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A SOLUTION APPROACH FOR THE DISTRIBUTED NO-IDLE FLOWSHOP
SCHEDULING PROBLEM WITH DUE WINDOWS

ABSTRACT

This study addresses an extension of the Distributed Permutation Flowshop
Scheduling Problem with no-idle and due window constraints. The Distributed
No-idle Flowshop Scheduling Problem with Due Windows (DNIFSPDW) entails a
number of jobs to be completed at a number of factories. The DNIFSPDW’s goal is to
identify the job assignments to the factories and the job sequences within each facility
that yield the lowest total weighted early and late (TWET) penalties. The
DNIFSPDW concerns the industries where setup operations are so expensive that
reactivating the machines is not cost-effective. Therefore, any idle time between two
consecutive jobs on a machine is prohibited. In addition, each job is associated with a
due window indicating its earliest and latest completion times. In the related
literature, there exists no study that proposes a mathematical formulation or a solution
approach for DNIFSPDW to the best of our knowledge. In this thesis, three
mathematical formulations are developed for the DNIFSPDW. Moreover, to tackle
large-sized DNIFSPDW problems a hybrid iterated greedy-tabu search algorithm
(IG-TS) is proposed. In the computational study, the performances of the proposed
mathematical models were analyzed. Additionally, extensive numerical experiments
were conducted to evaluate the components of IG-TS. Furthermore, the performance
of IG-TS was compared with that of a basic iterated greedy algorithm with a local
search (IG-LS). The results of the computational study indicate the effectiveness of

the proposed IG-TS in solving the DNIFSPDW.

Keywords: The distributed permutation flowshop scheduling problem, no-idle
constraints, due windows, total weighted earliness and tardiness, iterated greedy

algorithm



ZAMAN PENCERELI DAGITIK BEKLEMESIZ AKIS TiPi CiZELGELEME
PROBLEMI ICIN BiR COZUM YAKLASIMI

(0Y/

Bu calisma dagitik permiitasyon akis tipi cizelgeleme probleminin bosta olmama
ve zaman penceresi kisitlar1 ile genigletilmis bir halini dikkate almaktadir. Zaman
Pencereli Dagitik Beklemesiz Akis Tipi Cizelgeleme Problemi (ZPDBATCP), bir
fabrika kiimesinde islenecek bir dizi isi icerir. ZPDBATCP’nin amaci, toplam agirlikli
erken tamamlanma ve gecikme cezalarinit minimum kilacak ig-fabrika atamalarini ve
her fabrikadaki is siralamalarimi belirlemektir. ZPDBATCP, ayar islemlerinin cok
pahali oldugu ve makineleri durdurup yeniden ¢alistirmanin maliyet acgisindan etkin
olmadig1 sektorlerle ilgilidir. Bu nedenle, bir makinede birbirini izleyen iki is
arasindaki herhangi bir bos zamana izin verilmemektedir. Ek olarak, her is, en erken
ve en ge¢ tamamlanma zamanlarin1 gosteren bir zaman penceresiyle iligkilendirilir.
Ilgili literatiirde, bilgimiz dahilinde ZPDBATCP icin matematiksel bir formiilasyon
veya ¢oziim yaklasimi Oneren herhangi bir calisma bulunmamaktadir. Bu tezde,
ZPDBATCEP i¢in ii¢ matematiksel formiilasyon gelistirilmistir. Ayrica, biiyiik boyutlu
ZPDBATCP oOrneklerini ¢ozmek i¢in bir hibrit yinelemeli acgozlii-tabu arama
algoritmas1 (HYA-TA) oOnerilmigstir. Hesaplamali ¢alismada, Onerilen matematiksel
modellerin performanslart analiz edilmistir. HYA-TA'nin bilesenlerini analiz etmek
icin kapsamli sayisal deneyler yapilmistir. Ayrica, HYA-TA'min performansi, temel
bir yerel aramali yinelemeli a¢gézlii algoritmanin (HYA-YA) performansi ile
karsilagtiriimigtir. Hesaplamali calismanin sonuglari, ©nerilen HYA-TA’nin

ZPDBATCP’nin ¢oziimiindeki etkinligini gostermektedir.

Anahtar kelimeler: Dagitik permiitasyon akig tipi cizelgeleme problemi, bosta
olmama kisitlari, zaman pencereleri, toplam erken tamamlanma ve gecikme,

yinelemeli acgozlii algoritma
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CHAPTER ONE

INTRODUCTION
Table 1.1 Problem abbreviation
Abbreviation Definition
FSP Flowshop Scheduling Problem
PFSP Permutation Flowshop Scheduling Problem
DPFESP Distributed Permutation Flowshop Scheduling Problem
DNIFSPDW Distributed No-Idle Permutation Flowshop Problem with Due Windows
DAPFSP Distributed Assembly Permutation Flowshop Scheduling Problem
TWET Total Weighted Earliness and Tardiness

A multi-factory environment is becoming more and more crucial in today’s
decentralized and globalized economy. As a result, the distributed scheduling
problem, or multi-factory production system scheduling, has gained an increasing
amount of interest over the course of the last few years (De Giovanni & Pezzella,
2010; Ying et al., 2017) Distributed manufacturing has become a research avenue due
to being both a theoretical research area and also having a common application in
industry and other real-world settings. One of the key categories is the distributed
permutation flowshop scheduling problem (DPFSP), which is a developed version of
the classic permutation flowshop scheduling problem (PFSP). The DPFSP problem
involves F same factories, which are made up of I machines organized in a flowshop.
A solution to this problem comprises two major decisions: the assignment of jobs to
each factory, and their production order. It should be noted that Table 1.1 summarizes

the abbreviations related to the problem.

The distributed no-idle permutation flowshop problem with due windows
(DNIFSPDW) is not investigated in the literature regarding the extensions of
flowshop problems. The no-idle constraint prohibits machines from remaining idle
after beginning the process of the first job in the sequence (Pan & Ruiz, 2014). This
occurs in production settings when machines shut down after the initial setup is not
economically feasible due to long setup periods or high running expenses, or even
technological limitations may not allow idle time. The steppers used to manufacture

integrated circuits using photolithography (Pan & Ruiz, 2014), the production of



ceramic frits (Pan & Ruiz, 2014), production of fiberglass (Kalczynski &
Kamburowski, 2005) and foundries (Saadani et al., 2003) are some examples of that

idle time is not permitted for machines in the production process.

Common optimization targets in current research avenues involve total flow time
(Mao et al., 2022), makespan (Zhao et al., 2022), and total penalty of tardiness
(Alidaee et al., 2021), etc. On the other hand, the total weighted earliness\tardiness
(TWET) as an essential criterion has only been explored seldom Jing et al. (2020).
Product completion time in the real manufacturing environment might result in a
financial burden. If a job is finished before its earliest due date, the firm will face
additional inventory costs and financial burdens. If the firm violates the latest due
date, it is required to pay liquidated damages, increasing the expenses (Jing et al.,
2020). To the best of our knowledge, due windows have not been introduced into the
distributed no-idle permutation flowshop problem. Therefore, this study aims to
minimize the TWET for the DPFSP with Due Windows with no-idle time
(DNIPFSPDW for short).

The single machine flowshop problem with due windows is known to be NP-Hard
(Pan et al., 2017); therefore the DNIPFSPDW can also be identified as an NP-Hard
problem since there are F identical factories with I machines for each. For real-size
instances, exact solution approaches demonstrate poor performance in terms of
computational time. Therefore, metaheuristic algorithms are among the solution
approaches with the most promising results for practical instances (Jing et al., 2020).
As a metaheuristic solution approach, Iterated Greedy (IG) and its variants have
proven to be the most successful of the various metaheuristic algorithms for solving
different DPFSPs (Fernandez-Viagas & Framinan, 2015; Huang et al., 2020; Mao

et al., 2021). This study contributes to the literature as follows:

e The distribution no-idle flowshop scheduling is addressed by introducing three

mathematical models.

e A comprehensive benchmark is provided for this problem for the first time.



e A novel no-idle time adjustment approach is introduced.

e Devised a metaheuristic solution approach to solve large-scale instances of up to

500 jobs.

The remainder of this paper is structured as follows. Chapter 2 briefly explores
relevant literature. Chapter 3 provides three MIP models, while Chapter 4 describes
the Iterated greedy-based solution algorithm. Chapter 5 includes computational
experiments and their respective results. Chapter 6 concludes with some suggestions

for further study.



CHAPTER TWO
LITERATURE REVIEW

Table 2.1 Summary of related literature

Abbreviation Definition Abbreviation Definition

1G Iterated Greedy COA Collaborative Optimization Algorithm
MIG Modified Iterated Greedy EDA Effective Estimation of Distribution Algorithm
ICG Iterated Cocktail Greedy DABC Discrete Artificial Bee Colony

IRG Iterated Reference Greedy SS Scatter Search

RIG Referenced Iterated Greedy CRO Chemical Reaction Optimization

AIG Adaptive Iterated Greedy ILS Iterated Local Search

VND Variable Neighborhood Descent CMA Competitive Memetic Algorithm

EDA Estimate of Distribution Algorithm EA Evolutionary Algorithm

BC Branch-and-Cut MDDE Memetic Discrete Differential Evolution
TSMA Two-Stage Memetic Algorithm 1G-TS Hybrid Iterated Greedy-Tabu Search

Regarding the available literature, this study is the first to address DNIPFSPDW.
Therefore, this section reviews the relevant studies concerning, the DPFSP, the PFSP
with due windows, and the DPFSP with no-idle constraints. Table 2.1 indicates the
used abbreviations and Table 2.2 summarizes the presented literature on DPFSP and

its variants investigating the objective function and the proposed solution approach.

The DPFSP was first presented by Naderi & Ruiz (2010) minimizing the
makespan. For the DPFSP, they suggested a total of six different MIP models as well
as two different factory-assignment rules referred to as the NEH1 and NEH2
heuristics. ~ Additionally, the authors developed 14 heuristics and two variable
neighborhood descent (VND) methods. In addition, they tested the efficacy of the
proposed solutions on a total of 720 large instances. Later, Gao & Chen (2011)
devised a hybrid Genetic Algorithm - Local Search for the DPFSP with makespan
minimization. The authors were able to improve 692 out of 720 instances. In another
study, Gao et al. (2013) investigated the known DPFSP by a combined tabu
search-enhanced local search and updated the 472 solutions of Taillard instances. Lin
et al. (2013) employed a modified IG (MIG) algorithm with makespan criterion.
Moreover, the obtained solutions indicate that almost half of the Taillard instances
were improved in a lower computational time. Using explicit probability distributions
throughout the search process, Wang et al. (2013) devised an estimate of distribution
algorithm (EDA) applying a local search. Naderi & Ruiz (2014) improved all 720

large-sized instances solutions by devising a scatter search algorithm. Further studies
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are addressing different heuristics as solution approaches for DPFP like (Xu et al.,

2014; Fernandez-Viagas & Framinan, 2015; Bargaoui et al., 2017; Ruiz et al., 2019)

As an extension to the DPFSP, Hatami et al. (2013) developed the distributed
assembly permutation flow-shop scheduling problem (DAPEFSP), which is divided
into the stages of assembly and production. The authors developed the first MIP
model for the DAPFSP with makespan minimization, three constructive heuristic
approaches, and three VND methods to tackle large-size instances. Later, Lin & Ying
(2016) extended the DPFSP considering no-wait constraints. The authors investigated
the problem by proposing a MIP model with makespan minimization and devised an
augmented variant of the IG, namely the Iterated Cocktail Greedy (ICG) algorithm,
which employs a cocktail destruction operator and two automated tuning functions. In
a recent study, Avci et al. (2022) investigated DPFSP with no-wait constraints
devising alternative MIP formulations. As a solution approach, they proposed an
exact branch-and-cut (BC) technique employing a heuristic approach for obtaining
high-quality upper bounds. Pan et al. (2019) devised three constructive heuristics
based on LR and NEH along with four solution approaches, namely, discrete artificial
bee colony, scatter search, iterated local search, and iterated greedy, to minimize the
total flowtime of the DPFSP. Jing et al. (2020) investigated DPFSP with due windows
and proposed an IG algorithm to minimize TWET for the first time. Their IG includes

an idle time insertion procedure to satisfy the due window constraints.

The Distributed No-idle FSP (DNIPFSP), which reduces the idle time between the
execution of each pair of subsequent jobs on each machine, is another extension of
the DPFSP. Ying et al. (2017) studied the DNIPFSP with makespan minimization for
the first time. The authors proposed an Iterated Reference Greedy algorithm (IRG) to
tackle large-size DNIPFSP instances. Afterward, Ling-Fang et al. (2018) employed a
two-stage memetic algorithm (TSMA) for DNIPFSP. The proposed TSMA consists of
two phases. In the first phase, various search procedures are utilized to categorize the
solutions by considering the workloads of the factories. In the second phase, the best
solutions lead the search in an effort to improve exploitation. Chen et al. (2019)

examines a bi-objective DNIPFSP with the objective functions of minimizing



makespan and overall energy consumption. In addition, they have presented a
collaborative optimization algorithm (COA) in which two heuristics are used
collaboratively to ensure the diversity and quality of the initial population. Secondly,
multiple search operators work to improve exploring the solution space in an adaptive
manner. Thirdly, distinct local intensification techniques were devised for dominant
and non-dominant individuals in order to increase exploitation.  Finally, a
speed-adjustment technique for non-critical operations is intended to reduce overall
energy usage. Cheng et al. (2019) proposed the distributed mixed no-idle FSP with
makespan criteria and an [G-based algorithm was devised as the solution approach. Li
et al. (2021) expands the DNIPFSP investigating the mixed no-idle constraints
(DMNIPFSP) with total flowtime minimization proposing a mathematical
formulation and an Adaptive IG (AIG) algorithm as a solution approach.
Furthermore, they have used swap-based local search techniques to enhance the
quality of the solutions produced by the suggested algorithm. Li et al. (2022)
examines the mixed no-idle assumption for the distributed assembly PFSP
(DAMNIPFSP) with a total tardiness objective as the most recent update in DPFSP.
They developed a MIP model in addition to an improved IG algorithm called
Referenced Iterated Greedy (RIG). The proposed algorithm utilizes several new

destructions, repairing, and local search methods.

Regarding the previous studies, it can be concluded that the no-idle assumption
between jobs with due windows has never been investigated. Additionally, the DFSP
literature covers the TWET objective scarcely. Furthermore, this study contributes
to the literature by introducing DNIPFSPDW for the first time by proposing three
mathematical models and providing a comprehensive benchmark. A novel no-idle
time adjustment approach is introduced with a metaheuristic solution approach to solve

large-scale instances of up to 500 jobs.



Table 2.2 Summary of related literature

Article Objective Function Solution Approach
Naderi & Ruiz (2010) Cinax VND
Gao & Chen (2011) Crax GA-LS
Gao et al. (2013) Crax TS-LS
Hatami et al. (2013) Crax VND
Lin et al. (2013) Cinax MIG
Wang et al. (2013) Crax EDA
Naderi & Ruiz (2014) Crax SS

Xu et al. (2014) Cinax HIA
Fernandez-Viagas & Framinan (2015) Cjyx BSIG
Lin & Ying (2016) Crax 1CG
Bargaoui et al. (2017) Cinax CRO
Ying & Lin (2017) Cinax IRG
Deng & Wang (2017) Chaxs TT CMA
Ling-Fang et al. (2018) Crax TSMA
Ruiz et al. (2019) Crax 1G
Chen et al. (2019) Crax 1G
Ribas et al. (2019) Chaxs TT 1G
Cheng et al. (2019) Cin COA
Shao et al. (2020) Crax, TT MNIG
Ren et al. (2021) Cinax NASH Q-Learning
Shao et al. (2021) Crax 1G
Zhao et al. (2022) Crax MDDE
Avci et al. (2022) (Crpas BC
Fernandez-Viagas et al. (2018) TFT EA
Pan et al. (2019) TFT DABC, SS, ILS, IG
Li et al. (2021) TT AIG
Jing et al. (2020) TWET 1GirE
Pan et al. (2017) TWET ILS

Li et al. (2022) TWET RIG
This study TWET IG-TS




CHAPTER THREE
THE DISTRIBUTED NO-IDLE FLOWSHOP SCHEDULING PROBLEM

WITH DUE WINDOWS
Table 3.1 Summary of notations
Sets
F Set of available factories, F = {1,2,3,...,|F|},
J Set of Jobs, J ={1,2,3,...,|/|},
1 Set of machines, 1 ={1,2,3,...,|I|}.
L Set of available positions, L = {1,2,3,...,|J]},
Parameters
Dji Process time of job j € J on machine i € I,
dj‘. Earliest possible completion time of job j € J,
d}“ Latest possible completion time of job j € J,
wj Unit earliness penalty of job j e J,
w’j Unit tardiness penalty of job j€ J,
M Sufficiently big number.
Sequence-based model decision variables
Vif Is 1 if job j € J is assigned to factory f € F,
Xjtjp Is 1 if job j € J is processed immediately after job j* € J’ in factory f € F,
Cjif Completion time of job j € J on machine i € [ in factory f € F.
Minimal sequence-based model decision variables
Xk j Is 1 if job k € J is processed immediately before the job j € J,
Cji Completion time of job j € J on machine i € I.
Position-based Model decision variables
Xjif Is 1if job j € J is processed in position / € L if factory f € F,
Cilf Completion time of the job in position / € L on machine i € [ in factory f € F.

In some industries such as casting and ceramic frit manufacturing, since the setup

periods and running expenses are high, or technological limitations in some cases,

shutting down the machines after the initial setup is infeasible. In such industries, jobs

are scheduled in such a way that there is no-idle time on the machines. Moreover,

it is critical to meet due date requirements of the jobs. If a job is finished too late,

some penalties may be incurred to reimburse the loss of the customer. On the other

hand, if a job is completed too early, finished good inventory costs will increase. In

this regard, we address the DNIFSPDW which is an extension of the DPFSP proposed

by Naderi & Ruiz (2010) with no-idle constraints and due windows. Following the

three-field notation introduced by (Graham et al., 1979) for the scheduling problems,

the DNIFSPDW can be represented as DF,|prmu,no —idlelTWET. This study has



extended the proposed mathematical models by Naderi & Ruiz (2010) with considering
due windows and no-idle constraints and to the best of our knowledge, this study is the

first to address DNIFSPDW.

The DNIFSPDW involves a set of jobs indicated by J={1,2, 3, ...,|J|} to be processed
in F={1,2,3,...,|F|} available factories. Each factory is a flowshop with I={1,2,3,...,|1|}
machines. Each job j € J on machine i € I has a process time of p;; and should be
completed in a due window represented by [dJT,d;.L], where d]T and d;.r indicate the
earliest and latest completion times, respectively. Additionally, Table 3.1 summarizes
the used notations in this study. The general assumptions of the DNIFSPDW are as

follows:

e Each machine is allowed to process one job at a time.

e A job is processed only on one machine at a time.

e All jobs must be assigned to a factory.

e Preemption is not allowed once processing of a job is started on a machine.

e Machines cannot be stopped once they begin to operate, i.e., once machine i € /
starts operating on a given job sequence, it cannot be stopped or interrupted until

all the jobs in the given sequence are completed.

Let c¢; be the completion time of job j € J on the last machine. If c; is realized to
be less than d]T, the amount of earliness is e; :max(d]T —¢;j,0). When job je Jis
completed later than its latest due date d}L, the amount of tardiness is
tj =max(c; — d}",O). The objective function of the DNIFSPDW is to minimize total

weighted earliness and tardiness (TWET) which is calculated as follows:

TWET = Z(wj.e,- +wht)) (3.1)
jeJ

where wj. and W?’ represent unit penalties for earliness and tardiness, respectively.

To illustrate the characteristics of the DNIFSPDW, an example problem consisting



of four jobs, two factories, and three machines is presented. The associated data for

the example problem is provided in the following.

14 15 50
wt 8 3 7 4 3 59 1 d- 126 143 137 165
T= s Dji= , = (3.2)
w;. 4 7 6 9 77 65 77 d;.r 189 174 177 201
71 56 21

A solution for this problem is shown in Figure 3.1. As can be seen in Figure 3.1,
the processing of Job 1 on Machine 2 of Factory 1 is delayed by 56 units due to the
no-idle constraints. Additionally, the processing of Job 1 on Machine 3 of Factory 1
is delayed by 26 time units. In fact, 6 time units of delay is sufficient to meet no-idle
constraints. However, additional 20 time units of delay is needed to fit Job 4 into its
due window. If only 6 time units of delay were added, Job 4 would be as early as 4 time
units. As a result of delaying the processing of Job 1 on Machine 3 by 4 time units, Job
4 is not early. As one can infer from this example, the calculation of the completion
times in the DNIFSPDW is not straightforward. In this regard, this study proposes
"no-idle adjustment" and "gap insertion" procedures to calculate the total amount of
delay needed to meet no-idle and due window requirements. The no-idle adjustment
and gap insertion procedures are presented in Chapter 4. As a result, the earliness and

tardiness values of the jobs are calculated as follows.
e 0 0 0 O
= (3.3)
tj 0 46 42 0
The objected function value for this solution is TWET =46 X7 +42x6 =574

To the best of our knowledge, there is no mathematical formulation developed for
the DNIFSPDW in the related literature. In this regard, this study proposes three
mathematical models for the DNIFSPDW, namely, sequence-based model (M,),

’

minimal sequence-based model (M,

), and position-based model (M,,s). The

proposed models are described in the following.

10



Machine 1 | 1 4
&
g Machine 2 1 4
]
=
Machine 3 1 4
T
i
0 14 70 85 95 141 145 165
Machine 1 3 2
ol
B
£ Machine 2 3 2
2
—
Machine 3 3 2
i
77 80 142 201 219 220

Figure 3.1 Gantt chart representing the solution of the example problem

3.1 Sequence-based Model (M,,,)

M., employs a set of binary decision variables to represent the relative sequences
of the jobs. Each sequence begins with a dummy job, j = 0 with zero processing
time. Therefore, a dummy job is added to job set J, J' = JU{0}. Regarding M as a

sufficiently big number, the decision variables employed in My, are as follows:

1, ifjob je Jis assigned to factory f € F,

Yif =
0, otherwise.
1, ifjob je Jis processed immediately after j' € J', j/ # j
Xjif = in factory f € F,

0, otherwise.

cjir: Completion time of job j € J on machine i € I in factory f € F.
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M., for the DNIFSPDW is as follows:

min Z(W;ej +wit)) (3.4)
jeJ
Subject to:
D xjir=1 Viel (3.5)
Jjelj+jfeF
Zyjle VfeF (3.6)
jeJ
Zxojfsl VfeF (3.7)
jeJ
D Gpir i) =29 VjelfeF (3.8)
JET#]
D cjif < Myjs VjelfeF (3.9)
iel
CjifZCj(i_l)f+pji—M(1—yjf) Viel,jelJ,feF (3.10)
Cj,'fZCj/if+pji—M(1—xj/jf) ViEI,jEJ,j’EJ’Cjij’,fEF (3.11)
cjif <cjif+pjit M —xjjf) Viel,jeld,jjel :j+j,feF (3.12)
Cjif2Cj’if+Pji—M(1—xj’jf) VjEJ,j’EJ’Zjij’,iEI,fEF (3.13)
ej> Y cuny-d Viediel (3.14)
feF
zjsd;—zcﬂ”f Vieldiel (3.15)
feF
yir=1{0,1} VieJ,feF (3.16)
xjjr ={0,1} Vjeld,j el feF (3.17)
ciif 20 Vieldiel,feF (3.18)
;>0 VieJd (3.19)
tj>0 Vield (3.20)

The objective function (3.4) minimizes the total weighted earliness and tardiness.
Constraints (3.5) guarantee that each job j € J should be preceded by only one job and

assigned to exactly one factory. Constraints (3.6) force each job j € J to be assigned
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to only one factory. Constraints (3.7) and (3.8), guarantee that each job j € J assigned
to factory f € F must have exactly one successor and one predecessor. Constraint set
(3.9) states that completion times of a job j € J in factory f € F' can be positive if
and only if job j € J is assigned to factory f € F. Constraints (3.10) determine the
completion time of each job j € J on each machine i € I. Constraints (3.11) and (3.12)
prevent the machines from having idle time. Constraints (3.13) guarantee that if job
J € J is scheduled immediately after job j” € J’, the processing of job j € J on machine
i € I cannot begin until job j* € J* on machine i € / is completed. Constraints (3.14) and
(3.15) calculate earliness and tardiness values for each job j € J. Constraints (3.16) -

(3.20) control the boundaries of the decision variables.

3.2 Minimal sequence-based model (M)

’

The minimal sequence-based model (Mg,

), solves the problem without actually
indexing the factories. Similar to M., it is required to define dummy jobs 0. The

followings are variables utilized in this model:

1, 1if job k € J is processed immediately before the job j € J,
Xkj -
0, Otherwise.

cji: Completion time of job j € J on machine i € /.

This model uses the dummy job O to divide an entire sequence into F sections,
each corresponding to a factory. This is accomplished by F repeats of dummy job 0
and other jobs in the sequence. Consequently, this model searches the space using a
sequence that contains J + F positions. One of these repeats occurs at the beginning
of the sequence. All following jobs are planned in factory 1 with their existing relative
order, up to the second iteration of dummy job 0. Jobs sent to factory 2 are those
between the second and third iterations of dummy job 0. This is repeated for each
successive occurrence of dummy job 0. Those jobs following the F™ repeat dummy

job O until the last job in the sequence is allocated to factory F.
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M’ for the DNIFSPDW is as follows:

seq

min Z(W;e jWht)) (3.21)
jel

Subject to:

Z xij=1 VieJ (3.22)
keJ:k#j

TS VkeJ (3.23)
jeJik#j
D x0;=IF] (3.24)
jed
Zxko =|F|-1 (3.25)
jeJ
xjrxp <1 Vied:j#kj>k (3.26)
Cji > Ciii-1)+ i Vie\{(1},jeJ (3.27)
Cji 2 et pji+ M(xj—1) Vk,jeJ k# jicl (3.28)
cii < cui+pi—Mgj—1) Vk,jeJ k+# jiel (3.29)
Cjo = PjoXoj Vjeld (3.30)
tj 2 cjy—dt VjelJ (3.31)
ej2d; —cjy vjel (3.32)
xij=10,1) Vked jeld (3.33)
cji>0 Vield,iel (3.34)
;>0 VjelJ (3.35)
;>0 Vield (3.36)

The objective function (3.21) minimizes the total weighted earliness and tardiness.
The constraints (3.22) and (3.23) guarantee that each job can have only one
predecessor and one successor. Constraints (3.24) and (3.25) guarantee to have the
dummy job O in the sequence as the preceding job a total of F times, and it must
appear as the succeeding job a total of F —1 times, respectively. Constraints (3.26)

prohibit job j € J from simultaneously being a successor and a predecessor of job
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k € J. Constraints (3.27) force an operation of job j € J to start only after the
completion of its previous operation. Constraints (3.28) and (3.29) guarantee the
machine no-idle constraint. Constraint set (3.30) controls the completion time of jobs
on the first machine separately. Constraints (3.31) and (3.32) calculate earliness and
tardiness values for each job j € J. Lastly, Constraints (3.33) - (3.36) define the binary

and continuous decision variables, respectively.

3.3 Position-based Model (M)

M,,s employs a set of binary decision variables representing positions that are
occupied by the jobs in factories. Let L = 1,..,|J| be the set of available positions in

each factory. The following are the variables included in M),,:

I, Ifjob je Jis processed at position / € L in factory f € F,
XjIf -
0, Otherwise.

ciir: Completion time of the job in position / € L on machine i € [ in factory f € F.

M 5 for the DNIFSPDW is as follows:

minZ(wjej+w;.tj) (3.37)
jeJ
Subject to:
D> xp=1 VjeJ (3.38)
leL feF
D a1 VieL feF (3.39)
jeJ
Cif = Cia-nf+ ) XjifPji VieI\{1}iel.feF (3.40)
jeJ
cup= ) Xjigpj VieL feF (3.41)
jeJ
Citf 2 C-nif + ) XjifPji Vie L feF,icl\{l) (3.42)
jeJ
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ejzd;-'—cwf—M(l—lef) VYieL, feF, jelJ (3.43)

;> ey —d; = M(1-xjp) VieL, feF, jelJ (3.44)
xjip = (0.1} VieL, feF, jeJ (3.45)
citf 20 YielL, feF, iel (3.46)
ej>0 Vield (3.47)
tj>0 VjelJ (3.48)

The objective function (3.37) minimizes the total weighted earliness and tardiness.
Constraint set (3.38) enforces that each job j € J must occupy exactly one position
in one factory. Constraints (3.39) stipulate that each position / € L in a factory f € F
is assigned to at most one job. Constraints (3.40) prevent machine idle time between
jobs. Constraints (3.41) and (3.42) determine each position’s completion times on
the machines. Constraints (3.43) and (3.44) specify the earliness and tardiness values
of each job j € J. Finally, constraints (3.45) - (3.48) indicate the boundaries of the

decision variables.

The FSP with a total weighted tardiness objective is known to be NP-hard (Lawler,
1977) therefore since the DNIFSPDW is an extension of this problem it also is an
NP-hard problem. Therefore, exact solution approaches are inefficient in solving
large-size  DNIFSPDW instances.  For such complex problems, metaheuristic
approaches are more suitable as can obtain solutions with high quality in reasonable
computation times. In this regard, a hybrid iterated greedy-tabu search algorithm
(IG-TS) is developed for the DNIFSPDW. The details of the proposed algorithm are
explained in Chapter 4.
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CHAPTER FOUR
THE PROPOSED HYBRID ITERATED GREEDY - TABU SEARCH
ALGORITHM

This chapter describes the solution approach proposed for the DNIFSPDW. Section
4.1, describes the proposed algorithm in steps. Since there exist no benchmark results
for the DNIFSPDW in the related literature, a basic IG with local search (IG-LS) is

developed as a benchmark algorithm which is described in Section 4.2.

4.1 Hybrid Iterated Greedy - Tabu Search (IG-TS)

As indicated in Chapter 2, IG has been used widely for the DPFSP and its variants.
IG is composed of three stages, namely, initialization, destruction, and reconstruction.
Throughout the destruction and reconstruction stages, new solutions are generated
iteratively using greedy heuristics. Figure 4.1 describes the steps of the proposed
IG-TS algorithm. Firstly, an initial solution, §, is generated by a variant of the NEH
heuristic described in Section 4.1.2. Then, the destruction stage removes some of the
jobs from the original permutation described in Section 4.1.3. On the other hand,
during the reconstruction step, the jobs that were deleted are reinserted to create a
new, incumbent solution which is described further in Section 4.1.4. Furthermore, the
TS is activated when the best-so-far solution does improve over a certain number of
iterations, and Section 4.1.5 describes this stage in detail. To change the current
solution to a new one, some acceptance criteria are considered to determine whether
the move should take place. The proposed algorithm uses a temperature parameter T
that controls the probability of accepting the solutions. If a move results in a solution
S’ with a better objective compared to the current solution S, then S is accepted

F$H=£S")
T

unconditionally. Otherwise, S is accepted with the probability e , Where f

represents the objective function.

In this study, the initial value of parameter 7 is the initial solution’s objective
value. Throughout the iterations, the value of T is exponentially decreased to zero. In

order to decide on the temperature change, the equilibrium condition is evaluated. An
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equilibrium condition takes place whenever a certain number of iterations does not
result in an improvement to the obtained best solution. In each iteration, if the
equilibrium condition is established, the value of 7' is multiplied by a CoolingRate

coeflicient between [0,1], and the temperature decreases.

Algorithm 2 General framework of the solution approach

Input:
r: Number of elements to be removed;
activeT abu: The number of iterations with no improvements;
maxIter: maximum number of iterations;
maxNolmprove: maximum number of iterations with no improvements to
activate termination criteria;
Output: S*
S « Initialization();
S* « §; iter « 1; nolmprove < 0; continue « True;
while (continue) do
SP, R « Destruction (S, r);
S" « Reconstruction (S°,R);
if (f(S") < f(S*)) then
S* e S ';
S «S ’;
nolmprove « 0
else
rand < generate a ra}ndom number in [0, 1];
if (rand < ew) then
S* S /;
end if
end if
if (noImprove > activeT abu) then
S « Tabu Search(S *);
S*e«S;
end if
if (nolmprove > maxNolmprove or iter > maxlter) then
continue < False;
end if
iter « iter+1;
end while

Figure 4.1 General framework of the solution approach
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4.1.1 Solution representation and evaluation

Jobs are assigned to the factories in a sequential manner, in other words, each
factory f € F is assigned a sequence of jobs denoted as Qf. The encoded solution is
represented as a number sequence indicated by Qf to reflect the order of jobs
allocated to different factories. The order of Qf is meant to display the sequential
order of jobs entering the factory f € F. An example of solution encoding for five
jobs J ={1,2,3,4,5} and two factories F = {1,2} is presented as S = {(2,4,1),(3,5)}.
Therefore, the order of jobs sequences for the first and second factories are as
01 =1{(2,4,1)} and Q> = {(3,5)}, respectively. The next subsections explain the

components of the proposed solution approach in detail.

Due to the no idle constraints and due windows, decoding of the DNIFSPDW
solutions is not straightforward. The conventional forward calculation method is not
applicable for obtaining the job completion time in the DNIFSPDW. Therefore, this
study employs no-idle adjustment and gap insertion procedures in calculating the
completion times of jobs. To better illustrate the characteristics of no-idle adjustment
and gap insertion methods, an example problem with two jobs and three machines is

presented for a factory. The data for the example problem is as follows:

W’ 8 4 14 15 50 d’ 126 172
=" " pi= e 4.1
wz. 4 9 71 56 21 d;.r 159 192

Figure 4.2 (a) illustrates a normal forward completion calculation that cannot
satisfy the no-idle constraint due to the different process times of each job in each
machine. Therefore, there has remained 56 units of idle time between jobs 1 and 2 in
machine two, and similarly, machine three has 62 units of idle time. To satisfy this
constraint, a backward completion time is suggested, which, to prevent confusion, has
been named the no-idle adjustment. As Figure 4.2 (b) portrays, the idle times between
jobs 1 and 2 for both machines two and three are zero. On the other hand, job

completion times do not fit their respective due windows, and to minimize this gap,
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the suggested gap insertion method inserts 20 units of gap (4.2 (c)).

Machine 1 | 1 2

Machine 2 1 2 @
Machine 3 1 2

‘ ‘
0 14 29 79 85 141 162

Machine 1| 1 2

Machine 2 1 2 @

Machine 3 1 2

i i
0 14 70 85 9] 141 162

Machine 1| 1 2

Machine 2 1 2 @
1

Machine 3 1 2 |
i T i i

i i i i
0 14 70 85 111 141 161 182

Figure 4.2 Gantt chart for illustrating no-idle adjustment and gap insertion

4.1.1.1 No-idle adjustment

One of the most common methods to obtain the completion time in FSP is the
conventional forward approach. The forward calculation determines the jobs
completion times on each machine in each factory by following the job sequence
Or={ i, j%,..., j4} in factory f € F, where j? represents g™ job on the sequence. The
finishing time of the first job (i.e. j') on the first machine equals to pi;, and the

completion time of other jobs in QO on i = 1 is calculated as follows:

Cjl = C(jotyi+ Pji Vjie Q'Y feF (4.2)

Then, for each machine i € 7\{1} the completion time of job j € Qf\{;'} is calculated

as follows:

cji = max(cji-1),c(j-1i) + Pji Vie QALY e 1) 4.3)
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When job j € J on machine i — 1 takes longer to complete the job j— 1 on machine i,
machine i may remain idle between two consecutive jobs (c¢j; — ¢(j-1); > 0). Therefore,
to eliminate any possible idle time for machine i € \{1}, the completion time of other

jobs will be calculated backwardly starting from j.

C(j—1)i = max(cji = Pji,C(j-1)i) Vie 47t j472, L 2 e \{1) 4.4)

This method, however, was found to be inapplicable in this case since it would
cause certain machines to go without work when a job on one machine took longer
to complete than a job on the next. Hence, to calculate the completion time of each
job on a machine, the conventional forward calculation method is unable to observe
this fundamental assumption. Therefore, a novel forward-backward completion time

calculation procedure is proposed to ensure the no-idle constraint.

4.1.1.2 Gap insertion

Sometimes it is not possible for all jobs to be completed in their exact time window
due to real-world’s operational limits. Thus, a proper production plan must finish the
jobs as close to their due date as possible to avoid causing extra penalties. Therefore,
regarding the no-idle time assumption between jobs, some gaps should be considered
for each machine prior to starting the production process. A question that naturally
arises in this part is to what extent it is worth adding a gap to obtain the best objective
function value. There are a number of gap insertion methods available in the related
literature (Tseng & Liao (2008) Pan et al. (2017) Rossi & Nagano (2020) Zhu et al.
(2022)), but due to similarities in the nature of problems, this study uses an adapted
version of gap insertion approach based on Jing et al. (2020) in order to establish the
ideal time for jobs to be completed. It should be noted that in the related literature,
these methods are known as "idle time insertion," but to avoid any confusion with

machine idle time, it is decided to call the method "gap insertion."

To compute gaps, it suffices to execute the gap insertion procedure just to the last
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machine in each factory. Let S j; denote the sequence of jobs in the last machine, which

can be divided into the following three subsets:

e Sg: The jobs that are completed earlier than their earliest due date (Sg ={j €

S mlE; > 0})

o S7: The jobs that are completed later than their latest due date (S ={j € S y|T; >
0})

e §p: The jobs that are completed on time (Sp ={j € S plc; > djT ,Cj < d;F})

regarding the one unite minimum gap insertion, S 7 indicates job j € J completed on
its latest possible due date (i.e., c; = d;) is considered. By adding one unit of gap,
the total earliness penalty cuts down by 3 icsg wj and increases the total tardiness
penalty by > jcs, w;. Therefore, if 3’ jes, w5 > Xjes, WS” inserting gap will lead to a
better solution in terms of objective value. Gap insertion will continue until adding
one unit of gap results in a greater tardiness penalty than the earliness. Let 8 denote the
maximum insertable gap based on a given jobs sequence Q. The calculation of 6 can
vary depending on the S g and S p circumstances. Figure 4.3 explains different steps of

calculating 6 further in detail.

4.1.2 Initialization

This study utilizes a variant of the NEH heuristic as an initial solution. NEH
heuristic needs a seed sequence to generate a solution constructively. To generate the
required seed sequence, the earliest due date - weighted earliness tardiness
(EDDWET) is utilized since it is suggested as the best heuristic by Jing et al. (2020).
Which can be seen in Figure 4.4.

EDDWET considers both due dates and unit earliness/tardiness weight. Firstly, G,
and G!, are created for the jobs considering their unit earliness and tardiness weights.

If w’j > w?, set G!, will be iclluded with job j, otherwise is added to the set, G¢,. The
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Algorithm 1 Gap insertion

Input: Q60 < 0; Cj;;
Output: £ and T';
for (f to |F| do
s <10yl
while s > 0 do
6«0;
Se—1{h
St {}
Sp{}
for all jin O/ do
if (E; > 0) then
SE<—SeUlj};
end if
if (T; > 0) then
St StUlj}
end if
if (Tj = 0, Ej = 0) then
Sp<SpUljk
end if
if (3 es, Wf > Yesy WjT) then
if (Sg#0andSp+#0)then
if (ZjeSE Wf > ZjeSD WJT) then
0 =minjes Ej;
else
0= min(minjeSE(Ej), minjesb (d;L - Cj]));
end if
end if
else if (S g # 0) then
0= minjegD (Ej);
else if (S p # 0) then
6 = minjegs (d;' -Cjp);
end if
if (6 > 0) then
for (all je Sy andiel)do
Set Cji « Cji +6,

end for

for (all jeSgandie ) do
Set Ej — Ej—0;

end for

for (all jeSrandie)do
Set Tj «— Tj +06,
end for
else
s—s—1;
end if
end for
end while
end for

Figure 4.3 The pseudocode for gap insertion
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jobs in set G¢, are then represented by a non-decreasing order of their Wj‘f to create an
incomplete sequence 7¢,. On the other hand, the jobs in set G/, are sorted based on
W;., in a non-increasing order to produce an incomplete sequence 7,. After that, the
first jobs of each partial sequence are picked and compared in terms of their d*. The
job with the smallest d* is removed from the associated list and added to the end of
the seed sequence, 7. The procedure continues until one of the partial sequences (7,
or 73,) is depleted; in this case, the remaining jobs in other partial sequence are added
to the end of the 7. Then, the first |F| jobs in 7 are assigned to be the first jobs of each
factory. By following the seed sequence, 7, the remaining jobs are assigned to the
factories one by one. Each job is assigned to the factory with the smallest incremental

penalty in the objective function respective to adding the new job.

Algorithm 3 EDDWET

Input: G5 — { }; GL —(}i7h —{}i7
Output: 7
for (j=1 to |J]) do

if WJ.T > WJ.E then

G}, < job j;
else
GE « job j;

end if
end for
T&, « Sort GI according to ij. in non-increasing order;
Tﬁ, « Sort GE according to wf in non-increasing order;
for (i = 1 to min(sizeof(t1,), sizeo f(r§))) do

Compare d;.r of the first job from ‘ra, and the first job from Tﬁ,;

Take the job with the smaller value from its sequence and append to 7
end for
if (sizeof (TTV;/ > (0)) then

T 14Tl
end if
if (sizeof(rf, > 0)) then

T T+ Tﬁ
end if

L= {hte{k

Figure 4.4 The pseudocode for EDDWET
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4.1.3 Destruction

The destruction stage removes randomly r selected jobs from the solution at hand to
create a partial solution and a list of removed jobs (R). To this aim, firstly, a non-zero
integer value denoting the number of deleted jobs (i.e., r) should be determined, and

then, the destruction strategy by which the jobs are deleted is specified.

As an important component of the IG algorithm, destruction size remains constant
during the iterations. Furthermore, this study utilizes four different destruction
strategies, which are activated randomly at each destruction attempt. These operators
are tailored upon the problem concept to effectively probe the solution space, trying to

find a better solution.

e Random selection: This method is the simplest approach, which randomly

selects and removes r jobs from an existing incumbent solution.

e Factory-based selection: The factory-based operator tries to distribute jobs
evenly by trimming the job load on the factories with high penalty costs. This
operator deletes one random job from up to r factories with the highest TWET

value. If r > |F|, the remaining r — |F| jobs are randomly eliminated.

e Greedy selection: One promising way to decrease the objective value is to
replace the jobs with the highest penalty. Greedy selection intends to remove 5
r

Jobs with the greatest tardiness and the other 5 with the highest earliness

penalties.

e Block selection: In order to effectively search the neighboring solution space,
this operator employs a block-based selection technique, in which a consecutive
series of jobs from a random factory’s sequence (Q”) is picked at a random
position. The size of the block takes an integer number between [1,min(r, |Qf 1.
This operator will apply multiple times on different factory sequences until the

number of deleted jobs meets r.
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4.1.4 Reconstruction

The reconstruction operators create an incumbent solution using the partial solution
(SP) and removed jobs list (R) resulting from the destruction stage. The four distinct

operators are employed randomly at each reconstruction attempt.

e Order selection: The most typical selection sequence for the removed jobs is
their removed order. Because the destruction phase frequently eliminates certain
jobs randomly based on some heuristics, the order in which they are deleted could
be illustrative. Therefore, the jobs are selected to be reinserted to reconstruct
the partial solution. To construct a complete solution, the algorithm examines all
possible positions of each removed job and saves a certain number of them having
the lowest increase in objective value. Then, a position is picked using a Roulette
Wheel approach, to insert a given job on each attempt until all the removed jobs

are treated.

e Random selection: To further investigate the unexplored parts of solution space,
the eliminated tasks are chosen one by one in random order. The reinsertion

process is performed in a similar manner to the order selection operator.

e Greedy selection: Each removed job is tentatively inserted into all the positions
of a partial solution. The insertion with the minimum objective value increment

will apply iteratively until all the removed jobs are reinserted.

e k-regret: This study employs the idea of regret function with some modifications
to fit into the current problem’s concept. The present k-regret function attempts
to compute the regret value, which represents the difference between the value of
inserting a job into its first best position and its k™ best position (k > 1). For a

given solution and a value of £, the regret is obtained as follows:
k
Adj= a5+ (- ah) Vjeld (4.5)
n=2

Where /l;? denotes the objective value for the nth-best insertion position of job ;.
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Then, the job with the highest A4 is picked for insertion in its best place until all

removed jobs are resolved.

4.1.5 Tabu Search (TS)

In most cases, the IG algorithm and its variants consist of a search technique known
as a Local Search to carefully explore the solution space. As an optional phase, a local
search function can be applied to the solution of the reconstruction process, hoping to
make the solution better. This study employs an effective search technique to empower

the search scheme extensively, namely Tabu Search.

In the context of a search strategy, TS refers to the process of moving from one
feasible solution to another with each iteration. In PFSP, the TS algorithm is often
structured, to begin with, a sequence and evolves consecutively through neighboring
solutions to find a better one. A "Tabu List (TL)" allows TS to avoid going back to
the same solutions from which it recently emerged. By doing so, the solution space is
comprehensively explored, and trapping in locally optimal solutions is easily avoided.
For doing so, recently evaluated solutions are declared tabu for a certain number of
iterations. A move made in iteration ¢ is called tabu until iteration (¢ + 6) where ¢ is the

prespecified tabu tenure (7'7T) value.

Tabu list can be considered as a short-term memory consisting of the history of the
recent moves to prevent returning back to visited sequences. This study employs a
customized version of the 7L generation technique proposed by Ying & Lin (2017)
considering « jobs included. From each factory, one job with the lowest earliness,
absent in T'L, is inserted to set 7. Similarly, <% represents the set of jobs with the
lowest tardiness from each factory, not included in 7L. Initially the jobs included in
T L will be composed of those in o7} U.a%. The rest of a —|.27] U 2| distinct jobs are

selected randomly from the input solution.

TS algorithm proposed in this study begins with the best-found solution based on the

IG-based procedure described already and sets it as the bestGlobal solution. Similar to
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the destruction phase, r random jobs are removed from the bestGlobal solution. Then

the new solution is reconstructed using the k-regret operator.

After generating a bunch of neighboring solutions according to the bestGlobal, each
new solution is identified to be whether forbidden or free. If a move is recognized as
forbidden according to the 7L, it will not be approved unless it meets the aspiration
criterion. When a move results in a better solution than the best found, the aspiration

criteria is a measure used to override the move’s tabu status.

Next, the best of forbidden and free solutions will be determined to specify the
best solution for the current iteration (bestlter). If there exists a best-free solution
(bestFree), bestlter is updated to it even if the objective of the best-forbidden solution
(bestForbiden) is better. The aspiration criterion, however, allows the bestForbiden
if it improves the bestGlobal. Subsequently, the 7T for all jobs in the 7L will be
decreased by one. At the same time, the bestlter will be compared with bestGlobal. If
it is better than bestGlobal, the bestGlobal will be updated accordingly. The 7L will
be updated based on the new bestGlobal. This procedure will go on until either the

algorithm meets the number of unimproved iterations exceeds maxNolmprove.

Each iteration of TS generates a predetermined number of neighbors. In
evolutionary algorithms, it is conventional to generate neighbors sequentially. Even
though the operating system may allow parallel execution, sequential processing
never benefits from multi-core processors. A parallel approach has been employed to
accelerate process efficiency in terms of execution time. Parallel programming
unlocks a program’s ability to execute multiple processes simultaneously. Parallel
computing addresses a given issue by breaking it into subproblems, simultaneously
solving those subproblems in parallel (with each subproblem executing in a distinct
thread), and then integrating the results of the subproblems. In this study, the primary
challenge is to generate a bunch of neighbor solutions, and the subproblem is to create
each neighbor individually. To take advantage of the parallel feature, the effort of
creating a maximum number of neighbors is uniformly split among all available

threads. This method of implementation considerably reduces the algorithm’s
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Algorithm 4 Tabu search
Input: maxNeighbor; TSmaxNolmprove; TSmaxlter;
Output: S*TT; a; S*, S’ S « the input solution;
initialize:

iter « 0; Continue « true; nolmprove < (; generate the initial 7L based on S * and
a;
while (Continue) do
bestForbidden <« 0, bestFree < (;
0P « generate maxNeighbor partial solutions using Random Selection(S’, r);
k < generate a random integer between [2, 3];
o — k-regret(p?, k)
for (each S € goR) do
if (S is forbidden and its better than bestForbidden or S is forbidden and
bestForbidden = () then
bestForbidden <« S
end if
if (S is free and its better than bestFree or S is free and bestFree = () then
bestFree < S;
end if
end for
if (betsFree + 0) then
S« bestFree;
end if
if (bestForbidden + 0 and bestForbidden is better than S *) then
S bestFree;
end if
update 7L by decreasing each non-zero element by 1.
if (the objective of S” < the objective of S *) then
S* e S’;
regenerate 7L based on S* and «;
nolmprove « 0;
else
nolmprove < nolmprove + 1;
end if
if (nolmprove > maxNolmprove or iter > T'S maxlIter) then
Continue « false;
end if
iter « Iter +1;
end while

Figure 4.5 The pseudocode for the proposed Tabu search algorithm
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execution time.

4.2 Iterated Greedy with Local search (IG-LS)

Since no other benchmarks exist for this problem, this study employs a classic 1G
algorithm with local search (IG-LS) (i.e. Figure 4.6) as a benchmark algorithm in
the analysis of IG-TS performance. Therefore, to outline a fair comparison of results,
IG-LS utilizes the same initial solution, destruction, and reconstruction methods as in
the proposed IG-TS. Furthermore, IG-LS employs an LS technique that sequentially
uses three search methods. Local search begins with the first neighborhood and moves
on to the next operator when no better solution can be identified. This continues until
the last operator can’t find any better solution and reaches its local optimum. The

following summarizes the local search operators chosen to be applied in the algorithm.

o Single Insertion: As one of the most used operators in FSPs, it improves a given
solution by relocating a job and reinserting it into another position. Initially, a job
will be chosen randomly from factories with more than one job, and then it will be
reinserted into another random factory and position. The new candidate position
is picked randomly upon a probability mass function, which considers a higher

chance for the best possible factory and position in terms of objective value.

e Block Insertion: In this operator all the removed jobs are reinserted as a block
into a randomly selected factory with a randomly assigned location with no

change in the sequence of jobs in the block.

e Exchange: this operator randomly chooses and exchanges two distinct jobs of

an incumbent solution from two randomly selected factories.
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Algorithm 5 The pseudocode for the IG-LS

Input:
r: Number of elements to be removed;
maxIter: maximum number of iterations;
maxNolmprove: maximum number of iterations with no improvements to
activate termination criteria;
Output: S*
S « Initialization();
S* « 8 iter « 1; nolmprove « 0; continue < True;
while (continue) do
SP R « Destruction (5,r):;
S" « Reconstruction (S R):
if (/(S7) < f(S*)) then
S* eS8
S S’
nolmprove « 0;
else

rand « generate a random number in [0, 1];
if (rand < ew) then
S* eS8
end if
end if
S — SingleInsertion(S *);
while (f(S") < f(S*)) do
§* 8§
S SinglelInsertion(S *);
end while
S « BlockInsertion(S *);
while (f(S") < f(S*)) do
S* 8§’
S" « BlockInsertion(S *);
end while
S« Exchange(S *);
while (£(S) < f(S*)) do
§* S
S Exchange(S *);
end while
if (noImprove > maxNolmprove or iter > maxiter) then
continue «— False;
end if
iter « iter+1;
end while

Figure 4.6 The pseudocode for the IG-LS
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CHAPTER FIVE
COMPUTATIONAL STUDY

This section summarizes the findings of computational experiments conducted
using the created benchmark in a series of tests. Additionally, the created benchmark
will be presented in detail. Section 5.1 explains the generated benchmarks and the
experimental setting. Then the proposed mathematical models are analyzed in section
5.2. Furthermore, Sections 5.3 and 5.4 explain the proposed algorithm’s parameters
calibration and analyze the algorithm’s components, respectively. Finally, section 5.5

evaluates the performance of the IG-TS algorithm.

5.1 Benchmark and experimental setting

Despite the existence of benchmarks for FSP issues, the unique characteristic of the
DNIPFSPDW problem examined in this study (the due windows) necessitates specific
attention to due dates. Therefore, Naderi & Ruiz (2010) DPSP data were extended with
T’, W, and R parameters to create two sets of instances: small and large benchmarks.
Instance generation is governed by six variables: the number of machines (/), jobs
(J), factories (F), tardiness factor (7"), due date range (R), and the width of the due
window with respect to the due date (W). Data are developed using Naderi & Ruiz
(2010) processing time data. The unit earliness and tardiness weights are generated
using a uniform distribution in the range U [1,9]. The due dates are generated with a
random uniform distribution based on the equation (5.1) proposed method where | X7
indicates rounding X to the nearest integer. Equation 5.1 portraits due date generation

formula:

dj=max(0,U[[P(1-T"-R/2)1,|P(1 -T" +R/2)1]) 5.1

The calculated due dates vary from simple to difficult to fulfill depending on the
parameters of 77 and R. Thus P indicates the makespan upper bound calculated by the

NEH2 heuristic for DPFSP developed by Naderi & Ruiz (2010). The due windows
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are generated centered around d; with W% width of d; as follows:
a’]T =max(0,|d;—d;jx H/100]) and d;.“ = max(0,|d;+d;x H/100]) where H = [1,W].
Data are generated for F = {2,4}, I = {3,4,5}, and J = {4,10,16} for small-sized
instances and F = {4,7}, I = {5,10,20}, and J = {2050,100,200,500} for
large-instances employing the following parameter combinations: 77 = {0.2,0.4},
R =1{0.2,0.6} and W = {20,50} with each combination having five replicates with
different seeds. Table 5.1 summarizes the considered values for each parameter. In

general, there are 720 small and 960 large instances.

Table 5.1 Value of the considered parameters

Parameter Values

™ 0.2,0.4
R 0.2,0.6
W 20, 50

The IG-TS algorithm was implemented in Java, and the mathematical models were
solved in python using the Gurobi solver 9.0. All the computational tests have been
carried out on a computer with Intel(R) Core (TM) 13-7130U CPU @ 2.70GHz and 8
GB of RAM, using the Microsoft Windows 10 operating system. The computational

CPU time for Gurobi is limited to 3600s (1 h) in the experiments.

5.2 The performance of the proposed mathematical models

Tables 5.2 and 5.3 show the computational results of the proposed mathematical
models for small-sized instances with 2 and 4 factories, respectively, where the
number of jobs is 4, 10, and 16. It should be noted that the "UB" column depicts the
upper bound found by the Gurobi solver, the "Gap" column illustrates the gap
between Gurobi’s best bound and lower bound, and "Opt Num" indicates the number
of instances that the Gurobi solver was able to solve optimally in the given time out of
40 instances. All models deliver an equal performance for the instances with four jobs

regarding the computational time and optimality gap.
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Table 5.2 The average results for the small-sized instances with two factories.

. Mxe M;g M DOS
Job () Machine (1) UB Gap (%) 6pt Num Time UB Gap (%) %)pt Num Time UB Gap (%) ' Opt Num Time
3 684.97 0.00 40 0.05 684.97 0.00 40 0.00 684.97 0.00 40 0.00
4 4 1020.27 0.00 40 0.00 1020.27 0.00 40 0.00 1020.27 0.00 40 0.00
5 1016.85 0.00 40 0.00 1016.85 0.00 40 0.00 1016.85 0.00 40 0.00
3 1345.20 0.00 35 43.43 1345.20 0.00 40 129.55 1345.20 0.00 40 35.83
10 4 2619.92 32.94 17 2544.18 2619.92 0.00 40 360.78 2619.92 0.00 40 64.70
5 2934.07 33.35 17 2642.75 2924.63 0.00 40 390.58 2924.62 0.00 40 71.03
3 1710.39 34.59 6 3162.20 1706.52 74.60 8 2986.43 1668.11 31.78 9 2847.33
16 4 4072.29 97.08 1 3511.00 3980.90 91.01 2 3468.58 3882.50 84.96 3 3461.43
5 4599.44 97.18 0 3600.00 4482.02 89.55 1 3523.63 4254.60 84.73 2 3473.88
Table 5.3 The average results for the small-sized instances with four factories.
. Mse Mge Mms
Job (/) Machine (7) UB Gap (%) qut Num  Time UB Gap (%)  OpiNum — Time UB Gap (%) : OptNum _ Time
3 747.67 0.00 40 0.00 747.67 0.00 40 0.00 747.67 0.00 40 0.00
4 4 615.47 0.00 40 0.00 615.47 0.00 40 0.00 615.47 0.00 40 0.00
5 511.30 0.00 40 0.00 511.30 0.00 40 0.00 511.30 0.00 40 0.00
3 949.00 11.44 28 1582.20 949.00 0.00 40 3.78 949.00 0.00 40 247.95
10 4 1605.52 19.81 19 3207.50 1604.12 0.00 40 3.88 1604.12 0.44 40 594.78
5 2396.97 34.08 8 3254.50 2391.00 0.00 40 11.88 2391.00 0.00 40 713.07
3 1278.12 67.38 8 3057.83 1270.30 40.24 11 2644.30 1258.30 66.41 8 2885.00
16 4 1997.05 38.61 5 3210.95 1947.32 43.41 11 2707.05 1942.44 61.74 9 2898.75
5 3446.62 78.46 1 3577.28 3329.57 53.98 2 3372.68 3331.06 78.21 2 3423.48




In instances with 10 or more jobs, the models become more complex, which is
reflected in the higher CPU time required to solve the instances. The performance
comparison of the models reflected in Table 5.2 with ten jobs suggests that M;eq and
M s perform far better than the My, since they obtain the optimal solution for all
the cases. Nevertheless, M, can attain this result within a relatively shorter time.
Although a similar performance is observed for 16 jobs with 2 factories, the M), as
the best model in this case, finds the optimal solution of 14 out of 120 instances. In
addition, the Gap column for 16 jobs suggests that M, performs better on finding the

lower bounds.

According to Table 5.3 the My, finds the optimal solution only for 55 instances out
of 120 with ten jobs, while the other models find the optimal solution for all the cases.
In terms of CPU time, M;eq presents a significantly better performance by solving the
instances of ten jobs in an average time of 6.5s, while M, obtains the same results in
518.60s. The outperformance of the M'm] does not limit to the ten jobs, and it delivers
better results for the instances of 16 jobs by finding the optimal solution of 24 out of
120 instances in an average time of 2908.01s. Additionally, the lower bounds quality
proposed by M ;e o 1s better than the others according to the Mean Gap column of Table
5.3.

Table 5.3 shows the solver demands more computational time for M,s and M.,
models to prove the optimality in comprising with Table 5.2, as having four factories
provides more potential positions for the jobs to accommodate. In contrast, M;eq model

requires far less CPU time for solving the instances with four factories rather than two.

Generally, the M, fails to provide a better lower bound, incumbent solution, and
CPU time on average for all the cases under study. The performance of the other
models highly depends on the number of factories in the given instance. Although
M s performs a little worse for the instances of four factories compared to M;eq, it
well performs significantly for the cases with two factories. Therefore, to analyze

the effect of other parameters, the performance of the M, will be investigated as it.

To determine the effect of the number of factories on the M,,;, an ANOVA with a
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significance level of 0.05 was conducted. The finding indicates the influence of the
number of factories’ influence with a P-value of 0.02, and since P-value > « so, it is
statistically significant. Therefore as the number of factories increases the complexity

also increases.

The results show larger values for 77, W, and R, resulting in lower values for the
objective value and less computational time due to generating wider due dates. Thus,
it is easier for models to find the appropriate position for the jobs, which causes low
penalties for earliness and tardiness. In the instances with two factories considering 20
for W, the average required time for model 2 is 1204.12s with a mean gap of 29.89%,
while in the four-factory instances, average time and gap are 1195s and 27.98% for
all jobs and instances. When the value of W is increased to 50, the average time and
optimality gap are 1007.91s and 23.34% for instances with 2 factories, while these
values are 971.48s and 18.38% for instances with 4 factories. Therefore, tighter values
for W demand more time to converge to the optimal solution. The conducted ANOVA
test with a significance level of 0.05 for W as a fixed variable in response to the gap for
M s model also confirms the effect of W on decreasing objective value and elapsed
time with a P-value of 0. For different values of R, the variation of the optimality
gap is insignificant, while it has a considerable impact on the computational time. In
two-factory and four-factory instances for R with the value of 0.2, the average CPU
time for the M, is 1162.26s and 1219.61s, respectively, while for R = 0.6 the average
elapsed time is 1049.72s and 1172s. Regarding the optimality gap, for R = 0.2, the
average gap equals 28.47% for the instances with 2 factories and 25.56% for those
with 4 factories. By performing a similar ANOVA test with the fixed variable R in
response to the gap, a P-value of 0.001 demonstrates the significant effect of R in
increasing objective value and CPU time. A totally different observation is offered
while changing the value of T’ from 0.2 to 0.4. For two factories with 7" = 0.2, the
average gap and time are 25.23% and 1003.18s, and for 7" = 0.4, they are 28.20% and
1208.85s. On the other hand, for the instances with four factories, the mean gap and
time for 7 = 0.2 are 20.06% and 906.49s, while for 7 = 0.4, they are 25.89% and

1485.25s. These results imply that larger values of 7’ narrow down the due date of
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jobs, which in return, increases the complexity of solution space, requiring the model
to spend more time investigating the solution space. Moreover, a slight change in the
value of 7” results in a greater change in average CPU time and gap compared to R.
Similarly, in the ANOVA test with the fixed variable 7’ in response to gap, a P-value
of 0.001 confirms that 7" has a noticeable effect on increasing both CPU time and
objective value. Although the number of machines in each factory does not have a
direct impact on the model, its variation impacts the average computational gap and
mean CPU time. By growing the number of machines the average gap and mean CPU
time for instances with 10 and 16 jobs increase. This impact comes down to the fact
that adding one machine to a factory will exert its processing time on the production
sequence, having the jobs finish later. Thus, the jobs finished in their regular time are
pushed to have a delay, so their tardiness penalty should be considered now. Therefore,
finding the best combination of delayed jobs and their associated penalty cost becomes
more challenging as the flexibility of the on-time jobs diminishes or cancels. Another
ANOVA test was carried out to assess the significance of the number of machines
on the performance of M,;. With a P-value of 0.026, the result demonstrates that
machine number has a significant effect on increasing both elapsed time and objective
value. Table 5.4 summarizes the conducted ANOVA test on M, with a significance

level of 0.05.

Table 5.4 Summary of conducted ANOVA test on M

Parameter P-value Relation

0.020  As the F increases the complexity and CPU time increase
0.026  As the [ increases the complexity and CPU time increase
0.000  As the J increases the complexity and CPU time increase
0.000  As the W increases the complexity and CPU time decrease
0.001  As the R increases the objective value increases

0.001  Asthe T’ decreases the complexity and CPU time increases

NS~

5.3 Calibration of algorithm parameters

For optimal algorithm performance, it is necessary to calibrate the algorithm’s
affecting parameters. Therefore a Taguchi experiment using the L27 orthogonal array

was designed by randomly selecting eight instances and considering three levels for
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each parameter and each instance was run 15 times. The proposed algorithm contains
five parameters «, r, TS MaxNolmprove, maxNeighbor, and TT. Table 5.5 illustrates

the considered values for each parameter which are mostly from existing literature.

Table 5.5 Considered values for each parameter

Parameter Values

a {0.25%x1J1,0.50 x |J],0.75 x|J|}
r {5,7, 10}

TT {3,4,5}
maxNeighbor {80, 100, 120}

TS MaxNolmprove {5,10, 15}

The main effects of S/N ratios on IG-TS parameter levels are presented in Figure
5.1. As one can infer from the Figure 5.1, the best parameter levels of the algorithm
are tabuMaxNolmprove = 10, tabuMaxNeighbor = 80, TT = 3, a = 0.25 X |J|, and
r="7

Data Means

reb e Nofmprave rabu e Veighbar T aipha "

-7.88
-7.89
-7.804

A NN S

-1.02

Mdean of SN ratios

-7.03
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-1.05

5 10 13 0 W00 120 3 4 5 23%N S50%D 73N 3 7 10

Figure 5.1 Main effects of S/N ratios for IG-TS parameters

5.4 Analysis of the algorithm components

The proposed hybrid algorithm consists of two main parts, namely, IG and TS,

each of which can be employed as an independent solution approach. In this regard,
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additional computational experiments were conducted to show the value of
hybridization. In this analysis, a subset of the large-sized DNIFSPDW instances with
four factories including 96 instances which are the first replications of each
combination of 77, R, W, J, and I. Table 5.6 illustrates the averages of objective
function values and computational times obtained from ten runs of each part. The
column entitled "Obj" displays the average objective function value for each
algorithm over the course of the ten runs, while the column labeled "Time" presents
the mean computation time required to obtain the results for each algorithm. It has
been observed that, despite their shorter computational times, the TS and IG
algorithms fall short in achieving the level of results obtained by the IG-TS algorithm.
The difference in objective values between TS and IG-TS is approximately 8%, with

this gap increasing to a substantial 108% when comparing IG and IG-TS.

Table 5.6 The average results of analysis of the algorithm components.

: IG-TS TS G

Jobs (/) Machines (7) Obj  Time Obj  Time Obj  Time
5 2799.00  11.67 2818.00  9.04 417925 032

20 10 16008.13  13.24 1625500 10.20 2257825  0.32
20 40886.13 1547 4322288  12.18 55359.00  0.35

5 7602.13  29.74 §257.88  21.29 1545538 10.52

50 10 2875275  36.75 3182525  26.54 53905.88  7.37
20 14058938 44.95 15009675  32.68 24627150  8.42

5 318550  194.29 1477550  134.22 3537525 10279

100 10 4845350  198.47 55636.75 14173 11950625  59.60
20 293605.13 15358  314939.63 11576  640868.75  61.39

200 10 89304.00  749.97 9723650 529.54  239163.13  218.16
20 585672.88 68023  609173.63 516.10 129738275  197.77

500 20 134926538 1000.00  1528109.63 1000.00  3793522.25 1000.00

In order to confirm the validity of the results obtained, a Wilcoxon signed-rank test
was employed as a non-parametric statistical method for comparing two correlated
sets of data. Non-parametric tests are useful for evaluating algorithms that generate
average outcomes for a given problem, even in the absence of any correlation among
them (Garcia et al., 2009). The Wilcoxon test yielded a P-value of 0, which supports
the alternative hypothesis and indicates that the IG-TS and TS algorithms vary in a
statistically significant way. Additionally, a similar test was conducted for the IG-TS
and IG algorithms, which also yielded a P-value of 0, further establishing the existence

of a statistically significant difference between the two algorithms.
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5.5 Performance analysis of IG-TS

Tables 5.7 and 5.8 illustrate the computational results of the algorithms for
small-sized instances with 2 and 4 factories, where the numbers of jobs are 4, 10, and
16. The column "RPD" indicates the average RPD value for each instance set where
RPD is calculated as (%W). Additionally, the "Time" column indicates the
required average time for the algorithms to solve a problem configuration over 10
multiple runs. The proposed IG-TS algorithm is able to identify the optimal solution
of instances with two factories and four jobs in less than one second. A similar
performance is observed for the IG-LS algorithm, but with a relatively higher mean
time compared to the IG-TS. For instances of 10 jobs with the two factories, the
proposed IG-TS algorithm finds the optimal solution in a relatively small CPU time
compared to the mathematical model. This demonstrates that the proposed IG-TS
performs better even for small-sized instances. Similarly, the IG-LS algorithm solves
the problems for the mentioned instances to optimality in the same CPU time as
IG-TS. On the other hand, by increasing the number of jobs to 16 the IG-TS
algorithm was able to either find or improve the solution obtained by the Gurobi
solver in a considerably lower CPU time. Although the IG-LS algorithm gives a
solution in relatively less time compared to IG-TS, it fails to find the best solution

proposed by IG-TS in some cases regarding the RPD mean values.

Table 5.7 The average results for the small-sized instances with two factories.

IG-TS IG-LS
RPD Time RPD Time

Job (J) Machine (1)

3 0.00 0.11 0.00 0.30
4 4 0.00 0.13 0.00 0.23
5 0.00 0.02 0.00 0.21
3 0.00 2.19 0.00 1.34
10 4 0.00 2.16 0.00 1.35
5 0.00 2.17 0.00 0.14
3 0.00 5.82 052 535
16 4 0.00 5.06 2.14 5.06
5 0.00 5.05 1.01 5.03

Table 5.8 illustrates that for all small-sized instances with four factories the IG-TS,

and IG-LS deliver the same performance as they did for two factories, in terms of
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Table 5.8 The average results for the small-sized instances with four factories.

IG-TS IG-LS
RPD Time RPD Time

Job (J) Machine (1)

3 0.00 0.00 0.00 0.00
4 4 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00
3 0.00 0.52 0.00 0.02
10 4 0.00 2.55 0.00 0.11
5 0.00 2.62 0.00 0.12
3 0.00 4.98 0.08 0.33
16 4 0.00 4.72 0.31 0.32
5 0.00 4.99 1.20 0.31

finding the best solution. However, RPD mean values confirm that both perform
better in finding the best solution since there are more possible locations for jobs to
accommodate more available factories. Additionally, the average time of IG-TS and
IG-LS for instances of four factories is even less than that of two factories. Hence, for

the large instances, only the results of the proposed heuristic algorithms are provided.

Tables 5.9 and 5.10 illustrate the obtained results by IG-TS and IG-LS algorithms
for large-sized instances. In general, for all large-sized instances, the IG-TS algorithm
is able to deliver solutions of higher quality in a shorter amount of CPU time. The
impact of increasing the number of jobs on the mean time and RPD of both
algorithms is noteworthy in this context. With growing the number of jobs the
required time for finding the best solution for both algorithms increases as it demands
more computational efforts, in each iteration. However, the time gap between both
algorithms for a given instance is significant. This time gap basically roots back to the
utilized operators in both algorithms especially the k-regret. Since the k-regret
method examines and evaluates an extensive number of possible insertions of
removed jobs at each attempt, it demands a larger time to come to a conclusive
solution at each iteration. Therefore, each iteration of the IG-TS algorithm takes
longer to process compared to IG-LS, as it employs k-regret in the TS body. However,
the solution quality obtained from IG-TS surpasses that of IG-LS regarding the RPD
column. The quantity of machines accessible at each factory is a crucial aspect in
problem situations. Since increasing the number of machines in each factory demands

more calculation owing to the no-idle time adjustment, growing the number of
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machines increases the overall CPU time for a given problem setting.

Table 5.9 The average results for the large-sized instances with four factories.

. IG-TS IG-LS

Job (/) Machine (1) 55 G Time RPD (%)  Time
5 000  11.49 68.11 037

20 10 000 1275 12.56 0.33
20 000  15.14 4.14 0.39

5 000 2838 7495  11.74

50 10 000  36.20 34.45 8.53
20 000  41.20 10.18 931

5 000 157.23 3881 66.10

100 10 038  171.66 2402 68.59
20 0.66  188.00 328 112.62

200 10 003  691.45 31551 216.12
20 0.02  839.46 10.88  240.96

500 20 1.06 1000.00 6.80 1000.00

Table 5.10 The average results for the large-sized instances with seven factories.

. IG-TS IGLS

Job (/) Machine () —ppr @~ Time RPD (%)  Time
5 0.00 224 3805 0.3

20 10 000 243 395 077
20 000 275 272 087

5 0.00 1535 809.35  7.64

50 10 0.00  15.09 19.92 8.14
20 001  16.32 6.87 8.47

5 0.00  90.68 1131.62 3479

100 10 029  95.60 987 3595
20 059 9651 221 48.07

200 10 026  226.80 19455  120.23
20 049 313.72 6.56  172.68

500 20 0.47 1000.00 4.60 1000.00
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CHAPTER SIX
CONCLUSION

This thesis is the first to study the distributed no-idle flowshop scheduling problem
with due windows. This problem deals with two interrelated decisions: first job
assignment to factories, and second the sequence of the assigned jobs. Three variants
of mathematical models were proposed to address this concept in the flowshop
scheduling problem aiming to minimize the total weighted earliness and tardiness
penalties. The proposed position-based mathematical model was found to be the most
efficient among the three formulations evaluated. Furthermore, an ANOVA test was
performed to investigate the statistical impact of input parameters on the model’s
performance. The test’s findings demonstrated that adding more jobs, machines, and
factories to the model makes it more complicated, which in turn results in either a
greater amount of CPU time required to solve the model or a larger gap in the
obtained solution. This finding highlights the importance of considering the
complexity of the model when selecting input parameters and emphasizes the need
for efficient algorithms to handle large-scale problems. Additionally, it may also
provide insight into the trade-offs between solution quality and computational time
when solving such models. In this regard, an efficient hybrid IG-TS algorithm is
presented as a solution approach for this problem. Furthermore, a classic IG
algorithm with local search was utilized to create a performance comparison measure.
The proposed IG-TS algorithm was able to identify the optimal solution or improve
upon the results obtained by the Gurobi solver for small-sized instances. Furthermore,
for large-sized instances, the results obtained by the benchmark IG-LS were improved
upon by the proposed IG-TS algorithm. This demonstrates the effectiveness of the
hybrid approach in finding optimal or near-optimal solutions for both small and
large-sized instances of the problem and also highlights the potential of combining
different optimization techniques to enhance the performance of a given algorithm.
The proposed algorithm was calibrated through the application of a Taguchi
experimental design approach. This method was used to determine the optimal set of

parameters that would enhance the performance of the algorithm. Furthermore, some
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experiments are carried out to assess the performance of the proposed models and
algorithm for different problem settings. Furthermore, the computational research was

conducted on benchmarks developed based on Naderi & Ruiz (2010) data.

The results demonstrate that the numbers of jobs and machines have a significant
impact on the performance of mathematical models and the algorithm, as the solution
space dramatically changes with these numbers. In contrast, for high numbers of
factories, the algorithm outperforms the mathematical models regarding the solution
quality and computation time. This study solves the problem with up to 500 jobs for
the first time. Several research avenues remain unexplored in terms of solution
approaches and the problem itself. Other combinatorial heuristics seem to be
applicable to solve this problem for comparison purposes, like the Genetic algorithm.
Additionally, other mathematical models with different sequence representative
variables can be developed to solve the problem for larger sizes. Furthermore, the
cutting planes can be devised to enhance the mathematical models’ performance by

accelerating the lower-bound growth.
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