
DOKUZ EYLÜL UNIVERSITY

GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

A SOLUTION APPROACH FOR THE DISTRIBUTED

NO-IDLE FLOWSHOP SCHEDULING PROBLEM

WITH DUE WINDOWS

by

Kasra MOUSIGHICHI

January, 2023

İZMİR

A SOLUTION APPROACH FOR THE DISTRIBUTED

NO-IDLE FLOWSHOP SCHEDULING PROBLEM

WITH DUE WINDOWS

A Thesis Submitted to the

Graduate School of Natural And Applied Sciences of Dokuz Eylül University

In Partial Fulfillment of the Requirements for the Degree of Master of Science in

Industrial Engineering Department

by

Kasra MOUSIGHICHI

January, 2023

İZMİR

M.SC THESIS EXAMINATION RESULT FORM

We have read the thesis entitled "A SOLUTION APPROACH FOR THE

DISTRIBUTED NO-IDLE FLOWSHOP SCHEDULING PROBLEM WITH

DUE WINDOWS" completed by Kasra MOUSIGHICHI under supervision of

Assoc. Prof. Dr. Mualla Gonca Avcı and we certify that in our opinion it is fully

adequate, in scope and in quality, as a thesis for the degree of Master of Science.

...

Assoc. Prof. Dr. Mualla Gonca Avcı

Supervisor

.. ..

Assoc. Prof. Dr. Leyla Demir Assoc. Prof. Dr. Fehmi Burçin Özsoydan

Jury Member Jury Member

Prof. Dr. Okan Fıstıkoğlu
Director

Graduate School of Natural and Applied Sciences

ii

To all people fled their home . . .

iii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Mualla Gonca Avci, this

thesis would not have been possible without your input, insightful feedback, and

supervision. And my mother and brother, I cannot forget to thank you for all the

unconditional support throughout my life, I would never have been where I am

without you two.

Izmir, December 2022

iv

A SOLUTION APPROACH FOR THE DISTRIBUTED NO-IDLE FLOWSHOP

SCHEDULING PROBLEM WITH DUE WINDOWS

ABSTRACT

This study addresses an extension of the Distributed Permutation Flowshop

Scheduling Problem with no-idle and due window constraints. The Distributed

No-idle Flowshop Scheduling Problem with Due Windows (DNIFSPDW) entails a

number of jobs to be completed at a number of factories. The DNIFSPDW’s goal is to

identify the job assignments to the factories and the job sequences within each facility

that yield the lowest total weighted early and late (TWET) penalties. The

DNIFSPDW concerns the industries where setup operations are so expensive that

reactivating the machines is not cost-effective. Therefore, any idle time between two

consecutive jobs on a machine is prohibited. In addition, each job is associated with a

due window indicating its earliest and latest completion times. In the related

literature, there exists no study that proposes a mathematical formulation or a solution

approach for DNIFSPDW to the best of our knowledge. In this thesis, three

mathematical formulations are developed for the DNIFSPDW. Moreover, to tackle

large-sized DNIFSPDW problems a hybrid iterated greedy-tabu search algorithm

(IG-TS) is proposed. In the computational study, the performances of the proposed

mathematical models were analyzed. Additionally, extensive numerical experiments

were conducted to evaluate the components of IG-TS. Furthermore, the performance

of IG-TS was compared with that of a basic iterated greedy algorithm with a local

search (IG-LS). The results of the computational study indicate the effectiveness of

the proposed IG-TS in solving the DNIFSPDW.

Keywords: The distributed permutation flowshop scheduling problem, no-idle

constraints, due windows, total weighted earliness and tardiness, iterated greedy

algorithm

v

ZAMAN PENCERELİ DAĞITIK BEKLEMESİZ AKIŞ TİPİ ÇİZELGELEME

PROBLEMİ İÇİN BİR ÇÖZÜM YAKLAŞIMI

ÖZ

Bu çalışma dağıtık permütasyon akış tipi çizelgeleme probleminin boşta olmama

ve zaman penceresi kısıtları ile genişletilmiş bir halini dikkate almaktadır. Zaman

Pencereli Dağıtık Beklemesiz Akış Tipi Çizelgeleme Problemi (ZPDBATÇP), bir

fabrika kümesinde işlenecek bir dizi işi içerir. ZPDBATÇP’nin amacı, toplam ağırlıklı

erken tamamlanma ve gecikme cezalarını minimum kılacak iş-fabrika atamalarını ve

her fabrikadaki iş sıralamalarını belirlemektir. ZPDBATÇP, ayar işlemlerinin çok

pahalı olduğu ve makineleri durdurup yeniden çalıştırmanın maliyet açısından etkin

olmadığı sektörlerle ilgilidir. Bu nedenle, bir makinede birbirini izleyen iki iş

arasındaki herhangi bir boş zamana izin verilmemektedir. Ek olarak, her iş, en erken

ve en geç tamamlanma zamanlarını gösteren bir zaman penceresiyle ilişkilendirilir.

İlgili literatürde, bilgimiz dahilinde ZPDBATÇP için matematiksel bir formülasyon

veya çözüm yaklaşımı öneren herhangi bir çalışma bulunmamaktadır. Bu tezde,

ZPDBATÇP için üç matematiksel formülasyon geliştirilmiştir. Ayrıca, büyük boyutlu

ZPDBATÇP örneklerini çözmek için bir hibrit yinelemeli açgözlü-tabu arama

algoritması (HYA-TA) önerilmiştir. Hesaplamalı çalışmada, önerilen matematiksel

modellerin performansları analiz edilmiştir. HYA-TA’nın bileşenlerini analiz etmek

için kapsamlı sayısal deneyler yapılmıştır. Ayrıca, HYA-TA’nın performansı, temel

bir yerel aramalı yinelemeli açgözlü algoritmanın (HYA-YA) performansı ile

karşılaştırılmıştır. Hesaplamalı çalışmanın sonuçları, önerilen HYA-TA’nın

ZPDBATÇP’nin çözümündeki etkinliğini göstermektedir.

Anahtar kelimeler: Dağıtık permütasyon akış tipi çizelgeleme problemi, boşta

olmama kısıtları, zaman pencereleri, toplam erken tamamlanma ve gecikme,

yinelemeli açgözlü algoritma

vi

CONTENTS

Page

M.SC THESIS EXAMINATION RESULT FORM... ii

ACKNOWLEDGEMENTS.. iv

ABSTRACT ...v

ÖZ ...vi

LIST OF FIGURES ..ix

LIST OF TABLES...x

CHAPTER ONE – INTRODUCTION ...1

CHAPTER TWO – LITERATURE REVIEW ..4

CHAPTER THREE – THE DISTRIBUTED NO-IDLE FLOWSHOP

SCHEDULING PROBLEM WITH DUE WINDOWS8

3.1 Sequence-based Model (Mseq) ... 11

3.2 Minimal sequence-based model (M′seq) ... 13

3.3 Position-based Model (Mpos)... 15

CHAPTER FOUR – THE PROPOSED HYBRID ITERATED GREEDY - TABU

SEARCH ALGORITHM ... 17

4.1 Hybrid Iterated Greedy - Tabu Search (IG-TS) 17

4.1.1 Solution representation and evaluation .. 19

4.1.1.1 No-idle adjustment ... 20

4.1.1.2 Gap insertion ... 21

4.1.2 Initialization ... 22

4.1.3 Destruction .. 25

4.1.4 Reconstruction.. 26

4.1.5 Tabu Search (TS) .. 27

vii

4.2 Iterated Greedy with Local search (IG-LS) .. 30

CHAPTER FIVE – COMPUTATIONAL STUDY ... 32

5.1 Benchmark and experimental setting... 32

5.2 The performance of the proposed mathematical models 33

5.3 Calibration of algorithm parameters.. 37

5.4 Analysis of the algorithm components .. 38

5.5 Performance analysis of IG-TS .. 40

CHAPTER SIX – CONCLUSION .. 43

REFERENCES.. 45

viii

LIST OF FIGURES

Page

Figure 3.1 Gantt chart representing the solution of the instance problem. 11

Figure 4.1 General framework of the solution approach 18

Figure 4.2 Gantt chart for illustrating no-idle adjustment and gap insertion. 20

Figure 4.3 The pseudocode for gap insertion... 23

Figure 4.4 The pseudocode for EDDWET .. 24

Figure 4.5 The pseudocode for the proposed Tabu search algorithm.................... 29

Figure 4.6 The pseudocode for the IG-LS... 31

Figure 5.1 Main effects of S/N ratios for IG-TS parameters. 38

ix

LIST OF TABLES

Page

Table 1.1 Problem abbreviation ...1

Table 2.1 Summary of related literature ..4

Table 2.2 Summary of related literature ..7

Table 3.1 Summary of notations ..8

Table 5.1 Value of the considered parameters .. 33

Table 5.2 The average results for the small-sized instances with two factories. 34

Table 5.3 The average results for the small-sized instances with four factories....... 34

Table 5.4 Summary of conducted ANOVA test on Mpos 37

Table 5.5 Considered values for each parameter ... 38

Table 5.6 The average results of analysis of the algorithm components................. 39

Table 5.7 The average results for the small-sized instances with two factories. 40

Table 5.8 The average results for the small-sized instances with four factories....... 41

Table 5.9 The average results for the large-sized instances with four factories. 42

Table 5.10The average results for the large-sized instances with seven factories. 42

x

CHAPTER ONE

INTRODUCTION

Table 1.1 Problem abbreviation

Abbreviation Definition
FSP Flowshop Scheduling Problem
PFSP Permutation Flowshop Scheduling Problem
DPFSP Distributed Permutation Flowshop Scheduling Problem
DNIFSPDW Distributed No-Idle Permutation Flowshop Problem with Due Windows
DAPFSP Distributed Assembly Permutation Flowshop Scheduling Problem
TWET Total Weighted Earliness and Tardiness

A multi-factory environment is becoming more and more crucial in today’s

decentralized and globalized economy. As a result, the distributed scheduling

problem, or multi-factory production system scheduling, has gained an increasing

amount of interest over the course of the last few years (De Giovanni & Pezzella,

2010; Ying et al., 2017) Distributed manufacturing has become a research avenue due

to being both a theoretical research area and also having a common application in

industry and other real-world settings. One of the key categories is the distributed

permutation flowshop scheduling problem (DPFSP), which is a developed version of

the classic permutation flowshop scheduling problem (PFSP). The DPFSP problem

involves F same factories, which are made up of I machines organized in a flowshop.

A solution to this problem comprises two major decisions: the assignment of jobs to

each factory, and their production order. It should be noted that Table 1.1 summarizes

the abbreviations related to the problem.

The distributed no-idle permutation flowshop problem with due windows

(DNIFSPDW) is not investigated in the literature regarding the extensions of

flowshop problems. The no-idle constraint prohibits machines from remaining idle

after beginning the process of the first job in the sequence (Pan & Ruiz, 2014). This

occurs in production settings when machines shut down after the initial setup is not

economically feasible due to long setup periods or high running expenses, or even

technological limitations may not allow idle time. The steppers used to manufacture

integrated circuits using photolithography (Pan & Ruiz, 2014), the production of

1

ceramic frits (Pan & Ruiz, 2014), production of fiberglass (Kalczynski &

Kamburowski, 2005) and foundries (Saadani et al., 2003) are some examples of that

idle time is not permitted for machines in the production process.

Common optimization targets in current research avenues involve total flow time

(Mao et al., 2022), makespan (Zhao et al., 2022), and total penalty of tardiness

(Alidaee et al., 2021), etc. On the other hand, the total weighted earliness\tardiness

(TWET) as an essential criterion has only been explored seldom Jing et al. (2020).

Product completion time in the real manufacturing environment might result in a

financial burden. If a job is finished before its earliest due date, the firm will face

additional inventory costs and financial burdens. If the firm violates the latest due

date, it is required to pay liquidated damages, increasing the expenses (Jing et al.,

2020). To the best of our knowledge, due windows have not been introduced into the

distributed no-idle permutation flowshop problem. Therefore, this study aims to

minimize the TWET for the DPFSP with Due Windows with no-idle time

(DNIPFSPDW for short).

The single machine flowshop problem with due windows is known to be NP-Hard

(Pan et al., 2017); therefore the DNIPFSPDW can also be identified as an NP-Hard

problem since there are F identical factories with I machines for each. For real-size

instances, exact solution approaches demonstrate poor performance in terms of

computational time. Therefore, metaheuristic algorithms are among the solution

approaches with the most promising results for practical instances (Jing et al., 2020).

As a metaheuristic solution approach, Iterated Greedy (IG) and its variants have

proven to be the most successful of the various metaheuristic algorithms for solving

different DPFSPs (Fernandez-Viagas & Framinan, 2015; Huang et al., 2020; Mao

et al., 2021). This study contributes to the literature as follows:

• The distribution no-idle flowshop scheduling is addressed by introducing three

mathematical models.

• A comprehensive benchmark is provided for this problem for the first time.

2

• A novel no-idle time adjustment approach is introduced.

• Devised a metaheuristic solution approach to solve large-scale instances of up to

500 jobs.

The remainder of this paper is structured as follows. Chapter 2 briefly explores

relevant literature. Chapter 3 provides three MIP models, while Chapter 4 describes

the Iterated greedy-based solution algorithm. Chapter 5 includes computational

experiments and their respective results. Chapter 6 concludes with some suggestions

for further study.

3

CHAPTER TWO

LITERATURE REVIEW

Table 2.1 Summary of related literature
Abbreviation Definition Abbreviation Definition
IG Iterated Greedy COA Collaborative Optimization Algorithm
MIG Modified Iterated Greedy EDA Effective Estimation of Distribution Algorithm
ICG Iterated Cocktail Greedy DABC Discrete Artificial Bee Colony
IRG Iterated Reference Greedy SS Scatter Search
RIG Referenced Iterated Greedy CRO Chemical Reaction Optimization
AIG Adaptive Iterated Greedy ILS Iterated Local Search
VND Variable Neighborhood Descent CMA Competitive Memetic Algorithm
EDA Estimate of Distribution Algorithm EA Evolutionary Algorithm
BC Branch-and-Cut MDDE Memetic Discrete Differential Evolution
TSMA Two-Stage Memetic Algorithm IG-TS Hybrid Iterated Greedy-Tabu Search

Regarding the available literature, this study is the first to address DNIPFSPDW.

Therefore, this section reviews the relevant studies concerning, the DPFSP, the PFSP

with due windows, and the DPFSP with no-idle constraints. Table 2.1 indicates the

used abbreviations and Table 2.2 summarizes the presented literature on DPFSP and

its variants investigating the objective function and the proposed solution approach.

The DPFSP was first presented by Naderi & Ruiz (2010) minimizing the

makespan. For the DPFSP, they suggested a total of six different MIP models as well

as two different factory-assignment rules referred to as the NEH1 and NEH2

heuristics. Additionally, the authors developed 14 heuristics and two variable

neighborhood descent (VND) methods. In addition, they tested the efficacy of the

proposed solutions on a total of 720 large instances. Later, Gao & Chen (2011)

devised a hybrid Genetic Algorithm - Local Search for the DPFSP with makespan

minimization. The authors were able to improve 692 out of 720 instances. In another

study, Gao et al. (2013) investigated the known DPFSP by a combined tabu

search-enhanced local search and updated the 472 solutions of Taillard instances. Lin

et al. (2013) employed a modified IG (MIG) algorithm with makespan criterion.

Moreover, the obtained solutions indicate that almost half of the Taillard instances

were improved in a lower computational time. Using explicit probability distributions

throughout the search process, Wang et al. (2013) devised an estimate of distribution

algorithm (EDA) applying a local search. Naderi & Ruiz (2014) improved all 720

large-sized instances solutions by devising a scatter search algorithm. Further studies

4

are addressing different heuristics as solution approaches for DPFP like (Xu et al.,

2014; Fernandez-Viagas & Framinan, 2015; Bargaoui et al., 2017; Ruiz et al., 2019)

As an extension to the DPFSP, Hatami et al. (2013) developed the distributed

assembly permutation flow-shop scheduling problem (DAPFSP), which is divided

into the stages of assembly and production. The authors developed the first MIP

model for the DAPFSP with makespan minimization, three constructive heuristic

approaches, and three VND methods to tackle large-size instances. Later, Lin & Ying

(2016) extended the DPFSP considering no-wait constraints. The authors investigated

the problem by proposing a MIP model with makespan minimization and devised an

augmented variant of the IG, namely the Iterated Cocktail Greedy (ICG) algorithm,

which employs a cocktail destruction operator and two automated tuning functions. In

a recent study, Avci et al. (2022) investigated DPFSP with no-wait constraints

devising alternative MIP formulations. As a solution approach, they proposed an

exact branch-and-cut (BC) technique employing a heuristic approach for obtaining

high-quality upper bounds. Pan et al. (2019) devised three constructive heuristics

based on LR and NEH along with four solution approaches, namely, discrete artificial

bee colony, scatter search, iterated local search, and iterated greedy, to minimize the

total flowtime of the DPFSP. Jing et al. (2020) investigated DPFSP with due windows

and proposed an IG algorithm to minimize TWET for the first time. Their IG includes

an idle time insertion procedure to satisfy the due window constraints.

The Distributed No-idle FSP (DNIPFSP), which reduces the idle time between the

execution of each pair of subsequent jobs on each machine, is another extension of

the DPFSP. Ying et al. (2017) studied the DNIPFSP with makespan minimization for

the first time. The authors proposed an Iterated Reference Greedy algorithm (IRG) to

tackle large-size DNIPFSP instances. Afterward, Ling-Fang et al. (2018) employed a

two-stage memetic algorithm (TSMA) for DNIPFSP. The proposed TSMA consists of

two phases. In the first phase, various search procedures are utilized to categorize the

solutions by considering the workloads of the factories. In the second phase, the best

solutions lead the search in an effort to improve exploitation. Chen et al. (2019)

examines a bi-objective DNIPFSP with the objective functions of minimizing

5

makespan and overall energy consumption. In addition, they have presented a

collaborative optimization algorithm (COA) in which two heuristics are used

collaboratively to ensure the diversity and quality of the initial population. Secondly,

multiple search operators work to improve exploring the solution space in an adaptive

manner. Thirdly, distinct local intensification techniques were devised for dominant

and non-dominant individuals in order to increase exploitation. Finally, a

speed-adjustment technique for non-critical operations is intended to reduce overall

energy usage. Cheng et al. (2019) proposed the distributed mixed no-idle FSP with

makespan criteria and an IG-based algorithm was devised as the solution approach. Li

et al. (2021) expands the DNIPFSP investigating the mixed no-idle constraints

(DMNIPFSP) with total flowtime minimization proposing a mathematical

formulation and an Adaptive IG (AIG) algorithm as a solution approach.

Furthermore, they have used swap-based local search techniques to enhance the

quality of the solutions produced by the suggested algorithm. Li et al. (2022)

examines the mixed no-idle assumption for the distributed assembly PFSP

(DAMNIPFSP) with a total tardiness objective as the most recent update in DPFSP.

They developed a MIP model in addition to an improved IG algorithm called

Referenced Iterated Greedy (RIG). The proposed algorithm utilizes several new

destructions, repairing, and local search methods.

Regarding the previous studies, it can be concluded that the no-idle assumption

between jobs with due windows has never been investigated. Additionally, the DFSP

literature covers the TWET objective scarcely. Furthermore, this study contributes

to the literature by introducing DNIPFSPDW for the first time by proposing three

mathematical models and providing a comprehensive benchmark. A novel no-idle

time adjustment approach is introduced with a metaheuristic solution approach to solve

large-scale instances of up to 500 jobs.

6

Table 2.2 Summary of related literature
Article Objective Function Solution Approach
Naderi & Ruiz (2010) Cmax VND
Gao & Chen (2011) Cmax GA-LS
Gao et al. (2013) Cmax TS-LS
Hatami et al. (2013) Cmax VND
Lin et al. (2013) Cmax MIG
Wang et al. (2013) Cmax EDA
Naderi & Ruiz (2014) Cmax SS
Xu et al. (2014) Cmax HIA
Fernandez-Viagas & Framinan (2015) Cmax BSIG
Lin & Ying (2016) Cmax ICG
Bargaoui et al. (2017) Cmax CRO
Ying & Lin (2017) Cmax IRG
Deng & Wang (2017) Cmax, TT CMA
Ling-Fang et al. (2018) Cmax TSMA
Ruiz et al. (2019) Cmax IG
Chen et al. (2019) Cmax IG
Ribas et al. (2019) Cmax, TT IG
Cheng et al. (2019) Cmax COA
Shao et al. (2020) Cmax, TT MNIG
Ren et al. (2021) Cmax NASH Q-Learning
Shao et al. (2021) Cmax IG
Zhao et al. (2022) Cmax MDDE
Avci et al. (2022) Cmax BC
Fernandez-Viagas et al. (2018) T FT EA
Pan et al. (2019) T FT DABC, SS, ILS, IG
Li et al. (2021) TT AIG
Jing et al. (2020) TWET IGIT E
Pan et al. (2017) TWET ILS
Li et al. (2022) TWET RIG
This study TWET IG-TS

7

CHAPTER THREE

THE DISTRIBUTED NO-IDLE FLOWSHOP SCHEDULING PROBLEM

WITH DUE WINDOWS

Table 3.1 Summary of notations

Sets
F Set of available factories, F = {1,2,3, . . . , |F|},
J Set of Jobs, J = {1,2,3, . . . , |J|},
I Set of machines, I = {1,2,3, . . . , |I|}.
L Set of available positions, L = {1,2,3, . . . , |J|},
Parameters
p ji Process time of job j ∈ J on machine i ∈ I,
d−j Earliest possible completion time of job j ∈ J,
d+j Latest possible completion time of job j ∈ J,
we

j Unit earliness penalty of job j ∈ J,
wt

j Unit tardiness penalty of job j ∈ J,
M Sufficiently big number.
Sequence-based model decision variables
y j f Is 1 if job j ∈ J is assigned to factory f ∈ F,
x j′ jp Is 1 if job j ∈ J is processed immediately after job j′ ∈ J′ in factory f ∈ F,
c ji f Completion time of job j ∈ J on machine i ∈ I in factory f ∈ F.
Minimal sequence-based model decision variables
xk j Is 1 if job k ∈ J is processed immediately before the job j ∈ J,
c ji Completion time of job j ∈ J on machine i ∈ I.
Position-based Model decision variables
x jl f Is 1 if job j ∈ J is processed in position l ∈ L if factory f ∈ F,
cil f Completion time of the job in position l ∈ L on machine i ∈ I in factory f ∈ F.

In some industries such as casting and ceramic frit manufacturing, since the setup

periods and running expenses are high, or technological limitations in some cases,

shutting down the machines after the initial setup is infeasible. In such industries, jobs

are scheduled in such a way that there is no-idle time on the machines. Moreover,

it is critical to meet due date requirements of the jobs. If a job is finished too late,

some penalties may be incurred to reimburse the loss of the customer. On the other

hand, if a job is completed too early, finished good inventory costs will increase. In

this regard, we address the DNIFSPDW which is an extension of the DPFSP proposed

by Naderi & Ruiz (2010) with no-idle constraints and due windows. Following the

three-field notation introduced by (Graham et al., 1979) for the scheduling problems,

the DNIFSPDW can be represented as DFm|prmu,no− idle|TWET . This study has

8

extended the proposed mathematical models by Naderi & Ruiz (2010) with considering

due windows and no-idle constraints and to the best of our knowledge, this study is the

first to address DNIFSPDW.

The DNIFSPDW involves a set of jobs indicated by J={1,2,3, ..., |J|} to be processed

in F={1,2,3, ..., |F|} available factories. Each factory is a flowshop with I={1,2,3, ..., |I|}

machines. Each job j ∈ J on machine i ∈ I has a process time of p ji and should be

completed in a due window represented by [d−j ,d
+
j], where d−j and d+j indicate the

earliest and latest completion times, respectively. Additionally, Table 3.1 summarizes

the used notations in this study. The general assumptions of the DNIFSPDW are as

follows:

• Each machine is allowed to process one job at a time.

• A job is processed only on one machine at a time.

• All jobs must be assigned to a factory.

• Preemption is not allowed once processing of a job is started on a machine.

• Machines cannot be stopped once they begin to operate, i.e., once machine i ∈ I

starts operating on a given job sequence, it cannot be stopped or interrupted until

all the jobs in the given sequence are completed.

Let c j be the completion time of job j ∈ J on the last machine. If c j is realized to

be less than d−j , the amount of earliness is e j =max(d−j − c j,0). When job j ∈ J is

completed later than its latest due date d+j , the amount of tardiness is

t j =max(c j − d+j ,0). The objective function of the DNIFSPDW is to minimize total

weighted earliness and tardiness (TWET) which is calculated as follows:

TWET =
∑
j∈J

(we
je j+wt

jt j) (3.1)

where we
j and wt

j represent unit penalties for earliness and tardiness, respectively.

To illustrate the characteristics of the DNIFSPDW, an example problem consisting

9

of four jobs, two factories, and three machines is presented. The associated data for

the example problem is provided in the following.

we
j

wt
j

 =
8 3 7 4

4 7 6 9

 , p ji =



14 15 50

3 59 1

77 65 77

71 56 21


,

d−jd+j

 =
126 143 137 165

189 174 177 201

 (3.2)

A solution for this problem is shown in Figure 3.1. As can be seen in Figure 3.1,

the processing of Job 1 on Machine 2 of Factory 1 is delayed by 56 units due to the

no-idle constraints. Additionally, the processing of Job 1 on Machine 3 of Factory 1

is delayed by 26 time units. In fact, 6 time units of delay is sufficient to meet no-idle

constraints. However, additional 20 time units of delay is needed to fit Job 4 into its

due window. If only 6 time units of delay were added, Job 4 would be as early as 4 time

units. As a result of delaying the processing of Job 1 on Machine 3 by 4 time units, Job

4 is not early. As one can infer from this example, the calculation of the completion

times in the DNIFSPDW is not straightforward. In this regard, this study proposes

"no-idle adjustment" and "gap insertion" procedures to calculate the total amount of

delay needed to meet no-idle and due window requirements. The no-idle adjustment

and gap insertion procedures are presented in Chapter 4. As a result, the earliness and

tardiness values of the jobs are calculated as follows.

e j

t j

 =
0 0 0 0

0 46 42 0

 (3.3)

The objected function value for this solution is TWET = 46×7+42×6 = 574

To the best of our knowledge, there is no mathematical formulation developed for

the DNIFSPDW in the related literature. In this regard, this study proposes three

mathematical models for the DNIFSPDW, namely, sequence-based model (Mseq),

minimal sequence-based model (M′seq), and position-based model (Mpos). The

proposed models are described in the following.

10

Figure 3.1 Gantt chart representing the solution of the example problem

3.1 Sequence-based Model (Mseq)

Mseq employs a set of binary decision variables to represent the relative sequences

of the jobs. Each sequence begins with a dummy job, j = 0 with zero processing

time. Therefore, a dummy job is added to job set J, J′ = J ∪ {0}. Regarding M as a

sufficiently big number, the decision variables employed in Mseq are as follows:

y j f =


1, if job j ∈ J is assigned to factory f ∈ F,

0, otherwise.

x j′ j f =


1, if job j ∈ J is processed immediately after j′ ∈ J′, j′ , j

in factory f ∈ F,

0, otherwise.

c ji f : Completion time of job j ∈ J on machine i ∈ I in factory f ∈ F.

11

Mseq for the DNIFSPDW is as follows:

min
∑
j∈J

(we
je j+wt

jt j) (3.4)

Subject to:∑
j′∈J′: j′, j

∑
f∈F

x j′ j f = 1 ∀ j ∈ J (3.5)

∑
j∈J

y j f = 1 ∀ f ∈ F (3.6)

∑
j∈J

x0 j f ≤ 1 ∀ f ∈ F (3.7)

∑
j′∈J′: j′, j

(x j′ j f + x j j′ f) = 2y j f ∀ j ∈ J, f ∈ F (3.8)

∑
i∈I

c ji f ≤ My j f ∀ j ∈ J, f ∈ F (3.9)

c ji f ≥ c j(i−1) f + p ji−M(1− y j f) ∀ i ∈ I, j ∈ J, f ∈ F (3.10)

c ji f ≥ c j′i f + p ji−M(1− x j′ j f) ∀ i ∈ I, j ∈ J, j′ ∈ J′ : j , j′, f ∈ F (3.11)

c ji f ≤ c j′i f + p ji+M(1− x j′ j f) ∀i ∈ I, j ∈ J, j′ ∈ J′ : j , j′, f ∈ F (3.12)

c ji f ≥ c j′i f + p ji−M(1− x j′ j f) ∀ j ∈ J, j′ ∈ J′ : j , j′, i ∈ I, f ∈ F (3.13)

e j ≥
∑
f∈F

c j|I| f −d+j ∀ j ∈ J, i ∈ I (3.14)

t j ≤ d−j −
∑
f∈F

c j|I| f ∀ j ∈ J, i ∈ I (3.15)

y j f = {0,1} ∀ j ∈ J, f ∈ F (3.16)

x j′ j f = {0,1} ∀ j ∈ J, j′ ∈ J, f ∈ F (3.17)

c ji f ≥ 0 ∀ j ∈ J, i ∈ I, f ∈ F (3.18)

e j ≥ 0 ∀ j ∈ J (3.19)

t j ≥ 0 ∀ j ∈ J (3.20)

The objective function (3.4) minimizes the total weighted earliness and tardiness.

Constraints (3.5) guarantee that each job j ∈ J should be preceded by only one job and

assigned to exactly one factory. Constraints (3.6) force each job j ∈ J to be assigned

12

to only one factory. Constraints (3.7) and (3.8), guarantee that each job j ∈ J assigned

to factory f ∈ F must have exactly one successor and one predecessor. Constraint set

(3.9) states that completion times of a job j ∈ J in factory f ∈ F can be positive if

and only if job j ∈ J is assigned to factory f ∈ F. Constraints (3.10) determine the

completion time of each job j ∈ J on each machine i ∈ I. Constraints (3.11) and (3.12)

prevent the machines from having idle time. Constraints (3.13) guarantee that if job

j ∈ J is scheduled immediately after job j′ ∈ J′, the processing of job j ∈ J on machine

i ∈ I cannot begin until job j′ ∈ J′ on machine i ∈ I is completed. Constraints (3.14) and

(3.15) calculate earliness and tardiness values for each job j ∈ J. Constraints (3.16) -

(3.20) control the boundaries of the decision variables.

3.2 Minimal sequence-based model (M′seq)

The minimal sequence-based model (M′seq), solves the problem without actually

indexing the factories. Similar to Mseq, it is required to define dummy jobs 0. The

followings are variables utilized in this model:

xk j :


1, if job k ∈ J is processed immediately before the job j ∈ J,

0, Otherwise.

c ji: Completion time of job j ∈ J on machine i ∈ I.

This model uses the dummy job 0 to divide an entire sequence into F sections,

each corresponding to a factory. This is accomplished by F repeats of dummy job 0

and other jobs in the sequence. Consequently, this model searches the space using a

sequence that contains J + F positions. One of these repeats occurs at the beginning

of the sequence. All following jobs are planned in factory 1 with their existing relative

order, up to the second iteration of dummy job 0. Jobs sent to factory 2 are those

between the second and third iterations of dummy job 0. This is repeated for each

successive occurrence of dummy job 0. Those jobs following the Fth repeat dummy

job 0 until the last job in the sequence is allocated to factory F.

13

M′seq for the DNIFSPDW is as follows:

min
∑
j∈J

(we
je j+wt

jt j) (3.21)

Subject to:∑
k∈J:k, j

xk j = 1 ∀ j ∈ J (3.22)

∑
j∈J:k, j

xk j ≤ 1 ∀k ∈ J (3.23)

∑
j∈J

x0 j = |F| (3.24)

∑
j∈J

xk0 = |F| −1 (3.25)

xk j+ x jk ≤ 1 ∀ j ∈ J : j , k, j > k (3.26)

c ji ≥ c j(i−1)+ p ji ∀i ∈ I\{1}, j ∈ J (3.27)

c ji ≥ cki+ p ji+M(xk j−1) ∀k, j ∈ J : k , j, i ∈ I (3.28)

c ji ≤ cki+ p ji−M(xk j−1) ∀k, j ∈ J : k , j, i ∈ I (3.29)

c j0 ≥ p j0x0 j ∀ j ∈ J (3.30)

t j ≥ c j|I|−d+j ∀ j ∈ J
′

(3.31)

e j ≥ d−j − c j|I| ∀ j ∈ J
′

(3.32)

xk j = {0,1} ∀k ∈ J, j ∈ J
′

(3.33)

c ji ≥ 0 ∀ j ∈ J
′

, i ∈ I (3.34)

e j ≥ 0 ∀ j ∈ J
′

(3.35)

t j ≥ 0 ∀ j ∈ J
′

(3.36)

The objective function (3.21) minimizes the total weighted earliness and tardiness.

The constraints (3.22) and (3.23) guarantee that each job can have only one

predecessor and one successor. Constraints (3.24) and (3.25) guarantee to have the

dummy job 0 in the sequence as the preceding job a total of F times, and it must

appear as the succeeding job a total of F − 1 times, respectively. Constraints (3.26)

prohibit job j ∈ J from simultaneously being a successor and a predecessor of job

14

k ∈ J. Constraints (3.27) force an operation of job j ∈ J to start only after the

completion of its previous operation. Constraints (3.28) and (3.29) guarantee the

machine no-idle constraint. Constraint set (3.30) controls the completion time of jobs

on the first machine separately. Constraints (3.31) and (3.32) calculate earliness and

tardiness values for each job j ∈ J. Lastly, Constraints (3.33) - (3.36) define the binary

and continuous decision variables, respectively.

3.3 Position-based Model (Mpos)

Mpos employs a set of binary decision variables representing positions that are

occupied by the jobs in factories. Let L = 1, .., |J| be the set of available positions in

each factory. The following are the variables included in Mpos:

x jl f :


1, If job j ∈ J is processed at position l ∈ L in factory f ∈ F,

0, Otherwise.

cil f : Completion time of the job in position l ∈ L on machine i ∈ I in factory f ∈ F.

Mpos for the DNIFSPDW is as follows:

min
∑
j∈J

(we
je j+wt

jt j) (3.37)

Subject to:∑
l∈L

∑
f∈F

x jl f = 1 ∀ j ∈ J (3.38)

∑
j∈J

x jl f ≤ 1 ∀l ∈ L, f ∈ F (3.39)

cil f = ci(l−1) f +
∑
j∈J

x jl f p ji ∀l ∈ L\{1}, i ∈ I, f ∈ F (3.40)

c1l f ≥
∑
j∈J

x jl f p j1 ∀l ∈ L, f ∈ F (3.41)

cil f ≥ c(i−1)l f +
∑
j∈J

x jl f p ji ∀l ∈ L, f ∈ F, i ∈ I\{1} (3.42)

15

e j ≥ d+j − c|I|l f −M(1− x jl f) ∀l ∈ L, f ∈ F, j ∈ J (3.43)

t j ≥ c|I|l f −d−j −M(1− x jl f) ∀l ∈ L, f ∈ F, j ∈ J (3.44)

x jl f = {0,1} ∀l ∈ L, f ∈ F, j ∈ J (3.45)

cil f ≥ 0 ∀l ∈ L, f ∈ F, i ∈ I (3.46)

e j ≥ 0 ∀ j ∈ J (3.47)

t j ≥ 0 ∀ j ∈ J (3.48)

The objective function (3.37) minimizes the total weighted earliness and tardiness.

Constraint set (3.38) enforces that each job j ∈ J must occupy exactly one position

in one factory. Constraints (3.39) stipulate that each position l ∈ L in a factory f ∈ F

is assigned to at most one job. Constraints (3.40) prevent machine idle time between

jobs. Constraints (3.41) and (3.42) determine each position’s completion times on

the machines. Constraints (3.43) and (3.44) specify the earliness and tardiness values

of each job j ∈ J. Finally, constraints (3.45) - (3.48) indicate the boundaries of the

decision variables.

The FSP with a total weighted tardiness objective is known to be NP-hard (Lawler,

1977) therefore since the DNIFSPDW is an extension of this problem it also is an

NP-hard problem. Therefore, exact solution approaches are inefficient in solving

large-size DNIFSPDW instances. For such complex problems, metaheuristic

approaches are more suitable as can obtain solutions with high quality in reasonable

computation times. In this regard, a hybrid iterated greedy-tabu search algorithm

(IG-TS) is developed for the DNIFSPDW. The details of the proposed algorithm are

explained in Chapter 4.

16

CHAPTER FOUR

THE PROPOSED HYBRID ITERATED GREEDY - TABU SEARCH

ALGORITHM

This chapter describes the solution approach proposed for the DNIFSPDW. Section

4.1, describes the proposed algorithm in steps. Since there exist no benchmark results

for the DNIFSPDW in the related literature, a basic IG with local search (IG-LS) is

developed as a benchmark algorithm which is described in Section 4.2.

4.1 Hybrid Iterated Greedy - Tabu Search (IG-TS)

As indicated in Chapter 2, IG has been used widely for the DPFSP and its variants.

IG is composed of three stages, namely, initialization, destruction, and reconstruction.

Throughout the destruction and reconstruction stages, new solutions are generated

iteratively using greedy heuristics. Figure 4.1 describes the steps of the proposed

IG-TS algorithm. Firstly, an initial solution, S , is generated by a variant of the NEH

heuristic described in Section 4.1.2. Then, the destruction stage removes some of the

jobs from the original permutation described in Section 4.1.3. On the other hand,

during the reconstruction step, the jobs that were deleted are reinserted to create a

new, incumbent solution which is described further in Section 4.1.4. Furthermore, the

TS is activated when the best-so-far solution does improve over a certain number of

iterations, and Section 4.1.5 describes this stage in detail. To change the current

solution to a new one, some acceptance criteria are considered to determine whether

the move should take place. The proposed algorithm uses a temperature parameter T

that controls the probability of accepting the solutions. If a move results in a solution

S
′

with a better objective compared to the current solution S , then S
′

is accepted

unconditionally. Otherwise, S
′

is accepted with the probability e f (S ∗)− f (S
′
)

T , where f

represents the objective function.

In this study, the initial value of parameter T is the initial solution’s objective

value. Throughout the iterations, the value of T is exponentially decreased to zero. In

order to decide on the temperature change, the equilibrium condition is evaluated. An

17

equilibrium condition takes place whenever a certain number of iterations does not

result in an improvement to the obtained best solution. In each iteration, if the

equilibrium condition is established, the value of T is multiplied by a CoolingRate

coefficient between [0,1], and the temperature decreases.

Figure 4.1 General framework of the solution approach

18

4.1.1 Solution representation and evaluation

Jobs are assigned to the factories in a sequential manner, in other words, each

factory f ∈ F is assigned a sequence of jobs denoted as Q f . The encoded solution is

represented as a number sequence indicated by Q f to reflect the order of jobs

allocated to different factories. The order of Q f is meant to display the sequential

order of jobs entering the factory f ∈ F. An example of solution encoding for five

jobs J = {1,2,3,4,5} and two factories F = {1,2} is presented as S = {(2,4,1), (3,5)}.

Therefore, the order of jobs sequences for the first and second factories are as

Q1 = {(2,4,1)} and Q2 = {(3,5)}, respectively. The next subsections explain the

components of the proposed solution approach in detail.

Due to the no idle constraints and due windows, decoding of the DNIFSPDW

solutions is not straightforward. The conventional forward calculation method is not

applicable for obtaining the job completion time in the DNIFSPDW. Therefore, this

study employs no-idle adjustment and gap insertion procedures in calculating the

completion times of jobs. To better illustrate the characteristics of no-idle adjustment

and gap insertion methods, an example problem with two jobs and three machines is

presented for a factory. The data for the example problem is as follows:

we
j

wt
j

 =
8 4

4 9

 , p ji =

14 15 50

71 56 21

 ,
d−jd+j

 =
126 172

159 192

 (4.1)

Figure 4.2 (a) illustrates a normal forward completion calculation that cannot

satisfy the no-idle constraint due to the different process times of each job in each

machine. Therefore, there has remained 56 units of idle time between jobs 1 and 2 in

machine two, and similarly, machine three has 62 units of idle time. To satisfy this

constraint, a backward completion time is suggested, which, to prevent confusion, has

been named the no-idle adjustment. As Figure 4.2 (b) portrays, the idle times between

jobs 1 and 2 for both machines two and three are zero. On the other hand, job

completion times do not fit their respective due windows, and to minimize this gap,

19

the suggested gap insertion method inserts 20 units of gap (4.2 (c)).

Figure 4.2 Gantt chart for illustrating no-idle adjustment and gap insertion

4.1.1.1 No-idle adjustment

One of the most common methods to obtain the completion time in FSP is the

conventional forward approach. The forward calculation determines the jobs

completion times on each machine in each factory by following the job sequence

Q f = { j1, j2, . . . , jq} in factory f ∈ F, where jq represents qth job on the sequence. The

finishing time of the first job (i.e. j1) on the first machine equals to p11, and the

completion time of other jobs in Q f on i = 1 is calculated as follows:

c j1 = c(j−1)i+ p ji ∀ j ∈ Q f \{ j1}, f ∈ F (4.2)

Then, for each machine i ∈ I\{1} the completion time of job j ∈Q f \{ j1} is calculated

as follows:

c ji =max(c j(i−1),c(j−1)i)+ p ji ∀ j ∈ Q f \{ j1}, i ∈ I\{1} (4.3)

20

When job j ∈ J on machine i−1 takes longer to complete the job j−1 on machine i,

machine i may remain idle between two consecutive jobs (c ji− c(j−1)i > 0). Therefore,

to eliminate any possible idle time for machine i ∈ I\{1}, the completion time of other

jobs will be calculated backwardly starting from jq.

c(j−1)i =max(c ji− p ji,c(j−1)i) ∀ j ∈ { jq, jq−1, jq−2, . . . , j2}, i ∈ I\{1} (4.4)

This method, however, was found to be inapplicable in this case since it would

cause certain machines to go without work when a job on one machine took longer

to complete than a job on the next. Hence, to calculate the completion time of each

job on a machine, the conventional forward calculation method is unable to observe

this fundamental assumption. Therefore, a novel forward-backward completion time

calculation procedure is proposed to ensure the no-idle constraint.

4.1.1.2 Gap insertion

Sometimes it is not possible for all jobs to be completed in their exact time window

due to real-world’s operational limits. Thus, a proper production plan must finish the

jobs as close to their due date as possible to avoid causing extra penalties. Therefore,

regarding the no-idle time assumption between jobs, some gaps should be considered

for each machine prior to starting the production process. A question that naturally

arises in this part is to what extent it is worth adding a gap to obtain the best objective

function value. There are a number of gap insertion methods available in the related

literature (Tseng & Liao (2008) Pan et al. (2017) Rossi & Nagano (2020) Zhu et al.

(2022)), but due to similarities in the nature of problems, this study uses an adapted

version of gap insertion approach based on Jing et al. (2020) in order to establish the

ideal time for jobs to be completed. It should be noted that in the related literature,

these methods are known as "idle time insertion," but to avoid any confusion with

machine idle time, it is decided to call the method "gap insertion."

To compute gaps, it suffices to execute the gap insertion procedure just to the last

21

machine in each factory. Let S M denote the sequence of jobs in the last machine, which

can be divided into the following three subsets:

• S E: The jobs that are completed earlier than their earliest due date (S E = { j ∈

S M |E j > 0})

• S T : The jobs that are completed later than their latest due date (S T = { j ∈ S M |T j >

0})

• S D: The jobs that are completed on time (S D = { j ∈ S M |c j ≥ d−j , c j ≤ d+j })

regarding the one unite minimum gap insertion, S T indicates job j ∈ J completed on

its latest possible due date (i.e., c j = d+j) is considered. By adding one unit of gap,

the total earliness penalty cuts down by
∑

j∈S E we
j and increases the total tardiness

penalty by
∑

j∈S T wt
j. Therefore, if

∑
j∈S E we

j >
∑

j∈S T wt
j, inserting gap will lead to a

better solution in terms of objective value. Gap insertion will continue until adding

one unit of gap results in a greater tardiness penalty than the earliness. Let θ denote the

maximum insertable gap based on a given jobs sequence Q f . The calculation of θ can

vary depending on the S E and S D circumstances. Figure 4.3 explains different steps of

calculating θ further in detail.

4.1.2 Initialization

This study utilizes a variant of the NEH heuristic as an initial solution. NEH

heuristic needs a seed sequence to generate a solution constructively. To generate the

required seed sequence, the earliest due date - weighted earliness tardiness

(EDDWET) is utilized since it is suggested as the best heuristic by Jing et al. (2020).

Which can be seen in Figure 4.4.

EDDWET considers both due dates and unit earliness/tardiness weight. Firstly, Ge
w

and Gt
w, are created for the jobs considering their unit earliness and tardiness weights.

If wt
j > we

j, set Gt
w will be iclluded with job j, otherwise is added to the set, Ge

w. The

22

Figure 4.3 The pseudocode for gap insertion

23

jobs in set Ge
w are then represented by a non-decreasing order of their We

j to create an

incomplete sequence τew. On the other hand, the jobs in set Gt
w are sorted based on

W t
j, in a non-increasing order to produce an incomplete sequence τtw. After that, the

first jobs of each partial sequence are picked and compared in terms of their d+. The

job with the smallest d+ is removed from the associated list and added to the end of

the seed sequence, τ. The procedure continues until one of the partial sequences (τtw

or τew) is depleted; in this case, the remaining jobs in other partial sequence are added

to the end of the τ. Then, the first |F| jobs in τ are assigned to be the first jobs of each

factory. By following the seed sequence, τ, the remaining jobs are assigned to the

factories one by one. Each job is assigned to the factory with the smallest incremental

penalty in the objective function respective to adding the new job.

Figure 4.4 The pseudocode for EDDWET

24

4.1.3 Destruction

The destruction stage removes randomly r selected jobs from the solution at hand to

create a partial solution and a list of removed jobs (R). To this aim, firstly, a non-zero

integer value denoting the number of deleted jobs (i.e., r) should be determined, and

then, the destruction strategy by which the jobs are deleted is specified.

As an important component of the IG algorithm, destruction size remains constant

during the iterations. Furthermore, this study utilizes four different destruction

strategies, which are activated randomly at each destruction attempt. These operators

are tailored upon the problem concept to effectively probe the solution space, trying to

find a better solution.

• Random selection: This method is the simplest approach, which randomly

selects and removes r jobs from an existing incumbent solution.

• Factory-based selection: The factory-based operator tries to distribute jobs

evenly by trimming the job load on the factories with high penalty costs. This

operator deletes one random job from up to r factories with the highest TWET

value. If r > |F|, the remaining r− |F| jobs are randomly eliminated.

• Greedy selection: One promising way to decrease the objective value is to

replace the jobs with the highest penalty. Greedy selection intends to remove r
2

jobs with the greatest tardiness and the other r
2 with the highest earliness

penalties.

• Block selection: In order to effectively search the neighboring solution space,

this operator employs a block-based selection technique, in which a consecutive

series of jobs from a random factory’s sequence (Q f) is picked at a random

position. The size of the block takes an integer number between [1,min(r, |Q f |].

This operator will apply multiple times on different factory sequences until the

number of deleted jobs meets r.

25

4.1.4 Reconstruction

The reconstruction operators create an incumbent solution using the partial solution

(S D) and removed jobs list (R) resulting from the destruction stage. The four distinct

operators are employed randomly at each reconstruction attempt.

• Order selection: The most typical selection sequence for the removed jobs is

their removed order. Because the destruction phase frequently eliminates certain

jobs randomly based on some heuristics, the order in which they are deleted could

be illustrative. Therefore, the jobs are selected to be reinserted to reconstruct

the partial solution. To construct a complete solution, the algorithm examines all

possible positions of each removed job and saves a certain number of them having

the lowest increase in objective value. Then, a position is picked using a Roulette

Wheel approach, to insert a given job on each attempt until all the removed jobs

are treated.

• Random selection: To further investigate the unexplored parts of solution space,

the eliminated tasks are chosen one by one in random order. The reinsertion

process is performed in a similar manner to the order selection operator.

• Greedy selection: Each removed job is tentatively inserted into all the positions

of a partial solution. The insertion with the minimum objective value increment

will apply iteratively until all the removed jobs are reinserted.

• k-regret: This study employs the idea of regret function with some modifications

to fit into the current problem’s concept. The present k-regret function attempts

to compute the regret value, which represents the difference between the value of

inserting a job into its first best position and its kth best position (k > 1). For a

given solution and a value of k, the regret is obtained as follows:

∆λ j = λ
1
j +

k∑
n=2

(λn
j −λ

1
j) ∀ j ∈ J (4.5)

Where λn
j denotes the objective value for the nth-best insertion position of job j.

26

Then, the job with the highest ∆λ j is picked for insertion in its best place until all

removed jobs are resolved.

4.1.5 Tabu Search (TS)

In most cases, the IG algorithm and its variants consist of a search technique known

as a Local Search to carefully explore the solution space. As an optional phase, a local

search function can be applied to the solution of the reconstruction process, hoping to

make the solution better. This study employs an effective search technique to empower

the search scheme extensively, namely Tabu Search.

In the context of a search strategy, TS refers to the process of moving from one

feasible solution to another with each iteration. In PFSP, the TS algorithm is often

structured, to begin with, a sequence and evolves consecutively through neighboring

solutions to find a better one. A "Tabu List (T L)" allows TS to avoid going back to

the same solutions from which it recently emerged. By doing so, the solution space is

comprehensively explored, and trapping in locally optimal solutions is easily avoided.

For doing so, recently evaluated solutions are declared tabu for a certain number of

iterations. A move made in iteration t is called tabu until iteration (t+δ) where δ is the

prespecified tabu tenure (TT) value.

Tabu list can be considered as a short-term memory consisting of the history of the

recent moves to prevent returning back to visited sequences. This study employs a

customized version of the T L generation technique proposed by Ying & Lin (2017)

considering α jobs included. From each factory, one job with the lowest earliness,

absent in T L, is inserted to set A1. Similarly, A2 represents the set of jobs with the

lowest tardiness from each factory, not included in T L. Initially the jobs included in

T L will be composed of those in A1∪A2. The rest of α− |A1∪A2| distinct jobs are

selected randomly from the input solution.

TS algorithm proposed in this study begins with the best-found solution based on the

IG-based procedure described already and sets it as the bestGlobal solution. Similar to

27

the destruction phase, r random jobs are removed from the bestGlobal solution. Then

the new solution is reconstructed using the k-regret operator.

After generating a bunch of neighboring solutions according to the bestGlobal, each

new solution is identified to be whether forbidden or free. If a move is recognized as

forbidden according to the T L, it will not be approved unless it meets the aspiration

criterion. When a move results in a better solution than the best found, the aspiration

criteria is a measure used to override the move’s tabu status.

Next, the best of forbidden and free solutions will be determined to specify the

best solution for the current iteration (bestIter). If there exists a best-free solution

(bestFree), bestIter is updated to it even if the objective of the best-forbidden solution

(bestForbiden) is better. The aspiration criterion, however, allows the bestForbiden

if it improves the bestGlobal. Subsequently, the TT for all jobs in the T L will be

decreased by one. At the same time, the bestIter will be compared with bestGlobal. If

it is better than bestGlobal, the bestGlobal will be updated accordingly. The T L will

be updated based on the new bestGlobal. This procedure will go on until either the

algorithm meets the number of unimproved iterations exceeds maxNoImprove.

Each iteration of TS generates a predetermined number of neighbors. In

evolutionary algorithms, it is conventional to generate neighbors sequentially. Even

though the operating system may allow parallel execution, sequential processing

never benefits from multi-core processors. A parallel approach has been employed to

accelerate process efficiency in terms of execution time. Parallel programming

unlocks a program’s ability to execute multiple processes simultaneously. Parallel

computing addresses a given issue by breaking it into subproblems, simultaneously

solving those subproblems in parallel (with each subproblem executing in a distinct

thread), and then integrating the results of the subproblems. In this study, the primary

challenge is to generate a bunch of neighbor solutions, and the subproblem is to create

each neighbor individually. To take advantage of the parallel feature, the effort of

creating a maximum number of neighbors is uniformly split among all available

threads. This method of implementation considerably reduces the algorithm’s

28

Figure 4.5 The pseudocode for the proposed Tabu search algorithm

29

execution time.

4.2 Iterated Greedy with Local search (IG-LS)

Since no other benchmarks exist for this problem, this study employs a classic IG

algorithm with local search (IG-LS) (i.e. Figure 4.6) as a benchmark algorithm in

the analysis of IG-TS performance. Therefore, to outline a fair comparison of results,

IG-LS utilizes the same initial solution, destruction, and reconstruction methods as in

the proposed IG-TS. Furthermore, IG-LS employs an LS technique that sequentially

uses three search methods. Local search begins with the first neighborhood and moves

on to the next operator when no better solution can be identified. This continues until

the last operator can’t find any better solution and reaches its local optimum. The

following summarizes the local search operators chosen to be applied in the algorithm.

• Single Insertion: As one of the most used operators in FSPs, it improves a given

solution by relocating a job and reinserting it into another position. Initially, a job

will be chosen randomly from factories with more than one job, and then it will be

reinserted into another random factory and position. The new candidate position

is picked randomly upon a probability mass function, which considers a higher

chance for the best possible factory and position in terms of objective value.

• Block Insertion: In this operator all the removed jobs are reinserted as a block

into a randomly selected factory with a randomly assigned location with no

change in the sequence of jobs in the block.

• Exchange: this operator randomly chooses and exchanges two distinct jobs of

an incumbent solution from two randomly selected factories.

30

Figure 4.6 The pseudocode for the IG-LS

31

CHAPTER FIVE

COMPUTATIONAL STUDY

This section summarizes the findings of computational experiments conducted

using the created benchmark in a series of tests. Additionally, the created benchmark

will be presented in detail. Section 5.1 explains the generated benchmarks and the

experimental setting. Then the proposed mathematical models are analyzed in section

5.2. Furthermore, Sections 5.3 and 5.4 explain the proposed algorithm’s parameters

calibration and analyze the algorithm’s components, respectively. Finally, section 5.5

evaluates the performance of the IG-TS algorithm.

5.1 Benchmark and experimental setting

Despite the existence of benchmarks for FSP issues, the unique characteristic of the

DNIPFSPDW problem examined in this study (the due windows) necessitates specific

attention to due dates. Therefore, Naderi & Ruiz (2010) DPSP data were extended with

T ′, W, and R parameters to create two sets of instances: small and large benchmarks.

Instance generation is governed by six variables: the number of machines (I), jobs

(J), factories (F), tardiness factor (T ′), due date range (R), and the width of the due

window with respect to the due date (W). Data are developed using Naderi & Ruiz

(2010) processing time data. The unit earliness and tardiness weights are generated

using a uniform distribution in the range U [1,9]. The due dates are generated with a

random uniform distribution based on the equation (5.1) proposed method where ⌊X⌉

indicates rounding X to the nearest integer. Equation 5.1 portraits due date generation

formula:

d j =max(0,U[⌊P(1−T ′−R/2)⌉,⌊P(1−T ′+R/2)⌉]) (5.1)

The calculated due dates vary from simple to difficult to fulfill depending on the

parameters of T ′ and R. Thus P indicates the makespan upper bound calculated by the

NEH2 heuristic for DPFSP developed by Naderi & Ruiz (2010). The due windows

32

are generated centered around d j with W% width of d j as follows:

d−j = max(0,⌊d j−d j×H/100⌉) and d+j = max(0,⌊d j+d j×H/100⌉) where H = [1,W].

Data are generated for F = {2,4}, I = {3,4,5}, and J = {4,10,16} for small-sized

instances and F = {4,7}, I = {5,10,20}, and J = {2050,100,200,500} for

large-instances employing the following parameter combinations: T ′ = {0.2,0.4},

R = {0.2,0.6} and W = {20,50} with each combination having five replicates with

different seeds. Table 5.1 summarizes the considered values for each parameter. In

general, there are 720 small and 960 large instances.

Table 5.1 Value of the considered parameters

Parameter Values
T ′ 0.2, 0.4
R 0.2, 0.6
W 20, 50

The IG-TS algorithm was implemented in Java, and the mathematical models were

solved in python using the Gurobi solver 9.0. All the computational tests have been

carried out on a computer with Intel(R) Core (TM) i3-7130U CPU @ 2.70GHz and 8

GB of RAM, using the Microsoft Windows 10 operating system. The computational

CPU time for Gurobi is limited to 3600s (1 h) in the experiments.

5.2 The performance of the proposed mathematical models

Tables 5.2 and 5.3 show the computational results of the proposed mathematical

models for small-sized instances with 2 and 4 factories, respectively, where the

number of jobs is 4, 10, and 16. It should be noted that the "UB" column depicts the

upper bound found by the Gurobi solver, the "Gap" column illustrates the gap

between Gurobi’s best bound and lower bound, and "Opt Num" indicates the number

of instances that the Gurobi solver was able to solve optimally in the given time out of

40 instances. All models deliver an equal performance for the instances with four jobs

regarding the computational time and optimality gap.

33

Table 5.2 The average results for the small-sized instances with two factories.

Job (J) Machine (I) Mseq M′seq Mpos
UB Gap (%) Opt Num Time UB Gap (%) Opt Num Time UB Gap (%) Opt Num Time

4
3 684.97 0.00 40 0.05 684.97 0.00 40 0.00 684.97 0.00 40 0.00
4 1020.27 0.00 40 0.00 1020.27 0.00 40 0.00 1020.27 0.00 40 0.00
5 1016.85 0.00 40 0.00 1016.85 0.00 40 0.00 1016.85 0.00 40 0.00

10
3 1345.20 0.00 35 43.43 1345.20 0.00 40 129.55 1345.20 0.00 40 35.83
4 2619.92 32.94 17 2544.18 2619.92 0.00 40 360.78 2619.92 0.00 40 64.70
5 2934.07 33.35 17 2642.75 2924.63 0.00 40 390.58 2924.62 0.00 40 71.03

16
3 1710.39 34.59 6 3162.20 1706.52 74.60 8 2986.43 1668.11 31.78 9 2847.33
4 4072.29 97.08 1 3511.00 3980.90 91.01 2 3468.58 3882.50 84.96 3 3461.43
5 4599.44 97.18 0 3600.00 4482.02 89.55 1 3523.63 4254.60 84.73 2 3473.88

Table 5.3 The average results for the small-sized instances with four factories.

Job (J) Machine (I) Mseq M′seq Mpos
UB Gap (%) Opt Num Time UB Gap (%) Opt Num Time UB Gap (%) Opt Num Time

4
3 747.67 0.00 40 0.00 747.67 0.00 40 0.00 747.67 0.00 40 0.00
4 615.47 0.00 40 0.00 615.47 0.00 40 0.00 615.47 0.00 40 0.00
5 511.30 0.00 40 0.00 511.30 0.00 40 0.00 511.30 0.00 40 0.00

10
3 949.00 11.44 28 1582.20 949.00 0.00 40 3.78 949.00 0.00 40 247.95
4 1605.52 19.81 19 3207.50 1604.12 0.00 40 3.88 1604.12 0.44 40 594.78
5 2396.97 34.08 8 3254.50 2391.00 0.00 40 11.88 2391.00 0.00 40 713.07

16
3 1278.12 67.38 8 3057.83 1270.30 40.24 11 2644.30 1258.30 66.41 8 2885.00
4 1997.05 38.61 5 3210.95 1947.32 43.41 11 2707.05 1942.44 61.74 9 2898.75
5 3446.62 78.46 1 3577.28 3329.57 53.98 2 3372.68 3331.06 78.21 2 3423.48

34

In instances with 10 or more jobs, the models become more complex, which is

reflected in the higher CPU time required to solve the instances. The performance

comparison of the models reflected in Table 5.2 with ten jobs suggests that M
′

seq and

Mpos perform far better than the Mseq since they obtain the optimal solution for all

the cases. Nevertheless, Mpos can attain this result within a relatively shorter time.

Although a similar performance is observed for 16 jobs with 2 factories, the Mpos, as

the best model in this case, finds the optimal solution of 14 out of 120 instances. In

addition, the Gap column for 16 jobs suggests that Mpos performs better on finding the

lower bounds.

According to Table 5.3 the Mseq finds the optimal solution only for 55 instances out

of 120 with ten jobs, while the other models find the optimal solution for all the cases.

In terms of CPU time, M
′

seq presents a significantly better performance by solving the

instances of ten jobs in an average time of 6.5s, while Mpos obtains the same results in

518.60s. The outperformance of the M
′

seq does not limit to the ten jobs, and it delivers

better results for the instances of 16 jobs by finding the optimal solution of 24 out of

120 instances in an average time of 2908.01s. Additionally, the lower bounds quality

proposed by M
′

seq is better than the others according to the Mean Gap column of Table

5.3.

Table 5.3 shows the solver demands more computational time for Mpos and Mseq

models to prove the optimality in comprising with Table 5.2, as having four factories

provides more potential positions for the jobs to accommodate. In contrast, M
′

seq model

requires far less CPU time for solving the instances with four factories rather than two.

Generally, the Mseq fails to provide a better lower bound, incumbent solution, and

CPU time on average for all the cases under study. The performance of the other

models highly depends on the number of factories in the given instance. Although

Mpos performs a little worse for the instances of four factories compared to M
′

seq, it

well performs significantly for the cases with two factories. Therefore, to analyze

the effect of other parameters, the performance of the Mpos will be investigated as it.

To determine the effect of the number of factories on the Mpos, an ANOVA with a

35

significance level of 0.05 was conducted. The finding indicates the influence of the

number of factories’ influence with a P-value of 0.02, and since P-value > α so, it is

statistically significant. Therefore as the number of factories increases the complexity

also increases.

The results show larger values for T ′, W, and R, resulting in lower values for the

objective value and less computational time due to generating wider due dates. Thus,

it is easier for models to find the appropriate position for the jobs, which causes low

penalties for earliness and tardiness. In the instances with two factories considering 20

for W, the average required time for model 2 is 1204.12s with a mean gap of 29.89%,

while in the four-factory instances, average time and gap are 1195s and 27.98% for

all jobs and instances. When the value of W is increased to 50, the average time and

optimality gap are 1007.91s and 23.34% for instances with 2 factories, while these

values are 971.48s and 18.38% for instances with 4 factories. Therefore, tighter values

for W demand more time to converge to the optimal solution. The conducted ANOVA

test with a significance level of 0.05 for W as a fixed variable in response to the gap for

Mpos model also confirms the effect of W on decreasing objective value and elapsed

time with a P-value of 0. For different values of R, the variation of the optimality

gap is insignificant, while it has a considerable impact on the computational time. In

two-factory and four-factory instances for R with the value of 0.2, the average CPU

time for the Mpos is 1162.26s and 1219.61s, respectively, while for R = 0.6 the average

elapsed time is 1049.72s and 1172s. Regarding the optimality gap, for R = 0.2, the

average gap equals 28.47% for the instances with 2 factories and 25.56% for those

with 4 factories. By performing a similar ANOVA test with the fixed variable R in

response to the gap, a P-value of 0.001 demonstrates the significant effect of R in

increasing objective value and CPU time. A totally different observation is offered

while changing the value of T ′ from 0.2 to 0.4. For two factories with T = 0.2, the

average gap and time are 25.23% and 1003.18s, and for T = 0.4, they are 28.20% and

1208.85s. On the other hand, for the instances with four factories, the mean gap and

time for T = 0.2 are 20.06% and 906.49s, while for T = 0.4, they are 25.89% and

1485.25s. These results imply that larger values of T ′ narrow down the due date of

36

jobs, which in return, increases the complexity of solution space, requiring the model

to spend more time investigating the solution space. Moreover, a slight change in the

value of T ′ results in a greater change in average CPU time and gap compared to R.

Similarly, in the ANOVA test with the fixed variable T ′ in response to gap, a P-value

of 0.001 confirms that T ′ has a noticeable effect on increasing both CPU time and

objective value. Although the number of machines in each factory does not have a

direct impact on the model, its variation impacts the average computational gap and

mean CPU time. By growing the number of machines the average gap and mean CPU

time for instances with 10 and 16 jobs increase. This impact comes down to the fact

that adding one machine to a factory will exert its processing time on the production

sequence, having the jobs finish later. Thus, the jobs finished in their regular time are

pushed to have a delay, so their tardiness penalty should be considered now. Therefore,

finding the best combination of delayed jobs and their associated penalty cost becomes

more challenging as the flexibility of the on-time jobs diminishes or cancels. Another

ANOVA test was carried out to assess the significance of the number of machines

on the performance of Mpos. With a P-value of 0.026, the result demonstrates that

machine number has a significant effect on increasing both elapsed time and objective

value. Table 5.4 summarizes the conducted ANOVA test on Mpos with a significance

level of 0.05.

Table 5.4 Summary of conducted ANOVA test on Mpos

Parameter P-value Relation
F 0.020 As the F increases the complexity and CPU time increase
I 0.026 As the I increases the complexity and CPU time increase
J 0.000 As the J increases the complexity and CPU time increase
W 0.000 As the W increases the complexity and CPU time decrease
R 0.001 As the R increases the objective value increases
T ′ 0.001 As the T ′ decreases the complexity and CPU time increases

5.3 Calibration of algorithm parameters

For optimal algorithm performance, it is necessary to calibrate the algorithm’s

affecting parameters. Therefore a Taguchi experiment using the L27 orthogonal array

was designed by randomly selecting eight instances and considering three levels for

37

each parameter and each instance was run 15 times. The proposed algorithm contains

five parameters α, r, TS MaxNoImprove, maxNeighbor, and TT . Table 5.5 illustrates

the considered values for each parameter which are mostly from existing literature.

Table 5.5 Considered values for each parameter

Parameter Values
α {0.25× |J|,0.50× |J|,0.75× |J|}
r {5, 7, 10}
TT {3, 4, 5}
maxNeighbor {80, 100, 120}
TS MaxNoImprove {5, 10, 15}

The main effects of S/N ratios on IG-TS parameter levels are presented in Figure

5.1. As one can infer from the Figure 5.1, the best parameter levels of the algorithm

are tabuMaxNoImprove = 10, tabuMaxNeighbor = 80, TT = 3, α = 0.25× |J|, and

r = 7

Figure 5.1 Main effects of S/N ratios for IG-TS parameters

5.4 Analysis of the algorithm components

The proposed hybrid algorithm consists of two main parts, namely, IG and TS,

each of which can be employed as an independent solution approach. In this regard,

38

additional computational experiments were conducted to show the value of

hybridization. In this analysis, a subset of the large-sized DNIFSPDW instances with

four factories including 96 instances which are the first replications of each

combination of T ′, R, W, J, and I. Table 5.6 illustrates the averages of objective

function values and computational times obtained from ten runs of each part. The

column entitled "Obj" displays the average objective function value for each

algorithm over the course of the ten runs, while the column labeled "Time" presents

the mean computation time required to obtain the results for each algorithm. It has

been observed that, despite their shorter computational times, the TS and IG

algorithms fall short in achieving the level of results obtained by the IG-TS algorithm.

The difference in objective values between TS and IG-TS is approximately 8%, with

this gap increasing to a substantial 108% when comparing IG and IG-TS.

Table 5.6 The average results of analysis of the algorithm components.

Jobs (J) Machines (I)
IG-TS TS IG
Obj Time Obj Time Obj Time

20
5 2799.00 11.67 2818.00 9.04 4179.25 0.32

10 16008.13 13.24 16255.00 10.20 22578.25 0.32
20 40886.13 15.47 43222.88 12.18 55359.00 0.35

50
5 7602.13 29.74 8257.88 21.29 15455.38 10.52

10 28752.75 36.75 31825.25 26.54 53905.88 7.37
20 140589.38 44.95 150096.75 32.68 246271.50 8.42

100
5 13185.50 194.29 14775.50 134.22 35375.25 102.79

10 48453.50 198.47 55636.75 141.73 119506.25 59.60
20 293605.13 153.58 314939.63 115.76 640868.75 61.39

200
10 89304.00 749.97 97236.50 529.54 239163.13 218.16
20 585672.88 680.23 609173.63 516.10 1297382.75 197.77

500 20 1349265.38 1000.00 1528109.63 1000.00 3793522.25 1000.00

In order to confirm the validity of the results obtained, a Wilcoxon signed-rank test

was employed as a non-parametric statistical method for comparing two correlated

sets of data. Non-parametric tests are useful for evaluating algorithms that generate

average outcomes for a given problem, even in the absence of any correlation among

them (García et al., 2009). The Wilcoxon test yielded a P-value of 0, which supports

the alternative hypothesis and indicates that the IG-TS and TS algorithms vary in a

statistically significant way. Additionally, a similar test was conducted for the IG-TS

and IG algorithms, which also yielded a P-value of 0, further establishing the existence

of a statistically significant difference between the two algorithms.

39

5.5 Performance analysis of IG-TS

Tables 5.7 and 5.8 illustrate the computational results of the algorithms for

small-sized instances with 2 and 4 factories, where the numbers of jobs are 4, 10, and

16. The column "RPD" indicates the average RPD value for each instance set where

RPD is calculated as (S omeS ol−BestS ol
BestS ol). Additionally, the "Time" column indicates the

required average time for the algorithms to solve a problem configuration over 10

multiple runs. The proposed IG-TS algorithm is able to identify the optimal solution

of instances with two factories and four jobs in less than one second. A similar

performance is observed for the IG-LS algorithm, but with a relatively higher mean

time compared to the IG-TS. For instances of 10 jobs with the two factories, the

proposed IG-TS algorithm finds the optimal solution in a relatively small CPU time

compared to the mathematical model. This demonstrates that the proposed IG-TS

performs better even for small-sized instances. Similarly, the IG-LS algorithm solves

the problems for the mentioned instances to optimality in the same CPU time as

IG-TS. On the other hand, by increasing the number of jobs to 16 the IG-TS

algorithm was able to either find or improve the solution obtained by the Gurobi

solver in a considerably lower CPU time. Although the IG-LS algorithm gives a

solution in relatively less time compared to IG-TS, it fails to find the best solution

proposed by IG-TS in some cases regarding the RPD mean values.

Table 5.7 The average results for the small-sized instances with two factories.

Job (J) Machine (I)
IG-TS IG-LS

RPD Time RPD Time

4
3 0.00 0.11 0.00 0.30
4 0.00 0.13 0.00 0.23
5 0.00 0.02 0.00 0.21

10
3 0.00 2.19 0.00 1.34
4 0.00 2.16 0.00 1.35
5 0.00 2.17 0.00 0.14

16
3 0.00 5.82 0.52 5.35
4 0.00 5.06 2.14 5.06
5 0.00 5.05 1.01 5.03

Table 5.8 illustrates that for all small-sized instances with four factories the IG-TS,

and IG-LS deliver the same performance as they did for two factories, in terms of

40

Table 5.8 The average results for the small-sized instances with four factories.

Job (J) Machine (I)
IG-TS IG-LS

RPD Time RPD Time

4
3 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00

10
3 0.00 0.52 0.00 0.02
4 0.00 2.55 0.00 0.11
5 0.00 2.62 0.00 0.12

16
3 0.00 4.98 0.08 0.33
4 0.00 4.72 0.31 0.32
5 0.00 4.99 1.20 0.31

finding the best solution. However, RPD mean values confirm that both perform

better in finding the best solution since there are more possible locations for jobs to

accommodate more available factories. Additionally, the average time of IG-TS and

IG-LS for instances of four factories is even less than that of two factories. Hence, for

the large instances, only the results of the proposed heuristic algorithms are provided.

Tables 5.9 and 5.10 illustrate the obtained results by IG-TS and IG-LS algorithms

for large-sized instances. In general, for all large-sized instances, the IG-TS algorithm

is able to deliver solutions of higher quality in a shorter amount of CPU time. The

impact of increasing the number of jobs on the mean time and RPD of both

algorithms is noteworthy in this context. With growing the number of jobs the

required time for finding the best solution for both algorithms increases as it demands

more computational efforts, in each iteration. However, the time gap between both

algorithms for a given instance is significant. This time gap basically roots back to the

utilized operators in both algorithms especially the k-regret. Since the k-regret

method examines and evaluates an extensive number of possible insertions of

removed jobs at each attempt, it demands a larger time to come to a conclusive

solution at each iteration. Therefore, each iteration of the IG-TS algorithm takes

longer to process compared to IG-LS, as it employs k-regret in the TS body. However,

the solution quality obtained from IG-TS surpasses that of IG-LS regarding the RPD

column. The quantity of machines accessible at each factory is a crucial aspect in

problem situations. Since increasing the number of machines in each factory demands

more calculation owing to the no-idle time adjustment, growing the number of

41

machines increases the overall CPU time for a given problem setting.

Table 5.9 The average results for the large-sized instances with four factories.

Job (J) Machine (I)
IG-TS IG-LS

RPD (%) Time RPD (%) Time

20
5 0.00 11.49 68.11 0.37

10 0.00 12.75 12.56 0.33
20 0.00 15.14 4.14 0.39

50
5 0.00 28.38 74.95 11.74

10 0.00 36.20 34.45 8.53
20 0.00 41.20 10.18 9.31

100
5 0.00 157.23 38.81 66.10

10 0.38 171.66 24.02 68.59
20 0.66 188.00 3.28 112.62

200
10 0.03 691.45 315.51 216.12
20 0.02 839.46 10.88 240.96

500 20 1.06 1000.00 6.80 1000.00

Table 5.10 The average results for the large-sized instances with seven factories.

Job (J) Machine (I)
IG-TS IG-LS

RPD (%) Time RPD (%) Time

20
5 0.00 2.24 38.05 0.73

10 0.00 2.43 3.95 0.77
20 0.00 2.75 2.72 0.87

50
5 0.00 15.35 809.35 7.64

10 0.00 15.09 19.92 8.14
20 0.01 16.32 6.87 8.47

100
5 0.00 90.68 1131.62 34.79

10 0.29 95.60 9.87 35.95
20 0.59 96.51 2.21 48.07

200
10 0.26 226.80 194.55 120.23
20 0.49 313.72 6.56 172.68

500 20 0.47 1000.00 4.60 1000.00

42

CHAPTER SIX

CONCLUSION

This thesis is the first to study the distributed no-idle flowshop scheduling problem

with due windows. This problem deals with two interrelated decisions: first job

assignment to factories, and second the sequence of the assigned jobs. Three variants

of mathematical models were proposed to address this concept in the flowshop

scheduling problem aiming to minimize the total weighted earliness and tardiness

penalties. The proposed position-based mathematical model was found to be the most

efficient among the three formulations evaluated. Furthermore, an ANOVA test was

performed to investigate the statistical impact of input parameters on the model’s

performance. The test’s findings demonstrated that adding more jobs, machines, and

factories to the model makes it more complicated, which in turn results in either a

greater amount of CPU time required to solve the model or a larger gap in the

obtained solution. This finding highlights the importance of considering the

complexity of the model when selecting input parameters and emphasizes the need

for efficient algorithms to handle large-scale problems. Additionally, it may also

provide insight into the trade-offs between solution quality and computational time

when solving such models. In this regard, an efficient hybrid IG-TS algorithm is

presented as a solution approach for this problem. Furthermore, a classic IG

algorithm with local search was utilized to create a performance comparison measure.

The proposed IG-TS algorithm was able to identify the optimal solution or improve

upon the results obtained by the Gurobi solver for small-sized instances. Furthermore,

for large-sized instances, the results obtained by the benchmark IG-LS were improved

upon by the proposed IG-TS algorithm. This demonstrates the effectiveness of the

hybrid approach in finding optimal or near-optimal solutions for both small and

large-sized instances of the problem and also highlights the potential of combining

different optimization techniques to enhance the performance of a given algorithm.

The proposed algorithm was calibrated through the application of a Taguchi

experimental design approach. This method was used to determine the optimal set of

parameters that would enhance the performance of the algorithm. Furthermore, some

43

experiments are carried out to assess the performance of the proposed models and

algorithm for different problem settings. Furthermore, the computational research was

conducted on benchmarks developed based on Naderi & Ruiz (2010) data.

The results demonstrate that the numbers of jobs and machines have a significant

impact on the performance of mathematical models and the algorithm, as the solution

space dramatically changes with these numbers. In contrast, for high numbers of

factories, the algorithm outperforms the mathematical models regarding the solution

quality and computation time. This study solves the problem with up to 500 jobs for

the first time. Several research avenues remain unexplored in terms of solution

approaches and the problem itself. Other combinatorial heuristics seem to be

applicable to solve this problem for comparison purposes, like the Genetic algorithm.

Additionally, other mathematical models with different sequence representative

variables can be developed to solve the problem for larger sizes. Furthermore, the

cutting planes can be devised to enhance the mathematical models’ performance by

accelerating the lower-bound growth.

44

REFERENCES

Alidaee, B., Li, H., Wang, H., & Womer, K. (2021). Integer programming formulations

in sequencing with total earliness and tardiness penalties, arbitrary due dates, and

no idle time: A concise review and extension. Omega, 103, 102446.

Avci, M., Avci, M. G., & Hamzadayı, A. (2022). A branch-and-cut approach for

the distributed no-wait flowshop scheduling problem. Computers & Operations

Research, 148, 106009.

Bargaoui, H., Driss, O. B., & Ghédira, K. (2017). A novel chemical reaction

optimization for the distributed permutation flowshop scheduling problem with

makespan criterion. Computers & Industrial Engineering, 111, 239–250.

Chen, J.-f., Wang, L., & Peng, Z.-p. (2019). A collaborative optimization algorithm

for energy-efficient multi-objective distributed no-idle flow-shop scheduling. Swarm

and Evolutionary Computation, 50, 100557.

Cheng, C.-Y., Ying, K.-C., Chen, H.-H., & Lu, H.-S. (2019). Minimising makespan in

distributed mixed no-idle flowshops. International Journal of Production Research,

57(1), 48–60.

De Giovanni, L., & Pezzella, F. (2010). An improved genetic algorithm for

the distributed and flexible job-shop scheduling problem. European journal of

operational research, 200(2), 395–408.

Deng, J., & Wang, L. (2017). A competitive memetic algorithm for multi-objective

distributed permutation flow shop scheduling problem. Swarm and evolutionary

computation, 32, 121–131.

Fernandez-Viagas, V., & Framinan, J. M. (2015). A bounded-search iterated

greedy algorithm for the distributed permutation flowshop scheduling problem.

International Journal of Production Research, 53(4), 1111–1123.

Fernandez-Viagas, V., Perez-Gonzalez, P., & Framinan, J. M. (2018). The distributed

45

permutation flow shop to minimise the total flowtime. Computers & Industrial

Engineering, 118, 464–477.

Gao, J., & Chen, R. (2011). A hybrid genetic algorithm for the distributed permutation

flowshop scheduling problem. International Journal of Computational Intelligence

Systems, 4(4), 497–508.

Gao, J., Chen, R., & Deng, W. (2013). An efficient tabu search algorithm for the

distributed permutation flowshop scheduling problem. International Journal of

Production Research, 51(3), 641–651.

García, S., Molina, D., Lozano, M., & Herrera, F. (2009). A study on the use of

non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case

study on the cec’2005 special session on real parameter optimization. Journal of

Heuristics, 15(6), 617–644.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Kan, A. R. (1979). Optimization and

approximation in deterministic sequencing and scheduling: a survey. In Annals of

discrete mathematics, vol. 5, 287–326.

Hatami, S., Ruiz, R., & Andres-Romano, C. (2013). The distributed assembly

permutation flowshop scheduling problem. International Journal of Production

Research, 51(17), 5292–5308.

Huang, J.-P., Pan, Q.-K., & Gao, L. (2020). An effective iterated greedy method for

the distributed permutation flowshop scheduling problem with sequence-dependent

setup times. Swarm and Evolutionary Computation, 59, 100742.

Jing, X.-L., Pan, Q.-K., Gao, L., & Wang, Y.-L. (2020). An effective iterated greedy

algorithm for the distributed permutation flowshop scheduling with due windows.

Applied soft computing, 96, 106629.

Kalczynski, P. J., & Kamburowski, J. (2005). A heuristic for minimizing the makespan

in no-idle permutation flow shops. Computers & Industrial Engineering, 49(1),

146–154.

46

Lawler, E. L. (1977). A “pseudopolynomial” algorithm for sequencing jobs to

minimize total tardiness. In Annals of discrete Mathematics, vol. 1, 331–342.

Li, Y.-Z., Pan, Q.-K., Li, J.-Q., Gao, L., & Tasgetiren, M. F. (2021). An adaptive

iterated greedy algorithm for distributed mixed no-idle permutation flowshop

scheduling problems. Swarm and Evolutionary Computation, 63, 100874.

Li, Y.-Z., Pan, Q.-K., Ruiz, R., & Sang, H.-Y. (2022). A referenced iterated

greedy algorithm for the distributed assembly mixed no-idle permutation flowshop

scheduling problem with the total tardiness criterion. Knowledge-Based Systems,

239, 108036.

Lin, S.-W., & Ying, K.-C. (2016). Minimizing makespan for solving the distributed

no-wait flowshop scheduling problem. Computers & Industrial Engineering, 99,

202–209.

Lin, S.-W., Ying, K.-C., & Huang, C.-Y. (2013). Minimising makespan in distributed

permutation flowshops using a modified iterated greedy algorithm. International

Journal of Production Research, 51(16), 5029–5038.

Ling-Fang, C., Ling, W., & Jing-jing, W. (2018). A two-stage memetic algorithm for

distributed no-idle permutation flowshop scheduling problem. In 2018 37th Chinese

Control Conference (CCC), IEEE, 2278–2283.

Mao, J.-y., Pan, Q.-k., Miao, Z.-h., & Gao, L. (2021). An effective multi-start iterated

greedy algorithm to minimize makespan for the distributed permutation flowshop

scheduling problem with preventive maintenance. Expert Systems with Applications,

169, 114495.

Mao, J.-Y., Pan, Q.-K., Miao, Z.-H., Gao, L., & Chen, S. (2022). A hash map-based

memetic algorithm for the distributed permutation flowshop scheduling problem

with preventive maintenance to minimize total flowtime. Knowledge-Based Systems,

242, 108413.

Naderi, B., & Ruiz, R. (2010). The distributed permutation flowshop scheduling

problem. Computers & operations research, 37(4), 754–768.

47

Naderi, B., & Ruiz, R. (2014). A scatter search algorithm for the distributed

permutation flowshop scheduling problem. European Journal of Operational

Research, 239(2), 323–334.

Pan, Q.-K., Gao, L., Wang, L., Liang, J., & Li, X.-Y. (2019). Effective heuristics and

metaheuristics to minimize total flowtime for the distributed permutation flowshop

problem. Expert Systems with Applications, 124, 309–324.

Pan, Q.-K., & Ruiz, R. (2014). An effective iterated greedy algorithm for the mixed

no-idle permutation flowshop scheduling problem. Omega, 44, 41–50.

Pan, Q.-K., Ruiz, R., & Alfaro-Fernández, P. (2017). Iterated search methods for

earliness and tardiness minimization in hybrid flowshops with due windows.

Computers & Operations Research, 80, 50–60.

Ren, J., Ye, C., & Li, Y. (2021). A new solution to distributed permutation flow shop

scheduling problem based on nash q-learning. Advances in Production Engineering

& Management, 16(3), 269–284.

Ribas, I., Companys, R., & Tort-Martorell, X. (2019). An iterated greedy algorithm for

solving the total tardiness parallel blocking flow shop scheduling problem. Expert

Systems with Applications, 121, 347–361.

Rossi, F. L., & Nagano, M. S. (2020). Heuristics and metaheuristics for the

mixed no-idle flowshop with sequence-dependent setup times and total tardiness

minimisation. Swarm and Evolutionary Computation, 55, 100689.

Ruiz, R., Pan, Q.-K., & Naderi, B. (2019). Iterated greedy methods for the distributed

permutation flowshop scheduling problem. Omega, 83, 213–222.

Saadani, N. E. H., Guinet, A., & Moalla, M. (2003). Three stage no-idle flow-shops.

Computers & industrial engineering, 44(3), 425–434.

Shao, W., Shao, Z., & Pi, D. (2020). Modeling and multi-neighborhood iterated greedy

algorithm for distributed hybrid flow shop scheduling problem. Knowledge-Based

Systems, 194, 105527.

48

Shao, Z., Shao, W., & Pi, D. (2021). Effective constructive heuristic and iterated

greedy algorithm for distributed mixed blocking permutation flow-shop scheduling

problem. Knowledge-Based Systems, 221, 106959.

Tseng, C.-T., & Liao, C.-J. (2008). A discrete particle swarm optimization for

lot-streaming flowshop scheduling problem. European Journal of Operational

Research, 191(2), 360–373.

Wang, S.-y., Wang, L., Liu, M., & Xu, Y. (2013). An effective estimation of distribution

algorithm for solving the distributed permutation flow-shop scheduling problem.

International Journal of Production Economics, 145(1), 387–396.

Xu, Y., Wang, L., Wang, S., & Liu, M. (2014). An effective hybrid immune algorithm

for solving the distributed permutation flow-shop scheduling problem. Engineering

Optimization, 46(9), 1269–1283.

Ying, K.-C., & Lin, S.-W. (2017). Minimizing makespan in distributed blocking

flowshops using hybrid iterated greedy algorithms. IEEE Access, 5, 15694–15705.

Ying, K.-C., Lin, S.-W., Cheng, C.-Y., & He, C.-D. (2017). Iterated reference

greedy algorithm for solving distributed no-idle permutation flowshop scheduling

problems. Computers & Industrial Engineering, 110, 413–423.

Zhao, F., Hu, X., Wang, L., & Li, Z. (2022). A memetic discrete differential evolution

algorithm for the distributed permutation flow shop scheduling problem. Complex

& Intelligent Systems, 8(1), 141–161.

Zhu, N., Zhao, F., Wang, L., Ding, R., Xu, T., et al. (2022). A discrete learning fruit

fly algorithm based on knowledge for the distributed no-wait flow shop scheduling

with due windows. Expert Systems with Applications, 198, 116921.

49

	M.SC THESIS EXAMINATION RESULT FORM
	ACKNOWLEDGEMENTS
	ABSTRACT
	ÖZ
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER ONE – INTRODUCTION
	CHAPTER TWO – LITERATURE REVIEW
	CHAPTER THREE – THE DISTRIBUTED NO-IDLE FLOWSHOP SCHEDULING PROBLEM WITH DUE WINDOWS
	Sequence-based Model (Mseq)
	Minimal sequence-based model (M'seq)
	Position-based Model (Mpos)

	CHAPTER FOUR – THE PROPOSED HYBRID ITERATED GREEDY - TABU SEARCH ALGORITHM
	Hybrid Iterated Greedy - Tabu Search (IG-TS)
	Solution representation and evaluation
	No-idle adjustment
	Gap insertion

	Initialization
	Destruction
	Reconstruction
	Tabu Search (TS)

	Iterated Greedy with Local search (IG-LS)

	CHAPTER FIVE – COMPUTATIONAL STUDY
	Benchmark and experimental setting
	The performance of the proposed mathematical models
	Calibration of algorithm parameters
	Analysis of the algorithm components
	Performance analysis of IG-TS

	CHAPTER SIX – CONCLUSION
	REFERENCES

