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YÜKSEK LİSANS TEZİ
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Doç. Dr. Değer SOFUOĞLU . . . . . . . . . . . . . . . . . . . . . . . . . . .

Başkan
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SİMGELER VE KISALTMALAR

Ri j Ricci tensörü

gi j Metrik tensör

Ti j Enerji-momentum tensörü

R Ricci skaler

Λ Kozmolojik terim

p Basınç

ρ Toplam enerji yoğunluğu

ui 4-lü hız vektörü

xi Sicim yönü

ρp Parçacık yoğunluğu

H Hubble parametresi

θ Genişleme parametresi

σ2 Shear skaleri

GRT Genel Rölativite Teorisi

A,B Metrik potansiyeli

BFP Bouncing Frenleme Parametresi

SFP Sabit Frenleme Paremetresi

pBFP BFP için basınç

pSFP SFP için basınç

ρBFP
BI BFP’nin Bianchi I evren modeli için enerji yoğunluğu

λ SFP
KS SFP’nin Kantowski-Sachs evren modeli için sicim gerilimi

pBFPGRT
BI BFP’nin Bianchi I evren modeli için basıncın Genel Rölativite çözümü

pSFPGRT
BIII SFP’nin Bianchi III evren modeli için basıncın Genel Rölativite çözümü

v



ÖZET

HOMOJEN METRİKLERDE f (R,T ) TEORİ MODELLERİ

Aysel KIZILCIK

Çanakkale Onsekiz Mart Üniversitesi

Fen Bilimleri Enstitüsü

Matematik Anabilim Dalı Yüksek Lisans Tezi

Danışman: Doç. Dr. Can AKTAŞ

17/01/2020, 45

Bu tez çalışmasında Genel Rölativite teorisinin (GRT) modifiye edilmiş şekli olan

f (R,T ) teoride Bianchi I, III ve Kantowski-Sachs evren modelleri için sicim içeren ideal

akışkanı inceledik. Bu amaçla f (R,T ) fonksiyonu için üç öneriden biri olan

f (R,T ) = R+2h(T ) yi kullanarak evren modelleri için çözümleri elde ettik. Son olarak da

f (R,T ) teorisinde elde edilen denklemlerin fiziksel sonuçlarını inceleyerek verdik. Ayrıca

bulduğumuz çözümlerin Genel Rölativite sonuçlarını elde ettik ve yorumladık.

Anahtar sözcükler: f (R,T ) Teori, Genel Rölativite Teorisi, LRS Bianchi I Evren

Modeli, Kantowski-Sachs Evren Modeli, Bianchi III Evren Modeli
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ABSTRACT

f (R,T ) THEORY MODELS IN HOMOGEN METRICS

Aysel KIZILCIK

Çanakkale Onsekiz Mart University

Graduate School of Natural and Applied Sciences

Master of Science Thesis in Department of Mathematics

Advisor: Prof. Dr. Name SURNAME

01/17/2020, 45

In this paper, we have investigated the cloud of string with a perfect fluid (CSPF) matter

distribution for the Bianchi I, III and Kantowski-Sachs space-time models in the f (R,T )

theory which explains the accelerated expansion of the universe. For this purpose, we have

used the function f (R,T ) = R+2h(T ) which is one of the three propositions we have found

for the function f (R,T ). Finally we gave the graphs by examining the physical results of

the equations obtained in f (R,T ) theory. Also, we have obtained General Relativity theory

(GRT) solutions.

Keywords: f (R,T ) Theory, General Relativity Theory, LRS Bianchi I Universe

Model, Kantowski-Sachs Universe Model, Bianchi III Universe Model
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ARAŞTIRMA BULGULARI VE TARTIŞMA................................................................. 11
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4.4.1. SFP için LRS Binachi I Metriğinin Genel Rölativite Çözümleri................ 38
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Şekil 10. SFP için Hubble paremetresinin zamana göre değişimi.................................. 28
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BÖLÜM 1
GİRİŞ

Kozmoloji, evrenin oluşumunu, evrimini ve dinamiğini inceler. Evrenin nasıl

oluştuğu, evrenin geçmişte nasıl bir halde olduğu, gelecekte nasıl olacağı; geometrisinin

neye benzediği, nasıl bir şekilde genişlediği (ya da büzüştüğü), uzay ve zaman kavramı,

kütle çekimi ve bunun gibi sayısız soruya cevap arayan bir bilim dalıdır.

Kozmolojik model matematiksel olarak, evrenin şuanki davranışını ve zaman

içerisindeki değişimini açıklamaya çalışır. Bu matematiksel yapıda ele aldığımız evren

modelleri homojenlik, izotropi, rotasyon ve bu gibi özelliklerin kulanılması ile çeşitlilik

gösterir. Bu homojen modeller izotrop ve anizotrop modeller olmak üzere kendi içinde

ikiye ayrılır (Silk, 1997).

Matematiksel açıdan gravitasyonu en iyi şekilde ifade eden ilk teori Newton’ nun

gravitasyon teorisidir (Özemre, 1982). Klasik kütle çekimi araştıracak olursak Newton’dan

önce Kepler ve Galileo ya kadar gitmemiz gerekir (Serway (1995)). Ancak yeryüzündeki

hareketlerin incelenmesinde, gezegenlerin ve diğer bütün gök cisimlerin yörüngelerini

saptamada, Newton teorisi Kepler ve Galileo’ya göre çok başarılı olmuştur. Bu sebeptendir

ki Newton matematiksel açıdan gravitasyonu en iyi şekilde açıklar. Fakat 19. yüzyıla doğru

Newton’nun yerçekimi teorisi, ışığın gravitasyonel alanda sapması, Merkür’ün enberi

noktasının ilerlemesi gibi birçok konuyu açıklamakta yeterli olamamıştır (Özemre (1982)).

İşte bu gibi benzer konuları açıklamak için modern fizik ortaya çıkmıştır (Serway (1995)).

Modern fizikte en önemli buluşlar rölativite teorisi ve kuantum mekaniği alanlarından

olmuştur. Genel görelilik (rölativite) ise ilk defa Einstein tarafından ileri sürülmüştür

(Serway (1995)).

20. yüzyılın en önemli bilim adamları arasında sayılan Einstein’nın bilim dünyasına

kattığı Brownian hareketi, Foto Elektrik olayı, Özel Rölativite teorisi, GRT, Kütle-enerji

bağıntısı olmak üzere beş önemli makalesi vardır (Einstein, 1915). Bu makalelerin en

önemli olanı, evrenin yapısını ve bu yapıdaki büyük ölçekte gravitasyonel etkileşimleri

tanımlamak ve açıklamak için , 1916 yılında yayınladığı GRT dir (Özemre (1982)). GRT

ışığın gravitasyonel alanda sapması, gezegenlerin perihelinin ilerlemesi ve ışığın kırmızıya

kayması gibi testleri en geçerli kılan teoridir (Özemre (1982)). GRT, evrende madde ile

geometri arasındaki ilişkiyi açıklamaya çalışır. Yani, GRT göre evrendeki madde

geometriyi, geometri de maddeyi etkiler (Einstein (1915), Einstein (1917)).

O yıllarda yaygın olan görüş evrenin durağan olduğudur. Bunu sağlamak için Einstein
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denklemlerine kozmolojik terim eklemiştir (Einstein (1917)). Ancak, Einstein evren için bir

model oluşturmaya başladığında, böyle bir kozmolojik terimin olmaması gerektiğini

düşündü. Daha sonra da bu kozmolojik terimi denklemlerinden çıkartmıştır. Sonraları ise

bu alanda yapılan çalışmalarda, evrenin madde içeriğiden dolayı, genişlemenin

yavaşlayabileceği düşüncesiyle yavaşlama miktarını ölçebilmek için ’frenleme paremetresi’

adı verilen bir nicelik belirlemeye çalışmıştırlar (Friedmann (1922), Sandage (1962)).

Ancak 1929 yılında Edwin Hubble galaksilerden gelen ışığı incelerken, galaksilerin

dünyamıza olan uzaklıkları ile kırmızıya kaymaları arasında bir ilişki buldu (Hubble

(1929)). Hubble yasası olarak bilinen bu teoriye göre, galaksiler bize göre bir görünür hıza

sahiptirler. Buradan da ”Galaksiler arasında bulunan uzaklık artmakta olduğuna göre,

bunların hepsinin geçmiş zamanda bir arada olmaları gerektiği ” çıkarımına ulaşılmıştır

(Hubble (1929)). Bu ulaşılan bilgiler 20. yüzyılın ilk dönemlerinde savunulmaya başlanan

büyük patlama teorisini desteklemektedir (Hubble (1929)).

1929 yılında Hubble’ın evrenin genişlediğini gözlemlerle kanıtlamasından sonra, GRT

bir anlamda yanılgıya düşmüştür. Einstein evren modeli denen ilk evren modelini; 1917 de

Sitter’in kozmolojik terimli, 1922’de Friedmann’ın kozmolojik terimsiz, 1927’de Eddington

ve Lemaitre’nin kozmolojik terimli evren modelleri izlemiştir (Silk (1997)). Bütün bu evren

modelleri, evrenin izotrop ve homojenliğine dayandırılarak açıklanmıştır (Silk (1997)).

1998 ve 1999 yıllarında Riess ve Perlmutter’in ((Riess ve diğerleri (1998)),

Perlmutter ve diğerleri (1999)) yaptıkları çalışmalar evrenin ivmelenerek genişlediğini

göstermektedir. 1998-1999 daki bu çalışmaları yapan bilim insanları 2011 yılında Nobel

Fizik ödülü almışlardır.

Yaşadığımız evrenin tamamını kaplayan, tespit edilemeyen ve dolaylı yollar ile bir

şekilde varlığı anlaşılan, görünmeyen enerjiye karanlık enerji adı verilir. Evrenin

genişlemesine ve ivmelenmesine evrenin %73 ünü oluşturan karanlık enerjinin ve %23 ünü

oluşturan karanlık maddenin neden olabileceği görüşü kabul görmektedir.

Ancak GRT evrenle ilgili birçok olayı açıklarken karanlık madde ve karanlık enerjiyi

açıklamakta yetersiz kalmaktadır (Weinberg (1972)). Bu nedenle birçok bilim insanı

Einstein’nın öne sürdüğü GRT ye bazı eklemeler yaparak modifiye bazı yeni teoriler de ileri

sürerek, evrenin ivmelenmesini ve genişlemesini açıklamaya çalışmışlardır. Bu modifiye

teoriler Einstein’ın denklemlerine bazı vektörel, skaler, tensörel ilave terimler ekleyerek

elde edilmiştir. Bu teoriler; Lyra teori, Creation Field, Self Creation, f (R) teori, f (R,T )

teori vb dir. Bu teorilerden bazıları Eisntein alan denklemlerinin madde kısmına ekleme

yapan Creation Field (Hoyle ve Narlikar (1966)), Self Creation (Barber (1982)) vb iken

bazıları ise geometri kısmına ekleme yapan Lyra teori, f (R) (Buchdahl (1970)) vb dir.
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Ancak 2011 yılında Harko ve Ark. (Harko, Lobo, Nojiri, ve Odintsov (2011)) tarafından

önerilen f (R,T ) teori hem madde hem de geometri kısmına modifikasyon önermiştir. Bu

nedenle f (R,T ) teori son yıllarda birçok bilim insanı tarafından ilgi görmüş ve çalışılmıştır.

Evrenin bu yapısı bütün çağlar boyunca merak konusu olmuş ve hala günümüzde de

olmaya devam etmektedir. Evrenin başlangıcının nasıl olduğu, sonunun nasıl olacağı henüz

bir netlik kazanmamış ve şuan hala bu konu üzerinde çalışılmaktadır.

Bizim de bu çalışmayı yapmaktaki amacımız, evrenin ivmelenerek genişlemesini

açıklamaya çalışan f (R,T ) teoride, sicim içeren ideal akışkanın homojen anizotropik LRS

Bianchi I, Kantowski-Sachs ve Bianchi III tipi metriklerdeki davranışını inceleyip bir evren

modeli oluşturmaktır.

Bunun için, Harko ve ark. nın (Harko ve diğerleri, 2011) yayınladıkları makalede

f (R,T ) fonksiyonu için üç öneriden biri olan f (R,T ) = R+2h(T ) fonksiyonunu ele alarak

evren modellerini inceledik. Evren modellerini oluştururken elde ettiğimiz denklemlerimizi

çözebilmek için ilave denklem olarak shear skaleri ile genişleme skaleri arasındaki bağıntıyı

(durum denklemi ) ve Bouncing frenleme parametresi (BFP) ile sabit frenleme parametresini

(SFP) kullandık. Son olarak ise bulunan çözümlerin fiziksel yorumunu yapıp, µ = 0 için

Genel Rölativite sonuçlarını elde ettik.

Kısaca özetlersek, çalışmanın ikinci bölümünde bu alanda yapılan önceki çalışmalara

yer verildi. Üçüncü bölümünde kullanılan materyel ve yöntemlerden bahsedip f (R,T )

denklemlerine yer vererek, kullandığımız kinematik niceliklerin en genel hallerinden

bahsettik. Dördüncü bölümünde ise araştırma bulgularımıza yer verdik. Yani bulduğumuz

alan denklemlerine, bu alan denklemlerini çözebilmek için gerekli olan ilave denklemlere

yer verip, LRS Bianchi I, Kantowski-Sachs ve Bianchi III metriklerinde sicim içeren ideal

akışkanı, f (R,T ) teori çerçevesinde BFP ve SFP yi kullanarak sonuçlarımızı elde ettik. Bu

bölümde son olarakta bulunan sonuçlarımızın grafik çizimlerini yaptık. Beşinci bölümünde

ise LRS Bianchi I, Kantowski-Sachs ve Bianchi III metrikleri için bulunan sonuçların

yorumlamalarına değinerek, bulunan sonuçların µ = 0 alarak GRT deki çözümlerine yer

verdik.
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BÖLÜM 2
ÖNCEKİ ÇALIŞMALAR

f (R,T ) teori, ilk olarak Harko ve ark. (Harko ve diğerleri (2011)) tarafından ortaya

atılmış bir alternatif gravitasyon teorisidir. Harko ve arkadaşlarının çalışmasından sonra bu

konu, değişik uzay zaman metrikleri için çalışılmıştır.

Sharif ve Zubair f (R,T ) gravitasyon teorisinde homojen ve anizotropik Bianchi tip I

evren modelinde ideal akışkanın davranışını incelemişlerdir (Sharif ve Zubair (2012)).

Farasat, Jhangeer ve Bhatti sabit frenleme parametresini kullanarak Bianchi I ve V evren

modelleri için çözümlerini elde etmişlerdir (Farasat S., Jhangeer, ve Bhatti (2012)).

Pradhan, Amirhaschi ve Zainuddin f (R,T ) teori ve kozmik genişleme ile ilgili 2011 yılında

bir çalışma yapmışlardır (Pradhan, Amirhashchi, ve Zainuddin (2011)). Sharif ve Zubair

f (R,T ) teoride homojen ve anizotropik Bianchi tip I evren modelini, ideal akışkan ve skaler

alan içeren madde dağılımı incelemişlerdir (Sharif ve Zubair (2012)). Shamir ve Bhatti ise

LRS Bianchi tip evren modeli için f (R,T ) teoriyi araştırmışlardır (Shamir ve Bhatti

(2012)). Myrzakulov ise f (R,T ) teorinin geometrisini inceleyerek, modelin geometrik

açıdan çeşitli metrikler ve madde dağılımlarını araştırmıştır (Myrzakulov (2012)). Rao ve

Neelima f (R,T ) teoriyi ideal akışkan çerçevesinde araştırmışlardır (Rao ve Neelima

(2013)). Reddy, Anitha ve Umadevi, Kantowski-Sachs evren modelinde bulk viskoz

akışkan içeren madde dağılımını f (R,T ) teori çerçevesinde incelemişlerdir (Reddy, Anitha,

ve Umadevi (2014)). Santos ve Ferst, Gödel tipi evren modelini f (R,T ) teorinin modifiye

edilmiş varyasyonlarını kullanarak inceleyip araştırma yapmışlardır (Santos ve Ferst

(2015)). Zubair ve Ali Hassan (2016), f (R,T ) teorisinin killing vektör alanına uyumunu

araştırmıştır. Singh, Bishi ve Sahoo f (R,T ) gravitasyon teorisinde skaler alan ve

kozmolojik sabitin davranışını f (R,T ) = R + 2 f (T ) koşulunda, homojen ve anizotropik

Bianchi tip-I evren modelinde araştırmışlardır. (Singh, Bishi, ve Sahoo (2016)). Zubair ve

çalışma arkadaşları çeşitli f (R,T ) teori modellerini alarak farklı çözümler bulmuşlardır

(Zubair, Sardar, Rahaman, ve Abbas (2016)). Sofuoğlu f (R,T ) gravitasyon teorisinde

Bianchi IX evren modelini ideal akışkan madde dağılımı için incelemiştir (Sofuoğlu

(2016)). Aktaş ve Aygün FRW evreni için manyetize acayip kuark madde çözümlerini

f (R,T ) teoride incelemişlerdir (Aktas, ve Aygün (2017)). Aygün ve ark. Marder metriğinde

kozmolojik sabitli acayip kuark madde çözümlerini f (R,T ) çerçevesinde araştırmışlardır

(Aygün, Aktas, ve Yılmaz (2016)). Solanke ve Karade f (R,T ) teoriyi f (R,T ) = R+λ f (T )

genel durumuna göre incelemişlerdir. (Solanke ve Karade (2017)). Sahoo ve Reddy,

Bianchi-I evreninde f (R,T ) teoriyi f (R,T ) = R + 2 f (T ) için bulk viscous çerçevesinde
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araştırmışlardır (Sahoo ve Reddy (2018)). Yadav ve Ali f (R,T ) gravitasyon teorisinin

f (R,T ) = R+ 2 f (T ) koşulunda Bianchi I evren modeli için çözümlerini elde etmişlerdir.

(Yadav ve Ali (2018)).
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BÖLÜM 3
MATERYAL VE YÖNTEM

Einstein alan denklemleri, evrendeki madde dağılımıyla uzay-zaman geometrisi

arasındaki ilişkiyi tanımlar. Einstein alan denklemlerinin sol tarafı uzay-zaman

geometrisiyle, sağ tarafı ise madde dağılımıyla ilgilidir. Einstein, alan denklemlerini ifade

ederken tensörleri kullanmıştır. Çünkü tensörler herhangi bir koordinat dönüşümü altında

değişmeden kalan geometrik yapılardır.

Gravitasyonel etkileşmeri ve büyük ölçekte evrenin yapısını açıklayan Einstein alan

denklemlerinin tensörel formdaki ifadesi (Harko ve diğerleri (2011));

Ri j−
1
2

Rgi j +Λgi j =−χTi j

şeklindenir. Bu denklemler 1916 yılında Albert Einstein tarafından yayınlanmıştır.

Burada Ri j Ricci tensörü, gi j metrik tensör, Ti j enerji-momentum tensörü, R Ricci skaleri, Λ

kozmolojik terim olup χ = 8πG
c4 dir. Burada c ışık hızı, G ise gravitasyon sabitidir.

3.1. f (R,T ) Denklemleri

f (R,T ) gravitasyon teorisindeki etki fonksiyonu

S =
1

16π

∫ ( f (R,T )
G

+Lm

)√
−gd4x (3.1)

şeklindedir. Burada R Ricci skaleri, T enerji momentum tensörünün izi, g gi j (metrik

tensörün) nin determinantı olup f (R,T ) ise R ve T nin keyfi fonksiyonlarıdır. Ayrıca Lm

maddenin Lagrangianı ve maddenin basınç-enerji tensörü şöyle tanımlanır(Harko ve

diğerleri (2011));

Ti j =−
2√
−g

δ (
√
−gLm)

δgi j

Maddenin Lagrangianı Lm nin sadece metrik tensör bileşenlerine yani gi j ye bağlı

olup ve türevlerine bağlı olmadığını varsayarsak aşağıdaki şekilde elde edilir (Harko ve

diğerleri (2011));

Ti j = gi jLm−
2δLm

δgi j
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(3.1) denkleminin varyasyonundan aşağıdaki denklemini elde ederiz;

fR(R,T )Ri j−
1
2

f (R,T )gi j +
(
gi j�−∇i∇ j

)
fR(R,T ) = 8πTi j− fT (R,T )Ti j

− fT (R,T )Ξi j +Λgi j (3.2)

Burada fR(R,T ) = ∂ f (R,T )
∂R ve fT (R,T ) = ∂ f (R,T )

∂T olup sırasıyla f (R,T )

fonksiyonunun R ve T ye göre türevlerini göstermektedir (Harko ve diğerleri, 2011). Ayrıca

∇i kovaryant türev olup �= ∇i∇
i dir. Ξi j ise aşağıdaki şekilde tanımlıdır.

Ξi j =−2Ti j +gi jLm−2gαβ ∂ 2Lm

∂gαβ gi j
(3.3)

(3.3) denkleminin kontraksiyonu alınırsa

fR(R,T )R+3� fR(R,T )−2 f (R,T ) = 8πT − fT (R,T )T − fT (R,T )Ξ+4Λ (3.4)

şeklini alır (Harko ve diğerleri (2011)). Burada Ξ = gαβ Ξαβ değerine sahiptir. (3.2)

ve (3.4) denklemlerinden f (R,T ) teorideki alan denklemlerini aşağıdaki gibi elde ederiz

(Harko ve diğerleri (2011)).

fR(R,T )(Ri j−
Rgi j

3
)+

f (R,T )gi j

6
= 8π

(
Ti j−

T gi j

3

)
− fT (R,T )(Ti j−

T gi j

3
)− fT (R,T )(Ξi j−

Ξgi j

3
)+∇i∇ j fR(R,T )+Λgi j (3.5)

Denklem (3.3) den aşağıdaki denklem elde edilir

Ξi j =−2Ti j− pgi j (3.6)

Harko ve diğerleri (2011) yayınladıkları makalede f (R,T ) fonksiyonu için üç öneride

bulunmuşlardır. Bunlar;
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f (R,T ) =


R+2h(T )

f1(R)+ f2(R)

f1(R)+ f2(R) f3(T )

şeklindedir. Buradaki f (R,T ) = f1(R) + f2(R) f3(T ) şeklindeki seçim, f (R,T )

fonksiyonunun olası tüm durumlarına karşılık gelmektedir. Eğer f (R,T ) = R alınırsa,

f (R,T ) teori GRT’ ye dönüşür.

3.2. Kinematik Nicelikler

Genişleme skaleri olan θ

θ = ui
;i = gi jui; j (3.7)

şeklinde tanımlıdır (Misner, Thorne, ve Wheeler (2017)). Burada ui komoving hızları,

ui
;i ise kovaryant türevleri gösterir ve bunlar aşağıdaki şekilde tanımlanır;

ui =

(
0,0,0,

1√
−g44

)
=

δ i
4√
−g44

(3.8)

ve aralarında uiui = gi juiu j = gi juiu j = −1 şeklinde bağıntı vardır (Misner ve

diğerleri (2017)). Kovaryant ve kontravaryant 1. ranktan bir tensörün kovaryant türevi

ui
;k =

∂ui

∂xk +Γ
i
klu

l, ui;k =
∂ui

∂xk −Γ
l
ikul (3.9)

şeklindedir (Misner ve diğerleri (2017)). Shear skaleri olan σ2 ise;

σ
2 =

1
2

σi j σ
i j =

1
3

(
∑

i
H2

i −∑
i 6= j

HiH j

)
(3.10)

şeklinde tanımlıdır (Misner ve diğerleri (2017)). Burada σi j shear tensörünü gösterir

ve bu şağıdaki şekildedir;

σik =
1
2

µi j−
1
3

θ hi j (3.11)

ve σi j = σ ji, σ i
i = gi jσi j = 0 ve σ i j = gilg jmσlm eşitlikleri sağlanır (Misner ve

diğerleri (2017)).

8



µi j = ui; j + u j;i + u̇i u j + u̇ j ui ivmeyi ( u̇i = ui; ju j) ve hi j = gi j + uiu j izdüşüm

tensörünü göstermektedir (Misner ve diğerleri (2017)).

Ayrıca ölçek çarpanı a3 ise;

a3 =

√
3

∏
i=1

(−gii) (3.12)

şeklindedir. Hubble parametresi olan (H) ise;

H =
1
3

3

∑
i=1

Hi =
ȧ
a

(3.13)

şeklinde olup burada Hi =
1
√

gii

∂
√

gii

∂ t
dir (Misner ve diğerleri (2017)).

Frenleme parametresi olan q ise;

q =
d
dt

(
1
H

)
−1 (3.14)

şeklinde tanımlıdır (Misner ve diğerleri (2017)). Modelin enerji momentum tensörü

ideal akışkana sahip sicim bulutu (cloud of string with a perfect fluid) (Amirhashchi,

Zainuddin, Hassan, ve Kamari (2010));

Ti j = (ρ + p)uiu j− pgi j−λxix j (3.15)

şeklindedir. Burada p basınç, ρ toplam enerji yoğunluğu, λ sicim gerilimi, ui 4-lü hız

vektörü, xi ise sicim yönünü gösterir. Ayrıca xixi = −uiui = −1 ve xiui = 0 koşullarını

sağlar (Pradhan ve diğerleri (2011)). Buradaki sicim yönü radyal yönde alınmıştır. Eğer

parçacık yoğunluğu ρp ile gösterilirse (Raj, Umesh, ve Anirudh (2007))

ρ = ρp +λ

olur ve (Zubair ve diğerleri (2016))

p = wρ (3.16)
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şeklinde bir bağıntı vardır. Bu bağıntıya durum denklemi adı verilir. Burada w sabit

olup 0 ≤ w ≤ 1 değer aralığındadır. Küresel koordinatlarda homojen ve anizotropik LRS

Bianchi I, Kantowski-Sachs ve Bianchi III metriğinin genel formu (Zubair ve Ali Hassan

(2016));

ds2 =−A2(t)dr2−B2(t)
(
dη

2 +K(η)2dφ
2)+d(t)2 (3.17)

şeklindedir. Burada A, B, C metrik potansiyelleri kozmik zaman t’nin

fonksiyonlarıdır. Eğer burada;

• K(η) = η alırsak LRS Bianchi I

• K(η) = sin(η) alırsak Kantowski-Sachs

• K(η) = sinh(η) alırsak Bianchi III

metriklerini elde ederiz.
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BÖLÜM 4
ARAŞTIRMA BULGULARI VE TARTIŞMA

Harko ve diğerleri (2011) yaptığı çalışmada üç farklı f (R,T ) fonskiyonu önermiştir.

Biz de bu çalışmada f (R,T ) = R + 2h(T ) fonksiyonunu alarak evren modellerini

inceleyeceğiz. Buradaki h(T ) fonksyionunu da h(T ) = µT olarak seçebiliriz. Burada µ bir

sabittir. Eğer µ = 0 alınırsa f (R,T ) teoriden GRT ye dönüşür. f (R,T ) = R + 2µT

fonksiyonundaki ilk terim Genel Rölativitenin Einstein Hilbert etkisini ifade eder, ikinci

terim ise madde dağılımı ve uzayın eğriliği arasındaki etkileşimi ifade eder (Harko ve

diğerleri, 2011).

f (R,T ) = R + 2h(T ) seçilmesiyle, f (R,T ) teoride kozmolojik terimli (Λ) alan

denklemleri (Harko ve diğerleri (2011));

Ri j−
1
2

gi jR = [8π +2h′(T )]Ti j +[2ph′(T )+h(T )+Λ]gi j (4.1)

şeklindedir. Burada h′ = dh
dT olup h(T ) = µT olarak seçersek (µ sabit olmak üzere)

(4.1) denklemi (Harko ve diğerleri, 2011)

Ri j−
1
2

gi jR = 2[4π +µ]Ti j +[2pµ +µT +Λ]gi j (4.2)

şeklini alır. (3.5), (3.15) ve (3.17) denklemlerinden f (R,T ) teorideki alan denklemleri

aşağıdaki gibidir;

2B̈
B

+
Ḃ
B2 −

δ

B2 = 8λπ−8pπ +3λ µ−3pµ +ρµ +Λ (4.3)

B̈
B
+

Ä
A
+

ȦḂ
AB

=−8pπ +λ µ−3pµ +ρµ +Λ (4.4)

Ḃ2

B2 +
2ȦḂ
AB
− δ

B2 = 8ρπ +3ρµ− pµ +λ µ +Λ (4.5)

Burada, nokta t’ ye göre türevi, üssü işareti de η’ ya göre türevi göstermektedir.

Ayrıca δ = K′′
K olup η nın aldığı değerlere göre δ

δ =
K′′

K
=


0 LRS Bianchi I

−1 Kantowski-Sachs

1 Bianchi III

(4.6)
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şeklinde olmaktadır. (4.1) metriği için kinematik nicelikler olan kovaryant shear

tensörünün bileşenleri (3.11) denkleminden

σxx =−
2A
3

(
Ȧ− AḂ

B

)
(4.7)

σyy =−
B
3

(
Ḃ− BȦ

A

)
(4.8)

σzz =−
BK2

3

(
Ḃ− BȦ

A

)
(4.9)

şeklindedir. Aynı metrik için kontravaryant shear tensörünün bileşenleri ise

σ
xx =− 2

3A2

(
Ȧ
A
− Ḃ

B

)
(4.10)

σ
yy =

1
3B2

(
Ȧ
A
− Ḃ

B

)
(4.11)

σ
zz =

1
3B2K2

(
Ȧ
A
− Ḃ

B

)
(4.12)

şeklinde olup, (3.7), (3.10), (3.12) ve (3.13) denklemlerinden genişleme skaleri (θ ),

shear skaleri (σ2), ölçek çarpanı (a3) ve Hubble paremetresi (H) aşağıdaki şekildedir

(Zubair ve Ali Hassan (2016)).

σ
2 =

1
3

(
Ȧ
A
− Ḃ

B

)2

(4.13)

θ =
Ȧ
A
+

2Ḃ
B

(4.14)

a3 = AB2 (4.15)

H =
1
3

(
Ȧ
A
+

2Ḃ
B

)
(4.16)

Ricci skaleri ve enerji momentum tensörünün izi ise

R =−2
(

2B̈
B

+
Ä
A
+

Ḃ2

B
+

2ȦḂ
AB
− δ

B2

)
(4.17)
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T = ρ−3p+λ (4.18)

şeklindedir.

(4.3)-(4.5) denklemlerinden görüleceği gibi denklem sistemi 6 bilinmeyenli (A,B,ρ ,

p, λ , Λ), 3 denklemden oluşur. Bu denklem sistemini çözebilmek için 3 ilave denkleme

daha ihtiyaç vardır. İlave denklem olarak aşağıdaki denklemleri alabiliriz.

• İlave denklem olarak öncelikle, durum denklemini kullanabiliriz. Verilen maddenin

basıncının enerji yoğunluğuna oranı durum denklemi (p = wρ) olarak adlandırılır.

(4.3)-(4.5) ve durum denklemini kullanarak enerji yoğunluğu,

ρ = 1
2B2(4π+µ)(w+1)

[
−B2Ä−ABB̈+AḂ2+BȦḂ

A −δ

]
(4.19)

sicim gerilimi ise şeklinde olup

λ = 1
2B2(4π+µ)

[
−B2Ä+ABB̈+AḂ2−BȦḂ

A −δ

]
(4.20)

ve kozmolojik terim de aşağıdaki şekilde elde edilir.

Λ = 1
(4π+µ)(w+1)

[
(−µw+4π+µ)B̈

B + (2π+µ)2Ä
A + ((w−1)µ+4πw)Ḃ2

B2

+ (8πw+3µw+4π+µ)ȦḂ
AB − (4πw+µw−µ)δ

B2

] (4.21)

• İkinci olarak ise shear skaleri ile genişleme skaleri arasındaki bağıntıyı kullanabiliriz.

Shear skalerinin genişleme skaleri ile orantılı(σ ∝ θ ) olduğunu kabul edersek, σ

θ
= ξ

yazabiliriz. Burada ξ bir sabittir. Eğer ξ = 0 ise evrenin izotrop olduğunu gösterir.

Bu bağıntıyı kullanırsak,

σ

θ
=

1√
3

(
Ȧ
A −

Ḃ
B

)
Ȧ
A + 2Ḃ

B

= ξ (4.22)

yazılabilir. Eğer denklem (4.22) çözülürse iki metrik potansiyeli arasında

A = c1Bn (4.23)
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şeklinde bir bağıntı elde edilir. Burada n =
√

3−6ξ√
3+3ξ

veya n =
√

3+6ξ√
3−3ξ

dır.

• Son olarakta, evrenin ivemelenip ivmelenmediğini gösteren önemli parametrelerden

biri olan frenleme parametresini ilave denklem olarak alalım. Frenleme parametresi

önceleri sabit formda alınırken son yıllarda yapılan çalışmarda zamana bağlı olarak

alınmaktadır. Bunun nedeni evrenin ivmelenmesinin zamana bağlı olarak değiştiğinin

gözlemlenmesidir. Bu nedenle biz bu çalışmada frenleme parametresini hem zamana

bağlı (BFP) hem de sabit formda (SFP) alarak iki farklı evren modeli elde ettik.

4.1. Bouncing Frenleme Parametresi (BFP) İçin Çözümler

Öncelikle zamanın karesi ile ters orantılı olarak değişen frenleme paremetresini

kullanarak çözümleri araştıralım. Abdussattar ve Prajapati (2011) tarafından önerilen

zamanın karesi ile ters orantılı olarak değişen frenleme paremetresi (BFP)

q =
d
dt

(
1
H

)
−1 =−α

t2 +β −1 (4.24)

şeklindedir. Burada α ve β sabitlerdir. Eğer q > 0 ise yavaşlayan genişleme, q < 0 ise

ivmelenen genişleme vardır (Abdussattar ve Prajapati, 2011). q = 0 yapan değere t-transit

değeri denir ve ttr şeklinde gösterilir. Ele aldığımız frenleme paremetresi için ttr =
√

α√
β−1

dir (Abdussattar ve Prajapati, 2011). Burada ttr değeri pozitif olacağından, α > 0 ve β > 1

olmalıdır. Yavaşlayan bir genişleme (q > 0) olması için α < t2(β − 1) ve β > 1 olmalı,

ivmelenen genişleme (q < 0) olması içinse α > t2(β − 1) ve β > 1 olmalıdır (Abdussattar

ve Prajapati, 2011).
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Şekil 1. BFP için frenleme paremetresinin zamana göre değişimi

Yukarıdaki şekilde frenleme paremetresinin zamana göre değişiminin grafiği

verilmiştir. Bu grafik ve bu bölümdeki diğer grafikler çizilirken α = 1.3, β = 1.01, c1 = 1,

c3 = 3, w = 2
3 , n = 4 ve µ =−6π nonktalardaki değerler kullanılmıştır.

(4.24) denkleminin çözümünden Hubble parametresi aşağıdaki gibi elde edilir

(Abdussattar ve Prajapati, 2011);

H =
t

β t2 + c2t +α
(4.25)

(3.13) ve (4.25) denklemlerinden ölçek çarpanı

lna =
∫ t

β (t2 + c2t
β
+ α

β
)
dt (4.26)

şeklinde elde edilir . Bu integralin çözebilmek için c2 = 2
√

αβ , c2 6= 2
√

αβ , c2 = 0

gibi üç farklı durumda incelemek mümkündür (Abdussattar ve Prajapati (2011)).

• Eğer c2 = 2
√

αβ ise bu durumda ölçek çarpanı

a =

(
t +
√

α

β

) 1
β

e

( √
α

β (
√

β t+
√

α)

)
(4.27)

• Eğer c2 6= 2
√

αβ ise bu durumda ölçek çarpanı
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a =

(
t2 +

c2

β
+

α

β

) 1
2β

2β t + c2 +
√

c2
2−4αβ

2β t + c2−
√

c2
2−4αβ


c2

2β

√
c2
2−4αβ

(4.28)

• Eğer c2 = 0 ise bu durumda ölçek çarpanı

a =

(
t2 +

α

β

) 1
2β

(4.29)

şeklinde elde edilir (Abdussattar ve Prajapati (2011)).

(4.27)- (4.29) denklemlerinden görüleceği gibi t = 0 da a = a0 6= 0 dır. Fakat t = 0 da ȧ = 0

ve ä = a0
α

= sabit dir (Abdussattar ve Prajapati (2011)). Bu durum, her üç durumda da

modellerin başlangıç tekilliğine sahip olmadığını ve sonlu bir ivmeyle başladığını gösterir.

Şekil 2. BFP için ölçek çarpanının zamana göre değişimi

Biz bu çalışmada c2 = 0 durumunu ele alalım. Bu durumda Hubble paremetresi

H =
t

β t2 +α
(4.30)

şeklini alır.
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Şekil 3. BFP için Hubble paremetresinin zamana göre değişimi

(4.23) denkleminden A metrik potansiyeli

A = c1cn
3(β t2 +α)

3n
2β (n+2) (4.31)

şeklindedir. (4.15), (4.23) ve (4.29) denklemlerinden metrik potansiyeli B aşağıdaki

şekli alır.

B = c3(β t2 +α)
3

2β (n+2) (4.32)

Burada c3 =
1(

c1β

1
2β

) 3
n+2

dir.
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Şekil 4. BFP için A metrik potansiyelinin zamana göre değişimi

Şekil 5. BFS için B metrik potansiyelinin zamana göre değişimi

(4.31) ve (4.32) denklemleri (4.19)-(4.21) deklemlerinde yerine yazılırsa basınç,

enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu ise aşağıdaki şekilde elde edilir;

pBFP = w
2(4π+µ)(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2 − δ

c2
3(β t2+α)

3
(n+2)β

]
(4.33)

ρBFP = 1
2(4π+µ)(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2 − δ

c2
3(β t2+α)

3
(n+2)β

]
(4.34)
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λBFP = 1
2(4π+µ)

[
3(n−1)(β−3)t2−(3n−2)α

(n+2)(β t2+α)2 − δ

c2
3(β t2+α)

3
(n+2)β

]
(4.35)

ρ pBFP
= 1

2(4π+µ)(w+1)

[
9wn((β−1)n+β−1)+6β (n+2)−18(w+1)

(n+2)2(β t2+α)2 + wδ

c2
3(β t2+α)

3
(n+2)β

]
(4.36)

Kozmolojik terim ise aşağıdaki şekildedir;

ΛBFP = ΛBFP 1
+ΛBFP 2

+ΛBFP 3
(4.37)

şeklinde olup, burada ΛBFP 1
, ΛBFP 2

ve ΛBFP 3
terimleri aşağıdaki şekildedir.

ΛBFP 1
= 6(2π+µ)(α−(β−3)t2)n2

(n+2)2(β t2+α)2(w+1)(4π+µ)
(4.38)

ΛBFP 2
=

3n[(((w−5)β+9w+3)µ+12π(2w−β+1))t2−((w−5)µ−12π)α]
(n+2)2(β t2+α)2(w+1)(4π+µ)

(4.39)

ΛBFP 3
=

6[µ(w−1)(β t2+α)+2π((3w−2β+1)t2−4α)]
(β t2+α)2(w+1)(4π+µ)

+ (µ−µw−4πw)δ

(w+1)c2
3(4π+µ)(β t2+α)

3
(n+2)β

(4.40)

(4.13), (4.15) ve (4.31) denklemlerinden shear skaleri ve genişleme skaleri aşağıdaki

gibi elde edilir.

σ
2 =

3(n−1)2t2

(n+2)2(β t2 +α)2 (4.41)

θ =
3t

β t2 +α
(4.42)

(4.17) ve (4.18) denklemlerinden Ricci skaleri ve enerji momentum tensörünün izi ve

f (R,T ) fonksiyonu aşağıdaki gibi elde edilir.

R = (βn2−3n2+4βn−6n+4β−9)6t2−(n2+4n+4)6α

(n+2)2(β t2+α)2 − 2δ

c3(β t2+α)
3

(n+2)β
(4.43)

T = 1
(w+1)(4π+µ)

[
((3w−3+wβ+β )n2+(β−2βw−3w)2n+3w−4β+3)3t2+(w−1)n23α

(n+2)2(β t2+α)2

+ ((4w−2)n+4w)3α

(n+2)2(β t2+α)2 + (w+1)δ

c3(β t2+α)
3

(n+2)β

] (4.44)
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f (R,T ) = 1
(n+22)(β t+α)2(w+1)(4π+w)

[(
12(β −3)(2π(w+1)+µ)n2

+(8(2β −3)(w+1)π−6µ(2w−β +1))6n

+24(4β −9)(w+1)π +12µ(3w−2β +3)) t2

−12(n+2)α ((2π(w+1)+µ)n+(w+1)4π +µ)]

+ 4δ (2π(w+1)+µw)

(w+1)c32(4π+µ)(β 2+α)
3

(n+2)β

(4.45)

Şimdi zamanın karesi ile ters orantılı olarak değişen frenleme paremetresini (BFP)

kullanarak elde ettiğimiz genel sonuçların LRS Binachi I, Kantowski-Sachs , Bianchi III

metriklerindeki sonuçlarını inceleyelim.

4.1.1. BFP için LRS Bianchi I Çözümleri

Eğer K(η) = η alınırsa LRS Bianchi I metriği için δ = 0 olur. Bu durumda

Maddenin basıncı (p);

pBFP
BI = w

2(4π+µ)(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2

]
(4.46)

şeklindedir. Enerji yoğunluğu (ρ);

ρBFP
BI = 1

2(4π+µ)(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2

]
(4.47)

şeklinde olup, sicim gerilimi (λ ) ise;

λ BFP
BI = 1

2(4π+µ)

[
3(n−1)(β−3)t2−(3n−2)α

(n+2)(β t2+α)2

]
(4.48)

şeklinde olur. Parçaçık yoğunluğu (ρp);

ρ p
BFP

BI = 1
2(4π+µ)(w+1)

[
9wn((β−1)n+β−1)+6β (n+2)−18(w+1)

(n+2)2(β t2+α)2

]
(4.49)

şeklindedir. Kozmolojik terim (Λ) ise;

ΛBFP
BI = ΛBFP

BI
1
+ΛBFP

BI
2
+ΛBFP

BI
3

(4.50)

ΛBFP
BI
1

= 6n2[(2π+µ)(α−(β−3)t2)]
(n+2)2(β t2+α)2(w+1)(4π+µ)

(4.51)
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ΛBFP
BI
2

=
3n[(((w−5)β+9w+3)µ+12π(2w−β+1))t2−((w−5)µ−12π)α]

(n+2)2(β t2+α)2(w+1)(4π+µ)
(4.52)

ΛBFP
BI
3

=
6[µ(w−1)(β t2+α)+2π((3w−2β+1)t2−4α)]

(β t2+α)2(w+1)(4π+µ)
(4.53)

şeklinde elde edilir.

4.1.2. BFP için Kantowski-Sachs Çözümleri

Eğer K(η) = sin(η) alınırsa Kantowski-Sachs metriği için δ =−1 olur. Bu durumda

maddenin basıncı (p);

pBFP
KS = w

2(4π+µ)(w+1)

[
1

c2
3(β t2+α)

3
(n+2)β

+ 3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2

]
(4.54)

şeklinde olur. Enerji yoğunluğu (ρ);

ρBFP
KS = 1

2(4π+µ)(w+1)

[
1

c2
3(β t2+α)

3
(n+2)β

+ 3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2

]
(4.55)

şeklinde olur. Sicim gerilimi (λ );

λ BFP
KS = 1

2(4π+µ)

[
1

c2
3(β t2+α)

3
(n+2)β

+ 3(n−1)(β−3)t2−(3n−2)α
(n+2)(β t2+α)2

]
(4.56)

şeklinde olur. Parçaçık yoğunluğu (ρp);

ρ p
BFP

KS = 1
2(4π+µ)(w+1)

[
−w

c2
3(β t2+α)

3
(n+2)β

+ 9wn((β−1)n+β−1)+6β (n+2)−18(w+1)
(n+2)2(β t2+α)2

]
(4.57)

şeklinde olur. Kozmolojik terim ise;

ΛBFP
KS = ΛBFP

KS
1

+ΛBFP
KS
2

+ΛBFP
KS
3

(4.58)

ΛBFP
KS
1

6(2π+µ)(α−(β−3)t2)n2

(n+2)2(β t2+α)2(w+1)(4π+µ)
(4.59)

ΛBFP
KS
2

=
3n[(((w−5)β+9w+3)µ+12π(2w−β+1))t2−((w−5)µ−12π)α]

(n+2)2(β t2+α)2(w+1)(4π+µ)
(4.60)

ΛBFP
KS
3

=
6[µ(w−1)(β t2+α)+2π((3w−2β+1)t2−4α)]

(β t2+α)2(w+1)(4π+µ)
+ (µw+4πw−µ)

(w+1)c2
3(4π+µ)(β t2+α)

3
(n+2)β

(4.61)
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şeklinde elde edilir.

4.1.3. BFP için Bianchi III Çözümleri

Eğer K(η) = sinh(η) alınırsa Bianchi III metriği için δ = 1 olur. Bu durumda

maddenin basıncı (p);

pBFP
BIII = w

2(4π+µ)(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2 − 1

c2
3(β t2+α)

3
(n+2)β

]
(4.62)

şeklinde olur. Enerji yoğunluğu (ρ);

ρBFP
BIII = 1

2(4π+µ)(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2 − 1

c2
3(β t2+α)

3
(n+2)β

]
(4.63)

şeklinde olur. Sicim gerilimi (λ );

λ BFP
BIII = 1

2(4π+µ)

[
3(n−1)(β−3)t2−(3n−2)α

(n+2)(β t2+α)2 − 1

c2
3(β t2+α)

3
(n+2)β

]
(4.64)

şeklinde olur. Parçaçık yoğunluğu (ρp);

ρ p
BFP

BIII = 1
2(4π+µ)(w+1)

[
9wn((β−1)n+β−1)+6β (n+2)−18(w+1)

(n+2)2(β t2+α)2 + w

c2
3(β t2+α)

3
(n+2)β

]
(4.65)

şeklinde olur. Kozmolojik terim ise;

ΛBFP
BIII = ΛBFP

BIII
1

+ΛBFP
BIII
2

+ΛBFP
BIII
3

(4.66)

ΛBFP
BIII
1

= 6(2π+µ)(α−(β−3)t2)n2

(n+2)2(β t2+α)2(w+1)(4π+µ)
(4.67)

ΛBFP
BIII
2

=
3n[(((w−5)β+9w+3)µ+12π(2w−β+1))t2−((w−5)µ−12π)α]

(n+2)2(β t2+α)2(w+1)(4π+µ)
(4.68)

ΛBFP
BIII
3

=
6[µ(w−1)(β t2+α)+2π((3w−2β+1)t2−4α)]

(β t2+α)2(w+1)(4π+µ)
+ (µ−µw−4πw)

(w+1)c2
3(4π+µ)(β t2+α)

3
(n+2)β

(4.69)

şeklinde elde edilir.
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Şekil 6. BFP için basıncın zamana göre değişimi

Şekil 7. BFP için enerji yoğunluğunun zamana göre değişimi
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Şekil 8. BFP için sicim geriliminin zamana göre değişimi

Şekil 9. BFP için kozmolojik terimin zamana göre değişimi

4.2. BFP için Genel Rölativite Çözümleri

BFP kullanarak elde ettiğimiz çözümlerimizde µ = 0 alarak GRT deki sonuçları

aşağıdaki şekilde elde ederiz;

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu ise aşağıdaki şekilde

elde edilir;

pBFPGRT
= w

8π(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2 − δ

c2
3(β t2+α)

3
(n+2)β

]
(4.70)
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ρBFPGRT
= 1

8π(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2 − δ

c2
3(β t2+α)

3
(n+2)β

]
(4.71)

λBFPGRT
= 1

8π

[
3(n−1)(β−3)t2−(3n−2)α

(n+2)(β t2+α)2 − δ

c2
3(β t2+α)

3
(n+2)β

]
(4.72)

ρ pBFPGRT
= 1

8π(w+1)

[
9wn((β−1)n+β−1)+6β (n+2)−18(w+1)

(n+2)2(β t2+α)2 + wδ

c2
3(β t2+α)

3
(n+2)β

]
(4.73)

Kozmolojik terim ise aşağıdaki şekildedir;

ΛBFPGRT
= ΛBFPGRT 1

+ΛBFPGRT 2
+ΛBFPGRT 4

+ΛBFPGRT 4
(4.74)

ΛBFPGRT 1
= 3n2(α−(β−3)t2)

(n+2)2(β t2+α)2(w+1)
(4.75)

ΛBFPGRT 2
=

9n((2w−β+1)t2+α)
(n+2)2(β t2+α)2(w+1)

(4.76)

ΛBFPGRT 3
=

3((3w−2β+1)t2−4α)
(β t2+α)2(w+1)

(4.77)

ΛBFPGRT 4
= −wδ

(w+1)c2
3(β t2+α)

3
(n+2)β

(4.78)

4.2.1. BFP için LRS Binachi I Metriğinin Genel Rölativite Çözümleri

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu;

pBFPGRT
BI = w

8π(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2

]
(4.79)

ρBFPGRT
BI = 1

8π(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2

]
(4.80)

λ BFPGRT
BI = 1

8π

[
3(n−1)(β−3)t2−(3n−2)α

(n+2)(β t2+α)2

]
(4.81)

ρ pBFPGRT
BI = 1

8π(w+1)

[
9wn((β−1)n+β−1)+6β (n+2)−18(w+1)

(n+2)2(β t2+α)2

]
(4.82)

şeklinde olup kozmolojik terim ise;
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ΛBFPGRT

BI = ΛBFPGRT 1
BI +ΛBFPGRT 2

BI +ΛBFPGRT 3
BI (4.83)

ΛBFPGRT 1
BI =

3n2(α−β t2+3t2)
(n+2)2(β t2+α)2(w+1)

(4.84)

ΛBFPGRT 2
BI =

9n(2wt2−β t2+t2+α)
(n+2)2(β t2+α)2(w+1)

(4.85)

ΛBFPGRT 3
BI =

3(3wt2−2β t2+t2−4α)
(β t2+α)2(w+1)

(4.86)

şeklinde elde edilir.

4.2.2. BFP için Kantowski-Sachs Metriğinin Genel Rölativite Çözümleri

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu;

pBFPGRT
KS = w

8π(w+1)

[
1

c2
3(β t2+α)

3
(n+2)β

+ 3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2

]
(4.87)

ρBFPGRT
KS = 1

8π(w+1)

[
1

c2
3(β t2+α)

3
(n+2)β

+ 3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2

]
(4.88)

λ BFPGRT
KS = 1

8π

[
1

c2
3(β t2+α)

3
(n+2)β

+ 3(n−1)(β−3)t2−(3n−2)α
(n+2)(β t2+α)2

]
(4.89)

ρ pBFPGRT
KS = 1

8π(w+1)

[
−w

c2
3(β t2+α)

3
(n+2)β

+ 9wn((β−1)n+β−1)+6β (n+2)−18(w+1)
(n+2)2(β t2+α)2

]
(4.90)

şeklinde olup kozmolojik terim ise;

ΛBFPGRT

KS = ΛBFPGRT 1
KS +ΛBFPGRT 2

KS +ΛBFPGRT 3
KS +ΛBFPGRT 4

KS (4.91)

ΛBFPGRT 1
KS =

3n2(α−β t2+3t2)
(n+2)2(β t2+α)2(w+1)

(4.92)

ΛBFPGRT 2
KS =

9n(2wt2−β t2+t2+α)
(n+2)2(β t2+α)2(w+1)

(4.93)

ΛBFPGRT 3
KS =

3(3wt2−2β t2+t2−4α)
(β t2+α)2(w+1)

(4.94)
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ΛBFPGRT 4
KS = w

(w+1)c2
3(β t2+α)

3
(n+2)β

(4.95)

şeklinde elde edilir.

4.2.3. BFP için Bianchi III Metriğinin Genel Rölativite Çözümleri

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu;

pBFPGRT
BIII = w

8π(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2 − 1

c2
3(β t2+α)

3
(n+2)β

]
(4.96)

ρBFPGRT
BIII = 1

8π(w+1)

[
3(β t2−α)(n2+3n+2)−9n(n−1)t2

(n+2)2(β t2+α)2 − 1

c2
3(β t2+α)

3
(n+2)β

]
(4.97)

λ BFPGRT
BIII = 1

8π

[
3(n−1)(β−3)t2−(3n−2)α

(n+2)(β t2+α)2 − 1

c2
3(β t2+α)

3
(n+2)β

]
(4.98)

ρBFPGRT
BIII = 1

8π(w+1)

[
9wn((β−1)n+β−1)+6β (n+2)−18(w+1)

(n+2)2(β t2+α)2 + w

c2
3(β t2+α)

3
(n+2)β

]
(4.99)

şeklinde olup kozmolojik terim ise;

ΛBFPGRT

BIII = ΛBFPGRT 1
BIII +ΛBFPGRT 2

BIII +ΛBFPGRT 3
BIII +ΛBFPGRT 4

BIII (4.100)

ΛBFPGRT 1
BIII =

3n2(α−β t2+3t2)
(n+2)2(β t2+α)2(w+1)

(4.101)

ΛBFPGRT 2
BIII =

9n(2wt2−β t2+t2+α)
(n+2)2(β t2+α)2(w+1)

(4.102)

ΛBFPGRT 3
BIII =

3(3wt2−2β t2+t2−4α)
(β t2+α)2(w+1)

(4.103)

ΛBFPGRT 4
BIII = −w

(w+1)c2
3(β t2+α)

3
(n+2)β

(4.104)

şeklinde elde edilir.
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4.3. Sabit Frenleme Parametresi (SFP) için Çözümler

Sabit frenleme paremetresini

q =
d
dt

(
1
H

)
−1 = m−1 (4.105)

olarak alalım (Berman (1983)). Burada m sabittir.

Eğer (4.105) denklemini çözersek Hubble parametresi aşağıdaki gibi elde edilir;

H =
1

mt + c4
(4.106)

Şekil 10. SFP için Hubble paremetresinin zamana göre değişimi

Yukarıdaki şekilde frenleme paremetresinin zamana göre değişiminin grafiği

verilmiştir. Bu grafik ve bu bölümdeki diğer grafikler çizilirken α = 1, c4 = 1.2, c5 = 1,

w = 2
3 , n = 4, m = 0.27 ve µ =−6π nonktalardaki değerler kullanıldı.

(3.13) ve (4.106) denklemlerinden ölçek çarpanı

a = c1
1
3 c5

n+2
3 (mt + c4)

1
m (4.107)

şeklinde bulunur.
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Şekil 11. SFP için ölçek çarpanının zamana göre değişimi

SFP için metrik potansiyelleri aşağıdaki gibi elde edilir.

A = c1cn
5(mt + c4)

3n
(n+2)m (4.108)

B = c5(mt + c4)
3

(n+2)m (4.109)

Şekil 12. SFP için A metrik potansiyelinin zamana göre değişimi
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Şekil 13. SFP için B metrik potansiyelinin zamana göre değişimi

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu ise aşağıdaki şekilde

elde edilir;

pSFP = w
2(w+1)(4π+µ)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 − δ

c2
5(mt+c4)

6
(n+2)m

]
(4.110)

ρSFP = 1
2(w+1)(4π+µ)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 − δ

c2
5(mt+c4)

6
(n+2)m

]
(4.111)

λSFP = 1
2(4π+µ)

[
3(m−3)(n−1)
(n+2)(mt+c4)2 − δ

c2
5(mt+c4)

6
(n+2)m

]
(4.112)

ρ pSFP
= 1

2(w+1)(4π+µ)

[
3(n−1)((3−m)w(n+2)+6)+6m(n+1)

(n+2)2(mt+c4)2 + wδ

c2
5(mt+c4)

6
(n+2)m

]
(4.113)

Kozmolojik terim ise;

ΛSFP = ΛSFP 1
+ΛSFP 2

+ΛSFP 3
+ΛSFP 4

(4.114)

şeklinde olup, burada ΛSFP 1
, ΛSFP 2

, ΛSFP 3
ve ΛSFP 4

terimleri aşağıdaki şekildedir.
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ΛSFP 1
= 6n2(3−m)(12π+µ)

(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.115)

ΛSFP 2
= 36πn(2w−m+1)+3µn(wm−5m+9w+3)

(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.116)

ΛSFP 3
= 6(2π(−2m+3w+3)+mµ(w−1))

(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.117)

ΛSFP 4
= (µ−wµ−4πw)δ

c2
5(w+1)(4π+µ)(mt+c4)

6
(n+2)m

(4.118)

(4.13) ,(4.15) ve (4.108) denklemlerinden shear skaleri ve genişleme skaleri aşağıdaki

gibi elde edilir.

σ
2 =

3(n−1)2

(n+2)(mt + c4)2 (4.119)

θ =
3

mt + c4
(4.120)

(4.17) ve (4.18) denklemlerinden Ricci skaleri ve enerji momentum tensörünün izi ve

f (R,T ) fonksiyonu aşağıdaki şekilde bulunur.

R = (6m−18)n2+(24m−36)n+24m−54
(mt+c4)2(n+2)2 + 2δ

c2
5(mt+c4)

6
(n+2)m

(4.121)

T = 1
(w+1)(4π+µ)

[
(1−w)(m−3)3n2+((−2m−3)w+m)6n+(3−4m)3w+9

(mt+c4)2(n+2)2

+ (w−1)δ

c5
2(mt+c4)

6
(n+2)m

]
(4.122)

f (R,T ) = 1
(w+1)(4π+µ)

[
12(m−3)(2π(w+1)+µ)n2+(48(2m−3)(w+1π+36µ(m−2w−1)))n

(mt+c4)2(n+2)2

+24(w+1)(4m−9)π+12(2m−3w−3)
(mt+c4)2(n+2)2

+3δ (2π(w+1)+wµ)

c5
2(mt+c4)

6
(n+2)m

] (4.123)

SFP kullanarak elde edilen genel sonuçları LRS Binachi I, Kantowski-Sachs , Bianchi

III evren modelleri durumunda inceleyelim.
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4.3.1. SFP için LRS Binachi I Çözümleri

Eğer K(η) = η alınırsa LRS Bianchi I metriği için δ = 0 olur. Bu durumda

maddenin basıncı (p);

pSFP
BI = w

2(w+1)(4π+µ)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2

]
(4.124)

şeklinde olur. Enerji yoğunluğu (ρ);

ρSFP
BI 1

2(w+1)(4π+µ)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2

]
(4.125)

şeklinde olur. Sicim gerilimi (λ );

λ SFP
BI = 1

2(4π+µ)

[
3(m−3)(n−1)
(n+2)(mt+c4)2

]
(4.126)

şeklinde olur. Parçaçık yoğunluğu (ρp);

ρ p
BI
SFP

= 1
2(w+1)(4π+µ)

[
3(n−1)((3−m)w(n+2)+6)+6m(n+1)

(n+2)2(mt+c4)2

]
(4.127)

şeklinde olur. Kozmolojik terim (Λ) ise;

ΛSFP
BI = ΛSFP

BI
1
+ΛSFP

BI
2
+ΛSFP

BI
3

(4.128)

ΛSFP
BI
1

= 6n2(3−m)(12π+µ)
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.129)

ΛSFP
BI
2

= 36πn(2w−m+1)+3µn(wm−5m+9w+3)
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.130)

ΛSFP
BI
3

= 6(2π(−2m+3w+3)+mµ(w−1))
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.131)

şeklinde elde edilir.

4.3.2. SFP için Kantowski-Sachs Çözümleri

Eğer K(η) = sin(η) alınırsa Kantowski-Sachs metriği için δ =−1 olur. Bu durumda
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Maddenin basıncı (p);

pSFP
KS = w

2(w+1)(4π+µ)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 + 1

c2
5(mt+c4)

6
(n+2)m

]
(4.132)

şeklinde olur.

Enerji yoğunluğu (ρ);

ρSFP
KS = 1

2(w+1)(4π+µ)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 + 1

c2
5(mt+c4)

6
(n+2)m

]
(4.133)

şeklinde olur.

Sicim gerilimi (λ );

λ SFP
KS = 1

2(4π+µ)

[
3(m−3)(n−1)
(n+2)(mt+c4)2 +

1

c2
5(mt+c4)

6
(n+2)m

]
(4.134)

şeklinde olur.

Parçaçık yoğunluğu (ρp);

ρ p
KS
SFP

= 1
2(w+1)(4π+µ)

[
3(n−1)((3−m)w(n+2)+6)+6m(n+1)

(n+2)2(mt+c4)2 − w

c2
5(mt+c4)

6
(n+2)m

]
(4.135)

şeklinde olur.

Kozmolojik terim ise;

ΛSFP
KS = ΛSFP

KS
1

+ΛSFP
KS
2

+ΛSFP
KS
3

+ΛSFP
KS
4

(4.136)

ΛSFP
KS
1

= 6n2(3−m)(12π+µ)
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.137)

ΛSFP
KS
2

= 36πn(2w−m+1)+3µn(wm−5m+9w+3)
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.138)

ΛSFP
KS
3

= 6(2π(−2m+3w+3)+mµ(w−1))
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.139)

ΛSFP
KS
4

= (µw+4πw−µ)

c2
5(w+1)(4π+µ)(mt+c4)

6
(n+2)m

(4.140)
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şeklinde elde edilir.

4.3.3. SFP için Bianchi III Çözümleri

Eğer K(η) = sinh(η) alınırsa Bianchi III metriği için δ = 1 olur. Bu durumda

Maddenin basıncı (p);

pSFP
BIII = w

2(w+1)(4π+µ)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 − 1

c2
5(mt+c4)

6
(n+2)m

]
(4.141)

şeklinde olur.

Enerji yoğunluğu (ρ);

ρSFP
BIII = 1

2(w+1)(4π+µ)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 − 1

c2
5(mt+c4)

6
(n+2)m

]
(4.142)

şeklinde olur.

Sicim gerilimi (λ );

λ SFP
BIII = 1

2(4π+µ)

[
3(m−3)(n−1)
(n+2)(mt+c4)2 − 1

c2
5(mt+c4)

6
(n+2)m

]
(4.143)

şeklinde olur.

Parçaçık yoğunluğu (ρp);

ρ p
BIII
SFP

= 1
2(w+1)(4π+µ)

[
3(n−1)((3−m)w(n+2)+6)+6m(n+1)

(n+2)2(mt+c4)2 + w

c2
5(mt+c4)

6
(n+2)m

]
(4.144)

şeklinde olur.

Kozmolojik terim ise;

Λ
BIII
2 = ΛSFP

BIII
1

+ΛSFP
BIII
2

+ΛSFP
BIII
3

+ΛSFP
BIII
4

(4.145)
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ΛSFP
BIII
1

= 6n2(3−m)(12π+µ)
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.146)

ΛSFP
BIII
2

= 36πn(2w−m+1)+3µn(wm−5m+9w+3)
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.147)

ΛSFP
BIII
3

= 6(2π(−2m+3w+3)+mµ(w−1))
(w+1)(4π+µ)(n+2)2(mt+c4)2 (4.148)

ΛSFP
BIII
4

= (µ−wµ−4πw)

c2
5(w+1)(4π+µ)(mt+c4)

6
(n+2)m

(4.149)

şeklinde elde edilir.

Şekil 14. SFP için basıncın zamana göre değişimi
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Şekil 15. SFP için enerji yoğunluğunun zamana göre değişimi

Şekil 16. SFP için sicim geriliminin zamana göre değişimi
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Şekil 17. SFP için kozmolojik terimin zamana göre değişimi

4.4. SFP için Genel Rölativite Çözümleri

SFP kullanarak elde ettiğimiz çözümlerimizde µ = 0 alarak GRT deki sonuçları

aşağıdaki şekilde elde ederiz;

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu ise aşağıdaki şekilde

elde edilir;

pSFPGRT
= w

8π(w+1)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 − δ

c2
5(mt+c4)

6
(n+2)m

]
(4.150)

ρSFPGRT
= 1

8π(w+1)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 − δ

c2
5(mt+c4)

6
(n+2)m

]
(4.151)

λSFPGRT
= 1

8π

[
3(m−3)(n−1)
(n+2)(mt+c4)2 − δ

c2
5(mt+c4)

6
(n+2)m

]
(4.152)

ρ pSFPGRT
= 1

8π(w+1)

[
3(n−1)((3−m)w(n+2)+6)+6m(n+1)

(n+2)2(mt+c4)2 + wδ

c2
5(mt+c4)

6
(n+2)m

]
(4.153)

Kozmolojik terim ise;

ΛSFPGRT
= ΛSFPGRT 1

+ΛSFPGRT 2
+ΛSFPGRT 3

+ΛSFPGRT 4
(4.154)
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ΛSFPGRT 1
= 18n2(3−m)

(w+1)(n+2)2(mt+c4)2 (4.155)

ΛSFPGRT 2
= 9n(2w−m+1)

(w+1)(n+2)2(mt+c4)2 (4.156)

ΛSFPGRT 3
= 3(−2m+3w+3)

(w+1)(n+2)2(mt+c4)2 (4.157)

ΛSFPGRT 4
== −wδ

c2
5(w+1)(mt+c4)

6
(n+2)m

(4.158)

şeklinde elde edilir.

4.4.1. SFP için LRS Binachi I Metriğinin Genel Rölativite Çözümleri

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu;

pSFPGRT
BI = w

8π(w+1)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2

]
(4.159)

ρSFPGRT
BI = 1

8π(w+1)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2

]
(4.160)

λ SFPGRT
BI = 1

8π

[
3(m−3)(n−1)
(n+2)(mt+c4)2

]
(4.161)

ρ pSFPGRT
BI = 1

8π(w+1)

[
3(n−1)(w(3−m)(n+2)+6)+6m(n+1)

(n+2)2(mt+c4)2

]
(4.162)

şeklinde olup kozmolojik terim ise;

ΛSFPGRT

BI = ΛSFPGRT 1
BI +ΛSFPGRT 2

BI +ΛSFPGRT 3
BI (4.163)

ΛSFPGRT 1
BI = 18n2(3−m)

(w+1)(n+2)2(mt+c4)2 (4.164)

ΛSFPGRT 2
BI = 9n(2w−m+1)

(w+1)(n+2)2(mt+c4)2 (4.165)

ΛSFPGRT 3
BI = 3(−2w+3w+3)

(w+1)(n+2)2(mt+c4)2 (4.166)

şeklinde elde edilir.
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4.4.2. SFP için Kantowski-Sachs Metriğinin Genel Rölativite Çözümleri

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu;

pSFPGRT
KS = w

8π(w+1)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 + 1

c2
5(mt+c4)

6
(n+2)m

]
(4.167)

ρSFPGRT
KS = 1

8π(w+1)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 + 1

c2
5(mt+c4)

6
(n+2)m

]
(4.168)

λ SFPGRT
KS = 1

8π

[
3(m−3)(n−1)
(n+2)(mt+c4)2 +

1

c2
5(mt+c4)

6
(n+2)m

]
(4.169)

ρ pSFPGRT
KS = 1

8π(w+1)

[
3(n−1)(w(3−m)(n+2)+6)+6m(n+1)

(n+2)2(mt+c4)2 − w

c2
5(mt+c4)

6
(n+2)m

]
(4.170)

şeklinde olup kozmolojik terim ise;

ΛSFPGRT

KS = ΛSFPGRT 1
KS +ΛSFPGRT 2

KS +ΛSFPGRT 3
KS +ΛSFPGRT 4

KS (4.171)

ΛSFPGRT 1
KS = 18n2(3−m)

(w+1)(n+2)2(mt+c4)2 (4.172)

ΛSFPGRT 2
KS = 9n(2w−m+1)

(w+1)(n+2)2(mt+c4)2 (4.173)

ΛSFPGRT 3
KS = 3(−2m+3w+3)

(w+1)(n+2)2(mt+c4)2 (4.174)

ΛSFPGRT 4
KS = w

c2
5(w+1)(n+2)2(mt+c4)

6
(n+2)m

(4.175)

şeklinde elde edilir.

4.4.3. SFP için Bianchi III Metriğinin Genel Rölativite Çözümleri

Basınç, enerji yoğunluğu, sicim gerilimi ve parçacık yoğunluğu;

pSFPGRT
BIII = w

8π(w+1)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 − 1

c2
5(mt+c4)

6
(n+2)m

]
(4.176)
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ρSFPGRT
BIII = 1

8π(w+1)

[
3m(n+2)(n+1)−9n(n−1)

(n+2)2(mt+c4)2 − 1

c2
5(mt+c4)

6
(n+2)m

]
(4.177)

λ SFPGRT
BIII = 1

8π

[
3(m−3)(n−1)
(n+2)(mt+c4)2 − 1

c2
5(mt+c4)

6
(n+2)m

]
(4.178)

ρ pSFPGRT
BIII = 1

8π(w+1)

[
3(n−1)(w(3−m)(n+2)+6)+6m(n+1)

(n+2)2(mt+c4)2 + w

c2
5(mt+c4)

6
(n+2)m

]
(4.179)

şeklinde olup kozmolojik terim ise;

ΛSFPGRT

BIII = ΛSFPGRT 1
BIII +ΛSFPGRT 2

BIII +ΛSFPGRT 3
BIII +ΛSFPGRT 4

BIII (4.180)

ΛSFPGRT 1
BIII = 18n2(3−m)

(w+1)(n+2)2(mt+c4)2 (4.181)

ΛSFPGRT 2
BIII = 9n(2w−m+1)

(w+1)(n+2)2(mt+c4)2 (4.182)

ΛSFPGRT 3
BIII = 3(−2m+3w+3)

(w+1)(n+2)2(mt+c4)2 (4.183)

ΛSFPGRT 4
BIII = −w

c2
5(w+1)(mt+c4)

6
(n+2)m

(4.184)

şeklinde elde edilir.
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BÖLÜM 5
SONUÇ VE ÖNERİLER

Bu çalışmada LRS Bianchi I, Kantowski-Sachs ve Bianchi III metriklerinde sicim

bulutu içeren ideal akışkan, alternatif gravitasyon teorilerinden biri olan f (R,T ) teori

çerçevesinde zamanla değişen ve sabit frenleme paremetreleri kullanılarak evren modelleri

oluşturulmuştur. (4.30) , (4.41 ) ve (4.42) denklemlerinden;

σ

θ
=

√
3(n−1)

3(n+2)
(5.1)

σ

H
=

√
3(n−1)
n+2

(5.2)

elde edilir. Burada n = 4 için, σ

θ
=
√

3
6 = 0.2887 ve σ

H = 2
√

3
3 = 0.866 bulunur. σ ve θ

nın günümüz değerleri σ

θ
= 0.1 ve σ

H = 0.3 dir. Bizim elde ettiğimiz değerler bu değerlerden

oldukça büyüktür. Bu durum, modellerimizin evrenin ilk anlarına ait olduğunu gösterir.

Çözümlerimizde ξ anizotropi parametresini ifade etmektedir. Eğer ξ = 0 (veya n = 1)

olursa modelimiz izotropik evren modeline dönüşür.

Bulduğumuz çözümlerimizde µ de önemli bir parametredir. Eğer çözümlerimizde,

µ = 0 alırsak ideal akışkana sahip sicim bulutunun LRS Bianchi I, Kantowski-Sachs ve

Bianchi III evren modelleri için GRT deki çözümlerini elde ederiz.

f (R,T ) için Bouncing Frenleme Parametre Sonuçları

Modelimiz t=0 da büyük patlama (big-bang) ile başlar. Modeldeki genişleme zaman

arttıkça artar. ttr =
√

α

β−1 olarak elde edilmişti. Grafikleri çizerken kullandığımız α ve β

değerleri yerine yazılırsa ttr = 11.4018 olarak elde edilir.

Hubble parametresi (0,1.1345) zaman aralığında artarken t = 1.1345 ten sonra

azalarak sıfıra yaklaşmaktadır.

Ölçek çarpanı t=0 da yaklaşık olarak 1.13 değerini alırken zaman arttıkça sonsuza

yaklaşmaktadır.

Şekil 4 ve şekil 5 ten görüleceği üzereA ve B metrik potansiyelleri zamanla artarak

sonsuza doğru gitmektedir. Ancak bu grafikler incelendiğinde metrik potansiyeli A nın

metrik potansiyeli B den daha hızlı sonsuza yaklaştığı görülmektedir.

LRS Bianchi I, Kantowski-Sachs ve Bianchi III metriklerinin hepsinde t → 0 için

toplam enerji yoğunluğu, basınç, sicim gerilimi ve kozmolojik terim sabit değerleri

almaktadır. Buna karşın t→ ∞ durumunda ise ρ, p,λ ve Λ azalarak sıfıra yaklaştığı şekil 6,

7, 8 ve 9 den görülmektedir. Bunların grafikleri incelendiğinde her üç evren modeli de
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benzer davranışı gösterir.

Eğer denklem (4.48) incelenirse n = 1için (yani ξ = 0) LRS Bianchi I evrem

modelindeki sicim gerilimi sıfır olur.

Bilindiği gibi singüler noktalar gravitasyon teorilerinin geçerli olmadığı yerlerdir.

BFP için Hubble parametresinin grafiği incelendiğinde t =
√

α

β
değerinde singüleriteye

sahip olduğu açıktır.

Ayrıca (4.33) - (4.37) denklemlerinden görüleceği gibi p,ρ , ρp ve Λ , t =
√
−α

β
,

w = −1 ve µ = −4π değerlerinde singüleriteye sahip iken, λ ise t =
√
−α

β
ve µ = −4π

değerlerinde singüleriteye sahiptir. Çözümlerimizin geçerli olabilmesi için t 6=
√
−α

β
,

w 6=−1 ve µ 6=−4π olmalıdır.

f (R,T ) için Sabit Frenleme Parametre Sonuçları

Hubble parametresi zamanla azalarak sıfıra doğru yaklaşmaktadır (bakınız şekil 10).

Şekil 11’ de ölçek çarpanı t=0 da yaklaşık olarak 1.96 değerini almaktadır ve zaman arttıkça

sonsuza yaklaşmaktadır.

Şekil 12 ve şekil 13 den görüleceği üzere A ve B metrik potansiyelleri zamanla artarak

sonsuza doğru gitmektedir. Ancak bu grafikler incelendiğiğnde metrik potansiyeli A nın

metrik potansiyeli B den daha hızlı sonsuza yaklaştığı görülmektedir.

LRS Bianchi I, Kantowski-Sachs ve Bianchi III metriklerinin hepsinde t → 0 için

toplam enerji yoğunluğu, basınç, sicim gerilimi ve kozmolojik terim sabit değerleri

almaktadır. Buna karşın t → ∞ durumunda ise ρ, p,λ ve Λ azalarak sıfıra yaklaştığı şekil

(4.110)-(4.114) den görülmektedir. Bunların grafikleri incelendiğinde her üç evren modeli

de benzer davranışı gösterir.

Denklem (4.126) incelenirse n = 1 için (yani ξ = 0) LRS Bianchi I evrem modelindeki

sicim gerilimi sıfır olur.

(4.106) denklemi incelendiğinde Hubble parametresinin t = −c4
m değerinde

singüleritesi vardır. Ayrıca (4.110) - (4.114) denklemlerinden görüleceği gibi p,ρ , ρp ve Λ,

t = −c4
m , w = −1 ve µ = −4π değerlerinde singüleriteye sahip iken, λ ise t = −c4

m ve

µ = −4π değerlerinde singüleriteye sahiptir. Çözümlerimizin geçerli olabilmesi için

t 6=−c4
m , w 6=−1 ve µ 6=−4π olmalıdır.
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Çalıştığı Kurumlar ve Yıl : Çan Karşıyaka Mesleki ve Teknik Anadolu Lisesi, 2016-

2017
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