still achieve competitive results (see Section 5.4.).

Note that swapping phase/amplitudes first and then performing HybridAugment is an

alternative, but it exhibits poor performance in practice; dividing the phase component into
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frequency-bands is not an interpretable operation as frequencies of the phase component are

not well defined. See Figure 5.2 for the pseudo-code of our methods.

5.4. Experimental Results

We evaluate the effectiveness of HybridAugment and HybridAugment++ in three distribution

shifts; adversarial attacks, common image corruptions and out-of-distribution detection.

5.4.1. Datasets and Evaluation Metrics

Datasets. We use CIFAR-10, CIFAR-100 [204] and ImageNet [205] for training our

models. Both CIFAR datasets are formed of 50.000 training images with a size of 32×32.

ImageNet dataset contains around 1.2 million images of 1000 different classes. Corruption

robustness evaluation is performed using the corrupted versions of the datasets; CIFAR-10-C,

CIFAR-100-C and ImageNet-C datasets [9] are corrupted versions of the respective datasets’

test sets. For each dataset, corruptions are simulated for 4 categories (noise, blur, weather,

digital) with 15 different corruption types, each with 5 severity levels. For adversarial

robustness, we use AutoAttack [2] on CIFAR-10 test set. Out-of-distribution detection is

evaluated on SVHN [206], LSUN [207], ImageNet and CIFAR-100, and their fixed versions

[208].

Evaluation metrics. We report top-1 accuracy as the clean accuracy. Adversarial

robustness is evaluated with robust accuracy, which is the top-1 accuracy on adversarially

attacked test sets. Corruption robustness is evaluated with Corruption Error (CE) CE =∑5
1E

F
c,s/

∑5
1E

AlexNet
c,s . CE calculates the average error of the model F on a corruption type,

normalized by the corruption error of AlexNet [23]. CE is calculated for all 15 corruption

types, and their average Mean Corruption Error (mCE) is used as the final robustness metric.

Out-of-distribution detection is evaluated using the Area Under the Receiver Operating

Characteristic Curve (AUROC) metric [209].

93



5.4.2. Implementation Details

Architectures. We choose architectures commonly used in the robustness literature for

a fair comparison [10]; ResNeXT [5], All-Convolutional Network [56], DenseNet [6],

WideResNet and ResNet18 [4] are used in CIFAR-10 and CIFAR-100 experiments, whereas

ResNet50 is used for ImageNet experiments.

Implementation Details. For CIFAR experiments, all architectures are trained for 200

epochs with SGD, where an initial learning rate of 0.1 decays after every 60 epochs. We use

the last checkpoints for evaluation and do not perform any explicit hyperparameter tuning.

Paired and single variants of HybridAugment and HybridAugment++ are applied in each

iteration with probabilities 0.6 and 0.5, respectively. Standard training augmentations are

random horizontal flips and cropping. When a singles augmentation is used, the input image

is augmented with Aug randomly sampled among [rasterize, autocontrast, equalize, rotate,

solarize, shear, translate]. Note that these do not overlap with test corruptions. For ImageNet

experiments, we train for 100 epochs with SGD, where an initial learning rate of 0.1 is

decayed every 30 epochs. Data augmentations and their probabilities are the same as above.

We note that we use the same checkpoints for all evaluations; we do not train separate models

for corruption and out-of-distribution detection. In adversarial analysis, for a fair comparison

with [10], we train our model with our augmentations and FGSM-based adversarial training.

Finally, we note that we use the labels of the low-frequency image as the ground-truth

labels. We have tried using the high-frequency image labels instead, but this leads to severe

degradation in overall performance. All models are trained with standard cross-entropy loss,

where both original and augmented batches are used to calculate the loss.

5.4.3. Corruption Robustness Results

CIFAR-100/100. We first present our results on CIFAR-10 and CIFAR-100. We compare

with various methods, such as CutOut [210], Mixup [211], CutMix [212], adversarial training

(AT) [197], AutoAugment (AA) [38], AugMix [36] and APR [10]. The corruption results
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Orig Cutout Mixup CutMix AT AugMix AA APRS HAS HA++
S APRP HAP HA++

P APRPS HAPS HA++
P +APRS HA++

P +HAS HA++
PS

AllConv 30.8 32.9 24.6 31.3 28.1 15 29.2 14.8 16.8 13.9 21.5 20.8 16.7 11.5 12 10.9 10.9 10.7

DenseNet 30.7 32.1 24.6 33.5 27.6 12.7 26.6 12.3 15 11.1 20.3 18.4 14.2 10.3 10.9 10.1 10 9.5

WResNet 26.9 26.8 22.3 27.1 26.2 11.2 23.9 10.6 13.6 10.0 18.3 16.4 13.2 9.1 9.9 8.5 8.5 8.3

ResNeXt 27.5 28.9 22.6 29.5 27 10.9 24.2 11.0 13.2 9.99 18.5 17.6 13.2 9.1 10.3 8.3 8.2 7.9

ResNet18 - - - - - - - 9.9 12.2 9.34 17.0 18.3 15.2 9.1 9.3 8.6 8.4 8.2

Mean 29.0 30.2 23.5 30.3 27.2 12.5 26.0 11.7 14.1 10.9 19.1 18.3 14.5 9.8 10.4 9.2 9.2 8.9

AllConv 56.4 56.8 53.4 56 56 42.7 55.1 39.8 43.0 38.9 47.5 44.7 41.7 35.9 36.5 34.4 34.6 34.4

DenseNet 59.3 59.6 55.4 59.2 55.2 39.6 53.9 38.3 41.3 37.3 49.8 45.6 41.8 35.8 36.1 34.3 34.3 33.4

WResNet 53.3 53.5 50.4 52.9 55.1 35.9 49.6 35.5 38.1 33.9 44.7 43.13 39.3 32.9 34.2 31.5 31.4 31.2

ResNeXt 53.4 54.6 51.4 54.1 54.4 34.9 51.3 33.7 35.6 31.1 44.2 41.2 36.4 31.0 31.5 30.5 29.0 28.8

ResNet18 - - - - - - - 33.0 35.6 32.1 49.2 45.5 44.6 31.8 31.8 30.3 30.4 29.9

Mean 55.6 56.1 52.6 55.5 55.2 38.3 52.5 36.0 38.7 34.6 47.0 44.0 40.7 33.4 34.0 32.2 31.9 31.5

Table 5.1 Corruption robustness mCE on CIFAR-10 (first 6 rows) and CIFAR-100.

Orig Cutout Mixup CutMix AT AugMix AA APRS HAS HA++
S APRP HAP HA++

P APRPS HAPS HA++
P +APRS HA++

P +HAS HA++
PS

AllConv 93.9 93.9 93.7 93.6 81.1 93.5 93.5 93.5 94.1 93.9 94.5 93.9 94.0 94.3 94.5 94.5 94.4 94.3

DenseNet 94.2 95.2 94.5 94.7 82.1 95.1 95.2 94.9 94.7 95.0 95.0 93.1 93.2 95.2 94.9 94.8 95.0 94.8

WResNet 94.8 95.6 95.1 95.4 82.9 95.1 95.2 95.0 95.3 95.4 95.2 93.2 92.0 95.7 95.0 95.7 95.3 95.3

ResNeXt 95.7 95.6 95.8 96.1 84.6 95.8 96.2 95.5 95.3 95.7 95.5 93.5 92.9 96.1 95.2 95.6 96.0 95.9

ResNet18 92.2 - - - - - - 95.6 95.5 95.6 94.9 90.9 89.7 95.0 95.4 95.0 95.1 95.0

Mean 94.2 95.0 94.7 94.9 82.6 94.8 95.0 94.9 94.9 95.1 95.0 92.9 92.3 95.2 95.0 95.1 95.2 95.1

AllConv 74.9 - - - - - - 75.3 75.0 75.8 74.8 74.08 74.7 75.2 75.8 75.7 75.6 75.2

DenseNet 71.4 - - - - - - 75.8 76.0 75.6 71.5 71.4 71.7 75.6 74.9 75.5 75.6 75.9

WResNet 72.1 - - - - - - 76.2 76.8 76.2 70.4 71.3 71.7 76.8 74.8 76.1 76.3 76.0

ResNeXt 75.0 - - - - - - 78.8 79.4 79.4 71.1 73.5 74.3 79.1 77.3 77.8 79.1 78.8

ResNet18 70.9 - - - - - - 77.0 77.4 77.1 63.7 65.3 61.9 76.1 75.6 76.1 76.2 76.5

Mean 72.9 - - - - - - 76.6 76.9 76.8 70.3 71.1 70.8 76.5 75.6 76.2 76.5 76.4

Table 5.2 Clean accuracy values on CIFAR-10 (first 6 rows) and CIFAR-100.

are shown in Table 5.1. Note that all results except ResNet18 are taken from [10] for a

fair comparison; we also experiment with ResNet18, and when doing so, we train all APR

variants ourselves using the authors’ official codebase. Note that we do not train other

methods with ResNet18 as the result trends are already clear with the other four architecture.

HybridAugment. First we focus on HybridAugment. In single augmentations (denoted with

subscript s), it outperforms the original clean trained model and several other methods, but

it lags behind APR. In paired augmentations, it outperforms its main competitor APRP on

all architectures and both datasets. Combining singles and augmentations further improves

the corruption performance of all models; HAPS outperforms all others and is competitive
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against APRPS .

HybridAugment++. We see decisive improvements with HybridAugment++; HA++
S

already outperforms every other method except APRPS . In pairs, HA++
P is significantly

better than APRP and HAP . When single and paired augmentations are combined, HA++
PS

significantly outperforms every other method on every possible architecture, with around

10% relative improvement over the next best method. These results verify our hypothesis

that phase/amplitude and frequency-band centric frequency augmentations work together

well, and they introduce significant improvements in robustness.

We report results with even more variants of our framework; we combine HA++
P and APRs,

and also HA++
P and HAs. We note that these two variants actually outperform both HAPS

and APRPS and are only dwarfed by HA++
PS . The possibilities expand combinatorially,

therefore we do not cover all of them, but these additional variants further support our

hypothesis.

Clean Accuracy. The clean accuracy values of the same models reported in Table 5.1 are

shown in Table 5.2. Note that the CIFAR-10 values (except ResNet18 since it is not reported)

in Table 5.2 are taken from [10] for fair comparison. All the others are models trained by

us since there is no pretrained model/reported result for the others. The results of Table

5.2 show us that both HybridAugment and HybridAugment++ has achieved a good spot in

robustness-accuracy trade-off; except one or two cases, both of them improve clean accuracy

over the original models. This shows HybridAugment and HybridAugment++ are valuable

not only for corruption robustness, but also for clean accuracy improvements across multiple

architectures and datasets.

Compared to other methods on CIFAR-10, HA++ + HAS essentially ties with APRPS ,

showing the value of our methods. Note that our other variants are not far off either; HA++
PS

and HAPS are 0.1 and 0.2 shy from the best mean accuracy, respectively. On CIFAR-100,

HAS takes the lead comfortably, whereas other variants of our method are either better or

on-par with APR variants.
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Noise Blur Weather Digital
Method Test Error Gauss Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Brightness Contrast Elastic Pixel JPEG mCE
Standard 23.9 79 80 82 82 90 84 80 86 81 75 65 79 91 77 80 80.6
Patch Uniform 24.5 67 68 70 74 83 81 77 80 74 75 62 77 84 71 71 74.3
AA 22.8 69 68 72 77 83 80 81 79 75 64 56 70 88 57 71 72.7
Random AA 23.6 70 71 72 80 86 82 81 81 77 72 61 75 88 73 72 76.1
MaxBlur Pool 23 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4
SIN 27.2 69 70 70 77 84 76 82 74 75 69 65 69 80 64 77 73.3
AugMix 22.4 65 66 67 70 80 66 66 75 72 67 58 58 79 69 69 68.4
APRS 24.5 61 64 60 73 87 72 81 72 67 62 56 70 83 79 71 70.5
APRP 24.4 64 68 68 70 89 69 81 69 69 55 57 58 85 66 72 69.3
APRPS 24.4 55 61 54 68 84 68 80 62 62 49 53 57 83 70 69 65.0
APRPS∗ 24.4 62 68 64 72 86 72 79 66 67 51 58 61 86 66 72 68.9
HA++

P 23.5 64 66 67 71 88 72 78 70 69 59 58 64 84 61 69 69.7
HAPS 23.2 66 67 62 72 85 77 77 77 71 65 58 69 83 63 69 71.2
HA++

PS 23.7 57 61 57 69 85 70 78 67 66 58 57 63 85 63 67 67.3

Table 5.3 Clean accuracy and corruption robustness on ImageNet.

ImageNet. We now assess whether our methods can scale to ImageNet. We compare against

various methods, such as SIN [145], PatchUniform, AutoAugment (AA), Random AA [38],

MaxBlurPool and AugMix [36]. The results are shown in Table 5.3. Note that methods listed

before APRPS * are directly taken from [10]. Although the pretrained model for APRPS is

provided, since the authors do not provide an evaluation script, we wrote our own and there

are discrepancies in the results. The results below and including APRPS∗ are evaluated with

our script.

The results show that all of our variants produce higher clean accuracy compared to APR,

showing the value of our method in improving model accuracy. HybridAugment results are

competitive in corruption accuracy, but HybridAugment++ outperforms both APR and others

in corruption accuracy, while being 0.5 shy of our best clean accuracy. Note that since APR

results became worse with our script, it is likely that our results will be better if evaluated with

their scripts. This issue can be remedied, but the trend remains the same; HybridAugment++

outperforms others in corruption accuracy and significantly improves clean accuracy.

Qualitative results. We provide GradCam visualizations of HybridAugment++ against

various corruptions in Figure 5.3 with ImageNet validation images. We sample corruptions

from each category; noise, motion blur, fog, pixelate and contrast corruptions are shown

from top to bottom. In the first four rows, it is apparent that corruptions lead to the standard

model focusing on the wrong areas, leading to misclassifications. Note that this is the case

for APR as well; it can not withstand these corruptions whereas HybridAugment still focuses

on where matters, and manages to predict correctly. The fifth row shows another failure
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Figure 5.3 L-R: Input, corruption, baseline, APR [10] and our GradCAM [11].

mode; despite the corruption, standard model manages to predict correctly but APR loses

its focus and leads to misprediction. HybridAugment does not break what works; this case

visualizes the ability of HybridAugment to improve clean accuracy.
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AT Cutout APRP APRS APRSP APRSP∗ HAS HA++
S HAP HA++

P HAPS HA++
PS

CA 83.3 81.3 85.3 83.5 84.3 84.4 86.5 85.0 85.5 85.4 85.0 82.8
RA 43.2 41.6 44.0 45.0 45.7 45.4 44.1 45.4 42.1 43.5 44.8 46.0

Table 5.4 Clean and robust accuracy on CIFAR-10 under AutoAttack [2].

5.4.4. Adversarial Robustness Results

We now present our results on adversarial robustness in Table 5.4. All results except ours

are taken from [10]. Note that in the table, AT +APRSP and AT +APRPS * are the same

experiments, except the one denoted with * is trained by us using the authors’ code. We

compare our results with APR, Cutout and FGSM-based adversarial training [197].

Our results show that there is no clear winner in all fronts; with HAS we obtain the best clean

accuracy and with with HA++
PS we obtain the best robust accuracy. All our variants are better

than the widely accepted adversarial training (AT) baseline in nearly all cases, which shows

the effectiveness of our method. Our variants do quite well in clean accuracy and outperform

others in nearly all cases. HA++
S offers arguably the best trade-off; it ties with APRSP *

on robust accuracy, and outperforms it on clean accuracy. Note that when compared with

APRSP , it is even better on clean accuracy but slightly worse on robust accuracy.

5.4.5. Out-of-Distribution Detection Results

For OOD detection, we take CIFAR-10 as the in-distribution dataset and use a ResNet18

model trained on it to detect OOD samples. We compare our results with several

configurations, such as training with cross-entropy, SupCLR [213] and CSI [208], as well

as augmentation methods as Cutout, Mixup and APR. Note that we train with CE as well.

First of all, all our variants comfortably beat the baseline OOD detection (CE), which

shows that our proposed method is indeed useful in increasing robustness. Furthermore,

we see that our proposed methods are highly competitive, and they perform as good as

the alternative methods. HA++
P + APRS outperforms all other methods on LSUN and

ImageNet datasets, and produces competitive results on others. Mean AUROC across
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OOD Datasets
Method SVHN LSUN ImageNet LSUN (fix) ImageNet (fix) CIFAR-100 Mean
CE 88.6 90.7 88.3 87.5 87.4 85.8 88.1
CE + CutOut 93.6 94.5 90.2 92.2 89.0 86.4 91.0
CE + Mixup 78.1 80.7 76.5 80.7 76.0 74.9 77.8
SupCLR 97.3 92.8 91.4 91.6 90.5 88.6 92.0
CSI 96.5 96.3 96.2 92.1 92.4 90.5 94.0
CE + APRS 90.4 96.1 94.2 90.9 89.1 86.8 91.3
CE + APRP 98.1 93.7 95.2 91.4 91.1 88.9 93.1
CE + APRPS 97.7 97.9 96.3 93.7 92.8 89.5 94.7
HAS 93.0 96.3 93.6 91.5 90.4 87.4 92.0
HAP 84.9 92.8 90.0 90.5 89.1 86.9 89.0
HAPS 95.9 97.8 95.4 91.4 90.9 87.8 93.2
HA++

P 92.7 92.2 91.0 89.6 89.4 86.2 90.2
HA++

S 94.7 97.9 96.5 91.3 89.8 86.8 92.8
HA++

P + APRS 97.5 98.7 97.8 93.0 91.8 89.2 94.7
HA++

P +HS 96.9 98.3 97.1 90.6 89.9 86.4 93.2
HA++

PS 96.6 98.7 97.7 93.0 91.2 88.1 94.2

Table 5.5 Out-of-distribution AUROC results on multiple datasets.

all datasets show that it ties with the best model APRPS , showing its efficiency. The

broader framework we propose leads to many variants with various performance profiles

across different datasets, highlighting the flexibility and usefulness of our unification of

frequency-centric augmentations. Note that the clean test accuracy values on CIFAR-10

(in-distribution dataset) are provided in Table 5.2, and shows that we perform the same or

better than the other methods.

5.5. Conclusion

In this chapter, inspired by the frequency-centric explanations of how CNNs generalize, we

propose two augmentations methods HybridAugment and HybridAugment++. The former

aims to reduce the reliance of CNN generalization on high-frequency information in images,

whereas the latter does the same but also promotes the use of phase information rather than

the amplitude component. This unification of two distinct frequency-based analyses into

a data augmentation method leads to competitive to or better than state-of-the-art methods

on clean accuracy, corruption performance, adversarial performance and out-of-distribution

detection. Both our methods are easy to implement, requires no extra data, extra models or

model ensembles.
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6. CONCLUSION

This chapter concludes the thesis with a summary and outlines future research directions.

6.1. Summary

This thesis is borne out of a years-long endeavour aimed at answering two questions outlined

in chapter 3.1.:

• What are the robustness characteristics of models trained with extremely imbalanced

data (i.e. zero-shot learning)?

• Can we leverage frequency-analyses of images to produce a method that improves the

robustness of models against distribution shifts?

We present a detailed answer to the first question in chapter 3.. By analysing various

discriminative ZSL models against adversaries, we first show that ZSL models are severely

prone to such intrusions. These analyses show the important effect of training data and model

maturity. Furthermore, the discrepancies between seen and unseen class behaviour is shown

to be an integral part of the discussion, as we identify and define the pseudo-robustness

effect that masks the robustness performance of weak models. We show that this effect

leads to incorrect insights with regards to model robustness, and is of great importance when

analysing any weak model, not just ZSL models, against adversaries.

Chapter 4. expands on chapter 3. and presents a common image corruption analyses of

discriminative ZSL models. We first curate and present not one but three datasets aimed at

analysing the robustness of any ZSL model. These datasets are the first of their kind, and are

already released to the research community. Using these datasets, we perform our analyses

with an even larger family of discriminative ZSL models and show that our findings apply

to a broader segment of the literature. When coupled with key data augmentation methods,

we obtain improved versions of existing discriminative ZSL models. We finally wrap up
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this chapter with a thorough discussion on and a comparison with the findings of chapter

3., which highlights the key differences of adversaries and common corruptions, and further

highlights the need for a joint solution.

Chapter 5. focuses on developing methods to improve model robustness to distribution

shifts. Inspired by the data-augmentation approaches, we formulate HybridAugment that

creates frequency-swapped images on-the-fly and reduces the reliance of the models on

high-frequency content. Doing so improves the robustness of the trained model, while

keeping the clean accuracy values high. We then set our eyes on the bigger prize, which is to

unify two orthogonal frequency-centric analyses (frequency bands and phase/amplitude) into

one; we do so by proposing HybridAugment++, which performs hierarchical augmentations

in frequency-spectra, first on frequency bands and then phase/amplitude components.

HybridAugment++ comfortably outperforms other methods on multiple benchmarks on

various distribution shifts, and also improves clean accuracy on multiple datasets.

6.2. Future Work

The advances reported in our thesis pave the way for new questions, and lead to several new

exciting directions. For brevity and clarity, we list them below.

• The robust generalization perspective encompasses zero-shot learning as well, since

unseen classes are a kind of out-of-distribution sample. Our thesis lays the groundwork

and calls for their grand unification; we envision generic solutions that can be robust

to distribution shifts while handling unseen classes successfully.

• Similar to above, we call for a broader approach to the robust generalization problem;

instead of methods targeting specific distribution shifts, developing methods which

improve robustness to any distribution shift should be the priority.

• There has been a trend on moving common image corruption simulations to more

realistic/grounded frameworks, such as simulating corruptions taking into account the
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scene geometry [135]. We think creating a dataset for ZSL with similar effects can

take the discussions even further and benefit the community.

• Similar to above, targeting methods to alleviate such grounded corruptions, or even

testing HybridAugment variants on them can be interesting.

• Specifically, HybridAugment variants can be combined with other augmentation

methods and trained with better losses. This is likely to further improve its

performance, and we believe this is a natural way forward.

• A natural extension of HybridAugment is to learn the cut-off frequency that divides

high and low-frequency bands. Learning this from data can improve the results.

• Chapters 3. and 4., as detailed as they are, arguably only scratch the surface of the

grand discussion of robust generalization in more practical scenarios, such as data

imbalance, weak models and imperfect/incomplete supervision. We call for thorough

endeavors towards this direction, as it might have significant impact on real-life

adoption of ML systems.

• Finally, we call for a more thorough adoption of the pseudo-robustness effect in the

literature for robustness evaluation against adversaries. Such adoption will provide

better insights regarding model robustness, and might lead to better solutions towards

achieving robust models.

’ There will be times when the struggle seems impossible. I know this already. Alone, unsure,

dwarfed by the scale of the enemy. Remember this. Freedom is a pure idea. It occurs spontaneously

and without instruction. One single thing will break the siege. Remember this. Try.’

Nemik’s Manifesto
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Appendix A

Mean Corruption Errors

We provide mean corruption error (mCE) metrics for our corruption robustness experiments

(see chapter 4.). These results are complementary to the relative, corruption-induced

accuracy reduction ratios presented in the main manuscript and are given to establish a

numerical baseline. We follow the calculation described in [9], but instead of AlexNet errors,

we use the error of the original ALE model used in our thesis. Corruption error (CE) is

calculated by

CEf
c =

 5∑
s=1

Ef
s,c

/ 5∑
s=1

EALE
s,c

 (1)

where E is the error for our network f or ALE, s is the severity level and c is the corruption

type. MCE is simply the average of CE values for 15 corruption types. Note that CE values

for each corruption type and thus mCE for ALE will be 100. Therefore, any CE value or

mCE value below 100 will mean the method being evaluated does better than ALE, or vice

versa.

These average errors are given in Tables A.1, A.2, A.3 for AWA2-C, CUB-C and SUN-C

datasets, respectively. We provide MCE metrics based on ZSL top-1 scores in Tables A.4,

A.8, A.12, GZSL unseen scores in Tables A.5, A.9, A.13, GZSL seen scores in Tables A.6,
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A.10, A.14 and GZSL harmonic scores in Tables A.7, A.11, A.15 for AWA2-C, CUB-C and

SUN-C datasets, respectively.

In Tables A.4 to A.15, OR refers to the original ALE model, SS refers to spatial smoothing,

TVM refers to total variance minimization and LS refers to label smoothing defenses. We note

that since spatial smoothing and total variance minimization are preprocessing defenses, their

clean (uncorrupted) errors are the same as the original model. Corruption types given in the

Tables are (from left to right) Gaussian noise, shot noise, impulse noise, defocus blur, glass

blur, motion blur, zoom blur, snow, frost, fog, brightness, contrast, elastic transformations,

pixelate and JPEG compression corruptions.

Noise Blur Weather Digital
AWA2-C Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixelate JPEG
ZSL 51.9 52.7 55.0 59.4 59.4 56.5 61.0 64.8 53.6 52.2 38.8 63.3 51.1 50.3 42.3
Unseen 93.3 94.1 94.8 92.9 94.0 91.8 96.3 95.4 92.8 92.3 85.8 95.0 91.7 90.7 89.2
Seen 46.9 50.3 53.1 65.1 61.7 55.6 71.6 65.5 52.0 44.8 24.5 63.3 39.7 42.1 29.8
H-Score 88.1 89.5 90.6 88.3 89.6 86.1 93.5 91.9 87.4 86.5 76.1 91.3 85.5 84.1 81.3

Table A.1 AWA2-C average errors per corruption category.

Noise Blur Weather Digital
CUB-C Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixelate JPEG
ZSL 77.0 77.6 80.8 63.2 71.6 61.0 65.5 77.5 71.1 65.0 53.3 72.9 59.8 61.0 59.3
Unseen 90.8 91.4 93.0 86.8 89.3 84.9 86.2 90.8 88.9 87.7 77.9 90.6 82.4 83.5 83.3
Seen 76.9 78.8 82.0 64.5 72.6 60.6 67.0 81.2 73.4 61.7 47.3 70.6 57.2 62.3 57.1
H-Score 86.8 87.8 89.9 80.8 84.7 78.2 80.6 87.7 84.3 81.4 68.9 85.8 75.0 77.1 76.0

Table A.2 CUB-C average errors per corruption category.

Noise Blur Weather Digital
SUN-C Gaussian Shot Impulse Defocus Glass Motion Zoom Snow Frost Fog Bright Contrast Elastic Pixelate JPEG
ZSL 76.0 79.1 81.0 63.1 79.0 67.2 63.5 79.5 75.5 57.2 50.7 65.1 70.2 61.2 54.9
Unseen 93.3 94.1 94.8 89.6 93.8 90.8 93.3 95.0 94.0 85.7 83.2 89.4 91.1 87.8 85.3
Seen 90.4 91.7 93.4 84.5 90.8 86.3 90.1 93.5 90.0 79.5 75.7 84.0 87.2 83.6 78.3
H-Score 92.2 93.1 94.2 87.6 92.7 89.0 92.0 94.4 92.5 83.1 80.1 87.3 89.5 86.0 82.5

Table A.3 SUN-C average errors per corruption category.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 38.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 38.0 106.6 121.0 118.7 90.9 104.2 102.7 105.0 106.8 108.3 108.9 109.2 106.2 104.7 102.8 103.6 106.5
TVM 38.0 102.7 99.8 100.0 103.3 100.5 100.1 101.7 101.9 106.3 103.3 106.3 105.2 104.3 103.1 101.0 103.4
LS 39.4 104.6 103.1 104.6 104.7 102.6 103.0 107.1 103.0 103.6 106.2 108.1 104.7 105.4 102.8 105.2 104.9
AM 55.1 107.0 109.6 108.6 106.4 101.8 103.0 104.9 106.9 101.8 104.0 104.8 119.0 102.5 107.4 107.5 116.5
ANT 54.9 104.9 100.5 101.0 98.1 101.8 102.4 105.8 106.7 102.3 108.0 105.4 118.7 104.2 104.9 103.3 110.7

Table A.4 AWA2-C mCE values based on ZSL top-1 accuracy.
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Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 84.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 84.7 100.9 101.8 102.0 96.2 100.6 100.6 101.2 100.4 102.1 101.4 101.7 101.7 101.0 101.3 100.5 100.5
TVM 84.7 100.9 100.5 100.5 100.6 100.2 100.4 100.7 99.8 101.3 101.2 101.8 102.6 101.0 101.1 100.2 100.9
LS 83.7 98.2 98.5 98.7 98.1 98.1 98.9 98.6 98.3 98.1 98.5 97.6 97.6 98.6 98.6 97.2 97.9
AM 83.9 98.5 96.6 96.5 96.9 99.6 97.1 99.0 97.3 100.9 100.4 99.2 98.6 98.1 99.3 99.4 98.3
ANT 80.7 95.3 90.5 89.5 91.3 98.7 96.5 98.2 97.8 98.9 95.9 95.7 94.7 95.9 95.3 96.1 94.3

Table A.5 AWA2-C mCE values based on unseen accuracy.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 21.2 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 21.2 113.7 143.0 133.0 74.0 106.1 105.4 112.8 107.9 117.1 117.2 120.8 122.2 110.1 112.6 107.6 115.6
TVM 21.2 106.7 113.3 109.9 107.5 100.7 100.1 103.6 100.7 111.6 105.4 114.9 111.9 106.5 107.5 101.5 104.9
LS 25.8 106.1 107.4 105.8 105.6 103.1 103.2 104.6 101.6 102.3 104.7 105.9 117.1 103.2 107.3 107.0 113.1
AM 16.5 86.2 87.5 86.1 86.8 90.3 94.4 87.1 90.6 89.4 84.2 78.3 78.4 89.3 83.6 86.2 81.1
ANT 14.6 83.8 71.3 70.2 72.5 89.2 92.9 88.2 94.1 96.8 92.0 85.3 72.4 95.5 83.2 81.3 72.7

Table A.6 AWA2-C mCE values based on seen accuracy.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 74.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 74.3 101.7 103.6 103.7 93.4 101.2 101.1 102.3 100.8 103.7 102.5 103.1 103.0 101.8 102.3 100.9 101.1
TVM 74.3 101.5 101.1 100.9 101.2 100.3 100.7 101.3 99.8 102.4 102.1 103.3 104.4 101.8 102.0 100.4 101.6
LS 73.2 97.4 97.7 98.0 97.0 97.7 98.4 98.2 97.5 97.3 97.8 96.4 96.6 98.1 97.9 95.8 96.9
AM 73.0 97.4 94.4 94.2 94.8 98.9 95.5 98.1 95.6 101.5 100.5 98.4 97.5 96.9 98.7 98.9 97.0
ANT 68.4 92.4 84.9 83.5 86.2 97.4 94.6 96.9 96.4 98.3 93.6 93.0 91.2 94.1 92.2 93.5 90.5

Table A.7 AWA2-C mCE values based on harmonic accuracy.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 45.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 45.5 106.3 107.1 107.2 86.4 106.2 104.6 105.8 106.5 110.7 113.5 114.2 107.2 106.6 106.5 107.2 104.5
TVM 45.5 100.8 96.7 98.0 99.5 101.1 99.4 100.5 101.2 102.6 98.9 104.5 104.7 102.6 103.0 100.5 99.0
LS 47.8 101.3 104.1 105.2 102.8 103.0 99.6 98.5 98.4 95.4 99.7 106.2 98.2 101.6 99.8 102.5 104.7
AM 48.4 102.1 101.7 102.8 101.5 101.1 104.4 101.6 99.0 103.5 101.4 99.1 104.2 100.3 102.9 103.0 105.2
ANT 51.1 100.8 97.3 99.9 97.8 105.0 100.9 104.7 102.3 94.1 95.8 99.7 106.5 99.4 99.8 102.3 105.7

Table A.8 CUB-C mCE values based on ZSL top-1 accuracy.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 74.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 74.4 103.0 104.3 103.9 95.3 102.5 101.9 103.1 102.8 104.2 104.5 104.2 105.4 102.2 103.3 103.5 103.2
TVM 74.4 100.3 99.5 99.4 99.7 100.5 99.1 100.6 100.7 100.7 100.1 101.5 101.6 100.5 101.5 100.2 99.3
LS 77.3 101.8 102.6 102.2 102.0 101.8 99.7 101.9 102.1 99.3 101.3 102.8 101.5 102.7 101.4 102.4 103.1
AM 72.8 98.3 99.5 99.4 99.1 97.8 98.8 97.8 97.5 99.8 98.2 97.6 96.4 98.5 98.7 97.7 98.7
ANT 73.9 97.2 96.2 96.9 96.1 99.0 99.2 97.2 97.2 96.7 95.7 96.6 99.1 98.0 97.2 96.8 96.8

Table A.9 CUB-C mCE values based on unseen accuracy.
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Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 35.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 35.4 109.2 111.2 108.9 84.2 108.2 107.5 110.4 110.1 110.1 113.8 120.4 113.5 110.3 111.5 110.8 107.9
TVM 35.4 102.1 99.3 99.3 99.8 102.1 99.9 101.8 100.3 103.2 99.7 105.6 109.2 104.0 105.7 101.7 99.2
LS 43.8 105.7 105.6 106.0 104.4 108.4 101.1 105.7 104.8 96.3 102.9 110.9 112.6 107.3 104.7 104.5 109.7
AM 39.9 103.8 103.5 103.3 102.3 102.0 103.8 103.0 101.8 104.3 104.4 99.3 108.2 100.8 106.6 105.0 109.2
ANT 39.4 101.8 97.7 98.9 97.2 103.0 105.6 102.9 104.0 94.7 94.1 99.7 109.9 100.9 102.1 102.4 113.5

Table A.10 CUB-C mCE values based on seen accuracy.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 63.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 63.3 104.5 106.3 105.5 92.7 103.9 103.2 104.8 104.5 105.9 106.8 107.0 107.8 103.6 105.1 105.3 104.6
TVM 63.3 100.6 99.4 99.2 99.6 101.0 99.1 100.9 100.8 101.3 100.0 102.4 103.0 101.0 102.4 100.5 99.1
LS 67.6 102.7 103.7 103.5 102.8 103.0 99.8 102.8 103.0 98.6 101.8 104.5 103.3 104.0 102.2 103.3 104.6
AM 62.5 98.8 100.0 100.0 99.5 97.9 99.4 98.1 97.8 100.8 99.1 96.0 97.3 98.3 99.6 98.7 99.9
ANT 63.6 97.4 96.0 97.1 96.0 99.3 100.1 97.4 97.9 95.8 94.7 96.0 100.4 97.8 97.4 97.3 97.6

Table A.11 CUB-C mCE values based on harmonic accuracy.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 42.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 42.6 104.9 107.6 105.8 83.4 106.1 102.0 103.8 104.9 109.4 108.0 116.8 104.7 107.6 102.5 104.4 106.0
TVM 42.6 99.8 97.0 95.9 98.5 100.2 98.0 98.0 97.5 101.6 100.0 105.5 103.8 102.9 99.9 99.9 98.4
LS 44.8 101.2 100.6 99.6 100.5 102.0 96.9 102.0 99.8 98.8 99.0 106.5 101.3 105.1 99.7 103.4 102.7
AM 41.6 100.4 101.4 99.9 101.8 101.6 98.0 99.5 100.8 100.0 99.2 102.5 98.0 99.0 98.0 104.5 102.3
ANT 42.6 96.5 92.7 93.0 92.3 101.9 99.8 100.2 96.3 97.5 98.4 96.3 94.0 95.6 96.7 95.6 97.5

Table A.12 SUN-C mCE values based on Top-1 ZSL accuracy.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 79.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 79.5 100.7 102.3 102.0 94.3 100.3 100.1 100.4 100.5 102.0 101.2 103.9 101.0 101.4 99.9 100.6 100.4
TVM 79.5 100.1 99.6 100.0 100.5 100.0 99.0 99.5 99.2 100.4 99.6 101.8 101.2 100.8 100.3 100.3 99.6
LS 81.6 101.4 100.9 101.0 101.6 103.3 101.7 101.3 100.4 99.5 100.4 102.5 102.5 101.8 101.1 101.8 101.8
AM 76.4 98.8 99.2 99.6 99.2 99.6 99.8 98.1 97.9 99.3 99.4 98.9 96.4 100.0 99.6 98.8 96.8
ANT 76.4 98.5 97.0 97.1 97.6 99.6 99.9 99.3 100.2 99.6 100.5 98.1 97.0 98.5 99.0 97.6 96.8

Table A.13 SUN-C mCE values based on unseen accuracy.

Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 67.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 67.7 102.5 104.6 103.4 93.0 102.8 101.1 101.2 101.9 102.9 103.4 108.0 103.3 104.2 102.1 102.3 103.1
TVM 67.7 100.7 100.3 100.1 100.4 100.0 100.0 99.3 99.6 100.7 100.8 103.6 102.4 102.0 100.9 100.3 100.7
LS 68.4 100.0 100.1 99.9 99.9 102.4 100.4 100.0 100.1 98.7 99.1 101.1 98.5 100.4 100.3 98.8 99.9
AM 64.3 98.7 99.6 99.5 1002 98.4 99.2 98.3 99.4 99.4 99.8 99.5 94.2 99.5 98.5 98.3 96.9
ANT 64.2 97.1 96.2 96.2 96.5 98.6 99.7 98.1 98.4 98.8 99.3 97.1 92.4 96.7 98.1 94.7 95.5

Table A.14 SUN-C mCE values based on seen accuracy.
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Noise Blur Weather Digital
Model Clean mCE Gauss Shot Imp. Defo. Glass Mot. Zoom Snow Frost Fog Brigh. Cont. Elas. Pixel JPEG
OR 74.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
SS 74.9 101.3 103.2 102.6 93.7 101.2 100.4 100.7 101.0 102.4 102.0 105.4 101.8 102.3 100.7 101.2 101.3
TVM 74.9 100.3 99.8 100.0 100.5 100.0 99.4 00.4 99.3 100.5 100.0 102.5 101.6 101.2 100.5 100.3 99.9
LS 76.7 101.1 100.7 100.7 101.1 103.3 101.5 101.0 100.4 99.2 100.1 102.2 101.5 101.6 101.0 100.9 101.4
AM 71.6 98.8 99.4 99.7 99.7 99.2 99.6 98.1 98.4 99.3 99.5 99.1 95.6 99.8 99.3 98.6 96.7
ANT 71.6 97.9 96.6 96.7 97.1 99.3 99.8 98.9 98.3 99.3 100.3 97.7 95.4 97.9 98.7 96.5 96.3

Table A.15 SUN-C mCE values based on harmonic accuracy.
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