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SIMGELER VE KISALTMALAR

R;; Ricci tensorii

8ij Metrik tensor

T;; Enerji-momentum tensorii

R Ricci skaler

A Kozmolojik terim

p Basing

p Toplam enerji yogunlugu

U; 4-li hiz vektori

Xi Sicim yonii

Pp Parcacik yogunlugu

H Hubble parametresi

0 Genisleme parametresi

c? Shear skaleri

GRT Genel Rolativite Teorisi

AB Metrik potansiyeli

BFP Bouncing Frenleme Parametresi

SFP Sabit Frenleme Paremetresi

Darp BFP i¢in basing

Dsep SFP i¢in basing

Parpt! BFP’nin Bianchi I evren modeli i¢in enerji yogunlugu

Ay PKS SFP’nin Kantowski-Sachs evren modeli i¢in sicim gerilimi
Prrpgpy B BFP’nin Bianchi I evren modeli i¢in basincin Genel Rolativite ¢oziimii
Psepgpy Bt SFP’nin Bianchi III evren modeli i¢in basincin Genel Rélativite ¢oziimii



OZET

HOMOJEN METRIKLERDE f(R,T) TEORI MODELLERI

Aysel KIZILCIK
Canakkale Onsekiz Mart Universitesi
Fen Bilimleri Enstitiisii
Matematik Anabilim Dali Yiiksek Lisans Tezi
Danigsman: Dog. Dr. Can AKTAS
17/01/2020, 45

Bu tez calismasinda Genel Rolativite teorisinin (GRT) modifiye edilmis sekli olan
f(R,T) teoride Bianchi I, III ve Kantowski-Sachs evren modelleri i¢in sicim igeren ideal
akigkan1 inceledik. Bu amacgla f(R,T) fonksiyonu i¢in ii¢ Oneriden biri olan
f(R,T) = R+2h(T) yi kullanarak evren modelleri i¢in ¢6ziimleri elde ettik. Son olarak da
f(R,T) teorisinde elde edilen denklemlerin fiziksel sonuglarini inceleyerek verdik. Ayrica

buldugumuz ¢oziimlerin Genel Roélativite sonuclarini elde ettik ve yorumladik.

Anahtar sozciikler: f(R,T) Teori, Genel Rolativite Teorisi, LRS Bianchi I Evren
Modeli, Kantowski-Sachs Evren Modeli, Bianchi III Evren Modeli
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ABSTRACT

f(R,T) THEORY MODELS IN HOMOGEN METRICS

Aysel KIZILCIK
Canakkale Onsekiz Mart University
Graduate School of Natural and Applied Sciences
Master of Science Thesis in Department of Mathematics
Advisor: Prof. Dr. Name SURNAME
01/17/2020, 45

In this paper, we have investigated the cloud of string with a perfect fluid (CSPF) matter
distribution for the Bianchi I, IIT and Kantowski-Sachs space-time models in the f(R,T)
theory which explains the accelerated expansion of the universe. For this purpose, we have
used the function f(R,T) = R+ 2h(T) which is one of the three propositions we have found
for the function f(R,T). Finally we gave the graphs by examining the physical results of
the equations obtained in f(R,T) theory. Also, we have obtained General Relativity theory
(GRT) solutions.

Keywords: f(R,T) Theory, General Relativity Theory, LRS Bianchi I Universe
Model, Kantowski-Sachs Universe Model, Bianchi III Universe Model

vii



ICINDEKILER

Sayfa No
TEZ SINAVI SONUC FORMU......c..ciiiiiiiiiieieeetete ettt ii
INTIHAL (ASIRMA) BEYAN SAYFASI.......coooiiiiieiiieeieeeeeeeee e iii
TESEKKUR.........coooiiiiteiieieeteteiee ettt ettt sttt s s v
SIMGELER VE KISALTMALAR ........c.coooiiiiteeeeeeeeeeeeeeeee e v
OZET .ottt ettt vi
ABSTRACT ...ttt ettt ettt et ne e saee e vii
SEKILLER DIZINI ..o X
BOLUM 1
GIRIS ..ottt 1
BOLUM 2
ONCEKI CALISMALAR .....ooviiiiititeeeeeeee et 4
BOLUM 3
MATERYAL VE YONTEM ......ccoouiuiiiiimiiieieimieieeeeessisesessesesssssssssesssesesessessssens 6
3.1. f(R,T) DenKIEMIETi. ... ...eeeeiiiieeeiiie et e et 6
3.2, Kinematik NiCEIKIET ......cccoiiiiiiiiiiiiiiiiii e 8
BOLUM 4
ARASTIRMA BULGULARI VE TARTISMA ... oottt 11
4.1. Bouncing Frenleme Parametresi (BFP) Icin COziimler..............cccovvvveveeieen.nn 14
4.1.1. BFP icin LRS Bianchi I COzUmMIeri .............cccuuuvviiiiiiiiiiiiieeiiiiieeeciieeees 20
4.1.2. BFP icin Kantowski-Sachs COzimleri...............cooovviiiiniiiiiiiiiiinineciennnn. 21
4.1.3. BFP icin Bianchi I COZUMIETT ......c..uvviviiiiiiiiiieeiiieeieee e 22
4.2. BFP i¢in Genel Rolativite COZUMIETT ......ccuuuneiiiiiieiiiiieeeiiiiee e 24
4.2.1. BFP icin LRS Binachi I Metriginin Genel Rolativite Coziimleri ................ 25
4.2.2. BFP icin Kantowski-Sachs Metriginin Genel Rolativite Coziimleri............ 26
4.2.3. BFP i¢in Bianchi III Metriginin Genel Rolativite Coziimleri .................... 27
4.3. Sabit Frenleme Parametresi (SFP) icin Coztimler...............coooovviiiiiiiiiniiininnne. 28
4.3.1.  SFPi¢in LRS Binachi I COzZUmMIeri ..........ooeeeiiiiiiiiiiiiiiiecciie e, 32
4.3.2. SFP i¢cin Kantowski-Sachs COzUmMIeri.............ceevevieieeiiiineeiiiiieeeeiieeeees 32
4.3.3. SFPicin Bianchi III COzZUMIETi..........oeeiiiinieiiiiiieeiiiieeeiii e 34
4.4. SFP i¢in Genel Rolativite COZUMIETT ......cooovvviiiiiiiiiiiiiiic e 37
4.4.1. SFP icin LRS Binachi I Metriginin Genel Rolativite Coziimleri................ 38
4.4.2. SFP i¢in Kantowski-Sachs Metriginin Genel Roélativite Coztimleri ........... 39
4.4.3. SFP icin Bianchi III Metriginin Genel Rolativite Coziimleri...................... 39

viii



BOLUM 5

SONUC VE ONERILER .........cocoitiiiitriiieiiieieiieieisieis e

KAYNAKLAR
OZGECMIS ....

iX



SEKILLER DiZiNi

Sayfa No
Sekil 1. BFP i¢in frenleme paremetresinin zamana gore deiSimi ............ceeeveueeernnnneee. 15
Sekil 2. BFP icin 6l¢ek carpaninin zamana gore degisimi.........ueueeeeeeiiiiiiinnneeeeeninnnnnnnn. 16
Sekil 3. BFP icin Hubble paremetresinin zamana gore degisimi.............ueueeeeeeerennnnnnnn.. 17
Sekil 4. BFP icin A metrik potansiyelinin zamana gore degisimi .............coeeeeeeernnnnnnnn.. 18
Sekil 5. BFS icin B metrik potansiyelinin zamana gore degisimi ...........cceeevvuureeeinnnnnnn. 18
Sekil 6. BFP icin basincin zamana gore degiSim «......c...uvveeiiiiiiiiiineiiiiineeiiiieeeeeiiees 23
Sekil 7. BFP icin enerji yogunlugunun zamana gore degiSimi ..........ccceuueeeeeeeernnnnnnnnnn. 23
Sekil 8. BFP icin sicim geriliminin zamana gore degiSimi............coeeevvuuueinnreeeernnnnnnnnnn. 24
Sekil 9. BFP icin kozmolojik terimin zamana gore degiSimi ............cceuuveueereeeeennnnnnnnnn. 24
Sekil 10. SFP i¢in Hubble paremetresinin zamana gore degisimi........cc.uuuvereeeeernnnnnnnn.. 28
Sekil 11. SFP i¢in Olcek ¢arpaninin zamana gore degiSimi........cceevuueeeiiinneeiiiineeeinnnnees 29
Sekil 12. SFP i¢in A metrik potansiyelinin zamana gore degisimi ...........ceeeeeevennnnnnnnn.. 29
Sekil 13. SFP i¢in B metrik potansiyelinin zamana gore degisimi .............oeeeeeeevrnennnnn.. 30
Sekil 14. SFP i¢in basincin zamana gore deZiSimMi.........uuuerierineeeiiineeiiiieeeeiieeeeiiins 35
Sekil 15. SFP i¢in enerji yogunlugunun zamana gore degisimi .........cceevveurreeeeennnnnnnnnn. 36
Sekil 16. SFP i¢in sicim geriliminin zamana gore degiSimi .............oeeevvveeeriiinneeeiinnnnnns 36
Sekil 17. SFP i¢in kozmolojik terimin zamana gore degiSimi ...........ceeevuneeeiiinneeernnnnnees 37



BOLUM 1
GIRIS

Kozmoloji, evrenin olusumunu, evrimini ve dinamigini inceler. Evrenin nasil
olustugu, evrenin gecmiste nasil bir halde oldugu, gelecekte nasil olacagi; geometrisinin
neye benzedigi, nasil bir sekilde genisledigi (ya da biiziistiigii), uzay ve zaman kavrami,
kiitle cekimi ve bunun gibi say1siz soruya cevap arayan bir bilim dalidir.

Kozmolojik model matematiksel olarak, evrenin suanki davranigini ve zaman
icerisindeki degisimini agiklamaya calisir. Bu matematiksel yapida ele aldigimiz evren
modelleri homojenlik, izotropi, rotasyon ve bu gibi Ozelliklerin kulanilmasi ile cesitlilik
gosterir.  Bu homojen modeller izotrop ve anizotrop modeller olmak iizere kendi icinde
ikiye ayrilir (Silk, 1997).

Matematiksel agidan gravitasyonu en iyi sekilde ifade eden ilk teori Newton’ nun
gravitasyon teorisidir (Ozemre, 1982). Klasik kiitle cekimi arastiracak olursak Newton’dan
once Kepler ve Galileo ya kadar gitmemiz gerekir (Serway (1995)). Ancak yeryiiziindeki
hareketlerin incelenmesinde, gezegenlerin ve diger biitiin gok cisimlerin yoriingelerini
saptamada, Newton teorisi Kepler ve Galileo’ya gore ¢ok basarili olmustur. Bu sebeptendir
ki Newton matematiksel acidan gravitasyonu en iyi sekilde aciklar. Fakat 19. yiizyila dogru
Newton’nun yercekimi teorisi, 1s18in gravitasyonel alanda sapmasi, Merkiir’iin enberi
noktasinin ilerlemesi gibi bircok konuyu agiklamakta yeterli olamamigtir (Ozemre (1982)).
Iste bu gibi benzer konular1 agiklamak icin modern fizik ortaya ¢ikmistir (Serway (1995)).
Modern fizikte en onemli buluglar rolativite teorisi ve kuantum mekani8i alanlarindan
olmustur. Genel gorelilik (rolativite) ise ilk defa Einstein tarafindan ileri siiriilmiistiir
(Serway (1995)).

20. yiizyilin en onemli bilim adamlari arasinda sayilan Einstein’nin bilim diinyasina
kattig1 Brownian hareketi, Foto Elektrik olay1, Ozel Rolativite teorisi, GRT, Kiitle-enerji
bagintis1 olmak ilizere bes onemli makalesi vardir (Einstein, 1915). Bu makalelerin en
onemli olani, evrenin yapisin1 ve bu yapidaki biiyiik dlcekte gravitasyonel etkilesimleri
tammlamak ve aciklamak icin , 1916 yilinda yayinladigi GRT dir (Ozemre (1982)). GRT
15181n gravitasyonel alanda sapmasi, gezegenlerin perihelinin ilerlemesi ve 15181n kirmiziya
kaymas1 gibi testleri en gecerli kilan teoridir (Ozemre (1982)). GRT, evrende madde ile
geometri arasindaki iliskiyi aciklamaya calisir.  Yani, GRT gore evrendeki madde
geometriyi, geometri de maddeyi etkiler (Einstein (1915), Einstein (1917)).

O yillarda yaygin olan goriis evrenin duragan oldugudur. Bunu saglamak i¢in Einstein



denklemlerine kozmolojik terim eklemistir (Einstein (1917)). Ancak, Einstein evren i¢in bir
model olusturmaya basladiginda, boyle bir kozmolojik terimin olmamasi gerektigini
diisiindii. Daha sonra da bu kozmolojik terimi denklemlerinden ¢ikartmistir. Sonralari ise
bu alanda yapilan calismalarda, evrenin madde igerigiden dolayi, genislemenin
yavaglayabilecegi diisiincesiyle yavaglama miktarin1 6lgebilmek i¢in ’frenleme paremetresi’
adi verilen bir nicelik belirlemeye ¢calismistirlar (Friedmann (1922), Sandage (1962)).

Ancak 1929 yilinda Edwin Hubble galaksilerden gelen 15181 incelerken, galaksilerin
diinyamiza olan uzakliklar1 ile kirmiziya kaymalar1 arasinda bir iliski buldu (Hubble
(1929)). Hubble yasas1 olarak bilinen bu teoriye gore, galaksiler bize gore bir goriiniir hiza
sahiptirler. Buradan da “Galaksiler arasinda bulunan uzaklik artmakta olduguna gore,
bunlarin hepsinin gecmis zamanda bir arada olmalar1 gerektigi ” cikarimina ulagilmistir
(Hubble (1929)). Bu ulagilan bilgiler 20. yiizyilin ilk donemlerinde savunulmaya baglanan
biiyiik patlama teorisini desteklemektedir (Hubble (1929)).

1929 yilinda Hubble’1n evrenin genisledigini gdzlemlerle kanitlamasindan sonra, GRT
bir anlamda yanilgiya diismiistiir. Einstein evren modeli denen ilk evren modelini; 1917 de
Sitter’in kozmolojik terimli, 1922’de Friedmann’in kozmolojik terimsiz, 1927°de Eddington
ve Lemaitre’nin kozmolojik terimli evren modelleri izlemistir (Silk (1997)). Biitiin bu evren
modelleri, evrenin izotrop ve homojenligine dayandirilarak agiklanmistir (Silk (1997)).

1998 ve 1999 yillarinda Riess ve Perlmutter’in ((Riess ve digerleri (1998)),
Perlmutter ve digerleri (1999)) yaptiklar1 ¢aligmalar evrenin ivmelenerek genisledigini
gostermektedir. 1998-1999 daki bu caligsmalar1 yapan bilim insanlar1 2011 yilinda Nobel
Fizik odiilii almiglardar.

Yasadigimiz evrenin tamamini kaplayan, tespit edilemeyen ve dolayl yollar ile bir
sekilde varlig1 anlasilan, goriinmeyen enerjiye karanlik enerji adi verilir.  Evrenin
genislemesine ve ivmelenmesine evrenin %73 {inii olusturan karanlik enerjinin ve %23 iinii
olusturan karanlik maddenin neden olabilecegi goriisii kabul gérmektedir.

Ancak GRT evrenle ilgili bir¢ok olay1 aciklarken karanlik madde ve karanlik enerjiyi
aciklamakta yetersiz kalmaktadir (Weinberg (1972)). Bu nedenle bir¢cok bilim insani
Einstein’nin 6ne siirdiigii GRT ye bazi1 eklemeler yaparak modifiye baz1 yeni teoriler de ileri
stirerek, evrenin ivmelenmesini ve genislemesini agiklamaya ¢alismiglardir. Bu modifiye
teoriler Einstein’in denklemlerine baz1 vektorel, skaler, tensorel ilave terimler ekleyerek
elde edilmistir. Bu teoriler; Lyra teori, Creation Field, Self Creation, f(R) teori, f(R,T)
teori vb dir. Bu teorilerden bazilar1 Eisntein alan denklemlerinin madde kismina ekleme
yapan Creation Field (Hoyle ve Narlikar (1966)), Self Creation (Barber (1982)) vb iken
bazilar ise geometri kismina ekleme yapan Lyra teori, f(R) (Buchdahl (1970)) vb dir.

2



Ancak 2011 yilinda Harko ve Ark. (Harko, Lobo, Nojiri, ve Odintsov (2011)) tarafindan
onerilen f(R,T) teori hem madde hem de geometri kismina modifikasyon 6nermistir. Bu
nedenle f(R, T) teori son yillarda birgok bilim insan1 tarafindan ilgi gormiis ve caligiimigtir.

Evrenin bu yapisi biitiin ¢aglar boyunca merak konusu olmus ve hala giiniimiizde de
olmaya devam etmektedir. Evrenin baslangicinin nasil oldugu, sonunun nasil olacagi heniiz
bir netlik kazanmamis ve suan hala bu konu {izerinde caligilmaktadir.

Bizim de bu calismayr yapmaktaki amacimiz, evrenin ivmelenerek genislemesini
aciklamaya calisan f(R,T) teoride, sicim iceren ideal akiskanin homojen anizotropik LRS
Bianchi I, Kantowski-Sachs ve Bianchi III tipi metriklerdeki davranisini inceleyip bir evren
modeli olusturmaktir.

Bunun icin, Harko ve ark. min (Harko ve digerleri, 2011) yayinladiklar1 makalede
f(R,T) fonksiyonu i¢in ii¢ oneriden biri olan f(R,T) = R+ 2h(T) fonksiyonunu ele alarak
evren modellerini inceledik. Evren modellerini olustururken elde ettigimiz denklemlerimizi
cOzebilmek icin ilave denklem olarak shear skaleri ile genisleme skaleri arasindaki bagintiy1
(durum denklemi ) ve Bouncing frenleme parametresi (BFP) ile sabit frenleme parametresini
(SFP) kullandik. Son olarak ise bulunan ¢oziimlerin fiziksel yorumunu yapip, 4 = 0 icin
Genel Rolativite sonuclarini elde ettik.

Kisaca ozetlersek, ¢alismanin ikinci boliimiinde bu alanda yapilan 6nceki ¢alismalara
yer verildi. Ugiincii boliimiinde kullanilan materyel ve yontemlerden bahsedip f(R,T)
denklemlerine yer vererek, kullandigimiz kinematik niceliklerin en genel hallerinden
bahsettik. Dordiincii boliimiinde ise arastirma bulgularimiza yer verdik. Yani buldugumuz
alan denklemlerine, bu alan denklemlerini ¢6zebilmek i¢in gerekli olan ilave denklemlere
yer verip, LRS Bianchi I, Kantowski-Sachs ve Bianchi III metriklerinde sicim iceren ideal
akigkani, f(R,T) teori ¢ercevesinde BFP ve SFP yi kullanarak sonuglarimizi elde ettik. Bu
boliimde son olarakta bulunan sonug¢larimizin grafik ¢izimlerini yaptik. Besinci boliimiinde
ise LRS Bianchi I, Kantowski-Sachs ve Bianchi III metrikleri i¢cin bulunan sonuglarin
yorumlamalarina de8inerek, bulunan sonuglarin u = 0 alarak GRT deki ¢oziimlerine yer

verdik.



BOLUM 2
ONCEKI CALISMALAR

f(R,T) teori, ilk olarak Harko ve ark. (Harko ve digerleri (2011)) tarafindan ortaya
atilmig bir alternatif gravitasyon teorisidir. Harko ve arkadaglarinin calismasindan sonra bu
konu, degisik uzay zaman metrikleri i¢in ¢alisilmistir.

Sharif ve Zubair f(R,T) gravitasyon teorisinde homojen ve anizotropik Bianchi tip 1
evren modelinde ideal akigkanin davranisini incelemiglerdir (Sharif ve Zubair (2012)).
Farasat, Jhangeer ve Bhatti sabit frenleme parametresini kullanarak Bianchi I ve V evren
modelleri icin c¢oziimlerini elde etmiglerdir (Farasat S., Jhangeer, ve Bhatti (2012)).
Pradhan, Amirhaschi ve Zainuddin f(R,T) teori ve kozmik genigleme ile ilgili 2011 yilinda
bir calisma yapmiglardir (Pradhan, Amirhashchi, ve Zainuddin (2011)). Sharif ve Zubair
f(R,T) teoride homojen ve anizotropik Bianchi tip I evren modelini, ideal akigkan ve skaler
alan iceren madde dagilimi incelemislerdir (Sharif ve Zubair (2012)). Shamir ve Bhatti ise
LRS Bianchi tip evren modeli i¢in f(R,T) teoriyi aragtirmiglardir (Shamir ve Bhatti
(2012)). Myrzakulov ise f(R,T) teorinin geometrisini inceleyerek, modelin geometrik
acidan ¢esitli metrikler ve madde dagilimlarini arastirmistir (Myrzakulov (2012)). Rao ve
Neelima f(R,T) teoriyi ideal akiskan gercevesinde arastirmiglardir (Rao ve Neelima
(2013)). Reddy, Anitha ve Umadevi, Kantowski-Sachs evren modelinde bulk viskoz
akigkan iceren madde dagilimin1 f(R,T) teori gercevesinde incelemislerdir (Reddy, Anitha,
ve Umadevi (2014)). Santos ve Ferst, Godel tipi evren modelini f(R,T) teorinin modifiye
edilmis varyasyonlarini kullanarak inceleyip arastirma yapmuglardir (Santos ve Ferst
(2015)). Zubair ve Ali Hassan (2016), f(R,T) teorisinin killing vektor alanina uyumunu
aragtirmigti. ~ Singh, Bishi ve Sahoo f(R,T) gravitasyon teorisinde skaler alan ve
kozmolojik sabitin davramgim f(R,7) = R+ 2f(T) kosulunda, homojen ve anizotropik
Bianchi tip-I evren modelinde arastirmiglardir. (Singh, Bishi, ve Sahoo (2016)). Zubair ve
caligsma arkadaslar1 cesitli f(R,T) teori modellerini alarak farkli ¢oziimler bulmuslardir
(Zubair, Sardar, Rahaman, ve Abbas (2016)). Sofuoglu f(R,T) gravitasyon teorisinde
Bianchi IX evren modelini ideal akiskan madde dagilimi icin incelemistir (Sofuoglu
(2016)). Aktas ve Aygiin FRW evreni i¢in manyetize acayip kuark madde ¢oziimlerini
f(R,T) teoride incelemislerdir (Aktas ve Aygiin (2017)). Aygiin ve ark. Marder metriginde
kozmolojik sabitli acayip kuark madde ¢oziimlerini f(R,T) cergevesinde aragtirmiglardir
(Aygiin, Aktas, ve Yilmaz (2016)). Solanke ve Karade f(R,T) teoriyi f(R,T) =R+ Af(T)
genel durumuna gore incelemislerdir. (Solanke ve Karade (2017)). Sahoo ve Reddy,

Bianchi-I evreninde f(R,T) teoriyi f(R,T) = R+ 2f(T) i¢in bulk viscous cergevesinde



aragtirmiglardir (Sahoo ve Reddy (2018)). Yadav ve Ali f(R,T) gravitasyon teorisinin
f(R,T) = R+ 2f(T) kosulunda Bianchi I evren modeli igin ¢6ztimlerini elde etmislerdir.
(Yadav ve Ali (2018)).



BOLUM 3
MATERYAL VE YONTEM

Einstein alan denklemleri, evrendeki madde dagilimiyla uzay-zaman geometrisi
arasindaki iligkiyi tanimlar. Einstein alan denklemlerinin sol tarafi uzay-zaman
geometrisiyle, sag tarafi ise madde dagilimiyla ilgilidir. Einstein, alan denklemlerini ifade
ederken tensorleri kullanmistir. Ciinkii tensorler herhangi bir koordinat doniisiimii altinda
degismeden kalan geometrik yapilardir.

Gravitasyonel etkilesmeri ve bilyiik olcekte evrenin yapisini agiklayan Einstein alan

denklemlerinin tensorel formdaki ifadesi (Harko ve digerleri (2011));
1
Rij— ZRgij+Agij = —xTij

seklindenir. Bu denklemler 1916 yilinda Albert Einstein tarafindan yayinlanmistir.
Burada R;; Ricci tensorii, g;; metrik tensor, 7;; enerji-momentum tensorii, R Ricci skaleri, A

kozmolojik terim olup y = 821—46 dir. Burada c 151k hiz1, G ise gravitasyon sabitidir.

3.1. f(R,T) Denklemleri
f(R,T) gravitasyon teorisindeki etki fonksiyonu

1 f(R,T) 4
5= m/( . +Lm) Jgd G

seklindedir. Burada R Ricci skaleri, T enerji momentum tensdriiniin izi, g g;; (metrik
tensoriin) nin determinant1 olup f(R,T) ise R ve T nin keyfi fonksiyonlaridir. Ayrica L,,
maddenin Lagrangiant ve maddenin basing-enerji tensorii sO0yle tanimlanir(Harko ve

digerleri (2011));

2 5(ygLn)
N

I;j=—

Maddenin Lagrangiam L, nin sadece metrik tensor bilesenlerine yani g;; ye bagh
olup ve tiirevlerine bagh olmadigin1 varsayarsak asagidaki sekilde elde edilir (Harko ve

digerleri (2011));

28L,,
ogl

Tij = 8ijLm —



(3.1) denkleminin varyasyonundan asagidaki denklemini elde ederiz;

1
—fT(R, T)Eij —|—Ag,~j (3.2)

Burada f(R,T) = afg;’T) ve fr(R,T) = afg;’T) olup swrasiyla f(R,T)

fonksiyonunun R ve T ye gore tiirevlerini gostermektedir (Harko ve digerleri, 2011). Ayrica

V, kovaryant tiirev olup J = V,;V! dir. E; j ise asagidaki sekilde tanimhidir.

ap 9°Lm
dg*Bg;;

Bij= 2T +8ijLm —2¢ (3.3)

(3.3) denkleminin kontraksiyonu alinirsa
fo(RT)R+30f&(R,T) —2f(R.T) = 81T — fr(RT)T — fr(RT)E+4A  (34)
seklini alir (Harko ve digerleri (2011)). Burada & = go‘B P B degerine sahiptir. (3.2)

ve (3.4) denklemlerinden f(R,T) teorideki alan denklemlerini asagidaki gibi elde ederiz
(Harko ve digerleri (2011)).

fr(R,T)(R;; — Rgij) n f(R.T)gij _ 7 (Ti o ﬁ)
3 6 3
T ii - = i
—/r(RT)(T;j = %) —fr(RT) (&~ %) +ViVifr(R,T) + Agij (3.5)

Denklem (3.3) den asagidaki denklem elde edilir

Eij = —2T;j — pgij (3.6)

Harko ve digerleri (2011) yayinladiklari makalede f(R,T) fonksiyonu igin ii¢ 6neride

bulunmuslardir. Bunlar;



R+2h(T)
FR.T) =4 fi(R)+ fo(R)
fi(R)+ f2(R) f3(T)

seklindedir. Buradaki f(R,T) = fi(R) + f2(R)f3(T) seklindeki secim, f(R,T)
fonksiyonunun olasi tim durumlarina karsilik gelmektedir. Eger f(R,T) = R alinirsa,

f(R,T) teori GRT’ ye doniisiir.

3.2. Kinematik Nicelikler

Genisleme skaleri olan 0
0= ui;i = g"u;; (3.7)

seklinde tanimlidir (Misner, Thorne, ve Wheeler (2017)). Burada ut komoving hizlari,

u', ; 1se kovaryant tiirevleri gosterir ve bunlar agsagidaki sekilde tanimlanir;

, 1 5
‘= 10,0,0, =4 3.8
* ( 2% —844> vV =844 ©G:8)

ve aralarinda wiu; = giju,-u i = gijuiuj = —1 seklinde bagmti vardir (Misner ve
digerleri (2017)). Kovaryant ve kontravaryant 1. ranktan bir tensoriin kovaryant tiirevi

du’ 4 iy = %_
kL™ I Ok

i
Ui

seklindedir (Misner ve digerleri (2017)). Shear skaleri olan o ise;

1 o1
2 2
o~ = EGileJ: § <E Hi — E Hl'Hj> (310)

seklinde tanimlidir (Misner ve digerleri (2017)). Burada o;; shear tensoriinii gosterir
ve bu sagidaki sekildedir;
1
Oik = 5 Mij — 5 O hij (3.11)
ve 0;j = Ojj, G’;. =gl o;; =0 ve o'l = gllgimgy,, esitlikleri saglanir (Misner ve
digerleri (2017)).



MWij = Ujj + uji + wiu;+ uju; ivmeyi ( u; = ui;juf) ve /’l,‘j = gij + uju; izdiislim

tensoriinti gostermektedir (Misner ve digerleri (2017)).

3

Ayrica 0lcek carpani a” ise;

3
Vi1
seklindedir. Hubble parametresi olan (H) ise;

a
H=°
1 a

W =
.Mw

H— (3.13)

1

1 d\/gi
seklinde olup burada H; = Vi dir (Misner ve digerleri (2017)).
V8i 0t

Frenleme parametresi olan g ise;

d (1
a= (E) 1 (3.14)

seklinde tanimlidir (Misner ve digerleri (2017)). Modelin enerji momentum tensorii
ideal akigkana sahip sicim bulutu (cloud of string with a perfect fluid) (Amirhashchi,

Zainuddin, Hassan, ve Kamari (2010));
Tij = (p + p)uiuj — pgij — Axix; (3.15)
seklindedir. Burada p basing, p toplam enerji yogunlugu, A sicim gerilimi, u; 4-1ii hiz
vektoril, x; ise sicim yoniinii gosterir. Ayrica x;x' = —uu’ = —1 ve x;u' = 0 kosullarini

saglar (Pradhan ve digerleri (2011)). Buradaki sicim yonii radyal yonde alinmistir. Eger

pargacik yogunlugu p,, ile gosterilirse (Raj, Umesh, ve Anirudh (2007))
p=pp+i
olur ve (Zubair ve digerleri (2016))

p=wp (3.16)



seklinde bir bagint1 vardir. Bu bagintiya durum denklemi ad1 verilir. Burada w sabit
olup 0 < w < 1 deger araligindadir. Kiiresel koordinatlarda homojen ve anizotropik LRS
Bianchi I, Kantowski-Sachs ve Bianchi III metriginin genel formu (Zubair ve Ali Hassan

(2016));
ds® = —A%(t)dr* — B*(t) (dn* + K(n)?d¢?) +d (1) (3.17)

seklindedir. Burada A, B, C metrik potansiyelleri kozmik zaman ¢ nin

fonksiyonlaridir. Eger burada;
e K(n)=n alirsak LRSS Bianchi I
e K(n)=sin(n) alirsak Kantowski-Sachs

e K(n)=sinh(n) alirsak Bianchi III

metriklerini elde ederiz.
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BOLUM 4
ARASTIRMA BULGULARI VE TARTISMA

Harko ve digerleri (2011) yaptig1 calismada ii¢ farkli f(R,7) fonskiyonu 6nermisgtir.
Biz de bu calismada f(R,T) = R + 2h(T) fonksiyonunu alarak evren modellerini
inceleyecegiz. Buradaki i(T) fonksyionunu da i(T) = uT olarak secebiliriz. Burada p bir
sabitti. Eger u = 0 alirsa f(R,T) teoriden GRT ye doniisiir. f(R,T) = R+ 2uT
fonksiyonundaki ilk terim Genel Rélativitenin Einstein Hilbert etkisini ifade eder, ikinci
terim ise madde dagilimi1 ve uzaymn egriligi arasindaki etkilesimi ifade eder (Harko ve
digerleri, 2011).

f(R,T) = R+ 2h(T) secilmesiyle, f(R,T) teoride kozmolojik terimli (A) alan
denklemleri (Harko ve digerleri (2011));

Rij— %&J'R = [87+20/(T)]Tij+ [2ph'(T) + 1(T) + Algi; (4.1)

seklindedir. Burada i’ = % olup A(T) = uT olarak segersek (1 sabit olmak tizere)
(4.1) denklemi (Harko ve digerleri, 2011)

1
Rij— S8R =2[4m + p]Tij + 2+ UT + Algi (4.2)

seklini alir. (3.5), (3.15) ve (3.17) denklemlerinden f(R,T) teorideki alan denklemleri
asagidaki gibidir;

2B B &
§+ﬁ—ﬁ:8).717—8p71'+3ﬂ,[.t—3p,u+PH+A 4.3)
B A AB

E+z+ﬁ——8pﬂ+lu—3pu+[)u+/\ 4.4)
B> 2AB &

e — A 4,
Bz+AB 72 8pm+3pu—pu+Au+ 4.5)

Burada, nokta #* ye gore tiirevi, iissil isareti de 1)’ ya gore tiirevi gostermektedir.

Ayrica 0 = KYH olup 1 nin aldig1 degerlere gore O

0 LRS Bianchi I
0=— =14 —1 Kantowski-Sachs (4.6)

1 Bianchi III

11



seklinde olmaktadir. (4.1) metrigi icin kinematik nicelikler olan kovaryant shear

tensoriiniin bilesenleri (3.11) denkleminden

24/, AB i
Oxx = _? ( - ?) ( . )
B/. BA
o =2 (B— 7) (4.8)
, .
G, = —Bé (B— Bf‘) 4.9)

seklindedir. Ayn1 metrik i¢in kontravaryant shear tensoriiniin bilesenleri ise

2 (A B
w__ 2 (A B 4.10
9 3A2(A B) (+10)

1 (A B

w=__ (22 4.11
© 3B2<A B) 1D

1 A B
2z _ iy 4.12
© 3B2K2(A B) (+12)

seklinde olup, (3.7), (3.10), (3.12) ve (3.13) denklemlerinden genisleme skaleri (6 ),
shear skaleri (02), olcek carpam (a®) ve Hubble paremetresi (H) asagidaki sekildedir
(Zubair ve Ali Hassan (2016)).

. )
1 /A B
2
_(a4_5 4.13
© 3<A B> (+13)
A 2B
it 4.14
0 A+B (4.14)
a’ = AB? (4.15)
1 /A 2B
H=-[=+2= 4.1
(5+%) (416

Ricci skaleri ve enerji momentum tensoriiniin izi ise

=44

2B A B* 24B §
R= -2 —_— 4.17
(B A B + AB BZ) @.17)

12



T=p—3p+A (4.18)

seklindedir.

(4.3)-(4.5) denklemlerinden goriilecegi gibi denklem sistemi 6 bilinmeyenli (A,B,p,
p, A, A), 3 denklemden olusur. Bu denklem sistemini ¢6zebilmek i¢in 3 ilave denkleme

daha ihtiyac vardir. Ilave denklem olarak asagidaki denklemleri alabiliriz.

e Ilave denklem olarak oncelikle, durum denklemini kullanabiliriz. Verilen maddenin
basmcinin enerji yogunluguna orani durum denklemi (p = wp) olarak adlandirilir.

(4.3)-(4.5) ve durum denklemini kullanarak enerji yogunlugu,

_ 1 —B>A—ABB+AB*+BAB
P = 3B Gns )i [ A - 5} (4.19)
sicim gerilimi ise seklinde olup
_ 1 —B?A+ABB+AB>—BAB
A = e [ Sy - 5} (4.20)

ve kozmolojik terim de asagidaki sekilde elde edilir.

o 1 (—pwtdn+)B | 2a+u)24 | (w—1Du+4nw)B?
A= G [ B +t—a t 7
4.21)
4 (8aw+3uw+4n+u)AB  (4nw+puw—u)d
AB B2

e ikinci olarak ise shear skaleri ile genisleme skaleri arasindaki bagintiy1 kullanabiliriz.
Shear skalerinin genisleme skaleri ile orantili(c o 6) oldugunu kabul edersek, § = &
yazabiliriz. Burada & bir sabittir. Eger & = 0 ise evrenin izotrop oldugunu gosterir.

Bu bagintiy1 kullanirsak,
il (A _ 5)
AT B
_ 3\ B (4.22)
+
yazilabilir. Eger denklem (4.22) ¢oziiliirse iki metrik potansiyeli arasinda

A=cB" (4.23)

13



V3-6¢ _ V/3+6E
iaE veyan= 25 dir.

seklinde bir baginti elde edilir. Burada n =

e Son olarakta, evrenin ivemelenip ivmelenmedigini gosteren onemli parametrelerden
biri olan frenleme parametresini ilave denklem olarak alalim. Frenleme parametresi
onceleri sabit formda alinirken son yillarda yapilan ¢alismarda zamana bagl olarak
alinmaktadir. Bunun nedeni evrenin ivmelenmesinin zamana bagh olarak degistiginin
gozlemlenmesidir. Bu nedenle biz bu ¢alismada frenleme parametresini hem zamana

baglh (BFP) hem de sabit formda (SFP) alarak iki farkli evren modeli elde ettik.

4.1. Bouncing Frenleme Parametresi (BFP) Icin Coziimler
Oncelikle zamanin karesi ile ters orantili olarak degisen frenleme paremetresini
kullanarak ¢oziimleri arastiralim. Abdussattar ve Prajapati (2011) tarafindan onerilen

zamanin karesi ile ters orantili olarak degisen frenleme paremetresi (BFP)

d (1 a
=—(=)-1=—=+B8-1 4.24

seklindedir. Burada o ve 3 sabitlerdir. Eger ¢ > 0 ise yavaslayan genigleme, g < 0 ise

ivmelenen genisleme vardir (Abdussattar ve Prajapati, 2011). ¢ = 0 yapan degere t-transit
Ja
B—1

dir (Abdussattar ve Prajapati, 2011). Burada ¢, degeri pozitif olacagindan, o > 0 ve 8 > 1

degeri denir ve t;, seklinde gosterilir. Ele aldigimiz frenleme paremetresi icin #, =
olmahdir. Yavaslayan bir genisleme (g > 0) olmasi icin & < r>(f — 1) ve B > 1 olmal,

ivmelenen genisleme (¢ < 0) olmasi icinse & > t?(8 — 1) ve B > 1 olmalidir (Abdussattar

ve Prajapati, 2011).

14
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Sekil 1. BFP i¢in frenleme paremetresinin zamana gore degisimi

Yukaridaki sekilde frenleme paremetresinin zamana gore degisiminin grafigi
verilmigtir. Bu grafik ve bu boliimdeki diger grafikler ¢izilirken o = 1.3, B = 1.01,¢; =1,

c3=3,w= %, n =4 ve u = —6x nonktalardaki degerler kullanilmistir.

(4.24) denkleminin coziimiinden Hubble parametresi asagidaki gibi elde edilir

(Abdussattar ve Prajapati, 2011);

t

- 4.25
Bt2+cot + o (4.25)

(3.13) ve (4.25) denklemlerinden 6l¢ek carpant

t
Ina = / dt 4.26
IR g T (420

seklinde elde edilir . Bu integralin ¢ozebilmek i¢in ¢, = 2/ a3, c2 # 2 /B, c; =0
gibi ii¢ farkli durumda incelemek miimkiindiir (Abdussattar ve Prajapati (2011)).

e Eger ¢ = 2+v/af ise bu durumda 6lgek ¢arpant

5 Vo
ae (t N \/%) b (hm) (4.27)

e Eger ¢, # 24/ af ise bu durumda dlgek ¢arpant

15



)
o o B 2ﬁt+cz—|—\/c%—4aﬁ 2/ —4ap
a= (ﬂ +=+ —) (4.28)
B B 2Bt+cr— /3 —4ap
e Eger ¢y = 0 ise bu durumda 6lgek garpani
ﬁ
4= (t2 n %) 4.29)

seklinde elde edilir (Abdussattar ve Prajapati (2011)).

(4.27)- (4.29) denklemlerinden goriilecegi gibi t =0 daa =ag # 0 dir. Fakatt =0daa =0
ve d = %0 = sabit dir (Abdussattar ve Prajapati (2011)). Bu durum, her ii¢ durumda da

modellerin baglangi¢ tekilligine sahip olmadigini ve sonlu bir ivmeyle basladigin1 gosterir.

30
25
20
151

10

0 10 20 30
t

Sekil 2. BFP i¢in dl¢ek ¢arpaninin zamana gore degisimi

Biz bu calismada ¢; = 0 durumunu ele alalim. Bu durumda Hubble paremetresi

t

- BT a (4.30)

seklini alir.
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ekil 3. BFP icin Hubble paremetresinin zamana gore degisimi
¢ p g g1
(4.23) denkleminden A metrik potansiyeli
3n
A =13 (B + o) B0 (4.31)

seklindedir. (4.15), (4.23) ve (4.29) denklemlerinden metrik potansiyeli B asagidaki
sekli alir.

3
B = c3(Bt? + o) P02 (4.32)

Burada ¢3 = dir.

B
N
(#?)

17
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Sekil 4. BFP i¢cin A metrik potansiyelinin zamana gore degisimi

16
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Sekil 5. BFS icin B metrik potansiyelinin zamana gore degisimi

(4.31) ve (4.32) denklemleri (4.19)-(4.21) deklemlerinde yerine yazilirsa basing,

enerji yogunlugu, sicim gerilimi ve parcacik yogunlugu ise asagidaki sekilde elde edilir;

o w 3(Bt>—a) (n®+3n42)—9n(n—1)12 )
Pprp = 2(4m+p)(w+1) (n+2)2(Br2+a)? - 3 (4.33)

_ 1 3(B2—a) (n*+3n+2)—9n(n—1)r* 5
Psrr = 2@t w)(wil) ( Oéig_z)z(ﬁtzla)z( r_ 3 (4.34)

18



= 2 2 3
BFP — 2(4m+10) (n+2)(Br*+a) A (Br2+a) DB

A | [3(n—1)(ﬁ—3)t2_(3n—2)a B 5 ] (4.35)

Pryer = 2@mr ot ) (22 (B2 +a)? |

1 wn((B—1)n+B—1)+6B(n+2)—18(w+1) + wd (4.36)
(B +a) 7P

Kozmolojik terim ise asagidaki sekildedir;

Appp = ABFP1 + ABFP2 + ABFP3 (4.37)
seklinde olup, burada Ay, , Agpp) Ve Ay, terimleri agagidaki sekildedir.
_ _ 6Qrtp)(a—(B=3)r*)n?
Aser, = G2 (B + o (wi D) @n i) (4.38)
_ 3n[(((w=5)B+9w-+3)u+127(2w—P+1))>—((w—5)u—127) ]
ABFPz B (n+2)2(ﬁ;2+a)2(w+1)(47.H_u) (439)
A _ 6[uw=1)(Br2+a)+2r((3w—2B+1)—4a)] (U—pw—4mw)d

BFP3 — (B2t a)2(w+1)(47+1) * (W+1)c§(4n+u)(ﬁt2+a)m (4.40)

(4.13), (4.15) ve (4.31) denklemlerinden shear skaleri ve genisleme skaleri asagidaki

gibi elde edilir.
3(n—1)%?
2
— 441
T 2B ap @A
3t
0=—-—>>— 4.42
B2+ o (4.42)

(4.17) ve (4.18) denklemlerinden Ricci skaleri ve enerji momentum tensoriiniin izi ve

f(R,T) fonksiyonu agagidaki gibi elde edilir.

_ (Bn*=3n*+4Bn—6n+4B—9)61>—(n>+4n+4)6a 28
R= (n+2)2(B2+a)? mmumm (4.43)
T— 1 ((Bw—34wB+B)n?+(B—2Bw—3w)2n+3w—45+3)31>+(w—1)n*3ax
= (wH)@dr+u) (n+2)2(Bt2+a)?
(4.44)
+((4w—2)n+4w)30£+ (w+1)d
(n+2)%(Br>+a)? 3

3 (Br2+ar) (74 2B
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f(RvT) = (n+22)([3t+oc)%(w+l)(47r+w) [(12<B —3)(277:(W+ 1) +,u)n2
+82B-3)(w+1)m—6u2w—B+1))6n

+24(4B —9)(w+ 1)+ 12u (3w — 2 +3)) 1 (4.45)
—12(n+2)o (2r(w+ 1)+ u)n+ (w+1)4x+ p)]
+ 462w (w+1)+uw)

(- 1)ex? (474 41) (B2 +01) (2B

Simdi zamanin karesi ile ters orantili olarak degisen frenleme paremetresini (BFP)
kullanarak elde ettigimiz genel sonuglarin LRS Binachi I, Kantowski-Sachs , Bianchi III

metriklerindeki sonuclarini inceleyelim.

4.1.1. BFP icin LRS Bianchi I Coziimleri
Eger K(n) = n alinirsa LRS Bianchi I metrigi icin 6 = 0 olur. Bu durumda

Maddenin basinci (p);
BI _ w 3(Br2—a)(n*43n42)—9n(n—1)12
Pare™ = sy | A sl | (4.46)

seklindedir. Enerji yogunlugu (p);

o 1 3(Bt>—a) (n*+3n+2)—9n(n—1)1>
pBFPBI - 2(475+ﬂ)(W+1) [ (n+2)2([3t2+oc)2 ] (4.47)

seklinde olup, sicim gerilimi (A) ise;

S 3(n—1)(B—3)>—(3n—2)
Roes™ = gy |G o | (4.48)

seklinde olur. Pargagik yogunlugu (p,);

pp BI 1 [9wn((ﬁf1)n+[371)+6ﬁ(n+2)718(w+1) (449)

prp 207 ru)(w) (n+2)? (B2 +a)?

seklindedir. Kozmolojik terim (A) ise;

ABFPBI = ABFPfI + ABFPfI + ABFPf] (4.50)
BI _ __6n’[(2mtp)(a—(B-3)%)]
Aser) = G2 (Bt o vt DT (4.51)
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A Bl _ 3n[(((w—5)B+9w-+3)u+127(2w—B+1))2—((w—5)u—127) (4.52)

BFPy (n+2)2 (Bt o) (w+ 1) (4n+p)
B _ 6[u(w=1)(Br*+a)+2m((3w—2B+1)r*—4a)]
Agrpy = (B> a)2(w+1)(dn+u) (4.53)
seklinde elde edilir.

4.1.2. BFP icin Kantowski-Sachs Coziimleri
Eger K(n) = sin(n) almirsa Kantowski-Sachs metrigi i¢in 6 = —1 olur. Bu durumda

maddenin basinci (p);

Pprp = 207+ ) (wt1) 3 (1122 (B2+ )

KS w 1 i 3(Br*—a)(n*+3n+2)—9n(n—1)1? (4.54)
(B2 +a) (2B

seklinde olur. Enerji yogunlugu (p);

KS _ 1 1 3(B2—a) (n?4-3n+2)—9n(n—1)r*
= + (4.55)
Psrp 2(4m+p)(w+1) [c%([itz—i—oc) (n+32)[3 (n+2)2(Br2+a)? ]
seklinde olur. Sicim gerilimi (4 );
A KS _ 1 1 3(n—1)(B—3)>—(3n—2) 456
G el [P TR (4:36)
seklinde olur. Pargagik yogunlugu (p);
KS _ 1 —w Iwn((B—1)n+B—1)+6B(n+2)—18(w+1)
ppBFP T 2(4m+p)(w+l) [c%(ﬁt2+a)(n+32)ﬁ + (n+22 (B2 +a)? ] 4.57)
seklinde olur. Kozmolojik terim ise;
ABFPKS = ABFP{{S + ABFPfS + ABFPfS (4.58)
KS__6Q2n+p)(a—(B—3))n*
Nurr)” G2 (B + @) (i) G ) (4.59)
ks _ 3n[((w=5)B+9w+3)u+127(2w—B+1))r>—((w—5)u—127) t]
Agery” = 12)2 (B2 a)2(wr1)(4n+h) (4.60)
ks _ 6[uw—1)(Br*+a)+2n((3w—2B+1)1>—4ar)| (uw-+dmw—p)
Aprpy” = (B2+a)2(w+1)(dn+1) + —3— (4.61)

(w+1)e3(dm+p) (Br2+a) (2B
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seklinde elde edilir.

4.1.3. BFP icin Bianchi III Coziimleri
Eger K(n) = sinh(n) alinirsa Bianchi IIT metrigi icin & = 1 olur. Bu durumda

maddenin basinci (p);

Pere " = 20mtu)(w1) (n+22 (B2 +ar)? B . -

BIII __ w 3(B2—a) (n2+3n+2)—9n(n—1)¢? 1 (4.62)
c%(Bter(x) (n+2)B

seklinde olur. Enerji yogunlugu (p);

Perr " = 3@atp)wil) (n+2)2(Br?*+a)? 3

BIII _ 1 3(Br2—a)(n®+3n+2)—9n(n—1)> 1 (4.63)
c%(ﬁt2+(x) (n+2)B

seklinde olur. Sicim gerilimi (1);

Aprr 2@n+p) W) (Prrra)? 3

BII _ 1 3(n=1)(B-3)>~(3n-2)ax 1 (4.64)
c%(ﬁter(x) (n+2)B

seklinde olur. Pargacik yogunlugu (p,);

BIIl _ 1 Iwn((B—1)n+B—1)+6B(n+2)—18(w+1) w
ppBFP o 2(4mp)(wl) [ (n+2)%(Br*+ar)? + 2B +a) (an)ﬁ] e
seklinde olur. Kozmolojik terim ise;
ABFPBIII _ ABFPIIBIII 4 ABprHI T ABFPfI” (4.66)
BIII _ _ 6(Q2m+u)(a—(B—3)*)n?
Borry = GraP (B o2 wt AT a) (467)
il 3n[((w=5)B+9w-+3)u+127(2w—P+1))>—((w—5)u—127)a]
ABFPz - (n+2)2(B12+0)2(w+1)(4m+u) (4.68)
2 2
A BIII _ 6[[.1,(W*1)(Bf +O¢)+2TE((3W*2B+1)I *406)] + (,Ll—,U.W—47TW) 4
BFP4 (B o) (wr1)(4n+p) (w+1)c§(4n+u)(ﬁt2+a)ﬁ (4.69)
seklinde elde edilir.
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Sekil 7. BFP i¢in enerji yogunlugunun zamana gore degisimi
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Kantowski-Sachs === Bianchi III

[=— LRS Bianchi I

Sekil 8. BFP i¢in sicim geriliminin zamana gore degisimi
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Sekil 9. BFP i¢in kozmolojik terimin zamana gore degisimi

4.2. BFP icin Genel Rolativite Coziimleri
BFP kullanarak elde ettifimiz ¢oziimlerimizde pu = 0 alarak GRT deki sonuclari
asagidaki sekilde elde ederiz;

Basing, enerji yogunlugu, sicim gerilimi ve parcacik yogunlugu ise asagidaki sekilde

elde edilir;

w 3(Br2—a) (n%43n+2)—9n(n—1)f? 5
p = g — (4.70)
BFPGrr — 8m(w+1) (n+2)%(Br*+a)? c%(BﬂHX)W
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)

pBFPGRT — 8a(w+1)

(n+2)*(p

’+a)?

1 [3(ﬁt2—a)(n2+3n+2)—9n(n—1)[2 .

0
3

(n+2)(Br*+a)?

1 1 [3(n—l)(ﬁ—3)t2—(3n—2)a

(B2 +a) (n+2)B

|

3
3(Br+a) P ]

wé
3

ppBFPGRT = 8m(w+1)

(n+2)%(Bt2+a)?

_ 1 [9wn((ﬁ—1)n+ﬁ—1)+6[3(n+2)—18(w+1)

Kozmolojik terim ise asagidaki sekildedir;

= A +A

BFPGRT BFPGRT 1 BFPGRT2

A _ _ 3n(a=(B=3))
BFPGrr 1 — (n+2)2(B2+a)2(w+1)

A _ 9n(w—B+1)*+a)
BFPGrT 2~ (n+2)2(Bt2+0a)2(w+1)

A _ 3(Bw—2B+1)1*—4a)
BFPGrr3 —  (Br2+a)X(w+1)

—wd

A =
BF P, 3
KL (DS (Br2 o) TP

+A

BFPGRT 4

+A

BFPGRT 4

+

(B2 ) 7B

|

4.2.1. BFP icin LRS Binachi I Metriginin Genel Rolativite Coziimleri

Basing, enerji yogunlugu, sicim gerilimi ve pargacik yogunlugu;

Bl _  w |:3(ﬁt2706)(n2+3n+2)79n(n71)t2}
Prrgrr = Ba(w+1) (n+2)2(B12+a)?

Bl _ 1 3(Br2—at) (n243n+2)—9n(n—1)r2
pBFPGRT - 87[(W+1) (n+2)2(Bt2+a)2

n— 32— (3n—
ABF”GRTBlzﬁ[% 1)(B—3)2—(3 2)a]

(n+2)(Bt2+a)?
BI __ 1 Own((B—1)n+B—1)+6B(n+2)—18(w+1)
Prsrrgrr = Sm(wl) 22 (B +a)?

seklinde olup kozmolojik terim ise;
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4.77)

(4.78)

(4.79)

(4.80)

(4.81)

(4.82)



BI _ BI BI BI
ABFPGRT - ABFPGRT T ABFPGRT , t ABFPGRT 3 (4.83)
i 3n*(a—Br43%)
ABFPGRT] = 22 (B2 (wi ) (4.84)
pr_ (2w —Br24+24a)
ABFPGRT2 = 2P (B a2 (wil) (4.85)
BI 3(3W12—2ﬁt2—|—12—406)
ABFPGRT3 - (ﬁ[2+a)2(w+1) (4.86)
seklinde elde edilir.
4.2.2. BFP icin Kantowski-Sachs Metriginin Genel Rolativite Coziimleri
Basing, enerji yogunlugu, sicim gerilimi ve parcacik yogunlugu;
KS w 1 3(Br?—a)(n?43n42)—9n(n—1)r2
— + 4.87
Prrrgpr 8w (w+1) _c%(ﬁtzﬂx)ﬁ (n+2)2(B2+a)? _ ( )
KS _ 1 1 3(Br2—a) (n2+3n+2)—9n(n—1)i? 4.88
pBFPGRT 8w (w+1) _C%(Btera)ﬁ + (n+2)2(B2+a)? _ (4.88)
KS _ 1 1 3(n—1)(B—3)*—(3n—2)«
A{BFPGRT T 8r [cg(ﬁt2+a)(n-&-32)ﬁ + (n+2)(l3t2+a)2 ] (489)
KS _ __1 —w 9wn((B—1)n+B—1)+6B(n+2)—18(w-+1)
Proctom = SHGri [cg(ﬁtua) G - (n+2)*(Br*+a)? ] (4.90)
seklinde olup kozmolojik terim ise;
KS _ KS KS KS KS
BFPGrr ~ ~ " BFPGRT | + BFPGRT 2 +ABFPGRT3 +ABFPGRT4 4.91)
ks 3n?(a—Pri+3i%)
ABFPGRTl = 2B TaZ(w i) (4.92)
KS 9n(2wt27ﬁt2+tz+a)
ABFPGRT2 - (n+2)2(ﬁt2+06)2(w+1) (493)
ks _ 3(3w—2Br’+’—4a)
ABFPGRT3 = T (Bra)Z(wrl) (4.94)
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KS _ w

A
BFPGRT 4 (w+1)c§(ﬁt2+a)ﬁ (4.95)
seklinde elde edilir.
4.2.3. BFP icin Bianchi III Metriginin Genel Rolativite Coziimleri
Basing, enerji yogunlugu, sicim gerilimi ve parcacik yogunlugu;
BIII _ w 3(B2—a) (n*4+3n+2)—9n(n—1)1> 1 4.96
Porroer Sn(wt1) I (427 (Br+a)? 3(Br2+a) 2B | (.50
BIII _ 1 3(B2—a) (n?+3n+2)—9n(n—1)i> r 1 4.97
Poreer " = TaeFT) | " widiar Lo ey | 97
A Bil _ 1 |3(n=1)(B=3)*—(3n-2)a _ 1 4.98
BFPGRT 87 (n+2)(Br*+a)? C%(ﬁtz-i-a) (n+32)ﬁ ( )
BIIT 1 Iwn((B—Dn+B—1)+6B(n+2)—18(w+1) w
= + 4.99
Porrarr ety [ (2P (B o) G(Br2+a) (nF 3;13] -
seklinde olup kozmolojik terim ise;
BII __ BIII BIII BIII BIII
BFPGRT - BFPGRT 1 + BFPGRT 2 + BFPGRT 3 + ABFPGRT 4 (4' 1 00)
BIII 3”2((X—Bf2+312)
BFPGRT 1 T (n+2)2(B2+a)2(w+l) (4.10D)
BIIT __ 9n(2wt2—ﬁt2+lz+a)
BFPGRT 2 T (n+2)2(Br2+a)(w+1) (4.102)
BIII 3(3wt2—2ﬁ12+t2—4a)
BFPGRT 3 - (Bt24-0)2(w+1) (4.103)
s = — (4.104)

(w-l—l)c%(ﬁtz—l—a) (n+2)p

seklinde elde edilir.
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4.3. Sabit Frenleme Parametresi (SFP) icin Coziimler

Sabit frenleme paremetresini

d (1
QZE(E)—lzm—l (4.105)

olarak alalim (Berman (1983)). Burada m sabittir.

Eger (4.105) denklemini ¢cozersek Hubble parametresi asagidaki gibi elde edilir;

H =

4.106
mt +c4 ( )

0.8+
0.7
0.6
0.5+
0.4+
0.3

0.2+

0.1 T T T T T T
0 10 20 30
t

Sekil 10. SFP i¢in Hubble paremetresinin zamana gore degisimi

Yukaridaki sekilde frenleme paremetresinin zamana gore degisiminin grafigi
verilmigtir. Bu grafik ve bu bolimdeki diger grafikler cizilitken ot =1, ¢4 = 1.2, ¢5 =1,

w = %, n=4,m=0.27 ve 4 = —67 nonktalardaki degerler kullanildi.

(3.13) ve (4.106) denklemlerinden 6lgek carpani

1 n+2
a=cyi3cs 3 (mt+cyq)

3=

(4.107)

seklinde bulunur.
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Sekil 11. SFP i¢in dlgek ¢arpaninin zamana gore degigimi

SFP i¢in metrik potansiyelleri asagidaki gibi elde edilir.

3n

A = cics(mt +cq) 0 H2m (4.108)
3

B = c5(mt 4 c4) n+2m (4.109)
1.5 x 10° 7
1. x 10°

A
5.%10° 7
0 T T T A T T T I T T T T I T T T I
0 5 10 15 20
t

Sekil 12. SFP i¢in A metrik potansiyelinin zamana gore degisimi
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Sekil 13. SFP i¢in B metrik potansiyelinin zamana gore degisimi

Basing, enerji yogunlugu, sicim gerilimi ve parcacik yogunlugu ise asagidaki sekilde

elde edilir;

_ 3m(n+2)(n+1)—9n(n—1) S
Derp = W — 4.110)
SFP = 2(w+1)(4m+4) (n+2)2(mi+c4)? Qmt-+cy) o |

1 3m(n+2)(n+1)—9n(n—1) 6 4.111)

Pser = 2(wiD)@nt 22 (mitcs)> 6
(w+1)( 1) (n+2)*(mt+cq) cg(mt+C4) (n+2)m ]

_ 1 3(m=3)(n=1) _ B
;LSFP T 2(4m+p) [(n+2)(mt+C4)2 cg(mt+c4)('l+62)m 4.112)
_ 1 3(n—1)((B3—m)w(n+2)+6)+6m(n+1) wo
Prser = 2twr D@t ) [ (n+2)2 (mt+cq)? + 2 i 4)(n+62)m (4.113)
c3(mi+c

Kozmolojik terim ise;
Agpp = ASFPl + ASFPZ + ASFP3 + ASFP4 (4.114)

seklinde olup, burada A A A, veA

sep > ANsepy> sepy sFp, terimleri asagidaki sekildedir.
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_ 6n*(3—m)(127+11)
Aser = Gty @t ) (s 27 (mi e (4.115)

__ 36an(2w—m+1)+3un(wm—5m+9w+3)
Agpp, = (w+1)(dm+p) (n+2)2(mt+cs)? (4.116)
_ 6(2m(—2m~+3w+3)+mu(w—1))
Agipy = (WA 1) A+ 10) (n+2)2 (mi+c4)? (4.117)
—wu—47w)d
Asery = T (4.118)

(A1) (4741 ) (mi-+cy) (7F2)m

(4.13) ,(4.15) ve (4.108) denklemlerinden shear skaleri ve genisleme skaleri asagidaki

gibi elde edilir.
3(n—1)?
2
= 4.119
(n 1 2)(mi +ca)? (4.119)
0 = 3 (4.120)
mt +c4

(4.17) ve (4.18) denklemlerinden Ricci skaleri ve enerji momentum tensoriiniin izi ve
f(R,T) fonksiyonu asagidaki sekilde bulunur.
(6m—18)n%+(24m—36)n+24m—>54

_ 20
R= (nitca2(nr2)? + —5— 4.121)

c3(mt+cy) (n+2)m

T— 1 [(l—w) (m—3)3n2+((—2m—3)w+m)6n+(3—4m)3w-+9
= (wH){dm+p) (mt+cq)?(n+2)*
B (4.122)
i (w—1)8 _ ]
csz(mt+04) (n+2)m

o 1 12(m—3) (2 (w+1)+p)n+(48(2m—3) (w+174+360 (m—2w—1)))n
FR.T) = i [ t-tes)2(n12)?
| 24w+ 1) (Am=9)m+12(2m—3w—3)
(mt+cq)?(n+2)? (4.123)
+38(2n(w+1)+gvu)

652(mt+04) (n+2)m

SFP kullanarak elde edilen genel sonuclar1 LRS Binachi I, Kantowski-Sachs , Bianchi

III evren modelleri durumunda inceleyelim.
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4.3.1. SFP icin LRS Binachi I Coziimleri
Eger K(n) = n almirsa LRS Bianchi I metrigi icin 6 = 0 olur. Bu durumda

maddenin basinci (p);

BI _ w 3m(n+2)(n+1)—9n(n—1)
Psrp = 2(wrD)@n+p) [ (112)2(mi )2 } 4.124)

seklinde olur. Enerji yogunlugu (p);

—_

[3m(n+2)(n+1)—9”l(n—1)} (4.125)

BI
Pser” 2w D@mim) |~ (142) (mites)?

seklinde olur. Sicim gerilimi (1);

L. W 3(m=3)(n—1)
2’SFPBI T 2(4m+p) |:(n+2)(mt+C4)2:| (4.126)

seklinde olur. Pargagik yogunlugu (p,);

Bl _ 1 3(n—1)((3=m)w(n+2)+6)+6m(n+1)
ppSFP T 2(w+1)(4mt+p) [ (n+2)2(mt+c4)? (4.127)

seklinde olur. Kozmolojik terim (A) ise;

Ages™ = Agepy + Asepy + Mgy (4.128)
ASFP?I - (w+1)6(1278r;t’;1()rz(41r227)r;(%+m)2 (4.129)
= b a1
S e e (4.131)

seklinde elde edilir.

4.3.2. SFP icin Kantowski-Sachs Coziimleri

Eger K(n) = sin(n) alinirsa Kantowski-Sachs metrigi icin 6 = —1 olur. Bu durumda
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Maddenin basinct (p);

» KS _ w 3m(n+2) (r12—|—l)—9n(2n—1) + 1 -
FP n+2m
s 2w+ 1) (Ar+1) (n+2)2(mi+c4) E(mt ) D
seklinde olur.
Enerji yogunlugu (p);
Y — 14 3m(n+2)(nz+1)*9n(2n*1) + (-
SFP m+2)m
(w+1)(@drn+u) (n+2)2 (mt+cy) 2 (mi+cq) D
seklinde olur.
Sicim gerilimi (A);
A, KS - 1 3(m73)(n71)2 + 1 -
SFP 2(4n+p) | (n+2)(mt+cy) c%(mt-l—c;;)m

seklinde olur.

Pargacik yogunlugu (p,);

w

pPSFP T 2(wHl)(dmtp) (n+2)2(mt+cq)?

seklinde olur.

Kozmolojik terim ise;

KS KS KS KS KS
Agep™” = ASFPl +ASFP2 +ASFP3 +ASFP4
A KS_ 6n*(3—m)(12w+p)

SEPy T (w1)(dm+p) (n+2)? (mt+ca)?

A KS_ 36mn(2w—m+1)+3un(wm—5m+9w+3)
SEP (w+1)(4m+1) (n+2)% (mt+cq)?

A ks _ 6(2n(—2m~+3w+3)+mu(w—1))

SEPy T (1) (4w (n+2)* (mt+cq)?
KS _ (uw+4mw—p)
ASFP4 - 6

2 (w+1)(4m+p) (mt+cy) (1+2)m

33

KS 1 [3(;11)((3m)w(n+2)+6)+6m(n+1)

6

cg (mt+cq) (0H2Im

|

(4.132)

(4.133)

(4.134)

(4.135)

(4.136)

(4.137)

(4.138)

(4.139)

(4.140)



seklinde elde edilir.

4.3.3. SFP icin Bianchi III Coziimleri
Eger K(n) = sinh(n) alinirsa Bianchi IIT metrigi icin 6 = 1 olur. Bu durumda

Maddenin basinci (p);

Pser " = 20wk 1) @ntp) (n+2)2(m+cg)? 0

2 (mt+cy) (1H2)m

BIII __ W [3m(n+2)(n+1)—9n(n—l) 1 ] (4.141)

seklinde olur.

Enerji yogunlugu (p);

BIII __ 1 3m(n+2)(n+1)—9n(n—1) 1

Psrr _2(w+1)(47r+u)[ (eF2P(nitea)? cg(mz+c4><n+"z>,n]

(4.142)

seklinde olur.

Sicim gerilimi (4);

BIIT __ 1 3(m=3)(n—1) 1
A‘sFP T 2(4m+p) [(n+2)(mz+C4)2 cg(mt+c4)(n+62)m] (4.143)

seklinde olur.

Pargacik yogunlugu (p,);

— 1 3(n=1)((3=m)w(n+2)+6)+6m(n+1) w
ppf;il © 2(wH1)(4mtu) (n4-2)2(mt+c4)? + 6 (4.144)

c2(mt+cy) 1H2)m

seklinde olur.
Kozmolojik terim ise;

Ag”l —A BIII+ASFP129HI+ASFPBIH+ASFP4BHI (4145)

- SFPy 3
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A BHI _ 6n*(3—m)(127m+p) (4.146)

SFPy T (wH1)(dm4p) (n+2)2 (mt+cq)?

o (o (T3 e (@147
At = e (4.148)
ASFP4BIII _ (n—wp—4mw) — (4.149)

E(w+1)(AT+p) (mt+cq) F2m

seklinde elde edilir.
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Sekil 14. SFP i¢in basincin zamana gore degisimi
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Sekil 15. SFP i¢in enerji yogunlugunun zamana gore degisimi
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Sekil 16. SFP icin sicim geriliminin zamana gore degisimi
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Sekil 17. SFP i¢in kozmolojik terimin zamana gore degisimi

4.4. SFP icin Genel Rolativite Coziimleri
SFP kullanarak elde ettigimiz ¢oziimlerimizde u = 0 alarak GRT deki sonuglar
asagidaki sekilde elde ederiz;

Basing, enerji yogunlugu, sicim gerilimi ve parcacik yogunlugu ise asagidaki sekilde

elde edilir;

_ w 3m(n+2)(n+1)—9n(n—1) S

Povom B0 [ TR <><)] 0
_ 1 3m(n+2)(n+1)—9n(n—1) S

Pt = S0 [ CRACD <><>] oD
I e

)VSFPGRT T 8w [(n+2)(mz+c4)2 c%(mt+c4)(n-0—62)nll (4.152)

1| 3= (Gemwlre2)6) Fomlt 1) s
ppSFPGRT — 8x(wl) [ (n+2)2(mt+cq)? + c%(mt+c4)(n+62)m] (4.153)

Kozmolojik terim ise;

SFPGRT = ASFPGRT 1 + ASFPGRT 2 + ASFPGRT 3 + ASFPGRT 4 (4' 154)
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A _ 18n2(3—m)
SFPGRT 1~ (w+1)(n+2)2(mt+cq)?

A _ 9n(2w—m+1)
SFPGrr2 — (wH1)(n+2)2(mt+cy)?

A  3(—2m43w43)
SFPGrT 3~ (w+1)(n+2)2(mt+cq)?

_ —wé

SFPGRT 4~ —6_
Y Q(wl)(mrey) T

seklinde elde edilir.

4.4.1. SFP icin LRS Binachi I Metriginin Genel Rolativite Coziimleri

Basing, enerji yogunlugu, sicim gerilimi ve parcacik yogunlugu;

BI __ w [3m(n+2)(n+l)f9n(n71)]
Psrrgpr 8r(w+1) (n+2)2(mt+cyq)?

BI 1 [3m(n+2)(n+1)—9n(n—1)}
Psrrgrr = Sa(wil) (n+2)2(mt+cs)?

Bl _ 1 | 3(m=3)(n-1)
ASFPGRT T 8 [(n+2)(ml+64)2]

BI __ 1 [3(11—1)(w(3—m)(n+2)+6)+6m(n+1)]

Ppsercrr = Bawr1) (n+2)2(mi+cq)?

seklinde olup kozmolojik terim ise;

Bl __ BI BI BI

SFPGRT - ASFPGRT 1 + ASFPGRT 2 + ASFPGRT 3
A BI __ 18n%(3—m)

SFPGRr 1~ (w41)(n+2)%(mt+ca)?
A BI __ In(2w—m+1)

SFPGrr2 — (wH1)(n+2)2(mt-+cq)?
A BI __ 3(—2w+3w+3)

SFPGRr3 — (w+1)(n+2)%(mi+ca)?

seklinde elde edilir.
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(4.160)
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(4.165)
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4.4.2. SFP icin Kantowski-Sachs Metriginin Genel Rolativite Coziimleri

Basing, enerji yogunlugu, sicim gerilimi ve pargacik yogunlugu;

Psirger = St Sm(n(ﬁ)z()’?(rnlqilif)(; = cg(mr+c:)<n+62>m _ (4.167)
Porrger = Sn(vlv+1) Sm(n(x)z()n;(rn]qzﬁf)(g —1 4 cg(mz+c:)<n+62>m _ (4.168)
Astrrs " = 57 [(ii"giiﬁiljfz R (4.169)
Prserger = Sr0eiT) [“”‘”<W<€n;”;§§’z;;’ijgé+6m<"+“ 4 cg<mt+:>w+62>m (4.170)

seklinde olup kozmolojik terim ise;

Astropr - SFPGRT 1KS T Asrpgpy 2KS T Asrpgpy 3KS F Nty 4KS 4.171)
AsFPGRT 1KS = (vl )](ifgz_(ﬁzﬂ“z (4.172)
Astrerrs™ = willafoar (4.173)
Astrgers™ = Gl o iy (4.174)
Asrrgers' = S (4.175)

2 (w+1) (n+2)2 (mt4cy) (1+2)m
seklinde elde edilir.

4.4.3. SFP icin Bianchi III Metriginin Genel Rolativite Coziimleri

Basing, enerji yogunlugu, sicim gerilimi ve parcacik yogunlugu;

Psrp 3 I 2 2 —S—
GRT m(w+1) (n+2)*(mt+c4) E(mt-+cq) DM

BIII _ w 3m(n+2)(n+1)—9n(n—1) 1 (4.176)
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Psrrgrr e 22 (mitea)? 5

BIII _ 1 3m(n+2)(n+1)—9n(n—1) 1
cg (mt+C4) (n+2)m

2 BIII _ 1 3(m*3')(n*1)2 _ -
SFP, — 3 D) 6
GRT (n+2)(mt+c4) E(mt-teg) DM

3(n—1)(w(3—m)(n+2)+6)+6m(n+1 w
pPSFPGRTB”I: 87:(&“) [ (n—D)(w(3—m)(n+2)+6)+6m(nt1) |

seklinde olup kozmolojik terim ise;

BIII — BIII + BIII BIII BIII
SFPGRT SFPGRT 1 SFPGRT 2 SFPGRT 3 SFPGRT 4
BIIT _ 18n(3—m)
SFPGRT 1 T (wH1)(n+2)%(mt+cq)?
BIIT __ In(2w—m+1)
SFPGRT 2 (w+1)(n+2)2 (mt+cq)?
BIII _ 3(—2m+3w+3)
SFPGRT 3 (w+1)(n+2)% (mt+c4)?
BIIl __ —w
SFPGRT4 - L

C%(W+1)(ml+64) (n42)m

seklinde elde edilir.
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(4.178)
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BOLUM 5
SONUC VE ONERILER

Bu calismada LRS Bianchi I, Kantowski-Sachs ve Bianchi III metriklerinde sicim
bulutu igeren ideal akigkan, alternatif gravitasyon teorilerinden biri olan f(R,T) teori
cercevesinde zamanla degisen ve sabit frenleme paremetreleri kullanilarak evren modelleri

olusturulmustur. (4.30) , (4.41 ) ve (4.42) denklemlerinden;

c V3n-1)

6 3(n+2) (5.1)
o V3(n-1)
H  n+2 (5.2)

S

elde edilir. Burada n = 4 igin, § = 63 =0.2887 ve 75 = %g = (0.866 bulunur. ¢ ve 6
nin giiniimiiz degerleri § = 0.1 ve & = 0.3 dir. Bizim elde ettigimiz degerler bu degerlerden
oldukca biiyiiktiir. Bu durum, modellerimizin evrenin ilk anlarina ait oldugunu gosterir.

Coziimlerimizde & anizotropi parametresini ifade etmektedir. Eger & =0 (veyan = 1)
olursa modelimiz izotropik evren modeline doniisiir.

Buldugumuz coziimlerimizde ¢ de onemli bir parametredir. Eger ¢oziimlerimizde,
u = 0 alirsak ideal akigkana sahip sicim bulutunun LRS Bianchi I, Kantowski-Sachs ve
Bianchi III evren modelleri i¢in GRT deki ¢oziimlerini elde ederiz.

f(R,T) icin Bouncing Frenleme Parametre Sonugclari

Modelimiz t=0 da biiyiik patlama (big-bang) ile baslar. Modeldeki genisleme zaman
arttikca artar. t;, = \/g olarak elde edilmisti. Grafikleri ¢izerken kullandigimiz & ve 3
degerleri yerine yazilirsa t;, = 11.4018 olarak elde edilir.

Hubble parametresi (0,1.1345) zaman aralifinda artarken 7 = 1.1345 ten sonra
azalarak sifira yaklagsmaktadir.

Olgek carpam t=0 da yaklasik olarak 1.13 degerini alirken zaman arttik¢a sonsuza
yaklagsmaktadir.

Sekil 4 ve sekil 5 ten goriilecegi iizereA ve B metrik potansiyelleri zamanla artarak
sonsuza dogru gitmektedir. Ancak bu grafikler incelendiginde metrik potansiyeli A nin
metrik potansiyeli B den daha hizli sonsuza yaklastig1 goriilmektedir.

LRS Bianchi I, Kantowski-Sachs ve Bianchi III metriklerinin hepsinde ¢+ — 0 i¢in
toplam enerji yogunlugu, basing, sicim gerilimi ve kozmolojik terim sabit degerleri
almaktadir. Buna karsin ¢ — oo durumunda ise p, p,A ve A azalarak sifira yaklagtig1 sekil 6,

7, 8 ve 9 den goriilmektedir. Bunlarin grafikleri incelendiginde her ii¢ evren modeli de
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benzer davranigi gosterir.

Eger denklem (4.48) incelenirse n = ligin (yani & = 0) LRS Bianchi I evrem
modelindeki sicim gerilimi sifir olur.

Bilindigi gibi singiiler noktalar gravitasyon teorilerinin gecerli olmadig1 yerlerdir.
BFP icin Hubble parametresinin grafigi incelendiginde ¢ = \/% degerinde singiileriteye
sahip oldugu aciktir.

Ayrica (4.33) - (4.37) denklemlerinden goriilecegi gibi p,p, p, ve A, t = \/T%,
w = —1 ve u = —4x degerlerinde singiileriteye sahip iken, A ise t = \/T% ve U = —4rm
degerlerinde singiileriteye sahiptir. Coziimlerimizin gecerli olabilmesi icin t # \/j,
w# —1 ve U # —4x olmalidir.

f(R,T) icin Sabit Frenleme Parametre Sonuclari

Hubble parametresi zamanla azalarak sifira dogru yaklasmaktadir (bakiniz sekil 10).
Sekil 11° de dlgek ¢arpani t=0 da yaklagik olarak 1.96 degerini almaktadir ve zaman arttik¢a
sonsuza yaklagsmaktadir.

Sekil 12 ve sekil 13 den goriilecegi lizere A ve B metrik potansiyelleri zamanla artarak
sonsuza dogru gitmektedir. Ancak bu grafikler incelendigignde metrik potansiyeli A nin
metrik potansiyeli B den daha hizli sonsuza yaklastig1 goriilmektedir.

LRS Bianchi I, Kantowski-Sachs ve Bianchi III metriklerinin hepsinde + — 0 i¢in
toplam enerji yogunlugu, basing, sicim gerilimi ve kozmolojik terim sabit degerleri
almaktadir. Buna karsin r — oo durumunda ise p, p,A ve A azalarak sifira yaklagtigi sekil
(4.110)-(4.114) den goriilmektedir. Bunlarin grafikleri incelendiginde her ii¢ evren modeli
de benzer davranis1 gosterir.

Denklem (4.126) incelenirse n = 1 i¢in (yani & = 0) LRS Bianchi I evrem modelindeki
sicim gerilimi sifir olur.

(4.106) denklemi incelendiginde Hubble parametresinin ¢ = —% degerinde

singlileritesi vardir. Ayrica (4.110) - (4.114) denklemlerinden goriilecegi gibi p, p, p, ve A,

t=—% w=—1ve u = —4r degerlerinde singiileriteye sahip iken, A ise r = —7 ve
U = —4m degerlerinde singiileriteye sahiptir. Coziimlerimizin gegerli olabilmesi i¢in

t# =4, w# —1ve U # —4x olmalidir.
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