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OZET

BAZI KUATERNIYON DIiZIiLERI VE KUATERNTYON POLINOMLARININ
KOKLERI

KIZILASLAN, Gonca
Kirikkale Universitesi
Fen Bilimleri Enstitiisii
Matematik Anabilim Dali, Doktora Tezi
Danigsman: Dog. Dr. Tlker AKKUS
Temmuz 2019, sayfa

Kuaterniyonlar matematigin ¢esitli alanlarinda goriilen temel bir konudur. Hem teorik
matematik hem de uygulamali matematikte bircok uygulamasi bulunmaktadir. Bilesen-
leri cesitli say1 dizilerinden olusan kuaterniyonlar da bir¢ok arastirmaci tarafindan il-
ging bulunmustur. Bu tip diziler kuaterniyon dizileri olarak adlandirilir. Calisilan bu di-
zilerin bilesenlerinin karakteristik polinomlar1 genellikle ikinci derecedendir. Bu tezde
ilk olarak karakteristik polinomunun derecesi ii¢ olan Tribonacci ve Tribonacci-Lucas
kuaterniyon dizileri lizerinde ¢alisilmig ve bazi 6zdeslikler elde edilmistir. Sonrasinda
karakteristik polinomlarimin derecesi iki olan dizilerin kuantum genellestirilmesi veri-
lerek elde edilen dizilerle de kuantum kuaterniyon dizileri elde edilmistir. Ayrica ku-
antum kuaterniyon polinomlar1 tanimlanmis ve cesitli ozellikleri incelenmistir. Bazi
0zel kuaterniyon dizileri i¢in de zaman evoliisyonu ve donme uygulamalar verilmistir.
Son olarak ise baz1 yeni iki degiskenli kuadratik kuaterniyon polinom denklemleri icin

Horadam kuaterniyon koklerinin kapsamli bir analizi sunulmustur.

Anahtar Kelimeler: Yineleme Bagintilari, Kuaterniyon, Tamsay1 Dizileri, Kuad-
ratik Kuaterniyon Denklemi, Karigik Kuaterniyon Katsayili
Iki Degiskenli Polinomlar, Polinom Denklemini C6zme,

g—Xkalkiiliis, g—06zdeslikler.



ABSTRACT

SOME QUATERNION SEQUENCES AND ROOTS OF QUATERNION
POLYNOMIALS

KIZILASLAN, Gonca
Kirikkale University
Graduate School of Natural and Applied Sciences
Department of Mathematic, Ph.D. Thesis
Supervisor: Assoc. Prof. Dr. Ilker AKKUS

July 2019, [67]pages

Quaternions are fundamental objects of various parts of mathematics. They have app-
lications in both theoretical and applied mathematics. Quaternions whose components
are from special number sequences were also found interesting by many authors. These
types of sequences are called as quaternion sequences. The characteristic polynomials
of the components of these studied sequences are generally second order. In this the-
sis firstly Tribonacci and Tribonacci-Lucas quaternion sequences whose characteristic
polynomials are third order were studied and some identities were obtained. Next, qu-
antum quaternion sequences were obtained by the quantum generalization of the sequ-
ences whose characteristic polynomials are second degree. Also quantum quaternion
polynomials were defined and several properties were investigated. Time evolution
and rotation applications were given for some special quaternion sequences. Finally, a
comprehensive analysis of Horadam quaternion roots for some new bivariate quadratic

quaternion polynomial equations was presented.

Key Words: Recurrences, Quaternion, Integer Sequences, Quadratic Qu-
aternion Equation, Bivariate Polynomials with Mixed Quater-
nion Coefficients, Solving Polynomial Equation, g—calculus,

g—identities.
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SIMGELER DIiZiNi

E, n—inci Fibonacci sayisi

L, n—inci Lucas sayis1

T, n—inci Tribonacci sayist

TK, n—inci Tribonacci-Lucas sayisi
On n—inci Fibonacci kuaterniyonu

K, n—inci Lucas kuaterniyonu

T0O, n—inci Tribonacci kuaterniyonu
TO, n—inci Tribonacci-Lucas kuaterniyonu
Qn n—inci g—Fibonacci kuaterniyonu
V, n—inci g—Lucas kuaterniyonu
Tr(p) p kuaterniyonunun izi

N(p) p kuaterniyonunun normu

1]y g—tamsay1 n
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1. GIRIS

Ikinci mertebeden lineer {F,} Fibonacci dizisi, baslangi¢c kosullart Fy = 0, Fj = 1
olmak lizere n > 2 icin F,, = F,,_| + F,,_» yineleme bagintisi ile tamimlanir [32]. Dogal
bir diisiince olarak devaminda n > 2 i¢in a, b, p, g tamsayilar ve Wy = a, W; = b olmak

uzere
W, = an—l+an—2 (L.1)

genellestirilmis Fibonacci dizisi de tanimlanmustir ve bu dizi kisaca {W,,(a,b; p,q)} ile
gosterilir [21]. Budurumdaa =0, b= 1, p =1 ve ¢ = 1 degerleri i¢in {W, (a,b; p,q)}

dizisi yukarida tanimlanan Fibonacci dizisine doniigiir.

(1.1) yineleme bagintisnin karakteristik denklemi x> — px — ¢ = 0 oldugundan

p? +44 > 0 igin bu dizinin Binet formiilii o = 2V ye g P2V
uizere
b—af)a"— (b—aa)p"
Wa(a,b;p,q) = (b=ap)o —(b—aa)p (1.2)

o—p
formundadir. Bu tez boyunca {W,(a,b;p,q)} genellestirilmis Fibonacci dizisi

a=0, b=1vea=2, b= pdurumunda sirasiyla

U,: = W,(0,1;p,q)

= Wu(2,p:p,q) (1.3)

3
|

ile gosterilecektir. Ayrica{W,(0,1;k,1)} ve {W,(2,1;k,1)} dizileri de sirastyla {F; ,}
ve {Ly  } ile gosterilecektir. Falcon ve Plaza {Fk,n} dizisinin elemanlarini k—Fibonacci
sayilart olarak adlandirmustir [9]. Ayrica Falcon {Lk,n} dizisinin elemanlaria da
k—Lucas sayilar1 adin1 vermistir [10]. Baz1 6zel a, b, p, g degerleri i¢in {W,,(a,b; p,q)}

dizisinin karsilik geldigi diziler asagidaki tabloda gosterilmistir.



| Wala,bip,g)  |a b p q
Fibonacci 0 1 1 1
Lucas 2 1 1 1
Pell 0 1 2 1
Pell-Lucas 2 1 2 1
Jacobsthal 0 1 1 2
Jacobsthal-Lucas || 2 1 1 2

Iyi bilinen bazi1 say1 dizileri

Fibonacci dizisi polinomsal olarak da genellestirilebilir. Bunun igin %(x) reel katsayili

bir polinom olsun. A(x)—Fibonacci polinomlart {F}, ,(x)},>0 baslangi¢ kosullari
Fro(x) =0, F1(x)=1
olmak iizere n > 2 icin
Fjy p(x) = h(X)Fp -1 (x) + Fjp n—2(x) (1.4)

yineleme bagntisi ile tanimlidir [39]. &(x)—Fibonacci polinomlarinin ayni zamanda
Catalan-Fibonacci polinomlari, Byrd-Fibonacci polinomlar1 ve k—Fibonacci sayilari-

nin genellestirmesi oldugu da goriilebilir.

Z karakteristigi 2 olmayan bir cisim olsun. .%# cismi iizerinde 4 boyutlu merkezil
basit cebire H kuaterniyon cebiri denir. Toplama ve ¢arpma iglemleri ile birlikte H
bir halka yapisi olusturur. Daha agik bir sekilde ifade etmek gerekirse H degismeli
olmayan boliim cebiridir. .% cismi iizerindeki her kuaterniyon cebiri a ve b elemanlari

& cisminin sifirdan farkli elemanlar1 olmak iizere
H:= {7+ Zi+.Zj+ Fij|i’=a, j* =b, ij =k = —ji} (1.5)

formundadir. Burada {1,i,j,k} kiimesi H cebirinin standard bazi olarak adlandirilir
ve H cebiri basitce H = (%’) olarak yazilir. Kuaterniyon cebirinin klasik bir drnegi

Mr(R) = (ITRI) 2 x 2 reel matris cebiridir. Diger bilinen 6rnekler (71]1’{1)




Hamilton kuaterniyonlart ve (%) boliinmiig(split) kuaterniyonlardir. Bu tez boyunca

i? = j> = —1 olarak ele alinmustr.

Bilesenleri ikinci mertebeden 6zel say1 dizilerinden olusan kuaterniyonlar bugiine ka-
dar bir¢ok arastirmaci tarafindan calisilmistir [[18, (19, 21}, 23| 27, 46]. Bu tip diziler
kuaterniyon dizileri olarak adlandirilir. Yakin zamanda Cerda-Morales [3]] r,s,¢ reel

sayilar olmak iizere
Va=rVp1+sVy2+tVy 3,n>3

ve baslangic kosullar1 Vo = a, V) = b, Vo = ¢ tamsayilar olan ii¢iincii mertebeden
{Vn}nZO genellestirilmig Tribonacci dizisini ele almistir. r =s =t =1ve V=0,V =1,
V, = 1 alindiginda bu dizi {7, },>0 ile gosterilen klasik Tribonacci dizisine indirgenir
[L1LI2029]. r=s=t=1ve Vy =3, V] =1, Vo, = 3 alindiginda ise genel terimi 7K,
ile gosterilen Tribonacci-Lucas dizisi elde edilir [SO]. Bu dizilerden yola cikilarak ge-
nellestirilmis Tribonacci kuaterniyonlar1 ve genellestirilmis Lucas kuaterniyonlarinin
tanimlar1 verilmis ve ¢esitli 6zellikleri incelenmistir [3]]. Bu tezin ii¢iincii boliimiinde

bu tipteki kuaterniyonlar tizerinde calisilmusgtir.

Bilesenleri bilinen Fibonacci ve Lucas sayi1 dizilerinden olusan n-inci Fibonacci ku-

aterniyon

On = Fu+ Fpii+ Fypoj + Frisk (1.6)
ve n-inci Lucas kuaterniyon

Ky =Ly + Ly 1i+ Ly + Loy 3K (1.7

biciminde Horadam tarafindan tanimlanmigtir [19]. Daha sonra Swamy genellestiril-
mis Fibonacci kuaterniyonlari i¢in bazi bagintilar elde etmistir [46]]. Bundan sonra bir-
cok aragtirmaci bu yapilarla ilgilenmis ve bazi sonuclar elde etmislerdir [13} 14, (15,141,
43]]. Diger iyi bilinen kuaterniyon dizileri Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-
Lucas kuaterniyonlaridir [[7, [13} [18} 27, 28, 48]].



Catarino (I.4) te verilen polinomlar1 kullanarak

Onn(x) = Frn(X) + Fp 1 (0)i+ F 2 (0)j + Frpg3(0)k

h(x)—Fibonacci kuaterniyon polinomlarini ¢aligmis ve bazi sonuglar elde etmistir [2].
k bir reel say1 ve h(x) = k olmak iizere h(x)—Fibonacci polinomlarinin tanimindan
k—Fibonacci sayilar1 Fy , elde edilir ve dolayisiyla i(x)—Fibonacci kuaterniyonlarinin

tanimindan da k—Fibonacci kuaterniyonlari

Qk,n = Fk,n + Fk,n+li + Fk,n+2j + Fk,n+3k

elde edilir.

Doérdiincii boliimde bilesenleri kuantum tamsayilarini iceren iki tip kuaterniyon di-
zisi tanimlanacaktir ve boylelikle calisilan bazi kuaterniyon dizilerinin bir genelles-
tirmesi yapilacaktir. Devaminda /(x)—Fibonacci kuaterniyon polinomlarinin bir ge-
nellestirmesi olarak g—kuaterniyon polinomlar1 da tanitilacaktir. g—kuaterniyon poli-
nomlari i¢in Binet formiilleri ve iirete¢ fonksiyonlar: elde edilecektir. Ayrica tanimla-
nan g—kuaterniyonlar ve g—kuaterniyon polinomlar i¢in bazi 6zellikler ve 6zdeslikler
verilecektir. Ayn1 zamanda bazi kuaterniyon dizileri i¢in zaman evoliisyonu ve donme
uygulamalari da verilecektir. Kuantum tamsayilar1 6zellikle fizikte yogun olarak kul-
lanildig1 i¢in yeni kuantum kuaterniyon tiplerinin baska uygulamalarinin da olacagini

diisliniiyoruz.

Sayilar teorisinde Hilbert’in onuncu probleminden yola ¢ikilarak ¢oziimleri tamsay1
kiimesi ile sinirlandirilan denklemler biiyiik ilgi gormiistiir. [45] te genel lineer kuater-
niyonik denklemler gbz oniinde bulundurulmakta ve ¢oziimii bulmak i¢in bir yontem
verilmektedir. Bircok arastirmaci a, b, ¢ ve d sabit tamsayilar olmak iizere ax” + bxy +
cy? +d = 0 denklemi ile ilgilenmistir [5] [6]. Fibonacci ve Lucas dizilerinin birbirini
takip eden terimlerini sifir kabul eden konikler de bir¢ok arastirmaci tarafindan ilging

bulunmustur [20} 22,130,131}137,38]]. Kuaterniyon ¢arpimi degismeli olmadigindan ku-



aterniyon katsayili ve bilinmeyenli denklemlerin ¢oziimleri reel ve kompleks sayilar-
dan daha incelikli ve daha zengin bir problemdir. [[13] te genellestirilmis kuaterniyon
ve oktonyon cebirlerinde bazi cebirsel denklemlerin ¢oziimleri verilmektedir. [S1]de

de, verilen

b = b +bi+ b+ bk
= P eit ik
o) = gy oD o4 ok
WD = B i+ hj+ hk

dV = d +aVi+dj+dx
kuaterniyonlar1 ve bilinmeyen
x=xo+x1i+xj+xk and x* =xg—x1i—xj—x3k

kuaterniyonlar ile ifade edilen

3 s
x4 Y b xcl) 4 ) gVx*n) +da =0 (1.8)
j=1 j=1

ikinci dereceden monik kuaterniyonik polinomun koklerini bulabilmek i¢in bir metod
daha verilmistir ve bu polinomlarin koklerinin esdeger reel kuadratik formu ile ¢oziile-
bileceg8i gosterilmistir. Bu caligmalardan esinlenerek besinci bolimde a, b reel sayilar

ve x, y, q kuaterniyon olmak iizere

P 4axyty’+q = 0,
C+axy—y* +by+q = 0,
x2+axiy2+q = 0,

x2+xy+yx+ay2+by+q =0

formundaki denklemlerin ¢oziimlerine yer verilmistir.



2 . MATERYAL VE YONTEM

2.1. Kuaterniyon Cebiri

Sir William Hamilton karmagik sayilari ii¢ boyutlu uzaya genisletmeyi diisiindii. Kar-
magik sayilarin diizlemde bir nokta gostermesine karsilik iic boyutlu uzay icin benzer
bir yol aradi fakat bir sonuca ulagamadi. Sonunda cevabin dort boyutta oldugunu kes-
fetti. 1843’te sundugu teoride, kuaterniyon terimi belirli bir dortlii ifadeyi adlandirmak

icin kullanildi.

Kuaterniyonlar matematigin bircok alaninda calisilan temel bir konudur. Grup teori,
geometri, kinematik, bilgisayar bilimi gibi hem teorik hem de uygulamali matematikte

uygulamalar1 vardir [16, 33} 47].

p=ao+p=ag+aii+arj+ask ve g=byg+q=bo+ bii+ byj+ b3k kuaterniyonlari

(Cf/?b) cebirinin iki eleman1 olmak iizere, bu kuaterniyonlarin carpimi lb formuna

uygun olarak *“-” i¢ carpim ve “X” vektorel ¢carpim olmak iizere

pq = aobo—p-q+apqg+bop+pxq

seklinde indirgenebilir. ¢ = bg + q = bo + b1i + byj + b3k kuaterniyonunun H cebi-
rindeki eslenigi ¢* ile gosterilir ve ¢* = by — b1i — byj — b3k seklinde tanimhidir. ¢

kuaterniyonunun izi ve normu

*

Tr(q) =q+4q" ve N(q) = qq

ile ifade edilir. Ayrica 0 # ¢ kuaterniyonunun tersi g~ = N(g)~'q* olup g birim ku-

1

aterniyon ise ¢~ = = ¢~ elde edilir.



2.2. g—tamsayilari

Z birimli ve birlesmeli bir halka ve ¢ € Z olsun. n € N i¢in n kuantum tamsayisi veya

kisaca g—tamsayisi [n], ile gosterilir ve

seklinde tanimlanir. Benzer sekilde ¢ tersinir eleman ve n # 0 olmak iizere —n

g—tamsayisl ise

[—n]q=— i{q_i

ile tanimlanir. Dolayisiyla g # 0 ve n € Z~ igin [n], = —¢"[—n], elde edilir. Ozel olarak

1 — g tersinir ise

yazilabilir. Her m,n € N i¢in
m+nly =[mly+4"nly ve [mn]y=[m]yn]ym

vardir. #Z = 7 ve g = 1 iken kuantum tamsayis1 [}, klasik anlamdaki » tamsayis1 ola-

caktir [34]].

Ikinci mertebeden {W,,(a,b; p,q)} tamsay1 dizilerinin ve ¢ tamsayilarinin elemanlari
birbirine doniistiiriilebilir. Ornegin {F,} ve {Li,} dizileri i¢cin ¢ = B/ot ve
i=+v—1=a,/qolmak iizere ll deki Binet formiiliinden dolay1

2
Fkﬂ = (Xn_l [I/L]q ve Lkﬂ = a”ﬂ
[”]q

formlarmna indirgenir.



2.3. Tribonacci ve Tribonacci-Lucas Dizileri

n > 3 i¢in Tribonacci dizisi, baslangi¢ kosullar1 7y = 0, 71 = 1 ve T; = 1 olmak iizere

=T +Th2+Ti3

yineleme bagintis1 ile tanimlanir. Tribonacci-Lucas dizisi ise baslangi¢ kosullar

TKy=3, TK; =1 ve TK; = 3 olmak {izere

TK, =TK, | +TK, »+TK, 3

ile tantimhidr [8] [11]]. I1k birkac Tribonacci ve Tribonacci-Lucas sayilar1 asagidaki tab-

loda verilmistir.

T, 01|12 4| 7]13|24| 44| 81 | 149|274 | 504 | 927
TK, |31 |3|7|11]21 |39 |71 131|241 | 443 | 815 | 1499 | 2757

Herhangi bir {ap,ai,az, ...} dizisi igin
f(x) :ao+a1x+a2x2—|—---+anx"+...

fonksiyonu iirete¢ fonksiyonu olarak adlandirilir. {7,,} Tribonacci dizisi ve {TK,}

Tribonacci-Lucas dizisi i¢in iirete¢ fonksiyonlari sirasiyla

X

f(x) - 1—X—X2—x3’
— Oy —x2
hx) = 3—2x—x

l—x—x2—x3

olarak elde edilir. Tribonacci ve Tribonacci-Lucas dizileri icin Binet formiilleri ise

w= =150 e

14+v/19+3v33+ V19 —3/33
3 b



1+wyv/ 19 +3v33 + w19 —31/33

B = 3 : 2.1)
, 1+w?/19+3/33 +wv/19—3+/33
B 3

olmak {iizere sirasiyla

_— an—H ﬁn—H },n+1
" T (a=B)a-y) B-a)B-1  (r-a)(r—B)
TK, = o' +p"+7" (2.2)

seklindedir [S0].

2.4. Kuaterniyon Polinomlarmn Kokleri Uzerine

q0.91," - ,qn—1 kuaterniyonlar1 verilsin. Bu boliim boyunca ¢ kuaterniyonunun izi ve
normu sirasiyla t ve n ile gosterilecektir. Derecesi n olan monik kuaterniyon polinom

x kuaterniyon belirsizine gore
p(x) = X" +gu_1X" 4 qo (2.3)

olarak tanimlanir. p(x) kuaterniyon polinomu i¢in p(A) =0 ise A bu polinomun bir ko-
kiidiir. Boliim halkalar1 tizerindeki polinomlarin kokleri bir¢ok arastirmaci tarafindan
calisilmigtir [[1,[17,/40]. Niven bir kuaterniyon cebiri izerindeki polinomlarin koklerini
hesaplayabilmek icin kuaterniyonun iki parametresi olan iz ve normuna bagl olacak
sekilde basit bir algoritma vermistir [40]]. Buna gore her ¢ kuaterniyonunun ikinci de-

receden reel katsayilt
2 —
X —tx+n=0

denklemini sagladig1 bilinmektedir. f ve g polinomlar t, n, g; parametrelerine bagh

polinomlar olmak iizere (2.3 teki polinom sagdan x> — tx + n ile boliindiigiinde

p(x) = h(x)(x* —tx+n) + fx+g



elde edilir. Dolayisiyla ¢ kuaterniyonu p(x) polinomunun bir kokii ise yani p(g) =0

ise

fa+g=0

olup

1

q:—?g

elde edilir. Baz1 hesaplamalarin ardindan Niven iz ve norm i¢in

nf*f—g'g=0

tf f+fg+gf=0

denklemlerini elde etmistir. Boylece Niven bu denklemlerin reel ¢oziimlerinin p(x)
polinomunun kuaterniyon kokiiniin izini ve normunu verdigini ispatlamis olup bu ifa-
denin tersi de dogrudur. Ancak bu denklemleri kullanarak iz ve norm bulmak pek pratik
bir yontem degildir. Ciinkii 2n — 1 dereceli iki reel denklemi ayn1 anda ¢6zmek gerek-

mektedir.

Serddio bu parametreleri bulmak icin alternatif ve daha pratik bir yontem sunmaktadir
[44]]. Simdi bu yontemden kisaca bahsedilecektir. Kuaterniyonlar {izerinde bir denklik
bagintis1 ~ vardir. Iki kuaterniyon ¢; ve ¢ icin 67 '¢16 = ¢ esitligini saglayan sifir-
dan farkli bir o kuaterniyonu varsa bu kuaterniyonlara benzer kuaterniyonlar denir. Bu
iligki ile teki polinom p(x) in koklerinin kiimesi en fazla n tane kuaterniyonlarin

denklik siniflarina aittir ve bu siniflar karsilik gelen

0 1 0
C =
0 0 1
—q0 —q1 ... —qn-1]
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tamamlayic1 matrisin kompleks 6zdegerleri ile iiretilir. C; ve C; kompleks elemanlara

sahip n X n matrisler olmak iizere C matrisi

C=C+Gj

formunda yazilabilir. Buradan C matrisinin sag 6zdegerleri

C=

Ci

-G G

2n X 2n matrisinin 6zdegerleri olacaktir.

Apyrica ikinci dereceden monik kuaterniyon polinomunun koklerini bulabilmek icin bir

metod daha verilmistir [S1]. Herhangi bir g € (

Q@ —q91 —92 —q3 q1 q0 q3  —q2
—q1 —q90 43 —q2 q —4q1 q2 q3
—q2 —q3 —qo (1 g3 —q2 —q1 —90

|—93 92 —4q1 —40) | 792 —93 40 —9q1]

q2  —4q93 40 qi q3 q2  —4q91 90
—q43 —q2 —4q1 4o P2  —q93 —q0 —4q1

q0 q1 —q92 g3 —q1 q0 —4q93 —q2

| 91 —490 —93 —q2) | 90 91 92 —43

G

1,—1

&) kuaterniyonu icin

matrisleri tanimlansin. Buna gore asagidaki teorem verilebilir.

Teorem 2.1 ([51]]). x =xp+x1i+x2j+x3k € (%) kuaterniyonunun 1} deki ikinci

dereceden monik kuaterniyonik polinomun bir kokii olabilmesi i¢in gerek ve yeter

11



kosul (xg, x1, X2, x3) elemaninin D = diag{1,—1,—1,—1} ve

Jo

f

P

/3

2 2

2 2
Xo — X1 — X2 — X3 + (.X(), X1, X2, .X3)

+d07

2x0x1 + (x0, X1, X2, X3)

2x0x2 + (x0, X1, X2, X3)

2x0x3 + (x0, X1, X2, X3)

olmak lizere n =0, 1, 2, 3 icin

reel denklemlerini saglamasidir.

fn(x07 XI, x27 X3> - O

~
I
—

12
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+ Y DK(RD) |7 | 3 +ds
i—1 ()
82
] )




3 . UCUNCU MERTEBEDEN BAZI KUATERNIYON DIZILERININ
OZELLIKLERI

Ikinci mertebeden kuaterniyon dizileri bugiine kadar bircok arastirmac tarafindan ca-
lis1lmis olmasina ragmen iigiincii mertebeden kuaterniyon dizilerine literatiirde az rast-
lanmaktadir. Bundan dolay1 bu boliimde iiciincii mertebeden bazi kuaterniyon dizile-
rinin Ozellikleri verilecek ve bu tipteki kuaterniyon dizileri i¢in baz1 6zdeslikler elde

edilecektir. Bu boliim boyunca a, f3, ¥ elemanlari (2.1]) deki elemanlar ve

o = 1+ai+a?j+ o’k
B = 1+Bi+B%+Bk,
y = 1+7+7i+7k

olarak ele alinacaktir.

3.1. Tribonacci Say1 Bilesenli Kuaterniyonlar

n > 0 icin n-inci Tribonacci kuaterniyon 7°Q,, ve n-inci Tribonacci-Lucas kuaterniyon

T O

To, = Tn+Tn+1i+Tn+2j+Tn+3k

TOw = TKny+TKyiii+TKyioj+TKyisk

seklinde tanimhidir. n > 0 i¢in

TQn+3 - TQn+2 + TQn+1 + TQn

TQn+3 = TQn+2 + TQn—H + TQn
oldugu kolaylikla goriilebilir. 7Q,, kuaterniyonunun eslenigi 7Q; ile gosterilirse

TQ:; =T,— Tn—Hi - Tn+2j —Thi3k

13



ve T, Tribonacci-Lucas kuaterniyonunun eslenigi de 7Q? ile gosterilirse
TQp =TK, —TKyi1i—TKy2j— TK, i3k

olacaktir. f(x), x’e gore bir kuvvet serisi olmak iizere x" in katsayist [x"]f(x) ile gos-

terilecektir. Buradan 7'Q,, kuaterniyonunun normu

2(345x+4x? 23 —x* —x°)
(1=3x—x>—x3) (1 +x+x>—x3)

3
TO.TQ; =Y T =¥
i=0
olarak bulunur.

n>2icin A, =T, ve B, = TK_,, olsun. Negatif indisli Tribonacci ve Tribonacci-

Lucas dizileri

Ap = A1 —Ap2+A, 35 ALi1=1,A=A=0,

B, = —-By1—By2+By3; B.1=1,By=3, B =-1

ile tanimlidir. Bu dizilerden yola cikilarak bir kuaterniyon dizisi daha tanimlanabilir.

Tanim 3.1. Negatif indisli Tribonacci ve Tribonacci-Lucas kuaterniyonlari

TQ » = Ay +An—1i+An—2j +A,-3k,

TQ-n = By+ By 1i+ Bn—2j +B,_3k
seklinde tanimlanir.

Genellestirilmis Tribonacci kuaterniyonlarinin iirete¢ fonksiyonlar: ve Binet formiil-
leri [3] te verilmistir. Buna gore Tribonacci kuaterniyonlarinin iirete¢ fonksiyonlari ve

Binet formiilleri de asagidaki gibidir:

14



Teorem 3.1. 7 Q, Tribonacci kuaterniyonunun iirete¢ fonksiyonu

Cox+i+(I+x+x)j+ 2+ 2x+x0)k

G
(x) l—x—x2—x3

seklindedir.

Ispat. TQ, Tribonacci kuaterniyonunun iirete¢ fonksiyonu
G(x) =TQo+TQix+TQox" +---+TQux"+---

olsun. 7Q,_1, TQ,—2 ve TQ,_3 kuaterniyonlar1 indis bakimindan 7'Q,, kuaterniyo-
nundan sirastyla 1, 2 ve 3 kiiciik olup xG (x), x>G (x) ve x*G(x) fonksiyonlar1 bulunur.

Boylece

XG(x) = TQux+TOX+TQOx +++TQp X"+,
XG(x) = TOQW +TOIX +TTQxx* +- - +TQp ox" +---,

OGx) = TQX +TO* +T0wx + -+ +TQy 32" + -+

seklindedir. Gerekli iglemler yapilarak

 TQo+x(TQ,—TQo) +x*(TQ,—TQ —TQ)
B l—x—x2—x3

G(x)

oldugu goriiliir ve buradan

Cox+i+(14x+x)j+ 2+ 2x+x2)k

G
(x) l—x—x2—x3

elde edilir. n

Teorem 3.2. Tribonacci ve Tribonacci-Lucas kuaterniyonlarinin Binet formiilleri

n+1 n+1
o B

yn—i-l
a—pa-12" B> T=am-p"
TQ, = a"a+B"B+Y'y
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seklindedir.

Ispat. T;, ve TK,, icin || de verilen Binet formiilleri ile TQ, ve TQ, kuaterniyonla-

rinin tammlan kullanilirsa 7Q,, ve TQ,, icin Binet formiilleri kolayca elde edilir. [

3.2. Uciincii Mertebeden Bazi Kuaterniyon Dizileri Icin Ozdeslikler

Bu boliimde, tanimlanan bazi {i¢iincii mertebeden kuaterniyon dizileri i¢in 6zdeslikler

verilecektir. Sonrasinda elde edilen 6zdegliklerden bazilarinin ispatlar1 yapilacaktir.

3.2.1. Ozdeslikler 1

Her n € Nig¢in

TQ2=2T,TQ, —TQ.TQ;,
TQn + TQ;: — 2Tn7

TQ0n=TQu+2TQu 1 +3TQy >

0zdeslikleri elde edilir.

3.2.2. Ozdegslikler 2

Her n,m € N i¢in

Co = o"B"+ oy +B"Y",

QZn—m = Cumt C2nfmfli + C2nfm72j +Cop—m—3k
olmak tizere

TQm+n = TQmTKn - TQm—nCn + Tmeer

TQm+n — TQmTKn - TmenCn +Q2n—m
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saglanir. Bir bagka 6zdeslik
TQn+2m = TKmTQn+m —TK - wTQOn+TQn 2m

seklinde verilebilir.

3.2.3. Ozdeslik 3
Hern >0, m > 3 icin

TOnim=Tn2TOn+ (Tn—3+Tn-—2)TQni1+Tn-1T0Ony2

elde edilir.

3.2.4. Ozdeslikler 4

n

§n = Y TQj olsun. Bu durumda
k=0

| B PO
TO,= 5 {Sn — Sn_4:|

m
saglanir ven > 0, m > 5i¢in Sy, = Z T, olmak {izere
k=0

o~

Sn+m = m—3§n - Sm—4§n+1 - Sm75§n+2 + Sm—2§n+3

elde edilir.

3.2.5. Ozdeslikler 5

n > 0i¢in R, = 37,11 — T, dizisi ele alinsin. Buradan

Rn =R, + RnJrli +Rn+2j +Rn+3k
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kuaterniyonu tanimlanabilir. Ayrica n > 2 icin TUy = TU; = 0 olmak iizere

TU, =1T,_1+ T,_, dizisi tanimlansin ve
Un = TU,+ TUn—Hi + TUn+2j + TUn+3k

olsun. Bu durumda

Rnpy3 = Rn+2 +Rn+1 + Rn;

Un+3 = 0n+2+0n+1+0n

elde edilir.

Diger taraftan her n > 2 i¢in
TQ; ~TQs | ~TOuTQu-1 +T0u1TQs = Uns1Uns

0zdesligi de saglanir [4].

3.2.6. Ozdeslikler 6

Simdi tamimlanan cesitli kuaterniyonlarin sonlu toplamlarina dair 6zdeslikler verile-

cektir. n € N i¢in

-  TOn2+TO+TQ0—TO>

Z TQk — D) )
k=0

< . TQZn—H +TQ2n_(1+j+2k)

Z TQZk — 2 )
k=0

L _ TOxwi2+TQopi 1 — (i4+2j +3Kk)
Z T Q1= 5 ,
k=0

n 3n—1 . .
TQ3 2—TQ3 — 1—1+J+k

Y T0u= Y TO+TQy=—""+ o ( )

k=0 k=0

- o TQ4n+2+TQ4n_(1_i+j+k)
Y TOu= )
k=0

18



Ozdeslikleri yazilabilir. Ayrica

n
Y U, =TQu1— (1+i+j+2k),
k=0

n
Y 70w =20,12+U,— (3+4i+7j+ 14k),
k=1

< U2+ Upy1 — (1 +i+3j+5k)
Z TQk = ) )
k=0
i P 30,13 +2U0, 10 — Uy — (24 8i+ 12j +22Kk)
k— ;
2
k=0

n ~
Y Uz =T Q3 —i,
k=0
n ~
Y Usjs1 = TQ3p41 — (14K)
k=0

Ozdeslikleri de saglanir.

3.3. Ozdesliklerin Ispatlar

Bu boliimde, elde edilen bazi 6zdegliklerin ispatlar1 Binet formiilleri ve tiimevarim

kullanilarak yapilacaktir. Diger 6zdeslikler benzer sekilde elde edilebilir.

3.3.1. Ozdeslikler 1 in Ispat1

Ik 6nce birinci 6zdeslikte verilen

TQ, =21,T 0y~ TO:TQ,
0zdesligi ispatlanacaktir.

TQ% = Tn2 - Tn2+1 - Tn2+2 - Tn2+3 + 2(TnTn+1i + TnTn+2j + TnTn+3k)

oldugundan
TQnTQ;; = Tn2 + Tn2+1 + Tn2+2 + Tn2+37
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2T,TO, 212+ 2(T; Tys1i+ T, Tyy0j + T, T 3K)

esitlikleri kullanilarak istenen sonug elde edilir.

Simdi TO,=T0w+2TQy_1+3T0,_» 0zdesliginin ispati yapilacaktir. Tribonacci

kuaterniyonunun Binet formiilii

an—H ﬁn—i—l ,}/1—0—1
R o (R ol s B A cop oy
olarak Teorem [3.2] de elde edilmisti. Buradan
TQn+2TQn l+3TQn72
B n+1 Bn+1 },n—i—l
- [( pila= L (Y—a)(Y—B)Z]+
B" 4
[a Be—7" TR L <—oc><y—ﬁ>ﬂ+
ﬁn 1 ,yn—l
3[a Bl B2 - B)Z}
ot 20" + 30! n+l  npn g apn—1

= [T paoy )t | S e

[V‘“+2y”+3y” }y
(y—o)(y=B8) |-

_ oc”[ a’+2a+3 ] n[ BZ+2B+3 }ﬁ*—
ala—B)(a—17) BB—a)B—v]—
y+2y+3

Yn{ y(y—a)(y—PB) }Z
= d"a+B"B+Y'y

70,

elde edilir.

3.3.2. Ozdeslikler 2 nin Ispat:

Tribonacci ve Tribonacci-Lucas sayilariin

Tnin =

T,.TK,

- Tm—nCn + Tm—Zna
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TKm+n = TKuTKy,—TKy nCy+Copm

esitliklerini sagladiklari bilinmektedir [S0]. Buradan

TOmin = Tpin~+ Tniniti+ Tyini2) + Tnnisk

= (TuTKy—Tn-nCp+ Tin—2n)
(L1 TKy — Ty 1 —nCn + T 1—20 )i
(T 2TKy — Tipg2—nCp + Tup2-24)j
H(Tn3T Ky — Ty 3—nCn + Ty 3—2n K

= (Tn+ Tpi1i+ Tus2j+ Tns3k)TK,
—(Tnn + Tn—ny1i+ Tpny2i + Tn—ny3K)Cy
+(Tn-2n+ Tn—2n+11+ Tn—2n+2) + Tn—2n+3K)

- TQmTKn - TQm—nCn + TmeZn

elde edilir.

Her n,m € N i¢in Tribonacci ve Tribonacci-Lucas dizileri

Thvom = TKnTopym — TK-pnTn+ Tyom

esitligini de saglar [24]]. Dolayisiyla benzer sekilde

TQn+2m = TKmTQn+m - TK—mTQn + TQn—Zm

0zdesliginin saglandig1 gosterilebilir.

3.3.3. Ozdeslik 3 iin Ispati

m lizerinden tiimevarimla ispatlanacaktir. m = 3 icin

TQn+3 - TQn + TQn+1 + TQn+2
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= NTO,+ (TO + TI)TQnJrl + TZTQn+2
vardir. Esitligin tiim m < k icin saglandig1 kabul edilsin. m = k+ 1 i¢in

TOntk+1 = TOntk+TOniik—1+T0Ontk—2
= T 2TOn+ (Ti3+Ti2)TOni1 + Ti 1 TOni2 + Ti 3T On +
(Th—a+Ti3)TQni1 + T 2T Qni2 + T aTQn +
(Th—s + Ti—a)T Qni1 + T 3T Qni2
= (Ti2+ T3+ Ta)TOn+
(Th3+Tj2+ T4+ Ti3 + Ti—5 + Ti—a)T Qpi1 +
(Te—1 + T2+ T4 —3)TQny2

= T aTOn+ (T2 +Ti—1)T Qni1 + Ti T Oni2

olup tiilmevarimdan istenen sonug elde edilir.

3.3.4. Ozdeslikler 4 iin Ispat:

~ n
Sy, =Y, TQyolsun. n > 0 i¢in
k=0

)

92
|

n = TQo+TQ1+--+T0x

= TQO + TQ] + ot TQn—4 + TQn—3 + TQn—Z + TQn—l + TQn

~

= n—4+ TQn + TQn

~

= Spa+2T On
oldugundan istenen 6zdeslik
I~ <
TO, =+ S —Su_4

elde edilir.

Diger 6zdeslik n ve m lizerinden tiimevarim ile ispatlanacaktir.
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[k 6nce

~

Snts = _2§n - S1\n—|-1 + 4§n+3
esitligi elde edilecektir. n = 0 i¢in

Ss = TQo+TO1+TO+TQ3+TQ4+T0Qs5
= TQ+TQ1+TQ+TQ3+(TQ1+TQ2+TQ3)+(TQ2+TQ3+TQ4)
= TQo+TQ1+TQ+TQ03+(TQ1+TQ2+TQ3)+
(TQ2+TQ3+TQ1+TQ2+TQ5)
= TQo+3TQ1+4T 0, +4T Q3

= 2TQo—TQy—TO1+4TQy+TQO1+TQ>+TQ3)

= —28)—8;+45;
saglanir. n = k icin saglandig1 kabul edilsin, yani
ks = —28k — g1 +45k43
olsun. n = k+ 1 i¢in

Stve = Stas+T Ok
= 28t —Sip1 + 48543+ TOkis
= —28;— Skt +4Sk3+ (TQks3 + T Qx4+ TOkys)
= —285; —Si1 +4Sk3+
(TOk1a—TOki2—TOki1 +TQkya+TOk1a—TOki2—TOk1+T0ky4)

= —28j41 — Sir2+4Spia

elde edilir. Dolayisiyla n > 0 icin esitlik saglanir.
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m =35 icin

)

9%}

b5 = —28k1 — Sira +4Sksa

= =528, — S18ut1 — SoSn12 + 538043
dogrudur. m = r icin saglandig1 kabul edilsin, yani
Snir=—S 38— S aSut1—Sr_5Sui2+ S, 2813
olsun. m = r+ 1 icin

Sn+r+1 = L/S'\n—i-r + TQn+r+1
= _Sr—3§n - Sr—4§n+1 - Sr75§n+2 + Sr—2§n+3 +
(TQn+r—2 + TQn+r—1 + TQn+r)

= _Sr72§n - Srf3§n+1 - Sr74§n+2 + Sr71§n+3
oldugundan istenen sonug elde edilir.
3.3.5. Ozdeslikler 5 in Ispati

n > 2igin

TQ>—TQ> | —TQ,TQu 1+T0Q, 1TO,

k] x

= [(Ti+Ta1) + (Tos1 + To)i+ (T2 + T 1)J + (Tn3 + Ti2 )K] X
(T = To—1) + (Tuy1 — To)i+ (Tog2 — Tus1)j + (Tnrs — Ti2)K]
= (G4 T1) + (Lo + T)i+ (Trsz + To1)J + (Tnaz + Tiv)
(T2 + Th—3) + (Th1 + Th2)i+ (T + Ta-1)i + (To1 + T)K]
= Upp1Upi

oldugu goriiliir [4]]. Diger 6zdeslikler de kolayca elde edilir.
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3.3.6. Ozdeslikler 6 mn Ispati

Burada n > 0 i¢in sadece

<  TO0p2+TO+TQ0— T
Y TO = 5
k=0

ozdesligi gosterilecektir. Ispat n lizerinden tiimevarimla yapilacaktir.

n=01icin

TO,»+TQo+TQy—TQ>

TQy= 5

olup esitlik saglanir. n = m i¢in saglandig1 kabul edilsin, yani

1o, — TOmi2+T0n+TQo—T0
2 TOx= 5
k=0

olsun. n =m+1 i¢in

m+1 m
Y TO=Y TO+TOns
k=0 k=0

olup tiimevarim hipotezinden

i TOv+TOm+1 = TQm+2+TQr;+ 10— 10 +TOm+1
- _ TOn2+ TOn+TQ0—~T02+2T0ni1
_ TOni2a+TOm+1 +2TQm+TQm+1 +T00—T0O
_ TOm+3+TOms1 + TQ02— TQ,
2

yazilabilir. Dolayisiyla

!  TOu3+TOn1+TQ0—T0
Y TO =

k=0 2

elde edilir.
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4 . KUATERNIYONLAR: UYGULAMALARLA ¢—KALKULUS YAKLASIMI

Bugiine kadar bilesenleri reel diziler olan kuaterniyon dizileri ¢calisilmistir. Bu calisma-
lardan esinlenerek bilesenleri kompleks dizilerden secilen daha genel bir kuaterniyon
dizisi ele alinacaktir. Bu boliimde bilesenleri kuantum sayilarini iceren iki tip kuater-
niyon dizisi ve kuantum kuaterniyon polinomlar1 tanimlanacaktir. Ayrica, bu kuantum
kuaterniyonlar i¢in bazi 6zellikler ve dzdeslikler verilecektir. Son olarak, bazi 6zel ku-

aterniyon dizileri i¢in zaman evoliisyonu ve donme uygulamalar1 da verilecektir.

Bu boliim boyuncan € N, ¢ € C, 1 —g € C\{0} ve

IR
|

1 + ai+o?j+o’k,

i+ a2+ o’ [3]4k,

(k=)
I

1+ (ag)i+ (ag)%j+ (ag)’k

1=
I

olarak ele alinacaktir.

4.1. g—Kuaterniyonlar

Bu boliimde oncelikle kuantum Fibonacci kuaterniyon dizisi ve kuantum Lucas ku-
aterniyon dizisinin tamimlar1 verilecektir. Bu diziler kisaca g—Fibonacci kuaterniyon
dizisi ve g—Lucas kuaterniyon dizisi olarak gosterilecektir. Daha sonra bu dizilerin

baz1 ozellikleri verilecek ve bazi 6zdeslikler elde edilecektir.

Tanim 4.1.

Qi =" g+ -+ 1gi+ 0" fn - 2gi + @[+ 3]k

26



formundaki kuaterniyonlara n-inci g—Fibonacci kuaterniyonu ve

A% :a”%+a"+1mi+an+z [2n+4]qj_|_an+3 [2n+6]qk
n [nlg n+1], n+2], n+3],

formundaki kuaterniyonlara n-inci g—Lucas kuaterniyonu denir.

Teorem 4.1. g—Fibonacci kuaterniyonu Q,, nin Binet formu

Q. = o" ! [n]a + (ag)"B

ve g—Lucas kuaterniyonu V,, nin Binet formu

V= ey a1 g)p
nq - _

seklindedir.

Ispat. Tamim 4.1|den
Q=" n|,+ " n+ 1+ o [n+2)5+ " n+ 3]k
oldugundan g—Fibonacci kuaterniyonu Q,, nin Binet formu

Q= o Mg+ o+ Ui+ o 2+ " [+ 3]k
= " [l + & ([nlg +¢")i+o" T (] + 4" [2])i + o ([l + ¢ By K
= " Mnly(1+ aito?j+o’k)+a"q" (i+a(2],j+ 0o 3]K)

= o' [n]ga+(0g)"B

seklindedir. g—Lucas kuaterniyonu V,, nin Binet formu benzer sekilde elde edilir. [

Not 4.1. Q,, ve V,, g—kuaterniyonlarinin Binet formiilleri bagka bir formda daha yazi-
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labilir. Tanimdan yola ¢ikilarak g— Fibonacci kuaterniyonu

Q. = o [nlg+a"n+1]gi+ " 420+ o2 [n+ 3]k

1—ag" 1— n+1 1— n+?2 1— n+3
Qn — an—l q +an q i—f-OCn_H q j+an+2 q k
l—g l—g l—gq l—q
Q _ a* — (th)" N an+1 _ (aq)n+1i+ an+2_ (aq)n+2j+ OCn+3 _ (aq)n+3k
" o—og o—og a—og o—og
o’ . 2. 3 (O‘q)n . 2 3
Q = a_aq1+M+aJ+ak ——j—§1+«mn+mwj+mmk

seklinde yazilabilir. Benzer bir diisiince ile g—Lucas kuaterniyonu ise

\Y _ an[zn]q n+1[2n+2]q- n+2[2n+4]q. n+3[2n+6]qk
n = -1

o
], n+1], n+2),° n+3],
1— 2n ]| gl 2n+2 1— 2n+4 1— 2n+6
Vn — o q +an+1 q i+ an+2 q J+ an+3 q k
I—¢q l1—gq l—gq I—gq

Vn — an(l+qn)_I_an—l—l(l_|_qn+1)i_|_an+2(1+qn+2)j+an+3(1_|_qn+3)k

V, = a”<1+ai+a2j+oc3k>+(ocq)”(1+(ocq)i+(aq)2j+(aq)3k>

olarak yazilabilir. Dolayisiyla bu kuaterniyonlarin Binet formiilleri

_a"a—(aq)"y
&= "ai—g @.1)
Vi =a"a+(ag)"y

formunda ifade edilebilir.

Asagidaki teorem g—Fibonacci kuaterniyonu Q, ve g—Lucas kuaterniyonu V,, nin

iistel lirete¢ fonksiyonlarini vermektedir.

Teorem 4.2. g—Fibonacci kuaterniyonu Q,, nin iistel iirete¢c fonksiyonu

. eocxg_ e(ocq)xl,
=iy
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ve g—Lucas kuaterniyonu V,, nin iistel iirete¢ fonksiyonu

G(x) — eaxg+e(aq)xy

olarak verilir.

ispat. Q, kuaterniyonunun (4.1) de verilen Binet formu ve iyi bilinen

o n

X

e =) o' —
n—0 n:

seri acilimi kullanilarak istenen sonuca ulagilir. g—Lucas kuaterniyonu V,, nin iistel

irete¢ fonksiyonu ise benzer sekilde elde edilir. [

Ornek 4.1. a = 1+T\/§ ve ¢ = — - olsun. Bu durumda

Q. = o [nlg+a"n+1gi+ " n+ 2+ a2 n+ 3]k
o — (OCq)” an+1 _ (aq)n+l an+2 _ (aq)n+2 an+3 i, (th)"+3

= k
Q. a—og + a—og I+ o—og I+ o—og
1 5 1 o —(ag)"
oldugundan a = +2\/— veq=——z icin F, = a_—EaZ; esitliginden

B an_(aq)n an-i—l_(aq)n—i-l. an+2_(aq)n+2. an+3_(aq)n+3
G = g Ve T a (g T a(ag)

Qn — Fn+Fn+1i+Fn+2j+Fn+3ka

k

olup daki Q,, Fibonacci kuaterniyonlar: elde edilir. Diger taraftan

121 n+1 [2”+2]qi o2 [2”+4]qj 4+ a3 [2”+6]qk
[”]q [’H‘l]q [”+2]q [”+3]q
Vn _ an(l_|_qn>+an+1(1_|_qn+l)i_|_an+2(1+qn+2)j+an+3(1_|_qn+3)k

V, = «

olup L, = (1 + ¢") esitliginden

V=L, + Ln—Hi +Ln+2j +Ln+3k7
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1

yani li deki K, Lucas kuaterniyonlar elde edilir [19]. @ = 1++v/2 ve ¢ = 2

alindiginda ise Pell kuaterniyonlar1 QF, ve Pell-Lucas kuaterniyonlar1t QPL,, elde edilir

[7].

.. 1
Ornek 4.2. x =2ve g = ) olsun. Bu durumda g—Fibonacci kuaterniyonu Q,,

Q = @ gt ot Ugi+ ot 2j+ o+ 3k
on _ (_1)n 2n+1 . (_1)n+1 2n+2 . (_1)n+2 2n+3 _ (_1)n+3

— 3 . k
Q. 3 3 ' 3 I 3 ’
ve g—Lucas kuaterniyonu V,,
V., — o" [2n]61 n+1 [21’1 + 2]q . n+2 [2”1 +4]q . nt3 [21’1 + 6]q
n = Telad
[n]q [n+1]q [n+2]4 [n+3],
vV, = 2"+ (_1)11 +2n+1 + (_1)n+1i+2n+2+ (_1)n+2j +2n+3 + (_1)n+3k

olur. p = 1, ¢ =2 igin (1.3) te tammlanan U, ve V, dizileri sirasiyla {J, }, Jacobsthal

dizisi ve {j, }» Jacobsthal-Lucas dizisi olarak adlandirilir. Bu dizilerin genel terimleri

2" —(—1)"
e

Jn = 2n+(_1)n

formundadir. Sonug olarak

om__ (1) 2n+1_ -1 n+1 2n+2_ -1 n+2 2n+3_ -1 n+3
Q = ;)+ g)i+ ;)j+ ;)k

Q. = +Jn+1i+Jn+2j +Jn+3k

esitliginden JQ,, Jacobsthal kuaterniyonlar1 ve

vV, = 2n+(_1)n+2n+1+(_1)n+1i+2n+2+(_1)n+2j+2n+3+(_1)n+3k

V., = Jn + jn+1i + Jn—|—2.] + jn+3k

esitliginden de JLQ, Jacobsthal-Lucas kuaterniyonlar1 elde edilir [48].
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Sadelestirme. Ornek [4.1|de a\/q = i olur. Buradan

a, = l_qn_q—l/Z(l _qn-i-l) ve

bn — 1+qn_q—1/2(1+qn+l)

olmak iizere Q, ve K,, kuaterniyonlar1 baz1 hesaplamalar ve sadelestirmelerden sonra

_ntl.,
g 21" .
On = Tq[gan_an-i-l]} ve

K, = ¢ [qbn_bn+2j]

olarak yeniden yazilabilir. Boylece bu kuaterniyonlar, n tamsayisinin mod 4 e indir-

genmesine gore

g V2 —gagd +ayok] ,  n=4k
0, = L5 g qami1 —asys] , n=4k+1
ol g 32 qag 0l — ag k] . n=4k+2
{ g k2 —qag 3 +agy.sj) , n=4k+3

ve
.
g 2 gbar — bag 42| ., n=4k

K, = g * 32 gbyg i — by K], n=4k+1

q 2 [—qbagir + bagyaj]  , n=4k+2

g 22 [—gbay3i+ba sk, n=4k+3

\

formlarindan birisine esittir.

Lineerlestirme. a’g = —1 olsun. Binet form (4.1)) den her n > 1 tamsayzs1 icin

op — n n—1pn _ n
Q. — (2q)Qu-1 = %—(aq)a g(l(_o:l)) Y
B (X"g—(aq)anflg
- all-g)
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— (i —q) a" o (4.2)
ve
 ata—(ag)"y " la—(ag)"y
BT iy a(i—q)
_ olog) 'y (0g)'y
o(l—q)
_ (ag) ((a qgaq) ~(aar 'y 43)

lineerlestirmesi elde edilir.

aQn + anh

0gQn+ Q-1

Simdi Q, ve V, kuantum kuaterniyonlarini iceren bazi toplamsal 6zdeslikler incele-

necektir. Bu boliimde sadece Q,, ile ilgili olan 6zdeslikler ispatlanacaktir. V,, ile ilgili

olan 6zdeslikler ise benzer sekilde ispatlanabilir.

Teorem 4.3. m,k € N olsun. Bu durumda A =

() Z( ) T"Qantk =
(i) ). (m>(— 2q)" " Vouik =
n=0 n

olur.

[a(1 — q)]? olmak iizere

(

A/ 2Quix, miftise

\ Am=D/2y . mtekise
A"V, o miftise
AmD2Q, o mtekise

\
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ispat. Binet form (4.1 den

9]
Il
M=

S

(m) (—0%9)" " Qanrk

(m) (_azq)m_n <a2n+kg o (aq)2n+kl/>

3
Il
o

[l
M=

yazilabilir.
S 2 \m—ngp2\n 2 2 A\m
Y (") (=) (o) = (o~ aq)
n=0

ve

¥ (") oty () = (@ - o)"

n=0

oldugu gozlemlenebilir. o> — a?g = /A ve o’q> — a’>q = —oig\/ oldugundan

k k
S= (VB 2L (cagy/By L

elde edilir. m ¢ift tamsayi ise

diger durumda ise
S = A(m—l)/Z (oc'"“‘g—l— (OCC])m+kl’> — A(m—l)/ZVm+k

olur.

Teorem 4.4. m,k € N icin

o 5 (1) 0w Q= et o Qu,
n=0

@ Y (1) 10 Vs = (a1 40 Vo
n=0
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olur.

Ispat. Binet form lb uygulanirsa

s — é(ﬁ)(_nn(—a%)m—”()zm
_ io ()1 oay (am%(_l (_a;)mz
- <—a2—a2q>mafl‘kf‘q) (~(ag)? - aq) Oifi‘?%
- g (™)
= [~a(14+ )" Quix
elde edilir.

Teorem 4.5. m € N olsun. Bu durumda

(i) Z( )[06 1+9))"(—=%q)" " Qu = Qam,

(ii) Z ( )[06 L+q))"(—=0?q)" "V = Vay,

olur.

ispat. Binet form (4.1) uygulanirsa

s = 3 ()l +ar-aorre,
- £ (e rarceo (555157)
- <n:0 )@ araar )a(lg—cn
(& () e "(‘“zmm_") e



olur. O]

4.2. g—Kuaterniyon Polinomlari

Bu boliimde kuantum kuaterniyon polinomlar1 veya kisaca g—kuaterniyon polinomlari
Q. (z) ve V,(z) tamtilip bu tipteki polinomlarin Binet formiilleri ve iirete¢ fonksiyon-
lar1 bulunacaktir. Ayn1 zamanda g—kuaterniyon polinom dizileriyle ilgili bazi sonuglar

elde edilecektir. Oncelikle iki g—polinom olan Q,(z) ve V,(z) tamimlanacaktir.

Tammm 4.2. p(z) ve g(z) kompleks katsayili polinomlar olsun. Q,(z) ve V,(z)
g—polinomlar1 baslangi¢ kosullari sirasiyla Qp(z) = 0, Q1(z) = 1 ve Wy(z) = 2,
Vi(z) = p(z) ile verilen

On12(2) = p(2)Qns1(2) —q(2)On(2)
Viia(z) = p(2)Var1(2) —q(2)Va(2) (4.4)

yineleme bagintilari ile tanimlanirlar.

Ornek 4.3. (i) Sabit tipten bir ornek:
p(z) = a(g+1) ve q(z) = a*q olsun. Bu durumda

Oni2(2) = a(q+1)0ns1(2) — 0?qQ00(2)
Vosa(2) = a(g+ Vo1 (z) — 0?qVi(2)

polinomlar elde edilir.
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(i1) Sabit olmayan tipten bir ornek:

p(z) = h(x) reel katsayili bir polinom ve ¢(z) = —1 olsun. Bu durumda

Q()(x) = 0, Ql(x) =1

baglangic kosullu

Ont2(x) = h(x)On1(x) + On(x)

polinomlari elde edilir. Bu yineleme bagintisinin /(x) —Fibonacci polinomlarini
verdigi bilinmektedir. Boylelikle k herhangi bir reel say1 ve h(x) = k i¢in de

k—Fibonacci sayilarinmn elde edildigi goriiliir. Ozel olarak k = 1 ve k = 2 icin

sirastyla Fibonacci sayilar1 F;, ve Pell sayilan P, elde edilir.

(4.4) bagintisinin
w? — p(z)w—+q(z) =0

karakteristik denkleminin kokleri

p(z) +/p(2)* —44q(2)

o(w) = : ve Bw)=

olsun. Bu durumda Q,(z) ve V,(z) g—polinomlarmin Binet formiilleri

On(z) = Ve Va(2) = a(w)" + B(w)"

olarak elde edilir.

Simdi bilesenleri yukarida tanimlanan diziler olan iki g—kuaterniyon dizisi tanimlana-

caktir.
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Tanmm 4.3. Q,(z) ve V,(z) g—kuaterniyon polinomlar1 n > 0 i¢in

Qx (Z) = Oy (Z) + Qn+l (Z)l + Qn+2 (Z).] + Qn+3 (Z)k
Vau (Z) = Vau (Z) + Vit (Z)i + Vit (Z)J + Vits (Z)k

yineleme bagintilari ile tanimlidir.

Q..(z) g—kuaterniyon polinomu igin baglangi¢ kosullar

Qo(z) = Qo(z)+Q1(R)i+a(2)j+0s(2)k
= i+pEi+ (P’ —a()k,
Qi(z) = 0i1(2) +Qa(2)i+Q3(2)j+ Qa(2)k

= 1+p@)i+(p()* —4(2))i+(p()’ —2p(2)9(2))k

olur. V,(z) g—kuaterniyon polinomunun baglangi¢ kosullari ise

Vo(z) = W(2) +Vi(2)i+ Va(2)j+ V3(2)k

= 24 p(2)i+(p(2)* —29(2)i+ (p(z)* = 3p(2)q(2))k,
Vi) = Vi(2) +Va(2)i+ V3(2)j+ Valz)k

= p(2)+(p(2)* = 29(2)i+ (p(2)’ = 3p(2)q(2))i

+(p(2)* = 4p(2)*a(2) +24(2)* )k

olarak verilir.

Ornek 4.4. p(z) = h(x) reel katsayili bir polinom olsun. Ornek te goriildiigii
gibi 0, (z) g—polinomlarindan %(x)— Fibonacci polinomlart ve dolayisiyla da Q,(z)

g—kuaternion polinomlarindan /(x)—Fibonacci kuaterniyon polinomlari elde edilir.

Teorem 4.6. Q,,(z) ve V,(z) g—kuaterniyon polinomlarinin iirete¢ fonksiyonlari sira-
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styla

~ Qo(z) +[Q1(z) — p(2)Qo(2)]t
QF(r) = . 1 —pl(z)t—l—q(z)tzo ’
VE() = Vo(z) +[Vi(z) — p(z) Vo(2)lt

1—p(2)t +q(2)r?

seklindedir.

Ispat. g—kuaterniyon polinomu Q,(z) icin QF () iirete¢ fonksiyonu ¥ Q,(z)¢" for-
n=0

(o]

mundadir. Buradan — p(z)t ve g(z)t? nin iistel seri acilimi sirasiyla ¥, —p(2)Q,(2)1"+!

n=0

o)

ve Y q(2)Qn(2)t"*? olur. Dolayistyla
n=0

(1-p(2)t +q(2)*)QF (t) = Qo(2) + [Qi(z) — p(2)Qo(2)]t
esitliginden

Qo(z) +[Q1(2) — p(z)Qo(2)]t
1—p(2)t +q(z)12

QF (1) =

elde edilir. Benzer sekilde g—kuaterniyon polinomu V,(z) nin iirete¢ fonksiyonu

Vo(z) +[Vi(z) = p(2) Vo ()]t
1—p(2)t +q(2)12

VF(t) =

olarak bulunur. ]

Bu tipteki kuaterniyon polinom dizilerinin Binet formiilleri de elde edilebilir.

Notasyon: Bu boliim boyunca o (w) ve B(w) (4.5) te verilen elemanlar olmak tizere

a(w) = 1+a(w)i+aw)’j+aw)k,

(W) = 1+Bw)i+Bw)%+B(w)k

=)

olarak ele alinacaktir.
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Teorem 4.7. Q,,(z) ve V,(z) g—kuaterniyon polinomlarinin Binet formiilleri sirasiyla

- SV ) BEC)
Vau(z) = a(w)"M—kB(w)"ﬂ 4.7)
seklindedir.
Bazi hesaplamalarin ardindan
Qi(z) —a(w)Qo(z) = Bw),
Qi(z2) =BW)Qo(z) = a(w),
Vi(z) —a(w)Vo(z) = (B(w)—a(w))B(w),
Vi(z) =B(w)Vo(z) = (a(w)—B(w))o(w)

elde edilir.

Simdi Q,(z) ve V,(z) kuaterniyonlarini igeren bazi toplamsal formiiller verilecektir.

Teorem 4.8. n € N i¢in

0 3 (") a0 Q) = Qo)
n=0

(ii) i (Z)(—Q(Z))'”‘"p(Z)”Vn(Z) = Vo (2)
n=0

olur.

Ispat. (i) i¢in Binet form |Mi uygulanirsa

3 (") o eren)

n=0 n

39



— - (m m—n n n ﬁ
_ (ZO )o@ ptera ) S
o m m—n n n —W)
— (;6 (n)(—4(2)> P()"B(w) ) or(w) —B(w)
L a)
= (4@ +pRaw)" oS50
. Bl
—(=4(2) +p(2)B(w)) a(w)—B(w)
a0 a(w) - BB (w)
a(w)—B(w)
= QZn(Z)

olur. Benzer sekilde (ii) de Binet form (4.7) uygulanarak elde edilir.

4.3. Uygulamalar

Bu boliimde bilesenleri bazi 6zel tamsayi dizilerinden olan Hamilton kuaterniyonlarini

iceren zaman evoliisyonu ve donme uygulamalart verilecektir.

4.3.1. Zaman Evoliisyonu

Kuaterniyon tiirev formiilii, q(7) kuaterniyonunun bilegeninin zamana gore tiirevi ile

w(t) acisal hiz vektoriiniin bilegeni arasinda bag kurar. Daha ayrintili bilgi igin [42]

incelenebilir. w() agisal hiz vektorii, skalar kismu sifir olan

w(t)

wy(£)i+wy(1)j+w.(t)k

(0, wx(£),wy (£),w2(1))

kuaterniyonu gibi yazilabilir. Bu durumda birim kuaterniyon q(7) nin tiirevi
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olur [49].

Simdi hiz vektorii w(¢) = (0,sin 6¢,sin 0¢,sin 0t) ile q; (t) = (tF,,tFyq1,tFy12,tF,43)

kuaterniyonunun zaman tiirevi arasinda bir iligki kurulacaktir.

On = F,+ F,11i+ F,12) + F,43k kuaterniyonu n-inci Fibonacci kuaterniyon olmak

tizere (4.8)) den

elde edilir.

w(t) = (0,sin 0¢,sin O¢,sin O¢) hiz vektorii ve qx(t) = (tFy, Fyt1, Fyi2, Fy43) Kuaterni-

yonu alindiginda ise

dqp(t)
dt

elde edilir.

N(qa2(1))

N(qi(z))

N(Qn)

1 3
(

1
2

1
2
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—tF,13sin Ot
5 Fyip5in 01

—5F, 4 8in 0t

tF, sin Ot

—I'p43 sin Ot
%FI’H-z sin Ot

1 ino
—31n+1 Sin 01

F, sin O¢

—I'p43 Sin 91‘

F,+18in 0t +tF;, sin O¢)
F,4+2sin 6t 4t F; sin 6¢)

(F,sin 0t +1F, sin 6t)




4.3.2. Donme

Reel kismi sifir olan kuaterniyonlar R? teki vektorleri temsil etmek icin kullanilir. Yani

bir v vektorii vo = (0, v) ile temsil edilir. Birim kuaterniyon ¢ i¢in

Ly(v) =qvq"

doniisiimiinii ele alalim.

v=at+tn

w = gqvq*
w = a+m

Donme operatorii geometrisi

L,(v) operatoriiniin R? iizerinde lineer oldugu kolaylikla goriilebilir. Herhangi bir v
vektorii igin, bu operatdriin v iizerindeki hareketi, vektoriin u donme ekseni olarak
0 acis1 boyunca donmesine esdegerdir. ¢ kuaterniyonunun dénme altinda korundugu

goriilebilir. Baz1 hesaplamalardan sonra ¢ kuaterniyonu
cos 4 +usin
= —_ mn—
1 2 2
seklinde yazilabilir. Bir v vektorii u ekseni etrafinda 6 acis1 kadar dondiiriildiigiinde
Ly(v) = (cos0)v+ (1—cosB)(u-v)u+sinf(u x v) 4.9)
elde edilir. —¢g kuaterniyonu ayn1 donmeyi temsil eder ve donmelerin bilesimi, kuater-
niyonlarin ¢carpmasina karsilik gelir [49].

1. r reel sayis1 ve W,(a,b; p,q) genellestirilmis Fibonacci dizisi i¢in, g= (r,r,r,7)
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ve O, =W, + W, 1i+ W, 2j+ W, 3k olsun. Bu durumda

Qan_l - (Wna Wn+2a Wn+1 5 Wn+3)

seklindedir.

2. Oy =F,+ F,+1i+ F, 1)+ F, 3k n—inci Fibonacci kuaterniyonunu ele alinsin.

Rotasyon sonucunda elde edilen kuaterniyon, yani her n, k dogal sayilar1 i¢in

000y !
kuaterniyonu bulunacaktir. QanQk_1 = (a,b,c,d) olsun. Buradan
a=F,
oldugu goriiliir. Diger bilesenler ise U, 1, V.1, T,,1 Fibonacci dizileri

Upyg = 6F 2
Vi1l = Wu(=5,-9;1,1)
Tn,l = T Ip4l

ve

Un,l + Vn,1x+ Tn,lx2

flnx) = 1—2x—2x24x3
olmak tizere
1 dkf (n,x)
b= |x=07
k!3F2k+3 dx

Un2, Vn2, Ty 2 Fibonacci dizileri

Un,2 = 6Fn+1

Voo = W,(13,18;1,1)
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Tho = Wu(=7,-10;1,1)

ve
g\ 1 —2x—2x24+x3
olmak tizere
1 drg(n,x)
c= ’x=07
k!3F2k+3 dx

ve son olarak U, 3, V,, 3, T, 3 Fibonacci dizileri

Un,3 = 6Fn+3
Vaz = Wu(2,9:1,1)

Tz = Wu(=2,-5;1,1)

ve
U3+ Vysx+T, 3)C2
h(n,x) = —2 ’ d
1—2x—2x24+x3
olmak tizere
1 d*n(n,x) |
T K3y dx 70

seklinde bulunur.

. k bir dogal say1 olmak tizere v = (Fy12, Farr3, Farrq) olsun. (1,1,1) ekseni et-
rafinda 7 acis1 kadar donme ele alinsin. Dolayisiyla 7+ 2n7 agisi icin de gegerli

olacaktir. 0 :%(1, 1,1) birim vektdrii icin 1; dan

Ly(v) = (Faksa— 3 Pk Faiei2 + 3 Fakera, §F4k+4)

1
= 3 (3Fap+4 — Fa, 3F4 2 + Fagya, Fiaia)

elde edilir. 6 = £ ve v = (Fyq2, Far+3, Fair4) igin (1,1,1) ekseni etrafinda 6
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acist kadar donme ise

2 1
Ly(v) = §F4k+4(1, 1,1)+ %(szz, — Fyy3, Fagyr)

olur.
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5 . KOKLERI IKINCI MERTEBEDEN KUATERNIYON DIiZiLERI
CINSINDEN VERILEN BAZI YENI iKiNCi DERECEDEN
KUATERNIYONIK DENKLEMLER

Bugiine kadar kuaterniyon cebirleri tizerindeki denklemlerin ¢oziimlerini bulmak icin
bircok metod sunulmustur. Kuaterniyonlarda ¢arpma islemi degismeli olmadigindan
kuaterniyonik denklemlerle calismak kompleks cebir tizerindeki denklemlerle calig-
maktan daha zordur. Bu boliimde Niven, Serddio ve Zhigang [40, 44, 51] tarafindan
verilen metodlar kullanilarak ikinci dereceden monik bazi kuaterniyonik polinomlarin

kuaterniyon kokleri bulunacaktir.

5.1. Ana Teoremler

Teorem 5.1. y bir Fibonacci kuaterniyon olmak {izere
p(x,y) = x> +xy—y*—2—-2i—4j—3k (5.1)

polinomunun tamsayi katsayili tek kuaterniyon kokleri (x,y) = (Qzn—1,Q2,) olarak

verilir.

ispat. y = Q,, olsun. Bu durumda (5.1)) de verilen kuaterniyon polinomunun ilgili

oldugu matris

0 Q3,+2+2i+4j+6k

1 - Q2n

C=

olarak yazilabilir.

03, = —N(Qu)+2F% +2F 1 Foni+ 2P 2Fanj + 2Fon 1 3Fank

= —3Fu3+2F + 2P 1 Fopi 4+ 2P0 0 Fopj + 2F 3Pk (5.2)
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oldugundan C matrisinde (5.2)) yerine yazildiginda

0 2—3Fy3+2F2+ (2+2Fy1F)i

C =
1 —Fy — Fopqqi
ve
c 0 (4+42Fn12F2) + (3+2Fu43F0)i
2 p—
0 —Fopio — Fopy3i
olmak tizere
C=C+Gj

elde edilir. Buradan C matrisinin sag 6zdegerleri kompleks girigli 4 x 4

i G
A—

-G G

matrisinin 6zdegerleridir. A matrisinin karakteristik polinomu

h(x) = x* 42, + (3(Finss + Fant1) — 4Fp_1Foni1) X +

6(F2nt1Fan+1 — Fan—1Fang5)X +F4n 1 Fanys

olup &(x) polinomunun ¢arpanlarina ayrilmig hali
h(x) = (x* = 2Fpp_1x + 3F441) (4 + 2F 11X + 3F415)

seklindedir. Dolayisiyla bu matrisin 6zdegerlerinin

m A t n

1 _F2n+1 + i\/F22n+2 + F22n+3 + F22n+4 _2F2n+1 3F4n—|—5

2’ F2n l:Fl\/ n+1+ 2n+2 2F2n71 3F4n+1
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formunda oldugu goriiliir. (5.1)) polinomunu soldan x*> —2F, _1x+ 3Fy,, 1 polinomuna
bolerek

0 = xQ2Fp1+Fu+ P 1it-Fon2j+Fony3K) —
[3F4n+1 +2— N(an) + 2F22n + (2 + 2F2n+1F2n)i +

(442F,12F)j+ (34 2F13F, K]
elde edilir ve buradan

X = [(BFuni1+2—3F4.3) +2F5 + (24+2F 1 Fay)i+

(442 12F2)j + (34 2Fn13Fon K] X
1
2F2n—1 + FZn + F2n+1i+F2n+2j+F2n+3k
= (3Fnt1 +2—3Funy3) +2F5, + (24 2Py 1 Fon)i+

(4+2Fn12F,)j+ (3+2F2,13F,)K) X
1
L2n + F2n+li+F2n+2j+F2n+3k
(L3, + Fon i +F5y 0+ F5 1 3) Q201
(L3, + Ff  +F o+ FR )
= QOwm-1

bulunur. ((5.1)) polinomunu soldan x? +2F,  1x + 3Fy, 45 polinomuna bolerek

0 = x(—2Fut1+Fon+ Foppi+Fopoj+Fonisk) —
[3Fanss +2 = 3Fans3 +2F5, + (2+ 2Fouq 1 Fa )i+

(4+2F2n12F0)j + (6 + 2Fon13F2n)K]
yazilir ve buradan da

X = [BFyys+2—3Fun3+2F + 2+ 2F1Fy)i+

(442F12F0)j+ (3 +2Fn3F)K] x
1
2P 1 + Fop + Fop i+ Foy g 2j+Fou 13K
= [3Fypss+2—3Fuy3+2F} 4+ (24 2F 1 Fay)i+
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(4+2Fn12F0)j + (3+ 2F2,13F0 K] X
1
—Loy + Fop1i+Fop2j+Fan 3K
= [(=3Fant1 =24 3Funi3 + L3, + o a0 HF3 3 — 2F5,) +

(24 2Fa11Fon)i+ (44 2F212F5)j+ (3 + 2Fp+3F2, K] X
1
—Lop + Fop1i+-Fopioj+Fonisk

elde edilir. Ancak bu denklemden tamsay1 katsayili kuaterniyon ¢oziimii elde edilemez.
¥ = Q241 olsun. Bu durumda (5.1)) kuaterniyon polinomu ile ilgili olan matrisin zde-
gerlerinin izi ve normu tamsay1 olmayacaktir. Polinomu bu 6zdegerlere karsilik gelen
karakteristik polinoma bdéliindiigiinde ise tamsay1 katsayili kuaterniyon ¢oziimii elde

edilemez. L]

Teorem 5.2. y bir Fibonacci kuaterniyon olmak {izere
p(x,y) =x> +xy—y* +242i+4j+ 3k (5.3)

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Qau, Q2n+1) olarak

verilir.

Ispat. y = 05,1 olsun. Bu durumda (5.3) te verilen kuaterniyon polinomunun ilgili

oldugu matris

0 03, —2-2i—4j-3k
C=

1 —Qon+1

olarak elde edilir.

Q%n-i,-l = —N(Qut1)+ 2F22n+1 + 2P 1Fon2i+ 220 1 Fon 3+ 2F2n 1 1 Fan sk

= “3Fui5+2F )+ 2P Py ioi+ 2P 1 Py 3j + 2F 1 Fanrak  (5.4)
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oldugundan

o | —2=3Fy5+2F;5,  + (=24 2P 11 Fap2)i
] prm—

1 —Fopp1 — Fopyo0i

veE

o0 (—4+ 2P 1Foni3) + (=34 2F 11 Fapya)i
2 prm—

0 —Fop 3 — Fopyad

olmak iizere C matrisinin sag 6zdegerleri kompleks girisli 4 x 4

G G
A=

-G G

matrisinin 6zdegerleridir. Buradan A matrisinin karakteristik polinomu

h(x) = x*+2F412 + (3(Fant7 + Fans3) — 4FonFanso) X +

6(Fon-+2Fant3 — FonFant7)X + OF4n3Fani7

olup A(x) polinomu
h(x) = (x> = 2Fpux + 3F313) (x* + 2F 10X + 3F4n47)

seklinde carpanlarina ayrilir. Boylelikle 6zdegerler

m A t n

1| P i\/ F +F o+ F s 2Py | 3Fany3

2 _F2n+2 + i\/F22n+3 + F22n+4 + F22n+5 _2F2n+2 3F4n+7

seklinde elde edilir. ((5.3]) polinomu soldan X2 —2F,x+ 3F4;+3 polinomuna boliindii-
giinde x = Qy,,, (5.3)) polinomu soldan x* + 2F5,2x 4 3Fy, 7 polinomuna boliindii-

giinde ise tamsay1 katsayili olmayan yeni bir kuaterniyon ¢oziimii elde edilir.
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¥ = Q2 durumunda ise Teorem [5.1] de oldugu gibi tamsay1 katsayili kuaterniyon ¢6-

zimi elde edilemez. O]

Simdi

X —3xy+y?+2+4i+6j+k = 0,
x2—3xy+y2—2—4i—6j—k =0

denklemlerinin ¢oziimleri ile ilgilenilecektir.

Teorem 5.3. (i) y bir Fibonacci kuaterniyon olmak iizere
p(x,y) =x> —3xy+y> +2+4i+6j+k (5.5)

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Q2,—1,Q21+1)

olarak verilir.

(i1) y bir Fibonacci kuaterniyon olmak iizere
p(x,y) =x* —3xy+y* —2—4i—6j—k

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Q2,, Q2n+2) Ola-

rak verilir.

Ispat. Sadece (i) sikkinin ispat1 verilecektir. Benzer sekilde (ii) yapilabilir. y = Q2,41
olsun. Bu durumda denklem (5.5) te verilen kuaterniyon polinomunun ilgili oldugu

matris

0 —Q3,, —2—4i—6j—k
C =

1 302141
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olacaktir. (5.4 denklemini kullanarak

o |0 (=24 3Funys —2F5, ) + (=4 = 2P 41 P2
l:

1 —3Fn 41— 3Fn40i

veE

c 0 (=6—-2Fu1Fon3)+ (=1 =2Fu1Foupa)i
2 p—

0 —3Fn 43 — 3Fpp4i

olmak {izere C matrisinin sag 6zdegerleri kompleks girigli 4 x 4

G G
A=

-G G

matrisinin 6zdegerleri oldugu goriilebilir. Buradan A matrisinin karakteristik polinomu

h(x) = x*—6Fy 1+ (3(Fants + Fin-3) +4Fo_3Fn11) X* —

6(F2n—3F4n+5 — Fani1Fan—3)X +9F4, 3F4,15
olup A(x) polinomu
h(x) = (x* = 2Fpp— 1%+ 3Fay41) (8 — 2F2 13X + 3Fan19)

seklinde ¢arpanlarina ayrilir. Boylelikle 6zdegerler

m Am t n

U Pt 1B+ + By | 2Pt | 3Fan

2 | Fony3 F i\/ F s+ F s+ F3 6 | 2Pns3 | 3Fango

olarak elde edilir. (5.5)) polinomu soldan X2 —2F,_1x+ 3F4+1 polinomuna boliindii-
giinde x = Qy,,_1, (5.3]) polinomu soldan x*> — 2F>,, 3x + 3F4,9 polinomuna boliindii-

giinde ise tamsay1 katsayili olmayan yeni bir kuaterniyon ¢oziimii elde edilir.
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¥ = Q2 durumunda ise Teorem [5.1] de oldugu gibi tamsay1 katsayili kuaterniyon ¢6-

zimi elde edilemez. O]

Bunlarin diginda ilgilenilen diger iki denklem

X2+ 2xy =y — 6F2,y + OF 40 + 24 2j — 4k =0,

X2 +2xy = y? = 6Fpu i1y + WFanys —2 = 2j +4k =0

seklindedir.

Teorem 5.4. (i) y bir Fibonacci kuaterniyon olmak iizere
p(x,y) = x> +2xy — y* — 6F2,y + 9Fy 0 + 24 2j — 4k

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Q2,, Q2,—1) ola-

rak verilir.

(i1) y bir Fibonacci kuaterniyon olmak iizere
p(x,y) = X+ 2xy—y? — 6F, 11y +9Fy4 —2—2j+ 4Kk

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Q2,+1,Q2,) 0Ola-

rak verilir.

Ispat. Teorem in ispatinda oldugu gibi ilgili olunan es matrisler yazilarak istenen

sonug elde edilir. 0

Simdi her biri tamsay1 katsayili kuaterniyon ¢éziimiine sahip olan dort denklem daha

ele alinacaktir. Bu denklemler

X2 —12Fx+y* +18F,3 — 8 —4i— 12j — 16k = 0,

X2 —12Fpi1x+ >+ 18Fu. s+ 8 +4i+ 12j+ 16k = 0,
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X2 +8Fyx—y* —12Fy, 3 +8+4i+12j+ 16k = 0,

X2 48Py 1x—y? —12F4,. 5 —8—4i—12j— 16k =0

seklinde olup ¢oziimleri Teorem[5.5] ve Teorem [5.6]da verilmistir.

Teorem 5.5. (i) y bir Lucas kuaterniyon olmak iizere
p(x,y) = x* — 12F,x+y* + 18F,, 3 — 8 —4i — 12j — 16k (5.6)

polinomunun tamsayi katsayili tek kuaterniyon kokleri (x,y) = (Q2,,K2,) ve

(x,y) = (12F,, — Q2,, K2, olarak verilir.

(i1) y bir Lucas kuaterniyon olmak iizere
p(x,y) = x> — 12F, 1 1x+y* 4 18F, 5+ 8 +4i+ 12j + 16k (5.7)

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Q2n+1,Kon+1)

ve (x,y) = (12F24+1 — Q2n+1, Kan+1) olarak verilir.

Ispat. Oncelikle (i) ispatlanacaktir. y = K, olsun. Gerekli islemler yapildiginda

K3, = —N(Ky,)+2L3, +2LopLon1i+ 200,10, 2j + 2LonLon 3k

= —15Fu43+2L3, +2LouLon1i+2LoyLoni2j +2LosLon 3k (5.8)
\~

K31 = —N(Kapy1)+203,, 1 +2Loni1Loni2i+ 20001 1L0n 43§+ 2Lon 1 112 1 4k

= —15Fy45+2L3, 1 +2Lons1Lonsoi + 2Lon i1 Lonsaj + 2Lons 1 Lonsak (5.9)
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oldugu kolaylikla goriilebilir.

c 0 (—3F4n+3 — ZL%n + 8) + (4 —2LpuLop41)i
‘l prm—

1 12F,

veE

c 0 (12—2LyuLopi2)+ (16 —2Lp, Loy 3) i
2 prm—

0 0

olmak iizere (5.6) da verilen kuaterniyon polinomunun ilgili oldugu 4 x 4 matris

G G
A=

-G G
kompleks girisli matrisidir. Buradan A matrisinin karakteristik polinomu /(x)
h(x) = (x* = 2F>,x + 3F4,13) (x* — 22F3,_1x 4 3F4,4 3 + 120F3)

seklinde ¢arpanlarina ayrilir. Boylelikle 6zdegerler

m A t n

L] F ZnHFl\/ it Pt Pz | 2P 3Fan+3

2 11F2,,3Fi\/F2n A AER L+ FR | 22Fs, | 3Fus+ 120F2

olarak elde edilir. (5.6) polinomu soldan x> — 2F,x + 3F4,,3 polinomuna boliindii-

giinde
0=x(—10F,) + (K3, + 15F4,,3 — 8 — 4i — 12j — 16k)

elde edilir. Dolayisiyla

(K3, +15F4, . 3—8—4i—12j—16k) 0
- 10F, B
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yazilabilir. Diger kok ise (5.6) polinomunu soldan x? — 22F,,_1x + 3Fy,+3 + 120F2,

polinomuna béliindiigiinde
x=12F, — O

olarak bulunur. y = K3, olsun. Bu durumda (5.6) ile verilen kuaterniyon polinomu-
nun ilgili oldugu es matrisin izi ve 6zdegerlerin normu tamsay1 olmayacaktir. Polinom
bu dzdegerlere karsilik gelen karakteristik polinomlara boliindiigiinde tamsay1 katsa-

yil1 kuaterniyon ¢6ziimleri elde edilemez.

Simdi (ii) ispatlanacaktir. y = K5, 41 olsun. Denklem ([5.9)) kullanilarak (5.7)) polinomu
ile ilgili olan e matris yazilabilir. Karsilik gelen 4 x 4 kompleks girigli matrisin karak-

teristik polinomu
W (x) = (% = 2F 41X+ 3F445) (X2 — 22F5 11X + 3F4n 15 + 120F%, . )

seklindedir. Dolayisiyla 6zdegerler

m Am t n

Ul Pt Ty B+ By s+ Ry | 2P 3Fin s

2 | B Fiy/ PR, 5+ FR s+ FRyy | 2Pt | 3Finys + 120F2,,

olacaktir. Buradan kokler

x = Qi

x = 12Fu 11— Oy

olarak elde edilir. y = K5, olsun. Bu durumda (i) sikkinda oldugu gibi tamsay1 katsayili

kuaterniyon c¢oziimleri elde edilemez. 0
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Teorem 5.6. (i) y bir Lucas kuaterniyon olmak iizere
p(x,y) = x> + 8Fax — y* — 12Fy, 13 + 8+ 4i+ 12j + 16k (5.10)

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Q2,,K2,) ve

(x,y) = (—8F,, — Oz, K2, olarak verilir.

(i1) y bir Lucas kuaterniyon olmak iizere
p(x,y) = x>+ 8Fy, 1 x—y> — 12F,.5 — 8 —4i— 12j — 16k (5.11)

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Q2p+1,Kon+1)

ve (x,y) = (—8F24+1 — Qan+1,Kon+1) olarak verilir.

ispat. (5.8)) ve (5.9) kullamilarak (5.10) ve ([5.11) polinomlarina karsilik gelen 4 x 4
kompleks girigli matrisleri yazilabilir. (5.10|) polinomuna karsilik gelen matrisin ka-

rakteristik polinomu
(% = 2F3x + 3F443) (8 + 18F>,x + 3Fy,, 13 + 80F3,)

olur. Buradan 6zdegerler

m A t n

1 FZn:Fi\/FZZnH +Fy 0+t Fo s 2F3n 3F4ni3

2 | —9Fon Fi\[FRy + Foyon+ Py | — 18Py | 3Finys +80F,

seklinde bulunur. Niven algoritmasindan kokler

X = QZm

x = —8F,— 0
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olarak elde edilir. ((5.11]) polinomuna karsilik gelen matrisin karakteristik polinomu
(Xz —2F 11X+ 3Fy15) (XZ + 18Fn41x+3F4,45+ SOFZZ,H_I)

olur. Buradan 6zdegerler

m A t n

1 F2n+l :Fi F2211+2 + FZZ,H_3 + F22n+4 2F2n+l 3F4n+5

2 | “9Ft T\ B o+ FR s+ Py | — 18Pt | 3Fues +80F2,

olarak verilir. Dolayisiyla kokler

x = Qi

x = —8Fyuy1— 01
olarak elde edilir. O
Uzerinde calisilan son denklem
x2+xy+yx—|—ay2—|—by+q =0
formundadir. Bu tipteki bir denklemin ¢oziimleri esdeger reel kuadratik formuna gore
[51] de verilen metod kullanilarak bulunacaktir.
Teorem 5.7. y bir Fibonacci kuaterniyon olmak iizere
p(x,y) = x> +xy+yx+2y* — 6Fp 1y + IFani3 +2 — 21— 2Kk

polinomunun tamsay1 katsayili tek kuaterniyon kokleri (x,y) = (Q2n,Q2n—1) Ve

(x,y) = (—K2p, Q2n—1) olarak verilir.
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Ispat. y = Q05,1 olsun. x = xo + x1i+ x2j + x3k icin

d = 203, | —6Fy4100—1+9F43+2—2i—2k
= 2(=3Fui1+2F5_| + 2P 1 Fopi+2F0_1 Fani 1§ + 2F—1 Fan oK) —
6F2,4102n—1+9F4,43+2—2i—2k
= (—6Fyy1 +4F3 | —6F 1 Fay 1 +2) + (4Fo_1Fy — 6F2,Fap i —2)i+
(4F_1Fopi1 —6F3, )i+ (4F2n 1 Foyia — 6F 1 Fop o —2)k

= dy+dii+drj+ dsk.

olmak iizere esdeger reel kuadratik form

I )
x5 —x1 — X5 — X3+ 2(Fon—1X0 — Fanx1 — Fapg1x2 — Fapq0x3) +do = 0,

2x0x1 +2(Fanxo + Fan—1x1) +d; =0,
2x0x7 + 2(F2,H_1X() + an_le) +dy =0,

2x0x3 + 2(Fapsox0 + Fon—1x3) +d3 =0

seklindedir. Buradan x = Q,,, ve x = —K>,, olarak iki reel kuaterniyon ¢oziimii elde

edilir.

y= Qo igil’l

d = 205, —6Fu 4100+ 943 +2—2i—2k
= 2(—3Fu43 + 2F5, + 2Fn 11 Fanl + 2Fn 12 Faj + 2P 4 3F2K)
—6F2, 1102, +9F4 43 +2—2i— 2k
= (—6Fyyi3+4F3 — 6F>1Fy +2) + (4Fp s 1 Fon — 6F5, —2)i+
(4F2n12F2n — 6F2 1 1F2012)j + (4F2n13F20 — 6F2 118213 — 2)k

= dy+dii+drj+dsk

olmak tizere

> 2 2 o
xp — X1 — X3 — X3+ 2(FapXo — Fan1%1 — Fany2X0 — F2p13%3) +dp = 0,
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2xox1 + 2(Fapt1x0 + Fopx1) +dy =0,
2x0x2 + 2(Fapq2x0 + Fanxz) +dr = 0,

2x0x3 + 2(F2n+3x0 + an.x3) +d3; =0

reel kuadratik form yazilir. Fakat bu formdan reel kuaterniyon ¢oziimleri elde edile-

mez. ]
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6 . TARTISMA VE SONUC

Bu doktora tezi kapsaminda genel olarak kuaterniyon dizileri ve kokleri kuaterniyon
dizileriyle ifade edilebilen ikinci dereceden bazi kuaterniyonik polinomlarla ilgilenil-
migtir. Karakteristik polinomunun derecesi ikiden biiyiik olan dizilerle elde edilen ku-
aterniyon dizileri iizerine ¢aligmalar literatiirde az goriilmektedir. Bu kuaterniyon di-
zileri arasinda olan Tribonacci ve Tribonacci-Lucas kuaterniyonlarinin bazi 6zellikleri
incelenmigtir. Derecesi iki olan dizilerle elde edilen kuaterniyon dizilerinin ise kuan-
tum genellestirmesi verilmistir. Dolayisiyla farkli ¢ degerleriyle su ana kadar ¢alisilmig
olan biitiin diziler elde edilmektedir. Ayrica kuaterniyon polinomlarinin da kuantum
genellestirmesi verilmistir. Dolayisiyla ¢alisilan bazi kuaterniyon polinomlar: yine ¢
yerine 0zel polinomlar secilerek elde edilmektedir. Tanimlanan kuantum kuaterniyon
polinomlarinin bazi 6zellikleri verilmis ve baz1 6zdeslikler elde edilmistir. Literatiirde
en cok karsilagilan tamsay1 katsayili bazi kuaterniyon dizileri i¢in zaman evoliisyonu
ve donme uygulamalari da verilmistir. Benzer diisiinceyle uygun kosullar altinda farkli
kuantum kuaterniyon dizileri {izerinde de bu tarz uygulamalar verilebilir. Kuantum
tamsayilarinin kullanim alanmi ¢ok oldugundan tanimlanan kuantum kuaterniyon dizi-

lerinin bir¢ok uygulamasi olacagina inaniyoruz.

Son yillarda kuaterniyonlar iizerindeki polinomlarin koklerini aramaya olan ilgi ku-
antum mekanigi problemlerini ¢6zmek i¢in gereken kuaterniyonik matematiksel arac-
larin daha iyi anlagilmasini saglamistir. Kuaterniyonlarda ¢arpma degismeli olmadi-
gindan kuaterniyon katsayili polinomlarin koklerini bulma problemi reel ve kompleks
durumdan daha incelikli ve zengindir. Bu da ikinci dereceden kuaterniyonik denklem-
lerin koklerini incelememizdeki en biiyiik motivasyon kaynagidir. Bu tezde verilen

denklemlerin genellestirmesi iizerine ¢alismalar da yapilabilir.
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