
THE REPUBLIC OF TURKEY

BAHÇ EŞ EHİR UNIVERSITY

VISION BASED INDOOR MOBILE ROBOT LOCALIZATION

USING DEEP LEARNING

Master’s Thesis

ARAFAT SHARIF

I˙STANBUL, 2020

THE REPUBLIC OF TURKEY

BAHÇ EŞ EHİR UNIVERSITY

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

MECHATROCNICS ENGINEERING

VISION BASED INDOOR MOBILE ROBOT

LOCALIZATION USING DEEP LEARNING

Master’s Thesis

ARAFAT SHARIF

Thesis Supervisor: Assoc. Prof. Dr. BERKE GÜ R

I˙STANBUL, 2020

T.C.

BAHCESEHIR UNIVERSITY

GRADUATE SCHOOL

...../....../.....

MASTER THESIS APPROVAL FORM

Program Name: Mechatronics Engineering

Student's Name and
Surname:

Arafat SHARIF

Name Of The Thesis: Vision Based Indoor Mobile Robot Localization Using Deep

Learning

Thesis Defense Date: 16 September, 2020

This thesis has been approved by the Graduate School which has fulfilled the necessary

conditions as Master thesis.

Assoc. Prof. Dr. Burak KÜNTAY

Institute Director

This thesis was read by us, quality and content as a Master's thesis has been seen and accepted

as sufficient.

Title/Name Signature

Thesis Advisor's Assoc. Prof. Dr. Berke Gür

Member's Prof. Dr. Nafiz Arıca

Member's

Doc¸. Dr. Ahmet Yazıcı

ACKNOWLEDGEMENTS

I would like to express my gratitude for my family, my friends and colleges for their

support, and specially Assoc. Prof. Dr. Berke Gür for his guidance and constructive

criticism and Bahçeşehir University.

This work was supported by The Scientific and Technological Research Council of Turkey

(TUBITAK) 1003 - Primary Subjects R&D Funding Program project no. 116E853.

˙Istanbul, 2020 Arafat SHARIF

iv

ABSTRACT

VISION BASED INDOOR MOBILE ROBOT LOCALIZATION USING DEEP

LEARNING

Arafat SHARIF

Mechatronics Engineering

Thesis Supervisor: Assoc. Prof. Dr. Berke Gür

September 2020, 73 Page

Of the three main questions of mobile robot navigation, ’where am I?’ is the first and fore-

most question (the other two being ’where do I need to go?’ and ’how do I get there?’)

that the robot must answer before performing any further action. Outdoor localization is

a relatively simple task due to the availability of very accurate GPS and similar satellite-

based absolute localization techniques. In the absence of satellite navigation technology,

simultaneous localization and mapping (SLAM) approaches based on Bayes filtering and

graph optimization using data from a multitude of on-board sensors such as sonar, IR sen-

sors, encoders, inertial measurement units (IMU), some which are relatively costly (e.g.,

LIDAR, laser scanner/beacon systems) has become the state-of-art approach to indoor

mobile robot localization. Although such SLAM methods deliver very high localization

performance, they suffer from high CPU (due to image processing) and data storage (due

to highly detailed digital maps) requirements, which strain the limited on-board compu-

tational resources and drive up the cost of hardware.

To alleviate this problem of indoor robot localization based on SLAM techniques, a vision

and deep learning-based based indoor mobile robot localization method is proposed in this

thesis. The input of the system is a RGB image captured by a monocular camera. The

output of the system is the 2D location and orientation of the robot. The proposed method

integrates different types of neural network layers to produce a system that is capable of

presenting the map and producing the output based on a database that can be labeled with

any localization sensor. The proposed method was tested and validated through several

simulations and an experimental setup. Results indicated that the proposed method de-

livered a localization performance similar to the state-of-the-art RTAB-Map graph-based

approach SLAM approach (positioning error < 5cm, orientation error < 2 degrees) with

a significantly smaller computation and storage burden.

Keywords: Indoor localization, SLAM, Deep learning, Camera, Mobile Robot .

v

Ö ZET

DERİN Ö Ğ RENME KULLANILARAK GÖ RÜ Ş TABANLI İÇ MOBİL ROBOT

YERELLEŞ TİRME

Arafat Sharif

Mekatronik Mühendisliği

Tez Danışmanı: Doç. Dr. Berke Gür

Eylul 2020, 73 Sayfa

Mobil robot navigasyonunun üç ana sorusundan ’neredeyim?’ robotun başka bir işlem

yapmadan önce yanıtlaması gereken ilk ve en önemli soru (diğer ikisi ’nereye gitmem

gerekiyor?’ ve ’oraya nasıl gidebilirim?’). Dış mekanda yerelleştirme, çok doğru GPS

ve benzer uydu tabanlı mutlak yerelles ţirme tekniklerinin mevcudiyeti nedeniyle nispeten

basit bir iştir. Uydu navigasyon teknolojisinin yokluğunda, Bayes filtreleme ve sonar, IR

sensörleri, kodlayıcılar, atalet ölçüm birimleri (IMU) gibi çok sayıda yerleşik sensörden

gelen verileri kullanarak grafik optimizasyonuna dayanan es¸zamanlı yerelles ţirme ve har-

italama (SLAM) yaklaşımları, bazıları nispeten maliyetli olan (örneğin, LIDAR, lazer

tarayıcı / is¸aret sistemleri) kapalı mekan mobil robot lokalizasyonuna en son teknoloji

yaklaşımı haline gelmiştir. Bu tür SLAM yöntemleri çok yüksek yerelleştirme perfor-

mansı sağlasa da, sınırlı yerleşik hesaplama kaynaklarını zorlayan ve donanım maliyetini

artıran yüksek CPU (görüntü işleme nedeniyle) ve veri depolama (son derece ayrıntılı

dijital haritalar nedeniyle) gereksinimlerinden muzdariptirler.

SLAM tekniklerine dayalı bu kapalı robot yerelleştirme sorununu hafifletmek için bu

tezde vizyon ve derin öğrenme tabanlı bir kapalı mobil robot yerelleştirme yöntemi öneril-

miştir. Sistemin girişi, monoküler bir kamera tarafından yakalanan bir RGB görüntüsüdür.

Sistemin çıktısı, robotun 2D konumu ve yönelimidir. Ö nerilen yöntem, haritayı sun-

abilen ve çıktıyı herhangi bir yerelleştirme sensörüyle etiketlenebilen bir veri tabanına

dayalı olarak üretebilen bir sistem üretmek için farklı türlerdeki sinir ağı katmanlarını en-

tegre eder. Ö nerilen yöntem, birkaç simülasyon ve deneysel bir düzenek aracılığıyla test

edildi ve doğrulandı. Sonuçlar, önerilen yöntemin son teknoloji RTAB-Map grafik tabanlı

yaklaşım SLAM yaklaşımına benzer bir yerelleştirme performansı sağladığını gösterdi

(konumlandırma hatası <5 cm, yönlendirme hatası <2 derece) önemli ölçüde daha küçük

bir hesaplama ile ve depolama yükü.

vi

Anahtar Kelimeler: İç mekan lokalizasyonu, SLAM, Derin öğrenme, Kamera, Mobil

Robot.

vii

CONTENTS

TABLES .. ix

FIGURES .. xi

ABBREVIATIONS .. xiv

SYMBOLS ... xv

1. INTRODUCTION ... 1

1.1 THE USE OF MOBILE ROBOTS IN INDOOR ENVIRONMENTS 1

1.2 BACKGROUND ON INDOOR LOCALIZATION 6

1.3 MOTIVATION ... 9

1.4 CONTRIBUTIONS .. 10

2. LITERATURE REVIEW ... 12

2.1 LOCALIZATION PARADIGMS LITERATURE REVIEW 12

2.1.1 Markov Process Based Filtering ... 12

2.1.2 Particle Filtering .. 15

2.1.3 Graph Based Optimization ... 16

2.2 DEEP LEARNING LOCALIZATION LITERATURE REVIEW 18

2.2.1 Individual Components of SLAM Systems 18

2.2.2 Na¨ıve Localization ...21

3. THEORETICAL BACKGROUND ... 23

3.1 V-SLAM .. 23

3.2 NEURAL NETWORKS .. 27

4. METHODOLOGY .. 31

4.1 DATA COLLECTION ...31

4.2 MODEL ARCHITECTURE ... 32

4.2.1 RGB Based Model .. 35

4.2.2 Depth Images Model .. 42

4.2.3 Combined Input of Both RGB and Depth Images Model 44

4.2.4 Comparing The Best Models Based on The Input 46

4.3 CONCLUSION ... 47

viii

5. SIMULATIONS .. 48

5.1 OFFICE ENVIRONMENT ... 49

5.1.1 Our Model .. 50

5.1.2 RTAB-Map ... 51

5.2 LAB ENVIRONMENT .. 53

5.2.1 Our Model .. 54

5.2.2 RTAB-Map ... 55

6. EXPERIMENTAL RESULTS ... 57

6.1 HARDWARE .. 57

6.2 OUR MODEL ... 60

6.3 RTAB-Map ... 64

7. CONCLUSION .. 66

REFERENCES .. 67

APPENDICES ... 70

Appendix A. 1 DIGITAL CONTENT .. 71

ix

TABLES

Table 4.1 : The effect of CNN layers quantity on accuracy 37

Table 4.2 : The effect of Kernel size in each CNN on accuracy 37

Table 4.3 : The effect of filters quantity in each CNN on accuracy 37

Table 4.4 : The effect of dense layers quantity on accuracy 38

Table 4.5 : The effect of neurons quantity in each dense layer on accuracy 38

Table 4.6 : Expand and contract effect on accuracy .. 39

Table 4.7 : Epochs effect on accuracy ... 41

Table 4.8 : Sensitivity effect on accuracy ... 42

Table 4.9 : Effect of CNN layers quantity on accuracy .. 42

Table 4.10 : The effect of Kernel size in each CNN on accuracy 42

Table 4.11 : The effect of filters quantity in each CNN on accuracy 43

Table 4.12 : The effect of dense layers quantity on accuracy 43

Table 4.13 : Epochs effect on accuracy ... 43

Table 4.14 : Sensitivity effect on accuracy ... 44

Table 4.15 : Combined models accuracies. ... 45

Table 4.16 : Comparing the best models. .. 46

Table 5.1 : Validation results of our model in the office environment. 51

Table 5.2 : RTAB-Map results for the Office environment. 52

Table 5.3 : Validation results for the lab environment. ... 54

Table 5.4 : RTAB-Map results for the lab environment. 56

Table 6.1 : Validation results for the experiment. ... 63

Table 6.2 : RTAB-Map results for the experiment. ... 65

Table A.1 : Code. ... 71

Table A.2 : Datasets. .. 72

Table A.3 : Deep learning models. .. 72

x

FIGURES

Figure 1.1 : Machina Speculatrix. 2

Figure 1.2 : (a)Khepera. (b) Pioneer. 2

Figure 1.3 : RB5X. 3

Figure 1.4 : Roomba . 4

Figure 1.5 : HelpMate . 4

Figure 1.6 : PatrolBot . 5

Figure 1.7 : AMAZON robots . 6

Figure 1.8 : Magnetic tape guidance AGV. 7

Figure 1.9 : Wi-Fi indoor localization fundamentals. 8

Figure 2.1 : A mobile robot during Markov Localization. 13

Figure 2.2 : Robot’s path and estimates using EKF. 14

Figure 2.3 : Monte Carlo localization process. 15

Figure 2.4 : An example of Graph based approach localization process. 17

Figure 2.5 : Particles launching in one room. 19

Figure 2.6 : Faster R-CNN usage in localization model. 19

Figure 2.7 : Homography estimation model. 20

Figure 2.8 : Laser scan based localization model. 21

Figure 2.9 : The architecture of GoogleLeNet. 22

Figure 3.1 : Main stages of RTAB-Map. 23

Figure 3.2 : Main stages of ORB-SLAM2. 25

Figure 3.3 : Feature detection in ORB-SLAM2. 26

Figure 3.4 : A simple perceptron. 28

Figure 3.5 : multi-layer perceptron. 30

Figure 4.1 : Office environment simulation model. 33

Figure 4.2 : TurtleBot2 in simulation. 34

Figure 4.3 : Robot’s orientation. 36

Figure 4.4 : RGB based model. 40

Figure 4.5 : Validation loss from 1 epoch vs 50 epochs of training. 41

Figure 4.6 : Depth based model. 44

xi

Figure 4.7 : Validation loss during multi epoch between model A and model

B. ... 45

Figure 4.8 : Validation loss during multi epochs comparison between models. 47

Figure 5.1 : TurtleBot2 in simulation. .. 48

Figure 5.2 : Office environment simulation model. ... 49

Figure 5.3 : Training and validation loss for the office environment model. 50

Figure 5.4 : Office environment in RTAB-Map. .. 52

Figure 5.5 : Lab environment simulation model. ... 53

Figure 5.6 : Training and validation loss for the lab environment model. 54

Figure 5.7 : Lab environment in RTAB-Map. .. 55

Figure 6.1 : KUKA youBot. ... 57

Figure 6.2 : 3D printed link. ... 58

Figure 6.3 : Jetson TX2 with KUKA youBot and zed camera. 59

Figure 6.4 : Path in BAU lab .. 60

Figure 6.5 : Samples of the dataset. .. 61

Figure 6.6 : ROS TF frame tree. ... 61

Figure 6.7 : Encoders odometry data. ... 62

Figure 6.8 : Zed camera visual odometry ... 62

Figure 6.9 : Training process. ... 63

Figure 6.10 : RTAB-Map of BAU LAB. ... 64

Figure 6.11 : Path of the robot. ... 65

xii

ABBREVIATIONS

2D : Two Dimensional

3D : Three Dimensional

ADAM : Adaptive Moment Estimation

AGV : Automatic Guided Vehicle

AMCL : Adaptive Monte Carlo Localization

Adagrad : Adaptive Gradients

BA : Bundle Adjustment

BAU : Bahcesehir University

BRISK : Binary Robust Invariant Scalable Keypoints

CGI : Computer-Generated Imagery

cm : Centimeters

CNN : Convolutional Neural Network

CSV : Comma-Separated Values

CUDA : Compute Unified Device Architecture

DOF : Degrees Of Freedom

EKF : Extended Kalman Filter

Elu : Exponential linear unit

FFNN : Feed-Forward Neural Network

g2o : Graph Optimization

GPS : Global Positioning System

GPU : Graphics Processing Unit

HERO : Heathkit Educational RObot

IMU : Inertial Measurement Unit

IR : Infrared

KUKA : Keller und Knappich Augsburg

m : Meters

MAE : Mean Absolute Error

xiii

MSER : maximally stable extremal regions

NN : Neural Network

NTP : Network Time Protocol

ORB : Oriented fast and Rotated Brief

QR : Quick Response

R-C NN : Region-based Convolutional Neural Network

RAM : Random-Access Memory

RFID : Radio-Frequency Identification

RGB : Red-Green-Blue

RGB-D : Red-Green-Blue-Depth

RMSprop : Root Mean Squared Propagation

ROS : Robot Operating System

RTAB-Map : Real-Time Appearance-Based Mapping

Relu : Rectified linear unit

SFM : Structure From Motion

SIFT : scale-invariant feature transform

SLAM : Simultaneous Localization And Mapping

SSH : Secure Shell

SURF : Speeded Up Robust Features

Selu : Scaled exponential linear unit

TF : Transform

Tanh : Hyperbolic Tangent

UNIX : Uniplexed Information and Computing System

V-SLAM : Visual Simultaneous Localization And Mapping

VGG : Visual Geometry Group

VICON : Video Converter

VO : Visual Odometry

WiFi : Wireless Fidelity

xiv

SYMBOLS

Corrected first moment :

Corrected second moment :

m̂

σ̂2

Decay rate : β

Degrees : ◦

Desired output : r

Hidden neuron : h

Input : x

Input to hidden layer : z

Learning factor : η

Length : L

Neuron : j

Number : n

Number of neurons : d

Output : y

Partial differential : ∂

Pitch angle : Ψ

Position in Y-axis : Y

Position in X-axis : X

Predicted Pitch angle : ΨJ

Predicted Position in Y-axis : Y J

Predicted position in X-axis : X J

Second Weight : v

Smoothing term : ϵ

Squared meter : m2

The first moment : m

The second moment : σ2

Time : t

xv

Total number of images : T

Weight : w

Width : W

1. INTRODUCTION

An indoor mobile robot is a robot that has the capability of moving around its surround-

ings. Indoor indicates that the robot operates in an indoor environment.

Mobile robots can be manually, automatically (line following or on tracks) or autonomou-

sly controlled. They may be classified by the device they use to move to legged robot,

wheeled robot or on tracks.

In this chapter, we display the usage of the mobile robots indoors, then we show the

historical background on indoor localization for mobile robots and lastly we present the

motivation and the contributions of this thesis.

1.1 THE USE OF MOBILE ROBOTS IN INDOOR ENVIRONMENTS

Generally, indoor mobile robots have many uses that vary from one field to another, the

main purpose in mid last century was developing indoor mobile robots for research in

educational fields.

Historically, William Grey Walter invented the first autonomous indoor mobile robot

shown in figure 1.1 named Machina Speculatrix in 1948. Consisting of a light sensor,

touch sensor and two motors, it had a dazzeled movement while moving towards light.

After that, universities started competing to develop and reveal a new generation of indoor

mobile robots.

2

(a) (b)

Figure 1.1: Machina Speculatrix.

Source: https://sites.google.com/view/machinaspeculatrix/home

In the 1960s, John Hopkins University introduced the Beast, It had a physical touch sen-

sor that would keep contact with the wall to navigate around the environment and Stan-

ford University introduced Shakey named after its wobbly structure, it had a camera,

rangefinder and a bumber sensor, it was the first robot to reason about its action.

The educational field reached a peak in mid 90s when Khepera mobile robot, in figure

1.2(a), was developed and sold to a thousand research labs and featured on the cover of

nature. At the same time the Pioneer mobile robot, in figure 1.2(b) became commercially

available enabling a widespread increase in robotics research and university studies over

the next decade as mobile robotics became a standard part of universities curriculum.

Figure 1.2: (a)Khepera. (b) Pioneer.

(a) Source: Georgia Institute of Technology. (b) Source: ActivMedia Robotics.

3

In 1982, RB5X a personal mobile robot with a manipulator presented in figure 1.3 was

invented for domestic use. Heathkit Educational robot produced a series of several edu-

cational robots under the name of HERO series.

Figure 1.3: RB5X.

Source:RB Robotics

The interest of the public in indoor robots rose, resulting in robots that could be purchased

for home use. These robots served entertainment or educational purposes such as Aibo

robot that mimics a dog or as Robosapien a toy-like biomorphic toy robot.

The biggest market for indoor mobile robots for domestic uses were cleaning robots. In

1997, Cyberclean Systems developed the first fully autonomous vacuum cleaning robot

that self-charged, operated elevators and vacuumed hallways with no human intervention.

And in 2002, Roomba which appears in figure 1.4, a domestic autonomous mobile robot

that cleans the floor with different features was commercially available.

4

Figure 1.4: Roomba

Source: iRobot Corporation

Indoor mobile robots played a big part in transporting equipment, drug delivery, patient

services, and other nursing functions that could be easily adapted to robots. In the 1990s

Joseph Engelberger, father of the industrial robotic arm, worked with colleagues to design

the first commercially available autonomous mobile hospital robots, sold by Helpmate and

shown in figure 1.5.

Figure 1.5: HelpMate

Source: HelpMate

5

Specialized equipment may be mounted on robots, allowing them to assist with surgi-

cal procedures and Customer support. The TUG robot made specifically for hospitals by

Aethon became a popular means for hospitals to move medical equipments and materi-

als. And in 2007 Speci-Minder started carrying blood and other patient samples from

nurses’ stations to various labs and transporting lab specimens. Security, timeliness, and

reliability are key factors in evaluating this task.

Also taking advantage of its maneuverability and the ability to mount equipment, it is

also used in security fields. For example, figure 1.6 presents PatrolBot a customizable

autonomous service robot system that can follow people and detect doors. It does tasks

such as scan buildings, create floor plans and navigate them autonomously using a laser

range-finding sensor, delivery and environmental monitoring.

Figure 1.6: PatrolBot

Source: MobileRobots Inc

The ability of Maneuvering or transportation was heavily invested in by factories and

warehouses, AGVs are employed in nearly every industry, they are preferred method of

moving materials whether its heavy, light, normal or hazard materials.

6

Warehouses have installed mobile robotic systems to efficiently move materials across

warehouses from production to stocking or from stocking shelves to order fulfillment

zones. The labor demands for employees will be lessened as robots will be able to work

alongside humans.

In 2007, Amazon Robotics, formerly Kiva Systems, manufactured mobile robotic fulfill-

ment systems shown in figure 1.7, these automated shelving units sort themselves. OTTO

motors also produces different models of autonomous mobile robots for Warehouses.

Figure 1.7: AMAZON robots

Source: Amazon Robotics

1.2 BACKGROUND ON INDOOR LOCALIZATION

As mobile robots started to be used commercially the earliest approach to solve the lo-

calization question was to have the robots attached to a rigid object that would move,

like being attached to a wall or move on special tracks or wires. The robot could also be

guided using magnetic or colored tape as shown in figure 1.8. These methods do not give

the robot any degree of autonomy, on the contrary, they constrain it in a certain path that

requires the change of the infrastructure to relocate the guided path.

7

Figure 1.8: Magnetic tape guidance AGV.

Source: IKV Robot

Objects or marks can also be used to help the process such as QR codes or RFID tags. The

robot would read these codes and tags using a QR reader or RFID reader and re-localize

the robot to the position of the tags.

Attaching physical devices and sensors to the robot to localize itself based on the robot

movements led to the presence of the odometer. Encoders’ Odometry is the description

of the motion of a robot as position and orientation using Encoders. Encoders are sensors

attached to the wheels and joints that convert motion into electric signals. The position and

orientation are usually described relative to the initial frame of the robot on initialization.

The downside in this sensor is that it accumulate error that causes a drift to the odometry.

And the odometry would be totally wrong in some cases such as re-localizing the robot

by carrying it or moving the wheels on a slippery floor.

Visual Odometry is the description of the motion of a robot as position and orientation

using a camera, it estimates the camera motion from using correlation to establish corre-

8

spondence of two consecutive images. These images can be taken by single cameras or

stereo cameras. Stereo cameras perform better than the mono, however, they also accu-

mulate error.

IMU is a sensor the calculates the acceleration and angular velocity, based on these inputs

the orientation of the robot can be calculated with drift.

Another approach was using approximation techniques based on a transmitter and receiver

technologies such as IR sensors that emits and detects infrared radiations and based on the

reflected signal, the infrared sensor could determine the location of the objects around it.

Ultrasound technique is also used by transmitting ultrasound waves and having multiple

receivers in the environment that calculates the time of flight and locate the robot. Wi-Fi

and Bluetooth use time of travel or the strength of the signal to calculate the position using

triangulation as shown in figure 1.9. However, approximation techniques lack accuracy.

Figure 1.9: Wi-Fi indoor localization fundamentals.

Source: (Zhang et al., 2020)

As robots gained more autonomy sensors like Lidars appeared, they are used to continu-

ously scan and update the environment, they publish the distance from the robot to every

9

obstacle in the environment.

And lastly, one of the most recent and accurate devices are the motion tracking systems

using high definition cameras such as VICON cameras, these methods are usually used in

CGI and animation movies, the disadvantage is that in order to localize a robot, the robot

has to be always in the sight of the cameras. In addition, both Lidars and motion tracking

systems are very expensive.

1.3 MOTIVATION

Localization is the most fundamental process that all other procedures such as navigation

and path planning are based on, for that reason it gains a great research attention.

The research in indoor localization started in order to produce alternatives to GPS tech-

nology, which works outdoors with an accuracy of meters, physical sensors used in indoor

localization have a noise that causes drifts in the reading of the environment. Sensor fu-

sion and other probability based approaches were developed in order to decrease the drift.

But didn’t eliminate it.

The kidnapped robot problem is the issue when an autonomous robot is carried from its

position to another position, or turned off and on in a different place in the map. It causes a

localization failure and usually used to test the robot’s ability to recover from catastrophic

localization errors.

To overcome all these errors and challenges and in order to give the mobile robot the

maximum degree of autonomy we use a camera as our main sensor in this thesis. Using

a camera gives more potential to the robot by allowing engineers to take advantage of

various platforms, frameworks and libraries to program it. That will also result in a high

flexibility of the robot. Furthermore, we can perform many various tasks using a camera.

Cameras are cheap, available and one camera can replace multiple sensors.

10

Vision based localization presented in feature detection and tracking in images used in V-

SLAM systems are considered state-of-the-art indoor localization. But do we really need

these outdated feature recognition methods, high computational and storage consumption

and unrealistic assumption in the perception process, is it possible to learn these parts of

the system just from a large number of examples?

1.4 CONTRIBUTIONS

Despite the attention that localization has in research. Yet the use of deep learning in

localization is still recent and short. Influenced by the revolution of image recognition

that deep learning caused, we developed a method to localize indoor mobile robots based

only on the camera input. Deep learning based generates many features from images and

apply an advanced analysis.

The proposed system consists of multiple layers of neural networks that process an RGB

image to output the absolute location and orientation of the mobile robot.

To summarize, the contribution of this work is:

(a) The creation of a Deep learning localization model that produces an absolute loca-

tion and orientation based on an image.

(b) Having a state-of-the-art performance with insignificant error that does not accu-

mulate or fall in the kidnapped robot problem.

(c) Independence of high storage or memory consumption that allow it to work in large

indoor environments unlike V-SLAM.

In the next chapter, we go through a literature review on indoor localization for mobile

robots, after that a theoretical background for Deep learning and V-SLAM. The fourth

chapter explains the proposed method to localize the indoor robot which was used and

11

tested in simulations in chapter five and in a real environment in chapter six. The thesis is

concluded in chapter seven.

12

2. LITERATURE REVIEW

For indoor mobile robot localization, we can consider reviewing the literature from two

approaches, the historical localization research and methods, and the usage of Deep

Learning in localization research.

In the historical localization research and methods, we review the three fundamental

SLAM paradigms, Markov Process Based Filtering including Extended Kalman Filter,

Particle Filtering and Graph Based Optimization. As for the second part, we view some

recent examples of the usage of Deep learning in Localization or assisting the Localization

process.

2.1 LOCALIZATION PARADIGMS LITERATURE REVIEW

Filtration based methods were the first approaches considered and have been used for

a long time, these methods are computationally costly and depend on linearization and

approximation.

2.1.1 Markov Process Based Filtering

Bayes filters to the localization problem is called Markov localization. Markov localiza-

tion depends on two stages, the first is generating a probability where the robot would be

based on previous belief and odometric input and the second is generating a probability

based on the exteroceptive sensors in the environment. Combining these probabilities

gives the answer. Figure 2.1 shows an example of a robot determining these probabilities.

13

Figure 2.1: A mobile robot during Markov Localization.

Source: (Ibrahim et al., 2011)

The Markov Localization model can represent any probability density function regard-

ing the robot’s position. However, this approach is extremely general and some authors

describe it as insufficient.(Malagon-Soldara et al., 2015).

14

To solve that Extended Kalman Filter was introduced by Kalman, EKF is the nonlinear

derivation of Kalman Filter (Kalman et al., 1960) which estimates a current state of the

robot and its uncertainties and updates the estimation using a weighted average.

Figure 2.2: Robot’s path and estimates using EKF.

Source: (Siciliano & Khatib, 2016).

As figure 2.2 above shows when the robot moves along the path the uncertainty in the

landmarks’ locations grows and so does the error until the robot observes an obstacle that

was detected before.

In (Kim & Lee, 2007) an active beacon system is composed of an RFID receiver and an

ultrasonic transmitter, four beacons detect the RFID signal and measure the distance from

15

each beacon, an Extended Kalman Filter for the nonlinear system is applied to improve

the estimation of the accuracy.

It can also give a highly accurate estimations using multiple sensors such as combining

wheels encoders’ readings with IR sensor readings to get the location using EKF (Oh

et al., 2014).

2.1.2 Particle Filtering

Represented as Monte Carlo Localization method (Dellaert et al., 1999) where it presents

the next probability function as a set of particles, each particle is a representation of a

possible state of the robot and these particles survive based on the measurement of the

sensors available in the environment as shown in figure 2.3. It consists of two stages,

firstly prediction where every particle’s probability of a set of particles that is computed in

the previous iteration is calculated. And a new set is obtained based on these probabilities.

The second stage is update where the sensor measurement is taken into consideration and

each sample is weighted to obtain a new set of particles based on these weights. Both

stages are repeated recursively.

Figure 2.3: Monte Carlo localization process.

Source: (Dellaert et al., 1999).

Such an example would be four ultrasonic range sensors attached to a servo motor that ro-

tates in 30 degree intervals and the sensors give the distance to the walls and obstacles that

16

allows to create a map and localize using Particle Filter method using a certain number of

particles (Lim et al., 2015).

Localization using a Wi-Fi algorithm based on Monte Carlo Filtering can also be done,

the probability is based on the strength of the Wi-Fi signal and the encoders’ readings, in

(Biswas & Veloso, 2010) the mean localization error was 0.7 meters.

It can also be used with a large set of sensors such as Kinetic Camera as a laser scanner to

build a map and then localize the robot by distributing particles and eliminating them by

decreasing their probabilities based on the obstacles detected by the laser-scan (Hamzeh &

Elnagar, 2015). Bluetooth can be used in the localization of a robot by using Trilateration

based on multiple devices and Monte Carlo to get a localization error of 0.427 ±0.229

meters (Raghavan et al., 2010).

The disadvantage in this method would be the large number of particles that would be

established and the time it takes to determine the particle with the highest probability,

which means that the robot will be moving around the environment for a while before it

determines its position.

2.1.3 Graph Based Optimization

Optimization based approach is considered state-of-the-art, advantageous compared to

the filter-based SLAM approaches, because non-linear optimization methods cope effi-

ciently with the large number of feature measurements.(Strasdat et al., 2012) And avoids

linearization and approximation.

The Graph Based Optimization approach uses a graph to represent the problem consisting

of nodes and edges where every node represents a pose of the robot during mapping

and every edge represents a spatial constraint between the nodes. The graph created is

sent from the front end to the back end to be optimized. It aims to minimize the error

introduced by the constraints. At the end, the map is determined by correcting the nodes.

17

Figure 2.4 below shows the creation of a 3D map consisting of nodes and edges in the

process of RTAB-Map which is an example of the Graph Based Optimization method.

Figure 2.4: An example of Graph based approach localization process.

Overall Visual SLAM systems consist of: Sensor data which is the images from the cam-

era, Front end including feature extraction, feature tracking and Back end including loop

detection and closure and camera pose optimization.

A pose-based SLAM system computes the robot motion between the consecutive robot

poses using an input such as Visual Odometry (VO), which estimates the trajectory of a

camera computing the ego-motion between the consecutive frames, and then constructs a

graph whose vertices are those poses, whereas the motion-related constraints are consid-

ered as edges, a loop closure introduces pose-to-pose constraints that correct the drift of

the trajectory.

A drawback of this approach is that it costs high computational memory as it incorporate

all the pose estimates in the calculation process, high storage space because it stores the

images and maps, and it uses outdated feature extractions such as SURF and ORB.

18

2.2 DEEP LEARNING LOCALIZATION LITERATURE REVIEW

In this section we review the use of Deep Learning in Localization, Deep learning can

assist the localization process by substituting one of the stages of the localization process

or can replace the whole localization technique by receiving an input and providing the

location and orientation.

2.2.1 Individual Components of SLAM Systems

Individual components of SLAM systems have recently been tackled with supervised

deep learning methods.

Convolutional neural network or CNN is a neural network layer that filters the image and

produces a feature map, CNN is highly recommended in classifying images. In assisting

the Localization problem, it was used to classify a set of images taken in four different

rooms so that it can label each image to its room number, then modify Adaptive Monte

Carlo Localization (AMCL) by launching the particles in that room instead of the whole

global map as shown in figure 2.5 so that it can convert faster (Bettaieb, 2017).

19

Figure 2.5: Particles launching in

one room.

Source: (Bettaieb, 2017).

Deep learning revolutionized the way we tackle image detection with multiple models that

are more efficient than the aged feature based methods. One of these models is Faster R-

CNN (Ren et al., 2015), which is used in (Nilwong et al., 2019) to detect nine landmarks

in the area of the experiment and feed them into a FFNN that returns the output as shown

in figure 2.6 below.

Figure 2.6: Faster R-CNN usage in localization

model.

Source: (Nilwong et al., 2019).

20

Another method proposed in (Nilwong et al., 2019) is to apply CNN and train the whole

image with 5 CNN layers. The downside in the faster R-CNN method is that we have to

deal with a detection error alongside the localization error. As for the results they describe

that the minimum results for both methods were in meters and their average errors were

relatively high, compared to the GPS that has approximately 4.9 m error.

In (Tateno et al., 2017) CNN was used to produce a dense layer out of the mono image by

training it on depth images from a Microsoft Kinect camera to replace the need of depth

image in SLAM, compared to other mono SLAM it had an accuracy of 0.246 m.

In (DeTone et al., 2017) the neural network model depends on two networks, MagicPoint

which consists of multiple CNN layers that takes an image and produce interest points

in the images trained on ground truth corner locations, it does that for the next image.

The second network MagicWarp consists of a concatenate layer to merge the output of

MagicPoint, a VGG network and two dense layers produce a homography that estimates

correspondence in image pairs without interest point descriptors as shown in figure 2.7.

Figure 2.7: Homography estimation model.

Source: (DeTone et al., 2017).

21

2.2.2 Na¨ıve Localization

Instead of taking the place of an Individual component of the localization systems other

models can replace the full localization process by creating a model that takes a sensor’s

input and presents the location and orientation of a robot.

In (Tananaev et al., 2016) Na¨ıve approach was taken by creating the model shown in figure

2.8 with a laser scan input as a vector of 181 elements each representing one degree, that

go into multi dense layers to output the location as regression, it was trained on encoders

labels.

Figure 2.8: Laser scan based localization model.

Source: (Tananaev et al., 2016).

PoseNet (Kendall et al., 2015) is an outdoor camera relocalization system that receives

an RGB Image and outputs the 3D location and orientation of the camera. It is based on

transfer learning where they use GoogleLeNet.

22

Figure 2.9: The architecture of GoogleLeNet.

Source: (Szegedy et al., 2015).

GoogleLeNet (Szegedy et al., 2015) is a classification network that consists of inception

layers that composed of multi CNN layer shown in figure 2.9 above with the purpose of

image recognition, modifying this network by adding a dense layer before replacing the

classification layer with a regression layer.

The model is trained to regress 6 DOF camera pose by taking a 224x224 RGB images

and using structure from motion as training labels. Testing error was 2m and 6◦accuracy

for large scale outdoor scenes and 0.5m and 10 ◦ accuracy indoors.

23

3. THEORETICAL BACKGROUND

In this chapter we go through a theoretical background on visual SLAM and study some

examples to provide a better understanding, then we explain the fundamental principles

behind Deep learning to provide enough knowledge to go through the next chapters.

3.1 V-SLAM

Visual SLAM algorithms use sensor observations to create a map and localize in it, most

used sensors are RGB-D cameras and stereo cameras, other additional sensors can be

combined such as Lidars and odometers. RTAB-Map and ORB-SLAM are considered

state-of-the-art V-SLAM algorithms.

RTAB-Map

RTAB-Map (Real-Time Appearance-Based Mapping) is an RGB-D graph-based SLAM

approach based on an incremental appearance-based loop closure detector.

Figure 3.1: Main stages of RTAB-Map.

Source: (Labbé, 2015).

24

Figure 3.1 above shows the stages of RTAB-Map. Sensor measurements are provided by

the main sensor such as stereo or RGB-D cameras that provide RGB images and depth

information.

The purpose of the front-end stage is to process the sensor’s data and the geometric con-

straints between the successive RGB-D extracted frames. The geometric relationships

between the robot and the environment are extracted in this stage and it requires an odom-

etry, this can be encoder + IMU or Visual odometry which is used in determining the po-

sition and orientation of a robot by analyzing the associated camera images and detecting

the features using a feature detection algorithm. Visual odometry steps are:

(a) Take images at every timestamp.

(b) Detect features using a certain algorithm (e.g. SIFT, SURF, MSER, BRISK) be-

tween the images at t = 0 and t = 1 and match them.

(c) Use disparity map to calculate position of features detected in the previous step.

(d) Select a subset of points from the point cloud obtained that all matches are compat-

ible.

(e) Estimate the position and orientation matrices from the inliers that were detected.

The resulting transformation is rendered using local bundle adjustment on features of all

key frames in the Feature Map.

The purpose of the back-end stage is to focus on solving the accumulated error and on

detecting the loop closure. In the previous step the visual odometry, which is based on

relative measurements, will cause an accumulated error. The key-frames are selected

by pre-defined parameters and added to the current frame which is stored in the Loop

Detection buffer. While a new key-frame is inserted, it is compared to all previous key-

frames in the Loop Detection buffer.

25

For global loop closure detection, the bag-of-words approach is used. When a loop closure

hypothesis reaches a pre-defined threshold, a loop closure is detected.

Finally, when a loop is detected, the global poses are optimized by the g2o optimization

algorithm. The g2o (general graph optimization) provides an open-source C++ framework

for optimizing graph-based nonlinear error functions using least squares. It is applied in

the Visual SLAM system to obtain a 3D global consistency map (Gurel, 2018).

ORB-SLAM2

ORB SLAM 2 (Oriented fast Rotated Brief SLAM) is a graph based optimization ap-

proach for stereo and RGB-D cameras build on monocular ORB SLAM 1.

Figure 3.2: Main stages of ORB-SLAM2.

Source: (Mur-Artal & Tardos, 2017).

Figure 3.2 shows the 3 main stages of ORB-SLAM2, the first one is Tracking, the main

purpose of this stage in ORB-SLAM2 is to localize the robot within every frame and

decide when to insert a new keypoint or keyframe to the mapping stage at which the input

images are discarded and all system operations are based on these features.

26

Key frames store the camera poses and ORB features shown in figure 3.3 in the frame.

Each node is a keyframe and an edge between two keyframes exists if they share obser-

vations of the same map points (store the 3D positions and ORB descriptions) and that

creates a Covisibility Graph.

Figure 3.3: Feature detection in ORB-SLAM2.

One of the main benefits of using stereo or RGB-D cameras is that, by having depth

information from just one frame, there is no need for a specific Structure From Motion

(SFM) initialization as in the monocular case.

The second stage is Local Mapping and the main purpose of this stage is to Process

new keyframes and performs local BA to optimize the map points and the poses of the

keyframes.

The Last stage is Loop closing, which is the act of correctly asserting that a robot has

returned to a previously visited location. It is performed in two steps, firstly a loop has to

be detected and validated, and secondly the loop is corrected by optimizing a pose-graph.

For stereo cameras the stereo/depth information makes scale observable and the geometric

validation and pose-graph optimization no longer require dealing with scale drift that

27

occurs when using mono cameras.

After that, full BA optimization after the pose-graph to achieve the optimal solution that

works in parallel with creating and detecting maps.

3.2 NEURAL NETWORKS

Machine learning is programming computers to optimize a performance criterion using

example data or past experience (Parsons, 2010). It highly relays on large scale data that

the model learns from. There are three types of learning:

(a) Supervised learning in which all samples of the data are labeled.

(b) Semi-supervised which has labeled and unlabeled data.

(c) Unsupervised learning that has no labeled data.

Machine learning tasks vary as the data and the uses are different based on the intended

application, generally, models have the objective of classification where the model pre-

dicts the class of the input or regression where the model predicts a value of a given

continuous valued variable.

An artificial neuron is the fundamental unit of a neural network, it represents a processing

unit in the human brain, a perceptron introduced in (Rosenblatt, 1962) is the basic pro-

cessing model in machine learning, it consists of an input layer, weights, net sum and an

activation function that determines the output. If the purpose of the model is classification

a sigmoid function is usually applied to categories the output.

28

Σ

Figure 3.4: A simple perceptron.

Figure 3.4 shows the architecture of a perceptron, every neuron x has a weight w that

affect the output y as demonstrated in (3.1).

d

y = wjxj + w0 (3.1)

j=1

The learning process is an iterative process that uses an optimization algorithm. The most

common iterative optimizer is gradient descent, other algorithms such as Adagrad, Adam,

RMSprop and others can also be used. The learning process starts with assigning random

weights to each neuron, and at each step it updates the weights to minimize the error. (3.2)

describes the update phase using the gradient descent optimizer, r is the desired output, y

is the actual output and η is the learning factor.

∆wij
t = η(ri

t − yi
t)xj

t (3.2)

29

t

1

2

q

Adaptive Moment Estimation (Adam) computes adaptive learning rates for each param-

eter, we compute the first moment (the mean) and the second moment (the uncentered

variance) of the gradients mt and σ2 respectively as follows in (3.3) and (3.4):

mt = β1mt−1 + (1 − β1)gt (3.3)

σ2
t = β2σ2

t−1 + (1 − β2)g2 (3.4)

Where β1 and β2 are the decay rates. They counteract these biases by computing bias-

corrected first and second moment estimates as shown in (3.5) and (3.6):

m̂t = mt/(1 − βt) (3.5)

σ̂2
t = σ2

t/(1 − βt) (3.6)

and they are used to update the weights by:

t η

(3.7)
∆wij =

σ̂2
t + ϵ

m̂t

while ϵ in (3.7) is a smoothing term to avoid division by zero.

Deep learning is a subfield of machine learning, the model is considered to be in the field

of deep learning if it has multiple hidden layers, the basic processing unit is a multi layer

perceptron shown in figure 3.5.

30

Σ

h

h

Figure 3.5: multi-layer perceptron.

The learning process in multi-layer perceptron is described in (Rumelhart et al., 1986) as

two phases process:

(a) Forward phase that computes the output as shown in (3.8).

d

yi = vihzh + vi0 (3.8)

h=1

(b) Back-propagation that updates both weights in every layer shown in (3.9) and (3.10)

using gradient descent.

∆vh =
Σ

(rt − yt)zt (3.9)

∆whj = −η

 ∂E

= −η

Σ ∂E ∂yt

t

∂zt

= η
Σ

(rt − yt)vhzt (1 − zt)xt

(3.10)

∂whj ∂yt ∂zt ∂whj
h h j

In the next chapter, we will dive in some deep learning layers and specifics explaining the

proposed architecture for this thesis.

t h t

31

4. METHODOLOGY

In this chapter we propose a method to localize an indoor mobile robot using a Deep

Learning approach based on camera input in order to get a direct 2D location and orien-

tation of the robot.

Deep learning is a part of machine learning where the created model is structured of

multiple layers of neural networks to simulate the architecture of a brain. Deep learning

approaches are based on a model with a unique architecture, we use the form of supervised

learning, which is training a model on multiple inputs given their consecutive outputs.

Multiple data are required to train the neural network model. In our case, images and their

exact location and orientation are required to be collected.

4.1 DATA COLLECTION

For data collection two ROS nodes were created, both RGB and Depth images are

recorded with their timestamps with the frequency of the camera, the timestamp is de-

scribed as seconds and nanoseconds in the simulation or as Unix time in real implementa-

tion both provided by ROS, and each RGB image is saved in a certain path with a unique

label that is also saved in a CSV file with its timestamp, and the same goes for the depth

images.

The encoders’ data are also recorded using ROSBAG tool that saves the odometry topic

-which has the timestamp and the robot’s position and orientation- into a bag file.

A launch file was created to run the RGB image node, the Depth image node and the

ROSBAG node to record the RGB images, Depth images and the encoders’ data while

the robot is moving in the environment.

The bag file containing the encoders’ data is then converted to a CSV file using ros-

32

bag to csv package, the Odometry file is then modified by transforming the orientation

data from quaternion to Euler and then from radians to degrees in the range of

(-180◦,180◦).

The timestamps of the images and the Odometric data are then synchronized and a docu-

ment of the timestamps with the images’ filenames, robot’s location (X,Y) and orientation

(Ψ) is created.

4.2 MODEL ARCHITECTURE

The most common approach when building a neural network is to start with a rough guess

based on prior experience or based on networks used for similar problems and then change

the parameters in order to try some variations, and check the performance carefully before

picking the final model.

As mentioned before Deep learning has multiple layers that can be used in the creation of

the model, we explore two of these layers that we need to use.

1. CNN layer: Convolutional Neural Network is a network that studies an image and

creates a feature map by multiplying the image by different numbers of filters with

different sizes known as kernels. CNN layer is usually followed by max pooling,

which reduces the dimensions of the matrix by representing every (n, n) pixels by

the maximum pixel, and so allowing for assumptions to be made about features

contained in the sub-regions of the image.

2. FFNN layer: Feed Forward Neural Network or Dense layer is a layer that has a

different number of neurons that simulates a brain neuron with a constant weight

for each neuron.

In order to create the model that provides a high localization accuracy, we try designing

different models by changing or tuning the controllable parameters and analyze them.

33

And for that purpose all the training and validation was done using TensorFlow-GPU 1.9

on ASUS X550VX with a 4GB NVIDIA GEFORCE GTX 950M, the simulation was in

Gazebo 7 on ROS Kinetic.

Gazebo is a simulation software that is supported by ROS, Gazebo offers the ability to

accurately and efficiently simulate populations of robots in complex indoor environments.

An indoor environment was created in Gazebo to simulate an office environment with an

area of (18 x 1.5)m2 as shown in figure 4.1 for the robot to navigate in with different

obstacles along the way.

Figure 4.1: Office environment simulation model.

34

In the simulations TurtleBot2 shown in figure 4.2 an Open-source robot development kit

was used, it’s a differential drive robot with the support for ROS, which allows us to use

it in the simulations and create realistic scenarios. Attached to its base is a Kinect Camera

that provides the RGB and Depth images.

Figure 4.2: TurtleBot2 in simulation.

The office environment simulation was used to create the model, design and tune the

parameters and options of the model. The robot moved in the environment for approxi-

mately 45 min recording both the RGB, Depth and Odometry data from the encoders. A

total of 50947 RGB and 50947 depth images with their corresponding 2D location and

orientation were obtained.

The data are then shuffled to ensure that each data point creates an independent effect

on the model, to increase the efficiency of the training process. Taking non-sequential

images and labels will lead to a better result than sequential data to reduce variance, less

35

overfitting and remain general. And then divided into a training set (90%) to train the

neural network model and a validation set (10%) to test the accuracy of the model.

Before creating the model, based on the input of the system we have 3 different layouts

or models:

1. RGB images as an input.

2. Depth image as input.

3. Combined input of both RGB and Depth images.

4.2.1 RGB Based Model

The images captured by the camera in the simulation have a resolution of (640X480) (W

x L), each image is normalized and converted to (320 x 240) for memory’s sake.

The features of the images are then detected using multi layers of CNN to produce a

feature map of the image. To analyze how many CNN layers we need, how many filters

do we require and the size of the filters. A one epoch training process with a batch size

of 8 was applied to various models with different CNN layers using ADAM (Adaptive

Moment Estimation) optimizer and the MAE (Mean Absolute Error) described in (4.1) as

the loss function to the three outputs. The performances are evaluated by the validation

loss with a condition of having a yaw angle error less than 10◦ and the minimum euclidean

error possible.

The mean absolute error for the loss function given T the total number of images is de-

scribed as ΣT (|X − X J| + |Y − Y J| + |Ψ − ΨJ|)
MAE = n=1

3 ∗ T
(4.1)

Generally, mobile robot localization error is described as the mean Euclidean error in

meters (4.2) and mean yaw angle error in degrees (4.3)

36

Mean Euclidean error = n=1
T

ΣT √
(X − X J)2 + (Y − Y J)2

ΣT ∆Ψ

Y aw error = n=1
T

∆Ψ =
||Ψ − ΨJ| − 360| if Ψ ∗ ΨJ < 0 & ∆Y > 180

|Ψ − ΨJ| otherwise

Figure 4.3: Robot’s orientation.

(4.3)

(4.4)

Figure 4.3 presents the orientation of the robot between angles (-180◦,180◦) and so the

calculation of the yaw angle error is referred to as in (4.4) to avoid any miss calculations.

X , Y and Ψ are the ground truth location and orientation and X J, Y Jand ΨJ are the pre-

dicted location and orientation.

(4.2)

37

We start our assumptions with CNN layers that have 64 kernels with the size of 3*3

followed by a fixed number of dense layers with fixed parameters to analyze the CNN

layers and variables.

Table 4.1 The effect of CNN layers quantity on accuracy

Number of CNN layers Training error Validation error

2 1.0m, 7.7◦ 1.0m, 7.8◦
3 0.88m, 8.9◦ 0.89m, 8.9◦
4 1.0m, 9.1◦ 1.0m, 9.1◦
5 0.87m, 9.4◦ 0.87m, 9.7◦
6 1.2m, 21◦ 1.2m, 20◦

According to table 4.1 above the best validation loss is the model that has 3 CNN layers.

Table 4.2 The effect of Kernel size in each CNN on accuracy.

Kernel Size Training error Validation error

3 ∗ 3 0.88m, 8.9◦ 0.89m, 8.9◦
4 ∗ 4 0.84m, 11◦ 0.82m, 10◦
5 ∗ 5 0.85m, 9.8◦ 0.86m, 9.9◦
6 ∗ 6 1.6m, 17◦ 1.6m, 17◦

According to table 4.2 above the best validation loss is the model that has a kernel size of

3*3.

Table 4.3 The effect of filters quantity in each CNN on accuracy.

Number of the filters Training error Validation error

64 0.88m, 8.9◦ 0.89m, 8.9◦
32 1.3m, 8.0◦ 1.3m, 7.8◦

And according to table 4.3 the best validation loss is the model that has a number of the

filter size of 64.

After establishing the variables of the CNN layers we can build our model on the basis

that we have extracted the best feature map of the images.

Next, we need to provide a link between the feature maps and the output of our model,

we use FFNN or dense layers to provide an understanding of the map to the model, and

38

each dense layer is constructed of a number of neurons that set weights to memorize the

map.

Since the output of the model is three neurons representing X J,Y J and ΨJ, the proposed

architecture of the dense layers has the shape of an encoder, in an encoder each layer has

number of neurons less than the previous layer, it aims to leverage this ability of neural

networks to learn efficient representations or to map raw inputs to representations.

We explore different analyses in the range that our memory allows us to.

Table 4.4 The effect of dense layers quantity on accuracy.

Dense Layers Neurons Training error Validation error

0 (0) 2.1m, 23◦ 2.1m, 22◦
1 (64) 0.70m, 14◦ 0.70m, 14◦
2 (128,64) 0.88m, 8.9◦ 0.89m, 8.9◦
3 (265,128,64) 0.99m, 7.0◦ 1.0m, 7.2◦

According to table 4.4 above the best validation loss is the model that has 2 dense layers.

Another analysis is the number of the neurons in each dense layer

Table 4.5 The effect of neurons quantity in each dense layer on accuracy.

Number of the neurons Training error Validation error

64, 64 1.3m, 11◦ 1.3m, 11◦
128, 128 1.0m, 7.9◦ 1.1m, 8.2◦
128, 64 0.88m, 8.9◦ 0.89m, 8.9◦

39

According to table 4.5 the best validation loss is the model with a first dense layer of 128

neurons and a second dense layer of 64 neurons.

We also test expand and contract technique where we add a dense layer with neurons

more than the previous one and then add a dense layer with less neurons. But according

to table 4.6 it did not enhance the accuracy.

Table 4.6 Expand and contract effect on accuracy.

Number of neurons Training error Validation error

128, 64 0.88m, 8.9◦ 0.89m, 8.9◦
64, 128, 64 1.0m, 7.9◦ 1.0m, 8.5◦

Dense layers use an activation function to train these layers and choose the weights of

the neurons, regression functions as Relu, Tanh, Selu, Elu and Linear were examined and

the most suitable functions are Relu function for CNN layers, and as this is a regression

model linear function is used for the output layer.

40

We construct our model based on the previous results as shown in figure 4.4:

Figure 4.4: RGB based model.

When using a small dataset, we use a small number of epochs in order to not cause over

fitting, but in my dataset we need to pass the full dataset multiple times to the same

network, keep in mind that we are using ADAM which is an iterative process so updating

the weights with single pass or one epoch is not enough.

At the same time we don’t want it to over fit to the point that the accuracy of the training

data will keep improving and the validation accuracy will decrease, so I use a checkpoint

to save the model with the best validation accuracy, and use early stopping to stop the

training process when the validation accuracy does not improve for a certain number of

epochs.

41

Figure 4.5: Validation loss from 1 epoch vs 50 epochs of training.

As figure 4.5 above and table 4.7 show, the loss in 1 epoch is much more than the loss of

50 epochs of training.

Table 4.7 Epochs effect on accuracy.

Epochs Training error Validation error

1 0.88m, 8.9◦ 0.89m, 8.9◦
50 0.28m, 1.1◦ 0.28m, 1.4◦

After many attempts of training the model, it was noticed that the ADAM is trying to

change the weights in order to reduce the yaw angle error where its loss weight in the

loss function (MAE) is more than the weight of X and Y because they are in meters, so I

changed the distance units from m to cm for better accuracy and it enhanced the results.

We can observe that when the sensitivity is in cm the model learns faster than in m and

42

yields to a better result according to table 4.8.

Table 4.8 Sensitivity effect on accuracy.

Sensitivity Training error Validation error

m 0.28m, 1.1◦ 0.28m, 1.4◦
cm 0.074m, 2.1◦ 0.076m, 2.4◦

4.2.2 Depth Images Model

The same loss function and approach were taken in developing this model, in addition to

that, the model was derived on the same map using only the depth images.

Table 4.9 Effect of CNN layers quantity on accuracy.

CNN Layers Training error Validation error

2 1.1m, 24◦ 1.1m, 25◦
3 1.2m, 25◦ 1.2m, 25◦
4 1.2m, 26◦ 1.2m, 26◦
5 1.4m, 25◦ 1.3m, 25◦

Table 4.10 The effect of Kernel size in each CNN on accuracy.

Kernel Size Training error Validation error

2 ∗ 2 0.99m, 25◦ 0.99m, 26◦
3 ∗ 3 1.1m, 24◦ 1.1m, 25◦
4 ∗ 4 1.4m, 26◦ 1.4m, 26◦
5 ∗ 5 1.4m, 26◦ 1.4m, 26◦
6 ∗ 6 1.1m, 28◦ 1.1m, 28◦

43

Table 4.11 The effect of filters quantity in each CNN on accuracy.

Number of the filters Training error Validation error

64, 64 0.99m, 25◦ 0.99m, 26◦
32, 32 1.2m, 22◦ 1.2m, 23◦
64, 32 1.1m, 32◦ 1.1m, 24◦

Tables 4.9, 4.10 and 4.11 above show that having a model with 2 CNN layers with a kernel

size of 2*2 and 64 filters grant us the least errors.

Table 4.12 The effect of dense layers quantity on accuracy.

Dense Layers Neurons Training error Validation error

0 (0) 3.3m, 41◦ 3.3m, 41◦
1 (64) 1.2m, 32◦ 1.3m, 33◦
2 (128,64) 0.99m, 25◦ 0.99m, 26◦
3 (256,128,64) 0.88m, 24◦ 0.90m, 25◦
4 (512,256,128,64) 1.0m, 24◦ 1.0m, 25◦

Table 4.12 shows that adding three dense layers after the CNN layers yield to a better

accuracy.

Table 4.13 Epochs effect on accuracy.

Epochs Training error Validation error

1 0.88m, 24◦ 0.90m, 25◦
50 0.53m, 8.1◦ 0.55m, 9.1◦

After training the model for 50 epochs the error is decreased as presented in table 4.13.

44

And so following our previous results the best depth model is shown in figure 4.6:

Figure 4.6: Depth based model.

Changing the sensitivity from m to cm yields to the results in table 4.14

Table 4.14 Sensitivity effect on accuracy.

Sensitivity Training error Validation error

m 0.53m, 8.1◦ 0.55m, 9.1◦
cm 0.25m, 4.9◦ 0.25m, 4.9◦

4.2.3 Combined Input of Both RGB and Depth Images Model

In this model we explore the idea of having both RGB and Depth images as inputs to

the model at the same time in order to have more features and information about the

environment and test the effect of that on the output.

Tested two approaches:

A- Using a combination of both models derived previously, we produce our first model.

B- Analyze modifying the model by adding a dense layer of 64 neurons after the com-

bination of both models.

45

Table 4.15 Combined models accuracies.

Model Training error Validation error

A 0.069m, 2.4◦ 0.073m, 2.4◦
B 0.095m, 3.5◦ 0.097m, 3.6◦

The results in table 4.15 above were derived using cm as distance labels and using 15

epochs of training and shown in figure 4.7.

Figure 4.7: Validation loss during multi epoch between model A and model B.

46

4.2.4 Comparing The Best Models Based on The Input

Table 4.16 Comparing the best models.

Model Training error Validation error

RGB 0.074m, 2.1◦ 0.076m, 2.4◦
Depth 0.25m, 4.9◦ 0.25m, 4.9◦

RGB + Depth 0.069m, 2.4◦ 0.073m, 2.4◦

As shown in table 4.16 and figure 4.8 RGB and RGB+Depth models have the advantage

on the Depth image and that’s because stereo cameras do not publish a depth image unless

an obstacle is detected in a certain range for that camera, which means that if the camera

is not detecting any object or the camera is too close to a wall or an object, the camera

will publish a blank black image, this issue affects the localization in both the training

process and the deployment.

As for the RGB+Depth input based model it shows a similar accuracy to the RGB input

based model, but the first consumes more computational power and hence takes more time

and space than the second model and thus choosing the RGB input based model as our

proposed system saves storage, time and preferably in deployment. In addition, it allows

us to use mono camera or any kind of cameras.

47

Figure 4.8: Validation loss during multi epochs comparison between models.

4.3 CONCLUSION

Based on the trainings and tests described in this chapter, we propose a Deep Learning

model that inputs an RGB image and outputs the location and orientation of a robot.

Our system trains Convolutional Neural Networks and Feed Forward Neural Networks to

regress the 2D position and orientation of a robot from a single RGB image provided by

a camera attached to the robot.

In addition the inaccuracy of this system is insignificant and does not accumulate over

time, it does not consume much storage or require after-calculation optimization.

48

5. SIMULATIONS

In this chapter we present the Implementation of our localization method in simulations.

For each environment, we introduce the layout of the simulation, implement both our

model and RTAB-Map and display the results.

Using Gazebo 7 simulation program, we test our system in two different environments

using TurtleBot2 shown in figure 5.1 which is an open source differential drive robot with

a Kinect camera attached to its base, operating in ROS Kinetic on ASUS X550VX with a

4GB NVIDIA GEFORCE GTX 950M.

Figure 5.1: TurtleBot2 in simulation.

49

5.1 OFFICE ENVIRONMENT

The first map presented in figure 5.2 simulates an indoor office environment with an area

of (18X1.5)m2 for the robot to navigate in; it contains various obstacles that generate

many features.

Figure 5.2: Office environment simulation model.

50

5.1.1 Our Model

Our Deep learning based model consists of two stages: the first is data collection which

produces a document containing each image’s filename and the robot’s location and ori-

entation in that image, the second is training the model by feeding that document to the

neural network.

Our Deep learning based model is trained for both simulation on TensorFlow1.9 using

Keras libraries on an ASUS X550VX with a 4GB NVIDIA GEFORCE GTX 950M.

The TurtleBot moved in the office environment for approximately 45 minutes recording

RGB, Depth and Odometry data. A total of 50947 RGB images with their corresponding

2D location and orientation were obtained.

Images captured by the Kinetic camera had a resolution of (640,480) for (W x L) which

was converted with a factor of 0.5 to (320,240). The system was trained with a batch size

of 8 for 15 epochs on 90% of the RGB images. The other 10% were used for validation.

Figure 5.3: Training and validation loss for the office environment model.

51

In figure 5.3 we can observe that the model activated early stopping at epoch 14 because

the validation loss did not improve for 3 consecutive epochs and the model was saved at

epoch 11. Table 5.1 shows the results of our model.

Table 5.1 Validation results of our model in the office environment.

Environment Validation error Standard deviation

Office simulation 0.076m, 2.4◦ 0.11m, 9.4◦

Recording data process is an essential part of our method, on the office simulation map we

tested the effect of data recording, recording the data for a short time gives 1655 images

where the locations on the map are only visited once and will give an accuracy of (0.20

m, 7.8◦). In contrast, recording for a long time in the same map and having more images

of the same locations will yield for a better result (0.076 m, 2.4◦).

5.1.2 RTAB-Map

Using rtabmap-ros package on Kinect camera RTAB-Map provides Visual Odometry for

the camera to map the environment and localize in it. RTAB-Map is a two stage process:

the first is mapping and the second is localization.

For the office environment the map created, shown in figure 5.4, did not achieve loop

closure since the path was straight forward but the drift of the visual odometry provided

by RTAB-Map caused a drift in mapping as observed in the following figure and when the

robot rotates 180 degrees RTAB-Map loses the visual odometry which causes the robot to

map over a mapped area which diminishes the mapping process.

52

Figure 5.4: Office environment in

RTAB-Map.

After mapping we initialize localization mode to localize the robot and move the robot

around the environment and record both the wheels’ odometry data and the RTAB-Map

odometry. The results are shown in table 5.2.

Table 5.2 RTAB-Map results for the Office environment.

Environment Mean Error Standard deviation

Office simulation 1.0m, 6.5◦ 0.5m, 3.9◦

53

5.2 LAB ENVIRONMENT

The second map presented in figure 5.5 simulates a lab environment of a small factory

with an area of (12X5)m2, this map contains less features and has a bigger area for the

robot to navigate in than the previous map.

Figure 5.5: Lab environment simulation model.

54

5.2.1 Our Model

The TurtleBot moved in the lab environment for approximately 60 minutes recording

RGB, Depth and Odometry data. A total of 89032 RGB images with their corresponding

2D location and orientation were obtained.

Images captured by the kinetic camera had a resolution of (640,480) which was converted

with a factor of 0.5 to (320,240). The system was trained with a batch size of 8 for 15

epochs on 90% of the RGB images with early stopping option. The other 10% were used

for validation.

Figure 5.6: Training and validation loss for the lab environment model.

In figure 5.6 we can observe that the model activated early stopping at epoch 12 since the

accuracy did not improve after epoch 9 which was saved. Table 5.3 shows the results of

our model.

Table 5.3 Validation results for the lab environment.

Environment Validation error Standard deviation

Lab simulation 0.17m, 3.7◦ 0.23m, 10◦

55

5.2.2 RTAB-Map

In this environment RTAB-Map mapped the environment as shown in figure 5.7,

it achieved loop closure with no drift in mapping.

Figure 5.7: Lab environment in RTAB-Map.

56

However, in localization mode RTAB-Map suffered the lack of features, especially in the

walls, which caused the robot to falsely localize the robot many times. The mean error

and standard variation is shown in table 5.4.

Table 5.4 RTAB-Map results for the lab environment.

Environment Mean Error Standard deviation

Lab simulation 2.2m, 2.4◦ 2.6m, 3.6◦

57

6. EXPERIMENTAL RESULTS

In this chapter, we present the experimental localization results. Firstly, we introduce the

layout and arrangements of the test concluded in a real-world experiment. Secondly, we

show our model’s results, and lastly we display the performance of RTAB-Map.

6.1 HARDWARE

Testing was done on a KUKA youBot, it consists of an omnidirectional mobile platform

on which a 5-axis robot arm with a gripper is installed. A model of KUKA youBot is

shown in figure 6.1.

Figure 6.1: KUKA youBot.

Source: youbot-store.com

58

Zed camera was used to capture the images by linking it to the youBot’s gripper with a 3D

printed link shown in figure 6.2 and a ROS node was created to adjust the manipulator’s

joints to position it as shown in figure 6.3 in order to give the camera a good view of the

environment.

Figure 6.2: 3D printed link.

A Jetson TX2 Development Kit is also connected to the base of the youBot running on

JetPack3.3 connected to the computer of the youBot (Mini-ITX) in order to run the Zed

camera, use platforms such as CUDA and take advantage of its processing power such as

RAM memory and GPU that is way higher than the youBot’s capabilities.

59

Figure 6.3: Jetson TX2 with KUKA youBot and zed camera.

In figure 6.3 the Jetson TX2 is using ROS kinetic which is also connected by an Ethernet

cable to the youBot’s ROS Kinetic via SSH connection that gives the ability for the Jetson

to act as a ROS master.

The time is synchronized between the YouBot’s computer and the Jetson using an NTP

server deployed in the Jetson and an NTP client deployed in the youBot.

60

6.2 OUR MODEL

Our Deep learning based model is trained for the experiment on TensorFlow1.9 using

Keras libraries on an ASUS X550VX with a 4GB NVIDIA GEFORCE GTX 950M.

The testing was done in the BAU Robotics Lab; a path of nearly (1.5X11)m2 was designed

for the youBot to navigate in. Figure 6.4 describes the dimensions of the path.

Figure 6.4: Path in BAU lab.

The YouBot moved in the environment for a total of 1 hour and a total of 51134 RGB

images were recorded, each image with the corresponding encoders’ odometry and the

visual odometry provided by the Zed camera with their timestamps. Figure 6.5 presents

samples of the collected RGB images.

61

Figure 6.5: Samples of the dataset.

A link transformer shown in figure 6.6 was created and added to the youBot’s tf brod-

caster and a listener was created to transform the position and orientation of the encoders’

odometry which is located in the center of the youBot’s base to the camera’s position

which is located on the gripper.

Figure 6.6: ROS TF frame tree.

We analyze both encoders’ odometry and Zed camera’s odometry and compare them to

the designed path to choose the ground truth to label the recorded images with.

62

Figure 6.7: Encoders odometry data.

As observed in figure 6.7 above the encoders’ odometry has a big error that accumulates

over time rapidly and therefore is not eligible to consider as a ground truth.

As for the Visual odometry provided by the Zed camera, it starts to drift after nearly 20

minutes of recording data. As figure 6.8 shows the Zed odometry in the first 20 minutes

is very accurate, unlike the last 40 minutes which has an error.

Figure 6.8: Zed camera visual odometry.

63

This leads us to discard the data recorded in the last 40 minutes. Therefore, we only use

34% of the data and a total of 17228 RGB images were considered in which 90% were

trained with their labels, the other 10% are for validation.

The images captured by the Zed camera have a resolution of (672,376) in (W ,L), the

images are scaled by a factor of 0.5 to (336,188) and a total of 25 epochs with an early

stopping and checkpoint training was activated with a batch size of 7.

Figure 6.9: Training process.

The model was trained for roughly 5 hours and an early stopping was activated to save the

best model at 18 epochs which had the best validation accuracy and to avoid over fitting.

Figure 6.9 describes the training and validation process. The results are presented in table

6.1.

Table 6.1 Validation results for the experiment.

Environment Validation error Standard deviation

BAU Lab 0.049m, 1.4◦ 0.036m, 4.3◦

64

6.3 RTAB-Map

Using rtabmap-ros package on the Zed camera, RTAB-Map failed to map the environment

in the first attempt because it lost the odometry, but it successfully mapped the lab in the

second attempt as shown in figure 6.10.

Figure 6.10: RTAB-Map of BAU LAB.

In localization the robot moved in the path for nearly 19m presented in figure 6.11 and

both the zed odometry and RTAB-Map odometry were recorded.

65

Figure 6.11: Path of the robot.

Table 6.2 below shows the results of RTAB-Map.

Table 6.2 RTAB-Map results for the experiment.

Environment Mean Error Standard deviation

BAU Lab 0.057m, 0.96◦ 0.028m, 0.38◦

66

7. CONCLUSION

In this thesis, a vision-based indoor localization system is developed to predict the lo-

cation of a robot based on the RGB inputted image. The system is deep learning based

which consists of multiple layers of CNN and FFNN. It highly depends on a training pro-

cess that consists of thousands of labeled images, a large environment requires a bigger

dataset.

The system was developed in a simulation environment using Gazebo and turtlebot2 and

tested in another simulation environment. For validation, it was also tested in a real ex-

perimental environment, on the hardware level, we successfully integrated KUKA youBot

with Jetson TX2 and a zed camera which was our vision sensor.

Our method is able to create a model that understands or represents the surrounding en-

vironment successfully. And determines the location and orientation of the mobile robot

based on the available vision sensor with insignificant error.

After comparing our model with RTAB-Map, we can establish that the system performs

as the V-SLAM state-of-the-art method.

67

REFERENCES

Books

Ibrahim, M., Omar, S., & Mostafa, H., 2011. Extended Kalman Filter Simultaneous

Localization and Mapping (Graduation Project).

Parsons, S., 2010. Introduction to machine learning, second editon by ethem alpaydin.

Knowledge Engineering Review - KER 25.

Rosenblatt, F., 1962. Principles of Neurodynamics: Perceptrons and the Theory of Brain

Mechanisms.

Siciliano, B. & Khatib, O., 2016. Springer handbook of robotics. In Springer Handbooks.

pp. 1153–1175.

68

Periodicals

Bettaieb, L. A., 2017. A deep learning approach to coarse robot localization.

Biswas, J. & Veloso, M. M., 2010. Wifi localization and navigation for autonomous indoor

mobile robots. 2010 IEEE International Conference on Robotics and Automation ,

pp. 4379–4384.

Dellaert, F., Fox, D., Burgard, W., & Thrun, S., 1999. Monte carlo localization for mobile

robots. Proceedings 1999 IEEE International Conference on Robotics and Automa-

tion (Cat. No.99CH36288C) 2, pp. 1322–1328 vol.2.

DeTone, D., Malisiewicz, T., & Rabinovich, A., 2017. Toward geometric deep slam.

ArXiv .

Gurel, C. S., 2018. Real-time 2d and 3d slam using rtab-map, gmapping, and cartographer

packages.

Hamzeh, O. & Elnagar, A., 2015. Localization and navigation of autonomous indoor

mobile robots. vol. 2. p. 228–233.

Kalman, R. et al., 1960. A new approach to linear filtering and prediction problems.

Journal of basic Engineering 82, pp. 35–45.

Kendall, A., Grimes, M. K., & Cipolla, R., 2015. Posenet: A convolutional network

for real-time 6-dof camera relocalization. 2015 IEEE International Conference on

Computer Vision (ICCV) , pp. 2938–2946.

Kim, S.-B. & Lee, J.-M., 2007. Precise indoor localization system for a mobile robot

using auto calibration algorithm. The Journal of Korea Robotics Society 2(1), pp.

40–47.

Labbé, M., 2015. Simultaneous localization and mapping (slam) with rtab-map. Univer-

site´ de Sherbrooke .

Lim, J., Lee, S. J., Tewolde, G. S., & Kwon, J., 2015. Indoor localization and navigation

for a mobile robot equipped with rotating ultrasonic sensors using a smartphone as

the robot’s brain. International Journal of Handheld Computing Research 7, pp.

621–625.

Malagon-Soldara, S. M., Toledano-Ayala, M., Soto-Zarazúa, G. M., Carrillo-Serrano,

R. V., & Rivas-Araiza, E. A., 2015. Mobile robot localization: A review of proba-

bilistic map-based techniques. In ICRA 2015, vol. 4. pp. 73–81.

Mur-Artal, R. & Tardos, J. D., 2017. Orb-slam2: An open-source slam system for monoc-

ular, stereo, and rgb-d cameras. IEEE Transactions on Robotics 33(5), p. 1255–1262.

69

Nilwong, S., Hossain, D., Kaneko, S.-i., & Capi, G., 2019. Deep learning-based landmark

detection for mobile robot outdoor localization. Machines 7, pp. 2–25.

Oh, J. H., Kim, D., & Lee, B. H., 2014. An indoor localization system for mobile robots

using an active infrared positioning sensor. Journal of Industrial and Intelligent

Information 2(1), pp. 35–38.

Raghavan, A. N., Ananthapadmanaban, H., Sivamurugan, M. S., & Ravindran, B., 2010.

Accurate mobile robot localization in indoor environments using bluetooth. 2010

IEEE International Conference on Robotics and Automation , pp. 4391–4396.

Ren, S., He, K., Girshick, R. B., & Sun, J., 2015. Faster r-cnn: Towards real-time object

detection with region proposal networks. IEEE Transactions on Pattern Analysis

and Machine Intelligence 39, pp. 1137–1149.

Rumelhart, D., Hinton, G. E., & Williams, R. J., 1986. Learning representations by back-

propagating errors. Nature 323, pp. 533–536.

Strasdat, H., Montiel, J. M. M., & Davison, A. J., 2012. Visual slam: Why filter? Image

Vis. Comput. 30, pp. 65–77.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,

V., & Rabinovich, A., 2015. Going deeper with convolutions. 2015 IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) , pp. 1–9.

Tananaev, V., Tananaev, D., & Kutkina, O., 2016. Localization with deep learning .

Tateno, K., Tombari, F., Laina, I., & Navab, N., 2017. Cnn-slam: Real-time dense monoc-

ular slam with learned depth prediction. 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) , pp. 6565–6574.

Zhang, H.-L., Gao, S., Xiao, Meng, L., & Li, L., 2020. Cost-effective wearable indoor

localization and motion analysis via the integration of uwb and imu. Sensors 20, p.

344.

