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Yasin YILDIRIM
(504171337)
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NEURAL NETWORK BASED MULTI-CARRIER RECEIVER DESIGN
AND DOPPLER ESTIMATION

SUMMARY

Recently, various industry applications have been developed in line with the needs of
the society in accordance with the changing lifestyle. Applications such as virtual
and augmented reality, remote surgery, fully autonomous systems and holographic
reflection will cause various changes in communication systems. Current technology is
insufficient to meet the increasing traffic needs demanded by these applications. Also,
a reduction in the amount of delay is required for these applications. In this context,
communication systems must be updated with new generation techniques.

Artificial intelligence is one of the rapidly developing fields of computer science in
the past decade. This study includes telecommunication applications of AI discipline.
In the first stage of the thesis, the receiver design of single carrier systems has been
made with artificial neural network. This section is an introduction for the purpose
of interpreting and reasoning the artificial neural network structure in multi-carrier
systems. In the second stage of the thesis, artificial neural network based receiver
design is focused for multi-carrier wireless communication system. First, a modular
unified transmitter structure is designed that combines orthogonal and non-orthogonal
multi-carrier systems. Symbols are produced through the modulation matrix at the
transmitter. These symbols are then transmitted from the transmitter to the receiver,
passing through multi-path wireless channel. 1D CNN, 2D CNN and MLP based
architectures are used to detect symbols sent from the transmitter. In this study,
2D CNN architecture was evaluated for the first time. In addition, in previous
studies, channel equalization is performed as a preprocess in the receiver, while in
this study, detection procedures are performed without channel equalization in the
receiver design. Likewise, in the previous studies, after the symbols passed from the
channel equalization, they are subjected to coarse detection and given to the neural
network. The performances of the algorithms are evaluated on OFDM and GFDM
multi carrier systems. The results are compared with classical techniques such as
MF, ZF, MMSE. In the third stage of the thesis, Doppler frequency shift, which is an
important parameter of the wireless channel and significantly affects the performance
of the wireless communication system, has been detected with SCF and artificial neural
network without any prior knowledge. Within the scope of the study, it is explained
how to estimate the Doppler frequency without the need for prior knowledge or signal
and it have made blind for the first time in the literature. SCF is used to extract the
statistics of the signal, and Regression CNN is used to estimate the parameter with
these statistics. The performance of the algorithm is tested with a dataset containing
analog modulations and results are shown.
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YAPAY SİNİR AĞI TABANLI ÇOK TAŞIYICILI ALICI TASARIMI
ve DOPPLER KESTİRİMİ

ÖZET

Son zamanlarda toplumun değişen yaşam tarzına uygun olarak ihtiyaçlar kapsamında
çeşitli endüstri uygulamaları geliştirilmektedir. Sanal ve arttırılmış gerçeklik, uzaktan
ameliyat, tam otonom sistemler ve holografik yansıma gibi uygulamalar haberleşme
sistemlerinde çeşitli değişimlere yol açacaktır. Mevcut teknoloji bu uygulamaların
talep ettiği artan trafik ihtiyacını karşılamakta yetersiz kalmaktadır. Bununla birlikte bu
uygulamalar için gecikme miktarında azalma gerekmektedir. Bu bağlamda haberleşme
sistemleri yeni nesil tekniklerle güncellenmek durumundadır.

Yapay zeka son on yılda bilgisayar biliminin hızla gelişen alanlarından biridir.
İnternet kullanımının artmasıyla veri üretimi artmıştır. Bununla birlikte yüksek
miktardaki verileri kullanarak anlamlı sonuçlar çıkarmaya ihtiyaç doğmuştur. Bu
ihtiyacı klasik yöntemler işlem karmaşıklığı ve genelleştirememe gibi sorunları
nedeniyle karşılamada yetersiz kalır. Derin öğrenme yardımıyla üretilen büyük
veriler anlamlandırılarak istenen çıktı elde edilebilir. Bu sebeple derin öğrenme
telsiz iletişimde kullanımı diğer disiplinlerde olduğu gibi ilgi çekici haline gelmiştir.
Dolayısıyla, araştırmacıların ilgisini çekmiş kanal kestirimi, kanal kodlama, ağ
katmanı en iyileştirmesi gibi alanlarda kulanımını ile ilgili çalışmalar yapılmıştır.

Bu çalışma AI disiplininin telekomünikasyon uygulamalarını içermektedir. Gelecek
nesil fiziksel katman yapısına uygun olarak yapay zeka tabanlı alıcı yapısı ve kör en
büyük doppler frekansı kestirim algoritması uygulamaları üzerine çalışılmıştır. Bu
bağlamda, CNN ve MLP yapılarını kullanan derin alıcı ve SCF ve CNN yapılarını
kullanan doppler parametre tahmin algoritması tartışılmıştır.

Tezin ilk aşamasında tek taşıyıcılı sistemlerin alıcı tasarımı yapay sinir ağı ile
yapılmıştır. Bu kısım ikinci bölümde tartışılacak olan çok taşıyıcılı sistemlerde
yapay sinir ağı yapısını anlamlandırma ve yorumlama amacıyla giriş niteliğindedir.
Tasarlanan sistemde tek taşıyıcılı PSK modülasyonuna uğramış vericide üretilen
semboller kanaldan geçerek alıcıda yapay sinir ağı ile çözülür. Alıcıda yoğun ağ
yapısı bilinen sembollerle eğitilmiştir. Yapay sinir ağının performansı karşılaştırmak
amacıyla klasik yapı olarak kullanılan en büyük olabilirlik kriteri ile karşılaştırılmıştır.
Bu yöntem yıldız diyagramdaki hangi sembolün alınan işarete en yakın olduğu
belirleyenerek tespit gerçekleştirir ve tek taşıyıcılı alıcı problemi için optimum alıcıdır.
Bulunan sonuçlar klasik alıcısının BER performansı ile örtüşmektedir. Bunun sebebi
sinir ağını karar bölgesi eğitim sonunda optimum kararla neredeyse aynı olmasıdır.
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Tezin ikinci aşamasında çok taşıyıcılı kablosuz haberleşme sistemi için yapay sinir
ağı tabanlı alıcı tasarımına odaklanılmıştır. Öncelikle dik olan ve dik olmayan
çok taşıyıcılı sistemleri birleştiren modüler birleşik bir verici yapısı tasarlanmıştır.
Vericide semboller modülasyon matrisi aracılığı ile üretilir. Modülasyon matrisi
farklı modülasyon teknikleri için farklı operasyonlar ihtiva eder. Örneğin OFDM
iletişim sistemi için N-nokta IFFT işlemi gerçekleştirir. GFDM iletişim sistemi
için örnekleme, darbe şekillendirme ve frekans kaydırma işlemlerini gerçekleştirir.
Üretilen semboller kablosuz kanaldan geçerek alıcıya ulaşır. Kanal çok yollu
sönümlemeli kanal olarak modellenmiştir. Temel bantta alınan semboller gerçel
ve sanal bileşene sahip komplex verilerden oluşur. Semboller kanaldan geçmesi
sebebiyle bozunumlara uğramıştır. Alıcıda yapay sinir ağı ile özellik çıkarma
ve sınıflandırma işlemleri yapılarak kanalın bozucu etkileri yok edilmeye çalışılır.
Dolayısıyla yapay sinir ağı sembol tespit algoritması olarak değerlendirilir. Sinir
ağı eğitimininde denetimli öğrenme benimsenmiştir. Ağ eğitim aşamasında etiket
olarak kabul edilen bilinen semboller ile eğitilmiştir. Yapay sinir ağı tabanlı alıcı
olarak üç tür yapı tasarlanmıştır. İlk algoritmada, gerçel ve sanal bileşenleri olan
semboller seri hale getirilip MLP yardımıyla tespit işlemi gerçekleştirilir. Benzer
şekilde bir boyutlu CNN tasarımında sembollerin gerçel ve sanal bileşenleri seri
hale getirilip sinir ağına verilir. Üçüncü algoritmada ise gerçel ve sanal bileşenleri
paralel hale getirilip iki boyutlu CNN sinir ağına verilir. Yapılan çalışmada iki
boyutlu CNN mimarisi ilk kez değerlendirilmiştir. Ayrıca daha önceki çalışmalarda
alıcıda ön işlem olarak kanal denkleştirme gerçekleştirilirken, bu çalışmada alıcı
tasarımında kanal denkleştirme olmadan tespit işlemleri yapılır. Aynı şekilde daha
önceki çalışmalarda kanal denkleştirmeden gecen semboller sonrasında kaba tespit
işlemine tabi tutularak sinir ağına verilir. Bu çalışmada alıcıya ulaşan semboller
direk olarak algoritmanın girişini besleyerek gönderilen semboller tespit edilir. Bu
işlemler dolayısıyla önceki çalışmalarda önerilen sinir ağı tabanlı yaklaşımlara göre
karmaşıklık azaltılmıştır. Ayrıca eğitim yüksek çevrim sayısı ile gerçekleştirilir.
Öğrenme aktarımı yardımıyla daha önceki eğitim ağırlıkları kullanılarak çevrim
sayısı azaltılıp eğitim süresi azaltılmıştır. Aynı zamanda bu yaklaşım alıcın kanal
etkilerindeki değişime karşı oldukça uyumlu olarak çalışmasını sağlar. Ayrıca, dik
olmayan çok taşıyıcılı GFDM benzeri modülasyonlar için sinir ağı tabanlı yaklaşım
karmaşıklığı azaltmaktadır ve algoritmalar tak çıkar sistemi olan modüler olarak
üretilen bir yapıdadır. Algoritmaların performansları OFDM ve GFDM çok taşıyıcılı
sistemleri üzerinde değerlendirildilmiştir. Sonuçlar MF, ZF, MMSE gibi klasik
tekniklerle karşılaştırılmıştır. Ön simülasyonlarda, farklı hiper parametreleri olan
farklı katmanlar içeren ağlar test edilmiştir ve sonuçlarda gösterildiği gibi, sığ ağlar
en iyi performansı vermiştir. Hem OFDM hem de GFDM deneyleri için, 2 + 1
ağlar CNN mimarı arasında en iyi performansı vermiştir. MLP tabanlı algoritma
OFDM için biraz daha iyi performans verebilirken, bellekte tutulması için daha fazla
parametre gerektirebilir. Başka çalışmalarda farklı ağ mimarileri farklı modülasyonlar
için performans analizine odaklanılabilir.

Tezin üçüncü aşamasında kablosuz kanalın önemli bir parametresi olan ve kablosuz
iletişim sisteminin performansını önemli ölçüde etkileyen Doppler frekansı kayması
yapay sinir ağı hiçbir ön bilgi kullanılmadan tespit çalışması yapılmıştır. Doppler
frekansı radardaki hedef hızlarını ölçmek, sabit ve hareketli hedefleri birbirinden
ayırmak gibi uygulamarda kullanılan önemli bir parametredir. Buna karşın etki
kablosuz kanaldan geçen sembollerin alıcıda tespiti büyük oranda zorlaştırır. Etkiyi
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tamamen yok etmek hareketli nesnelerin durdurulması ile mümkün olmaktadır.
Pratikte bu yaklaşım gerçekci değildir. Bunun yerine Doppler frekansı kaymasını
ve izgesini tespit edip etkileri azaltıcı algoritmalar geliştirmek gerçekci bir yaklaşım
olacaktır. Doppler tahmini, önceki çalışmalarda iletilen sinyaller, bilinen sinyaller
veya bilinen önceki bilgilerle yapılmıştır. Çalışma kapsamında, önceden bilgi veya
sinyale ihtiyaç duymadan doppler frekansının nasıl tahmin edileceği açıklanmaktadır
ve literatürde ilk kez kör olarak yapılmıştır. Vericiden üretilen işaretin modülasyon
türü, modülasyon parametreleri ve kodlama gibi çeşitli özellikleri gözlemci tarafından
bilinmemektedir. Bunun yanı sıra doppler etkisi ile beraber kanalın diğer
bozucu etkilerine maruz kalan sembollerin değişimide sisteme serbestlik derecesi
kazandırmaktadır. Bu noktada gözlemci doppler frekansı kaymasına duyarlı ve diğer
tüm parametrelere karşı duyarsız davranan algoritma ile tespit işlemi gerçekleştirmesi
gerekir. Ayrıca geliştirilen algoritma farklı gürültü seviyelerinde sağladığı istatistiği
korumak durumundadır. Bu sebeple çeşitli denemelerden döngüsel korelasyona
dayalı SCF algoritmasının işaretin ve kanalın tüm etkilerine karşı minimum duyarlı
ve doppler frekansına oldukça duyarlı olduğu gözlemlenmiştir. Ayrıca fonksiyon
frekans düzleminde çalışması sebebiyle AWGN etkisiyle istatistiksel özellikleri
oldukça az etkilenmektedir. Bu fonksiyonu hesaplamada FAM yönteminden
yararlanılmıştır. Doppler frekansı artması SCF düzleminde yayılmaya yol açar.
Yayılmanın miktarının ölçülmesi ile frekans kayması miktarı üzerinde tahminlerde
bulunulabilir. Çıktıyı işlemek için Regresyon CNN ağı kullanılmıştır. Fonksiyonun
çıktısı frekans ve döngüsel frekans düzlemini içeren iki boyutlu bir matris olması
sebebiyle CNN ağ yapısının çalışma prensiplerine uygun olmaktadır. Bu kapsamda
analog modülasyonları içeren bir veri kümesi oluşturulup algoritma test edilmiştir
ve algoritmanın performansı gösterilmiştir. Daha ileri bir çalışmada, performansı
artırmak için ön bilgileri dikkate almaya odaklanılabilir.
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1. INTRODUCTION

In recent years, the demand for next generation telecommunication technologies has

been increasing rapidly in order to meet the ever-increasing consumer needs. On

the other hand, due to its performance, deep learning (DL) has been used in many

applications in many fields today. Within the scope of this thesis, DL based receiver

design strategies and a parameter estimation algorithm has been studied.

1.1 Summary of The Related Work

This thesis studies various DL strategies and their performance in receiver design

for wireless communication systems using multi-carrier waveforms. In that context,

deep receiver architectures using CNN and MLP structures and Doppler parameter

estimation algorithm using SCF and CNN structures are discussed. Consequently, this

section summarizes the relevant works from the literature.

Modern wireless communication systems heavily rely on multi-carrier wave-forms.

Orthogonal Frequency Division Multiplexing (OFDM) [1], Generalized Frequency

Division Multiplexing (GFDM) [2], Filter Bank Multi-Carrier (FBMC) and Universal

Filtered Multi-Carrier (UFMC) [3] are examples for multi-carrier wave-forms. Such

variability in wave-forms, brings up the need for using unified receiver architectures

that are flexible enough to be used for different multiple wave-forms. For example,

a receiver that can be used for both OFDM and GFDM systems would be a great

use for wireless communication systems. DL based receiver solutions are such

emerging potential solutions in receiver design and there are already DL based receiver

designs proposed in the literature as in [4, 5]. Among many DL architectures,

Convolutional Neural Networks (CNNs) have revolutionized multiple research fields

(as in computer vision, natural language processing). That is due to the fact that

CNNs provide significant performance improvements, when compared to the classical

approaches in many applications. However, their use in the receiver design for wireless

communication remains limited. The literature for the receiver design mainly focused

1



on designing deep architectures using fully-connected (dense) layers. There are not

many works using 2D CNNs in the literature. However, CNNs showed their use in

spatial (2D) datasets already. In communication systems, it is essential to deal with

complex numbers and complex numbers can also be represented and considered as 2D

(spatial) data. Consequently, a 2D CNN dealing with spatial relations among the data

points can be useful in the receiver design. In this thesis, it is analyzed and reported the

performance of 2D CNNs in receiver design for wireless systems using multi-carrier

wave-forms. Among multiple carrier types, it is focused on studying the performance

of 2D CNNs on OFDM and GFDM systems in the experiments. Classical GFDM

receivers are known with their heavy computational requirements [6]. While DL

architectures can be considered as alternatives for receiver design, as mentioned above,

they also introduce their own complexities. The existing based learning architectures

using fully connected layers typically require heavier computational complexities,

when compared to the use of typical 2D CNNs. Using 2D convolutional layers,

provides significant reduction in computational complexity when they replace the

larger sized fully connected layers containing the largest number of neurons in the

earlier layers; thus they can help reduce the complexities of the used deep architectures.

DL-based architectures have been studied in receiver design in the recent literature,

however, their properties yet to be fully exploited. While, the researchers started to

focus on including deep network architectures in wireless communication systems,

the main focus has been on utilizing fully-connected (dense) networks in various

communication systems. However, using CNNs can reduce the computational cost

when compared to dense networks, while providing similar or better performance to

that of dense networks. Dense networks are also known as multi-layer perceptron

(MLP) in some literature. In this thesis, it is used both terms interchangeably to refer

to the same network type. Fully connected (dense) networks were used in [7] as a

part of a communication system. In [8], the authors proposed using dense networks

to design receivers for OFDM-based systems. In [9, 10] the authors proposed an

OAMP based algorithm that uses training to learn the OAMP parameters in MIMO

systems. In [5], a dense network was proposed as detector. In [11], the authors

proposed using a dense network for OFDM receivers under the constraint of one-bit

complex quantization. Long-short term memory (LSTM) based networks were also
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used in communication systems. For example, in [12], a deep architecture using

LSTM and fully connected layers for OFDM systems was proposed. In [13], deep

belief networks and auto-encoders were proposed. Auto-encoders were also proposed

in [14]. Similarly, in [15], a fully-connected auto-encoder structure was also proposed.

In [16], the authors proposed a detection algorithm that distinguishes multi-carrier

signals without prior knowledge. Likewise in [17], the authors proposed two different

neural network-based algorithms for detecting signals and determining modulation

type.

Most of the above-mentioned work focused on utilizing dense networks in different

architectures. In [18], the authors studied the performance of MLPs, CNNs and RNNs

for chemical (molecular) communication systems. In [19], the authors proposed an

auto-encoder architecture utilizing 2D convolutions for OFDM. The closest work in

the literature to study to be described is the work in [4, 20] as they both design a deep

receiver for GFDM system using 2D CNNs. The receiver design in [4, 20] contains

two detectors: a coarse detector and a fine detector where the coarse detector uses

one of the classical methods (e.g., zero force or Minimum Mean Square Estimator)

first and then a 2D CNN is proposed to further improve the detection performance.

In this thesis, it is investigated on utilizing only a deep architecture that combines

both coarse and fine detectors for multi-carrier wave-forms. By reshaping a complex

number as 2D number, we can utilize 2D CNNs in the receiver. Therefore, it is

studied the performance of 1D and 2D CNNs and compare that to dense networks

for communication systems utilizing multi-carrier wave-forms. Furthermore, While

the literature using deep architectures mostly focused on OFDM wave-forms, in this

thesis, it is studied the performance of using various deep architectures for multiple

systems including OFDM and GFDM.

Doppler frequency estimation without prior knowledge was studied . There are some

similar studies in the literature. Even if there are studies claiming to be blind in

them, these studies are not completely blind. In [21], the authors proposed two

Doppler estimation algorithms for underwater acoustic communications to improve the

performance of the communication system. The algorithms utilize training sequences

located at the beginning and at the end of transmitted data frames. However, the

algorithm is limited to the use of PSK modulation and synchronization is required.
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In [22], the authors proposed joint Doppler shift and channel estimation algorithm for

OFDM transmission systems. The method is based on a time-varying channel model

and it utilizes the time-domain training data in successive OFDM symbols. Besides,

time domain synchronization is required for this algorithm. In [23], the authors

proposed Doppler spread estimation algorithm for OFDM transmission systems. The

algorithm utilize phase data of time domain channel estimation over various OFDM

blocks and it is restricted for non-Rayleigh fading channel.

1.2 List of Contributions

In the first part of this thesis, deep receiver structures and their performances are

studied for multi-carrier transmission systems. The contributions related to that part

can be summarizedof the first stage of the thesis can be summarized as follows:

• This thesis introduces a DL based receiver for multi-carrier systems without

requiring an additional channel equalization module and eliminates the need for

including a coarse detector in the receiver.

• Various 2D CNN receiver architectures and their performance are studied for the

design of a deep receiver.

• Neural network and transfer learning is utilized to reduce the complexities for

GFDM transmission systems.

In the second part of this thesis, a blind maximum Doppler prediction algorithm has

been proposed to detect the strength of Doppler shift effect. The contributions of the

second stage of the thesis can be summarized as follows:

• Maximum Doppler estimation is not available in the literature as blind and it has

been proposed for the first time in the scope of the thesis.

• CNN based artificial neural network has been used for Doppler estimation.

• SCF was used to extract the feature of the Doppler frequency, and the CNN

regression network was used to measure the strength of the Doppler frequency.
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2. BACKGROUND

In this section, the concepts that will form the basis for the next chapters are defined.

The complex baseband equivalent term used in creating wireless channel and signal

models is explained. The preferred basic distributions for wireless channel models are

examined.

2.1 Complex Baseband Equivalent

In communication systems, the simulation model is implemented in two ways:

Passband model and Equivalent baseband model. In the passband model, also called

waveform-level simulation model, the transmitted signal, communication channel and

received signal are all represented by samples of wave-forms.

Typically, every details of RF carrier is simulated in the waveform level simulation.

Since it requires more samples to represent signal and makes more process to get the

desired signal, it consumes more time, memory. Therefore, waveform level simulation

model is inefficient way of simulation of communication systems.

For the equivalent complex-baseband model, the required useful value is considered

instead of using all unnecessary samples of RF carrier. Thus, the entire symbol,

channel and process are represented by a single sample each separately. Therefore,

equivalent complex-baseband model is efficient and preferred way of simulation of

communication systems.

2.1.1 Complex baseband representation

In any communication system, the transmitter generates information in the baseband

and constructs passband waveform. The message to be transmitted is represented as

the complex baseband equivalent as follows.

s̃ = mI(t)+ jmQ(t)
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Figure 2.1 : Wireless communication representation

As real part of the symbol is mapped amplitude of the cosine wave, imaginary part of

the symbol is mapped amplitude of the sine wave. Resulting waveform is as follows

s(t) = mI(t)cos(2π fct)−mQ(t)sin(2π fct)

= a(t)cos [2π fct +φ(t)]

where,

a(t) =
√

mI(t)2 +mQ(t)2

φ(t) = tan−1
(

mQ(t)
mI(t)

)
Entire process is given in Figure 2.1. In the receiver part, demodulation is performed

using same carrier signal. Redundant high frequency component is suppressed by LPF

and desired complex-baseband signal is obtained.

Likewise wireless channel can be represented by complex-baseband equivalent. Since

wireless channel is modeled linear time invariant system, its effect on the modulated

signal is represented as linear convolution.

r = s∗h+w

The corresponding complex-baseband equivalent is expressed as
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(rI + jrQ) = (sI + jsQ)∗ (hI + jhQ)+(wI + jwQ)

Complex baseband representations of the signals are efficient way of modeling wireless

communication systems. Therefore, in this thesis, subsequent models will be modeled

as a complex-baseband equivalent.

2.2 Additive White Gaussian Channel

Additive white Gaussian noise is the most used model in information theory. It reduces

communication performance in the presence of thermal noise. Thermal noise is caused

by the atoms in the receiver electronics vibrating and forming random signals.

The term additive white Gaussian noise (AWGN) originates due to the following

reasons:

• Additive: The received signal is equal to transmitted signal plus noise, where the

noise is statistically independent of the signal.

r(t) = s(t)+w(t)

• White: In the visible spectrum, white color is composed of all frequencies i.e. it is a

linear combination of all colors. Similarly, the white noise is called white because it

has an equal power in all frequency components in the spectrum. Auto-correlation

function of the noise is dirac pulse due to its infinite spectrum, which means it

has only correlation own its own, not with its delayed version. As a result of this

characteristic, AWGN consists of independent samples.

The signal of interest is always band-limited in the spectrum. Accordingly, noise

components that are not required are filtered out. This leads to transition from ideal

to non-ideal case. Likewise, if the signal is sampled, the frequency components

of the noise greater than half the sampling frequency are filtered out. Resulting

in-band noise after filtering is depicted in Figure 2.2.

In the spectrum, power of the noise components per unit bandwidth is given as

N0 =
Pw

B
(2.1)
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Figure 2.2 : In-band noise after filtering

In-band noise power after sampling with Fs frequency

Pw = N0 ·
FS

2
(2.2)

Consequently, noise power is directly proportional to the sampling frequency,

which is twice of the signal bandwidth.

• Gaussian: The probability density function of the noise samples is Gaussian

distributed with a zero mean. The reason for being its distribution normal originates

from the central limit theorem. At its origin, noise is a combination of the

distribution of energy produced by many atoms. Normal distribution is observed

by combining all these distributions. Probability density function with dependent

variable n as follows:

f (n) =
1√

2πσ2
n

e
− (n−µn)2

2σ2n (2.3)

where σ2
n is the variance and µn is the mean of the noise samples.

AWGN channel is one of the most important factors affecting communication

performance. Generally, the performance of communication is measured by a bit

error curve. Figure 2.3 shows the BPSK performance on the AWGN Channel. Bit

error decreases with increasing SNR.

Since the AWGN samples are uncorrelated, the most optimal detection to be made

on the receiver when the encoded symbol is sent is to make a prediction with the
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maximum likelihood decision region. Maximum likelihood receiver is used in the

generation of the curve in Figure 2.3.
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Figure 2.3 : Bit error rate performance for BPSK modulation

The AWGN characteristic is better depicted in the constellation diagram. In Figure

2.4, the 4 cases clearly show the nature of the phenomenon. For the first figure,

BPSK symbols without noise is given. Then, AWGN noise with 5, 10, 20 dB SNR

is added respectively. Clear distinction appears to start at 10 dB SNR.
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Figure 2.4 : Constellation diagram for BPSK with and without noise
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2.3 Main Characteristics of Fading Channels

In a wireless communication environment, the signal is exposed to many effects before

it reaches the receiver, such as multi-path, Doppler shift and spread, attenuation,

shadowing, absorption, refraction, diffraction, reflection and scattering. These effects

can significantly change communications performance. However, in order to eliminate

or reduce these effects, studies on statistical model and characterization have been

carried out and some methods have been developed.

2.3.1 Slow and fast fading

In the mobile communication environment, there may be moving objects, living things,

mobile receivers and transmitters. This mobility causes the Doppler effect. Doppler

effect negatively affects frequency domain. It causes the carrier frequency to shift and

the frequency components of the signal to spread.

The mobile communication scenario is depicted in Figure 2.5. In the scenario where

the transmitter is moving, the center frequency of the transmitted signal increases in

the direction of motion, while its center frequency decreases in the opposite direction.

In the regions between the direction of movement and the opposite direction, center

frequency values vary between the two extreme values. This phenomenon causes

the center frequency to shift. Assuming that the frequency-shifting signal reaches the

receiver at the same time, the spectrum of the signals with different shifts is summed.

Therefore, Doppler spread occurs.

RECEIVER

MOBILE
TRANSMITTER

THREE DIFFERENT
FREQUENCY SHIFTHED COPY

OF THE SAME SIGNAL

Figure 2.5 : Mobile communication scenario
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Time domain and frequency domain are dual. This property leads to the uncertainty

principle. The uncertainty principle is based on the work of the German physicist

Heisenberg. According to Heisenberg, in some cases the position can be known quite

well, or in other cases momentum is well known, but there are limits to the accuracy of

knowing these two properties at the same time. Similarly, there is the same relationship

between time and frequency domain. So there is a relationship between these two

domains.

As the Doppler effect causes shifting in the frequency domain, its effects can be

examined in the time domain. If there is an excessive shift in frequency, excessive

fluctuations occur in time. This property is known as fast fading. Likewise, if there is a

relative less shift in frequency, less fluctuations occur in time. This property is known

as slow fading.

The frequency shift that is the result of the Doppler effect causes a constraint in time

which is known as coherence time. As can be seen in Equation 2.4, the coherence time

is inversely proportional to the maximum Doppler shift.

Tc ≈
1

f dmax
(2.4)

As a result, if the symbol duration is shorter than the coherence time, slow fading

occurs. Similarly, if the symbol duration is greater than the coherence time, fast fading

occurs.

2.3.2 Frequency-flat and frequency-selective fading

Another effect that disrupts the signal in the wireless environment is multipath channel

fading. Multipath channel means that the signal sent from the transmitter passes

through many paths and reaches the receiver at different times. This scenario is

depicted in Figure 2.6. As can be seen, copies of the signal sent from the transmitter are

reflected from many buildings and reached the receiver. These signal copies, coming at

different times, combine at the receiver in a constructive or destructive way. As a result

of this phenomenon, some carrier frequencies become stronger while others become

weak in the context of the power.
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Copies of the symbol reaching the receiver relatively late by passing through the

multipath channel combine with the first copies of the next symbol. This disruptive

effect is called Inter Symbol Interference. As ISI causes interference of symbols, it

also makes it difficult to demodulate the signal at the receiver. Hence, ISI is one of the

main distortions to be avoided.

Transmitter Receiver

Time

Received
Power

Power Delay Profile

Figure 2.6 : Multipath environment

Just like the effect of Doppler shift on the signal in time, time dispersion causes

fluctuations in frequeny domain. As time dispersion increases, constant amplitude

bandwidth will decrease in frequency. Constant amplitude bandwidth which is known

as coherence bandwidth is given in the Formula 2.5.

Bc ≈
1

5τrms
(2.5)

where τrms is RMS delay spread. Therefore, the coherence bandwidth is inversely

proportional to the effective delay spread.

As a result, if the signal bandwidth is shorter than the coherence bandwidth, flat fading

occurs. Similarly, if the signal bandwidth is greater than the coherence bandwidth,

frequency selective fading occurs.

Summary table of fading channel characteristics is given in Figure 2.7. Here, Ts is

symbol period and Bs is symbol bandwidth.

2.4 Modeling of Fading Channels

In the previous section, the main sources of the problem are mentioned. Researchers

work with some models to solve these problems. By building the model, the problem

is defined and the best solution can be produced. For instance, some distributions are
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Figure 2.7 : Summary table of fading channel characteristics

observed to adapt to the characteristics of the channel for the amplitude fluctuations.

In this section, the most used two amplitude distributions will be examined.

2.4.1 Rayleigh distributed fading

Scattering occurs when an electromagnetic wave hits a surface i.e. multiple copies

of the signal scatter around from the objects. According the Central Limit Theorem

(CLT), if there are many objects in the wireless communication environment, impulse

response of the channel will be well-modeled as a Gaussian process. Further, if there

is no Line of Sight (LOS) connection or dominant component to the scatterer, then the

process will be zero mean and phase will be uniformly distributed between 0 and 2π .

In this case, if the imaginary and real component is Gaussian distributed, the amplitude

of the fading coefficient will be Rayleigh distributed.

Probability density function of Rayleigh distribution is given as

px(x) =
2x
Ω

exp
(
−x2

Ω

)
, x≥ 0 (2.6)

where Ω is the shape parameter. This parameter will be large, if the components have

large variances.

As fading coefficient of the channel is distributed according to Rayleigh, corresponding

the instantaneous SNR per symbol of the channel γ is distributed according to

exponential distribution. Probability density function of corresponding exponential

distribution is given as
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pγ(γ) =
1
γ̄

exp
(
−γ

γ̄

)
, γ ≥ 0 (2.7)

where γ̄ is the average SNR per symbol.

Probability density function of the Rayleigh distribution with various shape parameter

Ω is given in Figure 2.8.
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Figure 2.8 : Rayleigh distributed probability density function

2.4.2 Nakagami-m distributed fading

Wireless channel characterization fits Nakagami-m distribution, when there are

contributions from both diffused and specular scattered components, i.e., specular

component with diffused components have less energy reaches to the receiver.

Probability density function of Nakagami-m distribution is given by

px(x) =
2mmx2m−1

ΩmΓ(m)
exp
(
−mx2

Ω

)
, x≥ 0 (2.8)

where Γ is gamma function, m is the Nakagami-m fading parameter (shape parameter),

which ranges from 1
2 to ∞ and Ω is the spread parameter, which takes values greater

than 0.

Nakagami-m distribution is a more general definition of Rayleigh distribution, i.e., it

defines other distributions according to various parameters. For instance, it converges

one-sided Gaussian pdf (m = 1
2 ), Rayleigh pdf (m = 1) and AWGN channel (m−→∞).

14



As fading coefficient of the channel is distributed according to Nakagami-m,

corresponding the instantaneous SNR per symbol of the channel γ is distributed

according to gamma distribution. Probability density function of corresponding

gamma distribution is given by

pγ(γ) =
mmγm−1

γ̄mΓ(m)
exp
(
−mγ

γ̄

)
, γ ≥ 0 (2.9)

where γ̄ is the average SNR per symbol.

Probability density function of the Nakagami-m distribution with various shape

parameter m and spread parameter Ω is given in Figure 2.9.
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Figure 2.9 : Nakagami-m distributed probability density function

2.5 Maximum Likelihood Detection

In the communication medium, the signal necessarily comes to the receiver with noise.

The receiver should be able to detect the information signal from the transmitted signal.

Therefore, parameter estimation becomes important. Parameter estimation includes

different optimal algorithms for different models. Maximum likelihood estimation

provides optimum estimation under certain conditions.

The mathematical model of the received signal is important in terms of decision of

detector type and performance. The simple mathematical model of the received signal

in AWGN environment is given as
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y = x+w (2.10)

where x is a constant term and w is AWGN noise with zero mean and σ2 variance.

Therefore received signal y is distributed with x mean and σ2 variance. Joint

probability density function of the received signal and transmitted signal is used to

estimation of transmitted signal x. Joint PDF is given as

f (y;x) =
1√

2πσ2
w

e
− (y−x)2

2σ2w (2.11)

Joint probability density function is a function that gives how the received signal and

the transmitted signal changes jointly. It can be found in marginal distributions using

this function.

As the noise power increases, the performance of the estimation decreases. This can

be intuitively understood with graphics. Joint PDF with noise power σ2
w = 0.5 is

illustrated in Figure 2.10 and Joint PDF with noise power σ2
w = 2 is illustrated in

Figure 2.11. It can be observed that Joint PDF is more intense on a line with lower

variance noise power. As noise power increases, Joint PDF spreads. Consequently, the

probability of taking various values of the transmitted signal increases. In this case, the

distribution of the received signal also spreads. Therefore, the estimation performance

is affected.

From Figure 2.10 and Figure 2.11, it can be seen that the accuracy of the

decision-making may change depending on the strength of the noise. In both figures,

distributions are depicted on a single sample. In Equation 2.11, the distribution

of a single observation is defined. Since the distribution does not only depend on

observation, but also to the input, it is also called the likelihood function. The highest

value that the likelihood function takes is called the maximum likelihood estimate. The

power of noise affects the reliability of this estimation.

Figure 2.12 depicts the distributions that occurs when two separate observation data

are obtained. For instance, since the noise is zero mean and observed data y is -2, the

maximum likelihood estimate x̂ is -2 according to the resulting distribution. Likewise

if the observed data y is 1, the maximum likelihood estimate x̂ is 1 according to the

resulting distribution.
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Figure 2.10 : Joint PDF with σ2
w = 0.5

In 2.10, the model is defined for a single observation. As the number of observations

increases, the distribution and dimension of Joint PDF will change. The reliability of

the obtained estimation with increasing observation data will also change.

Vector representation of the AWGN model is obtained with many observation data. It

is a function of the time. It is evaluated the input as constant during the observation

period. Vector model of the constant input is given as

y(n) = x+w(n) (2.12)

Assuming that all observations are independent of other observations in the observation

period, resulting Joint PDF is given as

f (y;x) = f (y(0);x)∗ f (y(1);x)∗ · · · ∗ f (y(N−1);x) (2.13)

The maximum value x̂ is the maximum likelihood estimate of the input when y is

observed. Maximizing this function is also equivalent the maximizing of the natural

logarithm of this function. Natural logarithm of this function is called as log-likelihood
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Figure 2.11 : Joint PDF with σ2
w = 2

function. Maximizing log-likelihood function is also equivalent minimizing cost

function obtained from derivation of the log-likelihood function and it is given as

J(x) =
N−1

∑
n=0

(y(n)− x)2 (2.14)

Therefore, the minimum value of this function is equivalent of the maximum likelihood

estimate of the input.
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Figure 2.12 : Conditional PDF with various observations
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3. A BRIEF INTRODUCTION TO DEEP LEARNING

Classical methods use mathematical models to produce an optimal solution. In

contrast, DL methods search for an optimal solution step by step in the training phase.

In this section, general concepts of DL are explained briefly and implementation on

single carrier systems is described.

3.1 Multilayer Perceptron

Basically, a MLP is a deep, artificial neural network and it is composed of more than

one perceptron. An example for MLP is given in Figure 3.1. Typically, the data is fed

to the input layer as a vector and therefore, if the input data is two dimensional vector

(e.g. image) or high dimensional vector, it must be converted to the vector format to

fed the input layer. The data in the input layer is multiplied by weights along each

connection and added a bias terms as it passes through neurons of the first layer. After

going through a predefined activation function, the output of the neurons are obtained.

Then, the output of those neurons are then transmitted to the neurons in the next layer

in the same way.

The final layer that the data reaches through the network is the output layer. An

estimate of the network is obtained for the desired result in the output layer. A network

can perform a classification task or a regression task (or both).

3.1.1 Building model

A neural network model can work linearly to handle linear problems. Nonlinear

problems can also be solved by neural networks through the use of activation functions.

Neural networks have ability to solve nonlinear problems with the help of activation

functions as mentioned above. Some commonly used activation functions are

depicted in Figure 3.2. For instance, sigmoid and ReLu activation functions are two
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Figure 3.1 : Multilayer perceptron architecture

examples for activation functions and they both can be used in various regression and

classification tasks.

The essential building block of a typical neural network is perceptron. A perceptron

consists of only one neuron and activation function. It, therefore, produces a single

output value (y) as follows:

y = φ(WT x+b) (3.1)

where y represents the output, x is an input vector, W and b denotes the weight matrix

and the bias term, respectively. φ represents activation function.

A MLP is a neural network containing multiple layers if all the layers are formed of

perceptrons. MLPs with one hidden layer are capable of approximating any continuous

function. Perceptron can solve only limited and relatively easier problems(e.g. XOR,

NOT, AND etc) but thanks to the MLP, computers are no longer limited by XOR cases

and can learn richer and more complex models.

3.1.2 Training phase

Training the model with labeled data is called supervised learning. In supervised

learning training, the algorithm tries to produce correct output (estimate) using labeled

dataset. This estimate is obtained by multiplying input values with several weight
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Figure 3.2 : Commonly used activation functions

coefficients and adding several bias terms. Then, the loss function is tried to be reduced

by means of an optimizer. Here, the loss function should be selected so that the output

of the neural network best suits the labels. For instance, the binary cross-entropy loss

function is as follows

L (y, ŷ) =−y log(ŷ)− (1− y) log(1− ŷ) (3.2)

Input [x] 
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Output [   ]  
(Estimation)
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(Ground Truth)

Optimizer
(Objective Engine)

Cost Function
(Objective)

Neural Network
 [        ]
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̂ 
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Figure 3.3 : Training phase of supervised learning algorithm
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The loss function is chosen to suit the problem so that the neural network can produce

a better prediction result and the optimizer can approach the correct result as quickly

as possible.

The optimizer acts as an engine running the objective function and its task is to ensure

that the loss function reaches the optimum value in the fastest and most accurate

way. Since the neural network works step by step, the optimizer moves the neural

network weights and bias values in a direction that reduces the loss function at each

step. The optimizer’s production of weight and bias values to reduce loss function is

called back-propagation. Therefore, the value obtained from loss function propagates

over weights and bias values. Adam, one of the most popular among optimizers, can

perform this task quickly and accurately.

Training is completed after the neural network approaches the best value iteratively or

after a certain cycle period.

3.1.3 Testing phase

Optimum weights and bias values are obtained during the training phase. During the

testing phase, the system is operated with weights and bias values obtained during the

training phase. In order for the performance to be high, the relationship obtained from

the data used in the testing phase must be related to the data used in the training phase.

Among the various designs, there are evaluation criteria. Consequently, various

metrics are used for the performance of the neural network design. For instance,

precision, recall, confusion matrix, accuracy, specificity, F1 score, precision-recall or

PR curve, ROC curve.

3.2 Convolutional Neural Network

In machine learning, feature extraction must be prepared by the user. Structures where

artificial neural network has features such as both feature extraction and classification

or regression are called deep learning. Therefore, CNN is a DL technique [24] [25].

The CNN structure is shown in Figure 3.4.

24



CONVOLUTION POOLING FLATTEN FULLY CONNECTED SOFTMAX

FEATURE EXTRACTION CLASSIFICATION

CONVOLUTIONAL NEURAL NETWORK

IN
PU

T

Figure 3.4 : Convolutional neural network architecture

In end-to-end solutions, for example, in classification and regression problems without

feature extraction, the data are fed directly to the neural network. For example, when

the data is a picture, MLP runs directly on each pixel of the picture.

To classify the data, a CNN uses filters as opposed to MLP. The task of those filters

is to extract features by scanning the data. The features obtained becomes input

values for the next CNN layer. In the next layer, it is determined whether there is a

combination of features in the previous layer. Optionally, this process can be continued

with the flattening layer. Consequently, high level features (e.g. edges, motifs for

image dataset) are created by combining small level features (e.g. edges-lets, color,

gradient orientation for image dataset). In the flattening layer, the data prepared in the

convolution layer is made parallel to be transmitted to the classification layers. Finally,

the extracted features from the data are classified with MLP the the final layers.

Max-pooling (down-sampling) layers can be used in after convolution layers. In

max-pooling layer, instead of transferring all the values obtained from the convolution

layer, the maximum value is transferred.
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If a model is trained on a lot of training data, it starts to learn noise and incorrect data

inputs instead of generalization in our dataset. This phenomenon is called overfitting.

The dropout layer is used to prevent overfitting.

3.3 Neural Receiver for Single Carrier Transmission over AWGN Channel

In this section, artificial neural network performance is examined on a PSK modulated

single carrier system. The results are compared with the linear maximum likelihood

receiver.

In single carrier systems, after the information signal is modulated, it is transmitted

with a single carrier. In the multipath channel, the signal sent by a single carrier makes

high interference to the other symbol. Therefore, these systems have high ISI. For this

reason, complex receiver structures are needed. Also, since single carrier broadband

signal is used, it cannot cope with frequency dependent noise. However, in cases where

the channel is flat, it is preferred due to its simple structure.

On the receiver side, the single carrier information signal is converted from the

passband to the baseband. From conventional linear receivers, the ML receiver

detects the data according to the criteria previously given in Chapter 2 Equation 2.14.

According to ML criterion, it is detected by determining which symbol in the diagram

is closest to the received signal.

Dense neural network with a single output is fed with received symbols to evaluate the

performance of the nonlinear receiver. The tanh function is used at the output of the

neural network. The reason for choosing this function is that its output takes a value

between -1 and +1. Loss function between output of the network and labels is chosen

as the mean square error (MSE). Adaptive moment estimation (Adam) optimizer is

selected to minimize the loss function.

The linear estimator ML maps the received signal to the closest symbol in the

constellation diagram and Unit power BPSK modulated symbols are sent with -1 and

+1 symbols. Therefore, ML estimator accepts point 0 as threshold for BPSK. For the

single carrier BPSK signal, the optimum receiver is the ML receiver because according

to this dataset the best thing to do is to divide it in half and make the decision.
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In Figure 3.5 dense network performance is shown. The results found match up with

BER performance of ML receiver. Figure 3.6 shows the decision threshold of dense

network for 14 dB SNR. The reason why performance of the dense network is the

same as ML is because the decision region is almost the same as the optimum decision

region. In Figure 3.7 dense network decision region for QPSK is shown.
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4. MULTI-CARRIER WAVEFORMS

In this section, classical multi-carrier transmitter and receiver structures will be

summarized. Problems and solution approaches will be evaluated. Advantages and

disadvantages will be discussed. Classic linear detector structures will also be shown.

Telecommunication is challenging in wireless environments due to the multipath

effects which leads to frequency selectivity. Single carrier systems can not cope with

this effect due to low symbol period and high ISI. Due to its high bandwidth, it is

subject to frequency selectivity. It also has high receiver complexity and bit rate

limitation. Multi-carrier systems, on the other hand, convert serial data to parallel

data and transmit each through separate subchannels. This makes it possible to extend

the symbol duration to achieve the same bit rate. In this way, ISI is reduced. ICI is

also reduced by separating the bit stream into subchannels and extending the symbol

duration. Thus flexibility in the receiver design is provided.

4.1 Orthogonal Frequency Division Multiplexing

OFDM is a specialized case of MCM method. It was introduced by Chang in 1966 and

became popular when it is accepted to form the basic signal format to use within 4G

LTE.

OFDM is a frequency division multiplexing scheme and has many usage advantages.

It has a lot of subcarriers and each is orthogonal to each other. As a result, inter-carrier

interference between the subcarriers is eliminated and intercarrier guard bands are not

required. The spectrum efficiency of OFDM is high as the spectra of the subcarriers

overlap. It is still separable because of having orthogonal subcarriers. FFT method is

used for mapping symbols to subcarriers. The FFT method is a fairly simple method

for digital processors. Therefore, it greatly simplifies transmitter and the receiver

design and makes digital implementation possible.
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Multipath channel is a very important factor that adversely affects performance.

OFDM uses cyclic prefix instead of guard time to deal with this effect. Thus, the

channel acts circularly instead of linear. After the CP is removed in the receiver and

FDE is applied, the frequency selective channel turns into flat fading subchannels.

Therefore OFDM can easily adapt to severe channel conditions without complex

time-domain equalization and with simple frequency-domain equalization to flat

fading subchannels. In addition, OFDM is less sensitive to sample timing offsets and

adaptive power allocation to each subbands can be easily implemented.

In addition to the positive aspects of OFDM, there are also some negative aspects. High

PAPR occurs because a symbol is a combination of many independent subcarriers.

So it requires a linear transmitter circuitry which causes to increase the complexity

of ADC and DAC converters. Besides due to cyclic prefix overhead latency is high.

Additionally, OFDM is sensitive to doppler shift, carrier frequency offset and phase

noise. Due to overlapping subcarrier spectra, high ICI occurs when orthogonality of

carriers is lost.

Block diagram of OFDM transmission system is depicted in Figure 4.1. The data

produced in the transmitter is first converted into bits and optionally encoded. These

bits are divided into parallel bits as many as the number of active payload subcarriers.

Parallel bits are mapped according to the desired modulation. The IFFT operation is

then performed to the modulated symbols. At this stage, after the samples mapped

in the frequency domain have modulated each subcarrier, time domain samples are

obtained. Obtained samples are converted from parallel stream to serial stream. To

cope with multipath channel effects, a piece is copied from the end of the symbol and

pasted to the beginning of the symbol. The resulting OFDM symbol is sent to the

receiver through the channel.

On the receiver side, first operation is CP removal. Then the samples are converted to

parallel stream. FFT operation is performed to parallel stream. At this stage, the signal

is converted from time domain to frequency domain. Channel equalization is carried

out by channel coefficients obtained by channel estimation methods. Symbol detection

is performed to the equalized signal. Finally, estimated bits are transferred to the bit

sink after the symbols are demapped.
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Figure 4.1 : Block diagram of OFDM transmission system

4.2 Single Carrier Frequency Division Multiplexing

In this section, SC-FDM modulation system, which has a single carrier and a close

relationship with OFDM, which is a multi carrier system, is examined. Further, it is

explained why this system should be evaluated as a multi-carrier system. SC-FDM is

used together with OFDM in LTE systems and the reason for this is evaluated.

OFDM transmission system has high PAPR due to IFFT operation. The peak value

of the signal consumes high power. Although, mobile devices have limited energy

capacity, base stations do not have an energy constraint. Thus, although ofdm is

suitable in downlink, it cannot be used in uplink. Therefore, there is a need for

SC-FDM transmission systems which has lower PAPR property.

Symbols are mapped on subcarriers with the IFFT operation in the OFDM transmission

systems. SC-FDM transmission systems distribute the symbols to all carriers with

the FFT-IFFT pair. The critical point here is that the FFT point is smaller than the

IFFT point. In this way, the PAPR is reduced. With the FFT-IFFT operation, a

single carrier communication system is obtained. Less PAPR can be obtained with

high pulse shaping coefficient. While earning in PAPR property, some properties are

disadvantageous. Computation complexity increases as more operation are performed

on the receiver and transmitter than OFDM. Less data is mapped to the subcarriers and

hence the data rate decreases.

In contrast to OFDM, the SC-FDM uses an additional N-point FFT block at transmitter

and an N-point IFFT block at receiver. In Figure 4.2, block diagram of SC-FDM
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transmission system is depicted. The data produced in the transmitter is first converted

into bits and optionally encoded. These bits are divided into parallel bits as many as

the number of active payload subcarriers. Parallel bits are mapped according to the

desired modulation. The M-point FFT operation is then performed to the modulated

symbols. This operation spreads the data to M subcarriers. The next operation is that

allocation M data to N subcarriers. It gets the name LFDMA by allocating the data of

different users to a local region. Likewise, it gets the name IFDMA by allocating the

data of different users to a interleaved region. The IFFT operation is then performed to

the allocated symbols. At this stage, after the samples mapped in the frequency domain

have modulated each subcarrier, time domain samples are obtained. Obtained samples

are converted from parallel stream to serial stream. To cope with multipath channel

effects, a piece is copied from the end of the symbol and pasted to the beginning of

the symbol. If this copied part of the signal is larger than multipath channel taps, the

frequency selective channel turns into a flat fading channel. Next step is the sending

SC-FDM symbol via RF components to the receiver through the channel.

First CP removal is performed on the receiver side. Then the samples are converted

to parallel stream. N-FFT operation is performed to parallel stream. At this

stage, the signal is converted from time domain to frequency domain. Channel

equalization is carried out by channel coefficients obtained by channel estimation

methods. Symbol-spaced equalizer or fractionally-spaced equalizer can be used as

channel equalization method. FSE operates at twice the operation range of SSE. If

nonlinear receiver is desired, decision-feedback equalization can be selected. After

deallocating the symbols, M-point FFT operation is performed. Then, symbol

detection is performed to the equalized symbols. Finally, estimated bits are transferred

to the bit sink after the symbols are demapped.

4.3 Generalized Frequency Division Multiplexing

It is focused on high data rate and reliable coverage for 4G technology. Capacity

enhancement, ultra-high reliability, low latency and massive connectivity were desired

for 5G technology. GFDM was proposed to meet these needs for 5G.

Besides the advantages of OFDM transmission system, it has some undesirable

features. For example, it has high out-of-band emission due to the pulse shape being
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Figure 4.2 : Block diagram of SC-FDM transmission system

square wave. CP is required for each OFDM symbol and hence delay increases.

Due to IFFT operation, it has high PAPR. It is very sensitive in terms of carrier

frequency shift, which requires advanced synchronization mechanisms to guarantee

that the orthogonality does not affect. OFDM is not fully suitable to meet the needs

for 5G due to its negative aspects mentioned. In order to achieve the 5G requirements,

various multi-carrier based wave-forms are getting considered. GFDM transmission

system is one of the considered wave-forms.

The demand of many devices to use the spectrum leads to a scarcity in the spectrum.

It is known that OFDM system causes strong spectral leakage even when using pulse

shaping techniques or guard channels. Spectral leakage means that the scarce spectrum

is not used efficiently. Therefore, GFDM transmission systems are proposed as a

solution to this problem. It minimizes leakage in the spectrum with the help of pulse

shaping functions. However, pulse shaping functions impair the linearity of the signal.

Hence, this leads to ICI and ISI due to the overlapping of the spectrum. Using the pulse

shaping function causes increased complexity in the receiver. Various interference

cancellation algorithms have been proposed to reduce complexity [26] [27]. By

introducing frequency shift offset-QAM technique, implementation complexity and

out-of-band radiation in GFDM can be reduced as in [28]. GFDM transmission

systems provide the spectral efficiency by removing the requirement of cyclic prefix

(CP) for each OFDM symbol with only one cyclic prefix for the entire block.

GFDM falls under the category of filtered multi carrier systems. GFDM is the

generalized version of the traditional OFDM and single carrier with SC-FDE. GFDM

corresponds to OFDM when the number of subsymbol is equal to 1 and the pulse

33



GFDM DEMODULATOR

GFDM MODULATOR
S / P

BLOCK DIAGRAM OF GFDM TRANSMISSION SYSTEM

� MAPPING UPSAMPLING PULSE SHAPING IFFT ADD CP

CHANNEL

REMOVE CPFDEDETECTORDEMAPPINGP / S

P / S

S / PFFTDOWNSAMPLING
�

̂ 

Figure 4.3 : Block diagram of GFDM transmission system

shaping function is square wave. GFDM corresponds to SC-FDE when the number of

subcarriers is equal to 1.

In Figure 4.3, block diagram of GFDM transmission system is depicted. The data

produced in the transmitter is first converted into bits and optionally encoded. These

bits are divided into parallel bits as many as the number of active payload subcarriers.

Parallel bits are mapped according to the desired modulation. Upsampling operation

is then performed. Next, pulse shaping operation is carried out. According to the

type of pulse shaping function, the gain from OOB emission increases, while the loss

from ISI and ICI increases. The IFFT operation is then performed to the symbols. At

this stage, after the samples mapped in the frequency domain have modulated each

subcarrier, time domain samples are obtained. Obtained samples are converted from

parallel stream to serial stream. To cope with multipath channel effects, a piece is

copied from the end of the symbol and pasted to the beginning of the symbol. The

resulting OFDM symbol is sent to the receiver through the channel.

On the receiver side, first operation is CP removal. Then the samples are converted to

parallel stream. FFT operation is performed to parallel stream. At this stage, the signal

is converted from time domain to frequency domain. Channel equalization is carried

out by channel coefficients obtained by channel estimation methods. Symbol detection

is performed to the equalized symbols. Next, downsampling operation is carried out.

Finally, estimated bits are transferred to the bit sink after the symbols are demapped.
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5. DEEP RECEIVER DESIGN FOR MULTI-CARRIER WAVEFORMS

A communication system essentially consists of three parts: Transmitter, channel,

receiver. The capabilities of the receiver affects the performance of the communication

system significantly. There are three main stages in the receiver design: (I) Antenna

design, (II) electronic design and (III) algorithmic design. This chapter focuses on the

third stage: algorithm design and studies various strategies to utilize DL in receiver

design.

In recent years, as the computing power of computers increase, the use of artificial

intelligence also increases in many disciplines. In this chapter, we study the

performance of utilizing artificial neural network in the receiver design. A unified

multi-carrier system was adopted at the transmitter side. Feature extraction and

classification were performed with a deep neural network in an end-to-end fashion.

First, the labels were created with the known symbols to obtain the training data, and

then, the training was carried out with various deep architectures. The results were

evaluated on both OFDM and GFDM-based multi carrier systems. 1D, 2D CNNs and

MLP were used as detector network structures and their performances are compared

with the performance of various conventional receiver algorithms.

5.1 System Model

In the receiver design, transmitted symbols are estimated with the received signal and

available data. While this estimation is made, the effects that the symbol is exposed

are modeled. The importance of modeling is that a design can be made to reverse the

effects of the symbols is exposed. If the system is modeled, the theoretical performance

of the design can also be calculated.

After modeling the system in receiver design, DL based receivers can be used instead

of linear receivers for the detection of symbols. In Fig. 5.1 the block diagram of

such wireless system is depicted [29]. First, binary data vector b is generated by a

data source. Coding and 2φ -valued complex constellation mapping is performed to

35



^ ^~

Multicarrier Modulation

OFDM Transmitter
Co

di
ng

 &
 C

on
st

el
la

tio
n

M
ap

pi
ng

Cy
cl

ic
 P

re
fix

 In
se

rti
on

Ch
an

ne
l

Cy
cl

ic
 P

re
fix

 R
em

ov
al

Deep Detection &
Demodulation

De
co

di
ng

 &
 C

on
st

el
la

tio
n

De
m

ap
pi

ng

N-IFFT

GFDM Transmitter

N-IFFTPrecoder

Bi
na

ry
 S

ou
rc

e

Bi
na

ry
 S

in
k

SC-FDM Transmitter

N-IFFTPrecoder
(M-DFT)

OTFS Transmitter

N-IFFTPrecoder
(ISFFT)

b d x y d b~x y

Figure 5.1 : An overview of the proposed deep receiver architecture

obtain symbol vector d, where φ is the modulation order. The resulting vector d

has block based structure. Thus, it can be decomposed in frequency and time space

into M subsymbols and K subcarriers, wherein K is the total number of subcarriers

and M is the number of symbols in one block according to d = (d0, . . . ,d T
M−1)

T and

dm = (d0,m, . . . ,dK−1,m)
T . The total number of symbols in one multi-carrier waveform

symbol becomes N = KM.

N dimensional x time vector is created by modulating the d matrix according to the

desired multi-carrier waveform type such as OFDM, GFDM, SC-FDM, SC-FDE or

OTFS as in Eq. 5.1

x(n) =
K−1

∑
k=0

M−1

∑
m=0

dk,mgk,m(n), n = 0, . . . ,N−1 (5.1)

The model of gk,m(n) vector differs according to the desired waveform type. For

example, in GFDM, the gk,m(n) is defined as shown in Eq. 5.2; there, operations such

as pulse shaping, upsampling and frequency shifting are applied on vector d:

gk,m(n) = g
(
(n−mK)modN

)
exp
(

j2π
k
K

n
)

(5.2)

where gk,m(n) is formed with the pulse shaping filter g(n). Since all the processes

that modulate the symbol to be transmitted are linear, they can be collected in a single
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matrix. The linear relationship between the vectors x and d is given in Eq. 5.3, which

can be exploited in the implementation:

x = Ad (5.3)

The NxN modulation matrix A is created as shown in Eq. 5.4 with gk,m(n) which

defines the columns of A. The mapped bits in d are modulated by the modulation

matrix A. Here, the modulation matrix is selected according to the chosen modulation

type:

A = [g0,0, . . . ,gK−1,0,g0,1, . . . ,gK−1,1, . . . ,gK−1,M−1] (5.4)

After the modulation is performed, cyclic prefix is added to the resulting modulated

signal to cope with multipath channel effects and adding cyclic prefix yields the time

vector x̃ to be transmitted. The received signal is exposed to a frequency selective

Rayleigh fading channel as considered in Eq. 5.5:

ỹ = H̃x̃+ w̃ (5.5)

where, we assume that the channel length is shorter than the CP and perfect

synchronization is ensured. After removing the cyclic prefix, Eq. 5.5 can we re-written

as in Eq. 5.6:

y = Hx+w (5.6)

where, y is N dimensional and the received matrix H is the NxN circular convolution

matrix created from the channel impulse response coefficients given by h =

[h(1),h(2), . . . ,h(Nch)]
T , and w is N dimensional additive white Gaussian noise

(AWGN) vector. The elements of h and w follow C N (0,1) and C N (0, σ2
w)

distributions respectively, where C N (µ, σ2) shows the distribution of a circularly

symmetric complex Gaussian random variable with mean µ and variance σ2.

Combining Eq. 5.6 and Eq. 5.3 yields to Eq. 5.7 as:
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y = HAd+w (5.7)

After zero forced (ZF) channel equalization we obtain the following equation:

z = H−1HAd+H−1w (5.8)

Linear demodulation of the received symbols can be defined as:

d̂ = Bz (5.9)

where B is NxN dimensional receiver matrix. Different types of linear detectors,

e.g. zero forced receiver BZF = A−1,matched filter (MF) receiver BMF = A† and

minimum mean square error (MMSE) receiver BMMSE = (Rw +A†A)−1A† can be

used to detect the data symbols from the equalized observation signal, where Rw

denotes the covariance matrix of the noise.

The linear receivers mentioned have their own advantages and disadvantages. Zero

forced receiver tries to reduce the effects affecting the symbol to zero. It uses

the exposed effects to perform this operation. Therefore, the ZF receiver removes

self-interference. However, it enhances noise while removing self-interference.

This is mostly because the distorting effects are in reducing direction. Matched

filter receiver is optimal for maximizing the signal-to-noise ratio in the presence of

additive stochastic noise. It uses the symbol constellation or modulation matrix to

perform this operation. Therefore, MF receiver maximizes the SNR while introducing

self-interference. This is because it strengthens the sign while strengthening the

interference. Minimum mean square error receiver balances self interference and noise

and performs the best among these three methods. It uses the symbol constellation

or modulation matrix and autocorrelation of the noise simultaneously to perform this

operation.

For neural network based detection, the received signal y is fed as an input to a deep

neural network. After the estimated symbol vector d̂ is taken from the output of the

deep receiver, decoding and constellation demapping operations are performed. The

resulting vector b is sent to the binary sink.
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Modulation matrix performs different operations for each wave-forms. OFDM

modulation matrix performs N-point IFFT operation which means frequency shifting.

GFDM modulation matrix performs upsampling, pulse shaping and frequency shifting.

Furthermore, it has circular structure and because of that, it allows the use of cyclic

prefix to make frequency domain equalization possible. The magnitude of the GFDM

modulation matrix is depicted in Fig. 5.2.
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Figure 5.2 : GFDM modulation matrix ( K=8, M=5, RRC Filter (a=0.1))

5.2 Deep Learning Aided Receiver Design

Traditional receiver structures used for the unified multi-carrier communication system

are mentioned in Section 5.1. These structures decide transmitted symbols according

to the solution of the modeled system. If the system works in practice varies according

to the modeled system performance in major changes occur. Apart from the algorithms

that constantly update the system with prior knowledge, adaptive new solutions cannot

be produced. Therefore, there is a need for algorithms that will react instantly to
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changes in the system. Artificial neural network provides perfect compatibility by

updating the solution with training.

Although traditional detection algorithms based on prior knowledge can update, they

are not sensitive to changes other than prior knowledge. Hence, it falls short in

producing an effective solution. In addition, some prior knowledge cannot be obtained

with full accuracy and is estimated. This poses a disadvantage for system success.

In contrast to traditional methods, DL techniques offer a better approach to the solution

of the problem. It generates a general solution with the data through the training

phase. If a change in system parameters occurs, the artificial neural network shows

full sensitivity when a new training is performed and offers new general solution.

Therefore, the system renews itself according to the changing parameters. Despite such

an advantage, machine learning methods can work with high latency due to training

time. In the next sections, transfer learning is mentioned, which reduces the latency of

the training phase.

In communication systems, signal detection can be treated as a classification process of

recovering the transmitted signal from the (distorted) received signal where a CNN or

a MLP can be used for classification in the deep receiver. Therefore, if the symbols to

be detected are evaluated as a class, artificial neural network can be used as classifier.

DL techniques provide a general solution without explaining the internal dynamics

of the data. In wireless communication, modulation and channel form the internal

dynamics of the system. Of these dynamics, the channel has a disruptive effect and

must be eliminated. Wireless channel is very variable due to moving objects and

multipath channel effects. However, it can be evaluated unchanged at small intervals.

If the channel is known in small intervals, the transmitted symbols can be recovered. In

classical receiver architecture, pilot signals are often used and the channel is estimated

by using those pilot signals. Once the channel is estimated, channel equalization is

performed to eliminate multipath effects. The DL technique has the same framework.

Deep receiver works in two different modes: Training and Testing. Training mode can

be considered as using the pilot signals which can relate to the training data. Using

the training data, the model weights are obtained in the neural network to recover the
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Figure 5.3 : Model Summaries for both OFDM and GFDM

symbols. Testing mode does not require any pilot symbol and works for recovering

messages to be wanted to transmit by using weights obtained in the training mode.

MLP, 1D and 2D CNN structures are adopted as the deep demodulation and detection

algorithm in Figure 5.1. Network structures are modular designed to be removable

and plug-in. MLP receiver consists of 5 different modules. Each module contains

layers with different number of neurons (256,128,64,32,16). These modules are then

connected to the output layer.

Modular CNN receiver is designed as 1D since the real and imaginary parts of the

observation vector are evaluated in series. Likewise it is designed as 2D since the

real and imaginary parts of the observation vector are evaluated in parallel. Modular

2D CNN architectures are given in Fig. 5.3 for both OFDM and GFDM. It is used
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multiple convolutional layers followed by FC layers. Based on the number of used

convolutional layers and the number of FC layers, the performance of the deep receiver

changes (see Section 5.4). Complex input data is represented as a 2D vector (where

each of real and imaginary parts of a complex number forms one dimension). 2D

convolution is applied to the input data and deep features are extracted. At the end of

the fully connected layers, the symbols are estimated. The vector d mapped and coded

is used as ground truth while the network is being trained. Adam optimizer is used to

train all the networks. Mean Squared Error (MSE) loss function is used in the network

during the training as in Eq. 5.10:

L =
1
N
(d̂−d)T (d̂−d) (5.10)

At the end of the process, it is expected that underlying relationship formed by wireless

channel is learned and tried to be eliminated from the signal.

5.3 Transfer Learning

Transfer learning is to use the experience obtained from the previously encountered

problem for another problem. In our daily life, people’s learning abilities are similar to

this concept. An example of this is that it is easier for a person who knows more than

one foreign language to learn a new language compared to those who do not speak

any foreign language. This is because the person who knows more than one foreign

language uses similar structures between languages to learn the new language.

In computer vision field, object recognition, identification and detection is performed

in the image. This is done with the capabilities of the convolutional neural network.

CNN, which is a DL method, has feature extraction and classification. In convolution

layers, low medium and high level features are extracted. This feature can be used in

two different neural networks that recognize cats and dogs. For example, in training

neural network that recognize the cats, edges, corners and density are determined as a

low level feature. Similar low-level features will be needed in the neural network that

recognizes the dog. So instead of retraining, these convolution weights are transferred

to the other network. The neural network used to detect symbols is mentioned in

Section 5.2. During the training, a generalization is made according to the available
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Table 5.1 : Simulation Parameters for Both OFDM and GFDM

OFDM & GFDM Parameters used in the Simulations
Description Parameter OFDM Value GFDM Value

Number of subcarriers K 64 32
Number of subsymbols M 1 3

Pulse shaping filter g - RRC
Roll-off factor a - 0.1

Length of cyclic prefix Ncp 16 24
Channel Taps (Fixed) Nch 10 10

data. When new training data comes in, a generalization is made again. Each process

takes approximately 50 to 60 epochs. It was observed that this retraining process took

1 epoch when transfer learning was used. Hence, adaptation is provided very quickly.

5.4 Numerical Results

In this section, the wireless system given in Fig. 5.1 is simulated and studied

the performance of the deep receiver for multi-carrier wave-forms. In particular,

it is studied the performance for both OFDM and GFDM wave-forms separately.

Performance of the deep receiver is compared with the classical methods in terms of

bit-error rates (BERs) under various signal-to-noise ratios (SNRs). For comparison,

Deep receiver’s performance is compared to classical methods including matched

receiver with channel equalization, zero forced receiver without channel equalization

and MMSE receiver with channel equalization.

5.4.1 Results for OFDM modulation

OFDM parameters selected in the simulations are given in Table 5.1. First 640000

bits are generated to map 10000 OFDM symbols and splitted over 64 subcarriers (K).

Cyclic prefix (CP) is inserted at a length of 1 to 4 of the generated time signal. Training

data consist of 10000 OFDM symbols and testing data consist of 10000 OFDM

symbols. Note that each OFDM symbol carries 64 bits.It is demonstrated how the BER

changes with respect to Eb/No (signal to noise ratio) for different configurations. First

The performance of a 2D-CNN at different layer numbers (where the total number of

convolutional layers varies between 2 and 5) is compared. The results are summarized
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in Fig. 5.4. In the figure, the best performance is obtained with the 2+1 2D-CNN. It

is also demonstrated the performance of another type of CNNs: 1D-CNN. Fig. 5.5

summarizes the results obtained with different 1D-CNNs. The best result is obtained

at 2+1 1D-CNN.

Finally, to compare CNN results to MLPs that are formed of only fully connected

layers (MLP) it is also studied the performance of multiple MLP networks. The results

are shown in Fig. 5.6. The best performance is obtained with 2-layers MLP.
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5.4.2 Results for GFDM modulation

GFDM parameters used in the simulations are given in Table 5.1. First 960000 bits

are generated to map 10000 GFDM symbol and splitted over 32 subcarriers (K) and 3

subsymbols (M). These 32 subcarriers and 3 subsymbols located in time-frequency

space forms one GFDM symbol. The selected pulse shape for prototype filter of

GFDM is the root raised cosine (RRC) filter which is widely used in practice with

a roll-off factor (a) of 0.1. Cyclic prefix (CP) is inserted at a length of 1 to 4 of the

generated time signal. Training data consist of 10000 GFDM symbols and testing

data consist of 10000 GFDM symbols. Note that each GFDM symbols carries 96

bits. In the deep receiver, received complex signal with dimensions of 10000x96 is

splitted into real and imaginary parts and a represented as 2D data forming 10000x96x2

dimensional 10000 training symbols. The output dimension is 10000x192x1 real

vector. It is demonstrated how the BER changes with respect to Eb/No (signal to

noise ratio) for different configurations for GFDM. Similar to OFDM experiments,

it is first compared the performance of a 2D-CNN at different layer numbers (where

the total number of convolutional layers varies between 2 and 5). The results are

summarized in Fig. 5.1. In the figure, the best performance is obtained with the 2+1

2D-CNN. 1D-CNN results are summarized in Fig. 5.8. In the figure, the best result is

obtained at 2+1 1D-CNN. The MLP results are shown in Fig. 5.9. In the figure, the

best performance is obtained with 2-layers MLP.

In the simulations for both OFDM and GFDM, learning rate of Adam optimizer is set

to 0.0001. Dropout layer is added to the output of each layer and we set all the dropout

parameter to 0.1 to avoid overfitting.

As can be understood from the simulations, the deep receiver technique provided

superiority to the classical receivers. Performance in the theoretical curve for

traditional structures is practically unattainable. The reason for this is that the prior

knowledge cannot be obtained perfectly. Curve to be reached for -30 dB MMSE

receiver in practice is shown with green lines. For the CNN based receiver result, deep

receiver methods approach the scenario where the channel is fully known. Note that

the deep receiver gives results without channel estimation and equalization. Because
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the data is given directly to the network without channel equalization. There is also

no need for channel estimation, as the known symbols are sent from the transmitter

periodically. The network is expected to eliminate the disruptive effects of the channel.

In addition, a curve without channel information is given to provide intuition.
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6. BLIND MAXIMUM DOPPLER SHIFT PARAMETER ESTIMATION

In wireless communication, a disruptive parameter called Doppler effect caused by

moving objects negatively affects communication. This effect is examined in Chapter

2. Although the effect affects the wireless channel negatively, the existence of the

effect is used in some applications. For example, it is used to measure target speeds

on radar, distinguish fixed and moving targets from each other, and measure horizontal

range in air or space stationed radar devices, etc.

To eliminate the Doppler frequency effect is possible by stopping all moving objects.

This approach is practically not possible. Instead, it would be a realistic approach to

estimate the Doppler frequency and spectrum and find solutions to reduce the effect.

Doppler estimation was made with transmitted signals, known signals or known prior

information in previous studies. This section describes how to estimate the Doppler

frequency without the need for any prior knowledge or signal. The estimation consists

of SCF, a feature extraction algorithm robust against to AWGN, and an artificial neural

network that allows it to measure Doppler frequency.

6.1 System Model

Doppler estimation will be blind as the military scenario is assumed. The signals may

be produced from many parameters in the transmitter. Symbols can be produced with

different modulation types, parameters, pulse shaping functions, transmitter impurities

etc. In addition, the channel disrupts the signal with many parameters during the

transfer of information. The degree of freedom is added as much as the parameter

affecting the system. Considering that it is desired to obtain information about the

channel from the observed signal, the parameter density of the system has a negative

impact on the solution of the problem.

Modulated signal consist of message signals and carriers. Message signals are

evaluated as random and time varying stationary processes. On the other hand,

carrier signals consist of sinusoidal waves and they are completely predictable and
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deterministic. The final modulated signal is neither stationary nor deterministic, it is

evaluated cyclostationary based on the periodicity. Therefore, many predictions can

be made using this feature. The signal achieving to the receiver passes through the

channel wireless channel. Thus, multipath channel has many effects on modulated

signal. This signal can be modeled as in Equation 6.1.

r(t) = ℜ{
N

∑
n=1

cne jψn− j2π fcτn+ j2π( fc+ fD,n)t .s̃(t− τn)}+w(t) (6.1)

Here s̃(t) is the low pass equivalent of the modulated signal generated in the transmitter.

This signal, passing through N multipath channels and transmitted at the carrier

frequency of fc, has many effects on the signal when it comes to the receiver. For

example, each path has its own characteristic and it effects electromagnetic wave.

Attenuation of cn amplitude occurs on each path. There is also a ψn phase change

for each path, and τn delay occurs, resulting in 2π fcτn phase change. Finally, there is

a fD,n doppler shift due to objects moving along the path of each wave. Waves passing

through this multipath channel overlap in the receiver and subject to additive Gaussian

noise.

SCF is calculated by making use of the cyclostationary feature of this signal that comes

to the receiver. FAM is preferred among two computationally efficient FAM and SSCA

algorithms used in calculating this function. The obtained 2D matrix is given to the

artificial neural network and Doppler frequency is predicted by regression.

6.2 Spectral Correlation Function

Estimating the new value in time series is a problem that has been studied for years.

While making the estimation process, an estimate is made using the information

available. Prediction can only be made if the new value is in a relationship with the

past. A better prediction is made if it has more relationships with the past. If it has

nothing to do with the previous values, the success of the prediction process will be

the same as the random prediction. The relationship of the value to be estimated with

the past is determined by autocorrelation. This function, which gives the relationship

between two different points, is given as in Equation 6.2.
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Rx (t1, t2) = E [x(t1)x∗ (t2)] (6.2)

To determine how the autocorrelation varies with some particular central time,

centralized autocorrelation function is defined as follows

Rx(t,τ) = E [x(t + τ/2)x∗(t− τ/2)] (6.3)

Stationarity is one of the most important criteria in predicting. By making use of

the stationarity of the signal, it can be predicted about the data to be received or

the system parameter in the light of the available information. The autocorrelation

function of WSS stationary signals is fixed and does not change over time. Therefore,

autocorrelation functions are sufficient to define WSS signals. In some time series

there is a cyclical relationship, even if there is no continuous relationship. This

means that the mean and autocorrelation functions change periodically with time. If

autocorrelation is periodic, this cyclic frequency can be denoted with α and can be

expressed in a Fourier series due to its periodic feature as follows

Rx(t,τ) = ∑
α

Rα
x (τ)e

i2παt (6.4)

Here, cyclic correlation function found by the fourier transform with integer multiples

of fundamental cyclic frequency α is defined as follows

Rα
x (τ) = lim

T→∞

1
T

∫ T/2

−T/2
Rx(t,τ)e−i2παtdt (6.5)

If α = 0, cyclic autocorrelation function will be equal to autocorrelation function.

Hence, cyclic autocorrelation includes normal autocorrelation. Besides, if the signal is

cycloergodic, estimation can be made over the samples.

Rα
x (τ) = lim

T→∞

1
T

∫ T/2

−T/2
x(t + τ/2)x∗(t− τ/2)e−i2παtdt (6.6)

According to Wiener relation, if it is taken Fourier transform of a autocorrelation

function, then power spectral density is obtained. Similarly in this case if it is taken

51



Fourier transform of cyclic autocorrelation function, spectral correlation function is

obtained.

Sα
x ( f ) =

∫
∞

−∞

Rα
x (τ)e

−i2π f τdτ (6.7)

SCF is a very important analysis tool in finding the relationship between spectral

components formed at different frequencies as much as α . This feature is particularly

powerful in AWGN environments where there is no relationship between spectral

components. Therefore, it can be used in variety of signal processing and classification

tasks in communications with noise.

6.3 FFT Accumulation Method

Autocorrelation function is not available when calculating the SCF function in the

observed signal. Since the autocorrelation function is unknown, an estimate needs to

be made. FAM is a temporal smoothing algorithm that predicts SCF. The FAM is a

Fourier transform of the cross correlation between the spectral components smoothed

over time. With this method, the periodicity of spectral components is determined.

SCF estimation with FAM method is obtained by equation 2.8. In the FAM method,

firstly, the operations in Equation 2.9 are applied, and a frequency estimation is made.

Sαi+q∆α
xyT

(
rL, f j

)
∆
= ∑

r
XT (rL, fk)Y ∗T (rL, fl)gc(n− r)e−i2πrq/P (6.8)

XT (n, f ) =
N′/2−1

∑
r=−N′/2

a(r)x(n− r)e−i2π f (n−r)Ts (6.9)

Here N is the length of the signal and N′ is the subblock length. Sliding length L is

generally chosen as N/4. gc(n) is optional data-tapering window with N ∗T s duration

which is the length of the data block that is processed. a(r) is another data-tapering

window with T = N′ ∗ T s duration and P is the number of subblocks. The data is

sampled with the sampling frequency of f s = 1/T and cyclic resolution is calculated

with ∆α = 1/N. On the other hand, cyclic frequency and spectrum frequency are

calculated with αi = fk − fl , f j = ( fk + fl)/2, respectively. Finally n ranges over
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N integers. r,k, l ranges over N′ integers. In Figure 6.1, the block diagram of SCF

estimation by FAM is shown.

Hamming
Windowing

N' - Points
FFT

P - Points
FFT

Output SCF

TIME DOMAIN PROCESS FREQUENCY DOMAIN PROCESS

1 N'

1 N'

1 N'

1 N
1

N'

1

N'

1

N'

FFT ACCUMULATION METHOD (FAM)

Figure 6.1 : Steps of FAM algorithm

The FAM technique is implemented by input channelization, windowed FFT,

down-conversion, multiplication and data reduction and stages is given step by step.

Input Channelization: To make an estimation firstly, the sampled data is divided into

P segments of size N′ lengths which are intersected each other for spectral estimation.

Each segments is saved in a matrix, forming a column. Hence, resulting matrix consist

of P column and N′ row.

Windowed DFT: Hamming windowing process is applied to all columns separately.

Then, the Fast Fourier Transform is performed to all columns. With these processes,

the estimation of the spectrum is made from the observation and spectrum of the each

windowed segments are separately extracted.
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Down Conversion: Calculated spectrum and its conjugate are multiplied with the

complex exponential to convert them into baseband.

Pair-wise Multiplication: Pair-wise multiplication matrix is calculated by multiplying

the spectrum and its conjugate pairwisely and the results are saved side by side.

Second Windowed DFT and Data Reduction: SCF is calculated by taking Fourier of

the pair-wise multiplication matrix. Since this function has no significant data in the

first quarter and last quarter, these parts are discarded. Finally the resulting matrix is

transferred to the cyclic spectrum domain.

6.4 Blind Doppler Estimation Algorithm

The Doppler effect results from the moving objects in the channel, the receiver and

/ or transmitter being mobile. Doppler effect causes great distortion in the signal.

It is important to measure the amount of this effect. There are some approaches that

estimate this effect over the known signals. However, when communicating from point

to point, information about the communication system at a third observation point is

limited. Therefore, the estimation should be done in blind.

Many parameters originating from the transmitter and the channel are effective on the

signal reaching the receiver from the transmitter. The structure to be used to estimate

the Doppler frequency should work independently of these parameters or as insensitive

to these effects as possible. It should also show similar performances at different

SNR levels. For such a system rich in parameter density, making predictions with

first-degree statistics is insufficient. Instead, it is focused of high-degree statistics. Of

the algorithms used in two different domains in time and frequency, the ones used in

the frequency domain are more robust to AWGN. Therefore, algorithms performing

on time domain can not be preferred. Also, the signals used in the telecommunication

system which are mostly digitally modulated signals exhibit periodicities of statistical

parameters. These cyclostationary properties, called spectral correlation features, can

be extracted by SCF.

The propagation in the frequency domain and the cyclic frequency domain with the

Doppler effect is correlated with the maximum Doppler shift. The Doppler shift

acts on the frequencies next to it, so each frequency becomes correlated with the
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frequencies next to it. This effect of the channel is defined as spectral broadening

and results in the spread of SCF in frequency and cyclic frequency. In Figure 6.2,

it can be seen as a result of the spectral correlation function of an FM modulated

signal exposed to 30 Hz Doppler shift with Gaussian spectrum. In Figure 6.3, it can

be seen as a result of the spectral correlation function of an FM modulated signal

exposed to 300 Hz Doppler shift with Gaussian spectrum. As it can be seen from

the figures, the SCF, which is a high dimensional matrix, has a different distribution

according to the severity of the Doppler effect. The variation of the distribution

contains information about the maximum Doppler shift. By measuring the amount

of spectral broadening, the strength of the Doppler frequency can be estimated. The

estimation of the maximum Doppler shift becomes a nonlinear regression problem

at this step. Nonlinear regression can be done using one of the DL models, CNNs.

CNN is a structure commonly used in computer vision and used frequently in the

literature in object recognition, classification, segmentation and regression problems.

The output of SCF obtained with FAM is suitable for CNN since it is a 2-dimensional

data series. Accordingly, a nonlinear regression model was designed using CNN

to estimate the maximum Doppler shift. Linear regression is a linear approach to

model the relationship between a scalar system response and one or more descriptive

variables. In general, a more advanced regression model should be used when the

relationship between inputs and outputs can not be modeled linearly. For this reason,

it was evaluated to make nonlinear regression estimation.

In Figure 6.4, Regression CNN designed for Doppler estimation is seen. The matrix

produced at the output of the SCF is given as an input to the neural network. There are 4

Convolution layers in the neural network and the features are extracted in these layers.

There is a single output FC layer at the end of the network. Huber loss was chosen as

the Loss function and the function is as in Equation 6.10. The Huber loss function is a

linear function when the error is greater than a certain value, and a quadratic function

if the error is small.

Lδ (y, f (x)) =
{ 1

2(y− f (x))2 for |y− f (x)| ≤ δ

δ |y− f (x)|− 1
2δ 2 otherwise

(6.10)

55



0.1

0.05

0

Frequency

00.15
0.1

0.05

Cyclic Frequency

-0.050

Spectral Correlation Function MDS = 30

-0.05
-0.1 -0.1

5

M
a
g
n
it
u
d
e

104

-0.15

10

Figure 6.2 : Spectral Correlation Function (FM, Rayleigh, MDS = 30)

0.1

0.05

Frequency

00

0.15

Spectral Correlation Function MDS = 300

2000

0.1 -0.05

Cyclic Frequency

0.05
0

4000

-0.05
-0.1 -0.1

M
a
g
n
it
u
d
e

6000

-0.15

8000

10000

Figure 6.3 : Spectral Correlation Function (FM, Rayleigh, MDS = 300)

56



Batch Normalization

Input

Convolution Layer

Max Pooling

Batch Normalization

Convolution Layer

Max Pooling

Batch Normalization

Convolution Layer

Max Pooling

Batch Normalization

Convolution Layer

Max Pooling

Output

Dense Layer

Dropout Layer

Flatten Layer

Huber Loss Function

CO
NV

OL
UT

İO
NA

L 
NE

UR
AL

 N
ET

W
OR

K 
ES

TI
M

AT
OR

Figure 6.4 : Regression CNN for Doppler estimation

57



6.5 Numerical Results

In this section, maximum Doppler shift estimation using a nonlinear regression CNN

is simulated and performance result is shown. The dataset prepared for estimation

includes analog modulation (e.g. DSB-AM, FM, PM and LSB-AM). For each

modulation type, modulated signals with SNR values between −5 dB and 20 dB were

produced. Then, these signals were passed through Rayleigh channel and exposed to

multipath channel effects and Doppler effects with Gaussian spectrum. The parameters

of the channel were chosen randomly and the maximum Doppler shift parameter was

stored for the training of the regression model. In the data set Doppler frequency

ranges from 1 to 1000 Hz. The generated data set consists of 30000 samples of 10000

lengths. SCF function is calculated with the FAM method with the generated data set.

Sampling rate fs = 10000 is chosen. Also, desired frequency resolution and desired

cyclic frequency resolution for FAM are selected as ∆ f = 50 and ∆α = 2, respectively.

After the SCF was estimated from the samples in the data set, dimension of the output

become 30000x257x1025. This 2D data is fed to the input of the CNN Regression

network. In Table 6.1, it is given network structure and its parameters that measure

the severity of the Doppler effect. The network has 4 convolution layers. Scaled

exponential linear unit activation function is used at the output of each convolution

layer. The output has a fully connected layer with ReLu activation function. Inputs

are given to the network in batch of 32 samples in each step. Adam is used as the

optimizer. The training is carried out for 20 epochs. The learning rate is chosen as

lr = 0.00002.

The results obtained are shown in Figure 6.5. The range of the estimation error is

shown with its maximum and minimum points which corresponding mean absolute

error. Maximum Doppler shift estimation is made in all analog modulation with an

error of approximately 35 Hz at -5 db SNR and 10 Hz at 20 dB SNR. It appears that as

SNR increases, performance increases.
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Figure 6.5 : Performance of blind Doppler estimation algorithm
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7. CONCLUSIONS AND RECOMMENDATIONS

In this thesis, a deep receiver architecture is presented for multi-carrier wireless

systems and blind Doppler shift parameter estimation algorithm. To our best

knowledge, this is the first work that introduces data detector without channel

equalization using only a deep 2D CNN architecture by eliminating the need for using

a coarse detector for multi-carrier systems comparing both OFDM and GFDM. Also

this is the first work that estimates maximum Doppler frequency without any prior

knowledge.

In our deep receiver, the performance of various neural network architectures including

1D-CNNs, 2D-CNNs and MLPs is analyzed. Furthermore, their performance is

compared to the classical techniques. In our preliminary simulations, we studied the

performance of different architectures containing different layer types with different

hyper-parameters and as shown in our experiments, shallow networks yielded the best

performance (while the difference was not much different, when compared to the

deeper architectures). For example, for both OFDM and GFDM experiments, 2+1

networks yielded the best BER among CNN architectures. While MLPs can yield

slightly better performance for OFDM, they may require significantly more parameters

to be kept in the memory.

For blind maximum Doppler estimation, feature extraction was made by using the

statistics of the signal with the SCF function. The SCF function was observed to be

robust against AWGN noise and also insensitive to all other effects of the channel.

Features from the output of SCF function were fed into the regression CNN network,

and the strength of the maximum Doppler frequency was measured, and the results

were shown. A further study can focus on considering prior knowledge to improve the

performance.
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