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Bu tezde; literatürde var olan bazı büzülme dönüşümleri ve sabit nokta teoremlerinin
geni̧sletilmi̧s bulanık metrik uzaylara aktarılmasıve yeni sonuçlar elde edilmesi planlan-
mı̧stır. Bu amaçla, giri̧s bölümünde; bulanık, bulanık metrik, büzülme dönüşümü gibi
bazıkavramların tarihçesine dair bilgilere yer verilmi̧stir. İkinci bölümde; bulanık küme
tanımlanmı̧s, örnekler ve temel kavramlar verilmi̧stir. Üçüncü bölümde; bulanık metrik
uzaylar, bu uzaylarda Cauchy dizisi ve tamlık tanımlarıverilmi̧s, bazıbüzülme dönüşüm-
leri tanımlanmı̧s ve örnekler sunulmuştur. Dördüncü bölüm; geni̧sletilmi̧s bulanık metrik
uzayların tanımlandı̆gı, incelendiği bölümdür ve bu tezde çalı̧sılan uzaylar olması sebe-
biyle önemlidir. Beşinci bölüm, özgün olan bölümdür. Bu bölümde; geni̧sletilmi̧s bulanık
metrik uzaylarda ilk kez tanımlanan üç büzülme dönüşümü kullanılarak sabit bir nok-
tanın varlı̆gınıve tekliğini iddia eden teoremler ispatlanmı̧s ve örnekler verilmi̧stir. Altıncı
bölüm, son bölüm ve sonuçtur.
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In this thesis; It is planned to transfer some contraction mappings and fixed point theorems
existing in the literature to extended fuzzy metric spaces and to obtain new results. For
this purpose, information on the history of some concepts such as fuzzy, fuzzy metric and
contraction mapping are given in the introduction. In the second chapter; fuzzy set is
defined, examples and basic concepts are given. In the third chapter; fuzzy metric spaces,
Cauchy sequence and completeness definitions are given and some contraction mappings
are defined and examples are presented, in these spaces. The forth chapter is the part in
which extended fuzzy metric spaces are defined, examined, and it is important because
they are the spaces studied in this thesis. The fifth chapter is the original part. In
this chapter; theorems claming the existence and uniqueness of a fixed point are proved
by using three contraction mapping defined for the first time in extended fuzzy metric
spaces. The sixth chapter is the final chapter and the conclusion.
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3. BULANIKMETRİKUZAYLARDABAZI BÜZÜLMEDÖNÜŞÜM-
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1. GİRİŞ

Günlük hayatta kesin olmayan, belirsiz durumlarla sıklıkla kaŗsılaşırız. Kaŗsımıza

çıkan her durum için, modern bilgisayarların da dayandı̆gımantık olan “1”ya da “0”

veya “doğru”ya da “yanlı̧s”diyemeyiz. Belirsizliğin olduğu, kesinlikten söz edile-

meyen tabiattaki karmaşık olayların, insana ait çeşitli verilerin; düşünce, eğilim,

başarıvb. doğru bir şekilde açıklanabilmesi için “bulanık”kavramıçok önemli bir

esneklik sunmaktadır. Bu kavram sayesinde, insan deneyimi makinelere aktarıla-

bilmi̧s ve i̧slevsellik kazanmı̧stır.

Bulanık kavramınıilk kez Lütfi Ali Askerzade (Zadeh) 1965 yılında tanımlamı̧stır.

İnsanın yaşarken edindiği tecrübelerin makinelere aktarılması fikrinin temellerini

atan, elektrik elektronik mühendisi olan bilim insanı, aslında bir çeşit karar verme

mekanizmasıtasarlamı̧stır. Zadeh’in (1965) önceden bilinmez kabul edilen şeyleri

açıklanabilir hale getiren bu çalı̧sması, büyük deği̧sikliklere yol açmı̧s; buhar maki-

nesinin kontrol sisteminde, güvenlik ve tasarruf açısından metro sisteminde kul-

lanılmı̧stır. Uzay aracıve uyduların irtifa kontrolü için havacılık alanında; hız ve

trafik kontrolü için otomotiv sisteminde; karar verme ve ki̧sisel değerlendirme için

büyük şirketlerde; kurutma, kimyasal damıtma sürecini kontrol etmek için kimya

endüstrisinde; yapay zeka uygulamalarında, modern kontrol sistemlerinde vs. yaygın

olarak kullanılmakta ve bulanık kavramımühendislikte hayat bulmaktadır.

Metrik kavramısabit nokta teorisindeki en önemli bileşenlerden biri olarak kabul

edilebilir. Metrik en genel haliyle; uzaydaki nokta çiftleri ile pozitif bir reel sayıyı

ili̧skilendirmek olarak ifade edilebilir.

Son elli yılda bu kavramın birçok genellemesi elde edilmi̧stir. Bulanık metrik kavramı

da bunlardan biridir. Fakat metrik uzaylardan farklıolarak; bulanık metrik uzay-

larda iki nesne arasındaki mesafe, kesin bir reel sayıile ifade edilmez.

Bulanık metrik uzay kavramınıilk kez Kramosil ve Michalek (1975) tanımlamı̧stır

(KM- bulanık metrik uzaylar). George ve Veeramani (1994) ise bu tanımda küçük bir

deği̧siklik yaparak yeni bir uyarlamasınıvermi̧slerdir (GV- bulanık metrik uzaylar).
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Matematikte bir kümenin noktalarının aynıkümenin noktalarına dönüştürülmesiyle

ilgilenen ve en az bir noktanın sabit kaldı̆gının kanıtlanabildiği teoremler olan sabit

nokta teoremleri, bir denklemin bir çözümü olup olmadı̆gınıbulmak için çok kul-

lanı̧slıdır.

=(κ) = κ dönüşümünde κ, = nin bir sabit noktasıdır. Bir sabit nokta, bir dönüşümün

ardı̧sık durumda kilitlendiği bir değer olarak da kabul edilebilir.

|= (κ)−= (ξ)| ≤ λ |κ − ξ| olacak şekilde 1’den küçük pozitif bir λ sabiti varsa, = bir

büzülme olarak adlandırılır. Böylece κ ve ξ arasındaki mesafe, büzülme dönüşümü

ile = (κ) ve = (ξ) arasındaki mesafeye dönüştürülmüş olur.

Metrik uzaylarda sabit nokta teoremi çalı̧smalarınıStefan Banach başlatmı̧s ve bu

araştırma alanıdiğer birçok bilimsel araştırma alanına katkı sağlamı̧stır. Sadece

fonksiyonel analizin değil, aynızamanda genel topolojinin ve diğer birçok disiplinin

çok önemli bir aracıhaline gelmi̧stir.

Banach (1922) büzülme/daralma ilkesinin uygulama zenginliği şaşırtıcıdır. Basitliği

dikkat çekicidir ve büzülme koşulunun test edilmesinin kolay olmasısebebiyle, belki

de tüm analizlerde en yaygın olarak uygulanan sabit nokta teoremidir.(
Ŷ , d

)
tam metrik uzayında ∀ κ, ξ ∈ Ŷ ve ν ∈ (0, 1) için d(=κ,=ξ) ≤ νd(κ, ξ)

şartınısağlayan = : Ŷ −→ Ŷ dönüşümünün tek bir sabit noktaya sahip olduğunu

iddia eden, Banach büzülme ilkesinin çok çeşitli genellemeleri elde edilmi̧stir.

Grabiec (1988), KM bulanık metrik uzaylara Banach büzülme dönüşümünü uyarladık-

tan sonra birçok yazar, KM bulanık metrik uzaylarda ve GV bulanık metrik uzay-

larda sabit nokta teoremleri kanıtlamı̧slardır.

Gregori ve Sapena (2002) tarafından tanımlanan bulanık büzülme dönüşümünü

geni̧sletenMihet (2008), KM bulanık metrik uzaylarda çalı̧smı̧stır ve Non-Archimedean

bulanık metrik uzaylarda Banach büzülme teoremini ispatlamı̧slardır.

Gregori vd. (2019), Mihet’in (2008) dönüşümünü, tanımladıklarıgeni̧sletilmi̧s bu-

lanık metrik uzaylara uyarlamı̧slardır.

Sabit nokta teorisinde büzülmenin rolü çok önemlidir. Literatürde, farklıuzaylarda

büzülme dönüşümlerinin farklıversiyonlarıolan birçok çalı̧sma bulunmaktadır.
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Samet vd. (2012) tarafından metrik uzaylarda tanımlandıktan sonra bir çok genellemesi

elde edilen büzülme dönüşümleri, Gopal ve Vetro (2014) için ilham kaynağıolmuş

ve yazarlar bu dönüşümleri bulanık metrik uzaylarda tanımlamı̧slardır.

Benzer şekilde, metrik uzaylarda bir büzülme dönüşümü tanımlayan ve sabit nokta

teoremleri kanıtlayan Wardowski’nin (2012) çalı̧smasından sonra, Huang vd. (2021)

bulanık metrik uzaylarda bu büzülme yoluyla sabit nokta teoremleri ispatlamı̧slardır.

Bu tezin özgün olan bölümü; geni̧sletilmi̧s bulanık metrik uzaylarda üç yeni bulanık

büzülme dönüşümünün tanımlandı̆gı, bazısabit nokta teoremlerinin ispatlandı̆gıve

bazı örneklerin sunulduğu beşinci bölümdür. Bu bölüm oluşturulurken; bulanık

metrik uzaylardaki tanımlar, teoremler, sonuçlar vb. esas alınarak geni̧sletilmi̧s

bulanık metrik uzaylara uyarlanmı̧s ve teoremler ispatlanırken bilinen matematiksel

yöntemler kullanılmı̧stır.

Bu tezde geni̧sletilmi̧s bulanık metrik uzaylarda sabit nokta teoremleri oluştururken;

literatürde var olan büzülme dönüşümlerini geni̧sletilmi̧s bulanık metrik uzaylarda

tanımlamak isteyen yeni araştırmacılara fikir vermek ve geni̧sletilmi̧s bulanık metrik

uzaylarda yapılan çalı̧smalara katkısağlamak amaçlanmı̧stır.
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2. TEMEL KAVRAMLAR

Bulanık kümeleri, sürekli üyelik derecelerine sahip nesneler sınıfıolarak ifade eden

Zadeh (1965), her nesnenin "0" ile "1" arasında değer alan bir üyelik fonksiyonu ile

karakterize edildiğini öne sürmüştür. Kümelere ait birçok kavramı, bulanık kümelere

uyarlayarak ya da geni̧sleterek bulanık kümelere ili̧skin özellikler tanımlamı̧stır.

Zadeh (1965), gerçek hayatta kaŗsılaşılan nesne sınıflarının kesin olarak tanımlan-

mı̧s üyelik kriterlerine sahip olmadı̆gını ileri sürmüştür. Ayrıca, bulanık küme

kavramının birçok açıdan klasik kümelerde kullanılan çerçeveye paralel olmakla be-

raber daha genel bir kavramsal çerçeveye sahip olduğunu, özellikle örüntü sınıflandırma

ve bilgi i̧sleme alanlarında çok daha geni̧s bir uygulama kapsamına sahip olabileceğini

ifade etmi̧stir.

Belirsizliğin olduğu, kesinlikten söz edilemeyen karmaşık olayların, insana ait çeşitli

verilerin açıklanabilmesi ihtiyaç olduğunda bulanık kavramıdikkate değer bir esnek-

lik sunmaktadır.

Zadeh’in (1965) bu çalı̧sması, kendisinden önce bilinmez kabul edilenleri açıklanabilir

hale getirmesi bakımından çok önemlidir.

Tanım 2.1 Ŷ 6= ∅ bir küme ve I = [0, 1] olmak üzere

µĂ : Ŷ −→ [0, 1]

üyelik (karakteristik) fonksiyonu tarafından karakterize edilen

Ă =
{

(κ, µĂ(κ)) | κ ∈ Ŷ
}
⊂ Ŷ × I

kümesine bulanık küme denir. Her κ ∈ Ŷ için µĂ(κ) değerine üyelik derecesi

denir (Zadeh 1965).
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Tanım 2.2 Ŷ 6= ∅ bir küme ve I = [0, 1] olmak üzere

µŶ : Ŷ −→ [0, 1]

üyelik fonksiyonu ile karakterize edilen

Ŷ =
{

(κ, µŶ (κ) = 1) | κ ∈ Ŷ
}
⊂ Ŷ × I

kümesine evrensel bulanık küme denir (Zadeh 1965).

Tanım 2.3 Ŷ 6= ∅ bir küme ve I = [0, 1] olmak üzere

µΦ : Ŷ −→ [0, 1]

üyelik fonksiyonu ile karakterize edilen

Φ =
{

(κ, µΦ(κ) = 0) | κ ∈ Ŷ
}
⊂ Ŷ × I

kümesine boş bulanık küme denir (Zadeh 1965).

Örnek 2.1 20-70 yaş aralı̆gında ki̧silerden oluşan bir topluluğa aşağıdaki sorular

yöneltiliyor;

Soru I:"Tanısıkonmuş bir hastalı̆gınız var mı?"

Soru II:"Kendinizi sağlıklıhissediyor musunuz?"

Sorulara "Evet" yanıtıveren ki̧si sayısının dağılımıaşağıdaki tabloda verilmi̧stir:

Soru\Yaş 20 ≤ κ < 30 30 ≤ κ < 40 40 ≤ κ < 50 50 ≤ κ < 60 60 ≤ κ ≤ 70

I. 0 0, 234 0, 449 0, 671 1

II. 1 0, 862 0, 441 0, 305 0

20-30 yaş aralı̆gı(κ[20,30]), 30-40 yaş aralı̆gı(κ[30,40]), 40-50 yaş aralı̆gı(κ[40,50]), 50-60

yaş aralı̆gı(κ[50,60]) ve 60-70 yaş aralı̆gı(κ[60,70]) şeklinde ifade edilirse;
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∅ 6= Ŷ =
{
κ[20,30], κ[30,40], κ[40,50], κ[50,60], κ[60,70]

}
ve I = [0, 1] olmak üzere

Ă =
{(
κ[20,30],0

)
,
(
κ[30,40],0.234

)
,
(
κ[40,50],0.449

)
,
(
κ[50,60],0.671

)
,
(
κ[60,70],1

)}
⊂ Ŷ×I

kümesi bir bulanık kümedir ve üyelik fonksiyonu;

µĂ = {0, 0.234, 0.449, 0.671, 1}

dır.

Aynışekilde,

Ď =
{(
κ[20,30],1

)
,
(
κ[30,40],0.862

)
,
(
κ[40,50],0.441

)
,
(
κ[50,60],0.305

)
,
(
κ[60,70],0

)}
⊂ Ŷ×I

kümesi de bir bulanık kümedir ve üyelik fonksiyonu

µĎ = {1, 0.862, 0.441, 0.305, 0}

şeklindedir.

Tanım 2.4 Ă ve Ď, üyelik fonksiyonlarısırasıyla µĂ ve µĎ olmak üzere Ŷ de iki

bulanık küme ve ∀ ξ ∈ Ŷ için

Ă = Ď ⇔ µĂ(ξ) = µĎ(ξ)

Ă ⊂ Ď ⇔ µĂ(ξ) ≤ µĎ(ξ)

Ă ∪ Ď = max [µĂ(ξ), µĎ(ξ)]

Ă ∩ Ď = min [µĂ(ξ), µĎ(ξ)]

E = Ă′ ⇔ µE(ξ) = 1− µĂ(ξ)

dir (Chang 1968).
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Örnek 2.2 Örnek 2.1. de verilen, Ŷ de tanımlıĂ ve Ď bulanık kümelerine birleşim,

kesi̧sim ve tümleyen i̧slemleri sırasıyla uygulanırsa;

Ă ∪ Ď ⇔ µĂ∪Ď(κ) = max [µĂ(κ), µĎ(κ)] = {1, 0.862, 0.449, 0.671}

Ă ∩ Ď ⇔ µĂ∩Ď(κ) = min [µĂ(κ), µĎ(κ)] = {0, 0.234, 0.441, 0.305 }

Ă′ ⇔ µĂ′(κ) = 1− µĂ(κ) = {1, 0.766, 0.551, 0.329, 0}

Ď′ ⇔ µĎ′(κ) = 1− µĎ(κ) = {0, 0.138, 0.559, 0.695, 1}

elde edilir.

Örnek 2.3 Ŷ = {κ1 ,κ2, ...,κn} , I = [0, 1] ve Ă ve Ď, Ŷ de iki bulanık küme;

Ă = {(κ1, 0.1), (κ2, 0.01), ..., (κn, 0.00..01)}

Ď = {(κ1, 0.9), (κ2, 0.09), ..., (κn, 0.00..09)}

olmak üzere birleşim, kesi̧sim ve tümleyen i̧slemleri uygulandı̆gında sırasıyla;

Ă ∪ Ď = max {µĂ(κ), µĎ(κ)} = {0.9, 0.09, ..., 0.00..09} = µĎ(κ)

Ă ∩ Ď = min {µĂ(κ), µĎ(κ)} = {0.1, 0.01, ..., 0.00..01} = µĂ(κ)

Ă′ = {(κ1, 0.9), (κ2, 0.99), (κ3, 0.999)..., (κn, 0.99..99)}

elde edilir.
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t− normlar, bulanık mantı̆gın temel operatörleridir.

Tanım 2.5 Bir ∗ : [0, 1]× [0, 1]→ [0, 1] ikili i̧slemi verilsin.∀ κ, γ, ς, ζ ∈ [0, 1] için,

(i) ∗ i̧slemi deği̧smeli ve birleşmelidir.

(ii) ∗ i̧slemi süreklidir.

(iii) κ ∗ 1 = κ.

(iv) κ 6 ς ve γ 6 ζ ise κ∗ γ 6 ς ∗ ζ.

şartlarınısağlayan ∗ i̧slemine sürekli t-norm denir (Schwizer ve Sklar 1960).

Örnek 2.4 En iyi bilinen t-norm örnekleri TL, TP ve TM dönüşümleridir.

TL(δ, ζ) = Max {δ + ζ − 1, 0} (Lukasievicz t− norm)

TP (δ, ζ) = δ.ζ (Product t− norm)

TM(δ, ζ) = Min {δ, ζ} (Minimum t− norm)

Tanım 2.6 Bir t−norm, [0, 1]×[0, 1]→ [0, 1] biçiminde tanımlıbir fonksiyon olarak

[0, 1] de kesin olarak artıyorsa, kesin monotondur denir (Klement ve Mesiar).

Örnek 2.5 Minimum t − norm ve Lukasievicz t − norm süreklidir fakat kesin

monoton değildir (Klement ve Mesiar).

Örnek 2.6 T (δ, ζ) =


δ.ζ
2
, max {δ, ζ} < 1

δ.ζ, diğer durumlarda
şeklinde tanımlanan t−norm, kesin monotondur fakat sürekli değildir (Klement ve Mesiar).
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3. BULANIK METRİK UZAYLARDA BAZI BÜZÜLME DÖNÜŞÜM-

LERİ

3.1 Bulanık Metrik Uzaylar

Bulanık metrik uzay kavramınıilk kez Kramosil ve Michalek (1975) tanımlamı̧stır.

Sonrasında küçük bir deği̧siklikle George ve Veeramani (1994) tarafından yeniden

tanımlanmı̧stır.

Aşağıda her iki tanımıverilen bulanık metriği, metrikten ayıran en önemli özellik;

bulanık metriğin tanımında var olan ”t” parametresidir.

Tanım 3.1 Ŷ 6= ∅ bir küme, sürekli bir t-norm olan ∗ i̧slemi ve Ă, Ŷ × Ŷ× [0,∞)

üzerinde tanımlıbir bulanık küme olsun. Eğer ∀ κ, ξ, ς ∈ Ŷ ve t, s > 0 için,

(KMi) Ă (κ, ξ, 0) = 0,

(KMii) Ă (κ, ξ, t) = 1⇐⇒ κ = ξ,

(KMiii) Ă (κ, ξ, t) = Ă (ξ,κ, t),

(KMiv) Ă (κ, ξ, t) ∗ Ă (ξ, ς, s) ≤ Ă (κ, ς, t+ s),

(KMv) Ă (κ, ξ, .) : [0,∞)→ [0, 1] soldan sürekli

koşullarısağlanıyorsa Ă ya Ŷ üzerinde Kramosil ve Michalek yaklaşımıile bir bulanık

metrik ve
(
Ŷ , Ă, ∗

)
üçlüsüne KM bulanık metrik uzay denir (Kramosil ve Michalek 1975).

Kramosil ve Michalek (1975), bulanık küme kavramıve bundan türetilen kavramları

kullanarak bulanık metrik kavramınıdoğal ve sezgisel olarak kanıtlamayıve son-

rasında metrik kavramıyla mukayese etmeyi amaçlamı̧slardır. Bulanık kavramını,

metrik uzayların klasik kavramlarına uygulamı̧slardır.
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Bulanık metrik uzaylarıyeniden tanımlayan George ve Veeramani’nin (1994) tanımı

aşağıda verilmi̧stir:

Tanım 3.2 Ŷ 6= ∅ bir küme, sürekli bir t-norm olan ∗ i̧slemi ve Ă, Ŷ × Ŷ× (0,∞)

üzerinde tanımlıbir bulanık küme olmak üzere, ∀ κ, ξ, ς ∈ Ŷ ve t, s > 0 için,

(GVi) Ă (κ, ξ, t) > 0,

(GVii) Ă (κ, ξ, t) = 1⇐⇒ κ = ξ,

(GViii) Ă (κ, ξ, t) = Ă (ξ,κ, t),

(GViv) Ă (κ, ξ, t) ∗ Ă (ξ, ς, s) ≤ Ă (κ, ς, t+ s),

(GVv) Ă(κ, ξ, .) : (0,∞)→ [0, 1] sürekli

koşullarısağlanıyorsa Ă ya Ŷ üzerinde George ve Veeramani yaklaşımıile bir bulanık

metrik ve
(
Ŷ , Ă, ∗

)
üçlüsüne GV bulanık metrik uzay denir.

t parametresine göre κ ve ξ arasındaki uzaklı̆gın derecesi olarak, Ă (κ, ξ, t) tanım-

lanabilir (George ve Veeramani 1994).

George ve Veeramani (1994), GV bulanık metrik uzaylarıtanımladıklarıçalı̧smada

örnekler sunmuşlar, ∀ κ, ξ ∈ Ŷ için Ă (κ, ξ, .) nin azalmayan bir fonksiyon olduğunu

belirtmi̧slerdir.

κ merkezli r yarıçaplı açık ve kapalı yuvar tanımlarınıvermi̧sler, bulanık metrik

uzaylardaki her açık yuvarın açık bir küme olduğunu göstermi̧slerdir.

Birçok araştırmacı, GV bulanık metrik uzaylarda sabit noktanın varlı̆gınıve tekliğini

ispatlayan çalı̧smalar yapmı̧slardır.

Bu tez çalı̧smasında, GV yaklaşımıesas alınmı̧stır.
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Örnek 3.1 Ŷ = R, ∀ δ, ζ ∈ [0, 1] için δ ∗ ζ = δ.ζ i̧slemi verilsin.

∀ κ, ξ ∈ Ŷ ve t ∈ (0,∞) için

Ă (κ, ξ, t) =
1

e
|κ−ξ|
t

şeklinde tanımlansın. Bu durumda
(
Ŷ , Ă, ∗

)
bir bulanık metrik uzaydır

(George ve Veeramani 1994).

Örnek 3.2 Bir
(
Ŷ , d

)
metrik uzayıve ∗ çarpım t-normu olsun.

κ, ξ ∈ Ŷ ve t > 0 olmak üzere, Ŷ × Ŷ × (0,∞) üzerinde

Ăd (κ, ξ, t) =
t

t+ d(κ, ξ)

olarak tanımlansın.
(
Ŷ , Ăd, ∗

)
bir bulanık metrik uzaydır. Ăd ye d metriği tarafın-

dan indirgenen standart bulanık metrik denir (George ve Veeramani 1994).

Bulanık metrik uzaylarda üçgen eşitsizliği, bir üçlünün herhangi iki noktasıarasın-

daki mesafenin ili̧skisini ifade eder. Fakat bazıdurumlarda, üçgen eşitsizliği bazı

problemlerin ispatını tamamlamak için yeterli olmayabilir. Bu durumlarda Non-

Archhimedean olma özelliği kullanılır (López de Hierro vd. 2021).

Tanım 3.3
(
Ŷ , Ă, ∗

)
KM−bulanık metrik uzayın (KMiv) özelliği yerine ∀ κ, ξ, ς ∈

Ŷ ve t, s > 0 için,

Ă (κ, ξ, t) ∗ Ă (ξ, ς, s) ≤ Ă (κ, ς,max {t, s}) . . . . . . (NA)

sağlanıyorsa
(
Ŷ , Ă, ∗

)
üçlüsüneNon-Archimedean bulanık metrik uzay denir.

Yukarıdaki koşula denk olan bir diğer koşul da

Ă (κ, ξ, t) ∗ Ă (ξ, ς, t) ≤ Ă (κ, ς, t)

şeklinde yazılabilir. Dolayısıyla, her Non-Archimedean bulanık metrik uzay, bulanık

metrik uzaydır (Mihet 2008).

11



Örnek 3.3 Ŷ = (0,∞) , ∀ δ, ζ ∈ [0, 1] için δ ∗ ζ = δ.ζ i̧slemi verilsin. ∀ κ, ξ, ς ∈ Ŷ

için

Ă (κ, ξ, t) =
min {κ, ξ}
max {κ, ξ}

olarak tanımlansın. Bu durumda
(
Ŷ , Ă, ∗

)
üçlüsü Non-Archimedean bulanık metrik

uzaydır (Mihet 2008).

Grabiec (1988), Cauchy dizisi (G-Cauchy) ve bulanık metrik uzayların tamlık koşu-

lunu (G-tamlık) vermi̧s, bulanık metrik uzaylarda başlattı̆gısabit nokta teorisi çalı̧s-

malarınımetrik uzaylara paralel şekilde yürütmüştür.

Gregori ve Sapena (2002), GV yaklaşımıile tam bulanık metrik uzaylarda ve ayrıca

G-tam KM bulanık metrik uzaylarda sabit nokta teoremleri ispatlamı̧slar ve bulanık

metrik uzaylara katkısağlamı̧slardır.

Tanım 3.4
(
Ŷ , Ă, ∗

)
bir bulanık metrik uzay olsun. Eğer,

(i) Ŷ de tanımlıbir {κn} dizisi, ∀ t > 0 için

lim
n→∞

Ă (κn,κ, t) = 1

sağlanıyorsa κn, κ e yakınsar denir ve κn → κ ile gösterilir.

(ii) Ŷ de tanımlıbir {κn} dizisi, ∀ ε ∈ (0, 1) ve t > 0 için ∃ n0 ∈ N öyle ki

∀ n, m ≥ n0 için

Ă (κn,κm, t) > (1− ε)

şartınısağlıyorsa {κn} bir M-Cauchy dizisidir denir.

(iii) Ŷ de tanımlıbir {κn} dizisi, ∀ t > 0 ve p ∈ N için

lim
n→∞

Ă (κn,κn+p, t) = 1

şartınısağlıyorsa {κn} bir G-Cauchy dizisidir denir.

(iv) Bir bulanık metrik uzaydaki her M-Cauchy (G-Cauchy) dizisi yakınsak ise bu

bulanık metrik uzay M-tamdır (G-tamdır) denir

[(George ve Veeramani 1994), (Grabiec 1988)].
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”t” ye bağlıolmayan Ă sabit (stationary) bulanık metrik, klasik metriklere en yakın

olan bulanık metrik olarak kabul edilebilir.

Bulanık topolojideki en önemli sorunlardan birinin, uygun bir bulanık metrik kavramı

elde etmek olduğunu ifade eden Gregori ve Romaguera (2004) tarafından tanım-

lanan, sabit bulanık metrik tanımıaşağıda verilmi̧stir.

Tanım 3.5 Ŷ 6= ∅ bir küme, ∗ i̧slemi sürekli bir t-norm ve Ă, Ŷ × Ŷ üzerinde

tanımlıbir bulanık küme olmak üzere ∀ κ, ξ, ς ∈ Ŷ için

(Si) Ă (κ, ξ) > 0,

(Sii) Ă (κ, ξ) = 1⇔ κ = ξ,

(Siii) Ă (κ, ξ) = Ă (ξ,κ) ,

(Siv) Ă (κ, ς) ∗ Ă (ς, ξ) ≤ Ă (κ, ξ),

koşullarısağlanıyorsa
(
Ŷ , Ă, ∗

)
üçlüsüne sabit (stationary) bulanık metrik uzay

denir.

Başka deyi̧sle; Ă, Ŷ üzerinde tanımlıbir bulanık metrik olsun. Eğer Ă, t ye bağlı

değilse, Ă ya sabit bulanık metrik denir (Gregori ve Romaguera 2004).

Örnek 3.4 Ŷ = (0,∞) , ∀ δ, ζ ∈ [0, 1] için δ ∗ ζ = δ.ζ i̧slemi verilsin.

∀ κ, ξ, ς ∈ Ŷ için Ă (κ, ξ, t) = min{κ,ξ}
max{κ,ξ}olarak tanımlansın. Bu durumda

(
Ŷ , Ă, ∗

)
üçlüsü sabit bulanık metrik uzaydır (Gregori ve Romaguera 2004).

Tanım 3.6
(
Ŷ , Ă, ∗

)
bir bulanık metrik uzay olsun. Eğer κ, ξ, ς ∈ Ŷ ve her t > 0

için

(
1

Ă (κ, ξ, t)
− 1) ≤ (

1

Ă (κ, ς, t)
− 1) + (

1

Ă( ξ, ς, t)
− 1)

eşitsizliği sağlanıyorsa Ă bulanık metriğine üçgensel (triangular) denir

(Di Bari ve Vetro 2005).
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3.2 Bulanık Metrik Uzaylarda BazıBüzülme Dönüşümleri

Temel Banach toereminden sonra, bire bir dönüşümlerin sabit noktalarının araştırıl-

masıiçin çok fazla çalı̧sma yapılmı̧s, literatüre katkısağlanmı̧stır. Bire bir dönüşümün

tanımlandı̆gı geometrik yapı ve dönüşüm üzerinde tanımlanan büzülme şartı, bu

alandaki çalı̧smalardaki iki önemli noktayı teşkil etmektedir. Bu alanda birçok

araştırmacı; büzülme koşulunu deği̧stirerek, üzerinde çalı̧sılan uzayıdeği̧stirerek ya

da büzülme eşitsizliklerini genelleştirerek araştırma makaleleri yayınlamı̧slardır.

Metrik uzaylarda başlayan sabit nokta teorisi çalı̧smaları, daha sonra bulanık metrik

uzayların da tanımlanmasıile bulanık metrik uzaylara da taşınmı̧stır. KM bulanık

metrik ve GV bulanık metrik şeklinde farklıiki versiyonu bulunan bulanık metrik

uzaylar, sabit nokta teoremlerinde tercih sebebi olmuştur.

Grabiec (1988), KM bulanık metrik uzaylarda Banach büzülme teoremini aşağıdaki

şekilde oluşturmuştur:

"
(
Ŷ , Ă, ∗

)
tam bulanık metrik uzayında κ, ξ ∈ Ŷ için Ă(κ, ξ, t) = 1 olmak üzere,

Ă(=κ,=ξ, kt) ≥ Ă(κ, ξ, t) eşitsizlĭgi ∀ κ, ξ ∈ Ŷ , k ∈ (0, 1) ve t > 0 için săglanıyorsa

= : Ŷ −→ Ŷ dönüşümü tek bir sabit noktaya sahiptir."

Grabiec (1988), böylece bulanık metrik uzaylarda sabit nokta teorisi çalı̧smalarını

başlatmı̧stır.

Daha sonra, Gregori ve Sapena (2002), bulanık metrik uzaylarda Banach büzülme

ilkesini aşağıdaki şekilde tanımlamı̧stır:

"Her bulanık büzülme dizisinin Cauchy dizisi oldŭgu tam bulanık metrik uzayda k ∈

(0, 1) ,∀ ζ ∈ Ŷ ve pozitif t parametresi için

1

Ă(ζn+1, ζn+2, t)
− 1 ≤ k.

(
1

Ă(ζn, ζn+1, t)
− 1

)

săglanıyorsa = : Ŷ −→ Ŷ dönüşümü tek bir sabit noktaya sahiptir."

Gregori ve Sapena (2002), Banach sabit nokta teoremini, farklıyaklaşımlarla, tam

bulanık metrik uzaylarda, bulanık büzülme dönüşümlerine geni̧sletmi̧slerdir. GV−

bulanık metrik uzaylarda ve Grabiec’in (1988) yaklaşımıile tam olan KM− bulanık

metrik uzaylarda sabit nokta teoremleri çalı̧smı̧slardır.
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Gregori ve Sapena (2002) tarafından bulanık metrik uzaylarda tanımlanan bulanık

büzülme dönüşümü aşağıda verilmi̧stir.

Tanım 3.7
(
Ŷ , Ă, ∗

)
bulanık metrik uzayında ∀ κ, ξ ∈ Ŷ ve t > 0 için

1

Ă(=κ,=ξ, t)
− 1 ≤ σ.

(
1

Ă(κ, ξ, t)
− 1

)

olacak biçimde σ ∈ (0, 1) varsa (σ, = nin büzülme sabitidir)

= : Ŷ −→ Ŷ

dönüşümüne bulanık büzülme dönüşümü denir (Gregori ve Sapena 2002).

Mihet (2008), Gregori ve Sapena (2002) tarafından tanımlanan bulanık büzülme

dönüşümünü geni̧sleterek, KM bulanık metrik uzaylarda sabit nokta teorisi çalı̧s-

malarıyapmı̧stır ve Non-Archimedean bulanık metrik uzaylarda Banach büzülme

teoremi kanıtlamı̧stır. Bulanık metrik uzaylarda tanımladı̆gıψ− büzülme dönüşümü

aşağıda verilmi̧stir.

Uyarı3.1 Aşağıdaki özellikleri sağlayan tüm

ψ : [0, 1] −→ [0, 1]

fonksiyonlarının ailesi Ψ ile gösterilsin;

(i) ψ azalmayan ve sürekli,

(ii) ∀ η ∈ (0, 1) için ψ(η) > η (Mihet 2008).

Tanım 3.8
(
Ŷ , Ă, ∗

)
bulanık metrik uzay olsun. Eğer ψ ∈ Ψ ve ∀ κ, ξ ∈ Ŷ ve

t > 0 için

Ă(κ, ξ, t) > 0 =⇒ Ă(=κ,=ξ, t) ≥ ψ(Ă(κ, ξ, t)) (3.1)

sağlanıyorsa

= : Ŷ −→ Ŷ

dönüşümüne bulanık ψ− büzülme dönüşümü denir (Mihet 2008).
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Samet vd (2012) metrik uzaylarda tanımladıkları büzülme dönüşümleri sınıfı ile

bu tür dönüşümler için sabit noktanın varlı̆gınıve tekliğini ortaya koyan bir çalı̧sma

yapmı̧slardır. Söz konusu dönüşümü; " Her t > 0 için
∞∑
k=0

λk (t) <∞ (λk, λ fonksiy-

onunun k. kuvveti) şartınısăglayan ve azalmayan λ : [0,∞) −→ [0,∞) dönüşümleri

ve α : Ŷ × Ŷ −→ R biçiminde tanımlı olmak üzere, = : Ŷ −→ Ŷ dönüşümü ∀

κ, ξ ∈ Ŷ için α(κ, ξ)d(=κ,=ξ) ≤ λ (d(κ, ξ)) eşitsizlĭgini săglasın, bu durumda =

dönüşümüne α− λ−büzülme dönüşümü denir." şeklinde tanımlamı̧slardır.

Çok yankıuyandıran bu çalı̧smadan yararlanarak, birçok araştırmacıbüzülme şartını

veya üzerinde çalı̧sılan uzayıdeği̧stirerek literatüre katkısağlamı̧stır. Katkısunan

çalı̧smalardan biri Gopal ve Vetro (2014) tarafından ortaya konmuştur. Bu araştır-

macılar tanımladıklarıiki dönüşüm türü için sabit bir noktanın varlı̆gınıve tekliğini

iddia eden teoremleri bulanık metrik uzaylarda ifade ederek ispatlamı̧slardır.

Uyarı3.2 Tüm sağdan sürekli φ fonksiyonlarının ailesi Φ ve

φ : [0,∞) −→ [0,∞)

ve ∀ η > 0 için φ(η) < η olmak üzere, her φ ∈ Φ ve her η > 0 için (φn(η) ile φ nin

n. kuvveti temsil edilsin)

lim
n→∞

φn(η) = 0

dır (Gopal ve Vetro 2014).

Tanım 3.9
(
Ŷ , Ă, ∗

)
bir bulanık metrik uzay olsun. Eğer φ ∈ Φ ve

δ : Ŷ × Ŷ × (0,∞) −→ [0,∞)

fonksiyonları ∀ κ, ξ ∈ Ŷ ve t > 0 için

δ(κ, ξ, t)(
1

Ă(=κ,=ξ, t)
− 1) ≤ φ(

1

Ă(κ, ξ, t)
− 1) (3.2)

eşitsizliğini sağlıyorsa

= : Ŷ −→ Ŷ

dönüşümüne δ − φ− bulanık büzülme dönüşümü denir (Gopal ve Vetro 2014).
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Uyarı3.3 (3.2) de δ( κ, ξ, t) = 1 ve φ(η) = kη olacak biçimde k ∈ (0, 1) varsa,

Gregori ve Sapena (2002) tarafından tanımlanan bulanık büzülme dönüşümü elde

edilir (Gopal ve Vetro 2014).

Örnek 3.5 Ŷ =
{

1
ς
, ς ∈ N

}
∪ {0, 2} kümesi ve ∀ δ, ζ ∈ [0, 1] için δ ∗ ζ = δ.ζ i̧slemi

verilsin.∀κ, ξ ∈ Ŷ ve t > 0 için

Ă(κ, ξ, t) =
t

t+ |κ − ξ|

şeklinde tanımlansın. Bu durumda
(
Ŷ , Ă, ∗

)
bir G-tam bulanık metrik uzaydır.

= : Ŷ −→ Ŷ

dönüşümü;

=ς =

 ς2

4
, ς ∈ Ŷ − {2}

2, ς = 2

şeklinde ve

δ : Ŷ × Ŷ × (0,∞) −→ [0,∞)

fonksiyonu ∀ κ, ξ ∈ Ŷ ve t > 0 için

δ(κ, ξ, t) =

 1, κ, ξ ∈ Ŷ − {2}

0, κ, ξ /∈ Ŷ − {2}

ve ∀ η > 0 için φ(η) = η
2
şeklinde tanımlansın. Bu durumda = dönüşümü δ − φ−

bulanık büzülme dönüşümüdür.

Her bir bulanık büzülme dönüşümü, δ − φ− bulanık büzülme dönüşümüdür. Fakat

bu ifadenin kaŗsıtıher zaman doğru değildir.

Yukarıdaki örnekteki = dönüşümü, δ − φ− bulanık büzülme dönüşümüdür ancak

bulanık büzülme dönüşümü değildir (Gopal ve Vetro 2014).

Tanım 3.10
(
Ŷ , Ă, ∗

)
bir bulanık metrik uzay olsun. Eğer

δ : Ŷ × Ŷ × (0,∞) −→ [0,∞)

fonksiyonu ∀ κ, ξ ∈ Ŷ ve t > 0 için

δ(κ, ξ, t) ≥ 1 =⇒ δ(=κ,=ξ, t) ≥ 1
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özelliğini sağlıyorsa

= : Ŷ −→ Ŷ

dönüşümüne δ− geçi̧slidir denir (Gopal ve Vetro 2014).

Uyarı3.4 ψ ∈ Ψ ise ψ(1) = 1 ve ∀ η ∈ (0, 1) için lim
n→∞

ψn(η) = 1 olduğu kolayca

görülür (Gopal ve Vetro 2014).

Tanım 3.11
(
Ŷ , Ă, ∗

)
bir bulanık metrik uzay olsun. Eğer ψ ∈ Ψ ve

ρ : Ŷ × Ŷ × (0,∞) −→ (0,∞)

fonksiyonları ∀ κ, ξ ∈ Ŷ (κ 6= ξ) ve t > 0 için

Ă(κ, ξ, t) > 0 =⇒ ρ(κ, ξ, t) Ă(=κ,=ξ, t) ≥ ψ(Ă(κ, ξ, t)) (3.3)

özelliğini sağlıyorsa

= : Ŷ −→ Ŷ

dönüşümüne ρ− ψ− bulanık büzülme dönüşümü denir (Gopal ve Vetro 2014).

Uyarı3.5 (3.3) te ρ(κ, ξ, t) = 1 oluyorsa, Mihet (2008) tarafından verilen bulanık

ψ− büzülme dönüşümü elde edilir (Gopal ve Vetro 2014).

Örnek 3.6 Ŷ = (0,∞) olsun. ∀ δ, ζ ∈ [0, 1] için δ ? ζ = δ.ζ i̧slemi ile ∀ κ, ξ ∈ Ŷ

ve t > 0 için

Ă(κ, ξ, t) =
min {κ, ξ}
max {κ, ξ}

olarak tanımlansın.

Bu durumda
(
Ŷ , Ă, ∗

)
M-tam Non-Archimedean bulanık metrik uzaydır.

= : Ŷ −→ Ŷ

dönüşümü;

=ξ =


√
ξ, ξ ∈ (0, 1]

2, ξ ∈ (1,∞)

şeklinde ve

ρ : Ŷ × Ŷ × (0,∞) −→ (0,∞)
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fonksiyonu ∀ κ, ξ ∈ Ŷ ve t > 0 için

ρ(κ, ξ, t) =

 1, κ, ξ ∈ (0, 1]

2, κ, ξ ∈ (1,∞)

ve ∀ η ∈ (0, 1] için

ψ(η) =
√
η

şeklinde tanımlansın. = dönüşümü ρ− ψ−bulanık büzülme dönüşümüdür.

Her bir bulanık ψ− büzülme dönüşümü, δ − φ− bulanık büzülme dönüşümüdür.

Fakat bu ifadenin kaŗsıtıher zaman doğru değildir.

Yukarıdaki örnekteki = dönüşümü, δ − φ− bulanık büzülme dönüşümüdür ancak

bulanık ψ− büzülme dönüşümü değildir (Gopal ve Vetro 2014).

Tanım 3.12
(
Ŷ , Ă, ∗

)
bir bulanık metrik uzay olsun.

ρ : Ŷ × Ŷ × (0,∞) −→ (0,∞)

fonksiyonu κ, ξ ∈ Ŷ ve her t > 0 için

ρ(κ, ξ, t) ≤ 1 =⇒ ρ(=κ,=ξ, t) ≤ 1

özelliğini sağlıyorsa

= : Ŷ −→ Ŷ

dönüşümüne ρ− geçi̧slidir denir (Gopal ve Vetro 2014).

Buraya kadar olan kısımda; literatürde yer almı̧s, gerek metrik gerekse bulanık

metrik uzaylarda tanımlanmı̧s çeşitli büzülme dönüşümlerinden birkaç tanesi ifade

edilmi̧stir. Aşağıda tanımıverilen -F− büzülme dönüşümü de söz konusu dönüşüm-

lerden biridir.

Wardovski (2012) tarafından metrik uzaylarda tanımlanan -F− büzülme dönüşümü,

Huang vd. (2021) tarafından yeniden düzenlenerek, bulanık metrik uzaylara ak-

tarılmı̧stır. Bu aktarım sırasında daha sade bir büzülme dönüşümü hedeflenmi̧stir.

-F− bulanık büzülme dönüşümünde öne çıkan özellik "-F’nin kesin artan" olmasıdır.
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Son olarak, Huang vd. (2021) tarafından bulanık metrik uzaylarda tanımlanan -F−

bulanık büzülme dönüşümü aşağıda verilmi̧stir.

Uyarı3.6 Bütün

-F : [0, 1]→ (0,∞)

dönüşümlerinin sınıfıF ile gösterilir. ∀ κ, ξ ∈ [0, 1] için κ < ξ iken -F(κ) < -F(ξ)

dır (Huang vd. 2021).

Tanım 3.13
(
Ŷ , Ă, ∗

)
bir bulanık metrik uzay ve -F ∈ F olsun. Eğer ∀ κ, ξ ∈ Ŷ

(κ 6= ξ) ve t > 0 için

τ .-F(Ă(=κ,=ξ.t)) ≥ -F(Ă(κ, ξ, t))

şartınısağlayan τ ∈ (0, 1) varsa

= : Ŷ −→ Ŷ

dönüşümüne -F− bulanık büzülme dönüşümü denir (Huang vd. 2021).

20



4. GENİŞLETİLMİŞ BULANIK METRİK UZAYLAR ÜZERİNE

Bu bölümde geni̧sletilmi̧s bulanık metrik uzaylar ayrıntılıbir şekilde ele alınarak

özellikleri incelenmi̧stir.

4.1 Geni̧sletilmi̧s Bulanık Metrik Uzaylar

Gregori vd. (2019) tarafından, geni̧sletilmi̧s bulanık metrik uzayların tanımlandı̆gı

makalede, Ŷ üzerindeki Ă bulanık metrik, GV yaklaşımıile ∧t>0Ă(κ, ξ, t) > 0 ola-

cak şekilde incelenmi̧s ve Ă nın sürekli geni̧sletilmi̧si Ă0, Ŷ × Ŷ× [0,∞) üzerinde

geni̧sletilmi̧s bulanık metrik olarak adlandırılmı̧stır.

Tanım 4.1 Ŷ 6= ∅ bir küme, ∗ i̧slemi sürekli bir t-norm ve Ă0, Ŷ × Ŷ × [0,∞)

üzerinde bir bulanık küme olmak üzere, ∀ κ, ξ, ς ∈ Ŷ ve t, s ≥ 0 için

(i) Ă0(κ, ξ, t) > 0,

(ii) Ă0(κ, ξ, t) = 1⇐⇒ κ = ξ,

(iii) Ă0(κ, ξ, t) = Ă0(ξ,κ, t),

(iv) Ă0(κ, ξ, t) ∗ Ă0(ξ, ς, s) ≤ Ă0(κ, ς, t+ s),

(v) Ă0
κ,ξ : [0,∞) → (0, 1] süreklidir (Burada Ă0

κ,ξ (t) = Ă0(κ, ξ, t) dır).

koşullarısağlanıyorsa Ă0, Ŷ üzerinde geni̧sletilmi̧s bulanık metriktir ve
(
Ŷ , Ă0, ∗

)
üçlüsüne de geni̧sletilmi̧s bulanık metrik uzay denir (Gregori vd. 2019).

Örnek 4.1 Ŷ = (0,∞) olsun. Ŷ × Ŷ× [0,∞) üzerinde tanımlı

Ă0(κ, ξ, t) =
min {κ, ξ}+ t

max {κ, ξ}+ t

bulanık kümesi, çarpım t-normuna göre, Ŷ üzerinde geni̧sletilmi̧s bir bulanık metrik-

tir (Gregori vd. 2019).
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Örnek 4.2 (Ŷ , d) metrik uzay ve φ(0) > 0 olmak üzere φ : [0,∞) → (0, 1] sürekli

azalmayan bir fonksiyon ve ∗ çarpım t-normu verilsin. ∀ κ, ξ ∈ Ŷ ve t ≥ 0 için

Ă0
φ(κ, ξ, t) =

φ(t)

φ(t) + d(κ, ξ)

şeklinde tanımlansın. Bu durumda
(
Ŷ , Ă0

φ, ∗
)
geni̧sletilmi̧s bir bulanık metriktir

(Gregori vd. 2019).

Aşağıda verilen Teorem 4.1, bulanık metriklerle geni̧sletilmi̧s bulanık metrikler arasın-

daki ili̧skiyi vermesi açısından önemlidir.

Teorem 4.1 Ă, Ŷ×Ŷ×(0,∞) üzerinde tanımlıbir bulanık küme; Ă nın geni̧sletilmi̧si

Ă0, Ŷ × Ŷ× [0,∞) üzerinde tanımlıbir bulanık küme olmak üzere

∀ κ, ξ ∈ Ŷ ve t > 0 için Ă0(κ, ξ, t) = Ă (κ, ξ, t)

ve

Ă0(κ, ξ, 0) = ∧t>0Ă(κ, ξ , t)

olsun. Bu durumda, aşağıdaki önermeler denktir:

(i)
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bulanık metrik uzaydır.

(ii)
(
Ŷ , Ă, ∗

)
, ∀ κ, ξ ∈ Ŷ için ∧t>0Ă(κ, ξ, t) > 0 olacak biçimde bir bulanık metrik uzaydır.

(Gregori vd. 2019).

.

İspat. =⇒:

(Ă0, ∗), Ŷ üzerinde geni̧sletilmi̧s bir bulanık metrik olsun. Bu durumda (Ă, ∗), Ŷ

üzerinde bulanık bir metriktir. O halde

∀ κ, ξ ∈ Ŷ için ∧t>0 Ă(κ, ξ, t) > 0

olduğu gösterilerek ispat tamamlanacaktır.

κ, ξ ∈ Ŷ ve 0 < t < s olsun.

Bulanık metrik uzayın (GViv) özelliğinden;

Ă (κ, ξ, t) ∗ Ă (ξ, ξ, s− t) ≤ Ă (κ, ξ, s),
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(GViii) özelliğinden;

Ă (ξ, ξ, s− t) = 1

ve t−normun (iii) numaralıözelliğinden

Ă (κ, ξ, t) ≤ Ă (κ, ξ, s)

elde edilir. Dolayısıyla Ă (κ, ξ, t) azalmayandır.

Ayrıca, geni̧sletilmi̧s bulanık metrik uzayın (v) numaralıözelliğinden Ă0
κ,ξ fonksiy-

onu, t = 0 noktasında süreklidir.

O halde;

∧t>0Ă(κ, ξ, t) = lim
t→0

Ă(κ, ξ, t) = lim
t→0

Ă0
κ, ξ(t) = Ă0

κ, ξ(0) = Ă0(κ, ξ, 0) > 0

dır.

⇐=:(
Ŷ , Ă, ∗

)
bulanık metrik uzay ve ∀ κ, ξ ∈ Ŷ için ∧t>0Ă(κ, ξ, t) > 0 olsun. Bu

durumda,
(
Ŷ , Ă0, ∗

)
üçlüsünün geni̧sletilmi̧s bulanık metrik uzay olduğu gösterile-

cektir.

(i) ∀ κ, ξ ∈ Ŷ için ∧t>0Ă(κ, ξ, t) > 0 olduğuna göre; t = 0 olduğunda Ă0(κ, ξ, 0) > 0

ve

t > 0 durumunda Ă0(κ, ξ, t) = Ă(κ, ξ, t) > 0 sağlanır. Dolayısıyla;

∀ κ, ξ ∈ Ŷ ve t ≥ 0 için Ă0(κ, ξ, t) > 0

dır.

(ii) t = 0 olduğunda Ă0(κ, ξ, 0) = ∧t>0 Ă (κ, ξ, t) = 1 ⇒ Ă (κ, ξ, t) = 1 ⇒ κ = ξ

ve

t > 0 durumunda Ă0(κ, ξ, t) = Ă(κ, ξ, t) = 1⇒ κ = ξ sağlanır. Dolayısıyla,

∀ κ, ξ ∈ Ŷ ve t ≥ 0 için Ă0(κ, ξ, t) = 1⇒ κ = ξ.

(iii) ∀ κ, ξ ∈ Ŷ ve t ≥ 0 için Ă0(κ, ξ, t) = Ă0 (ξ,κ, t) olduğu açıkça görülür.

(iv) κ, ξ, ς ∈ Ŷ alalım. t, s ≥ 0 için üç durum söz konusudur;

I. t, s > 0. Bu durumda, Ă0(κ, ξ, t) = Ă(κ, ξ, t) olduğundan özellik sağlanır.

II. t = 0 ve s > 0 olsun (ya da t > 0 ve s = 0 olsun).
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ε ∈ (0, s) olacak şekilde seçilirse,

Ă0(κ, ς, 0 + s) = Ă0(κ, ς, s) = Ă(κ, ς, s) ≥ Ă(κ, ξ, s− ε) ∗ Ă(ξ, ς, ε)

dır. ε→ 0 için limit alındı̆gında,

Ă0(κ, ς, s) ≥ lim
ε→0

[
Ă (κ, ξ, s− ε) ∗ Ă (ξ, ς, ε)

]
= lim

ε→0
Ă(κ, ξ, s− ε) ∗ lim

ε→0
Ă(ξ, ς, ε)

= Ă (κ, ξ , s) ∗ ∧ε>0 Ă (κ, ξ, ε)

= Ă0(κ, ξ , s) ∗ Ă0(ξ, ς, 0).

III. t = s = 0 olsun.

Ă0(κ, ς, 0) = ∧t>0Ă(κ, ς, t) = lim
t→0

Ă(κ, ς, t)

≥ lim
t→0

[
Ă (κ, ξ ,

t

2
) ∗ Ă ( ξ, ς,

t

2
)

]
= lim

t→0
Ă(κ, ξ,

t

2
) ∗ lim

t→0
Ă(ξ, ς,

t

2
)

= ∧ t>0Ă(κ, ξ,
t

2
) ∗ ∧ t>0 Ă(ξ, ς,

t

2
)

= Ă0(κ, ξ, 0) ∗ Ă0(ξ , ς, 0).

Böylece;

∀ κ, ξ, ς ∈ Ŷ ve t, s ≥ 0 için Ă0(κ, ξ, t) ∗ Ă0(ξ, ς, s) ≤ Ă0(κ, ξ, t+ s)

olduğu elde edilir.

(v) Ăκ,ξ fonksiyonu (0,∞) aralı̆gında sürekli olduğundan;

∀ κ, ξ ∈ Ŷ için Ă0
κ,ξ fonksiyonu, (0,∞) aralı̆gının her bir noktasında süreklidir.

t = 0 olduğunda ise;

lim
t→0

Ă0 (κ, ξ , t) = lim
t→0

Ă(κ, ξ, t) = ∧ t>0Ă (κ, ξ, t) = Ă0 (κ, ξ, 0)

elde edelir ki bu da Ă0
κ,ξ fonksiyonunun t = 0 noktasında da sürekli olduğu anlamına

gelir. İspat burada tamamlanmı̧stır.

Örnek 4.3
(
Ŷ , d

)
bir metrik uzay olsun.

(
Ŷ , Ăd,∧

)
standart bulanık metriği

geni̧sletilemez. Şöyle ki; κ 6= ξ olacak şekilde κ, ξ ∈ Ŷ alındı̆gında d(κ, γ) 6= 0

olur ve ∧t>0Ăd(κ, ξ, t) = lim
t→0

t
t+d(κ,ξ) = 0 elde edilir (Gregori vd. 2019).
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4.2 Geni̧sletilmi̧s Bulanık Metrik Uzaylar Üzerine

Gregori vd. (2019), GV yaklaşımı ile, ∧ t>0Ă(κ, ξ, t) > 0 olacak şekilde Ŷ de

inceledikleri Ă bulanık metrikleri; Ă0 geni̧sletilmi̧s bulanık metrikler olarak tanım-

lamı̧slardır. τ Ă0 ın Ŷ üzerinde metriklenebilir bir topoloji olduğunu, klasik metrik-

lere benzer yaklaşımla ispatlamı̧slardır.

Bulanık metrik uzaylarda verilen sabit nokta teoremlerinin genellemelerini elde et-

mek için, geni̧sletilmi̧s bulanık metrik uzayların kullanı̧slıolduğunu ifade etmi̧slerdir.

Ŷ üzerindeki Ă sabit bulanık metriğinin (t ye bağlıolmayan),

Ă0(κ, ξ, t) = Ă(κ, ξ)

ile verilen ∀ κ, ξ ∈ ve t ≥ 0 için

Ă0(κ, ξ, t) > 0 ve

Ă0
κ,ξ : [0,∞)→ (0, 1] sürekli

şartlarınısağlayan, Ŷ × Ŷ × [0,∞) üzerinde tanımlı Ă0 bulanık kümesi olduğunu

belirtmi̧slerdir.

Gregori vd. (2019), bulanık metrik uzaylar ile geni̧sletilmi̧s bulanık metrik uzaylar

arasındaki ili̧skiyi açıklayan bir teoremi de (Teorem 4.1) ispatlamı̧slardır. Ayrıca,

geni̧sletilmi̧s bulanık metrik uzaylarda; yakınsaklık, tamlık, Cauchy dizisi, açık yu-

var, kapalıyuvar gibi kavramlarıtanımlamı̧slardır.

Daha sonra, sabit nokta teorisinde önemli bir yere sahip olan büzülme kavramını

geni̧sletilmi̧s bulanık metrik uzaylarda çalı̧smı̧slardır. Mihet’in (2008) bulanık metrik

uzaylarda tanımladı̆gı ψ− büzülme dönüşümünü ele alarak, t = 0 noktasındaki

büzülmeyi i̧saret eden, ψ − 0− büzülme dönüşümünü tanımlamı̧slardır ve örnekler

vermi̧slerdir. Gregori vd. (2019), literatürdeki kavramlarıkullanarak, sabit nokta

teoremlerinin daha genel bir versiyonda verilebileceğini iddia etmi̧slerdir.

Ayrıca tam geni̧sletilmi̧s bulanık metrik uzaylarda her bulanık ψ − 0−büzülme

dönüşümünün tek bir sabit noktaya sahip olduğunu iddia eden bir teoremi ispatsız

vermi̧slerdir. Bu teoremin tarafımızca yapılan ispatı, bölümün sonunda yer almak-

tadır.
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Önerme 4.1
(
Ŷ , Ă, ∗

)
bulanık metrik uzay olsun.

NĂ (κ, ξ) = ∧ t>0 Ă(κ, ξ, t)

şeklinde tanımlansın. ∀ κ, ξ ∈ Ŷ için ∧t >0Ă (κ, ξ, t) > 0 olmasıiçin gerek ve yeter

şart; (NĂ, ∗) nın Ŷ üzerinde sabit bulanık metrik olmasıdır (Gregori vd. 2019).

Tanım 4.2
(
Ŷ , Ă, ∗

)
bulanık metrik uzayında ∀ κ, ξ ∈ Ŷ için

∧t>0 Ă (κ, ξ, t) > 0

oluyorsa Ă ya geni̧sletilebilir denir. Böyle bir durumda; Ă0, Ă nın geni̧sletilmi̧sidir

(Gregori vd. 2019).

Sonuç 4.1 (i) Ă nın geni̧sletilebilir olmasıiçin gerek ve yeter şart; (NĂ, ∗) nın Ŷ

üzerinde sabit bulanık metrik olmasıdır.

(ii)
(
Ŷ , Ă, ∗

)
nın bulanık metrik uzay olmasıiçin gerek ve yeter şart;

(
Ŷ , Ă0, ∗

)
nın

Ă0 (κ, ξ, t) =

 NĂ (κ, ξ), t = 0

Ă (κ, ξ, t), t > 0

olacak biçimde bir geni̧sletilmi̧s bulanık metrik uzay olmasıdır.

(iii) ∀ κ, ξ ∈ Ŷ için

Ă0(κ, ξ, 0) = ∧ t>0Ă(κ, ξ, t) = NĂ(κ, ξ) (4.1)

dır.

(iv) Ă0
κ,ξ reel fonksiyonu [0,∞) üzerinde sürekli olduğundan, geni̧sletilebilir bir bu-

lanık metrik Ă nın geni̧sletimi̧si Ă0 tektir (Gregori vd. 2019).

Tanım 4.3
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay, {κn} Ŷ de bir dizi ve

ε ∈ (0, 1) olsun. Bir n0 ∈ N olmak üzere ∀ n,m ≥ n0 için

Ă0(κn,κm, t) > (1− ε)

sağlanıyorsa {κn} bir Ă0−Cauchy dizisidir denir ve

Ă0 (κn,κm, t) = 1

ile gösterilir (Gregori vd. 2019).
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Önerme 4.2
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay olsun.

Her Ă0−yakınsak dizisi, Ă0−Cauchy dizisidir (Gregori vd. 2019).

Gregori vd. (2019), geni̧sletilmi̧s bulanık metrik uzaylarda topolojik kavramları

da tanımlamı̧slardır. Bu kavramlar, bulanık metrik uzaylardakine benzer şekilde

oluşturulmuştur.(
Ŷ , Ă0, ∗

)
bir geni̧sletilmi̧s bulanık metrik uzayında κ ∈ Ŷ , r ∈ (0, 1) ve t ≥ 0 için

olsun. Bu durumda;

κ merkezli, r yarıçaplıve t parametreli açık yuvar;

BĂ0(κ, r, t) =
{
ξ ∈ Ŷ : Ă0 (κ, ξ, t) > 1− r

}
κ merkezli, r yarıçaplıve t parametreli kapalıyuvar;

BĂ0 [κ, r, t] =
{
ξ ∈ Ŷ : Ă0 (κ, ξ, t) ≥ 1− r

}
şeklinde ifade edilir. ∀ t > 0 için

BĂ0(κ, r, t) = BĂ(κ, r, t) ve BĂ0 [κ, r, t] = BĂ [κ, r, t]

dır. t = 0 için

BĂ0 (κ, r, 0) = BNĂ
(κ, r) ve BĂ0 [κ, r, 0] = BNĂ

[κ, r]

dır. ∀ κ ∈ Ŷ , r ∈ (0, 1) ve t = 0 olmak üzere;

BĂ0(κ, r, 0) ⊂ BĂ(κ, r, t) ve BĂ0 [κ, r, 0] = BNĂ
[κ, r] dır.

Lemma 4.1 τ Ă0 topolojisi metriklenebilirdir (Gregori vd. 2019).

İspat.
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay olsun.{

BNĂ
(κ, r) : κ ∈ Ŷ , r ∈ (0, 1)

}
ailesi, Ŷ üzerinde tanımlıNĂ sabit bulanık metrikten üretilen τNĂ topolojisinin bir

tabanıdır.Dolayısıyla {
BĂ0 (κ, r, 0) : κ ∈ Ŷ , r ∈ (0, 1)

}
ailesi, Ŷ üzerinde tanımlıτNĂ topolojisinin bir bazıdır ve Ă

0 tarafından üretilmi̧stir.

Üstelik, BĂ0 (κ, r, 0) açık yuvarları τ Ă0 −açıktır ve benzer şekilde kapalıyuvarlar

τ Ă0 −kapalıdır. Böylece τ Ă0 topolojisi metriklenebilirdir.
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Önerme 4.3
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay ve {κn} , Ŷ de bir

dizi olsun.

lim
n→∞

Ă0(κn,κ0, 0) = 1 ⇐⇒ {κn} dizisi κ0 a τ Ă0−yakınsar (Gregori vd. 2019).

İspat. τNĂ = τ Ă0 olduğundan,

Ŷ deki {κn} dizisi κ0 ∈ Ŷ ye τ Ă−yakınsar ⇐⇒ {κn}, κ0 a τNĂ−yakınsar.

Bulanık metrik uzaylardan bilindiği gibi;

lim
n→∞

NĂ(κn,κ0) = 1 ⇐⇒ {κn} dizisi κ0 a τNĂ − yakınsar

Dolayısıyla,

lim
n→∞

Ă0(κn,κ0, 0) = NĂ(κn,κ0) = 1 ⇐⇒ {κn} dizisi κ0 ∈ Ŷ ye τ
Ă0
− yakınsar.

İspat tamamlanmı̧stır.

Gregori vd. (2019), geni̧sletilmi̧s bulanık metrik uzaylar ile klasik metrik uzaylar

arasındaki benzerliğin, topolojik açıdan bariz olduğunu vurgulamı̧slar ve bu durumu

açıklarken; t parametresinin topolojik kavramlarda herhangi bir rol oynamamasıile

ili̧skilendirmi̧slerdir.

Gregori vd. (2019), geni̧sletilmi̧s bulanık metrik uzaylarıtanımladıklarımakalenin

sonunda, Mihet’in (2008) bulanık metrik uzaylarda tanımladı̆gıbüzülme dönüşümünü,

geni̧sletilmi̧s bulanık metrik uzaylara uyarlamı̧slardır.

"Tam genişletilmiş bulanık metrik uzaylarda her bulanık ψ−0−büzülme dönüşümünün

tek bir sabit noktaya sahip oldŭgunu" iddia eden teoremin ispatıaşağıda verilmi̧stir:

İspat. t = 0 için;.

κ0 ∈ Ŷ ve {κn}n ∈ N, Ŷ de dizi; κn+1 = =κn olsun.

Bazın ∈ N için κn+1 = κn oluyorsa, bu durumda κ∗ ∈ Ŷ , κ∗ = κn =′ nin bir

sabit noktasıdır.

∀ n ∈ N için κn 6= κn+1 olsun.

=, bulanık ψ − 0−büzülme dönüşümü olduğundan,

(3.1) de κ = γn−1, ξ = γn, t = 0 yazılırsa ve (4.1) kullanılırsa,
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Ă(=κ,=ξ, t) ≥ ψ
(
Ă(κ, ξ, t)

)
Ă0(=γn−1,=γn, 0) = NĂ(=γn−1,=γn)

≥ ψ(NĂ(γn−1, γn))

> NĂ(γn−1, γn)

bulunur. Buradan,
{
NĂ(γn, γn+1)

}
artan bir dizi olduğu elde edilir. Ayrıca bu dizi

üstten sınırlıolduğundan yakınsaktır.

µ ∈ (0, 1] ve n ∈ N olmak üzere,

lim
n→∞

NĂ(γn, γn+1) = µ

olsun. Açıktır ki, n ∈ N için,

NĂ(γn, γn+1) < µ.

µ < 1 olsun.

(3.1) de κ = γn, γ = γn+1, t = 0 yazılırsa ve (4.1) kullanılırsa,

Ă0(=γn,=γn+1, 0) = NĂ(=γn,=γn+1) ≥ ψ
(
NĂ(γn, γn+1)

)
> NĂ(γn, γn+1)

bulunur. n→∞ için,

µ ≥ ψ (µ) > µ

olup µ = 0 çeli̧skisi elde edilir. Buradan;

lim
n→∞

NĂ(γn, γn+1) = 1, n ∈ N.

Şimdi {γn} dizisinin Cauchy dizisi olmadı̆gıkabul edilsin.

ε ∈ (0, 1) ve
{
γm

λ

}
,
{
γnλ
}
iki dizi, ∀ k ∈ N ve mλ > n

λ
≥ k olsun.

NĂ(γm
λ
, γn

λ
) ≤ 1− ε

NĂ(γm
λ−1

, γn
λ−1

) > 1− ε ve NĂ(γm
λ−1

, γn
λ
) > 1− ε

sabit metrik uzay (Siv) özelliğinden,
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1− ε ≥ NĂ(γm
λ
, γn

λ
) ≥ NĂ(γm

λ
, γm

λ−1
) ∗NĂ(γmλ−1

, γn
λ
)

> NĂ(γm
λ−1

, γm
λ
) ∗ (1− ε)

buradan,

1− ε ≥ NĂ(γm
λ
, γn

λ
) ≥ NĂ(γm

λ−1
, γm

λ
) ∗ (1− ε)

dır. λ→∞ için,

lim
λ→∞

(1− ε) ≥ lim
λ→∞

NĂ(γmλ , γnλ ) ≥ lim
λ→∞

NĂ(γm
λ−1

, γm
λ
) ∗ lim

λ→∞
(1− ε)

1− ε ≥ lim
λ→∞

NĂ(γm
λ
, γn

λ
) ≥ 1 ∗ (1− ε)

1− ε ≥ lim
λ→∞

NĂ(γmλ , γnλ ) ≥ 1− ε

buradan,

lim
λ→∞

NĂ(γm
λ
, γn

λ
) = 1− ε

dır. Ayrıca, (3.1) de κ = γm
λ−1

, γ = γnλ−1
, t = 0 yazıldı̆gında ve ∀ ζ ∈ (0, 1] için

ψ (ζ) > ζ olduğundan;

NĂ(=γmλ−1
,=γn

λ−1
) ≥ ψ

(
NĂ(γm

λ
−1, γnλ−1

)
)
> NĂ(γmλ−1

, γn
λ−1

)

1− ε ≥ NĂ(γm
λ
, γn

λ
) > NĂ(γm

λ−1
, γn

λ
−1) > 1− ε

çeli̧skisi elde edilir. Dolayısıyla {γn} bir Cauchy dizisidir. Ý tam olduğundan,

∃ γ∗ ∈ Ý öyle ki λ→∞ için γλ → γ∗

dır. =γ∗ = γ∗ eşitliği ispatlanacak olursa,

NĂ(=γ∗, γ∗) ≥ NĂ(=γ∗,=γλ) ∗NĂ(=γλ, γ∗) ≥ ψ (NĂ(γ∗, γλ)) ∗NĂ(=γλ, γ∗)

λ→∞ iken, ψ(1) = 1 olduğundan;

lim
λ→∞

NĂ(=γ∗, γ∗) = 1 =⇒ =γ∗ = γ∗

dır.

γ∗nin tekliğini göstermek için = nin birbirinden farklıiki sabit noktasıolarak κ∗ve

γ∗ seçildiğinde;

NĂ(=κ∗,=γ∗) ≥ ψ (NĂ(κ∗, γ∗)) > NĂ(κ∗, γ∗)
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ve buradan da,

NĂ(=κ∗,=γ∗) > NĂ(κ∗, γ∗) = NĂ(=κ∗,=γ∗)

çeli̧skisi elde edilir.

Böylece γ∗ noktasının tekliği ortaya çıkmı̧stır.

İspat burada tamamlanmı̧stır.
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5. GENİŞLETİLMİŞ BULANIKMETRİKUZAYLARDA SABİTNOKTA

TEOREMLERİ ÜZERİNE

Bu bölüm, tezin özgün olan kısmıdır. 2019 yılında tanımlanan geni̧sletilmi̧s bu-

lanık metrik uzaylardan yararlanılarak bazıyeni sabit nokta teoremleri verilmi̧stir.

Bu bölümde, literatürde metrik uzaylarda var olan ve araştırmacılar tarafından bu-

lanık metrik uzaylara uygulanan bazıbüzülme dönüşümleri ve sabit nokta teoremleri

geni̧sletilmi̧s bulanık metrik uzaylara uyarlanmı̧stır.

Bulanık metrik uzaylardaki tanımlar, teoremler, sonuçlar vb. esas alınarak geni̧sletilmi̧s

bulanık metrik uzaylara uyarlanmı̧s ve teoremler ispatlanırken bilinen matematiksel

yöntemler kullanılmı̧stır.

Geni̧sletilmi̧s bulanık metrik uzaylarda sabit nokta teoremleri oluştururken, ispat-

larken; literatürde var olan çeşitli büzülme dönüşümlerini geni̧sletilmi̧s bulanık metrik

uzaylarda tanımlamak isteyen yeni araştırmacılara fikir vermek ve geni̧sletilmi̧s bu-

lanık metrik uzaylarda yapılan çalı̧smalara katkısağlamak amaçlanmı̧stır.

Samet vd. (2012) tarafından metrik uzaylarda tanımlanan büzülme dönüşümlerini,

bulanık metrik uzaylarda tanımlayan Gopal ve Vetro’dan (2014) faydalanarak; δ −

φ−Ă0− bulanık büzülme, δ−Ă0− geçi̧slilik, ρ−ψ−Ă0− bulanık büzülme ve ρ−Ă0−

geçi̧slilik dönüşümlerinin tanımlarıilk kez verilmi̧stir ve bu dönüşümler kullanılarak,

bazısabit nokta teoremleri geni̧sletilmi̧s bulanık metrik uzaylarda ispatlanmı̧stır.

Wardowski (2012) tarafından metrik uzaylarda tanımlanan bir büzülme dönüşümünü

bulanık metrik uzaylara taşıyan Huang vd. (2021)’den faydalanarak; -F − Ă0−

bulanık büzülme dönüşümü ilk kez tanımlanmı̧s ve bazı sabit nokta teoremleri

geni̧sletilmi̧s bulanık metrik uzaylarda ispatlanmı̧stır.

Bu bölümde; ∀ κ, ξ ∈ Ŷ için

∧t>0Ă(κ, ξ, t) > 0

şartını sağlayan bulanık metrik uzaylarda, yani;
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bulanık

metrik uzaylarda çalı̧sılmı̧stır.
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δ − φ− Ă0− Bulanık Büzülme Dönüşümü

Burada geni̧sletilmi̧s bulanık metrik uzaylarda δ − φ − Ă0− bulanık büzülme ve

δ − Ă0− geçi̧slilik dönüşümlerinin tanımlarıilk kez verilmi̧stir. Yeni tanımlanan bu

dönüşümler kullanılarak, literatürde var olan bazısabit nokta teoremleri geni̧sletilmi̧s

bulanık metrik uzaylarda ispatlanmı̧stır.

Tanım 5.1
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay olsun.

Eğer φ ∈ Φ ve

δ : Ŷ × Ŷ × [0,∞) −→ [0,∞)

fonksiyonları ∀ κ, ξ ∈ Ŷ , t ≥ 0 için

δ (κ, ξ, t) (
1

Ă0(=κ,=ξ, t)
− 1) ≤ φ(

1

Ă0(κ, ξ, t)
− 1) (5.1)

özelliğini sağlıyorsa

= : Ŷ −→ Ŷ

dönüşümüne δ − φ− Ă0− bulanık büzülme dönüşümü denir.

Özel olarak t = 0 için sağlanıyorsa = dönüşümüne δ − φ − 0− bulanık büzülme

dönüşümü denir.

Tanım 5.2
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay olsun. Eğer

δ : Ŷ × Ŷ × [0,∞) −→ [0,∞)

fonksiyonu ∀ κ, ξ ∈ Ŷ , t ≥ 0 için

δ(κ, ξ, t) ≥ 1 =⇒ δ(=κ,=ξ, t) ≥ 1

özelliğini sağlıyorsa

= : Ŷ −→ Ŷ

dönüşümüne δ − Ă0− geçi̧slidir denir.

Özel olarak t = 0 için sağlanıyorsa = dönüşümüne δ − 0− geçi̧slidir denir.
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Teorem 5.1
(
Ŷ , Ă0, ∗

)
tam geni̧sletilmi̧s bir bulanık metrik uzay ve

= : Ŷ −→ Ŷ

dönüşümü δ − φ− Ă0− bulanık büzülme dönüşümü olsun. Eğer

(i) = dönüşümü δ − Ă0− geçi̧sli,

(ii) ∀ t ≥ 0 için ∃ x0 ∈ X vardır öyle ki δ(x0,=x0, t) ≥ 1,

(iii) = sürekli

özellikleri sağlanıyorsa = dönüşümünün sabit bir noktasıvardır.

İspat. İspat iki durumda ele alınmı̧stır:

I. t > 0 ise

Bu durum; aslında geni̧sletilmi̧s bulanık metrik uzayların, bulanık metrik uzaylara

indirgendiği durumdur. Bu durumun ispatıyapılmı̧stır (Teorem 3.5, [5]).

II. t = 0 ise

δ(κ0,=κ0, 0) ≥ 1 olmak üzere κ0 ∈ Ŷ alınsın.

{κn}n ∈ N, Ŷ de dizi; κn+1 = =κn olsun.

Bazın ∈ N için κn+1 = κn oluyorsa, bu durumda κ∗ ∈ Ŷ , κ∗ = κn = nin bir sabit

noktasıdır.

∀ n ∈ N için κn 6= κn+1 olsun. (ii) den,

δ(κ0,κ1, 0) = δ(κ0,=κ0, 0) ≥ 1

dır. = dönüşümü δ − Ă0−geçi̧sli olduğundan,

δ(κ0,=κ0, 0)) ≥ 1 =⇒ δ(=κ0,=κ1, 0) ≥ 1

dır. Bu şekilde devam edilirse,

δ(=κ0,=κ1, 0) ≥ 1 =⇒ δ(=κ1,=κ2, 0) ≥ 1

...

δ(=κn−3,=κn−2, 0) ≥ 1 =⇒ δ(=κn−2,=κn−1, 0) ≥ 1

ve böylece,

δ(=κn−2,=κn−1, 0) = δ(κn−1,κn, 0) ≥ 1, ∀ n ∈ N (5.2)
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elde edilir. (5.1) de κ = κn−1, ξ = κn yazılırsa, (4.1) ve (5.2) kullanılırsa,

1

Ă0(κn,κn+1, 0)
− 1 =

1

NĂ(=κn−1,=κn)
− 1

≤ δ(κn−1,κn, 0)(
1

NĂ(=κn−1,=κn)
− 1)

≤ φ(
1

NĂ(κn−1,κn)
− 1)

= φ(
1

NĂ(=κn−2,=κn−1)
− 1)

ve buradan,
1

NĂ(=κn−1,=κn)
− 1 ≤ φn(

1

NĂ(κ0,κ1)
− 1)

elde edilir. n→∞ için limit alınırsa,

lim
n→∞

(
1

NĂ(=κn−1,=κn)
− 1) ≤ lim

n→∞
φn(

1

NĂ(κ0,κ1)
− 1)

dir. n→∞ için φn(η)→ 0 olduğundan,

lim
n→∞

(
1

NĂ(κn,κn+1)
− 1) = 0

elde edilir ve böylece,

lim
n→∞

NĂ(κn,κn+1) = 1

dir. (4.1) de n < m için κ = κn, ξ = κm, t = 0 yazılırsa,

Ă0(κn,κm, 0) = ∧t>0Ă(κn,κm, t) = NĂ(κn,κm)

dir. (Siv) özelliği kullanılırsa ve n→∞ için limit alınırsa,

lim
n→∞

NĂ(κn,κm) ≥ lim
n→∞

NĂ(κn,κn+1) ∗ lim
n→∞

NĂ(κn+1,κn+2) ∗ ... ∗ lim
n→∞

NĂ(κm−1,κm)

≥ 1 ∗ 1 ∗ ... ∗ 1

≥ 1

ve buradan

lim
n→∞

NĂ(κn,κm) = 1

elde edilir.
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İspatın en önemli basamağı; {κn} dizisinin Cauchy dizisi olmasısağlanmı̧stır.

Ŷ tam uzay olduğundan,

∃ κ∗ ∈ Ŷ : n→∞ için κn → κ∗dir.

= dönüşümü sürekli olduğu için, n→∞ için =κn → =κ∗ dır.

(4.1) den, ∀ κn ∈ Ŷ için,

Ă0(=κn ,=κ∗, 0) = ∧t>0Ă(=κn ,=κ∗, t) = NĂ(=κn ,=κ∗)

ve n→∞ için limit alınırsa,

lim
n→∞

NĂ(=κn ,=κ∗) = 1

dir. Limitin tekliğinden, κ∗ = =κ∗ elde edilir yani; κ∗,= dönüşümünün sabit

noktasıdır.

İspat burada tamamlanmı̧stır.

Teorem 5.2
(
Ŷ , Ă0, ∗

)
tam geni̧sletilmi̧s bir bulanık metrik uzay, Ă üçgensel ve

= : Ŷ −→ Ŷ

dönüşümü δ − φ− Ă0−bulanık büzülme dönüşümü olsun. Eğer

(i) = dönüşümü δ − Ă0−geçi̧sli,

(ii) ∀ t ≥ 0 için κ0 ∈ Ŷ vardır öyle ki δ (κ0,=κ0, t) ≥ 1,

(iii) Eğer Ŷ de tanımlı{κn} dizisi ∀ n ∈ N için δ (κn, κn+1, t) ≥ 1 ve

n → ∞ iken κn → κ oluyorsa ∀ n ∈ N için δ(κn,κ, t) ≥ 1

özellikleri sağlanıyorsa = dönüşümünün sabit bir noktasıvardır.

İspat. İspat iki durumda ele alınmı̧stır:

I. t > 0 ise

Bu durum; aslında geni̧sletilmi̧s bulanık metrik uzayların, bulanık metrik uzaylara

indirgendiği durumdur. Bu durumun ispatı yapılmı̧stır (Teorem 3.6, [5]).

II. t = 0 ise

Teorem 5.1 in ispatında,
(
Ŷ , Ă0, ∗

)
tam geni̧sletilmi̧s bulanık metrik uzayında {κn}

dizisinin bir Cauchy dizisi olduğu gösterilmi̧sti. Bu durumda n → ∞ için κn →

κ∗∗ olacak şekilde κ∗∗ ∈ Ŷ vardır.
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(iii) numaralıhipotezden,

∀ n ∈ N için δ(κn, κ∗∗, 0) ≥ 1 (5.3)

elde edilir. (4.1) de κ = κ∗∗, ξ = =κ∗∗, t = 0 yazılırsa, Tanım 3.6, (5.1) ve (5.3)

kullanılırsa,

1

∧t>0Ă(κ∗∗,=κ∗∗, t)
− 1 =

1

Ă0(κ∗∗,=κ∗∗, 0)
− 1

=
1

NĂ(κ∗∗,=κ∗∗) − 1

≤ (
1

NĂ(=κ∗∗,=κn)
− 1) + (

1

NĂ(κn+1,κ∗∗)
− 1)

≤ δ(κn,κ∗∗, 0)(
1

NĂ(=κn,=κ∗∗)
− 1) + (

1

NĂ(κn+1,κ∗∗)
− 1)

≤ φ(
1

NĂ(κn,κ∗∗)
− 1) + (

1

NĂ(κn+1,κ∗∗)
− 1)

bulunur. n→∞ için limit alınırsa ve φ fonksiyonu ξ = 0 da sürekli olduğundan,

(
1

NĂ(=κ∗∗,κ∗∗) − 1) = 0.

Yani =κ∗∗ = κ∗∗ dir. Bu ise κ∗∗ in = nin bir sabit noktasıolduğunu ispatlar.

İspat burada tamamlanmı̧stır.

Örnek 5.1 Ŷ =
{

1
n
, n ∈ N

}
∪ {0, 4} , ∗ çarpım t− norm olsun.∀κ, ξ ∈ Ŷ ve t ≥ 0

için

Ă0(κ, ξ, t) =
3t2 + 1

3t2 + 1 + |κ − ξ|

Ŷ üzerinde tam geni̧sletilmi̧s bir bulanık metriktir.

= : Ŷ −→ Ŷ

dönüşümü

=κ =

 κ2

3
, κ ∈ Ŷ − {4}

4, κ = 4

şeklinde ve

δ : Ŷ × Ŷ × [0,∞)→ [0,∞)
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fonksiyonu

δ(κ, ξ, t) =

 1, κ, ξ ∈ Ŷ − {4}

0, diğer

olarak tanımlansın. ∀ r ≥ 0 için

φ(r) =
2

3
r

olsun.

∀ t ≥ 0 için δ(κ, ξ, t) = 0 olduğunda δ − φ− Ă0 büzülme şartıaçıkça sağlanır.

∀ t ≥ 0 için δ(κ, ξ, t) = 1 olduğunda κ ve ξ elemanları Ŷ− {4} kümesinden

seçildiğinde, toplamları≤ 2 olacağından,

δ(κ, ξ, t)(
1

Ă0(=κ,=ξ, t)
− 1) = 1.

3t2 + 1 +
|κ2−ξ2|

3

3t2 + 1
− 1


=

∣∣κ2 − ξ2
∣∣

3 (3t2 + 1)
=
|κ − ξ| |κ + ξ|

3 (3t2 + 1)

≤ 2

3

|κ − ξ|
(3t2 + 1)

= φ(
1

Ă0(κ, ξ, t)
− 1)

dır. Dolayısıyla, = dönüşümü δ − φ − Ă0−bulanık büzülme dönüşümüdür.∀ t ≥ 0

için κ, ξ ∈ Ŷ öyle ki δ(κ, ξ, t) ≥ 1 olsun. Bu durumda κ, ξ ∈ Ŷ −{4} ve = ile δ nın

tanımından; =κ = κ2

3
∈ Ŷ − {4} , =ξ = ξ2

3
∈ Ŷ − {4} ve t ≥ 0 için δ(κ

2

3
, ξ

2

3
, t) = 1

dir. Dolayısıyla = dönüşümü δ− Ă0− geçi̧slidir.

Üstelik ∀ t ≥ 0 için δ(x0,=x0, t) ≥ 1 olacak şekilde x0 ∈ Ŷ vardır. Gerçekten

κ0 = 1 olduğunda δ(x0,=x0, t) = 1 elde edilir.

Şimdi {κn} ∈ Ŷ de bir dizi öyle ki ∀n ∈ N için δ(xn, xn+1, t) ≥ 1 ve n → ∞ iken

κn → κ ∈ Ŷ olsun. δ nın tanımından ∀n ∈ N için κn ∈ Ŷ − {4} ve buradan

κ ∈ Ŷ − {4}. Dolayısıyla ∀ n ∈ N için δ(κn,κ, t) = 1 dir.

Böylece Teoremin koşullarısağlanmaktadır ve {0, 4} , = nin sabit noktalarının küme-

sidir.
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ρ− ψ − Ă0− Bulanık Büzülme Dönüşümü

Burada geni̧sletilmi̧s bulanık metrik uzaylarda ρ − ψ − Ă0− bulanık büzülme ve

ρ− Ă0− geçi̧slilik dönüşümlerinin tanımlarıilk kez verilmi̧stir. Yeni tanımlanan bu

dönüşümler kullanılarak, literatürde var olan bazısabit nokta teoremleri geni̧sletilmi̧s

bulanık metrik uzaylarda ispatlanmı̧stır.

Tanım 5.3
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay olsun.

Eğer ψ ∈ Ψ ve

ρ : Ŷ × Ŷ × [0,∞) −→ (0,∞)

fonksiyonları ∀ κ, ξ ∈ Ŷ (κ 6= ξ) ve t ≥ 0 için

Ă0(κ, ξ, t) > 0 =⇒ ρ(κ, ξ, t)
(
Ă0(=κ,=ξ, t)

)
≥ ψ(Ă0(κ, ξ, t)) (5.4)

özelliğini sağlıyorsa

= : Ŷ −→ Ŷ

dönüşümüne ρ− ψ − Ă0 − bulanık büzülme dönüşümü denir.

Özel olarak t = 0 için sağlanıyorsa = dönüşümüne ρ − ψ − 0− bulanık büzülme

dönüşümü denir.

Tanım 5.4
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay olsun.

ρ : Ŷ × Ŷ × [0,∞) −→ (0,∞)

fonksiyonu ∀κ, ξ ∈ Ŷ ve t ≥ 0 için

ρ(κ, ξ, t) ≤ 1 =⇒ ρ(=κ,=ξ, t) ≤ 1

özelliğini sağlıyorsa

= : Ŷ −→ Ŷ

dönüşümüne ρ− Ă0−geçi̧slidir denir.

Özel olarak t = 0 için sağlanıyorsa = dönüşümüne ρ− 0−geçi̧slidir denir.
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Teorem 5.3
(
Ŷ , Ă0, ∗

)
tam geni̧sletilmi̧s Non-Archimedean bulanık metrik uzay

ve

= : Ŷ −→ Ŷ

dönüşümü ρ− ψ − Ă0− bulanık büzülme dönüşümü olsun. Eğer

(i) = dönüşümü ρ− Ă0− geçi̧sli,

(ii) ∀ t ≥ 0 için κ0 ∈ Ŷ vardır öyle ki ρ(κ0,=κ0, t) ≤ 1,

(iii) Ŷ deki {κn}n∈N dizisi, ∀ t ≥ 0 için ρ(κn,κn+1, t) ≤ 1 ve k0 ∈ N vardır öyle ki

∀ t ≥ 0 ve m,n ∈ N için (m > n ≥ k0) ρ(κm+1,κn+1, t) ≤ 1,

(iv) Ŷ deki {κn} dizisi ∀ t ≥ 0 ve n ∈ N için ρ(κn,κn+1, t) ≤ 1

ve n→∞ iken κn → κ oluyorsa bu durumda ρ(κn, x, t) ≤ 1,

(v) ∀ κ, ξ ∈ Ŷ ve ∀ t ≥ 0 için ∃ ς ∈ Ŷ vardır öyle ki ρ(κ, ς, t) ≤ 1 ve ρ(ξ, ς, t) ≤ 1

özellikleri sağlanıyorsa = dönüşümü tek bir sabit noktaya sahiptir.

İspat. İspat iki durumda incelenecektir;

I. t > 0 ise

Bu durum; aslında geni̧sletilmi̧s bulanık metrik uzayların, bulanık metrik uzaylara

indirgendiği durumdur. Bu durumun ispatıyapılmı̧s (Teorem 4.4, [5]) ve =κ∗ = κ∗

elde edilmi̧stir.

= nin, κ∗ve κ∗∗gibi iki farklısabit noktaya sahip olduğu kabul edildiğinde, ρ (κ∗,

κ∗∗, t) ≤ 1 ise;

Ă (κ∗,κ∗∗, t) ≥ ρ (κ∗, κ∗∗, t) Ă ( =κ∗,=κ∗∗, t)

dır. = dönüşümü ρ− ψ − Ă0− bulanık büzülme dönüşümü olduğundan;

Ă0 (κ∗ , κ∗∗, t) ≥ ρ (κ∗, κ∗∗, t) Ă0 (=κ∗,=κ∗∗, t) ≥ ψ (Ă0 (κ∗ ,κ∗∗ , t))

dır. Ayrıca ψ (η) > η olduğundan;

Ă0 (κ∗,κ∗∗, t) ≥ ρ(κ∗,κ∗∗, t)Ă0 (=κ∗,=κ∗∗, t) ≥ ψ(Ă0(κ∗,κ∗∗, t)) > Ă0(κ∗,κ∗∗, t)

ve buradan çeli̧ski elde edilir.

Yani κ∗ve κ∗∗ iki farklısabit nokta değildir. κ∗ = κ∗∗ dır.

Şimdi ρ (κ∗,κ∗∗, t) > 1 olsun.
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(v) den;

ς ∈ Ŷ vardır öyle ki ρ (κ∗, ς, t) ≤ 1 ve ρ (κ∗∗, ς, t) ≤ 1

dır. (i) den,

ρ (κ∗, ς, t) ≤ 1 =⇒ ρ (=κ∗,=ς, t) = ρ (κ∗,=ς, t) ≤ 1

ρ (κ∗,=ς, t) ≤ 1 =⇒ ρ (=κ∗,=2ς, t) = ρ (κ∗,=2ς, t) ≤ 1

...

ρ (κ∗,=n−1ς, t) ≤ 1 =⇒ ρ (=κ∗,=nς, t) = ρ(κ∗,=nς, t) ≤ 1

elde edilir. = dönüşümü ρ− ψ − Ă0− bulanık büzülme dönüşümü olduğundan;

Ă0(κ∗,=nς, t) = Ă(κ∗,=nς, t) = Ă(=κ∗,=
(
=n−1ς

)
, t)

≥ ρ(κ∗,=n−1ς, t)Ă(=κ∗,=
(
=n−1ς

)
, t)

≥ ψ(Ă(κ∗,=n−1ς, t))

= ψ(Ă(=κ∗,=
(
=n−2ς

)
, t))

indüksiyon yöntemiyle, ∀ n ∈ N için;

Ă0(κ∗,=nς, t) ≥ ψn(Ă0(κ∗, ς, t))

dır. n→∞ için,

lim
n→∞

Ă0(κ∗,=nς, t) ≥ lim
n→∞

ψn(Ă0(κ∗, ς, t))

ψn (ς)→ 1 olduğundan;

lim
n→∞

Ă0(κ∗,=nς, t) = 1 (5.5)

dır. Benzer yöntemle;

ρ(κ∗∗, ς, t) ≤ 1 =⇒ ρ(=κ∗∗,=ς, t) = ρ (κ∗∗,=ς, t) ≤ 1

...
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ρ (κ∗∗,=n−2ς, t) ≤ 1 =⇒ ρ (=κ∗∗,=n−1ς, t) = ρ(κ∗∗,=n−1ς, t) ≤ 1

olup, elde edilen eşitsizlikten ve = dönüşümü ρ−ψ−Ă0− bulanık büzülme dönüşümü

olduğundan;

Ă0(κ∗∗,=nς, t) = Ă(κ∗∗,=nς, t) = Ă(=κ∗∗,=
(
=n−1ς

)
, t)

≥ ρ(κ∗∗,=n−1ς, t)Ă(=κ∗∗,=
(
=n−1ς

)
, t)

≥ ψ(Ă(κ∗∗,=n−1ς, t))

indüksiyon yöntemiyle, ∀ n ∈ N için ;

Ă0(κ∗∗,=nς, t) ≥ ψn(Ă0(κ∗∗, ς, t)).

n→∞ için,

lim
n→∞

Ă0(κ∗∗,=nς, t) ≥ lim
n→∞

ψn(Ă0(κ∗∗, ς, t))

ψn (ξ)→ 1 olduğundan;

lim
n→∞

Ă0(κ∗∗,=nς, t) = 1 (5.6)

elde edilir. (5.5), (5.6) ve limitin tekliğinden, κ∗ = κ∗∗ sonucuna ulaşılır.

II. t = 0 ise

κ0 ∈ Ŷ öyle ki ρ(κ0,=κ0, 0) ≤ 1 olsun.

{κn}, Ŷ de bir dizi olmak üzere ∀ n ∈ N için κn+1 = =κn olsun.

Bazın ∈ N için κn+1 = κn oluyorsa, o zaman κ∗ ∈ Ŷ , κ∗ = κn noktasının =

dönüşümünün bir sabit noktasıolduğu açıktır.

Şimdi, ∀ n ∈ N için κn 6= κn+1 olsun. (ii) den;

ρ(κ0,κ1, 0) = ρ(κ0,=κ0, 0) ≤ 1

ve (i) den,

ρ(κ0,=κ0, 0) ≤ 1 =⇒ ρ(=κ0,=κ1, 0) ≤ 1

indüksiyon yöntemiyle;

ρ(=κ0,=κ1, 0) ≤ 1 =⇒ ρ(=κ1,=κ2, 0) ≤ 1

...

ρ(=κn−3,=κn−2, 0) ≤ 1 =⇒ ρ(=κn−2,=κn−1, 0) ≤ 1
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ve ∀ n ∈ N için,

ρ (=κn−2,=κn−1, 0) ≤ 1 =⇒ ρ(=κn−1,=κn, 0) ≤ 1 (5.7)

ρ−ψ− Ă0−bulanık büzülme dönüşümü tanımdan, (5.4) te κ = κn−1, ξ = κn , t = 0

yazılırsa ve (5.7) kullanılırsa,

Ă0(=κn−1,=κn, 0) ≥ ρ(κn−1,κn, 0)Ă0(=κn−1,=κn, t) ≥ ψ(Ă0(κn−1,κn, t))

elde edilir. (4.1) ve (5.4) kullanılırsa;

NĂ(=κn−1,=κn) ≥ ρ(κn−1,κn, 0)NĂ(=κn−1,=κn)

≥ ψ(NĂ(κn−1,κn))

buradan

∀ n ∈ N için NĂ(=κn−1,=κn) ≥ ψn(NĂ(κ0,κ1))

elde edilir. n→∞ için limit alınırsa,

lim
n→∞

NĂ(=κn−1,=κn) ≥ lim
n→∞

ψn(NĂ(κ0,κ1))

bulunur. ψn (ξ)→ 1 olduğundan;

lim
n→∞

NĂ(κn,κn+1) = 1

dır. Şimdi {κn} dizisinin bir Cauchy dizisi olduğu gösterilecektir.

{κn} dizisinin bir Cauchy dizisi olmadı̆gıkabul edilirse;

ε ∈ (0, 1) ve ∀ n ∈ N öyle ki pn > qn ≥ n0 olacak şekilde {κpn}ve {κqn} dizileri

{κn} dizisinin iki alt dizisi olsun.

(4.1) den,

Ă0(κpn ,κqn , 0) = ∧t>0Ă(κpn ,κqn , t) = NĂ(κpn ,κqn) ≤ 1− ε

Ă0(κpn−1 ,κqn , 0) = ∧t>0Ă(κpn−1 ,κqn , t) = NĂ(κpn−1 ,κqn) > 1− ε

(iii) numaralıözellikten, n0 ∈ N vardır öyle ki n ≥ n0 olmak üzere pn, qn ∈ N dizileri

vardır ve ayrıca ρ(κpn ,κqn , 0) ≤ 1
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ve

1− ε ≥ NĂ(κpn ,κqn) ≥ NĂ(κpn−1 ,κqn) ∗NĂ(κpn−1 ,κpn)

olup n→∞ için limit alınırsa,

lim
n→∞

(1− ε) ≥ lim
n→∞

NĂ(κpn ,κqn) ≥ lim
n→∞

NĂ(κpn−1 ,κqn) ∗ lim
n→∞

NĂ(κpn−1 ,κpn)

dır. lim
n→∞

NĂ(κpn−1 ,κpn) = 1 olduğundan,

(1− ε) ≥ lim
n→∞

NĂ(κpn ,κqn) ≥ (1− ε)

elde edilir ve buradan

lim
n→∞

NĂ(κpn ,κqn) = (1− ε)

dır. Benzer şekilde,

(1− ε) ≥ NĂ(κpn ,κqn)

≥ NĂ(κpn ,κpn+1) ∗NĂ(κpn+1 ,κqn+1) ∗NĂ(κqn+1 ,κqn)

≥ NĂ(κpn ,κpn+1) ∗ ρ(=κpn ,=κqn , 0)NĂ(=κpn ,=κqn) ∗NĂ(κqn+1 ,κqn)

≥ NĂ(κpn ,κpn+1) ∗ ψ(NĂ(κpn ,κqn)) ∗NĂ(κqn ,κqn+1)

dır. n→∞ için limit alınırsa,

lim
n→∞

(1− ε) ≥ lim
n→∞

NĂ(κpn ,κpn+1) ∗ lim
n→∞

ψ(NĂ(κpn ,κqn)) ∗ lim
n→∞

NĂ(κqn ,κqn+1)

(1− ε) ≥ lim
n→∞

ψ(NĂ(κpn ,κqn))

(1− ε) ≥ ψ(1− ε)

elde edilir ki bu bir çeli̧skidir.

Dolayısıyla {κn}dizisi bir Cauchy dizisidir. Üzerinde çalı̧sılan uzay tam geni̧sletilmi̧s

Non-Archimedean bulanık metrik uzay olduğundan her Cauchy dizisi yakınsaktır.

Şimdi κ∗ in = nin bir sabit noktası olduğu gösterilecektir. {κn}dizisi yakınsak

olduğundan κ∗ ∈ Ŷ olmak üzere lim
n→∞

κn = κ∗ dir. Diğer taraftan (iv) numaralı

özellikten;

n ∈ N için ρ(κn,κ∗, 0) ≤ 1 (5.8)

(5.4), (5.8) ve (Siv) özelliğinden;

NĂ(=κ∗,κ∗) ≥ NĂ(=κ∗,κn+1) ∗NĂ(κn+1, κ∗)

≥ ρ(κn, κ∗, t)NĂ(=κn,=κ∗) ∗NĂ(κn+1, κ∗)

≥ ψ(NĂ(κn, κ∗)) ∗NĂ(κn+1, κ∗)
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bulunur. n→∞ için limit alınır ve ψ(1) = 1 olduğu kullanılırsa,

=κ∗ = κ∗

elde edilir. κ∗ noktası = dönüşümünün sabit noktasıdır.

Sabit noktanın tekliğini göstermek için; = nin κ∗ve κ∗∗gibi iki farklısabit noktaya

sahip olduğu kabul edilsin.

ρ (κ∗, κ∗∗, 0) ≤ 1 ise;

= dönüşümü ρ− ψ − 0− bulanık büzülme ve ψ (η) > η olduğundan;

Ă0 (κ∗, κ∗∗, 0) ≥ ρ (κ∗, κ∗∗, 0) Ă0 (=κ∗,=κ∗∗, 0)

≥ ψ (Ă0 (κ∗ ,κ∗∗, 0)) > Ă0 (κ∗ ,κ∗∗, 0)

çeli̧skisi elde edilir.

Şimdi ρ (κ∗,κ∗∗, 0) > 1 olsun. (v) den;

∃ ς ∈ Ŷ vardır öyle ki ρ (κ∗, ς, 0) ≤ 1 ve ρ (κ∗∗, ς, 0) ≤ 1

dır. (i) den, ∀ n ∈ N için,

ρ (κ∗,=nς, 0) ≤ 1 ve ρ (κ∗∗,=nς, 0) ≤ 1

ρ (κ∗, ς, t) ≤ 1 =⇒ ρ (=κ∗,=nς, t) = ρ (κ∗,=nς, t) ≤ 1

dır.= dönüşümü ρ− ψ − 0− bulanık büzülme olduğundan;

Ă0 (κ∗,=nς, 0) = NĂ (=κ∗,=nς) ≥ ρ (κ∗, =n−1ς, 0) NĂ (=κ∗,=nς)

≥ ψ (NĂ

(
κ∗,=n−1ς

)
)

İndüksiyonla, ∀ n ∈ N için,

NĂ (=κ∗,=nς) ≥ ψn (NĂ (κ∗, ς))

n→∞ için =nς → κ∗elde edilir.

Benzer şekilde =nς → κ∗∗ bulunur. Limitin tekliğinden κ∗ = κ∗∗ dır.

Böylece κ∗ noktası = dönüşümünün sabit noktasıdır.

İspat burada tamamlanmı̧stır.
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Örnek 5.2 Ŷ = (0,∞) ve ∗ çarpım t−norm olsun. Ŷ 2× [0,∞) üzerinde tanımlı

bulanık küme; ∀ κ, ξ ∈ Ŷ ve t ≥ 0 için

Ă0(κ, ξ, t) =
t+ min {κ, ξ}
t+ max {κ, ξ}

olsun. (Ŷ , Ă0, ∗) tam geni̧sletilmi̧s Non-Archimedean bulanık metrik uzaydır.

= : Ŷ −→ Ŷ dönüşümü

=κ =


√
κ

2
, κ ∈ (0, 1]

2, κ ∈ Ŷ − (0, 1]

şeklinde ve

ρ : Ŷ × Ŷ × [0,∞)→ (0,∞)

fonksiyonu ∀ t ≥ 0 için

ρ(κ, ξ, t) =

 1, κ, ξ ∈ (0, 1]

2, κ, ξ ∈ Ŷ − (0, 1]

olarak tanımlansın. ∀ r ∈ (0, 1) için

ψ(r) =

√
r

2

ρ(κ, ξ, t) = 1 olduğunda;

ρ(κ, ξ, t)Ă0(=κ,=ξ, t) = 1.
t+ min

{√
κ

2
,
√
ξ

2

}
t+ max

{√
κ

2
,
√
ξ

2

} =
t+

√
κ

2

t+
√
ξ

2

>
1

2

√
t+ κ
t+ ξ

= ψ(Ă0(κ, ξ, t)).

ρ(κ, ξ, t) = 2 olduğunda;

ρ(κ, ξ, t)Ă0(=κ,=ξ, t) = 2.
t+

√
κ

2

t+
√
ξ

2

>
t+

√
κ

2

t+
√
ξ

2

>
1

2

√
t+ κ
t+ ξ

= ψ(Ă0(κ, ξ, t)).

O halde =, ρ− φ− Ă0 büzülme dönüşümüdür.

∀ t ≥ 0 için κ, ξ ∈ Ŷ öyle ki ρ(κ, ξ, t) ≤ 1 olsun. Bu durumda κ, ξ ∈ (0, 1] ve = ile ρ

nın tanımından;=κ =
√
κ

2
∈ (0, 1], =ξ =

√
ξ

2
∈ (0, 1] ve t ≥ 0 için ρ(

√
x

2
,
√
ξ

2
, t) = 1 dir.

Dolayısıyla = dönüşümü ρ− Ă0− geçi̧slidir. Üstelik ∀ t ≥ 0 için ρ(κ0,=κ0, t) ≤ 1

olacak şekilde κ0 ∈ Ŷ vardır. Gerçekten κ0 = 1 olduğunda ρ(1, 1
2
, t) = 1.

Şimdi {κn}, Ŷ de bir dizi olsun; öyle ki ∀ n ∈ N için ρ(κn,κn+1, t ) ≤ 1, n → ∞

için κn → κ ∈ Ŷ ve ∀ m,n ∈ N için m > n ≥ k0 olacak şekilde bir k0 = 1 alınsın.
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ρ nın tanımından ∀n ∈ N için κn ∈ (0, 1] dır. Dolayısıyla κ ∈ (0, 1] dır. Böylece

ρ(κn,κ, t) = 1 ve ∀ m,n ∈ N için ρ(κm+1,κn+1, t) = 1 dir. Üstelik ∀ t ≥ 0 ve

κ, ξ ∈ Ŷ için z ∈ Ŷ vardır; öyle ki ρ(κ, z, t) ≤ 1 ve ρ(ξ, z, t) ≤ 1 sağlanır.

Yukarıdaki teoremin tüm koşullarısağlandı̆gına göre = dönüşümü tek bir sabit nok-

taya sahiptir ve "2" noktası= nin sabit noktasıdır.

-F− Ă0− Bulanık Büzülme Dönüşümü

Burada geni̧sletilmi̧s bulanık metrik uzaylarda -F− Ă0− bulanık büzülme dönüşümü

ilk kez tanımlanmı̧stır. Yeni tanımlanan bu dönüşüm kullanılarak, literatürde var

olan bazı sabit nokta teoremleri geni̧sletilmi̧s bulanık metrik uzaylarda ispatlan-

mı̧stır.

Tanım 5.5
(
Ŷ , Ă0, ∗

)
geni̧sletilmi̧s bir bulanık metrik uzay ve -F ∈ Folsun. Eğer

∀ κ, ξ ∈ Ŷ (κ 6= ξ), t ≥ 0 için

τ .-F(Ă0(=κ,=ξ, t)) ≥ -F(Ă0(κ, ξ, t)) (5.9)

şartınısağlayan τ ∈ (0, 1) varsa, = : Ŷ −→ Ŷ dönüşümüne -F−Ă0− bulanık büzülme

dönüşümü denir. Özel olarak t = 0 için sağlanıyorsa,= dönüşümüne -F− 0−bulanık

büzülme dönüşümü denir.

Teorem 5.4
(
Ŷ , Ă0, ∗

)
tam geni̧sletilmi̧s bir bulanık metrik uzay ve ∀ κ, ξ ∈ Ŷ

için lim
t→0+

Ă0(κ, ξ, t) > 0 olsun. Eğer = : Ŷ −→ Ŷ dönüşümü sürekli ve bir -F− Ă0−

bulanık büzülme ise Ŷ de tek bir sabit noktaya sahiptir.

İspat. İspat iki durumda incelenecektir;

I. t > 0 ise

Bu durum; aslında geni̧sletilmi̧s bulanık metrik uzayların, bulanık metrik uzaylara

indirgendiği durumdur.

Yani; ∀ κ, γ ∈ Ŷ için Ă0
κ, γ(t) = Ăκ,γ (t) olduğu durum ispatlanmı̧stır (Teorem.1,

[11]).

II. t = 0;

κ0 ∈ Ŷ alınsın ve ∀ n ∈ N0 için κn+1 = =κn olsun.

Bazın ∈ N için κn+1 = κn = =κn oluyorsa bu durumda κ∗ = κn bir sabit noktadır.
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∀ n ∈ N için κn 6= κn+1 olsun. = dönüşümü -F− Ă0−bulanık büzülme olduğundan

(4.1) kullanılırsa ve (5.9) da κ = κn−1, ξ = κn, t = 0 yazılırsa;

-F
(
Ă0(=κn−1,=κn, 0)

)
= -F (NĂ(=κn−1,=κn))

> τ.-F (NĂ(=κn−1,=κn))

≥ -F (NĂ(κn−1,κn))

buradan

-F (NĂ(=κn−1,=κn)) > -F (NĂ(κn−1,κn))

elde edilir. -F kesin artan olduğundan;

NĂ(κn,κn+1) > NĂ(κn−1,κn)

dır.{NĂ(κn,κn+1)} kesin artan üstten sınırlıbir dizi olduğu için yakınsaktır.

µ ∈ [0, 1] ve n ∈ N olmak üzere n→∞ için limit alınırsa;

lim
n→∞

NĂ(κn,κn+1) = µ

olsun. ∀ n ∈ N için

NĂ(κn,κn+1) < µ

dır. -F ∈ F ve n→∞ için limit alınırsa,

lim
n→∞

-F (NĂ(κn,κn+1)) = -F (µ)

dır. µ < 1 olsun;

(4.1) kullanılırsa ve (5.9) da, κ = κn, ξ = κn+1, t = 0 yazılırsa;

-F (NĂ(=κn,=κn+1)) > τ.-F (NĂ(=κn,=κn+1)) ≥ -F (NĂ(κn,κn+1))

dır.

n→∞ için,

-F (µ) > τ.-F (µ) ≥ -F (µ)

-F(µ) = 0 çeli̧skisi elde edilir. Buradan;

lim
n→∞

NĂ(κn,κn+1) = 1, n ∈ N

dır. Şimdi {κn} dizisinin Cauchy dizisi olmadı̆gıkabul edilsin. Bu durumda
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∃ ω ∈ (0, 1) , ∀ p ∈ N ve mp > np ≥ p olmak üzere
{
κmp

}
,
{
κnp
}
dizileri vardır

NĂ(κmpκnp) ≤ (1− ω)

NĂ(κmp−1 ,κnp−1) > (1− ω) ve NĂ(κmp−1 ,κnp) > (1− ω)

sabit bulanık metriğin (Siv) özelliğinden,

1− ω ≥ NĂ(κmp ,κnp) ≥ NĂ(κmp ,κmp−1) ∗NĂ(κmp−1 ,κnp)

> NĂ(κmp−1 ,κmp) ∗ (1− ω)

p→∞ için limit alınırsa,

lim
p→∞

(1− ω) ≥ lim
p→∞

NĂ(κmp ,κnp) > lim
p→∞

NĂ(κmp−1 ,κmp) ∗ lim
p→∞

(1− ω)

(1− ω) ≥ lim
p→∞

NĂ(κmp ,κnp) > 1 ∗ (1− ω)

olup buradan

lim
p→∞

NĂ(κmp ,κnp) = (1− ω)

elde edilir. Ayrıca, (4.1) kullanılırsa ve (5.9) da κ = κmp−1
, ξ = κnp−1

, t = 0

yazılırsa;

-F
(
NĂ(=κmp−1 ,=κnp−1)

)
> τ.-F

(
NĂ(=κmp−1 ,=κnp−1)

)
≥ -F

(
NĂ(κmp−1

,κnp−1)
)

dır.

-F, [0, 1] de kesin artan olduğundan,

(1− ω) ≥ NĂ(κmp ,κnp ) > NĂ(κmp−1 ,κnp−1) > (1− ω)

çeli̧skisi elde edilir. Dolayısıyla {κn} bir Cauchy dizisidir. Ŷ tam olduğundan {κn}

dizisi yakınsaktır ve

∃ κ∗ ∈ Ŷ : n→∞ için κn → κ∗

dır. =κ∗ = κ∗olduğunu göstermek için, = nin sürekliliğinden;

κ∗ = lim
n→∞

κn+1 = =( lim
n→∞

κn) = =κ∗

bulunur.
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Şimdi κ∗ noktasının tekliğini göstermek üzere; κ∗ve κ∗∗ iki farklısabit nokta olsun.

Bu durumda,

-F (NĂ(=κ∗,=κ∗∗)) > τ.-F (NĂ(=κ∗,=κ∗∗)) ≥ -F (NĂ(κ∗,κ∗∗)) = -F (NĂ(=κ∗,=κ∗∗))

elde edilir. Bu bir çeli̧skidir. O halde κ∗ tektir.

İspat burada tamamlanmı̧stır.

Örnek 5.3 Ŷ = R+, ∀ κ, ξ ∈ Ŷ (κ 6= ξ) için ∂ (κ, ξ) = |κ − ξ| ve ∗ çarpım

t−norm ve Ă0 bulanık kümesi ∀ t ≥ 0 için

Ă0(κ, ξ, t) = e
− ∂(κ,ξ)

t2+1

olsun. Ă0, Ŷ üzerinde tam geni̧sletilmi̧s bir bulanık metriktir. = : Ŷ −→ Ŷ

dönüşümü ∀ γ ∈ Ŷ için

= (γ) =
γ

4

ve -F fonksiyonu ∀ ζ ∈ (0, 1) için

-F (ζ) = − 1

ln ζ

şeklinde tanımlansın ve τ = 1
2
olsun.

Ă0(=κ,=ξ, t) = e
− 1

4
∂(x,ξ)

t2+1

=⇒ -F(Ă0(=κ,=γ, t)) = − 1

ln e
− 1

4
∂(x,ξ)

t2+1

=
4
|x−ξ|
t2+1

olup

τ .-F(Ă0(=κ,=ξ, t)) =
1

2
.

4
|x−ξ|
t2+1

=
2
|x−ξ|
t2+1

>
1
|x−ξ|
t2+1

= -F(Ă0(κ, ξ, t))

sağlandı̆gından, = dönüşümü -F−Ă0−bulanık büzülmedir.Üstelik= (γ) = γ
4
dönüşümü

süreklidir.

∀ κ, ξ ∈ Ŷ için lim
t→0+

Ă0(κ, ξ, t) > 0 dır. Dolayısıyla =, Ŷ de tek bir "0" sabit

noktasına sahiptir.

Teorem 5.5
(
Ŷ , Ă0, ∗

)
tam geni̧sletilmi̧s bir bulanık metrik uzay, ∀ κ, ξ ∈ Ŷ için

lim
t→0+

Ă0 (κ, ξ, t) > 0, = : Ŷ −→ Ŷ dönüşüm ve -F ∈ F olsun. Ayrıca ∀ κ, ξ ∈ Ŷ

(κ 6= ξ) ve t ≥ 0 için

τ .-F
(
Ă0 (=κ,=ξ, t)

)
≥ -F

(
min

{
Ă0 (κ, ξ, t) , Ă0 (ξ,=ξ, t) , Ă0 (κ,=κ, t)

})
(5.10)
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olacak şekilde τ ∈ (0, 1) var olsun. Bu durumda = dönüşümü veya -F sürekli ise =,

Ŷ de tek bir sabit noktaya sahiptir.

İspat. İspat iki durumda incelenecektir;

I. t > 0 ise

Bu durum; aslında geni̧sletilmi̧s bulanık metrik uzayların, bulanık metrik uzaylara

indirgendiği durumdur.

Yani; ∀ κ, ξ ∈ Ŷ için Ă0
κ, ξ(t) = Ăκ,ξ (t) olduğu durum ispatlanmı̧stır (Teorem.3,

[11]).

II. t = 0;

κ0 ∈ Ŷ ve Ŷ de tanımlı{κn} dizisi ∀ n ∈ N için κn+1 = =κn olsun.

Bazın ∈ N için κn+1 = κn = =κn oluyorsa o zaman κ∗ = κn bir sabit noktadır.

∀ n ∈ N için κn 6= κn+1 olsun.

= dönüşümü -F − Ă0−bulanık büzülme olduğundan, (4.1) kullanılırsa ve (5.10)

da κ = κn−1, ξ = κn , t = 0 yazılırsa;

-F
(
Ă0 (=κn−1,=κn, 0)

)
= -F (NĂ (=κn−1,=κn))

> τ.-F (NĂ (=κn−1,=κn))

≥ -F (min {NĂ (κn−1,κn) , NĂ (κn−1,=κn−1) , NĂ (κn,=κn)})

= -F (min {NĂ (κn−1,κn) , NĂ (κn−1,κn) , NĂ (κn,κn+1)})

= -F (min {NĂ (κn−1,κn) , NĂ (κn,κn+1)})

ve burada {NĂ (κn−1,κn) , NĂ (κn,κn+1)} kümesinin en küçük elemanıikinci bileşen

olduğunda çeli̧ski elde edilir.

Buradan;

NĂ (κn,κn+1) > NĂ (κn−1,κn)

dır.Teorem 5.4 ten, κ∗ ∈ Ŷ için lim
n→∞

κn = κ∗ elde edilmi̧sti.

-F sürekli olsun;

(4.1) kullanılırsa ve (5.10) da κ = κn, ξ = κ∗, t = 0 yazılırsa, ∀ n ∈ N için,

-F
(
Ă0 (κn+1,=κ∗, 0)

)
= -F (NĂ (κn+1,=κ∗))

> τ.-F (NĂ (κn+1,=κ∗))

≥ -F (min {NĂ (κn,κ∗) , NĂ (κn,κn+1) , NĂ (κ∗,=κ∗)})
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dır.Eğer =κ∗ 6= κ∗ ise, n→∞ için limit alınrsa,

lim
n→∞

-F (NĂ (κn+1,=κ∗)) > lim
n→∞

τ .-F (NĂ (κn+1,=κ∗))

≥ lim
n→∞

-F (min {NĂ (κn,κ∗) , NĂ (κn,κn+1) , NĂ (κ∗,=κ∗)})

dır. Buradan,

-F (NĂ (κ∗,=κ∗)) > τ.-F (NĂ (κ∗,=κ∗))

≥ -F (min {NĂ (κ∗,κ∗) , NĂ (κ∗,κ∗) , NĂ (κ∗,=κ∗)})

= -F (min {1, 1, NĂ (κ∗,=κ∗)})

= -F (NĂ (κ∗,=κ∗))

elde edilir. Buradan,

-F (NĂ (κ∗,=κ∗)) = 0

bulunur ki bu bir çeli̧skidir. O halde =κ∗ = κ∗ dır. κ∗, = nin sabit noktasıdır.

= sürekli olsun;

{κn} , Ŷ de bir dizi; κn+1 = =κn ve lim
n→∞

κn = κ∗ olduğundan, =κ∗ = κ∗ elde edilir.

κ∗, = nin sabit noktasıdır.

Sabit noktanın tekliğini göstermek için, κ∗ve ξ∗ gibi = nin iki farklısabit noktası

alınırsa ve (5.10) da κ = κ∗, ξ = ξ∗, t = 0 yazılırsa,

-F
(
Ă0 (=κ∗,=ξ∗, 0)

)
= -F (NĂ (=κ∗,=ξ∗))

> τ.-F (NĂ (=κ∗,=ξ∗))

≥ -F (min {NĂ (κ∗,ξ∗) , NĂ (κ∗,=κ∗) , NĂ (ξ∗,=ξ∗)})

= -F (min {NĂ (κ∗,ξ∗) , 1, 1})

= -F (NĂ (κ∗, ξ∗))

ve buradan,

-F (NĂ (κ∗, ξ∗)) > -F (NĂ (κ∗, ξ∗))

elde edilir ki bu bir çeli̧skidir. Dolayısıyla = tek bir sabit noktaya sabittir. İspat

tamamlanmı̧stır.
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6. TARTIŞMA VE SONUÇ

Sabit nokta teorisi alanında yapılan çalı̧smalarda; bire bir dönüşümün tanımlandı̆gı

geometrik yapı ve dönüşüm üzerinde tanımlanan büzülme şartı, iki önemli nok-

tayı teşkil etmektedir. Metrik uzaylarda başlayan sabit nokta teorisi çalı̧smaları,

daha sonra bulanık metrik uzayların da tanımlanmasıile bulanık metrik uzaylara

da taşınmı̧stır.

Bu tezde, 2019 yılında tanımlanan geni̧sletilmi̧s bulanık metrik uzaylardan yarar-

lanılmı̧s; literatürde metrik uzaylarda var olan ve araştırmacılar tarafından bulanık

metrik uzaylara uygulanan bazı büzülme dönüşümleri ve sabit nokta teoremleri

geni̧sletilmi̧s bulanık metrik uzaylara uyarlanmı̧stır. Geni̧sletilmi̧s bulanık metrik

uzaylarda üç yeni bulanık büzülme dönüşümü tanımlanmı̧s, bazısabit nokta teo-

remleri ispatlanmı̧s ve bazıörnekler verilmi̧stir. Böylece literatürde var olan bazı

kavramların genelleştirilmi̧s versiyonlarıelde edilmi̧stir ve bu kavramlar kullanılarak

bazısabit nokta teoremleri ispatlanmı̧stır.

Bu tezde geni̧sletilmi̧s bulanık metrik uzaylarda sabit nokta teoremleri oluştururken;

literatürde var olan büzülme dönüşümlerini geni̧sletilmi̧s bulanık metrik uzaylarda

tanımlamak isteyen yeni araştırmacılara fikir vermek ve geni̧sletilmi̧s bulanık metrik

uzaylarda yapılan çalı̧smalara katkısağlamak amaçlanmı̧stır.
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