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23/07/2019

Bu tez ile Kırıkkale Üniversitesi Fen Bilimleri Enstitüsü Yönetim Kurulu Doktora

derecesini onaylamıştır.
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ÖZET

BAZI KUATERNİYON DİZİLERİ VE KUATERNİYON POLİNOMLARININ

KÖKLERİ

KIZILASLAN, Gonca

Kırıkkale Üniversitesi

Fen Bilimleri Enstitüsü

Matematik Anabilim Dalı, Doktora Tezi

Danışman: Doç. Dr. İlker AKKUŞ

Temmuz 2019, 67 sayfa

Kuaterniyonlar matematiğin çeşitli alanlarında görülen temel bir konudur. Hem teorik

matematik hem de uygulamalı matematikte birçok uygulaması bulunmaktadır. Bileşen-

leri çeşitli sayı dizilerinden oluşan kuaterniyonlar da birçok araştırmacı tarafından il-

ginç bulunmuştur. Bu tip diziler kuaterniyon dizileri olarak adlandırılır. Çalışılan bu di-

zilerin bileşenlerinin karakteristik polinomları genellikle ikinci derecedendir. Bu tezde

ilk olarak karakteristik polinomunun derecesi üç olan Tribonacci ve Tribonacci-Lucas

kuaterniyon dizileri üzerinde çalışılmış ve bazı özdeşlikler elde edilmiştir. Sonrasında

karakteristik polinomlarının derecesi iki olan dizilerin kuantum genelleştirilmesi veri-

lerek elde edilen dizilerle de kuantum kuaterniyon dizileri elde edilmiştir. Ayrıca ku-

antum kuaterniyon polinomları tanımlanmış ve çeşitli özellikleri incelenmiştir. Bazı

özel kuaterniyon dizileri için de zaman evolüsyonu ve dönme uygulamaları verilmiştir.

Son olarak ise bazı yeni iki değişkenli kuadratik kuaterniyon polinom denklemleri için

Horadam kuaterniyon köklerinin kapsamlı bir analizi sunulmuştur.

Anahtar Kelimeler: Yineleme Bağıntıları, Kuaterniyon, Tamsayı Dizileri, Kuad-

ratik Kuaterniyon Denklemi, Karışık Kuaterniyon Katsayılı

İki Değişkenli Polinomlar, Polinom Denklemini Çözme,

q−kalkülüs, q−özdeşlikler.
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ABSTRACT

SOME QUATERNION SEQUENCES AND ROOTS OF QUATERNION

POLYNOMIALS

KIZILASLAN, Gonca

Kırıkkale University

Graduate School of Natural and Applied Sciences

Department of Mathematic, Ph.D. Thesis

Supervisor: Assoc. Prof. Dr. İlker AKKUŞ

July 2019, 67 pages

Quaternions are fundamental objects of various parts of mathematics. They have app-

lications in both theoretical and applied mathematics. Quaternions whose components

are from special number sequences were also found interesting by many authors. These

types of sequences are called as quaternion sequences. The characteristic polynomials

of the components of these studied sequences are generally second order. In this the-

sis firstly Tribonacci and Tribonacci-Lucas quaternion sequences whose characteristic

polynomials are third order were studied and some identities were obtained. Next, qu-

antum quaternion sequences were obtained by the quantum generalization of the sequ-

ences whose characteristic polynomials are second degree. Also quantum quaternion

polynomials were defined and several properties were investigated. Time evolution

and rotation applications were given for some special quaternion sequences. Finally, a

comprehensive analysis of Horadam quaternion roots for some new bivariate quadratic

quaternion polynomial equations was presented.

Key Words: Recurrences, Quaternion, Integer Sequences, Quadratic Qu-

aternion Equation, Bivariate Polynomials with Mixed Quater-

nion Coefficients, Solving Polynomial Equation, q−calculus,

q−identities.
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1 . GİRİŞ

İkinci mertebeden lineer {Fn} Fibonacci dizisi, başlangıç koşulları F0 = 0, F1 = 1

olmak üzere n≥ 2 için Fn = Fn−1 +Fn−2 yineleme bağıntısı ile tanımlanır [32]. Doğal

bir düşünce olarak devamında n≥ 2 için a, b, p, q tamsayılar ve W0 = a, W1 = b olmak

üzere

Wn = pWn−1 +qWn−2 (1.1)

genelleştirilmiş Fibonacci dizisi de tanımlanmıştır ve bu dizi kısaca {Wn(a,b; p,q)} ile

gösterilir [21]. Bu durumda a = 0, b = 1, p = 1 ve q = 1 değerleri için {Wn(a,b; p,q)}

dizisi yukarıda tanımlanan Fibonacci dizisine dönüşür.

(1.1) yineleme bağıntısının karakteristik denklemi x2 − px − q = 0 olduğundan

p2 + 4q ≥ 0 için bu dizinin Binet formülü α =
p+
√

p2+4q
2 ve β =

p−
√

p2+4q
2 olmak

üzere

Wn(a,b; p,q) =
(b−aβ )αn− (b−aα)β n

α−β
(1.2)

formundadır. Bu tez boyunca {Wn(a,b; p,q)} genelleştirilmiş Fibonacci dizisi

a = 0, b = 1 ve a = 2, b = p durumunda sırasıyla

Un : = Wn(0,1; p,q)

Vn : = Wn(2, p; p,q) (1.3)

ile gösterilecektir. Ayrıca{Wn(0,1;k,1)} ve {Wn(2,1;k,1)} dizileri de sırasıyla {Fk,n}

ve {Lk,n} ile gösterilecektir. Falcon ve Plaza
{

Fk,n
}

dizisinin elemanlarını k−Fibonacci

sayıları olarak adlandırmıştır [9]. Ayrıca Falcon
{

Lk,n
}

dizisinin elemanlarına da

k−Lucas sayıları adını vermiştir [10]. Bazı özel a, b, p, q değerleri için {Wn(a,b; p,q)}

dizisinin karşılık geldiği diziler aşağıdaki tabloda gösterilmiştir.
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Wn(a,b; p,q) a b p q

Fibonacci 0 1 1 1
Lucas 2 1 1 1
Pell 0 1 2 1
Pell-Lucas 2 1 2 1
Jacobsthal 0 1 1 2
Jacobsthal-Lucas 2 1 1 2

İyi bilinen bazı sayı dizileri

Fibonacci dizisi polinomsal olarak da genelleştirilebilir. Bunun için h(x) reel katsayılı

bir polinom olsun. h(x)−Fibonacci polinomları {Fh,n(x)}n≥0 başlangıç koşulları

Fh,0(x) = 0, Fh,1(x) = 1

olmak üzere n≥ 2 için

Fh,n(x) = h(x)Fh,n−1(x)+Fh,n−2(x) (1.4)

yineleme bağıntısı ile tanımlıdır [39]. h(x)−Fibonacci polinomlarının aynı zamanda

Catalan-Fibonacci polinomları, Byrd-Fibonacci polinomları ve k−Fibonacci sayıları-

nın genelleştirmesi olduğu da görülebilir.

F karakteristiği 2 olmayan bir cisim olsun. F cismi üzerinde 4 boyutlu merkezil

basit cebire H kuaterniyon cebiri denir. Toplama ve çarpma işlemleri ile birlikte H

bir halka yapısı oluşturur. Daha açık bir şekilde ifade etmek gerekirse H değişmeli

olmayan bölüm cebiridir. F cismi üzerindeki her kuaterniyon cebiri a ve b elemanları

F cisminin sıfırdan farklı elemanları olmak üzere

H := {F +F i+F j+F ij | i2 = a, j2 = b, ij = k =−ji} (1.5)

formundadır. Burada {1, i, j,k} kümesi H cebirinin standard bazı olarak adlandırılır

ve H cebiri basitçe H = (a,b
F ) olarak yazılır. Kuaterniyon cebirinin klasik bir örneği

M2(R) = (1,1
R ) 2 × 2 reel matris cebiridir. Diğer bilinen örnekler (−1,−1

R )
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Hamilton kuaterniyonları ve (−1,1
R ) bölünmüş(split) kuaterniyonlardır. Bu tez boyunca

i2 = j2 =−1 olarak ele alınmıştır.

Bileşenleri ikinci mertebeden özel sayı dizilerinden oluşan kuaterniyonlar bugüne ka-

dar birçok araştırmacı tarafından çalışılmıştır [18, 19, 21, 23, 27, 46]. Bu tip diziler

kuaterniyon dizileri olarak adlandırılır. Yakın zamanda Cerda-Morales [3] r,s, t reel

sayılar olmak üzere

Vn = rVn−1 + sVn−2 + tVn−3, n≥ 3

ve başlangıç koşulları V0 = a, V1 = b, V2 = c tamsayılar olan üçüncü mertebeden

{Vn}n≥0 genelleştirilmiş Tribonacci dizisini ele almıştır. r = s= t = 1 ve V0 = 0,V1 = 1,

V2 = 1 alındığında bu dizi {Tn}n≥0 ile gösterilen klasik Tribonacci dizisine indirgenir

[11, 12, 29]. r = s = t = 1 ve V0 = 3, V1 = 1, V2 = 3 alındığında ise genel terimi T Kn

ile gösterilen Tribonacci-Lucas dizisi elde edilir [50]. Bu dizilerden yola çıkılarak ge-

nelleştirilmiş Tribonacci kuaterniyonları ve genelleştirilmiş Lucas kuaterniyonlarının

tanımları verilmiş ve çeşitli özellikleri incelenmiştir [3]. Bu tezin üçüncü bölümünde

bu tipteki kuaterniyonlar üzerinde çalışılmıştır.

Bileşenleri bilinen Fibonacci ve Lucas sayı dizilerinden oluşan n-inci Fibonacci ku-

aterniyon

Qn = Fn +Fn+1i+Fn+2j+Fn+3k (1.6)

ve n-inci Lucas kuaterniyon

Kn = Ln +Ln+1i+Ln+2j+Ln+3k (1.7)

biçiminde Horadam tarafından tanımlanmıştır [19]. Daha sonra Swamy genelleştiril-

miş Fibonacci kuaterniyonları için bazı bağıntılar elde etmiştir [46]. Bundan sonra bir-

çok araştırmacı bu yapılarla ilgilenmiş ve bazı sonuçlar elde etmişlerdir [13, 14, 15, 41,

43]. Diğer iyi bilinen kuaterniyon dizileri Pell, Pell-Lucas, Jacobsthal ve Jacobsthal-

Lucas kuaterniyonlarıdır [7, 13, 18, 27, 28, 48].
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Catarino (1.4) te verilen polinomları kullanarak

Qh,n(x) = Fh,n(x)+Fh,n+1(x)i+Fh,n+2(x)j+Fh,n+3(x)k

h(x)−Fibonacci kuaterniyon polinomlarını çalışmış ve bazı sonuçlar elde etmiştir [2].

k bir reel sayı ve h(x) = k olmak üzere h(x)−Fibonacci polinomlarının tanımından

k−Fibonacci sayıları Fk,n elde edilir ve dolayısıyla h(x)−Fibonacci kuaterniyonlarının

tanımından da k−Fibonacci kuaterniyonları

Qk,n = Fk,n +Fk,n+1i+Fk,n+2j+Fk,n+3k

elde edilir.

Dördüncü bölümde bileşenleri kuantum tamsayılarını içeren iki tip kuaterniyon di-

zisi tanımlanacaktır ve böylelikle çalışılan bazı kuaterniyon dizilerinin bir genelleş-

tirmesi yapılacaktır. Devamında h(x)−Fibonacci kuaterniyon polinomlarının bir ge-

nelleştirmesi olarak q−kuaterniyon polinomları da tanıtılacaktır. q−kuaterniyon poli-

nomları için Binet formülleri ve üreteç fonksiyonları elde edilecektir. Ayrıca tanımla-

nan q−kuaterniyonlar ve q−kuaterniyon polinomları için bazı özellikler ve özdeşlikler

verilecektir. Aynı zamanda bazı kuaterniyon dizileri için zaman evolüsyonu ve dönme

uygulamaları da verilecektir. Kuantum tamsayıları özellikle fizikte yoğun olarak kul-

lanıldığı için yeni kuantum kuaterniyon tiplerinin başka uygulamalarının da olacağını

düşünüyoruz.

Sayılar teorisinde Hilbert’in onuncu probleminden yola çıkılarak çözümleri tamsayı

kümesi ile sınırlandırılan denklemler büyük ilgi görmüştür. [45] te genel lineer kuater-

niyonik denklemler göz önünde bulundurulmakta ve çözümü bulmak için bir yöntem

verilmektedir. Birçok araştırmacı a,b,c ve d sabit tamsayılar olmak üzere ax2 +bxy+

cy2 + d = 0 denklemi ile ilgilenmiştir [5, 6]. Fibonacci ve Lucas dizilerinin birbirini

takip eden terimlerini sıfır kabul eden konikler de birçok araştırmacı tarafından ilginç

bulunmuştur [20, 22, 30, 31, 37, 38]. Kuaterniyon çarpımı değişmeli olmadığından ku-
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aterniyon katsayılı ve bilinmeyenli denklemlerin çözümleri reel ve kompleks sayılar-

dan daha incelikli ve daha zengin bir problemdir. [13] te genelleştirilmiş kuaterniyon

ve oktonyon cebirlerinde bazı cebirsel denklemlerin çözümleri verilmektedir. [51]de

de, verilen

b( j) = b( j)
0 +b( j)

1 i+b( j)
2 j+b( j)

3 k

c( j) = c( j)
0 + c( j)

1 i+ c( j)
2 j+ c( j)

3 k

g( j) = g( j)
0 +g( j)

1 i+g( j)
2 j+g( j)

3 k

h( j) = h( j)
0 +h( j)

1 i+h( j)
2 j+h( j)

3 k

d( j) = d( j)
0 +d( j)

1 i+d( j)
2 j+d( j)

3 k

kuaterniyonları ve bilinmeyen

x = x0 + x1i+ x2j+ x3k and x∗ = x0− x1i− x2j− x3k

kuaterniyonları ile ifade edilen

x2 +
t

∑
j=1

b( j)xc( j)+
s

∑
j=1

g( j)x∗h( j)+d = 0 (1.8)

ikinci dereceden monik kuaterniyonik polinomun köklerini bulabilmek için bir metod

daha verilmiştir ve bu polinomların köklerinin eşdeğer reel kuadratik formu ile çözüle-

bileceği gösterilmiştir. Bu çalışmalardan esinlenerek beşinci bölümde a,b reel sayılar

ve x, y, q kuaterniyon olmak üzere

x2 +axy± y2 +q = 0,

x2 +axy− y2 +by+q = 0,

x2 +ax± y2 +q = 0,

x2 + xy+ yx+ay2 +by+q = 0

formundaki denklemlerin çözümlerine yer verilmiştir.
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2 . MATERYAL VE YÖNTEM

2.1. Kuaterniyon Cebiri

Sir William Hamilton karmaşık sayıları üç boyutlu uzaya genişletmeyi düşündü. Kar-

maşık sayıların düzlemde bir nokta göstermesine karşılık üç boyutlu uzay için benzer

bir yol aradı fakat bir sonuca ulaşamadı. Sonunda cevabın dört boyutta olduğunu keş-

fetti. 1843’te sunduğu teoride, kuaterniyon terimi belirli bir dörtlü ifadeyi adlandırmak

için kullanıldı.

Kuaterniyonlar matematiğin birçok alanında çalışılan temel bir konudur. Grup teori,

geometri, kinematik, bilgisayar bilimi gibi hem teorik hem de uygulamalı matematikte

uygulamaları vardır [16, 33, 47].

p = a0+p = a0+a1i+a2j+a3k ve q = b0+q = b0+b1i+b2j+b3k kuaterniyonları

(a,b
F ) cebirinin iki elemanı olmak üzere, bu kuaterniyonların çarpımı (1.5) formuna

uygun olarak “···” iç çarpım ve “×××” vektörel çarpım olmak üzere

pq = a0b0− p ···q+a0q+b0 p+ p×××q

şeklinde indirgenebilir. q = b0 + q = b0 + b1i+ b2j+ b3k kuaterniyonunun H cebi-

rindeki eşleniği q∗ ile gösterilir ve q∗ = b0− b1i− b2j− b3k şeklinde tanımlıdır. q

kuaterniyonunun izi ve normu

Tr(q) = q+q∗ ve N(q) = qq∗

ile ifade edilir. Ayrıca 0 6= q kuaterniyonunun tersi q−1 = N(q)−1q∗ olup q birim ku-

aterniyon ise q−1 = q∗ elde edilir.
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2.2. q−tamsayıları

R birimli ve birleşmeli bir halka ve q ∈R olsun. n ∈N için n kuantum tamsayısı veya

kısaca q−tamsayısı [n]q ile gösterilir ve

[n]q =
n−1

∑
i=0

qi

şeklinde tanımlanır. Benzer şekilde q tersinir eleman ve n 6= 0 olmak üzere −n

q−tamsayısı ise

[−n]q =−
n

∑
i=1

q−i

ile tanımlanır. Dolayısıyla q 6= 0 ve n∈Z− için [n]q =−qn[−n]q elde edilir. Özel olarak

1−q tersinir ise

[n]q =
1−qn

1−q

yazılabilir. Her m,n ∈ N için

[m+n]q = [m]q +qm[n]q ve [mn]q = [m]q[n]qm

vardır. R = Z ve q = 1 iken kuantum tamsayısı [n]q klasik anlamdaki n tamsayısı ola-

caktır [34].

İkinci mertebeden {Wn(a,b; p,q)} tamsayı dizilerinin ve q tamsayılarının elemanları

birbirine dönüştürülebilir. Örneğin {Fk,n} ve {Lk,n} dizileri için q = β/α ve

i =
√
−1 = α

√
q olmak üzere (1.2) deki Binet formülünden dolayı

Fk,n = α
n−1[n]q ve Lk,n = α

n [2n]q
[n]q

formlarına indirgenir.
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2.3. Tribonacci ve Tribonacci-Lucas Dizileri

n≥ 3 için Tribonacci dizisi, başlangıç koşulları T0 = 0, T1 = 1 ve T2 = 1 olmak üzere

Tn = Tn−1 +Tn−2 +Tn−3

yineleme bağıntısı ile tanımlanır. Tribonacci-Lucas dizisi ise başlangıç koşulları

T K0 = 3, T K1 = 1 ve T K2 = 3 olmak üzere

T Kn = T Kn−1 +T Kn−2 +T Kn−3

ile tanımlıdır [8, 11]. İlk birkaç Tribonacci ve Tribonacci-Lucas sayıları aşağıdaki tab-

loda verilmiştir.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Tn 0 1 1 2 4 7 13 24 44 81 149 274 504 927

T Kn 3 1 3 7 11 21 39 71 131 241 443 815 1499 2757

Herhangi bir {a0,a1,a2, . . .} dizisi için

f (x) = a0 +a1x+a2x2 + · · ·+anxn + · · ·

fonksiyonu üreteç fonksiyonu olarak adlandırılır. {Tn} Tribonacci dizisi ve {T Kn}

Tribonacci-Lucas dizisi için üreteç fonksiyonları sırasıyla

f (x) =
x

1− x− x2− x3 ,

h(x) =
3−2x− x2

1− x− x2− x3

olarak elde edilir. Tribonacci ve Tribonacci-Lucas dizileri için Binet formülleri ise

w = −1+i
√

3
2 ve

α =
1+ 3
√

19+3
√

33+ 3
√

19−3
√

33
3

,
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β =
1+w 3

√
19+3

√
33+w2 3

√
19−3

√
33

3
, (2.1)

γ =
1+w2 3

√
19+3

√
33+w 3

√
19−3

√
33

3

olmak üzere sırasıyla

Tn =
αn+1

(α−β )(α− γ)
+

β n+1

(β −α)(β − γ)
+

γn+1

(γ−α)(γ−β )
,

T Kn = α
n +β

n + γ
n (2.2)

şeklindedir [50].

2.4. Kuaterniyon Polinomlarının Kökleri Üzerine

q0,q1, · · · ,qn−1 kuaterniyonları verilsin. Bu bölüm boyunca q kuaterniyonunun izi ve

normu sırasıyla t ve n ile gösterilecektir. Derecesi n olan monik kuaterniyon polinom

x kuaterniyon belirsizine göre

p(x) = xn +qn−1xn−1 + · · ·+q0 (2.3)

olarak tanımlanır. p(x) kuaterniyon polinomu için p(λ ) = 0 ise λ bu polinomun bir kö-

küdür. Bölüm halkaları üzerindeki polinomların kökleri birçok araştırmacı tarafından

çalışılmıştır [1, 17, 40]. Niven bir kuaterniyon cebiri üzerindeki polinomların köklerini

hesaplayabilmek için kuaterniyonun iki parametresi olan iz ve normuna bağlı olacak

şekilde basit bir algoritma vermiştir [40]. Buna göre her q kuaterniyonunun ikinci de-

receden reel katsayılı

x2− tx+n = 0

denklemini sağladığı bilinmektedir. f ve g polinomları t, n, qi parametrelerine bağlı

polinomlar olmak üzere (2.3) teki polinom sağdan x2− tx+n ile bölündüğünde

p(x) = h(x)(x2− tx+n)+ f x+g
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elde edilir. Dolayısıyla q kuaterniyonu p(x) polinomunun bir kökü ise yani p(q) = 0

ise

f q+g = 0

olup

q =−1
f

g

elde edilir. Bazı hesaplamaların ardından Niven iz ve norm için

n f ∗ f −g∗g = 0

t f ∗ f + f ∗g+g∗ f = 0

denklemlerini elde etmiştir. Böylece Niven bu denklemlerin reel çözümlerinin p(x)

polinomunun kuaterniyon kökünün izini ve normunu verdiğini ispatlamış olup bu ifa-

denin tersi de doğrudur. Ancak bu denklemleri kullanarak iz ve norm bulmak pek pratik

bir yöntem değildir. Çünkü 2n−1 dereceli iki reel denklemi aynı anda çözmek gerek-

mektedir.

Serôdio bu parametreleri bulmak için alternatif ve daha pratik bir yöntem sunmaktadır

[44]. Şimdi bu yöntemden kısaca bahsedilecektir. Kuaterniyonlar üzerinde bir denklik

bağıntısı ∼ vardır. İki kuaterniyon q1 ve q2 için σ−1q1σ = q2 eşitliğini sağlayan sıfır-

dan farklı bir σ kuaterniyonu varsa bu kuaterniyonlara benzer kuaterniyonlar denir. Bu

ilişki ile (2.3) teki polinom p(x) in köklerinin kümesi en fazla n tane kuaterniyonların

denklik sınıflarına aittir ve bu sınıflar karşılık gelen

C =



0 1 0

... . . .

0 0 1

−q0 −q1 . . . −qn−1


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tamamlayıcı matrisin kompleks özdeğerleri ile üretilir. C1 ve C2 kompleks elemanlara

sahip n×n matrisler olmak üzere C matrisi

C =C1 +C2j

formunda yazılabilir. Buradan C matrisinin sağ özdeğerleri

C =

 C1 C2

−C∗2 C∗1


2n×2n matrisinin özdeğerleri olacaktır.

Ayrıca ikinci dereceden monik kuaterniyon polinomunun köklerini bulabilmek için bir

metod daha verilmiştir [51]. Herhangi bir q ∈ (−1,−1
R ) kuaterniyonu için

R(q) =



q0 −q1 −q2 −q3

−q1 −q0 q3 −q2

−q2 −q3 −q0 q1

−q3 q2 −q1 −q0


, I(q) =



q1 q0 q3 −q2

q0 −q1 q2 q3

q3 −q2 −q1 −q0

−q2 −q3 q0 −q1


,

J(q) =



q2 −q3 q0 q1

−q3 −q2 −q1 q0

q0 q1 −q2 q3

q1 −q0 −q3 −q2


, K(q) =



q3 q2 −q1 q0

q2 −q3 −q0 −q1

−q1 q0 −q3 −q2

q0 q1 q2 −q3


matrisleri tanımlansın. Buna göre aşağıdaki teorem verilebilir.

Teorem 2.1 ([51]). x= x0+x1i+x2j+x3k∈ (−1,−1
R ) kuaterniyonunun (1.8) deki ikinci

dereceden monik kuaterniyonik polinomun bir kökü olabilmesi için gerek ve yeter
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koşul (x0, x1, x2, x3) elemanının D = diag{1,−1,−1,−1} ve

f0 = x2
0− x2

1− x2
2− x2

3 +(x0, x1, x2, x3)


t

∑
j=1

R(c( j))



b( j)
0

b( j)
1

b( j)
2

b( j)
3


+

s

∑
i=1

DR(h(i))



g(i)0

g(i)1

g(i)2

g(i)3




+d0,

f1 = 2x0x1 +(x0, x1, x2, x3)


t

∑
j=1

I(c( j))



b( j)
0

b( j)
1

b( j)
2

b( j)
3


+

s

∑
i=1

DI(h(i))



g(i)0

g(i)1

g(i)2

g(i)3




+d1,

f2 = 2x0x2 +(x0, x1, x2, x3)


t

∑
j=1

J(c( j))



b( j)
0

b( j)
1

b( j)
2

b( j)
3


+

s

∑
i=1

DJ(h(i))



g(i)0

g(i)1

g(i)2

g(i)3




+d2,

f3 = 2x0x3 +(x0, x1, x2, x3)


t

∑
j=1

K(c( j))



b( j)
0

b( j)
1

b( j)
2

b( j)
3


+

s

∑
i=1

DK(h(i))



g(i)0

g(i)1

g(i)2

g(i)3




+d3

olmak üzere n = 0, 1, 2, 3 için

fn(x0, x1, x2, x3) = 0

reel denklemlerini sağlamasıdır.
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3 . ÜÇÜNCÜ MERTEBEDEN BAZI KUATERNİYON DİZİLERİNİN

ÖZELLİKLERİ

İkinci mertebeden kuaterniyon dizileri bugüne kadar birçok araştırmacı tarafından ça-

lışılmış olmasına rağmen üçüncü mertebeden kuaterniyon dizilerine literatürde az rast-

lanmaktadır. Bundan dolayı bu bölümde üçüncü mertebeden bazı kuaterniyon dizile-

rinin özellikleri verilecek ve bu tipteki kuaterniyon dizileri için bazı özdeşlikler elde

edilecektir. Bu bölüm boyunca α, β , γ elemanları (2.1) deki elemanlar ve

α = 1+αi+α
2j+α

3k,

β = 1+β i+β
2j+β

3k,

γ = 1+ γi+ γ
2j+ γ

3k

olarak ele alınacaktır.

3.1. Tribonacci Sayı Bileşenli Kuaterniyonlar

n≥ 0 için n-inci Tribonacci kuaterniyon T Qn ve n-inci Tribonacci-Lucas kuaterniyon

T Q̃n

T Qn = Tn +Tn+1i+Tn+2j+Tn+3k

T Q̃n = T Kn +T Kn+1i+T Kn+2j+T Kn+3k

şeklinde tanımlıdır. n≥ 0 için

T Qn+3 = T Qn+2 +T Qn+1 +T Qn

T Q̃n+3 = T Q̃n+2 +T Q̃n+1 +T Q̃n

olduğu kolaylıkla görülebilir. T Qn kuaterniyonunun eşleniği T Q∗n ile gösterilirse

T Q∗n = Tn−Tn+1i−Tn+2j−Tn+3k
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ve T Q̃n Tribonacci-Lucas kuaterniyonunun eşleniği de T Q̃∗n ile gösterilirse

T Q̃∗n = T Kn−T Kn+1i−T Kn+2j−T Kn+3k

olacaktır. f (x), x’e göre bir kuvvet serisi olmak üzere xn in katsayısı [xn] f (x) ile gös-

terilecektir. Buradan T Qn kuaterniyonunun normu

T QnT Q∗n =
3

∑
i=0

T 2
n+i = [xn]

2(3+5x+4x2−2x3− x4− x5)

(1−3x− x2− x3)(1+ x+ x2− x3)

olarak bulunur.

n ≥ 2 için An = T−n ve Bn = T K−n olsun. Negatif indisli Tribonacci ve Tribonacci-

Lucas dizileri

An = −An−1−An−2 +An−3 ; A−1 = 1, A0 = A1 = 0,

Bn = −Bn−1−Bn−2 +Bn−3 ; B−1 = 1, B0 = 3, B1 =−1

ile tanımlıdır. Bu dizilerden yola çıkılarak bir kuaterniyon dizisi daha tanımlanabilir.

Tanım 3.1. Negatif indisli Tribonacci ve Tribonacci-Lucas kuaterniyonları

T Q−n = An +An−1i+An−2j+An−3k,

T Q̃−n = Bn +Bn−1i+Bn−2j+Bn−3k

şeklinde tanımlanır.

Genelleştirilmiş Tribonacci kuaterniyonlarının üreteç fonksiyonları ve Binet formül-

leri [3] te verilmiştir. Buna göre Tribonacci kuaterniyonlarının üreteç fonksiyonları ve

Binet formülleri de aşağıdaki gibidir:
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Teorem 3.1. T Qn Tribonacci kuaterniyonunun üreteç fonksiyonu

G(x) =
x+ i+(1+ x+ x2)j+(2+2x+ x2)k

1− x− x2− x3

şeklindedir.

İspat. T Qn Tribonacci kuaterniyonunun üreteç fonksiyonu

G(x) = T Q0 +T Q1x+T Q2x2 + · · ·+T Qnxn + · · ·

olsun. T Qn−1, T Qn−2 ve T Qn−3 kuaterniyonları indis bakımından T Qn kuaterniyo-

nundan sırasıyla 1, 2 ve 3 küçük olup xG(x), x2G(x) ve x3G(x) fonksiyonları bulunur.

Böylece

xG(x) = T Q0x+T Q1x2 +T Q2x3 + · · ·+T Qn−1xn + · · · ,

x2G(x) = T Q0x2 +T Q1x3 +T T Q2x4 + · · ·+T Qn−2xn + · · · ,

x3G(x) = T Q0x3 +T Q1x4 +T Q2x5 + · · ·+T Qn−3xn + · · ·

şeklindedir. Gerekli işlemler yapılarak

G(x) =
T Q0 + x(T Q1−T Q0)+ x2(T Q2−T Q1−T Q0)

1− x− x2− x3

olduğu görülür ve buradan

G(x) =
x+ i+(1+ x+ x2)j+(2+2x+ x2)k

1− x− x2− x3

elde edilir.

Teorem 3.2. Tribonacci ve Tribonacci-Lucas kuaterniyonlarının Binet formülleri

T Qn =
αn+1

(α−β )(α− γ)
α +

β n+1

(β −α)(β − γ)
β +

γn+1

(γ−α)(γ−β )
γ,

T Q̃n = α
n
α +β

n
β + γ

n
γ
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şeklindedir.

İspat. Tn ve T Kn için (2.2) de verilen Binet formülleri ile T Qn ve T Q̃n kuaterniyonla-

rının tanımları kullanılırsa T Qn ve T Q̃n için Binet formülleri kolayca elde edilir.

3.2. Üçüncü Mertebeden Bazı Kuaterniyon Dizileri İçin Özdeşlikler

Bu bölümde, tanımlanan bazı üçüncü mertebeden kuaterniyon dizileri için özdeşlikler

verilecektir. Sonrasında elde edilen özdeşliklerden bazılarının ispatları yapılacaktır.

3.2.1. Özdeşlikler 1

Her n ∈ N için

T Q2
n = 2TnT Qn−T QnT Q∗n,

T Qn +T Q∗n = 2Tn,

T Q̃n = T Qn +2T Qn−1 +3T Qn−2

özdeşlikleri elde edilir.

3.2.2. Özdeşlikler 2

Her n,m ∈ N için

Cn = α
n
β

n +α
n
γ

n +β
n
γ

n,

C2n−m = C2n−m +C2n−m−1i+C2n−m−2j+C2n−m−3k

olmak üzere

T Qm+n = T QmT Kn−T Qm−nCn +T Qm−2n,

T Q̃m+n = T Q̃mT Kn−T Q̃m−nCn +C2n−m
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sağlanır. Bir başka özdeşlik

T Qn+2m = T KmT Qn+m−T K−mT Qn +T Qn−2m

şeklinde verilebilir.

3.2.3. Özdeşlik 3

Her n≥ 0, m≥ 3 için

T Qn+m = Tm−2T Qn +(Tm−3 +Tm−2)T Qn+1 +Tm−1T Qn+2

elde edilir.

3.2.4. Özdeşlikler 4

Ŝn =
n
∑

k=0
T Qk olsun. Bu durumda

T Qn =
1
2

[
Ŝn− Ŝn−4

]

sağlanır ve n≥ 0, m≥ 5 için Sm =
m

∑
k=0

Tk olmak üzere

Ŝn+m =−Sm−3Ŝn−Sm−4Ŝn+1−Sm−5Ŝn+2 +Sm−2Ŝn+3

elde edilir.

3.2.5. Özdeşlikler 5

n≥ 0 için Rn = 3Tn+1−Tn dizisi ele alınsın. Buradan

R̃n = Rn +Rn+1i+Rn+2j+Rn+3k
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kuaterniyonu tanımlanabilir. Ayrıca n ≥ 2 için TU0 = TU1 = 0 olmak üzere

TUn = Tn−1 +Tn−2 dizisi tanımlansın ve

Ũn = TUn +TUn+1i+TUn+2j+TUn+3k

olsun. Bu durumda

R̃n+3 = R̃n+2 + R̃n+1 + R̃n,

Ũn+3 = Ũn+2 +Ũn+1 +Ũn

elde edilir.

Diğer taraftan her n≥ 2 için

T Q2
n−T Q2

n−1−T QnT Qn−1 +T Qn−1T Qn = Ũn+1Ũn−1

özdeşliği de sağlanır [4].

3.2.6. Özdeşlikler 6

Şimdi tanımlanan çeşitli kuaterniyonların sonlu toplamlarına dair özdeşlikler verile-

cektir. n ∈ N için

n

∑
k=0

T Qk =
T Qn+2 +T Qn +T Q0−T Q2

2
,

n

∑
k=0

T Q2k =
T Q2n+1 +T Q2n− (1+ j+2k)

2
,

n

∑
k=0

T Q2k+1 =
T Q2n+2 +T Q2n+1− (i+2j+3k)

2
,

n

∑
k=0

T Q3k =
3n−1

∑
k=0

T Qk +T Q0 =
T Q3n+2−T Q3n− (1− i+ j+k)

2
,

n

∑
k=0

T Q4k =
T Q4n+2 +T Q4n− (1− i+ j+k)

4
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özdeşlikleri yazılabilir. Ayrıca

n

∑
k=0

Ũn = T Qn+1− (1+ i+ j+2k),

n

∑
k=1

T Q̃n = 2Ũn+2 +Ũn− (3+4i+7j+14k),

n

∑
k=0

T Qk =
Ũn+2 +Ũn+1− (1+ i+3j+5k)

2
,

n

∑
k=0

R̃k =
3Ũn+3 +2Ũn+2−Ũn+1− (2+8i+12j+22k)

2
,

n

∑
k=0

Ũ3k = T Q3n− i,

n

∑
k=0

Ũ3k+1 = T Q3n+1− (1+k)

özdeşlikleri de sağlanır.

3.3. Özdeşliklerin İspatları

Bu bölümde, elde edilen bazı özdeşliklerin ispatları Binet formülleri ve tümevarım

kullanılarak yapılacaktır. Diğer özdeşlikler benzer şekilde elde edilebilir.

3.3.1. Özdeşlikler 1 in İspatı

İlk önce birinci özdeşlikte verilen

T Q2
n = 2TnT Qn−T QnT Q∗n

özdeşliği ispatlanacaktır.

T Q2
n = T 2

n −T 2
n+1−T 2

n+2−T 2
n+3 +2(TnTn+1i+TnTn+2j+TnTn+3k)

olduğundan

T QnT Q∗n = T 2
n +T 2

n+1 +T 2
n+2 +T 2

n+3,
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2TnT Qn = 2T 2
n +2(TnTn+1i+TnTn+2j+TnTn+3k)

eşitlikleri kullanılarak istenen sonuç elde edilir.

Şimdi T Q̃n = T Qn + 2T Qn−1 + 3T Qn−2 özdeşliğinin ispatı yapılacaktır. Tribonacci

kuaterniyonunun Binet formülü

T Qn =
αn+1

(α−β )(α− γ)
α +

β n+1

(β −α)(β − γ)
β +

γn+1

(γ−α)(γ−β )
γ

olarak Teorem 3.2 de elde edilmişti. Buradan

T Qn +2T Qn−1 +3T Qn−2

=

[
αn+1

(α−β )(α− γ)
α +

β n+1

(β −α)(β − γ)
β +

γn+1

(γ−α)(γ−β )
γ

]
+

2
[

αn

(α−β )(α− γ)
α +

β n

(β −α)(β − γ)
β +

γn

(γ−α)(γ−β )
γ

]
+

3
[

αn−1

(α−β )(α− γ)
α +

β n−1

(β −α)(β − γ)
β +

γn−1

(γ−α)(γ−β )
γ

]
=

[
αn+1 +2αn +3αn−1

(α−β )(α− γ)

]
α +

[
β n+1+2β n+3β n−1

(β−α)(β−γ)

]
β +[

γn+1 +2γn +3γn−1

(γ−α)(γ−β )

]
γ

= α
n
[

α2 +2α +3
α(α−β )(α− γ)

]
α +β

n
[

β 2 +2β +3
β (β −α)(β − γ)

]
β +

γ
n
[

γ2 +2γ +3
γ(γ−α)(γ−β )

]
γ

= α
n
α +β

n
β + γ

n
γ

= T Q̃n

elde edilir.

3.3.2. Özdeşlikler 2 nin İspatı

Tribonacci ve Tribonacci-Lucas sayılarının

Tm+n = TmT Kn−Tm−nCn +Tm−2n,
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T Km+n = T KmT Kn−T Km−nCn +C2n−m

eşitliklerini sağladıkları bilinmektedir [50]. Buradan

T Qm+n = Tm+n +Tm+n+1i+Tm+n+2j+Tm+n+3k

= (TmT Kn−Tm−nCn +Tm−2n)

+(Tm+1T Kn−Tm+1−nCn +Tm+1−2n)i

+(Tm+2T Kn−Tm+2−nCn +Tm+2−2n)j

+(Tm+3T Kn−Tm+3−nCn +Tm+3−2n)k

= (Tm +Tm+1i+Tm+2j+Tm+3k)T Kn

−(Tm−n +Tm−n+1i+Tm−n+2j+Tm−n+3k)Cn

+(Tm−2n +Tm−2n+1i+Tm−2n+2j+Tm−2n+3k)

= T QmT Kn−T Qm−nCn +T Qm−2n

elde edilir.

Her n,m ∈ N için Tribonacci ve Tribonacci-Lucas dizileri

Tn+2m = T KmTn+m−T K−mTn +Tn−2m

eşitliğini de sağlar [24]. Dolayısıyla benzer şekilde

T Qn+2m = T KmT Qn+m−T K−mT Qn +T Qn−2m

özdeşliğinin sağlandığı gösterilebilir.

3.3.3. Özdeşlik 3 ün İspatı

m üzerinden tümevarımla ispatlanacaktır. m = 3 için

T Qn+3 = T Qn +T Qn+1 +T Qn+2
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= T1T Qn +(T0 +T1)T Qn+1 +T2T Qn+2

vardır. Eşitliğin tüm m≤ k için sağlandığı kabul edilsin. m = k+1 için

T Qn+k+1 = T Qn+k +T Qn+k−1 +T Qn+k−2

= Tk−2T Qn +(Tk−3 +Tk−2)T Qn+1 +Tk−1T Qn+2 +Tk−3T Qn +

(Tk−4 +Tk−3)T Qn+1 +Tk−2T Qn+2 +Tk−4T Qn +

(Tk−5 +Tk−4)T Qn+1 +Tk−3T Qn+2

= (Tk−2 +Tk−3 +Tk−4)T Qn +

(Tk−3 +Tk−2 +Tk−4 +Tk−3 +Tk−5 +Tk−4)T Qn+1 +

(Tk−1 +Tk−2 +Tk−3)T Qn+2

= Tk−1T Qn +(Tk−2 +Tk−1)T Qn+1 +TkT Qn+2

olup tümevarımdan istenen sonuç elde edilir.

3.3.4. Özdeşlikler 4 ün İspatı

Ŝn =
n
∑

k=0
T Qk olsun. n≥ 0 için

Ŝn = T Q0 +T Q1 + · · ·+T Qn

= T Q0 +T Q1 + · · ·+T Qn−4 +T Qn−3 +T Qn−2 +T Qn−1 +T Qn

= Ŝn−4 +T Qn +T Qn

= Ŝn−4 +2T Qn

olduğundan istenen özdeşlik

T Qn =
1
2

[
Ŝn− Ŝn−4

]

elde edilir.

Diğer özdeşlik n ve m üzerinden tümevarım ile ispatlanacaktır.
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İlk önce

Ŝn+5 =−2Ŝn− Ŝn+1 +4Ŝn+3

eşitliği elde edilecektir. n = 0 için

Ŝ5 = T Q0 +T Q1 +T Q2 +T Q3 +T Q4 +T Q5

= T Q0 +T Q1 +T Q2 +T Q3 +(T Q1 +T Q2 +T Q3)+(T Q2 +T Q3 +T Q4)

= T Q0 +T Q1 +T Q2 +T Q3 +(T Q1 +T Q2 +T Q3)+

(T Q2 +T Q3 +T Q1 +T Q2 +T Q3)

= T Q0 +3T Q1 +4T Q2 +4T Q3

= −2T Q0−T Q0−T Q1 +4(T Q0 +T Q1 +T Q2 +T Q3)

= −2Ŝ0− Ŝ1 +4Ŝ3

sağlanır. n = k için sağlandığı kabul edilsin, yani

Ŝk+5 =−2Ŝk− Ŝk+1 +4Ŝk+3

olsun. n = k+1 için

Ŝk+6 = Ŝk+5 +T Qk+6

= −2Ŝk− Ŝk+1 +4Ŝk+3 +T Qk+6

= −2Ŝk− Ŝk+1 +4Ŝk+3 +(T Qk+3 +T Qk+4 +T Qk+5)

= −2Ŝk− Ŝk+1 +4Ŝk+3 +

(T Qk+4−T Qk+2−T Qk+1 +T Qk+4 +T Qk+4−T Qk+2−T Qk+1 +T Qk+4)

= −2Ŝk+1− Ŝk+2 +4Ŝk+4

elde edilir. Dolayısıyla n≥ 0 için eşitlik sağlanır.
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m = 5 için

Ŝn+5 = −2Ŝk+1− Ŝk+2 +4Ŝk+4

= −S2Ŝn−S1Ŝn+1−S0Ŝn+2 +S3Ŝn+3

doğrudur. m = r için sağlandığı kabul edilsin, yani

Ŝn+r =−Sr−3Ŝn−Sr−4Ŝn+1−Sr−5Ŝn+2 +Sr−2Ŝn+3

olsun. m = r+1 için

Ŝn+r+1 = Ŝn+r +T Qn+r+1

= −Sr−3Ŝn−Sr−4Ŝn+1−Sr−5Ŝn+2 +Sr−2Ŝn+3 +

(T Qn+r−2 +T Qn+r−1 +T Qn+r)

= −Sr−2Ŝn−Sr−3Ŝn+1−Sr−4Ŝn+2 +Sr−1Ŝn+3

olduğundan istenen sonuç elde edilir.

3.3.5. Özdeşlikler 5 in İspatı

n≥ 2 için

T Q2
n−T Q2

n−1−T QnT Qn−1 +T Qn−1T Qn

= [(Tn +Tn−1)+(Tn+1 +Tn)i+(Tn+2 +Tn+1)j+(Tn+3 +Tn+2)k]×

[(Tn−Tn−1)+(Tn+1−Tn)i+(Tn+2−Tn+1)j+(Tn+3−Tn+2)k]

= [(Tn +Tn−1)+(Tn+1 +Tn)i+(Tn+2 +Tn+1)j+(Tn+3 +Tn+2)k]×

[(Tn−2 +Tn−3)+(Tn−1 +Tn−2)i+(Tn +Tn−1)j+(Tn+1 +Tn)k]

= Ũn+1Ũn−1

olduğu görülür [4]. Diğer özdeşlikler de kolayca elde edilir.
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3.3.6. Özdeşlikler 6 nın İspatı

Burada n≥ 0 için sadece

n

∑
k=0

T Qk =
T Qn+2 +T Qn +T Q0−T Q2

2

özdeşliği gösterilecektir. İspat n üzerinden tümevarımla yapılacaktır.

n = 0 için

T Q0 =
T Q2 +T Q0 +T Q0−T Q2

2

olup eşitlik sağlanır. n = m için sağlandığı kabul edilsin, yani

m

∑
k=0

T Qk =
T Qm+2 +T Qm +T Q0−T Q2

2

olsun. n = m+1 için

m+1

∑
k=0

T Qk =
m

∑
k=0

T Qk +T Qm+1

olup tümevarım hipotezinden

m

∑
k=0

T Qk +T Qm+1 =
T Qm+2 +T Qm +T Q0−T Q2

2
+T Qm+1

=
T Qm+2 +T Qm +T Q0−T Q2 +2T Qm+1

2

=
T Qm+2 +T Qm+1 +T Qm +T Qm+1 +T Q0−T Q2

2

=
T Qm+3 +T Qm+1 +T Q0−T Q2

2

yazılabilir. Dolayısıyla

m+1

∑
k=0

T Qk =
T Qm+3 +T Qm+1 +T Q0−T Q2

2

elde edilir.
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4 . KUATERNİYONLAR: UYGULAMALARLA q−KALKÜLÜS YAKLAŞIMI

Bugüne kadar bileşenleri reel diziler olan kuaterniyon dizileri çalışılmıştır. Bu çalışma-

lardan esinlenerek bileşenleri kompleks dizilerden seçilen daha genel bir kuaterniyon

dizisi ele alınacaktır. Bu bölümde bileşenleri kuantum sayılarını içeren iki tip kuater-

niyon dizisi ve kuantum kuaterniyon polinomları tanımlanacaktır. Ayrıca, bu kuantum

kuaterniyonlar için bazı özellikler ve özdeşlikler verilecektir. Son olarak, bazı özel ku-

aterniyon dizileri için zaman evolüsyonu ve dönme uygulamaları da verilecektir.

Bu bölüm boyunca n ∈ N, α ∈ C, 1−q ∈ C\{0} ve

α = 1+αi+α
2j+α

3k,

β = i+α[2]qj+α
2[3]qk,

γ = 1+(αq)i+(αq)2j+(αq)3k

olarak ele alınacaktır.

4.1. q−Kuaterniyonlar

Bu bölümde öncelikle kuantum Fibonacci kuaterniyon dizisi ve kuantum Lucas ku-

aterniyon dizisinin tanımları verilecektir. Bu diziler kısaca q−Fibonacci kuaterniyon

dizisi ve q−Lucas kuaterniyon dizisi olarak gösterilecektir. Daha sonra bu dizilerin

bazı özellikleri verilecek ve bazı özdeşlikler elde edilecektir.

Tanım 4.1.

Qn = α
n−1[n]q +α

n[n+1]qi+α
n+1[n+2]qj+α

n+2[n+3]qk
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formundaki kuaterniyonlara n-inci q−Fibonacci kuaterniyonu ve

Vn = α
n [2n]q
[n]q

+α
n+1 [2n+2]q

[n+1]q
i+α

n+2 [2n+4]q
[n+2]q

j+α
n+3 [2n+6]q

[n+3]q
k

formundaki kuaterniyonlara n-inci q−Lucas kuaterniyonu denir.

Teorem 4.1. q−Fibonacci kuaterniyonu Qn nin Binet formu

Qn = α
n−1[n]qα +(αq)n

β

ve q−Lucas kuaterniyonu Vn nin Binet formu

Vn = α
n [2n]q
[n]q

γ +α
n+1(1−q)β

şeklindedir.

İspat. Tanım 4.1 den

Qn = α
n−1[n]q +α

n[n+1]qi+α
n+1[n+2]qj+α

n+2[n+3]qk

olduğundan q−Fibonacci kuaterniyonu Qn nin Binet formu

Qn = α
n−1[n]q +α

n[n+1]qi+α
n+1[n+2]qj+α

n+2[n+3]qk

= α
n−1[n]q +α

n([n]q +qn)i+α
n+1([n]q +qn[2]q)j+α

n+2([n]q +qn[3]q)k

= α
n−1[n]q(1+αi+α

2j+α
3k)+α

nqn (i+α[2]qj+α
2[3]qk

)
= α

n−1[n]qα +(αq)n
β

şeklindedir. q−Lucas kuaterniyonu Vn nin Binet formu benzer şekilde elde edilir.

Not 4.1. Qn ve Vn q−kuaterniyonlarının Binet formülleri başka bir formda daha yazı-
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labilir. Tanımdan yola çıkılarak q− Fibonacci kuaterniyonu

Qn = α
n−1[n]q +α

n[n+1]qi+α
n+1[n+2]qj+α

n+2[n+3]qk

Qn = α
n−1 1−qn

1−q
+α

n 1−qn+1

1−q
i+α

n+1 1−qn+2

1−q
j+α

n+2 1−qn+3

1−q
k

Qn =
αn− (αq)n

α−αq
+

αn+1− (αq)n+1

α−αq
i+

αn+2− (αq)n+2

α−αq
j+

αn+3− (αq)n+3

α−αq
k

Qn =
αn

α−αq

(
1+αi+α

2j+α
3k

)
− (αq)n

α−αq

(
1+(αq)i+(αq)2j+(αq)3k

)

şeklinde yazılabilir. Benzer bir düşünce ile q−Lucas kuaterniyonu ise

Vn = α
n [2n]q
[n]q

+α
n+1 [2n+2]q

[n+1]q
i+α

n+2 [2n+4]q
[n+2]q

j+α
n+3 [2n+6]q

[n+3]q
k

Vn = α
n 1−q2n

1−q
+α

n+1 1−q2n+2

1−q
i+α

n+2 1−q2n+4

1−q
j+α

n+3 1−q2n+6

1−q
k

Vn = α
n(1+qn)+α

n+1(1+qn+1)i+α
n+2(1+qn+2)j+α

n+3(1+qn+3)k

Vn = α
n

(
1+αi+α

2j+α
3k

)
+(αq)n

(
1+(αq)i+(αq)2j+(αq)3k

)

olarak yazılabilir. Dolayısıyla bu kuaterniyonların Binet formülleri

Qn =
αnα− (αq)nγ

α(1−q)
,

Vn = α
n
α +(αq)n

γ

(4.1)

formunda ifade edilebilir.

Aşağıdaki teorem q−Fibonacci kuaterniyonu Qn ve q−Lucas kuaterniyonu Vn nin

üstel üreteç fonksiyonlarını vermektedir.

Teorem 4.2. q−Fibonacci kuaterniyonu Qn nin üstel üreteç fonksiyonu

F(x) =
eαxα− e(αq)xγ

α(1−q)
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ve q−Lucas kuaterniyonu Vn nin üstel üreteç fonksiyonu

G(x) = eαx
α + e(αq)x

γ

olarak verilir.

İspat. Qn kuaterniyonunun (4.1) de verilen Binet formu ve iyi bilinen

eαx =
∞

∑
n=0

α
n xn

n!

seri açılımı kullanılarak istenen sonuca ulaşılır. q−Lucas kuaterniyonu Vn nin üstel

üreteç fonksiyonu ise benzer şekilde elde edilir.

Örnek 4.1. α = 1+
√

5
2 ve q =− 1

α2 olsun. Bu durumda

Qn = α
n−1[n]q +α

n[n+1]qi+α
n+1[n+2]qj+α

n+2[n+3]qk

Qn =
αn− (αq)n

α−αq
+

αn+1− (αq)n+1

α−αq
i+

αn+2− (αq)n+2

α−αq
j+

αn+3− (αq)n+3

α−αq
k

olduğundan α =
1+
√

5
2

ve q =− 1
α2 için Fn =

αn− (αq)n

α− (αq)
eşitliğinden

Qn =
αn− (αq)n

α− (αq)
+

αn+1− (αq)n+1

α− (αq)
i+

αn+2− (αq)n+2

α− (αq)
j+

αn+3− (αq)n+3

α− (αq)
k

Qn = Fn +Fn+1i+Fn+2j+Fn+3k,

olup (1.6) daki Qn Fibonacci kuaterniyonları elde edilir. Diğer taraftan

Vn = α
n [2n]q
[n]q

+α
n+1 [2n+2]q

[n+1]q
i+α

n+2 [2n+4]q
[n+2]q

j+α
n+3 [2n+6]q

[n+3]q
k

Vn = α
n(1+qn)+α

n+1(1+qn+1)i+α
n+2(1+qn+2)j+α

n+3(1+qn+3)k

olup Ln = αn(1+qn) eşitliğinden

Vn = Ln +Ln+1i+Ln+2j+Ln+3k,
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yani (1.7) deki Kn Lucas kuaterniyonları elde edilir [19]. α = 1+
√

2 ve q = − 1
α2

alındığında ise Pell kuaterniyonları QPn ve Pell-Lucas kuaterniyonları QPLn elde edilir

[7].

Örnek 4.2. α = 2 ve q =−1
2

olsun. Bu durumda q−Fibonacci kuaterniyonu Qn

Qn = α
n−1[n]q +α

n[n+1]qi+α
n+1[n+2]qj+α

n+2[n+3]qk

Qn =
2n− (−1)n

3
+

2n+1− (−1)n+1

3
i+

2n+2− (−1)n+2

3
j+

2n+3− (−1)n+3

3
k,

ve q−Lucas kuaterniyonu Vn

Vn = α
n [2n]q
[n]q

+α
n+1 [2n+2]q

[n+1]q
i+α

n+2 [2n+4]q
[n+2]q

j+α
n+3 [2n+6]q

[n+3]q
k

Vn = 2n +(−1)n +2n+1 +(−1)n+1i+2n+2 +(−1)n+2j+2n+3 +(−1)n+3k

olur. p = 1, q = 2 için (1.3) te tanımlanan Un ve Vn dizileri sırasıyla {Jn}n Jacobsthal

dizisi ve { jn}n Jacobsthal-Lucas dizisi olarak adlandırılır. Bu dizilerin genel terimleri

Jn =
2n− (−1)n

3
,

jn = 2n +(−1)n

formundadır. Sonuç olarak

Qn =
2n− (−1)n

3
+

2n+1− (−1)n+1

3
i+

2n+2− (−1)n+2

3
j+

2n+3− (−1)n+3

3
k

Qn = Jn + Jn+1i+ Jn+2j+ Jn+3k

eşitliğinden JQn Jacobsthal kuaterniyonları ve

Vn = 2n +(−1)n +2n+1 +(−1)n+1i+2n+2 +(−1)n+2j+2n+3 +(−1)n+3k

Vn = jn + jn+1i+ jn+2j+ jn+3k

eşitliğinden de JLQn Jacobsthal-Lucas kuaterniyonları elde edilir [48].
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Sadeleştirme. Örnek 4.1 de α
√

q = i olur. Buradan

an = 1−qn−q−1/2(1−qn+1) ve

bn = 1+qn−q−1/2(1+qn+1)

olmak üzere Qn ve Kn kuaterniyonları bazı hesaplamalar ve sadeleştirmelerden sonra

Qn =
q−

n+1
2 in−1

1−q

[
qan−an+2j

]
ve

Kn = q−n/2−1in
[
qbn−bn+2j

]
olarak yeniden yazılabilir. Böylece bu kuaterniyonlar, n tamsayısının mod 4 e indir-

genmesine göre

Qn =
1

1−q



q−2k−1/2[−qa4ki+a4k+2k] , n = 4k

q−2k−1[qa4k+1−a4k+3j] , n = 4k+1

q−2k−3/2[qa4k+2i−a4k+4k] , n = 4k+2

q−2k−2[−qa4k+3 +a4k+5j] , n = 4k+3

ve

Kn =



q−2k−1[qb4k−b4k+2j] , n = 4k

q−2k−3/2[qb4k+1i−b4k+3k] , n = 4k+1

q−2k−2[−qb4k+2 +b4k+4j] , n = 4k+2

q−2k−5/2[−qb4k+3i+b4k+5k] , n = 4k+3

formlarından birisine eşittir.

Lineerleştirme. α2q =−1 olsun. Binet form (4.1) den her n≥ 1 tamsayısı için

Qn− (αq)Qn−1 =
αnα− (αq)nγ

α(1−q)
− (αq)

αn−1α− (αq)n−1γ

α(1−q)

=
αnα− (αq)αn−1α

α(1−q)
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=
αn−1(α− (αq))α

α(1−q)
= α

n−1
α (4.2)

ve

Qn−αQn−1 =
αnα− (αq)nγ

α(1−q)
−α

αn−1α− (αq)n−1γ

α(1−q)

=
α(αq)n−1γ− (αq)nγ

α(1−q)

=
(αq)n−1(α− (αq))γ

α(1−q)
= (αq)n−1

γ (4.3)

olur. (4.2) denklemini α ile ve (4.3) denklemini αq ile çarparak Qn nin

α
n
α = αQn +Qn−1,

(αq)n
γ = αqQn +Qn−1

lineerleştirmesi elde edilir.

Şimdi Qn ve Vn kuantum kuaterniyonlarını içeren bazı toplamsal özdeşlikler incele-

necektir. Bu bölümde sadece Qn ile ilgili olan özdeşlikler ispatlanacaktır. Vn ile ilgili

olan özdeşlikler ise benzer şekilde ispatlanabilir.

Teorem 4.3. m,k ∈ N olsun. Bu durumda4= [α(1−q)]2 olmak üzere

(i)
m

∑
n=0

(
m
n

)
(−α

2q)m−nQ2n+k =

 4m/2Qm+k , m çift ise

4(m−1)/2Vm+k , m tek ise

(ii)
m

∑
n=0

(
m
n

)
(−α

2q)m−nV2n+k =

 4m/2Vm+k , m çift ise

4(m+1)/2Qm+k , m tek ise

olur.
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İspat. Binet form (4.1) den

S =
m

∑
n=0

(
m
n

)
(−α

2q)m−nQ2n+k

=
m

∑
n=0

(
m
n

)
(−α

2q)m−n

(
α2n+kα− (αq)2n+kγ

α(1−q)

)

yazılabilir.

m

∑
n=0

(
m
n

)
(−α

2q)m−n(α2)n =
(
α

2−α
2q
)m

ve

m

∑
n=0

(
m
n

)
(−α

2q)m−n((αq)2)n =
(
α

2q2−α
2q
)m

olduğu gözlemlenebilir. α2−α2q = α
√
4 ve α2q2−α2q =−αq

√
4 olduğundan

S = (α
√
4)m αkα

α(1−q)
− (−αq

√
4)m (αq)kγ

α(1−q)

elde edilir. m çift tamsayı ise

S =4m/2

(
αm+kα− (αq)m+kγ

α(1−q)

)
=4m/2Qm+k,

diğer durumda ise

S =4(m−1)/2
(

α
m+k

α +(αq)m+k
γ

)
=4(m−1)/2Vm+k

olur.

Teorem 4.4. m,k ∈ N için

(i)
m

∑
n=0

(
m
n

)
(−1)n(−α

2q)m−nQ2n+k = [−α(1+q)]mQm+k,

(ii)
m

∑
n=0

(
m
n

)
(−1)n(−α

2q)m−nV2n+k = [−α(1+q)]mVm+k
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olur.

İspat. Binet form (4.1) uygulanırsa

S =
m

∑
n=0

(
m
n

)
(−1)n(−α

2q)m−nQ2n+k

=
m

∑
n=0

(
m
n

)
(−1)n(−α

2q)m−n

(
α2n+kα− (αq)2n+kγ

α(1−q)

)

= (−α
2−α

2q)m αkα

α(1−q)
− (−(αq)2−α

2q)m (αq)kγ

α(1−q)

= [−α(1+q)]m
(

αm+kα− (αq)m+kγ

α(1−q)

)
= [−α(1+q)]mQm+k

elde edilir.

Teorem 4.5. m ∈ N olsun. Bu durumda

(i)
m

∑
n=0

(
m
n

)
[α(1+q)]n(−α

2q)m−nQn = Q2m,

(ii)
m

∑
n=0

(
m
n

)
[α(1+q)]n(−α

2q)m−nVn = V2m

olur.

İspat. Binet form (4.1) uygulanırsa

S =
m

∑
n=0

(
m
n

)
[α(1+q)]n(−α

2q)m−nQn

=
m

∑
n=0

(
m
n

)
[α(1+q)]n(−α

2q)m−n
(

ααn− γ(αq)n

α(1−q)

)
=

(
m

∑
n=0

(
m
n

)
[α2(1+q)]n(−α

2q)m−n

)
α

α(1−q)

−

(
m

∑
n=0

(
m
n

)
[α2q(1+q)]n(−α

2q)m−n

)
γ

α(1−q)
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= (α2)m α

α(1−q)
− (α2q2)m γ

α(1−q)
= Q2m

olur.

4.2. q−Kuaterniyon Polinomları

Bu bölümde kuantum kuaterniyon polinomları veya kısaca q−kuaterniyon polinomları

Qn(z) ve Vn(z) tanıtılıp bu tipteki polinomların Binet formülleri ve üreteç fonksiyon-

ları bulunacaktır. Aynı zamanda q−kuaterniyon polinom dizileriyle ilgili bazı sonuçlar

elde edilecektir. Öncelikle iki q−polinom olan Qn(z) ve Vn(z) tanımlanacaktır.

Tanım 4.2. p(z) ve q(z) kompleks katsayılı polinomlar olsun. Qn(z) ve Vn(z)

q−polinomları başlangıç koşulları sırasıyla Q0(z) = 0, Q1(z) = 1 ve V0(z) = 2,

V1(z) = p(z) ile verilen

Qn+2(z) = p(z)Qn+1(z)−q(z)Qn(z)

Vn+2(z) = p(z)Vn+1(z)−q(z)Vn(z) (4.4)

yineleme bağıntıları ile tanımlanırlar.

Örnek 4.3. (i) Sabit tipten bir örnek:

p(z) = α(q+1) ve q(z) = α2q olsun. Bu durumda

Qn+2(z) = α(q+1)Qn+1(z)−α
2qQn(z)

ve

Vn+2(z) = α(q+1)Vn+1(z)−α
2qVn(z)

polinomları elde edilir.
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(ii) Sabit olmayan tipten bir örnek:

p(z) = h(x) reel katsayılı bir polinom ve q(z) =−1 olsun. Bu durumda

Q0(x) = 0, Q1(x) = 1

başlangıç koşullu

Qn+2(x) = h(x)Qn+1(x)+Qn(x)

polinomları elde edilir. Bu yineleme bağıntısının h(x)−Fibonacci polinomlarını

verdiği bilinmektedir. Böylelikle k herhangi bir reel sayı ve h(x) = k için de

k−Fibonacci sayılarının elde edildiği görülür. Özel olarak k = 1 ve k = 2 için

sırasıyla Fibonacci sayıları Fn ve Pell sayıları Pn elde edilir.

(4.4) bağıntısının

w2− p(z)w+q(z) = 0

karakteristik denkleminin kökleri

α(w) =
p(z)+

√
p(z)2−4q(z)
2

ve β (w) =
p(z)−

√
p(z)2−4q(z)
2

(4.5)

olsun. Bu durumda Qn(z) ve Vn(z) q−polinomlarının Binet formülleri

Qn(z) =
α(w)n−β (w)n

α(w)−β (w)
ve Vn(z) = α(w)n +β (w)n

olarak elde edilir.

Şimdi bileşenleri yukarıda tanımlanan diziler olan iki q−kuaterniyon dizisi tanımlana-

caktır.
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Tanım 4.3. Qn(z) ve Vn(z) q−kuaterniyon polinomları n≥ 0 için

Qn(z) = Qn(z)+Qn+1(z)i+Qn+2(z)j+Qn+3(z)k

Vn(z) = Vn(z)+Vn+1(z)i+Vn+2(z)j+Vn+3(z)k

yineleme bağıntıları ile tanımlıdır.

Qn(z) q−kuaterniyon polinomu için başlangıç koşulları

Q0(z) = Q0(z)+Q1(z)i+Q2(z)j+Q3(z)k

= i+ p(z)j+(p(z)2−q(z))k,

Q1(z) = Q1(z)+Q2(z)i+Q3(z)j+Q4(z)k

= 1+ p(z)i+(p(z)2−q(z))j+(p(z)3−2p(z)q(z))k

olur. Vn(z) q−kuaterniyon polinomunun başlangıç koşulları ise

V0(z) = V0(z)+V1(z)i+V2(z)j+V3(z)k

= 2+ p(z)i+(p(z)2−2q(z))j+(p(z)3−3p(z)q(z))k,

V1(z) = V1(z)+V2(z)i+V3(z)j+V4(z)k

= p(z)+(p(z)2−2q(z))i+(p(z)3−3p(z)q(z))j

+(p(z)4−4p(z)2q(z)+2q(z)2)k

olarak verilir.

Örnek 4.4. p(z) = h(x) reel katsayılı bir polinom olsun. Örnek 4.3 te görüldüğü

gibi Qn(z) q−polinomlarından h(x)− Fibonacci polinomları ve dolayısıyla da Qn(z)

q−kuaternion polinomlarından h(x)−Fibonacci kuaterniyon polinomları elde edilir.

Teorem 4.6. Qn(z) ve Vn(z) q−kuaterniyon polinomlarının üreteç fonksiyonları sıra-
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sıyla

QF(t) =
Q0(z)+ [Q1(z)− p(z)Q0(z)]t

1− p(z)t +q(z)t2 ,

VF(t) =
V0(z)+ [V1(z)− p(z)V0(z)]t

1− p(z)t +q(z)t2

şeklindedir.

İspat. q−kuaterniyon polinomu Qn(z) için QF(t) üreteç fonksiyonu
∞

∑
n=0

Qn(z)tn for-

mundadır. Buradan−p(z)t ve q(z)t2 nin üstel seri açılımı sırasıyla
∞

∑
n=0
−p(z)Qn(z)tn+1

ve
∞

∑
n=0

q(z)Qn(z)tn+2 olur. Dolayısıyla

(1− p(z)t +q(z)t2)QF(t) = Q0(z)+ [Q1(z)− p(z)Q0(z)]t

eşitliğinden

QF(t) =
Q0(z)+ [Q1(z)− p(z)Q0(z)]t

1− p(z)t +q(z)t2

elde edilir. Benzer şekilde q−kuaterniyon polinomu Vn(z) nin üreteç fonksiyonu

VF(t) =
V0(z)+ [V1(z)− p(z)V0(z)]t

1− p(z)t +q(z)t2

olarak bulunur.

Bu tipteki kuaterniyon polinom dizilerinin Binet formülleri de elde edilebilir.

Notasyon: Bu bölüm boyunca α(w) ve β (w) (4.5) te verilen elemanlar olmak üzere

α(w) = 1+α(w)i+α(w)2j+α(w)3k,

β (w) = 1+β (w)i+β (w)2j+β (w)3k

olarak ele alınacaktır.
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Teorem 4.7. Qn(z) ve Vn(z) q−kuaterniyon polinomlarının Binet formülleri sırasıyla

Qn(z) =
α(w)nα(w)−β (w)nβ (w)

α(w)−β (w)
(4.6)

ve

Vn(z) = α(w)n
α(w)+β (w)n

β (w) (4.7)

şeklindedir.

Bazı hesaplamaların ardından

Q1(z)−α(w)Q0(z) = β (w),

Q1(z)−β (w)Q0(z) = α(w),

V1(z)−α(w)V0(z) = (β (w)−α(w))β (w),

V1(z)−β (w)V0(z) = (α(w)−β (w))α(w)

elde edilir.

Şimdi Qn(z) ve Vn(z) kuaterniyonlarını içeren bazı toplamsal formüller verilecektir.

Teorem 4.8. n ∈ N için

(i)
m

∑
n=0

(
m
n

)
(−q(z))m−n p(z)nQn(z) = Q2n(z),

(ii)
m

∑
n=0

(
m
n

)
(−q(z))m−n p(z)nVn(z) = V2n(z)

olur.

İspat. (i) için Binet form (4.6) uygulanırsa

m

∑
n=0

(
m
n

)
(−q(z))m−n p(z)nQn(z)
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=
m

∑
n=0

(
m
n

)
(−q(z))m−n p(z)n α(w)nα(w)−β (w)nβ (w)

α(w)−β (w)

=

(
m

∑
n=0

(
m
n

)
(−q(z))m−n p(z)n

α(w)n

)
α(w)

α(w)−β (w)

−

(
m

∑
n=0

(
m
n

)
(−q(z))m−n p(z)n

β (w)n

)
β (w)

α(w)−β (w)

= (−q(z)+ p(z)α(w))m α(w)

α(w)−β (w)

−(−q(z)+ p(z)β (w))m β (w)

α(w)−β (w)

=
α(w)2mα(w)−β (w)2mβ (w)

α(w)−β (w)
= Q2n(z)

olur. Benzer şekilde (ii) de Binet form (4.7) uygulanarak elde edilir.

4.3. Uygulamalar

Bu bölümde bileşenleri bazı özel tamsayı dizilerinden olan Hamilton kuaterniyonlarını

içeren zaman evolüsyonu ve dönme uygulamaları verilecektir.

4.3.1. Zaman Evolüsyonu

Kuaterniyon türev formülü, q(t) kuaterniyonunun bileşeninin zamana göre türevi ile

w(t) açısal hız vektörünün bileşeni arasında bağ kurar. Daha ayrıntılı bilgi için [42]

incelenebilir. w(t) açısal hız vektörü, skalar kısmı sıfır olan

w(t) = wx(t)i+wy(t)j+wz(t)k

= (0,wx(t),wy(t),wz(t))

kuaterniyonu gibi yazılabilir. Bu durumda birim kuaterniyon q(t) nin türevi

dq(t)
dt

=
1
2

w(t)q(t) (4.8)
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olur [49].

Şimdi hız vektörü w(t) = (0,sinθ t,sinθ t,sinθ t) ile q1(t) = (tFn, tFn+1, tFn+2, tFn+3)

kuaterniyonunun zaman türevi arasında bir ilişki kurulacaktır.

Qn = Fn + Fn+1i+ Fn+2j+ Fn+3k kuaterniyonu n-inci Fibonacci kuaterniyon olmak

üzere (4.8) den

dq1(t)
dt

=
1√

N(q1(t))



−tFn+3 sinθ t

t
2Fn+2 sinθ t

− t
2Fn+1 sinθ t

tFn sinθ t



T

=
1√

N(Qn)



−Fn+3 sinθ t

1
2Fn+2 sinθ t

−1
2Fn+1 sinθ t

Fn sinθ t



T

elde edilir.

w(t) = (0,sinθ t,sinθ t,sinθ t) hız vektörü ve q2(t) = (tFn,Fn+1,Fn+2,Fn+3) kuaterni-

yonu alındığında ise

dq2(t)
dt

=
1√

N(q2(t))



−Fn+3 sinθ t

1
2 (Fn+1 sinθ t + tFn sinθ t)

1
2 (Fn+2 sinθ t + tFn sinθ t)

1
2 (Fn sinθ t + tFn sinθ t)



T

elde edilir.

41



4.3.2. Dönme

Reel kısmı sıfır olan kuaterniyonlar R3 teki vektörleri temsil etmek için kullanılır. Yani

bir v vektörü v0 = (0,v) ile temsil edilir. Birim kuaterniyon q için

Lq(v) = qvq∗

dönüşümünü ele alalım.

Dönme operatörü geometrisi

Lq(v) operatörünün R3 üzerinde lineer olduğu kolaylıkla görülebilir. Herhangi bir v

vektörü için, bu operatörün v üzerindeki hareketi, vektörün û dönme ekseni olarak

θ açısı boyunca dönmesine eşdeğerdir. q kuaterniyonunun dönme altında korunduğu

görülebilir. Bazı hesaplamalardan sonra q kuaterniyonu

q = cos
θ

2
+ ûsin

θ

2

şeklinde yazılabilir. Bir v vektörü û ekseni etrafında θ açısı kadar döndürüldüğünde

Lq(v) = (cosθ)v+(1−cosθ)(û ·v)û+ sinθ(û×v) (4.9)

elde edilir. −q kuaterniyonu aynı dönmeyi temsil eder ve dönmelerin bileşimi, kuater-

niyonların çarpmasına karşılık gelir [49].

1. r reel sayısı ve Wn(a,b; p,q) genelleştirilmiş Fibonacci dizisi için, q= (r,r,r,r)
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ve Q′n =Wn +Wn+1i+Wn+2j+Wn+3k olsun. Bu durumda

qQnq−1 = (Wn,Wn+2,Wn+1,Wn+3)

şeklindedir.

2. Qn = Fn +Fn+1i+Fn+2j+Fn+3k n−inci Fibonacci kuaterniyonunu ele alınsın.

Rotasyon sonucunda elde edilen kuaterniyon, yani her n,k doğal sayıları için

QkQnQ−1
k

kuaterniyonu bulunacaktır. QkQnQ−1
k = (a,b,c,d) olsun. Buradan

a = Fn

olduğu görülür. Diğer bileşenler ise Un,1, Vn,1, Tn,1 Fibonacci dizileri

Un,1 = 6Fn+2

Vn,1 = Wn(−5,−9;1,1)

Tn,1 = −Fn+1

ve

f (n,x) =
Un,1 +Vn,1x+Tn,1x2

1−2x−2x2 + x3

olmak üzere

b =
1

k!3F2k+3

dk f (n,x)
dx

|x=0,

Un,2, Vn,2, Tn,2 Fibonacci dizileri

Un,2 = 6Fn+1

Vn,2 = Wn(13,18;1,1)
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Tn,2 = Wn(−7,−10;1,1)

ve

g(n,x) =
Un,2 +Vn,2x+Tn,2x2

1−2x−2x2 + x3

olmak üzere

c =
1

k!3F2k+3

dkg(n,x)
dx

|x=0,

ve son olarak Un,3, Vn,3, Tn,3 Fibonacci dizileri

Un,3 = 6Fn+3

Vn,3 = Wn(2,9;1,1)

Tn,3 = Wn(−2,−5;1,1)

ve

h(n,x) =
Un,3 +Vn,3x+Tn,3x2

1−2x−2x2 + x3

olmak üzere

d =
1

k!3F2k+3

dkh(n,x)
dx

|x=0

şeklinde bulunur.

3. k bir doğal sayı olmak üzere v = (F4k+2,F4k+3,F4k+4) olsun. (1,1,1) ekseni et-

rafında π açısı kadar dönme ele alınsın. Dolayısıyla π +2nπ açısı için de geçerli

olacaktır. û = 1√
3
(1,1,1) birim vektörü için (4.9) dan

Lq(v) = (F4k+4−
1
3

F4k,F4k+2 +
1
3

F4k+4,
1
3

F4k+4)

=
1
3
(3F4k+4−F4k,3F4k+2 +F4k+4,F4k+4)

elde edilir. θ = π

2 ve v = (F4k+2,F4k+3,F4k+4) için (1,1,1) ekseni etrafında θ
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açısı kadar dönme ise

Lq(v) =
2
3

F4k+4(1,1,1)+
1√
3
(F4k+2,−F4k+3, F4k+1)

olur.
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5 . KÖKLERİ İKİNCİ MERTEBEDEN KUATERNİYON DİZİLERİ

CİNSİNDEN VERİLEN BAZI YENİ İKİNCİ DERECEDEN

KUATERNİYONİK DENKLEMLER

Bugüne kadar kuaterniyon cebirleri üzerindeki denklemlerin çözümlerini bulmak için

birçok metod sunulmuştur. Kuaterniyonlarda çarpma işlemi değişmeli olmadığından

kuaterniyonik denklemlerle çalışmak kompleks cebir üzerindeki denklemlerle çalış-

maktan daha zordur. Bu bölümde Niven, Serôdio ve Zhigang [40, 44, 51] tarafından

verilen metodlar kullanılarak ikinci dereceden monik bazı kuaterniyonik polinomların

kuaterniyon kökleri bulunacaktır.

5.1. Ana Teoremler

Teorem 5.1. y bir Fibonacci kuaterniyon olmak üzere

p(x,y) = x2 + xy− y2−2−2i−4j−3k (5.1)

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y) = (Q2n−1,Q2n) olarak

verilir.

İspat. y = Q2n olsun. Bu durumda (5.1) de verilen kuaterniyon polinomunun ilgili

olduğu matris

C =

0 Q2
2n +2+2i+4j+6k

1 −Q2n


olarak yazılabilir.

Q2
2n = −N(Q2n)+2F2

2n +2F2n+1F2ni+2F2n+2F2nj+2F2n+3F2nk

= −3F4n+3 +2F2
2n +2F2n+1F2ni+2F2n+2F2nj+2F2n+3F2nk (5.2)
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olduğundan C matrisinde (5.2) yerine yazıldığında

C1 =

0 2−3F4n+3 +2F2
2n +(2+2F2n+1F2n)i

1 −F2n−F2n+1i


ve

C2 =

0 (4+2F2n+2F2n)+(3+2F2n+3F2n)i

0 −F2n+2−F2n+3i


olmak üzere

C =C1 +C2j

elde edilir. Buradan C matrisinin sağ özdeğerleri kompleks girişli 4×4

A =

 C1 C2

−C∗2 C∗1


matrisinin özdeğerleridir. A matrisinin karakteristik polinomu

h(x) = x4 +2F2nx3 +(3(F4n+5 +F4n+1)−4F2n−1F2n+1)x2 +

6(F2n+1F4n+1−F2n−1F4n+5)x+9F4n+1F4n+5

olup h(x) polinomunun çarpanlarına ayrılmış hali

h(x) = (x2−2F2n−1x+3F4n+1)(x2 +2F2n+1x+3F4n+5)

şeklindedir. Dolayısıyla bu matrisin özdeğerlerinin

m λm t n

1 −F2n+1∓ i
√

F2
2n+2 +F2

2n+3 +F2
2n+4 −2F2n+1 3F4n+5

2 F2n−1∓ i
√

F2
2n +F2

2n+1 +F2
2n+2 2F2n−1 3F4n+1
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formunda olduğu görülür. (5.1) polinomunu soldan x2−2F2n−1x+3F4n+1 polinomuna

bölerek

0 = x(2F2n−1 +F2n +F2n+1i+F2n+2j+F2n+3k)−

[3F4n+1 +2−N(Q2n)+2F2
2n +(2+2F2n+1F2n)i+

(4+2F2n+2F2n)j+(3+2F2n+3F2n)k]

elde edilir ve buradan

x = [(3F4n+1 +2−3F4n+3)+2F2
2n +(2+2F2n+1F2n)i+

(4+2F2n+2F2n)j+(3+2F2n+3F2n)k]×
1

2F2n−1 +F2n +F2n+1i+F2n+2j+F2n+3k
= (3F4n+1 +2−3F4n+3)+2F2

2n +(2+2F2n+1F2n)i+

(4+2F2n+2F2n)j+(3+2F2n+3F2n)k)×
1

L2n +F2n+1i+F2n+2j+F2n+3k

=
(L2

2n +F2
2n+1+F2

2n+2+F2
2n+3)Q2n−1

(L2
2n +F2

2n+1+F2
2n+2+F2

2n+3)

= Q2n−1

bulunur. (5.1) polinomunu soldan x2 +2F2n+1x+3F4n+5 polinomuna bölerek

0 = x(−2F2n+1 +F2n +F2n+1i+F2n+2j+F2n+3k)−

[3F4n+5 +2−3F4n+3 +2F2
2n +(2+2F2n+1F2n)i+

(4+2F2n+2F2n)j+(6+2F2n+3F2n)k]

yazılır ve buradan da

x = [3F4n+5 +2−3F4n+3 +2F2
2n +(2+2F2n+1F2n)i+

(4+2F2n+2F2n)j+(3+2F2n+3F2n)k]×
1

−2F2n+1 +F2n +F2n+1i+F2n+2j+F2n+3k
= [3F4n+5 +2−3F4n+3 +2F2

2n +(2+2F2n+1F2n)i+
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(4+2F2n+2F2n)j+(3+2F2n+3F2n)k]×
1

−L2n +F2n+1i+F2n+2j+F2n+3k
= [

(
−3F4n+1−2+3F4n+3 +L2

2n +F2
2n+1+F2

2n+2+F2
2n+3−2F2

2n
)
+

(2+2F2n+1F2n)i+(4+2F2n+2F2n)j+(3+2F2n+3F2n)k]×
1

−L2n +F2n+1i+F2n+2j+F2n+3k

elde edilir. Ancak bu denklemden tamsayı katsayılı kuaterniyon çözümü elde edilemez.

y = Q2n+1 olsun. Bu durumda (5.1) kuaterniyon polinomu ile ilgili olan matrisin özde-

ğerlerinin izi ve normu tamsayı olmayacaktır. Polinomu bu özdeğerlere karşılık gelen

karakteristik polinoma bölündüğünde ise tamsayı katsayılı kuaterniyon çözümü elde

edilemez.

Teorem 5.2. y bir Fibonacci kuaterniyon olmak üzere

p(x,y) = x2 + xy− y2 +2+2i+4j+3k (5.3)

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y) = (Q2n,Q2n+1) olarak

verilir.

İspat. y = Q2n+1 olsun. Bu durumda (5.3) te verilen kuaterniyon polinomunun ilgili

olduğu matris

C =

0 Q2
2n+1−2−2i−4j−3k

1 −Q2n+1


olarak elde edilir.

Q2
2n+1 = −N(Q2n+1)+2F2

2n+1 +2F2n+1F2n+2i+2F2n+1F2n+3j+2F2n+1F2n+4k

= −3F4n+5 +2F2
2n+1 +2F2n+1F2n+2i+2F2n+1F2n+3j+2F2n+1F2n+4k (5.4)
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olduğundan

C1 =

0 −2−3F4n+5 +2F2
2n+1 +(−2+2F2n+1F2n+2)i

1 −F2n+1−F2n+2i


ve

C2 =

0 (−4+2F2n+1F2n+3)+(−3+2F2n+1F2n+4)i

0 −F2n+3−F2n+4i


olmak üzere C matrisinin sağ özdeğerleri kompleks girişli 4×4

A =

 C1 C2

−C∗2 C∗1


matrisinin özdeğerleridir. Buradan A matrisinin karakteristik polinomu

h(x) = x4 +2F2n+1x3 +(3(F4n+7 +F4n+3)−4F2nF2n+2)x2 +

6(F2n+2F4n+3−F2nF4n+7)x+9F4n+3F4n+7

olup h(x) polinomu

h(x) = (x2−2F2nx+3F4n+3)(x2 +2F2n+2x+3F4n+7)

şeklinde çarpanlarına ayrılır. Böylelikle özdeğerler

m λm t n

1 F2n∓ i
√

F2
2n+1 +F2

2n+2 +F2
2n+3 2F2n 3F4n+3

2 −F2n+2∓ i
√

F2
2n+3 +F2

2n+4 +F2
2n+5 −2F2n+2 3F4n+7

şeklinde elde edilir. (5.3) polinomu soldan x2−2F2nx+3F4n+3 polinomuna bölündü-

ğünde x = Q2n, (5.3) polinomu soldan x2 + 2F2n+2x+ 3F4n+7 polinomuna bölündü-

ğünde ise tamsayı katsayılı olmayan yeni bir kuaterniyon çözümü elde edilir.
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y = Q2n durumunda ise Teorem 5.1 de olduğu gibi tamsayı katsayılı kuaterniyon çö-

zümü elde edilemez.

Şimdi

x2−3xy+ y2 +2+4i+6j+k = 0,

x2−3xy+ y2−2−4i−6j−k = 0

denklemlerinin çözümleri ile ilgilenilecektir.

Teorem 5.3. (i) y bir Fibonacci kuaterniyon olmak üzere

p(x,y) = x2−3xy+ y2 +2+4i+6j+k (5.5)

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y) = (Q2n−1,Q2n+1)

olarak verilir.

(ii) y bir Fibonacci kuaterniyon olmak üzere

p(x,y) = x2−3xy+ y2−2−4i−6j−k

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y)= (Q2n,Q2n+2) ola-

rak verilir.

İspat. Sadece (i) şıkkının ispatı verilecektir. Benzer şekilde (ii) yapılabilir. y = Q2n+1

olsun. Bu durumda denklem (5.5) te verilen kuaterniyon polinomunun ilgili olduğu

matris

C =

0 −Q2
2n+1−2−4i−6j−k

1 3Q2n+1


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olacaktır. (5.4) denklemini kullanarak

C1 =

0
(
−2+3F4n+5−2F2

2n+1
)
+(−4−2F2n+1F2n+2)i

1 −3F2n+1−3F2n+2i


ve

C2 =

0 (−6−2F2n+1F2n+3)+(−1−2F2n+1F2n+4)i

0 −3F2n+3−3F2n+4i


olmak üzere C matrisinin sağ özdeğerleri kompleks girişli 4×4

A =

 C1 C2

−C∗2 C∗1


matrisinin özdeğerleri olduğu görülebilir. Buradan A matrisinin karakteristik polinomu

h(x) = x4−6F2n−1x3 +(3(F4n+5 +F4n−3)+4F2n−3F2n+1)x2−

6(F2n−3F4n+5−F2n+1F4n−3)x+9F4n−3F4n+5

olup h(x) polinomu

h(x) = (x2−2F2n−1x+3F4n+1)(x2−2F2n+3x+3F4n+9)

şeklinde çarpanlarına ayrılır. Böylelikle özdeğerler

m λm t n

1 F2n−1∓ i
√

F2
2n +F2

2n+1 +F2
2n+2 2F2n−1 3F4n+1

2 F2n+3∓ i
√

F2
2n+4 +F2

2n+5 +F2
2n+6 2F2n+3 3F4n+9

olarak elde edilir. (5.5) polinomu soldan x2−2F2n−1x+3F4n+1 polinomuna bölündü-

ğünde x = Q2n−1, (5.5) polinomu soldan x2−2F2n+3x+3F4n+9 polinomuna bölündü-

ğünde ise tamsayı katsayılı olmayan yeni bir kuaterniyon çözümü elde edilir.
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y = Q2n durumunda ise Teorem 5.1 de olduğu gibi tamsayı katsayılı kuaterniyon çö-

zümü elde edilemez.

Bunların dışında ilgilenilen diğer iki denklem

x2 +2xy− y2−6F2ny+9F4n+2 +2+2j−4k = 0,

x2 +2xy− y2−6F2n+1y+9F4n+4−2−2j+4k = 0

şeklindedir.

Teorem 5.4. (i) y bir Fibonacci kuaterniyon olmak üzere

p(x,y) = x2 +2xy− y2−6F2ny+9F4n+2 +2+2j−4k

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y)= (Q2n,Q2n−1) ola-

rak verilir.

(ii) y bir Fibonacci kuaterniyon olmak üzere

p(x,y) = x2 +2xy− y2−6F2n+1y+9F4n+4−2−2j+4k

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y)= (Q2n+1,Q2n) ola-

rak verilir.

İspat. Teorem 5.1 in ispatında olduğu gibi ilgili olunan eş matrisler yazılarak istenen

sonuç elde edilir.

Şimdi her biri tamsayı katsayılı kuaterniyon çözümüne sahip olan dört denklem daha

ele alınacaktır. Bu denklemler

x2 −12F2nx+ y2 +18F4n+3−8−4i−12j−16k = 0,

x2 −12F2n+1x+ y2 +18F4n+5 +8+4i+12j+16k = 0,
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x2 +8F2nx− y2−12F4n+3 +8+4i+12j+16k = 0,

x2 +8F2n+1x− y2−12F4n+5−8−4i−12j−16k = 0

şeklinde olup çözümleri Teorem 5.5 ve Teorem 5.6 da verilmiştir.

Teorem 5.5. (i) y bir Lucas kuaterniyon olmak üzere

p(x,y) = x2−12F2nx+ y2 +18F4n+3−8−4i−12j−16k (5.6)

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y) = (Q2n,K2n) ve

(x,y) = (12F2n−Q2n,K2n) olarak verilir.

(ii) y bir Lucas kuaterniyon olmak üzere

p(x,y) = x2−12F2n+1x+ y2 +18F4n+5 +8+4i+12j+16k (5.7)

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y) = (Q2n+1,K2n+1)

ve (x,y) = (12F2n+1−Q2n+1,K2n+1) olarak verilir.

İspat. Öncelikle (i) ispatlanacaktır. y = K2n olsun. Gerekli işlemler yapıldığında

K2
2n = −N(K2n)+2L2

2n +2L2nL2n+1i+2L2nL2n+2j+2L2nL2n+3k

= −15F4n+3 +2L2
2n +2L2nL2n+1i+2L2nL2n+2j+2L2nL2n+3k (5.8)

ve

K2
2n+1 = −N(K2n+1)+2L2

2n+1 +2L2n+1L2n+2i+2L2n+1L2n+3j+2L2n+1L2n+4k

= −15F4n+5 +2L2
2n+1 +2L2n+1L2n+2i+2L2n+1L2n+3j+2L2n+1L2n+4k (5.9)
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olduğu kolaylıkla görülebilir.

C1 =

0
(
−3F4n+3−2L2

2n +8
)
+(4−2L2nL2n+1)i

1 12F2n


ve

C2 =

0 (12−2L2nL2n+2)+(16−2L2nL2n+3) i

0 0


olmak üzere (5.6) da verilen kuaterniyon polinomunun ilgili olduğu 4×4 matris

A =

 C1 C2

−C∗2 C∗1


kompleks girişli matrisidir. Buradan A matrisinin karakteristik polinomu h(x)

h(x) = (x2−2F2nx+3F4n+3)(x2−22F2n−1x+3F4n+3 +120F2
2n)

şeklinde çarpanlarına ayrılır. Böylelikle özdeğerler

m λm t n

1 F2n∓ i
√

F2
2n+1 +F2

2n+2 +F2
2n+3 2F2n 3F4n+3

2 11F2n∓ i
√

F2
2n+1 +F2

2n+2 +F2
2n+3 22F2n 3F4n+3 +120F2

2n

olarak elde edilir. (5.6) polinomu soldan x2− 2F2nx+ 3F4n+3 polinomuna bölündü-

ğünde

0 = x(−10F2n)+(K2
2n +15F4n+3−8−4i−12j−16k)

elde edilir. Dolayısıyla

x =
(K2

2n +15F4n+3−8−4i−12j−16k)
10F2n

= Q2n
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yazılabilir. Diğer kök ise (5.6) polinomunu soldan x2− 22F2n−1x+ 3F4n+3 + 120F2
2n

polinomuna bölündüğünde

x = 12F2n−Q2n

olarak bulunur. y = K2n+1 olsun. Bu durumda (5.6) ile verilen kuaterniyon polinomu-

nun ilgili olduğu eş matrisin izi ve özdeğerlerin normu tamsayı olmayacaktır. Polinom

bu özdeğerlere karşılık gelen karakteristik polinomlara bölündüğünde tamsayı katsa-

yılı kuaterniyon çözümleri elde edilemez.

Şimdi (ii) ispatlanacaktır. y = K2n+1 olsun. Denklem (5.9) kullanılarak (5.7) polinomu

ile ilgili olan eş matris yazılabilir. Karşılık gelen 4×4 kompleks girişli matrisin karak-

teristik polinomu

h′(x) = (x2−2F2n+1x+3F4n+5)(x2−22F2n+1x+3F4n+5 +120F2
2n+1)

şeklindedir. Dolayısıyla özdeğerler

m λm t n

1 F2n+1∓ i
√

F2
2n+2 +F2

2n+3 +F2
2n+4 2F2n+1 3F4n+5

2 11F2n+1∓ i
√

F2
2n+2 +F2

2n+3 +F2
2n+4 22F2n+1 3F4n+5 +120F2

2n+1

olacaktır. Buradan kökler

x = Q2n+1,

x = 12F2n+1−Q2n+1

olarak elde edilir. y = K2n olsun. Bu durumda (i) şıkkında olduğu gibi tamsayı katsayılı

kuaterniyon çözümleri elde edilemez.
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Teorem 5.6. (i) y bir Lucas kuaterniyon olmak üzere

p(x,y) = x2 +8F2nx− y2−12F4n+3 +8+4i+12j+16k (5.10)

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y) = (Q2n,K2n) ve

(x,y) = (−8F2n−Q2n,K2n) olarak verilir.

(ii) y bir Lucas kuaterniyon olmak üzere

p(x,y) = x2 +8F2n+1x− y2−12F4n+5−8−4i−12j−16k (5.11)

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y) = (Q2n+1,K2n+1)

ve (x,y) = (−8F2n+1−Q2n+1,K2n+1) olarak verilir.

İspat. (5.8) ve (5.9) kullanılarak (5.10) ve (5.11) polinomlarına karşılık gelen 4× 4

kompleks girişli matrisleri yazılabilir. (5.10) polinomuna karşılık gelen matrisin ka-

rakteristik polinomu

(x2−2F2nx+3F4n+3)(x2 +18F2nx+3F4n+3 +80F2
2n)

olur. Buradan özdeğerler

m λm t n

1 F2n∓ i
√

F2
2n+1 +F2

2n+2 +F2
2n+3 2F2n 3F4n+3

2 −9F2n∓ i
√

F2
2n+1 +F2

2n+2 +F2
2n+3 −18F2n 3F4n+3 +80F2

2n

şeklinde bulunur. Niven algoritmasından kökler

x = Q2n,

x = −8F2n−Q2n
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olarak elde edilir. (5.11) polinomuna karşılık gelen matrisin karakteristik polinomu

(x2−2F2n+1x+3F4n+5)(x2 +18F2n+1x+3F4n+5 +80F2
2n+1)

olur. Buradan özdeğerler

m λm t n

1 F2n+1∓ i
√

F2
2n+2 +F2

2n+3 +F2
2n+4 2F2n+1 3F4n+5

2 −9F2n+1∓ i
√

F2
2n+2 +F2

2n+3 +F2
2n+4 −18F2n+1 3F4n+5 +80F2

2n+1

olarak verilir. Dolayısıyla kökler

x = Q2n+1,

x = −8F2n+1−Q2n+1

olarak elde edilir.

Üzerinde çalışılan son denklem

x2 + xy+ yx+ay2 +by+q = 0

formundadır. Bu tipteki bir denklemin çözümleri eşdeğer reel kuadratik formuna göre

[51] de verilen metod kullanılarak bulunacaktır.

Teorem 5.7. y bir Fibonacci kuaterniyon olmak üzere

p(x,y) = x2 + xy+ yx+2y2−6F2n+1y+9F4n+3 +2−2i−2k

polinomunun tamsayı katsayılı tek kuaterniyon kökleri (x,y) = (Q2n,Q2n−1) ve

(x,y) = (−K2n,Q2n−1) olarak verilir.
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İspat. y = Q2n−1 olsun. x = x0 + x1i+ x2j+ x3k için

d = 2Q2
2n−1−6F2n+1Q2n−1 +9F4n+3 +2−2i−2k

= 2(−3F4n+1 +2F2
2n−1 +2F2n−1F2ni+2F2n−1F2n+1j+2F2n−1F2n+2k)−

6F2n+1Q2n−1 +9F4n+3 +2−2i−2k

= (−6F4n+1 +4F2
2n−1−6F2n+1F2n−1 +2)+(4F2n−1F2n−6F2nF2n+1−2)i+

(4F2n−1F2n+1−6F2
2n+1)j+(4F2n−1F2n+2−6F2n+1F2n+2−2)k

= d0 +d1i+d2j+d3k.

olmak üzere eşdeğer reel kuadratik form

x2
0− x2

1− x2
2− x2

3 +2(F2n−1x0−F2nx1−F2n+1x2−F2n+2x3)+d0 = 0,

2x0x1 +2(F2nx0 +F2n−1x1)+d1 = 0,

2x0x2 +2(F2n+1x0 +F2n−1x2)+d2 = 0,

2x0x3 +2(F2n+2x0 +F2n−1x3)+d3 = 0

şeklindedir. Buradan x = Q2n ve x = −K2n olarak iki reel kuaterniyon çözümü elde

edilir.

y = Q2n için

d = 2Q2
2n−6F2n+1Q2n +9F4n+3 +2−2i−2k

= 2(−3F4n+3 +2F2
2n +2F2n+1F2ni+2F2n+2F2nj+2F2n+3F2nk)

−6F2n+1Q2n +9F4n+3 +2−2i−2k

= (−6F4n+3 +4F2
2n−6F2n+1F2n +2)+(4F2n+1F2n−6F2

2n+1−2)i+

(4F2n+2F2n−6F2n+1F2n+2)j+(4F2n+3F2n−6F2n+1F2n+3−2)k

= d0 +d1i+d2j+d3k

olmak üzere

x2
0− x2

1− x2
2− x2

3 +2(F2nx0−F2n+1x1−F2n+2x2−F2n+3x3)+d0 = 0,
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2x0x1 +2(F2n+1x0 +F2nx1)+d1 = 0,

2x0x2 +2(F2n+2x0 +F2nx2)+d2 = 0,

2x0x3 +2(F2n+3x0 +F2nx3)+d3 = 0

reel kuadratik form yazılır. Fakat bu formdan reel kuaterniyon çözümleri elde edile-

mez.
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6 . TARTIŞMA VE SONUÇ

Bu doktora tezi kapsamında genel olarak kuaterniyon dizileri ve kökleri kuaterniyon

dizileriyle ifade edilebilen ikinci dereceden bazı kuaterniyonik polinomlarla ilgilenil-

miştir. Karakteristik polinomunun derecesi ikiden büyük olan dizilerle elde edilen ku-

aterniyon dizileri üzerine çalışmalar literatürde az görülmektedir. Bu kuaterniyon di-

zileri arasında olan Tribonacci ve Tribonacci-Lucas kuaterniyonlarının bazı özellikleri

incelenmiştir. Derecesi iki olan dizilerle elde edilen kuaterniyon dizilerinin ise kuan-

tum genelleştirmesi verilmiştir. Dolayısıyla farklı q değerleriyle şu ana kadar çalışılmış

olan bütün diziler elde edilmektedir. Ayrıca kuaterniyon polinomlarının da kuantum

genelleştirmesi verilmiştir. Dolayısıyla çalışılan bazı kuaterniyon polinomları yine q

yerine özel polinomlar seçilerek elde edilmektedir. Tanımlanan kuantum kuaterniyon

polinomlarının bazı özellikleri verilmiş ve bazı özdeşlikler elde edilmiştir. Literatürde

en çok karşılaşılan tamsayı katsayılı bazı kuaterniyon dizileri için zaman evolüsyonu

ve dönme uygulamaları da verilmiştir. Benzer düşünceyle uygun koşullar altında farklı

kuantum kuaterniyon dizileri üzerinde de bu tarz uygulamalar verilebilir. Kuantum

tamsayılarının kullanım alanı çok olduğundan tanımlanan kuantum kuaterniyon dizi-

lerinin birçok uygulaması olacağına inanıyoruz.

Son yıllarda kuaterniyonlar üzerindeki polinomların köklerini aramaya olan ilgi ku-

antum mekaniği problemlerini çözmek için gereken kuaterniyonik matematiksel araç-

ların daha iyi anlaşılmasını sağlamıştır. Kuaterniyonlarda çarpma değişmeli olmadı-

ğından kuaterniyon katsayılı polinomların köklerini bulma problemi reel ve kompleks

durumdan daha incelikli ve zengindir. Bu da ikinci dereceden kuaterniyonik denklem-

lerin köklerini incelememizdeki en büyük motivasyon kaynağıdır. Bu tezde verilen

denklemlerin genelleştirmesi üzerine çalışmalar da yapılabilir.
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k−Lucas quaternions. An. Ştiint. Univ. "Ovidius” Constanta Ser. Mat. 23 (2):

201–212, 2015.

[42] Rotella, N., Quaternion review and conventions. http://www-

clmc.usc.edu/~nrotella/IROS2014_linearization.pdf, 1–14, 2014.

[43] Savin, D., About special elements in quaternion algebras over finite fields. Adv.

Appl. Clifford Algebr. 27 (2): 1801–1813, 2017.

[44] Serôdio, R., Pereira, E., and Vitória, J., Computing the zeros of quaternion poly-

nomials. Comput. Math. Appl. 42 (8–9): 1229–1237, 2001.

[45] Shpakivskyi, V. S., Linear quaternionic equations and their systems. Adv. Appl.

Clifford Algebr. 21: 637–645, 2011.

[46] Swamy, M. N. S., On generalized Fibonacci quaternions. Fibonacci Quart. 11 (5):

547–549, 1973.

[47] Startek, M., Włoch, A., and Włoch, I., Fibonacci numbers and Lucas numbers in

graphs. Discrete Appl. Math. 157: 864–868, 2009.

[48] Szynal-Liana, A., Włoch, I., A note on Jacobsthal quaternions. Adv. Appl. Clif-

ford Algebr. 26(1): 441–447, 2016.

[49] Jia, Yan-Bin, Quaternions and rotations. http://graphics.stanford.edu/courses/

cs348a-17-winter/Papers/quaternion.pdf. 1–12, 2013.

[50] Yilmaz, N., Taskara, N., Tribonacci and Tribonacci-Lucas numbers via the de-

terminants of special matrices. Appl. Math. Sci. (Ruse). 8 (37–40): 1947– 1955,

2014.

[51] Zhigang, J., Xuehan, C., and Z. Meixiang, A new method for roots of monic qu-

aternionic quadratic polynomial. Comput. Math. Appl. 58 (9): 1852–1858, 2009.

65



ÖZGEÇMİŞ
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Doğum Tarihi/Yeri : 31.07.1988 / Ankara

Yabancı Dil : İngilizce
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